1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/smp_lock.h> 40 #include <linux/buffer_head.h> /* for invalidate_bdev */ 41 #include <linux/poll.h> 42 #include <linux/ctype.h> 43 #include <linux/string.h> 44 #include <linux/hdreg.h> 45 #include <linux/proc_fs.h> 46 #include <linux/random.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #define DEBUG 0 58 #define dprintk(x...) ((void)(DEBUG && printk(x))) 59 60 61 #ifndef MODULE 62 static void autostart_arrays(int part); 63 #endif 64 65 static LIST_HEAD(pers_list); 66 static DEFINE_SPINLOCK(pers_lock); 67 68 static void md_print_devices(void); 69 70 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 71 72 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 73 74 /* 75 * Default number of read corrections we'll attempt on an rdev 76 * before ejecting it from the array. We divide the read error 77 * count by 2 for every hour elapsed between read errors. 78 */ 79 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 80 /* 81 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 82 * is 1000 KB/sec, so the extra system load does not show up that much. 83 * Increase it if you want to have more _guaranteed_ speed. Note that 84 * the RAID driver will use the maximum available bandwidth if the IO 85 * subsystem is idle. There is also an 'absolute maximum' reconstruction 86 * speed limit - in case reconstruction slows down your system despite 87 * idle IO detection. 88 * 89 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 90 * or /sys/block/mdX/md/sync_speed_{min,max} 91 */ 92 93 static int sysctl_speed_limit_min = 1000; 94 static int sysctl_speed_limit_max = 200000; 95 static inline int speed_min(mddev_t *mddev) 96 { 97 return mddev->sync_speed_min ? 98 mddev->sync_speed_min : sysctl_speed_limit_min; 99 } 100 101 static inline int speed_max(mddev_t *mddev) 102 { 103 return mddev->sync_speed_max ? 104 mddev->sync_speed_max : sysctl_speed_limit_max; 105 } 106 107 static struct ctl_table_header *raid_table_header; 108 109 static ctl_table raid_table[] = { 110 { 111 .procname = "speed_limit_min", 112 .data = &sysctl_speed_limit_min, 113 .maxlen = sizeof(int), 114 .mode = S_IRUGO|S_IWUSR, 115 .proc_handler = proc_dointvec, 116 }, 117 { 118 .procname = "speed_limit_max", 119 .data = &sysctl_speed_limit_max, 120 .maxlen = sizeof(int), 121 .mode = S_IRUGO|S_IWUSR, 122 .proc_handler = proc_dointvec, 123 }, 124 { } 125 }; 126 127 static ctl_table raid_dir_table[] = { 128 { 129 .procname = "raid", 130 .maxlen = 0, 131 .mode = S_IRUGO|S_IXUGO, 132 .child = raid_table, 133 }, 134 { } 135 }; 136 137 static ctl_table raid_root_table[] = { 138 { 139 .procname = "dev", 140 .maxlen = 0, 141 .mode = 0555, 142 .child = raid_dir_table, 143 }, 144 { } 145 }; 146 147 static const struct block_device_operations md_fops; 148 149 static int start_readonly; 150 151 /* 152 * We have a system wide 'event count' that is incremented 153 * on any 'interesting' event, and readers of /proc/mdstat 154 * can use 'poll' or 'select' to find out when the event 155 * count increases. 156 * 157 * Events are: 158 * start array, stop array, error, add device, remove device, 159 * start build, activate spare 160 */ 161 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 162 static atomic_t md_event_count; 163 void md_new_event(mddev_t *mddev) 164 { 165 atomic_inc(&md_event_count); 166 wake_up(&md_event_waiters); 167 } 168 EXPORT_SYMBOL_GPL(md_new_event); 169 170 /* Alternate version that can be called from interrupts 171 * when calling sysfs_notify isn't needed. 172 */ 173 static void md_new_event_inintr(mddev_t *mddev) 174 { 175 atomic_inc(&md_event_count); 176 wake_up(&md_event_waiters); 177 } 178 179 /* 180 * Enables to iterate over all existing md arrays 181 * all_mddevs_lock protects this list. 182 */ 183 static LIST_HEAD(all_mddevs); 184 static DEFINE_SPINLOCK(all_mddevs_lock); 185 186 187 /* 188 * iterates through all used mddevs in the system. 189 * We take care to grab the all_mddevs_lock whenever navigating 190 * the list, and to always hold a refcount when unlocked. 191 * Any code which breaks out of this loop while own 192 * a reference to the current mddev and must mddev_put it. 193 */ 194 #define for_each_mddev(mddev,tmp) \ 195 \ 196 for (({ spin_lock(&all_mddevs_lock); \ 197 tmp = all_mddevs.next; \ 198 mddev = NULL;}); \ 199 ({ if (tmp != &all_mddevs) \ 200 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 201 spin_unlock(&all_mddevs_lock); \ 202 if (mddev) mddev_put(mddev); \ 203 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 204 tmp != &all_mddevs;}); \ 205 ({ spin_lock(&all_mddevs_lock); \ 206 tmp = tmp->next;}) \ 207 ) 208 209 210 /* Rather than calling directly into the personality make_request function, 211 * IO requests come here first so that we can check if the device is 212 * being suspended pending a reconfiguration. 213 * We hold a refcount over the call to ->make_request. By the time that 214 * call has finished, the bio has been linked into some internal structure 215 * and so is visible to ->quiesce(), so we don't need the refcount any more. 216 */ 217 static int md_make_request(struct request_queue *q, struct bio *bio) 218 { 219 const int rw = bio_data_dir(bio); 220 mddev_t *mddev = q->queuedata; 221 int rv; 222 int cpu; 223 224 if (mddev == NULL || mddev->pers == NULL) { 225 bio_io_error(bio); 226 return 0; 227 } 228 rcu_read_lock(); 229 if (mddev->suspended || mddev->barrier) { 230 DEFINE_WAIT(__wait); 231 for (;;) { 232 prepare_to_wait(&mddev->sb_wait, &__wait, 233 TASK_UNINTERRUPTIBLE); 234 if (!mddev->suspended && !mddev->barrier) 235 break; 236 rcu_read_unlock(); 237 schedule(); 238 rcu_read_lock(); 239 } 240 finish_wait(&mddev->sb_wait, &__wait); 241 } 242 atomic_inc(&mddev->active_io); 243 rcu_read_unlock(); 244 245 rv = mddev->pers->make_request(mddev, bio); 246 247 cpu = part_stat_lock(); 248 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 249 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 250 bio_sectors(bio)); 251 part_stat_unlock(); 252 253 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 254 wake_up(&mddev->sb_wait); 255 256 return rv; 257 } 258 259 /* mddev_suspend makes sure no new requests are submitted 260 * to the device, and that any requests that have been submitted 261 * are completely handled. 262 * Once ->stop is called and completes, the module will be completely 263 * unused. 264 */ 265 void mddev_suspend(mddev_t *mddev) 266 { 267 BUG_ON(mddev->suspended); 268 mddev->suspended = 1; 269 synchronize_rcu(); 270 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 271 mddev->pers->quiesce(mddev, 1); 272 } 273 EXPORT_SYMBOL_GPL(mddev_suspend); 274 275 void mddev_resume(mddev_t *mddev) 276 { 277 mddev->suspended = 0; 278 wake_up(&mddev->sb_wait); 279 mddev->pers->quiesce(mddev, 0); 280 } 281 EXPORT_SYMBOL_GPL(mddev_resume); 282 283 int mddev_congested(mddev_t *mddev, int bits) 284 { 285 if (mddev->barrier) 286 return 1; 287 return mddev->suspended; 288 } 289 EXPORT_SYMBOL(mddev_congested); 290 291 /* 292 * Generic barrier handling for md 293 */ 294 295 #define POST_REQUEST_BARRIER ((void*)1) 296 297 static void md_end_barrier(struct bio *bio, int err) 298 { 299 mdk_rdev_t *rdev = bio->bi_private; 300 mddev_t *mddev = rdev->mddev; 301 if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER) 302 set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags); 303 304 rdev_dec_pending(rdev, mddev); 305 306 if (atomic_dec_and_test(&mddev->flush_pending)) { 307 if (mddev->barrier == POST_REQUEST_BARRIER) { 308 /* This was a post-request barrier */ 309 mddev->barrier = NULL; 310 wake_up(&mddev->sb_wait); 311 } else 312 /* The pre-request barrier has finished */ 313 schedule_work(&mddev->barrier_work); 314 } 315 bio_put(bio); 316 } 317 318 static void submit_barriers(mddev_t *mddev) 319 { 320 mdk_rdev_t *rdev; 321 322 rcu_read_lock(); 323 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 324 if (rdev->raid_disk >= 0 && 325 !test_bit(Faulty, &rdev->flags)) { 326 /* Take two references, one is dropped 327 * when request finishes, one after 328 * we reclaim rcu_read_lock 329 */ 330 struct bio *bi; 331 atomic_inc(&rdev->nr_pending); 332 atomic_inc(&rdev->nr_pending); 333 rcu_read_unlock(); 334 bi = bio_alloc(GFP_KERNEL, 0); 335 bi->bi_end_io = md_end_barrier; 336 bi->bi_private = rdev; 337 bi->bi_bdev = rdev->bdev; 338 atomic_inc(&mddev->flush_pending); 339 submit_bio(WRITE_BARRIER, bi); 340 rcu_read_lock(); 341 rdev_dec_pending(rdev, mddev); 342 } 343 rcu_read_unlock(); 344 } 345 346 static void md_submit_barrier(struct work_struct *ws) 347 { 348 mddev_t *mddev = container_of(ws, mddev_t, barrier_work); 349 struct bio *bio = mddev->barrier; 350 351 atomic_set(&mddev->flush_pending, 1); 352 353 if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags)) 354 bio_endio(bio, -EOPNOTSUPP); 355 else if (bio->bi_size == 0) 356 /* an empty barrier - all done */ 357 bio_endio(bio, 0); 358 else { 359 bio->bi_rw &= ~REQ_HARDBARRIER; 360 if (mddev->pers->make_request(mddev, bio)) 361 generic_make_request(bio); 362 mddev->barrier = POST_REQUEST_BARRIER; 363 submit_barriers(mddev); 364 } 365 if (atomic_dec_and_test(&mddev->flush_pending)) { 366 mddev->barrier = NULL; 367 wake_up(&mddev->sb_wait); 368 } 369 } 370 371 void md_barrier_request(mddev_t *mddev, struct bio *bio) 372 { 373 spin_lock_irq(&mddev->write_lock); 374 wait_event_lock_irq(mddev->sb_wait, 375 !mddev->barrier, 376 mddev->write_lock, /*nothing*/); 377 mddev->barrier = bio; 378 spin_unlock_irq(&mddev->write_lock); 379 380 atomic_set(&mddev->flush_pending, 1); 381 INIT_WORK(&mddev->barrier_work, md_submit_barrier); 382 383 submit_barriers(mddev); 384 385 if (atomic_dec_and_test(&mddev->flush_pending)) 386 schedule_work(&mddev->barrier_work); 387 } 388 EXPORT_SYMBOL(md_barrier_request); 389 390 /* Support for plugging. 391 * This mirrors the plugging support in request_queue, but does not 392 * require having a whole queue 393 */ 394 static void plugger_work(struct work_struct *work) 395 { 396 struct plug_handle *plug = 397 container_of(work, struct plug_handle, unplug_work); 398 plug->unplug_fn(plug); 399 } 400 static void plugger_timeout(unsigned long data) 401 { 402 struct plug_handle *plug = (void *)data; 403 kblockd_schedule_work(NULL, &plug->unplug_work); 404 } 405 void plugger_init(struct plug_handle *plug, 406 void (*unplug_fn)(struct plug_handle *)) 407 { 408 plug->unplug_flag = 0; 409 plug->unplug_fn = unplug_fn; 410 init_timer(&plug->unplug_timer); 411 plug->unplug_timer.function = plugger_timeout; 412 plug->unplug_timer.data = (unsigned long)plug; 413 INIT_WORK(&plug->unplug_work, plugger_work); 414 } 415 EXPORT_SYMBOL_GPL(plugger_init); 416 417 void plugger_set_plug(struct plug_handle *plug) 418 { 419 if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag)) 420 mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1); 421 } 422 EXPORT_SYMBOL_GPL(plugger_set_plug); 423 424 int plugger_remove_plug(struct plug_handle *plug) 425 { 426 if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) { 427 del_timer(&plug->unplug_timer); 428 return 1; 429 } else 430 return 0; 431 } 432 EXPORT_SYMBOL_GPL(plugger_remove_plug); 433 434 435 static inline mddev_t *mddev_get(mddev_t *mddev) 436 { 437 atomic_inc(&mddev->active); 438 return mddev; 439 } 440 441 static void mddev_delayed_delete(struct work_struct *ws); 442 443 static void mddev_put(mddev_t *mddev) 444 { 445 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 446 return; 447 if (!mddev->raid_disks && list_empty(&mddev->disks) && 448 mddev->ctime == 0 && !mddev->hold_active) { 449 /* Array is not configured at all, and not held active, 450 * so destroy it */ 451 list_del(&mddev->all_mddevs); 452 if (mddev->gendisk) { 453 /* we did a probe so need to clean up. 454 * Call schedule_work inside the spinlock 455 * so that flush_scheduled_work() after 456 * mddev_find will succeed in waiting for the 457 * work to be done. 458 */ 459 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 460 schedule_work(&mddev->del_work); 461 } else 462 kfree(mddev); 463 } 464 spin_unlock(&all_mddevs_lock); 465 } 466 467 void mddev_init(mddev_t *mddev) 468 { 469 mutex_init(&mddev->open_mutex); 470 mutex_init(&mddev->reconfig_mutex); 471 mutex_init(&mddev->bitmap_info.mutex); 472 INIT_LIST_HEAD(&mddev->disks); 473 INIT_LIST_HEAD(&mddev->all_mddevs); 474 init_timer(&mddev->safemode_timer); 475 atomic_set(&mddev->active, 1); 476 atomic_set(&mddev->openers, 0); 477 atomic_set(&mddev->active_io, 0); 478 spin_lock_init(&mddev->write_lock); 479 atomic_set(&mddev->flush_pending, 0); 480 init_waitqueue_head(&mddev->sb_wait); 481 init_waitqueue_head(&mddev->recovery_wait); 482 mddev->reshape_position = MaxSector; 483 mddev->resync_min = 0; 484 mddev->resync_max = MaxSector; 485 mddev->level = LEVEL_NONE; 486 } 487 EXPORT_SYMBOL_GPL(mddev_init); 488 489 static mddev_t * mddev_find(dev_t unit) 490 { 491 mddev_t *mddev, *new = NULL; 492 493 retry: 494 spin_lock(&all_mddevs_lock); 495 496 if (unit) { 497 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 498 if (mddev->unit == unit) { 499 mddev_get(mddev); 500 spin_unlock(&all_mddevs_lock); 501 kfree(new); 502 return mddev; 503 } 504 505 if (new) { 506 list_add(&new->all_mddevs, &all_mddevs); 507 spin_unlock(&all_mddevs_lock); 508 new->hold_active = UNTIL_IOCTL; 509 return new; 510 } 511 } else if (new) { 512 /* find an unused unit number */ 513 static int next_minor = 512; 514 int start = next_minor; 515 int is_free = 0; 516 int dev = 0; 517 while (!is_free) { 518 dev = MKDEV(MD_MAJOR, next_minor); 519 next_minor++; 520 if (next_minor > MINORMASK) 521 next_minor = 0; 522 if (next_minor == start) { 523 /* Oh dear, all in use. */ 524 spin_unlock(&all_mddevs_lock); 525 kfree(new); 526 return NULL; 527 } 528 529 is_free = 1; 530 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 531 if (mddev->unit == dev) { 532 is_free = 0; 533 break; 534 } 535 } 536 new->unit = dev; 537 new->md_minor = MINOR(dev); 538 new->hold_active = UNTIL_STOP; 539 list_add(&new->all_mddevs, &all_mddevs); 540 spin_unlock(&all_mddevs_lock); 541 return new; 542 } 543 spin_unlock(&all_mddevs_lock); 544 545 new = kzalloc(sizeof(*new), GFP_KERNEL); 546 if (!new) 547 return NULL; 548 549 new->unit = unit; 550 if (MAJOR(unit) == MD_MAJOR) 551 new->md_minor = MINOR(unit); 552 else 553 new->md_minor = MINOR(unit) >> MdpMinorShift; 554 555 mddev_init(new); 556 557 goto retry; 558 } 559 560 static inline int mddev_lock(mddev_t * mddev) 561 { 562 return mutex_lock_interruptible(&mddev->reconfig_mutex); 563 } 564 565 static inline int mddev_is_locked(mddev_t *mddev) 566 { 567 return mutex_is_locked(&mddev->reconfig_mutex); 568 } 569 570 static inline int mddev_trylock(mddev_t * mddev) 571 { 572 return mutex_trylock(&mddev->reconfig_mutex); 573 } 574 575 static struct attribute_group md_redundancy_group; 576 577 static void mddev_unlock(mddev_t * mddev) 578 { 579 if (mddev->to_remove) { 580 /* These cannot be removed under reconfig_mutex as 581 * an access to the files will try to take reconfig_mutex 582 * while holding the file unremovable, which leads to 583 * a deadlock. 584 * So hold set sysfs_active while the remove in happeing, 585 * and anything else which might set ->to_remove or my 586 * otherwise change the sysfs namespace will fail with 587 * -EBUSY if sysfs_active is still set. 588 * We set sysfs_active under reconfig_mutex and elsewhere 589 * test it under the same mutex to ensure its correct value 590 * is seen. 591 */ 592 struct attribute_group *to_remove = mddev->to_remove; 593 mddev->to_remove = NULL; 594 mddev->sysfs_active = 1; 595 mutex_unlock(&mddev->reconfig_mutex); 596 597 if (mddev->kobj.sd) { 598 if (to_remove != &md_redundancy_group) 599 sysfs_remove_group(&mddev->kobj, to_remove); 600 if (mddev->pers == NULL || 601 mddev->pers->sync_request == NULL) { 602 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 603 if (mddev->sysfs_action) 604 sysfs_put(mddev->sysfs_action); 605 mddev->sysfs_action = NULL; 606 } 607 } 608 mddev->sysfs_active = 0; 609 } else 610 mutex_unlock(&mddev->reconfig_mutex); 611 612 md_wakeup_thread(mddev->thread); 613 } 614 615 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 616 { 617 mdk_rdev_t *rdev; 618 619 list_for_each_entry(rdev, &mddev->disks, same_set) 620 if (rdev->desc_nr == nr) 621 return rdev; 622 623 return NULL; 624 } 625 626 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 627 { 628 mdk_rdev_t *rdev; 629 630 list_for_each_entry(rdev, &mddev->disks, same_set) 631 if (rdev->bdev->bd_dev == dev) 632 return rdev; 633 634 return NULL; 635 } 636 637 static struct mdk_personality *find_pers(int level, char *clevel) 638 { 639 struct mdk_personality *pers; 640 list_for_each_entry(pers, &pers_list, list) { 641 if (level != LEVEL_NONE && pers->level == level) 642 return pers; 643 if (strcmp(pers->name, clevel)==0) 644 return pers; 645 } 646 return NULL; 647 } 648 649 /* return the offset of the super block in 512byte sectors */ 650 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 651 { 652 sector_t num_sectors = bdev->bd_inode->i_size / 512; 653 return MD_NEW_SIZE_SECTORS(num_sectors); 654 } 655 656 static int alloc_disk_sb(mdk_rdev_t * rdev) 657 { 658 if (rdev->sb_page) 659 MD_BUG(); 660 661 rdev->sb_page = alloc_page(GFP_KERNEL); 662 if (!rdev->sb_page) { 663 printk(KERN_ALERT "md: out of memory.\n"); 664 return -ENOMEM; 665 } 666 667 return 0; 668 } 669 670 static void free_disk_sb(mdk_rdev_t * rdev) 671 { 672 if (rdev->sb_page) { 673 put_page(rdev->sb_page); 674 rdev->sb_loaded = 0; 675 rdev->sb_page = NULL; 676 rdev->sb_start = 0; 677 rdev->sectors = 0; 678 } 679 } 680 681 682 static void super_written(struct bio *bio, int error) 683 { 684 mdk_rdev_t *rdev = bio->bi_private; 685 mddev_t *mddev = rdev->mddev; 686 687 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 688 printk("md: super_written gets error=%d, uptodate=%d\n", 689 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 690 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 691 md_error(mddev, rdev); 692 } 693 694 if (atomic_dec_and_test(&mddev->pending_writes)) 695 wake_up(&mddev->sb_wait); 696 bio_put(bio); 697 } 698 699 static void super_written_barrier(struct bio *bio, int error) 700 { 701 struct bio *bio2 = bio->bi_private; 702 mdk_rdev_t *rdev = bio2->bi_private; 703 mddev_t *mddev = rdev->mddev; 704 705 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 706 error == -EOPNOTSUPP) { 707 unsigned long flags; 708 /* barriers don't appear to be supported :-( */ 709 set_bit(BarriersNotsupp, &rdev->flags); 710 mddev->barriers_work = 0; 711 spin_lock_irqsave(&mddev->write_lock, flags); 712 bio2->bi_next = mddev->biolist; 713 mddev->biolist = bio2; 714 spin_unlock_irqrestore(&mddev->write_lock, flags); 715 wake_up(&mddev->sb_wait); 716 bio_put(bio); 717 } else { 718 bio_put(bio2); 719 bio->bi_private = rdev; 720 super_written(bio, error); 721 } 722 } 723 724 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 725 sector_t sector, int size, struct page *page) 726 { 727 /* write first size bytes of page to sector of rdev 728 * Increment mddev->pending_writes before returning 729 * and decrement it on completion, waking up sb_wait 730 * if zero is reached. 731 * If an error occurred, call md_error 732 * 733 * As we might need to resubmit the request if REQ_HARDBARRIER 734 * causes ENOTSUPP, we allocate a spare bio... 735 */ 736 struct bio *bio = bio_alloc(GFP_NOIO, 1); 737 int rw = REQ_WRITE | REQ_SYNC | REQ_UNPLUG; 738 739 bio->bi_bdev = rdev->bdev; 740 bio->bi_sector = sector; 741 bio_add_page(bio, page, size, 0); 742 bio->bi_private = rdev; 743 bio->bi_end_io = super_written; 744 bio->bi_rw = rw; 745 746 atomic_inc(&mddev->pending_writes); 747 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 748 struct bio *rbio; 749 rw |= REQ_HARDBARRIER; 750 rbio = bio_clone(bio, GFP_NOIO); 751 rbio->bi_private = bio; 752 rbio->bi_end_io = super_written_barrier; 753 submit_bio(rw, rbio); 754 } else 755 submit_bio(rw, bio); 756 } 757 758 void md_super_wait(mddev_t *mddev) 759 { 760 /* wait for all superblock writes that were scheduled to complete. 761 * if any had to be retried (due to BARRIER problems), retry them 762 */ 763 DEFINE_WAIT(wq); 764 for(;;) { 765 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 766 if (atomic_read(&mddev->pending_writes)==0) 767 break; 768 while (mddev->biolist) { 769 struct bio *bio; 770 spin_lock_irq(&mddev->write_lock); 771 bio = mddev->biolist; 772 mddev->biolist = bio->bi_next ; 773 bio->bi_next = NULL; 774 spin_unlock_irq(&mddev->write_lock); 775 submit_bio(bio->bi_rw, bio); 776 } 777 schedule(); 778 } 779 finish_wait(&mddev->sb_wait, &wq); 780 } 781 782 static void bi_complete(struct bio *bio, int error) 783 { 784 complete((struct completion*)bio->bi_private); 785 } 786 787 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 788 struct page *page, int rw) 789 { 790 struct bio *bio = bio_alloc(GFP_NOIO, 1); 791 struct completion event; 792 int ret; 793 794 rw |= REQ_SYNC | REQ_UNPLUG; 795 796 bio->bi_bdev = bdev; 797 bio->bi_sector = sector; 798 bio_add_page(bio, page, size, 0); 799 init_completion(&event); 800 bio->bi_private = &event; 801 bio->bi_end_io = bi_complete; 802 submit_bio(rw, bio); 803 wait_for_completion(&event); 804 805 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 806 bio_put(bio); 807 return ret; 808 } 809 EXPORT_SYMBOL_GPL(sync_page_io); 810 811 static int read_disk_sb(mdk_rdev_t * rdev, int size) 812 { 813 char b[BDEVNAME_SIZE]; 814 if (!rdev->sb_page) { 815 MD_BUG(); 816 return -EINVAL; 817 } 818 if (rdev->sb_loaded) 819 return 0; 820 821 822 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ)) 823 goto fail; 824 rdev->sb_loaded = 1; 825 return 0; 826 827 fail: 828 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 829 bdevname(rdev->bdev,b)); 830 return -EINVAL; 831 } 832 833 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 834 { 835 return sb1->set_uuid0 == sb2->set_uuid0 && 836 sb1->set_uuid1 == sb2->set_uuid1 && 837 sb1->set_uuid2 == sb2->set_uuid2 && 838 sb1->set_uuid3 == sb2->set_uuid3; 839 } 840 841 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 842 { 843 int ret; 844 mdp_super_t *tmp1, *tmp2; 845 846 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 847 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 848 849 if (!tmp1 || !tmp2) { 850 ret = 0; 851 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 852 goto abort; 853 } 854 855 *tmp1 = *sb1; 856 *tmp2 = *sb2; 857 858 /* 859 * nr_disks is not constant 860 */ 861 tmp1->nr_disks = 0; 862 tmp2->nr_disks = 0; 863 864 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 865 abort: 866 kfree(tmp1); 867 kfree(tmp2); 868 return ret; 869 } 870 871 872 static u32 md_csum_fold(u32 csum) 873 { 874 csum = (csum & 0xffff) + (csum >> 16); 875 return (csum & 0xffff) + (csum >> 16); 876 } 877 878 static unsigned int calc_sb_csum(mdp_super_t * sb) 879 { 880 u64 newcsum = 0; 881 u32 *sb32 = (u32*)sb; 882 int i; 883 unsigned int disk_csum, csum; 884 885 disk_csum = sb->sb_csum; 886 sb->sb_csum = 0; 887 888 for (i = 0; i < MD_SB_BYTES/4 ; i++) 889 newcsum += sb32[i]; 890 csum = (newcsum & 0xffffffff) + (newcsum>>32); 891 892 893 #ifdef CONFIG_ALPHA 894 /* This used to use csum_partial, which was wrong for several 895 * reasons including that different results are returned on 896 * different architectures. It isn't critical that we get exactly 897 * the same return value as before (we always csum_fold before 898 * testing, and that removes any differences). However as we 899 * know that csum_partial always returned a 16bit value on 900 * alphas, do a fold to maximise conformity to previous behaviour. 901 */ 902 sb->sb_csum = md_csum_fold(disk_csum); 903 #else 904 sb->sb_csum = disk_csum; 905 #endif 906 return csum; 907 } 908 909 910 /* 911 * Handle superblock details. 912 * We want to be able to handle multiple superblock formats 913 * so we have a common interface to them all, and an array of 914 * different handlers. 915 * We rely on user-space to write the initial superblock, and support 916 * reading and updating of superblocks. 917 * Interface methods are: 918 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 919 * loads and validates a superblock on dev. 920 * if refdev != NULL, compare superblocks on both devices 921 * Return: 922 * 0 - dev has a superblock that is compatible with refdev 923 * 1 - dev has a superblock that is compatible and newer than refdev 924 * so dev should be used as the refdev in future 925 * -EINVAL superblock incompatible or invalid 926 * -othererror e.g. -EIO 927 * 928 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 929 * Verify that dev is acceptable into mddev. 930 * The first time, mddev->raid_disks will be 0, and data from 931 * dev should be merged in. Subsequent calls check that dev 932 * is new enough. Return 0 or -EINVAL 933 * 934 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 935 * Update the superblock for rdev with data in mddev 936 * This does not write to disc. 937 * 938 */ 939 940 struct super_type { 941 char *name; 942 struct module *owner; 943 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, 944 int minor_version); 945 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 946 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 947 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev, 948 sector_t num_sectors); 949 }; 950 951 /* 952 * Check that the given mddev has no bitmap. 953 * 954 * This function is called from the run method of all personalities that do not 955 * support bitmaps. It prints an error message and returns non-zero if mddev 956 * has a bitmap. Otherwise, it returns 0. 957 * 958 */ 959 int md_check_no_bitmap(mddev_t *mddev) 960 { 961 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 962 return 0; 963 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 964 mdname(mddev), mddev->pers->name); 965 return 1; 966 } 967 EXPORT_SYMBOL(md_check_no_bitmap); 968 969 /* 970 * load_super for 0.90.0 971 */ 972 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 973 { 974 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 975 mdp_super_t *sb; 976 int ret; 977 978 /* 979 * Calculate the position of the superblock (512byte sectors), 980 * it's at the end of the disk. 981 * 982 * It also happens to be a multiple of 4Kb. 983 */ 984 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 985 986 ret = read_disk_sb(rdev, MD_SB_BYTES); 987 if (ret) return ret; 988 989 ret = -EINVAL; 990 991 bdevname(rdev->bdev, b); 992 sb = (mdp_super_t*)page_address(rdev->sb_page); 993 994 if (sb->md_magic != MD_SB_MAGIC) { 995 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 996 b); 997 goto abort; 998 } 999 1000 if (sb->major_version != 0 || 1001 sb->minor_version < 90 || 1002 sb->minor_version > 91) { 1003 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1004 sb->major_version, sb->minor_version, 1005 b); 1006 goto abort; 1007 } 1008 1009 if (sb->raid_disks <= 0) 1010 goto abort; 1011 1012 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1013 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1014 b); 1015 goto abort; 1016 } 1017 1018 rdev->preferred_minor = sb->md_minor; 1019 rdev->data_offset = 0; 1020 rdev->sb_size = MD_SB_BYTES; 1021 1022 if (sb->level == LEVEL_MULTIPATH) 1023 rdev->desc_nr = -1; 1024 else 1025 rdev->desc_nr = sb->this_disk.number; 1026 1027 if (!refdev) { 1028 ret = 1; 1029 } else { 1030 __u64 ev1, ev2; 1031 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 1032 if (!uuid_equal(refsb, sb)) { 1033 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1034 b, bdevname(refdev->bdev,b2)); 1035 goto abort; 1036 } 1037 if (!sb_equal(refsb, sb)) { 1038 printk(KERN_WARNING "md: %s has same UUID" 1039 " but different superblock to %s\n", 1040 b, bdevname(refdev->bdev, b2)); 1041 goto abort; 1042 } 1043 ev1 = md_event(sb); 1044 ev2 = md_event(refsb); 1045 if (ev1 > ev2) 1046 ret = 1; 1047 else 1048 ret = 0; 1049 } 1050 rdev->sectors = rdev->sb_start; 1051 1052 if (rdev->sectors < sb->size * 2 && sb->level > 1) 1053 /* "this cannot possibly happen" ... */ 1054 ret = -EINVAL; 1055 1056 abort: 1057 return ret; 1058 } 1059 1060 /* 1061 * validate_super for 0.90.0 1062 */ 1063 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1064 { 1065 mdp_disk_t *desc; 1066 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 1067 __u64 ev1 = md_event(sb); 1068 1069 rdev->raid_disk = -1; 1070 clear_bit(Faulty, &rdev->flags); 1071 clear_bit(In_sync, &rdev->flags); 1072 clear_bit(WriteMostly, &rdev->flags); 1073 clear_bit(BarriersNotsupp, &rdev->flags); 1074 1075 if (mddev->raid_disks == 0) { 1076 mddev->major_version = 0; 1077 mddev->minor_version = sb->minor_version; 1078 mddev->patch_version = sb->patch_version; 1079 mddev->external = 0; 1080 mddev->chunk_sectors = sb->chunk_size >> 9; 1081 mddev->ctime = sb->ctime; 1082 mddev->utime = sb->utime; 1083 mddev->level = sb->level; 1084 mddev->clevel[0] = 0; 1085 mddev->layout = sb->layout; 1086 mddev->raid_disks = sb->raid_disks; 1087 mddev->dev_sectors = sb->size * 2; 1088 mddev->events = ev1; 1089 mddev->bitmap_info.offset = 0; 1090 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1091 1092 if (mddev->minor_version >= 91) { 1093 mddev->reshape_position = sb->reshape_position; 1094 mddev->delta_disks = sb->delta_disks; 1095 mddev->new_level = sb->new_level; 1096 mddev->new_layout = sb->new_layout; 1097 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1098 } else { 1099 mddev->reshape_position = MaxSector; 1100 mddev->delta_disks = 0; 1101 mddev->new_level = mddev->level; 1102 mddev->new_layout = mddev->layout; 1103 mddev->new_chunk_sectors = mddev->chunk_sectors; 1104 } 1105 1106 if (sb->state & (1<<MD_SB_CLEAN)) 1107 mddev->recovery_cp = MaxSector; 1108 else { 1109 if (sb->events_hi == sb->cp_events_hi && 1110 sb->events_lo == sb->cp_events_lo) { 1111 mddev->recovery_cp = sb->recovery_cp; 1112 } else 1113 mddev->recovery_cp = 0; 1114 } 1115 1116 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1117 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1118 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1119 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1120 1121 mddev->max_disks = MD_SB_DISKS; 1122 1123 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1124 mddev->bitmap_info.file == NULL) 1125 mddev->bitmap_info.offset = 1126 mddev->bitmap_info.default_offset; 1127 1128 } else if (mddev->pers == NULL) { 1129 /* Insist on good event counter while assembling, except 1130 * for spares (which don't need an event count) */ 1131 ++ev1; 1132 if (sb->disks[rdev->desc_nr].state & ( 1133 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1134 if (ev1 < mddev->events) 1135 return -EINVAL; 1136 } else if (mddev->bitmap) { 1137 /* if adding to array with a bitmap, then we can accept an 1138 * older device ... but not too old. 1139 */ 1140 if (ev1 < mddev->bitmap->events_cleared) 1141 return 0; 1142 } else { 1143 if (ev1 < mddev->events) 1144 /* just a hot-add of a new device, leave raid_disk at -1 */ 1145 return 0; 1146 } 1147 1148 if (mddev->level != LEVEL_MULTIPATH) { 1149 desc = sb->disks + rdev->desc_nr; 1150 1151 if (desc->state & (1<<MD_DISK_FAULTY)) 1152 set_bit(Faulty, &rdev->flags); 1153 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1154 desc->raid_disk < mddev->raid_disks */) { 1155 set_bit(In_sync, &rdev->flags); 1156 rdev->raid_disk = desc->raid_disk; 1157 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1158 /* active but not in sync implies recovery up to 1159 * reshape position. We don't know exactly where 1160 * that is, so set to zero for now */ 1161 if (mddev->minor_version >= 91) { 1162 rdev->recovery_offset = 0; 1163 rdev->raid_disk = desc->raid_disk; 1164 } 1165 } 1166 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1167 set_bit(WriteMostly, &rdev->flags); 1168 } else /* MULTIPATH are always insync */ 1169 set_bit(In_sync, &rdev->flags); 1170 return 0; 1171 } 1172 1173 /* 1174 * sync_super for 0.90.0 1175 */ 1176 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1177 { 1178 mdp_super_t *sb; 1179 mdk_rdev_t *rdev2; 1180 int next_spare = mddev->raid_disks; 1181 1182 1183 /* make rdev->sb match mddev data.. 1184 * 1185 * 1/ zero out disks 1186 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1187 * 3/ any empty disks < next_spare become removed 1188 * 1189 * disks[0] gets initialised to REMOVED because 1190 * we cannot be sure from other fields if it has 1191 * been initialised or not. 1192 */ 1193 int i; 1194 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1195 1196 rdev->sb_size = MD_SB_BYTES; 1197 1198 sb = (mdp_super_t*)page_address(rdev->sb_page); 1199 1200 memset(sb, 0, sizeof(*sb)); 1201 1202 sb->md_magic = MD_SB_MAGIC; 1203 sb->major_version = mddev->major_version; 1204 sb->patch_version = mddev->patch_version; 1205 sb->gvalid_words = 0; /* ignored */ 1206 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1207 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1208 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1209 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1210 1211 sb->ctime = mddev->ctime; 1212 sb->level = mddev->level; 1213 sb->size = mddev->dev_sectors / 2; 1214 sb->raid_disks = mddev->raid_disks; 1215 sb->md_minor = mddev->md_minor; 1216 sb->not_persistent = 0; 1217 sb->utime = mddev->utime; 1218 sb->state = 0; 1219 sb->events_hi = (mddev->events>>32); 1220 sb->events_lo = (u32)mddev->events; 1221 1222 if (mddev->reshape_position == MaxSector) 1223 sb->minor_version = 90; 1224 else { 1225 sb->minor_version = 91; 1226 sb->reshape_position = mddev->reshape_position; 1227 sb->new_level = mddev->new_level; 1228 sb->delta_disks = mddev->delta_disks; 1229 sb->new_layout = mddev->new_layout; 1230 sb->new_chunk = mddev->new_chunk_sectors << 9; 1231 } 1232 mddev->minor_version = sb->minor_version; 1233 if (mddev->in_sync) 1234 { 1235 sb->recovery_cp = mddev->recovery_cp; 1236 sb->cp_events_hi = (mddev->events>>32); 1237 sb->cp_events_lo = (u32)mddev->events; 1238 if (mddev->recovery_cp == MaxSector) 1239 sb->state = (1<< MD_SB_CLEAN); 1240 } else 1241 sb->recovery_cp = 0; 1242 1243 sb->layout = mddev->layout; 1244 sb->chunk_size = mddev->chunk_sectors << 9; 1245 1246 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1247 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1248 1249 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1250 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1251 mdp_disk_t *d; 1252 int desc_nr; 1253 int is_active = test_bit(In_sync, &rdev2->flags); 1254 1255 if (rdev2->raid_disk >= 0 && 1256 sb->minor_version >= 91) 1257 /* we have nowhere to store the recovery_offset, 1258 * but if it is not below the reshape_position, 1259 * we can piggy-back on that. 1260 */ 1261 is_active = 1; 1262 if (rdev2->raid_disk < 0 || 1263 test_bit(Faulty, &rdev2->flags)) 1264 is_active = 0; 1265 if (is_active) 1266 desc_nr = rdev2->raid_disk; 1267 else 1268 desc_nr = next_spare++; 1269 rdev2->desc_nr = desc_nr; 1270 d = &sb->disks[rdev2->desc_nr]; 1271 nr_disks++; 1272 d->number = rdev2->desc_nr; 1273 d->major = MAJOR(rdev2->bdev->bd_dev); 1274 d->minor = MINOR(rdev2->bdev->bd_dev); 1275 if (is_active) 1276 d->raid_disk = rdev2->raid_disk; 1277 else 1278 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1279 if (test_bit(Faulty, &rdev2->flags)) 1280 d->state = (1<<MD_DISK_FAULTY); 1281 else if (is_active) { 1282 d->state = (1<<MD_DISK_ACTIVE); 1283 if (test_bit(In_sync, &rdev2->flags)) 1284 d->state |= (1<<MD_DISK_SYNC); 1285 active++; 1286 working++; 1287 } else { 1288 d->state = 0; 1289 spare++; 1290 working++; 1291 } 1292 if (test_bit(WriteMostly, &rdev2->flags)) 1293 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1294 } 1295 /* now set the "removed" and "faulty" bits on any missing devices */ 1296 for (i=0 ; i < mddev->raid_disks ; i++) { 1297 mdp_disk_t *d = &sb->disks[i]; 1298 if (d->state == 0 && d->number == 0) { 1299 d->number = i; 1300 d->raid_disk = i; 1301 d->state = (1<<MD_DISK_REMOVED); 1302 d->state |= (1<<MD_DISK_FAULTY); 1303 failed++; 1304 } 1305 } 1306 sb->nr_disks = nr_disks; 1307 sb->active_disks = active; 1308 sb->working_disks = working; 1309 sb->failed_disks = failed; 1310 sb->spare_disks = spare; 1311 1312 sb->this_disk = sb->disks[rdev->desc_nr]; 1313 sb->sb_csum = calc_sb_csum(sb); 1314 } 1315 1316 /* 1317 * rdev_size_change for 0.90.0 1318 */ 1319 static unsigned long long 1320 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1321 { 1322 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1323 return 0; /* component must fit device */ 1324 if (rdev->mddev->bitmap_info.offset) 1325 return 0; /* can't move bitmap */ 1326 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 1327 if (!num_sectors || num_sectors > rdev->sb_start) 1328 num_sectors = rdev->sb_start; 1329 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1330 rdev->sb_page); 1331 md_super_wait(rdev->mddev); 1332 return num_sectors / 2; /* kB for sysfs */ 1333 } 1334 1335 1336 /* 1337 * version 1 superblock 1338 */ 1339 1340 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1341 { 1342 __le32 disk_csum; 1343 u32 csum; 1344 unsigned long long newcsum; 1345 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1346 __le32 *isuper = (__le32*)sb; 1347 int i; 1348 1349 disk_csum = sb->sb_csum; 1350 sb->sb_csum = 0; 1351 newcsum = 0; 1352 for (i=0; size>=4; size -= 4 ) 1353 newcsum += le32_to_cpu(*isuper++); 1354 1355 if (size == 2) 1356 newcsum += le16_to_cpu(*(__le16*) isuper); 1357 1358 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1359 sb->sb_csum = disk_csum; 1360 return cpu_to_le32(csum); 1361 } 1362 1363 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1364 { 1365 struct mdp_superblock_1 *sb; 1366 int ret; 1367 sector_t sb_start; 1368 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1369 int bmask; 1370 1371 /* 1372 * Calculate the position of the superblock in 512byte sectors. 1373 * It is always aligned to a 4K boundary and 1374 * depeding on minor_version, it can be: 1375 * 0: At least 8K, but less than 12K, from end of device 1376 * 1: At start of device 1377 * 2: 4K from start of device. 1378 */ 1379 switch(minor_version) { 1380 case 0: 1381 sb_start = rdev->bdev->bd_inode->i_size >> 9; 1382 sb_start -= 8*2; 1383 sb_start &= ~(sector_t)(4*2-1); 1384 break; 1385 case 1: 1386 sb_start = 0; 1387 break; 1388 case 2: 1389 sb_start = 8; 1390 break; 1391 default: 1392 return -EINVAL; 1393 } 1394 rdev->sb_start = sb_start; 1395 1396 /* superblock is rarely larger than 1K, but it can be larger, 1397 * and it is safe to read 4k, so we do that 1398 */ 1399 ret = read_disk_sb(rdev, 4096); 1400 if (ret) return ret; 1401 1402 1403 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1404 1405 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1406 sb->major_version != cpu_to_le32(1) || 1407 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1408 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1409 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1410 return -EINVAL; 1411 1412 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1413 printk("md: invalid superblock checksum on %s\n", 1414 bdevname(rdev->bdev,b)); 1415 return -EINVAL; 1416 } 1417 if (le64_to_cpu(sb->data_size) < 10) { 1418 printk("md: data_size too small on %s\n", 1419 bdevname(rdev->bdev,b)); 1420 return -EINVAL; 1421 } 1422 1423 rdev->preferred_minor = 0xffff; 1424 rdev->data_offset = le64_to_cpu(sb->data_offset); 1425 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1426 1427 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1428 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1429 if (rdev->sb_size & bmask) 1430 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1431 1432 if (minor_version 1433 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1434 return -EINVAL; 1435 1436 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1437 rdev->desc_nr = -1; 1438 else 1439 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1440 1441 if (!refdev) { 1442 ret = 1; 1443 } else { 1444 __u64 ev1, ev2; 1445 struct mdp_superblock_1 *refsb = 1446 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1447 1448 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1449 sb->level != refsb->level || 1450 sb->layout != refsb->layout || 1451 sb->chunksize != refsb->chunksize) { 1452 printk(KERN_WARNING "md: %s has strangely different" 1453 " superblock to %s\n", 1454 bdevname(rdev->bdev,b), 1455 bdevname(refdev->bdev,b2)); 1456 return -EINVAL; 1457 } 1458 ev1 = le64_to_cpu(sb->events); 1459 ev2 = le64_to_cpu(refsb->events); 1460 1461 if (ev1 > ev2) 1462 ret = 1; 1463 else 1464 ret = 0; 1465 } 1466 if (minor_version) 1467 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) - 1468 le64_to_cpu(sb->data_offset); 1469 else 1470 rdev->sectors = rdev->sb_start; 1471 if (rdev->sectors < le64_to_cpu(sb->data_size)) 1472 return -EINVAL; 1473 rdev->sectors = le64_to_cpu(sb->data_size); 1474 if (le64_to_cpu(sb->size) > rdev->sectors) 1475 return -EINVAL; 1476 return ret; 1477 } 1478 1479 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1480 { 1481 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1482 __u64 ev1 = le64_to_cpu(sb->events); 1483 1484 rdev->raid_disk = -1; 1485 clear_bit(Faulty, &rdev->flags); 1486 clear_bit(In_sync, &rdev->flags); 1487 clear_bit(WriteMostly, &rdev->flags); 1488 clear_bit(BarriersNotsupp, &rdev->flags); 1489 1490 if (mddev->raid_disks == 0) { 1491 mddev->major_version = 1; 1492 mddev->patch_version = 0; 1493 mddev->external = 0; 1494 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1495 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1496 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1497 mddev->level = le32_to_cpu(sb->level); 1498 mddev->clevel[0] = 0; 1499 mddev->layout = le32_to_cpu(sb->layout); 1500 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1501 mddev->dev_sectors = le64_to_cpu(sb->size); 1502 mddev->events = ev1; 1503 mddev->bitmap_info.offset = 0; 1504 mddev->bitmap_info.default_offset = 1024 >> 9; 1505 1506 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1507 memcpy(mddev->uuid, sb->set_uuid, 16); 1508 1509 mddev->max_disks = (4096-256)/2; 1510 1511 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1512 mddev->bitmap_info.file == NULL ) 1513 mddev->bitmap_info.offset = 1514 (__s32)le32_to_cpu(sb->bitmap_offset); 1515 1516 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1517 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1518 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1519 mddev->new_level = le32_to_cpu(sb->new_level); 1520 mddev->new_layout = le32_to_cpu(sb->new_layout); 1521 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1522 } else { 1523 mddev->reshape_position = MaxSector; 1524 mddev->delta_disks = 0; 1525 mddev->new_level = mddev->level; 1526 mddev->new_layout = mddev->layout; 1527 mddev->new_chunk_sectors = mddev->chunk_sectors; 1528 } 1529 1530 } else if (mddev->pers == NULL) { 1531 /* Insist of good event counter while assembling, except for 1532 * spares (which don't need an event count) */ 1533 ++ev1; 1534 if (rdev->desc_nr >= 0 && 1535 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1536 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1537 if (ev1 < mddev->events) 1538 return -EINVAL; 1539 } else if (mddev->bitmap) { 1540 /* If adding to array with a bitmap, then we can accept an 1541 * older device, but not too old. 1542 */ 1543 if (ev1 < mddev->bitmap->events_cleared) 1544 return 0; 1545 } else { 1546 if (ev1 < mddev->events) 1547 /* just a hot-add of a new device, leave raid_disk at -1 */ 1548 return 0; 1549 } 1550 if (mddev->level != LEVEL_MULTIPATH) { 1551 int role; 1552 if (rdev->desc_nr < 0 || 1553 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1554 role = 0xffff; 1555 rdev->desc_nr = -1; 1556 } else 1557 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1558 switch(role) { 1559 case 0xffff: /* spare */ 1560 break; 1561 case 0xfffe: /* faulty */ 1562 set_bit(Faulty, &rdev->flags); 1563 break; 1564 default: 1565 if ((le32_to_cpu(sb->feature_map) & 1566 MD_FEATURE_RECOVERY_OFFSET)) 1567 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1568 else 1569 set_bit(In_sync, &rdev->flags); 1570 rdev->raid_disk = role; 1571 break; 1572 } 1573 if (sb->devflags & WriteMostly1) 1574 set_bit(WriteMostly, &rdev->flags); 1575 } else /* MULTIPATH are always insync */ 1576 set_bit(In_sync, &rdev->flags); 1577 1578 return 0; 1579 } 1580 1581 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1582 { 1583 struct mdp_superblock_1 *sb; 1584 mdk_rdev_t *rdev2; 1585 int max_dev, i; 1586 /* make rdev->sb match mddev and rdev data. */ 1587 1588 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1589 1590 sb->feature_map = 0; 1591 sb->pad0 = 0; 1592 sb->recovery_offset = cpu_to_le64(0); 1593 memset(sb->pad1, 0, sizeof(sb->pad1)); 1594 memset(sb->pad2, 0, sizeof(sb->pad2)); 1595 memset(sb->pad3, 0, sizeof(sb->pad3)); 1596 1597 sb->utime = cpu_to_le64((__u64)mddev->utime); 1598 sb->events = cpu_to_le64(mddev->events); 1599 if (mddev->in_sync) 1600 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1601 else 1602 sb->resync_offset = cpu_to_le64(0); 1603 1604 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1605 1606 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1607 sb->size = cpu_to_le64(mddev->dev_sectors); 1608 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1609 sb->level = cpu_to_le32(mddev->level); 1610 sb->layout = cpu_to_le32(mddev->layout); 1611 1612 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1613 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1614 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1615 } 1616 1617 if (rdev->raid_disk >= 0 && 1618 !test_bit(In_sync, &rdev->flags)) { 1619 sb->feature_map |= 1620 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1621 sb->recovery_offset = 1622 cpu_to_le64(rdev->recovery_offset); 1623 } 1624 1625 if (mddev->reshape_position != MaxSector) { 1626 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1627 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1628 sb->new_layout = cpu_to_le32(mddev->new_layout); 1629 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1630 sb->new_level = cpu_to_le32(mddev->new_level); 1631 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1632 } 1633 1634 max_dev = 0; 1635 list_for_each_entry(rdev2, &mddev->disks, same_set) 1636 if (rdev2->desc_nr+1 > max_dev) 1637 max_dev = rdev2->desc_nr+1; 1638 1639 if (max_dev > le32_to_cpu(sb->max_dev)) { 1640 int bmask; 1641 sb->max_dev = cpu_to_le32(max_dev); 1642 rdev->sb_size = max_dev * 2 + 256; 1643 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1644 if (rdev->sb_size & bmask) 1645 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1646 } 1647 for (i=0; i<max_dev;i++) 1648 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1649 1650 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1651 i = rdev2->desc_nr; 1652 if (test_bit(Faulty, &rdev2->flags)) 1653 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1654 else if (test_bit(In_sync, &rdev2->flags)) 1655 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1656 else if (rdev2->raid_disk >= 0) 1657 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1658 else 1659 sb->dev_roles[i] = cpu_to_le16(0xffff); 1660 } 1661 1662 sb->sb_csum = calc_sb_1_csum(sb); 1663 } 1664 1665 static unsigned long long 1666 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1667 { 1668 struct mdp_superblock_1 *sb; 1669 sector_t max_sectors; 1670 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1671 return 0; /* component must fit device */ 1672 if (rdev->sb_start < rdev->data_offset) { 1673 /* minor versions 1 and 2; superblock before data */ 1674 max_sectors = rdev->bdev->bd_inode->i_size >> 9; 1675 max_sectors -= rdev->data_offset; 1676 if (!num_sectors || num_sectors > max_sectors) 1677 num_sectors = max_sectors; 1678 } else if (rdev->mddev->bitmap_info.offset) { 1679 /* minor version 0 with bitmap we can't move */ 1680 return 0; 1681 } else { 1682 /* minor version 0; superblock after data */ 1683 sector_t sb_start; 1684 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2; 1685 sb_start &= ~(sector_t)(4*2 - 1); 1686 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1687 if (!num_sectors || num_sectors > max_sectors) 1688 num_sectors = max_sectors; 1689 rdev->sb_start = sb_start; 1690 } 1691 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page); 1692 sb->data_size = cpu_to_le64(num_sectors); 1693 sb->super_offset = rdev->sb_start; 1694 sb->sb_csum = calc_sb_1_csum(sb); 1695 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1696 rdev->sb_page); 1697 md_super_wait(rdev->mddev); 1698 return num_sectors / 2; /* kB for sysfs */ 1699 } 1700 1701 static struct super_type super_types[] = { 1702 [0] = { 1703 .name = "0.90.0", 1704 .owner = THIS_MODULE, 1705 .load_super = super_90_load, 1706 .validate_super = super_90_validate, 1707 .sync_super = super_90_sync, 1708 .rdev_size_change = super_90_rdev_size_change, 1709 }, 1710 [1] = { 1711 .name = "md-1", 1712 .owner = THIS_MODULE, 1713 .load_super = super_1_load, 1714 .validate_super = super_1_validate, 1715 .sync_super = super_1_sync, 1716 .rdev_size_change = super_1_rdev_size_change, 1717 }, 1718 }; 1719 1720 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1721 { 1722 mdk_rdev_t *rdev, *rdev2; 1723 1724 rcu_read_lock(); 1725 rdev_for_each_rcu(rdev, mddev1) 1726 rdev_for_each_rcu(rdev2, mddev2) 1727 if (rdev->bdev->bd_contains == 1728 rdev2->bdev->bd_contains) { 1729 rcu_read_unlock(); 1730 return 1; 1731 } 1732 rcu_read_unlock(); 1733 return 0; 1734 } 1735 1736 static LIST_HEAD(pending_raid_disks); 1737 1738 /* 1739 * Try to register data integrity profile for an mddev 1740 * 1741 * This is called when an array is started and after a disk has been kicked 1742 * from the array. It only succeeds if all working and active component devices 1743 * are integrity capable with matching profiles. 1744 */ 1745 int md_integrity_register(mddev_t *mddev) 1746 { 1747 mdk_rdev_t *rdev, *reference = NULL; 1748 1749 if (list_empty(&mddev->disks)) 1750 return 0; /* nothing to do */ 1751 if (blk_get_integrity(mddev->gendisk)) 1752 return 0; /* already registered */ 1753 list_for_each_entry(rdev, &mddev->disks, same_set) { 1754 /* skip spares and non-functional disks */ 1755 if (test_bit(Faulty, &rdev->flags)) 1756 continue; 1757 if (rdev->raid_disk < 0) 1758 continue; 1759 /* 1760 * If at least one rdev is not integrity capable, we can not 1761 * enable data integrity for the md device. 1762 */ 1763 if (!bdev_get_integrity(rdev->bdev)) 1764 return -EINVAL; 1765 if (!reference) { 1766 /* Use the first rdev as the reference */ 1767 reference = rdev; 1768 continue; 1769 } 1770 /* does this rdev's profile match the reference profile? */ 1771 if (blk_integrity_compare(reference->bdev->bd_disk, 1772 rdev->bdev->bd_disk) < 0) 1773 return -EINVAL; 1774 } 1775 /* 1776 * All component devices are integrity capable and have matching 1777 * profiles, register the common profile for the md device. 1778 */ 1779 if (blk_integrity_register(mddev->gendisk, 1780 bdev_get_integrity(reference->bdev)) != 0) { 1781 printk(KERN_ERR "md: failed to register integrity for %s\n", 1782 mdname(mddev)); 1783 return -EINVAL; 1784 } 1785 printk(KERN_NOTICE "md: data integrity on %s enabled\n", 1786 mdname(mddev)); 1787 return 0; 1788 } 1789 EXPORT_SYMBOL(md_integrity_register); 1790 1791 /* Disable data integrity if non-capable/non-matching disk is being added */ 1792 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 1793 { 1794 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); 1795 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk); 1796 1797 if (!bi_mddev) /* nothing to do */ 1798 return; 1799 if (rdev->raid_disk < 0) /* skip spares */ 1800 return; 1801 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 1802 rdev->bdev->bd_disk) >= 0) 1803 return; 1804 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 1805 blk_integrity_unregister(mddev->gendisk); 1806 } 1807 EXPORT_SYMBOL(md_integrity_add_rdev); 1808 1809 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1810 { 1811 char b[BDEVNAME_SIZE]; 1812 struct kobject *ko; 1813 char *s; 1814 int err; 1815 1816 if (rdev->mddev) { 1817 MD_BUG(); 1818 return -EINVAL; 1819 } 1820 1821 /* prevent duplicates */ 1822 if (find_rdev(mddev, rdev->bdev->bd_dev)) 1823 return -EEXIST; 1824 1825 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 1826 if (rdev->sectors && (mddev->dev_sectors == 0 || 1827 rdev->sectors < mddev->dev_sectors)) { 1828 if (mddev->pers) { 1829 /* Cannot change size, so fail 1830 * If mddev->level <= 0, then we don't care 1831 * about aligning sizes (e.g. linear) 1832 */ 1833 if (mddev->level > 0) 1834 return -ENOSPC; 1835 } else 1836 mddev->dev_sectors = rdev->sectors; 1837 } 1838 1839 /* Verify rdev->desc_nr is unique. 1840 * If it is -1, assign a free number, else 1841 * check number is not in use 1842 */ 1843 if (rdev->desc_nr < 0) { 1844 int choice = 0; 1845 if (mddev->pers) choice = mddev->raid_disks; 1846 while (find_rdev_nr(mddev, choice)) 1847 choice++; 1848 rdev->desc_nr = choice; 1849 } else { 1850 if (find_rdev_nr(mddev, rdev->desc_nr)) 1851 return -EBUSY; 1852 } 1853 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 1854 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 1855 mdname(mddev), mddev->max_disks); 1856 return -EBUSY; 1857 } 1858 bdevname(rdev->bdev,b); 1859 while ( (s=strchr(b, '/')) != NULL) 1860 *s = '!'; 1861 1862 rdev->mddev = mddev; 1863 printk(KERN_INFO "md: bind<%s>\n", b); 1864 1865 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 1866 goto fail; 1867 1868 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 1869 if (sysfs_create_link(&rdev->kobj, ko, "block")) 1870 /* failure here is OK */; 1871 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 1872 1873 list_add_rcu(&rdev->same_set, &mddev->disks); 1874 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk); 1875 1876 /* May as well allow recovery to be retried once */ 1877 mddev->recovery_disabled = 0; 1878 1879 return 0; 1880 1881 fail: 1882 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1883 b, mdname(mddev)); 1884 return err; 1885 } 1886 1887 static void md_delayed_delete(struct work_struct *ws) 1888 { 1889 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1890 kobject_del(&rdev->kobj); 1891 kobject_put(&rdev->kobj); 1892 } 1893 1894 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1895 { 1896 char b[BDEVNAME_SIZE]; 1897 if (!rdev->mddev) { 1898 MD_BUG(); 1899 return; 1900 } 1901 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1902 list_del_rcu(&rdev->same_set); 1903 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1904 rdev->mddev = NULL; 1905 sysfs_remove_link(&rdev->kobj, "block"); 1906 sysfs_put(rdev->sysfs_state); 1907 rdev->sysfs_state = NULL; 1908 /* We need to delay this, otherwise we can deadlock when 1909 * writing to 'remove' to "dev/state". We also need 1910 * to delay it due to rcu usage. 1911 */ 1912 synchronize_rcu(); 1913 INIT_WORK(&rdev->del_work, md_delayed_delete); 1914 kobject_get(&rdev->kobj); 1915 schedule_work(&rdev->del_work); 1916 } 1917 1918 /* 1919 * prevent the device from being mounted, repartitioned or 1920 * otherwise reused by a RAID array (or any other kernel 1921 * subsystem), by bd_claiming the device. 1922 */ 1923 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) 1924 { 1925 int err = 0; 1926 struct block_device *bdev; 1927 char b[BDEVNAME_SIZE]; 1928 1929 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1930 if (IS_ERR(bdev)) { 1931 printk(KERN_ERR "md: could not open %s.\n", 1932 __bdevname(dev, b)); 1933 return PTR_ERR(bdev); 1934 } 1935 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev); 1936 if (err) { 1937 printk(KERN_ERR "md: could not bd_claim %s.\n", 1938 bdevname(bdev, b)); 1939 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1940 return err; 1941 } 1942 if (!shared) 1943 set_bit(AllReserved, &rdev->flags); 1944 rdev->bdev = bdev; 1945 return err; 1946 } 1947 1948 static void unlock_rdev(mdk_rdev_t *rdev) 1949 { 1950 struct block_device *bdev = rdev->bdev; 1951 rdev->bdev = NULL; 1952 if (!bdev) 1953 MD_BUG(); 1954 bd_release(bdev); 1955 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1956 } 1957 1958 void md_autodetect_dev(dev_t dev); 1959 1960 static void export_rdev(mdk_rdev_t * rdev) 1961 { 1962 char b[BDEVNAME_SIZE]; 1963 printk(KERN_INFO "md: export_rdev(%s)\n", 1964 bdevname(rdev->bdev,b)); 1965 if (rdev->mddev) 1966 MD_BUG(); 1967 free_disk_sb(rdev); 1968 #ifndef MODULE 1969 if (test_bit(AutoDetected, &rdev->flags)) 1970 md_autodetect_dev(rdev->bdev->bd_dev); 1971 #endif 1972 unlock_rdev(rdev); 1973 kobject_put(&rdev->kobj); 1974 } 1975 1976 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1977 { 1978 unbind_rdev_from_array(rdev); 1979 export_rdev(rdev); 1980 } 1981 1982 static void export_array(mddev_t *mddev) 1983 { 1984 mdk_rdev_t *rdev, *tmp; 1985 1986 rdev_for_each(rdev, tmp, mddev) { 1987 if (!rdev->mddev) { 1988 MD_BUG(); 1989 continue; 1990 } 1991 kick_rdev_from_array(rdev); 1992 } 1993 if (!list_empty(&mddev->disks)) 1994 MD_BUG(); 1995 mddev->raid_disks = 0; 1996 mddev->major_version = 0; 1997 } 1998 1999 static void print_desc(mdp_disk_t *desc) 2000 { 2001 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2002 desc->major,desc->minor,desc->raid_disk,desc->state); 2003 } 2004 2005 static void print_sb_90(mdp_super_t *sb) 2006 { 2007 int i; 2008 2009 printk(KERN_INFO 2010 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2011 sb->major_version, sb->minor_version, sb->patch_version, 2012 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2013 sb->ctime); 2014 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2015 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2016 sb->md_minor, sb->layout, sb->chunk_size); 2017 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2018 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2019 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2020 sb->failed_disks, sb->spare_disks, 2021 sb->sb_csum, (unsigned long)sb->events_lo); 2022 2023 printk(KERN_INFO); 2024 for (i = 0; i < MD_SB_DISKS; i++) { 2025 mdp_disk_t *desc; 2026 2027 desc = sb->disks + i; 2028 if (desc->number || desc->major || desc->minor || 2029 desc->raid_disk || (desc->state && (desc->state != 4))) { 2030 printk(" D %2d: ", i); 2031 print_desc(desc); 2032 } 2033 } 2034 printk(KERN_INFO "md: THIS: "); 2035 print_desc(&sb->this_disk); 2036 } 2037 2038 static void print_sb_1(struct mdp_superblock_1 *sb) 2039 { 2040 __u8 *uuid; 2041 2042 uuid = sb->set_uuid; 2043 printk(KERN_INFO 2044 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2045 "md: Name: \"%s\" CT:%llu\n", 2046 le32_to_cpu(sb->major_version), 2047 le32_to_cpu(sb->feature_map), 2048 uuid, 2049 sb->set_name, 2050 (unsigned long long)le64_to_cpu(sb->ctime) 2051 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2052 2053 uuid = sb->device_uuid; 2054 printk(KERN_INFO 2055 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2056 " RO:%llu\n" 2057 "md: Dev:%08x UUID: %pU\n" 2058 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2059 "md: (MaxDev:%u) \n", 2060 le32_to_cpu(sb->level), 2061 (unsigned long long)le64_to_cpu(sb->size), 2062 le32_to_cpu(sb->raid_disks), 2063 le32_to_cpu(sb->layout), 2064 le32_to_cpu(sb->chunksize), 2065 (unsigned long long)le64_to_cpu(sb->data_offset), 2066 (unsigned long long)le64_to_cpu(sb->data_size), 2067 (unsigned long long)le64_to_cpu(sb->super_offset), 2068 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2069 le32_to_cpu(sb->dev_number), 2070 uuid, 2071 sb->devflags, 2072 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2073 (unsigned long long)le64_to_cpu(sb->events), 2074 (unsigned long long)le64_to_cpu(sb->resync_offset), 2075 le32_to_cpu(sb->sb_csum), 2076 le32_to_cpu(sb->max_dev) 2077 ); 2078 } 2079 2080 static void print_rdev(mdk_rdev_t *rdev, int major_version) 2081 { 2082 char b[BDEVNAME_SIZE]; 2083 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2084 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2085 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2086 rdev->desc_nr); 2087 if (rdev->sb_loaded) { 2088 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2089 switch (major_version) { 2090 case 0: 2091 print_sb_90((mdp_super_t*)page_address(rdev->sb_page)); 2092 break; 2093 case 1: 2094 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page)); 2095 break; 2096 } 2097 } else 2098 printk(KERN_INFO "md: no rdev superblock!\n"); 2099 } 2100 2101 static void md_print_devices(void) 2102 { 2103 struct list_head *tmp; 2104 mdk_rdev_t *rdev; 2105 mddev_t *mddev; 2106 char b[BDEVNAME_SIZE]; 2107 2108 printk("\n"); 2109 printk("md: **********************************\n"); 2110 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2111 printk("md: **********************************\n"); 2112 for_each_mddev(mddev, tmp) { 2113 2114 if (mddev->bitmap) 2115 bitmap_print_sb(mddev->bitmap); 2116 else 2117 printk("%s: ", mdname(mddev)); 2118 list_for_each_entry(rdev, &mddev->disks, same_set) 2119 printk("<%s>", bdevname(rdev->bdev,b)); 2120 printk("\n"); 2121 2122 list_for_each_entry(rdev, &mddev->disks, same_set) 2123 print_rdev(rdev, mddev->major_version); 2124 } 2125 printk("md: **********************************\n"); 2126 printk("\n"); 2127 } 2128 2129 2130 static void sync_sbs(mddev_t * mddev, int nospares) 2131 { 2132 /* Update each superblock (in-memory image), but 2133 * if we are allowed to, skip spares which already 2134 * have the right event counter, or have one earlier 2135 * (which would mean they aren't being marked as dirty 2136 * with the rest of the array) 2137 */ 2138 mdk_rdev_t *rdev; 2139 list_for_each_entry(rdev, &mddev->disks, same_set) { 2140 if (rdev->sb_events == mddev->events || 2141 (nospares && 2142 rdev->raid_disk < 0 && 2143 rdev->sb_events+1 == mddev->events)) { 2144 /* Don't update this superblock */ 2145 rdev->sb_loaded = 2; 2146 } else { 2147 super_types[mddev->major_version]. 2148 sync_super(mddev, rdev); 2149 rdev->sb_loaded = 1; 2150 } 2151 } 2152 } 2153 2154 static void md_update_sb(mddev_t * mddev, int force_change) 2155 { 2156 mdk_rdev_t *rdev; 2157 int sync_req; 2158 int nospares = 0; 2159 2160 repeat: 2161 /* First make sure individual recovery_offsets are correct */ 2162 list_for_each_entry(rdev, &mddev->disks, same_set) { 2163 if (rdev->raid_disk >= 0 && 2164 mddev->delta_disks >= 0 && 2165 !test_bit(In_sync, &rdev->flags) && 2166 mddev->curr_resync_completed > rdev->recovery_offset) 2167 rdev->recovery_offset = mddev->curr_resync_completed; 2168 2169 } 2170 if (mddev->external || !mddev->persistent) { 2171 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2172 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2173 wake_up(&mddev->sb_wait); 2174 return; 2175 } 2176 2177 spin_lock_irq(&mddev->write_lock); 2178 2179 mddev->utime = get_seconds(); 2180 2181 set_bit(MD_CHANGE_PENDING, &mddev->flags); 2182 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2183 force_change = 1; 2184 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2185 /* just a clean<-> dirty transition, possibly leave spares alone, 2186 * though if events isn't the right even/odd, we will have to do 2187 * spares after all 2188 */ 2189 nospares = 1; 2190 if (force_change) 2191 nospares = 0; 2192 if (mddev->degraded) 2193 /* If the array is degraded, then skipping spares is both 2194 * dangerous and fairly pointless. 2195 * Dangerous because a device that was removed from the array 2196 * might have a event_count that still looks up-to-date, 2197 * so it can be re-added without a resync. 2198 * Pointless because if there are any spares to skip, 2199 * then a recovery will happen and soon that array won't 2200 * be degraded any more and the spare can go back to sleep then. 2201 */ 2202 nospares = 0; 2203 2204 sync_req = mddev->in_sync; 2205 2206 /* If this is just a dirty<->clean transition, and the array is clean 2207 * and 'events' is odd, we can roll back to the previous clean state */ 2208 if (nospares 2209 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2210 && mddev->can_decrease_events 2211 && mddev->events != 1) { 2212 mddev->events--; 2213 mddev->can_decrease_events = 0; 2214 } else { 2215 /* otherwise we have to go forward and ... */ 2216 mddev->events ++; 2217 mddev->can_decrease_events = nospares; 2218 } 2219 2220 if (!mddev->events) { 2221 /* 2222 * oops, this 64-bit counter should never wrap. 2223 * Either we are in around ~1 trillion A.C., assuming 2224 * 1 reboot per second, or we have a bug: 2225 */ 2226 MD_BUG(); 2227 mddev->events --; 2228 } 2229 sync_sbs(mddev, nospares); 2230 spin_unlock_irq(&mddev->write_lock); 2231 2232 dprintk(KERN_INFO 2233 "md: updating %s RAID superblock on device (in sync %d)\n", 2234 mdname(mddev),mddev->in_sync); 2235 2236 bitmap_update_sb(mddev->bitmap); 2237 list_for_each_entry(rdev, &mddev->disks, same_set) { 2238 char b[BDEVNAME_SIZE]; 2239 dprintk(KERN_INFO "md: "); 2240 if (rdev->sb_loaded != 1) 2241 continue; /* no noise on spare devices */ 2242 if (test_bit(Faulty, &rdev->flags)) 2243 dprintk("(skipping faulty "); 2244 2245 dprintk("%s ", bdevname(rdev->bdev,b)); 2246 if (!test_bit(Faulty, &rdev->flags)) { 2247 md_super_write(mddev,rdev, 2248 rdev->sb_start, rdev->sb_size, 2249 rdev->sb_page); 2250 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 2251 bdevname(rdev->bdev,b), 2252 (unsigned long long)rdev->sb_start); 2253 rdev->sb_events = mddev->events; 2254 2255 } else 2256 dprintk(")\n"); 2257 if (mddev->level == LEVEL_MULTIPATH) 2258 /* only need to write one superblock... */ 2259 break; 2260 } 2261 md_super_wait(mddev); 2262 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2263 2264 spin_lock_irq(&mddev->write_lock); 2265 if (mddev->in_sync != sync_req || 2266 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2267 /* have to write it out again */ 2268 spin_unlock_irq(&mddev->write_lock); 2269 goto repeat; 2270 } 2271 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2272 spin_unlock_irq(&mddev->write_lock); 2273 wake_up(&mddev->sb_wait); 2274 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2275 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2276 2277 } 2278 2279 /* words written to sysfs files may, or may not, be \n terminated. 2280 * We want to accept with case. For this we use cmd_match. 2281 */ 2282 static int cmd_match(const char *cmd, const char *str) 2283 { 2284 /* See if cmd, written into a sysfs file, matches 2285 * str. They must either be the same, or cmd can 2286 * have a trailing newline 2287 */ 2288 while (*cmd && *str && *cmd == *str) { 2289 cmd++; 2290 str++; 2291 } 2292 if (*cmd == '\n') 2293 cmd++; 2294 if (*str || *cmd) 2295 return 0; 2296 return 1; 2297 } 2298 2299 struct rdev_sysfs_entry { 2300 struct attribute attr; 2301 ssize_t (*show)(mdk_rdev_t *, char *); 2302 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 2303 }; 2304 2305 static ssize_t 2306 state_show(mdk_rdev_t *rdev, char *page) 2307 { 2308 char *sep = ""; 2309 size_t len = 0; 2310 2311 if (test_bit(Faulty, &rdev->flags)) { 2312 len+= sprintf(page+len, "%sfaulty",sep); 2313 sep = ","; 2314 } 2315 if (test_bit(In_sync, &rdev->flags)) { 2316 len += sprintf(page+len, "%sin_sync",sep); 2317 sep = ","; 2318 } 2319 if (test_bit(WriteMostly, &rdev->flags)) { 2320 len += sprintf(page+len, "%swrite_mostly",sep); 2321 sep = ","; 2322 } 2323 if (test_bit(Blocked, &rdev->flags)) { 2324 len += sprintf(page+len, "%sblocked", sep); 2325 sep = ","; 2326 } 2327 if (!test_bit(Faulty, &rdev->flags) && 2328 !test_bit(In_sync, &rdev->flags)) { 2329 len += sprintf(page+len, "%sspare", sep); 2330 sep = ","; 2331 } 2332 return len+sprintf(page+len, "\n"); 2333 } 2334 2335 static ssize_t 2336 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2337 { 2338 /* can write 2339 * faulty - simulates and error 2340 * remove - disconnects the device 2341 * writemostly - sets write_mostly 2342 * -writemostly - clears write_mostly 2343 * blocked - sets the Blocked flag 2344 * -blocked - clears the Blocked flag 2345 * insync - sets Insync providing device isn't active 2346 */ 2347 int err = -EINVAL; 2348 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2349 md_error(rdev->mddev, rdev); 2350 err = 0; 2351 } else if (cmd_match(buf, "remove")) { 2352 if (rdev->raid_disk >= 0) 2353 err = -EBUSY; 2354 else { 2355 mddev_t *mddev = rdev->mddev; 2356 kick_rdev_from_array(rdev); 2357 if (mddev->pers) 2358 md_update_sb(mddev, 1); 2359 md_new_event(mddev); 2360 err = 0; 2361 } 2362 } else if (cmd_match(buf, "writemostly")) { 2363 set_bit(WriteMostly, &rdev->flags); 2364 err = 0; 2365 } else if (cmd_match(buf, "-writemostly")) { 2366 clear_bit(WriteMostly, &rdev->flags); 2367 err = 0; 2368 } else if (cmd_match(buf, "blocked")) { 2369 set_bit(Blocked, &rdev->flags); 2370 err = 0; 2371 } else if (cmd_match(buf, "-blocked")) { 2372 clear_bit(Blocked, &rdev->flags); 2373 wake_up(&rdev->blocked_wait); 2374 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2375 md_wakeup_thread(rdev->mddev->thread); 2376 2377 err = 0; 2378 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2379 set_bit(In_sync, &rdev->flags); 2380 err = 0; 2381 } 2382 if (!err) 2383 sysfs_notify_dirent_safe(rdev->sysfs_state); 2384 return err ? err : len; 2385 } 2386 static struct rdev_sysfs_entry rdev_state = 2387 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2388 2389 static ssize_t 2390 errors_show(mdk_rdev_t *rdev, char *page) 2391 { 2392 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2393 } 2394 2395 static ssize_t 2396 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2397 { 2398 char *e; 2399 unsigned long n = simple_strtoul(buf, &e, 10); 2400 if (*buf && (*e == 0 || *e == '\n')) { 2401 atomic_set(&rdev->corrected_errors, n); 2402 return len; 2403 } 2404 return -EINVAL; 2405 } 2406 static struct rdev_sysfs_entry rdev_errors = 2407 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2408 2409 static ssize_t 2410 slot_show(mdk_rdev_t *rdev, char *page) 2411 { 2412 if (rdev->raid_disk < 0) 2413 return sprintf(page, "none\n"); 2414 else 2415 return sprintf(page, "%d\n", rdev->raid_disk); 2416 } 2417 2418 static ssize_t 2419 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2420 { 2421 char *e; 2422 int err; 2423 char nm[20]; 2424 int slot = simple_strtoul(buf, &e, 10); 2425 if (strncmp(buf, "none", 4)==0) 2426 slot = -1; 2427 else if (e==buf || (*e && *e!= '\n')) 2428 return -EINVAL; 2429 if (rdev->mddev->pers && slot == -1) { 2430 /* Setting 'slot' on an active array requires also 2431 * updating the 'rd%d' link, and communicating 2432 * with the personality with ->hot_*_disk. 2433 * For now we only support removing 2434 * failed/spare devices. This normally happens automatically, 2435 * but not when the metadata is externally managed. 2436 */ 2437 if (rdev->raid_disk == -1) 2438 return -EEXIST; 2439 /* personality does all needed checks */ 2440 if (rdev->mddev->pers->hot_add_disk == NULL) 2441 return -EINVAL; 2442 err = rdev->mddev->pers-> 2443 hot_remove_disk(rdev->mddev, rdev->raid_disk); 2444 if (err) 2445 return err; 2446 sprintf(nm, "rd%d", rdev->raid_disk); 2447 sysfs_remove_link(&rdev->mddev->kobj, nm); 2448 rdev->raid_disk = -1; 2449 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2450 md_wakeup_thread(rdev->mddev->thread); 2451 } else if (rdev->mddev->pers) { 2452 mdk_rdev_t *rdev2; 2453 /* Activating a spare .. or possibly reactivating 2454 * if we ever get bitmaps working here. 2455 */ 2456 2457 if (rdev->raid_disk != -1) 2458 return -EBUSY; 2459 2460 if (rdev->mddev->pers->hot_add_disk == NULL) 2461 return -EINVAL; 2462 2463 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set) 2464 if (rdev2->raid_disk == slot) 2465 return -EEXIST; 2466 2467 rdev->raid_disk = slot; 2468 if (test_bit(In_sync, &rdev->flags)) 2469 rdev->saved_raid_disk = slot; 2470 else 2471 rdev->saved_raid_disk = -1; 2472 err = rdev->mddev->pers-> 2473 hot_add_disk(rdev->mddev, rdev); 2474 if (err) { 2475 rdev->raid_disk = -1; 2476 return err; 2477 } else 2478 sysfs_notify_dirent_safe(rdev->sysfs_state); 2479 sprintf(nm, "rd%d", rdev->raid_disk); 2480 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm)) 2481 /* failure here is OK */; 2482 /* don't wakeup anyone, leave that to userspace. */ 2483 } else { 2484 if (slot >= rdev->mddev->raid_disks) 2485 return -ENOSPC; 2486 rdev->raid_disk = slot; 2487 /* assume it is working */ 2488 clear_bit(Faulty, &rdev->flags); 2489 clear_bit(WriteMostly, &rdev->flags); 2490 set_bit(In_sync, &rdev->flags); 2491 sysfs_notify_dirent_safe(rdev->sysfs_state); 2492 } 2493 return len; 2494 } 2495 2496 2497 static struct rdev_sysfs_entry rdev_slot = 2498 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2499 2500 static ssize_t 2501 offset_show(mdk_rdev_t *rdev, char *page) 2502 { 2503 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2504 } 2505 2506 static ssize_t 2507 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2508 { 2509 char *e; 2510 unsigned long long offset = simple_strtoull(buf, &e, 10); 2511 if (e==buf || (*e && *e != '\n')) 2512 return -EINVAL; 2513 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2514 return -EBUSY; 2515 if (rdev->sectors && rdev->mddev->external) 2516 /* Must set offset before size, so overlap checks 2517 * can be sane */ 2518 return -EBUSY; 2519 rdev->data_offset = offset; 2520 return len; 2521 } 2522 2523 static struct rdev_sysfs_entry rdev_offset = 2524 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2525 2526 static ssize_t 2527 rdev_size_show(mdk_rdev_t *rdev, char *page) 2528 { 2529 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2530 } 2531 2532 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2533 { 2534 /* check if two start/length pairs overlap */ 2535 if (s1+l1 <= s2) 2536 return 0; 2537 if (s2+l2 <= s1) 2538 return 0; 2539 return 1; 2540 } 2541 2542 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2543 { 2544 unsigned long long blocks; 2545 sector_t new; 2546 2547 if (strict_strtoull(buf, 10, &blocks) < 0) 2548 return -EINVAL; 2549 2550 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2551 return -EINVAL; /* sector conversion overflow */ 2552 2553 new = blocks * 2; 2554 if (new != blocks * 2) 2555 return -EINVAL; /* unsigned long long to sector_t overflow */ 2556 2557 *sectors = new; 2558 return 0; 2559 } 2560 2561 static ssize_t 2562 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2563 { 2564 mddev_t *my_mddev = rdev->mddev; 2565 sector_t oldsectors = rdev->sectors; 2566 sector_t sectors; 2567 2568 if (strict_blocks_to_sectors(buf, §ors) < 0) 2569 return -EINVAL; 2570 if (my_mddev->pers && rdev->raid_disk >= 0) { 2571 if (my_mddev->persistent) { 2572 sectors = super_types[my_mddev->major_version]. 2573 rdev_size_change(rdev, sectors); 2574 if (!sectors) 2575 return -EBUSY; 2576 } else if (!sectors) 2577 sectors = (rdev->bdev->bd_inode->i_size >> 9) - 2578 rdev->data_offset; 2579 } 2580 if (sectors < my_mddev->dev_sectors) 2581 return -EINVAL; /* component must fit device */ 2582 2583 rdev->sectors = sectors; 2584 if (sectors > oldsectors && my_mddev->external) { 2585 /* need to check that all other rdevs with the same ->bdev 2586 * do not overlap. We need to unlock the mddev to avoid 2587 * a deadlock. We have already changed rdev->sectors, and if 2588 * we have to change it back, we will have the lock again. 2589 */ 2590 mddev_t *mddev; 2591 int overlap = 0; 2592 struct list_head *tmp; 2593 2594 mddev_unlock(my_mddev); 2595 for_each_mddev(mddev, tmp) { 2596 mdk_rdev_t *rdev2; 2597 2598 mddev_lock(mddev); 2599 list_for_each_entry(rdev2, &mddev->disks, same_set) 2600 if (test_bit(AllReserved, &rdev2->flags) || 2601 (rdev->bdev == rdev2->bdev && 2602 rdev != rdev2 && 2603 overlaps(rdev->data_offset, rdev->sectors, 2604 rdev2->data_offset, 2605 rdev2->sectors))) { 2606 overlap = 1; 2607 break; 2608 } 2609 mddev_unlock(mddev); 2610 if (overlap) { 2611 mddev_put(mddev); 2612 break; 2613 } 2614 } 2615 mddev_lock(my_mddev); 2616 if (overlap) { 2617 /* Someone else could have slipped in a size 2618 * change here, but doing so is just silly. 2619 * We put oldsectors back because we *know* it is 2620 * safe, and trust userspace not to race with 2621 * itself 2622 */ 2623 rdev->sectors = oldsectors; 2624 return -EBUSY; 2625 } 2626 } 2627 return len; 2628 } 2629 2630 static struct rdev_sysfs_entry rdev_size = 2631 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2632 2633 2634 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page) 2635 { 2636 unsigned long long recovery_start = rdev->recovery_offset; 2637 2638 if (test_bit(In_sync, &rdev->flags) || 2639 recovery_start == MaxSector) 2640 return sprintf(page, "none\n"); 2641 2642 return sprintf(page, "%llu\n", recovery_start); 2643 } 2644 2645 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2646 { 2647 unsigned long long recovery_start; 2648 2649 if (cmd_match(buf, "none")) 2650 recovery_start = MaxSector; 2651 else if (strict_strtoull(buf, 10, &recovery_start)) 2652 return -EINVAL; 2653 2654 if (rdev->mddev->pers && 2655 rdev->raid_disk >= 0) 2656 return -EBUSY; 2657 2658 rdev->recovery_offset = recovery_start; 2659 if (recovery_start == MaxSector) 2660 set_bit(In_sync, &rdev->flags); 2661 else 2662 clear_bit(In_sync, &rdev->flags); 2663 return len; 2664 } 2665 2666 static struct rdev_sysfs_entry rdev_recovery_start = 2667 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 2668 2669 static struct attribute *rdev_default_attrs[] = { 2670 &rdev_state.attr, 2671 &rdev_errors.attr, 2672 &rdev_slot.attr, 2673 &rdev_offset.attr, 2674 &rdev_size.attr, 2675 &rdev_recovery_start.attr, 2676 NULL, 2677 }; 2678 static ssize_t 2679 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2680 { 2681 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2682 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2683 mddev_t *mddev = rdev->mddev; 2684 ssize_t rv; 2685 2686 if (!entry->show) 2687 return -EIO; 2688 2689 rv = mddev ? mddev_lock(mddev) : -EBUSY; 2690 if (!rv) { 2691 if (rdev->mddev == NULL) 2692 rv = -EBUSY; 2693 else 2694 rv = entry->show(rdev, page); 2695 mddev_unlock(mddev); 2696 } 2697 return rv; 2698 } 2699 2700 static ssize_t 2701 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2702 const char *page, size_t length) 2703 { 2704 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2705 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2706 ssize_t rv; 2707 mddev_t *mddev = rdev->mddev; 2708 2709 if (!entry->store) 2710 return -EIO; 2711 if (!capable(CAP_SYS_ADMIN)) 2712 return -EACCES; 2713 rv = mddev ? mddev_lock(mddev): -EBUSY; 2714 if (!rv) { 2715 if (rdev->mddev == NULL) 2716 rv = -EBUSY; 2717 else 2718 rv = entry->store(rdev, page, length); 2719 mddev_unlock(mddev); 2720 } 2721 return rv; 2722 } 2723 2724 static void rdev_free(struct kobject *ko) 2725 { 2726 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 2727 kfree(rdev); 2728 } 2729 static const struct sysfs_ops rdev_sysfs_ops = { 2730 .show = rdev_attr_show, 2731 .store = rdev_attr_store, 2732 }; 2733 static struct kobj_type rdev_ktype = { 2734 .release = rdev_free, 2735 .sysfs_ops = &rdev_sysfs_ops, 2736 .default_attrs = rdev_default_attrs, 2737 }; 2738 2739 void md_rdev_init(mdk_rdev_t *rdev) 2740 { 2741 rdev->desc_nr = -1; 2742 rdev->saved_raid_disk = -1; 2743 rdev->raid_disk = -1; 2744 rdev->flags = 0; 2745 rdev->data_offset = 0; 2746 rdev->sb_events = 0; 2747 rdev->last_read_error.tv_sec = 0; 2748 rdev->last_read_error.tv_nsec = 0; 2749 atomic_set(&rdev->nr_pending, 0); 2750 atomic_set(&rdev->read_errors, 0); 2751 atomic_set(&rdev->corrected_errors, 0); 2752 2753 INIT_LIST_HEAD(&rdev->same_set); 2754 init_waitqueue_head(&rdev->blocked_wait); 2755 } 2756 EXPORT_SYMBOL_GPL(md_rdev_init); 2757 /* 2758 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2759 * 2760 * mark the device faulty if: 2761 * 2762 * - the device is nonexistent (zero size) 2763 * - the device has no valid superblock 2764 * 2765 * a faulty rdev _never_ has rdev->sb set. 2766 */ 2767 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2768 { 2769 char b[BDEVNAME_SIZE]; 2770 int err; 2771 mdk_rdev_t *rdev; 2772 sector_t size; 2773 2774 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2775 if (!rdev) { 2776 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2777 return ERR_PTR(-ENOMEM); 2778 } 2779 2780 md_rdev_init(rdev); 2781 if ((err = alloc_disk_sb(rdev))) 2782 goto abort_free; 2783 2784 err = lock_rdev(rdev, newdev, super_format == -2); 2785 if (err) 2786 goto abort_free; 2787 2788 kobject_init(&rdev->kobj, &rdev_ktype); 2789 2790 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2791 if (!size) { 2792 printk(KERN_WARNING 2793 "md: %s has zero or unknown size, marking faulty!\n", 2794 bdevname(rdev->bdev,b)); 2795 err = -EINVAL; 2796 goto abort_free; 2797 } 2798 2799 if (super_format >= 0) { 2800 err = super_types[super_format]. 2801 load_super(rdev, NULL, super_minor); 2802 if (err == -EINVAL) { 2803 printk(KERN_WARNING 2804 "md: %s does not have a valid v%d.%d " 2805 "superblock, not importing!\n", 2806 bdevname(rdev->bdev,b), 2807 super_format, super_minor); 2808 goto abort_free; 2809 } 2810 if (err < 0) { 2811 printk(KERN_WARNING 2812 "md: could not read %s's sb, not importing!\n", 2813 bdevname(rdev->bdev,b)); 2814 goto abort_free; 2815 } 2816 } 2817 2818 return rdev; 2819 2820 abort_free: 2821 if (rdev->sb_page) { 2822 if (rdev->bdev) 2823 unlock_rdev(rdev); 2824 free_disk_sb(rdev); 2825 } 2826 kfree(rdev); 2827 return ERR_PTR(err); 2828 } 2829 2830 /* 2831 * Check a full RAID array for plausibility 2832 */ 2833 2834 2835 static void analyze_sbs(mddev_t * mddev) 2836 { 2837 int i; 2838 mdk_rdev_t *rdev, *freshest, *tmp; 2839 char b[BDEVNAME_SIZE]; 2840 2841 freshest = NULL; 2842 rdev_for_each(rdev, tmp, mddev) 2843 switch (super_types[mddev->major_version]. 2844 load_super(rdev, freshest, mddev->minor_version)) { 2845 case 1: 2846 freshest = rdev; 2847 break; 2848 case 0: 2849 break; 2850 default: 2851 printk( KERN_ERR \ 2852 "md: fatal superblock inconsistency in %s" 2853 " -- removing from array\n", 2854 bdevname(rdev->bdev,b)); 2855 kick_rdev_from_array(rdev); 2856 } 2857 2858 2859 super_types[mddev->major_version]. 2860 validate_super(mddev, freshest); 2861 2862 i = 0; 2863 rdev_for_each(rdev, tmp, mddev) { 2864 if (mddev->max_disks && 2865 (rdev->desc_nr >= mddev->max_disks || 2866 i > mddev->max_disks)) { 2867 printk(KERN_WARNING 2868 "md: %s: %s: only %d devices permitted\n", 2869 mdname(mddev), bdevname(rdev->bdev, b), 2870 mddev->max_disks); 2871 kick_rdev_from_array(rdev); 2872 continue; 2873 } 2874 if (rdev != freshest) 2875 if (super_types[mddev->major_version]. 2876 validate_super(mddev, rdev)) { 2877 printk(KERN_WARNING "md: kicking non-fresh %s" 2878 " from array!\n", 2879 bdevname(rdev->bdev,b)); 2880 kick_rdev_from_array(rdev); 2881 continue; 2882 } 2883 if (mddev->level == LEVEL_MULTIPATH) { 2884 rdev->desc_nr = i++; 2885 rdev->raid_disk = rdev->desc_nr; 2886 set_bit(In_sync, &rdev->flags); 2887 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 2888 rdev->raid_disk = -1; 2889 clear_bit(In_sync, &rdev->flags); 2890 } 2891 } 2892 } 2893 2894 /* Read a fixed-point number. 2895 * Numbers in sysfs attributes should be in "standard" units where 2896 * possible, so time should be in seconds. 2897 * However we internally use a a much smaller unit such as 2898 * milliseconds or jiffies. 2899 * This function takes a decimal number with a possible fractional 2900 * component, and produces an integer which is the result of 2901 * multiplying that number by 10^'scale'. 2902 * all without any floating-point arithmetic. 2903 */ 2904 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 2905 { 2906 unsigned long result = 0; 2907 long decimals = -1; 2908 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 2909 if (*cp == '.') 2910 decimals = 0; 2911 else if (decimals < scale) { 2912 unsigned int value; 2913 value = *cp - '0'; 2914 result = result * 10 + value; 2915 if (decimals >= 0) 2916 decimals++; 2917 } 2918 cp++; 2919 } 2920 if (*cp == '\n') 2921 cp++; 2922 if (*cp) 2923 return -EINVAL; 2924 if (decimals < 0) 2925 decimals = 0; 2926 while (decimals < scale) { 2927 result *= 10; 2928 decimals ++; 2929 } 2930 *res = result; 2931 return 0; 2932 } 2933 2934 2935 static void md_safemode_timeout(unsigned long data); 2936 2937 static ssize_t 2938 safe_delay_show(mddev_t *mddev, char *page) 2939 { 2940 int msec = (mddev->safemode_delay*1000)/HZ; 2941 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2942 } 2943 static ssize_t 2944 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2945 { 2946 unsigned long msec; 2947 2948 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 2949 return -EINVAL; 2950 if (msec == 0) 2951 mddev->safemode_delay = 0; 2952 else { 2953 unsigned long old_delay = mddev->safemode_delay; 2954 mddev->safemode_delay = (msec*HZ)/1000; 2955 if (mddev->safemode_delay == 0) 2956 mddev->safemode_delay = 1; 2957 if (mddev->safemode_delay < old_delay) 2958 md_safemode_timeout((unsigned long)mddev); 2959 } 2960 return len; 2961 } 2962 static struct md_sysfs_entry md_safe_delay = 2963 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2964 2965 static ssize_t 2966 level_show(mddev_t *mddev, char *page) 2967 { 2968 struct mdk_personality *p = mddev->pers; 2969 if (p) 2970 return sprintf(page, "%s\n", p->name); 2971 else if (mddev->clevel[0]) 2972 return sprintf(page, "%s\n", mddev->clevel); 2973 else if (mddev->level != LEVEL_NONE) 2974 return sprintf(page, "%d\n", mddev->level); 2975 else 2976 return 0; 2977 } 2978 2979 static ssize_t 2980 level_store(mddev_t *mddev, const char *buf, size_t len) 2981 { 2982 char clevel[16]; 2983 ssize_t rv = len; 2984 struct mdk_personality *pers; 2985 long level; 2986 void *priv; 2987 mdk_rdev_t *rdev; 2988 2989 if (mddev->pers == NULL) { 2990 if (len == 0) 2991 return 0; 2992 if (len >= sizeof(mddev->clevel)) 2993 return -ENOSPC; 2994 strncpy(mddev->clevel, buf, len); 2995 if (mddev->clevel[len-1] == '\n') 2996 len--; 2997 mddev->clevel[len] = 0; 2998 mddev->level = LEVEL_NONE; 2999 return rv; 3000 } 3001 3002 /* request to change the personality. Need to ensure: 3003 * - array is not engaged in resync/recovery/reshape 3004 * - old personality can be suspended 3005 * - new personality will access other array. 3006 */ 3007 3008 if (mddev->sync_thread || 3009 mddev->reshape_position != MaxSector || 3010 mddev->sysfs_active) 3011 return -EBUSY; 3012 3013 if (!mddev->pers->quiesce) { 3014 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3015 mdname(mddev), mddev->pers->name); 3016 return -EINVAL; 3017 } 3018 3019 /* Now find the new personality */ 3020 if (len == 0 || len >= sizeof(clevel)) 3021 return -EINVAL; 3022 strncpy(clevel, buf, len); 3023 if (clevel[len-1] == '\n') 3024 len--; 3025 clevel[len] = 0; 3026 if (strict_strtol(clevel, 10, &level)) 3027 level = LEVEL_NONE; 3028 3029 if (request_module("md-%s", clevel) != 0) 3030 request_module("md-level-%s", clevel); 3031 spin_lock(&pers_lock); 3032 pers = find_pers(level, clevel); 3033 if (!pers || !try_module_get(pers->owner)) { 3034 spin_unlock(&pers_lock); 3035 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3036 return -EINVAL; 3037 } 3038 spin_unlock(&pers_lock); 3039 3040 if (pers == mddev->pers) { 3041 /* Nothing to do! */ 3042 module_put(pers->owner); 3043 return rv; 3044 } 3045 if (!pers->takeover) { 3046 module_put(pers->owner); 3047 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3048 mdname(mddev), clevel); 3049 return -EINVAL; 3050 } 3051 3052 list_for_each_entry(rdev, &mddev->disks, same_set) 3053 rdev->new_raid_disk = rdev->raid_disk; 3054 3055 /* ->takeover must set new_* and/or delta_disks 3056 * if it succeeds, and may set them when it fails. 3057 */ 3058 priv = pers->takeover(mddev); 3059 if (IS_ERR(priv)) { 3060 mddev->new_level = mddev->level; 3061 mddev->new_layout = mddev->layout; 3062 mddev->new_chunk_sectors = mddev->chunk_sectors; 3063 mddev->raid_disks -= mddev->delta_disks; 3064 mddev->delta_disks = 0; 3065 module_put(pers->owner); 3066 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3067 mdname(mddev), clevel); 3068 return PTR_ERR(priv); 3069 } 3070 3071 /* Looks like we have a winner */ 3072 mddev_suspend(mddev); 3073 mddev->pers->stop(mddev); 3074 3075 if (mddev->pers->sync_request == NULL && 3076 pers->sync_request != NULL) { 3077 /* need to add the md_redundancy_group */ 3078 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3079 printk(KERN_WARNING 3080 "md: cannot register extra attributes for %s\n", 3081 mdname(mddev)); 3082 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3083 } 3084 if (mddev->pers->sync_request != NULL && 3085 pers->sync_request == NULL) { 3086 /* need to remove the md_redundancy_group */ 3087 if (mddev->to_remove == NULL) 3088 mddev->to_remove = &md_redundancy_group; 3089 } 3090 3091 if (mddev->pers->sync_request == NULL && 3092 mddev->external) { 3093 /* We are converting from a no-redundancy array 3094 * to a redundancy array and metadata is managed 3095 * externally so we need to be sure that writes 3096 * won't block due to a need to transition 3097 * clean->dirty 3098 * until external management is started. 3099 */ 3100 mddev->in_sync = 0; 3101 mddev->safemode_delay = 0; 3102 mddev->safemode = 0; 3103 } 3104 3105 list_for_each_entry(rdev, &mddev->disks, same_set) { 3106 char nm[20]; 3107 if (rdev->raid_disk < 0) 3108 continue; 3109 if (rdev->new_raid_disk > mddev->raid_disks) 3110 rdev->new_raid_disk = -1; 3111 if (rdev->new_raid_disk == rdev->raid_disk) 3112 continue; 3113 sprintf(nm, "rd%d", rdev->raid_disk); 3114 sysfs_remove_link(&mddev->kobj, nm); 3115 } 3116 list_for_each_entry(rdev, &mddev->disks, same_set) { 3117 if (rdev->raid_disk < 0) 3118 continue; 3119 if (rdev->new_raid_disk == rdev->raid_disk) 3120 continue; 3121 rdev->raid_disk = rdev->new_raid_disk; 3122 if (rdev->raid_disk < 0) 3123 clear_bit(In_sync, &rdev->flags); 3124 else { 3125 char nm[20]; 3126 sprintf(nm, "rd%d", rdev->raid_disk); 3127 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 3128 printk("md: cannot register %s for %s after level change\n", 3129 nm, mdname(mddev)); 3130 } 3131 } 3132 3133 module_put(mddev->pers->owner); 3134 mddev->pers = pers; 3135 mddev->private = priv; 3136 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3137 mddev->level = mddev->new_level; 3138 mddev->layout = mddev->new_layout; 3139 mddev->chunk_sectors = mddev->new_chunk_sectors; 3140 mddev->delta_disks = 0; 3141 if (mddev->pers->sync_request == NULL) { 3142 /* this is now an array without redundancy, so 3143 * it must always be in_sync 3144 */ 3145 mddev->in_sync = 1; 3146 del_timer_sync(&mddev->safemode_timer); 3147 } 3148 pers->run(mddev); 3149 mddev_resume(mddev); 3150 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3151 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3152 md_wakeup_thread(mddev->thread); 3153 sysfs_notify(&mddev->kobj, NULL, "level"); 3154 md_new_event(mddev); 3155 return rv; 3156 } 3157 3158 static struct md_sysfs_entry md_level = 3159 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3160 3161 3162 static ssize_t 3163 layout_show(mddev_t *mddev, char *page) 3164 { 3165 /* just a number, not meaningful for all levels */ 3166 if (mddev->reshape_position != MaxSector && 3167 mddev->layout != mddev->new_layout) 3168 return sprintf(page, "%d (%d)\n", 3169 mddev->new_layout, mddev->layout); 3170 return sprintf(page, "%d\n", mddev->layout); 3171 } 3172 3173 static ssize_t 3174 layout_store(mddev_t *mddev, const char *buf, size_t len) 3175 { 3176 char *e; 3177 unsigned long n = simple_strtoul(buf, &e, 10); 3178 3179 if (!*buf || (*e && *e != '\n')) 3180 return -EINVAL; 3181 3182 if (mddev->pers) { 3183 int err; 3184 if (mddev->pers->check_reshape == NULL) 3185 return -EBUSY; 3186 mddev->new_layout = n; 3187 err = mddev->pers->check_reshape(mddev); 3188 if (err) { 3189 mddev->new_layout = mddev->layout; 3190 return err; 3191 } 3192 } else { 3193 mddev->new_layout = n; 3194 if (mddev->reshape_position == MaxSector) 3195 mddev->layout = n; 3196 } 3197 return len; 3198 } 3199 static struct md_sysfs_entry md_layout = 3200 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3201 3202 3203 static ssize_t 3204 raid_disks_show(mddev_t *mddev, char *page) 3205 { 3206 if (mddev->raid_disks == 0) 3207 return 0; 3208 if (mddev->reshape_position != MaxSector && 3209 mddev->delta_disks != 0) 3210 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3211 mddev->raid_disks - mddev->delta_disks); 3212 return sprintf(page, "%d\n", mddev->raid_disks); 3213 } 3214 3215 static int update_raid_disks(mddev_t *mddev, int raid_disks); 3216 3217 static ssize_t 3218 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 3219 { 3220 char *e; 3221 int rv = 0; 3222 unsigned long n = simple_strtoul(buf, &e, 10); 3223 3224 if (!*buf || (*e && *e != '\n')) 3225 return -EINVAL; 3226 3227 if (mddev->pers) 3228 rv = update_raid_disks(mddev, n); 3229 else if (mddev->reshape_position != MaxSector) { 3230 int olddisks = mddev->raid_disks - mddev->delta_disks; 3231 mddev->delta_disks = n - olddisks; 3232 mddev->raid_disks = n; 3233 } else 3234 mddev->raid_disks = n; 3235 return rv ? rv : len; 3236 } 3237 static struct md_sysfs_entry md_raid_disks = 3238 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3239 3240 static ssize_t 3241 chunk_size_show(mddev_t *mddev, char *page) 3242 { 3243 if (mddev->reshape_position != MaxSector && 3244 mddev->chunk_sectors != mddev->new_chunk_sectors) 3245 return sprintf(page, "%d (%d)\n", 3246 mddev->new_chunk_sectors << 9, 3247 mddev->chunk_sectors << 9); 3248 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3249 } 3250 3251 static ssize_t 3252 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 3253 { 3254 char *e; 3255 unsigned long n = simple_strtoul(buf, &e, 10); 3256 3257 if (!*buf || (*e && *e != '\n')) 3258 return -EINVAL; 3259 3260 if (mddev->pers) { 3261 int err; 3262 if (mddev->pers->check_reshape == NULL) 3263 return -EBUSY; 3264 mddev->new_chunk_sectors = n >> 9; 3265 err = mddev->pers->check_reshape(mddev); 3266 if (err) { 3267 mddev->new_chunk_sectors = mddev->chunk_sectors; 3268 return err; 3269 } 3270 } else { 3271 mddev->new_chunk_sectors = n >> 9; 3272 if (mddev->reshape_position == MaxSector) 3273 mddev->chunk_sectors = n >> 9; 3274 } 3275 return len; 3276 } 3277 static struct md_sysfs_entry md_chunk_size = 3278 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3279 3280 static ssize_t 3281 resync_start_show(mddev_t *mddev, char *page) 3282 { 3283 if (mddev->recovery_cp == MaxSector) 3284 return sprintf(page, "none\n"); 3285 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3286 } 3287 3288 static ssize_t 3289 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 3290 { 3291 char *e; 3292 unsigned long long n = simple_strtoull(buf, &e, 10); 3293 3294 if (mddev->pers) 3295 return -EBUSY; 3296 if (cmd_match(buf, "none")) 3297 n = MaxSector; 3298 else if (!*buf || (*e && *e != '\n')) 3299 return -EINVAL; 3300 3301 mddev->recovery_cp = n; 3302 return len; 3303 } 3304 static struct md_sysfs_entry md_resync_start = 3305 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3306 3307 /* 3308 * The array state can be: 3309 * 3310 * clear 3311 * No devices, no size, no level 3312 * Equivalent to STOP_ARRAY ioctl 3313 * inactive 3314 * May have some settings, but array is not active 3315 * all IO results in error 3316 * When written, doesn't tear down array, but just stops it 3317 * suspended (not supported yet) 3318 * All IO requests will block. The array can be reconfigured. 3319 * Writing this, if accepted, will block until array is quiescent 3320 * readonly 3321 * no resync can happen. no superblocks get written. 3322 * write requests fail 3323 * read-auto 3324 * like readonly, but behaves like 'clean' on a write request. 3325 * 3326 * clean - no pending writes, but otherwise active. 3327 * When written to inactive array, starts without resync 3328 * If a write request arrives then 3329 * if metadata is known, mark 'dirty' and switch to 'active'. 3330 * if not known, block and switch to write-pending 3331 * If written to an active array that has pending writes, then fails. 3332 * active 3333 * fully active: IO and resync can be happening. 3334 * When written to inactive array, starts with resync 3335 * 3336 * write-pending 3337 * clean, but writes are blocked waiting for 'active' to be written. 3338 * 3339 * active-idle 3340 * like active, but no writes have been seen for a while (100msec). 3341 * 3342 */ 3343 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3344 write_pending, active_idle, bad_word}; 3345 static char *array_states[] = { 3346 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3347 "write-pending", "active-idle", NULL }; 3348 3349 static int match_word(const char *word, char **list) 3350 { 3351 int n; 3352 for (n=0; list[n]; n++) 3353 if (cmd_match(word, list[n])) 3354 break; 3355 return n; 3356 } 3357 3358 static ssize_t 3359 array_state_show(mddev_t *mddev, char *page) 3360 { 3361 enum array_state st = inactive; 3362 3363 if (mddev->pers) 3364 switch(mddev->ro) { 3365 case 1: 3366 st = readonly; 3367 break; 3368 case 2: 3369 st = read_auto; 3370 break; 3371 case 0: 3372 if (mddev->in_sync) 3373 st = clean; 3374 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 3375 st = write_pending; 3376 else if (mddev->safemode) 3377 st = active_idle; 3378 else 3379 st = active; 3380 } 3381 else { 3382 if (list_empty(&mddev->disks) && 3383 mddev->raid_disks == 0 && 3384 mddev->dev_sectors == 0) 3385 st = clear; 3386 else 3387 st = inactive; 3388 } 3389 return sprintf(page, "%s\n", array_states[st]); 3390 } 3391 3392 static int do_md_stop(mddev_t * mddev, int ro, int is_open); 3393 static int md_set_readonly(mddev_t * mddev, int is_open); 3394 static int do_md_run(mddev_t * mddev); 3395 static int restart_array(mddev_t *mddev); 3396 3397 static ssize_t 3398 array_state_store(mddev_t *mddev, const char *buf, size_t len) 3399 { 3400 int err = -EINVAL; 3401 enum array_state st = match_word(buf, array_states); 3402 switch(st) { 3403 case bad_word: 3404 break; 3405 case clear: 3406 /* stopping an active array */ 3407 if (atomic_read(&mddev->openers) > 0) 3408 return -EBUSY; 3409 err = do_md_stop(mddev, 0, 0); 3410 break; 3411 case inactive: 3412 /* stopping an active array */ 3413 if (mddev->pers) { 3414 if (atomic_read(&mddev->openers) > 0) 3415 return -EBUSY; 3416 err = do_md_stop(mddev, 2, 0); 3417 } else 3418 err = 0; /* already inactive */ 3419 break; 3420 case suspended: 3421 break; /* not supported yet */ 3422 case readonly: 3423 if (mddev->pers) 3424 err = md_set_readonly(mddev, 0); 3425 else { 3426 mddev->ro = 1; 3427 set_disk_ro(mddev->gendisk, 1); 3428 err = do_md_run(mddev); 3429 } 3430 break; 3431 case read_auto: 3432 if (mddev->pers) { 3433 if (mddev->ro == 0) 3434 err = md_set_readonly(mddev, 0); 3435 else if (mddev->ro == 1) 3436 err = restart_array(mddev); 3437 if (err == 0) { 3438 mddev->ro = 2; 3439 set_disk_ro(mddev->gendisk, 0); 3440 } 3441 } else { 3442 mddev->ro = 2; 3443 err = do_md_run(mddev); 3444 } 3445 break; 3446 case clean: 3447 if (mddev->pers) { 3448 restart_array(mddev); 3449 spin_lock_irq(&mddev->write_lock); 3450 if (atomic_read(&mddev->writes_pending) == 0) { 3451 if (mddev->in_sync == 0) { 3452 mddev->in_sync = 1; 3453 if (mddev->safemode == 1) 3454 mddev->safemode = 0; 3455 if (mddev->persistent) 3456 set_bit(MD_CHANGE_CLEAN, 3457 &mddev->flags); 3458 } 3459 err = 0; 3460 } else 3461 err = -EBUSY; 3462 spin_unlock_irq(&mddev->write_lock); 3463 } else 3464 err = -EINVAL; 3465 break; 3466 case active: 3467 if (mddev->pers) { 3468 restart_array(mddev); 3469 if (mddev->external) 3470 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 3471 wake_up(&mddev->sb_wait); 3472 err = 0; 3473 } else { 3474 mddev->ro = 0; 3475 set_disk_ro(mddev->gendisk, 0); 3476 err = do_md_run(mddev); 3477 } 3478 break; 3479 case write_pending: 3480 case active_idle: 3481 /* these cannot be set */ 3482 break; 3483 } 3484 if (err) 3485 return err; 3486 else { 3487 sysfs_notify_dirent_safe(mddev->sysfs_state); 3488 return len; 3489 } 3490 } 3491 static struct md_sysfs_entry md_array_state = 3492 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3493 3494 static ssize_t 3495 max_corrected_read_errors_show(mddev_t *mddev, char *page) { 3496 return sprintf(page, "%d\n", 3497 atomic_read(&mddev->max_corr_read_errors)); 3498 } 3499 3500 static ssize_t 3501 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len) 3502 { 3503 char *e; 3504 unsigned long n = simple_strtoul(buf, &e, 10); 3505 3506 if (*buf && (*e == 0 || *e == '\n')) { 3507 atomic_set(&mddev->max_corr_read_errors, n); 3508 return len; 3509 } 3510 return -EINVAL; 3511 } 3512 3513 static struct md_sysfs_entry max_corr_read_errors = 3514 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3515 max_corrected_read_errors_store); 3516 3517 static ssize_t 3518 null_show(mddev_t *mddev, char *page) 3519 { 3520 return -EINVAL; 3521 } 3522 3523 static ssize_t 3524 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 3525 { 3526 /* buf must be %d:%d\n? giving major and minor numbers */ 3527 /* The new device is added to the array. 3528 * If the array has a persistent superblock, we read the 3529 * superblock to initialise info and check validity. 3530 * Otherwise, only checking done is that in bind_rdev_to_array, 3531 * which mainly checks size. 3532 */ 3533 char *e; 3534 int major = simple_strtoul(buf, &e, 10); 3535 int minor; 3536 dev_t dev; 3537 mdk_rdev_t *rdev; 3538 int err; 3539 3540 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3541 return -EINVAL; 3542 minor = simple_strtoul(e+1, &e, 10); 3543 if (*e && *e != '\n') 3544 return -EINVAL; 3545 dev = MKDEV(major, minor); 3546 if (major != MAJOR(dev) || 3547 minor != MINOR(dev)) 3548 return -EOVERFLOW; 3549 3550 3551 if (mddev->persistent) { 3552 rdev = md_import_device(dev, mddev->major_version, 3553 mddev->minor_version); 3554 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3555 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3556 mdk_rdev_t, same_set); 3557 err = super_types[mddev->major_version] 3558 .load_super(rdev, rdev0, mddev->minor_version); 3559 if (err < 0) 3560 goto out; 3561 } 3562 } else if (mddev->external) 3563 rdev = md_import_device(dev, -2, -1); 3564 else 3565 rdev = md_import_device(dev, -1, -1); 3566 3567 if (IS_ERR(rdev)) 3568 return PTR_ERR(rdev); 3569 err = bind_rdev_to_array(rdev, mddev); 3570 out: 3571 if (err) 3572 export_rdev(rdev); 3573 return err ? err : len; 3574 } 3575 3576 static struct md_sysfs_entry md_new_device = 3577 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 3578 3579 static ssize_t 3580 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 3581 { 3582 char *end; 3583 unsigned long chunk, end_chunk; 3584 3585 if (!mddev->bitmap) 3586 goto out; 3587 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 3588 while (*buf) { 3589 chunk = end_chunk = simple_strtoul(buf, &end, 0); 3590 if (buf == end) break; 3591 if (*end == '-') { /* range */ 3592 buf = end + 1; 3593 end_chunk = simple_strtoul(buf, &end, 0); 3594 if (buf == end) break; 3595 } 3596 if (*end && !isspace(*end)) break; 3597 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 3598 buf = skip_spaces(end); 3599 } 3600 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 3601 out: 3602 return len; 3603 } 3604 3605 static struct md_sysfs_entry md_bitmap = 3606 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 3607 3608 static ssize_t 3609 size_show(mddev_t *mddev, char *page) 3610 { 3611 return sprintf(page, "%llu\n", 3612 (unsigned long long)mddev->dev_sectors / 2); 3613 } 3614 3615 static int update_size(mddev_t *mddev, sector_t num_sectors); 3616 3617 static ssize_t 3618 size_store(mddev_t *mddev, const char *buf, size_t len) 3619 { 3620 /* If array is inactive, we can reduce the component size, but 3621 * not increase it (except from 0). 3622 * If array is active, we can try an on-line resize 3623 */ 3624 sector_t sectors; 3625 int err = strict_blocks_to_sectors(buf, §ors); 3626 3627 if (err < 0) 3628 return err; 3629 if (mddev->pers) { 3630 err = update_size(mddev, sectors); 3631 md_update_sb(mddev, 1); 3632 } else { 3633 if (mddev->dev_sectors == 0 || 3634 mddev->dev_sectors > sectors) 3635 mddev->dev_sectors = sectors; 3636 else 3637 err = -ENOSPC; 3638 } 3639 return err ? err : len; 3640 } 3641 3642 static struct md_sysfs_entry md_size = 3643 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 3644 3645 3646 /* Metdata version. 3647 * This is one of 3648 * 'none' for arrays with no metadata (good luck...) 3649 * 'external' for arrays with externally managed metadata, 3650 * or N.M for internally known formats 3651 */ 3652 static ssize_t 3653 metadata_show(mddev_t *mddev, char *page) 3654 { 3655 if (mddev->persistent) 3656 return sprintf(page, "%d.%d\n", 3657 mddev->major_version, mddev->minor_version); 3658 else if (mddev->external) 3659 return sprintf(page, "external:%s\n", mddev->metadata_type); 3660 else 3661 return sprintf(page, "none\n"); 3662 } 3663 3664 static ssize_t 3665 metadata_store(mddev_t *mddev, const char *buf, size_t len) 3666 { 3667 int major, minor; 3668 char *e; 3669 /* Changing the details of 'external' metadata is 3670 * always permitted. Otherwise there must be 3671 * no devices attached to the array. 3672 */ 3673 if (mddev->external && strncmp(buf, "external:", 9) == 0) 3674 ; 3675 else if (!list_empty(&mddev->disks)) 3676 return -EBUSY; 3677 3678 if (cmd_match(buf, "none")) { 3679 mddev->persistent = 0; 3680 mddev->external = 0; 3681 mddev->major_version = 0; 3682 mddev->minor_version = 90; 3683 return len; 3684 } 3685 if (strncmp(buf, "external:", 9) == 0) { 3686 size_t namelen = len-9; 3687 if (namelen >= sizeof(mddev->metadata_type)) 3688 namelen = sizeof(mddev->metadata_type)-1; 3689 strncpy(mddev->metadata_type, buf+9, namelen); 3690 mddev->metadata_type[namelen] = 0; 3691 if (namelen && mddev->metadata_type[namelen-1] == '\n') 3692 mddev->metadata_type[--namelen] = 0; 3693 mddev->persistent = 0; 3694 mddev->external = 1; 3695 mddev->major_version = 0; 3696 mddev->minor_version = 90; 3697 return len; 3698 } 3699 major = simple_strtoul(buf, &e, 10); 3700 if (e==buf || *e != '.') 3701 return -EINVAL; 3702 buf = e+1; 3703 minor = simple_strtoul(buf, &e, 10); 3704 if (e==buf || (*e && *e != '\n') ) 3705 return -EINVAL; 3706 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 3707 return -ENOENT; 3708 mddev->major_version = major; 3709 mddev->minor_version = minor; 3710 mddev->persistent = 1; 3711 mddev->external = 0; 3712 return len; 3713 } 3714 3715 static struct md_sysfs_entry md_metadata = 3716 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 3717 3718 static ssize_t 3719 action_show(mddev_t *mddev, char *page) 3720 { 3721 char *type = "idle"; 3722 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3723 type = "frozen"; 3724 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3725 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 3726 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3727 type = "reshape"; 3728 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3729 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3730 type = "resync"; 3731 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 3732 type = "check"; 3733 else 3734 type = "repair"; 3735 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 3736 type = "recover"; 3737 } 3738 return sprintf(page, "%s\n", type); 3739 } 3740 3741 static ssize_t 3742 action_store(mddev_t *mddev, const char *page, size_t len) 3743 { 3744 if (!mddev->pers || !mddev->pers->sync_request) 3745 return -EINVAL; 3746 3747 if (cmd_match(page, "frozen")) 3748 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3749 else 3750 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3751 3752 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 3753 if (mddev->sync_thread) { 3754 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3755 md_unregister_thread(mddev->sync_thread); 3756 mddev->sync_thread = NULL; 3757 mddev->recovery = 0; 3758 } 3759 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3760 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 3761 return -EBUSY; 3762 else if (cmd_match(page, "resync")) 3763 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3764 else if (cmd_match(page, "recover")) { 3765 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3766 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3767 } else if (cmd_match(page, "reshape")) { 3768 int err; 3769 if (mddev->pers->start_reshape == NULL) 3770 return -EINVAL; 3771 err = mddev->pers->start_reshape(mddev); 3772 if (err) 3773 return err; 3774 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3775 } else { 3776 if (cmd_match(page, "check")) 3777 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3778 else if (!cmd_match(page, "repair")) 3779 return -EINVAL; 3780 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3781 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3782 } 3783 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3784 md_wakeup_thread(mddev->thread); 3785 sysfs_notify_dirent_safe(mddev->sysfs_action); 3786 return len; 3787 } 3788 3789 static ssize_t 3790 mismatch_cnt_show(mddev_t *mddev, char *page) 3791 { 3792 return sprintf(page, "%llu\n", 3793 (unsigned long long) mddev->resync_mismatches); 3794 } 3795 3796 static struct md_sysfs_entry md_scan_mode = 3797 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 3798 3799 3800 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 3801 3802 static ssize_t 3803 sync_min_show(mddev_t *mddev, char *page) 3804 { 3805 return sprintf(page, "%d (%s)\n", speed_min(mddev), 3806 mddev->sync_speed_min ? "local": "system"); 3807 } 3808 3809 static ssize_t 3810 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 3811 { 3812 int min; 3813 char *e; 3814 if (strncmp(buf, "system", 6)==0) { 3815 mddev->sync_speed_min = 0; 3816 return len; 3817 } 3818 min = simple_strtoul(buf, &e, 10); 3819 if (buf == e || (*e && *e != '\n') || min <= 0) 3820 return -EINVAL; 3821 mddev->sync_speed_min = min; 3822 return len; 3823 } 3824 3825 static struct md_sysfs_entry md_sync_min = 3826 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 3827 3828 static ssize_t 3829 sync_max_show(mddev_t *mddev, char *page) 3830 { 3831 return sprintf(page, "%d (%s)\n", speed_max(mddev), 3832 mddev->sync_speed_max ? "local": "system"); 3833 } 3834 3835 static ssize_t 3836 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 3837 { 3838 int max; 3839 char *e; 3840 if (strncmp(buf, "system", 6)==0) { 3841 mddev->sync_speed_max = 0; 3842 return len; 3843 } 3844 max = simple_strtoul(buf, &e, 10); 3845 if (buf == e || (*e && *e != '\n') || max <= 0) 3846 return -EINVAL; 3847 mddev->sync_speed_max = max; 3848 return len; 3849 } 3850 3851 static struct md_sysfs_entry md_sync_max = 3852 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 3853 3854 static ssize_t 3855 degraded_show(mddev_t *mddev, char *page) 3856 { 3857 return sprintf(page, "%d\n", mddev->degraded); 3858 } 3859 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 3860 3861 static ssize_t 3862 sync_force_parallel_show(mddev_t *mddev, char *page) 3863 { 3864 return sprintf(page, "%d\n", mddev->parallel_resync); 3865 } 3866 3867 static ssize_t 3868 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len) 3869 { 3870 long n; 3871 3872 if (strict_strtol(buf, 10, &n)) 3873 return -EINVAL; 3874 3875 if (n != 0 && n != 1) 3876 return -EINVAL; 3877 3878 mddev->parallel_resync = n; 3879 3880 if (mddev->sync_thread) 3881 wake_up(&resync_wait); 3882 3883 return len; 3884 } 3885 3886 /* force parallel resync, even with shared block devices */ 3887 static struct md_sysfs_entry md_sync_force_parallel = 3888 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 3889 sync_force_parallel_show, sync_force_parallel_store); 3890 3891 static ssize_t 3892 sync_speed_show(mddev_t *mddev, char *page) 3893 { 3894 unsigned long resync, dt, db; 3895 if (mddev->curr_resync == 0) 3896 return sprintf(page, "none\n"); 3897 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 3898 dt = (jiffies - mddev->resync_mark) / HZ; 3899 if (!dt) dt++; 3900 db = resync - mddev->resync_mark_cnt; 3901 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 3902 } 3903 3904 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 3905 3906 static ssize_t 3907 sync_completed_show(mddev_t *mddev, char *page) 3908 { 3909 unsigned long max_sectors, resync; 3910 3911 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3912 return sprintf(page, "none\n"); 3913 3914 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3915 max_sectors = mddev->resync_max_sectors; 3916 else 3917 max_sectors = mddev->dev_sectors; 3918 3919 resync = mddev->curr_resync_completed; 3920 return sprintf(page, "%lu / %lu\n", resync, max_sectors); 3921 } 3922 3923 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 3924 3925 static ssize_t 3926 min_sync_show(mddev_t *mddev, char *page) 3927 { 3928 return sprintf(page, "%llu\n", 3929 (unsigned long long)mddev->resync_min); 3930 } 3931 static ssize_t 3932 min_sync_store(mddev_t *mddev, const char *buf, size_t len) 3933 { 3934 unsigned long long min; 3935 if (strict_strtoull(buf, 10, &min)) 3936 return -EINVAL; 3937 if (min > mddev->resync_max) 3938 return -EINVAL; 3939 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3940 return -EBUSY; 3941 3942 /* Must be a multiple of chunk_size */ 3943 if (mddev->chunk_sectors) { 3944 sector_t temp = min; 3945 if (sector_div(temp, mddev->chunk_sectors)) 3946 return -EINVAL; 3947 } 3948 mddev->resync_min = min; 3949 3950 return len; 3951 } 3952 3953 static struct md_sysfs_entry md_min_sync = 3954 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 3955 3956 static ssize_t 3957 max_sync_show(mddev_t *mddev, char *page) 3958 { 3959 if (mddev->resync_max == MaxSector) 3960 return sprintf(page, "max\n"); 3961 else 3962 return sprintf(page, "%llu\n", 3963 (unsigned long long)mddev->resync_max); 3964 } 3965 static ssize_t 3966 max_sync_store(mddev_t *mddev, const char *buf, size_t len) 3967 { 3968 if (strncmp(buf, "max", 3) == 0) 3969 mddev->resync_max = MaxSector; 3970 else { 3971 unsigned long long max; 3972 if (strict_strtoull(buf, 10, &max)) 3973 return -EINVAL; 3974 if (max < mddev->resync_min) 3975 return -EINVAL; 3976 if (max < mddev->resync_max && 3977 mddev->ro == 0 && 3978 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3979 return -EBUSY; 3980 3981 /* Must be a multiple of chunk_size */ 3982 if (mddev->chunk_sectors) { 3983 sector_t temp = max; 3984 if (sector_div(temp, mddev->chunk_sectors)) 3985 return -EINVAL; 3986 } 3987 mddev->resync_max = max; 3988 } 3989 wake_up(&mddev->recovery_wait); 3990 return len; 3991 } 3992 3993 static struct md_sysfs_entry md_max_sync = 3994 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 3995 3996 static ssize_t 3997 suspend_lo_show(mddev_t *mddev, char *page) 3998 { 3999 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4000 } 4001 4002 static ssize_t 4003 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 4004 { 4005 char *e; 4006 unsigned long long new = simple_strtoull(buf, &e, 10); 4007 4008 if (mddev->pers == NULL || 4009 mddev->pers->quiesce == NULL) 4010 return -EINVAL; 4011 if (buf == e || (*e && *e != '\n')) 4012 return -EINVAL; 4013 if (new >= mddev->suspend_hi || 4014 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 4015 mddev->suspend_lo = new; 4016 mddev->pers->quiesce(mddev, 2); 4017 return len; 4018 } else 4019 return -EINVAL; 4020 } 4021 static struct md_sysfs_entry md_suspend_lo = 4022 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4023 4024 4025 static ssize_t 4026 suspend_hi_show(mddev_t *mddev, char *page) 4027 { 4028 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4029 } 4030 4031 static ssize_t 4032 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 4033 { 4034 char *e; 4035 unsigned long long new = simple_strtoull(buf, &e, 10); 4036 4037 if (mddev->pers == NULL || 4038 mddev->pers->quiesce == NULL) 4039 return -EINVAL; 4040 if (buf == e || (*e && *e != '\n')) 4041 return -EINVAL; 4042 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 4043 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 4044 mddev->suspend_hi = new; 4045 mddev->pers->quiesce(mddev, 1); 4046 mddev->pers->quiesce(mddev, 0); 4047 return len; 4048 } else 4049 return -EINVAL; 4050 } 4051 static struct md_sysfs_entry md_suspend_hi = 4052 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4053 4054 static ssize_t 4055 reshape_position_show(mddev_t *mddev, char *page) 4056 { 4057 if (mddev->reshape_position != MaxSector) 4058 return sprintf(page, "%llu\n", 4059 (unsigned long long)mddev->reshape_position); 4060 strcpy(page, "none\n"); 4061 return 5; 4062 } 4063 4064 static ssize_t 4065 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 4066 { 4067 char *e; 4068 unsigned long long new = simple_strtoull(buf, &e, 10); 4069 if (mddev->pers) 4070 return -EBUSY; 4071 if (buf == e || (*e && *e != '\n')) 4072 return -EINVAL; 4073 mddev->reshape_position = new; 4074 mddev->delta_disks = 0; 4075 mddev->new_level = mddev->level; 4076 mddev->new_layout = mddev->layout; 4077 mddev->new_chunk_sectors = mddev->chunk_sectors; 4078 return len; 4079 } 4080 4081 static struct md_sysfs_entry md_reshape_position = 4082 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4083 reshape_position_store); 4084 4085 static ssize_t 4086 array_size_show(mddev_t *mddev, char *page) 4087 { 4088 if (mddev->external_size) 4089 return sprintf(page, "%llu\n", 4090 (unsigned long long)mddev->array_sectors/2); 4091 else 4092 return sprintf(page, "default\n"); 4093 } 4094 4095 static ssize_t 4096 array_size_store(mddev_t *mddev, const char *buf, size_t len) 4097 { 4098 sector_t sectors; 4099 4100 if (strncmp(buf, "default", 7) == 0) { 4101 if (mddev->pers) 4102 sectors = mddev->pers->size(mddev, 0, 0); 4103 else 4104 sectors = mddev->array_sectors; 4105 4106 mddev->external_size = 0; 4107 } else { 4108 if (strict_blocks_to_sectors(buf, §ors) < 0) 4109 return -EINVAL; 4110 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4111 return -E2BIG; 4112 4113 mddev->external_size = 1; 4114 } 4115 4116 mddev->array_sectors = sectors; 4117 set_capacity(mddev->gendisk, mddev->array_sectors); 4118 if (mddev->pers) 4119 revalidate_disk(mddev->gendisk); 4120 4121 return len; 4122 } 4123 4124 static struct md_sysfs_entry md_array_size = 4125 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4126 array_size_store); 4127 4128 static struct attribute *md_default_attrs[] = { 4129 &md_level.attr, 4130 &md_layout.attr, 4131 &md_raid_disks.attr, 4132 &md_chunk_size.attr, 4133 &md_size.attr, 4134 &md_resync_start.attr, 4135 &md_metadata.attr, 4136 &md_new_device.attr, 4137 &md_safe_delay.attr, 4138 &md_array_state.attr, 4139 &md_reshape_position.attr, 4140 &md_array_size.attr, 4141 &max_corr_read_errors.attr, 4142 NULL, 4143 }; 4144 4145 static struct attribute *md_redundancy_attrs[] = { 4146 &md_scan_mode.attr, 4147 &md_mismatches.attr, 4148 &md_sync_min.attr, 4149 &md_sync_max.attr, 4150 &md_sync_speed.attr, 4151 &md_sync_force_parallel.attr, 4152 &md_sync_completed.attr, 4153 &md_min_sync.attr, 4154 &md_max_sync.attr, 4155 &md_suspend_lo.attr, 4156 &md_suspend_hi.attr, 4157 &md_bitmap.attr, 4158 &md_degraded.attr, 4159 NULL, 4160 }; 4161 static struct attribute_group md_redundancy_group = { 4162 .name = NULL, 4163 .attrs = md_redundancy_attrs, 4164 }; 4165 4166 4167 static ssize_t 4168 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4169 { 4170 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4171 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4172 ssize_t rv; 4173 4174 if (!entry->show) 4175 return -EIO; 4176 rv = mddev_lock(mddev); 4177 if (!rv) { 4178 rv = entry->show(mddev, page); 4179 mddev_unlock(mddev); 4180 } 4181 return rv; 4182 } 4183 4184 static ssize_t 4185 md_attr_store(struct kobject *kobj, struct attribute *attr, 4186 const char *page, size_t length) 4187 { 4188 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4189 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4190 ssize_t rv; 4191 4192 if (!entry->store) 4193 return -EIO; 4194 if (!capable(CAP_SYS_ADMIN)) 4195 return -EACCES; 4196 rv = mddev_lock(mddev); 4197 if (mddev->hold_active == UNTIL_IOCTL) 4198 mddev->hold_active = 0; 4199 if (!rv) { 4200 rv = entry->store(mddev, page, length); 4201 mddev_unlock(mddev); 4202 } 4203 return rv; 4204 } 4205 4206 static void md_free(struct kobject *ko) 4207 { 4208 mddev_t *mddev = container_of(ko, mddev_t, kobj); 4209 4210 if (mddev->sysfs_state) 4211 sysfs_put(mddev->sysfs_state); 4212 4213 if (mddev->gendisk) { 4214 del_gendisk(mddev->gendisk); 4215 put_disk(mddev->gendisk); 4216 } 4217 if (mddev->queue) 4218 blk_cleanup_queue(mddev->queue); 4219 4220 kfree(mddev); 4221 } 4222 4223 static const struct sysfs_ops md_sysfs_ops = { 4224 .show = md_attr_show, 4225 .store = md_attr_store, 4226 }; 4227 static struct kobj_type md_ktype = { 4228 .release = md_free, 4229 .sysfs_ops = &md_sysfs_ops, 4230 .default_attrs = md_default_attrs, 4231 }; 4232 4233 int mdp_major = 0; 4234 4235 static void mddev_delayed_delete(struct work_struct *ws) 4236 { 4237 mddev_t *mddev = container_of(ws, mddev_t, del_work); 4238 4239 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4240 kobject_del(&mddev->kobj); 4241 kobject_put(&mddev->kobj); 4242 } 4243 4244 static int md_alloc(dev_t dev, char *name) 4245 { 4246 static DEFINE_MUTEX(disks_mutex); 4247 mddev_t *mddev = mddev_find(dev); 4248 struct gendisk *disk; 4249 int partitioned; 4250 int shift; 4251 int unit; 4252 int error; 4253 4254 if (!mddev) 4255 return -ENODEV; 4256 4257 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4258 shift = partitioned ? MdpMinorShift : 0; 4259 unit = MINOR(mddev->unit) >> shift; 4260 4261 /* wait for any previous instance if this device 4262 * to be completed removed (mddev_delayed_delete). 4263 */ 4264 flush_scheduled_work(); 4265 4266 mutex_lock(&disks_mutex); 4267 error = -EEXIST; 4268 if (mddev->gendisk) 4269 goto abort; 4270 4271 if (name) { 4272 /* Need to ensure that 'name' is not a duplicate. 4273 */ 4274 mddev_t *mddev2; 4275 spin_lock(&all_mddevs_lock); 4276 4277 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4278 if (mddev2->gendisk && 4279 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4280 spin_unlock(&all_mddevs_lock); 4281 goto abort; 4282 } 4283 spin_unlock(&all_mddevs_lock); 4284 } 4285 4286 error = -ENOMEM; 4287 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4288 if (!mddev->queue) 4289 goto abort; 4290 mddev->queue->queuedata = mddev; 4291 4292 /* Can be unlocked because the queue is new: no concurrency */ 4293 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue); 4294 4295 blk_queue_make_request(mddev->queue, md_make_request); 4296 4297 disk = alloc_disk(1 << shift); 4298 if (!disk) { 4299 blk_cleanup_queue(mddev->queue); 4300 mddev->queue = NULL; 4301 goto abort; 4302 } 4303 disk->major = MAJOR(mddev->unit); 4304 disk->first_minor = unit << shift; 4305 if (name) 4306 strcpy(disk->disk_name, name); 4307 else if (partitioned) 4308 sprintf(disk->disk_name, "md_d%d", unit); 4309 else 4310 sprintf(disk->disk_name, "md%d", unit); 4311 disk->fops = &md_fops; 4312 disk->private_data = mddev; 4313 disk->queue = mddev->queue; 4314 /* Allow extended partitions. This makes the 4315 * 'mdp' device redundant, but we can't really 4316 * remove it now. 4317 */ 4318 disk->flags |= GENHD_FL_EXT_DEVT; 4319 add_disk(disk); 4320 mddev->gendisk = disk; 4321 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4322 &disk_to_dev(disk)->kobj, "%s", "md"); 4323 if (error) { 4324 /* This isn't possible, but as kobject_init_and_add is marked 4325 * __must_check, we must do something with the result 4326 */ 4327 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4328 disk->disk_name); 4329 error = 0; 4330 } 4331 if (mddev->kobj.sd && 4332 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4333 printk(KERN_DEBUG "pointless warning\n"); 4334 abort: 4335 mutex_unlock(&disks_mutex); 4336 if (!error && mddev->kobj.sd) { 4337 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4338 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4339 } 4340 mddev_put(mddev); 4341 return error; 4342 } 4343 4344 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4345 { 4346 md_alloc(dev, NULL); 4347 return NULL; 4348 } 4349 4350 static int add_named_array(const char *val, struct kernel_param *kp) 4351 { 4352 /* val must be "md_*" where * is not all digits. 4353 * We allocate an array with a large free minor number, and 4354 * set the name to val. val must not already be an active name. 4355 */ 4356 int len = strlen(val); 4357 char buf[DISK_NAME_LEN]; 4358 4359 while (len && val[len-1] == '\n') 4360 len--; 4361 if (len >= DISK_NAME_LEN) 4362 return -E2BIG; 4363 strlcpy(buf, val, len+1); 4364 if (strncmp(buf, "md_", 3) != 0) 4365 return -EINVAL; 4366 return md_alloc(0, buf); 4367 } 4368 4369 static void md_safemode_timeout(unsigned long data) 4370 { 4371 mddev_t *mddev = (mddev_t *) data; 4372 4373 if (!atomic_read(&mddev->writes_pending)) { 4374 mddev->safemode = 1; 4375 if (mddev->external) 4376 sysfs_notify_dirent_safe(mddev->sysfs_state); 4377 } 4378 md_wakeup_thread(mddev->thread); 4379 } 4380 4381 static int start_dirty_degraded; 4382 4383 int md_run(mddev_t *mddev) 4384 { 4385 int err; 4386 mdk_rdev_t *rdev; 4387 struct mdk_personality *pers; 4388 4389 if (list_empty(&mddev->disks)) 4390 /* cannot run an array with no devices.. */ 4391 return -EINVAL; 4392 4393 if (mddev->pers) 4394 return -EBUSY; 4395 /* Cannot run until previous stop completes properly */ 4396 if (mddev->sysfs_active) 4397 return -EBUSY; 4398 4399 /* 4400 * Analyze all RAID superblock(s) 4401 */ 4402 if (!mddev->raid_disks) { 4403 if (!mddev->persistent) 4404 return -EINVAL; 4405 analyze_sbs(mddev); 4406 } 4407 4408 if (mddev->level != LEVEL_NONE) 4409 request_module("md-level-%d", mddev->level); 4410 else if (mddev->clevel[0]) 4411 request_module("md-%s", mddev->clevel); 4412 4413 /* 4414 * Drop all container device buffers, from now on 4415 * the only valid external interface is through the md 4416 * device. 4417 */ 4418 list_for_each_entry(rdev, &mddev->disks, same_set) { 4419 if (test_bit(Faulty, &rdev->flags)) 4420 continue; 4421 sync_blockdev(rdev->bdev); 4422 invalidate_bdev(rdev->bdev); 4423 4424 /* perform some consistency tests on the device. 4425 * We don't want the data to overlap the metadata, 4426 * Internal Bitmap issues have been handled elsewhere. 4427 */ 4428 if (rdev->data_offset < rdev->sb_start) { 4429 if (mddev->dev_sectors && 4430 rdev->data_offset + mddev->dev_sectors 4431 > rdev->sb_start) { 4432 printk("md: %s: data overlaps metadata\n", 4433 mdname(mddev)); 4434 return -EINVAL; 4435 } 4436 } else { 4437 if (rdev->sb_start + rdev->sb_size/512 4438 > rdev->data_offset) { 4439 printk("md: %s: metadata overlaps data\n", 4440 mdname(mddev)); 4441 return -EINVAL; 4442 } 4443 } 4444 sysfs_notify_dirent_safe(rdev->sysfs_state); 4445 } 4446 4447 spin_lock(&pers_lock); 4448 pers = find_pers(mddev->level, mddev->clevel); 4449 if (!pers || !try_module_get(pers->owner)) { 4450 spin_unlock(&pers_lock); 4451 if (mddev->level != LEVEL_NONE) 4452 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 4453 mddev->level); 4454 else 4455 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 4456 mddev->clevel); 4457 return -EINVAL; 4458 } 4459 mddev->pers = pers; 4460 spin_unlock(&pers_lock); 4461 if (mddev->level != pers->level) { 4462 mddev->level = pers->level; 4463 mddev->new_level = pers->level; 4464 } 4465 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4466 4467 if (mddev->reshape_position != MaxSector && 4468 pers->start_reshape == NULL) { 4469 /* This personality cannot handle reshaping... */ 4470 mddev->pers = NULL; 4471 module_put(pers->owner); 4472 return -EINVAL; 4473 } 4474 4475 if (pers->sync_request) { 4476 /* Warn if this is a potentially silly 4477 * configuration. 4478 */ 4479 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4480 mdk_rdev_t *rdev2; 4481 int warned = 0; 4482 4483 list_for_each_entry(rdev, &mddev->disks, same_set) 4484 list_for_each_entry(rdev2, &mddev->disks, same_set) { 4485 if (rdev < rdev2 && 4486 rdev->bdev->bd_contains == 4487 rdev2->bdev->bd_contains) { 4488 printk(KERN_WARNING 4489 "%s: WARNING: %s appears to be" 4490 " on the same physical disk as" 4491 " %s.\n", 4492 mdname(mddev), 4493 bdevname(rdev->bdev,b), 4494 bdevname(rdev2->bdev,b2)); 4495 warned = 1; 4496 } 4497 } 4498 4499 if (warned) 4500 printk(KERN_WARNING 4501 "True protection against single-disk" 4502 " failure might be compromised.\n"); 4503 } 4504 4505 mddev->recovery = 0; 4506 /* may be over-ridden by personality */ 4507 mddev->resync_max_sectors = mddev->dev_sectors; 4508 4509 mddev->barriers_work = 1; 4510 mddev->ok_start_degraded = start_dirty_degraded; 4511 4512 if (start_readonly && mddev->ro == 0) 4513 mddev->ro = 2; /* read-only, but switch on first write */ 4514 4515 err = mddev->pers->run(mddev); 4516 if (err) 4517 printk(KERN_ERR "md: pers->run() failed ...\n"); 4518 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 4519 WARN_ONCE(!mddev->external_size, "%s: default size too small," 4520 " but 'external_size' not in effect?\n", __func__); 4521 printk(KERN_ERR 4522 "md: invalid array_size %llu > default size %llu\n", 4523 (unsigned long long)mddev->array_sectors / 2, 4524 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 4525 err = -EINVAL; 4526 mddev->pers->stop(mddev); 4527 } 4528 if (err == 0 && mddev->pers->sync_request) { 4529 err = bitmap_create(mddev); 4530 if (err) { 4531 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 4532 mdname(mddev), err); 4533 mddev->pers->stop(mddev); 4534 } 4535 } 4536 if (err) { 4537 module_put(mddev->pers->owner); 4538 mddev->pers = NULL; 4539 bitmap_destroy(mddev); 4540 return err; 4541 } 4542 if (mddev->pers->sync_request) { 4543 if (mddev->kobj.sd && 4544 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4545 printk(KERN_WARNING 4546 "md: cannot register extra attributes for %s\n", 4547 mdname(mddev)); 4548 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 4549 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 4550 mddev->ro = 0; 4551 4552 atomic_set(&mddev->writes_pending,0); 4553 atomic_set(&mddev->max_corr_read_errors, 4554 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 4555 mddev->safemode = 0; 4556 mddev->safemode_timer.function = md_safemode_timeout; 4557 mddev->safemode_timer.data = (unsigned long) mddev; 4558 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 4559 mddev->in_sync = 1; 4560 4561 list_for_each_entry(rdev, &mddev->disks, same_set) 4562 if (rdev->raid_disk >= 0) { 4563 char nm[20]; 4564 sprintf(nm, "rd%d", rdev->raid_disk); 4565 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 4566 /* failure here is OK */; 4567 } 4568 4569 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4570 4571 if (mddev->flags) 4572 md_update_sb(mddev, 0); 4573 4574 md_wakeup_thread(mddev->thread); 4575 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 4576 4577 md_new_event(mddev); 4578 sysfs_notify_dirent_safe(mddev->sysfs_state); 4579 sysfs_notify_dirent_safe(mddev->sysfs_action); 4580 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4581 return 0; 4582 } 4583 EXPORT_SYMBOL_GPL(md_run); 4584 4585 static int do_md_run(mddev_t *mddev) 4586 { 4587 int err; 4588 4589 err = md_run(mddev); 4590 if (err) 4591 goto out; 4592 err = bitmap_load(mddev); 4593 if (err) { 4594 bitmap_destroy(mddev); 4595 goto out; 4596 } 4597 set_capacity(mddev->gendisk, mddev->array_sectors); 4598 revalidate_disk(mddev->gendisk); 4599 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4600 out: 4601 return err; 4602 } 4603 4604 static int restart_array(mddev_t *mddev) 4605 { 4606 struct gendisk *disk = mddev->gendisk; 4607 4608 /* Complain if it has no devices */ 4609 if (list_empty(&mddev->disks)) 4610 return -ENXIO; 4611 if (!mddev->pers) 4612 return -EINVAL; 4613 if (!mddev->ro) 4614 return -EBUSY; 4615 mddev->safemode = 0; 4616 mddev->ro = 0; 4617 set_disk_ro(disk, 0); 4618 printk(KERN_INFO "md: %s switched to read-write mode.\n", 4619 mdname(mddev)); 4620 /* Kick recovery or resync if necessary */ 4621 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4622 md_wakeup_thread(mddev->thread); 4623 md_wakeup_thread(mddev->sync_thread); 4624 sysfs_notify_dirent_safe(mddev->sysfs_state); 4625 return 0; 4626 } 4627 4628 /* similar to deny_write_access, but accounts for our holding a reference 4629 * to the file ourselves */ 4630 static int deny_bitmap_write_access(struct file * file) 4631 { 4632 struct inode *inode = file->f_mapping->host; 4633 4634 spin_lock(&inode->i_lock); 4635 if (atomic_read(&inode->i_writecount) > 1) { 4636 spin_unlock(&inode->i_lock); 4637 return -ETXTBSY; 4638 } 4639 atomic_set(&inode->i_writecount, -1); 4640 spin_unlock(&inode->i_lock); 4641 4642 return 0; 4643 } 4644 4645 void restore_bitmap_write_access(struct file *file) 4646 { 4647 struct inode *inode = file->f_mapping->host; 4648 4649 spin_lock(&inode->i_lock); 4650 atomic_set(&inode->i_writecount, 1); 4651 spin_unlock(&inode->i_lock); 4652 } 4653 4654 static void md_clean(mddev_t *mddev) 4655 { 4656 mddev->array_sectors = 0; 4657 mddev->external_size = 0; 4658 mddev->dev_sectors = 0; 4659 mddev->raid_disks = 0; 4660 mddev->recovery_cp = 0; 4661 mddev->resync_min = 0; 4662 mddev->resync_max = MaxSector; 4663 mddev->reshape_position = MaxSector; 4664 mddev->external = 0; 4665 mddev->persistent = 0; 4666 mddev->level = LEVEL_NONE; 4667 mddev->clevel[0] = 0; 4668 mddev->flags = 0; 4669 mddev->ro = 0; 4670 mddev->metadata_type[0] = 0; 4671 mddev->chunk_sectors = 0; 4672 mddev->ctime = mddev->utime = 0; 4673 mddev->layout = 0; 4674 mddev->max_disks = 0; 4675 mddev->events = 0; 4676 mddev->can_decrease_events = 0; 4677 mddev->delta_disks = 0; 4678 mddev->new_level = LEVEL_NONE; 4679 mddev->new_layout = 0; 4680 mddev->new_chunk_sectors = 0; 4681 mddev->curr_resync = 0; 4682 mddev->resync_mismatches = 0; 4683 mddev->suspend_lo = mddev->suspend_hi = 0; 4684 mddev->sync_speed_min = mddev->sync_speed_max = 0; 4685 mddev->recovery = 0; 4686 mddev->in_sync = 0; 4687 mddev->degraded = 0; 4688 mddev->barriers_work = 0; 4689 mddev->safemode = 0; 4690 mddev->bitmap_info.offset = 0; 4691 mddev->bitmap_info.default_offset = 0; 4692 mddev->bitmap_info.chunksize = 0; 4693 mddev->bitmap_info.daemon_sleep = 0; 4694 mddev->bitmap_info.max_write_behind = 0; 4695 mddev->plug = NULL; 4696 } 4697 4698 void md_stop_writes(mddev_t *mddev) 4699 { 4700 if (mddev->sync_thread) { 4701 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4702 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4703 md_unregister_thread(mddev->sync_thread); 4704 mddev->sync_thread = NULL; 4705 } 4706 4707 del_timer_sync(&mddev->safemode_timer); 4708 4709 bitmap_flush(mddev); 4710 md_super_wait(mddev); 4711 4712 if (!mddev->in_sync || mddev->flags) { 4713 /* mark array as shutdown cleanly */ 4714 mddev->in_sync = 1; 4715 md_update_sb(mddev, 1); 4716 } 4717 } 4718 EXPORT_SYMBOL_GPL(md_stop_writes); 4719 4720 void md_stop(mddev_t *mddev) 4721 { 4722 mddev->pers->stop(mddev); 4723 if (mddev->pers->sync_request && mddev->to_remove == NULL) 4724 mddev->to_remove = &md_redundancy_group; 4725 module_put(mddev->pers->owner); 4726 mddev->pers = NULL; 4727 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4728 } 4729 EXPORT_SYMBOL_GPL(md_stop); 4730 4731 static int md_set_readonly(mddev_t *mddev, int is_open) 4732 { 4733 int err = 0; 4734 mutex_lock(&mddev->open_mutex); 4735 if (atomic_read(&mddev->openers) > is_open) { 4736 printk("md: %s still in use.\n",mdname(mddev)); 4737 err = -EBUSY; 4738 goto out; 4739 } 4740 if (mddev->pers) { 4741 md_stop_writes(mddev); 4742 4743 err = -ENXIO; 4744 if (mddev->ro==1) 4745 goto out; 4746 mddev->ro = 1; 4747 set_disk_ro(mddev->gendisk, 1); 4748 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4749 sysfs_notify_dirent_safe(mddev->sysfs_state); 4750 err = 0; 4751 } 4752 out: 4753 mutex_unlock(&mddev->open_mutex); 4754 return err; 4755 } 4756 4757 /* mode: 4758 * 0 - completely stop and dis-assemble array 4759 * 2 - stop but do not disassemble array 4760 */ 4761 static int do_md_stop(mddev_t * mddev, int mode, int is_open) 4762 { 4763 struct gendisk *disk = mddev->gendisk; 4764 mdk_rdev_t *rdev; 4765 4766 mutex_lock(&mddev->open_mutex); 4767 if (atomic_read(&mddev->openers) > is_open || 4768 mddev->sysfs_active) { 4769 printk("md: %s still in use.\n",mdname(mddev)); 4770 mutex_unlock(&mddev->open_mutex); 4771 return -EBUSY; 4772 } 4773 4774 if (mddev->pers) { 4775 if (mddev->ro) 4776 set_disk_ro(disk, 0); 4777 4778 md_stop_writes(mddev); 4779 md_stop(mddev); 4780 mddev->queue->merge_bvec_fn = NULL; 4781 mddev->queue->unplug_fn = NULL; 4782 mddev->queue->backing_dev_info.congested_fn = NULL; 4783 4784 /* tell userspace to handle 'inactive' */ 4785 sysfs_notify_dirent_safe(mddev->sysfs_state); 4786 4787 list_for_each_entry(rdev, &mddev->disks, same_set) 4788 if (rdev->raid_disk >= 0) { 4789 char nm[20]; 4790 sprintf(nm, "rd%d", rdev->raid_disk); 4791 sysfs_remove_link(&mddev->kobj, nm); 4792 } 4793 4794 set_capacity(disk, 0); 4795 mutex_unlock(&mddev->open_mutex); 4796 revalidate_disk(disk); 4797 4798 if (mddev->ro) 4799 mddev->ro = 0; 4800 } else 4801 mutex_unlock(&mddev->open_mutex); 4802 /* 4803 * Free resources if final stop 4804 */ 4805 if (mode == 0) { 4806 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 4807 4808 bitmap_destroy(mddev); 4809 if (mddev->bitmap_info.file) { 4810 restore_bitmap_write_access(mddev->bitmap_info.file); 4811 fput(mddev->bitmap_info.file); 4812 mddev->bitmap_info.file = NULL; 4813 } 4814 mddev->bitmap_info.offset = 0; 4815 4816 export_array(mddev); 4817 4818 md_clean(mddev); 4819 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4820 if (mddev->hold_active == UNTIL_STOP) 4821 mddev->hold_active = 0; 4822 } 4823 blk_integrity_unregister(disk); 4824 md_new_event(mddev); 4825 sysfs_notify_dirent_safe(mddev->sysfs_state); 4826 return 0; 4827 } 4828 4829 #ifndef MODULE 4830 static void autorun_array(mddev_t *mddev) 4831 { 4832 mdk_rdev_t *rdev; 4833 int err; 4834 4835 if (list_empty(&mddev->disks)) 4836 return; 4837 4838 printk(KERN_INFO "md: running: "); 4839 4840 list_for_each_entry(rdev, &mddev->disks, same_set) { 4841 char b[BDEVNAME_SIZE]; 4842 printk("<%s>", bdevname(rdev->bdev,b)); 4843 } 4844 printk("\n"); 4845 4846 err = do_md_run(mddev); 4847 if (err) { 4848 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 4849 do_md_stop(mddev, 0, 0); 4850 } 4851 } 4852 4853 /* 4854 * lets try to run arrays based on all disks that have arrived 4855 * until now. (those are in pending_raid_disks) 4856 * 4857 * the method: pick the first pending disk, collect all disks with 4858 * the same UUID, remove all from the pending list and put them into 4859 * the 'same_array' list. Then order this list based on superblock 4860 * update time (freshest comes first), kick out 'old' disks and 4861 * compare superblocks. If everything's fine then run it. 4862 * 4863 * If "unit" is allocated, then bump its reference count 4864 */ 4865 static void autorun_devices(int part) 4866 { 4867 mdk_rdev_t *rdev0, *rdev, *tmp; 4868 mddev_t *mddev; 4869 char b[BDEVNAME_SIZE]; 4870 4871 printk(KERN_INFO "md: autorun ...\n"); 4872 while (!list_empty(&pending_raid_disks)) { 4873 int unit; 4874 dev_t dev; 4875 LIST_HEAD(candidates); 4876 rdev0 = list_entry(pending_raid_disks.next, 4877 mdk_rdev_t, same_set); 4878 4879 printk(KERN_INFO "md: considering %s ...\n", 4880 bdevname(rdev0->bdev,b)); 4881 INIT_LIST_HEAD(&candidates); 4882 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 4883 if (super_90_load(rdev, rdev0, 0) >= 0) { 4884 printk(KERN_INFO "md: adding %s ...\n", 4885 bdevname(rdev->bdev,b)); 4886 list_move(&rdev->same_set, &candidates); 4887 } 4888 /* 4889 * now we have a set of devices, with all of them having 4890 * mostly sane superblocks. It's time to allocate the 4891 * mddev. 4892 */ 4893 if (part) { 4894 dev = MKDEV(mdp_major, 4895 rdev0->preferred_minor << MdpMinorShift); 4896 unit = MINOR(dev) >> MdpMinorShift; 4897 } else { 4898 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 4899 unit = MINOR(dev); 4900 } 4901 if (rdev0->preferred_minor != unit) { 4902 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 4903 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 4904 break; 4905 } 4906 4907 md_probe(dev, NULL, NULL); 4908 mddev = mddev_find(dev); 4909 if (!mddev || !mddev->gendisk) { 4910 if (mddev) 4911 mddev_put(mddev); 4912 printk(KERN_ERR 4913 "md: cannot allocate memory for md drive.\n"); 4914 break; 4915 } 4916 if (mddev_lock(mddev)) 4917 printk(KERN_WARNING "md: %s locked, cannot run\n", 4918 mdname(mddev)); 4919 else if (mddev->raid_disks || mddev->major_version 4920 || !list_empty(&mddev->disks)) { 4921 printk(KERN_WARNING 4922 "md: %s already running, cannot run %s\n", 4923 mdname(mddev), bdevname(rdev0->bdev,b)); 4924 mddev_unlock(mddev); 4925 } else { 4926 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 4927 mddev->persistent = 1; 4928 rdev_for_each_list(rdev, tmp, &candidates) { 4929 list_del_init(&rdev->same_set); 4930 if (bind_rdev_to_array(rdev, mddev)) 4931 export_rdev(rdev); 4932 } 4933 autorun_array(mddev); 4934 mddev_unlock(mddev); 4935 } 4936 /* on success, candidates will be empty, on error 4937 * it won't... 4938 */ 4939 rdev_for_each_list(rdev, tmp, &candidates) { 4940 list_del_init(&rdev->same_set); 4941 export_rdev(rdev); 4942 } 4943 mddev_put(mddev); 4944 } 4945 printk(KERN_INFO "md: ... autorun DONE.\n"); 4946 } 4947 #endif /* !MODULE */ 4948 4949 static int get_version(void __user * arg) 4950 { 4951 mdu_version_t ver; 4952 4953 ver.major = MD_MAJOR_VERSION; 4954 ver.minor = MD_MINOR_VERSION; 4955 ver.patchlevel = MD_PATCHLEVEL_VERSION; 4956 4957 if (copy_to_user(arg, &ver, sizeof(ver))) 4958 return -EFAULT; 4959 4960 return 0; 4961 } 4962 4963 static int get_array_info(mddev_t * mddev, void __user * arg) 4964 { 4965 mdu_array_info_t info; 4966 int nr,working,insync,failed,spare; 4967 mdk_rdev_t *rdev; 4968 4969 nr=working=insync=failed=spare=0; 4970 list_for_each_entry(rdev, &mddev->disks, same_set) { 4971 nr++; 4972 if (test_bit(Faulty, &rdev->flags)) 4973 failed++; 4974 else { 4975 working++; 4976 if (test_bit(In_sync, &rdev->flags)) 4977 insync++; 4978 else 4979 spare++; 4980 } 4981 } 4982 4983 info.major_version = mddev->major_version; 4984 info.minor_version = mddev->minor_version; 4985 info.patch_version = MD_PATCHLEVEL_VERSION; 4986 info.ctime = mddev->ctime; 4987 info.level = mddev->level; 4988 info.size = mddev->dev_sectors / 2; 4989 if (info.size != mddev->dev_sectors / 2) /* overflow */ 4990 info.size = -1; 4991 info.nr_disks = nr; 4992 info.raid_disks = mddev->raid_disks; 4993 info.md_minor = mddev->md_minor; 4994 info.not_persistent= !mddev->persistent; 4995 4996 info.utime = mddev->utime; 4997 info.state = 0; 4998 if (mddev->in_sync) 4999 info.state = (1<<MD_SB_CLEAN); 5000 if (mddev->bitmap && mddev->bitmap_info.offset) 5001 info.state = (1<<MD_SB_BITMAP_PRESENT); 5002 info.active_disks = insync; 5003 info.working_disks = working; 5004 info.failed_disks = failed; 5005 info.spare_disks = spare; 5006 5007 info.layout = mddev->layout; 5008 info.chunk_size = mddev->chunk_sectors << 9; 5009 5010 if (copy_to_user(arg, &info, sizeof(info))) 5011 return -EFAULT; 5012 5013 return 0; 5014 } 5015 5016 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 5017 { 5018 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5019 char *ptr, *buf = NULL; 5020 int err = -ENOMEM; 5021 5022 if (md_allow_write(mddev)) 5023 file = kmalloc(sizeof(*file), GFP_NOIO); 5024 else 5025 file = kmalloc(sizeof(*file), GFP_KERNEL); 5026 5027 if (!file) 5028 goto out; 5029 5030 /* bitmap disabled, zero the first byte and copy out */ 5031 if (!mddev->bitmap || !mddev->bitmap->file) { 5032 file->pathname[0] = '\0'; 5033 goto copy_out; 5034 } 5035 5036 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5037 if (!buf) 5038 goto out; 5039 5040 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); 5041 if (IS_ERR(ptr)) 5042 goto out; 5043 5044 strcpy(file->pathname, ptr); 5045 5046 copy_out: 5047 err = 0; 5048 if (copy_to_user(arg, file, sizeof(*file))) 5049 err = -EFAULT; 5050 out: 5051 kfree(buf); 5052 kfree(file); 5053 return err; 5054 } 5055 5056 static int get_disk_info(mddev_t * mddev, void __user * arg) 5057 { 5058 mdu_disk_info_t info; 5059 mdk_rdev_t *rdev; 5060 5061 if (copy_from_user(&info, arg, sizeof(info))) 5062 return -EFAULT; 5063 5064 rdev = find_rdev_nr(mddev, info.number); 5065 if (rdev) { 5066 info.major = MAJOR(rdev->bdev->bd_dev); 5067 info.minor = MINOR(rdev->bdev->bd_dev); 5068 info.raid_disk = rdev->raid_disk; 5069 info.state = 0; 5070 if (test_bit(Faulty, &rdev->flags)) 5071 info.state |= (1<<MD_DISK_FAULTY); 5072 else if (test_bit(In_sync, &rdev->flags)) { 5073 info.state |= (1<<MD_DISK_ACTIVE); 5074 info.state |= (1<<MD_DISK_SYNC); 5075 } 5076 if (test_bit(WriteMostly, &rdev->flags)) 5077 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5078 } else { 5079 info.major = info.minor = 0; 5080 info.raid_disk = -1; 5081 info.state = (1<<MD_DISK_REMOVED); 5082 } 5083 5084 if (copy_to_user(arg, &info, sizeof(info))) 5085 return -EFAULT; 5086 5087 return 0; 5088 } 5089 5090 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 5091 { 5092 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5093 mdk_rdev_t *rdev; 5094 dev_t dev = MKDEV(info->major,info->minor); 5095 5096 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5097 return -EOVERFLOW; 5098 5099 if (!mddev->raid_disks) { 5100 int err; 5101 /* expecting a device which has a superblock */ 5102 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5103 if (IS_ERR(rdev)) { 5104 printk(KERN_WARNING 5105 "md: md_import_device returned %ld\n", 5106 PTR_ERR(rdev)); 5107 return PTR_ERR(rdev); 5108 } 5109 if (!list_empty(&mddev->disks)) { 5110 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 5111 mdk_rdev_t, same_set); 5112 err = super_types[mddev->major_version] 5113 .load_super(rdev, rdev0, mddev->minor_version); 5114 if (err < 0) { 5115 printk(KERN_WARNING 5116 "md: %s has different UUID to %s\n", 5117 bdevname(rdev->bdev,b), 5118 bdevname(rdev0->bdev,b2)); 5119 export_rdev(rdev); 5120 return -EINVAL; 5121 } 5122 } 5123 err = bind_rdev_to_array(rdev, mddev); 5124 if (err) 5125 export_rdev(rdev); 5126 return err; 5127 } 5128 5129 /* 5130 * add_new_disk can be used once the array is assembled 5131 * to add "hot spares". They must already have a superblock 5132 * written 5133 */ 5134 if (mddev->pers) { 5135 int err; 5136 if (!mddev->pers->hot_add_disk) { 5137 printk(KERN_WARNING 5138 "%s: personality does not support diskops!\n", 5139 mdname(mddev)); 5140 return -EINVAL; 5141 } 5142 if (mddev->persistent) 5143 rdev = md_import_device(dev, mddev->major_version, 5144 mddev->minor_version); 5145 else 5146 rdev = md_import_device(dev, -1, -1); 5147 if (IS_ERR(rdev)) { 5148 printk(KERN_WARNING 5149 "md: md_import_device returned %ld\n", 5150 PTR_ERR(rdev)); 5151 return PTR_ERR(rdev); 5152 } 5153 /* set save_raid_disk if appropriate */ 5154 if (!mddev->persistent) { 5155 if (info->state & (1<<MD_DISK_SYNC) && 5156 info->raid_disk < mddev->raid_disks) 5157 rdev->raid_disk = info->raid_disk; 5158 else 5159 rdev->raid_disk = -1; 5160 } else 5161 super_types[mddev->major_version]. 5162 validate_super(mddev, rdev); 5163 rdev->saved_raid_disk = rdev->raid_disk; 5164 5165 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5166 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5167 set_bit(WriteMostly, &rdev->flags); 5168 else 5169 clear_bit(WriteMostly, &rdev->flags); 5170 5171 rdev->raid_disk = -1; 5172 err = bind_rdev_to_array(rdev, mddev); 5173 if (!err && !mddev->pers->hot_remove_disk) { 5174 /* If there is hot_add_disk but no hot_remove_disk 5175 * then added disks for geometry changes, 5176 * and should be added immediately. 5177 */ 5178 super_types[mddev->major_version]. 5179 validate_super(mddev, rdev); 5180 err = mddev->pers->hot_add_disk(mddev, rdev); 5181 if (err) 5182 unbind_rdev_from_array(rdev); 5183 } 5184 if (err) 5185 export_rdev(rdev); 5186 else 5187 sysfs_notify_dirent_safe(rdev->sysfs_state); 5188 5189 md_update_sb(mddev, 1); 5190 if (mddev->degraded) 5191 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5192 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5193 md_wakeup_thread(mddev->thread); 5194 return err; 5195 } 5196 5197 /* otherwise, add_new_disk is only allowed 5198 * for major_version==0 superblocks 5199 */ 5200 if (mddev->major_version != 0) { 5201 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5202 mdname(mddev)); 5203 return -EINVAL; 5204 } 5205 5206 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5207 int err; 5208 rdev = md_import_device(dev, -1, 0); 5209 if (IS_ERR(rdev)) { 5210 printk(KERN_WARNING 5211 "md: error, md_import_device() returned %ld\n", 5212 PTR_ERR(rdev)); 5213 return PTR_ERR(rdev); 5214 } 5215 rdev->desc_nr = info->number; 5216 if (info->raid_disk < mddev->raid_disks) 5217 rdev->raid_disk = info->raid_disk; 5218 else 5219 rdev->raid_disk = -1; 5220 5221 if (rdev->raid_disk < mddev->raid_disks) 5222 if (info->state & (1<<MD_DISK_SYNC)) 5223 set_bit(In_sync, &rdev->flags); 5224 5225 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5226 set_bit(WriteMostly, &rdev->flags); 5227 5228 if (!mddev->persistent) { 5229 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5230 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 5231 } else 5232 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 5233 rdev->sectors = rdev->sb_start; 5234 5235 err = bind_rdev_to_array(rdev, mddev); 5236 if (err) { 5237 export_rdev(rdev); 5238 return err; 5239 } 5240 } 5241 5242 return 0; 5243 } 5244 5245 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 5246 { 5247 char b[BDEVNAME_SIZE]; 5248 mdk_rdev_t *rdev; 5249 5250 rdev = find_rdev(mddev, dev); 5251 if (!rdev) 5252 return -ENXIO; 5253 5254 if (rdev->raid_disk >= 0) 5255 goto busy; 5256 5257 kick_rdev_from_array(rdev); 5258 md_update_sb(mddev, 1); 5259 md_new_event(mddev); 5260 5261 return 0; 5262 busy: 5263 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5264 bdevname(rdev->bdev,b), mdname(mddev)); 5265 return -EBUSY; 5266 } 5267 5268 static int hot_add_disk(mddev_t * mddev, dev_t dev) 5269 { 5270 char b[BDEVNAME_SIZE]; 5271 int err; 5272 mdk_rdev_t *rdev; 5273 5274 if (!mddev->pers) 5275 return -ENODEV; 5276 5277 if (mddev->major_version != 0) { 5278 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5279 " version-0 superblocks.\n", 5280 mdname(mddev)); 5281 return -EINVAL; 5282 } 5283 if (!mddev->pers->hot_add_disk) { 5284 printk(KERN_WARNING 5285 "%s: personality does not support diskops!\n", 5286 mdname(mddev)); 5287 return -EINVAL; 5288 } 5289 5290 rdev = md_import_device(dev, -1, 0); 5291 if (IS_ERR(rdev)) { 5292 printk(KERN_WARNING 5293 "md: error, md_import_device() returned %ld\n", 5294 PTR_ERR(rdev)); 5295 return -EINVAL; 5296 } 5297 5298 if (mddev->persistent) 5299 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 5300 else 5301 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 5302 5303 rdev->sectors = rdev->sb_start; 5304 5305 if (test_bit(Faulty, &rdev->flags)) { 5306 printk(KERN_WARNING 5307 "md: can not hot-add faulty %s disk to %s!\n", 5308 bdevname(rdev->bdev,b), mdname(mddev)); 5309 err = -EINVAL; 5310 goto abort_export; 5311 } 5312 clear_bit(In_sync, &rdev->flags); 5313 rdev->desc_nr = -1; 5314 rdev->saved_raid_disk = -1; 5315 err = bind_rdev_to_array(rdev, mddev); 5316 if (err) 5317 goto abort_export; 5318 5319 /* 5320 * The rest should better be atomic, we can have disk failures 5321 * noticed in interrupt contexts ... 5322 */ 5323 5324 rdev->raid_disk = -1; 5325 5326 md_update_sb(mddev, 1); 5327 5328 /* 5329 * Kick recovery, maybe this spare has to be added to the 5330 * array immediately. 5331 */ 5332 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5333 md_wakeup_thread(mddev->thread); 5334 md_new_event(mddev); 5335 return 0; 5336 5337 abort_export: 5338 export_rdev(rdev); 5339 return err; 5340 } 5341 5342 static int set_bitmap_file(mddev_t *mddev, int fd) 5343 { 5344 int err; 5345 5346 if (mddev->pers) { 5347 if (!mddev->pers->quiesce) 5348 return -EBUSY; 5349 if (mddev->recovery || mddev->sync_thread) 5350 return -EBUSY; 5351 /* we should be able to change the bitmap.. */ 5352 } 5353 5354 5355 if (fd >= 0) { 5356 if (mddev->bitmap) 5357 return -EEXIST; /* cannot add when bitmap is present */ 5358 mddev->bitmap_info.file = fget(fd); 5359 5360 if (mddev->bitmap_info.file == NULL) { 5361 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5362 mdname(mddev)); 5363 return -EBADF; 5364 } 5365 5366 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5367 if (err) { 5368 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5369 mdname(mddev)); 5370 fput(mddev->bitmap_info.file); 5371 mddev->bitmap_info.file = NULL; 5372 return err; 5373 } 5374 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5375 } else if (mddev->bitmap == NULL) 5376 return -ENOENT; /* cannot remove what isn't there */ 5377 err = 0; 5378 if (mddev->pers) { 5379 mddev->pers->quiesce(mddev, 1); 5380 if (fd >= 0) { 5381 err = bitmap_create(mddev); 5382 if (!err) 5383 err = bitmap_load(mddev); 5384 } 5385 if (fd < 0 || err) { 5386 bitmap_destroy(mddev); 5387 fd = -1; /* make sure to put the file */ 5388 } 5389 mddev->pers->quiesce(mddev, 0); 5390 } 5391 if (fd < 0) { 5392 if (mddev->bitmap_info.file) { 5393 restore_bitmap_write_access(mddev->bitmap_info.file); 5394 fput(mddev->bitmap_info.file); 5395 } 5396 mddev->bitmap_info.file = NULL; 5397 } 5398 5399 return err; 5400 } 5401 5402 /* 5403 * set_array_info is used two different ways 5404 * The original usage is when creating a new array. 5405 * In this usage, raid_disks is > 0 and it together with 5406 * level, size, not_persistent,layout,chunksize determine the 5407 * shape of the array. 5408 * This will always create an array with a type-0.90.0 superblock. 5409 * The newer usage is when assembling an array. 5410 * In this case raid_disks will be 0, and the major_version field is 5411 * use to determine which style super-blocks are to be found on the devices. 5412 * The minor and patch _version numbers are also kept incase the 5413 * super_block handler wishes to interpret them. 5414 */ 5415 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 5416 { 5417 5418 if (info->raid_disks == 0) { 5419 /* just setting version number for superblock loading */ 5420 if (info->major_version < 0 || 5421 info->major_version >= ARRAY_SIZE(super_types) || 5422 super_types[info->major_version].name == NULL) { 5423 /* maybe try to auto-load a module? */ 5424 printk(KERN_INFO 5425 "md: superblock version %d not known\n", 5426 info->major_version); 5427 return -EINVAL; 5428 } 5429 mddev->major_version = info->major_version; 5430 mddev->minor_version = info->minor_version; 5431 mddev->patch_version = info->patch_version; 5432 mddev->persistent = !info->not_persistent; 5433 /* ensure mddev_put doesn't delete this now that there 5434 * is some minimal configuration. 5435 */ 5436 mddev->ctime = get_seconds(); 5437 return 0; 5438 } 5439 mddev->major_version = MD_MAJOR_VERSION; 5440 mddev->minor_version = MD_MINOR_VERSION; 5441 mddev->patch_version = MD_PATCHLEVEL_VERSION; 5442 mddev->ctime = get_seconds(); 5443 5444 mddev->level = info->level; 5445 mddev->clevel[0] = 0; 5446 mddev->dev_sectors = 2 * (sector_t)info->size; 5447 mddev->raid_disks = info->raid_disks; 5448 /* don't set md_minor, it is determined by which /dev/md* was 5449 * openned 5450 */ 5451 if (info->state & (1<<MD_SB_CLEAN)) 5452 mddev->recovery_cp = MaxSector; 5453 else 5454 mddev->recovery_cp = 0; 5455 mddev->persistent = ! info->not_persistent; 5456 mddev->external = 0; 5457 5458 mddev->layout = info->layout; 5459 mddev->chunk_sectors = info->chunk_size >> 9; 5460 5461 mddev->max_disks = MD_SB_DISKS; 5462 5463 if (mddev->persistent) 5464 mddev->flags = 0; 5465 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5466 5467 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 5468 mddev->bitmap_info.offset = 0; 5469 5470 mddev->reshape_position = MaxSector; 5471 5472 /* 5473 * Generate a 128 bit UUID 5474 */ 5475 get_random_bytes(mddev->uuid, 16); 5476 5477 mddev->new_level = mddev->level; 5478 mddev->new_chunk_sectors = mddev->chunk_sectors; 5479 mddev->new_layout = mddev->layout; 5480 mddev->delta_disks = 0; 5481 5482 return 0; 5483 } 5484 5485 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors) 5486 { 5487 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 5488 5489 if (mddev->external_size) 5490 return; 5491 5492 mddev->array_sectors = array_sectors; 5493 } 5494 EXPORT_SYMBOL(md_set_array_sectors); 5495 5496 static int update_size(mddev_t *mddev, sector_t num_sectors) 5497 { 5498 mdk_rdev_t *rdev; 5499 int rv; 5500 int fit = (num_sectors == 0); 5501 5502 if (mddev->pers->resize == NULL) 5503 return -EINVAL; 5504 /* The "num_sectors" is the number of sectors of each device that 5505 * is used. This can only make sense for arrays with redundancy. 5506 * linear and raid0 always use whatever space is available. We can only 5507 * consider changing this number if no resync or reconstruction is 5508 * happening, and if the new size is acceptable. It must fit before the 5509 * sb_start or, if that is <data_offset, it must fit before the size 5510 * of each device. If num_sectors is zero, we find the largest size 5511 * that fits. 5512 5513 */ 5514 if (mddev->sync_thread) 5515 return -EBUSY; 5516 if (mddev->bitmap) 5517 /* Sorry, cannot grow a bitmap yet, just remove it, 5518 * grow, and re-add. 5519 */ 5520 return -EBUSY; 5521 list_for_each_entry(rdev, &mddev->disks, same_set) { 5522 sector_t avail = rdev->sectors; 5523 5524 if (fit && (num_sectors == 0 || num_sectors > avail)) 5525 num_sectors = avail; 5526 if (avail < num_sectors) 5527 return -ENOSPC; 5528 } 5529 rv = mddev->pers->resize(mddev, num_sectors); 5530 if (!rv) 5531 revalidate_disk(mddev->gendisk); 5532 return rv; 5533 } 5534 5535 static int update_raid_disks(mddev_t *mddev, int raid_disks) 5536 { 5537 int rv; 5538 /* change the number of raid disks */ 5539 if (mddev->pers->check_reshape == NULL) 5540 return -EINVAL; 5541 if (raid_disks <= 0 || 5542 (mddev->max_disks && raid_disks >= mddev->max_disks)) 5543 return -EINVAL; 5544 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 5545 return -EBUSY; 5546 mddev->delta_disks = raid_disks - mddev->raid_disks; 5547 5548 rv = mddev->pers->check_reshape(mddev); 5549 return rv; 5550 } 5551 5552 5553 /* 5554 * update_array_info is used to change the configuration of an 5555 * on-line array. 5556 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 5557 * fields in the info are checked against the array. 5558 * Any differences that cannot be handled will cause an error. 5559 * Normally, only one change can be managed at a time. 5560 */ 5561 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 5562 { 5563 int rv = 0; 5564 int cnt = 0; 5565 int state = 0; 5566 5567 /* calculate expected state,ignoring low bits */ 5568 if (mddev->bitmap && mddev->bitmap_info.offset) 5569 state |= (1 << MD_SB_BITMAP_PRESENT); 5570 5571 if (mddev->major_version != info->major_version || 5572 mddev->minor_version != info->minor_version || 5573 /* mddev->patch_version != info->patch_version || */ 5574 mddev->ctime != info->ctime || 5575 mddev->level != info->level || 5576 /* mddev->layout != info->layout || */ 5577 !mddev->persistent != info->not_persistent|| 5578 mddev->chunk_sectors != info->chunk_size >> 9 || 5579 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 5580 ((state^info->state) & 0xfffffe00) 5581 ) 5582 return -EINVAL; 5583 /* Check there is only one change */ 5584 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5585 cnt++; 5586 if (mddev->raid_disks != info->raid_disks) 5587 cnt++; 5588 if (mddev->layout != info->layout) 5589 cnt++; 5590 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 5591 cnt++; 5592 if (cnt == 0) 5593 return 0; 5594 if (cnt > 1) 5595 return -EINVAL; 5596 5597 if (mddev->layout != info->layout) { 5598 /* Change layout 5599 * we don't need to do anything at the md level, the 5600 * personality will take care of it all. 5601 */ 5602 if (mddev->pers->check_reshape == NULL) 5603 return -EINVAL; 5604 else { 5605 mddev->new_layout = info->layout; 5606 rv = mddev->pers->check_reshape(mddev); 5607 if (rv) 5608 mddev->new_layout = mddev->layout; 5609 return rv; 5610 } 5611 } 5612 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5613 rv = update_size(mddev, (sector_t)info->size * 2); 5614 5615 if (mddev->raid_disks != info->raid_disks) 5616 rv = update_raid_disks(mddev, info->raid_disks); 5617 5618 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 5619 if (mddev->pers->quiesce == NULL) 5620 return -EINVAL; 5621 if (mddev->recovery || mddev->sync_thread) 5622 return -EBUSY; 5623 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 5624 /* add the bitmap */ 5625 if (mddev->bitmap) 5626 return -EEXIST; 5627 if (mddev->bitmap_info.default_offset == 0) 5628 return -EINVAL; 5629 mddev->bitmap_info.offset = 5630 mddev->bitmap_info.default_offset; 5631 mddev->pers->quiesce(mddev, 1); 5632 rv = bitmap_create(mddev); 5633 if (!rv) 5634 rv = bitmap_load(mddev); 5635 if (rv) 5636 bitmap_destroy(mddev); 5637 mddev->pers->quiesce(mddev, 0); 5638 } else { 5639 /* remove the bitmap */ 5640 if (!mddev->bitmap) 5641 return -ENOENT; 5642 if (mddev->bitmap->file) 5643 return -EINVAL; 5644 mddev->pers->quiesce(mddev, 1); 5645 bitmap_destroy(mddev); 5646 mddev->pers->quiesce(mddev, 0); 5647 mddev->bitmap_info.offset = 0; 5648 } 5649 } 5650 md_update_sb(mddev, 1); 5651 return rv; 5652 } 5653 5654 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 5655 { 5656 mdk_rdev_t *rdev; 5657 5658 if (mddev->pers == NULL) 5659 return -ENODEV; 5660 5661 rdev = find_rdev(mddev, dev); 5662 if (!rdev) 5663 return -ENODEV; 5664 5665 md_error(mddev, rdev); 5666 return 0; 5667 } 5668 5669 /* 5670 * We have a problem here : there is no easy way to give a CHS 5671 * virtual geometry. We currently pretend that we have a 2 heads 5672 * 4 sectors (with a BIG number of cylinders...). This drives 5673 * dosfs just mad... ;-) 5674 */ 5675 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 5676 { 5677 mddev_t *mddev = bdev->bd_disk->private_data; 5678 5679 geo->heads = 2; 5680 geo->sectors = 4; 5681 geo->cylinders = mddev->array_sectors / 8; 5682 return 0; 5683 } 5684 5685 static int md_ioctl(struct block_device *bdev, fmode_t mode, 5686 unsigned int cmd, unsigned long arg) 5687 { 5688 int err = 0; 5689 void __user *argp = (void __user *)arg; 5690 mddev_t *mddev = NULL; 5691 int ro; 5692 5693 if (!capable(CAP_SYS_ADMIN)) 5694 return -EACCES; 5695 5696 /* 5697 * Commands dealing with the RAID driver but not any 5698 * particular array: 5699 */ 5700 switch (cmd) 5701 { 5702 case RAID_VERSION: 5703 err = get_version(argp); 5704 goto done; 5705 5706 case PRINT_RAID_DEBUG: 5707 err = 0; 5708 md_print_devices(); 5709 goto done; 5710 5711 #ifndef MODULE 5712 case RAID_AUTORUN: 5713 err = 0; 5714 autostart_arrays(arg); 5715 goto done; 5716 #endif 5717 default:; 5718 } 5719 5720 /* 5721 * Commands creating/starting a new array: 5722 */ 5723 5724 mddev = bdev->bd_disk->private_data; 5725 5726 if (!mddev) { 5727 BUG(); 5728 goto abort; 5729 } 5730 5731 err = mddev_lock(mddev); 5732 if (err) { 5733 printk(KERN_INFO 5734 "md: ioctl lock interrupted, reason %d, cmd %d\n", 5735 err, cmd); 5736 goto abort; 5737 } 5738 5739 switch (cmd) 5740 { 5741 case SET_ARRAY_INFO: 5742 { 5743 mdu_array_info_t info; 5744 if (!arg) 5745 memset(&info, 0, sizeof(info)); 5746 else if (copy_from_user(&info, argp, sizeof(info))) { 5747 err = -EFAULT; 5748 goto abort_unlock; 5749 } 5750 if (mddev->pers) { 5751 err = update_array_info(mddev, &info); 5752 if (err) { 5753 printk(KERN_WARNING "md: couldn't update" 5754 " array info. %d\n", err); 5755 goto abort_unlock; 5756 } 5757 goto done_unlock; 5758 } 5759 if (!list_empty(&mddev->disks)) { 5760 printk(KERN_WARNING 5761 "md: array %s already has disks!\n", 5762 mdname(mddev)); 5763 err = -EBUSY; 5764 goto abort_unlock; 5765 } 5766 if (mddev->raid_disks) { 5767 printk(KERN_WARNING 5768 "md: array %s already initialised!\n", 5769 mdname(mddev)); 5770 err = -EBUSY; 5771 goto abort_unlock; 5772 } 5773 err = set_array_info(mddev, &info); 5774 if (err) { 5775 printk(KERN_WARNING "md: couldn't set" 5776 " array info. %d\n", err); 5777 goto abort_unlock; 5778 } 5779 } 5780 goto done_unlock; 5781 5782 default:; 5783 } 5784 5785 /* 5786 * Commands querying/configuring an existing array: 5787 */ 5788 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 5789 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 5790 if ((!mddev->raid_disks && !mddev->external) 5791 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 5792 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 5793 && cmd != GET_BITMAP_FILE) { 5794 err = -ENODEV; 5795 goto abort_unlock; 5796 } 5797 5798 /* 5799 * Commands even a read-only array can execute: 5800 */ 5801 switch (cmd) 5802 { 5803 case GET_ARRAY_INFO: 5804 err = get_array_info(mddev, argp); 5805 goto done_unlock; 5806 5807 case GET_BITMAP_FILE: 5808 err = get_bitmap_file(mddev, argp); 5809 goto done_unlock; 5810 5811 case GET_DISK_INFO: 5812 err = get_disk_info(mddev, argp); 5813 goto done_unlock; 5814 5815 case RESTART_ARRAY_RW: 5816 err = restart_array(mddev); 5817 goto done_unlock; 5818 5819 case STOP_ARRAY: 5820 err = do_md_stop(mddev, 0, 1); 5821 goto done_unlock; 5822 5823 case STOP_ARRAY_RO: 5824 err = md_set_readonly(mddev, 1); 5825 goto done_unlock; 5826 5827 case BLKROSET: 5828 if (get_user(ro, (int __user *)(arg))) { 5829 err = -EFAULT; 5830 goto done_unlock; 5831 } 5832 err = -EINVAL; 5833 5834 /* if the bdev is going readonly the value of mddev->ro 5835 * does not matter, no writes are coming 5836 */ 5837 if (ro) 5838 goto done_unlock; 5839 5840 /* are we are already prepared for writes? */ 5841 if (mddev->ro != 1) 5842 goto done_unlock; 5843 5844 /* transitioning to readauto need only happen for 5845 * arrays that call md_write_start 5846 */ 5847 if (mddev->pers) { 5848 err = restart_array(mddev); 5849 if (err == 0) { 5850 mddev->ro = 2; 5851 set_disk_ro(mddev->gendisk, 0); 5852 } 5853 } 5854 goto done_unlock; 5855 } 5856 5857 /* 5858 * The remaining ioctls are changing the state of the 5859 * superblock, so we do not allow them on read-only arrays. 5860 * However non-MD ioctls (e.g. get-size) will still come through 5861 * here and hit the 'default' below, so only disallow 5862 * 'md' ioctls, and switch to rw mode if started auto-readonly. 5863 */ 5864 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 5865 if (mddev->ro == 2) { 5866 mddev->ro = 0; 5867 sysfs_notify_dirent_safe(mddev->sysfs_state); 5868 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5869 md_wakeup_thread(mddev->thread); 5870 } else { 5871 err = -EROFS; 5872 goto abort_unlock; 5873 } 5874 } 5875 5876 switch (cmd) 5877 { 5878 case ADD_NEW_DISK: 5879 { 5880 mdu_disk_info_t info; 5881 if (copy_from_user(&info, argp, sizeof(info))) 5882 err = -EFAULT; 5883 else 5884 err = add_new_disk(mddev, &info); 5885 goto done_unlock; 5886 } 5887 5888 case HOT_REMOVE_DISK: 5889 err = hot_remove_disk(mddev, new_decode_dev(arg)); 5890 goto done_unlock; 5891 5892 case HOT_ADD_DISK: 5893 err = hot_add_disk(mddev, new_decode_dev(arg)); 5894 goto done_unlock; 5895 5896 case SET_DISK_FAULTY: 5897 err = set_disk_faulty(mddev, new_decode_dev(arg)); 5898 goto done_unlock; 5899 5900 case RUN_ARRAY: 5901 err = do_md_run(mddev); 5902 goto done_unlock; 5903 5904 case SET_BITMAP_FILE: 5905 err = set_bitmap_file(mddev, (int)arg); 5906 goto done_unlock; 5907 5908 default: 5909 err = -EINVAL; 5910 goto abort_unlock; 5911 } 5912 5913 done_unlock: 5914 abort_unlock: 5915 if (mddev->hold_active == UNTIL_IOCTL && 5916 err != -EINVAL) 5917 mddev->hold_active = 0; 5918 mddev_unlock(mddev); 5919 5920 return err; 5921 done: 5922 if (err) 5923 MD_BUG(); 5924 abort: 5925 return err; 5926 } 5927 #ifdef CONFIG_COMPAT 5928 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 5929 unsigned int cmd, unsigned long arg) 5930 { 5931 switch (cmd) { 5932 case HOT_REMOVE_DISK: 5933 case HOT_ADD_DISK: 5934 case SET_DISK_FAULTY: 5935 case SET_BITMAP_FILE: 5936 /* These take in integer arg, do not convert */ 5937 break; 5938 default: 5939 arg = (unsigned long)compat_ptr(arg); 5940 break; 5941 } 5942 5943 return md_ioctl(bdev, mode, cmd, arg); 5944 } 5945 #endif /* CONFIG_COMPAT */ 5946 5947 static int md_open(struct block_device *bdev, fmode_t mode) 5948 { 5949 /* 5950 * Succeed if we can lock the mddev, which confirms that 5951 * it isn't being stopped right now. 5952 */ 5953 mddev_t *mddev = mddev_find(bdev->bd_dev); 5954 int err; 5955 5956 lock_kernel(); 5957 if (mddev->gendisk != bdev->bd_disk) { 5958 /* we are racing with mddev_put which is discarding this 5959 * bd_disk. 5960 */ 5961 mddev_put(mddev); 5962 /* Wait until bdev->bd_disk is definitely gone */ 5963 flush_scheduled_work(); 5964 /* Then retry the open from the top */ 5965 unlock_kernel(); 5966 return -ERESTARTSYS; 5967 } 5968 BUG_ON(mddev != bdev->bd_disk->private_data); 5969 5970 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 5971 goto out; 5972 5973 err = 0; 5974 atomic_inc(&mddev->openers); 5975 mutex_unlock(&mddev->open_mutex); 5976 5977 check_disk_size_change(mddev->gendisk, bdev); 5978 out: 5979 unlock_kernel(); 5980 return err; 5981 } 5982 5983 static int md_release(struct gendisk *disk, fmode_t mode) 5984 { 5985 mddev_t *mddev = disk->private_data; 5986 5987 BUG_ON(!mddev); 5988 lock_kernel(); 5989 atomic_dec(&mddev->openers); 5990 mddev_put(mddev); 5991 unlock_kernel(); 5992 5993 return 0; 5994 } 5995 static const struct block_device_operations md_fops = 5996 { 5997 .owner = THIS_MODULE, 5998 .open = md_open, 5999 .release = md_release, 6000 .ioctl = md_ioctl, 6001 #ifdef CONFIG_COMPAT 6002 .compat_ioctl = md_compat_ioctl, 6003 #endif 6004 .getgeo = md_getgeo, 6005 }; 6006 6007 static int md_thread(void * arg) 6008 { 6009 mdk_thread_t *thread = arg; 6010 6011 /* 6012 * md_thread is a 'system-thread', it's priority should be very 6013 * high. We avoid resource deadlocks individually in each 6014 * raid personality. (RAID5 does preallocation) We also use RR and 6015 * the very same RT priority as kswapd, thus we will never get 6016 * into a priority inversion deadlock. 6017 * 6018 * we definitely have to have equal or higher priority than 6019 * bdflush, otherwise bdflush will deadlock if there are too 6020 * many dirty RAID5 blocks. 6021 */ 6022 6023 allow_signal(SIGKILL); 6024 while (!kthread_should_stop()) { 6025 6026 /* We need to wait INTERRUPTIBLE so that 6027 * we don't add to the load-average. 6028 * That means we need to be sure no signals are 6029 * pending 6030 */ 6031 if (signal_pending(current)) 6032 flush_signals(current); 6033 6034 wait_event_interruptible_timeout 6035 (thread->wqueue, 6036 test_bit(THREAD_WAKEUP, &thread->flags) 6037 || kthread_should_stop(), 6038 thread->timeout); 6039 6040 clear_bit(THREAD_WAKEUP, &thread->flags); 6041 6042 thread->run(thread->mddev); 6043 } 6044 6045 return 0; 6046 } 6047 6048 void md_wakeup_thread(mdk_thread_t *thread) 6049 { 6050 if (thread) { 6051 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 6052 set_bit(THREAD_WAKEUP, &thread->flags); 6053 wake_up(&thread->wqueue); 6054 } 6055 } 6056 6057 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 6058 const char *name) 6059 { 6060 mdk_thread_t *thread; 6061 6062 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 6063 if (!thread) 6064 return NULL; 6065 6066 init_waitqueue_head(&thread->wqueue); 6067 6068 thread->run = run; 6069 thread->mddev = mddev; 6070 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6071 thread->tsk = kthread_run(md_thread, thread, 6072 "%s_%s", 6073 mdname(thread->mddev), 6074 name ?: mddev->pers->name); 6075 if (IS_ERR(thread->tsk)) { 6076 kfree(thread); 6077 return NULL; 6078 } 6079 return thread; 6080 } 6081 6082 void md_unregister_thread(mdk_thread_t *thread) 6083 { 6084 if (!thread) 6085 return; 6086 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6087 6088 kthread_stop(thread->tsk); 6089 kfree(thread); 6090 } 6091 6092 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 6093 { 6094 if (!mddev) { 6095 MD_BUG(); 6096 return; 6097 } 6098 6099 if (!rdev || test_bit(Faulty, &rdev->flags)) 6100 return; 6101 6102 if (mddev->external) 6103 set_bit(Blocked, &rdev->flags); 6104 /* 6105 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 6106 mdname(mddev), 6107 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 6108 __builtin_return_address(0),__builtin_return_address(1), 6109 __builtin_return_address(2),__builtin_return_address(3)); 6110 */ 6111 if (!mddev->pers) 6112 return; 6113 if (!mddev->pers->error_handler) 6114 return; 6115 mddev->pers->error_handler(mddev,rdev); 6116 if (mddev->degraded) 6117 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6118 sysfs_notify_dirent_safe(rdev->sysfs_state); 6119 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6120 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6121 md_wakeup_thread(mddev->thread); 6122 if (mddev->event_work.func) 6123 schedule_work(&mddev->event_work); 6124 md_new_event_inintr(mddev); 6125 } 6126 6127 /* seq_file implementation /proc/mdstat */ 6128 6129 static void status_unused(struct seq_file *seq) 6130 { 6131 int i = 0; 6132 mdk_rdev_t *rdev; 6133 6134 seq_printf(seq, "unused devices: "); 6135 6136 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6137 char b[BDEVNAME_SIZE]; 6138 i++; 6139 seq_printf(seq, "%s ", 6140 bdevname(rdev->bdev,b)); 6141 } 6142 if (!i) 6143 seq_printf(seq, "<none>"); 6144 6145 seq_printf(seq, "\n"); 6146 } 6147 6148 6149 static void status_resync(struct seq_file *seq, mddev_t * mddev) 6150 { 6151 sector_t max_sectors, resync, res; 6152 unsigned long dt, db; 6153 sector_t rt; 6154 int scale; 6155 unsigned int per_milli; 6156 6157 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); 6158 6159 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 6160 max_sectors = mddev->resync_max_sectors; 6161 else 6162 max_sectors = mddev->dev_sectors; 6163 6164 /* 6165 * Should not happen. 6166 */ 6167 if (!max_sectors) { 6168 MD_BUG(); 6169 return; 6170 } 6171 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6172 * in a sector_t, and (max_sectors>>scale) will fit in a 6173 * u32, as those are the requirements for sector_div. 6174 * Thus 'scale' must be at least 10 6175 */ 6176 scale = 10; 6177 if (sizeof(sector_t) > sizeof(unsigned long)) { 6178 while ( max_sectors/2 > (1ULL<<(scale+32))) 6179 scale++; 6180 } 6181 res = (resync>>scale)*1000; 6182 sector_div(res, (u32)((max_sectors>>scale)+1)); 6183 6184 per_milli = res; 6185 { 6186 int i, x = per_milli/50, y = 20-x; 6187 seq_printf(seq, "["); 6188 for (i = 0; i < x; i++) 6189 seq_printf(seq, "="); 6190 seq_printf(seq, ">"); 6191 for (i = 0; i < y; i++) 6192 seq_printf(seq, "."); 6193 seq_printf(seq, "] "); 6194 } 6195 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6196 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6197 "reshape" : 6198 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6199 "check" : 6200 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6201 "resync" : "recovery"))), 6202 per_milli/10, per_milli % 10, 6203 (unsigned long long) resync/2, 6204 (unsigned long long) max_sectors/2); 6205 6206 /* 6207 * dt: time from mark until now 6208 * db: blocks written from mark until now 6209 * rt: remaining time 6210 * 6211 * rt is a sector_t, so could be 32bit or 64bit. 6212 * So we divide before multiply in case it is 32bit and close 6213 * to the limit. 6214 * We scale the divisor (db) by 32 to avoid loosing precision 6215 * near the end of resync when the number of remaining sectors 6216 * is close to 'db'. 6217 * We then divide rt by 32 after multiplying by db to compensate. 6218 * The '+1' avoids division by zero if db is very small. 6219 */ 6220 dt = ((jiffies - mddev->resync_mark) / HZ); 6221 if (!dt) dt++; 6222 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6223 - mddev->resync_mark_cnt; 6224 6225 rt = max_sectors - resync; /* number of remaining sectors */ 6226 sector_div(rt, db/32+1); 6227 rt *= dt; 6228 rt >>= 5; 6229 6230 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6231 ((unsigned long)rt % 60)/6); 6232 6233 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6234 } 6235 6236 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6237 { 6238 struct list_head *tmp; 6239 loff_t l = *pos; 6240 mddev_t *mddev; 6241 6242 if (l >= 0x10000) 6243 return NULL; 6244 if (!l--) 6245 /* header */ 6246 return (void*)1; 6247 6248 spin_lock(&all_mddevs_lock); 6249 list_for_each(tmp,&all_mddevs) 6250 if (!l--) { 6251 mddev = list_entry(tmp, mddev_t, all_mddevs); 6252 mddev_get(mddev); 6253 spin_unlock(&all_mddevs_lock); 6254 return mddev; 6255 } 6256 spin_unlock(&all_mddevs_lock); 6257 if (!l--) 6258 return (void*)2;/* tail */ 6259 return NULL; 6260 } 6261 6262 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6263 { 6264 struct list_head *tmp; 6265 mddev_t *next_mddev, *mddev = v; 6266 6267 ++*pos; 6268 if (v == (void*)2) 6269 return NULL; 6270 6271 spin_lock(&all_mddevs_lock); 6272 if (v == (void*)1) 6273 tmp = all_mddevs.next; 6274 else 6275 tmp = mddev->all_mddevs.next; 6276 if (tmp != &all_mddevs) 6277 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 6278 else { 6279 next_mddev = (void*)2; 6280 *pos = 0x10000; 6281 } 6282 spin_unlock(&all_mddevs_lock); 6283 6284 if (v != (void*)1) 6285 mddev_put(mddev); 6286 return next_mddev; 6287 6288 } 6289 6290 static void md_seq_stop(struct seq_file *seq, void *v) 6291 { 6292 mddev_t *mddev = v; 6293 6294 if (mddev && v != (void*)1 && v != (void*)2) 6295 mddev_put(mddev); 6296 } 6297 6298 struct mdstat_info { 6299 int event; 6300 }; 6301 6302 static int md_seq_show(struct seq_file *seq, void *v) 6303 { 6304 mddev_t *mddev = v; 6305 sector_t sectors; 6306 mdk_rdev_t *rdev; 6307 struct mdstat_info *mi = seq->private; 6308 struct bitmap *bitmap; 6309 6310 if (v == (void*)1) { 6311 struct mdk_personality *pers; 6312 seq_printf(seq, "Personalities : "); 6313 spin_lock(&pers_lock); 6314 list_for_each_entry(pers, &pers_list, list) 6315 seq_printf(seq, "[%s] ", pers->name); 6316 6317 spin_unlock(&pers_lock); 6318 seq_printf(seq, "\n"); 6319 mi->event = atomic_read(&md_event_count); 6320 return 0; 6321 } 6322 if (v == (void*)2) { 6323 status_unused(seq); 6324 return 0; 6325 } 6326 6327 if (mddev_lock(mddev) < 0) 6328 return -EINTR; 6329 6330 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 6331 seq_printf(seq, "%s : %sactive", mdname(mddev), 6332 mddev->pers ? "" : "in"); 6333 if (mddev->pers) { 6334 if (mddev->ro==1) 6335 seq_printf(seq, " (read-only)"); 6336 if (mddev->ro==2) 6337 seq_printf(seq, " (auto-read-only)"); 6338 seq_printf(seq, " %s", mddev->pers->name); 6339 } 6340 6341 sectors = 0; 6342 list_for_each_entry(rdev, &mddev->disks, same_set) { 6343 char b[BDEVNAME_SIZE]; 6344 seq_printf(seq, " %s[%d]", 6345 bdevname(rdev->bdev,b), rdev->desc_nr); 6346 if (test_bit(WriteMostly, &rdev->flags)) 6347 seq_printf(seq, "(W)"); 6348 if (test_bit(Faulty, &rdev->flags)) { 6349 seq_printf(seq, "(F)"); 6350 continue; 6351 } else if (rdev->raid_disk < 0) 6352 seq_printf(seq, "(S)"); /* spare */ 6353 sectors += rdev->sectors; 6354 } 6355 6356 if (!list_empty(&mddev->disks)) { 6357 if (mddev->pers) 6358 seq_printf(seq, "\n %llu blocks", 6359 (unsigned long long) 6360 mddev->array_sectors / 2); 6361 else 6362 seq_printf(seq, "\n %llu blocks", 6363 (unsigned long long)sectors / 2); 6364 } 6365 if (mddev->persistent) { 6366 if (mddev->major_version != 0 || 6367 mddev->minor_version != 90) { 6368 seq_printf(seq," super %d.%d", 6369 mddev->major_version, 6370 mddev->minor_version); 6371 } 6372 } else if (mddev->external) 6373 seq_printf(seq, " super external:%s", 6374 mddev->metadata_type); 6375 else 6376 seq_printf(seq, " super non-persistent"); 6377 6378 if (mddev->pers) { 6379 mddev->pers->status(seq, mddev); 6380 seq_printf(seq, "\n "); 6381 if (mddev->pers->sync_request) { 6382 if (mddev->curr_resync > 2) { 6383 status_resync(seq, mddev); 6384 seq_printf(seq, "\n "); 6385 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 6386 seq_printf(seq, "\tresync=DELAYED\n "); 6387 else if (mddev->recovery_cp < MaxSector) 6388 seq_printf(seq, "\tresync=PENDING\n "); 6389 } 6390 } else 6391 seq_printf(seq, "\n "); 6392 6393 if ((bitmap = mddev->bitmap)) { 6394 unsigned long chunk_kb; 6395 unsigned long flags; 6396 spin_lock_irqsave(&bitmap->lock, flags); 6397 chunk_kb = mddev->bitmap_info.chunksize >> 10; 6398 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 6399 "%lu%s chunk", 6400 bitmap->pages - bitmap->missing_pages, 6401 bitmap->pages, 6402 (bitmap->pages - bitmap->missing_pages) 6403 << (PAGE_SHIFT - 10), 6404 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize, 6405 chunk_kb ? "KB" : "B"); 6406 if (bitmap->file) { 6407 seq_printf(seq, ", file: "); 6408 seq_path(seq, &bitmap->file->f_path, " \t\n"); 6409 } 6410 6411 seq_printf(seq, "\n"); 6412 spin_unlock_irqrestore(&bitmap->lock, flags); 6413 } 6414 6415 seq_printf(seq, "\n"); 6416 } 6417 mddev_unlock(mddev); 6418 6419 return 0; 6420 } 6421 6422 static const struct seq_operations md_seq_ops = { 6423 .start = md_seq_start, 6424 .next = md_seq_next, 6425 .stop = md_seq_stop, 6426 .show = md_seq_show, 6427 }; 6428 6429 static int md_seq_open(struct inode *inode, struct file *file) 6430 { 6431 int error; 6432 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 6433 if (mi == NULL) 6434 return -ENOMEM; 6435 6436 error = seq_open(file, &md_seq_ops); 6437 if (error) 6438 kfree(mi); 6439 else { 6440 struct seq_file *p = file->private_data; 6441 p->private = mi; 6442 mi->event = atomic_read(&md_event_count); 6443 } 6444 return error; 6445 } 6446 6447 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 6448 { 6449 struct seq_file *m = filp->private_data; 6450 struct mdstat_info *mi = m->private; 6451 int mask; 6452 6453 poll_wait(filp, &md_event_waiters, wait); 6454 6455 /* always allow read */ 6456 mask = POLLIN | POLLRDNORM; 6457 6458 if (mi->event != atomic_read(&md_event_count)) 6459 mask |= POLLERR | POLLPRI; 6460 return mask; 6461 } 6462 6463 static const struct file_operations md_seq_fops = { 6464 .owner = THIS_MODULE, 6465 .open = md_seq_open, 6466 .read = seq_read, 6467 .llseek = seq_lseek, 6468 .release = seq_release_private, 6469 .poll = mdstat_poll, 6470 }; 6471 6472 int register_md_personality(struct mdk_personality *p) 6473 { 6474 spin_lock(&pers_lock); 6475 list_add_tail(&p->list, &pers_list); 6476 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 6477 spin_unlock(&pers_lock); 6478 return 0; 6479 } 6480 6481 int unregister_md_personality(struct mdk_personality *p) 6482 { 6483 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 6484 spin_lock(&pers_lock); 6485 list_del_init(&p->list); 6486 spin_unlock(&pers_lock); 6487 return 0; 6488 } 6489 6490 static int is_mddev_idle(mddev_t *mddev, int init) 6491 { 6492 mdk_rdev_t * rdev; 6493 int idle; 6494 int curr_events; 6495 6496 idle = 1; 6497 rcu_read_lock(); 6498 rdev_for_each_rcu(rdev, mddev) { 6499 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 6500 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 6501 (int)part_stat_read(&disk->part0, sectors[1]) - 6502 atomic_read(&disk->sync_io); 6503 /* sync IO will cause sync_io to increase before the disk_stats 6504 * as sync_io is counted when a request starts, and 6505 * disk_stats is counted when it completes. 6506 * So resync activity will cause curr_events to be smaller than 6507 * when there was no such activity. 6508 * non-sync IO will cause disk_stat to increase without 6509 * increasing sync_io so curr_events will (eventually) 6510 * be larger than it was before. Once it becomes 6511 * substantially larger, the test below will cause 6512 * the array to appear non-idle, and resync will slow 6513 * down. 6514 * If there is a lot of outstanding resync activity when 6515 * we set last_event to curr_events, then all that activity 6516 * completing might cause the array to appear non-idle 6517 * and resync will be slowed down even though there might 6518 * not have been non-resync activity. This will only 6519 * happen once though. 'last_events' will soon reflect 6520 * the state where there is little or no outstanding 6521 * resync requests, and further resync activity will 6522 * always make curr_events less than last_events. 6523 * 6524 */ 6525 if (init || curr_events - rdev->last_events > 64) { 6526 rdev->last_events = curr_events; 6527 idle = 0; 6528 } 6529 } 6530 rcu_read_unlock(); 6531 return idle; 6532 } 6533 6534 void md_done_sync(mddev_t *mddev, int blocks, int ok) 6535 { 6536 /* another "blocks" (512byte) blocks have been synced */ 6537 atomic_sub(blocks, &mddev->recovery_active); 6538 wake_up(&mddev->recovery_wait); 6539 if (!ok) { 6540 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6541 md_wakeup_thread(mddev->thread); 6542 // stop recovery, signal do_sync .... 6543 } 6544 } 6545 6546 6547 /* md_write_start(mddev, bi) 6548 * If we need to update some array metadata (e.g. 'active' flag 6549 * in superblock) before writing, schedule a superblock update 6550 * and wait for it to complete. 6551 */ 6552 void md_write_start(mddev_t *mddev, struct bio *bi) 6553 { 6554 int did_change = 0; 6555 if (bio_data_dir(bi) != WRITE) 6556 return; 6557 6558 BUG_ON(mddev->ro == 1); 6559 if (mddev->ro == 2) { 6560 /* need to switch to read/write */ 6561 mddev->ro = 0; 6562 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6563 md_wakeup_thread(mddev->thread); 6564 md_wakeup_thread(mddev->sync_thread); 6565 did_change = 1; 6566 } 6567 atomic_inc(&mddev->writes_pending); 6568 if (mddev->safemode == 1) 6569 mddev->safemode = 0; 6570 if (mddev->in_sync) { 6571 spin_lock_irq(&mddev->write_lock); 6572 if (mddev->in_sync) { 6573 mddev->in_sync = 0; 6574 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6575 md_wakeup_thread(mddev->thread); 6576 did_change = 1; 6577 } 6578 spin_unlock_irq(&mddev->write_lock); 6579 } 6580 if (did_change) 6581 sysfs_notify_dirent_safe(mddev->sysfs_state); 6582 wait_event(mddev->sb_wait, 6583 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) && 6584 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6585 } 6586 6587 void md_write_end(mddev_t *mddev) 6588 { 6589 if (atomic_dec_and_test(&mddev->writes_pending)) { 6590 if (mddev->safemode == 2) 6591 md_wakeup_thread(mddev->thread); 6592 else if (mddev->safemode_delay) 6593 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 6594 } 6595 } 6596 6597 /* md_allow_write(mddev) 6598 * Calling this ensures that the array is marked 'active' so that writes 6599 * may proceed without blocking. It is important to call this before 6600 * attempting a GFP_KERNEL allocation while holding the mddev lock. 6601 * Must be called with mddev_lock held. 6602 * 6603 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 6604 * is dropped, so return -EAGAIN after notifying userspace. 6605 */ 6606 int md_allow_write(mddev_t *mddev) 6607 { 6608 if (!mddev->pers) 6609 return 0; 6610 if (mddev->ro) 6611 return 0; 6612 if (!mddev->pers->sync_request) 6613 return 0; 6614 6615 spin_lock_irq(&mddev->write_lock); 6616 if (mddev->in_sync) { 6617 mddev->in_sync = 0; 6618 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6619 if (mddev->safemode_delay && 6620 mddev->safemode == 0) 6621 mddev->safemode = 1; 6622 spin_unlock_irq(&mddev->write_lock); 6623 md_update_sb(mddev, 0); 6624 sysfs_notify_dirent_safe(mddev->sysfs_state); 6625 } else 6626 spin_unlock_irq(&mddev->write_lock); 6627 6628 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 6629 return -EAGAIN; 6630 else 6631 return 0; 6632 } 6633 EXPORT_SYMBOL_GPL(md_allow_write); 6634 6635 void md_unplug(mddev_t *mddev) 6636 { 6637 if (mddev->queue) 6638 blk_unplug(mddev->queue); 6639 if (mddev->plug) 6640 mddev->plug->unplug_fn(mddev->plug); 6641 } 6642 6643 #define SYNC_MARKS 10 6644 #define SYNC_MARK_STEP (3*HZ) 6645 void md_do_sync(mddev_t *mddev) 6646 { 6647 mddev_t *mddev2; 6648 unsigned int currspeed = 0, 6649 window; 6650 sector_t max_sectors,j, io_sectors; 6651 unsigned long mark[SYNC_MARKS]; 6652 sector_t mark_cnt[SYNC_MARKS]; 6653 int last_mark,m; 6654 struct list_head *tmp; 6655 sector_t last_check; 6656 int skipped = 0; 6657 mdk_rdev_t *rdev; 6658 char *desc; 6659 6660 /* just incase thread restarts... */ 6661 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 6662 return; 6663 if (mddev->ro) /* never try to sync a read-only array */ 6664 return; 6665 6666 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6667 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 6668 desc = "data-check"; 6669 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6670 desc = "requested-resync"; 6671 else 6672 desc = "resync"; 6673 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6674 desc = "reshape"; 6675 else 6676 desc = "recovery"; 6677 6678 /* we overload curr_resync somewhat here. 6679 * 0 == not engaged in resync at all 6680 * 2 == checking that there is no conflict with another sync 6681 * 1 == like 2, but have yielded to allow conflicting resync to 6682 * commense 6683 * other == active in resync - this many blocks 6684 * 6685 * Before starting a resync we must have set curr_resync to 6686 * 2, and then checked that every "conflicting" array has curr_resync 6687 * less than ours. When we find one that is the same or higher 6688 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 6689 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 6690 * This will mean we have to start checking from the beginning again. 6691 * 6692 */ 6693 6694 do { 6695 mddev->curr_resync = 2; 6696 6697 try_again: 6698 if (kthread_should_stop()) 6699 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6700 6701 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6702 goto skip; 6703 for_each_mddev(mddev2, tmp) { 6704 if (mddev2 == mddev) 6705 continue; 6706 if (!mddev->parallel_resync 6707 && mddev2->curr_resync 6708 && match_mddev_units(mddev, mddev2)) { 6709 DEFINE_WAIT(wq); 6710 if (mddev < mddev2 && mddev->curr_resync == 2) { 6711 /* arbitrarily yield */ 6712 mddev->curr_resync = 1; 6713 wake_up(&resync_wait); 6714 } 6715 if (mddev > mddev2 && mddev->curr_resync == 1) 6716 /* no need to wait here, we can wait the next 6717 * time 'round when curr_resync == 2 6718 */ 6719 continue; 6720 /* We need to wait 'interruptible' so as not to 6721 * contribute to the load average, and not to 6722 * be caught by 'softlockup' 6723 */ 6724 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 6725 if (!kthread_should_stop() && 6726 mddev2->curr_resync >= mddev->curr_resync) { 6727 printk(KERN_INFO "md: delaying %s of %s" 6728 " until %s has finished (they" 6729 " share one or more physical units)\n", 6730 desc, mdname(mddev), mdname(mddev2)); 6731 mddev_put(mddev2); 6732 if (signal_pending(current)) 6733 flush_signals(current); 6734 schedule(); 6735 finish_wait(&resync_wait, &wq); 6736 goto try_again; 6737 } 6738 finish_wait(&resync_wait, &wq); 6739 } 6740 } 6741 } while (mddev->curr_resync < 2); 6742 6743 j = 0; 6744 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6745 /* resync follows the size requested by the personality, 6746 * which defaults to physical size, but can be virtual size 6747 */ 6748 max_sectors = mddev->resync_max_sectors; 6749 mddev->resync_mismatches = 0; 6750 /* we don't use the checkpoint if there's a bitmap */ 6751 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6752 j = mddev->resync_min; 6753 else if (!mddev->bitmap) 6754 j = mddev->recovery_cp; 6755 6756 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6757 max_sectors = mddev->dev_sectors; 6758 else { 6759 /* recovery follows the physical size of devices */ 6760 max_sectors = mddev->dev_sectors; 6761 j = MaxSector; 6762 rcu_read_lock(); 6763 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 6764 if (rdev->raid_disk >= 0 && 6765 !test_bit(Faulty, &rdev->flags) && 6766 !test_bit(In_sync, &rdev->flags) && 6767 rdev->recovery_offset < j) 6768 j = rdev->recovery_offset; 6769 rcu_read_unlock(); 6770 } 6771 6772 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 6773 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 6774 " %d KB/sec/disk.\n", speed_min(mddev)); 6775 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 6776 "(but not more than %d KB/sec) for %s.\n", 6777 speed_max(mddev), desc); 6778 6779 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 6780 6781 io_sectors = 0; 6782 for (m = 0; m < SYNC_MARKS; m++) { 6783 mark[m] = jiffies; 6784 mark_cnt[m] = io_sectors; 6785 } 6786 last_mark = 0; 6787 mddev->resync_mark = mark[last_mark]; 6788 mddev->resync_mark_cnt = mark_cnt[last_mark]; 6789 6790 /* 6791 * Tune reconstruction: 6792 */ 6793 window = 32*(PAGE_SIZE/512); 6794 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 6795 window/2,(unsigned long long) max_sectors/2); 6796 6797 atomic_set(&mddev->recovery_active, 0); 6798 last_check = 0; 6799 6800 if (j>2) { 6801 printk(KERN_INFO 6802 "md: resuming %s of %s from checkpoint.\n", 6803 desc, mdname(mddev)); 6804 mddev->curr_resync = j; 6805 } 6806 mddev->curr_resync_completed = mddev->curr_resync; 6807 6808 while (j < max_sectors) { 6809 sector_t sectors; 6810 6811 skipped = 0; 6812 6813 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 6814 ((mddev->curr_resync > mddev->curr_resync_completed && 6815 (mddev->curr_resync - mddev->curr_resync_completed) 6816 > (max_sectors >> 4)) || 6817 (j - mddev->curr_resync_completed)*2 6818 >= mddev->resync_max - mddev->curr_resync_completed 6819 )) { 6820 /* time to update curr_resync_completed */ 6821 md_unplug(mddev); 6822 wait_event(mddev->recovery_wait, 6823 atomic_read(&mddev->recovery_active) == 0); 6824 mddev->curr_resync_completed = 6825 mddev->curr_resync; 6826 if (mddev->persistent) 6827 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6828 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6829 } 6830 6831 while (j >= mddev->resync_max && !kthread_should_stop()) { 6832 /* As this condition is controlled by user-space, 6833 * we can block indefinitely, so use '_interruptible' 6834 * to avoid triggering warnings. 6835 */ 6836 flush_signals(current); /* just in case */ 6837 wait_event_interruptible(mddev->recovery_wait, 6838 mddev->resync_max > j 6839 || kthread_should_stop()); 6840 } 6841 6842 if (kthread_should_stop()) 6843 goto interrupted; 6844 6845 sectors = mddev->pers->sync_request(mddev, j, &skipped, 6846 currspeed < speed_min(mddev)); 6847 if (sectors == 0) { 6848 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6849 goto out; 6850 } 6851 6852 if (!skipped) { /* actual IO requested */ 6853 io_sectors += sectors; 6854 atomic_add(sectors, &mddev->recovery_active); 6855 } 6856 6857 j += sectors; 6858 if (j>1) mddev->curr_resync = j; 6859 mddev->curr_mark_cnt = io_sectors; 6860 if (last_check == 0) 6861 /* this is the earliers that rebuilt will be 6862 * visible in /proc/mdstat 6863 */ 6864 md_new_event(mddev); 6865 6866 if (last_check + window > io_sectors || j == max_sectors) 6867 continue; 6868 6869 last_check = io_sectors; 6870 6871 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6872 break; 6873 6874 repeat: 6875 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 6876 /* step marks */ 6877 int next = (last_mark+1) % SYNC_MARKS; 6878 6879 mddev->resync_mark = mark[next]; 6880 mddev->resync_mark_cnt = mark_cnt[next]; 6881 mark[next] = jiffies; 6882 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 6883 last_mark = next; 6884 } 6885 6886 6887 if (kthread_should_stop()) 6888 goto interrupted; 6889 6890 6891 /* 6892 * this loop exits only if either when we are slower than 6893 * the 'hard' speed limit, or the system was IO-idle for 6894 * a jiffy. 6895 * the system might be non-idle CPU-wise, but we only care 6896 * about not overloading the IO subsystem. (things like an 6897 * e2fsck being done on the RAID array should execute fast) 6898 */ 6899 md_unplug(mddev); 6900 cond_resched(); 6901 6902 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 6903 /((jiffies-mddev->resync_mark)/HZ +1) +1; 6904 6905 if (currspeed > speed_min(mddev)) { 6906 if ((currspeed > speed_max(mddev)) || 6907 !is_mddev_idle(mddev, 0)) { 6908 msleep(500); 6909 goto repeat; 6910 } 6911 } 6912 } 6913 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 6914 /* 6915 * this also signals 'finished resyncing' to md_stop 6916 */ 6917 out: 6918 md_unplug(mddev); 6919 6920 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 6921 6922 /* tell personality that we are finished */ 6923 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 6924 6925 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 6926 mddev->curr_resync > 2) { 6927 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6928 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6929 if (mddev->curr_resync >= mddev->recovery_cp) { 6930 printk(KERN_INFO 6931 "md: checkpointing %s of %s.\n", 6932 desc, mdname(mddev)); 6933 mddev->recovery_cp = mddev->curr_resync; 6934 } 6935 } else 6936 mddev->recovery_cp = MaxSector; 6937 } else { 6938 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6939 mddev->curr_resync = MaxSector; 6940 rcu_read_lock(); 6941 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 6942 if (rdev->raid_disk >= 0 && 6943 mddev->delta_disks >= 0 && 6944 !test_bit(Faulty, &rdev->flags) && 6945 !test_bit(In_sync, &rdev->flags) && 6946 rdev->recovery_offset < mddev->curr_resync) 6947 rdev->recovery_offset = mddev->curr_resync; 6948 rcu_read_unlock(); 6949 } 6950 } 6951 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6952 6953 skip: 6954 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6955 /* We completed so min/max setting can be forgotten if used. */ 6956 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6957 mddev->resync_min = 0; 6958 mddev->resync_max = MaxSector; 6959 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6960 mddev->resync_min = mddev->curr_resync_completed; 6961 mddev->curr_resync = 0; 6962 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6963 mddev->curr_resync_completed = 0; 6964 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6965 wake_up(&resync_wait); 6966 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 6967 md_wakeup_thread(mddev->thread); 6968 return; 6969 6970 interrupted: 6971 /* 6972 * got a signal, exit. 6973 */ 6974 printk(KERN_INFO 6975 "md: md_do_sync() got signal ... exiting\n"); 6976 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6977 goto out; 6978 6979 } 6980 EXPORT_SYMBOL_GPL(md_do_sync); 6981 6982 6983 static int remove_and_add_spares(mddev_t *mddev) 6984 { 6985 mdk_rdev_t *rdev; 6986 int spares = 0; 6987 6988 mddev->curr_resync_completed = 0; 6989 6990 list_for_each_entry(rdev, &mddev->disks, same_set) 6991 if (rdev->raid_disk >= 0 && 6992 !test_bit(Blocked, &rdev->flags) && 6993 (test_bit(Faulty, &rdev->flags) || 6994 ! test_bit(In_sync, &rdev->flags)) && 6995 atomic_read(&rdev->nr_pending)==0) { 6996 if (mddev->pers->hot_remove_disk( 6997 mddev, rdev->raid_disk)==0) { 6998 char nm[20]; 6999 sprintf(nm,"rd%d", rdev->raid_disk); 7000 sysfs_remove_link(&mddev->kobj, nm); 7001 rdev->raid_disk = -1; 7002 } 7003 } 7004 7005 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) { 7006 list_for_each_entry(rdev, &mddev->disks, same_set) { 7007 if (rdev->raid_disk >= 0 && 7008 !test_bit(In_sync, &rdev->flags) && 7009 !test_bit(Blocked, &rdev->flags)) 7010 spares++; 7011 if (rdev->raid_disk < 0 7012 && !test_bit(Faulty, &rdev->flags)) { 7013 rdev->recovery_offset = 0; 7014 if (mddev->pers-> 7015 hot_add_disk(mddev, rdev) == 0) { 7016 char nm[20]; 7017 sprintf(nm, "rd%d", rdev->raid_disk); 7018 if (sysfs_create_link(&mddev->kobj, 7019 &rdev->kobj, nm)) 7020 /* failure here is OK */; 7021 spares++; 7022 md_new_event(mddev); 7023 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7024 } else 7025 break; 7026 } 7027 } 7028 } 7029 return spares; 7030 } 7031 /* 7032 * This routine is regularly called by all per-raid-array threads to 7033 * deal with generic issues like resync and super-block update. 7034 * Raid personalities that don't have a thread (linear/raid0) do not 7035 * need this as they never do any recovery or update the superblock. 7036 * 7037 * It does not do any resync itself, but rather "forks" off other threads 7038 * to do that as needed. 7039 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7040 * "->recovery" and create a thread at ->sync_thread. 7041 * When the thread finishes it sets MD_RECOVERY_DONE 7042 * and wakeups up this thread which will reap the thread and finish up. 7043 * This thread also removes any faulty devices (with nr_pending == 0). 7044 * 7045 * The overall approach is: 7046 * 1/ if the superblock needs updating, update it. 7047 * 2/ If a recovery thread is running, don't do anything else. 7048 * 3/ If recovery has finished, clean up, possibly marking spares active. 7049 * 4/ If there are any faulty devices, remove them. 7050 * 5/ If array is degraded, try to add spares devices 7051 * 6/ If array has spares or is not in-sync, start a resync thread. 7052 */ 7053 void md_check_recovery(mddev_t *mddev) 7054 { 7055 mdk_rdev_t *rdev; 7056 7057 7058 if (mddev->bitmap) 7059 bitmap_daemon_work(mddev); 7060 7061 if (mddev->ro) 7062 return; 7063 7064 if (signal_pending(current)) { 7065 if (mddev->pers->sync_request && !mddev->external) { 7066 printk(KERN_INFO "md: %s in immediate safe mode\n", 7067 mdname(mddev)); 7068 mddev->safemode = 2; 7069 } 7070 flush_signals(current); 7071 } 7072 7073 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7074 return; 7075 if ( ! ( 7076 (mddev->flags && !mddev->external) || 7077 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7078 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7079 (mddev->external == 0 && mddev->safemode == 1) || 7080 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7081 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7082 )) 7083 return; 7084 7085 if (mddev_trylock(mddev)) { 7086 int spares = 0; 7087 7088 if (mddev->ro) { 7089 /* Only thing we do on a ro array is remove 7090 * failed devices. 7091 */ 7092 remove_and_add_spares(mddev); 7093 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7094 goto unlock; 7095 } 7096 7097 if (!mddev->external) { 7098 int did_change = 0; 7099 spin_lock_irq(&mddev->write_lock); 7100 if (mddev->safemode && 7101 !atomic_read(&mddev->writes_pending) && 7102 !mddev->in_sync && 7103 mddev->recovery_cp == MaxSector) { 7104 mddev->in_sync = 1; 7105 did_change = 1; 7106 if (mddev->persistent) 7107 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7108 } 7109 if (mddev->safemode == 1) 7110 mddev->safemode = 0; 7111 spin_unlock_irq(&mddev->write_lock); 7112 if (did_change) 7113 sysfs_notify_dirent_safe(mddev->sysfs_state); 7114 } 7115 7116 if (mddev->flags) 7117 md_update_sb(mddev, 0); 7118 7119 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7120 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7121 /* resync/recovery still happening */ 7122 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7123 goto unlock; 7124 } 7125 if (mddev->sync_thread) { 7126 /* resync has finished, collect result */ 7127 md_unregister_thread(mddev->sync_thread); 7128 mddev->sync_thread = NULL; 7129 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7130 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7131 /* success...*/ 7132 /* activate any spares */ 7133 if (mddev->pers->spare_active(mddev)) 7134 sysfs_notify(&mddev->kobj, NULL, 7135 "degraded"); 7136 } 7137 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7138 mddev->pers->finish_reshape) 7139 mddev->pers->finish_reshape(mddev); 7140 md_update_sb(mddev, 1); 7141 7142 /* if array is no-longer degraded, then any saved_raid_disk 7143 * information must be scrapped 7144 */ 7145 if (!mddev->degraded) 7146 list_for_each_entry(rdev, &mddev->disks, same_set) 7147 rdev->saved_raid_disk = -1; 7148 7149 mddev->recovery = 0; 7150 /* flag recovery needed just to double check */ 7151 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7152 sysfs_notify_dirent_safe(mddev->sysfs_action); 7153 md_new_event(mddev); 7154 goto unlock; 7155 } 7156 /* Set RUNNING before clearing NEEDED to avoid 7157 * any transients in the value of "sync_action". 7158 */ 7159 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7160 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7161 /* Clear some bits that don't mean anything, but 7162 * might be left set 7163 */ 7164 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7165 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7166 7167 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7168 goto unlock; 7169 /* no recovery is running. 7170 * remove any failed drives, then 7171 * add spares if possible. 7172 * Spare are also removed and re-added, to allow 7173 * the personality to fail the re-add. 7174 */ 7175 7176 if (mddev->reshape_position != MaxSector) { 7177 if (mddev->pers->check_reshape == NULL || 7178 mddev->pers->check_reshape(mddev) != 0) 7179 /* Cannot proceed */ 7180 goto unlock; 7181 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7182 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7183 } else if ((spares = remove_and_add_spares(mddev))) { 7184 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7185 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7186 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7187 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7188 } else if (mddev->recovery_cp < MaxSector) { 7189 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7190 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7191 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7192 /* nothing to be done ... */ 7193 goto unlock; 7194 7195 if (mddev->pers->sync_request) { 7196 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 7197 /* We are adding a device or devices to an array 7198 * which has the bitmap stored on all devices. 7199 * So make sure all bitmap pages get written 7200 */ 7201 bitmap_write_all(mddev->bitmap); 7202 } 7203 mddev->sync_thread = md_register_thread(md_do_sync, 7204 mddev, 7205 "resync"); 7206 if (!mddev->sync_thread) { 7207 printk(KERN_ERR "%s: could not start resync" 7208 " thread...\n", 7209 mdname(mddev)); 7210 /* leave the spares where they are, it shouldn't hurt */ 7211 mddev->recovery = 0; 7212 } else 7213 md_wakeup_thread(mddev->sync_thread); 7214 sysfs_notify_dirent_safe(mddev->sysfs_action); 7215 md_new_event(mddev); 7216 } 7217 unlock: 7218 if (!mddev->sync_thread) { 7219 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7220 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7221 &mddev->recovery)) 7222 if (mddev->sysfs_action) 7223 sysfs_notify_dirent_safe(mddev->sysfs_action); 7224 } 7225 mddev_unlock(mddev); 7226 } 7227 } 7228 7229 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 7230 { 7231 sysfs_notify_dirent_safe(rdev->sysfs_state); 7232 wait_event_timeout(rdev->blocked_wait, 7233 !test_bit(Blocked, &rdev->flags), 7234 msecs_to_jiffies(5000)); 7235 rdev_dec_pending(rdev, mddev); 7236 } 7237 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7238 7239 static int md_notify_reboot(struct notifier_block *this, 7240 unsigned long code, void *x) 7241 { 7242 struct list_head *tmp; 7243 mddev_t *mddev; 7244 7245 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 7246 7247 printk(KERN_INFO "md: stopping all md devices.\n"); 7248 7249 for_each_mddev(mddev, tmp) 7250 if (mddev_trylock(mddev)) { 7251 /* Force a switch to readonly even array 7252 * appears to still be in use. Hence 7253 * the '100'. 7254 */ 7255 md_set_readonly(mddev, 100); 7256 mddev_unlock(mddev); 7257 } 7258 /* 7259 * certain more exotic SCSI devices are known to be 7260 * volatile wrt too early system reboots. While the 7261 * right place to handle this issue is the given 7262 * driver, we do want to have a safe RAID driver ... 7263 */ 7264 mdelay(1000*1); 7265 } 7266 return NOTIFY_DONE; 7267 } 7268 7269 static struct notifier_block md_notifier = { 7270 .notifier_call = md_notify_reboot, 7271 .next = NULL, 7272 .priority = INT_MAX, /* before any real devices */ 7273 }; 7274 7275 static void md_geninit(void) 7276 { 7277 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 7278 7279 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 7280 } 7281 7282 static int __init md_init(void) 7283 { 7284 if (register_blkdev(MD_MAJOR, "md")) 7285 return -1; 7286 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 7287 unregister_blkdev(MD_MAJOR, "md"); 7288 return -1; 7289 } 7290 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 7291 md_probe, NULL, NULL); 7292 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 7293 md_probe, NULL, NULL); 7294 7295 register_reboot_notifier(&md_notifier); 7296 raid_table_header = register_sysctl_table(raid_root_table); 7297 7298 md_geninit(); 7299 return 0; 7300 } 7301 7302 7303 #ifndef MODULE 7304 7305 /* 7306 * Searches all registered partitions for autorun RAID arrays 7307 * at boot time. 7308 */ 7309 7310 static LIST_HEAD(all_detected_devices); 7311 struct detected_devices_node { 7312 struct list_head list; 7313 dev_t dev; 7314 }; 7315 7316 void md_autodetect_dev(dev_t dev) 7317 { 7318 struct detected_devices_node *node_detected_dev; 7319 7320 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 7321 if (node_detected_dev) { 7322 node_detected_dev->dev = dev; 7323 list_add_tail(&node_detected_dev->list, &all_detected_devices); 7324 } else { 7325 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 7326 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 7327 } 7328 } 7329 7330 7331 static void autostart_arrays(int part) 7332 { 7333 mdk_rdev_t *rdev; 7334 struct detected_devices_node *node_detected_dev; 7335 dev_t dev; 7336 int i_scanned, i_passed; 7337 7338 i_scanned = 0; 7339 i_passed = 0; 7340 7341 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 7342 7343 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 7344 i_scanned++; 7345 node_detected_dev = list_entry(all_detected_devices.next, 7346 struct detected_devices_node, list); 7347 list_del(&node_detected_dev->list); 7348 dev = node_detected_dev->dev; 7349 kfree(node_detected_dev); 7350 rdev = md_import_device(dev,0, 90); 7351 if (IS_ERR(rdev)) 7352 continue; 7353 7354 if (test_bit(Faulty, &rdev->flags)) { 7355 MD_BUG(); 7356 continue; 7357 } 7358 set_bit(AutoDetected, &rdev->flags); 7359 list_add(&rdev->same_set, &pending_raid_disks); 7360 i_passed++; 7361 } 7362 7363 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 7364 i_scanned, i_passed); 7365 7366 autorun_devices(part); 7367 } 7368 7369 #endif /* !MODULE */ 7370 7371 static __exit void md_exit(void) 7372 { 7373 mddev_t *mddev; 7374 struct list_head *tmp; 7375 7376 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 7377 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 7378 7379 unregister_blkdev(MD_MAJOR,"md"); 7380 unregister_blkdev(mdp_major, "mdp"); 7381 unregister_reboot_notifier(&md_notifier); 7382 unregister_sysctl_table(raid_table_header); 7383 remove_proc_entry("mdstat", NULL); 7384 for_each_mddev(mddev, tmp) { 7385 export_array(mddev); 7386 mddev->hold_active = 0; 7387 } 7388 } 7389 7390 subsys_initcall(md_init); 7391 module_exit(md_exit) 7392 7393 static int get_ro(char *buffer, struct kernel_param *kp) 7394 { 7395 return sprintf(buffer, "%d", start_readonly); 7396 } 7397 static int set_ro(const char *val, struct kernel_param *kp) 7398 { 7399 char *e; 7400 int num = simple_strtoul(val, &e, 10); 7401 if (*val && (*e == '\0' || *e == '\n')) { 7402 start_readonly = num; 7403 return 0; 7404 } 7405 return -EINVAL; 7406 } 7407 7408 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 7409 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 7410 7411 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 7412 7413 EXPORT_SYMBOL(register_md_personality); 7414 EXPORT_SYMBOL(unregister_md_personality); 7415 EXPORT_SYMBOL(md_error); 7416 EXPORT_SYMBOL(md_done_sync); 7417 EXPORT_SYMBOL(md_write_start); 7418 EXPORT_SYMBOL(md_write_end); 7419 EXPORT_SYMBOL(md_register_thread); 7420 EXPORT_SYMBOL(md_unregister_thread); 7421 EXPORT_SYMBOL(md_wakeup_thread); 7422 EXPORT_SYMBOL(md_check_recovery); 7423 MODULE_LICENSE("GPL"); 7424 MODULE_DESCRIPTION("MD RAID framework"); 7425 MODULE_ALIAS("md"); 7426 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 7427