xref: /linux/drivers/md/md.c (revision c7e1e3ccfbd153c890240a391f258efaedfa94d0)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57 
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61 
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69 
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74 
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78 
79 static int remove_and_add_spares(struct mddev *mddev,
80 				 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82 
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101 
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_min ?
107 		mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109 
110 static inline int speed_max(struct mddev *mddev)
111 {
112 	return mddev->sync_speed_max ?
113 		mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115 
116 static struct ctl_table_header *raid_table_header;
117 
118 static struct ctl_table raid_table[] = {
119 	{
120 		.procname	= "speed_limit_min",
121 		.data		= &sysctl_speed_limit_min,
122 		.maxlen		= sizeof(int),
123 		.mode		= S_IRUGO|S_IWUSR,
124 		.proc_handler	= proc_dointvec,
125 	},
126 	{
127 		.procname	= "speed_limit_max",
128 		.data		= &sysctl_speed_limit_max,
129 		.maxlen		= sizeof(int),
130 		.mode		= S_IRUGO|S_IWUSR,
131 		.proc_handler	= proc_dointvec,
132 	},
133 	{ }
134 };
135 
136 static struct ctl_table raid_dir_table[] = {
137 	{
138 		.procname	= "raid",
139 		.maxlen		= 0,
140 		.mode		= S_IRUGO|S_IXUGO,
141 		.child		= raid_table,
142 	},
143 	{ }
144 };
145 
146 static struct ctl_table raid_root_table[] = {
147 	{
148 		.procname	= "dev",
149 		.maxlen		= 0,
150 		.mode		= 0555,
151 		.child		= raid_dir_table,
152 	},
153 	{  }
154 };
155 
156 static const struct block_device_operations md_fops;
157 
158 static int start_readonly;
159 
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163 
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 			    struct mddev *mddev)
166 {
167 	struct bio *b;
168 
169 	if (!mddev || !mddev->bio_set)
170 		return bio_alloc(gfp_mask, nr_iovecs);
171 
172 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 	if (!b)
174 		return NULL;
175 	return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178 
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 			    struct mddev *mddev)
181 {
182 	if (!mddev || !mddev->bio_set)
183 		return bio_clone(bio, gfp_mask);
184 
185 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188 
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 	atomic_inc(&md_event_count);
204 	wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207 
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 	atomic_inc(&md_event_count);
214 	wake_up(&md_event_waiters);
215 }
216 
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223 
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)					\
232 									\
233 	for (({ spin_lock(&all_mddevs_lock);				\
234 		_tmp = all_mddevs.next;					\
235 		_mddev = NULL;});					\
236 	     ({ if (_tmp != &all_mddevs)				\
237 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 		spin_unlock(&all_mddevs_lock);				\
239 		if (_mddev) mddev_put(_mddev);				\
240 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
241 		_tmp != &all_mddevs;});					\
242 	     ({ spin_lock(&all_mddevs_lock);				\
243 		_tmp = _tmp->next;})					\
244 		)
245 
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 	const int rw = bio_data_dir(bio);
256 	struct mddev *mddev = q->queuedata;
257 	unsigned int sectors;
258 	int cpu;
259 
260 	blk_queue_split(q, &bio, q->bio_split);
261 
262 	if (mddev == NULL || mddev->pers == NULL
263 	    || !mddev->ready) {
264 		bio_io_error(bio);
265 		return;
266 	}
267 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268 		if (bio_sectors(bio) != 0)
269 			bio->bi_error = -EROFS;
270 		bio_endio(bio);
271 		return;
272 	}
273 	smp_rmb(); /* Ensure implications of  'active' are visible */
274 	rcu_read_lock();
275 	if (mddev->suspended) {
276 		DEFINE_WAIT(__wait);
277 		for (;;) {
278 			prepare_to_wait(&mddev->sb_wait, &__wait,
279 					TASK_UNINTERRUPTIBLE);
280 			if (!mddev->suspended)
281 				break;
282 			rcu_read_unlock();
283 			schedule();
284 			rcu_read_lock();
285 		}
286 		finish_wait(&mddev->sb_wait, &__wait);
287 	}
288 	atomic_inc(&mddev->active_io);
289 	rcu_read_unlock();
290 
291 	/*
292 	 * save the sectors now since our bio can
293 	 * go away inside make_request
294 	 */
295 	sectors = bio_sectors(bio);
296 	mddev->pers->make_request(mddev, bio);
297 
298 	cpu = part_stat_lock();
299 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
300 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
301 	part_stat_unlock();
302 
303 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
304 		wake_up(&mddev->sb_wait);
305 }
306 
307 /* mddev_suspend makes sure no new requests are submitted
308  * to the device, and that any requests that have been submitted
309  * are completely handled.
310  * Once mddev_detach() is called and completes, the module will be
311  * completely unused.
312  */
313 void mddev_suspend(struct mddev *mddev)
314 {
315 	BUG_ON(mddev->suspended);
316 	mddev->suspended = 1;
317 	synchronize_rcu();
318 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
319 	mddev->pers->quiesce(mddev, 1);
320 
321 	del_timer_sync(&mddev->safemode_timer);
322 }
323 EXPORT_SYMBOL_GPL(mddev_suspend);
324 
325 void mddev_resume(struct mddev *mddev)
326 {
327 	mddev->suspended = 0;
328 	wake_up(&mddev->sb_wait);
329 	mddev->pers->quiesce(mddev, 0);
330 
331 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
332 	md_wakeup_thread(mddev->thread);
333 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
334 }
335 EXPORT_SYMBOL_GPL(mddev_resume);
336 
337 int mddev_congested(struct mddev *mddev, int bits)
338 {
339 	struct md_personality *pers = mddev->pers;
340 	int ret = 0;
341 
342 	rcu_read_lock();
343 	if (mddev->suspended)
344 		ret = 1;
345 	else if (pers && pers->congested)
346 		ret = pers->congested(mddev, bits);
347 	rcu_read_unlock();
348 	return ret;
349 }
350 EXPORT_SYMBOL_GPL(mddev_congested);
351 static int md_congested(void *data, int bits)
352 {
353 	struct mddev *mddev = data;
354 	return mddev_congested(mddev, bits);
355 }
356 
357 /*
358  * Generic flush handling for md
359  */
360 
361 static void md_end_flush(struct bio *bio)
362 {
363 	struct md_rdev *rdev = bio->bi_private;
364 	struct mddev *mddev = rdev->mddev;
365 
366 	rdev_dec_pending(rdev, mddev);
367 
368 	if (atomic_dec_and_test(&mddev->flush_pending)) {
369 		/* The pre-request flush has finished */
370 		queue_work(md_wq, &mddev->flush_work);
371 	}
372 	bio_put(bio);
373 }
374 
375 static void md_submit_flush_data(struct work_struct *ws);
376 
377 static void submit_flushes(struct work_struct *ws)
378 {
379 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
380 	struct md_rdev *rdev;
381 
382 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
383 	atomic_set(&mddev->flush_pending, 1);
384 	rcu_read_lock();
385 	rdev_for_each_rcu(rdev, mddev)
386 		if (rdev->raid_disk >= 0 &&
387 		    !test_bit(Faulty, &rdev->flags)) {
388 			/* Take two references, one is dropped
389 			 * when request finishes, one after
390 			 * we reclaim rcu_read_lock
391 			 */
392 			struct bio *bi;
393 			atomic_inc(&rdev->nr_pending);
394 			atomic_inc(&rdev->nr_pending);
395 			rcu_read_unlock();
396 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
397 			bi->bi_end_io = md_end_flush;
398 			bi->bi_private = rdev;
399 			bi->bi_bdev = rdev->bdev;
400 			atomic_inc(&mddev->flush_pending);
401 			submit_bio(WRITE_FLUSH, bi);
402 			rcu_read_lock();
403 			rdev_dec_pending(rdev, mddev);
404 		}
405 	rcu_read_unlock();
406 	if (atomic_dec_and_test(&mddev->flush_pending))
407 		queue_work(md_wq, &mddev->flush_work);
408 }
409 
410 static void md_submit_flush_data(struct work_struct *ws)
411 {
412 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
413 	struct bio *bio = mddev->flush_bio;
414 
415 	if (bio->bi_iter.bi_size == 0)
416 		/* an empty barrier - all done */
417 		bio_endio(bio);
418 	else {
419 		bio->bi_rw &= ~REQ_FLUSH;
420 		mddev->pers->make_request(mddev, bio);
421 	}
422 
423 	mddev->flush_bio = NULL;
424 	wake_up(&mddev->sb_wait);
425 }
426 
427 void md_flush_request(struct mddev *mddev, struct bio *bio)
428 {
429 	spin_lock_irq(&mddev->lock);
430 	wait_event_lock_irq(mddev->sb_wait,
431 			    !mddev->flush_bio,
432 			    mddev->lock);
433 	mddev->flush_bio = bio;
434 	spin_unlock_irq(&mddev->lock);
435 
436 	INIT_WORK(&mddev->flush_work, submit_flushes);
437 	queue_work(md_wq, &mddev->flush_work);
438 }
439 EXPORT_SYMBOL(md_flush_request);
440 
441 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
442 {
443 	struct mddev *mddev = cb->data;
444 	md_wakeup_thread(mddev->thread);
445 	kfree(cb);
446 }
447 EXPORT_SYMBOL(md_unplug);
448 
449 static inline struct mddev *mddev_get(struct mddev *mddev)
450 {
451 	atomic_inc(&mddev->active);
452 	return mddev;
453 }
454 
455 static void mddev_delayed_delete(struct work_struct *ws);
456 
457 static void mddev_put(struct mddev *mddev)
458 {
459 	struct bio_set *bs = NULL;
460 
461 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
462 		return;
463 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
464 	    mddev->ctime == 0 && !mddev->hold_active) {
465 		/* Array is not configured at all, and not held active,
466 		 * so destroy it */
467 		list_del_init(&mddev->all_mddevs);
468 		bs = mddev->bio_set;
469 		mddev->bio_set = NULL;
470 		if (mddev->gendisk) {
471 			/* We did a probe so need to clean up.  Call
472 			 * queue_work inside the spinlock so that
473 			 * flush_workqueue() after mddev_find will
474 			 * succeed in waiting for the work to be done.
475 			 */
476 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
477 			queue_work(md_misc_wq, &mddev->del_work);
478 		} else
479 			kfree(mddev);
480 	}
481 	spin_unlock(&all_mddevs_lock);
482 	if (bs)
483 		bioset_free(bs);
484 }
485 
486 void mddev_init(struct mddev *mddev)
487 {
488 	mutex_init(&mddev->open_mutex);
489 	mutex_init(&mddev->reconfig_mutex);
490 	mutex_init(&mddev->bitmap_info.mutex);
491 	INIT_LIST_HEAD(&mddev->disks);
492 	INIT_LIST_HEAD(&mddev->all_mddevs);
493 	init_timer(&mddev->safemode_timer);
494 	atomic_set(&mddev->active, 1);
495 	atomic_set(&mddev->openers, 0);
496 	atomic_set(&mddev->active_io, 0);
497 	spin_lock_init(&mddev->lock);
498 	atomic_set(&mddev->flush_pending, 0);
499 	init_waitqueue_head(&mddev->sb_wait);
500 	init_waitqueue_head(&mddev->recovery_wait);
501 	mddev->reshape_position = MaxSector;
502 	mddev->reshape_backwards = 0;
503 	mddev->last_sync_action = "none";
504 	mddev->resync_min = 0;
505 	mddev->resync_max = MaxSector;
506 	mddev->level = LEVEL_NONE;
507 }
508 EXPORT_SYMBOL_GPL(mddev_init);
509 
510 static struct mddev *mddev_find(dev_t unit)
511 {
512 	struct mddev *mddev, *new = NULL;
513 
514 	if (unit && MAJOR(unit) != MD_MAJOR)
515 		unit &= ~((1<<MdpMinorShift)-1);
516 
517  retry:
518 	spin_lock(&all_mddevs_lock);
519 
520 	if (unit) {
521 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
522 			if (mddev->unit == unit) {
523 				mddev_get(mddev);
524 				spin_unlock(&all_mddevs_lock);
525 				kfree(new);
526 				return mddev;
527 			}
528 
529 		if (new) {
530 			list_add(&new->all_mddevs, &all_mddevs);
531 			spin_unlock(&all_mddevs_lock);
532 			new->hold_active = UNTIL_IOCTL;
533 			return new;
534 		}
535 	} else if (new) {
536 		/* find an unused unit number */
537 		static int next_minor = 512;
538 		int start = next_minor;
539 		int is_free = 0;
540 		int dev = 0;
541 		while (!is_free) {
542 			dev = MKDEV(MD_MAJOR, next_minor);
543 			next_minor++;
544 			if (next_minor > MINORMASK)
545 				next_minor = 0;
546 			if (next_minor == start) {
547 				/* Oh dear, all in use. */
548 				spin_unlock(&all_mddevs_lock);
549 				kfree(new);
550 				return NULL;
551 			}
552 
553 			is_free = 1;
554 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
555 				if (mddev->unit == dev) {
556 					is_free = 0;
557 					break;
558 				}
559 		}
560 		new->unit = dev;
561 		new->md_minor = MINOR(dev);
562 		new->hold_active = UNTIL_STOP;
563 		list_add(&new->all_mddevs, &all_mddevs);
564 		spin_unlock(&all_mddevs_lock);
565 		return new;
566 	}
567 	spin_unlock(&all_mddevs_lock);
568 
569 	new = kzalloc(sizeof(*new), GFP_KERNEL);
570 	if (!new)
571 		return NULL;
572 
573 	new->unit = unit;
574 	if (MAJOR(unit) == MD_MAJOR)
575 		new->md_minor = MINOR(unit);
576 	else
577 		new->md_minor = MINOR(unit) >> MdpMinorShift;
578 
579 	mddev_init(new);
580 
581 	goto retry;
582 }
583 
584 static struct attribute_group md_redundancy_group;
585 
586 void mddev_unlock(struct mddev *mddev)
587 {
588 	if (mddev->to_remove) {
589 		/* These cannot be removed under reconfig_mutex as
590 		 * an access to the files will try to take reconfig_mutex
591 		 * while holding the file unremovable, which leads to
592 		 * a deadlock.
593 		 * So hold set sysfs_active while the remove in happeing,
594 		 * and anything else which might set ->to_remove or my
595 		 * otherwise change the sysfs namespace will fail with
596 		 * -EBUSY if sysfs_active is still set.
597 		 * We set sysfs_active under reconfig_mutex and elsewhere
598 		 * test it under the same mutex to ensure its correct value
599 		 * is seen.
600 		 */
601 		struct attribute_group *to_remove = mddev->to_remove;
602 		mddev->to_remove = NULL;
603 		mddev->sysfs_active = 1;
604 		mutex_unlock(&mddev->reconfig_mutex);
605 
606 		if (mddev->kobj.sd) {
607 			if (to_remove != &md_redundancy_group)
608 				sysfs_remove_group(&mddev->kobj, to_remove);
609 			if (mddev->pers == NULL ||
610 			    mddev->pers->sync_request == NULL) {
611 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
612 				if (mddev->sysfs_action)
613 					sysfs_put(mddev->sysfs_action);
614 				mddev->sysfs_action = NULL;
615 			}
616 		}
617 		mddev->sysfs_active = 0;
618 	} else
619 		mutex_unlock(&mddev->reconfig_mutex);
620 
621 	/* As we've dropped the mutex we need a spinlock to
622 	 * make sure the thread doesn't disappear
623 	 */
624 	spin_lock(&pers_lock);
625 	md_wakeup_thread(mddev->thread);
626 	spin_unlock(&pers_lock);
627 }
628 EXPORT_SYMBOL_GPL(mddev_unlock);
629 
630 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
631 {
632 	struct md_rdev *rdev;
633 
634 	rdev_for_each_rcu(rdev, mddev)
635 		if (rdev->desc_nr == nr)
636 			return rdev;
637 
638 	return NULL;
639 }
640 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
641 
642 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
643 {
644 	struct md_rdev *rdev;
645 
646 	rdev_for_each(rdev, mddev)
647 		if (rdev->bdev->bd_dev == dev)
648 			return rdev;
649 
650 	return NULL;
651 }
652 
653 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
654 {
655 	struct md_rdev *rdev;
656 
657 	rdev_for_each_rcu(rdev, mddev)
658 		if (rdev->bdev->bd_dev == dev)
659 			return rdev;
660 
661 	return NULL;
662 }
663 
664 static struct md_personality *find_pers(int level, char *clevel)
665 {
666 	struct md_personality *pers;
667 	list_for_each_entry(pers, &pers_list, list) {
668 		if (level != LEVEL_NONE && pers->level == level)
669 			return pers;
670 		if (strcmp(pers->name, clevel)==0)
671 			return pers;
672 	}
673 	return NULL;
674 }
675 
676 /* return the offset of the super block in 512byte sectors */
677 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
678 {
679 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
680 	return MD_NEW_SIZE_SECTORS(num_sectors);
681 }
682 
683 static int alloc_disk_sb(struct md_rdev *rdev)
684 {
685 	rdev->sb_page = alloc_page(GFP_KERNEL);
686 	if (!rdev->sb_page) {
687 		printk(KERN_ALERT "md: out of memory.\n");
688 		return -ENOMEM;
689 	}
690 
691 	return 0;
692 }
693 
694 void md_rdev_clear(struct md_rdev *rdev)
695 {
696 	if (rdev->sb_page) {
697 		put_page(rdev->sb_page);
698 		rdev->sb_loaded = 0;
699 		rdev->sb_page = NULL;
700 		rdev->sb_start = 0;
701 		rdev->sectors = 0;
702 	}
703 	if (rdev->bb_page) {
704 		put_page(rdev->bb_page);
705 		rdev->bb_page = NULL;
706 	}
707 	kfree(rdev->badblocks.page);
708 	rdev->badblocks.page = NULL;
709 }
710 EXPORT_SYMBOL_GPL(md_rdev_clear);
711 
712 static void super_written(struct bio *bio)
713 {
714 	struct md_rdev *rdev = bio->bi_private;
715 	struct mddev *mddev = rdev->mddev;
716 
717 	if (bio->bi_error) {
718 		printk("md: super_written gets error=%d\n", bio->bi_error);
719 		md_error(mddev, rdev);
720 	}
721 
722 	if (atomic_dec_and_test(&mddev->pending_writes))
723 		wake_up(&mddev->sb_wait);
724 	bio_put(bio);
725 }
726 
727 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
728 		   sector_t sector, int size, struct page *page)
729 {
730 	/* write first size bytes of page to sector of rdev
731 	 * Increment mddev->pending_writes before returning
732 	 * and decrement it on completion, waking up sb_wait
733 	 * if zero is reached.
734 	 * If an error occurred, call md_error
735 	 */
736 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
737 
738 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
739 	bio->bi_iter.bi_sector = sector;
740 	bio_add_page(bio, page, size, 0);
741 	bio->bi_private = rdev;
742 	bio->bi_end_io = super_written;
743 
744 	atomic_inc(&mddev->pending_writes);
745 	submit_bio(WRITE_FLUSH_FUA, bio);
746 }
747 
748 void md_super_wait(struct mddev *mddev)
749 {
750 	/* wait for all superblock writes that were scheduled to complete */
751 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
752 }
753 
754 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
755 		 struct page *page, int rw, bool metadata_op)
756 {
757 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
758 	int ret;
759 
760 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
761 		rdev->meta_bdev : rdev->bdev;
762 	if (metadata_op)
763 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
764 	else if (rdev->mddev->reshape_position != MaxSector &&
765 		 (rdev->mddev->reshape_backwards ==
766 		  (sector >= rdev->mddev->reshape_position)))
767 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
768 	else
769 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
770 	bio_add_page(bio, page, size, 0);
771 	submit_bio_wait(rw, bio);
772 
773 	ret = !bio->bi_error;
774 	bio_put(bio);
775 	return ret;
776 }
777 EXPORT_SYMBOL_GPL(sync_page_io);
778 
779 static int read_disk_sb(struct md_rdev *rdev, int size)
780 {
781 	char b[BDEVNAME_SIZE];
782 
783 	if (rdev->sb_loaded)
784 		return 0;
785 
786 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
787 		goto fail;
788 	rdev->sb_loaded = 1;
789 	return 0;
790 
791 fail:
792 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
793 		bdevname(rdev->bdev,b));
794 	return -EINVAL;
795 }
796 
797 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
798 {
799 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
800 		sb1->set_uuid1 == sb2->set_uuid1 &&
801 		sb1->set_uuid2 == sb2->set_uuid2 &&
802 		sb1->set_uuid3 == sb2->set_uuid3;
803 }
804 
805 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
806 {
807 	int ret;
808 	mdp_super_t *tmp1, *tmp2;
809 
810 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
811 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
812 
813 	if (!tmp1 || !tmp2) {
814 		ret = 0;
815 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
816 		goto abort;
817 	}
818 
819 	*tmp1 = *sb1;
820 	*tmp2 = *sb2;
821 
822 	/*
823 	 * nr_disks is not constant
824 	 */
825 	tmp1->nr_disks = 0;
826 	tmp2->nr_disks = 0;
827 
828 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
829 abort:
830 	kfree(tmp1);
831 	kfree(tmp2);
832 	return ret;
833 }
834 
835 static u32 md_csum_fold(u32 csum)
836 {
837 	csum = (csum & 0xffff) + (csum >> 16);
838 	return (csum & 0xffff) + (csum >> 16);
839 }
840 
841 static unsigned int calc_sb_csum(mdp_super_t *sb)
842 {
843 	u64 newcsum = 0;
844 	u32 *sb32 = (u32*)sb;
845 	int i;
846 	unsigned int disk_csum, csum;
847 
848 	disk_csum = sb->sb_csum;
849 	sb->sb_csum = 0;
850 
851 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
852 		newcsum += sb32[i];
853 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
854 
855 #ifdef CONFIG_ALPHA
856 	/* This used to use csum_partial, which was wrong for several
857 	 * reasons including that different results are returned on
858 	 * different architectures.  It isn't critical that we get exactly
859 	 * the same return value as before (we always csum_fold before
860 	 * testing, and that removes any differences).  However as we
861 	 * know that csum_partial always returned a 16bit value on
862 	 * alphas, do a fold to maximise conformity to previous behaviour.
863 	 */
864 	sb->sb_csum = md_csum_fold(disk_csum);
865 #else
866 	sb->sb_csum = disk_csum;
867 #endif
868 	return csum;
869 }
870 
871 /*
872  * Handle superblock details.
873  * We want to be able to handle multiple superblock formats
874  * so we have a common interface to them all, and an array of
875  * different handlers.
876  * We rely on user-space to write the initial superblock, and support
877  * reading and updating of superblocks.
878  * Interface methods are:
879  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
880  *      loads and validates a superblock on dev.
881  *      if refdev != NULL, compare superblocks on both devices
882  *    Return:
883  *      0 - dev has a superblock that is compatible with refdev
884  *      1 - dev has a superblock that is compatible and newer than refdev
885  *          so dev should be used as the refdev in future
886  *     -EINVAL superblock incompatible or invalid
887  *     -othererror e.g. -EIO
888  *
889  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
890  *      Verify that dev is acceptable into mddev.
891  *       The first time, mddev->raid_disks will be 0, and data from
892  *       dev should be merged in.  Subsequent calls check that dev
893  *       is new enough.  Return 0 or -EINVAL
894  *
895  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
896  *     Update the superblock for rdev with data in mddev
897  *     This does not write to disc.
898  *
899  */
900 
901 struct super_type  {
902 	char		    *name;
903 	struct module	    *owner;
904 	int		    (*load_super)(struct md_rdev *rdev,
905 					  struct md_rdev *refdev,
906 					  int minor_version);
907 	int		    (*validate_super)(struct mddev *mddev,
908 					      struct md_rdev *rdev);
909 	void		    (*sync_super)(struct mddev *mddev,
910 					  struct md_rdev *rdev);
911 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
912 						sector_t num_sectors);
913 	int		    (*allow_new_offset)(struct md_rdev *rdev,
914 						unsigned long long new_offset);
915 };
916 
917 /*
918  * Check that the given mddev has no bitmap.
919  *
920  * This function is called from the run method of all personalities that do not
921  * support bitmaps. It prints an error message and returns non-zero if mddev
922  * has a bitmap. Otherwise, it returns 0.
923  *
924  */
925 int md_check_no_bitmap(struct mddev *mddev)
926 {
927 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
928 		return 0;
929 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
930 		mdname(mddev), mddev->pers->name);
931 	return 1;
932 }
933 EXPORT_SYMBOL(md_check_no_bitmap);
934 
935 /*
936  * load_super for 0.90.0
937  */
938 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
939 {
940 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
941 	mdp_super_t *sb;
942 	int ret;
943 
944 	/*
945 	 * Calculate the position of the superblock (512byte sectors),
946 	 * it's at the end of the disk.
947 	 *
948 	 * It also happens to be a multiple of 4Kb.
949 	 */
950 	rdev->sb_start = calc_dev_sboffset(rdev);
951 
952 	ret = read_disk_sb(rdev, MD_SB_BYTES);
953 	if (ret) return ret;
954 
955 	ret = -EINVAL;
956 
957 	bdevname(rdev->bdev, b);
958 	sb = page_address(rdev->sb_page);
959 
960 	if (sb->md_magic != MD_SB_MAGIC) {
961 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
962 		       b);
963 		goto abort;
964 	}
965 
966 	if (sb->major_version != 0 ||
967 	    sb->minor_version < 90 ||
968 	    sb->minor_version > 91) {
969 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
970 			sb->major_version, sb->minor_version,
971 			b);
972 		goto abort;
973 	}
974 
975 	if (sb->raid_disks <= 0)
976 		goto abort;
977 
978 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
979 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
980 			b);
981 		goto abort;
982 	}
983 
984 	rdev->preferred_minor = sb->md_minor;
985 	rdev->data_offset = 0;
986 	rdev->new_data_offset = 0;
987 	rdev->sb_size = MD_SB_BYTES;
988 	rdev->badblocks.shift = -1;
989 
990 	if (sb->level == LEVEL_MULTIPATH)
991 		rdev->desc_nr = -1;
992 	else
993 		rdev->desc_nr = sb->this_disk.number;
994 
995 	if (!refdev) {
996 		ret = 1;
997 	} else {
998 		__u64 ev1, ev2;
999 		mdp_super_t *refsb = page_address(refdev->sb_page);
1000 		if (!uuid_equal(refsb, sb)) {
1001 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1002 				b, bdevname(refdev->bdev,b2));
1003 			goto abort;
1004 		}
1005 		if (!sb_equal(refsb, sb)) {
1006 			printk(KERN_WARNING "md: %s has same UUID"
1007 			       " but different superblock to %s\n",
1008 			       b, bdevname(refdev->bdev, b2));
1009 			goto abort;
1010 		}
1011 		ev1 = md_event(sb);
1012 		ev2 = md_event(refsb);
1013 		if (ev1 > ev2)
1014 			ret = 1;
1015 		else
1016 			ret = 0;
1017 	}
1018 	rdev->sectors = rdev->sb_start;
1019 	/* Limit to 4TB as metadata cannot record more than that.
1020 	 * (not needed for Linear and RAID0 as metadata doesn't
1021 	 * record this size)
1022 	 */
1023 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1024 		rdev->sectors = (2ULL << 32) - 2;
1025 
1026 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1027 		/* "this cannot possibly happen" ... */
1028 		ret = -EINVAL;
1029 
1030  abort:
1031 	return ret;
1032 }
1033 
1034 /*
1035  * validate_super for 0.90.0
1036  */
1037 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1038 {
1039 	mdp_disk_t *desc;
1040 	mdp_super_t *sb = page_address(rdev->sb_page);
1041 	__u64 ev1 = md_event(sb);
1042 
1043 	rdev->raid_disk = -1;
1044 	clear_bit(Faulty, &rdev->flags);
1045 	clear_bit(In_sync, &rdev->flags);
1046 	clear_bit(Bitmap_sync, &rdev->flags);
1047 	clear_bit(WriteMostly, &rdev->flags);
1048 
1049 	if (mddev->raid_disks == 0) {
1050 		mddev->major_version = 0;
1051 		mddev->minor_version = sb->minor_version;
1052 		mddev->patch_version = sb->patch_version;
1053 		mddev->external = 0;
1054 		mddev->chunk_sectors = sb->chunk_size >> 9;
1055 		mddev->ctime = sb->ctime;
1056 		mddev->utime = sb->utime;
1057 		mddev->level = sb->level;
1058 		mddev->clevel[0] = 0;
1059 		mddev->layout = sb->layout;
1060 		mddev->raid_disks = sb->raid_disks;
1061 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1062 		mddev->events = ev1;
1063 		mddev->bitmap_info.offset = 0;
1064 		mddev->bitmap_info.space = 0;
1065 		/* bitmap can use 60 K after the 4K superblocks */
1066 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1067 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1068 		mddev->reshape_backwards = 0;
1069 
1070 		if (mddev->minor_version >= 91) {
1071 			mddev->reshape_position = sb->reshape_position;
1072 			mddev->delta_disks = sb->delta_disks;
1073 			mddev->new_level = sb->new_level;
1074 			mddev->new_layout = sb->new_layout;
1075 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1076 			if (mddev->delta_disks < 0)
1077 				mddev->reshape_backwards = 1;
1078 		} else {
1079 			mddev->reshape_position = MaxSector;
1080 			mddev->delta_disks = 0;
1081 			mddev->new_level = mddev->level;
1082 			mddev->new_layout = mddev->layout;
1083 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1084 		}
1085 
1086 		if (sb->state & (1<<MD_SB_CLEAN))
1087 			mddev->recovery_cp = MaxSector;
1088 		else {
1089 			if (sb->events_hi == sb->cp_events_hi &&
1090 				sb->events_lo == sb->cp_events_lo) {
1091 				mddev->recovery_cp = sb->recovery_cp;
1092 			} else
1093 				mddev->recovery_cp = 0;
1094 		}
1095 
1096 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1097 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1098 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1099 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1100 
1101 		mddev->max_disks = MD_SB_DISKS;
1102 
1103 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1104 		    mddev->bitmap_info.file == NULL) {
1105 			mddev->bitmap_info.offset =
1106 				mddev->bitmap_info.default_offset;
1107 			mddev->bitmap_info.space =
1108 				mddev->bitmap_info.default_space;
1109 		}
1110 
1111 	} else if (mddev->pers == NULL) {
1112 		/* Insist on good event counter while assembling, except
1113 		 * for spares (which don't need an event count) */
1114 		++ev1;
1115 		if (sb->disks[rdev->desc_nr].state & (
1116 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1117 			if (ev1 < mddev->events)
1118 				return -EINVAL;
1119 	} else if (mddev->bitmap) {
1120 		/* if adding to array with a bitmap, then we can accept an
1121 		 * older device ... but not too old.
1122 		 */
1123 		if (ev1 < mddev->bitmap->events_cleared)
1124 			return 0;
1125 		if (ev1 < mddev->events)
1126 			set_bit(Bitmap_sync, &rdev->flags);
1127 	} else {
1128 		if (ev1 < mddev->events)
1129 			/* just a hot-add of a new device, leave raid_disk at -1 */
1130 			return 0;
1131 	}
1132 
1133 	if (mddev->level != LEVEL_MULTIPATH) {
1134 		desc = sb->disks + rdev->desc_nr;
1135 
1136 		if (desc->state & (1<<MD_DISK_FAULTY))
1137 			set_bit(Faulty, &rdev->flags);
1138 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1139 			    desc->raid_disk < mddev->raid_disks */) {
1140 			set_bit(In_sync, &rdev->flags);
1141 			rdev->raid_disk = desc->raid_disk;
1142 			rdev->saved_raid_disk = desc->raid_disk;
1143 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1144 			/* active but not in sync implies recovery up to
1145 			 * reshape position.  We don't know exactly where
1146 			 * that is, so set to zero for now */
1147 			if (mddev->minor_version >= 91) {
1148 				rdev->recovery_offset = 0;
1149 				rdev->raid_disk = desc->raid_disk;
1150 			}
1151 		}
1152 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1153 			set_bit(WriteMostly, &rdev->flags);
1154 	} else /* MULTIPATH are always insync */
1155 		set_bit(In_sync, &rdev->flags);
1156 	return 0;
1157 }
1158 
1159 /*
1160  * sync_super for 0.90.0
1161  */
1162 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1163 {
1164 	mdp_super_t *sb;
1165 	struct md_rdev *rdev2;
1166 	int next_spare = mddev->raid_disks;
1167 
1168 	/* make rdev->sb match mddev data..
1169 	 *
1170 	 * 1/ zero out disks
1171 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1172 	 * 3/ any empty disks < next_spare become removed
1173 	 *
1174 	 * disks[0] gets initialised to REMOVED because
1175 	 * we cannot be sure from other fields if it has
1176 	 * been initialised or not.
1177 	 */
1178 	int i;
1179 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1180 
1181 	rdev->sb_size = MD_SB_BYTES;
1182 
1183 	sb = page_address(rdev->sb_page);
1184 
1185 	memset(sb, 0, sizeof(*sb));
1186 
1187 	sb->md_magic = MD_SB_MAGIC;
1188 	sb->major_version = mddev->major_version;
1189 	sb->patch_version = mddev->patch_version;
1190 	sb->gvalid_words  = 0; /* ignored */
1191 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1192 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1193 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1194 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1195 
1196 	sb->ctime = mddev->ctime;
1197 	sb->level = mddev->level;
1198 	sb->size = mddev->dev_sectors / 2;
1199 	sb->raid_disks = mddev->raid_disks;
1200 	sb->md_minor = mddev->md_minor;
1201 	sb->not_persistent = 0;
1202 	sb->utime = mddev->utime;
1203 	sb->state = 0;
1204 	sb->events_hi = (mddev->events>>32);
1205 	sb->events_lo = (u32)mddev->events;
1206 
1207 	if (mddev->reshape_position == MaxSector)
1208 		sb->minor_version = 90;
1209 	else {
1210 		sb->minor_version = 91;
1211 		sb->reshape_position = mddev->reshape_position;
1212 		sb->new_level = mddev->new_level;
1213 		sb->delta_disks = mddev->delta_disks;
1214 		sb->new_layout = mddev->new_layout;
1215 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1216 	}
1217 	mddev->minor_version = sb->minor_version;
1218 	if (mddev->in_sync)
1219 	{
1220 		sb->recovery_cp = mddev->recovery_cp;
1221 		sb->cp_events_hi = (mddev->events>>32);
1222 		sb->cp_events_lo = (u32)mddev->events;
1223 		if (mddev->recovery_cp == MaxSector)
1224 			sb->state = (1<< MD_SB_CLEAN);
1225 	} else
1226 		sb->recovery_cp = 0;
1227 
1228 	sb->layout = mddev->layout;
1229 	sb->chunk_size = mddev->chunk_sectors << 9;
1230 
1231 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1232 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1233 
1234 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1235 	rdev_for_each(rdev2, mddev) {
1236 		mdp_disk_t *d;
1237 		int desc_nr;
1238 		int is_active = test_bit(In_sync, &rdev2->flags);
1239 
1240 		if (rdev2->raid_disk >= 0 &&
1241 		    sb->minor_version >= 91)
1242 			/* we have nowhere to store the recovery_offset,
1243 			 * but if it is not below the reshape_position,
1244 			 * we can piggy-back on that.
1245 			 */
1246 			is_active = 1;
1247 		if (rdev2->raid_disk < 0 ||
1248 		    test_bit(Faulty, &rdev2->flags))
1249 			is_active = 0;
1250 		if (is_active)
1251 			desc_nr = rdev2->raid_disk;
1252 		else
1253 			desc_nr = next_spare++;
1254 		rdev2->desc_nr = desc_nr;
1255 		d = &sb->disks[rdev2->desc_nr];
1256 		nr_disks++;
1257 		d->number = rdev2->desc_nr;
1258 		d->major = MAJOR(rdev2->bdev->bd_dev);
1259 		d->minor = MINOR(rdev2->bdev->bd_dev);
1260 		if (is_active)
1261 			d->raid_disk = rdev2->raid_disk;
1262 		else
1263 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1264 		if (test_bit(Faulty, &rdev2->flags))
1265 			d->state = (1<<MD_DISK_FAULTY);
1266 		else if (is_active) {
1267 			d->state = (1<<MD_DISK_ACTIVE);
1268 			if (test_bit(In_sync, &rdev2->flags))
1269 				d->state |= (1<<MD_DISK_SYNC);
1270 			active++;
1271 			working++;
1272 		} else {
1273 			d->state = 0;
1274 			spare++;
1275 			working++;
1276 		}
1277 		if (test_bit(WriteMostly, &rdev2->flags))
1278 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1279 	}
1280 	/* now set the "removed" and "faulty" bits on any missing devices */
1281 	for (i=0 ; i < mddev->raid_disks ; i++) {
1282 		mdp_disk_t *d = &sb->disks[i];
1283 		if (d->state == 0 && d->number == 0) {
1284 			d->number = i;
1285 			d->raid_disk = i;
1286 			d->state = (1<<MD_DISK_REMOVED);
1287 			d->state |= (1<<MD_DISK_FAULTY);
1288 			failed++;
1289 		}
1290 	}
1291 	sb->nr_disks = nr_disks;
1292 	sb->active_disks = active;
1293 	sb->working_disks = working;
1294 	sb->failed_disks = failed;
1295 	sb->spare_disks = spare;
1296 
1297 	sb->this_disk = sb->disks[rdev->desc_nr];
1298 	sb->sb_csum = calc_sb_csum(sb);
1299 }
1300 
1301 /*
1302  * rdev_size_change for 0.90.0
1303  */
1304 static unsigned long long
1305 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1306 {
1307 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1308 		return 0; /* component must fit device */
1309 	if (rdev->mddev->bitmap_info.offset)
1310 		return 0; /* can't move bitmap */
1311 	rdev->sb_start = calc_dev_sboffset(rdev);
1312 	if (!num_sectors || num_sectors > rdev->sb_start)
1313 		num_sectors = rdev->sb_start;
1314 	/* Limit to 4TB as metadata cannot record more than that.
1315 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1316 	 */
1317 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1318 		num_sectors = (2ULL << 32) - 2;
1319 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1320 		       rdev->sb_page);
1321 	md_super_wait(rdev->mddev);
1322 	return num_sectors;
1323 }
1324 
1325 static int
1326 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1327 {
1328 	/* non-zero offset changes not possible with v0.90 */
1329 	return new_offset == 0;
1330 }
1331 
1332 /*
1333  * version 1 superblock
1334  */
1335 
1336 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1337 {
1338 	__le32 disk_csum;
1339 	u32 csum;
1340 	unsigned long long newcsum;
1341 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1342 	__le32 *isuper = (__le32*)sb;
1343 
1344 	disk_csum = sb->sb_csum;
1345 	sb->sb_csum = 0;
1346 	newcsum = 0;
1347 	for (; size >= 4; size -= 4)
1348 		newcsum += le32_to_cpu(*isuper++);
1349 
1350 	if (size == 2)
1351 		newcsum += le16_to_cpu(*(__le16*) isuper);
1352 
1353 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1354 	sb->sb_csum = disk_csum;
1355 	return cpu_to_le32(csum);
1356 }
1357 
1358 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1359 			    int acknowledged);
1360 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1361 {
1362 	struct mdp_superblock_1 *sb;
1363 	int ret;
1364 	sector_t sb_start;
1365 	sector_t sectors;
1366 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1367 	int bmask;
1368 
1369 	/*
1370 	 * Calculate the position of the superblock in 512byte sectors.
1371 	 * It is always aligned to a 4K boundary and
1372 	 * depeding on minor_version, it can be:
1373 	 * 0: At least 8K, but less than 12K, from end of device
1374 	 * 1: At start of device
1375 	 * 2: 4K from start of device.
1376 	 */
1377 	switch(minor_version) {
1378 	case 0:
1379 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1380 		sb_start -= 8*2;
1381 		sb_start &= ~(sector_t)(4*2-1);
1382 		break;
1383 	case 1:
1384 		sb_start = 0;
1385 		break;
1386 	case 2:
1387 		sb_start = 8;
1388 		break;
1389 	default:
1390 		return -EINVAL;
1391 	}
1392 	rdev->sb_start = sb_start;
1393 
1394 	/* superblock is rarely larger than 1K, but it can be larger,
1395 	 * and it is safe to read 4k, so we do that
1396 	 */
1397 	ret = read_disk_sb(rdev, 4096);
1398 	if (ret) return ret;
1399 
1400 	sb = page_address(rdev->sb_page);
1401 
1402 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1403 	    sb->major_version != cpu_to_le32(1) ||
1404 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1405 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1406 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1407 		return -EINVAL;
1408 
1409 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1410 		printk("md: invalid superblock checksum on %s\n",
1411 			bdevname(rdev->bdev,b));
1412 		return -EINVAL;
1413 	}
1414 	if (le64_to_cpu(sb->data_size) < 10) {
1415 		printk("md: data_size too small on %s\n",
1416 		       bdevname(rdev->bdev,b));
1417 		return -EINVAL;
1418 	}
1419 	if (sb->pad0 ||
1420 	    sb->pad3[0] ||
1421 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1422 		/* Some padding is non-zero, might be a new feature */
1423 		return -EINVAL;
1424 
1425 	rdev->preferred_minor = 0xffff;
1426 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1427 	rdev->new_data_offset = rdev->data_offset;
1428 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1429 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1430 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1431 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1432 
1433 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1434 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1435 	if (rdev->sb_size & bmask)
1436 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1437 
1438 	if (minor_version
1439 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1440 		return -EINVAL;
1441 	if (minor_version
1442 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1443 		return -EINVAL;
1444 
1445 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1446 		rdev->desc_nr = -1;
1447 	else
1448 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1449 
1450 	if (!rdev->bb_page) {
1451 		rdev->bb_page = alloc_page(GFP_KERNEL);
1452 		if (!rdev->bb_page)
1453 			return -ENOMEM;
1454 	}
1455 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1456 	    rdev->badblocks.count == 0) {
1457 		/* need to load the bad block list.
1458 		 * Currently we limit it to one page.
1459 		 */
1460 		s32 offset;
1461 		sector_t bb_sector;
1462 		u64 *bbp;
1463 		int i;
1464 		int sectors = le16_to_cpu(sb->bblog_size);
1465 		if (sectors > (PAGE_SIZE / 512))
1466 			return -EINVAL;
1467 		offset = le32_to_cpu(sb->bblog_offset);
1468 		if (offset == 0)
1469 			return -EINVAL;
1470 		bb_sector = (long long)offset;
1471 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1472 				  rdev->bb_page, READ, true))
1473 			return -EIO;
1474 		bbp = (u64 *)page_address(rdev->bb_page);
1475 		rdev->badblocks.shift = sb->bblog_shift;
1476 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1477 			u64 bb = le64_to_cpu(*bbp);
1478 			int count = bb & (0x3ff);
1479 			u64 sector = bb >> 10;
1480 			sector <<= sb->bblog_shift;
1481 			count <<= sb->bblog_shift;
1482 			if (bb + 1 == 0)
1483 				break;
1484 			if (md_set_badblocks(&rdev->badblocks,
1485 					     sector, count, 1) == 0)
1486 				return -EINVAL;
1487 		}
1488 	} else if (sb->bblog_offset != 0)
1489 		rdev->badblocks.shift = 0;
1490 
1491 	if (!refdev) {
1492 		ret = 1;
1493 	} else {
1494 		__u64 ev1, ev2;
1495 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1496 
1497 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1498 		    sb->level != refsb->level ||
1499 		    sb->layout != refsb->layout ||
1500 		    sb->chunksize != refsb->chunksize) {
1501 			printk(KERN_WARNING "md: %s has strangely different"
1502 				" superblock to %s\n",
1503 				bdevname(rdev->bdev,b),
1504 				bdevname(refdev->bdev,b2));
1505 			return -EINVAL;
1506 		}
1507 		ev1 = le64_to_cpu(sb->events);
1508 		ev2 = le64_to_cpu(refsb->events);
1509 
1510 		if (ev1 > ev2)
1511 			ret = 1;
1512 		else
1513 			ret = 0;
1514 	}
1515 	if (minor_version) {
1516 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1517 		sectors -= rdev->data_offset;
1518 	} else
1519 		sectors = rdev->sb_start;
1520 	if (sectors < le64_to_cpu(sb->data_size))
1521 		return -EINVAL;
1522 	rdev->sectors = le64_to_cpu(sb->data_size);
1523 	return ret;
1524 }
1525 
1526 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1527 {
1528 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1529 	__u64 ev1 = le64_to_cpu(sb->events);
1530 
1531 	rdev->raid_disk = -1;
1532 	clear_bit(Faulty, &rdev->flags);
1533 	clear_bit(In_sync, &rdev->flags);
1534 	clear_bit(Bitmap_sync, &rdev->flags);
1535 	clear_bit(WriteMostly, &rdev->flags);
1536 
1537 	if (mddev->raid_disks == 0) {
1538 		mddev->major_version = 1;
1539 		mddev->patch_version = 0;
1540 		mddev->external = 0;
1541 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1542 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1543 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1544 		mddev->level = le32_to_cpu(sb->level);
1545 		mddev->clevel[0] = 0;
1546 		mddev->layout = le32_to_cpu(sb->layout);
1547 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1548 		mddev->dev_sectors = le64_to_cpu(sb->size);
1549 		mddev->events = ev1;
1550 		mddev->bitmap_info.offset = 0;
1551 		mddev->bitmap_info.space = 0;
1552 		/* Default location for bitmap is 1K after superblock
1553 		 * using 3K - total of 4K
1554 		 */
1555 		mddev->bitmap_info.default_offset = 1024 >> 9;
1556 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1557 		mddev->reshape_backwards = 0;
1558 
1559 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1560 		memcpy(mddev->uuid, sb->set_uuid, 16);
1561 
1562 		mddev->max_disks =  (4096-256)/2;
1563 
1564 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1565 		    mddev->bitmap_info.file == NULL) {
1566 			mddev->bitmap_info.offset =
1567 				(__s32)le32_to_cpu(sb->bitmap_offset);
1568 			/* Metadata doesn't record how much space is available.
1569 			 * For 1.0, we assume we can use up to the superblock
1570 			 * if before, else to 4K beyond superblock.
1571 			 * For others, assume no change is possible.
1572 			 */
1573 			if (mddev->minor_version > 0)
1574 				mddev->bitmap_info.space = 0;
1575 			else if (mddev->bitmap_info.offset > 0)
1576 				mddev->bitmap_info.space =
1577 					8 - mddev->bitmap_info.offset;
1578 			else
1579 				mddev->bitmap_info.space =
1580 					-mddev->bitmap_info.offset;
1581 		}
1582 
1583 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1584 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1585 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1586 			mddev->new_level = le32_to_cpu(sb->new_level);
1587 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1588 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1589 			if (mddev->delta_disks < 0 ||
1590 			    (mddev->delta_disks == 0 &&
1591 			     (le32_to_cpu(sb->feature_map)
1592 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1593 				mddev->reshape_backwards = 1;
1594 		} else {
1595 			mddev->reshape_position = MaxSector;
1596 			mddev->delta_disks = 0;
1597 			mddev->new_level = mddev->level;
1598 			mddev->new_layout = mddev->layout;
1599 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1600 		}
1601 
1602 	} else if (mddev->pers == NULL) {
1603 		/* Insist of good event counter while assembling, except for
1604 		 * spares (which don't need an event count) */
1605 		++ev1;
1606 		if (rdev->desc_nr >= 0 &&
1607 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1608 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1609 			if (ev1 < mddev->events)
1610 				return -EINVAL;
1611 	} else if (mddev->bitmap) {
1612 		/* If adding to array with a bitmap, then we can accept an
1613 		 * older device, but not too old.
1614 		 */
1615 		if (ev1 < mddev->bitmap->events_cleared)
1616 			return 0;
1617 		if (ev1 < mddev->events)
1618 			set_bit(Bitmap_sync, &rdev->flags);
1619 	} else {
1620 		if (ev1 < mddev->events)
1621 			/* just a hot-add of a new device, leave raid_disk at -1 */
1622 			return 0;
1623 	}
1624 	if (mddev->level != LEVEL_MULTIPATH) {
1625 		int role;
1626 		if (rdev->desc_nr < 0 ||
1627 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1628 			role = 0xffff;
1629 			rdev->desc_nr = -1;
1630 		} else
1631 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1632 		switch(role) {
1633 		case 0xffff: /* spare */
1634 			break;
1635 		case 0xfffe: /* faulty */
1636 			set_bit(Faulty, &rdev->flags);
1637 			break;
1638 		default:
1639 			rdev->saved_raid_disk = role;
1640 			if ((le32_to_cpu(sb->feature_map) &
1641 			     MD_FEATURE_RECOVERY_OFFSET)) {
1642 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1643 				if (!(le32_to_cpu(sb->feature_map) &
1644 				      MD_FEATURE_RECOVERY_BITMAP))
1645 					rdev->saved_raid_disk = -1;
1646 			} else
1647 				set_bit(In_sync, &rdev->flags);
1648 			rdev->raid_disk = role;
1649 			break;
1650 		}
1651 		if (sb->devflags & WriteMostly1)
1652 			set_bit(WriteMostly, &rdev->flags);
1653 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1654 			set_bit(Replacement, &rdev->flags);
1655 	} else /* MULTIPATH are always insync */
1656 		set_bit(In_sync, &rdev->flags);
1657 
1658 	return 0;
1659 }
1660 
1661 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1662 {
1663 	struct mdp_superblock_1 *sb;
1664 	struct md_rdev *rdev2;
1665 	int max_dev, i;
1666 	/* make rdev->sb match mddev and rdev data. */
1667 
1668 	sb = page_address(rdev->sb_page);
1669 
1670 	sb->feature_map = 0;
1671 	sb->pad0 = 0;
1672 	sb->recovery_offset = cpu_to_le64(0);
1673 	memset(sb->pad3, 0, sizeof(sb->pad3));
1674 
1675 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1676 	sb->events = cpu_to_le64(mddev->events);
1677 	if (mddev->in_sync)
1678 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1679 	else
1680 		sb->resync_offset = cpu_to_le64(0);
1681 
1682 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1683 
1684 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1685 	sb->size = cpu_to_le64(mddev->dev_sectors);
1686 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1687 	sb->level = cpu_to_le32(mddev->level);
1688 	sb->layout = cpu_to_le32(mddev->layout);
1689 
1690 	if (test_bit(WriteMostly, &rdev->flags))
1691 		sb->devflags |= WriteMostly1;
1692 	else
1693 		sb->devflags &= ~WriteMostly1;
1694 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1695 	sb->data_size = cpu_to_le64(rdev->sectors);
1696 
1697 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1698 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1699 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1700 	}
1701 
1702 	if (rdev->raid_disk >= 0 &&
1703 	    !test_bit(In_sync, &rdev->flags)) {
1704 		sb->feature_map |=
1705 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1706 		sb->recovery_offset =
1707 			cpu_to_le64(rdev->recovery_offset);
1708 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1709 			sb->feature_map |=
1710 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1711 	}
1712 	if (test_bit(Replacement, &rdev->flags))
1713 		sb->feature_map |=
1714 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1715 
1716 	if (mddev->reshape_position != MaxSector) {
1717 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1718 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1719 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1720 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1721 		sb->new_level = cpu_to_le32(mddev->new_level);
1722 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1723 		if (mddev->delta_disks == 0 &&
1724 		    mddev->reshape_backwards)
1725 			sb->feature_map
1726 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1727 		if (rdev->new_data_offset != rdev->data_offset) {
1728 			sb->feature_map
1729 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1730 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1731 							     - rdev->data_offset));
1732 		}
1733 	}
1734 
1735 	if (rdev->badblocks.count == 0)
1736 		/* Nothing to do for bad blocks*/ ;
1737 	else if (sb->bblog_offset == 0)
1738 		/* Cannot record bad blocks on this device */
1739 		md_error(mddev, rdev);
1740 	else {
1741 		struct badblocks *bb = &rdev->badblocks;
1742 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1743 		u64 *p = bb->page;
1744 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1745 		if (bb->changed) {
1746 			unsigned seq;
1747 
1748 retry:
1749 			seq = read_seqbegin(&bb->lock);
1750 
1751 			memset(bbp, 0xff, PAGE_SIZE);
1752 
1753 			for (i = 0 ; i < bb->count ; i++) {
1754 				u64 internal_bb = p[i];
1755 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1756 						| BB_LEN(internal_bb));
1757 				bbp[i] = cpu_to_le64(store_bb);
1758 			}
1759 			bb->changed = 0;
1760 			if (read_seqretry(&bb->lock, seq))
1761 				goto retry;
1762 
1763 			bb->sector = (rdev->sb_start +
1764 				      (int)le32_to_cpu(sb->bblog_offset));
1765 			bb->size = le16_to_cpu(sb->bblog_size);
1766 		}
1767 	}
1768 
1769 	max_dev = 0;
1770 	rdev_for_each(rdev2, mddev)
1771 		if (rdev2->desc_nr+1 > max_dev)
1772 			max_dev = rdev2->desc_nr+1;
1773 
1774 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1775 		int bmask;
1776 		sb->max_dev = cpu_to_le32(max_dev);
1777 		rdev->sb_size = max_dev * 2 + 256;
1778 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1779 		if (rdev->sb_size & bmask)
1780 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1781 	} else
1782 		max_dev = le32_to_cpu(sb->max_dev);
1783 
1784 	for (i=0; i<max_dev;i++)
1785 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1786 
1787 	rdev_for_each(rdev2, mddev) {
1788 		i = rdev2->desc_nr;
1789 		if (test_bit(Faulty, &rdev2->flags))
1790 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1791 		else if (test_bit(In_sync, &rdev2->flags))
1792 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1793 		else if (rdev2->raid_disk >= 0)
1794 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1795 		else
1796 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1797 	}
1798 
1799 	sb->sb_csum = calc_sb_1_csum(sb);
1800 }
1801 
1802 static unsigned long long
1803 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1804 {
1805 	struct mdp_superblock_1 *sb;
1806 	sector_t max_sectors;
1807 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1808 		return 0; /* component must fit device */
1809 	if (rdev->data_offset != rdev->new_data_offset)
1810 		return 0; /* too confusing */
1811 	if (rdev->sb_start < rdev->data_offset) {
1812 		/* minor versions 1 and 2; superblock before data */
1813 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1814 		max_sectors -= rdev->data_offset;
1815 		if (!num_sectors || num_sectors > max_sectors)
1816 			num_sectors = max_sectors;
1817 	} else if (rdev->mddev->bitmap_info.offset) {
1818 		/* minor version 0 with bitmap we can't move */
1819 		return 0;
1820 	} else {
1821 		/* minor version 0; superblock after data */
1822 		sector_t sb_start;
1823 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1824 		sb_start &= ~(sector_t)(4*2 - 1);
1825 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1826 		if (!num_sectors || num_sectors > max_sectors)
1827 			num_sectors = max_sectors;
1828 		rdev->sb_start = sb_start;
1829 	}
1830 	sb = page_address(rdev->sb_page);
1831 	sb->data_size = cpu_to_le64(num_sectors);
1832 	sb->super_offset = rdev->sb_start;
1833 	sb->sb_csum = calc_sb_1_csum(sb);
1834 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1835 		       rdev->sb_page);
1836 	md_super_wait(rdev->mddev);
1837 	return num_sectors;
1838 
1839 }
1840 
1841 static int
1842 super_1_allow_new_offset(struct md_rdev *rdev,
1843 			 unsigned long long new_offset)
1844 {
1845 	/* All necessary checks on new >= old have been done */
1846 	struct bitmap *bitmap;
1847 	if (new_offset >= rdev->data_offset)
1848 		return 1;
1849 
1850 	/* with 1.0 metadata, there is no metadata to tread on
1851 	 * so we can always move back */
1852 	if (rdev->mddev->minor_version == 0)
1853 		return 1;
1854 
1855 	/* otherwise we must be sure not to step on
1856 	 * any metadata, so stay:
1857 	 * 36K beyond start of superblock
1858 	 * beyond end of badblocks
1859 	 * beyond write-intent bitmap
1860 	 */
1861 	if (rdev->sb_start + (32+4)*2 > new_offset)
1862 		return 0;
1863 	bitmap = rdev->mddev->bitmap;
1864 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1865 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1866 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1867 		return 0;
1868 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1869 		return 0;
1870 
1871 	return 1;
1872 }
1873 
1874 static struct super_type super_types[] = {
1875 	[0] = {
1876 		.name	= "0.90.0",
1877 		.owner	= THIS_MODULE,
1878 		.load_super	    = super_90_load,
1879 		.validate_super	    = super_90_validate,
1880 		.sync_super	    = super_90_sync,
1881 		.rdev_size_change   = super_90_rdev_size_change,
1882 		.allow_new_offset   = super_90_allow_new_offset,
1883 	},
1884 	[1] = {
1885 		.name	= "md-1",
1886 		.owner	= THIS_MODULE,
1887 		.load_super	    = super_1_load,
1888 		.validate_super	    = super_1_validate,
1889 		.sync_super	    = super_1_sync,
1890 		.rdev_size_change   = super_1_rdev_size_change,
1891 		.allow_new_offset   = super_1_allow_new_offset,
1892 	},
1893 };
1894 
1895 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1896 {
1897 	if (mddev->sync_super) {
1898 		mddev->sync_super(mddev, rdev);
1899 		return;
1900 	}
1901 
1902 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1903 
1904 	super_types[mddev->major_version].sync_super(mddev, rdev);
1905 }
1906 
1907 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1908 {
1909 	struct md_rdev *rdev, *rdev2;
1910 
1911 	rcu_read_lock();
1912 	rdev_for_each_rcu(rdev, mddev1)
1913 		rdev_for_each_rcu(rdev2, mddev2)
1914 			if (rdev->bdev->bd_contains ==
1915 			    rdev2->bdev->bd_contains) {
1916 				rcu_read_unlock();
1917 				return 1;
1918 			}
1919 	rcu_read_unlock();
1920 	return 0;
1921 }
1922 
1923 static LIST_HEAD(pending_raid_disks);
1924 
1925 /*
1926  * Try to register data integrity profile for an mddev
1927  *
1928  * This is called when an array is started and after a disk has been kicked
1929  * from the array. It only succeeds if all working and active component devices
1930  * are integrity capable with matching profiles.
1931  */
1932 int md_integrity_register(struct mddev *mddev)
1933 {
1934 	struct md_rdev *rdev, *reference = NULL;
1935 
1936 	if (list_empty(&mddev->disks))
1937 		return 0; /* nothing to do */
1938 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1939 		return 0; /* shouldn't register, or already is */
1940 	rdev_for_each(rdev, mddev) {
1941 		/* skip spares and non-functional disks */
1942 		if (test_bit(Faulty, &rdev->flags))
1943 			continue;
1944 		if (rdev->raid_disk < 0)
1945 			continue;
1946 		if (!reference) {
1947 			/* Use the first rdev as the reference */
1948 			reference = rdev;
1949 			continue;
1950 		}
1951 		/* does this rdev's profile match the reference profile? */
1952 		if (blk_integrity_compare(reference->bdev->bd_disk,
1953 				rdev->bdev->bd_disk) < 0)
1954 			return -EINVAL;
1955 	}
1956 	if (!reference || !bdev_get_integrity(reference->bdev))
1957 		return 0;
1958 	/*
1959 	 * All component devices are integrity capable and have matching
1960 	 * profiles, register the common profile for the md device.
1961 	 */
1962 	if (blk_integrity_register(mddev->gendisk,
1963 			bdev_get_integrity(reference->bdev)) != 0) {
1964 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1965 			mdname(mddev));
1966 		return -EINVAL;
1967 	}
1968 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1969 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1970 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1971 		       mdname(mddev));
1972 		return -EINVAL;
1973 	}
1974 	return 0;
1975 }
1976 EXPORT_SYMBOL(md_integrity_register);
1977 
1978 /* Disable data integrity if non-capable/non-matching disk is being added */
1979 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1980 {
1981 	struct blk_integrity *bi_rdev;
1982 	struct blk_integrity *bi_mddev;
1983 
1984 	if (!mddev->gendisk)
1985 		return;
1986 
1987 	bi_rdev = bdev_get_integrity(rdev->bdev);
1988 	bi_mddev = blk_get_integrity(mddev->gendisk);
1989 
1990 	if (!bi_mddev) /* nothing to do */
1991 		return;
1992 	if (rdev->raid_disk < 0) /* skip spares */
1993 		return;
1994 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1995 					     rdev->bdev->bd_disk) >= 0)
1996 		return;
1997 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1998 	blk_integrity_unregister(mddev->gendisk);
1999 }
2000 EXPORT_SYMBOL(md_integrity_add_rdev);
2001 
2002 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2003 {
2004 	char b[BDEVNAME_SIZE];
2005 	struct kobject *ko;
2006 	int err;
2007 
2008 	/* prevent duplicates */
2009 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2010 		return -EEXIST;
2011 
2012 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2013 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2014 			rdev->sectors < mddev->dev_sectors)) {
2015 		if (mddev->pers) {
2016 			/* Cannot change size, so fail
2017 			 * If mddev->level <= 0, then we don't care
2018 			 * about aligning sizes (e.g. linear)
2019 			 */
2020 			if (mddev->level > 0)
2021 				return -ENOSPC;
2022 		} else
2023 			mddev->dev_sectors = rdev->sectors;
2024 	}
2025 
2026 	/* Verify rdev->desc_nr is unique.
2027 	 * If it is -1, assign a free number, else
2028 	 * check number is not in use
2029 	 */
2030 	rcu_read_lock();
2031 	if (rdev->desc_nr < 0) {
2032 		int choice = 0;
2033 		if (mddev->pers)
2034 			choice = mddev->raid_disks;
2035 		while (md_find_rdev_nr_rcu(mddev, choice))
2036 			choice++;
2037 		rdev->desc_nr = choice;
2038 	} else {
2039 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2040 			rcu_read_unlock();
2041 			return -EBUSY;
2042 		}
2043 	}
2044 	rcu_read_unlock();
2045 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2046 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2047 		       mdname(mddev), mddev->max_disks);
2048 		return -EBUSY;
2049 	}
2050 	bdevname(rdev->bdev,b);
2051 	strreplace(b, '/', '!');
2052 
2053 	rdev->mddev = mddev;
2054 	printk(KERN_INFO "md: bind<%s>\n", b);
2055 
2056 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2057 		goto fail;
2058 
2059 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2060 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2061 		/* failure here is OK */;
2062 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2063 
2064 	list_add_rcu(&rdev->same_set, &mddev->disks);
2065 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2066 
2067 	/* May as well allow recovery to be retried once */
2068 	mddev->recovery_disabled++;
2069 
2070 	return 0;
2071 
2072  fail:
2073 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2074 	       b, mdname(mddev));
2075 	return err;
2076 }
2077 
2078 static void md_delayed_delete(struct work_struct *ws)
2079 {
2080 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2081 	kobject_del(&rdev->kobj);
2082 	kobject_put(&rdev->kobj);
2083 }
2084 
2085 static void unbind_rdev_from_array(struct md_rdev *rdev)
2086 {
2087 	char b[BDEVNAME_SIZE];
2088 
2089 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2090 	list_del_rcu(&rdev->same_set);
2091 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2092 	rdev->mddev = NULL;
2093 	sysfs_remove_link(&rdev->kobj, "block");
2094 	sysfs_put(rdev->sysfs_state);
2095 	rdev->sysfs_state = NULL;
2096 	rdev->badblocks.count = 0;
2097 	/* We need to delay this, otherwise we can deadlock when
2098 	 * writing to 'remove' to "dev/state".  We also need
2099 	 * to delay it due to rcu usage.
2100 	 */
2101 	synchronize_rcu();
2102 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2103 	kobject_get(&rdev->kobj);
2104 	queue_work(md_misc_wq, &rdev->del_work);
2105 }
2106 
2107 /*
2108  * prevent the device from being mounted, repartitioned or
2109  * otherwise reused by a RAID array (or any other kernel
2110  * subsystem), by bd_claiming the device.
2111  */
2112 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2113 {
2114 	int err = 0;
2115 	struct block_device *bdev;
2116 	char b[BDEVNAME_SIZE];
2117 
2118 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2119 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2120 	if (IS_ERR(bdev)) {
2121 		printk(KERN_ERR "md: could not open %s.\n",
2122 			__bdevname(dev, b));
2123 		return PTR_ERR(bdev);
2124 	}
2125 	rdev->bdev = bdev;
2126 	return err;
2127 }
2128 
2129 static void unlock_rdev(struct md_rdev *rdev)
2130 {
2131 	struct block_device *bdev = rdev->bdev;
2132 	rdev->bdev = NULL;
2133 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2134 }
2135 
2136 void md_autodetect_dev(dev_t dev);
2137 
2138 static void export_rdev(struct md_rdev *rdev)
2139 {
2140 	char b[BDEVNAME_SIZE];
2141 
2142 	printk(KERN_INFO "md: export_rdev(%s)\n",
2143 		bdevname(rdev->bdev,b));
2144 	md_rdev_clear(rdev);
2145 #ifndef MODULE
2146 	if (test_bit(AutoDetected, &rdev->flags))
2147 		md_autodetect_dev(rdev->bdev->bd_dev);
2148 #endif
2149 	unlock_rdev(rdev);
2150 	kobject_put(&rdev->kobj);
2151 }
2152 
2153 void md_kick_rdev_from_array(struct md_rdev *rdev)
2154 {
2155 	unbind_rdev_from_array(rdev);
2156 	export_rdev(rdev);
2157 }
2158 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2159 
2160 static void export_array(struct mddev *mddev)
2161 {
2162 	struct md_rdev *rdev;
2163 
2164 	while (!list_empty(&mddev->disks)) {
2165 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2166 					same_set);
2167 		md_kick_rdev_from_array(rdev);
2168 	}
2169 	mddev->raid_disks = 0;
2170 	mddev->major_version = 0;
2171 }
2172 
2173 static void sync_sbs(struct mddev *mddev, int nospares)
2174 {
2175 	/* Update each superblock (in-memory image), but
2176 	 * if we are allowed to, skip spares which already
2177 	 * have the right event counter, or have one earlier
2178 	 * (which would mean they aren't being marked as dirty
2179 	 * with the rest of the array)
2180 	 */
2181 	struct md_rdev *rdev;
2182 	rdev_for_each(rdev, mddev) {
2183 		if (rdev->sb_events == mddev->events ||
2184 		    (nospares &&
2185 		     rdev->raid_disk < 0 &&
2186 		     rdev->sb_events+1 == mddev->events)) {
2187 			/* Don't update this superblock */
2188 			rdev->sb_loaded = 2;
2189 		} else {
2190 			sync_super(mddev, rdev);
2191 			rdev->sb_loaded = 1;
2192 		}
2193 	}
2194 }
2195 
2196 void md_update_sb(struct mddev *mddev, int force_change)
2197 {
2198 	struct md_rdev *rdev;
2199 	int sync_req;
2200 	int nospares = 0;
2201 	int any_badblocks_changed = 0;
2202 
2203 	if (mddev->ro) {
2204 		if (force_change)
2205 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2206 		return;
2207 	}
2208 repeat:
2209 	/* First make sure individual recovery_offsets are correct */
2210 	rdev_for_each(rdev, mddev) {
2211 		if (rdev->raid_disk >= 0 &&
2212 		    mddev->delta_disks >= 0 &&
2213 		    !test_bit(In_sync, &rdev->flags) &&
2214 		    mddev->curr_resync_completed > rdev->recovery_offset)
2215 				rdev->recovery_offset = mddev->curr_resync_completed;
2216 
2217 	}
2218 	if (!mddev->persistent) {
2219 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2220 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2221 		if (!mddev->external) {
2222 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2223 			rdev_for_each(rdev, mddev) {
2224 				if (rdev->badblocks.changed) {
2225 					rdev->badblocks.changed = 0;
2226 					md_ack_all_badblocks(&rdev->badblocks);
2227 					md_error(mddev, rdev);
2228 				}
2229 				clear_bit(Blocked, &rdev->flags);
2230 				clear_bit(BlockedBadBlocks, &rdev->flags);
2231 				wake_up(&rdev->blocked_wait);
2232 			}
2233 		}
2234 		wake_up(&mddev->sb_wait);
2235 		return;
2236 	}
2237 
2238 	spin_lock(&mddev->lock);
2239 
2240 	mddev->utime = get_seconds();
2241 
2242 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2243 		force_change = 1;
2244 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2245 		/* just a clean<-> dirty transition, possibly leave spares alone,
2246 		 * though if events isn't the right even/odd, we will have to do
2247 		 * spares after all
2248 		 */
2249 		nospares = 1;
2250 	if (force_change)
2251 		nospares = 0;
2252 	if (mddev->degraded)
2253 		/* If the array is degraded, then skipping spares is both
2254 		 * dangerous and fairly pointless.
2255 		 * Dangerous because a device that was removed from the array
2256 		 * might have a event_count that still looks up-to-date,
2257 		 * so it can be re-added without a resync.
2258 		 * Pointless because if there are any spares to skip,
2259 		 * then a recovery will happen and soon that array won't
2260 		 * be degraded any more and the spare can go back to sleep then.
2261 		 */
2262 		nospares = 0;
2263 
2264 	sync_req = mddev->in_sync;
2265 
2266 	/* If this is just a dirty<->clean transition, and the array is clean
2267 	 * and 'events' is odd, we can roll back to the previous clean state */
2268 	if (nospares
2269 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2270 	    && mddev->can_decrease_events
2271 	    && mddev->events != 1) {
2272 		mddev->events--;
2273 		mddev->can_decrease_events = 0;
2274 	} else {
2275 		/* otherwise we have to go forward and ... */
2276 		mddev->events ++;
2277 		mddev->can_decrease_events = nospares;
2278 	}
2279 
2280 	/*
2281 	 * This 64-bit counter should never wrap.
2282 	 * Either we are in around ~1 trillion A.C., assuming
2283 	 * 1 reboot per second, or we have a bug...
2284 	 */
2285 	WARN_ON(mddev->events == 0);
2286 
2287 	rdev_for_each(rdev, mddev) {
2288 		if (rdev->badblocks.changed)
2289 			any_badblocks_changed++;
2290 		if (test_bit(Faulty, &rdev->flags))
2291 			set_bit(FaultRecorded, &rdev->flags);
2292 	}
2293 
2294 	sync_sbs(mddev, nospares);
2295 	spin_unlock(&mddev->lock);
2296 
2297 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2298 		 mdname(mddev), mddev->in_sync);
2299 
2300 	bitmap_update_sb(mddev->bitmap);
2301 	rdev_for_each(rdev, mddev) {
2302 		char b[BDEVNAME_SIZE];
2303 
2304 		if (rdev->sb_loaded != 1)
2305 			continue; /* no noise on spare devices */
2306 
2307 		if (!test_bit(Faulty, &rdev->flags)) {
2308 			md_super_write(mddev,rdev,
2309 				       rdev->sb_start, rdev->sb_size,
2310 				       rdev->sb_page);
2311 			pr_debug("md: (write) %s's sb offset: %llu\n",
2312 				 bdevname(rdev->bdev, b),
2313 				 (unsigned long long)rdev->sb_start);
2314 			rdev->sb_events = mddev->events;
2315 			if (rdev->badblocks.size) {
2316 				md_super_write(mddev, rdev,
2317 					       rdev->badblocks.sector,
2318 					       rdev->badblocks.size << 9,
2319 					       rdev->bb_page);
2320 				rdev->badblocks.size = 0;
2321 			}
2322 
2323 		} else
2324 			pr_debug("md: %s (skipping faulty)\n",
2325 				 bdevname(rdev->bdev, b));
2326 
2327 		if (mddev->level == LEVEL_MULTIPATH)
2328 			/* only need to write one superblock... */
2329 			break;
2330 	}
2331 	md_super_wait(mddev);
2332 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2333 
2334 	spin_lock(&mddev->lock);
2335 	if (mddev->in_sync != sync_req ||
2336 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2337 		/* have to write it out again */
2338 		spin_unlock(&mddev->lock);
2339 		goto repeat;
2340 	}
2341 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2342 	spin_unlock(&mddev->lock);
2343 	wake_up(&mddev->sb_wait);
2344 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2345 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2346 
2347 	rdev_for_each(rdev, mddev) {
2348 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2349 			clear_bit(Blocked, &rdev->flags);
2350 
2351 		if (any_badblocks_changed)
2352 			md_ack_all_badblocks(&rdev->badblocks);
2353 		clear_bit(BlockedBadBlocks, &rdev->flags);
2354 		wake_up(&rdev->blocked_wait);
2355 	}
2356 }
2357 EXPORT_SYMBOL(md_update_sb);
2358 
2359 static int add_bound_rdev(struct md_rdev *rdev)
2360 {
2361 	struct mddev *mddev = rdev->mddev;
2362 	int err = 0;
2363 
2364 	if (!mddev->pers->hot_remove_disk) {
2365 		/* If there is hot_add_disk but no hot_remove_disk
2366 		 * then added disks for geometry changes,
2367 		 * and should be added immediately.
2368 		 */
2369 		super_types[mddev->major_version].
2370 			validate_super(mddev, rdev);
2371 		err = mddev->pers->hot_add_disk(mddev, rdev);
2372 		if (err) {
2373 			unbind_rdev_from_array(rdev);
2374 			export_rdev(rdev);
2375 			return err;
2376 		}
2377 	}
2378 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2379 
2380 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2381 	if (mddev->degraded)
2382 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2383 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2384 	md_new_event(mddev);
2385 	md_wakeup_thread(mddev->thread);
2386 	return 0;
2387 }
2388 
2389 /* words written to sysfs files may, or may not, be \n terminated.
2390  * We want to accept with case. For this we use cmd_match.
2391  */
2392 static int cmd_match(const char *cmd, const char *str)
2393 {
2394 	/* See if cmd, written into a sysfs file, matches
2395 	 * str.  They must either be the same, or cmd can
2396 	 * have a trailing newline
2397 	 */
2398 	while (*cmd && *str && *cmd == *str) {
2399 		cmd++;
2400 		str++;
2401 	}
2402 	if (*cmd == '\n')
2403 		cmd++;
2404 	if (*str || *cmd)
2405 		return 0;
2406 	return 1;
2407 }
2408 
2409 struct rdev_sysfs_entry {
2410 	struct attribute attr;
2411 	ssize_t (*show)(struct md_rdev *, char *);
2412 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2413 };
2414 
2415 static ssize_t
2416 state_show(struct md_rdev *rdev, char *page)
2417 {
2418 	char *sep = "";
2419 	size_t len = 0;
2420 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2421 
2422 	if (test_bit(Faulty, &flags) ||
2423 	    rdev->badblocks.unacked_exist) {
2424 		len+= sprintf(page+len, "%sfaulty",sep);
2425 		sep = ",";
2426 	}
2427 	if (test_bit(In_sync, &flags)) {
2428 		len += sprintf(page+len, "%sin_sync",sep);
2429 		sep = ",";
2430 	}
2431 	if (test_bit(WriteMostly, &flags)) {
2432 		len += sprintf(page+len, "%swrite_mostly",sep);
2433 		sep = ",";
2434 	}
2435 	if (test_bit(Blocked, &flags) ||
2436 	    (rdev->badblocks.unacked_exist
2437 	     && !test_bit(Faulty, &flags))) {
2438 		len += sprintf(page+len, "%sblocked", sep);
2439 		sep = ",";
2440 	}
2441 	if (!test_bit(Faulty, &flags) &&
2442 	    !test_bit(In_sync, &flags)) {
2443 		len += sprintf(page+len, "%sspare", sep);
2444 		sep = ",";
2445 	}
2446 	if (test_bit(WriteErrorSeen, &flags)) {
2447 		len += sprintf(page+len, "%swrite_error", sep);
2448 		sep = ",";
2449 	}
2450 	if (test_bit(WantReplacement, &flags)) {
2451 		len += sprintf(page+len, "%swant_replacement", sep);
2452 		sep = ",";
2453 	}
2454 	if (test_bit(Replacement, &flags)) {
2455 		len += sprintf(page+len, "%sreplacement", sep);
2456 		sep = ",";
2457 	}
2458 
2459 	return len+sprintf(page+len, "\n");
2460 }
2461 
2462 static ssize_t
2463 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2464 {
2465 	/* can write
2466 	 *  faulty  - simulates an error
2467 	 *  remove  - disconnects the device
2468 	 *  writemostly - sets write_mostly
2469 	 *  -writemostly - clears write_mostly
2470 	 *  blocked - sets the Blocked flags
2471 	 *  -blocked - clears the Blocked and possibly simulates an error
2472 	 *  insync - sets Insync providing device isn't active
2473 	 *  -insync - clear Insync for a device with a slot assigned,
2474 	 *            so that it gets rebuilt based on bitmap
2475 	 *  write_error - sets WriteErrorSeen
2476 	 *  -write_error - clears WriteErrorSeen
2477 	 */
2478 	int err = -EINVAL;
2479 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2480 		md_error(rdev->mddev, rdev);
2481 		if (test_bit(Faulty, &rdev->flags))
2482 			err = 0;
2483 		else
2484 			err = -EBUSY;
2485 	} else if (cmd_match(buf, "remove")) {
2486 		if (rdev->raid_disk >= 0)
2487 			err = -EBUSY;
2488 		else {
2489 			struct mddev *mddev = rdev->mddev;
2490 			if (mddev_is_clustered(mddev))
2491 				md_cluster_ops->remove_disk(mddev, rdev);
2492 			md_kick_rdev_from_array(rdev);
2493 			if (mddev_is_clustered(mddev))
2494 				md_cluster_ops->metadata_update_start(mddev);
2495 			if (mddev->pers)
2496 				md_update_sb(mddev, 1);
2497 			md_new_event(mddev);
2498 			if (mddev_is_clustered(mddev))
2499 				md_cluster_ops->metadata_update_finish(mddev);
2500 			err = 0;
2501 		}
2502 	} else if (cmd_match(buf, "writemostly")) {
2503 		set_bit(WriteMostly, &rdev->flags);
2504 		err = 0;
2505 	} else if (cmd_match(buf, "-writemostly")) {
2506 		clear_bit(WriteMostly, &rdev->flags);
2507 		err = 0;
2508 	} else if (cmd_match(buf, "blocked")) {
2509 		set_bit(Blocked, &rdev->flags);
2510 		err = 0;
2511 	} else if (cmd_match(buf, "-blocked")) {
2512 		if (!test_bit(Faulty, &rdev->flags) &&
2513 		    rdev->badblocks.unacked_exist) {
2514 			/* metadata handler doesn't understand badblocks,
2515 			 * so we need to fail the device
2516 			 */
2517 			md_error(rdev->mddev, rdev);
2518 		}
2519 		clear_bit(Blocked, &rdev->flags);
2520 		clear_bit(BlockedBadBlocks, &rdev->flags);
2521 		wake_up(&rdev->blocked_wait);
2522 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2523 		md_wakeup_thread(rdev->mddev->thread);
2524 
2525 		err = 0;
2526 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2527 		set_bit(In_sync, &rdev->flags);
2528 		err = 0;
2529 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2530 		if (rdev->mddev->pers == NULL) {
2531 			clear_bit(In_sync, &rdev->flags);
2532 			rdev->saved_raid_disk = rdev->raid_disk;
2533 			rdev->raid_disk = -1;
2534 			err = 0;
2535 		}
2536 	} else if (cmd_match(buf, "write_error")) {
2537 		set_bit(WriteErrorSeen, &rdev->flags);
2538 		err = 0;
2539 	} else if (cmd_match(buf, "-write_error")) {
2540 		clear_bit(WriteErrorSeen, &rdev->flags);
2541 		err = 0;
2542 	} else if (cmd_match(buf, "want_replacement")) {
2543 		/* Any non-spare device that is not a replacement can
2544 		 * become want_replacement at any time, but we then need to
2545 		 * check if recovery is needed.
2546 		 */
2547 		if (rdev->raid_disk >= 0 &&
2548 		    !test_bit(Replacement, &rdev->flags))
2549 			set_bit(WantReplacement, &rdev->flags);
2550 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2551 		md_wakeup_thread(rdev->mddev->thread);
2552 		err = 0;
2553 	} else if (cmd_match(buf, "-want_replacement")) {
2554 		/* Clearing 'want_replacement' is always allowed.
2555 		 * Once replacements starts it is too late though.
2556 		 */
2557 		err = 0;
2558 		clear_bit(WantReplacement, &rdev->flags);
2559 	} else if (cmd_match(buf, "replacement")) {
2560 		/* Can only set a device as a replacement when array has not
2561 		 * yet been started.  Once running, replacement is automatic
2562 		 * from spares, or by assigning 'slot'.
2563 		 */
2564 		if (rdev->mddev->pers)
2565 			err = -EBUSY;
2566 		else {
2567 			set_bit(Replacement, &rdev->flags);
2568 			err = 0;
2569 		}
2570 	} else if (cmd_match(buf, "-replacement")) {
2571 		/* Similarly, can only clear Replacement before start */
2572 		if (rdev->mddev->pers)
2573 			err = -EBUSY;
2574 		else {
2575 			clear_bit(Replacement, &rdev->flags);
2576 			err = 0;
2577 		}
2578 	} else if (cmd_match(buf, "re-add")) {
2579 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2580 			/* clear_bit is performed _after_ all the devices
2581 			 * have their local Faulty bit cleared. If any writes
2582 			 * happen in the meantime in the local node, they
2583 			 * will land in the local bitmap, which will be synced
2584 			 * by this node eventually
2585 			 */
2586 			if (!mddev_is_clustered(rdev->mddev) ||
2587 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2588 				clear_bit(Faulty, &rdev->flags);
2589 				err = add_bound_rdev(rdev);
2590 			}
2591 		} else
2592 			err = -EBUSY;
2593 	}
2594 	if (!err)
2595 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2596 	return err ? err : len;
2597 }
2598 static struct rdev_sysfs_entry rdev_state =
2599 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2600 
2601 static ssize_t
2602 errors_show(struct md_rdev *rdev, char *page)
2603 {
2604 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2605 }
2606 
2607 static ssize_t
2608 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2609 {
2610 	unsigned int n;
2611 	int rv;
2612 
2613 	rv = kstrtouint(buf, 10, &n);
2614 	if (rv < 0)
2615 		return rv;
2616 	atomic_set(&rdev->corrected_errors, n);
2617 	return len;
2618 }
2619 static struct rdev_sysfs_entry rdev_errors =
2620 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2621 
2622 static ssize_t
2623 slot_show(struct md_rdev *rdev, char *page)
2624 {
2625 	if (rdev->raid_disk < 0)
2626 		return sprintf(page, "none\n");
2627 	else
2628 		return sprintf(page, "%d\n", rdev->raid_disk);
2629 }
2630 
2631 static ssize_t
2632 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2633 {
2634 	int slot;
2635 	int err;
2636 
2637 	if (strncmp(buf, "none", 4)==0)
2638 		slot = -1;
2639 	else {
2640 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
2641 		if (err < 0)
2642 			return err;
2643 	}
2644 	if (rdev->mddev->pers && slot == -1) {
2645 		/* Setting 'slot' on an active array requires also
2646 		 * updating the 'rd%d' link, and communicating
2647 		 * with the personality with ->hot_*_disk.
2648 		 * For now we only support removing
2649 		 * failed/spare devices.  This normally happens automatically,
2650 		 * but not when the metadata is externally managed.
2651 		 */
2652 		if (rdev->raid_disk == -1)
2653 			return -EEXIST;
2654 		/* personality does all needed checks */
2655 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2656 			return -EINVAL;
2657 		clear_bit(Blocked, &rdev->flags);
2658 		remove_and_add_spares(rdev->mddev, rdev);
2659 		if (rdev->raid_disk >= 0)
2660 			return -EBUSY;
2661 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2662 		md_wakeup_thread(rdev->mddev->thread);
2663 	} else if (rdev->mddev->pers) {
2664 		/* Activating a spare .. or possibly reactivating
2665 		 * if we ever get bitmaps working here.
2666 		 */
2667 
2668 		if (rdev->raid_disk != -1)
2669 			return -EBUSY;
2670 
2671 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2672 			return -EBUSY;
2673 
2674 		if (rdev->mddev->pers->hot_add_disk == NULL)
2675 			return -EINVAL;
2676 
2677 		if (slot >= rdev->mddev->raid_disks &&
2678 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2679 			return -ENOSPC;
2680 
2681 		rdev->raid_disk = slot;
2682 		if (test_bit(In_sync, &rdev->flags))
2683 			rdev->saved_raid_disk = slot;
2684 		else
2685 			rdev->saved_raid_disk = -1;
2686 		clear_bit(In_sync, &rdev->flags);
2687 		clear_bit(Bitmap_sync, &rdev->flags);
2688 		err = rdev->mddev->pers->
2689 			hot_add_disk(rdev->mddev, rdev);
2690 		if (err) {
2691 			rdev->raid_disk = -1;
2692 			return err;
2693 		} else
2694 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2695 		if (sysfs_link_rdev(rdev->mddev, rdev))
2696 			/* failure here is OK */;
2697 		/* don't wakeup anyone, leave that to userspace. */
2698 	} else {
2699 		if (slot >= rdev->mddev->raid_disks &&
2700 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2701 			return -ENOSPC;
2702 		rdev->raid_disk = slot;
2703 		/* assume it is working */
2704 		clear_bit(Faulty, &rdev->flags);
2705 		clear_bit(WriteMostly, &rdev->flags);
2706 		set_bit(In_sync, &rdev->flags);
2707 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2708 	}
2709 	return len;
2710 }
2711 
2712 static struct rdev_sysfs_entry rdev_slot =
2713 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2714 
2715 static ssize_t
2716 offset_show(struct md_rdev *rdev, char *page)
2717 {
2718 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2719 }
2720 
2721 static ssize_t
2722 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2723 {
2724 	unsigned long long offset;
2725 	if (kstrtoull(buf, 10, &offset) < 0)
2726 		return -EINVAL;
2727 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2728 		return -EBUSY;
2729 	if (rdev->sectors && rdev->mddev->external)
2730 		/* Must set offset before size, so overlap checks
2731 		 * can be sane */
2732 		return -EBUSY;
2733 	rdev->data_offset = offset;
2734 	rdev->new_data_offset = offset;
2735 	return len;
2736 }
2737 
2738 static struct rdev_sysfs_entry rdev_offset =
2739 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2740 
2741 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2742 {
2743 	return sprintf(page, "%llu\n",
2744 		       (unsigned long long)rdev->new_data_offset);
2745 }
2746 
2747 static ssize_t new_offset_store(struct md_rdev *rdev,
2748 				const char *buf, size_t len)
2749 {
2750 	unsigned long long new_offset;
2751 	struct mddev *mddev = rdev->mddev;
2752 
2753 	if (kstrtoull(buf, 10, &new_offset) < 0)
2754 		return -EINVAL;
2755 
2756 	if (mddev->sync_thread ||
2757 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2758 		return -EBUSY;
2759 	if (new_offset == rdev->data_offset)
2760 		/* reset is always permitted */
2761 		;
2762 	else if (new_offset > rdev->data_offset) {
2763 		/* must not push array size beyond rdev_sectors */
2764 		if (new_offset - rdev->data_offset
2765 		    + mddev->dev_sectors > rdev->sectors)
2766 				return -E2BIG;
2767 	}
2768 	/* Metadata worries about other space details. */
2769 
2770 	/* decreasing the offset is inconsistent with a backwards
2771 	 * reshape.
2772 	 */
2773 	if (new_offset < rdev->data_offset &&
2774 	    mddev->reshape_backwards)
2775 		return -EINVAL;
2776 	/* Increasing offset is inconsistent with forwards
2777 	 * reshape.  reshape_direction should be set to
2778 	 * 'backwards' first.
2779 	 */
2780 	if (new_offset > rdev->data_offset &&
2781 	    !mddev->reshape_backwards)
2782 		return -EINVAL;
2783 
2784 	if (mddev->pers && mddev->persistent &&
2785 	    !super_types[mddev->major_version]
2786 	    .allow_new_offset(rdev, new_offset))
2787 		return -E2BIG;
2788 	rdev->new_data_offset = new_offset;
2789 	if (new_offset > rdev->data_offset)
2790 		mddev->reshape_backwards = 1;
2791 	else if (new_offset < rdev->data_offset)
2792 		mddev->reshape_backwards = 0;
2793 
2794 	return len;
2795 }
2796 static struct rdev_sysfs_entry rdev_new_offset =
2797 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2798 
2799 static ssize_t
2800 rdev_size_show(struct md_rdev *rdev, char *page)
2801 {
2802 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2803 }
2804 
2805 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2806 {
2807 	/* check if two start/length pairs overlap */
2808 	if (s1+l1 <= s2)
2809 		return 0;
2810 	if (s2+l2 <= s1)
2811 		return 0;
2812 	return 1;
2813 }
2814 
2815 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2816 {
2817 	unsigned long long blocks;
2818 	sector_t new;
2819 
2820 	if (kstrtoull(buf, 10, &blocks) < 0)
2821 		return -EINVAL;
2822 
2823 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2824 		return -EINVAL; /* sector conversion overflow */
2825 
2826 	new = blocks * 2;
2827 	if (new != blocks * 2)
2828 		return -EINVAL; /* unsigned long long to sector_t overflow */
2829 
2830 	*sectors = new;
2831 	return 0;
2832 }
2833 
2834 static ssize_t
2835 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2836 {
2837 	struct mddev *my_mddev = rdev->mddev;
2838 	sector_t oldsectors = rdev->sectors;
2839 	sector_t sectors;
2840 
2841 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2842 		return -EINVAL;
2843 	if (rdev->data_offset != rdev->new_data_offset)
2844 		return -EINVAL; /* too confusing */
2845 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2846 		if (my_mddev->persistent) {
2847 			sectors = super_types[my_mddev->major_version].
2848 				rdev_size_change(rdev, sectors);
2849 			if (!sectors)
2850 				return -EBUSY;
2851 		} else if (!sectors)
2852 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2853 				rdev->data_offset;
2854 		if (!my_mddev->pers->resize)
2855 			/* Cannot change size for RAID0 or Linear etc */
2856 			return -EINVAL;
2857 	}
2858 	if (sectors < my_mddev->dev_sectors)
2859 		return -EINVAL; /* component must fit device */
2860 
2861 	rdev->sectors = sectors;
2862 	if (sectors > oldsectors && my_mddev->external) {
2863 		/* Need to check that all other rdevs with the same
2864 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2865 		 * the rdev lists safely.
2866 		 * This check does not provide a hard guarantee, it
2867 		 * just helps avoid dangerous mistakes.
2868 		 */
2869 		struct mddev *mddev;
2870 		int overlap = 0;
2871 		struct list_head *tmp;
2872 
2873 		rcu_read_lock();
2874 		for_each_mddev(mddev, tmp) {
2875 			struct md_rdev *rdev2;
2876 
2877 			rdev_for_each(rdev2, mddev)
2878 				if (rdev->bdev == rdev2->bdev &&
2879 				    rdev != rdev2 &&
2880 				    overlaps(rdev->data_offset, rdev->sectors,
2881 					     rdev2->data_offset,
2882 					     rdev2->sectors)) {
2883 					overlap = 1;
2884 					break;
2885 				}
2886 			if (overlap) {
2887 				mddev_put(mddev);
2888 				break;
2889 			}
2890 		}
2891 		rcu_read_unlock();
2892 		if (overlap) {
2893 			/* Someone else could have slipped in a size
2894 			 * change here, but doing so is just silly.
2895 			 * We put oldsectors back because we *know* it is
2896 			 * safe, and trust userspace not to race with
2897 			 * itself
2898 			 */
2899 			rdev->sectors = oldsectors;
2900 			return -EBUSY;
2901 		}
2902 	}
2903 	return len;
2904 }
2905 
2906 static struct rdev_sysfs_entry rdev_size =
2907 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2908 
2909 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2910 {
2911 	unsigned long long recovery_start = rdev->recovery_offset;
2912 
2913 	if (test_bit(In_sync, &rdev->flags) ||
2914 	    recovery_start == MaxSector)
2915 		return sprintf(page, "none\n");
2916 
2917 	return sprintf(page, "%llu\n", recovery_start);
2918 }
2919 
2920 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2921 {
2922 	unsigned long long recovery_start;
2923 
2924 	if (cmd_match(buf, "none"))
2925 		recovery_start = MaxSector;
2926 	else if (kstrtoull(buf, 10, &recovery_start))
2927 		return -EINVAL;
2928 
2929 	if (rdev->mddev->pers &&
2930 	    rdev->raid_disk >= 0)
2931 		return -EBUSY;
2932 
2933 	rdev->recovery_offset = recovery_start;
2934 	if (recovery_start == MaxSector)
2935 		set_bit(In_sync, &rdev->flags);
2936 	else
2937 		clear_bit(In_sync, &rdev->flags);
2938 	return len;
2939 }
2940 
2941 static struct rdev_sysfs_entry rdev_recovery_start =
2942 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2943 
2944 static ssize_t
2945 badblocks_show(struct badblocks *bb, char *page, int unack);
2946 static ssize_t
2947 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2948 
2949 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2950 {
2951 	return badblocks_show(&rdev->badblocks, page, 0);
2952 }
2953 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2954 {
2955 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2956 	/* Maybe that ack was all we needed */
2957 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2958 		wake_up(&rdev->blocked_wait);
2959 	return rv;
2960 }
2961 static struct rdev_sysfs_entry rdev_bad_blocks =
2962 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2963 
2964 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2965 {
2966 	return badblocks_show(&rdev->badblocks, page, 1);
2967 }
2968 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2969 {
2970 	return badblocks_store(&rdev->badblocks, page, len, 1);
2971 }
2972 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2973 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2974 
2975 static struct attribute *rdev_default_attrs[] = {
2976 	&rdev_state.attr,
2977 	&rdev_errors.attr,
2978 	&rdev_slot.attr,
2979 	&rdev_offset.attr,
2980 	&rdev_new_offset.attr,
2981 	&rdev_size.attr,
2982 	&rdev_recovery_start.attr,
2983 	&rdev_bad_blocks.attr,
2984 	&rdev_unack_bad_blocks.attr,
2985 	NULL,
2986 };
2987 static ssize_t
2988 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2989 {
2990 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2991 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2992 
2993 	if (!entry->show)
2994 		return -EIO;
2995 	if (!rdev->mddev)
2996 		return -EBUSY;
2997 	return entry->show(rdev, page);
2998 }
2999 
3000 static ssize_t
3001 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3002 	      const char *page, size_t length)
3003 {
3004 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3005 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3006 	ssize_t rv;
3007 	struct mddev *mddev = rdev->mddev;
3008 
3009 	if (!entry->store)
3010 		return -EIO;
3011 	if (!capable(CAP_SYS_ADMIN))
3012 		return -EACCES;
3013 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3014 	if (!rv) {
3015 		if (rdev->mddev == NULL)
3016 			rv = -EBUSY;
3017 		else
3018 			rv = entry->store(rdev, page, length);
3019 		mddev_unlock(mddev);
3020 	}
3021 	return rv;
3022 }
3023 
3024 static void rdev_free(struct kobject *ko)
3025 {
3026 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3027 	kfree(rdev);
3028 }
3029 static const struct sysfs_ops rdev_sysfs_ops = {
3030 	.show		= rdev_attr_show,
3031 	.store		= rdev_attr_store,
3032 };
3033 static struct kobj_type rdev_ktype = {
3034 	.release	= rdev_free,
3035 	.sysfs_ops	= &rdev_sysfs_ops,
3036 	.default_attrs	= rdev_default_attrs,
3037 };
3038 
3039 int md_rdev_init(struct md_rdev *rdev)
3040 {
3041 	rdev->desc_nr = -1;
3042 	rdev->saved_raid_disk = -1;
3043 	rdev->raid_disk = -1;
3044 	rdev->flags = 0;
3045 	rdev->data_offset = 0;
3046 	rdev->new_data_offset = 0;
3047 	rdev->sb_events = 0;
3048 	rdev->last_read_error.tv_sec  = 0;
3049 	rdev->last_read_error.tv_nsec = 0;
3050 	rdev->sb_loaded = 0;
3051 	rdev->bb_page = NULL;
3052 	atomic_set(&rdev->nr_pending, 0);
3053 	atomic_set(&rdev->read_errors, 0);
3054 	atomic_set(&rdev->corrected_errors, 0);
3055 
3056 	INIT_LIST_HEAD(&rdev->same_set);
3057 	init_waitqueue_head(&rdev->blocked_wait);
3058 
3059 	/* Add space to store bad block list.
3060 	 * This reserves the space even on arrays where it cannot
3061 	 * be used - I wonder if that matters
3062 	 */
3063 	rdev->badblocks.count = 0;
3064 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3065 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3066 	seqlock_init(&rdev->badblocks.lock);
3067 	if (rdev->badblocks.page == NULL)
3068 		return -ENOMEM;
3069 
3070 	return 0;
3071 }
3072 EXPORT_SYMBOL_GPL(md_rdev_init);
3073 /*
3074  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3075  *
3076  * mark the device faulty if:
3077  *
3078  *   - the device is nonexistent (zero size)
3079  *   - the device has no valid superblock
3080  *
3081  * a faulty rdev _never_ has rdev->sb set.
3082  */
3083 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3084 {
3085 	char b[BDEVNAME_SIZE];
3086 	int err;
3087 	struct md_rdev *rdev;
3088 	sector_t size;
3089 
3090 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3091 	if (!rdev) {
3092 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3093 		return ERR_PTR(-ENOMEM);
3094 	}
3095 
3096 	err = md_rdev_init(rdev);
3097 	if (err)
3098 		goto abort_free;
3099 	err = alloc_disk_sb(rdev);
3100 	if (err)
3101 		goto abort_free;
3102 
3103 	err = lock_rdev(rdev, newdev, super_format == -2);
3104 	if (err)
3105 		goto abort_free;
3106 
3107 	kobject_init(&rdev->kobj, &rdev_ktype);
3108 
3109 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3110 	if (!size) {
3111 		printk(KERN_WARNING
3112 			"md: %s has zero or unknown size, marking faulty!\n",
3113 			bdevname(rdev->bdev,b));
3114 		err = -EINVAL;
3115 		goto abort_free;
3116 	}
3117 
3118 	if (super_format >= 0) {
3119 		err = super_types[super_format].
3120 			load_super(rdev, NULL, super_minor);
3121 		if (err == -EINVAL) {
3122 			printk(KERN_WARNING
3123 				"md: %s does not have a valid v%d.%d "
3124 			       "superblock, not importing!\n",
3125 				bdevname(rdev->bdev,b),
3126 			       super_format, super_minor);
3127 			goto abort_free;
3128 		}
3129 		if (err < 0) {
3130 			printk(KERN_WARNING
3131 				"md: could not read %s's sb, not importing!\n",
3132 				bdevname(rdev->bdev,b));
3133 			goto abort_free;
3134 		}
3135 	}
3136 
3137 	return rdev;
3138 
3139 abort_free:
3140 	if (rdev->bdev)
3141 		unlock_rdev(rdev);
3142 	md_rdev_clear(rdev);
3143 	kfree(rdev);
3144 	return ERR_PTR(err);
3145 }
3146 
3147 /*
3148  * Check a full RAID array for plausibility
3149  */
3150 
3151 static void analyze_sbs(struct mddev *mddev)
3152 {
3153 	int i;
3154 	struct md_rdev *rdev, *freshest, *tmp;
3155 	char b[BDEVNAME_SIZE];
3156 
3157 	freshest = NULL;
3158 	rdev_for_each_safe(rdev, tmp, mddev)
3159 		switch (super_types[mddev->major_version].
3160 			load_super(rdev, freshest, mddev->minor_version)) {
3161 		case 1:
3162 			freshest = rdev;
3163 			break;
3164 		case 0:
3165 			break;
3166 		default:
3167 			printk( KERN_ERR \
3168 				"md: fatal superblock inconsistency in %s"
3169 				" -- removing from array\n",
3170 				bdevname(rdev->bdev,b));
3171 			md_kick_rdev_from_array(rdev);
3172 		}
3173 
3174 	super_types[mddev->major_version].
3175 		validate_super(mddev, freshest);
3176 
3177 	i = 0;
3178 	rdev_for_each_safe(rdev, tmp, mddev) {
3179 		if (mddev->max_disks &&
3180 		    (rdev->desc_nr >= mddev->max_disks ||
3181 		     i > mddev->max_disks)) {
3182 			printk(KERN_WARNING
3183 			       "md: %s: %s: only %d devices permitted\n",
3184 			       mdname(mddev), bdevname(rdev->bdev, b),
3185 			       mddev->max_disks);
3186 			md_kick_rdev_from_array(rdev);
3187 			continue;
3188 		}
3189 		if (rdev != freshest) {
3190 			if (super_types[mddev->major_version].
3191 			    validate_super(mddev, rdev)) {
3192 				printk(KERN_WARNING "md: kicking non-fresh %s"
3193 					" from array!\n",
3194 					bdevname(rdev->bdev,b));
3195 				md_kick_rdev_from_array(rdev);
3196 				continue;
3197 			}
3198 			/* No device should have a Candidate flag
3199 			 * when reading devices
3200 			 */
3201 			if (test_bit(Candidate, &rdev->flags)) {
3202 				pr_info("md: kicking Cluster Candidate %s from array!\n",
3203 					bdevname(rdev->bdev, b));
3204 				md_kick_rdev_from_array(rdev);
3205 			}
3206 		}
3207 		if (mddev->level == LEVEL_MULTIPATH) {
3208 			rdev->desc_nr = i++;
3209 			rdev->raid_disk = rdev->desc_nr;
3210 			set_bit(In_sync, &rdev->flags);
3211 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3212 			rdev->raid_disk = -1;
3213 			clear_bit(In_sync, &rdev->flags);
3214 		}
3215 	}
3216 }
3217 
3218 /* Read a fixed-point number.
3219  * Numbers in sysfs attributes should be in "standard" units where
3220  * possible, so time should be in seconds.
3221  * However we internally use a a much smaller unit such as
3222  * milliseconds or jiffies.
3223  * This function takes a decimal number with a possible fractional
3224  * component, and produces an integer which is the result of
3225  * multiplying that number by 10^'scale'.
3226  * all without any floating-point arithmetic.
3227  */
3228 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3229 {
3230 	unsigned long result = 0;
3231 	long decimals = -1;
3232 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3233 		if (*cp == '.')
3234 			decimals = 0;
3235 		else if (decimals < scale) {
3236 			unsigned int value;
3237 			value = *cp - '0';
3238 			result = result * 10 + value;
3239 			if (decimals >= 0)
3240 				decimals++;
3241 		}
3242 		cp++;
3243 	}
3244 	if (*cp == '\n')
3245 		cp++;
3246 	if (*cp)
3247 		return -EINVAL;
3248 	if (decimals < 0)
3249 		decimals = 0;
3250 	while (decimals < scale) {
3251 		result *= 10;
3252 		decimals ++;
3253 	}
3254 	*res = result;
3255 	return 0;
3256 }
3257 
3258 static void md_safemode_timeout(unsigned long data);
3259 
3260 static ssize_t
3261 safe_delay_show(struct mddev *mddev, char *page)
3262 {
3263 	int msec = (mddev->safemode_delay*1000)/HZ;
3264 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3265 }
3266 static ssize_t
3267 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3268 {
3269 	unsigned long msec;
3270 
3271 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3272 		return -EINVAL;
3273 	if (msec == 0)
3274 		mddev->safemode_delay = 0;
3275 	else {
3276 		unsigned long old_delay = mddev->safemode_delay;
3277 		unsigned long new_delay = (msec*HZ)/1000;
3278 
3279 		if (new_delay == 0)
3280 			new_delay = 1;
3281 		mddev->safemode_delay = new_delay;
3282 		if (new_delay < old_delay || old_delay == 0)
3283 			mod_timer(&mddev->safemode_timer, jiffies+1);
3284 	}
3285 	return len;
3286 }
3287 static struct md_sysfs_entry md_safe_delay =
3288 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3289 
3290 static ssize_t
3291 level_show(struct mddev *mddev, char *page)
3292 {
3293 	struct md_personality *p;
3294 	int ret;
3295 	spin_lock(&mddev->lock);
3296 	p = mddev->pers;
3297 	if (p)
3298 		ret = sprintf(page, "%s\n", p->name);
3299 	else if (mddev->clevel[0])
3300 		ret = sprintf(page, "%s\n", mddev->clevel);
3301 	else if (mddev->level != LEVEL_NONE)
3302 		ret = sprintf(page, "%d\n", mddev->level);
3303 	else
3304 		ret = 0;
3305 	spin_unlock(&mddev->lock);
3306 	return ret;
3307 }
3308 
3309 static ssize_t
3310 level_store(struct mddev *mddev, const char *buf, size_t len)
3311 {
3312 	char clevel[16];
3313 	ssize_t rv;
3314 	size_t slen = len;
3315 	struct md_personality *pers, *oldpers;
3316 	long level;
3317 	void *priv, *oldpriv;
3318 	struct md_rdev *rdev;
3319 
3320 	if (slen == 0 || slen >= sizeof(clevel))
3321 		return -EINVAL;
3322 
3323 	rv = mddev_lock(mddev);
3324 	if (rv)
3325 		return rv;
3326 
3327 	if (mddev->pers == NULL) {
3328 		strncpy(mddev->clevel, buf, slen);
3329 		if (mddev->clevel[slen-1] == '\n')
3330 			slen--;
3331 		mddev->clevel[slen] = 0;
3332 		mddev->level = LEVEL_NONE;
3333 		rv = len;
3334 		goto out_unlock;
3335 	}
3336 	rv = -EROFS;
3337 	if (mddev->ro)
3338 		goto out_unlock;
3339 
3340 	/* request to change the personality.  Need to ensure:
3341 	 *  - array is not engaged in resync/recovery/reshape
3342 	 *  - old personality can be suspended
3343 	 *  - new personality will access other array.
3344 	 */
3345 
3346 	rv = -EBUSY;
3347 	if (mddev->sync_thread ||
3348 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3349 	    mddev->reshape_position != MaxSector ||
3350 	    mddev->sysfs_active)
3351 		goto out_unlock;
3352 
3353 	rv = -EINVAL;
3354 	if (!mddev->pers->quiesce) {
3355 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3356 		       mdname(mddev), mddev->pers->name);
3357 		goto out_unlock;
3358 	}
3359 
3360 	/* Now find the new personality */
3361 	strncpy(clevel, buf, slen);
3362 	if (clevel[slen-1] == '\n')
3363 		slen--;
3364 	clevel[slen] = 0;
3365 	if (kstrtol(clevel, 10, &level))
3366 		level = LEVEL_NONE;
3367 
3368 	if (request_module("md-%s", clevel) != 0)
3369 		request_module("md-level-%s", clevel);
3370 	spin_lock(&pers_lock);
3371 	pers = find_pers(level, clevel);
3372 	if (!pers || !try_module_get(pers->owner)) {
3373 		spin_unlock(&pers_lock);
3374 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3375 		rv = -EINVAL;
3376 		goto out_unlock;
3377 	}
3378 	spin_unlock(&pers_lock);
3379 
3380 	if (pers == mddev->pers) {
3381 		/* Nothing to do! */
3382 		module_put(pers->owner);
3383 		rv = len;
3384 		goto out_unlock;
3385 	}
3386 	if (!pers->takeover) {
3387 		module_put(pers->owner);
3388 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3389 		       mdname(mddev), clevel);
3390 		rv = -EINVAL;
3391 		goto out_unlock;
3392 	}
3393 
3394 	rdev_for_each(rdev, mddev)
3395 		rdev->new_raid_disk = rdev->raid_disk;
3396 
3397 	/* ->takeover must set new_* and/or delta_disks
3398 	 * if it succeeds, and may set them when it fails.
3399 	 */
3400 	priv = pers->takeover(mddev);
3401 	if (IS_ERR(priv)) {
3402 		mddev->new_level = mddev->level;
3403 		mddev->new_layout = mddev->layout;
3404 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3405 		mddev->raid_disks -= mddev->delta_disks;
3406 		mddev->delta_disks = 0;
3407 		mddev->reshape_backwards = 0;
3408 		module_put(pers->owner);
3409 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3410 		       mdname(mddev), clevel);
3411 		rv = PTR_ERR(priv);
3412 		goto out_unlock;
3413 	}
3414 
3415 	/* Looks like we have a winner */
3416 	mddev_suspend(mddev);
3417 	mddev_detach(mddev);
3418 
3419 	spin_lock(&mddev->lock);
3420 	oldpers = mddev->pers;
3421 	oldpriv = mddev->private;
3422 	mddev->pers = pers;
3423 	mddev->private = priv;
3424 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3425 	mddev->level = mddev->new_level;
3426 	mddev->layout = mddev->new_layout;
3427 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3428 	mddev->delta_disks = 0;
3429 	mddev->reshape_backwards = 0;
3430 	mddev->degraded = 0;
3431 	spin_unlock(&mddev->lock);
3432 
3433 	if (oldpers->sync_request == NULL &&
3434 	    mddev->external) {
3435 		/* We are converting from a no-redundancy array
3436 		 * to a redundancy array and metadata is managed
3437 		 * externally so we need to be sure that writes
3438 		 * won't block due to a need to transition
3439 		 *      clean->dirty
3440 		 * until external management is started.
3441 		 */
3442 		mddev->in_sync = 0;
3443 		mddev->safemode_delay = 0;
3444 		mddev->safemode = 0;
3445 	}
3446 
3447 	oldpers->free(mddev, oldpriv);
3448 
3449 	if (oldpers->sync_request == NULL &&
3450 	    pers->sync_request != NULL) {
3451 		/* need to add the md_redundancy_group */
3452 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3453 			printk(KERN_WARNING
3454 			       "md: cannot register extra attributes for %s\n",
3455 			       mdname(mddev));
3456 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3457 	}
3458 	if (oldpers->sync_request != NULL &&
3459 	    pers->sync_request == NULL) {
3460 		/* need to remove the md_redundancy_group */
3461 		if (mddev->to_remove == NULL)
3462 			mddev->to_remove = &md_redundancy_group;
3463 	}
3464 
3465 	rdev_for_each(rdev, mddev) {
3466 		if (rdev->raid_disk < 0)
3467 			continue;
3468 		if (rdev->new_raid_disk >= mddev->raid_disks)
3469 			rdev->new_raid_disk = -1;
3470 		if (rdev->new_raid_disk == rdev->raid_disk)
3471 			continue;
3472 		sysfs_unlink_rdev(mddev, rdev);
3473 	}
3474 	rdev_for_each(rdev, mddev) {
3475 		if (rdev->raid_disk < 0)
3476 			continue;
3477 		if (rdev->new_raid_disk == rdev->raid_disk)
3478 			continue;
3479 		rdev->raid_disk = rdev->new_raid_disk;
3480 		if (rdev->raid_disk < 0)
3481 			clear_bit(In_sync, &rdev->flags);
3482 		else {
3483 			if (sysfs_link_rdev(mddev, rdev))
3484 				printk(KERN_WARNING "md: cannot register rd%d"
3485 				       " for %s after level change\n",
3486 				       rdev->raid_disk, mdname(mddev));
3487 		}
3488 	}
3489 
3490 	if (pers->sync_request == NULL) {
3491 		/* this is now an array without redundancy, so
3492 		 * it must always be in_sync
3493 		 */
3494 		mddev->in_sync = 1;
3495 		del_timer_sync(&mddev->safemode_timer);
3496 	}
3497 	blk_set_stacking_limits(&mddev->queue->limits);
3498 	pers->run(mddev);
3499 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3500 	mddev_resume(mddev);
3501 	if (!mddev->thread)
3502 		md_update_sb(mddev, 1);
3503 	sysfs_notify(&mddev->kobj, NULL, "level");
3504 	md_new_event(mddev);
3505 	rv = len;
3506 out_unlock:
3507 	mddev_unlock(mddev);
3508 	return rv;
3509 }
3510 
3511 static struct md_sysfs_entry md_level =
3512 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3513 
3514 static ssize_t
3515 layout_show(struct mddev *mddev, char *page)
3516 {
3517 	/* just a number, not meaningful for all levels */
3518 	if (mddev->reshape_position != MaxSector &&
3519 	    mddev->layout != mddev->new_layout)
3520 		return sprintf(page, "%d (%d)\n",
3521 			       mddev->new_layout, mddev->layout);
3522 	return sprintf(page, "%d\n", mddev->layout);
3523 }
3524 
3525 static ssize_t
3526 layout_store(struct mddev *mddev, const char *buf, size_t len)
3527 {
3528 	unsigned int n;
3529 	int err;
3530 
3531 	err = kstrtouint(buf, 10, &n);
3532 	if (err < 0)
3533 		return err;
3534 	err = mddev_lock(mddev);
3535 	if (err)
3536 		return err;
3537 
3538 	if (mddev->pers) {
3539 		if (mddev->pers->check_reshape == NULL)
3540 			err = -EBUSY;
3541 		else if (mddev->ro)
3542 			err = -EROFS;
3543 		else {
3544 			mddev->new_layout = n;
3545 			err = mddev->pers->check_reshape(mddev);
3546 			if (err)
3547 				mddev->new_layout = mddev->layout;
3548 		}
3549 	} else {
3550 		mddev->new_layout = n;
3551 		if (mddev->reshape_position == MaxSector)
3552 			mddev->layout = n;
3553 	}
3554 	mddev_unlock(mddev);
3555 	return err ?: len;
3556 }
3557 static struct md_sysfs_entry md_layout =
3558 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3559 
3560 static ssize_t
3561 raid_disks_show(struct mddev *mddev, char *page)
3562 {
3563 	if (mddev->raid_disks == 0)
3564 		return 0;
3565 	if (mddev->reshape_position != MaxSector &&
3566 	    mddev->delta_disks != 0)
3567 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3568 			       mddev->raid_disks - mddev->delta_disks);
3569 	return sprintf(page, "%d\n", mddev->raid_disks);
3570 }
3571 
3572 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3573 
3574 static ssize_t
3575 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3576 {
3577 	unsigned int n;
3578 	int err;
3579 
3580 	err = kstrtouint(buf, 10, &n);
3581 	if (err < 0)
3582 		return err;
3583 
3584 	err = mddev_lock(mddev);
3585 	if (err)
3586 		return err;
3587 	if (mddev->pers)
3588 		err = update_raid_disks(mddev, n);
3589 	else if (mddev->reshape_position != MaxSector) {
3590 		struct md_rdev *rdev;
3591 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3592 
3593 		err = -EINVAL;
3594 		rdev_for_each(rdev, mddev) {
3595 			if (olddisks < n &&
3596 			    rdev->data_offset < rdev->new_data_offset)
3597 				goto out_unlock;
3598 			if (olddisks > n &&
3599 			    rdev->data_offset > rdev->new_data_offset)
3600 				goto out_unlock;
3601 		}
3602 		err = 0;
3603 		mddev->delta_disks = n - olddisks;
3604 		mddev->raid_disks = n;
3605 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3606 	} else
3607 		mddev->raid_disks = n;
3608 out_unlock:
3609 	mddev_unlock(mddev);
3610 	return err ? err : len;
3611 }
3612 static struct md_sysfs_entry md_raid_disks =
3613 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3614 
3615 static ssize_t
3616 chunk_size_show(struct mddev *mddev, char *page)
3617 {
3618 	if (mddev->reshape_position != MaxSector &&
3619 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3620 		return sprintf(page, "%d (%d)\n",
3621 			       mddev->new_chunk_sectors << 9,
3622 			       mddev->chunk_sectors << 9);
3623 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3624 }
3625 
3626 static ssize_t
3627 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3628 {
3629 	unsigned long n;
3630 	int err;
3631 
3632 	err = kstrtoul(buf, 10, &n);
3633 	if (err < 0)
3634 		return err;
3635 
3636 	err = mddev_lock(mddev);
3637 	if (err)
3638 		return err;
3639 	if (mddev->pers) {
3640 		if (mddev->pers->check_reshape == NULL)
3641 			err = -EBUSY;
3642 		else if (mddev->ro)
3643 			err = -EROFS;
3644 		else {
3645 			mddev->new_chunk_sectors = n >> 9;
3646 			err = mddev->pers->check_reshape(mddev);
3647 			if (err)
3648 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3649 		}
3650 	} else {
3651 		mddev->new_chunk_sectors = n >> 9;
3652 		if (mddev->reshape_position == MaxSector)
3653 			mddev->chunk_sectors = n >> 9;
3654 	}
3655 	mddev_unlock(mddev);
3656 	return err ?: len;
3657 }
3658 static struct md_sysfs_entry md_chunk_size =
3659 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3660 
3661 static ssize_t
3662 resync_start_show(struct mddev *mddev, char *page)
3663 {
3664 	if (mddev->recovery_cp == MaxSector)
3665 		return sprintf(page, "none\n");
3666 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3667 }
3668 
3669 static ssize_t
3670 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3671 {
3672 	unsigned long long n;
3673 	int err;
3674 
3675 	if (cmd_match(buf, "none"))
3676 		n = MaxSector;
3677 	else {
3678 		err = kstrtoull(buf, 10, &n);
3679 		if (err < 0)
3680 			return err;
3681 		if (n != (sector_t)n)
3682 			return -EINVAL;
3683 	}
3684 
3685 	err = mddev_lock(mddev);
3686 	if (err)
3687 		return err;
3688 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3689 		err = -EBUSY;
3690 
3691 	if (!err) {
3692 		mddev->recovery_cp = n;
3693 		if (mddev->pers)
3694 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3695 	}
3696 	mddev_unlock(mddev);
3697 	return err ?: len;
3698 }
3699 static struct md_sysfs_entry md_resync_start =
3700 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3701 		resync_start_show, resync_start_store);
3702 
3703 /*
3704  * The array state can be:
3705  *
3706  * clear
3707  *     No devices, no size, no level
3708  *     Equivalent to STOP_ARRAY ioctl
3709  * inactive
3710  *     May have some settings, but array is not active
3711  *        all IO results in error
3712  *     When written, doesn't tear down array, but just stops it
3713  * suspended (not supported yet)
3714  *     All IO requests will block. The array can be reconfigured.
3715  *     Writing this, if accepted, will block until array is quiescent
3716  * readonly
3717  *     no resync can happen.  no superblocks get written.
3718  *     write requests fail
3719  * read-auto
3720  *     like readonly, but behaves like 'clean' on a write request.
3721  *
3722  * clean - no pending writes, but otherwise active.
3723  *     When written to inactive array, starts without resync
3724  *     If a write request arrives then
3725  *       if metadata is known, mark 'dirty' and switch to 'active'.
3726  *       if not known, block and switch to write-pending
3727  *     If written to an active array that has pending writes, then fails.
3728  * active
3729  *     fully active: IO and resync can be happening.
3730  *     When written to inactive array, starts with resync
3731  *
3732  * write-pending
3733  *     clean, but writes are blocked waiting for 'active' to be written.
3734  *
3735  * active-idle
3736  *     like active, but no writes have been seen for a while (100msec).
3737  *
3738  */
3739 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3740 		   write_pending, active_idle, bad_word};
3741 static char *array_states[] = {
3742 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3743 	"write-pending", "active-idle", NULL };
3744 
3745 static int match_word(const char *word, char **list)
3746 {
3747 	int n;
3748 	for (n=0; list[n]; n++)
3749 		if (cmd_match(word, list[n]))
3750 			break;
3751 	return n;
3752 }
3753 
3754 static ssize_t
3755 array_state_show(struct mddev *mddev, char *page)
3756 {
3757 	enum array_state st = inactive;
3758 
3759 	if (mddev->pers)
3760 		switch(mddev->ro) {
3761 		case 1:
3762 			st = readonly;
3763 			break;
3764 		case 2:
3765 			st = read_auto;
3766 			break;
3767 		case 0:
3768 			if (mddev->in_sync)
3769 				st = clean;
3770 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3771 				st = write_pending;
3772 			else if (mddev->safemode)
3773 				st = active_idle;
3774 			else
3775 				st = active;
3776 		}
3777 	else {
3778 		if (list_empty(&mddev->disks) &&
3779 		    mddev->raid_disks == 0 &&
3780 		    mddev->dev_sectors == 0)
3781 			st = clear;
3782 		else
3783 			st = inactive;
3784 	}
3785 	return sprintf(page, "%s\n", array_states[st]);
3786 }
3787 
3788 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3789 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3790 static int do_md_run(struct mddev *mddev);
3791 static int restart_array(struct mddev *mddev);
3792 
3793 static ssize_t
3794 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3795 {
3796 	int err;
3797 	enum array_state st = match_word(buf, array_states);
3798 
3799 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3800 		/* don't take reconfig_mutex when toggling between
3801 		 * clean and active
3802 		 */
3803 		spin_lock(&mddev->lock);
3804 		if (st == active) {
3805 			restart_array(mddev);
3806 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3807 			wake_up(&mddev->sb_wait);
3808 			err = 0;
3809 		} else /* st == clean */ {
3810 			restart_array(mddev);
3811 			if (atomic_read(&mddev->writes_pending) == 0) {
3812 				if (mddev->in_sync == 0) {
3813 					mddev->in_sync = 1;
3814 					if (mddev->safemode == 1)
3815 						mddev->safemode = 0;
3816 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3817 				}
3818 				err = 0;
3819 			} else
3820 				err = -EBUSY;
3821 		}
3822 		spin_unlock(&mddev->lock);
3823 		return err ?: len;
3824 	}
3825 	err = mddev_lock(mddev);
3826 	if (err)
3827 		return err;
3828 	err = -EINVAL;
3829 	switch(st) {
3830 	case bad_word:
3831 		break;
3832 	case clear:
3833 		/* stopping an active array */
3834 		err = do_md_stop(mddev, 0, NULL);
3835 		break;
3836 	case inactive:
3837 		/* stopping an active array */
3838 		if (mddev->pers)
3839 			err = do_md_stop(mddev, 2, NULL);
3840 		else
3841 			err = 0; /* already inactive */
3842 		break;
3843 	case suspended:
3844 		break; /* not supported yet */
3845 	case readonly:
3846 		if (mddev->pers)
3847 			err = md_set_readonly(mddev, NULL);
3848 		else {
3849 			mddev->ro = 1;
3850 			set_disk_ro(mddev->gendisk, 1);
3851 			err = do_md_run(mddev);
3852 		}
3853 		break;
3854 	case read_auto:
3855 		if (mddev->pers) {
3856 			if (mddev->ro == 0)
3857 				err = md_set_readonly(mddev, NULL);
3858 			else if (mddev->ro == 1)
3859 				err = restart_array(mddev);
3860 			if (err == 0) {
3861 				mddev->ro = 2;
3862 				set_disk_ro(mddev->gendisk, 0);
3863 			}
3864 		} else {
3865 			mddev->ro = 2;
3866 			err = do_md_run(mddev);
3867 		}
3868 		break;
3869 	case clean:
3870 		if (mddev->pers) {
3871 			restart_array(mddev);
3872 			spin_lock(&mddev->lock);
3873 			if (atomic_read(&mddev->writes_pending) == 0) {
3874 				if (mddev->in_sync == 0) {
3875 					mddev->in_sync = 1;
3876 					if (mddev->safemode == 1)
3877 						mddev->safemode = 0;
3878 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3879 				}
3880 				err = 0;
3881 			} else
3882 				err = -EBUSY;
3883 			spin_unlock(&mddev->lock);
3884 		} else
3885 			err = -EINVAL;
3886 		break;
3887 	case active:
3888 		if (mddev->pers) {
3889 			restart_array(mddev);
3890 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3891 			wake_up(&mddev->sb_wait);
3892 			err = 0;
3893 		} else {
3894 			mddev->ro = 0;
3895 			set_disk_ro(mddev->gendisk, 0);
3896 			err = do_md_run(mddev);
3897 		}
3898 		break;
3899 	case write_pending:
3900 	case active_idle:
3901 		/* these cannot be set */
3902 		break;
3903 	}
3904 
3905 	if (!err) {
3906 		if (mddev->hold_active == UNTIL_IOCTL)
3907 			mddev->hold_active = 0;
3908 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3909 	}
3910 	mddev_unlock(mddev);
3911 	return err ?: len;
3912 }
3913 static struct md_sysfs_entry md_array_state =
3914 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3915 
3916 static ssize_t
3917 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3918 	return sprintf(page, "%d\n",
3919 		       atomic_read(&mddev->max_corr_read_errors));
3920 }
3921 
3922 static ssize_t
3923 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3924 {
3925 	unsigned int n;
3926 	int rv;
3927 
3928 	rv = kstrtouint(buf, 10, &n);
3929 	if (rv < 0)
3930 		return rv;
3931 	atomic_set(&mddev->max_corr_read_errors, n);
3932 	return len;
3933 }
3934 
3935 static struct md_sysfs_entry max_corr_read_errors =
3936 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3937 	max_corrected_read_errors_store);
3938 
3939 static ssize_t
3940 null_show(struct mddev *mddev, char *page)
3941 {
3942 	return -EINVAL;
3943 }
3944 
3945 static ssize_t
3946 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3947 {
3948 	/* buf must be %d:%d\n? giving major and minor numbers */
3949 	/* The new device is added to the array.
3950 	 * If the array has a persistent superblock, we read the
3951 	 * superblock to initialise info and check validity.
3952 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3953 	 * which mainly checks size.
3954 	 */
3955 	char *e;
3956 	int major = simple_strtoul(buf, &e, 10);
3957 	int minor;
3958 	dev_t dev;
3959 	struct md_rdev *rdev;
3960 	int err;
3961 
3962 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3963 		return -EINVAL;
3964 	minor = simple_strtoul(e+1, &e, 10);
3965 	if (*e && *e != '\n')
3966 		return -EINVAL;
3967 	dev = MKDEV(major, minor);
3968 	if (major != MAJOR(dev) ||
3969 	    minor != MINOR(dev))
3970 		return -EOVERFLOW;
3971 
3972 	flush_workqueue(md_misc_wq);
3973 
3974 	err = mddev_lock(mddev);
3975 	if (err)
3976 		return err;
3977 	if (mddev->persistent) {
3978 		rdev = md_import_device(dev, mddev->major_version,
3979 					mddev->minor_version);
3980 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3981 			struct md_rdev *rdev0
3982 				= list_entry(mddev->disks.next,
3983 					     struct md_rdev, same_set);
3984 			err = super_types[mddev->major_version]
3985 				.load_super(rdev, rdev0, mddev->minor_version);
3986 			if (err < 0)
3987 				goto out;
3988 		}
3989 	} else if (mddev->external)
3990 		rdev = md_import_device(dev, -2, -1);
3991 	else
3992 		rdev = md_import_device(dev, -1, -1);
3993 
3994 	if (IS_ERR(rdev)) {
3995 		mddev_unlock(mddev);
3996 		return PTR_ERR(rdev);
3997 	}
3998 	err = bind_rdev_to_array(rdev, mddev);
3999  out:
4000 	if (err)
4001 		export_rdev(rdev);
4002 	mddev_unlock(mddev);
4003 	return err ? err : len;
4004 }
4005 
4006 static struct md_sysfs_entry md_new_device =
4007 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4008 
4009 static ssize_t
4010 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4011 {
4012 	char *end;
4013 	unsigned long chunk, end_chunk;
4014 	int err;
4015 
4016 	err = mddev_lock(mddev);
4017 	if (err)
4018 		return err;
4019 	if (!mddev->bitmap)
4020 		goto out;
4021 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4022 	while (*buf) {
4023 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4024 		if (buf == end) break;
4025 		if (*end == '-') { /* range */
4026 			buf = end + 1;
4027 			end_chunk = simple_strtoul(buf, &end, 0);
4028 			if (buf == end) break;
4029 		}
4030 		if (*end && !isspace(*end)) break;
4031 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4032 		buf = skip_spaces(end);
4033 	}
4034 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4035 out:
4036 	mddev_unlock(mddev);
4037 	return len;
4038 }
4039 
4040 static struct md_sysfs_entry md_bitmap =
4041 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4042 
4043 static ssize_t
4044 size_show(struct mddev *mddev, char *page)
4045 {
4046 	return sprintf(page, "%llu\n",
4047 		(unsigned long long)mddev->dev_sectors / 2);
4048 }
4049 
4050 static int update_size(struct mddev *mddev, sector_t num_sectors);
4051 
4052 static ssize_t
4053 size_store(struct mddev *mddev, const char *buf, size_t len)
4054 {
4055 	/* If array is inactive, we can reduce the component size, but
4056 	 * not increase it (except from 0).
4057 	 * If array is active, we can try an on-line resize
4058 	 */
4059 	sector_t sectors;
4060 	int err = strict_blocks_to_sectors(buf, &sectors);
4061 
4062 	if (err < 0)
4063 		return err;
4064 	err = mddev_lock(mddev);
4065 	if (err)
4066 		return err;
4067 	if (mddev->pers) {
4068 		if (mddev_is_clustered(mddev))
4069 			md_cluster_ops->metadata_update_start(mddev);
4070 		err = update_size(mddev, sectors);
4071 		md_update_sb(mddev, 1);
4072 		if (mddev_is_clustered(mddev))
4073 			md_cluster_ops->metadata_update_finish(mddev);
4074 	} else {
4075 		if (mddev->dev_sectors == 0 ||
4076 		    mddev->dev_sectors > sectors)
4077 			mddev->dev_sectors = sectors;
4078 		else
4079 			err = -ENOSPC;
4080 	}
4081 	mddev_unlock(mddev);
4082 	return err ? err : len;
4083 }
4084 
4085 static struct md_sysfs_entry md_size =
4086 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4087 
4088 /* Metadata version.
4089  * This is one of
4090  *   'none' for arrays with no metadata (good luck...)
4091  *   'external' for arrays with externally managed metadata,
4092  * or N.M for internally known formats
4093  */
4094 static ssize_t
4095 metadata_show(struct mddev *mddev, char *page)
4096 {
4097 	if (mddev->persistent)
4098 		return sprintf(page, "%d.%d\n",
4099 			       mddev->major_version, mddev->minor_version);
4100 	else if (mddev->external)
4101 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4102 	else
4103 		return sprintf(page, "none\n");
4104 }
4105 
4106 static ssize_t
4107 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4108 {
4109 	int major, minor;
4110 	char *e;
4111 	int err;
4112 	/* Changing the details of 'external' metadata is
4113 	 * always permitted.  Otherwise there must be
4114 	 * no devices attached to the array.
4115 	 */
4116 
4117 	err = mddev_lock(mddev);
4118 	if (err)
4119 		return err;
4120 	err = -EBUSY;
4121 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4122 		;
4123 	else if (!list_empty(&mddev->disks))
4124 		goto out_unlock;
4125 
4126 	err = 0;
4127 	if (cmd_match(buf, "none")) {
4128 		mddev->persistent = 0;
4129 		mddev->external = 0;
4130 		mddev->major_version = 0;
4131 		mddev->minor_version = 90;
4132 		goto out_unlock;
4133 	}
4134 	if (strncmp(buf, "external:", 9) == 0) {
4135 		size_t namelen = len-9;
4136 		if (namelen >= sizeof(mddev->metadata_type))
4137 			namelen = sizeof(mddev->metadata_type)-1;
4138 		strncpy(mddev->metadata_type, buf+9, namelen);
4139 		mddev->metadata_type[namelen] = 0;
4140 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4141 			mddev->metadata_type[--namelen] = 0;
4142 		mddev->persistent = 0;
4143 		mddev->external = 1;
4144 		mddev->major_version = 0;
4145 		mddev->minor_version = 90;
4146 		goto out_unlock;
4147 	}
4148 	major = simple_strtoul(buf, &e, 10);
4149 	err = -EINVAL;
4150 	if (e==buf || *e != '.')
4151 		goto out_unlock;
4152 	buf = e+1;
4153 	minor = simple_strtoul(buf, &e, 10);
4154 	if (e==buf || (*e && *e != '\n') )
4155 		goto out_unlock;
4156 	err = -ENOENT;
4157 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4158 		goto out_unlock;
4159 	mddev->major_version = major;
4160 	mddev->minor_version = minor;
4161 	mddev->persistent = 1;
4162 	mddev->external = 0;
4163 	err = 0;
4164 out_unlock:
4165 	mddev_unlock(mddev);
4166 	return err ?: len;
4167 }
4168 
4169 static struct md_sysfs_entry md_metadata =
4170 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4171 
4172 static ssize_t
4173 action_show(struct mddev *mddev, char *page)
4174 {
4175 	char *type = "idle";
4176 	unsigned long recovery = mddev->recovery;
4177 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4178 		type = "frozen";
4179 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4180 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4181 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4182 			type = "reshape";
4183 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4184 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4185 				type = "resync";
4186 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4187 				type = "check";
4188 			else
4189 				type = "repair";
4190 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4191 			type = "recover";
4192 	}
4193 	return sprintf(page, "%s\n", type);
4194 }
4195 
4196 static ssize_t
4197 action_store(struct mddev *mddev, const char *page, size_t len)
4198 {
4199 	if (!mddev->pers || !mddev->pers->sync_request)
4200 		return -EINVAL;
4201 
4202 
4203 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4204 		if (cmd_match(page, "frozen"))
4205 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4206 		else
4207 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4208 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4209 		    mddev_lock(mddev) == 0) {
4210 			flush_workqueue(md_misc_wq);
4211 			if (mddev->sync_thread) {
4212 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4213 				md_reap_sync_thread(mddev);
4214 			}
4215 			mddev_unlock(mddev);
4216 		}
4217 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4218 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4219 		return -EBUSY;
4220 	else if (cmd_match(page, "resync"))
4221 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4222 	else if (cmd_match(page, "recover")) {
4223 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4224 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4225 	} else if (cmd_match(page, "reshape")) {
4226 		int err;
4227 		if (mddev->pers->start_reshape == NULL)
4228 			return -EINVAL;
4229 		err = mddev_lock(mddev);
4230 		if (!err) {
4231 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4232 			err = mddev->pers->start_reshape(mddev);
4233 			mddev_unlock(mddev);
4234 		}
4235 		if (err)
4236 			return err;
4237 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4238 	} else {
4239 		if (cmd_match(page, "check"))
4240 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4241 		else if (!cmd_match(page, "repair"))
4242 			return -EINVAL;
4243 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4244 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4245 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4246 	}
4247 	if (mddev->ro == 2) {
4248 		/* A write to sync_action is enough to justify
4249 		 * canceling read-auto mode
4250 		 */
4251 		mddev->ro = 0;
4252 		md_wakeup_thread(mddev->sync_thread);
4253 	}
4254 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4255 	md_wakeup_thread(mddev->thread);
4256 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4257 	return len;
4258 }
4259 
4260 static struct md_sysfs_entry md_scan_mode =
4261 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4262 
4263 static ssize_t
4264 last_sync_action_show(struct mddev *mddev, char *page)
4265 {
4266 	return sprintf(page, "%s\n", mddev->last_sync_action);
4267 }
4268 
4269 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4270 
4271 static ssize_t
4272 mismatch_cnt_show(struct mddev *mddev, char *page)
4273 {
4274 	return sprintf(page, "%llu\n",
4275 		       (unsigned long long)
4276 		       atomic64_read(&mddev->resync_mismatches));
4277 }
4278 
4279 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4280 
4281 static ssize_t
4282 sync_min_show(struct mddev *mddev, char *page)
4283 {
4284 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4285 		       mddev->sync_speed_min ? "local": "system");
4286 }
4287 
4288 static ssize_t
4289 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4290 {
4291 	unsigned int min;
4292 	int rv;
4293 
4294 	if (strncmp(buf, "system", 6)==0) {
4295 		min = 0;
4296 	} else {
4297 		rv = kstrtouint(buf, 10, &min);
4298 		if (rv < 0)
4299 			return rv;
4300 		if (min == 0)
4301 			return -EINVAL;
4302 	}
4303 	mddev->sync_speed_min = min;
4304 	return len;
4305 }
4306 
4307 static struct md_sysfs_entry md_sync_min =
4308 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4309 
4310 static ssize_t
4311 sync_max_show(struct mddev *mddev, char *page)
4312 {
4313 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4314 		       mddev->sync_speed_max ? "local": "system");
4315 }
4316 
4317 static ssize_t
4318 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4319 {
4320 	unsigned int max;
4321 	int rv;
4322 
4323 	if (strncmp(buf, "system", 6)==0) {
4324 		max = 0;
4325 	} else {
4326 		rv = kstrtouint(buf, 10, &max);
4327 		if (rv < 0)
4328 			return rv;
4329 		if (max == 0)
4330 			return -EINVAL;
4331 	}
4332 	mddev->sync_speed_max = max;
4333 	return len;
4334 }
4335 
4336 static struct md_sysfs_entry md_sync_max =
4337 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4338 
4339 static ssize_t
4340 degraded_show(struct mddev *mddev, char *page)
4341 {
4342 	return sprintf(page, "%d\n", mddev->degraded);
4343 }
4344 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4345 
4346 static ssize_t
4347 sync_force_parallel_show(struct mddev *mddev, char *page)
4348 {
4349 	return sprintf(page, "%d\n", mddev->parallel_resync);
4350 }
4351 
4352 static ssize_t
4353 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4354 {
4355 	long n;
4356 
4357 	if (kstrtol(buf, 10, &n))
4358 		return -EINVAL;
4359 
4360 	if (n != 0 && n != 1)
4361 		return -EINVAL;
4362 
4363 	mddev->parallel_resync = n;
4364 
4365 	if (mddev->sync_thread)
4366 		wake_up(&resync_wait);
4367 
4368 	return len;
4369 }
4370 
4371 /* force parallel resync, even with shared block devices */
4372 static struct md_sysfs_entry md_sync_force_parallel =
4373 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4374        sync_force_parallel_show, sync_force_parallel_store);
4375 
4376 static ssize_t
4377 sync_speed_show(struct mddev *mddev, char *page)
4378 {
4379 	unsigned long resync, dt, db;
4380 	if (mddev->curr_resync == 0)
4381 		return sprintf(page, "none\n");
4382 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4383 	dt = (jiffies - mddev->resync_mark) / HZ;
4384 	if (!dt) dt++;
4385 	db = resync - mddev->resync_mark_cnt;
4386 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4387 }
4388 
4389 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4390 
4391 static ssize_t
4392 sync_completed_show(struct mddev *mddev, char *page)
4393 {
4394 	unsigned long long max_sectors, resync;
4395 
4396 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4397 		return sprintf(page, "none\n");
4398 
4399 	if (mddev->curr_resync == 1 ||
4400 	    mddev->curr_resync == 2)
4401 		return sprintf(page, "delayed\n");
4402 
4403 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4404 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4405 		max_sectors = mddev->resync_max_sectors;
4406 	else
4407 		max_sectors = mddev->dev_sectors;
4408 
4409 	resync = mddev->curr_resync_completed;
4410 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4411 }
4412 
4413 static struct md_sysfs_entry md_sync_completed =
4414 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4415 
4416 static ssize_t
4417 min_sync_show(struct mddev *mddev, char *page)
4418 {
4419 	return sprintf(page, "%llu\n",
4420 		       (unsigned long long)mddev->resync_min);
4421 }
4422 static ssize_t
4423 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4424 {
4425 	unsigned long long min;
4426 	int err;
4427 
4428 	if (kstrtoull(buf, 10, &min))
4429 		return -EINVAL;
4430 
4431 	spin_lock(&mddev->lock);
4432 	err = -EINVAL;
4433 	if (min > mddev->resync_max)
4434 		goto out_unlock;
4435 
4436 	err = -EBUSY;
4437 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4438 		goto out_unlock;
4439 
4440 	/* Round down to multiple of 4K for safety */
4441 	mddev->resync_min = round_down(min, 8);
4442 	err = 0;
4443 
4444 out_unlock:
4445 	spin_unlock(&mddev->lock);
4446 	return err ?: len;
4447 }
4448 
4449 static struct md_sysfs_entry md_min_sync =
4450 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4451 
4452 static ssize_t
4453 max_sync_show(struct mddev *mddev, char *page)
4454 {
4455 	if (mddev->resync_max == MaxSector)
4456 		return sprintf(page, "max\n");
4457 	else
4458 		return sprintf(page, "%llu\n",
4459 			       (unsigned long long)mddev->resync_max);
4460 }
4461 static ssize_t
4462 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4463 {
4464 	int err;
4465 	spin_lock(&mddev->lock);
4466 	if (strncmp(buf, "max", 3) == 0)
4467 		mddev->resync_max = MaxSector;
4468 	else {
4469 		unsigned long long max;
4470 		int chunk;
4471 
4472 		err = -EINVAL;
4473 		if (kstrtoull(buf, 10, &max))
4474 			goto out_unlock;
4475 		if (max < mddev->resync_min)
4476 			goto out_unlock;
4477 
4478 		err = -EBUSY;
4479 		if (max < mddev->resync_max &&
4480 		    mddev->ro == 0 &&
4481 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4482 			goto out_unlock;
4483 
4484 		/* Must be a multiple of chunk_size */
4485 		chunk = mddev->chunk_sectors;
4486 		if (chunk) {
4487 			sector_t temp = max;
4488 
4489 			err = -EINVAL;
4490 			if (sector_div(temp, chunk))
4491 				goto out_unlock;
4492 		}
4493 		mddev->resync_max = max;
4494 	}
4495 	wake_up(&mddev->recovery_wait);
4496 	err = 0;
4497 out_unlock:
4498 	spin_unlock(&mddev->lock);
4499 	return err ?: len;
4500 }
4501 
4502 static struct md_sysfs_entry md_max_sync =
4503 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4504 
4505 static ssize_t
4506 suspend_lo_show(struct mddev *mddev, char *page)
4507 {
4508 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4509 }
4510 
4511 static ssize_t
4512 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4513 {
4514 	unsigned long long old, new;
4515 	int err;
4516 
4517 	err = kstrtoull(buf, 10, &new);
4518 	if (err < 0)
4519 		return err;
4520 	if (new != (sector_t)new)
4521 		return -EINVAL;
4522 
4523 	err = mddev_lock(mddev);
4524 	if (err)
4525 		return err;
4526 	err = -EINVAL;
4527 	if (mddev->pers == NULL ||
4528 	    mddev->pers->quiesce == NULL)
4529 		goto unlock;
4530 	old = mddev->suspend_lo;
4531 	mddev->suspend_lo = new;
4532 	if (new >= old)
4533 		/* Shrinking suspended region */
4534 		mddev->pers->quiesce(mddev, 2);
4535 	else {
4536 		/* Expanding suspended region - need to wait */
4537 		mddev->pers->quiesce(mddev, 1);
4538 		mddev->pers->quiesce(mddev, 0);
4539 	}
4540 	err = 0;
4541 unlock:
4542 	mddev_unlock(mddev);
4543 	return err ?: len;
4544 }
4545 static struct md_sysfs_entry md_suspend_lo =
4546 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4547 
4548 static ssize_t
4549 suspend_hi_show(struct mddev *mddev, char *page)
4550 {
4551 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4552 }
4553 
4554 static ssize_t
4555 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4556 {
4557 	unsigned long long old, new;
4558 	int err;
4559 
4560 	err = kstrtoull(buf, 10, &new);
4561 	if (err < 0)
4562 		return err;
4563 	if (new != (sector_t)new)
4564 		return -EINVAL;
4565 
4566 	err = mddev_lock(mddev);
4567 	if (err)
4568 		return err;
4569 	err = -EINVAL;
4570 	if (mddev->pers == NULL ||
4571 	    mddev->pers->quiesce == NULL)
4572 		goto unlock;
4573 	old = mddev->suspend_hi;
4574 	mddev->suspend_hi = new;
4575 	if (new <= old)
4576 		/* Shrinking suspended region */
4577 		mddev->pers->quiesce(mddev, 2);
4578 	else {
4579 		/* Expanding suspended region - need to wait */
4580 		mddev->pers->quiesce(mddev, 1);
4581 		mddev->pers->quiesce(mddev, 0);
4582 	}
4583 	err = 0;
4584 unlock:
4585 	mddev_unlock(mddev);
4586 	return err ?: len;
4587 }
4588 static struct md_sysfs_entry md_suspend_hi =
4589 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4590 
4591 static ssize_t
4592 reshape_position_show(struct mddev *mddev, char *page)
4593 {
4594 	if (mddev->reshape_position != MaxSector)
4595 		return sprintf(page, "%llu\n",
4596 			       (unsigned long long)mddev->reshape_position);
4597 	strcpy(page, "none\n");
4598 	return 5;
4599 }
4600 
4601 static ssize_t
4602 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4603 {
4604 	struct md_rdev *rdev;
4605 	unsigned long long new;
4606 	int err;
4607 
4608 	err = kstrtoull(buf, 10, &new);
4609 	if (err < 0)
4610 		return err;
4611 	if (new != (sector_t)new)
4612 		return -EINVAL;
4613 	err = mddev_lock(mddev);
4614 	if (err)
4615 		return err;
4616 	err = -EBUSY;
4617 	if (mddev->pers)
4618 		goto unlock;
4619 	mddev->reshape_position = new;
4620 	mddev->delta_disks = 0;
4621 	mddev->reshape_backwards = 0;
4622 	mddev->new_level = mddev->level;
4623 	mddev->new_layout = mddev->layout;
4624 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4625 	rdev_for_each(rdev, mddev)
4626 		rdev->new_data_offset = rdev->data_offset;
4627 	err = 0;
4628 unlock:
4629 	mddev_unlock(mddev);
4630 	return err ?: len;
4631 }
4632 
4633 static struct md_sysfs_entry md_reshape_position =
4634 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4635        reshape_position_store);
4636 
4637 static ssize_t
4638 reshape_direction_show(struct mddev *mddev, char *page)
4639 {
4640 	return sprintf(page, "%s\n",
4641 		       mddev->reshape_backwards ? "backwards" : "forwards");
4642 }
4643 
4644 static ssize_t
4645 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4646 {
4647 	int backwards = 0;
4648 	int err;
4649 
4650 	if (cmd_match(buf, "forwards"))
4651 		backwards = 0;
4652 	else if (cmd_match(buf, "backwards"))
4653 		backwards = 1;
4654 	else
4655 		return -EINVAL;
4656 	if (mddev->reshape_backwards == backwards)
4657 		return len;
4658 
4659 	err = mddev_lock(mddev);
4660 	if (err)
4661 		return err;
4662 	/* check if we are allowed to change */
4663 	if (mddev->delta_disks)
4664 		err = -EBUSY;
4665 	else if (mddev->persistent &&
4666 	    mddev->major_version == 0)
4667 		err =  -EINVAL;
4668 	else
4669 		mddev->reshape_backwards = backwards;
4670 	mddev_unlock(mddev);
4671 	return err ?: len;
4672 }
4673 
4674 static struct md_sysfs_entry md_reshape_direction =
4675 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4676        reshape_direction_store);
4677 
4678 static ssize_t
4679 array_size_show(struct mddev *mddev, char *page)
4680 {
4681 	if (mddev->external_size)
4682 		return sprintf(page, "%llu\n",
4683 			       (unsigned long long)mddev->array_sectors/2);
4684 	else
4685 		return sprintf(page, "default\n");
4686 }
4687 
4688 static ssize_t
4689 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4690 {
4691 	sector_t sectors;
4692 	int err;
4693 
4694 	err = mddev_lock(mddev);
4695 	if (err)
4696 		return err;
4697 
4698 	if (strncmp(buf, "default", 7) == 0) {
4699 		if (mddev->pers)
4700 			sectors = mddev->pers->size(mddev, 0, 0);
4701 		else
4702 			sectors = mddev->array_sectors;
4703 
4704 		mddev->external_size = 0;
4705 	} else {
4706 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4707 			err = -EINVAL;
4708 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4709 			err = -E2BIG;
4710 		else
4711 			mddev->external_size = 1;
4712 	}
4713 
4714 	if (!err) {
4715 		mddev->array_sectors = sectors;
4716 		if (mddev->pers) {
4717 			set_capacity(mddev->gendisk, mddev->array_sectors);
4718 			revalidate_disk(mddev->gendisk);
4719 		}
4720 	}
4721 	mddev_unlock(mddev);
4722 	return err ?: len;
4723 }
4724 
4725 static struct md_sysfs_entry md_array_size =
4726 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4727        array_size_store);
4728 
4729 static struct attribute *md_default_attrs[] = {
4730 	&md_level.attr,
4731 	&md_layout.attr,
4732 	&md_raid_disks.attr,
4733 	&md_chunk_size.attr,
4734 	&md_size.attr,
4735 	&md_resync_start.attr,
4736 	&md_metadata.attr,
4737 	&md_new_device.attr,
4738 	&md_safe_delay.attr,
4739 	&md_array_state.attr,
4740 	&md_reshape_position.attr,
4741 	&md_reshape_direction.attr,
4742 	&md_array_size.attr,
4743 	&max_corr_read_errors.attr,
4744 	NULL,
4745 };
4746 
4747 static struct attribute *md_redundancy_attrs[] = {
4748 	&md_scan_mode.attr,
4749 	&md_last_scan_mode.attr,
4750 	&md_mismatches.attr,
4751 	&md_sync_min.attr,
4752 	&md_sync_max.attr,
4753 	&md_sync_speed.attr,
4754 	&md_sync_force_parallel.attr,
4755 	&md_sync_completed.attr,
4756 	&md_min_sync.attr,
4757 	&md_max_sync.attr,
4758 	&md_suspend_lo.attr,
4759 	&md_suspend_hi.attr,
4760 	&md_bitmap.attr,
4761 	&md_degraded.attr,
4762 	NULL,
4763 };
4764 static struct attribute_group md_redundancy_group = {
4765 	.name = NULL,
4766 	.attrs = md_redundancy_attrs,
4767 };
4768 
4769 static ssize_t
4770 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4771 {
4772 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4773 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4774 	ssize_t rv;
4775 
4776 	if (!entry->show)
4777 		return -EIO;
4778 	spin_lock(&all_mddevs_lock);
4779 	if (list_empty(&mddev->all_mddevs)) {
4780 		spin_unlock(&all_mddevs_lock);
4781 		return -EBUSY;
4782 	}
4783 	mddev_get(mddev);
4784 	spin_unlock(&all_mddevs_lock);
4785 
4786 	rv = entry->show(mddev, page);
4787 	mddev_put(mddev);
4788 	return rv;
4789 }
4790 
4791 static ssize_t
4792 md_attr_store(struct kobject *kobj, struct attribute *attr,
4793 	      const char *page, size_t length)
4794 {
4795 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4796 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4797 	ssize_t rv;
4798 
4799 	if (!entry->store)
4800 		return -EIO;
4801 	if (!capable(CAP_SYS_ADMIN))
4802 		return -EACCES;
4803 	spin_lock(&all_mddevs_lock);
4804 	if (list_empty(&mddev->all_mddevs)) {
4805 		spin_unlock(&all_mddevs_lock);
4806 		return -EBUSY;
4807 	}
4808 	mddev_get(mddev);
4809 	spin_unlock(&all_mddevs_lock);
4810 	rv = entry->store(mddev, page, length);
4811 	mddev_put(mddev);
4812 	return rv;
4813 }
4814 
4815 static void md_free(struct kobject *ko)
4816 {
4817 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4818 
4819 	if (mddev->sysfs_state)
4820 		sysfs_put(mddev->sysfs_state);
4821 
4822 	if (mddev->queue)
4823 		blk_cleanup_queue(mddev->queue);
4824 	if (mddev->gendisk) {
4825 		del_gendisk(mddev->gendisk);
4826 		put_disk(mddev->gendisk);
4827 	}
4828 
4829 	kfree(mddev);
4830 }
4831 
4832 static const struct sysfs_ops md_sysfs_ops = {
4833 	.show	= md_attr_show,
4834 	.store	= md_attr_store,
4835 };
4836 static struct kobj_type md_ktype = {
4837 	.release	= md_free,
4838 	.sysfs_ops	= &md_sysfs_ops,
4839 	.default_attrs	= md_default_attrs,
4840 };
4841 
4842 int mdp_major = 0;
4843 
4844 static void mddev_delayed_delete(struct work_struct *ws)
4845 {
4846 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4847 
4848 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4849 	kobject_del(&mddev->kobj);
4850 	kobject_put(&mddev->kobj);
4851 }
4852 
4853 static int md_alloc(dev_t dev, char *name)
4854 {
4855 	static DEFINE_MUTEX(disks_mutex);
4856 	struct mddev *mddev = mddev_find(dev);
4857 	struct gendisk *disk;
4858 	int partitioned;
4859 	int shift;
4860 	int unit;
4861 	int error;
4862 
4863 	if (!mddev)
4864 		return -ENODEV;
4865 
4866 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4867 	shift = partitioned ? MdpMinorShift : 0;
4868 	unit = MINOR(mddev->unit) >> shift;
4869 
4870 	/* wait for any previous instance of this device to be
4871 	 * completely removed (mddev_delayed_delete).
4872 	 */
4873 	flush_workqueue(md_misc_wq);
4874 
4875 	mutex_lock(&disks_mutex);
4876 	error = -EEXIST;
4877 	if (mddev->gendisk)
4878 		goto abort;
4879 
4880 	if (name) {
4881 		/* Need to ensure that 'name' is not a duplicate.
4882 		 */
4883 		struct mddev *mddev2;
4884 		spin_lock(&all_mddevs_lock);
4885 
4886 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4887 			if (mddev2->gendisk &&
4888 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4889 				spin_unlock(&all_mddevs_lock);
4890 				goto abort;
4891 			}
4892 		spin_unlock(&all_mddevs_lock);
4893 	}
4894 
4895 	error = -ENOMEM;
4896 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4897 	if (!mddev->queue)
4898 		goto abort;
4899 	mddev->queue->queuedata = mddev;
4900 
4901 	blk_queue_make_request(mddev->queue, md_make_request);
4902 	blk_set_stacking_limits(&mddev->queue->limits);
4903 
4904 	disk = alloc_disk(1 << shift);
4905 	if (!disk) {
4906 		blk_cleanup_queue(mddev->queue);
4907 		mddev->queue = NULL;
4908 		goto abort;
4909 	}
4910 	disk->major = MAJOR(mddev->unit);
4911 	disk->first_minor = unit << shift;
4912 	if (name)
4913 		strcpy(disk->disk_name, name);
4914 	else if (partitioned)
4915 		sprintf(disk->disk_name, "md_d%d", unit);
4916 	else
4917 		sprintf(disk->disk_name, "md%d", unit);
4918 	disk->fops = &md_fops;
4919 	disk->private_data = mddev;
4920 	disk->queue = mddev->queue;
4921 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4922 	/* Allow extended partitions.  This makes the
4923 	 * 'mdp' device redundant, but we can't really
4924 	 * remove it now.
4925 	 */
4926 	disk->flags |= GENHD_FL_EXT_DEVT;
4927 	mddev->gendisk = disk;
4928 	/* As soon as we call add_disk(), another thread could get
4929 	 * through to md_open, so make sure it doesn't get too far
4930 	 */
4931 	mutex_lock(&mddev->open_mutex);
4932 	add_disk(disk);
4933 
4934 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4935 				     &disk_to_dev(disk)->kobj, "%s", "md");
4936 	if (error) {
4937 		/* This isn't possible, but as kobject_init_and_add is marked
4938 		 * __must_check, we must do something with the result
4939 		 */
4940 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4941 		       disk->disk_name);
4942 		error = 0;
4943 	}
4944 	if (mddev->kobj.sd &&
4945 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4946 		printk(KERN_DEBUG "pointless warning\n");
4947 	mutex_unlock(&mddev->open_mutex);
4948  abort:
4949 	mutex_unlock(&disks_mutex);
4950 	if (!error && mddev->kobj.sd) {
4951 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4952 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4953 	}
4954 	mddev_put(mddev);
4955 	return error;
4956 }
4957 
4958 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4959 {
4960 	md_alloc(dev, NULL);
4961 	return NULL;
4962 }
4963 
4964 static int add_named_array(const char *val, struct kernel_param *kp)
4965 {
4966 	/* val must be "md_*" where * is not all digits.
4967 	 * We allocate an array with a large free minor number, and
4968 	 * set the name to val.  val must not already be an active name.
4969 	 */
4970 	int len = strlen(val);
4971 	char buf[DISK_NAME_LEN];
4972 
4973 	while (len && val[len-1] == '\n')
4974 		len--;
4975 	if (len >= DISK_NAME_LEN)
4976 		return -E2BIG;
4977 	strlcpy(buf, val, len+1);
4978 	if (strncmp(buf, "md_", 3) != 0)
4979 		return -EINVAL;
4980 	return md_alloc(0, buf);
4981 }
4982 
4983 static void md_safemode_timeout(unsigned long data)
4984 {
4985 	struct mddev *mddev = (struct mddev *) data;
4986 
4987 	if (!atomic_read(&mddev->writes_pending)) {
4988 		mddev->safemode = 1;
4989 		if (mddev->external)
4990 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4991 	}
4992 	md_wakeup_thread(mddev->thread);
4993 }
4994 
4995 static int start_dirty_degraded;
4996 
4997 int md_run(struct mddev *mddev)
4998 {
4999 	int err;
5000 	struct md_rdev *rdev;
5001 	struct md_personality *pers;
5002 
5003 	if (list_empty(&mddev->disks))
5004 		/* cannot run an array with no devices.. */
5005 		return -EINVAL;
5006 
5007 	if (mddev->pers)
5008 		return -EBUSY;
5009 	/* Cannot run until previous stop completes properly */
5010 	if (mddev->sysfs_active)
5011 		return -EBUSY;
5012 
5013 	/*
5014 	 * Analyze all RAID superblock(s)
5015 	 */
5016 	if (!mddev->raid_disks) {
5017 		if (!mddev->persistent)
5018 			return -EINVAL;
5019 		analyze_sbs(mddev);
5020 	}
5021 
5022 	if (mddev->level != LEVEL_NONE)
5023 		request_module("md-level-%d", mddev->level);
5024 	else if (mddev->clevel[0])
5025 		request_module("md-%s", mddev->clevel);
5026 
5027 	/*
5028 	 * Drop all container device buffers, from now on
5029 	 * the only valid external interface is through the md
5030 	 * device.
5031 	 */
5032 	rdev_for_each(rdev, mddev) {
5033 		if (test_bit(Faulty, &rdev->flags))
5034 			continue;
5035 		sync_blockdev(rdev->bdev);
5036 		invalidate_bdev(rdev->bdev);
5037 
5038 		/* perform some consistency tests on the device.
5039 		 * We don't want the data to overlap the metadata,
5040 		 * Internal Bitmap issues have been handled elsewhere.
5041 		 */
5042 		if (rdev->meta_bdev) {
5043 			/* Nothing to check */;
5044 		} else if (rdev->data_offset < rdev->sb_start) {
5045 			if (mddev->dev_sectors &&
5046 			    rdev->data_offset + mddev->dev_sectors
5047 			    > rdev->sb_start) {
5048 				printk("md: %s: data overlaps metadata\n",
5049 				       mdname(mddev));
5050 				return -EINVAL;
5051 			}
5052 		} else {
5053 			if (rdev->sb_start + rdev->sb_size/512
5054 			    > rdev->data_offset) {
5055 				printk("md: %s: metadata overlaps data\n",
5056 				       mdname(mddev));
5057 				return -EINVAL;
5058 			}
5059 		}
5060 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5061 	}
5062 
5063 	if (mddev->bio_set == NULL)
5064 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5065 
5066 	spin_lock(&pers_lock);
5067 	pers = find_pers(mddev->level, mddev->clevel);
5068 	if (!pers || !try_module_get(pers->owner)) {
5069 		spin_unlock(&pers_lock);
5070 		if (mddev->level != LEVEL_NONE)
5071 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5072 			       mddev->level);
5073 		else
5074 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5075 			       mddev->clevel);
5076 		return -EINVAL;
5077 	}
5078 	spin_unlock(&pers_lock);
5079 	if (mddev->level != pers->level) {
5080 		mddev->level = pers->level;
5081 		mddev->new_level = pers->level;
5082 	}
5083 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5084 
5085 	if (mddev->reshape_position != MaxSector &&
5086 	    pers->start_reshape == NULL) {
5087 		/* This personality cannot handle reshaping... */
5088 		module_put(pers->owner);
5089 		return -EINVAL;
5090 	}
5091 
5092 	if (pers->sync_request) {
5093 		/* Warn if this is a potentially silly
5094 		 * configuration.
5095 		 */
5096 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5097 		struct md_rdev *rdev2;
5098 		int warned = 0;
5099 
5100 		rdev_for_each(rdev, mddev)
5101 			rdev_for_each(rdev2, mddev) {
5102 				if (rdev < rdev2 &&
5103 				    rdev->bdev->bd_contains ==
5104 				    rdev2->bdev->bd_contains) {
5105 					printk(KERN_WARNING
5106 					       "%s: WARNING: %s appears to be"
5107 					       " on the same physical disk as"
5108 					       " %s.\n",
5109 					       mdname(mddev),
5110 					       bdevname(rdev->bdev,b),
5111 					       bdevname(rdev2->bdev,b2));
5112 					warned = 1;
5113 				}
5114 			}
5115 
5116 		if (warned)
5117 			printk(KERN_WARNING
5118 			       "True protection against single-disk"
5119 			       " failure might be compromised.\n");
5120 	}
5121 
5122 	mddev->recovery = 0;
5123 	/* may be over-ridden by personality */
5124 	mddev->resync_max_sectors = mddev->dev_sectors;
5125 
5126 	mddev->ok_start_degraded = start_dirty_degraded;
5127 
5128 	if (start_readonly && mddev->ro == 0)
5129 		mddev->ro = 2; /* read-only, but switch on first write */
5130 
5131 	err = pers->run(mddev);
5132 	if (err)
5133 		printk(KERN_ERR "md: pers->run() failed ...\n");
5134 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5135 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5136 			  " but 'external_size' not in effect?\n", __func__);
5137 		printk(KERN_ERR
5138 		       "md: invalid array_size %llu > default size %llu\n",
5139 		       (unsigned long long)mddev->array_sectors / 2,
5140 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5141 		err = -EINVAL;
5142 	}
5143 	if (err == 0 && pers->sync_request &&
5144 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5145 		struct bitmap *bitmap;
5146 
5147 		bitmap = bitmap_create(mddev, -1);
5148 		if (IS_ERR(bitmap)) {
5149 			err = PTR_ERR(bitmap);
5150 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5151 			       mdname(mddev), err);
5152 		} else
5153 			mddev->bitmap = bitmap;
5154 
5155 	}
5156 	if (err) {
5157 		mddev_detach(mddev);
5158 		if (mddev->private)
5159 			pers->free(mddev, mddev->private);
5160 		mddev->private = NULL;
5161 		module_put(pers->owner);
5162 		bitmap_destroy(mddev);
5163 		return err;
5164 	}
5165 	if (mddev->queue) {
5166 		mddev->queue->backing_dev_info.congested_data = mddev;
5167 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5168 	}
5169 	if (pers->sync_request) {
5170 		if (mddev->kobj.sd &&
5171 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5172 			printk(KERN_WARNING
5173 			       "md: cannot register extra attributes for %s\n",
5174 			       mdname(mddev));
5175 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5176 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5177 		mddev->ro = 0;
5178 
5179 	atomic_set(&mddev->writes_pending,0);
5180 	atomic_set(&mddev->max_corr_read_errors,
5181 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5182 	mddev->safemode = 0;
5183 	mddev->safemode_timer.function = md_safemode_timeout;
5184 	mddev->safemode_timer.data = (unsigned long) mddev;
5185 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5186 	mddev->in_sync = 1;
5187 	smp_wmb();
5188 	spin_lock(&mddev->lock);
5189 	mddev->pers = pers;
5190 	mddev->ready = 1;
5191 	spin_unlock(&mddev->lock);
5192 	rdev_for_each(rdev, mddev)
5193 		if (rdev->raid_disk >= 0)
5194 			if (sysfs_link_rdev(mddev, rdev))
5195 				/* failure here is OK */;
5196 
5197 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5198 
5199 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5200 		md_update_sb(mddev, 0);
5201 
5202 	md_new_event(mddev);
5203 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5204 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5205 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5206 	return 0;
5207 }
5208 EXPORT_SYMBOL_GPL(md_run);
5209 
5210 static int do_md_run(struct mddev *mddev)
5211 {
5212 	int err;
5213 
5214 	err = md_run(mddev);
5215 	if (err)
5216 		goto out;
5217 	err = bitmap_load(mddev);
5218 	if (err) {
5219 		bitmap_destroy(mddev);
5220 		goto out;
5221 	}
5222 
5223 	md_wakeup_thread(mddev->thread);
5224 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5225 
5226 	set_capacity(mddev->gendisk, mddev->array_sectors);
5227 	revalidate_disk(mddev->gendisk);
5228 	mddev->changed = 1;
5229 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5230 out:
5231 	return err;
5232 }
5233 
5234 static int restart_array(struct mddev *mddev)
5235 {
5236 	struct gendisk *disk = mddev->gendisk;
5237 
5238 	/* Complain if it has no devices */
5239 	if (list_empty(&mddev->disks))
5240 		return -ENXIO;
5241 	if (!mddev->pers)
5242 		return -EINVAL;
5243 	if (!mddev->ro)
5244 		return -EBUSY;
5245 	mddev->safemode = 0;
5246 	mddev->ro = 0;
5247 	set_disk_ro(disk, 0);
5248 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5249 		mdname(mddev));
5250 	/* Kick recovery or resync if necessary */
5251 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5252 	md_wakeup_thread(mddev->thread);
5253 	md_wakeup_thread(mddev->sync_thread);
5254 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5255 	return 0;
5256 }
5257 
5258 static void md_clean(struct mddev *mddev)
5259 {
5260 	mddev->array_sectors = 0;
5261 	mddev->external_size = 0;
5262 	mddev->dev_sectors = 0;
5263 	mddev->raid_disks = 0;
5264 	mddev->recovery_cp = 0;
5265 	mddev->resync_min = 0;
5266 	mddev->resync_max = MaxSector;
5267 	mddev->reshape_position = MaxSector;
5268 	mddev->external = 0;
5269 	mddev->persistent = 0;
5270 	mddev->level = LEVEL_NONE;
5271 	mddev->clevel[0] = 0;
5272 	mddev->flags = 0;
5273 	mddev->ro = 0;
5274 	mddev->metadata_type[0] = 0;
5275 	mddev->chunk_sectors = 0;
5276 	mddev->ctime = mddev->utime = 0;
5277 	mddev->layout = 0;
5278 	mddev->max_disks = 0;
5279 	mddev->events = 0;
5280 	mddev->can_decrease_events = 0;
5281 	mddev->delta_disks = 0;
5282 	mddev->reshape_backwards = 0;
5283 	mddev->new_level = LEVEL_NONE;
5284 	mddev->new_layout = 0;
5285 	mddev->new_chunk_sectors = 0;
5286 	mddev->curr_resync = 0;
5287 	atomic64_set(&mddev->resync_mismatches, 0);
5288 	mddev->suspend_lo = mddev->suspend_hi = 0;
5289 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5290 	mddev->recovery = 0;
5291 	mddev->in_sync = 0;
5292 	mddev->changed = 0;
5293 	mddev->degraded = 0;
5294 	mddev->safemode = 0;
5295 	mddev->private = NULL;
5296 	mddev->bitmap_info.offset = 0;
5297 	mddev->bitmap_info.default_offset = 0;
5298 	mddev->bitmap_info.default_space = 0;
5299 	mddev->bitmap_info.chunksize = 0;
5300 	mddev->bitmap_info.daemon_sleep = 0;
5301 	mddev->bitmap_info.max_write_behind = 0;
5302 }
5303 
5304 static void __md_stop_writes(struct mddev *mddev)
5305 {
5306 	if (mddev_is_clustered(mddev))
5307 		md_cluster_ops->metadata_update_start(mddev);
5308 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5309 	flush_workqueue(md_misc_wq);
5310 	if (mddev->sync_thread) {
5311 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5312 		md_reap_sync_thread(mddev);
5313 	}
5314 
5315 	del_timer_sync(&mddev->safemode_timer);
5316 
5317 	bitmap_flush(mddev);
5318 	md_super_wait(mddev);
5319 
5320 	if (mddev->ro == 0 &&
5321 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5322 		/* mark array as shutdown cleanly */
5323 		mddev->in_sync = 1;
5324 		md_update_sb(mddev, 1);
5325 	}
5326 	if (mddev_is_clustered(mddev))
5327 		md_cluster_ops->metadata_update_finish(mddev);
5328 }
5329 
5330 void md_stop_writes(struct mddev *mddev)
5331 {
5332 	mddev_lock_nointr(mddev);
5333 	__md_stop_writes(mddev);
5334 	mddev_unlock(mddev);
5335 }
5336 EXPORT_SYMBOL_GPL(md_stop_writes);
5337 
5338 static void mddev_detach(struct mddev *mddev)
5339 {
5340 	struct bitmap *bitmap = mddev->bitmap;
5341 	/* wait for behind writes to complete */
5342 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5343 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5344 		       mdname(mddev));
5345 		/* need to kick something here to make sure I/O goes? */
5346 		wait_event(bitmap->behind_wait,
5347 			   atomic_read(&bitmap->behind_writes) == 0);
5348 	}
5349 	if (mddev->pers && mddev->pers->quiesce) {
5350 		mddev->pers->quiesce(mddev, 1);
5351 		mddev->pers->quiesce(mddev, 0);
5352 	}
5353 	md_unregister_thread(&mddev->thread);
5354 	if (mddev->queue)
5355 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5356 }
5357 
5358 static void __md_stop(struct mddev *mddev)
5359 {
5360 	struct md_personality *pers = mddev->pers;
5361 	mddev_detach(mddev);
5362 	/* Ensure ->event_work is done */
5363 	flush_workqueue(md_misc_wq);
5364 	spin_lock(&mddev->lock);
5365 	mddev->ready = 0;
5366 	mddev->pers = NULL;
5367 	spin_unlock(&mddev->lock);
5368 	pers->free(mddev, mddev->private);
5369 	mddev->private = NULL;
5370 	if (pers->sync_request && mddev->to_remove == NULL)
5371 		mddev->to_remove = &md_redundancy_group;
5372 	module_put(pers->owner);
5373 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5374 }
5375 
5376 void md_stop(struct mddev *mddev)
5377 {
5378 	/* stop the array and free an attached data structures.
5379 	 * This is called from dm-raid
5380 	 */
5381 	__md_stop(mddev);
5382 	bitmap_destroy(mddev);
5383 	if (mddev->bio_set)
5384 		bioset_free(mddev->bio_set);
5385 }
5386 
5387 EXPORT_SYMBOL_GPL(md_stop);
5388 
5389 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5390 {
5391 	int err = 0;
5392 	int did_freeze = 0;
5393 
5394 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5395 		did_freeze = 1;
5396 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5397 		md_wakeup_thread(mddev->thread);
5398 	}
5399 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5400 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5401 	if (mddev->sync_thread)
5402 		/* Thread might be blocked waiting for metadata update
5403 		 * which will now never happen */
5404 		wake_up_process(mddev->sync_thread->tsk);
5405 
5406 	mddev_unlock(mddev);
5407 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5408 					  &mddev->recovery));
5409 	mddev_lock_nointr(mddev);
5410 
5411 	mutex_lock(&mddev->open_mutex);
5412 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5413 	    mddev->sync_thread ||
5414 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5415 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5416 		printk("md: %s still in use.\n",mdname(mddev));
5417 		if (did_freeze) {
5418 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5419 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5420 			md_wakeup_thread(mddev->thread);
5421 		}
5422 		err = -EBUSY;
5423 		goto out;
5424 	}
5425 	if (mddev->pers) {
5426 		__md_stop_writes(mddev);
5427 
5428 		err  = -ENXIO;
5429 		if (mddev->ro==1)
5430 			goto out;
5431 		mddev->ro = 1;
5432 		set_disk_ro(mddev->gendisk, 1);
5433 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5434 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5435 		md_wakeup_thread(mddev->thread);
5436 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5437 		err = 0;
5438 	}
5439 out:
5440 	mutex_unlock(&mddev->open_mutex);
5441 	return err;
5442 }
5443 
5444 /* mode:
5445  *   0 - completely stop and dis-assemble array
5446  *   2 - stop but do not disassemble array
5447  */
5448 static int do_md_stop(struct mddev *mddev, int mode,
5449 		      struct block_device *bdev)
5450 {
5451 	struct gendisk *disk = mddev->gendisk;
5452 	struct md_rdev *rdev;
5453 	int did_freeze = 0;
5454 
5455 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5456 		did_freeze = 1;
5457 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5458 		md_wakeup_thread(mddev->thread);
5459 	}
5460 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5461 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5462 	if (mddev->sync_thread)
5463 		/* Thread might be blocked waiting for metadata update
5464 		 * which will now never happen */
5465 		wake_up_process(mddev->sync_thread->tsk);
5466 
5467 	mddev_unlock(mddev);
5468 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5469 				 !test_bit(MD_RECOVERY_RUNNING,
5470 					   &mddev->recovery)));
5471 	mddev_lock_nointr(mddev);
5472 
5473 	mutex_lock(&mddev->open_mutex);
5474 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5475 	    mddev->sysfs_active ||
5476 	    mddev->sync_thread ||
5477 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5478 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5479 		printk("md: %s still in use.\n",mdname(mddev));
5480 		mutex_unlock(&mddev->open_mutex);
5481 		if (did_freeze) {
5482 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5483 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5484 			md_wakeup_thread(mddev->thread);
5485 		}
5486 		return -EBUSY;
5487 	}
5488 	if (mddev->pers) {
5489 		if (mddev->ro)
5490 			set_disk_ro(disk, 0);
5491 
5492 		__md_stop_writes(mddev);
5493 		__md_stop(mddev);
5494 		mddev->queue->backing_dev_info.congested_fn = NULL;
5495 
5496 		/* tell userspace to handle 'inactive' */
5497 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5498 
5499 		rdev_for_each(rdev, mddev)
5500 			if (rdev->raid_disk >= 0)
5501 				sysfs_unlink_rdev(mddev, rdev);
5502 
5503 		set_capacity(disk, 0);
5504 		mutex_unlock(&mddev->open_mutex);
5505 		mddev->changed = 1;
5506 		revalidate_disk(disk);
5507 
5508 		if (mddev->ro)
5509 			mddev->ro = 0;
5510 	} else
5511 		mutex_unlock(&mddev->open_mutex);
5512 	/*
5513 	 * Free resources if final stop
5514 	 */
5515 	if (mode == 0) {
5516 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5517 
5518 		bitmap_destroy(mddev);
5519 		if (mddev->bitmap_info.file) {
5520 			struct file *f = mddev->bitmap_info.file;
5521 			spin_lock(&mddev->lock);
5522 			mddev->bitmap_info.file = NULL;
5523 			spin_unlock(&mddev->lock);
5524 			fput(f);
5525 		}
5526 		mddev->bitmap_info.offset = 0;
5527 
5528 		export_array(mddev);
5529 
5530 		md_clean(mddev);
5531 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5532 		if (mddev->hold_active == UNTIL_STOP)
5533 			mddev->hold_active = 0;
5534 	}
5535 	blk_integrity_unregister(disk);
5536 	md_new_event(mddev);
5537 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5538 	return 0;
5539 }
5540 
5541 #ifndef MODULE
5542 static void autorun_array(struct mddev *mddev)
5543 {
5544 	struct md_rdev *rdev;
5545 	int err;
5546 
5547 	if (list_empty(&mddev->disks))
5548 		return;
5549 
5550 	printk(KERN_INFO "md: running: ");
5551 
5552 	rdev_for_each(rdev, mddev) {
5553 		char b[BDEVNAME_SIZE];
5554 		printk("<%s>", bdevname(rdev->bdev,b));
5555 	}
5556 	printk("\n");
5557 
5558 	err = do_md_run(mddev);
5559 	if (err) {
5560 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5561 		do_md_stop(mddev, 0, NULL);
5562 	}
5563 }
5564 
5565 /*
5566  * lets try to run arrays based on all disks that have arrived
5567  * until now. (those are in pending_raid_disks)
5568  *
5569  * the method: pick the first pending disk, collect all disks with
5570  * the same UUID, remove all from the pending list and put them into
5571  * the 'same_array' list. Then order this list based on superblock
5572  * update time (freshest comes first), kick out 'old' disks and
5573  * compare superblocks. If everything's fine then run it.
5574  *
5575  * If "unit" is allocated, then bump its reference count
5576  */
5577 static void autorun_devices(int part)
5578 {
5579 	struct md_rdev *rdev0, *rdev, *tmp;
5580 	struct mddev *mddev;
5581 	char b[BDEVNAME_SIZE];
5582 
5583 	printk(KERN_INFO "md: autorun ...\n");
5584 	while (!list_empty(&pending_raid_disks)) {
5585 		int unit;
5586 		dev_t dev;
5587 		LIST_HEAD(candidates);
5588 		rdev0 = list_entry(pending_raid_disks.next,
5589 					 struct md_rdev, same_set);
5590 
5591 		printk(KERN_INFO "md: considering %s ...\n",
5592 			bdevname(rdev0->bdev,b));
5593 		INIT_LIST_HEAD(&candidates);
5594 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5595 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5596 				printk(KERN_INFO "md:  adding %s ...\n",
5597 					bdevname(rdev->bdev,b));
5598 				list_move(&rdev->same_set, &candidates);
5599 			}
5600 		/*
5601 		 * now we have a set of devices, with all of them having
5602 		 * mostly sane superblocks. It's time to allocate the
5603 		 * mddev.
5604 		 */
5605 		if (part) {
5606 			dev = MKDEV(mdp_major,
5607 				    rdev0->preferred_minor << MdpMinorShift);
5608 			unit = MINOR(dev) >> MdpMinorShift;
5609 		} else {
5610 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5611 			unit = MINOR(dev);
5612 		}
5613 		if (rdev0->preferred_minor != unit) {
5614 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5615 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5616 			break;
5617 		}
5618 
5619 		md_probe(dev, NULL, NULL);
5620 		mddev = mddev_find(dev);
5621 		if (!mddev || !mddev->gendisk) {
5622 			if (mddev)
5623 				mddev_put(mddev);
5624 			printk(KERN_ERR
5625 				"md: cannot allocate memory for md drive.\n");
5626 			break;
5627 		}
5628 		if (mddev_lock(mddev))
5629 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5630 			       mdname(mddev));
5631 		else if (mddev->raid_disks || mddev->major_version
5632 			 || !list_empty(&mddev->disks)) {
5633 			printk(KERN_WARNING
5634 				"md: %s already running, cannot run %s\n",
5635 				mdname(mddev), bdevname(rdev0->bdev,b));
5636 			mddev_unlock(mddev);
5637 		} else {
5638 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5639 			mddev->persistent = 1;
5640 			rdev_for_each_list(rdev, tmp, &candidates) {
5641 				list_del_init(&rdev->same_set);
5642 				if (bind_rdev_to_array(rdev, mddev))
5643 					export_rdev(rdev);
5644 			}
5645 			autorun_array(mddev);
5646 			mddev_unlock(mddev);
5647 		}
5648 		/* on success, candidates will be empty, on error
5649 		 * it won't...
5650 		 */
5651 		rdev_for_each_list(rdev, tmp, &candidates) {
5652 			list_del_init(&rdev->same_set);
5653 			export_rdev(rdev);
5654 		}
5655 		mddev_put(mddev);
5656 	}
5657 	printk(KERN_INFO "md: ... autorun DONE.\n");
5658 }
5659 #endif /* !MODULE */
5660 
5661 static int get_version(void __user *arg)
5662 {
5663 	mdu_version_t ver;
5664 
5665 	ver.major = MD_MAJOR_VERSION;
5666 	ver.minor = MD_MINOR_VERSION;
5667 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5668 
5669 	if (copy_to_user(arg, &ver, sizeof(ver)))
5670 		return -EFAULT;
5671 
5672 	return 0;
5673 }
5674 
5675 static int get_array_info(struct mddev *mddev, void __user *arg)
5676 {
5677 	mdu_array_info_t info;
5678 	int nr,working,insync,failed,spare;
5679 	struct md_rdev *rdev;
5680 
5681 	nr = working = insync = failed = spare = 0;
5682 	rcu_read_lock();
5683 	rdev_for_each_rcu(rdev, mddev) {
5684 		nr++;
5685 		if (test_bit(Faulty, &rdev->flags))
5686 			failed++;
5687 		else {
5688 			working++;
5689 			if (test_bit(In_sync, &rdev->flags))
5690 				insync++;
5691 			else
5692 				spare++;
5693 		}
5694 	}
5695 	rcu_read_unlock();
5696 
5697 	info.major_version = mddev->major_version;
5698 	info.minor_version = mddev->minor_version;
5699 	info.patch_version = MD_PATCHLEVEL_VERSION;
5700 	info.ctime         = mddev->ctime;
5701 	info.level         = mddev->level;
5702 	info.size          = mddev->dev_sectors / 2;
5703 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5704 		info.size = -1;
5705 	info.nr_disks      = nr;
5706 	info.raid_disks    = mddev->raid_disks;
5707 	info.md_minor      = mddev->md_minor;
5708 	info.not_persistent= !mddev->persistent;
5709 
5710 	info.utime         = mddev->utime;
5711 	info.state         = 0;
5712 	if (mddev->in_sync)
5713 		info.state = (1<<MD_SB_CLEAN);
5714 	if (mddev->bitmap && mddev->bitmap_info.offset)
5715 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5716 	if (mddev_is_clustered(mddev))
5717 		info.state |= (1<<MD_SB_CLUSTERED);
5718 	info.active_disks  = insync;
5719 	info.working_disks = working;
5720 	info.failed_disks  = failed;
5721 	info.spare_disks   = spare;
5722 
5723 	info.layout        = mddev->layout;
5724 	info.chunk_size    = mddev->chunk_sectors << 9;
5725 
5726 	if (copy_to_user(arg, &info, sizeof(info)))
5727 		return -EFAULT;
5728 
5729 	return 0;
5730 }
5731 
5732 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5733 {
5734 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5735 	char *ptr;
5736 	int err;
5737 
5738 	file = kzalloc(sizeof(*file), GFP_NOIO);
5739 	if (!file)
5740 		return -ENOMEM;
5741 
5742 	err = 0;
5743 	spin_lock(&mddev->lock);
5744 	/* bitmap disabled, zero the first byte and copy out */
5745 	if (!mddev->bitmap_info.file)
5746 		file->pathname[0] = '\0';
5747 	else if ((ptr = file_path(mddev->bitmap_info.file,
5748 			       file->pathname, sizeof(file->pathname))),
5749 		 IS_ERR(ptr))
5750 		err = PTR_ERR(ptr);
5751 	else
5752 		memmove(file->pathname, ptr,
5753 			sizeof(file->pathname)-(ptr-file->pathname));
5754 	spin_unlock(&mddev->lock);
5755 
5756 	if (err == 0 &&
5757 	    copy_to_user(arg, file, sizeof(*file)))
5758 		err = -EFAULT;
5759 
5760 	kfree(file);
5761 	return err;
5762 }
5763 
5764 static int get_disk_info(struct mddev *mddev, void __user * arg)
5765 {
5766 	mdu_disk_info_t info;
5767 	struct md_rdev *rdev;
5768 
5769 	if (copy_from_user(&info, arg, sizeof(info)))
5770 		return -EFAULT;
5771 
5772 	rcu_read_lock();
5773 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5774 	if (rdev) {
5775 		info.major = MAJOR(rdev->bdev->bd_dev);
5776 		info.minor = MINOR(rdev->bdev->bd_dev);
5777 		info.raid_disk = rdev->raid_disk;
5778 		info.state = 0;
5779 		if (test_bit(Faulty, &rdev->flags))
5780 			info.state |= (1<<MD_DISK_FAULTY);
5781 		else if (test_bit(In_sync, &rdev->flags)) {
5782 			info.state |= (1<<MD_DISK_ACTIVE);
5783 			info.state |= (1<<MD_DISK_SYNC);
5784 		}
5785 		if (test_bit(WriteMostly, &rdev->flags))
5786 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5787 	} else {
5788 		info.major = info.minor = 0;
5789 		info.raid_disk = -1;
5790 		info.state = (1<<MD_DISK_REMOVED);
5791 	}
5792 	rcu_read_unlock();
5793 
5794 	if (copy_to_user(arg, &info, sizeof(info)))
5795 		return -EFAULT;
5796 
5797 	return 0;
5798 }
5799 
5800 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5801 {
5802 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5803 	struct md_rdev *rdev;
5804 	dev_t dev = MKDEV(info->major,info->minor);
5805 
5806 	if (mddev_is_clustered(mddev) &&
5807 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5808 		pr_err("%s: Cannot add to clustered mddev.\n",
5809 			       mdname(mddev));
5810 		return -EINVAL;
5811 	}
5812 
5813 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5814 		return -EOVERFLOW;
5815 
5816 	if (!mddev->raid_disks) {
5817 		int err;
5818 		/* expecting a device which has a superblock */
5819 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5820 		if (IS_ERR(rdev)) {
5821 			printk(KERN_WARNING
5822 				"md: md_import_device returned %ld\n",
5823 				PTR_ERR(rdev));
5824 			return PTR_ERR(rdev);
5825 		}
5826 		if (!list_empty(&mddev->disks)) {
5827 			struct md_rdev *rdev0
5828 				= list_entry(mddev->disks.next,
5829 					     struct md_rdev, same_set);
5830 			err = super_types[mddev->major_version]
5831 				.load_super(rdev, rdev0, mddev->minor_version);
5832 			if (err < 0) {
5833 				printk(KERN_WARNING
5834 					"md: %s has different UUID to %s\n",
5835 					bdevname(rdev->bdev,b),
5836 					bdevname(rdev0->bdev,b2));
5837 				export_rdev(rdev);
5838 				return -EINVAL;
5839 			}
5840 		}
5841 		err = bind_rdev_to_array(rdev, mddev);
5842 		if (err)
5843 			export_rdev(rdev);
5844 		return err;
5845 	}
5846 
5847 	/*
5848 	 * add_new_disk can be used once the array is assembled
5849 	 * to add "hot spares".  They must already have a superblock
5850 	 * written
5851 	 */
5852 	if (mddev->pers) {
5853 		int err;
5854 		if (!mddev->pers->hot_add_disk) {
5855 			printk(KERN_WARNING
5856 				"%s: personality does not support diskops!\n",
5857 			       mdname(mddev));
5858 			return -EINVAL;
5859 		}
5860 		if (mddev->persistent)
5861 			rdev = md_import_device(dev, mddev->major_version,
5862 						mddev->minor_version);
5863 		else
5864 			rdev = md_import_device(dev, -1, -1);
5865 		if (IS_ERR(rdev)) {
5866 			printk(KERN_WARNING
5867 				"md: md_import_device returned %ld\n",
5868 				PTR_ERR(rdev));
5869 			return PTR_ERR(rdev);
5870 		}
5871 		/* set saved_raid_disk if appropriate */
5872 		if (!mddev->persistent) {
5873 			if (info->state & (1<<MD_DISK_SYNC)  &&
5874 			    info->raid_disk < mddev->raid_disks) {
5875 				rdev->raid_disk = info->raid_disk;
5876 				set_bit(In_sync, &rdev->flags);
5877 				clear_bit(Bitmap_sync, &rdev->flags);
5878 			} else
5879 				rdev->raid_disk = -1;
5880 			rdev->saved_raid_disk = rdev->raid_disk;
5881 		} else
5882 			super_types[mddev->major_version].
5883 				validate_super(mddev, rdev);
5884 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5885 		     rdev->raid_disk != info->raid_disk) {
5886 			/* This was a hot-add request, but events doesn't
5887 			 * match, so reject it.
5888 			 */
5889 			export_rdev(rdev);
5890 			return -EINVAL;
5891 		}
5892 
5893 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5894 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5895 			set_bit(WriteMostly, &rdev->flags);
5896 		else
5897 			clear_bit(WriteMostly, &rdev->flags);
5898 
5899 		/*
5900 		 * check whether the device shows up in other nodes
5901 		 */
5902 		if (mddev_is_clustered(mddev)) {
5903 			if (info->state & (1 << MD_DISK_CANDIDATE)) {
5904 				/* Through --cluster-confirm */
5905 				set_bit(Candidate, &rdev->flags);
5906 				err = md_cluster_ops->new_disk_ack(mddev, true);
5907 				if (err) {
5908 					export_rdev(rdev);
5909 					return err;
5910 				}
5911 			} else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5912 				/* --add initiated by this node */
5913 				err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5914 				if (err) {
5915 					md_cluster_ops->add_new_disk_finish(mddev);
5916 					export_rdev(rdev);
5917 					return err;
5918 				}
5919 			}
5920 		}
5921 
5922 		rdev->raid_disk = -1;
5923 		err = bind_rdev_to_array(rdev, mddev);
5924 		if (err)
5925 			export_rdev(rdev);
5926 		else
5927 			err = add_bound_rdev(rdev);
5928 		if (mddev_is_clustered(mddev) &&
5929 				(info->state & (1 << MD_DISK_CLUSTER_ADD)))
5930 			md_cluster_ops->add_new_disk_finish(mddev);
5931 		return err;
5932 	}
5933 
5934 	/* otherwise, add_new_disk is only allowed
5935 	 * for major_version==0 superblocks
5936 	 */
5937 	if (mddev->major_version != 0) {
5938 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5939 		       mdname(mddev));
5940 		return -EINVAL;
5941 	}
5942 
5943 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5944 		int err;
5945 		rdev = md_import_device(dev, -1, 0);
5946 		if (IS_ERR(rdev)) {
5947 			printk(KERN_WARNING
5948 				"md: error, md_import_device() returned %ld\n",
5949 				PTR_ERR(rdev));
5950 			return PTR_ERR(rdev);
5951 		}
5952 		rdev->desc_nr = info->number;
5953 		if (info->raid_disk < mddev->raid_disks)
5954 			rdev->raid_disk = info->raid_disk;
5955 		else
5956 			rdev->raid_disk = -1;
5957 
5958 		if (rdev->raid_disk < mddev->raid_disks)
5959 			if (info->state & (1<<MD_DISK_SYNC))
5960 				set_bit(In_sync, &rdev->flags);
5961 
5962 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5963 			set_bit(WriteMostly, &rdev->flags);
5964 
5965 		if (!mddev->persistent) {
5966 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5967 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5968 		} else
5969 			rdev->sb_start = calc_dev_sboffset(rdev);
5970 		rdev->sectors = rdev->sb_start;
5971 
5972 		err = bind_rdev_to_array(rdev, mddev);
5973 		if (err) {
5974 			export_rdev(rdev);
5975 			return err;
5976 		}
5977 	}
5978 
5979 	return 0;
5980 }
5981 
5982 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5983 {
5984 	char b[BDEVNAME_SIZE];
5985 	struct md_rdev *rdev;
5986 
5987 	rdev = find_rdev(mddev, dev);
5988 	if (!rdev)
5989 		return -ENXIO;
5990 
5991 	if (mddev_is_clustered(mddev))
5992 		md_cluster_ops->metadata_update_start(mddev);
5993 
5994 	clear_bit(Blocked, &rdev->flags);
5995 	remove_and_add_spares(mddev, rdev);
5996 
5997 	if (rdev->raid_disk >= 0)
5998 		goto busy;
5999 
6000 	if (mddev_is_clustered(mddev))
6001 		md_cluster_ops->remove_disk(mddev, rdev);
6002 
6003 	md_kick_rdev_from_array(rdev);
6004 	md_update_sb(mddev, 1);
6005 	md_new_event(mddev);
6006 
6007 	if (mddev_is_clustered(mddev))
6008 		md_cluster_ops->metadata_update_finish(mddev);
6009 
6010 	return 0;
6011 busy:
6012 	if (mddev_is_clustered(mddev))
6013 		md_cluster_ops->metadata_update_cancel(mddev);
6014 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6015 		bdevname(rdev->bdev,b), mdname(mddev));
6016 	return -EBUSY;
6017 }
6018 
6019 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6020 {
6021 	char b[BDEVNAME_SIZE];
6022 	int err;
6023 	struct md_rdev *rdev;
6024 
6025 	if (!mddev->pers)
6026 		return -ENODEV;
6027 
6028 	if (mddev->major_version != 0) {
6029 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6030 			" version-0 superblocks.\n",
6031 			mdname(mddev));
6032 		return -EINVAL;
6033 	}
6034 	if (!mddev->pers->hot_add_disk) {
6035 		printk(KERN_WARNING
6036 			"%s: personality does not support diskops!\n",
6037 			mdname(mddev));
6038 		return -EINVAL;
6039 	}
6040 
6041 	rdev = md_import_device(dev, -1, 0);
6042 	if (IS_ERR(rdev)) {
6043 		printk(KERN_WARNING
6044 			"md: error, md_import_device() returned %ld\n",
6045 			PTR_ERR(rdev));
6046 		return -EINVAL;
6047 	}
6048 
6049 	if (mddev->persistent)
6050 		rdev->sb_start = calc_dev_sboffset(rdev);
6051 	else
6052 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6053 
6054 	rdev->sectors = rdev->sb_start;
6055 
6056 	if (test_bit(Faulty, &rdev->flags)) {
6057 		printk(KERN_WARNING
6058 			"md: can not hot-add faulty %s disk to %s!\n",
6059 			bdevname(rdev->bdev,b), mdname(mddev));
6060 		err = -EINVAL;
6061 		goto abort_export;
6062 	}
6063 
6064 	if (mddev_is_clustered(mddev))
6065 		md_cluster_ops->metadata_update_start(mddev);
6066 	clear_bit(In_sync, &rdev->flags);
6067 	rdev->desc_nr = -1;
6068 	rdev->saved_raid_disk = -1;
6069 	err = bind_rdev_to_array(rdev, mddev);
6070 	if (err)
6071 		goto abort_clustered;
6072 
6073 	/*
6074 	 * The rest should better be atomic, we can have disk failures
6075 	 * noticed in interrupt contexts ...
6076 	 */
6077 
6078 	rdev->raid_disk = -1;
6079 
6080 	md_update_sb(mddev, 1);
6081 
6082 	if (mddev_is_clustered(mddev))
6083 		md_cluster_ops->metadata_update_finish(mddev);
6084 	/*
6085 	 * Kick recovery, maybe this spare has to be added to the
6086 	 * array immediately.
6087 	 */
6088 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6089 	md_wakeup_thread(mddev->thread);
6090 	md_new_event(mddev);
6091 	return 0;
6092 
6093 abort_clustered:
6094 	if (mddev_is_clustered(mddev))
6095 		md_cluster_ops->metadata_update_cancel(mddev);
6096 abort_export:
6097 	export_rdev(rdev);
6098 	return err;
6099 }
6100 
6101 static int set_bitmap_file(struct mddev *mddev, int fd)
6102 {
6103 	int err = 0;
6104 
6105 	if (mddev->pers) {
6106 		if (!mddev->pers->quiesce || !mddev->thread)
6107 			return -EBUSY;
6108 		if (mddev->recovery || mddev->sync_thread)
6109 			return -EBUSY;
6110 		/* we should be able to change the bitmap.. */
6111 	}
6112 
6113 	if (fd >= 0) {
6114 		struct inode *inode;
6115 		struct file *f;
6116 
6117 		if (mddev->bitmap || mddev->bitmap_info.file)
6118 			return -EEXIST; /* cannot add when bitmap is present */
6119 		f = fget(fd);
6120 
6121 		if (f == NULL) {
6122 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6123 			       mdname(mddev));
6124 			return -EBADF;
6125 		}
6126 
6127 		inode = f->f_mapping->host;
6128 		if (!S_ISREG(inode->i_mode)) {
6129 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6130 			       mdname(mddev));
6131 			err = -EBADF;
6132 		} else if (!(f->f_mode & FMODE_WRITE)) {
6133 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6134 			       mdname(mddev));
6135 			err = -EBADF;
6136 		} else if (atomic_read(&inode->i_writecount) != 1) {
6137 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6138 			       mdname(mddev));
6139 			err = -EBUSY;
6140 		}
6141 		if (err) {
6142 			fput(f);
6143 			return err;
6144 		}
6145 		mddev->bitmap_info.file = f;
6146 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6147 	} else if (mddev->bitmap == NULL)
6148 		return -ENOENT; /* cannot remove what isn't there */
6149 	err = 0;
6150 	if (mddev->pers) {
6151 		mddev->pers->quiesce(mddev, 1);
6152 		if (fd >= 0) {
6153 			struct bitmap *bitmap;
6154 
6155 			bitmap = bitmap_create(mddev, -1);
6156 			if (!IS_ERR(bitmap)) {
6157 				mddev->bitmap = bitmap;
6158 				err = bitmap_load(mddev);
6159 			} else
6160 				err = PTR_ERR(bitmap);
6161 		}
6162 		if (fd < 0 || err) {
6163 			bitmap_destroy(mddev);
6164 			fd = -1; /* make sure to put the file */
6165 		}
6166 		mddev->pers->quiesce(mddev, 0);
6167 	}
6168 	if (fd < 0) {
6169 		struct file *f = mddev->bitmap_info.file;
6170 		if (f) {
6171 			spin_lock(&mddev->lock);
6172 			mddev->bitmap_info.file = NULL;
6173 			spin_unlock(&mddev->lock);
6174 			fput(f);
6175 		}
6176 	}
6177 
6178 	return err;
6179 }
6180 
6181 /*
6182  * set_array_info is used two different ways
6183  * The original usage is when creating a new array.
6184  * In this usage, raid_disks is > 0 and it together with
6185  *  level, size, not_persistent,layout,chunksize determine the
6186  *  shape of the array.
6187  *  This will always create an array with a type-0.90.0 superblock.
6188  * The newer usage is when assembling an array.
6189  *  In this case raid_disks will be 0, and the major_version field is
6190  *  use to determine which style super-blocks are to be found on the devices.
6191  *  The minor and patch _version numbers are also kept incase the
6192  *  super_block handler wishes to interpret them.
6193  */
6194 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6195 {
6196 
6197 	if (info->raid_disks == 0) {
6198 		/* just setting version number for superblock loading */
6199 		if (info->major_version < 0 ||
6200 		    info->major_version >= ARRAY_SIZE(super_types) ||
6201 		    super_types[info->major_version].name == NULL) {
6202 			/* maybe try to auto-load a module? */
6203 			printk(KERN_INFO
6204 				"md: superblock version %d not known\n",
6205 				info->major_version);
6206 			return -EINVAL;
6207 		}
6208 		mddev->major_version = info->major_version;
6209 		mddev->minor_version = info->minor_version;
6210 		mddev->patch_version = info->patch_version;
6211 		mddev->persistent = !info->not_persistent;
6212 		/* ensure mddev_put doesn't delete this now that there
6213 		 * is some minimal configuration.
6214 		 */
6215 		mddev->ctime         = get_seconds();
6216 		return 0;
6217 	}
6218 	mddev->major_version = MD_MAJOR_VERSION;
6219 	mddev->minor_version = MD_MINOR_VERSION;
6220 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6221 	mddev->ctime         = get_seconds();
6222 
6223 	mddev->level         = info->level;
6224 	mddev->clevel[0]     = 0;
6225 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6226 	mddev->raid_disks    = info->raid_disks;
6227 	/* don't set md_minor, it is determined by which /dev/md* was
6228 	 * openned
6229 	 */
6230 	if (info->state & (1<<MD_SB_CLEAN))
6231 		mddev->recovery_cp = MaxSector;
6232 	else
6233 		mddev->recovery_cp = 0;
6234 	mddev->persistent    = ! info->not_persistent;
6235 	mddev->external	     = 0;
6236 
6237 	mddev->layout        = info->layout;
6238 	mddev->chunk_sectors = info->chunk_size >> 9;
6239 
6240 	mddev->max_disks     = MD_SB_DISKS;
6241 
6242 	if (mddev->persistent)
6243 		mddev->flags         = 0;
6244 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6245 
6246 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6247 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6248 	mddev->bitmap_info.offset = 0;
6249 
6250 	mddev->reshape_position = MaxSector;
6251 
6252 	/*
6253 	 * Generate a 128 bit UUID
6254 	 */
6255 	get_random_bytes(mddev->uuid, 16);
6256 
6257 	mddev->new_level = mddev->level;
6258 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6259 	mddev->new_layout = mddev->layout;
6260 	mddev->delta_disks = 0;
6261 	mddev->reshape_backwards = 0;
6262 
6263 	return 0;
6264 }
6265 
6266 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6267 {
6268 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6269 
6270 	if (mddev->external_size)
6271 		return;
6272 
6273 	mddev->array_sectors = array_sectors;
6274 }
6275 EXPORT_SYMBOL(md_set_array_sectors);
6276 
6277 static int update_size(struct mddev *mddev, sector_t num_sectors)
6278 {
6279 	struct md_rdev *rdev;
6280 	int rv;
6281 	int fit = (num_sectors == 0);
6282 
6283 	if (mddev->pers->resize == NULL)
6284 		return -EINVAL;
6285 	/* The "num_sectors" is the number of sectors of each device that
6286 	 * is used.  This can only make sense for arrays with redundancy.
6287 	 * linear and raid0 always use whatever space is available. We can only
6288 	 * consider changing this number if no resync or reconstruction is
6289 	 * happening, and if the new size is acceptable. It must fit before the
6290 	 * sb_start or, if that is <data_offset, it must fit before the size
6291 	 * of each device.  If num_sectors is zero, we find the largest size
6292 	 * that fits.
6293 	 */
6294 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6295 	    mddev->sync_thread)
6296 		return -EBUSY;
6297 	if (mddev->ro)
6298 		return -EROFS;
6299 
6300 	rdev_for_each(rdev, mddev) {
6301 		sector_t avail = rdev->sectors;
6302 
6303 		if (fit && (num_sectors == 0 || num_sectors > avail))
6304 			num_sectors = avail;
6305 		if (avail < num_sectors)
6306 			return -ENOSPC;
6307 	}
6308 	rv = mddev->pers->resize(mddev, num_sectors);
6309 	if (!rv)
6310 		revalidate_disk(mddev->gendisk);
6311 	return rv;
6312 }
6313 
6314 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6315 {
6316 	int rv;
6317 	struct md_rdev *rdev;
6318 	/* change the number of raid disks */
6319 	if (mddev->pers->check_reshape == NULL)
6320 		return -EINVAL;
6321 	if (mddev->ro)
6322 		return -EROFS;
6323 	if (raid_disks <= 0 ||
6324 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6325 		return -EINVAL;
6326 	if (mddev->sync_thread ||
6327 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6328 	    mddev->reshape_position != MaxSector)
6329 		return -EBUSY;
6330 
6331 	rdev_for_each(rdev, mddev) {
6332 		if (mddev->raid_disks < raid_disks &&
6333 		    rdev->data_offset < rdev->new_data_offset)
6334 			return -EINVAL;
6335 		if (mddev->raid_disks > raid_disks &&
6336 		    rdev->data_offset > rdev->new_data_offset)
6337 			return -EINVAL;
6338 	}
6339 
6340 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6341 	if (mddev->delta_disks < 0)
6342 		mddev->reshape_backwards = 1;
6343 	else if (mddev->delta_disks > 0)
6344 		mddev->reshape_backwards = 0;
6345 
6346 	rv = mddev->pers->check_reshape(mddev);
6347 	if (rv < 0) {
6348 		mddev->delta_disks = 0;
6349 		mddev->reshape_backwards = 0;
6350 	}
6351 	return rv;
6352 }
6353 
6354 /*
6355  * update_array_info is used to change the configuration of an
6356  * on-line array.
6357  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6358  * fields in the info are checked against the array.
6359  * Any differences that cannot be handled will cause an error.
6360  * Normally, only one change can be managed at a time.
6361  */
6362 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6363 {
6364 	int rv = 0;
6365 	int cnt = 0;
6366 	int state = 0;
6367 
6368 	/* calculate expected state,ignoring low bits */
6369 	if (mddev->bitmap && mddev->bitmap_info.offset)
6370 		state |= (1 << MD_SB_BITMAP_PRESENT);
6371 
6372 	if (mddev->major_version != info->major_version ||
6373 	    mddev->minor_version != info->minor_version ||
6374 /*	    mddev->patch_version != info->patch_version || */
6375 	    mddev->ctime         != info->ctime         ||
6376 	    mddev->level         != info->level         ||
6377 /*	    mddev->layout        != info->layout        || */
6378 	    mddev->persistent	 != !info->not_persistent ||
6379 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6380 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6381 	    ((state^info->state) & 0xfffffe00)
6382 		)
6383 		return -EINVAL;
6384 	/* Check there is only one change */
6385 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6386 		cnt++;
6387 	if (mddev->raid_disks != info->raid_disks)
6388 		cnt++;
6389 	if (mddev->layout != info->layout)
6390 		cnt++;
6391 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6392 		cnt++;
6393 	if (cnt == 0)
6394 		return 0;
6395 	if (cnt > 1)
6396 		return -EINVAL;
6397 
6398 	if (mddev->layout != info->layout) {
6399 		/* Change layout
6400 		 * we don't need to do anything at the md level, the
6401 		 * personality will take care of it all.
6402 		 */
6403 		if (mddev->pers->check_reshape == NULL)
6404 			return -EINVAL;
6405 		else {
6406 			mddev->new_layout = info->layout;
6407 			rv = mddev->pers->check_reshape(mddev);
6408 			if (rv)
6409 				mddev->new_layout = mddev->layout;
6410 			return rv;
6411 		}
6412 	}
6413 	if (mddev_is_clustered(mddev))
6414 		md_cluster_ops->metadata_update_start(mddev);
6415 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6416 		rv = update_size(mddev, (sector_t)info->size * 2);
6417 
6418 	if (mddev->raid_disks    != info->raid_disks)
6419 		rv = update_raid_disks(mddev, info->raid_disks);
6420 
6421 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6422 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6423 			rv = -EINVAL;
6424 			goto err;
6425 		}
6426 		if (mddev->recovery || mddev->sync_thread) {
6427 			rv = -EBUSY;
6428 			goto err;
6429 		}
6430 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6431 			struct bitmap *bitmap;
6432 			/* add the bitmap */
6433 			if (mddev->bitmap) {
6434 				rv = -EEXIST;
6435 				goto err;
6436 			}
6437 			if (mddev->bitmap_info.default_offset == 0) {
6438 				rv = -EINVAL;
6439 				goto err;
6440 			}
6441 			mddev->bitmap_info.offset =
6442 				mddev->bitmap_info.default_offset;
6443 			mddev->bitmap_info.space =
6444 				mddev->bitmap_info.default_space;
6445 			mddev->pers->quiesce(mddev, 1);
6446 			bitmap = bitmap_create(mddev, -1);
6447 			if (!IS_ERR(bitmap)) {
6448 				mddev->bitmap = bitmap;
6449 				rv = bitmap_load(mddev);
6450 			} else
6451 				rv = PTR_ERR(bitmap);
6452 			if (rv)
6453 				bitmap_destroy(mddev);
6454 			mddev->pers->quiesce(mddev, 0);
6455 		} else {
6456 			/* remove the bitmap */
6457 			if (!mddev->bitmap) {
6458 				rv = -ENOENT;
6459 				goto err;
6460 			}
6461 			if (mddev->bitmap->storage.file) {
6462 				rv = -EINVAL;
6463 				goto err;
6464 			}
6465 			mddev->pers->quiesce(mddev, 1);
6466 			bitmap_destroy(mddev);
6467 			mddev->pers->quiesce(mddev, 0);
6468 			mddev->bitmap_info.offset = 0;
6469 		}
6470 	}
6471 	md_update_sb(mddev, 1);
6472 	if (mddev_is_clustered(mddev))
6473 		md_cluster_ops->metadata_update_finish(mddev);
6474 	return rv;
6475 err:
6476 	if (mddev_is_clustered(mddev))
6477 		md_cluster_ops->metadata_update_cancel(mddev);
6478 	return rv;
6479 }
6480 
6481 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6482 {
6483 	struct md_rdev *rdev;
6484 	int err = 0;
6485 
6486 	if (mddev->pers == NULL)
6487 		return -ENODEV;
6488 
6489 	rcu_read_lock();
6490 	rdev = find_rdev_rcu(mddev, dev);
6491 	if (!rdev)
6492 		err =  -ENODEV;
6493 	else {
6494 		md_error(mddev, rdev);
6495 		if (!test_bit(Faulty, &rdev->flags))
6496 			err = -EBUSY;
6497 	}
6498 	rcu_read_unlock();
6499 	return err;
6500 }
6501 
6502 /*
6503  * We have a problem here : there is no easy way to give a CHS
6504  * virtual geometry. We currently pretend that we have a 2 heads
6505  * 4 sectors (with a BIG number of cylinders...). This drives
6506  * dosfs just mad... ;-)
6507  */
6508 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6509 {
6510 	struct mddev *mddev = bdev->bd_disk->private_data;
6511 
6512 	geo->heads = 2;
6513 	geo->sectors = 4;
6514 	geo->cylinders = mddev->array_sectors / 8;
6515 	return 0;
6516 }
6517 
6518 static inline bool md_ioctl_valid(unsigned int cmd)
6519 {
6520 	switch (cmd) {
6521 	case ADD_NEW_DISK:
6522 	case BLKROSET:
6523 	case GET_ARRAY_INFO:
6524 	case GET_BITMAP_FILE:
6525 	case GET_DISK_INFO:
6526 	case HOT_ADD_DISK:
6527 	case HOT_REMOVE_DISK:
6528 	case RAID_AUTORUN:
6529 	case RAID_VERSION:
6530 	case RESTART_ARRAY_RW:
6531 	case RUN_ARRAY:
6532 	case SET_ARRAY_INFO:
6533 	case SET_BITMAP_FILE:
6534 	case SET_DISK_FAULTY:
6535 	case STOP_ARRAY:
6536 	case STOP_ARRAY_RO:
6537 	case CLUSTERED_DISK_NACK:
6538 		return true;
6539 	default:
6540 		return false;
6541 	}
6542 }
6543 
6544 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6545 			unsigned int cmd, unsigned long arg)
6546 {
6547 	int err = 0;
6548 	void __user *argp = (void __user *)arg;
6549 	struct mddev *mddev = NULL;
6550 	int ro;
6551 
6552 	if (!md_ioctl_valid(cmd))
6553 		return -ENOTTY;
6554 
6555 	switch (cmd) {
6556 	case RAID_VERSION:
6557 	case GET_ARRAY_INFO:
6558 	case GET_DISK_INFO:
6559 		break;
6560 	default:
6561 		if (!capable(CAP_SYS_ADMIN))
6562 			return -EACCES;
6563 	}
6564 
6565 	/*
6566 	 * Commands dealing with the RAID driver but not any
6567 	 * particular array:
6568 	 */
6569 	switch (cmd) {
6570 	case RAID_VERSION:
6571 		err = get_version(argp);
6572 		goto out;
6573 
6574 #ifndef MODULE
6575 	case RAID_AUTORUN:
6576 		err = 0;
6577 		autostart_arrays(arg);
6578 		goto out;
6579 #endif
6580 	default:;
6581 	}
6582 
6583 	/*
6584 	 * Commands creating/starting a new array:
6585 	 */
6586 
6587 	mddev = bdev->bd_disk->private_data;
6588 
6589 	if (!mddev) {
6590 		BUG();
6591 		goto out;
6592 	}
6593 
6594 	/* Some actions do not requires the mutex */
6595 	switch (cmd) {
6596 	case GET_ARRAY_INFO:
6597 		if (!mddev->raid_disks && !mddev->external)
6598 			err = -ENODEV;
6599 		else
6600 			err = get_array_info(mddev, argp);
6601 		goto out;
6602 
6603 	case GET_DISK_INFO:
6604 		if (!mddev->raid_disks && !mddev->external)
6605 			err = -ENODEV;
6606 		else
6607 			err = get_disk_info(mddev, argp);
6608 		goto out;
6609 
6610 	case SET_DISK_FAULTY:
6611 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6612 		goto out;
6613 
6614 	case GET_BITMAP_FILE:
6615 		err = get_bitmap_file(mddev, argp);
6616 		goto out;
6617 
6618 	}
6619 
6620 	if (cmd == ADD_NEW_DISK)
6621 		/* need to ensure md_delayed_delete() has completed */
6622 		flush_workqueue(md_misc_wq);
6623 
6624 	if (cmd == HOT_REMOVE_DISK)
6625 		/* need to ensure recovery thread has run */
6626 		wait_event_interruptible_timeout(mddev->sb_wait,
6627 						 !test_bit(MD_RECOVERY_NEEDED,
6628 							   &mddev->flags),
6629 						 msecs_to_jiffies(5000));
6630 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6631 		/* Need to flush page cache, and ensure no-one else opens
6632 		 * and writes
6633 		 */
6634 		mutex_lock(&mddev->open_mutex);
6635 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6636 			mutex_unlock(&mddev->open_mutex);
6637 			err = -EBUSY;
6638 			goto out;
6639 		}
6640 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6641 		mutex_unlock(&mddev->open_mutex);
6642 		sync_blockdev(bdev);
6643 	}
6644 	err = mddev_lock(mddev);
6645 	if (err) {
6646 		printk(KERN_INFO
6647 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6648 			err, cmd);
6649 		goto out;
6650 	}
6651 
6652 	if (cmd == SET_ARRAY_INFO) {
6653 		mdu_array_info_t info;
6654 		if (!arg)
6655 			memset(&info, 0, sizeof(info));
6656 		else if (copy_from_user(&info, argp, sizeof(info))) {
6657 			err = -EFAULT;
6658 			goto unlock;
6659 		}
6660 		if (mddev->pers) {
6661 			err = update_array_info(mddev, &info);
6662 			if (err) {
6663 				printk(KERN_WARNING "md: couldn't update"
6664 				       " array info. %d\n", err);
6665 				goto unlock;
6666 			}
6667 			goto unlock;
6668 		}
6669 		if (!list_empty(&mddev->disks)) {
6670 			printk(KERN_WARNING
6671 			       "md: array %s already has disks!\n",
6672 			       mdname(mddev));
6673 			err = -EBUSY;
6674 			goto unlock;
6675 		}
6676 		if (mddev->raid_disks) {
6677 			printk(KERN_WARNING
6678 			       "md: array %s already initialised!\n",
6679 			       mdname(mddev));
6680 			err = -EBUSY;
6681 			goto unlock;
6682 		}
6683 		err = set_array_info(mddev, &info);
6684 		if (err) {
6685 			printk(KERN_WARNING "md: couldn't set"
6686 			       " array info. %d\n", err);
6687 			goto unlock;
6688 		}
6689 		goto unlock;
6690 	}
6691 
6692 	/*
6693 	 * Commands querying/configuring an existing array:
6694 	 */
6695 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6696 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6697 	if ((!mddev->raid_disks && !mddev->external)
6698 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6699 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6700 	    && cmd != GET_BITMAP_FILE) {
6701 		err = -ENODEV;
6702 		goto unlock;
6703 	}
6704 
6705 	/*
6706 	 * Commands even a read-only array can execute:
6707 	 */
6708 	switch (cmd) {
6709 	case RESTART_ARRAY_RW:
6710 		err = restart_array(mddev);
6711 		goto unlock;
6712 
6713 	case STOP_ARRAY:
6714 		err = do_md_stop(mddev, 0, bdev);
6715 		goto unlock;
6716 
6717 	case STOP_ARRAY_RO:
6718 		err = md_set_readonly(mddev, bdev);
6719 		goto unlock;
6720 
6721 	case HOT_REMOVE_DISK:
6722 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6723 		goto unlock;
6724 
6725 	case ADD_NEW_DISK:
6726 		/* We can support ADD_NEW_DISK on read-only arrays
6727 		 * on if we are re-adding a preexisting device.
6728 		 * So require mddev->pers and MD_DISK_SYNC.
6729 		 */
6730 		if (mddev->pers) {
6731 			mdu_disk_info_t info;
6732 			if (copy_from_user(&info, argp, sizeof(info)))
6733 				err = -EFAULT;
6734 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6735 				/* Need to clear read-only for this */
6736 				break;
6737 			else
6738 				err = add_new_disk(mddev, &info);
6739 			goto unlock;
6740 		}
6741 		break;
6742 
6743 	case BLKROSET:
6744 		if (get_user(ro, (int __user *)(arg))) {
6745 			err = -EFAULT;
6746 			goto unlock;
6747 		}
6748 		err = -EINVAL;
6749 
6750 		/* if the bdev is going readonly the value of mddev->ro
6751 		 * does not matter, no writes are coming
6752 		 */
6753 		if (ro)
6754 			goto unlock;
6755 
6756 		/* are we are already prepared for writes? */
6757 		if (mddev->ro != 1)
6758 			goto unlock;
6759 
6760 		/* transitioning to readauto need only happen for
6761 		 * arrays that call md_write_start
6762 		 */
6763 		if (mddev->pers) {
6764 			err = restart_array(mddev);
6765 			if (err == 0) {
6766 				mddev->ro = 2;
6767 				set_disk_ro(mddev->gendisk, 0);
6768 			}
6769 		}
6770 		goto unlock;
6771 	}
6772 
6773 	/*
6774 	 * The remaining ioctls are changing the state of the
6775 	 * superblock, so we do not allow them on read-only arrays.
6776 	 */
6777 	if (mddev->ro && mddev->pers) {
6778 		if (mddev->ro == 2) {
6779 			mddev->ro = 0;
6780 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6781 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6782 			/* mddev_unlock will wake thread */
6783 			/* If a device failed while we were read-only, we
6784 			 * need to make sure the metadata is updated now.
6785 			 */
6786 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6787 				mddev_unlock(mddev);
6788 				wait_event(mddev->sb_wait,
6789 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6790 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6791 				mddev_lock_nointr(mddev);
6792 			}
6793 		} else {
6794 			err = -EROFS;
6795 			goto unlock;
6796 		}
6797 	}
6798 
6799 	switch (cmd) {
6800 	case ADD_NEW_DISK:
6801 	{
6802 		mdu_disk_info_t info;
6803 		if (copy_from_user(&info, argp, sizeof(info)))
6804 			err = -EFAULT;
6805 		else
6806 			err = add_new_disk(mddev, &info);
6807 		goto unlock;
6808 	}
6809 
6810 	case CLUSTERED_DISK_NACK:
6811 		if (mddev_is_clustered(mddev))
6812 			md_cluster_ops->new_disk_ack(mddev, false);
6813 		else
6814 			err = -EINVAL;
6815 		goto unlock;
6816 
6817 	case HOT_ADD_DISK:
6818 		err = hot_add_disk(mddev, new_decode_dev(arg));
6819 		goto unlock;
6820 
6821 	case RUN_ARRAY:
6822 		err = do_md_run(mddev);
6823 		goto unlock;
6824 
6825 	case SET_BITMAP_FILE:
6826 		err = set_bitmap_file(mddev, (int)arg);
6827 		goto unlock;
6828 
6829 	default:
6830 		err = -EINVAL;
6831 		goto unlock;
6832 	}
6833 
6834 unlock:
6835 	if (mddev->hold_active == UNTIL_IOCTL &&
6836 	    err != -EINVAL)
6837 		mddev->hold_active = 0;
6838 	mddev_unlock(mddev);
6839 out:
6840 	return err;
6841 }
6842 #ifdef CONFIG_COMPAT
6843 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6844 		    unsigned int cmd, unsigned long arg)
6845 {
6846 	switch (cmd) {
6847 	case HOT_REMOVE_DISK:
6848 	case HOT_ADD_DISK:
6849 	case SET_DISK_FAULTY:
6850 	case SET_BITMAP_FILE:
6851 		/* These take in integer arg, do not convert */
6852 		break;
6853 	default:
6854 		arg = (unsigned long)compat_ptr(arg);
6855 		break;
6856 	}
6857 
6858 	return md_ioctl(bdev, mode, cmd, arg);
6859 }
6860 #endif /* CONFIG_COMPAT */
6861 
6862 static int md_open(struct block_device *bdev, fmode_t mode)
6863 {
6864 	/*
6865 	 * Succeed if we can lock the mddev, which confirms that
6866 	 * it isn't being stopped right now.
6867 	 */
6868 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6869 	int err;
6870 
6871 	if (!mddev)
6872 		return -ENODEV;
6873 
6874 	if (mddev->gendisk != bdev->bd_disk) {
6875 		/* we are racing with mddev_put which is discarding this
6876 		 * bd_disk.
6877 		 */
6878 		mddev_put(mddev);
6879 		/* Wait until bdev->bd_disk is definitely gone */
6880 		flush_workqueue(md_misc_wq);
6881 		/* Then retry the open from the top */
6882 		return -ERESTARTSYS;
6883 	}
6884 	BUG_ON(mddev != bdev->bd_disk->private_data);
6885 
6886 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6887 		goto out;
6888 
6889 	err = 0;
6890 	atomic_inc(&mddev->openers);
6891 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6892 	mutex_unlock(&mddev->open_mutex);
6893 
6894 	check_disk_change(bdev);
6895  out:
6896 	return err;
6897 }
6898 
6899 static void md_release(struct gendisk *disk, fmode_t mode)
6900 {
6901 	struct mddev *mddev = disk->private_data;
6902 
6903 	BUG_ON(!mddev);
6904 	atomic_dec(&mddev->openers);
6905 	mddev_put(mddev);
6906 }
6907 
6908 static int md_media_changed(struct gendisk *disk)
6909 {
6910 	struct mddev *mddev = disk->private_data;
6911 
6912 	return mddev->changed;
6913 }
6914 
6915 static int md_revalidate(struct gendisk *disk)
6916 {
6917 	struct mddev *mddev = disk->private_data;
6918 
6919 	mddev->changed = 0;
6920 	return 0;
6921 }
6922 static const struct block_device_operations md_fops =
6923 {
6924 	.owner		= THIS_MODULE,
6925 	.open		= md_open,
6926 	.release	= md_release,
6927 	.ioctl		= md_ioctl,
6928 #ifdef CONFIG_COMPAT
6929 	.compat_ioctl	= md_compat_ioctl,
6930 #endif
6931 	.getgeo		= md_getgeo,
6932 	.media_changed  = md_media_changed,
6933 	.revalidate_disk= md_revalidate,
6934 };
6935 
6936 static int md_thread(void *arg)
6937 {
6938 	struct md_thread *thread = arg;
6939 
6940 	/*
6941 	 * md_thread is a 'system-thread', it's priority should be very
6942 	 * high. We avoid resource deadlocks individually in each
6943 	 * raid personality. (RAID5 does preallocation) We also use RR and
6944 	 * the very same RT priority as kswapd, thus we will never get
6945 	 * into a priority inversion deadlock.
6946 	 *
6947 	 * we definitely have to have equal or higher priority than
6948 	 * bdflush, otherwise bdflush will deadlock if there are too
6949 	 * many dirty RAID5 blocks.
6950 	 */
6951 
6952 	allow_signal(SIGKILL);
6953 	while (!kthread_should_stop()) {
6954 
6955 		/* We need to wait INTERRUPTIBLE so that
6956 		 * we don't add to the load-average.
6957 		 * That means we need to be sure no signals are
6958 		 * pending
6959 		 */
6960 		if (signal_pending(current))
6961 			flush_signals(current);
6962 
6963 		wait_event_interruptible_timeout
6964 			(thread->wqueue,
6965 			 test_bit(THREAD_WAKEUP, &thread->flags)
6966 			 || kthread_should_stop(),
6967 			 thread->timeout);
6968 
6969 		clear_bit(THREAD_WAKEUP, &thread->flags);
6970 		if (!kthread_should_stop())
6971 			thread->run(thread);
6972 	}
6973 
6974 	return 0;
6975 }
6976 
6977 void md_wakeup_thread(struct md_thread *thread)
6978 {
6979 	if (thread) {
6980 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6981 		set_bit(THREAD_WAKEUP, &thread->flags);
6982 		wake_up(&thread->wqueue);
6983 	}
6984 }
6985 EXPORT_SYMBOL(md_wakeup_thread);
6986 
6987 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6988 		struct mddev *mddev, const char *name)
6989 {
6990 	struct md_thread *thread;
6991 
6992 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6993 	if (!thread)
6994 		return NULL;
6995 
6996 	init_waitqueue_head(&thread->wqueue);
6997 
6998 	thread->run = run;
6999 	thread->mddev = mddev;
7000 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7001 	thread->tsk = kthread_run(md_thread, thread,
7002 				  "%s_%s",
7003 				  mdname(thread->mddev),
7004 				  name);
7005 	if (IS_ERR(thread->tsk)) {
7006 		kfree(thread);
7007 		return NULL;
7008 	}
7009 	return thread;
7010 }
7011 EXPORT_SYMBOL(md_register_thread);
7012 
7013 void md_unregister_thread(struct md_thread **threadp)
7014 {
7015 	struct md_thread *thread = *threadp;
7016 	if (!thread)
7017 		return;
7018 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7019 	/* Locking ensures that mddev_unlock does not wake_up a
7020 	 * non-existent thread
7021 	 */
7022 	spin_lock(&pers_lock);
7023 	*threadp = NULL;
7024 	spin_unlock(&pers_lock);
7025 
7026 	kthread_stop(thread->tsk);
7027 	kfree(thread);
7028 }
7029 EXPORT_SYMBOL(md_unregister_thread);
7030 
7031 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7032 {
7033 	if (!rdev || test_bit(Faulty, &rdev->flags))
7034 		return;
7035 
7036 	if (!mddev->pers || !mddev->pers->error_handler)
7037 		return;
7038 	mddev->pers->error_handler(mddev,rdev);
7039 	if (mddev->degraded)
7040 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7041 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7042 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7043 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7044 	md_wakeup_thread(mddev->thread);
7045 	if (mddev->event_work.func)
7046 		queue_work(md_misc_wq, &mddev->event_work);
7047 	md_new_event_inintr(mddev);
7048 }
7049 EXPORT_SYMBOL(md_error);
7050 
7051 /* seq_file implementation /proc/mdstat */
7052 
7053 static void status_unused(struct seq_file *seq)
7054 {
7055 	int i = 0;
7056 	struct md_rdev *rdev;
7057 
7058 	seq_printf(seq, "unused devices: ");
7059 
7060 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7061 		char b[BDEVNAME_SIZE];
7062 		i++;
7063 		seq_printf(seq, "%s ",
7064 			      bdevname(rdev->bdev,b));
7065 	}
7066 	if (!i)
7067 		seq_printf(seq, "<none>");
7068 
7069 	seq_printf(seq, "\n");
7070 }
7071 
7072 static void status_resync(struct seq_file *seq, struct mddev *mddev)
7073 {
7074 	sector_t max_sectors, resync, res;
7075 	unsigned long dt, db;
7076 	sector_t rt;
7077 	int scale;
7078 	unsigned int per_milli;
7079 
7080 	if (mddev->curr_resync <= 3)
7081 		resync = 0;
7082 	else
7083 		resync = mddev->curr_resync
7084 			- atomic_read(&mddev->recovery_active);
7085 
7086 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7087 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7088 		max_sectors = mddev->resync_max_sectors;
7089 	else
7090 		max_sectors = mddev->dev_sectors;
7091 
7092 	WARN_ON(max_sectors == 0);
7093 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7094 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7095 	 * u32, as those are the requirements for sector_div.
7096 	 * Thus 'scale' must be at least 10
7097 	 */
7098 	scale = 10;
7099 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7100 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7101 			scale++;
7102 	}
7103 	res = (resync>>scale)*1000;
7104 	sector_div(res, (u32)((max_sectors>>scale)+1));
7105 
7106 	per_milli = res;
7107 	{
7108 		int i, x = per_milli/50, y = 20-x;
7109 		seq_printf(seq, "[");
7110 		for (i = 0; i < x; i++)
7111 			seq_printf(seq, "=");
7112 		seq_printf(seq, ">");
7113 		for (i = 0; i < y; i++)
7114 			seq_printf(seq, ".");
7115 		seq_printf(seq, "] ");
7116 	}
7117 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7118 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7119 		    "reshape" :
7120 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7121 		     "check" :
7122 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7123 		      "resync" : "recovery"))),
7124 		   per_milli/10, per_milli % 10,
7125 		   (unsigned long long) resync/2,
7126 		   (unsigned long long) max_sectors/2);
7127 
7128 	/*
7129 	 * dt: time from mark until now
7130 	 * db: blocks written from mark until now
7131 	 * rt: remaining time
7132 	 *
7133 	 * rt is a sector_t, so could be 32bit or 64bit.
7134 	 * So we divide before multiply in case it is 32bit and close
7135 	 * to the limit.
7136 	 * We scale the divisor (db) by 32 to avoid losing precision
7137 	 * near the end of resync when the number of remaining sectors
7138 	 * is close to 'db'.
7139 	 * We then divide rt by 32 after multiplying by db to compensate.
7140 	 * The '+1' avoids division by zero if db is very small.
7141 	 */
7142 	dt = ((jiffies - mddev->resync_mark) / HZ);
7143 	if (!dt) dt++;
7144 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7145 		- mddev->resync_mark_cnt;
7146 
7147 	rt = max_sectors - resync;    /* number of remaining sectors */
7148 	sector_div(rt, db/32+1);
7149 	rt *= dt;
7150 	rt >>= 5;
7151 
7152 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7153 		   ((unsigned long)rt % 60)/6);
7154 
7155 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7156 }
7157 
7158 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7159 {
7160 	struct list_head *tmp;
7161 	loff_t l = *pos;
7162 	struct mddev *mddev;
7163 
7164 	if (l >= 0x10000)
7165 		return NULL;
7166 	if (!l--)
7167 		/* header */
7168 		return (void*)1;
7169 
7170 	spin_lock(&all_mddevs_lock);
7171 	list_for_each(tmp,&all_mddevs)
7172 		if (!l--) {
7173 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7174 			mddev_get(mddev);
7175 			spin_unlock(&all_mddevs_lock);
7176 			return mddev;
7177 		}
7178 	spin_unlock(&all_mddevs_lock);
7179 	if (!l--)
7180 		return (void*)2;/* tail */
7181 	return NULL;
7182 }
7183 
7184 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7185 {
7186 	struct list_head *tmp;
7187 	struct mddev *next_mddev, *mddev = v;
7188 
7189 	++*pos;
7190 	if (v == (void*)2)
7191 		return NULL;
7192 
7193 	spin_lock(&all_mddevs_lock);
7194 	if (v == (void*)1)
7195 		tmp = all_mddevs.next;
7196 	else
7197 		tmp = mddev->all_mddevs.next;
7198 	if (tmp != &all_mddevs)
7199 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7200 	else {
7201 		next_mddev = (void*)2;
7202 		*pos = 0x10000;
7203 	}
7204 	spin_unlock(&all_mddevs_lock);
7205 
7206 	if (v != (void*)1)
7207 		mddev_put(mddev);
7208 	return next_mddev;
7209 
7210 }
7211 
7212 static void md_seq_stop(struct seq_file *seq, void *v)
7213 {
7214 	struct mddev *mddev = v;
7215 
7216 	if (mddev && v != (void*)1 && v != (void*)2)
7217 		mddev_put(mddev);
7218 }
7219 
7220 static int md_seq_show(struct seq_file *seq, void *v)
7221 {
7222 	struct mddev *mddev = v;
7223 	sector_t sectors;
7224 	struct md_rdev *rdev;
7225 
7226 	if (v == (void*)1) {
7227 		struct md_personality *pers;
7228 		seq_printf(seq, "Personalities : ");
7229 		spin_lock(&pers_lock);
7230 		list_for_each_entry(pers, &pers_list, list)
7231 			seq_printf(seq, "[%s] ", pers->name);
7232 
7233 		spin_unlock(&pers_lock);
7234 		seq_printf(seq, "\n");
7235 		seq->poll_event = atomic_read(&md_event_count);
7236 		return 0;
7237 	}
7238 	if (v == (void*)2) {
7239 		status_unused(seq);
7240 		return 0;
7241 	}
7242 
7243 	spin_lock(&mddev->lock);
7244 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7245 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7246 						mddev->pers ? "" : "in");
7247 		if (mddev->pers) {
7248 			if (mddev->ro==1)
7249 				seq_printf(seq, " (read-only)");
7250 			if (mddev->ro==2)
7251 				seq_printf(seq, " (auto-read-only)");
7252 			seq_printf(seq, " %s", mddev->pers->name);
7253 		}
7254 
7255 		sectors = 0;
7256 		rcu_read_lock();
7257 		rdev_for_each_rcu(rdev, mddev) {
7258 			char b[BDEVNAME_SIZE];
7259 			seq_printf(seq, " %s[%d]",
7260 				bdevname(rdev->bdev,b), rdev->desc_nr);
7261 			if (test_bit(WriteMostly, &rdev->flags))
7262 				seq_printf(seq, "(W)");
7263 			if (test_bit(Faulty, &rdev->flags)) {
7264 				seq_printf(seq, "(F)");
7265 				continue;
7266 			}
7267 			if (rdev->raid_disk < 0)
7268 				seq_printf(seq, "(S)"); /* spare */
7269 			if (test_bit(Replacement, &rdev->flags))
7270 				seq_printf(seq, "(R)");
7271 			sectors += rdev->sectors;
7272 		}
7273 		rcu_read_unlock();
7274 
7275 		if (!list_empty(&mddev->disks)) {
7276 			if (mddev->pers)
7277 				seq_printf(seq, "\n      %llu blocks",
7278 					   (unsigned long long)
7279 					   mddev->array_sectors / 2);
7280 			else
7281 				seq_printf(seq, "\n      %llu blocks",
7282 					   (unsigned long long)sectors / 2);
7283 		}
7284 		if (mddev->persistent) {
7285 			if (mddev->major_version != 0 ||
7286 			    mddev->minor_version != 90) {
7287 				seq_printf(seq," super %d.%d",
7288 					   mddev->major_version,
7289 					   mddev->minor_version);
7290 			}
7291 		} else if (mddev->external)
7292 			seq_printf(seq, " super external:%s",
7293 				   mddev->metadata_type);
7294 		else
7295 			seq_printf(seq, " super non-persistent");
7296 
7297 		if (mddev->pers) {
7298 			mddev->pers->status(seq, mddev);
7299 			seq_printf(seq, "\n      ");
7300 			if (mddev->pers->sync_request) {
7301 				if (mddev->curr_resync > 2) {
7302 					status_resync(seq, mddev);
7303 					seq_printf(seq, "\n      ");
7304 				} else if (mddev->curr_resync >= 1)
7305 					seq_printf(seq, "\tresync=DELAYED\n      ");
7306 				else if (mddev->recovery_cp < MaxSector)
7307 					seq_printf(seq, "\tresync=PENDING\n      ");
7308 			}
7309 		} else
7310 			seq_printf(seq, "\n       ");
7311 
7312 		bitmap_status(seq, mddev->bitmap);
7313 
7314 		seq_printf(seq, "\n");
7315 	}
7316 	spin_unlock(&mddev->lock);
7317 
7318 	return 0;
7319 }
7320 
7321 static const struct seq_operations md_seq_ops = {
7322 	.start  = md_seq_start,
7323 	.next   = md_seq_next,
7324 	.stop   = md_seq_stop,
7325 	.show   = md_seq_show,
7326 };
7327 
7328 static int md_seq_open(struct inode *inode, struct file *file)
7329 {
7330 	struct seq_file *seq;
7331 	int error;
7332 
7333 	error = seq_open(file, &md_seq_ops);
7334 	if (error)
7335 		return error;
7336 
7337 	seq = file->private_data;
7338 	seq->poll_event = atomic_read(&md_event_count);
7339 	return error;
7340 }
7341 
7342 static int md_unloading;
7343 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7344 {
7345 	struct seq_file *seq = filp->private_data;
7346 	int mask;
7347 
7348 	if (md_unloading)
7349 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7350 	poll_wait(filp, &md_event_waiters, wait);
7351 
7352 	/* always allow read */
7353 	mask = POLLIN | POLLRDNORM;
7354 
7355 	if (seq->poll_event != atomic_read(&md_event_count))
7356 		mask |= POLLERR | POLLPRI;
7357 	return mask;
7358 }
7359 
7360 static const struct file_operations md_seq_fops = {
7361 	.owner		= THIS_MODULE,
7362 	.open           = md_seq_open,
7363 	.read           = seq_read,
7364 	.llseek         = seq_lseek,
7365 	.release	= seq_release_private,
7366 	.poll		= mdstat_poll,
7367 };
7368 
7369 int register_md_personality(struct md_personality *p)
7370 {
7371 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7372 						p->name, p->level);
7373 	spin_lock(&pers_lock);
7374 	list_add_tail(&p->list, &pers_list);
7375 	spin_unlock(&pers_lock);
7376 	return 0;
7377 }
7378 EXPORT_SYMBOL(register_md_personality);
7379 
7380 int unregister_md_personality(struct md_personality *p)
7381 {
7382 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7383 	spin_lock(&pers_lock);
7384 	list_del_init(&p->list);
7385 	spin_unlock(&pers_lock);
7386 	return 0;
7387 }
7388 EXPORT_SYMBOL(unregister_md_personality);
7389 
7390 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7391 {
7392 	if (md_cluster_ops != NULL)
7393 		return -EALREADY;
7394 	spin_lock(&pers_lock);
7395 	md_cluster_ops = ops;
7396 	md_cluster_mod = module;
7397 	spin_unlock(&pers_lock);
7398 	return 0;
7399 }
7400 EXPORT_SYMBOL(register_md_cluster_operations);
7401 
7402 int unregister_md_cluster_operations(void)
7403 {
7404 	spin_lock(&pers_lock);
7405 	md_cluster_ops = NULL;
7406 	spin_unlock(&pers_lock);
7407 	return 0;
7408 }
7409 EXPORT_SYMBOL(unregister_md_cluster_operations);
7410 
7411 int md_setup_cluster(struct mddev *mddev, int nodes)
7412 {
7413 	int err;
7414 
7415 	err = request_module("md-cluster");
7416 	if (err) {
7417 		pr_err("md-cluster module not found.\n");
7418 		return -ENOENT;
7419 	}
7420 
7421 	spin_lock(&pers_lock);
7422 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7423 		spin_unlock(&pers_lock);
7424 		return -ENOENT;
7425 	}
7426 	spin_unlock(&pers_lock);
7427 
7428 	return md_cluster_ops->join(mddev, nodes);
7429 }
7430 
7431 void md_cluster_stop(struct mddev *mddev)
7432 {
7433 	if (!md_cluster_ops)
7434 		return;
7435 	md_cluster_ops->leave(mddev);
7436 	module_put(md_cluster_mod);
7437 }
7438 
7439 static int is_mddev_idle(struct mddev *mddev, int init)
7440 {
7441 	struct md_rdev *rdev;
7442 	int idle;
7443 	int curr_events;
7444 
7445 	idle = 1;
7446 	rcu_read_lock();
7447 	rdev_for_each_rcu(rdev, mddev) {
7448 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7449 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7450 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7451 			      atomic_read(&disk->sync_io);
7452 		/* sync IO will cause sync_io to increase before the disk_stats
7453 		 * as sync_io is counted when a request starts, and
7454 		 * disk_stats is counted when it completes.
7455 		 * So resync activity will cause curr_events to be smaller than
7456 		 * when there was no such activity.
7457 		 * non-sync IO will cause disk_stat to increase without
7458 		 * increasing sync_io so curr_events will (eventually)
7459 		 * be larger than it was before.  Once it becomes
7460 		 * substantially larger, the test below will cause
7461 		 * the array to appear non-idle, and resync will slow
7462 		 * down.
7463 		 * If there is a lot of outstanding resync activity when
7464 		 * we set last_event to curr_events, then all that activity
7465 		 * completing might cause the array to appear non-idle
7466 		 * and resync will be slowed down even though there might
7467 		 * not have been non-resync activity.  This will only
7468 		 * happen once though.  'last_events' will soon reflect
7469 		 * the state where there is little or no outstanding
7470 		 * resync requests, and further resync activity will
7471 		 * always make curr_events less than last_events.
7472 		 *
7473 		 */
7474 		if (init || curr_events - rdev->last_events > 64) {
7475 			rdev->last_events = curr_events;
7476 			idle = 0;
7477 		}
7478 	}
7479 	rcu_read_unlock();
7480 	return idle;
7481 }
7482 
7483 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7484 {
7485 	/* another "blocks" (512byte) blocks have been synced */
7486 	atomic_sub(blocks, &mddev->recovery_active);
7487 	wake_up(&mddev->recovery_wait);
7488 	if (!ok) {
7489 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7490 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7491 		md_wakeup_thread(mddev->thread);
7492 		// stop recovery, signal do_sync ....
7493 	}
7494 }
7495 EXPORT_SYMBOL(md_done_sync);
7496 
7497 /* md_write_start(mddev, bi)
7498  * If we need to update some array metadata (e.g. 'active' flag
7499  * in superblock) before writing, schedule a superblock update
7500  * and wait for it to complete.
7501  */
7502 void md_write_start(struct mddev *mddev, struct bio *bi)
7503 {
7504 	int did_change = 0;
7505 	if (bio_data_dir(bi) != WRITE)
7506 		return;
7507 
7508 	BUG_ON(mddev->ro == 1);
7509 	if (mddev->ro == 2) {
7510 		/* need to switch to read/write */
7511 		mddev->ro = 0;
7512 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7513 		md_wakeup_thread(mddev->thread);
7514 		md_wakeup_thread(mddev->sync_thread);
7515 		did_change = 1;
7516 	}
7517 	atomic_inc(&mddev->writes_pending);
7518 	if (mddev->safemode == 1)
7519 		mddev->safemode = 0;
7520 	if (mddev->in_sync) {
7521 		spin_lock(&mddev->lock);
7522 		if (mddev->in_sync) {
7523 			mddev->in_sync = 0;
7524 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7525 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7526 			md_wakeup_thread(mddev->thread);
7527 			did_change = 1;
7528 		}
7529 		spin_unlock(&mddev->lock);
7530 	}
7531 	if (did_change)
7532 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7533 	wait_event(mddev->sb_wait,
7534 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7535 }
7536 EXPORT_SYMBOL(md_write_start);
7537 
7538 void md_write_end(struct mddev *mddev)
7539 {
7540 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7541 		if (mddev->safemode == 2)
7542 			md_wakeup_thread(mddev->thread);
7543 		else if (mddev->safemode_delay)
7544 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7545 	}
7546 }
7547 EXPORT_SYMBOL(md_write_end);
7548 
7549 /* md_allow_write(mddev)
7550  * Calling this ensures that the array is marked 'active' so that writes
7551  * may proceed without blocking.  It is important to call this before
7552  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7553  * Must be called with mddev_lock held.
7554  *
7555  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7556  * is dropped, so return -EAGAIN after notifying userspace.
7557  */
7558 int md_allow_write(struct mddev *mddev)
7559 {
7560 	if (!mddev->pers)
7561 		return 0;
7562 	if (mddev->ro)
7563 		return 0;
7564 	if (!mddev->pers->sync_request)
7565 		return 0;
7566 
7567 	spin_lock(&mddev->lock);
7568 	if (mddev->in_sync) {
7569 		mddev->in_sync = 0;
7570 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7571 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7572 		if (mddev->safemode_delay &&
7573 		    mddev->safemode == 0)
7574 			mddev->safemode = 1;
7575 		spin_unlock(&mddev->lock);
7576 		if (mddev_is_clustered(mddev))
7577 			md_cluster_ops->metadata_update_start(mddev);
7578 		md_update_sb(mddev, 0);
7579 		if (mddev_is_clustered(mddev))
7580 			md_cluster_ops->metadata_update_finish(mddev);
7581 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7582 	} else
7583 		spin_unlock(&mddev->lock);
7584 
7585 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7586 		return -EAGAIN;
7587 	else
7588 		return 0;
7589 }
7590 EXPORT_SYMBOL_GPL(md_allow_write);
7591 
7592 #define SYNC_MARKS	10
7593 #define	SYNC_MARK_STEP	(3*HZ)
7594 #define UPDATE_FREQUENCY (5*60*HZ)
7595 void md_do_sync(struct md_thread *thread)
7596 {
7597 	struct mddev *mddev = thread->mddev;
7598 	struct mddev *mddev2;
7599 	unsigned int currspeed = 0,
7600 		 window;
7601 	sector_t max_sectors,j, io_sectors, recovery_done;
7602 	unsigned long mark[SYNC_MARKS];
7603 	unsigned long update_time;
7604 	sector_t mark_cnt[SYNC_MARKS];
7605 	int last_mark,m;
7606 	struct list_head *tmp;
7607 	sector_t last_check;
7608 	int skipped = 0;
7609 	struct md_rdev *rdev;
7610 	char *desc, *action = NULL;
7611 	struct blk_plug plug;
7612 
7613 	/* just incase thread restarts... */
7614 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7615 		return;
7616 	if (mddev->ro) {/* never try to sync a read-only array */
7617 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7618 		return;
7619 	}
7620 
7621 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7622 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7623 			desc = "data-check";
7624 			action = "check";
7625 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7626 			desc = "requested-resync";
7627 			action = "repair";
7628 		} else
7629 			desc = "resync";
7630 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7631 		desc = "reshape";
7632 	else
7633 		desc = "recovery";
7634 
7635 	mddev->last_sync_action = action ?: desc;
7636 
7637 	/* we overload curr_resync somewhat here.
7638 	 * 0 == not engaged in resync at all
7639 	 * 2 == checking that there is no conflict with another sync
7640 	 * 1 == like 2, but have yielded to allow conflicting resync to
7641 	 *		commense
7642 	 * other == active in resync - this many blocks
7643 	 *
7644 	 * Before starting a resync we must have set curr_resync to
7645 	 * 2, and then checked that every "conflicting" array has curr_resync
7646 	 * less than ours.  When we find one that is the same or higher
7647 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7648 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7649 	 * This will mean we have to start checking from the beginning again.
7650 	 *
7651 	 */
7652 
7653 	do {
7654 		mddev->curr_resync = 2;
7655 
7656 	try_again:
7657 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7658 			goto skip;
7659 		for_each_mddev(mddev2, tmp) {
7660 			if (mddev2 == mddev)
7661 				continue;
7662 			if (!mddev->parallel_resync
7663 			&&  mddev2->curr_resync
7664 			&&  match_mddev_units(mddev, mddev2)) {
7665 				DEFINE_WAIT(wq);
7666 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7667 					/* arbitrarily yield */
7668 					mddev->curr_resync = 1;
7669 					wake_up(&resync_wait);
7670 				}
7671 				if (mddev > mddev2 && mddev->curr_resync == 1)
7672 					/* no need to wait here, we can wait the next
7673 					 * time 'round when curr_resync == 2
7674 					 */
7675 					continue;
7676 				/* We need to wait 'interruptible' so as not to
7677 				 * contribute to the load average, and not to
7678 				 * be caught by 'softlockup'
7679 				 */
7680 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7681 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7682 				    mddev2->curr_resync >= mddev->curr_resync) {
7683 					printk(KERN_INFO "md: delaying %s of %s"
7684 					       " until %s has finished (they"
7685 					       " share one or more physical units)\n",
7686 					       desc, mdname(mddev), mdname(mddev2));
7687 					mddev_put(mddev2);
7688 					if (signal_pending(current))
7689 						flush_signals(current);
7690 					schedule();
7691 					finish_wait(&resync_wait, &wq);
7692 					goto try_again;
7693 				}
7694 				finish_wait(&resync_wait, &wq);
7695 			}
7696 		}
7697 	} while (mddev->curr_resync < 2);
7698 
7699 	j = 0;
7700 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7701 		/* resync follows the size requested by the personality,
7702 		 * which defaults to physical size, but can be virtual size
7703 		 */
7704 		max_sectors = mddev->resync_max_sectors;
7705 		atomic64_set(&mddev->resync_mismatches, 0);
7706 		/* we don't use the checkpoint if there's a bitmap */
7707 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7708 			j = mddev->resync_min;
7709 		else if (!mddev->bitmap)
7710 			j = mddev->recovery_cp;
7711 
7712 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7713 		max_sectors = mddev->resync_max_sectors;
7714 	else {
7715 		/* recovery follows the physical size of devices */
7716 		max_sectors = mddev->dev_sectors;
7717 		j = MaxSector;
7718 		rcu_read_lock();
7719 		rdev_for_each_rcu(rdev, mddev)
7720 			if (rdev->raid_disk >= 0 &&
7721 			    !test_bit(Faulty, &rdev->flags) &&
7722 			    !test_bit(In_sync, &rdev->flags) &&
7723 			    rdev->recovery_offset < j)
7724 				j = rdev->recovery_offset;
7725 		rcu_read_unlock();
7726 
7727 		/* If there is a bitmap, we need to make sure all
7728 		 * writes that started before we added a spare
7729 		 * complete before we start doing a recovery.
7730 		 * Otherwise the write might complete and (via
7731 		 * bitmap_endwrite) set a bit in the bitmap after the
7732 		 * recovery has checked that bit and skipped that
7733 		 * region.
7734 		 */
7735 		if (mddev->bitmap) {
7736 			mddev->pers->quiesce(mddev, 1);
7737 			mddev->pers->quiesce(mddev, 0);
7738 		}
7739 	}
7740 
7741 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7742 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7743 		" %d KB/sec/disk.\n", speed_min(mddev));
7744 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7745 	       "(but not more than %d KB/sec) for %s.\n",
7746 	       speed_max(mddev), desc);
7747 
7748 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7749 
7750 	io_sectors = 0;
7751 	for (m = 0; m < SYNC_MARKS; m++) {
7752 		mark[m] = jiffies;
7753 		mark_cnt[m] = io_sectors;
7754 	}
7755 	last_mark = 0;
7756 	mddev->resync_mark = mark[last_mark];
7757 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7758 
7759 	/*
7760 	 * Tune reconstruction:
7761 	 */
7762 	window = 32*(PAGE_SIZE/512);
7763 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7764 		window/2, (unsigned long long)max_sectors/2);
7765 
7766 	atomic_set(&mddev->recovery_active, 0);
7767 	last_check = 0;
7768 
7769 	if (j>2) {
7770 		printk(KERN_INFO
7771 		       "md: resuming %s of %s from checkpoint.\n",
7772 		       desc, mdname(mddev));
7773 		mddev->curr_resync = j;
7774 	} else
7775 		mddev->curr_resync = 3; /* no longer delayed */
7776 	mddev->curr_resync_completed = j;
7777 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7778 	md_new_event(mddev);
7779 	update_time = jiffies;
7780 
7781 	if (mddev_is_clustered(mddev))
7782 		md_cluster_ops->resync_start(mddev, j, max_sectors);
7783 
7784 	blk_start_plug(&plug);
7785 	while (j < max_sectors) {
7786 		sector_t sectors;
7787 
7788 		skipped = 0;
7789 
7790 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7791 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7792 		      (mddev->curr_resync - mddev->curr_resync_completed)
7793 		      > (max_sectors >> 4)) ||
7794 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7795 		     (j - mddev->curr_resync_completed)*2
7796 		     >= mddev->resync_max - mddev->curr_resync_completed
7797 			    )) {
7798 			/* time to update curr_resync_completed */
7799 			wait_event(mddev->recovery_wait,
7800 				   atomic_read(&mddev->recovery_active) == 0);
7801 			mddev->curr_resync_completed = j;
7802 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7803 			    j > mddev->recovery_cp)
7804 				mddev->recovery_cp = j;
7805 			update_time = jiffies;
7806 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7807 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7808 		}
7809 
7810 		while (j >= mddev->resync_max &&
7811 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7812 			/* As this condition is controlled by user-space,
7813 			 * we can block indefinitely, so use '_interruptible'
7814 			 * to avoid triggering warnings.
7815 			 */
7816 			flush_signals(current); /* just in case */
7817 			wait_event_interruptible(mddev->recovery_wait,
7818 						 mddev->resync_max > j
7819 						 || test_bit(MD_RECOVERY_INTR,
7820 							     &mddev->recovery));
7821 		}
7822 
7823 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7824 			break;
7825 
7826 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
7827 		if (sectors == 0) {
7828 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7829 			break;
7830 		}
7831 
7832 		if (!skipped) { /* actual IO requested */
7833 			io_sectors += sectors;
7834 			atomic_add(sectors, &mddev->recovery_active);
7835 		}
7836 
7837 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7838 			break;
7839 
7840 		j += sectors;
7841 		if (j > 2)
7842 			mddev->curr_resync = j;
7843 		if (mddev_is_clustered(mddev))
7844 			md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7845 		mddev->curr_mark_cnt = io_sectors;
7846 		if (last_check == 0)
7847 			/* this is the earliest that rebuild will be
7848 			 * visible in /proc/mdstat
7849 			 */
7850 			md_new_event(mddev);
7851 
7852 		if (last_check + window > io_sectors || j == max_sectors)
7853 			continue;
7854 
7855 		last_check = io_sectors;
7856 	repeat:
7857 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7858 			/* step marks */
7859 			int next = (last_mark+1) % SYNC_MARKS;
7860 
7861 			mddev->resync_mark = mark[next];
7862 			mddev->resync_mark_cnt = mark_cnt[next];
7863 			mark[next] = jiffies;
7864 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7865 			last_mark = next;
7866 		}
7867 
7868 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7869 			break;
7870 
7871 		/*
7872 		 * this loop exits only if either when we are slower than
7873 		 * the 'hard' speed limit, or the system was IO-idle for
7874 		 * a jiffy.
7875 		 * the system might be non-idle CPU-wise, but we only care
7876 		 * about not overloading the IO subsystem. (things like an
7877 		 * e2fsck being done on the RAID array should execute fast)
7878 		 */
7879 		cond_resched();
7880 
7881 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7882 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7883 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7884 
7885 		if (currspeed > speed_min(mddev)) {
7886 			if (currspeed > speed_max(mddev)) {
7887 				msleep(500);
7888 				goto repeat;
7889 			}
7890 			if (!is_mddev_idle(mddev, 0)) {
7891 				/*
7892 				 * Give other IO more of a chance.
7893 				 * The faster the devices, the less we wait.
7894 				 */
7895 				wait_event(mddev->recovery_wait,
7896 					   !atomic_read(&mddev->recovery_active));
7897 			}
7898 		}
7899 	}
7900 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7901 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7902 	       ? "interrupted" : "done");
7903 	/*
7904 	 * this also signals 'finished resyncing' to md_stop
7905 	 */
7906 	blk_finish_plug(&plug);
7907 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7908 
7909 	/* tell personality that we are finished */
7910 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
7911 
7912 	if (mddev_is_clustered(mddev))
7913 		md_cluster_ops->resync_finish(mddev);
7914 
7915 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7916 	    mddev->curr_resync > 2) {
7917 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7918 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7919 				if (mddev->curr_resync >= mddev->recovery_cp) {
7920 					printk(KERN_INFO
7921 					       "md: checkpointing %s of %s.\n",
7922 					       desc, mdname(mddev));
7923 					if (test_bit(MD_RECOVERY_ERROR,
7924 						&mddev->recovery))
7925 						mddev->recovery_cp =
7926 							mddev->curr_resync_completed;
7927 					else
7928 						mddev->recovery_cp =
7929 							mddev->curr_resync;
7930 				}
7931 			} else
7932 				mddev->recovery_cp = MaxSector;
7933 		} else {
7934 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7935 				mddev->curr_resync = MaxSector;
7936 			rcu_read_lock();
7937 			rdev_for_each_rcu(rdev, mddev)
7938 				if (rdev->raid_disk >= 0 &&
7939 				    mddev->delta_disks >= 0 &&
7940 				    !test_bit(Faulty, &rdev->flags) &&
7941 				    !test_bit(In_sync, &rdev->flags) &&
7942 				    rdev->recovery_offset < mddev->curr_resync)
7943 					rdev->recovery_offset = mddev->curr_resync;
7944 			rcu_read_unlock();
7945 		}
7946 	}
7947  skip:
7948 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7949 
7950 	spin_lock(&mddev->lock);
7951 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7952 		/* We completed so min/max setting can be forgotten if used. */
7953 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7954 			mddev->resync_min = 0;
7955 		mddev->resync_max = MaxSector;
7956 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7957 		mddev->resync_min = mddev->curr_resync_completed;
7958 	mddev->curr_resync = 0;
7959 	spin_unlock(&mddev->lock);
7960 
7961 	wake_up(&resync_wait);
7962 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7963 	md_wakeup_thread(mddev->thread);
7964 	return;
7965 }
7966 EXPORT_SYMBOL_GPL(md_do_sync);
7967 
7968 static int remove_and_add_spares(struct mddev *mddev,
7969 				 struct md_rdev *this)
7970 {
7971 	struct md_rdev *rdev;
7972 	int spares = 0;
7973 	int removed = 0;
7974 
7975 	rdev_for_each(rdev, mddev)
7976 		if ((this == NULL || rdev == this) &&
7977 		    rdev->raid_disk >= 0 &&
7978 		    !test_bit(Blocked, &rdev->flags) &&
7979 		    (test_bit(Faulty, &rdev->flags) ||
7980 		     ! test_bit(In_sync, &rdev->flags)) &&
7981 		    atomic_read(&rdev->nr_pending)==0) {
7982 			if (mddev->pers->hot_remove_disk(
7983 				    mddev, rdev) == 0) {
7984 				sysfs_unlink_rdev(mddev, rdev);
7985 				rdev->raid_disk = -1;
7986 				removed++;
7987 			}
7988 		}
7989 	if (removed && mddev->kobj.sd)
7990 		sysfs_notify(&mddev->kobj, NULL, "degraded");
7991 
7992 	if (this)
7993 		goto no_add;
7994 
7995 	rdev_for_each(rdev, mddev) {
7996 		if (rdev->raid_disk >= 0 &&
7997 		    !test_bit(In_sync, &rdev->flags) &&
7998 		    !test_bit(Faulty, &rdev->flags))
7999 			spares++;
8000 		if (rdev->raid_disk >= 0)
8001 			continue;
8002 		if (test_bit(Faulty, &rdev->flags))
8003 			continue;
8004 		if (mddev->ro &&
8005 		    ! (rdev->saved_raid_disk >= 0 &&
8006 		       !test_bit(Bitmap_sync, &rdev->flags)))
8007 			continue;
8008 
8009 		if (rdev->saved_raid_disk < 0)
8010 			rdev->recovery_offset = 0;
8011 		if (mddev->pers->
8012 		    hot_add_disk(mddev, rdev) == 0) {
8013 			if (sysfs_link_rdev(mddev, rdev))
8014 				/* failure here is OK */;
8015 			spares++;
8016 			md_new_event(mddev);
8017 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8018 		}
8019 	}
8020 no_add:
8021 	if (removed)
8022 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8023 	return spares;
8024 }
8025 
8026 static void md_start_sync(struct work_struct *ws)
8027 {
8028 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8029 
8030 	mddev->sync_thread = md_register_thread(md_do_sync,
8031 						mddev,
8032 						"resync");
8033 	if (!mddev->sync_thread) {
8034 		printk(KERN_ERR "%s: could not start resync"
8035 		       " thread...\n",
8036 		       mdname(mddev));
8037 		/* leave the spares where they are, it shouldn't hurt */
8038 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8039 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8040 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8041 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8042 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8043 		wake_up(&resync_wait);
8044 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8045 				       &mddev->recovery))
8046 			if (mddev->sysfs_action)
8047 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8048 	} else
8049 		md_wakeup_thread(mddev->sync_thread);
8050 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8051 	md_new_event(mddev);
8052 }
8053 
8054 /*
8055  * This routine is regularly called by all per-raid-array threads to
8056  * deal with generic issues like resync and super-block update.
8057  * Raid personalities that don't have a thread (linear/raid0) do not
8058  * need this as they never do any recovery or update the superblock.
8059  *
8060  * It does not do any resync itself, but rather "forks" off other threads
8061  * to do that as needed.
8062  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8063  * "->recovery" and create a thread at ->sync_thread.
8064  * When the thread finishes it sets MD_RECOVERY_DONE
8065  * and wakeups up this thread which will reap the thread and finish up.
8066  * This thread also removes any faulty devices (with nr_pending == 0).
8067  *
8068  * The overall approach is:
8069  *  1/ if the superblock needs updating, update it.
8070  *  2/ If a recovery thread is running, don't do anything else.
8071  *  3/ If recovery has finished, clean up, possibly marking spares active.
8072  *  4/ If there are any faulty devices, remove them.
8073  *  5/ If array is degraded, try to add spares devices
8074  *  6/ If array has spares or is not in-sync, start a resync thread.
8075  */
8076 void md_check_recovery(struct mddev *mddev)
8077 {
8078 	if (mddev->suspended)
8079 		return;
8080 
8081 	if (mddev->bitmap)
8082 		bitmap_daemon_work(mddev);
8083 
8084 	if (signal_pending(current)) {
8085 		if (mddev->pers->sync_request && !mddev->external) {
8086 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8087 			       mdname(mddev));
8088 			mddev->safemode = 2;
8089 		}
8090 		flush_signals(current);
8091 	}
8092 
8093 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8094 		return;
8095 	if ( ! (
8096 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8097 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8098 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8099 		(mddev->external == 0 && mddev->safemode == 1) ||
8100 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8101 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8102 		))
8103 		return;
8104 
8105 	if (mddev_trylock(mddev)) {
8106 		int spares = 0;
8107 
8108 		if (mddev->ro) {
8109 			struct md_rdev *rdev;
8110 			if (!mddev->external && mddev->in_sync)
8111 				/* 'Blocked' flag not needed as failed devices
8112 				 * will be recorded if array switched to read/write.
8113 				 * Leaving it set will prevent the device
8114 				 * from being removed.
8115 				 */
8116 				rdev_for_each(rdev, mddev)
8117 					clear_bit(Blocked, &rdev->flags);
8118 			/* On a read-only array we can:
8119 			 * - remove failed devices
8120 			 * - add already-in_sync devices if the array itself
8121 			 *   is in-sync.
8122 			 * As we only add devices that are already in-sync,
8123 			 * we can activate the spares immediately.
8124 			 */
8125 			remove_and_add_spares(mddev, NULL);
8126 			/* There is no thread, but we need to call
8127 			 * ->spare_active and clear saved_raid_disk
8128 			 */
8129 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8130 			md_reap_sync_thread(mddev);
8131 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8132 			goto unlock;
8133 		}
8134 
8135 		if (!mddev->external) {
8136 			int did_change = 0;
8137 			spin_lock(&mddev->lock);
8138 			if (mddev->safemode &&
8139 			    !atomic_read(&mddev->writes_pending) &&
8140 			    !mddev->in_sync &&
8141 			    mddev->recovery_cp == MaxSector) {
8142 				mddev->in_sync = 1;
8143 				did_change = 1;
8144 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8145 			}
8146 			if (mddev->safemode == 1)
8147 				mddev->safemode = 0;
8148 			spin_unlock(&mddev->lock);
8149 			if (did_change)
8150 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8151 		}
8152 
8153 		if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8154 			if (mddev_is_clustered(mddev))
8155 				md_cluster_ops->metadata_update_start(mddev);
8156 			md_update_sb(mddev, 0);
8157 			if (mddev_is_clustered(mddev))
8158 				md_cluster_ops->metadata_update_finish(mddev);
8159 		}
8160 
8161 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8162 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8163 			/* resync/recovery still happening */
8164 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8165 			goto unlock;
8166 		}
8167 		if (mddev->sync_thread) {
8168 			md_reap_sync_thread(mddev);
8169 			goto unlock;
8170 		}
8171 		/* Set RUNNING before clearing NEEDED to avoid
8172 		 * any transients in the value of "sync_action".
8173 		 */
8174 		mddev->curr_resync_completed = 0;
8175 		spin_lock(&mddev->lock);
8176 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8177 		spin_unlock(&mddev->lock);
8178 		/* Clear some bits that don't mean anything, but
8179 		 * might be left set
8180 		 */
8181 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8182 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8183 
8184 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8185 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8186 			goto not_running;
8187 		/* no recovery is running.
8188 		 * remove any failed drives, then
8189 		 * add spares if possible.
8190 		 * Spares are also removed and re-added, to allow
8191 		 * the personality to fail the re-add.
8192 		 */
8193 
8194 		if (mddev->reshape_position != MaxSector) {
8195 			if (mddev->pers->check_reshape == NULL ||
8196 			    mddev->pers->check_reshape(mddev) != 0)
8197 				/* Cannot proceed */
8198 				goto not_running;
8199 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8200 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8201 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8202 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8203 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8204 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8205 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8206 		} else if (mddev->recovery_cp < MaxSector) {
8207 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8208 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8209 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8210 			/* nothing to be done ... */
8211 			goto not_running;
8212 
8213 		if (mddev->pers->sync_request) {
8214 			if (spares) {
8215 				/* We are adding a device or devices to an array
8216 				 * which has the bitmap stored on all devices.
8217 				 * So make sure all bitmap pages get written
8218 				 */
8219 				bitmap_write_all(mddev->bitmap);
8220 			}
8221 			INIT_WORK(&mddev->del_work, md_start_sync);
8222 			queue_work(md_misc_wq, &mddev->del_work);
8223 			goto unlock;
8224 		}
8225 	not_running:
8226 		if (!mddev->sync_thread) {
8227 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8228 			wake_up(&resync_wait);
8229 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8230 					       &mddev->recovery))
8231 				if (mddev->sysfs_action)
8232 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8233 		}
8234 	unlock:
8235 		wake_up(&mddev->sb_wait);
8236 		mddev_unlock(mddev);
8237 	}
8238 }
8239 EXPORT_SYMBOL(md_check_recovery);
8240 
8241 void md_reap_sync_thread(struct mddev *mddev)
8242 {
8243 	struct md_rdev *rdev;
8244 
8245 	/* resync has finished, collect result */
8246 	md_unregister_thread(&mddev->sync_thread);
8247 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8248 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8249 		/* success...*/
8250 		/* activate any spares */
8251 		if (mddev->pers->spare_active(mddev)) {
8252 			sysfs_notify(&mddev->kobj, NULL,
8253 				     "degraded");
8254 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8255 		}
8256 	}
8257 	if (mddev_is_clustered(mddev))
8258 		md_cluster_ops->metadata_update_start(mddev);
8259 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8260 	    mddev->pers->finish_reshape)
8261 		mddev->pers->finish_reshape(mddev);
8262 
8263 	/* If array is no-longer degraded, then any saved_raid_disk
8264 	 * information must be scrapped.
8265 	 */
8266 	if (!mddev->degraded)
8267 		rdev_for_each(rdev, mddev)
8268 			rdev->saved_raid_disk = -1;
8269 
8270 	md_update_sb(mddev, 1);
8271 	if (mddev_is_clustered(mddev))
8272 		md_cluster_ops->metadata_update_finish(mddev);
8273 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8274 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8275 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8276 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8277 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8278 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8279 	wake_up(&resync_wait);
8280 	/* flag recovery needed just to double check */
8281 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8282 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8283 	md_new_event(mddev);
8284 	if (mddev->event_work.func)
8285 		queue_work(md_misc_wq, &mddev->event_work);
8286 }
8287 EXPORT_SYMBOL(md_reap_sync_thread);
8288 
8289 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8290 {
8291 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8292 	wait_event_timeout(rdev->blocked_wait,
8293 			   !test_bit(Blocked, &rdev->flags) &&
8294 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8295 			   msecs_to_jiffies(5000));
8296 	rdev_dec_pending(rdev, mddev);
8297 }
8298 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8299 
8300 void md_finish_reshape(struct mddev *mddev)
8301 {
8302 	/* called be personality module when reshape completes. */
8303 	struct md_rdev *rdev;
8304 
8305 	rdev_for_each(rdev, mddev) {
8306 		if (rdev->data_offset > rdev->new_data_offset)
8307 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8308 		else
8309 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8310 		rdev->data_offset = rdev->new_data_offset;
8311 	}
8312 }
8313 EXPORT_SYMBOL(md_finish_reshape);
8314 
8315 /* Bad block management.
8316  * We can record which blocks on each device are 'bad' and so just
8317  * fail those blocks, or that stripe, rather than the whole device.
8318  * Entries in the bad-block table are 64bits wide.  This comprises:
8319  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8320  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8321  *  A 'shift' can be set so that larger blocks are tracked and
8322  *  consequently larger devices can be covered.
8323  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8324  *
8325  * Locking of the bad-block table uses a seqlock so md_is_badblock
8326  * might need to retry if it is very unlucky.
8327  * We will sometimes want to check for bad blocks in a bi_end_io function,
8328  * so we use the write_seqlock_irq variant.
8329  *
8330  * When looking for a bad block we specify a range and want to
8331  * know if any block in the range is bad.  So we binary-search
8332  * to the last range that starts at-or-before the given endpoint,
8333  * (or "before the sector after the target range")
8334  * then see if it ends after the given start.
8335  * We return
8336  *  0 if there are no known bad blocks in the range
8337  *  1 if there are known bad block which are all acknowledged
8338  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8339  * plus the start/length of the first bad section we overlap.
8340  */
8341 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8342 		   sector_t *first_bad, int *bad_sectors)
8343 {
8344 	int hi;
8345 	int lo;
8346 	u64 *p = bb->page;
8347 	int rv;
8348 	sector_t target = s + sectors;
8349 	unsigned seq;
8350 
8351 	if (bb->shift > 0) {
8352 		/* round the start down, and the end up */
8353 		s >>= bb->shift;
8354 		target += (1<<bb->shift) - 1;
8355 		target >>= bb->shift;
8356 		sectors = target - s;
8357 	}
8358 	/* 'target' is now the first block after the bad range */
8359 
8360 retry:
8361 	seq = read_seqbegin(&bb->lock);
8362 	lo = 0;
8363 	rv = 0;
8364 	hi = bb->count;
8365 
8366 	/* Binary search between lo and hi for 'target'
8367 	 * i.e. for the last range that starts before 'target'
8368 	 */
8369 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8370 	 * are known not to be the last range before target.
8371 	 * VARIANT: hi-lo is the number of possible
8372 	 * ranges, and decreases until it reaches 1
8373 	 */
8374 	while (hi - lo > 1) {
8375 		int mid = (lo + hi) / 2;
8376 		sector_t a = BB_OFFSET(p[mid]);
8377 		if (a < target)
8378 			/* This could still be the one, earlier ranges
8379 			 * could not. */
8380 			lo = mid;
8381 		else
8382 			/* This and later ranges are definitely out. */
8383 			hi = mid;
8384 	}
8385 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8386 	if (hi > lo) {
8387 		/* need to check all range that end after 's' to see if
8388 		 * any are unacknowledged.
8389 		 */
8390 		while (lo >= 0 &&
8391 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8392 			if (BB_OFFSET(p[lo]) < target) {
8393 				/* starts before the end, and finishes after
8394 				 * the start, so they must overlap
8395 				 */
8396 				if (rv != -1 && BB_ACK(p[lo]))
8397 					rv = 1;
8398 				else
8399 					rv = -1;
8400 				*first_bad = BB_OFFSET(p[lo]);
8401 				*bad_sectors = BB_LEN(p[lo]);
8402 			}
8403 			lo--;
8404 		}
8405 	}
8406 
8407 	if (read_seqretry(&bb->lock, seq))
8408 		goto retry;
8409 
8410 	return rv;
8411 }
8412 EXPORT_SYMBOL_GPL(md_is_badblock);
8413 
8414 /*
8415  * Add a range of bad blocks to the table.
8416  * This might extend the table, or might contract it
8417  * if two adjacent ranges can be merged.
8418  * We binary-search to find the 'insertion' point, then
8419  * decide how best to handle it.
8420  */
8421 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8422 			    int acknowledged)
8423 {
8424 	u64 *p;
8425 	int lo, hi;
8426 	int rv = 1;
8427 	unsigned long flags;
8428 
8429 	if (bb->shift < 0)
8430 		/* badblocks are disabled */
8431 		return 0;
8432 
8433 	if (bb->shift) {
8434 		/* round the start down, and the end up */
8435 		sector_t next = s + sectors;
8436 		s >>= bb->shift;
8437 		next += (1<<bb->shift) - 1;
8438 		next >>= bb->shift;
8439 		sectors = next - s;
8440 	}
8441 
8442 	write_seqlock_irqsave(&bb->lock, flags);
8443 
8444 	p = bb->page;
8445 	lo = 0;
8446 	hi = bb->count;
8447 	/* Find the last range that starts at-or-before 's' */
8448 	while (hi - lo > 1) {
8449 		int mid = (lo + hi) / 2;
8450 		sector_t a = BB_OFFSET(p[mid]);
8451 		if (a <= s)
8452 			lo = mid;
8453 		else
8454 			hi = mid;
8455 	}
8456 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8457 		hi = lo;
8458 
8459 	if (hi > lo) {
8460 		/* we found a range that might merge with the start
8461 		 * of our new range
8462 		 */
8463 		sector_t a = BB_OFFSET(p[lo]);
8464 		sector_t e = a + BB_LEN(p[lo]);
8465 		int ack = BB_ACK(p[lo]);
8466 		if (e >= s) {
8467 			/* Yes, we can merge with a previous range */
8468 			if (s == a && s + sectors >= e)
8469 				/* new range covers old */
8470 				ack = acknowledged;
8471 			else
8472 				ack = ack && acknowledged;
8473 
8474 			if (e < s + sectors)
8475 				e = s + sectors;
8476 			if (e - a <= BB_MAX_LEN) {
8477 				p[lo] = BB_MAKE(a, e-a, ack);
8478 				s = e;
8479 			} else {
8480 				/* does not all fit in one range,
8481 				 * make p[lo] maximal
8482 				 */
8483 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8484 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8485 				s = a + BB_MAX_LEN;
8486 			}
8487 			sectors = e - s;
8488 		}
8489 	}
8490 	if (sectors && hi < bb->count) {
8491 		/* 'hi' points to the first range that starts after 's'.
8492 		 * Maybe we can merge with the start of that range */
8493 		sector_t a = BB_OFFSET(p[hi]);
8494 		sector_t e = a + BB_LEN(p[hi]);
8495 		int ack = BB_ACK(p[hi]);
8496 		if (a <= s + sectors) {
8497 			/* merging is possible */
8498 			if (e <= s + sectors) {
8499 				/* full overlap */
8500 				e = s + sectors;
8501 				ack = acknowledged;
8502 			} else
8503 				ack = ack && acknowledged;
8504 
8505 			a = s;
8506 			if (e - a <= BB_MAX_LEN) {
8507 				p[hi] = BB_MAKE(a, e-a, ack);
8508 				s = e;
8509 			} else {
8510 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8511 				s = a + BB_MAX_LEN;
8512 			}
8513 			sectors = e - s;
8514 			lo = hi;
8515 			hi++;
8516 		}
8517 	}
8518 	if (sectors == 0 && hi < bb->count) {
8519 		/* we might be able to combine lo and hi */
8520 		/* Note: 's' is at the end of 'lo' */
8521 		sector_t a = BB_OFFSET(p[hi]);
8522 		int lolen = BB_LEN(p[lo]);
8523 		int hilen = BB_LEN(p[hi]);
8524 		int newlen = lolen + hilen - (s - a);
8525 		if (s >= a && newlen < BB_MAX_LEN) {
8526 			/* yes, we can combine them */
8527 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8528 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8529 			memmove(p + hi, p + hi + 1,
8530 				(bb->count - hi - 1) * 8);
8531 			bb->count--;
8532 		}
8533 	}
8534 	while (sectors) {
8535 		/* didn't merge (it all).
8536 		 * Need to add a range just before 'hi' */
8537 		if (bb->count >= MD_MAX_BADBLOCKS) {
8538 			/* No room for more */
8539 			rv = 0;
8540 			break;
8541 		} else {
8542 			int this_sectors = sectors;
8543 			memmove(p + hi + 1, p + hi,
8544 				(bb->count - hi) * 8);
8545 			bb->count++;
8546 
8547 			if (this_sectors > BB_MAX_LEN)
8548 				this_sectors = BB_MAX_LEN;
8549 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8550 			sectors -= this_sectors;
8551 			s += this_sectors;
8552 		}
8553 	}
8554 
8555 	bb->changed = 1;
8556 	if (!acknowledged)
8557 		bb->unacked_exist = 1;
8558 	write_sequnlock_irqrestore(&bb->lock, flags);
8559 
8560 	return rv;
8561 }
8562 
8563 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8564 		       int is_new)
8565 {
8566 	int rv;
8567 	if (is_new)
8568 		s += rdev->new_data_offset;
8569 	else
8570 		s += rdev->data_offset;
8571 	rv = md_set_badblocks(&rdev->badblocks,
8572 			      s, sectors, 0);
8573 	if (rv) {
8574 		/* Make sure they get written out promptly */
8575 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8576 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8577 		md_wakeup_thread(rdev->mddev->thread);
8578 	}
8579 	return rv;
8580 }
8581 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8582 
8583 /*
8584  * Remove a range of bad blocks from the table.
8585  * This may involve extending the table if we spilt a region,
8586  * but it must not fail.  So if the table becomes full, we just
8587  * drop the remove request.
8588  */
8589 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8590 {
8591 	u64 *p;
8592 	int lo, hi;
8593 	sector_t target = s + sectors;
8594 	int rv = 0;
8595 
8596 	if (bb->shift > 0) {
8597 		/* When clearing we round the start up and the end down.
8598 		 * This should not matter as the shift should align with
8599 		 * the block size and no rounding should ever be needed.
8600 		 * However it is better the think a block is bad when it
8601 		 * isn't than to think a block is not bad when it is.
8602 		 */
8603 		s += (1<<bb->shift) - 1;
8604 		s >>= bb->shift;
8605 		target >>= bb->shift;
8606 		sectors = target - s;
8607 	}
8608 
8609 	write_seqlock_irq(&bb->lock);
8610 
8611 	p = bb->page;
8612 	lo = 0;
8613 	hi = bb->count;
8614 	/* Find the last range that starts before 'target' */
8615 	while (hi - lo > 1) {
8616 		int mid = (lo + hi) / 2;
8617 		sector_t a = BB_OFFSET(p[mid]);
8618 		if (a < target)
8619 			lo = mid;
8620 		else
8621 			hi = mid;
8622 	}
8623 	if (hi > lo) {
8624 		/* p[lo] is the last range that could overlap the
8625 		 * current range.  Earlier ranges could also overlap,
8626 		 * but only this one can overlap the end of the range.
8627 		 */
8628 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8629 			/* Partial overlap, leave the tail of this range */
8630 			int ack = BB_ACK(p[lo]);
8631 			sector_t a = BB_OFFSET(p[lo]);
8632 			sector_t end = a + BB_LEN(p[lo]);
8633 
8634 			if (a < s) {
8635 				/* we need to split this range */
8636 				if (bb->count >= MD_MAX_BADBLOCKS) {
8637 					rv = -ENOSPC;
8638 					goto out;
8639 				}
8640 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8641 				bb->count++;
8642 				p[lo] = BB_MAKE(a, s-a, ack);
8643 				lo++;
8644 			}
8645 			p[lo] = BB_MAKE(target, end - target, ack);
8646 			/* there is no longer an overlap */
8647 			hi = lo;
8648 			lo--;
8649 		}
8650 		while (lo >= 0 &&
8651 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8652 			/* This range does overlap */
8653 			if (BB_OFFSET(p[lo]) < s) {
8654 				/* Keep the early parts of this range. */
8655 				int ack = BB_ACK(p[lo]);
8656 				sector_t start = BB_OFFSET(p[lo]);
8657 				p[lo] = BB_MAKE(start, s - start, ack);
8658 				/* now low doesn't overlap, so.. */
8659 				break;
8660 			}
8661 			lo--;
8662 		}
8663 		/* 'lo' is strictly before, 'hi' is strictly after,
8664 		 * anything between needs to be discarded
8665 		 */
8666 		if (hi - lo > 1) {
8667 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8668 			bb->count -= (hi - lo - 1);
8669 		}
8670 	}
8671 
8672 	bb->changed = 1;
8673 out:
8674 	write_sequnlock_irq(&bb->lock);
8675 	return rv;
8676 }
8677 
8678 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8679 			 int is_new)
8680 {
8681 	if (is_new)
8682 		s += rdev->new_data_offset;
8683 	else
8684 		s += rdev->data_offset;
8685 	return md_clear_badblocks(&rdev->badblocks,
8686 				  s, sectors);
8687 }
8688 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8689 
8690 /*
8691  * Acknowledge all bad blocks in a list.
8692  * This only succeeds if ->changed is clear.  It is used by
8693  * in-kernel metadata updates
8694  */
8695 void md_ack_all_badblocks(struct badblocks *bb)
8696 {
8697 	if (bb->page == NULL || bb->changed)
8698 		/* no point even trying */
8699 		return;
8700 	write_seqlock_irq(&bb->lock);
8701 
8702 	if (bb->changed == 0 && bb->unacked_exist) {
8703 		u64 *p = bb->page;
8704 		int i;
8705 		for (i = 0; i < bb->count ; i++) {
8706 			if (!BB_ACK(p[i])) {
8707 				sector_t start = BB_OFFSET(p[i]);
8708 				int len = BB_LEN(p[i]);
8709 				p[i] = BB_MAKE(start, len, 1);
8710 			}
8711 		}
8712 		bb->unacked_exist = 0;
8713 	}
8714 	write_sequnlock_irq(&bb->lock);
8715 }
8716 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8717 
8718 /* sysfs access to bad-blocks list.
8719  * We present two files.
8720  * 'bad-blocks' lists sector numbers and lengths of ranges that
8721  *    are recorded as bad.  The list is truncated to fit within
8722  *    the one-page limit of sysfs.
8723  *    Writing "sector length" to this file adds an acknowledged
8724  *    bad block list.
8725  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8726  *    been acknowledged.  Writing to this file adds bad blocks
8727  *    without acknowledging them.  This is largely for testing.
8728  */
8729 
8730 static ssize_t
8731 badblocks_show(struct badblocks *bb, char *page, int unack)
8732 {
8733 	size_t len;
8734 	int i;
8735 	u64 *p = bb->page;
8736 	unsigned seq;
8737 
8738 	if (bb->shift < 0)
8739 		return 0;
8740 
8741 retry:
8742 	seq = read_seqbegin(&bb->lock);
8743 
8744 	len = 0;
8745 	i = 0;
8746 
8747 	while (len < PAGE_SIZE && i < bb->count) {
8748 		sector_t s = BB_OFFSET(p[i]);
8749 		unsigned int length = BB_LEN(p[i]);
8750 		int ack = BB_ACK(p[i]);
8751 		i++;
8752 
8753 		if (unack && ack)
8754 			continue;
8755 
8756 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8757 				(unsigned long long)s << bb->shift,
8758 				length << bb->shift);
8759 	}
8760 	if (unack && len == 0)
8761 		bb->unacked_exist = 0;
8762 
8763 	if (read_seqretry(&bb->lock, seq))
8764 		goto retry;
8765 
8766 	return len;
8767 }
8768 
8769 #define DO_DEBUG 1
8770 
8771 static ssize_t
8772 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8773 {
8774 	unsigned long long sector;
8775 	int length;
8776 	char newline;
8777 #ifdef DO_DEBUG
8778 	/* Allow clearing via sysfs *only* for testing/debugging.
8779 	 * Normally only a successful write may clear a badblock
8780 	 */
8781 	int clear = 0;
8782 	if (page[0] == '-') {
8783 		clear = 1;
8784 		page++;
8785 	}
8786 #endif /* DO_DEBUG */
8787 
8788 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8789 	case 3:
8790 		if (newline != '\n')
8791 			return -EINVAL;
8792 	case 2:
8793 		if (length <= 0)
8794 			return -EINVAL;
8795 		break;
8796 	default:
8797 		return -EINVAL;
8798 	}
8799 
8800 #ifdef DO_DEBUG
8801 	if (clear) {
8802 		md_clear_badblocks(bb, sector, length);
8803 		return len;
8804 	}
8805 #endif /* DO_DEBUG */
8806 	if (md_set_badblocks(bb, sector, length, !unack))
8807 		return len;
8808 	else
8809 		return -ENOSPC;
8810 }
8811 
8812 static int md_notify_reboot(struct notifier_block *this,
8813 			    unsigned long code, void *x)
8814 {
8815 	struct list_head *tmp;
8816 	struct mddev *mddev;
8817 	int need_delay = 0;
8818 
8819 	for_each_mddev(mddev, tmp) {
8820 		if (mddev_trylock(mddev)) {
8821 			if (mddev->pers)
8822 				__md_stop_writes(mddev);
8823 			if (mddev->persistent)
8824 				mddev->safemode = 2;
8825 			mddev_unlock(mddev);
8826 		}
8827 		need_delay = 1;
8828 	}
8829 	/*
8830 	 * certain more exotic SCSI devices are known to be
8831 	 * volatile wrt too early system reboots. While the
8832 	 * right place to handle this issue is the given
8833 	 * driver, we do want to have a safe RAID driver ...
8834 	 */
8835 	if (need_delay)
8836 		mdelay(1000*1);
8837 
8838 	return NOTIFY_DONE;
8839 }
8840 
8841 static struct notifier_block md_notifier = {
8842 	.notifier_call	= md_notify_reboot,
8843 	.next		= NULL,
8844 	.priority	= INT_MAX, /* before any real devices */
8845 };
8846 
8847 static void md_geninit(void)
8848 {
8849 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8850 
8851 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8852 }
8853 
8854 static int __init md_init(void)
8855 {
8856 	int ret = -ENOMEM;
8857 
8858 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8859 	if (!md_wq)
8860 		goto err_wq;
8861 
8862 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8863 	if (!md_misc_wq)
8864 		goto err_misc_wq;
8865 
8866 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8867 		goto err_md;
8868 
8869 	if ((ret = register_blkdev(0, "mdp")) < 0)
8870 		goto err_mdp;
8871 	mdp_major = ret;
8872 
8873 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8874 			    md_probe, NULL, NULL);
8875 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8876 			    md_probe, NULL, NULL);
8877 
8878 	register_reboot_notifier(&md_notifier);
8879 	raid_table_header = register_sysctl_table(raid_root_table);
8880 
8881 	md_geninit();
8882 	return 0;
8883 
8884 err_mdp:
8885 	unregister_blkdev(MD_MAJOR, "md");
8886 err_md:
8887 	destroy_workqueue(md_misc_wq);
8888 err_misc_wq:
8889 	destroy_workqueue(md_wq);
8890 err_wq:
8891 	return ret;
8892 }
8893 
8894 void md_reload_sb(struct mddev *mddev)
8895 {
8896 	struct md_rdev *rdev, *tmp;
8897 
8898 	rdev_for_each_safe(rdev, tmp, mddev) {
8899 		rdev->sb_loaded = 0;
8900 		ClearPageUptodate(rdev->sb_page);
8901 	}
8902 	mddev->raid_disks = 0;
8903 	analyze_sbs(mddev);
8904 	rdev_for_each_safe(rdev, tmp, mddev) {
8905 		struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8906 		/* since we don't write to faulty devices, we figure out if the
8907 		 *  disk is faulty by comparing events
8908 		 */
8909 		if (mddev->events > sb->events)
8910 			set_bit(Faulty, &rdev->flags);
8911 	}
8912 
8913 }
8914 EXPORT_SYMBOL(md_reload_sb);
8915 
8916 #ifndef MODULE
8917 
8918 /*
8919  * Searches all registered partitions for autorun RAID arrays
8920  * at boot time.
8921  */
8922 
8923 static LIST_HEAD(all_detected_devices);
8924 struct detected_devices_node {
8925 	struct list_head list;
8926 	dev_t dev;
8927 };
8928 
8929 void md_autodetect_dev(dev_t dev)
8930 {
8931 	struct detected_devices_node *node_detected_dev;
8932 
8933 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8934 	if (node_detected_dev) {
8935 		node_detected_dev->dev = dev;
8936 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8937 	} else {
8938 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8939 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8940 	}
8941 }
8942 
8943 static void autostart_arrays(int part)
8944 {
8945 	struct md_rdev *rdev;
8946 	struct detected_devices_node *node_detected_dev;
8947 	dev_t dev;
8948 	int i_scanned, i_passed;
8949 
8950 	i_scanned = 0;
8951 	i_passed = 0;
8952 
8953 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8954 
8955 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8956 		i_scanned++;
8957 		node_detected_dev = list_entry(all_detected_devices.next,
8958 					struct detected_devices_node, list);
8959 		list_del(&node_detected_dev->list);
8960 		dev = node_detected_dev->dev;
8961 		kfree(node_detected_dev);
8962 		rdev = md_import_device(dev,0, 90);
8963 		if (IS_ERR(rdev))
8964 			continue;
8965 
8966 		if (test_bit(Faulty, &rdev->flags))
8967 			continue;
8968 
8969 		set_bit(AutoDetected, &rdev->flags);
8970 		list_add(&rdev->same_set, &pending_raid_disks);
8971 		i_passed++;
8972 	}
8973 
8974 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8975 						i_scanned, i_passed);
8976 
8977 	autorun_devices(part);
8978 }
8979 
8980 #endif /* !MODULE */
8981 
8982 static __exit void md_exit(void)
8983 {
8984 	struct mddev *mddev;
8985 	struct list_head *tmp;
8986 	int delay = 1;
8987 
8988 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8989 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8990 
8991 	unregister_blkdev(MD_MAJOR,"md");
8992 	unregister_blkdev(mdp_major, "mdp");
8993 	unregister_reboot_notifier(&md_notifier);
8994 	unregister_sysctl_table(raid_table_header);
8995 
8996 	/* We cannot unload the modules while some process is
8997 	 * waiting for us in select() or poll() - wake them up
8998 	 */
8999 	md_unloading = 1;
9000 	while (waitqueue_active(&md_event_waiters)) {
9001 		/* not safe to leave yet */
9002 		wake_up(&md_event_waiters);
9003 		msleep(delay);
9004 		delay += delay;
9005 	}
9006 	remove_proc_entry("mdstat", NULL);
9007 
9008 	for_each_mddev(mddev, tmp) {
9009 		export_array(mddev);
9010 		mddev->hold_active = 0;
9011 	}
9012 	destroy_workqueue(md_misc_wq);
9013 	destroy_workqueue(md_wq);
9014 }
9015 
9016 subsys_initcall(md_init);
9017 module_exit(md_exit)
9018 
9019 static int get_ro(char *buffer, struct kernel_param *kp)
9020 {
9021 	return sprintf(buffer, "%d", start_readonly);
9022 }
9023 static int set_ro(const char *val, struct kernel_param *kp)
9024 {
9025 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9026 }
9027 
9028 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9029 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9030 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9031 
9032 MODULE_LICENSE("GPL");
9033 MODULE_DESCRIPTION("MD RAID framework");
9034 MODULE_ALIAS("md");
9035 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9036