1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected 74 * by pers_lock. 75 * pers_lock does extra service to protect accesses to 76 * mddev->thread when the mutex cannot be held. 77 */ 78 static LIST_HEAD(pers_list); 79 static DEFINE_SPINLOCK(pers_lock); 80 81 static struct kobj_type md_ktype; 82 83 struct md_cluster_operations *md_cluster_ops; 84 EXPORT_SYMBOL(md_cluster_ops); 85 static struct module *md_cluster_mod; 86 87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 88 static struct workqueue_struct *md_wq; 89 static struct workqueue_struct *md_misc_wq; 90 static struct workqueue_struct *md_rdev_misc_wq; 91 92 static int remove_and_add_spares(struct mddev *mddev, 93 struct md_rdev *this); 94 static void mddev_detach(struct mddev *mddev); 95 96 /* 97 * Default number of read corrections we'll attempt on an rdev 98 * before ejecting it from the array. We divide the read error 99 * count by 2 for every hour elapsed between read errors. 100 */ 101 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 102 /* Default safemode delay: 200 msec */ 103 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 104 /* 105 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 106 * is 1000 KB/sec, so the extra system load does not show up that much. 107 * Increase it if you want to have more _guaranteed_ speed. Note that 108 * the RAID driver will use the maximum available bandwidth if the IO 109 * subsystem is idle. There is also an 'absolute maximum' reconstruction 110 * speed limit - in case reconstruction slows down your system despite 111 * idle IO detection. 112 * 113 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 114 * or /sys/block/mdX/md/sync_speed_{min,max} 115 */ 116 117 static int sysctl_speed_limit_min = 1000; 118 static int sysctl_speed_limit_max = 200000; 119 static inline int speed_min(struct mddev *mddev) 120 { 121 return mddev->sync_speed_min ? 122 mddev->sync_speed_min : sysctl_speed_limit_min; 123 } 124 125 static inline int speed_max(struct mddev *mddev) 126 { 127 return mddev->sync_speed_max ? 128 mddev->sync_speed_max : sysctl_speed_limit_max; 129 } 130 131 static void rdev_uninit_serial(struct md_rdev *rdev) 132 { 133 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 134 return; 135 136 kvfree(rdev->serial); 137 rdev->serial = NULL; 138 } 139 140 static void rdevs_uninit_serial(struct mddev *mddev) 141 { 142 struct md_rdev *rdev; 143 144 rdev_for_each(rdev, mddev) 145 rdev_uninit_serial(rdev); 146 } 147 148 static int rdev_init_serial(struct md_rdev *rdev) 149 { 150 /* serial_nums equals with BARRIER_BUCKETS_NR */ 151 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 152 struct serial_in_rdev *serial = NULL; 153 154 if (test_bit(CollisionCheck, &rdev->flags)) 155 return 0; 156 157 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 158 GFP_KERNEL); 159 if (!serial) 160 return -ENOMEM; 161 162 for (i = 0; i < serial_nums; i++) { 163 struct serial_in_rdev *serial_tmp = &serial[i]; 164 165 spin_lock_init(&serial_tmp->serial_lock); 166 serial_tmp->serial_rb = RB_ROOT_CACHED; 167 init_waitqueue_head(&serial_tmp->serial_io_wait); 168 } 169 170 rdev->serial = serial; 171 set_bit(CollisionCheck, &rdev->flags); 172 173 return 0; 174 } 175 176 static int rdevs_init_serial(struct mddev *mddev) 177 { 178 struct md_rdev *rdev; 179 int ret = 0; 180 181 rdev_for_each(rdev, mddev) { 182 ret = rdev_init_serial(rdev); 183 if (ret) 184 break; 185 } 186 187 /* Free all resources if pool is not existed */ 188 if (ret && !mddev->serial_info_pool) 189 rdevs_uninit_serial(mddev); 190 191 return ret; 192 } 193 194 /* 195 * rdev needs to enable serial stuffs if it meets the conditions: 196 * 1. it is multi-queue device flaged with writemostly. 197 * 2. the write-behind mode is enabled. 198 */ 199 static int rdev_need_serial(struct md_rdev *rdev) 200 { 201 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 202 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 203 test_bit(WriteMostly, &rdev->flags)); 204 } 205 206 /* 207 * Init resource for rdev(s), then create serial_info_pool if: 208 * 1. rdev is the first device which return true from rdev_enable_serial. 209 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 210 */ 211 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 212 bool is_suspend) 213 { 214 int ret = 0; 215 216 if (rdev && !rdev_need_serial(rdev) && 217 !test_bit(CollisionCheck, &rdev->flags)) 218 return; 219 220 if (!is_suspend) 221 mddev_suspend(mddev); 222 223 if (!rdev) 224 ret = rdevs_init_serial(mddev); 225 else 226 ret = rdev_init_serial(rdev); 227 if (ret) 228 goto abort; 229 230 if (mddev->serial_info_pool == NULL) { 231 /* 232 * already in memalloc noio context by 233 * mddev_suspend() 234 */ 235 mddev->serial_info_pool = 236 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 237 sizeof(struct serial_info)); 238 if (!mddev->serial_info_pool) { 239 rdevs_uninit_serial(mddev); 240 pr_err("can't alloc memory pool for serialization\n"); 241 } 242 } 243 244 abort: 245 if (!is_suspend) 246 mddev_resume(mddev); 247 } 248 249 /* 250 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 251 * 1. rdev is the last device flaged with CollisionCheck. 252 * 2. when bitmap is destroyed while policy is not enabled. 253 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 254 */ 255 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 256 bool is_suspend) 257 { 258 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 259 return; 260 261 if (mddev->serial_info_pool) { 262 struct md_rdev *temp; 263 int num = 0; /* used to track if other rdevs need the pool */ 264 265 if (!is_suspend) 266 mddev_suspend(mddev); 267 rdev_for_each(temp, mddev) { 268 if (!rdev) { 269 if (!mddev->serialize_policy || 270 !rdev_need_serial(temp)) 271 rdev_uninit_serial(temp); 272 else 273 num++; 274 } else if (temp != rdev && 275 test_bit(CollisionCheck, &temp->flags)) 276 num++; 277 } 278 279 if (rdev) 280 rdev_uninit_serial(rdev); 281 282 if (num) 283 pr_info("The mempool could be used by other devices\n"); 284 else { 285 mempool_destroy(mddev->serial_info_pool); 286 mddev->serial_info_pool = NULL; 287 } 288 if (!is_suspend) 289 mddev_resume(mddev); 290 } 291 } 292 293 static struct ctl_table_header *raid_table_header; 294 295 static struct ctl_table raid_table[] = { 296 { 297 .procname = "speed_limit_min", 298 .data = &sysctl_speed_limit_min, 299 .maxlen = sizeof(int), 300 .mode = S_IRUGO|S_IWUSR, 301 .proc_handler = proc_dointvec, 302 }, 303 { 304 .procname = "speed_limit_max", 305 .data = &sysctl_speed_limit_max, 306 .maxlen = sizeof(int), 307 .mode = S_IRUGO|S_IWUSR, 308 .proc_handler = proc_dointvec, 309 }, 310 { } 311 }; 312 313 static struct ctl_table raid_dir_table[] = { 314 { 315 .procname = "raid", 316 .maxlen = 0, 317 .mode = S_IRUGO|S_IXUGO, 318 .child = raid_table, 319 }, 320 { } 321 }; 322 323 static struct ctl_table raid_root_table[] = { 324 { 325 .procname = "dev", 326 .maxlen = 0, 327 .mode = 0555, 328 .child = raid_dir_table, 329 }, 330 { } 331 }; 332 333 static int start_readonly; 334 335 /* 336 * The original mechanism for creating an md device is to create 337 * a device node in /dev and to open it. This causes races with device-close. 338 * The preferred method is to write to the "new_array" module parameter. 339 * This can avoid races. 340 * Setting create_on_open to false disables the original mechanism 341 * so all the races disappear. 342 */ 343 static bool create_on_open = true; 344 345 /* 346 * We have a system wide 'event count' that is incremented 347 * on any 'interesting' event, and readers of /proc/mdstat 348 * can use 'poll' or 'select' to find out when the event 349 * count increases. 350 * 351 * Events are: 352 * start array, stop array, error, add device, remove device, 353 * start build, activate spare 354 */ 355 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 356 static atomic_t md_event_count; 357 void md_new_event(void) 358 { 359 atomic_inc(&md_event_count); 360 wake_up(&md_event_waiters); 361 } 362 EXPORT_SYMBOL_GPL(md_new_event); 363 364 /* 365 * Enables to iterate over all existing md arrays 366 * all_mddevs_lock protects this list. 367 */ 368 static LIST_HEAD(all_mddevs); 369 static DEFINE_SPINLOCK(all_mddevs_lock); 370 371 /* 372 * iterates through all used mddevs in the system. 373 * We take care to grab the all_mddevs_lock whenever navigating 374 * the list, and to always hold a refcount when unlocked. 375 * Any code which breaks out of this loop while own 376 * a reference to the current mddev and must mddev_put it. 377 */ 378 #define for_each_mddev(_mddev,_tmp) \ 379 \ 380 for (({ spin_lock(&all_mddevs_lock); \ 381 _tmp = all_mddevs.next; \ 382 _mddev = NULL;}); \ 383 ({ if (_tmp != &all_mddevs) \ 384 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 385 spin_unlock(&all_mddevs_lock); \ 386 if (_mddev) mddev_put(_mddev); \ 387 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 388 _tmp != &all_mddevs;}); \ 389 ({ spin_lock(&all_mddevs_lock); \ 390 _tmp = _tmp->next;}) \ 391 ) 392 393 /* Rather than calling directly into the personality make_request function, 394 * IO requests come here first so that we can check if the device is 395 * being suspended pending a reconfiguration. 396 * We hold a refcount over the call to ->make_request. By the time that 397 * call has finished, the bio has been linked into some internal structure 398 * and so is visible to ->quiesce(), so we don't need the refcount any more. 399 */ 400 static bool is_suspended(struct mddev *mddev, struct bio *bio) 401 { 402 if (mddev->suspended) 403 return true; 404 if (bio_data_dir(bio) != WRITE) 405 return false; 406 if (mddev->suspend_lo >= mddev->suspend_hi) 407 return false; 408 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 409 return false; 410 if (bio_end_sector(bio) < mddev->suspend_lo) 411 return false; 412 return true; 413 } 414 415 void md_handle_request(struct mddev *mddev, struct bio *bio) 416 { 417 check_suspended: 418 rcu_read_lock(); 419 if (is_suspended(mddev, bio)) { 420 DEFINE_WAIT(__wait); 421 /* Bail out if REQ_NOWAIT is set for the bio */ 422 if (bio->bi_opf & REQ_NOWAIT) { 423 rcu_read_unlock(); 424 bio_wouldblock_error(bio); 425 return; 426 } 427 for (;;) { 428 prepare_to_wait(&mddev->sb_wait, &__wait, 429 TASK_UNINTERRUPTIBLE); 430 if (!is_suspended(mddev, bio)) 431 break; 432 rcu_read_unlock(); 433 schedule(); 434 rcu_read_lock(); 435 } 436 finish_wait(&mddev->sb_wait, &__wait); 437 } 438 atomic_inc(&mddev->active_io); 439 rcu_read_unlock(); 440 441 if (!mddev->pers->make_request(mddev, bio)) { 442 atomic_dec(&mddev->active_io); 443 wake_up(&mddev->sb_wait); 444 goto check_suspended; 445 } 446 447 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 448 wake_up(&mddev->sb_wait); 449 } 450 EXPORT_SYMBOL(md_handle_request); 451 452 static void md_submit_bio(struct bio *bio) 453 { 454 const int rw = bio_data_dir(bio); 455 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 456 457 if (mddev == NULL || mddev->pers == NULL) { 458 bio_io_error(bio); 459 return; 460 } 461 462 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 463 bio_io_error(bio); 464 return; 465 } 466 467 blk_queue_split(&bio); 468 469 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 470 if (bio_sectors(bio) != 0) 471 bio->bi_status = BLK_STS_IOERR; 472 bio_endio(bio); 473 return; 474 } 475 476 /* bio could be mergeable after passing to underlayer */ 477 bio->bi_opf &= ~REQ_NOMERGE; 478 479 md_handle_request(mddev, bio); 480 } 481 482 /* mddev_suspend makes sure no new requests are submitted 483 * to the device, and that any requests that have been submitted 484 * are completely handled. 485 * Once mddev_detach() is called and completes, the module will be 486 * completely unused. 487 */ 488 void mddev_suspend(struct mddev *mddev) 489 { 490 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 491 lockdep_assert_held(&mddev->reconfig_mutex); 492 if (mddev->suspended++) 493 return; 494 synchronize_rcu(); 495 wake_up(&mddev->sb_wait); 496 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 497 smp_mb__after_atomic(); 498 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 499 mddev->pers->quiesce(mddev, 1); 500 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 501 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 502 503 del_timer_sync(&mddev->safemode_timer); 504 /* restrict memory reclaim I/O during raid array is suspend */ 505 mddev->noio_flag = memalloc_noio_save(); 506 } 507 EXPORT_SYMBOL_GPL(mddev_suspend); 508 509 void mddev_resume(struct mddev *mddev) 510 { 511 /* entred the memalloc scope from mddev_suspend() */ 512 memalloc_noio_restore(mddev->noio_flag); 513 lockdep_assert_held(&mddev->reconfig_mutex); 514 if (--mddev->suspended) 515 return; 516 wake_up(&mddev->sb_wait); 517 mddev->pers->quiesce(mddev, 0); 518 519 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 520 md_wakeup_thread(mddev->thread); 521 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 522 } 523 EXPORT_SYMBOL_GPL(mddev_resume); 524 525 /* 526 * Generic flush handling for md 527 */ 528 529 static void md_end_flush(struct bio *bio) 530 { 531 struct md_rdev *rdev = bio->bi_private; 532 struct mddev *mddev = rdev->mddev; 533 534 rdev_dec_pending(rdev, mddev); 535 536 if (atomic_dec_and_test(&mddev->flush_pending)) { 537 /* The pre-request flush has finished */ 538 queue_work(md_wq, &mddev->flush_work); 539 } 540 bio_put(bio); 541 } 542 543 static void md_submit_flush_data(struct work_struct *ws); 544 545 static void submit_flushes(struct work_struct *ws) 546 { 547 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 548 struct md_rdev *rdev; 549 550 mddev->start_flush = ktime_get_boottime(); 551 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 552 atomic_set(&mddev->flush_pending, 1); 553 rcu_read_lock(); 554 rdev_for_each_rcu(rdev, mddev) 555 if (rdev->raid_disk >= 0 && 556 !test_bit(Faulty, &rdev->flags)) { 557 /* Take two references, one is dropped 558 * when request finishes, one after 559 * we reclaim rcu_read_lock 560 */ 561 struct bio *bi; 562 atomic_inc(&rdev->nr_pending); 563 atomic_inc(&rdev->nr_pending); 564 rcu_read_unlock(); 565 bi = bio_alloc_bioset(rdev->bdev, 0, 566 REQ_OP_WRITE | REQ_PREFLUSH, 567 GFP_NOIO, &mddev->bio_set); 568 bi->bi_end_io = md_end_flush; 569 bi->bi_private = rdev; 570 atomic_inc(&mddev->flush_pending); 571 submit_bio(bi); 572 rcu_read_lock(); 573 rdev_dec_pending(rdev, mddev); 574 } 575 rcu_read_unlock(); 576 if (atomic_dec_and_test(&mddev->flush_pending)) 577 queue_work(md_wq, &mddev->flush_work); 578 } 579 580 static void md_submit_flush_data(struct work_struct *ws) 581 { 582 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 583 struct bio *bio = mddev->flush_bio; 584 585 /* 586 * must reset flush_bio before calling into md_handle_request to avoid a 587 * deadlock, because other bios passed md_handle_request suspend check 588 * could wait for this and below md_handle_request could wait for those 589 * bios because of suspend check 590 */ 591 spin_lock_irq(&mddev->lock); 592 mddev->prev_flush_start = mddev->start_flush; 593 mddev->flush_bio = NULL; 594 spin_unlock_irq(&mddev->lock); 595 wake_up(&mddev->sb_wait); 596 597 if (bio->bi_iter.bi_size == 0) { 598 /* an empty barrier - all done */ 599 bio_endio(bio); 600 } else { 601 bio->bi_opf &= ~REQ_PREFLUSH; 602 md_handle_request(mddev, bio); 603 } 604 } 605 606 /* 607 * Manages consolidation of flushes and submitting any flushes needed for 608 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 609 * being finished in another context. Returns false if the flushing is 610 * complete but still needs the I/O portion of the bio to be processed. 611 */ 612 bool md_flush_request(struct mddev *mddev, struct bio *bio) 613 { 614 ktime_t req_start = ktime_get_boottime(); 615 spin_lock_irq(&mddev->lock); 616 /* flush requests wait until ongoing flush completes, 617 * hence coalescing all the pending requests. 618 */ 619 wait_event_lock_irq(mddev->sb_wait, 620 !mddev->flush_bio || 621 ktime_before(req_start, mddev->prev_flush_start), 622 mddev->lock); 623 /* new request after previous flush is completed */ 624 if (ktime_after(req_start, mddev->prev_flush_start)) { 625 WARN_ON(mddev->flush_bio); 626 mddev->flush_bio = bio; 627 bio = NULL; 628 } 629 spin_unlock_irq(&mddev->lock); 630 631 if (!bio) { 632 INIT_WORK(&mddev->flush_work, submit_flushes); 633 queue_work(md_wq, &mddev->flush_work); 634 } else { 635 /* flush was performed for some other bio while we waited. */ 636 if (bio->bi_iter.bi_size == 0) 637 /* an empty barrier - all done */ 638 bio_endio(bio); 639 else { 640 bio->bi_opf &= ~REQ_PREFLUSH; 641 return false; 642 } 643 } 644 return true; 645 } 646 EXPORT_SYMBOL(md_flush_request); 647 648 static inline struct mddev *mddev_get(struct mddev *mddev) 649 { 650 atomic_inc(&mddev->active); 651 return mddev; 652 } 653 654 static void mddev_delayed_delete(struct work_struct *ws); 655 656 static void mddev_put(struct mddev *mddev) 657 { 658 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 659 return; 660 if (!mddev->raid_disks && list_empty(&mddev->disks) && 661 mddev->ctime == 0 && !mddev->hold_active) { 662 /* Array is not configured at all, and not held active, 663 * so destroy it */ 664 list_del_init(&mddev->all_mddevs); 665 666 /* 667 * Call queue_work inside the spinlock so that 668 * flush_workqueue() after mddev_find will succeed in waiting 669 * for the work to be done. 670 */ 671 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 672 queue_work(md_misc_wq, &mddev->del_work); 673 } 674 spin_unlock(&all_mddevs_lock); 675 } 676 677 static void md_safemode_timeout(struct timer_list *t); 678 679 void mddev_init(struct mddev *mddev) 680 { 681 kobject_init(&mddev->kobj, &md_ktype); 682 mutex_init(&mddev->open_mutex); 683 mutex_init(&mddev->reconfig_mutex); 684 mutex_init(&mddev->bitmap_info.mutex); 685 INIT_LIST_HEAD(&mddev->disks); 686 INIT_LIST_HEAD(&mddev->all_mddevs); 687 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 688 atomic_set(&mddev->active, 1); 689 atomic_set(&mddev->openers, 0); 690 atomic_set(&mddev->active_io, 0); 691 spin_lock_init(&mddev->lock); 692 atomic_set(&mddev->flush_pending, 0); 693 init_waitqueue_head(&mddev->sb_wait); 694 init_waitqueue_head(&mddev->recovery_wait); 695 mddev->reshape_position = MaxSector; 696 mddev->reshape_backwards = 0; 697 mddev->last_sync_action = "none"; 698 mddev->resync_min = 0; 699 mddev->resync_max = MaxSector; 700 mddev->level = LEVEL_NONE; 701 } 702 EXPORT_SYMBOL_GPL(mddev_init); 703 704 static struct mddev *mddev_find_locked(dev_t unit) 705 { 706 struct mddev *mddev; 707 708 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 709 if (mddev->unit == unit) 710 return mddev; 711 712 return NULL; 713 } 714 715 /* find an unused unit number */ 716 static dev_t mddev_alloc_unit(void) 717 { 718 static int next_minor = 512; 719 int start = next_minor; 720 bool is_free = 0; 721 dev_t dev = 0; 722 723 while (!is_free) { 724 dev = MKDEV(MD_MAJOR, next_minor); 725 next_minor++; 726 if (next_minor > MINORMASK) 727 next_minor = 0; 728 if (next_minor == start) 729 return 0; /* Oh dear, all in use. */ 730 is_free = !mddev_find_locked(dev); 731 } 732 733 return dev; 734 } 735 736 static struct mddev *mddev_find(dev_t unit) 737 { 738 struct mddev *mddev; 739 740 if (MAJOR(unit) != MD_MAJOR) 741 unit &= ~((1 << MdpMinorShift) - 1); 742 743 spin_lock(&all_mddevs_lock); 744 mddev = mddev_find_locked(unit); 745 if (mddev) 746 mddev_get(mddev); 747 spin_unlock(&all_mddevs_lock); 748 749 return mddev; 750 } 751 752 static struct mddev *mddev_alloc(dev_t unit) 753 { 754 struct mddev *new; 755 int error; 756 757 if (unit && MAJOR(unit) != MD_MAJOR) 758 unit &= ~((1 << MdpMinorShift) - 1); 759 760 new = kzalloc(sizeof(*new), GFP_KERNEL); 761 if (!new) 762 return ERR_PTR(-ENOMEM); 763 mddev_init(new); 764 765 spin_lock(&all_mddevs_lock); 766 if (unit) { 767 error = -EEXIST; 768 if (mddev_find_locked(unit)) 769 goto out_free_new; 770 new->unit = unit; 771 if (MAJOR(unit) == MD_MAJOR) 772 new->md_minor = MINOR(unit); 773 else 774 new->md_minor = MINOR(unit) >> MdpMinorShift; 775 new->hold_active = UNTIL_IOCTL; 776 } else { 777 error = -ENODEV; 778 new->unit = mddev_alloc_unit(); 779 if (!new->unit) 780 goto out_free_new; 781 new->md_minor = MINOR(new->unit); 782 new->hold_active = UNTIL_STOP; 783 } 784 785 list_add(&new->all_mddevs, &all_mddevs); 786 spin_unlock(&all_mddevs_lock); 787 return new; 788 out_free_new: 789 spin_unlock(&all_mddevs_lock); 790 kfree(new); 791 return ERR_PTR(error); 792 } 793 794 static const struct attribute_group md_redundancy_group; 795 796 void mddev_unlock(struct mddev *mddev) 797 { 798 if (mddev->to_remove) { 799 /* These cannot be removed under reconfig_mutex as 800 * an access to the files will try to take reconfig_mutex 801 * while holding the file unremovable, which leads to 802 * a deadlock. 803 * So hold set sysfs_active while the remove in happeing, 804 * and anything else which might set ->to_remove or my 805 * otherwise change the sysfs namespace will fail with 806 * -EBUSY if sysfs_active is still set. 807 * We set sysfs_active under reconfig_mutex and elsewhere 808 * test it under the same mutex to ensure its correct value 809 * is seen. 810 */ 811 const struct attribute_group *to_remove = mddev->to_remove; 812 mddev->to_remove = NULL; 813 mddev->sysfs_active = 1; 814 mutex_unlock(&mddev->reconfig_mutex); 815 816 if (mddev->kobj.sd) { 817 if (to_remove != &md_redundancy_group) 818 sysfs_remove_group(&mddev->kobj, to_remove); 819 if (mddev->pers == NULL || 820 mddev->pers->sync_request == NULL) { 821 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 822 if (mddev->sysfs_action) 823 sysfs_put(mddev->sysfs_action); 824 if (mddev->sysfs_completed) 825 sysfs_put(mddev->sysfs_completed); 826 if (mddev->sysfs_degraded) 827 sysfs_put(mddev->sysfs_degraded); 828 mddev->sysfs_action = NULL; 829 mddev->sysfs_completed = NULL; 830 mddev->sysfs_degraded = NULL; 831 } 832 } 833 mddev->sysfs_active = 0; 834 } else 835 mutex_unlock(&mddev->reconfig_mutex); 836 837 /* As we've dropped the mutex we need a spinlock to 838 * make sure the thread doesn't disappear 839 */ 840 spin_lock(&pers_lock); 841 md_wakeup_thread(mddev->thread); 842 wake_up(&mddev->sb_wait); 843 spin_unlock(&pers_lock); 844 } 845 EXPORT_SYMBOL_GPL(mddev_unlock); 846 847 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 848 { 849 struct md_rdev *rdev; 850 851 rdev_for_each_rcu(rdev, mddev) 852 if (rdev->desc_nr == nr) 853 return rdev; 854 855 return NULL; 856 } 857 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 858 859 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 860 { 861 struct md_rdev *rdev; 862 863 rdev_for_each(rdev, mddev) 864 if (rdev->bdev->bd_dev == dev) 865 return rdev; 866 867 return NULL; 868 } 869 870 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 871 { 872 struct md_rdev *rdev; 873 874 rdev_for_each_rcu(rdev, mddev) 875 if (rdev->bdev->bd_dev == dev) 876 return rdev; 877 878 return NULL; 879 } 880 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 881 882 static struct md_personality *find_pers(int level, char *clevel) 883 { 884 struct md_personality *pers; 885 list_for_each_entry(pers, &pers_list, list) { 886 if (level != LEVEL_NONE && pers->level == level) 887 return pers; 888 if (strcmp(pers->name, clevel)==0) 889 return pers; 890 } 891 return NULL; 892 } 893 894 /* return the offset of the super block in 512byte sectors */ 895 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 896 { 897 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 898 } 899 900 static int alloc_disk_sb(struct md_rdev *rdev) 901 { 902 rdev->sb_page = alloc_page(GFP_KERNEL); 903 if (!rdev->sb_page) 904 return -ENOMEM; 905 return 0; 906 } 907 908 void md_rdev_clear(struct md_rdev *rdev) 909 { 910 if (rdev->sb_page) { 911 put_page(rdev->sb_page); 912 rdev->sb_loaded = 0; 913 rdev->sb_page = NULL; 914 rdev->sb_start = 0; 915 rdev->sectors = 0; 916 } 917 if (rdev->bb_page) { 918 put_page(rdev->bb_page); 919 rdev->bb_page = NULL; 920 } 921 badblocks_exit(&rdev->badblocks); 922 } 923 EXPORT_SYMBOL_GPL(md_rdev_clear); 924 925 static void super_written(struct bio *bio) 926 { 927 struct md_rdev *rdev = bio->bi_private; 928 struct mddev *mddev = rdev->mddev; 929 930 if (bio->bi_status) { 931 pr_err("md: %s gets error=%d\n", __func__, 932 blk_status_to_errno(bio->bi_status)); 933 md_error(mddev, rdev); 934 if (!test_bit(Faulty, &rdev->flags) 935 && (bio->bi_opf & MD_FAILFAST)) { 936 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 937 set_bit(LastDev, &rdev->flags); 938 } 939 } else 940 clear_bit(LastDev, &rdev->flags); 941 942 if (atomic_dec_and_test(&mddev->pending_writes)) 943 wake_up(&mddev->sb_wait); 944 rdev_dec_pending(rdev, mddev); 945 bio_put(bio); 946 } 947 948 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 949 sector_t sector, int size, struct page *page) 950 { 951 /* write first size bytes of page to sector of rdev 952 * Increment mddev->pending_writes before returning 953 * and decrement it on completion, waking up sb_wait 954 * if zero is reached. 955 * If an error occurred, call md_error 956 */ 957 struct bio *bio; 958 959 if (!page) 960 return; 961 962 if (test_bit(Faulty, &rdev->flags)) 963 return; 964 965 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 966 1, 967 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA, 968 GFP_NOIO, &mddev->sync_set); 969 970 atomic_inc(&rdev->nr_pending); 971 972 bio->bi_iter.bi_sector = sector; 973 bio_add_page(bio, page, size, 0); 974 bio->bi_private = rdev; 975 bio->bi_end_io = super_written; 976 977 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 978 test_bit(FailFast, &rdev->flags) && 979 !test_bit(LastDev, &rdev->flags)) 980 bio->bi_opf |= MD_FAILFAST; 981 982 atomic_inc(&mddev->pending_writes); 983 submit_bio(bio); 984 } 985 986 int md_super_wait(struct mddev *mddev) 987 { 988 /* wait for all superblock writes that were scheduled to complete */ 989 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 990 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 991 return -EAGAIN; 992 return 0; 993 } 994 995 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 996 struct page *page, int op, int op_flags, bool metadata_op) 997 { 998 struct bio bio; 999 struct bio_vec bvec; 1000 1001 if (metadata_op && rdev->meta_bdev) 1002 bio_init(&bio, rdev->meta_bdev, &bvec, 1, op | op_flags); 1003 else 1004 bio_init(&bio, rdev->bdev, &bvec, 1, op | op_flags); 1005 1006 if (metadata_op) 1007 bio.bi_iter.bi_sector = sector + rdev->sb_start; 1008 else if (rdev->mddev->reshape_position != MaxSector && 1009 (rdev->mddev->reshape_backwards == 1010 (sector >= rdev->mddev->reshape_position))) 1011 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 1012 else 1013 bio.bi_iter.bi_sector = sector + rdev->data_offset; 1014 bio_add_page(&bio, page, size, 0); 1015 1016 submit_bio_wait(&bio); 1017 1018 return !bio.bi_status; 1019 } 1020 EXPORT_SYMBOL_GPL(sync_page_io); 1021 1022 static int read_disk_sb(struct md_rdev *rdev, int size) 1023 { 1024 char b[BDEVNAME_SIZE]; 1025 1026 if (rdev->sb_loaded) 1027 return 0; 1028 1029 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1030 goto fail; 1031 rdev->sb_loaded = 1; 1032 return 0; 1033 1034 fail: 1035 pr_err("md: disabled device %s, could not read superblock.\n", 1036 bdevname(rdev->bdev,b)); 1037 return -EINVAL; 1038 } 1039 1040 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1041 { 1042 return sb1->set_uuid0 == sb2->set_uuid0 && 1043 sb1->set_uuid1 == sb2->set_uuid1 && 1044 sb1->set_uuid2 == sb2->set_uuid2 && 1045 sb1->set_uuid3 == sb2->set_uuid3; 1046 } 1047 1048 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1049 { 1050 int ret; 1051 mdp_super_t *tmp1, *tmp2; 1052 1053 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1054 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1055 1056 if (!tmp1 || !tmp2) { 1057 ret = 0; 1058 goto abort; 1059 } 1060 1061 *tmp1 = *sb1; 1062 *tmp2 = *sb2; 1063 1064 /* 1065 * nr_disks is not constant 1066 */ 1067 tmp1->nr_disks = 0; 1068 tmp2->nr_disks = 0; 1069 1070 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1071 abort: 1072 kfree(tmp1); 1073 kfree(tmp2); 1074 return ret; 1075 } 1076 1077 static u32 md_csum_fold(u32 csum) 1078 { 1079 csum = (csum & 0xffff) + (csum >> 16); 1080 return (csum & 0xffff) + (csum >> 16); 1081 } 1082 1083 static unsigned int calc_sb_csum(mdp_super_t *sb) 1084 { 1085 u64 newcsum = 0; 1086 u32 *sb32 = (u32*)sb; 1087 int i; 1088 unsigned int disk_csum, csum; 1089 1090 disk_csum = sb->sb_csum; 1091 sb->sb_csum = 0; 1092 1093 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1094 newcsum += sb32[i]; 1095 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1096 1097 #ifdef CONFIG_ALPHA 1098 /* This used to use csum_partial, which was wrong for several 1099 * reasons including that different results are returned on 1100 * different architectures. It isn't critical that we get exactly 1101 * the same return value as before (we always csum_fold before 1102 * testing, and that removes any differences). However as we 1103 * know that csum_partial always returned a 16bit value on 1104 * alphas, do a fold to maximise conformity to previous behaviour. 1105 */ 1106 sb->sb_csum = md_csum_fold(disk_csum); 1107 #else 1108 sb->sb_csum = disk_csum; 1109 #endif 1110 return csum; 1111 } 1112 1113 /* 1114 * Handle superblock details. 1115 * We want to be able to handle multiple superblock formats 1116 * so we have a common interface to them all, and an array of 1117 * different handlers. 1118 * We rely on user-space to write the initial superblock, and support 1119 * reading and updating of superblocks. 1120 * Interface methods are: 1121 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1122 * loads and validates a superblock on dev. 1123 * if refdev != NULL, compare superblocks on both devices 1124 * Return: 1125 * 0 - dev has a superblock that is compatible with refdev 1126 * 1 - dev has a superblock that is compatible and newer than refdev 1127 * so dev should be used as the refdev in future 1128 * -EINVAL superblock incompatible or invalid 1129 * -othererror e.g. -EIO 1130 * 1131 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1132 * Verify that dev is acceptable into mddev. 1133 * The first time, mddev->raid_disks will be 0, and data from 1134 * dev should be merged in. Subsequent calls check that dev 1135 * is new enough. Return 0 or -EINVAL 1136 * 1137 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1138 * Update the superblock for rdev with data in mddev 1139 * This does not write to disc. 1140 * 1141 */ 1142 1143 struct super_type { 1144 char *name; 1145 struct module *owner; 1146 int (*load_super)(struct md_rdev *rdev, 1147 struct md_rdev *refdev, 1148 int minor_version); 1149 int (*validate_super)(struct mddev *mddev, 1150 struct md_rdev *rdev); 1151 void (*sync_super)(struct mddev *mddev, 1152 struct md_rdev *rdev); 1153 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1154 sector_t num_sectors); 1155 int (*allow_new_offset)(struct md_rdev *rdev, 1156 unsigned long long new_offset); 1157 }; 1158 1159 /* 1160 * Check that the given mddev has no bitmap. 1161 * 1162 * This function is called from the run method of all personalities that do not 1163 * support bitmaps. It prints an error message and returns non-zero if mddev 1164 * has a bitmap. Otherwise, it returns 0. 1165 * 1166 */ 1167 int md_check_no_bitmap(struct mddev *mddev) 1168 { 1169 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1170 return 0; 1171 pr_warn("%s: bitmaps are not supported for %s\n", 1172 mdname(mddev), mddev->pers->name); 1173 return 1; 1174 } 1175 EXPORT_SYMBOL(md_check_no_bitmap); 1176 1177 /* 1178 * load_super for 0.90.0 1179 */ 1180 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1181 { 1182 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1183 mdp_super_t *sb; 1184 int ret; 1185 bool spare_disk = true; 1186 1187 /* 1188 * Calculate the position of the superblock (512byte sectors), 1189 * it's at the end of the disk. 1190 * 1191 * It also happens to be a multiple of 4Kb. 1192 */ 1193 rdev->sb_start = calc_dev_sboffset(rdev); 1194 1195 ret = read_disk_sb(rdev, MD_SB_BYTES); 1196 if (ret) 1197 return ret; 1198 1199 ret = -EINVAL; 1200 1201 bdevname(rdev->bdev, b); 1202 sb = page_address(rdev->sb_page); 1203 1204 if (sb->md_magic != MD_SB_MAGIC) { 1205 pr_warn("md: invalid raid superblock magic on %s\n", b); 1206 goto abort; 1207 } 1208 1209 if (sb->major_version != 0 || 1210 sb->minor_version < 90 || 1211 sb->minor_version > 91) { 1212 pr_warn("Bad version number %d.%d on %s\n", 1213 sb->major_version, sb->minor_version, b); 1214 goto abort; 1215 } 1216 1217 if (sb->raid_disks <= 0) 1218 goto abort; 1219 1220 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1221 pr_warn("md: invalid superblock checksum on %s\n", b); 1222 goto abort; 1223 } 1224 1225 rdev->preferred_minor = sb->md_minor; 1226 rdev->data_offset = 0; 1227 rdev->new_data_offset = 0; 1228 rdev->sb_size = MD_SB_BYTES; 1229 rdev->badblocks.shift = -1; 1230 1231 if (sb->level == LEVEL_MULTIPATH) 1232 rdev->desc_nr = -1; 1233 else 1234 rdev->desc_nr = sb->this_disk.number; 1235 1236 /* not spare disk, or LEVEL_MULTIPATH */ 1237 if (sb->level == LEVEL_MULTIPATH || 1238 (rdev->desc_nr >= 0 && 1239 rdev->desc_nr < MD_SB_DISKS && 1240 sb->disks[rdev->desc_nr].state & 1241 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1242 spare_disk = false; 1243 1244 if (!refdev) { 1245 if (!spare_disk) 1246 ret = 1; 1247 else 1248 ret = 0; 1249 } else { 1250 __u64 ev1, ev2; 1251 mdp_super_t *refsb = page_address(refdev->sb_page); 1252 if (!md_uuid_equal(refsb, sb)) { 1253 pr_warn("md: %s has different UUID to %s\n", 1254 b, bdevname(refdev->bdev,b2)); 1255 goto abort; 1256 } 1257 if (!md_sb_equal(refsb, sb)) { 1258 pr_warn("md: %s has same UUID but different superblock to %s\n", 1259 b, bdevname(refdev->bdev, b2)); 1260 goto abort; 1261 } 1262 ev1 = md_event(sb); 1263 ev2 = md_event(refsb); 1264 1265 if (!spare_disk && ev1 > ev2) 1266 ret = 1; 1267 else 1268 ret = 0; 1269 } 1270 rdev->sectors = rdev->sb_start; 1271 /* Limit to 4TB as metadata cannot record more than that. 1272 * (not needed for Linear and RAID0 as metadata doesn't 1273 * record this size) 1274 */ 1275 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1276 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1277 1278 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1279 /* "this cannot possibly happen" ... */ 1280 ret = -EINVAL; 1281 1282 abort: 1283 return ret; 1284 } 1285 1286 /* 1287 * validate_super for 0.90.0 1288 */ 1289 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1290 { 1291 mdp_disk_t *desc; 1292 mdp_super_t *sb = page_address(rdev->sb_page); 1293 __u64 ev1 = md_event(sb); 1294 1295 rdev->raid_disk = -1; 1296 clear_bit(Faulty, &rdev->flags); 1297 clear_bit(In_sync, &rdev->flags); 1298 clear_bit(Bitmap_sync, &rdev->flags); 1299 clear_bit(WriteMostly, &rdev->flags); 1300 1301 if (mddev->raid_disks == 0) { 1302 mddev->major_version = 0; 1303 mddev->minor_version = sb->minor_version; 1304 mddev->patch_version = sb->patch_version; 1305 mddev->external = 0; 1306 mddev->chunk_sectors = sb->chunk_size >> 9; 1307 mddev->ctime = sb->ctime; 1308 mddev->utime = sb->utime; 1309 mddev->level = sb->level; 1310 mddev->clevel[0] = 0; 1311 mddev->layout = sb->layout; 1312 mddev->raid_disks = sb->raid_disks; 1313 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1314 mddev->events = ev1; 1315 mddev->bitmap_info.offset = 0; 1316 mddev->bitmap_info.space = 0; 1317 /* bitmap can use 60 K after the 4K superblocks */ 1318 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1319 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1320 mddev->reshape_backwards = 0; 1321 1322 if (mddev->minor_version >= 91) { 1323 mddev->reshape_position = sb->reshape_position; 1324 mddev->delta_disks = sb->delta_disks; 1325 mddev->new_level = sb->new_level; 1326 mddev->new_layout = sb->new_layout; 1327 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1328 if (mddev->delta_disks < 0) 1329 mddev->reshape_backwards = 1; 1330 } else { 1331 mddev->reshape_position = MaxSector; 1332 mddev->delta_disks = 0; 1333 mddev->new_level = mddev->level; 1334 mddev->new_layout = mddev->layout; 1335 mddev->new_chunk_sectors = mddev->chunk_sectors; 1336 } 1337 if (mddev->level == 0) 1338 mddev->layout = -1; 1339 1340 if (sb->state & (1<<MD_SB_CLEAN)) 1341 mddev->recovery_cp = MaxSector; 1342 else { 1343 if (sb->events_hi == sb->cp_events_hi && 1344 sb->events_lo == sb->cp_events_lo) { 1345 mddev->recovery_cp = sb->recovery_cp; 1346 } else 1347 mddev->recovery_cp = 0; 1348 } 1349 1350 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1351 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1352 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1353 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1354 1355 mddev->max_disks = MD_SB_DISKS; 1356 1357 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1358 mddev->bitmap_info.file == NULL) { 1359 mddev->bitmap_info.offset = 1360 mddev->bitmap_info.default_offset; 1361 mddev->bitmap_info.space = 1362 mddev->bitmap_info.default_space; 1363 } 1364 1365 } else if (mddev->pers == NULL) { 1366 /* Insist on good event counter while assembling, except 1367 * for spares (which don't need an event count) */ 1368 ++ev1; 1369 if (sb->disks[rdev->desc_nr].state & ( 1370 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1371 if (ev1 < mddev->events) 1372 return -EINVAL; 1373 } else if (mddev->bitmap) { 1374 /* if adding to array with a bitmap, then we can accept an 1375 * older device ... but not too old. 1376 */ 1377 if (ev1 < mddev->bitmap->events_cleared) 1378 return 0; 1379 if (ev1 < mddev->events) 1380 set_bit(Bitmap_sync, &rdev->flags); 1381 } else { 1382 if (ev1 < mddev->events) 1383 /* just a hot-add of a new device, leave raid_disk at -1 */ 1384 return 0; 1385 } 1386 1387 if (mddev->level != LEVEL_MULTIPATH) { 1388 desc = sb->disks + rdev->desc_nr; 1389 1390 if (desc->state & (1<<MD_DISK_FAULTY)) 1391 set_bit(Faulty, &rdev->flags); 1392 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1393 desc->raid_disk < mddev->raid_disks */) { 1394 set_bit(In_sync, &rdev->flags); 1395 rdev->raid_disk = desc->raid_disk; 1396 rdev->saved_raid_disk = desc->raid_disk; 1397 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1398 /* active but not in sync implies recovery up to 1399 * reshape position. We don't know exactly where 1400 * that is, so set to zero for now */ 1401 if (mddev->minor_version >= 91) { 1402 rdev->recovery_offset = 0; 1403 rdev->raid_disk = desc->raid_disk; 1404 } 1405 } 1406 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1407 set_bit(WriteMostly, &rdev->flags); 1408 if (desc->state & (1<<MD_DISK_FAILFAST)) 1409 set_bit(FailFast, &rdev->flags); 1410 } else /* MULTIPATH are always insync */ 1411 set_bit(In_sync, &rdev->flags); 1412 return 0; 1413 } 1414 1415 /* 1416 * sync_super for 0.90.0 1417 */ 1418 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1419 { 1420 mdp_super_t *sb; 1421 struct md_rdev *rdev2; 1422 int next_spare = mddev->raid_disks; 1423 1424 /* make rdev->sb match mddev data.. 1425 * 1426 * 1/ zero out disks 1427 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1428 * 3/ any empty disks < next_spare become removed 1429 * 1430 * disks[0] gets initialised to REMOVED because 1431 * we cannot be sure from other fields if it has 1432 * been initialised or not. 1433 */ 1434 int i; 1435 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1436 1437 rdev->sb_size = MD_SB_BYTES; 1438 1439 sb = page_address(rdev->sb_page); 1440 1441 memset(sb, 0, sizeof(*sb)); 1442 1443 sb->md_magic = MD_SB_MAGIC; 1444 sb->major_version = mddev->major_version; 1445 sb->patch_version = mddev->patch_version; 1446 sb->gvalid_words = 0; /* ignored */ 1447 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1448 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1449 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1450 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1451 1452 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1453 sb->level = mddev->level; 1454 sb->size = mddev->dev_sectors / 2; 1455 sb->raid_disks = mddev->raid_disks; 1456 sb->md_minor = mddev->md_minor; 1457 sb->not_persistent = 0; 1458 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1459 sb->state = 0; 1460 sb->events_hi = (mddev->events>>32); 1461 sb->events_lo = (u32)mddev->events; 1462 1463 if (mddev->reshape_position == MaxSector) 1464 sb->minor_version = 90; 1465 else { 1466 sb->minor_version = 91; 1467 sb->reshape_position = mddev->reshape_position; 1468 sb->new_level = mddev->new_level; 1469 sb->delta_disks = mddev->delta_disks; 1470 sb->new_layout = mddev->new_layout; 1471 sb->new_chunk = mddev->new_chunk_sectors << 9; 1472 } 1473 mddev->minor_version = sb->minor_version; 1474 if (mddev->in_sync) 1475 { 1476 sb->recovery_cp = mddev->recovery_cp; 1477 sb->cp_events_hi = (mddev->events>>32); 1478 sb->cp_events_lo = (u32)mddev->events; 1479 if (mddev->recovery_cp == MaxSector) 1480 sb->state = (1<< MD_SB_CLEAN); 1481 } else 1482 sb->recovery_cp = 0; 1483 1484 sb->layout = mddev->layout; 1485 sb->chunk_size = mddev->chunk_sectors << 9; 1486 1487 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1488 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1489 1490 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1491 rdev_for_each(rdev2, mddev) { 1492 mdp_disk_t *d; 1493 int desc_nr; 1494 int is_active = test_bit(In_sync, &rdev2->flags); 1495 1496 if (rdev2->raid_disk >= 0 && 1497 sb->minor_version >= 91) 1498 /* we have nowhere to store the recovery_offset, 1499 * but if it is not below the reshape_position, 1500 * we can piggy-back on that. 1501 */ 1502 is_active = 1; 1503 if (rdev2->raid_disk < 0 || 1504 test_bit(Faulty, &rdev2->flags)) 1505 is_active = 0; 1506 if (is_active) 1507 desc_nr = rdev2->raid_disk; 1508 else 1509 desc_nr = next_spare++; 1510 rdev2->desc_nr = desc_nr; 1511 d = &sb->disks[rdev2->desc_nr]; 1512 nr_disks++; 1513 d->number = rdev2->desc_nr; 1514 d->major = MAJOR(rdev2->bdev->bd_dev); 1515 d->minor = MINOR(rdev2->bdev->bd_dev); 1516 if (is_active) 1517 d->raid_disk = rdev2->raid_disk; 1518 else 1519 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1520 if (test_bit(Faulty, &rdev2->flags)) 1521 d->state = (1<<MD_DISK_FAULTY); 1522 else if (is_active) { 1523 d->state = (1<<MD_DISK_ACTIVE); 1524 if (test_bit(In_sync, &rdev2->flags)) 1525 d->state |= (1<<MD_DISK_SYNC); 1526 active++; 1527 working++; 1528 } else { 1529 d->state = 0; 1530 spare++; 1531 working++; 1532 } 1533 if (test_bit(WriteMostly, &rdev2->flags)) 1534 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1535 if (test_bit(FailFast, &rdev2->flags)) 1536 d->state |= (1<<MD_DISK_FAILFAST); 1537 } 1538 /* now set the "removed" and "faulty" bits on any missing devices */ 1539 for (i=0 ; i < mddev->raid_disks ; i++) { 1540 mdp_disk_t *d = &sb->disks[i]; 1541 if (d->state == 0 && d->number == 0) { 1542 d->number = i; 1543 d->raid_disk = i; 1544 d->state = (1<<MD_DISK_REMOVED); 1545 d->state |= (1<<MD_DISK_FAULTY); 1546 failed++; 1547 } 1548 } 1549 sb->nr_disks = nr_disks; 1550 sb->active_disks = active; 1551 sb->working_disks = working; 1552 sb->failed_disks = failed; 1553 sb->spare_disks = spare; 1554 1555 sb->this_disk = sb->disks[rdev->desc_nr]; 1556 sb->sb_csum = calc_sb_csum(sb); 1557 } 1558 1559 /* 1560 * rdev_size_change for 0.90.0 1561 */ 1562 static unsigned long long 1563 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1564 { 1565 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1566 return 0; /* component must fit device */ 1567 if (rdev->mddev->bitmap_info.offset) 1568 return 0; /* can't move bitmap */ 1569 rdev->sb_start = calc_dev_sboffset(rdev); 1570 if (!num_sectors || num_sectors > rdev->sb_start) 1571 num_sectors = rdev->sb_start; 1572 /* Limit to 4TB as metadata cannot record more than that. 1573 * 4TB == 2^32 KB, or 2*2^32 sectors. 1574 */ 1575 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1576 num_sectors = (sector_t)(2ULL << 32) - 2; 1577 do { 1578 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1579 rdev->sb_page); 1580 } while (md_super_wait(rdev->mddev) < 0); 1581 return num_sectors; 1582 } 1583 1584 static int 1585 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1586 { 1587 /* non-zero offset changes not possible with v0.90 */ 1588 return new_offset == 0; 1589 } 1590 1591 /* 1592 * version 1 superblock 1593 */ 1594 1595 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1596 { 1597 __le32 disk_csum; 1598 u32 csum; 1599 unsigned long long newcsum; 1600 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1601 __le32 *isuper = (__le32*)sb; 1602 1603 disk_csum = sb->sb_csum; 1604 sb->sb_csum = 0; 1605 newcsum = 0; 1606 for (; size >= 4; size -= 4) 1607 newcsum += le32_to_cpu(*isuper++); 1608 1609 if (size == 2) 1610 newcsum += le16_to_cpu(*(__le16*) isuper); 1611 1612 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1613 sb->sb_csum = disk_csum; 1614 return cpu_to_le32(csum); 1615 } 1616 1617 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1618 { 1619 struct mdp_superblock_1 *sb; 1620 int ret; 1621 sector_t sb_start; 1622 sector_t sectors; 1623 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1624 int bmask; 1625 bool spare_disk = true; 1626 1627 /* 1628 * Calculate the position of the superblock in 512byte sectors. 1629 * It is always aligned to a 4K boundary and 1630 * depeding on minor_version, it can be: 1631 * 0: At least 8K, but less than 12K, from end of device 1632 * 1: At start of device 1633 * 2: 4K from start of device. 1634 */ 1635 switch(minor_version) { 1636 case 0: 1637 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1638 sb_start &= ~(sector_t)(4*2-1); 1639 break; 1640 case 1: 1641 sb_start = 0; 1642 break; 1643 case 2: 1644 sb_start = 8; 1645 break; 1646 default: 1647 return -EINVAL; 1648 } 1649 rdev->sb_start = sb_start; 1650 1651 /* superblock is rarely larger than 1K, but it can be larger, 1652 * and it is safe to read 4k, so we do that 1653 */ 1654 ret = read_disk_sb(rdev, 4096); 1655 if (ret) return ret; 1656 1657 sb = page_address(rdev->sb_page); 1658 1659 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1660 sb->major_version != cpu_to_le32(1) || 1661 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1662 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1663 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1664 return -EINVAL; 1665 1666 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1667 pr_warn("md: invalid superblock checksum on %s\n", 1668 bdevname(rdev->bdev,b)); 1669 return -EINVAL; 1670 } 1671 if (le64_to_cpu(sb->data_size) < 10) { 1672 pr_warn("md: data_size too small on %s\n", 1673 bdevname(rdev->bdev,b)); 1674 return -EINVAL; 1675 } 1676 if (sb->pad0 || 1677 sb->pad3[0] || 1678 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1679 /* Some padding is non-zero, might be a new feature */ 1680 return -EINVAL; 1681 1682 rdev->preferred_minor = 0xffff; 1683 rdev->data_offset = le64_to_cpu(sb->data_offset); 1684 rdev->new_data_offset = rdev->data_offset; 1685 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1686 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1687 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1688 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1689 1690 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1691 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1692 if (rdev->sb_size & bmask) 1693 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1694 1695 if (minor_version 1696 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1697 return -EINVAL; 1698 if (minor_version 1699 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1700 return -EINVAL; 1701 1702 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1703 rdev->desc_nr = -1; 1704 else 1705 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1706 1707 if (!rdev->bb_page) { 1708 rdev->bb_page = alloc_page(GFP_KERNEL); 1709 if (!rdev->bb_page) 1710 return -ENOMEM; 1711 } 1712 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1713 rdev->badblocks.count == 0) { 1714 /* need to load the bad block list. 1715 * Currently we limit it to one page. 1716 */ 1717 s32 offset; 1718 sector_t bb_sector; 1719 __le64 *bbp; 1720 int i; 1721 int sectors = le16_to_cpu(sb->bblog_size); 1722 if (sectors > (PAGE_SIZE / 512)) 1723 return -EINVAL; 1724 offset = le32_to_cpu(sb->bblog_offset); 1725 if (offset == 0) 1726 return -EINVAL; 1727 bb_sector = (long long)offset; 1728 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1729 rdev->bb_page, REQ_OP_READ, 0, true)) 1730 return -EIO; 1731 bbp = (__le64 *)page_address(rdev->bb_page); 1732 rdev->badblocks.shift = sb->bblog_shift; 1733 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1734 u64 bb = le64_to_cpu(*bbp); 1735 int count = bb & (0x3ff); 1736 u64 sector = bb >> 10; 1737 sector <<= sb->bblog_shift; 1738 count <<= sb->bblog_shift; 1739 if (bb + 1 == 0) 1740 break; 1741 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1742 return -EINVAL; 1743 } 1744 } else if (sb->bblog_offset != 0) 1745 rdev->badblocks.shift = 0; 1746 1747 if ((le32_to_cpu(sb->feature_map) & 1748 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1749 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1750 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1751 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1752 } 1753 1754 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1755 sb->level != 0) 1756 return -EINVAL; 1757 1758 /* not spare disk, or LEVEL_MULTIPATH */ 1759 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1760 (rdev->desc_nr >= 0 && 1761 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1762 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1763 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1764 spare_disk = false; 1765 1766 if (!refdev) { 1767 if (!spare_disk) 1768 ret = 1; 1769 else 1770 ret = 0; 1771 } else { 1772 __u64 ev1, ev2; 1773 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1774 1775 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1776 sb->level != refsb->level || 1777 sb->layout != refsb->layout || 1778 sb->chunksize != refsb->chunksize) { 1779 pr_warn("md: %s has strangely different superblock to %s\n", 1780 bdevname(rdev->bdev,b), 1781 bdevname(refdev->bdev,b2)); 1782 return -EINVAL; 1783 } 1784 ev1 = le64_to_cpu(sb->events); 1785 ev2 = le64_to_cpu(refsb->events); 1786 1787 if (!spare_disk && ev1 > ev2) 1788 ret = 1; 1789 else 1790 ret = 0; 1791 } 1792 if (minor_version) 1793 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1794 else 1795 sectors = rdev->sb_start; 1796 if (sectors < le64_to_cpu(sb->data_size)) 1797 return -EINVAL; 1798 rdev->sectors = le64_to_cpu(sb->data_size); 1799 return ret; 1800 } 1801 1802 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1803 { 1804 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1805 __u64 ev1 = le64_to_cpu(sb->events); 1806 1807 rdev->raid_disk = -1; 1808 clear_bit(Faulty, &rdev->flags); 1809 clear_bit(In_sync, &rdev->flags); 1810 clear_bit(Bitmap_sync, &rdev->flags); 1811 clear_bit(WriteMostly, &rdev->flags); 1812 1813 if (mddev->raid_disks == 0) { 1814 mddev->major_version = 1; 1815 mddev->patch_version = 0; 1816 mddev->external = 0; 1817 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1818 mddev->ctime = le64_to_cpu(sb->ctime); 1819 mddev->utime = le64_to_cpu(sb->utime); 1820 mddev->level = le32_to_cpu(sb->level); 1821 mddev->clevel[0] = 0; 1822 mddev->layout = le32_to_cpu(sb->layout); 1823 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1824 mddev->dev_sectors = le64_to_cpu(sb->size); 1825 mddev->events = ev1; 1826 mddev->bitmap_info.offset = 0; 1827 mddev->bitmap_info.space = 0; 1828 /* Default location for bitmap is 1K after superblock 1829 * using 3K - total of 4K 1830 */ 1831 mddev->bitmap_info.default_offset = 1024 >> 9; 1832 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1833 mddev->reshape_backwards = 0; 1834 1835 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1836 memcpy(mddev->uuid, sb->set_uuid, 16); 1837 1838 mddev->max_disks = (4096-256)/2; 1839 1840 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1841 mddev->bitmap_info.file == NULL) { 1842 mddev->bitmap_info.offset = 1843 (__s32)le32_to_cpu(sb->bitmap_offset); 1844 /* Metadata doesn't record how much space is available. 1845 * For 1.0, we assume we can use up to the superblock 1846 * if before, else to 4K beyond superblock. 1847 * For others, assume no change is possible. 1848 */ 1849 if (mddev->minor_version > 0) 1850 mddev->bitmap_info.space = 0; 1851 else if (mddev->bitmap_info.offset > 0) 1852 mddev->bitmap_info.space = 1853 8 - mddev->bitmap_info.offset; 1854 else 1855 mddev->bitmap_info.space = 1856 -mddev->bitmap_info.offset; 1857 } 1858 1859 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1860 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1861 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1862 mddev->new_level = le32_to_cpu(sb->new_level); 1863 mddev->new_layout = le32_to_cpu(sb->new_layout); 1864 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1865 if (mddev->delta_disks < 0 || 1866 (mddev->delta_disks == 0 && 1867 (le32_to_cpu(sb->feature_map) 1868 & MD_FEATURE_RESHAPE_BACKWARDS))) 1869 mddev->reshape_backwards = 1; 1870 } else { 1871 mddev->reshape_position = MaxSector; 1872 mddev->delta_disks = 0; 1873 mddev->new_level = mddev->level; 1874 mddev->new_layout = mddev->layout; 1875 mddev->new_chunk_sectors = mddev->chunk_sectors; 1876 } 1877 1878 if (mddev->level == 0 && 1879 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1880 mddev->layout = -1; 1881 1882 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1883 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1884 1885 if (le32_to_cpu(sb->feature_map) & 1886 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1887 if (le32_to_cpu(sb->feature_map) & 1888 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1889 return -EINVAL; 1890 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1891 (le32_to_cpu(sb->feature_map) & 1892 MD_FEATURE_MULTIPLE_PPLS)) 1893 return -EINVAL; 1894 set_bit(MD_HAS_PPL, &mddev->flags); 1895 } 1896 } else if (mddev->pers == NULL) { 1897 /* Insist of good event counter while assembling, except for 1898 * spares (which don't need an event count) */ 1899 ++ev1; 1900 if (rdev->desc_nr >= 0 && 1901 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1902 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1903 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1904 if (ev1 < mddev->events) 1905 return -EINVAL; 1906 } else if (mddev->bitmap) { 1907 /* If adding to array with a bitmap, then we can accept an 1908 * older device, but not too old. 1909 */ 1910 if (ev1 < mddev->bitmap->events_cleared) 1911 return 0; 1912 if (ev1 < mddev->events) 1913 set_bit(Bitmap_sync, &rdev->flags); 1914 } else { 1915 if (ev1 < mddev->events) 1916 /* just a hot-add of a new device, leave raid_disk at -1 */ 1917 return 0; 1918 } 1919 if (mddev->level != LEVEL_MULTIPATH) { 1920 int role; 1921 if (rdev->desc_nr < 0 || 1922 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1923 role = MD_DISK_ROLE_SPARE; 1924 rdev->desc_nr = -1; 1925 } else 1926 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1927 switch(role) { 1928 case MD_DISK_ROLE_SPARE: /* spare */ 1929 break; 1930 case MD_DISK_ROLE_FAULTY: /* faulty */ 1931 set_bit(Faulty, &rdev->flags); 1932 break; 1933 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1934 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1935 /* journal device without journal feature */ 1936 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1937 return -EINVAL; 1938 } 1939 set_bit(Journal, &rdev->flags); 1940 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1941 rdev->raid_disk = 0; 1942 break; 1943 default: 1944 rdev->saved_raid_disk = role; 1945 if ((le32_to_cpu(sb->feature_map) & 1946 MD_FEATURE_RECOVERY_OFFSET)) { 1947 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1948 if (!(le32_to_cpu(sb->feature_map) & 1949 MD_FEATURE_RECOVERY_BITMAP)) 1950 rdev->saved_raid_disk = -1; 1951 } else { 1952 /* 1953 * If the array is FROZEN, then the device can't 1954 * be in_sync with rest of array. 1955 */ 1956 if (!test_bit(MD_RECOVERY_FROZEN, 1957 &mddev->recovery)) 1958 set_bit(In_sync, &rdev->flags); 1959 } 1960 rdev->raid_disk = role; 1961 break; 1962 } 1963 if (sb->devflags & WriteMostly1) 1964 set_bit(WriteMostly, &rdev->flags); 1965 if (sb->devflags & FailFast1) 1966 set_bit(FailFast, &rdev->flags); 1967 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1968 set_bit(Replacement, &rdev->flags); 1969 } else /* MULTIPATH are always insync */ 1970 set_bit(In_sync, &rdev->flags); 1971 1972 return 0; 1973 } 1974 1975 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1976 { 1977 struct mdp_superblock_1 *sb; 1978 struct md_rdev *rdev2; 1979 int max_dev, i; 1980 /* make rdev->sb match mddev and rdev data. */ 1981 1982 sb = page_address(rdev->sb_page); 1983 1984 sb->feature_map = 0; 1985 sb->pad0 = 0; 1986 sb->recovery_offset = cpu_to_le64(0); 1987 memset(sb->pad3, 0, sizeof(sb->pad3)); 1988 1989 sb->utime = cpu_to_le64((__u64)mddev->utime); 1990 sb->events = cpu_to_le64(mddev->events); 1991 if (mddev->in_sync) 1992 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1993 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1994 sb->resync_offset = cpu_to_le64(MaxSector); 1995 else 1996 sb->resync_offset = cpu_to_le64(0); 1997 1998 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1999 2000 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2001 sb->size = cpu_to_le64(mddev->dev_sectors); 2002 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2003 sb->level = cpu_to_le32(mddev->level); 2004 sb->layout = cpu_to_le32(mddev->layout); 2005 if (test_bit(FailFast, &rdev->flags)) 2006 sb->devflags |= FailFast1; 2007 else 2008 sb->devflags &= ~FailFast1; 2009 2010 if (test_bit(WriteMostly, &rdev->flags)) 2011 sb->devflags |= WriteMostly1; 2012 else 2013 sb->devflags &= ~WriteMostly1; 2014 sb->data_offset = cpu_to_le64(rdev->data_offset); 2015 sb->data_size = cpu_to_le64(rdev->sectors); 2016 2017 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2018 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2019 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2020 } 2021 2022 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2023 !test_bit(In_sync, &rdev->flags)) { 2024 sb->feature_map |= 2025 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2026 sb->recovery_offset = 2027 cpu_to_le64(rdev->recovery_offset); 2028 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2029 sb->feature_map |= 2030 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2031 } 2032 /* Note: recovery_offset and journal_tail share space */ 2033 if (test_bit(Journal, &rdev->flags)) 2034 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2035 if (test_bit(Replacement, &rdev->flags)) 2036 sb->feature_map |= 2037 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2038 2039 if (mddev->reshape_position != MaxSector) { 2040 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2041 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2042 sb->new_layout = cpu_to_le32(mddev->new_layout); 2043 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2044 sb->new_level = cpu_to_le32(mddev->new_level); 2045 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2046 if (mddev->delta_disks == 0 && 2047 mddev->reshape_backwards) 2048 sb->feature_map 2049 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2050 if (rdev->new_data_offset != rdev->data_offset) { 2051 sb->feature_map 2052 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2053 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2054 - rdev->data_offset)); 2055 } 2056 } 2057 2058 if (mddev_is_clustered(mddev)) 2059 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2060 2061 if (rdev->badblocks.count == 0) 2062 /* Nothing to do for bad blocks*/ ; 2063 else if (sb->bblog_offset == 0) 2064 /* Cannot record bad blocks on this device */ 2065 md_error(mddev, rdev); 2066 else { 2067 struct badblocks *bb = &rdev->badblocks; 2068 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2069 u64 *p = bb->page; 2070 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2071 if (bb->changed) { 2072 unsigned seq; 2073 2074 retry: 2075 seq = read_seqbegin(&bb->lock); 2076 2077 memset(bbp, 0xff, PAGE_SIZE); 2078 2079 for (i = 0 ; i < bb->count ; i++) { 2080 u64 internal_bb = p[i]; 2081 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2082 | BB_LEN(internal_bb)); 2083 bbp[i] = cpu_to_le64(store_bb); 2084 } 2085 bb->changed = 0; 2086 if (read_seqretry(&bb->lock, seq)) 2087 goto retry; 2088 2089 bb->sector = (rdev->sb_start + 2090 (int)le32_to_cpu(sb->bblog_offset)); 2091 bb->size = le16_to_cpu(sb->bblog_size); 2092 } 2093 } 2094 2095 max_dev = 0; 2096 rdev_for_each(rdev2, mddev) 2097 if (rdev2->desc_nr+1 > max_dev) 2098 max_dev = rdev2->desc_nr+1; 2099 2100 if (max_dev > le32_to_cpu(sb->max_dev)) { 2101 int bmask; 2102 sb->max_dev = cpu_to_le32(max_dev); 2103 rdev->sb_size = max_dev * 2 + 256; 2104 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2105 if (rdev->sb_size & bmask) 2106 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2107 } else 2108 max_dev = le32_to_cpu(sb->max_dev); 2109 2110 for (i=0; i<max_dev;i++) 2111 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2112 2113 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2114 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2115 2116 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2117 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2118 sb->feature_map |= 2119 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2120 else 2121 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2122 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2123 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2124 } 2125 2126 rdev_for_each(rdev2, mddev) { 2127 i = rdev2->desc_nr; 2128 if (test_bit(Faulty, &rdev2->flags)) 2129 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2130 else if (test_bit(In_sync, &rdev2->flags)) 2131 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2132 else if (test_bit(Journal, &rdev2->flags)) 2133 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2134 else if (rdev2->raid_disk >= 0) 2135 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2136 else 2137 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2138 } 2139 2140 sb->sb_csum = calc_sb_1_csum(sb); 2141 } 2142 2143 static sector_t super_1_choose_bm_space(sector_t dev_size) 2144 { 2145 sector_t bm_space; 2146 2147 /* if the device is bigger than 8Gig, save 64k for bitmap 2148 * usage, if bigger than 200Gig, save 128k 2149 */ 2150 if (dev_size < 64*2) 2151 bm_space = 0; 2152 else if (dev_size - 64*2 >= 200*1024*1024*2) 2153 bm_space = 128*2; 2154 else if (dev_size - 4*2 > 8*1024*1024*2) 2155 bm_space = 64*2; 2156 else 2157 bm_space = 4*2; 2158 return bm_space; 2159 } 2160 2161 static unsigned long long 2162 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2163 { 2164 struct mdp_superblock_1 *sb; 2165 sector_t max_sectors; 2166 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2167 return 0; /* component must fit device */ 2168 if (rdev->data_offset != rdev->new_data_offset) 2169 return 0; /* too confusing */ 2170 if (rdev->sb_start < rdev->data_offset) { 2171 /* minor versions 1 and 2; superblock before data */ 2172 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2173 if (!num_sectors || num_sectors > max_sectors) 2174 num_sectors = max_sectors; 2175 } else if (rdev->mddev->bitmap_info.offset) { 2176 /* minor version 0 with bitmap we can't move */ 2177 return 0; 2178 } else { 2179 /* minor version 0; superblock after data */ 2180 sector_t sb_start, bm_space; 2181 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2182 2183 /* 8K is for superblock */ 2184 sb_start = dev_size - 8*2; 2185 sb_start &= ~(sector_t)(4*2 - 1); 2186 2187 bm_space = super_1_choose_bm_space(dev_size); 2188 2189 /* Space that can be used to store date needs to decrease 2190 * superblock bitmap space and bad block space(4K) 2191 */ 2192 max_sectors = sb_start - bm_space - 4*2; 2193 2194 if (!num_sectors || num_sectors > max_sectors) 2195 num_sectors = max_sectors; 2196 rdev->sb_start = sb_start; 2197 } 2198 sb = page_address(rdev->sb_page); 2199 sb->data_size = cpu_to_le64(num_sectors); 2200 sb->super_offset = cpu_to_le64(rdev->sb_start); 2201 sb->sb_csum = calc_sb_1_csum(sb); 2202 do { 2203 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2204 rdev->sb_page); 2205 } while (md_super_wait(rdev->mddev) < 0); 2206 return num_sectors; 2207 2208 } 2209 2210 static int 2211 super_1_allow_new_offset(struct md_rdev *rdev, 2212 unsigned long long new_offset) 2213 { 2214 /* All necessary checks on new >= old have been done */ 2215 struct bitmap *bitmap; 2216 if (new_offset >= rdev->data_offset) 2217 return 1; 2218 2219 /* with 1.0 metadata, there is no metadata to tread on 2220 * so we can always move back */ 2221 if (rdev->mddev->minor_version == 0) 2222 return 1; 2223 2224 /* otherwise we must be sure not to step on 2225 * any metadata, so stay: 2226 * 36K beyond start of superblock 2227 * beyond end of badblocks 2228 * beyond write-intent bitmap 2229 */ 2230 if (rdev->sb_start + (32+4)*2 > new_offset) 2231 return 0; 2232 bitmap = rdev->mddev->bitmap; 2233 if (bitmap && !rdev->mddev->bitmap_info.file && 2234 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2235 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2236 return 0; 2237 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2238 return 0; 2239 2240 return 1; 2241 } 2242 2243 static struct super_type super_types[] = { 2244 [0] = { 2245 .name = "0.90.0", 2246 .owner = THIS_MODULE, 2247 .load_super = super_90_load, 2248 .validate_super = super_90_validate, 2249 .sync_super = super_90_sync, 2250 .rdev_size_change = super_90_rdev_size_change, 2251 .allow_new_offset = super_90_allow_new_offset, 2252 }, 2253 [1] = { 2254 .name = "md-1", 2255 .owner = THIS_MODULE, 2256 .load_super = super_1_load, 2257 .validate_super = super_1_validate, 2258 .sync_super = super_1_sync, 2259 .rdev_size_change = super_1_rdev_size_change, 2260 .allow_new_offset = super_1_allow_new_offset, 2261 }, 2262 }; 2263 2264 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2265 { 2266 if (mddev->sync_super) { 2267 mddev->sync_super(mddev, rdev); 2268 return; 2269 } 2270 2271 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2272 2273 super_types[mddev->major_version].sync_super(mddev, rdev); 2274 } 2275 2276 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2277 { 2278 struct md_rdev *rdev, *rdev2; 2279 2280 rcu_read_lock(); 2281 rdev_for_each_rcu(rdev, mddev1) { 2282 if (test_bit(Faulty, &rdev->flags) || 2283 test_bit(Journal, &rdev->flags) || 2284 rdev->raid_disk == -1) 2285 continue; 2286 rdev_for_each_rcu(rdev2, mddev2) { 2287 if (test_bit(Faulty, &rdev2->flags) || 2288 test_bit(Journal, &rdev2->flags) || 2289 rdev2->raid_disk == -1) 2290 continue; 2291 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2292 rcu_read_unlock(); 2293 return 1; 2294 } 2295 } 2296 } 2297 rcu_read_unlock(); 2298 return 0; 2299 } 2300 2301 static LIST_HEAD(pending_raid_disks); 2302 2303 /* 2304 * Try to register data integrity profile for an mddev 2305 * 2306 * This is called when an array is started and after a disk has been kicked 2307 * from the array. It only succeeds if all working and active component devices 2308 * are integrity capable with matching profiles. 2309 */ 2310 int md_integrity_register(struct mddev *mddev) 2311 { 2312 struct md_rdev *rdev, *reference = NULL; 2313 2314 if (list_empty(&mddev->disks)) 2315 return 0; /* nothing to do */ 2316 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2317 return 0; /* shouldn't register, or already is */ 2318 rdev_for_each(rdev, mddev) { 2319 /* skip spares and non-functional disks */ 2320 if (test_bit(Faulty, &rdev->flags)) 2321 continue; 2322 if (rdev->raid_disk < 0) 2323 continue; 2324 if (!reference) { 2325 /* Use the first rdev as the reference */ 2326 reference = rdev; 2327 continue; 2328 } 2329 /* does this rdev's profile match the reference profile? */ 2330 if (blk_integrity_compare(reference->bdev->bd_disk, 2331 rdev->bdev->bd_disk) < 0) 2332 return -EINVAL; 2333 } 2334 if (!reference || !bdev_get_integrity(reference->bdev)) 2335 return 0; 2336 /* 2337 * All component devices are integrity capable and have matching 2338 * profiles, register the common profile for the md device. 2339 */ 2340 blk_integrity_register(mddev->gendisk, 2341 bdev_get_integrity(reference->bdev)); 2342 2343 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2344 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2345 (mddev->level != 1 && mddev->level != 10 && 2346 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) { 2347 /* 2348 * No need to handle the failure of bioset_integrity_create, 2349 * because the function is called by md_run() -> pers->run(), 2350 * md_run calls bioset_exit -> bioset_integrity_free in case 2351 * of failure case. 2352 */ 2353 pr_err("md: failed to create integrity pool for %s\n", 2354 mdname(mddev)); 2355 return -EINVAL; 2356 } 2357 return 0; 2358 } 2359 EXPORT_SYMBOL(md_integrity_register); 2360 2361 /* 2362 * Attempt to add an rdev, but only if it is consistent with the current 2363 * integrity profile 2364 */ 2365 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2366 { 2367 struct blk_integrity *bi_mddev; 2368 char name[BDEVNAME_SIZE]; 2369 2370 if (!mddev->gendisk) 2371 return 0; 2372 2373 bi_mddev = blk_get_integrity(mddev->gendisk); 2374 2375 if (!bi_mddev) /* nothing to do */ 2376 return 0; 2377 2378 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2379 pr_err("%s: incompatible integrity profile for %s\n", 2380 mdname(mddev), bdevname(rdev->bdev, name)); 2381 return -ENXIO; 2382 } 2383 2384 return 0; 2385 } 2386 EXPORT_SYMBOL(md_integrity_add_rdev); 2387 2388 static bool rdev_read_only(struct md_rdev *rdev) 2389 { 2390 return bdev_read_only(rdev->bdev) || 2391 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2392 } 2393 2394 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2395 { 2396 char b[BDEVNAME_SIZE]; 2397 int err; 2398 2399 /* prevent duplicates */ 2400 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2401 return -EEXIST; 2402 2403 if (rdev_read_only(rdev) && mddev->pers) 2404 return -EROFS; 2405 2406 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2407 if (!test_bit(Journal, &rdev->flags) && 2408 rdev->sectors && 2409 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2410 if (mddev->pers) { 2411 /* Cannot change size, so fail 2412 * If mddev->level <= 0, then we don't care 2413 * about aligning sizes (e.g. linear) 2414 */ 2415 if (mddev->level > 0) 2416 return -ENOSPC; 2417 } else 2418 mddev->dev_sectors = rdev->sectors; 2419 } 2420 2421 /* Verify rdev->desc_nr is unique. 2422 * If it is -1, assign a free number, else 2423 * check number is not in use 2424 */ 2425 rcu_read_lock(); 2426 if (rdev->desc_nr < 0) { 2427 int choice = 0; 2428 if (mddev->pers) 2429 choice = mddev->raid_disks; 2430 while (md_find_rdev_nr_rcu(mddev, choice)) 2431 choice++; 2432 rdev->desc_nr = choice; 2433 } else { 2434 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2435 rcu_read_unlock(); 2436 return -EBUSY; 2437 } 2438 } 2439 rcu_read_unlock(); 2440 if (!test_bit(Journal, &rdev->flags) && 2441 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2442 pr_warn("md: %s: array is limited to %d devices\n", 2443 mdname(mddev), mddev->max_disks); 2444 return -EBUSY; 2445 } 2446 bdevname(rdev->bdev,b); 2447 strreplace(b, '/', '!'); 2448 2449 rdev->mddev = mddev; 2450 pr_debug("md: bind<%s>\n", b); 2451 2452 if (mddev->raid_disks) 2453 mddev_create_serial_pool(mddev, rdev, false); 2454 2455 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2456 goto fail; 2457 2458 /* failure here is OK */ 2459 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2460 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2461 rdev->sysfs_unack_badblocks = 2462 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2463 rdev->sysfs_badblocks = 2464 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2465 2466 list_add_rcu(&rdev->same_set, &mddev->disks); 2467 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2468 2469 /* May as well allow recovery to be retried once */ 2470 mddev->recovery_disabled++; 2471 2472 return 0; 2473 2474 fail: 2475 pr_warn("md: failed to register dev-%s for %s\n", 2476 b, mdname(mddev)); 2477 return err; 2478 } 2479 2480 static void rdev_delayed_delete(struct work_struct *ws) 2481 { 2482 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2483 kobject_del(&rdev->kobj); 2484 kobject_put(&rdev->kobj); 2485 } 2486 2487 static void unbind_rdev_from_array(struct md_rdev *rdev) 2488 { 2489 char b[BDEVNAME_SIZE]; 2490 2491 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2492 list_del_rcu(&rdev->same_set); 2493 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2494 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2495 rdev->mddev = NULL; 2496 sysfs_remove_link(&rdev->kobj, "block"); 2497 sysfs_put(rdev->sysfs_state); 2498 sysfs_put(rdev->sysfs_unack_badblocks); 2499 sysfs_put(rdev->sysfs_badblocks); 2500 rdev->sysfs_state = NULL; 2501 rdev->sysfs_unack_badblocks = NULL; 2502 rdev->sysfs_badblocks = NULL; 2503 rdev->badblocks.count = 0; 2504 /* We need to delay this, otherwise we can deadlock when 2505 * writing to 'remove' to "dev/state". We also need 2506 * to delay it due to rcu usage. 2507 */ 2508 synchronize_rcu(); 2509 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2510 kobject_get(&rdev->kobj); 2511 queue_work(md_rdev_misc_wq, &rdev->del_work); 2512 } 2513 2514 /* 2515 * prevent the device from being mounted, repartitioned or 2516 * otherwise reused by a RAID array (or any other kernel 2517 * subsystem), by bd_claiming the device. 2518 */ 2519 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2520 { 2521 int err = 0; 2522 struct block_device *bdev; 2523 2524 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2525 shared ? (struct md_rdev *)lock_rdev : rdev); 2526 if (IS_ERR(bdev)) { 2527 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2528 MAJOR(dev), MINOR(dev)); 2529 return PTR_ERR(bdev); 2530 } 2531 rdev->bdev = bdev; 2532 return err; 2533 } 2534 2535 static void unlock_rdev(struct md_rdev *rdev) 2536 { 2537 struct block_device *bdev = rdev->bdev; 2538 rdev->bdev = NULL; 2539 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2540 } 2541 2542 void md_autodetect_dev(dev_t dev); 2543 2544 static void export_rdev(struct md_rdev *rdev) 2545 { 2546 char b[BDEVNAME_SIZE]; 2547 2548 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2549 md_rdev_clear(rdev); 2550 #ifndef MODULE 2551 if (test_bit(AutoDetected, &rdev->flags)) 2552 md_autodetect_dev(rdev->bdev->bd_dev); 2553 #endif 2554 unlock_rdev(rdev); 2555 kobject_put(&rdev->kobj); 2556 } 2557 2558 void md_kick_rdev_from_array(struct md_rdev *rdev) 2559 { 2560 unbind_rdev_from_array(rdev); 2561 export_rdev(rdev); 2562 } 2563 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2564 2565 static void export_array(struct mddev *mddev) 2566 { 2567 struct md_rdev *rdev; 2568 2569 while (!list_empty(&mddev->disks)) { 2570 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2571 same_set); 2572 md_kick_rdev_from_array(rdev); 2573 } 2574 mddev->raid_disks = 0; 2575 mddev->major_version = 0; 2576 } 2577 2578 static bool set_in_sync(struct mddev *mddev) 2579 { 2580 lockdep_assert_held(&mddev->lock); 2581 if (!mddev->in_sync) { 2582 mddev->sync_checkers++; 2583 spin_unlock(&mddev->lock); 2584 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2585 spin_lock(&mddev->lock); 2586 if (!mddev->in_sync && 2587 percpu_ref_is_zero(&mddev->writes_pending)) { 2588 mddev->in_sync = 1; 2589 /* 2590 * Ensure ->in_sync is visible before we clear 2591 * ->sync_checkers. 2592 */ 2593 smp_mb(); 2594 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2595 sysfs_notify_dirent_safe(mddev->sysfs_state); 2596 } 2597 if (--mddev->sync_checkers == 0) 2598 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2599 } 2600 if (mddev->safemode == 1) 2601 mddev->safemode = 0; 2602 return mddev->in_sync; 2603 } 2604 2605 static void sync_sbs(struct mddev *mddev, int nospares) 2606 { 2607 /* Update each superblock (in-memory image), but 2608 * if we are allowed to, skip spares which already 2609 * have the right event counter, or have one earlier 2610 * (which would mean they aren't being marked as dirty 2611 * with the rest of the array) 2612 */ 2613 struct md_rdev *rdev; 2614 rdev_for_each(rdev, mddev) { 2615 if (rdev->sb_events == mddev->events || 2616 (nospares && 2617 rdev->raid_disk < 0 && 2618 rdev->sb_events+1 == mddev->events)) { 2619 /* Don't update this superblock */ 2620 rdev->sb_loaded = 2; 2621 } else { 2622 sync_super(mddev, rdev); 2623 rdev->sb_loaded = 1; 2624 } 2625 } 2626 } 2627 2628 static bool does_sb_need_changing(struct mddev *mddev) 2629 { 2630 struct md_rdev *rdev; 2631 struct mdp_superblock_1 *sb; 2632 int role; 2633 2634 /* Find a good rdev */ 2635 rdev_for_each(rdev, mddev) 2636 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2637 break; 2638 2639 /* No good device found. */ 2640 if (!rdev) 2641 return false; 2642 2643 sb = page_address(rdev->sb_page); 2644 /* Check if a device has become faulty or a spare become active */ 2645 rdev_for_each(rdev, mddev) { 2646 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2647 /* Device activated? */ 2648 if (role == 0xffff && rdev->raid_disk >=0 && 2649 !test_bit(Faulty, &rdev->flags)) 2650 return true; 2651 /* Device turned faulty? */ 2652 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2653 return true; 2654 } 2655 2656 /* Check if any mddev parameters have changed */ 2657 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2658 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2659 (mddev->layout != le32_to_cpu(sb->layout)) || 2660 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2661 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2662 return true; 2663 2664 return false; 2665 } 2666 2667 void md_update_sb(struct mddev *mddev, int force_change) 2668 { 2669 struct md_rdev *rdev; 2670 int sync_req; 2671 int nospares = 0; 2672 int any_badblocks_changed = 0; 2673 int ret = -1; 2674 2675 if (mddev->ro) { 2676 if (force_change) 2677 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2678 return; 2679 } 2680 2681 repeat: 2682 if (mddev_is_clustered(mddev)) { 2683 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2684 force_change = 1; 2685 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2686 nospares = 1; 2687 ret = md_cluster_ops->metadata_update_start(mddev); 2688 /* Has someone else has updated the sb */ 2689 if (!does_sb_need_changing(mddev)) { 2690 if (ret == 0) 2691 md_cluster_ops->metadata_update_cancel(mddev); 2692 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2693 BIT(MD_SB_CHANGE_DEVS) | 2694 BIT(MD_SB_CHANGE_CLEAN)); 2695 return; 2696 } 2697 } 2698 2699 /* 2700 * First make sure individual recovery_offsets are correct 2701 * curr_resync_completed can only be used during recovery. 2702 * During reshape/resync it might use array-addresses rather 2703 * that device addresses. 2704 */ 2705 rdev_for_each(rdev, mddev) { 2706 if (rdev->raid_disk >= 0 && 2707 mddev->delta_disks >= 0 && 2708 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2709 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2710 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2711 !test_bit(Journal, &rdev->flags) && 2712 !test_bit(In_sync, &rdev->flags) && 2713 mddev->curr_resync_completed > rdev->recovery_offset) 2714 rdev->recovery_offset = mddev->curr_resync_completed; 2715 2716 } 2717 if (!mddev->persistent) { 2718 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2719 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2720 if (!mddev->external) { 2721 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2722 rdev_for_each(rdev, mddev) { 2723 if (rdev->badblocks.changed) { 2724 rdev->badblocks.changed = 0; 2725 ack_all_badblocks(&rdev->badblocks); 2726 md_error(mddev, rdev); 2727 } 2728 clear_bit(Blocked, &rdev->flags); 2729 clear_bit(BlockedBadBlocks, &rdev->flags); 2730 wake_up(&rdev->blocked_wait); 2731 } 2732 } 2733 wake_up(&mddev->sb_wait); 2734 return; 2735 } 2736 2737 spin_lock(&mddev->lock); 2738 2739 mddev->utime = ktime_get_real_seconds(); 2740 2741 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2742 force_change = 1; 2743 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2744 /* just a clean<-> dirty transition, possibly leave spares alone, 2745 * though if events isn't the right even/odd, we will have to do 2746 * spares after all 2747 */ 2748 nospares = 1; 2749 if (force_change) 2750 nospares = 0; 2751 if (mddev->degraded) 2752 /* If the array is degraded, then skipping spares is both 2753 * dangerous and fairly pointless. 2754 * Dangerous because a device that was removed from the array 2755 * might have a event_count that still looks up-to-date, 2756 * so it can be re-added without a resync. 2757 * Pointless because if there are any spares to skip, 2758 * then a recovery will happen and soon that array won't 2759 * be degraded any more and the spare can go back to sleep then. 2760 */ 2761 nospares = 0; 2762 2763 sync_req = mddev->in_sync; 2764 2765 /* If this is just a dirty<->clean transition, and the array is clean 2766 * and 'events' is odd, we can roll back to the previous clean state */ 2767 if (nospares 2768 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2769 && mddev->can_decrease_events 2770 && mddev->events != 1) { 2771 mddev->events--; 2772 mddev->can_decrease_events = 0; 2773 } else { 2774 /* otherwise we have to go forward and ... */ 2775 mddev->events ++; 2776 mddev->can_decrease_events = nospares; 2777 } 2778 2779 /* 2780 * This 64-bit counter should never wrap. 2781 * Either we are in around ~1 trillion A.C., assuming 2782 * 1 reboot per second, or we have a bug... 2783 */ 2784 WARN_ON(mddev->events == 0); 2785 2786 rdev_for_each(rdev, mddev) { 2787 if (rdev->badblocks.changed) 2788 any_badblocks_changed++; 2789 if (test_bit(Faulty, &rdev->flags)) 2790 set_bit(FaultRecorded, &rdev->flags); 2791 } 2792 2793 sync_sbs(mddev, nospares); 2794 spin_unlock(&mddev->lock); 2795 2796 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2797 mdname(mddev), mddev->in_sync); 2798 2799 if (mddev->queue) 2800 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2801 rewrite: 2802 md_bitmap_update_sb(mddev->bitmap); 2803 rdev_for_each(rdev, mddev) { 2804 char b[BDEVNAME_SIZE]; 2805 2806 if (rdev->sb_loaded != 1) 2807 continue; /* no noise on spare devices */ 2808 2809 if (!test_bit(Faulty, &rdev->flags)) { 2810 md_super_write(mddev,rdev, 2811 rdev->sb_start, rdev->sb_size, 2812 rdev->sb_page); 2813 pr_debug("md: (write) %s's sb offset: %llu\n", 2814 bdevname(rdev->bdev, b), 2815 (unsigned long long)rdev->sb_start); 2816 rdev->sb_events = mddev->events; 2817 if (rdev->badblocks.size) { 2818 md_super_write(mddev, rdev, 2819 rdev->badblocks.sector, 2820 rdev->badblocks.size << 9, 2821 rdev->bb_page); 2822 rdev->badblocks.size = 0; 2823 } 2824 2825 } else 2826 pr_debug("md: %s (skipping faulty)\n", 2827 bdevname(rdev->bdev, b)); 2828 2829 if (mddev->level == LEVEL_MULTIPATH) 2830 /* only need to write one superblock... */ 2831 break; 2832 } 2833 if (md_super_wait(mddev) < 0) 2834 goto rewrite; 2835 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2836 2837 if (mddev_is_clustered(mddev) && ret == 0) 2838 md_cluster_ops->metadata_update_finish(mddev); 2839 2840 if (mddev->in_sync != sync_req || 2841 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2842 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2843 /* have to write it out again */ 2844 goto repeat; 2845 wake_up(&mddev->sb_wait); 2846 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2847 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2848 2849 rdev_for_each(rdev, mddev) { 2850 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2851 clear_bit(Blocked, &rdev->flags); 2852 2853 if (any_badblocks_changed) 2854 ack_all_badblocks(&rdev->badblocks); 2855 clear_bit(BlockedBadBlocks, &rdev->flags); 2856 wake_up(&rdev->blocked_wait); 2857 } 2858 } 2859 EXPORT_SYMBOL(md_update_sb); 2860 2861 static int add_bound_rdev(struct md_rdev *rdev) 2862 { 2863 struct mddev *mddev = rdev->mddev; 2864 int err = 0; 2865 bool add_journal = test_bit(Journal, &rdev->flags); 2866 2867 if (!mddev->pers->hot_remove_disk || add_journal) { 2868 /* If there is hot_add_disk but no hot_remove_disk 2869 * then added disks for geometry changes, 2870 * and should be added immediately. 2871 */ 2872 super_types[mddev->major_version]. 2873 validate_super(mddev, rdev); 2874 if (add_journal) 2875 mddev_suspend(mddev); 2876 err = mddev->pers->hot_add_disk(mddev, rdev); 2877 if (add_journal) 2878 mddev_resume(mddev); 2879 if (err) { 2880 md_kick_rdev_from_array(rdev); 2881 return err; 2882 } 2883 } 2884 sysfs_notify_dirent_safe(rdev->sysfs_state); 2885 2886 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2887 if (mddev->degraded) 2888 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2889 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2890 md_new_event(); 2891 md_wakeup_thread(mddev->thread); 2892 return 0; 2893 } 2894 2895 /* words written to sysfs files may, or may not, be \n terminated. 2896 * We want to accept with case. For this we use cmd_match. 2897 */ 2898 static int cmd_match(const char *cmd, const char *str) 2899 { 2900 /* See if cmd, written into a sysfs file, matches 2901 * str. They must either be the same, or cmd can 2902 * have a trailing newline 2903 */ 2904 while (*cmd && *str && *cmd == *str) { 2905 cmd++; 2906 str++; 2907 } 2908 if (*cmd == '\n') 2909 cmd++; 2910 if (*str || *cmd) 2911 return 0; 2912 return 1; 2913 } 2914 2915 struct rdev_sysfs_entry { 2916 struct attribute attr; 2917 ssize_t (*show)(struct md_rdev *, char *); 2918 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2919 }; 2920 2921 static ssize_t 2922 state_show(struct md_rdev *rdev, char *page) 2923 { 2924 char *sep = ","; 2925 size_t len = 0; 2926 unsigned long flags = READ_ONCE(rdev->flags); 2927 2928 if (test_bit(Faulty, &flags) || 2929 (!test_bit(ExternalBbl, &flags) && 2930 rdev->badblocks.unacked_exist)) 2931 len += sprintf(page+len, "faulty%s", sep); 2932 if (test_bit(In_sync, &flags)) 2933 len += sprintf(page+len, "in_sync%s", sep); 2934 if (test_bit(Journal, &flags)) 2935 len += sprintf(page+len, "journal%s", sep); 2936 if (test_bit(WriteMostly, &flags)) 2937 len += sprintf(page+len, "write_mostly%s", sep); 2938 if (test_bit(Blocked, &flags) || 2939 (rdev->badblocks.unacked_exist 2940 && !test_bit(Faulty, &flags))) 2941 len += sprintf(page+len, "blocked%s", sep); 2942 if (!test_bit(Faulty, &flags) && 2943 !test_bit(Journal, &flags) && 2944 !test_bit(In_sync, &flags)) 2945 len += sprintf(page+len, "spare%s", sep); 2946 if (test_bit(WriteErrorSeen, &flags)) 2947 len += sprintf(page+len, "write_error%s", sep); 2948 if (test_bit(WantReplacement, &flags)) 2949 len += sprintf(page+len, "want_replacement%s", sep); 2950 if (test_bit(Replacement, &flags)) 2951 len += sprintf(page+len, "replacement%s", sep); 2952 if (test_bit(ExternalBbl, &flags)) 2953 len += sprintf(page+len, "external_bbl%s", sep); 2954 if (test_bit(FailFast, &flags)) 2955 len += sprintf(page+len, "failfast%s", sep); 2956 2957 if (len) 2958 len -= strlen(sep); 2959 2960 return len+sprintf(page+len, "\n"); 2961 } 2962 2963 static ssize_t 2964 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2965 { 2966 /* can write 2967 * faulty - simulates an error 2968 * remove - disconnects the device 2969 * writemostly - sets write_mostly 2970 * -writemostly - clears write_mostly 2971 * blocked - sets the Blocked flags 2972 * -blocked - clears the Blocked and possibly simulates an error 2973 * insync - sets Insync providing device isn't active 2974 * -insync - clear Insync for a device with a slot assigned, 2975 * so that it gets rebuilt based on bitmap 2976 * write_error - sets WriteErrorSeen 2977 * -write_error - clears WriteErrorSeen 2978 * {,-}failfast - set/clear FailFast 2979 */ 2980 2981 struct mddev *mddev = rdev->mddev; 2982 int err = -EINVAL; 2983 bool need_update_sb = false; 2984 2985 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2986 md_error(rdev->mddev, rdev); 2987 if (test_bit(Faulty, &rdev->flags)) 2988 err = 0; 2989 else 2990 err = -EBUSY; 2991 } else if (cmd_match(buf, "remove")) { 2992 if (rdev->mddev->pers) { 2993 clear_bit(Blocked, &rdev->flags); 2994 remove_and_add_spares(rdev->mddev, rdev); 2995 } 2996 if (rdev->raid_disk >= 0) 2997 err = -EBUSY; 2998 else { 2999 err = 0; 3000 if (mddev_is_clustered(mddev)) 3001 err = md_cluster_ops->remove_disk(mddev, rdev); 3002 3003 if (err == 0) { 3004 md_kick_rdev_from_array(rdev); 3005 if (mddev->pers) { 3006 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3007 md_wakeup_thread(mddev->thread); 3008 } 3009 md_new_event(); 3010 } 3011 } 3012 } else if (cmd_match(buf, "writemostly")) { 3013 set_bit(WriteMostly, &rdev->flags); 3014 mddev_create_serial_pool(rdev->mddev, rdev, false); 3015 need_update_sb = true; 3016 err = 0; 3017 } else if (cmd_match(buf, "-writemostly")) { 3018 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 3019 clear_bit(WriteMostly, &rdev->flags); 3020 need_update_sb = true; 3021 err = 0; 3022 } else if (cmd_match(buf, "blocked")) { 3023 set_bit(Blocked, &rdev->flags); 3024 err = 0; 3025 } else if (cmd_match(buf, "-blocked")) { 3026 if (!test_bit(Faulty, &rdev->flags) && 3027 !test_bit(ExternalBbl, &rdev->flags) && 3028 rdev->badblocks.unacked_exist) { 3029 /* metadata handler doesn't understand badblocks, 3030 * so we need to fail the device 3031 */ 3032 md_error(rdev->mddev, rdev); 3033 } 3034 clear_bit(Blocked, &rdev->flags); 3035 clear_bit(BlockedBadBlocks, &rdev->flags); 3036 wake_up(&rdev->blocked_wait); 3037 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3038 md_wakeup_thread(rdev->mddev->thread); 3039 3040 err = 0; 3041 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3042 set_bit(In_sync, &rdev->flags); 3043 err = 0; 3044 } else if (cmd_match(buf, "failfast")) { 3045 set_bit(FailFast, &rdev->flags); 3046 need_update_sb = true; 3047 err = 0; 3048 } else if (cmd_match(buf, "-failfast")) { 3049 clear_bit(FailFast, &rdev->flags); 3050 need_update_sb = true; 3051 err = 0; 3052 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3053 !test_bit(Journal, &rdev->flags)) { 3054 if (rdev->mddev->pers == NULL) { 3055 clear_bit(In_sync, &rdev->flags); 3056 rdev->saved_raid_disk = rdev->raid_disk; 3057 rdev->raid_disk = -1; 3058 err = 0; 3059 } 3060 } else if (cmd_match(buf, "write_error")) { 3061 set_bit(WriteErrorSeen, &rdev->flags); 3062 err = 0; 3063 } else if (cmd_match(buf, "-write_error")) { 3064 clear_bit(WriteErrorSeen, &rdev->flags); 3065 err = 0; 3066 } else if (cmd_match(buf, "want_replacement")) { 3067 /* Any non-spare device that is not a replacement can 3068 * become want_replacement at any time, but we then need to 3069 * check if recovery is needed. 3070 */ 3071 if (rdev->raid_disk >= 0 && 3072 !test_bit(Journal, &rdev->flags) && 3073 !test_bit(Replacement, &rdev->flags)) 3074 set_bit(WantReplacement, &rdev->flags); 3075 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3076 md_wakeup_thread(rdev->mddev->thread); 3077 err = 0; 3078 } else if (cmd_match(buf, "-want_replacement")) { 3079 /* Clearing 'want_replacement' is always allowed. 3080 * Once replacements starts it is too late though. 3081 */ 3082 err = 0; 3083 clear_bit(WantReplacement, &rdev->flags); 3084 } else if (cmd_match(buf, "replacement")) { 3085 /* Can only set a device as a replacement when array has not 3086 * yet been started. Once running, replacement is automatic 3087 * from spares, or by assigning 'slot'. 3088 */ 3089 if (rdev->mddev->pers) 3090 err = -EBUSY; 3091 else { 3092 set_bit(Replacement, &rdev->flags); 3093 err = 0; 3094 } 3095 } else if (cmd_match(buf, "-replacement")) { 3096 /* Similarly, can only clear Replacement before start */ 3097 if (rdev->mddev->pers) 3098 err = -EBUSY; 3099 else { 3100 clear_bit(Replacement, &rdev->flags); 3101 err = 0; 3102 } 3103 } else if (cmd_match(buf, "re-add")) { 3104 if (!rdev->mddev->pers) 3105 err = -EINVAL; 3106 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3107 rdev->saved_raid_disk >= 0) { 3108 /* clear_bit is performed _after_ all the devices 3109 * have their local Faulty bit cleared. If any writes 3110 * happen in the meantime in the local node, they 3111 * will land in the local bitmap, which will be synced 3112 * by this node eventually 3113 */ 3114 if (!mddev_is_clustered(rdev->mddev) || 3115 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3116 clear_bit(Faulty, &rdev->flags); 3117 err = add_bound_rdev(rdev); 3118 } 3119 } else 3120 err = -EBUSY; 3121 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3122 set_bit(ExternalBbl, &rdev->flags); 3123 rdev->badblocks.shift = 0; 3124 err = 0; 3125 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3126 clear_bit(ExternalBbl, &rdev->flags); 3127 err = 0; 3128 } 3129 if (need_update_sb) 3130 md_update_sb(mddev, 1); 3131 if (!err) 3132 sysfs_notify_dirent_safe(rdev->sysfs_state); 3133 return err ? err : len; 3134 } 3135 static struct rdev_sysfs_entry rdev_state = 3136 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3137 3138 static ssize_t 3139 errors_show(struct md_rdev *rdev, char *page) 3140 { 3141 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3142 } 3143 3144 static ssize_t 3145 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3146 { 3147 unsigned int n; 3148 int rv; 3149 3150 rv = kstrtouint(buf, 10, &n); 3151 if (rv < 0) 3152 return rv; 3153 atomic_set(&rdev->corrected_errors, n); 3154 return len; 3155 } 3156 static struct rdev_sysfs_entry rdev_errors = 3157 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3158 3159 static ssize_t 3160 slot_show(struct md_rdev *rdev, char *page) 3161 { 3162 if (test_bit(Journal, &rdev->flags)) 3163 return sprintf(page, "journal\n"); 3164 else if (rdev->raid_disk < 0) 3165 return sprintf(page, "none\n"); 3166 else 3167 return sprintf(page, "%d\n", rdev->raid_disk); 3168 } 3169 3170 static ssize_t 3171 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3172 { 3173 int slot; 3174 int err; 3175 3176 if (test_bit(Journal, &rdev->flags)) 3177 return -EBUSY; 3178 if (strncmp(buf, "none", 4)==0) 3179 slot = -1; 3180 else { 3181 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3182 if (err < 0) 3183 return err; 3184 } 3185 if (rdev->mddev->pers && slot == -1) { 3186 /* Setting 'slot' on an active array requires also 3187 * updating the 'rd%d' link, and communicating 3188 * with the personality with ->hot_*_disk. 3189 * For now we only support removing 3190 * failed/spare devices. This normally happens automatically, 3191 * but not when the metadata is externally managed. 3192 */ 3193 if (rdev->raid_disk == -1) 3194 return -EEXIST; 3195 /* personality does all needed checks */ 3196 if (rdev->mddev->pers->hot_remove_disk == NULL) 3197 return -EINVAL; 3198 clear_bit(Blocked, &rdev->flags); 3199 remove_and_add_spares(rdev->mddev, rdev); 3200 if (rdev->raid_disk >= 0) 3201 return -EBUSY; 3202 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3203 md_wakeup_thread(rdev->mddev->thread); 3204 } else if (rdev->mddev->pers) { 3205 /* Activating a spare .. or possibly reactivating 3206 * if we ever get bitmaps working here. 3207 */ 3208 int err; 3209 3210 if (rdev->raid_disk != -1) 3211 return -EBUSY; 3212 3213 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3214 return -EBUSY; 3215 3216 if (rdev->mddev->pers->hot_add_disk == NULL) 3217 return -EINVAL; 3218 3219 if (slot >= rdev->mddev->raid_disks && 3220 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3221 return -ENOSPC; 3222 3223 rdev->raid_disk = slot; 3224 if (test_bit(In_sync, &rdev->flags)) 3225 rdev->saved_raid_disk = slot; 3226 else 3227 rdev->saved_raid_disk = -1; 3228 clear_bit(In_sync, &rdev->flags); 3229 clear_bit(Bitmap_sync, &rdev->flags); 3230 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3231 if (err) { 3232 rdev->raid_disk = -1; 3233 return err; 3234 } else 3235 sysfs_notify_dirent_safe(rdev->sysfs_state); 3236 /* failure here is OK */; 3237 sysfs_link_rdev(rdev->mddev, rdev); 3238 /* don't wakeup anyone, leave that to userspace. */ 3239 } else { 3240 if (slot >= rdev->mddev->raid_disks && 3241 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3242 return -ENOSPC; 3243 rdev->raid_disk = slot; 3244 /* assume it is working */ 3245 clear_bit(Faulty, &rdev->flags); 3246 clear_bit(WriteMostly, &rdev->flags); 3247 set_bit(In_sync, &rdev->flags); 3248 sysfs_notify_dirent_safe(rdev->sysfs_state); 3249 } 3250 return len; 3251 } 3252 3253 static struct rdev_sysfs_entry rdev_slot = 3254 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3255 3256 static ssize_t 3257 offset_show(struct md_rdev *rdev, char *page) 3258 { 3259 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3260 } 3261 3262 static ssize_t 3263 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3264 { 3265 unsigned long long offset; 3266 if (kstrtoull(buf, 10, &offset) < 0) 3267 return -EINVAL; 3268 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3269 return -EBUSY; 3270 if (rdev->sectors && rdev->mddev->external) 3271 /* Must set offset before size, so overlap checks 3272 * can be sane */ 3273 return -EBUSY; 3274 rdev->data_offset = offset; 3275 rdev->new_data_offset = offset; 3276 return len; 3277 } 3278 3279 static struct rdev_sysfs_entry rdev_offset = 3280 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3281 3282 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3283 { 3284 return sprintf(page, "%llu\n", 3285 (unsigned long long)rdev->new_data_offset); 3286 } 3287 3288 static ssize_t new_offset_store(struct md_rdev *rdev, 3289 const char *buf, size_t len) 3290 { 3291 unsigned long long new_offset; 3292 struct mddev *mddev = rdev->mddev; 3293 3294 if (kstrtoull(buf, 10, &new_offset) < 0) 3295 return -EINVAL; 3296 3297 if (mddev->sync_thread || 3298 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3299 return -EBUSY; 3300 if (new_offset == rdev->data_offset) 3301 /* reset is always permitted */ 3302 ; 3303 else if (new_offset > rdev->data_offset) { 3304 /* must not push array size beyond rdev_sectors */ 3305 if (new_offset - rdev->data_offset 3306 + mddev->dev_sectors > rdev->sectors) 3307 return -E2BIG; 3308 } 3309 /* Metadata worries about other space details. */ 3310 3311 /* decreasing the offset is inconsistent with a backwards 3312 * reshape. 3313 */ 3314 if (new_offset < rdev->data_offset && 3315 mddev->reshape_backwards) 3316 return -EINVAL; 3317 /* Increasing offset is inconsistent with forwards 3318 * reshape. reshape_direction should be set to 3319 * 'backwards' first. 3320 */ 3321 if (new_offset > rdev->data_offset && 3322 !mddev->reshape_backwards) 3323 return -EINVAL; 3324 3325 if (mddev->pers && mddev->persistent && 3326 !super_types[mddev->major_version] 3327 .allow_new_offset(rdev, new_offset)) 3328 return -E2BIG; 3329 rdev->new_data_offset = new_offset; 3330 if (new_offset > rdev->data_offset) 3331 mddev->reshape_backwards = 1; 3332 else if (new_offset < rdev->data_offset) 3333 mddev->reshape_backwards = 0; 3334 3335 return len; 3336 } 3337 static struct rdev_sysfs_entry rdev_new_offset = 3338 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3339 3340 static ssize_t 3341 rdev_size_show(struct md_rdev *rdev, char *page) 3342 { 3343 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3344 } 3345 3346 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3347 { 3348 /* check if two start/length pairs overlap */ 3349 if (s1+l1 <= s2) 3350 return 0; 3351 if (s2+l2 <= s1) 3352 return 0; 3353 return 1; 3354 } 3355 3356 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3357 { 3358 unsigned long long blocks; 3359 sector_t new; 3360 3361 if (kstrtoull(buf, 10, &blocks) < 0) 3362 return -EINVAL; 3363 3364 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3365 return -EINVAL; /* sector conversion overflow */ 3366 3367 new = blocks * 2; 3368 if (new != blocks * 2) 3369 return -EINVAL; /* unsigned long long to sector_t overflow */ 3370 3371 *sectors = new; 3372 return 0; 3373 } 3374 3375 static ssize_t 3376 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3377 { 3378 struct mddev *my_mddev = rdev->mddev; 3379 sector_t oldsectors = rdev->sectors; 3380 sector_t sectors; 3381 3382 if (test_bit(Journal, &rdev->flags)) 3383 return -EBUSY; 3384 if (strict_blocks_to_sectors(buf, §ors) < 0) 3385 return -EINVAL; 3386 if (rdev->data_offset != rdev->new_data_offset) 3387 return -EINVAL; /* too confusing */ 3388 if (my_mddev->pers && rdev->raid_disk >= 0) { 3389 if (my_mddev->persistent) { 3390 sectors = super_types[my_mddev->major_version]. 3391 rdev_size_change(rdev, sectors); 3392 if (!sectors) 3393 return -EBUSY; 3394 } else if (!sectors) 3395 sectors = bdev_nr_sectors(rdev->bdev) - 3396 rdev->data_offset; 3397 if (!my_mddev->pers->resize) 3398 /* Cannot change size for RAID0 or Linear etc */ 3399 return -EINVAL; 3400 } 3401 if (sectors < my_mddev->dev_sectors) 3402 return -EINVAL; /* component must fit device */ 3403 3404 rdev->sectors = sectors; 3405 if (sectors > oldsectors && my_mddev->external) { 3406 /* Need to check that all other rdevs with the same 3407 * ->bdev do not overlap. 'rcu' is sufficient to walk 3408 * the rdev lists safely. 3409 * This check does not provide a hard guarantee, it 3410 * just helps avoid dangerous mistakes. 3411 */ 3412 struct mddev *mddev; 3413 int overlap = 0; 3414 struct list_head *tmp; 3415 3416 rcu_read_lock(); 3417 for_each_mddev(mddev, tmp) { 3418 struct md_rdev *rdev2; 3419 3420 rdev_for_each(rdev2, mddev) 3421 if (rdev->bdev == rdev2->bdev && 3422 rdev != rdev2 && 3423 overlaps(rdev->data_offset, rdev->sectors, 3424 rdev2->data_offset, 3425 rdev2->sectors)) { 3426 overlap = 1; 3427 break; 3428 } 3429 if (overlap) { 3430 mddev_put(mddev); 3431 break; 3432 } 3433 } 3434 rcu_read_unlock(); 3435 if (overlap) { 3436 /* Someone else could have slipped in a size 3437 * change here, but doing so is just silly. 3438 * We put oldsectors back because we *know* it is 3439 * safe, and trust userspace not to race with 3440 * itself 3441 */ 3442 rdev->sectors = oldsectors; 3443 return -EBUSY; 3444 } 3445 } 3446 return len; 3447 } 3448 3449 static struct rdev_sysfs_entry rdev_size = 3450 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3451 3452 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3453 { 3454 unsigned long long recovery_start = rdev->recovery_offset; 3455 3456 if (test_bit(In_sync, &rdev->flags) || 3457 recovery_start == MaxSector) 3458 return sprintf(page, "none\n"); 3459 3460 return sprintf(page, "%llu\n", recovery_start); 3461 } 3462 3463 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3464 { 3465 unsigned long long recovery_start; 3466 3467 if (cmd_match(buf, "none")) 3468 recovery_start = MaxSector; 3469 else if (kstrtoull(buf, 10, &recovery_start)) 3470 return -EINVAL; 3471 3472 if (rdev->mddev->pers && 3473 rdev->raid_disk >= 0) 3474 return -EBUSY; 3475 3476 rdev->recovery_offset = recovery_start; 3477 if (recovery_start == MaxSector) 3478 set_bit(In_sync, &rdev->flags); 3479 else 3480 clear_bit(In_sync, &rdev->flags); 3481 return len; 3482 } 3483 3484 static struct rdev_sysfs_entry rdev_recovery_start = 3485 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3486 3487 /* sysfs access to bad-blocks list. 3488 * We present two files. 3489 * 'bad-blocks' lists sector numbers and lengths of ranges that 3490 * are recorded as bad. The list is truncated to fit within 3491 * the one-page limit of sysfs. 3492 * Writing "sector length" to this file adds an acknowledged 3493 * bad block list. 3494 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3495 * been acknowledged. Writing to this file adds bad blocks 3496 * without acknowledging them. This is largely for testing. 3497 */ 3498 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3499 { 3500 return badblocks_show(&rdev->badblocks, page, 0); 3501 } 3502 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3503 { 3504 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3505 /* Maybe that ack was all we needed */ 3506 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3507 wake_up(&rdev->blocked_wait); 3508 return rv; 3509 } 3510 static struct rdev_sysfs_entry rdev_bad_blocks = 3511 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3512 3513 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3514 { 3515 return badblocks_show(&rdev->badblocks, page, 1); 3516 } 3517 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3518 { 3519 return badblocks_store(&rdev->badblocks, page, len, 1); 3520 } 3521 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3522 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3523 3524 static ssize_t 3525 ppl_sector_show(struct md_rdev *rdev, char *page) 3526 { 3527 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3528 } 3529 3530 static ssize_t 3531 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3532 { 3533 unsigned long long sector; 3534 3535 if (kstrtoull(buf, 10, §or) < 0) 3536 return -EINVAL; 3537 if (sector != (sector_t)sector) 3538 return -EINVAL; 3539 3540 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3541 rdev->raid_disk >= 0) 3542 return -EBUSY; 3543 3544 if (rdev->mddev->persistent) { 3545 if (rdev->mddev->major_version == 0) 3546 return -EINVAL; 3547 if ((sector > rdev->sb_start && 3548 sector - rdev->sb_start > S16_MAX) || 3549 (sector < rdev->sb_start && 3550 rdev->sb_start - sector > -S16_MIN)) 3551 return -EINVAL; 3552 rdev->ppl.offset = sector - rdev->sb_start; 3553 } else if (!rdev->mddev->external) { 3554 return -EBUSY; 3555 } 3556 rdev->ppl.sector = sector; 3557 return len; 3558 } 3559 3560 static struct rdev_sysfs_entry rdev_ppl_sector = 3561 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3562 3563 static ssize_t 3564 ppl_size_show(struct md_rdev *rdev, char *page) 3565 { 3566 return sprintf(page, "%u\n", rdev->ppl.size); 3567 } 3568 3569 static ssize_t 3570 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3571 { 3572 unsigned int size; 3573 3574 if (kstrtouint(buf, 10, &size) < 0) 3575 return -EINVAL; 3576 3577 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3578 rdev->raid_disk >= 0) 3579 return -EBUSY; 3580 3581 if (rdev->mddev->persistent) { 3582 if (rdev->mddev->major_version == 0) 3583 return -EINVAL; 3584 if (size > U16_MAX) 3585 return -EINVAL; 3586 } else if (!rdev->mddev->external) { 3587 return -EBUSY; 3588 } 3589 rdev->ppl.size = size; 3590 return len; 3591 } 3592 3593 static struct rdev_sysfs_entry rdev_ppl_size = 3594 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3595 3596 static struct attribute *rdev_default_attrs[] = { 3597 &rdev_state.attr, 3598 &rdev_errors.attr, 3599 &rdev_slot.attr, 3600 &rdev_offset.attr, 3601 &rdev_new_offset.attr, 3602 &rdev_size.attr, 3603 &rdev_recovery_start.attr, 3604 &rdev_bad_blocks.attr, 3605 &rdev_unack_bad_blocks.attr, 3606 &rdev_ppl_sector.attr, 3607 &rdev_ppl_size.attr, 3608 NULL, 3609 }; 3610 ATTRIBUTE_GROUPS(rdev_default); 3611 static ssize_t 3612 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3613 { 3614 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3615 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3616 3617 if (!entry->show) 3618 return -EIO; 3619 if (!rdev->mddev) 3620 return -ENODEV; 3621 return entry->show(rdev, page); 3622 } 3623 3624 static ssize_t 3625 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3626 const char *page, size_t length) 3627 { 3628 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3629 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3630 ssize_t rv; 3631 struct mddev *mddev = rdev->mddev; 3632 3633 if (!entry->store) 3634 return -EIO; 3635 if (!capable(CAP_SYS_ADMIN)) 3636 return -EACCES; 3637 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3638 if (!rv) { 3639 if (rdev->mddev == NULL) 3640 rv = -ENODEV; 3641 else 3642 rv = entry->store(rdev, page, length); 3643 mddev_unlock(mddev); 3644 } 3645 return rv; 3646 } 3647 3648 static void rdev_free(struct kobject *ko) 3649 { 3650 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3651 kfree(rdev); 3652 } 3653 static const struct sysfs_ops rdev_sysfs_ops = { 3654 .show = rdev_attr_show, 3655 .store = rdev_attr_store, 3656 }; 3657 static struct kobj_type rdev_ktype = { 3658 .release = rdev_free, 3659 .sysfs_ops = &rdev_sysfs_ops, 3660 .default_groups = rdev_default_groups, 3661 }; 3662 3663 int md_rdev_init(struct md_rdev *rdev) 3664 { 3665 rdev->desc_nr = -1; 3666 rdev->saved_raid_disk = -1; 3667 rdev->raid_disk = -1; 3668 rdev->flags = 0; 3669 rdev->data_offset = 0; 3670 rdev->new_data_offset = 0; 3671 rdev->sb_events = 0; 3672 rdev->last_read_error = 0; 3673 rdev->sb_loaded = 0; 3674 rdev->bb_page = NULL; 3675 atomic_set(&rdev->nr_pending, 0); 3676 atomic_set(&rdev->read_errors, 0); 3677 atomic_set(&rdev->corrected_errors, 0); 3678 3679 INIT_LIST_HEAD(&rdev->same_set); 3680 init_waitqueue_head(&rdev->blocked_wait); 3681 3682 /* Add space to store bad block list. 3683 * This reserves the space even on arrays where it cannot 3684 * be used - I wonder if that matters 3685 */ 3686 return badblocks_init(&rdev->badblocks, 0); 3687 } 3688 EXPORT_SYMBOL_GPL(md_rdev_init); 3689 /* 3690 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3691 * 3692 * mark the device faulty if: 3693 * 3694 * - the device is nonexistent (zero size) 3695 * - the device has no valid superblock 3696 * 3697 * a faulty rdev _never_ has rdev->sb set. 3698 */ 3699 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3700 { 3701 char b[BDEVNAME_SIZE]; 3702 int err; 3703 struct md_rdev *rdev; 3704 sector_t size; 3705 3706 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3707 if (!rdev) 3708 return ERR_PTR(-ENOMEM); 3709 3710 err = md_rdev_init(rdev); 3711 if (err) 3712 goto abort_free; 3713 err = alloc_disk_sb(rdev); 3714 if (err) 3715 goto abort_free; 3716 3717 err = lock_rdev(rdev, newdev, super_format == -2); 3718 if (err) 3719 goto abort_free; 3720 3721 kobject_init(&rdev->kobj, &rdev_ktype); 3722 3723 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3724 if (!size) { 3725 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3726 bdevname(rdev->bdev,b)); 3727 err = -EINVAL; 3728 goto abort_free; 3729 } 3730 3731 if (super_format >= 0) { 3732 err = super_types[super_format]. 3733 load_super(rdev, NULL, super_minor); 3734 if (err == -EINVAL) { 3735 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3736 bdevname(rdev->bdev,b), 3737 super_format, super_minor); 3738 goto abort_free; 3739 } 3740 if (err < 0) { 3741 pr_warn("md: could not read %s's sb, not importing!\n", 3742 bdevname(rdev->bdev,b)); 3743 goto abort_free; 3744 } 3745 } 3746 3747 return rdev; 3748 3749 abort_free: 3750 if (rdev->bdev) 3751 unlock_rdev(rdev); 3752 md_rdev_clear(rdev); 3753 kfree(rdev); 3754 return ERR_PTR(err); 3755 } 3756 3757 /* 3758 * Check a full RAID array for plausibility 3759 */ 3760 3761 static int analyze_sbs(struct mddev *mddev) 3762 { 3763 int i; 3764 struct md_rdev *rdev, *freshest, *tmp; 3765 char b[BDEVNAME_SIZE]; 3766 3767 freshest = NULL; 3768 rdev_for_each_safe(rdev, tmp, mddev) 3769 switch (super_types[mddev->major_version]. 3770 load_super(rdev, freshest, mddev->minor_version)) { 3771 case 1: 3772 freshest = rdev; 3773 break; 3774 case 0: 3775 break; 3776 default: 3777 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3778 bdevname(rdev->bdev,b)); 3779 md_kick_rdev_from_array(rdev); 3780 } 3781 3782 /* Cannot find a valid fresh disk */ 3783 if (!freshest) { 3784 pr_warn("md: cannot find a valid disk\n"); 3785 return -EINVAL; 3786 } 3787 3788 super_types[mddev->major_version]. 3789 validate_super(mddev, freshest); 3790 3791 i = 0; 3792 rdev_for_each_safe(rdev, tmp, mddev) { 3793 if (mddev->max_disks && 3794 (rdev->desc_nr >= mddev->max_disks || 3795 i > mddev->max_disks)) { 3796 pr_warn("md: %s: %s: only %d devices permitted\n", 3797 mdname(mddev), bdevname(rdev->bdev, b), 3798 mddev->max_disks); 3799 md_kick_rdev_from_array(rdev); 3800 continue; 3801 } 3802 if (rdev != freshest) { 3803 if (super_types[mddev->major_version]. 3804 validate_super(mddev, rdev)) { 3805 pr_warn("md: kicking non-fresh %s from array!\n", 3806 bdevname(rdev->bdev,b)); 3807 md_kick_rdev_from_array(rdev); 3808 continue; 3809 } 3810 } 3811 if (mddev->level == LEVEL_MULTIPATH) { 3812 rdev->desc_nr = i++; 3813 rdev->raid_disk = rdev->desc_nr; 3814 set_bit(In_sync, &rdev->flags); 3815 } else if (rdev->raid_disk >= 3816 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3817 !test_bit(Journal, &rdev->flags)) { 3818 rdev->raid_disk = -1; 3819 clear_bit(In_sync, &rdev->flags); 3820 } 3821 } 3822 3823 return 0; 3824 } 3825 3826 /* Read a fixed-point number. 3827 * Numbers in sysfs attributes should be in "standard" units where 3828 * possible, so time should be in seconds. 3829 * However we internally use a a much smaller unit such as 3830 * milliseconds or jiffies. 3831 * This function takes a decimal number with a possible fractional 3832 * component, and produces an integer which is the result of 3833 * multiplying that number by 10^'scale'. 3834 * all without any floating-point arithmetic. 3835 */ 3836 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3837 { 3838 unsigned long result = 0; 3839 long decimals = -1; 3840 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3841 if (*cp == '.') 3842 decimals = 0; 3843 else if (decimals < scale) { 3844 unsigned int value; 3845 value = *cp - '0'; 3846 result = result * 10 + value; 3847 if (decimals >= 0) 3848 decimals++; 3849 } 3850 cp++; 3851 } 3852 if (*cp == '\n') 3853 cp++; 3854 if (*cp) 3855 return -EINVAL; 3856 if (decimals < 0) 3857 decimals = 0; 3858 *res = result * int_pow(10, scale - decimals); 3859 return 0; 3860 } 3861 3862 static ssize_t 3863 safe_delay_show(struct mddev *mddev, char *page) 3864 { 3865 int msec = (mddev->safemode_delay*1000)/HZ; 3866 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3867 } 3868 static ssize_t 3869 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3870 { 3871 unsigned long msec; 3872 3873 if (mddev_is_clustered(mddev)) { 3874 pr_warn("md: Safemode is disabled for clustered mode\n"); 3875 return -EINVAL; 3876 } 3877 3878 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3879 return -EINVAL; 3880 if (msec == 0) 3881 mddev->safemode_delay = 0; 3882 else { 3883 unsigned long old_delay = mddev->safemode_delay; 3884 unsigned long new_delay = (msec*HZ)/1000; 3885 3886 if (new_delay == 0) 3887 new_delay = 1; 3888 mddev->safemode_delay = new_delay; 3889 if (new_delay < old_delay || old_delay == 0) 3890 mod_timer(&mddev->safemode_timer, jiffies+1); 3891 } 3892 return len; 3893 } 3894 static struct md_sysfs_entry md_safe_delay = 3895 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3896 3897 static ssize_t 3898 level_show(struct mddev *mddev, char *page) 3899 { 3900 struct md_personality *p; 3901 int ret; 3902 spin_lock(&mddev->lock); 3903 p = mddev->pers; 3904 if (p) 3905 ret = sprintf(page, "%s\n", p->name); 3906 else if (mddev->clevel[0]) 3907 ret = sprintf(page, "%s\n", mddev->clevel); 3908 else if (mddev->level != LEVEL_NONE) 3909 ret = sprintf(page, "%d\n", mddev->level); 3910 else 3911 ret = 0; 3912 spin_unlock(&mddev->lock); 3913 return ret; 3914 } 3915 3916 static ssize_t 3917 level_store(struct mddev *mddev, const char *buf, size_t len) 3918 { 3919 char clevel[16]; 3920 ssize_t rv; 3921 size_t slen = len; 3922 struct md_personality *pers, *oldpers; 3923 long level; 3924 void *priv, *oldpriv; 3925 struct md_rdev *rdev; 3926 3927 if (slen == 0 || slen >= sizeof(clevel)) 3928 return -EINVAL; 3929 3930 rv = mddev_lock(mddev); 3931 if (rv) 3932 return rv; 3933 3934 if (mddev->pers == NULL) { 3935 strncpy(mddev->clevel, buf, slen); 3936 if (mddev->clevel[slen-1] == '\n') 3937 slen--; 3938 mddev->clevel[slen] = 0; 3939 mddev->level = LEVEL_NONE; 3940 rv = len; 3941 goto out_unlock; 3942 } 3943 rv = -EROFS; 3944 if (mddev->ro) 3945 goto out_unlock; 3946 3947 /* request to change the personality. Need to ensure: 3948 * - array is not engaged in resync/recovery/reshape 3949 * - old personality can be suspended 3950 * - new personality will access other array. 3951 */ 3952 3953 rv = -EBUSY; 3954 if (mddev->sync_thread || 3955 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3956 mddev->reshape_position != MaxSector || 3957 mddev->sysfs_active) 3958 goto out_unlock; 3959 3960 rv = -EINVAL; 3961 if (!mddev->pers->quiesce) { 3962 pr_warn("md: %s: %s does not support online personality change\n", 3963 mdname(mddev), mddev->pers->name); 3964 goto out_unlock; 3965 } 3966 3967 /* Now find the new personality */ 3968 strncpy(clevel, buf, slen); 3969 if (clevel[slen-1] == '\n') 3970 slen--; 3971 clevel[slen] = 0; 3972 if (kstrtol(clevel, 10, &level)) 3973 level = LEVEL_NONE; 3974 3975 if (request_module("md-%s", clevel) != 0) 3976 request_module("md-level-%s", clevel); 3977 spin_lock(&pers_lock); 3978 pers = find_pers(level, clevel); 3979 if (!pers || !try_module_get(pers->owner)) { 3980 spin_unlock(&pers_lock); 3981 pr_warn("md: personality %s not loaded\n", clevel); 3982 rv = -EINVAL; 3983 goto out_unlock; 3984 } 3985 spin_unlock(&pers_lock); 3986 3987 if (pers == mddev->pers) { 3988 /* Nothing to do! */ 3989 module_put(pers->owner); 3990 rv = len; 3991 goto out_unlock; 3992 } 3993 if (!pers->takeover) { 3994 module_put(pers->owner); 3995 pr_warn("md: %s: %s does not support personality takeover\n", 3996 mdname(mddev), clevel); 3997 rv = -EINVAL; 3998 goto out_unlock; 3999 } 4000 4001 rdev_for_each(rdev, mddev) 4002 rdev->new_raid_disk = rdev->raid_disk; 4003 4004 /* ->takeover must set new_* and/or delta_disks 4005 * if it succeeds, and may set them when it fails. 4006 */ 4007 priv = pers->takeover(mddev); 4008 if (IS_ERR(priv)) { 4009 mddev->new_level = mddev->level; 4010 mddev->new_layout = mddev->layout; 4011 mddev->new_chunk_sectors = mddev->chunk_sectors; 4012 mddev->raid_disks -= mddev->delta_disks; 4013 mddev->delta_disks = 0; 4014 mddev->reshape_backwards = 0; 4015 module_put(pers->owner); 4016 pr_warn("md: %s: %s would not accept array\n", 4017 mdname(mddev), clevel); 4018 rv = PTR_ERR(priv); 4019 goto out_unlock; 4020 } 4021 4022 /* Looks like we have a winner */ 4023 mddev_suspend(mddev); 4024 mddev_detach(mddev); 4025 4026 spin_lock(&mddev->lock); 4027 oldpers = mddev->pers; 4028 oldpriv = mddev->private; 4029 mddev->pers = pers; 4030 mddev->private = priv; 4031 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4032 mddev->level = mddev->new_level; 4033 mddev->layout = mddev->new_layout; 4034 mddev->chunk_sectors = mddev->new_chunk_sectors; 4035 mddev->delta_disks = 0; 4036 mddev->reshape_backwards = 0; 4037 mddev->degraded = 0; 4038 spin_unlock(&mddev->lock); 4039 4040 if (oldpers->sync_request == NULL && 4041 mddev->external) { 4042 /* We are converting from a no-redundancy array 4043 * to a redundancy array and metadata is managed 4044 * externally so we need to be sure that writes 4045 * won't block due to a need to transition 4046 * clean->dirty 4047 * until external management is started. 4048 */ 4049 mddev->in_sync = 0; 4050 mddev->safemode_delay = 0; 4051 mddev->safemode = 0; 4052 } 4053 4054 oldpers->free(mddev, oldpriv); 4055 4056 if (oldpers->sync_request == NULL && 4057 pers->sync_request != NULL) { 4058 /* need to add the md_redundancy_group */ 4059 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4060 pr_warn("md: cannot register extra attributes for %s\n", 4061 mdname(mddev)); 4062 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4063 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4064 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4065 } 4066 if (oldpers->sync_request != NULL && 4067 pers->sync_request == NULL) { 4068 /* need to remove the md_redundancy_group */ 4069 if (mddev->to_remove == NULL) 4070 mddev->to_remove = &md_redundancy_group; 4071 } 4072 4073 module_put(oldpers->owner); 4074 4075 rdev_for_each(rdev, mddev) { 4076 if (rdev->raid_disk < 0) 4077 continue; 4078 if (rdev->new_raid_disk >= mddev->raid_disks) 4079 rdev->new_raid_disk = -1; 4080 if (rdev->new_raid_disk == rdev->raid_disk) 4081 continue; 4082 sysfs_unlink_rdev(mddev, rdev); 4083 } 4084 rdev_for_each(rdev, mddev) { 4085 if (rdev->raid_disk < 0) 4086 continue; 4087 if (rdev->new_raid_disk == rdev->raid_disk) 4088 continue; 4089 rdev->raid_disk = rdev->new_raid_disk; 4090 if (rdev->raid_disk < 0) 4091 clear_bit(In_sync, &rdev->flags); 4092 else { 4093 if (sysfs_link_rdev(mddev, rdev)) 4094 pr_warn("md: cannot register rd%d for %s after level change\n", 4095 rdev->raid_disk, mdname(mddev)); 4096 } 4097 } 4098 4099 if (pers->sync_request == NULL) { 4100 /* this is now an array without redundancy, so 4101 * it must always be in_sync 4102 */ 4103 mddev->in_sync = 1; 4104 del_timer_sync(&mddev->safemode_timer); 4105 } 4106 blk_set_stacking_limits(&mddev->queue->limits); 4107 pers->run(mddev); 4108 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4109 mddev_resume(mddev); 4110 if (!mddev->thread) 4111 md_update_sb(mddev, 1); 4112 sysfs_notify_dirent_safe(mddev->sysfs_level); 4113 md_new_event(); 4114 rv = len; 4115 out_unlock: 4116 mddev_unlock(mddev); 4117 return rv; 4118 } 4119 4120 static struct md_sysfs_entry md_level = 4121 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4122 4123 static ssize_t 4124 layout_show(struct mddev *mddev, char *page) 4125 { 4126 /* just a number, not meaningful for all levels */ 4127 if (mddev->reshape_position != MaxSector && 4128 mddev->layout != mddev->new_layout) 4129 return sprintf(page, "%d (%d)\n", 4130 mddev->new_layout, mddev->layout); 4131 return sprintf(page, "%d\n", mddev->layout); 4132 } 4133 4134 static ssize_t 4135 layout_store(struct mddev *mddev, const char *buf, size_t len) 4136 { 4137 unsigned int n; 4138 int err; 4139 4140 err = kstrtouint(buf, 10, &n); 4141 if (err < 0) 4142 return err; 4143 err = mddev_lock(mddev); 4144 if (err) 4145 return err; 4146 4147 if (mddev->pers) { 4148 if (mddev->pers->check_reshape == NULL) 4149 err = -EBUSY; 4150 else if (mddev->ro) 4151 err = -EROFS; 4152 else { 4153 mddev->new_layout = n; 4154 err = mddev->pers->check_reshape(mddev); 4155 if (err) 4156 mddev->new_layout = mddev->layout; 4157 } 4158 } else { 4159 mddev->new_layout = n; 4160 if (mddev->reshape_position == MaxSector) 4161 mddev->layout = n; 4162 } 4163 mddev_unlock(mddev); 4164 return err ?: len; 4165 } 4166 static struct md_sysfs_entry md_layout = 4167 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4168 4169 static ssize_t 4170 raid_disks_show(struct mddev *mddev, char *page) 4171 { 4172 if (mddev->raid_disks == 0) 4173 return 0; 4174 if (mddev->reshape_position != MaxSector && 4175 mddev->delta_disks != 0) 4176 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4177 mddev->raid_disks - mddev->delta_disks); 4178 return sprintf(page, "%d\n", mddev->raid_disks); 4179 } 4180 4181 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4182 4183 static ssize_t 4184 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4185 { 4186 unsigned int n; 4187 int err; 4188 4189 err = kstrtouint(buf, 10, &n); 4190 if (err < 0) 4191 return err; 4192 4193 err = mddev_lock(mddev); 4194 if (err) 4195 return err; 4196 if (mddev->pers) 4197 err = update_raid_disks(mddev, n); 4198 else if (mddev->reshape_position != MaxSector) { 4199 struct md_rdev *rdev; 4200 int olddisks = mddev->raid_disks - mddev->delta_disks; 4201 4202 err = -EINVAL; 4203 rdev_for_each(rdev, mddev) { 4204 if (olddisks < n && 4205 rdev->data_offset < rdev->new_data_offset) 4206 goto out_unlock; 4207 if (olddisks > n && 4208 rdev->data_offset > rdev->new_data_offset) 4209 goto out_unlock; 4210 } 4211 err = 0; 4212 mddev->delta_disks = n - olddisks; 4213 mddev->raid_disks = n; 4214 mddev->reshape_backwards = (mddev->delta_disks < 0); 4215 } else 4216 mddev->raid_disks = n; 4217 out_unlock: 4218 mddev_unlock(mddev); 4219 return err ? err : len; 4220 } 4221 static struct md_sysfs_entry md_raid_disks = 4222 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4223 4224 static ssize_t 4225 uuid_show(struct mddev *mddev, char *page) 4226 { 4227 return sprintf(page, "%pU\n", mddev->uuid); 4228 } 4229 static struct md_sysfs_entry md_uuid = 4230 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4231 4232 static ssize_t 4233 chunk_size_show(struct mddev *mddev, char *page) 4234 { 4235 if (mddev->reshape_position != MaxSector && 4236 mddev->chunk_sectors != mddev->new_chunk_sectors) 4237 return sprintf(page, "%d (%d)\n", 4238 mddev->new_chunk_sectors << 9, 4239 mddev->chunk_sectors << 9); 4240 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4241 } 4242 4243 static ssize_t 4244 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4245 { 4246 unsigned long n; 4247 int err; 4248 4249 err = kstrtoul(buf, 10, &n); 4250 if (err < 0) 4251 return err; 4252 4253 err = mddev_lock(mddev); 4254 if (err) 4255 return err; 4256 if (mddev->pers) { 4257 if (mddev->pers->check_reshape == NULL) 4258 err = -EBUSY; 4259 else if (mddev->ro) 4260 err = -EROFS; 4261 else { 4262 mddev->new_chunk_sectors = n >> 9; 4263 err = mddev->pers->check_reshape(mddev); 4264 if (err) 4265 mddev->new_chunk_sectors = mddev->chunk_sectors; 4266 } 4267 } else { 4268 mddev->new_chunk_sectors = n >> 9; 4269 if (mddev->reshape_position == MaxSector) 4270 mddev->chunk_sectors = n >> 9; 4271 } 4272 mddev_unlock(mddev); 4273 return err ?: len; 4274 } 4275 static struct md_sysfs_entry md_chunk_size = 4276 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4277 4278 static ssize_t 4279 resync_start_show(struct mddev *mddev, char *page) 4280 { 4281 if (mddev->recovery_cp == MaxSector) 4282 return sprintf(page, "none\n"); 4283 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4284 } 4285 4286 static ssize_t 4287 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4288 { 4289 unsigned long long n; 4290 int err; 4291 4292 if (cmd_match(buf, "none")) 4293 n = MaxSector; 4294 else { 4295 err = kstrtoull(buf, 10, &n); 4296 if (err < 0) 4297 return err; 4298 if (n != (sector_t)n) 4299 return -EINVAL; 4300 } 4301 4302 err = mddev_lock(mddev); 4303 if (err) 4304 return err; 4305 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4306 err = -EBUSY; 4307 4308 if (!err) { 4309 mddev->recovery_cp = n; 4310 if (mddev->pers) 4311 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4312 } 4313 mddev_unlock(mddev); 4314 return err ?: len; 4315 } 4316 static struct md_sysfs_entry md_resync_start = 4317 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4318 resync_start_show, resync_start_store); 4319 4320 /* 4321 * The array state can be: 4322 * 4323 * clear 4324 * No devices, no size, no level 4325 * Equivalent to STOP_ARRAY ioctl 4326 * inactive 4327 * May have some settings, but array is not active 4328 * all IO results in error 4329 * When written, doesn't tear down array, but just stops it 4330 * suspended (not supported yet) 4331 * All IO requests will block. The array can be reconfigured. 4332 * Writing this, if accepted, will block until array is quiescent 4333 * readonly 4334 * no resync can happen. no superblocks get written. 4335 * write requests fail 4336 * read-auto 4337 * like readonly, but behaves like 'clean' on a write request. 4338 * 4339 * clean - no pending writes, but otherwise active. 4340 * When written to inactive array, starts without resync 4341 * If a write request arrives then 4342 * if metadata is known, mark 'dirty' and switch to 'active'. 4343 * if not known, block and switch to write-pending 4344 * If written to an active array that has pending writes, then fails. 4345 * active 4346 * fully active: IO and resync can be happening. 4347 * When written to inactive array, starts with resync 4348 * 4349 * write-pending 4350 * clean, but writes are blocked waiting for 'active' to be written. 4351 * 4352 * active-idle 4353 * like active, but no writes have been seen for a while (100msec). 4354 * 4355 * broken 4356 * RAID0/LINEAR-only: same as clean, but array is missing a member. 4357 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped 4358 * when a member is gone, so this state will at least alert the 4359 * user that something is wrong. 4360 */ 4361 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4362 write_pending, active_idle, broken, bad_word}; 4363 static char *array_states[] = { 4364 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4365 "write-pending", "active-idle", "broken", NULL }; 4366 4367 static int match_word(const char *word, char **list) 4368 { 4369 int n; 4370 for (n=0; list[n]; n++) 4371 if (cmd_match(word, list[n])) 4372 break; 4373 return n; 4374 } 4375 4376 static ssize_t 4377 array_state_show(struct mddev *mddev, char *page) 4378 { 4379 enum array_state st = inactive; 4380 4381 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4382 switch(mddev->ro) { 4383 case 1: 4384 st = readonly; 4385 break; 4386 case 2: 4387 st = read_auto; 4388 break; 4389 case 0: 4390 spin_lock(&mddev->lock); 4391 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4392 st = write_pending; 4393 else if (mddev->in_sync) 4394 st = clean; 4395 else if (mddev->safemode) 4396 st = active_idle; 4397 else 4398 st = active; 4399 spin_unlock(&mddev->lock); 4400 } 4401 4402 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4403 st = broken; 4404 } else { 4405 if (list_empty(&mddev->disks) && 4406 mddev->raid_disks == 0 && 4407 mddev->dev_sectors == 0) 4408 st = clear; 4409 else 4410 st = inactive; 4411 } 4412 return sprintf(page, "%s\n", array_states[st]); 4413 } 4414 4415 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4416 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4417 static int restart_array(struct mddev *mddev); 4418 4419 static ssize_t 4420 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4421 { 4422 int err = 0; 4423 enum array_state st = match_word(buf, array_states); 4424 4425 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4426 /* don't take reconfig_mutex when toggling between 4427 * clean and active 4428 */ 4429 spin_lock(&mddev->lock); 4430 if (st == active) { 4431 restart_array(mddev); 4432 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4433 md_wakeup_thread(mddev->thread); 4434 wake_up(&mddev->sb_wait); 4435 } else /* st == clean */ { 4436 restart_array(mddev); 4437 if (!set_in_sync(mddev)) 4438 err = -EBUSY; 4439 } 4440 if (!err) 4441 sysfs_notify_dirent_safe(mddev->sysfs_state); 4442 spin_unlock(&mddev->lock); 4443 return err ?: len; 4444 } 4445 err = mddev_lock(mddev); 4446 if (err) 4447 return err; 4448 err = -EINVAL; 4449 switch(st) { 4450 case bad_word: 4451 break; 4452 case clear: 4453 /* stopping an active array */ 4454 err = do_md_stop(mddev, 0, NULL); 4455 break; 4456 case inactive: 4457 /* stopping an active array */ 4458 if (mddev->pers) 4459 err = do_md_stop(mddev, 2, NULL); 4460 else 4461 err = 0; /* already inactive */ 4462 break; 4463 case suspended: 4464 break; /* not supported yet */ 4465 case readonly: 4466 if (mddev->pers) 4467 err = md_set_readonly(mddev, NULL); 4468 else { 4469 mddev->ro = 1; 4470 set_disk_ro(mddev->gendisk, 1); 4471 err = do_md_run(mddev); 4472 } 4473 break; 4474 case read_auto: 4475 if (mddev->pers) { 4476 if (mddev->ro == 0) 4477 err = md_set_readonly(mddev, NULL); 4478 else if (mddev->ro == 1) 4479 err = restart_array(mddev); 4480 if (err == 0) { 4481 mddev->ro = 2; 4482 set_disk_ro(mddev->gendisk, 0); 4483 } 4484 } else { 4485 mddev->ro = 2; 4486 err = do_md_run(mddev); 4487 } 4488 break; 4489 case clean: 4490 if (mddev->pers) { 4491 err = restart_array(mddev); 4492 if (err) 4493 break; 4494 spin_lock(&mddev->lock); 4495 if (!set_in_sync(mddev)) 4496 err = -EBUSY; 4497 spin_unlock(&mddev->lock); 4498 } else 4499 err = -EINVAL; 4500 break; 4501 case active: 4502 if (mddev->pers) { 4503 err = restart_array(mddev); 4504 if (err) 4505 break; 4506 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4507 wake_up(&mddev->sb_wait); 4508 err = 0; 4509 } else { 4510 mddev->ro = 0; 4511 set_disk_ro(mddev->gendisk, 0); 4512 err = do_md_run(mddev); 4513 } 4514 break; 4515 case write_pending: 4516 case active_idle: 4517 case broken: 4518 /* these cannot be set */ 4519 break; 4520 } 4521 4522 if (!err) { 4523 if (mddev->hold_active == UNTIL_IOCTL) 4524 mddev->hold_active = 0; 4525 sysfs_notify_dirent_safe(mddev->sysfs_state); 4526 } 4527 mddev_unlock(mddev); 4528 return err ?: len; 4529 } 4530 static struct md_sysfs_entry md_array_state = 4531 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4532 4533 static ssize_t 4534 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4535 return sprintf(page, "%d\n", 4536 atomic_read(&mddev->max_corr_read_errors)); 4537 } 4538 4539 static ssize_t 4540 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4541 { 4542 unsigned int n; 4543 int rv; 4544 4545 rv = kstrtouint(buf, 10, &n); 4546 if (rv < 0) 4547 return rv; 4548 atomic_set(&mddev->max_corr_read_errors, n); 4549 return len; 4550 } 4551 4552 static struct md_sysfs_entry max_corr_read_errors = 4553 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4554 max_corrected_read_errors_store); 4555 4556 static ssize_t 4557 null_show(struct mddev *mddev, char *page) 4558 { 4559 return -EINVAL; 4560 } 4561 4562 /* need to ensure rdev_delayed_delete() has completed */ 4563 static void flush_rdev_wq(struct mddev *mddev) 4564 { 4565 struct md_rdev *rdev; 4566 4567 rcu_read_lock(); 4568 rdev_for_each_rcu(rdev, mddev) 4569 if (work_pending(&rdev->del_work)) { 4570 flush_workqueue(md_rdev_misc_wq); 4571 break; 4572 } 4573 rcu_read_unlock(); 4574 } 4575 4576 static ssize_t 4577 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4578 { 4579 /* buf must be %d:%d\n? giving major and minor numbers */ 4580 /* The new device is added to the array. 4581 * If the array has a persistent superblock, we read the 4582 * superblock to initialise info and check validity. 4583 * Otherwise, only checking done is that in bind_rdev_to_array, 4584 * which mainly checks size. 4585 */ 4586 char *e; 4587 int major = simple_strtoul(buf, &e, 10); 4588 int minor; 4589 dev_t dev; 4590 struct md_rdev *rdev; 4591 int err; 4592 4593 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4594 return -EINVAL; 4595 minor = simple_strtoul(e+1, &e, 10); 4596 if (*e && *e != '\n') 4597 return -EINVAL; 4598 dev = MKDEV(major, minor); 4599 if (major != MAJOR(dev) || 4600 minor != MINOR(dev)) 4601 return -EOVERFLOW; 4602 4603 flush_rdev_wq(mddev); 4604 err = mddev_lock(mddev); 4605 if (err) 4606 return err; 4607 if (mddev->persistent) { 4608 rdev = md_import_device(dev, mddev->major_version, 4609 mddev->minor_version); 4610 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4611 struct md_rdev *rdev0 4612 = list_entry(mddev->disks.next, 4613 struct md_rdev, same_set); 4614 err = super_types[mddev->major_version] 4615 .load_super(rdev, rdev0, mddev->minor_version); 4616 if (err < 0) 4617 goto out; 4618 } 4619 } else if (mddev->external) 4620 rdev = md_import_device(dev, -2, -1); 4621 else 4622 rdev = md_import_device(dev, -1, -1); 4623 4624 if (IS_ERR(rdev)) { 4625 mddev_unlock(mddev); 4626 return PTR_ERR(rdev); 4627 } 4628 err = bind_rdev_to_array(rdev, mddev); 4629 out: 4630 if (err) 4631 export_rdev(rdev); 4632 mddev_unlock(mddev); 4633 if (!err) 4634 md_new_event(); 4635 return err ? err : len; 4636 } 4637 4638 static struct md_sysfs_entry md_new_device = 4639 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4640 4641 static ssize_t 4642 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4643 { 4644 char *end; 4645 unsigned long chunk, end_chunk; 4646 int err; 4647 4648 err = mddev_lock(mddev); 4649 if (err) 4650 return err; 4651 if (!mddev->bitmap) 4652 goto out; 4653 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4654 while (*buf) { 4655 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4656 if (buf == end) break; 4657 if (*end == '-') { /* range */ 4658 buf = end + 1; 4659 end_chunk = simple_strtoul(buf, &end, 0); 4660 if (buf == end) break; 4661 } 4662 if (*end && !isspace(*end)) break; 4663 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4664 buf = skip_spaces(end); 4665 } 4666 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4667 out: 4668 mddev_unlock(mddev); 4669 return len; 4670 } 4671 4672 static struct md_sysfs_entry md_bitmap = 4673 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4674 4675 static ssize_t 4676 size_show(struct mddev *mddev, char *page) 4677 { 4678 return sprintf(page, "%llu\n", 4679 (unsigned long long)mddev->dev_sectors / 2); 4680 } 4681 4682 static int update_size(struct mddev *mddev, sector_t num_sectors); 4683 4684 static ssize_t 4685 size_store(struct mddev *mddev, const char *buf, size_t len) 4686 { 4687 /* If array is inactive, we can reduce the component size, but 4688 * not increase it (except from 0). 4689 * If array is active, we can try an on-line resize 4690 */ 4691 sector_t sectors; 4692 int err = strict_blocks_to_sectors(buf, §ors); 4693 4694 if (err < 0) 4695 return err; 4696 err = mddev_lock(mddev); 4697 if (err) 4698 return err; 4699 if (mddev->pers) { 4700 err = update_size(mddev, sectors); 4701 if (err == 0) 4702 md_update_sb(mddev, 1); 4703 } else { 4704 if (mddev->dev_sectors == 0 || 4705 mddev->dev_sectors > sectors) 4706 mddev->dev_sectors = sectors; 4707 else 4708 err = -ENOSPC; 4709 } 4710 mddev_unlock(mddev); 4711 return err ? err : len; 4712 } 4713 4714 static struct md_sysfs_entry md_size = 4715 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4716 4717 /* Metadata version. 4718 * This is one of 4719 * 'none' for arrays with no metadata (good luck...) 4720 * 'external' for arrays with externally managed metadata, 4721 * or N.M for internally known formats 4722 */ 4723 static ssize_t 4724 metadata_show(struct mddev *mddev, char *page) 4725 { 4726 if (mddev->persistent) 4727 return sprintf(page, "%d.%d\n", 4728 mddev->major_version, mddev->minor_version); 4729 else if (mddev->external) 4730 return sprintf(page, "external:%s\n", mddev->metadata_type); 4731 else 4732 return sprintf(page, "none\n"); 4733 } 4734 4735 static ssize_t 4736 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4737 { 4738 int major, minor; 4739 char *e; 4740 int err; 4741 /* Changing the details of 'external' metadata is 4742 * always permitted. Otherwise there must be 4743 * no devices attached to the array. 4744 */ 4745 4746 err = mddev_lock(mddev); 4747 if (err) 4748 return err; 4749 err = -EBUSY; 4750 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4751 ; 4752 else if (!list_empty(&mddev->disks)) 4753 goto out_unlock; 4754 4755 err = 0; 4756 if (cmd_match(buf, "none")) { 4757 mddev->persistent = 0; 4758 mddev->external = 0; 4759 mddev->major_version = 0; 4760 mddev->minor_version = 90; 4761 goto out_unlock; 4762 } 4763 if (strncmp(buf, "external:", 9) == 0) { 4764 size_t namelen = len-9; 4765 if (namelen >= sizeof(mddev->metadata_type)) 4766 namelen = sizeof(mddev->metadata_type)-1; 4767 strncpy(mddev->metadata_type, buf+9, namelen); 4768 mddev->metadata_type[namelen] = 0; 4769 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4770 mddev->metadata_type[--namelen] = 0; 4771 mddev->persistent = 0; 4772 mddev->external = 1; 4773 mddev->major_version = 0; 4774 mddev->minor_version = 90; 4775 goto out_unlock; 4776 } 4777 major = simple_strtoul(buf, &e, 10); 4778 err = -EINVAL; 4779 if (e==buf || *e != '.') 4780 goto out_unlock; 4781 buf = e+1; 4782 minor = simple_strtoul(buf, &e, 10); 4783 if (e==buf || (*e && *e != '\n') ) 4784 goto out_unlock; 4785 err = -ENOENT; 4786 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4787 goto out_unlock; 4788 mddev->major_version = major; 4789 mddev->minor_version = minor; 4790 mddev->persistent = 1; 4791 mddev->external = 0; 4792 err = 0; 4793 out_unlock: 4794 mddev_unlock(mddev); 4795 return err ?: len; 4796 } 4797 4798 static struct md_sysfs_entry md_metadata = 4799 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4800 4801 static ssize_t 4802 action_show(struct mddev *mddev, char *page) 4803 { 4804 char *type = "idle"; 4805 unsigned long recovery = mddev->recovery; 4806 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4807 type = "frozen"; 4808 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4809 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4810 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4811 type = "reshape"; 4812 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4813 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4814 type = "resync"; 4815 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4816 type = "check"; 4817 else 4818 type = "repair"; 4819 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4820 type = "recover"; 4821 else if (mddev->reshape_position != MaxSector) 4822 type = "reshape"; 4823 } 4824 return sprintf(page, "%s\n", type); 4825 } 4826 4827 static ssize_t 4828 action_store(struct mddev *mddev, const char *page, size_t len) 4829 { 4830 if (!mddev->pers || !mddev->pers->sync_request) 4831 return -EINVAL; 4832 4833 4834 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4835 if (cmd_match(page, "frozen")) 4836 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4837 else 4838 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4839 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4840 mddev_lock(mddev) == 0) { 4841 if (work_pending(&mddev->del_work)) 4842 flush_workqueue(md_misc_wq); 4843 if (mddev->sync_thread) { 4844 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4845 md_reap_sync_thread(mddev); 4846 } 4847 mddev_unlock(mddev); 4848 } 4849 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4850 return -EBUSY; 4851 else if (cmd_match(page, "resync")) 4852 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4853 else if (cmd_match(page, "recover")) { 4854 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4855 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4856 } else if (cmd_match(page, "reshape")) { 4857 int err; 4858 if (mddev->pers->start_reshape == NULL) 4859 return -EINVAL; 4860 err = mddev_lock(mddev); 4861 if (!err) { 4862 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4863 err = -EBUSY; 4864 else { 4865 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4866 err = mddev->pers->start_reshape(mddev); 4867 } 4868 mddev_unlock(mddev); 4869 } 4870 if (err) 4871 return err; 4872 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4873 } else { 4874 if (cmd_match(page, "check")) 4875 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4876 else if (!cmd_match(page, "repair")) 4877 return -EINVAL; 4878 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4879 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4880 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4881 } 4882 if (mddev->ro == 2) { 4883 /* A write to sync_action is enough to justify 4884 * canceling read-auto mode 4885 */ 4886 mddev->ro = 0; 4887 md_wakeup_thread(mddev->sync_thread); 4888 } 4889 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4890 md_wakeup_thread(mddev->thread); 4891 sysfs_notify_dirent_safe(mddev->sysfs_action); 4892 return len; 4893 } 4894 4895 static struct md_sysfs_entry md_scan_mode = 4896 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4897 4898 static ssize_t 4899 last_sync_action_show(struct mddev *mddev, char *page) 4900 { 4901 return sprintf(page, "%s\n", mddev->last_sync_action); 4902 } 4903 4904 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4905 4906 static ssize_t 4907 mismatch_cnt_show(struct mddev *mddev, char *page) 4908 { 4909 return sprintf(page, "%llu\n", 4910 (unsigned long long) 4911 atomic64_read(&mddev->resync_mismatches)); 4912 } 4913 4914 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4915 4916 static ssize_t 4917 sync_min_show(struct mddev *mddev, char *page) 4918 { 4919 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4920 mddev->sync_speed_min ? "local": "system"); 4921 } 4922 4923 static ssize_t 4924 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4925 { 4926 unsigned int min; 4927 int rv; 4928 4929 if (strncmp(buf, "system", 6)==0) { 4930 min = 0; 4931 } else { 4932 rv = kstrtouint(buf, 10, &min); 4933 if (rv < 0) 4934 return rv; 4935 if (min == 0) 4936 return -EINVAL; 4937 } 4938 mddev->sync_speed_min = min; 4939 return len; 4940 } 4941 4942 static struct md_sysfs_entry md_sync_min = 4943 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4944 4945 static ssize_t 4946 sync_max_show(struct mddev *mddev, char *page) 4947 { 4948 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4949 mddev->sync_speed_max ? "local": "system"); 4950 } 4951 4952 static ssize_t 4953 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4954 { 4955 unsigned int max; 4956 int rv; 4957 4958 if (strncmp(buf, "system", 6)==0) { 4959 max = 0; 4960 } else { 4961 rv = kstrtouint(buf, 10, &max); 4962 if (rv < 0) 4963 return rv; 4964 if (max == 0) 4965 return -EINVAL; 4966 } 4967 mddev->sync_speed_max = max; 4968 return len; 4969 } 4970 4971 static struct md_sysfs_entry md_sync_max = 4972 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4973 4974 static ssize_t 4975 degraded_show(struct mddev *mddev, char *page) 4976 { 4977 return sprintf(page, "%d\n", mddev->degraded); 4978 } 4979 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4980 4981 static ssize_t 4982 sync_force_parallel_show(struct mddev *mddev, char *page) 4983 { 4984 return sprintf(page, "%d\n", mddev->parallel_resync); 4985 } 4986 4987 static ssize_t 4988 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4989 { 4990 long n; 4991 4992 if (kstrtol(buf, 10, &n)) 4993 return -EINVAL; 4994 4995 if (n != 0 && n != 1) 4996 return -EINVAL; 4997 4998 mddev->parallel_resync = n; 4999 5000 if (mddev->sync_thread) 5001 wake_up(&resync_wait); 5002 5003 return len; 5004 } 5005 5006 /* force parallel resync, even with shared block devices */ 5007 static struct md_sysfs_entry md_sync_force_parallel = 5008 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5009 sync_force_parallel_show, sync_force_parallel_store); 5010 5011 static ssize_t 5012 sync_speed_show(struct mddev *mddev, char *page) 5013 { 5014 unsigned long resync, dt, db; 5015 if (mddev->curr_resync == 0) 5016 return sprintf(page, "none\n"); 5017 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5018 dt = (jiffies - mddev->resync_mark) / HZ; 5019 if (!dt) dt++; 5020 db = resync - mddev->resync_mark_cnt; 5021 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5022 } 5023 5024 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5025 5026 static ssize_t 5027 sync_completed_show(struct mddev *mddev, char *page) 5028 { 5029 unsigned long long max_sectors, resync; 5030 5031 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5032 return sprintf(page, "none\n"); 5033 5034 if (mddev->curr_resync == 1 || 5035 mddev->curr_resync == 2) 5036 return sprintf(page, "delayed\n"); 5037 5038 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5039 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5040 max_sectors = mddev->resync_max_sectors; 5041 else 5042 max_sectors = mddev->dev_sectors; 5043 5044 resync = mddev->curr_resync_completed; 5045 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5046 } 5047 5048 static struct md_sysfs_entry md_sync_completed = 5049 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5050 5051 static ssize_t 5052 min_sync_show(struct mddev *mddev, char *page) 5053 { 5054 return sprintf(page, "%llu\n", 5055 (unsigned long long)mddev->resync_min); 5056 } 5057 static ssize_t 5058 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5059 { 5060 unsigned long long min; 5061 int err; 5062 5063 if (kstrtoull(buf, 10, &min)) 5064 return -EINVAL; 5065 5066 spin_lock(&mddev->lock); 5067 err = -EINVAL; 5068 if (min > mddev->resync_max) 5069 goto out_unlock; 5070 5071 err = -EBUSY; 5072 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5073 goto out_unlock; 5074 5075 /* Round down to multiple of 4K for safety */ 5076 mddev->resync_min = round_down(min, 8); 5077 err = 0; 5078 5079 out_unlock: 5080 spin_unlock(&mddev->lock); 5081 return err ?: len; 5082 } 5083 5084 static struct md_sysfs_entry md_min_sync = 5085 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5086 5087 static ssize_t 5088 max_sync_show(struct mddev *mddev, char *page) 5089 { 5090 if (mddev->resync_max == MaxSector) 5091 return sprintf(page, "max\n"); 5092 else 5093 return sprintf(page, "%llu\n", 5094 (unsigned long long)mddev->resync_max); 5095 } 5096 static ssize_t 5097 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5098 { 5099 int err; 5100 spin_lock(&mddev->lock); 5101 if (strncmp(buf, "max", 3) == 0) 5102 mddev->resync_max = MaxSector; 5103 else { 5104 unsigned long long max; 5105 int chunk; 5106 5107 err = -EINVAL; 5108 if (kstrtoull(buf, 10, &max)) 5109 goto out_unlock; 5110 if (max < mddev->resync_min) 5111 goto out_unlock; 5112 5113 err = -EBUSY; 5114 if (max < mddev->resync_max && 5115 mddev->ro == 0 && 5116 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5117 goto out_unlock; 5118 5119 /* Must be a multiple of chunk_size */ 5120 chunk = mddev->chunk_sectors; 5121 if (chunk) { 5122 sector_t temp = max; 5123 5124 err = -EINVAL; 5125 if (sector_div(temp, chunk)) 5126 goto out_unlock; 5127 } 5128 mddev->resync_max = max; 5129 } 5130 wake_up(&mddev->recovery_wait); 5131 err = 0; 5132 out_unlock: 5133 spin_unlock(&mddev->lock); 5134 return err ?: len; 5135 } 5136 5137 static struct md_sysfs_entry md_max_sync = 5138 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5139 5140 static ssize_t 5141 suspend_lo_show(struct mddev *mddev, char *page) 5142 { 5143 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5144 } 5145 5146 static ssize_t 5147 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5148 { 5149 unsigned long long new; 5150 int err; 5151 5152 err = kstrtoull(buf, 10, &new); 5153 if (err < 0) 5154 return err; 5155 if (new != (sector_t)new) 5156 return -EINVAL; 5157 5158 err = mddev_lock(mddev); 5159 if (err) 5160 return err; 5161 err = -EINVAL; 5162 if (mddev->pers == NULL || 5163 mddev->pers->quiesce == NULL) 5164 goto unlock; 5165 mddev_suspend(mddev); 5166 mddev->suspend_lo = new; 5167 mddev_resume(mddev); 5168 5169 err = 0; 5170 unlock: 5171 mddev_unlock(mddev); 5172 return err ?: len; 5173 } 5174 static struct md_sysfs_entry md_suspend_lo = 5175 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5176 5177 static ssize_t 5178 suspend_hi_show(struct mddev *mddev, char *page) 5179 { 5180 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5181 } 5182 5183 static ssize_t 5184 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5185 { 5186 unsigned long long new; 5187 int err; 5188 5189 err = kstrtoull(buf, 10, &new); 5190 if (err < 0) 5191 return err; 5192 if (new != (sector_t)new) 5193 return -EINVAL; 5194 5195 err = mddev_lock(mddev); 5196 if (err) 5197 return err; 5198 err = -EINVAL; 5199 if (mddev->pers == NULL) 5200 goto unlock; 5201 5202 mddev_suspend(mddev); 5203 mddev->suspend_hi = new; 5204 mddev_resume(mddev); 5205 5206 err = 0; 5207 unlock: 5208 mddev_unlock(mddev); 5209 return err ?: len; 5210 } 5211 static struct md_sysfs_entry md_suspend_hi = 5212 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5213 5214 static ssize_t 5215 reshape_position_show(struct mddev *mddev, char *page) 5216 { 5217 if (mddev->reshape_position != MaxSector) 5218 return sprintf(page, "%llu\n", 5219 (unsigned long long)mddev->reshape_position); 5220 strcpy(page, "none\n"); 5221 return 5; 5222 } 5223 5224 static ssize_t 5225 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5226 { 5227 struct md_rdev *rdev; 5228 unsigned long long new; 5229 int err; 5230 5231 err = kstrtoull(buf, 10, &new); 5232 if (err < 0) 5233 return err; 5234 if (new != (sector_t)new) 5235 return -EINVAL; 5236 err = mddev_lock(mddev); 5237 if (err) 5238 return err; 5239 err = -EBUSY; 5240 if (mddev->pers) 5241 goto unlock; 5242 mddev->reshape_position = new; 5243 mddev->delta_disks = 0; 5244 mddev->reshape_backwards = 0; 5245 mddev->new_level = mddev->level; 5246 mddev->new_layout = mddev->layout; 5247 mddev->new_chunk_sectors = mddev->chunk_sectors; 5248 rdev_for_each(rdev, mddev) 5249 rdev->new_data_offset = rdev->data_offset; 5250 err = 0; 5251 unlock: 5252 mddev_unlock(mddev); 5253 return err ?: len; 5254 } 5255 5256 static struct md_sysfs_entry md_reshape_position = 5257 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5258 reshape_position_store); 5259 5260 static ssize_t 5261 reshape_direction_show(struct mddev *mddev, char *page) 5262 { 5263 return sprintf(page, "%s\n", 5264 mddev->reshape_backwards ? "backwards" : "forwards"); 5265 } 5266 5267 static ssize_t 5268 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5269 { 5270 int backwards = 0; 5271 int err; 5272 5273 if (cmd_match(buf, "forwards")) 5274 backwards = 0; 5275 else if (cmd_match(buf, "backwards")) 5276 backwards = 1; 5277 else 5278 return -EINVAL; 5279 if (mddev->reshape_backwards == backwards) 5280 return len; 5281 5282 err = mddev_lock(mddev); 5283 if (err) 5284 return err; 5285 /* check if we are allowed to change */ 5286 if (mddev->delta_disks) 5287 err = -EBUSY; 5288 else if (mddev->persistent && 5289 mddev->major_version == 0) 5290 err = -EINVAL; 5291 else 5292 mddev->reshape_backwards = backwards; 5293 mddev_unlock(mddev); 5294 return err ?: len; 5295 } 5296 5297 static struct md_sysfs_entry md_reshape_direction = 5298 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5299 reshape_direction_store); 5300 5301 static ssize_t 5302 array_size_show(struct mddev *mddev, char *page) 5303 { 5304 if (mddev->external_size) 5305 return sprintf(page, "%llu\n", 5306 (unsigned long long)mddev->array_sectors/2); 5307 else 5308 return sprintf(page, "default\n"); 5309 } 5310 5311 static ssize_t 5312 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5313 { 5314 sector_t sectors; 5315 int err; 5316 5317 err = mddev_lock(mddev); 5318 if (err) 5319 return err; 5320 5321 /* cluster raid doesn't support change array_sectors */ 5322 if (mddev_is_clustered(mddev)) { 5323 mddev_unlock(mddev); 5324 return -EINVAL; 5325 } 5326 5327 if (strncmp(buf, "default", 7) == 0) { 5328 if (mddev->pers) 5329 sectors = mddev->pers->size(mddev, 0, 0); 5330 else 5331 sectors = mddev->array_sectors; 5332 5333 mddev->external_size = 0; 5334 } else { 5335 if (strict_blocks_to_sectors(buf, §ors) < 0) 5336 err = -EINVAL; 5337 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5338 err = -E2BIG; 5339 else 5340 mddev->external_size = 1; 5341 } 5342 5343 if (!err) { 5344 mddev->array_sectors = sectors; 5345 if (mddev->pers) 5346 set_capacity_and_notify(mddev->gendisk, 5347 mddev->array_sectors); 5348 } 5349 mddev_unlock(mddev); 5350 return err ?: len; 5351 } 5352 5353 static struct md_sysfs_entry md_array_size = 5354 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5355 array_size_store); 5356 5357 static ssize_t 5358 consistency_policy_show(struct mddev *mddev, char *page) 5359 { 5360 int ret; 5361 5362 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5363 ret = sprintf(page, "journal\n"); 5364 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5365 ret = sprintf(page, "ppl\n"); 5366 } else if (mddev->bitmap) { 5367 ret = sprintf(page, "bitmap\n"); 5368 } else if (mddev->pers) { 5369 if (mddev->pers->sync_request) 5370 ret = sprintf(page, "resync\n"); 5371 else 5372 ret = sprintf(page, "none\n"); 5373 } else { 5374 ret = sprintf(page, "unknown\n"); 5375 } 5376 5377 return ret; 5378 } 5379 5380 static ssize_t 5381 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5382 { 5383 int err = 0; 5384 5385 if (mddev->pers) { 5386 if (mddev->pers->change_consistency_policy) 5387 err = mddev->pers->change_consistency_policy(mddev, buf); 5388 else 5389 err = -EBUSY; 5390 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5391 set_bit(MD_HAS_PPL, &mddev->flags); 5392 } else { 5393 err = -EINVAL; 5394 } 5395 5396 return err ? err : len; 5397 } 5398 5399 static struct md_sysfs_entry md_consistency_policy = 5400 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5401 consistency_policy_store); 5402 5403 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5404 { 5405 return sprintf(page, "%d\n", mddev->fail_last_dev); 5406 } 5407 5408 /* 5409 * Setting fail_last_dev to true to allow last device to be forcibly removed 5410 * from RAID1/RAID10. 5411 */ 5412 static ssize_t 5413 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5414 { 5415 int ret; 5416 bool value; 5417 5418 ret = kstrtobool(buf, &value); 5419 if (ret) 5420 return ret; 5421 5422 if (value != mddev->fail_last_dev) 5423 mddev->fail_last_dev = value; 5424 5425 return len; 5426 } 5427 static struct md_sysfs_entry md_fail_last_dev = 5428 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5429 fail_last_dev_store); 5430 5431 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5432 { 5433 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5434 return sprintf(page, "n/a\n"); 5435 else 5436 return sprintf(page, "%d\n", mddev->serialize_policy); 5437 } 5438 5439 /* 5440 * Setting serialize_policy to true to enforce write IO is not reordered 5441 * for raid1. 5442 */ 5443 static ssize_t 5444 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5445 { 5446 int err; 5447 bool value; 5448 5449 err = kstrtobool(buf, &value); 5450 if (err) 5451 return err; 5452 5453 if (value == mddev->serialize_policy) 5454 return len; 5455 5456 err = mddev_lock(mddev); 5457 if (err) 5458 return err; 5459 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5460 pr_err("md: serialize_policy is only effective for raid1\n"); 5461 err = -EINVAL; 5462 goto unlock; 5463 } 5464 5465 mddev_suspend(mddev); 5466 if (value) 5467 mddev_create_serial_pool(mddev, NULL, true); 5468 else 5469 mddev_destroy_serial_pool(mddev, NULL, true); 5470 mddev->serialize_policy = value; 5471 mddev_resume(mddev); 5472 unlock: 5473 mddev_unlock(mddev); 5474 return err ?: len; 5475 } 5476 5477 static struct md_sysfs_entry md_serialize_policy = 5478 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5479 serialize_policy_store); 5480 5481 5482 static struct attribute *md_default_attrs[] = { 5483 &md_level.attr, 5484 &md_layout.attr, 5485 &md_raid_disks.attr, 5486 &md_uuid.attr, 5487 &md_chunk_size.attr, 5488 &md_size.attr, 5489 &md_resync_start.attr, 5490 &md_metadata.attr, 5491 &md_new_device.attr, 5492 &md_safe_delay.attr, 5493 &md_array_state.attr, 5494 &md_reshape_position.attr, 5495 &md_reshape_direction.attr, 5496 &md_array_size.attr, 5497 &max_corr_read_errors.attr, 5498 &md_consistency_policy.attr, 5499 &md_fail_last_dev.attr, 5500 &md_serialize_policy.attr, 5501 NULL, 5502 }; 5503 5504 static const struct attribute_group md_default_group = { 5505 .attrs = md_default_attrs, 5506 }; 5507 5508 static struct attribute *md_redundancy_attrs[] = { 5509 &md_scan_mode.attr, 5510 &md_last_scan_mode.attr, 5511 &md_mismatches.attr, 5512 &md_sync_min.attr, 5513 &md_sync_max.attr, 5514 &md_sync_speed.attr, 5515 &md_sync_force_parallel.attr, 5516 &md_sync_completed.attr, 5517 &md_min_sync.attr, 5518 &md_max_sync.attr, 5519 &md_suspend_lo.attr, 5520 &md_suspend_hi.attr, 5521 &md_bitmap.attr, 5522 &md_degraded.attr, 5523 NULL, 5524 }; 5525 static const struct attribute_group md_redundancy_group = { 5526 .name = NULL, 5527 .attrs = md_redundancy_attrs, 5528 }; 5529 5530 static const struct attribute_group *md_attr_groups[] = { 5531 &md_default_group, 5532 &md_bitmap_group, 5533 NULL, 5534 }; 5535 5536 static ssize_t 5537 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5538 { 5539 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5540 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5541 ssize_t rv; 5542 5543 if (!entry->show) 5544 return -EIO; 5545 spin_lock(&all_mddevs_lock); 5546 if (list_empty(&mddev->all_mddevs)) { 5547 spin_unlock(&all_mddevs_lock); 5548 return -EBUSY; 5549 } 5550 mddev_get(mddev); 5551 spin_unlock(&all_mddevs_lock); 5552 5553 rv = entry->show(mddev, page); 5554 mddev_put(mddev); 5555 return rv; 5556 } 5557 5558 static ssize_t 5559 md_attr_store(struct kobject *kobj, struct attribute *attr, 5560 const char *page, size_t length) 5561 { 5562 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5563 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5564 ssize_t rv; 5565 5566 if (!entry->store) 5567 return -EIO; 5568 if (!capable(CAP_SYS_ADMIN)) 5569 return -EACCES; 5570 spin_lock(&all_mddevs_lock); 5571 if (list_empty(&mddev->all_mddevs)) { 5572 spin_unlock(&all_mddevs_lock); 5573 return -EBUSY; 5574 } 5575 mddev_get(mddev); 5576 spin_unlock(&all_mddevs_lock); 5577 rv = entry->store(mddev, page, length); 5578 mddev_put(mddev); 5579 return rv; 5580 } 5581 5582 static void md_free(struct kobject *ko) 5583 { 5584 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5585 5586 if (mddev->sysfs_state) 5587 sysfs_put(mddev->sysfs_state); 5588 if (mddev->sysfs_level) 5589 sysfs_put(mddev->sysfs_level); 5590 5591 if (mddev->gendisk) { 5592 del_gendisk(mddev->gendisk); 5593 blk_cleanup_disk(mddev->gendisk); 5594 } 5595 percpu_ref_exit(&mddev->writes_pending); 5596 5597 bioset_exit(&mddev->bio_set); 5598 bioset_exit(&mddev->sync_set); 5599 if (mddev->level != 1 && mddev->level != 10) 5600 bioset_exit(&mddev->io_acct_set); 5601 kfree(mddev); 5602 } 5603 5604 static const struct sysfs_ops md_sysfs_ops = { 5605 .show = md_attr_show, 5606 .store = md_attr_store, 5607 }; 5608 static struct kobj_type md_ktype = { 5609 .release = md_free, 5610 .sysfs_ops = &md_sysfs_ops, 5611 .default_groups = md_attr_groups, 5612 }; 5613 5614 int mdp_major = 0; 5615 5616 static void mddev_delayed_delete(struct work_struct *ws) 5617 { 5618 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5619 5620 kobject_del(&mddev->kobj); 5621 kobject_put(&mddev->kobj); 5622 } 5623 5624 static void no_op(struct percpu_ref *r) {} 5625 5626 int mddev_init_writes_pending(struct mddev *mddev) 5627 { 5628 if (mddev->writes_pending.percpu_count_ptr) 5629 return 0; 5630 if (percpu_ref_init(&mddev->writes_pending, no_op, 5631 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5632 return -ENOMEM; 5633 /* We want to start with the refcount at zero */ 5634 percpu_ref_put(&mddev->writes_pending); 5635 return 0; 5636 } 5637 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5638 5639 static int md_alloc(dev_t dev, char *name) 5640 { 5641 /* 5642 * If dev is zero, name is the name of a device to allocate with 5643 * an arbitrary minor number. It will be "md_???" 5644 * If dev is non-zero it must be a device number with a MAJOR of 5645 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5646 * the device is being created by opening a node in /dev. 5647 * If "name" is not NULL, the device is being created by 5648 * writing to /sys/module/md_mod/parameters/new_array. 5649 */ 5650 static DEFINE_MUTEX(disks_mutex); 5651 struct mddev *mddev; 5652 struct gendisk *disk; 5653 int partitioned; 5654 int shift; 5655 int unit; 5656 int error ; 5657 5658 /* 5659 * Wait for any previous instance of this device to be completely 5660 * removed (mddev_delayed_delete). 5661 */ 5662 flush_workqueue(md_misc_wq); 5663 5664 mutex_lock(&disks_mutex); 5665 mddev = mddev_alloc(dev); 5666 if (IS_ERR(mddev)) { 5667 mutex_unlock(&disks_mutex); 5668 return PTR_ERR(mddev); 5669 } 5670 5671 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5672 shift = partitioned ? MdpMinorShift : 0; 5673 unit = MINOR(mddev->unit) >> shift; 5674 5675 if (name && !dev) { 5676 /* Need to ensure that 'name' is not a duplicate. 5677 */ 5678 struct mddev *mddev2; 5679 spin_lock(&all_mddevs_lock); 5680 5681 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5682 if (mddev2->gendisk && 5683 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5684 spin_unlock(&all_mddevs_lock); 5685 error = -EEXIST; 5686 goto out_unlock_disks_mutex; 5687 } 5688 spin_unlock(&all_mddevs_lock); 5689 } 5690 if (name && dev) 5691 /* 5692 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5693 */ 5694 mddev->hold_active = UNTIL_STOP; 5695 5696 error = -ENOMEM; 5697 disk = blk_alloc_disk(NUMA_NO_NODE); 5698 if (!disk) 5699 goto out_unlock_disks_mutex; 5700 5701 disk->major = MAJOR(mddev->unit); 5702 disk->first_minor = unit << shift; 5703 disk->minors = 1 << shift; 5704 if (name) 5705 strcpy(disk->disk_name, name); 5706 else if (partitioned) 5707 sprintf(disk->disk_name, "md_d%d", unit); 5708 else 5709 sprintf(disk->disk_name, "md%d", unit); 5710 disk->fops = &md_fops; 5711 disk->private_data = mddev; 5712 5713 mddev->queue = disk->queue; 5714 blk_set_stacking_limits(&mddev->queue->limits); 5715 blk_queue_write_cache(mddev->queue, true, true); 5716 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5717 mddev->gendisk = disk; 5718 error = add_disk(disk); 5719 if (error) 5720 goto out_cleanup_disk; 5721 5722 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5723 if (error) 5724 goto out_del_gendisk; 5725 5726 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5727 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5728 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5729 goto out_unlock_disks_mutex; 5730 5731 out_del_gendisk: 5732 del_gendisk(disk); 5733 out_cleanup_disk: 5734 blk_cleanup_disk(disk); 5735 out_unlock_disks_mutex: 5736 mutex_unlock(&disks_mutex); 5737 mddev_put(mddev); 5738 return error; 5739 } 5740 5741 static void md_probe(dev_t dev) 5742 { 5743 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5744 return; 5745 if (create_on_open) 5746 md_alloc(dev, NULL); 5747 } 5748 5749 static int add_named_array(const char *val, const struct kernel_param *kp) 5750 { 5751 /* 5752 * val must be "md_*" or "mdNNN". 5753 * For "md_*" we allocate an array with a large free minor number, and 5754 * set the name to val. val must not already be an active name. 5755 * For "mdNNN" we allocate an array with the minor number NNN 5756 * which must not already be in use. 5757 */ 5758 int len = strlen(val); 5759 char buf[DISK_NAME_LEN]; 5760 unsigned long devnum; 5761 5762 while (len && val[len-1] == '\n') 5763 len--; 5764 if (len >= DISK_NAME_LEN) 5765 return -E2BIG; 5766 strlcpy(buf, val, len+1); 5767 if (strncmp(buf, "md_", 3) == 0) 5768 return md_alloc(0, buf); 5769 if (strncmp(buf, "md", 2) == 0 && 5770 isdigit(buf[2]) && 5771 kstrtoul(buf+2, 10, &devnum) == 0 && 5772 devnum <= MINORMASK) 5773 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5774 5775 return -EINVAL; 5776 } 5777 5778 static void md_safemode_timeout(struct timer_list *t) 5779 { 5780 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5781 5782 mddev->safemode = 1; 5783 if (mddev->external) 5784 sysfs_notify_dirent_safe(mddev->sysfs_state); 5785 5786 md_wakeup_thread(mddev->thread); 5787 } 5788 5789 static int start_dirty_degraded; 5790 5791 int md_run(struct mddev *mddev) 5792 { 5793 int err; 5794 struct md_rdev *rdev; 5795 struct md_personality *pers; 5796 bool nowait = true; 5797 5798 if (list_empty(&mddev->disks)) 5799 /* cannot run an array with no devices.. */ 5800 return -EINVAL; 5801 5802 if (mddev->pers) 5803 return -EBUSY; 5804 /* Cannot run until previous stop completes properly */ 5805 if (mddev->sysfs_active) 5806 return -EBUSY; 5807 5808 /* 5809 * Analyze all RAID superblock(s) 5810 */ 5811 if (!mddev->raid_disks) { 5812 if (!mddev->persistent) 5813 return -EINVAL; 5814 err = analyze_sbs(mddev); 5815 if (err) 5816 return -EINVAL; 5817 } 5818 5819 if (mddev->level != LEVEL_NONE) 5820 request_module("md-level-%d", mddev->level); 5821 else if (mddev->clevel[0]) 5822 request_module("md-%s", mddev->clevel); 5823 5824 /* 5825 * Drop all container device buffers, from now on 5826 * the only valid external interface is through the md 5827 * device. 5828 */ 5829 mddev->has_superblocks = false; 5830 rdev_for_each(rdev, mddev) { 5831 if (test_bit(Faulty, &rdev->flags)) 5832 continue; 5833 sync_blockdev(rdev->bdev); 5834 invalidate_bdev(rdev->bdev); 5835 if (mddev->ro != 1 && rdev_read_only(rdev)) { 5836 mddev->ro = 1; 5837 if (mddev->gendisk) 5838 set_disk_ro(mddev->gendisk, 1); 5839 } 5840 5841 if (rdev->sb_page) 5842 mddev->has_superblocks = true; 5843 5844 /* perform some consistency tests on the device. 5845 * We don't want the data to overlap the metadata, 5846 * Internal Bitmap issues have been handled elsewhere. 5847 */ 5848 if (rdev->meta_bdev) { 5849 /* Nothing to check */; 5850 } else if (rdev->data_offset < rdev->sb_start) { 5851 if (mddev->dev_sectors && 5852 rdev->data_offset + mddev->dev_sectors 5853 > rdev->sb_start) { 5854 pr_warn("md: %s: data overlaps metadata\n", 5855 mdname(mddev)); 5856 return -EINVAL; 5857 } 5858 } else { 5859 if (rdev->sb_start + rdev->sb_size/512 5860 > rdev->data_offset) { 5861 pr_warn("md: %s: metadata overlaps data\n", 5862 mdname(mddev)); 5863 return -EINVAL; 5864 } 5865 } 5866 sysfs_notify_dirent_safe(rdev->sysfs_state); 5867 nowait = nowait && blk_queue_nowait(bdev_get_queue(rdev->bdev)); 5868 } 5869 5870 if (!bioset_initialized(&mddev->bio_set)) { 5871 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5872 if (err) 5873 return err; 5874 } 5875 if (!bioset_initialized(&mddev->sync_set)) { 5876 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5877 if (err) 5878 goto exit_bio_set; 5879 } 5880 5881 spin_lock(&pers_lock); 5882 pers = find_pers(mddev->level, mddev->clevel); 5883 if (!pers || !try_module_get(pers->owner)) { 5884 spin_unlock(&pers_lock); 5885 if (mddev->level != LEVEL_NONE) 5886 pr_warn("md: personality for level %d is not loaded!\n", 5887 mddev->level); 5888 else 5889 pr_warn("md: personality for level %s is not loaded!\n", 5890 mddev->clevel); 5891 err = -EINVAL; 5892 goto abort; 5893 } 5894 spin_unlock(&pers_lock); 5895 if (mddev->level != pers->level) { 5896 mddev->level = pers->level; 5897 mddev->new_level = pers->level; 5898 } 5899 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5900 5901 if (mddev->reshape_position != MaxSector && 5902 pers->start_reshape == NULL) { 5903 /* This personality cannot handle reshaping... */ 5904 module_put(pers->owner); 5905 err = -EINVAL; 5906 goto abort; 5907 } 5908 5909 if (pers->sync_request) { 5910 /* Warn if this is a potentially silly 5911 * configuration. 5912 */ 5913 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5914 struct md_rdev *rdev2; 5915 int warned = 0; 5916 5917 rdev_for_each(rdev, mddev) 5918 rdev_for_each(rdev2, mddev) { 5919 if (rdev < rdev2 && 5920 rdev->bdev->bd_disk == 5921 rdev2->bdev->bd_disk) { 5922 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5923 mdname(mddev), 5924 bdevname(rdev->bdev,b), 5925 bdevname(rdev2->bdev,b2)); 5926 warned = 1; 5927 } 5928 } 5929 5930 if (warned) 5931 pr_warn("True protection against single-disk failure might be compromised.\n"); 5932 } 5933 5934 mddev->recovery = 0; 5935 /* may be over-ridden by personality */ 5936 mddev->resync_max_sectors = mddev->dev_sectors; 5937 5938 mddev->ok_start_degraded = start_dirty_degraded; 5939 5940 if (start_readonly && mddev->ro == 0) 5941 mddev->ro = 2; /* read-only, but switch on first write */ 5942 5943 err = pers->run(mddev); 5944 if (err) 5945 pr_warn("md: pers->run() failed ...\n"); 5946 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5947 WARN_ONCE(!mddev->external_size, 5948 "%s: default size too small, but 'external_size' not in effect?\n", 5949 __func__); 5950 pr_warn("md: invalid array_size %llu > default size %llu\n", 5951 (unsigned long long)mddev->array_sectors / 2, 5952 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5953 err = -EINVAL; 5954 } 5955 if (err == 0 && pers->sync_request && 5956 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5957 struct bitmap *bitmap; 5958 5959 bitmap = md_bitmap_create(mddev, -1); 5960 if (IS_ERR(bitmap)) { 5961 err = PTR_ERR(bitmap); 5962 pr_warn("%s: failed to create bitmap (%d)\n", 5963 mdname(mddev), err); 5964 } else 5965 mddev->bitmap = bitmap; 5966 5967 } 5968 if (err) 5969 goto bitmap_abort; 5970 5971 if (mddev->bitmap_info.max_write_behind > 0) { 5972 bool create_pool = false; 5973 5974 rdev_for_each(rdev, mddev) { 5975 if (test_bit(WriteMostly, &rdev->flags) && 5976 rdev_init_serial(rdev)) 5977 create_pool = true; 5978 } 5979 if (create_pool && mddev->serial_info_pool == NULL) { 5980 mddev->serial_info_pool = 5981 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5982 sizeof(struct serial_info)); 5983 if (!mddev->serial_info_pool) { 5984 err = -ENOMEM; 5985 goto bitmap_abort; 5986 } 5987 } 5988 } 5989 5990 if (mddev->queue) { 5991 bool nonrot = true; 5992 5993 rdev_for_each(rdev, mddev) { 5994 if (rdev->raid_disk >= 0 && 5995 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5996 nonrot = false; 5997 break; 5998 } 5999 } 6000 if (mddev->degraded) 6001 nonrot = false; 6002 if (nonrot) 6003 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6004 else 6005 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6006 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 6007 6008 /* Set the NOWAIT flags if all underlying devices support it */ 6009 if (nowait) 6010 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 6011 } 6012 if (pers->sync_request) { 6013 if (mddev->kobj.sd && 6014 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6015 pr_warn("md: cannot register extra attributes for %s\n", 6016 mdname(mddev)); 6017 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6018 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6019 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6020 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 6021 mddev->ro = 0; 6022 6023 atomic_set(&mddev->max_corr_read_errors, 6024 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6025 mddev->safemode = 0; 6026 if (mddev_is_clustered(mddev)) 6027 mddev->safemode_delay = 0; 6028 else 6029 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6030 mddev->in_sync = 1; 6031 smp_wmb(); 6032 spin_lock(&mddev->lock); 6033 mddev->pers = pers; 6034 spin_unlock(&mddev->lock); 6035 rdev_for_each(rdev, mddev) 6036 if (rdev->raid_disk >= 0) 6037 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6038 6039 if (mddev->degraded && !mddev->ro) 6040 /* This ensures that recovering status is reported immediately 6041 * via sysfs - until a lack of spares is confirmed. 6042 */ 6043 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6044 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6045 6046 if (mddev->sb_flags) 6047 md_update_sb(mddev, 0); 6048 6049 md_new_event(); 6050 return 0; 6051 6052 bitmap_abort: 6053 mddev_detach(mddev); 6054 if (mddev->private) 6055 pers->free(mddev, mddev->private); 6056 mddev->private = NULL; 6057 module_put(pers->owner); 6058 md_bitmap_destroy(mddev); 6059 abort: 6060 bioset_exit(&mddev->sync_set); 6061 exit_bio_set: 6062 bioset_exit(&mddev->bio_set); 6063 return err; 6064 } 6065 EXPORT_SYMBOL_GPL(md_run); 6066 6067 int do_md_run(struct mddev *mddev) 6068 { 6069 int err; 6070 6071 set_bit(MD_NOT_READY, &mddev->flags); 6072 err = md_run(mddev); 6073 if (err) 6074 goto out; 6075 err = md_bitmap_load(mddev); 6076 if (err) { 6077 md_bitmap_destroy(mddev); 6078 goto out; 6079 } 6080 6081 if (mddev_is_clustered(mddev)) 6082 md_allow_write(mddev); 6083 6084 /* run start up tasks that require md_thread */ 6085 md_start(mddev); 6086 6087 md_wakeup_thread(mddev->thread); 6088 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6089 6090 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6091 clear_bit(MD_NOT_READY, &mddev->flags); 6092 mddev->changed = 1; 6093 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6094 sysfs_notify_dirent_safe(mddev->sysfs_state); 6095 sysfs_notify_dirent_safe(mddev->sysfs_action); 6096 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6097 out: 6098 clear_bit(MD_NOT_READY, &mddev->flags); 6099 return err; 6100 } 6101 6102 int md_start(struct mddev *mddev) 6103 { 6104 int ret = 0; 6105 6106 if (mddev->pers->start) { 6107 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6108 md_wakeup_thread(mddev->thread); 6109 ret = mddev->pers->start(mddev); 6110 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6111 md_wakeup_thread(mddev->sync_thread); 6112 } 6113 return ret; 6114 } 6115 EXPORT_SYMBOL_GPL(md_start); 6116 6117 static int restart_array(struct mddev *mddev) 6118 { 6119 struct gendisk *disk = mddev->gendisk; 6120 struct md_rdev *rdev; 6121 bool has_journal = false; 6122 bool has_readonly = false; 6123 6124 /* Complain if it has no devices */ 6125 if (list_empty(&mddev->disks)) 6126 return -ENXIO; 6127 if (!mddev->pers) 6128 return -EINVAL; 6129 if (!mddev->ro) 6130 return -EBUSY; 6131 6132 rcu_read_lock(); 6133 rdev_for_each_rcu(rdev, mddev) { 6134 if (test_bit(Journal, &rdev->flags) && 6135 !test_bit(Faulty, &rdev->flags)) 6136 has_journal = true; 6137 if (rdev_read_only(rdev)) 6138 has_readonly = true; 6139 } 6140 rcu_read_unlock(); 6141 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6142 /* Don't restart rw with journal missing/faulty */ 6143 return -EINVAL; 6144 if (has_readonly) 6145 return -EROFS; 6146 6147 mddev->safemode = 0; 6148 mddev->ro = 0; 6149 set_disk_ro(disk, 0); 6150 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6151 /* Kick recovery or resync if necessary */ 6152 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6153 md_wakeup_thread(mddev->thread); 6154 md_wakeup_thread(mddev->sync_thread); 6155 sysfs_notify_dirent_safe(mddev->sysfs_state); 6156 return 0; 6157 } 6158 6159 static void md_clean(struct mddev *mddev) 6160 { 6161 mddev->array_sectors = 0; 6162 mddev->external_size = 0; 6163 mddev->dev_sectors = 0; 6164 mddev->raid_disks = 0; 6165 mddev->recovery_cp = 0; 6166 mddev->resync_min = 0; 6167 mddev->resync_max = MaxSector; 6168 mddev->reshape_position = MaxSector; 6169 mddev->external = 0; 6170 mddev->persistent = 0; 6171 mddev->level = LEVEL_NONE; 6172 mddev->clevel[0] = 0; 6173 mddev->flags = 0; 6174 mddev->sb_flags = 0; 6175 mddev->ro = 0; 6176 mddev->metadata_type[0] = 0; 6177 mddev->chunk_sectors = 0; 6178 mddev->ctime = mddev->utime = 0; 6179 mddev->layout = 0; 6180 mddev->max_disks = 0; 6181 mddev->events = 0; 6182 mddev->can_decrease_events = 0; 6183 mddev->delta_disks = 0; 6184 mddev->reshape_backwards = 0; 6185 mddev->new_level = LEVEL_NONE; 6186 mddev->new_layout = 0; 6187 mddev->new_chunk_sectors = 0; 6188 mddev->curr_resync = 0; 6189 atomic64_set(&mddev->resync_mismatches, 0); 6190 mddev->suspend_lo = mddev->suspend_hi = 0; 6191 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6192 mddev->recovery = 0; 6193 mddev->in_sync = 0; 6194 mddev->changed = 0; 6195 mddev->degraded = 0; 6196 mddev->safemode = 0; 6197 mddev->private = NULL; 6198 mddev->cluster_info = NULL; 6199 mddev->bitmap_info.offset = 0; 6200 mddev->bitmap_info.default_offset = 0; 6201 mddev->bitmap_info.default_space = 0; 6202 mddev->bitmap_info.chunksize = 0; 6203 mddev->bitmap_info.daemon_sleep = 0; 6204 mddev->bitmap_info.max_write_behind = 0; 6205 mddev->bitmap_info.nodes = 0; 6206 } 6207 6208 static void __md_stop_writes(struct mddev *mddev) 6209 { 6210 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6211 if (work_pending(&mddev->del_work)) 6212 flush_workqueue(md_misc_wq); 6213 if (mddev->sync_thread) { 6214 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6215 md_reap_sync_thread(mddev); 6216 } 6217 6218 del_timer_sync(&mddev->safemode_timer); 6219 6220 if (mddev->pers && mddev->pers->quiesce) { 6221 mddev->pers->quiesce(mddev, 1); 6222 mddev->pers->quiesce(mddev, 0); 6223 } 6224 md_bitmap_flush(mddev); 6225 6226 if (mddev->ro == 0 && 6227 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6228 mddev->sb_flags)) { 6229 /* mark array as shutdown cleanly */ 6230 if (!mddev_is_clustered(mddev)) 6231 mddev->in_sync = 1; 6232 md_update_sb(mddev, 1); 6233 } 6234 /* disable policy to guarantee rdevs free resources for serialization */ 6235 mddev->serialize_policy = 0; 6236 mddev_destroy_serial_pool(mddev, NULL, true); 6237 } 6238 6239 void md_stop_writes(struct mddev *mddev) 6240 { 6241 mddev_lock_nointr(mddev); 6242 __md_stop_writes(mddev); 6243 mddev_unlock(mddev); 6244 } 6245 EXPORT_SYMBOL_GPL(md_stop_writes); 6246 6247 static void mddev_detach(struct mddev *mddev) 6248 { 6249 md_bitmap_wait_behind_writes(mddev); 6250 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6251 mddev->pers->quiesce(mddev, 1); 6252 mddev->pers->quiesce(mddev, 0); 6253 } 6254 md_unregister_thread(&mddev->thread); 6255 if (mddev->queue) 6256 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6257 } 6258 6259 static void __md_stop(struct mddev *mddev) 6260 { 6261 struct md_personality *pers = mddev->pers; 6262 md_bitmap_destroy(mddev); 6263 mddev_detach(mddev); 6264 /* Ensure ->event_work is done */ 6265 if (mddev->event_work.func) 6266 flush_workqueue(md_misc_wq); 6267 spin_lock(&mddev->lock); 6268 mddev->pers = NULL; 6269 spin_unlock(&mddev->lock); 6270 if (mddev->private) 6271 pers->free(mddev, mddev->private); 6272 mddev->private = NULL; 6273 if (pers->sync_request && mddev->to_remove == NULL) 6274 mddev->to_remove = &md_redundancy_group; 6275 module_put(pers->owner); 6276 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6277 } 6278 6279 void md_stop(struct mddev *mddev) 6280 { 6281 /* stop the array and free an attached data structures. 6282 * This is called from dm-raid 6283 */ 6284 __md_stop(mddev); 6285 bioset_exit(&mddev->bio_set); 6286 bioset_exit(&mddev->sync_set); 6287 if (mddev->level != 1 && mddev->level != 10) 6288 bioset_exit(&mddev->io_acct_set); 6289 } 6290 6291 EXPORT_SYMBOL_GPL(md_stop); 6292 6293 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6294 { 6295 int err = 0; 6296 int did_freeze = 0; 6297 6298 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6299 did_freeze = 1; 6300 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6301 md_wakeup_thread(mddev->thread); 6302 } 6303 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6304 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6305 if (mddev->sync_thread) 6306 /* Thread might be blocked waiting for metadata update 6307 * which will now never happen */ 6308 wake_up_process(mddev->sync_thread->tsk); 6309 6310 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6311 return -EBUSY; 6312 mddev_unlock(mddev); 6313 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6314 &mddev->recovery)); 6315 wait_event(mddev->sb_wait, 6316 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6317 mddev_lock_nointr(mddev); 6318 6319 mutex_lock(&mddev->open_mutex); 6320 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6321 mddev->sync_thread || 6322 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6323 pr_warn("md: %s still in use.\n",mdname(mddev)); 6324 if (did_freeze) { 6325 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6327 md_wakeup_thread(mddev->thread); 6328 } 6329 err = -EBUSY; 6330 goto out; 6331 } 6332 if (mddev->pers) { 6333 __md_stop_writes(mddev); 6334 6335 err = -ENXIO; 6336 if (mddev->ro==1) 6337 goto out; 6338 mddev->ro = 1; 6339 set_disk_ro(mddev->gendisk, 1); 6340 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6341 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6342 md_wakeup_thread(mddev->thread); 6343 sysfs_notify_dirent_safe(mddev->sysfs_state); 6344 err = 0; 6345 } 6346 out: 6347 mutex_unlock(&mddev->open_mutex); 6348 return err; 6349 } 6350 6351 /* mode: 6352 * 0 - completely stop and dis-assemble array 6353 * 2 - stop but do not disassemble array 6354 */ 6355 static int do_md_stop(struct mddev *mddev, int mode, 6356 struct block_device *bdev) 6357 { 6358 struct gendisk *disk = mddev->gendisk; 6359 struct md_rdev *rdev; 6360 int did_freeze = 0; 6361 6362 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6363 did_freeze = 1; 6364 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6365 md_wakeup_thread(mddev->thread); 6366 } 6367 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6368 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6369 if (mddev->sync_thread) 6370 /* Thread might be blocked waiting for metadata update 6371 * which will now never happen */ 6372 wake_up_process(mddev->sync_thread->tsk); 6373 6374 mddev_unlock(mddev); 6375 wait_event(resync_wait, (mddev->sync_thread == NULL && 6376 !test_bit(MD_RECOVERY_RUNNING, 6377 &mddev->recovery))); 6378 mddev_lock_nointr(mddev); 6379 6380 mutex_lock(&mddev->open_mutex); 6381 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6382 mddev->sysfs_active || 6383 mddev->sync_thread || 6384 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6385 pr_warn("md: %s still in use.\n",mdname(mddev)); 6386 mutex_unlock(&mddev->open_mutex); 6387 if (did_freeze) { 6388 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6389 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6390 md_wakeup_thread(mddev->thread); 6391 } 6392 return -EBUSY; 6393 } 6394 if (mddev->pers) { 6395 if (mddev->ro) 6396 set_disk_ro(disk, 0); 6397 6398 __md_stop_writes(mddev); 6399 __md_stop(mddev); 6400 6401 /* tell userspace to handle 'inactive' */ 6402 sysfs_notify_dirent_safe(mddev->sysfs_state); 6403 6404 rdev_for_each(rdev, mddev) 6405 if (rdev->raid_disk >= 0) 6406 sysfs_unlink_rdev(mddev, rdev); 6407 6408 set_capacity_and_notify(disk, 0); 6409 mutex_unlock(&mddev->open_mutex); 6410 mddev->changed = 1; 6411 6412 if (mddev->ro) 6413 mddev->ro = 0; 6414 } else 6415 mutex_unlock(&mddev->open_mutex); 6416 /* 6417 * Free resources if final stop 6418 */ 6419 if (mode == 0) { 6420 pr_info("md: %s stopped.\n", mdname(mddev)); 6421 6422 if (mddev->bitmap_info.file) { 6423 struct file *f = mddev->bitmap_info.file; 6424 spin_lock(&mddev->lock); 6425 mddev->bitmap_info.file = NULL; 6426 spin_unlock(&mddev->lock); 6427 fput(f); 6428 } 6429 mddev->bitmap_info.offset = 0; 6430 6431 export_array(mddev); 6432 6433 md_clean(mddev); 6434 if (mddev->hold_active == UNTIL_STOP) 6435 mddev->hold_active = 0; 6436 } 6437 md_new_event(); 6438 sysfs_notify_dirent_safe(mddev->sysfs_state); 6439 return 0; 6440 } 6441 6442 #ifndef MODULE 6443 static void autorun_array(struct mddev *mddev) 6444 { 6445 struct md_rdev *rdev; 6446 int err; 6447 6448 if (list_empty(&mddev->disks)) 6449 return; 6450 6451 pr_info("md: running: "); 6452 6453 rdev_for_each(rdev, mddev) { 6454 char b[BDEVNAME_SIZE]; 6455 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6456 } 6457 pr_cont("\n"); 6458 6459 err = do_md_run(mddev); 6460 if (err) { 6461 pr_warn("md: do_md_run() returned %d\n", err); 6462 do_md_stop(mddev, 0, NULL); 6463 } 6464 } 6465 6466 /* 6467 * lets try to run arrays based on all disks that have arrived 6468 * until now. (those are in pending_raid_disks) 6469 * 6470 * the method: pick the first pending disk, collect all disks with 6471 * the same UUID, remove all from the pending list and put them into 6472 * the 'same_array' list. Then order this list based on superblock 6473 * update time (freshest comes first), kick out 'old' disks and 6474 * compare superblocks. If everything's fine then run it. 6475 * 6476 * If "unit" is allocated, then bump its reference count 6477 */ 6478 static void autorun_devices(int part) 6479 { 6480 struct md_rdev *rdev0, *rdev, *tmp; 6481 struct mddev *mddev; 6482 char b[BDEVNAME_SIZE]; 6483 6484 pr_info("md: autorun ...\n"); 6485 while (!list_empty(&pending_raid_disks)) { 6486 int unit; 6487 dev_t dev; 6488 LIST_HEAD(candidates); 6489 rdev0 = list_entry(pending_raid_disks.next, 6490 struct md_rdev, same_set); 6491 6492 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6493 INIT_LIST_HEAD(&candidates); 6494 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6495 if (super_90_load(rdev, rdev0, 0) >= 0) { 6496 pr_debug("md: adding %s ...\n", 6497 bdevname(rdev->bdev,b)); 6498 list_move(&rdev->same_set, &candidates); 6499 } 6500 /* 6501 * now we have a set of devices, with all of them having 6502 * mostly sane superblocks. It's time to allocate the 6503 * mddev. 6504 */ 6505 if (part) { 6506 dev = MKDEV(mdp_major, 6507 rdev0->preferred_minor << MdpMinorShift); 6508 unit = MINOR(dev) >> MdpMinorShift; 6509 } else { 6510 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6511 unit = MINOR(dev); 6512 } 6513 if (rdev0->preferred_minor != unit) { 6514 pr_warn("md: unit number in %s is bad: %d\n", 6515 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6516 break; 6517 } 6518 6519 md_probe(dev); 6520 mddev = mddev_find(dev); 6521 if (!mddev) 6522 break; 6523 6524 if (mddev_lock(mddev)) 6525 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6526 else if (mddev->raid_disks || mddev->major_version 6527 || !list_empty(&mddev->disks)) { 6528 pr_warn("md: %s already running, cannot run %s\n", 6529 mdname(mddev), bdevname(rdev0->bdev,b)); 6530 mddev_unlock(mddev); 6531 } else { 6532 pr_debug("md: created %s\n", mdname(mddev)); 6533 mddev->persistent = 1; 6534 rdev_for_each_list(rdev, tmp, &candidates) { 6535 list_del_init(&rdev->same_set); 6536 if (bind_rdev_to_array(rdev, mddev)) 6537 export_rdev(rdev); 6538 } 6539 autorun_array(mddev); 6540 mddev_unlock(mddev); 6541 } 6542 /* on success, candidates will be empty, on error 6543 * it won't... 6544 */ 6545 rdev_for_each_list(rdev, tmp, &candidates) { 6546 list_del_init(&rdev->same_set); 6547 export_rdev(rdev); 6548 } 6549 mddev_put(mddev); 6550 } 6551 pr_info("md: ... autorun DONE.\n"); 6552 } 6553 #endif /* !MODULE */ 6554 6555 static int get_version(void __user *arg) 6556 { 6557 mdu_version_t ver; 6558 6559 ver.major = MD_MAJOR_VERSION; 6560 ver.minor = MD_MINOR_VERSION; 6561 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6562 6563 if (copy_to_user(arg, &ver, sizeof(ver))) 6564 return -EFAULT; 6565 6566 return 0; 6567 } 6568 6569 static int get_array_info(struct mddev *mddev, void __user *arg) 6570 { 6571 mdu_array_info_t info; 6572 int nr,working,insync,failed,spare; 6573 struct md_rdev *rdev; 6574 6575 nr = working = insync = failed = spare = 0; 6576 rcu_read_lock(); 6577 rdev_for_each_rcu(rdev, mddev) { 6578 nr++; 6579 if (test_bit(Faulty, &rdev->flags)) 6580 failed++; 6581 else { 6582 working++; 6583 if (test_bit(In_sync, &rdev->flags)) 6584 insync++; 6585 else if (test_bit(Journal, &rdev->flags)) 6586 /* TODO: add journal count to md_u.h */ 6587 ; 6588 else 6589 spare++; 6590 } 6591 } 6592 rcu_read_unlock(); 6593 6594 info.major_version = mddev->major_version; 6595 info.minor_version = mddev->minor_version; 6596 info.patch_version = MD_PATCHLEVEL_VERSION; 6597 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6598 info.level = mddev->level; 6599 info.size = mddev->dev_sectors / 2; 6600 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6601 info.size = -1; 6602 info.nr_disks = nr; 6603 info.raid_disks = mddev->raid_disks; 6604 info.md_minor = mddev->md_minor; 6605 info.not_persistent= !mddev->persistent; 6606 6607 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6608 info.state = 0; 6609 if (mddev->in_sync) 6610 info.state = (1<<MD_SB_CLEAN); 6611 if (mddev->bitmap && mddev->bitmap_info.offset) 6612 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6613 if (mddev_is_clustered(mddev)) 6614 info.state |= (1<<MD_SB_CLUSTERED); 6615 info.active_disks = insync; 6616 info.working_disks = working; 6617 info.failed_disks = failed; 6618 info.spare_disks = spare; 6619 6620 info.layout = mddev->layout; 6621 info.chunk_size = mddev->chunk_sectors << 9; 6622 6623 if (copy_to_user(arg, &info, sizeof(info))) 6624 return -EFAULT; 6625 6626 return 0; 6627 } 6628 6629 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6630 { 6631 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6632 char *ptr; 6633 int err; 6634 6635 file = kzalloc(sizeof(*file), GFP_NOIO); 6636 if (!file) 6637 return -ENOMEM; 6638 6639 err = 0; 6640 spin_lock(&mddev->lock); 6641 /* bitmap enabled */ 6642 if (mddev->bitmap_info.file) { 6643 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6644 sizeof(file->pathname)); 6645 if (IS_ERR(ptr)) 6646 err = PTR_ERR(ptr); 6647 else 6648 memmove(file->pathname, ptr, 6649 sizeof(file->pathname)-(ptr-file->pathname)); 6650 } 6651 spin_unlock(&mddev->lock); 6652 6653 if (err == 0 && 6654 copy_to_user(arg, file, sizeof(*file))) 6655 err = -EFAULT; 6656 6657 kfree(file); 6658 return err; 6659 } 6660 6661 static int get_disk_info(struct mddev *mddev, void __user * arg) 6662 { 6663 mdu_disk_info_t info; 6664 struct md_rdev *rdev; 6665 6666 if (copy_from_user(&info, arg, sizeof(info))) 6667 return -EFAULT; 6668 6669 rcu_read_lock(); 6670 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6671 if (rdev) { 6672 info.major = MAJOR(rdev->bdev->bd_dev); 6673 info.minor = MINOR(rdev->bdev->bd_dev); 6674 info.raid_disk = rdev->raid_disk; 6675 info.state = 0; 6676 if (test_bit(Faulty, &rdev->flags)) 6677 info.state |= (1<<MD_DISK_FAULTY); 6678 else if (test_bit(In_sync, &rdev->flags)) { 6679 info.state |= (1<<MD_DISK_ACTIVE); 6680 info.state |= (1<<MD_DISK_SYNC); 6681 } 6682 if (test_bit(Journal, &rdev->flags)) 6683 info.state |= (1<<MD_DISK_JOURNAL); 6684 if (test_bit(WriteMostly, &rdev->flags)) 6685 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6686 if (test_bit(FailFast, &rdev->flags)) 6687 info.state |= (1<<MD_DISK_FAILFAST); 6688 } else { 6689 info.major = info.minor = 0; 6690 info.raid_disk = -1; 6691 info.state = (1<<MD_DISK_REMOVED); 6692 } 6693 rcu_read_unlock(); 6694 6695 if (copy_to_user(arg, &info, sizeof(info))) 6696 return -EFAULT; 6697 6698 return 0; 6699 } 6700 6701 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6702 { 6703 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6704 struct md_rdev *rdev; 6705 dev_t dev = MKDEV(info->major,info->minor); 6706 6707 if (mddev_is_clustered(mddev) && 6708 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6709 pr_warn("%s: Cannot add to clustered mddev.\n", 6710 mdname(mddev)); 6711 return -EINVAL; 6712 } 6713 6714 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6715 return -EOVERFLOW; 6716 6717 if (!mddev->raid_disks) { 6718 int err; 6719 /* expecting a device which has a superblock */ 6720 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6721 if (IS_ERR(rdev)) { 6722 pr_warn("md: md_import_device returned %ld\n", 6723 PTR_ERR(rdev)); 6724 return PTR_ERR(rdev); 6725 } 6726 if (!list_empty(&mddev->disks)) { 6727 struct md_rdev *rdev0 6728 = list_entry(mddev->disks.next, 6729 struct md_rdev, same_set); 6730 err = super_types[mddev->major_version] 6731 .load_super(rdev, rdev0, mddev->minor_version); 6732 if (err < 0) { 6733 pr_warn("md: %s has different UUID to %s\n", 6734 bdevname(rdev->bdev,b), 6735 bdevname(rdev0->bdev,b2)); 6736 export_rdev(rdev); 6737 return -EINVAL; 6738 } 6739 } 6740 err = bind_rdev_to_array(rdev, mddev); 6741 if (err) 6742 export_rdev(rdev); 6743 return err; 6744 } 6745 6746 /* 6747 * md_add_new_disk can be used once the array is assembled 6748 * to add "hot spares". They must already have a superblock 6749 * written 6750 */ 6751 if (mddev->pers) { 6752 int err; 6753 if (!mddev->pers->hot_add_disk) { 6754 pr_warn("%s: personality does not support diskops!\n", 6755 mdname(mddev)); 6756 return -EINVAL; 6757 } 6758 if (mddev->persistent) 6759 rdev = md_import_device(dev, mddev->major_version, 6760 mddev->minor_version); 6761 else 6762 rdev = md_import_device(dev, -1, -1); 6763 if (IS_ERR(rdev)) { 6764 pr_warn("md: md_import_device returned %ld\n", 6765 PTR_ERR(rdev)); 6766 return PTR_ERR(rdev); 6767 } 6768 /* set saved_raid_disk if appropriate */ 6769 if (!mddev->persistent) { 6770 if (info->state & (1<<MD_DISK_SYNC) && 6771 info->raid_disk < mddev->raid_disks) { 6772 rdev->raid_disk = info->raid_disk; 6773 set_bit(In_sync, &rdev->flags); 6774 clear_bit(Bitmap_sync, &rdev->flags); 6775 } else 6776 rdev->raid_disk = -1; 6777 rdev->saved_raid_disk = rdev->raid_disk; 6778 } else 6779 super_types[mddev->major_version]. 6780 validate_super(mddev, rdev); 6781 if ((info->state & (1<<MD_DISK_SYNC)) && 6782 rdev->raid_disk != info->raid_disk) { 6783 /* This was a hot-add request, but events doesn't 6784 * match, so reject it. 6785 */ 6786 export_rdev(rdev); 6787 return -EINVAL; 6788 } 6789 6790 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6791 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6792 set_bit(WriteMostly, &rdev->flags); 6793 else 6794 clear_bit(WriteMostly, &rdev->flags); 6795 if (info->state & (1<<MD_DISK_FAILFAST)) 6796 set_bit(FailFast, &rdev->flags); 6797 else 6798 clear_bit(FailFast, &rdev->flags); 6799 6800 if (info->state & (1<<MD_DISK_JOURNAL)) { 6801 struct md_rdev *rdev2; 6802 bool has_journal = false; 6803 6804 /* make sure no existing journal disk */ 6805 rdev_for_each(rdev2, mddev) { 6806 if (test_bit(Journal, &rdev2->flags)) { 6807 has_journal = true; 6808 break; 6809 } 6810 } 6811 if (has_journal || mddev->bitmap) { 6812 export_rdev(rdev); 6813 return -EBUSY; 6814 } 6815 set_bit(Journal, &rdev->flags); 6816 } 6817 /* 6818 * check whether the device shows up in other nodes 6819 */ 6820 if (mddev_is_clustered(mddev)) { 6821 if (info->state & (1 << MD_DISK_CANDIDATE)) 6822 set_bit(Candidate, &rdev->flags); 6823 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6824 /* --add initiated by this node */ 6825 err = md_cluster_ops->add_new_disk(mddev, rdev); 6826 if (err) { 6827 export_rdev(rdev); 6828 return err; 6829 } 6830 } 6831 } 6832 6833 rdev->raid_disk = -1; 6834 err = bind_rdev_to_array(rdev, mddev); 6835 6836 if (err) 6837 export_rdev(rdev); 6838 6839 if (mddev_is_clustered(mddev)) { 6840 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6841 if (!err) { 6842 err = md_cluster_ops->new_disk_ack(mddev, 6843 err == 0); 6844 if (err) 6845 md_kick_rdev_from_array(rdev); 6846 } 6847 } else { 6848 if (err) 6849 md_cluster_ops->add_new_disk_cancel(mddev); 6850 else 6851 err = add_bound_rdev(rdev); 6852 } 6853 6854 } else if (!err) 6855 err = add_bound_rdev(rdev); 6856 6857 return err; 6858 } 6859 6860 /* otherwise, md_add_new_disk is only allowed 6861 * for major_version==0 superblocks 6862 */ 6863 if (mddev->major_version != 0) { 6864 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6865 return -EINVAL; 6866 } 6867 6868 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6869 int err; 6870 rdev = md_import_device(dev, -1, 0); 6871 if (IS_ERR(rdev)) { 6872 pr_warn("md: error, md_import_device() returned %ld\n", 6873 PTR_ERR(rdev)); 6874 return PTR_ERR(rdev); 6875 } 6876 rdev->desc_nr = info->number; 6877 if (info->raid_disk < mddev->raid_disks) 6878 rdev->raid_disk = info->raid_disk; 6879 else 6880 rdev->raid_disk = -1; 6881 6882 if (rdev->raid_disk < mddev->raid_disks) 6883 if (info->state & (1<<MD_DISK_SYNC)) 6884 set_bit(In_sync, &rdev->flags); 6885 6886 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6887 set_bit(WriteMostly, &rdev->flags); 6888 if (info->state & (1<<MD_DISK_FAILFAST)) 6889 set_bit(FailFast, &rdev->flags); 6890 6891 if (!mddev->persistent) { 6892 pr_debug("md: nonpersistent superblock ...\n"); 6893 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6894 } else 6895 rdev->sb_start = calc_dev_sboffset(rdev); 6896 rdev->sectors = rdev->sb_start; 6897 6898 err = bind_rdev_to_array(rdev, mddev); 6899 if (err) { 6900 export_rdev(rdev); 6901 return err; 6902 } 6903 } 6904 6905 return 0; 6906 } 6907 6908 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6909 { 6910 char b[BDEVNAME_SIZE]; 6911 struct md_rdev *rdev; 6912 6913 if (!mddev->pers) 6914 return -ENODEV; 6915 6916 rdev = find_rdev(mddev, dev); 6917 if (!rdev) 6918 return -ENXIO; 6919 6920 if (rdev->raid_disk < 0) 6921 goto kick_rdev; 6922 6923 clear_bit(Blocked, &rdev->flags); 6924 remove_and_add_spares(mddev, rdev); 6925 6926 if (rdev->raid_disk >= 0) 6927 goto busy; 6928 6929 kick_rdev: 6930 if (mddev_is_clustered(mddev)) { 6931 if (md_cluster_ops->remove_disk(mddev, rdev)) 6932 goto busy; 6933 } 6934 6935 md_kick_rdev_from_array(rdev); 6936 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6937 if (mddev->thread) 6938 md_wakeup_thread(mddev->thread); 6939 else 6940 md_update_sb(mddev, 1); 6941 md_new_event(); 6942 6943 return 0; 6944 busy: 6945 pr_debug("md: cannot remove active disk %s from %s ...\n", 6946 bdevname(rdev->bdev,b), mdname(mddev)); 6947 return -EBUSY; 6948 } 6949 6950 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6951 { 6952 char b[BDEVNAME_SIZE]; 6953 int err; 6954 struct md_rdev *rdev; 6955 6956 if (!mddev->pers) 6957 return -ENODEV; 6958 6959 if (mddev->major_version != 0) { 6960 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6961 mdname(mddev)); 6962 return -EINVAL; 6963 } 6964 if (!mddev->pers->hot_add_disk) { 6965 pr_warn("%s: personality does not support diskops!\n", 6966 mdname(mddev)); 6967 return -EINVAL; 6968 } 6969 6970 rdev = md_import_device(dev, -1, 0); 6971 if (IS_ERR(rdev)) { 6972 pr_warn("md: error, md_import_device() returned %ld\n", 6973 PTR_ERR(rdev)); 6974 return -EINVAL; 6975 } 6976 6977 if (mddev->persistent) 6978 rdev->sb_start = calc_dev_sboffset(rdev); 6979 else 6980 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6981 6982 rdev->sectors = rdev->sb_start; 6983 6984 if (test_bit(Faulty, &rdev->flags)) { 6985 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6986 bdevname(rdev->bdev,b), mdname(mddev)); 6987 err = -EINVAL; 6988 goto abort_export; 6989 } 6990 6991 clear_bit(In_sync, &rdev->flags); 6992 rdev->desc_nr = -1; 6993 rdev->saved_raid_disk = -1; 6994 err = bind_rdev_to_array(rdev, mddev); 6995 if (err) 6996 goto abort_export; 6997 6998 /* 6999 * The rest should better be atomic, we can have disk failures 7000 * noticed in interrupt contexts ... 7001 */ 7002 7003 rdev->raid_disk = -1; 7004 7005 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7006 if (!mddev->thread) 7007 md_update_sb(mddev, 1); 7008 /* 7009 * If the new disk does not support REQ_NOWAIT, 7010 * disable on the whole MD. 7011 */ 7012 if (!blk_queue_nowait(bdev_get_queue(rdev->bdev))) { 7013 pr_info("%s: Disabling nowait because %s does not support nowait\n", 7014 mdname(mddev), bdevname(rdev->bdev, b)); 7015 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 7016 } 7017 /* 7018 * Kick recovery, maybe this spare has to be added to the 7019 * array immediately. 7020 */ 7021 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7022 md_wakeup_thread(mddev->thread); 7023 md_new_event(); 7024 return 0; 7025 7026 abort_export: 7027 export_rdev(rdev); 7028 return err; 7029 } 7030 7031 static int set_bitmap_file(struct mddev *mddev, int fd) 7032 { 7033 int err = 0; 7034 7035 if (mddev->pers) { 7036 if (!mddev->pers->quiesce || !mddev->thread) 7037 return -EBUSY; 7038 if (mddev->recovery || mddev->sync_thread) 7039 return -EBUSY; 7040 /* we should be able to change the bitmap.. */ 7041 } 7042 7043 if (fd >= 0) { 7044 struct inode *inode; 7045 struct file *f; 7046 7047 if (mddev->bitmap || mddev->bitmap_info.file) 7048 return -EEXIST; /* cannot add when bitmap is present */ 7049 f = fget(fd); 7050 7051 if (f == NULL) { 7052 pr_warn("%s: error: failed to get bitmap file\n", 7053 mdname(mddev)); 7054 return -EBADF; 7055 } 7056 7057 inode = f->f_mapping->host; 7058 if (!S_ISREG(inode->i_mode)) { 7059 pr_warn("%s: error: bitmap file must be a regular file\n", 7060 mdname(mddev)); 7061 err = -EBADF; 7062 } else if (!(f->f_mode & FMODE_WRITE)) { 7063 pr_warn("%s: error: bitmap file must open for write\n", 7064 mdname(mddev)); 7065 err = -EBADF; 7066 } else if (atomic_read(&inode->i_writecount) != 1) { 7067 pr_warn("%s: error: bitmap file is already in use\n", 7068 mdname(mddev)); 7069 err = -EBUSY; 7070 } 7071 if (err) { 7072 fput(f); 7073 return err; 7074 } 7075 mddev->bitmap_info.file = f; 7076 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7077 } else if (mddev->bitmap == NULL) 7078 return -ENOENT; /* cannot remove what isn't there */ 7079 err = 0; 7080 if (mddev->pers) { 7081 if (fd >= 0) { 7082 struct bitmap *bitmap; 7083 7084 bitmap = md_bitmap_create(mddev, -1); 7085 mddev_suspend(mddev); 7086 if (!IS_ERR(bitmap)) { 7087 mddev->bitmap = bitmap; 7088 err = md_bitmap_load(mddev); 7089 } else 7090 err = PTR_ERR(bitmap); 7091 if (err) { 7092 md_bitmap_destroy(mddev); 7093 fd = -1; 7094 } 7095 mddev_resume(mddev); 7096 } else if (fd < 0) { 7097 mddev_suspend(mddev); 7098 md_bitmap_destroy(mddev); 7099 mddev_resume(mddev); 7100 } 7101 } 7102 if (fd < 0) { 7103 struct file *f = mddev->bitmap_info.file; 7104 if (f) { 7105 spin_lock(&mddev->lock); 7106 mddev->bitmap_info.file = NULL; 7107 spin_unlock(&mddev->lock); 7108 fput(f); 7109 } 7110 } 7111 7112 return err; 7113 } 7114 7115 /* 7116 * md_set_array_info is used two different ways 7117 * The original usage is when creating a new array. 7118 * In this usage, raid_disks is > 0 and it together with 7119 * level, size, not_persistent,layout,chunksize determine the 7120 * shape of the array. 7121 * This will always create an array with a type-0.90.0 superblock. 7122 * The newer usage is when assembling an array. 7123 * In this case raid_disks will be 0, and the major_version field is 7124 * use to determine which style super-blocks are to be found on the devices. 7125 * The minor and patch _version numbers are also kept incase the 7126 * super_block handler wishes to interpret them. 7127 */ 7128 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7129 { 7130 if (info->raid_disks == 0) { 7131 /* just setting version number for superblock loading */ 7132 if (info->major_version < 0 || 7133 info->major_version >= ARRAY_SIZE(super_types) || 7134 super_types[info->major_version].name == NULL) { 7135 /* maybe try to auto-load a module? */ 7136 pr_warn("md: superblock version %d not known\n", 7137 info->major_version); 7138 return -EINVAL; 7139 } 7140 mddev->major_version = info->major_version; 7141 mddev->minor_version = info->minor_version; 7142 mddev->patch_version = info->patch_version; 7143 mddev->persistent = !info->not_persistent; 7144 /* ensure mddev_put doesn't delete this now that there 7145 * is some minimal configuration. 7146 */ 7147 mddev->ctime = ktime_get_real_seconds(); 7148 return 0; 7149 } 7150 mddev->major_version = MD_MAJOR_VERSION; 7151 mddev->minor_version = MD_MINOR_VERSION; 7152 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7153 mddev->ctime = ktime_get_real_seconds(); 7154 7155 mddev->level = info->level; 7156 mddev->clevel[0] = 0; 7157 mddev->dev_sectors = 2 * (sector_t)info->size; 7158 mddev->raid_disks = info->raid_disks; 7159 /* don't set md_minor, it is determined by which /dev/md* was 7160 * openned 7161 */ 7162 if (info->state & (1<<MD_SB_CLEAN)) 7163 mddev->recovery_cp = MaxSector; 7164 else 7165 mddev->recovery_cp = 0; 7166 mddev->persistent = ! info->not_persistent; 7167 mddev->external = 0; 7168 7169 mddev->layout = info->layout; 7170 if (mddev->level == 0) 7171 /* Cannot trust RAID0 layout info here */ 7172 mddev->layout = -1; 7173 mddev->chunk_sectors = info->chunk_size >> 9; 7174 7175 if (mddev->persistent) { 7176 mddev->max_disks = MD_SB_DISKS; 7177 mddev->flags = 0; 7178 mddev->sb_flags = 0; 7179 } 7180 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7181 7182 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7183 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7184 mddev->bitmap_info.offset = 0; 7185 7186 mddev->reshape_position = MaxSector; 7187 7188 /* 7189 * Generate a 128 bit UUID 7190 */ 7191 get_random_bytes(mddev->uuid, 16); 7192 7193 mddev->new_level = mddev->level; 7194 mddev->new_chunk_sectors = mddev->chunk_sectors; 7195 mddev->new_layout = mddev->layout; 7196 mddev->delta_disks = 0; 7197 mddev->reshape_backwards = 0; 7198 7199 return 0; 7200 } 7201 7202 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7203 { 7204 lockdep_assert_held(&mddev->reconfig_mutex); 7205 7206 if (mddev->external_size) 7207 return; 7208 7209 mddev->array_sectors = array_sectors; 7210 } 7211 EXPORT_SYMBOL(md_set_array_sectors); 7212 7213 static int update_size(struct mddev *mddev, sector_t num_sectors) 7214 { 7215 struct md_rdev *rdev; 7216 int rv; 7217 int fit = (num_sectors == 0); 7218 sector_t old_dev_sectors = mddev->dev_sectors; 7219 7220 if (mddev->pers->resize == NULL) 7221 return -EINVAL; 7222 /* The "num_sectors" is the number of sectors of each device that 7223 * is used. This can only make sense for arrays with redundancy. 7224 * linear and raid0 always use whatever space is available. We can only 7225 * consider changing this number if no resync or reconstruction is 7226 * happening, and if the new size is acceptable. It must fit before the 7227 * sb_start or, if that is <data_offset, it must fit before the size 7228 * of each device. If num_sectors is zero, we find the largest size 7229 * that fits. 7230 */ 7231 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7232 mddev->sync_thread) 7233 return -EBUSY; 7234 if (mddev->ro) 7235 return -EROFS; 7236 7237 rdev_for_each(rdev, mddev) { 7238 sector_t avail = rdev->sectors; 7239 7240 if (fit && (num_sectors == 0 || num_sectors > avail)) 7241 num_sectors = avail; 7242 if (avail < num_sectors) 7243 return -ENOSPC; 7244 } 7245 rv = mddev->pers->resize(mddev, num_sectors); 7246 if (!rv) { 7247 if (mddev_is_clustered(mddev)) 7248 md_cluster_ops->update_size(mddev, old_dev_sectors); 7249 else if (mddev->queue) { 7250 set_capacity_and_notify(mddev->gendisk, 7251 mddev->array_sectors); 7252 } 7253 } 7254 return rv; 7255 } 7256 7257 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7258 { 7259 int rv; 7260 struct md_rdev *rdev; 7261 /* change the number of raid disks */ 7262 if (mddev->pers->check_reshape == NULL) 7263 return -EINVAL; 7264 if (mddev->ro) 7265 return -EROFS; 7266 if (raid_disks <= 0 || 7267 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7268 return -EINVAL; 7269 if (mddev->sync_thread || 7270 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7271 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7272 mddev->reshape_position != MaxSector) 7273 return -EBUSY; 7274 7275 rdev_for_each(rdev, mddev) { 7276 if (mddev->raid_disks < raid_disks && 7277 rdev->data_offset < rdev->new_data_offset) 7278 return -EINVAL; 7279 if (mddev->raid_disks > raid_disks && 7280 rdev->data_offset > rdev->new_data_offset) 7281 return -EINVAL; 7282 } 7283 7284 mddev->delta_disks = raid_disks - mddev->raid_disks; 7285 if (mddev->delta_disks < 0) 7286 mddev->reshape_backwards = 1; 7287 else if (mddev->delta_disks > 0) 7288 mddev->reshape_backwards = 0; 7289 7290 rv = mddev->pers->check_reshape(mddev); 7291 if (rv < 0) { 7292 mddev->delta_disks = 0; 7293 mddev->reshape_backwards = 0; 7294 } 7295 return rv; 7296 } 7297 7298 /* 7299 * update_array_info is used to change the configuration of an 7300 * on-line array. 7301 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7302 * fields in the info are checked against the array. 7303 * Any differences that cannot be handled will cause an error. 7304 * Normally, only one change can be managed at a time. 7305 */ 7306 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7307 { 7308 int rv = 0; 7309 int cnt = 0; 7310 int state = 0; 7311 7312 /* calculate expected state,ignoring low bits */ 7313 if (mddev->bitmap && mddev->bitmap_info.offset) 7314 state |= (1 << MD_SB_BITMAP_PRESENT); 7315 7316 if (mddev->major_version != info->major_version || 7317 mddev->minor_version != info->minor_version || 7318 /* mddev->patch_version != info->patch_version || */ 7319 mddev->ctime != info->ctime || 7320 mddev->level != info->level || 7321 /* mddev->layout != info->layout || */ 7322 mddev->persistent != !info->not_persistent || 7323 mddev->chunk_sectors != info->chunk_size >> 9 || 7324 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7325 ((state^info->state) & 0xfffffe00) 7326 ) 7327 return -EINVAL; 7328 /* Check there is only one change */ 7329 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7330 cnt++; 7331 if (mddev->raid_disks != info->raid_disks) 7332 cnt++; 7333 if (mddev->layout != info->layout) 7334 cnt++; 7335 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7336 cnt++; 7337 if (cnt == 0) 7338 return 0; 7339 if (cnt > 1) 7340 return -EINVAL; 7341 7342 if (mddev->layout != info->layout) { 7343 /* Change layout 7344 * we don't need to do anything at the md level, the 7345 * personality will take care of it all. 7346 */ 7347 if (mddev->pers->check_reshape == NULL) 7348 return -EINVAL; 7349 else { 7350 mddev->new_layout = info->layout; 7351 rv = mddev->pers->check_reshape(mddev); 7352 if (rv) 7353 mddev->new_layout = mddev->layout; 7354 return rv; 7355 } 7356 } 7357 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7358 rv = update_size(mddev, (sector_t)info->size * 2); 7359 7360 if (mddev->raid_disks != info->raid_disks) 7361 rv = update_raid_disks(mddev, info->raid_disks); 7362 7363 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7364 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7365 rv = -EINVAL; 7366 goto err; 7367 } 7368 if (mddev->recovery || mddev->sync_thread) { 7369 rv = -EBUSY; 7370 goto err; 7371 } 7372 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7373 struct bitmap *bitmap; 7374 /* add the bitmap */ 7375 if (mddev->bitmap) { 7376 rv = -EEXIST; 7377 goto err; 7378 } 7379 if (mddev->bitmap_info.default_offset == 0) { 7380 rv = -EINVAL; 7381 goto err; 7382 } 7383 mddev->bitmap_info.offset = 7384 mddev->bitmap_info.default_offset; 7385 mddev->bitmap_info.space = 7386 mddev->bitmap_info.default_space; 7387 bitmap = md_bitmap_create(mddev, -1); 7388 mddev_suspend(mddev); 7389 if (!IS_ERR(bitmap)) { 7390 mddev->bitmap = bitmap; 7391 rv = md_bitmap_load(mddev); 7392 } else 7393 rv = PTR_ERR(bitmap); 7394 if (rv) 7395 md_bitmap_destroy(mddev); 7396 mddev_resume(mddev); 7397 } else { 7398 /* remove the bitmap */ 7399 if (!mddev->bitmap) { 7400 rv = -ENOENT; 7401 goto err; 7402 } 7403 if (mddev->bitmap->storage.file) { 7404 rv = -EINVAL; 7405 goto err; 7406 } 7407 if (mddev->bitmap_info.nodes) { 7408 /* hold PW on all the bitmap lock */ 7409 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7410 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7411 rv = -EPERM; 7412 md_cluster_ops->unlock_all_bitmaps(mddev); 7413 goto err; 7414 } 7415 7416 mddev->bitmap_info.nodes = 0; 7417 md_cluster_ops->leave(mddev); 7418 module_put(md_cluster_mod); 7419 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7420 } 7421 mddev_suspend(mddev); 7422 md_bitmap_destroy(mddev); 7423 mddev_resume(mddev); 7424 mddev->bitmap_info.offset = 0; 7425 } 7426 } 7427 md_update_sb(mddev, 1); 7428 return rv; 7429 err: 7430 return rv; 7431 } 7432 7433 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7434 { 7435 struct md_rdev *rdev; 7436 int err = 0; 7437 7438 if (mddev->pers == NULL) 7439 return -ENODEV; 7440 7441 rcu_read_lock(); 7442 rdev = md_find_rdev_rcu(mddev, dev); 7443 if (!rdev) 7444 err = -ENODEV; 7445 else { 7446 md_error(mddev, rdev); 7447 if (!test_bit(Faulty, &rdev->flags)) 7448 err = -EBUSY; 7449 } 7450 rcu_read_unlock(); 7451 return err; 7452 } 7453 7454 /* 7455 * We have a problem here : there is no easy way to give a CHS 7456 * virtual geometry. We currently pretend that we have a 2 heads 7457 * 4 sectors (with a BIG number of cylinders...). This drives 7458 * dosfs just mad... ;-) 7459 */ 7460 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7461 { 7462 struct mddev *mddev = bdev->bd_disk->private_data; 7463 7464 geo->heads = 2; 7465 geo->sectors = 4; 7466 geo->cylinders = mddev->array_sectors / 8; 7467 return 0; 7468 } 7469 7470 static inline bool md_ioctl_valid(unsigned int cmd) 7471 { 7472 switch (cmd) { 7473 case ADD_NEW_DISK: 7474 case GET_ARRAY_INFO: 7475 case GET_BITMAP_FILE: 7476 case GET_DISK_INFO: 7477 case HOT_ADD_DISK: 7478 case HOT_REMOVE_DISK: 7479 case RAID_VERSION: 7480 case RESTART_ARRAY_RW: 7481 case RUN_ARRAY: 7482 case SET_ARRAY_INFO: 7483 case SET_BITMAP_FILE: 7484 case SET_DISK_FAULTY: 7485 case STOP_ARRAY: 7486 case STOP_ARRAY_RO: 7487 case CLUSTERED_DISK_NACK: 7488 return true; 7489 default: 7490 return false; 7491 } 7492 } 7493 7494 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7495 unsigned int cmd, unsigned long arg) 7496 { 7497 int err = 0; 7498 void __user *argp = (void __user *)arg; 7499 struct mddev *mddev = NULL; 7500 bool did_set_md_closing = false; 7501 7502 if (!md_ioctl_valid(cmd)) 7503 return -ENOTTY; 7504 7505 switch (cmd) { 7506 case RAID_VERSION: 7507 case GET_ARRAY_INFO: 7508 case GET_DISK_INFO: 7509 break; 7510 default: 7511 if (!capable(CAP_SYS_ADMIN)) 7512 return -EACCES; 7513 } 7514 7515 /* 7516 * Commands dealing with the RAID driver but not any 7517 * particular array: 7518 */ 7519 switch (cmd) { 7520 case RAID_VERSION: 7521 err = get_version(argp); 7522 goto out; 7523 default:; 7524 } 7525 7526 /* 7527 * Commands creating/starting a new array: 7528 */ 7529 7530 mddev = bdev->bd_disk->private_data; 7531 7532 if (!mddev) { 7533 BUG(); 7534 goto out; 7535 } 7536 7537 /* Some actions do not requires the mutex */ 7538 switch (cmd) { 7539 case GET_ARRAY_INFO: 7540 if (!mddev->raid_disks && !mddev->external) 7541 err = -ENODEV; 7542 else 7543 err = get_array_info(mddev, argp); 7544 goto out; 7545 7546 case GET_DISK_INFO: 7547 if (!mddev->raid_disks && !mddev->external) 7548 err = -ENODEV; 7549 else 7550 err = get_disk_info(mddev, argp); 7551 goto out; 7552 7553 case SET_DISK_FAULTY: 7554 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7555 goto out; 7556 7557 case GET_BITMAP_FILE: 7558 err = get_bitmap_file(mddev, argp); 7559 goto out; 7560 7561 } 7562 7563 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7564 flush_rdev_wq(mddev); 7565 7566 if (cmd == HOT_REMOVE_DISK) 7567 /* need to ensure recovery thread has run */ 7568 wait_event_interruptible_timeout(mddev->sb_wait, 7569 !test_bit(MD_RECOVERY_NEEDED, 7570 &mddev->recovery), 7571 msecs_to_jiffies(5000)); 7572 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7573 /* Need to flush page cache, and ensure no-one else opens 7574 * and writes 7575 */ 7576 mutex_lock(&mddev->open_mutex); 7577 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7578 mutex_unlock(&mddev->open_mutex); 7579 err = -EBUSY; 7580 goto out; 7581 } 7582 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7583 mutex_unlock(&mddev->open_mutex); 7584 err = -EBUSY; 7585 goto out; 7586 } 7587 did_set_md_closing = true; 7588 mutex_unlock(&mddev->open_mutex); 7589 sync_blockdev(bdev); 7590 } 7591 err = mddev_lock(mddev); 7592 if (err) { 7593 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7594 err, cmd); 7595 goto out; 7596 } 7597 7598 if (cmd == SET_ARRAY_INFO) { 7599 mdu_array_info_t info; 7600 if (!arg) 7601 memset(&info, 0, sizeof(info)); 7602 else if (copy_from_user(&info, argp, sizeof(info))) { 7603 err = -EFAULT; 7604 goto unlock; 7605 } 7606 if (mddev->pers) { 7607 err = update_array_info(mddev, &info); 7608 if (err) { 7609 pr_warn("md: couldn't update array info. %d\n", err); 7610 goto unlock; 7611 } 7612 goto unlock; 7613 } 7614 if (!list_empty(&mddev->disks)) { 7615 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7616 err = -EBUSY; 7617 goto unlock; 7618 } 7619 if (mddev->raid_disks) { 7620 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7621 err = -EBUSY; 7622 goto unlock; 7623 } 7624 err = md_set_array_info(mddev, &info); 7625 if (err) { 7626 pr_warn("md: couldn't set array info. %d\n", err); 7627 goto unlock; 7628 } 7629 goto unlock; 7630 } 7631 7632 /* 7633 * Commands querying/configuring an existing array: 7634 */ 7635 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7636 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7637 if ((!mddev->raid_disks && !mddev->external) 7638 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7639 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7640 && cmd != GET_BITMAP_FILE) { 7641 err = -ENODEV; 7642 goto unlock; 7643 } 7644 7645 /* 7646 * Commands even a read-only array can execute: 7647 */ 7648 switch (cmd) { 7649 case RESTART_ARRAY_RW: 7650 err = restart_array(mddev); 7651 goto unlock; 7652 7653 case STOP_ARRAY: 7654 err = do_md_stop(mddev, 0, bdev); 7655 goto unlock; 7656 7657 case STOP_ARRAY_RO: 7658 err = md_set_readonly(mddev, bdev); 7659 goto unlock; 7660 7661 case HOT_REMOVE_DISK: 7662 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7663 goto unlock; 7664 7665 case ADD_NEW_DISK: 7666 /* We can support ADD_NEW_DISK on read-only arrays 7667 * only if we are re-adding a preexisting device. 7668 * So require mddev->pers and MD_DISK_SYNC. 7669 */ 7670 if (mddev->pers) { 7671 mdu_disk_info_t info; 7672 if (copy_from_user(&info, argp, sizeof(info))) 7673 err = -EFAULT; 7674 else if (!(info.state & (1<<MD_DISK_SYNC))) 7675 /* Need to clear read-only for this */ 7676 break; 7677 else 7678 err = md_add_new_disk(mddev, &info); 7679 goto unlock; 7680 } 7681 break; 7682 } 7683 7684 /* 7685 * The remaining ioctls are changing the state of the 7686 * superblock, so we do not allow them on read-only arrays. 7687 */ 7688 if (mddev->ro && mddev->pers) { 7689 if (mddev->ro == 2) { 7690 mddev->ro = 0; 7691 sysfs_notify_dirent_safe(mddev->sysfs_state); 7692 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7693 /* mddev_unlock will wake thread */ 7694 /* If a device failed while we were read-only, we 7695 * need to make sure the metadata is updated now. 7696 */ 7697 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7698 mddev_unlock(mddev); 7699 wait_event(mddev->sb_wait, 7700 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7701 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7702 mddev_lock_nointr(mddev); 7703 } 7704 } else { 7705 err = -EROFS; 7706 goto unlock; 7707 } 7708 } 7709 7710 switch (cmd) { 7711 case ADD_NEW_DISK: 7712 { 7713 mdu_disk_info_t info; 7714 if (copy_from_user(&info, argp, sizeof(info))) 7715 err = -EFAULT; 7716 else 7717 err = md_add_new_disk(mddev, &info); 7718 goto unlock; 7719 } 7720 7721 case CLUSTERED_DISK_NACK: 7722 if (mddev_is_clustered(mddev)) 7723 md_cluster_ops->new_disk_ack(mddev, false); 7724 else 7725 err = -EINVAL; 7726 goto unlock; 7727 7728 case HOT_ADD_DISK: 7729 err = hot_add_disk(mddev, new_decode_dev(arg)); 7730 goto unlock; 7731 7732 case RUN_ARRAY: 7733 err = do_md_run(mddev); 7734 goto unlock; 7735 7736 case SET_BITMAP_FILE: 7737 err = set_bitmap_file(mddev, (int)arg); 7738 goto unlock; 7739 7740 default: 7741 err = -EINVAL; 7742 goto unlock; 7743 } 7744 7745 unlock: 7746 if (mddev->hold_active == UNTIL_IOCTL && 7747 err != -EINVAL) 7748 mddev->hold_active = 0; 7749 mddev_unlock(mddev); 7750 out: 7751 if(did_set_md_closing) 7752 clear_bit(MD_CLOSING, &mddev->flags); 7753 return err; 7754 } 7755 #ifdef CONFIG_COMPAT 7756 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7757 unsigned int cmd, unsigned long arg) 7758 { 7759 switch (cmd) { 7760 case HOT_REMOVE_DISK: 7761 case HOT_ADD_DISK: 7762 case SET_DISK_FAULTY: 7763 case SET_BITMAP_FILE: 7764 /* These take in integer arg, do not convert */ 7765 break; 7766 default: 7767 arg = (unsigned long)compat_ptr(arg); 7768 break; 7769 } 7770 7771 return md_ioctl(bdev, mode, cmd, arg); 7772 } 7773 #endif /* CONFIG_COMPAT */ 7774 7775 static int md_set_read_only(struct block_device *bdev, bool ro) 7776 { 7777 struct mddev *mddev = bdev->bd_disk->private_data; 7778 int err; 7779 7780 err = mddev_lock(mddev); 7781 if (err) 7782 return err; 7783 7784 if (!mddev->raid_disks && !mddev->external) { 7785 err = -ENODEV; 7786 goto out_unlock; 7787 } 7788 7789 /* 7790 * Transitioning to read-auto need only happen for arrays that call 7791 * md_write_start and which are not ready for writes yet. 7792 */ 7793 if (!ro && mddev->ro == 1 && mddev->pers) { 7794 err = restart_array(mddev); 7795 if (err) 7796 goto out_unlock; 7797 mddev->ro = 2; 7798 } 7799 7800 out_unlock: 7801 mddev_unlock(mddev); 7802 return err; 7803 } 7804 7805 static int md_open(struct block_device *bdev, fmode_t mode) 7806 { 7807 /* 7808 * Succeed if we can lock the mddev, which confirms that 7809 * it isn't being stopped right now. 7810 */ 7811 struct mddev *mddev = mddev_find(bdev->bd_dev); 7812 int err; 7813 7814 if (!mddev) 7815 return -ENODEV; 7816 7817 if (mddev->gendisk != bdev->bd_disk) { 7818 /* we are racing with mddev_put which is discarding this 7819 * bd_disk. 7820 */ 7821 mddev_put(mddev); 7822 /* Wait until bdev->bd_disk is definitely gone */ 7823 if (work_pending(&mddev->del_work)) 7824 flush_workqueue(md_misc_wq); 7825 return -EBUSY; 7826 } 7827 BUG_ON(mddev != bdev->bd_disk->private_data); 7828 7829 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7830 goto out; 7831 7832 if (test_bit(MD_CLOSING, &mddev->flags)) { 7833 mutex_unlock(&mddev->open_mutex); 7834 err = -ENODEV; 7835 goto out; 7836 } 7837 7838 err = 0; 7839 atomic_inc(&mddev->openers); 7840 mutex_unlock(&mddev->open_mutex); 7841 7842 bdev_check_media_change(bdev); 7843 out: 7844 if (err) 7845 mddev_put(mddev); 7846 return err; 7847 } 7848 7849 static void md_release(struct gendisk *disk, fmode_t mode) 7850 { 7851 struct mddev *mddev = disk->private_data; 7852 7853 BUG_ON(!mddev); 7854 atomic_dec(&mddev->openers); 7855 mddev_put(mddev); 7856 } 7857 7858 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7859 { 7860 struct mddev *mddev = disk->private_data; 7861 unsigned int ret = 0; 7862 7863 if (mddev->changed) 7864 ret = DISK_EVENT_MEDIA_CHANGE; 7865 mddev->changed = 0; 7866 return ret; 7867 } 7868 7869 const struct block_device_operations md_fops = 7870 { 7871 .owner = THIS_MODULE, 7872 .submit_bio = md_submit_bio, 7873 .open = md_open, 7874 .release = md_release, 7875 .ioctl = md_ioctl, 7876 #ifdef CONFIG_COMPAT 7877 .compat_ioctl = md_compat_ioctl, 7878 #endif 7879 .getgeo = md_getgeo, 7880 .check_events = md_check_events, 7881 .set_read_only = md_set_read_only, 7882 }; 7883 7884 static int md_thread(void *arg) 7885 { 7886 struct md_thread *thread = arg; 7887 7888 /* 7889 * md_thread is a 'system-thread', it's priority should be very 7890 * high. We avoid resource deadlocks individually in each 7891 * raid personality. (RAID5 does preallocation) We also use RR and 7892 * the very same RT priority as kswapd, thus we will never get 7893 * into a priority inversion deadlock. 7894 * 7895 * we definitely have to have equal or higher priority than 7896 * bdflush, otherwise bdflush will deadlock if there are too 7897 * many dirty RAID5 blocks. 7898 */ 7899 7900 allow_signal(SIGKILL); 7901 while (!kthread_should_stop()) { 7902 7903 /* We need to wait INTERRUPTIBLE so that 7904 * we don't add to the load-average. 7905 * That means we need to be sure no signals are 7906 * pending 7907 */ 7908 if (signal_pending(current)) 7909 flush_signals(current); 7910 7911 wait_event_interruptible_timeout 7912 (thread->wqueue, 7913 test_bit(THREAD_WAKEUP, &thread->flags) 7914 || kthread_should_stop() || kthread_should_park(), 7915 thread->timeout); 7916 7917 clear_bit(THREAD_WAKEUP, &thread->flags); 7918 if (kthread_should_park()) 7919 kthread_parkme(); 7920 if (!kthread_should_stop()) 7921 thread->run(thread); 7922 } 7923 7924 return 0; 7925 } 7926 7927 void md_wakeup_thread(struct md_thread *thread) 7928 { 7929 if (thread) { 7930 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7931 set_bit(THREAD_WAKEUP, &thread->flags); 7932 wake_up(&thread->wqueue); 7933 } 7934 } 7935 EXPORT_SYMBOL(md_wakeup_thread); 7936 7937 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7938 struct mddev *mddev, const char *name) 7939 { 7940 struct md_thread *thread; 7941 7942 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7943 if (!thread) 7944 return NULL; 7945 7946 init_waitqueue_head(&thread->wqueue); 7947 7948 thread->run = run; 7949 thread->mddev = mddev; 7950 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7951 thread->tsk = kthread_run(md_thread, thread, 7952 "%s_%s", 7953 mdname(thread->mddev), 7954 name); 7955 if (IS_ERR(thread->tsk)) { 7956 kfree(thread); 7957 return NULL; 7958 } 7959 return thread; 7960 } 7961 EXPORT_SYMBOL(md_register_thread); 7962 7963 void md_unregister_thread(struct md_thread **threadp) 7964 { 7965 struct md_thread *thread = *threadp; 7966 if (!thread) 7967 return; 7968 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7969 /* Locking ensures that mddev_unlock does not wake_up a 7970 * non-existent thread 7971 */ 7972 spin_lock(&pers_lock); 7973 *threadp = NULL; 7974 spin_unlock(&pers_lock); 7975 7976 kthread_stop(thread->tsk); 7977 kfree(thread); 7978 } 7979 EXPORT_SYMBOL(md_unregister_thread); 7980 7981 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7982 { 7983 if (!rdev || test_bit(Faulty, &rdev->flags)) 7984 return; 7985 7986 if (!mddev->pers || !mddev->pers->error_handler) 7987 return; 7988 mddev->pers->error_handler(mddev,rdev); 7989 if (mddev->degraded) 7990 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7991 sysfs_notify_dirent_safe(rdev->sysfs_state); 7992 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7993 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7994 md_wakeup_thread(mddev->thread); 7995 if (mddev->event_work.func) 7996 queue_work(md_misc_wq, &mddev->event_work); 7997 md_new_event(); 7998 } 7999 EXPORT_SYMBOL(md_error); 8000 8001 /* seq_file implementation /proc/mdstat */ 8002 8003 static void status_unused(struct seq_file *seq) 8004 { 8005 int i = 0; 8006 struct md_rdev *rdev; 8007 8008 seq_printf(seq, "unused devices: "); 8009 8010 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8011 char b[BDEVNAME_SIZE]; 8012 i++; 8013 seq_printf(seq, "%s ", 8014 bdevname(rdev->bdev,b)); 8015 } 8016 if (!i) 8017 seq_printf(seq, "<none>"); 8018 8019 seq_printf(seq, "\n"); 8020 } 8021 8022 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8023 { 8024 sector_t max_sectors, resync, res; 8025 unsigned long dt, db = 0; 8026 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8027 int scale, recovery_active; 8028 unsigned int per_milli; 8029 8030 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8031 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8032 max_sectors = mddev->resync_max_sectors; 8033 else 8034 max_sectors = mddev->dev_sectors; 8035 8036 resync = mddev->curr_resync; 8037 if (resync <= 3) { 8038 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8039 /* Still cleaning up */ 8040 resync = max_sectors; 8041 } else if (resync > max_sectors) 8042 resync = max_sectors; 8043 else 8044 resync -= atomic_read(&mddev->recovery_active); 8045 8046 if (resync == 0) { 8047 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8048 struct md_rdev *rdev; 8049 8050 rdev_for_each(rdev, mddev) 8051 if (rdev->raid_disk >= 0 && 8052 !test_bit(Faulty, &rdev->flags) && 8053 rdev->recovery_offset != MaxSector && 8054 rdev->recovery_offset) { 8055 seq_printf(seq, "\trecover=REMOTE"); 8056 return 1; 8057 } 8058 if (mddev->reshape_position != MaxSector) 8059 seq_printf(seq, "\treshape=REMOTE"); 8060 else 8061 seq_printf(seq, "\tresync=REMOTE"); 8062 return 1; 8063 } 8064 if (mddev->recovery_cp < MaxSector) { 8065 seq_printf(seq, "\tresync=PENDING"); 8066 return 1; 8067 } 8068 return 0; 8069 } 8070 if (resync < 3) { 8071 seq_printf(seq, "\tresync=DELAYED"); 8072 return 1; 8073 } 8074 8075 WARN_ON(max_sectors == 0); 8076 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8077 * in a sector_t, and (max_sectors>>scale) will fit in a 8078 * u32, as those are the requirements for sector_div. 8079 * Thus 'scale' must be at least 10 8080 */ 8081 scale = 10; 8082 if (sizeof(sector_t) > sizeof(unsigned long)) { 8083 while ( max_sectors/2 > (1ULL<<(scale+32))) 8084 scale++; 8085 } 8086 res = (resync>>scale)*1000; 8087 sector_div(res, (u32)((max_sectors>>scale)+1)); 8088 8089 per_milli = res; 8090 { 8091 int i, x = per_milli/50, y = 20-x; 8092 seq_printf(seq, "["); 8093 for (i = 0; i < x; i++) 8094 seq_printf(seq, "="); 8095 seq_printf(seq, ">"); 8096 for (i = 0; i < y; i++) 8097 seq_printf(seq, "."); 8098 seq_printf(seq, "] "); 8099 } 8100 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8101 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8102 "reshape" : 8103 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8104 "check" : 8105 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8106 "resync" : "recovery"))), 8107 per_milli/10, per_milli % 10, 8108 (unsigned long long) resync/2, 8109 (unsigned long long) max_sectors/2); 8110 8111 /* 8112 * dt: time from mark until now 8113 * db: blocks written from mark until now 8114 * rt: remaining time 8115 * 8116 * rt is a sector_t, which is always 64bit now. We are keeping 8117 * the original algorithm, but it is not really necessary. 8118 * 8119 * Original algorithm: 8120 * So we divide before multiply in case it is 32bit and close 8121 * to the limit. 8122 * We scale the divisor (db) by 32 to avoid losing precision 8123 * near the end of resync when the number of remaining sectors 8124 * is close to 'db'. 8125 * We then divide rt by 32 after multiplying by db to compensate. 8126 * The '+1' avoids division by zero if db is very small. 8127 */ 8128 dt = ((jiffies - mddev->resync_mark) / HZ); 8129 if (!dt) dt++; 8130 8131 curr_mark_cnt = mddev->curr_mark_cnt; 8132 recovery_active = atomic_read(&mddev->recovery_active); 8133 resync_mark_cnt = mddev->resync_mark_cnt; 8134 8135 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8136 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8137 8138 rt = max_sectors - resync; /* number of remaining sectors */ 8139 rt = div64_u64(rt, db/32+1); 8140 rt *= dt; 8141 rt >>= 5; 8142 8143 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8144 ((unsigned long)rt % 60)/6); 8145 8146 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8147 return 1; 8148 } 8149 8150 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8151 { 8152 struct list_head *tmp; 8153 loff_t l = *pos; 8154 struct mddev *mddev; 8155 8156 if (l == 0x10000) { 8157 ++*pos; 8158 return (void *)2; 8159 } 8160 if (l > 0x10000) 8161 return NULL; 8162 if (!l--) 8163 /* header */ 8164 return (void*)1; 8165 8166 spin_lock(&all_mddevs_lock); 8167 list_for_each(tmp,&all_mddevs) 8168 if (!l--) { 8169 mddev = list_entry(tmp, struct mddev, all_mddevs); 8170 mddev_get(mddev); 8171 spin_unlock(&all_mddevs_lock); 8172 return mddev; 8173 } 8174 spin_unlock(&all_mddevs_lock); 8175 if (!l--) 8176 return (void*)2;/* tail */ 8177 return NULL; 8178 } 8179 8180 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8181 { 8182 struct list_head *tmp; 8183 struct mddev *next_mddev, *mddev = v; 8184 8185 ++*pos; 8186 if (v == (void*)2) 8187 return NULL; 8188 8189 spin_lock(&all_mddevs_lock); 8190 if (v == (void*)1) 8191 tmp = all_mddevs.next; 8192 else 8193 tmp = mddev->all_mddevs.next; 8194 if (tmp != &all_mddevs) 8195 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8196 else { 8197 next_mddev = (void*)2; 8198 *pos = 0x10000; 8199 } 8200 spin_unlock(&all_mddevs_lock); 8201 8202 if (v != (void*)1) 8203 mddev_put(mddev); 8204 return next_mddev; 8205 8206 } 8207 8208 static void md_seq_stop(struct seq_file *seq, void *v) 8209 { 8210 struct mddev *mddev = v; 8211 8212 if (mddev && v != (void*)1 && v != (void*)2) 8213 mddev_put(mddev); 8214 } 8215 8216 static int md_seq_show(struct seq_file *seq, void *v) 8217 { 8218 struct mddev *mddev = v; 8219 sector_t sectors; 8220 struct md_rdev *rdev; 8221 8222 if (v == (void*)1) { 8223 struct md_personality *pers; 8224 seq_printf(seq, "Personalities : "); 8225 spin_lock(&pers_lock); 8226 list_for_each_entry(pers, &pers_list, list) 8227 seq_printf(seq, "[%s] ", pers->name); 8228 8229 spin_unlock(&pers_lock); 8230 seq_printf(seq, "\n"); 8231 seq->poll_event = atomic_read(&md_event_count); 8232 return 0; 8233 } 8234 if (v == (void*)2) { 8235 status_unused(seq); 8236 return 0; 8237 } 8238 8239 spin_lock(&mddev->lock); 8240 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8241 seq_printf(seq, "%s : %sactive", mdname(mddev), 8242 mddev->pers ? "" : "in"); 8243 if (mddev->pers) { 8244 if (mddev->ro==1) 8245 seq_printf(seq, " (read-only)"); 8246 if (mddev->ro==2) 8247 seq_printf(seq, " (auto-read-only)"); 8248 seq_printf(seq, " %s", mddev->pers->name); 8249 } 8250 8251 sectors = 0; 8252 rcu_read_lock(); 8253 rdev_for_each_rcu(rdev, mddev) { 8254 char b[BDEVNAME_SIZE]; 8255 seq_printf(seq, " %s[%d]", 8256 bdevname(rdev->bdev,b), rdev->desc_nr); 8257 if (test_bit(WriteMostly, &rdev->flags)) 8258 seq_printf(seq, "(W)"); 8259 if (test_bit(Journal, &rdev->flags)) 8260 seq_printf(seq, "(J)"); 8261 if (test_bit(Faulty, &rdev->flags)) { 8262 seq_printf(seq, "(F)"); 8263 continue; 8264 } 8265 if (rdev->raid_disk < 0) 8266 seq_printf(seq, "(S)"); /* spare */ 8267 if (test_bit(Replacement, &rdev->flags)) 8268 seq_printf(seq, "(R)"); 8269 sectors += rdev->sectors; 8270 } 8271 rcu_read_unlock(); 8272 8273 if (!list_empty(&mddev->disks)) { 8274 if (mddev->pers) 8275 seq_printf(seq, "\n %llu blocks", 8276 (unsigned long long) 8277 mddev->array_sectors / 2); 8278 else 8279 seq_printf(seq, "\n %llu blocks", 8280 (unsigned long long)sectors / 2); 8281 } 8282 if (mddev->persistent) { 8283 if (mddev->major_version != 0 || 8284 mddev->minor_version != 90) { 8285 seq_printf(seq," super %d.%d", 8286 mddev->major_version, 8287 mddev->minor_version); 8288 } 8289 } else if (mddev->external) 8290 seq_printf(seq, " super external:%s", 8291 mddev->metadata_type); 8292 else 8293 seq_printf(seq, " super non-persistent"); 8294 8295 if (mddev->pers) { 8296 mddev->pers->status(seq, mddev); 8297 seq_printf(seq, "\n "); 8298 if (mddev->pers->sync_request) { 8299 if (status_resync(seq, mddev)) 8300 seq_printf(seq, "\n "); 8301 } 8302 } else 8303 seq_printf(seq, "\n "); 8304 8305 md_bitmap_status(seq, mddev->bitmap); 8306 8307 seq_printf(seq, "\n"); 8308 } 8309 spin_unlock(&mddev->lock); 8310 8311 return 0; 8312 } 8313 8314 static const struct seq_operations md_seq_ops = { 8315 .start = md_seq_start, 8316 .next = md_seq_next, 8317 .stop = md_seq_stop, 8318 .show = md_seq_show, 8319 }; 8320 8321 static int md_seq_open(struct inode *inode, struct file *file) 8322 { 8323 struct seq_file *seq; 8324 int error; 8325 8326 error = seq_open(file, &md_seq_ops); 8327 if (error) 8328 return error; 8329 8330 seq = file->private_data; 8331 seq->poll_event = atomic_read(&md_event_count); 8332 return error; 8333 } 8334 8335 static int md_unloading; 8336 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8337 { 8338 struct seq_file *seq = filp->private_data; 8339 __poll_t mask; 8340 8341 if (md_unloading) 8342 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8343 poll_wait(filp, &md_event_waiters, wait); 8344 8345 /* always allow read */ 8346 mask = EPOLLIN | EPOLLRDNORM; 8347 8348 if (seq->poll_event != atomic_read(&md_event_count)) 8349 mask |= EPOLLERR | EPOLLPRI; 8350 return mask; 8351 } 8352 8353 static const struct proc_ops mdstat_proc_ops = { 8354 .proc_open = md_seq_open, 8355 .proc_read = seq_read, 8356 .proc_lseek = seq_lseek, 8357 .proc_release = seq_release, 8358 .proc_poll = mdstat_poll, 8359 }; 8360 8361 int register_md_personality(struct md_personality *p) 8362 { 8363 pr_debug("md: %s personality registered for level %d\n", 8364 p->name, p->level); 8365 spin_lock(&pers_lock); 8366 list_add_tail(&p->list, &pers_list); 8367 spin_unlock(&pers_lock); 8368 return 0; 8369 } 8370 EXPORT_SYMBOL(register_md_personality); 8371 8372 int unregister_md_personality(struct md_personality *p) 8373 { 8374 pr_debug("md: %s personality unregistered\n", p->name); 8375 spin_lock(&pers_lock); 8376 list_del_init(&p->list); 8377 spin_unlock(&pers_lock); 8378 return 0; 8379 } 8380 EXPORT_SYMBOL(unregister_md_personality); 8381 8382 int register_md_cluster_operations(struct md_cluster_operations *ops, 8383 struct module *module) 8384 { 8385 int ret = 0; 8386 spin_lock(&pers_lock); 8387 if (md_cluster_ops != NULL) 8388 ret = -EALREADY; 8389 else { 8390 md_cluster_ops = ops; 8391 md_cluster_mod = module; 8392 } 8393 spin_unlock(&pers_lock); 8394 return ret; 8395 } 8396 EXPORT_SYMBOL(register_md_cluster_operations); 8397 8398 int unregister_md_cluster_operations(void) 8399 { 8400 spin_lock(&pers_lock); 8401 md_cluster_ops = NULL; 8402 spin_unlock(&pers_lock); 8403 return 0; 8404 } 8405 EXPORT_SYMBOL(unregister_md_cluster_operations); 8406 8407 int md_setup_cluster(struct mddev *mddev, int nodes) 8408 { 8409 int ret; 8410 if (!md_cluster_ops) 8411 request_module("md-cluster"); 8412 spin_lock(&pers_lock); 8413 /* ensure module won't be unloaded */ 8414 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8415 pr_warn("can't find md-cluster module or get its reference.\n"); 8416 spin_unlock(&pers_lock); 8417 return -ENOENT; 8418 } 8419 spin_unlock(&pers_lock); 8420 8421 ret = md_cluster_ops->join(mddev, nodes); 8422 if (!ret) 8423 mddev->safemode_delay = 0; 8424 return ret; 8425 } 8426 8427 void md_cluster_stop(struct mddev *mddev) 8428 { 8429 if (!md_cluster_ops) 8430 return; 8431 md_cluster_ops->leave(mddev); 8432 module_put(md_cluster_mod); 8433 } 8434 8435 static int is_mddev_idle(struct mddev *mddev, int init) 8436 { 8437 struct md_rdev *rdev; 8438 int idle; 8439 int curr_events; 8440 8441 idle = 1; 8442 rcu_read_lock(); 8443 rdev_for_each_rcu(rdev, mddev) { 8444 struct gendisk *disk = rdev->bdev->bd_disk; 8445 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8446 atomic_read(&disk->sync_io); 8447 /* sync IO will cause sync_io to increase before the disk_stats 8448 * as sync_io is counted when a request starts, and 8449 * disk_stats is counted when it completes. 8450 * So resync activity will cause curr_events to be smaller than 8451 * when there was no such activity. 8452 * non-sync IO will cause disk_stat to increase without 8453 * increasing sync_io so curr_events will (eventually) 8454 * be larger than it was before. Once it becomes 8455 * substantially larger, the test below will cause 8456 * the array to appear non-idle, and resync will slow 8457 * down. 8458 * If there is a lot of outstanding resync activity when 8459 * we set last_event to curr_events, then all that activity 8460 * completing might cause the array to appear non-idle 8461 * and resync will be slowed down even though there might 8462 * not have been non-resync activity. This will only 8463 * happen once though. 'last_events' will soon reflect 8464 * the state where there is little or no outstanding 8465 * resync requests, and further resync activity will 8466 * always make curr_events less than last_events. 8467 * 8468 */ 8469 if (init || curr_events - rdev->last_events > 64) { 8470 rdev->last_events = curr_events; 8471 idle = 0; 8472 } 8473 } 8474 rcu_read_unlock(); 8475 return idle; 8476 } 8477 8478 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8479 { 8480 /* another "blocks" (512byte) blocks have been synced */ 8481 atomic_sub(blocks, &mddev->recovery_active); 8482 wake_up(&mddev->recovery_wait); 8483 if (!ok) { 8484 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8485 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8486 md_wakeup_thread(mddev->thread); 8487 // stop recovery, signal do_sync .... 8488 } 8489 } 8490 EXPORT_SYMBOL(md_done_sync); 8491 8492 /* md_write_start(mddev, bi) 8493 * If we need to update some array metadata (e.g. 'active' flag 8494 * in superblock) before writing, schedule a superblock update 8495 * and wait for it to complete. 8496 * A return value of 'false' means that the write wasn't recorded 8497 * and cannot proceed as the array is being suspend. 8498 */ 8499 bool md_write_start(struct mddev *mddev, struct bio *bi) 8500 { 8501 int did_change = 0; 8502 8503 if (bio_data_dir(bi) != WRITE) 8504 return true; 8505 8506 BUG_ON(mddev->ro == 1); 8507 if (mddev->ro == 2) { 8508 /* need to switch to read/write */ 8509 mddev->ro = 0; 8510 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8511 md_wakeup_thread(mddev->thread); 8512 md_wakeup_thread(mddev->sync_thread); 8513 did_change = 1; 8514 } 8515 rcu_read_lock(); 8516 percpu_ref_get(&mddev->writes_pending); 8517 smp_mb(); /* Match smp_mb in set_in_sync() */ 8518 if (mddev->safemode == 1) 8519 mddev->safemode = 0; 8520 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8521 if (mddev->in_sync || mddev->sync_checkers) { 8522 spin_lock(&mddev->lock); 8523 if (mddev->in_sync) { 8524 mddev->in_sync = 0; 8525 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8526 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8527 md_wakeup_thread(mddev->thread); 8528 did_change = 1; 8529 } 8530 spin_unlock(&mddev->lock); 8531 } 8532 rcu_read_unlock(); 8533 if (did_change) 8534 sysfs_notify_dirent_safe(mddev->sysfs_state); 8535 if (!mddev->has_superblocks) 8536 return true; 8537 wait_event(mddev->sb_wait, 8538 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8539 mddev->suspended); 8540 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8541 percpu_ref_put(&mddev->writes_pending); 8542 return false; 8543 } 8544 return true; 8545 } 8546 EXPORT_SYMBOL(md_write_start); 8547 8548 /* md_write_inc can only be called when md_write_start() has 8549 * already been called at least once of the current request. 8550 * It increments the counter and is useful when a single request 8551 * is split into several parts. Each part causes an increment and 8552 * so needs a matching md_write_end(). 8553 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8554 * a spinlocked region. 8555 */ 8556 void md_write_inc(struct mddev *mddev, struct bio *bi) 8557 { 8558 if (bio_data_dir(bi) != WRITE) 8559 return; 8560 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8561 percpu_ref_get(&mddev->writes_pending); 8562 } 8563 EXPORT_SYMBOL(md_write_inc); 8564 8565 void md_write_end(struct mddev *mddev) 8566 { 8567 percpu_ref_put(&mddev->writes_pending); 8568 8569 if (mddev->safemode == 2) 8570 md_wakeup_thread(mddev->thread); 8571 else if (mddev->safemode_delay) 8572 /* The roundup() ensures this only performs locking once 8573 * every ->safemode_delay jiffies 8574 */ 8575 mod_timer(&mddev->safemode_timer, 8576 roundup(jiffies, mddev->safemode_delay) + 8577 mddev->safemode_delay); 8578 } 8579 8580 EXPORT_SYMBOL(md_write_end); 8581 8582 /* This is used by raid0 and raid10 */ 8583 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8584 struct bio *bio, sector_t start, sector_t size) 8585 { 8586 struct bio *discard_bio = NULL; 8587 8588 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 0, 8589 &discard_bio) || !discard_bio) 8590 return; 8591 8592 bio_chain(discard_bio, bio); 8593 bio_clone_blkg_association(discard_bio, bio); 8594 if (mddev->gendisk) 8595 trace_block_bio_remap(discard_bio, 8596 disk_devt(mddev->gendisk), 8597 bio->bi_iter.bi_sector); 8598 submit_bio_noacct(discard_bio); 8599 } 8600 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8601 8602 int acct_bioset_init(struct mddev *mddev) 8603 { 8604 int err = 0; 8605 8606 if (!bioset_initialized(&mddev->io_acct_set)) 8607 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE, 8608 offsetof(struct md_io_acct, bio_clone), 0); 8609 return err; 8610 } 8611 EXPORT_SYMBOL_GPL(acct_bioset_init); 8612 8613 void acct_bioset_exit(struct mddev *mddev) 8614 { 8615 bioset_exit(&mddev->io_acct_set); 8616 } 8617 EXPORT_SYMBOL_GPL(acct_bioset_exit); 8618 8619 static void md_end_io_acct(struct bio *bio) 8620 { 8621 struct md_io_acct *md_io_acct = bio->bi_private; 8622 struct bio *orig_bio = md_io_acct->orig_bio; 8623 8624 orig_bio->bi_status = bio->bi_status; 8625 8626 bio_end_io_acct(orig_bio, md_io_acct->start_time); 8627 bio_put(bio); 8628 bio_endio(orig_bio); 8629 } 8630 8631 /* 8632 * Used by personalities that don't already clone the bio and thus can't 8633 * easily add the timestamp to their extended bio structure. 8634 */ 8635 void md_account_bio(struct mddev *mddev, struct bio **bio) 8636 { 8637 struct block_device *bdev = (*bio)->bi_bdev; 8638 struct md_io_acct *md_io_acct; 8639 struct bio *clone; 8640 8641 if (!blk_queue_io_stat(bdev->bd_disk->queue)) 8642 return; 8643 8644 clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set); 8645 md_io_acct = container_of(clone, struct md_io_acct, bio_clone); 8646 md_io_acct->orig_bio = *bio; 8647 md_io_acct->start_time = bio_start_io_acct(*bio); 8648 8649 clone->bi_end_io = md_end_io_acct; 8650 clone->bi_private = md_io_acct; 8651 *bio = clone; 8652 } 8653 EXPORT_SYMBOL_GPL(md_account_bio); 8654 8655 /* md_allow_write(mddev) 8656 * Calling this ensures that the array is marked 'active' so that writes 8657 * may proceed without blocking. It is important to call this before 8658 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8659 * Must be called with mddev_lock held. 8660 */ 8661 void md_allow_write(struct mddev *mddev) 8662 { 8663 if (!mddev->pers) 8664 return; 8665 if (mddev->ro) 8666 return; 8667 if (!mddev->pers->sync_request) 8668 return; 8669 8670 spin_lock(&mddev->lock); 8671 if (mddev->in_sync) { 8672 mddev->in_sync = 0; 8673 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8674 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8675 if (mddev->safemode_delay && 8676 mddev->safemode == 0) 8677 mddev->safemode = 1; 8678 spin_unlock(&mddev->lock); 8679 md_update_sb(mddev, 0); 8680 sysfs_notify_dirent_safe(mddev->sysfs_state); 8681 /* wait for the dirty state to be recorded in the metadata */ 8682 wait_event(mddev->sb_wait, 8683 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8684 } else 8685 spin_unlock(&mddev->lock); 8686 } 8687 EXPORT_SYMBOL_GPL(md_allow_write); 8688 8689 #define SYNC_MARKS 10 8690 #define SYNC_MARK_STEP (3*HZ) 8691 #define UPDATE_FREQUENCY (5*60*HZ) 8692 void md_do_sync(struct md_thread *thread) 8693 { 8694 struct mddev *mddev = thread->mddev; 8695 struct mddev *mddev2; 8696 unsigned int currspeed = 0, window; 8697 sector_t max_sectors,j, io_sectors, recovery_done; 8698 unsigned long mark[SYNC_MARKS]; 8699 unsigned long update_time; 8700 sector_t mark_cnt[SYNC_MARKS]; 8701 int last_mark,m; 8702 struct list_head *tmp; 8703 sector_t last_check; 8704 int skipped = 0; 8705 struct md_rdev *rdev; 8706 char *desc, *action = NULL; 8707 struct blk_plug plug; 8708 int ret; 8709 8710 /* just incase thread restarts... */ 8711 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8712 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8713 return; 8714 if (mddev->ro) {/* never try to sync a read-only array */ 8715 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8716 return; 8717 } 8718 8719 if (mddev_is_clustered(mddev)) { 8720 ret = md_cluster_ops->resync_start(mddev); 8721 if (ret) 8722 goto skip; 8723 8724 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8725 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8726 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8727 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8728 && ((unsigned long long)mddev->curr_resync_completed 8729 < (unsigned long long)mddev->resync_max_sectors)) 8730 goto skip; 8731 } 8732 8733 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8734 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8735 desc = "data-check"; 8736 action = "check"; 8737 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8738 desc = "requested-resync"; 8739 action = "repair"; 8740 } else 8741 desc = "resync"; 8742 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8743 desc = "reshape"; 8744 else 8745 desc = "recovery"; 8746 8747 mddev->last_sync_action = action ?: desc; 8748 8749 /* we overload curr_resync somewhat here. 8750 * 0 == not engaged in resync at all 8751 * 2 == checking that there is no conflict with another sync 8752 * 1 == like 2, but have yielded to allow conflicting resync to 8753 * commence 8754 * other == active in resync - this many blocks 8755 * 8756 * Before starting a resync we must have set curr_resync to 8757 * 2, and then checked that every "conflicting" array has curr_resync 8758 * less than ours. When we find one that is the same or higher 8759 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8760 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8761 * This will mean we have to start checking from the beginning again. 8762 * 8763 */ 8764 8765 do { 8766 int mddev2_minor = -1; 8767 mddev->curr_resync = 2; 8768 8769 try_again: 8770 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8771 goto skip; 8772 for_each_mddev(mddev2, tmp) { 8773 if (mddev2 == mddev) 8774 continue; 8775 if (!mddev->parallel_resync 8776 && mddev2->curr_resync 8777 && match_mddev_units(mddev, mddev2)) { 8778 DEFINE_WAIT(wq); 8779 if (mddev < mddev2 && mddev->curr_resync == 2) { 8780 /* arbitrarily yield */ 8781 mddev->curr_resync = 1; 8782 wake_up(&resync_wait); 8783 } 8784 if (mddev > mddev2 && mddev->curr_resync == 1) 8785 /* no need to wait here, we can wait the next 8786 * time 'round when curr_resync == 2 8787 */ 8788 continue; 8789 /* We need to wait 'interruptible' so as not to 8790 * contribute to the load average, and not to 8791 * be caught by 'softlockup' 8792 */ 8793 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8794 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8795 mddev2->curr_resync >= mddev->curr_resync) { 8796 if (mddev2_minor != mddev2->md_minor) { 8797 mddev2_minor = mddev2->md_minor; 8798 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8799 desc, mdname(mddev), 8800 mdname(mddev2)); 8801 } 8802 mddev_put(mddev2); 8803 if (signal_pending(current)) 8804 flush_signals(current); 8805 schedule(); 8806 finish_wait(&resync_wait, &wq); 8807 goto try_again; 8808 } 8809 finish_wait(&resync_wait, &wq); 8810 } 8811 } 8812 } while (mddev->curr_resync < 2); 8813 8814 j = 0; 8815 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8816 /* resync follows the size requested by the personality, 8817 * which defaults to physical size, but can be virtual size 8818 */ 8819 max_sectors = mddev->resync_max_sectors; 8820 atomic64_set(&mddev->resync_mismatches, 0); 8821 /* we don't use the checkpoint if there's a bitmap */ 8822 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8823 j = mddev->resync_min; 8824 else if (!mddev->bitmap) 8825 j = mddev->recovery_cp; 8826 8827 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8828 max_sectors = mddev->resync_max_sectors; 8829 /* 8830 * If the original node aborts reshaping then we continue the 8831 * reshaping, so set j again to avoid restart reshape from the 8832 * first beginning 8833 */ 8834 if (mddev_is_clustered(mddev) && 8835 mddev->reshape_position != MaxSector) 8836 j = mddev->reshape_position; 8837 } else { 8838 /* recovery follows the physical size of devices */ 8839 max_sectors = mddev->dev_sectors; 8840 j = MaxSector; 8841 rcu_read_lock(); 8842 rdev_for_each_rcu(rdev, mddev) 8843 if (rdev->raid_disk >= 0 && 8844 !test_bit(Journal, &rdev->flags) && 8845 !test_bit(Faulty, &rdev->flags) && 8846 !test_bit(In_sync, &rdev->flags) && 8847 rdev->recovery_offset < j) 8848 j = rdev->recovery_offset; 8849 rcu_read_unlock(); 8850 8851 /* If there is a bitmap, we need to make sure all 8852 * writes that started before we added a spare 8853 * complete before we start doing a recovery. 8854 * Otherwise the write might complete and (via 8855 * bitmap_endwrite) set a bit in the bitmap after the 8856 * recovery has checked that bit and skipped that 8857 * region. 8858 */ 8859 if (mddev->bitmap) { 8860 mddev->pers->quiesce(mddev, 1); 8861 mddev->pers->quiesce(mddev, 0); 8862 } 8863 } 8864 8865 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8866 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8867 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8868 speed_max(mddev), desc); 8869 8870 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8871 8872 io_sectors = 0; 8873 for (m = 0; m < SYNC_MARKS; m++) { 8874 mark[m] = jiffies; 8875 mark_cnt[m] = io_sectors; 8876 } 8877 last_mark = 0; 8878 mddev->resync_mark = mark[last_mark]; 8879 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8880 8881 /* 8882 * Tune reconstruction: 8883 */ 8884 window = 32 * (PAGE_SIZE / 512); 8885 pr_debug("md: using %dk window, over a total of %lluk.\n", 8886 window/2, (unsigned long long)max_sectors/2); 8887 8888 atomic_set(&mddev->recovery_active, 0); 8889 last_check = 0; 8890 8891 if (j>2) { 8892 pr_debug("md: resuming %s of %s from checkpoint.\n", 8893 desc, mdname(mddev)); 8894 mddev->curr_resync = j; 8895 } else 8896 mddev->curr_resync = 3; /* no longer delayed */ 8897 mddev->curr_resync_completed = j; 8898 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8899 md_new_event(); 8900 update_time = jiffies; 8901 8902 blk_start_plug(&plug); 8903 while (j < max_sectors) { 8904 sector_t sectors; 8905 8906 skipped = 0; 8907 8908 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8909 ((mddev->curr_resync > mddev->curr_resync_completed && 8910 (mddev->curr_resync - mddev->curr_resync_completed) 8911 > (max_sectors >> 4)) || 8912 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8913 (j - mddev->curr_resync_completed)*2 8914 >= mddev->resync_max - mddev->curr_resync_completed || 8915 mddev->curr_resync_completed > mddev->resync_max 8916 )) { 8917 /* time to update curr_resync_completed */ 8918 wait_event(mddev->recovery_wait, 8919 atomic_read(&mddev->recovery_active) == 0); 8920 mddev->curr_resync_completed = j; 8921 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8922 j > mddev->recovery_cp) 8923 mddev->recovery_cp = j; 8924 update_time = jiffies; 8925 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8926 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8927 } 8928 8929 while (j >= mddev->resync_max && 8930 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8931 /* As this condition is controlled by user-space, 8932 * we can block indefinitely, so use '_interruptible' 8933 * to avoid triggering warnings. 8934 */ 8935 flush_signals(current); /* just in case */ 8936 wait_event_interruptible(mddev->recovery_wait, 8937 mddev->resync_max > j 8938 || test_bit(MD_RECOVERY_INTR, 8939 &mddev->recovery)); 8940 } 8941 8942 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8943 break; 8944 8945 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8946 if (sectors == 0) { 8947 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8948 break; 8949 } 8950 8951 if (!skipped) { /* actual IO requested */ 8952 io_sectors += sectors; 8953 atomic_add(sectors, &mddev->recovery_active); 8954 } 8955 8956 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8957 break; 8958 8959 j += sectors; 8960 if (j > max_sectors) 8961 /* when skipping, extra large numbers can be returned. */ 8962 j = max_sectors; 8963 if (j > 2) 8964 mddev->curr_resync = j; 8965 mddev->curr_mark_cnt = io_sectors; 8966 if (last_check == 0) 8967 /* this is the earliest that rebuild will be 8968 * visible in /proc/mdstat 8969 */ 8970 md_new_event(); 8971 8972 if (last_check + window > io_sectors || j == max_sectors) 8973 continue; 8974 8975 last_check = io_sectors; 8976 repeat: 8977 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8978 /* step marks */ 8979 int next = (last_mark+1) % SYNC_MARKS; 8980 8981 mddev->resync_mark = mark[next]; 8982 mddev->resync_mark_cnt = mark_cnt[next]; 8983 mark[next] = jiffies; 8984 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8985 last_mark = next; 8986 } 8987 8988 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8989 break; 8990 8991 /* 8992 * this loop exits only if either when we are slower than 8993 * the 'hard' speed limit, or the system was IO-idle for 8994 * a jiffy. 8995 * the system might be non-idle CPU-wise, but we only care 8996 * about not overloading the IO subsystem. (things like an 8997 * e2fsck being done on the RAID array should execute fast) 8998 */ 8999 cond_resched(); 9000 9001 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9002 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9003 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9004 9005 if (currspeed > speed_min(mddev)) { 9006 if (currspeed > speed_max(mddev)) { 9007 msleep(500); 9008 goto repeat; 9009 } 9010 if (!is_mddev_idle(mddev, 0)) { 9011 /* 9012 * Give other IO more of a chance. 9013 * The faster the devices, the less we wait. 9014 */ 9015 wait_event(mddev->recovery_wait, 9016 !atomic_read(&mddev->recovery_active)); 9017 } 9018 } 9019 } 9020 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9021 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9022 ? "interrupted" : "done"); 9023 /* 9024 * this also signals 'finished resyncing' to md_stop 9025 */ 9026 blk_finish_plug(&plug); 9027 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9028 9029 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9030 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9031 mddev->curr_resync > 3) { 9032 mddev->curr_resync_completed = mddev->curr_resync; 9033 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9034 } 9035 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9036 9037 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9038 mddev->curr_resync > 3) { 9039 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9040 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9041 if (mddev->curr_resync >= mddev->recovery_cp) { 9042 pr_debug("md: checkpointing %s of %s.\n", 9043 desc, mdname(mddev)); 9044 if (test_bit(MD_RECOVERY_ERROR, 9045 &mddev->recovery)) 9046 mddev->recovery_cp = 9047 mddev->curr_resync_completed; 9048 else 9049 mddev->recovery_cp = 9050 mddev->curr_resync; 9051 } 9052 } else 9053 mddev->recovery_cp = MaxSector; 9054 } else { 9055 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9056 mddev->curr_resync = MaxSector; 9057 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9058 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9059 rcu_read_lock(); 9060 rdev_for_each_rcu(rdev, mddev) 9061 if (rdev->raid_disk >= 0 && 9062 mddev->delta_disks >= 0 && 9063 !test_bit(Journal, &rdev->flags) && 9064 !test_bit(Faulty, &rdev->flags) && 9065 !test_bit(In_sync, &rdev->flags) && 9066 rdev->recovery_offset < mddev->curr_resync) 9067 rdev->recovery_offset = mddev->curr_resync; 9068 rcu_read_unlock(); 9069 } 9070 } 9071 } 9072 skip: 9073 /* set CHANGE_PENDING here since maybe another update is needed, 9074 * so other nodes are informed. It should be harmless for normal 9075 * raid */ 9076 set_mask_bits(&mddev->sb_flags, 0, 9077 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9078 9079 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9080 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9081 mddev->delta_disks > 0 && 9082 mddev->pers->finish_reshape && 9083 mddev->pers->size && 9084 mddev->queue) { 9085 mddev_lock_nointr(mddev); 9086 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9087 mddev_unlock(mddev); 9088 if (!mddev_is_clustered(mddev)) 9089 set_capacity_and_notify(mddev->gendisk, 9090 mddev->array_sectors); 9091 } 9092 9093 spin_lock(&mddev->lock); 9094 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9095 /* We completed so min/max setting can be forgotten if used. */ 9096 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9097 mddev->resync_min = 0; 9098 mddev->resync_max = MaxSector; 9099 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9100 mddev->resync_min = mddev->curr_resync_completed; 9101 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9102 mddev->curr_resync = 0; 9103 spin_unlock(&mddev->lock); 9104 9105 wake_up(&resync_wait); 9106 md_wakeup_thread(mddev->thread); 9107 return; 9108 } 9109 EXPORT_SYMBOL_GPL(md_do_sync); 9110 9111 static int remove_and_add_spares(struct mddev *mddev, 9112 struct md_rdev *this) 9113 { 9114 struct md_rdev *rdev; 9115 int spares = 0; 9116 int removed = 0; 9117 bool remove_some = false; 9118 9119 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9120 /* Mustn't remove devices when resync thread is running */ 9121 return 0; 9122 9123 rdev_for_each(rdev, mddev) { 9124 if ((this == NULL || rdev == this) && 9125 rdev->raid_disk >= 0 && 9126 !test_bit(Blocked, &rdev->flags) && 9127 test_bit(Faulty, &rdev->flags) && 9128 atomic_read(&rdev->nr_pending)==0) { 9129 /* Faulty non-Blocked devices with nr_pending == 0 9130 * never get nr_pending incremented, 9131 * never get Faulty cleared, and never get Blocked set. 9132 * So we can synchronize_rcu now rather than once per device 9133 */ 9134 remove_some = true; 9135 set_bit(RemoveSynchronized, &rdev->flags); 9136 } 9137 } 9138 9139 if (remove_some) 9140 synchronize_rcu(); 9141 rdev_for_each(rdev, mddev) { 9142 if ((this == NULL || rdev == this) && 9143 rdev->raid_disk >= 0 && 9144 !test_bit(Blocked, &rdev->flags) && 9145 ((test_bit(RemoveSynchronized, &rdev->flags) || 9146 (!test_bit(In_sync, &rdev->flags) && 9147 !test_bit(Journal, &rdev->flags))) && 9148 atomic_read(&rdev->nr_pending)==0)) { 9149 if (mddev->pers->hot_remove_disk( 9150 mddev, rdev) == 0) { 9151 sysfs_unlink_rdev(mddev, rdev); 9152 rdev->saved_raid_disk = rdev->raid_disk; 9153 rdev->raid_disk = -1; 9154 removed++; 9155 } 9156 } 9157 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9158 clear_bit(RemoveSynchronized, &rdev->flags); 9159 } 9160 9161 if (removed && mddev->kobj.sd) 9162 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9163 9164 if (this && removed) 9165 goto no_add; 9166 9167 rdev_for_each(rdev, mddev) { 9168 if (this && this != rdev) 9169 continue; 9170 if (test_bit(Candidate, &rdev->flags)) 9171 continue; 9172 if (rdev->raid_disk >= 0 && 9173 !test_bit(In_sync, &rdev->flags) && 9174 !test_bit(Journal, &rdev->flags) && 9175 !test_bit(Faulty, &rdev->flags)) 9176 spares++; 9177 if (rdev->raid_disk >= 0) 9178 continue; 9179 if (test_bit(Faulty, &rdev->flags)) 9180 continue; 9181 if (!test_bit(Journal, &rdev->flags)) { 9182 if (mddev->ro && 9183 ! (rdev->saved_raid_disk >= 0 && 9184 !test_bit(Bitmap_sync, &rdev->flags))) 9185 continue; 9186 9187 rdev->recovery_offset = 0; 9188 } 9189 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9190 /* failure here is OK */ 9191 sysfs_link_rdev(mddev, rdev); 9192 if (!test_bit(Journal, &rdev->flags)) 9193 spares++; 9194 md_new_event(); 9195 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9196 } 9197 } 9198 no_add: 9199 if (removed) 9200 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9201 return spares; 9202 } 9203 9204 static void md_start_sync(struct work_struct *ws) 9205 { 9206 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9207 9208 mddev->sync_thread = md_register_thread(md_do_sync, 9209 mddev, 9210 "resync"); 9211 if (!mddev->sync_thread) { 9212 pr_warn("%s: could not start resync thread...\n", 9213 mdname(mddev)); 9214 /* leave the spares where they are, it shouldn't hurt */ 9215 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9216 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9217 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9218 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9219 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9220 wake_up(&resync_wait); 9221 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9222 &mddev->recovery)) 9223 if (mddev->sysfs_action) 9224 sysfs_notify_dirent_safe(mddev->sysfs_action); 9225 } else 9226 md_wakeup_thread(mddev->sync_thread); 9227 sysfs_notify_dirent_safe(mddev->sysfs_action); 9228 md_new_event(); 9229 } 9230 9231 /* 9232 * This routine is regularly called by all per-raid-array threads to 9233 * deal with generic issues like resync and super-block update. 9234 * Raid personalities that don't have a thread (linear/raid0) do not 9235 * need this as they never do any recovery or update the superblock. 9236 * 9237 * It does not do any resync itself, but rather "forks" off other threads 9238 * to do that as needed. 9239 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9240 * "->recovery" and create a thread at ->sync_thread. 9241 * When the thread finishes it sets MD_RECOVERY_DONE 9242 * and wakeups up this thread which will reap the thread and finish up. 9243 * This thread also removes any faulty devices (with nr_pending == 0). 9244 * 9245 * The overall approach is: 9246 * 1/ if the superblock needs updating, update it. 9247 * 2/ If a recovery thread is running, don't do anything else. 9248 * 3/ If recovery has finished, clean up, possibly marking spares active. 9249 * 4/ If there are any faulty devices, remove them. 9250 * 5/ If array is degraded, try to add spares devices 9251 * 6/ If array has spares or is not in-sync, start a resync thread. 9252 */ 9253 void md_check_recovery(struct mddev *mddev) 9254 { 9255 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9256 /* Write superblock - thread that called mddev_suspend() 9257 * holds reconfig_mutex for us. 9258 */ 9259 set_bit(MD_UPDATING_SB, &mddev->flags); 9260 smp_mb__after_atomic(); 9261 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9262 md_update_sb(mddev, 0); 9263 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9264 wake_up(&mddev->sb_wait); 9265 } 9266 9267 if (mddev->suspended) 9268 return; 9269 9270 if (mddev->bitmap) 9271 md_bitmap_daemon_work(mddev); 9272 9273 if (signal_pending(current)) { 9274 if (mddev->pers->sync_request && !mddev->external) { 9275 pr_debug("md: %s in immediate safe mode\n", 9276 mdname(mddev)); 9277 mddev->safemode = 2; 9278 } 9279 flush_signals(current); 9280 } 9281 9282 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9283 return; 9284 if ( ! ( 9285 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9286 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9287 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9288 (mddev->external == 0 && mddev->safemode == 1) || 9289 (mddev->safemode == 2 9290 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9291 )) 9292 return; 9293 9294 if (mddev_trylock(mddev)) { 9295 int spares = 0; 9296 bool try_set_sync = mddev->safemode != 0; 9297 9298 if (!mddev->external && mddev->safemode == 1) 9299 mddev->safemode = 0; 9300 9301 if (mddev->ro) { 9302 struct md_rdev *rdev; 9303 if (!mddev->external && mddev->in_sync) 9304 /* 'Blocked' flag not needed as failed devices 9305 * will be recorded if array switched to read/write. 9306 * Leaving it set will prevent the device 9307 * from being removed. 9308 */ 9309 rdev_for_each(rdev, mddev) 9310 clear_bit(Blocked, &rdev->flags); 9311 /* On a read-only array we can: 9312 * - remove failed devices 9313 * - add already-in_sync devices if the array itself 9314 * is in-sync. 9315 * As we only add devices that are already in-sync, 9316 * we can activate the spares immediately. 9317 */ 9318 remove_and_add_spares(mddev, NULL); 9319 /* There is no thread, but we need to call 9320 * ->spare_active and clear saved_raid_disk 9321 */ 9322 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9323 md_reap_sync_thread(mddev); 9324 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9325 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9326 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9327 goto unlock; 9328 } 9329 9330 if (mddev_is_clustered(mddev)) { 9331 struct md_rdev *rdev, *tmp; 9332 /* kick the device if another node issued a 9333 * remove disk. 9334 */ 9335 rdev_for_each_safe(rdev, tmp, mddev) { 9336 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9337 rdev->raid_disk < 0) 9338 md_kick_rdev_from_array(rdev); 9339 } 9340 } 9341 9342 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9343 spin_lock(&mddev->lock); 9344 set_in_sync(mddev); 9345 spin_unlock(&mddev->lock); 9346 } 9347 9348 if (mddev->sb_flags) 9349 md_update_sb(mddev, 0); 9350 9351 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9352 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9353 /* resync/recovery still happening */ 9354 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9355 goto unlock; 9356 } 9357 if (mddev->sync_thread) { 9358 md_reap_sync_thread(mddev); 9359 goto unlock; 9360 } 9361 /* Set RUNNING before clearing NEEDED to avoid 9362 * any transients in the value of "sync_action". 9363 */ 9364 mddev->curr_resync_completed = 0; 9365 spin_lock(&mddev->lock); 9366 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9367 spin_unlock(&mddev->lock); 9368 /* Clear some bits that don't mean anything, but 9369 * might be left set 9370 */ 9371 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9372 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9373 9374 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9375 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9376 goto not_running; 9377 /* no recovery is running. 9378 * remove any failed drives, then 9379 * add spares if possible. 9380 * Spares are also removed and re-added, to allow 9381 * the personality to fail the re-add. 9382 */ 9383 9384 if (mddev->reshape_position != MaxSector) { 9385 if (mddev->pers->check_reshape == NULL || 9386 mddev->pers->check_reshape(mddev) != 0) 9387 /* Cannot proceed */ 9388 goto not_running; 9389 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9390 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9391 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9392 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9393 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9394 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9395 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9396 } else if (mddev->recovery_cp < MaxSector) { 9397 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9398 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9399 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9400 /* nothing to be done ... */ 9401 goto not_running; 9402 9403 if (mddev->pers->sync_request) { 9404 if (spares) { 9405 /* We are adding a device or devices to an array 9406 * which has the bitmap stored on all devices. 9407 * So make sure all bitmap pages get written 9408 */ 9409 md_bitmap_write_all(mddev->bitmap); 9410 } 9411 INIT_WORK(&mddev->del_work, md_start_sync); 9412 queue_work(md_misc_wq, &mddev->del_work); 9413 goto unlock; 9414 } 9415 not_running: 9416 if (!mddev->sync_thread) { 9417 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9418 wake_up(&resync_wait); 9419 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9420 &mddev->recovery)) 9421 if (mddev->sysfs_action) 9422 sysfs_notify_dirent_safe(mddev->sysfs_action); 9423 } 9424 unlock: 9425 wake_up(&mddev->sb_wait); 9426 mddev_unlock(mddev); 9427 } 9428 } 9429 EXPORT_SYMBOL(md_check_recovery); 9430 9431 void md_reap_sync_thread(struct mddev *mddev) 9432 { 9433 struct md_rdev *rdev; 9434 sector_t old_dev_sectors = mddev->dev_sectors; 9435 bool is_reshaped = false; 9436 9437 /* resync has finished, collect result */ 9438 md_unregister_thread(&mddev->sync_thread); 9439 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9440 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9441 mddev->degraded != mddev->raid_disks) { 9442 /* success...*/ 9443 /* activate any spares */ 9444 if (mddev->pers->spare_active(mddev)) { 9445 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9446 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9447 } 9448 } 9449 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9450 mddev->pers->finish_reshape) { 9451 mddev->pers->finish_reshape(mddev); 9452 if (mddev_is_clustered(mddev)) 9453 is_reshaped = true; 9454 } 9455 9456 /* If array is no-longer degraded, then any saved_raid_disk 9457 * information must be scrapped. 9458 */ 9459 if (!mddev->degraded) 9460 rdev_for_each(rdev, mddev) 9461 rdev->saved_raid_disk = -1; 9462 9463 md_update_sb(mddev, 1); 9464 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9465 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9466 * clustered raid */ 9467 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9468 md_cluster_ops->resync_finish(mddev); 9469 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9470 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9471 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9472 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9473 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9474 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9475 /* 9476 * We call md_cluster_ops->update_size here because sync_size could 9477 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9478 * so it is time to update size across cluster. 9479 */ 9480 if (mddev_is_clustered(mddev) && is_reshaped 9481 && !test_bit(MD_CLOSING, &mddev->flags)) 9482 md_cluster_ops->update_size(mddev, old_dev_sectors); 9483 wake_up(&resync_wait); 9484 /* flag recovery needed just to double check */ 9485 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9486 sysfs_notify_dirent_safe(mddev->sysfs_action); 9487 md_new_event(); 9488 if (mddev->event_work.func) 9489 queue_work(md_misc_wq, &mddev->event_work); 9490 } 9491 EXPORT_SYMBOL(md_reap_sync_thread); 9492 9493 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9494 { 9495 sysfs_notify_dirent_safe(rdev->sysfs_state); 9496 wait_event_timeout(rdev->blocked_wait, 9497 !test_bit(Blocked, &rdev->flags) && 9498 !test_bit(BlockedBadBlocks, &rdev->flags), 9499 msecs_to_jiffies(5000)); 9500 rdev_dec_pending(rdev, mddev); 9501 } 9502 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9503 9504 void md_finish_reshape(struct mddev *mddev) 9505 { 9506 /* called be personality module when reshape completes. */ 9507 struct md_rdev *rdev; 9508 9509 rdev_for_each(rdev, mddev) { 9510 if (rdev->data_offset > rdev->new_data_offset) 9511 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9512 else 9513 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9514 rdev->data_offset = rdev->new_data_offset; 9515 } 9516 } 9517 EXPORT_SYMBOL(md_finish_reshape); 9518 9519 /* Bad block management */ 9520 9521 /* Returns 1 on success, 0 on failure */ 9522 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9523 int is_new) 9524 { 9525 struct mddev *mddev = rdev->mddev; 9526 int rv; 9527 if (is_new) 9528 s += rdev->new_data_offset; 9529 else 9530 s += rdev->data_offset; 9531 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9532 if (rv == 0) { 9533 /* Make sure they get written out promptly */ 9534 if (test_bit(ExternalBbl, &rdev->flags)) 9535 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9536 sysfs_notify_dirent_safe(rdev->sysfs_state); 9537 set_mask_bits(&mddev->sb_flags, 0, 9538 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9539 md_wakeup_thread(rdev->mddev->thread); 9540 return 1; 9541 } else 9542 return 0; 9543 } 9544 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9545 9546 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9547 int is_new) 9548 { 9549 int rv; 9550 if (is_new) 9551 s += rdev->new_data_offset; 9552 else 9553 s += rdev->data_offset; 9554 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9555 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9556 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9557 return rv; 9558 } 9559 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9560 9561 static int md_notify_reboot(struct notifier_block *this, 9562 unsigned long code, void *x) 9563 { 9564 struct list_head *tmp; 9565 struct mddev *mddev; 9566 int need_delay = 0; 9567 9568 for_each_mddev(mddev, tmp) { 9569 if (mddev_trylock(mddev)) { 9570 if (mddev->pers) 9571 __md_stop_writes(mddev); 9572 if (mddev->persistent) 9573 mddev->safemode = 2; 9574 mddev_unlock(mddev); 9575 } 9576 need_delay = 1; 9577 } 9578 /* 9579 * certain more exotic SCSI devices are known to be 9580 * volatile wrt too early system reboots. While the 9581 * right place to handle this issue is the given 9582 * driver, we do want to have a safe RAID driver ... 9583 */ 9584 if (need_delay) 9585 msleep(1000); 9586 9587 return NOTIFY_DONE; 9588 } 9589 9590 static struct notifier_block md_notifier = { 9591 .notifier_call = md_notify_reboot, 9592 .next = NULL, 9593 .priority = INT_MAX, /* before any real devices */ 9594 }; 9595 9596 static void md_geninit(void) 9597 { 9598 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9599 9600 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9601 } 9602 9603 static int __init md_init(void) 9604 { 9605 int ret = -ENOMEM; 9606 9607 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9608 if (!md_wq) 9609 goto err_wq; 9610 9611 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9612 if (!md_misc_wq) 9613 goto err_misc_wq; 9614 9615 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9616 if (!md_rdev_misc_wq) 9617 goto err_rdev_misc_wq; 9618 9619 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9620 if (ret < 0) 9621 goto err_md; 9622 9623 ret = __register_blkdev(0, "mdp", md_probe); 9624 if (ret < 0) 9625 goto err_mdp; 9626 mdp_major = ret; 9627 9628 register_reboot_notifier(&md_notifier); 9629 raid_table_header = register_sysctl_table(raid_root_table); 9630 9631 md_geninit(); 9632 return 0; 9633 9634 err_mdp: 9635 unregister_blkdev(MD_MAJOR, "md"); 9636 err_md: 9637 destroy_workqueue(md_rdev_misc_wq); 9638 err_rdev_misc_wq: 9639 destroy_workqueue(md_misc_wq); 9640 err_misc_wq: 9641 destroy_workqueue(md_wq); 9642 err_wq: 9643 return ret; 9644 } 9645 9646 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9647 { 9648 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9649 struct md_rdev *rdev2, *tmp; 9650 int role, ret; 9651 char b[BDEVNAME_SIZE]; 9652 9653 /* 9654 * If size is changed in another node then we need to 9655 * do resize as well. 9656 */ 9657 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9658 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9659 if (ret) 9660 pr_info("md-cluster: resize failed\n"); 9661 else 9662 md_bitmap_update_sb(mddev->bitmap); 9663 } 9664 9665 /* Check for change of roles in the active devices */ 9666 rdev_for_each_safe(rdev2, tmp, mddev) { 9667 if (test_bit(Faulty, &rdev2->flags)) 9668 continue; 9669 9670 /* Check if the roles changed */ 9671 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9672 9673 if (test_bit(Candidate, &rdev2->flags)) { 9674 if (role == 0xfffe) { 9675 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9676 md_kick_rdev_from_array(rdev2); 9677 continue; 9678 } 9679 else 9680 clear_bit(Candidate, &rdev2->flags); 9681 } 9682 9683 if (role != rdev2->raid_disk) { 9684 /* 9685 * got activated except reshape is happening. 9686 */ 9687 if (rdev2->raid_disk == -1 && role != 0xffff && 9688 !(le32_to_cpu(sb->feature_map) & 9689 MD_FEATURE_RESHAPE_ACTIVE)) { 9690 rdev2->saved_raid_disk = role; 9691 ret = remove_and_add_spares(mddev, rdev2); 9692 pr_info("Activated spare: %s\n", 9693 bdevname(rdev2->bdev,b)); 9694 /* wakeup mddev->thread here, so array could 9695 * perform resync with the new activated disk */ 9696 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9697 md_wakeup_thread(mddev->thread); 9698 } 9699 /* device faulty 9700 * We just want to do the minimum to mark the disk 9701 * as faulty. The recovery is performed by the 9702 * one who initiated the error. 9703 */ 9704 if ((role == 0xfffe) || (role == 0xfffd)) { 9705 md_error(mddev, rdev2); 9706 clear_bit(Blocked, &rdev2->flags); 9707 } 9708 } 9709 } 9710 9711 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9712 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9713 if (ret) 9714 pr_warn("md: updating array disks failed. %d\n", ret); 9715 } 9716 9717 /* 9718 * Since mddev->delta_disks has already updated in update_raid_disks, 9719 * so it is time to check reshape. 9720 */ 9721 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9722 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9723 /* 9724 * reshape is happening in the remote node, we need to 9725 * update reshape_position and call start_reshape. 9726 */ 9727 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9728 if (mddev->pers->update_reshape_pos) 9729 mddev->pers->update_reshape_pos(mddev); 9730 if (mddev->pers->start_reshape) 9731 mddev->pers->start_reshape(mddev); 9732 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9733 mddev->reshape_position != MaxSector && 9734 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9735 /* reshape is just done in another node. */ 9736 mddev->reshape_position = MaxSector; 9737 if (mddev->pers->update_reshape_pos) 9738 mddev->pers->update_reshape_pos(mddev); 9739 } 9740 9741 /* Finally set the event to be up to date */ 9742 mddev->events = le64_to_cpu(sb->events); 9743 } 9744 9745 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9746 { 9747 int err; 9748 struct page *swapout = rdev->sb_page; 9749 struct mdp_superblock_1 *sb; 9750 9751 /* Store the sb page of the rdev in the swapout temporary 9752 * variable in case we err in the future 9753 */ 9754 rdev->sb_page = NULL; 9755 err = alloc_disk_sb(rdev); 9756 if (err == 0) { 9757 ClearPageUptodate(rdev->sb_page); 9758 rdev->sb_loaded = 0; 9759 err = super_types[mddev->major_version]. 9760 load_super(rdev, NULL, mddev->minor_version); 9761 } 9762 if (err < 0) { 9763 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9764 __func__, __LINE__, rdev->desc_nr, err); 9765 if (rdev->sb_page) 9766 put_page(rdev->sb_page); 9767 rdev->sb_page = swapout; 9768 rdev->sb_loaded = 1; 9769 return err; 9770 } 9771 9772 sb = page_address(rdev->sb_page); 9773 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9774 * is not set 9775 */ 9776 9777 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9778 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9779 9780 /* The other node finished recovery, call spare_active to set 9781 * device In_sync and mddev->degraded 9782 */ 9783 if (rdev->recovery_offset == MaxSector && 9784 !test_bit(In_sync, &rdev->flags) && 9785 mddev->pers->spare_active(mddev)) 9786 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9787 9788 put_page(swapout); 9789 return 0; 9790 } 9791 9792 void md_reload_sb(struct mddev *mddev, int nr) 9793 { 9794 struct md_rdev *rdev; 9795 int err; 9796 9797 /* Find the rdev */ 9798 rdev_for_each_rcu(rdev, mddev) { 9799 if (rdev->desc_nr == nr) 9800 break; 9801 } 9802 9803 if (!rdev || rdev->desc_nr != nr) { 9804 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9805 return; 9806 } 9807 9808 err = read_rdev(mddev, rdev); 9809 if (err < 0) 9810 return; 9811 9812 check_sb_changes(mddev, rdev); 9813 9814 /* Read all rdev's to update recovery_offset */ 9815 rdev_for_each_rcu(rdev, mddev) { 9816 if (!test_bit(Faulty, &rdev->flags)) 9817 read_rdev(mddev, rdev); 9818 } 9819 } 9820 EXPORT_SYMBOL(md_reload_sb); 9821 9822 #ifndef MODULE 9823 9824 /* 9825 * Searches all registered partitions for autorun RAID arrays 9826 * at boot time. 9827 */ 9828 9829 static DEFINE_MUTEX(detected_devices_mutex); 9830 static LIST_HEAD(all_detected_devices); 9831 struct detected_devices_node { 9832 struct list_head list; 9833 dev_t dev; 9834 }; 9835 9836 void md_autodetect_dev(dev_t dev) 9837 { 9838 struct detected_devices_node *node_detected_dev; 9839 9840 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9841 if (node_detected_dev) { 9842 node_detected_dev->dev = dev; 9843 mutex_lock(&detected_devices_mutex); 9844 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9845 mutex_unlock(&detected_devices_mutex); 9846 } 9847 } 9848 9849 void md_autostart_arrays(int part) 9850 { 9851 struct md_rdev *rdev; 9852 struct detected_devices_node *node_detected_dev; 9853 dev_t dev; 9854 int i_scanned, i_passed; 9855 9856 i_scanned = 0; 9857 i_passed = 0; 9858 9859 pr_info("md: Autodetecting RAID arrays.\n"); 9860 9861 mutex_lock(&detected_devices_mutex); 9862 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9863 i_scanned++; 9864 node_detected_dev = list_entry(all_detected_devices.next, 9865 struct detected_devices_node, list); 9866 list_del(&node_detected_dev->list); 9867 dev = node_detected_dev->dev; 9868 kfree(node_detected_dev); 9869 mutex_unlock(&detected_devices_mutex); 9870 rdev = md_import_device(dev,0, 90); 9871 mutex_lock(&detected_devices_mutex); 9872 if (IS_ERR(rdev)) 9873 continue; 9874 9875 if (test_bit(Faulty, &rdev->flags)) 9876 continue; 9877 9878 set_bit(AutoDetected, &rdev->flags); 9879 list_add(&rdev->same_set, &pending_raid_disks); 9880 i_passed++; 9881 } 9882 mutex_unlock(&detected_devices_mutex); 9883 9884 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9885 9886 autorun_devices(part); 9887 } 9888 9889 #endif /* !MODULE */ 9890 9891 static __exit void md_exit(void) 9892 { 9893 struct mddev *mddev; 9894 struct list_head *tmp; 9895 int delay = 1; 9896 9897 unregister_blkdev(MD_MAJOR,"md"); 9898 unregister_blkdev(mdp_major, "mdp"); 9899 unregister_reboot_notifier(&md_notifier); 9900 unregister_sysctl_table(raid_table_header); 9901 9902 /* We cannot unload the modules while some process is 9903 * waiting for us in select() or poll() - wake them up 9904 */ 9905 md_unloading = 1; 9906 while (waitqueue_active(&md_event_waiters)) { 9907 /* not safe to leave yet */ 9908 wake_up(&md_event_waiters); 9909 msleep(delay); 9910 delay += delay; 9911 } 9912 remove_proc_entry("mdstat", NULL); 9913 9914 for_each_mddev(mddev, tmp) { 9915 export_array(mddev); 9916 mddev->ctime = 0; 9917 mddev->hold_active = 0; 9918 /* 9919 * for_each_mddev() will call mddev_put() at the end of each 9920 * iteration. As the mddev is now fully clear, this will 9921 * schedule the mddev for destruction by a workqueue, and the 9922 * destroy_workqueue() below will wait for that to complete. 9923 */ 9924 } 9925 destroy_workqueue(md_rdev_misc_wq); 9926 destroy_workqueue(md_misc_wq); 9927 destroy_workqueue(md_wq); 9928 } 9929 9930 subsys_initcall(md_init); 9931 module_exit(md_exit) 9932 9933 static int get_ro(char *buffer, const struct kernel_param *kp) 9934 { 9935 return sprintf(buffer, "%d\n", start_readonly); 9936 } 9937 static int set_ro(const char *val, const struct kernel_param *kp) 9938 { 9939 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9940 } 9941 9942 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9943 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9944 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9945 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9946 9947 MODULE_LICENSE("GPL"); 9948 MODULE_DESCRIPTION("MD RAID framework"); 9949 MODULE_ALIAS("md"); 9950 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9951