1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/mutex.h> 40 #include <linux/buffer_head.h> /* for invalidate_bdev */ 41 #include <linux/poll.h> 42 #include <linux/ctype.h> 43 #include <linux/string.h> 44 #include <linux/hdreg.h> 45 #include <linux/proc_fs.h> 46 #include <linux/random.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #define DEBUG 0 58 #define dprintk(x...) ((void)(DEBUG && printk(x))) 59 60 static DEFINE_MUTEX(md_mutex); 61 62 #ifndef MODULE 63 static void autostart_arrays(int part); 64 #endif 65 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static void md_print_devices(void); 70 71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 72 73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 74 75 /* 76 * Default number of read corrections we'll attempt on an rdev 77 * before ejecting it from the array. We divide the read error 78 * count by 2 for every hour elapsed between read errors. 79 */ 80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 81 /* 82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 83 * is 1000 KB/sec, so the extra system load does not show up that much. 84 * Increase it if you want to have more _guaranteed_ speed. Note that 85 * the RAID driver will use the maximum available bandwidth if the IO 86 * subsystem is idle. There is also an 'absolute maximum' reconstruction 87 * speed limit - in case reconstruction slows down your system despite 88 * idle IO detection. 89 * 90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 91 * or /sys/block/mdX/md/sync_speed_{min,max} 92 */ 93 94 static int sysctl_speed_limit_min = 1000; 95 static int sysctl_speed_limit_max = 200000; 96 static inline int speed_min(mddev_t *mddev) 97 { 98 return mddev->sync_speed_min ? 99 mddev->sync_speed_min : sysctl_speed_limit_min; 100 } 101 102 static inline int speed_max(mddev_t *mddev) 103 { 104 return mddev->sync_speed_max ? 105 mddev->sync_speed_max : sysctl_speed_limit_max; 106 } 107 108 static struct ctl_table_header *raid_table_header; 109 110 static ctl_table raid_table[] = { 111 { 112 .procname = "speed_limit_min", 113 .data = &sysctl_speed_limit_min, 114 .maxlen = sizeof(int), 115 .mode = S_IRUGO|S_IWUSR, 116 .proc_handler = proc_dointvec, 117 }, 118 { 119 .procname = "speed_limit_max", 120 .data = &sysctl_speed_limit_max, 121 .maxlen = sizeof(int), 122 .mode = S_IRUGO|S_IWUSR, 123 .proc_handler = proc_dointvec, 124 }, 125 { } 126 }; 127 128 static ctl_table raid_dir_table[] = { 129 { 130 .procname = "raid", 131 .maxlen = 0, 132 .mode = S_IRUGO|S_IXUGO, 133 .child = raid_table, 134 }, 135 { } 136 }; 137 138 static ctl_table raid_root_table[] = { 139 { 140 .procname = "dev", 141 .maxlen = 0, 142 .mode = 0555, 143 .child = raid_dir_table, 144 }, 145 { } 146 }; 147 148 static const struct block_device_operations md_fops; 149 150 static int start_readonly; 151 152 /* 153 * We have a system wide 'event count' that is incremented 154 * on any 'interesting' event, and readers of /proc/mdstat 155 * can use 'poll' or 'select' to find out when the event 156 * count increases. 157 * 158 * Events are: 159 * start array, stop array, error, add device, remove device, 160 * start build, activate spare 161 */ 162 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 163 static atomic_t md_event_count; 164 void md_new_event(mddev_t *mddev) 165 { 166 atomic_inc(&md_event_count); 167 wake_up(&md_event_waiters); 168 } 169 EXPORT_SYMBOL_GPL(md_new_event); 170 171 /* Alternate version that can be called from interrupts 172 * when calling sysfs_notify isn't needed. 173 */ 174 static void md_new_event_inintr(mddev_t *mddev) 175 { 176 atomic_inc(&md_event_count); 177 wake_up(&md_event_waiters); 178 } 179 180 /* 181 * Enables to iterate over all existing md arrays 182 * all_mddevs_lock protects this list. 183 */ 184 static LIST_HEAD(all_mddevs); 185 static DEFINE_SPINLOCK(all_mddevs_lock); 186 187 188 /* 189 * iterates through all used mddevs in the system. 190 * We take care to grab the all_mddevs_lock whenever navigating 191 * the list, and to always hold a refcount when unlocked. 192 * Any code which breaks out of this loop while own 193 * a reference to the current mddev and must mddev_put it. 194 */ 195 #define for_each_mddev(mddev,tmp) \ 196 \ 197 for (({ spin_lock(&all_mddevs_lock); \ 198 tmp = all_mddevs.next; \ 199 mddev = NULL;}); \ 200 ({ if (tmp != &all_mddevs) \ 201 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 202 spin_unlock(&all_mddevs_lock); \ 203 if (mddev) mddev_put(mddev); \ 204 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 205 tmp != &all_mddevs;}); \ 206 ({ spin_lock(&all_mddevs_lock); \ 207 tmp = tmp->next;}) \ 208 ) 209 210 211 /* Rather than calling directly into the personality make_request function, 212 * IO requests come here first so that we can check if the device is 213 * being suspended pending a reconfiguration. 214 * We hold a refcount over the call to ->make_request. By the time that 215 * call has finished, the bio has been linked into some internal structure 216 * and so is visible to ->quiesce(), so we don't need the refcount any more. 217 */ 218 static int md_make_request(struct request_queue *q, struct bio *bio) 219 { 220 const int rw = bio_data_dir(bio); 221 mddev_t *mddev = q->queuedata; 222 int rv; 223 int cpu; 224 225 if (mddev == NULL || mddev->pers == NULL) { 226 bio_io_error(bio); 227 return 0; 228 } 229 rcu_read_lock(); 230 if (mddev->suspended) { 231 DEFINE_WAIT(__wait); 232 for (;;) { 233 prepare_to_wait(&mddev->sb_wait, &__wait, 234 TASK_UNINTERRUPTIBLE); 235 if (!mddev->suspended) 236 break; 237 rcu_read_unlock(); 238 schedule(); 239 rcu_read_lock(); 240 } 241 finish_wait(&mddev->sb_wait, &__wait); 242 } 243 atomic_inc(&mddev->active_io); 244 rcu_read_unlock(); 245 246 rv = mddev->pers->make_request(mddev, bio); 247 248 cpu = part_stat_lock(); 249 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 250 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 251 bio_sectors(bio)); 252 part_stat_unlock(); 253 254 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 255 wake_up(&mddev->sb_wait); 256 257 return rv; 258 } 259 260 /* mddev_suspend makes sure no new requests are submitted 261 * to the device, and that any requests that have been submitted 262 * are completely handled. 263 * Once ->stop is called and completes, the module will be completely 264 * unused. 265 */ 266 void mddev_suspend(mddev_t *mddev) 267 { 268 BUG_ON(mddev->suspended); 269 mddev->suspended = 1; 270 synchronize_rcu(); 271 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 272 mddev->pers->quiesce(mddev, 1); 273 } 274 EXPORT_SYMBOL_GPL(mddev_suspend); 275 276 void mddev_resume(mddev_t *mddev) 277 { 278 mddev->suspended = 0; 279 wake_up(&mddev->sb_wait); 280 mddev->pers->quiesce(mddev, 0); 281 } 282 EXPORT_SYMBOL_GPL(mddev_resume); 283 284 int mddev_congested(mddev_t *mddev, int bits) 285 { 286 return mddev->suspended; 287 } 288 EXPORT_SYMBOL(mddev_congested); 289 290 /* 291 * Generic flush handling for md 292 */ 293 294 static void md_end_flush(struct bio *bio, int err) 295 { 296 mdk_rdev_t *rdev = bio->bi_private; 297 mddev_t *mddev = rdev->mddev; 298 299 rdev_dec_pending(rdev, mddev); 300 301 if (atomic_dec_and_test(&mddev->flush_pending)) { 302 /* The pre-request flush has finished */ 303 schedule_work(&mddev->flush_work); 304 } 305 bio_put(bio); 306 } 307 308 static void submit_flushes(mddev_t *mddev) 309 { 310 mdk_rdev_t *rdev; 311 312 rcu_read_lock(); 313 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 314 if (rdev->raid_disk >= 0 && 315 !test_bit(Faulty, &rdev->flags)) { 316 /* Take two references, one is dropped 317 * when request finishes, one after 318 * we reclaim rcu_read_lock 319 */ 320 struct bio *bi; 321 atomic_inc(&rdev->nr_pending); 322 atomic_inc(&rdev->nr_pending); 323 rcu_read_unlock(); 324 bi = bio_alloc(GFP_KERNEL, 0); 325 bi->bi_end_io = md_end_flush; 326 bi->bi_private = rdev; 327 bi->bi_bdev = rdev->bdev; 328 atomic_inc(&mddev->flush_pending); 329 submit_bio(WRITE_FLUSH, bi); 330 rcu_read_lock(); 331 rdev_dec_pending(rdev, mddev); 332 } 333 rcu_read_unlock(); 334 } 335 336 static void md_submit_flush_data(struct work_struct *ws) 337 { 338 mddev_t *mddev = container_of(ws, mddev_t, flush_work); 339 struct bio *bio = mddev->flush_bio; 340 341 atomic_set(&mddev->flush_pending, 1); 342 343 if (bio->bi_size == 0) 344 /* an empty barrier - all done */ 345 bio_endio(bio, 0); 346 else { 347 bio->bi_rw &= ~REQ_FLUSH; 348 if (mddev->pers->make_request(mddev, bio)) 349 generic_make_request(bio); 350 } 351 if (atomic_dec_and_test(&mddev->flush_pending)) { 352 mddev->flush_bio = NULL; 353 wake_up(&mddev->sb_wait); 354 } 355 } 356 357 void md_flush_request(mddev_t *mddev, struct bio *bio) 358 { 359 spin_lock_irq(&mddev->write_lock); 360 wait_event_lock_irq(mddev->sb_wait, 361 !mddev->flush_bio, 362 mddev->write_lock, /*nothing*/); 363 mddev->flush_bio = bio; 364 spin_unlock_irq(&mddev->write_lock); 365 366 atomic_set(&mddev->flush_pending, 1); 367 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 368 369 submit_flushes(mddev); 370 371 if (atomic_dec_and_test(&mddev->flush_pending)) 372 schedule_work(&mddev->flush_work); 373 } 374 EXPORT_SYMBOL(md_flush_request); 375 376 /* Support for plugging. 377 * This mirrors the plugging support in request_queue, but does not 378 * require having a whole queue 379 */ 380 static void plugger_work(struct work_struct *work) 381 { 382 struct plug_handle *plug = 383 container_of(work, struct plug_handle, unplug_work); 384 plug->unplug_fn(plug); 385 } 386 static void plugger_timeout(unsigned long data) 387 { 388 struct plug_handle *plug = (void *)data; 389 kblockd_schedule_work(NULL, &plug->unplug_work); 390 } 391 void plugger_init(struct plug_handle *plug, 392 void (*unplug_fn)(struct plug_handle *)) 393 { 394 plug->unplug_flag = 0; 395 plug->unplug_fn = unplug_fn; 396 init_timer(&plug->unplug_timer); 397 plug->unplug_timer.function = plugger_timeout; 398 plug->unplug_timer.data = (unsigned long)plug; 399 INIT_WORK(&plug->unplug_work, plugger_work); 400 } 401 EXPORT_SYMBOL_GPL(plugger_init); 402 403 void plugger_set_plug(struct plug_handle *plug) 404 { 405 if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag)) 406 mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1); 407 } 408 EXPORT_SYMBOL_GPL(plugger_set_plug); 409 410 int plugger_remove_plug(struct plug_handle *plug) 411 { 412 if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) { 413 del_timer(&plug->unplug_timer); 414 return 1; 415 } else 416 return 0; 417 } 418 EXPORT_SYMBOL_GPL(plugger_remove_plug); 419 420 421 static inline mddev_t *mddev_get(mddev_t *mddev) 422 { 423 atomic_inc(&mddev->active); 424 return mddev; 425 } 426 427 static void mddev_delayed_delete(struct work_struct *ws); 428 429 static void mddev_put(mddev_t *mddev) 430 { 431 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 432 return; 433 if (!mddev->raid_disks && list_empty(&mddev->disks) && 434 mddev->ctime == 0 && !mddev->hold_active) { 435 /* Array is not configured at all, and not held active, 436 * so destroy it */ 437 list_del(&mddev->all_mddevs); 438 if (mddev->gendisk) { 439 /* we did a probe so need to clean up. 440 * Call schedule_work inside the spinlock 441 * so that flush_scheduled_work() after 442 * mddev_find will succeed in waiting for the 443 * work to be done. 444 */ 445 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 446 schedule_work(&mddev->del_work); 447 } else 448 kfree(mddev); 449 } 450 spin_unlock(&all_mddevs_lock); 451 } 452 453 void mddev_init(mddev_t *mddev) 454 { 455 mutex_init(&mddev->open_mutex); 456 mutex_init(&mddev->reconfig_mutex); 457 mutex_init(&mddev->bitmap_info.mutex); 458 INIT_LIST_HEAD(&mddev->disks); 459 INIT_LIST_HEAD(&mddev->all_mddevs); 460 init_timer(&mddev->safemode_timer); 461 atomic_set(&mddev->active, 1); 462 atomic_set(&mddev->openers, 0); 463 atomic_set(&mddev->active_io, 0); 464 spin_lock_init(&mddev->write_lock); 465 atomic_set(&mddev->flush_pending, 0); 466 init_waitqueue_head(&mddev->sb_wait); 467 init_waitqueue_head(&mddev->recovery_wait); 468 mddev->reshape_position = MaxSector; 469 mddev->resync_min = 0; 470 mddev->resync_max = MaxSector; 471 mddev->level = LEVEL_NONE; 472 } 473 EXPORT_SYMBOL_GPL(mddev_init); 474 475 static mddev_t * mddev_find(dev_t unit) 476 { 477 mddev_t *mddev, *new = NULL; 478 479 retry: 480 spin_lock(&all_mddevs_lock); 481 482 if (unit) { 483 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 484 if (mddev->unit == unit) { 485 mddev_get(mddev); 486 spin_unlock(&all_mddevs_lock); 487 kfree(new); 488 return mddev; 489 } 490 491 if (new) { 492 list_add(&new->all_mddevs, &all_mddevs); 493 spin_unlock(&all_mddevs_lock); 494 new->hold_active = UNTIL_IOCTL; 495 return new; 496 } 497 } else if (new) { 498 /* find an unused unit number */ 499 static int next_minor = 512; 500 int start = next_minor; 501 int is_free = 0; 502 int dev = 0; 503 while (!is_free) { 504 dev = MKDEV(MD_MAJOR, next_minor); 505 next_minor++; 506 if (next_minor > MINORMASK) 507 next_minor = 0; 508 if (next_minor == start) { 509 /* Oh dear, all in use. */ 510 spin_unlock(&all_mddevs_lock); 511 kfree(new); 512 return NULL; 513 } 514 515 is_free = 1; 516 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 517 if (mddev->unit == dev) { 518 is_free = 0; 519 break; 520 } 521 } 522 new->unit = dev; 523 new->md_minor = MINOR(dev); 524 new->hold_active = UNTIL_STOP; 525 list_add(&new->all_mddevs, &all_mddevs); 526 spin_unlock(&all_mddevs_lock); 527 return new; 528 } 529 spin_unlock(&all_mddevs_lock); 530 531 new = kzalloc(sizeof(*new), GFP_KERNEL); 532 if (!new) 533 return NULL; 534 535 new->unit = unit; 536 if (MAJOR(unit) == MD_MAJOR) 537 new->md_minor = MINOR(unit); 538 else 539 new->md_minor = MINOR(unit) >> MdpMinorShift; 540 541 mddev_init(new); 542 543 goto retry; 544 } 545 546 static inline int mddev_lock(mddev_t * mddev) 547 { 548 return mutex_lock_interruptible(&mddev->reconfig_mutex); 549 } 550 551 static inline int mddev_is_locked(mddev_t *mddev) 552 { 553 return mutex_is_locked(&mddev->reconfig_mutex); 554 } 555 556 static inline int mddev_trylock(mddev_t * mddev) 557 { 558 return mutex_trylock(&mddev->reconfig_mutex); 559 } 560 561 static struct attribute_group md_redundancy_group; 562 563 static void mddev_unlock(mddev_t * mddev) 564 { 565 if (mddev->to_remove) { 566 /* These cannot be removed under reconfig_mutex as 567 * an access to the files will try to take reconfig_mutex 568 * while holding the file unremovable, which leads to 569 * a deadlock. 570 * So hold set sysfs_active while the remove in happeing, 571 * and anything else which might set ->to_remove or my 572 * otherwise change the sysfs namespace will fail with 573 * -EBUSY if sysfs_active is still set. 574 * We set sysfs_active under reconfig_mutex and elsewhere 575 * test it under the same mutex to ensure its correct value 576 * is seen. 577 */ 578 struct attribute_group *to_remove = mddev->to_remove; 579 mddev->to_remove = NULL; 580 mddev->sysfs_active = 1; 581 mutex_unlock(&mddev->reconfig_mutex); 582 583 if (mddev->kobj.sd) { 584 if (to_remove != &md_redundancy_group) 585 sysfs_remove_group(&mddev->kobj, to_remove); 586 if (mddev->pers == NULL || 587 mddev->pers->sync_request == NULL) { 588 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 589 if (mddev->sysfs_action) 590 sysfs_put(mddev->sysfs_action); 591 mddev->sysfs_action = NULL; 592 } 593 } 594 mddev->sysfs_active = 0; 595 } else 596 mutex_unlock(&mddev->reconfig_mutex); 597 598 md_wakeup_thread(mddev->thread); 599 } 600 601 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 602 { 603 mdk_rdev_t *rdev; 604 605 list_for_each_entry(rdev, &mddev->disks, same_set) 606 if (rdev->desc_nr == nr) 607 return rdev; 608 609 return NULL; 610 } 611 612 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 613 { 614 mdk_rdev_t *rdev; 615 616 list_for_each_entry(rdev, &mddev->disks, same_set) 617 if (rdev->bdev->bd_dev == dev) 618 return rdev; 619 620 return NULL; 621 } 622 623 static struct mdk_personality *find_pers(int level, char *clevel) 624 { 625 struct mdk_personality *pers; 626 list_for_each_entry(pers, &pers_list, list) { 627 if (level != LEVEL_NONE && pers->level == level) 628 return pers; 629 if (strcmp(pers->name, clevel)==0) 630 return pers; 631 } 632 return NULL; 633 } 634 635 /* return the offset of the super block in 512byte sectors */ 636 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 637 { 638 sector_t num_sectors = bdev->bd_inode->i_size / 512; 639 return MD_NEW_SIZE_SECTORS(num_sectors); 640 } 641 642 static int alloc_disk_sb(mdk_rdev_t * rdev) 643 { 644 if (rdev->sb_page) 645 MD_BUG(); 646 647 rdev->sb_page = alloc_page(GFP_KERNEL); 648 if (!rdev->sb_page) { 649 printk(KERN_ALERT "md: out of memory.\n"); 650 return -ENOMEM; 651 } 652 653 return 0; 654 } 655 656 static void free_disk_sb(mdk_rdev_t * rdev) 657 { 658 if (rdev->sb_page) { 659 put_page(rdev->sb_page); 660 rdev->sb_loaded = 0; 661 rdev->sb_page = NULL; 662 rdev->sb_start = 0; 663 rdev->sectors = 0; 664 } 665 } 666 667 668 static void super_written(struct bio *bio, int error) 669 { 670 mdk_rdev_t *rdev = bio->bi_private; 671 mddev_t *mddev = rdev->mddev; 672 673 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 674 printk("md: super_written gets error=%d, uptodate=%d\n", 675 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 676 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 677 md_error(mddev, rdev); 678 } 679 680 if (atomic_dec_and_test(&mddev->pending_writes)) 681 wake_up(&mddev->sb_wait); 682 bio_put(bio); 683 } 684 685 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 686 sector_t sector, int size, struct page *page) 687 { 688 /* write first size bytes of page to sector of rdev 689 * Increment mddev->pending_writes before returning 690 * and decrement it on completion, waking up sb_wait 691 * if zero is reached. 692 * If an error occurred, call md_error 693 */ 694 struct bio *bio = bio_alloc(GFP_NOIO, 1); 695 696 bio->bi_bdev = rdev->bdev; 697 bio->bi_sector = sector; 698 bio_add_page(bio, page, size, 0); 699 bio->bi_private = rdev; 700 bio->bi_end_io = super_written; 701 702 atomic_inc(&mddev->pending_writes); 703 submit_bio(REQ_WRITE | REQ_SYNC | REQ_UNPLUG | REQ_FLUSH | REQ_FUA, 704 bio); 705 } 706 707 void md_super_wait(mddev_t *mddev) 708 { 709 /* wait for all superblock writes that were scheduled to complete */ 710 DEFINE_WAIT(wq); 711 for(;;) { 712 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 713 if (atomic_read(&mddev->pending_writes)==0) 714 break; 715 schedule(); 716 } 717 finish_wait(&mddev->sb_wait, &wq); 718 } 719 720 static void bi_complete(struct bio *bio, int error) 721 { 722 complete((struct completion*)bio->bi_private); 723 } 724 725 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 726 struct page *page, int rw) 727 { 728 struct bio *bio = bio_alloc(GFP_NOIO, 1); 729 struct completion event; 730 int ret; 731 732 rw |= REQ_SYNC | REQ_UNPLUG; 733 734 bio->bi_bdev = bdev; 735 bio->bi_sector = sector; 736 bio_add_page(bio, page, size, 0); 737 init_completion(&event); 738 bio->bi_private = &event; 739 bio->bi_end_io = bi_complete; 740 submit_bio(rw, bio); 741 wait_for_completion(&event); 742 743 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 744 bio_put(bio); 745 return ret; 746 } 747 EXPORT_SYMBOL_GPL(sync_page_io); 748 749 static int read_disk_sb(mdk_rdev_t * rdev, int size) 750 { 751 char b[BDEVNAME_SIZE]; 752 if (!rdev->sb_page) { 753 MD_BUG(); 754 return -EINVAL; 755 } 756 if (rdev->sb_loaded) 757 return 0; 758 759 760 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ)) 761 goto fail; 762 rdev->sb_loaded = 1; 763 return 0; 764 765 fail: 766 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 767 bdevname(rdev->bdev,b)); 768 return -EINVAL; 769 } 770 771 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 772 { 773 return sb1->set_uuid0 == sb2->set_uuid0 && 774 sb1->set_uuid1 == sb2->set_uuid1 && 775 sb1->set_uuid2 == sb2->set_uuid2 && 776 sb1->set_uuid3 == sb2->set_uuid3; 777 } 778 779 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 780 { 781 int ret; 782 mdp_super_t *tmp1, *tmp2; 783 784 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 785 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 786 787 if (!tmp1 || !tmp2) { 788 ret = 0; 789 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 790 goto abort; 791 } 792 793 *tmp1 = *sb1; 794 *tmp2 = *sb2; 795 796 /* 797 * nr_disks is not constant 798 */ 799 tmp1->nr_disks = 0; 800 tmp2->nr_disks = 0; 801 802 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 803 abort: 804 kfree(tmp1); 805 kfree(tmp2); 806 return ret; 807 } 808 809 810 static u32 md_csum_fold(u32 csum) 811 { 812 csum = (csum & 0xffff) + (csum >> 16); 813 return (csum & 0xffff) + (csum >> 16); 814 } 815 816 static unsigned int calc_sb_csum(mdp_super_t * sb) 817 { 818 u64 newcsum = 0; 819 u32 *sb32 = (u32*)sb; 820 int i; 821 unsigned int disk_csum, csum; 822 823 disk_csum = sb->sb_csum; 824 sb->sb_csum = 0; 825 826 for (i = 0; i < MD_SB_BYTES/4 ; i++) 827 newcsum += sb32[i]; 828 csum = (newcsum & 0xffffffff) + (newcsum>>32); 829 830 831 #ifdef CONFIG_ALPHA 832 /* This used to use csum_partial, which was wrong for several 833 * reasons including that different results are returned on 834 * different architectures. It isn't critical that we get exactly 835 * the same return value as before (we always csum_fold before 836 * testing, and that removes any differences). However as we 837 * know that csum_partial always returned a 16bit value on 838 * alphas, do a fold to maximise conformity to previous behaviour. 839 */ 840 sb->sb_csum = md_csum_fold(disk_csum); 841 #else 842 sb->sb_csum = disk_csum; 843 #endif 844 return csum; 845 } 846 847 848 /* 849 * Handle superblock details. 850 * We want to be able to handle multiple superblock formats 851 * so we have a common interface to them all, and an array of 852 * different handlers. 853 * We rely on user-space to write the initial superblock, and support 854 * reading and updating of superblocks. 855 * Interface methods are: 856 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 857 * loads and validates a superblock on dev. 858 * if refdev != NULL, compare superblocks on both devices 859 * Return: 860 * 0 - dev has a superblock that is compatible with refdev 861 * 1 - dev has a superblock that is compatible and newer than refdev 862 * so dev should be used as the refdev in future 863 * -EINVAL superblock incompatible or invalid 864 * -othererror e.g. -EIO 865 * 866 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 867 * Verify that dev is acceptable into mddev. 868 * The first time, mddev->raid_disks will be 0, and data from 869 * dev should be merged in. Subsequent calls check that dev 870 * is new enough. Return 0 or -EINVAL 871 * 872 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 873 * Update the superblock for rdev with data in mddev 874 * This does not write to disc. 875 * 876 */ 877 878 struct super_type { 879 char *name; 880 struct module *owner; 881 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, 882 int minor_version); 883 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 884 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 885 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev, 886 sector_t num_sectors); 887 }; 888 889 /* 890 * Check that the given mddev has no bitmap. 891 * 892 * This function is called from the run method of all personalities that do not 893 * support bitmaps. It prints an error message and returns non-zero if mddev 894 * has a bitmap. Otherwise, it returns 0. 895 * 896 */ 897 int md_check_no_bitmap(mddev_t *mddev) 898 { 899 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 900 return 0; 901 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 902 mdname(mddev), mddev->pers->name); 903 return 1; 904 } 905 EXPORT_SYMBOL(md_check_no_bitmap); 906 907 /* 908 * load_super for 0.90.0 909 */ 910 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 911 { 912 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 913 mdp_super_t *sb; 914 int ret; 915 916 /* 917 * Calculate the position of the superblock (512byte sectors), 918 * it's at the end of the disk. 919 * 920 * It also happens to be a multiple of 4Kb. 921 */ 922 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 923 924 ret = read_disk_sb(rdev, MD_SB_BYTES); 925 if (ret) return ret; 926 927 ret = -EINVAL; 928 929 bdevname(rdev->bdev, b); 930 sb = (mdp_super_t*)page_address(rdev->sb_page); 931 932 if (sb->md_magic != MD_SB_MAGIC) { 933 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 934 b); 935 goto abort; 936 } 937 938 if (sb->major_version != 0 || 939 sb->minor_version < 90 || 940 sb->minor_version > 91) { 941 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 942 sb->major_version, sb->minor_version, 943 b); 944 goto abort; 945 } 946 947 if (sb->raid_disks <= 0) 948 goto abort; 949 950 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 951 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 952 b); 953 goto abort; 954 } 955 956 rdev->preferred_minor = sb->md_minor; 957 rdev->data_offset = 0; 958 rdev->sb_size = MD_SB_BYTES; 959 960 if (sb->level == LEVEL_MULTIPATH) 961 rdev->desc_nr = -1; 962 else 963 rdev->desc_nr = sb->this_disk.number; 964 965 if (!refdev) { 966 ret = 1; 967 } else { 968 __u64 ev1, ev2; 969 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 970 if (!uuid_equal(refsb, sb)) { 971 printk(KERN_WARNING "md: %s has different UUID to %s\n", 972 b, bdevname(refdev->bdev,b2)); 973 goto abort; 974 } 975 if (!sb_equal(refsb, sb)) { 976 printk(KERN_WARNING "md: %s has same UUID" 977 " but different superblock to %s\n", 978 b, bdevname(refdev->bdev, b2)); 979 goto abort; 980 } 981 ev1 = md_event(sb); 982 ev2 = md_event(refsb); 983 if (ev1 > ev2) 984 ret = 1; 985 else 986 ret = 0; 987 } 988 rdev->sectors = rdev->sb_start; 989 990 if (rdev->sectors < sb->size * 2 && sb->level > 1) 991 /* "this cannot possibly happen" ... */ 992 ret = -EINVAL; 993 994 abort: 995 return ret; 996 } 997 998 /* 999 * validate_super for 0.90.0 1000 */ 1001 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1002 { 1003 mdp_disk_t *desc; 1004 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 1005 __u64 ev1 = md_event(sb); 1006 1007 rdev->raid_disk = -1; 1008 clear_bit(Faulty, &rdev->flags); 1009 clear_bit(In_sync, &rdev->flags); 1010 clear_bit(WriteMostly, &rdev->flags); 1011 1012 if (mddev->raid_disks == 0) { 1013 mddev->major_version = 0; 1014 mddev->minor_version = sb->minor_version; 1015 mddev->patch_version = sb->patch_version; 1016 mddev->external = 0; 1017 mddev->chunk_sectors = sb->chunk_size >> 9; 1018 mddev->ctime = sb->ctime; 1019 mddev->utime = sb->utime; 1020 mddev->level = sb->level; 1021 mddev->clevel[0] = 0; 1022 mddev->layout = sb->layout; 1023 mddev->raid_disks = sb->raid_disks; 1024 mddev->dev_sectors = sb->size * 2; 1025 mddev->events = ev1; 1026 mddev->bitmap_info.offset = 0; 1027 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1028 1029 if (mddev->minor_version >= 91) { 1030 mddev->reshape_position = sb->reshape_position; 1031 mddev->delta_disks = sb->delta_disks; 1032 mddev->new_level = sb->new_level; 1033 mddev->new_layout = sb->new_layout; 1034 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1035 } else { 1036 mddev->reshape_position = MaxSector; 1037 mddev->delta_disks = 0; 1038 mddev->new_level = mddev->level; 1039 mddev->new_layout = mddev->layout; 1040 mddev->new_chunk_sectors = mddev->chunk_sectors; 1041 } 1042 1043 if (sb->state & (1<<MD_SB_CLEAN)) 1044 mddev->recovery_cp = MaxSector; 1045 else { 1046 if (sb->events_hi == sb->cp_events_hi && 1047 sb->events_lo == sb->cp_events_lo) { 1048 mddev->recovery_cp = sb->recovery_cp; 1049 } else 1050 mddev->recovery_cp = 0; 1051 } 1052 1053 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1054 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1055 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1056 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1057 1058 mddev->max_disks = MD_SB_DISKS; 1059 1060 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1061 mddev->bitmap_info.file == NULL) 1062 mddev->bitmap_info.offset = 1063 mddev->bitmap_info.default_offset; 1064 1065 } else if (mddev->pers == NULL) { 1066 /* Insist on good event counter while assembling, except 1067 * for spares (which don't need an event count) */ 1068 ++ev1; 1069 if (sb->disks[rdev->desc_nr].state & ( 1070 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1071 if (ev1 < mddev->events) 1072 return -EINVAL; 1073 } else if (mddev->bitmap) { 1074 /* if adding to array with a bitmap, then we can accept an 1075 * older device ... but not too old. 1076 */ 1077 if (ev1 < mddev->bitmap->events_cleared) 1078 return 0; 1079 } else { 1080 if (ev1 < mddev->events) 1081 /* just a hot-add of a new device, leave raid_disk at -1 */ 1082 return 0; 1083 } 1084 1085 if (mddev->level != LEVEL_MULTIPATH) { 1086 desc = sb->disks + rdev->desc_nr; 1087 1088 if (desc->state & (1<<MD_DISK_FAULTY)) 1089 set_bit(Faulty, &rdev->flags); 1090 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1091 desc->raid_disk < mddev->raid_disks */) { 1092 set_bit(In_sync, &rdev->flags); 1093 rdev->raid_disk = desc->raid_disk; 1094 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1095 /* active but not in sync implies recovery up to 1096 * reshape position. We don't know exactly where 1097 * that is, so set to zero for now */ 1098 if (mddev->minor_version >= 91) { 1099 rdev->recovery_offset = 0; 1100 rdev->raid_disk = desc->raid_disk; 1101 } 1102 } 1103 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1104 set_bit(WriteMostly, &rdev->flags); 1105 } else /* MULTIPATH are always insync */ 1106 set_bit(In_sync, &rdev->flags); 1107 return 0; 1108 } 1109 1110 /* 1111 * sync_super for 0.90.0 1112 */ 1113 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1114 { 1115 mdp_super_t *sb; 1116 mdk_rdev_t *rdev2; 1117 int next_spare = mddev->raid_disks; 1118 1119 1120 /* make rdev->sb match mddev data.. 1121 * 1122 * 1/ zero out disks 1123 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1124 * 3/ any empty disks < next_spare become removed 1125 * 1126 * disks[0] gets initialised to REMOVED because 1127 * we cannot be sure from other fields if it has 1128 * been initialised or not. 1129 */ 1130 int i; 1131 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1132 1133 rdev->sb_size = MD_SB_BYTES; 1134 1135 sb = (mdp_super_t*)page_address(rdev->sb_page); 1136 1137 memset(sb, 0, sizeof(*sb)); 1138 1139 sb->md_magic = MD_SB_MAGIC; 1140 sb->major_version = mddev->major_version; 1141 sb->patch_version = mddev->patch_version; 1142 sb->gvalid_words = 0; /* ignored */ 1143 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1144 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1145 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1146 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1147 1148 sb->ctime = mddev->ctime; 1149 sb->level = mddev->level; 1150 sb->size = mddev->dev_sectors / 2; 1151 sb->raid_disks = mddev->raid_disks; 1152 sb->md_minor = mddev->md_minor; 1153 sb->not_persistent = 0; 1154 sb->utime = mddev->utime; 1155 sb->state = 0; 1156 sb->events_hi = (mddev->events>>32); 1157 sb->events_lo = (u32)mddev->events; 1158 1159 if (mddev->reshape_position == MaxSector) 1160 sb->minor_version = 90; 1161 else { 1162 sb->minor_version = 91; 1163 sb->reshape_position = mddev->reshape_position; 1164 sb->new_level = mddev->new_level; 1165 sb->delta_disks = mddev->delta_disks; 1166 sb->new_layout = mddev->new_layout; 1167 sb->new_chunk = mddev->new_chunk_sectors << 9; 1168 } 1169 mddev->minor_version = sb->minor_version; 1170 if (mddev->in_sync) 1171 { 1172 sb->recovery_cp = mddev->recovery_cp; 1173 sb->cp_events_hi = (mddev->events>>32); 1174 sb->cp_events_lo = (u32)mddev->events; 1175 if (mddev->recovery_cp == MaxSector) 1176 sb->state = (1<< MD_SB_CLEAN); 1177 } else 1178 sb->recovery_cp = 0; 1179 1180 sb->layout = mddev->layout; 1181 sb->chunk_size = mddev->chunk_sectors << 9; 1182 1183 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1184 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1185 1186 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1187 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1188 mdp_disk_t *d; 1189 int desc_nr; 1190 int is_active = test_bit(In_sync, &rdev2->flags); 1191 1192 if (rdev2->raid_disk >= 0 && 1193 sb->minor_version >= 91) 1194 /* we have nowhere to store the recovery_offset, 1195 * but if it is not below the reshape_position, 1196 * we can piggy-back on that. 1197 */ 1198 is_active = 1; 1199 if (rdev2->raid_disk < 0 || 1200 test_bit(Faulty, &rdev2->flags)) 1201 is_active = 0; 1202 if (is_active) 1203 desc_nr = rdev2->raid_disk; 1204 else 1205 desc_nr = next_spare++; 1206 rdev2->desc_nr = desc_nr; 1207 d = &sb->disks[rdev2->desc_nr]; 1208 nr_disks++; 1209 d->number = rdev2->desc_nr; 1210 d->major = MAJOR(rdev2->bdev->bd_dev); 1211 d->minor = MINOR(rdev2->bdev->bd_dev); 1212 if (is_active) 1213 d->raid_disk = rdev2->raid_disk; 1214 else 1215 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1216 if (test_bit(Faulty, &rdev2->flags)) 1217 d->state = (1<<MD_DISK_FAULTY); 1218 else if (is_active) { 1219 d->state = (1<<MD_DISK_ACTIVE); 1220 if (test_bit(In_sync, &rdev2->flags)) 1221 d->state |= (1<<MD_DISK_SYNC); 1222 active++; 1223 working++; 1224 } else { 1225 d->state = 0; 1226 spare++; 1227 working++; 1228 } 1229 if (test_bit(WriteMostly, &rdev2->flags)) 1230 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1231 } 1232 /* now set the "removed" and "faulty" bits on any missing devices */ 1233 for (i=0 ; i < mddev->raid_disks ; i++) { 1234 mdp_disk_t *d = &sb->disks[i]; 1235 if (d->state == 0 && d->number == 0) { 1236 d->number = i; 1237 d->raid_disk = i; 1238 d->state = (1<<MD_DISK_REMOVED); 1239 d->state |= (1<<MD_DISK_FAULTY); 1240 failed++; 1241 } 1242 } 1243 sb->nr_disks = nr_disks; 1244 sb->active_disks = active; 1245 sb->working_disks = working; 1246 sb->failed_disks = failed; 1247 sb->spare_disks = spare; 1248 1249 sb->this_disk = sb->disks[rdev->desc_nr]; 1250 sb->sb_csum = calc_sb_csum(sb); 1251 } 1252 1253 /* 1254 * rdev_size_change for 0.90.0 1255 */ 1256 static unsigned long long 1257 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1258 { 1259 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1260 return 0; /* component must fit device */ 1261 if (rdev->mddev->bitmap_info.offset) 1262 return 0; /* can't move bitmap */ 1263 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 1264 if (!num_sectors || num_sectors > rdev->sb_start) 1265 num_sectors = rdev->sb_start; 1266 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1267 rdev->sb_page); 1268 md_super_wait(rdev->mddev); 1269 return num_sectors / 2; /* kB for sysfs */ 1270 } 1271 1272 1273 /* 1274 * version 1 superblock 1275 */ 1276 1277 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1278 { 1279 __le32 disk_csum; 1280 u32 csum; 1281 unsigned long long newcsum; 1282 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1283 __le32 *isuper = (__le32*)sb; 1284 int i; 1285 1286 disk_csum = sb->sb_csum; 1287 sb->sb_csum = 0; 1288 newcsum = 0; 1289 for (i=0; size>=4; size -= 4 ) 1290 newcsum += le32_to_cpu(*isuper++); 1291 1292 if (size == 2) 1293 newcsum += le16_to_cpu(*(__le16*) isuper); 1294 1295 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1296 sb->sb_csum = disk_csum; 1297 return cpu_to_le32(csum); 1298 } 1299 1300 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1301 { 1302 struct mdp_superblock_1 *sb; 1303 int ret; 1304 sector_t sb_start; 1305 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1306 int bmask; 1307 1308 /* 1309 * Calculate the position of the superblock in 512byte sectors. 1310 * It is always aligned to a 4K boundary and 1311 * depeding on minor_version, it can be: 1312 * 0: At least 8K, but less than 12K, from end of device 1313 * 1: At start of device 1314 * 2: 4K from start of device. 1315 */ 1316 switch(minor_version) { 1317 case 0: 1318 sb_start = rdev->bdev->bd_inode->i_size >> 9; 1319 sb_start -= 8*2; 1320 sb_start &= ~(sector_t)(4*2-1); 1321 break; 1322 case 1: 1323 sb_start = 0; 1324 break; 1325 case 2: 1326 sb_start = 8; 1327 break; 1328 default: 1329 return -EINVAL; 1330 } 1331 rdev->sb_start = sb_start; 1332 1333 /* superblock is rarely larger than 1K, but it can be larger, 1334 * and it is safe to read 4k, so we do that 1335 */ 1336 ret = read_disk_sb(rdev, 4096); 1337 if (ret) return ret; 1338 1339 1340 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1341 1342 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1343 sb->major_version != cpu_to_le32(1) || 1344 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1345 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1346 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1347 return -EINVAL; 1348 1349 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1350 printk("md: invalid superblock checksum on %s\n", 1351 bdevname(rdev->bdev,b)); 1352 return -EINVAL; 1353 } 1354 if (le64_to_cpu(sb->data_size) < 10) { 1355 printk("md: data_size too small on %s\n", 1356 bdevname(rdev->bdev,b)); 1357 return -EINVAL; 1358 } 1359 1360 rdev->preferred_minor = 0xffff; 1361 rdev->data_offset = le64_to_cpu(sb->data_offset); 1362 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1363 1364 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1365 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1366 if (rdev->sb_size & bmask) 1367 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1368 1369 if (minor_version 1370 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1371 return -EINVAL; 1372 1373 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1374 rdev->desc_nr = -1; 1375 else 1376 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1377 1378 if (!refdev) { 1379 ret = 1; 1380 } else { 1381 __u64 ev1, ev2; 1382 struct mdp_superblock_1 *refsb = 1383 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1384 1385 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1386 sb->level != refsb->level || 1387 sb->layout != refsb->layout || 1388 sb->chunksize != refsb->chunksize) { 1389 printk(KERN_WARNING "md: %s has strangely different" 1390 " superblock to %s\n", 1391 bdevname(rdev->bdev,b), 1392 bdevname(refdev->bdev,b2)); 1393 return -EINVAL; 1394 } 1395 ev1 = le64_to_cpu(sb->events); 1396 ev2 = le64_to_cpu(refsb->events); 1397 1398 if (ev1 > ev2) 1399 ret = 1; 1400 else 1401 ret = 0; 1402 } 1403 if (minor_version) 1404 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) - 1405 le64_to_cpu(sb->data_offset); 1406 else 1407 rdev->sectors = rdev->sb_start; 1408 if (rdev->sectors < le64_to_cpu(sb->data_size)) 1409 return -EINVAL; 1410 rdev->sectors = le64_to_cpu(sb->data_size); 1411 if (le64_to_cpu(sb->size) > rdev->sectors) 1412 return -EINVAL; 1413 return ret; 1414 } 1415 1416 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1417 { 1418 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1419 __u64 ev1 = le64_to_cpu(sb->events); 1420 1421 rdev->raid_disk = -1; 1422 clear_bit(Faulty, &rdev->flags); 1423 clear_bit(In_sync, &rdev->flags); 1424 clear_bit(WriteMostly, &rdev->flags); 1425 1426 if (mddev->raid_disks == 0) { 1427 mddev->major_version = 1; 1428 mddev->patch_version = 0; 1429 mddev->external = 0; 1430 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1431 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1432 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1433 mddev->level = le32_to_cpu(sb->level); 1434 mddev->clevel[0] = 0; 1435 mddev->layout = le32_to_cpu(sb->layout); 1436 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1437 mddev->dev_sectors = le64_to_cpu(sb->size); 1438 mddev->events = ev1; 1439 mddev->bitmap_info.offset = 0; 1440 mddev->bitmap_info.default_offset = 1024 >> 9; 1441 1442 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1443 memcpy(mddev->uuid, sb->set_uuid, 16); 1444 1445 mddev->max_disks = (4096-256)/2; 1446 1447 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1448 mddev->bitmap_info.file == NULL ) 1449 mddev->bitmap_info.offset = 1450 (__s32)le32_to_cpu(sb->bitmap_offset); 1451 1452 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1453 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1454 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1455 mddev->new_level = le32_to_cpu(sb->new_level); 1456 mddev->new_layout = le32_to_cpu(sb->new_layout); 1457 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1458 } else { 1459 mddev->reshape_position = MaxSector; 1460 mddev->delta_disks = 0; 1461 mddev->new_level = mddev->level; 1462 mddev->new_layout = mddev->layout; 1463 mddev->new_chunk_sectors = mddev->chunk_sectors; 1464 } 1465 1466 } else if (mddev->pers == NULL) { 1467 /* Insist of good event counter while assembling, except for 1468 * spares (which don't need an event count) */ 1469 ++ev1; 1470 if (rdev->desc_nr >= 0 && 1471 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1472 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1473 if (ev1 < mddev->events) 1474 return -EINVAL; 1475 } else if (mddev->bitmap) { 1476 /* If adding to array with a bitmap, then we can accept an 1477 * older device, but not too old. 1478 */ 1479 if (ev1 < mddev->bitmap->events_cleared) 1480 return 0; 1481 } else { 1482 if (ev1 < mddev->events) 1483 /* just a hot-add of a new device, leave raid_disk at -1 */ 1484 return 0; 1485 } 1486 if (mddev->level != LEVEL_MULTIPATH) { 1487 int role; 1488 if (rdev->desc_nr < 0 || 1489 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1490 role = 0xffff; 1491 rdev->desc_nr = -1; 1492 } else 1493 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1494 switch(role) { 1495 case 0xffff: /* spare */ 1496 break; 1497 case 0xfffe: /* faulty */ 1498 set_bit(Faulty, &rdev->flags); 1499 break; 1500 default: 1501 if ((le32_to_cpu(sb->feature_map) & 1502 MD_FEATURE_RECOVERY_OFFSET)) 1503 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1504 else 1505 set_bit(In_sync, &rdev->flags); 1506 rdev->raid_disk = role; 1507 break; 1508 } 1509 if (sb->devflags & WriteMostly1) 1510 set_bit(WriteMostly, &rdev->flags); 1511 } else /* MULTIPATH are always insync */ 1512 set_bit(In_sync, &rdev->flags); 1513 1514 return 0; 1515 } 1516 1517 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1518 { 1519 struct mdp_superblock_1 *sb; 1520 mdk_rdev_t *rdev2; 1521 int max_dev, i; 1522 /* make rdev->sb match mddev and rdev data. */ 1523 1524 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1525 1526 sb->feature_map = 0; 1527 sb->pad0 = 0; 1528 sb->recovery_offset = cpu_to_le64(0); 1529 memset(sb->pad1, 0, sizeof(sb->pad1)); 1530 memset(sb->pad2, 0, sizeof(sb->pad2)); 1531 memset(sb->pad3, 0, sizeof(sb->pad3)); 1532 1533 sb->utime = cpu_to_le64((__u64)mddev->utime); 1534 sb->events = cpu_to_le64(mddev->events); 1535 if (mddev->in_sync) 1536 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1537 else 1538 sb->resync_offset = cpu_to_le64(0); 1539 1540 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1541 1542 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1543 sb->size = cpu_to_le64(mddev->dev_sectors); 1544 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1545 sb->level = cpu_to_le32(mddev->level); 1546 sb->layout = cpu_to_le32(mddev->layout); 1547 1548 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1549 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1550 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1551 } 1552 1553 if (rdev->raid_disk >= 0 && 1554 !test_bit(In_sync, &rdev->flags)) { 1555 sb->feature_map |= 1556 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1557 sb->recovery_offset = 1558 cpu_to_le64(rdev->recovery_offset); 1559 } 1560 1561 if (mddev->reshape_position != MaxSector) { 1562 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1563 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1564 sb->new_layout = cpu_to_le32(mddev->new_layout); 1565 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1566 sb->new_level = cpu_to_le32(mddev->new_level); 1567 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1568 } 1569 1570 max_dev = 0; 1571 list_for_each_entry(rdev2, &mddev->disks, same_set) 1572 if (rdev2->desc_nr+1 > max_dev) 1573 max_dev = rdev2->desc_nr+1; 1574 1575 if (max_dev > le32_to_cpu(sb->max_dev)) { 1576 int bmask; 1577 sb->max_dev = cpu_to_le32(max_dev); 1578 rdev->sb_size = max_dev * 2 + 256; 1579 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1580 if (rdev->sb_size & bmask) 1581 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1582 } else 1583 max_dev = le32_to_cpu(sb->max_dev); 1584 1585 for (i=0; i<max_dev;i++) 1586 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1587 1588 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1589 i = rdev2->desc_nr; 1590 if (test_bit(Faulty, &rdev2->flags)) 1591 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1592 else if (test_bit(In_sync, &rdev2->flags)) 1593 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1594 else if (rdev2->raid_disk >= 0) 1595 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1596 else 1597 sb->dev_roles[i] = cpu_to_le16(0xffff); 1598 } 1599 1600 sb->sb_csum = calc_sb_1_csum(sb); 1601 } 1602 1603 static unsigned long long 1604 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1605 { 1606 struct mdp_superblock_1 *sb; 1607 sector_t max_sectors; 1608 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1609 return 0; /* component must fit device */ 1610 if (rdev->sb_start < rdev->data_offset) { 1611 /* minor versions 1 and 2; superblock before data */ 1612 max_sectors = rdev->bdev->bd_inode->i_size >> 9; 1613 max_sectors -= rdev->data_offset; 1614 if (!num_sectors || num_sectors > max_sectors) 1615 num_sectors = max_sectors; 1616 } else if (rdev->mddev->bitmap_info.offset) { 1617 /* minor version 0 with bitmap we can't move */ 1618 return 0; 1619 } else { 1620 /* minor version 0; superblock after data */ 1621 sector_t sb_start; 1622 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2; 1623 sb_start &= ~(sector_t)(4*2 - 1); 1624 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1625 if (!num_sectors || num_sectors > max_sectors) 1626 num_sectors = max_sectors; 1627 rdev->sb_start = sb_start; 1628 } 1629 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page); 1630 sb->data_size = cpu_to_le64(num_sectors); 1631 sb->super_offset = rdev->sb_start; 1632 sb->sb_csum = calc_sb_1_csum(sb); 1633 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1634 rdev->sb_page); 1635 md_super_wait(rdev->mddev); 1636 return num_sectors / 2; /* kB for sysfs */ 1637 } 1638 1639 static struct super_type super_types[] = { 1640 [0] = { 1641 .name = "0.90.0", 1642 .owner = THIS_MODULE, 1643 .load_super = super_90_load, 1644 .validate_super = super_90_validate, 1645 .sync_super = super_90_sync, 1646 .rdev_size_change = super_90_rdev_size_change, 1647 }, 1648 [1] = { 1649 .name = "md-1", 1650 .owner = THIS_MODULE, 1651 .load_super = super_1_load, 1652 .validate_super = super_1_validate, 1653 .sync_super = super_1_sync, 1654 .rdev_size_change = super_1_rdev_size_change, 1655 }, 1656 }; 1657 1658 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1659 { 1660 mdk_rdev_t *rdev, *rdev2; 1661 1662 rcu_read_lock(); 1663 rdev_for_each_rcu(rdev, mddev1) 1664 rdev_for_each_rcu(rdev2, mddev2) 1665 if (rdev->bdev->bd_contains == 1666 rdev2->bdev->bd_contains) { 1667 rcu_read_unlock(); 1668 return 1; 1669 } 1670 rcu_read_unlock(); 1671 return 0; 1672 } 1673 1674 static LIST_HEAD(pending_raid_disks); 1675 1676 /* 1677 * Try to register data integrity profile for an mddev 1678 * 1679 * This is called when an array is started and after a disk has been kicked 1680 * from the array. It only succeeds if all working and active component devices 1681 * are integrity capable with matching profiles. 1682 */ 1683 int md_integrity_register(mddev_t *mddev) 1684 { 1685 mdk_rdev_t *rdev, *reference = NULL; 1686 1687 if (list_empty(&mddev->disks)) 1688 return 0; /* nothing to do */ 1689 if (blk_get_integrity(mddev->gendisk)) 1690 return 0; /* already registered */ 1691 list_for_each_entry(rdev, &mddev->disks, same_set) { 1692 /* skip spares and non-functional disks */ 1693 if (test_bit(Faulty, &rdev->flags)) 1694 continue; 1695 if (rdev->raid_disk < 0) 1696 continue; 1697 /* 1698 * If at least one rdev is not integrity capable, we can not 1699 * enable data integrity for the md device. 1700 */ 1701 if (!bdev_get_integrity(rdev->bdev)) 1702 return -EINVAL; 1703 if (!reference) { 1704 /* Use the first rdev as the reference */ 1705 reference = rdev; 1706 continue; 1707 } 1708 /* does this rdev's profile match the reference profile? */ 1709 if (blk_integrity_compare(reference->bdev->bd_disk, 1710 rdev->bdev->bd_disk) < 0) 1711 return -EINVAL; 1712 } 1713 /* 1714 * All component devices are integrity capable and have matching 1715 * profiles, register the common profile for the md device. 1716 */ 1717 if (blk_integrity_register(mddev->gendisk, 1718 bdev_get_integrity(reference->bdev)) != 0) { 1719 printk(KERN_ERR "md: failed to register integrity for %s\n", 1720 mdname(mddev)); 1721 return -EINVAL; 1722 } 1723 printk(KERN_NOTICE "md: data integrity on %s enabled\n", 1724 mdname(mddev)); 1725 return 0; 1726 } 1727 EXPORT_SYMBOL(md_integrity_register); 1728 1729 /* Disable data integrity if non-capable/non-matching disk is being added */ 1730 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 1731 { 1732 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); 1733 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk); 1734 1735 if (!bi_mddev) /* nothing to do */ 1736 return; 1737 if (rdev->raid_disk < 0) /* skip spares */ 1738 return; 1739 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 1740 rdev->bdev->bd_disk) >= 0) 1741 return; 1742 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 1743 blk_integrity_unregister(mddev->gendisk); 1744 } 1745 EXPORT_SYMBOL(md_integrity_add_rdev); 1746 1747 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1748 { 1749 char b[BDEVNAME_SIZE]; 1750 struct kobject *ko; 1751 char *s; 1752 int err; 1753 1754 if (rdev->mddev) { 1755 MD_BUG(); 1756 return -EINVAL; 1757 } 1758 1759 /* prevent duplicates */ 1760 if (find_rdev(mddev, rdev->bdev->bd_dev)) 1761 return -EEXIST; 1762 1763 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 1764 if (rdev->sectors && (mddev->dev_sectors == 0 || 1765 rdev->sectors < mddev->dev_sectors)) { 1766 if (mddev->pers) { 1767 /* Cannot change size, so fail 1768 * If mddev->level <= 0, then we don't care 1769 * about aligning sizes (e.g. linear) 1770 */ 1771 if (mddev->level > 0) 1772 return -ENOSPC; 1773 } else 1774 mddev->dev_sectors = rdev->sectors; 1775 } 1776 1777 /* Verify rdev->desc_nr is unique. 1778 * If it is -1, assign a free number, else 1779 * check number is not in use 1780 */ 1781 if (rdev->desc_nr < 0) { 1782 int choice = 0; 1783 if (mddev->pers) choice = mddev->raid_disks; 1784 while (find_rdev_nr(mddev, choice)) 1785 choice++; 1786 rdev->desc_nr = choice; 1787 } else { 1788 if (find_rdev_nr(mddev, rdev->desc_nr)) 1789 return -EBUSY; 1790 } 1791 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 1792 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 1793 mdname(mddev), mddev->max_disks); 1794 return -EBUSY; 1795 } 1796 bdevname(rdev->bdev,b); 1797 while ( (s=strchr(b, '/')) != NULL) 1798 *s = '!'; 1799 1800 rdev->mddev = mddev; 1801 printk(KERN_INFO "md: bind<%s>\n", b); 1802 1803 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 1804 goto fail; 1805 1806 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 1807 if (sysfs_create_link(&rdev->kobj, ko, "block")) 1808 /* failure here is OK */; 1809 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 1810 1811 list_add_rcu(&rdev->same_set, &mddev->disks); 1812 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk); 1813 1814 /* May as well allow recovery to be retried once */ 1815 mddev->recovery_disabled = 0; 1816 1817 return 0; 1818 1819 fail: 1820 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1821 b, mdname(mddev)); 1822 return err; 1823 } 1824 1825 static void md_delayed_delete(struct work_struct *ws) 1826 { 1827 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1828 kobject_del(&rdev->kobj); 1829 kobject_put(&rdev->kobj); 1830 } 1831 1832 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1833 { 1834 char b[BDEVNAME_SIZE]; 1835 if (!rdev->mddev) { 1836 MD_BUG(); 1837 return; 1838 } 1839 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1840 list_del_rcu(&rdev->same_set); 1841 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1842 rdev->mddev = NULL; 1843 sysfs_remove_link(&rdev->kobj, "block"); 1844 sysfs_put(rdev->sysfs_state); 1845 rdev->sysfs_state = NULL; 1846 /* We need to delay this, otherwise we can deadlock when 1847 * writing to 'remove' to "dev/state". We also need 1848 * to delay it due to rcu usage. 1849 */ 1850 synchronize_rcu(); 1851 INIT_WORK(&rdev->del_work, md_delayed_delete); 1852 kobject_get(&rdev->kobj); 1853 schedule_work(&rdev->del_work); 1854 } 1855 1856 /* 1857 * prevent the device from being mounted, repartitioned or 1858 * otherwise reused by a RAID array (or any other kernel 1859 * subsystem), by bd_claiming the device. 1860 */ 1861 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) 1862 { 1863 int err = 0; 1864 struct block_device *bdev; 1865 char b[BDEVNAME_SIZE]; 1866 1867 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1868 if (IS_ERR(bdev)) { 1869 printk(KERN_ERR "md: could not open %s.\n", 1870 __bdevname(dev, b)); 1871 return PTR_ERR(bdev); 1872 } 1873 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev); 1874 if (err) { 1875 printk(KERN_ERR "md: could not bd_claim %s.\n", 1876 bdevname(bdev, b)); 1877 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1878 return err; 1879 } 1880 if (!shared) 1881 set_bit(AllReserved, &rdev->flags); 1882 rdev->bdev = bdev; 1883 return err; 1884 } 1885 1886 static void unlock_rdev(mdk_rdev_t *rdev) 1887 { 1888 struct block_device *bdev = rdev->bdev; 1889 rdev->bdev = NULL; 1890 if (!bdev) 1891 MD_BUG(); 1892 bd_release(bdev); 1893 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1894 } 1895 1896 void md_autodetect_dev(dev_t dev); 1897 1898 static void export_rdev(mdk_rdev_t * rdev) 1899 { 1900 char b[BDEVNAME_SIZE]; 1901 printk(KERN_INFO "md: export_rdev(%s)\n", 1902 bdevname(rdev->bdev,b)); 1903 if (rdev->mddev) 1904 MD_BUG(); 1905 free_disk_sb(rdev); 1906 #ifndef MODULE 1907 if (test_bit(AutoDetected, &rdev->flags)) 1908 md_autodetect_dev(rdev->bdev->bd_dev); 1909 #endif 1910 unlock_rdev(rdev); 1911 kobject_put(&rdev->kobj); 1912 } 1913 1914 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1915 { 1916 unbind_rdev_from_array(rdev); 1917 export_rdev(rdev); 1918 } 1919 1920 static void export_array(mddev_t *mddev) 1921 { 1922 mdk_rdev_t *rdev, *tmp; 1923 1924 rdev_for_each(rdev, tmp, mddev) { 1925 if (!rdev->mddev) { 1926 MD_BUG(); 1927 continue; 1928 } 1929 kick_rdev_from_array(rdev); 1930 } 1931 if (!list_empty(&mddev->disks)) 1932 MD_BUG(); 1933 mddev->raid_disks = 0; 1934 mddev->major_version = 0; 1935 } 1936 1937 static void print_desc(mdp_disk_t *desc) 1938 { 1939 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 1940 desc->major,desc->minor,desc->raid_disk,desc->state); 1941 } 1942 1943 static void print_sb_90(mdp_super_t *sb) 1944 { 1945 int i; 1946 1947 printk(KERN_INFO 1948 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 1949 sb->major_version, sb->minor_version, sb->patch_version, 1950 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 1951 sb->ctime); 1952 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 1953 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 1954 sb->md_minor, sb->layout, sb->chunk_size); 1955 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 1956 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 1957 sb->utime, sb->state, sb->active_disks, sb->working_disks, 1958 sb->failed_disks, sb->spare_disks, 1959 sb->sb_csum, (unsigned long)sb->events_lo); 1960 1961 printk(KERN_INFO); 1962 for (i = 0; i < MD_SB_DISKS; i++) { 1963 mdp_disk_t *desc; 1964 1965 desc = sb->disks + i; 1966 if (desc->number || desc->major || desc->minor || 1967 desc->raid_disk || (desc->state && (desc->state != 4))) { 1968 printk(" D %2d: ", i); 1969 print_desc(desc); 1970 } 1971 } 1972 printk(KERN_INFO "md: THIS: "); 1973 print_desc(&sb->this_disk); 1974 } 1975 1976 static void print_sb_1(struct mdp_superblock_1 *sb) 1977 { 1978 __u8 *uuid; 1979 1980 uuid = sb->set_uuid; 1981 printk(KERN_INFO 1982 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 1983 "md: Name: \"%s\" CT:%llu\n", 1984 le32_to_cpu(sb->major_version), 1985 le32_to_cpu(sb->feature_map), 1986 uuid, 1987 sb->set_name, 1988 (unsigned long long)le64_to_cpu(sb->ctime) 1989 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 1990 1991 uuid = sb->device_uuid; 1992 printk(KERN_INFO 1993 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 1994 " RO:%llu\n" 1995 "md: Dev:%08x UUID: %pU\n" 1996 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 1997 "md: (MaxDev:%u) \n", 1998 le32_to_cpu(sb->level), 1999 (unsigned long long)le64_to_cpu(sb->size), 2000 le32_to_cpu(sb->raid_disks), 2001 le32_to_cpu(sb->layout), 2002 le32_to_cpu(sb->chunksize), 2003 (unsigned long long)le64_to_cpu(sb->data_offset), 2004 (unsigned long long)le64_to_cpu(sb->data_size), 2005 (unsigned long long)le64_to_cpu(sb->super_offset), 2006 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2007 le32_to_cpu(sb->dev_number), 2008 uuid, 2009 sb->devflags, 2010 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2011 (unsigned long long)le64_to_cpu(sb->events), 2012 (unsigned long long)le64_to_cpu(sb->resync_offset), 2013 le32_to_cpu(sb->sb_csum), 2014 le32_to_cpu(sb->max_dev) 2015 ); 2016 } 2017 2018 static void print_rdev(mdk_rdev_t *rdev, int major_version) 2019 { 2020 char b[BDEVNAME_SIZE]; 2021 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2022 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2023 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2024 rdev->desc_nr); 2025 if (rdev->sb_loaded) { 2026 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2027 switch (major_version) { 2028 case 0: 2029 print_sb_90((mdp_super_t*)page_address(rdev->sb_page)); 2030 break; 2031 case 1: 2032 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page)); 2033 break; 2034 } 2035 } else 2036 printk(KERN_INFO "md: no rdev superblock!\n"); 2037 } 2038 2039 static void md_print_devices(void) 2040 { 2041 struct list_head *tmp; 2042 mdk_rdev_t *rdev; 2043 mddev_t *mddev; 2044 char b[BDEVNAME_SIZE]; 2045 2046 printk("\n"); 2047 printk("md: **********************************\n"); 2048 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2049 printk("md: **********************************\n"); 2050 for_each_mddev(mddev, tmp) { 2051 2052 if (mddev->bitmap) 2053 bitmap_print_sb(mddev->bitmap); 2054 else 2055 printk("%s: ", mdname(mddev)); 2056 list_for_each_entry(rdev, &mddev->disks, same_set) 2057 printk("<%s>", bdevname(rdev->bdev,b)); 2058 printk("\n"); 2059 2060 list_for_each_entry(rdev, &mddev->disks, same_set) 2061 print_rdev(rdev, mddev->major_version); 2062 } 2063 printk("md: **********************************\n"); 2064 printk("\n"); 2065 } 2066 2067 2068 static void sync_sbs(mddev_t * mddev, int nospares) 2069 { 2070 /* Update each superblock (in-memory image), but 2071 * if we are allowed to, skip spares which already 2072 * have the right event counter, or have one earlier 2073 * (which would mean they aren't being marked as dirty 2074 * with the rest of the array) 2075 */ 2076 mdk_rdev_t *rdev; 2077 list_for_each_entry(rdev, &mddev->disks, same_set) { 2078 if (rdev->sb_events == mddev->events || 2079 (nospares && 2080 rdev->raid_disk < 0 && 2081 rdev->sb_events+1 == mddev->events)) { 2082 /* Don't update this superblock */ 2083 rdev->sb_loaded = 2; 2084 } else { 2085 super_types[mddev->major_version]. 2086 sync_super(mddev, rdev); 2087 rdev->sb_loaded = 1; 2088 } 2089 } 2090 } 2091 2092 static void md_update_sb(mddev_t * mddev, int force_change) 2093 { 2094 mdk_rdev_t *rdev; 2095 int sync_req; 2096 int nospares = 0; 2097 2098 repeat: 2099 /* First make sure individual recovery_offsets are correct */ 2100 list_for_each_entry(rdev, &mddev->disks, same_set) { 2101 if (rdev->raid_disk >= 0 && 2102 mddev->delta_disks >= 0 && 2103 !test_bit(In_sync, &rdev->flags) && 2104 mddev->curr_resync_completed > rdev->recovery_offset) 2105 rdev->recovery_offset = mddev->curr_resync_completed; 2106 2107 } 2108 if (!mddev->persistent) { 2109 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2110 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2111 wake_up(&mddev->sb_wait); 2112 return; 2113 } 2114 2115 spin_lock_irq(&mddev->write_lock); 2116 2117 mddev->utime = get_seconds(); 2118 2119 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2120 force_change = 1; 2121 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2122 /* just a clean<-> dirty transition, possibly leave spares alone, 2123 * though if events isn't the right even/odd, we will have to do 2124 * spares after all 2125 */ 2126 nospares = 1; 2127 if (force_change) 2128 nospares = 0; 2129 if (mddev->degraded) 2130 /* If the array is degraded, then skipping spares is both 2131 * dangerous and fairly pointless. 2132 * Dangerous because a device that was removed from the array 2133 * might have a event_count that still looks up-to-date, 2134 * so it can be re-added without a resync. 2135 * Pointless because if there are any spares to skip, 2136 * then a recovery will happen and soon that array won't 2137 * be degraded any more and the spare can go back to sleep then. 2138 */ 2139 nospares = 0; 2140 2141 sync_req = mddev->in_sync; 2142 2143 /* If this is just a dirty<->clean transition, and the array is clean 2144 * and 'events' is odd, we can roll back to the previous clean state */ 2145 if (nospares 2146 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2147 && mddev->can_decrease_events 2148 && mddev->events != 1) { 2149 mddev->events--; 2150 mddev->can_decrease_events = 0; 2151 } else { 2152 /* otherwise we have to go forward and ... */ 2153 mddev->events ++; 2154 mddev->can_decrease_events = nospares; 2155 } 2156 2157 if (!mddev->events) { 2158 /* 2159 * oops, this 64-bit counter should never wrap. 2160 * Either we are in around ~1 trillion A.C., assuming 2161 * 1 reboot per second, or we have a bug: 2162 */ 2163 MD_BUG(); 2164 mddev->events --; 2165 } 2166 sync_sbs(mddev, nospares); 2167 spin_unlock_irq(&mddev->write_lock); 2168 2169 dprintk(KERN_INFO 2170 "md: updating %s RAID superblock on device (in sync %d)\n", 2171 mdname(mddev),mddev->in_sync); 2172 2173 bitmap_update_sb(mddev->bitmap); 2174 list_for_each_entry(rdev, &mddev->disks, same_set) { 2175 char b[BDEVNAME_SIZE]; 2176 dprintk(KERN_INFO "md: "); 2177 if (rdev->sb_loaded != 1) 2178 continue; /* no noise on spare devices */ 2179 if (test_bit(Faulty, &rdev->flags)) 2180 dprintk("(skipping faulty "); 2181 2182 dprintk("%s ", bdevname(rdev->bdev,b)); 2183 if (!test_bit(Faulty, &rdev->flags)) { 2184 md_super_write(mddev,rdev, 2185 rdev->sb_start, rdev->sb_size, 2186 rdev->sb_page); 2187 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 2188 bdevname(rdev->bdev,b), 2189 (unsigned long long)rdev->sb_start); 2190 rdev->sb_events = mddev->events; 2191 2192 } else 2193 dprintk(")\n"); 2194 if (mddev->level == LEVEL_MULTIPATH) 2195 /* only need to write one superblock... */ 2196 break; 2197 } 2198 md_super_wait(mddev); 2199 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2200 2201 spin_lock_irq(&mddev->write_lock); 2202 if (mddev->in_sync != sync_req || 2203 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2204 /* have to write it out again */ 2205 spin_unlock_irq(&mddev->write_lock); 2206 goto repeat; 2207 } 2208 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2209 spin_unlock_irq(&mddev->write_lock); 2210 wake_up(&mddev->sb_wait); 2211 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2212 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2213 2214 } 2215 2216 /* words written to sysfs files may, or may not, be \n terminated. 2217 * We want to accept with case. For this we use cmd_match. 2218 */ 2219 static int cmd_match(const char *cmd, const char *str) 2220 { 2221 /* See if cmd, written into a sysfs file, matches 2222 * str. They must either be the same, or cmd can 2223 * have a trailing newline 2224 */ 2225 while (*cmd && *str && *cmd == *str) { 2226 cmd++; 2227 str++; 2228 } 2229 if (*cmd == '\n') 2230 cmd++; 2231 if (*str || *cmd) 2232 return 0; 2233 return 1; 2234 } 2235 2236 struct rdev_sysfs_entry { 2237 struct attribute attr; 2238 ssize_t (*show)(mdk_rdev_t *, char *); 2239 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 2240 }; 2241 2242 static ssize_t 2243 state_show(mdk_rdev_t *rdev, char *page) 2244 { 2245 char *sep = ""; 2246 size_t len = 0; 2247 2248 if (test_bit(Faulty, &rdev->flags)) { 2249 len+= sprintf(page+len, "%sfaulty",sep); 2250 sep = ","; 2251 } 2252 if (test_bit(In_sync, &rdev->flags)) { 2253 len += sprintf(page+len, "%sin_sync",sep); 2254 sep = ","; 2255 } 2256 if (test_bit(WriteMostly, &rdev->flags)) { 2257 len += sprintf(page+len, "%swrite_mostly",sep); 2258 sep = ","; 2259 } 2260 if (test_bit(Blocked, &rdev->flags)) { 2261 len += sprintf(page+len, "%sblocked", sep); 2262 sep = ","; 2263 } 2264 if (!test_bit(Faulty, &rdev->flags) && 2265 !test_bit(In_sync, &rdev->flags)) { 2266 len += sprintf(page+len, "%sspare", sep); 2267 sep = ","; 2268 } 2269 return len+sprintf(page+len, "\n"); 2270 } 2271 2272 static ssize_t 2273 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2274 { 2275 /* can write 2276 * faulty - simulates and error 2277 * remove - disconnects the device 2278 * writemostly - sets write_mostly 2279 * -writemostly - clears write_mostly 2280 * blocked - sets the Blocked flag 2281 * -blocked - clears the Blocked flag 2282 * insync - sets Insync providing device isn't active 2283 */ 2284 int err = -EINVAL; 2285 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2286 md_error(rdev->mddev, rdev); 2287 err = 0; 2288 } else if (cmd_match(buf, "remove")) { 2289 if (rdev->raid_disk >= 0) 2290 err = -EBUSY; 2291 else { 2292 mddev_t *mddev = rdev->mddev; 2293 kick_rdev_from_array(rdev); 2294 if (mddev->pers) 2295 md_update_sb(mddev, 1); 2296 md_new_event(mddev); 2297 err = 0; 2298 } 2299 } else if (cmd_match(buf, "writemostly")) { 2300 set_bit(WriteMostly, &rdev->flags); 2301 err = 0; 2302 } else if (cmd_match(buf, "-writemostly")) { 2303 clear_bit(WriteMostly, &rdev->flags); 2304 err = 0; 2305 } else if (cmd_match(buf, "blocked")) { 2306 set_bit(Blocked, &rdev->flags); 2307 err = 0; 2308 } else if (cmd_match(buf, "-blocked")) { 2309 clear_bit(Blocked, &rdev->flags); 2310 wake_up(&rdev->blocked_wait); 2311 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2312 md_wakeup_thread(rdev->mddev->thread); 2313 2314 err = 0; 2315 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2316 set_bit(In_sync, &rdev->flags); 2317 err = 0; 2318 } 2319 if (!err) 2320 sysfs_notify_dirent_safe(rdev->sysfs_state); 2321 return err ? err : len; 2322 } 2323 static struct rdev_sysfs_entry rdev_state = 2324 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2325 2326 static ssize_t 2327 errors_show(mdk_rdev_t *rdev, char *page) 2328 { 2329 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2330 } 2331 2332 static ssize_t 2333 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2334 { 2335 char *e; 2336 unsigned long n = simple_strtoul(buf, &e, 10); 2337 if (*buf && (*e == 0 || *e == '\n')) { 2338 atomic_set(&rdev->corrected_errors, n); 2339 return len; 2340 } 2341 return -EINVAL; 2342 } 2343 static struct rdev_sysfs_entry rdev_errors = 2344 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2345 2346 static ssize_t 2347 slot_show(mdk_rdev_t *rdev, char *page) 2348 { 2349 if (rdev->raid_disk < 0) 2350 return sprintf(page, "none\n"); 2351 else 2352 return sprintf(page, "%d\n", rdev->raid_disk); 2353 } 2354 2355 static ssize_t 2356 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2357 { 2358 char *e; 2359 int err; 2360 char nm[20]; 2361 int slot = simple_strtoul(buf, &e, 10); 2362 if (strncmp(buf, "none", 4)==0) 2363 slot = -1; 2364 else if (e==buf || (*e && *e!= '\n')) 2365 return -EINVAL; 2366 if (rdev->mddev->pers && slot == -1) { 2367 /* Setting 'slot' on an active array requires also 2368 * updating the 'rd%d' link, and communicating 2369 * with the personality with ->hot_*_disk. 2370 * For now we only support removing 2371 * failed/spare devices. This normally happens automatically, 2372 * but not when the metadata is externally managed. 2373 */ 2374 if (rdev->raid_disk == -1) 2375 return -EEXIST; 2376 /* personality does all needed checks */ 2377 if (rdev->mddev->pers->hot_add_disk == NULL) 2378 return -EINVAL; 2379 err = rdev->mddev->pers-> 2380 hot_remove_disk(rdev->mddev, rdev->raid_disk); 2381 if (err) 2382 return err; 2383 sprintf(nm, "rd%d", rdev->raid_disk); 2384 sysfs_remove_link(&rdev->mddev->kobj, nm); 2385 rdev->raid_disk = -1; 2386 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2387 md_wakeup_thread(rdev->mddev->thread); 2388 } else if (rdev->mddev->pers) { 2389 mdk_rdev_t *rdev2; 2390 /* Activating a spare .. or possibly reactivating 2391 * if we ever get bitmaps working here. 2392 */ 2393 2394 if (rdev->raid_disk != -1) 2395 return -EBUSY; 2396 2397 if (rdev->mddev->pers->hot_add_disk == NULL) 2398 return -EINVAL; 2399 2400 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set) 2401 if (rdev2->raid_disk == slot) 2402 return -EEXIST; 2403 2404 rdev->raid_disk = slot; 2405 if (test_bit(In_sync, &rdev->flags)) 2406 rdev->saved_raid_disk = slot; 2407 else 2408 rdev->saved_raid_disk = -1; 2409 err = rdev->mddev->pers-> 2410 hot_add_disk(rdev->mddev, rdev); 2411 if (err) { 2412 rdev->raid_disk = -1; 2413 return err; 2414 } else 2415 sysfs_notify_dirent_safe(rdev->sysfs_state); 2416 sprintf(nm, "rd%d", rdev->raid_disk); 2417 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm)) 2418 /* failure here is OK */; 2419 /* don't wakeup anyone, leave that to userspace. */ 2420 } else { 2421 if (slot >= rdev->mddev->raid_disks) 2422 return -ENOSPC; 2423 rdev->raid_disk = slot; 2424 /* assume it is working */ 2425 clear_bit(Faulty, &rdev->flags); 2426 clear_bit(WriteMostly, &rdev->flags); 2427 set_bit(In_sync, &rdev->flags); 2428 sysfs_notify_dirent_safe(rdev->sysfs_state); 2429 } 2430 return len; 2431 } 2432 2433 2434 static struct rdev_sysfs_entry rdev_slot = 2435 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2436 2437 static ssize_t 2438 offset_show(mdk_rdev_t *rdev, char *page) 2439 { 2440 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2441 } 2442 2443 static ssize_t 2444 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2445 { 2446 char *e; 2447 unsigned long long offset = simple_strtoull(buf, &e, 10); 2448 if (e==buf || (*e && *e != '\n')) 2449 return -EINVAL; 2450 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2451 return -EBUSY; 2452 if (rdev->sectors && rdev->mddev->external) 2453 /* Must set offset before size, so overlap checks 2454 * can be sane */ 2455 return -EBUSY; 2456 rdev->data_offset = offset; 2457 return len; 2458 } 2459 2460 static struct rdev_sysfs_entry rdev_offset = 2461 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2462 2463 static ssize_t 2464 rdev_size_show(mdk_rdev_t *rdev, char *page) 2465 { 2466 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2467 } 2468 2469 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2470 { 2471 /* check if two start/length pairs overlap */ 2472 if (s1+l1 <= s2) 2473 return 0; 2474 if (s2+l2 <= s1) 2475 return 0; 2476 return 1; 2477 } 2478 2479 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2480 { 2481 unsigned long long blocks; 2482 sector_t new; 2483 2484 if (strict_strtoull(buf, 10, &blocks) < 0) 2485 return -EINVAL; 2486 2487 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2488 return -EINVAL; /* sector conversion overflow */ 2489 2490 new = blocks * 2; 2491 if (new != blocks * 2) 2492 return -EINVAL; /* unsigned long long to sector_t overflow */ 2493 2494 *sectors = new; 2495 return 0; 2496 } 2497 2498 static ssize_t 2499 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2500 { 2501 mddev_t *my_mddev = rdev->mddev; 2502 sector_t oldsectors = rdev->sectors; 2503 sector_t sectors; 2504 2505 if (strict_blocks_to_sectors(buf, §ors) < 0) 2506 return -EINVAL; 2507 if (my_mddev->pers && rdev->raid_disk >= 0) { 2508 if (my_mddev->persistent) { 2509 sectors = super_types[my_mddev->major_version]. 2510 rdev_size_change(rdev, sectors); 2511 if (!sectors) 2512 return -EBUSY; 2513 } else if (!sectors) 2514 sectors = (rdev->bdev->bd_inode->i_size >> 9) - 2515 rdev->data_offset; 2516 } 2517 if (sectors < my_mddev->dev_sectors) 2518 return -EINVAL; /* component must fit device */ 2519 2520 rdev->sectors = sectors; 2521 if (sectors > oldsectors && my_mddev->external) { 2522 /* need to check that all other rdevs with the same ->bdev 2523 * do not overlap. We need to unlock the mddev to avoid 2524 * a deadlock. We have already changed rdev->sectors, and if 2525 * we have to change it back, we will have the lock again. 2526 */ 2527 mddev_t *mddev; 2528 int overlap = 0; 2529 struct list_head *tmp; 2530 2531 mddev_unlock(my_mddev); 2532 for_each_mddev(mddev, tmp) { 2533 mdk_rdev_t *rdev2; 2534 2535 mddev_lock(mddev); 2536 list_for_each_entry(rdev2, &mddev->disks, same_set) 2537 if (test_bit(AllReserved, &rdev2->flags) || 2538 (rdev->bdev == rdev2->bdev && 2539 rdev != rdev2 && 2540 overlaps(rdev->data_offset, rdev->sectors, 2541 rdev2->data_offset, 2542 rdev2->sectors))) { 2543 overlap = 1; 2544 break; 2545 } 2546 mddev_unlock(mddev); 2547 if (overlap) { 2548 mddev_put(mddev); 2549 break; 2550 } 2551 } 2552 mddev_lock(my_mddev); 2553 if (overlap) { 2554 /* Someone else could have slipped in a size 2555 * change here, but doing so is just silly. 2556 * We put oldsectors back because we *know* it is 2557 * safe, and trust userspace not to race with 2558 * itself 2559 */ 2560 rdev->sectors = oldsectors; 2561 return -EBUSY; 2562 } 2563 } 2564 return len; 2565 } 2566 2567 static struct rdev_sysfs_entry rdev_size = 2568 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2569 2570 2571 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page) 2572 { 2573 unsigned long long recovery_start = rdev->recovery_offset; 2574 2575 if (test_bit(In_sync, &rdev->flags) || 2576 recovery_start == MaxSector) 2577 return sprintf(page, "none\n"); 2578 2579 return sprintf(page, "%llu\n", recovery_start); 2580 } 2581 2582 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2583 { 2584 unsigned long long recovery_start; 2585 2586 if (cmd_match(buf, "none")) 2587 recovery_start = MaxSector; 2588 else if (strict_strtoull(buf, 10, &recovery_start)) 2589 return -EINVAL; 2590 2591 if (rdev->mddev->pers && 2592 rdev->raid_disk >= 0) 2593 return -EBUSY; 2594 2595 rdev->recovery_offset = recovery_start; 2596 if (recovery_start == MaxSector) 2597 set_bit(In_sync, &rdev->flags); 2598 else 2599 clear_bit(In_sync, &rdev->flags); 2600 return len; 2601 } 2602 2603 static struct rdev_sysfs_entry rdev_recovery_start = 2604 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 2605 2606 static struct attribute *rdev_default_attrs[] = { 2607 &rdev_state.attr, 2608 &rdev_errors.attr, 2609 &rdev_slot.attr, 2610 &rdev_offset.attr, 2611 &rdev_size.attr, 2612 &rdev_recovery_start.attr, 2613 NULL, 2614 }; 2615 static ssize_t 2616 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2617 { 2618 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2619 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2620 mddev_t *mddev = rdev->mddev; 2621 ssize_t rv; 2622 2623 if (!entry->show) 2624 return -EIO; 2625 2626 rv = mddev ? mddev_lock(mddev) : -EBUSY; 2627 if (!rv) { 2628 if (rdev->mddev == NULL) 2629 rv = -EBUSY; 2630 else 2631 rv = entry->show(rdev, page); 2632 mddev_unlock(mddev); 2633 } 2634 return rv; 2635 } 2636 2637 static ssize_t 2638 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2639 const char *page, size_t length) 2640 { 2641 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2642 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2643 ssize_t rv; 2644 mddev_t *mddev = rdev->mddev; 2645 2646 if (!entry->store) 2647 return -EIO; 2648 if (!capable(CAP_SYS_ADMIN)) 2649 return -EACCES; 2650 rv = mddev ? mddev_lock(mddev): -EBUSY; 2651 if (!rv) { 2652 if (rdev->mddev == NULL) 2653 rv = -EBUSY; 2654 else 2655 rv = entry->store(rdev, page, length); 2656 mddev_unlock(mddev); 2657 } 2658 return rv; 2659 } 2660 2661 static void rdev_free(struct kobject *ko) 2662 { 2663 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 2664 kfree(rdev); 2665 } 2666 static const struct sysfs_ops rdev_sysfs_ops = { 2667 .show = rdev_attr_show, 2668 .store = rdev_attr_store, 2669 }; 2670 static struct kobj_type rdev_ktype = { 2671 .release = rdev_free, 2672 .sysfs_ops = &rdev_sysfs_ops, 2673 .default_attrs = rdev_default_attrs, 2674 }; 2675 2676 void md_rdev_init(mdk_rdev_t *rdev) 2677 { 2678 rdev->desc_nr = -1; 2679 rdev->saved_raid_disk = -1; 2680 rdev->raid_disk = -1; 2681 rdev->flags = 0; 2682 rdev->data_offset = 0; 2683 rdev->sb_events = 0; 2684 rdev->last_read_error.tv_sec = 0; 2685 rdev->last_read_error.tv_nsec = 0; 2686 atomic_set(&rdev->nr_pending, 0); 2687 atomic_set(&rdev->read_errors, 0); 2688 atomic_set(&rdev->corrected_errors, 0); 2689 2690 INIT_LIST_HEAD(&rdev->same_set); 2691 init_waitqueue_head(&rdev->blocked_wait); 2692 } 2693 EXPORT_SYMBOL_GPL(md_rdev_init); 2694 /* 2695 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2696 * 2697 * mark the device faulty if: 2698 * 2699 * - the device is nonexistent (zero size) 2700 * - the device has no valid superblock 2701 * 2702 * a faulty rdev _never_ has rdev->sb set. 2703 */ 2704 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2705 { 2706 char b[BDEVNAME_SIZE]; 2707 int err; 2708 mdk_rdev_t *rdev; 2709 sector_t size; 2710 2711 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2712 if (!rdev) { 2713 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2714 return ERR_PTR(-ENOMEM); 2715 } 2716 2717 md_rdev_init(rdev); 2718 if ((err = alloc_disk_sb(rdev))) 2719 goto abort_free; 2720 2721 err = lock_rdev(rdev, newdev, super_format == -2); 2722 if (err) 2723 goto abort_free; 2724 2725 kobject_init(&rdev->kobj, &rdev_ktype); 2726 2727 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2728 if (!size) { 2729 printk(KERN_WARNING 2730 "md: %s has zero or unknown size, marking faulty!\n", 2731 bdevname(rdev->bdev,b)); 2732 err = -EINVAL; 2733 goto abort_free; 2734 } 2735 2736 if (super_format >= 0) { 2737 err = super_types[super_format]. 2738 load_super(rdev, NULL, super_minor); 2739 if (err == -EINVAL) { 2740 printk(KERN_WARNING 2741 "md: %s does not have a valid v%d.%d " 2742 "superblock, not importing!\n", 2743 bdevname(rdev->bdev,b), 2744 super_format, super_minor); 2745 goto abort_free; 2746 } 2747 if (err < 0) { 2748 printk(KERN_WARNING 2749 "md: could not read %s's sb, not importing!\n", 2750 bdevname(rdev->bdev,b)); 2751 goto abort_free; 2752 } 2753 } 2754 2755 return rdev; 2756 2757 abort_free: 2758 if (rdev->sb_page) { 2759 if (rdev->bdev) 2760 unlock_rdev(rdev); 2761 free_disk_sb(rdev); 2762 } 2763 kfree(rdev); 2764 return ERR_PTR(err); 2765 } 2766 2767 /* 2768 * Check a full RAID array for plausibility 2769 */ 2770 2771 2772 static void analyze_sbs(mddev_t * mddev) 2773 { 2774 int i; 2775 mdk_rdev_t *rdev, *freshest, *tmp; 2776 char b[BDEVNAME_SIZE]; 2777 2778 freshest = NULL; 2779 rdev_for_each(rdev, tmp, mddev) 2780 switch (super_types[mddev->major_version]. 2781 load_super(rdev, freshest, mddev->minor_version)) { 2782 case 1: 2783 freshest = rdev; 2784 break; 2785 case 0: 2786 break; 2787 default: 2788 printk( KERN_ERR \ 2789 "md: fatal superblock inconsistency in %s" 2790 " -- removing from array\n", 2791 bdevname(rdev->bdev,b)); 2792 kick_rdev_from_array(rdev); 2793 } 2794 2795 2796 super_types[mddev->major_version]. 2797 validate_super(mddev, freshest); 2798 2799 i = 0; 2800 rdev_for_each(rdev, tmp, mddev) { 2801 if (mddev->max_disks && 2802 (rdev->desc_nr >= mddev->max_disks || 2803 i > mddev->max_disks)) { 2804 printk(KERN_WARNING 2805 "md: %s: %s: only %d devices permitted\n", 2806 mdname(mddev), bdevname(rdev->bdev, b), 2807 mddev->max_disks); 2808 kick_rdev_from_array(rdev); 2809 continue; 2810 } 2811 if (rdev != freshest) 2812 if (super_types[mddev->major_version]. 2813 validate_super(mddev, rdev)) { 2814 printk(KERN_WARNING "md: kicking non-fresh %s" 2815 " from array!\n", 2816 bdevname(rdev->bdev,b)); 2817 kick_rdev_from_array(rdev); 2818 continue; 2819 } 2820 if (mddev->level == LEVEL_MULTIPATH) { 2821 rdev->desc_nr = i++; 2822 rdev->raid_disk = rdev->desc_nr; 2823 set_bit(In_sync, &rdev->flags); 2824 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 2825 rdev->raid_disk = -1; 2826 clear_bit(In_sync, &rdev->flags); 2827 } 2828 } 2829 } 2830 2831 /* Read a fixed-point number. 2832 * Numbers in sysfs attributes should be in "standard" units where 2833 * possible, so time should be in seconds. 2834 * However we internally use a a much smaller unit such as 2835 * milliseconds or jiffies. 2836 * This function takes a decimal number with a possible fractional 2837 * component, and produces an integer which is the result of 2838 * multiplying that number by 10^'scale'. 2839 * all without any floating-point arithmetic. 2840 */ 2841 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 2842 { 2843 unsigned long result = 0; 2844 long decimals = -1; 2845 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 2846 if (*cp == '.') 2847 decimals = 0; 2848 else if (decimals < scale) { 2849 unsigned int value; 2850 value = *cp - '0'; 2851 result = result * 10 + value; 2852 if (decimals >= 0) 2853 decimals++; 2854 } 2855 cp++; 2856 } 2857 if (*cp == '\n') 2858 cp++; 2859 if (*cp) 2860 return -EINVAL; 2861 if (decimals < 0) 2862 decimals = 0; 2863 while (decimals < scale) { 2864 result *= 10; 2865 decimals ++; 2866 } 2867 *res = result; 2868 return 0; 2869 } 2870 2871 2872 static void md_safemode_timeout(unsigned long data); 2873 2874 static ssize_t 2875 safe_delay_show(mddev_t *mddev, char *page) 2876 { 2877 int msec = (mddev->safemode_delay*1000)/HZ; 2878 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2879 } 2880 static ssize_t 2881 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2882 { 2883 unsigned long msec; 2884 2885 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 2886 return -EINVAL; 2887 if (msec == 0) 2888 mddev->safemode_delay = 0; 2889 else { 2890 unsigned long old_delay = mddev->safemode_delay; 2891 mddev->safemode_delay = (msec*HZ)/1000; 2892 if (mddev->safemode_delay == 0) 2893 mddev->safemode_delay = 1; 2894 if (mddev->safemode_delay < old_delay) 2895 md_safemode_timeout((unsigned long)mddev); 2896 } 2897 return len; 2898 } 2899 static struct md_sysfs_entry md_safe_delay = 2900 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2901 2902 static ssize_t 2903 level_show(mddev_t *mddev, char *page) 2904 { 2905 struct mdk_personality *p = mddev->pers; 2906 if (p) 2907 return sprintf(page, "%s\n", p->name); 2908 else if (mddev->clevel[0]) 2909 return sprintf(page, "%s\n", mddev->clevel); 2910 else if (mddev->level != LEVEL_NONE) 2911 return sprintf(page, "%d\n", mddev->level); 2912 else 2913 return 0; 2914 } 2915 2916 static ssize_t 2917 level_store(mddev_t *mddev, const char *buf, size_t len) 2918 { 2919 char clevel[16]; 2920 ssize_t rv = len; 2921 struct mdk_personality *pers; 2922 long level; 2923 void *priv; 2924 mdk_rdev_t *rdev; 2925 2926 if (mddev->pers == NULL) { 2927 if (len == 0) 2928 return 0; 2929 if (len >= sizeof(mddev->clevel)) 2930 return -ENOSPC; 2931 strncpy(mddev->clevel, buf, len); 2932 if (mddev->clevel[len-1] == '\n') 2933 len--; 2934 mddev->clevel[len] = 0; 2935 mddev->level = LEVEL_NONE; 2936 return rv; 2937 } 2938 2939 /* request to change the personality. Need to ensure: 2940 * - array is not engaged in resync/recovery/reshape 2941 * - old personality can be suspended 2942 * - new personality will access other array. 2943 */ 2944 2945 if (mddev->sync_thread || 2946 mddev->reshape_position != MaxSector || 2947 mddev->sysfs_active) 2948 return -EBUSY; 2949 2950 if (!mddev->pers->quiesce) { 2951 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 2952 mdname(mddev), mddev->pers->name); 2953 return -EINVAL; 2954 } 2955 2956 /* Now find the new personality */ 2957 if (len == 0 || len >= sizeof(clevel)) 2958 return -EINVAL; 2959 strncpy(clevel, buf, len); 2960 if (clevel[len-1] == '\n') 2961 len--; 2962 clevel[len] = 0; 2963 if (strict_strtol(clevel, 10, &level)) 2964 level = LEVEL_NONE; 2965 2966 if (request_module("md-%s", clevel) != 0) 2967 request_module("md-level-%s", clevel); 2968 spin_lock(&pers_lock); 2969 pers = find_pers(level, clevel); 2970 if (!pers || !try_module_get(pers->owner)) { 2971 spin_unlock(&pers_lock); 2972 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 2973 return -EINVAL; 2974 } 2975 spin_unlock(&pers_lock); 2976 2977 if (pers == mddev->pers) { 2978 /* Nothing to do! */ 2979 module_put(pers->owner); 2980 return rv; 2981 } 2982 if (!pers->takeover) { 2983 module_put(pers->owner); 2984 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 2985 mdname(mddev), clevel); 2986 return -EINVAL; 2987 } 2988 2989 list_for_each_entry(rdev, &mddev->disks, same_set) 2990 rdev->new_raid_disk = rdev->raid_disk; 2991 2992 /* ->takeover must set new_* and/or delta_disks 2993 * if it succeeds, and may set them when it fails. 2994 */ 2995 priv = pers->takeover(mddev); 2996 if (IS_ERR(priv)) { 2997 mddev->new_level = mddev->level; 2998 mddev->new_layout = mddev->layout; 2999 mddev->new_chunk_sectors = mddev->chunk_sectors; 3000 mddev->raid_disks -= mddev->delta_disks; 3001 mddev->delta_disks = 0; 3002 module_put(pers->owner); 3003 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3004 mdname(mddev), clevel); 3005 return PTR_ERR(priv); 3006 } 3007 3008 /* Looks like we have a winner */ 3009 mddev_suspend(mddev); 3010 mddev->pers->stop(mddev); 3011 3012 if (mddev->pers->sync_request == NULL && 3013 pers->sync_request != NULL) { 3014 /* need to add the md_redundancy_group */ 3015 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3016 printk(KERN_WARNING 3017 "md: cannot register extra attributes for %s\n", 3018 mdname(mddev)); 3019 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3020 } 3021 if (mddev->pers->sync_request != NULL && 3022 pers->sync_request == NULL) { 3023 /* need to remove the md_redundancy_group */ 3024 if (mddev->to_remove == NULL) 3025 mddev->to_remove = &md_redundancy_group; 3026 } 3027 3028 if (mddev->pers->sync_request == NULL && 3029 mddev->external) { 3030 /* We are converting from a no-redundancy array 3031 * to a redundancy array and metadata is managed 3032 * externally so we need to be sure that writes 3033 * won't block due to a need to transition 3034 * clean->dirty 3035 * until external management is started. 3036 */ 3037 mddev->in_sync = 0; 3038 mddev->safemode_delay = 0; 3039 mddev->safemode = 0; 3040 } 3041 3042 list_for_each_entry(rdev, &mddev->disks, same_set) { 3043 char nm[20]; 3044 if (rdev->raid_disk < 0) 3045 continue; 3046 if (rdev->new_raid_disk > mddev->raid_disks) 3047 rdev->new_raid_disk = -1; 3048 if (rdev->new_raid_disk == rdev->raid_disk) 3049 continue; 3050 sprintf(nm, "rd%d", rdev->raid_disk); 3051 sysfs_remove_link(&mddev->kobj, nm); 3052 } 3053 list_for_each_entry(rdev, &mddev->disks, same_set) { 3054 if (rdev->raid_disk < 0) 3055 continue; 3056 if (rdev->new_raid_disk == rdev->raid_disk) 3057 continue; 3058 rdev->raid_disk = rdev->new_raid_disk; 3059 if (rdev->raid_disk < 0) 3060 clear_bit(In_sync, &rdev->flags); 3061 else { 3062 char nm[20]; 3063 sprintf(nm, "rd%d", rdev->raid_disk); 3064 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 3065 printk("md: cannot register %s for %s after level change\n", 3066 nm, mdname(mddev)); 3067 } 3068 } 3069 3070 module_put(mddev->pers->owner); 3071 mddev->pers = pers; 3072 mddev->private = priv; 3073 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3074 mddev->level = mddev->new_level; 3075 mddev->layout = mddev->new_layout; 3076 mddev->chunk_sectors = mddev->new_chunk_sectors; 3077 mddev->delta_disks = 0; 3078 if (mddev->pers->sync_request == NULL) { 3079 /* this is now an array without redundancy, so 3080 * it must always be in_sync 3081 */ 3082 mddev->in_sync = 1; 3083 del_timer_sync(&mddev->safemode_timer); 3084 } 3085 pers->run(mddev); 3086 mddev_resume(mddev); 3087 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3088 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3089 md_wakeup_thread(mddev->thread); 3090 sysfs_notify(&mddev->kobj, NULL, "level"); 3091 md_new_event(mddev); 3092 return rv; 3093 } 3094 3095 static struct md_sysfs_entry md_level = 3096 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3097 3098 3099 static ssize_t 3100 layout_show(mddev_t *mddev, char *page) 3101 { 3102 /* just a number, not meaningful for all levels */ 3103 if (mddev->reshape_position != MaxSector && 3104 mddev->layout != mddev->new_layout) 3105 return sprintf(page, "%d (%d)\n", 3106 mddev->new_layout, mddev->layout); 3107 return sprintf(page, "%d\n", mddev->layout); 3108 } 3109 3110 static ssize_t 3111 layout_store(mddev_t *mddev, const char *buf, size_t len) 3112 { 3113 char *e; 3114 unsigned long n = simple_strtoul(buf, &e, 10); 3115 3116 if (!*buf || (*e && *e != '\n')) 3117 return -EINVAL; 3118 3119 if (mddev->pers) { 3120 int err; 3121 if (mddev->pers->check_reshape == NULL) 3122 return -EBUSY; 3123 mddev->new_layout = n; 3124 err = mddev->pers->check_reshape(mddev); 3125 if (err) { 3126 mddev->new_layout = mddev->layout; 3127 return err; 3128 } 3129 } else { 3130 mddev->new_layout = n; 3131 if (mddev->reshape_position == MaxSector) 3132 mddev->layout = n; 3133 } 3134 return len; 3135 } 3136 static struct md_sysfs_entry md_layout = 3137 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3138 3139 3140 static ssize_t 3141 raid_disks_show(mddev_t *mddev, char *page) 3142 { 3143 if (mddev->raid_disks == 0) 3144 return 0; 3145 if (mddev->reshape_position != MaxSector && 3146 mddev->delta_disks != 0) 3147 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3148 mddev->raid_disks - mddev->delta_disks); 3149 return sprintf(page, "%d\n", mddev->raid_disks); 3150 } 3151 3152 static int update_raid_disks(mddev_t *mddev, int raid_disks); 3153 3154 static ssize_t 3155 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 3156 { 3157 char *e; 3158 int rv = 0; 3159 unsigned long n = simple_strtoul(buf, &e, 10); 3160 3161 if (!*buf || (*e && *e != '\n')) 3162 return -EINVAL; 3163 3164 if (mddev->pers) 3165 rv = update_raid_disks(mddev, n); 3166 else if (mddev->reshape_position != MaxSector) { 3167 int olddisks = mddev->raid_disks - mddev->delta_disks; 3168 mddev->delta_disks = n - olddisks; 3169 mddev->raid_disks = n; 3170 } else 3171 mddev->raid_disks = n; 3172 return rv ? rv : len; 3173 } 3174 static struct md_sysfs_entry md_raid_disks = 3175 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3176 3177 static ssize_t 3178 chunk_size_show(mddev_t *mddev, char *page) 3179 { 3180 if (mddev->reshape_position != MaxSector && 3181 mddev->chunk_sectors != mddev->new_chunk_sectors) 3182 return sprintf(page, "%d (%d)\n", 3183 mddev->new_chunk_sectors << 9, 3184 mddev->chunk_sectors << 9); 3185 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3186 } 3187 3188 static ssize_t 3189 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 3190 { 3191 char *e; 3192 unsigned long n = simple_strtoul(buf, &e, 10); 3193 3194 if (!*buf || (*e && *e != '\n')) 3195 return -EINVAL; 3196 3197 if (mddev->pers) { 3198 int err; 3199 if (mddev->pers->check_reshape == NULL) 3200 return -EBUSY; 3201 mddev->new_chunk_sectors = n >> 9; 3202 err = mddev->pers->check_reshape(mddev); 3203 if (err) { 3204 mddev->new_chunk_sectors = mddev->chunk_sectors; 3205 return err; 3206 } 3207 } else { 3208 mddev->new_chunk_sectors = n >> 9; 3209 if (mddev->reshape_position == MaxSector) 3210 mddev->chunk_sectors = n >> 9; 3211 } 3212 return len; 3213 } 3214 static struct md_sysfs_entry md_chunk_size = 3215 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3216 3217 static ssize_t 3218 resync_start_show(mddev_t *mddev, char *page) 3219 { 3220 if (mddev->recovery_cp == MaxSector) 3221 return sprintf(page, "none\n"); 3222 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3223 } 3224 3225 static ssize_t 3226 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 3227 { 3228 char *e; 3229 unsigned long long n = simple_strtoull(buf, &e, 10); 3230 3231 if (mddev->pers) 3232 return -EBUSY; 3233 if (cmd_match(buf, "none")) 3234 n = MaxSector; 3235 else if (!*buf || (*e && *e != '\n')) 3236 return -EINVAL; 3237 3238 mddev->recovery_cp = n; 3239 return len; 3240 } 3241 static struct md_sysfs_entry md_resync_start = 3242 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3243 3244 /* 3245 * The array state can be: 3246 * 3247 * clear 3248 * No devices, no size, no level 3249 * Equivalent to STOP_ARRAY ioctl 3250 * inactive 3251 * May have some settings, but array is not active 3252 * all IO results in error 3253 * When written, doesn't tear down array, but just stops it 3254 * suspended (not supported yet) 3255 * All IO requests will block. The array can be reconfigured. 3256 * Writing this, if accepted, will block until array is quiescent 3257 * readonly 3258 * no resync can happen. no superblocks get written. 3259 * write requests fail 3260 * read-auto 3261 * like readonly, but behaves like 'clean' on a write request. 3262 * 3263 * clean - no pending writes, but otherwise active. 3264 * When written to inactive array, starts without resync 3265 * If a write request arrives then 3266 * if metadata is known, mark 'dirty' and switch to 'active'. 3267 * if not known, block and switch to write-pending 3268 * If written to an active array that has pending writes, then fails. 3269 * active 3270 * fully active: IO and resync can be happening. 3271 * When written to inactive array, starts with resync 3272 * 3273 * write-pending 3274 * clean, but writes are blocked waiting for 'active' to be written. 3275 * 3276 * active-idle 3277 * like active, but no writes have been seen for a while (100msec). 3278 * 3279 */ 3280 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3281 write_pending, active_idle, bad_word}; 3282 static char *array_states[] = { 3283 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3284 "write-pending", "active-idle", NULL }; 3285 3286 static int match_word(const char *word, char **list) 3287 { 3288 int n; 3289 for (n=0; list[n]; n++) 3290 if (cmd_match(word, list[n])) 3291 break; 3292 return n; 3293 } 3294 3295 static ssize_t 3296 array_state_show(mddev_t *mddev, char *page) 3297 { 3298 enum array_state st = inactive; 3299 3300 if (mddev->pers) 3301 switch(mddev->ro) { 3302 case 1: 3303 st = readonly; 3304 break; 3305 case 2: 3306 st = read_auto; 3307 break; 3308 case 0: 3309 if (mddev->in_sync) 3310 st = clean; 3311 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3312 st = write_pending; 3313 else if (mddev->safemode) 3314 st = active_idle; 3315 else 3316 st = active; 3317 } 3318 else { 3319 if (list_empty(&mddev->disks) && 3320 mddev->raid_disks == 0 && 3321 mddev->dev_sectors == 0) 3322 st = clear; 3323 else 3324 st = inactive; 3325 } 3326 return sprintf(page, "%s\n", array_states[st]); 3327 } 3328 3329 static int do_md_stop(mddev_t * mddev, int ro, int is_open); 3330 static int md_set_readonly(mddev_t * mddev, int is_open); 3331 static int do_md_run(mddev_t * mddev); 3332 static int restart_array(mddev_t *mddev); 3333 3334 static ssize_t 3335 array_state_store(mddev_t *mddev, const char *buf, size_t len) 3336 { 3337 int err = -EINVAL; 3338 enum array_state st = match_word(buf, array_states); 3339 switch(st) { 3340 case bad_word: 3341 break; 3342 case clear: 3343 /* stopping an active array */ 3344 if (atomic_read(&mddev->openers) > 0) 3345 return -EBUSY; 3346 err = do_md_stop(mddev, 0, 0); 3347 break; 3348 case inactive: 3349 /* stopping an active array */ 3350 if (mddev->pers) { 3351 if (atomic_read(&mddev->openers) > 0) 3352 return -EBUSY; 3353 err = do_md_stop(mddev, 2, 0); 3354 } else 3355 err = 0; /* already inactive */ 3356 break; 3357 case suspended: 3358 break; /* not supported yet */ 3359 case readonly: 3360 if (mddev->pers) 3361 err = md_set_readonly(mddev, 0); 3362 else { 3363 mddev->ro = 1; 3364 set_disk_ro(mddev->gendisk, 1); 3365 err = do_md_run(mddev); 3366 } 3367 break; 3368 case read_auto: 3369 if (mddev->pers) { 3370 if (mddev->ro == 0) 3371 err = md_set_readonly(mddev, 0); 3372 else if (mddev->ro == 1) 3373 err = restart_array(mddev); 3374 if (err == 0) { 3375 mddev->ro = 2; 3376 set_disk_ro(mddev->gendisk, 0); 3377 } 3378 } else { 3379 mddev->ro = 2; 3380 err = do_md_run(mddev); 3381 } 3382 break; 3383 case clean: 3384 if (mddev->pers) { 3385 restart_array(mddev); 3386 spin_lock_irq(&mddev->write_lock); 3387 if (atomic_read(&mddev->writes_pending) == 0) { 3388 if (mddev->in_sync == 0) { 3389 mddev->in_sync = 1; 3390 if (mddev->safemode == 1) 3391 mddev->safemode = 0; 3392 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3393 } 3394 err = 0; 3395 } else 3396 err = -EBUSY; 3397 spin_unlock_irq(&mddev->write_lock); 3398 } else 3399 err = -EINVAL; 3400 break; 3401 case active: 3402 if (mddev->pers) { 3403 restart_array(mddev); 3404 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3405 wake_up(&mddev->sb_wait); 3406 err = 0; 3407 } else { 3408 mddev->ro = 0; 3409 set_disk_ro(mddev->gendisk, 0); 3410 err = do_md_run(mddev); 3411 } 3412 break; 3413 case write_pending: 3414 case active_idle: 3415 /* these cannot be set */ 3416 break; 3417 } 3418 if (err) 3419 return err; 3420 else { 3421 sysfs_notify_dirent_safe(mddev->sysfs_state); 3422 return len; 3423 } 3424 } 3425 static struct md_sysfs_entry md_array_state = 3426 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3427 3428 static ssize_t 3429 max_corrected_read_errors_show(mddev_t *mddev, char *page) { 3430 return sprintf(page, "%d\n", 3431 atomic_read(&mddev->max_corr_read_errors)); 3432 } 3433 3434 static ssize_t 3435 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len) 3436 { 3437 char *e; 3438 unsigned long n = simple_strtoul(buf, &e, 10); 3439 3440 if (*buf && (*e == 0 || *e == '\n')) { 3441 atomic_set(&mddev->max_corr_read_errors, n); 3442 return len; 3443 } 3444 return -EINVAL; 3445 } 3446 3447 static struct md_sysfs_entry max_corr_read_errors = 3448 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3449 max_corrected_read_errors_store); 3450 3451 static ssize_t 3452 null_show(mddev_t *mddev, char *page) 3453 { 3454 return -EINVAL; 3455 } 3456 3457 static ssize_t 3458 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 3459 { 3460 /* buf must be %d:%d\n? giving major and minor numbers */ 3461 /* The new device is added to the array. 3462 * If the array has a persistent superblock, we read the 3463 * superblock to initialise info and check validity. 3464 * Otherwise, only checking done is that in bind_rdev_to_array, 3465 * which mainly checks size. 3466 */ 3467 char *e; 3468 int major = simple_strtoul(buf, &e, 10); 3469 int minor; 3470 dev_t dev; 3471 mdk_rdev_t *rdev; 3472 int err; 3473 3474 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3475 return -EINVAL; 3476 minor = simple_strtoul(e+1, &e, 10); 3477 if (*e && *e != '\n') 3478 return -EINVAL; 3479 dev = MKDEV(major, minor); 3480 if (major != MAJOR(dev) || 3481 minor != MINOR(dev)) 3482 return -EOVERFLOW; 3483 3484 3485 if (mddev->persistent) { 3486 rdev = md_import_device(dev, mddev->major_version, 3487 mddev->minor_version); 3488 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3489 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3490 mdk_rdev_t, same_set); 3491 err = super_types[mddev->major_version] 3492 .load_super(rdev, rdev0, mddev->minor_version); 3493 if (err < 0) 3494 goto out; 3495 } 3496 } else if (mddev->external) 3497 rdev = md_import_device(dev, -2, -1); 3498 else 3499 rdev = md_import_device(dev, -1, -1); 3500 3501 if (IS_ERR(rdev)) 3502 return PTR_ERR(rdev); 3503 err = bind_rdev_to_array(rdev, mddev); 3504 out: 3505 if (err) 3506 export_rdev(rdev); 3507 return err ? err : len; 3508 } 3509 3510 static struct md_sysfs_entry md_new_device = 3511 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 3512 3513 static ssize_t 3514 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 3515 { 3516 char *end; 3517 unsigned long chunk, end_chunk; 3518 3519 if (!mddev->bitmap) 3520 goto out; 3521 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 3522 while (*buf) { 3523 chunk = end_chunk = simple_strtoul(buf, &end, 0); 3524 if (buf == end) break; 3525 if (*end == '-') { /* range */ 3526 buf = end + 1; 3527 end_chunk = simple_strtoul(buf, &end, 0); 3528 if (buf == end) break; 3529 } 3530 if (*end && !isspace(*end)) break; 3531 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 3532 buf = skip_spaces(end); 3533 } 3534 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 3535 out: 3536 return len; 3537 } 3538 3539 static struct md_sysfs_entry md_bitmap = 3540 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 3541 3542 static ssize_t 3543 size_show(mddev_t *mddev, char *page) 3544 { 3545 return sprintf(page, "%llu\n", 3546 (unsigned long long)mddev->dev_sectors / 2); 3547 } 3548 3549 static int update_size(mddev_t *mddev, sector_t num_sectors); 3550 3551 static ssize_t 3552 size_store(mddev_t *mddev, const char *buf, size_t len) 3553 { 3554 /* If array is inactive, we can reduce the component size, but 3555 * not increase it (except from 0). 3556 * If array is active, we can try an on-line resize 3557 */ 3558 sector_t sectors; 3559 int err = strict_blocks_to_sectors(buf, §ors); 3560 3561 if (err < 0) 3562 return err; 3563 if (mddev->pers) { 3564 err = update_size(mddev, sectors); 3565 md_update_sb(mddev, 1); 3566 } else { 3567 if (mddev->dev_sectors == 0 || 3568 mddev->dev_sectors > sectors) 3569 mddev->dev_sectors = sectors; 3570 else 3571 err = -ENOSPC; 3572 } 3573 return err ? err : len; 3574 } 3575 3576 static struct md_sysfs_entry md_size = 3577 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 3578 3579 3580 /* Metdata version. 3581 * This is one of 3582 * 'none' for arrays with no metadata (good luck...) 3583 * 'external' for arrays with externally managed metadata, 3584 * or N.M for internally known formats 3585 */ 3586 static ssize_t 3587 metadata_show(mddev_t *mddev, char *page) 3588 { 3589 if (mddev->persistent) 3590 return sprintf(page, "%d.%d\n", 3591 mddev->major_version, mddev->minor_version); 3592 else if (mddev->external) 3593 return sprintf(page, "external:%s\n", mddev->metadata_type); 3594 else 3595 return sprintf(page, "none\n"); 3596 } 3597 3598 static ssize_t 3599 metadata_store(mddev_t *mddev, const char *buf, size_t len) 3600 { 3601 int major, minor; 3602 char *e; 3603 /* Changing the details of 'external' metadata is 3604 * always permitted. Otherwise there must be 3605 * no devices attached to the array. 3606 */ 3607 if (mddev->external && strncmp(buf, "external:", 9) == 0) 3608 ; 3609 else if (!list_empty(&mddev->disks)) 3610 return -EBUSY; 3611 3612 if (cmd_match(buf, "none")) { 3613 mddev->persistent = 0; 3614 mddev->external = 0; 3615 mddev->major_version = 0; 3616 mddev->minor_version = 90; 3617 return len; 3618 } 3619 if (strncmp(buf, "external:", 9) == 0) { 3620 size_t namelen = len-9; 3621 if (namelen >= sizeof(mddev->metadata_type)) 3622 namelen = sizeof(mddev->metadata_type)-1; 3623 strncpy(mddev->metadata_type, buf+9, namelen); 3624 mddev->metadata_type[namelen] = 0; 3625 if (namelen && mddev->metadata_type[namelen-1] == '\n') 3626 mddev->metadata_type[--namelen] = 0; 3627 mddev->persistent = 0; 3628 mddev->external = 1; 3629 mddev->major_version = 0; 3630 mddev->minor_version = 90; 3631 return len; 3632 } 3633 major = simple_strtoul(buf, &e, 10); 3634 if (e==buf || *e != '.') 3635 return -EINVAL; 3636 buf = e+1; 3637 minor = simple_strtoul(buf, &e, 10); 3638 if (e==buf || (*e && *e != '\n') ) 3639 return -EINVAL; 3640 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 3641 return -ENOENT; 3642 mddev->major_version = major; 3643 mddev->minor_version = minor; 3644 mddev->persistent = 1; 3645 mddev->external = 0; 3646 return len; 3647 } 3648 3649 static struct md_sysfs_entry md_metadata = 3650 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 3651 3652 static ssize_t 3653 action_show(mddev_t *mddev, char *page) 3654 { 3655 char *type = "idle"; 3656 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3657 type = "frozen"; 3658 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3659 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 3660 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3661 type = "reshape"; 3662 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3663 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3664 type = "resync"; 3665 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 3666 type = "check"; 3667 else 3668 type = "repair"; 3669 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 3670 type = "recover"; 3671 } 3672 return sprintf(page, "%s\n", type); 3673 } 3674 3675 static ssize_t 3676 action_store(mddev_t *mddev, const char *page, size_t len) 3677 { 3678 if (!mddev->pers || !mddev->pers->sync_request) 3679 return -EINVAL; 3680 3681 if (cmd_match(page, "frozen")) 3682 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3683 else 3684 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3685 3686 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 3687 if (mddev->sync_thread) { 3688 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3689 md_unregister_thread(mddev->sync_thread); 3690 mddev->sync_thread = NULL; 3691 mddev->recovery = 0; 3692 } 3693 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3694 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 3695 return -EBUSY; 3696 else if (cmd_match(page, "resync")) 3697 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3698 else if (cmd_match(page, "recover")) { 3699 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3700 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3701 } else if (cmd_match(page, "reshape")) { 3702 int err; 3703 if (mddev->pers->start_reshape == NULL) 3704 return -EINVAL; 3705 err = mddev->pers->start_reshape(mddev); 3706 if (err) 3707 return err; 3708 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3709 } else { 3710 if (cmd_match(page, "check")) 3711 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3712 else if (!cmd_match(page, "repair")) 3713 return -EINVAL; 3714 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3715 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3716 } 3717 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3718 md_wakeup_thread(mddev->thread); 3719 sysfs_notify_dirent_safe(mddev->sysfs_action); 3720 return len; 3721 } 3722 3723 static ssize_t 3724 mismatch_cnt_show(mddev_t *mddev, char *page) 3725 { 3726 return sprintf(page, "%llu\n", 3727 (unsigned long long) mddev->resync_mismatches); 3728 } 3729 3730 static struct md_sysfs_entry md_scan_mode = 3731 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 3732 3733 3734 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 3735 3736 static ssize_t 3737 sync_min_show(mddev_t *mddev, char *page) 3738 { 3739 return sprintf(page, "%d (%s)\n", speed_min(mddev), 3740 mddev->sync_speed_min ? "local": "system"); 3741 } 3742 3743 static ssize_t 3744 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 3745 { 3746 int min; 3747 char *e; 3748 if (strncmp(buf, "system", 6)==0) { 3749 mddev->sync_speed_min = 0; 3750 return len; 3751 } 3752 min = simple_strtoul(buf, &e, 10); 3753 if (buf == e || (*e && *e != '\n') || min <= 0) 3754 return -EINVAL; 3755 mddev->sync_speed_min = min; 3756 return len; 3757 } 3758 3759 static struct md_sysfs_entry md_sync_min = 3760 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 3761 3762 static ssize_t 3763 sync_max_show(mddev_t *mddev, char *page) 3764 { 3765 return sprintf(page, "%d (%s)\n", speed_max(mddev), 3766 mddev->sync_speed_max ? "local": "system"); 3767 } 3768 3769 static ssize_t 3770 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 3771 { 3772 int max; 3773 char *e; 3774 if (strncmp(buf, "system", 6)==0) { 3775 mddev->sync_speed_max = 0; 3776 return len; 3777 } 3778 max = simple_strtoul(buf, &e, 10); 3779 if (buf == e || (*e && *e != '\n') || max <= 0) 3780 return -EINVAL; 3781 mddev->sync_speed_max = max; 3782 return len; 3783 } 3784 3785 static struct md_sysfs_entry md_sync_max = 3786 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 3787 3788 static ssize_t 3789 degraded_show(mddev_t *mddev, char *page) 3790 { 3791 return sprintf(page, "%d\n", mddev->degraded); 3792 } 3793 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 3794 3795 static ssize_t 3796 sync_force_parallel_show(mddev_t *mddev, char *page) 3797 { 3798 return sprintf(page, "%d\n", mddev->parallel_resync); 3799 } 3800 3801 static ssize_t 3802 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len) 3803 { 3804 long n; 3805 3806 if (strict_strtol(buf, 10, &n)) 3807 return -EINVAL; 3808 3809 if (n != 0 && n != 1) 3810 return -EINVAL; 3811 3812 mddev->parallel_resync = n; 3813 3814 if (mddev->sync_thread) 3815 wake_up(&resync_wait); 3816 3817 return len; 3818 } 3819 3820 /* force parallel resync, even with shared block devices */ 3821 static struct md_sysfs_entry md_sync_force_parallel = 3822 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 3823 sync_force_parallel_show, sync_force_parallel_store); 3824 3825 static ssize_t 3826 sync_speed_show(mddev_t *mddev, char *page) 3827 { 3828 unsigned long resync, dt, db; 3829 if (mddev->curr_resync == 0) 3830 return sprintf(page, "none\n"); 3831 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 3832 dt = (jiffies - mddev->resync_mark) / HZ; 3833 if (!dt) dt++; 3834 db = resync - mddev->resync_mark_cnt; 3835 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 3836 } 3837 3838 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 3839 3840 static ssize_t 3841 sync_completed_show(mddev_t *mddev, char *page) 3842 { 3843 unsigned long max_sectors, resync; 3844 3845 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3846 return sprintf(page, "none\n"); 3847 3848 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3849 max_sectors = mddev->resync_max_sectors; 3850 else 3851 max_sectors = mddev->dev_sectors; 3852 3853 resync = mddev->curr_resync_completed; 3854 return sprintf(page, "%lu / %lu\n", resync, max_sectors); 3855 } 3856 3857 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 3858 3859 static ssize_t 3860 min_sync_show(mddev_t *mddev, char *page) 3861 { 3862 return sprintf(page, "%llu\n", 3863 (unsigned long long)mddev->resync_min); 3864 } 3865 static ssize_t 3866 min_sync_store(mddev_t *mddev, const char *buf, size_t len) 3867 { 3868 unsigned long long min; 3869 if (strict_strtoull(buf, 10, &min)) 3870 return -EINVAL; 3871 if (min > mddev->resync_max) 3872 return -EINVAL; 3873 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3874 return -EBUSY; 3875 3876 /* Must be a multiple of chunk_size */ 3877 if (mddev->chunk_sectors) { 3878 sector_t temp = min; 3879 if (sector_div(temp, mddev->chunk_sectors)) 3880 return -EINVAL; 3881 } 3882 mddev->resync_min = min; 3883 3884 return len; 3885 } 3886 3887 static struct md_sysfs_entry md_min_sync = 3888 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 3889 3890 static ssize_t 3891 max_sync_show(mddev_t *mddev, char *page) 3892 { 3893 if (mddev->resync_max == MaxSector) 3894 return sprintf(page, "max\n"); 3895 else 3896 return sprintf(page, "%llu\n", 3897 (unsigned long long)mddev->resync_max); 3898 } 3899 static ssize_t 3900 max_sync_store(mddev_t *mddev, const char *buf, size_t len) 3901 { 3902 if (strncmp(buf, "max", 3) == 0) 3903 mddev->resync_max = MaxSector; 3904 else { 3905 unsigned long long max; 3906 if (strict_strtoull(buf, 10, &max)) 3907 return -EINVAL; 3908 if (max < mddev->resync_min) 3909 return -EINVAL; 3910 if (max < mddev->resync_max && 3911 mddev->ro == 0 && 3912 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3913 return -EBUSY; 3914 3915 /* Must be a multiple of chunk_size */ 3916 if (mddev->chunk_sectors) { 3917 sector_t temp = max; 3918 if (sector_div(temp, mddev->chunk_sectors)) 3919 return -EINVAL; 3920 } 3921 mddev->resync_max = max; 3922 } 3923 wake_up(&mddev->recovery_wait); 3924 return len; 3925 } 3926 3927 static struct md_sysfs_entry md_max_sync = 3928 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 3929 3930 static ssize_t 3931 suspend_lo_show(mddev_t *mddev, char *page) 3932 { 3933 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 3934 } 3935 3936 static ssize_t 3937 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 3938 { 3939 char *e; 3940 unsigned long long new = simple_strtoull(buf, &e, 10); 3941 3942 if (mddev->pers == NULL || 3943 mddev->pers->quiesce == NULL) 3944 return -EINVAL; 3945 if (buf == e || (*e && *e != '\n')) 3946 return -EINVAL; 3947 if (new >= mddev->suspend_hi || 3948 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 3949 mddev->suspend_lo = new; 3950 mddev->pers->quiesce(mddev, 2); 3951 return len; 3952 } else 3953 return -EINVAL; 3954 } 3955 static struct md_sysfs_entry md_suspend_lo = 3956 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 3957 3958 3959 static ssize_t 3960 suspend_hi_show(mddev_t *mddev, char *page) 3961 { 3962 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 3963 } 3964 3965 static ssize_t 3966 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 3967 { 3968 char *e; 3969 unsigned long long new = simple_strtoull(buf, &e, 10); 3970 3971 if (mddev->pers == NULL || 3972 mddev->pers->quiesce == NULL) 3973 return -EINVAL; 3974 if (buf == e || (*e && *e != '\n')) 3975 return -EINVAL; 3976 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 3977 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 3978 mddev->suspend_hi = new; 3979 mddev->pers->quiesce(mddev, 1); 3980 mddev->pers->quiesce(mddev, 0); 3981 return len; 3982 } else 3983 return -EINVAL; 3984 } 3985 static struct md_sysfs_entry md_suspend_hi = 3986 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 3987 3988 static ssize_t 3989 reshape_position_show(mddev_t *mddev, char *page) 3990 { 3991 if (mddev->reshape_position != MaxSector) 3992 return sprintf(page, "%llu\n", 3993 (unsigned long long)mddev->reshape_position); 3994 strcpy(page, "none\n"); 3995 return 5; 3996 } 3997 3998 static ssize_t 3999 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 4000 { 4001 char *e; 4002 unsigned long long new = simple_strtoull(buf, &e, 10); 4003 if (mddev->pers) 4004 return -EBUSY; 4005 if (buf == e || (*e && *e != '\n')) 4006 return -EINVAL; 4007 mddev->reshape_position = new; 4008 mddev->delta_disks = 0; 4009 mddev->new_level = mddev->level; 4010 mddev->new_layout = mddev->layout; 4011 mddev->new_chunk_sectors = mddev->chunk_sectors; 4012 return len; 4013 } 4014 4015 static struct md_sysfs_entry md_reshape_position = 4016 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4017 reshape_position_store); 4018 4019 static ssize_t 4020 array_size_show(mddev_t *mddev, char *page) 4021 { 4022 if (mddev->external_size) 4023 return sprintf(page, "%llu\n", 4024 (unsigned long long)mddev->array_sectors/2); 4025 else 4026 return sprintf(page, "default\n"); 4027 } 4028 4029 static ssize_t 4030 array_size_store(mddev_t *mddev, const char *buf, size_t len) 4031 { 4032 sector_t sectors; 4033 4034 if (strncmp(buf, "default", 7) == 0) { 4035 if (mddev->pers) 4036 sectors = mddev->pers->size(mddev, 0, 0); 4037 else 4038 sectors = mddev->array_sectors; 4039 4040 mddev->external_size = 0; 4041 } else { 4042 if (strict_blocks_to_sectors(buf, §ors) < 0) 4043 return -EINVAL; 4044 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4045 return -E2BIG; 4046 4047 mddev->external_size = 1; 4048 } 4049 4050 mddev->array_sectors = sectors; 4051 set_capacity(mddev->gendisk, mddev->array_sectors); 4052 if (mddev->pers) 4053 revalidate_disk(mddev->gendisk); 4054 4055 return len; 4056 } 4057 4058 static struct md_sysfs_entry md_array_size = 4059 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4060 array_size_store); 4061 4062 static struct attribute *md_default_attrs[] = { 4063 &md_level.attr, 4064 &md_layout.attr, 4065 &md_raid_disks.attr, 4066 &md_chunk_size.attr, 4067 &md_size.attr, 4068 &md_resync_start.attr, 4069 &md_metadata.attr, 4070 &md_new_device.attr, 4071 &md_safe_delay.attr, 4072 &md_array_state.attr, 4073 &md_reshape_position.attr, 4074 &md_array_size.attr, 4075 &max_corr_read_errors.attr, 4076 NULL, 4077 }; 4078 4079 static struct attribute *md_redundancy_attrs[] = { 4080 &md_scan_mode.attr, 4081 &md_mismatches.attr, 4082 &md_sync_min.attr, 4083 &md_sync_max.attr, 4084 &md_sync_speed.attr, 4085 &md_sync_force_parallel.attr, 4086 &md_sync_completed.attr, 4087 &md_min_sync.attr, 4088 &md_max_sync.attr, 4089 &md_suspend_lo.attr, 4090 &md_suspend_hi.attr, 4091 &md_bitmap.attr, 4092 &md_degraded.attr, 4093 NULL, 4094 }; 4095 static struct attribute_group md_redundancy_group = { 4096 .name = NULL, 4097 .attrs = md_redundancy_attrs, 4098 }; 4099 4100 4101 static ssize_t 4102 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4103 { 4104 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4105 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4106 ssize_t rv; 4107 4108 if (!entry->show) 4109 return -EIO; 4110 rv = mddev_lock(mddev); 4111 if (!rv) { 4112 rv = entry->show(mddev, page); 4113 mddev_unlock(mddev); 4114 } 4115 return rv; 4116 } 4117 4118 static ssize_t 4119 md_attr_store(struct kobject *kobj, struct attribute *attr, 4120 const char *page, size_t length) 4121 { 4122 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4123 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4124 ssize_t rv; 4125 4126 if (!entry->store) 4127 return -EIO; 4128 if (!capable(CAP_SYS_ADMIN)) 4129 return -EACCES; 4130 rv = mddev_lock(mddev); 4131 if (mddev->hold_active == UNTIL_IOCTL) 4132 mddev->hold_active = 0; 4133 if (!rv) { 4134 rv = entry->store(mddev, page, length); 4135 mddev_unlock(mddev); 4136 } 4137 return rv; 4138 } 4139 4140 static void md_free(struct kobject *ko) 4141 { 4142 mddev_t *mddev = container_of(ko, mddev_t, kobj); 4143 4144 if (mddev->sysfs_state) 4145 sysfs_put(mddev->sysfs_state); 4146 4147 if (mddev->gendisk) { 4148 del_gendisk(mddev->gendisk); 4149 put_disk(mddev->gendisk); 4150 } 4151 if (mddev->queue) 4152 blk_cleanup_queue(mddev->queue); 4153 4154 kfree(mddev); 4155 } 4156 4157 static const struct sysfs_ops md_sysfs_ops = { 4158 .show = md_attr_show, 4159 .store = md_attr_store, 4160 }; 4161 static struct kobj_type md_ktype = { 4162 .release = md_free, 4163 .sysfs_ops = &md_sysfs_ops, 4164 .default_attrs = md_default_attrs, 4165 }; 4166 4167 int mdp_major = 0; 4168 4169 static void mddev_delayed_delete(struct work_struct *ws) 4170 { 4171 mddev_t *mddev = container_of(ws, mddev_t, del_work); 4172 4173 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4174 kobject_del(&mddev->kobj); 4175 kobject_put(&mddev->kobj); 4176 } 4177 4178 static int md_alloc(dev_t dev, char *name) 4179 { 4180 static DEFINE_MUTEX(disks_mutex); 4181 mddev_t *mddev = mddev_find(dev); 4182 struct gendisk *disk; 4183 int partitioned; 4184 int shift; 4185 int unit; 4186 int error; 4187 4188 if (!mddev) 4189 return -ENODEV; 4190 4191 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4192 shift = partitioned ? MdpMinorShift : 0; 4193 unit = MINOR(mddev->unit) >> shift; 4194 4195 /* wait for any previous instance if this device 4196 * to be completed removed (mddev_delayed_delete). 4197 */ 4198 flush_scheduled_work(); 4199 4200 mutex_lock(&disks_mutex); 4201 error = -EEXIST; 4202 if (mddev->gendisk) 4203 goto abort; 4204 4205 if (name) { 4206 /* Need to ensure that 'name' is not a duplicate. 4207 */ 4208 mddev_t *mddev2; 4209 spin_lock(&all_mddevs_lock); 4210 4211 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4212 if (mddev2->gendisk && 4213 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4214 spin_unlock(&all_mddevs_lock); 4215 goto abort; 4216 } 4217 spin_unlock(&all_mddevs_lock); 4218 } 4219 4220 error = -ENOMEM; 4221 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4222 if (!mddev->queue) 4223 goto abort; 4224 mddev->queue->queuedata = mddev; 4225 4226 /* Can be unlocked because the queue is new: no concurrency */ 4227 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue); 4228 4229 blk_queue_make_request(mddev->queue, md_make_request); 4230 4231 disk = alloc_disk(1 << shift); 4232 if (!disk) { 4233 blk_cleanup_queue(mddev->queue); 4234 mddev->queue = NULL; 4235 goto abort; 4236 } 4237 disk->major = MAJOR(mddev->unit); 4238 disk->first_minor = unit << shift; 4239 if (name) 4240 strcpy(disk->disk_name, name); 4241 else if (partitioned) 4242 sprintf(disk->disk_name, "md_d%d", unit); 4243 else 4244 sprintf(disk->disk_name, "md%d", unit); 4245 disk->fops = &md_fops; 4246 disk->private_data = mddev; 4247 disk->queue = mddev->queue; 4248 /* Allow extended partitions. This makes the 4249 * 'mdp' device redundant, but we can't really 4250 * remove it now. 4251 */ 4252 disk->flags |= GENHD_FL_EXT_DEVT; 4253 add_disk(disk); 4254 mddev->gendisk = disk; 4255 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4256 &disk_to_dev(disk)->kobj, "%s", "md"); 4257 if (error) { 4258 /* This isn't possible, but as kobject_init_and_add is marked 4259 * __must_check, we must do something with the result 4260 */ 4261 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4262 disk->disk_name); 4263 error = 0; 4264 } 4265 if (mddev->kobj.sd && 4266 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4267 printk(KERN_DEBUG "pointless warning\n"); 4268 abort: 4269 mutex_unlock(&disks_mutex); 4270 if (!error && mddev->kobj.sd) { 4271 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4272 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4273 } 4274 mddev_put(mddev); 4275 return error; 4276 } 4277 4278 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4279 { 4280 md_alloc(dev, NULL); 4281 return NULL; 4282 } 4283 4284 static int add_named_array(const char *val, struct kernel_param *kp) 4285 { 4286 /* val must be "md_*" where * is not all digits. 4287 * We allocate an array with a large free minor number, and 4288 * set the name to val. val must not already be an active name. 4289 */ 4290 int len = strlen(val); 4291 char buf[DISK_NAME_LEN]; 4292 4293 while (len && val[len-1] == '\n') 4294 len--; 4295 if (len >= DISK_NAME_LEN) 4296 return -E2BIG; 4297 strlcpy(buf, val, len+1); 4298 if (strncmp(buf, "md_", 3) != 0) 4299 return -EINVAL; 4300 return md_alloc(0, buf); 4301 } 4302 4303 static void md_safemode_timeout(unsigned long data) 4304 { 4305 mddev_t *mddev = (mddev_t *) data; 4306 4307 if (!atomic_read(&mddev->writes_pending)) { 4308 mddev->safemode = 1; 4309 if (mddev->external) 4310 sysfs_notify_dirent_safe(mddev->sysfs_state); 4311 } 4312 md_wakeup_thread(mddev->thread); 4313 } 4314 4315 static int start_dirty_degraded; 4316 4317 int md_run(mddev_t *mddev) 4318 { 4319 int err; 4320 mdk_rdev_t *rdev; 4321 struct mdk_personality *pers; 4322 4323 if (list_empty(&mddev->disks)) 4324 /* cannot run an array with no devices.. */ 4325 return -EINVAL; 4326 4327 if (mddev->pers) 4328 return -EBUSY; 4329 /* Cannot run until previous stop completes properly */ 4330 if (mddev->sysfs_active) 4331 return -EBUSY; 4332 4333 /* 4334 * Analyze all RAID superblock(s) 4335 */ 4336 if (!mddev->raid_disks) { 4337 if (!mddev->persistent) 4338 return -EINVAL; 4339 analyze_sbs(mddev); 4340 } 4341 4342 if (mddev->level != LEVEL_NONE) 4343 request_module("md-level-%d", mddev->level); 4344 else if (mddev->clevel[0]) 4345 request_module("md-%s", mddev->clevel); 4346 4347 /* 4348 * Drop all container device buffers, from now on 4349 * the only valid external interface is through the md 4350 * device. 4351 */ 4352 list_for_each_entry(rdev, &mddev->disks, same_set) { 4353 if (test_bit(Faulty, &rdev->flags)) 4354 continue; 4355 sync_blockdev(rdev->bdev); 4356 invalidate_bdev(rdev->bdev); 4357 4358 /* perform some consistency tests on the device. 4359 * We don't want the data to overlap the metadata, 4360 * Internal Bitmap issues have been handled elsewhere. 4361 */ 4362 if (rdev->data_offset < rdev->sb_start) { 4363 if (mddev->dev_sectors && 4364 rdev->data_offset + mddev->dev_sectors 4365 > rdev->sb_start) { 4366 printk("md: %s: data overlaps metadata\n", 4367 mdname(mddev)); 4368 return -EINVAL; 4369 } 4370 } else { 4371 if (rdev->sb_start + rdev->sb_size/512 4372 > rdev->data_offset) { 4373 printk("md: %s: metadata overlaps data\n", 4374 mdname(mddev)); 4375 return -EINVAL; 4376 } 4377 } 4378 sysfs_notify_dirent_safe(rdev->sysfs_state); 4379 } 4380 4381 spin_lock(&pers_lock); 4382 pers = find_pers(mddev->level, mddev->clevel); 4383 if (!pers || !try_module_get(pers->owner)) { 4384 spin_unlock(&pers_lock); 4385 if (mddev->level != LEVEL_NONE) 4386 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 4387 mddev->level); 4388 else 4389 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 4390 mddev->clevel); 4391 return -EINVAL; 4392 } 4393 mddev->pers = pers; 4394 spin_unlock(&pers_lock); 4395 if (mddev->level != pers->level) { 4396 mddev->level = pers->level; 4397 mddev->new_level = pers->level; 4398 } 4399 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4400 4401 if (mddev->reshape_position != MaxSector && 4402 pers->start_reshape == NULL) { 4403 /* This personality cannot handle reshaping... */ 4404 mddev->pers = NULL; 4405 module_put(pers->owner); 4406 return -EINVAL; 4407 } 4408 4409 if (pers->sync_request) { 4410 /* Warn if this is a potentially silly 4411 * configuration. 4412 */ 4413 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4414 mdk_rdev_t *rdev2; 4415 int warned = 0; 4416 4417 list_for_each_entry(rdev, &mddev->disks, same_set) 4418 list_for_each_entry(rdev2, &mddev->disks, same_set) { 4419 if (rdev < rdev2 && 4420 rdev->bdev->bd_contains == 4421 rdev2->bdev->bd_contains) { 4422 printk(KERN_WARNING 4423 "%s: WARNING: %s appears to be" 4424 " on the same physical disk as" 4425 " %s.\n", 4426 mdname(mddev), 4427 bdevname(rdev->bdev,b), 4428 bdevname(rdev2->bdev,b2)); 4429 warned = 1; 4430 } 4431 } 4432 4433 if (warned) 4434 printk(KERN_WARNING 4435 "True protection against single-disk" 4436 " failure might be compromised.\n"); 4437 } 4438 4439 mddev->recovery = 0; 4440 /* may be over-ridden by personality */ 4441 mddev->resync_max_sectors = mddev->dev_sectors; 4442 4443 mddev->ok_start_degraded = start_dirty_degraded; 4444 4445 if (start_readonly && mddev->ro == 0) 4446 mddev->ro = 2; /* read-only, but switch on first write */ 4447 4448 err = mddev->pers->run(mddev); 4449 if (err) 4450 printk(KERN_ERR "md: pers->run() failed ...\n"); 4451 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 4452 WARN_ONCE(!mddev->external_size, "%s: default size too small," 4453 " but 'external_size' not in effect?\n", __func__); 4454 printk(KERN_ERR 4455 "md: invalid array_size %llu > default size %llu\n", 4456 (unsigned long long)mddev->array_sectors / 2, 4457 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 4458 err = -EINVAL; 4459 mddev->pers->stop(mddev); 4460 } 4461 if (err == 0 && mddev->pers->sync_request) { 4462 err = bitmap_create(mddev); 4463 if (err) { 4464 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 4465 mdname(mddev), err); 4466 mddev->pers->stop(mddev); 4467 } 4468 } 4469 if (err) { 4470 module_put(mddev->pers->owner); 4471 mddev->pers = NULL; 4472 bitmap_destroy(mddev); 4473 return err; 4474 } 4475 if (mddev->pers->sync_request) { 4476 if (mddev->kobj.sd && 4477 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4478 printk(KERN_WARNING 4479 "md: cannot register extra attributes for %s\n", 4480 mdname(mddev)); 4481 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 4482 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 4483 mddev->ro = 0; 4484 4485 atomic_set(&mddev->writes_pending,0); 4486 atomic_set(&mddev->max_corr_read_errors, 4487 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 4488 mddev->safemode = 0; 4489 mddev->safemode_timer.function = md_safemode_timeout; 4490 mddev->safemode_timer.data = (unsigned long) mddev; 4491 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 4492 mddev->in_sync = 1; 4493 4494 list_for_each_entry(rdev, &mddev->disks, same_set) 4495 if (rdev->raid_disk >= 0) { 4496 char nm[20]; 4497 sprintf(nm, "rd%d", rdev->raid_disk); 4498 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 4499 /* failure here is OK */; 4500 } 4501 4502 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4503 4504 if (mddev->flags) 4505 md_update_sb(mddev, 0); 4506 4507 md_wakeup_thread(mddev->thread); 4508 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 4509 4510 md_new_event(mddev); 4511 sysfs_notify_dirent_safe(mddev->sysfs_state); 4512 sysfs_notify_dirent_safe(mddev->sysfs_action); 4513 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4514 return 0; 4515 } 4516 EXPORT_SYMBOL_GPL(md_run); 4517 4518 static int do_md_run(mddev_t *mddev) 4519 { 4520 int err; 4521 4522 err = md_run(mddev); 4523 if (err) 4524 goto out; 4525 err = bitmap_load(mddev); 4526 if (err) { 4527 bitmap_destroy(mddev); 4528 goto out; 4529 } 4530 set_capacity(mddev->gendisk, mddev->array_sectors); 4531 revalidate_disk(mddev->gendisk); 4532 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4533 out: 4534 return err; 4535 } 4536 4537 static int restart_array(mddev_t *mddev) 4538 { 4539 struct gendisk *disk = mddev->gendisk; 4540 4541 /* Complain if it has no devices */ 4542 if (list_empty(&mddev->disks)) 4543 return -ENXIO; 4544 if (!mddev->pers) 4545 return -EINVAL; 4546 if (!mddev->ro) 4547 return -EBUSY; 4548 mddev->safemode = 0; 4549 mddev->ro = 0; 4550 set_disk_ro(disk, 0); 4551 printk(KERN_INFO "md: %s switched to read-write mode.\n", 4552 mdname(mddev)); 4553 /* Kick recovery or resync if necessary */ 4554 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4555 md_wakeup_thread(mddev->thread); 4556 md_wakeup_thread(mddev->sync_thread); 4557 sysfs_notify_dirent_safe(mddev->sysfs_state); 4558 return 0; 4559 } 4560 4561 /* similar to deny_write_access, but accounts for our holding a reference 4562 * to the file ourselves */ 4563 static int deny_bitmap_write_access(struct file * file) 4564 { 4565 struct inode *inode = file->f_mapping->host; 4566 4567 spin_lock(&inode->i_lock); 4568 if (atomic_read(&inode->i_writecount) > 1) { 4569 spin_unlock(&inode->i_lock); 4570 return -ETXTBSY; 4571 } 4572 atomic_set(&inode->i_writecount, -1); 4573 spin_unlock(&inode->i_lock); 4574 4575 return 0; 4576 } 4577 4578 void restore_bitmap_write_access(struct file *file) 4579 { 4580 struct inode *inode = file->f_mapping->host; 4581 4582 spin_lock(&inode->i_lock); 4583 atomic_set(&inode->i_writecount, 1); 4584 spin_unlock(&inode->i_lock); 4585 } 4586 4587 static void md_clean(mddev_t *mddev) 4588 { 4589 mddev->array_sectors = 0; 4590 mddev->external_size = 0; 4591 mddev->dev_sectors = 0; 4592 mddev->raid_disks = 0; 4593 mddev->recovery_cp = 0; 4594 mddev->resync_min = 0; 4595 mddev->resync_max = MaxSector; 4596 mddev->reshape_position = MaxSector; 4597 mddev->external = 0; 4598 mddev->persistent = 0; 4599 mddev->level = LEVEL_NONE; 4600 mddev->clevel[0] = 0; 4601 mddev->flags = 0; 4602 mddev->ro = 0; 4603 mddev->metadata_type[0] = 0; 4604 mddev->chunk_sectors = 0; 4605 mddev->ctime = mddev->utime = 0; 4606 mddev->layout = 0; 4607 mddev->max_disks = 0; 4608 mddev->events = 0; 4609 mddev->can_decrease_events = 0; 4610 mddev->delta_disks = 0; 4611 mddev->new_level = LEVEL_NONE; 4612 mddev->new_layout = 0; 4613 mddev->new_chunk_sectors = 0; 4614 mddev->curr_resync = 0; 4615 mddev->resync_mismatches = 0; 4616 mddev->suspend_lo = mddev->suspend_hi = 0; 4617 mddev->sync_speed_min = mddev->sync_speed_max = 0; 4618 mddev->recovery = 0; 4619 mddev->in_sync = 0; 4620 mddev->degraded = 0; 4621 mddev->safemode = 0; 4622 mddev->bitmap_info.offset = 0; 4623 mddev->bitmap_info.default_offset = 0; 4624 mddev->bitmap_info.chunksize = 0; 4625 mddev->bitmap_info.daemon_sleep = 0; 4626 mddev->bitmap_info.max_write_behind = 0; 4627 mddev->plug = NULL; 4628 } 4629 4630 void md_stop_writes(mddev_t *mddev) 4631 { 4632 if (mddev->sync_thread) { 4633 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4634 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4635 md_unregister_thread(mddev->sync_thread); 4636 mddev->sync_thread = NULL; 4637 } 4638 4639 del_timer_sync(&mddev->safemode_timer); 4640 4641 bitmap_flush(mddev); 4642 md_super_wait(mddev); 4643 4644 if (!mddev->in_sync || mddev->flags) { 4645 /* mark array as shutdown cleanly */ 4646 mddev->in_sync = 1; 4647 md_update_sb(mddev, 1); 4648 } 4649 } 4650 EXPORT_SYMBOL_GPL(md_stop_writes); 4651 4652 void md_stop(mddev_t *mddev) 4653 { 4654 mddev->pers->stop(mddev); 4655 if (mddev->pers->sync_request && mddev->to_remove == NULL) 4656 mddev->to_remove = &md_redundancy_group; 4657 module_put(mddev->pers->owner); 4658 mddev->pers = NULL; 4659 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4660 } 4661 EXPORT_SYMBOL_GPL(md_stop); 4662 4663 static int md_set_readonly(mddev_t *mddev, int is_open) 4664 { 4665 int err = 0; 4666 mutex_lock(&mddev->open_mutex); 4667 if (atomic_read(&mddev->openers) > is_open) { 4668 printk("md: %s still in use.\n",mdname(mddev)); 4669 err = -EBUSY; 4670 goto out; 4671 } 4672 if (mddev->pers) { 4673 md_stop_writes(mddev); 4674 4675 err = -ENXIO; 4676 if (mddev->ro==1) 4677 goto out; 4678 mddev->ro = 1; 4679 set_disk_ro(mddev->gendisk, 1); 4680 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4681 sysfs_notify_dirent_safe(mddev->sysfs_state); 4682 err = 0; 4683 } 4684 out: 4685 mutex_unlock(&mddev->open_mutex); 4686 return err; 4687 } 4688 4689 /* mode: 4690 * 0 - completely stop and dis-assemble array 4691 * 2 - stop but do not disassemble array 4692 */ 4693 static int do_md_stop(mddev_t * mddev, int mode, int is_open) 4694 { 4695 struct gendisk *disk = mddev->gendisk; 4696 mdk_rdev_t *rdev; 4697 4698 mutex_lock(&mddev->open_mutex); 4699 if (atomic_read(&mddev->openers) > is_open || 4700 mddev->sysfs_active) { 4701 printk("md: %s still in use.\n",mdname(mddev)); 4702 mutex_unlock(&mddev->open_mutex); 4703 return -EBUSY; 4704 } 4705 4706 if (mddev->pers) { 4707 if (mddev->ro) 4708 set_disk_ro(disk, 0); 4709 4710 md_stop_writes(mddev); 4711 md_stop(mddev); 4712 mddev->queue->merge_bvec_fn = NULL; 4713 mddev->queue->unplug_fn = NULL; 4714 mddev->queue->backing_dev_info.congested_fn = NULL; 4715 4716 /* tell userspace to handle 'inactive' */ 4717 sysfs_notify_dirent_safe(mddev->sysfs_state); 4718 4719 list_for_each_entry(rdev, &mddev->disks, same_set) 4720 if (rdev->raid_disk >= 0) { 4721 char nm[20]; 4722 sprintf(nm, "rd%d", rdev->raid_disk); 4723 sysfs_remove_link(&mddev->kobj, nm); 4724 } 4725 4726 set_capacity(disk, 0); 4727 mutex_unlock(&mddev->open_mutex); 4728 revalidate_disk(disk); 4729 4730 if (mddev->ro) 4731 mddev->ro = 0; 4732 } else 4733 mutex_unlock(&mddev->open_mutex); 4734 /* 4735 * Free resources if final stop 4736 */ 4737 if (mode == 0) { 4738 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 4739 4740 bitmap_destroy(mddev); 4741 if (mddev->bitmap_info.file) { 4742 restore_bitmap_write_access(mddev->bitmap_info.file); 4743 fput(mddev->bitmap_info.file); 4744 mddev->bitmap_info.file = NULL; 4745 } 4746 mddev->bitmap_info.offset = 0; 4747 4748 export_array(mddev); 4749 4750 md_clean(mddev); 4751 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4752 if (mddev->hold_active == UNTIL_STOP) 4753 mddev->hold_active = 0; 4754 } 4755 blk_integrity_unregister(disk); 4756 md_new_event(mddev); 4757 sysfs_notify_dirent_safe(mddev->sysfs_state); 4758 return 0; 4759 } 4760 4761 #ifndef MODULE 4762 static void autorun_array(mddev_t *mddev) 4763 { 4764 mdk_rdev_t *rdev; 4765 int err; 4766 4767 if (list_empty(&mddev->disks)) 4768 return; 4769 4770 printk(KERN_INFO "md: running: "); 4771 4772 list_for_each_entry(rdev, &mddev->disks, same_set) { 4773 char b[BDEVNAME_SIZE]; 4774 printk("<%s>", bdevname(rdev->bdev,b)); 4775 } 4776 printk("\n"); 4777 4778 err = do_md_run(mddev); 4779 if (err) { 4780 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 4781 do_md_stop(mddev, 0, 0); 4782 } 4783 } 4784 4785 /* 4786 * lets try to run arrays based on all disks that have arrived 4787 * until now. (those are in pending_raid_disks) 4788 * 4789 * the method: pick the first pending disk, collect all disks with 4790 * the same UUID, remove all from the pending list and put them into 4791 * the 'same_array' list. Then order this list based on superblock 4792 * update time (freshest comes first), kick out 'old' disks and 4793 * compare superblocks. If everything's fine then run it. 4794 * 4795 * If "unit" is allocated, then bump its reference count 4796 */ 4797 static void autorun_devices(int part) 4798 { 4799 mdk_rdev_t *rdev0, *rdev, *tmp; 4800 mddev_t *mddev; 4801 char b[BDEVNAME_SIZE]; 4802 4803 printk(KERN_INFO "md: autorun ...\n"); 4804 while (!list_empty(&pending_raid_disks)) { 4805 int unit; 4806 dev_t dev; 4807 LIST_HEAD(candidates); 4808 rdev0 = list_entry(pending_raid_disks.next, 4809 mdk_rdev_t, same_set); 4810 4811 printk(KERN_INFO "md: considering %s ...\n", 4812 bdevname(rdev0->bdev,b)); 4813 INIT_LIST_HEAD(&candidates); 4814 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 4815 if (super_90_load(rdev, rdev0, 0) >= 0) { 4816 printk(KERN_INFO "md: adding %s ...\n", 4817 bdevname(rdev->bdev,b)); 4818 list_move(&rdev->same_set, &candidates); 4819 } 4820 /* 4821 * now we have a set of devices, with all of them having 4822 * mostly sane superblocks. It's time to allocate the 4823 * mddev. 4824 */ 4825 if (part) { 4826 dev = MKDEV(mdp_major, 4827 rdev0->preferred_minor << MdpMinorShift); 4828 unit = MINOR(dev) >> MdpMinorShift; 4829 } else { 4830 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 4831 unit = MINOR(dev); 4832 } 4833 if (rdev0->preferred_minor != unit) { 4834 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 4835 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 4836 break; 4837 } 4838 4839 md_probe(dev, NULL, NULL); 4840 mddev = mddev_find(dev); 4841 if (!mddev || !mddev->gendisk) { 4842 if (mddev) 4843 mddev_put(mddev); 4844 printk(KERN_ERR 4845 "md: cannot allocate memory for md drive.\n"); 4846 break; 4847 } 4848 if (mddev_lock(mddev)) 4849 printk(KERN_WARNING "md: %s locked, cannot run\n", 4850 mdname(mddev)); 4851 else if (mddev->raid_disks || mddev->major_version 4852 || !list_empty(&mddev->disks)) { 4853 printk(KERN_WARNING 4854 "md: %s already running, cannot run %s\n", 4855 mdname(mddev), bdevname(rdev0->bdev,b)); 4856 mddev_unlock(mddev); 4857 } else { 4858 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 4859 mddev->persistent = 1; 4860 rdev_for_each_list(rdev, tmp, &candidates) { 4861 list_del_init(&rdev->same_set); 4862 if (bind_rdev_to_array(rdev, mddev)) 4863 export_rdev(rdev); 4864 } 4865 autorun_array(mddev); 4866 mddev_unlock(mddev); 4867 } 4868 /* on success, candidates will be empty, on error 4869 * it won't... 4870 */ 4871 rdev_for_each_list(rdev, tmp, &candidates) { 4872 list_del_init(&rdev->same_set); 4873 export_rdev(rdev); 4874 } 4875 mddev_put(mddev); 4876 } 4877 printk(KERN_INFO "md: ... autorun DONE.\n"); 4878 } 4879 #endif /* !MODULE */ 4880 4881 static int get_version(void __user * arg) 4882 { 4883 mdu_version_t ver; 4884 4885 ver.major = MD_MAJOR_VERSION; 4886 ver.minor = MD_MINOR_VERSION; 4887 ver.patchlevel = MD_PATCHLEVEL_VERSION; 4888 4889 if (copy_to_user(arg, &ver, sizeof(ver))) 4890 return -EFAULT; 4891 4892 return 0; 4893 } 4894 4895 static int get_array_info(mddev_t * mddev, void __user * arg) 4896 { 4897 mdu_array_info_t info; 4898 int nr,working,insync,failed,spare; 4899 mdk_rdev_t *rdev; 4900 4901 nr=working=insync=failed=spare=0; 4902 list_for_each_entry(rdev, &mddev->disks, same_set) { 4903 nr++; 4904 if (test_bit(Faulty, &rdev->flags)) 4905 failed++; 4906 else { 4907 working++; 4908 if (test_bit(In_sync, &rdev->flags)) 4909 insync++; 4910 else 4911 spare++; 4912 } 4913 } 4914 4915 info.major_version = mddev->major_version; 4916 info.minor_version = mddev->minor_version; 4917 info.patch_version = MD_PATCHLEVEL_VERSION; 4918 info.ctime = mddev->ctime; 4919 info.level = mddev->level; 4920 info.size = mddev->dev_sectors / 2; 4921 if (info.size != mddev->dev_sectors / 2) /* overflow */ 4922 info.size = -1; 4923 info.nr_disks = nr; 4924 info.raid_disks = mddev->raid_disks; 4925 info.md_minor = mddev->md_minor; 4926 info.not_persistent= !mddev->persistent; 4927 4928 info.utime = mddev->utime; 4929 info.state = 0; 4930 if (mddev->in_sync) 4931 info.state = (1<<MD_SB_CLEAN); 4932 if (mddev->bitmap && mddev->bitmap_info.offset) 4933 info.state = (1<<MD_SB_BITMAP_PRESENT); 4934 info.active_disks = insync; 4935 info.working_disks = working; 4936 info.failed_disks = failed; 4937 info.spare_disks = spare; 4938 4939 info.layout = mddev->layout; 4940 info.chunk_size = mddev->chunk_sectors << 9; 4941 4942 if (copy_to_user(arg, &info, sizeof(info))) 4943 return -EFAULT; 4944 4945 return 0; 4946 } 4947 4948 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 4949 { 4950 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 4951 char *ptr, *buf = NULL; 4952 int err = -ENOMEM; 4953 4954 if (md_allow_write(mddev)) 4955 file = kmalloc(sizeof(*file), GFP_NOIO); 4956 else 4957 file = kmalloc(sizeof(*file), GFP_KERNEL); 4958 4959 if (!file) 4960 goto out; 4961 4962 /* bitmap disabled, zero the first byte and copy out */ 4963 if (!mddev->bitmap || !mddev->bitmap->file) { 4964 file->pathname[0] = '\0'; 4965 goto copy_out; 4966 } 4967 4968 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 4969 if (!buf) 4970 goto out; 4971 4972 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); 4973 if (IS_ERR(ptr)) 4974 goto out; 4975 4976 strcpy(file->pathname, ptr); 4977 4978 copy_out: 4979 err = 0; 4980 if (copy_to_user(arg, file, sizeof(*file))) 4981 err = -EFAULT; 4982 out: 4983 kfree(buf); 4984 kfree(file); 4985 return err; 4986 } 4987 4988 static int get_disk_info(mddev_t * mddev, void __user * arg) 4989 { 4990 mdu_disk_info_t info; 4991 mdk_rdev_t *rdev; 4992 4993 if (copy_from_user(&info, arg, sizeof(info))) 4994 return -EFAULT; 4995 4996 rdev = find_rdev_nr(mddev, info.number); 4997 if (rdev) { 4998 info.major = MAJOR(rdev->bdev->bd_dev); 4999 info.minor = MINOR(rdev->bdev->bd_dev); 5000 info.raid_disk = rdev->raid_disk; 5001 info.state = 0; 5002 if (test_bit(Faulty, &rdev->flags)) 5003 info.state |= (1<<MD_DISK_FAULTY); 5004 else if (test_bit(In_sync, &rdev->flags)) { 5005 info.state |= (1<<MD_DISK_ACTIVE); 5006 info.state |= (1<<MD_DISK_SYNC); 5007 } 5008 if (test_bit(WriteMostly, &rdev->flags)) 5009 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5010 } else { 5011 info.major = info.minor = 0; 5012 info.raid_disk = -1; 5013 info.state = (1<<MD_DISK_REMOVED); 5014 } 5015 5016 if (copy_to_user(arg, &info, sizeof(info))) 5017 return -EFAULT; 5018 5019 return 0; 5020 } 5021 5022 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 5023 { 5024 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5025 mdk_rdev_t *rdev; 5026 dev_t dev = MKDEV(info->major,info->minor); 5027 5028 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5029 return -EOVERFLOW; 5030 5031 if (!mddev->raid_disks) { 5032 int err; 5033 /* expecting a device which has a superblock */ 5034 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5035 if (IS_ERR(rdev)) { 5036 printk(KERN_WARNING 5037 "md: md_import_device returned %ld\n", 5038 PTR_ERR(rdev)); 5039 return PTR_ERR(rdev); 5040 } 5041 if (!list_empty(&mddev->disks)) { 5042 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 5043 mdk_rdev_t, same_set); 5044 err = super_types[mddev->major_version] 5045 .load_super(rdev, rdev0, mddev->minor_version); 5046 if (err < 0) { 5047 printk(KERN_WARNING 5048 "md: %s has different UUID to %s\n", 5049 bdevname(rdev->bdev,b), 5050 bdevname(rdev0->bdev,b2)); 5051 export_rdev(rdev); 5052 return -EINVAL; 5053 } 5054 } 5055 err = bind_rdev_to_array(rdev, mddev); 5056 if (err) 5057 export_rdev(rdev); 5058 return err; 5059 } 5060 5061 /* 5062 * add_new_disk can be used once the array is assembled 5063 * to add "hot spares". They must already have a superblock 5064 * written 5065 */ 5066 if (mddev->pers) { 5067 int err; 5068 if (!mddev->pers->hot_add_disk) { 5069 printk(KERN_WARNING 5070 "%s: personality does not support diskops!\n", 5071 mdname(mddev)); 5072 return -EINVAL; 5073 } 5074 if (mddev->persistent) 5075 rdev = md_import_device(dev, mddev->major_version, 5076 mddev->minor_version); 5077 else 5078 rdev = md_import_device(dev, -1, -1); 5079 if (IS_ERR(rdev)) { 5080 printk(KERN_WARNING 5081 "md: md_import_device returned %ld\n", 5082 PTR_ERR(rdev)); 5083 return PTR_ERR(rdev); 5084 } 5085 /* set save_raid_disk if appropriate */ 5086 if (!mddev->persistent) { 5087 if (info->state & (1<<MD_DISK_SYNC) && 5088 info->raid_disk < mddev->raid_disks) 5089 rdev->raid_disk = info->raid_disk; 5090 else 5091 rdev->raid_disk = -1; 5092 } else 5093 super_types[mddev->major_version]. 5094 validate_super(mddev, rdev); 5095 rdev->saved_raid_disk = rdev->raid_disk; 5096 5097 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5098 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5099 set_bit(WriteMostly, &rdev->flags); 5100 else 5101 clear_bit(WriteMostly, &rdev->flags); 5102 5103 rdev->raid_disk = -1; 5104 err = bind_rdev_to_array(rdev, mddev); 5105 if (!err && !mddev->pers->hot_remove_disk) { 5106 /* If there is hot_add_disk but no hot_remove_disk 5107 * then added disks for geometry changes, 5108 * and should be added immediately. 5109 */ 5110 super_types[mddev->major_version]. 5111 validate_super(mddev, rdev); 5112 err = mddev->pers->hot_add_disk(mddev, rdev); 5113 if (err) 5114 unbind_rdev_from_array(rdev); 5115 } 5116 if (err) 5117 export_rdev(rdev); 5118 else 5119 sysfs_notify_dirent_safe(rdev->sysfs_state); 5120 5121 md_update_sb(mddev, 1); 5122 if (mddev->degraded) 5123 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5124 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5125 md_wakeup_thread(mddev->thread); 5126 return err; 5127 } 5128 5129 /* otherwise, add_new_disk is only allowed 5130 * for major_version==0 superblocks 5131 */ 5132 if (mddev->major_version != 0) { 5133 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5134 mdname(mddev)); 5135 return -EINVAL; 5136 } 5137 5138 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5139 int err; 5140 rdev = md_import_device(dev, -1, 0); 5141 if (IS_ERR(rdev)) { 5142 printk(KERN_WARNING 5143 "md: error, md_import_device() returned %ld\n", 5144 PTR_ERR(rdev)); 5145 return PTR_ERR(rdev); 5146 } 5147 rdev->desc_nr = info->number; 5148 if (info->raid_disk < mddev->raid_disks) 5149 rdev->raid_disk = info->raid_disk; 5150 else 5151 rdev->raid_disk = -1; 5152 5153 if (rdev->raid_disk < mddev->raid_disks) 5154 if (info->state & (1<<MD_DISK_SYNC)) 5155 set_bit(In_sync, &rdev->flags); 5156 5157 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5158 set_bit(WriteMostly, &rdev->flags); 5159 5160 if (!mddev->persistent) { 5161 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5162 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 5163 } else 5164 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 5165 rdev->sectors = rdev->sb_start; 5166 5167 err = bind_rdev_to_array(rdev, mddev); 5168 if (err) { 5169 export_rdev(rdev); 5170 return err; 5171 } 5172 } 5173 5174 return 0; 5175 } 5176 5177 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 5178 { 5179 char b[BDEVNAME_SIZE]; 5180 mdk_rdev_t *rdev; 5181 5182 rdev = find_rdev(mddev, dev); 5183 if (!rdev) 5184 return -ENXIO; 5185 5186 if (rdev->raid_disk >= 0) 5187 goto busy; 5188 5189 kick_rdev_from_array(rdev); 5190 md_update_sb(mddev, 1); 5191 md_new_event(mddev); 5192 5193 return 0; 5194 busy: 5195 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5196 bdevname(rdev->bdev,b), mdname(mddev)); 5197 return -EBUSY; 5198 } 5199 5200 static int hot_add_disk(mddev_t * mddev, dev_t dev) 5201 { 5202 char b[BDEVNAME_SIZE]; 5203 int err; 5204 mdk_rdev_t *rdev; 5205 5206 if (!mddev->pers) 5207 return -ENODEV; 5208 5209 if (mddev->major_version != 0) { 5210 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5211 " version-0 superblocks.\n", 5212 mdname(mddev)); 5213 return -EINVAL; 5214 } 5215 if (!mddev->pers->hot_add_disk) { 5216 printk(KERN_WARNING 5217 "%s: personality does not support diskops!\n", 5218 mdname(mddev)); 5219 return -EINVAL; 5220 } 5221 5222 rdev = md_import_device(dev, -1, 0); 5223 if (IS_ERR(rdev)) { 5224 printk(KERN_WARNING 5225 "md: error, md_import_device() returned %ld\n", 5226 PTR_ERR(rdev)); 5227 return -EINVAL; 5228 } 5229 5230 if (mddev->persistent) 5231 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 5232 else 5233 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 5234 5235 rdev->sectors = rdev->sb_start; 5236 5237 if (test_bit(Faulty, &rdev->flags)) { 5238 printk(KERN_WARNING 5239 "md: can not hot-add faulty %s disk to %s!\n", 5240 bdevname(rdev->bdev,b), mdname(mddev)); 5241 err = -EINVAL; 5242 goto abort_export; 5243 } 5244 clear_bit(In_sync, &rdev->flags); 5245 rdev->desc_nr = -1; 5246 rdev->saved_raid_disk = -1; 5247 err = bind_rdev_to_array(rdev, mddev); 5248 if (err) 5249 goto abort_export; 5250 5251 /* 5252 * The rest should better be atomic, we can have disk failures 5253 * noticed in interrupt contexts ... 5254 */ 5255 5256 rdev->raid_disk = -1; 5257 5258 md_update_sb(mddev, 1); 5259 5260 /* 5261 * Kick recovery, maybe this spare has to be added to the 5262 * array immediately. 5263 */ 5264 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5265 md_wakeup_thread(mddev->thread); 5266 md_new_event(mddev); 5267 return 0; 5268 5269 abort_export: 5270 export_rdev(rdev); 5271 return err; 5272 } 5273 5274 static int set_bitmap_file(mddev_t *mddev, int fd) 5275 { 5276 int err; 5277 5278 if (mddev->pers) { 5279 if (!mddev->pers->quiesce) 5280 return -EBUSY; 5281 if (mddev->recovery || mddev->sync_thread) 5282 return -EBUSY; 5283 /* we should be able to change the bitmap.. */ 5284 } 5285 5286 5287 if (fd >= 0) { 5288 if (mddev->bitmap) 5289 return -EEXIST; /* cannot add when bitmap is present */ 5290 mddev->bitmap_info.file = fget(fd); 5291 5292 if (mddev->bitmap_info.file == NULL) { 5293 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5294 mdname(mddev)); 5295 return -EBADF; 5296 } 5297 5298 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5299 if (err) { 5300 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5301 mdname(mddev)); 5302 fput(mddev->bitmap_info.file); 5303 mddev->bitmap_info.file = NULL; 5304 return err; 5305 } 5306 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5307 } else if (mddev->bitmap == NULL) 5308 return -ENOENT; /* cannot remove what isn't there */ 5309 err = 0; 5310 if (mddev->pers) { 5311 mddev->pers->quiesce(mddev, 1); 5312 if (fd >= 0) { 5313 err = bitmap_create(mddev); 5314 if (!err) 5315 err = bitmap_load(mddev); 5316 } 5317 if (fd < 0 || err) { 5318 bitmap_destroy(mddev); 5319 fd = -1; /* make sure to put the file */ 5320 } 5321 mddev->pers->quiesce(mddev, 0); 5322 } 5323 if (fd < 0) { 5324 if (mddev->bitmap_info.file) { 5325 restore_bitmap_write_access(mddev->bitmap_info.file); 5326 fput(mddev->bitmap_info.file); 5327 } 5328 mddev->bitmap_info.file = NULL; 5329 } 5330 5331 return err; 5332 } 5333 5334 /* 5335 * set_array_info is used two different ways 5336 * The original usage is when creating a new array. 5337 * In this usage, raid_disks is > 0 and it together with 5338 * level, size, not_persistent,layout,chunksize determine the 5339 * shape of the array. 5340 * This will always create an array with a type-0.90.0 superblock. 5341 * The newer usage is when assembling an array. 5342 * In this case raid_disks will be 0, and the major_version field is 5343 * use to determine which style super-blocks are to be found on the devices. 5344 * The minor and patch _version numbers are also kept incase the 5345 * super_block handler wishes to interpret them. 5346 */ 5347 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 5348 { 5349 5350 if (info->raid_disks == 0) { 5351 /* just setting version number for superblock loading */ 5352 if (info->major_version < 0 || 5353 info->major_version >= ARRAY_SIZE(super_types) || 5354 super_types[info->major_version].name == NULL) { 5355 /* maybe try to auto-load a module? */ 5356 printk(KERN_INFO 5357 "md: superblock version %d not known\n", 5358 info->major_version); 5359 return -EINVAL; 5360 } 5361 mddev->major_version = info->major_version; 5362 mddev->minor_version = info->minor_version; 5363 mddev->patch_version = info->patch_version; 5364 mddev->persistent = !info->not_persistent; 5365 /* ensure mddev_put doesn't delete this now that there 5366 * is some minimal configuration. 5367 */ 5368 mddev->ctime = get_seconds(); 5369 return 0; 5370 } 5371 mddev->major_version = MD_MAJOR_VERSION; 5372 mddev->minor_version = MD_MINOR_VERSION; 5373 mddev->patch_version = MD_PATCHLEVEL_VERSION; 5374 mddev->ctime = get_seconds(); 5375 5376 mddev->level = info->level; 5377 mddev->clevel[0] = 0; 5378 mddev->dev_sectors = 2 * (sector_t)info->size; 5379 mddev->raid_disks = info->raid_disks; 5380 /* don't set md_minor, it is determined by which /dev/md* was 5381 * openned 5382 */ 5383 if (info->state & (1<<MD_SB_CLEAN)) 5384 mddev->recovery_cp = MaxSector; 5385 else 5386 mddev->recovery_cp = 0; 5387 mddev->persistent = ! info->not_persistent; 5388 mddev->external = 0; 5389 5390 mddev->layout = info->layout; 5391 mddev->chunk_sectors = info->chunk_size >> 9; 5392 5393 mddev->max_disks = MD_SB_DISKS; 5394 5395 if (mddev->persistent) 5396 mddev->flags = 0; 5397 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5398 5399 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 5400 mddev->bitmap_info.offset = 0; 5401 5402 mddev->reshape_position = MaxSector; 5403 5404 /* 5405 * Generate a 128 bit UUID 5406 */ 5407 get_random_bytes(mddev->uuid, 16); 5408 5409 mddev->new_level = mddev->level; 5410 mddev->new_chunk_sectors = mddev->chunk_sectors; 5411 mddev->new_layout = mddev->layout; 5412 mddev->delta_disks = 0; 5413 5414 return 0; 5415 } 5416 5417 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors) 5418 { 5419 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 5420 5421 if (mddev->external_size) 5422 return; 5423 5424 mddev->array_sectors = array_sectors; 5425 } 5426 EXPORT_SYMBOL(md_set_array_sectors); 5427 5428 static int update_size(mddev_t *mddev, sector_t num_sectors) 5429 { 5430 mdk_rdev_t *rdev; 5431 int rv; 5432 int fit = (num_sectors == 0); 5433 5434 if (mddev->pers->resize == NULL) 5435 return -EINVAL; 5436 /* The "num_sectors" is the number of sectors of each device that 5437 * is used. This can only make sense for arrays with redundancy. 5438 * linear and raid0 always use whatever space is available. We can only 5439 * consider changing this number if no resync or reconstruction is 5440 * happening, and if the new size is acceptable. It must fit before the 5441 * sb_start or, if that is <data_offset, it must fit before the size 5442 * of each device. If num_sectors is zero, we find the largest size 5443 * that fits. 5444 5445 */ 5446 if (mddev->sync_thread) 5447 return -EBUSY; 5448 if (mddev->bitmap) 5449 /* Sorry, cannot grow a bitmap yet, just remove it, 5450 * grow, and re-add. 5451 */ 5452 return -EBUSY; 5453 list_for_each_entry(rdev, &mddev->disks, same_set) { 5454 sector_t avail = rdev->sectors; 5455 5456 if (fit && (num_sectors == 0 || num_sectors > avail)) 5457 num_sectors = avail; 5458 if (avail < num_sectors) 5459 return -ENOSPC; 5460 } 5461 rv = mddev->pers->resize(mddev, num_sectors); 5462 if (!rv) 5463 revalidate_disk(mddev->gendisk); 5464 return rv; 5465 } 5466 5467 static int update_raid_disks(mddev_t *mddev, int raid_disks) 5468 { 5469 int rv; 5470 /* change the number of raid disks */ 5471 if (mddev->pers->check_reshape == NULL) 5472 return -EINVAL; 5473 if (raid_disks <= 0 || 5474 (mddev->max_disks && raid_disks >= mddev->max_disks)) 5475 return -EINVAL; 5476 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 5477 return -EBUSY; 5478 mddev->delta_disks = raid_disks - mddev->raid_disks; 5479 5480 rv = mddev->pers->check_reshape(mddev); 5481 return rv; 5482 } 5483 5484 5485 /* 5486 * update_array_info is used to change the configuration of an 5487 * on-line array. 5488 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 5489 * fields in the info are checked against the array. 5490 * Any differences that cannot be handled will cause an error. 5491 * Normally, only one change can be managed at a time. 5492 */ 5493 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 5494 { 5495 int rv = 0; 5496 int cnt = 0; 5497 int state = 0; 5498 5499 /* calculate expected state,ignoring low bits */ 5500 if (mddev->bitmap && mddev->bitmap_info.offset) 5501 state |= (1 << MD_SB_BITMAP_PRESENT); 5502 5503 if (mddev->major_version != info->major_version || 5504 mddev->minor_version != info->minor_version || 5505 /* mddev->patch_version != info->patch_version || */ 5506 mddev->ctime != info->ctime || 5507 mddev->level != info->level || 5508 /* mddev->layout != info->layout || */ 5509 !mddev->persistent != info->not_persistent|| 5510 mddev->chunk_sectors != info->chunk_size >> 9 || 5511 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 5512 ((state^info->state) & 0xfffffe00) 5513 ) 5514 return -EINVAL; 5515 /* Check there is only one change */ 5516 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5517 cnt++; 5518 if (mddev->raid_disks != info->raid_disks) 5519 cnt++; 5520 if (mddev->layout != info->layout) 5521 cnt++; 5522 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 5523 cnt++; 5524 if (cnt == 0) 5525 return 0; 5526 if (cnt > 1) 5527 return -EINVAL; 5528 5529 if (mddev->layout != info->layout) { 5530 /* Change layout 5531 * we don't need to do anything at the md level, the 5532 * personality will take care of it all. 5533 */ 5534 if (mddev->pers->check_reshape == NULL) 5535 return -EINVAL; 5536 else { 5537 mddev->new_layout = info->layout; 5538 rv = mddev->pers->check_reshape(mddev); 5539 if (rv) 5540 mddev->new_layout = mddev->layout; 5541 return rv; 5542 } 5543 } 5544 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5545 rv = update_size(mddev, (sector_t)info->size * 2); 5546 5547 if (mddev->raid_disks != info->raid_disks) 5548 rv = update_raid_disks(mddev, info->raid_disks); 5549 5550 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 5551 if (mddev->pers->quiesce == NULL) 5552 return -EINVAL; 5553 if (mddev->recovery || mddev->sync_thread) 5554 return -EBUSY; 5555 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 5556 /* add the bitmap */ 5557 if (mddev->bitmap) 5558 return -EEXIST; 5559 if (mddev->bitmap_info.default_offset == 0) 5560 return -EINVAL; 5561 mddev->bitmap_info.offset = 5562 mddev->bitmap_info.default_offset; 5563 mddev->pers->quiesce(mddev, 1); 5564 rv = bitmap_create(mddev); 5565 if (!rv) 5566 rv = bitmap_load(mddev); 5567 if (rv) 5568 bitmap_destroy(mddev); 5569 mddev->pers->quiesce(mddev, 0); 5570 } else { 5571 /* remove the bitmap */ 5572 if (!mddev->bitmap) 5573 return -ENOENT; 5574 if (mddev->bitmap->file) 5575 return -EINVAL; 5576 mddev->pers->quiesce(mddev, 1); 5577 bitmap_destroy(mddev); 5578 mddev->pers->quiesce(mddev, 0); 5579 mddev->bitmap_info.offset = 0; 5580 } 5581 } 5582 md_update_sb(mddev, 1); 5583 return rv; 5584 } 5585 5586 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 5587 { 5588 mdk_rdev_t *rdev; 5589 5590 if (mddev->pers == NULL) 5591 return -ENODEV; 5592 5593 rdev = find_rdev(mddev, dev); 5594 if (!rdev) 5595 return -ENODEV; 5596 5597 md_error(mddev, rdev); 5598 return 0; 5599 } 5600 5601 /* 5602 * We have a problem here : there is no easy way to give a CHS 5603 * virtual geometry. We currently pretend that we have a 2 heads 5604 * 4 sectors (with a BIG number of cylinders...). This drives 5605 * dosfs just mad... ;-) 5606 */ 5607 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 5608 { 5609 mddev_t *mddev = bdev->bd_disk->private_data; 5610 5611 geo->heads = 2; 5612 geo->sectors = 4; 5613 geo->cylinders = mddev->array_sectors / 8; 5614 return 0; 5615 } 5616 5617 static int md_ioctl(struct block_device *bdev, fmode_t mode, 5618 unsigned int cmd, unsigned long arg) 5619 { 5620 int err = 0; 5621 void __user *argp = (void __user *)arg; 5622 mddev_t *mddev = NULL; 5623 int ro; 5624 5625 if (!capable(CAP_SYS_ADMIN)) 5626 return -EACCES; 5627 5628 /* 5629 * Commands dealing with the RAID driver but not any 5630 * particular array: 5631 */ 5632 switch (cmd) 5633 { 5634 case RAID_VERSION: 5635 err = get_version(argp); 5636 goto done; 5637 5638 case PRINT_RAID_DEBUG: 5639 err = 0; 5640 md_print_devices(); 5641 goto done; 5642 5643 #ifndef MODULE 5644 case RAID_AUTORUN: 5645 err = 0; 5646 autostart_arrays(arg); 5647 goto done; 5648 #endif 5649 default:; 5650 } 5651 5652 /* 5653 * Commands creating/starting a new array: 5654 */ 5655 5656 mddev = bdev->bd_disk->private_data; 5657 5658 if (!mddev) { 5659 BUG(); 5660 goto abort; 5661 } 5662 5663 err = mddev_lock(mddev); 5664 if (err) { 5665 printk(KERN_INFO 5666 "md: ioctl lock interrupted, reason %d, cmd %d\n", 5667 err, cmd); 5668 goto abort; 5669 } 5670 5671 switch (cmd) 5672 { 5673 case SET_ARRAY_INFO: 5674 { 5675 mdu_array_info_t info; 5676 if (!arg) 5677 memset(&info, 0, sizeof(info)); 5678 else if (copy_from_user(&info, argp, sizeof(info))) { 5679 err = -EFAULT; 5680 goto abort_unlock; 5681 } 5682 if (mddev->pers) { 5683 err = update_array_info(mddev, &info); 5684 if (err) { 5685 printk(KERN_WARNING "md: couldn't update" 5686 " array info. %d\n", err); 5687 goto abort_unlock; 5688 } 5689 goto done_unlock; 5690 } 5691 if (!list_empty(&mddev->disks)) { 5692 printk(KERN_WARNING 5693 "md: array %s already has disks!\n", 5694 mdname(mddev)); 5695 err = -EBUSY; 5696 goto abort_unlock; 5697 } 5698 if (mddev->raid_disks) { 5699 printk(KERN_WARNING 5700 "md: array %s already initialised!\n", 5701 mdname(mddev)); 5702 err = -EBUSY; 5703 goto abort_unlock; 5704 } 5705 err = set_array_info(mddev, &info); 5706 if (err) { 5707 printk(KERN_WARNING "md: couldn't set" 5708 " array info. %d\n", err); 5709 goto abort_unlock; 5710 } 5711 } 5712 goto done_unlock; 5713 5714 default:; 5715 } 5716 5717 /* 5718 * Commands querying/configuring an existing array: 5719 */ 5720 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 5721 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 5722 if ((!mddev->raid_disks && !mddev->external) 5723 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 5724 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 5725 && cmd != GET_BITMAP_FILE) { 5726 err = -ENODEV; 5727 goto abort_unlock; 5728 } 5729 5730 /* 5731 * Commands even a read-only array can execute: 5732 */ 5733 switch (cmd) 5734 { 5735 case GET_ARRAY_INFO: 5736 err = get_array_info(mddev, argp); 5737 goto done_unlock; 5738 5739 case GET_BITMAP_FILE: 5740 err = get_bitmap_file(mddev, argp); 5741 goto done_unlock; 5742 5743 case GET_DISK_INFO: 5744 err = get_disk_info(mddev, argp); 5745 goto done_unlock; 5746 5747 case RESTART_ARRAY_RW: 5748 err = restart_array(mddev); 5749 goto done_unlock; 5750 5751 case STOP_ARRAY: 5752 err = do_md_stop(mddev, 0, 1); 5753 goto done_unlock; 5754 5755 case STOP_ARRAY_RO: 5756 err = md_set_readonly(mddev, 1); 5757 goto done_unlock; 5758 5759 case BLKROSET: 5760 if (get_user(ro, (int __user *)(arg))) { 5761 err = -EFAULT; 5762 goto done_unlock; 5763 } 5764 err = -EINVAL; 5765 5766 /* if the bdev is going readonly the value of mddev->ro 5767 * does not matter, no writes are coming 5768 */ 5769 if (ro) 5770 goto done_unlock; 5771 5772 /* are we are already prepared for writes? */ 5773 if (mddev->ro != 1) 5774 goto done_unlock; 5775 5776 /* transitioning to readauto need only happen for 5777 * arrays that call md_write_start 5778 */ 5779 if (mddev->pers) { 5780 err = restart_array(mddev); 5781 if (err == 0) { 5782 mddev->ro = 2; 5783 set_disk_ro(mddev->gendisk, 0); 5784 } 5785 } 5786 goto done_unlock; 5787 } 5788 5789 /* 5790 * The remaining ioctls are changing the state of the 5791 * superblock, so we do not allow them on read-only arrays. 5792 * However non-MD ioctls (e.g. get-size) will still come through 5793 * here and hit the 'default' below, so only disallow 5794 * 'md' ioctls, and switch to rw mode if started auto-readonly. 5795 */ 5796 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 5797 if (mddev->ro == 2) { 5798 mddev->ro = 0; 5799 sysfs_notify_dirent_safe(mddev->sysfs_state); 5800 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5801 md_wakeup_thread(mddev->thread); 5802 } else { 5803 err = -EROFS; 5804 goto abort_unlock; 5805 } 5806 } 5807 5808 switch (cmd) 5809 { 5810 case ADD_NEW_DISK: 5811 { 5812 mdu_disk_info_t info; 5813 if (copy_from_user(&info, argp, sizeof(info))) 5814 err = -EFAULT; 5815 else 5816 err = add_new_disk(mddev, &info); 5817 goto done_unlock; 5818 } 5819 5820 case HOT_REMOVE_DISK: 5821 err = hot_remove_disk(mddev, new_decode_dev(arg)); 5822 goto done_unlock; 5823 5824 case HOT_ADD_DISK: 5825 err = hot_add_disk(mddev, new_decode_dev(arg)); 5826 goto done_unlock; 5827 5828 case SET_DISK_FAULTY: 5829 err = set_disk_faulty(mddev, new_decode_dev(arg)); 5830 goto done_unlock; 5831 5832 case RUN_ARRAY: 5833 err = do_md_run(mddev); 5834 goto done_unlock; 5835 5836 case SET_BITMAP_FILE: 5837 err = set_bitmap_file(mddev, (int)arg); 5838 goto done_unlock; 5839 5840 default: 5841 err = -EINVAL; 5842 goto abort_unlock; 5843 } 5844 5845 done_unlock: 5846 abort_unlock: 5847 if (mddev->hold_active == UNTIL_IOCTL && 5848 err != -EINVAL) 5849 mddev->hold_active = 0; 5850 mddev_unlock(mddev); 5851 5852 return err; 5853 done: 5854 if (err) 5855 MD_BUG(); 5856 abort: 5857 return err; 5858 } 5859 #ifdef CONFIG_COMPAT 5860 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 5861 unsigned int cmd, unsigned long arg) 5862 { 5863 switch (cmd) { 5864 case HOT_REMOVE_DISK: 5865 case HOT_ADD_DISK: 5866 case SET_DISK_FAULTY: 5867 case SET_BITMAP_FILE: 5868 /* These take in integer arg, do not convert */ 5869 break; 5870 default: 5871 arg = (unsigned long)compat_ptr(arg); 5872 break; 5873 } 5874 5875 return md_ioctl(bdev, mode, cmd, arg); 5876 } 5877 #endif /* CONFIG_COMPAT */ 5878 5879 static int md_open(struct block_device *bdev, fmode_t mode) 5880 { 5881 /* 5882 * Succeed if we can lock the mddev, which confirms that 5883 * it isn't being stopped right now. 5884 */ 5885 mddev_t *mddev = mddev_find(bdev->bd_dev); 5886 int err; 5887 5888 mutex_lock(&md_mutex); 5889 if (mddev->gendisk != bdev->bd_disk) { 5890 /* we are racing with mddev_put which is discarding this 5891 * bd_disk. 5892 */ 5893 mddev_put(mddev); 5894 /* Wait until bdev->bd_disk is definitely gone */ 5895 flush_scheduled_work(); 5896 /* Then retry the open from the top */ 5897 mutex_unlock(&md_mutex); 5898 return -ERESTARTSYS; 5899 } 5900 BUG_ON(mddev != bdev->bd_disk->private_data); 5901 5902 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 5903 goto out; 5904 5905 err = 0; 5906 atomic_inc(&mddev->openers); 5907 mutex_unlock(&mddev->open_mutex); 5908 5909 check_disk_size_change(mddev->gendisk, bdev); 5910 out: 5911 mutex_unlock(&md_mutex); 5912 return err; 5913 } 5914 5915 static int md_release(struct gendisk *disk, fmode_t mode) 5916 { 5917 mddev_t *mddev = disk->private_data; 5918 5919 BUG_ON(!mddev); 5920 mutex_lock(&md_mutex); 5921 atomic_dec(&mddev->openers); 5922 mddev_put(mddev); 5923 mutex_unlock(&md_mutex); 5924 5925 return 0; 5926 } 5927 static const struct block_device_operations md_fops = 5928 { 5929 .owner = THIS_MODULE, 5930 .open = md_open, 5931 .release = md_release, 5932 .ioctl = md_ioctl, 5933 #ifdef CONFIG_COMPAT 5934 .compat_ioctl = md_compat_ioctl, 5935 #endif 5936 .getgeo = md_getgeo, 5937 }; 5938 5939 static int md_thread(void * arg) 5940 { 5941 mdk_thread_t *thread = arg; 5942 5943 /* 5944 * md_thread is a 'system-thread', it's priority should be very 5945 * high. We avoid resource deadlocks individually in each 5946 * raid personality. (RAID5 does preallocation) We also use RR and 5947 * the very same RT priority as kswapd, thus we will never get 5948 * into a priority inversion deadlock. 5949 * 5950 * we definitely have to have equal or higher priority than 5951 * bdflush, otherwise bdflush will deadlock if there are too 5952 * many dirty RAID5 blocks. 5953 */ 5954 5955 allow_signal(SIGKILL); 5956 while (!kthread_should_stop()) { 5957 5958 /* We need to wait INTERRUPTIBLE so that 5959 * we don't add to the load-average. 5960 * That means we need to be sure no signals are 5961 * pending 5962 */ 5963 if (signal_pending(current)) 5964 flush_signals(current); 5965 5966 wait_event_interruptible_timeout 5967 (thread->wqueue, 5968 test_bit(THREAD_WAKEUP, &thread->flags) 5969 || kthread_should_stop(), 5970 thread->timeout); 5971 5972 clear_bit(THREAD_WAKEUP, &thread->flags); 5973 5974 thread->run(thread->mddev); 5975 } 5976 5977 return 0; 5978 } 5979 5980 void md_wakeup_thread(mdk_thread_t *thread) 5981 { 5982 if (thread) { 5983 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 5984 set_bit(THREAD_WAKEUP, &thread->flags); 5985 wake_up(&thread->wqueue); 5986 } 5987 } 5988 5989 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 5990 const char *name) 5991 { 5992 mdk_thread_t *thread; 5993 5994 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 5995 if (!thread) 5996 return NULL; 5997 5998 init_waitqueue_head(&thread->wqueue); 5999 6000 thread->run = run; 6001 thread->mddev = mddev; 6002 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6003 thread->tsk = kthread_run(md_thread, thread, 6004 "%s_%s", 6005 mdname(thread->mddev), 6006 name ?: mddev->pers->name); 6007 if (IS_ERR(thread->tsk)) { 6008 kfree(thread); 6009 return NULL; 6010 } 6011 return thread; 6012 } 6013 6014 void md_unregister_thread(mdk_thread_t *thread) 6015 { 6016 if (!thread) 6017 return; 6018 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6019 6020 kthread_stop(thread->tsk); 6021 kfree(thread); 6022 } 6023 6024 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 6025 { 6026 if (!mddev) { 6027 MD_BUG(); 6028 return; 6029 } 6030 6031 if (!rdev || test_bit(Faulty, &rdev->flags)) 6032 return; 6033 6034 if (mddev->external) 6035 set_bit(Blocked, &rdev->flags); 6036 /* 6037 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 6038 mdname(mddev), 6039 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 6040 __builtin_return_address(0),__builtin_return_address(1), 6041 __builtin_return_address(2),__builtin_return_address(3)); 6042 */ 6043 if (!mddev->pers) 6044 return; 6045 if (!mddev->pers->error_handler) 6046 return; 6047 mddev->pers->error_handler(mddev,rdev); 6048 if (mddev->degraded) 6049 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6050 sysfs_notify_dirent_safe(rdev->sysfs_state); 6051 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6052 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6053 md_wakeup_thread(mddev->thread); 6054 if (mddev->event_work.func) 6055 schedule_work(&mddev->event_work); 6056 md_new_event_inintr(mddev); 6057 } 6058 6059 /* seq_file implementation /proc/mdstat */ 6060 6061 static void status_unused(struct seq_file *seq) 6062 { 6063 int i = 0; 6064 mdk_rdev_t *rdev; 6065 6066 seq_printf(seq, "unused devices: "); 6067 6068 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6069 char b[BDEVNAME_SIZE]; 6070 i++; 6071 seq_printf(seq, "%s ", 6072 bdevname(rdev->bdev,b)); 6073 } 6074 if (!i) 6075 seq_printf(seq, "<none>"); 6076 6077 seq_printf(seq, "\n"); 6078 } 6079 6080 6081 static void status_resync(struct seq_file *seq, mddev_t * mddev) 6082 { 6083 sector_t max_sectors, resync, res; 6084 unsigned long dt, db; 6085 sector_t rt; 6086 int scale; 6087 unsigned int per_milli; 6088 6089 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); 6090 6091 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 6092 max_sectors = mddev->resync_max_sectors; 6093 else 6094 max_sectors = mddev->dev_sectors; 6095 6096 /* 6097 * Should not happen. 6098 */ 6099 if (!max_sectors) { 6100 MD_BUG(); 6101 return; 6102 } 6103 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6104 * in a sector_t, and (max_sectors>>scale) will fit in a 6105 * u32, as those are the requirements for sector_div. 6106 * Thus 'scale' must be at least 10 6107 */ 6108 scale = 10; 6109 if (sizeof(sector_t) > sizeof(unsigned long)) { 6110 while ( max_sectors/2 > (1ULL<<(scale+32))) 6111 scale++; 6112 } 6113 res = (resync>>scale)*1000; 6114 sector_div(res, (u32)((max_sectors>>scale)+1)); 6115 6116 per_milli = res; 6117 { 6118 int i, x = per_milli/50, y = 20-x; 6119 seq_printf(seq, "["); 6120 for (i = 0; i < x; i++) 6121 seq_printf(seq, "="); 6122 seq_printf(seq, ">"); 6123 for (i = 0; i < y; i++) 6124 seq_printf(seq, "."); 6125 seq_printf(seq, "] "); 6126 } 6127 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6128 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6129 "reshape" : 6130 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6131 "check" : 6132 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6133 "resync" : "recovery"))), 6134 per_milli/10, per_milli % 10, 6135 (unsigned long long) resync/2, 6136 (unsigned long long) max_sectors/2); 6137 6138 /* 6139 * dt: time from mark until now 6140 * db: blocks written from mark until now 6141 * rt: remaining time 6142 * 6143 * rt is a sector_t, so could be 32bit or 64bit. 6144 * So we divide before multiply in case it is 32bit and close 6145 * to the limit. 6146 * We scale the divisor (db) by 32 to avoid loosing precision 6147 * near the end of resync when the number of remaining sectors 6148 * is close to 'db'. 6149 * We then divide rt by 32 after multiplying by db to compensate. 6150 * The '+1' avoids division by zero if db is very small. 6151 */ 6152 dt = ((jiffies - mddev->resync_mark) / HZ); 6153 if (!dt) dt++; 6154 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6155 - mddev->resync_mark_cnt; 6156 6157 rt = max_sectors - resync; /* number of remaining sectors */ 6158 sector_div(rt, db/32+1); 6159 rt *= dt; 6160 rt >>= 5; 6161 6162 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6163 ((unsigned long)rt % 60)/6); 6164 6165 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6166 } 6167 6168 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6169 { 6170 struct list_head *tmp; 6171 loff_t l = *pos; 6172 mddev_t *mddev; 6173 6174 if (l >= 0x10000) 6175 return NULL; 6176 if (!l--) 6177 /* header */ 6178 return (void*)1; 6179 6180 spin_lock(&all_mddevs_lock); 6181 list_for_each(tmp,&all_mddevs) 6182 if (!l--) { 6183 mddev = list_entry(tmp, mddev_t, all_mddevs); 6184 mddev_get(mddev); 6185 spin_unlock(&all_mddevs_lock); 6186 return mddev; 6187 } 6188 spin_unlock(&all_mddevs_lock); 6189 if (!l--) 6190 return (void*)2;/* tail */ 6191 return NULL; 6192 } 6193 6194 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6195 { 6196 struct list_head *tmp; 6197 mddev_t *next_mddev, *mddev = v; 6198 6199 ++*pos; 6200 if (v == (void*)2) 6201 return NULL; 6202 6203 spin_lock(&all_mddevs_lock); 6204 if (v == (void*)1) 6205 tmp = all_mddevs.next; 6206 else 6207 tmp = mddev->all_mddevs.next; 6208 if (tmp != &all_mddevs) 6209 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 6210 else { 6211 next_mddev = (void*)2; 6212 *pos = 0x10000; 6213 } 6214 spin_unlock(&all_mddevs_lock); 6215 6216 if (v != (void*)1) 6217 mddev_put(mddev); 6218 return next_mddev; 6219 6220 } 6221 6222 static void md_seq_stop(struct seq_file *seq, void *v) 6223 { 6224 mddev_t *mddev = v; 6225 6226 if (mddev && v != (void*)1 && v != (void*)2) 6227 mddev_put(mddev); 6228 } 6229 6230 struct mdstat_info { 6231 int event; 6232 }; 6233 6234 static int md_seq_show(struct seq_file *seq, void *v) 6235 { 6236 mddev_t *mddev = v; 6237 sector_t sectors; 6238 mdk_rdev_t *rdev; 6239 struct mdstat_info *mi = seq->private; 6240 struct bitmap *bitmap; 6241 6242 if (v == (void*)1) { 6243 struct mdk_personality *pers; 6244 seq_printf(seq, "Personalities : "); 6245 spin_lock(&pers_lock); 6246 list_for_each_entry(pers, &pers_list, list) 6247 seq_printf(seq, "[%s] ", pers->name); 6248 6249 spin_unlock(&pers_lock); 6250 seq_printf(seq, "\n"); 6251 mi->event = atomic_read(&md_event_count); 6252 return 0; 6253 } 6254 if (v == (void*)2) { 6255 status_unused(seq); 6256 return 0; 6257 } 6258 6259 if (mddev_lock(mddev) < 0) 6260 return -EINTR; 6261 6262 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 6263 seq_printf(seq, "%s : %sactive", mdname(mddev), 6264 mddev->pers ? "" : "in"); 6265 if (mddev->pers) { 6266 if (mddev->ro==1) 6267 seq_printf(seq, " (read-only)"); 6268 if (mddev->ro==2) 6269 seq_printf(seq, " (auto-read-only)"); 6270 seq_printf(seq, " %s", mddev->pers->name); 6271 } 6272 6273 sectors = 0; 6274 list_for_each_entry(rdev, &mddev->disks, same_set) { 6275 char b[BDEVNAME_SIZE]; 6276 seq_printf(seq, " %s[%d]", 6277 bdevname(rdev->bdev,b), rdev->desc_nr); 6278 if (test_bit(WriteMostly, &rdev->flags)) 6279 seq_printf(seq, "(W)"); 6280 if (test_bit(Faulty, &rdev->flags)) { 6281 seq_printf(seq, "(F)"); 6282 continue; 6283 } else if (rdev->raid_disk < 0) 6284 seq_printf(seq, "(S)"); /* spare */ 6285 sectors += rdev->sectors; 6286 } 6287 6288 if (!list_empty(&mddev->disks)) { 6289 if (mddev->pers) 6290 seq_printf(seq, "\n %llu blocks", 6291 (unsigned long long) 6292 mddev->array_sectors / 2); 6293 else 6294 seq_printf(seq, "\n %llu blocks", 6295 (unsigned long long)sectors / 2); 6296 } 6297 if (mddev->persistent) { 6298 if (mddev->major_version != 0 || 6299 mddev->minor_version != 90) { 6300 seq_printf(seq," super %d.%d", 6301 mddev->major_version, 6302 mddev->minor_version); 6303 } 6304 } else if (mddev->external) 6305 seq_printf(seq, " super external:%s", 6306 mddev->metadata_type); 6307 else 6308 seq_printf(seq, " super non-persistent"); 6309 6310 if (mddev->pers) { 6311 mddev->pers->status(seq, mddev); 6312 seq_printf(seq, "\n "); 6313 if (mddev->pers->sync_request) { 6314 if (mddev->curr_resync > 2) { 6315 status_resync(seq, mddev); 6316 seq_printf(seq, "\n "); 6317 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 6318 seq_printf(seq, "\tresync=DELAYED\n "); 6319 else if (mddev->recovery_cp < MaxSector) 6320 seq_printf(seq, "\tresync=PENDING\n "); 6321 } 6322 } else 6323 seq_printf(seq, "\n "); 6324 6325 if ((bitmap = mddev->bitmap)) { 6326 unsigned long chunk_kb; 6327 unsigned long flags; 6328 spin_lock_irqsave(&bitmap->lock, flags); 6329 chunk_kb = mddev->bitmap_info.chunksize >> 10; 6330 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 6331 "%lu%s chunk", 6332 bitmap->pages - bitmap->missing_pages, 6333 bitmap->pages, 6334 (bitmap->pages - bitmap->missing_pages) 6335 << (PAGE_SHIFT - 10), 6336 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize, 6337 chunk_kb ? "KB" : "B"); 6338 if (bitmap->file) { 6339 seq_printf(seq, ", file: "); 6340 seq_path(seq, &bitmap->file->f_path, " \t\n"); 6341 } 6342 6343 seq_printf(seq, "\n"); 6344 spin_unlock_irqrestore(&bitmap->lock, flags); 6345 } 6346 6347 seq_printf(seq, "\n"); 6348 } 6349 mddev_unlock(mddev); 6350 6351 return 0; 6352 } 6353 6354 static const struct seq_operations md_seq_ops = { 6355 .start = md_seq_start, 6356 .next = md_seq_next, 6357 .stop = md_seq_stop, 6358 .show = md_seq_show, 6359 }; 6360 6361 static int md_seq_open(struct inode *inode, struct file *file) 6362 { 6363 int error; 6364 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 6365 if (mi == NULL) 6366 return -ENOMEM; 6367 6368 error = seq_open(file, &md_seq_ops); 6369 if (error) 6370 kfree(mi); 6371 else { 6372 struct seq_file *p = file->private_data; 6373 p->private = mi; 6374 mi->event = atomic_read(&md_event_count); 6375 } 6376 return error; 6377 } 6378 6379 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 6380 { 6381 struct seq_file *m = filp->private_data; 6382 struct mdstat_info *mi = m->private; 6383 int mask; 6384 6385 poll_wait(filp, &md_event_waiters, wait); 6386 6387 /* always allow read */ 6388 mask = POLLIN | POLLRDNORM; 6389 6390 if (mi->event != atomic_read(&md_event_count)) 6391 mask |= POLLERR | POLLPRI; 6392 return mask; 6393 } 6394 6395 static const struct file_operations md_seq_fops = { 6396 .owner = THIS_MODULE, 6397 .open = md_seq_open, 6398 .read = seq_read, 6399 .llseek = seq_lseek, 6400 .release = seq_release_private, 6401 .poll = mdstat_poll, 6402 }; 6403 6404 int register_md_personality(struct mdk_personality *p) 6405 { 6406 spin_lock(&pers_lock); 6407 list_add_tail(&p->list, &pers_list); 6408 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 6409 spin_unlock(&pers_lock); 6410 return 0; 6411 } 6412 6413 int unregister_md_personality(struct mdk_personality *p) 6414 { 6415 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 6416 spin_lock(&pers_lock); 6417 list_del_init(&p->list); 6418 spin_unlock(&pers_lock); 6419 return 0; 6420 } 6421 6422 static int is_mddev_idle(mddev_t *mddev, int init) 6423 { 6424 mdk_rdev_t * rdev; 6425 int idle; 6426 int curr_events; 6427 6428 idle = 1; 6429 rcu_read_lock(); 6430 rdev_for_each_rcu(rdev, mddev) { 6431 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 6432 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 6433 (int)part_stat_read(&disk->part0, sectors[1]) - 6434 atomic_read(&disk->sync_io); 6435 /* sync IO will cause sync_io to increase before the disk_stats 6436 * as sync_io is counted when a request starts, and 6437 * disk_stats is counted when it completes. 6438 * So resync activity will cause curr_events to be smaller than 6439 * when there was no such activity. 6440 * non-sync IO will cause disk_stat to increase without 6441 * increasing sync_io so curr_events will (eventually) 6442 * be larger than it was before. Once it becomes 6443 * substantially larger, the test below will cause 6444 * the array to appear non-idle, and resync will slow 6445 * down. 6446 * If there is a lot of outstanding resync activity when 6447 * we set last_event to curr_events, then all that activity 6448 * completing might cause the array to appear non-idle 6449 * and resync will be slowed down even though there might 6450 * not have been non-resync activity. This will only 6451 * happen once though. 'last_events' will soon reflect 6452 * the state where there is little or no outstanding 6453 * resync requests, and further resync activity will 6454 * always make curr_events less than last_events. 6455 * 6456 */ 6457 if (init || curr_events - rdev->last_events > 64) { 6458 rdev->last_events = curr_events; 6459 idle = 0; 6460 } 6461 } 6462 rcu_read_unlock(); 6463 return idle; 6464 } 6465 6466 void md_done_sync(mddev_t *mddev, int blocks, int ok) 6467 { 6468 /* another "blocks" (512byte) blocks have been synced */ 6469 atomic_sub(blocks, &mddev->recovery_active); 6470 wake_up(&mddev->recovery_wait); 6471 if (!ok) { 6472 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6473 md_wakeup_thread(mddev->thread); 6474 // stop recovery, signal do_sync .... 6475 } 6476 } 6477 6478 6479 /* md_write_start(mddev, bi) 6480 * If we need to update some array metadata (e.g. 'active' flag 6481 * in superblock) before writing, schedule a superblock update 6482 * and wait for it to complete. 6483 */ 6484 void md_write_start(mddev_t *mddev, struct bio *bi) 6485 { 6486 int did_change = 0; 6487 if (bio_data_dir(bi) != WRITE) 6488 return; 6489 6490 BUG_ON(mddev->ro == 1); 6491 if (mddev->ro == 2) { 6492 /* need to switch to read/write */ 6493 mddev->ro = 0; 6494 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6495 md_wakeup_thread(mddev->thread); 6496 md_wakeup_thread(mddev->sync_thread); 6497 did_change = 1; 6498 } 6499 atomic_inc(&mddev->writes_pending); 6500 if (mddev->safemode == 1) 6501 mddev->safemode = 0; 6502 if (mddev->in_sync) { 6503 spin_lock_irq(&mddev->write_lock); 6504 if (mddev->in_sync) { 6505 mddev->in_sync = 0; 6506 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6507 set_bit(MD_CHANGE_PENDING, &mddev->flags); 6508 md_wakeup_thread(mddev->thread); 6509 did_change = 1; 6510 } 6511 spin_unlock_irq(&mddev->write_lock); 6512 } 6513 if (did_change) 6514 sysfs_notify_dirent_safe(mddev->sysfs_state); 6515 wait_event(mddev->sb_wait, 6516 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6517 } 6518 6519 void md_write_end(mddev_t *mddev) 6520 { 6521 if (atomic_dec_and_test(&mddev->writes_pending)) { 6522 if (mddev->safemode == 2) 6523 md_wakeup_thread(mddev->thread); 6524 else if (mddev->safemode_delay) 6525 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 6526 } 6527 } 6528 6529 /* md_allow_write(mddev) 6530 * Calling this ensures that the array is marked 'active' so that writes 6531 * may proceed without blocking. It is important to call this before 6532 * attempting a GFP_KERNEL allocation while holding the mddev lock. 6533 * Must be called with mddev_lock held. 6534 * 6535 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 6536 * is dropped, so return -EAGAIN after notifying userspace. 6537 */ 6538 int md_allow_write(mddev_t *mddev) 6539 { 6540 if (!mddev->pers) 6541 return 0; 6542 if (mddev->ro) 6543 return 0; 6544 if (!mddev->pers->sync_request) 6545 return 0; 6546 6547 spin_lock_irq(&mddev->write_lock); 6548 if (mddev->in_sync) { 6549 mddev->in_sync = 0; 6550 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6551 set_bit(MD_CHANGE_PENDING, &mddev->flags); 6552 if (mddev->safemode_delay && 6553 mddev->safemode == 0) 6554 mddev->safemode = 1; 6555 spin_unlock_irq(&mddev->write_lock); 6556 md_update_sb(mddev, 0); 6557 sysfs_notify_dirent_safe(mddev->sysfs_state); 6558 } else 6559 spin_unlock_irq(&mddev->write_lock); 6560 6561 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 6562 return -EAGAIN; 6563 else 6564 return 0; 6565 } 6566 EXPORT_SYMBOL_GPL(md_allow_write); 6567 6568 void md_unplug(mddev_t *mddev) 6569 { 6570 if (mddev->queue) 6571 blk_unplug(mddev->queue); 6572 if (mddev->plug) 6573 mddev->plug->unplug_fn(mddev->plug); 6574 } 6575 6576 #define SYNC_MARKS 10 6577 #define SYNC_MARK_STEP (3*HZ) 6578 void md_do_sync(mddev_t *mddev) 6579 { 6580 mddev_t *mddev2; 6581 unsigned int currspeed = 0, 6582 window; 6583 sector_t max_sectors,j, io_sectors; 6584 unsigned long mark[SYNC_MARKS]; 6585 sector_t mark_cnt[SYNC_MARKS]; 6586 int last_mark,m; 6587 struct list_head *tmp; 6588 sector_t last_check; 6589 int skipped = 0; 6590 mdk_rdev_t *rdev; 6591 char *desc; 6592 6593 /* just incase thread restarts... */ 6594 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 6595 return; 6596 if (mddev->ro) /* never try to sync a read-only array */ 6597 return; 6598 6599 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6600 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 6601 desc = "data-check"; 6602 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6603 desc = "requested-resync"; 6604 else 6605 desc = "resync"; 6606 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6607 desc = "reshape"; 6608 else 6609 desc = "recovery"; 6610 6611 /* we overload curr_resync somewhat here. 6612 * 0 == not engaged in resync at all 6613 * 2 == checking that there is no conflict with another sync 6614 * 1 == like 2, but have yielded to allow conflicting resync to 6615 * commense 6616 * other == active in resync - this many blocks 6617 * 6618 * Before starting a resync we must have set curr_resync to 6619 * 2, and then checked that every "conflicting" array has curr_resync 6620 * less than ours. When we find one that is the same or higher 6621 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 6622 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 6623 * This will mean we have to start checking from the beginning again. 6624 * 6625 */ 6626 6627 do { 6628 mddev->curr_resync = 2; 6629 6630 try_again: 6631 if (kthread_should_stop()) 6632 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6633 6634 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6635 goto skip; 6636 for_each_mddev(mddev2, tmp) { 6637 if (mddev2 == mddev) 6638 continue; 6639 if (!mddev->parallel_resync 6640 && mddev2->curr_resync 6641 && match_mddev_units(mddev, mddev2)) { 6642 DEFINE_WAIT(wq); 6643 if (mddev < mddev2 && mddev->curr_resync == 2) { 6644 /* arbitrarily yield */ 6645 mddev->curr_resync = 1; 6646 wake_up(&resync_wait); 6647 } 6648 if (mddev > mddev2 && mddev->curr_resync == 1) 6649 /* no need to wait here, we can wait the next 6650 * time 'round when curr_resync == 2 6651 */ 6652 continue; 6653 /* We need to wait 'interruptible' so as not to 6654 * contribute to the load average, and not to 6655 * be caught by 'softlockup' 6656 */ 6657 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 6658 if (!kthread_should_stop() && 6659 mddev2->curr_resync >= mddev->curr_resync) { 6660 printk(KERN_INFO "md: delaying %s of %s" 6661 " until %s has finished (they" 6662 " share one or more physical units)\n", 6663 desc, mdname(mddev), mdname(mddev2)); 6664 mddev_put(mddev2); 6665 if (signal_pending(current)) 6666 flush_signals(current); 6667 schedule(); 6668 finish_wait(&resync_wait, &wq); 6669 goto try_again; 6670 } 6671 finish_wait(&resync_wait, &wq); 6672 } 6673 } 6674 } while (mddev->curr_resync < 2); 6675 6676 j = 0; 6677 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6678 /* resync follows the size requested by the personality, 6679 * which defaults to physical size, but can be virtual size 6680 */ 6681 max_sectors = mddev->resync_max_sectors; 6682 mddev->resync_mismatches = 0; 6683 /* we don't use the checkpoint if there's a bitmap */ 6684 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6685 j = mddev->resync_min; 6686 else if (!mddev->bitmap) 6687 j = mddev->recovery_cp; 6688 6689 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6690 max_sectors = mddev->dev_sectors; 6691 else { 6692 /* recovery follows the physical size of devices */ 6693 max_sectors = mddev->dev_sectors; 6694 j = MaxSector; 6695 rcu_read_lock(); 6696 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 6697 if (rdev->raid_disk >= 0 && 6698 !test_bit(Faulty, &rdev->flags) && 6699 !test_bit(In_sync, &rdev->flags) && 6700 rdev->recovery_offset < j) 6701 j = rdev->recovery_offset; 6702 rcu_read_unlock(); 6703 } 6704 6705 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 6706 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 6707 " %d KB/sec/disk.\n", speed_min(mddev)); 6708 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 6709 "(but not more than %d KB/sec) for %s.\n", 6710 speed_max(mddev), desc); 6711 6712 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 6713 6714 io_sectors = 0; 6715 for (m = 0; m < SYNC_MARKS; m++) { 6716 mark[m] = jiffies; 6717 mark_cnt[m] = io_sectors; 6718 } 6719 last_mark = 0; 6720 mddev->resync_mark = mark[last_mark]; 6721 mddev->resync_mark_cnt = mark_cnt[last_mark]; 6722 6723 /* 6724 * Tune reconstruction: 6725 */ 6726 window = 32*(PAGE_SIZE/512); 6727 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 6728 window/2,(unsigned long long) max_sectors/2); 6729 6730 atomic_set(&mddev->recovery_active, 0); 6731 last_check = 0; 6732 6733 if (j>2) { 6734 printk(KERN_INFO 6735 "md: resuming %s of %s from checkpoint.\n", 6736 desc, mdname(mddev)); 6737 mddev->curr_resync = j; 6738 } 6739 mddev->curr_resync_completed = mddev->curr_resync; 6740 6741 while (j < max_sectors) { 6742 sector_t sectors; 6743 6744 skipped = 0; 6745 6746 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 6747 ((mddev->curr_resync > mddev->curr_resync_completed && 6748 (mddev->curr_resync - mddev->curr_resync_completed) 6749 > (max_sectors >> 4)) || 6750 (j - mddev->curr_resync_completed)*2 6751 >= mddev->resync_max - mddev->curr_resync_completed 6752 )) { 6753 /* time to update curr_resync_completed */ 6754 md_unplug(mddev); 6755 wait_event(mddev->recovery_wait, 6756 atomic_read(&mddev->recovery_active) == 0); 6757 mddev->curr_resync_completed = 6758 mddev->curr_resync; 6759 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6760 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6761 } 6762 6763 while (j >= mddev->resync_max && !kthread_should_stop()) { 6764 /* As this condition is controlled by user-space, 6765 * we can block indefinitely, so use '_interruptible' 6766 * to avoid triggering warnings. 6767 */ 6768 flush_signals(current); /* just in case */ 6769 wait_event_interruptible(mddev->recovery_wait, 6770 mddev->resync_max > j 6771 || kthread_should_stop()); 6772 } 6773 6774 if (kthread_should_stop()) 6775 goto interrupted; 6776 6777 sectors = mddev->pers->sync_request(mddev, j, &skipped, 6778 currspeed < speed_min(mddev)); 6779 if (sectors == 0) { 6780 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6781 goto out; 6782 } 6783 6784 if (!skipped) { /* actual IO requested */ 6785 io_sectors += sectors; 6786 atomic_add(sectors, &mddev->recovery_active); 6787 } 6788 6789 j += sectors; 6790 if (j>1) mddev->curr_resync = j; 6791 mddev->curr_mark_cnt = io_sectors; 6792 if (last_check == 0) 6793 /* this is the earliers that rebuilt will be 6794 * visible in /proc/mdstat 6795 */ 6796 md_new_event(mddev); 6797 6798 if (last_check + window > io_sectors || j == max_sectors) 6799 continue; 6800 6801 last_check = io_sectors; 6802 6803 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6804 break; 6805 6806 repeat: 6807 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 6808 /* step marks */ 6809 int next = (last_mark+1) % SYNC_MARKS; 6810 6811 mddev->resync_mark = mark[next]; 6812 mddev->resync_mark_cnt = mark_cnt[next]; 6813 mark[next] = jiffies; 6814 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 6815 last_mark = next; 6816 } 6817 6818 6819 if (kthread_should_stop()) 6820 goto interrupted; 6821 6822 6823 /* 6824 * this loop exits only if either when we are slower than 6825 * the 'hard' speed limit, or the system was IO-idle for 6826 * a jiffy. 6827 * the system might be non-idle CPU-wise, but we only care 6828 * about not overloading the IO subsystem. (things like an 6829 * e2fsck being done on the RAID array should execute fast) 6830 */ 6831 md_unplug(mddev); 6832 cond_resched(); 6833 6834 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 6835 /((jiffies-mddev->resync_mark)/HZ +1) +1; 6836 6837 if (currspeed > speed_min(mddev)) { 6838 if ((currspeed > speed_max(mddev)) || 6839 !is_mddev_idle(mddev, 0)) { 6840 msleep(500); 6841 goto repeat; 6842 } 6843 } 6844 } 6845 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 6846 /* 6847 * this also signals 'finished resyncing' to md_stop 6848 */ 6849 out: 6850 md_unplug(mddev); 6851 6852 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 6853 6854 /* tell personality that we are finished */ 6855 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 6856 6857 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 6858 mddev->curr_resync > 2) { 6859 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6860 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6861 if (mddev->curr_resync >= mddev->recovery_cp) { 6862 printk(KERN_INFO 6863 "md: checkpointing %s of %s.\n", 6864 desc, mdname(mddev)); 6865 mddev->recovery_cp = mddev->curr_resync; 6866 } 6867 } else 6868 mddev->recovery_cp = MaxSector; 6869 } else { 6870 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6871 mddev->curr_resync = MaxSector; 6872 rcu_read_lock(); 6873 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 6874 if (rdev->raid_disk >= 0 && 6875 mddev->delta_disks >= 0 && 6876 !test_bit(Faulty, &rdev->flags) && 6877 !test_bit(In_sync, &rdev->flags) && 6878 rdev->recovery_offset < mddev->curr_resync) 6879 rdev->recovery_offset = mddev->curr_resync; 6880 rcu_read_unlock(); 6881 } 6882 } 6883 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6884 6885 skip: 6886 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6887 /* We completed so min/max setting can be forgotten if used. */ 6888 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6889 mddev->resync_min = 0; 6890 mddev->resync_max = MaxSector; 6891 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6892 mddev->resync_min = mddev->curr_resync_completed; 6893 mddev->curr_resync = 0; 6894 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6895 mddev->curr_resync_completed = 0; 6896 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6897 wake_up(&resync_wait); 6898 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 6899 md_wakeup_thread(mddev->thread); 6900 return; 6901 6902 interrupted: 6903 /* 6904 * got a signal, exit. 6905 */ 6906 printk(KERN_INFO 6907 "md: md_do_sync() got signal ... exiting\n"); 6908 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6909 goto out; 6910 6911 } 6912 EXPORT_SYMBOL_GPL(md_do_sync); 6913 6914 6915 static int remove_and_add_spares(mddev_t *mddev) 6916 { 6917 mdk_rdev_t *rdev; 6918 int spares = 0; 6919 6920 mddev->curr_resync_completed = 0; 6921 6922 list_for_each_entry(rdev, &mddev->disks, same_set) 6923 if (rdev->raid_disk >= 0 && 6924 !test_bit(Blocked, &rdev->flags) && 6925 (test_bit(Faulty, &rdev->flags) || 6926 ! test_bit(In_sync, &rdev->flags)) && 6927 atomic_read(&rdev->nr_pending)==0) { 6928 if (mddev->pers->hot_remove_disk( 6929 mddev, rdev->raid_disk)==0) { 6930 char nm[20]; 6931 sprintf(nm,"rd%d", rdev->raid_disk); 6932 sysfs_remove_link(&mddev->kobj, nm); 6933 rdev->raid_disk = -1; 6934 } 6935 } 6936 6937 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) { 6938 list_for_each_entry(rdev, &mddev->disks, same_set) { 6939 if (rdev->raid_disk >= 0 && 6940 !test_bit(In_sync, &rdev->flags) && 6941 !test_bit(Blocked, &rdev->flags)) 6942 spares++; 6943 if (rdev->raid_disk < 0 6944 && !test_bit(Faulty, &rdev->flags)) { 6945 rdev->recovery_offset = 0; 6946 if (mddev->pers-> 6947 hot_add_disk(mddev, rdev) == 0) { 6948 char nm[20]; 6949 sprintf(nm, "rd%d", rdev->raid_disk); 6950 if (sysfs_create_link(&mddev->kobj, 6951 &rdev->kobj, nm)) 6952 /* failure here is OK */; 6953 spares++; 6954 md_new_event(mddev); 6955 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6956 } else 6957 break; 6958 } 6959 } 6960 } 6961 return spares; 6962 } 6963 /* 6964 * This routine is regularly called by all per-raid-array threads to 6965 * deal with generic issues like resync and super-block update. 6966 * Raid personalities that don't have a thread (linear/raid0) do not 6967 * need this as they never do any recovery or update the superblock. 6968 * 6969 * It does not do any resync itself, but rather "forks" off other threads 6970 * to do that as needed. 6971 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 6972 * "->recovery" and create a thread at ->sync_thread. 6973 * When the thread finishes it sets MD_RECOVERY_DONE 6974 * and wakeups up this thread which will reap the thread and finish up. 6975 * This thread also removes any faulty devices (with nr_pending == 0). 6976 * 6977 * The overall approach is: 6978 * 1/ if the superblock needs updating, update it. 6979 * 2/ If a recovery thread is running, don't do anything else. 6980 * 3/ If recovery has finished, clean up, possibly marking spares active. 6981 * 4/ If there are any faulty devices, remove them. 6982 * 5/ If array is degraded, try to add spares devices 6983 * 6/ If array has spares or is not in-sync, start a resync thread. 6984 */ 6985 void md_check_recovery(mddev_t *mddev) 6986 { 6987 mdk_rdev_t *rdev; 6988 6989 6990 if (mddev->bitmap) 6991 bitmap_daemon_work(mddev); 6992 6993 if (mddev->ro) 6994 return; 6995 6996 if (signal_pending(current)) { 6997 if (mddev->pers->sync_request && !mddev->external) { 6998 printk(KERN_INFO "md: %s in immediate safe mode\n", 6999 mdname(mddev)); 7000 mddev->safemode = 2; 7001 } 7002 flush_signals(current); 7003 } 7004 7005 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7006 return; 7007 if ( ! ( 7008 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) || 7009 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7010 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7011 (mddev->external == 0 && mddev->safemode == 1) || 7012 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7013 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7014 )) 7015 return; 7016 7017 if (mddev_trylock(mddev)) { 7018 int spares = 0; 7019 7020 if (mddev->ro) { 7021 /* Only thing we do on a ro array is remove 7022 * failed devices. 7023 */ 7024 remove_and_add_spares(mddev); 7025 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7026 goto unlock; 7027 } 7028 7029 if (!mddev->external) { 7030 int did_change = 0; 7031 spin_lock_irq(&mddev->write_lock); 7032 if (mddev->safemode && 7033 !atomic_read(&mddev->writes_pending) && 7034 !mddev->in_sync && 7035 mddev->recovery_cp == MaxSector) { 7036 mddev->in_sync = 1; 7037 did_change = 1; 7038 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7039 } 7040 if (mddev->safemode == 1) 7041 mddev->safemode = 0; 7042 spin_unlock_irq(&mddev->write_lock); 7043 if (did_change) 7044 sysfs_notify_dirent_safe(mddev->sysfs_state); 7045 } 7046 7047 if (mddev->flags) 7048 md_update_sb(mddev, 0); 7049 7050 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7051 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7052 /* resync/recovery still happening */ 7053 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7054 goto unlock; 7055 } 7056 if (mddev->sync_thread) { 7057 /* resync has finished, collect result */ 7058 md_unregister_thread(mddev->sync_thread); 7059 mddev->sync_thread = NULL; 7060 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7061 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7062 /* success...*/ 7063 /* activate any spares */ 7064 if (mddev->pers->spare_active(mddev)) 7065 sysfs_notify(&mddev->kobj, NULL, 7066 "degraded"); 7067 } 7068 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7069 mddev->pers->finish_reshape) 7070 mddev->pers->finish_reshape(mddev); 7071 md_update_sb(mddev, 1); 7072 7073 /* if array is no-longer degraded, then any saved_raid_disk 7074 * information must be scrapped 7075 */ 7076 if (!mddev->degraded) 7077 list_for_each_entry(rdev, &mddev->disks, same_set) 7078 rdev->saved_raid_disk = -1; 7079 7080 mddev->recovery = 0; 7081 /* flag recovery needed just to double check */ 7082 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7083 sysfs_notify_dirent_safe(mddev->sysfs_action); 7084 md_new_event(mddev); 7085 goto unlock; 7086 } 7087 /* Set RUNNING before clearing NEEDED to avoid 7088 * any transients in the value of "sync_action". 7089 */ 7090 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7091 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7092 /* Clear some bits that don't mean anything, but 7093 * might be left set 7094 */ 7095 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7096 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7097 7098 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7099 goto unlock; 7100 /* no recovery is running. 7101 * remove any failed drives, then 7102 * add spares if possible. 7103 * Spare are also removed and re-added, to allow 7104 * the personality to fail the re-add. 7105 */ 7106 7107 if (mddev->reshape_position != MaxSector) { 7108 if (mddev->pers->check_reshape == NULL || 7109 mddev->pers->check_reshape(mddev) != 0) 7110 /* Cannot proceed */ 7111 goto unlock; 7112 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7113 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7114 } else if ((spares = remove_and_add_spares(mddev))) { 7115 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7116 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7117 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7118 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7119 } else if (mddev->recovery_cp < MaxSector) { 7120 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7121 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7122 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7123 /* nothing to be done ... */ 7124 goto unlock; 7125 7126 if (mddev->pers->sync_request) { 7127 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 7128 /* We are adding a device or devices to an array 7129 * which has the bitmap stored on all devices. 7130 * So make sure all bitmap pages get written 7131 */ 7132 bitmap_write_all(mddev->bitmap); 7133 } 7134 mddev->sync_thread = md_register_thread(md_do_sync, 7135 mddev, 7136 "resync"); 7137 if (!mddev->sync_thread) { 7138 printk(KERN_ERR "%s: could not start resync" 7139 " thread...\n", 7140 mdname(mddev)); 7141 /* leave the spares where they are, it shouldn't hurt */ 7142 mddev->recovery = 0; 7143 } else 7144 md_wakeup_thread(mddev->sync_thread); 7145 sysfs_notify_dirent_safe(mddev->sysfs_action); 7146 md_new_event(mddev); 7147 } 7148 unlock: 7149 if (!mddev->sync_thread) { 7150 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7151 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7152 &mddev->recovery)) 7153 if (mddev->sysfs_action) 7154 sysfs_notify_dirent_safe(mddev->sysfs_action); 7155 } 7156 mddev_unlock(mddev); 7157 } 7158 } 7159 7160 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 7161 { 7162 sysfs_notify_dirent_safe(rdev->sysfs_state); 7163 wait_event_timeout(rdev->blocked_wait, 7164 !test_bit(Blocked, &rdev->flags), 7165 msecs_to_jiffies(5000)); 7166 rdev_dec_pending(rdev, mddev); 7167 } 7168 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7169 7170 static int md_notify_reboot(struct notifier_block *this, 7171 unsigned long code, void *x) 7172 { 7173 struct list_head *tmp; 7174 mddev_t *mddev; 7175 7176 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 7177 7178 printk(KERN_INFO "md: stopping all md devices.\n"); 7179 7180 for_each_mddev(mddev, tmp) 7181 if (mddev_trylock(mddev)) { 7182 /* Force a switch to readonly even array 7183 * appears to still be in use. Hence 7184 * the '100'. 7185 */ 7186 md_set_readonly(mddev, 100); 7187 mddev_unlock(mddev); 7188 } 7189 /* 7190 * certain more exotic SCSI devices are known to be 7191 * volatile wrt too early system reboots. While the 7192 * right place to handle this issue is the given 7193 * driver, we do want to have a safe RAID driver ... 7194 */ 7195 mdelay(1000*1); 7196 } 7197 return NOTIFY_DONE; 7198 } 7199 7200 static struct notifier_block md_notifier = { 7201 .notifier_call = md_notify_reboot, 7202 .next = NULL, 7203 .priority = INT_MAX, /* before any real devices */ 7204 }; 7205 7206 static void md_geninit(void) 7207 { 7208 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 7209 7210 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 7211 } 7212 7213 static int __init md_init(void) 7214 { 7215 if (register_blkdev(MD_MAJOR, "md")) 7216 return -1; 7217 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 7218 unregister_blkdev(MD_MAJOR, "md"); 7219 return -1; 7220 } 7221 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 7222 md_probe, NULL, NULL); 7223 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 7224 md_probe, NULL, NULL); 7225 7226 register_reboot_notifier(&md_notifier); 7227 raid_table_header = register_sysctl_table(raid_root_table); 7228 7229 md_geninit(); 7230 return 0; 7231 } 7232 7233 7234 #ifndef MODULE 7235 7236 /* 7237 * Searches all registered partitions for autorun RAID arrays 7238 * at boot time. 7239 */ 7240 7241 static LIST_HEAD(all_detected_devices); 7242 struct detected_devices_node { 7243 struct list_head list; 7244 dev_t dev; 7245 }; 7246 7247 void md_autodetect_dev(dev_t dev) 7248 { 7249 struct detected_devices_node *node_detected_dev; 7250 7251 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 7252 if (node_detected_dev) { 7253 node_detected_dev->dev = dev; 7254 list_add_tail(&node_detected_dev->list, &all_detected_devices); 7255 } else { 7256 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 7257 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 7258 } 7259 } 7260 7261 7262 static void autostart_arrays(int part) 7263 { 7264 mdk_rdev_t *rdev; 7265 struct detected_devices_node *node_detected_dev; 7266 dev_t dev; 7267 int i_scanned, i_passed; 7268 7269 i_scanned = 0; 7270 i_passed = 0; 7271 7272 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 7273 7274 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 7275 i_scanned++; 7276 node_detected_dev = list_entry(all_detected_devices.next, 7277 struct detected_devices_node, list); 7278 list_del(&node_detected_dev->list); 7279 dev = node_detected_dev->dev; 7280 kfree(node_detected_dev); 7281 rdev = md_import_device(dev,0, 90); 7282 if (IS_ERR(rdev)) 7283 continue; 7284 7285 if (test_bit(Faulty, &rdev->flags)) { 7286 MD_BUG(); 7287 continue; 7288 } 7289 set_bit(AutoDetected, &rdev->flags); 7290 list_add(&rdev->same_set, &pending_raid_disks); 7291 i_passed++; 7292 } 7293 7294 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 7295 i_scanned, i_passed); 7296 7297 autorun_devices(part); 7298 } 7299 7300 #endif /* !MODULE */ 7301 7302 static __exit void md_exit(void) 7303 { 7304 mddev_t *mddev; 7305 struct list_head *tmp; 7306 7307 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 7308 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 7309 7310 unregister_blkdev(MD_MAJOR,"md"); 7311 unregister_blkdev(mdp_major, "mdp"); 7312 unregister_reboot_notifier(&md_notifier); 7313 unregister_sysctl_table(raid_table_header); 7314 remove_proc_entry("mdstat", NULL); 7315 for_each_mddev(mddev, tmp) { 7316 export_array(mddev); 7317 mddev->hold_active = 0; 7318 } 7319 } 7320 7321 subsys_initcall(md_init); 7322 module_exit(md_exit) 7323 7324 static int get_ro(char *buffer, struct kernel_param *kp) 7325 { 7326 return sprintf(buffer, "%d", start_readonly); 7327 } 7328 static int set_ro(const char *val, struct kernel_param *kp) 7329 { 7330 char *e; 7331 int num = simple_strtoul(val, &e, 10); 7332 if (*val && (*e == '\0' || *e == '\n')) { 7333 start_readonly = num; 7334 return 0; 7335 } 7336 return -EINVAL; 7337 } 7338 7339 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 7340 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 7341 7342 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 7343 7344 EXPORT_SYMBOL(register_md_personality); 7345 EXPORT_SYMBOL(unregister_md_personality); 7346 EXPORT_SYMBOL(md_error); 7347 EXPORT_SYMBOL(md_done_sync); 7348 EXPORT_SYMBOL(md_write_start); 7349 EXPORT_SYMBOL(md_write_end); 7350 EXPORT_SYMBOL(md_register_thread); 7351 EXPORT_SYMBOL(md_unregister_thread); 7352 EXPORT_SYMBOL(md_wakeup_thread); 7353 EXPORT_SYMBOL(md_check_recovery); 7354 MODULE_LICENSE("GPL"); 7355 MODULE_DESCRIPTION("MD RAID framework"); 7356 MODULE_ALIAS("md"); 7357 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 7358