xref: /linux/drivers/md/md.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/smp_lock.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59 
60 
61 #ifndef MODULE
62 static void autostart_arrays(int part);
63 #endif
64 
65 static LIST_HEAD(pers_list);
66 static DEFINE_SPINLOCK(pers_lock);
67 
68 static void md_print_devices(void);
69 
70 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
71 
72 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
73 
74 /*
75  * Default number of read corrections we'll attempt on an rdev
76  * before ejecting it from the array. We divide the read error
77  * count by 2 for every hour elapsed between read errors.
78  */
79 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
80 /*
81  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
82  * is 1000 KB/sec, so the extra system load does not show up that much.
83  * Increase it if you want to have more _guaranteed_ speed. Note that
84  * the RAID driver will use the maximum available bandwidth if the IO
85  * subsystem is idle. There is also an 'absolute maximum' reconstruction
86  * speed limit - in case reconstruction slows down your system despite
87  * idle IO detection.
88  *
89  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
90  * or /sys/block/mdX/md/sync_speed_{min,max}
91  */
92 
93 static int sysctl_speed_limit_min = 1000;
94 static int sysctl_speed_limit_max = 200000;
95 static inline int speed_min(mddev_t *mddev)
96 {
97 	return mddev->sync_speed_min ?
98 		mddev->sync_speed_min : sysctl_speed_limit_min;
99 }
100 
101 static inline int speed_max(mddev_t *mddev)
102 {
103 	return mddev->sync_speed_max ?
104 		mddev->sync_speed_max : sysctl_speed_limit_max;
105 }
106 
107 static struct ctl_table_header *raid_table_header;
108 
109 static ctl_table raid_table[] = {
110 	{
111 		.procname	= "speed_limit_min",
112 		.data		= &sysctl_speed_limit_min,
113 		.maxlen		= sizeof(int),
114 		.mode		= S_IRUGO|S_IWUSR,
115 		.proc_handler	= proc_dointvec,
116 	},
117 	{
118 		.procname	= "speed_limit_max",
119 		.data		= &sysctl_speed_limit_max,
120 		.maxlen		= sizeof(int),
121 		.mode		= S_IRUGO|S_IWUSR,
122 		.proc_handler	= proc_dointvec,
123 	},
124 	{ }
125 };
126 
127 static ctl_table raid_dir_table[] = {
128 	{
129 		.procname	= "raid",
130 		.maxlen		= 0,
131 		.mode		= S_IRUGO|S_IXUGO,
132 		.child		= raid_table,
133 	},
134 	{ }
135 };
136 
137 static ctl_table raid_root_table[] = {
138 	{
139 		.procname	= "dev",
140 		.maxlen		= 0,
141 		.mode		= 0555,
142 		.child		= raid_dir_table,
143 	},
144 	{  }
145 };
146 
147 static const struct block_device_operations md_fops;
148 
149 static int start_readonly;
150 
151 /*
152  * We have a system wide 'event count' that is incremented
153  * on any 'interesting' event, and readers of /proc/mdstat
154  * can use 'poll' or 'select' to find out when the event
155  * count increases.
156  *
157  * Events are:
158  *  start array, stop array, error, add device, remove device,
159  *  start build, activate spare
160  */
161 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
162 static atomic_t md_event_count;
163 void md_new_event(mddev_t *mddev)
164 {
165 	atomic_inc(&md_event_count);
166 	wake_up(&md_event_waiters);
167 }
168 EXPORT_SYMBOL_GPL(md_new_event);
169 
170 /* Alternate version that can be called from interrupts
171  * when calling sysfs_notify isn't needed.
172  */
173 static void md_new_event_inintr(mddev_t *mddev)
174 {
175 	atomic_inc(&md_event_count);
176 	wake_up(&md_event_waiters);
177 }
178 
179 /*
180  * Enables to iterate over all existing md arrays
181  * all_mddevs_lock protects this list.
182  */
183 static LIST_HEAD(all_mddevs);
184 static DEFINE_SPINLOCK(all_mddevs_lock);
185 
186 
187 /*
188  * iterates through all used mddevs in the system.
189  * We take care to grab the all_mddevs_lock whenever navigating
190  * the list, and to always hold a refcount when unlocked.
191  * Any code which breaks out of this loop while own
192  * a reference to the current mddev and must mddev_put it.
193  */
194 #define for_each_mddev(mddev,tmp)					\
195 									\
196 	for (({ spin_lock(&all_mddevs_lock); 				\
197 		tmp = all_mddevs.next;					\
198 		mddev = NULL;});					\
199 	     ({ if (tmp != &all_mddevs)					\
200 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
201 		spin_unlock(&all_mddevs_lock);				\
202 		if (mddev) mddev_put(mddev);				\
203 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
204 		tmp != &all_mddevs;});					\
205 	     ({ spin_lock(&all_mddevs_lock);				\
206 		tmp = tmp->next;})					\
207 		)
208 
209 
210 /* Rather than calling directly into the personality make_request function,
211  * IO requests come here first so that we can check if the device is
212  * being suspended pending a reconfiguration.
213  * We hold a refcount over the call to ->make_request.  By the time that
214  * call has finished, the bio has been linked into some internal structure
215  * and so is visible to ->quiesce(), so we don't need the refcount any more.
216  */
217 static int md_make_request(struct request_queue *q, struct bio *bio)
218 {
219 	const int rw = bio_data_dir(bio);
220 	mddev_t *mddev = q->queuedata;
221 	int rv;
222 	int cpu;
223 
224 	if (mddev == NULL || mddev->pers == NULL) {
225 		bio_io_error(bio);
226 		return 0;
227 	}
228 	rcu_read_lock();
229 	if (mddev->suspended || mddev->barrier) {
230 		DEFINE_WAIT(__wait);
231 		for (;;) {
232 			prepare_to_wait(&mddev->sb_wait, &__wait,
233 					TASK_UNINTERRUPTIBLE);
234 			if (!mddev->suspended && !mddev->barrier)
235 				break;
236 			rcu_read_unlock();
237 			schedule();
238 			rcu_read_lock();
239 		}
240 		finish_wait(&mddev->sb_wait, &__wait);
241 	}
242 	atomic_inc(&mddev->active_io);
243 	rcu_read_unlock();
244 
245 	rv = mddev->pers->make_request(mddev, bio);
246 
247 	cpu = part_stat_lock();
248 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
249 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
250 		      bio_sectors(bio));
251 	part_stat_unlock();
252 
253 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
254 		wake_up(&mddev->sb_wait);
255 
256 	return rv;
257 }
258 
259 /* mddev_suspend makes sure no new requests are submitted
260  * to the device, and that any requests that have been submitted
261  * are completely handled.
262  * Once ->stop is called and completes, the module will be completely
263  * unused.
264  */
265 void mddev_suspend(mddev_t *mddev)
266 {
267 	BUG_ON(mddev->suspended);
268 	mddev->suspended = 1;
269 	synchronize_rcu();
270 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
271 	mddev->pers->quiesce(mddev, 1);
272 }
273 EXPORT_SYMBOL_GPL(mddev_suspend);
274 
275 void mddev_resume(mddev_t *mddev)
276 {
277 	mddev->suspended = 0;
278 	wake_up(&mddev->sb_wait);
279 	mddev->pers->quiesce(mddev, 0);
280 }
281 EXPORT_SYMBOL_GPL(mddev_resume);
282 
283 int mddev_congested(mddev_t *mddev, int bits)
284 {
285 	if (mddev->barrier)
286 		return 1;
287 	return mddev->suspended;
288 }
289 EXPORT_SYMBOL(mddev_congested);
290 
291 /*
292  * Generic barrier handling for md
293  */
294 
295 #define POST_REQUEST_BARRIER ((void*)1)
296 
297 static void md_end_barrier(struct bio *bio, int err)
298 {
299 	mdk_rdev_t *rdev = bio->bi_private;
300 	mddev_t *mddev = rdev->mddev;
301 	if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER)
302 		set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags);
303 
304 	rdev_dec_pending(rdev, mddev);
305 
306 	if (atomic_dec_and_test(&mddev->flush_pending)) {
307 		if (mddev->barrier == POST_REQUEST_BARRIER) {
308 			/* This was a post-request barrier */
309 			mddev->barrier = NULL;
310 			wake_up(&mddev->sb_wait);
311 		} else
312 			/* The pre-request barrier has finished */
313 			schedule_work(&mddev->barrier_work);
314 	}
315 	bio_put(bio);
316 }
317 
318 static void submit_barriers(mddev_t *mddev)
319 {
320 	mdk_rdev_t *rdev;
321 
322 	rcu_read_lock();
323 	list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
324 		if (rdev->raid_disk >= 0 &&
325 		    !test_bit(Faulty, &rdev->flags)) {
326 			/* Take two references, one is dropped
327 			 * when request finishes, one after
328 			 * we reclaim rcu_read_lock
329 			 */
330 			struct bio *bi;
331 			atomic_inc(&rdev->nr_pending);
332 			atomic_inc(&rdev->nr_pending);
333 			rcu_read_unlock();
334 			bi = bio_alloc(GFP_KERNEL, 0);
335 			bi->bi_end_io = md_end_barrier;
336 			bi->bi_private = rdev;
337 			bi->bi_bdev = rdev->bdev;
338 			atomic_inc(&mddev->flush_pending);
339 			submit_bio(WRITE_BARRIER, bi);
340 			rcu_read_lock();
341 			rdev_dec_pending(rdev, mddev);
342 		}
343 	rcu_read_unlock();
344 }
345 
346 static void md_submit_barrier(struct work_struct *ws)
347 {
348 	mddev_t *mddev = container_of(ws, mddev_t, barrier_work);
349 	struct bio *bio = mddev->barrier;
350 
351 	atomic_set(&mddev->flush_pending, 1);
352 
353 	if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
354 		bio_endio(bio, -EOPNOTSUPP);
355 	else if (bio->bi_size == 0)
356 		/* an empty barrier - all done */
357 		bio_endio(bio, 0);
358 	else {
359 		bio->bi_rw &= ~REQ_HARDBARRIER;
360 		if (mddev->pers->make_request(mddev, bio))
361 			generic_make_request(bio);
362 		mddev->barrier = POST_REQUEST_BARRIER;
363 		submit_barriers(mddev);
364 	}
365 	if (atomic_dec_and_test(&mddev->flush_pending)) {
366 		mddev->barrier = NULL;
367 		wake_up(&mddev->sb_wait);
368 	}
369 }
370 
371 void md_barrier_request(mddev_t *mddev, struct bio *bio)
372 {
373 	spin_lock_irq(&mddev->write_lock);
374 	wait_event_lock_irq(mddev->sb_wait,
375 			    !mddev->barrier,
376 			    mddev->write_lock, /*nothing*/);
377 	mddev->barrier = bio;
378 	spin_unlock_irq(&mddev->write_lock);
379 
380 	atomic_set(&mddev->flush_pending, 1);
381 	INIT_WORK(&mddev->barrier_work, md_submit_barrier);
382 
383 	submit_barriers(mddev);
384 
385 	if (atomic_dec_and_test(&mddev->flush_pending))
386 		schedule_work(&mddev->barrier_work);
387 }
388 EXPORT_SYMBOL(md_barrier_request);
389 
390 /* Support for plugging.
391  * This mirrors the plugging support in request_queue, but does not
392  * require having a whole queue
393  */
394 static void plugger_work(struct work_struct *work)
395 {
396 	struct plug_handle *plug =
397 		container_of(work, struct plug_handle, unplug_work);
398 	plug->unplug_fn(plug);
399 }
400 static void plugger_timeout(unsigned long data)
401 {
402 	struct plug_handle *plug = (void *)data;
403 	kblockd_schedule_work(NULL, &plug->unplug_work);
404 }
405 void plugger_init(struct plug_handle *plug,
406 		  void (*unplug_fn)(struct plug_handle *))
407 {
408 	plug->unplug_flag = 0;
409 	plug->unplug_fn = unplug_fn;
410 	init_timer(&plug->unplug_timer);
411 	plug->unplug_timer.function = plugger_timeout;
412 	plug->unplug_timer.data = (unsigned long)plug;
413 	INIT_WORK(&plug->unplug_work, plugger_work);
414 }
415 EXPORT_SYMBOL_GPL(plugger_init);
416 
417 void plugger_set_plug(struct plug_handle *plug)
418 {
419 	if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
420 		mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
421 }
422 EXPORT_SYMBOL_GPL(plugger_set_plug);
423 
424 int plugger_remove_plug(struct plug_handle *plug)
425 {
426 	if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
427 		del_timer(&plug->unplug_timer);
428 		return 1;
429 	} else
430 		return 0;
431 }
432 EXPORT_SYMBOL_GPL(plugger_remove_plug);
433 
434 
435 static inline mddev_t *mddev_get(mddev_t *mddev)
436 {
437 	atomic_inc(&mddev->active);
438 	return mddev;
439 }
440 
441 static void mddev_delayed_delete(struct work_struct *ws);
442 
443 static void mddev_put(mddev_t *mddev)
444 {
445 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
446 		return;
447 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
448 	    mddev->ctime == 0 && !mddev->hold_active) {
449 		/* Array is not configured at all, and not held active,
450 		 * so destroy it */
451 		list_del(&mddev->all_mddevs);
452 		if (mddev->gendisk) {
453 			/* we did a probe so need to clean up.
454 			 * Call schedule_work inside the spinlock
455 			 * so that flush_scheduled_work() after
456 			 * mddev_find will succeed in waiting for the
457 			 * work to be done.
458 			 */
459 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
460 			schedule_work(&mddev->del_work);
461 		} else
462 			kfree(mddev);
463 	}
464 	spin_unlock(&all_mddevs_lock);
465 }
466 
467 void mddev_init(mddev_t *mddev)
468 {
469 	mutex_init(&mddev->open_mutex);
470 	mutex_init(&mddev->reconfig_mutex);
471 	mutex_init(&mddev->bitmap_info.mutex);
472 	INIT_LIST_HEAD(&mddev->disks);
473 	INIT_LIST_HEAD(&mddev->all_mddevs);
474 	init_timer(&mddev->safemode_timer);
475 	atomic_set(&mddev->active, 1);
476 	atomic_set(&mddev->openers, 0);
477 	atomic_set(&mddev->active_io, 0);
478 	spin_lock_init(&mddev->write_lock);
479 	atomic_set(&mddev->flush_pending, 0);
480 	init_waitqueue_head(&mddev->sb_wait);
481 	init_waitqueue_head(&mddev->recovery_wait);
482 	mddev->reshape_position = MaxSector;
483 	mddev->resync_min = 0;
484 	mddev->resync_max = MaxSector;
485 	mddev->level = LEVEL_NONE;
486 }
487 EXPORT_SYMBOL_GPL(mddev_init);
488 
489 static mddev_t * mddev_find(dev_t unit)
490 {
491 	mddev_t *mddev, *new = NULL;
492 
493  retry:
494 	spin_lock(&all_mddevs_lock);
495 
496 	if (unit) {
497 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
498 			if (mddev->unit == unit) {
499 				mddev_get(mddev);
500 				spin_unlock(&all_mddevs_lock);
501 				kfree(new);
502 				return mddev;
503 			}
504 
505 		if (new) {
506 			list_add(&new->all_mddevs, &all_mddevs);
507 			spin_unlock(&all_mddevs_lock);
508 			new->hold_active = UNTIL_IOCTL;
509 			return new;
510 		}
511 	} else if (new) {
512 		/* find an unused unit number */
513 		static int next_minor = 512;
514 		int start = next_minor;
515 		int is_free = 0;
516 		int dev = 0;
517 		while (!is_free) {
518 			dev = MKDEV(MD_MAJOR, next_minor);
519 			next_minor++;
520 			if (next_minor > MINORMASK)
521 				next_minor = 0;
522 			if (next_minor == start) {
523 				/* Oh dear, all in use. */
524 				spin_unlock(&all_mddevs_lock);
525 				kfree(new);
526 				return NULL;
527 			}
528 
529 			is_free = 1;
530 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
531 				if (mddev->unit == dev) {
532 					is_free = 0;
533 					break;
534 				}
535 		}
536 		new->unit = dev;
537 		new->md_minor = MINOR(dev);
538 		new->hold_active = UNTIL_STOP;
539 		list_add(&new->all_mddevs, &all_mddevs);
540 		spin_unlock(&all_mddevs_lock);
541 		return new;
542 	}
543 	spin_unlock(&all_mddevs_lock);
544 
545 	new = kzalloc(sizeof(*new), GFP_KERNEL);
546 	if (!new)
547 		return NULL;
548 
549 	new->unit = unit;
550 	if (MAJOR(unit) == MD_MAJOR)
551 		new->md_minor = MINOR(unit);
552 	else
553 		new->md_minor = MINOR(unit) >> MdpMinorShift;
554 
555 	mddev_init(new);
556 
557 	goto retry;
558 }
559 
560 static inline int mddev_lock(mddev_t * mddev)
561 {
562 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
563 }
564 
565 static inline int mddev_is_locked(mddev_t *mddev)
566 {
567 	return mutex_is_locked(&mddev->reconfig_mutex);
568 }
569 
570 static inline int mddev_trylock(mddev_t * mddev)
571 {
572 	return mutex_trylock(&mddev->reconfig_mutex);
573 }
574 
575 static struct attribute_group md_redundancy_group;
576 
577 static void mddev_unlock(mddev_t * mddev)
578 {
579 	if (mddev->to_remove) {
580 		/* These cannot be removed under reconfig_mutex as
581 		 * an access to the files will try to take reconfig_mutex
582 		 * while holding the file unremovable, which leads to
583 		 * a deadlock.
584 		 * So hold set sysfs_active while the remove in happeing,
585 		 * and anything else which might set ->to_remove or my
586 		 * otherwise change the sysfs namespace will fail with
587 		 * -EBUSY if sysfs_active is still set.
588 		 * We set sysfs_active under reconfig_mutex and elsewhere
589 		 * test it under the same mutex to ensure its correct value
590 		 * is seen.
591 		 */
592 		struct attribute_group *to_remove = mddev->to_remove;
593 		mddev->to_remove = NULL;
594 		mddev->sysfs_active = 1;
595 		mutex_unlock(&mddev->reconfig_mutex);
596 
597 		if (mddev->kobj.sd) {
598 			if (to_remove != &md_redundancy_group)
599 				sysfs_remove_group(&mddev->kobj, to_remove);
600 			if (mddev->pers == NULL ||
601 			    mddev->pers->sync_request == NULL) {
602 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
603 				if (mddev->sysfs_action)
604 					sysfs_put(mddev->sysfs_action);
605 				mddev->sysfs_action = NULL;
606 			}
607 		}
608 		mddev->sysfs_active = 0;
609 	} else
610 		mutex_unlock(&mddev->reconfig_mutex);
611 
612 	md_wakeup_thread(mddev->thread);
613 }
614 
615 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
616 {
617 	mdk_rdev_t *rdev;
618 
619 	list_for_each_entry(rdev, &mddev->disks, same_set)
620 		if (rdev->desc_nr == nr)
621 			return rdev;
622 
623 	return NULL;
624 }
625 
626 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
627 {
628 	mdk_rdev_t *rdev;
629 
630 	list_for_each_entry(rdev, &mddev->disks, same_set)
631 		if (rdev->bdev->bd_dev == dev)
632 			return rdev;
633 
634 	return NULL;
635 }
636 
637 static struct mdk_personality *find_pers(int level, char *clevel)
638 {
639 	struct mdk_personality *pers;
640 	list_for_each_entry(pers, &pers_list, list) {
641 		if (level != LEVEL_NONE && pers->level == level)
642 			return pers;
643 		if (strcmp(pers->name, clevel)==0)
644 			return pers;
645 	}
646 	return NULL;
647 }
648 
649 /* return the offset of the super block in 512byte sectors */
650 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
651 {
652 	sector_t num_sectors = bdev->bd_inode->i_size / 512;
653 	return MD_NEW_SIZE_SECTORS(num_sectors);
654 }
655 
656 static int alloc_disk_sb(mdk_rdev_t * rdev)
657 {
658 	if (rdev->sb_page)
659 		MD_BUG();
660 
661 	rdev->sb_page = alloc_page(GFP_KERNEL);
662 	if (!rdev->sb_page) {
663 		printk(KERN_ALERT "md: out of memory.\n");
664 		return -ENOMEM;
665 	}
666 
667 	return 0;
668 }
669 
670 static void free_disk_sb(mdk_rdev_t * rdev)
671 {
672 	if (rdev->sb_page) {
673 		put_page(rdev->sb_page);
674 		rdev->sb_loaded = 0;
675 		rdev->sb_page = NULL;
676 		rdev->sb_start = 0;
677 		rdev->sectors = 0;
678 	}
679 }
680 
681 
682 static void super_written(struct bio *bio, int error)
683 {
684 	mdk_rdev_t *rdev = bio->bi_private;
685 	mddev_t *mddev = rdev->mddev;
686 
687 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
688 		printk("md: super_written gets error=%d, uptodate=%d\n",
689 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
690 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
691 		md_error(mddev, rdev);
692 	}
693 
694 	if (atomic_dec_and_test(&mddev->pending_writes))
695 		wake_up(&mddev->sb_wait);
696 	bio_put(bio);
697 }
698 
699 static void super_written_barrier(struct bio *bio, int error)
700 {
701 	struct bio *bio2 = bio->bi_private;
702 	mdk_rdev_t *rdev = bio2->bi_private;
703 	mddev_t *mddev = rdev->mddev;
704 
705 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
706 	    error == -EOPNOTSUPP) {
707 		unsigned long flags;
708 		/* barriers don't appear to be supported :-( */
709 		set_bit(BarriersNotsupp, &rdev->flags);
710 		mddev->barriers_work = 0;
711 		spin_lock_irqsave(&mddev->write_lock, flags);
712 		bio2->bi_next = mddev->biolist;
713 		mddev->biolist = bio2;
714 		spin_unlock_irqrestore(&mddev->write_lock, flags);
715 		wake_up(&mddev->sb_wait);
716 		bio_put(bio);
717 	} else {
718 		bio_put(bio2);
719 		bio->bi_private = rdev;
720 		super_written(bio, error);
721 	}
722 }
723 
724 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
725 		   sector_t sector, int size, struct page *page)
726 {
727 	/* write first size bytes of page to sector of rdev
728 	 * Increment mddev->pending_writes before returning
729 	 * and decrement it on completion, waking up sb_wait
730 	 * if zero is reached.
731 	 * If an error occurred, call md_error
732 	 *
733 	 * As we might need to resubmit the request if REQ_HARDBARRIER
734 	 * causes ENOTSUPP, we allocate a spare bio...
735 	 */
736 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
737 	int rw = REQ_WRITE | REQ_SYNC | REQ_UNPLUG;
738 
739 	bio->bi_bdev = rdev->bdev;
740 	bio->bi_sector = sector;
741 	bio_add_page(bio, page, size, 0);
742 	bio->bi_private = rdev;
743 	bio->bi_end_io = super_written;
744 	bio->bi_rw = rw;
745 
746 	atomic_inc(&mddev->pending_writes);
747 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
748 		struct bio *rbio;
749 		rw |= REQ_HARDBARRIER;
750 		rbio = bio_clone(bio, GFP_NOIO);
751 		rbio->bi_private = bio;
752 		rbio->bi_end_io = super_written_barrier;
753 		submit_bio(rw, rbio);
754 	} else
755 		submit_bio(rw, bio);
756 }
757 
758 void md_super_wait(mddev_t *mddev)
759 {
760 	/* wait for all superblock writes that were scheduled to complete.
761 	 * if any had to be retried (due to BARRIER problems), retry them
762 	 */
763 	DEFINE_WAIT(wq);
764 	for(;;) {
765 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
766 		if (atomic_read(&mddev->pending_writes)==0)
767 			break;
768 		while (mddev->biolist) {
769 			struct bio *bio;
770 			spin_lock_irq(&mddev->write_lock);
771 			bio = mddev->biolist;
772 			mddev->biolist = bio->bi_next ;
773 			bio->bi_next = NULL;
774 			spin_unlock_irq(&mddev->write_lock);
775 			submit_bio(bio->bi_rw, bio);
776 		}
777 		schedule();
778 	}
779 	finish_wait(&mddev->sb_wait, &wq);
780 }
781 
782 static void bi_complete(struct bio *bio, int error)
783 {
784 	complete((struct completion*)bio->bi_private);
785 }
786 
787 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
788 		   struct page *page, int rw)
789 {
790 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
791 	struct completion event;
792 	int ret;
793 
794 	rw |= REQ_SYNC | REQ_UNPLUG;
795 
796 	bio->bi_bdev = bdev;
797 	bio->bi_sector = sector;
798 	bio_add_page(bio, page, size, 0);
799 	init_completion(&event);
800 	bio->bi_private = &event;
801 	bio->bi_end_io = bi_complete;
802 	submit_bio(rw, bio);
803 	wait_for_completion(&event);
804 
805 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
806 	bio_put(bio);
807 	return ret;
808 }
809 EXPORT_SYMBOL_GPL(sync_page_io);
810 
811 static int read_disk_sb(mdk_rdev_t * rdev, int size)
812 {
813 	char b[BDEVNAME_SIZE];
814 	if (!rdev->sb_page) {
815 		MD_BUG();
816 		return -EINVAL;
817 	}
818 	if (rdev->sb_loaded)
819 		return 0;
820 
821 
822 	if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
823 		goto fail;
824 	rdev->sb_loaded = 1;
825 	return 0;
826 
827 fail:
828 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
829 		bdevname(rdev->bdev,b));
830 	return -EINVAL;
831 }
832 
833 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
834 {
835 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
836 		sb1->set_uuid1 == sb2->set_uuid1 &&
837 		sb1->set_uuid2 == sb2->set_uuid2 &&
838 		sb1->set_uuid3 == sb2->set_uuid3;
839 }
840 
841 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
842 {
843 	int ret;
844 	mdp_super_t *tmp1, *tmp2;
845 
846 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
847 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
848 
849 	if (!tmp1 || !tmp2) {
850 		ret = 0;
851 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
852 		goto abort;
853 	}
854 
855 	*tmp1 = *sb1;
856 	*tmp2 = *sb2;
857 
858 	/*
859 	 * nr_disks is not constant
860 	 */
861 	tmp1->nr_disks = 0;
862 	tmp2->nr_disks = 0;
863 
864 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
865 abort:
866 	kfree(tmp1);
867 	kfree(tmp2);
868 	return ret;
869 }
870 
871 
872 static u32 md_csum_fold(u32 csum)
873 {
874 	csum = (csum & 0xffff) + (csum >> 16);
875 	return (csum & 0xffff) + (csum >> 16);
876 }
877 
878 static unsigned int calc_sb_csum(mdp_super_t * sb)
879 {
880 	u64 newcsum = 0;
881 	u32 *sb32 = (u32*)sb;
882 	int i;
883 	unsigned int disk_csum, csum;
884 
885 	disk_csum = sb->sb_csum;
886 	sb->sb_csum = 0;
887 
888 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
889 		newcsum += sb32[i];
890 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
891 
892 
893 #ifdef CONFIG_ALPHA
894 	/* This used to use csum_partial, which was wrong for several
895 	 * reasons including that different results are returned on
896 	 * different architectures.  It isn't critical that we get exactly
897 	 * the same return value as before (we always csum_fold before
898 	 * testing, and that removes any differences).  However as we
899 	 * know that csum_partial always returned a 16bit value on
900 	 * alphas, do a fold to maximise conformity to previous behaviour.
901 	 */
902 	sb->sb_csum = md_csum_fold(disk_csum);
903 #else
904 	sb->sb_csum = disk_csum;
905 #endif
906 	return csum;
907 }
908 
909 
910 /*
911  * Handle superblock details.
912  * We want to be able to handle multiple superblock formats
913  * so we have a common interface to them all, and an array of
914  * different handlers.
915  * We rely on user-space to write the initial superblock, and support
916  * reading and updating of superblocks.
917  * Interface methods are:
918  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
919  *      loads and validates a superblock on dev.
920  *      if refdev != NULL, compare superblocks on both devices
921  *    Return:
922  *      0 - dev has a superblock that is compatible with refdev
923  *      1 - dev has a superblock that is compatible and newer than refdev
924  *          so dev should be used as the refdev in future
925  *     -EINVAL superblock incompatible or invalid
926  *     -othererror e.g. -EIO
927  *
928  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
929  *      Verify that dev is acceptable into mddev.
930  *       The first time, mddev->raid_disks will be 0, and data from
931  *       dev should be merged in.  Subsequent calls check that dev
932  *       is new enough.  Return 0 or -EINVAL
933  *
934  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
935  *     Update the superblock for rdev with data in mddev
936  *     This does not write to disc.
937  *
938  */
939 
940 struct super_type  {
941 	char		    *name;
942 	struct module	    *owner;
943 	int		    (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
944 					  int minor_version);
945 	int		    (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
946 	void		    (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
947 	unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
948 						sector_t num_sectors);
949 };
950 
951 /*
952  * Check that the given mddev has no bitmap.
953  *
954  * This function is called from the run method of all personalities that do not
955  * support bitmaps. It prints an error message and returns non-zero if mddev
956  * has a bitmap. Otherwise, it returns 0.
957  *
958  */
959 int md_check_no_bitmap(mddev_t *mddev)
960 {
961 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
962 		return 0;
963 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
964 		mdname(mddev), mddev->pers->name);
965 	return 1;
966 }
967 EXPORT_SYMBOL(md_check_no_bitmap);
968 
969 /*
970  * load_super for 0.90.0
971  */
972 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
973 {
974 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
975 	mdp_super_t *sb;
976 	int ret;
977 
978 	/*
979 	 * Calculate the position of the superblock (512byte sectors),
980 	 * it's at the end of the disk.
981 	 *
982 	 * It also happens to be a multiple of 4Kb.
983 	 */
984 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
985 
986 	ret = read_disk_sb(rdev, MD_SB_BYTES);
987 	if (ret) return ret;
988 
989 	ret = -EINVAL;
990 
991 	bdevname(rdev->bdev, b);
992 	sb = (mdp_super_t*)page_address(rdev->sb_page);
993 
994 	if (sb->md_magic != MD_SB_MAGIC) {
995 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
996 		       b);
997 		goto abort;
998 	}
999 
1000 	if (sb->major_version != 0 ||
1001 	    sb->minor_version < 90 ||
1002 	    sb->minor_version > 91) {
1003 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1004 			sb->major_version, sb->minor_version,
1005 			b);
1006 		goto abort;
1007 	}
1008 
1009 	if (sb->raid_disks <= 0)
1010 		goto abort;
1011 
1012 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1013 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1014 			b);
1015 		goto abort;
1016 	}
1017 
1018 	rdev->preferred_minor = sb->md_minor;
1019 	rdev->data_offset = 0;
1020 	rdev->sb_size = MD_SB_BYTES;
1021 
1022 	if (sb->level == LEVEL_MULTIPATH)
1023 		rdev->desc_nr = -1;
1024 	else
1025 		rdev->desc_nr = sb->this_disk.number;
1026 
1027 	if (!refdev) {
1028 		ret = 1;
1029 	} else {
1030 		__u64 ev1, ev2;
1031 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
1032 		if (!uuid_equal(refsb, sb)) {
1033 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1034 				b, bdevname(refdev->bdev,b2));
1035 			goto abort;
1036 		}
1037 		if (!sb_equal(refsb, sb)) {
1038 			printk(KERN_WARNING "md: %s has same UUID"
1039 			       " but different superblock to %s\n",
1040 			       b, bdevname(refdev->bdev, b2));
1041 			goto abort;
1042 		}
1043 		ev1 = md_event(sb);
1044 		ev2 = md_event(refsb);
1045 		if (ev1 > ev2)
1046 			ret = 1;
1047 		else
1048 			ret = 0;
1049 	}
1050 	rdev->sectors = rdev->sb_start;
1051 
1052 	if (rdev->sectors < sb->size * 2 && sb->level > 1)
1053 		/* "this cannot possibly happen" ... */
1054 		ret = -EINVAL;
1055 
1056  abort:
1057 	return ret;
1058 }
1059 
1060 /*
1061  * validate_super for 0.90.0
1062  */
1063 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1064 {
1065 	mdp_disk_t *desc;
1066 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1067 	__u64 ev1 = md_event(sb);
1068 
1069 	rdev->raid_disk = -1;
1070 	clear_bit(Faulty, &rdev->flags);
1071 	clear_bit(In_sync, &rdev->flags);
1072 	clear_bit(WriteMostly, &rdev->flags);
1073 	clear_bit(BarriersNotsupp, &rdev->flags);
1074 
1075 	if (mddev->raid_disks == 0) {
1076 		mddev->major_version = 0;
1077 		mddev->minor_version = sb->minor_version;
1078 		mddev->patch_version = sb->patch_version;
1079 		mddev->external = 0;
1080 		mddev->chunk_sectors = sb->chunk_size >> 9;
1081 		mddev->ctime = sb->ctime;
1082 		mddev->utime = sb->utime;
1083 		mddev->level = sb->level;
1084 		mddev->clevel[0] = 0;
1085 		mddev->layout = sb->layout;
1086 		mddev->raid_disks = sb->raid_disks;
1087 		mddev->dev_sectors = sb->size * 2;
1088 		mddev->events = ev1;
1089 		mddev->bitmap_info.offset = 0;
1090 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1091 
1092 		if (mddev->minor_version >= 91) {
1093 			mddev->reshape_position = sb->reshape_position;
1094 			mddev->delta_disks = sb->delta_disks;
1095 			mddev->new_level = sb->new_level;
1096 			mddev->new_layout = sb->new_layout;
1097 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1098 		} else {
1099 			mddev->reshape_position = MaxSector;
1100 			mddev->delta_disks = 0;
1101 			mddev->new_level = mddev->level;
1102 			mddev->new_layout = mddev->layout;
1103 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1104 		}
1105 
1106 		if (sb->state & (1<<MD_SB_CLEAN))
1107 			mddev->recovery_cp = MaxSector;
1108 		else {
1109 			if (sb->events_hi == sb->cp_events_hi &&
1110 				sb->events_lo == sb->cp_events_lo) {
1111 				mddev->recovery_cp = sb->recovery_cp;
1112 			} else
1113 				mddev->recovery_cp = 0;
1114 		}
1115 
1116 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1117 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1118 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1119 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1120 
1121 		mddev->max_disks = MD_SB_DISKS;
1122 
1123 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1124 		    mddev->bitmap_info.file == NULL)
1125 			mddev->bitmap_info.offset =
1126 				mddev->bitmap_info.default_offset;
1127 
1128 	} else if (mddev->pers == NULL) {
1129 		/* Insist on good event counter while assembling, except
1130 		 * for spares (which don't need an event count) */
1131 		++ev1;
1132 		if (sb->disks[rdev->desc_nr].state & (
1133 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1134 			if (ev1 < mddev->events)
1135 				return -EINVAL;
1136 	} else if (mddev->bitmap) {
1137 		/* if adding to array with a bitmap, then we can accept an
1138 		 * older device ... but not too old.
1139 		 */
1140 		if (ev1 < mddev->bitmap->events_cleared)
1141 			return 0;
1142 	} else {
1143 		if (ev1 < mddev->events)
1144 			/* just a hot-add of a new device, leave raid_disk at -1 */
1145 			return 0;
1146 	}
1147 
1148 	if (mddev->level != LEVEL_MULTIPATH) {
1149 		desc = sb->disks + rdev->desc_nr;
1150 
1151 		if (desc->state & (1<<MD_DISK_FAULTY))
1152 			set_bit(Faulty, &rdev->flags);
1153 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1154 			    desc->raid_disk < mddev->raid_disks */) {
1155 			set_bit(In_sync, &rdev->flags);
1156 			rdev->raid_disk = desc->raid_disk;
1157 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1158 			/* active but not in sync implies recovery up to
1159 			 * reshape position.  We don't know exactly where
1160 			 * that is, so set to zero for now */
1161 			if (mddev->minor_version >= 91) {
1162 				rdev->recovery_offset = 0;
1163 				rdev->raid_disk = desc->raid_disk;
1164 			}
1165 		}
1166 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1167 			set_bit(WriteMostly, &rdev->flags);
1168 	} else /* MULTIPATH are always insync */
1169 		set_bit(In_sync, &rdev->flags);
1170 	return 0;
1171 }
1172 
1173 /*
1174  * sync_super for 0.90.0
1175  */
1176 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1177 {
1178 	mdp_super_t *sb;
1179 	mdk_rdev_t *rdev2;
1180 	int next_spare = mddev->raid_disks;
1181 
1182 
1183 	/* make rdev->sb match mddev data..
1184 	 *
1185 	 * 1/ zero out disks
1186 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1187 	 * 3/ any empty disks < next_spare become removed
1188 	 *
1189 	 * disks[0] gets initialised to REMOVED because
1190 	 * we cannot be sure from other fields if it has
1191 	 * been initialised or not.
1192 	 */
1193 	int i;
1194 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1195 
1196 	rdev->sb_size = MD_SB_BYTES;
1197 
1198 	sb = (mdp_super_t*)page_address(rdev->sb_page);
1199 
1200 	memset(sb, 0, sizeof(*sb));
1201 
1202 	sb->md_magic = MD_SB_MAGIC;
1203 	sb->major_version = mddev->major_version;
1204 	sb->patch_version = mddev->patch_version;
1205 	sb->gvalid_words  = 0; /* ignored */
1206 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1207 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1208 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1209 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1210 
1211 	sb->ctime = mddev->ctime;
1212 	sb->level = mddev->level;
1213 	sb->size = mddev->dev_sectors / 2;
1214 	sb->raid_disks = mddev->raid_disks;
1215 	sb->md_minor = mddev->md_minor;
1216 	sb->not_persistent = 0;
1217 	sb->utime = mddev->utime;
1218 	sb->state = 0;
1219 	sb->events_hi = (mddev->events>>32);
1220 	sb->events_lo = (u32)mddev->events;
1221 
1222 	if (mddev->reshape_position == MaxSector)
1223 		sb->minor_version = 90;
1224 	else {
1225 		sb->minor_version = 91;
1226 		sb->reshape_position = mddev->reshape_position;
1227 		sb->new_level = mddev->new_level;
1228 		sb->delta_disks = mddev->delta_disks;
1229 		sb->new_layout = mddev->new_layout;
1230 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1231 	}
1232 	mddev->minor_version = sb->minor_version;
1233 	if (mddev->in_sync)
1234 	{
1235 		sb->recovery_cp = mddev->recovery_cp;
1236 		sb->cp_events_hi = (mddev->events>>32);
1237 		sb->cp_events_lo = (u32)mddev->events;
1238 		if (mddev->recovery_cp == MaxSector)
1239 			sb->state = (1<< MD_SB_CLEAN);
1240 	} else
1241 		sb->recovery_cp = 0;
1242 
1243 	sb->layout = mddev->layout;
1244 	sb->chunk_size = mddev->chunk_sectors << 9;
1245 
1246 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1247 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1248 
1249 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1250 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1251 		mdp_disk_t *d;
1252 		int desc_nr;
1253 		int is_active = test_bit(In_sync, &rdev2->flags);
1254 
1255 		if (rdev2->raid_disk >= 0 &&
1256 		    sb->minor_version >= 91)
1257 			/* we have nowhere to store the recovery_offset,
1258 			 * but if it is not below the reshape_position,
1259 			 * we can piggy-back on that.
1260 			 */
1261 			is_active = 1;
1262 		if (rdev2->raid_disk < 0 ||
1263 		    test_bit(Faulty, &rdev2->flags))
1264 			is_active = 0;
1265 		if (is_active)
1266 			desc_nr = rdev2->raid_disk;
1267 		else
1268 			desc_nr = next_spare++;
1269 		rdev2->desc_nr = desc_nr;
1270 		d = &sb->disks[rdev2->desc_nr];
1271 		nr_disks++;
1272 		d->number = rdev2->desc_nr;
1273 		d->major = MAJOR(rdev2->bdev->bd_dev);
1274 		d->minor = MINOR(rdev2->bdev->bd_dev);
1275 		if (is_active)
1276 			d->raid_disk = rdev2->raid_disk;
1277 		else
1278 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1279 		if (test_bit(Faulty, &rdev2->flags))
1280 			d->state = (1<<MD_DISK_FAULTY);
1281 		else if (is_active) {
1282 			d->state = (1<<MD_DISK_ACTIVE);
1283 			if (test_bit(In_sync, &rdev2->flags))
1284 				d->state |= (1<<MD_DISK_SYNC);
1285 			active++;
1286 			working++;
1287 		} else {
1288 			d->state = 0;
1289 			spare++;
1290 			working++;
1291 		}
1292 		if (test_bit(WriteMostly, &rdev2->flags))
1293 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1294 	}
1295 	/* now set the "removed" and "faulty" bits on any missing devices */
1296 	for (i=0 ; i < mddev->raid_disks ; i++) {
1297 		mdp_disk_t *d = &sb->disks[i];
1298 		if (d->state == 0 && d->number == 0) {
1299 			d->number = i;
1300 			d->raid_disk = i;
1301 			d->state = (1<<MD_DISK_REMOVED);
1302 			d->state |= (1<<MD_DISK_FAULTY);
1303 			failed++;
1304 		}
1305 	}
1306 	sb->nr_disks = nr_disks;
1307 	sb->active_disks = active;
1308 	sb->working_disks = working;
1309 	sb->failed_disks = failed;
1310 	sb->spare_disks = spare;
1311 
1312 	sb->this_disk = sb->disks[rdev->desc_nr];
1313 	sb->sb_csum = calc_sb_csum(sb);
1314 }
1315 
1316 /*
1317  * rdev_size_change for 0.90.0
1318  */
1319 static unsigned long long
1320 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1321 {
1322 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1323 		return 0; /* component must fit device */
1324 	if (rdev->mddev->bitmap_info.offset)
1325 		return 0; /* can't move bitmap */
1326 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1327 	if (!num_sectors || num_sectors > rdev->sb_start)
1328 		num_sectors = rdev->sb_start;
1329 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1330 		       rdev->sb_page);
1331 	md_super_wait(rdev->mddev);
1332 	return num_sectors / 2; /* kB for sysfs */
1333 }
1334 
1335 
1336 /*
1337  * version 1 superblock
1338  */
1339 
1340 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1341 {
1342 	__le32 disk_csum;
1343 	u32 csum;
1344 	unsigned long long newcsum;
1345 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1346 	__le32 *isuper = (__le32*)sb;
1347 	int i;
1348 
1349 	disk_csum = sb->sb_csum;
1350 	sb->sb_csum = 0;
1351 	newcsum = 0;
1352 	for (i=0; size>=4; size -= 4 )
1353 		newcsum += le32_to_cpu(*isuper++);
1354 
1355 	if (size == 2)
1356 		newcsum += le16_to_cpu(*(__le16*) isuper);
1357 
1358 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1359 	sb->sb_csum = disk_csum;
1360 	return cpu_to_le32(csum);
1361 }
1362 
1363 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1364 {
1365 	struct mdp_superblock_1 *sb;
1366 	int ret;
1367 	sector_t sb_start;
1368 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1369 	int bmask;
1370 
1371 	/*
1372 	 * Calculate the position of the superblock in 512byte sectors.
1373 	 * It is always aligned to a 4K boundary and
1374 	 * depeding on minor_version, it can be:
1375 	 * 0: At least 8K, but less than 12K, from end of device
1376 	 * 1: At start of device
1377 	 * 2: 4K from start of device.
1378 	 */
1379 	switch(minor_version) {
1380 	case 0:
1381 		sb_start = rdev->bdev->bd_inode->i_size >> 9;
1382 		sb_start -= 8*2;
1383 		sb_start &= ~(sector_t)(4*2-1);
1384 		break;
1385 	case 1:
1386 		sb_start = 0;
1387 		break;
1388 	case 2:
1389 		sb_start = 8;
1390 		break;
1391 	default:
1392 		return -EINVAL;
1393 	}
1394 	rdev->sb_start = sb_start;
1395 
1396 	/* superblock is rarely larger than 1K, but it can be larger,
1397 	 * and it is safe to read 4k, so we do that
1398 	 */
1399 	ret = read_disk_sb(rdev, 4096);
1400 	if (ret) return ret;
1401 
1402 
1403 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1404 
1405 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1406 	    sb->major_version != cpu_to_le32(1) ||
1407 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1408 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1409 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1410 		return -EINVAL;
1411 
1412 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1413 		printk("md: invalid superblock checksum on %s\n",
1414 			bdevname(rdev->bdev,b));
1415 		return -EINVAL;
1416 	}
1417 	if (le64_to_cpu(sb->data_size) < 10) {
1418 		printk("md: data_size too small on %s\n",
1419 		       bdevname(rdev->bdev,b));
1420 		return -EINVAL;
1421 	}
1422 
1423 	rdev->preferred_minor = 0xffff;
1424 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1425 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1426 
1427 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1428 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1429 	if (rdev->sb_size & bmask)
1430 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1431 
1432 	if (minor_version
1433 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1434 		return -EINVAL;
1435 
1436 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1437 		rdev->desc_nr = -1;
1438 	else
1439 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1440 
1441 	if (!refdev) {
1442 		ret = 1;
1443 	} else {
1444 		__u64 ev1, ev2;
1445 		struct mdp_superblock_1 *refsb =
1446 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1447 
1448 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1449 		    sb->level != refsb->level ||
1450 		    sb->layout != refsb->layout ||
1451 		    sb->chunksize != refsb->chunksize) {
1452 			printk(KERN_WARNING "md: %s has strangely different"
1453 				" superblock to %s\n",
1454 				bdevname(rdev->bdev,b),
1455 				bdevname(refdev->bdev,b2));
1456 			return -EINVAL;
1457 		}
1458 		ev1 = le64_to_cpu(sb->events);
1459 		ev2 = le64_to_cpu(refsb->events);
1460 
1461 		if (ev1 > ev2)
1462 			ret = 1;
1463 		else
1464 			ret = 0;
1465 	}
1466 	if (minor_version)
1467 		rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1468 			le64_to_cpu(sb->data_offset);
1469 	else
1470 		rdev->sectors = rdev->sb_start;
1471 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1472 		return -EINVAL;
1473 	rdev->sectors = le64_to_cpu(sb->data_size);
1474 	if (le64_to_cpu(sb->size) > rdev->sectors)
1475 		return -EINVAL;
1476 	return ret;
1477 }
1478 
1479 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1480 {
1481 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1482 	__u64 ev1 = le64_to_cpu(sb->events);
1483 
1484 	rdev->raid_disk = -1;
1485 	clear_bit(Faulty, &rdev->flags);
1486 	clear_bit(In_sync, &rdev->flags);
1487 	clear_bit(WriteMostly, &rdev->flags);
1488 	clear_bit(BarriersNotsupp, &rdev->flags);
1489 
1490 	if (mddev->raid_disks == 0) {
1491 		mddev->major_version = 1;
1492 		mddev->patch_version = 0;
1493 		mddev->external = 0;
1494 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1495 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1496 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1497 		mddev->level = le32_to_cpu(sb->level);
1498 		mddev->clevel[0] = 0;
1499 		mddev->layout = le32_to_cpu(sb->layout);
1500 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1501 		mddev->dev_sectors = le64_to_cpu(sb->size);
1502 		mddev->events = ev1;
1503 		mddev->bitmap_info.offset = 0;
1504 		mddev->bitmap_info.default_offset = 1024 >> 9;
1505 
1506 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1507 		memcpy(mddev->uuid, sb->set_uuid, 16);
1508 
1509 		mddev->max_disks =  (4096-256)/2;
1510 
1511 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1512 		    mddev->bitmap_info.file == NULL )
1513 			mddev->bitmap_info.offset =
1514 				(__s32)le32_to_cpu(sb->bitmap_offset);
1515 
1516 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1517 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1518 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1519 			mddev->new_level = le32_to_cpu(sb->new_level);
1520 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1521 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1522 		} else {
1523 			mddev->reshape_position = MaxSector;
1524 			mddev->delta_disks = 0;
1525 			mddev->new_level = mddev->level;
1526 			mddev->new_layout = mddev->layout;
1527 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1528 		}
1529 
1530 	} else if (mddev->pers == NULL) {
1531 		/* Insist of good event counter while assembling, except for
1532 		 * spares (which don't need an event count) */
1533 		++ev1;
1534 		if (rdev->desc_nr >= 0 &&
1535 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1536 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1537 			if (ev1 < mddev->events)
1538 				return -EINVAL;
1539 	} else if (mddev->bitmap) {
1540 		/* If adding to array with a bitmap, then we can accept an
1541 		 * older device, but not too old.
1542 		 */
1543 		if (ev1 < mddev->bitmap->events_cleared)
1544 			return 0;
1545 	} else {
1546 		if (ev1 < mddev->events)
1547 			/* just a hot-add of a new device, leave raid_disk at -1 */
1548 			return 0;
1549 	}
1550 	if (mddev->level != LEVEL_MULTIPATH) {
1551 		int role;
1552 		if (rdev->desc_nr < 0 ||
1553 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1554 			role = 0xffff;
1555 			rdev->desc_nr = -1;
1556 		} else
1557 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1558 		switch(role) {
1559 		case 0xffff: /* spare */
1560 			break;
1561 		case 0xfffe: /* faulty */
1562 			set_bit(Faulty, &rdev->flags);
1563 			break;
1564 		default:
1565 			if ((le32_to_cpu(sb->feature_map) &
1566 			     MD_FEATURE_RECOVERY_OFFSET))
1567 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1568 			else
1569 				set_bit(In_sync, &rdev->flags);
1570 			rdev->raid_disk = role;
1571 			break;
1572 		}
1573 		if (sb->devflags & WriteMostly1)
1574 			set_bit(WriteMostly, &rdev->flags);
1575 	} else /* MULTIPATH are always insync */
1576 		set_bit(In_sync, &rdev->flags);
1577 
1578 	return 0;
1579 }
1580 
1581 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1582 {
1583 	struct mdp_superblock_1 *sb;
1584 	mdk_rdev_t *rdev2;
1585 	int max_dev, i;
1586 	/* make rdev->sb match mddev and rdev data. */
1587 
1588 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1589 
1590 	sb->feature_map = 0;
1591 	sb->pad0 = 0;
1592 	sb->recovery_offset = cpu_to_le64(0);
1593 	memset(sb->pad1, 0, sizeof(sb->pad1));
1594 	memset(sb->pad2, 0, sizeof(sb->pad2));
1595 	memset(sb->pad3, 0, sizeof(sb->pad3));
1596 
1597 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1598 	sb->events = cpu_to_le64(mddev->events);
1599 	if (mddev->in_sync)
1600 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1601 	else
1602 		sb->resync_offset = cpu_to_le64(0);
1603 
1604 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1605 
1606 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1607 	sb->size = cpu_to_le64(mddev->dev_sectors);
1608 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1609 	sb->level = cpu_to_le32(mddev->level);
1610 	sb->layout = cpu_to_le32(mddev->layout);
1611 
1612 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1613 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1614 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1615 	}
1616 
1617 	if (rdev->raid_disk >= 0 &&
1618 	    !test_bit(In_sync, &rdev->flags)) {
1619 		sb->feature_map |=
1620 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1621 		sb->recovery_offset =
1622 			cpu_to_le64(rdev->recovery_offset);
1623 	}
1624 
1625 	if (mddev->reshape_position != MaxSector) {
1626 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1627 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1628 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1629 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1630 		sb->new_level = cpu_to_le32(mddev->new_level);
1631 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1632 	}
1633 
1634 	max_dev = 0;
1635 	list_for_each_entry(rdev2, &mddev->disks, same_set)
1636 		if (rdev2->desc_nr+1 > max_dev)
1637 			max_dev = rdev2->desc_nr+1;
1638 
1639 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1640 		int bmask;
1641 		sb->max_dev = cpu_to_le32(max_dev);
1642 		rdev->sb_size = max_dev * 2 + 256;
1643 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1644 		if (rdev->sb_size & bmask)
1645 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1646 	}
1647 	for (i=0; i<max_dev;i++)
1648 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1649 
1650 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1651 		i = rdev2->desc_nr;
1652 		if (test_bit(Faulty, &rdev2->flags))
1653 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1654 		else if (test_bit(In_sync, &rdev2->flags))
1655 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1656 		else if (rdev2->raid_disk >= 0)
1657 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1658 		else
1659 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1660 	}
1661 
1662 	sb->sb_csum = calc_sb_1_csum(sb);
1663 }
1664 
1665 static unsigned long long
1666 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1667 {
1668 	struct mdp_superblock_1 *sb;
1669 	sector_t max_sectors;
1670 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1671 		return 0; /* component must fit device */
1672 	if (rdev->sb_start < rdev->data_offset) {
1673 		/* minor versions 1 and 2; superblock before data */
1674 		max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1675 		max_sectors -= rdev->data_offset;
1676 		if (!num_sectors || num_sectors > max_sectors)
1677 			num_sectors = max_sectors;
1678 	} else if (rdev->mddev->bitmap_info.offset) {
1679 		/* minor version 0 with bitmap we can't move */
1680 		return 0;
1681 	} else {
1682 		/* minor version 0; superblock after data */
1683 		sector_t sb_start;
1684 		sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1685 		sb_start &= ~(sector_t)(4*2 - 1);
1686 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1687 		if (!num_sectors || num_sectors > max_sectors)
1688 			num_sectors = max_sectors;
1689 		rdev->sb_start = sb_start;
1690 	}
1691 	sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1692 	sb->data_size = cpu_to_le64(num_sectors);
1693 	sb->super_offset = rdev->sb_start;
1694 	sb->sb_csum = calc_sb_1_csum(sb);
1695 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1696 		       rdev->sb_page);
1697 	md_super_wait(rdev->mddev);
1698 	return num_sectors / 2; /* kB for sysfs */
1699 }
1700 
1701 static struct super_type super_types[] = {
1702 	[0] = {
1703 		.name	= "0.90.0",
1704 		.owner	= THIS_MODULE,
1705 		.load_super	    = super_90_load,
1706 		.validate_super	    = super_90_validate,
1707 		.sync_super	    = super_90_sync,
1708 		.rdev_size_change   = super_90_rdev_size_change,
1709 	},
1710 	[1] = {
1711 		.name	= "md-1",
1712 		.owner	= THIS_MODULE,
1713 		.load_super	    = super_1_load,
1714 		.validate_super	    = super_1_validate,
1715 		.sync_super	    = super_1_sync,
1716 		.rdev_size_change   = super_1_rdev_size_change,
1717 	},
1718 };
1719 
1720 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1721 {
1722 	mdk_rdev_t *rdev, *rdev2;
1723 
1724 	rcu_read_lock();
1725 	rdev_for_each_rcu(rdev, mddev1)
1726 		rdev_for_each_rcu(rdev2, mddev2)
1727 			if (rdev->bdev->bd_contains ==
1728 			    rdev2->bdev->bd_contains) {
1729 				rcu_read_unlock();
1730 				return 1;
1731 			}
1732 	rcu_read_unlock();
1733 	return 0;
1734 }
1735 
1736 static LIST_HEAD(pending_raid_disks);
1737 
1738 /*
1739  * Try to register data integrity profile for an mddev
1740  *
1741  * This is called when an array is started and after a disk has been kicked
1742  * from the array. It only succeeds if all working and active component devices
1743  * are integrity capable with matching profiles.
1744  */
1745 int md_integrity_register(mddev_t *mddev)
1746 {
1747 	mdk_rdev_t *rdev, *reference = NULL;
1748 
1749 	if (list_empty(&mddev->disks))
1750 		return 0; /* nothing to do */
1751 	if (blk_get_integrity(mddev->gendisk))
1752 		return 0; /* already registered */
1753 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1754 		/* skip spares and non-functional disks */
1755 		if (test_bit(Faulty, &rdev->flags))
1756 			continue;
1757 		if (rdev->raid_disk < 0)
1758 			continue;
1759 		/*
1760 		 * If at least one rdev is not integrity capable, we can not
1761 		 * enable data integrity for the md device.
1762 		 */
1763 		if (!bdev_get_integrity(rdev->bdev))
1764 			return -EINVAL;
1765 		if (!reference) {
1766 			/* Use the first rdev as the reference */
1767 			reference = rdev;
1768 			continue;
1769 		}
1770 		/* does this rdev's profile match the reference profile? */
1771 		if (blk_integrity_compare(reference->bdev->bd_disk,
1772 				rdev->bdev->bd_disk) < 0)
1773 			return -EINVAL;
1774 	}
1775 	/*
1776 	 * All component devices are integrity capable and have matching
1777 	 * profiles, register the common profile for the md device.
1778 	 */
1779 	if (blk_integrity_register(mddev->gendisk,
1780 			bdev_get_integrity(reference->bdev)) != 0) {
1781 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1782 			mdname(mddev));
1783 		return -EINVAL;
1784 	}
1785 	printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1786 		mdname(mddev));
1787 	return 0;
1788 }
1789 EXPORT_SYMBOL(md_integrity_register);
1790 
1791 /* Disable data integrity if non-capable/non-matching disk is being added */
1792 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1793 {
1794 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1795 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1796 
1797 	if (!bi_mddev) /* nothing to do */
1798 		return;
1799 	if (rdev->raid_disk < 0) /* skip spares */
1800 		return;
1801 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1802 					     rdev->bdev->bd_disk) >= 0)
1803 		return;
1804 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1805 	blk_integrity_unregister(mddev->gendisk);
1806 }
1807 EXPORT_SYMBOL(md_integrity_add_rdev);
1808 
1809 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1810 {
1811 	char b[BDEVNAME_SIZE];
1812 	struct kobject *ko;
1813 	char *s;
1814 	int err;
1815 
1816 	if (rdev->mddev) {
1817 		MD_BUG();
1818 		return -EINVAL;
1819 	}
1820 
1821 	/* prevent duplicates */
1822 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1823 		return -EEXIST;
1824 
1825 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
1826 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
1827 			rdev->sectors < mddev->dev_sectors)) {
1828 		if (mddev->pers) {
1829 			/* Cannot change size, so fail
1830 			 * If mddev->level <= 0, then we don't care
1831 			 * about aligning sizes (e.g. linear)
1832 			 */
1833 			if (mddev->level > 0)
1834 				return -ENOSPC;
1835 		} else
1836 			mddev->dev_sectors = rdev->sectors;
1837 	}
1838 
1839 	/* Verify rdev->desc_nr is unique.
1840 	 * If it is -1, assign a free number, else
1841 	 * check number is not in use
1842 	 */
1843 	if (rdev->desc_nr < 0) {
1844 		int choice = 0;
1845 		if (mddev->pers) choice = mddev->raid_disks;
1846 		while (find_rdev_nr(mddev, choice))
1847 			choice++;
1848 		rdev->desc_nr = choice;
1849 	} else {
1850 		if (find_rdev_nr(mddev, rdev->desc_nr))
1851 			return -EBUSY;
1852 	}
1853 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1854 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1855 		       mdname(mddev), mddev->max_disks);
1856 		return -EBUSY;
1857 	}
1858 	bdevname(rdev->bdev,b);
1859 	while ( (s=strchr(b, '/')) != NULL)
1860 		*s = '!';
1861 
1862 	rdev->mddev = mddev;
1863 	printk(KERN_INFO "md: bind<%s>\n", b);
1864 
1865 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1866 		goto fail;
1867 
1868 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1869 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
1870 		/* failure here is OK */;
1871 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1872 
1873 	list_add_rcu(&rdev->same_set, &mddev->disks);
1874 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1875 
1876 	/* May as well allow recovery to be retried once */
1877 	mddev->recovery_disabled = 0;
1878 
1879 	return 0;
1880 
1881  fail:
1882 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1883 	       b, mdname(mddev));
1884 	return err;
1885 }
1886 
1887 static void md_delayed_delete(struct work_struct *ws)
1888 {
1889 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1890 	kobject_del(&rdev->kobj);
1891 	kobject_put(&rdev->kobj);
1892 }
1893 
1894 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1895 {
1896 	char b[BDEVNAME_SIZE];
1897 	if (!rdev->mddev) {
1898 		MD_BUG();
1899 		return;
1900 	}
1901 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1902 	list_del_rcu(&rdev->same_set);
1903 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1904 	rdev->mddev = NULL;
1905 	sysfs_remove_link(&rdev->kobj, "block");
1906 	sysfs_put(rdev->sysfs_state);
1907 	rdev->sysfs_state = NULL;
1908 	/* We need to delay this, otherwise we can deadlock when
1909 	 * writing to 'remove' to "dev/state".  We also need
1910 	 * to delay it due to rcu usage.
1911 	 */
1912 	synchronize_rcu();
1913 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1914 	kobject_get(&rdev->kobj);
1915 	schedule_work(&rdev->del_work);
1916 }
1917 
1918 /*
1919  * prevent the device from being mounted, repartitioned or
1920  * otherwise reused by a RAID array (or any other kernel
1921  * subsystem), by bd_claiming the device.
1922  */
1923 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1924 {
1925 	int err = 0;
1926 	struct block_device *bdev;
1927 	char b[BDEVNAME_SIZE];
1928 
1929 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1930 	if (IS_ERR(bdev)) {
1931 		printk(KERN_ERR "md: could not open %s.\n",
1932 			__bdevname(dev, b));
1933 		return PTR_ERR(bdev);
1934 	}
1935 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1936 	if (err) {
1937 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1938 			bdevname(bdev, b));
1939 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1940 		return err;
1941 	}
1942 	if (!shared)
1943 		set_bit(AllReserved, &rdev->flags);
1944 	rdev->bdev = bdev;
1945 	return err;
1946 }
1947 
1948 static void unlock_rdev(mdk_rdev_t *rdev)
1949 {
1950 	struct block_device *bdev = rdev->bdev;
1951 	rdev->bdev = NULL;
1952 	if (!bdev)
1953 		MD_BUG();
1954 	bd_release(bdev);
1955 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1956 }
1957 
1958 void md_autodetect_dev(dev_t dev);
1959 
1960 static void export_rdev(mdk_rdev_t * rdev)
1961 {
1962 	char b[BDEVNAME_SIZE];
1963 	printk(KERN_INFO "md: export_rdev(%s)\n",
1964 		bdevname(rdev->bdev,b));
1965 	if (rdev->mddev)
1966 		MD_BUG();
1967 	free_disk_sb(rdev);
1968 #ifndef MODULE
1969 	if (test_bit(AutoDetected, &rdev->flags))
1970 		md_autodetect_dev(rdev->bdev->bd_dev);
1971 #endif
1972 	unlock_rdev(rdev);
1973 	kobject_put(&rdev->kobj);
1974 }
1975 
1976 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1977 {
1978 	unbind_rdev_from_array(rdev);
1979 	export_rdev(rdev);
1980 }
1981 
1982 static void export_array(mddev_t *mddev)
1983 {
1984 	mdk_rdev_t *rdev, *tmp;
1985 
1986 	rdev_for_each(rdev, tmp, mddev) {
1987 		if (!rdev->mddev) {
1988 			MD_BUG();
1989 			continue;
1990 		}
1991 		kick_rdev_from_array(rdev);
1992 	}
1993 	if (!list_empty(&mddev->disks))
1994 		MD_BUG();
1995 	mddev->raid_disks = 0;
1996 	mddev->major_version = 0;
1997 }
1998 
1999 static void print_desc(mdp_disk_t *desc)
2000 {
2001 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2002 		desc->major,desc->minor,desc->raid_disk,desc->state);
2003 }
2004 
2005 static void print_sb_90(mdp_super_t *sb)
2006 {
2007 	int i;
2008 
2009 	printk(KERN_INFO
2010 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2011 		sb->major_version, sb->minor_version, sb->patch_version,
2012 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2013 		sb->ctime);
2014 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2015 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2016 		sb->md_minor, sb->layout, sb->chunk_size);
2017 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2018 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2019 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2020 		sb->failed_disks, sb->spare_disks,
2021 		sb->sb_csum, (unsigned long)sb->events_lo);
2022 
2023 	printk(KERN_INFO);
2024 	for (i = 0; i < MD_SB_DISKS; i++) {
2025 		mdp_disk_t *desc;
2026 
2027 		desc = sb->disks + i;
2028 		if (desc->number || desc->major || desc->minor ||
2029 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2030 			printk("     D %2d: ", i);
2031 			print_desc(desc);
2032 		}
2033 	}
2034 	printk(KERN_INFO "md:     THIS: ");
2035 	print_desc(&sb->this_disk);
2036 }
2037 
2038 static void print_sb_1(struct mdp_superblock_1 *sb)
2039 {
2040 	__u8 *uuid;
2041 
2042 	uuid = sb->set_uuid;
2043 	printk(KERN_INFO
2044 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2045 	       "md:    Name: \"%s\" CT:%llu\n",
2046 		le32_to_cpu(sb->major_version),
2047 		le32_to_cpu(sb->feature_map),
2048 		uuid,
2049 		sb->set_name,
2050 		(unsigned long long)le64_to_cpu(sb->ctime)
2051 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2052 
2053 	uuid = sb->device_uuid;
2054 	printk(KERN_INFO
2055 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2056 			" RO:%llu\n"
2057 	       "md:     Dev:%08x UUID: %pU\n"
2058 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2059 	       "md:         (MaxDev:%u) \n",
2060 		le32_to_cpu(sb->level),
2061 		(unsigned long long)le64_to_cpu(sb->size),
2062 		le32_to_cpu(sb->raid_disks),
2063 		le32_to_cpu(sb->layout),
2064 		le32_to_cpu(sb->chunksize),
2065 		(unsigned long long)le64_to_cpu(sb->data_offset),
2066 		(unsigned long long)le64_to_cpu(sb->data_size),
2067 		(unsigned long long)le64_to_cpu(sb->super_offset),
2068 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2069 		le32_to_cpu(sb->dev_number),
2070 		uuid,
2071 		sb->devflags,
2072 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2073 		(unsigned long long)le64_to_cpu(sb->events),
2074 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2075 		le32_to_cpu(sb->sb_csum),
2076 		le32_to_cpu(sb->max_dev)
2077 		);
2078 }
2079 
2080 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2081 {
2082 	char b[BDEVNAME_SIZE];
2083 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2084 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2085 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2086 	        rdev->desc_nr);
2087 	if (rdev->sb_loaded) {
2088 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2089 		switch (major_version) {
2090 		case 0:
2091 			print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2092 			break;
2093 		case 1:
2094 			print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2095 			break;
2096 		}
2097 	} else
2098 		printk(KERN_INFO "md: no rdev superblock!\n");
2099 }
2100 
2101 static void md_print_devices(void)
2102 {
2103 	struct list_head *tmp;
2104 	mdk_rdev_t *rdev;
2105 	mddev_t *mddev;
2106 	char b[BDEVNAME_SIZE];
2107 
2108 	printk("\n");
2109 	printk("md:	**********************************\n");
2110 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2111 	printk("md:	**********************************\n");
2112 	for_each_mddev(mddev, tmp) {
2113 
2114 		if (mddev->bitmap)
2115 			bitmap_print_sb(mddev->bitmap);
2116 		else
2117 			printk("%s: ", mdname(mddev));
2118 		list_for_each_entry(rdev, &mddev->disks, same_set)
2119 			printk("<%s>", bdevname(rdev->bdev,b));
2120 		printk("\n");
2121 
2122 		list_for_each_entry(rdev, &mddev->disks, same_set)
2123 			print_rdev(rdev, mddev->major_version);
2124 	}
2125 	printk("md:	**********************************\n");
2126 	printk("\n");
2127 }
2128 
2129 
2130 static void sync_sbs(mddev_t * mddev, int nospares)
2131 {
2132 	/* Update each superblock (in-memory image), but
2133 	 * if we are allowed to, skip spares which already
2134 	 * have the right event counter, or have one earlier
2135 	 * (which would mean they aren't being marked as dirty
2136 	 * with the rest of the array)
2137 	 */
2138 	mdk_rdev_t *rdev;
2139 
2140 	/* First make sure individual recovery_offsets are correct */
2141 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2142 		if (rdev->raid_disk >= 0 &&
2143 		    mddev->delta_disks >= 0 &&
2144 		    !test_bit(In_sync, &rdev->flags) &&
2145 		    mddev->curr_resync_completed > rdev->recovery_offset)
2146 				rdev->recovery_offset = mddev->curr_resync_completed;
2147 
2148 	}
2149 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2150 		if (rdev->sb_events == mddev->events ||
2151 		    (nospares &&
2152 		     rdev->raid_disk < 0 &&
2153 		     rdev->sb_events+1 == mddev->events)) {
2154 			/* Don't update this superblock */
2155 			rdev->sb_loaded = 2;
2156 		} else {
2157 			super_types[mddev->major_version].
2158 				sync_super(mddev, rdev);
2159 			rdev->sb_loaded = 1;
2160 		}
2161 	}
2162 }
2163 
2164 static void md_update_sb(mddev_t * mddev, int force_change)
2165 {
2166 	mdk_rdev_t *rdev;
2167 	int sync_req;
2168 	int nospares = 0;
2169 
2170 	mddev->utime = get_seconds();
2171 	if (mddev->external)
2172 		return;
2173 repeat:
2174 	spin_lock_irq(&mddev->write_lock);
2175 
2176 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
2177 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2178 		force_change = 1;
2179 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2180 		/* just a clean<-> dirty transition, possibly leave spares alone,
2181 		 * though if events isn't the right even/odd, we will have to do
2182 		 * spares after all
2183 		 */
2184 		nospares = 1;
2185 	if (force_change)
2186 		nospares = 0;
2187 	if (mddev->degraded)
2188 		/* If the array is degraded, then skipping spares is both
2189 		 * dangerous and fairly pointless.
2190 		 * Dangerous because a device that was removed from the array
2191 		 * might have a event_count that still looks up-to-date,
2192 		 * so it can be re-added without a resync.
2193 		 * Pointless because if there are any spares to skip,
2194 		 * then a recovery will happen and soon that array won't
2195 		 * be degraded any more and the spare can go back to sleep then.
2196 		 */
2197 		nospares = 0;
2198 
2199 	sync_req = mddev->in_sync;
2200 
2201 	/* If this is just a dirty<->clean transition, and the array is clean
2202 	 * and 'events' is odd, we can roll back to the previous clean state */
2203 	if (nospares
2204 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2205 	    && mddev->can_decrease_events
2206 	    && mddev->events != 1) {
2207 		mddev->events--;
2208 		mddev->can_decrease_events = 0;
2209 	} else {
2210 		/* otherwise we have to go forward and ... */
2211 		mddev->events ++;
2212 		mddev->can_decrease_events = nospares;
2213 	}
2214 
2215 	if (!mddev->events) {
2216 		/*
2217 		 * oops, this 64-bit counter should never wrap.
2218 		 * Either we are in around ~1 trillion A.C., assuming
2219 		 * 1 reboot per second, or we have a bug:
2220 		 */
2221 		MD_BUG();
2222 		mddev->events --;
2223 	}
2224 
2225 	/*
2226 	 * do not write anything to disk if using
2227 	 * nonpersistent superblocks
2228 	 */
2229 	if (!mddev->persistent) {
2230 		if (!mddev->external)
2231 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2232 
2233 		spin_unlock_irq(&mddev->write_lock);
2234 		wake_up(&mddev->sb_wait);
2235 		return;
2236 	}
2237 	sync_sbs(mddev, nospares);
2238 	spin_unlock_irq(&mddev->write_lock);
2239 
2240 	dprintk(KERN_INFO
2241 		"md: updating %s RAID superblock on device (in sync %d)\n",
2242 		mdname(mddev),mddev->in_sync);
2243 
2244 	bitmap_update_sb(mddev->bitmap);
2245 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2246 		char b[BDEVNAME_SIZE];
2247 		dprintk(KERN_INFO "md: ");
2248 		if (rdev->sb_loaded != 1)
2249 			continue; /* no noise on spare devices */
2250 		if (test_bit(Faulty, &rdev->flags))
2251 			dprintk("(skipping faulty ");
2252 
2253 		dprintk("%s ", bdevname(rdev->bdev,b));
2254 		if (!test_bit(Faulty, &rdev->flags)) {
2255 			md_super_write(mddev,rdev,
2256 				       rdev->sb_start, rdev->sb_size,
2257 				       rdev->sb_page);
2258 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2259 				bdevname(rdev->bdev,b),
2260 				(unsigned long long)rdev->sb_start);
2261 			rdev->sb_events = mddev->events;
2262 
2263 		} else
2264 			dprintk(")\n");
2265 		if (mddev->level == LEVEL_MULTIPATH)
2266 			/* only need to write one superblock... */
2267 			break;
2268 	}
2269 	md_super_wait(mddev);
2270 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2271 
2272 	spin_lock_irq(&mddev->write_lock);
2273 	if (mddev->in_sync != sync_req ||
2274 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2275 		/* have to write it out again */
2276 		spin_unlock_irq(&mddev->write_lock);
2277 		goto repeat;
2278 	}
2279 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2280 	spin_unlock_irq(&mddev->write_lock);
2281 	wake_up(&mddev->sb_wait);
2282 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2283 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2284 
2285 }
2286 
2287 /* words written to sysfs files may, or may not, be \n terminated.
2288  * We want to accept with case. For this we use cmd_match.
2289  */
2290 static int cmd_match(const char *cmd, const char *str)
2291 {
2292 	/* See if cmd, written into a sysfs file, matches
2293 	 * str.  They must either be the same, or cmd can
2294 	 * have a trailing newline
2295 	 */
2296 	while (*cmd && *str && *cmd == *str) {
2297 		cmd++;
2298 		str++;
2299 	}
2300 	if (*cmd == '\n')
2301 		cmd++;
2302 	if (*str || *cmd)
2303 		return 0;
2304 	return 1;
2305 }
2306 
2307 struct rdev_sysfs_entry {
2308 	struct attribute attr;
2309 	ssize_t (*show)(mdk_rdev_t *, char *);
2310 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2311 };
2312 
2313 static ssize_t
2314 state_show(mdk_rdev_t *rdev, char *page)
2315 {
2316 	char *sep = "";
2317 	size_t len = 0;
2318 
2319 	if (test_bit(Faulty, &rdev->flags)) {
2320 		len+= sprintf(page+len, "%sfaulty",sep);
2321 		sep = ",";
2322 	}
2323 	if (test_bit(In_sync, &rdev->flags)) {
2324 		len += sprintf(page+len, "%sin_sync",sep);
2325 		sep = ",";
2326 	}
2327 	if (test_bit(WriteMostly, &rdev->flags)) {
2328 		len += sprintf(page+len, "%swrite_mostly",sep);
2329 		sep = ",";
2330 	}
2331 	if (test_bit(Blocked, &rdev->flags)) {
2332 		len += sprintf(page+len, "%sblocked", sep);
2333 		sep = ",";
2334 	}
2335 	if (!test_bit(Faulty, &rdev->flags) &&
2336 	    !test_bit(In_sync, &rdev->flags)) {
2337 		len += sprintf(page+len, "%sspare", sep);
2338 		sep = ",";
2339 	}
2340 	return len+sprintf(page+len, "\n");
2341 }
2342 
2343 static ssize_t
2344 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2345 {
2346 	/* can write
2347 	 *  faulty  - simulates and error
2348 	 *  remove  - disconnects the device
2349 	 *  writemostly - sets write_mostly
2350 	 *  -writemostly - clears write_mostly
2351 	 *  blocked - sets the Blocked flag
2352 	 *  -blocked - clears the Blocked flag
2353 	 *  insync - sets Insync providing device isn't active
2354 	 */
2355 	int err = -EINVAL;
2356 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2357 		md_error(rdev->mddev, rdev);
2358 		err = 0;
2359 	} else if (cmd_match(buf, "remove")) {
2360 		if (rdev->raid_disk >= 0)
2361 			err = -EBUSY;
2362 		else {
2363 			mddev_t *mddev = rdev->mddev;
2364 			kick_rdev_from_array(rdev);
2365 			if (mddev->pers)
2366 				md_update_sb(mddev, 1);
2367 			md_new_event(mddev);
2368 			err = 0;
2369 		}
2370 	} else if (cmd_match(buf, "writemostly")) {
2371 		set_bit(WriteMostly, &rdev->flags);
2372 		err = 0;
2373 	} else if (cmd_match(buf, "-writemostly")) {
2374 		clear_bit(WriteMostly, &rdev->flags);
2375 		err = 0;
2376 	} else if (cmd_match(buf, "blocked")) {
2377 		set_bit(Blocked, &rdev->flags);
2378 		err = 0;
2379 	} else if (cmd_match(buf, "-blocked")) {
2380 		clear_bit(Blocked, &rdev->flags);
2381 		wake_up(&rdev->blocked_wait);
2382 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2383 		md_wakeup_thread(rdev->mddev->thread);
2384 
2385 		err = 0;
2386 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2387 		set_bit(In_sync, &rdev->flags);
2388 		err = 0;
2389 	}
2390 	if (!err)
2391 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2392 	return err ? err : len;
2393 }
2394 static struct rdev_sysfs_entry rdev_state =
2395 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2396 
2397 static ssize_t
2398 errors_show(mdk_rdev_t *rdev, char *page)
2399 {
2400 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2401 }
2402 
2403 static ssize_t
2404 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2405 {
2406 	char *e;
2407 	unsigned long n = simple_strtoul(buf, &e, 10);
2408 	if (*buf && (*e == 0 || *e == '\n')) {
2409 		atomic_set(&rdev->corrected_errors, n);
2410 		return len;
2411 	}
2412 	return -EINVAL;
2413 }
2414 static struct rdev_sysfs_entry rdev_errors =
2415 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2416 
2417 static ssize_t
2418 slot_show(mdk_rdev_t *rdev, char *page)
2419 {
2420 	if (rdev->raid_disk < 0)
2421 		return sprintf(page, "none\n");
2422 	else
2423 		return sprintf(page, "%d\n", rdev->raid_disk);
2424 }
2425 
2426 static ssize_t
2427 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2428 {
2429 	char *e;
2430 	int err;
2431 	char nm[20];
2432 	int slot = simple_strtoul(buf, &e, 10);
2433 	if (strncmp(buf, "none", 4)==0)
2434 		slot = -1;
2435 	else if (e==buf || (*e && *e!= '\n'))
2436 		return -EINVAL;
2437 	if (rdev->mddev->pers && slot == -1) {
2438 		/* Setting 'slot' on an active array requires also
2439 		 * updating the 'rd%d' link, and communicating
2440 		 * with the personality with ->hot_*_disk.
2441 		 * For now we only support removing
2442 		 * failed/spare devices.  This normally happens automatically,
2443 		 * but not when the metadata is externally managed.
2444 		 */
2445 		if (rdev->raid_disk == -1)
2446 			return -EEXIST;
2447 		/* personality does all needed checks */
2448 		if (rdev->mddev->pers->hot_add_disk == NULL)
2449 			return -EINVAL;
2450 		err = rdev->mddev->pers->
2451 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
2452 		if (err)
2453 			return err;
2454 		sprintf(nm, "rd%d", rdev->raid_disk);
2455 		sysfs_remove_link(&rdev->mddev->kobj, nm);
2456 		rdev->raid_disk = -1;
2457 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2458 		md_wakeup_thread(rdev->mddev->thread);
2459 	} else if (rdev->mddev->pers) {
2460 		mdk_rdev_t *rdev2;
2461 		/* Activating a spare .. or possibly reactivating
2462 		 * if we ever get bitmaps working here.
2463 		 */
2464 
2465 		if (rdev->raid_disk != -1)
2466 			return -EBUSY;
2467 
2468 		if (rdev->mddev->pers->hot_add_disk == NULL)
2469 			return -EINVAL;
2470 
2471 		list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2472 			if (rdev2->raid_disk == slot)
2473 				return -EEXIST;
2474 
2475 		rdev->raid_disk = slot;
2476 		if (test_bit(In_sync, &rdev->flags))
2477 			rdev->saved_raid_disk = slot;
2478 		else
2479 			rdev->saved_raid_disk = -1;
2480 		err = rdev->mddev->pers->
2481 			hot_add_disk(rdev->mddev, rdev);
2482 		if (err) {
2483 			rdev->raid_disk = -1;
2484 			return err;
2485 		} else
2486 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2487 		sprintf(nm, "rd%d", rdev->raid_disk);
2488 		if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2489 			/* failure here is OK */;
2490 		/* don't wakeup anyone, leave that to userspace. */
2491 	} else {
2492 		if (slot >= rdev->mddev->raid_disks)
2493 			return -ENOSPC;
2494 		rdev->raid_disk = slot;
2495 		/* assume it is working */
2496 		clear_bit(Faulty, &rdev->flags);
2497 		clear_bit(WriteMostly, &rdev->flags);
2498 		set_bit(In_sync, &rdev->flags);
2499 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2500 	}
2501 	return len;
2502 }
2503 
2504 
2505 static struct rdev_sysfs_entry rdev_slot =
2506 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2507 
2508 static ssize_t
2509 offset_show(mdk_rdev_t *rdev, char *page)
2510 {
2511 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2512 }
2513 
2514 static ssize_t
2515 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2516 {
2517 	char *e;
2518 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2519 	if (e==buf || (*e && *e != '\n'))
2520 		return -EINVAL;
2521 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2522 		return -EBUSY;
2523 	if (rdev->sectors && rdev->mddev->external)
2524 		/* Must set offset before size, so overlap checks
2525 		 * can be sane */
2526 		return -EBUSY;
2527 	rdev->data_offset = offset;
2528 	return len;
2529 }
2530 
2531 static struct rdev_sysfs_entry rdev_offset =
2532 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2533 
2534 static ssize_t
2535 rdev_size_show(mdk_rdev_t *rdev, char *page)
2536 {
2537 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2538 }
2539 
2540 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2541 {
2542 	/* check if two start/length pairs overlap */
2543 	if (s1+l1 <= s2)
2544 		return 0;
2545 	if (s2+l2 <= s1)
2546 		return 0;
2547 	return 1;
2548 }
2549 
2550 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2551 {
2552 	unsigned long long blocks;
2553 	sector_t new;
2554 
2555 	if (strict_strtoull(buf, 10, &blocks) < 0)
2556 		return -EINVAL;
2557 
2558 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2559 		return -EINVAL; /* sector conversion overflow */
2560 
2561 	new = blocks * 2;
2562 	if (new != blocks * 2)
2563 		return -EINVAL; /* unsigned long long to sector_t overflow */
2564 
2565 	*sectors = new;
2566 	return 0;
2567 }
2568 
2569 static ssize_t
2570 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2571 {
2572 	mddev_t *my_mddev = rdev->mddev;
2573 	sector_t oldsectors = rdev->sectors;
2574 	sector_t sectors;
2575 
2576 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2577 		return -EINVAL;
2578 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2579 		if (my_mddev->persistent) {
2580 			sectors = super_types[my_mddev->major_version].
2581 				rdev_size_change(rdev, sectors);
2582 			if (!sectors)
2583 				return -EBUSY;
2584 		} else if (!sectors)
2585 			sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2586 				rdev->data_offset;
2587 	}
2588 	if (sectors < my_mddev->dev_sectors)
2589 		return -EINVAL; /* component must fit device */
2590 
2591 	rdev->sectors = sectors;
2592 	if (sectors > oldsectors && my_mddev->external) {
2593 		/* need to check that all other rdevs with the same ->bdev
2594 		 * do not overlap.  We need to unlock the mddev to avoid
2595 		 * a deadlock.  We have already changed rdev->sectors, and if
2596 		 * we have to change it back, we will have the lock again.
2597 		 */
2598 		mddev_t *mddev;
2599 		int overlap = 0;
2600 		struct list_head *tmp;
2601 
2602 		mddev_unlock(my_mddev);
2603 		for_each_mddev(mddev, tmp) {
2604 			mdk_rdev_t *rdev2;
2605 
2606 			mddev_lock(mddev);
2607 			list_for_each_entry(rdev2, &mddev->disks, same_set)
2608 				if (test_bit(AllReserved, &rdev2->flags) ||
2609 				    (rdev->bdev == rdev2->bdev &&
2610 				     rdev != rdev2 &&
2611 				     overlaps(rdev->data_offset, rdev->sectors,
2612 					      rdev2->data_offset,
2613 					      rdev2->sectors))) {
2614 					overlap = 1;
2615 					break;
2616 				}
2617 			mddev_unlock(mddev);
2618 			if (overlap) {
2619 				mddev_put(mddev);
2620 				break;
2621 			}
2622 		}
2623 		mddev_lock(my_mddev);
2624 		if (overlap) {
2625 			/* Someone else could have slipped in a size
2626 			 * change here, but doing so is just silly.
2627 			 * We put oldsectors back because we *know* it is
2628 			 * safe, and trust userspace not to race with
2629 			 * itself
2630 			 */
2631 			rdev->sectors = oldsectors;
2632 			return -EBUSY;
2633 		}
2634 	}
2635 	return len;
2636 }
2637 
2638 static struct rdev_sysfs_entry rdev_size =
2639 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2640 
2641 
2642 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2643 {
2644 	unsigned long long recovery_start = rdev->recovery_offset;
2645 
2646 	if (test_bit(In_sync, &rdev->flags) ||
2647 	    recovery_start == MaxSector)
2648 		return sprintf(page, "none\n");
2649 
2650 	return sprintf(page, "%llu\n", recovery_start);
2651 }
2652 
2653 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2654 {
2655 	unsigned long long recovery_start;
2656 
2657 	if (cmd_match(buf, "none"))
2658 		recovery_start = MaxSector;
2659 	else if (strict_strtoull(buf, 10, &recovery_start))
2660 		return -EINVAL;
2661 
2662 	if (rdev->mddev->pers &&
2663 	    rdev->raid_disk >= 0)
2664 		return -EBUSY;
2665 
2666 	rdev->recovery_offset = recovery_start;
2667 	if (recovery_start == MaxSector)
2668 		set_bit(In_sync, &rdev->flags);
2669 	else
2670 		clear_bit(In_sync, &rdev->flags);
2671 	return len;
2672 }
2673 
2674 static struct rdev_sysfs_entry rdev_recovery_start =
2675 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2676 
2677 static struct attribute *rdev_default_attrs[] = {
2678 	&rdev_state.attr,
2679 	&rdev_errors.attr,
2680 	&rdev_slot.attr,
2681 	&rdev_offset.attr,
2682 	&rdev_size.attr,
2683 	&rdev_recovery_start.attr,
2684 	NULL,
2685 };
2686 static ssize_t
2687 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2688 {
2689 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2690 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2691 	mddev_t *mddev = rdev->mddev;
2692 	ssize_t rv;
2693 
2694 	if (!entry->show)
2695 		return -EIO;
2696 
2697 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2698 	if (!rv) {
2699 		if (rdev->mddev == NULL)
2700 			rv = -EBUSY;
2701 		else
2702 			rv = entry->show(rdev, page);
2703 		mddev_unlock(mddev);
2704 	}
2705 	return rv;
2706 }
2707 
2708 static ssize_t
2709 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2710 	      const char *page, size_t length)
2711 {
2712 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2713 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2714 	ssize_t rv;
2715 	mddev_t *mddev = rdev->mddev;
2716 
2717 	if (!entry->store)
2718 		return -EIO;
2719 	if (!capable(CAP_SYS_ADMIN))
2720 		return -EACCES;
2721 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2722 	if (!rv) {
2723 		if (rdev->mddev == NULL)
2724 			rv = -EBUSY;
2725 		else
2726 			rv = entry->store(rdev, page, length);
2727 		mddev_unlock(mddev);
2728 	}
2729 	return rv;
2730 }
2731 
2732 static void rdev_free(struct kobject *ko)
2733 {
2734 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2735 	kfree(rdev);
2736 }
2737 static const struct sysfs_ops rdev_sysfs_ops = {
2738 	.show		= rdev_attr_show,
2739 	.store		= rdev_attr_store,
2740 };
2741 static struct kobj_type rdev_ktype = {
2742 	.release	= rdev_free,
2743 	.sysfs_ops	= &rdev_sysfs_ops,
2744 	.default_attrs	= rdev_default_attrs,
2745 };
2746 
2747 void md_rdev_init(mdk_rdev_t *rdev)
2748 {
2749 	rdev->desc_nr = -1;
2750 	rdev->saved_raid_disk = -1;
2751 	rdev->raid_disk = -1;
2752 	rdev->flags = 0;
2753 	rdev->data_offset = 0;
2754 	rdev->sb_events = 0;
2755 	rdev->last_read_error.tv_sec  = 0;
2756 	rdev->last_read_error.tv_nsec = 0;
2757 	atomic_set(&rdev->nr_pending, 0);
2758 	atomic_set(&rdev->read_errors, 0);
2759 	atomic_set(&rdev->corrected_errors, 0);
2760 
2761 	INIT_LIST_HEAD(&rdev->same_set);
2762 	init_waitqueue_head(&rdev->blocked_wait);
2763 }
2764 EXPORT_SYMBOL_GPL(md_rdev_init);
2765 /*
2766  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2767  *
2768  * mark the device faulty if:
2769  *
2770  *   - the device is nonexistent (zero size)
2771  *   - the device has no valid superblock
2772  *
2773  * a faulty rdev _never_ has rdev->sb set.
2774  */
2775 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2776 {
2777 	char b[BDEVNAME_SIZE];
2778 	int err;
2779 	mdk_rdev_t *rdev;
2780 	sector_t size;
2781 
2782 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2783 	if (!rdev) {
2784 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2785 		return ERR_PTR(-ENOMEM);
2786 	}
2787 
2788 	md_rdev_init(rdev);
2789 	if ((err = alloc_disk_sb(rdev)))
2790 		goto abort_free;
2791 
2792 	err = lock_rdev(rdev, newdev, super_format == -2);
2793 	if (err)
2794 		goto abort_free;
2795 
2796 	kobject_init(&rdev->kobj, &rdev_ktype);
2797 
2798 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2799 	if (!size) {
2800 		printk(KERN_WARNING
2801 			"md: %s has zero or unknown size, marking faulty!\n",
2802 			bdevname(rdev->bdev,b));
2803 		err = -EINVAL;
2804 		goto abort_free;
2805 	}
2806 
2807 	if (super_format >= 0) {
2808 		err = super_types[super_format].
2809 			load_super(rdev, NULL, super_minor);
2810 		if (err == -EINVAL) {
2811 			printk(KERN_WARNING
2812 				"md: %s does not have a valid v%d.%d "
2813 			       "superblock, not importing!\n",
2814 				bdevname(rdev->bdev,b),
2815 			       super_format, super_minor);
2816 			goto abort_free;
2817 		}
2818 		if (err < 0) {
2819 			printk(KERN_WARNING
2820 				"md: could not read %s's sb, not importing!\n",
2821 				bdevname(rdev->bdev,b));
2822 			goto abort_free;
2823 		}
2824 	}
2825 
2826 	return rdev;
2827 
2828 abort_free:
2829 	if (rdev->sb_page) {
2830 		if (rdev->bdev)
2831 			unlock_rdev(rdev);
2832 		free_disk_sb(rdev);
2833 	}
2834 	kfree(rdev);
2835 	return ERR_PTR(err);
2836 }
2837 
2838 /*
2839  * Check a full RAID array for plausibility
2840  */
2841 
2842 
2843 static void analyze_sbs(mddev_t * mddev)
2844 {
2845 	int i;
2846 	mdk_rdev_t *rdev, *freshest, *tmp;
2847 	char b[BDEVNAME_SIZE];
2848 
2849 	freshest = NULL;
2850 	rdev_for_each(rdev, tmp, mddev)
2851 		switch (super_types[mddev->major_version].
2852 			load_super(rdev, freshest, mddev->minor_version)) {
2853 		case 1:
2854 			freshest = rdev;
2855 			break;
2856 		case 0:
2857 			break;
2858 		default:
2859 			printk( KERN_ERR \
2860 				"md: fatal superblock inconsistency in %s"
2861 				" -- removing from array\n",
2862 				bdevname(rdev->bdev,b));
2863 			kick_rdev_from_array(rdev);
2864 		}
2865 
2866 
2867 	super_types[mddev->major_version].
2868 		validate_super(mddev, freshest);
2869 
2870 	i = 0;
2871 	rdev_for_each(rdev, tmp, mddev) {
2872 		if (mddev->max_disks &&
2873 		    (rdev->desc_nr >= mddev->max_disks ||
2874 		     i > mddev->max_disks)) {
2875 			printk(KERN_WARNING
2876 			       "md: %s: %s: only %d devices permitted\n",
2877 			       mdname(mddev), bdevname(rdev->bdev, b),
2878 			       mddev->max_disks);
2879 			kick_rdev_from_array(rdev);
2880 			continue;
2881 		}
2882 		if (rdev != freshest)
2883 			if (super_types[mddev->major_version].
2884 			    validate_super(mddev, rdev)) {
2885 				printk(KERN_WARNING "md: kicking non-fresh %s"
2886 					" from array!\n",
2887 					bdevname(rdev->bdev,b));
2888 				kick_rdev_from_array(rdev);
2889 				continue;
2890 			}
2891 		if (mddev->level == LEVEL_MULTIPATH) {
2892 			rdev->desc_nr = i++;
2893 			rdev->raid_disk = rdev->desc_nr;
2894 			set_bit(In_sync, &rdev->flags);
2895 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2896 			rdev->raid_disk = -1;
2897 			clear_bit(In_sync, &rdev->flags);
2898 		}
2899 	}
2900 }
2901 
2902 /* Read a fixed-point number.
2903  * Numbers in sysfs attributes should be in "standard" units where
2904  * possible, so time should be in seconds.
2905  * However we internally use a a much smaller unit such as
2906  * milliseconds or jiffies.
2907  * This function takes a decimal number with a possible fractional
2908  * component, and produces an integer which is the result of
2909  * multiplying that number by 10^'scale'.
2910  * all without any floating-point arithmetic.
2911  */
2912 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2913 {
2914 	unsigned long result = 0;
2915 	long decimals = -1;
2916 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2917 		if (*cp == '.')
2918 			decimals = 0;
2919 		else if (decimals < scale) {
2920 			unsigned int value;
2921 			value = *cp - '0';
2922 			result = result * 10 + value;
2923 			if (decimals >= 0)
2924 				decimals++;
2925 		}
2926 		cp++;
2927 	}
2928 	if (*cp == '\n')
2929 		cp++;
2930 	if (*cp)
2931 		return -EINVAL;
2932 	if (decimals < 0)
2933 		decimals = 0;
2934 	while (decimals < scale) {
2935 		result *= 10;
2936 		decimals ++;
2937 	}
2938 	*res = result;
2939 	return 0;
2940 }
2941 
2942 
2943 static void md_safemode_timeout(unsigned long data);
2944 
2945 static ssize_t
2946 safe_delay_show(mddev_t *mddev, char *page)
2947 {
2948 	int msec = (mddev->safemode_delay*1000)/HZ;
2949 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2950 }
2951 static ssize_t
2952 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2953 {
2954 	unsigned long msec;
2955 
2956 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2957 		return -EINVAL;
2958 	if (msec == 0)
2959 		mddev->safemode_delay = 0;
2960 	else {
2961 		unsigned long old_delay = mddev->safemode_delay;
2962 		mddev->safemode_delay = (msec*HZ)/1000;
2963 		if (mddev->safemode_delay == 0)
2964 			mddev->safemode_delay = 1;
2965 		if (mddev->safemode_delay < old_delay)
2966 			md_safemode_timeout((unsigned long)mddev);
2967 	}
2968 	return len;
2969 }
2970 static struct md_sysfs_entry md_safe_delay =
2971 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2972 
2973 static ssize_t
2974 level_show(mddev_t *mddev, char *page)
2975 {
2976 	struct mdk_personality *p = mddev->pers;
2977 	if (p)
2978 		return sprintf(page, "%s\n", p->name);
2979 	else if (mddev->clevel[0])
2980 		return sprintf(page, "%s\n", mddev->clevel);
2981 	else if (mddev->level != LEVEL_NONE)
2982 		return sprintf(page, "%d\n", mddev->level);
2983 	else
2984 		return 0;
2985 }
2986 
2987 static ssize_t
2988 level_store(mddev_t *mddev, const char *buf, size_t len)
2989 {
2990 	char clevel[16];
2991 	ssize_t rv = len;
2992 	struct mdk_personality *pers;
2993 	long level;
2994 	void *priv;
2995 	mdk_rdev_t *rdev;
2996 
2997 	if (mddev->pers == NULL) {
2998 		if (len == 0)
2999 			return 0;
3000 		if (len >= sizeof(mddev->clevel))
3001 			return -ENOSPC;
3002 		strncpy(mddev->clevel, buf, len);
3003 		if (mddev->clevel[len-1] == '\n')
3004 			len--;
3005 		mddev->clevel[len] = 0;
3006 		mddev->level = LEVEL_NONE;
3007 		return rv;
3008 	}
3009 
3010 	/* request to change the personality.  Need to ensure:
3011 	 *  - array is not engaged in resync/recovery/reshape
3012 	 *  - old personality can be suspended
3013 	 *  - new personality will access other array.
3014 	 */
3015 
3016 	if (mddev->sync_thread ||
3017 	    mddev->reshape_position != MaxSector ||
3018 	    mddev->sysfs_active)
3019 		return -EBUSY;
3020 
3021 	if (!mddev->pers->quiesce) {
3022 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3023 		       mdname(mddev), mddev->pers->name);
3024 		return -EINVAL;
3025 	}
3026 
3027 	/* Now find the new personality */
3028 	if (len == 0 || len >= sizeof(clevel))
3029 		return -EINVAL;
3030 	strncpy(clevel, buf, len);
3031 	if (clevel[len-1] == '\n')
3032 		len--;
3033 	clevel[len] = 0;
3034 	if (strict_strtol(clevel, 10, &level))
3035 		level = LEVEL_NONE;
3036 
3037 	if (request_module("md-%s", clevel) != 0)
3038 		request_module("md-level-%s", clevel);
3039 	spin_lock(&pers_lock);
3040 	pers = find_pers(level, clevel);
3041 	if (!pers || !try_module_get(pers->owner)) {
3042 		spin_unlock(&pers_lock);
3043 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3044 		return -EINVAL;
3045 	}
3046 	spin_unlock(&pers_lock);
3047 
3048 	if (pers == mddev->pers) {
3049 		/* Nothing to do! */
3050 		module_put(pers->owner);
3051 		return rv;
3052 	}
3053 	if (!pers->takeover) {
3054 		module_put(pers->owner);
3055 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3056 		       mdname(mddev), clevel);
3057 		return -EINVAL;
3058 	}
3059 
3060 	list_for_each_entry(rdev, &mddev->disks, same_set)
3061 		rdev->new_raid_disk = rdev->raid_disk;
3062 
3063 	/* ->takeover must set new_* and/or delta_disks
3064 	 * if it succeeds, and may set them when it fails.
3065 	 */
3066 	priv = pers->takeover(mddev);
3067 	if (IS_ERR(priv)) {
3068 		mddev->new_level = mddev->level;
3069 		mddev->new_layout = mddev->layout;
3070 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3071 		mddev->raid_disks -= mddev->delta_disks;
3072 		mddev->delta_disks = 0;
3073 		module_put(pers->owner);
3074 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3075 		       mdname(mddev), clevel);
3076 		return PTR_ERR(priv);
3077 	}
3078 
3079 	/* Looks like we have a winner */
3080 	mddev_suspend(mddev);
3081 	mddev->pers->stop(mddev);
3082 
3083 	if (mddev->pers->sync_request == NULL &&
3084 	    pers->sync_request != NULL) {
3085 		/* need to add the md_redundancy_group */
3086 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3087 			printk(KERN_WARNING
3088 			       "md: cannot register extra attributes for %s\n",
3089 			       mdname(mddev));
3090 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3091 	}
3092 	if (mddev->pers->sync_request != NULL &&
3093 	    pers->sync_request == NULL) {
3094 		/* need to remove the md_redundancy_group */
3095 		if (mddev->to_remove == NULL)
3096 			mddev->to_remove = &md_redundancy_group;
3097 	}
3098 
3099 	if (mddev->pers->sync_request == NULL &&
3100 	    mddev->external) {
3101 		/* We are converting from a no-redundancy array
3102 		 * to a redundancy array and metadata is managed
3103 		 * externally so we need to be sure that writes
3104 		 * won't block due to a need to transition
3105 		 *      clean->dirty
3106 		 * until external management is started.
3107 		 */
3108 		mddev->in_sync = 0;
3109 		mddev->safemode_delay = 0;
3110 		mddev->safemode = 0;
3111 	}
3112 
3113 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3114 		char nm[20];
3115 		if (rdev->raid_disk < 0)
3116 			continue;
3117 		if (rdev->new_raid_disk > mddev->raid_disks)
3118 			rdev->new_raid_disk = -1;
3119 		if (rdev->new_raid_disk == rdev->raid_disk)
3120 			continue;
3121 		sprintf(nm, "rd%d", rdev->raid_disk);
3122 		sysfs_remove_link(&mddev->kobj, nm);
3123 	}
3124 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3125 		if (rdev->raid_disk < 0)
3126 			continue;
3127 		if (rdev->new_raid_disk == rdev->raid_disk)
3128 			continue;
3129 		rdev->raid_disk = rdev->new_raid_disk;
3130 		if (rdev->raid_disk < 0)
3131 			clear_bit(In_sync, &rdev->flags);
3132 		else {
3133 			char nm[20];
3134 			sprintf(nm, "rd%d", rdev->raid_disk);
3135 			if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3136 				printk("md: cannot register %s for %s after level change\n",
3137 				       nm, mdname(mddev));
3138 		}
3139 	}
3140 
3141 	module_put(mddev->pers->owner);
3142 	mddev->pers = pers;
3143 	mddev->private = priv;
3144 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3145 	mddev->level = mddev->new_level;
3146 	mddev->layout = mddev->new_layout;
3147 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3148 	mddev->delta_disks = 0;
3149 	if (mddev->pers->sync_request == NULL) {
3150 		/* this is now an array without redundancy, so
3151 		 * it must always be in_sync
3152 		 */
3153 		mddev->in_sync = 1;
3154 		del_timer_sync(&mddev->safemode_timer);
3155 	}
3156 	pers->run(mddev);
3157 	mddev_resume(mddev);
3158 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3159 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3160 	md_wakeup_thread(mddev->thread);
3161 	sysfs_notify(&mddev->kobj, NULL, "level");
3162 	md_new_event(mddev);
3163 	return rv;
3164 }
3165 
3166 static struct md_sysfs_entry md_level =
3167 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3168 
3169 
3170 static ssize_t
3171 layout_show(mddev_t *mddev, char *page)
3172 {
3173 	/* just a number, not meaningful for all levels */
3174 	if (mddev->reshape_position != MaxSector &&
3175 	    mddev->layout != mddev->new_layout)
3176 		return sprintf(page, "%d (%d)\n",
3177 			       mddev->new_layout, mddev->layout);
3178 	return sprintf(page, "%d\n", mddev->layout);
3179 }
3180 
3181 static ssize_t
3182 layout_store(mddev_t *mddev, const char *buf, size_t len)
3183 {
3184 	char *e;
3185 	unsigned long n = simple_strtoul(buf, &e, 10);
3186 
3187 	if (!*buf || (*e && *e != '\n'))
3188 		return -EINVAL;
3189 
3190 	if (mddev->pers) {
3191 		int err;
3192 		if (mddev->pers->check_reshape == NULL)
3193 			return -EBUSY;
3194 		mddev->new_layout = n;
3195 		err = mddev->pers->check_reshape(mddev);
3196 		if (err) {
3197 			mddev->new_layout = mddev->layout;
3198 			return err;
3199 		}
3200 	} else {
3201 		mddev->new_layout = n;
3202 		if (mddev->reshape_position == MaxSector)
3203 			mddev->layout = n;
3204 	}
3205 	return len;
3206 }
3207 static struct md_sysfs_entry md_layout =
3208 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3209 
3210 
3211 static ssize_t
3212 raid_disks_show(mddev_t *mddev, char *page)
3213 {
3214 	if (mddev->raid_disks == 0)
3215 		return 0;
3216 	if (mddev->reshape_position != MaxSector &&
3217 	    mddev->delta_disks != 0)
3218 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3219 			       mddev->raid_disks - mddev->delta_disks);
3220 	return sprintf(page, "%d\n", mddev->raid_disks);
3221 }
3222 
3223 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3224 
3225 static ssize_t
3226 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3227 {
3228 	char *e;
3229 	int rv = 0;
3230 	unsigned long n = simple_strtoul(buf, &e, 10);
3231 
3232 	if (!*buf || (*e && *e != '\n'))
3233 		return -EINVAL;
3234 
3235 	if (mddev->pers)
3236 		rv = update_raid_disks(mddev, n);
3237 	else if (mddev->reshape_position != MaxSector) {
3238 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3239 		mddev->delta_disks = n - olddisks;
3240 		mddev->raid_disks = n;
3241 	} else
3242 		mddev->raid_disks = n;
3243 	return rv ? rv : len;
3244 }
3245 static struct md_sysfs_entry md_raid_disks =
3246 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3247 
3248 static ssize_t
3249 chunk_size_show(mddev_t *mddev, char *page)
3250 {
3251 	if (mddev->reshape_position != MaxSector &&
3252 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3253 		return sprintf(page, "%d (%d)\n",
3254 			       mddev->new_chunk_sectors << 9,
3255 			       mddev->chunk_sectors << 9);
3256 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3257 }
3258 
3259 static ssize_t
3260 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3261 {
3262 	char *e;
3263 	unsigned long n = simple_strtoul(buf, &e, 10);
3264 
3265 	if (!*buf || (*e && *e != '\n'))
3266 		return -EINVAL;
3267 
3268 	if (mddev->pers) {
3269 		int err;
3270 		if (mddev->pers->check_reshape == NULL)
3271 			return -EBUSY;
3272 		mddev->new_chunk_sectors = n >> 9;
3273 		err = mddev->pers->check_reshape(mddev);
3274 		if (err) {
3275 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3276 			return err;
3277 		}
3278 	} else {
3279 		mddev->new_chunk_sectors = n >> 9;
3280 		if (mddev->reshape_position == MaxSector)
3281 			mddev->chunk_sectors = n >> 9;
3282 	}
3283 	return len;
3284 }
3285 static struct md_sysfs_entry md_chunk_size =
3286 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3287 
3288 static ssize_t
3289 resync_start_show(mddev_t *mddev, char *page)
3290 {
3291 	if (mddev->recovery_cp == MaxSector)
3292 		return sprintf(page, "none\n");
3293 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3294 }
3295 
3296 static ssize_t
3297 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3298 {
3299 	char *e;
3300 	unsigned long long n = simple_strtoull(buf, &e, 10);
3301 
3302 	if (mddev->pers)
3303 		return -EBUSY;
3304 	if (cmd_match(buf, "none"))
3305 		n = MaxSector;
3306 	else if (!*buf || (*e && *e != '\n'))
3307 		return -EINVAL;
3308 
3309 	mddev->recovery_cp = n;
3310 	return len;
3311 }
3312 static struct md_sysfs_entry md_resync_start =
3313 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3314 
3315 /*
3316  * The array state can be:
3317  *
3318  * clear
3319  *     No devices, no size, no level
3320  *     Equivalent to STOP_ARRAY ioctl
3321  * inactive
3322  *     May have some settings, but array is not active
3323  *        all IO results in error
3324  *     When written, doesn't tear down array, but just stops it
3325  * suspended (not supported yet)
3326  *     All IO requests will block. The array can be reconfigured.
3327  *     Writing this, if accepted, will block until array is quiescent
3328  * readonly
3329  *     no resync can happen.  no superblocks get written.
3330  *     write requests fail
3331  * read-auto
3332  *     like readonly, but behaves like 'clean' on a write request.
3333  *
3334  * clean - no pending writes, but otherwise active.
3335  *     When written to inactive array, starts without resync
3336  *     If a write request arrives then
3337  *       if metadata is known, mark 'dirty' and switch to 'active'.
3338  *       if not known, block and switch to write-pending
3339  *     If written to an active array that has pending writes, then fails.
3340  * active
3341  *     fully active: IO and resync can be happening.
3342  *     When written to inactive array, starts with resync
3343  *
3344  * write-pending
3345  *     clean, but writes are blocked waiting for 'active' to be written.
3346  *
3347  * active-idle
3348  *     like active, but no writes have been seen for a while (100msec).
3349  *
3350  */
3351 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3352 		   write_pending, active_idle, bad_word};
3353 static char *array_states[] = {
3354 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3355 	"write-pending", "active-idle", NULL };
3356 
3357 static int match_word(const char *word, char **list)
3358 {
3359 	int n;
3360 	for (n=0; list[n]; n++)
3361 		if (cmd_match(word, list[n]))
3362 			break;
3363 	return n;
3364 }
3365 
3366 static ssize_t
3367 array_state_show(mddev_t *mddev, char *page)
3368 {
3369 	enum array_state st = inactive;
3370 
3371 	if (mddev->pers)
3372 		switch(mddev->ro) {
3373 		case 1:
3374 			st = readonly;
3375 			break;
3376 		case 2:
3377 			st = read_auto;
3378 			break;
3379 		case 0:
3380 			if (mddev->in_sync)
3381 				st = clean;
3382 			else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
3383 				st = write_pending;
3384 			else if (mddev->safemode)
3385 				st = active_idle;
3386 			else
3387 				st = active;
3388 		}
3389 	else {
3390 		if (list_empty(&mddev->disks) &&
3391 		    mddev->raid_disks == 0 &&
3392 		    mddev->dev_sectors == 0)
3393 			st = clear;
3394 		else
3395 			st = inactive;
3396 	}
3397 	return sprintf(page, "%s\n", array_states[st]);
3398 }
3399 
3400 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3401 static int md_set_readonly(mddev_t * mddev, int is_open);
3402 static int do_md_run(mddev_t * mddev);
3403 static int restart_array(mddev_t *mddev);
3404 
3405 static ssize_t
3406 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3407 {
3408 	int err = -EINVAL;
3409 	enum array_state st = match_word(buf, array_states);
3410 	switch(st) {
3411 	case bad_word:
3412 		break;
3413 	case clear:
3414 		/* stopping an active array */
3415 		if (atomic_read(&mddev->openers) > 0)
3416 			return -EBUSY;
3417 		err = do_md_stop(mddev, 0, 0);
3418 		break;
3419 	case inactive:
3420 		/* stopping an active array */
3421 		if (mddev->pers) {
3422 			if (atomic_read(&mddev->openers) > 0)
3423 				return -EBUSY;
3424 			err = do_md_stop(mddev, 2, 0);
3425 		} else
3426 			err = 0; /* already inactive */
3427 		break;
3428 	case suspended:
3429 		break; /* not supported yet */
3430 	case readonly:
3431 		if (mddev->pers)
3432 			err = md_set_readonly(mddev, 0);
3433 		else {
3434 			mddev->ro = 1;
3435 			set_disk_ro(mddev->gendisk, 1);
3436 			err = do_md_run(mddev);
3437 		}
3438 		break;
3439 	case read_auto:
3440 		if (mddev->pers) {
3441 			if (mddev->ro == 0)
3442 				err = md_set_readonly(mddev, 0);
3443 			else if (mddev->ro == 1)
3444 				err = restart_array(mddev);
3445 			if (err == 0) {
3446 				mddev->ro = 2;
3447 				set_disk_ro(mddev->gendisk, 0);
3448 			}
3449 		} else {
3450 			mddev->ro = 2;
3451 			err = do_md_run(mddev);
3452 		}
3453 		break;
3454 	case clean:
3455 		if (mddev->pers) {
3456 			restart_array(mddev);
3457 			spin_lock_irq(&mddev->write_lock);
3458 			if (atomic_read(&mddev->writes_pending) == 0) {
3459 				if (mddev->in_sync == 0) {
3460 					mddev->in_sync = 1;
3461 					if (mddev->safemode == 1)
3462 						mddev->safemode = 0;
3463 					if (mddev->persistent)
3464 						set_bit(MD_CHANGE_CLEAN,
3465 							&mddev->flags);
3466 				}
3467 				err = 0;
3468 			} else
3469 				err = -EBUSY;
3470 			spin_unlock_irq(&mddev->write_lock);
3471 		} else
3472 			err = -EINVAL;
3473 		break;
3474 	case active:
3475 		if (mddev->pers) {
3476 			restart_array(mddev);
3477 			if (mddev->external)
3478 				clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3479 			wake_up(&mddev->sb_wait);
3480 			err = 0;
3481 		} else {
3482 			mddev->ro = 0;
3483 			set_disk_ro(mddev->gendisk, 0);
3484 			err = do_md_run(mddev);
3485 		}
3486 		break;
3487 	case write_pending:
3488 	case active_idle:
3489 		/* these cannot be set */
3490 		break;
3491 	}
3492 	if (err)
3493 		return err;
3494 	else {
3495 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3496 		return len;
3497 	}
3498 }
3499 static struct md_sysfs_entry md_array_state =
3500 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3501 
3502 static ssize_t
3503 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3504 	return sprintf(page, "%d\n",
3505 		       atomic_read(&mddev->max_corr_read_errors));
3506 }
3507 
3508 static ssize_t
3509 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3510 {
3511 	char *e;
3512 	unsigned long n = simple_strtoul(buf, &e, 10);
3513 
3514 	if (*buf && (*e == 0 || *e == '\n')) {
3515 		atomic_set(&mddev->max_corr_read_errors, n);
3516 		return len;
3517 	}
3518 	return -EINVAL;
3519 }
3520 
3521 static struct md_sysfs_entry max_corr_read_errors =
3522 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3523 	max_corrected_read_errors_store);
3524 
3525 static ssize_t
3526 null_show(mddev_t *mddev, char *page)
3527 {
3528 	return -EINVAL;
3529 }
3530 
3531 static ssize_t
3532 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3533 {
3534 	/* buf must be %d:%d\n? giving major and minor numbers */
3535 	/* The new device is added to the array.
3536 	 * If the array has a persistent superblock, we read the
3537 	 * superblock to initialise info and check validity.
3538 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3539 	 * which mainly checks size.
3540 	 */
3541 	char *e;
3542 	int major = simple_strtoul(buf, &e, 10);
3543 	int minor;
3544 	dev_t dev;
3545 	mdk_rdev_t *rdev;
3546 	int err;
3547 
3548 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3549 		return -EINVAL;
3550 	minor = simple_strtoul(e+1, &e, 10);
3551 	if (*e && *e != '\n')
3552 		return -EINVAL;
3553 	dev = MKDEV(major, minor);
3554 	if (major != MAJOR(dev) ||
3555 	    minor != MINOR(dev))
3556 		return -EOVERFLOW;
3557 
3558 
3559 	if (mddev->persistent) {
3560 		rdev = md_import_device(dev, mddev->major_version,
3561 					mddev->minor_version);
3562 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3563 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3564 						       mdk_rdev_t, same_set);
3565 			err = super_types[mddev->major_version]
3566 				.load_super(rdev, rdev0, mddev->minor_version);
3567 			if (err < 0)
3568 				goto out;
3569 		}
3570 	} else if (mddev->external)
3571 		rdev = md_import_device(dev, -2, -1);
3572 	else
3573 		rdev = md_import_device(dev, -1, -1);
3574 
3575 	if (IS_ERR(rdev))
3576 		return PTR_ERR(rdev);
3577 	err = bind_rdev_to_array(rdev, mddev);
3578  out:
3579 	if (err)
3580 		export_rdev(rdev);
3581 	return err ? err : len;
3582 }
3583 
3584 static struct md_sysfs_entry md_new_device =
3585 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3586 
3587 static ssize_t
3588 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3589 {
3590 	char *end;
3591 	unsigned long chunk, end_chunk;
3592 
3593 	if (!mddev->bitmap)
3594 		goto out;
3595 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3596 	while (*buf) {
3597 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3598 		if (buf == end) break;
3599 		if (*end == '-') { /* range */
3600 			buf = end + 1;
3601 			end_chunk = simple_strtoul(buf, &end, 0);
3602 			if (buf == end) break;
3603 		}
3604 		if (*end && !isspace(*end)) break;
3605 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3606 		buf = skip_spaces(end);
3607 	}
3608 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3609 out:
3610 	return len;
3611 }
3612 
3613 static struct md_sysfs_entry md_bitmap =
3614 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3615 
3616 static ssize_t
3617 size_show(mddev_t *mddev, char *page)
3618 {
3619 	return sprintf(page, "%llu\n",
3620 		(unsigned long long)mddev->dev_sectors / 2);
3621 }
3622 
3623 static int update_size(mddev_t *mddev, sector_t num_sectors);
3624 
3625 static ssize_t
3626 size_store(mddev_t *mddev, const char *buf, size_t len)
3627 {
3628 	/* If array is inactive, we can reduce the component size, but
3629 	 * not increase it (except from 0).
3630 	 * If array is active, we can try an on-line resize
3631 	 */
3632 	sector_t sectors;
3633 	int err = strict_blocks_to_sectors(buf, &sectors);
3634 
3635 	if (err < 0)
3636 		return err;
3637 	if (mddev->pers) {
3638 		err = update_size(mddev, sectors);
3639 		md_update_sb(mddev, 1);
3640 	} else {
3641 		if (mddev->dev_sectors == 0 ||
3642 		    mddev->dev_sectors > sectors)
3643 			mddev->dev_sectors = sectors;
3644 		else
3645 			err = -ENOSPC;
3646 	}
3647 	return err ? err : len;
3648 }
3649 
3650 static struct md_sysfs_entry md_size =
3651 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3652 
3653 
3654 /* Metdata version.
3655  * This is one of
3656  *   'none' for arrays with no metadata (good luck...)
3657  *   'external' for arrays with externally managed metadata,
3658  * or N.M for internally known formats
3659  */
3660 static ssize_t
3661 metadata_show(mddev_t *mddev, char *page)
3662 {
3663 	if (mddev->persistent)
3664 		return sprintf(page, "%d.%d\n",
3665 			       mddev->major_version, mddev->minor_version);
3666 	else if (mddev->external)
3667 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3668 	else
3669 		return sprintf(page, "none\n");
3670 }
3671 
3672 static ssize_t
3673 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3674 {
3675 	int major, minor;
3676 	char *e;
3677 	/* Changing the details of 'external' metadata is
3678 	 * always permitted.  Otherwise there must be
3679 	 * no devices attached to the array.
3680 	 */
3681 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3682 		;
3683 	else if (!list_empty(&mddev->disks))
3684 		return -EBUSY;
3685 
3686 	if (cmd_match(buf, "none")) {
3687 		mddev->persistent = 0;
3688 		mddev->external = 0;
3689 		mddev->major_version = 0;
3690 		mddev->minor_version = 90;
3691 		return len;
3692 	}
3693 	if (strncmp(buf, "external:", 9) == 0) {
3694 		size_t namelen = len-9;
3695 		if (namelen >= sizeof(mddev->metadata_type))
3696 			namelen = sizeof(mddev->metadata_type)-1;
3697 		strncpy(mddev->metadata_type, buf+9, namelen);
3698 		mddev->metadata_type[namelen] = 0;
3699 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3700 			mddev->metadata_type[--namelen] = 0;
3701 		mddev->persistent = 0;
3702 		mddev->external = 1;
3703 		mddev->major_version = 0;
3704 		mddev->minor_version = 90;
3705 		return len;
3706 	}
3707 	major = simple_strtoul(buf, &e, 10);
3708 	if (e==buf || *e != '.')
3709 		return -EINVAL;
3710 	buf = e+1;
3711 	minor = simple_strtoul(buf, &e, 10);
3712 	if (e==buf || (*e && *e != '\n') )
3713 		return -EINVAL;
3714 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3715 		return -ENOENT;
3716 	mddev->major_version = major;
3717 	mddev->minor_version = minor;
3718 	mddev->persistent = 1;
3719 	mddev->external = 0;
3720 	return len;
3721 }
3722 
3723 static struct md_sysfs_entry md_metadata =
3724 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3725 
3726 static ssize_t
3727 action_show(mddev_t *mddev, char *page)
3728 {
3729 	char *type = "idle";
3730 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3731 		type = "frozen";
3732 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3733 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3734 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3735 			type = "reshape";
3736 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3737 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3738 				type = "resync";
3739 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3740 				type = "check";
3741 			else
3742 				type = "repair";
3743 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3744 			type = "recover";
3745 	}
3746 	return sprintf(page, "%s\n", type);
3747 }
3748 
3749 static ssize_t
3750 action_store(mddev_t *mddev, const char *page, size_t len)
3751 {
3752 	if (!mddev->pers || !mddev->pers->sync_request)
3753 		return -EINVAL;
3754 
3755 	if (cmd_match(page, "frozen"))
3756 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3757 	else
3758 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3759 
3760 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3761 		if (mddev->sync_thread) {
3762 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3763 			md_unregister_thread(mddev->sync_thread);
3764 			mddev->sync_thread = NULL;
3765 			mddev->recovery = 0;
3766 		}
3767 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3768 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3769 		return -EBUSY;
3770 	else if (cmd_match(page, "resync"))
3771 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3772 	else if (cmd_match(page, "recover")) {
3773 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3774 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3775 	} else if (cmd_match(page, "reshape")) {
3776 		int err;
3777 		if (mddev->pers->start_reshape == NULL)
3778 			return -EINVAL;
3779 		err = mddev->pers->start_reshape(mddev);
3780 		if (err)
3781 			return err;
3782 		sysfs_notify(&mddev->kobj, NULL, "degraded");
3783 	} else {
3784 		if (cmd_match(page, "check"))
3785 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3786 		else if (!cmd_match(page, "repair"))
3787 			return -EINVAL;
3788 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3789 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3790 	}
3791 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3792 	md_wakeup_thread(mddev->thread);
3793 	sysfs_notify_dirent_safe(mddev->sysfs_action);
3794 	return len;
3795 }
3796 
3797 static ssize_t
3798 mismatch_cnt_show(mddev_t *mddev, char *page)
3799 {
3800 	return sprintf(page, "%llu\n",
3801 		       (unsigned long long) mddev->resync_mismatches);
3802 }
3803 
3804 static struct md_sysfs_entry md_scan_mode =
3805 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3806 
3807 
3808 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3809 
3810 static ssize_t
3811 sync_min_show(mddev_t *mddev, char *page)
3812 {
3813 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
3814 		       mddev->sync_speed_min ? "local": "system");
3815 }
3816 
3817 static ssize_t
3818 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3819 {
3820 	int min;
3821 	char *e;
3822 	if (strncmp(buf, "system", 6)==0) {
3823 		mddev->sync_speed_min = 0;
3824 		return len;
3825 	}
3826 	min = simple_strtoul(buf, &e, 10);
3827 	if (buf == e || (*e && *e != '\n') || min <= 0)
3828 		return -EINVAL;
3829 	mddev->sync_speed_min = min;
3830 	return len;
3831 }
3832 
3833 static struct md_sysfs_entry md_sync_min =
3834 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3835 
3836 static ssize_t
3837 sync_max_show(mddev_t *mddev, char *page)
3838 {
3839 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
3840 		       mddev->sync_speed_max ? "local": "system");
3841 }
3842 
3843 static ssize_t
3844 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3845 {
3846 	int max;
3847 	char *e;
3848 	if (strncmp(buf, "system", 6)==0) {
3849 		mddev->sync_speed_max = 0;
3850 		return len;
3851 	}
3852 	max = simple_strtoul(buf, &e, 10);
3853 	if (buf == e || (*e && *e != '\n') || max <= 0)
3854 		return -EINVAL;
3855 	mddev->sync_speed_max = max;
3856 	return len;
3857 }
3858 
3859 static struct md_sysfs_entry md_sync_max =
3860 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3861 
3862 static ssize_t
3863 degraded_show(mddev_t *mddev, char *page)
3864 {
3865 	return sprintf(page, "%d\n", mddev->degraded);
3866 }
3867 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3868 
3869 static ssize_t
3870 sync_force_parallel_show(mddev_t *mddev, char *page)
3871 {
3872 	return sprintf(page, "%d\n", mddev->parallel_resync);
3873 }
3874 
3875 static ssize_t
3876 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3877 {
3878 	long n;
3879 
3880 	if (strict_strtol(buf, 10, &n))
3881 		return -EINVAL;
3882 
3883 	if (n != 0 && n != 1)
3884 		return -EINVAL;
3885 
3886 	mddev->parallel_resync = n;
3887 
3888 	if (mddev->sync_thread)
3889 		wake_up(&resync_wait);
3890 
3891 	return len;
3892 }
3893 
3894 /* force parallel resync, even with shared block devices */
3895 static struct md_sysfs_entry md_sync_force_parallel =
3896 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3897        sync_force_parallel_show, sync_force_parallel_store);
3898 
3899 static ssize_t
3900 sync_speed_show(mddev_t *mddev, char *page)
3901 {
3902 	unsigned long resync, dt, db;
3903 	if (mddev->curr_resync == 0)
3904 		return sprintf(page, "none\n");
3905 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3906 	dt = (jiffies - mddev->resync_mark) / HZ;
3907 	if (!dt) dt++;
3908 	db = resync - mddev->resync_mark_cnt;
3909 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3910 }
3911 
3912 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3913 
3914 static ssize_t
3915 sync_completed_show(mddev_t *mddev, char *page)
3916 {
3917 	unsigned long max_sectors, resync;
3918 
3919 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3920 		return sprintf(page, "none\n");
3921 
3922 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3923 		max_sectors = mddev->resync_max_sectors;
3924 	else
3925 		max_sectors = mddev->dev_sectors;
3926 
3927 	resync = mddev->curr_resync_completed;
3928 	return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3929 }
3930 
3931 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3932 
3933 static ssize_t
3934 min_sync_show(mddev_t *mddev, char *page)
3935 {
3936 	return sprintf(page, "%llu\n",
3937 		       (unsigned long long)mddev->resync_min);
3938 }
3939 static ssize_t
3940 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3941 {
3942 	unsigned long long min;
3943 	if (strict_strtoull(buf, 10, &min))
3944 		return -EINVAL;
3945 	if (min > mddev->resync_max)
3946 		return -EINVAL;
3947 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3948 		return -EBUSY;
3949 
3950 	/* Must be a multiple of chunk_size */
3951 	if (mddev->chunk_sectors) {
3952 		sector_t temp = min;
3953 		if (sector_div(temp, mddev->chunk_sectors))
3954 			return -EINVAL;
3955 	}
3956 	mddev->resync_min = min;
3957 
3958 	return len;
3959 }
3960 
3961 static struct md_sysfs_entry md_min_sync =
3962 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3963 
3964 static ssize_t
3965 max_sync_show(mddev_t *mddev, char *page)
3966 {
3967 	if (mddev->resync_max == MaxSector)
3968 		return sprintf(page, "max\n");
3969 	else
3970 		return sprintf(page, "%llu\n",
3971 			       (unsigned long long)mddev->resync_max);
3972 }
3973 static ssize_t
3974 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3975 {
3976 	if (strncmp(buf, "max", 3) == 0)
3977 		mddev->resync_max = MaxSector;
3978 	else {
3979 		unsigned long long max;
3980 		if (strict_strtoull(buf, 10, &max))
3981 			return -EINVAL;
3982 		if (max < mddev->resync_min)
3983 			return -EINVAL;
3984 		if (max < mddev->resync_max &&
3985 		    mddev->ro == 0 &&
3986 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3987 			return -EBUSY;
3988 
3989 		/* Must be a multiple of chunk_size */
3990 		if (mddev->chunk_sectors) {
3991 			sector_t temp = max;
3992 			if (sector_div(temp, mddev->chunk_sectors))
3993 				return -EINVAL;
3994 		}
3995 		mddev->resync_max = max;
3996 	}
3997 	wake_up(&mddev->recovery_wait);
3998 	return len;
3999 }
4000 
4001 static struct md_sysfs_entry md_max_sync =
4002 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4003 
4004 static ssize_t
4005 suspend_lo_show(mddev_t *mddev, char *page)
4006 {
4007 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4008 }
4009 
4010 static ssize_t
4011 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4012 {
4013 	char *e;
4014 	unsigned long long new = simple_strtoull(buf, &e, 10);
4015 
4016 	if (mddev->pers == NULL ||
4017 	    mddev->pers->quiesce == NULL)
4018 		return -EINVAL;
4019 	if (buf == e || (*e && *e != '\n'))
4020 		return -EINVAL;
4021 	if (new >= mddev->suspend_hi ||
4022 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
4023 		mddev->suspend_lo = new;
4024 		mddev->pers->quiesce(mddev, 2);
4025 		return len;
4026 	} else
4027 		return -EINVAL;
4028 }
4029 static struct md_sysfs_entry md_suspend_lo =
4030 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4031 
4032 
4033 static ssize_t
4034 suspend_hi_show(mddev_t *mddev, char *page)
4035 {
4036 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4037 }
4038 
4039 static ssize_t
4040 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4041 {
4042 	char *e;
4043 	unsigned long long new = simple_strtoull(buf, &e, 10);
4044 
4045 	if (mddev->pers == NULL ||
4046 	    mddev->pers->quiesce == NULL)
4047 		return -EINVAL;
4048 	if (buf == e || (*e && *e != '\n'))
4049 		return -EINVAL;
4050 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
4051 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
4052 		mddev->suspend_hi = new;
4053 		mddev->pers->quiesce(mddev, 1);
4054 		mddev->pers->quiesce(mddev, 0);
4055 		return len;
4056 	} else
4057 		return -EINVAL;
4058 }
4059 static struct md_sysfs_entry md_suspend_hi =
4060 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4061 
4062 static ssize_t
4063 reshape_position_show(mddev_t *mddev, char *page)
4064 {
4065 	if (mddev->reshape_position != MaxSector)
4066 		return sprintf(page, "%llu\n",
4067 			       (unsigned long long)mddev->reshape_position);
4068 	strcpy(page, "none\n");
4069 	return 5;
4070 }
4071 
4072 static ssize_t
4073 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4074 {
4075 	char *e;
4076 	unsigned long long new = simple_strtoull(buf, &e, 10);
4077 	if (mddev->pers)
4078 		return -EBUSY;
4079 	if (buf == e || (*e && *e != '\n'))
4080 		return -EINVAL;
4081 	mddev->reshape_position = new;
4082 	mddev->delta_disks = 0;
4083 	mddev->new_level = mddev->level;
4084 	mddev->new_layout = mddev->layout;
4085 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4086 	return len;
4087 }
4088 
4089 static struct md_sysfs_entry md_reshape_position =
4090 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4091        reshape_position_store);
4092 
4093 static ssize_t
4094 array_size_show(mddev_t *mddev, char *page)
4095 {
4096 	if (mddev->external_size)
4097 		return sprintf(page, "%llu\n",
4098 			       (unsigned long long)mddev->array_sectors/2);
4099 	else
4100 		return sprintf(page, "default\n");
4101 }
4102 
4103 static ssize_t
4104 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4105 {
4106 	sector_t sectors;
4107 
4108 	if (strncmp(buf, "default", 7) == 0) {
4109 		if (mddev->pers)
4110 			sectors = mddev->pers->size(mddev, 0, 0);
4111 		else
4112 			sectors = mddev->array_sectors;
4113 
4114 		mddev->external_size = 0;
4115 	} else {
4116 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4117 			return -EINVAL;
4118 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4119 			return -E2BIG;
4120 
4121 		mddev->external_size = 1;
4122 	}
4123 
4124 	mddev->array_sectors = sectors;
4125 	set_capacity(mddev->gendisk, mddev->array_sectors);
4126 	if (mddev->pers)
4127 		revalidate_disk(mddev->gendisk);
4128 
4129 	return len;
4130 }
4131 
4132 static struct md_sysfs_entry md_array_size =
4133 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4134        array_size_store);
4135 
4136 static struct attribute *md_default_attrs[] = {
4137 	&md_level.attr,
4138 	&md_layout.attr,
4139 	&md_raid_disks.attr,
4140 	&md_chunk_size.attr,
4141 	&md_size.attr,
4142 	&md_resync_start.attr,
4143 	&md_metadata.attr,
4144 	&md_new_device.attr,
4145 	&md_safe_delay.attr,
4146 	&md_array_state.attr,
4147 	&md_reshape_position.attr,
4148 	&md_array_size.attr,
4149 	&max_corr_read_errors.attr,
4150 	NULL,
4151 };
4152 
4153 static struct attribute *md_redundancy_attrs[] = {
4154 	&md_scan_mode.attr,
4155 	&md_mismatches.attr,
4156 	&md_sync_min.attr,
4157 	&md_sync_max.attr,
4158 	&md_sync_speed.attr,
4159 	&md_sync_force_parallel.attr,
4160 	&md_sync_completed.attr,
4161 	&md_min_sync.attr,
4162 	&md_max_sync.attr,
4163 	&md_suspend_lo.attr,
4164 	&md_suspend_hi.attr,
4165 	&md_bitmap.attr,
4166 	&md_degraded.attr,
4167 	NULL,
4168 };
4169 static struct attribute_group md_redundancy_group = {
4170 	.name = NULL,
4171 	.attrs = md_redundancy_attrs,
4172 };
4173 
4174 
4175 static ssize_t
4176 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4177 {
4178 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4179 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4180 	ssize_t rv;
4181 
4182 	if (!entry->show)
4183 		return -EIO;
4184 	rv = mddev_lock(mddev);
4185 	if (!rv) {
4186 		rv = entry->show(mddev, page);
4187 		mddev_unlock(mddev);
4188 	}
4189 	return rv;
4190 }
4191 
4192 static ssize_t
4193 md_attr_store(struct kobject *kobj, struct attribute *attr,
4194 	      const char *page, size_t length)
4195 {
4196 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4197 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4198 	ssize_t rv;
4199 
4200 	if (!entry->store)
4201 		return -EIO;
4202 	if (!capable(CAP_SYS_ADMIN))
4203 		return -EACCES;
4204 	rv = mddev_lock(mddev);
4205 	if (mddev->hold_active == UNTIL_IOCTL)
4206 		mddev->hold_active = 0;
4207 	if (!rv) {
4208 		rv = entry->store(mddev, page, length);
4209 		mddev_unlock(mddev);
4210 	}
4211 	return rv;
4212 }
4213 
4214 static void md_free(struct kobject *ko)
4215 {
4216 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
4217 
4218 	if (mddev->sysfs_state)
4219 		sysfs_put(mddev->sysfs_state);
4220 
4221 	if (mddev->gendisk) {
4222 		del_gendisk(mddev->gendisk);
4223 		put_disk(mddev->gendisk);
4224 	}
4225 	if (mddev->queue)
4226 		blk_cleanup_queue(mddev->queue);
4227 
4228 	kfree(mddev);
4229 }
4230 
4231 static const struct sysfs_ops md_sysfs_ops = {
4232 	.show	= md_attr_show,
4233 	.store	= md_attr_store,
4234 };
4235 static struct kobj_type md_ktype = {
4236 	.release	= md_free,
4237 	.sysfs_ops	= &md_sysfs_ops,
4238 	.default_attrs	= md_default_attrs,
4239 };
4240 
4241 int mdp_major = 0;
4242 
4243 static void mddev_delayed_delete(struct work_struct *ws)
4244 {
4245 	mddev_t *mddev = container_of(ws, mddev_t, del_work);
4246 
4247 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4248 	kobject_del(&mddev->kobj);
4249 	kobject_put(&mddev->kobj);
4250 }
4251 
4252 static int md_alloc(dev_t dev, char *name)
4253 {
4254 	static DEFINE_MUTEX(disks_mutex);
4255 	mddev_t *mddev = mddev_find(dev);
4256 	struct gendisk *disk;
4257 	int partitioned;
4258 	int shift;
4259 	int unit;
4260 	int error;
4261 
4262 	if (!mddev)
4263 		return -ENODEV;
4264 
4265 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4266 	shift = partitioned ? MdpMinorShift : 0;
4267 	unit = MINOR(mddev->unit) >> shift;
4268 
4269 	/* wait for any previous instance if this device
4270 	 * to be completed removed (mddev_delayed_delete).
4271 	 */
4272 	flush_scheduled_work();
4273 
4274 	mutex_lock(&disks_mutex);
4275 	error = -EEXIST;
4276 	if (mddev->gendisk)
4277 		goto abort;
4278 
4279 	if (name) {
4280 		/* Need to ensure that 'name' is not a duplicate.
4281 		 */
4282 		mddev_t *mddev2;
4283 		spin_lock(&all_mddevs_lock);
4284 
4285 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4286 			if (mddev2->gendisk &&
4287 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4288 				spin_unlock(&all_mddevs_lock);
4289 				goto abort;
4290 			}
4291 		spin_unlock(&all_mddevs_lock);
4292 	}
4293 
4294 	error = -ENOMEM;
4295 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4296 	if (!mddev->queue)
4297 		goto abort;
4298 	mddev->queue->queuedata = mddev;
4299 
4300 	/* Can be unlocked because the queue is new: no concurrency */
4301 	queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
4302 
4303 	blk_queue_make_request(mddev->queue, md_make_request);
4304 
4305 	disk = alloc_disk(1 << shift);
4306 	if (!disk) {
4307 		blk_cleanup_queue(mddev->queue);
4308 		mddev->queue = NULL;
4309 		goto abort;
4310 	}
4311 	disk->major = MAJOR(mddev->unit);
4312 	disk->first_minor = unit << shift;
4313 	if (name)
4314 		strcpy(disk->disk_name, name);
4315 	else if (partitioned)
4316 		sprintf(disk->disk_name, "md_d%d", unit);
4317 	else
4318 		sprintf(disk->disk_name, "md%d", unit);
4319 	disk->fops = &md_fops;
4320 	disk->private_data = mddev;
4321 	disk->queue = mddev->queue;
4322 	/* Allow extended partitions.  This makes the
4323 	 * 'mdp' device redundant, but we can't really
4324 	 * remove it now.
4325 	 */
4326 	disk->flags |= GENHD_FL_EXT_DEVT;
4327 	add_disk(disk);
4328 	mddev->gendisk = disk;
4329 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4330 				     &disk_to_dev(disk)->kobj, "%s", "md");
4331 	if (error) {
4332 		/* This isn't possible, but as kobject_init_and_add is marked
4333 		 * __must_check, we must do something with the result
4334 		 */
4335 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4336 		       disk->disk_name);
4337 		error = 0;
4338 	}
4339 	if (mddev->kobj.sd &&
4340 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4341 		printk(KERN_DEBUG "pointless warning\n");
4342  abort:
4343 	mutex_unlock(&disks_mutex);
4344 	if (!error && mddev->kobj.sd) {
4345 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4346 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4347 	}
4348 	mddev_put(mddev);
4349 	return error;
4350 }
4351 
4352 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4353 {
4354 	md_alloc(dev, NULL);
4355 	return NULL;
4356 }
4357 
4358 static int add_named_array(const char *val, struct kernel_param *kp)
4359 {
4360 	/* val must be "md_*" where * is not all digits.
4361 	 * We allocate an array with a large free minor number, and
4362 	 * set the name to val.  val must not already be an active name.
4363 	 */
4364 	int len = strlen(val);
4365 	char buf[DISK_NAME_LEN];
4366 
4367 	while (len && val[len-1] == '\n')
4368 		len--;
4369 	if (len >= DISK_NAME_LEN)
4370 		return -E2BIG;
4371 	strlcpy(buf, val, len+1);
4372 	if (strncmp(buf, "md_", 3) != 0)
4373 		return -EINVAL;
4374 	return md_alloc(0, buf);
4375 }
4376 
4377 static void md_safemode_timeout(unsigned long data)
4378 {
4379 	mddev_t *mddev = (mddev_t *) data;
4380 
4381 	if (!atomic_read(&mddev->writes_pending)) {
4382 		mddev->safemode = 1;
4383 		if (mddev->external)
4384 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4385 	}
4386 	md_wakeup_thread(mddev->thread);
4387 }
4388 
4389 static int start_dirty_degraded;
4390 
4391 int md_run(mddev_t *mddev)
4392 {
4393 	int err;
4394 	mdk_rdev_t *rdev;
4395 	struct mdk_personality *pers;
4396 
4397 	if (list_empty(&mddev->disks))
4398 		/* cannot run an array with no devices.. */
4399 		return -EINVAL;
4400 
4401 	if (mddev->pers)
4402 		return -EBUSY;
4403 	/* Cannot run until previous stop completes properly */
4404 	if (mddev->sysfs_active)
4405 		return -EBUSY;
4406 
4407 	/*
4408 	 * Analyze all RAID superblock(s)
4409 	 */
4410 	if (!mddev->raid_disks) {
4411 		if (!mddev->persistent)
4412 			return -EINVAL;
4413 		analyze_sbs(mddev);
4414 	}
4415 
4416 	if (mddev->level != LEVEL_NONE)
4417 		request_module("md-level-%d", mddev->level);
4418 	else if (mddev->clevel[0])
4419 		request_module("md-%s", mddev->clevel);
4420 
4421 	/*
4422 	 * Drop all container device buffers, from now on
4423 	 * the only valid external interface is through the md
4424 	 * device.
4425 	 */
4426 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4427 		if (test_bit(Faulty, &rdev->flags))
4428 			continue;
4429 		sync_blockdev(rdev->bdev);
4430 		invalidate_bdev(rdev->bdev);
4431 
4432 		/* perform some consistency tests on the device.
4433 		 * We don't want the data to overlap the metadata,
4434 		 * Internal Bitmap issues have been handled elsewhere.
4435 		 */
4436 		if (rdev->data_offset < rdev->sb_start) {
4437 			if (mddev->dev_sectors &&
4438 			    rdev->data_offset + mddev->dev_sectors
4439 			    > rdev->sb_start) {
4440 				printk("md: %s: data overlaps metadata\n",
4441 				       mdname(mddev));
4442 				return -EINVAL;
4443 			}
4444 		} else {
4445 			if (rdev->sb_start + rdev->sb_size/512
4446 			    > rdev->data_offset) {
4447 				printk("md: %s: metadata overlaps data\n",
4448 				       mdname(mddev));
4449 				return -EINVAL;
4450 			}
4451 		}
4452 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4453 	}
4454 
4455 	spin_lock(&pers_lock);
4456 	pers = find_pers(mddev->level, mddev->clevel);
4457 	if (!pers || !try_module_get(pers->owner)) {
4458 		spin_unlock(&pers_lock);
4459 		if (mddev->level != LEVEL_NONE)
4460 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4461 			       mddev->level);
4462 		else
4463 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4464 			       mddev->clevel);
4465 		return -EINVAL;
4466 	}
4467 	mddev->pers = pers;
4468 	spin_unlock(&pers_lock);
4469 	if (mddev->level != pers->level) {
4470 		mddev->level = pers->level;
4471 		mddev->new_level = pers->level;
4472 	}
4473 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4474 
4475 	if (mddev->reshape_position != MaxSector &&
4476 	    pers->start_reshape == NULL) {
4477 		/* This personality cannot handle reshaping... */
4478 		mddev->pers = NULL;
4479 		module_put(pers->owner);
4480 		return -EINVAL;
4481 	}
4482 
4483 	if (pers->sync_request) {
4484 		/* Warn if this is a potentially silly
4485 		 * configuration.
4486 		 */
4487 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4488 		mdk_rdev_t *rdev2;
4489 		int warned = 0;
4490 
4491 		list_for_each_entry(rdev, &mddev->disks, same_set)
4492 			list_for_each_entry(rdev2, &mddev->disks, same_set) {
4493 				if (rdev < rdev2 &&
4494 				    rdev->bdev->bd_contains ==
4495 				    rdev2->bdev->bd_contains) {
4496 					printk(KERN_WARNING
4497 					       "%s: WARNING: %s appears to be"
4498 					       " on the same physical disk as"
4499 					       " %s.\n",
4500 					       mdname(mddev),
4501 					       bdevname(rdev->bdev,b),
4502 					       bdevname(rdev2->bdev,b2));
4503 					warned = 1;
4504 				}
4505 			}
4506 
4507 		if (warned)
4508 			printk(KERN_WARNING
4509 			       "True protection against single-disk"
4510 			       " failure might be compromised.\n");
4511 	}
4512 
4513 	mddev->recovery = 0;
4514 	/* may be over-ridden by personality */
4515 	mddev->resync_max_sectors = mddev->dev_sectors;
4516 
4517 	mddev->barriers_work = 1;
4518 	mddev->ok_start_degraded = start_dirty_degraded;
4519 
4520 	if (start_readonly && mddev->ro == 0)
4521 		mddev->ro = 2; /* read-only, but switch on first write */
4522 
4523 	err = mddev->pers->run(mddev);
4524 	if (err)
4525 		printk(KERN_ERR "md: pers->run() failed ...\n");
4526 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4527 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4528 			  " but 'external_size' not in effect?\n", __func__);
4529 		printk(KERN_ERR
4530 		       "md: invalid array_size %llu > default size %llu\n",
4531 		       (unsigned long long)mddev->array_sectors / 2,
4532 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4533 		err = -EINVAL;
4534 		mddev->pers->stop(mddev);
4535 	}
4536 	if (err == 0 && mddev->pers->sync_request) {
4537 		err = bitmap_create(mddev);
4538 		if (err) {
4539 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4540 			       mdname(mddev), err);
4541 			mddev->pers->stop(mddev);
4542 		}
4543 	}
4544 	if (err) {
4545 		module_put(mddev->pers->owner);
4546 		mddev->pers = NULL;
4547 		bitmap_destroy(mddev);
4548 		return err;
4549 	}
4550 	if (mddev->pers->sync_request) {
4551 		if (mddev->kobj.sd &&
4552 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4553 			printk(KERN_WARNING
4554 			       "md: cannot register extra attributes for %s\n",
4555 			       mdname(mddev));
4556 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4557 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4558 		mddev->ro = 0;
4559 
4560  	atomic_set(&mddev->writes_pending,0);
4561 	atomic_set(&mddev->max_corr_read_errors,
4562 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4563 	mddev->safemode = 0;
4564 	mddev->safemode_timer.function = md_safemode_timeout;
4565 	mddev->safemode_timer.data = (unsigned long) mddev;
4566 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4567 	mddev->in_sync = 1;
4568 
4569 	list_for_each_entry(rdev, &mddev->disks, same_set)
4570 		if (rdev->raid_disk >= 0) {
4571 			char nm[20];
4572 			sprintf(nm, "rd%d", rdev->raid_disk);
4573 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4574 				/* failure here is OK */;
4575 		}
4576 
4577 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4578 
4579 	if (mddev->flags)
4580 		md_update_sb(mddev, 0);
4581 
4582 	md_wakeup_thread(mddev->thread);
4583 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4584 
4585 	md_new_event(mddev);
4586 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4587 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4588 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4589 	return 0;
4590 }
4591 EXPORT_SYMBOL_GPL(md_run);
4592 
4593 static int do_md_run(mddev_t *mddev)
4594 {
4595 	int err;
4596 
4597 	err = md_run(mddev);
4598 	if (err)
4599 		goto out;
4600 	err = bitmap_load(mddev);
4601 	if (err) {
4602 		bitmap_destroy(mddev);
4603 		goto out;
4604 	}
4605 	set_capacity(mddev->gendisk, mddev->array_sectors);
4606 	revalidate_disk(mddev->gendisk);
4607 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4608 out:
4609 	return err;
4610 }
4611 
4612 static int restart_array(mddev_t *mddev)
4613 {
4614 	struct gendisk *disk = mddev->gendisk;
4615 
4616 	/* Complain if it has no devices */
4617 	if (list_empty(&mddev->disks))
4618 		return -ENXIO;
4619 	if (!mddev->pers)
4620 		return -EINVAL;
4621 	if (!mddev->ro)
4622 		return -EBUSY;
4623 	mddev->safemode = 0;
4624 	mddev->ro = 0;
4625 	set_disk_ro(disk, 0);
4626 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4627 		mdname(mddev));
4628 	/* Kick recovery or resync if necessary */
4629 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4630 	md_wakeup_thread(mddev->thread);
4631 	md_wakeup_thread(mddev->sync_thread);
4632 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4633 	return 0;
4634 }
4635 
4636 /* similar to deny_write_access, but accounts for our holding a reference
4637  * to the file ourselves */
4638 static int deny_bitmap_write_access(struct file * file)
4639 {
4640 	struct inode *inode = file->f_mapping->host;
4641 
4642 	spin_lock(&inode->i_lock);
4643 	if (atomic_read(&inode->i_writecount) > 1) {
4644 		spin_unlock(&inode->i_lock);
4645 		return -ETXTBSY;
4646 	}
4647 	atomic_set(&inode->i_writecount, -1);
4648 	spin_unlock(&inode->i_lock);
4649 
4650 	return 0;
4651 }
4652 
4653 void restore_bitmap_write_access(struct file *file)
4654 {
4655 	struct inode *inode = file->f_mapping->host;
4656 
4657 	spin_lock(&inode->i_lock);
4658 	atomic_set(&inode->i_writecount, 1);
4659 	spin_unlock(&inode->i_lock);
4660 }
4661 
4662 static void md_clean(mddev_t *mddev)
4663 {
4664 	mddev->array_sectors = 0;
4665 	mddev->external_size = 0;
4666 	mddev->dev_sectors = 0;
4667 	mddev->raid_disks = 0;
4668 	mddev->recovery_cp = 0;
4669 	mddev->resync_min = 0;
4670 	mddev->resync_max = MaxSector;
4671 	mddev->reshape_position = MaxSector;
4672 	mddev->external = 0;
4673 	mddev->persistent = 0;
4674 	mddev->level = LEVEL_NONE;
4675 	mddev->clevel[0] = 0;
4676 	mddev->flags = 0;
4677 	mddev->ro = 0;
4678 	mddev->metadata_type[0] = 0;
4679 	mddev->chunk_sectors = 0;
4680 	mddev->ctime = mddev->utime = 0;
4681 	mddev->layout = 0;
4682 	mddev->max_disks = 0;
4683 	mddev->events = 0;
4684 	mddev->can_decrease_events = 0;
4685 	mddev->delta_disks = 0;
4686 	mddev->new_level = LEVEL_NONE;
4687 	mddev->new_layout = 0;
4688 	mddev->new_chunk_sectors = 0;
4689 	mddev->curr_resync = 0;
4690 	mddev->resync_mismatches = 0;
4691 	mddev->suspend_lo = mddev->suspend_hi = 0;
4692 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
4693 	mddev->recovery = 0;
4694 	mddev->in_sync = 0;
4695 	mddev->degraded = 0;
4696 	mddev->barriers_work = 0;
4697 	mddev->safemode = 0;
4698 	mddev->bitmap_info.offset = 0;
4699 	mddev->bitmap_info.default_offset = 0;
4700 	mddev->bitmap_info.chunksize = 0;
4701 	mddev->bitmap_info.daemon_sleep = 0;
4702 	mddev->bitmap_info.max_write_behind = 0;
4703 	mddev->plug = NULL;
4704 }
4705 
4706 void md_stop_writes(mddev_t *mddev)
4707 {
4708 	if (mddev->sync_thread) {
4709 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4710 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4711 		md_unregister_thread(mddev->sync_thread);
4712 		mddev->sync_thread = NULL;
4713 	}
4714 
4715 	del_timer_sync(&mddev->safemode_timer);
4716 
4717 	bitmap_flush(mddev);
4718 	md_super_wait(mddev);
4719 
4720 	if (!mddev->in_sync || mddev->flags) {
4721 		/* mark array as shutdown cleanly */
4722 		mddev->in_sync = 1;
4723 		md_update_sb(mddev, 1);
4724 	}
4725 }
4726 EXPORT_SYMBOL_GPL(md_stop_writes);
4727 
4728 void md_stop(mddev_t *mddev)
4729 {
4730 	mddev->pers->stop(mddev);
4731 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
4732 		mddev->to_remove = &md_redundancy_group;
4733 	module_put(mddev->pers->owner);
4734 	mddev->pers = NULL;
4735 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4736 }
4737 EXPORT_SYMBOL_GPL(md_stop);
4738 
4739 static int md_set_readonly(mddev_t *mddev, int is_open)
4740 {
4741 	int err = 0;
4742 	mutex_lock(&mddev->open_mutex);
4743 	if (atomic_read(&mddev->openers) > is_open) {
4744 		printk("md: %s still in use.\n",mdname(mddev));
4745 		err = -EBUSY;
4746 		goto out;
4747 	}
4748 	if (mddev->pers) {
4749 		md_stop_writes(mddev);
4750 
4751 		err  = -ENXIO;
4752 		if (mddev->ro==1)
4753 			goto out;
4754 		mddev->ro = 1;
4755 		set_disk_ro(mddev->gendisk, 1);
4756 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4757 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4758 		err = 0;
4759 	}
4760 out:
4761 	mutex_unlock(&mddev->open_mutex);
4762 	return err;
4763 }
4764 
4765 /* mode:
4766  *   0 - completely stop and dis-assemble array
4767  *   2 - stop but do not disassemble array
4768  */
4769 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4770 {
4771 	struct gendisk *disk = mddev->gendisk;
4772 	mdk_rdev_t *rdev;
4773 
4774 	mutex_lock(&mddev->open_mutex);
4775 	if (atomic_read(&mddev->openers) > is_open ||
4776 	    mddev->sysfs_active) {
4777 		printk("md: %s still in use.\n",mdname(mddev));
4778 		mutex_unlock(&mddev->open_mutex);
4779 		return -EBUSY;
4780 	}
4781 
4782 	if (mddev->pers) {
4783 		if (mddev->ro)
4784 			set_disk_ro(disk, 0);
4785 
4786 		md_stop_writes(mddev);
4787 		md_stop(mddev);
4788 		mddev->queue->merge_bvec_fn = NULL;
4789 		mddev->queue->unplug_fn = NULL;
4790 		mddev->queue->backing_dev_info.congested_fn = NULL;
4791 
4792 		/* tell userspace to handle 'inactive' */
4793 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4794 
4795 		list_for_each_entry(rdev, &mddev->disks, same_set)
4796 			if (rdev->raid_disk >= 0) {
4797 				char nm[20];
4798 				sprintf(nm, "rd%d", rdev->raid_disk);
4799 				sysfs_remove_link(&mddev->kobj, nm);
4800 			}
4801 
4802 		set_capacity(disk, 0);
4803 		mutex_unlock(&mddev->open_mutex);
4804 		revalidate_disk(disk);
4805 
4806 		if (mddev->ro)
4807 			mddev->ro = 0;
4808 	} else
4809 		mutex_unlock(&mddev->open_mutex);
4810 	/*
4811 	 * Free resources if final stop
4812 	 */
4813 	if (mode == 0) {
4814 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4815 
4816 		bitmap_destroy(mddev);
4817 		if (mddev->bitmap_info.file) {
4818 			restore_bitmap_write_access(mddev->bitmap_info.file);
4819 			fput(mddev->bitmap_info.file);
4820 			mddev->bitmap_info.file = NULL;
4821 		}
4822 		mddev->bitmap_info.offset = 0;
4823 
4824 		export_array(mddev);
4825 
4826 		md_clean(mddev);
4827 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4828 		if (mddev->hold_active == UNTIL_STOP)
4829 			mddev->hold_active = 0;
4830 	}
4831 	blk_integrity_unregister(disk);
4832 	md_new_event(mddev);
4833 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4834 	return 0;
4835 }
4836 
4837 #ifndef MODULE
4838 static void autorun_array(mddev_t *mddev)
4839 {
4840 	mdk_rdev_t *rdev;
4841 	int err;
4842 
4843 	if (list_empty(&mddev->disks))
4844 		return;
4845 
4846 	printk(KERN_INFO "md: running: ");
4847 
4848 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4849 		char b[BDEVNAME_SIZE];
4850 		printk("<%s>", bdevname(rdev->bdev,b));
4851 	}
4852 	printk("\n");
4853 
4854 	err = do_md_run(mddev);
4855 	if (err) {
4856 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4857 		do_md_stop(mddev, 0, 0);
4858 	}
4859 }
4860 
4861 /*
4862  * lets try to run arrays based on all disks that have arrived
4863  * until now. (those are in pending_raid_disks)
4864  *
4865  * the method: pick the first pending disk, collect all disks with
4866  * the same UUID, remove all from the pending list and put them into
4867  * the 'same_array' list. Then order this list based on superblock
4868  * update time (freshest comes first), kick out 'old' disks and
4869  * compare superblocks. If everything's fine then run it.
4870  *
4871  * If "unit" is allocated, then bump its reference count
4872  */
4873 static void autorun_devices(int part)
4874 {
4875 	mdk_rdev_t *rdev0, *rdev, *tmp;
4876 	mddev_t *mddev;
4877 	char b[BDEVNAME_SIZE];
4878 
4879 	printk(KERN_INFO "md: autorun ...\n");
4880 	while (!list_empty(&pending_raid_disks)) {
4881 		int unit;
4882 		dev_t dev;
4883 		LIST_HEAD(candidates);
4884 		rdev0 = list_entry(pending_raid_disks.next,
4885 					 mdk_rdev_t, same_set);
4886 
4887 		printk(KERN_INFO "md: considering %s ...\n",
4888 			bdevname(rdev0->bdev,b));
4889 		INIT_LIST_HEAD(&candidates);
4890 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4891 			if (super_90_load(rdev, rdev0, 0) >= 0) {
4892 				printk(KERN_INFO "md:  adding %s ...\n",
4893 					bdevname(rdev->bdev,b));
4894 				list_move(&rdev->same_set, &candidates);
4895 			}
4896 		/*
4897 		 * now we have a set of devices, with all of them having
4898 		 * mostly sane superblocks. It's time to allocate the
4899 		 * mddev.
4900 		 */
4901 		if (part) {
4902 			dev = MKDEV(mdp_major,
4903 				    rdev0->preferred_minor << MdpMinorShift);
4904 			unit = MINOR(dev) >> MdpMinorShift;
4905 		} else {
4906 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4907 			unit = MINOR(dev);
4908 		}
4909 		if (rdev0->preferred_minor != unit) {
4910 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4911 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4912 			break;
4913 		}
4914 
4915 		md_probe(dev, NULL, NULL);
4916 		mddev = mddev_find(dev);
4917 		if (!mddev || !mddev->gendisk) {
4918 			if (mddev)
4919 				mddev_put(mddev);
4920 			printk(KERN_ERR
4921 				"md: cannot allocate memory for md drive.\n");
4922 			break;
4923 		}
4924 		if (mddev_lock(mddev))
4925 			printk(KERN_WARNING "md: %s locked, cannot run\n",
4926 			       mdname(mddev));
4927 		else if (mddev->raid_disks || mddev->major_version
4928 			 || !list_empty(&mddev->disks)) {
4929 			printk(KERN_WARNING
4930 				"md: %s already running, cannot run %s\n",
4931 				mdname(mddev), bdevname(rdev0->bdev,b));
4932 			mddev_unlock(mddev);
4933 		} else {
4934 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
4935 			mddev->persistent = 1;
4936 			rdev_for_each_list(rdev, tmp, &candidates) {
4937 				list_del_init(&rdev->same_set);
4938 				if (bind_rdev_to_array(rdev, mddev))
4939 					export_rdev(rdev);
4940 			}
4941 			autorun_array(mddev);
4942 			mddev_unlock(mddev);
4943 		}
4944 		/* on success, candidates will be empty, on error
4945 		 * it won't...
4946 		 */
4947 		rdev_for_each_list(rdev, tmp, &candidates) {
4948 			list_del_init(&rdev->same_set);
4949 			export_rdev(rdev);
4950 		}
4951 		mddev_put(mddev);
4952 	}
4953 	printk(KERN_INFO "md: ... autorun DONE.\n");
4954 }
4955 #endif /* !MODULE */
4956 
4957 static int get_version(void __user * arg)
4958 {
4959 	mdu_version_t ver;
4960 
4961 	ver.major = MD_MAJOR_VERSION;
4962 	ver.minor = MD_MINOR_VERSION;
4963 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
4964 
4965 	if (copy_to_user(arg, &ver, sizeof(ver)))
4966 		return -EFAULT;
4967 
4968 	return 0;
4969 }
4970 
4971 static int get_array_info(mddev_t * mddev, void __user * arg)
4972 {
4973 	mdu_array_info_t info;
4974 	int nr,working,insync,failed,spare;
4975 	mdk_rdev_t *rdev;
4976 
4977 	nr=working=insync=failed=spare=0;
4978 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4979 		nr++;
4980 		if (test_bit(Faulty, &rdev->flags))
4981 			failed++;
4982 		else {
4983 			working++;
4984 			if (test_bit(In_sync, &rdev->flags))
4985 				insync++;
4986 			else
4987 				spare++;
4988 		}
4989 	}
4990 
4991 	info.major_version = mddev->major_version;
4992 	info.minor_version = mddev->minor_version;
4993 	info.patch_version = MD_PATCHLEVEL_VERSION;
4994 	info.ctime         = mddev->ctime;
4995 	info.level         = mddev->level;
4996 	info.size          = mddev->dev_sectors / 2;
4997 	if (info.size != mddev->dev_sectors / 2) /* overflow */
4998 		info.size = -1;
4999 	info.nr_disks      = nr;
5000 	info.raid_disks    = mddev->raid_disks;
5001 	info.md_minor      = mddev->md_minor;
5002 	info.not_persistent= !mddev->persistent;
5003 
5004 	info.utime         = mddev->utime;
5005 	info.state         = 0;
5006 	if (mddev->in_sync)
5007 		info.state = (1<<MD_SB_CLEAN);
5008 	if (mddev->bitmap && mddev->bitmap_info.offset)
5009 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5010 	info.active_disks  = insync;
5011 	info.working_disks = working;
5012 	info.failed_disks  = failed;
5013 	info.spare_disks   = spare;
5014 
5015 	info.layout        = mddev->layout;
5016 	info.chunk_size    = mddev->chunk_sectors << 9;
5017 
5018 	if (copy_to_user(arg, &info, sizeof(info)))
5019 		return -EFAULT;
5020 
5021 	return 0;
5022 }
5023 
5024 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5025 {
5026 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5027 	char *ptr, *buf = NULL;
5028 	int err = -ENOMEM;
5029 
5030 	if (md_allow_write(mddev))
5031 		file = kmalloc(sizeof(*file), GFP_NOIO);
5032 	else
5033 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5034 
5035 	if (!file)
5036 		goto out;
5037 
5038 	/* bitmap disabled, zero the first byte and copy out */
5039 	if (!mddev->bitmap || !mddev->bitmap->file) {
5040 		file->pathname[0] = '\0';
5041 		goto copy_out;
5042 	}
5043 
5044 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5045 	if (!buf)
5046 		goto out;
5047 
5048 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5049 	if (IS_ERR(ptr))
5050 		goto out;
5051 
5052 	strcpy(file->pathname, ptr);
5053 
5054 copy_out:
5055 	err = 0;
5056 	if (copy_to_user(arg, file, sizeof(*file)))
5057 		err = -EFAULT;
5058 out:
5059 	kfree(buf);
5060 	kfree(file);
5061 	return err;
5062 }
5063 
5064 static int get_disk_info(mddev_t * mddev, void __user * arg)
5065 {
5066 	mdu_disk_info_t info;
5067 	mdk_rdev_t *rdev;
5068 
5069 	if (copy_from_user(&info, arg, sizeof(info)))
5070 		return -EFAULT;
5071 
5072 	rdev = find_rdev_nr(mddev, info.number);
5073 	if (rdev) {
5074 		info.major = MAJOR(rdev->bdev->bd_dev);
5075 		info.minor = MINOR(rdev->bdev->bd_dev);
5076 		info.raid_disk = rdev->raid_disk;
5077 		info.state = 0;
5078 		if (test_bit(Faulty, &rdev->flags))
5079 			info.state |= (1<<MD_DISK_FAULTY);
5080 		else if (test_bit(In_sync, &rdev->flags)) {
5081 			info.state |= (1<<MD_DISK_ACTIVE);
5082 			info.state |= (1<<MD_DISK_SYNC);
5083 		}
5084 		if (test_bit(WriteMostly, &rdev->flags))
5085 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5086 	} else {
5087 		info.major = info.minor = 0;
5088 		info.raid_disk = -1;
5089 		info.state = (1<<MD_DISK_REMOVED);
5090 	}
5091 
5092 	if (copy_to_user(arg, &info, sizeof(info)))
5093 		return -EFAULT;
5094 
5095 	return 0;
5096 }
5097 
5098 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5099 {
5100 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5101 	mdk_rdev_t *rdev;
5102 	dev_t dev = MKDEV(info->major,info->minor);
5103 
5104 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5105 		return -EOVERFLOW;
5106 
5107 	if (!mddev->raid_disks) {
5108 		int err;
5109 		/* expecting a device which has a superblock */
5110 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5111 		if (IS_ERR(rdev)) {
5112 			printk(KERN_WARNING
5113 				"md: md_import_device returned %ld\n",
5114 				PTR_ERR(rdev));
5115 			return PTR_ERR(rdev);
5116 		}
5117 		if (!list_empty(&mddev->disks)) {
5118 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5119 							mdk_rdev_t, same_set);
5120 			err = super_types[mddev->major_version]
5121 				.load_super(rdev, rdev0, mddev->minor_version);
5122 			if (err < 0) {
5123 				printk(KERN_WARNING
5124 					"md: %s has different UUID to %s\n",
5125 					bdevname(rdev->bdev,b),
5126 					bdevname(rdev0->bdev,b2));
5127 				export_rdev(rdev);
5128 				return -EINVAL;
5129 			}
5130 		}
5131 		err = bind_rdev_to_array(rdev, mddev);
5132 		if (err)
5133 			export_rdev(rdev);
5134 		return err;
5135 	}
5136 
5137 	/*
5138 	 * add_new_disk can be used once the array is assembled
5139 	 * to add "hot spares".  They must already have a superblock
5140 	 * written
5141 	 */
5142 	if (mddev->pers) {
5143 		int err;
5144 		if (!mddev->pers->hot_add_disk) {
5145 			printk(KERN_WARNING
5146 				"%s: personality does not support diskops!\n",
5147 			       mdname(mddev));
5148 			return -EINVAL;
5149 		}
5150 		if (mddev->persistent)
5151 			rdev = md_import_device(dev, mddev->major_version,
5152 						mddev->minor_version);
5153 		else
5154 			rdev = md_import_device(dev, -1, -1);
5155 		if (IS_ERR(rdev)) {
5156 			printk(KERN_WARNING
5157 				"md: md_import_device returned %ld\n",
5158 				PTR_ERR(rdev));
5159 			return PTR_ERR(rdev);
5160 		}
5161 		/* set save_raid_disk if appropriate */
5162 		if (!mddev->persistent) {
5163 			if (info->state & (1<<MD_DISK_SYNC)  &&
5164 			    info->raid_disk < mddev->raid_disks)
5165 				rdev->raid_disk = info->raid_disk;
5166 			else
5167 				rdev->raid_disk = -1;
5168 		} else
5169 			super_types[mddev->major_version].
5170 				validate_super(mddev, rdev);
5171 		rdev->saved_raid_disk = rdev->raid_disk;
5172 
5173 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5174 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5175 			set_bit(WriteMostly, &rdev->flags);
5176 		else
5177 			clear_bit(WriteMostly, &rdev->flags);
5178 
5179 		rdev->raid_disk = -1;
5180 		err = bind_rdev_to_array(rdev, mddev);
5181 		if (!err && !mddev->pers->hot_remove_disk) {
5182 			/* If there is hot_add_disk but no hot_remove_disk
5183 			 * then added disks for geometry changes,
5184 			 * and should be added immediately.
5185 			 */
5186 			super_types[mddev->major_version].
5187 				validate_super(mddev, rdev);
5188 			err = mddev->pers->hot_add_disk(mddev, rdev);
5189 			if (err)
5190 				unbind_rdev_from_array(rdev);
5191 		}
5192 		if (err)
5193 			export_rdev(rdev);
5194 		else
5195 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5196 
5197 		md_update_sb(mddev, 1);
5198 		if (mddev->degraded)
5199 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5200 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5201 		md_wakeup_thread(mddev->thread);
5202 		return err;
5203 	}
5204 
5205 	/* otherwise, add_new_disk is only allowed
5206 	 * for major_version==0 superblocks
5207 	 */
5208 	if (mddev->major_version != 0) {
5209 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5210 		       mdname(mddev));
5211 		return -EINVAL;
5212 	}
5213 
5214 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5215 		int err;
5216 		rdev = md_import_device(dev, -1, 0);
5217 		if (IS_ERR(rdev)) {
5218 			printk(KERN_WARNING
5219 				"md: error, md_import_device() returned %ld\n",
5220 				PTR_ERR(rdev));
5221 			return PTR_ERR(rdev);
5222 		}
5223 		rdev->desc_nr = info->number;
5224 		if (info->raid_disk < mddev->raid_disks)
5225 			rdev->raid_disk = info->raid_disk;
5226 		else
5227 			rdev->raid_disk = -1;
5228 
5229 		if (rdev->raid_disk < mddev->raid_disks)
5230 			if (info->state & (1<<MD_DISK_SYNC))
5231 				set_bit(In_sync, &rdev->flags);
5232 
5233 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5234 			set_bit(WriteMostly, &rdev->flags);
5235 
5236 		if (!mddev->persistent) {
5237 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5238 			rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5239 		} else
5240 			rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5241 		rdev->sectors = rdev->sb_start;
5242 
5243 		err = bind_rdev_to_array(rdev, mddev);
5244 		if (err) {
5245 			export_rdev(rdev);
5246 			return err;
5247 		}
5248 	}
5249 
5250 	return 0;
5251 }
5252 
5253 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5254 {
5255 	char b[BDEVNAME_SIZE];
5256 	mdk_rdev_t *rdev;
5257 
5258 	rdev = find_rdev(mddev, dev);
5259 	if (!rdev)
5260 		return -ENXIO;
5261 
5262 	if (rdev->raid_disk >= 0)
5263 		goto busy;
5264 
5265 	kick_rdev_from_array(rdev);
5266 	md_update_sb(mddev, 1);
5267 	md_new_event(mddev);
5268 
5269 	return 0;
5270 busy:
5271 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5272 		bdevname(rdev->bdev,b), mdname(mddev));
5273 	return -EBUSY;
5274 }
5275 
5276 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5277 {
5278 	char b[BDEVNAME_SIZE];
5279 	int err;
5280 	mdk_rdev_t *rdev;
5281 
5282 	if (!mddev->pers)
5283 		return -ENODEV;
5284 
5285 	if (mddev->major_version != 0) {
5286 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5287 			" version-0 superblocks.\n",
5288 			mdname(mddev));
5289 		return -EINVAL;
5290 	}
5291 	if (!mddev->pers->hot_add_disk) {
5292 		printk(KERN_WARNING
5293 			"%s: personality does not support diskops!\n",
5294 			mdname(mddev));
5295 		return -EINVAL;
5296 	}
5297 
5298 	rdev = md_import_device(dev, -1, 0);
5299 	if (IS_ERR(rdev)) {
5300 		printk(KERN_WARNING
5301 			"md: error, md_import_device() returned %ld\n",
5302 			PTR_ERR(rdev));
5303 		return -EINVAL;
5304 	}
5305 
5306 	if (mddev->persistent)
5307 		rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5308 	else
5309 		rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5310 
5311 	rdev->sectors = rdev->sb_start;
5312 
5313 	if (test_bit(Faulty, &rdev->flags)) {
5314 		printk(KERN_WARNING
5315 			"md: can not hot-add faulty %s disk to %s!\n",
5316 			bdevname(rdev->bdev,b), mdname(mddev));
5317 		err = -EINVAL;
5318 		goto abort_export;
5319 	}
5320 	clear_bit(In_sync, &rdev->flags);
5321 	rdev->desc_nr = -1;
5322 	rdev->saved_raid_disk = -1;
5323 	err = bind_rdev_to_array(rdev, mddev);
5324 	if (err)
5325 		goto abort_export;
5326 
5327 	/*
5328 	 * The rest should better be atomic, we can have disk failures
5329 	 * noticed in interrupt contexts ...
5330 	 */
5331 
5332 	rdev->raid_disk = -1;
5333 
5334 	md_update_sb(mddev, 1);
5335 
5336 	/*
5337 	 * Kick recovery, maybe this spare has to be added to the
5338 	 * array immediately.
5339 	 */
5340 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5341 	md_wakeup_thread(mddev->thread);
5342 	md_new_event(mddev);
5343 	return 0;
5344 
5345 abort_export:
5346 	export_rdev(rdev);
5347 	return err;
5348 }
5349 
5350 static int set_bitmap_file(mddev_t *mddev, int fd)
5351 {
5352 	int err;
5353 
5354 	if (mddev->pers) {
5355 		if (!mddev->pers->quiesce)
5356 			return -EBUSY;
5357 		if (mddev->recovery || mddev->sync_thread)
5358 			return -EBUSY;
5359 		/* we should be able to change the bitmap.. */
5360 	}
5361 
5362 
5363 	if (fd >= 0) {
5364 		if (mddev->bitmap)
5365 			return -EEXIST; /* cannot add when bitmap is present */
5366 		mddev->bitmap_info.file = fget(fd);
5367 
5368 		if (mddev->bitmap_info.file == NULL) {
5369 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5370 			       mdname(mddev));
5371 			return -EBADF;
5372 		}
5373 
5374 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5375 		if (err) {
5376 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5377 			       mdname(mddev));
5378 			fput(mddev->bitmap_info.file);
5379 			mddev->bitmap_info.file = NULL;
5380 			return err;
5381 		}
5382 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5383 	} else if (mddev->bitmap == NULL)
5384 		return -ENOENT; /* cannot remove what isn't there */
5385 	err = 0;
5386 	if (mddev->pers) {
5387 		mddev->pers->quiesce(mddev, 1);
5388 		if (fd >= 0) {
5389 			err = bitmap_create(mddev);
5390 			if (!err)
5391 				err = bitmap_load(mddev);
5392 		}
5393 		if (fd < 0 || err) {
5394 			bitmap_destroy(mddev);
5395 			fd = -1; /* make sure to put the file */
5396 		}
5397 		mddev->pers->quiesce(mddev, 0);
5398 	}
5399 	if (fd < 0) {
5400 		if (mddev->bitmap_info.file) {
5401 			restore_bitmap_write_access(mddev->bitmap_info.file);
5402 			fput(mddev->bitmap_info.file);
5403 		}
5404 		mddev->bitmap_info.file = NULL;
5405 	}
5406 
5407 	return err;
5408 }
5409 
5410 /*
5411  * set_array_info is used two different ways
5412  * The original usage is when creating a new array.
5413  * In this usage, raid_disks is > 0 and it together with
5414  *  level, size, not_persistent,layout,chunksize determine the
5415  *  shape of the array.
5416  *  This will always create an array with a type-0.90.0 superblock.
5417  * The newer usage is when assembling an array.
5418  *  In this case raid_disks will be 0, and the major_version field is
5419  *  use to determine which style super-blocks are to be found on the devices.
5420  *  The minor and patch _version numbers are also kept incase the
5421  *  super_block handler wishes to interpret them.
5422  */
5423 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5424 {
5425 
5426 	if (info->raid_disks == 0) {
5427 		/* just setting version number for superblock loading */
5428 		if (info->major_version < 0 ||
5429 		    info->major_version >= ARRAY_SIZE(super_types) ||
5430 		    super_types[info->major_version].name == NULL) {
5431 			/* maybe try to auto-load a module? */
5432 			printk(KERN_INFO
5433 				"md: superblock version %d not known\n",
5434 				info->major_version);
5435 			return -EINVAL;
5436 		}
5437 		mddev->major_version = info->major_version;
5438 		mddev->minor_version = info->minor_version;
5439 		mddev->patch_version = info->patch_version;
5440 		mddev->persistent = !info->not_persistent;
5441 		/* ensure mddev_put doesn't delete this now that there
5442 		 * is some minimal configuration.
5443 		 */
5444 		mddev->ctime         = get_seconds();
5445 		return 0;
5446 	}
5447 	mddev->major_version = MD_MAJOR_VERSION;
5448 	mddev->minor_version = MD_MINOR_VERSION;
5449 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5450 	mddev->ctime         = get_seconds();
5451 
5452 	mddev->level         = info->level;
5453 	mddev->clevel[0]     = 0;
5454 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5455 	mddev->raid_disks    = info->raid_disks;
5456 	/* don't set md_minor, it is determined by which /dev/md* was
5457 	 * openned
5458 	 */
5459 	if (info->state & (1<<MD_SB_CLEAN))
5460 		mddev->recovery_cp = MaxSector;
5461 	else
5462 		mddev->recovery_cp = 0;
5463 	mddev->persistent    = ! info->not_persistent;
5464 	mddev->external	     = 0;
5465 
5466 	mddev->layout        = info->layout;
5467 	mddev->chunk_sectors = info->chunk_size >> 9;
5468 
5469 	mddev->max_disks     = MD_SB_DISKS;
5470 
5471 	if (mddev->persistent)
5472 		mddev->flags         = 0;
5473 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5474 
5475 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5476 	mddev->bitmap_info.offset = 0;
5477 
5478 	mddev->reshape_position = MaxSector;
5479 
5480 	/*
5481 	 * Generate a 128 bit UUID
5482 	 */
5483 	get_random_bytes(mddev->uuid, 16);
5484 
5485 	mddev->new_level = mddev->level;
5486 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5487 	mddev->new_layout = mddev->layout;
5488 	mddev->delta_disks = 0;
5489 
5490 	return 0;
5491 }
5492 
5493 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5494 {
5495 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5496 
5497 	if (mddev->external_size)
5498 		return;
5499 
5500 	mddev->array_sectors = array_sectors;
5501 }
5502 EXPORT_SYMBOL(md_set_array_sectors);
5503 
5504 static int update_size(mddev_t *mddev, sector_t num_sectors)
5505 {
5506 	mdk_rdev_t *rdev;
5507 	int rv;
5508 	int fit = (num_sectors == 0);
5509 
5510 	if (mddev->pers->resize == NULL)
5511 		return -EINVAL;
5512 	/* The "num_sectors" is the number of sectors of each device that
5513 	 * is used.  This can only make sense for arrays with redundancy.
5514 	 * linear and raid0 always use whatever space is available. We can only
5515 	 * consider changing this number if no resync or reconstruction is
5516 	 * happening, and if the new size is acceptable. It must fit before the
5517 	 * sb_start or, if that is <data_offset, it must fit before the size
5518 	 * of each device.  If num_sectors is zero, we find the largest size
5519 	 * that fits.
5520 
5521 	 */
5522 	if (mddev->sync_thread)
5523 		return -EBUSY;
5524 	if (mddev->bitmap)
5525 		/* Sorry, cannot grow a bitmap yet, just remove it,
5526 		 * grow, and re-add.
5527 		 */
5528 		return -EBUSY;
5529 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5530 		sector_t avail = rdev->sectors;
5531 
5532 		if (fit && (num_sectors == 0 || num_sectors > avail))
5533 			num_sectors = avail;
5534 		if (avail < num_sectors)
5535 			return -ENOSPC;
5536 	}
5537 	rv = mddev->pers->resize(mddev, num_sectors);
5538 	if (!rv)
5539 		revalidate_disk(mddev->gendisk);
5540 	return rv;
5541 }
5542 
5543 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5544 {
5545 	int rv;
5546 	/* change the number of raid disks */
5547 	if (mddev->pers->check_reshape == NULL)
5548 		return -EINVAL;
5549 	if (raid_disks <= 0 ||
5550 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
5551 		return -EINVAL;
5552 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5553 		return -EBUSY;
5554 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5555 
5556 	rv = mddev->pers->check_reshape(mddev);
5557 	return rv;
5558 }
5559 
5560 
5561 /*
5562  * update_array_info is used to change the configuration of an
5563  * on-line array.
5564  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5565  * fields in the info are checked against the array.
5566  * Any differences that cannot be handled will cause an error.
5567  * Normally, only one change can be managed at a time.
5568  */
5569 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5570 {
5571 	int rv = 0;
5572 	int cnt = 0;
5573 	int state = 0;
5574 
5575 	/* calculate expected state,ignoring low bits */
5576 	if (mddev->bitmap && mddev->bitmap_info.offset)
5577 		state |= (1 << MD_SB_BITMAP_PRESENT);
5578 
5579 	if (mddev->major_version != info->major_version ||
5580 	    mddev->minor_version != info->minor_version ||
5581 /*	    mddev->patch_version != info->patch_version || */
5582 	    mddev->ctime         != info->ctime         ||
5583 	    mddev->level         != info->level         ||
5584 /*	    mddev->layout        != info->layout        || */
5585 	    !mddev->persistent	 != info->not_persistent||
5586 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
5587 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5588 	    ((state^info->state) & 0xfffffe00)
5589 		)
5590 		return -EINVAL;
5591 	/* Check there is only one change */
5592 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5593 		cnt++;
5594 	if (mddev->raid_disks != info->raid_disks)
5595 		cnt++;
5596 	if (mddev->layout != info->layout)
5597 		cnt++;
5598 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5599 		cnt++;
5600 	if (cnt == 0)
5601 		return 0;
5602 	if (cnt > 1)
5603 		return -EINVAL;
5604 
5605 	if (mddev->layout != info->layout) {
5606 		/* Change layout
5607 		 * we don't need to do anything at the md level, the
5608 		 * personality will take care of it all.
5609 		 */
5610 		if (mddev->pers->check_reshape == NULL)
5611 			return -EINVAL;
5612 		else {
5613 			mddev->new_layout = info->layout;
5614 			rv = mddev->pers->check_reshape(mddev);
5615 			if (rv)
5616 				mddev->new_layout = mddev->layout;
5617 			return rv;
5618 		}
5619 	}
5620 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5621 		rv = update_size(mddev, (sector_t)info->size * 2);
5622 
5623 	if (mddev->raid_disks    != info->raid_disks)
5624 		rv = update_raid_disks(mddev, info->raid_disks);
5625 
5626 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5627 		if (mddev->pers->quiesce == NULL)
5628 			return -EINVAL;
5629 		if (mddev->recovery || mddev->sync_thread)
5630 			return -EBUSY;
5631 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5632 			/* add the bitmap */
5633 			if (mddev->bitmap)
5634 				return -EEXIST;
5635 			if (mddev->bitmap_info.default_offset == 0)
5636 				return -EINVAL;
5637 			mddev->bitmap_info.offset =
5638 				mddev->bitmap_info.default_offset;
5639 			mddev->pers->quiesce(mddev, 1);
5640 			rv = bitmap_create(mddev);
5641 			if (!rv)
5642 				rv = bitmap_load(mddev);
5643 			if (rv)
5644 				bitmap_destroy(mddev);
5645 			mddev->pers->quiesce(mddev, 0);
5646 		} else {
5647 			/* remove the bitmap */
5648 			if (!mddev->bitmap)
5649 				return -ENOENT;
5650 			if (mddev->bitmap->file)
5651 				return -EINVAL;
5652 			mddev->pers->quiesce(mddev, 1);
5653 			bitmap_destroy(mddev);
5654 			mddev->pers->quiesce(mddev, 0);
5655 			mddev->bitmap_info.offset = 0;
5656 		}
5657 	}
5658 	md_update_sb(mddev, 1);
5659 	return rv;
5660 }
5661 
5662 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5663 {
5664 	mdk_rdev_t *rdev;
5665 
5666 	if (mddev->pers == NULL)
5667 		return -ENODEV;
5668 
5669 	rdev = find_rdev(mddev, dev);
5670 	if (!rdev)
5671 		return -ENODEV;
5672 
5673 	md_error(mddev, rdev);
5674 	return 0;
5675 }
5676 
5677 /*
5678  * We have a problem here : there is no easy way to give a CHS
5679  * virtual geometry. We currently pretend that we have a 2 heads
5680  * 4 sectors (with a BIG number of cylinders...). This drives
5681  * dosfs just mad... ;-)
5682  */
5683 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5684 {
5685 	mddev_t *mddev = bdev->bd_disk->private_data;
5686 
5687 	geo->heads = 2;
5688 	geo->sectors = 4;
5689 	geo->cylinders = mddev->array_sectors / 8;
5690 	return 0;
5691 }
5692 
5693 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5694 			unsigned int cmd, unsigned long arg)
5695 {
5696 	int err = 0;
5697 	void __user *argp = (void __user *)arg;
5698 	mddev_t *mddev = NULL;
5699 	int ro;
5700 
5701 	if (!capable(CAP_SYS_ADMIN))
5702 		return -EACCES;
5703 
5704 	/*
5705 	 * Commands dealing with the RAID driver but not any
5706 	 * particular array:
5707 	 */
5708 	switch (cmd)
5709 	{
5710 		case RAID_VERSION:
5711 			err = get_version(argp);
5712 			goto done;
5713 
5714 		case PRINT_RAID_DEBUG:
5715 			err = 0;
5716 			md_print_devices();
5717 			goto done;
5718 
5719 #ifndef MODULE
5720 		case RAID_AUTORUN:
5721 			err = 0;
5722 			autostart_arrays(arg);
5723 			goto done;
5724 #endif
5725 		default:;
5726 	}
5727 
5728 	/*
5729 	 * Commands creating/starting a new array:
5730 	 */
5731 
5732 	mddev = bdev->bd_disk->private_data;
5733 
5734 	if (!mddev) {
5735 		BUG();
5736 		goto abort;
5737 	}
5738 
5739 	err = mddev_lock(mddev);
5740 	if (err) {
5741 		printk(KERN_INFO
5742 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
5743 			err, cmd);
5744 		goto abort;
5745 	}
5746 
5747 	switch (cmd)
5748 	{
5749 		case SET_ARRAY_INFO:
5750 			{
5751 				mdu_array_info_t info;
5752 				if (!arg)
5753 					memset(&info, 0, sizeof(info));
5754 				else if (copy_from_user(&info, argp, sizeof(info))) {
5755 					err = -EFAULT;
5756 					goto abort_unlock;
5757 				}
5758 				if (mddev->pers) {
5759 					err = update_array_info(mddev, &info);
5760 					if (err) {
5761 						printk(KERN_WARNING "md: couldn't update"
5762 						       " array info. %d\n", err);
5763 						goto abort_unlock;
5764 					}
5765 					goto done_unlock;
5766 				}
5767 				if (!list_empty(&mddev->disks)) {
5768 					printk(KERN_WARNING
5769 					       "md: array %s already has disks!\n",
5770 					       mdname(mddev));
5771 					err = -EBUSY;
5772 					goto abort_unlock;
5773 				}
5774 				if (mddev->raid_disks) {
5775 					printk(KERN_WARNING
5776 					       "md: array %s already initialised!\n",
5777 					       mdname(mddev));
5778 					err = -EBUSY;
5779 					goto abort_unlock;
5780 				}
5781 				err = set_array_info(mddev, &info);
5782 				if (err) {
5783 					printk(KERN_WARNING "md: couldn't set"
5784 					       " array info. %d\n", err);
5785 					goto abort_unlock;
5786 				}
5787 			}
5788 			goto done_unlock;
5789 
5790 		default:;
5791 	}
5792 
5793 	/*
5794 	 * Commands querying/configuring an existing array:
5795 	 */
5796 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5797 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5798 	if ((!mddev->raid_disks && !mddev->external)
5799 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5800 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5801 	    && cmd != GET_BITMAP_FILE) {
5802 		err = -ENODEV;
5803 		goto abort_unlock;
5804 	}
5805 
5806 	/*
5807 	 * Commands even a read-only array can execute:
5808 	 */
5809 	switch (cmd)
5810 	{
5811 		case GET_ARRAY_INFO:
5812 			err = get_array_info(mddev, argp);
5813 			goto done_unlock;
5814 
5815 		case GET_BITMAP_FILE:
5816 			err = get_bitmap_file(mddev, argp);
5817 			goto done_unlock;
5818 
5819 		case GET_DISK_INFO:
5820 			err = get_disk_info(mddev, argp);
5821 			goto done_unlock;
5822 
5823 		case RESTART_ARRAY_RW:
5824 			err = restart_array(mddev);
5825 			goto done_unlock;
5826 
5827 		case STOP_ARRAY:
5828 			err = do_md_stop(mddev, 0, 1);
5829 			goto done_unlock;
5830 
5831 		case STOP_ARRAY_RO:
5832 			err = md_set_readonly(mddev, 1);
5833 			goto done_unlock;
5834 
5835 		case BLKROSET:
5836 			if (get_user(ro, (int __user *)(arg))) {
5837 				err = -EFAULT;
5838 				goto done_unlock;
5839 			}
5840 			err = -EINVAL;
5841 
5842 			/* if the bdev is going readonly the value of mddev->ro
5843 			 * does not matter, no writes are coming
5844 			 */
5845 			if (ro)
5846 				goto done_unlock;
5847 
5848 			/* are we are already prepared for writes? */
5849 			if (mddev->ro != 1)
5850 				goto done_unlock;
5851 
5852 			/* transitioning to readauto need only happen for
5853 			 * arrays that call md_write_start
5854 			 */
5855 			if (mddev->pers) {
5856 				err = restart_array(mddev);
5857 				if (err == 0) {
5858 					mddev->ro = 2;
5859 					set_disk_ro(mddev->gendisk, 0);
5860 				}
5861 			}
5862 			goto done_unlock;
5863 	}
5864 
5865 	/*
5866 	 * The remaining ioctls are changing the state of the
5867 	 * superblock, so we do not allow them on read-only arrays.
5868 	 * However non-MD ioctls (e.g. get-size) will still come through
5869 	 * here and hit the 'default' below, so only disallow
5870 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5871 	 */
5872 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5873 		if (mddev->ro == 2) {
5874 			mddev->ro = 0;
5875 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5876 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5877 			md_wakeup_thread(mddev->thread);
5878 		} else {
5879 			err = -EROFS;
5880 			goto abort_unlock;
5881 		}
5882 	}
5883 
5884 	switch (cmd)
5885 	{
5886 		case ADD_NEW_DISK:
5887 		{
5888 			mdu_disk_info_t info;
5889 			if (copy_from_user(&info, argp, sizeof(info)))
5890 				err = -EFAULT;
5891 			else
5892 				err = add_new_disk(mddev, &info);
5893 			goto done_unlock;
5894 		}
5895 
5896 		case HOT_REMOVE_DISK:
5897 			err = hot_remove_disk(mddev, new_decode_dev(arg));
5898 			goto done_unlock;
5899 
5900 		case HOT_ADD_DISK:
5901 			err = hot_add_disk(mddev, new_decode_dev(arg));
5902 			goto done_unlock;
5903 
5904 		case SET_DISK_FAULTY:
5905 			err = set_disk_faulty(mddev, new_decode_dev(arg));
5906 			goto done_unlock;
5907 
5908 		case RUN_ARRAY:
5909 			err = do_md_run(mddev);
5910 			goto done_unlock;
5911 
5912 		case SET_BITMAP_FILE:
5913 			err = set_bitmap_file(mddev, (int)arg);
5914 			goto done_unlock;
5915 
5916 		default:
5917 			err = -EINVAL;
5918 			goto abort_unlock;
5919 	}
5920 
5921 done_unlock:
5922 abort_unlock:
5923 	if (mddev->hold_active == UNTIL_IOCTL &&
5924 	    err != -EINVAL)
5925 		mddev->hold_active = 0;
5926 	mddev_unlock(mddev);
5927 
5928 	return err;
5929 done:
5930 	if (err)
5931 		MD_BUG();
5932 abort:
5933 	return err;
5934 }
5935 #ifdef CONFIG_COMPAT
5936 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5937 		    unsigned int cmd, unsigned long arg)
5938 {
5939 	switch (cmd) {
5940 	case HOT_REMOVE_DISK:
5941 	case HOT_ADD_DISK:
5942 	case SET_DISK_FAULTY:
5943 	case SET_BITMAP_FILE:
5944 		/* These take in integer arg, do not convert */
5945 		break;
5946 	default:
5947 		arg = (unsigned long)compat_ptr(arg);
5948 		break;
5949 	}
5950 
5951 	return md_ioctl(bdev, mode, cmd, arg);
5952 }
5953 #endif /* CONFIG_COMPAT */
5954 
5955 static int md_open(struct block_device *bdev, fmode_t mode)
5956 {
5957 	/*
5958 	 * Succeed if we can lock the mddev, which confirms that
5959 	 * it isn't being stopped right now.
5960 	 */
5961 	mddev_t *mddev = mddev_find(bdev->bd_dev);
5962 	int err;
5963 
5964 	lock_kernel();
5965 	if (mddev->gendisk != bdev->bd_disk) {
5966 		/* we are racing with mddev_put which is discarding this
5967 		 * bd_disk.
5968 		 */
5969 		mddev_put(mddev);
5970 		/* Wait until bdev->bd_disk is definitely gone */
5971 		flush_scheduled_work();
5972 		/* Then retry the open from the top */
5973 		unlock_kernel();
5974 		return -ERESTARTSYS;
5975 	}
5976 	BUG_ON(mddev != bdev->bd_disk->private_data);
5977 
5978 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5979 		goto out;
5980 
5981 	err = 0;
5982 	atomic_inc(&mddev->openers);
5983 	mutex_unlock(&mddev->open_mutex);
5984 
5985 	check_disk_size_change(mddev->gendisk, bdev);
5986  out:
5987 	unlock_kernel();
5988 	return err;
5989 }
5990 
5991 static int md_release(struct gendisk *disk, fmode_t mode)
5992 {
5993  	mddev_t *mddev = disk->private_data;
5994 
5995 	BUG_ON(!mddev);
5996 	lock_kernel();
5997 	atomic_dec(&mddev->openers);
5998 	mddev_put(mddev);
5999 	unlock_kernel();
6000 
6001 	return 0;
6002 }
6003 static const struct block_device_operations md_fops =
6004 {
6005 	.owner		= THIS_MODULE,
6006 	.open		= md_open,
6007 	.release	= md_release,
6008 	.ioctl		= md_ioctl,
6009 #ifdef CONFIG_COMPAT
6010 	.compat_ioctl	= md_compat_ioctl,
6011 #endif
6012 	.getgeo		= md_getgeo,
6013 };
6014 
6015 static int md_thread(void * arg)
6016 {
6017 	mdk_thread_t *thread = arg;
6018 
6019 	/*
6020 	 * md_thread is a 'system-thread', it's priority should be very
6021 	 * high. We avoid resource deadlocks individually in each
6022 	 * raid personality. (RAID5 does preallocation) We also use RR and
6023 	 * the very same RT priority as kswapd, thus we will never get
6024 	 * into a priority inversion deadlock.
6025 	 *
6026 	 * we definitely have to have equal or higher priority than
6027 	 * bdflush, otherwise bdflush will deadlock if there are too
6028 	 * many dirty RAID5 blocks.
6029 	 */
6030 
6031 	allow_signal(SIGKILL);
6032 	while (!kthread_should_stop()) {
6033 
6034 		/* We need to wait INTERRUPTIBLE so that
6035 		 * we don't add to the load-average.
6036 		 * That means we need to be sure no signals are
6037 		 * pending
6038 		 */
6039 		if (signal_pending(current))
6040 			flush_signals(current);
6041 
6042 		wait_event_interruptible_timeout
6043 			(thread->wqueue,
6044 			 test_bit(THREAD_WAKEUP, &thread->flags)
6045 			 || kthread_should_stop(),
6046 			 thread->timeout);
6047 
6048 		clear_bit(THREAD_WAKEUP, &thread->flags);
6049 
6050 		thread->run(thread->mddev);
6051 	}
6052 
6053 	return 0;
6054 }
6055 
6056 void md_wakeup_thread(mdk_thread_t *thread)
6057 {
6058 	if (thread) {
6059 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6060 		set_bit(THREAD_WAKEUP, &thread->flags);
6061 		wake_up(&thread->wqueue);
6062 	}
6063 }
6064 
6065 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6066 				 const char *name)
6067 {
6068 	mdk_thread_t *thread;
6069 
6070 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6071 	if (!thread)
6072 		return NULL;
6073 
6074 	init_waitqueue_head(&thread->wqueue);
6075 
6076 	thread->run = run;
6077 	thread->mddev = mddev;
6078 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6079 	thread->tsk = kthread_run(md_thread, thread,
6080 				  "%s_%s",
6081 				  mdname(thread->mddev),
6082 				  name ?: mddev->pers->name);
6083 	if (IS_ERR(thread->tsk)) {
6084 		kfree(thread);
6085 		return NULL;
6086 	}
6087 	return thread;
6088 }
6089 
6090 void md_unregister_thread(mdk_thread_t *thread)
6091 {
6092 	if (!thread)
6093 		return;
6094 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6095 
6096 	kthread_stop(thread->tsk);
6097 	kfree(thread);
6098 }
6099 
6100 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6101 {
6102 	if (!mddev) {
6103 		MD_BUG();
6104 		return;
6105 	}
6106 
6107 	if (!rdev || test_bit(Faulty, &rdev->flags))
6108 		return;
6109 
6110 	if (mddev->external)
6111 		set_bit(Blocked, &rdev->flags);
6112 /*
6113 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6114 		mdname(mddev),
6115 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6116 		__builtin_return_address(0),__builtin_return_address(1),
6117 		__builtin_return_address(2),__builtin_return_address(3));
6118 */
6119 	if (!mddev->pers)
6120 		return;
6121 	if (!mddev->pers->error_handler)
6122 		return;
6123 	mddev->pers->error_handler(mddev,rdev);
6124 	if (mddev->degraded)
6125 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6126 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6127 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6128 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6129 	md_wakeup_thread(mddev->thread);
6130 	if (mddev->event_work.func)
6131 		schedule_work(&mddev->event_work);
6132 	md_new_event_inintr(mddev);
6133 }
6134 
6135 /* seq_file implementation /proc/mdstat */
6136 
6137 static void status_unused(struct seq_file *seq)
6138 {
6139 	int i = 0;
6140 	mdk_rdev_t *rdev;
6141 
6142 	seq_printf(seq, "unused devices: ");
6143 
6144 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6145 		char b[BDEVNAME_SIZE];
6146 		i++;
6147 		seq_printf(seq, "%s ",
6148 			      bdevname(rdev->bdev,b));
6149 	}
6150 	if (!i)
6151 		seq_printf(seq, "<none>");
6152 
6153 	seq_printf(seq, "\n");
6154 }
6155 
6156 
6157 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6158 {
6159 	sector_t max_sectors, resync, res;
6160 	unsigned long dt, db;
6161 	sector_t rt;
6162 	int scale;
6163 	unsigned int per_milli;
6164 
6165 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6166 
6167 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6168 		max_sectors = mddev->resync_max_sectors;
6169 	else
6170 		max_sectors = mddev->dev_sectors;
6171 
6172 	/*
6173 	 * Should not happen.
6174 	 */
6175 	if (!max_sectors) {
6176 		MD_BUG();
6177 		return;
6178 	}
6179 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6180 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6181 	 * u32, as those are the requirements for sector_div.
6182 	 * Thus 'scale' must be at least 10
6183 	 */
6184 	scale = 10;
6185 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6186 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6187 			scale++;
6188 	}
6189 	res = (resync>>scale)*1000;
6190 	sector_div(res, (u32)((max_sectors>>scale)+1));
6191 
6192 	per_milli = res;
6193 	{
6194 		int i, x = per_milli/50, y = 20-x;
6195 		seq_printf(seq, "[");
6196 		for (i = 0; i < x; i++)
6197 			seq_printf(seq, "=");
6198 		seq_printf(seq, ">");
6199 		for (i = 0; i < y; i++)
6200 			seq_printf(seq, ".");
6201 		seq_printf(seq, "] ");
6202 	}
6203 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6204 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6205 		    "reshape" :
6206 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6207 		     "check" :
6208 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6209 		      "resync" : "recovery"))),
6210 		   per_milli/10, per_milli % 10,
6211 		   (unsigned long long) resync/2,
6212 		   (unsigned long long) max_sectors/2);
6213 
6214 	/*
6215 	 * dt: time from mark until now
6216 	 * db: blocks written from mark until now
6217 	 * rt: remaining time
6218 	 *
6219 	 * rt is a sector_t, so could be 32bit or 64bit.
6220 	 * So we divide before multiply in case it is 32bit and close
6221 	 * to the limit.
6222 	 * We scale the divisor (db) by 32 to avoid loosing precision
6223 	 * near the end of resync when the number of remaining sectors
6224 	 * is close to 'db'.
6225 	 * We then divide rt by 32 after multiplying by db to compensate.
6226 	 * The '+1' avoids division by zero if db is very small.
6227 	 */
6228 	dt = ((jiffies - mddev->resync_mark) / HZ);
6229 	if (!dt) dt++;
6230 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6231 		- mddev->resync_mark_cnt;
6232 
6233 	rt = max_sectors - resync;    /* number of remaining sectors */
6234 	sector_div(rt, db/32+1);
6235 	rt *= dt;
6236 	rt >>= 5;
6237 
6238 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6239 		   ((unsigned long)rt % 60)/6);
6240 
6241 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6242 }
6243 
6244 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6245 {
6246 	struct list_head *tmp;
6247 	loff_t l = *pos;
6248 	mddev_t *mddev;
6249 
6250 	if (l >= 0x10000)
6251 		return NULL;
6252 	if (!l--)
6253 		/* header */
6254 		return (void*)1;
6255 
6256 	spin_lock(&all_mddevs_lock);
6257 	list_for_each(tmp,&all_mddevs)
6258 		if (!l--) {
6259 			mddev = list_entry(tmp, mddev_t, all_mddevs);
6260 			mddev_get(mddev);
6261 			spin_unlock(&all_mddevs_lock);
6262 			return mddev;
6263 		}
6264 	spin_unlock(&all_mddevs_lock);
6265 	if (!l--)
6266 		return (void*)2;/* tail */
6267 	return NULL;
6268 }
6269 
6270 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6271 {
6272 	struct list_head *tmp;
6273 	mddev_t *next_mddev, *mddev = v;
6274 
6275 	++*pos;
6276 	if (v == (void*)2)
6277 		return NULL;
6278 
6279 	spin_lock(&all_mddevs_lock);
6280 	if (v == (void*)1)
6281 		tmp = all_mddevs.next;
6282 	else
6283 		tmp = mddev->all_mddevs.next;
6284 	if (tmp != &all_mddevs)
6285 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6286 	else {
6287 		next_mddev = (void*)2;
6288 		*pos = 0x10000;
6289 	}
6290 	spin_unlock(&all_mddevs_lock);
6291 
6292 	if (v != (void*)1)
6293 		mddev_put(mddev);
6294 	return next_mddev;
6295 
6296 }
6297 
6298 static void md_seq_stop(struct seq_file *seq, void *v)
6299 {
6300 	mddev_t *mddev = v;
6301 
6302 	if (mddev && v != (void*)1 && v != (void*)2)
6303 		mddev_put(mddev);
6304 }
6305 
6306 struct mdstat_info {
6307 	int event;
6308 };
6309 
6310 static int md_seq_show(struct seq_file *seq, void *v)
6311 {
6312 	mddev_t *mddev = v;
6313 	sector_t sectors;
6314 	mdk_rdev_t *rdev;
6315 	struct mdstat_info *mi = seq->private;
6316 	struct bitmap *bitmap;
6317 
6318 	if (v == (void*)1) {
6319 		struct mdk_personality *pers;
6320 		seq_printf(seq, "Personalities : ");
6321 		spin_lock(&pers_lock);
6322 		list_for_each_entry(pers, &pers_list, list)
6323 			seq_printf(seq, "[%s] ", pers->name);
6324 
6325 		spin_unlock(&pers_lock);
6326 		seq_printf(seq, "\n");
6327 		mi->event = atomic_read(&md_event_count);
6328 		return 0;
6329 	}
6330 	if (v == (void*)2) {
6331 		status_unused(seq);
6332 		return 0;
6333 	}
6334 
6335 	if (mddev_lock(mddev) < 0)
6336 		return -EINTR;
6337 
6338 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6339 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6340 						mddev->pers ? "" : "in");
6341 		if (mddev->pers) {
6342 			if (mddev->ro==1)
6343 				seq_printf(seq, " (read-only)");
6344 			if (mddev->ro==2)
6345 				seq_printf(seq, " (auto-read-only)");
6346 			seq_printf(seq, " %s", mddev->pers->name);
6347 		}
6348 
6349 		sectors = 0;
6350 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6351 			char b[BDEVNAME_SIZE];
6352 			seq_printf(seq, " %s[%d]",
6353 				bdevname(rdev->bdev,b), rdev->desc_nr);
6354 			if (test_bit(WriteMostly, &rdev->flags))
6355 				seq_printf(seq, "(W)");
6356 			if (test_bit(Faulty, &rdev->flags)) {
6357 				seq_printf(seq, "(F)");
6358 				continue;
6359 			} else if (rdev->raid_disk < 0)
6360 				seq_printf(seq, "(S)"); /* spare */
6361 			sectors += rdev->sectors;
6362 		}
6363 
6364 		if (!list_empty(&mddev->disks)) {
6365 			if (mddev->pers)
6366 				seq_printf(seq, "\n      %llu blocks",
6367 					   (unsigned long long)
6368 					   mddev->array_sectors / 2);
6369 			else
6370 				seq_printf(seq, "\n      %llu blocks",
6371 					   (unsigned long long)sectors / 2);
6372 		}
6373 		if (mddev->persistent) {
6374 			if (mddev->major_version != 0 ||
6375 			    mddev->minor_version != 90) {
6376 				seq_printf(seq," super %d.%d",
6377 					   mddev->major_version,
6378 					   mddev->minor_version);
6379 			}
6380 		} else if (mddev->external)
6381 			seq_printf(seq, " super external:%s",
6382 				   mddev->metadata_type);
6383 		else
6384 			seq_printf(seq, " super non-persistent");
6385 
6386 		if (mddev->pers) {
6387 			mddev->pers->status(seq, mddev);
6388 	 		seq_printf(seq, "\n      ");
6389 			if (mddev->pers->sync_request) {
6390 				if (mddev->curr_resync > 2) {
6391 					status_resync(seq, mddev);
6392 					seq_printf(seq, "\n      ");
6393 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6394 					seq_printf(seq, "\tresync=DELAYED\n      ");
6395 				else if (mddev->recovery_cp < MaxSector)
6396 					seq_printf(seq, "\tresync=PENDING\n      ");
6397 			}
6398 		} else
6399 			seq_printf(seq, "\n       ");
6400 
6401 		if ((bitmap = mddev->bitmap)) {
6402 			unsigned long chunk_kb;
6403 			unsigned long flags;
6404 			spin_lock_irqsave(&bitmap->lock, flags);
6405 			chunk_kb = mddev->bitmap_info.chunksize >> 10;
6406 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6407 				"%lu%s chunk",
6408 				bitmap->pages - bitmap->missing_pages,
6409 				bitmap->pages,
6410 				(bitmap->pages - bitmap->missing_pages)
6411 					<< (PAGE_SHIFT - 10),
6412 				chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6413 				chunk_kb ? "KB" : "B");
6414 			if (bitmap->file) {
6415 				seq_printf(seq, ", file: ");
6416 				seq_path(seq, &bitmap->file->f_path, " \t\n");
6417 			}
6418 
6419 			seq_printf(seq, "\n");
6420 			spin_unlock_irqrestore(&bitmap->lock, flags);
6421 		}
6422 
6423 		seq_printf(seq, "\n");
6424 	}
6425 	mddev_unlock(mddev);
6426 
6427 	return 0;
6428 }
6429 
6430 static const struct seq_operations md_seq_ops = {
6431 	.start  = md_seq_start,
6432 	.next   = md_seq_next,
6433 	.stop   = md_seq_stop,
6434 	.show   = md_seq_show,
6435 };
6436 
6437 static int md_seq_open(struct inode *inode, struct file *file)
6438 {
6439 	int error;
6440 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6441 	if (mi == NULL)
6442 		return -ENOMEM;
6443 
6444 	error = seq_open(file, &md_seq_ops);
6445 	if (error)
6446 		kfree(mi);
6447 	else {
6448 		struct seq_file *p = file->private_data;
6449 		p->private = mi;
6450 		mi->event = atomic_read(&md_event_count);
6451 	}
6452 	return error;
6453 }
6454 
6455 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6456 {
6457 	struct seq_file *m = filp->private_data;
6458 	struct mdstat_info *mi = m->private;
6459 	int mask;
6460 
6461 	poll_wait(filp, &md_event_waiters, wait);
6462 
6463 	/* always allow read */
6464 	mask = POLLIN | POLLRDNORM;
6465 
6466 	if (mi->event != atomic_read(&md_event_count))
6467 		mask |= POLLERR | POLLPRI;
6468 	return mask;
6469 }
6470 
6471 static const struct file_operations md_seq_fops = {
6472 	.owner		= THIS_MODULE,
6473 	.open           = md_seq_open,
6474 	.read           = seq_read,
6475 	.llseek         = seq_lseek,
6476 	.release	= seq_release_private,
6477 	.poll		= mdstat_poll,
6478 };
6479 
6480 int register_md_personality(struct mdk_personality *p)
6481 {
6482 	spin_lock(&pers_lock);
6483 	list_add_tail(&p->list, &pers_list);
6484 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6485 	spin_unlock(&pers_lock);
6486 	return 0;
6487 }
6488 
6489 int unregister_md_personality(struct mdk_personality *p)
6490 {
6491 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6492 	spin_lock(&pers_lock);
6493 	list_del_init(&p->list);
6494 	spin_unlock(&pers_lock);
6495 	return 0;
6496 }
6497 
6498 static int is_mddev_idle(mddev_t *mddev, int init)
6499 {
6500 	mdk_rdev_t * rdev;
6501 	int idle;
6502 	int curr_events;
6503 
6504 	idle = 1;
6505 	rcu_read_lock();
6506 	rdev_for_each_rcu(rdev, mddev) {
6507 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6508 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6509 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6510 			      atomic_read(&disk->sync_io);
6511 		/* sync IO will cause sync_io to increase before the disk_stats
6512 		 * as sync_io is counted when a request starts, and
6513 		 * disk_stats is counted when it completes.
6514 		 * So resync activity will cause curr_events to be smaller than
6515 		 * when there was no such activity.
6516 		 * non-sync IO will cause disk_stat to increase without
6517 		 * increasing sync_io so curr_events will (eventually)
6518 		 * be larger than it was before.  Once it becomes
6519 		 * substantially larger, the test below will cause
6520 		 * the array to appear non-idle, and resync will slow
6521 		 * down.
6522 		 * If there is a lot of outstanding resync activity when
6523 		 * we set last_event to curr_events, then all that activity
6524 		 * completing might cause the array to appear non-idle
6525 		 * and resync will be slowed down even though there might
6526 		 * not have been non-resync activity.  This will only
6527 		 * happen once though.  'last_events' will soon reflect
6528 		 * the state where there is little or no outstanding
6529 		 * resync requests, and further resync activity will
6530 		 * always make curr_events less than last_events.
6531 		 *
6532 		 */
6533 		if (init || curr_events - rdev->last_events > 64) {
6534 			rdev->last_events = curr_events;
6535 			idle = 0;
6536 		}
6537 	}
6538 	rcu_read_unlock();
6539 	return idle;
6540 }
6541 
6542 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6543 {
6544 	/* another "blocks" (512byte) blocks have been synced */
6545 	atomic_sub(blocks, &mddev->recovery_active);
6546 	wake_up(&mddev->recovery_wait);
6547 	if (!ok) {
6548 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6549 		md_wakeup_thread(mddev->thread);
6550 		// stop recovery, signal do_sync ....
6551 	}
6552 }
6553 
6554 
6555 /* md_write_start(mddev, bi)
6556  * If we need to update some array metadata (e.g. 'active' flag
6557  * in superblock) before writing, schedule a superblock update
6558  * and wait for it to complete.
6559  */
6560 void md_write_start(mddev_t *mddev, struct bio *bi)
6561 {
6562 	int did_change = 0;
6563 	if (bio_data_dir(bi) != WRITE)
6564 		return;
6565 
6566 	BUG_ON(mddev->ro == 1);
6567 	if (mddev->ro == 2) {
6568 		/* need to switch to read/write */
6569 		mddev->ro = 0;
6570 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6571 		md_wakeup_thread(mddev->thread);
6572 		md_wakeup_thread(mddev->sync_thread);
6573 		did_change = 1;
6574 	}
6575 	atomic_inc(&mddev->writes_pending);
6576 	if (mddev->safemode == 1)
6577 		mddev->safemode = 0;
6578 	if (mddev->in_sync) {
6579 		spin_lock_irq(&mddev->write_lock);
6580 		if (mddev->in_sync) {
6581 			mddev->in_sync = 0;
6582 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6583 			md_wakeup_thread(mddev->thread);
6584 			did_change = 1;
6585 		}
6586 		spin_unlock_irq(&mddev->write_lock);
6587 	}
6588 	if (did_change)
6589 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6590 	wait_event(mddev->sb_wait,
6591 		   !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6592 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6593 }
6594 
6595 void md_write_end(mddev_t *mddev)
6596 {
6597 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6598 		if (mddev->safemode == 2)
6599 			md_wakeup_thread(mddev->thread);
6600 		else if (mddev->safemode_delay)
6601 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6602 	}
6603 }
6604 
6605 /* md_allow_write(mddev)
6606  * Calling this ensures that the array is marked 'active' so that writes
6607  * may proceed without blocking.  It is important to call this before
6608  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6609  * Must be called with mddev_lock held.
6610  *
6611  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6612  * is dropped, so return -EAGAIN after notifying userspace.
6613  */
6614 int md_allow_write(mddev_t *mddev)
6615 {
6616 	if (!mddev->pers)
6617 		return 0;
6618 	if (mddev->ro)
6619 		return 0;
6620 	if (!mddev->pers->sync_request)
6621 		return 0;
6622 
6623 	spin_lock_irq(&mddev->write_lock);
6624 	if (mddev->in_sync) {
6625 		mddev->in_sync = 0;
6626 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6627 		if (mddev->safemode_delay &&
6628 		    mddev->safemode == 0)
6629 			mddev->safemode = 1;
6630 		spin_unlock_irq(&mddev->write_lock);
6631 		md_update_sb(mddev, 0);
6632 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6633 	} else
6634 		spin_unlock_irq(&mddev->write_lock);
6635 
6636 	if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6637 		return -EAGAIN;
6638 	else
6639 		return 0;
6640 }
6641 EXPORT_SYMBOL_GPL(md_allow_write);
6642 
6643 void md_unplug(mddev_t *mddev)
6644 {
6645 	if (mddev->queue)
6646 		blk_unplug(mddev->queue);
6647 	if (mddev->plug)
6648 		mddev->plug->unplug_fn(mddev->plug);
6649 }
6650 
6651 #define SYNC_MARKS	10
6652 #define	SYNC_MARK_STEP	(3*HZ)
6653 void md_do_sync(mddev_t *mddev)
6654 {
6655 	mddev_t *mddev2;
6656 	unsigned int currspeed = 0,
6657 		 window;
6658 	sector_t max_sectors,j, io_sectors;
6659 	unsigned long mark[SYNC_MARKS];
6660 	sector_t mark_cnt[SYNC_MARKS];
6661 	int last_mark,m;
6662 	struct list_head *tmp;
6663 	sector_t last_check;
6664 	int skipped = 0;
6665 	mdk_rdev_t *rdev;
6666 	char *desc;
6667 
6668 	/* just incase thread restarts... */
6669 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6670 		return;
6671 	if (mddev->ro) /* never try to sync a read-only array */
6672 		return;
6673 
6674 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6675 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6676 			desc = "data-check";
6677 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6678 			desc = "requested-resync";
6679 		else
6680 			desc = "resync";
6681 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6682 		desc = "reshape";
6683 	else
6684 		desc = "recovery";
6685 
6686 	/* we overload curr_resync somewhat here.
6687 	 * 0 == not engaged in resync at all
6688 	 * 2 == checking that there is no conflict with another sync
6689 	 * 1 == like 2, but have yielded to allow conflicting resync to
6690 	 *		commense
6691 	 * other == active in resync - this many blocks
6692 	 *
6693 	 * Before starting a resync we must have set curr_resync to
6694 	 * 2, and then checked that every "conflicting" array has curr_resync
6695 	 * less than ours.  When we find one that is the same or higher
6696 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
6697 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6698 	 * This will mean we have to start checking from the beginning again.
6699 	 *
6700 	 */
6701 
6702 	do {
6703 		mddev->curr_resync = 2;
6704 
6705 	try_again:
6706 		if (kthread_should_stop())
6707 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6708 
6709 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6710 			goto skip;
6711 		for_each_mddev(mddev2, tmp) {
6712 			if (mddev2 == mddev)
6713 				continue;
6714 			if (!mddev->parallel_resync
6715 			&&  mddev2->curr_resync
6716 			&&  match_mddev_units(mddev, mddev2)) {
6717 				DEFINE_WAIT(wq);
6718 				if (mddev < mddev2 && mddev->curr_resync == 2) {
6719 					/* arbitrarily yield */
6720 					mddev->curr_resync = 1;
6721 					wake_up(&resync_wait);
6722 				}
6723 				if (mddev > mddev2 && mddev->curr_resync == 1)
6724 					/* no need to wait here, we can wait the next
6725 					 * time 'round when curr_resync == 2
6726 					 */
6727 					continue;
6728 				/* We need to wait 'interruptible' so as not to
6729 				 * contribute to the load average, and not to
6730 				 * be caught by 'softlockup'
6731 				 */
6732 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6733 				if (!kthread_should_stop() &&
6734 				    mddev2->curr_resync >= mddev->curr_resync) {
6735 					printk(KERN_INFO "md: delaying %s of %s"
6736 					       " until %s has finished (they"
6737 					       " share one or more physical units)\n",
6738 					       desc, mdname(mddev), mdname(mddev2));
6739 					mddev_put(mddev2);
6740 					if (signal_pending(current))
6741 						flush_signals(current);
6742 					schedule();
6743 					finish_wait(&resync_wait, &wq);
6744 					goto try_again;
6745 				}
6746 				finish_wait(&resync_wait, &wq);
6747 			}
6748 		}
6749 	} while (mddev->curr_resync < 2);
6750 
6751 	j = 0;
6752 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6753 		/* resync follows the size requested by the personality,
6754 		 * which defaults to physical size, but can be virtual size
6755 		 */
6756 		max_sectors = mddev->resync_max_sectors;
6757 		mddev->resync_mismatches = 0;
6758 		/* we don't use the checkpoint if there's a bitmap */
6759 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6760 			j = mddev->resync_min;
6761 		else if (!mddev->bitmap)
6762 			j = mddev->recovery_cp;
6763 
6764 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6765 		max_sectors = mddev->dev_sectors;
6766 	else {
6767 		/* recovery follows the physical size of devices */
6768 		max_sectors = mddev->dev_sectors;
6769 		j = MaxSector;
6770 		rcu_read_lock();
6771 		list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6772 			if (rdev->raid_disk >= 0 &&
6773 			    !test_bit(Faulty, &rdev->flags) &&
6774 			    !test_bit(In_sync, &rdev->flags) &&
6775 			    rdev->recovery_offset < j)
6776 				j = rdev->recovery_offset;
6777 		rcu_read_unlock();
6778 	}
6779 
6780 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6781 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
6782 		" %d KB/sec/disk.\n", speed_min(mddev));
6783 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6784 	       "(but not more than %d KB/sec) for %s.\n",
6785 	       speed_max(mddev), desc);
6786 
6787 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6788 
6789 	io_sectors = 0;
6790 	for (m = 0; m < SYNC_MARKS; m++) {
6791 		mark[m] = jiffies;
6792 		mark_cnt[m] = io_sectors;
6793 	}
6794 	last_mark = 0;
6795 	mddev->resync_mark = mark[last_mark];
6796 	mddev->resync_mark_cnt = mark_cnt[last_mark];
6797 
6798 	/*
6799 	 * Tune reconstruction:
6800 	 */
6801 	window = 32*(PAGE_SIZE/512);
6802 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6803 		window/2,(unsigned long long) max_sectors/2);
6804 
6805 	atomic_set(&mddev->recovery_active, 0);
6806 	last_check = 0;
6807 
6808 	if (j>2) {
6809 		printk(KERN_INFO
6810 		       "md: resuming %s of %s from checkpoint.\n",
6811 		       desc, mdname(mddev));
6812 		mddev->curr_resync = j;
6813 	}
6814 	mddev->curr_resync_completed = mddev->curr_resync;
6815 
6816 	while (j < max_sectors) {
6817 		sector_t sectors;
6818 
6819 		skipped = 0;
6820 
6821 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6822 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
6823 		      (mddev->curr_resync - mddev->curr_resync_completed)
6824 		      > (max_sectors >> 4)) ||
6825 		     (j - mddev->curr_resync_completed)*2
6826 		     >= mddev->resync_max - mddev->curr_resync_completed
6827 			    )) {
6828 			/* time to update curr_resync_completed */
6829 			md_unplug(mddev);
6830 			wait_event(mddev->recovery_wait,
6831 				   atomic_read(&mddev->recovery_active) == 0);
6832 			mddev->curr_resync_completed =
6833 				mddev->curr_resync;
6834 			if (mddev->persistent)
6835 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6836 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6837 		}
6838 
6839 		while (j >= mddev->resync_max && !kthread_should_stop()) {
6840 			/* As this condition is controlled by user-space,
6841 			 * we can block indefinitely, so use '_interruptible'
6842 			 * to avoid triggering warnings.
6843 			 */
6844 			flush_signals(current); /* just in case */
6845 			wait_event_interruptible(mddev->recovery_wait,
6846 						 mddev->resync_max > j
6847 						 || kthread_should_stop());
6848 		}
6849 
6850 		if (kthread_should_stop())
6851 			goto interrupted;
6852 
6853 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
6854 						  currspeed < speed_min(mddev));
6855 		if (sectors == 0) {
6856 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6857 			goto out;
6858 		}
6859 
6860 		if (!skipped) { /* actual IO requested */
6861 			io_sectors += sectors;
6862 			atomic_add(sectors, &mddev->recovery_active);
6863 		}
6864 
6865 		j += sectors;
6866 		if (j>1) mddev->curr_resync = j;
6867 		mddev->curr_mark_cnt = io_sectors;
6868 		if (last_check == 0)
6869 			/* this is the earliers that rebuilt will be
6870 			 * visible in /proc/mdstat
6871 			 */
6872 			md_new_event(mddev);
6873 
6874 		if (last_check + window > io_sectors || j == max_sectors)
6875 			continue;
6876 
6877 		last_check = io_sectors;
6878 
6879 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6880 			break;
6881 
6882 	repeat:
6883 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6884 			/* step marks */
6885 			int next = (last_mark+1) % SYNC_MARKS;
6886 
6887 			mddev->resync_mark = mark[next];
6888 			mddev->resync_mark_cnt = mark_cnt[next];
6889 			mark[next] = jiffies;
6890 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6891 			last_mark = next;
6892 		}
6893 
6894 
6895 		if (kthread_should_stop())
6896 			goto interrupted;
6897 
6898 
6899 		/*
6900 		 * this loop exits only if either when we are slower than
6901 		 * the 'hard' speed limit, or the system was IO-idle for
6902 		 * a jiffy.
6903 		 * the system might be non-idle CPU-wise, but we only care
6904 		 * about not overloading the IO subsystem. (things like an
6905 		 * e2fsck being done on the RAID array should execute fast)
6906 		 */
6907 		md_unplug(mddev);
6908 		cond_resched();
6909 
6910 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6911 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
6912 
6913 		if (currspeed > speed_min(mddev)) {
6914 			if ((currspeed > speed_max(mddev)) ||
6915 					!is_mddev_idle(mddev, 0)) {
6916 				msleep(500);
6917 				goto repeat;
6918 			}
6919 		}
6920 	}
6921 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6922 	/*
6923 	 * this also signals 'finished resyncing' to md_stop
6924 	 */
6925  out:
6926 	md_unplug(mddev);
6927 
6928 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6929 
6930 	/* tell personality that we are finished */
6931 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6932 
6933 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6934 	    mddev->curr_resync > 2) {
6935 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6936 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6937 				if (mddev->curr_resync >= mddev->recovery_cp) {
6938 					printk(KERN_INFO
6939 					       "md: checkpointing %s of %s.\n",
6940 					       desc, mdname(mddev));
6941 					mddev->recovery_cp = mddev->curr_resync;
6942 				}
6943 			} else
6944 				mddev->recovery_cp = MaxSector;
6945 		} else {
6946 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6947 				mddev->curr_resync = MaxSector;
6948 			rcu_read_lock();
6949 			list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6950 				if (rdev->raid_disk >= 0 &&
6951 				    mddev->delta_disks >= 0 &&
6952 				    !test_bit(Faulty, &rdev->flags) &&
6953 				    !test_bit(In_sync, &rdev->flags) &&
6954 				    rdev->recovery_offset < mddev->curr_resync)
6955 					rdev->recovery_offset = mddev->curr_resync;
6956 			rcu_read_unlock();
6957 		}
6958 	}
6959 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6960 
6961  skip:
6962 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6963 		/* We completed so min/max setting can be forgotten if used. */
6964 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6965 			mddev->resync_min = 0;
6966 		mddev->resync_max = MaxSector;
6967 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6968 		mddev->resync_min = mddev->curr_resync_completed;
6969 	mddev->curr_resync = 0;
6970 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6971 		mddev->curr_resync_completed = 0;
6972 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6973 	wake_up(&resync_wait);
6974 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6975 	md_wakeup_thread(mddev->thread);
6976 	return;
6977 
6978  interrupted:
6979 	/*
6980 	 * got a signal, exit.
6981 	 */
6982 	printk(KERN_INFO
6983 	       "md: md_do_sync() got signal ... exiting\n");
6984 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6985 	goto out;
6986 
6987 }
6988 EXPORT_SYMBOL_GPL(md_do_sync);
6989 
6990 
6991 static int remove_and_add_spares(mddev_t *mddev)
6992 {
6993 	mdk_rdev_t *rdev;
6994 	int spares = 0;
6995 
6996 	mddev->curr_resync_completed = 0;
6997 
6998 	list_for_each_entry(rdev, &mddev->disks, same_set)
6999 		if (rdev->raid_disk >= 0 &&
7000 		    !test_bit(Blocked, &rdev->flags) &&
7001 		    (test_bit(Faulty, &rdev->flags) ||
7002 		     ! test_bit(In_sync, &rdev->flags)) &&
7003 		    atomic_read(&rdev->nr_pending)==0) {
7004 			if (mddev->pers->hot_remove_disk(
7005 				    mddev, rdev->raid_disk)==0) {
7006 				char nm[20];
7007 				sprintf(nm,"rd%d", rdev->raid_disk);
7008 				sysfs_remove_link(&mddev->kobj, nm);
7009 				rdev->raid_disk = -1;
7010 			}
7011 		}
7012 
7013 	if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
7014 		list_for_each_entry(rdev, &mddev->disks, same_set) {
7015 			if (rdev->raid_disk >= 0 &&
7016 			    !test_bit(In_sync, &rdev->flags) &&
7017 			    !test_bit(Blocked, &rdev->flags))
7018 				spares++;
7019 			if (rdev->raid_disk < 0
7020 			    && !test_bit(Faulty, &rdev->flags)) {
7021 				rdev->recovery_offset = 0;
7022 				if (mddev->pers->
7023 				    hot_add_disk(mddev, rdev) == 0) {
7024 					char nm[20];
7025 					sprintf(nm, "rd%d", rdev->raid_disk);
7026 					if (sysfs_create_link(&mddev->kobj,
7027 							      &rdev->kobj, nm))
7028 						/* failure here is OK */;
7029 					spares++;
7030 					md_new_event(mddev);
7031 					set_bit(MD_CHANGE_DEVS, &mddev->flags);
7032 				} else
7033 					break;
7034 			}
7035 		}
7036 	}
7037 	return spares;
7038 }
7039 /*
7040  * This routine is regularly called by all per-raid-array threads to
7041  * deal with generic issues like resync and super-block update.
7042  * Raid personalities that don't have a thread (linear/raid0) do not
7043  * need this as they never do any recovery or update the superblock.
7044  *
7045  * It does not do any resync itself, but rather "forks" off other threads
7046  * to do that as needed.
7047  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7048  * "->recovery" and create a thread at ->sync_thread.
7049  * When the thread finishes it sets MD_RECOVERY_DONE
7050  * and wakeups up this thread which will reap the thread and finish up.
7051  * This thread also removes any faulty devices (with nr_pending == 0).
7052  *
7053  * The overall approach is:
7054  *  1/ if the superblock needs updating, update it.
7055  *  2/ If a recovery thread is running, don't do anything else.
7056  *  3/ If recovery has finished, clean up, possibly marking spares active.
7057  *  4/ If there are any faulty devices, remove them.
7058  *  5/ If array is degraded, try to add spares devices
7059  *  6/ If array has spares or is not in-sync, start a resync thread.
7060  */
7061 void md_check_recovery(mddev_t *mddev)
7062 {
7063 	mdk_rdev_t *rdev;
7064 
7065 
7066 	if (mddev->bitmap)
7067 		bitmap_daemon_work(mddev);
7068 
7069 	if (mddev->ro)
7070 		return;
7071 
7072 	if (signal_pending(current)) {
7073 		if (mddev->pers->sync_request && !mddev->external) {
7074 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7075 			       mdname(mddev));
7076 			mddev->safemode = 2;
7077 		}
7078 		flush_signals(current);
7079 	}
7080 
7081 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7082 		return;
7083 	if ( ! (
7084 		(mddev->flags && !mddev->external) ||
7085 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7086 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7087 		(mddev->external == 0 && mddev->safemode == 1) ||
7088 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7089 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7090 		))
7091 		return;
7092 
7093 	if (mddev_trylock(mddev)) {
7094 		int spares = 0;
7095 
7096 		if (mddev->ro) {
7097 			/* Only thing we do on a ro array is remove
7098 			 * failed devices.
7099 			 */
7100 			remove_and_add_spares(mddev);
7101 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7102 			goto unlock;
7103 		}
7104 
7105 		if (!mddev->external) {
7106 			int did_change = 0;
7107 			spin_lock_irq(&mddev->write_lock);
7108 			if (mddev->safemode &&
7109 			    !atomic_read(&mddev->writes_pending) &&
7110 			    !mddev->in_sync &&
7111 			    mddev->recovery_cp == MaxSector) {
7112 				mddev->in_sync = 1;
7113 				did_change = 1;
7114 				if (mddev->persistent)
7115 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7116 			}
7117 			if (mddev->safemode == 1)
7118 				mddev->safemode = 0;
7119 			spin_unlock_irq(&mddev->write_lock);
7120 			if (did_change)
7121 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7122 		}
7123 
7124 		if (mddev->flags)
7125 			md_update_sb(mddev, 0);
7126 
7127 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7128 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7129 			/* resync/recovery still happening */
7130 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7131 			goto unlock;
7132 		}
7133 		if (mddev->sync_thread) {
7134 			/* resync has finished, collect result */
7135 			md_unregister_thread(mddev->sync_thread);
7136 			mddev->sync_thread = NULL;
7137 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7138 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7139 				/* success...*/
7140 				/* activate any spares */
7141 				if (mddev->pers->spare_active(mddev))
7142 					sysfs_notify(&mddev->kobj, NULL,
7143 						     "degraded");
7144 			}
7145 			if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7146 			    mddev->pers->finish_reshape)
7147 				mddev->pers->finish_reshape(mddev);
7148 			md_update_sb(mddev, 1);
7149 
7150 			/* if array is no-longer degraded, then any saved_raid_disk
7151 			 * information must be scrapped
7152 			 */
7153 			if (!mddev->degraded)
7154 				list_for_each_entry(rdev, &mddev->disks, same_set)
7155 					rdev->saved_raid_disk = -1;
7156 
7157 			mddev->recovery = 0;
7158 			/* flag recovery needed just to double check */
7159 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7160 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7161 			md_new_event(mddev);
7162 			goto unlock;
7163 		}
7164 		/* Set RUNNING before clearing NEEDED to avoid
7165 		 * any transients in the value of "sync_action".
7166 		 */
7167 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7168 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7169 		/* Clear some bits that don't mean anything, but
7170 		 * might be left set
7171 		 */
7172 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7173 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7174 
7175 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7176 			goto unlock;
7177 		/* no recovery is running.
7178 		 * remove any failed drives, then
7179 		 * add spares if possible.
7180 		 * Spare are also removed and re-added, to allow
7181 		 * the personality to fail the re-add.
7182 		 */
7183 
7184 		if (mddev->reshape_position != MaxSector) {
7185 			if (mddev->pers->check_reshape == NULL ||
7186 			    mddev->pers->check_reshape(mddev) != 0)
7187 				/* Cannot proceed */
7188 				goto unlock;
7189 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7190 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7191 		} else if ((spares = remove_and_add_spares(mddev))) {
7192 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7193 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7194 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7195 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7196 		} else if (mddev->recovery_cp < MaxSector) {
7197 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7198 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7199 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7200 			/* nothing to be done ... */
7201 			goto unlock;
7202 
7203 		if (mddev->pers->sync_request) {
7204 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7205 				/* We are adding a device or devices to an array
7206 				 * which has the bitmap stored on all devices.
7207 				 * So make sure all bitmap pages get written
7208 				 */
7209 				bitmap_write_all(mddev->bitmap);
7210 			}
7211 			mddev->sync_thread = md_register_thread(md_do_sync,
7212 								mddev,
7213 								"resync");
7214 			if (!mddev->sync_thread) {
7215 				printk(KERN_ERR "%s: could not start resync"
7216 					" thread...\n",
7217 					mdname(mddev));
7218 				/* leave the spares where they are, it shouldn't hurt */
7219 				mddev->recovery = 0;
7220 			} else
7221 				md_wakeup_thread(mddev->sync_thread);
7222 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7223 			md_new_event(mddev);
7224 		}
7225 	unlock:
7226 		if (!mddev->sync_thread) {
7227 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7228 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7229 					       &mddev->recovery))
7230 				if (mddev->sysfs_action)
7231 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7232 		}
7233 		mddev_unlock(mddev);
7234 	}
7235 }
7236 
7237 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7238 {
7239 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7240 	wait_event_timeout(rdev->blocked_wait,
7241 			   !test_bit(Blocked, &rdev->flags),
7242 			   msecs_to_jiffies(5000));
7243 	rdev_dec_pending(rdev, mddev);
7244 }
7245 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7246 
7247 static int md_notify_reboot(struct notifier_block *this,
7248 			    unsigned long code, void *x)
7249 {
7250 	struct list_head *tmp;
7251 	mddev_t *mddev;
7252 
7253 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7254 
7255 		printk(KERN_INFO "md: stopping all md devices.\n");
7256 
7257 		for_each_mddev(mddev, tmp)
7258 			if (mddev_trylock(mddev)) {
7259 				/* Force a switch to readonly even array
7260 				 * appears to still be in use.  Hence
7261 				 * the '100'.
7262 				 */
7263 				md_set_readonly(mddev, 100);
7264 				mddev_unlock(mddev);
7265 			}
7266 		/*
7267 		 * certain more exotic SCSI devices are known to be
7268 		 * volatile wrt too early system reboots. While the
7269 		 * right place to handle this issue is the given
7270 		 * driver, we do want to have a safe RAID driver ...
7271 		 */
7272 		mdelay(1000*1);
7273 	}
7274 	return NOTIFY_DONE;
7275 }
7276 
7277 static struct notifier_block md_notifier = {
7278 	.notifier_call	= md_notify_reboot,
7279 	.next		= NULL,
7280 	.priority	= INT_MAX, /* before any real devices */
7281 };
7282 
7283 static void md_geninit(void)
7284 {
7285 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7286 
7287 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7288 }
7289 
7290 static int __init md_init(void)
7291 {
7292 	if (register_blkdev(MD_MAJOR, "md"))
7293 		return -1;
7294 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
7295 		unregister_blkdev(MD_MAJOR, "md");
7296 		return -1;
7297 	}
7298 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7299 			    md_probe, NULL, NULL);
7300 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7301 			    md_probe, NULL, NULL);
7302 
7303 	register_reboot_notifier(&md_notifier);
7304 	raid_table_header = register_sysctl_table(raid_root_table);
7305 
7306 	md_geninit();
7307 	return 0;
7308 }
7309 
7310 
7311 #ifndef MODULE
7312 
7313 /*
7314  * Searches all registered partitions for autorun RAID arrays
7315  * at boot time.
7316  */
7317 
7318 static LIST_HEAD(all_detected_devices);
7319 struct detected_devices_node {
7320 	struct list_head list;
7321 	dev_t dev;
7322 };
7323 
7324 void md_autodetect_dev(dev_t dev)
7325 {
7326 	struct detected_devices_node *node_detected_dev;
7327 
7328 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7329 	if (node_detected_dev) {
7330 		node_detected_dev->dev = dev;
7331 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
7332 	} else {
7333 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7334 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7335 	}
7336 }
7337 
7338 
7339 static void autostart_arrays(int part)
7340 {
7341 	mdk_rdev_t *rdev;
7342 	struct detected_devices_node *node_detected_dev;
7343 	dev_t dev;
7344 	int i_scanned, i_passed;
7345 
7346 	i_scanned = 0;
7347 	i_passed = 0;
7348 
7349 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7350 
7351 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7352 		i_scanned++;
7353 		node_detected_dev = list_entry(all_detected_devices.next,
7354 					struct detected_devices_node, list);
7355 		list_del(&node_detected_dev->list);
7356 		dev = node_detected_dev->dev;
7357 		kfree(node_detected_dev);
7358 		rdev = md_import_device(dev,0, 90);
7359 		if (IS_ERR(rdev))
7360 			continue;
7361 
7362 		if (test_bit(Faulty, &rdev->flags)) {
7363 			MD_BUG();
7364 			continue;
7365 		}
7366 		set_bit(AutoDetected, &rdev->flags);
7367 		list_add(&rdev->same_set, &pending_raid_disks);
7368 		i_passed++;
7369 	}
7370 
7371 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7372 						i_scanned, i_passed);
7373 
7374 	autorun_devices(part);
7375 }
7376 
7377 #endif /* !MODULE */
7378 
7379 static __exit void md_exit(void)
7380 {
7381 	mddev_t *mddev;
7382 	struct list_head *tmp;
7383 
7384 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7385 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7386 
7387 	unregister_blkdev(MD_MAJOR,"md");
7388 	unregister_blkdev(mdp_major, "mdp");
7389 	unregister_reboot_notifier(&md_notifier);
7390 	unregister_sysctl_table(raid_table_header);
7391 	remove_proc_entry("mdstat", NULL);
7392 	for_each_mddev(mddev, tmp) {
7393 		export_array(mddev);
7394 		mddev->hold_active = 0;
7395 	}
7396 }
7397 
7398 subsys_initcall(md_init);
7399 module_exit(md_exit)
7400 
7401 static int get_ro(char *buffer, struct kernel_param *kp)
7402 {
7403 	return sprintf(buffer, "%d", start_readonly);
7404 }
7405 static int set_ro(const char *val, struct kernel_param *kp)
7406 {
7407 	char *e;
7408 	int num = simple_strtoul(val, &e, 10);
7409 	if (*val && (*e == '\0' || *e == '\n')) {
7410 		start_readonly = num;
7411 		return 0;
7412 	}
7413 	return -EINVAL;
7414 }
7415 
7416 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7417 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7418 
7419 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7420 
7421 EXPORT_SYMBOL(register_md_personality);
7422 EXPORT_SYMBOL(unregister_md_personality);
7423 EXPORT_SYMBOL(md_error);
7424 EXPORT_SYMBOL(md_done_sync);
7425 EXPORT_SYMBOL(md_write_start);
7426 EXPORT_SYMBOL(md_write_end);
7427 EXPORT_SYMBOL(md_register_thread);
7428 EXPORT_SYMBOL(md_unregister_thread);
7429 EXPORT_SYMBOL(md_wakeup_thread);
7430 EXPORT_SYMBOL(md_check_recovery);
7431 MODULE_LICENSE("GPL");
7432 MODULE_DESCRIPTION("MD RAID framework");
7433 MODULE_ALIAS("md");
7434 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
7435