1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 #include "md-cluster.h" 57 58 #ifndef MODULE 59 static void autostart_arrays(int part); 60 #endif 61 62 /* pers_list is a list of registered personalities protected 63 * by pers_lock. 64 * pers_lock does extra service to protect accesses to 65 * mddev->thread when the mutex cannot be held. 66 */ 67 static LIST_HEAD(pers_list); 68 static DEFINE_SPINLOCK(pers_lock); 69 70 struct md_cluster_operations *md_cluster_ops; 71 EXPORT_SYMBOL(md_cluster_ops); 72 struct module *md_cluster_mod; 73 EXPORT_SYMBOL(md_cluster_mod); 74 75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 76 static struct workqueue_struct *md_wq; 77 static struct workqueue_struct *md_misc_wq; 78 79 static int remove_and_add_spares(struct mddev *mddev, 80 struct md_rdev *this); 81 static void mddev_detach(struct mddev *mddev); 82 83 /* 84 * Default number of read corrections we'll attempt on an rdev 85 * before ejecting it from the array. We divide the read error 86 * count by 2 for every hour elapsed between read errors. 87 */ 88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 89 /* 90 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 91 * is 1000 KB/sec, so the extra system load does not show up that much. 92 * Increase it if you want to have more _guaranteed_ speed. Note that 93 * the RAID driver will use the maximum available bandwidth if the IO 94 * subsystem is idle. There is also an 'absolute maximum' reconstruction 95 * speed limit - in case reconstruction slows down your system despite 96 * idle IO detection. 97 * 98 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 99 * or /sys/block/mdX/md/sync_speed_{min,max} 100 */ 101 102 static int sysctl_speed_limit_min = 1000; 103 static int sysctl_speed_limit_max = 200000; 104 static inline int speed_min(struct mddev *mddev) 105 { 106 return mddev->sync_speed_min ? 107 mddev->sync_speed_min : sysctl_speed_limit_min; 108 } 109 110 static inline int speed_max(struct mddev *mddev) 111 { 112 return mddev->sync_speed_max ? 113 mddev->sync_speed_max : sysctl_speed_limit_max; 114 } 115 116 static struct ctl_table_header *raid_table_header; 117 118 static struct ctl_table raid_table[] = { 119 { 120 .procname = "speed_limit_min", 121 .data = &sysctl_speed_limit_min, 122 .maxlen = sizeof(int), 123 .mode = S_IRUGO|S_IWUSR, 124 .proc_handler = proc_dointvec, 125 }, 126 { 127 .procname = "speed_limit_max", 128 .data = &sysctl_speed_limit_max, 129 .maxlen = sizeof(int), 130 .mode = S_IRUGO|S_IWUSR, 131 .proc_handler = proc_dointvec, 132 }, 133 { } 134 }; 135 136 static struct ctl_table raid_dir_table[] = { 137 { 138 .procname = "raid", 139 .maxlen = 0, 140 .mode = S_IRUGO|S_IXUGO, 141 .child = raid_table, 142 }, 143 { } 144 }; 145 146 static struct ctl_table raid_root_table[] = { 147 { 148 .procname = "dev", 149 .maxlen = 0, 150 .mode = 0555, 151 .child = raid_dir_table, 152 }, 153 { } 154 }; 155 156 static const struct block_device_operations md_fops; 157 158 static int start_readonly; 159 160 /* bio_clone_mddev 161 * like bio_clone, but with a local bio set 162 */ 163 164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 165 struct mddev *mddev) 166 { 167 struct bio *b; 168 169 if (!mddev || !mddev->bio_set) 170 return bio_alloc(gfp_mask, nr_iovecs); 171 172 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 173 if (!b) 174 return NULL; 175 return b; 176 } 177 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 178 179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 180 struct mddev *mddev) 181 { 182 if (!mddev || !mddev->bio_set) 183 return bio_clone(bio, gfp_mask); 184 185 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 186 } 187 EXPORT_SYMBOL_GPL(bio_clone_mddev); 188 189 /* 190 * We have a system wide 'event count' that is incremented 191 * on any 'interesting' event, and readers of /proc/mdstat 192 * can use 'poll' or 'select' to find out when the event 193 * count increases. 194 * 195 * Events are: 196 * start array, stop array, error, add device, remove device, 197 * start build, activate spare 198 */ 199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 200 static atomic_t md_event_count; 201 void md_new_event(struct mddev *mddev) 202 { 203 atomic_inc(&md_event_count); 204 wake_up(&md_event_waiters); 205 } 206 EXPORT_SYMBOL_GPL(md_new_event); 207 208 /* Alternate version that can be called from interrupts 209 * when calling sysfs_notify isn't needed. 210 */ 211 static void md_new_event_inintr(struct mddev *mddev) 212 { 213 atomic_inc(&md_event_count); 214 wake_up(&md_event_waiters); 215 } 216 217 /* 218 * Enables to iterate over all existing md arrays 219 * all_mddevs_lock protects this list. 220 */ 221 static LIST_HEAD(all_mddevs); 222 static DEFINE_SPINLOCK(all_mddevs_lock); 223 224 /* 225 * iterates through all used mddevs in the system. 226 * We take care to grab the all_mddevs_lock whenever navigating 227 * the list, and to always hold a refcount when unlocked. 228 * Any code which breaks out of this loop while own 229 * a reference to the current mddev and must mddev_put it. 230 */ 231 #define for_each_mddev(_mddev,_tmp) \ 232 \ 233 for (({ spin_lock(&all_mddevs_lock); \ 234 _tmp = all_mddevs.next; \ 235 _mddev = NULL;}); \ 236 ({ if (_tmp != &all_mddevs) \ 237 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 238 spin_unlock(&all_mddevs_lock); \ 239 if (_mddev) mddev_put(_mddev); \ 240 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 241 _tmp != &all_mddevs;}); \ 242 ({ spin_lock(&all_mddevs_lock); \ 243 _tmp = _tmp->next;}) \ 244 ) 245 246 /* Rather than calling directly into the personality make_request function, 247 * IO requests come here first so that we can check if the device is 248 * being suspended pending a reconfiguration. 249 * We hold a refcount over the call to ->make_request. By the time that 250 * call has finished, the bio has been linked into some internal structure 251 * and so is visible to ->quiesce(), so we don't need the refcount any more. 252 */ 253 static void md_make_request(struct request_queue *q, struct bio *bio) 254 { 255 const int rw = bio_data_dir(bio); 256 struct mddev *mddev = q->queuedata; 257 unsigned int sectors; 258 int cpu; 259 260 blk_queue_split(q, &bio, q->bio_split); 261 262 if (mddev == NULL || mddev->pers == NULL 263 || !mddev->ready) { 264 bio_io_error(bio); 265 return; 266 } 267 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 268 if (bio_sectors(bio) != 0) 269 bio->bi_error = -EROFS; 270 bio_endio(bio); 271 return; 272 } 273 smp_rmb(); /* Ensure implications of 'active' are visible */ 274 rcu_read_lock(); 275 if (mddev->suspended) { 276 DEFINE_WAIT(__wait); 277 for (;;) { 278 prepare_to_wait(&mddev->sb_wait, &__wait, 279 TASK_UNINTERRUPTIBLE); 280 if (!mddev->suspended) 281 break; 282 rcu_read_unlock(); 283 schedule(); 284 rcu_read_lock(); 285 } 286 finish_wait(&mddev->sb_wait, &__wait); 287 } 288 atomic_inc(&mddev->active_io); 289 rcu_read_unlock(); 290 291 /* 292 * save the sectors now since our bio can 293 * go away inside make_request 294 */ 295 sectors = bio_sectors(bio); 296 mddev->pers->make_request(mddev, bio); 297 298 cpu = part_stat_lock(); 299 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 300 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 301 part_stat_unlock(); 302 303 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 304 wake_up(&mddev->sb_wait); 305 } 306 307 /* mddev_suspend makes sure no new requests are submitted 308 * to the device, and that any requests that have been submitted 309 * are completely handled. 310 * Once mddev_detach() is called and completes, the module will be 311 * completely unused. 312 */ 313 void mddev_suspend(struct mddev *mddev) 314 { 315 BUG_ON(mddev->suspended); 316 mddev->suspended = 1; 317 synchronize_rcu(); 318 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 319 mddev->pers->quiesce(mddev, 1); 320 321 del_timer_sync(&mddev->safemode_timer); 322 } 323 EXPORT_SYMBOL_GPL(mddev_suspend); 324 325 void mddev_resume(struct mddev *mddev) 326 { 327 mddev->suspended = 0; 328 wake_up(&mddev->sb_wait); 329 mddev->pers->quiesce(mddev, 0); 330 331 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 332 md_wakeup_thread(mddev->thread); 333 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 334 } 335 EXPORT_SYMBOL_GPL(mddev_resume); 336 337 int mddev_congested(struct mddev *mddev, int bits) 338 { 339 struct md_personality *pers = mddev->pers; 340 int ret = 0; 341 342 rcu_read_lock(); 343 if (mddev->suspended) 344 ret = 1; 345 else if (pers && pers->congested) 346 ret = pers->congested(mddev, bits); 347 rcu_read_unlock(); 348 return ret; 349 } 350 EXPORT_SYMBOL_GPL(mddev_congested); 351 static int md_congested(void *data, int bits) 352 { 353 struct mddev *mddev = data; 354 return mddev_congested(mddev, bits); 355 } 356 357 /* 358 * Generic flush handling for md 359 */ 360 361 static void md_end_flush(struct bio *bio) 362 { 363 struct md_rdev *rdev = bio->bi_private; 364 struct mddev *mddev = rdev->mddev; 365 366 rdev_dec_pending(rdev, mddev); 367 368 if (atomic_dec_and_test(&mddev->flush_pending)) { 369 /* The pre-request flush has finished */ 370 queue_work(md_wq, &mddev->flush_work); 371 } 372 bio_put(bio); 373 } 374 375 static void md_submit_flush_data(struct work_struct *ws); 376 377 static void submit_flushes(struct work_struct *ws) 378 { 379 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 380 struct md_rdev *rdev; 381 382 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 383 atomic_set(&mddev->flush_pending, 1); 384 rcu_read_lock(); 385 rdev_for_each_rcu(rdev, mddev) 386 if (rdev->raid_disk >= 0 && 387 !test_bit(Faulty, &rdev->flags)) { 388 /* Take two references, one is dropped 389 * when request finishes, one after 390 * we reclaim rcu_read_lock 391 */ 392 struct bio *bi; 393 atomic_inc(&rdev->nr_pending); 394 atomic_inc(&rdev->nr_pending); 395 rcu_read_unlock(); 396 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 397 bi->bi_end_io = md_end_flush; 398 bi->bi_private = rdev; 399 bi->bi_bdev = rdev->bdev; 400 atomic_inc(&mddev->flush_pending); 401 submit_bio(WRITE_FLUSH, bi); 402 rcu_read_lock(); 403 rdev_dec_pending(rdev, mddev); 404 } 405 rcu_read_unlock(); 406 if (atomic_dec_and_test(&mddev->flush_pending)) 407 queue_work(md_wq, &mddev->flush_work); 408 } 409 410 static void md_submit_flush_data(struct work_struct *ws) 411 { 412 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 413 struct bio *bio = mddev->flush_bio; 414 415 if (bio->bi_iter.bi_size == 0) 416 /* an empty barrier - all done */ 417 bio_endio(bio); 418 else { 419 bio->bi_rw &= ~REQ_FLUSH; 420 mddev->pers->make_request(mddev, bio); 421 } 422 423 mddev->flush_bio = NULL; 424 wake_up(&mddev->sb_wait); 425 } 426 427 void md_flush_request(struct mddev *mddev, struct bio *bio) 428 { 429 spin_lock_irq(&mddev->lock); 430 wait_event_lock_irq(mddev->sb_wait, 431 !mddev->flush_bio, 432 mddev->lock); 433 mddev->flush_bio = bio; 434 spin_unlock_irq(&mddev->lock); 435 436 INIT_WORK(&mddev->flush_work, submit_flushes); 437 queue_work(md_wq, &mddev->flush_work); 438 } 439 EXPORT_SYMBOL(md_flush_request); 440 441 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 442 { 443 struct mddev *mddev = cb->data; 444 md_wakeup_thread(mddev->thread); 445 kfree(cb); 446 } 447 EXPORT_SYMBOL(md_unplug); 448 449 static inline struct mddev *mddev_get(struct mddev *mddev) 450 { 451 atomic_inc(&mddev->active); 452 return mddev; 453 } 454 455 static void mddev_delayed_delete(struct work_struct *ws); 456 457 static void mddev_put(struct mddev *mddev) 458 { 459 struct bio_set *bs = NULL; 460 461 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 462 return; 463 if (!mddev->raid_disks && list_empty(&mddev->disks) && 464 mddev->ctime == 0 && !mddev->hold_active) { 465 /* Array is not configured at all, and not held active, 466 * so destroy it */ 467 list_del_init(&mddev->all_mddevs); 468 bs = mddev->bio_set; 469 mddev->bio_set = NULL; 470 if (mddev->gendisk) { 471 /* We did a probe so need to clean up. Call 472 * queue_work inside the spinlock so that 473 * flush_workqueue() after mddev_find will 474 * succeed in waiting for the work to be done. 475 */ 476 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 477 queue_work(md_misc_wq, &mddev->del_work); 478 } else 479 kfree(mddev); 480 } 481 spin_unlock(&all_mddevs_lock); 482 if (bs) 483 bioset_free(bs); 484 } 485 486 void mddev_init(struct mddev *mddev) 487 { 488 mutex_init(&mddev->open_mutex); 489 mutex_init(&mddev->reconfig_mutex); 490 mutex_init(&mddev->bitmap_info.mutex); 491 INIT_LIST_HEAD(&mddev->disks); 492 INIT_LIST_HEAD(&mddev->all_mddevs); 493 init_timer(&mddev->safemode_timer); 494 atomic_set(&mddev->active, 1); 495 atomic_set(&mddev->openers, 0); 496 atomic_set(&mddev->active_io, 0); 497 spin_lock_init(&mddev->lock); 498 atomic_set(&mddev->flush_pending, 0); 499 init_waitqueue_head(&mddev->sb_wait); 500 init_waitqueue_head(&mddev->recovery_wait); 501 mddev->reshape_position = MaxSector; 502 mddev->reshape_backwards = 0; 503 mddev->last_sync_action = "none"; 504 mddev->resync_min = 0; 505 mddev->resync_max = MaxSector; 506 mddev->level = LEVEL_NONE; 507 } 508 EXPORT_SYMBOL_GPL(mddev_init); 509 510 static struct mddev *mddev_find(dev_t unit) 511 { 512 struct mddev *mddev, *new = NULL; 513 514 if (unit && MAJOR(unit) != MD_MAJOR) 515 unit &= ~((1<<MdpMinorShift)-1); 516 517 retry: 518 spin_lock(&all_mddevs_lock); 519 520 if (unit) { 521 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 522 if (mddev->unit == unit) { 523 mddev_get(mddev); 524 spin_unlock(&all_mddevs_lock); 525 kfree(new); 526 return mddev; 527 } 528 529 if (new) { 530 list_add(&new->all_mddevs, &all_mddevs); 531 spin_unlock(&all_mddevs_lock); 532 new->hold_active = UNTIL_IOCTL; 533 return new; 534 } 535 } else if (new) { 536 /* find an unused unit number */ 537 static int next_minor = 512; 538 int start = next_minor; 539 int is_free = 0; 540 int dev = 0; 541 while (!is_free) { 542 dev = MKDEV(MD_MAJOR, next_minor); 543 next_minor++; 544 if (next_minor > MINORMASK) 545 next_minor = 0; 546 if (next_minor == start) { 547 /* Oh dear, all in use. */ 548 spin_unlock(&all_mddevs_lock); 549 kfree(new); 550 return NULL; 551 } 552 553 is_free = 1; 554 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 555 if (mddev->unit == dev) { 556 is_free = 0; 557 break; 558 } 559 } 560 new->unit = dev; 561 new->md_minor = MINOR(dev); 562 new->hold_active = UNTIL_STOP; 563 list_add(&new->all_mddevs, &all_mddevs); 564 spin_unlock(&all_mddevs_lock); 565 return new; 566 } 567 spin_unlock(&all_mddevs_lock); 568 569 new = kzalloc(sizeof(*new), GFP_KERNEL); 570 if (!new) 571 return NULL; 572 573 new->unit = unit; 574 if (MAJOR(unit) == MD_MAJOR) 575 new->md_minor = MINOR(unit); 576 else 577 new->md_minor = MINOR(unit) >> MdpMinorShift; 578 579 mddev_init(new); 580 581 goto retry; 582 } 583 584 static struct attribute_group md_redundancy_group; 585 586 void mddev_unlock(struct mddev *mddev) 587 { 588 if (mddev->to_remove) { 589 /* These cannot be removed under reconfig_mutex as 590 * an access to the files will try to take reconfig_mutex 591 * while holding the file unremovable, which leads to 592 * a deadlock. 593 * So hold set sysfs_active while the remove in happeing, 594 * and anything else which might set ->to_remove or my 595 * otherwise change the sysfs namespace will fail with 596 * -EBUSY if sysfs_active is still set. 597 * We set sysfs_active under reconfig_mutex and elsewhere 598 * test it under the same mutex to ensure its correct value 599 * is seen. 600 */ 601 struct attribute_group *to_remove = mddev->to_remove; 602 mddev->to_remove = NULL; 603 mddev->sysfs_active = 1; 604 mutex_unlock(&mddev->reconfig_mutex); 605 606 if (mddev->kobj.sd) { 607 if (to_remove != &md_redundancy_group) 608 sysfs_remove_group(&mddev->kobj, to_remove); 609 if (mddev->pers == NULL || 610 mddev->pers->sync_request == NULL) { 611 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 612 if (mddev->sysfs_action) 613 sysfs_put(mddev->sysfs_action); 614 mddev->sysfs_action = NULL; 615 } 616 } 617 mddev->sysfs_active = 0; 618 } else 619 mutex_unlock(&mddev->reconfig_mutex); 620 621 /* As we've dropped the mutex we need a spinlock to 622 * make sure the thread doesn't disappear 623 */ 624 spin_lock(&pers_lock); 625 md_wakeup_thread(mddev->thread); 626 spin_unlock(&pers_lock); 627 } 628 EXPORT_SYMBOL_GPL(mddev_unlock); 629 630 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 631 { 632 struct md_rdev *rdev; 633 634 rdev_for_each_rcu(rdev, mddev) 635 if (rdev->desc_nr == nr) 636 return rdev; 637 638 return NULL; 639 } 640 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 641 642 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 643 { 644 struct md_rdev *rdev; 645 646 rdev_for_each(rdev, mddev) 647 if (rdev->bdev->bd_dev == dev) 648 return rdev; 649 650 return NULL; 651 } 652 653 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 654 { 655 struct md_rdev *rdev; 656 657 rdev_for_each_rcu(rdev, mddev) 658 if (rdev->bdev->bd_dev == dev) 659 return rdev; 660 661 return NULL; 662 } 663 664 static struct md_personality *find_pers(int level, char *clevel) 665 { 666 struct md_personality *pers; 667 list_for_each_entry(pers, &pers_list, list) { 668 if (level != LEVEL_NONE && pers->level == level) 669 return pers; 670 if (strcmp(pers->name, clevel)==0) 671 return pers; 672 } 673 return NULL; 674 } 675 676 /* return the offset of the super block in 512byte sectors */ 677 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 678 { 679 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 680 return MD_NEW_SIZE_SECTORS(num_sectors); 681 } 682 683 static int alloc_disk_sb(struct md_rdev *rdev) 684 { 685 rdev->sb_page = alloc_page(GFP_KERNEL); 686 if (!rdev->sb_page) { 687 printk(KERN_ALERT "md: out of memory.\n"); 688 return -ENOMEM; 689 } 690 691 return 0; 692 } 693 694 void md_rdev_clear(struct md_rdev *rdev) 695 { 696 if (rdev->sb_page) { 697 put_page(rdev->sb_page); 698 rdev->sb_loaded = 0; 699 rdev->sb_page = NULL; 700 rdev->sb_start = 0; 701 rdev->sectors = 0; 702 } 703 if (rdev->bb_page) { 704 put_page(rdev->bb_page); 705 rdev->bb_page = NULL; 706 } 707 kfree(rdev->badblocks.page); 708 rdev->badblocks.page = NULL; 709 } 710 EXPORT_SYMBOL_GPL(md_rdev_clear); 711 712 static void super_written(struct bio *bio) 713 { 714 struct md_rdev *rdev = bio->bi_private; 715 struct mddev *mddev = rdev->mddev; 716 717 if (bio->bi_error) { 718 printk("md: super_written gets error=%d\n", bio->bi_error); 719 md_error(mddev, rdev); 720 } 721 722 if (atomic_dec_and_test(&mddev->pending_writes)) 723 wake_up(&mddev->sb_wait); 724 bio_put(bio); 725 } 726 727 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 728 sector_t sector, int size, struct page *page) 729 { 730 /* write first size bytes of page to sector of rdev 731 * Increment mddev->pending_writes before returning 732 * and decrement it on completion, waking up sb_wait 733 * if zero is reached. 734 * If an error occurred, call md_error 735 */ 736 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 737 738 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 739 bio->bi_iter.bi_sector = sector; 740 bio_add_page(bio, page, size, 0); 741 bio->bi_private = rdev; 742 bio->bi_end_io = super_written; 743 744 atomic_inc(&mddev->pending_writes); 745 submit_bio(WRITE_FLUSH_FUA, bio); 746 } 747 748 void md_super_wait(struct mddev *mddev) 749 { 750 /* wait for all superblock writes that were scheduled to complete */ 751 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 752 } 753 754 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 755 struct page *page, int rw, bool metadata_op) 756 { 757 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 758 int ret; 759 760 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 761 rdev->meta_bdev : rdev->bdev; 762 if (metadata_op) 763 bio->bi_iter.bi_sector = sector + rdev->sb_start; 764 else if (rdev->mddev->reshape_position != MaxSector && 765 (rdev->mddev->reshape_backwards == 766 (sector >= rdev->mddev->reshape_position))) 767 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 768 else 769 bio->bi_iter.bi_sector = sector + rdev->data_offset; 770 bio_add_page(bio, page, size, 0); 771 submit_bio_wait(rw, bio); 772 773 ret = !bio->bi_error; 774 bio_put(bio); 775 return ret; 776 } 777 EXPORT_SYMBOL_GPL(sync_page_io); 778 779 static int read_disk_sb(struct md_rdev *rdev, int size) 780 { 781 char b[BDEVNAME_SIZE]; 782 783 if (rdev->sb_loaded) 784 return 0; 785 786 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 787 goto fail; 788 rdev->sb_loaded = 1; 789 return 0; 790 791 fail: 792 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 793 bdevname(rdev->bdev,b)); 794 return -EINVAL; 795 } 796 797 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 798 { 799 return sb1->set_uuid0 == sb2->set_uuid0 && 800 sb1->set_uuid1 == sb2->set_uuid1 && 801 sb1->set_uuid2 == sb2->set_uuid2 && 802 sb1->set_uuid3 == sb2->set_uuid3; 803 } 804 805 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 806 { 807 int ret; 808 mdp_super_t *tmp1, *tmp2; 809 810 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 811 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 812 813 if (!tmp1 || !tmp2) { 814 ret = 0; 815 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 816 goto abort; 817 } 818 819 *tmp1 = *sb1; 820 *tmp2 = *sb2; 821 822 /* 823 * nr_disks is not constant 824 */ 825 tmp1->nr_disks = 0; 826 tmp2->nr_disks = 0; 827 828 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 829 abort: 830 kfree(tmp1); 831 kfree(tmp2); 832 return ret; 833 } 834 835 static u32 md_csum_fold(u32 csum) 836 { 837 csum = (csum & 0xffff) + (csum >> 16); 838 return (csum & 0xffff) + (csum >> 16); 839 } 840 841 static unsigned int calc_sb_csum(mdp_super_t *sb) 842 { 843 u64 newcsum = 0; 844 u32 *sb32 = (u32*)sb; 845 int i; 846 unsigned int disk_csum, csum; 847 848 disk_csum = sb->sb_csum; 849 sb->sb_csum = 0; 850 851 for (i = 0; i < MD_SB_BYTES/4 ; i++) 852 newcsum += sb32[i]; 853 csum = (newcsum & 0xffffffff) + (newcsum>>32); 854 855 #ifdef CONFIG_ALPHA 856 /* This used to use csum_partial, which was wrong for several 857 * reasons including that different results are returned on 858 * different architectures. It isn't critical that we get exactly 859 * the same return value as before (we always csum_fold before 860 * testing, and that removes any differences). However as we 861 * know that csum_partial always returned a 16bit value on 862 * alphas, do a fold to maximise conformity to previous behaviour. 863 */ 864 sb->sb_csum = md_csum_fold(disk_csum); 865 #else 866 sb->sb_csum = disk_csum; 867 #endif 868 return csum; 869 } 870 871 /* 872 * Handle superblock details. 873 * We want to be able to handle multiple superblock formats 874 * so we have a common interface to them all, and an array of 875 * different handlers. 876 * We rely on user-space to write the initial superblock, and support 877 * reading and updating of superblocks. 878 * Interface methods are: 879 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 880 * loads and validates a superblock on dev. 881 * if refdev != NULL, compare superblocks on both devices 882 * Return: 883 * 0 - dev has a superblock that is compatible with refdev 884 * 1 - dev has a superblock that is compatible and newer than refdev 885 * so dev should be used as the refdev in future 886 * -EINVAL superblock incompatible or invalid 887 * -othererror e.g. -EIO 888 * 889 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 890 * Verify that dev is acceptable into mddev. 891 * The first time, mddev->raid_disks will be 0, and data from 892 * dev should be merged in. Subsequent calls check that dev 893 * is new enough. Return 0 or -EINVAL 894 * 895 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 896 * Update the superblock for rdev with data in mddev 897 * This does not write to disc. 898 * 899 */ 900 901 struct super_type { 902 char *name; 903 struct module *owner; 904 int (*load_super)(struct md_rdev *rdev, 905 struct md_rdev *refdev, 906 int minor_version); 907 int (*validate_super)(struct mddev *mddev, 908 struct md_rdev *rdev); 909 void (*sync_super)(struct mddev *mddev, 910 struct md_rdev *rdev); 911 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 912 sector_t num_sectors); 913 int (*allow_new_offset)(struct md_rdev *rdev, 914 unsigned long long new_offset); 915 }; 916 917 /* 918 * Check that the given mddev has no bitmap. 919 * 920 * This function is called from the run method of all personalities that do not 921 * support bitmaps. It prints an error message and returns non-zero if mddev 922 * has a bitmap. Otherwise, it returns 0. 923 * 924 */ 925 int md_check_no_bitmap(struct mddev *mddev) 926 { 927 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 928 return 0; 929 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 930 mdname(mddev), mddev->pers->name); 931 return 1; 932 } 933 EXPORT_SYMBOL(md_check_no_bitmap); 934 935 /* 936 * load_super for 0.90.0 937 */ 938 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 939 { 940 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 941 mdp_super_t *sb; 942 int ret; 943 944 /* 945 * Calculate the position of the superblock (512byte sectors), 946 * it's at the end of the disk. 947 * 948 * It also happens to be a multiple of 4Kb. 949 */ 950 rdev->sb_start = calc_dev_sboffset(rdev); 951 952 ret = read_disk_sb(rdev, MD_SB_BYTES); 953 if (ret) return ret; 954 955 ret = -EINVAL; 956 957 bdevname(rdev->bdev, b); 958 sb = page_address(rdev->sb_page); 959 960 if (sb->md_magic != MD_SB_MAGIC) { 961 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 962 b); 963 goto abort; 964 } 965 966 if (sb->major_version != 0 || 967 sb->minor_version < 90 || 968 sb->minor_version > 91) { 969 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 970 sb->major_version, sb->minor_version, 971 b); 972 goto abort; 973 } 974 975 if (sb->raid_disks <= 0) 976 goto abort; 977 978 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 979 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 980 b); 981 goto abort; 982 } 983 984 rdev->preferred_minor = sb->md_minor; 985 rdev->data_offset = 0; 986 rdev->new_data_offset = 0; 987 rdev->sb_size = MD_SB_BYTES; 988 rdev->badblocks.shift = -1; 989 990 if (sb->level == LEVEL_MULTIPATH) 991 rdev->desc_nr = -1; 992 else 993 rdev->desc_nr = sb->this_disk.number; 994 995 if (!refdev) { 996 ret = 1; 997 } else { 998 __u64 ev1, ev2; 999 mdp_super_t *refsb = page_address(refdev->sb_page); 1000 if (!uuid_equal(refsb, sb)) { 1001 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1002 b, bdevname(refdev->bdev,b2)); 1003 goto abort; 1004 } 1005 if (!sb_equal(refsb, sb)) { 1006 printk(KERN_WARNING "md: %s has same UUID" 1007 " but different superblock to %s\n", 1008 b, bdevname(refdev->bdev, b2)); 1009 goto abort; 1010 } 1011 ev1 = md_event(sb); 1012 ev2 = md_event(refsb); 1013 if (ev1 > ev2) 1014 ret = 1; 1015 else 1016 ret = 0; 1017 } 1018 rdev->sectors = rdev->sb_start; 1019 /* Limit to 4TB as metadata cannot record more than that. 1020 * (not needed for Linear and RAID0 as metadata doesn't 1021 * record this size) 1022 */ 1023 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1024 rdev->sectors = (2ULL << 32) - 2; 1025 1026 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1027 /* "this cannot possibly happen" ... */ 1028 ret = -EINVAL; 1029 1030 abort: 1031 return ret; 1032 } 1033 1034 /* 1035 * validate_super for 0.90.0 1036 */ 1037 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1038 { 1039 mdp_disk_t *desc; 1040 mdp_super_t *sb = page_address(rdev->sb_page); 1041 __u64 ev1 = md_event(sb); 1042 1043 rdev->raid_disk = -1; 1044 clear_bit(Faulty, &rdev->flags); 1045 clear_bit(In_sync, &rdev->flags); 1046 clear_bit(Bitmap_sync, &rdev->flags); 1047 clear_bit(WriteMostly, &rdev->flags); 1048 1049 if (mddev->raid_disks == 0) { 1050 mddev->major_version = 0; 1051 mddev->minor_version = sb->minor_version; 1052 mddev->patch_version = sb->patch_version; 1053 mddev->external = 0; 1054 mddev->chunk_sectors = sb->chunk_size >> 9; 1055 mddev->ctime = sb->ctime; 1056 mddev->utime = sb->utime; 1057 mddev->level = sb->level; 1058 mddev->clevel[0] = 0; 1059 mddev->layout = sb->layout; 1060 mddev->raid_disks = sb->raid_disks; 1061 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1062 mddev->events = ev1; 1063 mddev->bitmap_info.offset = 0; 1064 mddev->bitmap_info.space = 0; 1065 /* bitmap can use 60 K after the 4K superblocks */ 1066 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1067 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1068 mddev->reshape_backwards = 0; 1069 1070 if (mddev->minor_version >= 91) { 1071 mddev->reshape_position = sb->reshape_position; 1072 mddev->delta_disks = sb->delta_disks; 1073 mddev->new_level = sb->new_level; 1074 mddev->new_layout = sb->new_layout; 1075 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1076 if (mddev->delta_disks < 0) 1077 mddev->reshape_backwards = 1; 1078 } else { 1079 mddev->reshape_position = MaxSector; 1080 mddev->delta_disks = 0; 1081 mddev->new_level = mddev->level; 1082 mddev->new_layout = mddev->layout; 1083 mddev->new_chunk_sectors = mddev->chunk_sectors; 1084 } 1085 1086 if (sb->state & (1<<MD_SB_CLEAN)) 1087 mddev->recovery_cp = MaxSector; 1088 else { 1089 if (sb->events_hi == sb->cp_events_hi && 1090 sb->events_lo == sb->cp_events_lo) { 1091 mddev->recovery_cp = sb->recovery_cp; 1092 } else 1093 mddev->recovery_cp = 0; 1094 } 1095 1096 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1097 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1098 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1099 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1100 1101 mddev->max_disks = MD_SB_DISKS; 1102 1103 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1104 mddev->bitmap_info.file == NULL) { 1105 mddev->bitmap_info.offset = 1106 mddev->bitmap_info.default_offset; 1107 mddev->bitmap_info.space = 1108 mddev->bitmap_info.default_space; 1109 } 1110 1111 } else if (mddev->pers == NULL) { 1112 /* Insist on good event counter while assembling, except 1113 * for spares (which don't need an event count) */ 1114 ++ev1; 1115 if (sb->disks[rdev->desc_nr].state & ( 1116 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1117 if (ev1 < mddev->events) 1118 return -EINVAL; 1119 } else if (mddev->bitmap) { 1120 /* if adding to array with a bitmap, then we can accept an 1121 * older device ... but not too old. 1122 */ 1123 if (ev1 < mddev->bitmap->events_cleared) 1124 return 0; 1125 if (ev1 < mddev->events) 1126 set_bit(Bitmap_sync, &rdev->flags); 1127 } else { 1128 if (ev1 < mddev->events) 1129 /* just a hot-add of a new device, leave raid_disk at -1 */ 1130 return 0; 1131 } 1132 1133 if (mddev->level != LEVEL_MULTIPATH) { 1134 desc = sb->disks + rdev->desc_nr; 1135 1136 if (desc->state & (1<<MD_DISK_FAULTY)) 1137 set_bit(Faulty, &rdev->flags); 1138 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1139 desc->raid_disk < mddev->raid_disks */) { 1140 set_bit(In_sync, &rdev->flags); 1141 rdev->raid_disk = desc->raid_disk; 1142 rdev->saved_raid_disk = desc->raid_disk; 1143 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1144 /* active but not in sync implies recovery up to 1145 * reshape position. We don't know exactly where 1146 * that is, so set to zero for now */ 1147 if (mddev->minor_version >= 91) { 1148 rdev->recovery_offset = 0; 1149 rdev->raid_disk = desc->raid_disk; 1150 } 1151 } 1152 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1153 set_bit(WriteMostly, &rdev->flags); 1154 } else /* MULTIPATH are always insync */ 1155 set_bit(In_sync, &rdev->flags); 1156 return 0; 1157 } 1158 1159 /* 1160 * sync_super for 0.90.0 1161 */ 1162 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1163 { 1164 mdp_super_t *sb; 1165 struct md_rdev *rdev2; 1166 int next_spare = mddev->raid_disks; 1167 1168 /* make rdev->sb match mddev data.. 1169 * 1170 * 1/ zero out disks 1171 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1172 * 3/ any empty disks < next_spare become removed 1173 * 1174 * disks[0] gets initialised to REMOVED because 1175 * we cannot be sure from other fields if it has 1176 * been initialised or not. 1177 */ 1178 int i; 1179 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1180 1181 rdev->sb_size = MD_SB_BYTES; 1182 1183 sb = page_address(rdev->sb_page); 1184 1185 memset(sb, 0, sizeof(*sb)); 1186 1187 sb->md_magic = MD_SB_MAGIC; 1188 sb->major_version = mddev->major_version; 1189 sb->patch_version = mddev->patch_version; 1190 sb->gvalid_words = 0; /* ignored */ 1191 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1192 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1193 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1194 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1195 1196 sb->ctime = mddev->ctime; 1197 sb->level = mddev->level; 1198 sb->size = mddev->dev_sectors / 2; 1199 sb->raid_disks = mddev->raid_disks; 1200 sb->md_minor = mddev->md_minor; 1201 sb->not_persistent = 0; 1202 sb->utime = mddev->utime; 1203 sb->state = 0; 1204 sb->events_hi = (mddev->events>>32); 1205 sb->events_lo = (u32)mddev->events; 1206 1207 if (mddev->reshape_position == MaxSector) 1208 sb->minor_version = 90; 1209 else { 1210 sb->minor_version = 91; 1211 sb->reshape_position = mddev->reshape_position; 1212 sb->new_level = mddev->new_level; 1213 sb->delta_disks = mddev->delta_disks; 1214 sb->new_layout = mddev->new_layout; 1215 sb->new_chunk = mddev->new_chunk_sectors << 9; 1216 } 1217 mddev->minor_version = sb->minor_version; 1218 if (mddev->in_sync) 1219 { 1220 sb->recovery_cp = mddev->recovery_cp; 1221 sb->cp_events_hi = (mddev->events>>32); 1222 sb->cp_events_lo = (u32)mddev->events; 1223 if (mddev->recovery_cp == MaxSector) 1224 sb->state = (1<< MD_SB_CLEAN); 1225 } else 1226 sb->recovery_cp = 0; 1227 1228 sb->layout = mddev->layout; 1229 sb->chunk_size = mddev->chunk_sectors << 9; 1230 1231 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1232 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1233 1234 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1235 rdev_for_each(rdev2, mddev) { 1236 mdp_disk_t *d; 1237 int desc_nr; 1238 int is_active = test_bit(In_sync, &rdev2->flags); 1239 1240 if (rdev2->raid_disk >= 0 && 1241 sb->minor_version >= 91) 1242 /* we have nowhere to store the recovery_offset, 1243 * but if it is not below the reshape_position, 1244 * we can piggy-back on that. 1245 */ 1246 is_active = 1; 1247 if (rdev2->raid_disk < 0 || 1248 test_bit(Faulty, &rdev2->flags)) 1249 is_active = 0; 1250 if (is_active) 1251 desc_nr = rdev2->raid_disk; 1252 else 1253 desc_nr = next_spare++; 1254 rdev2->desc_nr = desc_nr; 1255 d = &sb->disks[rdev2->desc_nr]; 1256 nr_disks++; 1257 d->number = rdev2->desc_nr; 1258 d->major = MAJOR(rdev2->bdev->bd_dev); 1259 d->minor = MINOR(rdev2->bdev->bd_dev); 1260 if (is_active) 1261 d->raid_disk = rdev2->raid_disk; 1262 else 1263 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1264 if (test_bit(Faulty, &rdev2->flags)) 1265 d->state = (1<<MD_DISK_FAULTY); 1266 else if (is_active) { 1267 d->state = (1<<MD_DISK_ACTIVE); 1268 if (test_bit(In_sync, &rdev2->flags)) 1269 d->state |= (1<<MD_DISK_SYNC); 1270 active++; 1271 working++; 1272 } else { 1273 d->state = 0; 1274 spare++; 1275 working++; 1276 } 1277 if (test_bit(WriteMostly, &rdev2->flags)) 1278 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1279 } 1280 /* now set the "removed" and "faulty" bits on any missing devices */ 1281 for (i=0 ; i < mddev->raid_disks ; i++) { 1282 mdp_disk_t *d = &sb->disks[i]; 1283 if (d->state == 0 && d->number == 0) { 1284 d->number = i; 1285 d->raid_disk = i; 1286 d->state = (1<<MD_DISK_REMOVED); 1287 d->state |= (1<<MD_DISK_FAULTY); 1288 failed++; 1289 } 1290 } 1291 sb->nr_disks = nr_disks; 1292 sb->active_disks = active; 1293 sb->working_disks = working; 1294 sb->failed_disks = failed; 1295 sb->spare_disks = spare; 1296 1297 sb->this_disk = sb->disks[rdev->desc_nr]; 1298 sb->sb_csum = calc_sb_csum(sb); 1299 } 1300 1301 /* 1302 * rdev_size_change for 0.90.0 1303 */ 1304 static unsigned long long 1305 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1306 { 1307 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1308 return 0; /* component must fit device */ 1309 if (rdev->mddev->bitmap_info.offset) 1310 return 0; /* can't move bitmap */ 1311 rdev->sb_start = calc_dev_sboffset(rdev); 1312 if (!num_sectors || num_sectors > rdev->sb_start) 1313 num_sectors = rdev->sb_start; 1314 /* Limit to 4TB as metadata cannot record more than that. 1315 * 4TB == 2^32 KB, or 2*2^32 sectors. 1316 */ 1317 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1318 num_sectors = (2ULL << 32) - 2; 1319 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1320 rdev->sb_page); 1321 md_super_wait(rdev->mddev); 1322 return num_sectors; 1323 } 1324 1325 static int 1326 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1327 { 1328 /* non-zero offset changes not possible with v0.90 */ 1329 return new_offset == 0; 1330 } 1331 1332 /* 1333 * version 1 superblock 1334 */ 1335 1336 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1337 { 1338 __le32 disk_csum; 1339 u32 csum; 1340 unsigned long long newcsum; 1341 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1342 __le32 *isuper = (__le32*)sb; 1343 1344 disk_csum = sb->sb_csum; 1345 sb->sb_csum = 0; 1346 newcsum = 0; 1347 for (; size >= 4; size -= 4) 1348 newcsum += le32_to_cpu(*isuper++); 1349 1350 if (size == 2) 1351 newcsum += le16_to_cpu(*(__le16*) isuper); 1352 1353 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1354 sb->sb_csum = disk_csum; 1355 return cpu_to_le32(csum); 1356 } 1357 1358 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1359 int acknowledged); 1360 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1361 { 1362 struct mdp_superblock_1 *sb; 1363 int ret; 1364 sector_t sb_start; 1365 sector_t sectors; 1366 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1367 int bmask; 1368 1369 /* 1370 * Calculate the position of the superblock in 512byte sectors. 1371 * It is always aligned to a 4K boundary and 1372 * depeding on minor_version, it can be: 1373 * 0: At least 8K, but less than 12K, from end of device 1374 * 1: At start of device 1375 * 2: 4K from start of device. 1376 */ 1377 switch(minor_version) { 1378 case 0: 1379 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1380 sb_start -= 8*2; 1381 sb_start &= ~(sector_t)(4*2-1); 1382 break; 1383 case 1: 1384 sb_start = 0; 1385 break; 1386 case 2: 1387 sb_start = 8; 1388 break; 1389 default: 1390 return -EINVAL; 1391 } 1392 rdev->sb_start = sb_start; 1393 1394 /* superblock is rarely larger than 1K, but it can be larger, 1395 * and it is safe to read 4k, so we do that 1396 */ 1397 ret = read_disk_sb(rdev, 4096); 1398 if (ret) return ret; 1399 1400 sb = page_address(rdev->sb_page); 1401 1402 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1403 sb->major_version != cpu_to_le32(1) || 1404 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1405 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1406 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1407 return -EINVAL; 1408 1409 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1410 printk("md: invalid superblock checksum on %s\n", 1411 bdevname(rdev->bdev,b)); 1412 return -EINVAL; 1413 } 1414 if (le64_to_cpu(sb->data_size) < 10) { 1415 printk("md: data_size too small on %s\n", 1416 bdevname(rdev->bdev,b)); 1417 return -EINVAL; 1418 } 1419 if (sb->pad0 || 1420 sb->pad3[0] || 1421 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1422 /* Some padding is non-zero, might be a new feature */ 1423 return -EINVAL; 1424 1425 rdev->preferred_minor = 0xffff; 1426 rdev->data_offset = le64_to_cpu(sb->data_offset); 1427 rdev->new_data_offset = rdev->data_offset; 1428 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1429 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1430 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1431 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1432 1433 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1434 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1435 if (rdev->sb_size & bmask) 1436 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1437 1438 if (minor_version 1439 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1440 return -EINVAL; 1441 if (minor_version 1442 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1443 return -EINVAL; 1444 1445 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1446 rdev->desc_nr = -1; 1447 else 1448 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1449 1450 if (!rdev->bb_page) { 1451 rdev->bb_page = alloc_page(GFP_KERNEL); 1452 if (!rdev->bb_page) 1453 return -ENOMEM; 1454 } 1455 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1456 rdev->badblocks.count == 0) { 1457 /* need to load the bad block list. 1458 * Currently we limit it to one page. 1459 */ 1460 s32 offset; 1461 sector_t bb_sector; 1462 u64 *bbp; 1463 int i; 1464 int sectors = le16_to_cpu(sb->bblog_size); 1465 if (sectors > (PAGE_SIZE / 512)) 1466 return -EINVAL; 1467 offset = le32_to_cpu(sb->bblog_offset); 1468 if (offset == 0) 1469 return -EINVAL; 1470 bb_sector = (long long)offset; 1471 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1472 rdev->bb_page, READ, true)) 1473 return -EIO; 1474 bbp = (u64 *)page_address(rdev->bb_page); 1475 rdev->badblocks.shift = sb->bblog_shift; 1476 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1477 u64 bb = le64_to_cpu(*bbp); 1478 int count = bb & (0x3ff); 1479 u64 sector = bb >> 10; 1480 sector <<= sb->bblog_shift; 1481 count <<= sb->bblog_shift; 1482 if (bb + 1 == 0) 1483 break; 1484 if (md_set_badblocks(&rdev->badblocks, 1485 sector, count, 1) == 0) 1486 return -EINVAL; 1487 } 1488 } else if (sb->bblog_offset != 0) 1489 rdev->badblocks.shift = 0; 1490 1491 if (!refdev) { 1492 ret = 1; 1493 } else { 1494 __u64 ev1, ev2; 1495 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1496 1497 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1498 sb->level != refsb->level || 1499 sb->layout != refsb->layout || 1500 sb->chunksize != refsb->chunksize) { 1501 printk(KERN_WARNING "md: %s has strangely different" 1502 " superblock to %s\n", 1503 bdevname(rdev->bdev,b), 1504 bdevname(refdev->bdev,b2)); 1505 return -EINVAL; 1506 } 1507 ev1 = le64_to_cpu(sb->events); 1508 ev2 = le64_to_cpu(refsb->events); 1509 1510 if (ev1 > ev2) 1511 ret = 1; 1512 else 1513 ret = 0; 1514 } 1515 if (minor_version) { 1516 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1517 sectors -= rdev->data_offset; 1518 } else 1519 sectors = rdev->sb_start; 1520 if (sectors < le64_to_cpu(sb->data_size)) 1521 return -EINVAL; 1522 rdev->sectors = le64_to_cpu(sb->data_size); 1523 return ret; 1524 } 1525 1526 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1527 { 1528 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1529 __u64 ev1 = le64_to_cpu(sb->events); 1530 1531 rdev->raid_disk = -1; 1532 clear_bit(Faulty, &rdev->flags); 1533 clear_bit(In_sync, &rdev->flags); 1534 clear_bit(Bitmap_sync, &rdev->flags); 1535 clear_bit(WriteMostly, &rdev->flags); 1536 1537 if (mddev->raid_disks == 0) { 1538 mddev->major_version = 1; 1539 mddev->patch_version = 0; 1540 mddev->external = 0; 1541 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1542 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1543 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1544 mddev->level = le32_to_cpu(sb->level); 1545 mddev->clevel[0] = 0; 1546 mddev->layout = le32_to_cpu(sb->layout); 1547 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1548 mddev->dev_sectors = le64_to_cpu(sb->size); 1549 mddev->events = ev1; 1550 mddev->bitmap_info.offset = 0; 1551 mddev->bitmap_info.space = 0; 1552 /* Default location for bitmap is 1K after superblock 1553 * using 3K - total of 4K 1554 */ 1555 mddev->bitmap_info.default_offset = 1024 >> 9; 1556 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1557 mddev->reshape_backwards = 0; 1558 1559 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1560 memcpy(mddev->uuid, sb->set_uuid, 16); 1561 1562 mddev->max_disks = (4096-256)/2; 1563 1564 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1565 mddev->bitmap_info.file == NULL) { 1566 mddev->bitmap_info.offset = 1567 (__s32)le32_to_cpu(sb->bitmap_offset); 1568 /* Metadata doesn't record how much space is available. 1569 * For 1.0, we assume we can use up to the superblock 1570 * if before, else to 4K beyond superblock. 1571 * For others, assume no change is possible. 1572 */ 1573 if (mddev->minor_version > 0) 1574 mddev->bitmap_info.space = 0; 1575 else if (mddev->bitmap_info.offset > 0) 1576 mddev->bitmap_info.space = 1577 8 - mddev->bitmap_info.offset; 1578 else 1579 mddev->bitmap_info.space = 1580 -mddev->bitmap_info.offset; 1581 } 1582 1583 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1584 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1585 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1586 mddev->new_level = le32_to_cpu(sb->new_level); 1587 mddev->new_layout = le32_to_cpu(sb->new_layout); 1588 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1589 if (mddev->delta_disks < 0 || 1590 (mddev->delta_disks == 0 && 1591 (le32_to_cpu(sb->feature_map) 1592 & MD_FEATURE_RESHAPE_BACKWARDS))) 1593 mddev->reshape_backwards = 1; 1594 } else { 1595 mddev->reshape_position = MaxSector; 1596 mddev->delta_disks = 0; 1597 mddev->new_level = mddev->level; 1598 mddev->new_layout = mddev->layout; 1599 mddev->new_chunk_sectors = mddev->chunk_sectors; 1600 } 1601 1602 } else if (mddev->pers == NULL) { 1603 /* Insist of good event counter while assembling, except for 1604 * spares (which don't need an event count) */ 1605 ++ev1; 1606 if (rdev->desc_nr >= 0 && 1607 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1608 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1609 if (ev1 < mddev->events) 1610 return -EINVAL; 1611 } else if (mddev->bitmap) { 1612 /* If adding to array with a bitmap, then we can accept an 1613 * older device, but not too old. 1614 */ 1615 if (ev1 < mddev->bitmap->events_cleared) 1616 return 0; 1617 if (ev1 < mddev->events) 1618 set_bit(Bitmap_sync, &rdev->flags); 1619 } else { 1620 if (ev1 < mddev->events) 1621 /* just a hot-add of a new device, leave raid_disk at -1 */ 1622 return 0; 1623 } 1624 if (mddev->level != LEVEL_MULTIPATH) { 1625 int role; 1626 if (rdev->desc_nr < 0 || 1627 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1628 role = 0xffff; 1629 rdev->desc_nr = -1; 1630 } else 1631 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1632 switch(role) { 1633 case 0xffff: /* spare */ 1634 break; 1635 case 0xfffe: /* faulty */ 1636 set_bit(Faulty, &rdev->flags); 1637 break; 1638 default: 1639 rdev->saved_raid_disk = role; 1640 if ((le32_to_cpu(sb->feature_map) & 1641 MD_FEATURE_RECOVERY_OFFSET)) { 1642 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1643 if (!(le32_to_cpu(sb->feature_map) & 1644 MD_FEATURE_RECOVERY_BITMAP)) 1645 rdev->saved_raid_disk = -1; 1646 } else 1647 set_bit(In_sync, &rdev->flags); 1648 rdev->raid_disk = role; 1649 break; 1650 } 1651 if (sb->devflags & WriteMostly1) 1652 set_bit(WriteMostly, &rdev->flags); 1653 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1654 set_bit(Replacement, &rdev->flags); 1655 } else /* MULTIPATH are always insync */ 1656 set_bit(In_sync, &rdev->flags); 1657 1658 return 0; 1659 } 1660 1661 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1662 { 1663 struct mdp_superblock_1 *sb; 1664 struct md_rdev *rdev2; 1665 int max_dev, i; 1666 /* make rdev->sb match mddev and rdev data. */ 1667 1668 sb = page_address(rdev->sb_page); 1669 1670 sb->feature_map = 0; 1671 sb->pad0 = 0; 1672 sb->recovery_offset = cpu_to_le64(0); 1673 memset(sb->pad3, 0, sizeof(sb->pad3)); 1674 1675 sb->utime = cpu_to_le64((__u64)mddev->utime); 1676 sb->events = cpu_to_le64(mddev->events); 1677 if (mddev->in_sync) 1678 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1679 else 1680 sb->resync_offset = cpu_to_le64(0); 1681 1682 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1683 1684 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1685 sb->size = cpu_to_le64(mddev->dev_sectors); 1686 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1687 sb->level = cpu_to_le32(mddev->level); 1688 sb->layout = cpu_to_le32(mddev->layout); 1689 1690 if (test_bit(WriteMostly, &rdev->flags)) 1691 sb->devflags |= WriteMostly1; 1692 else 1693 sb->devflags &= ~WriteMostly1; 1694 sb->data_offset = cpu_to_le64(rdev->data_offset); 1695 sb->data_size = cpu_to_le64(rdev->sectors); 1696 1697 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1698 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1699 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1700 } 1701 1702 if (rdev->raid_disk >= 0 && 1703 !test_bit(In_sync, &rdev->flags)) { 1704 sb->feature_map |= 1705 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1706 sb->recovery_offset = 1707 cpu_to_le64(rdev->recovery_offset); 1708 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1709 sb->feature_map |= 1710 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1711 } 1712 if (test_bit(Replacement, &rdev->flags)) 1713 sb->feature_map |= 1714 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1715 1716 if (mddev->reshape_position != MaxSector) { 1717 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1718 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1719 sb->new_layout = cpu_to_le32(mddev->new_layout); 1720 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1721 sb->new_level = cpu_to_le32(mddev->new_level); 1722 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1723 if (mddev->delta_disks == 0 && 1724 mddev->reshape_backwards) 1725 sb->feature_map 1726 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1727 if (rdev->new_data_offset != rdev->data_offset) { 1728 sb->feature_map 1729 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1730 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1731 - rdev->data_offset)); 1732 } 1733 } 1734 1735 if (rdev->badblocks.count == 0) 1736 /* Nothing to do for bad blocks*/ ; 1737 else if (sb->bblog_offset == 0) 1738 /* Cannot record bad blocks on this device */ 1739 md_error(mddev, rdev); 1740 else { 1741 struct badblocks *bb = &rdev->badblocks; 1742 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1743 u64 *p = bb->page; 1744 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1745 if (bb->changed) { 1746 unsigned seq; 1747 1748 retry: 1749 seq = read_seqbegin(&bb->lock); 1750 1751 memset(bbp, 0xff, PAGE_SIZE); 1752 1753 for (i = 0 ; i < bb->count ; i++) { 1754 u64 internal_bb = p[i]; 1755 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1756 | BB_LEN(internal_bb)); 1757 bbp[i] = cpu_to_le64(store_bb); 1758 } 1759 bb->changed = 0; 1760 if (read_seqretry(&bb->lock, seq)) 1761 goto retry; 1762 1763 bb->sector = (rdev->sb_start + 1764 (int)le32_to_cpu(sb->bblog_offset)); 1765 bb->size = le16_to_cpu(sb->bblog_size); 1766 } 1767 } 1768 1769 max_dev = 0; 1770 rdev_for_each(rdev2, mddev) 1771 if (rdev2->desc_nr+1 > max_dev) 1772 max_dev = rdev2->desc_nr+1; 1773 1774 if (max_dev > le32_to_cpu(sb->max_dev)) { 1775 int bmask; 1776 sb->max_dev = cpu_to_le32(max_dev); 1777 rdev->sb_size = max_dev * 2 + 256; 1778 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1779 if (rdev->sb_size & bmask) 1780 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1781 } else 1782 max_dev = le32_to_cpu(sb->max_dev); 1783 1784 for (i=0; i<max_dev;i++) 1785 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1786 1787 rdev_for_each(rdev2, mddev) { 1788 i = rdev2->desc_nr; 1789 if (test_bit(Faulty, &rdev2->flags)) 1790 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1791 else if (test_bit(In_sync, &rdev2->flags)) 1792 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1793 else if (rdev2->raid_disk >= 0) 1794 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1795 else 1796 sb->dev_roles[i] = cpu_to_le16(0xffff); 1797 } 1798 1799 sb->sb_csum = calc_sb_1_csum(sb); 1800 } 1801 1802 static unsigned long long 1803 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1804 { 1805 struct mdp_superblock_1 *sb; 1806 sector_t max_sectors; 1807 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1808 return 0; /* component must fit device */ 1809 if (rdev->data_offset != rdev->new_data_offset) 1810 return 0; /* too confusing */ 1811 if (rdev->sb_start < rdev->data_offset) { 1812 /* minor versions 1 and 2; superblock before data */ 1813 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1814 max_sectors -= rdev->data_offset; 1815 if (!num_sectors || num_sectors > max_sectors) 1816 num_sectors = max_sectors; 1817 } else if (rdev->mddev->bitmap_info.offset) { 1818 /* minor version 0 with bitmap we can't move */ 1819 return 0; 1820 } else { 1821 /* minor version 0; superblock after data */ 1822 sector_t sb_start; 1823 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1824 sb_start &= ~(sector_t)(4*2 - 1); 1825 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1826 if (!num_sectors || num_sectors > max_sectors) 1827 num_sectors = max_sectors; 1828 rdev->sb_start = sb_start; 1829 } 1830 sb = page_address(rdev->sb_page); 1831 sb->data_size = cpu_to_le64(num_sectors); 1832 sb->super_offset = rdev->sb_start; 1833 sb->sb_csum = calc_sb_1_csum(sb); 1834 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1835 rdev->sb_page); 1836 md_super_wait(rdev->mddev); 1837 return num_sectors; 1838 1839 } 1840 1841 static int 1842 super_1_allow_new_offset(struct md_rdev *rdev, 1843 unsigned long long new_offset) 1844 { 1845 /* All necessary checks on new >= old have been done */ 1846 struct bitmap *bitmap; 1847 if (new_offset >= rdev->data_offset) 1848 return 1; 1849 1850 /* with 1.0 metadata, there is no metadata to tread on 1851 * so we can always move back */ 1852 if (rdev->mddev->minor_version == 0) 1853 return 1; 1854 1855 /* otherwise we must be sure not to step on 1856 * any metadata, so stay: 1857 * 36K beyond start of superblock 1858 * beyond end of badblocks 1859 * beyond write-intent bitmap 1860 */ 1861 if (rdev->sb_start + (32+4)*2 > new_offset) 1862 return 0; 1863 bitmap = rdev->mddev->bitmap; 1864 if (bitmap && !rdev->mddev->bitmap_info.file && 1865 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1866 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1867 return 0; 1868 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1869 return 0; 1870 1871 return 1; 1872 } 1873 1874 static struct super_type super_types[] = { 1875 [0] = { 1876 .name = "0.90.0", 1877 .owner = THIS_MODULE, 1878 .load_super = super_90_load, 1879 .validate_super = super_90_validate, 1880 .sync_super = super_90_sync, 1881 .rdev_size_change = super_90_rdev_size_change, 1882 .allow_new_offset = super_90_allow_new_offset, 1883 }, 1884 [1] = { 1885 .name = "md-1", 1886 .owner = THIS_MODULE, 1887 .load_super = super_1_load, 1888 .validate_super = super_1_validate, 1889 .sync_super = super_1_sync, 1890 .rdev_size_change = super_1_rdev_size_change, 1891 .allow_new_offset = super_1_allow_new_offset, 1892 }, 1893 }; 1894 1895 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1896 { 1897 if (mddev->sync_super) { 1898 mddev->sync_super(mddev, rdev); 1899 return; 1900 } 1901 1902 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1903 1904 super_types[mddev->major_version].sync_super(mddev, rdev); 1905 } 1906 1907 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1908 { 1909 struct md_rdev *rdev, *rdev2; 1910 1911 rcu_read_lock(); 1912 rdev_for_each_rcu(rdev, mddev1) 1913 rdev_for_each_rcu(rdev2, mddev2) 1914 if (rdev->bdev->bd_contains == 1915 rdev2->bdev->bd_contains) { 1916 rcu_read_unlock(); 1917 return 1; 1918 } 1919 rcu_read_unlock(); 1920 return 0; 1921 } 1922 1923 static LIST_HEAD(pending_raid_disks); 1924 1925 /* 1926 * Try to register data integrity profile for an mddev 1927 * 1928 * This is called when an array is started and after a disk has been kicked 1929 * from the array. It only succeeds if all working and active component devices 1930 * are integrity capable with matching profiles. 1931 */ 1932 int md_integrity_register(struct mddev *mddev) 1933 { 1934 struct md_rdev *rdev, *reference = NULL; 1935 1936 if (list_empty(&mddev->disks)) 1937 return 0; /* nothing to do */ 1938 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 1939 return 0; /* shouldn't register, or already is */ 1940 rdev_for_each(rdev, mddev) { 1941 /* skip spares and non-functional disks */ 1942 if (test_bit(Faulty, &rdev->flags)) 1943 continue; 1944 if (rdev->raid_disk < 0) 1945 continue; 1946 if (!reference) { 1947 /* Use the first rdev as the reference */ 1948 reference = rdev; 1949 continue; 1950 } 1951 /* does this rdev's profile match the reference profile? */ 1952 if (blk_integrity_compare(reference->bdev->bd_disk, 1953 rdev->bdev->bd_disk) < 0) 1954 return -EINVAL; 1955 } 1956 if (!reference || !bdev_get_integrity(reference->bdev)) 1957 return 0; 1958 /* 1959 * All component devices are integrity capable and have matching 1960 * profiles, register the common profile for the md device. 1961 */ 1962 if (blk_integrity_register(mddev->gendisk, 1963 bdev_get_integrity(reference->bdev)) != 0) { 1964 printk(KERN_ERR "md: failed to register integrity for %s\n", 1965 mdname(mddev)); 1966 return -EINVAL; 1967 } 1968 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 1969 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 1970 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 1971 mdname(mddev)); 1972 return -EINVAL; 1973 } 1974 return 0; 1975 } 1976 EXPORT_SYMBOL(md_integrity_register); 1977 1978 /* Disable data integrity if non-capable/non-matching disk is being added */ 1979 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 1980 { 1981 struct blk_integrity *bi_rdev; 1982 struct blk_integrity *bi_mddev; 1983 1984 if (!mddev->gendisk) 1985 return; 1986 1987 bi_rdev = bdev_get_integrity(rdev->bdev); 1988 bi_mddev = blk_get_integrity(mddev->gendisk); 1989 1990 if (!bi_mddev) /* nothing to do */ 1991 return; 1992 if (rdev->raid_disk < 0) /* skip spares */ 1993 return; 1994 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 1995 rdev->bdev->bd_disk) >= 0) 1996 return; 1997 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 1998 blk_integrity_unregister(mddev->gendisk); 1999 } 2000 EXPORT_SYMBOL(md_integrity_add_rdev); 2001 2002 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2003 { 2004 char b[BDEVNAME_SIZE]; 2005 struct kobject *ko; 2006 int err; 2007 2008 /* prevent duplicates */ 2009 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2010 return -EEXIST; 2011 2012 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2013 if (rdev->sectors && (mddev->dev_sectors == 0 || 2014 rdev->sectors < mddev->dev_sectors)) { 2015 if (mddev->pers) { 2016 /* Cannot change size, so fail 2017 * If mddev->level <= 0, then we don't care 2018 * about aligning sizes (e.g. linear) 2019 */ 2020 if (mddev->level > 0) 2021 return -ENOSPC; 2022 } else 2023 mddev->dev_sectors = rdev->sectors; 2024 } 2025 2026 /* Verify rdev->desc_nr is unique. 2027 * If it is -1, assign a free number, else 2028 * check number is not in use 2029 */ 2030 rcu_read_lock(); 2031 if (rdev->desc_nr < 0) { 2032 int choice = 0; 2033 if (mddev->pers) 2034 choice = mddev->raid_disks; 2035 while (md_find_rdev_nr_rcu(mddev, choice)) 2036 choice++; 2037 rdev->desc_nr = choice; 2038 } else { 2039 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2040 rcu_read_unlock(); 2041 return -EBUSY; 2042 } 2043 } 2044 rcu_read_unlock(); 2045 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2046 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2047 mdname(mddev), mddev->max_disks); 2048 return -EBUSY; 2049 } 2050 bdevname(rdev->bdev,b); 2051 strreplace(b, '/', '!'); 2052 2053 rdev->mddev = mddev; 2054 printk(KERN_INFO "md: bind<%s>\n", b); 2055 2056 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2057 goto fail; 2058 2059 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2060 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2061 /* failure here is OK */; 2062 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2063 2064 list_add_rcu(&rdev->same_set, &mddev->disks); 2065 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2066 2067 /* May as well allow recovery to be retried once */ 2068 mddev->recovery_disabled++; 2069 2070 return 0; 2071 2072 fail: 2073 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2074 b, mdname(mddev)); 2075 return err; 2076 } 2077 2078 static void md_delayed_delete(struct work_struct *ws) 2079 { 2080 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2081 kobject_del(&rdev->kobj); 2082 kobject_put(&rdev->kobj); 2083 } 2084 2085 static void unbind_rdev_from_array(struct md_rdev *rdev) 2086 { 2087 char b[BDEVNAME_SIZE]; 2088 2089 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2090 list_del_rcu(&rdev->same_set); 2091 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2092 rdev->mddev = NULL; 2093 sysfs_remove_link(&rdev->kobj, "block"); 2094 sysfs_put(rdev->sysfs_state); 2095 rdev->sysfs_state = NULL; 2096 rdev->badblocks.count = 0; 2097 /* We need to delay this, otherwise we can deadlock when 2098 * writing to 'remove' to "dev/state". We also need 2099 * to delay it due to rcu usage. 2100 */ 2101 synchronize_rcu(); 2102 INIT_WORK(&rdev->del_work, md_delayed_delete); 2103 kobject_get(&rdev->kobj); 2104 queue_work(md_misc_wq, &rdev->del_work); 2105 } 2106 2107 /* 2108 * prevent the device from being mounted, repartitioned or 2109 * otherwise reused by a RAID array (or any other kernel 2110 * subsystem), by bd_claiming the device. 2111 */ 2112 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2113 { 2114 int err = 0; 2115 struct block_device *bdev; 2116 char b[BDEVNAME_SIZE]; 2117 2118 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2119 shared ? (struct md_rdev *)lock_rdev : rdev); 2120 if (IS_ERR(bdev)) { 2121 printk(KERN_ERR "md: could not open %s.\n", 2122 __bdevname(dev, b)); 2123 return PTR_ERR(bdev); 2124 } 2125 rdev->bdev = bdev; 2126 return err; 2127 } 2128 2129 static void unlock_rdev(struct md_rdev *rdev) 2130 { 2131 struct block_device *bdev = rdev->bdev; 2132 rdev->bdev = NULL; 2133 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2134 } 2135 2136 void md_autodetect_dev(dev_t dev); 2137 2138 static void export_rdev(struct md_rdev *rdev) 2139 { 2140 char b[BDEVNAME_SIZE]; 2141 2142 printk(KERN_INFO "md: export_rdev(%s)\n", 2143 bdevname(rdev->bdev,b)); 2144 md_rdev_clear(rdev); 2145 #ifndef MODULE 2146 if (test_bit(AutoDetected, &rdev->flags)) 2147 md_autodetect_dev(rdev->bdev->bd_dev); 2148 #endif 2149 unlock_rdev(rdev); 2150 kobject_put(&rdev->kobj); 2151 } 2152 2153 void md_kick_rdev_from_array(struct md_rdev *rdev) 2154 { 2155 unbind_rdev_from_array(rdev); 2156 export_rdev(rdev); 2157 } 2158 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2159 2160 static void export_array(struct mddev *mddev) 2161 { 2162 struct md_rdev *rdev; 2163 2164 while (!list_empty(&mddev->disks)) { 2165 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2166 same_set); 2167 md_kick_rdev_from_array(rdev); 2168 } 2169 mddev->raid_disks = 0; 2170 mddev->major_version = 0; 2171 } 2172 2173 static void sync_sbs(struct mddev *mddev, int nospares) 2174 { 2175 /* Update each superblock (in-memory image), but 2176 * if we are allowed to, skip spares which already 2177 * have the right event counter, or have one earlier 2178 * (which would mean they aren't being marked as dirty 2179 * with the rest of the array) 2180 */ 2181 struct md_rdev *rdev; 2182 rdev_for_each(rdev, mddev) { 2183 if (rdev->sb_events == mddev->events || 2184 (nospares && 2185 rdev->raid_disk < 0 && 2186 rdev->sb_events+1 == mddev->events)) { 2187 /* Don't update this superblock */ 2188 rdev->sb_loaded = 2; 2189 } else { 2190 sync_super(mddev, rdev); 2191 rdev->sb_loaded = 1; 2192 } 2193 } 2194 } 2195 2196 void md_update_sb(struct mddev *mddev, int force_change) 2197 { 2198 struct md_rdev *rdev; 2199 int sync_req; 2200 int nospares = 0; 2201 int any_badblocks_changed = 0; 2202 2203 if (mddev->ro) { 2204 if (force_change) 2205 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2206 return; 2207 } 2208 repeat: 2209 /* First make sure individual recovery_offsets are correct */ 2210 rdev_for_each(rdev, mddev) { 2211 if (rdev->raid_disk >= 0 && 2212 mddev->delta_disks >= 0 && 2213 !test_bit(In_sync, &rdev->flags) && 2214 mddev->curr_resync_completed > rdev->recovery_offset) 2215 rdev->recovery_offset = mddev->curr_resync_completed; 2216 2217 } 2218 if (!mddev->persistent) { 2219 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2220 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2221 if (!mddev->external) { 2222 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2223 rdev_for_each(rdev, mddev) { 2224 if (rdev->badblocks.changed) { 2225 rdev->badblocks.changed = 0; 2226 md_ack_all_badblocks(&rdev->badblocks); 2227 md_error(mddev, rdev); 2228 } 2229 clear_bit(Blocked, &rdev->flags); 2230 clear_bit(BlockedBadBlocks, &rdev->flags); 2231 wake_up(&rdev->blocked_wait); 2232 } 2233 } 2234 wake_up(&mddev->sb_wait); 2235 return; 2236 } 2237 2238 spin_lock(&mddev->lock); 2239 2240 mddev->utime = get_seconds(); 2241 2242 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2243 force_change = 1; 2244 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2245 /* just a clean<-> dirty transition, possibly leave spares alone, 2246 * though if events isn't the right even/odd, we will have to do 2247 * spares after all 2248 */ 2249 nospares = 1; 2250 if (force_change) 2251 nospares = 0; 2252 if (mddev->degraded) 2253 /* If the array is degraded, then skipping spares is both 2254 * dangerous and fairly pointless. 2255 * Dangerous because a device that was removed from the array 2256 * might have a event_count that still looks up-to-date, 2257 * so it can be re-added without a resync. 2258 * Pointless because if there are any spares to skip, 2259 * then a recovery will happen and soon that array won't 2260 * be degraded any more and the spare can go back to sleep then. 2261 */ 2262 nospares = 0; 2263 2264 sync_req = mddev->in_sync; 2265 2266 /* If this is just a dirty<->clean transition, and the array is clean 2267 * and 'events' is odd, we can roll back to the previous clean state */ 2268 if (nospares 2269 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2270 && mddev->can_decrease_events 2271 && mddev->events != 1) { 2272 mddev->events--; 2273 mddev->can_decrease_events = 0; 2274 } else { 2275 /* otherwise we have to go forward and ... */ 2276 mddev->events ++; 2277 mddev->can_decrease_events = nospares; 2278 } 2279 2280 /* 2281 * This 64-bit counter should never wrap. 2282 * Either we are in around ~1 trillion A.C., assuming 2283 * 1 reboot per second, or we have a bug... 2284 */ 2285 WARN_ON(mddev->events == 0); 2286 2287 rdev_for_each(rdev, mddev) { 2288 if (rdev->badblocks.changed) 2289 any_badblocks_changed++; 2290 if (test_bit(Faulty, &rdev->flags)) 2291 set_bit(FaultRecorded, &rdev->flags); 2292 } 2293 2294 sync_sbs(mddev, nospares); 2295 spin_unlock(&mddev->lock); 2296 2297 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2298 mdname(mddev), mddev->in_sync); 2299 2300 bitmap_update_sb(mddev->bitmap); 2301 rdev_for_each(rdev, mddev) { 2302 char b[BDEVNAME_SIZE]; 2303 2304 if (rdev->sb_loaded != 1) 2305 continue; /* no noise on spare devices */ 2306 2307 if (!test_bit(Faulty, &rdev->flags)) { 2308 md_super_write(mddev,rdev, 2309 rdev->sb_start, rdev->sb_size, 2310 rdev->sb_page); 2311 pr_debug("md: (write) %s's sb offset: %llu\n", 2312 bdevname(rdev->bdev, b), 2313 (unsigned long long)rdev->sb_start); 2314 rdev->sb_events = mddev->events; 2315 if (rdev->badblocks.size) { 2316 md_super_write(mddev, rdev, 2317 rdev->badblocks.sector, 2318 rdev->badblocks.size << 9, 2319 rdev->bb_page); 2320 rdev->badblocks.size = 0; 2321 } 2322 2323 } else 2324 pr_debug("md: %s (skipping faulty)\n", 2325 bdevname(rdev->bdev, b)); 2326 2327 if (mddev->level == LEVEL_MULTIPATH) 2328 /* only need to write one superblock... */ 2329 break; 2330 } 2331 md_super_wait(mddev); 2332 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2333 2334 spin_lock(&mddev->lock); 2335 if (mddev->in_sync != sync_req || 2336 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2337 /* have to write it out again */ 2338 spin_unlock(&mddev->lock); 2339 goto repeat; 2340 } 2341 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2342 spin_unlock(&mddev->lock); 2343 wake_up(&mddev->sb_wait); 2344 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2345 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2346 2347 rdev_for_each(rdev, mddev) { 2348 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2349 clear_bit(Blocked, &rdev->flags); 2350 2351 if (any_badblocks_changed) 2352 md_ack_all_badblocks(&rdev->badblocks); 2353 clear_bit(BlockedBadBlocks, &rdev->flags); 2354 wake_up(&rdev->blocked_wait); 2355 } 2356 } 2357 EXPORT_SYMBOL(md_update_sb); 2358 2359 static int add_bound_rdev(struct md_rdev *rdev) 2360 { 2361 struct mddev *mddev = rdev->mddev; 2362 int err = 0; 2363 2364 if (!mddev->pers->hot_remove_disk) { 2365 /* If there is hot_add_disk but no hot_remove_disk 2366 * then added disks for geometry changes, 2367 * and should be added immediately. 2368 */ 2369 super_types[mddev->major_version]. 2370 validate_super(mddev, rdev); 2371 err = mddev->pers->hot_add_disk(mddev, rdev); 2372 if (err) { 2373 unbind_rdev_from_array(rdev); 2374 export_rdev(rdev); 2375 return err; 2376 } 2377 } 2378 sysfs_notify_dirent_safe(rdev->sysfs_state); 2379 2380 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2381 if (mddev->degraded) 2382 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2383 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2384 md_new_event(mddev); 2385 md_wakeup_thread(mddev->thread); 2386 return 0; 2387 } 2388 2389 /* words written to sysfs files may, or may not, be \n terminated. 2390 * We want to accept with case. For this we use cmd_match. 2391 */ 2392 static int cmd_match(const char *cmd, const char *str) 2393 { 2394 /* See if cmd, written into a sysfs file, matches 2395 * str. They must either be the same, or cmd can 2396 * have a trailing newline 2397 */ 2398 while (*cmd && *str && *cmd == *str) { 2399 cmd++; 2400 str++; 2401 } 2402 if (*cmd == '\n') 2403 cmd++; 2404 if (*str || *cmd) 2405 return 0; 2406 return 1; 2407 } 2408 2409 struct rdev_sysfs_entry { 2410 struct attribute attr; 2411 ssize_t (*show)(struct md_rdev *, char *); 2412 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2413 }; 2414 2415 static ssize_t 2416 state_show(struct md_rdev *rdev, char *page) 2417 { 2418 char *sep = ""; 2419 size_t len = 0; 2420 unsigned long flags = ACCESS_ONCE(rdev->flags); 2421 2422 if (test_bit(Faulty, &flags) || 2423 rdev->badblocks.unacked_exist) { 2424 len+= sprintf(page+len, "%sfaulty",sep); 2425 sep = ","; 2426 } 2427 if (test_bit(In_sync, &flags)) { 2428 len += sprintf(page+len, "%sin_sync",sep); 2429 sep = ","; 2430 } 2431 if (test_bit(WriteMostly, &flags)) { 2432 len += sprintf(page+len, "%swrite_mostly",sep); 2433 sep = ","; 2434 } 2435 if (test_bit(Blocked, &flags) || 2436 (rdev->badblocks.unacked_exist 2437 && !test_bit(Faulty, &flags))) { 2438 len += sprintf(page+len, "%sblocked", sep); 2439 sep = ","; 2440 } 2441 if (!test_bit(Faulty, &flags) && 2442 !test_bit(In_sync, &flags)) { 2443 len += sprintf(page+len, "%sspare", sep); 2444 sep = ","; 2445 } 2446 if (test_bit(WriteErrorSeen, &flags)) { 2447 len += sprintf(page+len, "%swrite_error", sep); 2448 sep = ","; 2449 } 2450 if (test_bit(WantReplacement, &flags)) { 2451 len += sprintf(page+len, "%swant_replacement", sep); 2452 sep = ","; 2453 } 2454 if (test_bit(Replacement, &flags)) { 2455 len += sprintf(page+len, "%sreplacement", sep); 2456 sep = ","; 2457 } 2458 2459 return len+sprintf(page+len, "\n"); 2460 } 2461 2462 static ssize_t 2463 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2464 { 2465 /* can write 2466 * faulty - simulates an error 2467 * remove - disconnects the device 2468 * writemostly - sets write_mostly 2469 * -writemostly - clears write_mostly 2470 * blocked - sets the Blocked flags 2471 * -blocked - clears the Blocked and possibly simulates an error 2472 * insync - sets Insync providing device isn't active 2473 * -insync - clear Insync for a device with a slot assigned, 2474 * so that it gets rebuilt based on bitmap 2475 * write_error - sets WriteErrorSeen 2476 * -write_error - clears WriteErrorSeen 2477 */ 2478 int err = -EINVAL; 2479 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2480 md_error(rdev->mddev, rdev); 2481 if (test_bit(Faulty, &rdev->flags)) 2482 err = 0; 2483 else 2484 err = -EBUSY; 2485 } else if (cmd_match(buf, "remove")) { 2486 if (rdev->raid_disk >= 0) 2487 err = -EBUSY; 2488 else { 2489 struct mddev *mddev = rdev->mddev; 2490 if (mddev_is_clustered(mddev)) 2491 md_cluster_ops->remove_disk(mddev, rdev); 2492 md_kick_rdev_from_array(rdev); 2493 if (mddev_is_clustered(mddev)) 2494 md_cluster_ops->metadata_update_start(mddev); 2495 if (mddev->pers) 2496 md_update_sb(mddev, 1); 2497 md_new_event(mddev); 2498 if (mddev_is_clustered(mddev)) 2499 md_cluster_ops->metadata_update_finish(mddev); 2500 err = 0; 2501 } 2502 } else if (cmd_match(buf, "writemostly")) { 2503 set_bit(WriteMostly, &rdev->flags); 2504 err = 0; 2505 } else if (cmd_match(buf, "-writemostly")) { 2506 clear_bit(WriteMostly, &rdev->flags); 2507 err = 0; 2508 } else if (cmd_match(buf, "blocked")) { 2509 set_bit(Blocked, &rdev->flags); 2510 err = 0; 2511 } else if (cmd_match(buf, "-blocked")) { 2512 if (!test_bit(Faulty, &rdev->flags) && 2513 rdev->badblocks.unacked_exist) { 2514 /* metadata handler doesn't understand badblocks, 2515 * so we need to fail the device 2516 */ 2517 md_error(rdev->mddev, rdev); 2518 } 2519 clear_bit(Blocked, &rdev->flags); 2520 clear_bit(BlockedBadBlocks, &rdev->flags); 2521 wake_up(&rdev->blocked_wait); 2522 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2523 md_wakeup_thread(rdev->mddev->thread); 2524 2525 err = 0; 2526 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2527 set_bit(In_sync, &rdev->flags); 2528 err = 0; 2529 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) { 2530 if (rdev->mddev->pers == NULL) { 2531 clear_bit(In_sync, &rdev->flags); 2532 rdev->saved_raid_disk = rdev->raid_disk; 2533 rdev->raid_disk = -1; 2534 err = 0; 2535 } 2536 } else if (cmd_match(buf, "write_error")) { 2537 set_bit(WriteErrorSeen, &rdev->flags); 2538 err = 0; 2539 } else if (cmd_match(buf, "-write_error")) { 2540 clear_bit(WriteErrorSeen, &rdev->flags); 2541 err = 0; 2542 } else if (cmd_match(buf, "want_replacement")) { 2543 /* Any non-spare device that is not a replacement can 2544 * become want_replacement at any time, but we then need to 2545 * check if recovery is needed. 2546 */ 2547 if (rdev->raid_disk >= 0 && 2548 !test_bit(Replacement, &rdev->flags)) 2549 set_bit(WantReplacement, &rdev->flags); 2550 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2551 md_wakeup_thread(rdev->mddev->thread); 2552 err = 0; 2553 } else if (cmd_match(buf, "-want_replacement")) { 2554 /* Clearing 'want_replacement' is always allowed. 2555 * Once replacements starts it is too late though. 2556 */ 2557 err = 0; 2558 clear_bit(WantReplacement, &rdev->flags); 2559 } else if (cmd_match(buf, "replacement")) { 2560 /* Can only set a device as a replacement when array has not 2561 * yet been started. Once running, replacement is automatic 2562 * from spares, or by assigning 'slot'. 2563 */ 2564 if (rdev->mddev->pers) 2565 err = -EBUSY; 2566 else { 2567 set_bit(Replacement, &rdev->flags); 2568 err = 0; 2569 } 2570 } else if (cmd_match(buf, "-replacement")) { 2571 /* Similarly, can only clear Replacement before start */ 2572 if (rdev->mddev->pers) 2573 err = -EBUSY; 2574 else { 2575 clear_bit(Replacement, &rdev->flags); 2576 err = 0; 2577 } 2578 } else if (cmd_match(buf, "re-add")) { 2579 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) { 2580 /* clear_bit is performed _after_ all the devices 2581 * have their local Faulty bit cleared. If any writes 2582 * happen in the meantime in the local node, they 2583 * will land in the local bitmap, which will be synced 2584 * by this node eventually 2585 */ 2586 if (!mddev_is_clustered(rdev->mddev) || 2587 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2588 clear_bit(Faulty, &rdev->flags); 2589 err = add_bound_rdev(rdev); 2590 } 2591 } else 2592 err = -EBUSY; 2593 } 2594 if (!err) 2595 sysfs_notify_dirent_safe(rdev->sysfs_state); 2596 return err ? err : len; 2597 } 2598 static struct rdev_sysfs_entry rdev_state = 2599 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2600 2601 static ssize_t 2602 errors_show(struct md_rdev *rdev, char *page) 2603 { 2604 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2605 } 2606 2607 static ssize_t 2608 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2609 { 2610 unsigned int n; 2611 int rv; 2612 2613 rv = kstrtouint(buf, 10, &n); 2614 if (rv < 0) 2615 return rv; 2616 atomic_set(&rdev->corrected_errors, n); 2617 return len; 2618 } 2619 static struct rdev_sysfs_entry rdev_errors = 2620 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2621 2622 static ssize_t 2623 slot_show(struct md_rdev *rdev, char *page) 2624 { 2625 if (rdev->raid_disk < 0) 2626 return sprintf(page, "none\n"); 2627 else 2628 return sprintf(page, "%d\n", rdev->raid_disk); 2629 } 2630 2631 static ssize_t 2632 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2633 { 2634 int slot; 2635 int err; 2636 2637 if (strncmp(buf, "none", 4)==0) 2638 slot = -1; 2639 else { 2640 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2641 if (err < 0) 2642 return err; 2643 } 2644 if (rdev->mddev->pers && slot == -1) { 2645 /* Setting 'slot' on an active array requires also 2646 * updating the 'rd%d' link, and communicating 2647 * with the personality with ->hot_*_disk. 2648 * For now we only support removing 2649 * failed/spare devices. This normally happens automatically, 2650 * but not when the metadata is externally managed. 2651 */ 2652 if (rdev->raid_disk == -1) 2653 return -EEXIST; 2654 /* personality does all needed checks */ 2655 if (rdev->mddev->pers->hot_remove_disk == NULL) 2656 return -EINVAL; 2657 clear_bit(Blocked, &rdev->flags); 2658 remove_and_add_spares(rdev->mddev, rdev); 2659 if (rdev->raid_disk >= 0) 2660 return -EBUSY; 2661 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2662 md_wakeup_thread(rdev->mddev->thread); 2663 } else if (rdev->mddev->pers) { 2664 /* Activating a spare .. or possibly reactivating 2665 * if we ever get bitmaps working here. 2666 */ 2667 2668 if (rdev->raid_disk != -1) 2669 return -EBUSY; 2670 2671 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2672 return -EBUSY; 2673 2674 if (rdev->mddev->pers->hot_add_disk == NULL) 2675 return -EINVAL; 2676 2677 if (slot >= rdev->mddev->raid_disks && 2678 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2679 return -ENOSPC; 2680 2681 rdev->raid_disk = slot; 2682 if (test_bit(In_sync, &rdev->flags)) 2683 rdev->saved_raid_disk = slot; 2684 else 2685 rdev->saved_raid_disk = -1; 2686 clear_bit(In_sync, &rdev->flags); 2687 clear_bit(Bitmap_sync, &rdev->flags); 2688 err = rdev->mddev->pers-> 2689 hot_add_disk(rdev->mddev, rdev); 2690 if (err) { 2691 rdev->raid_disk = -1; 2692 return err; 2693 } else 2694 sysfs_notify_dirent_safe(rdev->sysfs_state); 2695 if (sysfs_link_rdev(rdev->mddev, rdev)) 2696 /* failure here is OK */; 2697 /* don't wakeup anyone, leave that to userspace. */ 2698 } else { 2699 if (slot >= rdev->mddev->raid_disks && 2700 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2701 return -ENOSPC; 2702 rdev->raid_disk = slot; 2703 /* assume it is working */ 2704 clear_bit(Faulty, &rdev->flags); 2705 clear_bit(WriteMostly, &rdev->flags); 2706 set_bit(In_sync, &rdev->flags); 2707 sysfs_notify_dirent_safe(rdev->sysfs_state); 2708 } 2709 return len; 2710 } 2711 2712 static struct rdev_sysfs_entry rdev_slot = 2713 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2714 2715 static ssize_t 2716 offset_show(struct md_rdev *rdev, char *page) 2717 { 2718 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2719 } 2720 2721 static ssize_t 2722 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2723 { 2724 unsigned long long offset; 2725 if (kstrtoull(buf, 10, &offset) < 0) 2726 return -EINVAL; 2727 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2728 return -EBUSY; 2729 if (rdev->sectors && rdev->mddev->external) 2730 /* Must set offset before size, so overlap checks 2731 * can be sane */ 2732 return -EBUSY; 2733 rdev->data_offset = offset; 2734 rdev->new_data_offset = offset; 2735 return len; 2736 } 2737 2738 static struct rdev_sysfs_entry rdev_offset = 2739 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2740 2741 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2742 { 2743 return sprintf(page, "%llu\n", 2744 (unsigned long long)rdev->new_data_offset); 2745 } 2746 2747 static ssize_t new_offset_store(struct md_rdev *rdev, 2748 const char *buf, size_t len) 2749 { 2750 unsigned long long new_offset; 2751 struct mddev *mddev = rdev->mddev; 2752 2753 if (kstrtoull(buf, 10, &new_offset) < 0) 2754 return -EINVAL; 2755 2756 if (mddev->sync_thread || 2757 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 2758 return -EBUSY; 2759 if (new_offset == rdev->data_offset) 2760 /* reset is always permitted */ 2761 ; 2762 else if (new_offset > rdev->data_offset) { 2763 /* must not push array size beyond rdev_sectors */ 2764 if (new_offset - rdev->data_offset 2765 + mddev->dev_sectors > rdev->sectors) 2766 return -E2BIG; 2767 } 2768 /* Metadata worries about other space details. */ 2769 2770 /* decreasing the offset is inconsistent with a backwards 2771 * reshape. 2772 */ 2773 if (new_offset < rdev->data_offset && 2774 mddev->reshape_backwards) 2775 return -EINVAL; 2776 /* Increasing offset is inconsistent with forwards 2777 * reshape. reshape_direction should be set to 2778 * 'backwards' first. 2779 */ 2780 if (new_offset > rdev->data_offset && 2781 !mddev->reshape_backwards) 2782 return -EINVAL; 2783 2784 if (mddev->pers && mddev->persistent && 2785 !super_types[mddev->major_version] 2786 .allow_new_offset(rdev, new_offset)) 2787 return -E2BIG; 2788 rdev->new_data_offset = new_offset; 2789 if (new_offset > rdev->data_offset) 2790 mddev->reshape_backwards = 1; 2791 else if (new_offset < rdev->data_offset) 2792 mddev->reshape_backwards = 0; 2793 2794 return len; 2795 } 2796 static struct rdev_sysfs_entry rdev_new_offset = 2797 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2798 2799 static ssize_t 2800 rdev_size_show(struct md_rdev *rdev, char *page) 2801 { 2802 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2803 } 2804 2805 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2806 { 2807 /* check if two start/length pairs overlap */ 2808 if (s1+l1 <= s2) 2809 return 0; 2810 if (s2+l2 <= s1) 2811 return 0; 2812 return 1; 2813 } 2814 2815 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2816 { 2817 unsigned long long blocks; 2818 sector_t new; 2819 2820 if (kstrtoull(buf, 10, &blocks) < 0) 2821 return -EINVAL; 2822 2823 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2824 return -EINVAL; /* sector conversion overflow */ 2825 2826 new = blocks * 2; 2827 if (new != blocks * 2) 2828 return -EINVAL; /* unsigned long long to sector_t overflow */ 2829 2830 *sectors = new; 2831 return 0; 2832 } 2833 2834 static ssize_t 2835 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2836 { 2837 struct mddev *my_mddev = rdev->mddev; 2838 sector_t oldsectors = rdev->sectors; 2839 sector_t sectors; 2840 2841 if (strict_blocks_to_sectors(buf, §ors) < 0) 2842 return -EINVAL; 2843 if (rdev->data_offset != rdev->new_data_offset) 2844 return -EINVAL; /* too confusing */ 2845 if (my_mddev->pers && rdev->raid_disk >= 0) { 2846 if (my_mddev->persistent) { 2847 sectors = super_types[my_mddev->major_version]. 2848 rdev_size_change(rdev, sectors); 2849 if (!sectors) 2850 return -EBUSY; 2851 } else if (!sectors) 2852 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2853 rdev->data_offset; 2854 if (!my_mddev->pers->resize) 2855 /* Cannot change size for RAID0 or Linear etc */ 2856 return -EINVAL; 2857 } 2858 if (sectors < my_mddev->dev_sectors) 2859 return -EINVAL; /* component must fit device */ 2860 2861 rdev->sectors = sectors; 2862 if (sectors > oldsectors && my_mddev->external) { 2863 /* Need to check that all other rdevs with the same 2864 * ->bdev do not overlap. 'rcu' is sufficient to walk 2865 * the rdev lists safely. 2866 * This check does not provide a hard guarantee, it 2867 * just helps avoid dangerous mistakes. 2868 */ 2869 struct mddev *mddev; 2870 int overlap = 0; 2871 struct list_head *tmp; 2872 2873 rcu_read_lock(); 2874 for_each_mddev(mddev, tmp) { 2875 struct md_rdev *rdev2; 2876 2877 rdev_for_each(rdev2, mddev) 2878 if (rdev->bdev == rdev2->bdev && 2879 rdev != rdev2 && 2880 overlaps(rdev->data_offset, rdev->sectors, 2881 rdev2->data_offset, 2882 rdev2->sectors)) { 2883 overlap = 1; 2884 break; 2885 } 2886 if (overlap) { 2887 mddev_put(mddev); 2888 break; 2889 } 2890 } 2891 rcu_read_unlock(); 2892 if (overlap) { 2893 /* Someone else could have slipped in a size 2894 * change here, but doing so is just silly. 2895 * We put oldsectors back because we *know* it is 2896 * safe, and trust userspace not to race with 2897 * itself 2898 */ 2899 rdev->sectors = oldsectors; 2900 return -EBUSY; 2901 } 2902 } 2903 return len; 2904 } 2905 2906 static struct rdev_sysfs_entry rdev_size = 2907 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2908 2909 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 2910 { 2911 unsigned long long recovery_start = rdev->recovery_offset; 2912 2913 if (test_bit(In_sync, &rdev->flags) || 2914 recovery_start == MaxSector) 2915 return sprintf(page, "none\n"); 2916 2917 return sprintf(page, "%llu\n", recovery_start); 2918 } 2919 2920 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 2921 { 2922 unsigned long long recovery_start; 2923 2924 if (cmd_match(buf, "none")) 2925 recovery_start = MaxSector; 2926 else if (kstrtoull(buf, 10, &recovery_start)) 2927 return -EINVAL; 2928 2929 if (rdev->mddev->pers && 2930 rdev->raid_disk >= 0) 2931 return -EBUSY; 2932 2933 rdev->recovery_offset = recovery_start; 2934 if (recovery_start == MaxSector) 2935 set_bit(In_sync, &rdev->flags); 2936 else 2937 clear_bit(In_sync, &rdev->flags); 2938 return len; 2939 } 2940 2941 static struct rdev_sysfs_entry rdev_recovery_start = 2942 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 2943 2944 static ssize_t 2945 badblocks_show(struct badblocks *bb, char *page, int unack); 2946 static ssize_t 2947 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 2948 2949 static ssize_t bb_show(struct md_rdev *rdev, char *page) 2950 { 2951 return badblocks_show(&rdev->badblocks, page, 0); 2952 } 2953 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 2954 { 2955 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 2956 /* Maybe that ack was all we needed */ 2957 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 2958 wake_up(&rdev->blocked_wait); 2959 return rv; 2960 } 2961 static struct rdev_sysfs_entry rdev_bad_blocks = 2962 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 2963 2964 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 2965 { 2966 return badblocks_show(&rdev->badblocks, page, 1); 2967 } 2968 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 2969 { 2970 return badblocks_store(&rdev->badblocks, page, len, 1); 2971 } 2972 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 2973 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 2974 2975 static struct attribute *rdev_default_attrs[] = { 2976 &rdev_state.attr, 2977 &rdev_errors.attr, 2978 &rdev_slot.attr, 2979 &rdev_offset.attr, 2980 &rdev_new_offset.attr, 2981 &rdev_size.attr, 2982 &rdev_recovery_start.attr, 2983 &rdev_bad_blocks.attr, 2984 &rdev_unack_bad_blocks.attr, 2985 NULL, 2986 }; 2987 static ssize_t 2988 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2989 { 2990 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2991 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 2992 2993 if (!entry->show) 2994 return -EIO; 2995 if (!rdev->mddev) 2996 return -EBUSY; 2997 return entry->show(rdev, page); 2998 } 2999 3000 static ssize_t 3001 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3002 const char *page, size_t length) 3003 { 3004 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3005 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3006 ssize_t rv; 3007 struct mddev *mddev = rdev->mddev; 3008 3009 if (!entry->store) 3010 return -EIO; 3011 if (!capable(CAP_SYS_ADMIN)) 3012 return -EACCES; 3013 rv = mddev ? mddev_lock(mddev): -EBUSY; 3014 if (!rv) { 3015 if (rdev->mddev == NULL) 3016 rv = -EBUSY; 3017 else 3018 rv = entry->store(rdev, page, length); 3019 mddev_unlock(mddev); 3020 } 3021 return rv; 3022 } 3023 3024 static void rdev_free(struct kobject *ko) 3025 { 3026 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3027 kfree(rdev); 3028 } 3029 static const struct sysfs_ops rdev_sysfs_ops = { 3030 .show = rdev_attr_show, 3031 .store = rdev_attr_store, 3032 }; 3033 static struct kobj_type rdev_ktype = { 3034 .release = rdev_free, 3035 .sysfs_ops = &rdev_sysfs_ops, 3036 .default_attrs = rdev_default_attrs, 3037 }; 3038 3039 int md_rdev_init(struct md_rdev *rdev) 3040 { 3041 rdev->desc_nr = -1; 3042 rdev->saved_raid_disk = -1; 3043 rdev->raid_disk = -1; 3044 rdev->flags = 0; 3045 rdev->data_offset = 0; 3046 rdev->new_data_offset = 0; 3047 rdev->sb_events = 0; 3048 rdev->last_read_error.tv_sec = 0; 3049 rdev->last_read_error.tv_nsec = 0; 3050 rdev->sb_loaded = 0; 3051 rdev->bb_page = NULL; 3052 atomic_set(&rdev->nr_pending, 0); 3053 atomic_set(&rdev->read_errors, 0); 3054 atomic_set(&rdev->corrected_errors, 0); 3055 3056 INIT_LIST_HEAD(&rdev->same_set); 3057 init_waitqueue_head(&rdev->blocked_wait); 3058 3059 /* Add space to store bad block list. 3060 * This reserves the space even on arrays where it cannot 3061 * be used - I wonder if that matters 3062 */ 3063 rdev->badblocks.count = 0; 3064 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */ 3065 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3066 seqlock_init(&rdev->badblocks.lock); 3067 if (rdev->badblocks.page == NULL) 3068 return -ENOMEM; 3069 3070 return 0; 3071 } 3072 EXPORT_SYMBOL_GPL(md_rdev_init); 3073 /* 3074 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3075 * 3076 * mark the device faulty if: 3077 * 3078 * - the device is nonexistent (zero size) 3079 * - the device has no valid superblock 3080 * 3081 * a faulty rdev _never_ has rdev->sb set. 3082 */ 3083 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3084 { 3085 char b[BDEVNAME_SIZE]; 3086 int err; 3087 struct md_rdev *rdev; 3088 sector_t size; 3089 3090 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3091 if (!rdev) { 3092 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3093 return ERR_PTR(-ENOMEM); 3094 } 3095 3096 err = md_rdev_init(rdev); 3097 if (err) 3098 goto abort_free; 3099 err = alloc_disk_sb(rdev); 3100 if (err) 3101 goto abort_free; 3102 3103 err = lock_rdev(rdev, newdev, super_format == -2); 3104 if (err) 3105 goto abort_free; 3106 3107 kobject_init(&rdev->kobj, &rdev_ktype); 3108 3109 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3110 if (!size) { 3111 printk(KERN_WARNING 3112 "md: %s has zero or unknown size, marking faulty!\n", 3113 bdevname(rdev->bdev,b)); 3114 err = -EINVAL; 3115 goto abort_free; 3116 } 3117 3118 if (super_format >= 0) { 3119 err = super_types[super_format]. 3120 load_super(rdev, NULL, super_minor); 3121 if (err == -EINVAL) { 3122 printk(KERN_WARNING 3123 "md: %s does not have a valid v%d.%d " 3124 "superblock, not importing!\n", 3125 bdevname(rdev->bdev,b), 3126 super_format, super_minor); 3127 goto abort_free; 3128 } 3129 if (err < 0) { 3130 printk(KERN_WARNING 3131 "md: could not read %s's sb, not importing!\n", 3132 bdevname(rdev->bdev,b)); 3133 goto abort_free; 3134 } 3135 } 3136 3137 return rdev; 3138 3139 abort_free: 3140 if (rdev->bdev) 3141 unlock_rdev(rdev); 3142 md_rdev_clear(rdev); 3143 kfree(rdev); 3144 return ERR_PTR(err); 3145 } 3146 3147 /* 3148 * Check a full RAID array for plausibility 3149 */ 3150 3151 static void analyze_sbs(struct mddev *mddev) 3152 { 3153 int i; 3154 struct md_rdev *rdev, *freshest, *tmp; 3155 char b[BDEVNAME_SIZE]; 3156 3157 freshest = NULL; 3158 rdev_for_each_safe(rdev, tmp, mddev) 3159 switch (super_types[mddev->major_version]. 3160 load_super(rdev, freshest, mddev->minor_version)) { 3161 case 1: 3162 freshest = rdev; 3163 break; 3164 case 0: 3165 break; 3166 default: 3167 printk( KERN_ERR \ 3168 "md: fatal superblock inconsistency in %s" 3169 " -- removing from array\n", 3170 bdevname(rdev->bdev,b)); 3171 md_kick_rdev_from_array(rdev); 3172 } 3173 3174 super_types[mddev->major_version]. 3175 validate_super(mddev, freshest); 3176 3177 i = 0; 3178 rdev_for_each_safe(rdev, tmp, mddev) { 3179 if (mddev->max_disks && 3180 (rdev->desc_nr >= mddev->max_disks || 3181 i > mddev->max_disks)) { 3182 printk(KERN_WARNING 3183 "md: %s: %s: only %d devices permitted\n", 3184 mdname(mddev), bdevname(rdev->bdev, b), 3185 mddev->max_disks); 3186 md_kick_rdev_from_array(rdev); 3187 continue; 3188 } 3189 if (rdev != freshest) { 3190 if (super_types[mddev->major_version]. 3191 validate_super(mddev, rdev)) { 3192 printk(KERN_WARNING "md: kicking non-fresh %s" 3193 " from array!\n", 3194 bdevname(rdev->bdev,b)); 3195 md_kick_rdev_from_array(rdev); 3196 continue; 3197 } 3198 /* No device should have a Candidate flag 3199 * when reading devices 3200 */ 3201 if (test_bit(Candidate, &rdev->flags)) { 3202 pr_info("md: kicking Cluster Candidate %s from array!\n", 3203 bdevname(rdev->bdev, b)); 3204 md_kick_rdev_from_array(rdev); 3205 } 3206 } 3207 if (mddev->level == LEVEL_MULTIPATH) { 3208 rdev->desc_nr = i++; 3209 rdev->raid_disk = rdev->desc_nr; 3210 set_bit(In_sync, &rdev->flags); 3211 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3212 rdev->raid_disk = -1; 3213 clear_bit(In_sync, &rdev->flags); 3214 } 3215 } 3216 } 3217 3218 /* Read a fixed-point number. 3219 * Numbers in sysfs attributes should be in "standard" units where 3220 * possible, so time should be in seconds. 3221 * However we internally use a a much smaller unit such as 3222 * milliseconds or jiffies. 3223 * This function takes a decimal number with a possible fractional 3224 * component, and produces an integer which is the result of 3225 * multiplying that number by 10^'scale'. 3226 * all without any floating-point arithmetic. 3227 */ 3228 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3229 { 3230 unsigned long result = 0; 3231 long decimals = -1; 3232 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3233 if (*cp == '.') 3234 decimals = 0; 3235 else if (decimals < scale) { 3236 unsigned int value; 3237 value = *cp - '0'; 3238 result = result * 10 + value; 3239 if (decimals >= 0) 3240 decimals++; 3241 } 3242 cp++; 3243 } 3244 if (*cp == '\n') 3245 cp++; 3246 if (*cp) 3247 return -EINVAL; 3248 if (decimals < 0) 3249 decimals = 0; 3250 while (decimals < scale) { 3251 result *= 10; 3252 decimals ++; 3253 } 3254 *res = result; 3255 return 0; 3256 } 3257 3258 static void md_safemode_timeout(unsigned long data); 3259 3260 static ssize_t 3261 safe_delay_show(struct mddev *mddev, char *page) 3262 { 3263 int msec = (mddev->safemode_delay*1000)/HZ; 3264 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3265 } 3266 static ssize_t 3267 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3268 { 3269 unsigned long msec; 3270 3271 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3272 return -EINVAL; 3273 if (msec == 0) 3274 mddev->safemode_delay = 0; 3275 else { 3276 unsigned long old_delay = mddev->safemode_delay; 3277 unsigned long new_delay = (msec*HZ)/1000; 3278 3279 if (new_delay == 0) 3280 new_delay = 1; 3281 mddev->safemode_delay = new_delay; 3282 if (new_delay < old_delay || old_delay == 0) 3283 mod_timer(&mddev->safemode_timer, jiffies+1); 3284 } 3285 return len; 3286 } 3287 static struct md_sysfs_entry md_safe_delay = 3288 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3289 3290 static ssize_t 3291 level_show(struct mddev *mddev, char *page) 3292 { 3293 struct md_personality *p; 3294 int ret; 3295 spin_lock(&mddev->lock); 3296 p = mddev->pers; 3297 if (p) 3298 ret = sprintf(page, "%s\n", p->name); 3299 else if (mddev->clevel[0]) 3300 ret = sprintf(page, "%s\n", mddev->clevel); 3301 else if (mddev->level != LEVEL_NONE) 3302 ret = sprintf(page, "%d\n", mddev->level); 3303 else 3304 ret = 0; 3305 spin_unlock(&mddev->lock); 3306 return ret; 3307 } 3308 3309 static ssize_t 3310 level_store(struct mddev *mddev, const char *buf, size_t len) 3311 { 3312 char clevel[16]; 3313 ssize_t rv; 3314 size_t slen = len; 3315 struct md_personality *pers, *oldpers; 3316 long level; 3317 void *priv, *oldpriv; 3318 struct md_rdev *rdev; 3319 3320 if (slen == 0 || slen >= sizeof(clevel)) 3321 return -EINVAL; 3322 3323 rv = mddev_lock(mddev); 3324 if (rv) 3325 return rv; 3326 3327 if (mddev->pers == NULL) { 3328 strncpy(mddev->clevel, buf, slen); 3329 if (mddev->clevel[slen-1] == '\n') 3330 slen--; 3331 mddev->clevel[slen] = 0; 3332 mddev->level = LEVEL_NONE; 3333 rv = len; 3334 goto out_unlock; 3335 } 3336 rv = -EROFS; 3337 if (mddev->ro) 3338 goto out_unlock; 3339 3340 /* request to change the personality. Need to ensure: 3341 * - array is not engaged in resync/recovery/reshape 3342 * - old personality can be suspended 3343 * - new personality will access other array. 3344 */ 3345 3346 rv = -EBUSY; 3347 if (mddev->sync_thread || 3348 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3349 mddev->reshape_position != MaxSector || 3350 mddev->sysfs_active) 3351 goto out_unlock; 3352 3353 rv = -EINVAL; 3354 if (!mddev->pers->quiesce) { 3355 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3356 mdname(mddev), mddev->pers->name); 3357 goto out_unlock; 3358 } 3359 3360 /* Now find the new personality */ 3361 strncpy(clevel, buf, slen); 3362 if (clevel[slen-1] == '\n') 3363 slen--; 3364 clevel[slen] = 0; 3365 if (kstrtol(clevel, 10, &level)) 3366 level = LEVEL_NONE; 3367 3368 if (request_module("md-%s", clevel) != 0) 3369 request_module("md-level-%s", clevel); 3370 spin_lock(&pers_lock); 3371 pers = find_pers(level, clevel); 3372 if (!pers || !try_module_get(pers->owner)) { 3373 spin_unlock(&pers_lock); 3374 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3375 rv = -EINVAL; 3376 goto out_unlock; 3377 } 3378 spin_unlock(&pers_lock); 3379 3380 if (pers == mddev->pers) { 3381 /* Nothing to do! */ 3382 module_put(pers->owner); 3383 rv = len; 3384 goto out_unlock; 3385 } 3386 if (!pers->takeover) { 3387 module_put(pers->owner); 3388 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3389 mdname(mddev), clevel); 3390 rv = -EINVAL; 3391 goto out_unlock; 3392 } 3393 3394 rdev_for_each(rdev, mddev) 3395 rdev->new_raid_disk = rdev->raid_disk; 3396 3397 /* ->takeover must set new_* and/or delta_disks 3398 * if it succeeds, and may set them when it fails. 3399 */ 3400 priv = pers->takeover(mddev); 3401 if (IS_ERR(priv)) { 3402 mddev->new_level = mddev->level; 3403 mddev->new_layout = mddev->layout; 3404 mddev->new_chunk_sectors = mddev->chunk_sectors; 3405 mddev->raid_disks -= mddev->delta_disks; 3406 mddev->delta_disks = 0; 3407 mddev->reshape_backwards = 0; 3408 module_put(pers->owner); 3409 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3410 mdname(mddev), clevel); 3411 rv = PTR_ERR(priv); 3412 goto out_unlock; 3413 } 3414 3415 /* Looks like we have a winner */ 3416 mddev_suspend(mddev); 3417 mddev_detach(mddev); 3418 3419 spin_lock(&mddev->lock); 3420 oldpers = mddev->pers; 3421 oldpriv = mddev->private; 3422 mddev->pers = pers; 3423 mddev->private = priv; 3424 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3425 mddev->level = mddev->new_level; 3426 mddev->layout = mddev->new_layout; 3427 mddev->chunk_sectors = mddev->new_chunk_sectors; 3428 mddev->delta_disks = 0; 3429 mddev->reshape_backwards = 0; 3430 mddev->degraded = 0; 3431 spin_unlock(&mddev->lock); 3432 3433 if (oldpers->sync_request == NULL && 3434 mddev->external) { 3435 /* We are converting from a no-redundancy array 3436 * to a redundancy array and metadata is managed 3437 * externally so we need to be sure that writes 3438 * won't block due to a need to transition 3439 * clean->dirty 3440 * until external management is started. 3441 */ 3442 mddev->in_sync = 0; 3443 mddev->safemode_delay = 0; 3444 mddev->safemode = 0; 3445 } 3446 3447 oldpers->free(mddev, oldpriv); 3448 3449 if (oldpers->sync_request == NULL && 3450 pers->sync_request != NULL) { 3451 /* need to add the md_redundancy_group */ 3452 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3453 printk(KERN_WARNING 3454 "md: cannot register extra attributes for %s\n", 3455 mdname(mddev)); 3456 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3457 } 3458 if (oldpers->sync_request != NULL && 3459 pers->sync_request == NULL) { 3460 /* need to remove the md_redundancy_group */ 3461 if (mddev->to_remove == NULL) 3462 mddev->to_remove = &md_redundancy_group; 3463 } 3464 3465 rdev_for_each(rdev, mddev) { 3466 if (rdev->raid_disk < 0) 3467 continue; 3468 if (rdev->new_raid_disk >= mddev->raid_disks) 3469 rdev->new_raid_disk = -1; 3470 if (rdev->new_raid_disk == rdev->raid_disk) 3471 continue; 3472 sysfs_unlink_rdev(mddev, rdev); 3473 } 3474 rdev_for_each(rdev, mddev) { 3475 if (rdev->raid_disk < 0) 3476 continue; 3477 if (rdev->new_raid_disk == rdev->raid_disk) 3478 continue; 3479 rdev->raid_disk = rdev->new_raid_disk; 3480 if (rdev->raid_disk < 0) 3481 clear_bit(In_sync, &rdev->flags); 3482 else { 3483 if (sysfs_link_rdev(mddev, rdev)) 3484 printk(KERN_WARNING "md: cannot register rd%d" 3485 " for %s after level change\n", 3486 rdev->raid_disk, mdname(mddev)); 3487 } 3488 } 3489 3490 if (pers->sync_request == NULL) { 3491 /* this is now an array without redundancy, so 3492 * it must always be in_sync 3493 */ 3494 mddev->in_sync = 1; 3495 del_timer_sync(&mddev->safemode_timer); 3496 } 3497 blk_set_stacking_limits(&mddev->queue->limits); 3498 pers->run(mddev); 3499 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3500 mddev_resume(mddev); 3501 if (!mddev->thread) 3502 md_update_sb(mddev, 1); 3503 sysfs_notify(&mddev->kobj, NULL, "level"); 3504 md_new_event(mddev); 3505 rv = len; 3506 out_unlock: 3507 mddev_unlock(mddev); 3508 return rv; 3509 } 3510 3511 static struct md_sysfs_entry md_level = 3512 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3513 3514 static ssize_t 3515 layout_show(struct mddev *mddev, char *page) 3516 { 3517 /* just a number, not meaningful for all levels */ 3518 if (mddev->reshape_position != MaxSector && 3519 mddev->layout != mddev->new_layout) 3520 return sprintf(page, "%d (%d)\n", 3521 mddev->new_layout, mddev->layout); 3522 return sprintf(page, "%d\n", mddev->layout); 3523 } 3524 3525 static ssize_t 3526 layout_store(struct mddev *mddev, const char *buf, size_t len) 3527 { 3528 unsigned int n; 3529 int err; 3530 3531 err = kstrtouint(buf, 10, &n); 3532 if (err < 0) 3533 return err; 3534 err = mddev_lock(mddev); 3535 if (err) 3536 return err; 3537 3538 if (mddev->pers) { 3539 if (mddev->pers->check_reshape == NULL) 3540 err = -EBUSY; 3541 else if (mddev->ro) 3542 err = -EROFS; 3543 else { 3544 mddev->new_layout = n; 3545 err = mddev->pers->check_reshape(mddev); 3546 if (err) 3547 mddev->new_layout = mddev->layout; 3548 } 3549 } else { 3550 mddev->new_layout = n; 3551 if (mddev->reshape_position == MaxSector) 3552 mddev->layout = n; 3553 } 3554 mddev_unlock(mddev); 3555 return err ?: len; 3556 } 3557 static struct md_sysfs_entry md_layout = 3558 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3559 3560 static ssize_t 3561 raid_disks_show(struct mddev *mddev, char *page) 3562 { 3563 if (mddev->raid_disks == 0) 3564 return 0; 3565 if (mddev->reshape_position != MaxSector && 3566 mddev->delta_disks != 0) 3567 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3568 mddev->raid_disks - mddev->delta_disks); 3569 return sprintf(page, "%d\n", mddev->raid_disks); 3570 } 3571 3572 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3573 3574 static ssize_t 3575 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3576 { 3577 unsigned int n; 3578 int err; 3579 3580 err = kstrtouint(buf, 10, &n); 3581 if (err < 0) 3582 return err; 3583 3584 err = mddev_lock(mddev); 3585 if (err) 3586 return err; 3587 if (mddev->pers) 3588 err = update_raid_disks(mddev, n); 3589 else if (mddev->reshape_position != MaxSector) { 3590 struct md_rdev *rdev; 3591 int olddisks = mddev->raid_disks - mddev->delta_disks; 3592 3593 err = -EINVAL; 3594 rdev_for_each(rdev, mddev) { 3595 if (olddisks < n && 3596 rdev->data_offset < rdev->new_data_offset) 3597 goto out_unlock; 3598 if (olddisks > n && 3599 rdev->data_offset > rdev->new_data_offset) 3600 goto out_unlock; 3601 } 3602 err = 0; 3603 mddev->delta_disks = n - olddisks; 3604 mddev->raid_disks = n; 3605 mddev->reshape_backwards = (mddev->delta_disks < 0); 3606 } else 3607 mddev->raid_disks = n; 3608 out_unlock: 3609 mddev_unlock(mddev); 3610 return err ? err : len; 3611 } 3612 static struct md_sysfs_entry md_raid_disks = 3613 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3614 3615 static ssize_t 3616 chunk_size_show(struct mddev *mddev, char *page) 3617 { 3618 if (mddev->reshape_position != MaxSector && 3619 mddev->chunk_sectors != mddev->new_chunk_sectors) 3620 return sprintf(page, "%d (%d)\n", 3621 mddev->new_chunk_sectors << 9, 3622 mddev->chunk_sectors << 9); 3623 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3624 } 3625 3626 static ssize_t 3627 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3628 { 3629 unsigned long n; 3630 int err; 3631 3632 err = kstrtoul(buf, 10, &n); 3633 if (err < 0) 3634 return err; 3635 3636 err = mddev_lock(mddev); 3637 if (err) 3638 return err; 3639 if (mddev->pers) { 3640 if (mddev->pers->check_reshape == NULL) 3641 err = -EBUSY; 3642 else if (mddev->ro) 3643 err = -EROFS; 3644 else { 3645 mddev->new_chunk_sectors = n >> 9; 3646 err = mddev->pers->check_reshape(mddev); 3647 if (err) 3648 mddev->new_chunk_sectors = mddev->chunk_sectors; 3649 } 3650 } else { 3651 mddev->new_chunk_sectors = n >> 9; 3652 if (mddev->reshape_position == MaxSector) 3653 mddev->chunk_sectors = n >> 9; 3654 } 3655 mddev_unlock(mddev); 3656 return err ?: len; 3657 } 3658 static struct md_sysfs_entry md_chunk_size = 3659 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3660 3661 static ssize_t 3662 resync_start_show(struct mddev *mddev, char *page) 3663 { 3664 if (mddev->recovery_cp == MaxSector) 3665 return sprintf(page, "none\n"); 3666 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3667 } 3668 3669 static ssize_t 3670 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3671 { 3672 unsigned long long n; 3673 int err; 3674 3675 if (cmd_match(buf, "none")) 3676 n = MaxSector; 3677 else { 3678 err = kstrtoull(buf, 10, &n); 3679 if (err < 0) 3680 return err; 3681 if (n != (sector_t)n) 3682 return -EINVAL; 3683 } 3684 3685 err = mddev_lock(mddev); 3686 if (err) 3687 return err; 3688 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3689 err = -EBUSY; 3690 3691 if (!err) { 3692 mddev->recovery_cp = n; 3693 if (mddev->pers) 3694 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3695 } 3696 mddev_unlock(mddev); 3697 return err ?: len; 3698 } 3699 static struct md_sysfs_entry md_resync_start = 3700 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 3701 resync_start_show, resync_start_store); 3702 3703 /* 3704 * The array state can be: 3705 * 3706 * clear 3707 * No devices, no size, no level 3708 * Equivalent to STOP_ARRAY ioctl 3709 * inactive 3710 * May have some settings, but array is not active 3711 * all IO results in error 3712 * When written, doesn't tear down array, but just stops it 3713 * suspended (not supported yet) 3714 * All IO requests will block. The array can be reconfigured. 3715 * Writing this, if accepted, will block until array is quiescent 3716 * readonly 3717 * no resync can happen. no superblocks get written. 3718 * write requests fail 3719 * read-auto 3720 * like readonly, but behaves like 'clean' on a write request. 3721 * 3722 * clean - no pending writes, but otherwise active. 3723 * When written to inactive array, starts without resync 3724 * If a write request arrives then 3725 * if metadata is known, mark 'dirty' and switch to 'active'. 3726 * if not known, block and switch to write-pending 3727 * If written to an active array that has pending writes, then fails. 3728 * active 3729 * fully active: IO and resync can be happening. 3730 * When written to inactive array, starts with resync 3731 * 3732 * write-pending 3733 * clean, but writes are blocked waiting for 'active' to be written. 3734 * 3735 * active-idle 3736 * like active, but no writes have been seen for a while (100msec). 3737 * 3738 */ 3739 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3740 write_pending, active_idle, bad_word}; 3741 static char *array_states[] = { 3742 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3743 "write-pending", "active-idle", NULL }; 3744 3745 static int match_word(const char *word, char **list) 3746 { 3747 int n; 3748 for (n=0; list[n]; n++) 3749 if (cmd_match(word, list[n])) 3750 break; 3751 return n; 3752 } 3753 3754 static ssize_t 3755 array_state_show(struct mddev *mddev, char *page) 3756 { 3757 enum array_state st = inactive; 3758 3759 if (mddev->pers) 3760 switch(mddev->ro) { 3761 case 1: 3762 st = readonly; 3763 break; 3764 case 2: 3765 st = read_auto; 3766 break; 3767 case 0: 3768 if (mddev->in_sync) 3769 st = clean; 3770 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3771 st = write_pending; 3772 else if (mddev->safemode) 3773 st = active_idle; 3774 else 3775 st = active; 3776 } 3777 else { 3778 if (list_empty(&mddev->disks) && 3779 mddev->raid_disks == 0 && 3780 mddev->dev_sectors == 0) 3781 st = clear; 3782 else 3783 st = inactive; 3784 } 3785 return sprintf(page, "%s\n", array_states[st]); 3786 } 3787 3788 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 3789 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 3790 static int do_md_run(struct mddev *mddev); 3791 static int restart_array(struct mddev *mddev); 3792 3793 static ssize_t 3794 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3795 { 3796 int err; 3797 enum array_state st = match_word(buf, array_states); 3798 3799 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 3800 /* don't take reconfig_mutex when toggling between 3801 * clean and active 3802 */ 3803 spin_lock(&mddev->lock); 3804 if (st == active) { 3805 restart_array(mddev); 3806 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3807 wake_up(&mddev->sb_wait); 3808 err = 0; 3809 } else /* st == clean */ { 3810 restart_array(mddev); 3811 if (atomic_read(&mddev->writes_pending) == 0) { 3812 if (mddev->in_sync == 0) { 3813 mddev->in_sync = 1; 3814 if (mddev->safemode == 1) 3815 mddev->safemode = 0; 3816 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3817 } 3818 err = 0; 3819 } else 3820 err = -EBUSY; 3821 } 3822 spin_unlock(&mddev->lock); 3823 return err ?: len; 3824 } 3825 err = mddev_lock(mddev); 3826 if (err) 3827 return err; 3828 err = -EINVAL; 3829 switch(st) { 3830 case bad_word: 3831 break; 3832 case clear: 3833 /* stopping an active array */ 3834 err = do_md_stop(mddev, 0, NULL); 3835 break; 3836 case inactive: 3837 /* stopping an active array */ 3838 if (mddev->pers) 3839 err = do_md_stop(mddev, 2, NULL); 3840 else 3841 err = 0; /* already inactive */ 3842 break; 3843 case suspended: 3844 break; /* not supported yet */ 3845 case readonly: 3846 if (mddev->pers) 3847 err = md_set_readonly(mddev, NULL); 3848 else { 3849 mddev->ro = 1; 3850 set_disk_ro(mddev->gendisk, 1); 3851 err = do_md_run(mddev); 3852 } 3853 break; 3854 case read_auto: 3855 if (mddev->pers) { 3856 if (mddev->ro == 0) 3857 err = md_set_readonly(mddev, NULL); 3858 else if (mddev->ro == 1) 3859 err = restart_array(mddev); 3860 if (err == 0) { 3861 mddev->ro = 2; 3862 set_disk_ro(mddev->gendisk, 0); 3863 } 3864 } else { 3865 mddev->ro = 2; 3866 err = do_md_run(mddev); 3867 } 3868 break; 3869 case clean: 3870 if (mddev->pers) { 3871 restart_array(mddev); 3872 spin_lock(&mddev->lock); 3873 if (atomic_read(&mddev->writes_pending) == 0) { 3874 if (mddev->in_sync == 0) { 3875 mddev->in_sync = 1; 3876 if (mddev->safemode == 1) 3877 mddev->safemode = 0; 3878 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3879 } 3880 err = 0; 3881 } else 3882 err = -EBUSY; 3883 spin_unlock(&mddev->lock); 3884 } else 3885 err = -EINVAL; 3886 break; 3887 case active: 3888 if (mddev->pers) { 3889 restart_array(mddev); 3890 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3891 wake_up(&mddev->sb_wait); 3892 err = 0; 3893 } else { 3894 mddev->ro = 0; 3895 set_disk_ro(mddev->gendisk, 0); 3896 err = do_md_run(mddev); 3897 } 3898 break; 3899 case write_pending: 3900 case active_idle: 3901 /* these cannot be set */ 3902 break; 3903 } 3904 3905 if (!err) { 3906 if (mddev->hold_active == UNTIL_IOCTL) 3907 mddev->hold_active = 0; 3908 sysfs_notify_dirent_safe(mddev->sysfs_state); 3909 } 3910 mddev_unlock(mddev); 3911 return err ?: len; 3912 } 3913 static struct md_sysfs_entry md_array_state = 3914 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3915 3916 static ssize_t 3917 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 3918 return sprintf(page, "%d\n", 3919 atomic_read(&mddev->max_corr_read_errors)); 3920 } 3921 3922 static ssize_t 3923 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 3924 { 3925 unsigned int n; 3926 int rv; 3927 3928 rv = kstrtouint(buf, 10, &n); 3929 if (rv < 0) 3930 return rv; 3931 atomic_set(&mddev->max_corr_read_errors, n); 3932 return len; 3933 } 3934 3935 static struct md_sysfs_entry max_corr_read_errors = 3936 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3937 max_corrected_read_errors_store); 3938 3939 static ssize_t 3940 null_show(struct mddev *mddev, char *page) 3941 { 3942 return -EINVAL; 3943 } 3944 3945 static ssize_t 3946 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 3947 { 3948 /* buf must be %d:%d\n? giving major and minor numbers */ 3949 /* The new device is added to the array. 3950 * If the array has a persistent superblock, we read the 3951 * superblock to initialise info and check validity. 3952 * Otherwise, only checking done is that in bind_rdev_to_array, 3953 * which mainly checks size. 3954 */ 3955 char *e; 3956 int major = simple_strtoul(buf, &e, 10); 3957 int minor; 3958 dev_t dev; 3959 struct md_rdev *rdev; 3960 int err; 3961 3962 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3963 return -EINVAL; 3964 minor = simple_strtoul(e+1, &e, 10); 3965 if (*e && *e != '\n') 3966 return -EINVAL; 3967 dev = MKDEV(major, minor); 3968 if (major != MAJOR(dev) || 3969 minor != MINOR(dev)) 3970 return -EOVERFLOW; 3971 3972 flush_workqueue(md_misc_wq); 3973 3974 err = mddev_lock(mddev); 3975 if (err) 3976 return err; 3977 if (mddev->persistent) { 3978 rdev = md_import_device(dev, mddev->major_version, 3979 mddev->minor_version); 3980 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3981 struct md_rdev *rdev0 3982 = list_entry(mddev->disks.next, 3983 struct md_rdev, same_set); 3984 err = super_types[mddev->major_version] 3985 .load_super(rdev, rdev0, mddev->minor_version); 3986 if (err < 0) 3987 goto out; 3988 } 3989 } else if (mddev->external) 3990 rdev = md_import_device(dev, -2, -1); 3991 else 3992 rdev = md_import_device(dev, -1, -1); 3993 3994 if (IS_ERR(rdev)) { 3995 mddev_unlock(mddev); 3996 return PTR_ERR(rdev); 3997 } 3998 err = bind_rdev_to_array(rdev, mddev); 3999 out: 4000 if (err) 4001 export_rdev(rdev); 4002 mddev_unlock(mddev); 4003 return err ? err : len; 4004 } 4005 4006 static struct md_sysfs_entry md_new_device = 4007 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4008 4009 static ssize_t 4010 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4011 { 4012 char *end; 4013 unsigned long chunk, end_chunk; 4014 int err; 4015 4016 err = mddev_lock(mddev); 4017 if (err) 4018 return err; 4019 if (!mddev->bitmap) 4020 goto out; 4021 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4022 while (*buf) { 4023 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4024 if (buf == end) break; 4025 if (*end == '-') { /* range */ 4026 buf = end + 1; 4027 end_chunk = simple_strtoul(buf, &end, 0); 4028 if (buf == end) break; 4029 } 4030 if (*end && !isspace(*end)) break; 4031 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4032 buf = skip_spaces(end); 4033 } 4034 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4035 out: 4036 mddev_unlock(mddev); 4037 return len; 4038 } 4039 4040 static struct md_sysfs_entry md_bitmap = 4041 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4042 4043 static ssize_t 4044 size_show(struct mddev *mddev, char *page) 4045 { 4046 return sprintf(page, "%llu\n", 4047 (unsigned long long)mddev->dev_sectors / 2); 4048 } 4049 4050 static int update_size(struct mddev *mddev, sector_t num_sectors); 4051 4052 static ssize_t 4053 size_store(struct mddev *mddev, const char *buf, size_t len) 4054 { 4055 /* If array is inactive, we can reduce the component size, but 4056 * not increase it (except from 0). 4057 * If array is active, we can try an on-line resize 4058 */ 4059 sector_t sectors; 4060 int err = strict_blocks_to_sectors(buf, §ors); 4061 4062 if (err < 0) 4063 return err; 4064 err = mddev_lock(mddev); 4065 if (err) 4066 return err; 4067 if (mddev->pers) { 4068 if (mddev_is_clustered(mddev)) 4069 md_cluster_ops->metadata_update_start(mddev); 4070 err = update_size(mddev, sectors); 4071 md_update_sb(mddev, 1); 4072 if (mddev_is_clustered(mddev)) 4073 md_cluster_ops->metadata_update_finish(mddev); 4074 } else { 4075 if (mddev->dev_sectors == 0 || 4076 mddev->dev_sectors > sectors) 4077 mddev->dev_sectors = sectors; 4078 else 4079 err = -ENOSPC; 4080 } 4081 mddev_unlock(mddev); 4082 return err ? err : len; 4083 } 4084 4085 static struct md_sysfs_entry md_size = 4086 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4087 4088 /* Metadata version. 4089 * This is one of 4090 * 'none' for arrays with no metadata (good luck...) 4091 * 'external' for arrays with externally managed metadata, 4092 * or N.M for internally known formats 4093 */ 4094 static ssize_t 4095 metadata_show(struct mddev *mddev, char *page) 4096 { 4097 if (mddev->persistent) 4098 return sprintf(page, "%d.%d\n", 4099 mddev->major_version, mddev->minor_version); 4100 else if (mddev->external) 4101 return sprintf(page, "external:%s\n", mddev->metadata_type); 4102 else 4103 return sprintf(page, "none\n"); 4104 } 4105 4106 static ssize_t 4107 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4108 { 4109 int major, minor; 4110 char *e; 4111 int err; 4112 /* Changing the details of 'external' metadata is 4113 * always permitted. Otherwise there must be 4114 * no devices attached to the array. 4115 */ 4116 4117 err = mddev_lock(mddev); 4118 if (err) 4119 return err; 4120 err = -EBUSY; 4121 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4122 ; 4123 else if (!list_empty(&mddev->disks)) 4124 goto out_unlock; 4125 4126 err = 0; 4127 if (cmd_match(buf, "none")) { 4128 mddev->persistent = 0; 4129 mddev->external = 0; 4130 mddev->major_version = 0; 4131 mddev->minor_version = 90; 4132 goto out_unlock; 4133 } 4134 if (strncmp(buf, "external:", 9) == 0) { 4135 size_t namelen = len-9; 4136 if (namelen >= sizeof(mddev->metadata_type)) 4137 namelen = sizeof(mddev->metadata_type)-1; 4138 strncpy(mddev->metadata_type, buf+9, namelen); 4139 mddev->metadata_type[namelen] = 0; 4140 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4141 mddev->metadata_type[--namelen] = 0; 4142 mddev->persistent = 0; 4143 mddev->external = 1; 4144 mddev->major_version = 0; 4145 mddev->minor_version = 90; 4146 goto out_unlock; 4147 } 4148 major = simple_strtoul(buf, &e, 10); 4149 err = -EINVAL; 4150 if (e==buf || *e != '.') 4151 goto out_unlock; 4152 buf = e+1; 4153 minor = simple_strtoul(buf, &e, 10); 4154 if (e==buf || (*e && *e != '\n') ) 4155 goto out_unlock; 4156 err = -ENOENT; 4157 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4158 goto out_unlock; 4159 mddev->major_version = major; 4160 mddev->minor_version = minor; 4161 mddev->persistent = 1; 4162 mddev->external = 0; 4163 err = 0; 4164 out_unlock: 4165 mddev_unlock(mddev); 4166 return err ?: len; 4167 } 4168 4169 static struct md_sysfs_entry md_metadata = 4170 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4171 4172 static ssize_t 4173 action_show(struct mddev *mddev, char *page) 4174 { 4175 char *type = "idle"; 4176 unsigned long recovery = mddev->recovery; 4177 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4178 type = "frozen"; 4179 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4180 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4181 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4182 type = "reshape"; 4183 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4184 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4185 type = "resync"; 4186 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4187 type = "check"; 4188 else 4189 type = "repair"; 4190 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4191 type = "recover"; 4192 } 4193 return sprintf(page, "%s\n", type); 4194 } 4195 4196 static ssize_t 4197 action_store(struct mddev *mddev, const char *page, size_t len) 4198 { 4199 if (!mddev->pers || !mddev->pers->sync_request) 4200 return -EINVAL; 4201 4202 4203 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4204 if (cmd_match(page, "frozen")) 4205 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4206 else 4207 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4208 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4209 mddev_lock(mddev) == 0) { 4210 flush_workqueue(md_misc_wq); 4211 if (mddev->sync_thread) { 4212 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4213 md_reap_sync_thread(mddev); 4214 } 4215 mddev_unlock(mddev); 4216 } 4217 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4218 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4219 return -EBUSY; 4220 else if (cmd_match(page, "resync")) 4221 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4222 else if (cmd_match(page, "recover")) { 4223 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4224 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4225 } else if (cmd_match(page, "reshape")) { 4226 int err; 4227 if (mddev->pers->start_reshape == NULL) 4228 return -EINVAL; 4229 err = mddev_lock(mddev); 4230 if (!err) { 4231 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4232 err = mddev->pers->start_reshape(mddev); 4233 mddev_unlock(mddev); 4234 } 4235 if (err) 4236 return err; 4237 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4238 } else { 4239 if (cmd_match(page, "check")) 4240 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4241 else if (!cmd_match(page, "repair")) 4242 return -EINVAL; 4243 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4244 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4245 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4246 } 4247 if (mddev->ro == 2) { 4248 /* A write to sync_action is enough to justify 4249 * canceling read-auto mode 4250 */ 4251 mddev->ro = 0; 4252 md_wakeup_thread(mddev->sync_thread); 4253 } 4254 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4255 md_wakeup_thread(mddev->thread); 4256 sysfs_notify_dirent_safe(mddev->sysfs_action); 4257 return len; 4258 } 4259 4260 static struct md_sysfs_entry md_scan_mode = 4261 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4262 4263 static ssize_t 4264 last_sync_action_show(struct mddev *mddev, char *page) 4265 { 4266 return sprintf(page, "%s\n", mddev->last_sync_action); 4267 } 4268 4269 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4270 4271 static ssize_t 4272 mismatch_cnt_show(struct mddev *mddev, char *page) 4273 { 4274 return sprintf(page, "%llu\n", 4275 (unsigned long long) 4276 atomic64_read(&mddev->resync_mismatches)); 4277 } 4278 4279 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4280 4281 static ssize_t 4282 sync_min_show(struct mddev *mddev, char *page) 4283 { 4284 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4285 mddev->sync_speed_min ? "local": "system"); 4286 } 4287 4288 static ssize_t 4289 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4290 { 4291 unsigned int min; 4292 int rv; 4293 4294 if (strncmp(buf, "system", 6)==0) { 4295 min = 0; 4296 } else { 4297 rv = kstrtouint(buf, 10, &min); 4298 if (rv < 0) 4299 return rv; 4300 if (min == 0) 4301 return -EINVAL; 4302 } 4303 mddev->sync_speed_min = min; 4304 return len; 4305 } 4306 4307 static struct md_sysfs_entry md_sync_min = 4308 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4309 4310 static ssize_t 4311 sync_max_show(struct mddev *mddev, char *page) 4312 { 4313 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4314 mddev->sync_speed_max ? "local": "system"); 4315 } 4316 4317 static ssize_t 4318 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4319 { 4320 unsigned int max; 4321 int rv; 4322 4323 if (strncmp(buf, "system", 6)==0) { 4324 max = 0; 4325 } else { 4326 rv = kstrtouint(buf, 10, &max); 4327 if (rv < 0) 4328 return rv; 4329 if (max == 0) 4330 return -EINVAL; 4331 } 4332 mddev->sync_speed_max = max; 4333 return len; 4334 } 4335 4336 static struct md_sysfs_entry md_sync_max = 4337 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4338 4339 static ssize_t 4340 degraded_show(struct mddev *mddev, char *page) 4341 { 4342 return sprintf(page, "%d\n", mddev->degraded); 4343 } 4344 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4345 4346 static ssize_t 4347 sync_force_parallel_show(struct mddev *mddev, char *page) 4348 { 4349 return sprintf(page, "%d\n", mddev->parallel_resync); 4350 } 4351 4352 static ssize_t 4353 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4354 { 4355 long n; 4356 4357 if (kstrtol(buf, 10, &n)) 4358 return -EINVAL; 4359 4360 if (n != 0 && n != 1) 4361 return -EINVAL; 4362 4363 mddev->parallel_resync = n; 4364 4365 if (mddev->sync_thread) 4366 wake_up(&resync_wait); 4367 4368 return len; 4369 } 4370 4371 /* force parallel resync, even with shared block devices */ 4372 static struct md_sysfs_entry md_sync_force_parallel = 4373 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4374 sync_force_parallel_show, sync_force_parallel_store); 4375 4376 static ssize_t 4377 sync_speed_show(struct mddev *mddev, char *page) 4378 { 4379 unsigned long resync, dt, db; 4380 if (mddev->curr_resync == 0) 4381 return sprintf(page, "none\n"); 4382 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4383 dt = (jiffies - mddev->resync_mark) / HZ; 4384 if (!dt) dt++; 4385 db = resync - mddev->resync_mark_cnt; 4386 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4387 } 4388 4389 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4390 4391 static ssize_t 4392 sync_completed_show(struct mddev *mddev, char *page) 4393 { 4394 unsigned long long max_sectors, resync; 4395 4396 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4397 return sprintf(page, "none\n"); 4398 4399 if (mddev->curr_resync == 1 || 4400 mddev->curr_resync == 2) 4401 return sprintf(page, "delayed\n"); 4402 4403 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4404 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4405 max_sectors = mddev->resync_max_sectors; 4406 else 4407 max_sectors = mddev->dev_sectors; 4408 4409 resync = mddev->curr_resync_completed; 4410 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4411 } 4412 4413 static struct md_sysfs_entry md_sync_completed = 4414 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4415 4416 static ssize_t 4417 min_sync_show(struct mddev *mddev, char *page) 4418 { 4419 return sprintf(page, "%llu\n", 4420 (unsigned long long)mddev->resync_min); 4421 } 4422 static ssize_t 4423 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4424 { 4425 unsigned long long min; 4426 int err; 4427 4428 if (kstrtoull(buf, 10, &min)) 4429 return -EINVAL; 4430 4431 spin_lock(&mddev->lock); 4432 err = -EINVAL; 4433 if (min > mddev->resync_max) 4434 goto out_unlock; 4435 4436 err = -EBUSY; 4437 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4438 goto out_unlock; 4439 4440 /* Round down to multiple of 4K for safety */ 4441 mddev->resync_min = round_down(min, 8); 4442 err = 0; 4443 4444 out_unlock: 4445 spin_unlock(&mddev->lock); 4446 return err ?: len; 4447 } 4448 4449 static struct md_sysfs_entry md_min_sync = 4450 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4451 4452 static ssize_t 4453 max_sync_show(struct mddev *mddev, char *page) 4454 { 4455 if (mddev->resync_max == MaxSector) 4456 return sprintf(page, "max\n"); 4457 else 4458 return sprintf(page, "%llu\n", 4459 (unsigned long long)mddev->resync_max); 4460 } 4461 static ssize_t 4462 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4463 { 4464 int err; 4465 spin_lock(&mddev->lock); 4466 if (strncmp(buf, "max", 3) == 0) 4467 mddev->resync_max = MaxSector; 4468 else { 4469 unsigned long long max; 4470 int chunk; 4471 4472 err = -EINVAL; 4473 if (kstrtoull(buf, 10, &max)) 4474 goto out_unlock; 4475 if (max < mddev->resync_min) 4476 goto out_unlock; 4477 4478 err = -EBUSY; 4479 if (max < mddev->resync_max && 4480 mddev->ro == 0 && 4481 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4482 goto out_unlock; 4483 4484 /* Must be a multiple of chunk_size */ 4485 chunk = mddev->chunk_sectors; 4486 if (chunk) { 4487 sector_t temp = max; 4488 4489 err = -EINVAL; 4490 if (sector_div(temp, chunk)) 4491 goto out_unlock; 4492 } 4493 mddev->resync_max = max; 4494 } 4495 wake_up(&mddev->recovery_wait); 4496 err = 0; 4497 out_unlock: 4498 spin_unlock(&mddev->lock); 4499 return err ?: len; 4500 } 4501 4502 static struct md_sysfs_entry md_max_sync = 4503 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4504 4505 static ssize_t 4506 suspend_lo_show(struct mddev *mddev, char *page) 4507 { 4508 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4509 } 4510 4511 static ssize_t 4512 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4513 { 4514 unsigned long long old, new; 4515 int err; 4516 4517 err = kstrtoull(buf, 10, &new); 4518 if (err < 0) 4519 return err; 4520 if (new != (sector_t)new) 4521 return -EINVAL; 4522 4523 err = mddev_lock(mddev); 4524 if (err) 4525 return err; 4526 err = -EINVAL; 4527 if (mddev->pers == NULL || 4528 mddev->pers->quiesce == NULL) 4529 goto unlock; 4530 old = mddev->suspend_lo; 4531 mddev->suspend_lo = new; 4532 if (new >= old) 4533 /* Shrinking suspended region */ 4534 mddev->pers->quiesce(mddev, 2); 4535 else { 4536 /* Expanding suspended region - need to wait */ 4537 mddev->pers->quiesce(mddev, 1); 4538 mddev->pers->quiesce(mddev, 0); 4539 } 4540 err = 0; 4541 unlock: 4542 mddev_unlock(mddev); 4543 return err ?: len; 4544 } 4545 static struct md_sysfs_entry md_suspend_lo = 4546 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4547 4548 static ssize_t 4549 suspend_hi_show(struct mddev *mddev, char *page) 4550 { 4551 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4552 } 4553 4554 static ssize_t 4555 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4556 { 4557 unsigned long long old, new; 4558 int err; 4559 4560 err = kstrtoull(buf, 10, &new); 4561 if (err < 0) 4562 return err; 4563 if (new != (sector_t)new) 4564 return -EINVAL; 4565 4566 err = mddev_lock(mddev); 4567 if (err) 4568 return err; 4569 err = -EINVAL; 4570 if (mddev->pers == NULL || 4571 mddev->pers->quiesce == NULL) 4572 goto unlock; 4573 old = mddev->suspend_hi; 4574 mddev->suspend_hi = new; 4575 if (new <= old) 4576 /* Shrinking suspended region */ 4577 mddev->pers->quiesce(mddev, 2); 4578 else { 4579 /* Expanding suspended region - need to wait */ 4580 mddev->pers->quiesce(mddev, 1); 4581 mddev->pers->quiesce(mddev, 0); 4582 } 4583 err = 0; 4584 unlock: 4585 mddev_unlock(mddev); 4586 return err ?: len; 4587 } 4588 static struct md_sysfs_entry md_suspend_hi = 4589 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4590 4591 static ssize_t 4592 reshape_position_show(struct mddev *mddev, char *page) 4593 { 4594 if (mddev->reshape_position != MaxSector) 4595 return sprintf(page, "%llu\n", 4596 (unsigned long long)mddev->reshape_position); 4597 strcpy(page, "none\n"); 4598 return 5; 4599 } 4600 4601 static ssize_t 4602 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4603 { 4604 struct md_rdev *rdev; 4605 unsigned long long new; 4606 int err; 4607 4608 err = kstrtoull(buf, 10, &new); 4609 if (err < 0) 4610 return err; 4611 if (new != (sector_t)new) 4612 return -EINVAL; 4613 err = mddev_lock(mddev); 4614 if (err) 4615 return err; 4616 err = -EBUSY; 4617 if (mddev->pers) 4618 goto unlock; 4619 mddev->reshape_position = new; 4620 mddev->delta_disks = 0; 4621 mddev->reshape_backwards = 0; 4622 mddev->new_level = mddev->level; 4623 mddev->new_layout = mddev->layout; 4624 mddev->new_chunk_sectors = mddev->chunk_sectors; 4625 rdev_for_each(rdev, mddev) 4626 rdev->new_data_offset = rdev->data_offset; 4627 err = 0; 4628 unlock: 4629 mddev_unlock(mddev); 4630 return err ?: len; 4631 } 4632 4633 static struct md_sysfs_entry md_reshape_position = 4634 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4635 reshape_position_store); 4636 4637 static ssize_t 4638 reshape_direction_show(struct mddev *mddev, char *page) 4639 { 4640 return sprintf(page, "%s\n", 4641 mddev->reshape_backwards ? "backwards" : "forwards"); 4642 } 4643 4644 static ssize_t 4645 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4646 { 4647 int backwards = 0; 4648 int err; 4649 4650 if (cmd_match(buf, "forwards")) 4651 backwards = 0; 4652 else if (cmd_match(buf, "backwards")) 4653 backwards = 1; 4654 else 4655 return -EINVAL; 4656 if (mddev->reshape_backwards == backwards) 4657 return len; 4658 4659 err = mddev_lock(mddev); 4660 if (err) 4661 return err; 4662 /* check if we are allowed to change */ 4663 if (mddev->delta_disks) 4664 err = -EBUSY; 4665 else if (mddev->persistent && 4666 mddev->major_version == 0) 4667 err = -EINVAL; 4668 else 4669 mddev->reshape_backwards = backwards; 4670 mddev_unlock(mddev); 4671 return err ?: len; 4672 } 4673 4674 static struct md_sysfs_entry md_reshape_direction = 4675 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4676 reshape_direction_store); 4677 4678 static ssize_t 4679 array_size_show(struct mddev *mddev, char *page) 4680 { 4681 if (mddev->external_size) 4682 return sprintf(page, "%llu\n", 4683 (unsigned long long)mddev->array_sectors/2); 4684 else 4685 return sprintf(page, "default\n"); 4686 } 4687 4688 static ssize_t 4689 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4690 { 4691 sector_t sectors; 4692 int err; 4693 4694 err = mddev_lock(mddev); 4695 if (err) 4696 return err; 4697 4698 if (strncmp(buf, "default", 7) == 0) { 4699 if (mddev->pers) 4700 sectors = mddev->pers->size(mddev, 0, 0); 4701 else 4702 sectors = mddev->array_sectors; 4703 4704 mddev->external_size = 0; 4705 } else { 4706 if (strict_blocks_to_sectors(buf, §ors) < 0) 4707 err = -EINVAL; 4708 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4709 err = -E2BIG; 4710 else 4711 mddev->external_size = 1; 4712 } 4713 4714 if (!err) { 4715 mddev->array_sectors = sectors; 4716 if (mddev->pers) { 4717 set_capacity(mddev->gendisk, mddev->array_sectors); 4718 revalidate_disk(mddev->gendisk); 4719 } 4720 } 4721 mddev_unlock(mddev); 4722 return err ?: len; 4723 } 4724 4725 static struct md_sysfs_entry md_array_size = 4726 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4727 array_size_store); 4728 4729 static struct attribute *md_default_attrs[] = { 4730 &md_level.attr, 4731 &md_layout.attr, 4732 &md_raid_disks.attr, 4733 &md_chunk_size.attr, 4734 &md_size.attr, 4735 &md_resync_start.attr, 4736 &md_metadata.attr, 4737 &md_new_device.attr, 4738 &md_safe_delay.attr, 4739 &md_array_state.attr, 4740 &md_reshape_position.attr, 4741 &md_reshape_direction.attr, 4742 &md_array_size.attr, 4743 &max_corr_read_errors.attr, 4744 NULL, 4745 }; 4746 4747 static struct attribute *md_redundancy_attrs[] = { 4748 &md_scan_mode.attr, 4749 &md_last_scan_mode.attr, 4750 &md_mismatches.attr, 4751 &md_sync_min.attr, 4752 &md_sync_max.attr, 4753 &md_sync_speed.attr, 4754 &md_sync_force_parallel.attr, 4755 &md_sync_completed.attr, 4756 &md_min_sync.attr, 4757 &md_max_sync.attr, 4758 &md_suspend_lo.attr, 4759 &md_suspend_hi.attr, 4760 &md_bitmap.attr, 4761 &md_degraded.attr, 4762 NULL, 4763 }; 4764 static struct attribute_group md_redundancy_group = { 4765 .name = NULL, 4766 .attrs = md_redundancy_attrs, 4767 }; 4768 4769 static ssize_t 4770 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4771 { 4772 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4773 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4774 ssize_t rv; 4775 4776 if (!entry->show) 4777 return -EIO; 4778 spin_lock(&all_mddevs_lock); 4779 if (list_empty(&mddev->all_mddevs)) { 4780 spin_unlock(&all_mddevs_lock); 4781 return -EBUSY; 4782 } 4783 mddev_get(mddev); 4784 spin_unlock(&all_mddevs_lock); 4785 4786 rv = entry->show(mddev, page); 4787 mddev_put(mddev); 4788 return rv; 4789 } 4790 4791 static ssize_t 4792 md_attr_store(struct kobject *kobj, struct attribute *attr, 4793 const char *page, size_t length) 4794 { 4795 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4796 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4797 ssize_t rv; 4798 4799 if (!entry->store) 4800 return -EIO; 4801 if (!capable(CAP_SYS_ADMIN)) 4802 return -EACCES; 4803 spin_lock(&all_mddevs_lock); 4804 if (list_empty(&mddev->all_mddevs)) { 4805 spin_unlock(&all_mddevs_lock); 4806 return -EBUSY; 4807 } 4808 mddev_get(mddev); 4809 spin_unlock(&all_mddevs_lock); 4810 rv = entry->store(mddev, page, length); 4811 mddev_put(mddev); 4812 return rv; 4813 } 4814 4815 static void md_free(struct kobject *ko) 4816 { 4817 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4818 4819 if (mddev->sysfs_state) 4820 sysfs_put(mddev->sysfs_state); 4821 4822 if (mddev->queue) 4823 blk_cleanup_queue(mddev->queue); 4824 if (mddev->gendisk) { 4825 del_gendisk(mddev->gendisk); 4826 put_disk(mddev->gendisk); 4827 } 4828 4829 kfree(mddev); 4830 } 4831 4832 static const struct sysfs_ops md_sysfs_ops = { 4833 .show = md_attr_show, 4834 .store = md_attr_store, 4835 }; 4836 static struct kobj_type md_ktype = { 4837 .release = md_free, 4838 .sysfs_ops = &md_sysfs_ops, 4839 .default_attrs = md_default_attrs, 4840 }; 4841 4842 int mdp_major = 0; 4843 4844 static void mddev_delayed_delete(struct work_struct *ws) 4845 { 4846 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4847 4848 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4849 kobject_del(&mddev->kobj); 4850 kobject_put(&mddev->kobj); 4851 } 4852 4853 static int md_alloc(dev_t dev, char *name) 4854 { 4855 static DEFINE_MUTEX(disks_mutex); 4856 struct mddev *mddev = mddev_find(dev); 4857 struct gendisk *disk; 4858 int partitioned; 4859 int shift; 4860 int unit; 4861 int error; 4862 4863 if (!mddev) 4864 return -ENODEV; 4865 4866 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4867 shift = partitioned ? MdpMinorShift : 0; 4868 unit = MINOR(mddev->unit) >> shift; 4869 4870 /* wait for any previous instance of this device to be 4871 * completely removed (mddev_delayed_delete). 4872 */ 4873 flush_workqueue(md_misc_wq); 4874 4875 mutex_lock(&disks_mutex); 4876 error = -EEXIST; 4877 if (mddev->gendisk) 4878 goto abort; 4879 4880 if (name) { 4881 /* Need to ensure that 'name' is not a duplicate. 4882 */ 4883 struct mddev *mddev2; 4884 spin_lock(&all_mddevs_lock); 4885 4886 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4887 if (mddev2->gendisk && 4888 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4889 spin_unlock(&all_mddevs_lock); 4890 goto abort; 4891 } 4892 spin_unlock(&all_mddevs_lock); 4893 } 4894 4895 error = -ENOMEM; 4896 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4897 if (!mddev->queue) 4898 goto abort; 4899 mddev->queue->queuedata = mddev; 4900 4901 blk_queue_make_request(mddev->queue, md_make_request); 4902 blk_set_stacking_limits(&mddev->queue->limits); 4903 4904 disk = alloc_disk(1 << shift); 4905 if (!disk) { 4906 blk_cleanup_queue(mddev->queue); 4907 mddev->queue = NULL; 4908 goto abort; 4909 } 4910 disk->major = MAJOR(mddev->unit); 4911 disk->first_minor = unit << shift; 4912 if (name) 4913 strcpy(disk->disk_name, name); 4914 else if (partitioned) 4915 sprintf(disk->disk_name, "md_d%d", unit); 4916 else 4917 sprintf(disk->disk_name, "md%d", unit); 4918 disk->fops = &md_fops; 4919 disk->private_data = mddev; 4920 disk->queue = mddev->queue; 4921 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4922 /* Allow extended partitions. This makes the 4923 * 'mdp' device redundant, but we can't really 4924 * remove it now. 4925 */ 4926 disk->flags |= GENHD_FL_EXT_DEVT; 4927 mddev->gendisk = disk; 4928 /* As soon as we call add_disk(), another thread could get 4929 * through to md_open, so make sure it doesn't get too far 4930 */ 4931 mutex_lock(&mddev->open_mutex); 4932 add_disk(disk); 4933 4934 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4935 &disk_to_dev(disk)->kobj, "%s", "md"); 4936 if (error) { 4937 /* This isn't possible, but as kobject_init_and_add is marked 4938 * __must_check, we must do something with the result 4939 */ 4940 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4941 disk->disk_name); 4942 error = 0; 4943 } 4944 if (mddev->kobj.sd && 4945 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4946 printk(KERN_DEBUG "pointless warning\n"); 4947 mutex_unlock(&mddev->open_mutex); 4948 abort: 4949 mutex_unlock(&disks_mutex); 4950 if (!error && mddev->kobj.sd) { 4951 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4952 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4953 } 4954 mddev_put(mddev); 4955 return error; 4956 } 4957 4958 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4959 { 4960 md_alloc(dev, NULL); 4961 return NULL; 4962 } 4963 4964 static int add_named_array(const char *val, struct kernel_param *kp) 4965 { 4966 /* val must be "md_*" where * is not all digits. 4967 * We allocate an array with a large free minor number, and 4968 * set the name to val. val must not already be an active name. 4969 */ 4970 int len = strlen(val); 4971 char buf[DISK_NAME_LEN]; 4972 4973 while (len && val[len-1] == '\n') 4974 len--; 4975 if (len >= DISK_NAME_LEN) 4976 return -E2BIG; 4977 strlcpy(buf, val, len+1); 4978 if (strncmp(buf, "md_", 3) != 0) 4979 return -EINVAL; 4980 return md_alloc(0, buf); 4981 } 4982 4983 static void md_safemode_timeout(unsigned long data) 4984 { 4985 struct mddev *mddev = (struct mddev *) data; 4986 4987 if (!atomic_read(&mddev->writes_pending)) { 4988 mddev->safemode = 1; 4989 if (mddev->external) 4990 sysfs_notify_dirent_safe(mddev->sysfs_state); 4991 } 4992 md_wakeup_thread(mddev->thread); 4993 } 4994 4995 static int start_dirty_degraded; 4996 4997 int md_run(struct mddev *mddev) 4998 { 4999 int err; 5000 struct md_rdev *rdev; 5001 struct md_personality *pers; 5002 5003 if (list_empty(&mddev->disks)) 5004 /* cannot run an array with no devices.. */ 5005 return -EINVAL; 5006 5007 if (mddev->pers) 5008 return -EBUSY; 5009 /* Cannot run until previous stop completes properly */ 5010 if (mddev->sysfs_active) 5011 return -EBUSY; 5012 5013 /* 5014 * Analyze all RAID superblock(s) 5015 */ 5016 if (!mddev->raid_disks) { 5017 if (!mddev->persistent) 5018 return -EINVAL; 5019 analyze_sbs(mddev); 5020 } 5021 5022 if (mddev->level != LEVEL_NONE) 5023 request_module("md-level-%d", mddev->level); 5024 else if (mddev->clevel[0]) 5025 request_module("md-%s", mddev->clevel); 5026 5027 /* 5028 * Drop all container device buffers, from now on 5029 * the only valid external interface is through the md 5030 * device. 5031 */ 5032 rdev_for_each(rdev, mddev) { 5033 if (test_bit(Faulty, &rdev->flags)) 5034 continue; 5035 sync_blockdev(rdev->bdev); 5036 invalidate_bdev(rdev->bdev); 5037 5038 /* perform some consistency tests on the device. 5039 * We don't want the data to overlap the metadata, 5040 * Internal Bitmap issues have been handled elsewhere. 5041 */ 5042 if (rdev->meta_bdev) { 5043 /* Nothing to check */; 5044 } else if (rdev->data_offset < rdev->sb_start) { 5045 if (mddev->dev_sectors && 5046 rdev->data_offset + mddev->dev_sectors 5047 > rdev->sb_start) { 5048 printk("md: %s: data overlaps metadata\n", 5049 mdname(mddev)); 5050 return -EINVAL; 5051 } 5052 } else { 5053 if (rdev->sb_start + rdev->sb_size/512 5054 > rdev->data_offset) { 5055 printk("md: %s: metadata overlaps data\n", 5056 mdname(mddev)); 5057 return -EINVAL; 5058 } 5059 } 5060 sysfs_notify_dirent_safe(rdev->sysfs_state); 5061 } 5062 5063 if (mddev->bio_set == NULL) 5064 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 5065 5066 spin_lock(&pers_lock); 5067 pers = find_pers(mddev->level, mddev->clevel); 5068 if (!pers || !try_module_get(pers->owner)) { 5069 spin_unlock(&pers_lock); 5070 if (mddev->level != LEVEL_NONE) 5071 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5072 mddev->level); 5073 else 5074 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5075 mddev->clevel); 5076 return -EINVAL; 5077 } 5078 spin_unlock(&pers_lock); 5079 if (mddev->level != pers->level) { 5080 mddev->level = pers->level; 5081 mddev->new_level = pers->level; 5082 } 5083 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5084 5085 if (mddev->reshape_position != MaxSector && 5086 pers->start_reshape == NULL) { 5087 /* This personality cannot handle reshaping... */ 5088 module_put(pers->owner); 5089 return -EINVAL; 5090 } 5091 5092 if (pers->sync_request) { 5093 /* Warn if this is a potentially silly 5094 * configuration. 5095 */ 5096 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5097 struct md_rdev *rdev2; 5098 int warned = 0; 5099 5100 rdev_for_each(rdev, mddev) 5101 rdev_for_each(rdev2, mddev) { 5102 if (rdev < rdev2 && 5103 rdev->bdev->bd_contains == 5104 rdev2->bdev->bd_contains) { 5105 printk(KERN_WARNING 5106 "%s: WARNING: %s appears to be" 5107 " on the same physical disk as" 5108 " %s.\n", 5109 mdname(mddev), 5110 bdevname(rdev->bdev,b), 5111 bdevname(rdev2->bdev,b2)); 5112 warned = 1; 5113 } 5114 } 5115 5116 if (warned) 5117 printk(KERN_WARNING 5118 "True protection against single-disk" 5119 " failure might be compromised.\n"); 5120 } 5121 5122 mddev->recovery = 0; 5123 /* may be over-ridden by personality */ 5124 mddev->resync_max_sectors = mddev->dev_sectors; 5125 5126 mddev->ok_start_degraded = start_dirty_degraded; 5127 5128 if (start_readonly && mddev->ro == 0) 5129 mddev->ro = 2; /* read-only, but switch on first write */ 5130 5131 err = pers->run(mddev); 5132 if (err) 5133 printk(KERN_ERR "md: pers->run() failed ...\n"); 5134 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5135 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5136 " but 'external_size' not in effect?\n", __func__); 5137 printk(KERN_ERR 5138 "md: invalid array_size %llu > default size %llu\n", 5139 (unsigned long long)mddev->array_sectors / 2, 5140 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5141 err = -EINVAL; 5142 } 5143 if (err == 0 && pers->sync_request && 5144 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5145 struct bitmap *bitmap; 5146 5147 bitmap = bitmap_create(mddev, -1); 5148 if (IS_ERR(bitmap)) { 5149 err = PTR_ERR(bitmap); 5150 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5151 mdname(mddev), err); 5152 } else 5153 mddev->bitmap = bitmap; 5154 5155 } 5156 if (err) { 5157 mddev_detach(mddev); 5158 if (mddev->private) 5159 pers->free(mddev, mddev->private); 5160 mddev->private = NULL; 5161 module_put(pers->owner); 5162 bitmap_destroy(mddev); 5163 return err; 5164 } 5165 if (mddev->queue) { 5166 mddev->queue->backing_dev_info.congested_data = mddev; 5167 mddev->queue->backing_dev_info.congested_fn = md_congested; 5168 } 5169 if (pers->sync_request) { 5170 if (mddev->kobj.sd && 5171 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5172 printk(KERN_WARNING 5173 "md: cannot register extra attributes for %s\n", 5174 mdname(mddev)); 5175 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5176 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5177 mddev->ro = 0; 5178 5179 atomic_set(&mddev->writes_pending,0); 5180 atomic_set(&mddev->max_corr_read_errors, 5181 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5182 mddev->safemode = 0; 5183 mddev->safemode_timer.function = md_safemode_timeout; 5184 mddev->safemode_timer.data = (unsigned long) mddev; 5185 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5186 mddev->in_sync = 1; 5187 smp_wmb(); 5188 spin_lock(&mddev->lock); 5189 mddev->pers = pers; 5190 mddev->ready = 1; 5191 spin_unlock(&mddev->lock); 5192 rdev_for_each(rdev, mddev) 5193 if (rdev->raid_disk >= 0) 5194 if (sysfs_link_rdev(mddev, rdev)) 5195 /* failure here is OK */; 5196 5197 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5198 5199 if (mddev->flags & MD_UPDATE_SB_FLAGS) 5200 md_update_sb(mddev, 0); 5201 5202 md_new_event(mddev); 5203 sysfs_notify_dirent_safe(mddev->sysfs_state); 5204 sysfs_notify_dirent_safe(mddev->sysfs_action); 5205 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5206 return 0; 5207 } 5208 EXPORT_SYMBOL_GPL(md_run); 5209 5210 static int do_md_run(struct mddev *mddev) 5211 { 5212 int err; 5213 5214 err = md_run(mddev); 5215 if (err) 5216 goto out; 5217 err = bitmap_load(mddev); 5218 if (err) { 5219 bitmap_destroy(mddev); 5220 goto out; 5221 } 5222 5223 md_wakeup_thread(mddev->thread); 5224 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5225 5226 set_capacity(mddev->gendisk, mddev->array_sectors); 5227 revalidate_disk(mddev->gendisk); 5228 mddev->changed = 1; 5229 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5230 out: 5231 return err; 5232 } 5233 5234 static int restart_array(struct mddev *mddev) 5235 { 5236 struct gendisk *disk = mddev->gendisk; 5237 5238 /* Complain if it has no devices */ 5239 if (list_empty(&mddev->disks)) 5240 return -ENXIO; 5241 if (!mddev->pers) 5242 return -EINVAL; 5243 if (!mddev->ro) 5244 return -EBUSY; 5245 mddev->safemode = 0; 5246 mddev->ro = 0; 5247 set_disk_ro(disk, 0); 5248 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5249 mdname(mddev)); 5250 /* Kick recovery or resync if necessary */ 5251 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5252 md_wakeup_thread(mddev->thread); 5253 md_wakeup_thread(mddev->sync_thread); 5254 sysfs_notify_dirent_safe(mddev->sysfs_state); 5255 return 0; 5256 } 5257 5258 static void md_clean(struct mddev *mddev) 5259 { 5260 mddev->array_sectors = 0; 5261 mddev->external_size = 0; 5262 mddev->dev_sectors = 0; 5263 mddev->raid_disks = 0; 5264 mddev->recovery_cp = 0; 5265 mddev->resync_min = 0; 5266 mddev->resync_max = MaxSector; 5267 mddev->reshape_position = MaxSector; 5268 mddev->external = 0; 5269 mddev->persistent = 0; 5270 mddev->level = LEVEL_NONE; 5271 mddev->clevel[0] = 0; 5272 mddev->flags = 0; 5273 mddev->ro = 0; 5274 mddev->metadata_type[0] = 0; 5275 mddev->chunk_sectors = 0; 5276 mddev->ctime = mddev->utime = 0; 5277 mddev->layout = 0; 5278 mddev->max_disks = 0; 5279 mddev->events = 0; 5280 mddev->can_decrease_events = 0; 5281 mddev->delta_disks = 0; 5282 mddev->reshape_backwards = 0; 5283 mddev->new_level = LEVEL_NONE; 5284 mddev->new_layout = 0; 5285 mddev->new_chunk_sectors = 0; 5286 mddev->curr_resync = 0; 5287 atomic64_set(&mddev->resync_mismatches, 0); 5288 mddev->suspend_lo = mddev->suspend_hi = 0; 5289 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5290 mddev->recovery = 0; 5291 mddev->in_sync = 0; 5292 mddev->changed = 0; 5293 mddev->degraded = 0; 5294 mddev->safemode = 0; 5295 mddev->private = NULL; 5296 mddev->bitmap_info.offset = 0; 5297 mddev->bitmap_info.default_offset = 0; 5298 mddev->bitmap_info.default_space = 0; 5299 mddev->bitmap_info.chunksize = 0; 5300 mddev->bitmap_info.daemon_sleep = 0; 5301 mddev->bitmap_info.max_write_behind = 0; 5302 } 5303 5304 static void __md_stop_writes(struct mddev *mddev) 5305 { 5306 if (mddev_is_clustered(mddev)) 5307 md_cluster_ops->metadata_update_start(mddev); 5308 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5309 flush_workqueue(md_misc_wq); 5310 if (mddev->sync_thread) { 5311 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5312 md_reap_sync_thread(mddev); 5313 } 5314 5315 del_timer_sync(&mddev->safemode_timer); 5316 5317 bitmap_flush(mddev); 5318 md_super_wait(mddev); 5319 5320 if (mddev->ro == 0 && 5321 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) { 5322 /* mark array as shutdown cleanly */ 5323 mddev->in_sync = 1; 5324 md_update_sb(mddev, 1); 5325 } 5326 if (mddev_is_clustered(mddev)) 5327 md_cluster_ops->metadata_update_finish(mddev); 5328 } 5329 5330 void md_stop_writes(struct mddev *mddev) 5331 { 5332 mddev_lock_nointr(mddev); 5333 __md_stop_writes(mddev); 5334 mddev_unlock(mddev); 5335 } 5336 EXPORT_SYMBOL_GPL(md_stop_writes); 5337 5338 static void mddev_detach(struct mddev *mddev) 5339 { 5340 struct bitmap *bitmap = mddev->bitmap; 5341 /* wait for behind writes to complete */ 5342 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 5343 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n", 5344 mdname(mddev)); 5345 /* need to kick something here to make sure I/O goes? */ 5346 wait_event(bitmap->behind_wait, 5347 atomic_read(&bitmap->behind_writes) == 0); 5348 } 5349 if (mddev->pers && mddev->pers->quiesce) { 5350 mddev->pers->quiesce(mddev, 1); 5351 mddev->pers->quiesce(mddev, 0); 5352 } 5353 md_unregister_thread(&mddev->thread); 5354 if (mddev->queue) 5355 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5356 } 5357 5358 static void __md_stop(struct mddev *mddev) 5359 { 5360 struct md_personality *pers = mddev->pers; 5361 mddev_detach(mddev); 5362 /* Ensure ->event_work is done */ 5363 flush_workqueue(md_misc_wq); 5364 spin_lock(&mddev->lock); 5365 mddev->ready = 0; 5366 mddev->pers = NULL; 5367 spin_unlock(&mddev->lock); 5368 pers->free(mddev, mddev->private); 5369 mddev->private = NULL; 5370 if (pers->sync_request && mddev->to_remove == NULL) 5371 mddev->to_remove = &md_redundancy_group; 5372 module_put(pers->owner); 5373 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5374 } 5375 5376 void md_stop(struct mddev *mddev) 5377 { 5378 /* stop the array and free an attached data structures. 5379 * This is called from dm-raid 5380 */ 5381 __md_stop(mddev); 5382 bitmap_destroy(mddev); 5383 if (mddev->bio_set) 5384 bioset_free(mddev->bio_set); 5385 } 5386 5387 EXPORT_SYMBOL_GPL(md_stop); 5388 5389 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5390 { 5391 int err = 0; 5392 int did_freeze = 0; 5393 5394 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5395 did_freeze = 1; 5396 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5397 md_wakeup_thread(mddev->thread); 5398 } 5399 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5400 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5401 if (mddev->sync_thread) 5402 /* Thread might be blocked waiting for metadata update 5403 * which will now never happen */ 5404 wake_up_process(mddev->sync_thread->tsk); 5405 5406 mddev_unlock(mddev); 5407 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5408 &mddev->recovery)); 5409 mddev_lock_nointr(mddev); 5410 5411 mutex_lock(&mddev->open_mutex); 5412 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5413 mddev->sync_thread || 5414 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 5415 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5416 printk("md: %s still in use.\n",mdname(mddev)); 5417 if (did_freeze) { 5418 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5419 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5420 md_wakeup_thread(mddev->thread); 5421 } 5422 err = -EBUSY; 5423 goto out; 5424 } 5425 if (mddev->pers) { 5426 __md_stop_writes(mddev); 5427 5428 err = -ENXIO; 5429 if (mddev->ro==1) 5430 goto out; 5431 mddev->ro = 1; 5432 set_disk_ro(mddev->gendisk, 1); 5433 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5434 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5435 md_wakeup_thread(mddev->thread); 5436 sysfs_notify_dirent_safe(mddev->sysfs_state); 5437 err = 0; 5438 } 5439 out: 5440 mutex_unlock(&mddev->open_mutex); 5441 return err; 5442 } 5443 5444 /* mode: 5445 * 0 - completely stop and dis-assemble array 5446 * 2 - stop but do not disassemble array 5447 */ 5448 static int do_md_stop(struct mddev *mddev, int mode, 5449 struct block_device *bdev) 5450 { 5451 struct gendisk *disk = mddev->gendisk; 5452 struct md_rdev *rdev; 5453 int did_freeze = 0; 5454 5455 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5456 did_freeze = 1; 5457 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5458 md_wakeup_thread(mddev->thread); 5459 } 5460 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5461 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5462 if (mddev->sync_thread) 5463 /* Thread might be blocked waiting for metadata update 5464 * which will now never happen */ 5465 wake_up_process(mddev->sync_thread->tsk); 5466 5467 mddev_unlock(mddev); 5468 wait_event(resync_wait, (mddev->sync_thread == NULL && 5469 !test_bit(MD_RECOVERY_RUNNING, 5470 &mddev->recovery))); 5471 mddev_lock_nointr(mddev); 5472 5473 mutex_lock(&mddev->open_mutex); 5474 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5475 mddev->sysfs_active || 5476 mddev->sync_thread || 5477 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 5478 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5479 printk("md: %s still in use.\n",mdname(mddev)); 5480 mutex_unlock(&mddev->open_mutex); 5481 if (did_freeze) { 5482 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5483 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5484 md_wakeup_thread(mddev->thread); 5485 } 5486 return -EBUSY; 5487 } 5488 if (mddev->pers) { 5489 if (mddev->ro) 5490 set_disk_ro(disk, 0); 5491 5492 __md_stop_writes(mddev); 5493 __md_stop(mddev); 5494 mddev->queue->backing_dev_info.congested_fn = NULL; 5495 5496 /* tell userspace to handle 'inactive' */ 5497 sysfs_notify_dirent_safe(mddev->sysfs_state); 5498 5499 rdev_for_each(rdev, mddev) 5500 if (rdev->raid_disk >= 0) 5501 sysfs_unlink_rdev(mddev, rdev); 5502 5503 set_capacity(disk, 0); 5504 mutex_unlock(&mddev->open_mutex); 5505 mddev->changed = 1; 5506 revalidate_disk(disk); 5507 5508 if (mddev->ro) 5509 mddev->ro = 0; 5510 } else 5511 mutex_unlock(&mddev->open_mutex); 5512 /* 5513 * Free resources if final stop 5514 */ 5515 if (mode == 0) { 5516 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5517 5518 bitmap_destroy(mddev); 5519 if (mddev->bitmap_info.file) { 5520 struct file *f = mddev->bitmap_info.file; 5521 spin_lock(&mddev->lock); 5522 mddev->bitmap_info.file = NULL; 5523 spin_unlock(&mddev->lock); 5524 fput(f); 5525 } 5526 mddev->bitmap_info.offset = 0; 5527 5528 export_array(mddev); 5529 5530 md_clean(mddev); 5531 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5532 if (mddev->hold_active == UNTIL_STOP) 5533 mddev->hold_active = 0; 5534 } 5535 blk_integrity_unregister(disk); 5536 md_new_event(mddev); 5537 sysfs_notify_dirent_safe(mddev->sysfs_state); 5538 return 0; 5539 } 5540 5541 #ifndef MODULE 5542 static void autorun_array(struct mddev *mddev) 5543 { 5544 struct md_rdev *rdev; 5545 int err; 5546 5547 if (list_empty(&mddev->disks)) 5548 return; 5549 5550 printk(KERN_INFO "md: running: "); 5551 5552 rdev_for_each(rdev, mddev) { 5553 char b[BDEVNAME_SIZE]; 5554 printk("<%s>", bdevname(rdev->bdev,b)); 5555 } 5556 printk("\n"); 5557 5558 err = do_md_run(mddev); 5559 if (err) { 5560 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5561 do_md_stop(mddev, 0, NULL); 5562 } 5563 } 5564 5565 /* 5566 * lets try to run arrays based on all disks that have arrived 5567 * until now. (those are in pending_raid_disks) 5568 * 5569 * the method: pick the first pending disk, collect all disks with 5570 * the same UUID, remove all from the pending list and put them into 5571 * the 'same_array' list. Then order this list based on superblock 5572 * update time (freshest comes first), kick out 'old' disks and 5573 * compare superblocks. If everything's fine then run it. 5574 * 5575 * If "unit" is allocated, then bump its reference count 5576 */ 5577 static void autorun_devices(int part) 5578 { 5579 struct md_rdev *rdev0, *rdev, *tmp; 5580 struct mddev *mddev; 5581 char b[BDEVNAME_SIZE]; 5582 5583 printk(KERN_INFO "md: autorun ...\n"); 5584 while (!list_empty(&pending_raid_disks)) { 5585 int unit; 5586 dev_t dev; 5587 LIST_HEAD(candidates); 5588 rdev0 = list_entry(pending_raid_disks.next, 5589 struct md_rdev, same_set); 5590 5591 printk(KERN_INFO "md: considering %s ...\n", 5592 bdevname(rdev0->bdev,b)); 5593 INIT_LIST_HEAD(&candidates); 5594 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5595 if (super_90_load(rdev, rdev0, 0) >= 0) { 5596 printk(KERN_INFO "md: adding %s ...\n", 5597 bdevname(rdev->bdev,b)); 5598 list_move(&rdev->same_set, &candidates); 5599 } 5600 /* 5601 * now we have a set of devices, with all of them having 5602 * mostly sane superblocks. It's time to allocate the 5603 * mddev. 5604 */ 5605 if (part) { 5606 dev = MKDEV(mdp_major, 5607 rdev0->preferred_minor << MdpMinorShift); 5608 unit = MINOR(dev) >> MdpMinorShift; 5609 } else { 5610 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5611 unit = MINOR(dev); 5612 } 5613 if (rdev0->preferred_minor != unit) { 5614 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5615 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5616 break; 5617 } 5618 5619 md_probe(dev, NULL, NULL); 5620 mddev = mddev_find(dev); 5621 if (!mddev || !mddev->gendisk) { 5622 if (mddev) 5623 mddev_put(mddev); 5624 printk(KERN_ERR 5625 "md: cannot allocate memory for md drive.\n"); 5626 break; 5627 } 5628 if (mddev_lock(mddev)) 5629 printk(KERN_WARNING "md: %s locked, cannot run\n", 5630 mdname(mddev)); 5631 else if (mddev->raid_disks || mddev->major_version 5632 || !list_empty(&mddev->disks)) { 5633 printk(KERN_WARNING 5634 "md: %s already running, cannot run %s\n", 5635 mdname(mddev), bdevname(rdev0->bdev,b)); 5636 mddev_unlock(mddev); 5637 } else { 5638 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5639 mddev->persistent = 1; 5640 rdev_for_each_list(rdev, tmp, &candidates) { 5641 list_del_init(&rdev->same_set); 5642 if (bind_rdev_to_array(rdev, mddev)) 5643 export_rdev(rdev); 5644 } 5645 autorun_array(mddev); 5646 mddev_unlock(mddev); 5647 } 5648 /* on success, candidates will be empty, on error 5649 * it won't... 5650 */ 5651 rdev_for_each_list(rdev, tmp, &candidates) { 5652 list_del_init(&rdev->same_set); 5653 export_rdev(rdev); 5654 } 5655 mddev_put(mddev); 5656 } 5657 printk(KERN_INFO "md: ... autorun DONE.\n"); 5658 } 5659 #endif /* !MODULE */ 5660 5661 static int get_version(void __user *arg) 5662 { 5663 mdu_version_t ver; 5664 5665 ver.major = MD_MAJOR_VERSION; 5666 ver.minor = MD_MINOR_VERSION; 5667 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5668 5669 if (copy_to_user(arg, &ver, sizeof(ver))) 5670 return -EFAULT; 5671 5672 return 0; 5673 } 5674 5675 static int get_array_info(struct mddev *mddev, void __user *arg) 5676 { 5677 mdu_array_info_t info; 5678 int nr,working,insync,failed,spare; 5679 struct md_rdev *rdev; 5680 5681 nr = working = insync = failed = spare = 0; 5682 rcu_read_lock(); 5683 rdev_for_each_rcu(rdev, mddev) { 5684 nr++; 5685 if (test_bit(Faulty, &rdev->flags)) 5686 failed++; 5687 else { 5688 working++; 5689 if (test_bit(In_sync, &rdev->flags)) 5690 insync++; 5691 else 5692 spare++; 5693 } 5694 } 5695 rcu_read_unlock(); 5696 5697 info.major_version = mddev->major_version; 5698 info.minor_version = mddev->minor_version; 5699 info.patch_version = MD_PATCHLEVEL_VERSION; 5700 info.ctime = mddev->ctime; 5701 info.level = mddev->level; 5702 info.size = mddev->dev_sectors / 2; 5703 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5704 info.size = -1; 5705 info.nr_disks = nr; 5706 info.raid_disks = mddev->raid_disks; 5707 info.md_minor = mddev->md_minor; 5708 info.not_persistent= !mddev->persistent; 5709 5710 info.utime = mddev->utime; 5711 info.state = 0; 5712 if (mddev->in_sync) 5713 info.state = (1<<MD_SB_CLEAN); 5714 if (mddev->bitmap && mddev->bitmap_info.offset) 5715 info.state |= (1<<MD_SB_BITMAP_PRESENT); 5716 if (mddev_is_clustered(mddev)) 5717 info.state |= (1<<MD_SB_CLUSTERED); 5718 info.active_disks = insync; 5719 info.working_disks = working; 5720 info.failed_disks = failed; 5721 info.spare_disks = spare; 5722 5723 info.layout = mddev->layout; 5724 info.chunk_size = mddev->chunk_sectors << 9; 5725 5726 if (copy_to_user(arg, &info, sizeof(info))) 5727 return -EFAULT; 5728 5729 return 0; 5730 } 5731 5732 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 5733 { 5734 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5735 char *ptr; 5736 int err; 5737 5738 file = kzalloc(sizeof(*file), GFP_NOIO); 5739 if (!file) 5740 return -ENOMEM; 5741 5742 err = 0; 5743 spin_lock(&mddev->lock); 5744 /* bitmap disabled, zero the first byte and copy out */ 5745 if (!mddev->bitmap_info.file) 5746 file->pathname[0] = '\0'; 5747 else if ((ptr = file_path(mddev->bitmap_info.file, 5748 file->pathname, sizeof(file->pathname))), 5749 IS_ERR(ptr)) 5750 err = PTR_ERR(ptr); 5751 else 5752 memmove(file->pathname, ptr, 5753 sizeof(file->pathname)-(ptr-file->pathname)); 5754 spin_unlock(&mddev->lock); 5755 5756 if (err == 0 && 5757 copy_to_user(arg, file, sizeof(*file))) 5758 err = -EFAULT; 5759 5760 kfree(file); 5761 return err; 5762 } 5763 5764 static int get_disk_info(struct mddev *mddev, void __user * arg) 5765 { 5766 mdu_disk_info_t info; 5767 struct md_rdev *rdev; 5768 5769 if (copy_from_user(&info, arg, sizeof(info))) 5770 return -EFAULT; 5771 5772 rcu_read_lock(); 5773 rdev = md_find_rdev_nr_rcu(mddev, info.number); 5774 if (rdev) { 5775 info.major = MAJOR(rdev->bdev->bd_dev); 5776 info.minor = MINOR(rdev->bdev->bd_dev); 5777 info.raid_disk = rdev->raid_disk; 5778 info.state = 0; 5779 if (test_bit(Faulty, &rdev->flags)) 5780 info.state |= (1<<MD_DISK_FAULTY); 5781 else if (test_bit(In_sync, &rdev->flags)) { 5782 info.state |= (1<<MD_DISK_ACTIVE); 5783 info.state |= (1<<MD_DISK_SYNC); 5784 } 5785 if (test_bit(WriteMostly, &rdev->flags)) 5786 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5787 } else { 5788 info.major = info.minor = 0; 5789 info.raid_disk = -1; 5790 info.state = (1<<MD_DISK_REMOVED); 5791 } 5792 rcu_read_unlock(); 5793 5794 if (copy_to_user(arg, &info, sizeof(info))) 5795 return -EFAULT; 5796 5797 return 0; 5798 } 5799 5800 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 5801 { 5802 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5803 struct md_rdev *rdev; 5804 dev_t dev = MKDEV(info->major,info->minor); 5805 5806 if (mddev_is_clustered(mddev) && 5807 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 5808 pr_err("%s: Cannot add to clustered mddev.\n", 5809 mdname(mddev)); 5810 return -EINVAL; 5811 } 5812 5813 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5814 return -EOVERFLOW; 5815 5816 if (!mddev->raid_disks) { 5817 int err; 5818 /* expecting a device which has a superblock */ 5819 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5820 if (IS_ERR(rdev)) { 5821 printk(KERN_WARNING 5822 "md: md_import_device returned %ld\n", 5823 PTR_ERR(rdev)); 5824 return PTR_ERR(rdev); 5825 } 5826 if (!list_empty(&mddev->disks)) { 5827 struct md_rdev *rdev0 5828 = list_entry(mddev->disks.next, 5829 struct md_rdev, same_set); 5830 err = super_types[mddev->major_version] 5831 .load_super(rdev, rdev0, mddev->minor_version); 5832 if (err < 0) { 5833 printk(KERN_WARNING 5834 "md: %s has different UUID to %s\n", 5835 bdevname(rdev->bdev,b), 5836 bdevname(rdev0->bdev,b2)); 5837 export_rdev(rdev); 5838 return -EINVAL; 5839 } 5840 } 5841 err = bind_rdev_to_array(rdev, mddev); 5842 if (err) 5843 export_rdev(rdev); 5844 return err; 5845 } 5846 5847 /* 5848 * add_new_disk can be used once the array is assembled 5849 * to add "hot spares". They must already have a superblock 5850 * written 5851 */ 5852 if (mddev->pers) { 5853 int err; 5854 if (!mddev->pers->hot_add_disk) { 5855 printk(KERN_WARNING 5856 "%s: personality does not support diskops!\n", 5857 mdname(mddev)); 5858 return -EINVAL; 5859 } 5860 if (mddev->persistent) 5861 rdev = md_import_device(dev, mddev->major_version, 5862 mddev->minor_version); 5863 else 5864 rdev = md_import_device(dev, -1, -1); 5865 if (IS_ERR(rdev)) { 5866 printk(KERN_WARNING 5867 "md: md_import_device returned %ld\n", 5868 PTR_ERR(rdev)); 5869 return PTR_ERR(rdev); 5870 } 5871 /* set saved_raid_disk if appropriate */ 5872 if (!mddev->persistent) { 5873 if (info->state & (1<<MD_DISK_SYNC) && 5874 info->raid_disk < mddev->raid_disks) { 5875 rdev->raid_disk = info->raid_disk; 5876 set_bit(In_sync, &rdev->flags); 5877 clear_bit(Bitmap_sync, &rdev->flags); 5878 } else 5879 rdev->raid_disk = -1; 5880 rdev->saved_raid_disk = rdev->raid_disk; 5881 } else 5882 super_types[mddev->major_version]. 5883 validate_super(mddev, rdev); 5884 if ((info->state & (1<<MD_DISK_SYNC)) && 5885 rdev->raid_disk != info->raid_disk) { 5886 /* This was a hot-add request, but events doesn't 5887 * match, so reject it. 5888 */ 5889 export_rdev(rdev); 5890 return -EINVAL; 5891 } 5892 5893 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5894 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5895 set_bit(WriteMostly, &rdev->flags); 5896 else 5897 clear_bit(WriteMostly, &rdev->flags); 5898 5899 /* 5900 * check whether the device shows up in other nodes 5901 */ 5902 if (mddev_is_clustered(mddev)) { 5903 if (info->state & (1 << MD_DISK_CANDIDATE)) { 5904 /* Through --cluster-confirm */ 5905 set_bit(Candidate, &rdev->flags); 5906 err = md_cluster_ops->new_disk_ack(mddev, true); 5907 if (err) { 5908 export_rdev(rdev); 5909 return err; 5910 } 5911 } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 5912 /* --add initiated by this node */ 5913 err = md_cluster_ops->add_new_disk_start(mddev, rdev); 5914 if (err) { 5915 md_cluster_ops->add_new_disk_finish(mddev); 5916 export_rdev(rdev); 5917 return err; 5918 } 5919 } 5920 } 5921 5922 rdev->raid_disk = -1; 5923 err = bind_rdev_to_array(rdev, mddev); 5924 if (err) 5925 export_rdev(rdev); 5926 else 5927 err = add_bound_rdev(rdev); 5928 if (mddev_is_clustered(mddev) && 5929 (info->state & (1 << MD_DISK_CLUSTER_ADD))) 5930 md_cluster_ops->add_new_disk_finish(mddev); 5931 return err; 5932 } 5933 5934 /* otherwise, add_new_disk is only allowed 5935 * for major_version==0 superblocks 5936 */ 5937 if (mddev->major_version != 0) { 5938 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5939 mdname(mddev)); 5940 return -EINVAL; 5941 } 5942 5943 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5944 int err; 5945 rdev = md_import_device(dev, -1, 0); 5946 if (IS_ERR(rdev)) { 5947 printk(KERN_WARNING 5948 "md: error, md_import_device() returned %ld\n", 5949 PTR_ERR(rdev)); 5950 return PTR_ERR(rdev); 5951 } 5952 rdev->desc_nr = info->number; 5953 if (info->raid_disk < mddev->raid_disks) 5954 rdev->raid_disk = info->raid_disk; 5955 else 5956 rdev->raid_disk = -1; 5957 5958 if (rdev->raid_disk < mddev->raid_disks) 5959 if (info->state & (1<<MD_DISK_SYNC)) 5960 set_bit(In_sync, &rdev->flags); 5961 5962 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5963 set_bit(WriteMostly, &rdev->flags); 5964 5965 if (!mddev->persistent) { 5966 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5967 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5968 } else 5969 rdev->sb_start = calc_dev_sboffset(rdev); 5970 rdev->sectors = rdev->sb_start; 5971 5972 err = bind_rdev_to_array(rdev, mddev); 5973 if (err) { 5974 export_rdev(rdev); 5975 return err; 5976 } 5977 } 5978 5979 return 0; 5980 } 5981 5982 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 5983 { 5984 char b[BDEVNAME_SIZE]; 5985 struct md_rdev *rdev; 5986 5987 rdev = find_rdev(mddev, dev); 5988 if (!rdev) 5989 return -ENXIO; 5990 5991 if (mddev_is_clustered(mddev)) 5992 md_cluster_ops->metadata_update_start(mddev); 5993 5994 clear_bit(Blocked, &rdev->flags); 5995 remove_and_add_spares(mddev, rdev); 5996 5997 if (rdev->raid_disk >= 0) 5998 goto busy; 5999 6000 if (mddev_is_clustered(mddev)) 6001 md_cluster_ops->remove_disk(mddev, rdev); 6002 6003 md_kick_rdev_from_array(rdev); 6004 md_update_sb(mddev, 1); 6005 md_new_event(mddev); 6006 6007 if (mddev_is_clustered(mddev)) 6008 md_cluster_ops->metadata_update_finish(mddev); 6009 6010 return 0; 6011 busy: 6012 if (mddev_is_clustered(mddev)) 6013 md_cluster_ops->metadata_update_cancel(mddev); 6014 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 6015 bdevname(rdev->bdev,b), mdname(mddev)); 6016 return -EBUSY; 6017 } 6018 6019 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6020 { 6021 char b[BDEVNAME_SIZE]; 6022 int err; 6023 struct md_rdev *rdev; 6024 6025 if (!mddev->pers) 6026 return -ENODEV; 6027 6028 if (mddev->major_version != 0) { 6029 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 6030 " version-0 superblocks.\n", 6031 mdname(mddev)); 6032 return -EINVAL; 6033 } 6034 if (!mddev->pers->hot_add_disk) { 6035 printk(KERN_WARNING 6036 "%s: personality does not support diskops!\n", 6037 mdname(mddev)); 6038 return -EINVAL; 6039 } 6040 6041 rdev = md_import_device(dev, -1, 0); 6042 if (IS_ERR(rdev)) { 6043 printk(KERN_WARNING 6044 "md: error, md_import_device() returned %ld\n", 6045 PTR_ERR(rdev)); 6046 return -EINVAL; 6047 } 6048 6049 if (mddev->persistent) 6050 rdev->sb_start = calc_dev_sboffset(rdev); 6051 else 6052 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6053 6054 rdev->sectors = rdev->sb_start; 6055 6056 if (test_bit(Faulty, &rdev->flags)) { 6057 printk(KERN_WARNING 6058 "md: can not hot-add faulty %s disk to %s!\n", 6059 bdevname(rdev->bdev,b), mdname(mddev)); 6060 err = -EINVAL; 6061 goto abort_export; 6062 } 6063 6064 if (mddev_is_clustered(mddev)) 6065 md_cluster_ops->metadata_update_start(mddev); 6066 clear_bit(In_sync, &rdev->flags); 6067 rdev->desc_nr = -1; 6068 rdev->saved_raid_disk = -1; 6069 err = bind_rdev_to_array(rdev, mddev); 6070 if (err) 6071 goto abort_clustered; 6072 6073 /* 6074 * The rest should better be atomic, we can have disk failures 6075 * noticed in interrupt contexts ... 6076 */ 6077 6078 rdev->raid_disk = -1; 6079 6080 md_update_sb(mddev, 1); 6081 6082 if (mddev_is_clustered(mddev)) 6083 md_cluster_ops->metadata_update_finish(mddev); 6084 /* 6085 * Kick recovery, maybe this spare has to be added to the 6086 * array immediately. 6087 */ 6088 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6089 md_wakeup_thread(mddev->thread); 6090 md_new_event(mddev); 6091 return 0; 6092 6093 abort_clustered: 6094 if (mddev_is_clustered(mddev)) 6095 md_cluster_ops->metadata_update_cancel(mddev); 6096 abort_export: 6097 export_rdev(rdev); 6098 return err; 6099 } 6100 6101 static int set_bitmap_file(struct mddev *mddev, int fd) 6102 { 6103 int err = 0; 6104 6105 if (mddev->pers) { 6106 if (!mddev->pers->quiesce || !mddev->thread) 6107 return -EBUSY; 6108 if (mddev->recovery || mddev->sync_thread) 6109 return -EBUSY; 6110 /* we should be able to change the bitmap.. */ 6111 } 6112 6113 if (fd >= 0) { 6114 struct inode *inode; 6115 struct file *f; 6116 6117 if (mddev->bitmap || mddev->bitmap_info.file) 6118 return -EEXIST; /* cannot add when bitmap is present */ 6119 f = fget(fd); 6120 6121 if (f == NULL) { 6122 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 6123 mdname(mddev)); 6124 return -EBADF; 6125 } 6126 6127 inode = f->f_mapping->host; 6128 if (!S_ISREG(inode->i_mode)) { 6129 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n", 6130 mdname(mddev)); 6131 err = -EBADF; 6132 } else if (!(f->f_mode & FMODE_WRITE)) { 6133 printk(KERN_ERR "%s: error: bitmap file must open for write\n", 6134 mdname(mddev)); 6135 err = -EBADF; 6136 } else if (atomic_read(&inode->i_writecount) != 1) { 6137 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 6138 mdname(mddev)); 6139 err = -EBUSY; 6140 } 6141 if (err) { 6142 fput(f); 6143 return err; 6144 } 6145 mddev->bitmap_info.file = f; 6146 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6147 } else if (mddev->bitmap == NULL) 6148 return -ENOENT; /* cannot remove what isn't there */ 6149 err = 0; 6150 if (mddev->pers) { 6151 mddev->pers->quiesce(mddev, 1); 6152 if (fd >= 0) { 6153 struct bitmap *bitmap; 6154 6155 bitmap = bitmap_create(mddev, -1); 6156 if (!IS_ERR(bitmap)) { 6157 mddev->bitmap = bitmap; 6158 err = bitmap_load(mddev); 6159 } else 6160 err = PTR_ERR(bitmap); 6161 } 6162 if (fd < 0 || err) { 6163 bitmap_destroy(mddev); 6164 fd = -1; /* make sure to put the file */ 6165 } 6166 mddev->pers->quiesce(mddev, 0); 6167 } 6168 if (fd < 0) { 6169 struct file *f = mddev->bitmap_info.file; 6170 if (f) { 6171 spin_lock(&mddev->lock); 6172 mddev->bitmap_info.file = NULL; 6173 spin_unlock(&mddev->lock); 6174 fput(f); 6175 } 6176 } 6177 6178 return err; 6179 } 6180 6181 /* 6182 * set_array_info is used two different ways 6183 * The original usage is when creating a new array. 6184 * In this usage, raid_disks is > 0 and it together with 6185 * level, size, not_persistent,layout,chunksize determine the 6186 * shape of the array. 6187 * This will always create an array with a type-0.90.0 superblock. 6188 * The newer usage is when assembling an array. 6189 * In this case raid_disks will be 0, and the major_version field is 6190 * use to determine which style super-blocks are to be found on the devices. 6191 * The minor and patch _version numbers are also kept incase the 6192 * super_block handler wishes to interpret them. 6193 */ 6194 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6195 { 6196 6197 if (info->raid_disks == 0) { 6198 /* just setting version number for superblock loading */ 6199 if (info->major_version < 0 || 6200 info->major_version >= ARRAY_SIZE(super_types) || 6201 super_types[info->major_version].name == NULL) { 6202 /* maybe try to auto-load a module? */ 6203 printk(KERN_INFO 6204 "md: superblock version %d not known\n", 6205 info->major_version); 6206 return -EINVAL; 6207 } 6208 mddev->major_version = info->major_version; 6209 mddev->minor_version = info->minor_version; 6210 mddev->patch_version = info->patch_version; 6211 mddev->persistent = !info->not_persistent; 6212 /* ensure mddev_put doesn't delete this now that there 6213 * is some minimal configuration. 6214 */ 6215 mddev->ctime = get_seconds(); 6216 return 0; 6217 } 6218 mddev->major_version = MD_MAJOR_VERSION; 6219 mddev->minor_version = MD_MINOR_VERSION; 6220 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6221 mddev->ctime = get_seconds(); 6222 6223 mddev->level = info->level; 6224 mddev->clevel[0] = 0; 6225 mddev->dev_sectors = 2 * (sector_t)info->size; 6226 mddev->raid_disks = info->raid_disks; 6227 /* don't set md_minor, it is determined by which /dev/md* was 6228 * openned 6229 */ 6230 if (info->state & (1<<MD_SB_CLEAN)) 6231 mddev->recovery_cp = MaxSector; 6232 else 6233 mddev->recovery_cp = 0; 6234 mddev->persistent = ! info->not_persistent; 6235 mddev->external = 0; 6236 6237 mddev->layout = info->layout; 6238 mddev->chunk_sectors = info->chunk_size >> 9; 6239 6240 mddev->max_disks = MD_SB_DISKS; 6241 6242 if (mddev->persistent) 6243 mddev->flags = 0; 6244 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6245 6246 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6247 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6248 mddev->bitmap_info.offset = 0; 6249 6250 mddev->reshape_position = MaxSector; 6251 6252 /* 6253 * Generate a 128 bit UUID 6254 */ 6255 get_random_bytes(mddev->uuid, 16); 6256 6257 mddev->new_level = mddev->level; 6258 mddev->new_chunk_sectors = mddev->chunk_sectors; 6259 mddev->new_layout = mddev->layout; 6260 mddev->delta_disks = 0; 6261 mddev->reshape_backwards = 0; 6262 6263 return 0; 6264 } 6265 6266 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6267 { 6268 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6269 6270 if (mddev->external_size) 6271 return; 6272 6273 mddev->array_sectors = array_sectors; 6274 } 6275 EXPORT_SYMBOL(md_set_array_sectors); 6276 6277 static int update_size(struct mddev *mddev, sector_t num_sectors) 6278 { 6279 struct md_rdev *rdev; 6280 int rv; 6281 int fit = (num_sectors == 0); 6282 6283 if (mddev->pers->resize == NULL) 6284 return -EINVAL; 6285 /* The "num_sectors" is the number of sectors of each device that 6286 * is used. This can only make sense for arrays with redundancy. 6287 * linear and raid0 always use whatever space is available. We can only 6288 * consider changing this number if no resync or reconstruction is 6289 * happening, and if the new size is acceptable. It must fit before the 6290 * sb_start or, if that is <data_offset, it must fit before the size 6291 * of each device. If num_sectors is zero, we find the largest size 6292 * that fits. 6293 */ 6294 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6295 mddev->sync_thread) 6296 return -EBUSY; 6297 if (mddev->ro) 6298 return -EROFS; 6299 6300 rdev_for_each(rdev, mddev) { 6301 sector_t avail = rdev->sectors; 6302 6303 if (fit && (num_sectors == 0 || num_sectors > avail)) 6304 num_sectors = avail; 6305 if (avail < num_sectors) 6306 return -ENOSPC; 6307 } 6308 rv = mddev->pers->resize(mddev, num_sectors); 6309 if (!rv) 6310 revalidate_disk(mddev->gendisk); 6311 return rv; 6312 } 6313 6314 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6315 { 6316 int rv; 6317 struct md_rdev *rdev; 6318 /* change the number of raid disks */ 6319 if (mddev->pers->check_reshape == NULL) 6320 return -EINVAL; 6321 if (mddev->ro) 6322 return -EROFS; 6323 if (raid_disks <= 0 || 6324 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6325 return -EINVAL; 6326 if (mddev->sync_thread || 6327 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6328 mddev->reshape_position != MaxSector) 6329 return -EBUSY; 6330 6331 rdev_for_each(rdev, mddev) { 6332 if (mddev->raid_disks < raid_disks && 6333 rdev->data_offset < rdev->new_data_offset) 6334 return -EINVAL; 6335 if (mddev->raid_disks > raid_disks && 6336 rdev->data_offset > rdev->new_data_offset) 6337 return -EINVAL; 6338 } 6339 6340 mddev->delta_disks = raid_disks - mddev->raid_disks; 6341 if (mddev->delta_disks < 0) 6342 mddev->reshape_backwards = 1; 6343 else if (mddev->delta_disks > 0) 6344 mddev->reshape_backwards = 0; 6345 6346 rv = mddev->pers->check_reshape(mddev); 6347 if (rv < 0) { 6348 mddev->delta_disks = 0; 6349 mddev->reshape_backwards = 0; 6350 } 6351 return rv; 6352 } 6353 6354 /* 6355 * update_array_info is used to change the configuration of an 6356 * on-line array. 6357 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6358 * fields in the info are checked against the array. 6359 * Any differences that cannot be handled will cause an error. 6360 * Normally, only one change can be managed at a time. 6361 */ 6362 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6363 { 6364 int rv = 0; 6365 int cnt = 0; 6366 int state = 0; 6367 6368 /* calculate expected state,ignoring low bits */ 6369 if (mddev->bitmap && mddev->bitmap_info.offset) 6370 state |= (1 << MD_SB_BITMAP_PRESENT); 6371 6372 if (mddev->major_version != info->major_version || 6373 mddev->minor_version != info->minor_version || 6374 /* mddev->patch_version != info->patch_version || */ 6375 mddev->ctime != info->ctime || 6376 mddev->level != info->level || 6377 /* mddev->layout != info->layout || */ 6378 mddev->persistent != !info->not_persistent || 6379 mddev->chunk_sectors != info->chunk_size >> 9 || 6380 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6381 ((state^info->state) & 0xfffffe00) 6382 ) 6383 return -EINVAL; 6384 /* Check there is only one change */ 6385 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6386 cnt++; 6387 if (mddev->raid_disks != info->raid_disks) 6388 cnt++; 6389 if (mddev->layout != info->layout) 6390 cnt++; 6391 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6392 cnt++; 6393 if (cnt == 0) 6394 return 0; 6395 if (cnt > 1) 6396 return -EINVAL; 6397 6398 if (mddev->layout != info->layout) { 6399 /* Change layout 6400 * we don't need to do anything at the md level, the 6401 * personality will take care of it all. 6402 */ 6403 if (mddev->pers->check_reshape == NULL) 6404 return -EINVAL; 6405 else { 6406 mddev->new_layout = info->layout; 6407 rv = mddev->pers->check_reshape(mddev); 6408 if (rv) 6409 mddev->new_layout = mddev->layout; 6410 return rv; 6411 } 6412 } 6413 if (mddev_is_clustered(mddev)) 6414 md_cluster_ops->metadata_update_start(mddev); 6415 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6416 rv = update_size(mddev, (sector_t)info->size * 2); 6417 6418 if (mddev->raid_disks != info->raid_disks) 6419 rv = update_raid_disks(mddev, info->raid_disks); 6420 6421 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6422 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6423 rv = -EINVAL; 6424 goto err; 6425 } 6426 if (mddev->recovery || mddev->sync_thread) { 6427 rv = -EBUSY; 6428 goto err; 6429 } 6430 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6431 struct bitmap *bitmap; 6432 /* add the bitmap */ 6433 if (mddev->bitmap) { 6434 rv = -EEXIST; 6435 goto err; 6436 } 6437 if (mddev->bitmap_info.default_offset == 0) { 6438 rv = -EINVAL; 6439 goto err; 6440 } 6441 mddev->bitmap_info.offset = 6442 mddev->bitmap_info.default_offset; 6443 mddev->bitmap_info.space = 6444 mddev->bitmap_info.default_space; 6445 mddev->pers->quiesce(mddev, 1); 6446 bitmap = bitmap_create(mddev, -1); 6447 if (!IS_ERR(bitmap)) { 6448 mddev->bitmap = bitmap; 6449 rv = bitmap_load(mddev); 6450 } else 6451 rv = PTR_ERR(bitmap); 6452 if (rv) 6453 bitmap_destroy(mddev); 6454 mddev->pers->quiesce(mddev, 0); 6455 } else { 6456 /* remove the bitmap */ 6457 if (!mddev->bitmap) { 6458 rv = -ENOENT; 6459 goto err; 6460 } 6461 if (mddev->bitmap->storage.file) { 6462 rv = -EINVAL; 6463 goto err; 6464 } 6465 mddev->pers->quiesce(mddev, 1); 6466 bitmap_destroy(mddev); 6467 mddev->pers->quiesce(mddev, 0); 6468 mddev->bitmap_info.offset = 0; 6469 } 6470 } 6471 md_update_sb(mddev, 1); 6472 if (mddev_is_clustered(mddev)) 6473 md_cluster_ops->metadata_update_finish(mddev); 6474 return rv; 6475 err: 6476 if (mddev_is_clustered(mddev)) 6477 md_cluster_ops->metadata_update_cancel(mddev); 6478 return rv; 6479 } 6480 6481 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6482 { 6483 struct md_rdev *rdev; 6484 int err = 0; 6485 6486 if (mddev->pers == NULL) 6487 return -ENODEV; 6488 6489 rcu_read_lock(); 6490 rdev = find_rdev_rcu(mddev, dev); 6491 if (!rdev) 6492 err = -ENODEV; 6493 else { 6494 md_error(mddev, rdev); 6495 if (!test_bit(Faulty, &rdev->flags)) 6496 err = -EBUSY; 6497 } 6498 rcu_read_unlock(); 6499 return err; 6500 } 6501 6502 /* 6503 * We have a problem here : there is no easy way to give a CHS 6504 * virtual geometry. We currently pretend that we have a 2 heads 6505 * 4 sectors (with a BIG number of cylinders...). This drives 6506 * dosfs just mad... ;-) 6507 */ 6508 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6509 { 6510 struct mddev *mddev = bdev->bd_disk->private_data; 6511 6512 geo->heads = 2; 6513 geo->sectors = 4; 6514 geo->cylinders = mddev->array_sectors / 8; 6515 return 0; 6516 } 6517 6518 static inline bool md_ioctl_valid(unsigned int cmd) 6519 { 6520 switch (cmd) { 6521 case ADD_NEW_DISK: 6522 case BLKROSET: 6523 case GET_ARRAY_INFO: 6524 case GET_BITMAP_FILE: 6525 case GET_DISK_INFO: 6526 case HOT_ADD_DISK: 6527 case HOT_REMOVE_DISK: 6528 case RAID_AUTORUN: 6529 case RAID_VERSION: 6530 case RESTART_ARRAY_RW: 6531 case RUN_ARRAY: 6532 case SET_ARRAY_INFO: 6533 case SET_BITMAP_FILE: 6534 case SET_DISK_FAULTY: 6535 case STOP_ARRAY: 6536 case STOP_ARRAY_RO: 6537 case CLUSTERED_DISK_NACK: 6538 return true; 6539 default: 6540 return false; 6541 } 6542 } 6543 6544 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6545 unsigned int cmd, unsigned long arg) 6546 { 6547 int err = 0; 6548 void __user *argp = (void __user *)arg; 6549 struct mddev *mddev = NULL; 6550 int ro; 6551 6552 if (!md_ioctl_valid(cmd)) 6553 return -ENOTTY; 6554 6555 switch (cmd) { 6556 case RAID_VERSION: 6557 case GET_ARRAY_INFO: 6558 case GET_DISK_INFO: 6559 break; 6560 default: 6561 if (!capable(CAP_SYS_ADMIN)) 6562 return -EACCES; 6563 } 6564 6565 /* 6566 * Commands dealing with the RAID driver but not any 6567 * particular array: 6568 */ 6569 switch (cmd) { 6570 case RAID_VERSION: 6571 err = get_version(argp); 6572 goto out; 6573 6574 #ifndef MODULE 6575 case RAID_AUTORUN: 6576 err = 0; 6577 autostart_arrays(arg); 6578 goto out; 6579 #endif 6580 default:; 6581 } 6582 6583 /* 6584 * Commands creating/starting a new array: 6585 */ 6586 6587 mddev = bdev->bd_disk->private_data; 6588 6589 if (!mddev) { 6590 BUG(); 6591 goto out; 6592 } 6593 6594 /* Some actions do not requires the mutex */ 6595 switch (cmd) { 6596 case GET_ARRAY_INFO: 6597 if (!mddev->raid_disks && !mddev->external) 6598 err = -ENODEV; 6599 else 6600 err = get_array_info(mddev, argp); 6601 goto out; 6602 6603 case GET_DISK_INFO: 6604 if (!mddev->raid_disks && !mddev->external) 6605 err = -ENODEV; 6606 else 6607 err = get_disk_info(mddev, argp); 6608 goto out; 6609 6610 case SET_DISK_FAULTY: 6611 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6612 goto out; 6613 6614 case GET_BITMAP_FILE: 6615 err = get_bitmap_file(mddev, argp); 6616 goto out; 6617 6618 } 6619 6620 if (cmd == ADD_NEW_DISK) 6621 /* need to ensure md_delayed_delete() has completed */ 6622 flush_workqueue(md_misc_wq); 6623 6624 if (cmd == HOT_REMOVE_DISK) 6625 /* need to ensure recovery thread has run */ 6626 wait_event_interruptible_timeout(mddev->sb_wait, 6627 !test_bit(MD_RECOVERY_NEEDED, 6628 &mddev->flags), 6629 msecs_to_jiffies(5000)); 6630 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 6631 /* Need to flush page cache, and ensure no-one else opens 6632 * and writes 6633 */ 6634 mutex_lock(&mddev->open_mutex); 6635 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 6636 mutex_unlock(&mddev->open_mutex); 6637 err = -EBUSY; 6638 goto out; 6639 } 6640 set_bit(MD_STILL_CLOSED, &mddev->flags); 6641 mutex_unlock(&mddev->open_mutex); 6642 sync_blockdev(bdev); 6643 } 6644 err = mddev_lock(mddev); 6645 if (err) { 6646 printk(KERN_INFO 6647 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6648 err, cmd); 6649 goto out; 6650 } 6651 6652 if (cmd == SET_ARRAY_INFO) { 6653 mdu_array_info_t info; 6654 if (!arg) 6655 memset(&info, 0, sizeof(info)); 6656 else if (copy_from_user(&info, argp, sizeof(info))) { 6657 err = -EFAULT; 6658 goto unlock; 6659 } 6660 if (mddev->pers) { 6661 err = update_array_info(mddev, &info); 6662 if (err) { 6663 printk(KERN_WARNING "md: couldn't update" 6664 " array info. %d\n", err); 6665 goto unlock; 6666 } 6667 goto unlock; 6668 } 6669 if (!list_empty(&mddev->disks)) { 6670 printk(KERN_WARNING 6671 "md: array %s already has disks!\n", 6672 mdname(mddev)); 6673 err = -EBUSY; 6674 goto unlock; 6675 } 6676 if (mddev->raid_disks) { 6677 printk(KERN_WARNING 6678 "md: array %s already initialised!\n", 6679 mdname(mddev)); 6680 err = -EBUSY; 6681 goto unlock; 6682 } 6683 err = set_array_info(mddev, &info); 6684 if (err) { 6685 printk(KERN_WARNING "md: couldn't set" 6686 " array info. %d\n", err); 6687 goto unlock; 6688 } 6689 goto unlock; 6690 } 6691 6692 /* 6693 * Commands querying/configuring an existing array: 6694 */ 6695 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6696 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6697 if ((!mddev->raid_disks && !mddev->external) 6698 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6699 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6700 && cmd != GET_BITMAP_FILE) { 6701 err = -ENODEV; 6702 goto unlock; 6703 } 6704 6705 /* 6706 * Commands even a read-only array can execute: 6707 */ 6708 switch (cmd) { 6709 case RESTART_ARRAY_RW: 6710 err = restart_array(mddev); 6711 goto unlock; 6712 6713 case STOP_ARRAY: 6714 err = do_md_stop(mddev, 0, bdev); 6715 goto unlock; 6716 6717 case STOP_ARRAY_RO: 6718 err = md_set_readonly(mddev, bdev); 6719 goto unlock; 6720 6721 case HOT_REMOVE_DISK: 6722 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6723 goto unlock; 6724 6725 case ADD_NEW_DISK: 6726 /* We can support ADD_NEW_DISK on read-only arrays 6727 * on if we are re-adding a preexisting device. 6728 * So require mddev->pers and MD_DISK_SYNC. 6729 */ 6730 if (mddev->pers) { 6731 mdu_disk_info_t info; 6732 if (copy_from_user(&info, argp, sizeof(info))) 6733 err = -EFAULT; 6734 else if (!(info.state & (1<<MD_DISK_SYNC))) 6735 /* Need to clear read-only for this */ 6736 break; 6737 else 6738 err = add_new_disk(mddev, &info); 6739 goto unlock; 6740 } 6741 break; 6742 6743 case BLKROSET: 6744 if (get_user(ro, (int __user *)(arg))) { 6745 err = -EFAULT; 6746 goto unlock; 6747 } 6748 err = -EINVAL; 6749 6750 /* if the bdev is going readonly the value of mddev->ro 6751 * does not matter, no writes are coming 6752 */ 6753 if (ro) 6754 goto unlock; 6755 6756 /* are we are already prepared for writes? */ 6757 if (mddev->ro != 1) 6758 goto unlock; 6759 6760 /* transitioning to readauto need only happen for 6761 * arrays that call md_write_start 6762 */ 6763 if (mddev->pers) { 6764 err = restart_array(mddev); 6765 if (err == 0) { 6766 mddev->ro = 2; 6767 set_disk_ro(mddev->gendisk, 0); 6768 } 6769 } 6770 goto unlock; 6771 } 6772 6773 /* 6774 * The remaining ioctls are changing the state of the 6775 * superblock, so we do not allow them on read-only arrays. 6776 */ 6777 if (mddev->ro && mddev->pers) { 6778 if (mddev->ro == 2) { 6779 mddev->ro = 0; 6780 sysfs_notify_dirent_safe(mddev->sysfs_state); 6781 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6782 /* mddev_unlock will wake thread */ 6783 /* If a device failed while we were read-only, we 6784 * need to make sure the metadata is updated now. 6785 */ 6786 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 6787 mddev_unlock(mddev); 6788 wait_event(mddev->sb_wait, 6789 !test_bit(MD_CHANGE_DEVS, &mddev->flags) && 6790 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6791 mddev_lock_nointr(mddev); 6792 } 6793 } else { 6794 err = -EROFS; 6795 goto unlock; 6796 } 6797 } 6798 6799 switch (cmd) { 6800 case ADD_NEW_DISK: 6801 { 6802 mdu_disk_info_t info; 6803 if (copy_from_user(&info, argp, sizeof(info))) 6804 err = -EFAULT; 6805 else 6806 err = add_new_disk(mddev, &info); 6807 goto unlock; 6808 } 6809 6810 case CLUSTERED_DISK_NACK: 6811 if (mddev_is_clustered(mddev)) 6812 md_cluster_ops->new_disk_ack(mddev, false); 6813 else 6814 err = -EINVAL; 6815 goto unlock; 6816 6817 case HOT_ADD_DISK: 6818 err = hot_add_disk(mddev, new_decode_dev(arg)); 6819 goto unlock; 6820 6821 case RUN_ARRAY: 6822 err = do_md_run(mddev); 6823 goto unlock; 6824 6825 case SET_BITMAP_FILE: 6826 err = set_bitmap_file(mddev, (int)arg); 6827 goto unlock; 6828 6829 default: 6830 err = -EINVAL; 6831 goto unlock; 6832 } 6833 6834 unlock: 6835 if (mddev->hold_active == UNTIL_IOCTL && 6836 err != -EINVAL) 6837 mddev->hold_active = 0; 6838 mddev_unlock(mddev); 6839 out: 6840 return err; 6841 } 6842 #ifdef CONFIG_COMPAT 6843 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6844 unsigned int cmd, unsigned long arg) 6845 { 6846 switch (cmd) { 6847 case HOT_REMOVE_DISK: 6848 case HOT_ADD_DISK: 6849 case SET_DISK_FAULTY: 6850 case SET_BITMAP_FILE: 6851 /* These take in integer arg, do not convert */ 6852 break; 6853 default: 6854 arg = (unsigned long)compat_ptr(arg); 6855 break; 6856 } 6857 6858 return md_ioctl(bdev, mode, cmd, arg); 6859 } 6860 #endif /* CONFIG_COMPAT */ 6861 6862 static int md_open(struct block_device *bdev, fmode_t mode) 6863 { 6864 /* 6865 * Succeed if we can lock the mddev, which confirms that 6866 * it isn't being stopped right now. 6867 */ 6868 struct mddev *mddev = mddev_find(bdev->bd_dev); 6869 int err; 6870 6871 if (!mddev) 6872 return -ENODEV; 6873 6874 if (mddev->gendisk != bdev->bd_disk) { 6875 /* we are racing with mddev_put which is discarding this 6876 * bd_disk. 6877 */ 6878 mddev_put(mddev); 6879 /* Wait until bdev->bd_disk is definitely gone */ 6880 flush_workqueue(md_misc_wq); 6881 /* Then retry the open from the top */ 6882 return -ERESTARTSYS; 6883 } 6884 BUG_ON(mddev != bdev->bd_disk->private_data); 6885 6886 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6887 goto out; 6888 6889 err = 0; 6890 atomic_inc(&mddev->openers); 6891 clear_bit(MD_STILL_CLOSED, &mddev->flags); 6892 mutex_unlock(&mddev->open_mutex); 6893 6894 check_disk_change(bdev); 6895 out: 6896 return err; 6897 } 6898 6899 static void md_release(struct gendisk *disk, fmode_t mode) 6900 { 6901 struct mddev *mddev = disk->private_data; 6902 6903 BUG_ON(!mddev); 6904 atomic_dec(&mddev->openers); 6905 mddev_put(mddev); 6906 } 6907 6908 static int md_media_changed(struct gendisk *disk) 6909 { 6910 struct mddev *mddev = disk->private_data; 6911 6912 return mddev->changed; 6913 } 6914 6915 static int md_revalidate(struct gendisk *disk) 6916 { 6917 struct mddev *mddev = disk->private_data; 6918 6919 mddev->changed = 0; 6920 return 0; 6921 } 6922 static const struct block_device_operations md_fops = 6923 { 6924 .owner = THIS_MODULE, 6925 .open = md_open, 6926 .release = md_release, 6927 .ioctl = md_ioctl, 6928 #ifdef CONFIG_COMPAT 6929 .compat_ioctl = md_compat_ioctl, 6930 #endif 6931 .getgeo = md_getgeo, 6932 .media_changed = md_media_changed, 6933 .revalidate_disk= md_revalidate, 6934 }; 6935 6936 static int md_thread(void *arg) 6937 { 6938 struct md_thread *thread = arg; 6939 6940 /* 6941 * md_thread is a 'system-thread', it's priority should be very 6942 * high. We avoid resource deadlocks individually in each 6943 * raid personality. (RAID5 does preallocation) We also use RR and 6944 * the very same RT priority as kswapd, thus we will never get 6945 * into a priority inversion deadlock. 6946 * 6947 * we definitely have to have equal or higher priority than 6948 * bdflush, otherwise bdflush will deadlock if there are too 6949 * many dirty RAID5 blocks. 6950 */ 6951 6952 allow_signal(SIGKILL); 6953 while (!kthread_should_stop()) { 6954 6955 /* We need to wait INTERRUPTIBLE so that 6956 * we don't add to the load-average. 6957 * That means we need to be sure no signals are 6958 * pending 6959 */ 6960 if (signal_pending(current)) 6961 flush_signals(current); 6962 6963 wait_event_interruptible_timeout 6964 (thread->wqueue, 6965 test_bit(THREAD_WAKEUP, &thread->flags) 6966 || kthread_should_stop(), 6967 thread->timeout); 6968 6969 clear_bit(THREAD_WAKEUP, &thread->flags); 6970 if (!kthread_should_stop()) 6971 thread->run(thread); 6972 } 6973 6974 return 0; 6975 } 6976 6977 void md_wakeup_thread(struct md_thread *thread) 6978 { 6979 if (thread) { 6980 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6981 set_bit(THREAD_WAKEUP, &thread->flags); 6982 wake_up(&thread->wqueue); 6983 } 6984 } 6985 EXPORT_SYMBOL(md_wakeup_thread); 6986 6987 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 6988 struct mddev *mddev, const char *name) 6989 { 6990 struct md_thread *thread; 6991 6992 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6993 if (!thread) 6994 return NULL; 6995 6996 init_waitqueue_head(&thread->wqueue); 6997 6998 thread->run = run; 6999 thread->mddev = mddev; 7000 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7001 thread->tsk = kthread_run(md_thread, thread, 7002 "%s_%s", 7003 mdname(thread->mddev), 7004 name); 7005 if (IS_ERR(thread->tsk)) { 7006 kfree(thread); 7007 return NULL; 7008 } 7009 return thread; 7010 } 7011 EXPORT_SYMBOL(md_register_thread); 7012 7013 void md_unregister_thread(struct md_thread **threadp) 7014 { 7015 struct md_thread *thread = *threadp; 7016 if (!thread) 7017 return; 7018 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7019 /* Locking ensures that mddev_unlock does not wake_up a 7020 * non-existent thread 7021 */ 7022 spin_lock(&pers_lock); 7023 *threadp = NULL; 7024 spin_unlock(&pers_lock); 7025 7026 kthread_stop(thread->tsk); 7027 kfree(thread); 7028 } 7029 EXPORT_SYMBOL(md_unregister_thread); 7030 7031 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7032 { 7033 if (!rdev || test_bit(Faulty, &rdev->flags)) 7034 return; 7035 7036 if (!mddev->pers || !mddev->pers->error_handler) 7037 return; 7038 mddev->pers->error_handler(mddev,rdev); 7039 if (mddev->degraded) 7040 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7041 sysfs_notify_dirent_safe(rdev->sysfs_state); 7042 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7043 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7044 md_wakeup_thread(mddev->thread); 7045 if (mddev->event_work.func) 7046 queue_work(md_misc_wq, &mddev->event_work); 7047 md_new_event_inintr(mddev); 7048 } 7049 EXPORT_SYMBOL(md_error); 7050 7051 /* seq_file implementation /proc/mdstat */ 7052 7053 static void status_unused(struct seq_file *seq) 7054 { 7055 int i = 0; 7056 struct md_rdev *rdev; 7057 7058 seq_printf(seq, "unused devices: "); 7059 7060 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7061 char b[BDEVNAME_SIZE]; 7062 i++; 7063 seq_printf(seq, "%s ", 7064 bdevname(rdev->bdev,b)); 7065 } 7066 if (!i) 7067 seq_printf(seq, "<none>"); 7068 7069 seq_printf(seq, "\n"); 7070 } 7071 7072 static void status_resync(struct seq_file *seq, struct mddev *mddev) 7073 { 7074 sector_t max_sectors, resync, res; 7075 unsigned long dt, db; 7076 sector_t rt; 7077 int scale; 7078 unsigned int per_milli; 7079 7080 if (mddev->curr_resync <= 3) 7081 resync = 0; 7082 else 7083 resync = mddev->curr_resync 7084 - atomic_read(&mddev->recovery_active); 7085 7086 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7087 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7088 max_sectors = mddev->resync_max_sectors; 7089 else 7090 max_sectors = mddev->dev_sectors; 7091 7092 WARN_ON(max_sectors == 0); 7093 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7094 * in a sector_t, and (max_sectors>>scale) will fit in a 7095 * u32, as those are the requirements for sector_div. 7096 * Thus 'scale' must be at least 10 7097 */ 7098 scale = 10; 7099 if (sizeof(sector_t) > sizeof(unsigned long)) { 7100 while ( max_sectors/2 > (1ULL<<(scale+32))) 7101 scale++; 7102 } 7103 res = (resync>>scale)*1000; 7104 sector_div(res, (u32)((max_sectors>>scale)+1)); 7105 7106 per_milli = res; 7107 { 7108 int i, x = per_milli/50, y = 20-x; 7109 seq_printf(seq, "["); 7110 for (i = 0; i < x; i++) 7111 seq_printf(seq, "="); 7112 seq_printf(seq, ">"); 7113 for (i = 0; i < y; i++) 7114 seq_printf(seq, "."); 7115 seq_printf(seq, "] "); 7116 } 7117 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7118 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7119 "reshape" : 7120 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7121 "check" : 7122 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7123 "resync" : "recovery"))), 7124 per_milli/10, per_milli % 10, 7125 (unsigned long long) resync/2, 7126 (unsigned long long) max_sectors/2); 7127 7128 /* 7129 * dt: time from mark until now 7130 * db: blocks written from mark until now 7131 * rt: remaining time 7132 * 7133 * rt is a sector_t, so could be 32bit or 64bit. 7134 * So we divide before multiply in case it is 32bit and close 7135 * to the limit. 7136 * We scale the divisor (db) by 32 to avoid losing precision 7137 * near the end of resync when the number of remaining sectors 7138 * is close to 'db'. 7139 * We then divide rt by 32 after multiplying by db to compensate. 7140 * The '+1' avoids division by zero if db is very small. 7141 */ 7142 dt = ((jiffies - mddev->resync_mark) / HZ); 7143 if (!dt) dt++; 7144 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7145 - mddev->resync_mark_cnt; 7146 7147 rt = max_sectors - resync; /* number of remaining sectors */ 7148 sector_div(rt, db/32+1); 7149 rt *= dt; 7150 rt >>= 5; 7151 7152 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7153 ((unsigned long)rt % 60)/6); 7154 7155 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7156 } 7157 7158 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7159 { 7160 struct list_head *tmp; 7161 loff_t l = *pos; 7162 struct mddev *mddev; 7163 7164 if (l >= 0x10000) 7165 return NULL; 7166 if (!l--) 7167 /* header */ 7168 return (void*)1; 7169 7170 spin_lock(&all_mddevs_lock); 7171 list_for_each(tmp,&all_mddevs) 7172 if (!l--) { 7173 mddev = list_entry(tmp, struct mddev, all_mddevs); 7174 mddev_get(mddev); 7175 spin_unlock(&all_mddevs_lock); 7176 return mddev; 7177 } 7178 spin_unlock(&all_mddevs_lock); 7179 if (!l--) 7180 return (void*)2;/* tail */ 7181 return NULL; 7182 } 7183 7184 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7185 { 7186 struct list_head *tmp; 7187 struct mddev *next_mddev, *mddev = v; 7188 7189 ++*pos; 7190 if (v == (void*)2) 7191 return NULL; 7192 7193 spin_lock(&all_mddevs_lock); 7194 if (v == (void*)1) 7195 tmp = all_mddevs.next; 7196 else 7197 tmp = mddev->all_mddevs.next; 7198 if (tmp != &all_mddevs) 7199 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7200 else { 7201 next_mddev = (void*)2; 7202 *pos = 0x10000; 7203 } 7204 spin_unlock(&all_mddevs_lock); 7205 7206 if (v != (void*)1) 7207 mddev_put(mddev); 7208 return next_mddev; 7209 7210 } 7211 7212 static void md_seq_stop(struct seq_file *seq, void *v) 7213 { 7214 struct mddev *mddev = v; 7215 7216 if (mddev && v != (void*)1 && v != (void*)2) 7217 mddev_put(mddev); 7218 } 7219 7220 static int md_seq_show(struct seq_file *seq, void *v) 7221 { 7222 struct mddev *mddev = v; 7223 sector_t sectors; 7224 struct md_rdev *rdev; 7225 7226 if (v == (void*)1) { 7227 struct md_personality *pers; 7228 seq_printf(seq, "Personalities : "); 7229 spin_lock(&pers_lock); 7230 list_for_each_entry(pers, &pers_list, list) 7231 seq_printf(seq, "[%s] ", pers->name); 7232 7233 spin_unlock(&pers_lock); 7234 seq_printf(seq, "\n"); 7235 seq->poll_event = atomic_read(&md_event_count); 7236 return 0; 7237 } 7238 if (v == (void*)2) { 7239 status_unused(seq); 7240 return 0; 7241 } 7242 7243 spin_lock(&mddev->lock); 7244 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7245 seq_printf(seq, "%s : %sactive", mdname(mddev), 7246 mddev->pers ? "" : "in"); 7247 if (mddev->pers) { 7248 if (mddev->ro==1) 7249 seq_printf(seq, " (read-only)"); 7250 if (mddev->ro==2) 7251 seq_printf(seq, " (auto-read-only)"); 7252 seq_printf(seq, " %s", mddev->pers->name); 7253 } 7254 7255 sectors = 0; 7256 rcu_read_lock(); 7257 rdev_for_each_rcu(rdev, mddev) { 7258 char b[BDEVNAME_SIZE]; 7259 seq_printf(seq, " %s[%d]", 7260 bdevname(rdev->bdev,b), rdev->desc_nr); 7261 if (test_bit(WriteMostly, &rdev->flags)) 7262 seq_printf(seq, "(W)"); 7263 if (test_bit(Faulty, &rdev->flags)) { 7264 seq_printf(seq, "(F)"); 7265 continue; 7266 } 7267 if (rdev->raid_disk < 0) 7268 seq_printf(seq, "(S)"); /* spare */ 7269 if (test_bit(Replacement, &rdev->flags)) 7270 seq_printf(seq, "(R)"); 7271 sectors += rdev->sectors; 7272 } 7273 rcu_read_unlock(); 7274 7275 if (!list_empty(&mddev->disks)) { 7276 if (mddev->pers) 7277 seq_printf(seq, "\n %llu blocks", 7278 (unsigned long long) 7279 mddev->array_sectors / 2); 7280 else 7281 seq_printf(seq, "\n %llu blocks", 7282 (unsigned long long)sectors / 2); 7283 } 7284 if (mddev->persistent) { 7285 if (mddev->major_version != 0 || 7286 mddev->minor_version != 90) { 7287 seq_printf(seq," super %d.%d", 7288 mddev->major_version, 7289 mddev->minor_version); 7290 } 7291 } else if (mddev->external) 7292 seq_printf(seq, " super external:%s", 7293 mddev->metadata_type); 7294 else 7295 seq_printf(seq, " super non-persistent"); 7296 7297 if (mddev->pers) { 7298 mddev->pers->status(seq, mddev); 7299 seq_printf(seq, "\n "); 7300 if (mddev->pers->sync_request) { 7301 if (mddev->curr_resync > 2) { 7302 status_resync(seq, mddev); 7303 seq_printf(seq, "\n "); 7304 } else if (mddev->curr_resync >= 1) 7305 seq_printf(seq, "\tresync=DELAYED\n "); 7306 else if (mddev->recovery_cp < MaxSector) 7307 seq_printf(seq, "\tresync=PENDING\n "); 7308 } 7309 } else 7310 seq_printf(seq, "\n "); 7311 7312 bitmap_status(seq, mddev->bitmap); 7313 7314 seq_printf(seq, "\n"); 7315 } 7316 spin_unlock(&mddev->lock); 7317 7318 return 0; 7319 } 7320 7321 static const struct seq_operations md_seq_ops = { 7322 .start = md_seq_start, 7323 .next = md_seq_next, 7324 .stop = md_seq_stop, 7325 .show = md_seq_show, 7326 }; 7327 7328 static int md_seq_open(struct inode *inode, struct file *file) 7329 { 7330 struct seq_file *seq; 7331 int error; 7332 7333 error = seq_open(file, &md_seq_ops); 7334 if (error) 7335 return error; 7336 7337 seq = file->private_data; 7338 seq->poll_event = atomic_read(&md_event_count); 7339 return error; 7340 } 7341 7342 static int md_unloading; 7343 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7344 { 7345 struct seq_file *seq = filp->private_data; 7346 int mask; 7347 7348 if (md_unloading) 7349 return POLLIN|POLLRDNORM|POLLERR|POLLPRI; 7350 poll_wait(filp, &md_event_waiters, wait); 7351 7352 /* always allow read */ 7353 mask = POLLIN | POLLRDNORM; 7354 7355 if (seq->poll_event != atomic_read(&md_event_count)) 7356 mask |= POLLERR | POLLPRI; 7357 return mask; 7358 } 7359 7360 static const struct file_operations md_seq_fops = { 7361 .owner = THIS_MODULE, 7362 .open = md_seq_open, 7363 .read = seq_read, 7364 .llseek = seq_lseek, 7365 .release = seq_release_private, 7366 .poll = mdstat_poll, 7367 }; 7368 7369 int register_md_personality(struct md_personality *p) 7370 { 7371 printk(KERN_INFO "md: %s personality registered for level %d\n", 7372 p->name, p->level); 7373 spin_lock(&pers_lock); 7374 list_add_tail(&p->list, &pers_list); 7375 spin_unlock(&pers_lock); 7376 return 0; 7377 } 7378 EXPORT_SYMBOL(register_md_personality); 7379 7380 int unregister_md_personality(struct md_personality *p) 7381 { 7382 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7383 spin_lock(&pers_lock); 7384 list_del_init(&p->list); 7385 spin_unlock(&pers_lock); 7386 return 0; 7387 } 7388 EXPORT_SYMBOL(unregister_md_personality); 7389 7390 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module) 7391 { 7392 if (md_cluster_ops != NULL) 7393 return -EALREADY; 7394 spin_lock(&pers_lock); 7395 md_cluster_ops = ops; 7396 md_cluster_mod = module; 7397 spin_unlock(&pers_lock); 7398 return 0; 7399 } 7400 EXPORT_SYMBOL(register_md_cluster_operations); 7401 7402 int unregister_md_cluster_operations(void) 7403 { 7404 spin_lock(&pers_lock); 7405 md_cluster_ops = NULL; 7406 spin_unlock(&pers_lock); 7407 return 0; 7408 } 7409 EXPORT_SYMBOL(unregister_md_cluster_operations); 7410 7411 int md_setup_cluster(struct mddev *mddev, int nodes) 7412 { 7413 int err; 7414 7415 err = request_module("md-cluster"); 7416 if (err) { 7417 pr_err("md-cluster module not found.\n"); 7418 return -ENOENT; 7419 } 7420 7421 spin_lock(&pers_lock); 7422 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 7423 spin_unlock(&pers_lock); 7424 return -ENOENT; 7425 } 7426 spin_unlock(&pers_lock); 7427 7428 return md_cluster_ops->join(mddev, nodes); 7429 } 7430 7431 void md_cluster_stop(struct mddev *mddev) 7432 { 7433 if (!md_cluster_ops) 7434 return; 7435 md_cluster_ops->leave(mddev); 7436 module_put(md_cluster_mod); 7437 } 7438 7439 static int is_mddev_idle(struct mddev *mddev, int init) 7440 { 7441 struct md_rdev *rdev; 7442 int idle; 7443 int curr_events; 7444 7445 idle = 1; 7446 rcu_read_lock(); 7447 rdev_for_each_rcu(rdev, mddev) { 7448 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7449 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7450 (int)part_stat_read(&disk->part0, sectors[1]) - 7451 atomic_read(&disk->sync_io); 7452 /* sync IO will cause sync_io to increase before the disk_stats 7453 * as sync_io is counted when a request starts, and 7454 * disk_stats is counted when it completes. 7455 * So resync activity will cause curr_events to be smaller than 7456 * when there was no such activity. 7457 * non-sync IO will cause disk_stat to increase without 7458 * increasing sync_io so curr_events will (eventually) 7459 * be larger than it was before. Once it becomes 7460 * substantially larger, the test below will cause 7461 * the array to appear non-idle, and resync will slow 7462 * down. 7463 * If there is a lot of outstanding resync activity when 7464 * we set last_event to curr_events, then all that activity 7465 * completing might cause the array to appear non-idle 7466 * and resync will be slowed down even though there might 7467 * not have been non-resync activity. This will only 7468 * happen once though. 'last_events' will soon reflect 7469 * the state where there is little or no outstanding 7470 * resync requests, and further resync activity will 7471 * always make curr_events less than last_events. 7472 * 7473 */ 7474 if (init || curr_events - rdev->last_events > 64) { 7475 rdev->last_events = curr_events; 7476 idle = 0; 7477 } 7478 } 7479 rcu_read_unlock(); 7480 return idle; 7481 } 7482 7483 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7484 { 7485 /* another "blocks" (512byte) blocks have been synced */ 7486 atomic_sub(blocks, &mddev->recovery_active); 7487 wake_up(&mddev->recovery_wait); 7488 if (!ok) { 7489 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7490 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 7491 md_wakeup_thread(mddev->thread); 7492 // stop recovery, signal do_sync .... 7493 } 7494 } 7495 EXPORT_SYMBOL(md_done_sync); 7496 7497 /* md_write_start(mddev, bi) 7498 * If we need to update some array metadata (e.g. 'active' flag 7499 * in superblock) before writing, schedule a superblock update 7500 * and wait for it to complete. 7501 */ 7502 void md_write_start(struct mddev *mddev, struct bio *bi) 7503 { 7504 int did_change = 0; 7505 if (bio_data_dir(bi) != WRITE) 7506 return; 7507 7508 BUG_ON(mddev->ro == 1); 7509 if (mddev->ro == 2) { 7510 /* need to switch to read/write */ 7511 mddev->ro = 0; 7512 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7513 md_wakeup_thread(mddev->thread); 7514 md_wakeup_thread(mddev->sync_thread); 7515 did_change = 1; 7516 } 7517 atomic_inc(&mddev->writes_pending); 7518 if (mddev->safemode == 1) 7519 mddev->safemode = 0; 7520 if (mddev->in_sync) { 7521 spin_lock(&mddev->lock); 7522 if (mddev->in_sync) { 7523 mddev->in_sync = 0; 7524 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7525 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7526 md_wakeup_thread(mddev->thread); 7527 did_change = 1; 7528 } 7529 spin_unlock(&mddev->lock); 7530 } 7531 if (did_change) 7532 sysfs_notify_dirent_safe(mddev->sysfs_state); 7533 wait_event(mddev->sb_wait, 7534 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7535 } 7536 EXPORT_SYMBOL(md_write_start); 7537 7538 void md_write_end(struct mddev *mddev) 7539 { 7540 if (atomic_dec_and_test(&mddev->writes_pending)) { 7541 if (mddev->safemode == 2) 7542 md_wakeup_thread(mddev->thread); 7543 else if (mddev->safemode_delay) 7544 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7545 } 7546 } 7547 EXPORT_SYMBOL(md_write_end); 7548 7549 /* md_allow_write(mddev) 7550 * Calling this ensures that the array is marked 'active' so that writes 7551 * may proceed without blocking. It is important to call this before 7552 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7553 * Must be called with mddev_lock held. 7554 * 7555 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7556 * is dropped, so return -EAGAIN after notifying userspace. 7557 */ 7558 int md_allow_write(struct mddev *mddev) 7559 { 7560 if (!mddev->pers) 7561 return 0; 7562 if (mddev->ro) 7563 return 0; 7564 if (!mddev->pers->sync_request) 7565 return 0; 7566 7567 spin_lock(&mddev->lock); 7568 if (mddev->in_sync) { 7569 mddev->in_sync = 0; 7570 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7571 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7572 if (mddev->safemode_delay && 7573 mddev->safemode == 0) 7574 mddev->safemode = 1; 7575 spin_unlock(&mddev->lock); 7576 if (mddev_is_clustered(mddev)) 7577 md_cluster_ops->metadata_update_start(mddev); 7578 md_update_sb(mddev, 0); 7579 if (mddev_is_clustered(mddev)) 7580 md_cluster_ops->metadata_update_finish(mddev); 7581 sysfs_notify_dirent_safe(mddev->sysfs_state); 7582 } else 7583 spin_unlock(&mddev->lock); 7584 7585 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7586 return -EAGAIN; 7587 else 7588 return 0; 7589 } 7590 EXPORT_SYMBOL_GPL(md_allow_write); 7591 7592 #define SYNC_MARKS 10 7593 #define SYNC_MARK_STEP (3*HZ) 7594 #define UPDATE_FREQUENCY (5*60*HZ) 7595 void md_do_sync(struct md_thread *thread) 7596 { 7597 struct mddev *mddev = thread->mddev; 7598 struct mddev *mddev2; 7599 unsigned int currspeed = 0, 7600 window; 7601 sector_t max_sectors,j, io_sectors, recovery_done; 7602 unsigned long mark[SYNC_MARKS]; 7603 unsigned long update_time; 7604 sector_t mark_cnt[SYNC_MARKS]; 7605 int last_mark,m; 7606 struct list_head *tmp; 7607 sector_t last_check; 7608 int skipped = 0; 7609 struct md_rdev *rdev; 7610 char *desc, *action = NULL; 7611 struct blk_plug plug; 7612 7613 /* just incase thread restarts... */ 7614 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7615 return; 7616 if (mddev->ro) {/* never try to sync a read-only array */ 7617 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7618 return; 7619 } 7620 7621 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7622 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 7623 desc = "data-check"; 7624 action = "check"; 7625 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7626 desc = "requested-resync"; 7627 action = "repair"; 7628 } else 7629 desc = "resync"; 7630 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7631 desc = "reshape"; 7632 else 7633 desc = "recovery"; 7634 7635 mddev->last_sync_action = action ?: desc; 7636 7637 /* we overload curr_resync somewhat here. 7638 * 0 == not engaged in resync at all 7639 * 2 == checking that there is no conflict with another sync 7640 * 1 == like 2, but have yielded to allow conflicting resync to 7641 * commense 7642 * other == active in resync - this many blocks 7643 * 7644 * Before starting a resync we must have set curr_resync to 7645 * 2, and then checked that every "conflicting" array has curr_resync 7646 * less than ours. When we find one that is the same or higher 7647 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7648 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7649 * This will mean we have to start checking from the beginning again. 7650 * 7651 */ 7652 7653 do { 7654 mddev->curr_resync = 2; 7655 7656 try_again: 7657 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7658 goto skip; 7659 for_each_mddev(mddev2, tmp) { 7660 if (mddev2 == mddev) 7661 continue; 7662 if (!mddev->parallel_resync 7663 && mddev2->curr_resync 7664 && match_mddev_units(mddev, mddev2)) { 7665 DEFINE_WAIT(wq); 7666 if (mddev < mddev2 && mddev->curr_resync == 2) { 7667 /* arbitrarily yield */ 7668 mddev->curr_resync = 1; 7669 wake_up(&resync_wait); 7670 } 7671 if (mddev > mddev2 && mddev->curr_resync == 1) 7672 /* no need to wait here, we can wait the next 7673 * time 'round when curr_resync == 2 7674 */ 7675 continue; 7676 /* We need to wait 'interruptible' so as not to 7677 * contribute to the load average, and not to 7678 * be caught by 'softlockup' 7679 */ 7680 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7681 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7682 mddev2->curr_resync >= mddev->curr_resync) { 7683 printk(KERN_INFO "md: delaying %s of %s" 7684 " until %s has finished (they" 7685 " share one or more physical units)\n", 7686 desc, mdname(mddev), mdname(mddev2)); 7687 mddev_put(mddev2); 7688 if (signal_pending(current)) 7689 flush_signals(current); 7690 schedule(); 7691 finish_wait(&resync_wait, &wq); 7692 goto try_again; 7693 } 7694 finish_wait(&resync_wait, &wq); 7695 } 7696 } 7697 } while (mddev->curr_resync < 2); 7698 7699 j = 0; 7700 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7701 /* resync follows the size requested by the personality, 7702 * which defaults to physical size, but can be virtual size 7703 */ 7704 max_sectors = mddev->resync_max_sectors; 7705 atomic64_set(&mddev->resync_mismatches, 0); 7706 /* we don't use the checkpoint if there's a bitmap */ 7707 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7708 j = mddev->resync_min; 7709 else if (!mddev->bitmap) 7710 j = mddev->recovery_cp; 7711 7712 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7713 max_sectors = mddev->resync_max_sectors; 7714 else { 7715 /* recovery follows the physical size of devices */ 7716 max_sectors = mddev->dev_sectors; 7717 j = MaxSector; 7718 rcu_read_lock(); 7719 rdev_for_each_rcu(rdev, mddev) 7720 if (rdev->raid_disk >= 0 && 7721 !test_bit(Faulty, &rdev->flags) && 7722 !test_bit(In_sync, &rdev->flags) && 7723 rdev->recovery_offset < j) 7724 j = rdev->recovery_offset; 7725 rcu_read_unlock(); 7726 7727 /* If there is a bitmap, we need to make sure all 7728 * writes that started before we added a spare 7729 * complete before we start doing a recovery. 7730 * Otherwise the write might complete and (via 7731 * bitmap_endwrite) set a bit in the bitmap after the 7732 * recovery has checked that bit and skipped that 7733 * region. 7734 */ 7735 if (mddev->bitmap) { 7736 mddev->pers->quiesce(mddev, 1); 7737 mddev->pers->quiesce(mddev, 0); 7738 } 7739 } 7740 7741 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7742 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7743 " %d KB/sec/disk.\n", speed_min(mddev)); 7744 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7745 "(but not more than %d KB/sec) for %s.\n", 7746 speed_max(mddev), desc); 7747 7748 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7749 7750 io_sectors = 0; 7751 for (m = 0; m < SYNC_MARKS; m++) { 7752 mark[m] = jiffies; 7753 mark_cnt[m] = io_sectors; 7754 } 7755 last_mark = 0; 7756 mddev->resync_mark = mark[last_mark]; 7757 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7758 7759 /* 7760 * Tune reconstruction: 7761 */ 7762 window = 32*(PAGE_SIZE/512); 7763 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7764 window/2, (unsigned long long)max_sectors/2); 7765 7766 atomic_set(&mddev->recovery_active, 0); 7767 last_check = 0; 7768 7769 if (j>2) { 7770 printk(KERN_INFO 7771 "md: resuming %s of %s from checkpoint.\n", 7772 desc, mdname(mddev)); 7773 mddev->curr_resync = j; 7774 } else 7775 mddev->curr_resync = 3; /* no longer delayed */ 7776 mddev->curr_resync_completed = j; 7777 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7778 md_new_event(mddev); 7779 update_time = jiffies; 7780 7781 if (mddev_is_clustered(mddev)) 7782 md_cluster_ops->resync_start(mddev, j, max_sectors); 7783 7784 blk_start_plug(&plug); 7785 while (j < max_sectors) { 7786 sector_t sectors; 7787 7788 skipped = 0; 7789 7790 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7791 ((mddev->curr_resync > mddev->curr_resync_completed && 7792 (mddev->curr_resync - mddev->curr_resync_completed) 7793 > (max_sectors >> 4)) || 7794 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 7795 (j - mddev->curr_resync_completed)*2 7796 >= mddev->resync_max - mddev->curr_resync_completed 7797 )) { 7798 /* time to update curr_resync_completed */ 7799 wait_event(mddev->recovery_wait, 7800 atomic_read(&mddev->recovery_active) == 0); 7801 mddev->curr_resync_completed = j; 7802 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 7803 j > mddev->recovery_cp) 7804 mddev->recovery_cp = j; 7805 update_time = jiffies; 7806 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7807 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7808 } 7809 7810 while (j >= mddev->resync_max && 7811 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7812 /* As this condition is controlled by user-space, 7813 * we can block indefinitely, so use '_interruptible' 7814 * to avoid triggering warnings. 7815 */ 7816 flush_signals(current); /* just in case */ 7817 wait_event_interruptible(mddev->recovery_wait, 7818 mddev->resync_max > j 7819 || test_bit(MD_RECOVERY_INTR, 7820 &mddev->recovery)); 7821 } 7822 7823 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7824 break; 7825 7826 sectors = mddev->pers->sync_request(mddev, j, &skipped); 7827 if (sectors == 0) { 7828 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7829 break; 7830 } 7831 7832 if (!skipped) { /* actual IO requested */ 7833 io_sectors += sectors; 7834 atomic_add(sectors, &mddev->recovery_active); 7835 } 7836 7837 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7838 break; 7839 7840 j += sectors; 7841 if (j > 2) 7842 mddev->curr_resync = j; 7843 if (mddev_is_clustered(mddev)) 7844 md_cluster_ops->resync_info_update(mddev, j, max_sectors); 7845 mddev->curr_mark_cnt = io_sectors; 7846 if (last_check == 0) 7847 /* this is the earliest that rebuild will be 7848 * visible in /proc/mdstat 7849 */ 7850 md_new_event(mddev); 7851 7852 if (last_check + window > io_sectors || j == max_sectors) 7853 continue; 7854 7855 last_check = io_sectors; 7856 repeat: 7857 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7858 /* step marks */ 7859 int next = (last_mark+1) % SYNC_MARKS; 7860 7861 mddev->resync_mark = mark[next]; 7862 mddev->resync_mark_cnt = mark_cnt[next]; 7863 mark[next] = jiffies; 7864 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7865 last_mark = next; 7866 } 7867 7868 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7869 break; 7870 7871 /* 7872 * this loop exits only if either when we are slower than 7873 * the 'hard' speed limit, or the system was IO-idle for 7874 * a jiffy. 7875 * the system might be non-idle CPU-wise, but we only care 7876 * about not overloading the IO subsystem. (things like an 7877 * e2fsck being done on the RAID array should execute fast) 7878 */ 7879 cond_resched(); 7880 7881 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 7882 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 7883 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7884 7885 if (currspeed > speed_min(mddev)) { 7886 if (currspeed > speed_max(mddev)) { 7887 msleep(500); 7888 goto repeat; 7889 } 7890 if (!is_mddev_idle(mddev, 0)) { 7891 /* 7892 * Give other IO more of a chance. 7893 * The faster the devices, the less we wait. 7894 */ 7895 wait_event(mddev->recovery_wait, 7896 !atomic_read(&mddev->recovery_active)); 7897 } 7898 } 7899 } 7900 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc, 7901 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 7902 ? "interrupted" : "done"); 7903 /* 7904 * this also signals 'finished resyncing' to md_stop 7905 */ 7906 blk_finish_plug(&plug); 7907 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7908 7909 /* tell personality that we are finished */ 7910 mddev->pers->sync_request(mddev, max_sectors, &skipped); 7911 7912 if (mddev_is_clustered(mddev)) 7913 md_cluster_ops->resync_finish(mddev); 7914 7915 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7916 mddev->curr_resync > 2) { 7917 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7918 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7919 if (mddev->curr_resync >= mddev->recovery_cp) { 7920 printk(KERN_INFO 7921 "md: checkpointing %s of %s.\n", 7922 desc, mdname(mddev)); 7923 if (test_bit(MD_RECOVERY_ERROR, 7924 &mddev->recovery)) 7925 mddev->recovery_cp = 7926 mddev->curr_resync_completed; 7927 else 7928 mddev->recovery_cp = 7929 mddev->curr_resync; 7930 } 7931 } else 7932 mddev->recovery_cp = MaxSector; 7933 } else { 7934 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7935 mddev->curr_resync = MaxSector; 7936 rcu_read_lock(); 7937 rdev_for_each_rcu(rdev, mddev) 7938 if (rdev->raid_disk >= 0 && 7939 mddev->delta_disks >= 0 && 7940 !test_bit(Faulty, &rdev->flags) && 7941 !test_bit(In_sync, &rdev->flags) && 7942 rdev->recovery_offset < mddev->curr_resync) 7943 rdev->recovery_offset = mddev->curr_resync; 7944 rcu_read_unlock(); 7945 } 7946 } 7947 skip: 7948 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7949 7950 spin_lock(&mddev->lock); 7951 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7952 /* We completed so min/max setting can be forgotten if used. */ 7953 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7954 mddev->resync_min = 0; 7955 mddev->resync_max = MaxSector; 7956 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7957 mddev->resync_min = mddev->curr_resync_completed; 7958 mddev->curr_resync = 0; 7959 spin_unlock(&mddev->lock); 7960 7961 wake_up(&resync_wait); 7962 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7963 md_wakeup_thread(mddev->thread); 7964 return; 7965 } 7966 EXPORT_SYMBOL_GPL(md_do_sync); 7967 7968 static int remove_and_add_spares(struct mddev *mddev, 7969 struct md_rdev *this) 7970 { 7971 struct md_rdev *rdev; 7972 int spares = 0; 7973 int removed = 0; 7974 7975 rdev_for_each(rdev, mddev) 7976 if ((this == NULL || rdev == this) && 7977 rdev->raid_disk >= 0 && 7978 !test_bit(Blocked, &rdev->flags) && 7979 (test_bit(Faulty, &rdev->flags) || 7980 ! test_bit(In_sync, &rdev->flags)) && 7981 atomic_read(&rdev->nr_pending)==0) { 7982 if (mddev->pers->hot_remove_disk( 7983 mddev, rdev) == 0) { 7984 sysfs_unlink_rdev(mddev, rdev); 7985 rdev->raid_disk = -1; 7986 removed++; 7987 } 7988 } 7989 if (removed && mddev->kobj.sd) 7990 sysfs_notify(&mddev->kobj, NULL, "degraded"); 7991 7992 if (this) 7993 goto no_add; 7994 7995 rdev_for_each(rdev, mddev) { 7996 if (rdev->raid_disk >= 0 && 7997 !test_bit(In_sync, &rdev->flags) && 7998 !test_bit(Faulty, &rdev->flags)) 7999 spares++; 8000 if (rdev->raid_disk >= 0) 8001 continue; 8002 if (test_bit(Faulty, &rdev->flags)) 8003 continue; 8004 if (mddev->ro && 8005 ! (rdev->saved_raid_disk >= 0 && 8006 !test_bit(Bitmap_sync, &rdev->flags))) 8007 continue; 8008 8009 if (rdev->saved_raid_disk < 0) 8010 rdev->recovery_offset = 0; 8011 if (mddev->pers-> 8012 hot_add_disk(mddev, rdev) == 0) { 8013 if (sysfs_link_rdev(mddev, rdev)) 8014 /* failure here is OK */; 8015 spares++; 8016 md_new_event(mddev); 8017 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8018 } 8019 } 8020 no_add: 8021 if (removed) 8022 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8023 return spares; 8024 } 8025 8026 static void md_start_sync(struct work_struct *ws) 8027 { 8028 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8029 8030 mddev->sync_thread = md_register_thread(md_do_sync, 8031 mddev, 8032 "resync"); 8033 if (!mddev->sync_thread) { 8034 printk(KERN_ERR "%s: could not start resync" 8035 " thread...\n", 8036 mdname(mddev)); 8037 /* leave the spares where they are, it shouldn't hurt */ 8038 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8039 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8040 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8041 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8042 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8043 wake_up(&resync_wait); 8044 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8045 &mddev->recovery)) 8046 if (mddev->sysfs_action) 8047 sysfs_notify_dirent_safe(mddev->sysfs_action); 8048 } else 8049 md_wakeup_thread(mddev->sync_thread); 8050 sysfs_notify_dirent_safe(mddev->sysfs_action); 8051 md_new_event(mddev); 8052 } 8053 8054 /* 8055 * This routine is regularly called by all per-raid-array threads to 8056 * deal with generic issues like resync and super-block update. 8057 * Raid personalities that don't have a thread (linear/raid0) do not 8058 * need this as they never do any recovery or update the superblock. 8059 * 8060 * It does not do any resync itself, but rather "forks" off other threads 8061 * to do that as needed. 8062 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8063 * "->recovery" and create a thread at ->sync_thread. 8064 * When the thread finishes it sets MD_RECOVERY_DONE 8065 * and wakeups up this thread which will reap the thread and finish up. 8066 * This thread also removes any faulty devices (with nr_pending == 0). 8067 * 8068 * The overall approach is: 8069 * 1/ if the superblock needs updating, update it. 8070 * 2/ If a recovery thread is running, don't do anything else. 8071 * 3/ If recovery has finished, clean up, possibly marking spares active. 8072 * 4/ If there are any faulty devices, remove them. 8073 * 5/ If array is degraded, try to add spares devices 8074 * 6/ If array has spares or is not in-sync, start a resync thread. 8075 */ 8076 void md_check_recovery(struct mddev *mddev) 8077 { 8078 if (mddev->suspended) 8079 return; 8080 8081 if (mddev->bitmap) 8082 bitmap_daemon_work(mddev); 8083 8084 if (signal_pending(current)) { 8085 if (mddev->pers->sync_request && !mddev->external) { 8086 printk(KERN_INFO "md: %s in immediate safe mode\n", 8087 mdname(mddev)); 8088 mddev->safemode = 2; 8089 } 8090 flush_signals(current); 8091 } 8092 8093 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8094 return; 8095 if ( ! ( 8096 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) || 8097 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8098 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8099 (mddev->external == 0 && mddev->safemode == 1) || 8100 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 8101 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8102 )) 8103 return; 8104 8105 if (mddev_trylock(mddev)) { 8106 int spares = 0; 8107 8108 if (mddev->ro) { 8109 struct md_rdev *rdev; 8110 if (!mddev->external && mddev->in_sync) 8111 /* 'Blocked' flag not needed as failed devices 8112 * will be recorded if array switched to read/write. 8113 * Leaving it set will prevent the device 8114 * from being removed. 8115 */ 8116 rdev_for_each(rdev, mddev) 8117 clear_bit(Blocked, &rdev->flags); 8118 /* On a read-only array we can: 8119 * - remove failed devices 8120 * - add already-in_sync devices if the array itself 8121 * is in-sync. 8122 * As we only add devices that are already in-sync, 8123 * we can activate the spares immediately. 8124 */ 8125 remove_and_add_spares(mddev, NULL); 8126 /* There is no thread, but we need to call 8127 * ->spare_active and clear saved_raid_disk 8128 */ 8129 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8130 md_reap_sync_thread(mddev); 8131 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8132 goto unlock; 8133 } 8134 8135 if (!mddev->external) { 8136 int did_change = 0; 8137 spin_lock(&mddev->lock); 8138 if (mddev->safemode && 8139 !atomic_read(&mddev->writes_pending) && 8140 !mddev->in_sync && 8141 mddev->recovery_cp == MaxSector) { 8142 mddev->in_sync = 1; 8143 did_change = 1; 8144 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 8145 } 8146 if (mddev->safemode == 1) 8147 mddev->safemode = 0; 8148 spin_unlock(&mddev->lock); 8149 if (did_change) 8150 sysfs_notify_dirent_safe(mddev->sysfs_state); 8151 } 8152 8153 if (mddev->flags & MD_UPDATE_SB_FLAGS) { 8154 if (mddev_is_clustered(mddev)) 8155 md_cluster_ops->metadata_update_start(mddev); 8156 md_update_sb(mddev, 0); 8157 if (mddev_is_clustered(mddev)) 8158 md_cluster_ops->metadata_update_finish(mddev); 8159 } 8160 8161 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8162 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8163 /* resync/recovery still happening */ 8164 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8165 goto unlock; 8166 } 8167 if (mddev->sync_thread) { 8168 md_reap_sync_thread(mddev); 8169 goto unlock; 8170 } 8171 /* Set RUNNING before clearing NEEDED to avoid 8172 * any transients in the value of "sync_action". 8173 */ 8174 mddev->curr_resync_completed = 0; 8175 spin_lock(&mddev->lock); 8176 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8177 spin_unlock(&mddev->lock); 8178 /* Clear some bits that don't mean anything, but 8179 * might be left set 8180 */ 8181 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8182 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8183 8184 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8185 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8186 goto not_running; 8187 /* no recovery is running. 8188 * remove any failed drives, then 8189 * add spares if possible. 8190 * Spares are also removed and re-added, to allow 8191 * the personality to fail the re-add. 8192 */ 8193 8194 if (mddev->reshape_position != MaxSector) { 8195 if (mddev->pers->check_reshape == NULL || 8196 mddev->pers->check_reshape(mddev) != 0) 8197 /* Cannot proceed */ 8198 goto not_running; 8199 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8200 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8201 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8202 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8203 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8204 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8205 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8206 } else if (mddev->recovery_cp < MaxSector) { 8207 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8208 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8209 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8210 /* nothing to be done ... */ 8211 goto not_running; 8212 8213 if (mddev->pers->sync_request) { 8214 if (spares) { 8215 /* We are adding a device or devices to an array 8216 * which has the bitmap stored on all devices. 8217 * So make sure all bitmap pages get written 8218 */ 8219 bitmap_write_all(mddev->bitmap); 8220 } 8221 INIT_WORK(&mddev->del_work, md_start_sync); 8222 queue_work(md_misc_wq, &mddev->del_work); 8223 goto unlock; 8224 } 8225 not_running: 8226 if (!mddev->sync_thread) { 8227 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8228 wake_up(&resync_wait); 8229 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8230 &mddev->recovery)) 8231 if (mddev->sysfs_action) 8232 sysfs_notify_dirent_safe(mddev->sysfs_action); 8233 } 8234 unlock: 8235 wake_up(&mddev->sb_wait); 8236 mddev_unlock(mddev); 8237 } 8238 } 8239 EXPORT_SYMBOL(md_check_recovery); 8240 8241 void md_reap_sync_thread(struct mddev *mddev) 8242 { 8243 struct md_rdev *rdev; 8244 8245 /* resync has finished, collect result */ 8246 md_unregister_thread(&mddev->sync_thread); 8247 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8248 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8249 /* success...*/ 8250 /* activate any spares */ 8251 if (mddev->pers->spare_active(mddev)) { 8252 sysfs_notify(&mddev->kobj, NULL, 8253 "degraded"); 8254 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8255 } 8256 } 8257 if (mddev_is_clustered(mddev)) 8258 md_cluster_ops->metadata_update_start(mddev); 8259 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8260 mddev->pers->finish_reshape) 8261 mddev->pers->finish_reshape(mddev); 8262 8263 /* If array is no-longer degraded, then any saved_raid_disk 8264 * information must be scrapped. 8265 */ 8266 if (!mddev->degraded) 8267 rdev_for_each(rdev, mddev) 8268 rdev->saved_raid_disk = -1; 8269 8270 md_update_sb(mddev, 1); 8271 if (mddev_is_clustered(mddev)) 8272 md_cluster_ops->metadata_update_finish(mddev); 8273 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8274 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8275 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8276 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8277 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8278 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8279 wake_up(&resync_wait); 8280 /* flag recovery needed just to double check */ 8281 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8282 sysfs_notify_dirent_safe(mddev->sysfs_action); 8283 md_new_event(mddev); 8284 if (mddev->event_work.func) 8285 queue_work(md_misc_wq, &mddev->event_work); 8286 } 8287 EXPORT_SYMBOL(md_reap_sync_thread); 8288 8289 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 8290 { 8291 sysfs_notify_dirent_safe(rdev->sysfs_state); 8292 wait_event_timeout(rdev->blocked_wait, 8293 !test_bit(Blocked, &rdev->flags) && 8294 !test_bit(BlockedBadBlocks, &rdev->flags), 8295 msecs_to_jiffies(5000)); 8296 rdev_dec_pending(rdev, mddev); 8297 } 8298 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 8299 8300 void md_finish_reshape(struct mddev *mddev) 8301 { 8302 /* called be personality module when reshape completes. */ 8303 struct md_rdev *rdev; 8304 8305 rdev_for_each(rdev, mddev) { 8306 if (rdev->data_offset > rdev->new_data_offset) 8307 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 8308 else 8309 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 8310 rdev->data_offset = rdev->new_data_offset; 8311 } 8312 } 8313 EXPORT_SYMBOL(md_finish_reshape); 8314 8315 /* Bad block management. 8316 * We can record which blocks on each device are 'bad' and so just 8317 * fail those blocks, or that stripe, rather than the whole device. 8318 * Entries in the bad-block table are 64bits wide. This comprises: 8319 * Length of bad-range, in sectors: 0-511 for lengths 1-512 8320 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 8321 * A 'shift' can be set so that larger blocks are tracked and 8322 * consequently larger devices can be covered. 8323 * 'Acknowledged' flag - 1 bit. - the most significant bit. 8324 * 8325 * Locking of the bad-block table uses a seqlock so md_is_badblock 8326 * might need to retry if it is very unlucky. 8327 * We will sometimes want to check for bad blocks in a bi_end_io function, 8328 * so we use the write_seqlock_irq variant. 8329 * 8330 * When looking for a bad block we specify a range and want to 8331 * know if any block in the range is bad. So we binary-search 8332 * to the last range that starts at-or-before the given endpoint, 8333 * (or "before the sector after the target range") 8334 * then see if it ends after the given start. 8335 * We return 8336 * 0 if there are no known bad blocks in the range 8337 * 1 if there are known bad block which are all acknowledged 8338 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 8339 * plus the start/length of the first bad section we overlap. 8340 */ 8341 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 8342 sector_t *first_bad, int *bad_sectors) 8343 { 8344 int hi; 8345 int lo; 8346 u64 *p = bb->page; 8347 int rv; 8348 sector_t target = s + sectors; 8349 unsigned seq; 8350 8351 if (bb->shift > 0) { 8352 /* round the start down, and the end up */ 8353 s >>= bb->shift; 8354 target += (1<<bb->shift) - 1; 8355 target >>= bb->shift; 8356 sectors = target - s; 8357 } 8358 /* 'target' is now the first block after the bad range */ 8359 8360 retry: 8361 seq = read_seqbegin(&bb->lock); 8362 lo = 0; 8363 rv = 0; 8364 hi = bb->count; 8365 8366 /* Binary search between lo and hi for 'target' 8367 * i.e. for the last range that starts before 'target' 8368 */ 8369 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 8370 * are known not to be the last range before target. 8371 * VARIANT: hi-lo is the number of possible 8372 * ranges, and decreases until it reaches 1 8373 */ 8374 while (hi - lo > 1) { 8375 int mid = (lo + hi) / 2; 8376 sector_t a = BB_OFFSET(p[mid]); 8377 if (a < target) 8378 /* This could still be the one, earlier ranges 8379 * could not. */ 8380 lo = mid; 8381 else 8382 /* This and later ranges are definitely out. */ 8383 hi = mid; 8384 } 8385 /* 'lo' might be the last that started before target, but 'hi' isn't */ 8386 if (hi > lo) { 8387 /* need to check all range that end after 's' to see if 8388 * any are unacknowledged. 8389 */ 8390 while (lo >= 0 && 8391 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8392 if (BB_OFFSET(p[lo]) < target) { 8393 /* starts before the end, and finishes after 8394 * the start, so they must overlap 8395 */ 8396 if (rv != -1 && BB_ACK(p[lo])) 8397 rv = 1; 8398 else 8399 rv = -1; 8400 *first_bad = BB_OFFSET(p[lo]); 8401 *bad_sectors = BB_LEN(p[lo]); 8402 } 8403 lo--; 8404 } 8405 } 8406 8407 if (read_seqretry(&bb->lock, seq)) 8408 goto retry; 8409 8410 return rv; 8411 } 8412 EXPORT_SYMBOL_GPL(md_is_badblock); 8413 8414 /* 8415 * Add a range of bad blocks to the table. 8416 * This might extend the table, or might contract it 8417 * if two adjacent ranges can be merged. 8418 * We binary-search to find the 'insertion' point, then 8419 * decide how best to handle it. 8420 */ 8421 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 8422 int acknowledged) 8423 { 8424 u64 *p; 8425 int lo, hi; 8426 int rv = 1; 8427 unsigned long flags; 8428 8429 if (bb->shift < 0) 8430 /* badblocks are disabled */ 8431 return 0; 8432 8433 if (bb->shift) { 8434 /* round the start down, and the end up */ 8435 sector_t next = s + sectors; 8436 s >>= bb->shift; 8437 next += (1<<bb->shift) - 1; 8438 next >>= bb->shift; 8439 sectors = next - s; 8440 } 8441 8442 write_seqlock_irqsave(&bb->lock, flags); 8443 8444 p = bb->page; 8445 lo = 0; 8446 hi = bb->count; 8447 /* Find the last range that starts at-or-before 's' */ 8448 while (hi - lo > 1) { 8449 int mid = (lo + hi) / 2; 8450 sector_t a = BB_OFFSET(p[mid]); 8451 if (a <= s) 8452 lo = mid; 8453 else 8454 hi = mid; 8455 } 8456 if (hi > lo && BB_OFFSET(p[lo]) > s) 8457 hi = lo; 8458 8459 if (hi > lo) { 8460 /* we found a range that might merge with the start 8461 * of our new range 8462 */ 8463 sector_t a = BB_OFFSET(p[lo]); 8464 sector_t e = a + BB_LEN(p[lo]); 8465 int ack = BB_ACK(p[lo]); 8466 if (e >= s) { 8467 /* Yes, we can merge with a previous range */ 8468 if (s == a && s + sectors >= e) 8469 /* new range covers old */ 8470 ack = acknowledged; 8471 else 8472 ack = ack && acknowledged; 8473 8474 if (e < s + sectors) 8475 e = s + sectors; 8476 if (e - a <= BB_MAX_LEN) { 8477 p[lo] = BB_MAKE(a, e-a, ack); 8478 s = e; 8479 } else { 8480 /* does not all fit in one range, 8481 * make p[lo] maximal 8482 */ 8483 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8484 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8485 s = a + BB_MAX_LEN; 8486 } 8487 sectors = e - s; 8488 } 8489 } 8490 if (sectors && hi < bb->count) { 8491 /* 'hi' points to the first range that starts after 's'. 8492 * Maybe we can merge with the start of that range */ 8493 sector_t a = BB_OFFSET(p[hi]); 8494 sector_t e = a + BB_LEN(p[hi]); 8495 int ack = BB_ACK(p[hi]); 8496 if (a <= s + sectors) { 8497 /* merging is possible */ 8498 if (e <= s + sectors) { 8499 /* full overlap */ 8500 e = s + sectors; 8501 ack = acknowledged; 8502 } else 8503 ack = ack && acknowledged; 8504 8505 a = s; 8506 if (e - a <= BB_MAX_LEN) { 8507 p[hi] = BB_MAKE(a, e-a, ack); 8508 s = e; 8509 } else { 8510 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8511 s = a + BB_MAX_LEN; 8512 } 8513 sectors = e - s; 8514 lo = hi; 8515 hi++; 8516 } 8517 } 8518 if (sectors == 0 && hi < bb->count) { 8519 /* we might be able to combine lo and hi */ 8520 /* Note: 's' is at the end of 'lo' */ 8521 sector_t a = BB_OFFSET(p[hi]); 8522 int lolen = BB_LEN(p[lo]); 8523 int hilen = BB_LEN(p[hi]); 8524 int newlen = lolen + hilen - (s - a); 8525 if (s >= a && newlen < BB_MAX_LEN) { 8526 /* yes, we can combine them */ 8527 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8528 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8529 memmove(p + hi, p + hi + 1, 8530 (bb->count - hi - 1) * 8); 8531 bb->count--; 8532 } 8533 } 8534 while (sectors) { 8535 /* didn't merge (it all). 8536 * Need to add a range just before 'hi' */ 8537 if (bb->count >= MD_MAX_BADBLOCKS) { 8538 /* No room for more */ 8539 rv = 0; 8540 break; 8541 } else { 8542 int this_sectors = sectors; 8543 memmove(p + hi + 1, p + hi, 8544 (bb->count - hi) * 8); 8545 bb->count++; 8546 8547 if (this_sectors > BB_MAX_LEN) 8548 this_sectors = BB_MAX_LEN; 8549 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8550 sectors -= this_sectors; 8551 s += this_sectors; 8552 } 8553 } 8554 8555 bb->changed = 1; 8556 if (!acknowledged) 8557 bb->unacked_exist = 1; 8558 write_sequnlock_irqrestore(&bb->lock, flags); 8559 8560 return rv; 8561 } 8562 8563 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8564 int is_new) 8565 { 8566 int rv; 8567 if (is_new) 8568 s += rdev->new_data_offset; 8569 else 8570 s += rdev->data_offset; 8571 rv = md_set_badblocks(&rdev->badblocks, 8572 s, sectors, 0); 8573 if (rv) { 8574 /* Make sure they get written out promptly */ 8575 sysfs_notify_dirent_safe(rdev->sysfs_state); 8576 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8577 md_wakeup_thread(rdev->mddev->thread); 8578 } 8579 return rv; 8580 } 8581 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8582 8583 /* 8584 * Remove a range of bad blocks from the table. 8585 * This may involve extending the table if we spilt a region, 8586 * but it must not fail. So if the table becomes full, we just 8587 * drop the remove request. 8588 */ 8589 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8590 { 8591 u64 *p; 8592 int lo, hi; 8593 sector_t target = s + sectors; 8594 int rv = 0; 8595 8596 if (bb->shift > 0) { 8597 /* When clearing we round the start up and the end down. 8598 * This should not matter as the shift should align with 8599 * the block size and no rounding should ever be needed. 8600 * However it is better the think a block is bad when it 8601 * isn't than to think a block is not bad when it is. 8602 */ 8603 s += (1<<bb->shift) - 1; 8604 s >>= bb->shift; 8605 target >>= bb->shift; 8606 sectors = target - s; 8607 } 8608 8609 write_seqlock_irq(&bb->lock); 8610 8611 p = bb->page; 8612 lo = 0; 8613 hi = bb->count; 8614 /* Find the last range that starts before 'target' */ 8615 while (hi - lo > 1) { 8616 int mid = (lo + hi) / 2; 8617 sector_t a = BB_OFFSET(p[mid]); 8618 if (a < target) 8619 lo = mid; 8620 else 8621 hi = mid; 8622 } 8623 if (hi > lo) { 8624 /* p[lo] is the last range that could overlap the 8625 * current range. Earlier ranges could also overlap, 8626 * but only this one can overlap the end of the range. 8627 */ 8628 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8629 /* Partial overlap, leave the tail of this range */ 8630 int ack = BB_ACK(p[lo]); 8631 sector_t a = BB_OFFSET(p[lo]); 8632 sector_t end = a + BB_LEN(p[lo]); 8633 8634 if (a < s) { 8635 /* we need to split this range */ 8636 if (bb->count >= MD_MAX_BADBLOCKS) { 8637 rv = -ENOSPC; 8638 goto out; 8639 } 8640 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8641 bb->count++; 8642 p[lo] = BB_MAKE(a, s-a, ack); 8643 lo++; 8644 } 8645 p[lo] = BB_MAKE(target, end - target, ack); 8646 /* there is no longer an overlap */ 8647 hi = lo; 8648 lo--; 8649 } 8650 while (lo >= 0 && 8651 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8652 /* This range does overlap */ 8653 if (BB_OFFSET(p[lo]) < s) { 8654 /* Keep the early parts of this range. */ 8655 int ack = BB_ACK(p[lo]); 8656 sector_t start = BB_OFFSET(p[lo]); 8657 p[lo] = BB_MAKE(start, s - start, ack); 8658 /* now low doesn't overlap, so.. */ 8659 break; 8660 } 8661 lo--; 8662 } 8663 /* 'lo' is strictly before, 'hi' is strictly after, 8664 * anything between needs to be discarded 8665 */ 8666 if (hi - lo > 1) { 8667 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8668 bb->count -= (hi - lo - 1); 8669 } 8670 } 8671 8672 bb->changed = 1; 8673 out: 8674 write_sequnlock_irq(&bb->lock); 8675 return rv; 8676 } 8677 8678 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8679 int is_new) 8680 { 8681 if (is_new) 8682 s += rdev->new_data_offset; 8683 else 8684 s += rdev->data_offset; 8685 return md_clear_badblocks(&rdev->badblocks, 8686 s, sectors); 8687 } 8688 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8689 8690 /* 8691 * Acknowledge all bad blocks in a list. 8692 * This only succeeds if ->changed is clear. It is used by 8693 * in-kernel metadata updates 8694 */ 8695 void md_ack_all_badblocks(struct badblocks *bb) 8696 { 8697 if (bb->page == NULL || bb->changed) 8698 /* no point even trying */ 8699 return; 8700 write_seqlock_irq(&bb->lock); 8701 8702 if (bb->changed == 0 && bb->unacked_exist) { 8703 u64 *p = bb->page; 8704 int i; 8705 for (i = 0; i < bb->count ; i++) { 8706 if (!BB_ACK(p[i])) { 8707 sector_t start = BB_OFFSET(p[i]); 8708 int len = BB_LEN(p[i]); 8709 p[i] = BB_MAKE(start, len, 1); 8710 } 8711 } 8712 bb->unacked_exist = 0; 8713 } 8714 write_sequnlock_irq(&bb->lock); 8715 } 8716 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8717 8718 /* sysfs access to bad-blocks list. 8719 * We present two files. 8720 * 'bad-blocks' lists sector numbers and lengths of ranges that 8721 * are recorded as bad. The list is truncated to fit within 8722 * the one-page limit of sysfs. 8723 * Writing "sector length" to this file adds an acknowledged 8724 * bad block list. 8725 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8726 * been acknowledged. Writing to this file adds bad blocks 8727 * without acknowledging them. This is largely for testing. 8728 */ 8729 8730 static ssize_t 8731 badblocks_show(struct badblocks *bb, char *page, int unack) 8732 { 8733 size_t len; 8734 int i; 8735 u64 *p = bb->page; 8736 unsigned seq; 8737 8738 if (bb->shift < 0) 8739 return 0; 8740 8741 retry: 8742 seq = read_seqbegin(&bb->lock); 8743 8744 len = 0; 8745 i = 0; 8746 8747 while (len < PAGE_SIZE && i < bb->count) { 8748 sector_t s = BB_OFFSET(p[i]); 8749 unsigned int length = BB_LEN(p[i]); 8750 int ack = BB_ACK(p[i]); 8751 i++; 8752 8753 if (unack && ack) 8754 continue; 8755 8756 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8757 (unsigned long long)s << bb->shift, 8758 length << bb->shift); 8759 } 8760 if (unack && len == 0) 8761 bb->unacked_exist = 0; 8762 8763 if (read_seqretry(&bb->lock, seq)) 8764 goto retry; 8765 8766 return len; 8767 } 8768 8769 #define DO_DEBUG 1 8770 8771 static ssize_t 8772 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8773 { 8774 unsigned long long sector; 8775 int length; 8776 char newline; 8777 #ifdef DO_DEBUG 8778 /* Allow clearing via sysfs *only* for testing/debugging. 8779 * Normally only a successful write may clear a badblock 8780 */ 8781 int clear = 0; 8782 if (page[0] == '-') { 8783 clear = 1; 8784 page++; 8785 } 8786 #endif /* DO_DEBUG */ 8787 8788 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8789 case 3: 8790 if (newline != '\n') 8791 return -EINVAL; 8792 case 2: 8793 if (length <= 0) 8794 return -EINVAL; 8795 break; 8796 default: 8797 return -EINVAL; 8798 } 8799 8800 #ifdef DO_DEBUG 8801 if (clear) { 8802 md_clear_badblocks(bb, sector, length); 8803 return len; 8804 } 8805 #endif /* DO_DEBUG */ 8806 if (md_set_badblocks(bb, sector, length, !unack)) 8807 return len; 8808 else 8809 return -ENOSPC; 8810 } 8811 8812 static int md_notify_reboot(struct notifier_block *this, 8813 unsigned long code, void *x) 8814 { 8815 struct list_head *tmp; 8816 struct mddev *mddev; 8817 int need_delay = 0; 8818 8819 for_each_mddev(mddev, tmp) { 8820 if (mddev_trylock(mddev)) { 8821 if (mddev->pers) 8822 __md_stop_writes(mddev); 8823 if (mddev->persistent) 8824 mddev->safemode = 2; 8825 mddev_unlock(mddev); 8826 } 8827 need_delay = 1; 8828 } 8829 /* 8830 * certain more exotic SCSI devices are known to be 8831 * volatile wrt too early system reboots. While the 8832 * right place to handle this issue is the given 8833 * driver, we do want to have a safe RAID driver ... 8834 */ 8835 if (need_delay) 8836 mdelay(1000*1); 8837 8838 return NOTIFY_DONE; 8839 } 8840 8841 static struct notifier_block md_notifier = { 8842 .notifier_call = md_notify_reboot, 8843 .next = NULL, 8844 .priority = INT_MAX, /* before any real devices */ 8845 }; 8846 8847 static void md_geninit(void) 8848 { 8849 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8850 8851 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8852 } 8853 8854 static int __init md_init(void) 8855 { 8856 int ret = -ENOMEM; 8857 8858 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8859 if (!md_wq) 8860 goto err_wq; 8861 8862 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8863 if (!md_misc_wq) 8864 goto err_misc_wq; 8865 8866 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8867 goto err_md; 8868 8869 if ((ret = register_blkdev(0, "mdp")) < 0) 8870 goto err_mdp; 8871 mdp_major = ret; 8872 8873 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 8874 md_probe, NULL, NULL); 8875 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8876 md_probe, NULL, NULL); 8877 8878 register_reboot_notifier(&md_notifier); 8879 raid_table_header = register_sysctl_table(raid_root_table); 8880 8881 md_geninit(); 8882 return 0; 8883 8884 err_mdp: 8885 unregister_blkdev(MD_MAJOR, "md"); 8886 err_md: 8887 destroy_workqueue(md_misc_wq); 8888 err_misc_wq: 8889 destroy_workqueue(md_wq); 8890 err_wq: 8891 return ret; 8892 } 8893 8894 void md_reload_sb(struct mddev *mddev) 8895 { 8896 struct md_rdev *rdev, *tmp; 8897 8898 rdev_for_each_safe(rdev, tmp, mddev) { 8899 rdev->sb_loaded = 0; 8900 ClearPageUptodate(rdev->sb_page); 8901 } 8902 mddev->raid_disks = 0; 8903 analyze_sbs(mddev); 8904 rdev_for_each_safe(rdev, tmp, mddev) { 8905 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 8906 /* since we don't write to faulty devices, we figure out if the 8907 * disk is faulty by comparing events 8908 */ 8909 if (mddev->events > sb->events) 8910 set_bit(Faulty, &rdev->flags); 8911 } 8912 8913 } 8914 EXPORT_SYMBOL(md_reload_sb); 8915 8916 #ifndef MODULE 8917 8918 /* 8919 * Searches all registered partitions for autorun RAID arrays 8920 * at boot time. 8921 */ 8922 8923 static LIST_HEAD(all_detected_devices); 8924 struct detected_devices_node { 8925 struct list_head list; 8926 dev_t dev; 8927 }; 8928 8929 void md_autodetect_dev(dev_t dev) 8930 { 8931 struct detected_devices_node *node_detected_dev; 8932 8933 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8934 if (node_detected_dev) { 8935 node_detected_dev->dev = dev; 8936 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8937 } else { 8938 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8939 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8940 } 8941 } 8942 8943 static void autostart_arrays(int part) 8944 { 8945 struct md_rdev *rdev; 8946 struct detected_devices_node *node_detected_dev; 8947 dev_t dev; 8948 int i_scanned, i_passed; 8949 8950 i_scanned = 0; 8951 i_passed = 0; 8952 8953 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8954 8955 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8956 i_scanned++; 8957 node_detected_dev = list_entry(all_detected_devices.next, 8958 struct detected_devices_node, list); 8959 list_del(&node_detected_dev->list); 8960 dev = node_detected_dev->dev; 8961 kfree(node_detected_dev); 8962 rdev = md_import_device(dev,0, 90); 8963 if (IS_ERR(rdev)) 8964 continue; 8965 8966 if (test_bit(Faulty, &rdev->flags)) 8967 continue; 8968 8969 set_bit(AutoDetected, &rdev->flags); 8970 list_add(&rdev->same_set, &pending_raid_disks); 8971 i_passed++; 8972 } 8973 8974 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8975 i_scanned, i_passed); 8976 8977 autorun_devices(part); 8978 } 8979 8980 #endif /* !MODULE */ 8981 8982 static __exit void md_exit(void) 8983 { 8984 struct mddev *mddev; 8985 struct list_head *tmp; 8986 int delay = 1; 8987 8988 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 8989 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8990 8991 unregister_blkdev(MD_MAJOR,"md"); 8992 unregister_blkdev(mdp_major, "mdp"); 8993 unregister_reboot_notifier(&md_notifier); 8994 unregister_sysctl_table(raid_table_header); 8995 8996 /* We cannot unload the modules while some process is 8997 * waiting for us in select() or poll() - wake them up 8998 */ 8999 md_unloading = 1; 9000 while (waitqueue_active(&md_event_waiters)) { 9001 /* not safe to leave yet */ 9002 wake_up(&md_event_waiters); 9003 msleep(delay); 9004 delay += delay; 9005 } 9006 remove_proc_entry("mdstat", NULL); 9007 9008 for_each_mddev(mddev, tmp) { 9009 export_array(mddev); 9010 mddev->hold_active = 0; 9011 } 9012 destroy_workqueue(md_misc_wq); 9013 destroy_workqueue(md_wq); 9014 } 9015 9016 subsys_initcall(md_init); 9017 module_exit(md_exit) 9018 9019 static int get_ro(char *buffer, struct kernel_param *kp) 9020 { 9021 return sprintf(buffer, "%d", start_readonly); 9022 } 9023 static int set_ro(const char *val, struct kernel_param *kp) 9024 { 9025 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9026 } 9027 9028 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9029 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9030 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9031 9032 MODULE_LICENSE("GPL"); 9033 MODULE_DESCRIPTION("MD RAID framework"); 9034 MODULE_ALIAS("md"); 9035 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9036