xref: /linux/drivers/md/md.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59 
60 static DEFINE_MUTEX(md_mutex);
61 
62 #ifndef MODULE
63 static void autostart_arrays(int part);
64 #endif
65 
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 
73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
74 
75 /*
76  * Default number of read corrections we'll attempt on an rdev
77  * before ejecting it from the array. We divide the read error
78  * count by 2 for every hour elapsed between read errors.
79  */
80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
81 /*
82  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83  * is 1000 KB/sec, so the extra system load does not show up that much.
84  * Increase it if you want to have more _guaranteed_ speed. Note that
85  * the RAID driver will use the maximum available bandwidth if the IO
86  * subsystem is idle. There is also an 'absolute maximum' reconstruction
87  * speed limit - in case reconstruction slows down your system despite
88  * idle IO detection.
89  *
90  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91  * or /sys/block/mdX/md/sync_speed_{min,max}
92  */
93 
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
97 {
98 	return mddev->sync_speed_min ?
99 		mddev->sync_speed_min : sysctl_speed_limit_min;
100 }
101 
102 static inline int speed_max(mddev_t *mddev)
103 {
104 	return mddev->sync_speed_max ?
105 		mddev->sync_speed_max : sysctl_speed_limit_max;
106 }
107 
108 static struct ctl_table_header *raid_table_header;
109 
110 static ctl_table raid_table[] = {
111 	{
112 		.procname	= "speed_limit_min",
113 		.data		= &sysctl_speed_limit_min,
114 		.maxlen		= sizeof(int),
115 		.mode		= S_IRUGO|S_IWUSR,
116 		.proc_handler	= proc_dointvec,
117 	},
118 	{
119 		.procname	= "speed_limit_max",
120 		.data		= &sysctl_speed_limit_max,
121 		.maxlen		= sizeof(int),
122 		.mode		= S_IRUGO|S_IWUSR,
123 		.proc_handler	= proc_dointvec,
124 	},
125 	{ }
126 };
127 
128 static ctl_table raid_dir_table[] = {
129 	{
130 		.procname	= "raid",
131 		.maxlen		= 0,
132 		.mode		= S_IRUGO|S_IXUGO,
133 		.child		= raid_table,
134 	},
135 	{ }
136 };
137 
138 static ctl_table raid_root_table[] = {
139 	{
140 		.procname	= "dev",
141 		.maxlen		= 0,
142 		.mode		= 0555,
143 		.child		= raid_dir_table,
144 	},
145 	{  }
146 };
147 
148 static const struct block_device_operations md_fops;
149 
150 static int start_readonly;
151 
152 /*
153  * We have a system wide 'event count' that is incremented
154  * on any 'interesting' event, and readers of /proc/mdstat
155  * can use 'poll' or 'select' to find out when the event
156  * count increases.
157  *
158  * Events are:
159  *  start array, stop array, error, add device, remove device,
160  *  start build, activate spare
161  */
162 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
163 static atomic_t md_event_count;
164 void md_new_event(mddev_t *mddev)
165 {
166 	atomic_inc(&md_event_count);
167 	wake_up(&md_event_waiters);
168 }
169 EXPORT_SYMBOL_GPL(md_new_event);
170 
171 /* Alternate version that can be called from interrupts
172  * when calling sysfs_notify isn't needed.
173  */
174 static void md_new_event_inintr(mddev_t *mddev)
175 {
176 	atomic_inc(&md_event_count);
177 	wake_up(&md_event_waiters);
178 }
179 
180 /*
181  * Enables to iterate over all existing md arrays
182  * all_mddevs_lock protects this list.
183  */
184 static LIST_HEAD(all_mddevs);
185 static DEFINE_SPINLOCK(all_mddevs_lock);
186 
187 
188 /*
189  * iterates through all used mddevs in the system.
190  * We take care to grab the all_mddevs_lock whenever navigating
191  * the list, and to always hold a refcount when unlocked.
192  * Any code which breaks out of this loop while own
193  * a reference to the current mddev and must mddev_put it.
194  */
195 #define for_each_mddev(mddev,tmp)					\
196 									\
197 	for (({ spin_lock(&all_mddevs_lock); 				\
198 		tmp = all_mddevs.next;					\
199 		mddev = NULL;});					\
200 	     ({ if (tmp != &all_mddevs)					\
201 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
202 		spin_unlock(&all_mddevs_lock);				\
203 		if (mddev) mddev_put(mddev);				\
204 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
205 		tmp != &all_mddevs;});					\
206 	     ({ spin_lock(&all_mddevs_lock);				\
207 		tmp = tmp->next;})					\
208 		)
209 
210 
211 /* Rather than calling directly into the personality make_request function,
212  * IO requests come here first so that we can check if the device is
213  * being suspended pending a reconfiguration.
214  * We hold a refcount over the call to ->make_request.  By the time that
215  * call has finished, the bio has been linked into some internal structure
216  * and so is visible to ->quiesce(), so we don't need the refcount any more.
217  */
218 static int md_make_request(struct request_queue *q, struct bio *bio)
219 {
220 	const int rw = bio_data_dir(bio);
221 	mddev_t *mddev = q->queuedata;
222 	int rv;
223 	int cpu;
224 
225 	if (mddev == NULL || mddev->pers == NULL) {
226 		bio_io_error(bio);
227 		return 0;
228 	}
229 	rcu_read_lock();
230 	if (mddev->suspended) {
231 		DEFINE_WAIT(__wait);
232 		for (;;) {
233 			prepare_to_wait(&mddev->sb_wait, &__wait,
234 					TASK_UNINTERRUPTIBLE);
235 			if (!mddev->suspended)
236 				break;
237 			rcu_read_unlock();
238 			schedule();
239 			rcu_read_lock();
240 		}
241 		finish_wait(&mddev->sb_wait, &__wait);
242 	}
243 	atomic_inc(&mddev->active_io);
244 	rcu_read_unlock();
245 
246 	rv = mddev->pers->make_request(mddev, bio);
247 
248 	cpu = part_stat_lock();
249 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
250 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
251 		      bio_sectors(bio));
252 	part_stat_unlock();
253 
254 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
255 		wake_up(&mddev->sb_wait);
256 
257 	return rv;
258 }
259 
260 /* mddev_suspend makes sure no new requests are submitted
261  * to the device, and that any requests that have been submitted
262  * are completely handled.
263  * Once ->stop is called and completes, the module will be completely
264  * unused.
265  */
266 void mddev_suspend(mddev_t *mddev)
267 {
268 	BUG_ON(mddev->suspended);
269 	mddev->suspended = 1;
270 	synchronize_rcu();
271 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
272 	mddev->pers->quiesce(mddev, 1);
273 }
274 EXPORT_SYMBOL_GPL(mddev_suspend);
275 
276 void mddev_resume(mddev_t *mddev)
277 {
278 	mddev->suspended = 0;
279 	wake_up(&mddev->sb_wait);
280 	mddev->pers->quiesce(mddev, 0);
281 }
282 EXPORT_SYMBOL_GPL(mddev_resume);
283 
284 int mddev_congested(mddev_t *mddev, int bits)
285 {
286 	return mddev->suspended;
287 }
288 EXPORT_SYMBOL(mddev_congested);
289 
290 /*
291  * Generic flush handling for md
292  */
293 
294 static void md_end_flush(struct bio *bio, int err)
295 {
296 	mdk_rdev_t *rdev = bio->bi_private;
297 	mddev_t *mddev = rdev->mddev;
298 
299 	rdev_dec_pending(rdev, mddev);
300 
301 	if (atomic_dec_and_test(&mddev->flush_pending)) {
302 		/* The pre-request flush has finished */
303 		schedule_work(&mddev->flush_work);
304 	}
305 	bio_put(bio);
306 }
307 
308 static void submit_flushes(mddev_t *mddev)
309 {
310 	mdk_rdev_t *rdev;
311 
312 	rcu_read_lock();
313 	list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
314 		if (rdev->raid_disk >= 0 &&
315 		    !test_bit(Faulty, &rdev->flags)) {
316 			/* Take two references, one is dropped
317 			 * when request finishes, one after
318 			 * we reclaim rcu_read_lock
319 			 */
320 			struct bio *bi;
321 			atomic_inc(&rdev->nr_pending);
322 			atomic_inc(&rdev->nr_pending);
323 			rcu_read_unlock();
324 			bi = bio_alloc(GFP_KERNEL, 0);
325 			bi->bi_end_io = md_end_flush;
326 			bi->bi_private = rdev;
327 			bi->bi_bdev = rdev->bdev;
328 			atomic_inc(&mddev->flush_pending);
329 			submit_bio(WRITE_FLUSH, bi);
330 			rcu_read_lock();
331 			rdev_dec_pending(rdev, mddev);
332 		}
333 	rcu_read_unlock();
334 }
335 
336 static void md_submit_flush_data(struct work_struct *ws)
337 {
338 	mddev_t *mddev = container_of(ws, mddev_t, flush_work);
339 	struct bio *bio = mddev->flush_bio;
340 
341 	atomic_set(&mddev->flush_pending, 1);
342 
343 	if (bio->bi_size == 0)
344 		/* an empty barrier - all done */
345 		bio_endio(bio, 0);
346 	else {
347 		bio->bi_rw &= ~REQ_FLUSH;
348 		if (mddev->pers->make_request(mddev, bio))
349 			generic_make_request(bio);
350 	}
351 	if (atomic_dec_and_test(&mddev->flush_pending)) {
352 		mddev->flush_bio = NULL;
353 		wake_up(&mddev->sb_wait);
354 	}
355 }
356 
357 void md_flush_request(mddev_t *mddev, struct bio *bio)
358 {
359 	spin_lock_irq(&mddev->write_lock);
360 	wait_event_lock_irq(mddev->sb_wait,
361 			    !mddev->flush_bio,
362 			    mddev->write_lock, /*nothing*/);
363 	mddev->flush_bio = bio;
364 	spin_unlock_irq(&mddev->write_lock);
365 
366 	atomic_set(&mddev->flush_pending, 1);
367 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
368 
369 	submit_flushes(mddev);
370 
371 	if (atomic_dec_and_test(&mddev->flush_pending))
372 		schedule_work(&mddev->flush_work);
373 }
374 EXPORT_SYMBOL(md_flush_request);
375 
376 /* Support for plugging.
377  * This mirrors the plugging support in request_queue, but does not
378  * require having a whole queue
379  */
380 static void plugger_work(struct work_struct *work)
381 {
382 	struct plug_handle *plug =
383 		container_of(work, struct plug_handle, unplug_work);
384 	plug->unplug_fn(plug);
385 }
386 static void plugger_timeout(unsigned long data)
387 {
388 	struct plug_handle *plug = (void *)data;
389 	kblockd_schedule_work(NULL, &plug->unplug_work);
390 }
391 void plugger_init(struct plug_handle *plug,
392 		  void (*unplug_fn)(struct plug_handle *))
393 {
394 	plug->unplug_flag = 0;
395 	plug->unplug_fn = unplug_fn;
396 	init_timer(&plug->unplug_timer);
397 	plug->unplug_timer.function = plugger_timeout;
398 	plug->unplug_timer.data = (unsigned long)plug;
399 	INIT_WORK(&plug->unplug_work, plugger_work);
400 }
401 EXPORT_SYMBOL_GPL(plugger_init);
402 
403 void plugger_set_plug(struct plug_handle *plug)
404 {
405 	if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
406 		mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
407 }
408 EXPORT_SYMBOL_GPL(plugger_set_plug);
409 
410 int plugger_remove_plug(struct plug_handle *plug)
411 {
412 	if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
413 		del_timer(&plug->unplug_timer);
414 		return 1;
415 	} else
416 		return 0;
417 }
418 EXPORT_SYMBOL_GPL(plugger_remove_plug);
419 
420 
421 static inline mddev_t *mddev_get(mddev_t *mddev)
422 {
423 	atomic_inc(&mddev->active);
424 	return mddev;
425 }
426 
427 static void mddev_delayed_delete(struct work_struct *ws);
428 
429 static void mddev_put(mddev_t *mddev)
430 {
431 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
432 		return;
433 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
434 	    mddev->ctime == 0 && !mddev->hold_active) {
435 		/* Array is not configured at all, and not held active,
436 		 * so destroy it */
437 		list_del(&mddev->all_mddevs);
438 		if (mddev->gendisk) {
439 			/* we did a probe so need to clean up.
440 			 * Call schedule_work inside the spinlock
441 			 * so that flush_scheduled_work() after
442 			 * mddev_find will succeed in waiting for the
443 			 * work to be done.
444 			 */
445 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
446 			schedule_work(&mddev->del_work);
447 		} else
448 			kfree(mddev);
449 	}
450 	spin_unlock(&all_mddevs_lock);
451 }
452 
453 void mddev_init(mddev_t *mddev)
454 {
455 	mutex_init(&mddev->open_mutex);
456 	mutex_init(&mddev->reconfig_mutex);
457 	mutex_init(&mddev->bitmap_info.mutex);
458 	INIT_LIST_HEAD(&mddev->disks);
459 	INIT_LIST_HEAD(&mddev->all_mddevs);
460 	init_timer(&mddev->safemode_timer);
461 	atomic_set(&mddev->active, 1);
462 	atomic_set(&mddev->openers, 0);
463 	atomic_set(&mddev->active_io, 0);
464 	spin_lock_init(&mddev->write_lock);
465 	atomic_set(&mddev->flush_pending, 0);
466 	init_waitqueue_head(&mddev->sb_wait);
467 	init_waitqueue_head(&mddev->recovery_wait);
468 	mddev->reshape_position = MaxSector;
469 	mddev->resync_min = 0;
470 	mddev->resync_max = MaxSector;
471 	mddev->level = LEVEL_NONE;
472 }
473 EXPORT_SYMBOL_GPL(mddev_init);
474 
475 static mddev_t * mddev_find(dev_t unit)
476 {
477 	mddev_t *mddev, *new = NULL;
478 
479  retry:
480 	spin_lock(&all_mddevs_lock);
481 
482 	if (unit) {
483 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
484 			if (mddev->unit == unit) {
485 				mddev_get(mddev);
486 				spin_unlock(&all_mddevs_lock);
487 				kfree(new);
488 				return mddev;
489 			}
490 
491 		if (new) {
492 			list_add(&new->all_mddevs, &all_mddevs);
493 			spin_unlock(&all_mddevs_lock);
494 			new->hold_active = UNTIL_IOCTL;
495 			return new;
496 		}
497 	} else if (new) {
498 		/* find an unused unit number */
499 		static int next_minor = 512;
500 		int start = next_minor;
501 		int is_free = 0;
502 		int dev = 0;
503 		while (!is_free) {
504 			dev = MKDEV(MD_MAJOR, next_minor);
505 			next_minor++;
506 			if (next_minor > MINORMASK)
507 				next_minor = 0;
508 			if (next_minor == start) {
509 				/* Oh dear, all in use. */
510 				spin_unlock(&all_mddevs_lock);
511 				kfree(new);
512 				return NULL;
513 			}
514 
515 			is_free = 1;
516 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
517 				if (mddev->unit == dev) {
518 					is_free = 0;
519 					break;
520 				}
521 		}
522 		new->unit = dev;
523 		new->md_minor = MINOR(dev);
524 		new->hold_active = UNTIL_STOP;
525 		list_add(&new->all_mddevs, &all_mddevs);
526 		spin_unlock(&all_mddevs_lock);
527 		return new;
528 	}
529 	spin_unlock(&all_mddevs_lock);
530 
531 	new = kzalloc(sizeof(*new), GFP_KERNEL);
532 	if (!new)
533 		return NULL;
534 
535 	new->unit = unit;
536 	if (MAJOR(unit) == MD_MAJOR)
537 		new->md_minor = MINOR(unit);
538 	else
539 		new->md_minor = MINOR(unit) >> MdpMinorShift;
540 
541 	mddev_init(new);
542 
543 	goto retry;
544 }
545 
546 static inline int mddev_lock(mddev_t * mddev)
547 {
548 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
549 }
550 
551 static inline int mddev_is_locked(mddev_t *mddev)
552 {
553 	return mutex_is_locked(&mddev->reconfig_mutex);
554 }
555 
556 static inline int mddev_trylock(mddev_t * mddev)
557 {
558 	return mutex_trylock(&mddev->reconfig_mutex);
559 }
560 
561 static struct attribute_group md_redundancy_group;
562 
563 static void mddev_unlock(mddev_t * mddev)
564 {
565 	if (mddev->to_remove) {
566 		/* These cannot be removed under reconfig_mutex as
567 		 * an access to the files will try to take reconfig_mutex
568 		 * while holding the file unremovable, which leads to
569 		 * a deadlock.
570 		 * So hold set sysfs_active while the remove in happeing,
571 		 * and anything else which might set ->to_remove or my
572 		 * otherwise change the sysfs namespace will fail with
573 		 * -EBUSY if sysfs_active is still set.
574 		 * We set sysfs_active under reconfig_mutex and elsewhere
575 		 * test it under the same mutex to ensure its correct value
576 		 * is seen.
577 		 */
578 		struct attribute_group *to_remove = mddev->to_remove;
579 		mddev->to_remove = NULL;
580 		mddev->sysfs_active = 1;
581 		mutex_unlock(&mddev->reconfig_mutex);
582 
583 		if (mddev->kobj.sd) {
584 			if (to_remove != &md_redundancy_group)
585 				sysfs_remove_group(&mddev->kobj, to_remove);
586 			if (mddev->pers == NULL ||
587 			    mddev->pers->sync_request == NULL) {
588 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
589 				if (mddev->sysfs_action)
590 					sysfs_put(mddev->sysfs_action);
591 				mddev->sysfs_action = NULL;
592 			}
593 		}
594 		mddev->sysfs_active = 0;
595 	} else
596 		mutex_unlock(&mddev->reconfig_mutex);
597 
598 	md_wakeup_thread(mddev->thread);
599 }
600 
601 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
602 {
603 	mdk_rdev_t *rdev;
604 
605 	list_for_each_entry(rdev, &mddev->disks, same_set)
606 		if (rdev->desc_nr == nr)
607 			return rdev;
608 
609 	return NULL;
610 }
611 
612 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
613 {
614 	mdk_rdev_t *rdev;
615 
616 	list_for_each_entry(rdev, &mddev->disks, same_set)
617 		if (rdev->bdev->bd_dev == dev)
618 			return rdev;
619 
620 	return NULL;
621 }
622 
623 static struct mdk_personality *find_pers(int level, char *clevel)
624 {
625 	struct mdk_personality *pers;
626 	list_for_each_entry(pers, &pers_list, list) {
627 		if (level != LEVEL_NONE && pers->level == level)
628 			return pers;
629 		if (strcmp(pers->name, clevel)==0)
630 			return pers;
631 	}
632 	return NULL;
633 }
634 
635 /* return the offset of the super block in 512byte sectors */
636 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
637 {
638 	sector_t num_sectors = bdev->bd_inode->i_size / 512;
639 	return MD_NEW_SIZE_SECTORS(num_sectors);
640 }
641 
642 static int alloc_disk_sb(mdk_rdev_t * rdev)
643 {
644 	if (rdev->sb_page)
645 		MD_BUG();
646 
647 	rdev->sb_page = alloc_page(GFP_KERNEL);
648 	if (!rdev->sb_page) {
649 		printk(KERN_ALERT "md: out of memory.\n");
650 		return -ENOMEM;
651 	}
652 
653 	return 0;
654 }
655 
656 static void free_disk_sb(mdk_rdev_t * rdev)
657 {
658 	if (rdev->sb_page) {
659 		put_page(rdev->sb_page);
660 		rdev->sb_loaded = 0;
661 		rdev->sb_page = NULL;
662 		rdev->sb_start = 0;
663 		rdev->sectors = 0;
664 	}
665 }
666 
667 
668 static void super_written(struct bio *bio, int error)
669 {
670 	mdk_rdev_t *rdev = bio->bi_private;
671 	mddev_t *mddev = rdev->mddev;
672 
673 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
674 		printk("md: super_written gets error=%d, uptodate=%d\n",
675 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
676 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
677 		md_error(mddev, rdev);
678 	}
679 
680 	if (atomic_dec_and_test(&mddev->pending_writes))
681 		wake_up(&mddev->sb_wait);
682 	bio_put(bio);
683 }
684 
685 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
686 		   sector_t sector, int size, struct page *page)
687 {
688 	/* write first size bytes of page to sector of rdev
689 	 * Increment mddev->pending_writes before returning
690 	 * and decrement it on completion, waking up sb_wait
691 	 * if zero is reached.
692 	 * If an error occurred, call md_error
693 	 */
694 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
695 
696 	bio->bi_bdev = rdev->bdev;
697 	bio->bi_sector = sector;
698 	bio_add_page(bio, page, size, 0);
699 	bio->bi_private = rdev;
700 	bio->bi_end_io = super_written;
701 
702 	atomic_inc(&mddev->pending_writes);
703 	submit_bio(REQ_WRITE | REQ_SYNC | REQ_UNPLUG | REQ_FLUSH | REQ_FUA,
704 		   bio);
705 }
706 
707 void md_super_wait(mddev_t *mddev)
708 {
709 	/* wait for all superblock writes that were scheduled to complete */
710 	DEFINE_WAIT(wq);
711 	for(;;) {
712 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
713 		if (atomic_read(&mddev->pending_writes)==0)
714 			break;
715 		schedule();
716 	}
717 	finish_wait(&mddev->sb_wait, &wq);
718 }
719 
720 static void bi_complete(struct bio *bio, int error)
721 {
722 	complete((struct completion*)bio->bi_private);
723 }
724 
725 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
726 		   struct page *page, int rw)
727 {
728 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
729 	struct completion event;
730 	int ret;
731 
732 	rw |= REQ_SYNC | REQ_UNPLUG;
733 
734 	bio->bi_bdev = bdev;
735 	bio->bi_sector = sector;
736 	bio_add_page(bio, page, size, 0);
737 	init_completion(&event);
738 	bio->bi_private = &event;
739 	bio->bi_end_io = bi_complete;
740 	submit_bio(rw, bio);
741 	wait_for_completion(&event);
742 
743 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
744 	bio_put(bio);
745 	return ret;
746 }
747 EXPORT_SYMBOL_GPL(sync_page_io);
748 
749 static int read_disk_sb(mdk_rdev_t * rdev, int size)
750 {
751 	char b[BDEVNAME_SIZE];
752 	if (!rdev->sb_page) {
753 		MD_BUG();
754 		return -EINVAL;
755 	}
756 	if (rdev->sb_loaded)
757 		return 0;
758 
759 
760 	if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
761 		goto fail;
762 	rdev->sb_loaded = 1;
763 	return 0;
764 
765 fail:
766 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
767 		bdevname(rdev->bdev,b));
768 	return -EINVAL;
769 }
770 
771 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
772 {
773 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
774 		sb1->set_uuid1 == sb2->set_uuid1 &&
775 		sb1->set_uuid2 == sb2->set_uuid2 &&
776 		sb1->set_uuid3 == sb2->set_uuid3;
777 }
778 
779 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
780 {
781 	int ret;
782 	mdp_super_t *tmp1, *tmp2;
783 
784 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
785 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
786 
787 	if (!tmp1 || !tmp2) {
788 		ret = 0;
789 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
790 		goto abort;
791 	}
792 
793 	*tmp1 = *sb1;
794 	*tmp2 = *sb2;
795 
796 	/*
797 	 * nr_disks is not constant
798 	 */
799 	tmp1->nr_disks = 0;
800 	tmp2->nr_disks = 0;
801 
802 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
803 abort:
804 	kfree(tmp1);
805 	kfree(tmp2);
806 	return ret;
807 }
808 
809 
810 static u32 md_csum_fold(u32 csum)
811 {
812 	csum = (csum & 0xffff) + (csum >> 16);
813 	return (csum & 0xffff) + (csum >> 16);
814 }
815 
816 static unsigned int calc_sb_csum(mdp_super_t * sb)
817 {
818 	u64 newcsum = 0;
819 	u32 *sb32 = (u32*)sb;
820 	int i;
821 	unsigned int disk_csum, csum;
822 
823 	disk_csum = sb->sb_csum;
824 	sb->sb_csum = 0;
825 
826 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
827 		newcsum += sb32[i];
828 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
829 
830 
831 #ifdef CONFIG_ALPHA
832 	/* This used to use csum_partial, which was wrong for several
833 	 * reasons including that different results are returned on
834 	 * different architectures.  It isn't critical that we get exactly
835 	 * the same return value as before (we always csum_fold before
836 	 * testing, and that removes any differences).  However as we
837 	 * know that csum_partial always returned a 16bit value on
838 	 * alphas, do a fold to maximise conformity to previous behaviour.
839 	 */
840 	sb->sb_csum = md_csum_fold(disk_csum);
841 #else
842 	sb->sb_csum = disk_csum;
843 #endif
844 	return csum;
845 }
846 
847 
848 /*
849  * Handle superblock details.
850  * We want to be able to handle multiple superblock formats
851  * so we have a common interface to them all, and an array of
852  * different handlers.
853  * We rely on user-space to write the initial superblock, and support
854  * reading and updating of superblocks.
855  * Interface methods are:
856  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
857  *      loads and validates a superblock on dev.
858  *      if refdev != NULL, compare superblocks on both devices
859  *    Return:
860  *      0 - dev has a superblock that is compatible with refdev
861  *      1 - dev has a superblock that is compatible and newer than refdev
862  *          so dev should be used as the refdev in future
863  *     -EINVAL superblock incompatible or invalid
864  *     -othererror e.g. -EIO
865  *
866  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
867  *      Verify that dev is acceptable into mddev.
868  *       The first time, mddev->raid_disks will be 0, and data from
869  *       dev should be merged in.  Subsequent calls check that dev
870  *       is new enough.  Return 0 or -EINVAL
871  *
872  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
873  *     Update the superblock for rdev with data in mddev
874  *     This does not write to disc.
875  *
876  */
877 
878 struct super_type  {
879 	char		    *name;
880 	struct module	    *owner;
881 	int		    (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
882 					  int minor_version);
883 	int		    (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
884 	void		    (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
885 	unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
886 						sector_t num_sectors);
887 };
888 
889 /*
890  * Check that the given mddev has no bitmap.
891  *
892  * This function is called from the run method of all personalities that do not
893  * support bitmaps. It prints an error message and returns non-zero if mddev
894  * has a bitmap. Otherwise, it returns 0.
895  *
896  */
897 int md_check_no_bitmap(mddev_t *mddev)
898 {
899 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
900 		return 0;
901 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
902 		mdname(mddev), mddev->pers->name);
903 	return 1;
904 }
905 EXPORT_SYMBOL(md_check_no_bitmap);
906 
907 /*
908  * load_super for 0.90.0
909  */
910 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
911 {
912 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
913 	mdp_super_t *sb;
914 	int ret;
915 
916 	/*
917 	 * Calculate the position of the superblock (512byte sectors),
918 	 * it's at the end of the disk.
919 	 *
920 	 * It also happens to be a multiple of 4Kb.
921 	 */
922 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
923 
924 	ret = read_disk_sb(rdev, MD_SB_BYTES);
925 	if (ret) return ret;
926 
927 	ret = -EINVAL;
928 
929 	bdevname(rdev->bdev, b);
930 	sb = (mdp_super_t*)page_address(rdev->sb_page);
931 
932 	if (sb->md_magic != MD_SB_MAGIC) {
933 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
934 		       b);
935 		goto abort;
936 	}
937 
938 	if (sb->major_version != 0 ||
939 	    sb->minor_version < 90 ||
940 	    sb->minor_version > 91) {
941 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
942 			sb->major_version, sb->minor_version,
943 			b);
944 		goto abort;
945 	}
946 
947 	if (sb->raid_disks <= 0)
948 		goto abort;
949 
950 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
951 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
952 			b);
953 		goto abort;
954 	}
955 
956 	rdev->preferred_minor = sb->md_minor;
957 	rdev->data_offset = 0;
958 	rdev->sb_size = MD_SB_BYTES;
959 
960 	if (sb->level == LEVEL_MULTIPATH)
961 		rdev->desc_nr = -1;
962 	else
963 		rdev->desc_nr = sb->this_disk.number;
964 
965 	if (!refdev) {
966 		ret = 1;
967 	} else {
968 		__u64 ev1, ev2;
969 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
970 		if (!uuid_equal(refsb, sb)) {
971 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
972 				b, bdevname(refdev->bdev,b2));
973 			goto abort;
974 		}
975 		if (!sb_equal(refsb, sb)) {
976 			printk(KERN_WARNING "md: %s has same UUID"
977 			       " but different superblock to %s\n",
978 			       b, bdevname(refdev->bdev, b2));
979 			goto abort;
980 		}
981 		ev1 = md_event(sb);
982 		ev2 = md_event(refsb);
983 		if (ev1 > ev2)
984 			ret = 1;
985 		else
986 			ret = 0;
987 	}
988 	rdev->sectors = rdev->sb_start;
989 
990 	if (rdev->sectors < sb->size * 2 && sb->level > 1)
991 		/* "this cannot possibly happen" ... */
992 		ret = -EINVAL;
993 
994  abort:
995 	return ret;
996 }
997 
998 /*
999  * validate_super for 0.90.0
1000  */
1001 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1002 {
1003 	mdp_disk_t *desc;
1004 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1005 	__u64 ev1 = md_event(sb);
1006 
1007 	rdev->raid_disk = -1;
1008 	clear_bit(Faulty, &rdev->flags);
1009 	clear_bit(In_sync, &rdev->flags);
1010 	clear_bit(WriteMostly, &rdev->flags);
1011 
1012 	if (mddev->raid_disks == 0) {
1013 		mddev->major_version = 0;
1014 		mddev->minor_version = sb->minor_version;
1015 		mddev->patch_version = sb->patch_version;
1016 		mddev->external = 0;
1017 		mddev->chunk_sectors = sb->chunk_size >> 9;
1018 		mddev->ctime = sb->ctime;
1019 		mddev->utime = sb->utime;
1020 		mddev->level = sb->level;
1021 		mddev->clevel[0] = 0;
1022 		mddev->layout = sb->layout;
1023 		mddev->raid_disks = sb->raid_disks;
1024 		mddev->dev_sectors = sb->size * 2;
1025 		mddev->events = ev1;
1026 		mddev->bitmap_info.offset = 0;
1027 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1028 
1029 		if (mddev->minor_version >= 91) {
1030 			mddev->reshape_position = sb->reshape_position;
1031 			mddev->delta_disks = sb->delta_disks;
1032 			mddev->new_level = sb->new_level;
1033 			mddev->new_layout = sb->new_layout;
1034 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1035 		} else {
1036 			mddev->reshape_position = MaxSector;
1037 			mddev->delta_disks = 0;
1038 			mddev->new_level = mddev->level;
1039 			mddev->new_layout = mddev->layout;
1040 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1041 		}
1042 
1043 		if (sb->state & (1<<MD_SB_CLEAN))
1044 			mddev->recovery_cp = MaxSector;
1045 		else {
1046 			if (sb->events_hi == sb->cp_events_hi &&
1047 				sb->events_lo == sb->cp_events_lo) {
1048 				mddev->recovery_cp = sb->recovery_cp;
1049 			} else
1050 				mddev->recovery_cp = 0;
1051 		}
1052 
1053 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1054 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1055 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1056 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1057 
1058 		mddev->max_disks = MD_SB_DISKS;
1059 
1060 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1061 		    mddev->bitmap_info.file == NULL)
1062 			mddev->bitmap_info.offset =
1063 				mddev->bitmap_info.default_offset;
1064 
1065 	} else if (mddev->pers == NULL) {
1066 		/* Insist on good event counter while assembling, except
1067 		 * for spares (which don't need an event count) */
1068 		++ev1;
1069 		if (sb->disks[rdev->desc_nr].state & (
1070 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1071 			if (ev1 < mddev->events)
1072 				return -EINVAL;
1073 	} else if (mddev->bitmap) {
1074 		/* if adding to array with a bitmap, then we can accept an
1075 		 * older device ... but not too old.
1076 		 */
1077 		if (ev1 < mddev->bitmap->events_cleared)
1078 			return 0;
1079 	} else {
1080 		if (ev1 < mddev->events)
1081 			/* just a hot-add of a new device, leave raid_disk at -1 */
1082 			return 0;
1083 	}
1084 
1085 	if (mddev->level != LEVEL_MULTIPATH) {
1086 		desc = sb->disks + rdev->desc_nr;
1087 
1088 		if (desc->state & (1<<MD_DISK_FAULTY))
1089 			set_bit(Faulty, &rdev->flags);
1090 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1091 			    desc->raid_disk < mddev->raid_disks */) {
1092 			set_bit(In_sync, &rdev->flags);
1093 			rdev->raid_disk = desc->raid_disk;
1094 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1095 			/* active but not in sync implies recovery up to
1096 			 * reshape position.  We don't know exactly where
1097 			 * that is, so set to zero for now */
1098 			if (mddev->minor_version >= 91) {
1099 				rdev->recovery_offset = 0;
1100 				rdev->raid_disk = desc->raid_disk;
1101 			}
1102 		}
1103 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1104 			set_bit(WriteMostly, &rdev->flags);
1105 	} else /* MULTIPATH are always insync */
1106 		set_bit(In_sync, &rdev->flags);
1107 	return 0;
1108 }
1109 
1110 /*
1111  * sync_super for 0.90.0
1112  */
1113 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1114 {
1115 	mdp_super_t *sb;
1116 	mdk_rdev_t *rdev2;
1117 	int next_spare = mddev->raid_disks;
1118 
1119 
1120 	/* make rdev->sb match mddev data..
1121 	 *
1122 	 * 1/ zero out disks
1123 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1124 	 * 3/ any empty disks < next_spare become removed
1125 	 *
1126 	 * disks[0] gets initialised to REMOVED because
1127 	 * we cannot be sure from other fields if it has
1128 	 * been initialised or not.
1129 	 */
1130 	int i;
1131 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1132 
1133 	rdev->sb_size = MD_SB_BYTES;
1134 
1135 	sb = (mdp_super_t*)page_address(rdev->sb_page);
1136 
1137 	memset(sb, 0, sizeof(*sb));
1138 
1139 	sb->md_magic = MD_SB_MAGIC;
1140 	sb->major_version = mddev->major_version;
1141 	sb->patch_version = mddev->patch_version;
1142 	sb->gvalid_words  = 0; /* ignored */
1143 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1144 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1145 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1146 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1147 
1148 	sb->ctime = mddev->ctime;
1149 	sb->level = mddev->level;
1150 	sb->size = mddev->dev_sectors / 2;
1151 	sb->raid_disks = mddev->raid_disks;
1152 	sb->md_minor = mddev->md_minor;
1153 	sb->not_persistent = 0;
1154 	sb->utime = mddev->utime;
1155 	sb->state = 0;
1156 	sb->events_hi = (mddev->events>>32);
1157 	sb->events_lo = (u32)mddev->events;
1158 
1159 	if (mddev->reshape_position == MaxSector)
1160 		sb->minor_version = 90;
1161 	else {
1162 		sb->minor_version = 91;
1163 		sb->reshape_position = mddev->reshape_position;
1164 		sb->new_level = mddev->new_level;
1165 		sb->delta_disks = mddev->delta_disks;
1166 		sb->new_layout = mddev->new_layout;
1167 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1168 	}
1169 	mddev->minor_version = sb->minor_version;
1170 	if (mddev->in_sync)
1171 	{
1172 		sb->recovery_cp = mddev->recovery_cp;
1173 		sb->cp_events_hi = (mddev->events>>32);
1174 		sb->cp_events_lo = (u32)mddev->events;
1175 		if (mddev->recovery_cp == MaxSector)
1176 			sb->state = (1<< MD_SB_CLEAN);
1177 	} else
1178 		sb->recovery_cp = 0;
1179 
1180 	sb->layout = mddev->layout;
1181 	sb->chunk_size = mddev->chunk_sectors << 9;
1182 
1183 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1184 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1185 
1186 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1187 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1188 		mdp_disk_t *d;
1189 		int desc_nr;
1190 		int is_active = test_bit(In_sync, &rdev2->flags);
1191 
1192 		if (rdev2->raid_disk >= 0 &&
1193 		    sb->minor_version >= 91)
1194 			/* we have nowhere to store the recovery_offset,
1195 			 * but if it is not below the reshape_position,
1196 			 * we can piggy-back on that.
1197 			 */
1198 			is_active = 1;
1199 		if (rdev2->raid_disk < 0 ||
1200 		    test_bit(Faulty, &rdev2->flags))
1201 			is_active = 0;
1202 		if (is_active)
1203 			desc_nr = rdev2->raid_disk;
1204 		else
1205 			desc_nr = next_spare++;
1206 		rdev2->desc_nr = desc_nr;
1207 		d = &sb->disks[rdev2->desc_nr];
1208 		nr_disks++;
1209 		d->number = rdev2->desc_nr;
1210 		d->major = MAJOR(rdev2->bdev->bd_dev);
1211 		d->minor = MINOR(rdev2->bdev->bd_dev);
1212 		if (is_active)
1213 			d->raid_disk = rdev2->raid_disk;
1214 		else
1215 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1216 		if (test_bit(Faulty, &rdev2->flags))
1217 			d->state = (1<<MD_DISK_FAULTY);
1218 		else if (is_active) {
1219 			d->state = (1<<MD_DISK_ACTIVE);
1220 			if (test_bit(In_sync, &rdev2->flags))
1221 				d->state |= (1<<MD_DISK_SYNC);
1222 			active++;
1223 			working++;
1224 		} else {
1225 			d->state = 0;
1226 			spare++;
1227 			working++;
1228 		}
1229 		if (test_bit(WriteMostly, &rdev2->flags))
1230 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1231 	}
1232 	/* now set the "removed" and "faulty" bits on any missing devices */
1233 	for (i=0 ; i < mddev->raid_disks ; i++) {
1234 		mdp_disk_t *d = &sb->disks[i];
1235 		if (d->state == 0 && d->number == 0) {
1236 			d->number = i;
1237 			d->raid_disk = i;
1238 			d->state = (1<<MD_DISK_REMOVED);
1239 			d->state |= (1<<MD_DISK_FAULTY);
1240 			failed++;
1241 		}
1242 	}
1243 	sb->nr_disks = nr_disks;
1244 	sb->active_disks = active;
1245 	sb->working_disks = working;
1246 	sb->failed_disks = failed;
1247 	sb->spare_disks = spare;
1248 
1249 	sb->this_disk = sb->disks[rdev->desc_nr];
1250 	sb->sb_csum = calc_sb_csum(sb);
1251 }
1252 
1253 /*
1254  * rdev_size_change for 0.90.0
1255  */
1256 static unsigned long long
1257 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1258 {
1259 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1260 		return 0; /* component must fit device */
1261 	if (rdev->mddev->bitmap_info.offset)
1262 		return 0; /* can't move bitmap */
1263 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1264 	if (!num_sectors || num_sectors > rdev->sb_start)
1265 		num_sectors = rdev->sb_start;
1266 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1267 		       rdev->sb_page);
1268 	md_super_wait(rdev->mddev);
1269 	return num_sectors / 2; /* kB for sysfs */
1270 }
1271 
1272 
1273 /*
1274  * version 1 superblock
1275  */
1276 
1277 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1278 {
1279 	__le32 disk_csum;
1280 	u32 csum;
1281 	unsigned long long newcsum;
1282 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1283 	__le32 *isuper = (__le32*)sb;
1284 	int i;
1285 
1286 	disk_csum = sb->sb_csum;
1287 	sb->sb_csum = 0;
1288 	newcsum = 0;
1289 	for (i=0; size>=4; size -= 4 )
1290 		newcsum += le32_to_cpu(*isuper++);
1291 
1292 	if (size == 2)
1293 		newcsum += le16_to_cpu(*(__le16*) isuper);
1294 
1295 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1296 	sb->sb_csum = disk_csum;
1297 	return cpu_to_le32(csum);
1298 }
1299 
1300 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1301 {
1302 	struct mdp_superblock_1 *sb;
1303 	int ret;
1304 	sector_t sb_start;
1305 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1306 	int bmask;
1307 
1308 	/*
1309 	 * Calculate the position of the superblock in 512byte sectors.
1310 	 * It is always aligned to a 4K boundary and
1311 	 * depeding on minor_version, it can be:
1312 	 * 0: At least 8K, but less than 12K, from end of device
1313 	 * 1: At start of device
1314 	 * 2: 4K from start of device.
1315 	 */
1316 	switch(minor_version) {
1317 	case 0:
1318 		sb_start = rdev->bdev->bd_inode->i_size >> 9;
1319 		sb_start -= 8*2;
1320 		sb_start &= ~(sector_t)(4*2-1);
1321 		break;
1322 	case 1:
1323 		sb_start = 0;
1324 		break;
1325 	case 2:
1326 		sb_start = 8;
1327 		break;
1328 	default:
1329 		return -EINVAL;
1330 	}
1331 	rdev->sb_start = sb_start;
1332 
1333 	/* superblock is rarely larger than 1K, but it can be larger,
1334 	 * and it is safe to read 4k, so we do that
1335 	 */
1336 	ret = read_disk_sb(rdev, 4096);
1337 	if (ret) return ret;
1338 
1339 
1340 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1341 
1342 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1343 	    sb->major_version != cpu_to_le32(1) ||
1344 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1345 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1346 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1347 		return -EINVAL;
1348 
1349 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1350 		printk("md: invalid superblock checksum on %s\n",
1351 			bdevname(rdev->bdev,b));
1352 		return -EINVAL;
1353 	}
1354 	if (le64_to_cpu(sb->data_size) < 10) {
1355 		printk("md: data_size too small on %s\n",
1356 		       bdevname(rdev->bdev,b));
1357 		return -EINVAL;
1358 	}
1359 
1360 	rdev->preferred_minor = 0xffff;
1361 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1362 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1363 
1364 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1365 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1366 	if (rdev->sb_size & bmask)
1367 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1368 
1369 	if (minor_version
1370 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1371 		return -EINVAL;
1372 
1373 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1374 		rdev->desc_nr = -1;
1375 	else
1376 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1377 
1378 	if (!refdev) {
1379 		ret = 1;
1380 	} else {
1381 		__u64 ev1, ev2;
1382 		struct mdp_superblock_1 *refsb =
1383 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1384 
1385 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1386 		    sb->level != refsb->level ||
1387 		    sb->layout != refsb->layout ||
1388 		    sb->chunksize != refsb->chunksize) {
1389 			printk(KERN_WARNING "md: %s has strangely different"
1390 				" superblock to %s\n",
1391 				bdevname(rdev->bdev,b),
1392 				bdevname(refdev->bdev,b2));
1393 			return -EINVAL;
1394 		}
1395 		ev1 = le64_to_cpu(sb->events);
1396 		ev2 = le64_to_cpu(refsb->events);
1397 
1398 		if (ev1 > ev2)
1399 			ret = 1;
1400 		else
1401 			ret = 0;
1402 	}
1403 	if (minor_version)
1404 		rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1405 			le64_to_cpu(sb->data_offset);
1406 	else
1407 		rdev->sectors = rdev->sb_start;
1408 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1409 		return -EINVAL;
1410 	rdev->sectors = le64_to_cpu(sb->data_size);
1411 	if (le64_to_cpu(sb->size) > rdev->sectors)
1412 		return -EINVAL;
1413 	return ret;
1414 }
1415 
1416 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1417 {
1418 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1419 	__u64 ev1 = le64_to_cpu(sb->events);
1420 
1421 	rdev->raid_disk = -1;
1422 	clear_bit(Faulty, &rdev->flags);
1423 	clear_bit(In_sync, &rdev->flags);
1424 	clear_bit(WriteMostly, &rdev->flags);
1425 
1426 	if (mddev->raid_disks == 0) {
1427 		mddev->major_version = 1;
1428 		mddev->patch_version = 0;
1429 		mddev->external = 0;
1430 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1431 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1432 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1433 		mddev->level = le32_to_cpu(sb->level);
1434 		mddev->clevel[0] = 0;
1435 		mddev->layout = le32_to_cpu(sb->layout);
1436 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1437 		mddev->dev_sectors = le64_to_cpu(sb->size);
1438 		mddev->events = ev1;
1439 		mddev->bitmap_info.offset = 0;
1440 		mddev->bitmap_info.default_offset = 1024 >> 9;
1441 
1442 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1443 		memcpy(mddev->uuid, sb->set_uuid, 16);
1444 
1445 		mddev->max_disks =  (4096-256)/2;
1446 
1447 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1448 		    mddev->bitmap_info.file == NULL )
1449 			mddev->bitmap_info.offset =
1450 				(__s32)le32_to_cpu(sb->bitmap_offset);
1451 
1452 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1453 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1454 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1455 			mddev->new_level = le32_to_cpu(sb->new_level);
1456 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1457 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1458 		} else {
1459 			mddev->reshape_position = MaxSector;
1460 			mddev->delta_disks = 0;
1461 			mddev->new_level = mddev->level;
1462 			mddev->new_layout = mddev->layout;
1463 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1464 		}
1465 
1466 	} else if (mddev->pers == NULL) {
1467 		/* Insist of good event counter while assembling, except for
1468 		 * spares (which don't need an event count) */
1469 		++ev1;
1470 		if (rdev->desc_nr >= 0 &&
1471 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1472 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1473 			if (ev1 < mddev->events)
1474 				return -EINVAL;
1475 	} else if (mddev->bitmap) {
1476 		/* If adding to array with a bitmap, then we can accept an
1477 		 * older device, but not too old.
1478 		 */
1479 		if (ev1 < mddev->bitmap->events_cleared)
1480 			return 0;
1481 	} else {
1482 		if (ev1 < mddev->events)
1483 			/* just a hot-add of a new device, leave raid_disk at -1 */
1484 			return 0;
1485 	}
1486 	if (mddev->level != LEVEL_MULTIPATH) {
1487 		int role;
1488 		if (rdev->desc_nr < 0 ||
1489 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1490 			role = 0xffff;
1491 			rdev->desc_nr = -1;
1492 		} else
1493 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1494 		switch(role) {
1495 		case 0xffff: /* spare */
1496 			break;
1497 		case 0xfffe: /* faulty */
1498 			set_bit(Faulty, &rdev->flags);
1499 			break;
1500 		default:
1501 			if ((le32_to_cpu(sb->feature_map) &
1502 			     MD_FEATURE_RECOVERY_OFFSET))
1503 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1504 			else
1505 				set_bit(In_sync, &rdev->flags);
1506 			rdev->raid_disk = role;
1507 			break;
1508 		}
1509 		if (sb->devflags & WriteMostly1)
1510 			set_bit(WriteMostly, &rdev->flags);
1511 	} else /* MULTIPATH are always insync */
1512 		set_bit(In_sync, &rdev->flags);
1513 
1514 	return 0;
1515 }
1516 
1517 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1518 {
1519 	struct mdp_superblock_1 *sb;
1520 	mdk_rdev_t *rdev2;
1521 	int max_dev, i;
1522 	/* make rdev->sb match mddev and rdev data. */
1523 
1524 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1525 
1526 	sb->feature_map = 0;
1527 	sb->pad0 = 0;
1528 	sb->recovery_offset = cpu_to_le64(0);
1529 	memset(sb->pad1, 0, sizeof(sb->pad1));
1530 	memset(sb->pad2, 0, sizeof(sb->pad2));
1531 	memset(sb->pad3, 0, sizeof(sb->pad3));
1532 
1533 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1534 	sb->events = cpu_to_le64(mddev->events);
1535 	if (mddev->in_sync)
1536 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1537 	else
1538 		sb->resync_offset = cpu_to_le64(0);
1539 
1540 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1541 
1542 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1543 	sb->size = cpu_to_le64(mddev->dev_sectors);
1544 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1545 	sb->level = cpu_to_le32(mddev->level);
1546 	sb->layout = cpu_to_le32(mddev->layout);
1547 
1548 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1549 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1550 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1551 	}
1552 
1553 	if (rdev->raid_disk >= 0 &&
1554 	    !test_bit(In_sync, &rdev->flags)) {
1555 		sb->feature_map |=
1556 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1557 		sb->recovery_offset =
1558 			cpu_to_le64(rdev->recovery_offset);
1559 	}
1560 
1561 	if (mddev->reshape_position != MaxSector) {
1562 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1563 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1564 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1565 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1566 		sb->new_level = cpu_to_le32(mddev->new_level);
1567 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1568 	}
1569 
1570 	max_dev = 0;
1571 	list_for_each_entry(rdev2, &mddev->disks, same_set)
1572 		if (rdev2->desc_nr+1 > max_dev)
1573 			max_dev = rdev2->desc_nr+1;
1574 
1575 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1576 		int bmask;
1577 		sb->max_dev = cpu_to_le32(max_dev);
1578 		rdev->sb_size = max_dev * 2 + 256;
1579 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1580 		if (rdev->sb_size & bmask)
1581 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1582 	} else
1583 		max_dev = le32_to_cpu(sb->max_dev);
1584 
1585 	for (i=0; i<max_dev;i++)
1586 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1587 
1588 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1589 		i = rdev2->desc_nr;
1590 		if (test_bit(Faulty, &rdev2->flags))
1591 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1592 		else if (test_bit(In_sync, &rdev2->flags))
1593 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1594 		else if (rdev2->raid_disk >= 0)
1595 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1596 		else
1597 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1598 	}
1599 
1600 	sb->sb_csum = calc_sb_1_csum(sb);
1601 }
1602 
1603 static unsigned long long
1604 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1605 {
1606 	struct mdp_superblock_1 *sb;
1607 	sector_t max_sectors;
1608 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1609 		return 0; /* component must fit device */
1610 	if (rdev->sb_start < rdev->data_offset) {
1611 		/* minor versions 1 and 2; superblock before data */
1612 		max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1613 		max_sectors -= rdev->data_offset;
1614 		if (!num_sectors || num_sectors > max_sectors)
1615 			num_sectors = max_sectors;
1616 	} else if (rdev->mddev->bitmap_info.offset) {
1617 		/* minor version 0 with bitmap we can't move */
1618 		return 0;
1619 	} else {
1620 		/* minor version 0; superblock after data */
1621 		sector_t sb_start;
1622 		sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1623 		sb_start &= ~(sector_t)(4*2 - 1);
1624 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1625 		if (!num_sectors || num_sectors > max_sectors)
1626 			num_sectors = max_sectors;
1627 		rdev->sb_start = sb_start;
1628 	}
1629 	sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1630 	sb->data_size = cpu_to_le64(num_sectors);
1631 	sb->super_offset = rdev->sb_start;
1632 	sb->sb_csum = calc_sb_1_csum(sb);
1633 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1634 		       rdev->sb_page);
1635 	md_super_wait(rdev->mddev);
1636 	return num_sectors / 2; /* kB for sysfs */
1637 }
1638 
1639 static struct super_type super_types[] = {
1640 	[0] = {
1641 		.name	= "0.90.0",
1642 		.owner	= THIS_MODULE,
1643 		.load_super	    = super_90_load,
1644 		.validate_super	    = super_90_validate,
1645 		.sync_super	    = super_90_sync,
1646 		.rdev_size_change   = super_90_rdev_size_change,
1647 	},
1648 	[1] = {
1649 		.name	= "md-1",
1650 		.owner	= THIS_MODULE,
1651 		.load_super	    = super_1_load,
1652 		.validate_super	    = super_1_validate,
1653 		.sync_super	    = super_1_sync,
1654 		.rdev_size_change   = super_1_rdev_size_change,
1655 	},
1656 };
1657 
1658 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1659 {
1660 	mdk_rdev_t *rdev, *rdev2;
1661 
1662 	rcu_read_lock();
1663 	rdev_for_each_rcu(rdev, mddev1)
1664 		rdev_for_each_rcu(rdev2, mddev2)
1665 			if (rdev->bdev->bd_contains ==
1666 			    rdev2->bdev->bd_contains) {
1667 				rcu_read_unlock();
1668 				return 1;
1669 			}
1670 	rcu_read_unlock();
1671 	return 0;
1672 }
1673 
1674 static LIST_HEAD(pending_raid_disks);
1675 
1676 /*
1677  * Try to register data integrity profile for an mddev
1678  *
1679  * This is called when an array is started and after a disk has been kicked
1680  * from the array. It only succeeds if all working and active component devices
1681  * are integrity capable with matching profiles.
1682  */
1683 int md_integrity_register(mddev_t *mddev)
1684 {
1685 	mdk_rdev_t *rdev, *reference = NULL;
1686 
1687 	if (list_empty(&mddev->disks))
1688 		return 0; /* nothing to do */
1689 	if (blk_get_integrity(mddev->gendisk))
1690 		return 0; /* already registered */
1691 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1692 		/* skip spares and non-functional disks */
1693 		if (test_bit(Faulty, &rdev->flags))
1694 			continue;
1695 		if (rdev->raid_disk < 0)
1696 			continue;
1697 		/*
1698 		 * If at least one rdev is not integrity capable, we can not
1699 		 * enable data integrity for the md device.
1700 		 */
1701 		if (!bdev_get_integrity(rdev->bdev))
1702 			return -EINVAL;
1703 		if (!reference) {
1704 			/* Use the first rdev as the reference */
1705 			reference = rdev;
1706 			continue;
1707 		}
1708 		/* does this rdev's profile match the reference profile? */
1709 		if (blk_integrity_compare(reference->bdev->bd_disk,
1710 				rdev->bdev->bd_disk) < 0)
1711 			return -EINVAL;
1712 	}
1713 	/*
1714 	 * All component devices are integrity capable and have matching
1715 	 * profiles, register the common profile for the md device.
1716 	 */
1717 	if (blk_integrity_register(mddev->gendisk,
1718 			bdev_get_integrity(reference->bdev)) != 0) {
1719 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1720 			mdname(mddev));
1721 		return -EINVAL;
1722 	}
1723 	printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1724 		mdname(mddev));
1725 	return 0;
1726 }
1727 EXPORT_SYMBOL(md_integrity_register);
1728 
1729 /* Disable data integrity if non-capable/non-matching disk is being added */
1730 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1731 {
1732 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1733 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1734 
1735 	if (!bi_mddev) /* nothing to do */
1736 		return;
1737 	if (rdev->raid_disk < 0) /* skip spares */
1738 		return;
1739 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1740 					     rdev->bdev->bd_disk) >= 0)
1741 		return;
1742 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1743 	blk_integrity_unregister(mddev->gendisk);
1744 }
1745 EXPORT_SYMBOL(md_integrity_add_rdev);
1746 
1747 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1748 {
1749 	char b[BDEVNAME_SIZE];
1750 	struct kobject *ko;
1751 	char *s;
1752 	int err;
1753 
1754 	if (rdev->mddev) {
1755 		MD_BUG();
1756 		return -EINVAL;
1757 	}
1758 
1759 	/* prevent duplicates */
1760 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1761 		return -EEXIST;
1762 
1763 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
1764 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
1765 			rdev->sectors < mddev->dev_sectors)) {
1766 		if (mddev->pers) {
1767 			/* Cannot change size, so fail
1768 			 * If mddev->level <= 0, then we don't care
1769 			 * about aligning sizes (e.g. linear)
1770 			 */
1771 			if (mddev->level > 0)
1772 				return -ENOSPC;
1773 		} else
1774 			mddev->dev_sectors = rdev->sectors;
1775 	}
1776 
1777 	/* Verify rdev->desc_nr is unique.
1778 	 * If it is -1, assign a free number, else
1779 	 * check number is not in use
1780 	 */
1781 	if (rdev->desc_nr < 0) {
1782 		int choice = 0;
1783 		if (mddev->pers) choice = mddev->raid_disks;
1784 		while (find_rdev_nr(mddev, choice))
1785 			choice++;
1786 		rdev->desc_nr = choice;
1787 	} else {
1788 		if (find_rdev_nr(mddev, rdev->desc_nr))
1789 			return -EBUSY;
1790 	}
1791 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1792 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1793 		       mdname(mddev), mddev->max_disks);
1794 		return -EBUSY;
1795 	}
1796 	bdevname(rdev->bdev,b);
1797 	while ( (s=strchr(b, '/')) != NULL)
1798 		*s = '!';
1799 
1800 	rdev->mddev = mddev;
1801 	printk(KERN_INFO "md: bind<%s>\n", b);
1802 
1803 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1804 		goto fail;
1805 
1806 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1807 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
1808 		/* failure here is OK */;
1809 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1810 
1811 	list_add_rcu(&rdev->same_set, &mddev->disks);
1812 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1813 
1814 	/* May as well allow recovery to be retried once */
1815 	mddev->recovery_disabled = 0;
1816 
1817 	return 0;
1818 
1819  fail:
1820 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1821 	       b, mdname(mddev));
1822 	return err;
1823 }
1824 
1825 static void md_delayed_delete(struct work_struct *ws)
1826 {
1827 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1828 	kobject_del(&rdev->kobj);
1829 	kobject_put(&rdev->kobj);
1830 }
1831 
1832 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1833 {
1834 	char b[BDEVNAME_SIZE];
1835 	if (!rdev->mddev) {
1836 		MD_BUG();
1837 		return;
1838 	}
1839 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1840 	list_del_rcu(&rdev->same_set);
1841 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1842 	rdev->mddev = NULL;
1843 	sysfs_remove_link(&rdev->kobj, "block");
1844 	sysfs_put(rdev->sysfs_state);
1845 	rdev->sysfs_state = NULL;
1846 	/* We need to delay this, otherwise we can deadlock when
1847 	 * writing to 'remove' to "dev/state".  We also need
1848 	 * to delay it due to rcu usage.
1849 	 */
1850 	synchronize_rcu();
1851 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1852 	kobject_get(&rdev->kobj);
1853 	schedule_work(&rdev->del_work);
1854 }
1855 
1856 /*
1857  * prevent the device from being mounted, repartitioned or
1858  * otherwise reused by a RAID array (or any other kernel
1859  * subsystem), by bd_claiming the device.
1860  */
1861 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1862 {
1863 	int err = 0;
1864 	struct block_device *bdev;
1865 	char b[BDEVNAME_SIZE];
1866 
1867 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1868 	if (IS_ERR(bdev)) {
1869 		printk(KERN_ERR "md: could not open %s.\n",
1870 			__bdevname(dev, b));
1871 		return PTR_ERR(bdev);
1872 	}
1873 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1874 	if (err) {
1875 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1876 			bdevname(bdev, b));
1877 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1878 		return err;
1879 	}
1880 	if (!shared)
1881 		set_bit(AllReserved, &rdev->flags);
1882 	rdev->bdev = bdev;
1883 	return err;
1884 }
1885 
1886 static void unlock_rdev(mdk_rdev_t *rdev)
1887 {
1888 	struct block_device *bdev = rdev->bdev;
1889 	rdev->bdev = NULL;
1890 	if (!bdev)
1891 		MD_BUG();
1892 	bd_release(bdev);
1893 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1894 }
1895 
1896 void md_autodetect_dev(dev_t dev);
1897 
1898 static void export_rdev(mdk_rdev_t * rdev)
1899 {
1900 	char b[BDEVNAME_SIZE];
1901 	printk(KERN_INFO "md: export_rdev(%s)\n",
1902 		bdevname(rdev->bdev,b));
1903 	if (rdev->mddev)
1904 		MD_BUG();
1905 	free_disk_sb(rdev);
1906 #ifndef MODULE
1907 	if (test_bit(AutoDetected, &rdev->flags))
1908 		md_autodetect_dev(rdev->bdev->bd_dev);
1909 #endif
1910 	unlock_rdev(rdev);
1911 	kobject_put(&rdev->kobj);
1912 }
1913 
1914 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1915 {
1916 	unbind_rdev_from_array(rdev);
1917 	export_rdev(rdev);
1918 }
1919 
1920 static void export_array(mddev_t *mddev)
1921 {
1922 	mdk_rdev_t *rdev, *tmp;
1923 
1924 	rdev_for_each(rdev, tmp, mddev) {
1925 		if (!rdev->mddev) {
1926 			MD_BUG();
1927 			continue;
1928 		}
1929 		kick_rdev_from_array(rdev);
1930 	}
1931 	if (!list_empty(&mddev->disks))
1932 		MD_BUG();
1933 	mddev->raid_disks = 0;
1934 	mddev->major_version = 0;
1935 }
1936 
1937 static void print_desc(mdp_disk_t *desc)
1938 {
1939 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1940 		desc->major,desc->minor,desc->raid_disk,desc->state);
1941 }
1942 
1943 static void print_sb_90(mdp_super_t *sb)
1944 {
1945 	int i;
1946 
1947 	printk(KERN_INFO
1948 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1949 		sb->major_version, sb->minor_version, sb->patch_version,
1950 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1951 		sb->ctime);
1952 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1953 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1954 		sb->md_minor, sb->layout, sb->chunk_size);
1955 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1956 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1957 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1958 		sb->failed_disks, sb->spare_disks,
1959 		sb->sb_csum, (unsigned long)sb->events_lo);
1960 
1961 	printk(KERN_INFO);
1962 	for (i = 0; i < MD_SB_DISKS; i++) {
1963 		mdp_disk_t *desc;
1964 
1965 		desc = sb->disks + i;
1966 		if (desc->number || desc->major || desc->minor ||
1967 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1968 			printk("     D %2d: ", i);
1969 			print_desc(desc);
1970 		}
1971 	}
1972 	printk(KERN_INFO "md:     THIS: ");
1973 	print_desc(&sb->this_disk);
1974 }
1975 
1976 static void print_sb_1(struct mdp_superblock_1 *sb)
1977 {
1978 	__u8 *uuid;
1979 
1980 	uuid = sb->set_uuid;
1981 	printk(KERN_INFO
1982 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
1983 	       "md:    Name: \"%s\" CT:%llu\n",
1984 		le32_to_cpu(sb->major_version),
1985 		le32_to_cpu(sb->feature_map),
1986 		uuid,
1987 		sb->set_name,
1988 		(unsigned long long)le64_to_cpu(sb->ctime)
1989 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1990 
1991 	uuid = sb->device_uuid;
1992 	printk(KERN_INFO
1993 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1994 			" RO:%llu\n"
1995 	       "md:     Dev:%08x UUID: %pU\n"
1996 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1997 	       "md:         (MaxDev:%u) \n",
1998 		le32_to_cpu(sb->level),
1999 		(unsigned long long)le64_to_cpu(sb->size),
2000 		le32_to_cpu(sb->raid_disks),
2001 		le32_to_cpu(sb->layout),
2002 		le32_to_cpu(sb->chunksize),
2003 		(unsigned long long)le64_to_cpu(sb->data_offset),
2004 		(unsigned long long)le64_to_cpu(sb->data_size),
2005 		(unsigned long long)le64_to_cpu(sb->super_offset),
2006 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2007 		le32_to_cpu(sb->dev_number),
2008 		uuid,
2009 		sb->devflags,
2010 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2011 		(unsigned long long)le64_to_cpu(sb->events),
2012 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2013 		le32_to_cpu(sb->sb_csum),
2014 		le32_to_cpu(sb->max_dev)
2015 		);
2016 }
2017 
2018 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2019 {
2020 	char b[BDEVNAME_SIZE];
2021 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2022 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2023 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2024 	        rdev->desc_nr);
2025 	if (rdev->sb_loaded) {
2026 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2027 		switch (major_version) {
2028 		case 0:
2029 			print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2030 			break;
2031 		case 1:
2032 			print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2033 			break;
2034 		}
2035 	} else
2036 		printk(KERN_INFO "md: no rdev superblock!\n");
2037 }
2038 
2039 static void md_print_devices(void)
2040 {
2041 	struct list_head *tmp;
2042 	mdk_rdev_t *rdev;
2043 	mddev_t *mddev;
2044 	char b[BDEVNAME_SIZE];
2045 
2046 	printk("\n");
2047 	printk("md:	**********************************\n");
2048 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2049 	printk("md:	**********************************\n");
2050 	for_each_mddev(mddev, tmp) {
2051 
2052 		if (mddev->bitmap)
2053 			bitmap_print_sb(mddev->bitmap);
2054 		else
2055 			printk("%s: ", mdname(mddev));
2056 		list_for_each_entry(rdev, &mddev->disks, same_set)
2057 			printk("<%s>", bdevname(rdev->bdev,b));
2058 		printk("\n");
2059 
2060 		list_for_each_entry(rdev, &mddev->disks, same_set)
2061 			print_rdev(rdev, mddev->major_version);
2062 	}
2063 	printk("md:	**********************************\n");
2064 	printk("\n");
2065 }
2066 
2067 
2068 static void sync_sbs(mddev_t * mddev, int nospares)
2069 {
2070 	/* Update each superblock (in-memory image), but
2071 	 * if we are allowed to, skip spares which already
2072 	 * have the right event counter, or have one earlier
2073 	 * (which would mean they aren't being marked as dirty
2074 	 * with the rest of the array)
2075 	 */
2076 	mdk_rdev_t *rdev;
2077 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2078 		if (rdev->sb_events == mddev->events ||
2079 		    (nospares &&
2080 		     rdev->raid_disk < 0 &&
2081 		     rdev->sb_events+1 == mddev->events)) {
2082 			/* Don't update this superblock */
2083 			rdev->sb_loaded = 2;
2084 		} else {
2085 			super_types[mddev->major_version].
2086 				sync_super(mddev, rdev);
2087 			rdev->sb_loaded = 1;
2088 		}
2089 	}
2090 }
2091 
2092 static void md_update_sb(mddev_t * mddev, int force_change)
2093 {
2094 	mdk_rdev_t *rdev;
2095 	int sync_req;
2096 	int nospares = 0;
2097 
2098 repeat:
2099 	/* First make sure individual recovery_offsets are correct */
2100 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2101 		if (rdev->raid_disk >= 0 &&
2102 		    mddev->delta_disks >= 0 &&
2103 		    !test_bit(In_sync, &rdev->flags) &&
2104 		    mddev->curr_resync_completed > rdev->recovery_offset)
2105 				rdev->recovery_offset = mddev->curr_resync_completed;
2106 
2107 	}
2108 	if (!mddev->persistent) {
2109 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2110 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2111 		wake_up(&mddev->sb_wait);
2112 		return;
2113 	}
2114 
2115 	spin_lock_irq(&mddev->write_lock);
2116 
2117 	mddev->utime = get_seconds();
2118 
2119 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2120 		force_change = 1;
2121 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2122 		/* just a clean<-> dirty transition, possibly leave spares alone,
2123 		 * though if events isn't the right even/odd, we will have to do
2124 		 * spares after all
2125 		 */
2126 		nospares = 1;
2127 	if (force_change)
2128 		nospares = 0;
2129 	if (mddev->degraded)
2130 		/* If the array is degraded, then skipping spares is both
2131 		 * dangerous and fairly pointless.
2132 		 * Dangerous because a device that was removed from the array
2133 		 * might have a event_count that still looks up-to-date,
2134 		 * so it can be re-added without a resync.
2135 		 * Pointless because if there are any spares to skip,
2136 		 * then a recovery will happen and soon that array won't
2137 		 * be degraded any more and the spare can go back to sleep then.
2138 		 */
2139 		nospares = 0;
2140 
2141 	sync_req = mddev->in_sync;
2142 
2143 	/* If this is just a dirty<->clean transition, and the array is clean
2144 	 * and 'events' is odd, we can roll back to the previous clean state */
2145 	if (nospares
2146 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2147 	    && mddev->can_decrease_events
2148 	    && mddev->events != 1) {
2149 		mddev->events--;
2150 		mddev->can_decrease_events = 0;
2151 	} else {
2152 		/* otherwise we have to go forward and ... */
2153 		mddev->events ++;
2154 		mddev->can_decrease_events = nospares;
2155 	}
2156 
2157 	if (!mddev->events) {
2158 		/*
2159 		 * oops, this 64-bit counter should never wrap.
2160 		 * Either we are in around ~1 trillion A.C., assuming
2161 		 * 1 reboot per second, or we have a bug:
2162 		 */
2163 		MD_BUG();
2164 		mddev->events --;
2165 	}
2166 	sync_sbs(mddev, nospares);
2167 	spin_unlock_irq(&mddev->write_lock);
2168 
2169 	dprintk(KERN_INFO
2170 		"md: updating %s RAID superblock on device (in sync %d)\n",
2171 		mdname(mddev),mddev->in_sync);
2172 
2173 	bitmap_update_sb(mddev->bitmap);
2174 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2175 		char b[BDEVNAME_SIZE];
2176 		dprintk(KERN_INFO "md: ");
2177 		if (rdev->sb_loaded != 1)
2178 			continue; /* no noise on spare devices */
2179 		if (test_bit(Faulty, &rdev->flags))
2180 			dprintk("(skipping faulty ");
2181 
2182 		dprintk("%s ", bdevname(rdev->bdev,b));
2183 		if (!test_bit(Faulty, &rdev->flags)) {
2184 			md_super_write(mddev,rdev,
2185 				       rdev->sb_start, rdev->sb_size,
2186 				       rdev->sb_page);
2187 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2188 				bdevname(rdev->bdev,b),
2189 				(unsigned long long)rdev->sb_start);
2190 			rdev->sb_events = mddev->events;
2191 
2192 		} else
2193 			dprintk(")\n");
2194 		if (mddev->level == LEVEL_MULTIPATH)
2195 			/* only need to write one superblock... */
2196 			break;
2197 	}
2198 	md_super_wait(mddev);
2199 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2200 
2201 	spin_lock_irq(&mddev->write_lock);
2202 	if (mddev->in_sync != sync_req ||
2203 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2204 		/* have to write it out again */
2205 		spin_unlock_irq(&mddev->write_lock);
2206 		goto repeat;
2207 	}
2208 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2209 	spin_unlock_irq(&mddev->write_lock);
2210 	wake_up(&mddev->sb_wait);
2211 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2212 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2213 
2214 }
2215 
2216 /* words written to sysfs files may, or may not, be \n terminated.
2217  * We want to accept with case. For this we use cmd_match.
2218  */
2219 static int cmd_match(const char *cmd, const char *str)
2220 {
2221 	/* See if cmd, written into a sysfs file, matches
2222 	 * str.  They must either be the same, or cmd can
2223 	 * have a trailing newline
2224 	 */
2225 	while (*cmd && *str && *cmd == *str) {
2226 		cmd++;
2227 		str++;
2228 	}
2229 	if (*cmd == '\n')
2230 		cmd++;
2231 	if (*str || *cmd)
2232 		return 0;
2233 	return 1;
2234 }
2235 
2236 struct rdev_sysfs_entry {
2237 	struct attribute attr;
2238 	ssize_t (*show)(mdk_rdev_t *, char *);
2239 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2240 };
2241 
2242 static ssize_t
2243 state_show(mdk_rdev_t *rdev, char *page)
2244 {
2245 	char *sep = "";
2246 	size_t len = 0;
2247 
2248 	if (test_bit(Faulty, &rdev->flags)) {
2249 		len+= sprintf(page+len, "%sfaulty",sep);
2250 		sep = ",";
2251 	}
2252 	if (test_bit(In_sync, &rdev->flags)) {
2253 		len += sprintf(page+len, "%sin_sync",sep);
2254 		sep = ",";
2255 	}
2256 	if (test_bit(WriteMostly, &rdev->flags)) {
2257 		len += sprintf(page+len, "%swrite_mostly",sep);
2258 		sep = ",";
2259 	}
2260 	if (test_bit(Blocked, &rdev->flags)) {
2261 		len += sprintf(page+len, "%sblocked", sep);
2262 		sep = ",";
2263 	}
2264 	if (!test_bit(Faulty, &rdev->flags) &&
2265 	    !test_bit(In_sync, &rdev->flags)) {
2266 		len += sprintf(page+len, "%sspare", sep);
2267 		sep = ",";
2268 	}
2269 	return len+sprintf(page+len, "\n");
2270 }
2271 
2272 static ssize_t
2273 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2274 {
2275 	/* can write
2276 	 *  faulty  - simulates and error
2277 	 *  remove  - disconnects the device
2278 	 *  writemostly - sets write_mostly
2279 	 *  -writemostly - clears write_mostly
2280 	 *  blocked - sets the Blocked flag
2281 	 *  -blocked - clears the Blocked flag
2282 	 *  insync - sets Insync providing device isn't active
2283 	 */
2284 	int err = -EINVAL;
2285 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2286 		md_error(rdev->mddev, rdev);
2287 		err = 0;
2288 	} else if (cmd_match(buf, "remove")) {
2289 		if (rdev->raid_disk >= 0)
2290 			err = -EBUSY;
2291 		else {
2292 			mddev_t *mddev = rdev->mddev;
2293 			kick_rdev_from_array(rdev);
2294 			if (mddev->pers)
2295 				md_update_sb(mddev, 1);
2296 			md_new_event(mddev);
2297 			err = 0;
2298 		}
2299 	} else if (cmd_match(buf, "writemostly")) {
2300 		set_bit(WriteMostly, &rdev->flags);
2301 		err = 0;
2302 	} else if (cmd_match(buf, "-writemostly")) {
2303 		clear_bit(WriteMostly, &rdev->flags);
2304 		err = 0;
2305 	} else if (cmd_match(buf, "blocked")) {
2306 		set_bit(Blocked, &rdev->flags);
2307 		err = 0;
2308 	} else if (cmd_match(buf, "-blocked")) {
2309 		clear_bit(Blocked, &rdev->flags);
2310 		wake_up(&rdev->blocked_wait);
2311 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2312 		md_wakeup_thread(rdev->mddev->thread);
2313 
2314 		err = 0;
2315 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2316 		set_bit(In_sync, &rdev->flags);
2317 		err = 0;
2318 	}
2319 	if (!err)
2320 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2321 	return err ? err : len;
2322 }
2323 static struct rdev_sysfs_entry rdev_state =
2324 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2325 
2326 static ssize_t
2327 errors_show(mdk_rdev_t *rdev, char *page)
2328 {
2329 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2330 }
2331 
2332 static ssize_t
2333 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2334 {
2335 	char *e;
2336 	unsigned long n = simple_strtoul(buf, &e, 10);
2337 	if (*buf && (*e == 0 || *e == '\n')) {
2338 		atomic_set(&rdev->corrected_errors, n);
2339 		return len;
2340 	}
2341 	return -EINVAL;
2342 }
2343 static struct rdev_sysfs_entry rdev_errors =
2344 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2345 
2346 static ssize_t
2347 slot_show(mdk_rdev_t *rdev, char *page)
2348 {
2349 	if (rdev->raid_disk < 0)
2350 		return sprintf(page, "none\n");
2351 	else
2352 		return sprintf(page, "%d\n", rdev->raid_disk);
2353 }
2354 
2355 static ssize_t
2356 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2357 {
2358 	char *e;
2359 	int err;
2360 	char nm[20];
2361 	int slot = simple_strtoul(buf, &e, 10);
2362 	if (strncmp(buf, "none", 4)==0)
2363 		slot = -1;
2364 	else if (e==buf || (*e && *e!= '\n'))
2365 		return -EINVAL;
2366 	if (rdev->mddev->pers && slot == -1) {
2367 		/* Setting 'slot' on an active array requires also
2368 		 * updating the 'rd%d' link, and communicating
2369 		 * with the personality with ->hot_*_disk.
2370 		 * For now we only support removing
2371 		 * failed/spare devices.  This normally happens automatically,
2372 		 * but not when the metadata is externally managed.
2373 		 */
2374 		if (rdev->raid_disk == -1)
2375 			return -EEXIST;
2376 		/* personality does all needed checks */
2377 		if (rdev->mddev->pers->hot_add_disk == NULL)
2378 			return -EINVAL;
2379 		err = rdev->mddev->pers->
2380 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
2381 		if (err)
2382 			return err;
2383 		sprintf(nm, "rd%d", rdev->raid_disk);
2384 		sysfs_remove_link(&rdev->mddev->kobj, nm);
2385 		rdev->raid_disk = -1;
2386 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2387 		md_wakeup_thread(rdev->mddev->thread);
2388 	} else if (rdev->mddev->pers) {
2389 		mdk_rdev_t *rdev2;
2390 		/* Activating a spare .. or possibly reactivating
2391 		 * if we ever get bitmaps working here.
2392 		 */
2393 
2394 		if (rdev->raid_disk != -1)
2395 			return -EBUSY;
2396 
2397 		if (rdev->mddev->pers->hot_add_disk == NULL)
2398 			return -EINVAL;
2399 
2400 		list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2401 			if (rdev2->raid_disk == slot)
2402 				return -EEXIST;
2403 
2404 		rdev->raid_disk = slot;
2405 		if (test_bit(In_sync, &rdev->flags))
2406 			rdev->saved_raid_disk = slot;
2407 		else
2408 			rdev->saved_raid_disk = -1;
2409 		err = rdev->mddev->pers->
2410 			hot_add_disk(rdev->mddev, rdev);
2411 		if (err) {
2412 			rdev->raid_disk = -1;
2413 			return err;
2414 		} else
2415 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2416 		sprintf(nm, "rd%d", rdev->raid_disk);
2417 		if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2418 			/* failure here is OK */;
2419 		/* don't wakeup anyone, leave that to userspace. */
2420 	} else {
2421 		if (slot >= rdev->mddev->raid_disks)
2422 			return -ENOSPC;
2423 		rdev->raid_disk = slot;
2424 		/* assume it is working */
2425 		clear_bit(Faulty, &rdev->flags);
2426 		clear_bit(WriteMostly, &rdev->flags);
2427 		set_bit(In_sync, &rdev->flags);
2428 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2429 	}
2430 	return len;
2431 }
2432 
2433 
2434 static struct rdev_sysfs_entry rdev_slot =
2435 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2436 
2437 static ssize_t
2438 offset_show(mdk_rdev_t *rdev, char *page)
2439 {
2440 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2441 }
2442 
2443 static ssize_t
2444 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2445 {
2446 	char *e;
2447 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2448 	if (e==buf || (*e && *e != '\n'))
2449 		return -EINVAL;
2450 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2451 		return -EBUSY;
2452 	if (rdev->sectors && rdev->mddev->external)
2453 		/* Must set offset before size, so overlap checks
2454 		 * can be sane */
2455 		return -EBUSY;
2456 	rdev->data_offset = offset;
2457 	return len;
2458 }
2459 
2460 static struct rdev_sysfs_entry rdev_offset =
2461 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2462 
2463 static ssize_t
2464 rdev_size_show(mdk_rdev_t *rdev, char *page)
2465 {
2466 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2467 }
2468 
2469 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2470 {
2471 	/* check if two start/length pairs overlap */
2472 	if (s1+l1 <= s2)
2473 		return 0;
2474 	if (s2+l2 <= s1)
2475 		return 0;
2476 	return 1;
2477 }
2478 
2479 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2480 {
2481 	unsigned long long blocks;
2482 	sector_t new;
2483 
2484 	if (strict_strtoull(buf, 10, &blocks) < 0)
2485 		return -EINVAL;
2486 
2487 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2488 		return -EINVAL; /* sector conversion overflow */
2489 
2490 	new = blocks * 2;
2491 	if (new != blocks * 2)
2492 		return -EINVAL; /* unsigned long long to sector_t overflow */
2493 
2494 	*sectors = new;
2495 	return 0;
2496 }
2497 
2498 static ssize_t
2499 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2500 {
2501 	mddev_t *my_mddev = rdev->mddev;
2502 	sector_t oldsectors = rdev->sectors;
2503 	sector_t sectors;
2504 
2505 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2506 		return -EINVAL;
2507 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2508 		if (my_mddev->persistent) {
2509 			sectors = super_types[my_mddev->major_version].
2510 				rdev_size_change(rdev, sectors);
2511 			if (!sectors)
2512 				return -EBUSY;
2513 		} else if (!sectors)
2514 			sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2515 				rdev->data_offset;
2516 	}
2517 	if (sectors < my_mddev->dev_sectors)
2518 		return -EINVAL; /* component must fit device */
2519 
2520 	rdev->sectors = sectors;
2521 	if (sectors > oldsectors && my_mddev->external) {
2522 		/* need to check that all other rdevs with the same ->bdev
2523 		 * do not overlap.  We need to unlock the mddev to avoid
2524 		 * a deadlock.  We have already changed rdev->sectors, and if
2525 		 * we have to change it back, we will have the lock again.
2526 		 */
2527 		mddev_t *mddev;
2528 		int overlap = 0;
2529 		struct list_head *tmp;
2530 
2531 		mddev_unlock(my_mddev);
2532 		for_each_mddev(mddev, tmp) {
2533 			mdk_rdev_t *rdev2;
2534 
2535 			mddev_lock(mddev);
2536 			list_for_each_entry(rdev2, &mddev->disks, same_set)
2537 				if (test_bit(AllReserved, &rdev2->flags) ||
2538 				    (rdev->bdev == rdev2->bdev &&
2539 				     rdev != rdev2 &&
2540 				     overlaps(rdev->data_offset, rdev->sectors,
2541 					      rdev2->data_offset,
2542 					      rdev2->sectors))) {
2543 					overlap = 1;
2544 					break;
2545 				}
2546 			mddev_unlock(mddev);
2547 			if (overlap) {
2548 				mddev_put(mddev);
2549 				break;
2550 			}
2551 		}
2552 		mddev_lock(my_mddev);
2553 		if (overlap) {
2554 			/* Someone else could have slipped in a size
2555 			 * change here, but doing so is just silly.
2556 			 * We put oldsectors back because we *know* it is
2557 			 * safe, and trust userspace not to race with
2558 			 * itself
2559 			 */
2560 			rdev->sectors = oldsectors;
2561 			return -EBUSY;
2562 		}
2563 	}
2564 	return len;
2565 }
2566 
2567 static struct rdev_sysfs_entry rdev_size =
2568 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2569 
2570 
2571 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2572 {
2573 	unsigned long long recovery_start = rdev->recovery_offset;
2574 
2575 	if (test_bit(In_sync, &rdev->flags) ||
2576 	    recovery_start == MaxSector)
2577 		return sprintf(page, "none\n");
2578 
2579 	return sprintf(page, "%llu\n", recovery_start);
2580 }
2581 
2582 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2583 {
2584 	unsigned long long recovery_start;
2585 
2586 	if (cmd_match(buf, "none"))
2587 		recovery_start = MaxSector;
2588 	else if (strict_strtoull(buf, 10, &recovery_start))
2589 		return -EINVAL;
2590 
2591 	if (rdev->mddev->pers &&
2592 	    rdev->raid_disk >= 0)
2593 		return -EBUSY;
2594 
2595 	rdev->recovery_offset = recovery_start;
2596 	if (recovery_start == MaxSector)
2597 		set_bit(In_sync, &rdev->flags);
2598 	else
2599 		clear_bit(In_sync, &rdev->flags);
2600 	return len;
2601 }
2602 
2603 static struct rdev_sysfs_entry rdev_recovery_start =
2604 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2605 
2606 static struct attribute *rdev_default_attrs[] = {
2607 	&rdev_state.attr,
2608 	&rdev_errors.attr,
2609 	&rdev_slot.attr,
2610 	&rdev_offset.attr,
2611 	&rdev_size.attr,
2612 	&rdev_recovery_start.attr,
2613 	NULL,
2614 };
2615 static ssize_t
2616 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2617 {
2618 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2619 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2620 	mddev_t *mddev = rdev->mddev;
2621 	ssize_t rv;
2622 
2623 	if (!entry->show)
2624 		return -EIO;
2625 
2626 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2627 	if (!rv) {
2628 		if (rdev->mddev == NULL)
2629 			rv = -EBUSY;
2630 		else
2631 			rv = entry->show(rdev, page);
2632 		mddev_unlock(mddev);
2633 	}
2634 	return rv;
2635 }
2636 
2637 static ssize_t
2638 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2639 	      const char *page, size_t length)
2640 {
2641 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2642 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2643 	ssize_t rv;
2644 	mddev_t *mddev = rdev->mddev;
2645 
2646 	if (!entry->store)
2647 		return -EIO;
2648 	if (!capable(CAP_SYS_ADMIN))
2649 		return -EACCES;
2650 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2651 	if (!rv) {
2652 		if (rdev->mddev == NULL)
2653 			rv = -EBUSY;
2654 		else
2655 			rv = entry->store(rdev, page, length);
2656 		mddev_unlock(mddev);
2657 	}
2658 	return rv;
2659 }
2660 
2661 static void rdev_free(struct kobject *ko)
2662 {
2663 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2664 	kfree(rdev);
2665 }
2666 static const struct sysfs_ops rdev_sysfs_ops = {
2667 	.show		= rdev_attr_show,
2668 	.store		= rdev_attr_store,
2669 };
2670 static struct kobj_type rdev_ktype = {
2671 	.release	= rdev_free,
2672 	.sysfs_ops	= &rdev_sysfs_ops,
2673 	.default_attrs	= rdev_default_attrs,
2674 };
2675 
2676 void md_rdev_init(mdk_rdev_t *rdev)
2677 {
2678 	rdev->desc_nr = -1;
2679 	rdev->saved_raid_disk = -1;
2680 	rdev->raid_disk = -1;
2681 	rdev->flags = 0;
2682 	rdev->data_offset = 0;
2683 	rdev->sb_events = 0;
2684 	rdev->last_read_error.tv_sec  = 0;
2685 	rdev->last_read_error.tv_nsec = 0;
2686 	atomic_set(&rdev->nr_pending, 0);
2687 	atomic_set(&rdev->read_errors, 0);
2688 	atomic_set(&rdev->corrected_errors, 0);
2689 
2690 	INIT_LIST_HEAD(&rdev->same_set);
2691 	init_waitqueue_head(&rdev->blocked_wait);
2692 }
2693 EXPORT_SYMBOL_GPL(md_rdev_init);
2694 /*
2695  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2696  *
2697  * mark the device faulty if:
2698  *
2699  *   - the device is nonexistent (zero size)
2700  *   - the device has no valid superblock
2701  *
2702  * a faulty rdev _never_ has rdev->sb set.
2703  */
2704 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2705 {
2706 	char b[BDEVNAME_SIZE];
2707 	int err;
2708 	mdk_rdev_t *rdev;
2709 	sector_t size;
2710 
2711 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2712 	if (!rdev) {
2713 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2714 		return ERR_PTR(-ENOMEM);
2715 	}
2716 
2717 	md_rdev_init(rdev);
2718 	if ((err = alloc_disk_sb(rdev)))
2719 		goto abort_free;
2720 
2721 	err = lock_rdev(rdev, newdev, super_format == -2);
2722 	if (err)
2723 		goto abort_free;
2724 
2725 	kobject_init(&rdev->kobj, &rdev_ktype);
2726 
2727 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2728 	if (!size) {
2729 		printk(KERN_WARNING
2730 			"md: %s has zero or unknown size, marking faulty!\n",
2731 			bdevname(rdev->bdev,b));
2732 		err = -EINVAL;
2733 		goto abort_free;
2734 	}
2735 
2736 	if (super_format >= 0) {
2737 		err = super_types[super_format].
2738 			load_super(rdev, NULL, super_minor);
2739 		if (err == -EINVAL) {
2740 			printk(KERN_WARNING
2741 				"md: %s does not have a valid v%d.%d "
2742 			       "superblock, not importing!\n",
2743 				bdevname(rdev->bdev,b),
2744 			       super_format, super_minor);
2745 			goto abort_free;
2746 		}
2747 		if (err < 0) {
2748 			printk(KERN_WARNING
2749 				"md: could not read %s's sb, not importing!\n",
2750 				bdevname(rdev->bdev,b));
2751 			goto abort_free;
2752 		}
2753 	}
2754 
2755 	return rdev;
2756 
2757 abort_free:
2758 	if (rdev->sb_page) {
2759 		if (rdev->bdev)
2760 			unlock_rdev(rdev);
2761 		free_disk_sb(rdev);
2762 	}
2763 	kfree(rdev);
2764 	return ERR_PTR(err);
2765 }
2766 
2767 /*
2768  * Check a full RAID array for plausibility
2769  */
2770 
2771 
2772 static void analyze_sbs(mddev_t * mddev)
2773 {
2774 	int i;
2775 	mdk_rdev_t *rdev, *freshest, *tmp;
2776 	char b[BDEVNAME_SIZE];
2777 
2778 	freshest = NULL;
2779 	rdev_for_each(rdev, tmp, mddev)
2780 		switch (super_types[mddev->major_version].
2781 			load_super(rdev, freshest, mddev->minor_version)) {
2782 		case 1:
2783 			freshest = rdev;
2784 			break;
2785 		case 0:
2786 			break;
2787 		default:
2788 			printk( KERN_ERR \
2789 				"md: fatal superblock inconsistency in %s"
2790 				" -- removing from array\n",
2791 				bdevname(rdev->bdev,b));
2792 			kick_rdev_from_array(rdev);
2793 		}
2794 
2795 
2796 	super_types[mddev->major_version].
2797 		validate_super(mddev, freshest);
2798 
2799 	i = 0;
2800 	rdev_for_each(rdev, tmp, mddev) {
2801 		if (mddev->max_disks &&
2802 		    (rdev->desc_nr >= mddev->max_disks ||
2803 		     i > mddev->max_disks)) {
2804 			printk(KERN_WARNING
2805 			       "md: %s: %s: only %d devices permitted\n",
2806 			       mdname(mddev), bdevname(rdev->bdev, b),
2807 			       mddev->max_disks);
2808 			kick_rdev_from_array(rdev);
2809 			continue;
2810 		}
2811 		if (rdev != freshest)
2812 			if (super_types[mddev->major_version].
2813 			    validate_super(mddev, rdev)) {
2814 				printk(KERN_WARNING "md: kicking non-fresh %s"
2815 					" from array!\n",
2816 					bdevname(rdev->bdev,b));
2817 				kick_rdev_from_array(rdev);
2818 				continue;
2819 			}
2820 		if (mddev->level == LEVEL_MULTIPATH) {
2821 			rdev->desc_nr = i++;
2822 			rdev->raid_disk = rdev->desc_nr;
2823 			set_bit(In_sync, &rdev->flags);
2824 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2825 			rdev->raid_disk = -1;
2826 			clear_bit(In_sync, &rdev->flags);
2827 		}
2828 	}
2829 }
2830 
2831 /* Read a fixed-point number.
2832  * Numbers in sysfs attributes should be in "standard" units where
2833  * possible, so time should be in seconds.
2834  * However we internally use a a much smaller unit such as
2835  * milliseconds or jiffies.
2836  * This function takes a decimal number with a possible fractional
2837  * component, and produces an integer which is the result of
2838  * multiplying that number by 10^'scale'.
2839  * all without any floating-point arithmetic.
2840  */
2841 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2842 {
2843 	unsigned long result = 0;
2844 	long decimals = -1;
2845 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2846 		if (*cp == '.')
2847 			decimals = 0;
2848 		else if (decimals < scale) {
2849 			unsigned int value;
2850 			value = *cp - '0';
2851 			result = result * 10 + value;
2852 			if (decimals >= 0)
2853 				decimals++;
2854 		}
2855 		cp++;
2856 	}
2857 	if (*cp == '\n')
2858 		cp++;
2859 	if (*cp)
2860 		return -EINVAL;
2861 	if (decimals < 0)
2862 		decimals = 0;
2863 	while (decimals < scale) {
2864 		result *= 10;
2865 		decimals ++;
2866 	}
2867 	*res = result;
2868 	return 0;
2869 }
2870 
2871 
2872 static void md_safemode_timeout(unsigned long data);
2873 
2874 static ssize_t
2875 safe_delay_show(mddev_t *mddev, char *page)
2876 {
2877 	int msec = (mddev->safemode_delay*1000)/HZ;
2878 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2879 }
2880 static ssize_t
2881 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2882 {
2883 	unsigned long msec;
2884 
2885 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2886 		return -EINVAL;
2887 	if (msec == 0)
2888 		mddev->safemode_delay = 0;
2889 	else {
2890 		unsigned long old_delay = mddev->safemode_delay;
2891 		mddev->safemode_delay = (msec*HZ)/1000;
2892 		if (mddev->safemode_delay == 0)
2893 			mddev->safemode_delay = 1;
2894 		if (mddev->safemode_delay < old_delay)
2895 			md_safemode_timeout((unsigned long)mddev);
2896 	}
2897 	return len;
2898 }
2899 static struct md_sysfs_entry md_safe_delay =
2900 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2901 
2902 static ssize_t
2903 level_show(mddev_t *mddev, char *page)
2904 {
2905 	struct mdk_personality *p = mddev->pers;
2906 	if (p)
2907 		return sprintf(page, "%s\n", p->name);
2908 	else if (mddev->clevel[0])
2909 		return sprintf(page, "%s\n", mddev->clevel);
2910 	else if (mddev->level != LEVEL_NONE)
2911 		return sprintf(page, "%d\n", mddev->level);
2912 	else
2913 		return 0;
2914 }
2915 
2916 static ssize_t
2917 level_store(mddev_t *mddev, const char *buf, size_t len)
2918 {
2919 	char clevel[16];
2920 	ssize_t rv = len;
2921 	struct mdk_personality *pers;
2922 	long level;
2923 	void *priv;
2924 	mdk_rdev_t *rdev;
2925 
2926 	if (mddev->pers == NULL) {
2927 		if (len == 0)
2928 			return 0;
2929 		if (len >= sizeof(mddev->clevel))
2930 			return -ENOSPC;
2931 		strncpy(mddev->clevel, buf, len);
2932 		if (mddev->clevel[len-1] == '\n')
2933 			len--;
2934 		mddev->clevel[len] = 0;
2935 		mddev->level = LEVEL_NONE;
2936 		return rv;
2937 	}
2938 
2939 	/* request to change the personality.  Need to ensure:
2940 	 *  - array is not engaged in resync/recovery/reshape
2941 	 *  - old personality can be suspended
2942 	 *  - new personality will access other array.
2943 	 */
2944 
2945 	if (mddev->sync_thread ||
2946 	    mddev->reshape_position != MaxSector ||
2947 	    mddev->sysfs_active)
2948 		return -EBUSY;
2949 
2950 	if (!mddev->pers->quiesce) {
2951 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2952 		       mdname(mddev), mddev->pers->name);
2953 		return -EINVAL;
2954 	}
2955 
2956 	/* Now find the new personality */
2957 	if (len == 0 || len >= sizeof(clevel))
2958 		return -EINVAL;
2959 	strncpy(clevel, buf, len);
2960 	if (clevel[len-1] == '\n')
2961 		len--;
2962 	clevel[len] = 0;
2963 	if (strict_strtol(clevel, 10, &level))
2964 		level = LEVEL_NONE;
2965 
2966 	if (request_module("md-%s", clevel) != 0)
2967 		request_module("md-level-%s", clevel);
2968 	spin_lock(&pers_lock);
2969 	pers = find_pers(level, clevel);
2970 	if (!pers || !try_module_get(pers->owner)) {
2971 		spin_unlock(&pers_lock);
2972 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
2973 		return -EINVAL;
2974 	}
2975 	spin_unlock(&pers_lock);
2976 
2977 	if (pers == mddev->pers) {
2978 		/* Nothing to do! */
2979 		module_put(pers->owner);
2980 		return rv;
2981 	}
2982 	if (!pers->takeover) {
2983 		module_put(pers->owner);
2984 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
2985 		       mdname(mddev), clevel);
2986 		return -EINVAL;
2987 	}
2988 
2989 	list_for_each_entry(rdev, &mddev->disks, same_set)
2990 		rdev->new_raid_disk = rdev->raid_disk;
2991 
2992 	/* ->takeover must set new_* and/or delta_disks
2993 	 * if it succeeds, and may set them when it fails.
2994 	 */
2995 	priv = pers->takeover(mddev);
2996 	if (IS_ERR(priv)) {
2997 		mddev->new_level = mddev->level;
2998 		mddev->new_layout = mddev->layout;
2999 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3000 		mddev->raid_disks -= mddev->delta_disks;
3001 		mddev->delta_disks = 0;
3002 		module_put(pers->owner);
3003 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3004 		       mdname(mddev), clevel);
3005 		return PTR_ERR(priv);
3006 	}
3007 
3008 	/* Looks like we have a winner */
3009 	mddev_suspend(mddev);
3010 	mddev->pers->stop(mddev);
3011 
3012 	if (mddev->pers->sync_request == NULL &&
3013 	    pers->sync_request != NULL) {
3014 		/* need to add the md_redundancy_group */
3015 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3016 			printk(KERN_WARNING
3017 			       "md: cannot register extra attributes for %s\n",
3018 			       mdname(mddev));
3019 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3020 	}
3021 	if (mddev->pers->sync_request != NULL &&
3022 	    pers->sync_request == NULL) {
3023 		/* need to remove the md_redundancy_group */
3024 		if (mddev->to_remove == NULL)
3025 			mddev->to_remove = &md_redundancy_group;
3026 	}
3027 
3028 	if (mddev->pers->sync_request == NULL &&
3029 	    mddev->external) {
3030 		/* We are converting from a no-redundancy array
3031 		 * to a redundancy array and metadata is managed
3032 		 * externally so we need to be sure that writes
3033 		 * won't block due to a need to transition
3034 		 *      clean->dirty
3035 		 * until external management is started.
3036 		 */
3037 		mddev->in_sync = 0;
3038 		mddev->safemode_delay = 0;
3039 		mddev->safemode = 0;
3040 	}
3041 
3042 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3043 		char nm[20];
3044 		if (rdev->raid_disk < 0)
3045 			continue;
3046 		if (rdev->new_raid_disk > mddev->raid_disks)
3047 			rdev->new_raid_disk = -1;
3048 		if (rdev->new_raid_disk == rdev->raid_disk)
3049 			continue;
3050 		sprintf(nm, "rd%d", rdev->raid_disk);
3051 		sysfs_remove_link(&mddev->kobj, nm);
3052 	}
3053 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3054 		if (rdev->raid_disk < 0)
3055 			continue;
3056 		if (rdev->new_raid_disk == rdev->raid_disk)
3057 			continue;
3058 		rdev->raid_disk = rdev->new_raid_disk;
3059 		if (rdev->raid_disk < 0)
3060 			clear_bit(In_sync, &rdev->flags);
3061 		else {
3062 			char nm[20];
3063 			sprintf(nm, "rd%d", rdev->raid_disk);
3064 			if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3065 				printk("md: cannot register %s for %s after level change\n",
3066 				       nm, mdname(mddev));
3067 		}
3068 	}
3069 
3070 	module_put(mddev->pers->owner);
3071 	mddev->pers = pers;
3072 	mddev->private = priv;
3073 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3074 	mddev->level = mddev->new_level;
3075 	mddev->layout = mddev->new_layout;
3076 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3077 	mddev->delta_disks = 0;
3078 	if (mddev->pers->sync_request == NULL) {
3079 		/* this is now an array without redundancy, so
3080 		 * it must always be in_sync
3081 		 */
3082 		mddev->in_sync = 1;
3083 		del_timer_sync(&mddev->safemode_timer);
3084 	}
3085 	pers->run(mddev);
3086 	mddev_resume(mddev);
3087 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3088 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3089 	md_wakeup_thread(mddev->thread);
3090 	sysfs_notify(&mddev->kobj, NULL, "level");
3091 	md_new_event(mddev);
3092 	return rv;
3093 }
3094 
3095 static struct md_sysfs_entry md_level =
3096 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3097 
3098 
3099 static ssize_t
3100 layout_show(mddev_t *mddev, char *page)
3101 {
3102 	/* just a number, not meaningful for all levels */
3103 	if (mddev->reshape_position != MaxSector &&
3104 	    mddev->layout != mddev->new_layout)
3105 		return sprintf(page, "%d (%d)\n",
3106 			       mddev->new_layout, mddev->layout);
3107 	return sprintf(page, "%d\n", mddev->layout);
3108 }
3109 
3110 static ssize_t
3111 layout_store(mddev_t *mddev, const char *buf, size_t len)
3112 {
3113 	char *e;
3114 	unsigned long n = simple_strtoul(buf, &e, 10);
3115 
3116 	if (!*buf || (*e && *e != '\n'))
3117 		return -EINVAL;
3118 
3119 	if (mddev->pers) {
3120 		int err;
3121 		if (mddev->pers->check_reshape == NULL)
3122 			return -EBUSY;
3123 		mddev->new_layout = n;
3124 		err = mddev->pers->check_reshape(mddev);
3125 		if (err) {
3126 			mddev->new_layout = mddev->layout;
3127 			return err;
3128 		}
3129 	} else {
3130 		mddev->new_layout = n;
3131 		if (mddev->reshape_position == MaxSector)
3132 			mddev->layout = n;
3133 	}
3134 	return len;
3135 }
3136 static struct md_sysfs_entry md_layout =
3137 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3138 
3139 
3140 static ssize_t
3141 raid_disks_show(mddev_t *mddev, char *page)
3142 {
3143 	if (mddev->raid_disks == 0)
3144 		return 0;
3145 	if (mddev->reshape_position != MaxSector &&
3146 	    mddev->delta_disks != 0)
3147 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3148 			       mddev->raid_disks - mddev->delta_disks);
3149 	return sprintf(page, "%d\n", mddev->raid_disks);
3150 }
3151 
3152 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3153 
3154 static ssize_t
3155 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3156 {
3157 	char *e;
3158 	int rv = 0;
3159 	unsigned long n = simple_strtoul(buf, &e, 10);
3160 
3161 	if (!*buf || (*e && *e != '\n'))
3162 		return -EINVAL;
3163 
3164 	if (mddev->pers)
3165 		rv = update_raid_disks(mddev, n);
3166 	else if (mddev->reshape_position != MaxSector) {
3167 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3168 		mddev->delta_disks = n - olddisks;
3169 		mddev->raid_disks = n;
3170 	} else
3171 		mddev->raid_disks = n;
3172 	return rv ? rv : len;
3173 }
3174 static struct md_sysfs_entry md_raid_disks =
3175 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3176 
3177 static ssize_t
3178 chunk_size_show(mddev_t *mddev, char *page)
3179 {
3180 	if (mddev->reshape_position != MaxSector &&
3181 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3182 		return sprintf(page, "%d (%d)\n",
3183 			       mddev->new_chunk_sectors << 9,
3184 			       mddev->chunk_sectors << 9);
3185 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3186 }
3187 
3188 static ssize_t
3189 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3190 {
3191 	char *e;
3192 	unsigned long n = simple_strtoul(buf, &e, 10);
3193 
3194 	if (!*buf || (*e && *e != '\n'))
3195 		return -EINVAL;
3196 
3197 	if (mddev->pers) {
3198 		int err;
3199 		if (mddev->pers->check_reshape == NULL)
3200 			return -EBUSY;
3201 		mddev->new_chunk_sectors = n >> 9;
3202 		err = mddev->pers->check_reshape(mddev);
3203 		if (err) {
3204 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3205 			return err;
3206 		}
3207 	} else {
3208 		mddev->new_chunk_sectors = n >> 9;
3209 		if (mddev->reshape_position == MaxSector)
3210 			mddev->chunk_sectors = n >> 9;
3211 	}
3212 	return len;
3213 }
3214 static struct md_sysfs_entry md_chunk_size =
3215 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3216 
3217 static ssize_t
3218 resync_start_show(mddev_t *mddev, char *page)
3219 {
3220 	if (mddev->recovery_cp == MaxSector)
3221 		return sprintf(page, "none\n");
3222 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3223 }
3224 
3225 static ssize_t
3226 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3227 {
3228 	char *e;
3229 	unsigned long long n = simple_strtoull(buf, &e, 10);
3230 
3231 	if (mddev->pers)
3232 		return -EBUSY;
3233 	if (cmd_match(buf, "none"))
3234 		n = MaxSector;
3235 	else if (!*buf || (*e && *e != '\n'))
3236 		return -EINVAL;
3237 
3238 	mddev->recovery_cp = n;
3239 	return len;
3240 }
3241 static struct md_sysfs_entry md_resync_start =
3242 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3243 
3244 /*
3245  * The array state can be:
3246  *
3247  * clear
3248  *     No devices, no size, no level
3249  *     Equivalent to STOP_ARRAY ioctl
3250  * inactive
3251  *     May have some settings, but array is not active
3252  *        all IO results in error
3253  *     When written, doesn't tear down array, but just stops it
3254  * suspended (not supported yet)
3255  *     All IO requests will block. The array can be reconfigured.
3256  *     Writing this, if accepted, will block until array is quiescent
3257  * readonly
3258  *     no resync can happen.  no superblocks get written.
3259  *     write requests fail
3260  * read-auto
3261  *     like readonly, but behaves like 'clean' on a write request.
3262  *
3263  * clean - no pending writes, but otherwise active.
3264  *     When written to inactive array, starts without resync
3265  *     If a write request arrives then
3266  *       if metadata is known, mark 'dirty' and switch to 'active'.
3267  *       if not known, block and switch to write-pending
3268  *     If written to an active array that has pending writes, then fails.
3269  * active
3270  *     fully active: IO and resync can be happening.
3271  *     When written to inactive array, starts with resync
3272  *
3273  * write-pending
3274  *     clean, but writes are blocked waiting for 'active' to be written.
3275  *
3276  * active-idle
3277  *     like active, but no writes have been seen for a while (100msec).
3278  *
3279  */
3280 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3281 		   write_pending, active_idle, bad_word};
3282 static char *array_states[] = {
3283 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3284 	"write-pending", "active-idle", NULL };
3285 
3286 static int match_word(const char *word, char **list)
3287 {
3288 	int n;
3289 	for (n=0; list[n]; n++)
3290 		if (cmd_match(word, list[n]))
3291 			break;
3292 	return n;
3293 }
3294 
3295 static ssize_t
3296 array_state_show(mddev_t *mddev, char *page)
3297 {
3298 	enum array_state st = inactive;
3299 
3300 	if (mddev->pers)
3301 		switch(mddev->ro) {
3302 		case 1:
3303 			st = readonly;
3304 			break;
3305 		case 2:
3306 			st = read_auto;
3307 			break;
3308 		case 0:
3309 			if (mddev->in_sync)
3310 				st = clean;
3311 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3312 				st = write_pending;
3313 			else if (mddev->safemode)
3314 				st = active_idle;
3315 			else
3316 				st = active;
3317 		}
3318 	else {
3319 		if (list_empty(&mddev->disks) &&
3320 		    mddev->raid_disks == 0 &&
3321 		    mddev->dev_sectors == 0)
3322 			st = clear;
3323 		else
3324 			st = inactive;
3325 	}
3326 	return sprintf(page, "%s\n", array_states[st]);
3327 }
3328 
3329 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3330 static int md_set_readonly(mddev_t * mddev, int is_open);
3331 static int do_md_run(mddev_t * mddev);
3332 static int restart_array(mddev_t *mddev);
3333 
3334 static ssize_t
3335 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3336 {
3337 	int err = -EINVAL;
3338 	enum array_state st = match_word(buf, array_states);
3339 	switch(st) {
3340 	case bad_word:
3341 		break;
3342 	case clear:
3343 		/* stopping an active array */
3344 		if (atomic_read(&mddev->openers) > 0)
3345 			return -EBUSY;
3346 		err = do_md_stop(mddev, 0, 0);
3347 		break;
3348 	case inactive:
3349 		/* stopping an active array */
3350 		if (mddev->pers) {
3351 			if (atomic_read(&mddev->openers) > 0)
3352 				return -EBUSY;
3353 			err = do_md_stop(mddev, 2, 0);
3354 		} else
3355 			err = 0; /* already inactive */
3356 		break;
3357 	case suspended:
3358 		break; /* not supported yet */
3359 	case readonly:
3360 		if (mddev->pers)
3361 			err = md_set_readonly(mddev, 0);
3362 		else {
3363 			mddev->ro = 1;
3364 			set_disk_ro(mddev->gendisk, 1);
3365 			err = do_md_run(mddev);
3366 		}
3367 		break;
3368 	case read_auto:
3369 		if (mddev->pers) {
3370 			if (mddev->ro == 0)
3371 				err = md_set_readonly(mddev, 0);
3372 			else if (mddev->ro == 1)
3373 				err = restart_array(mddev);
3374 			if (err == 0) {
3375 				mddev->ro = 2;
3376 				set_disk_ro(mddev->gendisk, 0);
3377 			}
3378 		} else {
3379 			mddev->ro = 2;
3380 			err = do_md_run(mddev);
3381 		}
3382 		break;
3383 	case clean:
3384 		if (mddev->pers) {
3385 			restart_array(mddev);
3386 			spin_lock_irq(&mddev->write_lock);
3387 			if (atomic_read(&mddev->writes_pending) == 0) {
3388 				if (mddev->in_sync == 0) {
3389 					mddev->in_sync = 1;
3390 					if (mddev->safemode == 1)
3391 						mddev->safemode = 0;
3392 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3393 				}
3394 				err = 0;
3395 			} else
3396 				err = -EBUSY;
3397 			spin_unlock_irq(&mddev->write_lock);
3398 		} else
3399 			err = -EINVAL;
3400 		break;
3401 	case active:
3402 		if (mddev->pers) {
3403 			restart_array(mddev);
3404 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3405 			wake_up(&mddev->sb_wait);
3406 			err = 0;
3407 		} else {
3408 			mddev->ro = 0;
3409 			set_disk_ro(mddev->gendisk, 0);
3410 			err = do_md_run(mddev);
3411 		}
3412 		break;
3413 	case write_pending:
3414 	case active_idle:
3415 		/* these cannot be set */
3416 		break;
3417 	}
3418 	if (err)
3419 		return err;
3420 	else {
3421 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3422 		return len;
3423 	}
3424 }
3425 static struct md_sysfs_entry md_array_state =
3426 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3427 
3428 static ssize_t
3429 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3430 	return sprintf(page, "%d\n",
3431 		       atomic_read(&mddev->max_corr_read_errors));
3432 }
3433 
3434 static ssize_t
3435 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3436 {
3437 	char *e;
3438 	unsigned long n = simple_strtoul(buf, &e, 10);
3439 
3440 	if (*buf && (*e == 0 || *e == '\n')) {
3441 		atomic_set(&mddev->max_corr_read_errors, n);
3442 		return len;
3443 	}
3444 	return -EINVAL;
3445 }
3446 
3447 static struct md_sysfs_entry max_corr_read_errors =
3448 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3449 	max_corrected_read_errors_store);
3450 
3451 static ssize_t
3452 null_show(mddev_t *mddev, char *page)
3453 {
3454 	return -EINVAL;
3455 }
3456 
3457 static ssize_t
3458 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3459 {
3460 	/* buf must be %d:%d\n? giving major and minor numbers */
3461 	/* The new device is added to the array.
3462 	 * If the array has a persistent superblock, we read the
3463 	 * superblock to initialise info and check validity.
3464 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3465 	 * which mainly checks size.
3466 	 */
3467 	char *e;
3468 	int major = simple_strtoul(buf, &e, 10);
3469 	int minor;
3470 	dev_t dev;
3471 	mdk_rdev_t *rdev;
3472 	int err;
3473 
3474 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3475 		return -EINVAL;
3476 	minor = simple_strtoul(e+1, &e, 10);
3477 	if (*e && *e != '\n')
3478 		return -EINVAL;
3479 	dev = MKDEV(major, minor);
3480 	if (major != MAJOR(dev) ||
3481 	    minor != MINOR(dev))
3482 		return -EOVERFLOW;
3483 
3484 
3485 	if (mddev->persistent) {
3486 		rdev = md_import_device(dev, mddev->major_version,
3487 					mddev->minor_version);
3488 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3489 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3490 						       mdk_rdev_t, same_set);
3491 			err = super_types[mddev->major_version]
3492 				.load_super(rdev, rdev0, mddev->minor_version);
3493 			if (err < 0)
3494 				goto out;
3495 		}
3496 	} else if (mddev->external)
3497 		rdev = md_import_device(dev, -2, -1);
3498 	else
3499 		rdev = md_import_device(dev, -1, -1);
3500 
3501 	if (IS_ERR(rdev))
3502 		return PTR_ERR(rdev);
3503 	err = bind_rdev_to_array(rdev, mddev);
3504  out:
3505 	if (err)
3506 		export_rdev(rdev);
3507 	return err ? err : len;
3508 }
3509 
3510 static struct md_sysfs_entry md_new_device =
3511 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3512 
3513 static ssize_t
3514 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3515 {
3516 	char *end;
3517 	unsigned long chunk, end_chunk;
3518 
3519 	if (!mddev->bitmap)
3520 		goto out;
3521 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3522 	while (*buf) {
3523 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3524 		if (buf == end) break;
3525 		if (*end == '-') { /* range */
3526 			buf = end + 1;
3527 			end_chunk = simple_strtoul(buf, &end, 0);
3528 			if (buf == end) break;
3529 		}
3530 		if (*end && !isspace(*end)) break;
3531 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3532 		buf = skip_spaces(end);
3533 	}
3534 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3535 out:
3536 	return len;
3537 }
3538 
3539 static struct md_sysfs_entry md_bitmap =
3540 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3541 
3542 static ssize_t
3543 size_show(mddev_t *mddev, char *page)
3544 {
3545 	return sprintf(page, "%llu\n",
3546 		(unsigned long long)mddev->dev_sectors / 2);
3547 }
3548 
3549 static int update_size(mddev_t *mddev, sector_t num_sectors);
3550 
3551 static ssize_t
3552 size_store(mddev_t *mddev, const char *buf, size_t len)
3553 {
3554 	/* If array is inactive, we can reduce the component size, but
3555 	 * not increase it (except from 0).
3556 	 * If array is active, we can try an on-line resize
3557 	 */
3558 	sector_t sectors;
3559 	int err = strict_blocks_to_sectors(buf, &sectors);
3560 
3561 	if (err < 0)
3562 		return err;
3563 	if (mddev->pers) {
3564 		err = update_size(mddev, sectors);
3565 		md_update_sb(mddev, 1);
3566 	} else {
3567 		if (mddev->dev_sectors == 0 ||
3568 		    mddev->dev_sectors > sectors)
3569 			mddev->dev_sectors = sectors;
3570 		else
3571 			err = -ENOSPC;
3572 	}
3573 	return err ? err : len;
3574 }
3575 
3576 static struct md_sysfs_entry md_size =
3577 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3578 
3579 
3580 /* Metdata version.
3581  * This is one of
3582  *   'none' for arrays with no metadata (good luck...)
3583  *   'external' for arrays with externally managed metadata,
3584  * or N.M for internally known formats
3585  */
3586 static ssize_t
3587 metadata_show(mddev_t *mddev, char *page)
3588 {
3589 	if (mddev->persistent)
3590 		return sprintf(page, "%d.%d\n",
3591 			       mddev->major_version, mddev->minor_version);
3592 	else if (mddev->external)
3593 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3594 	else
3595 		return sprintf(page, "none\n");
3596 }
3597 
3598 static ssize_t
3599 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3600 {
3601 	int major, minor;
3602 	char *e;
3603 	/* Changing the details of 'external' metadata is
3604 	 * always permitted.  Otherwise there must be
3605 	 * no devices attached to the array.
3606 	 */
3607 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3608 		;
3609 	else if (!list_empty(&mddev->disks))
3610 		return -EBUSY;
3611 
3612 	if (cmd_match(buf, "none")) {
3613 		mddev->persistent = 0;
3614 		mddev->external = 0;
3615 		mddev->major_version = 0;
3616 		mddev->minor_version = 90;
3617 		return len;
3618 	}
3619 	if (strncmp(buf, "external:", 9) == 0) {
3620 		size_t namelen = len-9;
3621 		if (namelen >= sizeof(mddev->metadata_type))
3622 			namelen = sizeof(mddev->metadata_type)-1;
3623 		strncpy(mddev->metadata_type, buf+9, namelen);
3624 		mddev->metadata_type[namelen] = 0;
3625 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3626 			mddev->metadata_type[--namelen] = 0;
3627 		mddev->persistent = 0;
3628 		mddev->external = 1;
3629 		mddev->major_version = 0;
3630 		mddev->minor_version = 90;
3631 		return len;
3632 	}
3633 	major = simple_strtoul(buf, &e, 10);
3634 	if (e==buf || *e != '.')
3635 		return -EINVAL;
3636 	buf = e+1;
3637 	minor = simple_strtoul(buf, &e, 10);
3638 	if (e==buf || (*e && *e != '\n') )
3639 		return -EINVAL;
3640 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3641 		return -ENOENT;
3642 	mddev->major_version = major;
3643 	mddev->minor_version = minor;
3644 	mddev->persistent = 1;
3645 	mddev->external = 0;
3646 	return len;
3647 }
3648 
3649 static struct md_sysfs_entry md_metadata =
3650 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3651 
3652 static ssize_t
3653 action_show(mddev_t *mddev, char *page)
3654 {
3655 	char *type = "idle";
3656 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3657 		type = "frozen";
3658 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3659 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3660 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3661 			type = "reshape";
3662 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3663 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3664 				type = "resync";
3665 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3666 				type = "check";
3667 			else
3668 				type = "repair";
3669 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3670 			type = "recover";
3671 	}
3672 	return sprintf(page, "%s\n", type);
3673 }
3674 
3675 static ssize_t
3676 action_store(mddev_t *mddev, const char *page, size_t len)
3677 {
3678 	if (!mddev->pers || !mddev->pers->sync_request)
3679 		return -EINVAL;
3680 
3681 	if (cmd_match(page, "frozen"))
3682 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3683 	else
3684 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3685 
3686 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3687 		if (mddev->sync_thread) {
3688 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3689 			md_unregister_thread(mddev->sync_thread);
3690 			mddev->sync_thread = NULL;
3691 			mddev->recovery = 0;
3692 		}
3693 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3694 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3695 		return -EBUSY;
3696 	else if (cmd_match(page, "resync"))
3697 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3698 	else if (cmd_match(page, "recover")) {
3699 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3700 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3701 	} else if (cmd_match(page, "reshape")) {
3702 		int err;
3703 		if (mddev->pers->start_reshape == NULL)
3704 			return -EINVAL;
3705 		err = mddev->pers->start_reshape(mddev);
3706 		if (err)
3707 			return err;
3708 		sysfs_notify(&mddev->kobj, NULL, "degraded");
3709 	} else {
3710 		if (cmd_match(page, "check"))
3711 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3712 		else if (!cmd_match(page, "repair"))
3713 			return -EINVAL;
3714 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3715 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3716 	}
3717 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3718 	md_wakeup_thread(mddev->thread);
3719 	sysfs_notify_dirent_safe(mddev->sysfs_action);
3720 	return len;
3721 }
3722 
3723 static ssize_t
3724 mismatch_cnt_show(mddev_t *mddev, char *page)
3725 {
3726 	return sprintf(page, "%llu\n",
3727 		       (unsigned long long) mddev->resync_mismatches);
3728 }
3729 
3730 static struct md_sysfs_entry md_scan_mode =
3731 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3732 
3733 
3734 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3735 
3736 static ssize_t
3737 sync_min_show(mddev_t *mddev, char *page)
3738 {
3739 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
3740 		       mddev->sync_speed_min ? "local": "system");
3741 }
3742 
3743 static ssize_t
3744 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3745 {
3746 	int min;
3747 	char *e;
3748 	if (strncmp(buf, "system", 6)==0) {
3749 		mddev->sync_speed_min = 0;
3750 		return len;
3751 	}
3752 	min = simple_strtoul(buf, &e, 10);
3753 	if (buf == e || (*e && *e != '\n') || min <= 0)
3754 		return -EINVAL;
3755 	mddev->sync_speed_min = min;
3756 	return len;
3757 }
3758 
3759 static struct md_sysfs_entry md_sync_min =
3760 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3761 
3762 static ssize_t
3763 sync_max_show(mddev_t *mddev, char *page)
3764 {
3765 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
3766 		       mddev->sync_speed_max ? "local": "system");
3767 }
3768 
3769 static ssize_t
3770 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3771 {
3772 	int max;
3773 	char *e;
3774 	if (strncmp(buf, "system", 6)==0) {
3775 		mddev->sync_speed_max = 0;
3776 		return len;
3777 	}
3778 	max = simple_strtoul(buf, &e, 10);
3779 	if (buf == e || (*e && *e != '\n') || max <= 0)
3780 		return -EINVAL;
3781 	mddev->sync_speed_max = max;
3782 	return len;
3783 }
3784 
3785 static struct md_sysfs_entry md_sync_max =
3786 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3787 
3788 static ssize_t
3789 degraded_show(mddev_t *mddev, char *page)
3790 {
3791 	return sprintf(page, "%d\n", mddev->degraded);
3792 }
3793 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3794 
3795 static ssize_t
3796 sync_force_parallel_show(mddev_t *mddev, char *page)
3797 {
3798 	return sprintf(page, "%d\n", mddev->parallel_resync);
3799 }
3800 
3801 static ssize_t
3802 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3803 {
3804 	long n;
3805 
3806 	if (strict_strtol(buf, 10, &n))
3807 		return -EINVAL;
3808 
3809 	if (n != 0 && n != 1)
3810 		return -EINVAL;
3811 
3812 	mddev->parallel_resync = n;
3813 
3814 	if (mddev->sync_thread)
3815 		wake_up(&resync_wait);
3816 
3817 	return len;
3818 }
3819 
3820 /* force parallel resync, even with shared block devices */
3821 static struct md_sysfs_entry md_sync_force_parallel =
3822 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3823        sync_force_parallel_show, sync_force_parallel_store);
3824 
3825 static ssize_t
3826 sync_speed_show(mddev_t *mddev, char *page)
3827 {
3828 	unsigned long resync, dt, db;
3829 	if (mddev->curr_resync == 0)
3830 		return sprintf(page, "none\n");
3831 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3832 	dt = (jiffies - mddev->resync_mark) / HZ;
3833 	if (!dt) dt++;
3834 	db = resync - mddev->resync_mark_cnt;
3835 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3836 }
3837 
3838 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3839 
3840 static ssize_t
3841 sync_completed_show(mddev_t *mddev, char *page)
3842 {
3843 	unsigned long max_sectors, resync;
3844 
3845 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3846 		return sprintf(page, "none\n");
3847 
3848 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3849 		max_sectors = mddev->resync_max_sectors;
3850 	else
3851 		max_sectors = mddev->dev_sectors;
3852 
3853 	resync = mddev->curr_resync_completed;
3854 	return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3855 }
3856 
3857 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3858 
3859 static ssize_t
3860 min_sync_show(mddev_t *mddev, char *page)
3861 {
3862 	return sprintf(page, "%llu\n",
3863 		       (unsigned long long)mddev->resync_min);
3864 }
3865 static ssize_t
3866 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3867 {
3868 	unsigned long long min;
3869 	if (strict_strtoull(buf, 10, &min))
3870 		return -EINVAL;
3871 	if (min > mddev->resync_max)
3872 		return -EINVAL;
3873 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3874 		return -EBUSY;
3875 
3876 	/* Must be a multiple of chunk_size */
3877 	if (mddev->chunk_sectors) {
3878 		sector_t temp = min;
3879 		if (sector_div(temp, mddev->chunk_sectors))
3880 			return -EINVAL;
3881 	}
3882 	mddev->resync_min = min;
3883 
3884 	return len;
3885 }
3886 
3887 static struct md_sysfs_entry md_min_sync =
3888 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3889 
3890 static ssize_t
3891 max_sync_show(mddev_t *mddev, char *page)
3892 {
3893 	if (mddev->resync_max == MaxSector)
3894 		return sprintf(page, "max\n");
3895 	else
3896 		return sprintf(page, "%llu\n",
3897 			       (unsigned long long)mddev->resync_max);
3898 }
3899 static ssize_t
3900 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3901 {
3902 	if (strncmp(buf, "max", 3) == 0)
3903 		mddev->resync_max = MaxSector;
3904 	else {
3905 		unsigned long long max;
3906 		if (strict_strtoull(buf, 10, &max))
3907 			return -EINVAL;
3908 		if (max < mddev->resync_min)
3909 			return -EINVAL;
3910 		if (max < mddev->resync_max &&
3911 		    mddev->ro == 0 &&
3912 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3913 			return -EBUSY;
3914 
3915 		/* Must be a multiple of chunk_size */
3916 		if (mddev->chunk_sectors) {
3917 			sector_t temp = max;
3918 			if (sector_div(temp, mddev->chunk_sectors))
3919 				return -EINVAL;
3920 		}
3921 		mddev->resync_max = max;
3922 	}
3923 	wake_up(&mddev->recovery_wait);
3924 	return len;
3925 }
3926 
3927 static struct md_sysfs_entry md_max_sync =
3928 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3929 
3930 static ssize_t
3931 suspend_lo_show(mddev_t *mddev, char *page)
3932 {
3933 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3934 }
3935 
3936 static ssize_t
3937 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3938 {
3939 	char *e;
3940 	unsigned long long new = simple_strtoull(buf, &e, 10);
3941 
3942 	if (mddev->pers == NULL ||
3943 	    mddev->pers->quiesce == NULL)
3944 		return -EINVAL;
3945 	if (buf == e || (*e && *e != '\n'))
3946 		return -EINVAL;
3947 	if (new >= mddev->suspend_hi ||
3948 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3949 		mddev->suspend_lo = new;
3950 		mddev->pers->quiesce(mddev, 2);
3951 		return len;
3952 	} else
3953 		return -EINVAL;
3954 }
3955 static struct md_sysfs_entry md_suspend_lo =
3956 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3957 
3958 
3959 static ssize_t
3960 suspend_hi_show(mddev_t *mddev, char *page)
3961 {
3962 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3963 }
3964 
3965 static ssize_t
3966 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3967 {
3968 	char *e;
3969 	unsigned long long new = simple_strtoull(buf, &e, 10);
3970 
3971 	if (mddev->pers == NULL ||
3972 	    mddev->pers->quiesce == NULL)
3973 		return -EINVAL;
3974 	if (buf == e || (*e && *e != '\n'))
3975 		return -EINVAL;
3976 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3977 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3978 		mddev->suspend_hi = new;
3979 		mddev->pers->quiesce(mddev, 1);
3980 		mddev->pers->quiesce(mddev, 0);
3981 		return len;
3982 	} else
3983 		return -EINVAL;
3984 }
3985 static struct md_sysfs_entry md_suspend_hi =
3986 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3987 
3988 static ssize_t
3989 reshape_position_show(mddev_t *mddev, char *page)
3990 {
3991 	if (mddev->reshape_position != MaxSector)
3992 		return sprintf(page, "%llu\n",
3993 			       (unsigned long long)mddev->reshape_position);
3994 	strcpy(page, "none\n");
3995 	return 5;
3996 }
3997 
3998 static ssize_t
3999 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4000 {
4001 	char *e;
4002 	unsigned long long new = simple_strtoull(buf, &e, 10);
4003 	if (mddev->pers)
4004 		return -EBUSY;
4005 	if (buf == e || (*e && *e != '\n'))
4006 		return -EINVAL;
4007 	mddev->reshape_position = new;
4008 	mddev->delta_disks = 0;
4009 	mddev->new_level = mddev->level;
4010 	mddev->new_layout = mddev->layout;
4011 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4012 	return len;
4013 }
4014 
4015 static struct md_sysfs_entry md_reshape_position =
4016 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4017        reshape_position_store);
4018 
4019 static ssize_t
4020 array_size_show(mddev_t *mddev, char *page)
4021 {
4022 	if (mddev->external_size)
4023 		return sprintf(page, "%llu\n",
4024 			       (unsigned long long)mddev->array_sectors/2);
4025 	else
4026 		return sprintf(page, "default\n");
4027 }
4028 
4029 static ssize_t
4030 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4031 {
4032 	sector_t sectors;
4033 
4034 	if (strncmp(buf, "default", 7) == 0) {
4035 		if (mddev->pers)
4036 			sectors = mddev->pers->size(mddev, 0, 0);
4037 		else
4038 			sectors = mddev->array_sectors;
4039 
4040 		mddev->external_size = 0;
4041 	} else {
4042 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4043 			return -EINVAL;
4044 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4045 			return -E2BIG;
4046 
4047 		mddev->external_size = 1;
4048 	}
4049 
4050 	mddev->array_sectors = sectors;
4051 	set_capacity(mddev->gendisk, mddev->array_sectors);
4052 	if (mddev->pers)
4053 		revalidate_disk(mddev->gendisk);
4054 
4055 	return len;
4056 }
4057 
4058 static struct md_sysfs_entry md_array_size =
4059 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4060        array_size_store);
4061 
4062 static struct attribute *md_default_attrs[] = {
4063 	&md_level.attr,
4064 	&md_layout.attr,
4065 	&md_raid_disks.attr,
4066 	&md_chunk_size.attr,
4067 	&md_size.attr,
4068 	&md_resync_start.attr,
4069 	&md_metadata.attr,
4070 	&md_new_device.attr,
4071 	&md_safe_delay.attr,
4072 	&md_array_state.attr,
4073 	&md_reshape_position.attr,
4074 	&md_array_size.attr,
4075 	&max_corr_read_errors.attr,
4076 	NULL,
4077 };
4078 
4079 static struct attribute *md_redundancy_attrs[] = {
4080 	&md_scan_mode.attr,
4081 	&md_mismatches.attr,
4082 	&md_sync_min.attr,
4083 	&md_sync_max.attr,
4084 	&md_sync_speed.attr,
4085 	&md_sync_force_parallel.attr,
4086 	&md_sync_completed.attr,
4087 	&md_min_sync.attr,
4088 	&md_max_sync.attr,
4089 	&md_suspend_lo.attr,
4090 	&md_suspend_hi.attr,
4091 	&md_bitmap.attr,
4092 	&md_degraded.attr,
4093 	NULL,
4094 };
4095 static struct attribute_group md_redundancy_group = {
4096 	.name = NULL,
4097 	.attrs = md_redundancy_attrs,
4098 };
4099 
4100 
4101 static ssize_t
4102 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4103 {
4104 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4105 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4106 	ssize_t rv;
4107 
4108 	if (!entry->show)
4109 		return -EIO;
4110 	rv = mddev_lock(mddev);
4111 	if (!rv) {
4112 		rv = entry->show(mddev, page);
4113 		mddev_unlock(mddev);
4114 	}
4115 	return rv;
4116 }
4117 
4118 static ssize_t
4119 md_attr_store(struct kobject *kobj, struct attribute *attr,
4120 	      const char *page, size_t length)
4121 {
4122 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4123 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4124 	ssize_t rv;
4125 
4126 	if (!entry->store)
4127 		return -EIO;
4128 	if (!capable(CAP_SYS_ADMIN))
4129 		return -EACCES;
4130 	rv = mddev_lock(mddev);
4131 	if (mddev->hold_active == UNTIL_IOCTL)
4132 		mddev->hold_active = 0;
4133 	if (!rv) {
4134 		rv = entry->store(mddev, page, length);
4135 		mddev_unlock(mddev);
4136 	}
4137 	return rv;
4138 }
4139 
4140 static void md_free(struct kobject *ko)
4141 {
4142 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
4143 
4144 	if (mddev->sysfs_state)
4145 		sysfs_put(mddev->sysfs_state);
4146 
4147 	if (mddev->gendisk) {
4148 		del_gendisk(mddev->gendisk);
4149 		put_disk(mddev->gendisk);
4150 	}
4151 	if (mddev->queue)
4152 		blk_cleanup_queue(mddev->queue);
4153 
4154 	kfree(mddev);
4155 }
4156 
4157 static const struct sysfs_ops md_sysfs_ops = {
4158 	.show	= md_attr_show,
4159 	.store	= md_attr_store,
4160 };
4161 static struct kobj_type md_ktype = {
4162 	.release	= md_free,
4163 	.sysfs_ops	= &md_sysfs_ops,
4164 	.default_attrs	= md_default_attrs,
4165 };
4166 
4167 int mdp_major = 0;
4168 
4169 static void mddev_delayed_delete(struct work_struct *ws)
4170 {
4171 	mddev_t *mddev = container_of(ws, mddev_t, del_work);
4172 
4173 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4174 	kobject_del(&mddev->kobj);
4175 	kobject_put(&mddev->kobj);
4176 }
4177 
4178 static int md_alloc(dev_t dev, char *name)
4179 {
4180 	static DEFINE_MUTEX(disks_mutex);
4181 	mddev_t *mddev = mddev_find(dev);
4182 	struct gendisk *disk;
4183 	int partitioned;
4184 	int shift;
4185 	int unit;
4186 	int error;
4187 
4188 	if (!mddev)
4189 		return -ENODEV;
4190 
4191 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4192 	shift = partitioned ? MdpMinorShift : 0;
4193 	unit = MINOR(mddev->unit) >> shift;
4194 
4195 	/* wait for any previous instance if this device
4196 	 * to be completed removed (mddev_delayed_delete).
4197 	 */
4198 	flush_scheduled_work();
4199 
4200 	mutex_lock(&disks_mutex);
4201 	error = -EEXIST;
4202 	if (mddev->gendisk)
4203 		goto abort;
4204 
4205 	if (name) {
4206 		/* Need to ensure that 'name' is not a duplicate.
4207 		 */
4208 		mddev_t *mddev2;
4209 		spin_lock(&all_mddevs_lock);
4210 
4211 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4212 			if (mddev2->gendisk &&
4213 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4214 				spin_unlock(&all_mddevs_lock);
4215 				goto abort;
4216 			}
4217 		spin_unlock(&all_mddevs_lock);
4218 	}
4219 
4220 	error = -ENOMEM;
4221 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4222 	if (!mddev->queue)
4223 		goto abort;
4224 	mddev->queue->queuedata = mddev;
4225 
4226 	/* Can be unlocked because the queue is new: no concurrency */
4227 	queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
4228 
4229 	blk_queue_make_request(mddev->queue, md_make_request);
4230 
4231 	disk = alloc_disk(1 << shift);
4232 	if (!disk) {
4233 		blk_cleanup_queue(mddev->queue);
4234 		mddev->queue = NULL;
4235 		goto abort;
4236 	}
4237 	disk->major = MAJOR(mddev->unit);
4238 	disk->first_minor = unit << shift;
4239 	if (name)
4240 		strcpy(disk->disk_name, name);
4241 	else if (partitioned)
4242 		sprintf(disk->disk_name, "md_d%d", unit);
4243 	else
4244 		sprintf(disk->disk_name, "md%d", unit);
4245 	disk->fops = &md_fops;
4246 	disk->private_data = mddev;
4247 	disk->queue = mddev->queue;
4248 	/* Allow extended partitions.  This makes the
4249 	 * 'mdp' device redundant, but we can't really
4250 	 * remove it now.
4251 	 */
4252 	disk->flags |= GENHD_FL_EXT_DEVT;
4253 	add_disk(disk);
4254 	mddev->gendisk = disk;
4255 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4256 				     &disk_to_dev(disk)->kobj, "%s", "md");
4257 	if (error) {
4258 		/* This isn't possible, but as kobject_init_and_add is marked
4259 		 * __must_check, we must do something with the result
4260 		 */
4261 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4262 		       disk->disk_name);
4263 		error = 0;
4264 	}
4265 	if (mddev->kobj.sd &&
4266 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4267 		printk(KERN_DEBUG "pointless warning\n");
4268  abort:
4269 	mutex_unlock(&disks_mutex);
4270 	if (!error && mddev->kobj.sd) {
4271 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4272 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4273 	}
4274 	mddev_put(mddev);
4275 	return error;
4276 }
4277 
4278 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4279 {
4280 	md_alloc(dev, NULL);
4281 	return NULL;
4282 }
4283 
4284 static int add_named_array(const char *val, struct kernel_param *kp)
4285 {
4286 	/* val must be "md_*" where * is not all digits.
4287 	 * We allocate an array with a large free minor number, and
4288 	 * set the name to val.  val must not already be an active name.
4289 	 */
4290 	int len = strlen(val);
4291 	char buf[DISK_NAME_LEN];
4292 
4293 	while (len && val[len-1] == '\n')
4294 		len--;
4295 	if (len >= DISK_NAME_LEN)
4296 		return -E2BIG;
4297 	strlcpy(buf, val, len+1);
4298 	if (strncmp(buf, "md_", 3) != 0)
4299 		return -EINVAL;
4300 	return md_alloc(0, buf);
4301 }
4302 
4303 static void md_safemode_timeout(unsigned long data)
4304 {
4305 	mddev_t *mddev = (mddev_t *) data;
4306 
4307 	if (!atomic_read(&mddev->writes_pending)) {
4308 		mddev->safemode = 1;
4309 		if (mddev->external)
4310 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4311 	}
4312 	md_wakeup_thread(mddev->thread);
4313 }
4314 
4315 static int start_dirty_degraded;
4316 
4317 int md_run(mddev_t *mddev)
4318 {
4319 	int err;
4320 	mdk_rdev_t *rdev;
4321 	struct mdk_personality *pers;
4322 
4323 	if (list_empty(&mddev->disks))
4324 		/* cannot run an array with no devices.. */
4325 		return -EINVAL;
4326 
4327 	if (mddev->pers)
4328 		return -EBUSY;
4329 	/* Cannot run until previous stop completes properly */
4330 	if (mddev->sysfs_active)
4331 		return -EBUSY;
4332 
4333 	/*
4334 	 * Analyze all RAID superblock(s)
4335 	 */
4336 	if (!mddev->raid_disks) {
4337 		if (!mddev->persistent)
4338 			return -EINVAL;
4339 		analyze_sbs(mddev);
4340 	}
4341 
4342 	if (mddev->level != LEVEL_NONE)
4343 		request_module("md-level-%d", mddev->level);
4344 	else if (mddev->clevel[0])
4345 		request_module("md-%s", mddev->clevel);
4346 
4347 	/*
4348 	 * Drop all container device buffers, from now on
4349 	 * the only valid external interface is through the md
4350 	 * device.
4351 	 */
4352 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4353 		if (test_bit(Faulty, &rdev->flags))
4354 			continue;
4355 		sync_blockdev(rdev->bdev);
4356 		invalidate_bdev(rdev->bdev);
4357 
4358 		/* perform some consistency tests on the device.
4359 		 * We don't want the data to overlap the metadata,
4360 		 * Internal Bitmap issues have been handled elsewhere.
4361 		 */
4362 		if (rdev->data_offset < rdev->sb_start) {
4363 			if (mddev->dev_sectors &&
4364 			    rdev->data_offset + mddev->dev_sectors
4365 			    > rdev->sb_start) {
4366 				printk("md: %s: data overlaps metadata\n",
4367 				       mdname(mddev));
4368 				return -EINVAL;
4369 			}
4370 		} else {
4371 			if (rdev->sb_start + rdev->sb_size/512
4372 			    > rdev->data_offset) {
4373 				printk("md: %s: metadata overlaps data\n",
4374 				       mdname(mddev));
4375 				return -EINVAL;
4376 			}
4377 		}
4378 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4379 	}
4380 
4381 	spin_lock(&pers_lock);
4382 	pers = find_pers(mddev->level, mddev->clevel);
4383 	if (!pers || !try_module_get(pers->owner)) {
4384 		spin_unlock(&pers_lock);
4385 		if (mddev->level != LEVEL_NONE)
4386 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4387 			       mddev->level);
4388 		else
4389 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4390 			       mddev->clevel);
4391 		return -EINVAL;
4392 	}
4393 	mddev->pers = pers;
4394 	spin_unlock(&pers_lock);
4395 	if (mddev->level != pers->level) {
4396 		mddev->level = pers->level;
4397 		mddev->new_level = pers->level;
4398 	}
4399 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4400 
4401 	if (mddev->reshape_position != MaxSector &&
4402 	    pers->start_reshape == NULL) {
4403 		/* This personality cannot handle reshaping... */
4404 		mddev->pers = NULL;
4405 		module_put(pers->owner);
4406 		return -EINVAL;
4407 	}
4408 
4409 	if (pers->sync_request) {
4410 		/* Warn if this is a potentially silly
4411 		 * configuration.
4412 		 */
4413 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4414 		mdk_rdev_t *rdev2;
4415 		int warned = 0;
4416 
4417 		list_for_each_entry(rdev, &mddev->disks, same_set)
4418 			list_for_each_entry(rdev2, &mddev->disks, same_set) {
4419 				if (rdev < rdev2 &&
4420 				    rdev->bdev->bd_contains ==
4421 				    rdev2->bdev->bd_contains) {
4422 					printk(KERN_WARNING
4423 					       "%s: WARNING: %s appears to be"
4424 					       " on the same physical disk as"
4425 					       " %s.\n",
4426 					       mdname(mddev),
4427 					       bdevname(rdev->bdev,b),
4428 					       bdevname(rdev2->bdev,b2));
4429 					warned = 1;
4430 				}
4431 			}
4432 
4433 		if (warned)
4434 			printk(KERN_WARNING
4435 			       "True protection against single-disk"
4436 			       " failure might be compromised.\n");
4437 	}
4438 
4439 	mddev->recovery = 0;
4440 	/* may be over-ridden by personality */
4441 	mddev->resync_max_sectors = mddev->dev_sectors;
4442 
4443 	mddev->ok_start_degraded = start_dirty_degraded;
4444 
4445 	if (start_readonly && mddev->ro == 0)
4446 		mddev->ro = 2; /* read-only, but switch on first write */
4447 
4448 	err = mddev->pers->run(mddev);
4449 	if (err)
4450 		printk(KERN_ERR "md: pers->run() failed ...\n");
4451 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4452 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4453 			  " but 'external_size' not in effect?\n", __func__);
4454 		printk(KERN_ERR
4455 		       "md: invalid array_size %llu > default size %llu\n",
4456 		       (unsigned long long)mddev->array_sectors / 2,
4457 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4458 		err = -EINVAL;
4459 		mddev->pers->stop(mddev);
4460 	}
4461 	if (err == 0 && mddev->pers->sync_request) {
4462 		err = bitmap_create(mddev);
4463 		if (err) {
4464 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4465 			       mdname(mddev), err);
4466 			mddev->pers->stop(mddev);
4467 		}
4468 	}
4469 	if (err) {
4470 		module_put(mddev->pers->owner);
4471 		mddev->pers = NULL;
4472 		bitmap_destroy(mddev);
4473 		return err;
4474 	}
4475 	if (mddev->pers->sync_request) {
4476 		if (mddev->kobj.sd &&
4477 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4478 			printk(KERN_WARNING
4479 			       "md: cannot register extra attributes for %s\n",
4480 			       mdname(mddev));
4481 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4482 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4483 		mddev->ro = 0;
4484 
4485  	atomic_set(&mddev->writes_pending,0);
4486 	atomic_set(&mddev->max_corr_read_errors,
4487 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4488 	mddev->safemode = 0;
4489 	mddev->safemode_timer.function = md_safemode_timeout;
4490 	mddev->safemode_timer.data = (unsigned long) mddev;
4491 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4492 	mddev->in_sync = 1;
4493 
4494 	list_for_each_entry(rdev, &mddev->disks, same_set)
4495 		if (rdev->raid_disk >= 0) {
4496 			char nm[20];
4497 			sprintf(nm, "rd%d", rdev->raid_disk);
4498 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4499 				/* failure here is OK */;
4500 		}
4501 
4502 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4503 
4504 	if (mddev->flags)
4505 		md_update_sb(mddev, 0);
4506 
4507 	md_wakeup_thread(mddev->thread);
4508 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4509 
4510 	md_new_event(mddev);
4511 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4512 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4513 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4514 	return 0;
4515 }
4516 EXPORT_SYMBOL_GPL(md_run);
4517 
4518 static int do_md_run(mddev_t *mddev)
4519 {
4520 	int err;
4521 
4522 	err = md_run(mddev);
4523 	if (err)
4524 		goto out;
4525 	err = bitmap_load(mddev);
4526 	if (err) {
4527 		bitmap_destroy(mddev);
4528 		goto out;
4529 	}
4530 	set_capacity(mddev->gendisk, mddev->array_sectors);
4531 	revalidate_disk(mddev->gendisk);
4532 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4533 out:
4534 	return err;
4535 }
4536 
4537 static int restart_array(mddev_t *mddev)
4538 {
4539 	struct gendisk *disk = mddev->gendisk;
4540 
4541 	/* Complain if it has no devices */
4542 	if (list_empty(&mddev->disks))
4543 		return -ENXIO;
4544 	if (!mddev->pers)
4545 		return -EINVAL;
4546 	if (!mddev->ro)
4547 		return -EBUSY;
4548 	mddev->safemode = 0;
4549 	mddev->ro = 0;
4550 	set_disk_ro(disk, 0);
4551 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4552 		mdname(mddev));
4553 	/* Kick recovery or resync if necessary */
4554 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4555 	md_wakeup_thread(mddev->thread);
4556 	md_wakeup_thread(mddev->sync_thread);
4557 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4558 	return 0;
4559 }
4560 
4561 /* similar to deny_write_access, but accounts for our holding a reference
4562  * to the file ourselves */
4563 static int deny_bitmap_write_access(struct file * file)
4564 {
4565 	struct inode *inode = file->f_mapping->host;
4566 
4567 	spin_lock(&inode->i_lock);
4568 	if (atomic_read(&inode->i_writecount) > 1) {
4569 		spin_unlock(&inode->i_lock);
4570 		return -ETXTBSY;
4571 	}
4572 	atomic_set(&inode->i_writecount, -1);
4573 	spin_unlock(&inode->i_lock);
4574 
4575 	return 0;
4576 }
4577 
4578 void restore_bitmap_write_access(struct file *file)
4579 {
4580 	struct inode *inode = file->f_mapping->host;
4581 
4582 	spin_lock(&inode->i_lock);
4583 	atomic_set(&inode->i_writecount, 1);
4584 	spin_unlock(&inode->i_lock);
4585 }
4586 
4587 static void md_clean(mddev_t *mddev)
4588 {
4589 	mddev->array_sectors = 0;
4590 	mddev->external_size = 0;
4591 	mddev->dev_sectors = 0;
4592 	mddev->raid_disks = 0;
4593 	mddev->recovery_cp = 0;
4594 	mddev->resync_min = 0;
4595 	mddev->resync_max = MaxSector;
4596 	mddev->reshape_position = MaxSector;
4597 	mddev->external = 0;
4598 	mddev->persistent = 0;
4599 	mddev->level = LEVEL_NONE;
4600 	mddev->clevel[0] = 0;
4601 	mddev->flags = 0;
4602 	mddev->ro = 0;
4603 	mddev->metadata_type[0] = 0;
4604 	mddev->chunk_sectors = 0;
4605 	mddev->ctime = mddev->utime = 0;
4606 	mddev->layout = 0;
4607 	mddev->max_disks = 0;
4608 	mddev->events = 0;
4609 	mddev->can_decrease_events = 0;
4610 	mddev->delta_disks = 0;
4611 	mddev->new_level = LEVEL_NONE;
4612 	mddev->new_layout = 0;
4613 	mddev->new_chunk_sectors = 0;
4614 	mddev->curr_resync = 0;
4615 	mddev->resync_mismatches = 0;
4616 	mddev->suspend_lo = mddev->suspend_hi = 0;
4617 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
4618 	mddev->recovery = 0;
4619 	mddev->in_sync = 0;
4620 	mddev->degraded = 0;
4621 	mddev->safemode = 0;
4622 	mddev->bitmap_info.offset = 0;
4623 	mddev->bitmap_info.default_offset = 0;
4624 	mddev->bitmap_info.chunksize = 0;
4625 	mddev->bitmap_info.daemon_sleep = 0;
4626 	mddev->bitmap_info.max_write_behind = 0;
4627 	mddev->plug = NULL;
4628 }
4629 
4630 void md_stop_writes(mddev_t *mddev)
4631 {
4632 	if (mddev->sync_thread) {
4633 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4634 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4635 		md_unregister_thread(mddev->sync_thread);
4636 		mddev->sync_thread = NULL;
4637 	}
4638 
4639 	del_timer_sync(&mddev->safemode_timer);
4640 
4641 	bitmap_flush(mddev);
4642 	md_super_wait(mddev);
4643 
4644 	if (!mddev->in_sync || mddev->flags) {
4645 		/* mark array as shutdown cleanly */
4646 		mddev->in_sync = 1;
4647 		md_update_sb(mddev, 1);
4648 	}
4649 }
4650 EXPORT_SYMBOL_GPL(md_stop_writes);
4651 
4652 void md_stop(mddev_t *mddev)
4653 {
4654 	mddev->pers->stop(mddev);
4655 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
4656 		mddev->to_remove = &md_redundancy_group;
4657 	module_put(mddev->pers->owner);
4658 	mddev->pers = NULL;
4659 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4660 }
4661 EXPORT_SYMBOL_GPL(md_stop);
4662 
4663 static int md_set_readonly(mddev_t *mddev, int is_open)
4664 {
4665 	int err = 0;
4666 	mutex_lock(&mddev->open_mutex);
4667 	if (atomic_read(&mddev->openers) > is_open) {
4668 		printk("md: %s still in use.\n",mdname(mddev));
4669 		err = -EBUSY;
4670 		goto out;
4671 	}
4672 	if (mddev->pers) {
4673 		md_stop_writes(mddev);
4674 
4675 		err  = -ENXIO;
4676 		if (mddev->ro==1)
4677 			goto out;
4678 		mddev->ro = 1;
4679 		set_disk_ro(mddev->gendisk, 1);
4680 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4681 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4682 		err = 0;
4683 	}
4684 out:
4685 	mutex_unlock(&mddev->open_mutex);
4686 	return err;
4687 }
4688 
4689 /* mode:
4690  *   0 - completely stop and dis-assemble array
4691  *   2 - stop but do not disassemble array
4692  */
4693 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4694 {
4695 	struct gendisk *disk = mddev->gendisk;
4696 	mdk_rdev_t *rdev;
4697 
4698 	mutex_lock(&mddev->open_mutex);
4699 	if (atomic_read(&mddev->openers) > is_open ||
4700 	    mddev->sysfs_active) {
4701 		printk("md: %s still in use.\n",mdname(mddev));
4702 		mutex_unlock(&mddev->open_mutex);
4703 		return -EBUSY;
4704 	}
4705 
4706 	if (mddev->pers) {
4707 		if (mddev->ro)
4708 			set_disk_ro(disk, 0);
4709 
4710 		md_stop_writes(mddev);
4711 		md_stop(mddev);
4712 		mddev->queue->merge_bvec_fn = NULL;
4713 		mddev->queue->unplug_fn = NULL;
4714 		mddev->queue->backing_dev_info.congested_fn = NULL;
4715 
4716 		/* tell userspace to handle 'inactive' */
4717 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4718 
4719 		list_for_each_entry(rdev, &mddev->disks, same_set)
4720 			if (rdev->raid_disk >= 0) {
4721 				char nm[20];
4722 				sprintf(nm, "rd%d", rdev->raid_disk);
4723 				sysfs_remove_link(&mddev->kobj, nm);
4724 			}
4725 
4726 		set_capacity(disk, 0);
4727 		mutex_unlock(&mddev->open_mutex);
4728 		revalidate_disk(disk);
4729 
4730 		if (mddev->ro)
4731 			mddev->ro = 0;
4732 	} else
4733 		mutex_unlock(&mddev->open_mutex);
4734 	/*
4735 	 * Free resources if final stop
4736 	 */
4737 	if (mode == 0) {
4738 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4739 
4740 		bitmap_destroy(mddev);
4741 		if (mddev->bitmap_info.file) {
4742 			restore_bitmap_write_access(mddev->bitmap_info.file);
4743 			fput(mddev->bitmap_info.file);
4744 			mddev->bitmap_info.file = NULL;
4745 		}
4746 		mddev->bitmap_info.offset = 0;
4747 
4748 		export_array(mddev);
4749 
4750 		md_clean(mddev);
4751 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4752 		if (mddev->hold_active == UNTIL_STOP)
4753 			mddev->hold_active = 0;
4754 	}
4755 	blk_integrity_unregister(disk);
4756 	md_new_event(mddev);
4757 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4758 	return 0;
4759 }
4760 
4761 #ifndef MODULE
4762 static void autorun_array(mddev_t *mddev)
4763 {
4764 	mdk_rdev_t *rdev;
4765 	int err;
4766 
4767 	if (list_empty(&mddev->disks))
4768 		return;
4769 
4770 	printk(KERN_INFO "md: running: ");
4771 
4772 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4773 		char b[BDEVNAME_SIZE];
4774 		printk("<%s>", bdevname(rdev->bdev,b));
4775 	}
4776 	printk("\n");
4777 
4778 	err = do_md_run(mddev);
4779 	if (err) {
4780 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4781 		do_md_stop(mddev, 0, 0);
4782 	}
4783 }
4784 
4785 /*
4786  * lets try to run arrays based on all disks that have arrived
4787  * until now. (those are in pending_raid_disks)
4788  *
4789  * the method: pick the first pending disk, collect all disks with
4790  * the same UUID, remove all from the pending list and put them into
4791  * the 'same_array' list. Then order this list based on superblock
4792  * update time (freshest comes first), kick out 'old' disks and
4793  * compare superblocks. If everything's fine then run it.
4794  *
4795  * If "unit" is allocated, then bump its reference count
4796  */
4797 static void autorun_devices(int part)
4798 {
4799 	mdk_rdev_t *rdev0, *rdev, *tmp;
4800 	mddev_t *mddev;
4801 	char b[BDEVNAME_SIZE];
4802 
4803 	printk(KERN_INFO "md: autorun ...\n");
4804 	while (!list_empty(&pending_raid_disks)) {
4805 		int unit;
4806 		dev_t dev;
4807 		LIST_HEAD(candidates);
4808 		rdev0 = list_entry(pending_raid_disks.next,
4809 					 mdk_rdev_t, same_set);
4810 
4811 		printk(KERN_INFO "md: considering %s ...\n",
4812 			bdevname(rdev0->bdev,b));
4813 		INIT_LIST_HEAD(&candidates);
4814 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4815 			if (super_90_load(rdev, rdev0, 0) >= 0) {
4816 				printk(KERN_INFO "md:  adding %s ...\n",
4817 					bdevname(rdev->bdev,b));
4818 				list_move(&rdev->same_set, &candidates);
4819 			}
4820 		/*
4821 		 * now we have a set of devices, with all of them having
4822 		 * mostly sane superblocks. It's time to allocate the
4823 		 * mddev.
4824 		 */
4825 		if (part) {
4826 			dev = MKDEV(mdp_major,
4827 				    rdev0->preferred_minor << MdpMinorShift);
4828 			unit = MINOR(dev) >> MdpMinorShift;
4829 		} else {
4830 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4831 			unit = MINOR(dev);
4832 		}
4833 		if (rdev0->preferred_minor != unit) {
4834 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4835 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4836 			break;
4837 		}
4838 
4839 		md_probe(dev, NULL, NULL);
4840 		mddev = mddev_find(dev);
4841 		if (!mddev || !mddev->gendisk) {
4842 			if (mddev)
4843 				mddev_put(mddev);
4844 			printk(KERN_ERR
4845 				"md: cannot allocate memory for md drive.\n");
4846 			break;
4847 		}
4848 		if (mddev_lock(mddev))
4849 			printk(KERN_WARNING "md: %s locked, cannot run\n",
4850 			       mdname(mddev));
4851 		else if (mddev->raid_disks || mddev->major_version
4852 			 || !list_empty(&mddev->disks)) {
4853 			printk(KERN_WARNING
4854 				"md: %s already running, cannot run %s\n",
4855 				mdname(mddev), bdevname(rdev0->bdev,b));
4856 			mddev_unlock(mddev);
4857 		} else {
4858 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
4859 			mddev->persistent = 1;
4860 			rdev_for_each_list(rdev, tmp, &candidates) {
4861 				list_del_init(&rdev->same_set);
4862 				if (bind_rdev_to_array(rdev, mddev))
4863 					export_rdev(rdev);
4864 			}
4865 			autorun_array(mddev);
4866 			mddev_unlock(mddev);
4867 		}
4868 		/* on success, candidates will be empty, on error
4869 		 * it won't...
4870 		 */
4871 		rdev_for_each_list(rdev, tmp, &candidates) {
4872 			list_del_init(&rdev->same_set);
4873 			export_rdev(rdev);
4874 		}
4875 		mddev_put(mddev);
4876 	}
4877 	printk(KERN_INFO "md: ... autorun DONE.\n");
4878 }
4879 #endif /* !MODULE */
4880 
4881 static int get_version(void __user * arg)
4882 {
4883 	mdu_version_t ver;
4884 
4885 	ver.major = MD_MAJOR_VERSION;
4886 	ver.minor = MD_MINOR_VERSION;
4887 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
4888 
4889 	if (copy_to_user(arg, &ver, sizeof(ver)))
4890 		return -EFAULT;
4891 
4892 	return 0;
4893 }
4894 
4895 static int get_array_info(mddev_t * mddev, void __user * arg)
4896 {
4897 	mdu_array_info_t info;
4898 	int nr,working,insync,failed,spare;
4899 	mdk_rdev_t *rdev;
4900 
4901 	nr=working=insync=failed=spare=0;
4902 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4903 		nr++;
4904 		if (test_bit(Faulty, &rdev->flags))
4905 			failed++;
4906 		else {
4907 			working++;
4908 			if (test_bit(In_sync, &rdev->flags))
4909 				insync++;
4910 			else
4911 				spare++;
4912 		}
4913 	}
4914 
4915 	info.major_version = mddev->major_version;
4916 	info.minor_version = mddev->minor_version;
4917 	info.patch_version = MD_PATCHLEVEL_VERSION;
4918 	info.ctime         = mddev->ctime;
4919 	info.level         = mddev->level;
4920 	info.size          = mddev->dev_sectors / 2;
4921 	if (info.size != mddev->dev_sectors / 2) /* overflow */
4922 		info.size = -1;
4923 	info.nr_disks      = nr;
4924 	info.raid_disks    = mddev->raid_disks;
4925 	info.md_minor      = mddev->md_minor;
4926 	info.not_persistent= !mddev->persistent;
4927 
4928 	info.utime         = mddev->utime;
4929 	info.state         = 0;
4930 	if (mddev->in_sync)
4931 		info.state = (1<<MD_SB_CLEAN);
4932 	if (mddev->bitmap && mddev->bitmap_info.offset)
4933 		info.state = (1<<MD_SB_BITMAP_PRESENT);
4934 	info.active_disks  = insync;
4935 	info.working_disks = working;
4936 	info.failed_disks  = failed;
4937 	info.spare_disks   = spare;
4938 
4939 	info.layout        = mddev->layout;
4940 	info.chunk_size    = mddev->chunk_sectors << 9;
4941 
4942 	if (copy_to_user(arg, &info, sizeof(info)))
4943 		return -EFAULT;
4944 
4945 	return 0;
4946 }
4947 
4948 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4949 {
4950 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4951 	char *ptr, *buf = NULL;
4952 	int err = -ENOMEM;
4953 
4954 	if (md_allow_write(mddev))
4955 		file = kmalloc(sizeof(*file), GFP_NOIO);
4956 	else
4957 		file = kmalloc(sizeof(*file), GFP_KERNEL);
4958 
4959 	if (!file)
4960 		goto out;
4961 
4962 	/* bitmap disabled, zero the first byte and copy out */
4963 	if (!mddev->bitmap || !mddev->bitmap->file) {
4964 		file->pathname[0] = '\0';
4965 		goto copy_out;
4966 	}
4967 
4968 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4969 	if (!buf)
4970 		goto out;
4971 
4972 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4973 	if (IS_ERR(ptr))
4974 		goto out;
4975 
4976 	strcpy(file->pathname, ptr);
4977 
4978 copy_out:
4979 	err = 0;
4980 	if (copy_to_user(arg, file, sizeof(*file)))
4981 		err = -EFAULT;
4982 out:
4983 	kfree(buf);
4984 	kfree(file);
4985 	return err;
4986 }
4987 
4988 static int get_disk_info(mddev_t * mddev, void __user * arg)
4989 {
4990 	mdu_disk_info_t info;
4991 	mdk_rdev_t *rdev;
4992 
4993 	if (copy_from_user(&info, arg, sizeof(info)))
4994 		return -EFAULT;
4995 
4996 	rdev = find_rdev_nr(mddev, info.number);
4997 	if (rdev) {
4998 		info.major = MAJOR(rdev->bdev->bd_dev);
4999 		info.minor = MINOR(rdev->bdev->bd_dev);
5000 		info.raid_disk = rdev->raid_disk;
5001 		info.state = 0;
5002 		if (test_bit(Faulty, &rdev->flags))
5003 			info.state |= (1<<MD_DISK_FAULTY);
5004 		else if (test_bit(In_sync, &rdev->flags)) {
5005 			info.state |= (1<<MD_DISK_ACTIVE);
5006 			info.state |= (1<<MD_DISK_SYNC);
5007 		}
5008 		if (test_bit(WriteMostly, &rdev->flags))
5009 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5010 	} else {
5011 		info.major = info.minor = 0;
5012 		info.raid_disk = -1;
5013 		info.state = (1<<MD_DISK_REMOVED);
5014 	}
5015 
5016 	if (copy_to_user(arg, &info, sizeof(info)))
5017 		return -EFAULT;
5018 
5019 	return 0;
5020 }
5021 
5022 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5023 {
5024 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5025 	mdk_rdev_t *rdev;
5026 	dev_t dev = MKDEV(info->major,info->minor);
5027 
5028 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5029 		return -EOVERFLOW;
5030 
5031 	if (!mddev->raid_disks) {
5032 		int err;
5033 		/* expecting a device which has a superblock */
5034 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5035 		if (IS_ERR(rdev)) {
5036 			printk(KERN_WARNING
5037 				"md: md_import_device returned %ld\n",
5038 				PTR_ERR(rdev));
5039 			return PTR_ERR(rdev);
5040 		}
5041 		if (!list_empty(&mddev->disks)) {
5042 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5043 							mdk_rdev_t, same_set);
5044 			err = super_types[mddev->major_version]
5045 				.load_super(rdev, rdev0, mddev->minor_version);
5046 			if (err < 0) {
5047 				printk(KERN_WARNING
5048 					"md: %s has different UUID to %s\n",
5049 					bdevname(rdev->bdev,b),
5050 					bdevname(rdev0->bdev,b2));
5051 				export_rdev(rdev);
5052 				return -EINVAL;
5053 			}
5054 		}
5055 		err = bind_rdev_to_array(rdev, mddev);
5056 		if (err)
5057 			export_rdev(rdev);
5058 		return err;
5059 	}
5060 
5061 	/*
5062 	 * add_new_disk can be used once the array is assembled
5063 	 * to add "hot spares".  They must already have a superblock
5064 	 * written
5065 	 */
5066 	if (mddev->pers) {
5067 		int err;
5068 		if (!mddev->pers->hot_add_disk) {
5069 			printk(KERN_WARNING
5070 				"%s: personality does not support diskops!\n",
5071 			       mdname(mddev));
5072 			return -EINVAL;
5073 		}
5074 		if (mddev->persistent)
5075 			rdev = md_import_device(dev, mddev->major_version,
5076 						mddev->minor_version);
5077 		else
5078 			rdev = md_import_device(dev, -1, -1);
5079 		if (IS_ERR(rdev)) {
5080 			printk(KERN_WARNING
5081 				"md: md_import_device returned %ld\n",
5082 				PTR_ERR(rdev));
5083 			return PTR_ERR(rdev);
5084 		}
5085 		/* set save_raid_disk if appropriate */
5086 		if (!mddev->persistent) {
5087 			if (info->state & (1<<MD_DISK_SYNC)  &&
5088 			    info->raid_disk < mddev->raid_disks)
5089 				rdev->raid_disk = info->raid_disk;
5090 			else
5091 				rdev->raid_disk = -1;
5092 		} else
5093 			super_types[mddev->major_version].
5094 				validate_super(mddev, rdev);
5095 		rdev->saved_raid_disk = rdev->raid_disk;
5096 
5097 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5098 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5099 			set_bit(WriteMostly, &rdev->flags);
5100 		else
5101 			clear_bit(WriteMostly, &rdev->flags);
5102 
5103 		rdev->raid_disk = -1;
5104 		err = bind_rdev_to_array(rdev, mddev);
5105 		if (!err && !mddev->pers->hot_remove_disk) {
5106 			/* If there is hot_add_disk but no hot_remove_disk
5107 			 * then added disks for geometry changes,
5108 			 * and should be added immediately.
5109 			 */
5110 			super_types[mddev->major_version].
5111 				validate_super(mddev, rdev);
5112 			err = mddev->pers->hot_add_disk(mddev, rdev);
5113 			if (err)
5114 				unbind_rdev_from_array(rdev);
5115 		}
5116 		if (err)
5117 			export_rdev(rdev);
5118 		else
5119 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5120 
5121 		md_update_sb(mddev, 1);
5122 		if (mddev->degraded)
5123 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5124 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5125 		md_wakeup_thread(mddev->thread);
5126 		return err;
5127 	}
5128 
5129 	/* otherwise, add_new_disk is only allowed
5130 	 * for major_version==0 superblocks
5131 	 */
5132 	if (mddev->major_version != 0) {
5133 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5134 		       mdname(mddev));
5135 		return -EINVAL;
5136 	}
5137 
5138 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5139 		int err;
5140 		rdev = md_import_device(dev, -1, 0);
5141 		if (IS_ERR(rdev)) {
5142 			printk(KERN_WARNING
5143 				"md: error, md_import_device() returned %ld\n",
5144 				PTR_ERR(rdev));
5145 			return PTR_ERR(rdev);
5146 		}
5147 		rdev->desc_nr = info->number;
5148 		if (info->raid_disk < mddev->raid_disks)
5149 			rdev->raid_disk = info->raid_disk;
5150 		else
5151 			rdev->raid_disk = -1;
5152 
5153 		if (rdev->raid_disk < mddev->raid_disks)
5154 			if (info->state & (1<<MD_DISK_SYNC))
5155 				set_bit(In_sync, &rdev->flags);
5156 
5157 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5158 			set_bit(WriteMostly, &rdev->flags);
5159 
5160 		if (!mddev->persistent) {
5161 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5162 			rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5163 		} else
5164 			rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5165 		rdev->sectors = rdev->sb_start;
5166 
5167 		err = bind_rdev_to_array(rdev, mddev);
5168 		if (err) {
5169 			export_rdev(rdev);
5170 			return err;
5171 		}
5172 	}
5173 
5174 	return 0;
5175 }
5176 
5177 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5178 {
5179 	char b[BDEVNAME_SIZE];
5180 	mdk_rdev_t *rdev;
5181 
5182 	rdev = find_rdev(mddev, dev);
5183 	if (!rdev)
5184 		return -ENXIO;
5185 
5186 	if (rdev->raid_disk >= 0)
5187 		goto busy;
5188 
5189 	kick_rdev_from_array(rdev);
5190 	md_update_sb(mddev, 1);
5191 	md_new_event(mddev);
5192 
5193 	return 0;
5194 busy:
5195 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5196 		bdevname(rdev->bdev,b), mdname(mddev));
5197 	return -EBUSY;
5198 }
5199 
5200 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5201 {
5202 	char b[BDEVNAME_SIZE];
5203 	int err;
5204 	mdk_rdev_t *rdev;
5205 
5206 	if (!mddev->pers)
5207 		return -ENODEV;
5208 
5209 	if (mddev->major_version != 0) {
5210 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5211 			" version-0 superblocks.\n",
5212 			mdname(mddev));
5213 		return -EINVAL;
5214 	}
5215 	if (!mddev->pers->hot_add_disk) {
5216 		printk(KERN_WARNING
5217 			"%s: personality does not support diskops!\n",
5218 			mdname(mddev));
5219 		return -EINVAL;
5220 	}
5221 
5222 	rdev = md_import_device(dev, -1, 0);
5223 	if (IS_ERR(rdev)) {
5224 		printk(KERN_WARNING
5225 			"md: error, md_import_device() returned %ld\n",
5226 			PTR_ERR(rdev));
5227 		return -EINVAL;
5228 	}
5229 
5230 	if (mddev->persistent)
5231 		rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5232 	else
5233 		rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5234 
5235 	rdev->sectors = rdev->sb_start;
5236 
5237 	if (test_bit(Faulty, &rdev->flags)) {
5238 		printk(KERN_WARNING
5239 			"md: can not hot-add faulty %s disk to %s!\n",
5240 			bdevname(rdev->bdev,b), mdname(mddev));
5241 		err = -EINVAL;
5242 		goto abort_export;
5243 	}
5244 	clear_bit(In_sync, &rdev->flags);
5245 	rdev->desc_nr = -1;
5246 	rdev->saved_raid_disk = -1;
5247 	err = bind_rdev_to_array(rdev, mddev);
5248 	if (err)
5249 		goto abort_export;
5250 
5251 	/*
5252 	 * The rest should better be atomic, we can have disk failures
5253 	 * noticed in interrupt contexts ...
5254 	 */
5255 
5256 	rdev->raid_disk = -1;
5257 
5258 	md_update_sb(mddev, 1);
5259 
5260 	/*
5261 	 * Kick recovery, maybe this spare has to be added to the
5262 	 * array immediately.
5263 	 */
5264 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5265 	md_wakeup_thread(mddev->thread);
5266 	md_new_event(mddev);
5267 	return 0;
5268 
5269 abort_export:
5270 	export_rdev(rdev);
5271 	return err;
5272 }
5273 
5274 static int set_bitmap_file(mddev_t *mddev, int fd)
5275 {
5276 	int err;
5277 
5278 	if (mddev->pers) {
5279 		if (!mddev->pers->quiesce)
5280 			return -EBUSY;
5281 		if (mddev->recovery || mddev->sync_thread)
5282 			return -EBUSY;
5283 		/* we should be able to change the bitmap.. */
5284 	}
5285 
5286 
5287 	if (fd >= 0) {
5288 		if (mddev->bitmap)
5289 			return -EEXIST; /* cannot add when bitmap is present */
5290 		mddev->bitmap_info.file = fget(fd);
5291 
5292 		if (mddev->bitmap_info.file == NULL) {
5293 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5294 			       mdname(mddev));
5295 			return -EBADF;
5296 		}
5297 
5298 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5299 		if (err) {
5300 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5301 			       mdname(mddev));
5302 			fput(mddev->bitmap_info.file);
5303 			mddev->bitmap_info.file = NULL;
5304 			return err;
5305 		}
5306 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5307 	} else if (mddev->bitmap == NULL)
5308 		return -ENOENT; /* cannot remove what isn't there */
5309 	err = 0;
5310 	if (mddev->pers) {
5311 		mddev->pers->quiesce(mddev, 1);
5312 		if (fd >= 0) {
5313 			err = bitmap_create(mddev);
5314 			if (!err)
5315 				err = bitmap_load(mddev);
5316 		}
5317 		if (fd < 0 || err) {
5318 			bitmap_destroy(mddev);
5319 			fd = -1; /* make sure to put the file */
5320 		}
5321 		mddev->pers->quiesce(mddev, 0);
5322 	}
5323 	if (fd < 0) {
5324 		if (mddev->bitmap_info.file) {
5325 			restore_bitmap_write_access(mddev->bitmap_info.file);
5326 			fput(mddev->bitmap_info.file);
5327 		}
5328 		mddev->bitmap_info.file = NULL;
5329 	}
5330 
5331 	return err;
5332 }
5333 
5334 /*
5335  * set_array_info is used two different ways
5336  * The original usage is when creating a new array.
5337  * In this usage, raid_disks is > 0 and it together with
5338  *  level, size, not_persistent,layout,chunksize determine the
5339  *  shape of the array.
5340  *  This will always create an array with a type-0.90.0 superblock.
5341  * The newer usage is when assembling an array.
5342  *  In this case raid_disks will be 0, and the major_version field is
5343  *  use to determine which style super-blocks are to be found on the devices.
5344  *  The minor and patch _version numbers are also kept incase the
5345  *  super_block handler wishes to interpret them.
5346  */
5347 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5348 {
5349 
5350 	if (info->raid_disks == 0) {
5351 		/* just setting version number for superblock loading */
5352 		if (info->major_version < 0 ||
5353 		    info->major_version >= ARRAY_SIZE(super_types) ||
5354 		    super_types[info->major_version].name == NULL) {
5355 			/* maybe try to auto-load a module? */
5356 			printk(KERN_INFO
5357 				"md: superblock version %d not known\n",
5358 				info->major_version);
5359 			return -EINVAL;
5360 		}
5361 		mddev->major_version = info->major_version;
5362 		mddev->minor_version = info->minor_version;
5363 		mddev->patch_version = info->patch_version;
5364 		mddev->persistent = !info->not_persistent;
5365 		/* ensure mddev_put doesn't delete this now that there
5366 		 * is some minimal configuration.
5367 		 */
5368 		mddev->ctime         = get_seconds();
5369 		return 0;
5370 	}
5371 	mddev->major_version = MD_MAJOR_VERSION;
5372 	mddev->minor_version = MD_MINOR_VERSION;
5373 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5374 	mddev->ctime         = get_seconds();
5375 
5376 	mddev->level         = info->level;
5377 	mddev->clevel[0]     = 0;
5378 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5379 	mddev->raid_disks    = info->raid_disks;
5380 	/* don't set md_minor, it is determined by which /dev/md* was
5381 	 * openned
5382 	 */
5383 	if (info->state & (1<<MD_SB_CLEAN))
5384 		mddev->recovery_cp = MaxSector;
5385 	else
5386 		mddev->recovery_cp = 0;
5387 	mddev->persistent    = ! info->not_persistent;
5388 	mddev->external	     = 0;
5389 
5390 	mddev->layout        = info->layout;
5391 	mddev->chunk_sectors = info->chunk_size >> 9;
5392 
5393 	mddev->max_disks     = MD_SB_DISKS;
5394 
5395 	if (mddev->persistent)
5396 		mddev->flags         = 0;
5397 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5398 
5399 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5400 	mddev->bitmap_info.offset = 0;
5401 
5402 	mddev->reshape_position = MaxSector;
5403 
5404 	/*
5405 	 * Generate a 128 bit UUID
5406 	 */
5407 	get_random_bytes(mddev->uuid, 16);
5408 
5409 	mddev->new_level = mddev->level;
5410 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5411 	mddev->new_layout = mddev->layout;
5412 	mddev->delta_disks = 0;
5413 
5414 	return 0;
5415 }
5416 
5417 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5418 {
5419 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5420 
5421 	if (mddev->external_size)
5422 		return;
5423 
5424 	mddev->array_sectors = array_sectors;
5425 }
5426 EXPORT_SYMBOL(md_set_array_sectors);
5427 
5428 static int update_size(mddev_t *mddev, sector_t num_sectors)
5429 {
5430 	mdk_rdev_t *rdev;
5431 	int rv;
5432 	int fit = (num_sectors == 0);
5433 
5434 	if (mddev->pers->resize == NULL)
5435 		return -EINVAL;
5436 	/* The "num_sectors" is the number of sectors of each device that
5437 	 * is used.  This can only make sense for arrays with redundancy.
5438 	 * linear and raid0 always use whatever space is available. We can only
5439 	 * consider changing this number if no resync or reconstruction is
5440 	 * happening, and if the new size is acceptable. It must fit before the
5441 	 * sb_start or, if that is <data_offset, it must fit before the size
5442 	 * of each device.  If num_sectors is zero, we find the largest size
5443 	 * that fits.
5444 
5445 	 */
5446 	if (mddev->sync_thread)
5447 		return -EBUSY;
5448 	if (mddev->bitmap)
5449 		/* Sorry, cannot grow a bitmap yet, just remove it,
5450 		 * grow, and re-add.
5451 		 */
5452 		return -EBUSY;
5453 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5454 		sector_t avail = rdev->sectors;
5455 
5456 		if (fit && (num_sectors == 0 || num_sectors > avail))
5457 			num_sectors = avail;
5458 		if (avail < num_sectors)
5459 			return -ENOSPC;
5460 	}
5461 	rv = mddev->pers->resize(mddev, num_sectors);
5462 	if (!rv)
5463 		revalidate_disk(mddev->gendisk);
5464 	return rv;
5465 }
5466 
5467 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5468 {
5469 	int rv;
5470 	/* change the number of raid disks */
5471 	if (mddev->pers->check_reshape == NULL)
5472 		return -EINVAL;
5473 	if (raid_disks <= 0 ||
5474 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
5475 		return -EINVAL;
5476 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5477 		return -EBUSY;
5478 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5479 
5480 	rv = mddev->pers->check_reshape(mddev);
5481 	return rv;
5482 }
5483 
5484 
5485 /*
5486  * update_array_info is used to change the configuration of an
5487  * on-line array.
5488  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5489  * fields in the info are checked against the array.
5490  * Any differences that cannot be handled will cause an error.
5491  * Normally, only one change can be managed at a time.
5492  */
5493 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5494 {
5495 	int rv = 0;
5496 	int cnt = 0;
5497 	int state = 0;
5498 
5499 	/* calculate expected state,ignoring low bits */
5500 	if (mddev->bitmap && mddev->bitmap_info.offset)
5501 		state |= (1 << MD_SB_BITMAP_PRESENT);
5502 
5503 	if (mddev->major_version != info->major_version ||
5504 	    mddev->minor_version != info->minor_version ||
5505 /*	    mddev->patch_version != info->patch_version || */
5506 	    mddev->ctime         != info->ctime         ||
5507 	    mddev->level         != info->level         ||
5508 /*	    mddev->layout        != info->layout        || */
5509 	    !mddev->persistent	 != info->not_persistent||
5510 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
5511 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5512 	    ((state^info->state) & 0xfffffe00)
5513 		)
5514 		return -EINVAL;
5515 	/* Check there is only one change */
5516 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5517 		cnt++;
5518 	if (mddev->raid_disks != info->raid_disks)
5519 		cnt++;
5520 	if (mddev->layout != info->layout)
5521 		cnt++;
5522 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5523 		cnt++;
5524 	if (cnt == 0)
5525 		return 0;
5526 	if (cnt > 1)
5527 		return -EINVAL;
5528 
5529 	if (mddev->layout != info->layout) {
5530 		/* Change layout
5531 		 * we don't need to do anything at the md level, the
5532 		 * personality will take care of it all.
5533 		 */
5534 		if (mddev->pers->check_reshape == NULL)
5535 			return -EINVAL;
5536 		else {
5537 			mddev->new_layout = info->layout;
5538 			rv = mddev->pers->check_reshape(mddev);
5539 			if (rv)
5540 				mddev->new_layout = mddev->layout;
5541 			return rv;
5542 		}
5543 	}
5544 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5545 		rv = update_size(mddev, (sector_t)info->size * 2);
5546 
5547 	if (mddev->raid_disks    != info->raid_disks)
5548 		rv = update_raid_disks(mddev, info->raid_disks);
5549 
5550 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5551 		if (mddev->pers->quiesce == NULL)
5552 			return -EINVAL;
5553 		if (mddev->recovery || mddev->sync_thread)
5554 			return -EBUSY;
5555 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5556 			/* add the bitmap */
5557 			if (mddev->bitmap)
5558 				return -EEXIST;
5559 			if (mddev->bitmap_info.default_offset == 0)
5560 				return -EINVAL;
5561 			mddev->bitmap_info.offset =
5562 				mddev->bitmap_info.default_offset;
5563 			mddev->pers->quiesce(mddev, 1);
5564 			rv = bitmap_create(mddev);
5565 			if (!rv)
5566 				rv = bitmap_load(mddev);
5567 			if (rv)
5568 				bitmap_destroy(mddev);
5569 			mddev->pers->quiesce(mddev, 0);
5570 		} else {
5571 			/* remove the bitmap */
5572 			if (!mddev->bitmap)
5573 				return -ENOENT;
5574 			if (mddev->bitmap->file)
5575 				return -EINVAL;
5576 			mddev->pers->quiesce(mddev, 1);
5577 			bitmap_destroy(mddev);
5578 			mddev->pers->quiesce(mddev, 0);
5579 			mddev->bitmap_info.offset = 0;
5580 		}
5581 	}
5582 	md_update_sb(mddev, 1);
5583 	return rv;
5584 }
5585 
5586 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5587 {
5588 	mdk_rdev_t *rdev;
5589 
5590 	if (mddev->pers == NULL)
5591 		return -ENODEV;
5592 
5593 	rdev = find_rdev(mddev, dev);
5594 	if (!rdev)
5595 		return -ENODEV;
5596 
5597 	md_error(mddev, rdev);
5598 	return 0;
5599 }
5600 
5601 /*
5602  * We have a problem here : there is no easy way to give a CHS
5603  * virtual geometry. We currently pretend that we have a 2 heads
5604  * 4 sectors (with a BIG number of cylinders...). This drives
5605  * dosfs just mad... ;-)
5606  */
5607 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5608 {
5609 	mddev_t *mddev = bdev->bd_disk->private_data;
5610 
5611 	geo->heads = 2;
5612 	geo->sectors = 4;
5613 	geo->cylinders = mddev->array_sectors / 8;
5614 	return 0;
5615 }
5616 
5617 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5618 			unsigned int cmd, unsigned long arg)
5619 {
5620 	int err = 0;
5621 	void __user *argp = (void __user *)arg;
5622 	mddev_t *mddev = NULL;
5623 	int ro;
5624 
5625 	if (!capable(CAP_SYS_ADMIN))
5626 		return -EACCES;
5627 
5628 	/*
5629 	 * Commands dealing with the RAID driver but not any
5630 	 * particular array:
5631 	 */
5632 	switch (cmd)
5633 	{
5634 		case RAID_VERSION:
5635 			err = get_version(argp);
5636 			goto done;
5637 
5638 		case PRINT_RAID_DEBUG:
5639 			err = 0;
5640 			md_print_devices();
5641 			goto done;
5642 
5643 #ifndef MODULE
5644 		case RAID_AUTORUN:
5645 			err = 0;
5646 			autostart_arrays(arg);
5647 			goto done;
5648 #endif
5649 		default:;
5650 	}
5651 
5652 	/*
5653 	 * Commands creating/starting a new array:
5654 	 */
5655 
5656 	mddev = bdev->bd_disk->private_data;
5657 
5658 	if (!mddev) {
5659 		BUG();
5660 		goto abort;
5661 	}
5662 
5663 	err = mddev_lock(mddev);
5664 	if (err) {
5665 		printk(KERN_INFO
5666 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
5667 			err, cmd);
5668 		goto abort;
5669 	}
5670 
5671 	switch (cmd)
5672 	{
5673 		case SET_ARRAY_INFO:
5674 			{
5675 				mdu_array_info_t info;
5676 				if (!arg)
5677 					memset(&info, 0, sizeof(info));
5678 				else if (copy_from_user(&info, argp, sizeof(info))) {
5679 					err = -EFAULT;
5680 					goto abort_unlock;
5681 				}
5682 				if (mddev->pers) {
5683 					err = update_array_info(mddev, &info);
5684 					if (err) {
5685 						printk(KERN_WARNING "md: couldn't update"
5686 						       " array info. %d\n", err);
5687 						goto abort_unlock;
5688 					}
5689 					goto done_unlock;
5690 				}
5691 				if (!list_empty(&mddev->disks)) {
5692 					printk(KERN_WARNING
5693 					       "md: array %s already has disks!\n",
5694 					       mdname(mddev));
5695 					err = -EBUSY;
5696 					goto abort_unlock;
5697 				}
5698 				if (mddev->raid_disks) {
5699 					printk(KERN_WARNING
5700 					       "md: array %s already initialised!\n",
5701 					       mdname(mddev));
5702 					err = -EBUSY;
5703 					goto abort_unlock;
5704 				}
5705 				err = set_array_info(mddev, &info);
5706 				if (err) {
5707 					printk(KERN_WARNING "md: couldn't set"
5708 					       " array info. %d\n", err);
5709 					goto abort_unlock;
5710 				}
5711 			}
5712 			goto done_unlock;
5713 
5714 		default:;
5715 	}
5716 
5717 	/*
5718 	 * Commands querying/configuring an existing array:
5719 	 */
5720 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5721 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5722 	if ((!mddev->raid_disks && !mddev->external)
5723 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5724 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5725 	    && cmd != GET_BITMAP_FILE) {
5726 		err = -ENODEV;
5727 		goto abort_unlock;
5728 	}
5729 
5730 	/*
5731 	 * Commands even a read-only array can execute:
5732 	 */
5733 	switch (cmd)
5734 	{
5735 		case GET_ARRAY_INFO:
5736 			err = get_array_info(mddev, argp);
5737 			goto done_unlock;
5738 
5739 		case GET_BITMAP_FILE:
5740 			err = get_bitmap_file(mddev, argp);
5741 			goto done_unlock;
5742 
5743 		case GET_DISK_INFO:
5744 			err = get_disk_info(mddev, argp);
5745 			goto done_unlock;
5746 
5747 		case RESTART_ARRAY_RW:
5748 			err = restart_array(mddev);
5749 			goto done_unlock;
5750 
5751 		case STOP_ARRAY:
5752 			err = do_md_stop(mddev, 0, 1);
5753 			goto done_unlock;
5754 
5755 		case STOP_ARRAY_RO:
5756 			err = md_set_readonly(mddev, 1);
5757 			goto done_unlock;
5758 
5759 		case BLKROSET:
5760 			if (get_user(ro, (int __user *)(arg))) {
5761 				err = -EFAULT;
5762 				goto done_unlock;
5763 			}
5764 			err = -EINVAL;
5765 
5766 			/* if the bdev is going readonly the value of mddev->ro
5767 			 * does not matter, no writes are coming
5768 			 */
5769 			if (ro)
5770 				goto done_unlock;
5771 
5772 			/* are we are already prepared for writes? */
5773 			if (mddev->ro != 1)
5774 				goto done_unlock;
5775 
5776 			/* transitioning to readauto need only happen for
5777 			 * arrays that call md_write_start
5778 			 */
5779 			if (mddev->pers) {
5780 				err = restart_array(mddev);
5781 				if (err == 0) {
5782 					mddev->ro = 2;
5783 					set_disk_ro(mddev->gendisk, 0);
5784 				}
5785 			}
5786 			goto done_unlock;
5787 	}
5788 
5789 	/*
5790 	 * The remaining ioctls are changing the state of the
5791 	 * superblock, so we do not allow them on read-only arrays.
5792 	 * However non-MD ioctls (e.g. get-size) will still come through
5793 	 * here and hit the 'default' below, so only disallow
5794 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5795 	 */
5796 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5797 		if (mddev->ro == 2) {
5798 			mddev->ro = 0;
5799 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5800 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5801 			md_wakeup_thread(mddev->thread);
5802 		} else {
5803 			err = -EROFS;
5804 			goto abort_unlock;
5805 		}
5806 	}
5807 
5808 	switch (cmd)
5809 	{
5810 		case ADD_NEW_DISK:
5811 		{
5812 			mdu_disk_info_t info;
5813 			if (copy_from_user(&info, argp, sizeof(info)))
5814 				err = -EFAULT;
5815 			else
5816 				err = add_new_disk(mddev, &info);
5817 			goto done_unlock;
5818 		}
5819 
5820 		case HOT_REMOVE_DISK:
5821 			err = hot_remove_disk(mddev, new_decode_dev(arg));
5822 			goto done_unlock;
5823 
5824 		case HOT_ADD_DISK:
5825 			err = hot_add_disk(mddev, new_decode_dev(arg));
5826 			goto done_unlock;
5827 
5828 		case SET_DISK_FAULTY:
5829 			err = set_disk_faulty(mddev, new_decode_dev(arg));
5830 			goto done_unlock;
5831 
5832 		case RUN_ARRAY:
5833 			err = do_md_run(mddev);
5834 			goto done_unlock;
5835 
5836 		case SET_BITMAP_FILE:
5837 			err = set_bitmap_file(mddev, (int)arg);
5838 			goto done_unlock;
5839 
5840 		default:
5841 			err = -EINVAL;
5842 			goto abort_unlock;
5843 	}
5844 
5845 done_unlock:
5846 abort_unlock:
5847 	if (mddev->hold_active == UNTIL_IOCTL &&
5848 	    err != -EINVAL)
5849 		mddev->hold_active = 0;
5850 	mddev_unlock(mddev);
5851 
5852 	return err;
5853 done:
5854 	if (err)
5855 		MD_BUG();
5856 abort:
5857 	return err;
5858 }
5859 #ifdef CONFIG_COMPAT
5860 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5861 		    unsigned int cmd, unsigned long arg)
5862 {
5863 	switch (cmd) {
5864 	case HOT_REMOVE_DISK:
5865 	case HOT_ADD_DISK:
5866 	case SET_DISK_FAULTY:
5867 	case SET_BITMAP_FILE:
5868 		/* These take in integer arg, do not convert */
5869 		break;
5870 	default:
5871 		arg = (unsigned long)compat_ptr(arg);
5872 		break;
5873 	}
5874 
5875 	return md_ioctl(bdev, mode, cmd, arg);
5876 }
5877 #endif /* CONFIG_COMPAT */
5878 
5879 static int md_open(struct block_device *bdev, fmode_t mode)
5880 {
5881 	/*
5882 	 * Succeed if we can lock the mddev, which confirms that
5883 	 * it isn't being stopped right now.
5884 	 */
5885 	mddev_t *mddev = mddev_find(bdev->bd_dev);
5886 	int err;
5887 
5888 	mutex_lock(&md_mutex);
5889 	if (mddev->gendisk != bdev->bd_disk) {
5890 		/* we are racing with mddev_put which is discarding this
5891 		 * bd_disk.
5892 		 */
5893 		mddev_put(mddev);
5894 		/* Wait until bdev->bd_disk is definitely gone */
5895 		flush_scheduled_work();
5896 		/* Then retry the open from the top */
5897 		mutex_unlock(&md_mutex);
5898 		return -ERESTARTSYS;
5899 	}
5900 	BUG_ON(mddev != bdev->bd_disk->private_data);
5901 
5902 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5903 		goto out;
5904 
5905 	err = 0;
5906 	atomic_inc(&mddev->openers);
5907 	mutex_unlock(&mddev->open_mutex);
5908 
5909 	check_disk_size_change(mddev->gendisk, bdev);
5910  out:
5911 	mutex_unlock(&md_mutex);
5912 	return err;
5913 }
5914 
5915 static int md_release(struct gendisk *disk, fmode_t mode)
5916 {
5917  	mddev_t *mddev = disk->private_data;
5918 
5919 	BUG_ON(!mddev);
5920 	mutex_lock(&md_mutex);
5921 	atomic_dec(&mddev->openers);
5922 	mddev_put(mddev);
5923 	mutex_unlock(&md_mutex);
5924 
5925 	return 0;
5926 }
5927 static const struct block_device_operations md_fops =
5928 {
5929 	.owner		= THIS_MODULE,
5930 	.open		= md_open,
5931 	.release	= md_release,
5932 	.ioctl		= md_ioctl,
5933 #ifdef CONFIG_COMPAT
5934 	.compat_ioctl	= md_compat_ioctl,
5935 #endif
5936 	.getgeo		= md_getgeo,
5937 };
5938 
5939 static int md_thread(void * arg)
5940 {
5941 	mdk_thread_t *thread = arg;
5942 
5943 	/*
5944 	 * md_thread is a 'system-thread', it's priority should be very
5945 	 * high. We avoid resource deadlocks individually in each
5946 	 * raid personality. (RAID5 does preallocation) We also use RR and
5947 	 * the very same RT priority as kswapd, thus we will never get
5948 	 * into a priority inversion deadlock.
5949 	 *
5950 	 * we definitely have to have equal or higher priority than
5951 	 * bdflush, otherwise bdflush will deadlock if there are too
5952 	 * many dirty RAID5 blocks.
5953 	 */
5954 
5955 	allow_signal(SIGKILL);
5956 	while (!kthread_should_stop()) {
5957 
5958 		/* We need to wait INTERRUPTIBLE so that
5959 		 * we don't add to the load-average.
5960 		 * That means we need to be sure no signals are
5961 		 * pending
5962 		 */
5963 		if (signal_pending(current))
5964 			flush_signals(current);
5965 
5966 		wait_event_interruptible_timeout
5967 			(thread->wqueue,
5968 			 test_bit(THREAD_WAKEUP, &thread->flags)
5969 			 || kthread_should_stop(),
5970 			 thread->timeout);
5971 
5972 		clear_bit(THREAD_WAKEUP, &thread->flags);
5973 
5974 		thread->run(thread->mddev);
5975 	}
5976 
5977 	return 0;
5978 }
5979 
5980 void md_wakeup_thread(mdk_thread_t *thread)
5981 {
5982 	if (thread) {
5983 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5984 		set_bit(THREAD_WAKEUP, &thread->flags);
5985 		wake_up(&thread->wqueue);
5986 	}
5987 }
5988 
5989 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5990 				 const char *name)
5991 {
5992 	mdk_thread_t *thread;
5993 
5994 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5995 	if (!thread)
5996 		return NULL;
5997 
5998 	init_waitqueue_head(&thread->wqueue);
5999 
6000 	thread->run = run;
6001 	thread->mddev = mddev;
6002 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6003 	thread->tsk = kthread_run(md_thread, thread,
6004 				  "%s_%s",
6005 				  mdname(thread->mddev),
6006 				  name ?: mddev->pers->name);
6007 	if (IS_ERR(thread->tsk)) {
6008 		kfree(thread);
6009 		return NULL;
6010 	}
6011 	return thread;
6012 }
6013 
6014 void md_unregister_thread(mdk_thread_t *thread)
6015 {
6016 	if (!thread)
6017 		return;
6018 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6019 
6020 	kthread_stop(thread->tsk);
6021 	kfree(thread);
6022 }
6023 
6024 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6025 {
6026 	if (!mddev) {
6027 		MD_BUG();
6028 		return;
6029 	}
6030 
6031 	if (!rdev || test_bit(Faulty, &rdev->flags))
6032 		return;
6033 
6034 	if (mddev->external)
6035 		set_bit(Blocked, &rdev->flags);
6036 /*
6037 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6038 		mdname(mddev),
6039 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6040 		__builtin_return_address(0),__builtin_return_address(1),
6041 		__builtin_return_address(2),__builtin_return_address(3));
6042 */
6043 	if (!mddev->pers)
6044 		return;
6045 	if (!mddev->pers->error_handler)
6046 		return;
6047 	mddev->pers->error_handler(mddev,rdev);
6048 	if (mddev->degraded)
6049 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6050 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6051 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6052 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6053 	md_wakeup_thread(mddev->thread);
6054 	if (mddev->event_work.func)
6055 		schedule_work(&mddev->event_work);
6056 	md_new_event_inintr(mddev);
6057 }
6058 
6059 /* seq_file implementation /proc/mdstat */
6060 
6061 static void status_unused(struct seq_file *seq)
6062 {
6063 	int i = 0;
6064 	mdk_rdev_t *rdev;
6065 
6066 	seq_printf(seq, "unused devices: ");
6067 
6068 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6069 		char b[BDEVNAME_SIZE];
6070 		i++;
6071 		seq_printf(seq, "%s ",
6072 			      bdevname(rdev->bdev,b));
6073 	}
6074 	if (!i)
6075 		seq_printf(seq, "<none>");
6076 
6077 	seq_printf(seq, "\n");
6078 }
6079 
6080 
6081 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6082 {
6083 	sector_t max_sectors, resync, res;
6084 	unsigned long dt, db;
6085 	sector_t rt;
6086 	int scale;
6087 	unsigned int per_milli;
6088 
6089 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6090 
6091 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6092 		max_sectors = mddev->resync_max_sectors;
6093 	else
6094 		max_sectors = mddev->dev_sectors;
6095 
6096 	/*
6097 	 * Should not happen.
6098 	 */
6099 	if (!max_sectors) {
6100 		MD_BUG();
6101 		return;
6102 	}
6103 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6104 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6105 	 * u32, as those are the requirements for sector_div.
6106 	 * Thus 'scale' must be at least 10
6107 	 */
6108 	scale = 10;
6109 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6110 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6111 			scale++;
6112 	}
6113 	res = (resync>>scale)*1000;
6114 	sector_div(res, (u32)((max_sectors>>scale)+1));
6115 
6116 	per_milli = res;
6117 	{
6118 		int i, x = per_milli/50, y = 20-x;
6119 		seq_printf(seq, "[");
6120 		for (i = 0; i < x; i++)
6121 			seq_printf(seq, "=");
6122 		seq_printf(seq, ">");
6123 		for (i = 0; i < y; i++)
6124 			seq_printf(seq, ".");
6125 		seq_printf(seq, "] ");
6126 	}
6127 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6128 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6129 		    "reshape" :
6130 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6131 		     "check" :
6132 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6133 		      "resync" : "recovery"))),
6134 		   per_milli/10, per_milli % 10,
6135 		   (unsigned long long) resync/2,
6136 		   (unsigned long long) max_sectors/2);
6137 
6138 	/*
6139 	 * dt: time from mark until now
6140 	 * db: blocks written from mark until now
6141 	 * rt: remaining time
6142 	 *
6143 	 * rt is a sector_t, so could be 32bit or 64bit.
6144 	 * So we divide before multiply in case it is 32bit and close
6145 	 * to the limit.
6146 	 * We scale the divisor (db) by 32 to avoid loosing precision
6147 	 * near the end of resync when the number of remaining sectors
6148 	 * is close to 'db'.
6149 	 * We then divide rt by 32 after multiplying by db to compensate.
6150 	 * The '+1' avoids division by zero if db is very small.
6151 	 */
6152 	dt = ((jiffies - mddev->resync_mark) / HZ);
6153 	if (!dt) dt++;
6154 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6155 		- mddev->resync_mark_cnt;
6156 
6157 	rt = max_sectors - resync;    /* number of remaining sectors */
6158 	sector_div(rt, db/32+1);
6159 	rt *= dt;
6160 	rt >>= 5;
6161 
6162 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6163 		   ((unsigned long)rt % 60)/6);
6164 
6165 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6166 }
6167 
6168 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6169 {
6170 	struct list_head *tmp;
6171 	loff_t l = *pos;
6172 	mddev_t *mddev;
6173 
6174 	if (l >= 0x10000)
6175 		return NULL;
6176 	if (!l--)
6177 		/* header */
6178 		return (void*)1;
6179 
6180 	spin_lock(&all_mddevs_lock);
6181 	list_for_each(tmp,&all_mddevs)
6182 		if (!l--) {
6183 			mddev = list_entry(tmp, mddev_t, all_mddevs);
6184 			mddev_get(mddev);
6185 			spin_unlock(&all_mddevs_lock);
6186 			return mddev;
6187 		}
6188 	spin_unlock(&all_mddevs_lock);
6189 	if (!l--)
6190 		return (void*)2;/* tail */
6191 	return NULL;
6192 }
6193 
6194 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6195 {
6196 	struct list_head *tmp;
6197 	mddev_t *next_mddev, *mddev = v;
6198 
6199 	++*pos;
6200 	if (v == (void*)2)
6201 		return NULL;
6202 
6203 	spin_lock(&all_mddevs_lock);
6204 	if (v == (void*)1)
6205 		tmp = all_mddevs.next;
6206 	else
6207 		tmp = mddev->all_mddevs.next;
6208 	if (tmp != &all_mddevs)
6209 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6210 	else {
6211 		next_mddev = (void*)2;
6212 		*pos = 0x10000;
6213 	}
6214 	spin_unlock(&all_mddevs_lock);
6215 
6216 	if (v != (void*)1)
6217 		mddev_put(mddev);
6218 	return next_mddev;
6219 
6220 }
6221 
6222 static void md_seq_stop(struct seq_file *seq, void *v)
6223 {
6224 	mddev_t *mddev = v;
6225 
6226 	if (mddev && v != (void*)1 && v != (void*)2)
6227 		mddev_put(mddev);
6228 }
6229 
6230 struct mdstat_info {
6231 	int event;
6232 };
6233 
6234 static int md_seq_show(struct seq_file *seq, void *v)
6235 {
6236 	mddev_t *mddev = v;
6237 	sector_t sectors;
6238 	mdk_rdev_t *rdev;
6239 	struct mdstat_info *mi = seq->private;
6240 	struct bitmap *bitmap;
6241 
6242 	if (v == (void*)1) {
6243 		struct mdk_personality *pers;
6244 		seq_printf(seq, "Personalities : ");
6245 		spin_lock(&pers_lock);
6246 		list_for_each_entry(pers, &pers_list, list)
6247 			seq_printf(seq, "[%s] ", pers->name);
6248 
6249 		spin_unlock(&pers_lock);
6250 		seq_printf(seq, "\n");
6251 		mi->event = atomic_read(&md_event_count);
6252 		return 0;
6253 	}
6254 	if (v == (void*)2) {
6255 		status_unused(seq);
6256 		return 0;
6257 	}
6258 
6259 	if (mddev_lock(mddev) < 0)
6260 		return -EINTR;
6261 
6262 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6263 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6264 						mddev->pers ? "" : "in");
6265 		if (mddev->pers) {
6266 			if (mddev->ro==1)
6267 				seq_printf(seq, " (read-only)");
6268 			if (mddev->ro==2)
6269 				seq_printf(seq, " (auto-read-only)");
6270 			seq_printf(seq, " %s", mddev->pers->name);
6271 		}
6272 
6273 		sectors = 0;
6274 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6275 			char b[BDEVNAME_SIZE];
6276 			seq_printf(seq, " %s[%d]",
6277 				bdevname(rdev->bdev,b), rdev->desc_nr);
6278 			if (test_bit(WriteMostly, &rdev->flags))
6279 				seq_printf(seq, "(W)");
6280 			if (test_bit(Faulty, &rdev->flags)) {
6281 				seq_printf(seq, "(F)");
6282 				continue;
6283 			} else if (rdev->raid_disk < 0)
6284 				seq_printf(seq, "(S)"); /* spare */
6285 			sectors += rdev->sectors;
6286 		}
6287 
6288 		if (!list_empty(&mddev->disks)) {
6289 			if (mddev->pers)
6290 				seq_printf(seq, "\n      %llu blocks",
6291 					   (unsigned long long)
6292 					   mddev->array_sectors / 2);
6293 			else
6294 				seq_printf(seq, "\n      %llu blocks",
6295 					   (unsigned long long)sectors / 2);
6296 		}
6297 		if (mddev->persistent) {
6298 			if (mddev->major_version != 0 ||
6299 			    mddev->minor_version != 90) {
6300 				seq_printf(seq," super %d.%d",
6301 					   mddev->major_version,
6302 					   mddev->minor_version);
6303 			}
6304 		} else if (mddev->external)
6305 			seq_printf(seq, " super external:%s",
6306 				   mddev->metadata_type);
6307 		else
6308 			seq_printf(seq, " super non-persistent");
6309 
6310 		if (mddev->pers) {
6311 			mddev->pers->status(seq, mddev);
6312 	 		seq_printf(seq, "\n      ");
6313 			if (mddev->pers->sync_request) {
6314 				if (mddev->curr_resync > 2) {
6315 					status_resync(seq, mddev);
6316 					seq_printf(seq, "\n      ");
6317 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6318 					seq_printf(seq, "\tresync=DELAYED\n      ");
6319 				else if (mddev->recovery_cp < MaxSector)
6320 					seq_printf(seq, "\tresync=PENDING\n      ");
6321 			}
6322 		} else
6323 			seq_printf(seq, "\n       ");
6324 
6325 		if ((bitmap = mddev->bitmap)) {
6326 			unsigned long chunk_kb;
6327 			unsigned long flags;
6328 			spin_lock_irqsave(&bitmap->lock, flags);
6329 			chunk_kb = mddev->bitmap_info.chunksize >> 10;
6330 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6331 				"%lu%s chunk",
6332 				bitmap->pages - bitmap->missing_pages,
6333 				bitmap->pages,
6334 				(bitmap->pages - bitmap->missing_pages)
6335 					<< (PAGE_SHIFT - 10),
6336 				chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6337 				chunk_kb ? "KB" : "B");
6338 			if (bitmap->file) {
6339 				seq_printf(seq, ", file: ");
6340 				seq_path(seq, &bitmap->file->f_path, " \t\n");
6341 			}
6342 
6343 			seq_printf(seq, "\n");
6344 			spin_unlock_irqrestore(&bitmap->lock, flags);
6345 		}
6346 
6347 		seq_printf(seq, "\n");
6348 	}
6349 	mddev_unlock(mddev);
6350 
6351 	return 0;
6352 }
6353 
6354 static const struct seq_operations md_seq_ops = {
6355 	.start  = md_seq_start,
6356 	.next   = md_seq_next,
6357 	.stop   = md_seq_stop,
6358 	.show   = md_seq_show,
6359 };
6360 
6361 static int md_seq_open(struct inode *inode, struct file *file)
6362 {
6363 	int error;
6364 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6365 	if (mi == NULL)
6366 		return -ENOMEM;
6367 
6368 	error = seq_open(file, &md_seq_ops);
6369 	if (error)
6370 		kfree(mi);
6371 	else {
6372 		struct seq_file *p = file->private_data;
6373 		p->private = mi;
6374 		mi->event = atomic_read(&md_event_count);
6375 	}
6376 	return error;
6377 }
6378 
6379 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6380 {
6381 	struct seq_file *m = filp->private_data;
6382 	struct mdstat_info *mi = m->private;
6383 	int mask;
6384 
6385 	poll_wait(filp, &md_event_waiters, wait);
6386 
6387 	/* always allow read */
6388 	mask = POLLIN | POLLRDNORM;
6389 
6390 	if (mi->event != atomic_read(&md_event_count))
6391 		mask |= POLLERR | POLLPRI;
6392 	return mask;
6393 }
6394 
6395 static const struct file_operations md_seq_fops = {
6396 	.owner		= THIS_MODULE,
6397 	.open           = md_seq_open,
6398 	.read           = seq_read,
6399 	.llseek         = seq_lseek,
6400 	.release	= seq_release_private,
6401 	.poll		= mdstat_poll,
6402 };
6403 
6404 int register_md_personality(struct mdk_personality *p)
6405 {
6406 	spin_lock(&pers_lock);
6407 	list_add_tail(&p->list, &pers_list);
6408 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6409 	spin_unlock(&pers_lock);
6410 	return 0;
6411 }
6412 
6413 int unregister_md_personality(struct mdk_personality *p)
6414 {
6415 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6416 	spin_lock(&pers_lock);
6417 	list_del_init(&p->list);
6418 	spin_unlock(&pers_lock);
6419 	return 0;
6420 }
6421 
6422 static int is_mddev_idle(mddev_t *mddev, int init)
6423 {
6424 	mdk_rdev_t * rdev;
6425 	int idle;
6426 	int curr_events;
6427 
6428 	idle = 1;
6429 	rcu_read_lock();
6430 	rdev_for_each_rcu(rdev, mddev) {
6431 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6432 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6433 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6434 			      atomic_read(&disk->sync_io);
6435 		/* sync IO will cause sync_io to increase before the disk_stats
6436 		 * as sync_io is counted when a request starts, and
6437 		 * disk_stats is counted when it completes.
6438 		 * So resync activity will cause curr_events to be smaller than
6439 		 * when there was no such activity.
6440 		 * non-sync IO will cause disk_stat to increase without
6441 		 * increasing sync_io so curr_events will (eventually)
6442 		 * be larger than it was before.  Once it becomes
6443 		 * substantially larger, the test below will cause
6444 		 * the array to appear non-idle, and resync will slow
6445 		 * down.
6446 		 * If there is a lot of outstanding resync activity when
6447 		 * we set last_event to curr_events, then all that activity
6448 		 * completing might cause the array to appear non-idle
6449 		 * and resync will be slowed down even though there might
6450 		 * not have been non-resync activity.  This will only
6451 		 * happen once though.  'last_events' will soon reflect
6452 		 * the state where there is little or no outstanding
6453 		 * resync requests, and further resync activity will
6454 		 * always make curr_events less than last_events.
6455 		 *
6456 		 */
6457 		if (init || curr_events - rdev->last_events > 64) {
6458 			rdev->last_events = curr_events;
6459 			idle = 0;
6460 		}
6461 	}
6462 	rcu_read_unlock();
6463 	return idle;
6464 }
6465 
6466 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6467 {
6468 	/* another "blocks" (512byte) blocks have been synced */
6469 	atomic_sub(blocks, &mddev->recovery_active);
6470 	wake_up(&mddev->recovery_wait);
6471 	if (!ok) {
6472 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6473 		md_wakeup_thread(mddev->thread);
6474 		// stop recovery, signal do_sync ....
6475 	}
6476 }
6477 
6478 
6479 /* md_write_start(mddev, bi)
6480  * If we need to update some array metadata (e.g. 'active' flag
6481  * in superblock) before writing, schedule a superblock update
6482  * and wait for it to complete.
6483  */
6484 void md_write_start(mddev_t *mddev, struct bio *bi)
6485 {
6486 	int did_change = 0;
6487 	if (bio_data_dir(bi) != WRITE)
6488 		return;
6489 
6490 	BUG_ON(mddev->ro == 1);
6491 	if (mddev->ro == 2) {
6492 		/* need to switch to read/write */
6493 		mddev->ro = 0;
6494 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6495 		md_wakeup_thread(mddev->thread);
6496 		md_wakeup_thread(mddev->sync_thread);
6497 		did_change = 1;
6498 	}
6499 	atomic_inc(&mddev->writes_pending);
6500 	if (mddev->safemode == 1)
6501 		mddev->safemode = 0;
6502 	if (mddev->in_sync) {
6503 		spin_lock_irq(&mddev->write_lock);
6504 		if (mddev->in_sync) {
6505 			mddev->in_sync = 0;
6506 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6507 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
6508 			md_wakeup_thread(mddev->thread);
6509 			did_change = 1;
6510 		}
6511 		spin_unlock_irq(&mddev->write_lock);
6512 	}
6513 	if (did_change)
6514 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6515 	wait_event(mddev->sb_wait,
6516 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6517 }
6518 
6519 void md_write_end(mddev_t *mddev)
6520 {
6521 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6522 		if (mddev->safemode == 2)
6523 			md_wakeup_thread(mddev->thread);
6524 		else if (mddev->safemode_delay)
6525 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6526 	}
6527 }
6528 
6529 /* md_allow_write(mddev)
6530  * Calling this ensures that the array is marked 'active' so that writes
6531  * may proceed without blocking.  It is important to call this before
6532  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6533  * Must be called with mddev_lock held.
6534  *
6535  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6536  * is dropped, so return -EAGAIN after notifying userspace.
6537  */
6538 int md_allow_write(mddev_t *mddev)
6539 {
6540 	if (!mddev->pers)
6541 		return 0;
6542 	if (mddev->ro)
6543 		return 0;
6544 	if (!mddev->pers->sync_request)
6545 		return 0;
6546 
6547 	spin_lock_irq(&mddev->write_lock);
6548 	if (mddev->in_sync) {
6549 		mddev->in_sync = 0;
6550 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6551 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
6552 		if (mddev->safemode_delay &&
6553 		    mddev->safemode == 0)
6554 			mddev->safemode = 1;
6555 		spin_unlock_irq(&mddev->write_lock);
6556 		md_update_sb(mddev, 0);
6557 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6558 	} else
6559 		spin_unlock_irq(&mddev->write_lock);
6560 
6561 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6562 		return -EAGAIN;
6563 	else
6564 		return 0;
6565 }
6566 EXPORT_SYMBOL_GPL(md_allow_write);
6567 
6568 void md_unplug(mddev_t *mddev)
6569 {
6570 	if (mddev->queue)
6571 		blk_unplug(mddev->queue);
6572 	if (mddev->plug)
6573 		mddev->plug->unplug_fn(mddev->plug);
6574 }
6575 
6576 #define SYNC_MARKS	10
6577 #define	SYNC_MARK_STEP	(3*HZ)
6578 void md_do_sync(mddev_t *mddev)
6579 {
6580 	mddev_t *mddev2;
6581 	unsigned int currspeed = 0,
6582 		 window;
6583 	sector_t max_sectors,j, io_sectors;
6584 	unsigned long mark[SYNC_MARKS];
6585 	sector_t mark_cnt[SYNC_MARKS];
6586 	int last_mark,m;
6587 	struct list_head *tmp;
6588 	sector_t last_check;
6589 	int skipped = 0;
6590 	mdk_rdev_t *rdev;
6591 	char *desc;
6592 
6593 	/* just incase thread restarts... */
6594 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6595 		return;
6596 	if (mddev->ro) /* never try to sync a read-only array */
6597 		return;
6598 
6599 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6600 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6601 			desc = "data-check";
6602 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6603 			desc = "requested-resync";
6604 		else
6605 			desc = "resync";
6606 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6607 		desc = "reshape";
6608 	else
6609 		desc = "recovery";
6610 
6611 	/* we overload curr_resync somewhat here.
6612 	 * 0 == not engaged in resync at all
6613 	 * 2 == checking that there is no conflict with another sync
6614 	 * 1 == like 2, but have yielded to allow conflicting resync to
6615 	 *		commense
6616 	 * other == active in resync - this many blocks
6617 	 *
6618 	 * Before starting a resync we must have set curr_resync to
6619 	 * 2, and then checked that every "conflicting" array has curr_resync
6620 	 * less than ours.  When we find one that is the same or higher
6621 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
6622 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6623 	 * This will mean we have to start checking from the beginning again.
6624 	 *
6625 	 */
6626 
6627 	do {
6628 		mddev->curr_resync = 2;
6629 
6630 	try_again:
6631 		if (kthread_should_stop())
6632 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6633 
6634 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6635 			goto skip;
6636 		for_each_mddev(mddev2, tmp) {
6637 			if (mddev2 == mddev)
6638 				continue;
6639 			if (!mddev->parallel_resync
6640 			&&  mddev2->curr_resync
6641 			&&  match_mddev_units(mddev, mddev2)) {
6642 				DEFINE_WAIT(wq);
6643 				if (mddev < mddev2 && mddev->curr_resync == 2) {
6644 					/* arbitrarily yield */
6645 					mddev->curr_resync = 1;
6646 					wake_up(&resync_wait);
6647 				}
6648 				if (mddev > mddev2 && mddev->curr_resync == 1)
6649 					/* no need to wait here, we can wait the next
6650 					 * time 'round when curr_resync == 2
6651 					 */
6652 					continue;
6653 				/* We need to wait 'interruptible' so as not to
6654 				 * contribute to the load average, and not to
6655 				 * be caught by 'softlockup'
6656 				 */
6657 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6658 				if (!kthread_should_stop() &&
6659 				    mddev2->curr_resync >= mddev->curr_resync) {
6660 					printk(KERN_INFO "md: delaying %s of %s"
6661 					       " until %s has finished (they"
6662 					       " share one or more physical units)\n",
6663 					       desc, mdname(mddev), mdname(mddev2));
6664 					mddev_put(mddev2);
6665 					if (signal_pending(current))
6666 						flush_signals(current);
6667 					schedule();
6668 					finish_wait(&resync_wait, &wq);
6669 					goto try_again;
6670 				}
6671 				finish_wait(&resync_wait, &wq);
6672 			}
6673 		}
6674 	} while (mddev->curr_resync < 2);
6675 
6676 	j = 0;
6677 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6678 		/* resync follows the size requested by the personality,
6679 		 * which defaults to physical size, but can be virtual size
6680 		 */
6681 		max_sectors = mddev->resync_max_sectors;
6682 		mddev->resync_mismatches = 0;
6683 		/* we don't use the checkpoint if there's a bitmap */
6684 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6685 			j = mddev->resync_min;
6686 		else if (!mddev->bitmap)
6687 			j = mddev->recovery_cp;
6688 
6689 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6690 		max_sectors = mddev->dev_sectors;
6691 	else {
6692 		/* recovery follows the physical size of devices */
6693 		max_sectors = mddev->dev_sectors;
6694 		j = MaxSector;
6695 		rcu_read_lock();
6696 		list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6697 			if (rdev->raid_disk >= 0 &&
6698 			    !test_bit(Faulty, &rdev->flags) &&
6699 			    !test_bit(In_sync, &rdev->flags) &&
6700 			    rdev->recovery_offset < j)
6701 				j = rdev->recovery_offset;
6702 		rcu_read_unlock();
6703 	}
6704 
6705 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6706 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
6707 		" %d KB/sec/disk.\n", speed_min(mddev));
6708 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6709 	       "(but not more than %d KB/sec) for %s.\n",
6710 	       speed_max(mddev), desc);
6711 
6712 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6713 
6714 	io_sectors = 0;
6715 	for (m = 0; m < SYNC_MARKS; m++) {
6716 		mark[m] = jiffies;
6717 		mark_cnt[m] = io_sectors;
6718 	}
6719 	last_mark = 0;
6720 	mddev->resync_mark = mark[last_mark];
6721 	mddev->resync_mark_cnt = mark_cnt[last_mark];
6722 
6723 	/*
6724 	 * Tune reconstruction:
6725 	 */
6726 	window = 32*(PAGE_SIZE/512);
6727 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6728 		window/2,(unsigned long long) max_sectors/2);
6729 
6730 	atomic_set(&mddev->recovery_active, 0);
6731 	last_check = 0;
6732 
6733 	if (j>2) {
6734 		printk(KERN_INFO
6735 		       "md: resuming %s of %s from checkpoint.\n",
6736 		       desc, mdname(mddev));
6737 		mddev->curr_resync = j;
6738 	}
6739 	mddev->curr_resync_completed = mddev->curr_resync;
6740 
6741 	while (j < max_sectors) {
6742 		sector_t sectors;
6743 
6744 		skipped = 0;
6745 
6746 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6747 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
6748 		      (mddev->curr_resync - mddev->curr_resync_completed)
6749 		      > (max_sectors >> 4)) ||
6750 		     (j - mddev->curr_resync_completed)*2
6751 		     >= mddev->resync_max - mddev->curr_resync_completed
6752 			    )) {
6753 			/* time to update curr_resync_completed */
6754 			md_unplug(mddev);
6755 			wait_event(mddev->recovery_wait,
6756 				   atomic_read(&mddev->recovery_active) == 0);
6757 			mddev->curr_resync_completed =
6758 				mddev->curr_resync;
6759 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6760 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6761 		}
6762 
6763 		while (j >= mddev->resync_max && !kthread_should_stop()) {
6764 			/* As this condition is controlled by user-space,
6765 			 * we can block indefinitely, so use '_interruptible'
6766 			 * to avoid triggering warnings.
6767 			 */
6768 			flush_signals(current); /* just in case */
6769 			wait_event_interruptible(mddev->recovery_wait,
6770 						 mddev->resync_max > j
6771 						 || kthread_should_stop());
6772 		}
6773 
6774 		if (kthread_should_stop())
6775 			goto interrupted;
6776 
6777 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
6778 						  currspeed < speed_min(mddev));
6779 		if (sectors == 0) {
6780 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6781 			goto out;
6782 		}
6783 
6784 		if (!skipped) { /* actual IO requested */
6785 			io_sectors += sectors;
6786 			atomic_add(sectors, &mddev->recovery_active);
6787 		}
6788 
6789 		j += sectors;
6790 		if (j>1) mddev->curr_resync = j;
6791 		mddev->curr_mark_cnt = io_sectors;
6792 		if (last_check == 0)
6793 			/* this is the earliers that rebuilt will be
6794 			 * visible in /proc/mdstat
6795 			 */
6796 			md_new_event(mddev);
6797 
6798 		if (last_check + window > io_sectors || j == max_sectors)
6799 			continue;
6800 
6801 		last_check = io_sectors;
6802 
6803 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6804 			break;
6805 
6806 	repeat:
6807 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6808 			/* step marks */
6809 			int next = (last_mark+1) % SYNC_MARKS;
6810 
6811 			mddev->resync_mark = mark[next];
6812 			mddev->resync_mark_cnt = mark_cnt[next];
6813 			mark[next] = jiffies;
6814 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6815 			last_mark = next;
6816 		}
6817 
6818 
6819 		if (kthread_should_stop())
6820 			goto interrupted;
6821 
6822 
6823 		/*
6824 		 * this loop exits only if either when we are slower than
6825 		 * the 'hard' speed limit, or the system was IO-idle for
6826 		 * a jiffy.
6827 		 * the system might be non-idle CPU-wise, but we only care
6828 		 * about not overloading the IO subsystem. (things like an
6829 		 * e2fsck being done on the RAID array should execute fast)
6830 		 */
6831 		md_unplug(mddev);
6832 		cond_resched();
6833 
6834 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6835 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
6836 
6837 		if (currspeed > speed_min(mddev)) {
6838 			if ((currspeed > speed_max(mddev)) ||
6839 					!is_mddev_idle(mddev, 0)) {
6840 				msleep(500);
6841 				goto repeat;
6842 			}
6843 		}
6844 	}
6845 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6846 	/*
6847 	 * this also signals 'finished resyncing' to md_stop
6848 	 */
6849  out:
6850 	md_unplug(mddev);
6851 
6852 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6853 
6854 	/* tell personality that we are finished */
6855 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6856 
6857 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6858 	    mddev->curr_resync > 2) {
6859 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6860 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6861 				if (mddev->curr_resync >= mddev->recovery_cp) {
6862 					printk(KERN_INFO
6863 					       "md: checkpointing %s of %s.\n",
6864 					       desc, mdname(mddev));
6865 					mddev->recovery_cp = mddev->curr_resync;
6866 				}
6867 			} else
6868 				mddev->recovery_cp = MaxSector;
6869 		} else {
6870 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6871 				mddev->curr_resync = MaxSector;
6872 			rcu_read_lock();
6873 			list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6874 				if (rdev->raid_disk >= 0 &&
6875 				    mddev->delta_disks >= 0 &&
6876 				    !test_bit(Faulty, &rdev->flags) &&
6877 				    !test_bit(In_sync, &rdev->flags) &&
6878 				    rdev->recovery_offset < mddev->curr_resync)
6879 					rdev->recovery_offset = mddev->curr_resync;
6880 			rcu_read_unlock();
6881 		}
6882 	}
6883 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6884 
6885  skip:
6886 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6887 		/* We completed so min/max setting can be forgotten if used. */
6888 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6889 			mddev->resync_min = 0;
6890 		mddev->resync_max = MaxSector;
6891 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6892 		mddev->resync_min = mddev->curr_resync_completed;
6893 	mddev->curr_resync = 0;
6894 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6895 		mddev->curr_resync_completed = 0;
6896 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6897 	wake_up(&resync_wait);
6898 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6899 	md_wakeup_thread(mddev->thread);
6900 	return;
6901 
6902  interrupted:
6903 	/*
6904 	 * got a signal, exit.
6905 	 */
6906 	printk(KERN_INFO
6907 	       "md: md_do_sync() got signal ... exiting\n");
6908 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6909 	goto out;
6910 
6911 }
6912 EXPORT_SYMBOL_GPL(md_do_sync);
6913 
6914 
6915 static int remove_and_add_spares(mddev_t *mddev)
6916 {
6917 	mdk_rdev_t *rdev;
6918 	int spares = 0;
6919 
6920 	mddev->curr_resync_completed = 0;
6921 
6922 	list_for_each_entry(rdev, &mddev->disks, same_set)
6923 		if (rdev->raid_disk >= 0 &&
6924 		    !test_bit(Blocked, &rdev->flags) &&
6925 		    (test_bit(Faulty, &rdev->flags) ||
6926 		     ! test_bit(In_sync, &rdev->flags)) &&
6927 		    atomic_read(&rdev->nr_pending)==0) {
6928 			if (mddev->pers->hot_remove_disk(
6929 				    mddev, rdev->raid_disk)==0) {
6930 				char nm[20];
6931 				sprintf(nm,"rd%d", rdev->raid_disk);
6932 				sysfs_remove_link(&mddev->kobj, nm);
6933 				rdev->raid_disk = -1;
6934 			}
6935 		}
6936 
6937 	if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6938 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6939 			if (rdev->raid_disk >= 0 &&
6940 			    !test_bit(In_sync, &rdev->flags) &&
6941 			    !test_bit(Blocked, &rdev->flags))
6942 				spares++;
6943 			if (rdev->raid_disk < 0
6944 			    && !test_bit(Faulty, &rdev->flags)) {
6945 				rdev->recovery_offset = 0;
6946 				if (mddev->pers->
6947 				    hot_add_disk(mddev, rdev) == 0) {
6948 					char nm[20];
6949 					sprintf(nm, "rd%d", rdev->raid_disk);
6950 					if (sysfs_create_link(&mddev->kobj,
6951 							      &rdev->kobj, nm))
6952 						/* failure here is OK */;
6953 					spares++;
6954 					md_new_event(mddev);
6955 					set_bit(MD_CHANGE_DEVS, &mddev->flags);
6956 				} else
6957 					break;
6958 			}
6959 		}
6960 	}
6961 	return spares;
6962 }
6963 /*
6964  * This routine is regularly called by all per-raid-array threads to
6965  * deal with generic issues like resync and super-block update.
6966  * Raid personalities that don't have a thread (linear/raid0) do not
6967  * need this as they never do any recovery or update the superblock.
6968  *
6969  * It does not do any resync itself, but rather "forks" off other threads
6970  * to do that as needed.
6971  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6972  * "->recovery" and create a thread at ->sync_thread.
6973  * When the thread finishes it sets MD_RECOVERY_DONE
6974  * and wakeups up this thread which will reap the thread and finish up.
6975  * This thread also removes any faulty devices (with nr_pending == 0).
6976  *
6977  * The overall approach is:
6978  *  1/ if the superblock needs updating, update it.
6979  *  2/ If a recovery thread is running, don't do anything else.
6980  *  3/ If recovery has finished, clean up, possibly marking spares active.
6981  *  4/ If there are any faulty devices, remove them.
6982  *  5/ If array is degraded, try to add spares devices
6983  *  6/ If array has spares or is not in-sync, start a resync thread.
6984  */
6985 void md_check_recovery(mddev_t *mddev)
6986 {
6987 	mdk_rdev_t *rdev;
6988 
6989 
6990 	if (mddev->bitmap)
6991 		bitmap_daemon_work(mddev);
6992 
6993 	if (mddev->ro)
6994 		return;
6995 
6996 	if (signal_pending(current)) {
6997 		if (mddev->pers->sync_request && !mddev->external) {
6998 			printk(KERN_INFO "md: %s in immediate safe mode\n",
6999 			       mdname(mddev));
7000 			mddev->safemode = 2;
7001 		}
7002 		flush_signals(current);
7003 	}
7004 
7005 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7006 		return;
7007 	if ( ! (
7008 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7009 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7010 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7011 		(mddev->external == 0 && mddev->safemode == 1) ||
7012 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7013 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7014 		))
7015 		return;
7016 
7017 	if (mddev_trylock(mddev)) {
7018 		int spares = 0;
7019 
7020 		if (mddev->ro) {
7021 			/* Only thing we do on a ro array is remove
7022 			 * failed devices.
7023 			 */
7024 			remove_and_add_spares(mddev);
7025 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7026 			goto unlock;
7027 		}
7028 
7029 		if (!mddev->external) {
7030 			int did_change = 0;
7031 			spin_lock_irq(&mddev->write_lock);
7032 			if (mddev->safemode &&
7033 			    !atomic_read(&mddev->writes_pending) &&
7034 			    !mddev->in_sync &&
7035 			    mddev->recovery_cp == MaxSector) {
7036 				mddev->in_sync = 1;
7037 				did_change = 1;
7038 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7039 			}
7040 			if (mddev->safemode == 1)
7041 				mddev->safemode = 0;
7042 			spin_unlock_irq(&mddev->write_lock);
7043 			if (did_change)
7044 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7045 		}
7046 
7047 		if (mddev->flags)
7048 			md_update_sb(mddev, 0);
7049 
7050 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7051 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7052 			/* resync/recovery still happening */
7053 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7054 			goto unlock;
7055 		}
7056 		if (mddev->sync_thread) {
7057 			/* resync has finished, collect result */
7058 			md_unregister_thread(mddev->sync_thread);
7059 			mddev->sync_thread = NULL;
7060 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7061 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7062 				/* success...*/
7063 				/* activate any spares */
7064 				if (mddev->pers->spare_active(mddev))
7065 					sysfs_notify(&mddev->kobj, NULL,
7066 						     "degraded");
7067 			}
7068 			if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7069 			    mddev->pers->finish_reshape)
7070 				mddev->pers->finish_reshape(mddev);
7071 			md_update_sb(mddev, 1);
7072 
7073 			/* if array is no-longer degraded, then any saved_raid_disk
7074 			 * information must be scrapped
7075 			 */
7076 			if (!mddev->degraded)
7077 				list_for_each_entry(rdev, &mddev->disks, same_set)
7078 					rdev->saved_raid_disk = -1;
7079 
7080 			mddev->recovery = 0;
7081 			/* flag recovery needed just to double check */
7082 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7083 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7084 			md_new_event(mddev);
7085 			goto unlock;
7086 		}
7087 		/* Set RUNNING before clearing NEEDED to avoid
7088 		 * any transients in the value of "sync_action".
7089 		 */
7090 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7091 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7092 		/* Clear some bits that don't mean anything, but
7093 		 * might be left set
7094 		 */
7095 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7096 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7097 
7098 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7099 			goto unlock;
7100 		/* no recovery is running.
7101 		 * remove any failed drives, then
7102 		 * add spares if possible.
7103 		 * Spare are also removed and re-added, to allow
7104 		 * the personality to fail the re-add.
7105 		 */
7106 
7107 		if (mddev->reshape_position != MaxSector) {
7108 			if (mddev->pers->check_reshape == NULL ||
7109 			    mddev->pers->check_reshape(mddev) != 0)
7110 				/* Cannot proceed */
7111 				goto unlock;
7112 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7113 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7114 		} else if ((spares = remove_and_add_spares(mddev))) {
7115 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7116 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7117 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7118 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7119 		} else if (mddev->recovery_cp < MaxSector) {
7120 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7121 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7122 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7123 			/* nothing to be done ... */
7124 			goto unlock;
7125 
7126 		if (mddev->pers->sync_request) {
7127 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7128 				/* We are adding a device or devices to an array
7129 				 * which has the bitmap stored on all devices.
7130 				 * So make sure all bitmap pages get written
7131 				 */
7132 				bitmap_write_all(mddev->bitmap);
7133 			}
7134 			mddev->sync_thread = md_register_thread(md_do_sync,
7135 								mddev,
7136 								"resync");
7137 			if (!mddev->sync_thread) {
7138 				printk(KERN_ERR "%s: could not start resync"
7139 					" thread...\n",
7140 					mdname(mddev));
7141 				/* leave the spares where they are, it shouldn't hurt */
7142 				mddev->recovery = 0;
7143 			} else
7144 				md_wakeup_thread(mddev->sync_thread);
7145 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7146 			md_new_event(mddev);
7147 		}
7148 	unlock:
7149 		if (!mddev->sync_thread) {
7150 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7151 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7152 					       &mddev->recovery))
7153 				if (mddev->sysfs_action)
7154 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7155 		}
7156 		mddev_unlock(mddev);
7157 	}
7158 }
7159 
7160 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7161 {
7162 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7163 	wait_event_timeout(rdev->blocked_wait,
7164 			   !test_bit(Blocked, &rdev->flags),
7165 			   msecs_to_jiffies(5000));
7166 	rdev_dec_pending(rdev, mddev);
7167 }
7168 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7169 
7170 static int md_notify_reboot(struct notifier_block *this,
7171 			    unsigned long code, void *x)
7172 {
7173 	struct list_head *tmp;
7174 	mddev_t *mddev;
7175 
7176 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7177 
7178 		printk(KERN_INFO "md: stopping all md devices.\n");
7179 
7180 		for_each_mddev(mddev, tmp)
7181 			if (mddev_trylock(mddev)) {
7182 				/* Force a switch to readonly even array
7183 				 * appears to still be in use.  Hence
7184 				 * the '100'.
7185 				 */
7186 				md_set_readonly(mddev, 100);
7187 				mddev_unlock(mddev);
7188 			}
7189 		/*
7190 		 * certain more exotic SCSI devices are known to be
7191 		 * volatile wrt too early system reboots. While the
7192 		 * right place to handle this issue is the given
7193 		 * driver, we do want to have a safe RAID driver ...
7194 		 */
7195 		mdelay(1000*1);
7196 	}
7197 	return NOTIFY_DONE;
7198 }
7199 
7200 static struct notifier_block md_notifier = {
7201 	.notifier_call	= md_notify_reboot,
7202 	.next		= NULL,
7203 	.priority	= INT_MAX, /* before any real devices */
7204 };
7205 
7206 static void md_geninit(void)
7207 {
7208 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7209 
7210 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7211 }
7212 
7213 static int __init md_init(void)
7214 {
7215 	if (register_blkdev(MD_MAJOR, "md"))
7216 		return -1;
7217 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
7218 		unregister_blkdev(MD_MAJOR, "md");
7219 		return -1;
7220 	}
7221 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7222 			    md_probe, NULL, NULL);
7223 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7224 			    md_probe, NULL, NULL);
7225 
7226 	register_reboot_notifier(&md_notifier);
7227 	raid_table_header = register_sysctl_table(raid_root_table);
7228 
7229 	md_geninit();
7230 	return 0;
7231 }
7232 
7233 
7234 #ifndef MODULE
7235 
7236 /*
7237  * Searches all registered partitions for autorun RAID arrays
7238  * at boot time.
7239  */
7240 
7241 static LIST_HEAD(all_detected_devices);
7242 struct detected_devices_node {
7243 	struct list_head list;
7244 	dev_t dev;
7245 };
7246 
7247 void md_autodetect_dev(dev_t dev)
7248 {
7249 	struct detected_devices_node *node_detected_dev;
7250 
7251 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7252 	if (node_detected_dev) {
7253 		node_detected_dev->dev = dev;
7254 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
7255 	} else {
7256 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7257 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7258 	}
7259 }
7260 
7261 
7262 static void autostart_arrays(int part)
7263 {
7264 	mdk_rdev_t *rdev;
7265 	struct detected_devices_node *node_detected_dev;
7266 	dev_t dev;
7267 	int i_scanned, i_passed;
7268 
7269 	i_scanned = 0;
7270 	i_passed = 0;
7271 
7272 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7273 
7274 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7275 		i_scanned++;
7276 		node_detected_dev = list_entry(all_detected_devices.next,
7277 					struct detected_devices_node, list);
7278 		list_del(&node_detected_dev->list);
7279 		dev = node_detected_dev->dev;
7280 		kfree(node_detected_dev);
7281 		rdev = md_import_device(dev,0, 90);
7282 		if (IS_ERR(rdev))
7283 			continue;
7284 
7285 		if (test_bit(Faulty, &rdev->flags)) {
7286 			MD_BUG();
7287 			continue;
7288 		}
7289 		set_bit(AutoDetected, &rdev->flags);
7290 		list_add(&rdev->same_set, &pending_raid_disks);
7291 		i_passed++;
7292 	}
7293 
7294 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7295 						i_scanned, i_passed);
7296 
7297 	autorun_devices(part);
7298 }
7299 
7300 #endif /* !MODULE */
7301 
7302 static __exit void md_exit(void)
7303 {
7304 	mddev_t *mddev;
7305 	struct list_head *tmp;
7306 
7307 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7308 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7309 
7310 	unregister_blkdev(MD_MAJOR,"md");
7311 	unregister_blkdev(mdp_major, "mdp");
7312 	unregister_reboot_notifier(&md_notifier);
7313 	unregister_sysctl_table(raid_table_header);
7314 	remove_proc_entry("mdstat", NULL);
7315 	for_each_mddev(mddev, tmp) {
7316 		export_array(mddev);
7317 		mddev->hold_active = 0;
7318 	}
7319 }
7320 
7321 subsys_initcall(md_init);
7322 module_exit(md_exit)
7323 
7324 static int get_ro(char *buffer, struct kernel_param *kp)
7325 {
7326 	return sprintf(buffer, "%d", start_readonly);
7327 }
7328 static int set_ro(const char *val, struct kernel_param *kp)
7329 {
7330 	char *e;
7331 	int num = simple_strtoul(val, &e, 10);
7332 	if (*val && (*e == '\0' || *e == '\n')) {
7333 		start_readonly = num;
7334 		return 0;
7335 	}
7336 	return -EINVAL;
7337 }
7338 
7339 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7340 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7341 
7342 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7343 
7344 EXPORT_SYMBOL(register_md_personality);
7345 EXPORT_SYMBOL(unregister_md_personality);
7346 EXPORT_SYMBOL(md_error);
7347 EXPORT_SYMBOL(md_done_sync);
7348 EXPORT_SYMBOL(md_write_start);
7349 EXPORT_SYMBOL(md_write_end);
7350 EXPORT_SYMBOL(md_register_thread);
7351 EXPORT_SYMBOL(md_unregister_thread);
7352 EXPORT_SYMBOL(md_wakeup_thread);
7353 EXPORT_SYMBOL(md_check_recovery);
7354 MODULE_LICENSE("GPL");
7355 MODULE_DESCRIPTION("MD RAID framework");
7356 MODULE_ALIAS("md");
7357 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
7358