xref: /linux/drivers/md/md.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/smp_lock.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59 
60 
61 #ifndef MODULE
62 static void autostart_arrays(int part);
63 #endif
64 
65 static LIST_HEAD(pers_list);
66 static DEFINE_SPINLOCK(pers_lock);
67 
68 static void md_print_devices(void);
69 
70 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
71 
72 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
73 
74 /*
75  * Default number of read corrections we'll attempt on an rdev
76  * before ejecting it from the array. We divide the read error
77  * count by 2 for every hour elapsed between read errors.
78  */
79 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
80 /*
81  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
82  * is 1000 KB/sec, so the extra system load does not show up that much.
83  * Increase it if you want to have more _guaranteed_ speed. Note that
84  * the RAID driver will use the maximum available bandwidth if the IO
85  * subsystem is idle. There is also an 'absolute maximum' reconstruction
86  * speed limit - in case reconstruction slows down your system despite
87  * idle IO detection.
88  *
89  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
90  * or /sys/block/mdX/md/sync_speed_{min,max}
91  */
92 
93 static int sysctl_speed_limit_min = 1000;
94 static int sysctl_speed_limit_max = 200000;
95 static inline int speed_min(mddev_t *mddev)
96 {
97 	return mddev->sync_speed_min ?
98 		mddev->sync_speed_min : sysctl_speed_limit_min;
99 }
100 
101 static inline int speed_max(mddev_t *mddev)
102 {
103 	return mddev->sync_speed_max ?
104 		mddev->sync_speed_max : sysctl_speed_limit_max;
105 }
106 
107 static struct ctl_table_header *raid_table_header;
108 
109 static ctl_table raid_table[] = {
110 	{
111 		.procname	= "speed_limit_min",
112 		.data		= &sysctl_speed_limit_min,
113 		.maxlen		= sizeof(int),
114 		.mode		= S_IRUGO|S_IWUSR,
115 		.proc_handler	= proc_dointvec,
116 	},
117 	{
118 		.procname	= "speed_limit_max",
119 		.data		= &sysctl_speed_limit_max,
120 		.maxlen		= sizeof(int),
121 		.mode		= S_IRUGO|S_IWUSR,
122 		.proc_handler	= proc_dointvec,
123 	},
124 	{ }
125 };
126 
127 static ctl_table raid_dir_table[] = {
128 	{
129 		.procname	= "raid",
130 		.maxlen		= 0,
131 		.mode		= S_IRUGO|S_IXUGO,
132 		.child		= raid_table,
133 	},
134 	{ }
135 };
136 
137 static ctl_table raid_root_table[] = {
138 	{
139 		.procname	= "dev",
140 		.maxlen		= 0,
141 		.mode		= 0555,
142 		.child		= raid_dir_table,
143 	},
144 	{  }
145 };
146 
147 static const struct block_device_operations md_fops;
148 
149 static int start_readonly;
150 
151 /*
152  * We have a system wide 'event count' that is incremented
153  * on any 'interesting' event, and readers of /proc/mdstat
154  * can use 'poll' or 'select' to find out when the event
155  * count increases.
156  *
157  * Events are:
158  *  start array, stop array, error, add device, remove device,
159  *  start build, activate spare
160  */
161 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
162 static atomic_t md_event_count;
163 void md_new_event(mddev_t *mddev)
164 {
165 	atomic_inc(&md_event_count);
166 	wake_up(&md_event_waiters);
167 }
168 EXPORT_SYMBOL_GPL(md_new_event);
169 
170 /* Alternate version that can be called from interrupts
171  * when calling sysfs_notify isn't needed.
172  */
173 static void md_new_event_inintr(mddev_t *mddev)
174 {
175 	atomic_inc(&md_event_count);
176 	wake_up(&md_event_waiters);
177 }
178 
179 /*
180  * Enables to iterate over all existing md arrays
181  * all_mddevs_lock protects this list.
182  */
183 static LIST_HEAD(all_mddevs);
184 static DEFINE_SPINLOCK(all_mddevs_lock);
185 
186 
187 /*
188  * iterates through all used mddevs in the system.
189  * We take care to grab the all_mddevs_lock whenever navigating
190  * the list, and to always hold a refcount when unlocked.
191  * Any code which breaks out of this loop while own
192  * a reference to the current mddev and must mddev_put it.
193  */
194 #define for_each_mddev(mddev,tmp)					\
195 									\
196 	for (({ spin_lock(&all_mddevs_lock); 				\
197 		tmp = all_mddevs.next;					\
198 		mddev = NULL;});					\
199 	     ({ if (tmp != &all_mddevs)					\
200 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
201 		spin_unlock(&all_mddevs_lock);				\
202 		if (mddev) mddev_put(mddev);				\
203 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
204 		tmp != &all_mddevs;});					\
205 	     ({ spin_lock(&all_mddevs_lock);				\
206 		tmp = tmp->next;})					\
207 		)
208 
209 
210 /* Rather than calling directly into the personality make_request function,
211  * IO requests come here first so that we can check if the device is
212  * being suspended pending a reconfiguration.
213  * We hold a refcount over the call to ->make_request.  By the time that
214  * call has finished, the bio has been linked into some internal structure
215  * and so is visible to ->quiesce(), so we don't need the refcount any more.
216  */
217 static int md_make_request(struct request_queue *q, struct bio *bio)
218 {
219 	const int rw = bio_data_dir(bio);
220 	mddev_t *mddev = q->queuedata;
221 	int rv;
222 	int cpu;
223 
224 	if (mddev == NULL || mddev->pers == NULL) {
225 		bio_io_error(bio);
226 		return 0;
227 	}
228 	rcu_read_lock();
229 	if (mddev->suspended || mddev->barrier) {
230 		DEFINE_WAIT(__wait);
231 		for (;;) {
232 			prepare_to_wait(&mddev->sb_wait, &__wait,
233 					TASK_UNINTERRUPTIBLE);
234 			if (!mddev->suspended && !mddev->barrier)
235 				break;
236 			rcu_read_unlock();
237 			schedule();
238 			rcu_read_lock();
239 		}
240 		finish_wait(&mddev->sb_wait, &__wait);
241 	}
242 	atomic_inc(&mddev->active_io);
243 	rcu_read_unlock();
244 
245 	rv = mddev->pers->make_request(mddev, bio);
246 
247 	cpu = part_stat_lock();
248 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
249 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
250 		      bio_sectors(bio));
251 	part_stat_unlock();
252 
253 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
254 		wake_up(&mddev->sb_wait);
255 
256 	return rv;
257 }
258 
259 /* mddev_suspend makes sure no new requests are submitted
260  * to the device, and that any requests that have been submitted
261  * are completely handled.
262  * Once ->stop is called and completes, the module will be completely
263  * unused.
264  */
265 void mddev_suspend(mddev_t *mddev)
266 {
267 	BUG_ON(mddev->suspended);
268 	mddev->suspended = 1;
269 	synchronize_rcu();
270 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
271 	mddev->pers->quiesce(mddev, 1);
272 }
273 EXPORT_SYMBOL_GPL(mddev_suspend);
274 
275 void mddev_resume(mddev_t *mddev)
276 {
277 	mddev->suspended = 0;
278 	wake_up(&mddev->sb_wait);
279 	mddev->pers->quiesce(mddev, 0);
280 }
281 EXPORT_SYMBOL_GPL(mddev_resume);
282 
283 int mddev_congested(mddev_t *mddev, int bits)
284 {
285 	if (mddev->barrier)
286 		return 1;
287 	return mddev->suspended;
288 }
289 EXPORT_SYMBOL(mddev_congested);
290 
291 /*
292  * Generic barrier handling for md
293  */
294 
295 #define POST_REQUEST_BARRIER ((void*)1)
296 
297 static void md_end_barrier(struct bio *bio, int err)
298 {
299 	mdk_rdev_t *rdev = bio->bi_private;
300 	mddev_t *mddev = rdev->mddev;
301 	if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER)
302 		set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags);
303 
304 	rdev_dec_pending(rdev, mddev);
305 
306 	if (atomic_dec_and_test(&mddev->flush_pending)) {
307 		if (mddev->barrier == POST_REQUEST_BARRIER) {
308 			/* This was a post-request barrier */
309 			mddev->barrier = NULL;
310 			wake_up(&mddev->sb_wait);
311 		} else
312 			/* The pre-request barrier has finished */
313 			schedule_work(&mddev->barrier_work);
314 	}
315 	bio_put(bio);
316 }
317 
318 static void submit_barriers(mddev_t *mddev)
319 {
320 	mdk_rdev_t *rdev;
321 
322 	rcu_read_lock();
323 	list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
324 		if (rdev->raid_disk >= 0 &&
325 		    !test_bit(Faulty, &rdev->flags)) {
326 			/* Take two references, one is dropped
327 			 * when request finishes, one after
328 			 * we reclaim rcu_read_lock
329 			 */
330 			struct bio *bi;
331 			atomic_inc(&rdev->nr_pending);
332 			atomic_inc(&rdev->nr_pending);
333 			rcu_read_unlock();
334 			bi = bio_alloc(GFP_KERNEL, 0);
335 			bi->bi_end_io = md_end_barrier;
336 			bi->bi_private = rdev;
337 			bi->bi_bdev = rdev->bdev;
338 			atomic_inc(&mddev->flush_pending);
339 			submit_bio(WRITE_BARRIER, bi);
340 			rcu_read_lock();
341 			rdev_dec_pending(rdev, mddev);
342 		}
343 	rcu_read_unlock();
344 }
345 
346 static void md_submit_barrier(struct work_struct *ws)
347 {
348 	mddev_t *mddev = container_of(ws, mddev_t, barrier_work);
349 	struct bio *bio = mddev->barrier;
350 
351 	atomic_set(&mddev->flush_pending, 1);
352 
353 	if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
354 		bio_endio(bio, -EOPNOTSUPP);
355 	else if (bio->bi_size == 0)
356 		/* an empty barrier - all done */
357 		bio_endio(bio, 0);
358 	else {
359 		bio->bi_rw &= ~REQ_HARDBARRIER;
360 		if (mddev->pers->make_request(mddev, bio))
361 			generic_make_request(bio);
362 		mddev->barrier = POST_REQUEST_BARRIER;
363 		submit_barriers(mddev);
364 	}
365 	if (atomic_dec_and_test(&mddev->flush_pending)) {
366 		mddev->barrier = NULL;
367 		wake_up(&mddev->sb_wait);
368 	}
369 }
370 
371 void md_barrier_request(mddev_t *mddev, struct bio *bio)
372 {
373 	spin_lock_irq(&mddev->write_lock);
374 	wait_event_lock_irq(mddev->sb_wait,
375 			    !mddev->barrier,
376 			    mddev->write_lock, /*nothing*/);
377 	mddev->barrier = bio;
378 	spin_unlock_irq(&mddev->write_lock);
379 
380 	atomic_set(&mddev->flush_pending, 1);
381 	INIT_WORK(&mddev->barrier_work, md_submit_barrier);
382 
383 	submit_barriers(mddev);
384 
385 	if (atomic_dec_and_test(&mddev->flush_pending))
386 		schedule_work(&mddev->barrier_work);
387 }
388 EXPORT_SYMBOL(md_barrier_request);
389 
390 /* Support for plugging.
391  * This mirrors the plugging support in request_queue, but does not
392  * require having a whole queue
393  */
394 static void plugger_work(struct work_struct *work)
395 {
396 	struct plug_handle *plug =
397 		container_of(work, struct plug_handle, unplug_work);
398 	plug->unplug_fn(plug);
399 }
400 static void plugger_timeout(unsigned long data)
401 {
402 	struct plug_handle *plug = (void *)data;
403 	kblockd_schedule_work(NULL, &plug->unplug_work);
404 }
405 void plugger_init(struct plug_handle *plug,
406 		  void (*unplug_fn)(struct plug_handle *))
407 {
408 	plug->unplug_flag = 0;
409 	plug->unplug_fn = unplug_fn;
410 	init_timer(&plug->unplug_timer);
411 	plug->unplug_timer.function = plugger_timeout;
412 	plug->unplug_timer.data = (unsigned long)plug;
413 	INIT_WORK(&plug->unplug_work, plugger_work);
414 }
415 EXPORT_SYMBOL_GPL(plugger_init);
416 
417 void plugger_set_plug(struct plug_handle *plug)
418 {
419 	if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
420 		mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
421 }
422 EXPORT_SYMBOL_GPL(plugger_set_plug);
423 
424 int plugger_remove_plug(struct plug_handle *plug)
425 {
426 	if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
427 		del_timer(&plug->unplug_timer);
428 		return 1;
429 	} else
430 		return 0;
431 }
432 EXPORT_SYMBOL_GPL(plugger_remove_plug);
433 
434 
435 static inline mddev_t *mddev_get(mddev_t *mddev)
436 {
437 	atomic_inc(&mddev->active);
438 	return mddev;
439 }
440 
441 static void mddev_delayed_delete(struct work_struct *ws);
442 
443 static void mddev_put(mddev_t *mddev)
444 {
445 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
446 		return;
447 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
448 	    mddev->ctime == 0 && !mddev->hold_active) {
449 		/* Array is not configured at all, and not held active,
450 		 * so destroy it */
451 		list_del(&mddev->all_mddevs);
452 		if (mddev->gendisk) {
453 			/* we did a probe so need to clean up.
454 			 * Call schedule_work inside the spinlock
455 			 * so that flush_scheduled_work() after
456 			 * mddev_find will succeed in waiting for the
457 			 * work to be done.
458 			 */
459 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
460 			schedule_work(&mddev->del_work);
461 		} else
462 			kfree(mddev);
463 	}
464 	spin_unlock(&all_mddevs_lock);
465 }
466 
467 void mddev_init(mddev_t *mddev)
468 {
469 	mutex_init(&mddev->open_mutex);
470 	mutex_init(&mddev->reconfig_mutex);
471 	mutex_init(&mddev->bitmap_info.mutex);
472 	INIT_LIST_HEAD(&mddev->disks);
473 	INIT_LIST_HEAD(&mddev->all_mddevs);
474 	init_timer(&mddev->safemode_timer);
475 	atomic_set(&mddev->active, 1);
476 	atomic_set(&mddev->openers, 0);
477 	atomic_set(&mddev->active_io, 0);
478 	spin_lock_init(&mddev->write_lock);
479 	atomic_set(&mddev->flush_pending, 0);
480 	init_waitqueue_head(&mddev->sb_wait);
481 	init_waitqueue_head(&mddev->recovery_wait);
482 	mddev->reshape_position = MaxSector;
483 	mddev->resync_min = 0;
484 	mddev->resync_max = MaxSector;
485 	mddev->level = LEVEL_NONE;
486 }
487 EXPORT_SYMBOL_GPL(mddev_init);
488 
489 static mddev_t * mddev_find(dev_t unit)
490 {
491 	mddev_t *mddev, *new = NULL;
492 
493  retry:
494 	spin_lock(&all_mddevs_lock);
495 
496 	if (unit) {
497 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
498 			if (mddev->unit == unit) {
499 				mddev_get(mddev);
500 				spin_unlock(&all_mddevs_lock);
501 				kfree(new);
502 				return mddev;
503 			}
504 
505 		if (new) {
506 			list_add(&new->all_mddevs, &all_mddevs);
507 			spin_unlock(&all_mddevs_lock);
508 			new->hold_active = UNTIL_IOCTL;
509 			return new;
510 		}
511 	} else if (new) {
512 		/* find an unused unit number */
513 		static int next_minor = 512;
514 		int start = next_minor;
515 		int is_free = 0;
516 		int dev = 0;
517 		while (!is_free) {
518 			dev = MKDEV(MD_MAJOR, next_minor);
519 			next_minor++;
520 			if (next_minor > MINORMASK)
521 				next_minor = 0;
522 			if (next_minor == start) {
523 				/* Oh dear, all in use. */
524 				spin_unlock(&all_mddevs_lock);
525 				kfree(new);
526 				return NULL;
527 			}
528 
529 			is_free = 1;
530 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
531 				if (mddev->unit == dev) {
532 					is_free = 0;
533 					break;
534 				}
535 		}
536 		new->unit = dev;
537 		new->md_minor = MINOR(dev);
538 		new->hold_active = UNTIL_STOP;
539 		list_add(&new->all_mddevs, &all_mddevs);
540 		spin_unlock(&all_mddevs_lock);
541 		return new;
542 	}
543 	spin_unlock(&all_mddevs_lock);
544 
545 	new = kzalloc(sizeof(*new), GFP_KERNEL);
546 	if (!new)
547 		return NULL;
548 
549 	new->unit = unit;
550 	if (MAJOR(unit) == MD_MAJOR)
551 		new->md_minor = MINOR(unit);
552 	else
553 		new->md_minor = MINOR(unit) >> MdpMinorShift;
554 
555 	mddev_init(new);
556 
557 	goto retry;
558 }
559 
560 static inline int mddev_lock(mddev_t * mddev)
561 {
562 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
563 }
564 
565 static inline int mddev_is_locked(mddev_t *mddev)
566 {
567 	return mutex_is_locked(&mddev->reconfig_mutex);
568 }
569 
570 static inline int mddev_trylock(mddev_t * mddev)
571 {
572 	return mutex_trylock(&mddev->reconfig_mutex);
573 }
574 
575 static struct attribute_group md_redundancy_group;
576 
577 static void mddev_unlock(mddev_t * mddev)
578 {
579 	if (mddev->to_remove) {
580 		/* These cannot be removed under reconfig_mutex as
581 		 * an access to the files will try to take reconfig_mutex
582 		 * while holding the file unremovable, which leads to
583 		 * a deadlock.
584 		 * So hold set sysfs_active while the remove in happeing,
585 		 * and anything else which might set ->to_remove or my
586 		 * otherwise change the sysfs namespace will fail with
587 		 * -EBUSY if sysfs_active is still set.
588 		 * We set sysfs_active under reconfig_mutex and elsewhere
589 		 * test it under the same mutex to ensure its correct value
590 		 * is seen.
591 		 */
592 		struct attribute_group *to_remove = mddev->to_remove;
593 		mddev->to_remove = NULL;
594 		mddev->sysfs_active = 1;
595 		mutex_unlock(&mddev->reconfig_mutex);
596 
597 		if (mddev->kobj.sd) {
598 			if (to_remove != &md_redundancy_group)
599 				sysfs_remove_group(&mddev->kobj, to_remove);
600 			if (mddev->pers == NULL ||
601 			    mddev->pers->sync_request == NULL) {
602 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
603 				if (mddev->sysfs_action)
604 					sysfs_put(mddev->sysfs_action);
605 				mddev->sysfs_action = NULL;
606 			}
607 		}
608 		mddev->sysfs_active = 0;
609 	} else
610 		mutex_unlock(&mddev->reconfig_mutex);
611 
612 	md_wakeup_thread(mddev->thread);
613 }
614 
615 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
616 {
617 	mdk_rdev_t *rdev;
618 
619 	list_for_each_entry(rdev, &mddev->disks, same_set)
620 		if (rdev->desc_nr == nr)
621 			return rdev;
622 
623 	return NULL;
624 }
625 
626 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
627 {
628 	mdk_rdev_t *rdev;
629 
630 	list_for_each_entry(rdev, &mddev->disks, same_set)
631 		if (rdev->bdev->bd_dev == dev)
632 			return rdev;
633 
634 	return NULL;
635 }
636 
637 static struct mdk_personality *find_pers(int level, char *clevel)
638 {
639 	struct mdk_personality *pers;
640 	list_for_each_entry(pers, &pers_list, list) {
641 		if (level != LEVEL_NONE && pers->level == level)
642 			return pers;
643 		if (strcmp(pers->name, clevel)==0)
644 			return pers;
645 	}
646 	return NULL;
647 }
648 
649 /* return the offset of the super block in 512byte sectors */
650 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
651 {
652 	sector_t num_sectors = bdev->bd_inode->i_size / 512;
653 	return MD_NEW_SIZE_SECTORS(num_sectors);
654 }
655 
656 static int alloc_disk_sb(mdk_rdev_t * rdev)
657 {
658 	if (rdev->sb_page)
659 		MD_BUG();
660 
661 	rdev->sb_page = alloc_page(GFP_KERNEL);
662 	if (!rdev->sb_page) {
663 		printk(KERN_ALERT "md: out of memory.\n");
664 		return -ENOMEM;
665 	}
666 
667 	return 0;
668 }
669 
670 static void free_disk_sb(mdk_rdev_t * rdev)
671 {
672 	if (rdev->sb_page) {
673 		put_page(rdev->sb_page);
674 		rdev->sb_loaded = 0;
675 		rdev->sb_page = NULL;
676 		rdev->sb_start = 0;
677 		rdev->sectors = 0;
678 	}
679 }
680 
681 
682 static void super_written(struct bio *bio, int error)
683 {
684 	mdk_rdev_t *rdev = bio->bi_private;
685 	mddev_t *mddev = rdev->mddev;
686 
687 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
688 		printk("md: super_written gets error=%d, uptodate=%d\n",
689 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
690 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
691 		md_error(mddev, rdev);
692 	}
693 
694 	if (atomic_dec_and_test(&mddev->pending_writes))
695 		wake_up(&mddev->sb_wait);
696 	bio_put(bio);
697 }
698 
699 static void super_written_barrier(struct bio *bio, int error)
700 {
701 	struct bio *bio2 = bio->bi_private;
702 	mdk_rdev_t *rdev = bio2->bi_private;
703 	mddev_t *mddev = rdev->mddev;
704 
705 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
706 	    error == -EOPNOTSUPP) {
707 		unsigned long flags;
708 		/* barriers don't appear to be supported :-( */
709 		set_bit(BarriersNotsupp, &rdev->flags);
710 		mddev->barriers_work = 0;
711 		spin_lock_irqsave(&mddev->write_lock, flags);
712 		bio2->bi_next = mddev->biolist;
713 		mddev->biolist = bio2;
714 		spin_unlock_irqrestore(&mddev->write_lock, flags);
715 		wake_up(&mddev->sb_wait);
716 		bio_put(bio);
717 	} else {
718 		bio_put(bio2);
719 		bio->bi_private = rdev;
720 		super_written(bio, error);
721 	}
722 }
723 
724 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
725 		   sector_t sector, int size, struct page *page)
726 {
727 	/* write first size bytes of page to sector of rdev
728 	 * Increment mddev->pending_writes before returning
729 	 * and decrement it on completion, waking up sb_wait
730 	 * if zero is reached.
731 	 * If an error occurred, call md_error
732 	 *
733 	 * As we might need to resubmit the request if REQ_HARDBARRIER
734 	 * causes ENOTSUPP, we allocate a spare bio...
735 	 */
736 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
737 	int rw = REQ_WRITE | REQ_SYNC | REQ_UNPLUG;
738 
739 	bio->bi_bdev = rdev->bdev;
740 	bio->bi_sector = sector;
741 	bio_add_page(bio, page, size, 0);
742 	bio->bi_private = rdev;
743 	bio->bi_end_io = super_written;
744 	bio->bi_rw = rw;
745 
746 	atomic_inc(&mddev->pending_writes);
747 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
748 		struct bio *rbio;
749 		rw |= REQ_HARDBARRIER;
750 		rbio = bio_clone(bio, GFP_NOIO);
751 		rbio->bi_private = bio;
752 		rbio->bi_end_io = super_written_barrier;
753 		submit_bio(rw, rbio);
754 	} else
755 		submit_bio(rw, bio);
756 }
757 
758 void md_super_wait(mddev_t *mddev)
759 {
760 	/* wait for all superblock writes that were scheduled to complete.
761 	 * if any had to be retried (due to BARRIER problems), retry them
762 	 */
763 	DEFINE_WAIT(wq);
764 	for(;;) {
765 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
766 		if (atomic_read(&mddev->pending_writes)==0)
767 			break;
768 		while (mddev->biolist) {
769 			struct bio *bio;
770 			spin_lock_irq(&mddev->write_lock);
771 			bio = mddev->biolist;
772 			mddev->biolist = bio->bi_next ;
773 			bio->bi_next = NULL;
774 			spin_unlock_irq(&mddev->write_lock);
775 			submit_bio(bio->bi_rw, bio);
776 		}
777 		schedule();
778 	}
779 	finish_wait(&mddev->sb_wait, &wq);
780 }
781 
782 static void bi_complete(struct bio *bio, int error)
783 {
784 	complete((struct completion*)bio->bi_private);
785 }
786 
787 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
788 		   struct page *page, int rw)
789 {
790 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
791 	struct completion event;
792 	int ret;
793 
794 	rw |= REQ_SYNC | REQ_UNPLUG;
795 
796 	bio->bi_bdev = bdev;
797 	bio->bi_sector = sector;
798 	bio_add_page(bio, page, size, 0);
799 	init_completion(&event);
800 	bio->bi_private = &event;
801 	bio->bi_end_io = bi_complete;
802 	submit_bio(rw, bio);
803 	wait_for_completion(&event);
804 
805 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
806 	bio_put(bio);
807 	return ret;
808 }
809 EXPORT_SYMBOL_GPL(sync_page_io);
810 
811 static int read_disk_sb(mdk_rdev_t * rdev, int size)
812 {
813 	char b[BDEVNAME_SIZE];
814 	if (!rdev->sb_page) {
815 		MD_BUG();
816 		return -EINVAL;
817 	}
818 	if (rdev->sb_loaded)
819 		return 0;
820 
821 
822 	if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
823 		goto fail;
824 	rdev->sb_loaded = 1;
825 	return 0;
826 
827 fail:
828 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
829 		bdevname(rdev->bdev,b));
830 	return -EINVAL;
831 }
832 
833 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
834 {
835 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
836 		sb1->set_uuid1 == sb2->set_uuid1 &&
837 		sb1->set_uuid2 == sb2->set_uuid2 &&
838 		sb1->set_uuid3 == sb2->set_uuid3;
839 }
840 
841 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
842 {
843 	int ret;
844 	mdp_super_t *tmp1, *tmp2;
845 
846 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
847 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
848 
849 	if (!tmp1 || !tmp2) {
850 		ret = 0;
851 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
852 		goto abort;
853 	}
854 
855 	*tmp1 = *sb1;
856 	*tmp2 = *sb2;
857 
858 	/*
859 	 * nr_disks is not constant
860 	 */
861 	tmp1->nr_disks = 0;
862 	tmp2->nr_disks = 0;
863 
864 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
865 abort:
866 	kfree(tmp1);
867 	kfree(tmp2);
868 	return ret;
869 }
870 
871 
872 static u32 md_csum_fold(u32 csum)
873 {
874 	csum = (csum & 0xffff) + (csum >> 16);
875 	return (csum & 0xffff) + (csum >> 16);
876 }
877 
878 static unsigned int calc_sb_csum(mdp_super_t * sb)
879 {
880 	u64 newcsum = 0;
881 	u32 *sb32 = (u32*)sb;
882 	int i;
883 	unsigned int disk_csum, csum;
884 
885 	disk_csum = sb->sb_csum;
886 	sb->sb_csum = 0;
887 
888 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
889 		newcsum += sb32[i];
890 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
891 
892 
893 #ifdef CONFIG_ALPHA
894 	/* This used to use csum_partial, which was wrong for several
895 	 * reasons including that different results are returned on
896 	 * different architectures.  It isn't critical that we get exactly
897 	 * the same return value as before (we always csum_fold before
898 	 * testing, and that removes any differences).  However as we
899 	 * know that csum_partial always returned a 16bit value on
900 	 * alphas, do a fold to maximise conformity to previous behaviour.
901 	 */
902 	sb->sb_csum = md_csum_fold(disk_csum);
903 #else
904 	sb->sb_csum = disk_csum;
905 #endif
906 	return csum;
907 }
908 
909 
910 /*
911  * Handle superblock details.
912  * We want to be able to handle multiple superblock formats
913  * so we have a common interface to them all, and an array of
914  * different handlers.
915  * We rely on user-space to write the initial superblock, and support
916  * reading and updating of superblocks.
917  * Interface methods are:
918  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
919  *      loads and validates a superblock on dev.
920  *      if refdev != NULL, compare superblocks on both devices
921  *    Return:
922  *      0 - dev has a superblock that is compatible with refdev
923  *      1 - dev has a superblock that is compatible and newer than refdev
924  *          so dev should be used as the refdev in future
925  *     -EINVAL superblock incompatible or invalid
926  *     -othererror e.g. -EIO
927  *
928  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
929  *      Verify that dev is acceptable into mddev.
930  *       The first time, mddev->raid_disks will be 0, and data from
931  *       dev should be merged in.  Subsequent calls check that dev
932  *       is new enough.  Return 0 or -EINVAL
933  *
934  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
935  *     Update the superblock for rdev with data in mddev
936  *     This does not write to disc.
937  *
938  */
939 
940 struct super_type  {
941 	char		    *name;
942 	struct module	    *owner;
943 	int		    (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
944 					  int minor_version);
945 	int		    (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
946 	void		    (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
947 	unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
948 						sector_t num_sectors);
949 };
950 
951 /*
952  * Check that the given mddev has no bitmap.
953  *
954  * This function is called from the run method of all personalities that do not
955  * support bitmaps. It prints an error message and returns non-zero if mddev
956  * has a bitmap. Otherwise, it returns 0.
957  *
958  */
959 int md_check_no_bitmap(mddev_t *mddev)
960 {
961 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
962 		return 0;
963 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
964 		mdname(mddev), mddev->pers->name);
965 	return 1;
966 }
967 EXPORT_SYMBOL(md_check_no_bitmap);
968 
969 /*
970  * load_super for 0.90.0
971  */
972 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
973 {
974 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
975 	mdp_super_t *sb;
976 	int ret;
977 
978 	/*
979 	 * Calculate the position of the superblock (512byte sectors),
980 	 * it's at the end of the disk.
981 	 *
982 	 * It also happens to be a multiple of 4Kb.
983 	 */
984 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
985 
986 	ret = read_disk_sb(rdev, MD_SB_BYTES);
987 	if (ret) return ret;
988 
989 	ret = -EINVAL;
990 
991 	bdevname(rdev->bdev, b);
992 	sb = (mdp_super_t*)page_address(rdev->sb_page);
993 
994 	if (sb->md_magic != MD_SB_MAGIC) {
995 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
996 		       b);
997 		goto abort;
998 	}
999 
1000 	if (sb->major_version != 0 ||
1001 	    sb->minor_version < 90 ||
1002 	    sb->minor_version > 91) {
1003 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1004 			sb->major_version, sb->minor_version,
1005 			b);
1006 		goto abort;
1007 	}
1008 
1009 	if (sb->raid_disks <= 0)
1010 		goto abort;
1011 
1012 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1013 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1014 			b);
1015 		goto abort;
1016 	}
1017 
1018 	rdev->preferred_minor = sb->md_minor;
1019 	rdev->data_offset = 0;
1020 	rdev->sb_size = MD_SB_BYTES;
1021 
1022 	if (sb->level == LEVEL_MULTIPATH)
1023 		rdev->desc_nr = -1;
1024 	else
1025 		rdev->desc_nr = sb->this_disk.number;
1026 
1027 	if (!refdev) {
1028 		ret = 1;
1029 	} else {
1030 		__u64 ev1, ev2;
1031 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
1032 		if (!uuid_equal(refsb, sb)) {
1033 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1034 				b, bdevname(refdev->bdev,b2));
1035 			goto abort;
1036 		}
1037 		if (!sb_equal(refsb, sb)) {
1038 			printk(KERN_WARNING "md: %s has same UUID"
1039 			       " but different superblock to %s\n",
1040 			       b, bdevname(refdev->bdev, b2));
1041 			goto abort;
1042 		}
1043 		ev1 = md_event(sb);
1044 		ev2 = md_event(refsb);
1045 		if (ev1 > ev2)
1046 			ret = 1;
1047 		else
1048 			ret = 0;
1049 	}
1050 	rdev->sectors = rdev->sb_start;
1051 
1052 	if (rdev->sectors < sb->size * 2 && sb->level > 1)
1053 		/* "this cannot possibly happen" ... */
1054 		ret = -EINVAL;
1055 
1056  abort:
1057 	return ret;
1058 }
1059 
1060 /*
1061  * validate_super for 0.90.0
1062  */
1063 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1064 {
1065 	mdp_disk_t *desc;
1066 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1067 	__u64 ev1 = md_event(sb);
1068 
1069 	rdev->raid_disk = -1;
1070 	clear_bit(Faulty, &rdev->flags);
1071 	clear_bit(In_sync, &rdev->flags);
1072 	clear_bit(WriteMostly, &rdev->flags);
1073 	clear_bit(BarriersNotsupp, &rdev->flags);
1074 
1075 	if (mddev->raid_disks == 0) {
1076 		mddev->major_version = 0;
1077 		mddev->minor_version = sb->minor_version;
1078 		mddev->patch_version = sb->patch_version;
1079 		mddev->external = 0;
1080 		mddev->chunk_sectors = sb->chunk_size >> 9;
1081 		mddev->ctime = sb->ctime;
1082 		mddev->utime = sb->utime;
1083 		mddev->level = sb->level;
1084 		mddev->clevel[0] = 0;
1085 		mddev->layout = sb->layout;
1086 		mddev->raid_disks = sb->raid_disks;
1087 		mddev->dev_sectors = sb->size * 2;
1088 		mddev->events = ev1;
1089 		mddev->bitmap_info.offset = 0;
1090 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1091 
1092 		if (mddev->minor_version >= 91) {
1093 			mddev->reshape_position = sb->reshape_position;
1094 			mddev->delta_disks = sb->delta_disks;
1095 			mddev->new_level = sb->new_level;
1096 			mddev->new_layout = sb->new_layout;
1097 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1098 		} else {
1099 			mddev->reshape_position = MaxSector;
1100 			mddev->delta_disks = 0;
1101 			mddev->new_level = mddev->level;
1102 			mddev->new_layout = mddev->layout;
1103 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1104 		}
1105 
1106 		if (sb->state & (1<<MD_SB_CLEAN))
1107 			mddev->recovery_cp = MaxSector;
1108 		else {
1109 			if (sb->events_hi == sb->cp_events_hi &&
1110 				sb->events_lo == sb->cp_events_lo) {
1111 				mddev->recovery_cp = sb->recovery_cp;
1112 			} else
1113 				mddev->recovery_cp = 0;
1114 		}
1115 
1116 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1117 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1118 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1119 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1120 
1121 		mddev->max_disks = MD_SB_DISKS;
1122 
1123 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1124 		    mddev->bitmap_info.file == NULL)
1125 			mddev->bitmap_info.offset =
1126 				mddev->bitmap_info.default_offset;
1127 
1128 	} else if (mddev->pers == NULL) {
1129 		/* Insist on good event counter while assembling, except
1130 		 * for spares (which don't need an event count) */
1131 		++ev1;
1132 		if (sb->disks[rdev->desc_nr].state & (
1133 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1134 			if (ev1 < mddev->events)
1135 				return -EINVAL;
1136 	} else if (mddev->bitmap) {
1137 		/* if adding to array with a bitmap, then we can accept an
1138 		 * older device ... but not too old.
1139 		 */
1140 		if (ev1 < mddev->bitmap->events_cleared)
1141 			return 0;
1142 	} else {
1143 		if (ev1 < mddev->events)
1144 			/* just a hot-add of a new device, leave raid_disk at -1 */
1145 			return 0;
1146 	}
1147 
1148 	if (mddev->level != LEVEL_MULTIPATH) {
1149 		desc = sb->disks + rdev->desc_nr;
1150 
1151 		if (desc->state & (1<<MD_DISK_FAULTY))
1152 			set_bit(Faulty, &rdev->flags);
1153 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1154 			    desc->raid_disk < mddev->raid_disks */) {
1155 			set_bit(In_sync, &rdev->flags);
1156 			rdev->raid_disk = desc->raid_disk;
1157 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1158 			/* active but not in sync implies recovery up to
1159 			 * reshape position.  We don't know exactly where
1160 			 * that is, so set to zero for now */
1161 			if (mddev->minor_version >= 91) {
1162 				rdev->recovery_offset = 0;
1163 				rdev->raid_disk = desc->raid_disk;
1164 			}
1165 		}
1166 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1167 			set_bit(WriteMostly, &rdev->flags);
1168 	} else /* MULTIPATH are always insync */
1169 		set_bit(In_sync, &rdev->flags);
1170 	return 0;
1171 }
1172 
1173 /*
1174  * sync_super for 0.90.0
1175  */
1176 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1177 {
1178 	mdp_super_t *sb;
1179 	mdk_rdev_t *rdev2;
1180 	int next_spare = mddev->raid_disks;
1181 
1182 
1183 	/* make rdev->sb match mddev data..
1184 	 *
1185 	 * 1/ zero out disks
1186 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1187 	 * 3/ any empty disks < next_spare become removed
1188 	 *
1189 	 * disks[0] gets initialised to REMOVED because
1190 	 * we cannot be sure from other fields if it has
1191 	 * been initialised or not.
1192 	 */
1193 	int i;
1194 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1195 
1196 	rdev->sb_size = MD_SB_BYTES;
1197 
1198 	sb = (mdp_super_t*)page_address(rdev->sb_page);
1199 
1200 	memset(sb, 0, sizeof(*sb));
1201 
1202 	sb->md_magic = MD_SB_MAGIC;
1203 	sb->major_version = mddev->major_version;
1204 	sb->patch_version = mddev->patch_version;
1205 	sb->gvalid_words  = 0; /* ignored */
1206 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1207 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1208 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1209 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1210 
1211 	sb->ctime = mddev->ctime;
1212 	sb->level = mddev->level;
1213 	sb->size = mddev->dev_sectors / 2;
1214 	sb->raid_disks = mddev->raid_disks;
1215 	sb->md_minor = mddev->md_minor;
1216 	sb->not_persistent = 0;
1217 	sb->utime = mddev->utime;
1218 	sb->state = 0;
1219 	sb->events_hi = (mddev->events>>32);
1220 	sb->events_lo = (u32)mddev->events;
1221 
1222 	if (mddev->reshape_position == MaxSector)
1223 		sb->minor_version = 90;
1224 	else {
1225 		sb->minor_version = 91;
1226 		sb->reshape_position = mddev->reshape_position;
1227 		sb->new_level = mddev->new_level;
1228 		sb->delta_disks = mddev->delta_disks;
1229 		sb->new_layout = mddev->new_layout;
1230 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1231 	}
1232 	mddev->minor_version = sb->minor_version;
1233 	if (mddev->in_sync)
1234 	{
1235 		sb->recovery_cp = mddev->recovery_cp;
1236 		sb->cp_events_hi = (mddev->events>>32);
1237 		sb->cp_events_lo = (u32)mddev->events;
1238 		if (mddev->recovery_cp == MaxSector)
1239 			sb->state = (1<< MD_SB_CLEAN);
1240 	} else
1241 		sb->recovery_cp = 0;
1242 
1243 	sb->layout = mddev->layout;
1244 	sb->chunk_size = mddev->chunk_sectors << 9;
1245 
1246 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1247 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1248 
1249 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1250 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1251 		mdp_disk_t *d;
1252 		int desc_nr;
1253 		int is_active = test_bit(In_sync, &rdev2->flags);
1254 
1255 		if (rdev2->raid_disk >= 0 &&
1256 		    sb->minor_version >= 91)
1257 			/* we have nowhere to store the recovery_offset,
1258 			 * but if it is not below the reshape_position,
1259 			 * we can piggy-back on that.
1260 			 */
1261 			is_active = 1;
1262 		if (rdev2->raid_disk < 0 ||
1263 		    test_bit(Faulty, &rdev2->flags))
1264 			is_active = 0;
1265 		if (is_active)
1266 			desc_nr = rdev2->raid_disk;
1267 		else
1268 			desc_nr = next_spare++;
1269 		rdev2->desc_nr = desc_nr;
1270 		d = &sb->disks[rdev2->desc_nr];
1271 		nr_disks++;
1272 		d->number = rdev2->desc_nr;
1273 		d->major = MAJOR(rdev2->bdev->bd_dev);
1274 		d->minor = MINOR(rdev2->bdev->bd_dev);
1275 		if (is_active)
1276 			d->raid_disk = rdev2->raid_disk;
1277 		else
1278 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1279 		if (test_bit(Faulty, &rdev2->flags))
1280 			d->state = (1<<MD_DISK_FAULTY);
1281 		else if (is_active) {
1282 			d->state = (1<<MD_DISK_ACTIVE);
1283 			if (test_bit(In_sync, &rdev2->flags))
1284 				d->state |= (1<<MD_DISK_SYNC);
1285 			active++;
1286 			working++;
1287 		} else {
1288 			d->state = 0;
1289 			spare++;
1290 			working++;
1291 		}
1292 		if (test_bit(WriteMostly, &rdev2->flags))
1293 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1294 	}
1295 	/* now set the "removed" and "faulty" bits on any missing devices */
1296 	for (i=0 ; i < mddev->raid_disks ; i++) {
1297 		mdp_disk_t *d = &sb->disks[i];
1298 		if (d->state == 0 && d->number == 0) {
1299 			d->number = i;
1300 			d->raid_disk = i;
1301 			d->state = (1<<MD_DISK_REMOVED);
1302 			d->state |= (1<<MD_DISK_FAULTY);
1303 			failed++;
1304 		}
1305 	}
1306 	sb->nr_disks = nr_disks;
1307 	sb->active_disks = active;
1308 	sb->working_disks = working;
1309 	sb->failed_disks = failed;
1310 	sb->spare_disks = spare;
1311 
1312 	sb->this_disk = sb->disks[rdev->desc_nr];
1313 	sb->sb_csum = calc_sb_csum(sb);
1314 }
1315 
1316 /*
1317  * rdev_size_change for 0.90.0
1318  */
1319 static unsigned long long
1320 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1321 {
1322 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1323 		return 0; /* component must fit device */
1324 	if (rdev->mddev->bitmap_info.offset)
1325 		return 0; /* can't move bitmap */
1326 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1327 	if (!num_sectors || num_sectors > rdev->sb_start)
1328 		num_sectors = rdev->sb_start;
1329 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1330 		       rdev->sb_page);
1331 	md_super_wait(rdev->mddev);
1332 	return num_sectors / 2; /* kB for sysfs */
1333 }
1334 
1335 
1336 /*
1337  * version 1 superblock
1338  */
1339 
1340 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1341 {
1342 	__le32 disk_csum;
1343 	u32 csum;
1344 	unsigned long long newcsum;
1345 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1346 	__le32 *isuper = (__le32*)sb;
1347 	int i;
1348 
1349 	disk_csum = sb->sb_csum;
1350 	sb->sb_csum = 0;
1351 	newcsum = 0;
1352 	for (i=0; size>=4; size -= 4 )
1353 		newcsum += le32_to_cpu(*isuper++);
1354 
1355 	if (size == 2)
1356 		newcsum += le16_to_cpu(*(__le16*) isuper);
1357 
1358 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1359 	sb->sb_csum = disk_csum;
1360 	return cpu_to_le32(csum);
1361 }
1362 
1363 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1364 {
1365 	struct mdp_superblock_1 *sb;
1366 	int ret;
1367 	sector_t sb_start;
1368 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1369 	int bmask;
1370 
1371 	/*
1372 	 * Calculate the position of the superblock in 512byte sectors.
1373 	 * It is always aligned to a 4K boundary and
1374 	 * depeding on minor_version, it can be:
1375 	 * 0: At least 8K, but less than 12K, from end of device
1376 	 * 1: At start of device
1377 	 * 2: 4K from start of device.
1378 	 */
1379 	switch(minor_version) {
1380 	case 0:
1381 		sb_start = rdev->bdev->bd_inode->i_size >> 9;
1382 		sb_start -= 8*2;
1383 		sb_start &= ~(sector_t)(4*2-1);
1384 		break;
1385 	case 1:
1386 		sb_start = 0;
1387 		break;
1388 	case 2:
1389 		sb_start = 8;
1390 		break;
1391 	default:
1392 		return -EINVAL;
1393 	}
1394 	rdev->sb_start = sb_start;
1395 
1396 	/* superblock is rarely larger than 1K, but it can be larger,
1397 	 * and it is safe to read 4k, so we do that
1398 	 */
1399 	ret = read_disk_sb(rdev, 4096);
1400 	if (ret) return ret;
1401 
1402 
1403 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1404 
1405 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1406 	    sb->major_version != cpu_to_le32(1) ||
1407 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1408 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1409 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1410 		return -EINVAL;
1411 
1412 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1413 		printk("md: invalid superblock checksum on %s\n",
1414 			bdevname(rdev->bdev,b));
1415 		return -EINVAL;
1416 	}
1417 	if (le64_to_cpu(sb->data_size) < 10) {
1418 		printk("md: data_size too small on %s\n",
1419 		       bdevname(rdev->bdev,b));
1420 		return -EINVAL;
1421 	}
1422 
1423 	rdev->preferred_minor = 0xffff;
1424 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1425 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1426 
1427 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1428 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1429 	if (rdev->sb_size & bmask)
1430 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1431 
1432 	if (minor_version
1433 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1434 		return -EINVAL;
1435 
1436 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1437 		rdev->desc_nr = -1;
1438 	else
1439 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1440 
1441 	if (!refdev) {
1442 		ret = 1;
1443 	} else {
1444 		__u64 ev1, ev2;
1445 		struct mdp_superblock_1 *refsb =
1446 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1447 
1448 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1449 		    sb->level != refsb->level ||
1450 		    sb->layout != refsb->layout ||
1451 		    sb->chunksize != refsb->chunksize) {
1452 			printk(KERN_WARNING "md: %s has strangely different"
1453 				" superblock to %s\n",
1454 				bdevname(rdev->bdev,b),
1455 				bdevname(refdev->bdev,b2));
1456 			return -EINVAL;
1457 		}
1458 		ev1 = le64_to_cpu(sb->events);
1459 		ev2 = le64_to_cpu(refsb->events);
1460 
1461 		if (ev1 > ev2)
1462 			ret = 1;
1463 		else
1464 			ret = 0;
1465 	}
1466 	if (minor_version)
1467 		rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1468 			le64_to_cpu(sb->data_offset);
1469 	else
1470 		rdev->sectors = rdev->sb_start;
1471 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1472 		return -EINVAL;
1473 	rdev->sectors = le64_to_cpu(sb->data_size);
1474 	if (le64_to_cpu(sb->size) > rdev->sectors)
1475 		return -EINVAL;
1476 	return ret;
1477 }
1478 
1479 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1480 {
1481 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1482 	__u64 ev1 = le64_to_cpu(sb->events);
1483 
1484 	rdev->raid_disk = -1;
1485 	clear_bit(Faulty, &rdev->flags);
1486 	clear_bit(In_sync, &rdev->flags);
1487 	clear_bit(WriteMostly, &rdev->flags);
1488 	clear_bit(BarriersNotsupp, &rdev->flags);
1489 
1490 	if (mddev->raid_disks == 0) {
1491 		mddev->major_version = 1;
1492 		mddev->patch_version = 0;
1493 		mddev->external = 0;
1494 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1495 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1496 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1497 		mddev->level = le32_to_cpu(sb->level);
1498 		mddev->clevel[0] = 0;
1499 		mddev->layout = le32_to_cpu(sb->layout);
1500 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1501 		mddev->dev_sectors = le64_to_cpu(sb->size);
1502 		mddev->events = ev1;
1503 		mddev->bitmap_info.offset = 0;
1504 		mddev->bitmap_info.default_offset = 1024 >> 9;
1505 
1506 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1507 		memcpy(mddev->uuid, sb->set_uuid, 16);
1508 
1509 		mddev->max_disks =  (4096-256)/2;
1510 
1511 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1512 		    mddev->bitmap_info.file == NULL )
1513 			mddev->bitmap_info.offset =
1514 				(__s32)le32_to_cpu(sb->bitmap_offset);
1515 
1516 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1517 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1518 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1519 			mddev->new_level = le32_to_cpu(sb->new_level);
1520 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1521 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1522 		} else {
1523 			mddev->reshape_position = MaxSector;
1524 			mddev->delta_disks = 0;
1525 			mddev->new_level = mddev->level;
1526 			mddev->new_layout = mddev->layout;
1527 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1528 		}
1529 
1530 	} else if (mddev->pers == NULL) {
1531 		/* Insist of good event counter while assembling, except for
1532 		 * spares (which don't need an event count) */
1533 		++ev1;
1534 		if (rdev->desc_nr >= 0 &&
1535 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1536 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1537 			if (ev1 < mddev->events)
1538 				return -EINVAL;
1539 	} else if (mddev->bitmap) {
1540 		/* If adding to array with a bitmap, then we can accept an
1541 		 * older device, but not too old.
1542 		 */
1543 		if (ev1 < mddev->bitmap->events_cleared)
1544 			return 0;
1545 	} else {
1546 		if (ev1 < mddev->events)
1547 			/* just a hot-add of a new device, leave raid_disk at -1 */
1548 			return 0;
1549 	}
1550 	if (mddev->level != LEVEL_MULTIPATH) {
1551 		int role;
1552 		if (rdev->desc_nr < 0 ||
1553 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1554 			role = 0xffff;
1555 			rdev->desc_nr = -1;
1556 		} else
1557 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1558 		switch(role) {
1559 		case 0xffff: /* spare */
1560 			break;
1561 		case 0xfffe: /* faulty */
1562 			set_bit(Faulty, &rdev->flags);
1563 			break;
1564 		default:
1565 			if ((le32_to_cpu(sb->feature_map) &
1566 			     MD_FEATURE_RECOVERY_OFFSET))
1567 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1568 			else
1569 				set_bit(In_sync, &rdev->flags);
1570 			rdev->raid_disk = role;
1571 			break;
1572 		}
1573 		if (sb->devflags & WriteMostly1)
1574 			set_bit(WriteMostly, &rdev->flags);
1575 	} else /* MULTIPATH are always insync */
1576 		set_bit(In_sync, &rdev->flags);
1577 
1578 	return 0;
1579 }
1580 
1581 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1582 {
1583 	struct mdp_superblock_1 *sb;
1584 	mdk_rdev_t *rdev2;
1585 	int max_dev, i;
1586 	/* make rdev->sb match mddev and rdev data. */
1587 
1588 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1589 
1590 	sb->feature_map = 0;
1591 	sb->pad0 = 0;
1592 	sb->recovery_offset = cpu_to_le64(0);
1593 	memset(sb->pad1, 0, sizeof(sb->pad1));
1594 	memset(sb->pad2, 0, sizeof(sb->pad2));
1595 	memset(sb->pad3, 0, sizeof(sb->pad3));
1596 
1597 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1598 	sb->events = cpu_to_le64(mddev->events);
1599 	if (mddev->in_sync)
1600 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1601 	else
1602 		sb->resync_offset = cpu_to_le64(0);
1603 
1604 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1605 
1606 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1607 	sb->size = cpu_to_le64(mddev->dev_sectors);
1608 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1609 	sb->level = cpu_to_le32(mddev->level);
1610 	sb->layout = cpu_to_le32(mddev->layout);
1611 
1612 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1613 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1614 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1615 	}
1616 
1617 	if (rdev->raid_disk >= 0 &&
1618 	    !test_bit(In_sync, &rdev->flags)) {
1619 		sb->feature_map |=
1620 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1621 		sb->recovery_offset =
1622 			cpu_to_le64(rdev->recovery_offset);
1623 	}
1624 
1625 	if (mddev->reshape_position != MaxSector) {
1626 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1627 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1628 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1629 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1630 		sb->new_level = cpu_to_le32(mddev->new_level);
1631 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1632 	}
1633 
1634 	max_dev = 0;
1635 	list_for_each_entry(rdev2, &mddev->disks, same_set)
1636 		if (rdev2->desc_nr+1 > max_dev)
1637 			max_dev = rdev2->desc_nr+1;
1638 
1639 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1640 		int bmask;
1641 		sb->max_dev = cpu_to_le32(max_dev);
1642 		rdev->sb_size = max_dev * 2 + 256;
1643 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1644 		if (rdev->sb_size & bmask)
1645 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1646 	}
1647 	for (i=0; i<max_dev;i++)
1648 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1649 
1650 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1651 		i = rdev2->desc_nr;
1652 		if (test_bit(Faulty, &rdev2->flags))
1653 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1654 		else if (test_bit(In_sync, &rdev2->flags))
1655 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1656 		else if (rdev2->raid_disk >= 0)
1657 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1658 		else
1659 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1660 	}
1661 
1662 	sb->sb_csum = calc_sb_1_csum(sb);
1663 }
1664 
1665 static unsigned long long
1666 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1667 {
1668 	struct mdp_superblock_1 *sb;
1669 	sector_t max_sectors;
1670 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1671 		return 0; /* component must fit device */
1672 	if (rdev->sb_start < rdev->data_offset) {
1673 		/* minor versions 1 and 2; superblock before data */
1674 		max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1675 		max_sectors -= rdev->data_offset;
1676 		if (!num_sectors || num_sectors > max_sectors)
1677 			num_sectors = max_sectors;
1678 	} else if (rdev->mddev->bitmap_info.offset) {
1679 		/* minor version 0 with bitmap we can't move */
1680 		return 0;
1681 	} else {
1682 		/* minor version 0; superblock after data */
1683 		sector_t sb_start;
1684 		sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1685 		sb_start &= ~(sector_t)(4*2 - 1);
1686 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1687 		if (!num_sectors || num_sectors > max_sectors)
1688 			num_sectors = max_sectors;
1689 		rdev->sb_start = sb_start;
1690 	}
1691 	sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1692 	sb->data_size = cpu_to_le64(num_sectors);
1693 	sb->super_offset = rdev->sb_start;
1694 	sb->sb_csum = calc_sb_1_csum(sb);
1695 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1696 		       rdev->sb_page);
1697 	md_super_wait(rdev->mddev);
1698 	return num_sectors / 2; /* kB for sysfs */
1699 }
1700 
1701 static struct super_type super_types[] = {
1702 	[0] = {
1703 		.name	= "0.90.0",
1704 		.owner	= THIS_MODULE,
1705 		.load_super	    = super_90_load,
1706 		.validate_super	    = super_90_validate,
1707 		.sync_super	    = super_90_sync,
1708 		.rdev_size_change   = super_90_rdev_size_change,
1709 	},
1710 	[1] = {
1711 		.name	= "md-1",
1712 		.owner	= THIS_MODULE,
1713 		.load_super	    = super_1_load,
1714 		.validate_super	    = super_1_validate,
1715 		.sync_super	    = super_1_sync,
1716 		.rdev_size_change   = super_1_rdev_size_change,
1717 	},
1718 };
1719 
1720 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1721 {
1722 	mdk_rdev_t *rdev, *rdev2;
1723 
1724 	rcu_read_lock();
1725 	rdev_for_each_rcu(rdev, mddev1)
1726 		rdev_for_each_rcu(rdev2, mddev2)
1727 			if (rdev->bdev->bd_contains ==
1728 			    rdev2->bdev->bd_contains) {
1729 				rcu_read_unlock();
1730 				return 1;
1731 			}
1732 	rcu_read_unlock();
1733 	return 0;
1734 }
1735 
1736 static LIST_HEAD(pending_raid_disks);
1737 
1738 /*
1739  * Try to register data integrity profile for an mddev
1740  *
1741  * This is called when an array is started and after a disk has been kicked
1742  * from the array. It only succeeds if all working and active component devices
1743  * are integrity capable with matching profiles.
1744  */
1745 int md_integrity_register(mddev_t *mddev)
1746 {
1747 	mdk_rdev_t *rdev, *reference = NULL;
1748 
1749 	if (list_empty(&mddev->disks))
1750 		return 0; /* nothing to do */
1751 	if (blk_get_integrity(mddev->gendisk))
1752 		return 0; /* already registered */
1753 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1754 		/* skip spares and non-functional disks */
1755 		if (test_bit(Faulty, &rdev->flags))
1756 			continue;
1757 		if (rdev->raid_disk < 0)
1758 			continue;
1759 		/*
1760 		 * If at least one rdev is not integrity capable, we can not
1761 		 * enable data integrity for the md device.
1762 		 */
1763 		if (!bdev_get_integrity(rdev->bdev))
1764 			return -EINVAL;
1765 		if (!reference) {
1766 			/* Use the first rdev as the reference */
1767 			reference = rdev;
1768 			continue;
1769 		}
1770 		/* does this rdev's profile match the reference profile? */
1771 		if (blk_integrity_compare(reference->bdev->bd_disk,
1772 				rdev->bdev->bd_disk) < 0)
1773 			return -EINVAL;
1774 	}
1775 	/*
1776 	 * All component devices are integrity capable and have matching
1777 	 * profiles, register the common profile for the md device.
1778 	 */
1779 	if (blk_integrity_register(mddev->gendisk,
1780 			bdev_get_integrity(reference->bdev)) != 0) {
1781 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1782 			mdname(mddev));
1783 		return -EINVAL;
1784 	}
1785 	printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1786 		mdname(mddev));
1787 	return 0;
1788 }
1789 EXPORT_SYMBOL(md_integrity_register);
1790 
1791 /* Disable data integrity if non-capable/non-matching disk is being added */
1792 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1793 {
1794 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1795 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1796 
1797 	if (!bi_mddev) /* nothing to do */
1798 		return;
1799 	if (rdev->raid_disk < 0) /* skip spares */
1800 		return;
1801 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1802 					     rdev->bdev->bd_disk) >= 0)
1803 		return;
1804 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1805 	blk_integrity_unregister(mddev->gendisk);
1806 }
1807 EXPORT_SYMBOL(md_integrity_add_rdev);
1808 
1809 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1810 {
1811 	char b[BDEVNAME_SIZE];
1812 	struct kobject *ko;
1813 	char *s;
1814 	int err;
1815 
1816 	if (rdev->mddev) {
1817 		MD_BUG();
1818 		return -EINVAL;
1819 	}
1820 
1821 	/* prevent duplicates */
1822 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1823 		return -EEXIST;
1824 
1825 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
1826 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
1827 			rdev->sectors < mddev->dev_sectors)) {
1828 		if (mddev->pers) {
1829 			/* Cannot change size, so fail
1830 			 * If mddev->level <= 0, then we don't care
1831 			 * about aligning sizes (e.g. linear)
1832 			 */
1833 			if (mddev->level > 0)
1834 				return -ENOSPC;
1835 		} else
1836 			mddev->dev_sectors = rdev->sectors;
1837 	}
1838 
1839 	/* Verify rdev->desc_nr is unique.
1840 	 * If it is -1, assign a free number, else
1841 	 * check number is not in use
1842 	 */
1843 	if (rdev->desc_nr < 0) {
1844 		int choice = 0;
1845 		if (mddev->pers) choice = mddev->raid_disks;
1846 		while (find_rdev_nr(mddev, choice))
1847 			choice++;
1848 		rdev->desc_nr = choice;
1849 	} else {
1850 		if (find_rdev_nr(mddev, rdev->desc_nr))
1851 			return -EBUSY;
1852 	}
1853 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1854 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1855 		       mdname(mddev), mddev->max_disks);
1856 		return -EBUSY;
1857 	}
1858 	bdevname(rdev->bdev,b);
1859 	while ( (s=strchr(b, '/')) != NULL)
1860 		*s = '!';
1861 
1862 	rdev->mddev = mddev;
1863 	printk(KERN_INFO "md: bind<%s>\n", b);
1864 
1865 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1866 		goto fail;
1867 
1868 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1869 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
1870 		/* failure here is OK */;
1871 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1872 
1873 	list_add_rcu(&rdev->same_set, &mddev->disks);
1874 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1875 
1876 	/* May as well allow recovery to be retried once */
1877 	mddev->recovery_disabled = 0;
1878 
1879 	return 0;
1880 
1881  fail:
1882 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1883 	       b, mdname(mddev));
1884 	return err;
1885 }
1886 
1887 static void md_delayed_delete(struct work_struct *ws)
1888 {
1889 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1890 	kobject_del(&rdev->kobj);
1891 	kobject_put(&rdev->kobj);
1892 }
1893 
1894 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1895 {
1896 	char b[BDEVNAME_SIZE];
1897 	if (!rdev->mddev) {
1898 		MD_BUG();
1899 		return;
1900 	}
1901 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1902 	list_del_rcu(&rdev->same_set);
1903 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1904 	rdev->mddev = NULL;
1905 	sysfs_remove_link(&rdev->kobj, "block");
1906 	sysfs_put(rdev->sysfs_state);
1907 	rdev->sysfs_state = NULL;
1908 	/* We need to delay this, otherwise we can deadlock when
1909 	 * writing to 'remove' to "dev/state".  We also need
1910 	 * to delay it due to rcu usage.
1911 	 */
1912 	synchronize_rcu();
1913 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1914 	kobject_get(&rdev->kobj);
1915 	schedule_work(&rdev->del_work);
1916 }
1917 
1918 /*
1919  * prevent the device from being mounted, repartitioned or
1920  * otherwise reused by a RAID array (or any other kernel
1921  * subsystem), by bd_claiming the device.
1922  */
1923 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1924 {
1925 	int err = 0;
1926 	struct block_device *bdev;
1927 	char b[BDEVNAME_SIZE];
1928 
1929 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1930 	if (IS_ERR(bdev)) {
1931 		printk(KERN_ERR "md: could not open %s.\n",
1932 			__bdevname(dev, b));
1933 		return PTR_ERR(bdev);
1934 	}
1935 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1936 	if (err) {
1937 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1938 			bdevname(bdev, b));
1939 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1940 		return err;
1941 	}
1942 	if (!shared)
1943 		set_bit(AllReserved, &rdev->flags);
1944 	rdev->bdev = bdev;
1945 	return err;
1946 }
1947 
1948 static void unlock_rdev(mdk_rdev_t *rdev)
1949 {
1950 	struct block_device *bdev = rdev->bdev;
1951 	rdev->bdev = NULL;
1952 	if (!bdev)
1953 		MD_BUG();
1954 	bd_release(bdev);
1955 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1956 }
1957 
1958 void md_autodetect_dev(dev_t dev);
1959 
1960 static void export_rdev(mdk_rdev_t * rdev)
1961 {
1962 	char b[BDEVNAME_SIZE];
1963 	printk(KERN_INFO "md: export_rdev(%s)\n",
1964 		bdevname(rdev->bdev,b));
1965 	if (rdev->mddev)
1966 		MD_BUG();
1967 	free_disk_sb(rdev);
1968 #ifndef MODULE
1969 	if (test_bit(AutoDetected, &rdev->flags))
1970 		md_autodetect_dev(rdev->bdev->bd_dev);
1971 #endif
1972 	unlock_rdev(rdev);
1973 	kobject_put(&rdev->kobj);
1974 }
1975 
1976 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1977 {
1978 	unbind_rdev_from_array(rdev);
1979 	export_rdev(rdev);
1980 }
1981 
1982 static void export_array(mddev_t *mddev)
1983 {
1984 	mdk_rdev_t *rdev, *tmp;
1985 
1986 	rdev_for_each(rdev, tmp, mddev) {
1987 		if (!rdev->mddev) {
1988 			MD_BUG();
1989 			continue;
1990 		}
1991 		kick_rdev_from_array(rdev);
1992 	}
1993 	if (!list_empty(&mddev->disks))
1994 		MD_BUG();
1995 	mddev->raid_disks = 0;
1996 	mddev->major_version = 0;
1997 }
1998 
1999 static void print_desc(mdp_disk_t *desc)
2000 {
2001 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2002 		desc->major,desc->minor,desc->raid_disk,desc->state);
2003 }
2004 
2005 static void print_sb_90(mdp_super_t *sb)
2006 {
2007 	int i;
2008 
2009 	printk(KERN_INFO
2010 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2011 		sb->major_version, sb->minor_version, sb->patch_version,
2012 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2013 		sb->ctime);
2014 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2015 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2016 		sb->md_minor, sb->layout, sb->chunk_size);
2017 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2018 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2019 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2020 		sb->failed_disks, sb->spare_disks,
2021 		sb->sb_csum, (unsigned long)sb->events_lo);
2022 
2023 	printk(KERN_INFO);
2024 	for (i = 0; i < MD_SB_DISKS; i++) {
2025 		mdp_disk_t *desc;
2026 
2027 		desc = sb->disks + i;
2028 		if (desc->number || desc->major || desc->minor ||
2029 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2030 			printk("     D %2d: ", i);
2031 			print_desc(desc);
2032 		}
2033 	}
2034 	printk(KERN_INFO "md:     THIS: ");
2035 	print_desc(&sb->this_disk);
2036 }
2037 
2038 static void print_sb_1(struct mdp_superblock_1 *sb)
2039 {
2040 	__u8 *uuid;
2041 
2042 	uuid = sb->set_uuid;
2043 	printk(KERN_INFO
2044 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2045 	       "md:    Name: \"%s\" CT:%llu\n",
2046 		le32_to_cpu(sb->major_version),
2047 		le32_to_cpu(sb->feature_map),
2048 		uuid,
2049 		sb->set_name,
2050 		(unsigned long long)le64_to_cpu(sb->ctime)
2051 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2052 
2053 	uuid = sb->device_uuid;
2054 	printk(KERN_INFO
2055 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2056 			" RO:%llu\n"
2057 	       "md:     Dev:%08x UUID: %pU\n"
2058 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2059 	       "md:         (MaxDev:%u) \n",
2060 		le32_to_cpu(sb->level),
2061 		(unsigned long long)le64_to_cpu(sb->size),
2062 		le32_to_cpu(sb->raid_disks),
2063 		le32_to_cpu(sb->layout),
2064 		le32_to_cpu(sb->chunksize),
2065 		(unsigned long long)le64_to_cpu(sb->data_offset),
2066 		(unsigned long long)le64_to_cpu(sb->data_size),
2067 		(unsigned long long)le64_to_cpu(sb->super_offset),
2068 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2069 		le32_to_cpu(sb->dev_number),
2070 		uuid,
2071 		sb->devflags,
2072 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2073 		(unsigned long long)le64_to_cpu(sb->events),
2074 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2075 		le32_to_cpu(sb->sb_csum),
2076 		le32_to_cpu(sb->max_dev)
2077 		);
2078 }
2079 
2080 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2081 {
2082 	char b[BDEVNAME_SIZE];
2083 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2084 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2085 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2086 	        rdev->desc_nr);
2087 	if (rdev->sb_loaded) {
2088 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2089 		switch (major_version) {
2090 		case 0:
2091 			print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2092 			break;
2093 		case 1:
2094 			print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2095 			break;
2096 		}
2097 	} else
2098 		printk(KERN_INFO "md: no rdev superblock!\n");
2099 }
2100 
2101 static void md_print_devices(void)
2102 {
2103 	struct list_head *tmp;
2104 	mdk_rdev_t *rdev;
2105 	mddev_t *mddev;
2106 	char b[BDEVNAME_SIZE];
2107 
2108 	printk("\n");
2109 	printk("md:	**********************************\n");
2110 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2111 	printk("md:	**********************************\n");
2112 	for_each_mddev(mddev, tmp) {
2113 
2114 		if (mddev->bitmap)
2115 			bitmap_print_sb(mddev->bitmap);
2116 		else
2117 			printk("%s: ", mdname(mddev));
2118 		list_for_each_entry(rdev, &mddev->disks, same_set)
2119 			printk("<%s>", bdevname(rdev->bdev,b));
2120 		printk("\n");
2121 
2122 		list_for_each_entry(rdev, &mddev->disks, same_set)
2123 			print_rdev(rdev, mddev->major_version);
2124 	}
2125 	printk("md:	**********************************\n");
2126 	printk("\n");
2127 }
2128 
2129 
2130 static void sync_sbs(mddev_t * mddev, int nospares)
2131 {
2132 	/* Update each superblock (in-memory image), but
2133 	 * if we are allowed to, skip spares which already
2134 	 * have the right event counter, or have one earlier
2135 	 * (which would mean they aren't being marked as dirty
2136 	 * with the rest of the array)
2137 	 */
2138 	mdk_rdev_t *rdev;
2139 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2140 		if (rdev->sb_events == mddev->events ||
2141 		    (nospares &&
2142 		     rdev->raid_disk < 0 &&
2143 		     rdev->sb_events+1 == mddev->events)) {
2144 			/* Don't update this superblock */
2145 			rdev->sb_loaded = 2;
2146 		} else {
2147 			super_types[mddev->major_version].
2148 				sync_super(mddev, rdev);
2149 			rdev->sb_loaded = 1;
2150 		}
2151 	}
2152 }
2153 
2154 static void md_update_sb(mddev_t * mddev, int force_change)
2155 {
2156 	mdk_rdev_t *rdev;
2157 	int sync_req;
2158 	int nospares = 0;
2159 
2160 repeat:
2161 	/* First make sure individual recovery_offsets are correct */
2162 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2163 		if (rdev->raid_disk >= 0 &&
2164 		    mddev->delta_disks >= 0 &&
2165 		    !test_bit(In_sync, &rdev->flags) &&
2166 		    mddev->curr_resync_completed > rdev->recovery_offset)
2167 				rdev->recovery_offset = mddev->curr_resync_completed;
2168 
2169 	}
2170 	if (mddev->external || !mddev->persistent) {
2171 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2172 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2173 		wake_up(&mddev->sb_wait);
2174 		return;
2175 	}
2176 
2177 	spin_lock_irq(&mddev->write_lock);
2178 
2179 	mddev->utime = get_seconds();
2180 
2181 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
2182 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2183 		force_change = 1;
2184 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2185 		/* just a clean<-> dirty transition, possibly leave spares alone,
2186 		 * though if events isn't the right even/odd, we will have to do
2187 		 * spares after all
2188 		 */
2189 		nospares = 1;
2190 	if (force_change)
2191 		nospares = 0;
2192 	if (mddev->degraded)
2193 		/* If the array is degraded, then skipping spares is both
2194 		 * dangerous and fairly pointless.
2195 		 * Dangerous because a device that was removed from the array
2196 		 * might have a event_count that still looks up-to-date,
2197 		 * so it can be re-added without a resync.
2198 		 * Pointless because if there are any spares to skip,
2199 		 * then a recovery will happen and soon that array won't
2200 		 * be degraded any more and the spare can go back to sleep then.
2201 		 */
2202 		nospares = 0;
2203 
2204 	sync_req = mddev->in_sync;
2205 
2206 	/* If this is just a dirty<->clean transition, and the array is clean
2207 	 * and 'events' is odd, we can roll back to the previous clean state */
2208 	if (nospares
2209 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2210 	    && mddev->can_decrease_events
2211 	    && mddev->events != 1) {
2212 		mddev->events--;
2213 		mddev->can_decrease_events = 0;
2214 	} else {
2215 		/* otherwise we have to go forward and ... */
2216 		mddev->events ++;
2217 		mddev->can_decrease_events = nospares;
2218 	}
2219 
2220 	if (!mddev->events) {
2221 		/*
2222 		 * oops, this 64-bit counter should never wrap.
2223 		 * Either we are in around ~1 trillion A.C., assuming
2224 		 * 1 reboot per second, or we have a bug:
2225 		 */
2226 		MD_BUG();
2227 		mddev->events --;
2228 	}
2229 	sync_sbs(mddev, nospares);
2230 	spin_unlock_irq(&mddev->write_lock);
2231 
2232 	dprintk(KERN_INFO
2233 		"md: updating %s RAID superblock on device (in sync %d)\n",
2234 		mdname(mddev),mddev->in_sync);
2235 
2236 	bitmap_update_sb(mddev->bitmap);
2237 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2238 		char b[BDEVNAME_SIZE];
2239 		dprintk(KERN_INFO "md: ");
2240 		if (rdev->sb_loaded != 1)
2241 			continue; /* no noise on spare devices */
2242 		if (test_bit(Faulty, &rdev->flags))
2243 			dprintk("(skipping faulty ");
2244 
2245 		dprintk("%s ", bdevname(rdev->bdev,b));
2246 		if (!test_bit(Faulty, &rdev->flags)) {
2247 			md_super_write(mddev,rdev,
2248 				       rdev->sb_start, rdev->sb_size,
2249 				       rdev->sb_page);
2250 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2251 				bdevname(rdev->bdev,b),
2252 				(unsigned long long)rdev->sb_start);
2253 			rdev->sb_events = mddev->events;
2254 
2255 		} else
2256 			dprintk(")\n");
2257 		if (mddev->level == LEVEL_MULTIPATH)
2258 			/* only need to write one superblock... */
2259 			break;
2260 	}
2261 	md_super_wait(mddev);
2262 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2263 
2264 	spin_lock_irq(&mddev->write_lock);
2265 	if (mddev->in_sync != sync_req ||
2266 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2267 		/* have to write it out again */
2268 		spin_unlock_irq(&mddev->write_lock);
2269 		goto repeat;
2270 	}
2271 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2272 	spin_unlock_irq(&mddev->write_lock);
2273 	wake_up(&mddev->sb_wait);
2274 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2275 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2276 
2277 }
2278 
2279 /* words written to sysfs files may, or may not, be \n terminated.
2280  * We want to accept with case. For this we use cmd_match.
2281  */
2282 static int cmd_match(const char *cmd, const char *str)
2283 {
2284 	/* See if cmd, written into a sysfs file, matches
2285 	 * str.  They must either be the same, or cmd can
2286 	 * have a trailing newline
2287 	 */
2288 	while (*cmd && *str && *cmd == *str) {
2289 		cmd++;
2290 		str++;
2291 	}
2292 	if (*cmd == '\n')
2293 		cmd++;
2294 	if (*str || *cmd)
2295 		return 0;
2296 	return 1;
2297 }
2298 
2299 struct rdev_sysfs_entry {
2300 	struct attribute attr;
2301 	ssize_t (*show)(mdk_rdev_t *, char *);
2302 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2303 };
2304 
2305 static ssize_t
2306 state_show(mdk_rdev_t *rdev, char *page)
2307 {
2308 	char *sep = "";
2309 	size_t len = 0;
2310 
2311 	if (test_bit(Faulty, &rdev->flags)) {
2312 		len+= sprintf(page+len, "%sfaulty",sep);
2313 		sep = ",";
2314 	}
2315 	if (test_bit(In_sync, &rdev->flags)) {
2316 		len += sprintf(page+len, "%sin_sync",sep);
2317 		sep = ",";
2318 	}
2319 	if (test_bit(WriteMostly, &rdev->flags)) {
2320 		len += sprintf(page+len, "%swrite_mostly",sep);
2321 		sep = ",";
2322 	}
2323 	if (test_bit(Blocked, &rdev->flags)) {
2324 		len += sprintf(page+len, "%sblocked", sep);
2325 		sep = ",";
2326 	}
2327 	if (!test_bit(Faulty, &rdev->flags) &&
2328 	    !test_bit(In_sync, &rdev->flags)) {
2329 		len += sprintf(page+len, "%sspare", sep);
2330 		sep = ",";
2331 	}
2332 	return len+sprintf(page+len, "\n");
2333 }
2334 
2335 static ssize_t
2336 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2337 {
2338 	/* can write
2339 	 *  faulty  - simulates and error
2340 	 *  remove  - disconnects the device
2341 	 *  writemostly - sets write_mostly
2342 	 *  -writemostly - clears write_mostly
2343 	 *  blocked - sets the Blocked flag
2344 	 *  -blocked - clears the Blocked flag
2345 	 *  insync - sets Insync providing device isn't active
2346 	 */
2347 	int err = -EINVAL;
2348 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2349 		md_error(rdev->mddev, rdev);
2350 		err = 0;
2351 	} else if (cmd_match(buf, "remove")) {
2352 		if (rdev->raid_disk >= 0)
2353 			err = -EBUSY;
2354 		else {
2355 			mddev_t *mddev = rdev->mddev;
2356 			kick_rdev_from_array(rdev);
2357 			if (mddev->pers)
2358 				md_update_sb(mddev, 1);
2359 			md_new_event(mddev);
2360 			err = 0;
2361 		}
2362 	} else if (cmd_match(buf, "writemostly")) {
2363 		set_bit(WriteMostly, &rdev->flags);
2364 		err = 0;
2365 	} else if (cmd_match(buf, "-writemostly")) {
2366 		clear_bit(WriteMostly, &rdev->flags);
2367 		err = 0;
2368 	} else if (cmd_match(buf, "blocked")) {
2369 		set_bit(Blocked, &rdev->flags);
2370 		err = 0;
2371 	} else if (cmd_match(buf, "-blocked")) {
2372 		clear_bit(Blocked, &rdev->flags);
2373 		wake_up(&rdev->blocked_wait);
2374 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2375 		md_wakeup_thread(rdev->mddev->thread);
2376 
2377 		err = 0;
2378 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2379 		set_bit(In_sync, &rdev->flags);
2380 		err = 0;
2381 	}
2382 	if (!err)
2383 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2384 	return err ? err : len;
2385 }
2386 static struct rdev_sysfs_entry rdev_state =
2387 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2388 
2389 static ssize_t
2390 errors_show(mdk_rdev_t *rdev, char *page)
2391 {
2392 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2393 }
2394 
2395 static ssize_t
2396 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2397 {
2398 	char *e;
2399 	unsigned long n = simple_strtoul(buf, &e, 10);
2400 	if (*buf && (*e == 0 || *e == '\n')) {
2401 		atomic_set(&rdev->corrected_errors, n);
2402 		return len;
2403 	}
2404 	return -EINVAL;
2405 }
2406 static struct rdev_sysfs_entry rdev_errors =
2407 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2408 
2409 static ssize_t
2410 slot_show(mdk_rdev_t *rdev, char *page)
2411 {
2412 	if (rdev->raid_disk < 0)
2413 		return sprintf(page, "none\n");
2414 	else
2415 		return sprintf(page, "%d\n", rdev->raid_disk);
2416 }
2417 
2418 static ssize_t
2419 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2420 {
2421 	char *e;
2422 	int err;
2423 	char nm[20];
2424 	int slot = simple_strtoul(buf, &e, 10);
2425 	if (strncmp(buf, "none", 4)==0)
2426 		slot = -1;
2427 	else if (e==buf || (*e && *e!= '\n'))
2428 		return -EINVAL;
2429 	if (rdev->mddev->pers && slot == -1) {
2430 		/* Setting 'slot' on an active array requires also
2431 		 * updating the 'rd%d' link, and communicating
2432 		 * with the personality with ->hot_*_disk.
2433 		 * For now we only support removing
2434 		 * failed/spare devices.  This normally happens automatically,
2435 		 * but not when the metadata is externally managed.
2436 		 */
2437 		if (rdev->raid_disk == -1)
2438 			return -EEXIST;
2439 		/* personality does all needed checks */
2440 		if (rdev->mddev->pers->hot_add_disk == NULL)
2441 			return -EINVAL;
2442 		err = rdev->mddev->pers->
2443 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
2444 		if (err)
2445 			return err;
2446 		sprintf(nm, "rd%d", rdev->raid_disk);
2447 		sysfs_remove_link(&rdev->mddev->kobj, nm);
2448 		rdev->raid_disk = -1;
2449 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2450 		md_wakeup_thread(rdev->mddev->thread);
2451 	} else if (rdev->mddev->pers) {
2452 		mdk_rdev_t *rdev2;
2453 		/* Activating a spare .. or possibly reactivating
2454 		 * if we ever get bitmaps working here.
2455 		 */
2456 
2457 		if (rdev->raid_disk != -1)
2458 			return -EBUSY;
2459 
2460 		if (rdev->mddev->pers->hot_add_disk == NULL)
2461 			return -EINVAL;
2462 
2463 		list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2464 			if (rdev2->raid_disk == slot)
2465 				return -EEXIST;
2466 
2467 		rdev->raid_disk = slot;
2468 		if (test_bit(In_sync, &rdev->flags))
2469 			rdev->saved_raid_disk = slot;
2470 		else
2471 			rdev->saved_raid_disk = -1;
2472 		err = rdev->mddev->pers->
2473 			hot_add_disk(rdev->mddev, rdev);
2474 		if (err) {
2475 			rdev->raid_disk = -1;
2476 			return err;
2477 		} else
2478 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2479 		sprintf(nm, "rd%d", rdev->raid_disk);
2480 		if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2481 			/* failure here is OK */;
2482 		/* don't wakeup anyone, leave that to userspace. */
2483 	} else {
2484 		if (slot >= rdev->mddev->raid_disks)
2485 			return -ENOSPC;
2486 		rdev->raid_disk = slot;
2487 		/* assume it is working */
2488 		clear_bit(Faulty, &rdev->flags);
2489 		clear_bit(WriteMostly, &rdev->flags);
2490 		set_bit(In_sync, &rdev->flags);
2491 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2492 	}
2493 	return len;
2494 }
2495 
2496 
2497 static struct rdev_sysfs_entry rdev_slot =
2498 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2499 
2500 static ssize_t
2501 offset_show(mdk_rdev_t *rdev, char *page)
2502 {
2503 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2504 }
2505 
2506 static ssize_t
2507 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2508 {
2509 	char *e;
2510 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2511 	if (e==buf || (*e && *e != '\n'))
2512 		return -EINVAL;
2513 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2514 		return -EBUSY;
2515 	if (rdev->sectors && rdev->mddev->external)
2516 		/* Must set offset before size, so overlap checks
2517 		 * can be sane */
2518 		return -EBUSY;
2519 	rdev->data_offset = offset;
2520 	return len;
2521 }
2522 
2523 static struct rdev_sysfs_entry rdev_offset =
2524 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2525 
2526 static ssize_t
2527 rdev_size_show(mdk_rdev_t *rdev, char *page)
2528 {
2529 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2530 }
2531 
2532 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2533 {
2534 	/* check if two start/length pairs overlap */
2535 	if (s1+l1 <= s2)
2536 		return 0;
2537 	if (s2+l2 <= s1)
2538 		return 0;
2539 	return 1;
2540 }
2541 
2542 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2543 {
2544 	unsigned long long blocks;
2545 	sector_t new;
2546 
2547 	if (strict_strtoull(buf, 10, &blocks) < 0)
2548 		return -EINVAL;
2549 
2550 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2551 		return -EINVAL; /* sector conversion overflow */
2552 
2553 	new = blocks * 2;
2554 	if (new != blocks * 2)
2555 		return -EINVAL; /* unsigned long long to sector_t overflow */
2556 
2557 	*sectors = new;
2558 	return 0;
2559 }
2560 
2561 static ssize_t
2562 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2563 {
2564 	mddev_t *my_mddev = rdev->mddev;
2565 	sector_t oldsectors = rdev->sectors;
2566 	sector_t sectors;
2567 
2568 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2569 		return -EINVAL;
2570 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2571 		if (my_mddev->persistent) {
2572 			sectors = super_types[my_mddev->major_version].
2573 				rdev_size_change(rdev, sectors);
2574 			if (!sectors)
2575 				return -EBUSY;
2576 		} else if (!sectors)
2577 			sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2578 				rdev->data_offset;
2579 	}
2580 	if (sectors < my_mddev->dev_sectors)
2581 		return -EINVAL; /* component must fit device */
2582 
2583 	rdev->sectors = sectors;
2584 	if (sectors > oldsectors && my_mddev->external) {
2585 		/* need to check that all other rdevs with the same ->bdev
2586 		 * do not overlap.  We need to unlock the mddev to avoid
2587 		 * a deadlock.  We have already changed rdev->sectors, and if
2588 		 * we have to change it back, we will have the lock again.
2589 		 */
2590 		mddev_t *mddev;
2591 		int overlap = 0;
2592 		struct list_head *tmp;
2593 
2594 		mddev_unlock(my_mddev);
2595 		for_each_mddev(mddev, tmp) {
2596 			mdk_rdev_t *rdev2;
2597 
2598 			mddev_lock(mddev);
2599 			list_for_each_entry(rdev2, &mddev->disks, same_set)
2600 				if (test_bit(AllReserved, &rdev2->flags) ||
2601 				    (rdev->bdev == rdev2->bdev &&
2602 				     rdev != rdev2 &&
2603 				     overlaps(rdev->data_offset, rdev->sectors,
2604 					      rdev2->data_offset,
2605 					      rdev2->sectors))) {
2606 					overlap = 1;
2607 					break;
2608 				}
2609 			mddev_unlock(mddev);
2610 			if (overlap) {
2611 				mddev_put(mddev);
2612 				break;
2613 			}
2614 		}
2615 		mddev_lock(my_mddev);
2616 		if (overlap) {
2617 			/* Someone else could have slipped in a size
2618 			 * change here, but doing so is just silly.
2619 			 * We put oldsectors back because we *know* it is
2620 			 * safe, and trust userspace not to race with
2621 			 * itself
2622 			 */
2623 			rdev->sectors = oldsectors;
2624 			return -EBUSY;
2625 		}
2626 	}
2627 	return len;
2628 }
2629 
2630 static struct rdev_sysfs_entry rdev_size =
2631 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2632 
2633 
2634 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2635 {
2636 	unsigned long long recovery_start = rdev->recovery_offset;
2637 
2638 	if (test_bit(In_sync, &rdev->flags) ||
2639 	    recovery_start == MaxSector)
2640 		return sprintf(page, "none\n");
2641 
2642 	return sprintf(page, "%llu\n", recovery_start);
2643 }
2644 
2645 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2646 {
2647 	unsigned long long recovery_start;
2648 
2649 	if (cmd_match(buf, "none"))
2650 		recovery_start = MaxSector;
2651 	else if (strict_strtoull(buf, 10, &recovery_start))
2652 		return -EINVAL;
2653 
2654 	if (rdev->mddev->pers &&
2655 	    rdev->raid_disk >= 0)
2656 		return -EBUSY;
2657 
2658 	rdev->recovery_offset = recovery_start;
2659 	if (recovery_start == MaxSector)
2660 		set_bit(In_sync, &rdev->flags);
2661 	else
2662 		clear_bit(In_sync, &rdev->flags);
2663 	return len;
2664 }
2665 
2666 static struct rdev_sysfs_entry rdev_recovery_start =
2667 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2668 
2669 static struct attribute *rdev_default_attrs[] = {
2670 	&rdev_state.attr,
2671 	&rdev_errors.attr,
2672 	&rdev_slot.attr,
2673 	&rdev_offset.attr,
2674 	&rdev_size.attr,
2675 	&rdev_recovery_start.attr,
2676 	NULL,
2677 };
2678 static ssize_t
2679 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2680 {
2681 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2682 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2683 	mddev_t *mddev = rdev->mddev;
2684 	ssize_t rv;
2685 
2686 	if (!entry->show)
2687 		return -EIO;
2688 
2689 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2690 	if (!rv) {
2691 		if (rdev->mddev == NULL)
2692 			rv = -EBUSY;
2693 		else
2694 			rv = entry->show(rdev, page);
2695 		mddev_unlock(mddev);
2696 	}
2697 	return rv;
2698 }
2699 
2700 static ssize_t
2701 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2702 	      const char *page, size_t length)
2703 {
2704 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2705 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2706 	ssize_t rv;
2707 	mddev_t *mddev = rdev->mddev;
2708 
2709 	if (!entry->store)
2710 		return -EIO;
2711 	if (!capable(CAP_SYS_ADMIN))
2712 		return -EACCES;
2713 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2714 	if (!rv) {
2715 		if (rdev->mddev == NULL)
2716 			rv = -EBUSY;
2717 		else
2718 			rv = entry->store(rdev, page, length);
2719 		mddev_unlock(mddev);
2720 	}
2721 	return rv;
2722 }
2723 
2724 static void rdev_free(struct kobject *ko)
2725 {
2726 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2727 	kfree(rdev);
2728 }
2729 static const struct sysfs_ops rdev_sysfs_ops = {
2730 	.show		= rdev_attr_show,
2731 	.store		= rdev_attr_store,
2732 };
2733 static struct kobj_type rdev_ktype = {
2734 	.release	= rdev_free,
2735 	.sysfs_ops	= &rdev_sysfs_ops,
2736 	.default_attrs	= rdev_default_attrs,
2737 };
2738 
2739 void md_rdev_init(mdk_rdev_t *rdev)
2740 {
2741 	rdev->desc_nr = -1;
2742 	rdev->saved_raid_disk = -1;
2743 	rdev->raid_disk = -1;
2744 	rdev->flags = 0;
2745 	rdev->data_offset = 0;
2746 	rdev->sb_events = 0;
2747 	rdev->last_read_error.tv_sec  = 0;
2748 	rdev->last_read_error.tv_nsec = 0;
2749 	atomic_set(&rdev->nr_pending, 0);
2750 	atomic_set(&rdev->read_errors, 0);
2751 	atomic_set(&rdev->corrected_errors, 0);
2752 
2753 	INIT_LIST_HEAD(&rdev->same_set);
2754 	init_waitqueue_head(&rdev->blocked_wait);
2755 }
2756 EXPORT_SYMBOL_GPL(md_rdev_init);
2757 /*
2758  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2759  *
2760  * mark the device faulty if:
2761  *
2762  *   - the device is nonexistent (zero size)
2763  *   - the device has no valid superblock
2764  *
2765  * a faulty rdev _never_ has rdev->sb set.
2766  */
2767 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2768 {
2769 	char b[BDEVNAME_SIZE];
2770 	int err;
2771 	mdk_rdev_t *rdev;
2772 	sector_t size;
2773 
2774 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2775 	if (!rdev) {
2776 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2777 		return ERR_PTR(-ENOMEM);
2778 	}
2779 
2780 	md_rdev_init(rdev);
2781 	if ((err = alloc_disk_sb(rdev)))
2782 		goto abort_free;
2783 
2784 	err = lock_rdev(rdev, newdev, super_format == -2);
2785 	if (err)
2786 		goto abort_free;
2787 
2788 	kobject_init(&rdev->kobj, &rdev_ktype);
2789 
2790 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2791 	if (!size) {
2792 		printk(KERN_WARNING
2793 			"md: %s has zero or unknown size, marking faulty!\n",
2794 			bdevname(rdev->bdev,b));
2795 		err = -EINVAL;
2796 		goto abort_free;
2797 	}
2798 
2799 	if (super_format >= 0) {
2800 		err = super_types[super_format].
2801 			load_super(rdev, NULL, super_minor);
2802 		if (err == -EINVAL) {
2803 			printk(KERN_WARNING
2804 				"md: %s does not have a valid v%d.%d "
2805 			       "superblock, not importing!\n",
2806 				bdevname(rdev->bdev,b),
2807 			       super_format, super_minor);
2808 			goto abort_free;
2809 		}
2810 		if (err < 0) {
2811 			printk(KERN_WARNING
2812 				"md: could not read %s's sb, not importing!\n",
2813 				bdevname(rdev->bdev,b));
2814 			goto abort_free;
2815 		}
2816 	}
2817 
2818 	return rdev;
2819 
2820 abort_free:
2821 	if (rdev->sb_page) {
2822 		if (rdev->bdev)
2823 			unlock_rdev(rdev);
2824 		free_disk_sb(rdev);
2825 	}
2826 	kfree(rdev);
2827 	return ERR_PTR(err);
2828 }
2829 
2830 /*
2831  * Check a full RAID array for plausibility
2832  */
2833 
2834 
2835 static void analyze_sbs(mddev_t * mddev)
2836 {
2837 	int i;
2838 	mdk_rdev_t *rdev, *freshest, *tmp;
2839 	char b[BDEVNAME_SIZE];
2840 
2841 	freshest = NULL;
2842 	rdev_for_each(rdev, tmp, mddev)
2843 		switch (super_types[mddev->major_version].
2844 			load_super(rdev, freshest, mddev->minor_version)) {
2845 		case 1:
2846 			freshest = rdev;
2847 			break;
2848 		case 0:
2849 			break;
2850 		default:
2851 			printk( KERN_ERR \
2852 				"md: fatal superblock inconsistency in %s"
2853 				" -- removing from array\n",
2854 				bdevname(rdev->bdev,b));
2855 			kick_rdev_from_array(rdev);
2856 		}
2857 
2858 
2859 	super_types[mddev->major_version].
2860 		validate_super(mddev, freshest);
2861 
2862 	i = 0;
2863 	rdev_for_each(rdev, tmp, mddev) {
2864 		if (mddev->max_disks &&
2865 		    (rdev->desc_nr >= mddev->max_disks ||
2866 		     i > mddev->max_disks)) {
2867 			printk(KERN_WARNING
2868 			       "md: %s: %s: only %d devices permitted\n",
2869 			       mdname(mddev), bdevname(rdev->bdev, b),
2870 			       mddev->max_disks);
2871 			kick_rdev_from_array(rdev);
2872 			continue;
2873 		}
2874 		if (rdev != freshest)
2875 			if (super_types[mddev->major_version].
2876 			    validate_super(mddev, rdev)) {
2877 				printk(KERN_WARNING "md: kicking non-fresh %s"
2878 					" from array!\n",
2879 					bdevname(rdev->bdev,b));
2880 				kick_rdev_from_array(rdev);
2881 				continue;
2882 			}
2883 		if (mddev->level == LEVEL_MULTIPATH) {
2884 			rdev->desc_nr = i++;
2885 			rdev->raid_disk = rdev->desc_nr;
2886 			set_bit(In_sync, &rdev->flags);
2887 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2888 			rdev->raid_disk = -1;
2889 			clear_bit(In_sync, &rdev->flags);
2890 		}
2891 	}
2892 }
2893 
2894 /* Read a fixed-point number.
2895  * Numbers in sysfs attributes should be in "standard" units where
2896  * possible, so time should be in seconds.
2897  * However we internally use a a much smaller unit such as
2898  * milliseconds or jiffies.
2899  * This function takes a decimal number with a possible fractional
2900  * component, and produces an integer which is the result of
2901  * multiplying that number by 10^'scale'.
2902  * all without any floating-point arithmetic.
2903  */
2904 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2905 {
2906 	unsigned long result = 0;
2907 	long decimals = -1;
2908 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2909 		if (*cp == '.')
2910 			decimals = 0;
2911 		else if (decimals < scale) {
2912 			unsigned int value;
2913 			value = *cp - '0';
2914 			result = result * 10 + value;
2915 			if (decimals >= 0)
2916 				decimals++;
2917 		}
2918 		cp++;
2919 	}
2920 	if (*cp == '\n')
2921 		cp++;
2922 	if (*cp)
2923 		return -EINVAL;
2924 	if (decimals < 0)
2925 		decimals = 0;
2926 	while (decimals < scale) {
2927 		result *= 10;
2928 		decimals ++;
2929 	}
2930 	*res = result;
2931 	return 0;
2932 }
2933 
2934 
2935 static void md_safemode_timeout(unsigned long data);
2936 
2937 static ssize_t
2938 safe_delay_show(mddev_t *mddev, char *page)
2939 {
2940 	int msec = (mddev->safemode_delay*1000)/HZ;
2941 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2942 }
2943 static ssize_t
2944 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2945 {
2946 	unsigned long msec;
2947 
2948 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2949 		return -EINVAL;
2950 	if (msec == 0)
2951 		mddev->safemode_delay = 0;
2952 	else {
2953 		unsigned long old_delay = mddev->safemode_delay;
2954 		mddev->safemode_delay = (msec*HZ)/1000;
2955 		if (mddev->safemode_delay == 0)
2956 			mddev->safemode_delay = 1;
2957 		if (mddev->safemode_delay < old_delay)
2958 			md_safemode_timeout((unsigned long)mddev);
2959 	}
2960 	return len;
2961 }
2962 static struct md_sysfs_entry md_safe_delay =
2963 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2964 
2965 static ssize_t
2966 level_show(mddev_t *mddev, char *page)
2967 {
2968 	struct mdk_personality *p = mddev->pers;
2969 	if (p)
2970 		return sprintf(page, "%s\n", p->name);
2971 	else if (mddev->clevel[0])
2972 		return sprintf(page, "%s\n", mddev->clevel);
2973 	else if (mddev->level != LEVEL_NONE)
2974 		return sprintf(page, "%d\n", mddev->level);
2975 	else
2976 		return 0;
2977 }
2978 
2979 static ssize_t
2980 level_store(mddev_t *mddev, const char *buf, size_t len)
2981 {
2982 	char clevel[16];
2983 	ssize_t rv = len;
2984 	struct mdk_personality *pers;
2985 	long level;
2986 	void *priv;
2987 	mdk_rdev_t *rdev;
2988 
2989 	if (mddev->pers == NULL) {
2990 		if (len == 0)
2991 			return 0;
2992 		if (len >= sizeof(mddev->clevel))
2993 			return -ENOSPC;
2994 		strncpy(mddev->clevel, buf, len);
2995 		if (mddev->clevel[len-1] == '\n')
2996 			len--;
2997 		mddev->clevel[len] = 0;
2998 		mddev->level = LEVEL_NONE;
2999 		return rv;
3000 	}
3001 
3002 	/* request to change the personality.  Need to ensure:
3003 	 *  - array is not engaged in resync/recovery/reshape
3004 	 *  - old personality can be suspended
3005 	 *  - new personality will access other array.
3006 	 */
3007 
3008 	if (mddev->sync_thread ||
3009 	    mddev->reshape_position != MaxSector ||
3010 	    mddev->sysfs_active)
3011 		return -EBUSY;
3012 
3013 	if (!mddev->pers->quiesce) {
3014 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3015 		       mdname(mddev), mddev->pers->name);
3016 		return -EINVAL;
3017 	}
3018 
3019 	/* Now find the new personality */
3020 	if (len == 0 || len >= sizeof(clevel))
3021 		return -EINVAL;
3022 	strncpy(clevel, buf, len);
3023 	if (clevel[len-1] == '\n')
3024 		len--;
3025 	clevel[len] = 0;
3026 	if (strict_strtol(clevel, 10, &level))
3027 		level = LEVEL_NONE;
3028 
3029 	if (request_module("md-%s", clevel) != 0)
3030 		request_module("md-level-%s", clevel);
3031 	spin_lock(&pers_lock);
3032 	pers = find_pers(level, clevel);
3033 	if (!pers || !try_module_get(pers->owner)) {
3034 		spin_unlock(&pers_lock);
3035 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3036 		return -EINVAL;
3037 	}
3038 	spin_unlock(&pers_lock);
3039 
3040 	if (pers == mddev->pers) {
3041 		/* Nothing to do! */
3042 		module_put(pers->owner);
3043 		return rv;
3044 	}
3045 	if (!pers->takeover) {
3046 		module_put(pers->owner);
3047 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3048 		       mdname(mddev), clevel);
3049 		return -EINVAL;
3050 	}
3051 
3052 	list_for_each_entry(rdev, &mddev->disks, same_set)
3053 		rdev->new_raid_disk = rdev->raid_disk;
3054 
3055 	/* ->takeover must set new_* and/or delta_disks
3056 	 * if it succeeds, and may set them when it fails.
3057 	 */
3058 	priv = pers->takeover(mddev);
3059 	if (IS_ERR(priv)) {
3060 		mddev->new_level = mddev->level;
3061 		mddev->new_layout = mddev->layout;
3062 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3063 		mddev->raid_disks -= mddev->delta_disks;
3064 		mddev->delta_disks = 0;
3065 		module_put(pers->owner);
3066 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3067 		       mdname(mddev), clevel);
3068 		return PTR_ERR(priv);
3069 	}
3070 
3071 	/* Looks like we have a winner */
3072 	mddev_suspend(mddev);
3073 	mddev->pers->stop(mddev);
3074 
3075 	if (mddev->pers->sync_request == NULL &&
3076 	    pers->sync_request != NULL) {
3077 		/* need to add the md_redundancy_group */
3078 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3079 			printk(KERN_WARNING
3080 			       "md: cannot register extra attributes for %s\n",
3081 			       mdname(mddev));
3082 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3083 	}
3084 	if (mddev->pers->sync_request != NULL &&
3085 	    pers->sync_request == NULL) {
3086 		/* need to remove the md_redundancy_group */
3087 		if (mddev->to_remove == NULL)
3088 			mddev->to_remove = &md_redundancy_group;
3089 	}
3090 
3091 	if (mddev->pers->sync_request == NULL &&
3092 	    mddev->external) {
3093 		/* We are converting from a no-redundancy array
3094 		 * to a redundancy array and metadata is managed
3095 		 * externally so we need to be sure that writes
3096 		 * won't block due to a need to transition
3097 		 *      clean->dirty
3098 		 * until external management is started.
3099 		 */
3100 		mddev->in_sync = 0;
3101 		mddev->safemode_delay = 0;
3102 		mddev->safemode = 0;
3103 	}
3104 
3105 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3106 		char nm[20];
3107 		if (rdev->raid_disk < 0)
3108 			continue;
3109 		if (rdev->new_raid_disk > mddev->raid_disks)
3110 			rdev->new_raid_disk = -1;
3111 		if (rdev->new_raid_disk == rdev->raid_disk)
3112 			continue;
3113 		sprintf(nm, "rd%d", rdev->raid_disk);
3114 		sysfs_remove_link(&mddev->kobj, nm);
3115 	}
3116 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3117 		if (rdev->raid_disk < 0)
3118 			continue;
3119 		if (rdev->new_raid_disk == rdev->raid_disk)
3120 			continue;
3121 		rdev->raid_disk = rdev->new_raid_disk;
3122 		if (rdev->raid_disk < 0)
3123 			clear_bit(In_sync, &rdev->flags);
3124 		else {
3125 			char nm[20];
3126 			sprintf(nm, "rd%d", rdev->raid_disk);
3127 			if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3128 				printk("md: cannot register %s for %s after level change\n",
3129 				       nm, mdname(mddev));
3130 		}
3131 	}
3132 
3133 	module_put(mddev->pers->owner);
3134 	mddev->pers = pers;
3135 	mddev->private = priv;
3136 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3137 	mddev->level = mddev->new_level;
3138 	mddev->layout = mddev->new_layout;
3139 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3140 	mddev->delta_disks = 0;
3141 	if (mddev->pers->sync_request == NULL) {
3142 		/* this is now an array without redundancy, so
3143 		 * it must always be in_sync
3144 		 */
3145 		mddev->in_sync = 1;
3146 		del_timer_sync(&mddev->safemode_timer);
3147 	}
3148 	pers->run(mddev);
3149 	mddev_resume(mddev);
3150 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3151 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3152 	md_wakeup_thread(mddev->thread);
3153 	sysfs_notify(&mddev->kobj, NULL, "level");
3154 	md_new_event(mddev);
3155 	return rv;
3156 }
3157 
3158 static struct md_sysfs_entry md_level =
3159 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3160 
3161 
3162 static ssize_t
3163 layout_show(mddev_t *mddev, char *page)
3164 {
3165 	/* just a number, not meaningful for all levels */
3166 	if (mddev->reshape_position != MaxSector &&
3167 	    mddev->layout != mddev->new_layout)
3168 		return sprintf(page, "%d (%d)\n",
3169 			       mddev->new_layout, mddev->layout);
3170 	return sprintf(page, "%d\n", mddev->layout);
3171 }
3172 
3173 static ssize_t
3174 layout_store(mddev_t *mddev, const char *buf, size_t len)
3175 {
3176 	char *e;
3177 	unsigned long n = simple_strtoul(buf, &e, 10);
3178 
3179 	if (!*buf || (*e && *e != '\n'))
3180 		return -EINVAL;
3181 
3182 	if (mddev->pers) {
3183 		int err;
3184 		if (mddev->pers->check_reshape == NULL)
3185 			return -EBUSY;
3186 		mddev->new_layout = n;
3187 		err = mddev->pers->check_reshape(mddev);
3188 		if (err) {
3189 			mddev->new_layout = mddev->layout;
3190 			return err;
3191 		}
3192 	} else {
3193 		mddev->new_layout = n;
3194 		if (mddev->reshape_position == MaxSector)
3195 			mddev->layout = n;
3196 	}
3197 	return len;
3198 }
3199 static struct md_sysfs_entry md_layout =
3200 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3201 
3202 
3203 static ssize_t
3204 raid_disks_show(mddev_t *mddev, char *page)
3205 {
3206 	if (mddev->raid_disks == 0)
3207 		return 0;
3208 	if (mddev->reshape_position != MaxSector &&
3209 	    mddev->delta_disks != 0)
3210 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3211 			       mddev->raid_disks - mddev->delta_disks);
3212 	return sprintf(page, "%d\n", mddev->raid_disks);
3213 }
3214 
3215 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3216 
3217 static ssize_t
3218 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3219 {
3220 	char *e;
3221 	int rv = 0;
3222 	unsigned long n = simple_strtoul(buf, &e, 10);
3223 
3224 	if (!*buf || (*e && *e != '\n'))
3225 		return -EINVAL;
3226 
3227 	if (mddev->pers)
3228 		rv = update_raid_disks(mddev, n);
3229 	else if (mddev->reshape_position != MaxSector) {
3230 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3231 		mddev->delta_disks = n - olddisks;
3232 		mddev->raid_disks = n;
3233 	} else
3234 		mddev->raid_disks = n;
3235 	return rv ? rv : len;
3236 }
3237 static struct md_sysfs_entry md_raid_disks =
3238 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3239 
3240 static ssize_t
3241 chunk_size_show(mddev_t *mddev, char *page)
3242 {
3243 	if (mddev->reshape_position != MaxSector &&
3244 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3245 		return sprintf(page, "%d (%d)\n",
3246 			       mddev->new_chunk_sectors << 9,
3247 			       mddev->chunk_sectors << 9);
3248 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3249 }
3250 
3251 static ssize_t
3252 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3253 {
3254 	char *e;
3255 	unsigned long n = simple_strtoul(buf, &e, 10);
3256 
3257 	if (!*buf || (*e && *e != '\n'))
3258 		return -EINVAL;
3259 
3260 	if (mddev->pers) {
3261 		int err;
3262 		if (mddev->pers->check_reshape == NULL)
3263 			return -EBUSY;
3264 		mddev->new_chunk_sectors = n >> 9;
3265 		err = mddev->pers->check_reshape(mddev);
3266 		if (err) {
3267 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3268 			return err;
3269 		}
3270 	} else {
3271 		mddev->new_chunk_sectors = n >> 9;
3272 		if (mddev->reshape_position == MaxSector)
3273 			mddev->chunk_sectors = n >> 9;
3274 	}
3275 	return len;
3276 }
3277 static struct md_sysfs_entry md_chunk_size =
3278 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3279 
3280 static ssize_t
3281 resync_start_show(mddev_t *mddev, char *page)
3282 {
3283 	if (mddev->recovery_cp == MaxSector)
3284 		return sprintf(page, "none\n");
3285 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3286 }
3287 
3288 static ssize_t
3289 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3290 {
3291 	char *e;
3292 	unsigned long long n = simple_strtoull(buf, &e, 10);
3293 
3294 	if (mddev->pers)
3295 		return -EBUSY;
3296 	if (cmd_match(buf, "none"))
3297 		n = MaxSector;
3298 	else if (!*buf || (*e && *e != '\n'))
3299 		return -EINVAL;
3300 
3301 	mddev->recovery_cp = n;
3302 	return len;
3303 }
3304 static struct md_sysfs_entry md_resync_start =
3305 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3306 
3307 /*
3308  * The array state can be:
3309  *
3310  * clear
3311  *     No devices, no size, no level
3312  *     Equivalent to STOP_ARRAY ioctl
3313  * inactive
3314  *     May have some settings, but array is not active
3315  *        all IO results in error
3316  *     When written, doesn't tear down array, but just stops it
3317  * suspended (not supported yet)
3318  *     All IO requests will block. The array can be reconfigured.
3319  *     Writing this, if accepted, will block until array is quiescent
3320  * readonly
3321  *     no resync can happen.  no superblocks get written.
3322  *     write requests fail
3323  * read-auto
3324  *     like readonly, but behaves like 'clean' on a write request.
3325  *
3326  * clean - no pending writes, but otherwise active.
3327  *     When written to inactive array, starts without resync
3328  *     If a write request arrives then
3329  *       if metadata is known, mark 'dirty' and switch to 'active'.
3330  *       if not known, block and switch to write-pending
3331  *     If written to an active array that has pending writes, then fails.
3332  * active
3333  *     fully active: IO and resync can be happening.
3334  *     When written to inactive array, starts with resync
3335  *
3336  * write-pending
3337  *     clean, but writes are blocked waiting for 'active' to be written.
3338  *
3339  * active-idle
3340  *     like active, but no writes have been seen for a while (100msec).
3341  *
3342  */
3343 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3344 		   write_pending, active_idle, bad_word};
3345 static char *array_states[] = {
3346 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3347 	"write-pending", "active-idle", NULL };
3348 
3349 static int match_word(const char *word, char **list)
3350 {
3351 	int n;
3352 	for (n=0; list[n]; n++)
3353 		if (cmd_match(word, list[n]))
3354 			break;
3355 	return n;
3356 }
3357 
3358 static ssize_t
3359 array_state_show(mddev_t *mddev, char *page)
3360 {
3361 	enum array_state st = inactive;
3362 
3363 	if (mddev->pers)
3364 		switch(mddev->ro) {
3365 		case 1:
3366 			st = readonly;
3367 			break;
3368 		case 2:
3369 			st = read_auto;
3370 			break;
3371 		case 0:
3372 			if (mddev->in_sync)
3373 				st = clean;
3374 			else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
3375 				st = write_pending;
3376 			else if (mddev->safemode)
3377 				st = active_idle;
3378 			else
3379 				st = active;
3380 		}
3381 	else {
3382 		if (list_empty(&mddev->disks) &&
3383 		    mddev->raid_disks == 0 &&
3384 		    mddev->dev_sectors == 0)
3385 			st = clear;
3386 		else
3387 			st = inactive;
3388 	}
3389 	return sprintf(page, "%s\n", array_states[st]);
3390 }
3391 
3392 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3393 static int md_set_readonly(mddev_t * mddev, int is_open);
3394 static int do_md_run(mddev_t * mddev);
3395 static int restart_array(mddev_t *mddev);
3396 
3397 static ssize_t
3398 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3399 {
3400 	int err = -EINVAL;
3401 	enum array_state st = match_word(buf, array_states);
3402 	switch(st) {
3403 	case bad_word:
3404 		break;
3405 	case clear:
3406 		/* stopping an active array */
3407 		if (atomic_read(&mddev->openers) > 0)
3408 			return -EBUSY;
3409 		err = do_md_stop(mddev, 0, 0);
3410 		break;
3411 	case inactive:
3412 		/* stopping an active array */
3413 		if (mddev->pers) {
3414 			if (atomic_read(&mddev->openers) > 0)
3415 				return -EBUSY;
3416 			err = do_md_stop(mddev, 2, 0);
3417 		} else
3418 			err = 0; /* already inactive */
3419 		break;
3420 	case suspended:
3421 		break; /* not supported yet */
3422 	case readonly:
3423 		if (mddev->pers)
3424 			err = md_set_readonly(mddev, 0);
3425 		else {
3426 			mddev->ro = 1;
3427 			set_disk_ro(mddev->gendisk, 1);
3428 			err = do_md_run(mddev);
3429 		}
3430 		break;
3431 	case read_auto:
3432 		if (mddev->pers) {
3433 			if (mddev->ro == 0)
3434 				err = md_set_readonly(mddev, 0);
3435 			else if (mddev->ro == 1)
3436 				err = restart_array(mddev);
3437 			if (err == 0) {
3438 				mddev->ro = 2;
3439 				set_disk_ro(mddev->gendisk, 0);
3440 			}
3441 		} else {
3442 			mddev->ro = 2;
3443 			err = do_md_run(mddev);
3444 		}
3445 		break;
3446 	case clean:
3447 		if (mddev->pers) {
3448 			restart_array(mddev);
3449 			spin_lock_irq(&mddev->write_lock);
3450 			if (atomic_read(&mddev->writes_pending) == 0) {
3451 				if (mddev->in_sync == 0) {
3452 					mddev->in_sync = 1;
3453 					if (mddev->safemode == 1)
3454 						mddev->safemode = 0;
3455 					if (mddev->persistent)
3456 						set_bit(MD_CHANGE_CLEAN,
3457 							&mddev->flags);
3458 				}
3459 				err = 0;
3460 			} else
3461 				err = -EBUSY;
3462 			spin_unlock_irq(&mddev->write_lock);
3463 		} else
3464 			err = -EINVAL;
3465 		break;
3466 	case active:
3467 		if (mddev->pers) {
3468 			restart_array(mddev);
3469 			if (mddev->external)
3470 				clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3471 			wake_up(&mddev->sb_wait);
3472 			err = 0;
3473 		} else {
3474 			mddev->ro = 0;
3475 			set_disk_ro(mddev->gendisk, 0);
3476 			err = do_md_run(mddev);
3477 		}
3478 		break;
3479 	case write_pending:
3480 	case active_idle:
3481 		/* these cannot be set */
3482 		break;
3483 	}
3484 	if (err)
3485 		return err;
3486 	else {
3487 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3488 		return len;
3489 	}
3490 }
3491 static struct md_sysfs_entry md_array_state =
3492 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3493 
3494 static ssize_t
3495 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3496 	return sprintf(page, "%d\n",
3497 		       atomic_read(&mddev->max_corr_read_errors));
3498 }
3499 
3500 static ssize_t
3501 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3502 {
3503 	char *e;
3504 	unsigned long n = simple_strtoul(buf, &e, 10);
3505 
3506 	if (*buf && (*e == 0 || *e == '\n')) {
3507 		atomic_set(&mddev->max_corr_read_errors, n);
3508 		return len;
3509 	}
3510 	return -EINVAL;
3511 }
3512 
3513 static struct md_sysfs_entry max_corr_read_errors =
3514 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3515 	max_corrected_read_errors_store);
3516 
3517 static ssize_t
3518 null_show(mddev_t *mddev, char *page)
3519 {
3520 	return -EINVAL;
3521 }
3522 
3523 static ssize_t
3524 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3525 {
3526 	/* buf must be %d:%d\n? giving major and minor numbers */
3527 	/* The new device is added to the array.
3528 	 * If the array has a persistent superblock, we read the
3529 	 * superblock to initialise info and check validity.
3530 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3531 	 * which mainly checks size.
3532 	 */
3533 	char *e;
3534 	int major = simple_strtoul(buf, &e, 10);
3535 	int minor;
3536 	dev_t dev;
3537 	mdk_rdev_t *rdev;
3538 	int err;
3539 
3540 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3541 		return -EINVAL;
3542 	minor = simple_strtoul(e+1, &e, 10);
3543 	if (*e && *e != '\n')
3544 		return -EINVAL;
3545 	dev = MKDEV(major, minor);
3546 	if (major != MAJOR(dev) ||
3547 	    minor != MINOR(dev))
3548 		return -EOVERFLOW;
3549 
3550 
3551 	if (mddev->persistent) {
3552 		rdev = md_import_device(dev, mddev->major_version,
3553 					mddev->minor_version);
3554 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3555 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3556 						       mdk_rdev_t, same_set);
3557 			err = super_types[mddev->major_version]
3558 				.load_super(rdev, rdev0, mddev->minor_version);
3559 			if (err < 0)
3560 				goto out;
3561 		}
3562 	} else if (mddev->external)
3563 		rdev = md_import_device(dev, -2, -1);
3564 	else
3565 		rdev = md_import_device(dev, -1, -1);
3566 
3567 	if (IS_ERR(rdev))
3568 		return PTR_ERR(rdev);
3569 	err = bind_rdev_to_array(rdev, mddev);
3570  out:
3571 	if (err)
3572 		export_rdev(rdev);
3573 	return err ? err : len;
3574 }
3575 
3576 static struct md_sysfs_entry md_new_device =
3577 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3578 
3579 static ssize_t
3580 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3581 {
3582 	char *end;
3583 	unsigned long chunk, end_chunk;
3584 
3585 	if (!mddev->bitmap)
3586 		goto out;
3587 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3588 	while (*buf) {
3589 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3590 		if (buf == end) break;
3591 		if (*end == '-') { /* range */
3592 			buf = end + 1;
3593 			end_chunk = simple_strtoul(buf, &end, 0);
3594 			if (buf == end) break;
3595 		}
3596 		if (*end && !isspace(*end)) break;
3597 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3598 		buf = skip_spaces(end);
3599 	}
3600 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3601 out:
3602 	return len;
3603 }
3604 
3605 static struct md_sysfs_entry md_bitmap =
3606 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3607 
3608 static ssize_t
3609 size_show(mddev_t *mddev, char *page)
3610 {
3611 	return sprintf(page, "%llu\n",
3612 		(unsigned long long)mddev->dev_sectors / 2);
3613 }
3614 
3615 static int update_size(mddev_t *mddev, sector_t num_sectors);
3616 
3617 static ssize_t
3618 size_store(mddev_t *mddev, const char *buf, size_t len)
3619 {
3620 	/* If array is inactive, we can reduce the component size, but
3621 	 * not increase it (except from 0).
3622 	 * If array is active, we can try an on-line resize
3623 	 */
3624 	sector_t sectors;
3625 	int err = strict_blocks_to_sectors(buf, &sectors);
3626 
3627 	if (err < 0)
3628 		return err;
3629 	if (mddev->pers) {
3630 		err = update_size(mddev, sectors);
3631 		md_update_sb(mddev, 1);
3632 	} else {
3633 		if (mddev->dev_sectors == 0 ||
3634 		    mddev->dev_sectors > sectors)
3635 			mddev->dev_sectors = sectors;
3636 		else
3637 			err = -ENOSPC;
3638 	}
3639 	return err ? err : len;
3640 }
3641 
3642 static struct md_sysfs_entry md_size =
3643 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3644 
3645 
3646 /* Metdata version.
3647  * This is one of
3648  *   'none' for arrays with no metadata (good luck...)
3649  *   'external' for arrays with externally managed metadata,
3650  * or N.M for internally known formats
3651  */
3652 static ssize_t
3653 metadata_show(mddev_t *mddev, char *page)
3654 {
3655 	if (mddev->persistent)
3656 		return sprintf(page, "%d.%d\n",
3657 			       mddev->major_version, mddev->minor_version);
3658 	else if (mddev->external)
3659 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3660 	else
3661 		return sprintf(page, "none\n");
3662 }
3663 
3664 static ssize_t
3665 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3666 {
3667 	int major, minor;
3668 	char *e;
3669 	/* Changing the details of 'external' metadata is
3670 	 * always permitted.  Otherwise there must be
3671 	 * no devices attached to the array.
3672 	 */
3673 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3674 		;
3675 	else if (!list_empty(&mddev->disks))
3676 		return -EBUSY;
3677 
3678 	if (cmd_match(buf, "none")) {
3679 		mddev->persistent = 0;
3680 		mddev->external = 0;
3681 		mddev->major_version = 0;
3682 		mddev->minor_version = 90;
3683 		return len;
3684 	}
3685 	if (strncmp(buf, "external:", 9) == 0) {
3686 		size_t namelen = len-9;
3687 		if (namelen >= sizeof(mddev->metadata_type))
3688 			namelen = sizeof(mddev->metadata_type)-1;
3689 		strncpy(mddev->metadata_type, buf+9, namelen);
3690 		mddev->metadata_type[namelen] = 0;
3691 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3692 			mddev->metadata_type[--namelen] = 0;
3693 		mddev->persistent = 0;
3694 		mddev->external = 1;
3695 		mddev->major_version = 0;
3696 		mddev->minor_version = 90;
3697 		return len;
3698 	}
3699 	major = simple_strtoul(buf, &e, 10);
3700 	if (e==buf || *e != '.')
3701 		return -EINVAL;
3702 	buf = e+1;
3703 	minor = simple_strtoul(buf, &e, 10);
3704 	if (e==buf || (*e && *e != '\n') )
3705 		return -EINVAL;
3706 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3707 		return -ENOENT;
3708 	mddev->major_version = major;
3709 	mddev->minor_version = minor;
3710 	mddev->persistent = 1;
3711 	mddev->external = 0;
3712 	return len;
3713 }
3714 
3715 static struct md_sysfs_entry md_metadata =
3716 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3717 
3718 static ssize_t
3719 action_show(mddev_t *mddev, char *page)
3720 {
3721 	char *type = "idle";
3722 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3723 		type = "frozen";
3724 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3725 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3726 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3727 			type = "reshape";
3728 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3729 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3730 				type = "resync";
3731 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3732 				type = "check";
3733 			else
3734 				type = "repair";
3735 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3736 			type = "recover";
3737 	}
3738 	return sprintf(page, "%s\n", type);
3739 }
3740 
3741 static ssize_t
3742 action_store(mddev_t *mddev, const char *page, size_t len)
3743 {
3744 	if (!mddev->pers || !mddev->pers->sync_request)
3745 		return -EINVAL;
3746 
3747 	if (cmd_match(page, "frozen"))
3748 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3749 	else
3750 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3751 
3752 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3753 		if (mddev->sync_thread) {
3754 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3755 			md_unregister_thread(mddev->sync_thread);
3756 			mddev->sync_thread = NULL;
3757 			mddev->recovery = 0;
3758 		}
3759 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3760 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3761 		return -EBUSY;
3762 	else if (cmd_match(page, "resync"))
3763 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3764 	else if (cmd_match(page, "recover")) {
3765 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3766 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3767 	} else if (cmd_match(page, "reshape")) {
3768 		int err;
3769 		if (mddev->pers->start_reshape == NULL)
3770 			return -EINVAL;
3771 		err = mddev->pers->start_reshape(mddev);
3772 		if (err)
3773 			return err;
3774 		sysfs_notify(&mddev->kobj, NULL, "degraded");
3775 	} else {
3776 		if (cmd_match(page, "check"))
3777 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3778 		else if (!cmd_match(page, "repair"))
3779 			return -EINVAL;
3780 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3781 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3782 	}
3783 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3784 	md_wakeup_thread(mddev->thread);
3785 	sysfs_notify_dirent_safe(mddev->sysfs_action);
3786 	return len;
3787 }
3788 
3789 static ssize_t
3790 mismatch_cnt_show(mddev_t *mddev, char *page)
3791 {
3792 	return sprintf(page, "%llu\n",
3793 		       (unsigned long long) mddev->resync_mismatches);
3794 }
3795 
3796 static struct md_sysfs_entry md_scan_mode =
3797 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3798 
3799 
3800 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3801 
3802 static ssize_t
3803 sync_min_show(mddev_t *mddev, char *page)
3804 {
3805 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
3806 		       mddev->sync_speed_min ? "local": "system");
3807 }
3808 
3809 static ssize_t
3810 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3811 {
3812 	int min;
3813 	char *e;
3814 	if (strncmp(buf, "system", 6)==0) {
3815 		mddev->sync_speed_min = 0;
3816 		return len;
3817 	}
3818 	min = simple_strtoul(buf, &e, 10);
3819 	if (buf == e || (*e && *e != '\n') || min <= 0)
3820 		return -EINVAL;
3821 	mddev->sync_speed_min = min;
3822 	return len;
3823 }
3824 
3825 static struct md_sysfs_entry md_sync_min =
3826 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3827 
3828 static ssize_t
3829 sync_max_show(mddev_t *mddev, char *page)
3830 {
3831 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
3832 		       mddev->sync_speed_max ? "local": "system");
3833 }
3834 
3835 static ssize_t
3836 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3837 {
3838 	int max;
3839 	char *e;
3840 	if (strncmp(buf, "system", 6)==0) {
3841 		mddev->sync_speed_max = 0;
3842 		return len;
3843 	}
3844 	max = simple_strtoul(buf, &e, 10);
3845 	if (buf == e || (*e && *e != '\n') || max <= 0)
3846 		return -EINVAL;
3847 	mddev->sync_speed_max = max;
3848 	return len;
3849 }
3850 
3851 static struct md_sysfs_entry md_sync_max =
3852 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3853 
3854 static ssize_t
3855 degraded_show(mddev_t *mddev, char *page)
3856 {
3857 	return sprintf(page, "%d\n", mddev->degraded);
3858 }
3859 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3860 
3861 static ssize_t
3862 sync_force_parallel_show(mddev_t *mddev, char *page)
3863 {
3864 	return sprintf(page, "%d\n", mddev->parallel_resync);
3865 }
3866 
3867 static ssize_t
3868 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3869 {
3870 	long n;
3871 
3872 	if (strict_strtol(buf, 10, &n))
3873 		return -EINVAL;
3874 
3875 	if (n != 0 && n != 1)
3876 		return -EINVAL;
3877 
3878 	mddev->parallel_resync = n;
3879 
3880 	if (mddev->sync_thread)
3881 		wake_up(&resync_wait);
3882 
3883 	return len;
3884 }
3885 
3886 /* force parallel resync, even with shared block devices */
3887 static struct md_sysfs_entry md_sync_force_parallel =
3888 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3889        sync_force_parallel_show, sync_force_parallel_store);
3890 
3891 static ssize_t
3892 sync_speed_show(mddev_t *mddev, char *page)
3893 {
3894 	unsigned long resync, dt, db;
3895 	if (mddev->curr_resync == 0)
3896 		return sprintf(page, "none\n");
3897 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3898 	dt = (jiffies - mddev->resync_mark) / HZ;
3899 	if (!dt) dt++;
3900 	db = resync - mddev->resync_mark_cnt;
3901 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3902 }
3903 
3904 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3905 
3906 static ssize_t
3907 sync_completed_show(mddev_t *mddev, char *page)
3908 {
3909 	unsigned long max_sectors, resync;
3910 
3911 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3912 		return sprintf(page, "none\n");
3913 
3914 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3915 		max_sectors = mddev->resync_max_sectors;
3916 	else
3917 		max_sectors = mddev->dev_sectors;
3918 
3919 	resync = mddev->curr_resync_completed;
3920 	return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3921 }
3922 
3923 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3924 
3925 static ssize_t
3926 min_sync_show(mddev_t *mddev, char *page)
3927 {
3928 	return sprintf(page, "%llu\n",
3929 		       (unsigned long long)mddev->resync_min);
3930 }
3931 static ssize_t
3932 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3933 {
3934 	unsigned long long min;
3935 	if (strict_strtoull(buf, 10, &min))
3936 		return -EINVAL;
3937 	if (min > mddev->resync_max)
3938 		return -EINVAL;
3939 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3940 		return -EBUSY;
3941 
3942 	/* Must be a multiple of chunk_size */
3943 	if (mddev->chunk_sectors) {
3944 		sector_t temp = min;
3945 		if (sector_div(temp, mddev->chunk_sectors))
3946 			return -EINVAL;
3947 	}
3948 	mddev->resync_min = min;
3949 
3950 	return len;
3951 }
3952 
3953 static struct md_sysfs_entry md_min_sync =
3954 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3955 
3956 static ssize_t
3957 max_sync_show(mddev_t *mddev, char *page)
3958 {
3959 	if (mddev->resync_max == MaxSector)
3960 		return sprintf(page, "max\n");
3961 	else
3962 		return sprintf(page, "%llu\n",
3963 			       (unsigned long long)mddev->resync_max);
3964 }
3965 static ssize_t
3966 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3967 {
3968 	if (strncmp(buf, "max", 3) == 0)
3969 		mddev->resync_max = MaxSector;
3970 	else {
3971 		unsigned long long max;
3972 		if (strict_strtoull(buf, 10, &max))
3973 			return -EINVAL;
3974 		if (max < mddev->resync_min)
3975 			return -EINVAL;
3976 		if (max < mddev->resync_max &&
3977 		    mddev->ro == 0 &&
3978 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3979 			return -EBUSY;
3980 
3981 		/* Must be a multiple of chunk_size */
3982 		if (mddev->chunk_sectors) {
3983 			sector_t temp = max;
3984 			if (sector_div(temp, mddev->chunk_sectors))
3985 				return -EINVAL;
3986 		}
3987 		mddev->resync_max = max;
3988 	}
3989 	wake_up(&mddev->recovery_wait);
3990 	return len;
3991 }
3992 
3993 static struct md_sysfs_entry md_max_sync =
3994 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3995 
3996 static ssize_t
3997 suspend_lo_show(mddev_t *mddev, char *page)
3998 {
3999 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4000 }
4001 
4002 static ssize_t
4003 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4004 {
4005 	char *e;
4006 	unsigned long long new = simple_strtoull(buf, &e, 10);
4007 
4008 	if (mddev->pers == NULL ||
4009 	    mddev->pers->quiesce == NULL)
4010 		return -EINVAL;
4011 	if (buf == e || (*e && *e != '\n'))
4012 		return -EINVAL;
4013 	if (new >= mddev->suspend_hi ||
4014 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
4015 		mddev->suspend_lo = new;
4016 		mddev->pers->quiesce(mddev, 2);
4017 		return len;
4018 	} else
4019 		return -EINVAL;
4020 }
4021 static struct md_sysfs_entry md_suspend_lo =
4022 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4023 
4024 
4025 static ssize_t
4026 suspend_hi_show(mddev_t *mddev, char *page)
4027 {
4028 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4029 }
4030 
4031 static ssize_t
4032 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4033 {
4034 	char *e;
4035 	unsigned long long new = simple_strtoull(buf, &e, 10);
4036 
4037 	if (mddev->pers == NULL ||
4038 	    mddev->pers->quiesce == NULL)
4039 		return -EINVAL;
4040 	if (buf == e || (*e && *e != '\n'))
4041 		return -EINVAL;
4042 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
4043 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
4044 		mddev->suspend_hi = new;
4045 		mddev->pers->quiesce(mddev, 1);
4046 		mddev->pers->quiesce(mddev, 0);
4047 		return len;
4048 	} else
4049 		return -EINVAL;
4050 }
4051 static struct md_sysfs_entry md_suspend_hi =
4052 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4053 
4054 static ssize_t
4055 reshape_position_show(mddev_t *mddev, char *page)
4056 {
4057 	if (mddev->reshape_position != MaxSector)
4058 		return sprintf(page, "%llu\n",
4059 			       (unsigned long long)mddev->reshape_position);
4060 	strcpy(page, "none\n");
4061 	return 5;
4062 }
4063 
4064 static ssize_t
4065 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4066 {
4067 	char *e;
4068 	unsigned long long new = simple_strtoull(buf, &e, 10);
4069 	if (mddev->pers)
4070 		return -EBUSY;
4071 	if (buf == e || (*e && *e != '\n'))
4072 		return -EINVAL;
4073 	mddev->reshape_position = new;
4074 	mddev->delta_disks = 0;
4075 	mddev->new_level = mddev->level;
4076 	mddev->new_layout = mddev->layout;
4077 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4078 	return len;
4079 }
4080 
4081 static struct md_sysfs_entry md_reshape_position =
4082 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4083        reshape_position_store);
4084 
4085 static ssize_t
4086 array_size_show(mddev_t *mddev, char *page)
4087 {
4088 	if (mddev->external_size)
4089 		return sprintf(page, "%llu\n",
4090 			       (unsigned long long)mddev->array_sectors/2);
4091 	else
4092 		return sprintf(page, "default\n");
4093 }
4094 
4095 static ssize_t
4096 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4097 {
4098 	sector_t sectors;
4099 
4100 	if (strncmp(buf, "default", 7) == 0) {
4101 		if (mddev->pers)
4102 			sectors = mddev->pers->size(mddev, 0, 0);
4103 		else
4104 			sectors = mddev->array_sectors;
4105 
4106 		mddev->external_size = 0;
4107 	} else {
4108 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4109 			return -EINVAL;
4110 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4111 			return -E2BIG;
4112 
4113 		mddev->external_size = 1;
4114 	}
4115 
4116 	mddev->array_sectors = sectors;
4117 	set_capacity(mddev->gendisk, mddev->array_sectors);
4118 	if (mddev->pers)
4119 		revalidate_disk(mddev->gendisk);
4120 
4121 	return len;
4122 }
4123 
4124 static struct md_sysfs_entry md_array_size =
4125 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4126        array_size_store);
4127 
4128 static struct attribute *md_default_attrs[] = {
4129 	&md_level.attr,
4130 	&md_layout.attr,
4131 	&md_raid_disks.attr,
4132 	&md_chunk_size.attr,
4133 	&md_size.attr,
4134 	&md_resync_start.attr,
4135 	&md_metadata.attr,
4136 	&md_new_device.attr,
4137 	&md_safe_delay.attr,
4138 	&md_array_state.attr,
4139 	&md_reshape_position.attr,
4140 	&md_array_size.attr,
4141 	&max_corr_read_errors.attr,
4142 	NULL,
4143 };
4144 
4145 static struct attribute *md_redundancy_attrs[] = {
4146 	&md_scan_mode.attr,
4147 	&md_mismatches.attr,
4148 	&md_sync_min.attr,
4149 	&md_sync_max.attr,
4150 	&md_sync_speed.attr,
4151 	&md_sync_force_parallel.attr,
4152 	&md_sync_completed.attr,
4153 	&md_min_sync.attr,
4154 	&md_max_sync.attr,
4155 	&md_suspend_lo.attr,
4156 	&md_suspend_hi.attr,
4157 	&md_bitmap.attr,
4158 	&md_degraded.attr,
4159 	NULL,
4160 };
4161 static struct attribute_group md_redundancy_group = {
4162 	.name = NULL,
4163 	.attrs = md_redundancy_attrs,
4164 };
4165 
4166 
4167 static ssize_t
4168 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4169 {
4170 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4171 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4172 	ssize_t rv;
4173 
4174 	if (!entry->show)
4175 		return -EIO;
4176 	rv = mddev_lock(mddev);
4177 	if (!rv) {
4178 		rv = entry->show(mddev, page);
4179 		mddev_unlock(mddev);
4180 	}
4181 	return rv;
4182 }
4183 
4184 static ssize_t
4185 md_attr_store(struct kobject *kobj, struct attribute *attr,
4186 	      const char *page, size_t length)
4187 {
4188 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4189 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4190 	ssize_t rv;
4191 
4192 	if (!entry->store)
4193 		return -EIO;
4194 	if (!capable(CAP_SYS_ADMIN))
4195 		return -EACCES;
4196 	rv = mddev_lock(mddev);
4197 	if (mddev->hold_active == UNTIL_IOCTL)
4198 		mddev->hold_active = 0;
4199 	if (!rv) {
4200 		rv = entry->store(mddev, page, length);
4201 		mddev_unlock(mddev);
4202 	}
4203 	return rv;
4204 }
4205 
4206 static void md_free(struct kobject *ko)
4207 {
4208 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
4209 
4210 	if (mddev->sysfs_state)
4211 		sysfs_put(mddev->sysfs_state);
4212 
4213 	if (mddev->gendisk) {
4214 		del_gendisk(mddev->gendisk);
4215 		put_disk(mddev->gendisk);
4216 	}
4217 	if (mddev->queue)
4218 		blk_cleanup_queue(mddev->queue);
4219 
4220 	kfree(mddev);
4221 }
4222 
4223 static const struct sysfs_ops md_sysfs_ops = {
4224 	.show	= md_attr_show,
4225 	.store	= md_attr_store,
4226 };
4227 static struct kobj_type md_ktype = {
4228 	.release	= md_free,
4229 	.sysfs_ops	= &md_sysfs_ops,
4230 	.default_attrs	= md_default_attrs,
4231 };
4232 
4233 int mdp_major = 0;
4234 
4235 static void mddev_delayed_delete(struct work_struct *ws)
4236 {
4237 	mddev_t *mddev = container_of(ws, mddev_t, del_work);
4238 
4239 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4240 	kobject_del(&mddev->kobj);
4241 	kobject_put(&mddev->kobj);
4242 }
4243 
4244 static int md_alloc(dev_t dev, char *name)
4245 {
4246 	static DEFINE_MUTEX(disks_mutex);
4247 	mddev_t *mddev = mddev_find(dev);
4248 	struct gendisk *disk;
4249 	int partitioned;
4250 	int shift;
4251 	int unit;
4252 	int error;
4253 
4254 	if (!mddev)
4255 		return -ENODEV;
4256 
4257 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4258 	shift = partitioned ? MdpMinorShift : 0;
4259 	unit = MINOR(mddev->unit) >> shift;
4260 
4261 	/* wait for any previous instance if this device
4262 	 * to be completed removed (mddev_delayed_delete).
4263 	 */
4264 	flush_scheduled_work();
4265 
4266 	mutex_lock(&disks_mutex);
4267 	error = -EEXIST;
4268 	if (mddev->gendisk)
4269 		goto abort;
4270 
4271 	if (name) {
4272 		/* Need to ensure that 'name' is not a duplicate.
4273 		 */
4274 		mddev_t *mddev2;
4275 		spin_lock(&all_mddevs_lock);
4276 
4277 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4278 			if (mddev2->gendisk &&
4279 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4280 				spin_unlock(&all_mddevs_lock);
4281 				goto abort;
4282 			}
4283 		spin_unlock(&all_mddevs_lock);
4284 	}
4285 
4286 	error = -ENOMEM;
4287 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4288 	if (!mddev->queue)
4289 		goto abort;
4290 	mddev->queue->queuedata = mddev;
4291 
4292 	/* Can be unlocked because the queue is new: no concurrency */
4293 	queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
4294 
4295 	blk_queue_make_request(mddev->queue, md_make_request);
4296 
4297 	disk = alloc_disk(1 << shift);
4298 	if (!disk) {
4299 		blk_cleanup_queue(mddev->queue);
4300 		mddev->queue = NULL;
4301 		goto abort;
4302 	}
4303 	disk->major = MAJOR(mddev->unit);
4304 	disk->first_minor = unit << shift;
4305 	if (name)
4306 		strcpy(disk->disk_name, name);
4307 	else if (partitioned)
4308 		sprintf(disk->disk_name, "md_d%d", unit);
4309 	else
4310 		sprintf(disk->disk_name, "md%d", unit);
4311 	disk->fops = &md_fops;
4312 	disk->private_data = mddev;
4313 	disk->queue = mddev->queue;
4314 	/* Allow extended partitions.  This makes the
4315 	 * 'mdp' device redundant, but we can't really
4316 	 * remove it now.
4317 	 */
4318 	disk->flags |= GENHD_FL_EXT_DEVT;
4319 	add_disk(disk);
4320 	mddev->gendisk = disk;
4321 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4322 				     &disk_to_dev(disk)->kobj, "%s", "md");
4323 	if (error) {
4324 		/* This isn't possible, but as kobject_init_and_add is marked
4325 		 * __must_check, we must do something with the result
4326 		 */
4327 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4328 		       disk->disk_name);
4329 		error = 0;
4330 	}
4331 	if (mddev->kobj.sd &&
4332 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4333 		printk(KERN_DEBUG "pointless warning\n");
4334  abort:
4335 	mutex_unlock(&disks_mutex);
4336 	if (!error && mddev->kobj.sd) {
4337 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4338 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4339 	}
4340 	mddev_put(mddev);
4341 	return error;
4342 }
4343 
4344 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4345 {
4346 	md_alloc(dev, NULL);
4347 	return NULL;
4348 }
4349 
4350 static int add_named_array(const char *val, struct kernel_param *kp)
4351 {
4352 	/* val must be "md_*" where * is not all digits.
4353 	 * We allocate an array with a large free minor number, and
4354 	 * set the name to val.  val must not already be an active name.
4355 	 */
4356 	int len = strlen(val);
4357 	char buf[DISK_NAME_LEN];
4358 
4359 	while (len && val[len-1] == '\n')
4360 		len--;
4361 	if (len >= DISK_NAME_LEN)
4362 		return -E2BIG;
4363 	strlcpy(buf, val, len+1);
4364 	if (strncmp(buf, "md_", 3) != 0)
4365 		return -EINVAL;
4366 	return md_alloc(0, buf);
4367 }
4368 
4369 static void md_safemode_timeout(unsigned long data)
4370 {
4371 	mddev_t *mddev = (mddev_t *) data;
4372 
4373 	if (!atomic_read(&mddev->writes_pending)) {
4374 		mddev->safemode = 1;
4375 		if (mddev->external)
4376 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4377 	}
4378 	md_wakeup_thread(mddev->thread);
4379 }
4380 
4381 static int start_dirty_degraded;
4382 
4383 int md_run(mddev_t *mddev)
4384 {
4385 	int err;
4386 	mdk_rdev_t *rdev;
4387 	struct mdk_personality *pers;
4388 
4389 	if (list_empty(&mddev->disks))
4390 		/* cannot run an array with no devices.. */
4391 		return -EINVAL;
4392 
4393 	if (mddev->pers)
4394 		return -EBUSY;
4395 	/* Cannot run until previous stop completes properly */
4396 	if (mddev->sysfs_active)
4397 		return -EBUSY;
4398 
4399 	/*
4400 	 * Analyze all RAID superblock(s)
4401 	 */
4402 	if (!mddev->raid_disks) {
4403 		if (!mddev->persistent)
4404 			return -EINVAL;
4405 		analyze_sbs(mddev);
4406 	}
4407 
4408 	if (mddev->level != LEVEL_NONE)
4409 		request_module("md-level-%d", mddev->level);
4410 	else if (mddev->clevel[0])
4411 		request_module("md-%s", mddev->clevel);
4412 
4413 	/*
4414 	 * Drop all container device buffers, from now on
4415 	 * the only valid external interface is through the md
4416 	 * device.
4417 	 */
4418 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4419 		if (test_bit(Faulty, &rdev->flags))
4420 			continue;
4421 		sync_blockdev(rdev->bdev);
4422 		invalidate_bdev(rdev->bdev);
4423 
4424 		/* perform some consistency tests on the device.
4425 		 * We don't want the data to overlap the metadata,
4426 		 * Internal Bitmap issues have been handled elsewhere.
4427 		 */
4428 		if (rdev->data_offset < rdev->sb_start) {
4429 			if (mddev->dev_sectors &&
4430 			    rdev->data_offset + mddev->dev_sectors
4431 			    > rdev->sb_start) {
4432 				printk("md: %s: data overlaps metadata\n",
4433 				       mdname(mddev));
4434 				return -EINVAL;
4435 			}
4436 		} else {
4437 			if (rdev->sb_start + rdev->sb_size/512
4438 			    > rdev->data_offset) {
4439 				printk("md: %s: metadata overlaps data\n",
4440 				       mdname(mddev));
4441 				return -EINVAL;
4442 			}
4443 		}
4444 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4445 	}
4446 
4447 	spin_lock(&pers_lock);
4448 	pers = find_pers(mddev->level, mddev->clevel);
4449 	if (!pers || !try_module_get(pers->owner)) {
4450 		spin_unlock(&pers_lock);
4451 		if (mddev->level != LEVEL_NONE)
4452 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4453 			       mddev->level);
4454 		else
4455 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4456 			       mddev->clevel);
4457 		return -EINVAL;
4458 	}
4459 	mddev->pers = pers;
4460 	spin_unlock(&pers_lock);
4461 	if (mddev->level != pers->level) {
4462 		mddev->level = pers->level;
4463 		mddev->new_level = pers->level;
4464 	}
4465 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4466 
4467 	if (mddev->reshape_position != MaxSector &&
4468 	    pers->start_reshape == NULL) {
4469 		/* This personality cannot handle reshaping... */
4470 		mddev->pers = NULL;
4471 		module_put(pers->owner);
4472 		return -EINVAL;
4473 	}
4474 
4475 	if (pers->sync_request) {
4476 		/* Warn if this is a potentially silly
4477 		 * configuration.
4478 		 */
4479 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4480 		mdk_rdev_t *rdev2;
4481 		int warned = 0;
4482 
4483 		list_for_each_entry(rdev, &mddev->disks, same_set)
4484 			list_for_each_entry(rdev2, &mddev->disks, same_set) {
4485 				if (rdev < rdev2 &&
4486 				    rdev->bdev->bd_contains ==
4487 				    rdev2->bdev->bd_contains) {
4488 					printk(KERN_WARNING
4489 					       "%s: WARNING: %s appears to be"
4490 					       " on the same physical disk as"
4491 					       " %s.\n",
4492 					       mdname(mddev),
4493 					       bdevname(rdev->bdev,b),
4494 					       bdevname(rdev2->bdev,b2));
4495 					warned = 1;
4496 				}
4497 			}
4498 
4499 		if (warned)
4500 			printk(KERN_WARNING
4501 			       "True protection against single-disk"
4502 			       " failure might be compromised.\n");
4503 	}
4504 
4505 	mddev->recovery = 0;
4506 	/* may be over-ridden by personality */
4507 	mddev->resync_max_sectors = mddev->dev_sectors;
4508 
4509 	mddev->barriers_work = 1;
4510 	mddev->ok_start_degraded = start_dirty_degraded;
4511 
4512 	if (start_readonly && mddev->ro == 0)
4513 		mddev->ro = 2; /* read-only, but switch on first write */
4514 
4515 	err = mddev->pers->run(mddev);
4516 	if (err)
4517 		printk(KERN_ERR "md: pers->run() failed ...\n");
4518 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4519 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4520 			  " but 'external_size' not in effect?\n", __func__);
4521 		printk(KERN_ERR
4522 		       "md: invalid array_size %llu > default size %llu\n",
4523 		       (unsigned long long)mddev->array_sectors / 2,
4524 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4525 		err = -EINVAL;
4526 		mddev->pers->stop(mddev);
4527 	}
4528 	if (err == 0 && mddev->pers->sync_request) {
4529 		err = bitmap_create(mddev);
4530 		if (err) {
4531 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4532 			       mdname(mddev), err);
4533 			mddev->pers->stop(mddev);
4534 		}
4535 	}
4536 	if (err) {
4537 		module_put(mddev->pers->owner);
4538 		mddev->pers = NULL;
4539 		bitmap_destroy(mddev);
4540 		return err;
4541 	}
4542 	if (mddev->pers->sync_request) {
4543 		if (mddev->kobj.sd &&
4544 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4545 			printk(KERN_WARNING
4546 			       "md: cannot register extra attributes for %s\n",
4547 			       mdname(mddev));
4548 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4549 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4550 		mddev->ro = 0;
4551 
4552  	atomic_set(&mddev->writes_pending,0);
4553 	atomic_set(&mddev->max_corr_read_errors,
4554 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4555 	mddev->safemode = 0;
4556 	mddev->safemode_timer.function = md_safemode_timeout;
4557 	mddev->safemode_timer.data = (unsigned long) mddev;
4558 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4559 	mddev->in_sync = 1;
4560 
4561 	list_for_each_entry(rdev, &mddev->disks, same_set)
4562 		if (rdev->raid_disk >= 0) {
4563 			char nm[20];
4564 			sprintf(nm, "rd%d", rdev->raid_disk);
4565 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4566 				/* failure here is OK */;
4567 		}
4568 
4569 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4570 
4571 	if (mddev->flags)
4572 		md_update_sb(mddev, 0);
4573 
4574 	md_wakeup_thread(mddev->thread);
4575 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4576 
4577 	md_new_event(mddev);
4578 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4579 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4580 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4581 	return 0;
4582 }
4583 EXPORT_SYMBOL_GPL(md_run);
4584 
4585 static int do_md_run(mddev_t *mddev)
4586 {
4587 	int err;
4588 
4589 	err = md_run(mddev);
4590 	if (err)
4591 		goto out;
4592 	err = bitmap_load(mddev);
4593 	if (err) {
4594 		bitmap_destroy(mddev);
4595 		goto out;
4596 	}
4597 	set_capacity(mddev->gendisk, mddev->array_sectors);
4598 	revalidate_disk(mddev->gendisk);
4599 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4600 out:
4601 	return err;
4602 }
4603 
4604 static int restart_array(mddev_t *mddev)
4605 {
4606 	struct gendisk *disk = mddev->gendisk;
4607 
4608 	/* Complain if it has no devices */
4609 	if (list_empty(&mddev->disks))
4610 		return -ENXIO;
4611 	if (!mddev->pers)
4612 		return -EINVAL;
4613 	if (!mddev->ro)
4614 		return -EBUSY;
4615 	mddev->safemode = 0;
4616 	mddev->ro = 0;
4617 	set_disk_ro(disk, 0);
4618 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4619 		mdname(mddev));
4620 	/* Kick recovery or resync if necessary */
4621 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4622 	md_wakeup_thread(mddev->thread);
4623 	md_wakeup_thread(mddev->sync_thread);
4624 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4625 	return 0;
4626 }
4627 
4628 /* similar to deny_write_access, but accounts for our holding a reference
4629  * to the file ourselves */
4630 static int deny_bitmap_write_access(struct file * file)
4631 {
4632 	struct inode *inode = file->f_mapping->host;
4633 
4634 	spin_lock(&inode->i_lock);
4635 	if (atomic_read(&inode->i_writecount) > 1) {
4636 		spin_unlock(&inode->i_lock);
4637 		return -ETXTBSY;
4638 	}
4639 	atomic_set(&inode->i_writecount, -1);
4640 	spin_unlock(&inode->i_lock);
4641 
4642 	return 0;
4643 }
4644 
4645 void restore_bitmap_write_access(struct file *file)
4646 {
4647 	struct inode *inode = file->f_mapping->host;
4648 
4649 	spin_lock(&inode->i_lock);
4650 	atomic_set(&inode->i_writecount, 1);
4651 	spin_unlock(&inode->i_lock);
4652 }
4653 
4654 static void md_clean(mddev_t *mddev)
4655 {
4656 	mddev->array_sectors = 0;
4657 	mddev->external_size = 0;
4658 	mddev->dev_sectors = 0;
4659 	mddev->raid_disks = 0;
4660 	mddev->recovery_cp = 0;
4661 	mddev->resync_min = 0;
4662 	mddev->resync_max = MaxSector;
4663 	mddev->reshape_position = MaxSector;
4664 	mddev->external = 0;
4665 	mddev->persistent = 0;
4666 	mddev->level = LEVEL_NONE;
4667 	mddev->clevel[0] = 0;
4668 	mddev->flags = 0;
4669 	mddev->ro = 0;
4670 	mddev->metadata_type[0] = 0;
4671 	mddev->chunk_sectors = 0;
4672 	mddev->ctime = mddev->utime = 0;
4673 	mddev->layout = 0;
4674 	mddev->max_disks = 0;
4675 	mddev->events = 0;
4676 	mddev->can_decrease_events = 0;
4677 	mddev->delta_disks = 0;
4678 	mddev->new_level = LEVEL_NONE;
4679 	mddev->new_layout = 0;
4680 	mddev->new_chunk_sectors = 0;
4681 	mddev->curr_resync = 0;
4682 	mddev->resync_mismatches = 0;
4683 	mddev->suspend_lo = mddev->suspend_hi = 0;
4684 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
4685 	mddev->recovery = 0;
4686 	mddev->in_sync = 0;
4687 	mddev->degraded = 0;
4688 	mddev->barriers_work = 0;
4689 	mddev->safemode = 0;
4690 	mddev->bitmap_info.offset = 0;
4691 	mddev->bitmap_info.default_offset = 0;
4692 	mddev->bitmap_info.chunksize = 0;
4693 	mddev->bitmap_info.daemon_sleep = 0;
4694 	mddev->bitmap_info.max_write_behind = 0;
4695 	mddev->plug = NULL;
4696 }
4697 
4698 void md_stop_writes(mddev_t *mddev)
4699 {
4700 	if (mddev->sync_thread) {
4701 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4702 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4703 		md_unregister_thread(mddev->sync_thread);
4704 		mddev->sync_thread = NULL;
4705 	}
4706 
4707 	del_timer_sync(&mddev->safemode_timer);
4708 
4709 	bitmap_flush(mddev);
4710 	md_super_wait(mddev);
4711 
4712 	if (!mddev->in_sync || mddev->flags) {
4713 		/* mark array as shutdown cleanly */
4714 		mddev->in_sync = 1;
4715 		md_update_sb(mddev, 1);
4716 	}
4717 }
4718 EXPORT_SYMBOL_GPL(md_stop_writes);
4719 
4720 void md_stop(mddev_t *mddev)
4721 {
4722 	mddev->pers->stop(mddev);
4723 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
4724 		mddev->to_remove = &md_redundancy_group;
4725 	module_put(mddev->pers->owner);
4726 	mddev->pers = NULL;
4727 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4728 }
4729 EXPORT_SYMBOL_GPL(md_stop);
4730 
4731 static int md_set_readonly(mddev_t *mddev, int is_open)
4732 {
4733 	int err = 0;
4734 	mutex_lock(&mddev->open_mutex);
4735 	if (atomic_read(&mddev->openers) > is_open) {
4736 		printk("md: %s still in use.\n",mdname(mddev));
4737 		err = -EBUSY;
4738 		goto out;
4739 	}
4740 	if (mddev->pers) {
4741 		md_stop_writes(mddev);
4742 
4743 		err  = -ENXIO;
4744 		if (mddev->ro==1)
4745 			goto out;
4746 		mddev->ro = 1;
4747 		set_disk_ro(mddev->gendisk, 1);
4748 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4749 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4750 		err = 0;
4751 	}
4752 out:
4753 	mutex_unlock(&mddev->open_mutex);
4754 	return err;
4755 }
4756 
4757 /* mode:
4758  *   0 - completely stop and dis-assemble array
4759  *   2 - stop but do not disassemble array
4760  */
4761 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4762 {
4763 	struct gendisk *disk = mddev->gendisk;
4764 	mdk_rdev_t *rdev;
4765 
4766 	mutex_lock(&mddev->open_mutex);
4767 	if (atomic_read(&mddev->openers) > is_open ||
4768 	    mddev->sysfs_active) {
4769 		printk("md: %s still in use.\n",mdname(mddev));
4770 		mutex_unlock(&mddev->open_mutex);
4771 		return -EBUSY;
4772 	}
4773 
4774 	if (mddev->pers) {
4775 		if (mddev->ro)
4776 			set_disk_ro(disk, 0);
4777 
4778 		md_stop_writes(mddev);
4779 		md_stop(mddev);
4780 		mddev->queue->merge_bvec_fn = NULL;
4781 		mddev->queue->unplug_fn = NULL;
4782 		mddev->queue->backing_dev_info.congested_fn = NULL;
4783 
4784 		/* tell userspace to handle 'inactive' */
4785 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4786 
4787 		list_for_each_entry(rdev, &mddev->disks, same_set)
4788 			if (rdev->raid_disk >= 0) {
4789 				char nm[20];
4790 				sprintf(nm, "rd%d", rdev->raid_disk);
4791 				sysfs_remove_link(&mddev->kobj, nm);
4792 			}
4793 
4794 		set_capacity(disk, 0);
4795 		mutex_unlock(&mddev->open_mutex);
4796 		revalidate_disk(disk);
4797 
4798 		if (mddev->ro)
4799 			mddev->ro = 0;
4800 	} else
4801 		mutex_unlock(&mddev->open_mutex);
4802 	/*
4803 	 * Free resources if final stop
4804 	 */
4805 	if (mode == 0) {
4806 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4807 
4808 		bitmap_destroy(mddev);
4809 		if (mddev->bitmap_info.file) {
4810 			restore_bitmap_write_access(mddev->bitmap_info.file);
4811 			fput(mddev->bitmap_info.file);
4812 			mddev->bitmap_info.file = NULL;
4813 		}
4814 		mddev->bitmap_info.offset = 0;
4815 
4816 		export_array(mddev);
4817 
4818 		md_clean(mddev);
4819 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4820 		if (mddev->hold_active == UNTIL_STOP)
4821 			mddev->hold_active = 0;
4822 	}
4823 	blk_integrity_unregister(disk);
4824 	md_new_event(mddev);
4825 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4826 	return 0;
4827 }
4828 
4829 #ifndef MODULE
4830 static void autorun_array(mddev_t *mddev)
4831 {
4832 	mdk_rdev_t *rdev;
4833 	int err;
4834 
4835 	if (list_empty(&mddev->disks))
4836 		return;
4837 
4838 	printk(KERN_INFO "md: running: ");
4839 
4840 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4841 		char b[BDEVNAME_SIZE];
4842 		printk("<%s>", bdevname(rdev->bdev,b));
4843 	}
4844 	printk("\n");
4845 
4846 	err = do_md_run(mddev);
4847 	if (err) {
4848 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4849 		do_md_stop(mddev, 0, 0);
4850 	}
4851 }
4852 
4853 /*
4854  * lets try to run arrays based on all disks that have arrived
4855  * until now. (those are in pending_raid_disks)
4856  *
4857  * the method: pick the first pending disk, collect all disks with
4858  * the same UUID, remove all from the pending list and put them into
4859  * the 'same_array' list. Then order this list based on superblock
4860  * update time (freshest comes first), kick out 'old' disks and
4861  * compare superblocks. If everything's fine then run it.
4862  *
4863  * If "unit" is allocated, then bump its reference count
4864  */
4865 static void autorun_devices(int part)
4866 {
4867 	mdk_rdev_t *rdev0, *rdev, *tmp;
4868 	mddev_t *mddev;
4869 	char b[BDEVNAME_SIZE];
4870 
4871 	printk(KERN_INFO "md: autorun ...\n");
4872 	while (!list_empty(&pending_raid_disks)) {
4873 		int unit;
4874 		dev_t dev;
4875 		LIST_HEAD(candidates);
4876 		rdev0 = list_entry(pending_raid_disks.next,
4877 					 mdk_rdev_t, same_set);
4878 
4879 		printk(KERN_INFO "md: considering %s ...\n",
4880 			bdevname(rdev0->bdev,b));
4881 		INIT_LIST_HEAD(&candidates);
4882 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4883 			if (super_90_load(rdev, rdev0, 0) >= 0) {
4884 				printk(KERN_INFO "md:  adding %s ...\n",
4885 					bdevname(rdev->bdev,b));
4886 				list_move(&rdev->same_set, &candidates);
4887 			}
4888 		/*
4889 		 * now we have a set of devices, with all of them having
4890 		 * mostly sane superblocks. It's time to allocate the
4891 		 * mddev.
4892 		 */
4893 		if (part) {
4894 			dev = MKDEV(mdp_major,
4895 				    rdev0->preferred_minor << MdpMinorShift);
4896 			unit = MINOR(dev) >> MdpMinorShift;
4897 		} else {
4898 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4899 			unit = MINOR(dev);
4900 		}
4901 		if (rdev0->preferred_minor != unit) {
4902 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4903 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4904 			break;
4905 		}
4906 
4907 		md_probe(dev, NULL, NULL);
4908 		mddev = mddev_find(dev);
4909 		if (!mddev || !mddev->gendisk) {
4910 			if (mddev)
4911 				mddev_put(mddev);
4912 			printk(KERN_ERR
4913 				"md: cannot allocate memory for md drive.\n");
4914 			break;
4915 		}
4916 		if (mddev_lock(mddev))
4917 			printk(KERN_WARNING "md: %s locked, cannot run\n",
4918 			       mdname(mddev));
4919 		else if (mddev->raid_disks || mddev->major_version
4920 			 || !list_empty(&mddev->disks)) {
4921 			printk(KERN_WARNING
4922 				"md: %s already running, cannot run %s\n",
4923 				mdname(mddev), bdevname(rdev0->bdev,b));
4924 			mddev_unlock(mddev);
4925 		} else {
4926 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
4927 			mddev->persistent = 1;
4928 			rdev_for_each_list(rdev, tmp, &candidates) {
4929 				list_del_init(&rdev->same_set);
4930 				if (bind_rdev_to_array(rdev, mddev))
4931 					export_rdev(rdev);
4932 			}
4933 			autorun_array(mddev);
4934 			mddev_unlock(mddev);
4935 		}
4936 		/* on success, candidates will be empty, on error
4937 		 * it won't...
4938 		 */
4939 		rdev_for_each_list(rdev, tmp, &candidates) {
4940 			list_del_init(&rdev->same_set);
4941 			export_rdev(rdev);
4942 		}
4943 		mddev_put(mddev);
4944 	}
4945 	printk(KERN_INFO "md: ... autorun DONE.\n");
4946 }
4947 #endif /* !MODULE */
4948 
4949 static int get_version(void __user * arg)
4950 {
4951 	mdu_version_t ver;
4952 
4953 	ver.major = MD_MAJOR_VERSION;
4954 	ver.minor = MD_MINOR_VERSION;
4955 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
4956 
4957 	if (copy_to_user(arg, &ver, sizeof(ver)))
4958 		return -EFAULT;
4959 
4960 	return 0;
4961 }
4962 
4963 static int get_array_info(mddev_t * mddev, void __user * arg)
4964 {
4965 	mdu_array_info_t info;
4966 	int nr,working,insync,failed,spare;
4967 	mdk_rdev_t *rdev;
4968 
4969 	nr=working=insync=failed=spare=0;
4970 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4971 		nr++;
4972 		if (test_bit(Faulty, &rdev->flags))
4973 			failed++;
4974 		else {
4975 			working++;
4976 			if (test_bit(In_sync, &rdev->flags))
4977 				insync++;
4978 			else
4979 				spare++;
4980 		}
4981 	}
4982 
4983 	info.major_version = mddev->major_version;
4984 	info.minor_version = mddev->minor_version;
4985 	info.patch_version = MD_PATCHLEVEL_VERSION;
4986 	info.ctime         = mddev->ctime;
4987 	info.level         = mddev->level;
4988 	info.size          = mddev->dev_sectors / 2;
4989 	if (info.size != mddev->dev_sectors / 2) /* overflow */
4990 		info.size = -1;
4991 	info.nr_disks      = nr;
4992 	info.raid_disks    = mddev->raid_disks;
4993 	info.md_minor      = mddev->md_minor;
4994 	info.not_persistent= !mddev->persistent;
4995 
4996 	info.utime         = mddev->utime;
4997 	info.state         = 0;
4998 	if (mddev->in_sync)
4999 		info.state = (1<<MD_SB_CLEAN);
5000 	if (mddev->bitmap && mddev->bitmap_info.offset)
5001 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5002 	info.active_disks  = insync;
5003 	info.working_disks = working;
5004 	info.failed_disks  = failed;
5005 	info.spare_disks   = spare;
5006 
5007 	info.layout        = mddev->layout;
5008 	info.chunk_size    = mddev->chunk_sectors << 9;
5009 
5010 	if (copy_to_user(arg, &info, sizeof(info)))
5011 		return -EFAULT;
5012 
5013 	return 0;
5014 }
5015 
5016 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5017 {
5018 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5019 	char *ptr, *buf = NULL;
5020 	int err = -ENOMEM;
5021 
5022 	if (md_allow_write(mddev))
5023 		file = kmalloc(sizeof(*file), GFP_NOIO);
5024 	else
5025 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5026 
5027 	if (!file)
5028 		goto out;
5029 
5030 	/* bitmap disabled, zero the first byte and copy out */
5031 	if (!mddev->bitmap || !mddev->bitmap->file) {
5032 		file->pathname[0] = '\0';
5033 		goto copy_out;
5034 	}
5035 
5036 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5037 	if (!buf)
5038 		goto out;
5039 
5040 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5041 	if (IS_ERR(ptr))
5042 		goto out;
5043 
5044 	strcpy(file->pathname, ptr);
5045 
5046 copy_out:
5047 	err = 0;
5048 	if (copy_to_user(arg, file, sizeof(*file)))
5049 		err = -EFAULT;
5050 out:
5051 	kfree(buf);
5052 	kfree(file);
5053 	return err;
5054 }
5055 
5056 static int get_disk_info(mddev_t * mddev, void __user * arg)
5057 {
5058 	mdu_disk_info_t info;
5059 	mdk_rdev_t *rdev;
5060 
5061 	if (copy_from_user(&info, arg, sizeof(info)))
5062 		return -EFAULT;
5063 
5064 	rdev = find_rdev_nr(mddev, info.number);
5065 	if (rdev) {
5066 		info.major = MAJOR(rdev->bdev->bd_dev);
5067 		info.minor = MINOR(rdev->bdev->bd_dev);
5068 		info.raid_disk = rdev->raid_disk;
5069 		info.state = 0;
5070 		if (test_bit(Faulty, &rdev->flags))
5071 			info.state |= (1<<MD_DISK_FAULTY);
5072 		else if (test_bit(In_sync, &rdev->flags)) {
5073 			info.state |= (1<<MD_DISK_ACTIVE);
5074 			info.state |= (1<<MD_DISK_SYNC);
5075 		}
5076 		if (test_bit(WriteMostly, &rdev->flags))
5077 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5078 	} else {
5079 		info.major = info.minor = 0;
5080 		info.raid_disk = -1;
5081 		info.state = (1<<MD_DISK_REMOVED);
5082 	}
5083 
5084 	if (copy_to_user(arg, &info, sizeof(info)))
5085 		return -EFAULT;
5086 
5087 	return 0;
5088 }
5089 
5090 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5091 {
5092 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5093 	mdk_rdev_t *rdev;
5094 	dev_t dev = MKDEV(info->major,info->minor);
5095 
5096 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5097 		return -EOVERFLOW;
5098 
5099 	if (!mddev->raid_disks) {
5100 		int err;
5101 		/* expecting a device which has a superblock */
5102 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5103 		if (IS_ERR(rdev)) {
5104 			printk(KERN_WARNING
5105 				"md: md_import_device returned %ld\n",
5106 				PTR_ERR(rdev));
5107 			return PTR_ERR(rdev);
5108 		}
5109 		if (!list_empty(&mddev->disks)) {
5110 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5111 							mdk_rdev_t, same_set);
5112 			err = super_types[mddev->major_version]
5113 				.load_super(rdev, rdev0, mddev->minor_version);
5114 			if (err < 0) {
5115 				printk(KERN_WARNING
5116 					"md: %s has different UUID to %s\n",
5117 					bdevname(rdev->bdev,b),
5118 					bdevname(rdev0->bdev,b2));
5119 				export_rdev(rdev);
5120 				return -EINVAL;
5121 			}
5122 		}
5123 		err = bind_rdev_to_array(rdev, mddev);
5124 		if (err)
5125 			export_rdev(rdev);
5126 		return err;
5127 	}
5128 
5129 	/*
5130 	 * add_new_disk can be used once the array is assembled
5131 	 * to add "hot spares".  They must already have a superblock
5132 	 * written
5133 	 */
5134 	if (mddev->pers) {
5135 		int err;
5136 		if (!mddev->pers->hot_add_disk) {
5137 			printk(KERN_WARNING
5138 				"%s: personality does not support diskops!\n",
5139 			       mdname(mddev));
5140 			return -EINVAL;
5141 		}
5142 		if (mddev->persistent)
5143 			rdev = md_import_device(dev, mddev->major_version,
5144 						mddev->minor_version);
5145 		else
5146 			rdev = md_import_device(dev, -1, -1);
5147 		if (IS_ERR(rdev)) {
5148 			printk(KERN_WARNING
5149 				"md: md_import_device returned %ld\n",
5150 				PTR_ERR(rdev));
5151 			return PTR_ERR(rdev);
5152 		}
5153 		/* set save_raid_disk if appropriate */
5154 		if (!mddev->persistent) {
5155 			if (info->state & (1<<MD_DISK_SYNC)  &&
5156 			    info->raid_disk < mddev->raid_disks)
5157 				rdev->raid_disk = info->raid_disk;
5158 			else
5159 				rdev->raid_disk = -1;
5160 		} else
5161 			super_types[mddev->major_version].
5162 				validate_super(mddev, rdev);
5163 		rdev->saved_raid_disk = rdev->raid_disk;
5164 
5165 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5166 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5167 			set_bit(WriteMostly, &rdev->flags);
5168 		else
5169 			clear_bit(WriteMostly, &rdev->flags);
5170 
5171 		rdev->raid_disk = -1;
5172 		err = bind_rdev_to_array(rdev, mddev);
5173 		if (!err && !mddev->pers->hot_remove_disk) {
5174 			/* If there is hot_add_disk but no hot_remove_disk
5175 			 * then added disks for geometry changes,
5176 			 * and should be added immediately.
5177 			 */
5178 			super_types[mddev->major_version].
5179 				validate_super(mddev, rdev);
5180 			err = mddev->pers->hot_add_disk(mddev, rdev);
5181 			if (err)
5182 				unbind_rdev_from_array(rdev);
5183 		}
5184 		if (err)
5185 			export_rdev(rdev);
5186 		else
5187 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5188 
5189 		md_update_sb(mddev, 1);
5190 		if (mddev->degraded)
5191 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5192 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5193 		md_wakeup_thread(mddev->thread);
5194 		return err;
5195 	}
5196 
5197 	/* otherwise, add_new_disk is only allowed
5198 	 * for major_version==0 superblocks
5199 	 */
5200 	if (mddev->major_version != 0) {
5201 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5202 		       mdname(mddev));
5203 		return -EINVAL;
5204 	}
5205 
5206 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5207 		int err;
5208 		rdev = md_import_device(dev, -1, 0);
5209 		if (IS_ERR(rdev)) {
5210 			printk(KERN_WARNING
5211 				"md: error, md_import_device() returned %ld\n",
5212 				PTR_ERR(rdev));
5213 			return PTR_ERR(rdev);
5214 		}
5215 		rdev->desc_nr = info->number;
5216 		if (info->raid_disk < mddev->raid_disks)
5217 			rdev->raid_disk = info->raid_disk;
5218 		else
5219 			rdev->raid_disk = -1;
5220 
5221 		if (rdev->raid_disk < mddev->raid_disks)
5222 			if (info->state & (1<<MD_DISK_SYNC))
5223 				set_bit(In_sync, &rdev->flags);
5224 
5225 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5226 			set_bit(WriteMostly, &rdev->flags);
5227 
5228 		if (!mddev->persistent) {
5229 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5230 			rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5231 		} else
5232 			rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5233 		rdev->sectors = rdev->sb_start;
5234 
5235 		err = bind_rdev_to_array(rdev, mddev);
5236 		if (err) {
5237 			export_rdev(rdev);
5238 			return err;
5239 		}
5240 	}
5241 
5242 	return 0;
5243 }
5244 
5245 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5246 {
5247 	char b[BDEVNAME_SIZE];
5248 	mdk_rdev_t *rdev;
5249 
5250 	rdev = find_rdev(mddev, dev);
5251 	if (!rdev)
5252 		return -ENXIO;
5253 
5254 	if (rdev->raid_disk >= 0)
5255 		goto busy;
5256 
5257 	kick_rdev_from_array(rdev);
5258 	md_update_sb(mddev, 1);
5259 	md_new_event(mddev);
5260 
5261 	return 0;
5262 busy:
5263 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5264 		bdevname(rdev->bdev,b), mdname(mddev));
5265 	return -EBUSY;
5266 }
5267 
5268 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5269 {
5270 	char b[BDEVNAME_SIZE];
5271 	int err;
5272 	mdk_rdev_t *rdev;
5273 
5274 	if (!mddev->pers)
5275 		return -ENODEV;
5276 
5277 	if (mddev->major_version != 0) {
5278 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5279 			" version-0 superblocks.\n",
5280 			mdname(mddev));
5281 		return -EINVAL;
5282 	}
5283 	if (!mddev->pers->hot_add_disk) {
5284 		printk(KERN_WARNING
5285 			"%s: personality does not support diskops!\n",
5286 			mdname(mddev));
5287 		return -EINVAL;
5288 	}
5289 
5290 	rdev = md_import_device(dev, -1, 0);
5291 	if (IS_ERR(rdev)) {
5292 		printk(KERN_WARNING
5293 			"md: error, md_import_device() returned %ld\n",
5294 			PTR_ERR(rdev));
5295 		return -EINVAL;
5296 	}
5297 
5298 	if (mddev->persistent)
5299 		rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5300 	else
5301 		rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5302 
5303 	rdev->sectors = rdev->sb_start;
5304 
5305 	if (test_bit(Faulty, &rdev->flags)) {
5306 		printk(KERN_WARNING
5307 			"md: can not hot-add faulty %s disk to %s!\n",
5308 			bdevname(rdev->bdev,b), mdname(mddev));
5309 		err = -EINVAL;
5310 		goto abort_export;
5311 	}
5312 	clear_bit(In_sync, &rdev->flags);
5313 	rdev->desc_nr = -1;
5314 	rdev->saved_raid_disk = -1;
5315 	err = bind_rdev_to_array(rdev, mddev);
5316 	if (err)
5317 		goto abort_export;
5318 
5319 	/*
5320 	 * The rest should better be atomic, we can have disk failures
5321 	 * noticed in interrupt contexts ...
5322 	 */
5323 
5324 	rdev->raid_disk = -1;
5325 
5326 	md_update_sb(mddev, 1);
5327 
5328 	/*
5329 	 * Kick recovery, maybe this spare has to be added to the
5330 	 * array immediately.
5331 	 */
5332 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5333 	md_wakeup_thread(mddev->thread);
5334 	md_new_event(mddev);
5335 	return 0;
5336 
5337 abort_export:
5338 	export_rdev(rdev);
5339 	return err;
5340 }
5341 
5342 static int set_bitmap_file(mddev_t *mddev, int fd)
5343 {
5344 	int err;
5345 
5346 	if (mddev->pers) {
5347 		if (!mddev->pers->quiesce)
5348 			return -EBUSY;
5349 		if (mddev->recovery || mddev->sync_thread)
5350 			return -EBUSY;
5351 		/* we should be able to change the bitmap.. */
5352 	}
5353 
5354 
5355 	if (fd >= 0) {
5356 		if (mddev->bitmap)
5357 			return -EEXIST; /* cannot add when bitmap is present */
5358 		mddev->bitmap_info.file = fget(fd);
5359 
5360 		if (mddev->bitmap_info.file == NULL) {
5361 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5362 			       mdname(mddev));
5363 			return -EBADF;
5364 		}
5365 
5366 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5367 		if (err) {
5368 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5369 			       mdname(mddev));
5370 			fput(mddev->bitmap_info.file);
5371 			mddev->bitmap_info.file = NULL;
5372 			return err;
5373 		}
5374 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5375 	} else if (mddev->bitmap == NULL)
5376 		return -ENOENT; /* cannot remove what isn't there */
5377 	err = 0;
5378 	if (mddev->pers) {
5379 		mddev->pers->quiesce(mddev, 1);
5380 		if (fd >= 0) {
5381 			err = bitmap_create(mddev);
5382 			if (!err)
5383 				err = bitmap_load(mddev);
5384 		}
5385 		if (fd < 0 || err) {
5386 			bitmap_destroy(mddev);
5387 			fd = -1; /* make sure to put the file */
5388 		}
5389 		mddev->pers->quiesce(mddev, 0);
5390 	}
5391 	if (fd < 0) {
5392 		if (mddev->bitmap_info.file) {
5393 			restore_bitmap_write_access(mddev->bitmap_info.file);
5394 			fput(mddev->bitmap_info.file);
5395 		}
5396 		mddev->bitmap_info.file = NULL;
5397 	}
5398 
5399 	return err;
5400 }
5401 
5402 /*
5403  * set_array_info is used two different ways
5404  * The original usage is when creating a new array.
5405  * In this usage, raid_disks is > 0 and it together with
5406  *  level, size, not_persistent,layout,chunksize determine the
5407  *  shape of the array.
5408  *  This will always create an array with a type-0.90.0 superblock.
5409  * The newer usage is when assembling an array.
5410  *  In this case raid_disks will be 0, and the major_version field is
5411  *  use to determine which style super-blocks are to be found on the devices.
5412  *  The minor and patch _version numbers are also kept incase the
5413  *  super_block handler wishes to interpret them.
5414  */
5415 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5416 {
5417 
5418 	if (info->raid_disks == 0) {
5419 		/* just setting version number for superblock loading */
5420 		if (info->major_version < 0 ||
5421 		    info->major_version >= ARRAY_SIZE(super_types) ||
5422 		    super_types[info->major_version].name == NULL) {
5423 			/* maybe try to auto-load a module? */
5424 			printk(KERN_INFO
5425 				"md: superblock version %d not known\n",
5426 				info->major_version);
5427 			return -EINVAL;
5428 		}
5429 		mddev->major_version = info->major_version;
5430 		mddev->minor_version = info->minor_version;
5431 		mddev->patch_version = info->patch_version;
5432 		mddev->persistent = !info->not_persistent;
5433 		/* ensure mddev_put doesn't delete this now that there
5434 		 * is some minimal configuration.
5435 		 */
5436 		mddev->ctime         = get_seconds();
5437 		return 0;
5438 	}
5439 	mddev->major_version = MD_MAJOR_VERSION;
5440 	mddev->minor_version = MD_MINOR_VERSION;
5441 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5442 	mddev->ctime         = get_seconds();
5443 
5444 	mddev->level         = info->level;
5445 	mddev->clevel[0]     = 0;
5446 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5447 	mddev->raid_disks    = info->raid_disks;
5448 	/* don't set md_minor, it is determined by which /dev/md* was
5449 	 * openned
5450 	 */
5451 	if (info->state & (1<<MD_SB_CLEAN))
5452 		mddev->recovery_cp = MaxSector;
5453 	else
5454 		mddev->recovery_cp = 0;
5455 	mddev->persistent    = ! info->not_persistent;
5456 	mddev->external	     = 0;
5457 
5458 	mddev->layout        = info->layout;
5459 	mddev->chunk_sectors = info->chunk_size >> 9;
5460 
5461 	mddev->max_disks     = MD_SB_DISKS;
5462 
5463 	if (mddev->persistent)
5464 		mddev->flags         = 0;
5465 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5466 
5467 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5468 	mddev->bitmap_info.offset = 0;
5469 
5470 	mddev->reshape_position = MaxSector;
5471 
5472 	/*
5473 	 * Generate a 128 bit UUID
5474 	 */
5475 	get_random_bytes(mddev->uuid, 16);
5476 
5477 	mddev->new_level = mddev->level;
5478 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5479 	mddev->new_layout = mddev->layout;
5480 	mddev->delta_disks = 0;
5481 
5482 	return 0;
5483 }
5484 
5485 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5486 {
5487 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5488 
5489 	if (mddev->external_size)
5490 		return;
5491 
5492 	mddev->array_sectors = array_sectors;
5493 }
5494 EXPORT_SYMBOL(md_set_array_sectors);
5495 
5496 static int update_size(mddev_t *mddev, sector_t num_sectors)
5497 {
5498 	mdk_rdev_t *rdev;
5499 	int rv;
5500 	int fit = (num_sectors == 0);
5501 
5502 	if (mddev->pers->resize == NULL)
5503 		return -EINVAL;
5504 	/* The "num_sectors" is the number of sectors of each device that
5505 	 * is used.  This can only make sense for arrays with redundancy.
5506 	 * linear and raid0 always use whatever space is available. We can only
5507 	 * consider changing this number if no resync or reconstruction is
5508 	 * happening, and if the new size is acceptable. It must fit before the
5509 	 * sb_start or, if that is <data_offset, it must fit before the size
5510 	 * of each device.  If num_sectors is zero, we find the largest size
5511 	 * that fits.
5512 
5513 	 */
5514 	if (mddev->sync_thread)
5515 		return -EBUSY;
5516 	if (mddev->bitmap)
5517 		/* Sorry, cannot grow a bitmap yet, just remove it,
5518 		 * grow, and re-add.
5519 		 */
5520 		return -EBUSY;
5521 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5522 		sector_t avail = rdev->sectors;
5523 
5524 		if (fit && (num_sectors == 0 || num_sectors > avail))
5525 			num_sectors = avail;
5526 		if (avail < num_sectors)
5527 			return -ENOSPC;
5528 	}
5529 	rv = mddev->pers->resize(mddev, num_sectors);
5530 	if (!rv)
5531 		revalidate_disk(mddev->gendisk);
5532 	return rv;
5533 }
5534 
5535 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5536 {
5537 	int rv;
5538 	/* change the number of raid disks */
5539 	if (mddev->pers->check_reshape == NULL)
5540 		return -EINVAL;
5541 	if (raid_disks <= 0 ||
5542 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
5543 		return -EINVAL;
5544 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5545 		return -EBUSY;
5546 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5547 
5548 	rv = mddev->pers->check_reshape(mddev);
5549 	return rv;
5550 }
5551 
5552 
5553 /*
5554  * update_array_info is used to change the configuration of an
5555  * on-line array.
5556  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5557  * fields in the info are checked against the array.
5558  * Any differences that cannot be handled will cause an error.
5559  * Normally, only one change can be managed at a time.
5560  */
5561 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5562 {
5563 	int rv = 0;
5564 	int cnt = 0;
5565 	int state = 0;
5566 
5567 	/* calculate expected state,ignoring low bits */
5568 	if (mddev->bitmap && mddev->bitmap_info.offset)
5569 		state |= (1 << MD_SB_BITMAP_PRESENT);
5570 
5571 	if (mddev->major_version != info->major_version ||
5572 	    mddev->minor_version != info->minor_version ||
5573 /*	    mddev->patch_version != info->patch_version || */
5574 	    mddev->ctime         != info->ctime         ||
5575 	    mddev->level         != info->level         ||
5576 /*	    mddev->layout        != info->layout        || */
5577 	    !mddev->persistent	 != info->not_persistent||
5578 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
5579 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5580 	    ((state^info->state) & 0xfffffe00)
5581 		)
5582 		return -EINVAL;
5583 	/* Check there is only one change */
5584 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5585 		cnt++;
5586 	if (mddev->raid_disks != info->raid_disks)
5587 		cnt++;
5588 	if (mddev->layout != info->layout)
5589 		cnt++;
5590 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5591 		cnt++;
5592 	if (cnt == 0)
5593 		return 0;
5594 	if (cnt > 1)
5595 		return -EINVAL;
5596 
5597 	if (mddev->layout != info->layout) {
5598 		/* Change layout
5599 		 * we don't need to do anything at the md level, the
5600 		 * personality will take care of it all.
5601 		 */
5602 		if (mddev->pers->check_reshape == NULL)
5603 			return -EINVAL;
5604 		else {
5605 			mddev->new_layout = info->layout;
5606 			rv = mddev->pers->check_reshape(mddev);
5607 			if (rv)
5608 				mddev->new_layout = mddev->layout;
5609 			return rv;
5610 		}
5611 	}
5612 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5613 		rv = update_size(mddev, (sector_t)info->size * 2);
5614 
5615 	if (mddev->raid_disks    != info->raid_disks)
5616 		rv = update_raid_disks(mddev, info->raid_disks);
5617 
5618 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5619 		if (mddev->pers->quiesce == NULL)
5620 			return -EINVAL;
5621 		if (mddev->recovery || mddev->sync_thread)
5622 			return -EBUSY;
5623 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5624 			/* add the bitmap */
5625 			if (mddev->bitmap)
5626 				return -EEXIST;
5627 			if (mddev->bitmap_info.default_offset == 0)
5628 				return -EINVAL;
5629 			mddev->bitmap_info.offset =
5630 				mddev->bitmap_info.default_offset;
5631 			mddev->pers->quiesce(mddev, 1);
5632 			rv = bitmap_create(mddev);
5633 			if (!rv)
5634 				rv = bitmap_load(mddev);
5635 			if (rv)
5636 				bitmap_destroy(mddev);
5637 			mddev->pers->quiesce(mddev, 0);
5638 		} else {
5639 			/* remove the bitmap */
5640 			if (!mddev->bitmap)
5641 				return -ENOENT;
5642 			if (mddev->bitmap->file)
5643 				return -EINVAL;
5644 			mddev->pers->quiesce(mddev, 1);
5645 			bitmap_destroy(mddev);
5646 			mddev->pers->quiesce(mddev, 0);
5647 			mddev->bitmap_info.offset = 0;
5648 		}
5649 	}
5650 	md_update_sb(mddev, 1);
5651 	return rv;
5652 }
5653 
5654 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5655 {
5656 	mdk_rdev_t *rdev;
5657 
5658 	if (mddev->pers == NULL)
5659 		return -ENODEV;
5660 
5661 	rdev = find_rdev(mddev, dev);
5662 	if (!rdev)
5663 		return -ENODEV;
5664 
5665 	md_error(mddev, rdev);
5666 	return 0;
5667 }
5668 
5669 /*
5670  * We have a problem here : there is no easy way to give a CHS
5671  * virtual geometry. We currently pretend that we have a 2 heads
5672  * 4 sectors (with a BIG number of cylinders...). This drives
5673  * dosfs just mad... ;-)
5674  */
5675 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5676 {
5677 	mddev_t *mddev = bdev->bd_disk->private_data;
5678 
5679 	geo->heads = 2;
5680 	geo->sectors = 4;
5681 	geo->cylinders = mddev->array_sectors / 8;
5682 	return 0;
5683 }
5684 
5685 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5686 			unsigned int cmd, unsigned long arg)
5687 {
5688 	int err = 0;
5689 	void __user *argp = (void __user *)arg;
5690 	mddev_t *mddev = NULL;
5691 	int ro;
5692 
5693 	if (!capable(CAP_SYS_ADMIN))
5694 		return -EACCES;
5695 
5696 	/*
5697 	 * Commands dealing with the RAID driver but not any
5698 	 * particular array:
5699 	 */
5700 	switch (cmd)
5701 	{
5702 		case RAID_VERSION:
5703 			err = get_version(argp);
5704 			goto done;
5705 
5706 		case PRINT_RAID_DEBUG:
5707 			err = 0;
5708 			md_print_devices();
5709 			goto done;
5710 
5711 #ifndef MODULE
5712 		case RAID_AUTORUN:
5713 			err = 0;
5714 			autostart_arrays(arg);
5715 			goto done;
5716 #endif
5717 		default:;
5718 	}
5719 
5720 	/*
5721 	 * Commands creating/starting a new array:
5722 	 */
5723 
5724 	mddev = bdev->bd_disk->private_data;
5725 
5726 	if (!mddev) {
5727 		BUG();
5728 		goto abort;
5729 	}
5730 
5731 	err = mddev_lock(mddev);
5732 	if (err) {
5733 		printk(KERN_INFO
5734 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
5735 			err, cmd);
5736 		goto abort;
5737 	}
5738 
5739 	switch (cmd)
5740 	{
5741 		case SET_ARRAY_INFO:
5742 			{
5743 				mdu_array_info_t info;
5744 				if (!arg)
5745 					memset(&info, 0, sizeof(info));
5746 				else if (copy_from_user(&info, argp, sizeof(info))) {
5747 					err = -EFAULT;
5748 					goto abort_unlock;
5749 				}
5750 				if (mddev->pers) {
5751 					err = update_array_info(mddev, &info);
5752 					if (err) {
5753 						printk(KERN_WARNING "md: couldn't update"
5754 						       " array info. %d\n", err);
5755 						goto abort_unlock;
5756 					}
5757 					goto done_unlock;
5758 				}
5759 				if (!list_empty(&mddev->disks)) {
5760 					printk(KERN_WARNING
5761 					       "md: array %s already has disks!\n",
5762 					       mdname(mddev));
5763 					err = -EBUSY;
5764 					goto abort_unlock;
5765 				}
5766 				if (mddev->raid_disks) {
5767 					printk(KERN_WARNING
5768 					       "md: array %s already initialised!\n",
5769 					       mdname(mddev));
5770 					err = -EBUSY;
5771 					goto abort_unlock;
5772 				}
5773 				err = set_array_info(mddev, &info);
5774 				if (err) {
5775 					printk(KERN_WARNING "md: couldn't set"
5776 					       " array info. %d\n", err);
5777 					goto abort_unlock;
5778 				}
5779 			}
5780 			goto done_unlock;
5781 
5782 		default:;
5783 	}
5784 
5785 	/*
5786 	 * Commands querying/configuring an existing array:
5787 	 */
5788 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5789 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5790 	if ((!mddev->raid_disks && !mddev->external)
5791 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5792 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5793 	    && cmd != GET_BITMAP_FILE) {
5794 		err = -ENODEV;
5795 		goto abort_unlock;
5796 	}
5797 
5798 	/*
5799 	 * Commands even a read-only array can execute:
5800 	 */
5801 	switch (cmd)
5802 	{
5803 		case GET_ARRAY_INFO:
5804 			err = get_array_info(mddev, argp);
5805 			goto done_unlock;
5806 
5807 		case GET_BITMAP_FILE:
5808 			err = get_bitmap_file(mddev, argp);
5809 			goto done_unlock;
5810 
5811 		case GET_DISK_INFO:
5812 			err = get_disk_info(mddev, argp);
5813 			goto done_unlock;
5814 
5815 		case RESTART_ARRAY_RW:
5816 			err = restart_array(mddev);
5817 			goto done_unlock;
5818 
5819 		case STOP_ARRAY:
5820 			err = do_md_stop(mddev, 0, 1);
5821 			goto done_unlock;
5822 
5823 		case STOP_ARRAY_RO:
5824 			err = md_set_readonly(mddev, 1);
5825 			goto done_unlock;
5826 
5827 		case BLKROSET:
5828 			if (get_user(ro, (int __user *)(arg))) {
5829 				err = -EFAULT;
5830 				goto done_unlock;
5831 			}
5832 			err = -EINVAL;
5833 
5834 			/* if the bdev is going readonly the value of mddev->ro
5835 			 * does not matter, no writes are coming
5836 			 */
5837 			if (ro)
5838 				goto done_unlock;
5839 
5840 			/* are we are already prepared for writes? */
5841 			if (mddev->ro != 1)
5842 				goto done_unlock;
5843 
5844 			/* transitioning to readauto need only happen for
5845 			 * arrays that call md_write_start
5846 			 */
5847 			if (mddev->pers) {
5848 				err = restart_array(mddev);
5849 				if (err == 0) {
5850 					mddev->ro = 2;
5851 					set_disk_ro(mddev->gendisk, 0);
5852 				}
5853 			}
5854 			goto done_unlock;
5855 	}
5856 
5857 	/*
5858 	 * The remaining ioctls are changing the state of the
5859 	 * superblock, so we do not allow them on read-only arrays.
5860 	 * However non-MD ioctls (e.g. get-size) will still come through
5861 	 * here and hit the 'default' below, so only disallow
5862 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5863 	 */
5864 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5865 		if (mddev->ro == 2) {
5866 			mddev->ro = 0;
5867 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5868 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5869 			md_wakeup_thread(mddev->thread);
5870 		} else {
5871 			err = -EROFS;
5872 			goto abort_unlock;
5873 		}
5874 	}
5875 
5876 	switch (cmd)
5877 	{
5878 		case ADD_NEW_DISK:
5879 		{
5880 			mdu_disk_info_t info;
5881 			if (copy_from_user(&info, argp, sizeof(info)))
5882 				err = -EFAULT;
5883 			else
5884 				err = add_new_disk(mddev, &info);
5885 			goto done_unlock;
5886 		}
5887 
5888 		case HOT_REMOVE_DISK:
5889 			err = hot_remove_disk(mddev, new_decode_dev(arg));
5890 			goto done_unlock;
5891 
5892 		case HOT_ADD_DISK:
5893 			err = hot_add_disk(mddev, new_decode_dev(arg));
5894 			goto done_unlock;
5895 
5896 		case SET_DISK_FAULTY:
5897 			err = set_disk_faulty(mddev, new_decode_dev(arg));
5898 			goto done_unlock;
5899 
5900 		case RUN_ARRAY:
5901 			err = do_md_run(mddev);
5902 			goto done_unlock;
5903 
5904 		case SET_BITMAP_FILE:
5905 			err = set_bitmap_file(mddev, (int)arg);
5906 			goto done_unlock;
5907 
5908 		default:
5909 			err = -EINVAL;
5910 			goto abort_unlock;
5911 	}
5912 
5913 done_unlock:
5914 abort_unlock:
5915 	if (mddev->hold_active == UNTIL_IOCTL &&
5916 	    err != -EINVAL)
5917 		mddev->hold_active = 0;
5918 	mddev_unlock(mddev);
5919 
5920 	return err;
5921 done:
5922 	if (err)
5923 		MD_BUG();
5924 abort:
5925 	return err;
5926 }
5927 #ifdef CONFIG_COMPAT
5928 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5929 		    unsigned int cmd, unsigned long arg)
5930 {
5931 	switch (cmd) {
5932 	case HOT_REMOVE_DISK:
5933 	case HOT_ADD_DISK:
5934 	case SET_DISK_FAULTY:
5935 	case SET_BITMAP_FILE:
5936 		/* These take in integer arg, do not convert */
5937 		break;
5938 	default:
5939 		arg = (unsigned long)compat_ptr(arg);
5940 		break;
5941 	}
5942 
5943 	return md_ioctl(bdev, mode, cmd, arg);
5944 }
5945 #endif /* CONFIG_COMPAT */
5946 
5947 static int md_open(struct block_device *bdev, fmode_t mode)
5948 {
5949 	/*
5950 	 * Succeed if we can lock the mddev, which confirms that
5951 	 * it isn't being stopped right now.
5952 	 */
5953 	mddev_t *mddev = mddev_find(bdev->bd_dev);
5954 	int err;
5955 
5956 	lock_kernel();
5957 	if (mddev->gendisk != bdev->bd_disk) {
5958 		/* we are racing with mddev_put which is discarding this
5959 		 * bd_disk.
5960 		 */
5961 		mddev_put(mddev);
5962 		/* Wait until bdev->bd_disk is definitely gone */
5963 		flush_scheduled_work();
5964 		/* Then retry the open from the top */
5965 		unlock_kernel();
5966 		return -ERESTARTSYS;
5967 	}
5968 	BUG_ON(mddev != bdev->bd_disk->private_data);
5969 
5970 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5971 		goto out;
5972 
5973 	err = 0;
5974 	atomic_inc(&mddev->openers);
5975 	mutex_unlock(&mddev->open_mutex);
5976 
5977 	check_disk_size_change(mddev->gendisk, bdev);
5978  out:
5979 	unlock_kernel();
5980 	return err;
5981 }
5982 
5983 static int md_release(struct gendisk *disk, fmode_t mode)
5984 {
5985  	mddev_t *mddev = disk->private_data;
5986 
5987 	BUG_ON(!mddev);
5988 	lock_kernel();
5989 	atomic_dec(&mddev->openers);
5990 	mddev_put(mddev);
5991 	unlock_kernel();
5992 
5993 	return 0;
5994 }
5995 static const struct block_device_operations md_fops =
5996 {
5997 	.owner		= THIS_MODULE,
5998 	.open		= md_open,
5999 	.release	= md_release,
6000 	.ioctl		= md_ioctl,
6001 #ifdef CONFIG_COMPAT
6002 	.compat_ioctl	= md_compat_ioctl,
6003 #endif
6004 	.getgeo		= md_getgeo,
6005 };
6006 
6007 static int md_thread(void * arg)
6008 {
6009 	mdk_thread_t *thread = arg;
6010 
6011 	/*
6012 	 * md_thread is a 'system-thread', it's priority should be very
6013 	 * high. We avoid resource deadlocks individually in each
6014 	 * raid personality. (RAID5 does preallocation) We also use RR and
6015 	 * the very same RT priority as kswapd, thus we will never get
6016 	 * into a priority inversion deadlock.
6017 	 *
6018 	 * we definitely have to have equal or higher priority than
6019 	 * bdflush, otherwise bdflush will deadlock if there are too
6020 	 * many dirty RAID5 blocks.
6021 	 */
6022 
6023 	allow_signal(SIGKILL);
6024 	while (!kthread_should_stop()) {
6025 
6026 		/* We need to wait INTERRUPTIBLE so that
6027 		 * we don't add to the load-average.
6028 		 * That means we need to be sure no signals are
6029 		 * pending
6030 		 */
6031 		if (signal_pending(current))
6032 			flush_signals(current);
6033 
6034 		wait_event_interruptible_timeout
6035 			(thread->wqueue,
6036 			 test_bit(THREAD_WAKEUP, &thread->flags)
6037 			 || kthread_should_stop(),
6038 			 thread->timeout);
6039 
6040 		clear_bit(THREAD_WAKEUP, &thread->flags);
6041 
6042 		thread->run(thread->mddev);
6043 	}
6044 
6045 	return 0;
6046 }
6047 
6048 void md_wakeup_thread(mdk_thread_t *thread)
6049 {
6050 	if (thread) {
6051 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6052 		set_bit(THREAD_WAKEUP, &thread->flags);
6053 		wake_up(&thread->wqueue);
6054 	}
6055 }
6056 
6057 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6058 				 const char *name)
6059 {
6060 	mdk_thread_t *thread;
6061 
6062 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6063 	if (!thread)
6064 		return NULL;
6065 
6066 	init_waitqueue_head(&thread->wqueue);
6067 
6068 	thread->run = run;
6069 	thread->mddev = mddev;
6070 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6071 	thread->tsk = kthread_run(md_thread, thread,
6072 				  "%s_%s",
6073 				  mdname(thread->mddev),
6074 				  name ?: mddev->pers->name);
6075 	if (IS_ERR(thread->tsk)) {
6076 		kfree(thread);
6077 		return NULL;
6078 	}
6079 	return thread;
6080 }
6081 
6082 void md_unregister_thread(mdk_thread_t *thread)
6083 {
6084 	if (!thread)
6085 		return;
6086 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6087 
6088 	kthread_stop(thread->tsk);
6089 	kfree(thread);
6090 }
6091 
6092 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6093 {
6094 	if (!mddev) {
6095 		MD_BUG();
6096 		return;
6097 	}
6098 
6099 	if (!rdev || test_bit(Faulty, &rdev->flags))
6100 		return;
6101 
6102 	if (mddev->external)
6103 		set_bit(Blocked, &rdev->flags);
6104 /*
6105 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6106 		mdname(mddev),
6107 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6108 		__builtin_return_address(0),__builtin_return_address(1),
6109 		__builtin_return_address(2),__builtin_return_address(3));
6110 */
6111 	if (!mddev->pers)
6112 		return;
6113 	if (!mddev->pers->error_handler)
6114 		return;
6115 	mddev->pers->error_handler(mddev,rdev);
6116 	if (mddev->degraded)
6117 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6118 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6119 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6120 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6121 	md_wakeup_thread(mddev->thread);
6122 	if (mddev->event_work.func)
6123 		schedule_work(&mddev->event_work);
6124 	md_new_event_inintr(mddev);
6125 }
6126 
6127 /* seq_file implementation /proc/mdstat */
6128 
6129 static void status_unused(struct seq_file *seq)
6130 {
6131 	int i = 0;
6132 	mdk_rdev_t *rdev;
6133 
6134 	seq_printf(seq, "unused devices: ");
6135 
6136 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6137 		char b[BDEVNAME_SIZE];
6138 		i++;
6139 		seq_printf(seq, "%s ",
6140 			      bdevname(rdev->bdev,b));
6141 	}
6142 	if (!i)
6143 		seq_printf(seq, "<none>");
6144 
6145 	seq_printf(seq, "\n");
6146 }
6147 
6148 
6149 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6150 {
6151 	sector_t max_sectors, resync, res;
6152 	unsigned long dt, db;
6153 	sector_t rt;
6154 	int scale;
6155 	unsigned int per_milli;
6156 
6157 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6158 
6159 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6160 		max_sectors = mddev->resync_max_sectors;
6161 	else
6162 		max_sectors = mddev->dev_sectors;
6163 
6164 	/*
6165 	 * Should not happen.
6166 	 */
6167 	if (!max_sectors) {
6168 		MD_BUG();
6169 		return;
6170 	}
6171 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6172 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6173 	 * u32, as those are the requirements for sector_div.
6174 	 * Thus 'scale' must be at least 10
6175 	 */
6176 	scale = 10;
6177 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6178 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6179 			scale++;
6180 	}
6181 	res = (resync>>scale)*1000;
6182 	sector_div(res, (u32)((max_sectors>>scale)+1));
6183 
6184 	per_milli = res;
6185 	{
6186 		int i, x = per_milli/50, y = 20-x;
6187 		seq_printf(seq, "[");
6188 		for (i = 0; i < x; i++)
6189 			seq_printf(seq, "=");
6190 		seq_printf(seq, ">");
6191 		for (i = 0; i < y; i++)
6192 			seq_printf(seq, ".");
6193 		seq_printf(seq, "] ");
6194 	}
6195 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6196 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6197 		    "reshape" :
6198 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6199 		     "check" :
6200 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6201 		      "resync" : "recovery"))),
6202 		   per_milli/10, per_milli % 10,
6203 		   (unsigned long long) resync/2,
6204 		   (unsigned long long) max_sectors/2);
6205 
6206 	/*
6207 	 * dt: time from mark until now
6208 	 * db: blocks written from mark until now
6209 	 * rt: remaining time
6210 	 *
6211 	 * rt is a sector_t, so could be 32bit or 64bit.
6212 	 * So we divide before multiply in case it is 32bit and close
6213 	 * to the limit.
6214 	 * We scale the divisor (db) by 32 to avoid loosing precision
6215 	 * near the end of resync when the number of remaining sectors
6216 	 * is close to 'db'.
6217 	 * We then divide rt by 32 after multiplying by db to compensate.
6218 	 * The '+1' avoids division by zero if db is very small.
6219 	 */
6220 	dt = ((jiffies - mddev->resync_mark) / HZ);
6221 	if (!dt) dt++;
6222 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6223 		- mddev->resync_mark_cnt;
6224 
6225 	rt = max_sectors - resync;    /* number of remaining sectors */
6226 	sector_div(rt, db/32+1);
6227 	rt *= dt;
6228 	rt >>= 5;
6229 
6230 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6231 		   ((unsigned long)rt % 60)/6);
6232 
6233 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6234 }
6235 
6236 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6237 {
6238 	struct list_head *tmp;
6239 	loff_t l = *pos;
6240 	mddev_t *mddev;
6241 
6242 	if (l >= 0x10000)
6243 		return NULL;
6244 	if (!l--)
6245 		/* header */
6246 		return (void*)1;
6247 
6248 	spin_lock(&all_mddevs_lock);
6249 	list_for_each(tmp,&all_mddevs)
6250 		if (!l--) {
6251 			mddev = list_entry(tmp, mddev_t, all_mddevs);
6252 			mddev_get(mddev);
6253 			spin_unlock(&all_mddevs_lock);
6254 			return mddev;
6255 		}
6256 	spin_unlock(&all_mddevs_lock);
6257 	if (!l--)
6258 		return (void*)2;/* tail */
6259 	return NULL;
6260 }
6261 
6262 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6263 {
6264 	struct list_head *tmp;
6265 	mddev_t *next_mddev, *mddev = v;
6266 
6267 	++*pos;
6268 	if (v == (void*)2)
6269 		return NULL;
6270 
6271 	spin_lock(&all_mddevs_lock);
6272 	if (v == (void*)1)
6273 		tmp = all_mddevs.next;
6274 	else
6275 		tmp = mddev->all_mddevs.next;
6276 	if (tmp != &all_mddevs)
6277 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6278 	else {
6279 		next_mddev = (void*)2;
6280 		*pos = 0x10000;
6281 	}
6282 	spin_unlock(&all_mddevs_lock);
6283 
6284 	if (v != (void*)1)
6285 		mddev_put(mddev);
6286 	return next_mddev;
6287 
6288 }
6289 
6290 static void md_seq_stop(struct seq_file *seq, void *v)
6291 {
6292 	mddev_t *mddev = v;
6293 
6294 	if (mddev && v != (void*)1 && v != (void*)2)
6295 		mddev_put(mddev);
6296 }
6297 
6298 struct mdstat_info {
6299 	int event;
6300 };
6301 
6302 static int md_seq_show(struct seq_file *seq, void *v)
6303 {
6304 	mddev_t *mddev = v;
6305 	sector_t sectors;
6306 	mdk_rdev_t *rdev;
6307 	struct mdstat_info *mi = seq->private;
6308 	struct bitmap *bitmap;
6309 
6310 	if (v == (void*)1) {
6311 		struct mdk_personality *pers;
6312 		seq_printf(seq, "Personalities : ");
6313 		spin_lock(&pers_lock);
6314 		list_for_each_entry(pers, &pers_list, list)
6315 			seq_printf(seq, "[%s] ", pers->name);
6316 
6317 		spin_unlock(&pers_lock);
6318 		seq_printf(seq, "\n");
6319 		mi->event = atomic_read(&md_event_count);
6320 		return 0;
6321 	}
6322 	if (v == (void*)2) {
6323 		status_unused(seq);
6324 		return 0;
6325 	}
6326 
6327 	if (mddev_lock(mddev) < 0)
6328 		return -EINTR;
6329 
6330 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6331 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6332 						mddev->pers ? "" : "in");
6333 		if (mddev->pers) {
6334 			if (mddev->ro==1)
6335 				seq_printf(seq, " (read-only)");
6336 			if (mddev->ro==2)
6337 				seq_printf(seq, " (auto-read-only)");
6338 			seq_printf(seq, " %s", mddev->pers->name);
6339 		}
6340 
6341 		sectors = 0;
6342 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6343 			char b[BDEVNAME_SIZE];
6344 			seq_printf(seq, " %s[%d]",
6345 				bdevname(rdev->bdev,b), rdev->desc_nr);
6346 			if (test_bit(WriteMostly, &rdev->flags))
6347 				seq_printf(seq, "(W)");
6348 			if (test_bit(Faulty, &rdev->flags)) {
6349 				seq_printf(seq, "(F)");
6350 				continue;
6351 			} else if (rdev->raid_disk < 0)
6352 				seq_printf(seq, "(S)"); /* spare */
6353 			sectors += rdev->sectors;
6354 		}
6355 
6356 		if (!list_empty(&mddev->disks)) {
6357 			if (mddev->pers)
6358 				seq_printf(seq, "\n      %llu blocks",
6359 					   (unsigned long long)
6360 					   mddev->array_sectors / 2);
6361 			else
6362 				seq_printf(seq, "\n      %llu blocks",
6363 					   (unsigned long long)sectors / 2);
6364 		}
6365 		if (mddev->persistent) {
6366 			if (mddev->major_version != 0 ||
6367 			    mddev->minor_version != 90) {
6368 				seq_printf(seq," super %d.%d",
6369 					   mddev->major_version,
6370 					   mddev->minor_version);
6371 			}
6372 		} else if (mddev->external)
6373 			seq_printf(seq, " super external:%s",
6374 				   mddev->metadata_type);
6375 		else
6376 			seq_printf(seq, " super non-persistent");
6377 
6378 		if (mddev->pers) {
6379 			mddev->pers->status(seq, mddev);
6380 	 		seq_printf(seq, "\n      ");
6381 			if (mddev->pers->sync_request) {
6382 				if (mddev->curr_resync > 2) {
6383 					status_resync(seq, mddev);
6384 					seq_printf(seq, "\n      ");
6385 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6386 					seq_printf(seq, "\tresync=DELAYED\n      ");
6387 				else if (mddev->recovery_cp < MaxSector)
6388 					seq_printf(seq, "\tresync=PENDING\n      ");
6389 			}
6390 		} else
6391 			seq_printf(seq, "\n       ");
6392 
6393 		if ((bitmap = mddev->bitmap)) {
6394 			unsigned long chunk_kb;
6395 			unsigned long flags;
6396 			spin_lock_irqsave(&bitmap->lock, flags);
6397 			chunk_kb = mddev->bitmap_info.chunksize >> 10;
6398 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6399 				"%lu%s chunk",
6400 				bitmap->pages - bitmap->missing_pages,
6401 				bitmap->pages,
6402 				(bitmap->pages - bitmap->missing_pages)
6403 					<< (PAGE_SHIFT - 10),
6404 				chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6405 				chunk_kb ? "KB" : "B");
6406 			if (bitmap->file) {
6407 				seq_printf(seq, ", file: ");
6408 				seq_path(seq, &bitmap->file->f_path, " \t\n");
6409 			}
6410 
6411 			seq_printf(seq, "\n");
6412 			spin_unlock_irqrestore(&bitmap->lock, flags);
6413 		}
6414 
6415 		seq_printf(seq, "\n");
6416 	}
6417 	mddev_unlock(mddev);
6418 
6419 	return 0;
6420 }
6421 
6422 static const struct seq_operations md_seq_ops = {
6423 	.start  = md_seq_start,
6424 	.next   = md_seq_next,
6425 	.stop   = md_seq_stop,
6426 	.show   = md_seq_show,
6427 };
6428 
6429 static int md_seq_open(struct inode *inode, struct file *file)
6430 {
6431 	int error;
6432 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6433 	if (mi == NULL)
6434 		return -ENOMEM;
6435 
6436 	error = seq_open(file, &md_seq_ops);
6437 	if (error)
6438 		kfree(mi);
6439 	else {
6440 		struct seq_file *p = file->private_data;
6441 		p->private = mi;
6442 		mi->event = atomic_read(&md_event_count);
6443 	}
6444 	return error;
6445 }
6446 
6447 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6448 {
6449 	struct seq_file *m = filp->private_data;
6450 	struct mdstat_info *mi = m->private;
6451 	int mask;
6452 
6453 	poll_wait(filp, &md_event_waiters, wait);
6454 
6455 	/* always allow read */
6456 	mask = POLLIN | POLLRDNORM;
6457 
6458 	if (mi->event != atomic_read(&md_event_count))
6459 		mask |= POLLERR | POLLPRI;
6460 	return mask;
6461 }
6462 
6463 static const struct file_operations md_seq_fops = {
6464 	.owner		= THIS_MODULE,
6465 	.open           = md_seq_open,
6466 	.read           = seq_read,
6467 	.llseek         = seq_lseek,
6468 	.release	= seq_release_private,
6469 	.poll		= mdstat_poll,
6470 };
6471 
6472 int register_md_personality(struct mdk_personality *p)
6473 {
6474 	spin_lock(&pers_lock);
6475 	list_add_tail(&p->list, &pers_list);
6476 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6477 	spin_unlock(&pers_lock);
6478 	return 0;
6479 }
6480 
6481 int unregister_md_personality(struct mdk_personality *p)
6482 {
6483 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6484 	spin_lock(&pers_lock);
6485 	list_del_init(&p->list);
6486 	spin_unlock(&pers_lock);
6487 	return 0;
6488 }
6489 
6490 static int is_mddev_idle(mddev_t *mddev, int init)
6491 {
6492 	mdk_rdev_t * rdev;
6493 	int idle;
6494 	int curr_events;
6495 
6496 	idle = 1;
6497 	rcu_read_lock();
6498 	rdev_for_each_rcu(rdev, mddev) {
6499 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6500 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6501 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6502 			      atomic_read(&disk->sync_io);
6503 		/* sync IO will cause sync_io to increase before the disk_stats
6504 		 * as sync_io is counted when a request starts, and
6505 		 * disk_stats is counted when it completes.
6506 		 * So resync activity will cause curr_events to be smaller than
6507 		 * when there was no such activity.
6508 		 * non-sync IO will cause disk_stat to increase without
6509 		 * increasing sync_io so curr_events will (eventually)
6510 		 * be larger than it was before.  Once it becomes
6511 		 * substantially larger, the test below will cause
6512 		 * the array to appear non-idle, and resync will slow
6513 		 * down.
6514 		 * If there is a lot of outstanding resync activity when
6515 		 * we set last_event to curr_events, then all that activity
6516 		 * completing might cause the array to appear non-idle
6517 		 * and resync will be slowed down even though there might
6518 		 * not have been non-resync activity.  This will only
6519 		 * happen once though.  'last_events' will soon reflect
6520 		 * the state where there is little or no outstanding
6521 		 * resync requests, and further resync activity will
6522 		 * always make curr_events less than last_events.
6523 		 *
6524 		 */
6525 		if (init || curr_events - rdev->last_events > 64) {
6526 			rdev->last_events = curr_events;
6527 			idle = 0;
6528 		}
6529 	}
6530 	rcu_read_unlock();
6531 	return idle;
6532 }
6533 
6534 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6535 {
6536 	/* another "blocks" (512byte) blocks have been synced */
6537 	atomic_sub(blocks, &mddev->recovery_active);
6538 	wake_up(&mddev->recovery_wait);
6539 	if (!ok) {
6540 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6541 		md_wakeup_thread(mddev->thread);
6542 		// stop recovery, signal do_sync ....
6543 	}
6544 }
6545 
6546 
6547 /* md_write_start(mddev, bi)
6548  * If we need to update some array metadata (e.g. 'active' flag
6549  * in superblock) before writing, schedule a superblock update
6550  * and wait for it to complete.
6551  */
6552 void md_write_start(mddev_t *mddev, struct bio *bi)
6553 {
6554 	int did_change = 0;
6555 	if (bio_data_dir(bi) != WRITE)
6556 		return;
6557 
6558 	BUG_ON(mddev->ro == 1);
6559 	if (mddev->ro == 2) {
6560 		/* need to switch to read/write */
6561 		mddev->ro = 0;
6562 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6563 		md_wakeup_thread(mddev->thread);
6564 		md_wakeup_thread(mddev->sync_thread);
6565 		did_change = 1;
6566 	}
6567 	atomic_inc(&mddev->writes_pending);
6568 	if (mddev->safemode == 1)
6569 		mddev->safemode = 0;
6570 	if (mddev->in_sync) {
6571 		spin_lock_irq(&mddev->write_lock);
6572 		if (mddev->in_sync) {
6573 			mddev->in_sync = 0;
6574 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6575 			md_wakeup_thread(mddev->thread);
6576 			did_change = 1;
6577 		}
6578 		spin_unlock_irq(&mddev->write_lock);
6579 	}
6580 	if (did_change)
6581 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6582 	wait_event(mddev->sb_wait,
6583 		   !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6584 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6585 }
6586 
6587 void md_write_end(mddev_t *mddev)
6588 {
6589 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6590 		if (mddev->safemode == 2)
6591 			md_wakeup_thread(mddev->thread);
6592 		else if (mddev->safemode_delay)
6593 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6594 	}
6595 }
6596 
6597 /* md_allow_write(mddev)
6598  * Calling this ensures that the array is marked 'active' so that writes
6599  * may proceed without blocking.  It is important to call this before
6600  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6601  * Must be called with mddev_lock held.
6602  *
6603  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6604  * is dropped, so return -EAGAIN after notifying userspace.
6605  */
6606 int md_allow_write(mddev_t *mddev)
6607 {
6608 	if (!mddev->pers)
6609 		return 0;
6610 	if (mddev->ro)
6611 		return 0;
6612 	if (!mddev->pers->sync_request)
6613 		return 0;
6614 
6615 	spin_lock_irq(&mddev->write_lock);
6616 	if (mddev->in_sync) {
6617 		mddev->in_sync = 0;
6618 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6619 		if (mddev->safemode_delay &&
6620 		    mddev->safemode == 0)
6621 			mddev->safemode = 1;
6622 		spin_unlock_irq(&mddev->write_lock);
6623 		md_update_sb(mddev, 0);
6624 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6625 	} else
6626 		spin_unlock_irq(&mddev->write_lock);
6627 
6628 	if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6629 		return -EAGAIN;
6630 	else
6631 		return 0;
6632 }
6633 EXPORT_SYMBOL_GPL(md_allow_write);
6634 
6635 void md_unplug(mddev_t *mddev)
6636 {
6637 	if (mddev->queue)
6638 		blk_unplug(mddev->queue);
6639 	if (mddev->plug)
6640 		mddev->plug->unplug_fn(mddev->plug);
6641 }
6642 
6643 #define SYNC_MARKS	10
6644 #define	SYNC_MARK_STEP	(3*HZ)
6645 void md_do_sync(mddev_t *mddev)
6646 {
6647 	mddev_t *mddev2;
6648 	unsigned int currspeed = 0,
6649 		 window;
6650 	sector_t max_sectors,j, io_sectors;
6651 	unsigned long mark[SYNC_MARKS];
6652 	sector_t mark_cnt[SYNC_MARKS];
6653 	int last_mark,m;
6654 	struct list_head *tmp;
6655 	sector_t last_check;
6656 	int skipped = 0;
6657 	mdk_rdev_t *rdev;
6658 	char *desc;
6659 
6660 	/* just incase thread restarts... */
6661 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6662 		return;
6663 	if (mddev->ro) /* never try to sync a read-only array */
6664 		return;
6665 
6666 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6667 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6668 			desc = "data-check";
6669 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6670 			desc = "requested-resync";
6671 		else
6672 			desc = "resync";
6673 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6674 		desc = "reshape";
6675 	else
6676 		desc = "recovery";
6677 
6678 	/* we overload curr_resync somewhat here.
6679 	 * 0 == not engaged in resync at all
6680 	 * 2 == checking that there is no conflict with another sync
6681 	 * 1 == like 2, but have yielded to allow conflicting resync to
6682 	 *		commense
6683 	 * other == active in resync - this many blocks
6684 	 *
6685 	 * Before starting a resync we must have set curr_resync to
6686 	 * 2, and then checked that every "conflicting" array has curr_resync
6687 	 * less than ours.  When we find one that is the same or higher
6688 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
6689 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6690 	 * This will mean we have to start checking from the beginning again.
6691 	 *
6692 	 */
6693 
6694 	do {
6695 		mddev->curr_resync = 2;
6696 
6697 	try_again:
6698 		if (kthread_should_stop())
6699 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6700 
6701 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6702 			goto skip;
6703 		for_each_mddev(mddev2, tmp) {
6704 			if (mddev2 == mddev)
6705 				continue;
6706 			if (!mddev->parallel_resync
6707 			&&  mddev2->curr_resync
6708 			&&  match_mddev_units(mddev, mddev2)) {
6709 				DEFINE_WAIT(wq);
6710 				if (mddev < mddev2 && mddev->curr_resync == 2) {
6711 					/* arbitrarily yield */
6712 					mddev->curr_resync = 1;
6713 					wake_up(&resync_wait);
6714 				}
6715 				if (mddev > mddev2 && mddev->curr_resync == 1)
6716 					/* no need to wait here, we can wait the next
6717 					 * time 'round when curr_resync == 2
6718 					 */
6719 					continue;
6720 				/* We need to wait 'interruptible' so as not to
6721 				 * contribute to the load average, and not to
6722 				 * be caught by 'softlockup'
6723 				 */
6724 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6725 				if (!kthread_should_stop() &&
6726 				    mddev2->curr_resync >= mddev->curr_resync) {
6727 					printk(KERN_INFO "md: delaying %s of %s"
6728 					       " until %s has finished (they"
6729 					       " share one or more physical units)\n",
6730 					       desc, mdname(mddev), mdname(mddev2));
6731 					mddev_put(mddev2);
6732 					if (signal_pending(current))
6733 						flush_signals(current);
6734 					schedule();
6735 					finish_wait(&resync_wait, &wq);
6736 					goto try_again;
6737 				}
6738 				finish_wait(&resync_wait, &wq);
6739 			}
6740 		}
6741 	} while (mddev->curr_resync < 2);
6742 
6743 	j = 0;
6744 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6745 		/* resync follows the size requested by the personality,
6746 		 * which defaults to physical size, but can be virtual size
6747 		 */
6748 		max_sectors = mddev->resync_max_sectors;
6749 		mddev->resync_mismatches = 0;
6750 		/* we don't use the checkpoint if there's a bitmap */
6751 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6752 			j = mddev->resync_min;
6753 		else if (!mddev->bitmap)
6754 			j = mddev->recovery_cp;
6755 
6756 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6757 		max_sectors = mddev->dev_sectors;
6758 	else {
6759 		/* recovery follows the physical size of devices */
6760 		max_sectors = mddev->dev_sectors;
6761 		j = MaxSector;
6762 		rcu_read_lock();
6763 		list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6764 			if (rdev->raid_disk >= 0 &&
6765 			    !test_bit(Faulty, &rdev->flags) &&
6766 			    !test_bit(In_sync, &rdev->flags) &&
6767 			    rdev->recovery_offset < j)
6768 				j = rdev->recovery_offset;
6769 		rcu_read_unlock();
6770 	}
6771 
6772 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6773 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
6774 		" %d KB/sec/disk.\n", speed_min(mddev));
6775 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6776 	       "(but not more than %d KB/sec) for %s.\n",
6777 	       speed_max(mddev), desc);
6778 
6779 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6780 
6781 	io_sectors = 0;
6782 	for (m = 0; m < SYNC_MARKS; m++) {
6783 		mark[m] = jiffies;
6784 		mark_cnt[m] = io_sectors;
6785 	}
6786 	last_mark = 0;
6787 	mddev->resync_mark = mark[last_mark];
6788 	mddev->resync_mark_cnt = mark_cnt[last_mark];
6789 
6790 	/*
6791 	 * Tune reconstruction:
6792 	 */
6793 	window = 32*(PAGE_SIZE/512);
6794 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6795 		window/2,(unsigned long long) max_sectors/2);
6796 
6797 	atomic_set(&mddev->recovery_active, 0);
6798 	last_check = 0;
6799 
6800 	if (j>2) {
6801 		printk(KERN_INFO
6802 		       "md: resuming %s of %s from checkpoint.\n",
6803 		       desc, mdname(mddev));
6804 		mddev->curr_resync = j;
6805 	}
6806 	mddev->curr_resync_completed = mddev->curr_resync;
6807 
6808 	while (j < max_sectors) {
6809 		sector_t sectors;
6810 
6811 		skipped = 0;
6812 
6813 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6814 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
6815 		      (mddev->curr_resync - mddev->curr_resync_completed)
6816 		      > (max_sectors >> 4)) ||
6817 		     (j - mddev->curr_resync_completed)*2
6818 		     >= mddev->resync_max - mddev->curr_resync_completed
6819 			    )) {
6820 			/* time to update curr_resync_completed */
6821 			md_unplug(mddev);
6822 			wait_event(mddev->recovery_wait,
6823 				   atomic_read(&mddev->recovery_active) == 0);
6824 			mddev->curr_resync_completed =
6825 				mddev->curr_resync;
6826 			if (mddev->persistent)
6827 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6828 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6829 		}
6830 
6831 		while (j >= mddev->resync_max && !kthread_should_stop()) {
6832 			/* As this condition is controlled by user-space,
6833 			 * we can block indefinitely, so use '_interruptible'
6834 			 * to avoid triggering warnings.
6835 			 */
6836 			flush_signals(current); /* just in case */
6837 			wait_event_interruptible(mddev->recovery_wait,
6838 						 mddev->resync_max > j
6839 						 || kthread_should_stop());
6840 		}
6841 
6842 		if (kthread_should_stop())
6843 			goto interrupted;
6844 
6845 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
6846 						  currspeed < speed_min(mddev));
6847 		if (sectors == 0) {
6848 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6849 			goto out;
6850 		}
6851 
6852 		if (!skipped) { /* actual IO requested */
6853 			io_sectors += sectors;
6854 			atomic_add(sectors, &mddev->recovery_active);
6855 		}
6856 
6857 		j += sectors;
6858 		if (j>1) mddev->curr_resync = j;
6859 		mddev->curr_mark_cnt = io_sectors;
6860 		if (last_check == 0)
6861 			/* this is the earliers that rebuilt will be
6862 			 * visible in /proc/mdstat
6863 			 */
6864 			md_new_event(mddev);
6865 
6866 		if (last_check + window > io_sectors || j == max_sectors)
6867 			continue;
6868 
6869 		last_check = io_sectors;
6870 
6871 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6872 			break;
6873 
6874 	repeat:
6875 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6876 			/* step marks */
6877 			int next = (last_mark+1) % SYNC_MARKS;
6878 
6879 			mddev->resync_mark = mark[next];
6880 			mddev->resync_mark_cnt = mark_cnt[next];
6881 			mark[next] = jiffies;
6882 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6883 			last_mark = next;
6884 		}
6885 
6886 
6887 		if (kthread_should_stop())
6888 			goto interrupted;
6889 
6890 
6891 		/*
6892 		 * this loop exits only if either when we are slower than
6893 		 * the 'hard' speed limit, or the system was IO-idle for
6894 		 * a jiffy.
6895 		 * the system might be non-idle CPU-wise, but we only care
6896 		 * about not overloading the IO subsystem. (things like an
6897 		 * e2fsck being done on the RAID array should execute fast)
6898 		 */
6899 		md_unplug(mddev);
6900 		cond_resched();
6901 
6902 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6903 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
6904 
6905 		if (currspeed > speed_min(mddev)) {
6906 			if ((currspeed > speed_max(mddev)) ||
6907 					!is_mddev_idle(mddev, 0)) {
6908 				msleep(500);
6909 				goto repeat;
6910 			}
6911 		}
6912 	}
6913 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6914 	/*
6915 	 * this also signals 'finished resyncing' to md_stop
6916 	 */
6917  out:
6918 	md_unplug(mddev);
6919 
6920 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6921 
6922 	/* tell personality that we are finished */
6923 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6924 
6925 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6926 	    mddev->curr_resync > 2) {
6927 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6928 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6929 				if (mddev->curr_resync >= mddev->recovery_cp) {
6930 					printk(KERN_INFO
6931 					       "md: checkpointing %s of %s.\n",
6932 					       desc, mdname(mddev));
6933 					mddev->recovery_cp = mddev->curr_resync;
6934 				}
6935 			} else
6936 				mddev->recovery_cp = MaxSector;
6937 		} else {
6938 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6939 				mddev->curr_resync = MaxSector;
6940 			rcu_read_lock();
6941 			list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6942 				if (rdev->raid_disk >= 0 &&
6943 				    mddev->delta_disks >= 0 &&
6944 				    !test_bit(Faulty, &rdev->flags) &&
6945 				    !test_bit(In_sync, &rdev->flags) &&
6946 				    rdev->recovery_offset < mddev->curr_resync)
6947 					rdev->recovery_offset = mddev->curr_resync;
6948 			rcu_read_unlock();
6949 		}
6950 	}
6951 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6952 
6953  skip:
6954 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6955 		/* We completed so min/max setting can be forgotten if used. */
6956 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6957 			mddev->resync_min = 0;
6958 		mddev->resync_max = MaxSector;
6959 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6960 		mddev->resync_min = mddev->curr_resync_completed;
6961 	mddev->curr_resync = 0;
6962 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6963 		mddev->curr_resync_completed = 0;
6964 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6965 	wake_up(&resync_wait);
6966 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6967 	md_wakeup_thread(mddev->thread);
6968 	return;
6969 
6970  interrupted:
6971 	/*
6972 	 * got a signal, exit.
6973 	 */
6974 	printk(KERN_INFO
6975 	       "md: md_do_sync() got signal ... exiting\n");
6976 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6977 	goto out;
6978 
6979 }
6980 EXPORT_SYMBOL_GPL(md_do_sync);
6981 
6982 
6983 static int remove_and_add_spares(mddev_t *mddev)
6984 {
6985 	mdk_rdev_t *rdev;
6986 	int spares = 0;
6987 
6988 	mddev->curr_resync_completed = 0;
6989 
6990 	list_for_each_entry(rdev, &mddev->disks, same_set)
6991 		if (rdev->raid_disk >= 0 &&
6992 		    !test_bit(Blocked, &rdev->flags) &&
6993 		    (test_bit(Faulty, &rdev->flags) ||
6994 		     ! test_bit(In_sync, &rdev->flags)) &&
6995 		    atomic_read(&rdev->nr_pending)==0) {
6996 			if (mddev->pers->hot_remove_disk(
6997 				    mddev, rdev->raid_disk)==0) {
6998 				char nm[20];
6999 				sprintf(nm,"rd%d", rdev->raid_disk);
7000 				sysfs_remove_link(&mddev->kobj, nm);
7001 				rdev->raid_disk = -1;
7002 			}
7003 		}
7004 
7005 	if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
7006 		list_for_each_entry(rdev, &mddev->disks, same_set) {
7007 			if (rdev->raid_disk >= 0 &&
7008 			    !test_bit(In_sync, &rdev->flags) &&
7009 			    !test_bit(Blocked, &rdev->flags))
7010 				spares++;
7011 			if (rdev->raid_disk < 0
7012 			    && !test_bit(Faulty, &rdev->flags)) {
7013 				rdev->recovery_offset = 0;
7014 				if (mddev->pers->
7015 				    hot_add_disk(mddev, rdev) == 0) {
7016 					char nm[20];
7017 					sprintf(nm, "rd%d", rdev->raid_disk);
7018 					if (sysfs_create_link(&mddev->kobj,
7019 							      &rdev->kobj, nm))
7020 						/* failure here is OK */;
7021 					spares++;
7022 					md_new_event(mddev);
7023 					set_bit(MD_CHANGE_DEVS, &mddev->flags);
7024 				} else
7025 					break;
7026 			}
7027 		}
7028 	}
7029 	return spares;
7030 }
7031 /*
7032  * This routine is regularly called by all per-raid-array threads to
7033  * deal with generic issues like resync and super-block update.
7034  * Raid personalities that don't have a thread (linear/raid0) do not
7035  * need this as they never do any recovery or update the superblock.
7036  *
7037  * It does not do any resync itself, but rather "forks" off other threads
7038  * to do that as needed.
7039  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7040  * "->recovery" and create a thread at ->sync_thread.
7041  * When the thread finishes it sets MD_RECOVERY_DONE
7042  * and wakeups up this thread which will reap the thread and finish up.
7043  * This thread also removes any faulty devices (with nr_pending == 0).
7044  *
7045  * The overall approach is:
7046  *  1/ if the superblock needs updating, update it.
7047  *  2/ If a recovery thread is running, don't do anything else.
7048  *  3/ If recovery has finished, clean up, possibly marking spares active.
7049  *  4/ If there are any faulty devices, remove them.
7050  *  5/ If array is degraded, try to add spares devices
7051  *  6/ If array has spares or is not in-sync, start a resync thread.
7052  */
7053 void md_check_recovery(mddev_t *mddev)
7054 {
7055 	mdk_rdev_t *rdev;
7056 
7057 
7058 	if (mddev->bitmap)
7059 		bitmap_daemon_work(mddev);
7060 
7061 	if (mddev->ro)
7062 		return;
7063 
7064 	if (signal_pending(current)) {
7065 		if (mddev->pers->sync_request && !mddev->external) {
7066 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7067 			       mdname(mddev));
7068 			mddev->safemode = 2;
7069 		}
7070 		flush_signals(current);
7071 	}
7072 
7073 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7074 		return;
7075 	if ( ! (
7076 		(mddev->flags && !mddev->external) ||
7077 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7078 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7079 		(mddev->external == 0 && mddev->safemode == 1) ||
7080 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7081 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7082 		))
7083 		return;
7084 
7085 	if (mddev_trylock(mddev)) {
7086 		int spares = 0;
7087 
7088 		if (mddev->ro) {
7089 			/* Only thing we do on a ro array is remove
7090 			 * failed devices.
7091 			 */
7092 			remove_and_add_spares(mddev);
7093 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7094 			goto unlock;
7095 		}
7096 
7097 		if (!mddev->external) {
7098 			int did_change = 0;
7099 			spin_lock_irq(&mddev->write_lock);
7100 			if (mddev->safemode &&
7101 			    !atomic_read(&mddev->writes_pending) &&
7102 			    !mddev->in_sync &&
7103 			    mddev->recovery_cp == MaxSector) {
7104 				mddev->in_sync = 1;
7105 				did_change = 1;
7106 				if (mddev->persistent)
7107 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7108 			}
7109 			if (mddev->safemode == 1)
7110 				mddev->safemode = 0;
7111 			spin_unlock_irq(&mddev->write_lock);
7112 			if (did_change)
7113 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7114 		}
7115 
7116 		if (mddev->flags)
7117 			md_update_sb(mddev, 0);
7118 
7119 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7120 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7121 			/* resync/recovery still happening */
7122 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7123 			goto unlock;
7124 		}
7125 		if (mddev->sync_thread) {
7126 			/* resync has finished, collect result */
7127 			md_unregister_thread(mddev->sync_thread);
7128 			mddev->sync_thread = NULL;
7129 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7130 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7131 				/* success...*/
7132 				/* activate any spares */
7133 				if (mddev->pers->spare_active(mddev))
7134 					sysfs_notify(&mddev->kobj, NULL,
7135 						     "degraded");
7136 			}
7137 			if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7138 			    mddev->pers->finish_reshape)
7139 				mddev->pers->finish_reshape(mddev);
7140 			md_update_sb(mddev, 1);
7141 
7142 			/* if array is no-longer degraded, then any saved_raid_disk
7143 			 * information must be scrapped
7144 			 */
7145 			if (!mddev->degraded)
7146 				list_for_each_entry(rdev, &mddev->disks, same_set)
7147 					rdev->saved_raid_disk = -1;
7148 
7149 			mddev->recovery = 0;
7150 			/* flag recovery needed just to double check */
7151 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7152 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7153 			md_new_event(mddev);
7154 			goto unlock;
7155 		}
7156 		/* Set RUNNING before clearing NEEDED to avoid
7157 		 * any transients in the value of "sync_action".
7158 		 */
7159 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7160 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7161 		/* Clear some bits that don't mean anything, but
7162 		 * might be left set
7163 		 */
7164 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7165 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7166 
7167 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7168 			goto unlock;
7169 		/* no recovery is running.
7170 		 * remove any failed drives, then
7171 		 * add spares if possible.
7172 		 * Spare are also removed and re-added, to allow
7173 		 * the personality to fail the re-add.
7174 		 */
7175 
7176 		if (mddev->reshape_position != MaxSector) {
7177 			if (mddev->pers->check_reshape == NULL ||
7178 			    mddev->pers->check_reshape(mddev) != 0)
7179 				/* Cannot proceed */
7180 				goto unlock;
7181 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7182 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7183 		} else if ((spares = remove_and_add_spares(mddev))) {
7184 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7185 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7186 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7187 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7188 		} else if (mddev->recovery_cp < MaxSector) {
7189 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7190 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7191 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7192 			/* nothing to be done ... */
7193 			goto unlock;
7194 
7195 		if (mddev->pers->sync_request) {
7196 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7197 				/* We are adding a device or devices to an array
7198 				 * which has the bitmap stored on all devices.
7199 				 * So make sure all bitmap pages get written
7200 				 */
7201 				bitmap_write_all(mddev->bitmap);
7202 			}
7203 			mddev->sync_thread = md_register_thread(md_do_sync,
7204 								mddev,
7205 								"resync");
7206 			if (!mddev->sync_thread) {
7207 				printk(KERN_ERR "%s: could not start resync"
7208 					" thread...\n",
7209 					mdname(mddev));
7210 				/* leave the spares where they are, it shouldn't hurt */
7211 				mddev->recovery = 0;
7212 			} else
7213 				md_wakeup_thread(mddev->sync_thread);
7214 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7215 			md_new_event(mddev);
7216 		}
7217 	unlock:
7218 		if (!mddev->sync_thread) {
7219 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7220 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7221 					       &mddev->recovery))
7222 				if (mddev->sysfs_action)
7223 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7224 		}
7225 		mddev_unlock(mddev);
7226 	}
7227 }
7228 
7229 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7230 {
7231 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7232 	wait_event_timeout(rdev->blocked_wait,
7233 			   !test_bit(Blocked, &rdev->flags),
7234 			   msecs_to_jiffies(5000));
7235 	rdev_dec_pending(rdev, mddev);
7236 }
7237 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7238 
7239 static int md_notify_reboot(struct notifier_block *this,
7240 			    unsigned long code, void *x)
7241 {
7242 	struct list_head *tmp;
7243 	mddev_t *mddev;
7244 
7245 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7246 
7247 		printk(KERN_INFO "md: stopping all md devices.\n");
7248 
7249 		for_each_mddev(mddev, tmp)
7250 			if (mddev_trylock(mddev)) {
7251 				/* Force a switch to readonly even array
7252 				 * appears to still be in use.  Hence
7253 				 * the '100'.
7254 				 */
7255 				md_set_readonly(mddev, 100);
7256 				mddev_unlock(mddev);
7257 			}
7258 		/*
7259 		 * certain more exotic SCSI devices are known to be
7260 		 * volatile wrt too early system reboots. While the
7261 		 * right place to handle this issue is the given
7262 		 * driver, we do want to have a safe RAID driver ...
7263 		 */
7264 		mdelay(1000*1);
7265 	}
7266 	return NOTIFY_DONE;
7267 }
7268 
7269 static struct notifier_block md_notifier = {
7270 	.notifier_call	= md_notify_reboot,
7271 	.next		= NULL,
7272 	.priority	= INT_MAX, /* before any real devices */
7273 };
7274 
7275 static void md_geninit(void)
7276 {
7277 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7278 
7279 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7280 }
7281 
7282 static int __init md_init(void)
7283 {
7284 	if (register_blkdev(MD_MAJOR, "md"))
7285 		return -1;
7286 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
7287 		unregister_blkdev(MD_MAJOR, "md");
7288 		return -1;
7289 	}
7290 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7291 			    md_probe, NULL, NULL);
7292 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7293 			    md_probe, NULL, NULL);
7294 
7295 	register_reboot_notifier(&md_notifier);
7296 	raid_table_header = register_sysctl_table(raid_root_table);
7297 
7298 	md_geninit();
7299 	return 0;
7300 }
7301 
7302 
7303 #ifndef MODULE
7304 
7305 /*
7306  * Searches all registered partitions for autorun RAID arrays
7307  * at boot time.
7308  */
7309 
7310 static LIST_HEAD(all_detected_devices);
7311 struct detected_devices_node {
7312 	struct list_head list;
7313 	dev_t dev;
7314 };
7315 
7316 void md_autodetect_dev(dev_t dev)
7317 {
7318 	struct detected_devices_node *node_detected_dev;
7319 
7320 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7321 	if (node_detected_dev) {
7322 		node_detected_dev->dev = dev;
7323 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
7324 	} else {
7325 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7326 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7327 	}
7328 }
7329 
7330 
7331 static void autostart_arrays(int part)
7332 {
7333 	mdk_rdev_t *rdev;
7334 	struct detected_devices_node *node_detected_dev;
7335 	dev_t dev;
7336 	int i_scanned, i_passed;
7337 
7338 	i_scanned = 0;
7339 	i_passed = 0;
7340 
7341 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7342 
7343 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7344 		i_scanned++;
7345 		node_detected_dev = list_entry(all_detected_devices.next,
7346 					struct detected_devices_node, list);
7347 		list_del(&node_detected_dev->list);
7348 		dev = node_detected_dev->dev;
7349 		kfree(node_detected_dev);
7350 		rdev = md_import_device(dev,0, 90);
7351 		if (IS_ERR(rdev))
7352 			continue;
7353 
7354 		if (test_bit(Faulty, &rdev->flags)) {
7355 			MD_BUG();
7356 			continue;
7357 		}
7358 		set_bit(AutoDetected, &rdev->flags);
7359 		list_add(&rdev->same_set, &pending_raid_disks);
7360 		i_passed++;
7361 	}
7362 
7363 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7364 						i_scanned, i_passed);
7365 
7366 	autorun_devices(part);
7367 }
7368 
7369 #endif /* !MODULE */
7370 
7371 static __exit void md_exit(void)
7372 {
7373 	mddev_t *mddev;
7374 	struct list_head *tmp;
7375 
7376 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7377 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7378 
7379 	unregister_blkdev(MD_MAJOR,"md");
7380 	unregister_blkdev(mdp_major, "mdp");
7381 	unregister_reboot_notifier(&md_notifier);
7382 	unregister_sysctl_table(raid_table_header);
7383 	remove_proc_entry("mdstat", NULL);
7384 	for_each_mddev(mddev, tmp) {
7385 		export_array(mddev);
7386 		mddev->hold_active = 0;
7387 	}
7388 }
7389 
7390 subsys_initcall(md_init);
7391 module_exit(md_exit)
7392 
7393 static int get_ro(char *buffer, struct kernel_param *kp)
7394 {
7395 	return sprintf(buffer, "%d", start_readonly);
7396 }
7397 static int set_ro(const char *val, struct kernel_param *kp)
7398 {
7399 	char *e;
7400 	int num = simple_strtoul(val, &e, 10);
7401 	if (*val && (*e == '\0' || *e == '\n')) {
7402 		start_readonly = num;
7403 		return 0;
7404 	}
7405 	return -EINVAL;
7406 }
7407 
7408 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7409 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7410 
7411 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7412 
7413 EXPORT_SYMBOL(register_md_personality);
7414 EXPORT_SYMBOL(unregister_md_personality);
7415 EXPORT_SYMBOL(md_error);
7416 EXPORT_SYMBOL(md_done_sync);
7417 EXPORT_SYMBOL(md_write_start);
7418 EXPORT_SYMBOL(md_write_end);
7419 EXPORT_SYMBOL(md_register_thread);
7420 EXPORT_SYMBOL(md_unregister_thread);
7421 EXPORT_SYMBOL(md_wakeup_thread);
7422 EXPORT_SYMBOL(md_check_recovery);
7423 MODULE_LICENSE("GPL");
7424 MODULE_DESCRIPTION("MD RAID framework");
7425 MODULE_ALIAS("md");
7426 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
7427