xref: /linux/drivers/md/md.c (revision d5e7cafd69da24e6d6cc988fab6ea313a2577efc)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72 
73 static int remove_and_add_spares(struct mddev *mddev,
74 				 struct md_rdev *this);
75 static void mddev_detach(struct mddev *mddev);
76 
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95 
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 	return mddev->sync_speed_min ?
101 		mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103 
104 static inline int speed_max(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_max ?
107 		mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109 
110 static struct ctl_table_header *raid_table_header;
111 
112 static struct ctl_table raid_table[] = {
113 	{
114 		.procname	= "speed_limit_min",
115 		.data		= &sysctl_speed_limit_min,
116 		.maxlen		= sizeof(int),
117 		.mode		= S_IRUGO|S_IWUSR,
118 		.proc_handler	= proc_dointvec,
119 	},
120 	{
121 		.procname	= "speed_limit_max",
122 		.data		= &sysctl_speed_limit_max,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{ }
128 };
129 
130 static struct ctl_table raid_dir_table[] = {
131 	{
132 		.procname	= "raid",
133 		.maxlen		= 0,
134 		.mode		= S_IRUGO|S_IXUGO,
135 		.child		= raid_table,
136 	},
137 	{ }
138 };
139 
140 static struct ctl_table raid_root_table[] = {
141 	{
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{  }
148 };
149 
150 static const struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157 
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159 			    struct mddev *mddev)
160 {
161 	struct bio *b;
162 
163 	if (!mddev || !mddev->bio_set)
164 		return bio_alloc(gfp_mask, nr_iovecs);
165 
166 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167 	if (!b)
168 		return NULL;
169 	return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172 
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174 			    struct mddev *mddev)
175 {
176 	if (!mddev || !mddev->bio_set)
177 		return bio_clone(bio, gfp_mask);
178 
179 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182 
183 /*
184  * We have a system wide 'event count' that is incremented
185  * on any 'interesting' event, and readers of /proc/mdstat
186  * can use 'poll' or 'select' to find out when the event
187  * count increases.
188  *
189  * Events are:
190  *  start array, stop array, error, add device, remove device,
191  *  start build, activate spare
192  */
193 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
194 static atomic_t md_event_count;
195 void md_new_event(struct mddev *mddev)
196 {
197 	atomic_inc(&md_event_count);
198 	wake_up(&md_event_waiters);
199 }
200 EXPORT_SYMBOL_GPL(md_new_event);
201 
202 /* Alternate version that can be called from interrupts
203  * when calling sysfs_notify isn't needed.
204  */
205 static void md_new_event_inintr(struct mddev *mddev)
206 {
207 	atomic_inc(&md_event_count);
208 	wake_up(&md_event_waiters);
209 }
210 
211 /*
212  * Enables to iterate over all existing md arrays
213  * all_mddevs_lock protects this list.
214  */
215 static LIST_HEAD(all_mddevs);
216 static DEFINE_SPINLOCK(all_mddevs_lock);
217 
218 /*
219  * iterates through all used mddevs in the system.
220  * We take care to grab the all_mddevs_lock whenever navigating
221  * the list, and to always hold a refcount when unlocked.
222  * Any code which breaks out of this loop while own
223  * a reference to the current mddev and must mddev_put it.
224  */
225 #define for_each_mddev(_mddev,_tmp)					\
226 									\
227 	for (({ spin_lock(&all_mddevs_lock);				\
228 		_tmp = all_mddevs.next;					\
229 		_mddev = NULL;});					\
230 	     ({ if (_tmp != &all_mddevs)				\
231 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
232 		spin_unlock(&all_mddevs_lock);				\
233 		if (_mddev) mddev_put(_mddev);				\
234 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
235 		_tmp != &all_mddevs;});					\
236 	     ({ spin_lock(&all_mddevs_lock);				\
237 		_tmp = _tmp->next;})					\
238 		)
239 
240 /* Rather than calling directly into the personality make_request function,
241  * IO requests come here first so that we can check if the device is
242  * being suspended pending a reconfiguration.
243  * We hold a refcount over the call to ->make_request.  By the time that
244  * call has finished, the bio has been linked into some internal structure
245  * and so is visible to ->quiesce(), so we don't need the refcount any more.
246  */
247 static void md_make_request(struct request_queue *q, struct bio *bio)
248 {
249 	const int rw = bio_data_dir(bio);
250 	struct mddev *mddev = q->queuedata;
251 	unsigned int sectors;
252 
253 	if (mddev == NULL || mddev->pers == NULL
254 	    || !mddev->ready) {
255 		bio_io_error(bio);
256 		return;
257 	}
258 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
260 		return;
261 	}
262 	smp_rmb(); /* Ensure implications of  'active' are visible */
263 	rcu_read_lock();
264 	if (mddev->suspended) {
265 		DEFINE_WAIT(__wait);
266 		for (;;) {
267 			prepare_to_wait(&mddev->sb_wait, &__wait,
268 					TASK_UNINTERRUPTIBLE);
269 			if (!mddev->suspended)
270 				break;
271 			rcu_read_unlock();
272 			schedule();
273 			rcu_read_lock();
274 		}
275 		finish_wait(&mddev->sb_wait, &__wait);
276 	}
277 	atomic_inc(&mddev->active_io);
278 	rcu_read_unlock();
279 
280 	/*
281 	 * save the sectors now since our bio can
282 	 * go away inside make_request
283 	 */
284 	sectors = bio_sectors(bio);
285 	mddev->pers->make_request(mddev, bio);
286 
287 	generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
288 
289 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
290 		wake_up(&mddev->sb_wait);
291 }
292 
293 /* mddev_suspend makes sure no new requests are submitted
294  * to the device, and that any requests that have been submitted
295  * are completely handled.
296  * Once mddev_detach() is called and completes, the module will be
297  * completely unused.
298  */
299 void mddev_suspend(struct mddev *mddev)
300 {
301 	BUG_ON(mddev->suspended);
302 	mddev->suspended = 1;
303 	synchronize_rcu();
304 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
305 	mddev->pers->quiesce(mddev, 1);
306 
307 	del_timer_sync(&mddev->safemode_timer);
308 }
309 EXPORT_SYMBOL_GPL(mddev_suspend);
310 
311 void mddev_resume(struct mddev *mddev)
312 {
313 	mddev->suspended = 0;
314 	wake_up(&mddev->sb_wait);
315 	mddev->pers->quiesce(mddev, 0);
316 
317 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
318 	md_wakeup_thread(mddev->thread);
319 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
320 }
321 EXPORT_SYMBOL_GPL(mddev_resume);
322 
323 int mddev_congested(struct mddev *mddev, int bits)
324 {
325 	struct md_personality *pers = mddev->pers;
326 	int ret = 0;
327 
328 	rcu_read_lock();
329 	if (mddev->suspended)
330 		ret = 1;
331 	else if (pers && pers->congested)
332 		ret = pers->congested(mddev, bits);
333 	rcu_read_unlock();
334 	return ret;
335 }
336 EXPORT_SYMBOL_GPL(mddev_congested);
337 static int md_congested(void *data, int bits)
338 {
339 	struct mddev *mddev = data;
340 	return mddev_congested(mddev, bits);
341 }
342 
343 static int md_mergeable_bvec(struct request_queue *q,
344 			     struct bvec_merge_data *bvm,
345 			     struct bio_vec *biovec)
346 {
347 	struct mddev *mddev = q->queuedata;
348 	int ret;
349 	rcu_read_lock();
350 	if (mddev->suspended) {
351 		/* Must always allow one vec */
352 		if (bvm->bi_size == 0)
353 			ret = biovec->bv_len;
354 		else
355 			ret = 0;
356 	} else {
357 		struct md_personality *pers = mddev->pers;
358 		if (pers && pers->mergeable_bvec)
359 			ret = pers->mergeable_bvec(mddev, bvm, biovec);
360 		else
361 			ret = biovec->bv_len;
362 	}
363 	rcu_read_unlock();
364 	return ret;
365 }
366 /*
367  * Generic flush handling for md
368  */
369 
370 static void md_end_flush(struct bio *bio, int err)
371 {
372 	struct md_rdev *rdev = bio->bi_private;
373 	struct mddev *mddev = rdev->mddev;
374 
375 	rdev_dec_pending(rdev, mddev);
376 
377 	if (atomic_dec_and_test(&mddev->flush_pending)) {
378 		/* The pre-request flush has finished */
379 		queue_work(md_wq, &mddev->flush_work);
380 	}
381 	bio_put(bio);
382 }
383 
384 static void md_submit_flush_data(struct work_struct *ws);
385 
386 static void submit_flushes(struct work_struct *ws)
387 {
388 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
389 	struct md_rdev *rdev;
390 
391 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
392 	atomic_set(&mddev->flush_pending, 1);
393 	rcu_read_lock();
394 	rdev_for_each_rcu(rdev, mddev)
395 		if (rdev->raid_disk >= 0 &&
396 		    !test_bit(Faulty, &rdev->flags)) {
397 			/* Take two references, one is dropped
398 			 * when request finishes, one after
399 			 * we reclaim rcu_read_lock
400 			 */
401 			struct bio *bi;
402 			atomic_inc(&rdev->nr_pending);
403 			atomic_inc(&rdev->nr_pending);
404 			rcu_read_unlock();
405 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
406 			bi->bi_end_io = md_end_flush;
407 			bi->bi_private = rdev;
408 			bi->bi_bdev = rdev->bdev;
409 			atomic_inc(&mddev->flush_pending);
410 			submit_bio(WRITE_FLUSH, bi);
411 			rcu_read_lock();
412 			rdev_dec_pending(rdev, mddev);
413 		}
414 	rcu_read_unlock();
415 	if (atomic_dec_and_test(&mddev->flush_pending))
416 		queue_work(md_wq, &mddev->flush_work);
417 }
418 
419 static void md_submit_flush_data(struct work_struct *ws)
420 {
421 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
422 	struct bio *bio = mddev->flush_bio;
423 
424 	if (bio->bi_iter.bi_size == 0)
425 		/* an empty barrier - all done */
426 		bio_endio(bio, 0);
427 	else {
428 		bio->bi_rw &= ~REQ_FLUSH;
429 		mddev->pers->make_request(mddev, bio);
430 	}
431 
432 	mddev->flush_bio = NULL;
433 	wake_up(&mddev->sb_wait);
434 }
435 
436 void md_flush_request(struct mddev *mddev, struct bio *bio)
437 {
438 	spin_lock_irq(&mddev->lock);
439 	wait_event_lock_irq(mddev->sb_wait,
440 			    !mddev->flush_bio,
441 			    mddev->lock);
442 	mddev->flush_bio = bio;
443 	spin_unlock_irq(&mddev->lock);
444 
445 	INIT_WORK(&mddev->flush_work, submit_flushes);
446 	queue_work(md_wq, &mddev->flush_work);
447 }
448 EXPORT_SYMBOL(md_flush_request);
449 
450 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
451 {
452 	struct mddev *mddev = cb->data;
453 	md_wakeup_thread(mddev->thread);
454 	kfree(cb);
455 }
456 EXPORT_SYMBOL(md_unplug);
457 
458 static inline struct mddev *mddev_get(struct mddev *mddev)
459 {
460 	atomic_inc(&mddev->active);
461 	return mddev;
462 }
463 
464 static void mddev_delayed_delete(struct work_struct *ws);
465 
466 static void mddev_put(struct mddev *mddev)
467 {
468 	struct bio_set *bs = NULL;
469 
470 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
471 		return;
472 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
473 	    mddev->ctime == 0 && !mddev->hold_active) {
474 		/* Array is not configured at all, and not held active,
475 		 * so destroy it */
476 		list_del_init(&mddev->all_mddevs);
477 		bs = mddev->bio_set;
478 		mddev->bio_set = NULL;
479 		if (mddev->gendisk) {
480 			/* We did a probe so need to clean up.  Call
481 			 * queue_work inside the spinlock so that
482 			 * flush_workqueue() after mddev_find will
483 			 * succeed in waiting for the work to be done.
484 			 */
485 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
486 			queue_work(md_misc_wq, &mddev->del_work);
487 		} else
488 			kfree(mddev);
489 	}
490 	spin_unlock(&all_mddevs_lock);
491 	if (bs)
492 		bioset_free(bs);
493 }
494 
495 void mddev_init(struct mddev *mddev)
496 {
497 	mutex_init(&mddev->open_mutex);
498 	mutex_init(&mddev->reconfig_mutex);
499 	mutex_init(&mddev->bitmap_info.mutex);
500 	INIT_LIST_HEAD(&mddev->disks);
501 	INIT_LIST_HEAD(&mddev->all_mddevs);
502 	init_timer(&mddev->safemode_timer);
503 	atomic_set(&mddev->active, 1);
504 	atomic_set(&mddev->openers, 0);
505 	atomic_set(&mddev->active_io, 0);
506 	spin_lock_init(&mddev->lock);
507 	atomic_set(&mddev->flush_pending, 0);
508 	init_waitqueue_head(&mddev->sb_wait);
509 	init_waitqueue_head(&mddev->recovery_wait);
510 	mddev->reshape_position = MaxSector;
511 	mddev->reshape_backwards = 0;
512 	mddev->last_sync_action = "none";
513 	mddev->resync_min = 0;
514 	mddev->resync_max = MaxSector;
515 	mddev->level = LEVEL_NONE;
516 }
517 EXPORT_SYMBOL_GPL(mddev_init);
518 
519 static struct mddev *mddev_find(dev_t unit)
520 {
521 	struct mddev *mddev, *new = NULL;
522 
523 	if (unit && MAJOR(unit) != MD_MAJOR)
524 		unit &= ~((1<<MdpMinorShift)-1);
525 
526  retry:
527 	spin_lock(&all_mddevs_lock);
528 
529 	if (unit) {
530 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
531 			if (mddev->unit == unit) {
532 				mddev_get(mddev);
533 				spin_unlock(&all_mddevs_lock);
534 				kfree(new);
535 				return mddev;
536 			}
537 
538 		if (new) {
539 			list_add(&new->all_mddevs, &all_mddevs);
540 			spin_unlock(&all_mddevs_lock);
541 			new->hold_active = UNTIL_IOCTL;
542 			return new;
543 		}
544 	} else if (new) {
545 		/* find an unused unit number */
546 		static int next_minor = 512;
547 		int start = next_minor;
548 		int is_free = 0;
549 		int dev = 0;
550 		while (!is_free) {
551 			dev = MKDEV(MD_MAJOR, next_minor);
552 			next_minor++;
553 			if (next_minor > MINORMASK)
554 				next_minor = 0;
555 			if (next_minor == start) {
556 				/* Oh dear, all in use. */
557 				spin_unlock(&all_mddevs_lock);
558 				kfree(new);
559 				return NULL;
560 			}
561 
562 			is_free = 1;
563 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
564 				if (mddev->unit == dev) {
565 					is_free = 0;
566 					break;
567 				}
568 		}
569 		new->unit = dev;
570 		new->md_minor = MINOR(dev);
571 		new->hold_active = UNTIL_STOP;
572 		list_add(&new->all_mddevs, &all_mddevs);
573 		spin_unlock(&all_mddevs_lock);
574 		return new;
575 	}
576 	spin_unlock(&all_mddevs_lock);
577 
578 	new = kzalloc(sizeof(*new), GFP_KERNEL);
579 	if (!new)
580 		return NULL;
581 
582 	new->unit = unit;
583 	if (MAJOR(unit) == MD_MAJOR)
584 		new->md_minor = MINOR(unit);
585 	else
586 		new->md_minor = MINOR(unit) >> MdpMinorShift;
587 
588 	mddev_init(new);
589 
590 	goto retry;
591 }
592 
593 static struct attribute_group md_redundancy_group;
594 
595 void mddev_unlock(struct mddev *mddev)
596 {
597 	if (mddev->to_remove) {
598 		/* These cannot be removed under reconfig_mutex as
599 		 * an access to the files will try to take reconfig_mutex
600 		 * while holding the file unremovable, which leads to
601 		 * a deadlock.
602 		 * So hold set sysfs_active while the remove in happeing,
603 		 * and anything else which might set ->to_remove or my
604 		 * otherwise change the sysfs namespace will fail with
605 		 * -EBUSY if sysfs_active is still set.
606 		 * We set sysfs_active under reconfig_mutex and elsewhere
607 		 * test it under the same mutex to ensure its correct value
608 		 * is seen.
609 		 */
610 		struct attribute_group *to_remove = mddev->to_remove;
611 		mddev->to_remove = NULL;
612 		mddev->sysfs_active = 1;
613 		mutex_unlock(&mddev->reconfig_mutex);
614 
615 		if (mddev->kobj.sd) {
616 			if (to_remove != &md_redundancy_group)
617 				sysfs_remove_group(&mddev->kobj, to_remove);
618 			if (mddev->pers == NULL ||
619 			    mddev->pers->sync_request == NULL) {
620 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
621 				if (mddev->sysfs_action)
622 					sysfs_put(mddev->sysfs_action);
623 				mddev->sysfs_action = NULL;
624 			}
625 		}
626 		mddev->sysfs_active = 0;
627 	} else
628 		mutex_unlock(&mddev->reconfig_mutex);
629 
630 	/* As we've dropped the mutex we need a spinlock to
631 	 * make sure the thread doesn't disappear
632 	 */
633 	spin_lock(&pers_lock);
634 	md_wakeup_thread(mddev->thread);
635 	spin_unlock(&pers_lock);
636 }
637 EXPORT_SYMBOL_GPL(mddev_unlock);
638 
639 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
640 {
641 	struct md_rdev *rdev;
642 
643 	rdev_for_each_rcu(rdev, mddev)
644 		if (rdev->desc_nr == nr)
645 			return rdev;
646 
647 	return NULL;
648 }
649 
650 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
651 {
652 	struct md_rdev *rdev;
653 
654 	rdev_for_each(rdev, mddev)
655 		if (rdev->bdev->bd_dev == dev)
656 			return rdev;
657 
658 	return NULL;
659 }
660 
661 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
662 {
663 	struct md_rdev *rdev;
664 
665 	rdev_for_each_rcu(rdev, mddev)
666 		if (rdev->bdev->bd_dev == dev)
667 			return rdev;
668 
669 	return NULL;
670 }
671 
672 static struct md_personality *find_pers(int level, char *clevel)
673 {
674 	struct md_personality *pers;
675 	list_for_each_entry(pers, &pers_list, list) {
676 		if (level != LEVEL_NONE && pers->level == level)
677 			return pers;
678 		if (strcmp(pers->name, clevel)==0)
679 			return pers;
680 	}
681 	return NULL;
682 }
683 
684 /* return the offset of the super block in 512byte sectors */
685 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
686 {
687 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
688 	return MD_NEW_SIZE_SECTORS(num_sectors);
689 }
690 
691 static int alloc_disk_sb(struct md_rdev *rdev)
692 {
693 	rdev->sb_page = alloc_page(GFP_KERNEL);
694 	if (!rdev->sb_page) {
695 		printk(KERN_ALERT "md: out of memory.\n");
696 		return -ENOMEM;
697 	}
698 
699 	return 0;
700 }
701 
702 void md_rdev_clear(struct md_rdev *rdev)
703 {
704 	if (rdev->sb_page) {
705 		put_page(rdev->sb_page);
706 		rdev->sb_loaded = 0;
707 		rdev->sb_page = NULL;
708 		rdev->sb_start = 0;
709 		rdev->sectors = 0;
710 	}
711 	if (rdev->bb_page) {
712 		put_page(rdev->bb_page);
713 		rdev->bb_page = NULL;
714 	}
715 	kfree(rdev->badblocks.page);
716 	rdev->badblocks.page = NULL;
717 }
718 EXPORT_SYMBOL_GPL(md_rdev_clear);
719 
720 static void super_written(struct bio *bio, int error)
721 {
722 	struct md_rdev *rdev = bio->bi_private;
723 	struct mddev *mddev = rdev->mddev;
724 
725 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
726 		printk("md: super_written gets error=%d, uptodate=%d\n",
727 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
728 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
729 		md_error(mddev, rdev);
730 	}
731 
732 	if (atomic_dec_and_test(&mddev->pending_writes))
733 		wake_up(&mddev->sb_wait);
734 	bio_put(bio);
735 }
736 
737 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
738 		   sector_t sector, int size, struct page *page)
739 {
740 	/* write first size bytes of page to sector of rdev
741 	 * Increment mddev->pending_writes before returning
742 	 * and decrement it on completion, waking up sb_wait
743 	 * if zero is reached.
744 	 * If an error occurred, call md_error
745 	 */
746 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
747 
748 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
749 	bio->bi_iter.bi_sector = sector;
750 	bio_add_page(bio, page, size, 0);
751 	bio->bi_private = rdev;
752 	bio->bi_end_io = super_written;
753 
754 	atomic_inc(&mddev->pending_writes);
755 	submit_bio(WRITE_FLUSH_FUA, bio);
756 }
757 
758 void md_super_wait(struct mddev *mddev)
759 {
760 	/* wait for all superblock writes that were scheduled to complete */
761 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
762 }
763 
764 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
765 		 struct page *page, int rw, bool metadata_op)
766 {
767 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
768 	int ret;
769 
770 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
771 		rdev->meta_bdev : rdev->bdev;
772 	if (metadata_op)
773 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
774 	else if (rdev->mddev->reshape_position != MaxSector &&
775 		 (rdev->mddev->reshape_backwards ==
776 		  (sector >= rdev->mddev->reshape_position)))
777 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
778 	else
779 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
780 	bio_add_page(bio, page, size, 0);
781 	submit_bio_wait(rw, bio);
782 
783 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
784 	bio_put(bio);
785 	return ret;
786 }
787 EXPORT_SYMBOL_GPL(sync_page_io);
788 
789 static int read_disk_sb(struct md_rdev *rdev, int size)
790 {
791 	char b[BDEVNAME_SIZE];
792 
793 	if (rdev->sb_loaded)
794 		return 0;
795 
796 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
797 		goto fail;
798 	rdev->sb_loaded = 1;
799 	return 0;
800 
801 fail:
802 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
803 		bdevname(rdev->bdev,b));
804 	return -EINVAL;
805 }
806 
807 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
808 {
809 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
810 		sb1->set_uuid1 == sb2->set_uuid1 &&
811 		sb1->set_uuid2 == sb2->set_uuid2 &&
812 		sb1->set_uuid3 == sb2->set_uuid3;
813 }
814 
815 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
816 {
817 	int ret;
818 	mdp_super_t *tmp1, *tmp2;
819 
820 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
821 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
822 
823 	if (!tmp1 || !tmp2) {
824 		ret = 0;
825 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
826 		goto abort;
827 	}
828 
829 	*tmp1 = *sb1;
830 	*tmp2 = *sb2;
831 
832 	/*
833 	 * nr_disks is not constant
834 	 */
835 	tmp1->nr_disks = 0;
836 	tmp2->nr_disks = 0;
837 
838 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
839 abort:
840 	kfree(tmp1);
841 	kfree(tmp2);
842 	return ret;
843 }
844 
845 static u32 md_csum_fold(u32 csum)
846 {
847 	csum = (csum & 0xffff) + (csum >> 16);
848 	return (csum & 0xffff) + (csum >> 16);
849 }
850 
851 static unsigned int calc_sb_csum(mdp_super_t *sb)
852 {
853 	u64 newcsum = 0;
854 	u32 *sb32 = (u32*)sb;
855 	int i;
856 	unsigned int disk_csum, csum;
857 
858 	disk_csum = sb->sb_csum;
859 	sb->sb_csum = 0;
860 
861 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
862 		newcsum += sb32[i];
863 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
864 
865 #ifdef CONFIG_ALPHA
866 	/* This used to use csum_partial, which was wrong for several
867 	 * reasons including that different results are returned on
868 	 * different architectures.  It isn't critical that we get exactly
869 	 * the same return value as before (we always csum_fold before
870 	 * testing, and that removes any differences).  However as we
871 	 * know that csum_partial always returned a 16bit value on
872 	 * alphas, do a fold to maximise conformity to previous behaviour.
873 	 */
874 	sb->sb_csum = md_csum_fold(disk_csum);
875 #else
876 	sb->sb_csum = disk_csum;
877 #endif
878 	return csum;
879 }
880 
881 /*
882  * Handle superblock details.
883  * We want to be able to handle multiple superblock formats
884  * so we have a common interface to them all, and an array of
885  * different handlers.
886  * We rely on user-space to write the initial superblock, and support
887  * reading and updating of superblocks.
888  * Interface methods are:
889  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
890  *      loads and validates a superblock on dev.
891  *      if refdev != NULL, compare superblocks on both devices
892  *    Return:
893  *      0 - dev has a superblock that is compatible with refdev
894  *      1 - dev has a superblock that is compatible and newer than refdev
895  *          so dev should be used as the refdev in future
896  *     -EINVAL superblock incompatible or invalid
897  *     -othererror e.g. -EIO
898  *
899  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
900  *      Verify that dev is acceptable into mddev.
901  *       The first time, mddev->raid_disks will be 0, and data from
902  *       dev should be merged in.  Subsequent calls check that dev
903  *       is new enough.  Return 0 or -EINVAL
904  *
905  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
906  *     Update the superblock for rdev with data in mddev
907  *     This does not write to disc.
908  *
909  */
910 
911 struct super_type  {
912 	char		    *name;
913 	struct module	    *owner;
914 	int		    (*load_super)(struct md_rdev *rdev,
915 					  struct md_rdev *refdev,
916 					  int minor_version);
917 	int		    (*validate_super)(struct mddev *mddev,
918 					      struct md_rdev *rdev);
919 	void		    (*sync_super)(struct mddev *mddev,
920 					  struct md_rdev *rdev);
921 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
922 						sector_t num_sectors);
923 	int		    (*allow_new_offset)(struct md_rdev *rdev,
924 						unsigned long long new_offset);
925 };
926 
927 /*
928  * Check that the given mddev has no bitmap.
929  *
930  * This function is called from the run method of all personalities that do not
931  * support bitmaps. It prints an error message and returns non-zero if mddev
932  * has a bitmap. Otherwise, it returns 0.
933  *
934  */
935 int md_check_no_bitmap(struct mddev *mddev)
936 {
937 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
938 		return 0;
939 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
940 		mdname(mddev), mddev->pers->name);
941 	return 1;
942 }
943 EXPORT_SYMBOL(md_check_no_bitmap);
944 
945 /*
946  * load_super for 0.90.0
947  */
948 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
949 {
950 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
951 	mdp_super_t *sb;
952 	int ret;
953 
954 	/*
955 	 * Calculate the position of the superblock (512byte sectors),
956 	 * it's at the end of the disk.
957 	 *
958 	 * It also happens to be a multiple of 4Kb.
959 	 */
960 	rdev->sb_start = calc_dev_sboffset(rdev);
961 
962 	ret = read_disk_sb(rdev, MD_SB_BYTES);
963 	if (ret) return ret;
964 
965 	ret = -EINVAL;
966 
967 	bdevname(rdev->bdev, b);
968 	sb = page_address(rdev->sb_page);
969 
970 	if (sb->md_magic != MD_SB_MAGIC) {
971 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
972 		       b);
973 		goto abort;
974 	}
975 
976 	if (sb->major_version != 0 ||
977 	    sb->minor_version < 90 ||
978 	    sb->minor_version > 91) {
979 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
980 			sb->major_version, sb->minor_version,
981 			b);
982 		goto abort;
983 	}
984 
985 	if (sb->raid_disks <= 0)
986 		goto abort;
987 
988 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
989 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
990 			b);
991 		goto abort;
992 	}
993 
994 	rdev->preferred_minor = sb->md_minor;
995 	rdev->data_offset = 0;
996 	rdev->new_data_offset = 0;
997 	rdev->sb_size = MD_SB_BYTES;
998 	rdev->badblocks.shift = -1;
999 
1000 	if (sb->level == LEVEL_MULTIPATH)
1001 		rdev->desc_nr = -1;
1002 	else
1003 		rdev->desc_nr = sb->this_disk.number;
1004 
1005 	if (!refdev) {
1006 		ret = 1;
1007 	} else {
1008 		__u64 ev1, ev2;
1009 		mdp_super_t *refsb = page_address(refdev->sb_page);
1010 		if (!uuid_equal(refsb, sb)) {
1011 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1012 				b, bdevname(refdev->bdev,b2));
1013 			goto abort;
1014 		}
1015 		if (!sb_equal(refsb, sb)) {
1016 			printk(KERN_WARNING "md: %s has same UUID"
1017 			       " but different superblock to %s\n",
1018 			       b, bdevname(refdev->bdev, b2));
1019 			goto abort;
1020 		}
1021 		ev1 = md_event(sb);
1022 		ev2 = md_event(refsb);
1023 		if (ev1 > ev2)
1024 			ret = 1;
1025 		else
1026 			ret = 0;
1027 	}
1028 	rdev->sectors = rdev->sb_start;
1029 	/* Limit to 4TB as metadata cannot record more than that.
1030 	 * (not needed for Linear and RAID0 as metadata doesn't
1031 	 * record this size)
1032 	 */
1033 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1034 		rdev->sectors = (2ULL << 32) - 2;
1035 
1036 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1037 		/* "this cannot possibly happen" ... */
1038 		ret = -EINVAL;
1039 
1040  abort:
1041 	return ret;
1042 }
1043 
1044 /*
1045  * validate_super for 0.90.0
1046  */
1047 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1048 {
1049 	mdp_disk_t *desc;
1050 	mdp_super_t *sb = page_address(rdev->sb_page);
1051 	__u64 ev1 = md_event(sb);
1052 
1053 	rdev->raid_disk = -1;
1054 	clear_bit(Faulty, &rdev->flags);
1055 	clear_bit(In_sync, &rdev->flags);
1056 	clear_bit(Bitmap_sync, &rdev->flags);
1057 	clear_bit(WriteMostly, &rdev->flags);
1058 
1059 	if (mddev->raid_disks == 0) {
1060 		mddev->major_version = 0;
1061 		mddev->minor_version = sb->minor_version;
1062 		mddev->patch_version = sb->patch_version;
1063 		mddev->external = 0;
1064 		mddev->chunk_sectors = sb->chunk_size >> 9;
1065 		mddev->ctime = sb->ctime;
1066 		mddev->utime = sb->utime;
1067 		mddev->level = sb->level;
1068 		mddev->clevel[0] = 0;
1069 		mddev->layout = sb->layout;
1070 		mddev->raid_disks = sb->raid_disks;
1071 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1072 		mddev->events = ev1;
1073 		mddev->bitmap_info.offset = 0;
1074 		mddev->bitmap_info.space = 0;
1075 		/* bitmap can use 60 K after the 4K superblocks */
1076 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1077 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1078 		mddev->reshape_backwards = 0;
1079 
1080 		if (mddev->minor_version >= 91) {
1081 			mddev->reshape_position = sb->reshape_position;
1082 			mddev->delta_disks = sb->delta_disks;
1083 			mddev->new_level = sb->new_level;
1084 			mddev->new_layout = sb->new_layout;
1085 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1086 			if (mddev->delta_disks < 0)
1087 				mddev->reshape_backwards = 1;
1088 		} else {
1089 			mddev->reshape_position = MaxSector;
1090 			mddev->delta_disks = 0;
1091 			mddev->new_level = mddev->level;
1092 			mddev->new_layout = mddev->layout;
1093 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1094 		}
1095 
1096 		if (sb->state & (1<<MD_SB_CLEAN))
1097 			mddev->recovery_cp = MaxSector;
1098 		else {
1099 			if (sb->events_hi == sb->cp_events_hi &&
1100 				sb->events_lo == sb->cp_events_lo) {
1101 				mddev->recovery_cp = sb->recovery_cp;
1102 			} else
1103 				mddev->recovery_cp = 0;
1104 		}
1105 
1106 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1107 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1108 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1109 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1110 
1111 		mddev->max_disks = MD_SB_DISKS;
1112 
1113 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1114 		    mddev->bitmap_info.file == NULL) {
1115 			mddev->bitmap_info.offset =
1116 				mddev->bitmap_info.default_offset;
1117 			mddev->bitmap_info.space =
1118 				mddev->bitmap_info.default_space;
1119 		}
1120 
1121 	} else if (mddev->pers == NULL) {
1122 		/* Insist on good event counter while assembling, except
1123 		 * for spares (which don't need an event count) */
1124 		++ev1;
1125 		if (sb->disks[rdev->desc_nr].state & (
1126 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1127 			if (ev1 < mddev->events)
1128 				return -EINVAL;
1129 	} else if (mddev->bitmap) {
1130 		/* if adding to array with a bitmap, then we can accept an
1131 		 * older device ... but not too old.
1132 		 */
1133 		if (ev1 < mddev->bitmap->events_cleared)
1134 			return 0;
1135 		if (ev1 < mddev->events)
1136 			set_bit(Bitmap_sync, &rdev->flags);
1137 	} else {
1138 		if (ev1 < mddev->events)
1139 			/* just a hot-add of a new device, leave raid_disk at -1 */
1140 			return 0;
1141 	}
1142 
1143 	if (mddev->level != LEVEL_MULTIPATH) {
1144 		desc = sb->disks + rdev->desc_nr;
1145 
1146 		if (desc->state & (1<<MD_DISK_FAULTY))
1147 			set_bit(Faulty, &rdev->flags);
1148 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1149 			    desc->raid_disk < mddev->raid_disks */) {
1150 			set_bit(In_sync, &rdev->flags);
1151 			rdev->raid_disk = desc->raid_disk;
1152 			rdev->saved_raid_disk = desc->raid_disk;
1153 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1154 			/* active but not in sync implies recovery up to
1155 			 * reshape position.  We don't know exactly where
1156 			 * that is, so set to zero for now */
1157 			if (mddev->minor_version >= 91) {
1158 				rdev->recovery_offset = 0;
1159 				rdev->raid_disk = desc->raid_disk;
1160 			}
1161 		}
1162 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1163 			set_bit(WriteMostly, &rdev->flags);
1164 	} else /* MULTIPATH are always insync */
1165 		set_bit(In_sync, &rdev->flags);
1166 	return 0;
1167 }
1168 
1169 /*
1170  * sync_super for 0.90.0
1171  */
1172 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1173 {
1174 	mdp_super_t *sb;
1175 	struct md_rdev *rdev2;
1176 	int next_spare = mddev->raid_disks;
1177 
1178 	/* make rdev->sb match mddev data..
1179 	 *
1180 	 * 1/ zero out disks
1181 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1182 	 * 3/ any empty disks < next_spare become removed
1183 	 *
1184 	 * disks[0] gets initialised to REMOVED because
1185 	 * we cannot be sure from other fields if it has
1186 	 * been initialised or not.
1187 	 */
1188 	int i;
1189 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1190 
1191 	rdev->sb_size = MD_SB_BYTES;
1192 
1193 	sb = page_address(rdev->sb_page);
1194 
1195 	memset(sb, 0, sizeof(*sb));
1196 
1197 	sb->md_magic = MD_SB_MAGIC;
1198 	sb->major_version = mddev->major_version;
1199 	sb->patch_version = mddev->patch_version;
1200 	sb->gvalid_words  = 0; /* ignored */
1201 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1202 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1203 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1204 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1205 
1206 	sb->ctime = mddev->ctime;
1207 	sb->level = mddev->level;
1208 	sb->size = mddev->dev_sectors / 2;
1209 	sb->raid_disks = mddev->raid_disks;
1210 	sb->md_minor = mddev->md_minor;
1211 	sb->not_persistent = 0;
1212 	sb->utime = mddev->utime;
1213 	sb->state = 0;
1214 	sb->events_hi = (mddev->events>>32);
1215 	sb->events_lo = (u32)mddev->events;
1216 
1217 	if (mddev->reshape_position == MaxSector)
1218 		sb->minor_version = 90;
1219 	else {
1220 		sb->minor_version = 91;
1221 		sb->reshape_position = mddev->reshape_position;
1222 		sb->new_level = mddev->new_level;
1223 		sb->delta_disks = mddev->delta_disks;
1224 		sb->new_layout = mddev->new_layout;
1225 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1226 	}
1227 	mddev->minor_version = sb->minor_version;
1228 	if (mddev->in_sync)
1229 	{
1230 		sb->recovery_cp = mddev->recovery_cp;
1231 		sb->cp_events_hi = (mddev->events>>32);
1232 		sb->cp_events_lo = (u32)mddev->events;
1233 		if (mddev->recovery_cp == MaxSector)
1234 			sb->state = (1<< MD_SB_CLEAN);
1235 	} else
1236 		sb->recovery_cp = 0;
1237 
1238 	sb->layout = mddev->layout;
1239 	sb->chunk_size = mddev->chunk_sectors << 9;
1240 
1241 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1242 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1243 
1244 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1245 	rdev_for_each(rdev2, mddev) {
1246 		mdp_disk_t *d;
1247 		int desc_nr;
1248 		int is_active = test_bit(In_sync, &rdev2->flags);
1249 
1250 		if (rdev2->raid_disk >= 0 &&
1251 		    sb->minor_version >= 91)
1252 			/* we have nowhere to store the recovery_offset,
1253 			 * but if it is not below the reshape_position,
1254 			 * we can piggy-back on that.
1255 			 */
1256 			is_active = 1;
1257 		if (rdev2->raid_disk < 0 ||
1258 		    test_bit(Faulty, &rdev2->flags))
1259 			is_active = 0;
1260 		if (is_active)
1261 			desc_nr = rdev2->raid_disk;
1262 		else
1263 			desc_nr = next_spare++;
1264 		rdev2->desc_nr = desc_nr;
1265 		d = &sb->disks[rdev2->desc_nr];
1266 		nr_disks++;
1267 		d->number = rdev2->desc_nr;
1268 		d->major = MAJOR(rdev2->bdev->bd_dev);
1269 		d->minor = MINOR(rdev2->bdev->bd_dev);
1270 		if (is_active)
1271 			d->raid_disk = rdev2->raid_disk;
1272 		else
1273 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1274 		if (test_bit(Faulty, &rdev2->flags))
1275 			d->state = (1<<MD_DISK_FAULTY);
1276 		else if (is_active) {
1277 			d->state = (1<<MD_DISK_ACTIVE);
1278 			if (test_bit(In_sync, &rdev2->flags))
1279 				d->state |= (1<<MD_DISK_SYNC);
1280 			active++;
1281 			working++;
1282 		} else {
1283 			d->state = 0;
1284 			spare++;
1285 			working++;
1286 		}
1287 		if (test_bit(WriteMostly, &rdev2->flags))
1288 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1289 	}
1290 	/* now set the "removed" and "faulty" bits on any missing devices */
1291 	for (i=0 ; i < mddev->raid_disks ; i++) {
1292 		mdp_disk_t *d = &sb->disks[i];
1293 		if (d->state == 0 && d->number == 0) {
1294 			d->number = i;
1295 			d->raid_disk = i;
1296 			d->state = (1<<MD_DISK_REMOVED);
1297 			d->state |= (1<<MD_DISK_FAULTY);
1298 			failed++;
1299 		}
1300 	}
1301 	sb->nr_disks = nr_disks;
1302 	sb->active_disks = active;
1303 	sb->working_disks = working;
1304 	sb->failed_disks = failed;
1305 	sb->spare_disks = spare;
1306 
1307 	sb->this_disk = sb->disks[rdev->desc_nr];
1308 	sb->sb_csum = calc_sb_csum(sb);
1309 }
1310 
1311 /*
1312  * rdev_size_change for 0.90.0
1313  */
1314 static unsigned long long
1315 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1316 {
1317 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1318 		return 0; /* component must fit device */
1319 	if (rdev->mddev->bitmap_info.offset)
1320 		return 0; /* can't move bitmap */
1321 	rdev->sb_start = calc_dev_sboffset(rdev);
1322 	if (!num_sectors || num_sectors > rdev->sb_start)
1323 		num_sectors = rdev->sb_start;
1324 	/* Limit to 4TB as metadata cannot record more than that.
1325 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1326 	 */
1327 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1328 		num_sectors = (2ULL << 32) - 2;
1329 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1330 		       rdev->sb_page);
1331 	md_super_wait(rdev->mddev);
1332 	return num_sectors;
1333 }
1334 
1335 static int
1336 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1337 {
1338 	/* non-zero offset changes not possible with v0.90 */
1339 	return new_offset == 0;
1340 }
1341 
1342 /*
1343  * version 1 superblock
1344  */
1345 
1346 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1347 {
1348 	__le32 disk_csum;
1349 	u32 csum;
1350 	unsigned long long newcsum;
1351 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1352 	__le32 *isuper = (__le32*)sb;
1353 
1354 	disk_csum = sb->sb_csum;
1355 	sb->sb_csum = 0;
1356 	newcsum = 0;
1357 	for (; size >= 4; size -= 4)
1358 		newcsum += le32_to_cpu(*isuper++);
1359 
1360 	if (size == 2)
1361 		newcsum += le16_to_cpu(*(__le16*) isuper);
1362 
1363 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1364 	sb->sb_csum = disk_csum;
1365 	return cpu_to_le32(csum);
1366 }
1367 
1368 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1369 			    int acknowledged);
1370 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1371 {
1372 	struct mdp_superblock_1 *sb;
1373 	int ret;
1374 	sector_t sb_start;
1375 	sector_t sectors;
1376 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1377 	int bmask;
1378 
1379 	/*
1380 	 * Calculate the position of the superblock in 512byte sectors.
1381 	 * It is always aligned to a 4K boundary and
1382 	 * depeding on minor_version, it can be:
1383 	 * 0: At least 8K, but less than 12K, from end of device
1384 	 * 1: At start of device
1385 	 * 2: 4K from start of device.
1386 	 */
1387 	switch(minor_version) {
1388 	case 0:
1389 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1390 		sb_start -= 8*2;
1391 		sb_start &= ~(sector_t)(4*2-1);
1392 		break;
1393 	case 1:
1394 		sb_start = 0;
1395 		break;
1396 	case 2:
1397 		sb_start = 8;
1398 		break;
1399 	default:
1400 		return -EINVAL;
1401 	}
1402 	rdev->sb_start = sb_start;
1403 
1404 	/* superblock is rarely larger than 1K, but it can be larger,
1405 	 * and it is safe to read 4k, so we do that
1406 	 */
1407 	ret = read_disk_sb(rdev, 4096);
1408 	if (ret) return ret;
1409 
1410 	sb = page_address(rdev->sb_page);
1411 
1412 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1413 	    sb->major_version != cpu_to_le32(1) ||
1414 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1415 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1416 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1417 		return -EINVAL;
1418 
1419 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1420 		printk("md: invalid superblock checksum on %s\n",
1421 			bdevname(rdev->bdev,b));
1422 		return -EINVAL;
1423 	}
1424 	if (le64_to_cpu(sb->data_size) < 10) {
1425 		printk("md: data_size too small on %s\n",
1426 		       bdevname(rdev->bdev,b));
1427 		return -EINVAL;
1428 	}
1429 	if (sb->pad0 ||
1430 	    sb->pad3[0] ||
1431 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1432 		/* Some padding is non-zero, might be a new feature */
1433 		return -EINVAL;
1434 
1435 	rdev->preferred_minor = 0xffff;
1436 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1437 	rdev->new_data_offset = rdev->data_offset;
1438 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1439 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1440 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1441 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1442 
1443 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1444 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1445 	if (rdev->sb_size & bmask)
1446 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1447 
1448 	if (minor_version
1449 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1450 		return -EINVAL;
1451 	if (minor_version
1452 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1453 		return -EINVAL;
1454 
1455 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1456 		rdev->desc_nr = -1;
1457 	else
1458 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1459 
1460 	if (!rdev->bb_page) {
1461 		rdev->bb_page = alloc_page(GFP_KERNEL);
1462 		if (!rdev->bb_page)
1463 			return -ENOMEM;
1464 	}
1465 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1466 	    rdev->badblocks.count == 0) {
1467 		/* need to load the bad block list.
1468 		 * Currently we limit it to one page.
1469 		 */
1470 		s32 offset;
1471 		sector_t bb_sector;
1472 		u64 *bbp;
1473 		int i;
1474 		int sectors = le16_to_cpu(sb->bblog_size);
1475 		if (sectors > (PAGE_SIZE / 512))
1476 			return -EINVAL;
1477 		offset = le32_to_cpu(sb->bblog_offset);
1478 		if (offset == 0)
1479 			return -EINVAL;
1480 		bb_sector = (long long)offset;
1481 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1482 				  rdev->bb_page, READ, true))
1483 			return -EIO;
1484 		bbp = (u64 *)page_address(rdev->bb_page);
1485 		rdev->badblocks.shift = sb->bblog_shift;
1486 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1487 			u64 bb = le64_to_cpu(*bbp);
1488 			int count = bb & (0x3ff);
1489 			u64 sector = bb >> 10;
1490 			sector <<= sb->bblog_shift;
1491 			count <<= sb->bblog_shift;
1492 			if (bb + 1 == 0)
1493 				break;
1494 			if (md_set_badblocks(&rdev->badblocks,
1495 					     sector, count, 1) == 0)
1496 				return -EINVAL;
1497 		}
1498 	} else if (sb->bblog_offset != 0)
1499 		rdev->badblocks.shift = 0;
1500 
1501 	if (!refdev) {
1502 		ret = 1;
1503 	} else {
1504 		__u64 ev1, ev2;
1505 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1506 
1507 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1508 		    sb->level != refsb->level ||
1509 		    sb->layout != refsb->layout ||
1510 		    sb->chunksize != refsb->chunksize) {
1511 			printk(KERN_WARNING "md: %s has strangely different"
1512 				" superblock to %s\n",
1513 				bdevname(rdev->bdev,b),
1514 				bdevname(refdev->bdev,b2));
1515 			return -EINVAL;
1516 		}
1517 		ev1 = le64_to_cpu(sb->events);
1518 		ev2 = le64_to_cpu(refsb->events);
1519 
1520 		if (ev1 > ev2)
1521 			ret = 1;
1522 		else
1523 			ret = 0;
1524 	}
1525 	if (minor_version) {
1526 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1527 		sectors -= rdev->data_offset;
1528 	} else
1529 		sectors = rdev->sb_start;
1530 	if (sectors < le64_to_cpu(sb->data_size))
1531 		return -EINVAL;
1532 	rdev->sectors = le64_to_cpu(sb->data_size);
1533 	return ret;
1534 }
1535 
1536 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1537 {
1538 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1539 	__u64 ev1 = le64_to_cpu(sb->events);
1540 
1541 	rdev->raid_disk = -1;
1542 	clear_bit(Faulty, &rdev->flags);
1543 	clear_bit(In_sync, &rdev->flags);
1544 	clear_bit(Bitmap_sync, &rdev->flags);
1545 	clear_bit(WriteMostly, &rdev->flags);
1546 
1547 	if (mddev->raid_disks == 0) {
1548 		mddev->major_version = 1;
1549 		mddev->patch_version = 0;
1550 		mddev->external = 0;
1551 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1552 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1553 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1554 		mddev->level = le32_to_cpu(sb->level);
1555 		mddev->clevel[0] = 0;
1556 		mddev->layout = le32_to_cpu(sb->layout);
1557 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1558 		mddev->dev_sectors = le64_to_cpu(sb->size);
1559 		mddev->events = ev1;
1560 		mddev->bitmap_info.offset = 0;
1561 		mddev->bitmap_info.space = 0;
1562 		/* Default location for bitmap is 1K after superblock
1563 		 * using 3K - total of 4K
1564 		 */
1565 		mddev->bitmap_info.default_offset = 1024 >> 9;
1566 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1567 		mddev->reshape_backwards = 0;
1568 
1569 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1570 		memcpy(mddev->uuid, sb->set_uuid, 16);
1571 
1572 		mddev->max_disks =  (4096-256)/2;
1573 
1574 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1575 		    mddev->bitmap_info.file == NULL) {
1576 			mddev->bitmap_info.offset =
1577 				(__s32)le32_to_cpu(sb->bitmap_offset);
1578 			/* Metadata doesn't record how much space is available.
1579 			 * For 1.0, we assume we can use up to the superblock
1580 			 * if before, else to 4K beyond superblock.
1581 			 * For others, assume no change is possible.
1582 			 */
1583 			if (mddev->minor_version > 0)
1584 				mddev->bitmap_info.space = 0;
1585 			else if (mddev->bitmap_info.offset > 0)
1586 				mddev->bitmap_info.space =
1587 					8 - mddev->bitmap_info.offset;
1588 			else
1589 				mddev->bitmap_info.space =
1590 					-mddev->bitmap_info.offset;
1591 		}
1592 
1593 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1594 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1595 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1596 			mddev->new_level = le32_to_cpu(sb->new_level);
1597 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1598 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1599 			if (mddev->delta_disks < 0 ||
1600 			    (mddev->delta_disks == 0 &&
1601 			     (le32_to_cpu(sb->feature_map)
1602 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1603 				mddev->reshape_backwards = 1;
1604 		} else {
1605 			mddev->reshape_position = MaxSector;
1606 			mddev->delta_disks = 0;
1607 			mddev->new_level = mddev->level;
1608 			mddev->new_layout = mddev->layout;
1609 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1610 		}
1611 
1612 	} else if (mddev->pers == NULL) {
1613 		/* Insist of good event counter while assembling, except for
1614 		 * spares (which don't need an event count) */
1615 		++ev1;
1616 		if (rdev->desc_nr >= 0 &&
1617 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1618 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1619 			if (ev1 < mddev->events)
1620 				return -EINVAL;
1621 	} else if (mddev->bitmap) {
1622 		/* If adding to array with a bitmap, then we can accept an
1623 		 * older device, but not too old.
1624 		 */
1625 		if (ev1 < mddev->bitmap->events_cleared)
1626 			return 0;
1627 		if (ev1 < mddev->events)
1628 			set_bit(Bitmap_sync, &rdev->flags);
1629 	} else {
1630 		if (ev1 < mddev->events)
1631 			/* just a hot-add of a new device, leave raid_disk at -1 */
1632 			return 0;
1633 	}
1634 	if (mddev->level != LEVEL_MULTIPATH) {
1635 		int role;
1636 		if (rdev->desc_nr < 0 ||
1637 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1638 			role = 0xffff;
1639 			rdev->desc_nr = -1;
1640 		} else
1641 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1642 		switch(role) {
1643 		case 0xffff: /* spare */
1644 			break;
1645 		case 0xfffe: /* faulty */
1646 			set_bit(Faulty, &rdev->flags);
1647 			break;
1648 		default:
1649 			rdev->saved_raid_disk = role;
1650 			if ((le32_to_cpu(sb->feature_map) &
1651 			     MD_FEATURE_RECOVERY_OFFSET)) {
1652 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1653 				if (!(le32_to_cpu(sb->feature_map) &
1654 				      MD_FEATURE_RECOVERY_BITMAP))
1655 					rdev->saved_raid_disk = -1;
1656 			} else
1657 				set_bit(In_sync, &rdev->flags);
1658 			rdev->raid_disk = role;
1659 			break;
1660 		}
1661 		if (sb->devflags & WriteMostly1)
1662 			set_bit(WriteMostly, &rdev->flags);
1663 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1664 			set_bit(Replacement, &rdev->flags);
1665 	} else /* MULTIPATH are always insync */
1666 		set_bit(In_sync, &rdev->flags);
1667 
1668 	return 0;
1669 }
1670 
1671 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1672 {
1673 	struct mdp_superblock_1 *sb;
1674 	struct md_rdev *rdev2;
1675 	int max_dev, i;
1676 	/* make rdev->sb match mddev and rdev data. */
1677 
1678 	sb = page_address(rdev->sb_page);
1679 
1680 	sb->feature_map = 0;
1681 	sb->pad0 = 0;
1682 	sb->recovery_offset = cpu_to_le64(0);
1683 	memset(sb->pad3, 0, sizeof(sb->pad3));
1684 
1685 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1686 	sb->events = cpu_to_le64(mddev->events);
1687 	if (mddev->in_sync)
1688 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1689 	else
1690 		sb->resync_offset = cpu_to_le64(0);
1691 
1692 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1693 
1694 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1695 	sb->size = cpu_to_le64(mddev->dev_sectors);
1696 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1697 	sb->level = cpu_to_le32(mddev->level);
1698 	sb->layout = cpu_to_le32(mddev->layout);
1699 
1700 	if (test_bit(WriteMostly, &rdev->flags))
1701 		sb->devflags |= WriteMostly1;
1702 	else
1703 		sb->devflags &= ~WriteMostly1;
1704 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1705 	sb->data_size = cpu_to_le64(rdev->sectors);
1706 
1707 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1708 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1709 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1710 	}
1711 
1712 	if (rdev->raid_disk >= 0 &&
1713 	    !test_bit(In_sync, &rdev->flags)) {
1714 		sb->feature_map |=
1715 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1716 		sb->recovery_offset =
1717 			cpu_to_le64(rdev->recovery_offset);
1718 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1719 			sb->feature_map |=
1720 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1721 	}
1722 	if (test_bit(Replacement, &rdev->flags))
1723 		sb->feature_map |=
1724 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1725 
1726 	if (mddev->reshape_position != MaxSector) {
1727 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1728 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1729 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1730 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1731 		sb->new_level = cpu_to_le32(mddev->new_level);
1732 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1733 		if (mddev->delta_disks == 0 &&
1734 		    mddev->reshape_backwards)
1735 			sb->feature_map
1736 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1737 		if (rdev->new_data_offset != rdev->data_offset) {
1738 			sb->feature_map
1739 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1740 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1741 							     - rdev->data_offset));
1742 		}
1743 	}
1744 
1745 	if (rdev->badblocks.count == 0)
1746 		/* Nothing to do for bad blocks*/ ;
1747 	else if (sb->bblog_offset == 0)
1748 		/* Cannot record bad blocks on this device */
1749 		md_error(mddev, rdev);
1750 	else {
1751 		struct badblocks *bb = &rdev->badblocks;
1752 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1753 		u64 *p = bb->page;
1754 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1755 		if (bb->changed) {
1756 			unsigned seq;
1757 
1758 retry:
1759 			seq = read_seqbegin(&bb->lock);
1760 
1761 			memset(bbp, 0xff, PAGE_SIZE);
1762 
1763 			for (i = 0 ; i < bb->count ; i++) {
1764 				u64 internal_bb = p[i];
1765 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1766 						| BB_LEN(internal_bb));
1767 				bbp[i] = cpu_to_le64(store_bb);
1768 			}
1769 			bb->changed = 0;
1770 			if (read_seqretry(&bb->lock, seq))
1771 				goto retry;
1772 
1773 			bb->sector = (rdev->sb_start +
1774 				      (int)le32_to_cpu(sb->bblog_offset));
1775 			bb->size = le16_to_cpu(sb->bblog_size);
1776 		}
1777 	}
1778 
1779 	max_dev = 0;
1780 	rdev_for_each(rdev2, mddev)
1781 		if (rdev2->desc_nr+1 > max_dev)
1782 			max_dev = rdev2->desc_nr+1;
1783 
1784 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1785 		int bmask;
1786 		sb->max_dev = cpu_to_le32(max_dev);
1787 		rdev->sb_size = max_dev * 2 + 256;
1788 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1789 		if (rdev->sb_size & bmask)
1790 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1791 	} else
1792 		max_dev = le32_to_cpu(sb->max_dev);
1793 
1794 	for (i=0; i<max_dev;i++)
1795 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1796 
1797 	rdev_for_each(rdev2, mddev) {
1798 		i = rdev2->desc_nr;
1799 		if (test_bit(Faulty, &rdev2->flags))
1800 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1801 		else if (test_bit(In_sync, &rdev2->flags))
1802 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1803 		else if (rdev2->raid_disk >= 0)
1804 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1805 		else
1806 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1807 	}
1808 
1809 	sb->sb_csum = calc_sb_1_csum(sb);
1810 }
1811 
1812 static unsigned long long
1813 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1814 {
1815 	struct mdp_superblock_1 *sb;
1816 	sector_t max_sectors;
1817 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1818 		return 0; /* component must fit device */
1819 	if (rdev->data_offset != rdev->new_data_offset)
1820 		return 0; /* too confusing */
1821 	if (rdev->sb_start < rdev->data_offset) {
1822 		/* minor versions 1 and 2; superblock before data */
1823 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1824 		max_sectors -= rdev->data_offset;
1825 		if (!num_sectors || num_sectors > max_sectors)
1826 			num_sectors = max_sectors;
1827 	} else if (rdev->mddev->bitmap_info.offset) {
1828 		/* minor version 0 with bitmap we can't move */
1829 		return 0;
1830 	} else {
1831 		/* minor version 0; superblock after data */
1832 		sector_t sb_start;
1833 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1834 		sb_start &= ~(sector_t)(4*2 - 1);
1835 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1836 		if (!num_sectors || num_sectors > max_sectors)
1837 			num_sectors = max_sectors;
1838 		rdev->sb_start = sb_start;
1839 	}
1840 	sb = page_address(rdev->sb_page);
1841 	sb->data_size = cpu_to_le64(num_sectors);
1842 	sb->super_offset = rdev->sb_start;
1843 	sb->sb_csum = calc_sb_1_csum(sb);
1844 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1845 		       rdev->sb_page);
1846 	md_super_wait(rdev->mddev);
1847 	return num_sectors;
1848 
1849 }
1850 
1851 static int
1852 super_1_allow_new_offset(struct md_rdev *rdev,
1853 			 unsigned long long new_offset)
1854 {
1855 	/* All necessary checks on new >= old have been done */
1856 	struct bitmap *bitmap;
1857 	if (new_offset >= rdev->data_offset)
1858 		return 1;
1859 
1860 	/* with 1.0 metadata, there is no metadata to tread on
1861 	 * so we can always move back */
1862 	if (rdev->mddev->minor_version == 0)
1863 		return 1;
1864 
1865 	/* otherwise we must be sure not to step on
1866 	 * any metadata, so stay:
1867 	 * 36K beyond start of superblock
1868 	 * beyond end of badblocks
1869 	 * beyond write-intent bitmap
1870 	 */
1871 	if (rdev->sb_start + (32+4)*2 > new_offset)
1872 		return 0;
1873 	bitmap = rdev->mddev->bitmap;
1874 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1875 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1876 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1877 		return 0;
1878 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1879 		return 0;
1880 
1881 	return 1;
1882 }
1883 
1884 static struct super_type super_types[] = {
1885 	[0] = {
1886 		.name	= "0.90.0",
1887 		.owner	= THIS_MODULE,
1888 		.load_super	    = super_90_load,
1889 		.validate_super	    = super_90_validate,
1890 		.sync_super	    = super_90_sync,
1891 		.rdev_size_change   = super_90_rdev_size_change,
1892 		.allow_new_offset   = super_90_allow_new_offset,
1893 	},
1894 	[1] = {
1895 		.name	= "md-1",
1896 		.owner	= THIS_MODULE,
1897 		.load_super	    = super_1_load,
1898 		.validate_super	    = super_1_validate,
1899 		.sync_super	    = super_1_sync,
1900 		.rdev_size_change   = super_1_rdev_size_change,
1901 		.allow_new_offset   = super_1_allow_new_offset,
1902 	},
1903 };
1904 
1905 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1906 {
1907 	if (mddev->sync_super) {
1908 		mddev->sync_super(mddev, rdev);
1909 		return;
1910 	}
1911 
1912 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1913 
1914 	super_types[mddev->major_version].sync_super(mddev, rdev);
1915 }
1916 
1917 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1918 {
1919 	struct md_rdev *rdev, *rdev2;
1920 
1921 	rcu_read_lock();
1922 	rdev_for_each_rcu(rdev, mddev1)
1923 		rdev_for_each_rcu(rdev2, mddev2)
1924 			if (rdev->bdev->bd_contains ==
1925 			    rdev2->bdev->bd_contains) {
1926 				rcu_read_unlock();
1927 				return 1;
1928 			}
1929 	rcu_read_unlock();
1930 	return 0;
1931 }
1932 
1933 static LIST_HEAD(pending_raid_disks);
1934 
1935 /*
1936  * Try to register data integrity profile for an mddev
1937  *
1938  * This is called when an array is started and after a disk has been kicked
1939  * from the array. It only succeeds if all working and active component devices
1940  * are integrity capable with matching profiles.
1941  */
1942 int md_integrity_register(struct mddev *mddev)
1943 {
1944 	struct md_rdev *rdev, *reference = NULL;
1945 
1946 	if (list_empty(&mddev->disks))
1947 		return 0; /* nothing to do */
1948 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1949 		return 0; /* shouldn't register, or already is */
1950 	rdev_for_each(rdev, mddev) {
1951 		/* skip spares and non-functional disks */
1952 		if (test_bit(Faulty, &rdev->flags))
1953 			continue;
1954 		if (rdev->raid_disk < 0)
1955 			continue;
1956 		if (!reference) {
1957 			/* Use the first rdev as the reference */
1958 			reference = rdev;
1959 			continue;
1960 		}
1961 		/* does this rdev's profile match the reference profile? */
1962 		if (blk_integrity_compare(reference->bdev->bd_disk,
1963 				rdev->bdev->bd_disk) < 0)
1964 			return -EINVAL;
1965 	}
1966 	if (!reference || !bdev_get_integrity(reference->bdev))
1967 		return 0;
1968 	/*
1969 	 * All component devices are integrity capable and have matching
1970 	 * profiles, register the common profile for the md device.
1971 	 */
1972 	if (blk_integrity_register(mddev->gendisk,
1973 			bdev_get_integrity(reference->bdev)) != 0) {
1974 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1975 			mdname(mddev));
1976 		return -EINVAL;
1977 	}
1978 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1979 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1980 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1981 		       mdname(mddev));
1982 		return -EINVAL;
1983 	}
1984 	return 0;
1985 }
1986 EXPORT_SYMBOL(md_integrity_register);
1987 
1988 /* Disable data integrity if non-capable/non-matching disk is being added */
1989 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1990 {
1991 	struct blk_integrity *bi_rdev;
1992 	struct blk_integrity *bi_mddev;
1993 
1994 	if (!mddev->gendisk)
1995 		return;
1996 
1997 	bi_rdev = bdev_get_integrity(rdev->bdev);
1998 	bi_mddev = blk_get_integrity(mddev->gendisk);
1999 
2000 	if (!bi_mddev) /* nothing to do */
2001 		return;
2002 	if (rdev->raid_disk < 0) /* skip spares */
2003 		return;
2004 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2005 					     rdev->bdev->bd_disk) >= 0)
2006 		return;
2007 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2008 	blk_integrity_unregister(mddev->gendisk);
2009 }
2010 EXPORT_SYMBOL(md_integrity_add_rdev);
2011 
2012 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2013 {
2014 	char b[BDEVNAME_SIZE];
2015 	struct kobject *ko;
2016 	char *s;
2017 	int err;
2018 
2019 	/* prevent duplicates */
2020 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2021 		return -EEXIST;
2022 
2023 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2024 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2025 			rdev->sectors < mddev->dev_sectors)) {
2026 		if (mddev->pers) {
2027 			/* Cannot change size, so fail
2028 			 * If mddev->level <= 0, then we don't care
2029 			 * about aligning sizes (e.g. linear)
2030 			 */
2031 			if (mddev->level > 0)
2032 				return -ENOSPC;
2033 		} else
2034 			mddev->dev_sectors = rdev->sectors;
2035 	}
2036 
2037 	/* Verify rdev->desc_nr is unique.
2038 	 * If it is -1, assign a free number, else
2039 	 * check number is not in use
2040 	 */
2041 	rcu_read_lock();
2042 	if (rdev->desc_nr < 0) {
2043 		int choice = 0;
2044 		if (mddev->pers)
2045 			choice = mddev->raid_disks;
2046 		while (find_rdev_nr_rcu(mddev, choice))
2047 			choice++;
2048 		rdev->desc_nr = choice;
2049 	} else {
2050 		if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2051 			rcu_read_unlock();
2052 			return -EBUSY;
2053 		}
2054 	}
2055 	rcu_read_unlock();
2056 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2057 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2058 		       mdname(mddev), mddev->max_disks);
2059 		return -EBUSY;
2060 	}
2061 	bdevname(rdev->bdev,b);
2062 	while ( (s=strchr(b, '/')) != NULL)
2063 		*s = '!';
2064 
2065 	rdev->mddev = mddev;
2066 	printk(KERN_INFO "md: bind<%s>\n", b);
2067 
2068 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2069 		goto fail;
2070 
2071 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2072 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2073 		/* failure here is OK */;
2074 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2075 
2076 	list_add_rcu(&rdev->same_set, &mddev->disks);
2077 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2078 
2079 	/* May as well allow recovery to be retried once */
2080 	mddev->recovery_disabled++;
2081 
2082 	return 0;
2083 
2084  fail:
2085 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2086 	       b, mdname(mddev));
2087 	return err;
2088 }
2089 
2090 static void md_delayed_delete(struct work_struct *ws)
2091 {
2092 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2093 	kobject_del(&rdev->kobj);
2094 	kobject_put(&rdev->kobj);
2095 }
2096 
2097 static void unbind_rdev_from_array(struct md_rdev *rdev)
2098 {
2099 	char b[BDEVNAME_SIZE];
2100 
2101 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2102 	list_del_rcu(&rdev->same_set);
2103 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2104 	rdev->mddev = NULL;
2105 	sysfs_remove_link(&rdev->kobj, "block");
2106 	sysfs_put(rdev->sysfs_state);
2107 	rdev->sysfs_state = NULL;
2108 	rdev->badblocks.count = 0;
2109 	/* We need to delay this, otherwise we can deadlock when
2110 	 * writing to 'remove' to "dev/state".  We also need
2111 	 * to delay it due to rcu usage.
2112 	 */
2113 	synchronize_rcu();
2114 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2115 	kobject_get(&rdev->kobj);
2116 	queue_work(md_misc_wq, &rdev->del_work);
2117 }
2118 
2119 /*
2120  * prevent the device from being mounted, repartitioned or
2121  * otherwise reused by a RAID array (or any other kernel
2122  * subsystem), by bd_claiming the device.
2123  */
2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2125 {
2126 	int err = 0;
2127 	struct block_device *bdev;
2128 	char b[BDEVNAME_SIZE];
2129 
2130 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2131 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2132 	if (IS_ERR(bdev)) {
2133 		printk(KERN_ERR "md: could not open %s.\n",
2134 			__bdevname(dev, b));
2135 		return PTR_ERR(bdev);
2136 	}
2137 	rdev->bdev = bdev;
2138 	return err;
2139 }
2140 
2141 static void unlock_rdev(struct md_rdev *rdev)
2142 {
2143 	struct block_device *bdev = rdev->bdev;
2144 	rdev->bdev = NULL;
2145 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2146 }
2147 
2148 void md_autodetect_dev(dev_t dev);
2149 
2150 static void export_rdev(struct md_rdev *rdev)
2151 {
2152 	char b[BDEVNAME_SIZE];
2153 
2154 	printk(KERN_INFO "md: export_rdev(%s)\n",
2155 		bdevname(rdev->bdev,b));
2156 	md_rdev_clear(rdev);
2157 #ifndef MODULE
2158 	if (test_bit(AutoDetected, &rdev->flags))
2159 		md_autodetect_dev(rdev->bdev->bd_dev);
2160 #endif
2161 	unlock_rdev(rdev);
2162 	kobject_put(&rdev->kobj);
2163 }
2164 
2165 static void kick_rdev_from_array(struct md_rdev *rdev)
2166 {
2167 	unbind_rdev_from_array(rdev);
2168 	export_rdev(rdev);
2169 }
2170 
2171 static void export_array(struct mddev *mddev)
2172 {
2173 	struct md_rdev *rdev;
2174 
2175 	while (!list_empty(&mddev->disks)) {
2176 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2177 					same_set);
2178 		kick_rdev_from_array(rdev);
2179 	}
2180 	mddev->raid_disks = 0;
2181 	mddev->major_version = 0;
2182 }
2183 
2184 static void sync_sbs(struct mddev *mddev, int nospares)
2185 {
2186 	/* Update each superblock (in-memory image), but
2187 	 * if we are allowed to, skip spares which already
2188 	 * have the right event counter, or have one earlier
2189 	 * (which would mean they aren't being marked as dirty
2190 	 * with the rest of the array)
2191 	 */
2192 	struct md_rdev *rdev;
2193 	rdev_for_each(rdev, mddev) {
2194 		if (rdev->sb_events == mddev->events ||
2195 		    (nospares &&
2196 		     rdev->raid_disk < 0 &&
2197 		     rdev->sb_events+1 == mddev->events)) {
2198 			/* Don't update this superblock */
2199 			rdev->sb_loaded = 2;
2200 		} else {
2201 			sync_super(mddev, rdev);
2202 			rdev->sb_loaded = 1;
2203 		}
2204 	}
2205 }
2206 
2207 static void md_update_sb(struct mddev *mddev, int force_change)
2208 {
2209 	struct md_rdev *rdev;
2210 	int sync_req;
2211 	int nospares = 0;
2212 	int any_badblocks_changed = 0;
2213 
2214 	if (mddev->ro) {
2215 		if (force_change)
2216 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2217 		return;
2218 	}
2219 repeat:
2220 	/* First make sure individual recovery_offsets are correct */
2221 	rdev_for_each(rdev, mddev) {
2222 		if (rdev->raid_disk >= 0 &&
2223 		    mddev->delta_disks >= 0 &&
2224 		    !test_bit(In_sync, &rdev->flags) &&
2225 		    mddev->curr_resync_completed > rdev->recovery_offset)
2226 				rdev->recovery_offset = mddev->curr_resync_completed;
2227 
2228 	}
2229 	if (!mddev->persistent) {
2230 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2231 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2232 		if (!mddev->external) {
2233 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2234 			rdev_for_each(rdev, mddev) {
2235 				if (rdev->badblocks.changed) {
2236 					rdev->badblocks.changed = 0;
2237 					md_ack_all_badblocks(&rdev->badblocks);
2238 					md_error(mddev, rdev);
2239 				}
2240 				clear_bit(Blocked, &rdev->flags);
2241 				clear_bit(BlockedBadBlocks, &rdev->flags);
2242 				wake_up(&rdev->blocked_wait);
2243 			}
2244 		}
2245 		wake_up(&mddev->sb_wait);
2246 		return;
2247 	}
2248 
2249 	spin_lock(&mddev->lock);
2250 
2251 	mddev->utime = get_seconds();
2252 
2253 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2254 		force_change = 1;
2255 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2256 		/* just a clean<-> dirty transition, possibly leave spares alone,
2257 		 * though if events isn't the right even/odd, we will have to do
2258 		 * spares after all
2259 		 */
2260 		nospares = 1;
2261 	if (force_change)
2262 		nospares = 0;
2263 	if (mddev->degraded)
2264 		/* If the array is degraded, then skipping spares is both
2265 		 * dangerous and fairly pointless.
2266 		 * Dangerous because a device that was removed from the array
2267 		 * might have a event_count that still looks up-to-date,
2268 		 * so it can be re-added without a resync.
2269 		 * Pointless because if there are any spares to skip,
2270 		 * then a recovery will happen and soon that array won't
2271 		 * be degraded any more and the spare can go back to sleep then.
2272 		 */
2273 		nospares = 0;
2274 
2275 	sync_req = mddev->in_sync;
2276 
2277 	/* If this is just a dirty<->clean transition, and the array is clean
2278 	 * and 'events' is odd, we can roll back to the previous clean state */
2279 	if (nospares
2280 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2281 	    && mddev->can_decrease_events
2282 	    && mddev->events != 1) {
2283 		mddev->events--;
2284 		mddev->can_decrease_events = 0;
2285 	} else {
2286 		/* otherwise we have to go forward and ... */
2287 		mddev->events ++;
2288 		mddev->can_decrease_events = nospares;
2289 	}
2290 
2291 	/*
2292 	 * This 64-bit counter should never wrap.
2293 	 * Either we are in around ~1 trillion A.C., assuming
2294 	 * 1 reboot per second, or we have a bug...
2295 	 */
2296 	WARN_ON(mddev->events == 0);
2297 
2298 	rdev_for_each(rdev, mddev) {
2299 		if (rdev->badblocks.changed)
2300 			any_badblocks_changed++;
2301 		if (test_bit(Faulty, &rdev->flags))
2302 			set_bit(FaultRecorded, &rdev->flags);
2303 	}
2304 
2305 	sync_sbs(mddev, nospares);
2306 	spin_unlock(&mddev->lock);
2307 
2308 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2309 		 mdname(mddev), mddev->in_sync);
2310 
2311 	bitmap_update_sb(mddev->bitmap);
2312 	rdev_for_each(rdev, mddev) {
2313 		char b[BDEVNAME_SIZE];
2314 
2315 		if (rdev->sb_loaded != 1)
2316 			continue; /* no noise on spare devices */
2317 
2318 		if (!test_bit(Faulty, &rdev->flags)) {
2319 			md_super_write(mddev,rdev,
2320 				       rdev->sb_start, rdev->sb_size,
2321 				       rdev->sb_page);
2322 			pr_debug("md: (write) %s's sb offset: %llu\n",
2323 				 bdevname(rdev->bdev, b),
2324 				 (unsigned long long)rdev->sb_start);
2325 			rdev->sb_events = mddev->events;
2326 			if (rdev->badblocks.size) {
2327 				md_super_write(mddev, rdev,
2328 					       rdev->badblocks.sector,
2329 					       rdev->badblocks.size << 9,
2330 					       rdev->bb_page);
2331 				rdev->badblocks.size = 0;
2332 			}
2333 
2334 		} else
2335 			pr_debug("md: %s (skipping faulty)\n",
2336 				 bdevname(rdev->bdev, b));
2337 
2338 		if (mddev->level == LEVEL_MULTIPATH)
2339 			/* only need to write one superblock... */
2340 			break;
2341 	}
2342 	md_super_wait(mddev);
2343 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2344 
2345 	spin_lock(&mddev->lock);
2346 	if (mddev->in_sync != sync_req ||
2347 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2348 		/* have to write it out again */
2349 		spin_unlock(&mddev->lock);
2350 		goto repeat;
2351 	}
2352 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2353 	spin_unlock(&mddev->lock);
2354 	wake_up(&mddev->sb_wait);
2355 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2356 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2357 
2358 	rdev_for_each(rdev, mddev) {
2359 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2360 			clear_bit(Blocked, &rdev->flags);
2361 
2362 		if (any_badblocks_changed)
2363 			md_ack_all_badblocks(&rdev->badblocks);
2364 		clear_bit(BlockedBadBlocks, &rdev->flags);
2365 		wake_up(&rdev->blocked_wait);
2366 	}
2367 }
2368 
2369 /* words written to sysfs files may, or may not, be \n terminated.
2370  * We want to accept with case. For this we use cmd_match.
2371  */
2372 static int cmd_match(const char *cmd, const char *str)
2373 {
2374 	/* See if cmd, written into a sysfs file, matches
2375 	 * str.  They must either be the same, or cmd can
2376 	 * have a trailing newline
2377 	 */
2378 	while (*cmd && *str && *cmd == *str) {
2379 		cmd++;
2380 		str++;
2381 	}
2382 	if (*cmd == '\n')
2383 		cmd++;
2384 	if (*str || *cmd)
2385 		return 0;
2386 	return 1;
2387 }
2388 
2389 struct rdev_sysfs_entry {
2390 	struct attribute attr;
2391 	ssize_t (*show)(struct md_rdev *, char *);
2392 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2393 };
2394 
2395 static ssize_t
2396 state_show(struct md_rdev *rdev, char *page)
2397 {
2398 	char *sep = "";
2399 	size_t len = 0;
2400 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2401 
2402 	if (test_bit(Faulty, &flags) ||
2403 	    rdev->badblocks.unacked_exist) {
2404 		len+= sprintf(page+len, "%sfaulty",sep);
2405 		sep = ",";
2406 	}
2407 	if (test_bit(In_sync, &flags)) {
2408 		len += sprintf(page+len, "%sin_sync",sep);
2409 		sep = ",";
2410 	}
2411 	if (test_bit(WriteMostly, &flags)) {
2412 		len += sprintf(page+len, "%swrite_mostly",sep);
2413 		sep = ",";
2414 	}
2415 	if (test_bit(Blocked, &flags) ||
2416 	    (rdev->badblocks.unacked_exist
2417 	     && !test_bit(Faulty, &flags))) {
2418 		len += sprintf(page+len, "%sblocked", sep);
2419 		sep = ",";
2420 	}
2421 	if (!test_bit(Faulty, &flags) &&
2422 	    !test_bit(In_sync, &flags)) {
2423 		len += sprintf(page+len, "%sspare", sep);
2424 		sep = ",";
2425 	}
2426 	if (test_bit(WriteErrorSeen, &flags)) {
2427 		len += sprintf(page+len, "%swrite_error", sep);
2428 		sep = ",";
2429 	}
2430 	if (test_bit(WantReplacement, &flags)) {
2431 		len += sprintf(page+len, "%swant_replacement", sep);
2432 		sep = ",";
2433 	}
2434 	if (test_bit(Replacement, &flags)) {
2435 		len += sprintf(page+len, "%sreplacement", sep);
2436 		sep = ",";
2437 	}
2438 
2439 	return len+sprintf(page+len, "\n");
2440 }
2441 
2442 static ssize_t
2443 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2444 {
2445 	/* can write
2446 	 *  faulty  - simulates an error
2447 	 *  remove  - disconnects the device
2448 	 *  writemostly - sets write_mostly
2449 	 *  -writemostly - clears write_mostly
2450 	 *  blocked - sets the Blocked flags
2451 	 *  -blocked - clears the Blocked and possibly simulates an error
2452 	 *  insync - sets Insync providing device isn't active
2453 	 *  -insync - clear Insync for a device with a slot assigned,
2454 	 *            so that it gets rebuilt based on bitmap
2455 	 *  write_error - sets WriteErrorSeen
2456 	 *  -write_error - clears WriteErrorSeen
2457 	 */
2458 	int err = -EINVAL;
2459 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2460 		md_error(rdev->mddev, rdev);
2461 		if (test_bit(Faulty, &rdev->flags))
2462 			err = 0;
2463 		else
2464 			err = -EBUSY;
2465 	} else if (cmd_match(buf, "remove")) {
2466 		if (rdev->raid_disk >= 0)
2467 			err = -EBUSY;
2468 		else {
2469 			struct mddev *mddev = rdev->mddev;
2470 			kick_rdev_from_array(rdev);
2471 			if (mddev->pers)
2472 				md_update_sb(mddev, 1);
2473 			md_new_event(mddev);
2474 			err = 0;
2475 		}
2476 	} else if (cmd_match(buf, "writemostly")) {
2477 		set_bit(WriteMostly, &rdev->flags);
2478 		err = 0;
2479 	} else if (cmd_match(buf, "-writemostly")) {
2480 		clear_bit(WriteMostly, &rdev->flags);
2481 		err = 0;
2482 	} else if (cmd_match(buf, "blocked")) {
2483 		set_bit(Blocked, &rdev->flags);
2484 		err = 0;
2485 	} else if (cmd_match(buf, "-blocked")) {
2486 		if (!test_bit(Faulty, &rdev->flags) &&
2487 		    rdev->badblocks.unacked_exist) {
2488 			/* metadata handler doesn't understand badblocks,
2489 			 * so we need to fail the device
2490 			 */
2491 			md_error(rdev->mddev, rdev);
2492 		}
2493 		clear_bit(Blocked, &rdev->flags);
2494 		clear_bit(BlockedBadBlocks, &rdev->flags);
2495 		wake_up(&rdev->blocked_wait);
2496 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2497 		md_wakeup_thread(rdev->mddev->thread);
2498 
2499 		err = 0;
2500 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2501 		set_bit(In_sync, &rdev->flags);
2502 		err = 0;
2503 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2504 		if (rdev->mddev->pers == NULL) {
2505 			clear_bit(In_sync, &rdev->flags);
2506 			rdev->saved_raid_disk = rdev->raid_disk;
2507 			rdev->raid_disk = -1;
2508 			err = 0;
2509 		}
2510 	} else if (cmd_match(buf, "write_error")) {
2511 		set_bit(WriteErrorSeen, &rdev->flags);
2512 		err = 0;
2513 	} else if (cmd_match(buf, "-write_error")) {
2514 		clear_bit(WriteErrorSeen, &rdev->flags);
2515 		err = 0;
2516 	} else if (cmd_match(buf, "want_replacement")) {
2517 		/* Any non-spare device that is not a replacement can
2518 		 * become want_replacement at any time, but we then need to
2519 		 * check if recovery is needed.
2520 		 */
2521 		if (rdev->raid_disk >= 0 &&
2522 		    !test_bit(Replacement, &rdev->flags))
2523 			set_bit(WantReplacement, &rdev->flags);
2524 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2525 		md_wakeup_thread(rdev->mddev->thread);
2526 		err = 0;
2527 	} else if (cmd_match(buf, "-want_replacement")) {
2528 		/* Clearing 'want_replacement' is always allowed.
2529 		 * Once replacements starts it is too late though.
2530 		 */
2531 		err = 0;
2532 		clear_bit(WantReplacement, &rdev->flags);
2533 	} else if (cmd_match(buf, "replacement")) {
2534 		/* Can only set a device as a replacement when array has not
2535 		 * yet been started.  Once running, replacement is automatic
2536 		 * from spares, or by assigning 'slot'.
2537 		 */
2538 		if (rdev->mddev->pers)
2539 			err = -EBUSY;
2540 		else {
2541 			set_bit(Replacement, &rdev->flags);
2542 			err = 0;
2543 		}
2544 	} else if (cmd_match(buf, "-replacement")) {
2545 		/* Similarly, can only clear Replacement before start */
2546 		if (rdev->mddev->pers)
2547 			err = -EBUSY;
2548 		else {
2549 			clear_bit(Replacement, &rdev->flags);
2550 			err = 0;
2551 		}
2552 	}
2553 	if (!err)
2554 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2555 	return err ? err : len;
2556 }
2557 static struct rdev_sysfs_entry rdev_state =
2558 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2559 
2560 static ssize_t
2561 errors_show(struct md_rdev *rdev, char *page)
2562 {
2563 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2564 }
2565 
2566 static ssize_t
2567 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2568 {
2569 	char *e;
2570 	unsigned long n = simple_strtoul(buf, &e, 10);
2571 	if (*buf && (*e == 0 || *e == '\n')) {
2572 		atomic_set(&rdev->corrected_errors, n);
2573 		return len;
2574 	}
2575 	return -EINVAL;
2576 }
2577 static struct rdev_sysfs_entry rdev_errors =
2578 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2579 
2580 static ssize_t
2581 slot_show(struct md_rdev *rdev, char *page)
2582 {
2583 	if (rdev->raid_disk < 0)
2584 		return sprintf(page, "none\n");
2585 	else
2586 		return sprintf(page, "%d\n", rdev->raid_disk);
2587 }
2588 
2589 static ssize_t
2590 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2591 {
2592 	char *e;
2593 	int err;
2594 	int slot = simple_strtoul(buf, &e, 10);
2595 	if (strncmp(buf, "none", 4)==0)
2596 		slot = -1;
2597 	else if (e==buf || (*e && *e!= '\n'))
2598 		return -EINVAL;
2599 	if (rdev->mddev->pers && slot == -1) {
2600 		/* Setting 'slot' on an active array requires also
2601 		 * updating the 'rd%d' link, and communicating
2602 		 * with the personality with ->hot_*_disk.
2603 		 * For now we only support removing
2604 		 * failed/spare devices.  This normally happens automatically,
2605 		 * but not when the metadata is externally managed.
2606 		 */
2607 		if (rdev->raid_disk == -1)
2608 			return -EEXIST;
2609 		/* personality does all needed checks */
2610 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2611 			return -EINVAL;
2612 		clear_bit(Blocked, &rdev->flags);
2613 		remove_and_add_spares(rdev->mddev, rdev);
2614 		if (rdev->raid_disk >= 0)
2615 			return -EBUSY;
2616 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2617 		md_wakeup_thread(rdev->mddev->thread);
2618 	} else if (rdev->mddev->pers) {
2619 		/* Activating a spare .. or possibly reactivating
2620 		 * if we ever get bitmaps working here.
2621 		 */
2622 
2623 		if (rdev->raid_disk != -1)
2624 			return -EBUSY;
2625 
2626 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2627 			return -EBUSY;
2628 
2629 		if (rdev->mddev->pers->hot_add_disk == NULL)
2630 			return -EINVAL;
2631 
2632 		if (slot >= rdev->mddev->raid_disks &&
2633 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2634 			return -ENOSPC;
2635 
2636 		rdev->raid_disk = slot;
2637 		if (test_bit(In_sync, &rdev->flags))
2638 			rdev->saved_raid_disk = slot;
2639 		else
2640 			rdev->saved_raid_disk = -1;
2641 		clear_bit(In_sync, &rdev->flags);
2642 		clear_bit(Bitmap_sync, &rdev->flags);
2643 		err = rdev->mddev->pers->
2644 			hot_add_disk(rdev->mddev, rdev);
2645 		if (err) {
2646 			rdev->raid_disk = -1;
2647 			return err;
2648 		} else
2649 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2650 		if (sysfs_link_rdev(rdev->mddev, rdev))
2651 			/* failure here is OK */;
2652 		/* don't wakeup anyone, leave that to userspace. */
2653 	} else {
2654 		if (slot >= rdev->mddev->raid_disks &&
2655 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2656 			return -ENOSPC;
2657 		rdev->raid_disk = slot;
2658 		/* assume it is working */
2659 		clear_bit(Faulty, &rdev->flags);
2660 		clear_bit(WriteMostly, &rdev->flags);
2661 		set_bit(In_sync, &rdev->flags);
2662 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2663 	}
2664 	return len;
2665 }
2666 
2667 static struct rdev_sysfs_entry rdev_slot =
2668 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2669 
2670 static ssize_t
2671 offset_show(struct md_rdev *rdev, char *page)
2672 {
2673 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2674 }
2675 
2676 static ssize_t
2677 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2678 {
2679 	unsigned long long offset;
2680 	if (kstrtoull(buf, 10, &offset) < 0)
2681 		return -EINVAL;
2682 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2683 		return -EBUSY;
2684 	if (rdev->sectors && rdev->mddev->external)
2685 		/* Must set offset before size, so overlap checks
2686 		 * can be sane */
2687 		return -EBUSY;
2688 	rdev->data_offset = offset;
2689 	rdev->new_data_offset = offset;
2690 	return len;
2691 }
2692 
2693 static struct rdev_sysfs_entry rdev_offset =
2694 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2695 
2696 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2697 {
2698 	return sprintf(page, "%llu\n",
2699 		       (unsigned long long)rdev->new_data_offset);
2700 }
2701 
2702 static ssize_t new_offset_store(struct md_rdev *rdev,
2703 				const char *buf, size_t len)
2704 {
2705 	unsigned long long new_offset;
2706 	struct mddev *mddev = rdev->mddev;
2707 
2708 	if (kstrtoull(buf, 10, &new_offset) < 0)
2709 		return -EINVAL;
2710 
2711 	if (mddev->sync_thread ||
2712 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2713 		return -EBUSY;
2714 	if (new_offset == rdev->data_offset)
2715 		/* reset is always permitted */
2716 		;
2717 	else if (new_offset > rdev->data_offset) {
2718 		/* must not push array size beyond rdev_sectors */
2719 		if (new_offset - rdev->data_offset
2720 		    + mddev->dev_sectors > rdev->sectors)
2721 				return -E2BIG;
2722 	}
2723 	/* Metadata worries about other space details. */
2724 
2725 	/* decreasing the offset is inconsistent with a backwards
2726 	 * reshape.
2727 	 */
2728 	if (new_offset < rdev->data_offset &&
2729 	    mddev->reshape_backwards)
2730 		return -EINVAL;
2731 	/* Increasing offset is inconsistent with forwards
2732 	 * reshape.  reshape_direction should be set to
2733 	 * 'backwards' first.
2734 	 */
2735 	if (new_offset > rdev->data_offset &&
2736 	    !mddev->reshape_backwards)
2737 		return -EINVAL;
2738 
2739 	if (mddev->pers && mddev->persistent &&
2740 	    !super_types[mddev->major_version]
2741 	    .allow_new_offset(rdev, new_offset))
2742 		return -E2BIG;
2743 	rdev->new_data_offset = new_offset;
2744 	if (new_offset > rdev->data_offset)
2745 		mddev->reshape_backwards = 1;
2746 	else if (new_offset < rdev->data_offset)
2747 		mddev->reshape_backwards = 0;
2748 
2749 	return len;
2750 }
2751 static struct rdev_sysfs_entry rdev_new_offset =
2752 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2753 
2754 static ssize_t
2755 rdev_size_show(struct md_rdev *rdev, char *page)
2756 {
2757 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2758 }
2759 
2760 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2761 {
2762 	/* check if two start/length pairs overlap */
2763 	if (s1+l1 <= s2)
2764 		return 0;
2765 	if (s2+l2 <= s1)
2766 		return 0;
2767 	return 1;
2768 }
2769 
2770 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2771 {
2772 	unsigned long long blocks;
2773 	sector_t new;
2774 
2775 	if (kstrtoull(buf, 10, &blocks) < 0)
2776 		return -EINVAL;
2777 
2778 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2779 		return -EINVAL; /* sector conversion overflow */
2780 
2781 	new = blocks * 2;
2782 	if (new != blocks * 2)
2783 		return -EINVAL; /* unsigned long long to sector_t overflow */
2784 
2785 	*sectors = new;
2786 	return 0;
2787 }
2788 
2789 static ssize_t
2790 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2791 {
2792 	struct mddev *my_mddev = rdev->mddev;
2793 	sector_t oldsectors = rdev->sectors;
2794 	sector_t sectors;
2795 
2796 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2797 		return -EINVAL;
2798 	if (rdev->data_offset != rdev->new_data_offset)
2799 		return -EINVAL; /* too confusing */
2800 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2801 		if (my_mddev->persistent) {
2802 			sectors = super_types[my_mddev->major_version].
2803 				rdev_size_change(rdev, sectors);
2804 			if (!sectors)
2805 				return -EBUSY;
2806 		} else if (!sectors)
2807 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2808 				rdev->data_offset;
2809 		if (!my_mddev->pers->resize)
2810 			/* Cannot change size for RAID0 or Linear etc */
2811 			return -EINVAL;
2812 	}
2813 	if (sectors < my_mddev->dev_sectors)
2814 		return -EINVAL; /* component must fit device */
2815 
2816 	rdev->sectors = sectors;
2817 	if (sectors > oldsectors && my_mddev->external) {
2818 		/* Need to check that all other rdevs with the same
2819 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2820 		 * the rdev lists safely.
2821 		 * This check does not provide a hard guarantee, it
2822 		 * just helps avoid dangerous mistakes.
2823 		 */
2824 		struct mddev *mddev;
2825 		int overlap = 0;
2826 		struct list_head *tmp;
2827 
2828 		rcu_read_lock();
2829 		for_each_mddev(mddev, tmp) {
2830 			struct md_rdev *rdev2;
2831 
2832 			rdev_for_each(rdev2, mddev)
2833 				if (rdev->bdev == rdev2->bdev &&
2834 				    rdev != rdev2 &&
2835 				    overlaps(rdev->data_offset, rdev->sectors,
2836 					     rdev2->data_offset,
2837 					     rdev2->sectors)) {
2838 					overlap = 1;
2839 					break;
2840 				}
2841 			if (overlap) {
2842 				mddev_put(mddev);
2843 				break;
2844 			}
2845 		}
2846 		rcu_read_unlock();
2847 		if (overlap) {
2848 			/* Someone else could have slipped in a size
2849 			 * change here, but doing so is just silly.
2850 			 * We put oldsectors back because we *know* it is
2851 			 * safe, and trust userspace not to race with
2852 			 * itself
2853 			 */
2854 			rdev->sectors = oldsectors;
2855 			return -EBUSY;
2856 		}
2857 	}
2858 	return len;
2859 }
2860 
2861 static struct rdev_sysfs_entry rdev_size =
2862 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2863 
2864 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2865 {
2866 	unsigned long long recovery_start = rdev->recovery_offset;
2867 
2868 	if (test_bit(In_sync, &rdev->flags) ||
2869 	    recovery_start == MaxSector)
2870 		return sprintf(page, "none\n");
2871 
2872 	return sprintf(page, "%llu\n", recovery_start);
2873 }
2874 
2875 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2876 {
2877 	unsigned long long recovery_start;
2878 
2879 	if (cmd_match(buf, "none"))
2880 		recovery_start = MaxSector;
2881 	else if (kstrtoull(buf, 10, &recovery_start))
2882 		return -EINVAL;
2883 
2884 	if (rdev->mddev->pers &&
2885 	    rdev->raid_disk >= 0)
2886 		return -EBUSY;
2887 
2888 	rdev->recovery_offset = recovery_start;
2889 	if (recovery_start == MaxSector)
2890 		set_bit(In_sync, &rdev->flags);
2891 	else
2892 		clear_bit(In_sync, &rdev->flags);
2893 	return len;
2894 }
2895 
2896 static struct rdev_sysfs_entry rdev_recovery_start =
2897 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2898 
2899 static ssize_t
2900 badblocks_show(struct badblocks *bb, char *page, int unack);
2901 static ssize_t
2902 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2903 
2904 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2905 {
2906 	return badblocks_show(&rdev->badblocks, page, 0);
2907 }
2908 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2909 {
2910 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2911 	/* Maybe that ack was all we needed */
2912 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2913 		wake_up(&rdev->blocked_wait);
2914 	return rv;
2915 }
2916 static struct rdev_sysfs_entry rdev_bad_blocks =
2917 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2918 
2919 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2920 {
2921 	return badblocks_show(&rdev->badblocks, page, 1);
2922 }
2923 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2924 {
2925 	return badblocks_store(&rdev->badblocks, page, len, 1);
2926 }
2927 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2928 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2929 
2930 static struct attribute *rdev_default_attrs[] = {
2931 	&rdev_state.attr,
2932 	&rdev_errors.attr,
2933 	&rdev_slot.attr,
2934 	&rdev_offset.attr,
2935 	&rdev_new_offset.attr,
2936 	&rdev_size.attr,
2937 	&rdev_recovery_start.attr,
2938 	&rdev_bad_blocks.attr,
2939 	&rdev_unack_bad_blocks.attr,
2940 	NULL,
2941 };
2942 static ssize_t
2943 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2944 {
2945 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2946 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2947 
2948 	if (!entry->show)
2949 		return -EIO;
2950 	if (!rdev->mddev)
2951 		return -EBUSY;
2952 	return entry->show(rdev, page);
2953 }
2954 
2955 static ssize_t
2956 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2957 	      const char *page, size_t length)
2958 {
2959 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2960 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2961 	ssize_t rv;
2962 	struct mddev *mddev = rdev->mddev;
2963 
2964 	if (!entry->store)
2965 		return -EIO;
2966 	if (!capable(CAP_SYS_ADMIN))
2967 		return -EACCES;
2968 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2969 	if (!rv) {
2970 		if (rdev->mddev == NULL)
2971 			rv = -EBUSY;
2972 		else
2973 			rv = entry->store(rdev, page, length);
2974 		mddev_unlock(mddev);
2975 	}
2976 	return rv;
2977 }
2978 
2979 static void rdev_free(struct kobject *ko)
2980 {
2981 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2982 	kfree(rdev);
2983 }
2984 static const struct sysfs_ops rdev_sysfs_ops = {
2985 	.show		= rdev_attr_show,
2986 	.store		= rdev_attr_store,
2987 };
2988 static struct kobj_type rdev_ktype = {
2989 	.release	= rdev_free,
2990 	.sysfs_ops	= &rdev_sysfs_ops,
2991 	.default_attrs	= rdev_default_attrs,
2992 };
2993 
2994 int md_rdev_init(struct md_rdev *rdev)
2995 {
2996 	rdev->desc_nr = -1;
2997 	rdev->saved_raid_disk = -1;
2998 	rdev->raid_disk = -1;
2999 	rdev->flags = 0;
3000 	rdev->data_offset = 0;
3001 	rdev->new_data_offset = 0;
3002 	rdev->sb_events = 0;
3003 	rdev->last_read_error.tv_sec  = 0;
3004 	rdev->last_read_error.tv_nsec = 0;
3005 	rdev->sb_loaded = 0;
3006 	rdev->bb_page = NULL;
3007 	atomic_set(&rdev->nr_pending, 0);
3008 	atomic_set(&rdev->read_errors, 0);
3009 	atomic_set(&rdev->corrected_errors, 0);
3010 
3011 	INIT_LIST_HEAD(&rdev->same_set);
3012 	init_waitqueue_head(&rdev->blocked_wait);
3013 
3014 	/* Add space to store bad block list.
3015 	 * This reserves the space even on arrays where it cannot
3016 	 * be used - I wonder if that matters
3017 	 */
3018 	rdev->badblocks.count = 0;
3019 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3020 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3021 	seqlock_init(&rdev->badblocks.lock);
3022 	if (rdev->badblocks.page == NULL)
3023 		return -ENOMEM;
3024 
3025 	return 0;
3026 }
3027 EXPORT_SYMBOL_GPL(md_rdev_init);
3028 /*
3029  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3030  *
3031  * mark the device faulty if:
3032  *
3033  *   - the device is nonexistent (zero size)
3034  *   - the device has no valid superblock
3035  *
3036  * a faulty rdev _never_ has rdev->sb set.
3037  */
3038 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3039 {
3040 	char b[BDEVNAME_SIZE];
3041 	int err;
3042 	struct md_rdev *rdev;
3043 	sector_t size;
3044 
3045 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3046 	if (!rdev) {
3047 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3048 		return ERR_PTR(-ENOMEM);
3049 	}
3050 
3051 	err = md_rdev_init(rdev);
3052 	if (err)
3053 		goto abort_free;
3054 	err = alloc_disk_sb(rdev);
3055 	if (err)
3056 		goto abort_free;
3057 
3058 	err = lock_rdev(rdev, newdev, super_format == -2);
3059 	if (err)
3060 		goto abort_free;
3061 
3062 	kobject_init(&rdev->kobj, &rdev_ktype);
3063 
3064 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3065 	if (!size) {
3066 		printk(KERN_WARNING
3067 			"md: %s has zero or unknown size, marking faulty!\n",
3068 			bdevname(rdev->bdev,b));
3069 		err = -EINVAL;
3070 		goto abort_free;
3071 	}
3072 
3073 	if (super_format >= 0) {
3074 		err = super_types[super_format].
3075 			load_super(rdev, NULL, super_minor);
3076 		if (err == -EINVAL) {
3077 			printk(KERN_WARNING
3078 				"md: %s does not have a valid v%d.%d "
3079 			       "superblock, not importing!\n",
3080 				bdevname(rdev->bdev,b),
3081 			       super_format, super_minor);
3082 			goto abort_free;
3083 		}
3084 		if (err < 0) {
3085 			printk(KERN_WARNING
3086 				"md: could not read %s's sb, not importing!\n",
3087 				bdevname(rdev->bdev,b));
3088 			goto abort_free;
3089 		}
3090 	}
3091 
3092 	return rdev;
3093 
3094 abort_free:
3095 	if (rdev->bdev)
3096 		unlock_rdev(rdev);
3097 	md_rdev_clear(rdev);
3098 	kfree(rdev);
3099 	return ERR_PTR(err);
3100 }
3101 
3102 /*
3103  * Check a full RAID array for plausibility
3104  */
3105 
3106 static void analyze_sbs(struct mddev *mddev)
3107 {
3108 	int i;
3109 	struct md_rdev *rdev, *freshest, *tmp;
3110 	char b[BDEVNAME_SIZE];
3111 
3112 	freshest = NULL;
3113 	rdev_for_each_safe(rdev, tmp, mddev)
3114 		switch (super_types[mddev->major_version].
3115 			load_super(rdev, freshest, mddev->minor_version)) {
3116 		case 1:
3117 			freshest = rdev;
3118 			break;
3119 		case 0:
3120 			break;
3121 		default:
3122 			printk( KERN_ERR \
3123 				"md: fatal superblock inconsistency in %s"
3124 				" -- removing from array\n",
3125 				bdevname(rdev->bdev,b));
3126 			kick_rdev_from_array(rdev);
3127 		}
3128 
3129 	super_types[mddev->major_version].
3130 		validate_super(mddev, freshest);
3131 
3132 	i = 0;
3133 	rdev_for_each_safe(rdev, tmp, mddev) {
3134 		if (mddev->max_disks &&
3135 		    (rdev->desc_nr >= mddev->max_disks ||
3136 		     i > mddev->max_disks)) {
3137 			printk(KERN_WARNING
3138 			       "md: %s: %s: only %d devices permitted\n",
3139 			       mdname(mddev), bdevname(rdev->bdev, b),
3140 			       mddev->max_disks);
3141 			kick_rdev_from_array(rdev);
3142 			continue;
3143 		}
3144 		if (rdev != freshest)
3145 			if (super_types[mddev->major_version].
3146 			    validate_super(mddev, rdev)) {
3147 				printk(KERN_WARNING "md: kicking non-fresh %s"
3148 					" from array!\n",
3149 					bdevname(rdev->bdev,b));
3150 				kick_rdev_from_array(rdev);
3151 				continue;
3152 			}
3153 		if (mddev->level == LEVEL_MULTIPATH) {
3154 			rdev->desc_nr = i++;
3155 			rdev->raid_disk = rdev->desc_nr;
3156 			set_bit(In_sync, &rdev->flags);
3157 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3158 			rdev->raid_disk = -1;
3159 			clear_bit(In_sync, &rdev->flags);
3160 		}
3161 	}
3162 }
3163 
3164 /* Read a fixed-point number.
3165  * Numbers in sysfs attributes should be in "standard" units where
3166  * possible, so time should be in seconds.
3167  * However we internally use a a much smaller unit such as
3168  * milliseconds or jiffies.
3169  * This function takes a decimal number with a possible fractional
3170  * component, and produces an integer which is the result of
3171  * multiplying that number by 10^'scale'.
3172  * all without any floating-point arithmetic.
3173  */
3174 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3175 {
3176 	unsigned long result = 0;
3177 	long decimals = -1;
3178 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3179 		if (*cp == '.')
3180 			decimals = 0;
3181 		else if (decimals < scale) {
3182 			unsigned int value;
3183 			value = *cp - '0';
3184 			result = result * 10 + value;
3185 			if (decimals >= 0)
3186 				decimals++;
3187 		}
3188 		cp++;
3189 	}
3190 	if (*cp == '\n')
3191 		cp++;
3192 	if (*cp)
3193 		return -EINVAL;
3194 	if (decimals < 0)
3195 		decimals = 0;
3196 	while (decimals < scale) {
3197 		result *= 10;
3198 		decimals ++;
3199 	}
3200 	*res = result;
3201 	return 0;
3202 }
3203 
3204 static void md_safemode_timeout(unsigned long data);
3205 
3206 static ssize_t
3207 safe_delay_show(struct mddev *mddev, char *page)
3208 {
3209 	int msec = (mddev->safemode_delay*1000)/HZ;
3210 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3211 }
3212 static ssize_t
3213 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3214 {
3215 	unsigned long msec;
3216 
3217 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3218 		return -EINVAL;
3219 	if (msec == 0)
3220 		mddev->safemode_delay = 0;
3221 	else {
3222 		unsigned long old_delay = mddev->safemode_delay;
3223 		unsigned long new_delay = (msec*HZ)/1000;
3224 
3225 		if (new_delay == 0)
3226 			new_delay = 1;
3227 		mddev->safemode_delay = new_delay;
3228 		if (new_delay < old_delay || old_delay == 0)
3229 			mod_timer(&mddev->safemode_timer, jiffies+1);
3230 	}
3231 	return len;
3232 }
3233 static struct md_sysfs_entry md_safe_delay =
3234 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3235 
3236 static ssize_t
3237 level_show(struct mddev *mddev, char *page)
3238 {
3239 	struct md_personality *p;
3240 	int ret;
3241 	spin_lock(&mddev->lock);
3242 	p = mddev->pers;
3243 	if (p)
3244 		ret = sprintf(page, "%s\n", p->name);
3245 	else if (mddev->clevel[0])
3246 		ret = sprintf(page, "%s\n", mddev->clevel);
3247 	else if (mddev->level != LEVEL_NONE)
3248 		ret = sprintf(page, "%d\n", mddev->level);
3249 	else
3250 		ret = 0;
3251 	spin_unlock(&mddev->lock);
3252 	return ret;
3253 }
3254 
3255 static ssize_t
3256 level_store(struct mddev *mddev, const char *buf, size_t len)
3257 {
3258 	char clevel[16];
3259 	ssize_t rv;
3260 	size_t slen = len;
3261 	struct md_personality *pers, *oldpers;
3262 	long level;
3263 	void *priv, *oldpriv;
3264 	struct md_rdev *rdev;
3265 
3266 	if (slen == 0 || slen >= sizeof(clevel))
3267 		return -EINVAL;
3268 
3269 	rv = mddev_lock(mddev);
3270 	if (rv)
3271 		return rv;
3272 
3273 	if (mddev->pers == NULL) {
3274 		strncpy(mddev->clevel, buf, slen);
3275 		if (mddev->clevel[slen-1] == '\n')
3276 			slen--;
3277 		mddev->clevel[slen] = 0;
3278 		mddev->level = LEVEL_NONE;
3279 		rv = len;
3280 		goto out_unlock;
3281 	}
3282 	rv = -EROFS;
3283 	if (mddev->ro)
3284 		goto out_unlock;
3285 
3286 	/* request to change the personality.  Need to ensure:
3287 	 *  - array is not engaged in resync/recovery/reshape
3288 	 *  - old personality can be suspended
3289 	 *  - new personality will access other array.
3290 	 */
3291 
3292 	rv = -EBUSY;
3293 	if (mddev->sync_thread ||
3294 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3295 	    mddev->reshape_position != MaxSector ||
3296 	    mddev->sysfs_active)
3297 		goto out_unlock;
3298 
3299 	rv = -EINVAL;
3300 	if (!mddev->pers->quiesce) {
3301 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3302 		       mdname(mddev), mddev->pers->name);
3303 		goto out_unlock;
3304 	}
3305 
3306 	/* Now find the new personality */
3307 	strncpy(clevel, buf, slen);
3308 	if (clevel[slen-1] == '\n')
3309 		slen--;
3310 	clevel[slen] = 0;
3311 	if (kstrtol(clevel, 10, &level))
3312 		level = LEVEL_NONE;
3313 
3314 	if (request_module("md-%s", clevel) != 0)
3315 		request_module("md-level-%s", clevel);
3316 	spin_lock(&pers_lock);
3317 	pers = find_pers(level, clevel);
3318 	if (!pers || !try_module_get(pers->owner)) {
3319 		spin_unlock(&pers_lock);
3320 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3321 		rv = -EINVAL;
3322 		goto out_unlock;
3323 	}
3324 	spin_unlock(&pers_lock);
3325 
3326 	if (pers == mddev->pers) {
3327 		/* Nothing to do! */
3328 		module_put(pers->owner);
3329 		rv = len;
3330 		goto out_unlock;
3331 	}
3332 	if (!pers->takeover) {
3333 		module_put(pers->owner);
3334 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3335 		       mdname(mddev), clevel);
3336 		rv = -EINVAL;
3337 		goto out_unlock;
3338 	}
3339 
3340 	rdev_for_each(rdev, mddev)
3341 		rdev->new_raid_disk = rdev->raid_disk;
3342 
3343 	/* ->takeover must set new_* and/or delta_disks
3344 	 * if it succeeds, and may set them when it fails.
3345 	 */
3346 	priv = pers->takeover(mddev);
3347 	if (IS_ERR(priv)) {
3348 		mddev->new_level = mddev->level;
3349 		mddev->new_layout = mddev->layout;
3350 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3351 		mddev->raid_disks -= mddev->delta_disks;
3352 		mddev->delta_disks = 0;
3353 		mddev->reshape_backwards = 0;
3354 		module_put(pers->owner);
3355 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3356 		       mdname(mddev), clevel);
3357 		rv = PTR_ERR(priv);
3358 		goto out_unlock;
3359 	}
3360 
3361 	/* Looks like we have a winner */
3362 	mddev_suspend(mddev);
3363 	mddev_detach(mddev);
3364 
3365 	spin_lock(&mddev->lock);
3366 	oldpers = mddev->pers;
3367 	oldpriv = mddev->private;
3368 	mddev->pers = pers;
3369 	mddev->private = priv;
3370 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3371 	mddev->level = mddev->new_level;
3372 	mddev->layout = mddev->new_layout;
3373 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3374 	mddev->delta_disks = 0;
3375 	mddev->reshape_backwards = 0;
3376 	mddev->degraded = 0;
3377 	spin_unlock(&mddev->lock);
3378 
3379 	if (oldpers->sync_request == NULL &&
3380 	    mddev->external) {
3381 		/* We are converting from a no-redundancy array
3382 		 * to a redundancy array and metadata is managed
3383 		 * externally so we need to be sure that writes
3384 		 * won't block due to a need to transition
3385 		 *      clean->dirty
3386 		 * until external management is started.
3387 		 */
3388 		mddev->in_sync = 0;
3389 		mddev->safemode_delay = 0;
3390 		mddev->safemode = 0;
3391 	}
3392 
3393 	oldpers->free(mddev, oldpriv);
3394 
3395 	if (oldpers->sync_request == NULL &&
3396 	    pers->sync_request != NULL) {
3397 		/* need to add the md_redundancy_group */
3398 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3399 			printk(KERN_WARNING
3400 			       "md: cannot register extra attributes for %s\n",
3401 			       mdname(mddev));
3402 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3403 	}
3404 	if (oldpers->sync_request != NULL &&
3405 	    pers->sync_request == NULL) {
3406 		/* need to remove the md_redundancy_group */
3407 		if (mddev->to_remove == NULL)
3408 			mddev->to_remove = &md_redundancy_group;
3409 	}
3410 
3411 	rdev_for_each(rdev, mddev) {
3412 		if (rdev->raid_disk < 0)
3413 			continue;
3414 		if (rdev->new_raid_disk >= mddev->raid_disks)
3415 			rdev->new_raid_disk = -1;
3416 		if (rdev->new_raid_disk == rdev->raid_disk)
3417 			continue;
3418 		sysfs_unlink_rdev(mddev, rdev);
3419 	}
3420 	rdev_for_each(rdev, mddev) {
3421 		if (rdev->raid_disk < 0)
3422 			continue;
3423 		if (rdev->new_raid_disk == rdev->raid_disk)
3424 			continue;
3425 		rdev->raid_disk = rdev->new_raid_disk;
3426 		if (rdev->raid_disk < 0)
3427 			clear_bit(In_sync, &rdev->flags);
3428 		else {
3429 			if (sysfs_link_rdev(mddev, rdev))
3430 				printk(KERN_WARNING "md: cannot register rd%d"
3431 				       " for %s after level change\n",
3432 				       rdev->raid_disk, mdname(mddev));
3433 		}
3434 	}
3435 
3436 	if (pers->sync_request == NULL) {
3437 		/* this is now an array without redundancy, so
3438 		 * it must always be in_sync
3439 		 */
3440 		mddev->in_sync = 1;
3441 		del_timer_sync(&mddev->safemode_timer);
3442 	}
3443 	blk_set_stacking_limits(&mddev->queue->limits);
3444 	pers->run(mddev);
3445 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3446 	mddev_resume(mddev);
3447 	if (!mddev->thread)
3448 		md_update_sb(mddev, 1);
3449 	sysfs_notify(&mddev->kobj, NULL, "level");
3450 	md_new_event(mddev);
3451 	rv = len;
3452 out_unlock:
3453 	mddev_unlock(mddev);
3454 	return rv;
3455 }
3456 
3457 static struct md_sysfs_entry md_level =
3458 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3459 
3460 static ssize_t
3461 layout_show(struct mddev *mddev, char *page)
3462 {
3463 	/* just a number, not meaningful for all levels */
3464 	if (mddev->reshape_position != MaxSector &&
3465 	    mddev->layout != mddev->new_layout)
3466 		return sprintf(page, "%d (%d)\n",
3467 			       mddev->new_layout, mddev->layout);
3468 	return sprintf(page, "%d\n", mddev->layout);
3469 }
3470 
3471 static ssize_t
3472 layout_store(struct mddev *mddev, const char *buf, size_t len)
3473 {
3474 	char *e;
3475 	unsigned long n = simple_strtoul(buf, &e, 10);
3476 	int err;
3477 
3478 	if (!*buf || (*e && *e != '\n'))
3479 		return -EINVAL;
3480 	err = mddev_lock(mddev);
3481 	if (err)
3482 		return err;
3483 
3484 	if (mddev->pers) {
3485 		if (mddev->pers->check_reshape == NULL)
3486 			err = -EBUSY;
3487 		else if (mddev->ro)
3488 			err = -EROFS;
3489 		else {
3490 			mddev->new_layout = n;
3491 			err = mddev->pers->check_reshape(mddev);
3492 			if (err)
3493 				mddev->new_layout = mddev->layout;
3494 		}
3495 	} else {
3496 		mddev->new_layout = n;
3497 		if (mddev->reshape_position == MaxSector)
3498 			mddev->layout = n;
3499 	}
3500 	mddev_unlock(mddev);
3501 	return err ?: len;
3502 }
3503 static struct md_sysfs_entry md_layout =
3504 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3505 
3506 static ssize_t
3507 raid_disks_show(struct mddev *mddev, char *page)
3508 {
3509 	if (mddev->raid_disks == 0)
3510 		return 0;
3511 	if (mddev->reshape_position != MaxSector &&
3512 	    mddev->delta_disks != 0)
3513 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3514 			       mddev->raid_disks - mddev->delta_disks);
3515 	return sprintf(page, "%d\n", mddev->raid_disks);
3516 }
3517 
3518 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3519 
3520 static ssize_t
3521 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3522 {
3523 	char *e;
3524 	int err;
3525 	unsigned long n = simple_strtoul(buf, &e, 10);
3526 
3527 	if (!*buf || (*e && *e != '\n'))
3528 		return -EINVAL;
3529 
3530 	err = mddev_lock(mddev);
3531 	if (err)
3532 		return err;
3533 	if (mddev->pers)
3534 		err = update_raid_disks(mddev, n);
3535 	else if (mddev->reshape_position != MaxSector) {
3536 		struct md_rdev *rdev;
3537 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3538 
3539 		err = -EINVAL;
3540 		rdev_for_each(rdev, mddev) {
3541 			if (olddisks < n &&
3542 			    rdev->data_offset < rdev->new_data_offset)
3543 				goto out_unlock;
3544 			if (olddisks > n &&
3545 			    rdev->data_offset > rdev->new_data_offset)
3546 				goto out_unlock;
3547 		}
3548 		err = 0;
3549 		mddev->delta_disks = n - olddisks;
3550 		mddev->raid_disks = n;
3551 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3552 	} else
3553 		mddev->raid_disks = n;
3554 out_unlock:
3555 	mddev_unlock(mddev);
3556 	return err ? err : len;
3557 }
3558 static struct md_sysfs_entry md_raid_disks =
3559 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3560 
3561 static ssize_t
3562 chunk_size_show(struct mddev *mddev, char *page)
3563 {
3564 	if (mddev->reshape_position != MaxSector &&
3565 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3566 		return sprintf(page, "%d (%d)\n",
3567 			       mddev->new_chunk_sectors << 9,
3568 			       mddev->chunk_sectors << 9);
3569 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3570 }
3571 
3572 static ssize_t
3573 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3574 {
3575 	int err;
3576 	char *e;
3577 	unsigned long n = simple_strtoul(buf, &e, 10);
3578 
3579 	if (!*buf || (*e && *e != '\n'))
3580 		return -EINVAL;
3581 
3582 	err = mddev_lock(mddev);
3583 	if (err)
3584 		return err;
3585 	if (mddev->pers) {
3586 		if (mddev->pers->check_reshape == NULL)
3587 			err = -EBUSY;
3588 		else if (mddev->ro)
3589 			err = -EROFS;
3590 		else {
3591 			mddev->new_chunk_sectors = n >> 9;
3592 			err = mddev->pers->check_reshape(mddev);
3593 			if (err)
3594 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3595 		}
3596 	} else {
3597 		mddev->new_chunk_sectors = n >> 9;
3598 		if (mddev->reshape_position == MaxSector)
3599 			mddev->chunk_sectors = n >> 9;
3600 	}
3601 	mddev_unlock(mddev);
3602 	return err ?: len;
3603 }
3604 static struct md_sysfs_entry md_chunk_size =
3605 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3606 
3607 static ssize_t
3608 resync_start_show(struct mddev *mddev, char *page)
3609 {
3610 	if (mddev->recovery_cp == MaxSector)
3611 		return sprintf(page, "none\n");
3612 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3613 }
3614 
3615 static ssize_t
3616 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3617 {
3618 	int err;
3619 	char *e;
3620 	unsigned long long n = simple_strtoull(buf, &e, 10);
3621 
3622 	err = mddev_lock(mddev);
3623 	if (err)
3624 		return err;
3625 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3626 		err = -EBUSY;
3627 	else if (cmd_match(buf, "none"))
3628 		n = MaxSector;
3629 	else if (!*buf || (*e && *e != '\n'))
3630 		err = -EINVAL;
3631 
3632 	if (!err) {
3633 		mddev->recovery_cp = n;
3634 		if (mddev->pers)
3635 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3636 	}
3637 	mddev_unlock(mddev);
3638 	return err ?: len;
3639 }
3640 static struct md_sysfs_entry md_resync_start =
3641 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3642 		resync_start_show, resync_start_store);
3643 
3644 /*
3645  * The array state can be:
3646  *
3647  * clear
3648  *     No devices, no size, no level
3649  *     Equivalent to STOP_ARRAY ioctl
3650  * inactive
3651  *     May have some settings, but array is not active
3652  *        all IO results in error
3653  *     When written, doesn't tear down array, but just stops it
3654  * suspended (not supported yet)
3655  *     All IO requests will block. The array can be reconfigured.
3656  *     Writing this, if accepted, will block until array is quiescent
3657  * readonly
3658  *     no resync can happen.  no superblocks get written.
3659  *     write requests fail
3660  * read-auto
3661  *     like readonly, but behaves like 'clean' on a write request.
3662  *
3663  * clean - no pending writes, but otherwise active.
3664  *     When written to inactive array, starts without resync
3665  *     If a write request arrives then
3666  *       if metadata is known, mark 'dirty' and switch to 'active'.
3667  *       if not known, block and switch to write-pending
3668  *     If written to an active array that has pending writes, then fails.
3669  * active
3670  *     fully active: IO and resync can be happening.
3671  *     When written to inactive array, starts with resync
3672  *
3673  * write-pending
3674  *     clean, but writes are blocked waiting for 'active' to be written.
3675  *
3676  * active-idle
3677  *     like active, but no writes have been seen for a while (100msec).
3678  *
3679  */
3680 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3681 		   write_pending, active_idle, bad_word};
3682 static char *array_states[] = {
3683 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3684 	"write-pending", "active-idle", NULL };
3685 
3686 static int match_word(const char *word, char **list)
3687 {
3688 	int n;
3689 	for (n=0; list[n]; n++)
3690 		if (cmd_match(word, list[n]))
3691 			break;
3692 	return n;
3693 }
3694 
3695 static ssize_t
3696 array_state_show(struct mddev *mddev, char *page)
3697 {
3698 	enum array_state st = inactive;
3699 
3700 	if (mddev->pers)
3701 		switch(mddev->ro) {
3702 		case 1:
3703 			st = readonly;
3704 			break;
3705 		case 2:
3706 			st = read_auto;
3707 			break;
3708 		case 0:
3709 			if (mddev->in_sync)
3710 				st = clean;
3711 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3712 				st = write_pending;
3713 			else if (mddev->safemode)
3714 				st = active_idle;
3715 			else
3716 				st = active;
3717 		}
3718 	else {
3719 		if (list_empty(&mddev->disks) &&
3720 		    mddev->raid_disks == 0 &&
3721 		    mddev->dev_sectors == 0)
3722 			st = clear;
3723 		else
3724 			st = inactive;
3725 	}
3726 	return sprintf(page, "%s\n", array_states[st]);
3727 }
3728 
3729 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3730 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3731 static int do_md_run(struct mddev *mddev);
3732 static int restart_array(struct mddev *mddev);
3733 
3734 static ssize_t
3735 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3736 {
3737 	int err;
3738 	enum array_state st = match_word(buf, array_states);
3739 
3740 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3741 		/* don't take reconfig_mutex when toggling between
3742 		 * clean and active
3743 		 */
3744 		spin_lock(&mddev->lock);
3745 		if (st == active) {
3746 			restart_array(mddev);
3747 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3748 			wake_up(&mddev->sb_wait);
3749 			err = 0;
3750 		} else /* st == clean */ {
3751 			restart_array(mddev);
3752 			if (atomic_read(&mddev->writes_pending) == 0) {
3753 				if (mddev->in_sync == 0) {
3754 					mddev->in_sync = 1;
3755 					if (mddev->safemode == 1)
3756 						mddev->safemode = 0;
3757 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3758 				}
3759 				err = 0;
3760 			} else
3761 				err = -EBUSY;
3762 		}
3763 		spin_unlock(&mddev->lock);
3764 		return err;
3765 	}
3766 	err = mddev_lock(mddev);
3767 	if (err)
3768 		return err;
3769 	err = -EINVAL;
3770 	switch(st) {
3771 	case bad_word:
3772 		break;
3773 	case clear:
3774 		/* stopping an active array */
3775 		err = do_md_stop(mddev, 0, NULL);
3776 		break;
3777 	case inactive:
3778 		/* stopping an active array */
3779 		if (mddev->pers)
3780 			err = do_md_stop(mddev, 2, NULL);
3781 		else
3782 			err = 0; /* already inactive */
3783 		break;
3784 	case suspended:
3785 		break; /* not supported yet */
3786 	case readonly:
3787 		if (mddev->pers)
3788 			err = md_set_readonly(mddev, NULL);
3789 		else {
3790 			mddev->ro = 1;
3791 			set_disk_ro(mddev->gendisk, 1);
3792 			err = do_md_run(mddev);
3793 		}
3794 		break;
3795 	case read_auto:
3796 		if (mddev->pers) {
3797 			if (mddev->ro == 0)
3798 				err = md_set_readonly(mddev, NULL);
3799 			else if (mddev->ro == 1)
3800 				err = restart_array(mddev);
3801 			if (err == 0) {
3802 				mddev->ro = 2;
3803 				set_disk_ro(mddev->gendisk, 0);
3804 			}
3805 		} else {
3806 			mddev->ro = 2;
3807 			err = do_md_run(mddev);
3808 		}
3809 		break;
3810 	case clean:
3811 		if (mddev->pers) {
3812 			restart_array(mddev);
3813 			spin_lock(&mddev->lock);
3814 			if (atomic_read(&mddev->writes_pending) == 0) {
3815 				if (mddev->in_sync == 0) {
3816 					mddev->in_sync = 1;
3817 					if (mddev->safemode == 1)
3818 						mddev->safemode = 0;
3819 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3820 				}
3821 				err = 0;
3822 			} else
3823 				err = -EBUSY;
3824 			spin_unlock(&mddev->lock);
3825 		} else
3826 			err = -EINVAL;
3827 		break;
3828 	case active:
3829 		if (mddev->pers) {
3830 			restart_array(mddev);
3831 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3832 			wake_up(&mddev->sb_wait);
3833 			err = 0;
3834 		} else {
3835 			mddev->ro = 0;
3836 			set_disk_ro(mddev->gendisk, 0);
3837 			err = do_md_run(mddev);
3838 		}
3839 		break;
3840 	case write_pending:
3841 	case active_idle:
3842 		/* these cannot be set */
3843 		break;
3844 	}
3845 
3846 	if (!err) {
3847 		if (mddev->hold_active == UNTIL_IOCTL)
3848 			mddev->hold_active = 0;
3849 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3850 	}
3851 	mddev_unlock(mddev);
3852 	return err ?: len;
3853 }
3854 static struct md_sysfs_entry md_array_state =
3855 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3856 
3857 static ssize_t
3858 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3859 	return sprintf(page, "%d\n",
3860 		       atomic_read(&mddev->max_corr_read_errors));
3861 }
3862 
3863 static ssize_t
3864 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3865 {
3866 	char *e;
3867 	unsigned long n = simple_strtoul(buf, &e, 10);
3868 
3869 	if (*buf && (*e == 0 || *e == '\n')) {
3870 		atomic_set(&mddev->max_corr_read_errors, n);
3871 		return len;
3872 	}
3873 	return -EINVAL;
3874 }
3875 
3876 static struct md_sysfs_entry max_corr_read_errors =
3877 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3878 	max_corrected_read_errors_store);
3879 
3880 static ssize_t
3881 null_show(struct mddev *mddev, char *page)
3882 {
3883 	return -EINVAL;
3884 }
3885 
3886 static ssize_t
3887 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3888 {
3889 	/* buf must be %d:%d\n? giving major and minor numbers */
3890 	/* The new device is added to the array.
3891 	 * If the array has a persistent superblock, we read the
3892 	 * superblock to initialise info and check validity.
3893 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3894 	 * which mainly checks size.
3895 	 */
3896 	char *e;
3897 	int major = simple_strtoul(buf, &e, 10);
3898 	int minor;
3899 	dev_t dev;
3900 	struct md_rdev *rdev;
3901 	int err;
3902 
3903 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3904 		return -EINVAL;
3905 	minor = simple_strtoul(e+1, &e, 10);
3906 	if (*e && *e != '\n')
3907 		return -EINVAL;
3908 	dev = MKDEV(major, minor);
3909 	if (major != MAJOR(dev) ||
3910 	    minor != MINOR(dev))
3911 		return -EOVERFLOW;
3912 
3913 	flush_workqueue(md_misc_wq);
3914 
3915 	err = mddev_lock(mddev);
3916 	if (err)
3917 		return err;
3918 	if (mddev->persistent) {
3919 		rdev = md_import_device(dev, mddev->major_version,
3920 					mddev->minor_version);
3921 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3922 			struct md_rdev *rdev0
3923 				= list_entry(mddev->disks.next,
3924 					     struct md_rdev, same_set);
3925 			err = super_types[mddev->major_version]
3926 				.load_super(rdev, rdev0, mddev->minor_version);
3927 			if (err < 0)
3928 				goto out;
3929 		}
3930 	} else if (mddev->external)
3931 		rdev = md_import_device(dev, -2, -1);
3932 	else
3933 		rdev = md_import_device(dev, -1, -1);
3934 
3935 	if (IS_ERR(rdev))
3936 		return PTR_ERR(rdev);
3937 	err = bind_rdev_to_array(rdev, mddev);
3938  out:
3939 	if (err)
3940 		export_rdev(rdev);
3941 	mddev_unlock(mddev);
3942 	return err ? err : len;
3943 }
3944 
3945 static struct md_sysfs_entry md_new_device =
3946 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3947 
3948 static ssize_t
3949 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3950 {
3951 	char *end;
3952 	unsigned long chunk, end_chunk;
3953 	int err;
3954 
3955 	err = mddev_lock(mddev);
3956 	if (err)
3957 		return err;
3958 	if (!mddev->bitmap)
3959 		goto out;
3960 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3961 	while (*buf) {
3962 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3963 		if (buf == end) break;
3964 		if (*end == '-') { /* range */
3965 			buf = end + 1;
3966 			end_chunk = simple_strtoul(buf, &end, 0);
3967 			if (buf == end) break;
3968 		}
3969 		if (*end && !isspace(*end)) break;
3970 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3971 		buf = skip_spaces(end);
3972 	}
3973 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3974 out:
3975 	mddev_unlock(mddev);
3976 	return len;
3977 }
3978 
3979 static struct md_sysfs_entry md_bitmap =
3980 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3981 
3982 static ssize_t
3983 size_show(struct mddev *mddev, char *page)
3984 {
3985 	return sprintf(page, "%llu\n",
3986 		(unsigned long long)mddev->dev_sectors / 2);
3987 }
3988 
3989 static int update_size(struct mddev *mddev, sector_t num_sectors);
3990 
3991 static ssize_t
3992 size_store(struct mddev *mddev, const char *buf, size_t len)
3993 {
3994 	/* If array is inactive, we can reduce the component size, but
3995 	 * not increase it (except from 0).
3996 	 * If array is active, we can try an on-line resize
3997 	 */
3998 	sector_t sectors;
3999 	int err = strict_blocks_to_sectors(buf, &sectors);
4000 
4001 	if (err < 0)
4002 		return err;
4003 	err = mddev_lock(mddev);
4004 	if (err)
4005 		return err;
4006 	if (mddev->pers) {
4007 		err = update_size(mddev, sectors);
4008 		md_update_sb(mddev, 1);
4009 	} else {
4010 		if (mddev->dev_sectors == 0 ||
4011 		    mddev->dev_sectors > sectors)
4012 			mddev->dev_sectors = sectors;
4013 		else
4014 			err = -ENOSPC;
4015 	}
4016 	mddev_unlock(mddev);
4017 	return err ? err : len;
4018 }
4019 
4020 static struct md_sysfs_entry md_size =
4021 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4022 
4023 /* Metadata version.
4024  * This is one of
4025  *   'none' for arrays with no metadata (good luck...)
4026  *   'external' for arrays with externally managed metadata,
4027  * or N.M for internally known formats
4028  */
4029 static ssize_t
4030 metadata_show(struct mddev *mddev, char *page)
4031 {
4032 	if (mddev->persistent)
4033 		return sprintf(page, "%d.%d\n",
4034 			       mddev->major_version, mddev->minor_version);
4035 	else if (mddev->external)
4036 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4037 	else
4038 		return sprintf(page, "none\n");
4039 }
4040 
4041 static ssize_t
4042 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4043 {
4044 	int major, minor;
4045 	char *e;
4046 	int err;
4047 	/* Changing the details of 'external' metadata is
4048 	 * always permitted.  Otherwise there must be
4049 	 * no devices attached to the array.
4050 	 */
4051 
4052 	err = mddev_lock(mddev);
4053 	if (err)
4054 		return err;
4055 	err = -EBUSY;
4056 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4057 		;
4058 	else if (!list_empty(&mddev->disks))
4059 		goto out_unlock;
4060 
4061 	err = 0;
4062 	if (cmd_match(buf, "none")) {
4063 		mddev->persistent = 0;
4064 		mddev->external = 0;
4065 		mddev->major_version = 0;
4066 		mddev->minor_version = 90;
4067 		goto out_unlock;
4068 	}
4069 	if (strncmp(buf, "external:", 9) == 0) {
4070 		size_t namelen = len-9;
4071 		if (namelen >= sizeof(mddev->metadata_type))
4072 			namelen = sizeof(mddev->metadata_type)-1;
4073 		strncpy(mddev->metadata_type, buf+9, namelen);
4074 		mddev->metadata_type[namelen] = 0;
4075 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4076 			mddev->metadata_type[--namelen] = 0;
4077 		mddev->persistent = 0;
4078 		mddev->external = 1;
4079 		mddev->major_version = 0;
4080 		mddev->minor_version = 90;
4081 		goto out_unlock;
4082 	}
4083 	major = simple_strtoul(buf, &e, 10);
4084 	err = -EINVAL;
4085 	if (e==buf || *e != '.')
4086 		goto out_unlock;
4087 	buf = e+1;
4088 	minor = simple_strtoul(buf, &e, 10);
4089 	if (e==buf || (*e && *e != '\n') )
4090 		goto out_unlock;
4091 	err = -ENOENT;
4092 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4093 		goto out_unlock;
4094 	mddev->major_version = major;
4095 	mddev->minor_version = minor;
4096 	mddev->persistent = 1;
4097 	mddev->external = 0;
4098 	err = 0;
4099 out_unlock:
4100 	mddev_unlock(mddev);
4101 	return err ?: len;
4102 }
4103 
4104 static struct md_sysfs_entry md_metadata =
4105 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4106 
4107 static ssize_t
4108 action_show(struct mddev *mddev, char *page)
4109 {
4110 	char *type = "idle";
4111 	unsigned long recovery = mddev->recovery;
4112 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4113 		type = "frozen";
4114 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4115 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4116 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4117 			type = "reshape";
4118 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4119 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4120 				type = "resync";
4121 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4122 				type = "check";
4123 			else
4124 				type = "repair";
4125 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4126 			type = "recover";
4127 	}
4128 	return sprintf(page, "%s\n", type);
4129 }
4130 
4131 static ssize_t
4132 action_store(struct mddev *mddev, const char *page, size_t len)
4133 {
4134 	if (!mddev->pers || !mddev->pers->sync_request)
4135 		return -EINVAL;
4136 
4137 	if (cmd_match(page, "frozen"))
4138 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4139 	else
4140 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4141 
4142 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4143 		flush_workqueue(md_misc_wq);
4144 		if (mddev->sync_thread) {
4145 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4146 			if (mddev_lock(mddev) == 0) {
4147 				md_reap_sync_thread(mddev);
4148 				mddev_unlock(mddev);
4149 			}
4150 		}
4151 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4152 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4153 		return -EBUSY;
4154 	else if (cmd_match(page, "resync"))
4155 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4156 	else if (cmd_match(page, "recover")) {
4157 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4158 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4159 	} else if (cmd_match(page, "reshape")) {
4160 		int err;
4161 		if (mddev->pers->start_reshape == NULL)
4162 			return -EINVAL;
4163 		err = mddev_lock(mddev);
4164 		if (!err) {
4165 			err = mddev->pers->start_reshape(mddev);
4166 			mddev_unlock(mddev);
4167 		}
4168 		if (err)
4169 			return err;
4170 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4171 	} else {
4172 		if (cmd_match(page, "check"))
4173 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4174 		else if (!cmd_match(page, "repair"))
4175 			return -EINVAL;
4176 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4177 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4178 	}
4179 	if (mddev->ro == 2) {
4180 		/* A write to sync_action is enough to justify
4181 		 * canceling read-auto mode
4182 		 */
4183 		mddev->ro = 0;
4184 		md_wakeup_thread(mddev->sync_thread);
4185 	}
4186 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4187 	md_wakeup_thread(mddev->thread);
4188 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4189 	return len;
4190 }
4191 
4192 static struct md_sysfs_entry md_scan_mode =
4193 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4194 
4195 static ssize_t
4196 last_sync_action_show(struct mddev *mddev, char *page)
4197 {
4198 	return sprintf(page, "%s\n", mddev->last_sync_action);
4199 }
4200 
4201 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4202 
4203 static ssize_t
4204 mismatch_cnt_show(struct mddev *mddev, char *page)
4205 {
4206 	return sprintf(page, "%llu\n",
4207 		       (unsigned long long)
4208 		       atomic64_read(&mddev->resync_mismatches));
4209 }
4210 
4211 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4212 
4213 static ssize_t
4214 sync_min_show(struct mddev *mddev, char *page)
4215 {
4216 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4217 		       mddev->sync_speed_min ? "local": "system");
4218 }
4219 
4220 static ssize_t
4221 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4222 {
4223 	int min;
4224 	char *e;
4225 	if (strncmp(buf, "system", 6)==0) {
4226 		mddev->sync_speed_min = 0;
4227 		return len;
4228 	}
4229 	min = simple_strtoul(buf, &e, 10);
4230 	if (buf == e || (*e && *e != '\n') || min <= 0)
4231 		return -EINVAL;
4232 	mddev->sync_speed_min = min;
4233 	return len;
4234 }
4235 
4236 static struct md_sysfs_entry md_sync_min =
4237 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4238 
4239 static ssize_t
4240 sync_max_show(struct mddev *mddev, char *page)
4241 {
4242 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4243 		       mddev->sync_speed_max ? "local": "system");
4244 }
4245 
4246 static ssize_t
4247 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4248 {
4249 	int max;
4250 	char *e;
4251 	if (strncmp(buf, "system", 6)==0) {
4252 		mddev->sync_speed_max = 0;
4253 		return len;
4254 	}
4255 	max = simple_strtoul(buf, &e, 10);
4256 	if (buf == e || (*e && *e != '\n') || max <= 0)
4257 		return -EINVAL;
4258 	mddev->sync_speed_max = max;
4259 	return len;
4260 }
4261 
4262 static struct md_sysfs_entry md_sync_max =
4263 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4264 
4265 static ssize_t
4266 degraded_show(struct mddev *mddev, char *page)
4267 {
4268 	return sprintf(page, "%d\n", mddev->degraded);
4269 }
4270 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4271 
4272 static ssize_t
4273 sync_force_parallel_show(struct mddev *mddev, char *page)
4274 {
4275 	return sprintf(page, "%d\n", mddev->parallel_resync);
4276 }
4277 
4278 static ssize_t
4279 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4280 {
4281 	long n;
4282 
4283 	if (kstrtol(buf, 10, &n))
4284 		return -EINVAL;
4285 
4286 	if (n != 0 && n != 1)
4287 		return -EINVAL;
4288 
4289 	mddev->parallel_resync = n;
4290 
4291 	if (mddev->sync_thread)
4292 		wake_up(&resync_wait);
4293 
4294 	return len;
4295 }
4296 
4297 /* force parallel resync, even with shared block devices */
4298 static struct md_sysfs_entry md_sync_force_parallel =
4299 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4300        sync_force_parallel_show, sync_force_parallel_store);
4301 
4302 static ssize_t
4303 sync_speed_show(struct mddev *mddev, char *page)
4304 {
4305 	unsigned long resync, dt, db;
4306 	if (mddev->curr_resync == 0)
4307 		return sprintf(page, "none\n");
4308 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4309 	dt = (jiffies - mddev->resync_mark) / HZ;
4310 	if (!dt) dt++;
4311 	db = resync - mddev->resync_mark_cnt;
4312 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4313 }
4314 
4315 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4316 
4317 static ssize_t
4318 sync_completed_show(struct mddev *mddev, char *page)
4319 {
4320 	unsigned long long max_sectors, resync;
4321 
4322 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4323 		return sprintf(page, "none\n");
4324 
4325 	if (mddev->curr_resync == 1 ||
4326 	    mddev->curr_resync == 2)
4327 		return sprintf(page, "delayed\n");
4328 
4329 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4330 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4331 		max_sectors = mddev->resync_max_sectors;
4332 	else
4333 		max_sectors = mddev->dev_sectors;
4334 
4335 	resync = mddev->curr_resync_completed;
4336 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4337 }
4338 
4339 static struct md_sysfs_entry md_sync_completed =
4340 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4341 
4342 static ssize_t
4343 min_sync_show(struct mddev *mddev, char *page)
4344 {
4345 	return sprintf(page, "%llu\n",
4346 		       (unsigned long long)mddev->resync_min);
4347 }
4348 static ssize_t
4349 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4350 {
4351 	unsigned long long min;
4352 	int err;
4353 	int chunk;
4354 
4355 	if (kstrtoull(buf, 10, &min))
4356 		return -EINVAL;
4357 
4358 	spin_lock(&mddev->lock);
4359 	err = -EINVAL;
4360 	if (min > mddev->resync_max)
4361 		goto out_unlock;
4362 
4363 	err = -EBUSY;
4364 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4365 		goto out_unlock;
4366 
4367 	/* Must be a multiple of chunk_size */
4368 	chunk = mddev->chunk_sectors;
4369 	if (chunk) {
4370 		sector_t temp = min;
4371 
4372 		err = -EINVAL;
4373 		if (sector_div(temp, chunk))
4374 			goto out_unlock;
4375 	}
4376 	mddev->resync_min = min;
4377 	err = 0;
4378 
4379 out_unlock:
4380 	spin_unlock(&mddev->lock);
4381 	return err ?: len;
4382 }
4383 
4384 static struct md_sysfs_entry md_min_sync =
4385 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4386 
4387 static ssize_t
4388 max_sync_show(struct mddev *mddev, char *page)
4389 {
4390 	if (mddev->resync_max == MaxSector)
4391 		return sprintf(page, "max\n");
4392 	else
4393 		return sprintf(page, "%llu\n",
4394 			       (unsigned long long)mddev->resync_max);
4395 }
4396 static ssize_t
4397 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4398 {
4399 	int err;
4400 	spin_lock(&mddev->lock);
4401 	if (strncmp(buf, "max", 3) == 0)
4402 		mddev->resync_max = MaxSector;
4403 	else {
4404 		unsigned long long max;
4405 		int chunk;
4406 
4407 		err = -EINVAL;
4408 		if (kstrtoull(buf, 10, &max))
4409 			goto out_unlock;
4410 		if (max < mddev->resync_min)
4411 			goto out_unlock;
4412 
4413 		err = -EBUSY;
4414 		if (max < mddev->resync_max &&
4415 		    mddev->ro == 0 &&
4416 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4417 			goto out_unlock;
4418 
4419 		/* Must be a multiple of chunk_size */
4420 		chunk = mddev->chunk_sectors;
4421 		if (chunk) {
4422 			sector_t temp = max;
4423 
4424 			err = -EINVAL;
4425 			if (sector_div(temp, chunk))
4426 				goto out_unlock;
4427 		}
4428 		mddev->resync_max = max;
4429 	}
4430 	wake_up(&mddev->recovery_wait);
4431 	err = 0;
4432 out_unlock:
4433 	spin_unlock(&mddev->lock);
4434 	return err ?: len;
4435 }
4436 
4437 static struct md_sysfs_entry md_max_sync =
4438 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4439 
4440 static ssize_t
4441 suspend_lo_show(struct mddev *mddev, char *page)
4442 {
4443 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4444 }
4445 
4446 static ssize_t
4447 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4448 {
4449 	char *e;
4450 	unsigned long long new = simple_strtoull(buf, &e, 10);
4451 	unsigned long long old;
4452 	int err;
4453 
4454 	if (buf == e || (*e && *e != '\n'))
4455 		return -EINVAL;
4456 
4457 	err = mddev_lock(mddev);
4458 	if (err)
4459 		return err;
4460 	err = -EINVAL;
4461 	if (mddev->pers == NULL ||
4462 	    mddev->pers->quiesce == NULL)
4463 		goto unlock;
4464 	old = mddev->suspend_lo;
4465 	mddev->suspend_lo = new;
4466 	if (new >= old)
4467 		/* Shrinking suspended region */
4468 		mddev->pers->quiesce(mddev, 2);
4469 	else {
4470 		/* Expanding suspended region - need to wait */
4471 		mddev->pers->quiesce(mddev, 1);
4472 		mddev->pers->quiesce(mddev, 0);
4473 	}
4474 	err = 0;
4475 unlock:
4476 	mddev_unlock(mddev);
4477 	return err ?: len;
4478 }
4479 static struct md_sysfs_entry md_suspend_lo =
4480 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4481 
4482 static ssize_t
4483 suspend_hi_show(struct mddev *mddev, char *page)
4484 {
4485 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4486 }
4487 
4488 static ssize_t
4489 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4490 {
4491 	char *e;
4492 	unsigned long long new = simple_strtoull(buf, &e, 10);
4493 	unsigned long long old;
4494 	int err;
4495 
4496 	if (buf == e || (*e && *e != '\n'))
4497 		return -EINVAL;
4498 
4499 	err = mddev_lock(mddev);
4500 	if (err)
4501 		return err;
4502 	err = -EINVAL;
4503 	if (mddev->pers == NULL ||
4504 	    mddev->pers->quiesce == NULL)
4505 		goto unlock;
4506 	old = mddev->suspend_hi;
4507 	mddev->suspend_hi = new;
4508 	if (new <= old)
4509 		/* Shrinking suspended region */
4510 		mddev->pers->quiesce(mddev, 2);
4511 	else {
4512 		/* Expanding suspended region - need to wait */
4513 		mddev->pers->quiesce(mddev, 1);
4514 		mddev->pers->quiesce(mddev, 0);
4515 	}
4516 	err = 0;
4517 unlock:
4518 	mddev_unlock(mddev);
4519 	return err ?: len;
4520 }
4521 static struct md_sysfs_entry md_suspend_hi =
4522 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4523 
4524 static ssize_t
4525 reshape_position_show(struct mddev *mddev, char *page)
4526 {
4527 	if (mddev->reshape_position != MaxSector)
4528 		return sprintf(page, "%llu\n",
4529 			       (unsigned long long)mddev->reshape_position);
4530 	strcpy(page, "none\n");
4531 	return 5;
4532 }
4533 
4534 static ssize_t
4535 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4536 {
4537 	struct md_rdev *rdev;
4538 	char *e;
4539 	int err;
4540 	unsigned long long new = simple_strtoull(buf, &e, 10);
4541 
4542 	if (buf == e || (*e && *e != '\n'))
4543 		return -EINVAL;
4544 	err = mddev_lock(mddev);
4545 	if (err)
4546 		return err;
4547 	err = -EBUSY;
4548 	if (mddev->pers)
4549 		goto unlock;
4550 	mddev->reshape_position = new;
4551 	mddev->delta_disks = 0;
4552 	mddev->reshape_backwards = 0;
4553 	mddev->new_level = mddev->level;
4554 	mddev->new_layout = mddev->layout;
4555 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4556 	rdev_for_each(rdev, mddev)
4557 		rdev->new_data_offset = rdev->data_offset;
4558 	err = 0;
4559 unlock:
4560 	mddev_unlock(mddev);
4561 	return err ?: len;
4562 }
4563 
4564 static struct md_sysfs_entry md_reshape_position =
4565 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4566        reshape_position_store);
4567 
4568 static ssize_t
4569 reshape_direction_show(struct mddev *mddev, char *page)
4570 {
4571 	return sprintf(page, "%s\n",
4572 		       mddev->reshape_backwards ? "backwards" : "forwards");
4573 }
4574 
4575 static ssize_t
4576 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4577 {
4578 	int backwards = 0;
4579 	int err;
4580 
4581 	if (cmd_match(buf, "forwards"))
4582 		backwards = 0;
4583 	else if (cmd_match(buf, "backwards"))
4584 		backwards = 1;
4585 	else
4586 		return -EINVAL;
4587 	if (mddev->reshape_backwards == backwards)
4588 		return len;
4589 
4590 	err = mddev_lock(mddev);
4591 	if (err)
4592 		return err;
4593 	/* check if we are allowed to change */
4594 	if (mddev->delta_disks)
4595 		err = -EBUSY;
4596 	else if (mddev->persistent &&
4597 	    mddev->major_version == 0)
4598 		err =  -EINVAL;
4599 	else
4600 		mddev->reshape_backwards = backwards;
4601 	mddev_unlock(mddev);
4602 	return err ?: len;
4603 }
4604 
4605 static struct md_sysfs_entry md_reshape_direction =
4606 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4607        reshape_direction_store);
4608 
4609 static ssize_t
4610 array_size_show(struct mddev *mddev, char *page)
4611 {
4612 	if (mddev->external_size)
4613 		return sprintf(page, "%llu\n",
4614 			       (unsigned long long)mddev->array_sectors/2);
4615 	else
4616 		return sprintf(page, "default\n");
4617 }
4618 
4619 static ssize_t
4620 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4621 {
4622 	sector_t sectors;
4623 	int err;
4624 
4625 	err = mddev_lock(mddev);
4626 	if (err)
4627 		return err;
4628 
4629 	if (strncmp(buf, "default", 7) == 0) {
4630 		if (mddev->pers)
4631 			sectors = mddev->pers->size(mddev, 0, 0);
4632 		else
4633 			sectors = mddev->array_sectors;
4634 
4635 		mddev->external_size = 0;
4636 	} else {
4637 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4638 			err = -EINVAL;
4639 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4640 			err = -E2BIG;
4641 		else
4642 			mddev->external_size = 1;
4643 	}
4644 
4645 	if (!err) {
4646 		mddev->array_sectors = sectors;
4647 		if (mddev->pers) {
4648 			set_capacity(mddev->gendisk, mddev->array_sectors);
4649 			revalidate_disk(mddev->gendisk);
4650 		}
4651 	}
4652 	mddev_unlock(mddev);
4653 	return err ?: len;
4654 }
4655 
4656 static struct md_sysfs_entry md_array_size =
4657 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4658        array_size_store);
4659 
4660 static struct attribute *md_default_attrs[] = {
4661 	&md_level.attr,
4662 	&md_layout.attr,
4663 	&md_raid_disks.attr,
4664 	&md_chunk_size.attr,
4665 	&md_size.attr,
4666 	&md_resync_start.attr,
4667 	&md_metadata.attr,
4668 	&md_new_device.attr,
4669 	&md_safe_delay.attr,
4670 	&md_array_state.attr,
4671 	&md_reshape_position.attr,
4672 	&md_reshape_direction.attr,
4673 	&md_array_size.attr,
4674 	&max_corr_read_errors.attr,
4675 	NULL,
4676 };
4677 
4678 static struct attribute *md_redundancy_attrs[] = {
4679 	&md_scan_mode.attr,
4680 	&md_last_scan_mode.attr,
4681 	&md_mismatches.attr,
4682 	&md_sync_min.attr,
4683 	&md_sync_max.attr,
4684 	&md_sync_speed.attr,
4685 	&md_sync_force_parallel.attr,
4686 	&md_sync_completed.attr,
4687 	&md_min_sync.attr,
4688 	&md_max_sync.attr,
4689 	&md_suspend_lo.attr,
4690 	&md_suspend_hi.attr,
4691 	&md_bitmap.attr,
4692 	&md_degraded.attr,
4693 	NULL,
4694 };
4695 static struct attribute_group md_redundancy_group = {
4696 	.name = NULL,
4697 	.attrs = md_redundancy_attrs,
4698 };
4699 
4700 static ssize_t
4701 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4702 {
4703 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4704 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4705 	ssize_t rv;
4706 
4707 	if (!entry->show)
4708 		return -EIO;
4709 	spin_lock(&all_mddevs_lock);
4710 	if (list_empty(&mddev->all_mddevs)) {
4711 		spin_unlock(&all_mddevs_lock);
4712 		return -EBUSY;
4713 	}
4714 	mddev_get(mddev);
4715 	spin_unlock(&all_mddevs_lock);
4716 
4717 	rv = entry->show(mddev, page);
4718 	mddev_put(mddev);
4719 	return rv;
4720 }
4721 
4722 static ssize_t
4723 md_attr_store(struct kobject *kobj, struct attribute *attr,
4724 	      const char *page, size_t length)
4725 {
4726 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4727 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4728 	ssize_t rv;
4729 
4730 	if (!entry->store)
4731 		return -EIO;
4732 	if (!capable(CAP_SYS_ADMIN))
4733 		return -EACCES;
4734 	spin_lock(&all_mddevs_lock);
4735 	if (list_empty(&mddev->all_mddevs)) {
4736 		spin_unlock(&all_mddevs_lock);
4737 		return -EBUSY;
4738 	}
4739 	mddev_get(mddev);
4740 	spin_unlock(&all_mddevs_lock);
4741 	rv = entry->store(mddev, page, length);
4742 	mddev_put(mddev);
4743 	return rv;
4744 }
4745 
4746 static void md_free(struct kobject *ko)
4747 {
4748 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4749 
4750 	if (mddev->sysfs_state)
4751 		sysfs_put(mddev->sysfs_state);
4752 
4753 	if (mddev->gendisk) {
4754 		del_gendisk(mddev->gendisk);
4755 		put_disk(mddev->gendisk);
4756 	}
4757 	if (mddev->queue)
4758 		blk_cleanup_queue(mddev->queue);
4759 
4760 	kfree(mddev);
4761 }
4762 
4763 static const struct sysfs_ops md_sysfs_ops = {
4764 	.show	= md_attr_show,
4765 	.store	= md_attr_store,
4766 };
4767 static struct kobj_type md_ktype = {
4768 	.release	= md_free,
4769 	.sysfs_ops	= &md_sysfs_ops,
4770 	.default_attrs	= md_default_attrs,
4771 };
4772 
4773 int mdp_major = 0;
4774 
4775 static void mddev_delayed_delete(struct work_struct *ws)
4776 {
4777 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4778 
4779 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4780 	kobject_del(&mddev->kobj);
4781 	kobject_put(&mddev->kobj);
4782 }
4783 
4784 static int md_alloc(dev_t dev, char *name)
4785 {
4786 	static DEFINE_MUTEX(disks_mutex);
4787 	struct mddev *mddev = mddev_find(dev);
4788 	struct gendisk *disk;
4789 	int partitioned;
4790 	int shift;
4791 	int unit;
4792 	int error;
4793 
4794 	if (!mddev)
4795 		return -ENODEV;
4796 
4797 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4798 	shift = partitioned ? MdpMinorShift : 0;
4799 	unit = MINOR(mddev->unit) >> shift;
4800 
4801 	/* wait for any previous instance of this device to be
4802 	 * completely removed (mddev_delayed_delete).
4803 	 */
4804 	flush_workqueue(md_misc_wq);
4805 
4806 	mutex_lock(&disks_mutex);
4807 	error = -EEXIST;
4808 	if (mddev->gendisk)
4809 		goto abort;
4810 
4811 	if (name) {
4812 		/* Need to ensure that 'name' is not a duplicate.
4813 		 */
4814 		struct mddev *mddev2;
4815 		spin_lock(&all_mddevs_lock);
4816 
4817 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4818 			if (mddev2->gendisk &&
4819 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4820 				spin_unlock(&all_mddevs_lock);
4821 				goto abort;
4822 			}
4823 		spin_unlock(&all_mddevs_lock);
4824 	}
4825 
4826 	error = -ENOMEM;
4827 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4828 	if (!mddev->queue)
4829 		goto abort;
4830 	mddev->queue->queuedata = mddev;
4831 
4832 	blk_queue_make_request(mddev->queue, md_make_request);
4833 	blk_set_stacking_limits(&mddev->queue->limits);
4834 
4835 	disk = alloc_disk(1 << shift);
4836 	if (!disk) {
4837 		blk_cleanup_queue(mddev->queue);
4838 		mddev->queue = NULL;
4839 		goto abort;
4840 	}
4841 	disk->major = MAJOR(mddev->unit);
4842 	disk->first_minor = unit << shift;
4843 	if (name)
4844 		strcpy(disk->disk_name, name);
4845 	else if (partitioned)
4846 		sprintf(disk->disk_name, "md_d%d", unit);
4847 	else
4848 		sprintf(disk->disk_name, "md%d", unit);
4849 	disk->fops = &md_fops;
4850 	disk->private_data = mddev;
4851 	disk->queue = mddev->queue;
4852 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4853 	/* Allow extended partitions.  This makes the
4854 	 * 'mdp' device redundant, but we can't really
4855 	 * remove it now.
4856 	 */
4857 	disk->flags |= GENHD_FL_EXT_DEVT;
4858 	mddev->gendisk = disk;
4859 	/* As soon as we call add_disk(), another thread could get
4860 	 * through to md_open, so make sure it doesn't get too far
4861 	 */
4862 	mutex_lock(&mddev->open_mutex);
4863 	add_disk(disk);
4864 
4865 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4866 				     &disk_to_dev(disk)->kobj, "%s", "md");
4867 	if (error) {
4868 		/* This isn't possible, but as kobject_init_and_add is marked
4869 		 * __must_check, we must do something with the result
4870 		 */
4871 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4872 		       disk->disk_name);
4873 		error = 0;
4874 	}
4875 	if (mddev->kobj.sd &&
4876 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4877 		printk(KERN_DEBUG "pointless warning\n");
4878 	mutex_unlock(&mddev->open_mutex);
4879  abort:
4880 	mutex_unlock(&disks_mutex);
4881 	if (!error && mddev->kobj.sd) {
4882 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4883 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4884 	}
4885 	mddev_put(mddev);
4886 	return error;
4887 }
4888 
4889 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4890 {
4891 	md_alloc(dev, NULL);
4892 	return NULL;
4893 }
4894 
4895 static int add_named_array(const char *val, struct kernel_param *kp)
4896 {
4897 	/* val must be "md_*" where * is not all digits.
4898 	 * We allocate an array with a large free minor number, and
4899 	 * set the name to val.  val must not already be an active name.
4900 	 */
4901 	int len = strlen(val);
4902 	char buf[DISK_NAME_LEN];
4903 
4904 	while (len && val[len-1] == '\n')
4905 		len--;
4906 	if (len >= DISK_NAME_LEN)
4907 		return -E2BIG;
4908 	strlcpy(buf, val, len+1);
4909 	if (strncmp(buf, "md_", 3) != 0)
4910 		return -EINVAL;
4911 	return md_alloc(0, buf);
4912 }
4913 
4914 static void md_safemode_timeout(unsigned long data)
4915 {
4916 	struct mddev *mddev = (struct mddev *) data;
4917 
4918 	if (!atomic_read(&mddev->writes_pending)) {
4919 		mddev->safemode = 1;
4920 		if (mddev->external)
4921 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4922 	}
4923 	md_wakeup_thread(mddev->thread);
4924 }
4925 
4926 static int start_dirty_degraded;
4927 
4928 int md_run(struct mddev *mddev)
4929 {
4930 	int err;
4931 	struct md_rdev *rdev;
4932 	struct md_personality *pers;
4933 
4934 	if (list_empty(&mddev->disks))
4935 		/* cannot run an array with no devices.. */
4936 		return -EINVAL;
4937 
4938 	if (mddev->pers)
4939 		return -EBUSY;
4940 	/* Cannot run until previous stop completes properly */
4941 	if (mddev->sysfs_active)
4942 		return -EBUSY;
4943 
4944 	/*
4945 	 * Analyze all RAID superblock(s)
4946 	 */
4947 	if (!mddev->raid_disks) {
4948 		if (!mddev->persistent)
4949 			return -EINVAL;
4950 		analyze_sbs(mddev);
4951 	}
4952 
4953 	if (mddev->level != LEVEL_NONE)
4954 		request_module("md-level-%d", mddev->level);
4955 	else if (mddev->clevel[0])
4956 		request_module("md-%s", mddev->clevel);
4957 
4958 	/*
4959 	 * Drop all container device buffers, from now on
4960 	 * the only valid external interface is through the md
4961 	 * device.
4962 	 */
4963 	rdev_for_each(rdev, mddev) {
4964 		if (test_bit(Faulty, &rdev->flags))
4965 			continue;
4966 		sync_blockdev(rdev->bdev);
4967 		invalidate_bdev(rdev->bdev);
4968 
4969 		/* perform some consistency tests on the device.
4970 		 * We don't want the data to overlap the metadata,
4971 		 * Internal Bitmap issues have been handled elsewhere.
4972 		 */
4973 		if (rdev->meta_bdev) {
4974 			/* Nothing to check */;
4975 		} else if (rdev->data_offset < rdev->sb_start) {
4976 			if (mddev->dev_sectors &&
4977 			    rdev->data_offset + mddev->dev_sectors
4978 			    > rdev->sb_start) {
4979 				printk("md: %s: data overlaps metadata\n",
4980 				       mdname(mddev));
4981 				return -EINVAL;
4982 			}
4983 		} else {
4984 			if (rdev->sb_start + rdev->sb_size/512
4985 			    > rdev->data_offset) {
4986 				printk("md: %s: metadata overlaps data\n",
4987 				       mdname(mddev));
4988 				return -EINVAL;
4989 			}
4990 		}
4991 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4992 	}
4993 
4994 	if (mddev->bio_set == NULL)
4995 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4996 
4997 	spin_lock(&pers_lock);
4998 	pers = find_pers(mddev->level, mddev->clevel);
4999 	if (!pers || !try_module_get(pers->owner)) {
5000 		spin_unlock(&pers_lock);
5001 		if (mddev->level != LEVEL_NONE)
5002 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5003 			       mddev->level);
5004 		else
5005 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5006 			       mddev->clevel);
5007 		return -EINVAL;
5008 	}
5009 	spin_unlock(&pers_lock);
5010 	if (mddev->level != pers->level) {
5011 		mddev->level = pers->level;
5012 		mddev->new_level = pers->level;
5013 	}
5014 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5015 
5016 	if (mddev->reshape_position != MaxSector &&
5017 	    pers->start_reshape == NULL) {
5018 		/* This personality cannot handle reshaping... */
5019 		module_put(pers->owner);
5020 		return -EINVAL;
5021 	}
5022 
5023 	if (pers->sync_request) {
5024 		/* Warn if this is a potentially silly
5025 		 * configuration.
5026 		 */
5027 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5028 		struct md_rdev *rdev2;
5029 		int warned = 0;
5030 
5031 		rdev_for_each(rdev, mddev)
5032 			rdev_for_each(rdev2, mddev) {
5033 				if (rdev < rdev2 &&
5034 				    rdev->bdev->bd_contains ==
5035 				    rdev2->bdev->bd_contains) {
5036 					printk(KERN_WARNING
5037 					       "%s: WARNING: %s appears to be"
5038 					       " on the same physical disk as"
5039 					       " %s.\n",
5040 					       mdname(mddev),
5041 					       bdevname(rdev->bdev,b),
5042 					       bdevname(rdev2->bdev,b2));
5043 					warned = 1;
5044 				}
5045 			}
5046 
5047 		if (warned)
5048 			printk(KERN_WARNING
5049 			       "True protection against single-disk"
5050 			       " failure might be compromised.\n");
5051 	}
5052 
5053 	mddev->recovery = 0;
5054 	/* may be over-ridden by personality */
5055 	mddev->resync_max_sectors = mddev->dev_sectors;
5056 
5057 	mddev->ok_start_degraded = start_dirty_degraded;
5058 
5059 	if (start_readonly && mddev->ro == 0)
5060 		mddev->ro = 2; /* read-only, but switch on first write */
5061 
5062 	err = pers->run(mddev);
5063 	if (err)
5064 		printk(KERN_ERR "md: pers->run() failed ...\n");
5065 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5066 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5067 			  " but 'external_size' not in effect?\n", __func__);
5068 		printk(KERN_ERR
5069 		       "md: invalid array_size %llu > default size %llu\n",
5070 		       (unsigned long long)mddev->array_sectors / 2,
5071 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5072 		err = -EINVAL;
5073 	}
5074 	if (err == 0 && pers->sync_request &&
5075 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5076 		err = bitmap_create(mddev);
5077 		if (err)
5078 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5079 			       mdname(mddev), err);
5080 	}
5081 	if (err) {
5082 		mddev_detach(mddev);
5083 		pers->free(mddev, mddev->private);
5084 		module_put(pers->owner);
5085 		bitmap_destroy(mddev);
5086 		return err;
5087 	}
5088 	if (mddev->queue) {
5089 		mddev->queue->backing_dev_info.congested_data = mddev;
5090 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5091 		blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5092 	}
5093 	if (pers->sync_request) {
5094 		if (mddev->kobj.sd &&
5095 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5096 			printk(KERN_WARNING
5097 			       "md: cannot register extra attributes for %s\n",
5098 			       mdname(mddev));
5099 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5100 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5101 		mddev->ro = 0;
5102 
5103 	atomic_set(&mddev->writes_pending,0);
5104 	atomic_set(&mddev->max_corr_read_errors,
5105 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5106 	mddev->safemode = 0;
5107 	mddev->safemode_timer.function = md_safemode_timeout;
5108 	mddev->safemode_timer.data = (unsigned long) mddev;
5109 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5110 	mddev->in_sync = 1;
5111 	smp_wmb();
5112 	spin_lock(&mddev->lock);
5113 	mddev->pers = pers;
5114 	mddev->ready = 1;
5115 	spin_unlock(&mddev->lock);
5116 	rdev_for_each(rdev, mddev)
5117 		if (rdev->raid_disk >= 0)
5118 			if (sysfs_link_rdev(mddev, rdev))
5119 				/* failure here is OK */;
5120 
5121 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5122 
5123 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5124 		md_update_sb(mddev, 0);
5125 
5126 	md_new_event(mddev);
5127 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5128 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5129 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5130 	return 0;
5131 }
5132 EXPORT_SYMBOL_GPL(md_run);
5133 
5134 static int do_md_run(struct mddev *mddev)
5135 {
5136 	int err;
5137 
5138 	err = md_run(mddev);
5139 	if (err)
5140 		goto out;
5141 	err = bitmap_load(mddev);
5142 	if (err) {
5143 		bitmap_destroy(mddev);
5144 		goto out;
5145 	}
5146 
5147 	md_wakeup_thread(mddev->thread);
5148 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5149 
5150 	set_capacity(mddev->gendisk, mddev->array_sectors);
5151 	revalidate_disk(mddev->gendisk);
5152 	mddev->changed = 1;
5153 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5154 out:
5155 	return err;
5156 }
5157 
5158 static int restart_array(struct mddev *mddev)
5159 {
5160 	struct gendisk *disk = mddev->gendisk;
5161 
5162 	/* Complain if it has no devices */
5163 	if (list_empty(&mddev->disks))
5164 		return -ENXIO;
5165 	if (!mddev->pers)
5166 		return -EINVAL;
5167 	if (!mddev->ro)
5168 		return -EBUSY;
5169 	mddev->safemode = 0;
5170 	mddev->ro = 0;
5171 	set_disk_ro(disk, 0);
5172 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5173 		mdname(mddev));
5174 	/* Kick recovery or resync if necessary */
5175 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5176 	md_wakeup_thread(mddev->thread);
5177 	md_wakeup_thread(mddev->sync_thread);
5178 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5179 	return 0;
5180 }
5181 
5182 static void md_clean(struct mddev *mddev)
5183 {
5184 	mddev->array_sectors = 0;
5185 	mddev->external_size = 0;
5186 	mddev->dev_sectors = 0;
5187 	mddev->raid_disks = 0;
5188 	mddev->recovery_cp = 0;
5189 	mddev->resync_min = 0;
5190 	mddev->resync_max = MaxSector;
5191 	mddev->reshape_position = MaxSector;
5192 	mddev->external = 0;
5193 	mddev->persistent = 0;
5194 	mddev->level = LEVEL_NONE;
5195 	mddev->clevel[0] = 0;
5196 	mddev->flags = 0;
5197 	mddev->ro = 0;
5198 	mddev->metadata_type[0] = 0;
5199 	mddev->chunk_sectors = 0;
5200 	mddev->ctime = mddev->utime = 0;
5201 	mddev->layout = 0;
5202 	mddev->max_disks = 0;
5203 	mddev->events = 0;
5204 	mddev->can_decrease_events = 0;
5205 	mddev->delta_disks = 0;
5206 	mddev->reshape_backwards = 0;
5207 	mddev->new_level = LEVEL_NONE;
5208 	mddev->new_layout = 0;
5209 	mddev->new_chunk_sectors = 0;
5210 	mddev->curr_resync = 0;
5211 	atomic64_set(&mddev->resync_mismatches, 0);
5212 	mddev->suspend_lo = mddev->suspend_hi = 0;
5213 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5214 	mddev->recovery = 0;
5215 	mddev->in_sync = 0;
5216 	mddev->changed = 0;
5217 	mddev->degraded = 0;
5218 	mddev->safemode = 0;
5219 	mddev->merge_check_needed = 0;
5220 	mddev->bitmap_info.offset = 0;
5221 	mddev->bitmap_info.default_offset = 0;
5222 	mddev->bitmap_info.default_space = 0;
5223 	mddev->bitmap_info.chunksize = 0;
5224 	mddev->bitmap_info.daemon_sleep = 0;
5225 	mddev->bitmap_info.max_write_behind = 0;
5226 }
5227 
5228 static void __md_stop_writes(struct mddev *mddev)
5229 {
5230 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5231 	flush_workqueue(md_misc_wq);
5232 	if (mddev->sync_thread) {
5233 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5234 		md_reap_sync_thread(mddev);
5235 	}
5236 
5237 	del_timer_sync(&mddev->safemode_timer);
5238 
5239 	bitmap_flush(mddev);
5240 	md_super_wait(mddev);
5241 
5242 	if (mddev->ro == 0 &&
5243 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5244 		/* mark array as shutdown cleanly */
5245 		mddev->in_sync = 1;
5246 		md_update_sb(mddev, 1);
5247 	}
5248 }
5249 
5250 void md_stop_writes(struct mddev *mddev)
5251 {
5252 	mddev_lock_nointr(mddev);
5253 	__md_stop_writes(mddev);
5254 	mddev_unlock(mddev);
5255 }
5256 EXPORT_SYMBOL_GPL(md_stop_writes);
5257 
5258 static void mddev_detach(struct mddev *mddev)
5259 {
5260 	struct bitmap *bitmap = mddev->bitmap;
5261 	/* wait for behind writes to complete */
5262 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5263 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5264 		       mdname(mddev));
5265 		/* need to kick something here to make sure I/O goes? */
5266 		wait_event(bitmap->behind_wait,
5267 			   atomic_read(&bitmap->behind_writes) == 0);
5268 	}
5269 	if (mddev->pers && mddev->pers->quiesce) {
5270 		mddev->pers->quiesce(mddev, 1);
5271 		mddev->pers->quiesce(mddev, 0);
5272 	}
5273 	md_unregister_thread(&mddev->thread);
5274 	if (mddev->queue)
5275 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5276 }
5277 
5278 static void __md_stop(struct mddev *mddev)
5279 {
5280 	struct md_personality *pers = mddev->pers;
5281 	mddev_detach(mddev);
5282 	spin_lock(&mddev->lock);
5283 	mddev->ready = 0;
5284 	mddev->pers = NULL;
5285 	spin_unlock(&mddev->lock);
5286 	pers->free(mddev, mddev->private);
5287 	if (pers->sync_request && mddev->to_remove == NULL)
5288 		mddev->to_remove = &md_redundancy_group;
5289 	module_put(pers->owner);
5290 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5291 }
5292 
5293 void md_stop(struct mddev *mddev)
5294 {
5295 	/* stop the array and free an attached data structures.
5296 	 * This is called from dm-raid
5297 	 */
5298 	__md_stop(mddev);
5299 	bitmap_destroy(mddev);
5300 	if (mddev->bio_set)
5301 		bioset_free(mddev->bio_set);
5302 }
5303 
5304 EXPORT_SYMBOL_GPL(md_stop);
5305 
5306 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5307 {
5308 	int err = 0;
5309 	int did_freeze = 0;
5310 
5311 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5312 		did_freeze = 1;
5313 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5314 		md_wakeup_thread(mddev->thread);
5315 	}
5316 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5317 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5318 	if (mddev->sync_thread)
5319 		/* Thread might be blocked waiting for metadata update
5320 		 * which will now never happen */
5321 		wake_up_process(mddev->sync_thread->tsk);
5322 
5323 	mddev_unlock(mddev);
5324 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5325 					  &mddev->recovery));
5326 	mddev_lock_nointr(mddev);
5327 
5328 	mutex_lock(&mddev->open_mutex);
5329 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5330 	    mddev->sync_thread ||
5331 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5332 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5333 		printk("md: %s still in use.\n",mdname(mddev));
5334 		if (did_freeze) {
5335 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5336 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5337 			md_wakeup_thread(mddev->thread);
5338 		}
5339 		err = -EBUSY;
5340 		goto out;
5341 	}
5342 	if (mddev->pers) {
5343 		__md_stop_writes(mddev);
5344 
5345 		err  = -ENXIO;
5346 		if (mddev->ro==1)
5347 			goto out;
5348 		mddev->ro = 1;
5349 		set_disk_ro(mddev->gendisk, 1);
5350 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5351 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5352 		md_wakeup_thread(mddev->thread);
5353 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5354 		err = 0;
5355 	}
5356 out:
5357 	mutex_unlock(&mddev->open_mutex);
5358 	return err;
5359 }
5360 
5361 /* mode:
5362  *   0 - completely stop and dis-assemble array
5363  *   2 - stop but do not disassemble array
5364  */
5365 static int do_md_stop(struct mddev *mddev, int mode,
5366 		      struct block_device *bdev)
5367 {
5368 	struct gendisk *disk = mddev->gendisk;
5369 	struct md_rdev *rdev;
5370 	int did_freeze = 0;
5371 
5372 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5373 		did_freeze = 1;
5374 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5375 		md_wakeup_thread(mddev->thread);
5376 	}
5377 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5378 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5379 	if (mddev->sync_thread)
5380 		/* Thread might be blocked waiting for metadata update
5381 		 * which will now never happen */
5382 		wake_up_process(mddev->sync_thread->tsk);
5383 
5384 	mddev_unlock(mddev);
5385 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5386 				 !test_bit(MD_RECOVERY_RUNNING,
5387 					   &mddev->recovery)));
5388 	mddev_lock_nointr(mddev);
5389 
5390 	mutex_lock(&mddev->open_mutex);
5391 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5392 	    mddev->sysfs_active ||
5393 	    mddev->sync_thread ||
5394 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5395 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5396 		printk("md: %s still in use.\n",mdname(mddev));
5397 		mutex_unlock(&mddev->open_mutex);
5398 		if (did_freeze) {
5399 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5400 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5401 			md_wakeup_thread(mddev->thread);
5402 		}
5403 		return -EBUSY;
5404 	}
5405 	if (mddev->pers) {
5406 		if (mddev->ro)
5407 			set_disk_ro(disk, 0);
5408 
5409 		__md_stop_writes(mddev);
5410 		__md_stop(mddev);
5411 		mddev->queue->merge_bvec_fn = NULL;
5412 		mddev->queue->backing_dev_info.congested_fn = NULL;
5413 
5414 		/* tell userspace to handle 'inactive' */
5415 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5416 
5417 		rdev_for_each(rdev, mddev)
5418 			if (rdev->raid_disk >= 0)
5419 				sysfs_unlink_rdev(mddev, rdev);
5420 
5421 		set_capacity(disk, 0);
5422 		mutex_unlock(&mddev->open_mutex);
5423 		mddev->changed = 1;
5424 		revalidate_disk(disk);
5425 
5426 		if (mddev->ro)
5427 			mddev->ro = 0;
5428 	} else
5429 		mutex_unlock(&mddev->open_mutex);
5430 	/*
5431 	 * Free resources if final stop
5432 	 */
5433 	if (mode == 0) {
5434 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5435 
5436 		bitmap_destroy(mddev);
5437 		if (mddev->bitmap_info.file) {
5438 			struct file *f = mddev->bitmap_info.file;
5439 			spin_lock(&mddev->lock);
5440 			mddev->bitmap_info.file = NULL;
5441 			spin_unlock(&mddev->lock);
5442 			fput(f);
5443 		}
5444 		mddev->bitmap_info.offset = 0;
5445 
5446 		export_array(mddev);
5447 
5448 		md_clean(mddev);
5449 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5450 		if (mddev->hold_active == UNTIL_STOP)
5451 			mddev->hold_active = 0;
5452 	}
5453 	blk_integrity_unregister(disk);
5454 	md_new_event(mddev);
5455 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5456 	return 0;
5457 }
5458 
5459 #ifndef MODULE
5460 static void autorun_array(struct mddev *mddev)
5461 {
5462 	struct md_rdev *rdev;
5463 	int err;
5464 
5465 	if (list_empty(&mddev->disks))
5466 		return;
5467 
5468 	printk(KERN_INFO "md: running: ");
5469 
5470 	rdev_for_each(rdev, mddev) {
5471 		char b[BDEVNAME_SIZE];
5472 		printk("<%s>", bdevname(rdev->bdev,b));
5473 	}
5474 	printk("\n");
5475 
5476 	err = do_md_run(mddev);
5477 	if (err) {
5478 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5479 		do_md_stop(mddev, 0, NULL);
5480 	}
5481 }
5482 
5483 /*
5484  * lets try to run arrays based on all disks that have arrived
5485  * until now. (those are in pending_raid_disks)
5486  *
5487  * the method: pick the first pending disk, collect all disks with
5488  * the same UUID, remove all from the pending list and put them into
5489  * the 'same_array' list. Then order this list based on superblock
5490  * update time (freshest comes first), kick out 'old' disks and
5491  * compare superblocks. If everything's fine then run it.
5492  *
5493  * If "unit" is allocated, then bump its reference count
5494  */
5495 static void autorun_devices(int part)
5496 {
5497 	struct md_rdev *rdev0, *rdev, *tmp;
5498 	struct mddev *mddev;
5499 	char b[BDEVNAME_SIZE];
5500 
5501 	printk(KERN_INFO "md: autorun ...\n");
5502 	while (!list_empty(&pending_raid_disks)) {
5503 		int unit;
5504 		dev_t dev;
5505 		LIST_HEAD(candidates);
5506 		rdev0 = list_entry(pending_raid_disks.next,
5507 					 struct md_rdev, same_set);
5508 
5509 		printk(KERN_INFO "md: considering %s ...\n",
5510 			bdevname(rdev0->bdev,b));
5511 		INIT_LIST_HEAD(&candidates);
5512 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5513 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5514 				printk(KERN_INFO "md:  adding %s ...\n",
5515 					bdevname(rdev->bdev,b));
5516 				list_move(&rdev->same_set, &candidates);
5517 			}
5518 		/*
5519 		 * now we have a set of devices, with all of them having
5520 		 * mostly sane superblocks. It's time to allocate the
5521 		 * mddev.
5522 		 */
5523 		if (part) {
5524 			dev = MKDEV(mdp_major,
5525 				    rdev0->preferred_minor << MdpMinorShift);
5526 			unit = MINOR(dev) >> MdpMinorShift;
5527 		} else {
5528 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5529 			unit = MINOR(dev);
5530 		}
5531 		if (rdev0->preferred_minor != unit) {
5532 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5533 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5534 			break;
5535 		}
5536 
5537 		md_probe(dev, NULL, NULL);
5538 		mddev = mddev_find(dev);
5539 		if (!mddev || !mddev->gendisk) {
5540 			if (mddev)
5541 				mddev_put(mddev);
5542 			printk(KERN_ERR
5543 				"md: cannot allocate memory for md drive.\n");
5544 			break;
5545 		}
5546 		if (mddev_lock(mddev))
5547 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5548 			       mdname(mddev));
5549 		else if (mddev->raid_disks || mddev->major_version
5550 			 || !list_empty(&mddev->disks)) {
5551 			printk(KERN_WARNING
5552 				"md: %s already running, cannot run %s\n",
5553 				mdname(mddev), bdevname(rdev0->bdev,b));
5554 			mddev_unlock(mddev);
5555 		} else {
5556 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5557 			mddev->persistent = 1;
5558 			rdev_for_each_list(rdev, tmp, &candidates) {
5559 				list_del_init(&rdev->same_set);
5560 				if (bind_rdev_to_array(rdev, mddev))
5561 					export_rdev(rdev);
5562 			}
5563 			autorun_array(mddev);
5564 			mddev_unlock(mddev);
5565 		}
5566 		/* on success, candidates will be empty, on error
5567 		 * it won't...
5568 		 */
5569 		rdev_for_each_list(rdev, tmp, &candidates) {
5570 			list_del_init(&rdev->same_set);
5571 			export_rdev(rdev);
5572 		}
5573 		mddev_put(mddev);
5574 	}
5575 	printk(KERN_INFO "md: ... autorun DONE.\n");
5576 }
5577 #endif /* !MODULE */
5578 
5579 static int get_version(void __user *arg)
5580 {
5581 	mdu_version_t ver;
5582 
5583 	ver.major = MD_MAJOR_VERSION;
5584 	ver.minor = MD_MINOR_VERSION;
5585 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5586 
5587 	if (copy_to_user(arg, &ver, sizeof(ver)))
5588 		return -EFAULT;
5589 
5590 	return 0;
5591 }
5592 
5593 static int get_array_info(struct mddev *mddev, void __user *arg)
5594 {
5595 	mdu_array_info_t info;
5596 	int nr,working,insync,failed,spare;
5597 	struct md_rdev *rdev;
5598 
5599 	nr = working = insync = failed = spare = 0;
5600 	rcu_read_lock();
5601 	rdev_for_each_rcu(rdev, mddev) {
5602 		nr++;
5603 		if (test_bit(Faulty, &rdev->flags))
5604 			failed++;
5605 		else {
5606 			working++;
5607 			if (test_bit(In_sync, &rdev->flags))
5608 				insync++;
5609 			else
5610 				spare++;
5611 		}
5612 	}
5613 	rcu_read_unlock();
5614 
5615 	info.major_version = mddev->major_version;
5616 	info.minor_version = mddev->minor_version;
5617 	info.patch_version = MD_PATCHLEVEL_VERSION;
5618 	info.ctime         = mddev->ctime;
5619 	info.level         = mddev->level;
5620 	info.size          = mddev->dev_sectors / 2;
5621 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5622 		info.size = -1;
5623 	info.nr_disks      = nr;
5624 	info.raid_disks    = mddev->raid_disks;
5625 	info.md_minor      = mddev->md_minor;
5626 	info.not_persistent= !mddev->persistent;
5627 
5628 	info.utime         = mddev->utime;
5629 	info.state         = 0;
5630 	if (mddev->in_sync)
5631 		info.state = (1<<MD_SB_CLEAN);
5632 	if (mddev->bitmap && mddev->bitmap_info.offset)
5633 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5634 	info.active_disks  = insync;
5635 	info.working_disks = working;
5636 	info.failed_disks  = failed;
5637 	info.spare_disks   = spare;
5638 
5639 	info.layout        = mddev->layout;
5640 	info.chunk_size    = mddev->chunk_sectors << 9;
5641 
5642 	if (copy_to_user(arg, &info, sizeof(info)))
5643 		return -EFAULT;
5644 
5645 	return 0;
5646 }
5647 
5648 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5649 {
5650 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5651 	char *ptr;
5652 	int err;
5653 
5654 	file = kmalloc(sizeof(*file), GFP_NOIO);
5655 	if (!file)
5656 		return -ENOMEM;
5657 
5658 	err = 0;
5659 	spin_lock(&mddev->lock);
5660 	/* bitmap disabled, zero the first byte and copy out */
5661 	if (!mddev->bitmap_info.file)
5662 		file->pathname[0] = '\0';
5663 	else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5664 			       file->pathname, sizeof(file->pathname))),
5665 		 IS_ERR(ptr))
5666 		err = PTR_ERR(ptr);
5667 	else
5668 		memmove(file->pathname, ptr,
5669 			sizeof(file->pathname)-(ptr-file->pathname));
5670 	spin_unlock(&mddev->lock);
5671 
5672 	if (err == 0 &&
5673 	    copy_to_user(arg, file, sizeof(*file)))
5674 		err = -EFAULT;
5675 
5676 	kfree(file);
5677 	return err;
5678 }
5679 
5680 static int get_disk_info(struct mddev *mddev, void __user * arg)
5681 {
5682 	mdu_disk_info_t info;
5683 	struct md_rdev *rdev;
5684 
5685 	if (copy_from_user(&info, arg, sizeof(info)))
5686 		return -EFAULT;
5687 
5688 	rcu_read_lock();
5689 	rdev = find_rdev_nr_rcu(mddev, info.number);
5690 	if (rdev) {
5691 		info.major = MAJOR(rdev->bdev->bd_dev);
5692 		info.minor = MINOR(rdev->bdev->bd_dev);
5693 		info.raid_disk = rdev->raid_disk;
5694 		info.state = 0;
5695 		if (test_bit(Faulty, &rdev->flags))
5696 			info.state |= (1<<MD_DISK_FAULTY);
5697 		else if (test_bit(In_sync, &rdev->flags)) {
5698 			info.state |= (1<<MD_DISK_ACTIVE);
5699 			info.state |= (1<<MD_DISK_SYNC);
5700 		}
5701 		if (test_bit(WriteMostly, &rdev->flags))
5702 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5703 	} else {
5704 		info.major = info.minor = 0;
5705 		info.raid_disk = -1;
5706 		info.state = (1<<MD_DISK_REMOVED);
5707 	}
5708 	rcu_read_unlock();
5709 
5710 	if (copy_to_user(arg, &info, sizeof(info)))
5711 		return -EFAULT;
5712 
5713 	return 0;
5714 }
5715 
5716 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5717 {
5718 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5719 	struct md_rdev *rdev;
5720 	dev_t dev = MKDEV(info->major,info->minor);
5721 
5722 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5723 		return -EOVERFLOW;
5724 
5725 	if (!mddev->raid_disks) {
5726 		int err;
5727 		/* expecting a device which has a superblock */
5728 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5729 		if (IS_ERR(rdev)) {
5730 			printk(KERN_WARNING
5731 				"md: md_import_device returned %ld\n",
5732 				PTR_ERR(rdev));
5733 			return PTR_ERR(rdev);
5734 		}
5735 		if (!list_empty(&mddev->disks)) {
5736 			struct md_rdev *rdev0
5737 				= list_entry(mddev->disks.next,
5738 					     struct md_rdev, same_set);
5739 			err = super_types[mddev->major_version]
5740 				.load_super(rdev, rdev0, mddev->minor_version);
5741 			if (err < 0) {
5742 				printk(KERN_WARNING
5743 					"md: %s has different UUID to %s\n",
5744 					bdevname(rdev->bdev,b),
5745 					bdevname(rdev0->bdev,b2));
5746 				export_rdev(rdev);
5747 				return -EINVAL;
5748 			}
5749 		}
5750 		err = bind_rdev_to_array(rdev, mddev);
5751 		if (err)
5752 			export_rdev(rdev);
5753 		return err;
5754 	}
5755 
5756 	/*
5757 	 * add_new_disk can be used once the array is assembled
5758 	 * to add "hot spares".  They must already have a superblock
5759 	 * written
5760 	 */
5761 	if (mddev->pers) {
5762 		int err;
5763 		if (!mddev->pers->hot_add_disk) {
5764 			printk(KERN_WARNING
5765 				"%s: personality does not support diskops!\n",
5766 			       mdname(mddev));
5767 			return -EINVAL;
5768 		}
5769 		if (mddev->persistent)
5770 			rdev = md_import_device(dev, mddev->major_version,
5771 						mddev->minor_version);
5772 		else
5773 			rdev = md_import_device(dev, -1, -1);
5774 		if (IS_ERR(rdev)) {
5775 			printk(KERN_WARNING
5776 				"md: md_import_device returned %ld\n",
5777 				PTR_ERR(rdev));
5778 			return PTR_ERR(rdev);
5779 		}
5780 		/* set saved_raid_disk if appropriate */
5781 		if (!mddev->persistent) {
5782 			if (info->state & (1<<MD_DISK_SYNC)  &&
5783 			    info->raid_disk < mddev->raid_disks) {
5784 				rdev->raid_disk = info->raid_disk;
5785 				set_bit(In_sync, &rdev->flags);
5786 				clear_bit(Bitmap_sync, &rdev->flags);
5787 			} else
5788 				rdev->raid_disk = -1;
5789 			rdev->saved_raid_disk = rdev->raid_disk;
5790 		} else
5791 			super_types[mddev->major_version].
5792 				validate_super(mddev, rdev);
5793 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5794 		     rdev->raid_disk != info->raid_disk) {
5795 			/* This was a hot-add request, but events doesn't
5796 			 * match, so reject it.
5797 			 */
5798 			export_rdev(rdev);
5799 			return -EINVAL;
5800 		}
5801 
5802 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5803 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5804 			set_bit(WriteMostly, &rdev->flags);
5805 		else
5806 			clear_bit(WriteMostly, &rdev->flags);
5807 
5808 		rdev->raid_disk = -1;
5809 		err = bind_rdev_to_array(rdev, mddev);
5810 		if (!err && !mddev->pers->hot_remove_disk) {
5811 			/* If there is hot_add_disk but no hot_remove_disk
5812 			 * then added disks for geometry changes,
5813 			 * and should be added immediately.
5814 			 */
5815 			super_types[mddev->major_version].
5816 				validate_super(mddev, rdev);
5817 			err = mddev->pers->hot_add_disk(mddev, rdev);
5818 			if (err)
5819 				unbind_rdev_from_array(rdev);
5820 		}
5821 		if (err)
5822 			export_rdev(rdev);
5823 		else
5824 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5825 
5826 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5827 		if (mddev->degraded)
5828 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5829 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5830 		if (!err)
5831 			md_new_event(mddev);
5832 		md_wakeup_thread(mddev->thread);
5833 		return err;
5834 	}
5835 
5836 	/* otherwise, add_new_disk is only allowed
5837 	 * for major_version==0 superblocks
5838 	 */
5839 	if (mddev->major_version != 0) {
5840 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5841 		       mdname(mddev));
5842 		return -EINVAL;
5843 	}
5844 
5845 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5846 		int err;
5847 		rdev = md_import_device(dev, -1, 0);
5848 		if (IS_ERR(rdev)) {
5849 			printk(KERN_WARNING
5850 				"md: error, md_import_device() returned %ld\n",
5851 				PTR_ERR(rdev));
5852 			return PTR_ERR(rdev);
5853 		}
5854 		rdev->desc_nr = info->number;
5855 		if (info->raid_disk < mddev->raid_disks)
5856 			rdev->raid_disk = info->raid_disk;
5857 		else
5858 			rdev->raid_disk = -1;
5859 
5860 		if (rdev->raid_disk < mddev->raid_disks)
5861 			if (info->state & (1<<MD_DISK_SYNC))
5862 				set_bit(In_sync, &rdev->flags);
5863 
5864 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5865 			set_bit(WriteMostly, &rdev->flags);
5866 
5867 		if (!mddev->persistent) {
5868 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5869 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5870 		} else
5871 			rdev->sb_start = calc_dev_sboffset(rdev);
5872 		rdev->sectors = rdev->sb_start;
5873 
5874 		err = bind_rdev_to_array(rdev, mddev);
5875 		if (err) {
5876 			export_rdev(rdev);
5877 			return err;
5878 		}
5879 	}
5880 
5881 	return 0;
5882 }
5883 
5884 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5885 {
5886 	char b[BDEVNAME_SIZE];
5887 	struct md_rdev *rdev;
5888 
5889 	rdev = find_rdev(mddev, dev);
5890 	if (!rdev)
5891 		return -ENXIO;
5892 
5893 	clear_bit(Blocked, &rdev->flags);
5894 	remove_and_add_spares(mddev, rdev);
5895 
5896 	if (rdev->raid_disk >= 0)
5897 		goto busy;
5898 
5899 	kick_rdev_from_array(rdev);
5900 	md_update_sb(mddev, 1);
5901 	md_new_event(mddev);
5902 
5903 	return 0;
5904 busy:
5905 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5906 		bdevname(rdev->bdev,b), mdname(mddev));
5907 	return -EBUSY;
5908 }
5909 
5910 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5911 {
5912 	char b[BDEVNAME_SIZE];
5913 	int err;
5914 	struct md_rdev *rdev;
5915 
5916 	if (!mddev->pers)
5917 		return -ENODEV;
5918 
5919 	if (mddev->major_version != 0) {
5920 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5921 			" version-0 superblocks.\n",
5922 			mdname(mddev));
5923 		return -EINVAL;
5924 	}
5925 	if (!mddev->pers->hot_add_disk) {
5926 		printk(KERN_WARNING
5927 			"%s: personality does not support diskops!\n",
5928 			mdname(mddev));
5929 		return -EINVAL;
5930 	}
5931 
5932 	rdev = md_import_device(dev, -1, 0);
5933 	if (IS_ERR(rdev)) {
5934 		printk(KERN_WARNING
5935 			"md: error, md_import_device() returned %ld\n",
5936 			PTR_ERR(rdev));
5937 		return -EINVAL;
5938 	}
5939 
5940 	if (mddev->persistent)
5941 		rdev->sb_start = calc_dev_sboffset(rdev);
5942 	else
5943 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5944 
5945 	rdev->sectors = rdev->sb_start;
5946 
5947 	if (test_bit(Faulty, &rdev->flags)) {
5948 		printk(KERN_WARNING
5949 			"md: can not hot-add faulty %s disk to %s!\n",
5950 			bdevname(rdev->bdev,b), mdname(mddev));
5951 		err = -EINVAL;
5952 		goto abort_export;
5953 	}
5954 	clear_bit(In_sync, &rdev->flags);
5955 	rdev->desc_nr = -1;
5956 	rdev->saved_raid_disk = -1;
5957 	err = bind_rdev_to_array(rdev, mddev);
5958 	if (err)
5959 		goto abort_export;
5960 
5961 	/*
5962 	 * The rest should better be atomic, we can have disk failures
5963 	 * noticed in interrupt contexts ...
5964 	 */
5965 
5966 	rdev->raid_disk = -1;
5967 
5968 	md_update_sb(mddev, 1);
5969 
5970 	/*
5971 	 * Kick recovery, maybe this spare has to be added to the
5972 	 * array immediately.
5973 	 */
5974 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5975 	md_wakeup_thread(mddev->thread);
5976 	md_new_event(mddev);
5977 	return 0;
5978 
5979 abort_export:
5980 	export_rdev(rdev);
5981 	return err;
5982 }
5983 
5984 static int set_bitmap_file(struct mddev *mddev, int fd)
5985 {
5986 	int err = 0;
5987 
5988 	if (mddev->pers) {
5989 		if (!mddev->pers->quiesce || !mddev->thread)
5990 			return -EBUSY;
5991 		if (mddev->recovery || mddev->sync_thread)
5992 			return -EBUSY;
5993 		/* we should be able to change the bitmap.. */
5994 	}
5995 
5996 	if (fd >= 0) {
5997 		struct inode *inode;
5998 		struct file *f;
5999 
6000 		if (mddev->bitmap || mddev->bitmap_info.file)
6001 			return -EEXIST; /* cannot add when bitmap is present */
6002 		f = fget(fd);
6003 
6004 		if (f == NULL) {
6005 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6006 			       mdname(mddev));
6007 			return -EBADF;
6008 		}
6009 
6010 		inode = f->f_mapping->host;
6011 		if (!S_ISREG(inode->i_mode)) {
6012 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6013 			       mdname(mddev));
6014 			err = -EBADF;
6015 		} else if (!(f->f_mode & FMODE_WRITE)) {
6016 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6017 			       mdname(mddev));
6018 			err = -EBADF;
6019 		} else if (atomic_read(&inode->i_writecount) != 1) {
6020 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6021 			       mdname(mddev));
6022 			err = -EBUSY;
6023 		}
6024 		if (err) {
6025 			fput(f);
6026 			return err;
6027 		}
6028 		mddev->bitmap_info.file = f;
6029 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6030 	} else if (mddev->bitmap == NULL)
6031 		return -ENOENT; /* cannot remove what isn't there */
6032 	err = 0;
6033 	if (mddev->pers) {
6034 		mddev->pers->quiesce(mddev, 1);
6035 		if (fd >= 0) {
6036 			err = bitmap_create(mddev);
6037 			if (!err)
6038 				err = bitmap_load(mddev);
6039 		}
6040 		if (fd < 0 || err) {
6041 			bitmap_destroy(mddev);
6042 			fd = -1; /* make sure to put the file */
6043 		}
6044 		mddev->pers->quiesce(mddev, 0);
6045 	}
6046 	if (fd < 0) {
6047 		struct file *f = mddev->bitmap_info.file;
6048 		if (f) {
6049 			spin_lock(&mddev->lock);
6050 			mddev->bitmap_info.file = NULL;
6051 			spin_unlock(&mddev->lock);
6052 			fput(f);
6053 		}
6054 	}
6055 
6056 	return err;
6057 }
6058 
6059 /*
6060  * set_array_info is used two different ways
6061  * The original usage is when creating a new array.
6062  * In this usage, raid_disks is > 0 and it together with
6063  *  level, size, not_persistent,layout,chunksize determine the
6064  *  shape of the array.
6065  *  This will always create an array with a type-0.90.0 superblock.
6066  * The newer usage is when assembling an array.
6067  *  In this case raid_disks will be 0, and the major_version field is
6068  *  use to determine which style super-blocks are to be found on the devices.
6069  *  The minor and patch _version numbers are also kept incase the
6070  *  super_block handler wishes to interpret them.
6071  */
6072 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6073 {
6074 
6075 	if (info->raid_disks == 0) {
6076 		/* just setting version number for superblock loading */
6077 		if (info->major_version < 0 ||
6078 		    info->major_version >= ARRAY_SIZE(super_types) ||
6079 		    super_types[info->major_version].name == NULL) {
6080 			/* maybe try to auto-load a module? */
6081 			printk(KERN_INFO
6082 				"md: superblock version %d not known\n",
6083 				info->major_version);
6084 			return -EINVAL;
6085 		}
6086 		mddev->major_version = info->major_version;
6087 		mddev->minor_version = info->minor_version;
6088 		mddev->patch_version = info->patch_version;
6089 		mddev->persistent = !info->not_persistent;
6090 		/* ensure mddev_put doesn't delete this now that there
6091 		 * is some minimal configuration.
6092 		 */
6093 		mddev->ctime         = get_seconds();
6094 		return 0;
6095 	}
6096 	mddev->major_version = MD_MAJOR_VERSION;
6097 	mddev->minor_version = MD_MINOR_VERSION;
6098 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6099 	mddev->ctime         = get_seconds();
6100 
6101 	mddev->level         = info->level;
6102 	mddev->clevel[0]     = 0;
6103 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6104 	mddev->raid_disks    = info->raid_disks;
6105 	/* don't set md_minor, it is determined by which /dev/md* was
6106 	 * openned
6107 	 */
6108 	if (info->state & (1<<MD_SB_CLEAN))
6109 		mddev->recovery_cp = MaxSector;
6110 	else
6111 		mddev->recovery_cp = 0;
6112 	mddev->persistent    = ! info->not_persistent;
6113 	mddev->external	     = 0;
6114 
6115 	mddev->layout        = info->layout;
6116 	mddev->chunk_sectors = info->chunk_size >> 9;
6117 
6118 	mddev->max_disks     = MD_SB_DISKS;
6119 
6120 	if (mddev->persistent)
6121 		mddev->flags         = 0;
6122 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6123 
6124 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6125 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6126 	mddev->bitmap_info.offset = 0;
6127 
6128 	mddev->reshape_position = MaxSector;
6129 
6130 	/*
6131 	 * Generate a 128 bit UUID
6132 	 */
6133 	get_random_bytes(mddev->uuid, 16);
6134 
6135 	mddev->new_level = mddev->level;
6136 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6137 	mddev->new_layout = mddev->layout;
6138 	mddev->delta_disks = 0;
6139 	mddev->reshape_backwards = 0;
6140 
6141 	return 0;
6142 }
6143 
6144 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6145 {
6146 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6147 
6148 	if (mddev->external_size)
6149 		return;
6150 
6151 	mddev->array_sectors = array_sectors;
6152 }
6153 EXPORT_SYMBOL(md_set_array_sectors);
6154 
6155 static int update_size(struct mddev *mddev, sector_t num_sectors)
6156 {
6157 	struct md_rdev *rdev;
6158 	int rv;
6159 	int fit = (num_sectors == 0);
6160 
6161 	if (mddev->pers->resize == NULL)
6162 		return -EINVAL;
6163 	/* The "num_sectors" is the number of sectors of each device that
6164 	 * is used.  This can only make sense for arrays with redundancy.
6165 	 * linear and raid0 always use whatever space is available. We can only
6166 	 * consider changing this number if no resync or reconstruction is
6167 	 * happening, and if the new size is acceptable. It must fit before the
6168 	 * sb_start or, if that is <data_offset, it must fit before the size
6169 	 * of each device.  If num_sectors is zero, we find the largest size
6170 	 * that fits.
6171 	 */
6172 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6173 	    mddev->sync_thread)
6174 		return -EBUSY;
6175 	if (mddev->ro)
6176 		return -EROFS;
6177 
6178 	rdev_for_each(rdev, mddev) {
6179 		sector_t avail = rdev->sectors;
6180 
6181 		if (fit && (num_sectors == 0 || num_sectors > avail))
6182 			num_sectors = avail;
6183 		if (avail < num_sectors)
6184 			return -ENOSPC;
6185 	}
6186 	rv = mddev->pers->resize(mddev, num_sectors);
6187 	if (!rv)
6188 		revalidate_disk(mddev->gendisk);
6189 	return rv;
6190 }
6191 
6192 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6193 {
6194 	int rv;
6195 	struct md_rdev *rdev;
6196 	/* change the number of raid disks */
6197 	if (mddev->pers->check_reshape == NULL)
6198 		return -EINVAL;
6199 	if (mddev->ro)
6200 		return -EROFS;
6201 	if (raid_disks <= 0 ||
6202 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6203 		return -EINVAL;
6204 	if (mddev->sync_thread ||
6205 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6206 	    mddev->reshape_position != MaxSector)
6207 		return -EBUSY;
6208 
6209 	rdev_for_each(rdev, mddev) {
6210 		if (mddev->raid_disks < raid_disks &&
6211 		    rdev->data_offset < rdev->new_data_offset)
6212 			return -EINVAL;
6213 		if (mddev->raid_disks > raid_disks &&
6214 		    rdev->data_offset > rdev->new_data_offset)
6215 			return -EINVAL;
6216 	}
6217 
6218 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6219 	if (mddev->delta_disks < 0)
6220 		mddev->reshape_backwards = 1;
6221 	else if (mddev->delta_disks > 0)
6222 		mddev->reshape_backwards = 0;
6223 
6224 	rv = mddev->pers->check_reshape(mddev);
6225 	if (rv < 0) {
6226 		mddev->delta_disks = 0;
6227 		mddev->reshape_backwards = 0;
6228 	}
6229 	return rv;
6230 }
6231 
6232 /*
6233  * update_array_info is used to change the configuration of an
6234  * on-line array.
6235  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6236  * fields in the info are checked against the array.
6237  * Any differences that cannot be handled will cause an error.
6238  * Normally, only one change can be managed at a time.
6239  */
6240 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6241 {
6242 	int rv = 0;
6243 	int cnt = 0;
6244 	int state = 0;
6245 
6246 	/* calculate expected state,ignoring low bits */
6247 	if (mddev->bitmap && mddev->bitmap_info.offset)
6248 		state |= (1 << MD_SB_BITMAP_PRESENT);
6249 
6250 	if (mddev->major_version != info->major_version ||
6251 	    mddev->minor_version != info->minor_version ||
6252 /*	    mddev->patch_version != info->patch_version || */
6253 	    mddev->ctime         != info->ctime         ||
6254 	    mddev->level         != info->level         ||
6255 /*	    mddev->layout        != info->layout        || */
6256 	    !mddev->persistent	 != info->not_persistent||
6257 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6258 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6259 	    ((state^info->state) & 0xfffffe00)
6260 		)
6261 		return -EINVAL;
6262 	/* Check there is only one change */
6263 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6264 		cnt++;
6265 	if (mddev->raid_disks != info->raid_disks)
6266 		cnt++;
6267 	if (mddev->layout != info->layout)
6268 		cnt++;
6269 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6270 		cnt++;
6271 	if (cnt == 0)
6272 		return 0;
6273 	if (cnt > 1)
6274 		return -EINVAL;
6275 
6276 	if (mddev->layout != info->layout) {
6277 		/* Change layout
6278 		 * we don't need to do anything at the md level, the
6279 		 * personality will take care of it all.
6280 		 */
6281 		if (mddev->pers->check_reshape == NULL)
6282 			return -EINVAL;
6283 		else {
6284 			mddev->new_layout = info->layout;
6285 			rv = mddev->pers->check_reshape(mddev);
6286 			if (rv)
6287 				mddev->new_layout = mddev->layout;
6288 			return rv;
6289 		}
6290 	}
6291 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6292 		rv = update_size(mddev, (sector_t)info->size * 2);
6293 
6294 	if (mddev->raid_disks    != info->raid_disks)
6295 		rv = update_raid_disks(mddev, info->raid_disks);
6296 
6297 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6298 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6299 			return -EINVAL;
6300 		if (mddev->recovery || mddev->sync_thread)
6301 			return -EBUSY;
6302 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6303 			/* add the bitmap */
6304 			if (mddev->bitmap)
6305 				return -EEXIST;
6306 			if (mddev->bitmap_info.default_offset == 0)
6307 				return -EINVAL;
6308 			mddev->bitmap_info.offset =
6309 				mddev->bitmap_info.default_offset;
6310 			mddev->bitmap_info.space =
6311 				mddev->bitmap_info.default_space;
6312 			mddev->pers->quiesce(mddev, 1);
6313 			rv = bitmap_create(mddev);
6314 			if (!rv)
6315 				rv = bitmap_load(mddev);
6316 			if (rv)
6317 				bitmap_destroy(mddev);
6318 			mddev->pers->quiesce(mddev, 0);
6319 		} else {
6320 			/* remove the bitmap */
6321 			if (!mddev->bitmap)
6322 				return -ENOENT;
6323 			if (mddev->bitmap->storage.file)
6324 				return -EINVAL;
6325 			mddev->pers->quiesce(mddev, 1);
6326 			bitmap_destroy(mddev);
6327 			mddev->pers->quiesce(mddev, 0);
6328 			mddev->bitmap_info.offset = 0;
6329 		}
6330 	}
6331 	md_update_sb(mddev, 1);
6332 	return rv;
6333 }
6334 
6335 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6336 {
6337 	struct md_rdev *rdev;
6338 	int err = 0;
6339 
6340 	if (mddev->pers == NULL)
6341 		return -ENODEV;
6342 
6343 	rcu_read_lock();
6344 	rdev = find_rdev_rcu(mddev, dev);
6345 	if (!rdev)
6346 		err =  -ENODEV;
6347 	else {
6348 		md_error(mddev, rdev);
6349 		if (!test_bit(Faulty, &rdev->flags))
6350 			err = -EBUSY;
6351 	}
6352 	rcu_read_unlock();
6353 	return err;
6354 }
6355 
6356 /*
6357  * We have a problem here : there is no easy way to give a CHS
6358  * virtual geometry. We currently pretend that we have a 2 heads
6359  * 4 sectors (with a BIG number of cylinders...). This drives
6360  * dosfs just mad... ;-)
6361  */
6362 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6363 {
6364 	struct mddev *mddev = bdev->bd_disk->private_data;
6365 
6366 	geo->heads = 2;
6367 	geo->sectors = 4;
6368 	geo->cylinders = mddev->array_sectors / 8;
6369 	return 0;
6370 }
6371 
6372 static inline bool md_ioctl_valid(unsigned int cmd)
6373 {
6374 	switch (cmd) {
6375 	case ADD_NEW_DISK:
6376 	case BLKROSET:
6377 	case GET_ARRAY_INFO:
6378 	case GET_BITMAP_FILE:
6379 	case GET_DISK_INFO:
6380 	case HOT_ADD_DISK:
6381 	case HOT_REMOVE_DISK:
6382 	case RAID_AUTORUN:
6383 	case RAID_VERSION:
6384 	case RESTART_ARRAY_RW:
6385 	case RUN_ARRAY:
6386 	case SET_ARRAY_INFO:
6387 	case SET_BITMAP_FILE:
6388 	case SET_DISK_FAULTY:
6389 	case STOP_ARRAY:
6390 	case STOP_ARRAY_RO:
6391 		return true;
6392 	default:
6393 		return false;
6394 	}
6395 }
6396 
6397 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6398 			unsigned int cmd, unsigned long arg)
6399 {
6400 	int err = 0;
6401 	void __user *argp = (void __user *)arg;
6402 	struct mddev *mddev = NULL;
6403 	int ro;
6404 
6405 	if (!md_ioctl_valid(cmd))
6406 		return -ENOTTY;
6407 
6408 	switch (cmd) {
6409 	case RAID_VERSION:
6410 	case GET_ARRAY_INFO:
6411 	case GET_DISK_INFO:
6412 		break;
6413 	default:
6414 		if (!capable(CAP_SYS_ADMIN))
6415 			return -EACCES;
6416 	}
6417 
6418 	/*
6419 	 * Commands dealing with the RAID driver but not any
6420 	 * particular array:
6421 	 */
6422 	switch (cmd) {
6423 	case RAID_VERSION:
6424 		err = get_version(argp);
6425 		goto out;
6426 
6427 #ifndef MODULE
6428 	case RAID_AUTORUN:
6429 		err = 0;
6430 		autostart_arrays(arg);
6431 		goto out;
6432 #endif
6433 	default:;
6434 	}
6435 
6436 	/*
6437 	 * Commands creating/starting a new array:
6438 	 */
6439 
6440 	mddev = bdev->bd_disk->private_data;
6441 
6442 	if (!mddev) {
6443 		BUG();
6444 		goto out;
6445 	}
6446 
6447 	/* Some actions do not requires the mutex */
6448 	switch (cmd) {
6449 	case GET_ARRAY_INFO:
6450 		if (!mddev->raid_disks && !mddev->external)
6451 			err = -ENODEV;
6452 		else
6453 			err = get_array_info(mddev, argp);
6454 		goto out;
6455 
6456 	case GET_DISK_INFO:
6457 		if (!mddev->raid_disks && !mddev->external)
6458 			err = -ENODEV;
6459 		else
6460 			err = get_disk_info(mddev, argp);
6461 		goto out;
6462 
6463 	case SET_DISK_FAULTY:
6464 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6465 		goto out;
6466 
6467 	case GET_BITMAP_FILE:
6468 		err = get_bitmap_file(mddev, argp);
6469 		goto out;
6470 
6471 	}
6472 
6473 	if (cmd == ADD_NEW_DISK)
6474 		/* need to ensure md_delayed_delete() has completed */
6475 		flush_workqueue(md_misc_wq);
6476 
6477 	if (cmd == HOT_REMOVE_DISK)
6478 		/* need to ensure recovery thread has run */
6479 		wait_event_interruptible_timeout(mddev->sb_wait,
6480 						 !test_bit(MD_RECOVERY_NEEDED,
6481 							   &mddev->flags),
6482 						 msecs_to_jiffies(5000));
6483 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6484 		/* Need to flush page cache, and ensure no-one else opens
6485 		 * and writes
6486 		 */
6487 		mutex_lock(&mddev->open_mutex);
6488 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6489 			mutex_unlock(&mddev->open_mutex);
6490 			err = -EBUSY;
6491 			goto out;
6492 		}
6493 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6494 		mutex_unlock(&mddev->open_mutex);
6495 		sync_blockdev(bdev);
6496 	}
6497 	err = mddev_lock(mddev);
6498 	if (err) {
6499 		printk(KERN_INFO
6500 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6501 			err, cmd);
6502 		goto out;
6503 	}
6504 
6505 	if (cmd == SET_ARRAY_INFO) {
6506 		mdu_array_info_t info;
6507 		if (!arg)
6508 			memset(&info, 0, sizeof(info));
6509 		else if (copy_from_user(&info, argp, sizeof(info))) {
6510 			err = -EFAULT;
6511 			goto unlock;
6512 		}
6513 		if (mddev->pers) {
6514 			err = update_array_info(mddev, &info);
6515 			if (err) {
6516 				printk(KERN_WARNING "md: couldn't update"
6517 				       " array info. %d\n", err);
6518 				goto unlock;
6519 			}
6520 			goto unlock;
6521 		}
6522 		if (!list_empty(&mddev->disks)) {
6523 			printk(KERN_WARNING
6524 			       "md: array %s already has disks!\n",
6525 			       mdname(mddev));
6526 			err = -EBUSY;
6527 			goto unlock;
6528 		}
6529 		if (mddev->raid_disks) {
6530 			printk(KERN_WARNING
6531 			       "md: array %s already initialised!\n",
6532 			       mdname(mddev));
6533 			err = -EBUSY;
6534 			goto unlock;
6535 		}
6536 		err = set_array_info(mddev, &info);
6537 		if (err) {
6538 			printk(KERN_WARNING "md: couldn't set"
6539 			       " array info. %d\n", err);
6540 			goto unlock;
6541 		}
6542 		goto unlock;
6543 	}
6544 
6545 	/*
6546 	 * Commands querying/configuring an existing array:
6547 	 */
6548 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6549 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6550 	if ((!mddev->raid_disks && !mddev->external)
6551 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6552 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6553 	    && cmd != GET_BITMAP_FILE) {
6554 		err = -ENODEV;
6555 		goto unlock;
6556 	}
6557 
6558 	/*
6559 	 * Commands even a read-only array can execute:
6560 	 */
6561 	switch (cmd) {
6562 	case RESTART_ARRAY_RW:
6563 		err = restart_array(mddev);
6564 		goto unlock;
6565 
6566 	case STOP_ARRAY:
6567 		err = do_md_stop(mddev, 0, bdev);
6568 		goto unlock;
6569 
6570 	case STOP_ARRAY_RO:
6571 		err = md_set_readonly(mddev, bdev);
6572 		goto unlock;
6573 
6574 	case HOT_REMOVE_DISK:
6575 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6576 		goto unlock;
6577 
6578 	case ADD_NEW_DISK:
6579 		/* We can support ADD_NEW_DISK on read-only arrays
6580 		 * on if we are re-adding a preexisting device.
6581 		 * So require mddev->pers and MD_DISK_SYNC.
6582 		 */
6583 		if (mddev->pers) {
6584 			mdu_disk_info_t info;
6585 			if (copy_from_user(&info, argp, sizeof(info)))
6586 				err = -EFAULT;
6587 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6588 				/* Need to clear read-only for this */
6589 				break;
6590 			else
6591 				err = add_new_disk(mddev, &info);
6592 			goto unlock;
6593 		}
6594 		break;
6595 
6596 	case BLKROSET:
6597 		if (get_user(ro, (int __user *)(arg))) {
6598 			err = -EFAULT;
6599 			goto unlock;
6600 		}
6601 		err = -EINVAL;
6602 
6603 		/* if the bdev is going readonly the value of mddev->ro
6604 		 * does not matter, no writes are coming
6605 		 */
6606 		if (ro)
6607 			goto unlock;
6608 
6609 		/* are we are already prepared for writes? */
6610 		if (mddev->ro != 1)
6611 			goto unlock;
6612 
6613 		/* transitioning to readauto need only happen for
6614 		 * arrays that call md_write_start
6615 		 */
6616 		if (mddev->pers) {
6617 			err = restart_array(mddev);
6618 			if (err == 0) {
6619 				mddev->ro = 2;
6620 				set_disk_ro(mddev->gendisk, 0);
6621 			}
6622 		}
6623 		goto unlock;
6624 	}
6625 
6626 	/*
6627 	 * The remaining ioctls are changing the state of the
6628 	 * superblock, so we do not allow them on read-only arrays.
6629 	 */
6630 	if (mddev->ro && mddev->pers) {
6631 		if (mddev->ro == 2) {
6632 			mddev->ro = 0;
6633 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6634 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6635 			/* mddev_unlock will wake thread */
6636 			/* If a device failed while we were read-only, we
6637 			 * need to make sure the metadata is updated now.
6638 			 */
6639 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6640 				mddev_unlock(mddev);
6641 				wait_event(mddev->sb_wait,
6642 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6643 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6644 				mddev_lock_nointr(mddev);
6645 			}
6646 		} else {
6647 			err = -EROFS;
6648 			goto unlock;
6649 		}
6650 	}
6651 
6652 	switch (cmd) {
6653 	case ADD_NEW_DISK:
6654 	{
6655 		mdu_disk_info_t info;
6656 		if (copy_from_user(&info, argp, sizeof(info)))
6657 			err = -EFAULT;
6658 		else
6659 			err = add_new_disk(mddev, &info);
6660 		goto unlock;
6661 	}
6662 
6663 	case HOT_ADD_DISK:
6664 		err = hot_add_disk(mddev, new_decode_dev(arg));
6665 		goto unlock;
6666 
6667 	case RUN_ARRAY:
6668 		err = do_md_run(mddev);
6669 		goto unlock;
6670 
6671 	case SET_BITMAP_FILE:
6672 		err = set_bitmap_file(mddev, (int)arg);
6673 		goto unlock;
6674 
6675 	default:
6676 		err = -EINVAL;
6677 		goto unlock;
6678 	}
6679 
6680 unlock:
6681 	if (mddev->hold_active == UNTIL_IOCTL &&
6682 	    err != -EINVAL)
6683 		mddev->hold_active = 0;
6684 	mddev_unlock(mddev);
6685 out:
6686 	return err;
6687 }
6688 #ifdef CONFIG_COMPAT
6689 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6690 		    unsigned int cmd, unsigned long arg)
6691 {
6692 	switch (cmd) {
6693 	case HOT_REMOVE_DISK:
6694 	case HOT_ADD_DISK:
6695 	case SET_DISK_FAULTY:
6696 	case SET_BITMAP_FILE:
6697 		/* These take in integer arg, do not convert */
6698 		break;
6699 	default:
6700 		arg = (unsigned long)compat_ptr(arg);
6701 		break;
6702 	}
6703 
6704 	return md_ioctl(bdev, mode, cmd, arg);
6705 }
6706 #endif /* CONFIG_COMPAT */
6707 
6708 static int md_open(struct block_device *bdev, fmode_t mode)
6709 {
6710 	/*
6711 	 * Succeed if we can lock the mddev, which confirms that
6712 	 * it isn't being stopped right now.
6713 	 */
6714 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6715 	int err;
6716 
6717 	if (!mddev)
6718 		return -ENODEV;
6719 
6720 	if (mddev->gendisk != bdev->bd_disk) {
6721 		/* we are racing with mddev_put which is discarding this
6722 		 * bd_disk.
6723 		 */
6724 		mddev_put(mddev);
6725 		/* Wait until bdev->bd_disk is definitely gone */
6726 		flush_workqueue(md_misc_wq);
6727 		/* Then retry the open from the top */
6728 		return -ERESTARTSYS;
6729 	}
6730 	BUG_ON(mddev != bdev->bd_disk->private_data);
6731 
6732 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6733 		goto out;
6734 
6735 	err = 0;
6736 	atomic_inc(&mddev->openers);
6737 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6738 	mutex_unlock(&mddev->open_mutex);
6739 
6740 	check_disk_change(bdev);
6741  out:
6742 	return err;
6743 }
6744 
6745 static void md_release(struct gendisk *disk, fmode_t mode)
6746 {
6747 	struct mddev *mddev = disk->private_data;
6748 
6749 	BUG_ON(!mddev);
6750 	atomic_dec(&mddev->openers);
6751 	mddev_put(mddev);
6752 }
6753 
6754 static int md_media_changed(struct gendisk *disk)
6755 {
6756 	struct mddev *mddev = disk->private_data;
6757 
6758 	return mddev->changed;
6759 }
6760 
6761 static int md_revalidate(struct gendisk *disk)
6762 {
6763 	struct mddev *mddev = disk->private_data;
6764 
6765 	mddev->changed = 0;
6766 	return 0;
6767 }
6768 static const struct block_device_operations md_fops =
6769 {
6770 	.owner		= THIS_MODULE,
6771 	.open		= md_open,
6772 	.release	= md_release,
6773 	.ioctl		= md_ioctl,
6774 #ifdef CONFIG_COMPAT
6775 	.compat_ioctl	= md_compat_ioctl,
6776 #endif
6777 	.getgeo		= md_getgeo,
6778 	.media_changed  = md_media_changed,
6779 	.revalidate_disk= md_revalidate,
6780 };
6781 
6782 static int md_thread(void *arg)
6783 {
6784 	struct md_thread *thread = arg;
6785 
6786 	/*
6787 	 * md_thread is a 'system-thread', it's priority should be very
6788 	 * high. We avoid resource deadlocks individually in each
6789 	 * raid personality. (RAID5 does preallocation) We also use RR and
6790 	 * the very same RT priority as kswapd, thus we will never get
6791 	 * into a priority inversion deadlock.
6792 	 *
6793 	 * we definitely have to have equal or higher priority than
6794 	 * bdflush, otherwise bdflush will deadlock if there are too
6795 	 * many dirty RAID5 blocks.
6796 	 */
6797 
6798 	allow_signal(SIGKILL);
6799 	while (!kthread_should_stop()) {
6800 
6801 		/* We need to wait INTERRUPTIBLE so that
6802 		 * we don't add to the load-average.
6803 		 * That means we need to be sure no signals are
6804 		 * pending
6805 		 */
6806 		if (signal_pending(current))
6807 			flush_signals(current);
6808 
6809 		wait_event_interruptible_timeout
6810 			(thread->wqueue,
6811 			 test_bit(THREAD_WAKEUP, &thread->flags)
6812 			 || kthread_should_stop(),
6813 			 thread->timeout);
6814 
6815 		clear_bit(THREAD_WAKEUP, &thread->flags);
6816 		if (!kthread_should_stop())
6817 			thread->run(thread);
6818 	}
6819 
6820 	return 0;
6821 }
6822 
6823 void md_wakeup_thread(struct md_thread *thread)
6824 {
6825 	if (thread) {
6826 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6827 		set_bit(THREAD_WAKEUP, &thread->flags);
6828 		wake_up(&thread->wqueue);
6829 	}
6830 }
6831 EXPORT_SYMBOL(md_wakeup_thread);
6832 
6833 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6834 		struct mddev *mddev, const char *name)
6835 {
6836 	struct md_thread *thread;
6837 
6838 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6839 	if (!thread)
6840 		return NULL;
6841 
6842 	init_waitqueue_head(&thread->wqueue);
6843 
6844 	thread->run = run;
6845 	thread->mddev = mddev;
6846 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6847 	thread->tsk = kthread_run(md_thread, thread,
6848 				  "%s_%s",
6849 				  mdname(thread->mddev),
6850 				  name);
6851 	if (IS_ERR(thread->tsk)) {
6852 		kfree(thread);
6853 		return NULL;
6854 	}
6855 	return thread;
6856 }
6857 EXPORT_SYMBOL(md_register_thread);
6858 
6859 void md_unregister_thread(struct md_thread **threadp)
6860 {
6861 	struct md_thread *thread = *threadp;
6862 	if (!thread)
6863 		return;
6864 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6865 	/* Locking ensures that mddev_unlock does not wake_up a
6866 	 * non-existent thread
6867 	 */
6868 	spin_lock(&pers_lock);
6869 	*threadp = NULL;
6870 	spin_unlock(&pers_lock);
6871 
6872 	kthread_stop(thread->tsk);
6873 	kfree(thread);
6874 }
6875 EXPORT_SYMBOL(md_unregister_thread);
6876 
6877 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6878 {
6879 	if (!rdev || test_bit(Faulty, &rdev->flags))
6880 		return;
6881 
6882 	if (!mddev->pers || !mddev->pers->error_handler)
6883 		return;
6884 	mddev->pers->error_handler(mddev,rdev);
6885 	if (mddev->degraded)
6886 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6887 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6888 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6889 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6890 	md_wakeup_thread(mddev->thread);
6891 	if (mddev->event_work.func)
6892 		queue_work(md_misc_wq, &mddev->event_work);
6893 	md_new_event_inintr(mddev);
6894 }
6895 EXPORT_SYMBOL(md_error);
6896 
6897 /* seq_file implementation /proc/mdstat */
6898 
6899 static void status_unused(struct seq_file *seq)
6900 {
6901 	int i = 0;
6902 	struct md_rdev *rdev;
6903 
6904 	seq_printf(seq, "unused devices: ");
6905 
6906 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6907 		char b[BDEVNAME_SIZE];
6908 		i++;
6909 		seq_printf(seq, "%s ",
6910 			      bdevname(rdev->bdev,b));
6911 	}
6912 	if (!i)
6913 		seq_printf(seq, "<none>");
6914 
6915 	seq_printf(seq, "\n");
6916 }
6917 
6918 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6919 {
6920 	sector_t max_sectors, resync, res;
6921 	unsigned long dt, db;
6922 	sector_t rt;
6923 	int scale;
6924 	unsigned int per_milli;
6925 
6926 	if (mddev->curr_resync <= 3)
6927 		resync = 0;
6928 	else
6929 		resync = mddev->curr_resync
6930 			- atomic_read(&mddev->recovery_active);
6931 
6932 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6933 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6934 		max_sectors = mddev->resync_max_sectors;
6935 	else
6936 		max_sectors = mddev->dev_sectors;
6937 
6938 	WARN_ON(max_sectors == 0);
6939 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6940 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6941 	 * u32, as those are the requirements for sector_div.
6942 	 * Thus 'scale' must be at least 10
6943 	 */
6944 	scale = 10;
6945 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6946 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6947 			scale++;
6948 	}
6949 	res = (resync>>scale)*1000;
6950 	sector_div(res, (u32)((max_sectors>>scale)+1));
6951 
6952 	per_milli = res;
6953 	{
6954 		int i, x = per_milli/50, y = 20-x;
6955 		seq_printf(seq, "[");
6956 		for (i = 0; i < x; i++)
6957 			seq_printf(seq, "=");
6958 		seq_printf(seq, ">");
6959 		for (i = 0; i < y; i++)
6960 			seq_printf(seq, ".");
6961 		seq_printf(seq, "] ");
6962 	}
6963 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6964 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6965 		    "reshape" :
6966 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6967 		     "check" :
6968 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6969 		      "resync" : "recovery"))),
6970 		   per_milli/10, per_milli % 10,
6971 		   (unsigned long long) resync/2,
6972 		   (unsigned long long) max_sectors/2);
6973 
6974 	/*
6975 	 * dt: time from mark until now
6976 	 * db: blocks written from mark until now
6977 	 * rt: remaining time
6978 	 *
6979 	 * rt is a sector_t, so could be 32bit or 64bit.
6980 	 * So we divide before multiply in case it is 32bit and close
6981 	 * to the limit.
6982 	 * We scale the divisor (db) by 32 to avoid losing precision
6983 	 * near the end of resync when the number of remaining sectors
6984 	 * is close to 'db'.
6985 	 * We then divide rt by 32 after multiplying by db to compensate.
6986 	 * The '+1' avoids division by zero if db is very small.
6987 	 */
6988 	dt = ((jiffies - mddev->resync_mark) / HZ);
6989 	if (!dt) dt++;
6990 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6991 		- mddev->resync_mark_cnt;
6992 
6993 	rt = max_sectors - resync;    /* number of remaining sectors */
6994 	sector_div(rt, db/32+1);
6995 	rt *= dt;
6996 	rt >>= 5;
6997 
6998 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6999 		   ((unsigned long)rt % 60)/6);
7000 
7001 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7002 }
7003 
7004 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7005 {
7006 	struct list_head *tmp;
7007 	loff_t l = *pos;
7008 	struct mddev *mddev;
7009 
7010 	if (l >= 0x10000)
7011 		return NULL;
7012 	if (!l--)
7013 		/* header */
7014 		return (void*)1;
7015 
7016 	spin_lock(&all_mddevs_lock);
7017 	list_for_each(tmp,&all_mddevs)
7018 		if (!l--) {
7019 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7020 			mddev_get(mddev);
7021 			spin_unlock(&all_mddevs_lock);
7022 			return mddev;
7023 		}
7024 	spin_unlock(&all_mddevs_lock);
7025 	if (!l--)
7026 		return (void*)2;/* tail */
7027 	return NULL;
7028 }
7029 
7030 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7031 {
7032 	struct list_head *tmp;
7033 	struct mddev *next_mddev, *mddev = v;
7034 
7035 	++*pos;
7036 	if (v == (void*)2)
7037 		return NULL;
7038 
7039 	spin_lock(&all_mddevs_lock);
7040 	if (v == (void*)1)
7041 		tmp = all_mddevs.next;
7042 	else
7043 		tmp = mddev->all_mddevs.next;
7044 	if (tmp != &all_mddevs)
7045 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7046 	else {
7047 		next_mddev = (void*)2;
7048 		*pos = 0x10000;
7049 	}
7050 	spin_unlock(&all_mddevs_lock);
7051 
7052 	if (v != (void*)1)
7053 		mddev_put(mddev);
7054 	return next_mddev;
7055 
7056 }
7057 
7058 static void md_seq_stop(struct seq_file *seq, void *v)
7059 {
7060 	struct mddev *mddev = v;
7061 
7062 	if (mddev && v != (void*)1 && v != (void*)2)
7063 		mddev_put(mddev);
7064 }
7065 
7066 static int md_seq_show(struct seq_file *seq, void *v)
7067 {
7068 	struct mddev *mddev = v;
7069 	sector_t sectors;
7070 	struct md_rdev *rdev;
7071 
7072 	if (v == (void*)1) {
7073 		struct md_personality *pers;
7074 		seq_printf(seq, "Personalities : ");
7075 		spin_lock(&pers_lock);
7076 		list_for_each_entry(pers, &pers_list, list)
7077 			seq_printf(seq, "[%s] ", pers->name);
7078 
7079 		spin_unlock(&pers_lock);
7080 		seq_printf(seq, "\n");
7081 		seq->poll_event = atomic_read(&md_event_count);
7082 		return 0;
7083 	}
7084 	if (v == (void*)2) {
7085 		status_unused(seq);
7086 		return 0;
7087 	}
7088 
7089 	spin_lock(&mddev->lock);
7090 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7091 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7092 						mddev->pers ? "" : "in");
7093 		if (mddev->pers) {
7094 			if (mddev->ro==1)
7095 				seq_printf(seq, " (read-only)");
7096 			if (mddev->ro==2)
7097 				seq_printf(seq, " (auto-read-only)");
7098 			seq_printf(seq, " %s", mddev->pers->name);
7099 		}
7100 
7101 		sectors = 0;
7102 		rcu_read_lock();
7103 		rdev_for_each_rcu(rdev, mddev) {
7104 			char b[BDEVNAME_SIZE];
7105 			seq_printf(seq, " %s[%d]",
7106 				bdevname(rdev->bdev,b), rdev->desc_nr);
7107 			if (test_bit(WriteMostly, &rdev->flags))
7108 				seq_printf(seq, "(W)");
7109 			if (test_bit(Faulty, &rdev->flags)) {
7110 				seq_printf(seq, "(F)");
7111 				continue;
7112 			}
7113 			if (rdev->raid_disk < 0)
7114 				seq_printf(seq, "(S)"); /* spare */
7115 			if (test_bit(Replacement, &rdev->flags))
7116 				seq_printf(seq, "(R)");
7117 			sectors += rdev->sectors;
7118 		}
7119 		rcu_read_unlock();
7120 
7121 		if (!list_empty(&mddev->disks)) {
7122 			if (mddev->pers)
7123 				seq_printf(seq, "\n      %llu blocks",
7124 					   (unsigned long long)
7125 					   mddev->array_sectors / 2);
7126 			else
7127 				seq_printf(seq, "\n      %llu blocks",
7128 					   (unsigned long long)sectors / 2);
7129 		}
7130 		if (mddev->persistent) {
7131 			if (mddev->major_version != 0 ||
7132 			    mddev->minor_version != 90) {
7133 				seq_printf(seq," super %d.%d",
7134 					   mddev->major_version,
7135 					   mddev->minor_version);
7136 			}
7137 		} else if (mddev->external)
7138 			seq_printf(seq, " super external:%s",
7139 				   mddev->metadata_type);
7140 		else
7141 			seq_printf(seq, " super non-persistent");
7142 
7143 		if (mddev->pers) {
7144 			mddev->pers->status(seq, mddev);
7145 			seq_printf(seq, "\n      ");
7146 			if (mddev->pers->sync_request) {
7147 				if (mddev->curr_resync > 2) {
7148 					status_resync(seq, mddev);
7149 					seq_printf(seq, "\n      ");
7150 				} else if (mddev->curr_resync >= 1)
7151 					seq_printf(seq, "\tresync=DELAYED\n      ");
7152 				else if (mddev->recovery_cp < MaxSector)
7153 					seq_printf(seq, "\tresync=PENDING\n      ");
7154 			}
7155 		} else
7156 			seq_printf(seq, "\n       ");
7157 
7158 		bitmap_status(seq, mddev->bitmap);
7159 
7160 		seq_printf(seq, "\n");
7161 	}
7162 	spin_unlock(&mddev->lock);
7163 
7164 	return 0;
7165 }
7166 
7167 static const struct seq_operations md_seq_ops = {
7168 	.start  = md_seq_start,
7169 	.next   = md_seq_next,
7170 	.stop   = md_seq_stop,
7171 	.show   = md_seq_show,
7172 };
7173 
7174 static int md_seq_open(struct inode *inode, struct file *file)
7175 {
7176 	struct seq_file *seq;
7177 	int error;
7178 
7179 	error = seq_open(file, &md_seq_ops);
7180 	if (error)
7181 		return error;
7182 
7183 	seq = file->private_data;
7184 	seq->poll_event = atomic_read(&md_event_count);
7185 	return error;
7186 }
7187 
7188 static int md_unloading;
7189 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7190 {
7191 	struct seq_file *seq = filp->private_data;
7192 	int mask;
7193 
7194 	if (md_unloading)
7195 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7196 	poll_wait(filp, &md_event_waiters, wait);
7197 
7198 	/* always allow read */
7199 	mask = POLLIN | POLLRDNORM;
7200 
7201 	if (seq->poll_event != atomic_read(&md_event_count))
7202 		mask |= POLLERR | POLLPRI;
7203 	return mask;
7204 }
7205 
7206 static const struct file_operations md_seq_fops = {
7207 	.owner		= THIS_MODULE,
7208 	.open           = md_seq_open,
7209 	.read           = seq_read,
7210 	.llseek         = seq_lseek,
7211 	.release	= seq_release_private,
7212 	.poll		= mdstat_poll,
7213 };
7214 
7215 int register_md_personality(struct md_personality *p)
7216 {
7217 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7218 						p->name, p->level);
7219 	spin_lock(&pers_lock);
7220 	list_add_tail(&p->list, &pers_list);
7221 	spin_unlock(&pers_lock);
7222 	return 0;
7223 }
7224 EXPORT_SYMBOL(register_md_personality);
7225 
7226 int unregister_md_personality(struct md_personality *p)
7227 {
7228 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7229 	spin_lock(&pers_lock);
7230 	list_del_init(&p->list);
7231 	spin_unlock(&pers_lock);
7232 	return 0;
7233 }
7234 EXPORT_SYMBOL(unregister_md_personality);
7235 
7236 static int is_mddev_idle(struct mddev *mddev, int init)
7237 {
7238 	struct md_rdev *rdev;
7239 	int idle;
7240 	int curr_events;
7241 
7242 	idle = 1;
7243 	rcu_read_lock();
7244 	rdev_for_each_rcu(rdev, mddev) {
7245 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7246 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7247 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7248 			      atomic_read(&disk->sync_io);
7249 		/* sync IO will cause sync_io to increase before the disk_stats
7250 		 * as sync_io is counted when a request starts, and
7251 		 * disk_stats is counted when it completes.
7252 		 * So resync activity will cause curr_events to be smaller than
7253 		 * when there was no such activity.
7254 		 * non-sync IO will cause disk_stat to increase without
7255 		 * increasing sync_io so curr_events will (eventually)
7256 		 * be larger than it was before.  Once it becomes
7257 		 * substantially larger, the test below will cause
7258 		 * the array to appear non-idle, and resync will slow
7259 		 * down.
7260 		 * If there is a lot of outstanding resync activity when
7261 		 * we set last_event to curr_events, then all that activity
7262 		 * completing might cause the array to appear non-idle
7263 		 * and resync will be slowed down even though there might
7264 		 * not have been non-resync activity.  This will only
7265 		 * happen once though.  'last_events' will soon reflect
7266 		 * the state where there is little or no outstanding
7267 		 * resync requests, and further resync activity will
7268 		 * always make curr_events less than last_events.
7269 		 *
7270 		 */
7271 		if (init || curr_events - rdev->last_events > 64) {
7272 			rdev->last_events = curr_events;
7273 			idle = 0;
7274 		}
7275 	}
7276 	rcu_read_unlock();
7277 	return idle;
7278 }
7279 
7280 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7281 {
7282 	/* another "blocks" (512byte) blocks have been synced */
7283 	atomic_sub(blocks, &mddev->recovery_active);
7284 	wake_up(&mddev->recovery_wait);
7285 	if (!ok) {
7286 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7287 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7288 		md_wakeup_thread(mddev->thread);
7289 		// stop recovery, signal do_sync ....
7290 	}
7291 }
7292 EXPORT_SYMBOL(md_done_sync);
7293 
7294 /* md_write_start(mddev, bi)
7295  * If we need to update some array metadata (e.g. 'active' flag
7296  * in superblock) before writing, schedule a superblock update
7297  * and wait for it to complete.
7298  */
7299 void md_write_start(struct mddev *mddev, struct bio *bi)
7300 {
7301 	int did_change = 0;
7302 	if (bio_data_dir(bi) != WRITE)
7303 		return;
7304 
7305 	BUG_ON(mddev->ro == 1);
7306 	if (mddev->ro == 2) {
7307 		/* need to switch to read/write */
7308 		mddev->ro = 0;
7309 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7310 		md_wakeup_thread(mddev->thread);
7311 		md_wakeup_thread(mddev->sync_thread);
7312 		did_change = 1;
7313 	}
7314 	atomic_inc(&mddev->writes_pending);
7315 	if (mddev->safemode == 1)
7316 		mddev->safemode = 0;
7317 	if (mddev->in_sync) {
7318 		spin_lock(&mddev->lock);
7319 		if (mddev->in_sync) {
7320 			mddev->in_sync = 0;
7321 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7322 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7323 			md_wakeup_thread(mddev->thread);
7324 			did_change = 1;
7325 		}
7326 		spin_unlock(&mddev->lock);
7327 	}
7328 	if (did_change)
7329 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7330 	wait_event(mddev->sb_wait,
7331 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7332 }
7333 EXPORT_SYMBOL(md_write_start);
7334 
7335 void md_write_end(struct mddev *mddev)
7336 {
7337 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7338 		if (mddev->safemode == 2)
7339 			md_wakeup_thread(mddev->thread);
7340 		else if (mddev->safemode_delay)
7341 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7342 	}
7343 }
7344 EXPORT_SYMBOL(md_write_end);
7345 
7346 /* md_allow_write(mddev)
7347  * Calling this ensures that the array is marked 'active' so that writes
7348  * may proceed without blocking.  It is important to call this before
7349  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7350  * Must be called with mddev_lock held.
7351  *
7352  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7353  * is dropped, so return -EAGAIN after notifying userspace.
7354  */
7355 int md_allow_write(struct mddev *mddev)
7356 {
7357 	if (!mddev->pers)
7358 		return 0;
7359 	if (mddev->ro)
7360 		return 0;
7361 	if (!mddev->pers->sync_request)
7362 		return 0;
7363 
7364 	spin_lock(&mddev->lock);
7365 	if (mddev->in_sync) {
7366 		mddev->in_sync = 0;
7367 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7368 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7369 		if (mddev->safemode_delay &&
7370 		    mddev->safemode == 0)
7371 			mddev->safemode = 1;
7372 		spin_unlock(&mddev->lock);
7373 		md_update_sb(mddev, 0);
7374 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7375 	} else
7376 		spin_unlock(&mddev->lock);
7377 
7378 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7379 		return -EAGAIN;
7380 	else
7381 		return 0;
7382 }
7383 EXPORT_SYMBOL_GPL(md_allow_write);
7384 
7385 #define SYNC_MARKS	10
7386 #define	SYNC_MARK_STEP	(3*HZ)
7387 #define UPDATE_FREQUENCY (5*60*HZ)
7388 void md_do_sync(struct md_thread *thread)
7389 {
7390 	struct mddev *mddev = thread->mddev;
7391 	struct mddev *mddev2;
7392 	unsigned int currspeed = 0,
7393 		 window;
7394 	sector_t max_sectors,j, io_sectors, recovery_done;
7395 	unsigned long mark[SYNC_MARKS];
7396 	unsigned long update_time;
7397 	sector_t mark_cnt[SYNC_MARKS];
7398 	int last_mark,m;
7399 	struct list_head *tmp;
7400 	sector_t last_check;
7401 	int skipped = 0;
7402 	struct md_rdev *rdev;
7403 	char *desc, *action = NULL;
7404 	struct blk_plug plug;
7405 
7406 	/* just incase thread restarts... */
7407 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7408 		return;
7409 	if (mddev->ro) {/* never try to sync a read-only array */
7410 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7411 		return;
7412 	}
7413 
7414 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7415 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7416 			desc = "data-check";
7417 			action = "check";
7418 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7419 			desc = "requested-resync";
7420 			action = "repair";
7421 		} else
7422 			desc = "resync";
7423 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7424 		desc = "reshape";
7425 	else
7426 		desc = "recovery";
7427 
7428 	mddev->last_sync_action = action ?: desc;
7429 
7430 	/* we overload curr_resync somewhat here.
7431 	 * 0 == not engaged in resync at all
7432 	 * 2 == checking that there is no conflict with another sync
7433 	 * 1 == like 2, but have yielded to allow conflicting resync to
7434 	 *		commense
7435 	 * other == active in resync - this many blocks
7436 	 *
7437 	 * Before starting a resync we must have set curr_resync to
7438 	 * 2, and then checked that every "conflicting" array has curr_resync
7439 	 * less than ours.  When we find one that is the same or higher
7440 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7441 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7442 	 * This will mean we have to start checking from the beginning again.
7443 	 *
7444 	 */
7445 
7446 	do {
7447 		mddev->curr_resync = 2;
7448 
7449 	try_again:
7450 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7451 			goto skip;
7452 		for_each_mddev(mddev2, tmp) {
7453 			if (mddev2 == mddev)
7454 				continue;
7455 			if (!mddev->parallel_resync
7456 			&&  mddev2->curr_resync
7457 			&&  match_mddev_units(mddev, mddev2)) {
7458 				DEFINE_WAIT(wq);
7459 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7460 					/* arbitrarily yield */
7461 					mddev->curr_resync = 1;
7462 					wake_up(&resync_wait);
7463 				}
7464 				if (mddev > mddev2 && mddev->curr_resync == 1)
7465 					/* no need to wait here, we can wait the next
7466 					 * time 'round when curr_resync == 2
7467 					 */
7468 					continue;
7469 				/* We need to wait 'interruptible' so as not to
7470 				 * contribute to the load average, and not to
7471 				 * be caught by 'softlockup'
7472 				 */
7473 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7474 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7475 				    mddev2->curr_resync >= mddev->curr_resync) {
7476 					printk(KERN_INFO "md: delaying %s of %s"
7477 					       " until %s has finished (they"
7478 					       " share one or more physical units)\n",
7479 					       desc, mdname(mddev), mdname(mddev2));
7480 					mddev_put(mddev2);
7481 					if (signal_pending(current))
7482 						flush_signals(current);
7483 					schedule();
7484 					finish_wait(&resync_wait, &wq);
7485 					goto try_again;
7486 				}
7487 				finish_wait(&resync_wait, &wq);
7488 			}
7489 		}
7490 	} while (mddev->curr_resync < 2);
7491 
7492 	j = 0;
7493 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7494 		/* resync follows the size requested by the personality,
7495 		 * which defaults to physical size, but can be virtual size
7496 		 */
7497 		max_sectors = mddev->resync_max_sectors;
7498 		atomic64_set(&mddev->resync_mismatches, 0);
7499 		/* we don't use the checkpoint if there's a bitmap */
7500 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7501 			j = mddev->resync_min;
7502 		else if (!mddev->bitmap)
7503 			j = mddev->recovery_cp;
7504 
7505 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7506 		max_sectors = mddev->resync_max_sectors;
7507 	else {
7508 		/* recovery follows the physical size of devices */
7509 		max_sectors = mddev->dev_sectors;
7510 		j = MaxSector;
7511 		rcu_read_lock();
7512 		rdev_for_each_rcu(rdev, mddev)
7513 			if (rdev->raid_disk >= 0 &&
7514 			    !test_bit(Faulty, &rdev->flags) &&
7515 			    !test_bit(In_sync, &rdev->flags) &&
7516 			    rdev->recovery_offset < j)
7517 				j = rdev->recovery_offset;
7518 		rcu_read_unlock();
7519 
7520 		/* If there is a bitmap, we need to make sure all
7521 		 * writes that started before we added a spare
7522 		 * complete before we start doing a recovery.
7523 		 * Otherwise the write might complete and (via
7524 		 * bitmap_endwrite) set a bit in the bitmap after the
7525 		 * recovery has checked that bit and skipped that
7526 		 * region.
7527 		 */
7528 		if (mddev->bitmap) {
7529 			mddev->pers->quiesce(mddev, 1);
7530 			mddev->pers->quiesce(mddev, 0);
7531 		}
7532 	}
7533 
7534 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7535 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7536 		" %d KB/sec/disk.\n", speed_min(mddev));
7537 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7538 	       "(but not more than %d KB/sec) for %s.\n",
7539 	       speed_max(mddev), desc);
7540 
7541 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7542 
7543 	io_sectors = 0;
7544 	for (m = 0; m < SYNC_MARKS; m++) {
7545 		mark[m] = jiffies;
7546 		mark_cnt[m] = io_sectors;
7547 	}
7548 	last_mark = 0;
7549 	mddev->resync_mark = mark[last_mark];
7550 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7551 
7552 	/*
7553 	 * Tune reconstruction:
7554 	 */
7555 	window = 32*(PAGE_SIZE/512);
7556 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7557 		window/2, (unsigned long long)max_sectors/2);
7558 
7559 	atomic_set(&mddev->recovery_active, 0);
7560 	last_check = 0;
7561 
7562 	if (j>2) {
7563 		printk(KERN_INFO
7564 		       "md: resuming %s of %s from checkpoint.\n",
7565 		       desc, mdname(mddev));
7566 		mddev->curr_resync = j;
7567 	} else
7568 		mddev->curr_resync = 3; /* no longer delayed */
7569 	mddev->curr_resync_completed = j;
7570 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7571 	md_new_event(mddev);
7572 	update_time = jiffies;
7573 
7574 	blk_start_plug(&plug);
7575 	while (j < max_sectors) {
7576 		sector_t sectors;
7577 
7578 		skipped = 0;
7579 
7580 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7581 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7582 		      (mddev->curr_resync - mddev->curr_resync_completed)
7583 		      > (max_sectors >> 4)) ||
7584 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7585 		     (j - mddev->curr_resync_completed)*2
7586 		     >= mddev->resync_max - mddev->curr_resync_completed
7587 			    )) {
7588 			/* time to update curr_resync_completed */
7589 			wait_event(mddev->recovery_wait,
7590 				   atomic_read(&mddev->recovery_active) == 0);
7591 			mddev->curr_resync_completed = j;
7592 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7593 			    j > mddev->recovery_cp)
7594 				mddev->recovery_cp = j;
7595 			update_time = jiffies;
7596 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7597 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7598 		}
7599 
7600 		while (j >= mddev->resync_max &&
7601 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7602 			/* As this condition is controlled by user-space,
7603 			 * we can block indefinitely, so use '_interruptible'
7604 			 * to avoid triggering warnings.
7605 			 */
7606 			flush_signals(current); /* just in case */
7607 			wait_event_interruptible(mddev->recovery_wait,
7608 						 mddev->resync_max > j
7609 						 || test_bit(MD_RECOVERY_INTR,
7610 							     &mddev->recovery));
7611 		}
7612 
7613 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7614 			break;
7615 
7616 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7617 						  currspeed < speed_min(mddev));
7618 		if (sectors == 0) {
7619 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7620 			break;
7621 		}
7622 
7623 		if (!skipped) { /* actual IO requested */
7624 			io_sectors += sectors;
7625 			atomic_add(sectors, &mddev->recovery_active);
7626 		}
7627 
7628 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7629 			break;
7630 
7631 		j += sectors;
7632 		if (j > 2)
7633 			mddev->curr_resync = j;
7634 		mddev->curr_mark_cnt = io_sectors;
7635 		if (last_check == 0)
7636 			/* this is the earliest that rebuild will be
7637 			 * visible in /proc/mdstat
7638 			 */
7639 			md_new_event(mddev);
7640 
7641 		if (last_check + window > io_sectors || j == max_sectors)
7642 			continue;
7643 
7644 		last_check = io_sectors;
7645 	repeat:
7646 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7647 			/* step marks */
7648 			int next = (last_mark+1) % SYNC_MARKS;
7649 
7650 			mddev->resync_mark = mark[next];
7651 			mddev->resync_mark_cnt = mark_cnt[next];
7652 			mark[next] = jiffies;
7653 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7654 			last_mark = next;
7655 		}
7656 
7657 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7658 			break;
7659 
7660 		/*
7661 		 * this loop exits only if either when we are slower than
7662 		 * the 'hard' speed limit, or the system was IO-idle for
7663 		 * a jiffy.
7664 		 * the system might be non-idle CPU-wise, but we only care
7665 		 * about not overloading the IO subsystem. (things like an
7666 		 * e2fsck being done on the RAID array should execute fast)
7667 		 */
7668 		cond_resched();
7669 
7670 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7671 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7672 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7673 
7674 		if (currspeed > speed_min(mddev)) {
7675 			if ((currspeed > speed_max(mddev)) ||
7676 					!is_mddev_idle(mddev, 0)) {
7677 				msleep(500);
7678 				goto repeat;
7679 			}
7680 		}
7681 	}
7682 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7683 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7684 	       ? "interrupted" : "done");
7685 	/*
7686 	 * this also signals 'finished resyncing' to md_stop
7687 	 */
7688 	blk_finish_plug(&plug);
7689 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7690 
7691 	/* tell personality that we are finished */
7692 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7693 
7694 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7695 	    mddev->curr_resync > 2) {
7696 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7697 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7698 				if (mddev->curr_resync >= mddev->recovery_cp) {
7699 					printk(KERN_INFO
7700 					       "md: checkpointing %s of %s.\n",
7701 					       desc, mdname(mddev));
7702 					if (test_bit(MD_RECOVERY_ERROR,
7703 						&mddev->recovery))
7704 						mddev->recovery_cp =
7705 							mddev->curr_resync_completed;
7706 					else
7707 						mddev->recovery_cp =
7708 							mddev->curr_resync;
7709 				}
7710 			} else
7711 				mddev->recovery_cp = MaxSector;
7712 		} else {
7713 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7714 				mddev->curr_resync = MaxSector;
7715 			rcu_read_lock();
7716 			rdev_for_each_rcu(rdev, mddev)
7717 				if (rdev->raid_disk >= 0 &&
7718 				    mddev->delta_disks >= 0 &&
7719 				    !test_bit(Faulty, &rdev->flags) &&
7720 				    !test_bit(In_sync, &rdev->flags) &&
7721 				    rdev->recovery_offset < mddev->curr_resync)
7722 					rdev->recovery_offset = mddev->curr_resync;
7723 			rcu_read_unlock();
7724 		}
7725 	}
7726  skip:
7727 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7728 
7729 	spin_lock(&mddev->lock);
7730 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7731 		/* We completed so min/max setting can be forgotten if used. */
7732 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7733 			mddev->resync_min = 0;
7734 		mddev->resync_max = MaxSector;
7735 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7736 		mddev->resync_min = mddev->curr_resync_completed;
7737 	mddev->curr_resync = 0;
7738 	spin_unlock(&mddev->lock);
7739 
7740 	wake_up(&resync_wait);
7741 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7742 	md_wakeup_thread(mddev->thread);
7743 	return;
7744 }
7745 EXPORT_SYMBOL_GPL(md_do_sync);
7746 
7747 static int remove_and_add_spares(struct mddev *mddev,
7748 				 struct md_rdev *this)
7749 {
7750 	struct md_rdev *rdev;
7751 	int spares = 0;
7752 	int removed = 0;
7753 
7754 	rdev_for_each(rdev, mddev)
7755 		if ((this == NULL || rdev == this) &&
7756 		    rdev->raid_disk >= 0 &&
7757 		    !test_bit(Blocked, &rdev->flags) &&
7758 		    (test_bit(Faulty, &rdev->flags) ||
7759 		     ! test_bit(In_sync, &rdev->flags)) &&
7760 		    atomic_read(&rdev->nr_pending)==0) {
7761 			if (mddev->pers->hot_remove_disk(
7762 				    mddev, rdev) == 0) {
7763 				sysfs_unlink_rdev(mddev, rdev);
7764 				rdev->raid_disk = -1;
7765 				removed++;
7766 			}
7767 		}
7768 	if (removed && mddev->kobj.sd)
7769 		sysfs_notify(&mddev->kobj, NULL, "degraded");
7770 
7771 	if (this)
7772 		goto no_add;
7773 
7774 	rdev_for_each(rdev, mddev) {
7775 		if (rdev->raid_disk >= 0 &&
7776 		    !test_bit(In_sync, &rdev->flags) &&
7777 		    !test_bit(Faulty, &rdev->flags))
7778 			spares++;
7779 		if (rdev->raid_disk >= 0)
7780 			continue;
7781 		if (test_bit(Faulty, &rdev->flags))
7782 			continue;
7783 		if (mddev->ro &&
7784 		    ! (rdev->saved_raid_disk >= 0 &&
7785 		       !test_bit(Bitmap_sync, &rdev->flags)))
7786 			continue;
7787 
7788 		if (rdev->saved_raid_disk < 0)
7789 			rdev->recovery_offset = 0;
7790 		if (mddev->pers->
7791 		    hot_add_disk(mddev, rdev) == 0) {
7792 			if (sysfs_link_rdev(mddev, rdev))
7793 				/* failure here is OK */;
7794 			spares++;
7795 			md_new_event(mddev);
7796 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7797 		}
7798 	}
7799 no_add:
7800 	if (removed)
7801 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7802 	return spares;
7803 }
7804 
7805 static void md_start_sync(struct work_struct *ws)
7806 {
7807 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
7808 
7809 	mddev->sync_thread = md_register_thread(md_do_sync,
7810 						mddev,
7811 						"resync");
7812 	if (!mddev->sync_thread) {
7813 		printk(KERN_ERR "%s: could not start resync"
7814 		       " thread...\n",
7815 		       mdname(mddev));
7816 		/* leave the spares where they are, it shouldn't hurt */
7817 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7818 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7819 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7820 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7821 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7822 		wake_up(&resync_wait);
7823 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7824 				       &mddev->recovery))
7825 			if (mddev->sysfs_action)
7826 				sysfs_notify_dirent_safe(mddev->sysfs_action);
7827 	} else
7828 		md_wakeup_thread(mddev->sync_thread);
7829 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7830 	md_new_event(mddev);
7831 }
7832 
7833 /*
7834  * This routine is regularly called by all per-raid-array threads to
7835  * deal with generic issues like resync and super-block update.
7836  * Raid personalities that don't have a thread (linear/raid0) do not
7837  * need this as they never do any recovery or update the superblock.
7838  *
7839  * It does not do any resync itself, but rather "forks" off other threads
7840  * to do that as needed.
7841  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7842  * "->recovery" and create a thread at ->sync_thread.
7843  * When the thread finishes it sets MD_RECOVERY_DONE
7844  * and wakeups up this thread which will reap the thread and finish up.
7845  * This thread also removes any faulty devices (with nr_pending == 0).
7846  *
7847  * The overall approach is:
7848  *  1/ if the superblock needs updating, update it.
7849  *  2/ If a recovery thread is running, don't do anything else.
7850  *  3/ If recovery has finished, clean up, possibly marking spares active.
7851  *  4/ If there are any faulty devices, remove them.
7852  *  5/ If array is degraded, try to add spares devices
7853  *  6/ If array has spares or is not in-sync, start a resync thread.
7854  */
7855 void md_check_recovery(struct mddev *mddev)
7856 {
7857 	if (mddev->suspended)
7858 		return;
7859 
7860 	if (mddev->bitmap)
7861 		bitmap_daemon_work(mddev);
7862 
7863 	if (signal_pending(current)) {
7864 		if (mddev->pers->sync_request && !mddev->external) {
7865 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7866 			       mdname(mddev));
7867 			mddev->safemode = 2;
7868 		}
7869 		flush_signals(current);
7870 	}
7871 
7872 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7873 		return;
7874 	if ( ! (
7875 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7876 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7877 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7878 		(mddev->external == 0 && mddev->safemode == 1) ||
7879 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7880 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7881 		))
7882 		return;
7883 
7884 	if (mddev_trylock(mddev)) {
7885 		int spares = 0;
7886 
7887 		if (mddev->ro) {
7888 			/* On a read-only array we can:
7889 			 * - remove failed devices
7890 			 * - add already-in_sync devices if the array itself
7891 			 *   is in-sync.
7892 			 * As we only add devices that are already in-sync,
7893 			 * we can activate the spares immediately.
7894 			 */
7895 			remove_and_add_spares(mddev, NULL);
7896 			/* There is no thread, but we need to call
7897 			 * ->spare_active and clear saved_raid_disk
7898 			 */
7899 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7900 			md_reap_sync_thread(mddev);
7901 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7902 			goto unlock;
7903 		}
7904 
7905 		if (!mddev->external) {
7906 			int did_change = 0;
7907 			spin_lock(&mddev->lock);
7908 			if (mddev->safemode &&
7909 			    !atomic_read(&mddev->writes_pending) &&
7910 			    !mddev->in_sync &&
7911 			    mddev->recovery_cp == MaxSector) {
7912 				mddev->in_sync = 1;
7913 				did_change = 1;
7914 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7915 			}
7916 			if (mddev->safemode == 1)
7917 				mddev->safemode = 0;
7918 			spin_unlock(&mddev->lock);
7919 			if (did_change)
7920 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7921 		}
7922 
7923 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
7924 			md_update_sb(mddev, 0);
7925 
7926 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7927 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7928 			/* resync/recovery still happening */
7929 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7930 			goto unlock;
7931 		}
7932 		if (mddev->sync_thread) {
7933 			md_reap_sync_thread(mddev);
7934 			goto unlock;
7935 		}
7936 		/* Set RUNNING before clearing NEEDED to avoid
7937 		 * any transients in the value of "sync_action".
7938 		 */
7939 		mddev->curr_resync_completed = 0;
7940 		spin_lock(&mddev->lock);
7941 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7942 		spin_unlock(&mddev->lock);
7943 		/* Clear some bits that don't mean anything, but
7944 		 * might be left set
7945 		 */
7946 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7947 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7948 
7949 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7950 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7951 			goto not_running;
7952 		/* no recovery is running.
7953 		 * remove any failed drives, then
7954 		 * add spares if possible.
7955 		 * Spares are also removed and re-added, to allow
7956 		 * the personality to fail the re-add.
7957 		 */
7958 
7959 		if (mddev->reshape_position != MaxSector) {
7960 			if (mddev->pers->check_reshape == NULL ||
7961 			    mddev->pers->check_reshape(mddev) != 0)
7962 				/* Cannot proceed */
7963 				goto not_running;
7964 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7965 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7966 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
7967 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7968 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7969 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7970 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7971 		} else if (mddev->recovery_cp < MaxSector) {
7972 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7973 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7974 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7975 			/* nothing to be done ... */
7976 			goto not_running;
7977 
7978 		if (mddev->pers->sync_request) {
7979 			if (spares) {
7980 				/* We are adding a device or devices to an array
7981 				 * which has the bitmap stored on all devices.
7982 				 * So make sure all bitmap pages get written
7983 				 */
7984 				bitmap_write_all(mddev->bitmap);
7985 			}
7986 			INIT_WORK(&mddev->del_work, md_start_sync);
7987 			queue_work(md_misc_wq, &mddev->del_work);
7988 			goto unlock;
7989 		}
7990 	not_running:
7991 		if (!mddev->sync_thread) {
7992 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7993 			wake_up(&resync_wait);
7994 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7995 					       &mddev->recovery))
7996 				if (mddev->sysfs_action)
7997 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7998 		}
7999 	unlock:
8000 		wake_up(&mddev->sb_wait);
8001 		mddev_unlock(mddev);
8002 	}
8003 }
8004 EXPORT_SYMBOL(md_check_recovery);
8005 
8006 void md_reap_sync_thread(struct mddev *mddev)
8007 {
8008 	struct md_rdev *rdev;
8009 
8010 	/* resync has finished, collect result */
8011 	md_unregister_thread(&mddev->sync_thread);
8012 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8013 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8014 		/* success...*/
8015 		/* activate any spares */
8016 		if (mddev->pers->spare_active(mddev)) {
8017 			sysfs_notify(&mddev->kobj, NULL,
8018 				     "degraded");
8019 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8020 		}
8021 	}
8022 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8023 	    mddev->pers->finish_reshape)
8024 		mddev->pers->finish_reshape(mddev);
8025 
8026 	/* If array is no-longer degraded, then any saved_raid_disk
8027 	 * information must be scrapped.
8028 	 */
8029 	if (!mddev->degraded)
8030 		rdev_for_each(rdev, mddev)
8031 			rdev->saved_raid_disk = -1;
8032 
8033 	md_update_sb(mddev, 1);
8034 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8035 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8036 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8037 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8038 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8039 	wake_up(&resync_wait);
8040 	/* flag recovery needed just to double check */
8041 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8042 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8043 	md_new_event(mddev);
8044 	if (mddev->event_work.func)
8045 		queue_work(md_misc_wq, &mddev->event_work);
8046 }
8047 EXPORT_SYMBOL(md_reap_sync_thread);
8048 
8049 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8050 {
8051 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8052 	wait_event_timeout(rdev->blocked_wait,
8053 			   !test_bit(Blocked, &rdev->flags) &&
8054 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8055 			   msecs_to_jiffies(5000));
8056 	rdev_dec_pending(rdev, mddev);
8057 }
8058 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8059 
8060 void md_finish_reshape(struct mddev *mddev)
8061 {
8062 	/* called be personality module when reshape completes. */
8063 	struct md_rdev *rdev;
8064 
8065 	rdev_for_each(rdev, mddev) {
8066 		if (rdev->data_offset > rdev->new_data_offset)
8067 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8068 		else
8069 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8070 		rdev->data_offset = rdev->new_data_offset;
8071 	}
8072 }
8073 EXPORT_SYMBOL(md_finish_reshape);
8074 
8075 /* Bad block management.
8076  * We can record which blocks on each device are 'bad' and so just
8077  * fail those blocks, or that stripe, rather than the whole device.
8078  * Entries in the bad-block table are 64bits wide.  This comprises:
8079  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8080  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8081  *  A 'shift' can be set so that larger blocks are tracked and
8082  *  consequently larger devices can be covered.
8083  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8084  *
8085  * Locking of the bad-block table uses a seqlock so md_is_badblock
8086  * might need to retry if it is very unlucky.
8087  * We will sometimes want to check for bad blocks in a bi_end_io function,
8088  * so we use the write_seqlock_irq variant.
8089  *
8090  * When looking for a bad block we specify a range and want to
8091  * know if any block in the range is bad.  So we binary-search
8092  * to the last range that starts at-or-before the given endpoint,
8093  * (or "before the sector after the target range")
8094  * then see if it ends after the given start.
8095  * We return
8096  *  0 if there are no known bad blocks in the range
8097  *  1 if there are known bad block which are all acknowledged
8098  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8099  * plus the start/length of the first bad section we overlap.
8100  */
8101 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8102 		   sector_t *first_bad, int *bad_sectors)
8103 {
8104 	int hi;
8105 	int lo;
8106 	u64 *p = bb->page;
8107 	int rv;
8108 	sector_t target = s + sectors;
8109 	unsigned seq;
8110 
8111 	if (bb->shift > 0) {
8112 		/* round the start down, and the end up */
8113 		s >>= bb->shift;
8114 		target += (1<<bb->shift) - 1;
8115 		target >>= bb->shift;
8116 		sectors = target - s;
8117 	}
8118 	/* 'target' is now the first block after the bad range */
8119 
8120 retry:
8121 	seq = read_seqbegin(&bb->lock);
8122 	lo = 0;
8123 	rv = 0;
8124 	hi = bb->count;
8125 
8126 	/* Binary search between lo and hi for 'target'
8127 	 * i.e. for the last range that starts before 'target'
8128 	 */
8129 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8130 	 * are known not to be the last range before target.
8131 	 * VARIANT: hi-lo is the number of possible
8132 	 * ranges, and decreases until it reaches 1
8133 	 */
8134 	while (hi - lo > 1) {
8135 		int mid = (lo + hi) / 2;
8136 		sector_t a = BB_OFFSET(p[mid]);
8137 		if (a < target)
8138 			/* This could still be the one, earlier ranges
8139 			 * could not. */
8140 			lo = mid;
8141 		else
8142 			/* This and later ranges are definitely out. */
8143 			hi = mid;
8144 	}
8145 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8146 	if (hi > lo) {
8147 		/* need to check all range that end after 's' to see if
8148 		 * any are unacknowledged.
8149 		 */
8150 		while (lo >= 0 &&
8151 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8152 			if (BB_OFFSET(p[lo]) < target) {
8153 				/* starts before the end, and finishes after
8154 				 * the start, so they must overlap
8155 				 */
8156 				if (rv != -1 && BB_ACK(p[lo]))
8157 					rv = 1;
8158 				else
8159 					rv = -1;
8160 				*first_bad = BB_OFFSET(p[lo]);
8161 				*bad_sectors = BB_LEN(p[lo]);
8162 			}
8163 			lo--;
8164 		}
8165 	}
8166 
8167 	if (read_seqretry(&bb->lock, seq))
8168 		goto retry;
8169 
8170 	return rv;
8171 }
8172 EXPORT_SYMBOL_GPL(md_is_badblock);
8173 
8174 /*
8175  * Add a range of bad blocks to the table.
8176  * This might extend the table, or might contract it
8177  * if two adjacent ranges can be merged.
8178  * We binary-search to find the 'insertion' point, then
8179  * decide how best to handle it.
8180  */
8181 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8182 			    int acknowledged)
8183 {
8184 	u64 *p;
8185 	int lo, hi;
8186 	int rv = 1;
8187 	unsigned long flags;
8188 
8189 	if (bb->shift < 0)
8190 		/* badblocks are disabled */
8191 		return 0;
8192 
8193 	if (bb->shift) {
8194 		/* round the start down, and the end up */
8195 		sector_t next = s + sectors;
8196 		s >>= bb->shift;
8197 		next += (1<<bb->shift) - 1;
8198 		next >>= bb->shift;
8199 		sectors = next - s;
8200 	}
8201 
8202 	write_seqlock_irqsave(&bb->lock, flags);
8203 
8204 	p = bb->page;
8205 	lo = 0;
8206 	hi = bb->count;
8207 	/* Find the last range that starts at-or-before 's' */
8208 	while (hi - lo > 1) {
8209 		int mid = (lo + hi) / 2;
8210 		sector_t a = BB_OFFSET(p[mid]);
8211 		if (a <= s)
8212 			lo = mid;
8213 		else
8214 			hi = mid;
8215 	}
8216 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8217 		hi = lo;
8218 
8219 	if (hi > lo) {
8220 		/* we found a range that might merge with the start
8221 		 * of our new range
8222 		 */
8223 		sector_t a = BB_OFFSET(p[lo]);
8224 		sector_t e = a + BB_LEN(p[lo]);
8225 		int ack = BB_ACK(p[lo]);
8226 		if (e >= s) {
8227 			/* Yes, we can merge with a previous range */
8228 			if (s == a && s + sectors >= e)
8229 				/* new range covers old */
8230 				ack = acknowledged;
8231 			else
8232 				ack = ack && acknowledged;
8233 
8234 			if (e < s + sectors)
8235 				e = s + sectors;
8236 			if (e - a <= BB_MAX_LEN) {
8237 				p[lo] = BB_MAKE(a, e-a, ack);
8238 				s = e;
8239 			} else {
8240 				/* does not all fit in one range,
8241 				 * make p[lo] maximal
8242 				 */
8243 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8244 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8245 				s = a + BB_MAX_LEN;
8246 			}
8247 			sectors = e - s;
8248 		}
8249 	}
8250 	if (sectors && hi < bb->count) {
8251 		/* 'hi' points to the first range that starts after 's'.
8252 		 * Maybe we can merge with the start of that range */
8253 		sector_t a = BB_OFFSET(p[hi]);
8254 		sector_t e = a + BB_LEN(p[hi]);
8255 		int ack = BB_ACK(p[hi]);
8256 		if (a <= s + sectors) {
8257 			/* merging is possible */
8258 			if (e <= s + sectors) {
8259 				/* full overlap */
8260 				e = s + sectors;
8261 				ack = acknowledged;
8262 			} else
8263 				ack = ack && acknowledged;
8264 
8265 			a = s;
8266 			if (e - a <= BB_MAX_LEN) {
8267 				p[hi] = BB_MAKE(a, e-a, ack);
8268 				s = e;
8269 			} else {
8270 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8271 				s = a + BB_MAX_LEN;
8272 			}
8273 			sectors = e - s;
8274 			lo = hi;
8275 			hi++;
8276 		}
8277 	}
8278 	if (sectors == 0 && hi < bb->count) {
8279 		/* we might be able to combine lo and hi */
8280 		/* Note: 's' is at the end of 'lo' */
8281 		sector_t a = BB_OFFSET(p[hi]);
8282 		int lolen = BB_LEN(p[lo]);
8283 		int hilen = BB_LEN(p[hi]);
8284 		int newlen = lolen + hilen - (s - a);
8285 		if (s >= a && newlen < BB_MAX_LEN) {
8286 			/* yes, we can combine them */
8287 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8288 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8289 			memmove(p + hi, p + hi + 1,
8290 				(bb->count - hi - 1) * 8);
8291 			bb->count--;
8292 		}
8293 	}
8294 	while (sectors) {
8295 		/* didn't merge (it all).
8296 		 * Need to add a range just before 'hi' */
8297 		if (bb->count >= MD_MAX_BADBLOCKS) {
8298 			/* No room for more */
8299 			rv = 0;
8300 			break;
8301 		} else {
8302 			int this_sectors = sectors;
8303 			memmove(p + hi + 1, p + hi,
8304 				(bb->count - hi) * 8);
8305 			bb->count++;
8306 
8307 			if (this_sectors > BB_MAX_LEN)
8308 				this_sectors = BB_MAX_LEN;
8309 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8310 			sectors -= this_sectors;
8311 			s += this_sectors;
8312 		}
8313 	}
8314 
8315 	bb->changed = 1;
8316 	if (!acknowledged)
8317 		bb->unacked_exist = 1;
8318 	write_sequnlock_irqrestore(&bb->lock, flags);
8319 
8320 	return rv;
8321 }
8322 
8323 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8324 		       int is_new)
8325 {
8326 	int rv;
8327 	if (is_new)
8328 		s += rdev->new_data_offset;
8329 	else
8330 		s += rdev->data_offset;
8331 	rv = md_set_badblocks(&rdev->badblocks,
8332 			      s, sectors, 0);
8333 	if (rv) {
8334 		/* Make sure they get written out promptly */
8335 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8336 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8337 		md_wakeup_thread(rdev->mddev->thread);
8338 	}
8339 	return rv;
8340 }
8341 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8342 
8343 /*
8344  * Remove a range of bad blocks from the table.
8345  * This may involve extending the table if we spilt a region,
8346  * but it must not fail.  So if the table becomes full, we just
8347  * drop the remove request.
8348  */
8349 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8350 {
8351 	u64 *p;
8352 	int lo, hi;
8353 	sector_t target = s + sectors;
8354 	int rv = 0;
8355 
8356 	if (bb->shift > 0) {
8357 		/* When clearing we round the start up and the end down.
8358 		 * This should not matter as the shift should align with
8359 		 * the block size and no rounding should ever be needed.
8360 		 * However it is better the think a block is bad when it
8361 		 * isn't than to think a block is not bad when it is.
8362 		 */
8363 		s += (1<<bb->shift) - 1;
8364 		s >>= bb->shift;
8365 		target >>= bb->shift;
8366 		sectors = target - s;
8367 	}
8368 
8369 	write_seqlock_irq(&bb->lock);
8370 
8371 	p = bb->page;
8372 	lo = 0;
8373 	hi = bb->count;
8374 	/* Find the last range that starts before 'target' */
8375 	while (hi - lo > 1) {
8376 		int mid = (lo + hi) / 2;
8377 		sector_t a = BB_OFFSET(p[mid]);
8378 		if (a < target)
8379 			lo = mid;
8380 		else
8381 			hi = mid;
8382 	}
8383 	if (hi > lo) {
8384 		/* p[lo] is the last range that could overlap the
8385 		 * current range.  Earlier ranges could also overlap,
8386 		 * but only this one can overlap the end of the range.
8387 		 */
8388 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8389 			/* Partial overlap, leave the tail of this range */
8390 			int ack = BB_ACK(p[lo]);
8391 			sector_t a = BB_OFFSET(p[lo]);
8392 			sector_t end = a + BB_LEN(p[lo]);
8393 
8394 			if (a < s) {
8395 				/* we need to split this range */
8396 				if (bb->count >= MD_MAX_BADBLOCKS) {
8397 					rv = -ENOSPC;
8398 					goto out;
8399 				}
8400 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8401 				bb->count++;
8402 				p[lo] = BB_MAKE(a, s-a, ack);
8403 				lo++;
8404 			}
8405 			p[lo] = BB_MAKE(target, end - target, ack);
8406 			/* there is no longer an overlap */
8407 			hi = lo;
8408 			lo--;
8409 		}
8410 		while (lo >= 0 &&
8411 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8412 			/* This range does overlap */
8413 			if (BB_OFFSET(p[lo]) < s) {
8414 				/* Keep the early parts of this range. */
8415 				int ack = BB_ACK(p[lo]);
8416 				sector_t start = BB_OFFSET(p[lo]);
8417 				p[lo] = BB_MAKE(start, s - start, ack);
8418 				/* now low doesn't overlap, so.. */
8419 				break;
8420 			}
8421 			lo--;
8422 		}
8423 		/* 'lo' is strictly before, 'hi' is strictly after,
8424 		 * anything between needs to be discarded
8425 		 */
8426 		if (hi - lo > 1) {
8427 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8428 			bb->count -= (hi - lo - 1);
8429 		}
8430 	}
8431 
8432 	bb->changed = 1;
8433 out:
8434 	write_sequnlock_irq(&bb->lock);
8435 	return rv;
8436 }
8437 
8438 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8439 			 int is_new)
8440 {
8441 	if (is_new)
8442 		s += rdev->new_data_offset;
8443 	else
8444 		s += rdev->data_offset;
8445 	return md_clear_badblocks(&rdev->badblocks,
8446 				  s, sectors);
8447 }
8448 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8449 
8450 /*
8451  * Acknowledge all bad blocks in a list.
8452  * This only succeeds if ->changed is clear.  It is used by
8453  * in-kernel metadata updates
8454  */
8455 void md_ack_all_badblocks(struct badblocks *bb)
8456 {
8457 	if (bb->page == NULL || bb->changed)
8458 		/* no point even trying */
8459 		return;
8460 	write_seqlock_irq(&bb->lock);
8461 
8462 	if (bb->changed == 0 && bb->unacked_exist) {
8463 		u64 *p = bb->page;
8464 		int i;
8465 		for (i = 0; i < bb->count ; i++) {
8466 			if (!BB_ACK(p[i])) {
8467 				sector_t start = BB_OFFSET(p[i]);
8468 				int len = BB_LEN(p[i]);
8469 				p[i] = BB_MAKE(start, len, 1);
8470 			}
8471 		}
8472 		bb->unacked_exist = 0;
8473 	}
8474 	write_sequnlock_irq(&bb->lock);
8475 }
8476 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8477 
8478 /* sysfs access to bad-blocks list.
8479  * We present two files.
8480  * 'bad-blocks' lists sector numbers and lengths of ranges that
8481  *    are recorded as bad.  The list is truncated to fit within
8482  *    the one-page limit of sysfs.
8483  *    Writing "sector length" to this file adds an acknowledged
8484  *    bad block list.
8485  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8486  *    been acknowledged.  Writing to this file adds bad blocks
8487  *    without acknowledging them.  This is largely for testing.
8488  */
8489 
8490 static ssize_t
8491 badblocks_show(struct badblocks *bb, char *page, int unack)
8492 {
8493 	size_t len;
8494 	int i;
8495 	u64 *p = bb->page;
8496 	unsigned seq;
8497 
8498 	if (bb->shift < 0)
8499 		return 0;
8500 
8501 retry:
8502 	seq = read_seqbegin(&bb->lock);
8503 
8504 	len = 0;
8505 	i = 0;
8506 
8507 	while (len < PAGE_SIZE && i < bb->count) {
8508 		sector_t s = BB_OFFSET(p[i]);
8509 		unsigned int length = BB_LEN(p[i]);
8510 		int ack = BB_ACK(p[i]);
8511 		i++;
8512 
8513 		if (unack && ack)
8514 			continue;
8515 
8516 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8517 				(unsigned long long)s << bb->shift,
8518 				length << bb->shift);
8519 	}
8520 	if (unack && len == 0)
8521 		bb->unacked_exist = 0;
8522 
8523 	if (read_seqretry(&bb->lock, seq))
8524 		goto retry;
8525 
8526 	return len;
8527 }
8528 
8529 #define DO_DEBUG 1
8530 
8531 static ssize_t
8532 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8533 {
8534 	unsigned long long sector;
8535 	int length;
8536 	char newline;
8537 #ifdef DO_DEBUG
8538 	/* Allow clearing via sysfs *only* for testing/debugging.
8539 	 * Normally only a successful write may clear a badblock
8540 	 */
8541 	int clear = 0;
8542 	if (page[0] == '-') {
8543 		clear = 1;
8544 		page++;
8545 	}
8546 #endif /* DO_DEBUG */
8547 
8548 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8549 	case 3:
8550 		if (newline != '\n')
8551 			return -EINVAL;
8552 	case 2:
8553 		if (length <= 0)
8554 			return -EINVAL;
8555 		break;
8556 	default:
8557 		return -EINVAL;
8558 	}
8559 
8560 #ifdef DO_DEBUG
8561 	if (clear) {
8562 		md_clear_badblocks(bb, sector, length);
8563 		return len;
8564 	}
8565 #endif /* DO_DEBUG */
8566 	if (md_set_badblocks(bb, sector, length, !unack))
8567 		return len;
8568 	else
8569 		return -ENOSPC;
8570 }
8571 
8572 static int md_notify_reboot(struct notifier_block *this,
8573 			    unsigned long code, void *x)
8574 {
8575 	struct list_head *tmp;
8576 	struct mddev *mddev;
8577 	int need_delay = 0;
8578 
8579 	for_each_mddev(mddev, tmp) {
8580 		if (mddev_trylock(mddev)) {
8581 			if (mddev->pers)
8582 				__md_stop_writes(mddev);
8583 			if (mddev->persistent)
8584 				mddev->safemode = 2;
8585 			mddev_unlock(mddev);
8586 		}
8587 		need_delay = 1;
8588 	}
8589 	/*
8590 	 * certain more exotic SCSI devices are known to be
8591 	 * volatile wrt too early system reboots. While the
8592 	 * right place to handle this issue is the given
8593 	 * driver, we do want to have a safe RAID driver ...
8594 	 */
8595 	if (need_delay)
8596 		mdelay(1000*1);
8597 
8598 	return NOTIFY_DONE;
8599 }
8600 
8601 static struct notifier_block md_notifier = {
8602 	.notifier_call	= md_notify_reboot,
8603 	.next		= NULL,
8604 	.priority	= INT_MAX, /* before any real devices */
8605 };
8606 
8607 static void md_geninit(void)
8608 {
8609 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8610 
8611 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8612 }
8613 
8614 static int __init md_init(void)
8615 {
8616 	int ret = -ENOMEM;
8617 
8618 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8619 	if (!md_wq)
8620 		goto err_wq;
8621 
8622 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8623 	if (!md_misc_wq)
8624 		goto err_misc_wq;
8625 
8626 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8627 		goto err_md;
8628 
8629 	if ((ret = register_blkdev(0, "mdp")) < 0)
8630 		goto err_mdp;
8631 	mdp_major = ret;
8632 
8633 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8634 			    md_probe, NULL, NULL);
8635 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8636 			    md_probe, NULL, NULL);
8637 
8638 	register_reboot_notifier(&md_notifier);
8639 	raid_table_header = register_sysctl_table(raid_root_table);
8640 
8641 	md_geninit();
8642 	return 0;
8643 
8644 err_mdp:
8645 	unregister_blkdev(MD_MAJOR, "md");
8646 err_md:
8647 	destroy_workqueue(md_misc_wq);
8648 err_misc_wq:
8649 	destroy_workqueue(md_wq);
8650 err_wq:
8651 	return ret;
8652 }
8653 
8654 #ifndef MODULE
8655 
8656 /*
8657  * Searches all registered partitions for autorun RAID arrays
8658  * at boot time.
8659  */
8660 
8661 static LIST_HEAD(all_detected_devices);
8662 struct detected_devices_node {
8663 	struct list_head list;
8664 	dev_t dev;
8665 };
8666 
8667 void md_autodetect_dev(dev_t dev)
8668 {
8669 	struct detected_devices_node *node_detected_dev;
8670 
8671 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8672 	if (node_detected_dev) {
8673 		node_detected_dev->dev = dev;
8674 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8675 	} else {
8676 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8677 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8678 	}
8679 }
8680 
8681 static void autostart_arrays(int part)
8682 {
8683 	struct md_rdev *rdev;
8684 	struct detected_devices_node *node_detected_dev;
8685 	dev_t dev;
8686 	int i_scanned, i_passed;
8687 
8688 	i_scanned = 0;
8689 	i_passed = 0;
8690 
8691 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8692 
8693 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8694 		i_scanned++;
8695 		node_detected_dev = list_entry(all_detected_devices.next,
8696 					struct detected_devices_node, list);
8697 		list_del(&node_detected_dev->list);
8698 		dev = node_detected_dev->dev;
8699 		kfree(node_detected_dev);
8700 		rdev = md_import_device(dev,0, 90);
8701 		if (IS_ERR(rdev))
8702 			continue;
8703 
8704 		if (test_bit(Faulty, &rdev->flags))
8705 			continue;
8706 
8707 		set_bit(AutoDetected, &rdev->flags);
8708 		list_add(&rdev->same_set, &pending_raid_disks);
8709 		i_passed++;
8710 	}
8711 
8712 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8713 						i_scanned, i_passed);
8714 
8715 	autorun_devices(part);
8716 }
8717 
8718 #endif /* !MODULE */
8719 
8720 static __exit void md_exit(void)
8721 {
8722 	struct mddev *mddev;
8723 	struct list_head *tmp;
8724 	int delay = 1;
8725 
8726 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8727 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8728 
8729 	unregister_blkdev(MD_MAJOR,"md");
8730 	unregister_blkdev(mdp_major, "mdp");
8731 	unregister_reboot_notifier(&md_notifier);
8732 	unregister_sysctl_table(raid_table_header);
8733 
8734 	/* We cannot unload the modules while some process is
8735 	 * waiting for us in select() or poll() - wake them up
8736 	 */
8737 	md_unloading = 1;
8738 	while (waitqueue_active(&md_event_waiters)) {
8739 		/* not safe to leave yet */
8740 		wake_up(&md_event_waiters);
8741 		msleep(delay);
8742 		delay += delay;
8743 	}
8744 	remove_proc_entry("mdstat", NULL);
8745 
8746 	for_each_mddev(mddev, tmp) {
8747 		export_array(mddev);
8748 		mddev->hold_active = 0;
8749 	}
8750 	destroy_workqueue(md_misc_wq);
8751 	destroy_workqueue(md_wq);
8752 }
8753 
8754 subsys_initcall(md_init);
8755 module_exit(md_exit)
8756 
8757 static int get_ro(char *buffer, struct kernel_param *kp)
8758 {
8759 	return sprintf(buffer, "%d", start_readonly);
8760 }
8761 static int set_ro(const char *val, struct kernel_param *kp)
8762 {
8763 	char *e;
8764 	int num = simple_strtoul(val, &e, 10);
8765 	if (*val && (*e == '\0' || *e == '\n')) {
8766 		start_readonly = num;
8767 		return 0;
8768 	}
8769 	return -EINVAL;
8770 }
8771 
8772 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8773 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8774 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8775 
8776 MODULE_LICENSE("GPL");
8777 MODULE_DESCRIPTION("MD RAID framework");
8778 MODULE_ALIAS("md");
8779 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8780