1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/smp_lock.h> 40 #include <linux/buffer_head.h> /* for invalidate_bdev */ 41 #include <linux/poll.h> 42 #include <linux/ctype.h> 43 #include <linux/string.h> 44 #include <linux/hdreg.h> 45 #include <linux/proc_fs.h> 46 #include <linux/random.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #define DEBUG 0 58 #define dprintk(x...) ((void)(DEBUG && printk(x))) 59 60 61 #ifndef MODULE 62 static void autostart_arrays(int part); 63 #endif 64 65 static LIST_HEAD(pers_list); 66 static DEFINE_SPINLOCK(pers_lock); 67 68 static void md_print_devices(void); 69 70 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 71 72 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 73 74 /* 75 * Default number of read corrections we'll attempt on an rdev 76 * before ejecting it from the array. We divide the read error 77 * count by 2 for every hour elapsed between read errors. 78 */ 79 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 80 /* 81 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 82 * is 1000 KB/sec, so the extra system load does not show up that much. 83 * Increase it if you want to have more _guaranteed_ speed. Note that 84 * the RAID driver will use the maximum available bandwidth if the IO 85 * subsystem is idle. There is also an 'absolute maximum' reconstruction 86 * speed limit - in case reconstruction slows down your system despite 87 * idle IO detection. 88 * 89 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 90 * or /sys/block/mdX/md/sync_speed_{min,max} 91 */ 92 93 static int sysctl_speed_limit_min = 1000; 94 static int sysctl_speed_limit_max = 200000; 95 static inline int speed_min(mddev_t *mddev) 96 { 97 return mddev->sync_speed_min ? 98 mddev->sync_speed_min : sysctl_speed_limit_min; 99 } 100 101 static inline int speed_max(mddev_t *mddev) 102 { 103 return mddev->sync_speed_max ? 104 mddev->sync_speed_max : sysctl_speed_limit_max; 105 } 106 107 static struct ctl_table_header *raid_table_header; 108 109 static ctl_table raid_table[] = { 110 { 111 .procname = "speed_limit_min", 112 .data = &sysctl_speed_limit_min, 113 .maxlen = sizeof(int), 114 .mode = S_IRUGO|S_IWUSR, 115 .proc_handler = proc_dointvec, 116 }, 117 { 118 .procname = "speed_limit_max", 119 .data = &sysctl_speed_limit_max, 120 .maxlen = sizeof(int), 121 .mode = S_IRUGO|S_IWUSR, 122 .proc_handler = proc_dointvec, 123 }, 124 { } 125 }; 126 127 static ctl_table raid_dir_table[] = { 128 { 129 .procname = "raid", 130 .maxlen = 0, 131 .mode = S_IRUGO|S_IXUGO, 132 .child = raid_table, 133 }, 134 { } 135 }; 136 137 static ctl_table raid_root_table[] = { 138 { 139 .procname = "dev", 140 .maxlen = 0, 141 .mode = 0555, 142 .child = raid_dir_table, 143 }, 144 { } 145 }; 146 147 static const struct block_device_operations md_fops; 148 149 static int start_readonly; 150 151 /* 152 * We have a system wide 'event count' that is incremented 153 * on any 'interesting' event, and readers of /proc/mdstat 154 * can use 'poll' or 'select' to find out when the event 155 * count increases. 156 * 157 * Events are: 158 * start array, stop array, error, add device, remove device, 159 * start build, activate spare 160 */ 161 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 162 static atomic_t md_event_count; 163 void md_new_event(mddev_t *mddev) 164 { 165 atomic_inc(&md_event_count); 166 wake_up(&md_event_waiters); 167 } 168 EXPORT_SYMBOL_GPL(md_new_event); 169 170 /* Alternate version that can be called from interrupts 171 * when calling sysfs_notify isn't needed. 172 */ 173 static void md_new_event_inintr(mddev_t *mddev) 174 { 175 atomic_inc(&md_event_count); 176 wake_up(&md_event_waiters); 177 } 178 179 /* 180 * Enables to iterate over all existing md arrays 181 * all_mddevs_lock protects this list. 182 */ 183 static LIST_HEAD(all_mddevs); 184 static DEFINE_SPINLOCK(all_mddevs_lock); 185 186 187 /* 188 * iterates through all used mddevs in the system. 189 * We take care to grab the all_mddevs_lock whenever navigating 190 * the list, and to always hold a refcount when unlocked. 191 * Any code which breaks out of this loop while own 192 * a reference to the current mddev and must mddev_put it. 193 */ 194 #define for_each_mddev(mddev,tmp) \ 195 \ 196 for (({ spin_lock(&all_mddevs_lock); \ 197 tmp = all_mddevs.next; \ 198 mddev = NULL;}); \ 199 ({ if (tmp != &all_mddevs) \ 200 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 201 spin_unlock(&all_mddevs_lock); \ 202 if (mddev) mddev_put(mddev); \ 203 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 204 tmp != &all_mddevs;}); \ 205 ({ spin_lock(&all_mddevs_lock); \ 206 tmp = tmp->next;}) \ 207 ) 208 209 210 /* Rather than calling directly into the personality make_request function, 211 * IO requests come here first so that we can check if the device is 212 * being suspended pending a reconfiguration. 213 * We hold a refcount over the call to ->make_request. By the time that 214 * call has finished, the bio has been linked into some internal structure 215 * and so is visible to ->quiesce(), so we don't need the refcount any more. 216 */ 217 static int md_make_request(struct request_queue *q, struct bio *bio) 218 { 219 const int rw = bio_data_dir(bio); 220 mddev_t *mddev = q->queuedata; 221 int rv; 222 int cpu; 223 224 if (mddev == NULL || mddev->pers == NULL) { 225 bio_io_error(bio); 226 return 0; 227 } 228 rcu_read_lock(); 229 if (mddev->suspended || mddev->barrier) { 230 DEFINE_WAIT(__wait); 231 for (;;) { 232 prepare_to_wait(&mddev->sb_wait, &__wait, 233 TASK_UNINTERRUPTIBLE); 234 if (!mddev->suspended && !mddev->barrier) 235 break; 236 rcu_read_unlock(); 237 schedule(); 238 rcu_read_lock(); 239 } 240 finish_wait(&mddev->sb_wait, &__wait); 241 } 242 atomic_inc(&mddev->active_io); 243 rcu_read_unlock(); 244 245 rv = mddev->pers->make_request(mddev, bio); 246 247 cpu = part_stat_lock(); 248 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 249 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 250 bio_sectors(bio)); 251 part_stat_unlock(); 252 253 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 254 wake_up(&mddev->sb_wait); 255 256 return rv; 257 } 258 259 /* mddev_suspend makes sure no new requests are submitted 260 * to the device, and that any requests that have been submitted 261 * are completely handled. 262 * Once ->stop is called and completes, the module will be completely 263 * unused. 264 */ 265 void mddev_suspend(mddev_t *mddev) 266 { 267 BUG_ON(mddev->suspended); 268 mddev->suspended = 1; 269 synchronize_rcu(); 270 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 271 mddev->pers->quiesce(mddev, 1); 272 } 273 EXPORT_SYMBOL_GPL(mddev_suspend); 274 275 void mddev_resume(mddev_t *mddev) 276 { 277 mddev->suspended = 0; 278 wake_up(&mddev->sb_wait); 279 mddev->pers->quiesce(mddev, 0); 280 } 281 EXPORT_SYMBOL_GPL(mddev_resume); 282 283 int mddev_congested(mddev_t *mddev, int bits) 284 { 285 if (mddev->barrier) 286 return 1; 287 return mddev->suspended; 288 } 289 EXPORT_SYMBOL(mddev_congested); 290 291 /* 292 * Generic barrier handling for md 293 */ 294 295 #define POST_REQUEST_BARRIER ((void*)1) 296 297 static void md_end_barrier(struct bio *bio, int err) 298 { 299 mdk_rdev_t *rdev = bio->bi_private; 300 mddev_t *mddev = rdev->mddev; 301 if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER) 302 set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags); 303 304 rdev_dec_pending(rdev, mddev); 305 306 if (atomic_dec_and_test(&mddev->flush_pending)) { 307 if (mddev->barrier == POST_REQUEST_BARRIER) { 308 /* This was a post-request barrier */ 309 mddev->barrier = NULL; 310 wake_up(&mddev->sb_wait); 311 } else 312 /* The pre-request barrier has finished */ 313 schedule_work(&mddev->barrier_work); 314 } 315 bio_put(bio); 316 } 317 318 static void submit_barriers(mddev_t *mddev) 319 { 320 mdk_rdev_t *rdev; 321 322 rcu_read_lock(); 323 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 324 if (rdev->raid_disk >= 0 && 325 !test_bit(Faulty, &rdev->flags)) { 326 /* Take two references, one is dropped 327 * when request finishes, one after 328 * we reclaim rcu_read_lock 329 */ 330 struct bio *bi; 331 atomic_inc(&rdev->nr_pending); 332 atomic_inc(&rdev->nr_pending); 333 rcu_read_unlock(); 334 bi = bio_alloc(GFP_KERNEL, 0); 335 bi->bi_end_io = md_end_barrier; 336 bi->bi_private = rdev; 337 bi->bi_bdev = rdev->bdev; 338 atomic_inc(&mddev->flush_pending); 339 submit_bio(WRITE_BARRIER, bi); 340 rcu_read_lock(); 341 rdev_dec_pending(rdev, mddev); 342 } 343 rcu_read_unlock(); 344 } 345 346 static void md_submit_barrier(struct work_struct *ws) 347 { 348 mddev_t *mddev = container_of(ws, mddev_t, barrier_work); 349 struct bio *bio = mddev->barrier; 350 351 atomic_set(&mddev->flush_pending, 1); 352 353 if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags)) 354 bio_endio(bio, -EOPNOTSUPP); 355 else if (bio->bi_size == 0) 356 /* an empty barrier - all done */ 357 bio_endio(bio, 0); 358 else { 359 bio->bi_rw &= ~REQ_HARDBARRIER; 360 if (mddev->pers->make_request(mddev, bio)) 361 generic_make_request(bio); 362 mddev->barrier = POST_REQUEST_BARRIER; 363 submit_barriers(mddev); 364 } 365 if (atomic_dec_and_test(&mddev->flush_pending)) { 366 mddev->barrier = NULL; 367 wake_up(&mddev->sb_wait); 368 } 369 } 370 371 void md_barrier_request(mddev_t *mddev, struct bio *bio) 372 { 373 spin_lock_irq(&mddev->write_lock); 374 wait_event_lock_irq(mddev->sb_wait, 375 !mddev->barrier, 376 mddev->write_lock, /*nothing*/); 377 mddev->barrier = bio; 378 spin_unlock_irq(&mddev->write_lock); 379 380 atomic_set(&mddev->flush_pending, 1); 381 INIT_WORK(&mddev->barrier_work, md_submit_barrier); 382 383 submit_barriers(mddev); 384 385 if (atomic_dec_and_test(&mddev->flush_pending)) 386 schedule_work(&mddev->barrier_work); 387 } 388 EXPORT_SYMBOL(md_barrier_request); 389 390 /* Support for plugging. 391 * This mirrors the plugging support in request_queue, but does not 392 * require having a whole queue 393 */ 394 static void plugger_work(struct work_struct *work) 395 { 396 struct plug_handle *plug = 397 container_of(work, struct plug_handle, unplug_work); 398 plug->unplug_fn(plug); 399 } 400 static void plugger_timeout(unsigned long data) 401 { 402 struct plug_handle *plug = (void *)data; 403 kblockd_schedule_work(NULL, &plug->unplug_work); 404 } 405 void plugger_init(struct plug_handle *plug, 406 void (*unplug_fn)(struct plug_handle *)) 407 { 408 plug->unplug_flag = 0; 409 plug->unplug_fn = unplug_fn; 410 init_timer(&plug->unplug_timer); 411 plug->unplug_timer.function = plugger_timeout; 412 plug->unplug_timer.data = (unsigned long)plug; 413 INIT_WORK(&plug->unplug_work, plugger_work); 414 } 415 EXPORT_SYMBOL_GPL(plugger_init); 416 417 void plugger_set_plug(struct plug_handle *plug) 418 { 419 if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag)) 420 mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1); 421 } 422 EXPORT_SYMBOL_GPL(plugger_set_plug); 423 424 int plugger_remove_plug(struct plug_handle *plug) 425 { 426 if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) { 427 del_timer(&plug->unplug_timer); 428 return 1; 429 } else 430 return 0; 431 } 432 EXPORT_SYMBOL_GPL(plugger_remove_plug); 433 434 435 static inline mddev_t *mddev_get(mddev_t *mddev) 436 { 437 atomic_inc(&mddev->active); 438 return mddev; 439 } 440 441 static void mddev_delayed_delete(struct work_struct *ws); 442 443 static void mddev_put(mddev_t *mddev) 444 { 445 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 446 return; 447 if (!mddev->raid_disks && list_empty(&mddev->disks) && 448 mddev->ctime == 0 && !mddev->hold_active) { 449 /* Array is not configured at all, and not held active, 450 * so destroy it */ 451 list_del(&mddev->all_mddevs); 452 if (mddev->gendisk) { 453 /* we did a probe so need to clean up. 454 * Call schedule_work inside the spinlock 455 * so that flush_scheduled_work() after 456 * mddev_find will succeed in waiting for the 457 * work to be done. 458 */ 459 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 460 schedule_work(&mddev->del_work); 461 } else 462 kfree(mddev); 463 } 464 spin_unlock(&all_mddevs_lock); 465 } 466 467 void mddev_init(mddev_t *mddev) 468 { 469 mutex_init(&mddev->open_mutex); 470 mutex_init(&mddev->reconfig_mutex); 471 mutex_init(&mddev->bitmap_info.mutex); 472 INIT_LIST_HEAD(&mddev->disks); 473 INIT_LIST_HEAD(&mddev->all_mddevs); 474 init_timer(&mddev->safemode_timer); 475 atomic_set(&mddev->active, 1); 476 atomic_set(&mddev->openers, 0); 477 atomic_set(&mddev->active_io, 0); 478 spin_lock_init(&mddev->write_lock); 479 atomic_set(&mddev->flush_pending, 0); 480 init_waitqueue_head(&mddev->sb_wait); 481 init_waitqueue_head(&mddev->recovery_wait); 482 mddev->reshape_position = MaxSector; 483 mddev->resync_min = 0; 484 mddev->resync_max = MaxSector; 485 mddev->level = LEVEL_NONE; 486 } 487 EXPORT_SYMBOL_GPL(mddev_init); 488 489 static mddev_t * mddev_find(dev_t unit) 490 { 491 mddev_t *mddev, *new = NULL; 492 493 retry: 494 spin_lock(&all_mddevs_lock); 495 496 if (unit) { 497 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 498 if (mddev->unit == unit) { 499 mddev_get(mddev); 500 spin_unlock(&all_mddevs_lock); 501 kfree(new); 502 return mddev; 503 } 504 505 if (new) { 506 list_add(&new->all_mddevs, &all_mddevs); 507 spin_unlock(&all_mddevs_lock); 508 new->hold_active = UNTIL_IOCTL; 509 return new; 510 } 511 } else if (new) { 512 /* find an unused unit number */ 513 static int next_minor = 512; 514 int start = next_minor; 515 int is_free = 0; 516 int dev = 0; 517 while (!is_free) { 518 dev = MKDEV(MD_MAJOR, next_minor); 519 next_minor++; 520 if (next_minor > MINORMASK) 521 next_minor = 0; 522 if (next_minor == start) { 523 /* Oh dear, all in use. */ 524 spin_unlock(&all_mddevs_lock); 525 kfree(new); 526 return NULL; 527 } 528 529 is_free = 1; 530 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 531 if (mddev->unit == dev) { 532 is_free = 0; 533 break; 534 } 535 } 536 new->unit = dev; 537 new->md_minor = MINOR(dev); 538 new->hold_active = UNTIL_STOP; 539 list_add(&new->all_mddevs, &all_mddevs); 540 spin_unlock(&all_mddevs_lock); 541 return new; 542 } 543 spin_unlock(&all_mddevs_lock); 544 545 new = kzalloc(sizeof(*new), GFP_KERNEL); 546 if (!new) 547 return NULL; 548 549 new->unit = unit; 550 if (MAJOR(unit) == MD_MAJOR) 551 new->md_minor = MINOR(unit); 552 else 553 new->md_minor = MINOR(unit) >> MdpMinorShift; 554 555 mddev_init(new); 556 557 goto retry; 558 } 559 560 static inline int mddev_lock(mddev_t * mddev) 561 { 562 return mutex_lock_interruptible(&mddev->reconfig_mutex); 563 } 564 565 static inline int mddev_is_locked(mddev_t *mddev) 566 { 567 return mutex_is_locked(&mddev->reconfig_mutex); 568 } 569 570 static inline int mddev_trylock(mddev_t * mddev) 571 { 572 return mutex_trylock(&mddev->reconfig_mutex); 573 } 574 575 static struct attribute_group md_redundancy_group; 576 577 static void mddev_unlock(mddev_t * mddev) 578 { 579 if (mddev->to_remove) { 580 /* These cannot be removed under reconfig_mutex as 581 * an access to the files will try to take reconfig_mutex 582 * while holding the file unremovable, which leads to 583 * a deadlock. 584 * So hold set sysfs_active while the remove in happeing, 585 * and anything else which might set ->to_remove or my 586 * otherwise change the sysfs namespace will fail with 587 * -EBUSY if sysfs_active is still set. 588 * We set sysfs_active under reconfig_mutex and elsewhere 589 * test it under the same mutex to ensure its correct value 590 * is seen. 591 */ 592 struct attribute_group *to_remove = mddev->to_remove; 593 mddev->to_remove = NULL; 594 mddev->sysfs_active = 1; 595 mutex_unlock(&mddev->reconfig_mutex); 596 597 if (mddev->kobj.sd) { 598 if (to_remove != &md_redundancy_group) 599 sysfs_remove_group(&mddev->kobj, to_remove); 600 if (mddev->pers == NULL || 601 mddev->pers->sync_request == NULL) { 602 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 603 if (mddev->sysfs_action) 604 sysfs_put(mddev->sysfs_action); 605 mddev->sysfs_action = NULL; 606 } 607 } 608 mddev->sysfs_active = 0; 609 } else 610 mutex_unlock(&mddev->reconfig_mutex); 611 612 md_wakeup_thread(mddev->thread); 613 } 614 615 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 616 { 617 mdk_rdev_t *rdev; 618 619 list_for_each_entry(rdev, &mddev->disks, same_set) 620 if (rdev->desc_nr == nr) 621 return rdev; 622 623 return NULL; 624 } 625 626 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 627 { 628 mdk_rdev_t *rdev; 629 630 list_for_each_entry(rdev, &mddev->disks, same_set) 631 if (rdev->bdev->bd_dev == dev) 632 return rdev; 633 634 return NULL; 635 } 636 637 static struct mdk_personality *find_pers(int level, char *clevel) 638 { 639 struct mdk_personality *pers; 640 list_for_each_entry(pers, &pers_list, list) { 641 if (level != LEVEL_NONE && pers->level == level) 642 return pers; 643 if (strcmp(pers->name, clevel)==0) 644 return pers; 645 } 646 return NULL; 647 } 648 649 /* return the offset of the super block in 512byte sectors */ 650 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 651 { 652 sector_t num_sectors = bdev->bd_inode->i_size / 512; 653 return MD_NEW_SIZE_SECTORS(num_sectors); 654 } 655 656 static int alloc_disk_sb(mdk_rdev_t * rdev) 657 { 658 if (rdev->sb_page) 659 MD_BUG(); 660 661 rdev->sb_page = alloc_page(GFP_KERNEL); 662 if (!rdev->sb_page) { 663 printk(KERN_ALERT "md: out of memory.\n"); 664 return -ENOMEM; 665 } 666 667 return 0; 668 } 669 670 static void free_disk_sb(mdk_rdev_t * rdev) 671 { 672 if (rdev->sb_page) { 673 put_page(rdev->sb_page); 674 rdev->sb_loaded = 0; 675 rdev->sb_page = NULL; 676 rdev->sb_start = 0; 677 rdev->sectors = 0; 678 } 679 } 680 681 682 static void super_written(struct bio *bio, int error) 683 { 684 mdk_rdev_t *rdev = bio->bi_private; 685 mddev_t *mddev = rdev->mddev; 686 687 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 688 printk("md: super_written gets error=%d, uptodate=%d\n", 689 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 690 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 691 md_error(mddev, rdev); 692 } 693 694 if (atomic_dec_and_test(&mddev->pending_writes)) 695 wake_up(&mddev->sb_wait); 696 bio_put(bio); 697 } 698 699 static void super_written_barrier(struct bio *bio, int error) 700 { 701 struct bio *bio2 = bio->bi_private; 702 mdk_rdev_t *rdev = bio2->bi_private; 703 mddev_t *mddev = rdev->mddev; 704 705 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 706 error == -EOPNOTSUPP) { 707 unsigned long flags; 708 /* barriers don't appear to be supported :-( */ 709 set_bit(BarriersNotsupp, &rdev->flags); 710 mddev->barriers_work = 0; 711 spin_lock_irqsave(&mddev->write_lock, flags); 712 bio2->bi_next = mddev->biolist; 713 mddev->biolist = bio2; 714 spin_unlock_irqrestore(&mddev->write_lock, flags); 715 wake_up(&mddev->sb_wait); 716 bio_put(bio); 717 } else { 718 bio_put(bio2); 719 bio->bi_private = rdev; 720 super_written(bio, error); 721 } 722 } 723 724 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 725 sector_t sector, int size, struct page *page) 726 { 727 /* write first size bytes of page to sector of rdev 728 * Increment mddev->pending_writes before returning 729 * and decrement it on completion, waking up sb_wait 730 * if zero is reached. 731 * If an error occurred, call md_error 732 * 733 * As we might need to resubmit the request if REQ_HARDBARRIER 734 * causes ENOTSUPP, we allocate a spare bio... 735 */ 736 struct bio *bio = bio_alloc(GFP_NOIO, 1); 737 int rw = REQ_WRITE | REQ_SYNC | REQ_UNPLUG; 738 739 bio->bi_bdev = rdev->bdev; 740 bio->bi_sector = sector; 741 bio_add_page(bio, page, size, 0); 742 bio->bi_private = rdev; 743 bio->bi_end_io = super_written; 744 bio->bi_rw = rw; 745 746 atomic_inc(&mddev->pending_writes); 747 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 748 struct bio *rbio; 749 rw |= REQ_HARDBARRIER; 750 rbio = bio_clone(bio, GFP_NOIO); 751 rbio->bi_private = bio; 752 rbio->bi_end_io = super_written_barrier; 753 submit_bio(rw, rbio); 754 } else 755 submit_bio(rw, bio); 756 } 757 758 void md_super_wait(mddev_t *mddev) 759 { 760 /* wait for all superblock writes that were scheduled to complete. 761 * if any had to be retried (due to BARRIER problems), retry them 762 */ 763 DEFINE_WAIT(wq); 764 for(;;) { 765 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 766 if (atomic_read(&mddev->pending_writes)==0) 767 break; 768 while (mddev->biolist) { 769 struct bio *bio; 770 spin_lock_irq(&mddev->write_lock); 771 bio = mddev->biolist; 772 mddev->biolist = bio->bi_next ; 773 bio->bi_next = NULL; 774 spin_unlock_irq(&mddev->write_lock); 775 submit_bio(bio->bi_rw, bio); 776 } 777 schedule(); 778 } 779 finish_wait(&mddev->sb_wait, &wq); 780 } 781 782 static void bi_complete(struct bio *bio, int error) 783 { 784 complete((struct completion*)bio->bi_private); 785 } 786 787 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 788 struct page *page, int rw) 789 { 790 struct bio *bio = bio_alloc(GFP_NOIO, 1); 791 struct completion event; 792 int ret; 793 794 rw |= REQ_SYNC | REQ_UNPLUG; 795 796 bio->bi_bdev = bdev; 797 bio->bi_sector = sector; 798 bio_add_page(bio, page, size, 0); 799 init_completion(&event); 800 bio->bi_private = &event; 801 bio->bi_end_io = bi_complete; 802 submit_bio(rw, bio); 803 wait_for_completion(&event); 804 805 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 806 bio_put(bio); 807 return ret; 808 } 809 EXPORT_SYMBOL_GPL(sync_page_io); 810 811 static int read_disk_sb(mdk_rdev_t * rdev, int size) 812 { 813 char b[BDEVNAME_SIZE]; 814 if (!rdev->sb_page) { 815 MD_BUG(); 816 return -EINVAL; 817 } 818 if (rdev->sb_loaded) 819 return 0; 820 821 822 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ)) 823 goto fail; 824 rdev->sb_loaded = 1; 825 return 0; 826 827 fail: 828 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 829 bdevname(rdev->bdev,b)); 830 return -EINVAL; 831 } 832 833 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 834 { 835 return sb1->set_uuid0 == sb2->set_uuid0 && 836 sb1->set_uuid1 == sb2->set_uuid1 && 837 sb1->set_uuid2 == sb2->set_uuid2 && 838 sb1->set_uuid3 == sb2->set_uuid3; 839 } 840 841 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 842 { 843 int ret; 844 mdp_super_t *tmp1, *tmp2; 845 846 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 847 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 848 849 if (!tmp1 || !tmp2) { 850 ret = 0; 851 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 852 goto abort; 853 } 854 855 *tmp1 = *sb1; 856 *tmp2 = *sb2; 857 858 /* 859 * nr_disks is not constant 860 */ 861 tmp1->nr_disks = 0; 862 tmp2->nr_disks = 0; 863 864 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 865 abort: 866 kfree(tmp1); 867 kfree(tmp2); 868 return ret; 869 } 870 871 872 static u32 md_csum_fold(u32 csum) 873 { 874 csum = (csum & 0xffff) + (csum >> 16); 875 return (csum & 0xffff) + (csum >> 16); 876 } 877 878 static unsigned int calc_sb_csum(mdp_super_t * sb) 879 { 880 u64 newcsum = 0; 881 u32 *sb32 = (u32*)sb; 882 int i; 883 unsigned int disk_csum, csum; 884 885 disk_csum = sb->sb_csum; 886 sb->sb_csum = 0; 887 888 for (i = 0; i < MD_SB_BYTES/4 ; i++) 889 newcsum += sb32[i]; 890 csum = (newcsum & 0xffffffff) + (newcsum>>32); 891 892 893 #ifdef CONFIG_ALPHA 894 /* This used to use csum_partial, which was wrong for several 895 * reasons including that different results are returned on 896 * different architectures. It isn't critical that we get exactly 897 * the same return value as before (we always csum_fold before 898 * testing, and that removes any differences). However as we 899 * know that csum_partial always returned a 16bit value on 900 * alphas, do a fold to maximise conformity to previous behaviour. 901 */ 902 sb->sb_csum = md_csum_fold(disk_csum); 903 #else 904 sb->sb_csum = disk_csum; 905 #endif 906 return csum; 907 } 908 909 910 /* 911 * Handle superblock details. 912 * We want to be able to handle multiple superblock formats 913 * so we have a common interface to them all, and an array of 914 * different handlers. 915 * We rely on user-space to write the initial superblock, and support 916 * reading and updating of superblocks. 917 * Interface methods are: 918 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 919 * loads and validates a superblock on dev. 920 * if refdev != NULL, compare superblocks on both devices 921 * Return: 922 * 0 - dev has a superblock that is compatible with refdev 923 * 1 - dev has a superblock that is compatible and newer than refdev 924 * so dev should be used as the refdev in future 925 * -EINVAL superblock incompatible or invalid 926 * -othererror e.g. -EIO 927 * 928 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 929 * Verify that dev is acceptable into mddev. 930 * The first time, mddev->raid_disks will be 0, and data from 931 * dev should be merged in. Subsequent calls check that dev 932 * is new enough. Return 0 or -EINVAL 933 * 934 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 935 * Update the superblock for rdev with data in mddev 936 * This does not write to disc. 937 * 938 */ 939 940 struct super_type { 941 char *name; 942 struct module *owner; 943 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, 944 int minor_version); 945 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 946 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 947 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev, 948 sector_t num_sectors); 949 }; 950 951 /* 952 * Check that the given mddev has no bitmap. 953 * 954 * This function is called from the run method of all personalities that do not 955 * support bitmaps. It prints an error message and returns non-zero if mddev 956 * has a bitmap. Otherwise, it returns 0. 957 * 958 */ 959 int md_check_no_bitmap(mddev_t *mddev) 960 { 961 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 962 return 0; 963 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 964 mdname(mddev), mddev->pers->name); 965 return 1; 966 } 967 EXPORT_SYMBOL(md_check_no_bitmap); 968 969 /* 970 * load_super for 0.90.0 971 */ 972 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 973 { 974 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 975 mdp_super_t *sb; 976 int ret; 977 978 /* 979 * Calculate the position of the superblock (512byte sectors), 980 * it's at the end of the disk. 981 * 982 * It also happens to be a multiple of 4Kb. 983 */ 984 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 985 986 ret = read_disk_sb(rdev, MD_SB_BYTES); 987 if (ret) return ret; 988 989 ret = -EINVAL; 990 991 bdevname(rdev->bdev, b); 992 sb = (mdp_super_t*)page_address(rdev->sb_page); 993 994 if (sb->md_magic != MD_SB_MAGIC) { 995 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 996 b); 997 goto abort; 998 } 999 1000 if (sb->major_version != 0 || 1001 sb->minor_version < 90 || 1002 sb->minor_version > 91) { 1003 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1004 sb->major_version, sb->minor_version, 1005 b); 1006 goto abort; 1007 } 1008 1009 if (sb->raid_disks <= 0) 1010 goto abort; 1011 1012 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1013 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1014 b); 1015 goto abort; 1016 } 1017 1018 rdev->preferred_minor = sb->md_minor; 1019 rdev->data_offset = 0; 1020 rdev->sb_size = MD_SB_BYTES; 1021 1022 if (sb->level == LEVEL_MULTIPATH) 1023 rdev->desc_nr = -1; 1024 else 1025 rdev->desc_nr = sb->this_disk.number; 1026 1027 if (!refdev) { 1028 ret = 1; 1029 } else { 1030 __u64 ev1, ev2; 1031 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 1032 if (!uuid_equal(refsb, sb)) { 1033 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1034 b, bdevname(refdev->bdev,b2)); 1035 goto abort; 1036 } 1037 if (!sb_equal(refsb, sb)) { 1038 printk(KERN_WARNING "md: %s has same UUID" 1039 " but different superblock to %s\n", 1040 b, bdevname(refdev->bdev, b2)); 1041 goto abort; 1042 } 1043 ev1 = md_event(sb); 1044 ev2 = md_event(refsb); 1045 if (ev1 > ev2) 1046 ret = 1; 1047 else 1048 ret = 0; 1049 } 1050 rdev->sectors = rdev->sb_start; 1051 1052 if (rdev->sectors < sb->size * 2 && sb->level > 1) 1053 /* "this cannot possibly happen" ... */ 1054 ret = -EINVAL; 1055 1056 abort: 1057 return ret; 1058 } 1059 1060 /* 1061 * validate_super for 0.90.0 1062 */ 1063 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1064 { 1065 mdp_disk_t *desc; 1066 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 1067 __u64 ev1 = md_event(sb); 1068 1069 rdev->raid_disk = -1; 1070 clear_bit(Faulty, &rdev->flags); 1071 clear_bit(In_sync, &rdev->flags); 1072 clear_bit(WriteMostly, &rdev->flags); 1073 clear_bit(BarriersNotsupp, &rdev->flags); 1074 1075 if (mddev->raid_disks == 0) { 1076 mddev->major_version = 0; 1077 mddev->minor_version = sb->minor_version; 1078 mddev->patch_version = sb->patch_version; 1079 mddev->external = 0; 1080 mddev->chunk_sectors = sb->chunk_size >> 9; 1081 mddev->ctime = sb->ctime; 1082 mddev->utime = sb->utime; 1083 mddev->level = sb->level; 1084 mddev->clevel[0] = 0; 1085 mddev->layout = sb->layout; 1086 mddev->raid_disks = sb->raid_disks; 1087 mddev->dev_sectors = sb->size * 2; 1088 mddev->events = ev1; 1089 mddev->bitmap_info.offset = 0; 1090 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1091 1092 if (mddev->minor_version >= 91) { 1093 mddev->reshape_position = sb->reshape_position; 1094 mddev->delta_disks = sb->delta_disks; 1095 mddev->new_level = sb->new_level; 1096 mddev->new_layout = sb->new_layout; 1097 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1098 } else { 1099 mddev->reshape_position = MaxSector; 1100 mddev->delta_disks = 0; 1101 mddev->new_level = mddev->level; 1102 mddev->new_layout = mddev->layout; 1103 mddev->new_chunk_sectors = mddev->chunk_sectors; 1104 } 1105 1106 if (sb->state & (1<<MD_SB_CLEAN)) 1107 mddev->recovery_cp = MaxSector; 1108 else { 1109 if (sb->events_hi == sb->cp_events_hi && 1110 sb->events_lo == sb->cp_events_lo) { 1111 mddev->recovery_cp = sb->recovery_cp; 1112 } else 1113 mddev->recovery_cp = 0; 1114 } 1115 1116 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1117 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1118 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1119 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1120 1121 mddev->max_disks = MD_SB_DISKS; 1122 1123 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1124 mddev->bitmap_info.file == NULL) 1125 mddev->bitmap_info.offset = 1126 mddev->bitmap_info.default_offset; 1127 1128 } else if (mddev->pers == NULL) { 1129 /* Insist on good event counter while assembling, except 1130 * for spares (which don't need an event count) */ 1131 ++ev1; 1132 if (sb->disks[rdev->desc_nr].state & ( 1133 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1134 if (ev1 < mddev->events) 1135 return -EINVAL; 1136 } else if (mddev->bitmap) { 1137 /* if adding to array with a bitmap, then we can accept an 1138 * older device ... but not too old. 1139 */ 1140 if (ev1 < mddev->bitmap->events_cleared) 1141 return 0; 1142 } else { 1143 if (ev1 < mddev->events) 1144 /* just a hot-add of a new device, leave raid_disk at -1 */ 1145 return 0; 1146 } 1147 1148 if (mddev->level != LEVEL_MULTIPATH) { 1149 desc = sb->disks + rdev->desc_nr; 1150 1151 if (desc->state & (1<<MD_DISK_FAULTY)) 1152 set_bit(Faulty, &rdev->flags); 1153 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1154 desc->raid_disk < mddev->raid_disks */) { 1155 set_bit(In_sync, &rdev->flags); 1156 rdev->raid_disk = desc->raid_disk; 1157 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1158 /* active but not in sync implies recovery up to 1159 * reshape position. We don't know exactly where 1160 * that is, so set to zero for now */ 1161 if (mddev->minor_version >= 91) { 1162 rdev->recovery_offset = 0; 1163 rdev->raid_disk = desc->raid_disk; 1164 } 1165 } 1166 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1167 set_bit(WriteMostly, &rdev->flags); 1168 } else /* MULTIPATH are always insync */ 1169 set_bit(In_sync, &rdev->flags); 1170 return 0; 1171 } 1172 1173 /* 1174 * sync_super for 0.90.0 1175 */ 1176 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1177 { 1178 mdp_super_t *sb; 1179 mdk_rdev_t *rdev2; 1180 int next_spare = mddev->raid_disks; 1181 1182 1183 /* make rdev->sb match mddev data.. 1184 * 1185 * 1/ zero out disks 1186 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1187 * 3/ any empty disks < next_spare become removed 1188 * 1189 * disks[0] gets initialised to REMOVED because 1190 * we cannot be sure from other fields if it has 1191 * been initialised or not. 1192 */ 1193 int i; 1194 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1195 1196 rdev->sb_size = MD_SB_BYTES; 1197 1198 sb = (mdp_super_t*)page_address(rdev->sb_page); 1199 1200 memset(sb, 0, sizeof(*sb)); 1201 1202 sb->md_magic = MD_SB_MAGIC; 1203 sb->major_version = mddev->major_version; 1204 sb->patch_version = mddev->patch_version; 1205 sb->gvalid_words = 0; /* ignored */ 1206 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1207 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1208 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1209 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1210 1211 sb->ctime = mddev->ctime; 1212 sb->level = mddev->level; 1213 sb->size = mddev->dev_sectors / 2; 1214 sb->raid_disks = mddev->raid_disks; 1215 sb->md_minor = mddev->md_minor; 1216 sb->not_persistent = 0; 1217 sb->utime = mddev->utime; 1218 sb->state = 0; 1219 sb->events_hi = (mddev->events>>32); 1220 sb->events_lo = (u32)mddev->events; 1221 1222 if (mddev->reshape_position == MaxSector) 1223 sb->minor_version = 90; 1224 else { 1225 sb->minor_version = 91; 1226 sb->reshape_position = mddev->reshape_position; 1227 sb->new_level = mddev->new_level; 1228 sb->delta_disks = mddev->delta_disks; 1229 sb->new_layout = mddev->new_layout; 1230 sb->new_chunk = mddev->new_chunk_sectors << 9; 1231 } 1232 mddev->minor_version = sb->minor_version; 1233 if (mddev->in_sync) 1234 { 1235 sb->recovery_cp = mddev->recovery_cp; 1236 sb->cp_events_hi = (mddev->events>>32); 1237 sb->cp_events_lo = (u32)mddev->events; 1238 if (mddev->recovery_cp == MaxSector) 1239 sb->state = (1<< MD_SB_CLEAN); 1240 } else 1241 sb->recovery_cp = 0; 1242 1243 sb->layout = mddev->layout; 1244 sb->chunk_size = mddev->chunk_sectors << 9; 1245 1246 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1247 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1248 1249 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1250 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1251 mdp_disk_t *d; 1252 int desc_nr; 1253 int is_active = test_bit(In_sync, &rdev2->flags); 1254 1255 if (rdev2->raid_disk >= 0 && 1256 sb->minor_version >= 91) 1257 /* we have nowhere to store the recovery_offset, 1258 * but if it is not below the reshape_position, 1259 * we can piggy-back on that. 1260 */ 1261 is_active = 1; 1262 if (rdev2->raid_disk < 0 || 1263 test_bit(Faulty, &rdev2->flags)) 1264 is_active = 0; 1265 if (is_active) 1266 desc_nr = rdev2->raid_disk; 1267 else 1268 desc_nr = next_spare++; 1269 rdev2->desc_nr = desc_nr; 1270 d = &sb->disks[rdev2->desc_nr]; 1271 nr_disks++; 1272 d->number = rdev2->desc_nr; 1273 d->major = MAJOR(rdev2->bdev->bd_dev); 1274 d->minor = MINOR(rdev2->bdev->bd_dev); 1275 if (is_active) 1276 d->raid_disk = rdev2->raid_disk; 1277 else 1278 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1279 if (test_bit(Faulty, &rdev2->flags)) 1280 d->state = (1<<MD_DISK_FAULTY); 1281 else if (is_active) { 1282 d->state = (1<<MD_DISK_ACTIVE); 1283 if (test_bit(In_sync, &rdev2->flags)) 1284 d->state |= (1<<MD_DISK_SYNC); 1285 active++; 1286 working++; 1287 } else { 1288 d->state = 0; 1289 spare++; 1290 working++; 1291 } 1292 if (test_bit(WriteMostly, &rdev2->flags)) 1293 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1294 } 1295 /* now set the "removed" and "faulty" bits on any missing devices */ 1296 for (i=0 ; i < mddev->raid_disks ; i++) { 1297 mdp_disk_t *d = &sb->disks[i]; 1298 if (d->state == 0 && d->number == 0) { 1299 d->number = i; 1300 d->raid_disk = i; 1301 d->state = (1<<MD_DISK_REMOVED); 1302 d->state |= (1<<MD_DISK_FAULTY); 1303 failed++; 1304 } 1305 } 1306 sb->nr_disks = nr_disks; 1307 sb->active_disks = active; 1308 sb->working_disks = working; 1309 sb->failed_disks = failed; 1310 sb->spare_disks = spare; 1311 1312 sb->this_disk = sb->disks[rdev->desc_nr]; 1313 sb->sb_csum = calc_sb_csum(sb); 1314 } 1315 1316 /* 1317 * rdev_size_change for 0.90.0 1318 */ 1319 static unsigned long long 1320 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1321 { 1322 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1323 return 0; /* component must fit device */ 1324 if (rdev->mddev->bitmap_info.offset) 1325 return 0; /* can't move bitmap */ 1326 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 1327 if (!num_sectors || num_sectors > rdev->sb_start) 1328 num_sectors = rdev->sb_start; 1329 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1330 rdev->sb_page); 1331 md_super_wait(rdev->mddev); 1332 return num_sectors / 2; /* kB for sysfs */ 1333 } 1334 1335 1336 /* 1337 * version 1 superblock 1338 */ 1339 1340 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1341 { 1342 __le32 disk_csum; 1343 u32 csum; 1344 unsigned long long newcsum; 1345 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1346 __le32 *isuper = (__le32*)sb; 1347 int i; 1348 1349 disk_csum = sb->sb_csum; 1350 sb->sb_csum = 0; 1351 newcsum = 0; 1352 for (i=0; size>=4; size -= 4 ) 1353 newcsum += le32_to_cpu(*isuper++); 1354 1355 if (size == 2) 1356 newcsum += le16_to_cpu(*(__le16*) isuper); 1357 1358 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1359 sb->sb_csum = disk_csum; 1360 return cpu_to_le32(csum); 1361 } 1362 1363 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1364 { 1365 struct mdp_superblock_1 *sb; 1366 int ret; 1367 sector_t sb_start; 1368 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1369 int bmask; 1370 1371 /* 1372 * Calculate the position of the superblock in 512byte sectors. 1373 * It is always aligned to a 4K boundary and 1374 * depeding on minor_version, it can be: 1375 * 0: At least 8K, but less than 12K, from end of device 1376 * 1: At start of device 1377 * 2: 4K from start of device. 1378 */ 1379 switch(minor_version) { 1380 case 0: 1381 sb_start = rdev->bdev->bd_inode->i_size >> 9; 1382 sb_start -= 8*2; 1383 sb_start &= ~(sector_t)(4*2-1); 1384 break; 1385 case 1: 1386 sb_start = 0; 1387 break; 1388 case 2: 1389 sb_start = 8; 1390 break; 1391 default: 1392 return -EINVAL; 1393 } 1394 rdev->sb_start = sb_start; 1395 1396 /* superblock is rarely larger than 1K, but it can be larger, 1397 * and it is safe to read 4k, so we do that 1398 */ 1399 ret = read_disk_sb(rdev, 4096); 1400 if (ret) return ret; 1401 1402 1403 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1404 1405 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1406 sb->major_version != cpu_to_le32(1) || 1407 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1408 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1409 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1410 return -EINVAL; 1411 1412 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1413 printk("md: invalid superblock checksum on %s\n", 1414 bdevname(rdev->bdev,b)); 1415 return -EINVAL; 1416 } 1417 if (le64_to_cpu(sb->data_size) < 10) { 1418 printk("md: data_size too small on %s\n", 1419 bdevname(rdev->bdev,b)); 1420 return -EINVAL; 1421 } 1422 1423 rdev->preferred_minor = 0xffff; 1424 rdev->data_offset = le64_to_cpu(sb->data_offset); 1425 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1426 1427 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1428 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1429 if (rdev->sb_size & bmask) 1430 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1431 1432 if (minor_version 1433 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1434 return -EINVAL; 1435 1436 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1437 rdev->desc_nr = -1; 1438 else 1439 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1440 1441 if (!refdev) { 1442 ret = 1; 1443 } else { 1444 __u64 ev1, ev2; 1445 struct mdp_superblock_1 *refsb = 1446 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1447 1448 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1449 sb->level != refsb->level || 1450 sb->layout != refsb->layout || 1451 sb->chunksize != refsb->chunksize) { 1452 printk(KERN_WARNING "md: %s has strangely different" 1453 " superblock to %s\n", 1454 bdevname(rdev->bdev,b), 1455 bdevname(refdev->bdev,b2)); 1456 return -EINVAL; 1457 } 1458 ev1 = le64_to_cpu(sb->events); 1459 ev2 = le64_to_cpu(refsb->events); 1460 1461 if (ev1 > ev2) 1462 ret = 1; 1463 else 1464 ret = 0; 1465 } 1466 if (minor_version) 1467 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) - 1468 le64_to_cpu(sb->data_offset); 1469 else 1470 rdev->sectors = rdev->sb_start; 1471 if (rdev->sectors < le64_to_cpu(sb->data_size)) 1472 return -EINVAL; 1473 rdev->sectors = le64_to_cpu(sb->data_size); 1474 if (le64_to_cpu(sb->size) > rdev->sectors) 1475 return -EINVAL; 1476 return ret; 1477 } 1478 1479 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1480 { 1481 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1482 __u64 ev1 = le64_to_cpu(sb->events); 1483 1484 rdev->raid_disk = -1; 1485 clear_bit(Faulty, &rdev->flags); 1486 clear_bit(In_sync, &rdev->flags); 1487 clear_bit(WriteMostly, &rdev->flags); 1488 clear_bit(BarriersNotsupp, &rdev->flags); 1489 1490 if (mddev->raid_disks == 0) { 1491 mddev->major_version = 1; 1492 mddev->patch_version = 0; 1493 mddev->external = 0; 1494 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1495 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1496 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1497 mddev->level = le32_to_cpu(sb->level); 1498 mddev->clevel[0] = 0; 1499 mddev->layout = le32_to_cpu(sb->layout); 1500 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1501 mddev->dev_sectors = le64_to_cpu(sb->size); 1502 mddev->events = ev1; 1503 mddev->bitmap_info.offset = 0; 1504 mddev->bitmap_info.default_offset = 1024 >> 9; 1505 1506 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1507 memcpy(mddev->uuid, sb->set_uuid, 16); 1508 1509 mddev->max_disks = (4096-256)/2; 1510 1511 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1512 mddev->bitmap_info.file == NULL ) 1513 mddev->bitmap_info.offset = 1514 (__s32)le32_to_cpu(sb->bitmap_offset); 1515 1516 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1517 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1518 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1519 mddev->new_level = le32_to_cpu(sb->new_level); 1520 mddev->new_layout = le32_to_cpu(sb->new_layout); 1521 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1522 } else { 1523 mddev->reshape_position = MaxSector; 1524 mddev->delta_disks = 0; 1525 mddev->new_level = mddev->level; 1526 mddev->new_layout = mddev->layout; 1527 mddev->new_chunk_sectors = mddev->chunk_sectors; 1528 } 1529 1530 } else if (mddev->pers == NULL) { 1531 /* Insist of good event counter while assembling, except for 1532 * spares (which don't need an event count) */ 1533 ++ev1; 1534 if (rdev->desc_nr >= 0 && 1535 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1536 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1537 if (ev1 < mddev->events) 1538 return -EINVAL; 1539 } else if (mddev->bitmap) { 1540 /* If adding to array with a bitmap, then we can accept an 1541 * older device, but not too old. 1542 */ 1543 if (ev1 < mddev->bitmap->events_cleared) 1544 return 0; 1545 } else { 1546 if (ev1 < mddev->events) 1547 /* just a hot-add of a new device, leave raid_disk at -1 */ 1548 return 0; 1549 } 1550 if (mddev->level != LEVEL_MULTIPATH) { 1551 int role; 1552 if (rdev->desc_nr < 0 || 1553 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1554 role = 0xffff; 1555 rdev->desc_nr = -1; 1556 } else 1557 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1558 switch(role) { 1559 case 0xffff: /* spare */ 1560 break; 1561 case 0xfffe: /* faulty */ 1562 set_bit(Faulty, &rdev->flags); 1563 break; 1564 default: 1565 if ((le32_to_cpu(sb->feature_map) & 1566 MD_FEATURE_RECOVERY_OFFSET)) 1567 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1568 else 1569 set_bit(In_sync, &rdev->flags); 1570 rdev->raid_disk = role; 1571 break; 1572 } 1573 if (sb->devflags & WriteMostly1) 1574 set_bit(WriteMostly, &rdev->flags); 1575 } else /* MULTIPATH are always insync */ 1576 set_bit(In_sync, &rdev->flags); 1577 1578 return 0; 1579 } 1580 1581 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1582 { 1583 struct mdp_superblock_1 *sb; 1584 mdk_rdev_t *rdev2; 1585 int max_dev, i; 1586 /* make rdev->sb match mddev and rdev data. */ 1587 1588 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1589 1590 sb->feature_map = 0; 1591 sb->pad0 = 0; 1592 sb->recovery_offset = cpu_to_le64(0); 1593 memset(sb->pad1, 0, sizeof(sb->pad1)); 1594 memset(sb->pad2, 0, sizeof(sb->pad2)); 1595 memset(sb->pad3, 0, sizeof(sb->pad3)); 1596 1597 sb->utime = cpu_to_le64((__u64)mddev->utime); 1598 sb->events = cpu_to_le64(mddev->events); 1599 if (mddev->in_sync) 1600 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1601 else 1602 sb->resync_offset = cpu_to_le64(0); 1603 1604 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1605 1606 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1607 sb->size = cpu_to_le64(mddev->dev_sectors); 1608 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1609 sb->level = cpu_to_le32(mddev->level); 1610 sb->layout = cpu_to_le32(mddev->layout); 1611 1612 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1613 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1614 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1615 } 1616 1617 if (rdev->raid_disk >= 0 && 1618 !test_bit(In_sync, &rdev->flags)) { 1619 sb->feature_map |= 1620 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1621 sb->recovery_offset = 1622 cpu_to_le64(rdev->recovery_offset); 1623 } 1624 1625 if (mddev->reshape_position != MaxSector) { 1626 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1627 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1628 sb->new_layout = cpu_to_le32(mddev->new_layout); 1629 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1630 sb->new_level = cpu_to_le32(mddev->new_level); 1631 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1632 } 1633 1634 max_dev = 0; 1635 list_for_each_entry(rdev2, &mddev->disks, same_set) 1636 if (rdev2->desc_nr+1 > max_dev) 1637 max_dev = rdev2->desc_nr+1; 1638 1639 if (max_dev > le32_to_cpu(sb->max_dev)) { 1640 int bmask; 1641 sb->max_dev = cpu_to_le32(max_dev); 1642 rdev->sb_size = max_dev * 2 + 256; 1643 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1644 if (rdev->sb_size & bmask) 1645 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1646 } 1647 for (i=0; i<max_dev;i++) 1648 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1649 1650 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1651 i = rdev2->desc_nr; 1652 if (test_bit(Faulty, &rdev2->flags)) 1653 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1654 else if (test_bit(In_sync, &rdev2->flags)) 1655 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1656 else if (rdev2->raid_disk >= 0) 1657 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1658 else 1659 sb->dev_roles[i] = cpu_to_le16(0xffff); 1660 } 1661 1662 sb->sb_csum = calc_sb_1_csum(sb); 1663 } 1664 1665 static unsigned long long 1666 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1667 { 1668 struct mdp_superblock_1 *sb; 1669 sector_t max_sectors; 1670 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1671 return 0; /* component must fit device */ 1672 if (rdev->sb_start < rdev->data_offset) { 1673 /* minor versions 1 and 2; superblock before data */ 1674 max_sectors = rdev->bdev->bd_inode->i_size >> 9; 1675 max_sectors -= rdev->data_offset; 1676 if (!num_sectors || num_sectors > max_sectors) 1677 num_sectors = max_sectors; 1678 } else if (rdev->mddev->bitmap_info.offset) { 1679 /* minor version 0 with bitmap we can't move */ 1680 return 0; 1681 } else { 1682 /* minor version 0; superblock after data */ 1683 sector_t sb_start; 1684 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2; 1685 sb_start &= ~(sector_t)(4*2 - 1); 1686 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1687 if (!num_sectors || num_sectors > max_sectors) 1688 num_sectors = max_sectors; 1689 rdev->sb_start = sb_start; 1690 } 1691 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page); 1692 sb->data_size = cpu_to_le64(num_sectors); 1693 sb->super_offset = rdev->sb_start; 1694 sb->sb_csum = calc_sb_1_csum(sb); 1695 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1696 rdev->sb_page); 1697 md_super_wait(rdev->mddev); 1698 return num_sectors / 2; /* kB for sysfs */ 1699 } 1700 1701 static struct super_type super_types[] = { 1702 [0] = { 1703 .name = "0.90.0", 1704 .owner = THIS_MODULE, 1705 .load_super = super_90_load, 1706 .validate_super = super_90_validate, 1707 .sync_super = super_90_sync, 1708 .rdev_size_change = super_90_rdev_size_change, 1709 }, 1710 [1] = { 1711 .name = "md-1", 1712 .owner = THIS_MODULE, 1713 .load_super = super_1_load, 1714 .validate_super = super_1_validate, 1715 .sync_super = super_1_sync, 1716 .rdev_size_change = super_1_rdev_size_change, 1717 }, 1718 }; 1719 1720 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1721 { 1722 mdk_rdev_t *rdev, *rdev2; 1723 1724 rcu_read_lock(); 1725 rdev_for_each_rcu(rdev, mddev1) 1726 rdev_for_each_rcu(rdev2, mddev2) 1727 if (rdev->bdev->bd_contains == 1728 rdev2->bdev->bd_contains) { 1729 rcu_read_unlock(); 1730 return 1; 1731 } 1732 rcu_read_unlock(); 1733 return 0; 1734 } 1735 1736 static LIST_HEAD(pending_raid_disks); 1737 1738 /* 1739 * Try to register data integrity profile for an mddev 1740 * 1741 * This is called when an array is started and after a disk has been kicked 1742 * from the array. It only succeeds if all working and active component devices 1743 * are integrity capable with matching profiles. 1744 */ 1745 int md_integrity_register(mddev_t *mddev) 1746 { 1747 mdk_rdev_t *rdev, *reference = NULL; 1748 1749 if (list_empty(&mddev->disks)) 1750 return 0; /* nothing to do */ 1751 if (blk_get_integrity(mddev->gendisk)) 1752 return 0; /* already registered */ 1753 list_for_each_entry(rdev, &mddev->disks, same_set) { 1754 /* skip spares and non-functional disks */ 1755 if (test_bit(Faulty, &rdev->flags)) 1756 continue; 1757 if (rdev->raid_disk < 0) 1758 continue; 1759 /* 1760 * If at least one rdev is not integrity capable, we can not 1761 * enable data integrity for the md device. 1762 */ 1763 if (!bdev_get_integrity(rdev->bdev)) 1764 return -EINVAL; 1765 if (!reference) { 1766 /* Use the first rdev as the reference */ 1767 reference = rdev; 1768 continue; 1769 } 1770 /* does this rdev's profile match the reference profile? */ 1771 if (blk_integrity_compare(reference->bdev->bd_disk, 1772 rdev->bdev->bd_disk) < 0) 1773 return -EINVAL; 1774 } 1775 /* 1776 * All component devices are integrity capable and have matching 1777 * profiles, register the common profile for the md device. 1778 */ 1779 if (blk_integrity_register(mddev->gendisk, 1780 bdev_get_integrity(reference->bdev)) != 0) { 1781 printk(KERN_ERR "md: failed to register integrity for %s\n", 1782 mdname(mddev)); 1783 return -EINVAL; 1784 } 1785 printk(KERN_NOTICE "md: data integrity on %s enabled\n", 1786 mdname(mddev)); 1787 return 0; 1788 } 1789 EXPORT_SYMBOL(md_integrity_register); 1790 1791 /* Disable data integrity if non-capable/non-matching disk is being added */ 1792 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 1793 { 1794 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); 1795 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk); 1796 1797 if (!bi_mddev) /* nothing to do */ 1798 return; 1799 if (rdev->raid_disk < 0) /* skip spares */ 1800 return; 1801 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 1802 rdev->bdev->bd_disk) >= 0) 1803 return; 1804 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 1805 blk_integrity_unregister(mddev->gendisk); 1806 } 1807 EXPORT_SYMBOL(md_integrity_add_rdev); 1808 1809 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1810 { 1811 char b[BDEVNAME_SIZE]; 1812 struct kobject *ko; 1813 char *s; 1814 int err; 1815 1816 if (rdev->mddev) { 1817 MD_BUG(); 1818 return -EINVAL; 1819 } 1820 1821 /* prevent duplicates */ 1822 if (find_rdev(mddev, rdev->bdev->bd_dev)) 1823 return -EEXIST; 1824 1825 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 1826 if (rdev->sectors && (mddev->dev_sectors == 0 || 1827 rdev->sectors < mddev->dev_sectors)) { 1828 if (mddev->pers) { 1829 /* Cannot change size, so fail 1830 * If mddev->level <= 0, then we don't care 1831 * about aligning sizes (e.g. linear) 1832 */ 1833 if (mddev->level > 0) 1834 return -ENOSPC; 1835 } else 1836 mddev->dev_sectors = rdev->sectors; 1837 } 1838 1839 /* Verify rdev->desc_nr is unique. 1840 * If it is -1, assign a free number, else 1841 * check number is not in use 1842 */ 1843 if (rdev->desc_nr < 0) { 1844 int choice = 0; 1845 if (mddev->pers) choice = mddev->raid_disks; 1846 while (find_rdev_nr(mddev, choice)) 1847 choice++; 1848 rdev->desc_nr = choice; 1849 } else { 1850 if (find_rdev_nr(mddev, rdev->desc_nr)) 1851 return -EBUSY; 1852 } 1853 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 1854 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 1855 mdname(mddev), mddev->max_disks); 1856 return -EBUSY; 1857 } 1858 bdevname(rdev->bdev,b); 1859 while ( (s=strchr(b, '/')) != NULL) 1860 *s = '!'; 1861 1862 rdev->mddev = mddev; 1863 printk(KERN_INFO "md: bind<%s>\n", b); 1864 1865 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 1866 goto fail; 1867 1868 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 1869 if (sysfs_create_link(&rdev->kobj, ko, "block")) 1870 /* failure here is OK */; 1871 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 1872 1873 list_add_rcu(&rdev->same_set, &mddev->disks); 1874 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk); 1875 1876 /* May as well allow recovery to be retried once */ 1877 mddev->recovery_disabled = 0; 1878 1879 return 0; 1880 1881 fail: 1882 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1883 b, mdname(mddev)); 1884 return err; 1885 } 1886 1887 static void md_delayed_delete(struct work_struct *ws) 1888 { 1889 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1890 kobject_del(&rdev->kobj); 1891 kobject_put(&rdev->kobj); 1892 } 1893 1894 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1895 { 1896 char b[BDEVNAME_SIZE]; 1897 if (!rdev->mddev) { 1898 MD_BUG(); 1899 return; 1900 } 1901 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1902 list_del_rcu(&rdev->same_set); 1903 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1904 rdev->mddev = NULL; 1905 sysfs_remove_link(&rdev->kobj, "block"); 1906 sysfs_put(rdev->sysfs_state); 1907 rdev->sysfs_state = NULL; 1908 /* We need to delay this, otherwise we can deadlock when 1909 * writing to 'remove' to "dev/state". We also need 1910 * to delay it due to rcu usage. 1911 */ 1912 synchronize_rcu(); 1913 INIT_WORK(&rdev->del_work, md_delayed_delete); 1914 kobject_get(&rdev->kobj); 1915 schedule_work(&rdev->del_work); 1916 } 1917 1918 /* 1919 * prevent the device from being mounted, repartitioned or 1920 * otherwise reused by a RAID array (or any other kernel 1921 * subsystem), by bd_claiming the device. 1922 */ 1923 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) 1924 { 1925 int err = 0; 1926 struct block_device *bdev; 1927 char b[BDEVNAME_SIZE]; 1928 1929 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1930 if (IS_ERR(bdev)) { 1931 printk(KERN_ERR "md: could not open %s.\n", 1932 __bdevname(dev, b)); 1933 return PTR_ERR(bdev); 1934 } 1935 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev); 1936 if (err) { 1937 printk(KERN_ERR "md: could not bd_claim %s.\n", 1938 bdevname(bdev, b)); 1939 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1940 return err; 1941 } 1942 if (!shared) 1943 set_bit(AllReserved, &rdev->flags); 1944 rdev->bdev = bdev; 1945 return err; 1946 } 1947 1948 static void unlock_rdev(mdk_rdev_t *rdev) 1949 { 1950 struct block_device *bdev = rdev->bdev; 1951 rdev->bdev = NULL; 1952 if (!bdev) 1953 MD_BUG(); 1954 bd_release(bdev); 1955 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1956 } 1957 1958 void md_autodetect_dev(dev_t dev); 1959 1960 static void export_rdev(mdk_rdev_t * rdev) 1961 { 1962 char b[BDEVNAME_SIZE]; 1963 printk(KERN_INFO "md: export_rdev(%s)\n", 1964 bdevname(rdev->bdev,b)); 1965 if (rdev->mddev) 1966 MD_BUG(); 1967 free_disk_sb(rdev); 1968 #ifndef MODULE 1969 if (test_bit(AutoDetected, &rdev->flags)) 1970 md_autodetect_dev(rdev->bdev->bd_dev); 1971 #endif 1972 unlock_rdev(rdev); 1973 kobject_put(&rdev->kobj); 1974 } 1975 1976 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1977 { 1978 unbind_rdev_from_array(rdev); 1979 export_rdev(rdev); 1980 } 1981 1982 static void export_array(mddev_t *mddev) 1983 { 1984 mdk_rdev_t *rdev, *tmp; 1985 1986 rdev_for_each(rdev, tmp, mddev) { 1987 if (!rdev->mddev) { 1988 MD_BUG(); 1989 continue; 1990 } 1991 kick_rdev_from_array(rdev); 1992 } 1993 if (!list_empty(&mddev->disks)) 1994 MD_BUG(); 1995 mddev->raid_disks = 0; 1996 mddev->major_version = 0; 1997 } 1998 1999 static void print_desc(mdp_disk_t *desc) 2000 { 2001 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2002 desc->major,desc->minor,desc->raid_disk,desc->state); 2003 } 2004 2005 static void print_sb_90(mdp_super_t *sb) 2006 { 2007 int i; 2008 2009 printk(KERN_INFO 2010 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2011 sb->major_version, sb->minor_version, sb->patch_version, 2012 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2013 sb->ctime); 2014 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2015 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2016 sb->md_minor, sb->layout, sb->chunk_size); 2017 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2018 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2019 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2020 sb->failed_disks, sb->spare_disks, 2021 sb->sb_csum, (unsigned long)sb->events_lo); 2022 2023 printk(KERN_INFO); 2024 for (i = 0; i < MD_SB_DISKS; i++) { 2025 mdp_disk_t *desc; 2026 2027 desc = sb->disks + i; 2028 if (desc->number || desc->major || desc->minor || 2029 desc->raid_disk || (desc->state && (desc->state != 4))) { 2030 printk(" D %2d: ", i); 2031 print_desc(desc); 2032 } 2033 } 2034 printk(KERN_INFO "md: THIS: "); 2035 print_desc(&sb->this_disk); 2036 } 2037 2038 static void print_sb_1(struct mdp_superblock_1 *sb) 2039 { 2040 __u8 *uuid; 2041 2042 uuid = sb->set_uuid; 2043 printk(KERN_INFO 2044 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2045 "md: Name: \"%s\" CT:%llu\n", 2046 le32_to_cpu(sb->major_version), 2047 le32_to_cpu(sb->feature_map), 2048 uuid, 2049 sb->set_name, 2050 (unsigned long long)le64_to_cpu(sb->ctime) 2051 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2052 2053 uuid = sb->device_uuid; 2054 printk(KERN_INFO 2055 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2056 " RO:%llu\n" 2057 "md: Dev:%08x UUID: %pU\n" 2058 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2059 "md: (MaxDev:%u) \n", 2060 le32_to_cpu(sb->level), 2061 (unsigned long long)le64_to_cpu(sb->size), 2062 le32_to_cpu(sb->raid_disks), 2063 le32_to_cpu(sb->layout), 2064 le32_to_cpu(sb->chunksize), 2065 (unsigned long long)le64_to_cpu(sb->data_offset), 2066 (unsigned long long)le64_to_cpu(sb->data_size), 2067 (unsigned long long)le64_to_cpu(sb->super_offset), 2068 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2069 le32_to_cpu(sb->dev_number), 2070 uuid, 2071 sb->devflags, 2072 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2073 (unsigned long long)le64_to_cpu(sb->events), 2074 (unsigned long long)le64_to_cpu(sb->resync_offset), 2075 le32_to_cpu(sb->sb_csum), 2076 le32_to_cpu(sb->max_dev) 2077 ); 2078 } 2079 2080 static void print_rdev(mdk_rdev_t *rdev, int major_version) 2081 { 2082 char b[BDEVNAME_SIZE]; 2083 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2084 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2085 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2086 rdev->desc_nr); 2087 if (rdev->sb_loaded) { 2088 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2089 switch (major_version) { 2090 case 0: 2091 print_sb_90((mdp_super_t*)page_address(rdev->sb_page)); 2092 break; 2093 case 1: 2094 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page)); 2095 break; 2096 } 2097 } else 2098 printk(KERN_INFO "md: no rdev superblock!\n"); 2099 } 2100 2101 static void md_print_devices(void) 2102 { 2103 struct list_head *tmp; 2104 mdk_rdev_t *rdev; 2105 mddev_t *mddev; 2106 char b[BDEVNAME_SIZE]; 2107 2108 printk("\n"); 2109 printk("md: **********************************\n"); 2110 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2111 printk("md: **********************************\n"); 2112 for_each_mddev(mddev, tmp) { 2113 2114 if (mddev->bitmap) 2115 bitmap_print_sb(mddev->bitmap); 2116 else 2117 printk("%s: ", mdname(mddev)); 2118 list_for_each_entry(rdev, &mddev->disks, same_set) 2119 printk("<%s>", bdevname(rdev->bdev,b)); 2120 printk("\n"); 2121 2122 list_for_each_entry(rdev, &mddev->disks, same_set) 2123 print_rdev(rdev, mddev->major_version); 2124 } 2125 printk("md: **********************************\n"); 2126 printk("\n"); 2127 } 2128 2129 2130 static void sync_sbs(mddev_t * mddev, int nospares) 2131 { 2132 /* Update each superblock (in-memory image), but 2133 * if we are allowed to, skip spares which already 2134 * have the right event counter, or have one earlier 2135 * (which would mean they aren't being marked as dirty 2136 * with the rest of the array) 2137 */ 2138 mdk_rdev_t *rdev; 2139 2140 /* First make sure individual recovery_offsets are correct */ 2141 list_for_each_entry(rdev, &mddev->disks, same_set) { 2142 if (rdev->raid_disk >= 0 && 2143 mddev->delta_disks >= 0 && 2144 !test_bit(In_sync, &rdev->flags) && 2145 mddev->curr_resync_completed > rdev->recovery_offset) 2146 rdev->recovery_offset = mddev->curr_resync_completed; 2147 2148 } 2149 list_for_each_entry(rdev, &mddev->disks, same_set) { 2150 if (rdev->sb_events == mddev->events || 2151 (nospares && 2152 rdev->raid_disk < 0 && 2153 rdev->sb_events+1 == mddev->events)) { 2154 /* Don't update this superblock */ 2155 rdev->sb_loaded = 2; 2156 } else { 2157 super_types[mddev->major_version]. 2158 sync_super(mddev, rdev); 2159 rdev->sb_loaded = 1; 2160 } 2161 } 2162 } 2163 2164 static void md_update_sb(mddev_t * mddev, int force_change) 2165 { 2166 mdk_rdev_t *rdev; 2167 int sync_req; 2168 int nospares = 0; 2169 2170 mddev->utime = get_seconds(); 2171 if (mddev->external) 2172 return; 2173 repeat: 2174 spin_lock_irq(&mddev->write_lock); 2175 2176 set_bit(MD_CHANGE_PENDING, &mddev->flags); 2177 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2178 force_change = 1; 2179 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2180 /* just a clean<-> dirty transition, possibly leave spares alone, 2181 * though if events isn't the right even/odd, we will have to do 2182 * spares after all 2183 */ 2184 nospares = 1; 2185 if (force_change) 2186 nospares = 0; 2187 if (mddev->degraded) 2188 /* If the array is degraded, then skipping spares is both 2189 * dangerous and fairly pointless. 2190 * Dangerous because a device that was removed from the array 2191 * might have a event_count that still looks up-to-date, 2192 * so it can be re-added without a resync. 2193 * Pointless because if there are any spares to skip, 2194 * then a recovery will happen and soon that array won't 2195 * be degraded any more and the spare can go back to sleep then. 2196 */ 2197 nospares = 0; 2198 2199 sync_req = mddev->in_sync; 2200 2201 /* If this is just a dirty<->clean transition, and the array is clean 2202 * and 'events' is odd, we can roll back to the previous clean state */ 2203 if (nospares 2204 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2205 && mddev->can_decrease_events 2206 && mddev->events != 1) { 2207 mddev->events--; 2208 mddev->can_decrease_events = 0; 2209 } else { 2210 /* otherwise we have to go forward and ... */ 2211 mddev->events ++; 2212 mddev->can_decrease_events = nospares; 2213 } 2214 2215 if (!mddev->events) { 2216 /* 2217 * oops, this 64-bit counter should never wrap. 2218 * Either we are in around ~1 trillion A.C., assuming 2219 * 1 reboot per second, or we have a bug: 2220 */ 2221 MD_BUG(); 2222 mddev->events --; 2223 } 2224 2225 /* 2226 * do not write anything to disk if using 2227 * nonpersistent superblocks 2228 */ 2229 if (!mddev->persistent) { 2230 if (!mddev->external) 2231 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2232 2233 spin_unlock_irq(&mddev->write_lock); 2234 wake_up(&mddev->sb_wait); 2235 return; 2236 } 2237 sync_sbs(mddev, nospares); 2238 spin_unlock_irq(&mddev->write_lock); 2239 2240 dprintk(KERN_INFO 2241 "md: updating %s RAID superblock on device (in sync %d)\n", 2242 mdname(mddev),mddev->in_sync); 2243 2244 bitmap_update_sb(mddev->bitmap); 2245 list_for_each_entry(rdev, &mddev->disks, same_set) { 2246 char b[BDEVNAME_SIZE]; 2247 dprintk(KERN_INFO "md: "); 2248 if (rdev->sb_loaded != 1) 2249 continue; /* no noise on spare devices */ 2250 if (test_bit(Faulty, &rdev->flags)) 2251 dprintk("(skipping faulty "); 2252 2253 dprintk("%s ", bdevname(rdev->bdev,b)); 2254 if (!test_bit(Faulty, &rdev->flags)) { 2255 md_super_write(mddev,rdev, 2256 rdev->sb_start, rdev->sb_size, 2257 rdev->sb_page); 2258 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 2259 bdevname(rdev->bdev,b), 2260 (unsigned long long)rdev->sb_start); 2261 rdev->sb_events = mddev->events; 2262 2263 } else 2264 dprintk(")\n"); 2265 if (mddev->level == LEVEL_MULTIPATH) 2266 /* only need to write one superblock... */ 2267 break; 2268 } 2269 md_super_wait(mddev); 2270 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2271 2272 spin_lock_irq(&mddev->write_lock); 2273 if (mddev->in_sync != sync_req || 2274 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2275 /* have to write it out again */ 2276 spin_unlock_irq(&mddev->write_lock); 2277 goto repeat; 2278 } 2279 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2280 spin_unlock_irq(&mddev->write_lock); 2281 wake_up(&mddev->sb_wait); 2282 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2283 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2284 2285 } 2286 2287 /* words written to sysfs files may, or may not, be \n terminated. 2288 * We want to accept with case. For this we use cmd_match. 2289 */ 2290 static int cmd_match(const char *cmd, const char *str) 2291 { 2292 /* See if cmd, written into a sysfs file, matches 2293 * str. They must either be the same, or cmd can 2294 * have a trailing newline 2295 */ 2296 while (*cmd && *str && *cmd == *str) { 2297 cmd++; 2298 str++; 2299 } 2300 if (*cmd == '\n') 2301 cmd++; 2302 if (*str || *cmd) 2303 return 0; 2304 return 1; 2305 } 2306 2307 struct rdev_sysfs_entry { 2308 struct attribute attr; 2309 ssize_t (*show)(mdk_rdev_t *, char *); 2310 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 2311 }; 2312 2313 static ssize_t 2314 state_show(mdk_rdev_t *rdev, char *page) 2315 { 2316 char *sep = ""; 2317 size_t len = 0; 2318 2319 if (test_bit(Faulty, &rdev->flags)) { 2320 len+= sprintf(page+len, "%sfaulty",sep); 2321 sep = ","; 2322 } 2323 if (test_bit(In_sync, &rdev->flags)) { 2324 len += sprintf(page+len, "%sin_sync",sep); 2325 sep = ","; 2326 } 2327 if (test_bit(WriteMostly, &rdev->flags)) { 2328 len += sprintf(page+len, "%swrite_mostly",sep); 2329 sep = ","; 2330 } 2331 if (test_bit(Blocked, &rdev->flags)) { 2332 len += sprintf(page+len, "%sblocked", sep); 2333 sep = ","; 2334 } 2335 if (!test_bit(Faulty, &rdev->flags) && 2336 !test_bit(In_sync, &rdev->flags)) { 2337 len += sprintf(page+len, "%sspare", sep); 2338 sep = ","; 2339 } 2340 return len+sprintf(page+len, "\n"); 2341 } 2342 2343 static ssize_t 2344 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2345 { 2346 /* can write 2347 * faulty - simulates and error 2348 * remove - disconnects the device 2349 * writemostly - sets write_mostly 2350 * -writemostly - clears write_mostly 2351 * blocked - sets the Blocked flag 2352 * -blocked - clears the Blocked flag 2353 * insync - sets Insync providing device isn't active 2354 */ 2355 int err = -EINVAL; 2356 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2357 md_error(rdev->mddev, rdev); 2358 err = 0; 2359 } else if (cmd_match(buf, "remove")) { 2360 if (rdev->raid_disk >= 0) 2361 err = -EBUSY; 2362 else { 2363 mddev_t *mddev = rdev->mddev; 2364 kick_rdev_from_array(rdev); 2365 if (mddev->pers) 2366 md_update_sb(mddev, 1); 2367 md_new_event(mddev); 2368 err = 0; 2369 } 2370 } else if (cmd_match(buf, "writemostly")) { 2371 set_bit(WriteMostly, &rdev->flags); 2372 err = 0; 2373 } else if (cmd_match(buf, "-writemostly")) { 2374 clear_bit(WriteMostly, &rdev->flags); 2375 err = 0; 2376 } else if (cmd_match(buf, "blocked")) { 2377 set_bit(Blocked, &rdev->flags); 2378 err = 0; 2379 } else if (cmd_match(buf, "-blocked")) { 2380 clear_bit(Blocked, &rdev->flags); 2381 wake_up(&rdev->blocked_wait); 2382 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2383 md_wakeup_thread(rdev->mddev->thread); 2384 2385 err = 0; 2386 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2387 set_bit(In_sync, &rdev->flags); 2388 err = 0; 2389 } 2390 if (!err) 2391 sysfs_notify_dirent_safe(rdev->sysfs_state); 2392 return err ? err : len; 2393 } 2394 static struct rdev_sysfs_entry rdev_state = 2395 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2396 2397 static ssize_t 2398 errors_show(mdk_rdev_t *rdev, char *page) 2399 { 2400 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2401 } 2402 2403 static ssize_t 2404 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2405 { 2406 char *e; 2407 unsigned long n = simple_strtoul(buf, &e, 10); 2408 if (*buf && (*e == 0 || *e == '\n')) { 2409 atomic_set(&rdev->corrected_errors, n); 2410 return len; 2411 } 2412 return -EINVAL; 2413 } 2414 static struct rdev_sysfs_entry rdev_errors = 2415 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2416 2417 static ssize_t 2418 slot_show(mdk_rdev_t *rdev, char *page) 2419 { 2420 if (rdev->raid_disk < 0) 2421 return sprintf(page, "none\n"); 2422 else 2423 return sprintf(page, "%d\n", rdev->raid_disk); 2424 } 2425 2426 static ssize_t 2427 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2428 { 2429 char *e; 2430 int err; 2431 char nm[20]; 2432 int slot = simple_strtoul(buf, &e, 10); 2433 if (strncmp(buf, "none", 4)==0) 2434 slot = -1; 2435 else if (e==buf || (*e && *e!= '\n')) 2436 return -EINVAL; 2437 if (rdev->mddev->pers && slot == -1) { 2438 /* Setting 'slot' on an active array requires also 2439 * updating the 'rd%d' link, and communicating 2440 * with the personality with ->hot_*_disk. 2441 * For now we only support removing 2442 * failed/spare devices. This normally happens automatically, 2443 * but not when the metadata is externally managed. 2444 */ 2445 if (rdev->raid_disk == -1) 2446 return -EEXIST; 2447 /* personality does all needed checks */ 2448 if (rdev->mddev->pers->hot_add_disk == NULL) 2449 return -EINVAL; 2450 err = rdev->mddev->pers-> 2451 hot_remove_disk(rdev->mddev, rdev->raid_disk); 2452 if (err) 2453 return err; 2454 sprintf(nm, "rd%d", rdev->raid_disk); 2455 sysfs_remove_link(&rdev->mddev->kobj, nm); 2456 rdev->raid_disk = -1; 2457 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2458 md_wakeup_thread(rdev->mddev->thread); 2459 } else if (rdev->mddev->pers) { 2460 mdk_rdev_t *rdev2; 2461 /* Activating a spare .. or possibly reactivating 2462 * if we ever get bitmaps working here. 2463 */ 2464 2465 if (rdev->raid_disk != -1) 2466 return -EBUSY; 2467 2468 if (rdev->mddev->pers->hot_add_disk == NULL) 2469 return -EINVAL; 2470 2471 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set) 2472 if (rdev2->raid_disk == slot) 2473 return -EEXIST; 2474 2475 rdev->raid_disk = slot; 2476 if (test_bit(In_sync, &rdev->flags)) 2477 rdev->saved_raid_disk = slot; 2478 else 2479 rdev->saved_raid_disk = -1; 2480 err = rdev->mddev->pers-> 2481 hot_add_disk(rdev->mddev, rdev); 2482 if (err) { 2483 rdev->raid_disk = -1; 2484 return err; 2485 } else 2486 sysfs_notify_dirent_safe(rdev->sysfs_state); 2487 sprintf(nm, "rd%d", rdev->raid_disk); 2488 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm)) 2489 /* failure here is OK */; 2490 /* don't wakeup anyone, leave that to userspace. */ 2491 } else { 2492 if (slot >= rdev->mddev->raid_disks) 2493 return -ENOSPC; 2494 rdev->raid_disk = slot; 2495 /* assume it is working */ 2496 clear_bit(Faulty, &rdev->flags); 2497 clear_bit(WriteMostly, &rdev->flags); 2498 set_bit(In_sync, &rdev->flags); 2499 sysfs_notify_dirent_safe(rdev->sysfs_state); 2500 } 2501 return len; 2502 } 2503 2504 2505 static struct rdev_sysfs_entry rdev_slot = 2506 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2507 2508 static ssize_t 2509 offset_show(mdk_rdev_t *rdev, char *page) 2510 { 2511 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2512 } 2513 2514 static ssize_t 2515 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2516 { 2517 char *e; 2518 unsigned long long offset = simple_strtoull(buf, &e, 10); 2519 if (e==buf || (*e && *e != '\n')) 2520 return -EINVAL; 2521 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2522 return -EBUSY; 2523 if (rdev->sectors && rdev->mddev->external) 2524 /* Must set offset before size, so overlap checks 2525 * can be sane */ 2526 return -EBUSY; 2527 rdev->data_offset = offset; 2528 return len; 2529 } 2530 2531 static struct rdev_sysfs_entry rdev_offset = 2532 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2533 2534 static ssize_t 2535 rdev_size_show(mdk_rdev_t *rdev, char *page) 2536 { 2537 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2538 } 2539 2540 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2541 { 2542 /* check if two start/length pairs overlap */ 2543 if (s1+l1 <= s2) 2544 return 0; 2545 if (s2+l2 <= s1) 2546 return 0; 2547 return 1; 2548 } 2549 2550 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2551 { 2552 unsigned long long blocks; 2553 sector_t new; 2554 2555 if (strict_strtoull(buf, 10, &blocks) < 0) 2556 return -EINVAL; 2557 2558 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2559 return -EINVAL; /* sector conversion overflow */ 2560 2561 new = blocks * 2; 2562 if (new != blocks * 2) 2563 return -EINVAL; /* unsigned long long to sector_t overflow */ 2564 2565 *sectors = new; 2566 return 0; 2567 } 2568 2569 static ssize_t 2570 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2571 { 2572 mddev_t *my_mddev = rdev->mddev; 2573 sector_t oldsectors = rdev->sectors; 2574 sector_t sectors; 2575 2576 if (strict_blocks_to_sectors(buf, §ors) < 0) 2577 return -EINVAL; 2578 if (my_mddev->pers && rdev->raid_disk >= 0) { 2579 if (my_mddev->persistent) { 2580 sectors = super_types[my_mddev->major_version]. 2581 rdev_size_change(rdev, sectors); 2582 if (!sectors) 2583 return -EBUSY; 2584 } else if (!sectors) 2585 sectors = (rdev->bdev->bd_inode->i_size >> 9) - 2586 rdev->data_offset; 2587 } 2588 if (sectors < my_mddev->dev_sectors) 2589 return -EINVAL; /* component must fit device */ 2590 2591 rdev->sectors = sectors; 2592 if (sectors > oldsectors && my_mddev->external) { 2593 /* need to check that all other rdevs with the same ->bdev 2594 * do not overlap. We need to unlock the mddev to avoid 2595 * a deadlock. We have already changed rdev->sectors, and if 2596 * we have to change it back, we will have the lock again. 2597 */ 2598 mddev_t *mddev; 2599 int overlap = 0; 2600 struct list_head *tmp; 2601 2602 mddev_unlock(my_mddev); 2603 for_each_mddev(mddev, tmp) { 2604 mdk_rdev_t *rdev2; 2605 2606 mddev_lock(mddev); 2607 list_for_each_entry(rdev2, &mddev->disks, same_set) 2608 if (test_bit(AllReserved, &rdev2->flags) || 2609 (rdev->bdev == rdev2->bdev && 2610 rdev != rdev2 && 2611 overlaps(rdev->data_offset, rdev->sectors, 2612 rdev2->data_offset, 2613 rdev2->sectors))) { 2614 overlap = 1; 2615 break; 2616 } 2617 mddev_unlock(mddev); 2618 if (overlap) { 2619 mddev_put(mddev); 2620 break; 2621 } 2622 } 2623 mddev_lock(my_mddev); 2624 if (overlap) { 2625 /* Someone else could have slipped in a size 2626 * change here, but doing so is just silly. 2627 * We put oldsectors back because we *know* it is 2628 * safe, and trust userspace not to race with 2629 * itself 2630 */ 2631 rdev->sectors = oldsectors; 2632 return -EBUSY; 2633 } 2634 } 2635 return len; 2636 } 2637 2638 static struct rdev_sysfs_entry rdev_size = 2639 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2640 2641 2642 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page) 2643 { 2644 unsigned long long recovery_start = rdev->recovery_offset; 2645 2646 if (test_bit(In_sync, &rdev->flags) || 2647 recovery_start == MaxSector) 2648 return sprintf(page, "none\n"); 2649 2650 return sprintf(page, "%llu\n", recovery_start); 2651 } 2652 2653 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2654 { 2655 unsigned long long recovery_start; 2656 2657 if (cmd_match(buf, "none")) 2658 recovery_start = MaxSector; 2659 else if (strict_strtoull(buf, 10, &recovery_start)) 2660 return -EINVAL; 2661 2662 if (rdev->mddev->pers && 2663 rdev->raid_disk >= 0) 2664 return -EBUSY; 2665 2666 rdev->recovery_offset = recovery_start; 2667 if (recovery_start == MaxSector) 2668 set_bit(In_sync, &rdev->flags); 2669 else 2670 clear_bit(In_sync, &rdev->flags); 2671 return len; 2672 } 2673 2674 static struct rdev_sysfs_entry rdev_recovery_start = 2675 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 2676 2677 static struct attribute *rdev_default_attrs[] = { 2678 &rdev_state.attr, 2679 &rdev_errors.attr, 2680 &rdev_slot.attr, 2681 &rdev_offset.attr, 2682 &rdev_size.attr, 2683 &rdev_recovery_start.attr, 2684 NULL, 2685 }; 2686 static ssize_t 2687 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2688 { 2689 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2690 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2691 mddev_t *mddev = rdev->mddev; 2692 ssize_t rv; 2693 2694 if (!entry->show) 2695 return -EIO; 2696 2697 rv = mddev ? mddev_lock(mddev) : -EBUSY; 2698 if (!rv) { 2699 if (rdev->mddev == NULL) 2700 rv = -EBUSY; 2701 else 2702 rv = entry->show(rdev, page); 2703 mddev_unlock(mddev); 2704 } 2705 return rv; 2706 } 2707 2708 static ssize_t 2709 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2710 const char *page, size_t length) 2711 { 2712 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2713 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2714 ssize_t rv; 2715 mddev_t *mddev = rdev->mddev; 2716 2717 if (!entry->store) 2718 return -EIO; 2719 if (!capable(CAP_SYS_ADMIN)) 2720 return -EACCES; 2721 rv = mddev ? mddev_lock(mddev): -EBUSY; 2722 if (!rv) { 2723 if (rdev->mddev == NULL) 2724 rv = -EBUSY; 2725 else 2726 rv = entry->store(rdev, page, length); 2727 mddev_unlock(mddev); 2728 } 2729 return rv; 2730 } 2731 2732 static void rdev_free(struct kobject *ko) 2733 { 2734 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 2735 kfree(rdev); 2736 } 2737 static const struct sysfs_ops rdev_sysfs_ops = { 2738 .show = rdev_attr_show, 2739 .store = rdev_attr_store, 2740 }; 2741 static struct kobj_type rdev_ktype = { 2742 .release = rdev_free, 2743 .sysfs_ops = &rdev_sysfs_ops, 2744 .default_attrs = rdev_default_attrs, 2745 }; 2746 2747 void md_rdev_init(mdk_rdev_t *rdev) 2748 { 2749 rdev->desc_nr = -1; 2750 rdev->saved_raid_disk = -1; 2751 rdev->raid_disk = -1; 2752 rdev->flags = 0; 2753 rdev->data_offset = 0; 2754 rdev->sb_events = 0; 2755 rdev->last_read_error.tv_sec = 0; 2756 rdev->last_read_error.tv_nsec = 0; 2757 atomic_set(&rdev->nr_pending, 0); 2758 atomic_set(&rdev->read_errors, 0); 2759 atomic_set(&rdev->corrected_errors, 0); 2760 2761 INIT_LIST_HEAD(&rdev->same_set); 2762 init_waitqueue_head(&rdev->blocked_wait); 2763 } 2764 EXPORT_SYMBOL_GPL(md_rdev_init); 2765 /* 2766 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2767 * 2768 * mark the device faulty if: 2769 * 2770 * - the device is nonexistent (zero size) 2771 * - the device has no valid superblock 2772 * 2773 * a faulty rdev _never_ has rdev->sb set. 2774 */ 2775 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2776 { 2777 char b[BDEVNAME_SIZE]; 2778 int err; 2779 mdk_rdev_t *rdev; 2780 sector_t size; 2781 2782 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2783 if (!rdev) { 2784 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2785 return ERR_PTR(-ENOMEM); 2786 } 2787 2788 md_rdev_init(rdev); 2789 if ((err = alloc_disk_sb(rdev))) 2790 goto abort_free; 2791 2792 err = lock_rdev(rdev, newdev, super_format == -2); 2793 if (err) 2794 goto abort_free; 2795 2796 kobject_init(&rdev->kobj, &rdev_ktype); 2797 2798 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2799 if (!size) { 2800 printk(KERN_WARNING 2801 "md: %s has zero or unknown size, marking faulty!\n", 2802 bdevname(rdev->bdev,b)); 2803 err = -EINVAL; 2804 goto abort_free; 2805 } 2806 2807 if (super_format >= 0) { 2808 err = super_types[super_format]. 2809 load_super(rdev, NULL, super_minor); 2810 if (err == -EINVAL) { 2811 printk(KERN_WARNING 2812 "md: %s does not have a valid v%d.%d " 2813 "superblock, not importing!\n", 2814 bdevname(rdev->bdev,b), 2815 super_format, super_minor); 2816 goto abort_free; 2817 } 2818 if (err < 0) { 2819 printk(KERN_WARNING 2820 "md: could not read %s's sb, not importing!\n", 2821 bdevname(rdev->bdev,b)); 2822 goto abort_free; 2823 } 2824 } 2825 2826 return rdev; 2827 2828 abort_free: 2829 if (rdev->sb_page) { 2830 if (rdev->bdev) 2831 unlock_rdev(rdev); 2832 free_disk_sb(rdev); 2833 } 2834 kfree(rdev); 2835 return ERR_PTR(err); 2836 } 2837 2838 /* 2839 * Check a full RAID array for plausibility 2840 */ 2841 2842 2843 static void analyze_sbs(mddev_t * mddev) 2844 { 2845 int i; 2846 mdk_rdev_t *rdev, *freshest, *tmp; 2847 char b[BDEVNAME_SIZE]; 2848 2849 freshest = NULL; 2850 rdev_for_each(rdev, tmp, mddev) 2851 switch (super_types[mddev->major_version]. 2852 load_super(rdev, freshest, mddev->minor_version)) { 2853 case 1: 2854 freshest = rdev; 2855 break; 2856 case 0: 2857 break; 2858 default: 2859 printk( KERN_ERR \ 2860 "md: fatal superblock inconsistency in %s" 2861 " -- removing from array\n", 2862 bdevname(rdev->bdev,b)); 2863 kick_rdev_from_array(rdev); 2864 } 2865 2866 2867 super_types[mddev->major_version]. 2868 validate_super(mddev, freshest); 2869 2870 i = 0; 2871 rdev_for_each(rdev, tmp, mddev) { 2872 if (mddev->max_disks && 2873 (rdev->desc_nr >= mddev->max_disks || 2874 i > mddev->max_disks)) { 2875 printk(KERN_WARNING 2876 "md: %s: %s: only %d devices permitted\n", 2877 mdname(mddev), bdevname(rdev->bdev, b), 2878 mddev->max_disks); 2879 kick_rdev_from_array(rdev); 2880 continue; 2881 } 2882 if (rdev != freshest) 2883 if (super_types[mddev->major_version]. 2884 validate_super(mddev, rdev)) { 2885 printk(KERN_WARNING "md: kicking non-fresh %s" 2886 " from array!\n", 2887 bdevname(rdev->bdev,b)); 2888 kick_rdev_from_array(rdev); 2889 continue; 2890 } 2891 if (mddev->level == LEVEL_MULTIPATH) { 2892 rdev->desc_nr = i++; 2893 rdev->raid_disk = rdev->desc_nr; 2894 set_bit(In_sync, &rdev->flags); 2895 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 2896 rdev->raid_disk = -1; 2897 clear_bit(In_sync, &rdev->flags); 2898 } 2899 } 2900 } 2901 2902 /* Read a fixed-point number. 2903 * Numbers in sysfs attributes should be in "standard" units where 2904 * possible, so time should be in seconds. 2905 * However we internally use a a much smaller unit such as 2906 * milliseconds or jiffies. 2907 * This function takes a decimal number with a possible fractional 2908 * component, and produces an integer which is the result of 2909 * multiplying that number by 10^'scale'. 2910 * all without any floating-point arithmetic. 2911 */ 2912 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 2913 { 2914 unsigned long result = 0; 2915 long decimals = -1; 2916 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 2917 if (*cp == '.') 2918 decimals = 0; 2919 else if (decimals < scale) { 2920 unsigned int value; 2921 value = *cp - '0'; 2922 result = result * 10 + value; 2923 if (decimals >= 0) 2924 decimals++; 2925 } 2926 cp++; 2927 } 2928 if (*cp == '\n') 2929 cp++; 2930 if (*cp) 2931 return -EINVAL; 2932 if (decimals < 0) 2933 decimals = 0; 2934 while (decimals < scale) { 2935 result *= 10; 2936 decimals ++; 2937 } 2938 *res = result; 2939 return 0; 2940 } 2941 2942 2943 static void md_safemode_timeout(unsigned long data); 2944 2945 static ssize_t 2946 safe_delay_show(mddev_t *mddev, char *page) 2947 { 2948 int msec = (mddev->safemode_delay*1000)/HZ; 2949 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2950 } 2951 static ssize_t 2952 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2953 { 2954 unsigned long msec; 2955 2956 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 2957 return -EINVAL; 2958 if (msec == 0) 2959 mddev->safemode_delay = 0; 2960 else { 2961 unsigned long old_delay = mddev->safemode_delay; 2962 mddev->safemode_delay = (msec*HZ)/1000; 2963 if (mddev->safemode_delay == 0) 2964 mddev->safemode_delay = 1; 2965 if (mddev->safemode_delay < old_delay) 2966 md_safemode_timeout((unsigned long)mddev); 2967 } 2968 return len; 2969 } 2970 static struct md_sysfs_entry md_safe_delay = 2971 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2972 2973 static ssize_t 2974 level_show(mddev_t *mddev, char *page) 2975 { 2976 struct mdk_personality *p = mddev->pers; 2977 if (p) 2978 return sprintf(page, "%s\n", p->name); 2979 else if (mddev->clevel[0]) 2980 return sprintf(page, "%s\n", mddev->clevel); 2981 else if (mddev->level != LEVEL_NONE) 2982 return sprintf(page, "%d\n", mddev->level); 2983 else 2984 return 0; 2985 } 2986 2987 static ssize_t 2988 level_store(mddev_t *mddev, const char *buf, size_t len) 2989 { 2990 char clevel[16]; 2991 ssize_t rv = len; 2992 struct mdk_personality *pers; 2993 long level; 2994 void *priv; 2995 mdk_rdev_t *rdev; 2996 2997 if (mddev->pers == NULL) { 2998 if (len == 0) 2999 return 0; 3000 if (len >= sizeof(mddev->clevel)) 3001 return -ENOSPC; 3002 strncpy(mddev->clevel, buf, len); 3003 if (mddev->clevel[len-1] == '\n') 3004 len--; 3005 mddev->clevel[len] = 0; 3006 mddev->level = LEVEL_NONE; 3007 return rv; 3008 } 3009 3010 /* request to change the personality. Need to ensure: 3011 * - array is not engaged in resync/recovery/reshape 3012 * - old personality can be suspended 3013 * - new personality will access other array. 3014 */ 3015 3016 if (mddev->sync_thread || 3017 mddev->reshape_position != MaxSector || 3018 mddev->sysfs_active) 3019 return -EBUSY; 3020 3021 if (!mddev->pers->quiesce) { 3022 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3023 mdname(mddev), mddev->pers->name); 3024 return -EINVAL; 3025 } 3026 3027 /* Now find the new personality */ 3028 if (len == 0 || len >= sizeof(clevel)) 3029 return -EINVAL; 3030 strncpy(clevel, buf, len); 3031 if (clevel[len-1] == '\n') 3032 len--; 3033 clevel[len] = 0; 3034 if (strict_strtol(clevel, 10, &level)) 3035 level = LEVEL_NONE; 3036 3037 if (request_module("md-%s", clevel) != 0) 3038 request_module("md-level-%s", clevel); 3039 spin_lock(&pers_lock); 3040 pers = find_pers(level, clevel); 3041 if (!pers || !try_module_get(pers->owner)) { 3042 spin_unlock(&pers_lock); 3043 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3044 return -EINVAL; 3045 } 3046 spin_unlock(&pers_lock); 3047 3048 if (pers == mddev->pers) { 3049 /* Nothing to do! */ 3050 module_put(pers->owner); 3051 return rv; 3052 } 3053 if (!pers->takeover) { 3054 module_put(pers->owner); 3055 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3056 mdname(mddev), clevel); 3057 return -EINVAL; 3058 } 3059 3060 list_for_each_entry(rdev, &mddev->disks, same_set) 3061 rdev->new_raid_disk = rdev->raid_disk; 3062 3063 /* ->takeover must set new_* and/or delta_disks 3064 * if it succeeds, and may set them when it fails. 3065 */ 3066 priv = pers->takeover(mddev); 3067 if (IS_ERR(priv)) { 3068 mddev->new_level = mddev->level; 3069 mddev->new_layout = mddev->layout; 3070 mddev->new_chunk_sectors = mddev->chunk_sectors; 3071 mddev->raid_disks -= mddev->delta_disks; 3072 mddev->delta_disks = 0; 3073 module_put(pers->owner); 3074 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3075 mdname(mddev), clevel); 3076 return PTR_ERR(priv); 3077 } 3078 3079 /* Looks like we have a winner */ 3080 mddev_suspend(mddev); 3081 mddev->pers->stop(mddev); 3082 3083 if (mddev->pers->sync_request == NULL && 3084 pers->sync_request != NULL) { 3085 /* need to add the md_redundancy_group */ 3086 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3087 printk(KERN_WARNING 3088 "md: cannot register extra attributes for %s\n", 3089 mdname(mddev)); 3090 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3091 } 3092 if (mddev->pers->sync_request != NULL && 3093 pers->sync_request == NULL) { 3094 /* need to remove the md_redundancy_group */ 3095 if (mddev->to_remove == NULL) 3096 mddev->to_remove = &md_redundancy_group; 3097 } 3098 3099 if (mddev->pers->sync_request == NULL && 3100 mddev->external) { 3101 /* We are converting from a no-redundancy array 3102 * to a redundancy array and metadata is managed 3103 * externally so we need to be sure that writes 3104 * won't block due to a need to transition 3105 * clean->dirty 3106 * until external management is started. 3107 */ 3108 mddev->in_sync = 0; 3109 mddev->safemode_delay = 0; 3110 mddev->safemode = 0; 3111 } 3112 3113 list_for_each_entry(rdev, &mddev->disks, same_set) { 3114 char nm[20]; 3115 if (rdev->raid_disk < 0) 3116 continue; 3117 if (rdev->new_raid_disk > mddev->raid_disks) 3118 rdev->new_raid_disk = -1; 3119 if (rdev->new_raid_disk == rdev->raid_disk) 3120 continue; 3121 sprintf(nm, "rd%d", rdev->raid_disk); 3122 sysfs_remove_link(&mddev->kobj, nm); 3123 } 3124 list_for_each_entry(rdev, &mddev->disks, same_set) { 3125 if (rdev->raid_disk < 0) 3126 continue; 3127 if (rdev->new_raid_disk == rdev->raid_disk) 3128 continue; 3129 rdev->raid_disk = rdev->new_raid_disk; 3130 if (rdev->raid_disk < 0) 3131 clear_bit(In_sync, &rdev->flags); 3132 else { 3133 char nm[20]; 3134 sprintf(nm, "rd%d", rdev->raid_disk); 3135 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 3136 printk("md: cannot register %s for %s after level change\n", 3137 nm, mdname(mddev)); 3138 } 3139 } 3140 3141 module_put(mddev->pers->owner); 3142 mddev->pers = pers; 3143 mddev->private = priv; 3144 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3145 mddev->level = mddev->new_level; 3146 mddev->layout = mddev->new_layout; 3147 mddev->chunk_sectors = mddev->new_chunk_sectors; 3148 mddev->delta_disks = 0; 3149 if (mddev->pers->sync_request == NULL) { 3150 /* this is now an array without redundancy, so 3151 * it must always be in_sync 3152 */ 3153 mddev->in_sync = 1; 3154 del_timer_sync(&mddev->safemode_timer); 3155 } 3156 pers->run(mddev); 3157 mddev_resume(mddev); 3158 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3159 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3160 md_wakeup_thread(mddev->thread); 3161 sysfs_notify(&mddev->kobj, NULL, "level"); 3162 md_new_event(mddev); 3163 return rv; 3164 } 3165 3166 static struct md_sysfs_entry md_level = 3167 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3168 3169 3170 static ssize_t 3171 layout_show(mddev_t *mddev, char *page) 3172 { 3173 /* just a number, not meaningful for all levels */ 3174 if (mddev->reshape_position != MaxSector && 3175 mddev->layout != mddev->new_layout) 3176 return sprintf(page, "%d (%d)\n", 3177 mddev->new_layout, mddev->layout); 3178 return sprintf(page, "%d\n", mddev->layout); 3179 } 3180 3181 static ssize_t 3182 layout_store(mddev_t *mddev, const char *buf, size_t len) 3183 { 3184 char *e; 3185 unsigned long n = simple_strtoul(buf, &e, 10); 3186 3187 if (!*buf || (*e && *e != '\n')) 3188 return -EINVAL; 3189 3190 if (mddev->pers) { 3191 int err; 3192 if (mddev->pers->check_reshape == NULL) 3193 return -EBUSY; 3194 mddev->new_layout = n; 3195 err = mddev->pers->check_reshape(mddev); 3196 if (err) { 3197 mddev->new_layout = mddev->layout; 3198 return err; 3199 } 3200 } else { 3201 mddev->new_layout = n; 3202 if (mddev->reshape_position == MaxSector) 3203 mddev->layout = n; 3204 } 3205 return len; 3206 } 3207 static struct md_sysfs_entry md_layout = 3208 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3209 3210 3211 static ssize_t 3212 raid_disks_show(mddev_t *mddev, char *page) 3213 { 3214 if (mddev->raid_disks == 0) 3215 return 0; 3216 if (mddev->reshape_position != MaxSector && 3217 mddev->delta_disks != 0) 3218 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3219 mddev->raid_disks - mddev->delta_disks); 3220 return sprintf(page, "%d\n", mddev->raid_disks); 3221 } 3222 3223 static int update_raid_disks(mddev_t *mddev, int raid_disks); 3224 3225 static ssize_t 3226 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 3227 { 3228 char *e; 3229 int rv = 0; 3230 unsigned long n = simple_strtoul(buf, &e, 10); 3231 3232 if (!*buf || (*e && *e != '\n')) 3233 return -EINVAL; 3234 3235 if (mddev->pers) 3236 rv = update_raid_disks(mddev, n); 3237 else if (mddev->reshape_position != MaxSector) { 3238 int olddisks = mddev->raid_disks - mddev->delta_disks; 3239 mddev->delta_disks = n - olddisks; 3240 mddev->raid_disks = n; 3241 } else 3242 mddev->raid_disks = n; 3243 return rv ? rv : len; 3244 } 3245 static struct md_sysfs_entry md_raid_disks = 3246 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3247 3248 static ssize_t 3249 chunk_size_show(mddev_t *mddev, char *page) 3250 { 3251 if (mddev->reshape_position != MaxSector && 3252 mddev->chunk_sectors != mddev->new_chunk_sectors) 3253 return sprintf(page, "%d (%d)\n", 3254 mddev->new_chunk_sectors << 9, 3255 mddev->chunk_sectors << 9); 3256 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3257 } 3258 3259 static ssize_t 3260 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 3261 { 3262 char *e; 3263 unsigned long n = simple_strtoul(buf, &e, 10); 3264 3265 if (!*buf || (*e && *e != '\n')) 3266 return -EINVAL; 3267 3268 if (mddev->pers) { 3269 int err; 3270 if (mddev->pers->check_reshape == NULL) 3271 return -EBUSY; 3272 mddev->new_chunk_sectors = n >> 9; 3273 err = mddev->pers->check_reshape(mddev); 3274 if (err) { 3275 mddev->new_chunk_sectors = mddev->chunk_sectors; 3276 return err; 3277 } 3278 } else { 3279 mddev->new_chunk_sectors = n >> 9; 3280 if (mddev->reshape_position == MaxSector) 3281 mddev->chunk_sectors = n >> 9; 3282 } 3283 return len; 3284 } 3285 static struct md_sysfs_entry md_chunk_size = 3286 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3287 3288 static ssize_t 3289 resync_start_show(mddev_t *mddev, char *page) 3290 { 3291 if (mddev->recovery_cp == MaxSector) 3292 return sprintf(page, "none\n"); 3293 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3294 } 3295 3296 static ssize_t 3297 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 3298 { 3299 char *e; 3300 unsigned long long n = simple_strtoull(buf, &e, 10); 3301 3302 if (mddev->pers) 3303 return -EBUSY; 3304 if (cmd_match(buf, "none")) 3305 n = MaxSector; 3306 else if (!*buf || (*e && *e != '\n')) 3307 return -EINVAL; 3308 3309 mddev->recovery_cp = n; 3310 return len; 3311 } 3312 static struct md_sysfs_entry md_resync_start = 3313 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3314 3315 /* 3316 * The array state can be: 3317 * 3318 * clear 3319 * No devices, no size, no level 3320 * Equivalent to STOP_ARRAY ioctl 3321 * inactive 3322 * May have some settings, but array is not active 3323 * all IO results in error 3324 * When written, doesn't tear down array, but just stops it 3325 * suspended (not supported yet) 3326 * All IO requests will block. The array can be reconfigured. 3327 * Writing this, if accepted, will block until array is quiescent 3328 * readonly 3329 * no resync can happen. no superblocks get written. 3330 * write requests fail 3331 * read-auto 3332 * like readonly, but behaves like 'clean' on a write request. 3333 * 3334 * clean - no pending writes, but otherwise active. 3335 * When written to inactive array, starts without resync 3336 * If a write request arrives then 3337 * if metadata is known, mark 'dirty' and switch to 'active'. 3338 * if not known, block and switch to write-pending 3339 * If written to an active array that has pending writes, then fails. 3340 * active 3341 * fully active: IO and resync can be happening. 3342 * When written to inactive array, starts with resync 3343 * 3344 * write-pending 3345 * clean, but writes are blocked waiting for 'active' to be written. 3346 * 3347 * active-idle 3348 * like active, but no writes have been seen for a while (100msec). 3349 * 3350 */ 3351 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3352 write_pending, active_idle, bad_word}; 3353 static char *array_states[] = { 3354 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3355 "write-pending", "active-idle", NULL }; 3356 3357 static int match_word(const char *word, char **list) 3358 { 3359 int n; 3360 for (n=0; list[n]; n++) 3361 if (cmd_match(word, list[n])) 3362 break; 3363 return n; 3364 } 3365 3366 static ssize_t 3367 array_state_show(mddev_t *mddev, char *page) 3368 { 3369 enum array_state st = inactive; 3370 3371 if (mddev->pers) 3372 switch(mddev->ro) { 3373 case 1: 3374 st = readonly; 3375 break; 3376 case 2: 3377 st = read_auto; 3378 break; 3379 case 0: 3380 if (mddev->in_sync) 3381 st = clean; 3382 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 3383 st = write_pending; 3384 else if (mddev->safemode) 3385 st = active_idle; 3386 else 3387 st = active; 3388 } 3389 else { 3390 if (list_empty(&mddev->disks) && 3391 mddev->raid_disks == 0 && 3392 mddev->dev_sectors == 0) 3393 st = clear; 3394 else 3395 st = inactive; 3396 } 3397 return sprintf(page, "%s\n", array_states[st]); 3398 } 3399 3400 static int do_md_stop(mddev_t * mddev, int ro, int is_open); 3401 static int md_set_readonly(mddev_t * mddev, int is_open); 3402 static int do_md_run(mddev_t * mddev); 3403 static int restart_array(mddev_t *mddev); 3404 3405 static ssize_t 3406 array_state_store(mddev_t *mddev, const char *buf, size_t len) 3407 { 3408 int err = -EINVAL; 3409 enum array_state st = match_word(buf, array_states); 3410 switch(st) { 3411 case bad_word: 3412 break; 3413 case clear: 3414 /* stopping an active array */ 3415 if (atomic_read(&mddev->openers) > 0) 3416 return -EBUSY; 3417 err = do_md_stop(mddev, 0, 0); 3418 break; 3419 case inactive: 3420 /* stopping an active array */ 3421 if (mddev->pers) { 3422 if (atomic_read(&mddev->openers) > 0) 3423 return -EBUSY; 3424 err = do_md_stop(mddev, 2, 0); 3425 } else 3426 err = 0; /* already inactive */ 3427 break; 3428 case suspended: 3429 break; /* not supported yet */ 3430 case readonly: 3431 if (mddev->pers) 3432 err = md_set_readonly(mddev, 0); 3433 else { 3434 mddev->ro = 1; 3435 set_disk_ro(mddev->gendisk, 1); 3436 err = do_md_run(mddev); 3437 } 3438 break; 3439 case read_auto: 3440 if (mddev->pers) { 3441 if (mddev->ro == 0) 3442 err = md_set_readonly(mddev, 0); 3443 else if (mddev->ro == 1) 3444 err = restart_array(mddev); 3445 if (err == 0) { 3446 mddev->ro = 2; 3447 set_disk_ro(mddev->gendisk, 0); 3448 } 3449 } else { 3450 mddev->ro = 2; 3451 err = do_md_run(mddev); 3452 } 3453 break; 3454 case clean: 3455 if (mddev->pers) { 3456 restart_array(mddev); 3457 spin_lock_irq(&mddev->write_lock); 3458 if (atomic_read(&mddev->writes_pending) == 0) { 3459 if (mddev->in_sync == 0) { 3460 mddev->in_sync = 1; 3461 if (mddev->safemode == 1) 3462 mddev->safemode = 0; 3463 if (mddev->persistent) 3464 set_bit(MD_CHANGE_CLEAN, 3465 &mddev->flags); 3466 } 3467 err = 0; 3468 } else 3469 err = -EBUSY; 3470 spin_unlock_irq(&mddev->write_lock); 3471 } else 3472 err = -EINVAL; 3473 break; 3474 case active: 3475 if (mddev->pers) { 3476 restart_array(mddev); 3477 if (mddev->external) 3478 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 3479 wake_up(&mddev->sb_wait); 3480 err = 0; 3481 } else { 3482 mddev->ro = 0; 3483 set_disk_ro(mddev->gendisk, 0); 3484 err = do_md_run(mddev); 3485 } 3486 break; 3487 case write_pending: 3488 case active_idle: 3489 /* these cannot be set */ 3490 break; 3491 } 3492 if (err) 3493 return err; 3494 else { 3495 sysfs_notify_dirent_safe(mddev->sysfs_state); 3496 return len; 3497 } 3498 } 3499 static struct md_sysfs_entry md_array_state = 3500 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3501 3502 static ssize_t 3503 max_corrected_read_errors_show(mddev_t *mddev, char *page) { 3504 return sprintf(page, "%d\n", 3505 atomic_read(&mddev->max_corr_read_errors)); 3506 } 3507 3508 static ssize_t 3509 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len) 3510 { 3511 char *e; 3512 unsigned long n = simple_strtoul(buf, &e, 10); 3513 3514 if (*buf && (*e == 0 || *e == '\n')) { 3515 atomic_set(&mddev->max_corr_read_errors, n); 3516 return len; 3517 } 3518 return -EINVAL; 3519 } 3520 3521 static struct md_sysfs_entry max_corr_read_errors = 3522 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3523 max_corrected_read_errors_store); 3524 3525 static ssize_t 3526 null_show(mddev_t *mddev, char *page) 3527 { 3528 return -EINVAL; 3529 } 3530 3531 static ssize_t 3532 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 3533 { 3534 /* buf must be %d:%d\n? giving major and minor numbers */ 3535 /* The new device is added to the array. 3536 * If the array has a persistent superblock, we read the 3537 * superblock to initialise info and check validity. 3538 * Otherwise, only checking done is that in bind_rdev_to_array, 3539 * which mainly checks size. 3540 */ 3541 char *e; 3542 int major = simple_strtoul(buf, &e, 10); 3543 int minor; 3544 dev_t dev; 3545 mdk_rdev_t *rdev; 3546 int err; 3547 3548 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3549 return -EINVAL; 3550 minor = simple_strtoul(e+1, &e, 10); 3551 if (*e && *e != '\n') 3552 return -EINVAL; 3553 dev = MKDEV(major, minor); 3554 if (major != MAJOR(dev) || 3555 minor != MINOR(dev)) 3556 return -EOVERFLOW; 3557 3558 3559 if (mddev->persistent) { 3560 rdev = md_import_device(dev, mddev->major_version, 3561 mddev->minor_version); 3562 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3563 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3564 mdk_rdev_t, same_set); 3565 err = super_types[mddev->major_version] 3566 .load_super(rdev, rdev0, mddev->minor_version); 3567 if (err < 0) 3568 goto out; 3569 } 3570 } else if (mddev->external) 3571 rdev = md_import_device(dev, -2, -1); 3572 else 3573 rdev = md_import_device(dev, -1, -1); 3574 3575 if (IS_ERR(rdev)) 3576 return PTR_ERR(rdev); 3577 err = bind_rdev_to_array(rdev, mddev); 3578 out: 3579 if (err) 3580 export_rdev(rdev); 3581 return err ? err : len; 3582 } 3583 3584 static struct md_sysfs_entry md_new_device = 3585 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 3586 3587 static ssize_t 3588 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 3589 { 3590 char *end; 3591 unsigned long chunk, end_chunk; 3592 3593 if (!mddev->bitmap) 3594 goto out; 3595 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 3596 while (*buf) { 3597 chunk = end_chunk = simple_strtoul(buf, &end, 0); 3598 if (buf == end) break; 3599 if (*end == '-') { /* range */ 3600 buf = end + 1; 3601 end_chunk = simple_strtoul(buf, &end, 0); 3602 if (buf == end) break; 3603 } 3604 if (*end && !isspace(*end)) break; 3605 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 3606 buf = skip_spaces(end); 3607 } 3608 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 3609 out: 3610 return len; 3611 } 3612 3613 static struct md_sysfs_entry md_bitmap = 3614 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 3615 3616 static ssize_t 3617 size_show(mddev_t *mddev, char *page) 3618 { 3619 return sprintf(page, "%llu\n", 3620 (unsigned long long)mddev->dev_sectors / 2); 3621 } 3622 3623 static int update_size(mddev_t *mddev, sector_t num_sectors); 3624 3625 static ssize_t 3626 size_store(mddev_t *mddev, const char *buf, size_t len) 3627 { 3628 /* If array is inactive, we can reduce the component size, but 3629 * not increase it (except from 0). 3630 * If array is active, we can try an on-line resize 3631 */ 3632 sector_t sectors; 3633 int err = strict_blocks_to_sectors(buf, §ors); 3634 3635 if (err < 0) 3636 return err; 3637 if (mddev->pers) { 3638 err = update_size(mddev, sectors); 3639 md_update_sb(mddev, 1); 3640 } else { 3641 if (mddev->dev_sectors == 0 || 3642 mddev->dev_sectors > sectors) 3643 mddev->dev_sectors = sectors; 3644 else 3645 err = -ENOSPC; 3646 } 3647 return err ? err : len; 3648 } 3649 3650 static struct md_sysfs_entry md_size = 3651 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 3652 3653 3654 /* Metdata version. 3655 * This is one of 3656 * 'none' for arrays with no metadata (good luck...) 3657 * 'external' for arrays with externally managed metadata, 3658 * or N.M for internally known formats 3659 */ 3660 static ssize_t 3661 metadata_show(mddev_t *mddev, char *page) 3662 { 3663 if (mddev->persistent) 3664 return sprintf(page, "%d.%d\n", 3665 mddev->major_version, mddev->minor_version); 3666 else if (mddev->external) 3667 return sprintf(page, "external:%s\n", mddev->metadata_type); 3668 else 3669 return sprintf(page, "none\n"); 3670 } 3671 3672 static ssize_t 3673 metadata_store(mddev_t *mddev, const char *buf, size_t len) 3674 { 3675 int major, minor; 3676 char *e; 3677 /* Changing the details of 'external' metadata is 3678 * always permitted. Otherwise there must be 3679 * no devices attached to the array. 3680 */ 3681 if (mddev->external && strncmp(buf, "external:", 9) == 0) 3682 ; 3683 else if (!list_empty(&mddev->disks)) 3684 return -EBUSY; 3685 3686 if (cmd_match(buf, "none")) { 3687 mddev->persistent = 0; 3688 mddev->external = 0; 3689 mddev->major_version = 0; 3690 mddev->minor_version = 90; 3691 return len; 3692 } 3693 if (strncmp(buf, "external:", 9) == 0) { 3694 size_t namelen = len-9; 3695 if (namelen >= sizeof(mddev->metadata_type)) 3696 namelen = sizeof(mddev->metadata_type)-1; 3697 strncpy(mddev->metadata_type, buf+9, namelen); 3698 mddev->metadata_type[namelen] = 0; 3699 if (namelen && mddev->metadata_type[namelen-1] == '\n') 3700 mddev->metadata_type[--namelen] = 0; 3701 mddev->persistent = 0; 3702 mddev->external = 1; 3703 mddev->major_version = 0; 3704 mddev->minor_version = 90; 3705 return len; 3706 } 3707 major = simple_strtoul(buf, &e, 10); 3708 if (e==buf || *e != '.') 3709 return -EINVAL; 3710 buf = e+1; 3711 minor = simple_strtoul(buf, &e, 10); 3712 if (e==buf || (*e && *e != '\n') ) 3713 return -EINVAL; 3714 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 3715 return -ENOENT; 3716 mddev->major_version = major; 3717 mddev->minor_version = minor; 3718 mddev->persistent = 1; 3719 mddev->external = 0; 3720 return len; 3721 } 3722 3723 static struct md_sysfs_entry md_metadata = 3724 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 3725 3726 static ssize_t 3727 action_show(mddev_t *mddev, char *page) 3728 { 3729 char *type = "idle"; 3730 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3731 type = "frozen"; 3732 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3733 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 3734 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3735 type = "reshape"; 3736 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3737 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3738 type = "resync"; 3739 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 3740 type = "check"; 3741 else 3742 type = "repair"; 3743 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 3744 type = "recover"; 3745 } 3746 return sprintf(page, "%s\n", type); 3747 } 3748 3749 static ssize_t 3750 action_store(mddev_t *mddev, const char *page, size_t len) 3751 { 3752 if (!mddev->pers || !mddev->pers->sync_request) 3753 return -EINVAL; 3754 3755 if (cmd_match(page, "frozen")) 3756 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3757 else 3758 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3759 3760 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 3761 if (mddev->sync_thread) { 3762 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3763 md_unregister_thread(mddev->sync_thread); 3764 mddev->sync_thread = NULL; 3765 mddev->recovery = 0; 3766 } 3767 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3768 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 3769 return -EBUSY; 3770 else if (cmd_match(page, "resync")) 3771 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3772 else if (cmd_match(page, "recover")) { 3773 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3774 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3775 } else if (cmd_match(page, "reshape")) { 3776 int err; 3777 if (mddev->pers->start_reshape == NULL) 3778 return -EINVAL; 3779 err = mddev->pers->start_reshape(mddev); 3780 if (err) 3781 return err; 3782 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3783 } else { 3784 if (cmd_match(page, "check")) 3785 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3786 else if (!cmd_match(page, "repair")) 3787 return -EINVAL; 3788 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3789 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3790 } 3791 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3792 md_wakeup_thread(mddev->thread); 3793 sysfs_notify_dirent_safe(mddev->sysfs_action); 3794 return len; 3795 } 3796 3797 static ssize_t 3798 mismatch_cnt_show(mddev_t *mddev, char *page) 3799 { 3800 return sprintf(page, "%llu\n", 3801 (unsigned long long) mddev->resync_mismatches); 3802 } 3803 3804 static struct md_sysfs_entry md_scan_mode = 3805 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 3806 3807 3808 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 3809 3810 static ssize_t 3811 sync_min_show(mddev_t *mddev, char *page) 3812 { 3813 return sprintf(page, "%d (%s)\n", speed_min(mddev), 3814 mddev->sync_speed_min ? "local": "system"); 3815 } 3816 3817 static ssize_t 3818 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 3819 { 3820 int min; 3821 char *e; 3822 if (strncmp(buf, "system", 6)==0) { 3823 mddev->sync_speed_min = 0; 3824 return len; 3825 } 3826 min = simple_strtoul(buf, &e, 10); 3827 if (buf == e || (*e && *e != '\n') || min <= 0) 3828 return -EINVAL; 3829 mddev->sync_speed_min = min; 3830 return len; 3831 } 3832 3833 static struct md_sysfs_entry md_sync_min = 3834 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 3835 3836 static ssize_t 3837 sync_max_show(mddev_t *mddev, char *page) 3838 { 3839 return sprintf(page, "%d (%s)\n", speed_max(mddev), 3840 mddev->sync_speed_max ? "local": "system"); 3841 } 3842 3843 static ssize_t 3844 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 3845 { 3846 int max; 3847 char *e; 3848 if (strncmp(buf, "system", 6)==0) { 3849 mddev->sync_speed_max = 0; 3850 return len; 3851 } 3852 max = simple_strtoul(buf, &e, 10); 3853 if (buf == e || (*e && *e != '\n') || max <= 0) 3854 return -EINVAL; 3855 mddev->sync_speed_max = max; 3856 return len; 3857 } 3858 3859 static struct md_sysfs_entry md_sync_max = 3860 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 3861 3862 static ssize_t 3863 degraded_show(mddev_t *mddev, char *page) 3864 { 3865 return sprintf(page, "%d\n", mddev->degraded); 3866 } 3867 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 3868 3869 static ssize_t 3870 sync_force_parallel_show(mddev_t *mddev, char *page) 3871 { 3872 return sprintf(page, "%d\n", mddev->parallel_resync); 3873 } 3874 3875 static ssize_t 3876 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len) 3877 { 3878 long n; 3879 3880 if (strict_strtol(buf, 10, &n)) 3881 return -EINVAL; 3882 3883 if (n != 0 && n != 1) 3884 return -EINVAL; 3885 3886 mddev->parallel_resync = n; 3887 3888 if (mddev->sync_thread) 3889 wake_up(&resync_wait); 3890 3891 return len; 3892 } 3893 3894 /* force parallel resync, even with shared block devices */ 3895 static struct md_sysfs_entry md_sync_force_parallel = 3896 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 3897 sync_force_parallel_show, sync_force_parallel_store); 3898 3899 static ssize_t 3900 sync_speed_show(mddev_t *mddev, char *page) 3901 { 3902 unsigned long resync, dt, db; 3903 if (mddev->curr_resync == 0) 3904 return sprintf(page, "none\n"); 3905 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 3906 dt = (jiffies - mddev->resync_mark) / HZ; 3907 if (!dt) dt++; 3908 db = resync - mddev->resync_mark_cnt; 3909 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 3910 } 3911 3912 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 3913 3914 static ssize_t 3915 sync_completed_show(mddev_t *mddev, char *page) 3916 { 3917 unsigned long max_sectors, resync; 3918 3919 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3920 return sprintf(page, "none\n"); 3921 3922 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3923 max_sectors = mddev->resync_max_sectors; 3924 else 3925 max_sectors = mddev->dev_sectors; 3926 3927 resync = mddev->curr_resync_completed; 3928 return sprintf(page, "%lu / %lu\n", resync, max_sectors); 3929 } 3930 3931 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 3932 3933 static ssize_t 3934 min_sync_show(mddev_t *mddev, char *page) 3935 { 3936 return sprintf(page, "%llu\n", 3937 (unsigned long long)mddev->resync_min); 3938 } 3939 static ssize_t 3940 min_sync_store(mddev_t *mddev, const char *buf, size_t len) 3941 { 3942 unsigned long long min; 3943 if (strict_strtoull(buf, 10, &min)) 3944 return -EINVAL; 3945 if (min > mddev->resync_max) 3946 return -EINVAL; 3947 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3948 return -EBUSY; 3949 3950 /* Must be a multiple of chunk_size */ 3951 if (mddev->chunk_sectors) { 3952 sector_t temp = min; 3953 if (sector_div(temp, mddev->chunk_sectors)) 3954 return -EINVAL; 3955 } 3956 mddev->resync_min = min; 3957 3958 return len; 3959 } 3960 3961 static struct md_sysfs_entry md_min_sync = 3962 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 3963 3964 static ssize_t 3965 max_sync_show(mddev_t *mddev, char *page) 3966 { 3967 if (mddev->resync_max == MaxSector) 3968 return sprintf(page, "max\n"); 3969 else 3970 return sprintf(page, "%llu\n", 3971 (unsigned long long)mddev->resync_max); 3972 } 3973 static ssize_t 3974 max_sync_store(mddev_t *mddev, const char *buf, size_t len) 3975 { 3976 if (strncmp(buf, "max", 3) == 0) 3977 mddev->resync_max = MaxSector; 3978 else { 3979 unsigned long long max; 3980 if (strict_strtoull(buf, 10, &max)) 3981 return -EINVAL; 3982 if (max < mddev->resync_min) 3983 return -EINVAL; 3984 if (max < mddev->resync_max && 3985 mddev->ro == 0 && 3986 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3987 return -EBUSY; 3988 3989 /* Must be a multiple of chunk_size */ 3990 if (mddev->chunk_sectors) { 3991 sector_t temp = max; 3992 if (sector_div(temp, mddev->chunk_sectors)) 3993 return -EINVAL; 3994 } 3995 mddev->resync_max = max; 3996 } 3997 wake_up(&mddev->recovery_wait); 3998 return len; 3999 } 4000 4001 static struct md_sysfs_entry md_max_sync = 4002 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4003 4004 static ssize_t 4005 suspend_lo_show(mddev_t *mddev, char *page) 4006 { 4007 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4008 } 4009 4010 static ssize_t 4011 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 4012 { 4013 char *e; 4014 unsigned long long new = simple_strtoull(buf, &e, 10); 4015 4016 if (mddev->pers == NULL || 4017 mddev->pers->quiesce == NULL) 4018 return -EINVAL; 4019 if (buf == e || (*e && *e != '\n')) 4020 return -EINVAL; 4021 if (new >= mddev->suspend_hi || 4022 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 4023 mddev->suspend_lo = new; 4024 mddev->pers->quiesce(mddev, 2); 4025 return len; 4026 } else 4027 return -EINVAL; 4028 } 4029 static struct md_sysfs_entry md_suspend_lo = 4030 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4031 4032 4033 static ssize_t 4034 suspend_hi_show(mddev_t *mddev, char *page) 4035 { 4036 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4037 } 4038 4039 static ssize_t 4040 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 4041 { 4042 char *e; 4043 unsigned long long new = simple_strtoull(buf, &e, 10); 4044 4045 if (mddev->pers == NULL || 4046 mddev->pers->quiesce == NULL) 4047 return -EINVAL; 4048 if (buf == e || (*e && *e != '\n')) 4049 return -EINVAL; 4050 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 4051 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 4052 mddev->suspend_hi = new; 4053 mddev->pers->quiesce(mddev, 1); 4054 mddev->pers->quiesce(mddev, 0); 4055 return len; 4056 } else 4057 return -EINVAL; 4058 } 4059 static struct md_sysfs_entry md_suspend_hi = 4060 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4061 4062 static ssize_t 4063 reshape_position_show(mddev_t *mddev, char *page) 4064 { 4065 if (mddev->reshape_position != MaxSector) 4066 return sprintf(page, "%llu\n", 4067 (unsigned long long)mddev->reshape_position); 4068 strcpy(page, "none\n"); 4069 return 5; 4070 } 4071 4072 static ssize_t 4073 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 4074 { 4075 char *e; 4076 unsigned long long new = simple_strtoull(buf, &e, 10); 4077 if (mddev->pers) 4078 return -EBUSY; 4079 if (buf == e || (*e && *e != '\n')) 4080 return -EINVAL; 4081 mddev->reshape_position = new; 4082 mddev->delta_disks = 0; 4083 mddev->new_level = mddev->level; 4084 mddev->new_layout = mddev->layout; 4085 mddev->new_chunk_sectors = mddev->chunk_sectors; 4086 return len; 4087 } 4088 4089 static struct md_sysfs_entry md_reshape_position = 4090 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4091 reshape_position_store); 4092 4093 static ssize_t 4094 array_size_show(mddev_t *mddev, char *page) 4095 { 4096 if (mddev->external_size) 4097 return sprintf(page, "%llu\n", 4098 (unsigned long long)mddev->array_sectors/2); 4099 else 4100 return sprintf(page, "default\n"); 4101 } 4102 4103 static ssize_t 4104 array_size_store(mddev_t *mddev, const char *buf, size_t len) 4105 { 4106 sector_t sectors; 4107 4108 if (strncmp(buf, "default", 7) == 0) { 4109 if (mddev->pers) 4110 sectors = mddev->pers->size(mddev, 0, 0); 4111 else 4112 sectors = mddev->array_sectors; 4113 4114 mddev->external_size = 0; 4115 } else { 4116 if (strict_blocks_to_sectors(buf, §ors) < 0) 4117 return -EINVAL; 4118 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4119 return -E2BIG; 4120 4121 mddev->external_size = 1; 4122 } 4123 4124 mddev->array_sectors = sectors; 4125 set_capacity(mddev->gendisk, mddev->array_sectors); 4126 if (mddev->pers) 4127 revalidate_disk(mddev->gendisk); 4128 4129 return len; 4130 } 4131 4132 static struct md_sysfs_entry md_array_size = 4133 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4134 array_size_store); 4135 4136 static struct attribute *md_default_attrs[] = { 4137 &md_level.attr, 4138 &md_layout.attr, 4139 &md_raid_disks.attr, 4140 &md_chunk_size.attr, 4141 &md_size.attr, 4142 &md_resync_start.attr, 4143 &md_metadata.attr, 4144 &md_new_device.attr, 4145 &md_safe_delay.attr, 4146 &md_array_state.attr, 4147 &md_reshape_position.attr, 4148 &md_array_size.attr, 4149 &max_corr_read_errors.attr, 4150 NULL, 4151 }; 4152 4153 static struct attribute *md_redundancy_attrs[] = { 4154 &md_scan_mode.attr, 4155 &md_mismatches.attr, 4156 &md_sync_min.attr, 4157 &md_sync_max.attr, 4158 &md_sync_speed.attr, 4159 &md_sync_force_parallel.attr, 4160 &md_sync_completed.attr, 4161 &md_min_sync.attr, 4162 &md_max_sync.attr, 4163 &md_suspend_lo.attr, 4164 &md_suspend_hi.attr, 4165 &md_bitmap.attr, 4166 &md_degraded.attr, 4167 NULL, 4168 }; 4169 static struct attribute_group md_redundancy_group = { 4170 .name = NULL, 4171 .attrs = md_redundancy_attrs, 4172 }; 4173 4174 4175 static ssize_t 4176 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4177 { 4178 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4179 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4180 ssize_t rv; 4181 4182 if (!entry->show) 4183 return -EIO; 4184 rv = mddev_lock(mddev); 4185 if (!rv) { 4186 rv = entry->show(mddev, page); 4187 mddev_unlock(mddev); 4188 } 4189 return rv; 4190 } 4191 4192 static ssize_t 4193 md_attr_store(struct kobject *kobj, struct attribute *attr, 4194 const char *page, size_t length) 4195 { 4196 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4197 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4198 ssize_t rv; 4199 4200 if (!entry->store) 4201 return -EIO; 4202 if (!capable(CAP_SYS_ADMIN)) 4203 return -EACCES; 4204 rv = mddev_lock(mddev); 4205 if (mddev->hold_active == UNTIL_IOCTL) 4206 mddev->hold_active = 0; 4207 if (!rv) { 4208 rv = entry->store(mddev, page, length); 4209 mddev_unlock(mddev); 4210 } 4211 return rv; 4212 } 4213 4214 static void md_free(struct kobject *ko) 4215 { 4216 mddev_t *mddev = container_of(ko, mddev_t, kobj); 4217 4218 if (mddev->sysfs_state) 4219 sysfs_put(mddev->sysfs_state); 4220 4221 if (mddev->gendisk) { 4222 del_gendisk(mddev->gendisk); 4223 put_disk(mddev->gendisk); 4224 } 4225 if (mddev->queue) 4226 blk_cleanup_queue(mddev->queue); 4227 4228 kfree(mddev); 4229 } 4230 4231 static const struct sysfs_ops md_sysfs_ops = { 4232 .show = md_attr_show, 4233 .store = md_attr_store, 4234 }; 4235 static struct kobj_type md_ktype = { 4236 .release = md_free, 4237 .sysfs_ops = &md_sysfs_ops, 4238 .default_attrs = md_default_attrs, 4239 }; 4240 4241 int mdp_major = 0; 4242 4243 static void mddev_delayed_delete(struct work_struct *ws) 4244 { 4245 mddev_t *mddev = container_of(ws, mddev_t, del_work); 4246 4247 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4248 kobject_del(&mddev->kobj); 4249 kobject_put(&mddev->kobj); 4250 } 4251 4252 static int md_alloc(dev_t dev, char *name) 4253 { 4254 static DEFINE_MUTEX(disks_mutex); 4255 mddev_t *mddev = mddev_find(dev); 4256 struct gendisk *disk; 4257 int partitioned; 4258 int shift; 4259 int unit; 4260 int error; 4261 4262 if (!mddev) 4263 return -ENODEV; 4264 4265 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4266 shift = partitioned ? MdpMinorShift : 0; 4267 unit = MINOR(mddev->unit) >> shift; 4268 4269 /* wait for any previous instance if this device 4270 * to be completed removed (mddev_delayed_delete). 4271 */ 4272 flush_scheduled_work(); 4273 4274 mutex_lock(&disks_mutex); 4275 error = -EEXIST; 4276 if (mddev->gendisk) 4277 goto abort; 4278 4279 if (name) { 4280 /* Need to ensure that 'name' is not a duplicate. 4281 */ 4282 mddev_t *mddev2; 4283 spin_lock(&all_mddevs_lock); 4284 4285 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4286 if (mddev2->gendisk && 4287 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4288 spin_unlock(&all_mddevs_lock); 4289 goto abort; 4290 } 4291 spin_unlock(&all_mddevs_lock); 4292 } 4293 4294 error = -ENOMEM; 4295 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4296 if (!mddev->queue) 4297 goto abort; 4298 mddev->queue->queuedata = mddev; 4299 4300 /* Can be unlocked because the queue is new: no concurrency */ 4301 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue); 4302 4303 blk_queue_make_request(mddev->queue, md_make_request); 4304 4305 disk = alloc_disk(1 << shift); 4306 if (!disk) { 4307 blk_cleanup_queue(mddev->queue); 4308 mddev->queue = NULL; 4309 goto abort; 4310 } 4311 disk->major = MAJOR(mddev->unit); 4312 disk->first_minor = unit << shift; 4313 if (name) 4314 strcpy(disk->disk_name, name); 4315 else if (partitioned) 4316 sprintf(disk->disk_name, "md_d%d", unit); 4317 else 4318 sprintf(disk->disk_name, "md%d", unit); 4319 disk->fops = &md_fops; 4320 disk->private_data = mddev; 4321 disk->queue = mddev->queue; 4322 /* Allow extended partitions. This makes the 4323 * 'mdp' device redundant, but we can't really 4324 * remove it now. 4325 */ 4326 disk->flags |= GENHD_FL_EXT_DEVT; 4327 add_disk(disk); 4328 mddev->gendisk = disk; 4329 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4330 &disk_to_dev(disk)->kobj, "%s", "md"); 4331 if (error) { 4332 /* This isn't possible, but as kobject_init_and_add is marked 4333 * __must_check, we must do something with the result 4334 */ 4335 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4336 disk->disk_name); 4337 error = 0; 4338 } 4339 if (mddev->kobj.sd && 4340 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4341 printk(KERN_DEBUG "pointless warning\n"); 4342 abort: 4343 mutex_unlock(&disks_mutex); 4344 if (!error && mddev->kobj.sd) { 4345 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4346 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4347 } 4348 mddev_put(mddev); 4349 return error; 4350 } 4351 4352 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4353 { 4354 md_alloc(dev, NULL); 4355 return NULL; 4356 } 4357 4358 static int add_named_array(const char *val, struct kernel_param *kp) 4359 { 4360 /* val must be "md_*" where * is not all digits. 4361 * We allocate an array with a large free minor number, and 4362 * set the name to val. val must not already be an active name. 4363 */ 4364 int len = strlen(val); 4365 char buf[DISK_NAME_LEN]; 4366 4367 while (len && val[len-1] == '\n') 4368 len--; 4369 if (len >= DISK_NAME_LEN) 4370 return -E2BIG; 4371 strlcpy(buf, val, len+1); 4372 if (strncmp(buf, "md_", 3) != 0) 4373 return -EINVAL; 4374 return md_alloc(0, buf); 4375 } 4376 4377 static void md_safemode_timeout(unsigned long data) 4378 { 4379 mddev_t *mddev = (mddev_t *) data; 4380 4381 if (!atomic_read(&mddev->writes_pending)) { 4382 mddev->safemode = 1; 4383 if (mddev->external) 4384 sysfs_notify_dirent_safe(mddev->sysfs_state); 4385 } 4386 md_wakeup_thread(mddev->thread); 4387 } 4388 4389 static int start_dirty_degraded; 4390 4391 int md_run(mddev_t *mddev) 4392 { 4393 int err; 4394 mdk_rdev_t *rdev; 4395 struct mdk_personality *pers; 4396 4397 if (list_empty(&mddev->disks)) 4398 /* cannot run an array with no devices.. */ 4399 return -EINVAL; 4400 4401 if (mddev->pers) 4402 return -EBUSY; 4403 /* Cannot run until previous stop completes properly */ 4404 if (mddev->sysfs_active) 4405 return -EBUSY; 4406 4407 /* 4408 * Analyze all RAID superblock(s) 4409 */ 4410 if (!mddev->raid_disks) { 4411 if (!mddev->persistent) 4412 return -EINVAL; 4413 analyze_sbs(mddev); 4414 } 4415 4416 if (mddev->level != LEVEL_NONE) 4417 request_module("md-level-%d", mddev->level); 4418 else if (mddev->clevel[0]) 4419 request_module("md-%s", mddev->clevel); 4420 4421 /* 4422 * Drop all container device buffers, from now on 4423 * the only valid external interface is through the md 4424 * device. 4425 */ 4426 list_for_each_entry(rdev, &mddev->disks, same_set) { 4427 if (test_bit(Faulty, &rdev->flags)) 4428 continue; 4429 sync_blockdev(rdev->bdev); 4430 invalidate_bdev(rdev->bdev); 4431 4432 /* perform some consistency tests on the device. 4433 * We don't want the data to overlap the metadata, 4434 * Internal Bitmap issues have been handled elsewhere. 4435 */ 4436 if (rdev->data_offset < rdev->sb_start) { 4437 if (mddev->dev_sectors && 4438 rdev->data_offset + mddev->dev_sectors 4439 > rdev->sb_start) { 4440 printk("md: %s: data overlaps metadata\n", 4441 mdname(mddev)); 4442 return -EINVAL; 4443 } 4444 } else { 4445 if (rdev->sb_start + rdev->sb_size/512 4446 > rdev->data_offset) { 4447 printk("md: %s: metadata overlaps data\n", 4448 mdname(mddev)); 4449 return -EINVAL; 4450 } 4451 } 4452 sysfs_notify_dirent_safe(rdev->sysfs_state); 4453 } 4454 4455 spin_lock(&pers_lock); 4456 pers = find_pers(mddev->level, mddev->clevel); 4457 if (!pers || !try_module_get(pers->owner)) { 4458 spin_unlock(&pers_lock); 4459 if (mddev->level != LEVEL_NONE) 4460 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 4461 mddev->level); 4462 else 4463 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 4464 mddev->clevel); 4465 return -EINVAL; 4466 } 4467 mddev->pers = pers; 4468 spin_unlock(&pers_lock); 4469 if (mddev->level != pers->level) { 4470 mddev->level = pers->level; 4471 mddev->new_level = pers->level; 4472 } 4473 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4474 4475 if (mddev->reshape_position != MaxSector && 4476 pers->start_reshape == NULL) { 4477 /* This personality cannot handle reshaping... */ 4478 mddev->pers = NULL; 4479 module_put(pers->owner); 4480 return -EINVAL; 4481 } 4482 4483 if (pers->sync_request) { 4484 /* Warn if this is a potentially silly 4485 * configuration. 4486 */ 4487 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4488 mdk_rdev_t *rdev2; 4489 int warned = 0; 4490 4491 list_for_each_entry(rdev, &mddev->disks, same_set) 4492 list_for_each_entry(rdev2, &mddev->disks, same_set) { 4493 if (rdev < rdev2 && 4494 rdev->bdev->bd_contains == 4495 rdev2->bdev->bd_contains) { 4496 printk(KERN_WARNING 4497 "%s: WARNING: %s appears to be" 4498 " on the same physical disk as" 4499 " %s.\n", 4500 mdname(mddev), 4501 bdevname(rdev->bdev,b), 4502 bdevname(rdev2->bdev,b2)); 4503 warned = 1; 4504 } 4505 } 4506 4507 if (warned) 4508 printk(KERN_WARNING 4509 "True protection against single-disk" 4510 " failure might be compromised.\n"); 4511 } 4512 4513 mddev->recovery = 0; 4514 /* may be over-ridden by personality */ 4515 mddev->resync_max_sectors = mddev->dev_sectors; 4516 4517 mddev->barriers_work = 1; 4518 mddev->ok_start_degraded = start_dirty_degraded; 4519 4520 if (start_readonly && mddev->ro == 0) 4521 mddev->ro = 2; /* read-only, but switch on first write */ 4522 4523 err = mddev->pers->run(mddev); 4524 if (err) 4525 printk(KERN_ERR "md: pers->run() failed ...\n"); 4526 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 4527 WARN_ONCE(!mddev->external_size, "%s: default size too small," 4528 " but 'external_size' not in effect?\n", __func__); 4529 printk(KERN_ERR 4530 "md: invalid array_size %llu > default size %llu\n", 4531 (unsigned long long)mddev->array_sectors / 2, 4532 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 4533 err = -EINVAL; 4534 mddev->pers->stop(mddev); 4535 } 4536 if (err == 0 && mddev->pers->sync_request) { 4537 err = bitmap_create(mddev); 4538 if (err) { 4539 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 4540 mdname(mddev), err); 4541 mddev->pers->stop(mddev); 4542 } 4543 } 4544 if (err) { 4545 module_put(mddev->pers->owner); 4546 mddev->pers = NULL; 4547 bitmap_destroy(mddev); 4548 return err; 4549 } 4550 if (mddev->pers->sync_request) { 4551 if (mddev->kobj.sd && 4552 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4553 printk(KERN_WARNING 4554 "md: cannot register extra attributes for %s\n", 4555 mdname(mddev)); 4556 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 4557 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 4558 mddev->ro = 0; 4559 4560 atomic_set(&mddev->writes_pending,0); 4561 atomic_set(&mddev->max_corr_read_errors, 4562 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 4563 mddev->safemode = 0; 4564 mddev->safemode_timer.function = md_safemode_timeout; 4565 mddev->safemode_timer.data = (unsigned long) mddev; 4566 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 4567 mddev->in_sync = 1; 4568 4569 list_for_each_entry(rdev, &mddev->disks, same_set) 4570 if (rdev->raid_disk >= 0) { 4571 char nm[20]; 4572 sprintf(nm, "rd%d", rdev->raid_disk); 4573 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 4574 /* failure here is OK */; 4575 } 4576 4577 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4578 4579 if (mddev->flags) 4580 md_update_sb(mddev, 0); 4581 4582 md_wakeup_thread(mddev->thread); 4583 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 4584 4585 md_new_event(mddev); 4586 sysfs_notify_dirent_safe(mddev->sysfs_state); 4587 sysfs_notify_dirent_safe(mddev->sysfs_action); 4588 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4589 return 0; 4590 } 4591 EXPORT_SYMBOL_GPL(md_run); 4592 4593 static int do_md_run(mddev_t *mddev) 4594 { 4595 int err; 4596 4597 err = md_run(mddev); 4598 if (err) 4599 goto out; 4600 err = bitmap_load(mddev); 4601 if (err) { 4602 bitmap_destroy(mddev); 4603 goto out; 4604 } 4605 set_capacity(mddev->gendisk, mddev->array_sectors); 4606 revalidate_disk(mddev->gendisk); 4607 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4608 out: 4609 return err; 4610 } 4611 4612 static int restart_array(mddev_t *mddev) 4613 { 4614 struct gendisk *disk = mddev->gendisk; 4615 4616 /* Complain if it has no devices */ 4617 if (list_empty(&mddev->disks)) 4618 return -ENXIO; 4619 if (!mddev->pers) 4620 return -EINVAL; 4621 if (!mddev->ro) 4622 return -EBUSY; 4623 mddev->safemode = 0; 4624 mddev->ro = 0; 4625 set_disk_ro(disk, 0); 4626 printk(KERN_INFO "md: %s switched to read-write mode.\n", 4627 mdname(mddev)); 4628 /* Kick recovery or resync if necessary */ 4629 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4630 md_wakeup_thread(mddev->thread); 4631 md_wakeup_thread(mddev->sync_thread); 4632 sysfs_notify_dirent_safe(mddev->sysfs_state); 4633 return 0; 4634 } 4635 4636 /* similar to deny_write_access, but accounts for our holding a reference 4637 * to the file ourselves */ 4638 static int deny_bitmap_write_access(struct file * file) 4639 { 4640 struct inode *inode = file->f_mapping->host; 4641 4642 spin_lock(&inode->i_lock); 4643 if (atomic_read(&inode->i_writecount) > 1) { 4644 spin_unlock(&inode->i_lock); 4645 return -ETXTBSY; 4646 } 4647 atomic_set(&inode->i_writecount, -1); 4648 spin_unlock(&inode->i_lock); 4649 4650 return 0; 4651 } 4652 4653 void restore_bitmap_write_access(struct file *file) 4654 { 4655 struct inode *inode = file->f_mapping->host; 4656 4657 spin_lock(&inode->i_lock); 4658 atomic_set(&inode->i_writecount, 1); 4659 spin_unlock(&inode->i_lock); 4660 } 4661 4662 static void md_clean(mddev_t *mddev) 4663 { 4664 mddev->array_sectors = 0; 4665 mddev->external_size = 0; 4666 mddev->dev_sectors = 0; 4667 mddev->raid_disks = 0; 4668 mddev->recovery_cp = 0; 4669 mddev->resync_min = 0; 4670 mddev->resync_max = MaxSector; 4671 mddev->reshape_position = MaxSector; 4672 mddev->external = 0; 4673 mddev->persistent = 0; 4674 mddev->level = LEVEL_NONE; 4675 mddev->clevel[0] = 0; 4676 mddev->flags = 0; 4677 mddev->ro = 0; 4678 mddev->metadata_type[0] = 0; 4679 mddev->chunk_sectors = 0; 4680 mddev->ctime = mddev->utime = 0; 4681 mddev->layout = 0; 4682 mddev->max_disks = 0; 4683 mddev->events = 0; 4684 mddev->can_decrease_events = 0; 4685 mddev->delta_disks = 0; 4686 mddev->new_level = LEVEL_NONE; 4687 mddev->new_layout = 0; 4688 mddev->new_chunk_sectors = 0; 4689 mddev->curr_resync = 0; 4690 mddev->resync_mismatches = 0; 4691 mddev->suspend_lo = mddev->suspend_hi = 0; 4692 mddev->sync_speed_min = mddev->sync_speed_max = 0; 4693 mddev->recovery = 0; 4694 mddev->in_sync = 0; 4695 mddev->degraded = 0; 4696 mddev->barriers_work = 0; 4697 mddev->safemode = 0; 4698 mddev->bitmap_info.offset = 0; 4699 mddev->bitmap_info.default_offset = 0; 4700 mddev->bitmap_info.chunksize = 0; 4701 mddev->bitmap_info.daemon_sleep = 0; 4702 mddev->bitmap_info.max_write_behind = 0; 4703 mddev->plug = NULL; 4704 } 4705 4706 void md_stop_writes(mddev_t *mddev) 4707 { 4708 if (mddev->sync_thread) { 4709 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4710 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4711 md_unregister_thread(mddev->sync_thread); 4712 mddev->sync_thread = NULL; 4713 } 4714 4715 del_timer_sync(&mddev->safemode_timer); 4716 4717 bitmap_flush(mddev); 4718 md_super_wait(mddev); 4719 4720 if (!mddev->in_sync || mddev->flags) { 4721 /* mark array as shutdown cleanly */ 4722 mddev->in_sync = 1; 4723 md_update_sb(mddev, 1); 4724 } 4725 } 4726 EXPORT_SYMBOL_GPL(md_stop_writes); 4727 4728 void md_stop(mddev_t *mddev) 4729 { 4730 mddev->pers->stop(mddev); 4731 if (mddev->pers->sync_request && mddev->to_remove == NULL) 4732 mddev->to_remove = &md_redundancy_group; 4733 module_put(mddev->pers->owner); 4734 mddev->pers = NULL; 4735 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4736 } 4737 EXPORT_SYMBOL_GPL(md_stop); 4738 4739 static int md_set_readonly(mddev_t *mddev, int is_open) 4740 { 4741 int err = 0; 4742 mutex_lock(&mddev->open_mutex); 4743 if (atomic_read(&mddev->openers) > is_open) { 4744 printk("md: %s still in use.\n",mdname(mddev)); 4745 err = -EBUSY; 4746 goto out; 4747 } 4748 if (mddev->pers) { 4749 md_stop_writes(mddev); 4750 4751 err = -ENXIO; 4752 if (mddev->ro==1) 4753 goto out; 4754 mddev->ro = 1; 4755 set_disk_ro(mddev->gendisk, 1); 4756 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4757 sysfs_notify_dirent_safe(mddev->sysfs_state); 4758 err = 0; 4759 } 4760 out: 4761 mutex_unlock(&mddev->open_mutex); 4762 return err; 4763 } 4764 4765 /* mode: 4766 * 0 - completely stop and dis-assemble array 4767 * 2 - stop but do not disassemble array 4768 */ 4769 static int do_md_stop(mddev_t * mddev, int mode, int is_open) 4770 { 4771 struct gendisk *disk = mddev->gendisk; 4772 mdk_rdev_t *rdev; 4773 4774 mutex_lock(&mddev->open_mutex); 4775 if (atomic_read(&mddev->openers) > is_open || 4776 mddev->sysfs_active) { 4777 printk("md: %s still in use.\n",mdname(mddev)); 4778 mutex_unlock(&mddev->open_mutex); 4779 return -EBUSY; 4780 } 4781 4782 if (mddev->pers) { 4783 if (mddev->ro) 4784 set_disk_ro(disk, 0); 4785 4786 md_stop_writes(mddev); 4787 md_stop(mddev); 4788 mddev->queue->merge_bvec_fn = NULL; 4789 mddev->queue->unplug_fn = NULL; 4790 mddev->queue->backing_dev_info.congested_fn = NULL; 4791 4792 /* tell userspace to handle 'inactive' */ 4793 sysfs_notify_dirent_safe(mddev->sysfs_state); 4794 4795 list_for_each_entry(rdev, &mddev->disks, same_set) 4796 if (rdev->raid_disk >= 0) { 4797 char nm[20]; 4798 sprintf(nm, "rd%d", rdev->raid_disk); 4799 sysfs_remove_link(&mddev->kobj, nm); 4800 } 4801 4802 set_capacity(disk, 0); 4803 mutex_unlock(&mddev->open_mutex); 4804 revalidate_disk(disk); 4805 4806 if (mddev->ro) 4807 mddev->ro = 0; 4808 } else 4809 mutex_unlock(&mddev->open_mutex); 4810 /* 4811 * Free resources if final stop 4812 */ 4813 if (mode == 0) { 4814 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 4815 4816 bitmap_destroy(mddev); 4817 if (mddev->bitmap_info.file) { 4818 restore_bitmap_write_access(mddev->bitmap_info.file); 4819 fput(mddev->bitmap_info.file); 4820 mddev->bitmap_info.file = NULL; 4821 } 4822 mddev->bitmap_info.offset = 0; 4823 4824 export_array(mddev); 4825 4826 md_clean(mddev); 4827 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4828 if (mddev->hold_active == UNTIL_STOP) 4829 mddev->hold_active = 0; 4830 } 4831 blk_integrity_unregister(disk); 4832 md_new_event(mddev); 4833 sysfs_notify_dirent_safe(mddev->sysfs_state); 4834 return 0; 4835 } 4836 4837 #ifndef MODULE 4838 static void autorun_array(mddev_t *mddev) 4839 { 4840 mdk_rdev_t *rdev; 4841 int err; 4842 4843 if (list_empty(&mddev->disks)) 4844 return; 4845 4846 printk(KERN_INFO "md: running: "); 4847 4848 list_for_each_entry(rdev, &mddev->disks, same_set) { 4849 char b[BDEVNAME_SIZE]; 4850 printk("<%s>", bdevname(rdev->bdev,b)); 4851 } 4852 printk("\n"); 4853 4854 err = do_md_run(mddev); 4855 if (err) { 4856 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 4857 do_md_stop(mddev, 0, 0); 4858 } 4859 } 4860 4861 /* 4862 * lets try to run arrays based on all disks that have arrived 4863 * until now. (those are in pending_raid_disks) 4864 * 4865 * the method: pick the first pending disk, collect all disks with 4866 * the same UUID, remove all from the pending list and put them into 4867 * the 'same_array' list. Then order this list based on superblock 4868 * update time (freshest comes first), kick out 'old' disks and 4869 * compare superblocks. If everything's fine then run it. 4870 * 4871 * If "unit" is allocated, then bump its reference count 4872 */ 4873 static void autorun_devices(int part) 4874 { 4875 mdk_rdev_t *rdev0, *rdev, *tmp; 4876 mddev_t *mddev; 4877 char b[BDEVNAME_SIZE]; 4878 4879 printk(KERN_INFO "md: autorun ...\n"); 4880 while (!list_empty(&pending_raid_disks)) { 4881 int unit; 4882 dev_t dev; 4883 LIST_HEAD(candidates); 4884 rdev0 = list_entry(pending_raid_disks.next, 4885 mdk_rdev_t, same_set); 4886 4887 printk(KERN_INFO "md: considering %s ...\n", 4888 bdevname(rdev0->bdev,b)); 4889 INIT_LIST_HEAD(&candidates); 4890 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 4891 if (super_90_load(rdev, rdev0, 0) >= 0) { 4892 printk(KERN_INFO "md: adding %s ...\n", 4893 bdevname(rdev->bdev,b)); 4894 list_move(&rdev->same_set, &candidates); 4895 } 4896 /* 4897 * now we have a set of devices, with all of them having 4898 * mostly sane superblocks. It's time to allocate the 4899 * mddev. 4900 */ 4901 if (part) { 4902 dev = MKDEV(mdp_major, 4903 rdev0->preferred_minor << MdpMinorShift); 4904 unit = MINOR(dev) >> MdpMinorShift; 4905 } else { 4906 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 4907 unit = MINOR(dev); 4908 } 4909 if (rdev0->preferred_minor != unit) { 4910 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 4911 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 4912 break; 4913 } 4914 4915 md_probe(dev, NULL, NULL); 4916 mddev = mddev_find(dev); 4917 if (!mddev || !mddev->gendisk) { 4918 if (mddev) 4919 mddev_put(mddev); 4920 printk(KERN_ERR 4921 "md: cannot allocate memory for md drive.\n"); 4922 break; 4923 } 4924 if (mddev_lock(mddev)) 4925 printk(KERN_WARNING "md: %s locked, cannot run\n", 4926 mdname(mddev)); 4927 else if (mddev->raid_disks || mddev->major_version 4928 || !list_empty(&mddev->disks)) { 4929 printk(KERN_WARNING 4930 "md: %s already running, cannot run %s\n", 4931 mdname(mddev), bdevname(rdev0->bdev,b)); 4932 mddev_unlock(mddev); 4933 } else { 4934 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 4935 mddev->persistent = 1; 4936 rdev_for_each_list(rdev, tmp, &candidates) { 4937 list_del_init(&rdev->same_set); 4938 if (bind_rdev_to_array(rdev, mddev)) 4939 export_rdev(rdev); 4940 } 4941 autorun_array(mddev); 4942 mddev_unlock(mddev); 4943 } 4944 /* on success, candidates will be empty, on error 4945 * it won't... 4946 */ 4947 rdev_for_each_list(rdev, tmp, &candidates) { 4948 list_del_init(&rdev->same_set); 4949 export_rdev(rdev); 4950 } 4951 mddev_put(mddev); 4952 } 4953 printk(KERN_INFO "md: ... autorun DONE.\n"); 4954 } 4955 #endif /* !MODULE */ 4956 4957 static int get_version(void __user * arg) 4958 { 4959 mdu_version_t ver; 4960 4961 ver.major = MD_MAJOR_VERSION; 4962 ver.minor = MD_MINOR_VERSION; 4963 ver.patchlevel = MD_PATCHLEVEL_VERSION; 4964 4965 if (copy_to_user(arg, &ver, sizeof(ver))) 4966 return -EFAULT; 4967 4968 return 0; 4969 } 4970 4971 static int get_array_info(mddev_t * mddev, void __user * arg) 4972 { 4973 mdu_array_info_t info; 4974 int nr,working,insync,failed,spare; 4975 mdk_rdev_t *rdev; 4976 4977 nr=working=insync=failed=spare=0; 4978 list_for_each_entry(rdev, &mddev->disks, same_set) { 4979 nr++; 4980 if (test_bit(Faulty, &rdev->flags)) 4981 failed++; 4982 else { 4983 working++; 4984 if (test_bit(In_sync, &rdev->flags)) 4985 insync++; 4986 else 4987 spare++; 4988 } 4989 } 4990 4991 info.major_version = mddev->major_version; 4992 info.minor_version = mddev->minor_version; 4993 info.patch_version = MD_PATCHLEVEL_VERSION; 4994 info.ctime = mddev->ctime; 4995 info.level = mddev->level; 4996 info.size = mddev->dev_sectors / 2; 4997 if (info.size != mddev->dev_sectors / 2) /* overflow */ 4998 info.size = -1; 4999 info.nr_disks = nr; 5000 info.raid_disks = mddev->raid_disks; 5001 info.md_minor = mddev->md_minor; 5002 info.not_persistent= !mddev->persistent; 5003 5004 info.utime = mddev->utime; 5005 info.state = 0; 5006 if (mddev->in_sync) 5007 info.state = (1<<MD_SB_CLEAN); 5008 if (mddev->bitmap && mddev->bitmap_info.offset) 5009 info.state = (1<<MD_SB_BITMAP_PRESENT); 5010 info.active_disks = insync; 5011 info.working_disks = working; 5012 info.failed_disks = failed; 5013 info.spare_disks = spare; 5014 5015 info.layout = mddev->layout; 5016 info.chunk_size = mddev->chunk_sectors << 9; 5017 5018 if (copy_to_user(arg, &info, sizeof(info))) 5019 return -EFAULT; 5020 5021 return 0; 5022 } 5023 5024 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 5025 { 5026 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5027 char *ptr, *buf = NULL; 5028 int err = -ENOMEM; 5029 5030 if (md_allow_write(mddev)) 5031 file = kmalloc(sizeof(*file), GFP_NOIO); 5032 else 5033 file = kmalloc(sizeof(*file), GFP_KERNEL); 5034 5035 if (!file) 5036 goto out; 5037 5038 /* bitmap disabled, zero the first byte and copy out */ 5039 if (!mddev->bitmap || !mddev->bitmap->file) { 5040 file->pathname[0] = '\0'; 5041 goto copy_out; 5042 } 5043 5044 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5045 if (!buf) 5046 goto out; 5047 5048 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); 5049 if (IS_ERR(ptr)) 5050 goto out; 5051 5052 strcpy(file->pathname, ptr); 5053 5054 copy_out: 5055 err = 0; 5056 if (copy_to_user(arg, file, sizeof(*file))) 5057 err = -EFAULT; 5058 out: 5059 kfree(buf); 5060 kfree(file); 5061 return err; 5062 } 5063 5064 static int get_disk_info(mddev_t * mddev, void __user * arg) 5065 { 5066 mdu_disk_info_t info; 5067 mdk_rdev_t *rdev; 5068 5069 if (copy_from_user(&info, arg, sizeof(info))) 5070 return -EFAULT; 5071 5072 rdev = find_rdev_nr(mddev, info.number); 5073 if (rdev) { 5074 info.major = MAJOR(rdev->bdev->bd_dev); 5075 info.minor = MINOR(rdev->bdev->bd_dev); 5076 info.raid_disk = rdev->raid_disk; 5077 info.state = 0; 5078 if (test_bit(Faulty, &rdev->flags)) 5079 info.state |= (1<<MD_DISK_FAULTY); 5080 else if (test_bit(In_sync, &rdev->flags)) { 5081 info.state |= (1<<MD_DISK_ACTIVE); 5082 info.state |= (1<<MD_DISK_SYNC); 5083 } 5084 if (test_bit(WriteMostly, &rdev->flags)) 5085 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5086 } else { 5087 info.major = info.minor = 0; 5088 info.raid_disk = -1; 5089 info.state = (1<<MD_DISK_REMOVED); 5090 } 5091 5092 if (copy_to_user(arg, &info, sizeof(info))) 5093 return -EFAULT; 5094 5095 return 0; 5096 } 5097 5098 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 5099 { 5100 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5101 mdk_rdev_t *rdev; 5102 dev_t dev = MKDEV(info->major,info->minor); 5103 5104 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5105 return -EOVERFLOW; 5106 5107 if (!mddev->raid_disks) { 5108 int err; 5109 /* expecting a device which has a superblock */ 5110 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5111 if (IS_ERR(rdev)) { 5112 printk(KERN_WARNING 5113 "md: md_import_device returned %ld\n", 5114 PTR_ERR(rdev)); 5115 return PTR_ERR(rdev); 5116 } 5117 if (!list_empty(&mddev->disks)) { 5118 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 5119 mdk_rdev_t, same_set); 5120 err = super_types[mddev->major_version] 5121 .load_super(rdev, rdev0, mddev->minor_version); 5122 if (err < 0) { 5123 printk(KERN_WARNING 5124 "md: %s has different UUID to %s\n", 5125 bdevname(rdev->bdev,b), 5126 bdevname(rdev0->bdev,b2)); 5127 export_rdev(rdev); 5128 return -EINVAL; 5129 } 5130 } 5131 err = bind_rdev_to_array(rdev, mddev); 5132 if (err) 5133 export_rdev(rdev); 5134 return err; 5135 } 5136 5137 /* 5138 * add_new_disk can be used once the array is assembled 5139 * to add "hot spares". They must already have a superblock 5140 * written 5141 */ 5142 if (mddev->pers) { 5143 int err; 5144 if (!mddev->pers->hot_add_disk) { 5145 printk(KERN_WARNING 5146 "%s: personality does not support diskops!\n", 5147 mdname(mddev)); 5148 return -EINVAL; 5149 } 5150 if (mddev->persistent) 5151 rdev = md_import_device(dev, mddev->major_version, 5152 mddev->minor_version); 5153 else 5154 rdev = md_import_device(dev, -1, -1); 5155 if (IS_ERR(rdev)) { 5156 printk(KERN_WARNING 5157 "md: md_import_device returned %ld\n", 5158 PTR_ERR(rdev)); 5159 return PTR_ERR(rdev); 5160 } 5161 /* set save_raid_disk if appropriate */ 5162 if (!mddev->persistent) { 5163 if (info->state & (1<<MD_DISK_SYNC) && 5164 info->raid_disk < mddev->raid_disks) 5165 rdev->raid_disk = info->raid_disk; 5166 else 5167 rdev->raid_disk = -1; 5168 } else 5169 super_types[mddev->major_version]. 5170 validate_super(mddev, rdev); 5171 rdev->saved_raid_disk = rdev->raid_disk; 5172 5173 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5174 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5175 set_bit(WriteMostly, &rdev->flags); 5176 else 5177 clear_bit(WriteMostly, &rdev->flags); 5178 5179 rdev->raid_disk = -1; 5180 err = bind_rdev_to_array(rdev, mddev); 5181 if (!err && !mddev->pers->hot_remove_disk) { 5182 /* If there is hot_add_disk but no hot_remove_disk 5183 * then added disks for geometry changes, 5184 * and should be added immediately. 5185 */ 5186 super_types[mddev->major_version]. 5187 validate_super(mddev, rdev); 5188 err = mddev->pers->hot_add_disk(mddev, rdev); 5189 if (err) 5190 unbind_rdev_from_array(rdev); 5191 } 5192 if (err) 5193 export_rdev(rdev); 5194 else 5195 sysfs_notify_dirent_safe(rdev->sysfs_state); 5196 5197 md_update_sb(mddev, 1); 5198 if (mddev->degraded) 5199 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5200 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5201 md_wakeup_thread(mddev->thread); 5202 return err; 5203 } 5204 5205 /* otherwise, add_new_disk is only allowed 5206 * for major_version==0 superblocks 5207 */ 5208 if (mddev->major_version != 0) { 5209 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5210 mdname(mddev)); 5211 return -EINVAL; 5212 } 5213 5214 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5215 int err; 5216 rdev = md_import_device(dev, -1, 0); 5217 if (IS_ERR(rdev)) { 5218 printk(KERN_WARNING 5219 "md: error, md_import_device() returned %ld\n", 5220 PTR_ERR(rdev)); 5221 return PTR_ERR(rdev); 5222 } 5223 rdev->desc_nr = info->number; 5224 if (info->raid_disk < mddev->raid_disks) 5225 rdev->raid_disk = info->raid_disk; 5226 else 5227 rdev->raid_disk = -1; 5228 5229 if (rdev->raid_disk < mddev->raid_disks) 5230 if (info->state & (1<<MD_DISK_SYNC)) 5231 set_bit(In_sync, &rdev->flags); 5232 5233 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5234 set_bit(WriteMostly, &rdev->flags); 5235 5236 if (!mddev->persistent) { 5237 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5238 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 5239 } else 5240 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 5241 rdev->sectors = rdev->sb_start; 5242 5243 err = bind_rdev_to_array(rdev, mddev); 5244 if (err) { 5245 export_rdev(rdev); 5246 return err; 5247 } 5248 } 5249 5250 return 0; 5251 } 5252 5253 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 5254 { 5255 char b[BDEVNAME_SIZE]; 5256 mdk_rdev_t *rdev; 5257 5258 rdev = find_rdev(mddev, dev); 5259 if (!rdev) 5260 return -ENXIO; 5261 5262 if (rdev->raid_disk >= 0) 5263 goto busy; 5264 5265 kick_rdev_from_array(rdev); 5266 md_update_sb(mddev, 1); 5267 md_new_event(mddev); 5268 5269 return 0; 5270 busy: 5271 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5272 bdevname(rdev->bdev,b), mdname(mddev)); 5273 return -EBUSY; 5274 } 5275 5276 static int hot_add_disk(mddev_t * mddev, dev_t dev) 5277 { 5278 char b[BDEVNAME_SIZE]; 5279 int err; 5280 mdk_rdev_t *rdev; 5281 5282 if (!mddev->pers) 5283 return -ENODEV; 5284 5285 if (mddev->major_version != 0) { 5286 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5287 " version-0 superblocks.\n", 5288 mdname(mddev)); 5289 return -EINVAL; 5290 } 5291 if (!mddev->pers->hot_add_disk) { 5292 printk(KERN_WARNING 5293 "%s: personality does not support diskops!\n", 5294 mdname(mddev)); 5295 return -EINVAL; 5296 } 5297 5298 rdev = md_import_device(dev, -1, 0); 5299 if (IS_ERR(rdev)) { 5300 printk(KERN_WARNING 5301 "md: error, md_import_device() returned %ld\n", 5302 PTR_ERR(rdev)); 5303 return -EINVAL; 5304 } 5305 5306 if (mddev->persistent) 5307 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 5308 else 5309 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 5310 5311 rdev->sectors = rdev->sb_start; 5312 5313 if (test_bit(Faulty, &rdev->flags)) { 5314 printk(KERN_WARNING 5315 "md: can not hot-add faulty %s disk to %s!\n", 5316 bdevname(rdev->bdev,b), mdname(mddev)); 5317 err = -EINVAL; 5318 goto abort_export; 5319 } 5320 clear_bit(In_sync, &rdev->flags); 5321 rdev->desc_nr = -1; 5322 rdev->saved_raid_disk = -1; 5323 err = bind_rdev_to_array(rdev, mddev); 5324 if (err) 5325 goto abort_export; 5326 5327 /* 5328 * The rest should better be atomic, we can have disk failures 5329 * noticed in interrupt contexts ... 5330 */ 5331 5332 rdev->raid_disk = -1; 5333 5334 md_update_sb(mddev, 1); 5335 5336 /* 5337 * Kick recovery, maybe this spare has to be added to the 5338 * array immediately. 5339 */ 5340 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5341 md_wakeup_thread(mddev->thread); 5342 md_new_event(mddev); 5343 return 0; 5344 5345 abort_export: 5346 export_rdev(rdev); 5347 return err; 5348 } 5349 5350 static int set_bitmap_file(mddev_t *mddev, int fd) 5351 { 5352 int err; 5353 5354 if (mddev->pers) { 5355 if (!mddev->pers->quiesce) 5356 return -EBUSY; 5357 if (mddev->recovery || mddev->sync_thread) 5358 return -EBUSY; 5359 /* we should be able to change the bitmap.. */ 5360 } 5361 5362 5363 if (fd >= 0) { 5364 if (mddev->bitmap) 5365 return -EEXIST; /* cannot add when bitmap is present */ 5366 mddev->bitmap_info.file = fget(fd); 5367 5368 if (mddev->bitmap_info.file == NULL) { 5369 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5370 mdname(mddev)); 5371 return -EBADF; 5372 } 5373 5374 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5375 if (err) { 5376 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5377 mdname(mddev)); 5378 fput(mddev->bitmap_info.file); 5379 mddev->bitmap_info.file = NULL; 5380 return err; 5381 } 5382 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5383 } else if (mddev->bitmap == NULL) 5384 return -ENOENT; /* cannot remove what isn't there */ 5385 err = 0; 5386 if (mddev->pers) { 5387 mddev->pers->quiesce(mddev, 1); 5388 if (fd >= 0) { 5389 err = bitmap_create(mddev); 5390 if (!err) 5391 err = bitmap_load(mddev); 5392 } 5393 if (fd < 0 || err) { 5394 bitmap_destroy(mddev); 5395 fd = -1; /* make sure to put the file */ 5396 } 5397 mddev->pers->quiesce(mddev, 0); 5398 } 5399 if (fd < 0) { 5400 if (mddev->bitmap_info.file) { 5401 restore_bitmap_write_access(mddev->bitmap_info.file); 5402 fput(mddev->bitmap_info.file); 5403 } 5404 mddev->bitmap_info.file = NULL; 5405 } 5406 5407 return err; 5408 } 5409 5410 /* 5411 * set_array_info is used two different ways 5412 * The original usage is when creating a new array. 5413 * In this usage, raid_disks is > 0 and it together with 5414 * level, size, not_persistent,layout,chunksize determine the 5415 * shape of the array. 5416 * This will always create an array with a type-0.90.0 superblock. 5417 * The newer usage is when assembling an array. 5418 * In this case raid_disks will be 0, and the major_version field is 5419 * use to determine which style super-blocks are to be found on the devices. 5420 * The minor and patch _version numbers are also kept incase the 5421 * super_block handler wishes to interpret them. 5422 */ 5423 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 5424 { 5425 5426 if (info->raid_disks == 0) { 5427 /* just setting version number for superblock loading */ 5428 if (info->major_version < 0 || 5429 info->major_version >= ARRAY_SIZE(super_types) || 5430 super_types[info->major_version].name == NULL) { 5431 /* maybe try to auto-load a module? */ 5432 printk(KERN_INFO 5433 "md: superblock version %d not known\n", 5434 info->major_version); 5435 return -EINVAL; 5436 } 5437 mddev->major_version = info->major_version; 5438 mddev->minor_version = info->minor_version; 5439 mddev->patch_version = info->patch_version; 5440 mddev->persistent = !info->not_persistent; 5441 /* ensure mddev_put doesn't delete this now that there 5442 * is some minimal configuration. 5443 */ 5444 mddev->ctime = get_seconds(); 5445 return 0; 5446 } 5447 mddev->major_version = MD_MAJOR_VERSION; 5448 mddev->minor_version = MD_MINOR_VERSION; 5449 mddev->patch_version = MD_PATCHLEVEL_VERSION; 5450 mddev->ctime = get_seconds(); 5451 5452 mddev->level = info->level; 5453 mddev->clevel[0] = 0; 5454 mddev->dev_sectors = 2 * (sector_t)info->size; 5455 mddev->raid_disks = info->raid_disks; 5456 /* don't set md_minor, it is determined by which /dev/md* was 5457 * openned 5458 */ 5459 if (info->state & (1<<MD_SB_CLEAN)) 5460 mddev->recovery_cp = MaxSector; 5461 else 5462 mddev->recovery_cp = 0; 5463 mddev->persistent = ! info->not_persistent; 5464 mddev->external = 0; 5465 5466 mddev->layout = info->layout; 5467 mddev->chunk_sectors = info->chunk_size >> 9; 5468 5469 mddev->max_disks = MD_SB_DISKS; 5470 5471 if (mddev->persistent) 5472 mddev->flags = 0; 5473 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5474 5475 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 5476 mddev->bitmap_info.offset = 0; 5477 5478 mddev->reshape_position = MaxSector; 5479 5480 /* 5481 * Generate a 128 bit UUID 5482 */ 5483 get_random_bytes(mddev->uuid, 16); 5484 5485 mddev->new_level = mddev->level; 5486 mddev->new_chunk_sectors = mddev->chunk_sectors; 5487 mddev->new_layout = mddev->layout; 5488 mddev->delta_disks = 0; 5489 5490 return 0; 5491 } 5492 5493 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors) 5494 { 5495 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 5496 5497 if (mddev->external_size) 5498 return; 5499 5500 mddev->array_sectors = array_sectors; 5501 } 5502 EXPORT_SYMBOL(md_set_array_sectors); 5503 5504 static int update_size(mddev_t *mddev, sector_t num_sectors) 5505 { 5506 mdk_rdev_t *rdev; 5507 int rv; 5508 int fit = (num_sectors == 0); 5509 5510 if (mddev->pers->resize == NULL) 5511 return -EINVAL; 5512 /* The "num_sectors" is the number of sectors of each device that 5513 * is used. This can only make sense for arrays with redundancy. 5514 * linear and raid0 always use whatever space is available. We can only 5515 * consider changing this number if no resync or reconstruction is 5516 * happening, and if the new size is acceptable. It must fit before the 5517 * sb_start or, if that is <data_offset, it must fit before the size 5518 * of each device. If num_sectors is zero, we find the largest size 5519 * that fits. 5520 5521 */ 5522 if (mddev->sync_thread) 5523 return -EBUSY; 5524 if (mddev->bitmap) 5525 /* Sorry, cannot grow a bitmap yet, just remove it, 5526 * grow, and re-add. 5527 */ 5528 return -EBUSY; 5529 list_for_each_entry(rdev, &mddev->disks, same_set) { 5530 sector_t avail = rdev->sectors; 5531 5532 if (fit && (num_sectors == 0 || num_sectors > avail)) 5533 num_sectors = avail; 5534 if (avail < num_sectors) 5535 return -ENOSPC; 5536 } 5537 rv = mddev->pers->resize(mddev, num_sectors); 5538 if (!rv) 5539 revalidate_disk(mddev->gendisk); 5540 return rv; 5541 } 5542 5543 static int update_raid_disks(mddev_t *mddev, int raid_disks) 5544 { 5545 int rv; 5546 /* change the number of raid disks */ 5547 if (mddev->pers->check_reshape == NULL) 5548 return -EINVAL; 5549 if (raid_disks <= 0 || 5550 (mddev->max_disks && raid_disks >= mddev->max_disks)) 5551 return -EINVAL; 5552 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 5553 return -EBUSY; 5554 mddev->delta_disks = raid_disks - mddev->raid_disks; 5555 5556 rv = mddev->pers->check_reshape(mddev); 5557 return rv; 5558 } 5559 5560 5561 /* 5562 * update_array_info is used to change the configuration of an 5563 * on-line array. 5564 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 5565 * fields in the info are checked against the array. 5566 * Any differences that cannot be handled will cause an error. 5567 * Normally, only one change can be managed at a time. 5568 */ 5569 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 5570 { 5571 int rv = 0; 5572 int cnt = 0; 5573 int state = 0; 5574 5575 /* calculate expected state,ignoring low bits */ 5576 if (mddev->bitmap && mddev->bitmap_info.offset) 5577 state |= (1 << MD_SB_BITMAP_PRESENT); 5578 5579 if (mddev->major_version != info->major_version || 5580 mddev->minor_version != info->minor_version || 5581 /* mddev->patch_version != info->patch_version || */ 5582 mddev->ctime != info->ctime || 5583 mddev->level != info->level || 5584 /* mddev->layout != info->layout || */ 5585 !mddev->persistent != info->not_persistent|| 5586 mddev->chunk_sectors != info->chunk_size >> 9 || 5587 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 5588 ((state^info->state) & 0xfffffe00) 5589 ) 5590 return -EINVAL; 5591 /* Check there is only one change */ 5592 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5593 cnt++; 5594 if (mddev->raid_disks != info->raid_disks) 5595 cnt++; 5596 if (mddev->layout != info->layout) 5597 cnt++; 5598 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 5599 cnt++; 5600 if (cnt == 0) 5601 return 0; 5602 if (cnt > 1) 5603 return -EINVAL; 5604 5605 if (mddev->layout != info->layout) { 5606 /* Change layout 5607 * we don't need to do anything at the md level, the 5608 * personality will take care of it all. 5609 */ 5610 if (mddev->pers->check_reshape == NULL) 5611 return -EINVAL; 5612 else { 5613 mddev->new_layout = info->layout; 5614 rv = mddev->pers->check_reshape(mddev); 5615 if (rv) 5616 mddev->new_layout = mddev->layout; 5617 return rv; 5618 } 5619 } 5620 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5621 rv = update_size(mddev, (sector_t)info->size * 2); 5622 5623 if (mddev->raid_disks != info->raid_disks) 5624 rv = update_raid_disks(mddev, info->raid_disks); 5625 5626 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 5627 if (mddev->pers->quiesce == NULL) 5628 return -EINVAL; 5629 if (mddev->recovery || mddev->sync_thread) 5630 return -EBUSY; 5631 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 5632 /* add the bitmap */ 5633 if (mddev->bitmap) 5634 return -EEXIST; 5635 if (mddev->bitmap_info.default_offset == 0) 5636 return -EINVAL; 5637 mddev->bitmap_info.offset = 5638 mddev->bitmap_info.default_offset; 5639 mddev->pers->quiesce(mddev, 1); 5640 rv = bitmap_create(mddev); 5641 if (!rv) 5642 rv = bitmap_load(mddev); 5643 if (rv) 5644 bitmap_destroy(mddev); 5645 mddev->pers->quiesce(mddev, 0); 5646 } else { 5647 /* remove the bitmap */ 5648 if (!mddev->bitmap) 5649 return -ENOENT; 5650 if (mddev->bitmap->file) 5651 return -EINVAL; 5652 mddev->pers->quiesce(mddev, 1); 5653 bitmap_destroy(mddev); 5654 mddev->pers->quiesce(mddev, 0); 5655 mddev->bitmap_info.offset = 0; 5656 } 5657 } 5658 md_update_sb(mddev, 1); 5659 return rv; 5660 } 5661 5662 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 5663 { 5664 mdk_rdev_t *rdev; 5665 5666 if (mddev->pers == NULL) 5667 return -ENODEV; 5668 5669 rdev = find_rdev(mddev, dev); 5670 if (!rdev) 5671 return -ENODEV; 5672 5673 md_error(mddev, rdev); 5674 return 0; 5675 } 5676 5677 /* 5678 * We have a problem here : there is no easy way to give a CHS 5679 * virtual geometry. We currently pretend that we have a 2 heads 5680 * 4 sectors (with a BIG number of cylinders...). This drives 5681 * dosfs just mad... ;-) 5682 */ 5683 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 5684 { 5685 mddev_t *mddev = bdev->bd_disk->private_data; 5686 5687 geo->heads = 2; 5688 geo->sectors = 4; 5689 geo->cylinders = mddev->array_sectors / 8; 5690 return 0; 5691 } 5692 5693 static int md_ioctl(struct block_device *bdev, fmode_t mode, 5694 unsigned int cmd, unsigned long arg) 5695 { 5696 int err = 0; 5697 void __user *argp = (void __user *)arg; 5698 mddev_t *mddev = NULL; 5699 int ro; 5700 5701 if (!capable(CAP_SYS_ADMIN)) 5702 return -EACCES; 5703 5704 /* 5705 * Commands dealing with the RAID driver but not any 5706 * particular array: 5707 */ 5708 switch (cmd) 5709 { 5710 case RAID_VERSION: 5711 err = get_version(argp); 5712 goto done; 5713 5714 case PRINT_RAID_DEBUG: 5715 err = 0; 5716 md_print_devices(); 5717 goto done; 5718 5719 #ifndef MODULE 5720 case RAID_AUTORUN: 5721 err = 0; 5722 autostart_arrays(arg); 5723 goto done; 5724 #endif 5725 default:; 5726 } 5727 5728 /* 5729 * Commands creating/starting a new array: 5730 */ 5731 5732 mddev = bdev->bd_disk->private_data; 5733 5734 if (!mddev) { 5735 BUG(); 5736 goto abort; 5737 } 5738 5739 err = mddev_lock(mddev); 5740 if (err) { 5741 printk(KERN_INFO 5742 "md: ioctl lock interrupted, reason %d, cmd %d\n", 5743 err, cmd); 5744 goto abort; 5745 } 5746 5747 switch (cmd) 5748 { 5749 case SET_ARRAY_INFO: 5750 { 5751 mdu_array_info_t info; 5752 if (!arg) 5753 memset(&info, 0, sizeof(info)); 5754 else if (copy_from_user(&info, argp, sizeof(info))) { 5755 err = -EFAULT; 5756 goto abort_unlock; 5757 } 5758 if (mddev->pers) { 5759 err = update_array_info(mddev, &info); 5760 if (err) { 5761 printk(KERN_WARNING "md: couldn't update" 5762 " array info. %d\n", err); 5763 goto abort_unlock; 5764 } 5765 goto done_unlock; 5766 } 5767 if (!list_empty(&mddev->disks)) { 5768 printk(KERN_WARNING 5769 "md: array %s already has disks!\n", 5770 mdname(mddev)); 5771 err = -EBUSY; 5772 goto abort_unlock; 5773 } 5774 if (mddev->raid_disks) { 5775 printk(KERN_WARNING 5776 "md: array %s already initialised!\n", 5777 mdname(mddev)); 5778 err = -EBUSY; 5779 goto abort_unlock; 5780 } 5781 err = set_array_info(mddev, &info); 5782 if (err) { 5783 printk(KERN_WARNING "md: couldn't set" 5784 " array info. %d\n", err); 5785 goto abort_unlock; 5786 } 5787 } 5788 goto done_unlock; 5789 5790 default:; 5791 } 5792 5793 /* 5794 * Commands querying/configuring an existing array: 5795 */ 5796 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 5797 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 5798 if ((!mddev->raid_disks && !mddev->external) 5799 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 5800 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 5801 && cmd != GET_BITMAP_FILE) { 5802 err = -ENODEV; 5803 goto abort_unlock; 5804 } 5805 5806 /* 5807 * Commands even a read-only array can execute: 5808 */ 5809 switch (cmd) 5810 { 5811 case GET_ARRAY_INFO: 5812 err = get_array_info(mddev, argp); 5813 goto done_unlock; 5814 5815 case GET_BITMAP_FILE: 5816 err = get_bitmap_file(mddev, argp); 5817 goto done_unlock; 5818 5819 case GET_DISK_INFO: 5820 err = get_disk_info(mddev, argp); 5821 goto done_unlock; 5822 5823 case RESTART_ARRAY_RW: 5824 err = restart_array(mddev); 5825 goto done_unlock; 5826 5827 case STOP_ARRAY: 5828 err = do_md_stop(mddev, 0, 1); 5829 goto done_unlock; 5830 5831 case STOP_ARRAY_RO: 5832 err = md_set_readonly(mddev, 1); 5833 goto done_unlock; 5834 5835 case BLKROSET: 5836 if (get_user(ro, (int __user *)(arg))) { 5837 err = -EFAULT; 5838 goto done_unlock; 5839 } 5840 err = -EINVAL; 5841 5842 /* if the bdev is going readonly the value of mddev->ro 5843 * does not matter, no writes are coming 5844 */ 5845 if (ro) 5846 goto done_unlock; 5847 5848 /* are we are already prepared for writes? */ 5849 if (mddev->ro != 1) 5850 goto done_unlock; 5851 5852 /* transitioning to readauto need only happen for 5853 * arrays that call md_write_start 5854 */ 5855 if (mddev->pers) { 5856 err = restart_array(mddev); 5857 if (err == 0) { 5858 mddev->ro = 2; 5859 set_disk_ro(mddev->gendisk, 0); 5860 } 5861 } 5862 goto done_unlock; 5863 } 5864 5865 /* 5866 * The remaining ioctls are changing the state of the 5867 * superblock, so we do not allow them on read-only arrays. 5868 * However non-MD ioctls (e.g. get-size) will still come through 5869 * here and hit the 'default' below, so only disallow 5870 * 'md' ioctls, and switch to rw mode if started auto-readonly. 5871 */ 5872 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 5873 if (mddev->ro == 2) { 5874 mddev->ro = 0; 5875 sysfs_notify_dirent_safe(mddev->sysfs_state); 5876 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5877 md_wakeup_thread(mddev->thread); 5878 } else { 5879 err = -EROFS; 5880 goto abort_unlock; 5881 } 5882 } 5883 5884 switch (cmd) 5885 { 5886 case ADD_NEW_DISK: 5887 { 5888 mdu_disk_info_t info; 5889 if (copy_from_user(&info, argp, sizeof(info))) 5890 err = -EFAULT; 5891 else 5892 err = add_new_disk(mddev, &info); 5893 goto done_unlock; 5894 } 5895 5896 case HOT_REMOVE_DISK: 5897 err = hot_remove_disk(mddev, new_decode_dev(arg)); 5898 goto done_unlock; 5899 5900 case HOT_ADD_DISK: 5901 err = hot_add_disk(mddev, new_decode_dev(arg)); 5902 goto done_unlock; 5903 5904 case SET_DISK_FAULTY: 5905 err = set_disk_faulty(mddev, new_decode_dev(arg)); 5906 goto done_unlock; 5907 5908 case RUN_ARRAY: 5909 err = do_md_run(mddev); 5910 goto done_unlock; 5911 5912 case SET_BITMAP_FILE: 5913 err = set_bitmap_file(mddev, (int)arg); 5914 goto done_unlock; 5915 5916 default: 5917 err = -EINVAL; 5918 goto abort_unlock; 5919 } 5920 5921 done_unlock: 5922 abort_unlock: 5923 if (mddev->hold_active == UNTIL_IOCTL && 5924 err != -EINVAL) 5925 mddev->hold_active = 0; 5926 mddev_unlock(mddev); 5927 5928 return err; 5929 done: 5930 if (err) 5931 MD_BUG(); 5932 abort: 5933 return err; 5934 } 5935 #ifdef CONFIG_COMPAT 5936 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 5937 unsigned int cmd, unsigned long arg) 5938 { 5939 switch (cmd) { 5940 case HOT_REMOVE_DISK: 5941 case HOT_ADD_DISK: 5942 case SET_DISK_FAULTY: 5943 case SET_BITMAP_FILE: 5944 /* These take in integer arg, do not convert */ 5945 break; 5946 default: 5947 arg = (unsigned long)compat_ptr(arg); 5948 break; 5949 } 5950 5951 return md_ioctl(bdev, mode, cmd, arg); 5952 } 5953 #endif /* CONFIG_COMPAT */ 5954 5955 static int md_open(struct block_device *bdev, fmode_t mode) 5956 { 5957 /* 5958 * Succeed if we can lock the mddev, which confirms that 5959 * it isn't being stopped right now. 5960 */ 5961 mddev_t *mddev = mddev_find(bdev->bd_dev); 5962 int err; 5963 5964 lock_kernel(); 5965 if (mddev->gendisk != bdev->bd_disk) { 5966 /* we are racing with mddev_put which is discarding this 5967 * bd_disk. 5968 */ 5969 mddev_put(mddev); 5970 /* Wait until bdev->bd_disk is definitely gone */ 5971 flush_scheduled_work(); 5972 /* Then retry the open from the top */ 5973 unlock_kernel(); 5974 return -ERESTARTSYS; 5975 } 5976 BUG_ON(mddev != bdev->bd_disk->private_data); 5977 5978 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 5979 goto out; 5980 5981 err = 0; 5982 atomic_inc(&mddev->openers); 5983 mutex_unlock(&mddev->open_mutex); 5984 5985 check_disk_size_change(mddev->gendisk, bdev); 5986 out: 5987 unlock_kernel(); 5988 return err; 5989 } 5990 5991 static int md_release(struct gendisk *disk, fmode_t mode) 5992 { 5993 mddev_t *mddev = disk->private_data; 5994 5995 BUG_ON(!mddev); 5996 lock_kernel(); 5997 atomic_dec(&mddev->openers); 5998 mddev_put(mddev); 5999 unlock_kernel(); 6000 6001 return 0; 6002 } 6003 static const struct block_device_operations md_fops = 6004 { 6005 .owner = THIS_MODULE, 6006 .open = md_open, 6007 .release = md_release, 6008 .ioctl = md_ioctl, 6009 #ifdef CONFIG_COMPAT 6010 .compat_ioctl = md_compat_ioctl, 6011 #endif 6012 .getgeo = md_getgeo, 6013 }; 6014 6015 static int md_thread(void * arg) 6016 { 6017 mdk_thread_t *thread = arg; 6018 6019 /* 6020 * md_thread is a 'system-thread', it's priority should be very 6021 * high. We avoid resource deadlocks individually in each 6022 * raid personality. (RAID5 does preallocation) We also use RR and 6023 * the very same RT priority as kswapd, thus we will never get 6024 * into a priority inversion deadlock. 6025 * 6026 * we definitely have to have equal or higher priority than 6027 * bdflush, otherwise bdflush will deadlock if there are too 6028 * many dirty RAID5 blocks. 6029 */ 6030 6031 allow_signal(SIGKILL); 6032 while (!kthread_should_stop()) { 6033 6034 /* We need to wait INTERRUPTIBLE so that 6035 * we don't add to the load-average. 6036 * That means we need to be sure no signals are 6037 * pending 6038 */ 6039 if (signal_pending(current)) 6040 flush_signals(current); 6041 6042 wait_event_interruptible_timeout 6043 (thread->wqueue, 6044 test_bit(THREAD_WAKEUP, &thread->flags) 6045 || kthread_should_stop(), 6046 thread->timeout); 6047 6048 clear_bit(THREAD_WAKEUP, &thread->flags); 6049 6050 thread->run(thread->mddev); 6051 } 6052 6053 return 0; 6054 } 6055 6056 void md_wakeup_thread(mdk_thread_t *thread) 6057 { 6058 if (thread) { 6059 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 6060 set_bit(THREAD_WAKEUP, &thread->flags); 6061 wake_up(&thread->wqueue); 6062 } 6063 } 6064 6065 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 6066 const char *name) 6067 { 6068 mdk_thread_t *thread; 6069 6070 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 6071 if (!thread) 6072 return NULL; 6073 6074 init_waitqueue_head(&thread->wqueue); 6075 6076 thread->run = run; 6077 thread->mddev = mddev; 6078 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6079 thread->tsk = kthread_run(md_thread, thread, 6080 "%s_%s", 6081 mdname(thread->mddev), 6082 name ?: mddev->pers->name); 6083 if (IS_ERR(thread->tsk)) { 6084 kfree(thread); 6085 return NULL; 6086 } 6087 return thread; 6088 } 6089 6090 void md_unregister_thread(mdk_thread_t *thread) 6091 { 6092 if (!thread) 6093 return; 6094 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6095 6096 kthread_stop(thread->tsk); 6097 kfree(thread); 6098 } 6099 6100 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 6101 { 6102 if (!mddev) { 6103 MD_BUG(); 6104 return; 6105 } 6106 6107 if (!rdev || test_bit(Faulty, &rdev->flags)) 6108 return; 6109 6110 if (mddev->external) 6111 set_bit(Blocked, &rdev->flags); 6112 /* 6113 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 6114 mdname(mddev), 6115 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 6116 __builtin_return_address(0),__builtin_return_address(1), 6117 __builtin_return_address(2),__builtin_return_address(3)); 6118 */ 6119 if (!mddev->pers) 6120 return; 6121 if (!mddev->pers->error_handler) 6122 return; 6123 mddev->pers->error_handler(mddev,rdev); 6124 if (mddev->degraded) 6125 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6126 sysfs_notify_dirent_safe(rdev->sysfs_state); 6127 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6128 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6129 md_wakeup_thread(mddev->thread); 6130 if (mddev->event_work.func) 6131 schedule_work(&mddev->event_work); 6132 md_new_event_inintr(mddev); 6133 } 6134 6135 /* seq_file implementation /proc/mdstat */ 6136 6137 static void status_unused(struct seq_file *seq) 6138 { 6139 int i = 0; 6140 mdk_rdev_t *rdev; 6141 6142 seq_printf(seq, "unused devices: "); 6143 6144 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6145 char b[BDEVNAME_SIZE]; 6146 i++; 6147 seq_printf(seq, "%s ", 6148 bdevname(rdev->bdev,b)); 6149 } 6150 if (!i) 6151 seq_printf(seq, "<none>"); 6152 6153 seq_printf(seq, "\n"); 6154 } 6155 6156 6157 static void status_resync(struct seq_file *seq, mddev_t * mddev) 6158 { 6159 sector_t max_sectors, resync, res; 6160 unsigned long dt, db; 6161 sector_t rt; 6162 int scale; 6163 unsigned int per_milli; 6164 6165 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); 6166 6167 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 6168 max_sectors = mddev->resync_max_sectors; 6169 else 6170 max_sectors = mddev->dev_sectors; 6171 6172 /* 6173 * Should not happen. 6174 */ 6175 if (!max_sectors) { 6176 MD_BUG(); 6177 return; 6178 } 6179 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6180 * in a sector_t, and (max_sectors>>scale) will fit in a 6181 * u32, as those are the requirements for sector_div. 6182 * Thus 'scale' must be at least 10 6183 */ 6184 scale = 10; 6185 if (sizeof(sector_t) > sizeof(unsigned long)) { 6186 while ( max_sectors/2 > (1ULL<<(scale+32))) 6187 scale++; 6188 } 6189 res = (resync>>scale)*1000; 6190 sector_div(res, (u32)((max_sectors>>scale)+1)); 6191 6192 per_milli = res; 6193 { 6194 int i, x = per_milli/50, y = 20-x; 6195 seq_printf(seq, "["); 6196 for (i = 0; i < x; i++) 6197 seq_printf(seq, "="); 6198 seq_printf(seq, ">"); 6199 for (i = 0; i < y; i++) 6200 seq_printf(seq, "."); 6201 seq_printf(seq, "] "); 6202 } 6203 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6204 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6205 "reshape" : 6206 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6207 "check" : 6208 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6209 "resync" : "recovery"))), 6210 per_milli/10, per_milli % 10, 6211 (unsigned long long) resync/2, 6212 (unsigned long long) max_sectors/2); 6213 6214 /* 6215 * dt: time from mark until now 6216 * db: blocks written from mark until now 6217 * rt: remaining time 6218 * 6219 * rt is a sector_t, so could be 32bit or 64bit. 6220 * So we divide before multiply in case it is 32bit and close 6221 * to the limit. 6222 * We scale the divisor (db) by 32 to avoid loosing precision 6223 * near the end of resync when the number of remaining sectors 6224 * is close to 'db'. 6225 * We then divide rt by 32 after multiplying by db to compensate. 6226 * The '+1' avoids division by zero if db is very small. 6227 */ 6228 dt = ((jiffies - mddev->resync_mark) / HZ); 6229 if (!dt) dt++; 6230 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6231 - mddev->resync_mark_cnt; 6232 6233 rt = max_sectors - resync; /* number of remaining sectors */ 6234 sector_div(rt, db/32+1); 6235 rt *= dt; 6236 rt >>= 5; 6237 6238 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6239 ((unsigned long)rt % 60)/6); 6240 6241 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6242 } 6243 6244 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6245 { 6246 struct list_head *tmp; 6247 loff_t l = *pos; 6248 mddev_t *mddev; 6249 6250 if (l >= 0x10000) 6251 return NULL; 6252 if (!l--) 6253 /* header */ 6254 return (void*)1; 6255 6256 spin_lock(&all_mddevs_lock); 6257 list_for_each(tmp,&all_mddevs) 6258 if (!l--) { 6259 mddev = list_entry(tmp, mddev_t, all_mddevs); 6260 mddev_get(mddev); 6261 spin_unlock(&all_mddevs_lock); 6262 return mddev; 6263 } 6264 spin_unlock(&all_mddevs_lock); 6265 if (!l--) 6266 return (void*)2;/* tail */ 6267 return NULL; 6268 } 6269 6270 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6271 { 6272 struct list_head *tmp; 6273 mddev_t *next_mddev, *mddev = v; 6274 6275 ++*pos; 6276 if (v == (void*)2) 6277 return NULL; 6278 6279 spin_lock(&all_mddevs_lock); 6280 if (v == (void*)1) 6281 tmp = all_mddevs.next; 6282 else 6283 tmp = mddev->all_mddevs.next; 6284 if (tmp != &all_mddevs) 6285 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 6286 else { 6287 next_mddev = (void*)2; 6288 *pos = 0x10000; 6289 } 6290 spin_unlock(&all_mddevs_lock); 6291 6292 if (v != (void*)1) 6293 mddev_put(mddev); 6294 return next_mddev; 6295 6296 } 6297 6298 static void md_seq_stop(struct seq_file *seq, void *v) 6299 { 6300 mddev_t *mddev = v; 6301 6302 if (mddev && v != (void*)1 && v != (void*)2) 6303 mddev_put(mddev); 6304 } 6305 6306 struct mdstat_info { 6307 int event; 6308 }; 6309 6310 static int md_seq_show(struct seq_file *seq, void *v) 6311 { 6312 mddev_t *mddev = v; 6313 sector_t sectors; 6314 mdk_rdev_t *rdev; 6315 struct mdstat_info *mi = seq->private; 6316 struct bitmap *bitmap; 6317 6318 if (v == (void*)1) { 6319 struct mdk_personality *pers; 6320 seq_printf(seq, "Personalities : "); 6321 spin_lock(&pers_lock); 6322 list_for_each_entry(pers, &pers_list, list) 6323 seq_printf(seq, "[%s] ", pers->name); 6324 6325 spin_unlock(&pers_lock); 6326 seq_printf(seq, "\n"); 6327 mi->event = atomic_read(&md_event_count); 6328 return 0; 6329 } 6330 if (v == (void*)2) { 6331 status_unused(seq); 6332 return 0; 6333 } 6334 6335 if (mddev_lock(mddev) < 0) 6336 return -EINTR; 6337 6338 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 6339 seq_printf(seq, "%s : %sactive", mdname(mddev), 6340 mddev->pers ? "" : "in"); 6341 if (mddev->pers) { 6342 if (mddev->ro==1) 6343 seq_printf(seq, " (read-only)"); 6344 if (mddev->ro==2) 6345 seq_printf(seq, " (auto-read-only)"); 6346 seq_printf(seq, " %s", mddev->pers->name); 6347 } 6348 6349 sectors = 0; 6350 list_for_each_entry(rdev, &mddev->disks, same_set) { 6351 char b[BDEVNAME_SIZE]; 6352 seq_printf(seq, " %s[%d]", 6353 bdevname(rdev->bdev,b), rdev->desc_nr); 6354 if (test_bit(WriteMostly, &rdev->flags)) 6355 seq_printf(seq, "(W)"); 6356 if (test_bit(Faulty, &rdev->flags)) { 6357 seq_printf(seq, "(F)"); 6358 continue; 6359 } else if (rdev->raid_disk < 0) 6360 seq_printf(seq, "(S)"); /* spare */ 6361 sectors += rdev->sectors; 6362 } 6363 6364 if (!list_empty(&mddev->disks)) { 6365 if (mddev->pers) 6366 seq_printf(seq, "\n %llu blocks", 6367 (unsigned long long) 6368 mddev->array_sectors / 2); 6369 else 6370 seq_printf(seq, "\n %llu blocks", 6371 (unsigned long long)sectors / 2); 6372 } 6373 if (mddev->persistent) { 6374 if (mddev->major_version != 0 || 6375 mddev->minor_version != 90) { 6376 seq_printf(seq," super %d.%d", 6377 mddev->major_version, 6378 mddev->minor_version); 6379 } 6380 } else if (mddev->external) 6381 seq_printf(seq, " super external:%s", 6382 mddev->metadata_type); 6383 else 6384 seq_printf(seq, " super non-persistent"); 6385 6386 if (mddev->pers) { 6387 mddev->pers->status(seq, mddev); 6388 seq_printf(seq, "\n "); 6389 if (mddev->pers->sync_request) { 6390 if (mddev->curr_resync > 2) { 6391 status_resync(seq, mddev); 6392 seq_printf(seq, "\n "); 6393 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 6394 seq_printf(seq, "\tresync=DELAYED\n "); 6395 else if (mddev->recovery_cp < MaxSector) 6396 seq_printf(seq, "\tresync=PENDING\n "); 6397 } 6398 } else 6399 seq_printf(seq, "\n "); 6400 6401 if ((bitmap = mddev->bitmap)) { 6402 unsigned long chunk_kb; 6403 unsigned long flags; 6404 spin_lock_irqsave(&bitmap->lock, flags); 6405 chunk_kb = mddev->bitmap_info.chunksize >> 10; 6406 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 6407 "%lu%s chunk", 6408 bitmap->pages - bitmap->missing_pages, 6409 bitmap->pages, 6410 (bitmap->pages - bitmap->missing_pages) 6411 << (PAGE_SHIFT - 10), 6412 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize, 6413 chunk_kb ? "KB" : "B"); 6414 if (bitmap->file) { 6415 seq_printf(seq, ", file: "); 6416 seq_path(seq, &bitmap->file->f_path, " \t\n"); 6417 } 6418 6419 seq_printf(seq, "\n"); 6420 spin_unlock_irqrestore(&bitmap->lock, flags); 6421 } 6422 6423 seq_printf(seq, "\n"); 6424 } 6425 mddev_unlock(mddev); 6426 6427 return 0; 6428 } 6429 6430 static const struct seq_operations md_seq_ops = { 6431 .start = md_seq_start, 6432 .next = md_seq_next, 6433 .stop = md_seq_stop, 6434 .show = md_seq_show, 6435 }; 6436 6437 static int md_seq_open(struct inode *inode, struct file *file) 6438 { 6439 int error; 6440 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 6441 if (mi == NULL) 6442 return -ENOMEM; 6443 6444 error = seq_open(file, &md_seq_ops); 6445 if (error) 6446 kfree(mi); 6447 else { 6448 struct seq_file *p = file->private_data; 6449 p->private = mi; 6450 mi->event = atomic_read(&md_event_count); 6451 } 6452 return error; 6453 } 6454 6455 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 6456 { 6457 struct seq_file *m = filp->private_data; 6458 struct mdstat_info *mi = m->private; 6459 int mask; 6460 6461 poll_wait(filp, &md_event_waiters, wait); 6462 6463 /* always allow read */ 6464 mask = POLLIN | POLLRDNORM; 6465 6466 if (mi->event != atomic_read(&md_event_count)) 6467 mask |= POLLERR | POLLPRI; 6468 return mask; 6469 } 6470 6471 static const struct file_operations md_seq_fops = { 6472 .owner = THIS_MODULE, 6473 .open = md_seq_open, 6474 .read = seq_read, 6475 .llseek = seq_lseek, 6476 .release = seq_release_private, 6477 .poll = mdstat_poll, 6478 }; 6479 6480 int register_md_personality(struct mdk_personality *p) 6481 { 6482 spin_lock(&pers_lock); 6483 list_add_tail(&p->list, &pers_list); 6484 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 6485 spin_unlock(&pers_lock); 6486 return 0; 6487 } 6488 6489 int unregister_md_personality(struct mdk_personality *p) 6490 { 6491 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 6492 spin_lock(&pers_lock); 6493 list_del_init(&p->list); 6494 spin_unlock(&pers_lock); 6495 return 0; 6496 } 6497 6498 static int is_mddev_idle(mddev_t *mddev, int init) 6499 { 6500 mdk_rdev_t * rdev; 6501 int idle; 6502 int curr_events; 6503 6504 idle = 1; 6505 rcu_read_lock(); 6506 rdev_for_each_rcu(rdev, mddev) { 6507 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 6508 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 6509 (int)part_stat_read(&disk->part0, sectors[1]) - 6510 atomic_read(&disk->sync_io); 6511 /* sync IO will cause sync_io to increase before the disk_stats 6512 * as sync_io is counted when a request starts, and 6513 * disk_stats is counted when it completes. 6514 * So resync activity will cause curr_events to be smaller than 6515 * when there was no such activity. 6516 * non-sync IO will cause disk_stat to increase without 6517 * increasing sync_io so curr_events will (eventually) 6518 * be larger than it was before. Once it becomes 6519 * substantially larger, the test below will cause 6520 * the array to appear non-idle, and resync will slow 6521 * down. 6522 * If there is a lot of outstanding resync activity when 6523 * we set last_event to curr_events, then all that activity 6524 * completing might cause the array to appear non-idle 6525 * and resync will be slowed down even though there might 6526 * not have been non-resync activity. This will only 6527 * happen once though. 'last_events' will soon reflect 6528 * the state where there is little or no outstanding 6529 * resync requests, and further resync activity will 6530 * always make curr_events less than last_events. 6531 * 6532 */ 6533 if (init || curr_events - rdev->last_events > 64) { 6534 rdev->last_events = curr_events; 6535 idle = 0; 6536 } 6537 } 6538 rcu_read_unlock(); 6539 return idle; 6540 } 6541 6542 void md_done_sync(mddev_t *mddev, int blocks, int ok) 6543 { 6544 /* another "blocks" (512byte) blocks have been synced */ 6545 atomic_sub(blocks, &mddev->recovery_active); 6546 wake_up(&mddev->recovery_wait); 6547 if (!ok) { 6548 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6549 md_wakeup_thread(mddev->thread); 6550 // stop recovery, signal do_sync .... 6551 } 6552 } 6553 6554 6555 /* md_write_start(mddev, bi) 6556 * If we need to update some array metadata (e.g. 'active' flag 6557 * in superblock) before writing, schedule a superblock update 6558 * and wait for it to complete. 6559 */ 6560 void md_write_start(mddev_t *mddev, struct bio *bi) 6561 { 6562 int did_change = 0; 6563 if (bio_data_dir(bi) != WRITE) 6564 return; 6565 6566 BUG_ON(mddev->ro == 1); 6567 if (mddev->ro == 2) { 6568 /* need to switch to read/write */ 6569 mddev->ro = 0; 6570 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6571 md_wakeup_thread(mddev->thread); 6572 md_wakeup_thread(mddev->sync_thread); 6573 did_change = 1; 6574 } 6575 atomic_inc(&mddev->writes_pending); 6576 if (mddev->safemode == 1) 6577 mddev->safemode = 0; 6578 if (mddev->in_sync) { 6579 spin_lock_irq(&mddev->write_lock); 6580 if (mddev->in_sync) { 6581 mddev->in_sync = 0; 6582 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6583 md_wakeup_thread(mddev->thread); 6584 did_change = 1; 6585 } 6586 spin_unlock_irq(&mddev->write_lock); 6587 } 6588 if (did_change) 6589 sysfs_notify_dirent_safe(mddev->sysfs_state); 6590 wait_event(mddev->sb_wait, 6591 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) && 6592 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6593 } 6594 6595 void md_write_end(mddev_t *mddev) 6596 { 6597 if (atomic_dec_and_test(&mddev->writes_pending)) { 6598 if (mddev->safemode == 2) 6599 md_wakeup_thread(mddev->thread); 6600 else if (mddev->safemode_delay) 6601 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 6602 } 6603 } 6604 6605 /* md_allow_write(mddev) 6606 * Calling this ensures that the array is marked 'active' so that writes 6607 * may proceed without blocking. It is important to call this before 6608 * attempting a GFP_KERNEL allocation while holding the mddev lock. 6609 * Must be called with mddev_lock held. 6610 * 6611 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 6612 * is dropped, so return -EAGAIN after notifying userspace. 6613 */ 6614 int md_allow_write(mddev_t *mddev) 6615 { 6616 if (!mddev->pers) 6617 return 0; 6618 if (mddev->ro) 6619 return 0; 6620 if (!mddev->pers->sync_request) 6621 return 0; 6622 6623 spin_lock_irq(&mddev->write_lock); 6624 if (mddev->in_sync) { 6625 mddev->in_sync = 0; 6626 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6627 if (mddev->safemode_delay && 6628 mddev->safemode == 0) 6629 mddev->safemode = 1; 6630 spin_unlock_irq(&mddev->write_lock); 6631 md_update_sb(mddev, 0); 6632 sysfs_notify_dirent_safe(mddev->sysfs_state); 6633 } else 6634 spin_unlock_irq(&mddev->write_lock); 6635 6636 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 6637 return -EAGAIN; 6638 else 6639 return 0; 6640 } 6641 EXPORT_SYMBOL_GPL(md_allow_write); 6642 6643 void md_unplug(mddev_t *mddev) 6644 { 6645 if (mddev->queue) 6646 blk_unplug(mddev->queue); 6647 if (mddev->plug) 6648 mddev->plug->unplug_fn(mddev->plug); 6649 } 6650 6651 #define SYNC_MARKS 10 6652 #define SYNC_MARK_STEP (3*HZ) 6653 void md_do_sync(mddev_t *mddev) 6654 { 6655 mddev_t *mddev2; 6656 unsigned int currspeed = 0, 6657 window; 6658 sector_t max_sectors,j, io_sectors; 6659 unsigned long mark[SYNC_MARKS]; 6660 sector_t mark_cnt[SYNC_MARKS]; 6661 int last_mark,m; 6662 struct list_head *tmp; 6663 sector_t last_check; 6664 int skipped = 0; 6665 mdk_rdev_t *rdev; 6666 char *desc; 6667 6668 /* just incase thread restarts... */ 6669 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 6670 return; 6671 if (mddev->ro) /* never try to sync a read-only array */ 6672 return; 6673 6674 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6675 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 6676 desc = "data-check"; 6677 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6678 desc = "requested-resync"; 6679 else 6680 desc = "resync"; 6681 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6682 desc = "reshape"; 6683 else 6684 desc = "recovery"; 6685 6686 /* we overload curr_resync somewhat here. 6687 * 0 == not engaged in resync at all 6688 * 2 == checking that there is no conflict with another sync 6689 * 1 == like 2, but have yielded to allow conflicting resync to 6690 * commense 6691 * other == active in resync - this many blocks 6692 * 6693 * Before starting a resync we must have set curr_resync to 6694 * 2, and then checked that every "conflicting" array has curr_resync 6695 * less than ours. When we find one that is the same or higher 6696 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 6697 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 6698 * This will mean we have to start checking from the beginning again. 6699 * 6700 */ 6701 6702 do { 6703 mddev->curr_resync = 2; 6704 6705 try_again: 6706 if (kthread_should_stop()) 6707 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6708 6709 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6710 goto skip; 6711 for_each_mddev(mddev2, tmp) { 6712 if (mddev2 == mddev) 6713 continue; 6714 if (!mddev->parallel_resync 6715 && mddev2->curr_resync 6716 && match_mddev_units(mddev, mddev2)) { 6717 DEFINE_WAIT(wq); 6718 if (mddev < mddev2 && mddev->curr_resync == 2) { 6719 /* arbitrarily yield */ 6720 mddev->curr_resync = 1; 6721 wake_up(&resync_wait); 6722 } 6723 if (mddev > mddev2 && mddev->curr_resync == 1) 6724 /* no need to wait here, we can wait the next 6725 * time 'round when curr_resync == 2 6726 */ 6727 continue; 6728 /* We need to wait 'interruptible' so as not to 6729 * contribute to the load average, and not to 6730 * be caught by 'softlockup' 6731 */ 6732 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 6733 if (!kthread_should_stop() && 6734 mddev2->curr_resync >= mddev->curr_resync) { 6735 printk(KERN_INFO "md: delaying %s of %s" 6736 " until %s has finished (they" 6737 " share one or more physical units)\n", 6738 desc, mdname(mddev), mdname(mddev2)); 6739 mddev_put(mddev2); 6740 if (signal_pending(current)) 6741 flush_signals(current); 6742 schedule(); 6743 finish_wait(&resync_wait, &wq); 6744 goto try_again; 6745 } 6746 finish_wait(&resync_wait, &wq); 6747 } 6748 } 6749 } while (mddev->curr_resync < 2); 6750 6751 j = 0; 6752 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6753 /* resync follows the size requested by the personality, 6754 * which defaults to physical size, but can be virtual size 6755 */ 6756 max_sectors = mddev->resync_max_sectors; 6757 mddev->resync_mismatches = 0; 6758 /* we don't use the checkpoint if there's a bitmap */ 6759 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6760 j = mddev->resync_min; 6761 else if (!mddev->bitmap) 6762 j = mddev->recovery_cp; 6763 6764 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6765 max_sectors = mddev->dev_sectors; 6766 else { 6767 /* recovery follows the physical size of devices */ 6768 max_sectors = mddev->dev_sectors; 6769 j = MaxSector; 6770 rcu_read_lock(); 6771 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 6772 if (rdev->raid_disk >= 0 && 6773 !test_bit(Faulty, &rdev->flags) && 6774 !test_bit(In_sync, &rdev->flags) && 6775 rdev->recovery_offset < j) 6776 j = rdev->recovery_offset; 6777 rcu_read_unlock(); 6778 } 6779 6780 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 6781 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 6782 " %d KB/sec/disk.\n", speed_min(mddev)); 6783 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 6784 "(but not more than %d KB/sec) for %s.\n", 6785 speed_max(mddev), desc); 6786 6787 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 6788 6789 io_sectors = 0; 6790 for (m = 0; m < SYNC_MARKS; m++) { 6791 mark[m] = jiffies; 6792 mark_cnt[m] = io_sectors; 6793 } 6794 last_mark = 0; 6795 mddev->resync_mark = mark[last_mark]; 6796 mddev->resync_mark_cnt = mark_cnt[last_mark]; 6797 6798 /* 6799 * Tune reconstruction: 6800 */ 6801 window = 32*(PAGE_SIZE/512); 6802 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 6803 window/2,(unsigned long long) max_sectors/2); 6804 6805 atomic_set(&mddev->recovery_active, 0); 6806 last_check = 0; 6807 6808 if (j>2) { 6809 printk(KERN_INFO 6810 "md: resuming %s of %s from checkpoint.\n", 6811 desc, mdname(mddev)); 6812 mddev->curr_resync = j; 6813 } 6814 mddev->curr_resync_completed = mddev->curr_resync; 6815 6816 while (j < max_sectors) { 6817 sector_t sectors; 6818 6819 skipped = 0; 6820 6821 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 6822 ((mddev->curr_resync > mddev->curr_resync_completed && 6823 (mddev->curr_resync - mddev->curr_resync_completed) 6824 > (max_sectors >> 4)) || 6825 (j - mddev->curr_resync_completed)*2 6826 >= mddev->resync_max - mddev->curr_resync_completed 6827 )) { 6828 /* time to update curr_resync_completed */ 6829 md_unplug(mddev); 6830 wait_event(mddev->recovery_wait, 6831 atomic_read(&mddev->recovery_active) == 0); 6832 mddev->curr_resync_completed = 6833 mddev->curr_resync; 6834 if (mddev->persistent) 6835 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6836 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6837 } 6838 6839 while (j >= mddev->resync_max && !kthread_should_stop()) { 6840 /* As this condition is controlled by user-space, 6841 * we can block indefinitely, so use '_interruptible' 6842 * to avoid triggering warnings. 6843 */ 6844 flush_signals(current); /* just in case */ 6845 wait_event_interruptible(mddev->recovery_wait, 6846 mddev->resync_max > j 6847 || kthread_should_stop()); 6848 } 6849 6850 if (kthread_should_stop()) 6851 goto interrupted; 6852 6853 sectors = mddev->pers->sync_request(mddev, j, &skipped, 6854 currspeed < speed_min(mddev)); 6855 if (sectors == 0) { 6856 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6857 goto out; 6858 } 6859 6860 if (!skipped) { /* actual IO requested */ 6861 io_sectors += sectors; 6862 atomic_add(sectors, &mddev->recovery_active); 6863 } 6864 6865 j += sectors; 6866 if (j>1) mddev->curr_resync = j; 6867 mddev->curr_mark_cnt = io_sectors; 6868 if (last_check == 0) 6869 /* this is the earliers that rebuilt will be 6870 * visible in /proc/mdstat 6871 */ 6872 md_new_event(mddev); 6873 6874 if (last_check + window > io_sectors || j == max_sectors) 6875 continue; 6876 6877 last_check = io_sectors; 6878 6879 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6880 break; 6881 6882 repeat: 6883 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 6884 /* step marks */ 6885 int next = (last_mark+1) % SYNC_MARKS; 6886 6887 mddev->resync_mark = mark[next]; 6888 mddev->resync_mark_cnt = mark_cnt[next]; 6889 mark[next] = jiffies; 6890 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 6891 last_mark = next; 6892 } 6893 6894 6895 if (kthread_should_stop()) 6896 goto interrupted; 6897 6898 6899 /* 6900 * this loop exits only if either when we are slower than 6901 * the 'hard' speed limit, or the system was IO-idle for 6902 * a jiffy. 6903 * the system might be non-idle CPU-wise, but we only care 6904 * about not overloading the IO subsystem. (things like an 6905 * e2fsck being done on the RAID array should execute fast) 6906 */ 6907 md_unplug(mddev); 6908 cond_resched(); 6909 6910 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 6911 /((jiffies-mddev->resync_mark)/HZ +1) +1; 6912 6913 if (currspeed > speed_min(mddev)) { 6914 if ((currspeed > speed_max(mddev)) || 6915 !is_mddev_idle(mddev, 0)) { 6916 msleep(500); 6917 goto repeat; 6918 } 6919 } 6920 } 6921 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 6922 /* 6923 * this also signals 'finished resyncing' to md_stop 6924 */ 6925 out: 6926 md_unplug(mddev); 6927 6928 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 6929 6930 /* tell personality that we are finished */ 6931 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 6932 6933 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 6934 mddev->curr_resync > 2) { 6935 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6936 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6937 if (mddev->curr_resync >= mddev->recovery_cp) { 6938 printk(KERN_INFO 6939 "md: checkpointing %s of %s.\n", 6940 desc, mdname(mddev)); 6941 mddev->recovery_cp = mddev->curr_resync; 6942 } 6943 } else 6944 mddev->recovery_cp = MaxSector; 6945 } else { 6946 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6947 mddev->curr_resync = MaxSector; 6948 rcu_read_lock(); 6949 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 6950 if (rdev->raid_disk >= 0 && 6951 mddev->delta_disks >= 0 && 6952 !test_bit(Faulty, &rdev->flags) && 6953 !test_bit(In_sync, &rdev->flags) && 6954 rdev->recovery_offset < mddev->curr_resync) 6955 rdev->recovery_offset = mddev->curr_resync; 6956 rcu_read_unlock(); 6957 } 6958 } 6959 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6960 6961 skip: 6962 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6963 /* We completed so min/max setting can be forgotten if used. */ 6964 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6965 mddev->resync_min = 0; 6966 mddev->resync_max = MaxSector; 6967 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6968 mddev->resync_min = mddev->curr_resync_completed; 6969 mddev->curr_resync = 0; 6970 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6971 mddev->curr_resync_completed = 0; 6972 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6973 wake_up(&resync_wait); 6974 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 6975 md_wakeup_thread(mddev->thread); 6976 return; 6977 6978 interrupted: 6979 /* 6980 * got a signal, exit. 6981 */ 6982 printk(KERN_INFO 6983 "md: md_do_sync() got signal ... exiting\n"); 6984 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6985 goto out; 6986 6987 } 6988 EXPORT_SYMBOL_GPL(md_do_sync); 6989 6990 6991 static int remove_and_add_spares(mddev_t *mddev) 6992 { 6993 mdk_rdev_t *rdev; 6994 int spares = 0; 6995 6996 mddev->curr_resync_completed = 0; 6997 6998 list_for_each_entry(rdev, &mddev->disks, same_set) 6999 if (rdev->raid_disk >= 0 && 7000 !test_bit(Blocked, &rdev->flags) && 7001 (test_bit(Faulty, &rdev->flags) || 7002 ! test_bit(In_sync, &rdev->flags)) && 7003 atomic_read(&rdev->nr_pending)==0) { 7004 if (mddev->pers->hot_remove_disk( 7005 mddev, rdev->raid_disk)==0) { 7006 char nm[20]; 7007 sprintf(nm,"rd%d", rdev->raid_disk); 7008 sysfs_remove_link(&mddev->kobj, nm); 7009 rdev->raid_disk = -1; 7010 } 7011 } 7012 7013 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) { 7014 list_for_each_entry(rdev, &mddev->disks, same_set) { 7015 if (rdev->raid_disk >= 0 && 7016 !test_bit(In_sync, &rdev->flags) && 7017 !test_bit(Blocked, &rdev->flags)) 7018 spares++; 7019 if (rdev->raid_disk < 0 7020 && !test_bit(Faulty, &rdev->flags)) { 7021 rdev->recovery_offset = 0; 7022 if (mddev->pers-> 7023 hot_add_disk(mddev, rdev) == 0) { 7024 char nm[20]; 7025 sprintf(nm, "rd%d", rdev->raid_disk); 7026 if (sysfs_create_link(&mddev->kobj, 7027 &rdev->kobj, nm)) 7028 /* failure here is OK */; 7029 spares++; 7030 md_new_event(mddev); 7031 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7032 } else 7033 break; 7034 } 7035 } 7036 } 7037 return spares; 7038 } 7039 /* 7040 * This routine is regularly called by all per-raid-array threads to 7041 * deal with generic issues like resync and super-block update. 7042 * Raid personalities that don't have a thread (linear/raid0) do not 7043 * need this as they never do any recovery or update the superblock. 7044 * 7045 * It does not do any resync itself, but rather "forks" off other threads 7046 * to do that as needed. 7047 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7048 * "->recovery" and create a thread at ->sync_thread. 7049 * When the thread finishes it sets MD_RECOVERY_DONE 7050 * and wakeups up this thread which will reap the thread and finish up. 7051 * This thread also removes any faulty devices (with nr_pending == 0). 7052 * 7053 * The overall approach is: 7054 * 1/ if the superblock needs updating, update it. 7055 * 2/ If a recovery thread is running, don't do anything else. 7056 * 3/ If recovery has finished, clean up, possibly marking spares active. 7057 * 4/ If there are any faulty devices, remove them. 7058 * 5/ If array is degraded, try to add spares devices 7059 * 6/ If array has spares or is not in-sync, start a resync thread. 7060 */ 7061 void md_check_recovery(mddev_t *mddev) 7062 { 7063 mdk_rdev_t *rdev; 7064 7065 7066 if (mddev->bitmap) 7067 bitmap_daemon_work(mddev); 7068 7069 if (mddev->ro) 7070 return; 7071 7072 if (signal_pending(current)) { 7073 if (mddev->pers->sync_request && !mddev->external) { 7074 printk(KERN_INFO "md: %s in immediate safe mode\n", 7075 mdname(mddev)); 7076 mddev->safemode = 2; 7077 } 7078 flush_signals(current); 7079 } 7080 7081 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7082 return; 7083 if ( ! ( 7084 (mddev->flags && !mddev->external) || 7085 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7086 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7087 (mddev->external == 0 && mddev->safemode == 1) || 7088 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7089 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7090 )) 7091 return; 7092 7093 if (mddev_trylock(mddev)) { 7094 int spares = 0; 7095 7096 if (mddev->ro) { 7097 /* Only thing we do on a ro array is remove 7098 * failed devices. 7099 */ 7100 remove_and_add_spares(mddev); 7101 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7102 goto unlock; 7103 } 7104 7105 if (!mddev->external) { 7106 int did_change = 0; 7107 spin_lock_irq(&mddev->write_lock); 7108 if (mddev->safemode && 7109 !atomic_read(&mddev->writes_pending) && 7110 !mddev->in_sync && 7111 mddev->recovery_cp == MaxSector) { 7112 mddev->in_sync = 1; 7113 did_change = 1; 7114 if (mddev->persistent) 7115 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7116 } 7117 if (mddev->safemode == 1) 7118 mddev->safemode = 0; 7119 spin_unlock_irq(&mddev->write_lock); 7120 if (did_change) 7121 sysfs_notify_dirent_safe(mddev->sysfs_state); 7122 } 7123 7124 if (mddev->flags) 7125 md_update_sb(mddev, 0); 7126 7127 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7128 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7129 /* resync/recovery still happening */ 7130 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7131 goto unlock; 7132 } 7133 if (mddev->sync_thread) { 7134 /* resync has finished, collect result */ 7135 md_unregister_thread(mddev->sync_thread); 7136 mddev->sync_thread = NULL; 7137 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7138 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7139 /* success...*/ 7140 /* activate any spares */ 7141 if (mddev->pers->spare_active(mddev)) 7142 sysfs_notify(&mddev->kobj, NULL, 7143 "degraded"); 7144 } 7145 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7146 mddev->pers->finish_reshape) 7147 mddev->pers->finish_reshape(mddev); 7148 md_update_sb(mddev, 1); 7149 7150 /* if array is no-longer degraded, then any saved_raid_disk 7151 * information must be scrapped 7152 */ 7153 if (!mddev->degraded) 7154 list_for_each_entry(rdev, &mddev->disks, same_set) 7155 rdev->saved_raid_disk = -1; 7156 7157 mddev->recovery = 0; 7158 /* flag recovery needed just to double check */ 7159 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7160 sysfs_notify_dirent_safe(mddev->sysfs_action); 7161 md_new_event(mddev); 7162 goto unlock; 7163 } 7164 /* Set RUNNING before clearing NEEDED to avoid 7165 * any transients in the value of "sync_action". 7166 */ 7167 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7168 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7169 /* Clear some bits that don't mean anything, but 7170 * might be left set 7171 */ 7172 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7173 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7174 7175 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7176 goto unlock; 7177 /* no recovery is running. 7178 * remove any failed drives, then 7179 * add spares if possible. 7180 * Spare are also removed and re-added, to allow 7181 * the personality to fail the re-add. 7182 */ 7183 7184 if (mddev->reshape_position != MaxSector) { 7185 if (mddev->pers->check_reshape == NULL || 7186 mddev->pers->check_reshape(mddev) != 0) 7187 /* Cannot proceed */ 7188 goto unlock; 7189 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7190 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7191 } else if ((spares = remove_and_add_spares(mddev))) { 7192 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7193 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7194 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7195 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7196 } else if (mddev->recovery_cp < MaxSector) { 7197 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7198 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7199 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7200 /* nothing to be done ... */ 7201 goto unlock; 7202 7203 if (mddev->pers->sync_request) { 7204 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 7205 /* We are adding a device or devices to an array 7206 * which has the bitmap stored on all devices. 7207 * So make sure all bitmap pages get written 7208 */ 7209 bitmap_write_all(mddev->bitmap); 7210 } 7211 mddev->sync_thread = md_register_thread(md_do_sync, 7212 mddev, 7213 "resync"); 7214 if (!mddev->sync_thread) { 7215 printk(KERN_ERR "%s: could not start resync" 7216 " thread...\n", 7217 mdname(mddev)); 7218 /* leave the spares where they are, it shouldn't hurt */ 7219 mddev->recovery = 0; 7220 } else 7221 md_wakeup_thread(mddev->sync_thread); 7222 sysfs_notify_dirent_safe(mddev->sysfs_action); 7223 md_new_event(mddev); 7224 } 7225 unlock: 7226 if (!mddev->sync_thread) { 7227 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7228 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7229 &mddev->recovery)) 7230 if (mddev->sysfs_action) 7231 sysfs_notify_dirent_safe(mddev->sysfs_action); 7232 } 7233 mddev_unlock(mddev); 7234 } 7235 } 7236 7237 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 7238 { 7239 sysfs_notify_dirent_safe(rdev->sysfs_state); 7240 wait_event_timeout(rdev->blocked_wait, 7241 !test_bit(Blocked, &rdev->flags), 7242 msecs_to_jiffies(5000)); 7243 rdev_dec_pending(rdev, mddev); 7244 } 7245 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7246 7247 static int md_notify_reboot(struct notifier_block *this, 7248 unsigned long code, void *x) 7249 { 7250 struct list_head *tmp; 7251 mddev_t *mddev; 7252 7253 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 7254 7255 printk(KERN_INFO "md: stopping all md devices.\n"); 7256 7257 for_each_mddev(mddev, tmp) 7258 if (mddev_trylock(mddev)) { 7259 /* Force a switch to readonly even array 7260 * appears to still be in use. Hence 7261 * the '100'. 7262 */ 7263 md_set_readonly(mddev, 100); 7264 mddev_unlock(mddev); 7265 } 7266 /* 7267 * certain more exotic SCSI devices are known to be 7268 * volatile wrt too early system reboots. While the 7269 * right place to handle this issue is the given 7270 * driver, we do want to have a safe RAID driver ... 7271 */ 7272 mdelay(1000*1); 7273 } 7274 return NOTIFY_DONE; 7275 } 7276 7277 static struct notifier_block md_notifier = { 7278 .notifier_call = md_notify_reboot, 7279 .next = NULL, 7280 .priority = INT_MAX, /* before any real devices */ 7281 }; 7282 7283 static void md_geninit(void) 7284 { 7285 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 7286 7287 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 7288 } 7289 7290 static int __init md_init(void) 7291 { 7292 if (register_blkdev(MD_MAJOR, "md")) 7293 return -1; 7294 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 7295 unregister_blkdev(MD_MAJOR, "md"); 7296 return -1; 7297 } 7298 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 7299 md_probe, NULL, NULL); 7300 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 7301 md_probe, NULL, NULL); 7302 7303 register_reboot_notifier(&md_notifier); 7304 raid_table_header = register_sysctl_table(raid_root_table); 7305 7306 md_geninit(); 7307 return 0; 7308 } 7309 7310 7311 #ifndef MODULE 7312 7313 /* 7314 * Searches all registered partitions for autorun RAID arrays 7315 * at boot time. 7316 */ 7317 7318 static LIST_HEAD(all_detected_devices); 7319 struct detected_devices_node { 7320 struct list_head list; 7321 dev_t dev; 7322 }; 7323 7324 void md_autodetect_dev(dev_t dev) 7325 { 7326 struct detected_devices_node *node_detected_dev; 7327 7328 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 7329 if (node_detected_dev) { 7330 node_detected_dev->dev = dev; 7331 list_add_tail(&node_detected_dev->list, &all_detected_devices); 7332 } else { 7333 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 7334 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 7335 } 7336 } 7337 7338 7339 static void autostart_arrays(int part) 7340 { 7341 mdk_rdev_t *rdev; 7342 struct detected_devices_node *node_detected_dev; 7343 dev_t dev; 7344 int i_scanned, i_passed; 7345 7346 i_scanned = 0; 7347 i_passed = 0; 7348 7349 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 7350 7351 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 7352 i_scanned++; 7353 node_detected_dev = list_entry(all_detected_devices.next, 7354 struct detected_devices_node, list); 7355 list_del(&node_detected_dev->list); 7356 dev = node_detected_dev->dev; 7357 kfree(node_detected_dev); 7358 rdev = md_import_device(dev,0, 90); 7359 if (IS_ERR(rdev)) 7360 continue; 7361 7362 if (test_bit(Faulty, &rdev->flags)) { 7363 MD_BUG(); 7364 continue; 7365 } 7366 set_bit(AutoDetected, &rdev->flags); 7367 list_add(&rdev->same_set, &pending_raid_disks); 7368 i_passed++; 7369 } 7370 7371 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 7372 i_scanned, i_passed); 7373 7374 autorun_devices(part); 7375 } 7376 7377 #endif /* !MODULE */ 7378 7379 static __exit void md_exit(void) 7380 { 7381 mddev_t *mddev; 7382 struct list_head *tmp; 7383 7384 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 7385 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 7386 7387 unregister_blkdev(MD_MAJOR,"md"); 7388 unregister_blkdev(mdp_major, "mdp"); 7389 unregister_reboot_notifier(&md_notifier); 7390 unregister_sysctl_table(raid_table_header); 7391 remove_proc_entry("mdstat", NULL); 7392 for_each_mddev(mddev, tmp) { 7393 export_array(mddev); 7394 mddev->hold_active = 0; 7395 } 7396 } 7397 7398 subsys_initcall(md_init); 7399 module_exit(md_exit) 7400 7401 static int get_ro(char *buffer, struct kernel_param *kp) 7402 { 7403 return sprintf(buffer, "%d", start_readonly); 7404 } 7405 static int set_ro(const char *val, struct kernel_param *kp) 7406 { 7407 char *e; 7408 int num = simple_strtoul(val, &e, 10); 7409 if (*val && (*e == '\0' || *e == '\n')) { 7410 start_readonly = num; 7411 return 0; 7412 } 7413 return -EINVAL; 7414 } 7415 7416 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 7417 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 7418 7419 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 7420 7421 EXPORT_SYMBOL(register_md_personality); 7422 EXPORT_SYMBOL(unregister_md_personality); 7423 EXPORT_SYMBOL(md_error); 7424 EXPORT_SYMBOL(md_done_sync); 7425 EXPORT_SYMBOL(md_write_start); 7426 EXPORT_SYMBOL(md_write_end); 7427 EXPORT_SYMBOL(md_register_thread); 7428 EXPORT_SYMBOL(md_unregister_thread); 7429 EXPORT_SYMBOL(md_wakeup_thread); 7430 EXPORT_SYMBOL(md_check_recovery); 7431 MODULE_LICENSE("GPL"); 7432 MODULE_DESCRIPTION("MD RAID framework"); 7433 MODULE_ALIAS("md"); 7434 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 7435