1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 /* pers_list is a list of registered personalities protected 62 * by pers_lock. 63 * pers_lock does extra service to protect accesses to 64 * mddev->thread when the mutex cannot be held. 65 */ 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static void md_print_devices(void); 70 71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 72 static struct workqueue_struct *md_wq; 73 static struct workqueue_struct *md_misc_wq; 74 75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 76 77 /* 78 * Default number of read corrections we'll attempt on an rdev 79 * before ejecting it from the array. We divide the read error 80 * count by 2 for every hour elapsed between read errors. 81 */ 82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 83 /* 84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 85 * is 1000 KB/sec, so the extra system load does not show up that much. 86 * Increase it if you want to have more _guaranteed_ speed. Note that 87 * the RAID driver will use the maximum available bandwidth if the IO 88 * subsystem is idle. There is also an 'absolute maximum' reconstruction 89 * speed limit - in case reconstruction slows down your system despite 90 * idle IO detection. 91 * 92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 93 * or /sys/block/mdX/md/sync_speed_{min,max} 94 */ 95 96 static int sysctl_speed_limit_min = 1000; 97 static int sysctl_speed_limit_max = 200000; 98 static inline int speed_min(struct mddev *mddev) 99 { 100 return mddev->sync_speed_min ? 101 mddev->sync_speed_min : sysctl_speed_limit_min; 102 } 103 104 static inline int speed_max(struct mddev *mddev) 105 { 106 return mddev->sync_speed_max ? 107 mddev->sync_speed_max : sysctl_speed_limit_max; 108 } 109 110 static struct ctl_table_header *raid_table_header; 111 112 static ctl_table raid_table[] = { 113 { 114 .procname = "speed_limit_min", 115 .data = &sysctl_speed_limit_min, 116 .maxlen = sizeof(int), 117 .mode = S_IRUGO|S_IWUSR, 118 .proc_handler = proc_dointvec, 119 }, 120 { 121 .procname = "speed_limit_max", 122 .data = &sysctl_speed_limit_max, 123 .maxlen = sizeof(int), 124 .mode = S_IRUGO|S_IWUSR, 125 .proc_handler = proc_dointvec, 126 }, 127 { } 128 }; 129 130 static ctl_table raid_dir_table[] = { 131 { 132 .procname = "raid", 133 .maxlen = 0, 134 .mode = S_IRUGO|S_IXUGO, 135 .child = raid_table, 136 }, 137 { } 138 }; 139 140 static ctl_table raid_root_table[] = { 141 { 142 .procname = "dev", 143 .maxlen = 0, 144 .mode = 0555, 145 .child = raid_dir_table, 146 }, 147 { } 148 }; 149 150 static const struct block_device_operations md_fops; 151 152 static int start_readonly; 153 154 /* bio_clone_mddev 155 * like bio_clone, but with a local bio set 156 */ 157 158 static void mddev_bio_destructor(struct bio *bio) 159 { 160 struct mddev *mddev, **mddevp; 161 162 mddevp = (void*)bio; 163 mddev = mddevp[-1]; 164 165 bio_free(bio, mddev->bio_set); 166 } 167 168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 169 struct mddev *mddev) 170 { 171 struct bio *b; 172 struct mddev **mddevp; 173 174 if (!mddev || !mddev->bio_set) 175 return bio_alloc(gfp_mask, nr_iovecs); 176 177 b = bio_alloc_bioset(gfp_mask, nr_iovecs, 178 mddev->bio_set); 179 if (!b) 180 return NULL; 181 mddevp = (void*)b; 182 mddevp[-1] = mddev; 183 b->bi_destructor = mddev_bio_destructor; 184 return b; 185 } 186 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 187 188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 189 struct mddev *mddev) 190 { 191 struct bio *b; 192 struct mddev **mddevp; 193 194 if (!mddev || !mddev->bio_set) 195 return bio_clone(bio, gfp_mask); 196 197 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, 198 mddev->bio_set); 199 if (!b) 200 return NULL; 201 mddevp = (void*)b; 202 mddevp[-1] = mddev; 203 b->bi_destructor = mddev_bio_destructor; 204 __bio_clone(b, bio); 205 if (bio_integrity(bio)) { 206 int ret; 207 208 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set); 209 210 if (ret < 0) { 211 bio_put(b); 212 return NULL; 213 } 214 } 215 216 return b; 217 } 218 EXPORT_SYMBOL_GPL(bio_clone_mddev); 219 220 void md_trim_bio(struct bio *bio, int offset, int size) 221 { 222 /* 'bio' is a cloned bio which we need to trim to match 223 * the given offset and size. 224 * This requires adjusting bi_sector, bi_size, and bi_io_vec 225 */ 226 int i; 227 struct bio_vec *bvec; 228 int sofar = 0; 229 230 size <<= 9; 231 if (offset == 0 && size == bio->bi_size) 232 return; 233 234 bio->bi_sector += offset; 235 bio->bi_size = size; 236 offset <<= 9; 237 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 238 239 while (bio->bi_idx < bio->bi_vcnt && 240 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) { 241 /* remove this whole bio_vec */ 242 offset -= bio->bi_io_vec[bio->bi_idx].bv_len; 243 bio->bi_idx++; 244 } 245 if (bio->bi_idx < bio->bi_vcnt) { 246 bio->bi_io_vec[bio->bi_idx].bv_offset += offset; 247 bio->bi_io_vec[bio->bi_idx].bv_len -= offset; 248 } 249 /* avoid any complications with bi_idx being non-zero*/ 250 if (bio->bi_idx) { 251 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx, 252 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec)); 253 bio->bi_vcnt -= bio->bi_idx; 254 bio->bi_idx = 0; 255 } 256 /* Make sure vcnt and last bv are not too big */ 257 bio_for_each_segment(bvec, bio, i) { 258 if (sofar + bvec->bv_len > size) 259 bvec->bv_len = size - sofar; 260 if (bvec->bv_len == 0) { 261 bio->bi_vcnt = i; 262 break; 263 } 264 sofar += bvec->bv_len; 265 } 266 } 267 EXPORT_SYMBOL_GPL(md_trim_bio); 268 269 /* 270 * We have a system wide 'event count' that is incremented 271 * on any 'interesting' event, and readers of /proc/mdstat 272 * can use 'poll' or 'select' to find out when the event 273 * count increases. 274 * 275 * Events are: 276 * start array, stop array, error, add device, remove device, 277 * start build, activate spare 278 */ 279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 280 static atomic_t md_event_count; 281 void md_new_event(struct mddev *mddev) 282 { 283 atomic_inc(&md_event_count); 284 wake_up(&md_event_waiters); 285 } 286 EXPORT_SYMBOL_GPL(md_new_event); 287 288 /* Alternate version that can be called from interrupts 289 * when calling sysfs_notify isn't needed. 290 */ 291 static void md_new_event_inintr(struct mddev *mddev) 292 { 293 atomic_inc(&md_event_count); 294 wake_up(&md_event_waiters); 295 } 296 297 /* 298 * Enables to iterate over all existing md arrays 299 * all_mddevs_lock protects this list. 300 */ 301 static LIST_HEAD(all_mddevs); 302 static DEFINE_SPINLOCK(all_mddevs_lock); 303 304 305 /* 306 * iterates through all used mddevs in the system. 307 * We take care to grab the all_mddevs_lock whenever navigating 308 * the list, and to always hold a refcount when unlocked. 309 * Any code which breaks out of this loop while own 310 * a reference to the current mddev and must mddev_put it. 311 */ 312 #define for_each_mddev(_mddev,_tmp) \ 313 \ 314 for (({ spin_lock(&all_mddevs_lock); \ 315 _tmp = all_mddevs.next; \ 316 _mddev = NULL;}); \ 317 ({ if (_tmp != &all_mddevs) \ 318 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 319 spin_unlock(&all_mddevs_lock); \ 320 if (_mddev) mddev_put(_mddev); \ 321 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 322 _tmp != &all_mddevs;}); \ 323 ({ spin_lock(&all_mddevs_lock); \ 324 _tmp = _tmp->next;}) \ 325 ) 326 327 328 /* Rather than calling directly into the personality make_request function, 329 * IO requests come here first so that we can check if the device is 330 * being suspended pending a reconfiguration. 331 * We hold a refcount over the call to ->make_request. By the time that 332 * call has finished, the bio has been linked into some internal structure 333 * and so is visible to ->quiesce(), so we don't need the refcount any more. 334 */ 335 static void md_make_request(struct request_queue *q, struct bio *bio) 336 { 337 const int rw = bio_data_dir(bio); 338 struct mddev *mddev = q->queuedata; 339 int cpu; 340 unsigned int sectors; 341 342 if (mddev == NULL || mddev->pers == NULL 343 || !mddev->ready) { 344 bio_io_error(bio); 345 return; 346 } 347 smp_rmb(); /* Ensure implications of 'active' are visible */ 348 rcu_read_lock(); 349 if (mddev->suspended) { 350 DEFINE_WAIT(__wait); 351 for (;;) { 352 prepare_to_wait(&mddev->sb_wait, &__wait, 353 TASK_UNINTERRUPTIBLE); 354 if (!mddev->suspended) 355 break; 356 rcu_read_unlock(); 357 schedule(); 358 rcu_read_lock(); 359 } 360 finish_wait(&mddev->sb_wait, &__wait); 361 } 362 atomic_inc(&mddev->active_io); 363 rcu_read_unlock(); 364 365 /* 366 * save the sectors now since our bio can 367 * go away inside make_request 368 */ 369 sectors = bio_sectors(bio); 370 mddev->pers->make_request(mddev, bio); 371 372 cpu = part_stat_lock(); 373 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 374 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 375 part_stat_unlock(); 376 377 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 378 wake_up(&mddev->sb_wait); 379 } 380 381 /* mddev_suspend makes sure no new requests are submitted 382 * to the device, and that any requests that have been submitted 383 * are completely handled. 384 * Once ->stop is called and completes, the module will be completely 385 * unused. 386 */ 387 void mddev_suspend(struct mddev *mddev) 388 { 389 BUG_ON(mddev->suspended); 390 mddev->suspended = 1; 391 synchronize_rcu(); 392 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 393 mddev->pers->quiesce(mddev, 1); 394 395 del_timer_sync(&mddev->safemode_timer); 396 } 397 EXPORT_SYMBOL_GPL(mddev_suspend); 398 399 void mddev_resume(struct mddev *mddev) 400 { 401 mddev->suspended = 0; 402 wake_up(&mddev->sb_wait); 403 mddev->pers->quiesce(mddev, 0); 404 405 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 406 md_wakeup_thread(mddev->thread); 407 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 408 } 409 EXPORT_SYMBOL_GPL(mddev_resume); 410 411 int mddev_congested(struct mddev *mddev, int bits) 412 { 413 return mddev->suspended; 414 } 415 EXPORT_SYMBOL(mddev_congested); 416 417 /* 418 * Generic flush handling for md 419 */ 420 421 static void md_end_flush(struct bio *bio, int err) 422 { 423 struct md_rdev *rdev = bio->bi_private; 424 struct mddev *mddev = rdev->mddev; 425 426 rdev_dec_pending(rdev, mddev); 427 428 if (atomic_dec_and_test(&mddev->flush_pending)) { 429 /* The pre-request flush has finished */ 430 queue_work(md_wq, &mddev->flush_work); 431 } 432 bio_put(bio); 433 } 434 435 static void md_submit_flush_data(struct work_struct *ws); 436 437 static void submit_flushes(struct work_struct *ws) 438 { 439 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 440 struct md_rdev *rdev; 441 442 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 443 atomic_set(&mddev->flush_pending, 1); 444 rcu_read_lock(); 445 rdev_for_each_rcu(rdev, mddev) 446 if (rdev->raid_disk >= 0 && 447 !test_bit(Faulty, &rdev->flags)) { 448 /* Take two references, one is dropped 449 * when request finishes, one after 450 * we reclaim rcu_read_lock 451 */ 452 struct bio *bi; 453 atomic_inc(&rdev->nr_pending); 454 atomic_inc(&rdev->nr_pending); 455 rcu_read_unlock(); 456 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 457 bi->bi_end_io = md_end_flush; 458 bi->bi_private = rdev; 459 bi->bi_bdev = rdev->bdev; 460 atomic_inc(&mddev->flush_pending); 461 submit_bio(WRITE_FLUSH, bi); 462 rcu_read_lock(); 463 rdev_dec_pending(rdev, mddev); 464 } 465 rcu_read_unlock(); 466 if (atomic_dec_and_test(&mddev->flush_pending)) 467 queue_work(md_wq, &mddev->flush_work); 468 } 469 470 static void md_submit_flush_data(struct work_struct *ws) 471 { 472 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 473 struct bio *bio = mddev->flush_bio; 474 475 if (bio->bi_size == 0) 476 /* an empty barrier - all done */ 477 bio_endio(bio, 0); 478 else { 479 bio->bi_rw &= ~REQ_FLUSH; 480 mddev->pers->make_request(mddev, bio); 481 } 482 483 mddev->flush_bio = NULL; 484 wake_up(&mddev->sb_wait); 485 } 486 487 void md_flush_request(struct mddev *mddev, struct bio *bio) 488 { 489 spin_lock_irq(&mddev->write_lock); 490 wait_event_lock_irq(mddev->sb_wait, 491 !mddev->flush_bio, 492 mddev->write_lock, /*nothing*/); 493 mddev->flush_bio = bio; 494 spin_unlock_irq(&mddev->write_lock); 495 496 INIT_WORK(&mddev->flush_work, submit_flushes); 497 queue_work(md_wq, &mddev->flush_work); 498 } 499 EXPORT_SYMBOL(md_flush_request); 500 501 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 502 { 503 struct mddev *mddev = cb->data; 504 md_wakeup_thread(mddev->thread); 505 kfree(cb); 506 } 507 EXPORT_SYMBOL(md_unplug); 508 509 static inline struct mddev *mddev_get(struct mddev *mddev) 510 { 511 atomic_inc(&mddev->active); 512 return mddev; 513 } 514 515 static void mddev_delayed_delete(struct work_struct *ws); 516 517 static void mddev_put(struct mddev *mddev) 518 { 519 struct bio_set *bs = NULL; 520 521 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 522 return; 523 if (!mddev->raid_disks && list_empty(&mddev->disks) && 524 mddev->ctime == 0 && !mddev->hold_active) { 525 /* Array is not configured at all, and not held active, 526 * so destroy it */ 527 list_del_init(&mddev->all_mddevs); 528 bs = mddev->bio_set; 529 mddev->bio_set = NULL; 530 if (mddev->gendisk) { 531 /* We did a probe so need to clean up. Call 532 * queue_work inside the spinlock so that 533 * flush_workqueue() after mddev_find will 534 * succeed in waiting for the work to be done. 535 */ 536 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 537 queue_work(md_misc_wq, &mddev->del_work); 538 } else 539 kfree(mddev); 540 } 541 spin_unlock(&all_mddevs_lock); 542 if (bs) 543 bioset_free(bs); 544 } 545 546 void mddev_init(struct mddev *mddev) 547 { 548 mutex_init(&mddev->open_mutex); 549 mutex_init(&mddev->reconfig_mutex); 550 mutex_init(&mddev->bitmap_info.mutex); 551 INIT_LIST_HEAD(&mddev->disks); 552 INIT_LIST_HEAD(&mddev->all_mddevs); 553 init_timer(&mddev->safemode_timer); 554 atomic_set(&mddev->active, 1); 555 atomic_set(&mddev->openers, 0); 556 atomic_set(&mddev->active_io, 0); 557 spin_lock_init(&mddev->write_lock); 558 atomic_set(&mddev->flush_pending, 0); 559 init_waitqueue_head(&mddev->sb_wait); 560 init_waitqueue_head(&mddev->recovery_wait); 561 mddev->reshape_position = MaxSector; 562 mddev->reshape_backwards = 0; 563 mddev->resync_min = 0; 564 mddev->resync_max = MaxSector; 565 mddev->level = LEVEL_NONE; 566 } 567 EXPORT_SYMBOL_GPL(mddev_init); 568 569 static struct mddev * mddev_find(dev_t unit) 570 { 571 struct mddev *mddev, *new = NULL; 572 573 if (unit && MAJOR(unit) != MD_MAJOR) 574 unit &= ~((1<<MdpMinorShift)-1); 575 576 retry: 577 spin_lock(&all_mddevs_lock); 578 579 if (unit) { 580 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 581 if (mddev->unit == unit) { 582 mddev_get(mddev); 583 spin_unlock(&all_mddevs_lock); 584 kfree(new); 585 return mddev; 586 } 587 588 if (new) { 589 list_add(&new->all_mddevs, &all_mddevs); 590 spin_unlock(&all_mddevs_lock); 591 new->hold_active = UNTIL_IOCTL; 592 return new; 593 } 594 } else if (new) { 595 /* find an unused unit number */ 596 static int next_minor = 512; 597 int start = next_minor; 598 int is_free = 0; 599 int dev = 0; 600 while (!is_free) { 601 dev = MKDEV(MD_MAJOR, next_minor); 602 next_minor++; 603 if (next_minor > MINORMASK) 604 next_minor = 0; 605 if (next_minor == start) { 606 /* Oh dear, all in use. */ 607 spin_unlock(&all_mddevs_lock); 608 kfree(new); 609 return NULL; 610 } 611 612 is_free = 1; 613 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 614 if (mddev->unit == dev) { 615 is_free = 0; 616 break; 617 } 618 } 619 new->unit = dev; 620 new->md_minor = MINOR(dev); 621 new->hold_active = UNTIL_STOP; 622 list_add(&new->all_mddevs, &all_mddevs); 623 spin_unlock(&all_mddevs_lock); 624 return new; 625 } 626 spin_unlock(&all_mddevs_lock); 627 628 new = kzalloc(sizeof(*new), GFP_KERNEL); 629 if (!new) 630 return NULL; 631 632 new->unit = unit; 633 if (MAJOR(unit) == MD_MAJOR) 634 new->md_minor = MINOR(unit); 635 else 636 new->md_minor = MINOR(unit) >> MdpMinorShift; 637 638 mddev_init(new); 639 640 goto retry; 641 } 642 643 static inline int mddev_lock(struct mddev * mddev) 644 { 645 return mutex_lock_interruptible(&mddev->reconfig_mutex); 646 } 647 648 static inline int mddev_is_locked(struct mddev *mddev) 649 { 650 return mutex_is_locked(&mddev->reconfig_mutex); 651 } 652 653 static inline int mddev_trylock(struct mddev * mddev) 654 { 655 return mutex_trylock(&mddev->reconfig_mutex); 656 } 657 658 static struct attribute_group md_redundancy_group; 659 660 static void mddev_unlock(struct mddev * mddev) 661 { 662 if (mddev->to_remove) { 663 /* These cannot be removed under reconfig_mutex as 664 * an access to the files will try to take reconfig_mutex 665 * while holding the file unremovable, which leads to 666 * a deadlock. 667 * So hold set sysfs_active while the remove in happeing, 668 * and anything else which might set ->to_remove or my 669 * otherwise change the sysfs namespace will fail with 670 * -EBUSY if sysfs_active is still set. 671 * We set sysfs_active under reconfig_mutex and elsewhere 672 * test it under the same mutex to ensure its correct value 673 * is seen. 674 */ 675 struct attribute_group *to_remove = mddev->to_remove; 676 mddev->to_remove = NULL; 677 mddev->sysfs_active = 1; 678 mutex_unlock(&mddev->reconfig_mutex); 679 680 if (mddev->kobj.sd) { 681 if (to_remove != &md_redundancy_group) 682 sysfs_remove_group(&mddev->kobj, to_remove); 683 if (mddev->pers == NULL || 684 mddev->pers->sync_request == NULL) { 685 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 686 if (mddev->sysfs_action) 687 sysfs_put(mddev->sysfs_action); 688 mddev->sysfs_action = NULL; 689 } 690 } 691 mddev->sysfs_active = 0; 692 } else 693 mutex_unlock(&mddev->reconfig_mutex); 694 695 /* As we've dropped the mutex we need a spinlock to 696 * make sure the thread doesn't disappear 697 */ 698 spin_lock(&pers_lock); 699 md_wakeup_thread(mddev->thread); 700 spin_unlock(&pers_lock); 701 } 702 703 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr) 704 { 705 struct md_rdev *rdev; 706 707 rdev_for_each(rdev, mddev) 708 if (rdev->desc_nr == nr) 709 return rdev; 710 711 return NULL; 712 } 713 714 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev) 715 { 716 struct md_rdev *rdev; 717 718 rdev_for_each(rdev, mddev) 719 if (rdev->bdev->bd_dev == dev) 720 return rdev; 721 722 return NULL; 723 } 724 725 static struct md_personality *find_pers(int level, char *clevel) 726 { 727 struct md_personality *pers; 728 list_for_each_entry(pers, &pers_list, list) { 729 if (level != LEVEL_NONE && pers->level == level) 730 return pers; 731 if (strcmp(pers->name, clevel)==0) 732 return pers; 733 } 734 return NULL; 735 } 736 737 /* return the offset of the super block in 512byte sectors */ 738 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 739 { 740 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 741 return MD_NEW_SIZE_SECTORS(num_sectors); 742 } 743 744 static int alloc_disk_sb(struct md_rdev * rdev) 745 { 746 if (rdev->sb_page) 747 MD_BUG(); 748 749 rdev->sb_page = alloc_page(GFP_KERNEL); 750 if (!rdev->sb_page) { 751 printk(KERN_ALERT "md: out of memory.\n"); 752 return -ENOMEM; 753 } 754 755 return 0; 756 } 757 758 void md_rdev_clear(struct md_rdev *rdev) 759 { 760 if (rdev->sb_page) { 761 put_page(rdev->sb_page); 762 rdev->sb_loaded = 0; 763 rdev->sb_page = NULL; 764 rdev->sb_start = 0; 765 rdev->sectors = 0; 766 } 767 if (rdev->bb_page) { 768 put_page(rdev->bb_page); 769 rdev->bb_page = NULL; 770 } 771 kfree(rdev->badblocks.page); 772 rdev->badblocks.page = NULL; 773 } 774 EXPORT_SYMBOL_GPL(md_rdev_clear); 775 776 static void super_written(struct bio *bio, int error) 777 { 778 struct md_rdev *rdev = bio->bi_private; 779 struct mddev *mddev = rdev->mddev; 780 781 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 782 printk("md: super_written gets error=%d, uptodate=%d\n", 783 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 784 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 785 md_error(mddev, rdev); 786 } 787 788 if (atomic_dec_and_test(&mddev->pending_writes)) 789 wake_up(&mddev->sb_wait); 790 bio_put(bio); 791 } 792 793 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 794 sector_t sector, int size, struct page *page) 795 { 796 /* write first size bytes of page to sector of rdev 797 * Increment mddev->pending_writes before returning 798 * and decrement it on completion, waking up sb_wait 799 * if zero is reached. 800 * If an error occurred, call md_error 801 */ 802 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 803 804 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 805 bio->bi_sector = sector; 806 bio_add_page(bio, page, size, 0); 807 bio->bi_private = rdev; 808 bio->bi_end_io = super_written; 809 810 atomic_inc(&mddev->pending_writes); 811 submit_bio(WRITE_FLUSH_FUA, bio); 812 } 813 814 void md_super_wait(struct mddev *mddev) 815 { 816 /* wait for all superblock writes that were scheduled to complete */ 817 DEFINE_WAIT(wq); 818 for(;;) { 819 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 820 if (atomic_read(&mddev->pending_writes)==0) 821 break; 822 schedule(); 823 } 824 finish_wait(&mddev->sb_wait, &wq); 825 } 826 827 static void bi_complete(struct bio *bio, int error) 828 { 829 complete((struct completion*)bio->bi_private); 830 } 831 832 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 833 struct page *page, int rw, bool metadata_op) 834 { 835 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 836 struct completion event; 837 int ret; 838 839 rw |= REQ_SYNC; 840 841 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 842 rdev->meta_bdev : rdev->bdev; 843 if (metadata_op) 844 bio->bi_sector = sector + rdev->sb_start; 845 else if (rdev->mddev->reshape_position != MaxSector && 846 (rdev->mddev->reshape_backwards == 847 (sector >= rdev->mddev->reshape_position))) 848 bio->bi_sector = sector + rdev->new_data_offset; 849 else 850 bio->bi_sector = sector + rdev->data_offset; 851 bio_add_page(bio, page, size, 0); 852 init_completion(&event); 853 bio->bi_private = &event; 854 bio->bi_end_io = bi_complete; 855 submit_bio(rw, bio); 856 wait_for_completion(&event); 857 858 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 859 bio_put(bio); 860 return ret; 861 } 862 EXPORT_SYMBOL_GPL(sync_page_io); 863 864 static int read_disk_sb(struct md_rdev * rdev, int size) 865 { 866 char b[BDEVNAME_SIZE]; 867 if (!rdev->sb_page) { 868 MD_BUG(); 869 return -EINVAL; 870 } 871 if (rdev->sb_loaded) 872 return 0; 873 874 875 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 876 goto fail; 877 rdev->sb_loaded = 1; 878 return 0; 879 880 fail: 881 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 882 bdevname(rdev->bdev,b)); 883 return -EINVAL; 884 } 885 886 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 887 { 888 return sb1->set_uuid0 == sb2->set_uuid0 && 889 sb1->set_uuid1 == sb2->set_uuid1 && 890 sb1->set_uuid2 == sb2->set_uuid2 && 891 sb1->set_uuid3 == sb2->set_uuid3; 892 } 893 894 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 895 { 896 int ret; 897 mdp_super_t *tmp1, *tmp2; 898 899 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 900 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 901 902 if (!tmp1 || !tmp2) { 903 ret = 0; 904 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 905 goto abort; 906 } 907 908 *tmp1 = *sb1; 909 *tmp2 = *sb2; 910 911 /* 912 * nr_disks is not constant 913 */ 914 tmp1->nr_disks = 0; 915 tmp2->nr_disks = 0; 916 917 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 918 abort: 919 kfree(tmp1); 920 kfree(tmp2); 921 return ret; 922 } 923 924 925 static u32 md_csum_fold(u32 csum) 926 { 927 csum = (csum & 0xffff) + (csum >> 16); 928 return (csum & 0xffff) + (csum >> 16); 929 } 930 931 static unsigned int calc_sb_csum(mdp_super_t * sb) 932 { 933 u64 newcsum = 0; 934 u32 *sb32 = (u32*)sb; 935 int i; 936 unsigned int disk_csum, csum; 937 938 disk_csum = sb->sb_csum; 939 sb->sb_csum = 0; 940 941 for (i = 0; i < MD_SB_BYTES/4 ; i++) 942 newcsum += sb32[i]; 943 csum = (newcsum & 0xffffffff) + (newcsum>>32); 944 945 946 #ifdef CONFIG_ALPHA 947 /* This used to use csum_partial, which was wrong for several 948 * reasons including that different results are returned on 949 * different architectures. It isn't critical that we get exactly 950 * the same return value as before (we always csum_fold before 951 * testing, and that removes any differences). However as we 952 * know that csum_partial always returned a 16bit value on 953 * alphas, do a fold to maximise conformity to previous behaviour. 954 */ 955 sb->sb_csum = md_csum_fold(disk_csum); 956 #else 957 sb->sb_csum = disk_csum; 958 #endif 959 return csum; 960 } 961 962 963 /* 964 * Handle superblock details. 965 * We want to be able to handle multiple superblock formats 966 * so we have a common interface to them all, and an array of 967 * different handlers. 968 * We rely on user-space to write the initial superblock, and support 969 * reading and updating of superblocks. 970 * Interface methods are: 971 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 972 * loads and validates a superblock on dev. 973 * if refdev != NULL, compare superblocks on both devices 974 * Return: 975 * 0 - dev has a superblock that is compatible with refdev 976 * 1 - dev has a superblock that is compatible and newer than refdev 977 * so dev should be used as the refdev in future 978 * -EINVAL superblock incompatible or invalid 979 * -othererror e.g. -EIO 980 * 981 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 982 * Verify that dev is acceptable into mddev. 983 * The first time, mddev->raid_disks will be 0, and data from 984 * dev should be merged in. Subsequent calls check that dev 985 * is new enough. Return 0 or -EINVAL 986 * 987 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 988 * Update the superblock for rdev with data in mddev 989 * This does not write to disc. 990 * 991 */ 992 993 struct super_type { 994 char *name; 995 struct module *owner; 996 int (*load_super)(struct md_rdev *rdev, 997 struct md_rdev *refdev, 998 int minor_version); 999 int (*validate_super)(struct mddev *mddev, 1000 struct md_rdev *rdev); 1001 void (*sync_super)(struct mddev *mddev, 1002 struct md_rdev *rdev); 1003 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1004 sector_t num_sectors); 1005 int (*allow_new_offset)(struct md_rdev *rdev, 1006 unsigned long long new_offset); 1007 }; 1008 1009 /* 1010 * Check that the given mddev has no bitmap. 1011 * 1012 * This function is called from the run method of all personalities that do not 1013 * support bitmaps. It prints an error message and returns non-zero if mddev 1014 * has a bitmap. Otherwise, it returns 0. 1015 * 1016 */ 1017 int md_check_no_bitmap(struct mddev *mddev) 1018 { 1019 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1020 return 0; 1021 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 1022 mdname(mddev), mddev->pers->name); 1023 return 1; 1024 } 1025 EXPORT_SYMBOL(md_check_no_bitmap); 1026 1027 /* 1028 * load_super for 0.90.0 1029 */ 1030 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1031 { 1032 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1033 mdp_super_t *sb; 1034 int ret; 1035 1036 /* 1037 * Calculate the position of the superblock (512byte sectors), 1038 * it's at the end of the disk. 1039 * 1040 * It also happens to be a multiple of 4Kb. 1041 */ 1042 rdev->sb_start = calc_dev_sboffset(rdev); 1043 1044 ret = read_disk_sb(rdev, MD_SB_BYTES); 1045 if (ret) return ret; 1046 1047 ret = -EINVAL; 1048 1049 bdevname(rdev->bdev, b); 1050 sb = page_address(rdev->sb_page); 1051 1052 if (sb->md_magic != MD_SB_MAGIC) { 1053 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 1054 b); 1055 goto abort; 1056 } 1057 1058 if (sb->major_version != 0 || 1059 sb->minor_version < 90 || 1060 sb->minor_version > 91) { 1061 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1062 sb->major_version, sb->minor_version, 1063 b); 1064 goto abort; 1065 } 1066 1067 if (sb->raid_disks <= 0) 1068 goto abort; 1069 1070 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1071 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1072 b); 1073 goto abort; 1074 } 1075 1076 rdev->preferred_minor = sb->md_minor; 1077 rdev->data_offset = 0; 1078 rdev->new_data_offset = 0; 1079 rdev->sb_size = MD_SB_BYTES; 1080 rdev->badblocks.shift = -1; 1081 1082 if (sb->level == LEVEL_MULTIPATH) 1083 rdev->desc_nr = -1; 1084 else 1085 rdev->desc_nr = sb->this_disk.number; 1086 1087 if (!refdev) { 1088 ret = 1; 1089 } else { 1090 __u64 ev1, ev2; 1091 mdp_super_t *refsb = page_address(refdev->sb_page); 1092 if (!uuid_equal(refsb, sb)) { 1093 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1094 b, bdevname(refdev->bdev,b2)); 1095 goto abort; 1096 } 1097 if (!sb_equal(refsb, sb)) { 1098 printk(KERN_WARNING "md: %s has same UUID" 1099 " but different superblock to %s\n", 1100 b, bdevname(refdev->bdev, b2)); 1101 goto abort; 1102 } 1103 ev1 = md_event(sb); 1104 ev2 = md_event(refsb); 1105 if (ev1 > ev2) 1106 ret = 1; 1107 else 1108 ret = 0; 1109 } 1110 rdev->sectors = rdev->sb_start; 1111 /* Limit to 4TB as metadata cannot record more than that */ 1112 if (rdev->sectors >= (2ULL << 32)) 1113 rdev->sectors = (2ULL << 32) - 2; 1114 1115 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1116 /* "this cannot possibly happen" ... */ 1117 ret = -EINVAL; 1118 1119 abort: 1120 return ret; 1121 } 1122 1123 /* 1124 * validate_super for 0.90.0 1125 */ 1126 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1127 { 1128 mdp_disk_t *desc; 1129 mdp_super_t *sb = page_address(rdev->sb_page); 1130 __u64 ev1 = md_event(sb); 1131 1132 rdev->raid_disk = -1; 1133 clear_bit(Faulty, &rdev->flags); 1134 clear_bit(In_sync, &rdev->flags); 1135 clear_bit(WriteMostly, &rdev->flags); 1136 1137 if (mddev->raid_disks == 0) { 1138 mddev->major_version = 0; 1139 mddev->minor_version = sb->minor_version; 1140 mddev->patch_version = sb->patch_version; 1141 mddev->external = 0; 1142 mddev->chunk_sectors = sb->chunk_size >> 9; 1143 mddev->ctime = sb->ctime; 1144 mddev->utime = sb->utime; 1145 mddev->level = sb->level; 1146 mddev->clevel[0] = 0; 1147 mddev->layout = sb->layout; 1148 mddev->raid_disks = sb->raid_disks; 1149 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1150 mddev->events = ev1; 1151 mddev->bitmap_info.offset = 0; 1152 mddev->bitmap_info.space = 0; 1153 /* bitmap can use 60 K after the 4K superblocks */ 1154 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1155 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1156 mddev->reshape_backwards = 0; 1157 1158 if (mddev->minor_version >= 91) { 1159 mddev->reshape_position = sb->reshape_position; 1160 mddev->delta_disks = sb->delta_disks; 1161 mddev->new_level = sb->new_level; 1162 mddev->new_layout = sb->new_layout; 1163 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1164 if (mddev->delta_disks < 0) 1165 mddev->reshape_backwards = 1; 1166 } else { 1167 mddev->reshape_position = MaxSector; 1168 mddev->delta_disks = 0; 1169 mddev->new_level = mddev->level; 1170 mddev->new_layout = mddev->layout; 1171 mddev->new_chunk_sectors = mddev->chunk_sectors; 1172 } 1173 1174 if (sb->state & (1<<MD_SB_CLEAN)) 1175 mddev->recovery_cp = MaxSector; 1176 else { 1177 if (sb->events_hi == sb->cp_events_hi && 1178 sb->events_lo == sb->cp_events_lo) { 1179 mddev->recovery_cp = sb->recovery_cp; 1180 } else 1181 mddev->recovery_cp = 0; 1182 } 1183 1184 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1185 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1186 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1187 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1188 1189 mddev->max_disks = MD_SB_DISKS; 1190 1191 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1192 mddev->bitmap_info.file == NULL) { 1193 mddev->bitmap_info.offset = 1194 mddev->bitmap_info.default_offset; 1195 mddev->bitmap_info.space = 1196 mddev->bitmap_info.space; 1197 } 1198 1199 } else if (mddev->pers == NULL) { 1200 /* Insist on good event counter while assembling, except 1201 * for spares (which don't need an event count) */ 1202 ++ev1; 1203 if (sb->disks[rdev->desc_nr].state & ( 1204 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1205 if (ev1 < mddev->events) 1206 return -EINVAL; 1207 } else if (mddev->bitmap) { 1208 /* if adding to array with a bitmap, then we can accept an 1209 * older device ... but not too old. 1210 */ 1211 if (ev1 < mddev->bitmap->events_cleared) 1212 return 0; 1213 } else { 1214 if (ev1 < mddev->events) 1215 /* just a hot-add of a new device, leave raid_disk at -1 */ 1216 return 0; 1217 } 1218 1219 if (mddev->level != LEVEL_MULTIPATH) { 1220 desc = sb->disks + rdev->desc_nr; 1221 1222 if (desc->state & (1<<MD_DISK_FAULTY)) 1223 set_bit(Faulty, &rdev->flags); 1224 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1225 desc->raid_disk < mddev->raid_disks */) { 1226 set_bit(In_sync, &rdev->flags); 1227 rdev->raid_disk = desc->raid_disk; 1228 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1229 /* active but not in sync implies recovery up to 1230 * reshape position. We don't know exactly where 1231 * that is, so set to zero for now */ 1232 if (mddev->minor_version >= 91) { 1233 rdev->recovery_offset = 0; 1234 rdev->raid_disk = desc->raid_disk; 1235 } 1236 } 1237 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1238 set_bit(WriteMostly, &rdev->flags); 1239 } else /* MULTIPATH are always insync */ 1240 set_bit(In_sync, &rdev->flags); 1241 return 0; 1242 } 1243 1244 /* 1245 * sync_super for 0.90.0 1246 */ 1247 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1248 { 1249 mdp_super_t *sb; 1250 struct md_rdev *rdev2; 1251 int next_spare = mddev->raid_disks; 1252 1253 1254 /* make rdev->sb match mddev data.. 1255 * 1256 * 1/ zero out disks 1257 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1258 * 3/ any empty disks < next_spare become removed 1259 * 1260 * disks[0] gets initialised to REMOVED because 1261 * we cannot be sure from other fields if it has 1262 * been initialised or not. 1263 */ 1264 int i; 1265 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1266 1267 rdev->sb_size = MD_SB_BYTES; 1268 1269 sb = page_address(rdev->sb_page); 1270 1271 memset(sb, 0, sizeof(*sb)); 1272 1273 sb->md_magic = MD_SB_MAGIC; 1274 sb->major_version = mddev->major_version; 1275 sb->patch_version = mddev->patch_version; 1276 sb->gvalid_words = 0; /* ignored */ 1277 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1278 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1279 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1280 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1281 1282 sb->ctime = mddev->ctime; 1283 sb->level = mddev->level; 1284 sb->size = mddev->dev_sectors / 2; 1285 sb->raid_disks = mddev->raid_disks; 1286 sb->md_minor = mddev->md_minor; 1287 sb->not_persistent = 0; 1288 sb->utime = mddev->utime; 1289 sb->state = 0; 1290 sb->events_hi = (mddev->events>>32); 1291 sb->events_lo = (u32)mddev->events; 1292 1293 if (mddev->reshape_position == MaxSector) 1294 sb->minor_version = 90; 1295 else { 1296 sb->minor_version = 91; 1297 sb->reshape_position = mddev->reshape_position; 1298 sb->new_level = mddev->new_level; 1299 sb->delta_disks = mddev->delta_disks; 1300 sb->new_layout = mddev->new_layout; 1301 sb->new_chunk = mddev->new_chunk_sectors << 9; 1302 } 1303 mddev->minor_version = sb->minor_version; 1304 if (mddev->in_sync) 1305 { 1306 sb->recovery_cp = mddev->recovery_cp; 1307 sb->cp_events_hi = (mddev->events>>32); 1308 sb->cp_events_lo = (u32)mddev->events; 1309 if (mddev->recovery_cp == MaxSector) 1310 sb->state = (1<< MD_SB_CLEAN); 1311 } else 1312 sb->recovery_cp = 0; 1313 1314 sb->layout = mddev->layout; 1315 sb->chunk_size = mddev->chunk_sectors << 9; 1316 1317 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1318 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1319 1320 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1321 rdev_for_each(rdev2, mddev) { 1322 mdp_disk_t *d; 1323 int desc_nr; 1324 int is_active = test_bit(In_sync, &rdev2->flags); 1325 1326 if (rdev2->raid_disk >= 0 && 1327 sb->minor_version >= 91) 1328 /* we have nowhere to store the recovery_offset, 1329 * but if it is not below the reshape_position, 1330 * we can piggy-back on that. 1331 */ 1332 is_active = 1; 1333 if (rdev2->raid_disk < 0 || 1334 test_bit(Faulty, &rdev2->flags)) 1335 is_active = 0; 1336 if (is_active) 1337 desc_nr = rdev2->raid_disk; 1338 else 1339 desc_nr = next_spare++; 1340 rdev2->desc_nr = desc_nr; 1341 d = &sb->disks[rdev2->desc_nr]; 1342 nr_disks++; 1343 d->number = rdev2->desc_nr; 1344 d->major = MAJOR(rdev2->bdev->bd_dev); 1345 d->minor = MINOR(rdev2->bdev->bd_dev); 1346 if (is_active) 1347 d->raid_disk = rdev2->raid_disk; 1348 else 1349 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1350 if (test_bit(Faulty, &rdev2->flags)) 1351 d->state = (1<<MD_DISK_FAULTY); 1352 else if (is_active) { 1353 d->state = (1<<MD_DISK_ACTIVE); 1354 if (test_bit(In_sync, &rdev2->flags)) 1355 d->state |= (1<<MD_DISK_SYNC); 1356 active++; 1357 working++; 1358 } else { 1359 d->state = 0; 1360 spare++; 1361 working++; 1362 } 1363 if (test_bit(WriteMostly, &rdev2->flags)) 1364 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1365 } 1366 /* now set the "removed" and "faulty" bits on any missing devices */ 1367 for (i=0 ; i < mddev->raid_disks ; i++) { 1368 mdp_disk_t *d = &sb->disks[i]; 1369 if (d->state == 0 && d->number == 0) { 1370 d->number = i; 1371 d->raid_disk = i; 1372 d->state = (1<<MD_DISK_REMOVED); 1373 d->state |= (1<<MD_DISK_FAULTY); 1374 failed++; 1375 } 1376 } 1377 sb->nr_disks = nr_disks; 1378 sb->active_disks = active; 1379 sb->working_disks = working; 1380 sb->failed_disks = failed; 1381 sb->spare_disks = spare; 1382 1383 sb->this_disk = sb->disks[rdev->desc_nr]; 1384 sb->sb_csum = calc_sb_csum(sb); 1385 } 1386 1387 /* 1388 * rdev_size_change for 0.90.0 1389 */ 1390 static unsigned long long 1391 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1392 { 1393 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1394 return 0; /* component must fit device */ 1395 if (rdev->mddev->bitmap_info.offset) 1396 return 0; /* can't move bitmap */ 1397 rdev->sb_start = calc_dev_sboffset(rdev); 1398 if (!num_sectors || num_sectors > rdev->sb_start) 1399 num_sectors = rdev->sb_start; 1400 /* Limit to 4TB as metadata cannot record more than that. 1401 * 4TB == 2^32 KB, or 2*2^32 sectors. 1402 */ 1403 if (num_sectors >= (2ULL << 32)) 1404 num_sectors = (2ULL << 32) - 2; 1405 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1406 rdev->sb_page); 1407 md_super_wait(rdev->mddev); 1408 return num_sectors; 1409 } 1410 1411 static int 1412 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1413 { 1414 /* non-zero offset changes not possible with v0.90 */ 1415 return new_offset == 0; 1416 } 1417 1418 /* 1419 * version 1 superblock 1420 */ 1421 1422 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1423 { 1424 __le32 disk_csum; 1425 u32 csum; 1426 unsigned long long newcsum; 1427 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1428 __le32 *isuper = (__le32*)sb; 1429 int i; 1430 1431 disk_csum = sb->sb_csum; 1432 sb->sb_csum = 0; 1433 newcsum = 0; 1434 for (i=0; size>=4; size -= 4 ) 1435 newcsum += le32_to_cpu(*isuper++); 1436 1437 if (size == 2) 1438 newcsum += le16_to_cpu(*(__le16*) isuper); 1439 1440 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1441 sb->sb_csum = disk_csum; 1442 return cpu_to_le32(csum); 1443 } 1444 1445 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1446 int acknowledged); 1447 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1448 { 1449 struct mdp_superblock_1 *sb; 1450 int ret; 1451 sector_t sb_start; 1452 sector_t sectors; 1453 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1454 int bmask; 1455 1456 /* 1457 * Calculate the position of the superblock in 512byte sectors. 1458 * It is always aligned to a 4K boundary and 1459 * depeding on minor_version, it can be: 1460 * 0: At least 8K, but less than 12K, from end of device 1461 * 1: At start of device 1462 * 2: 4K from start of device. 1463 */ 1464 switch(minor_version) { 1465 case 0: 1466 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1467 sb_start -= 8*2; 1468 sb_start &= ~(sector_t)(4*2-1); 1469 break; 1470 case 1: 1471 sb_start = 0; 1472 break; 1473 case 2: 1474 sb_start = 8; 1475 break; 1476 default: 1477 return -EINVAL; 1478 } 1479 rdev->sb_start = sb_start; 1480 1481 /* superblock is rarely larger than 1K, but it can be larger, 1482 * and it is safe to read 4k, so we do that 1483 */ 1484 ret = read_disk_sb(rdev, 4096); 1485 if (ret) return ret; 1486 1487 1488 sb = page_address(rdev->sb_page); 1489 1490 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1491 sb->major_version != cpu_to_le32(1) || 1492 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1493 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1494 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1495 return -EINVAL; 1496 1497 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1498 printk("md: invalid superblock checksum on %s\n", 1499 bdevname(rdev->bdev,b)); 1500 return -EINVAL; 1501 } 1502 if (le64_to_cpu(sb->data_size) < 10) { 1503 printk("md: data_size too small on %s\n", 1504 bdevname(rdev->bdev,b)); 1505 return -EINVAL; 1506 } 1507 if (sb->pad0 || 1508 sb->pad3[0] || 1509 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1510 /* Some padding is non-zero, might be a new feature */ 1511 return -EINVAL; 1512 1513 rdev->preferred_minor = 0xffff; 1514 rdev->data_offset = le64_to_cpu(sb->data_offset); 1515 rdev->new_data_offset = rdev->data_offset; 1516 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1517 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1518 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1519 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1520 1521 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1522 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1523 if (rdev->sb_size & bmask) 1524 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1525 1526 if (minor_version 1527 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1528 return -EINVAL; 1529 if (minor_version 1530 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1531 return -EINVAL; 1532 1533 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1534 rdev->desc_nr = -1; 1535 else 1536 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1537 1538 if (!rdev->bb_page) { 1539 rdev->bb_page = alloc_page(GFP_KERNEL); 1540 if (!rdev->bb_page) 1541 return -ENOMEM; 1542 } 1543 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1544 rdev->badblocks.count == 0) { 1545 /* need to load the bad block list. 1546 * Currently we limit it to one page. 1547 */ 1548 s32 offset; 1549 sector_t bb_sector; 1550 u64 *bbp; 1551 int i; 1552 int sectors = le16_to_cpu(sb->bblog_size); 1553 if (sectors > (PAGE_SIZE / 512)) 1554 return -EINVAL; 1555 offset = le32_to_cpu(sb->bblog_offset); 1556 if (offset == 0) 1557 return -EINVAL; 1558 bb_sector = (long long)offset; 1559 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1560 rdev->bb_page, READ, true)) 1561 return -EIO; 1562 bbp = (u64 *)page_address(rdev->bb_page); 1563 rdev->badblocks.shift = sb->bblog_shift; 1564 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1565 u64 bb = le64_to_cpu(*bbp); 1566 int count = bb & (0x3ff); 1567 u64 sector = bb >> 10; 1568 sector <<= sb->bblog_shift; 1569 count <<= sb->bblog_shift; 1570 if (bb + 1 == 0) 1571 break; 1572 if (md_set_badblocks(&rdev->badblocks, 1573 sector, count, 1) == 0) 1574 return -EINVAL; 1575 } 1576 } else if (sb->bblog_offset == 0) 1577 rdev->badblocks.shift = -1; 1578 1579 if (!refdev) { 1580 ret = 1; 1581 } else { 1582 __u64 ev1, ev2; 1583 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1584 1585 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1586 sb->level != refsb->level || 1587 sb->layout != refsb->layout || 1588 sb->chunksize != refsb->chunksize) { 1589 printk(KERN_WARNING "md: %s has strangely different" 1590 " superblock to %s\n", 1591 bdevname(rdev->bdev,b), 1592 bdevname(refdev->bdev,b2)); 1593 return -EINVAL; 1594 } 1595 ev1 = le64_to_cpu(sb->events); 1596 ev2 = le64_to_cpu(refsb->events); 1597 1598 if (ev1 > ev2) 1599 ret = 1; 1600 else 1601 ret = 0; 1602 } 1603 if (minor_version) { 1604 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1605 sectors -= rdev->data_offset; 1606 } else 1607 sectors = rdev->sb_start; 1608 if (sectors < le64_to_cpu(sb->data_size)) 1609 return -EINVAL; 1610 rdev->sectors = le64_to_cpu(sb->data_size); 1611 return ret; 1612 } 1613 1614 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1615 { 1616 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1617 __u64 ev1 = le64_to_cpu(sb->events); 1618 1619 rdev->raid_disk = -1; 1620 clear_bit(Faulty, &rdev->flags); 1621 clear_bit(In_sync, &rdev->flags); 1622 clear_bit(WriteMostly, &rdev->flags); 1623 1624 if (mddev->raid_disks == 0) { 1625 mddev->major_version = 1; 1626 mddev->patch_version = 0; 1627 mddev->external = 0; 1628 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1629 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1630 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1631 mddev->level = le32_to_cpu(sb->level); 1632 mddev->clevel[0] = 0; 1633 mddev->layout = le32_to_cpu(sb->layout); 1634 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1635 mddev->dev_sectors = le64_to_cpu(sb->size); 1636 mddev->events = ev1; 1637 mddev->bitmap_info.offset = 0; 1638 mddev->bitmap_info.space = 0; 1639 /* Default location for bitmap is 1K after superblock 1640 * using 3K - total of 4K 1641 */ 1642 mddev->bitmap_info.default_offset = 1024 >> 9; 1643 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1644 mddev->reshape_backwards = 0; 1645 1646 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1647 memcpy(mddev->uuid, sb->set_uuid, 16); 1648 1649 mddev->max_disks = (4096-256)/2; 1650 1651 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1652 mddev->bitmap_info.file == NULL) { 1653 mddev->bitmap_info.offset = 1654 (__s32)le32_to_cpu(sb->bitmap_offset); 1655 /* Metadata doesn't record how much space is available. 1656 * For 1.0, we assume we can use up to the superblock 1657 * if before, else to 4K beyond superblock. 1658 * For others, assume no change is possible. 1659 */ 1660 if (mddev->minor_version > 0) 1661 mddev->bitmap_info.space = 0; 1662 else if (mddev->bitmap_info.offset > 0) 1663 mddev->bitmap_info.space = 1664 8 - mddev->bitmap_info.offset; 1665 else 1666 mddev->bitmap_info.space = 1667 -mddev->bitmap_info.offset; 1668 } 1669 1670 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1671 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1672 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1673 mddev->new_level = le32_to_cpu(sb->new_level); 1674 mddev->new_layout = le32_to_cpu(sb->new_layout); 1675 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1676 if (mddev->delta_disks < 0 || 1677 (mddev->delta_disks == 0 && 1678 (le32_to_cpu(sb->feature_map) 1679 & MD_FEATURE_RESHAPE_BACKWARDS))) 1680 mddev->reshape_backwards = 1; 1681 } else { 1682 mddev->reshape_position = MaxSector; 1683 mddev->delta_disks = 0; 1684 mddev->new_level = mddev->level; 1685 mddev->new_layout = mddev->layout; 1686 mddev->new_chunk_sectors = mddev->chunk_sectors; 1687 } 1688 1689 } else if (mddev->pers == NULL) { 1690 /* Insist of good event counter while assembling, except for 1691 * spares (which don't need an event count) */ 1692 ++ev1; 1693 if (rdev->desc_nr >= 0 && 1694 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1695 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1696 if (ev1 < mddev->events) 1697 return -EINVAL; 1698 } else if (mddev->bitmap) { 1699 /* If adding to array with a bitmap, then we can accept an 1700 * older device, but not too old. 1701 */ 1702 if (ev1 < mddev->bitmap->events_cleared) 1703 return 0; 1704 } else { 1705 if (ev1 < mddev->events) 1706 /* just a hot-add of a new device, leave raid_disk at -1 */ 1707 return 0; 1708 } 1709 if (mddev->level != LEVEL_MULTIPATH) { 1710 int role; 1711 if (rdev->desc_nr < 0 || 1712 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1713 role = 0xffff; 1714 rdev->desc_nr = -1; 1715 } else 1716 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1717 switch(role) { 1718 case 0xffff: /* spare */ 1719 break; 1720 case 0xfffe: /* faulty */ 1721 set_bit(Faulty, &rdev->flags); 1722 break; 1723 default: 1724 if ((le32_to_cpu(sb->feature_map) & 1725 MD_FEATURE_RECOVERY_OFFSET)) 1726 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1727 else 1728 set_bit(In_sync, &rdev->flags); 1729 rdev->raid_disk = role; 1730 break; 1731 } 1732 if (sb->devflags & WriteMostly1) 1733 set_bit(WriteMostly, &rdev->flags); 1734 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1735 set_bit(Replacement, &rdev->flags); 1736 } else /* MULTIPATH are always insync */ 1737 set_bit(In_sync, &rdev->flags); 1738 1739 return 0; 1740 } 1741 1742 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1743 { 1744 struct mdp_superblock_1 *sb; 1745 struct md_rdev *rdev2; 1746 int max_dev, i; 1747 /* make rdev->sb match mddev and rdev data. */ 1748 1749 sb = page_address(rdev->sb_page); 1750 1751 sb->feature_map = 0; 1752 sb->pad0 = 0; 1753 sb->recovery_offset = cpu_to_le64(0); 1754 memset(sb->pad3, 0, sizeof(sb->pad3)); 1755 1756 sb->utime = cpu_to_le64((__u64)mddev->utime); 1757 sb->events = cpu_to_le64(mddev->events); 1758 if (mddev->in_sync) 1759 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1760 else 1761 sb->resync_offset = cpu_to_le64(0); 1762 1763 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1764 1765 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1766 sb->size = cpu_to_le64(mddev->dev_sectors); 1767 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1768 sb->level = cpu_to_le32(mddev->level); 1769 sb->layout = cpu_to_le32(mddev->layout); 1770 1771 if (test_bit(WriteMostly, &rdev->flags)) 1772 sb->devflags |= WriteMostly1; 1773 else 1774 sb->devflags &= ~WriteMostly1; 1775 sb->data_offset = cpu_to_le64(rdev->data_offset); 1776 sb->data_size = cpu_to_le64(rdev->sectors); 1777 1778 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1779 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1780 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1781 } 1782 1783 if (rdev->raid_disk >= 0 && 1784 !test_bit(In_sync, &rdev->flags)) { 1785 sb->feature_map |= 1786 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1787 sb->recovery_offset = 1788 cpu_to_le64(rdev->recovery_offset); 1789 } 1790 if (test_bit(Replacement, &rdev->flags)) 1791 sb->feature_map |= 1792 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1793 1794 if (mddev->reshape_position != MaxSector) { 1795 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1796 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1797 sb->new_layout = cpu_to_le32(mddev->new_layout); 1798 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1799 sb->new_level = cpu_to_le32(mddev->new_level); 1800 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1801 if (mddev->delta_disks == 0 && 1802 mddev->reshape_backwards) 1803 sb->feature_map 1804 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1805 if (rdev->new_data_offset != rdev->data_offset) { 1806 sb->feature_map 1807 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1808 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1809 - rdev->data_offset)); 1810 } 1811 } 1812 1813 if (rdev->badblocks.count == 0) 1814 /* Nothing to do for bad blocks*/ ; 1815 else if (sb->bblog_offset == 0) 1816 /* Cannot record bad blocks on this device */ 1817 md_error(mddev, rdev); 1818 else { 1819 struct badblocks *bb = &rdev->badblocks; 1820 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1821 u64 *p = bb->page; 1822 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1823 if (bb->changed) { 1824 unsigned seq; 1825 1826 retry: 1827 seq = read_seqbegin(&bb->lock); 1828 1829 memset(bbp, 0xff, PAGE_SIZE); 1830 1831 for (i = 0 ; i < bb->count ; i++) { 1832 u64 internal_bb = *p++; 1833 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1834 | BB_LEN(internal_bb)); 1835 *bbp++ = cpu_to_le64(store_bb); 1836 } 1837 bb->changed = 0; 1838 if (read_seqretry(&bb->lock, seq)) 1839 goto retry; 1840 1841 bb->sector = (rdev->sb_start + 1842 (int)le32_to_cpu(sb->bblog_offset)); 1843 bb->size = le16_to_cpu(sb->bblog_size); 1844 } 1845 } 1846 1847 max_dev = 0; 1848 rdev_for_each(rdev2, mddev) 1849 if (rdev2->desc_nr+1 > max_dev) 1850 max_dev = rdev2->desc_nr+1; 1851 1852 if (max_dev > le32_to_cpu(sb->max_dev)) { 1853 int bmask; 1854 sb->max_dev = cpu_to_le32(max_dev); 1855 rdev->sb_size = max_dev * 2 + 256; 1856 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1857 if (rdev->sb_size & bmask) 1858 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1859 } else 1860 max_dev = le32_to_cpu(sb->max_dev); 1861 1862 for (i=0; i<max_dev;i++) 1863 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1864 1865 rdev_for_each(rdev2, mddev) { 1866 i = rdev2->desc_nr; 1867 if (test_bit(Faulty, &rdev2->flags)) 1868 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1869 else if (test_bit(In_sync, &rdev2->flags)) 1870 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1871 else if (rdev2->raid_disk >= 0) 1872 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1873 else 1874 sb->dev_roles[i] = cpu_to_le16(0xffff); 1875 } 1876 1877 sb->sb_csum = calc_sb_1_csum(sb); 1878 } 1879 1880 static unsigned long long 1881 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1882 { 1883 struct mdp_superblock_1 *sb; 1884 sector_t max_sectors; 1885 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1886 return 0; /* component must fit device */ 1887 if (rdev->data_offset != rdev->new_data_offset) 1888 return 0; /* too confusing */ 1889 if (rdev->sb_start < rdev->data_offset) { 1890 /* minor versions 1 and 2; superblock before data */ 1891 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1892 max_sectors -= rdev->data_offset; 1893 if (!num_sectors || num_sectors > max_sectors) 1894 num_sectors = max_sectors; 1895 } else if (rdev->mddev->bitmap_info.offset) { 1896 /* minor version 0 with bitmap we can't move */ 1897 return 0; 1898 } else { 1899 /* minor version 0; superblock after data */ 1900 sector_t sb_start; 1901 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1902 sb_start &= ~(sector_t)(4*2 - 1); 1903 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1904 if (!num_sectors || num_sectors > max_sectors) 1905 num_sectors = max_sectors; 1906 rdev->sb_start = sb_start; 1907 } 1908 sb = page_address(rdev->sb_page); 1909 sb->data_size = cpu_to_le64(num_sectors); 1910 sb->super_offset = rdev->sb_start; 1911 sb->sb_csum = calc_sb_1_csum(sb); 1912 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1913 rdev->sb_page); 1914 md_super_wait(rdev->mddev); 1915 return num_sectors; 1916 1917 } 1918 1919 static int 1920 super_1_allow_new_offset(struct md_rdev *rdev, 1921 unsigned long long new_offset) 1922 { 1923 /* All necessary checks on new >= old have been done */ 1924 struct bitmap *bitmap; 1925 if (new_offset >= rdev->data_offset) 1926 return 1; 1927 1928 /* with 1.0 metadata, there is no metadata to tread on 1929 * so we can always move back */ 1930 if (rdev->mddev->minor_version == 0) 1931 return 1; 1932 1933 /* otherwise we must be sure not to step on 1934 * any metadata, so stay: 1935 * 36K beyond start of superblock 1936 * beyond end of badblocks 1937 * beyond write-intent bitmap 1938 */ 1939 if (rdev->sb_start + (32+4)*2 > new_offset) 1940 return 0; 1941 bitmap = rdev->mddev->bitmap; 1942 if (bitmap && !rdev->mddev->bitmap_info.file && 1943 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1944 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1945 return 0; 1946 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1947 return 0; 1948 1949 return 1; 1950 } 1951 1952 static struct super_type super_types[] = { 1953 [0] = { 1954 .name = "0.90.0", 1955 .owner = THIS_MODULE, 1956 .load_super = super_90_load, 1957 .validate_super = super_90_validate, 1958 .sync_super = super_90_sync, 1959 .rdev_size_change = super_90_rdev_size_change, 1960 .allow_new_offset = super_90_allow_new_offset, 1961 }, 1962 [1] = { 1963 .name = "md-1", 1964 .owner = THIS_MODULE, 1965 .load_super = super_1_load, 1966 .validate_super = super_1_validate, 1967 .sync_super = super_1_sync, 1968 .rdev_size_change = super_1_rdev_size_change, 1969 .allow_new_offset = super_1_allow_new_offset, 1970 }, 1971 }; 1972 1973 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1974 { 1975 if (mddev->sync_super) { 1976 mddev->sync_super(mddev, rdev); 1977 return; 1978 } 1979 1980 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1981 1982 super_types[mddev->major_version].sync_super(mddev, rdev); 1983 } 1984 1985 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1986 { 1987 struct md_rdev *rdev, *rdev2; 1988 1989 rcu_read_lock(); 1990 rdev_for_each_rcu(rdev, mddev1) 1991 rdev_for_each_rcu(rdev2, mddev2) 1992 if (rdev->bdev->bd_contains == 1993 rdev2->bdev->bd_contains) { 1994 rcu_read_unlock(); 1995 return 1; 1996 } 1997 rcu_read_unlock(); 1998 return 0; 1999 } 2000 2001 static LIST_HEAD(pending_raid_disks); 2002 2003 /* 2004 * Try to register data integrity profile for an mddev 2005 * 2006 * This is called when an array is started and after a disk has been kicked 2007 * from the array. It only succeeds if all working and active component devices 2008 * are integrity capable with matching profiles. 2009 */ 2010 int md_integrity_register(struct mddev *mddev) 2011 { 2012 struct md_rdev *rdev, *reference = NULL; 2013 2014 if (list_empty(&mddev->disks)) 2015 return 0; /* nothing to do */ 2016 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2017 return 0; /* shouldn't register, or already is */ 2018 rdev_for_each(rdev, mddev) { 2019 /* skip spares and non-functional disks */ 2020 if (test_bit(Faulty, &rdev->flags)) 2021 continue; 2022 if (rdev->raid_disk < 0) 2023 continue; 2024 if (!reference) { 2025 /* Use the first rdev as the reference */ 2026 reference = rdev; 2027 continue; 2028 } 2029 /* does this rdev's profile match the reference profile? */ 2030 if (blk_integrity_compare(reference->bdev->bd_disk, 2031 rdev->bdev->bd_disk) < 0) 2032 return -EINVAL; 2033 } 2034 if (!reference || !bdev_get_integrity(reference->bdev)) 2035 return 0; 2036 /* 2037 * All component devices are integrity capable and have matching 2038 * profiles, register the common profile for the md device. 2039 */ 2040 if (blk_integrity_register(mddev->gendisk, 2041 bdev_get_integrity(reference->bdev)) != 0) { 2042 printk(KERN_ERR "md: failed to register integrity for %s\n", 2043 mdname(mddev)); 2044 return -EINVAL; 2045 } 2046 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 2047 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2048 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 2049 mdname(mddev)); 2050 return -EINVAL; 2051 } 2052 return 0; 2053 } 2054 EXPORT_SYMBOL(md_integrity_register); 2055 2056 /* Disable data integrity if non-capable/non-matching disk is being added */ 2057 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2058 { 2059 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); 2060 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk); 2061 2062 if (!bi_mddev) /* nothing to do */ 2063 return; 2064 if (rdev->raid_disk < 0) /* skip spares */ 2065 return; 2066 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2067 rdev->bdev->bd_disk) >= 0) 2068 return; 2069 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2070 blk_integrity_unregister(mddev->gendisk); 2071 } 2072 EXPORT_SYMBOL(md_integrity_add_rdev); 2073 2074 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev) 2075 { 2076 char b[BDEVNAME_SIZE]; 2077 struct kobject *ko; 2078 char *s; 2079 int err; 2080 2081 if (rdev->mddev) { 2082 MD_BUG(); 2083 return -EINVAL; 2084 } 2085 2086 /* prevent duplicates */ 2087 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2088 return -EEXIST; 2089 2090 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2091 if (rdev->sectors && (mddev->dev_sectors == 0 || 2092 rdev->sectors < mddev->dev_sectors)) { 2093 if (mddev->pers) { 2094 /* Cannot change size, so fail 2095 * If mddev->level <= 0, then we don't care 2096 * about aligning sizes (e.g. linear) 2097 */ 2098 if (mddev->level > 0) 2099 return -ENOSPC; 2100 } else 2101 mddev->dev_sectors = rdev->sectors; 2102 } 2103 2104 /* Verify rdev->desc_nr is unique. 2105 * If it is -1, assign a free number, else 2106 * check number is not in use 2107 */ 2108 if (rdev->desc_nr < 0) { 2109 int choice = 0; 2110 if (mddev->pers) choice = mddev->raid_disks; 2111 while (find_rdev_nr(mddev, choice)) 2112 choice++; 2113 rdev->desc_nr = choice; 2114 } else { 2115 if (find_rdev_nr(mddev, rdev->desc_nr)) 2116 return -EBUSY; 2117 } 2118 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2119 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2120 mdname(mddev), mddev->max_disks); 2121 return -EBUSY; 2122 } 2123 bdevname(rdev->bdev,b); 2124 while ( (s=strchr(b, '/')) != NULL) 2125 *s = '!'; 2126 2127 rdev->mddev = mddev; 2128 printk(KERN_INFO "md: bind<%s>\n", b); 2129 2130 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2131 goto fail; 2132 2133 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2134 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2135 /* failure here is OK */; 2136 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2137 2138 list_add_rcu(&rdev->same_set, &mddev->disks); 2139 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2140 2141 /* May as well allow recovery to be retried once */ 2142 mddev->recovery_disabled++; 2143 2144 return 0; 2145 2146 fail: 2147 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2148 b, mdname(mddev)); 2149 return err; 2150 } 2151 2152 static void md_delayed_delete(struct work_struct *ws) 2153 { 2154 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2155 kobject_del(&rdev->kobj); 2156 kobject_put(&rdev->kobj); 2157 } 2158 2159 static void unbind_rdev_from_array(struct md_rdev * rdev) 2160 { 2161 char b[BDEVNAME_SIZE]; 2162 if (!rdev->mddev) { 2163 MD_BUG(); 2164 return; 2165 } 2166 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2167 list_del_rcu(&rdev->same_set); 2168 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2169 rdev->mddev = NULL; 2170 sysfs_remove_link(&rdev->kobj, "block"); 2171 sysfs_put(rdev->sysfs_state); 2172 rdev->sysfs_state = NULL; 2173 rdev->badblocks.count = 0; 2174 /* We need to delay this, otherwise we can deadlock when 2175 * writing to 'remove' to "dev/state". We also need 2176 * to delay it due to rcu usage. 2177 */ 2178 synchronize_rcu(); 2179 INIT_WORK(&rdev->del_work, md_delayed_delete); 2180 kobject_get(&rdev->kobj); 2181 queue_work(md_misc_wq, &rdev->del_work); 2182 } 2183 2184 /* 2185 * prevent the device from being mounted, repartitioned or 2186 * otherwise reused by a RAID array (or any other kernel 2187 * subsystem), by bd_claiming the device. 2188 */ 2189 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2190 { 2191 int err = 0; 2192 struct block_device *bdev; 2193 char b[BDEVNAME_SIZE]; 2194 2195 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2196 shared ? (struct md_rdev *)lock_rdev : rdev); 2197 if (IS_ERR(bdev)) { 2198 printk(KERN_ERR "md: could not open %s.\n", 2199 __bdevname(dev, b)); 2200 return PTR_ERR(bdev); 2201 } 2202 rdev->bdev = bdev; 2203 return err; 2204 } 2205 2206 static void unlock_rdev(struct md_rdev *rdev) 2207 { 2208 struct block_device *bdev = rdev->bdev; 2209 rdev->bdev = NULL; 2210 if (!bdev) 2211 MD_BUG(); 2212 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2213 } 2214 2215 void md_autodetect_dev(dev_t dev); 2216 2217 static void export_rdev(struct md_rdev * rdev) 2218 { 2219 char b[BDEVNAME_SIZE]; 2220 printk(KERN_INFO "md: export_rdev(%s)\n", 2221 bdevname(rdev->bdev,b)); 2222 if (rdev->mddev) 2223 MD_BUG(); 2224 md_rdev_clear(rdev); 2225 #ifndef MODULE 2226 if (test_bit(AutoDetected, &rdev->flags)) 2227 md_autodetect_dev(rdev->bdev->bd_dev); 2228 #endif 2229 unlock_rdev(rdev); 2230 kobject_put(&rdev->kobj); 2231 } 2232 2233 static void kick_rdev_from_array(struct md_rdev * rdev) 2234 { 2235 unbind_rdev_from_array(rdev); 2236 export_rdev(rdev); 2237 } 2238 2239 static void export_array(struct mddev *mddev) 2240 { 2241 struct md_rdev *rdev, *tmp; 2242 2243 rdev_for_each_safe(rdev, tmp, mddev) { 2244 if (!rdev->mddev) { 2245 MD_BUG(); 2246 continue; 2247 } 2248 kick_rdev_from_array(rdev); 2249 } 2250 if (!list_empty(&mddev->disks)) 2251 MD_BUG(); 2252 mddev->raid_disks = 0; 2253 mddev->major_version = 0; 2254 } 2255 2256 static void print_desc(mdp_disk_t *desc) 2257 { 2258 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2259 desc->major,desc->minor,desc->raid_disk,desc->state); 2260 } 2261 2262 static void print_sb_90(mdp_super_t *sb) 2263 { 2264 int i; 2265 2266 printk(KERN_INFO 2267 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2268 sb->major_version, sb->minor_version, sb->patch_version, 2269 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2270 sb->ctime); 2271 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2272 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2273 sb->md_minor, sb->layout, sb->chunk_size); 2274 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2275 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2276 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2277 sb->failed_disks, sb->spare_disks, 2278 sb->sb_csum, (unsigned long)sb->events_lo); 2279 2280 printk(KERN_INFO); 2281 for (i = 0; i < MD_SB_DISKS; i++) { 2282 mdp_disk_t *desc; 2283 2284 desc = sb->disks + i; 2285 if (desc->number || desc->major || desc->minor || 2286 desc->raid_disk || (desc->state && (desc->state != 4))) { 2287 printk(" D %2d: ", i); 2288 print_desc(desc); 2289 } 2290 } 2291 printk(KERN_INFO "md: THIS: "); 2292 print_desc(&sb->this_disk); 2293 } 2294 2295 static void print_sb_1(struct mdp_superblock_1 *sb) 2296 { 2297 __u8 *uuid; 2298 2299 uuid = sb->set_uuid; 2300 printk(KERN_INFO 2301 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2302 "md: Name: \"%s\" CT:%llu\n", 2303 le32_to_cpu(sb->major_version), 2304 le32_to_cpu(sb->feature_map), 2305 uuid, 2306 sb->set_name, 2307 (unsigned long long)le64_to_cpu(sb->ctime) 2308 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2309 2310 uuid = sb->device_uuid; 2311 printk(KERN_INFO 2312 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2313 " RO:%llu\n" 2314 "md: Dev:%08x UUID: %pU\n" 2315 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2316 "md: (MaxDev:%u) \n", 2317 le32_to_cpu(sb->level), 2318 (unsigned long long)le64_to_cpu(sb->size), 2319 le32_to_cpu(sb->raid_disks), 2320 le32_to_cpu(sb->layout), 2321 le32_to_cpu(sb->chunksize), 2322 (unsigned long long)le64_to_cpu(sb->data_offset), 2323 (unsigned long long)le64_to_cpu(sb->data_size), 2324 (unsigned long long)le64_to_cpu(sb->super_offset), 2325 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2326 le32_to_cpu(sb->dev_number), 2327 uuid, 2328 sb->devflags, 2329 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2330 (unsigned long long)le64_to_cpu(sb->events), 2331 (unsigned long long)le64_to_cpu(sb->resync_offset), 2332 le32_to_cpu(sb->sb_csum), 2333 le32_to_cpu(sb->max_dev) 2334 ); 2335 } 2336 2337 static void print_rdev(struct md_rdev *rdev, int major_version) 2338 { 2339 char b[BDEVNAME_SIZE]; 2340 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2341 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2342 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2343 rdev->desc_nr); 2344 if (rdev->sb_loaded) { 2345 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2346 switch (major_version) { 2347 case 0: 2348 print_sb_90(page_address(rdev->sb_page)); 2349 break; 2350 case 1: 2351 print_sb_1(page_address(rdev->sb_page)); 2352 break; 2353 } 2354 } else 2355 printk(KERN_INFO "md: no rdev superblock!\n"); 2356 } 2357 2358 static void md_print_devices(void) 2359 { 2360 struct list_head *tmp; 2361 struct md_rdev *rdev; 2362 struct mddev *mddev; 2363 char b[BDEVNAME_SIZE]; 2364 2365 printk("\n"); 2366 printk("md: **********************************\n"); 2367 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2368 printk("md: **********************************\n"); 2369 for_each_mddev(mddev, tmp) { 2370 2371 if (mddev->bitmap) 2372 bitmap_print_sb(mddev->bitmap); 2373 else 2374 printk("%s: ", mdname(mddev)); 2375 rdev_for_each(rdev, mddev) 2376 printk("<%s>", bdevname(rdev->bdev,b)); 2377 printk("\n"); 2378 2379 rdev_for_each(rdev, mddev) 2380 print_rdev(rdev, mddev->major_version); 2381 } 2382 printk("md: **********************************\n"); 2383 printk("\n"); 2384 } 2385 2386 2387 static void sync_sbs(struct mddev * mddev, int nospares) 2388 { 2389 /* Update each superblock (in-memory image), but 2390 * if we are allowed to, skip spares which already 2391 * have the right event counter, or have one earlier 2392 * (which would mean they aren't being marked as dirty 2393 * with the rest of the array) 2394 */ 2395 struct md_rdev *rdev; 2396 rdev_for_each(rdev, mddev) { 2397 if (rdev->sb_events == mddev->events || 2398 (nospares && 2399 rdev->raid_disk < 0 && 2400 rdev->sb_events+1 == mddev->events)) { 2401 /* Don't update this superblock */ 2402 rdev->sb_loaded = 2; 2403 } else { 2404 sync_super(mddev, rdev); 2405 rdev->sb_loaded = 1; 2406 } 2407 } 2408 } 2409 2410 static void md_update_sb(struct mddev * mddev, int force_change) 2411 { 2412 struct md_rdev *rdev; 2413 int sync_req; 2414 int nospares = 0; 2415 int any_badblocks_changed = 0; 2416 2417 repeat: 2418 /* First make sure individual recovery_offsets are correct */ 2419 rdev_for_each(rdev, mddev) { 2420 if (rdev->raid_disk >= 0 && 2421 mddev->delta_disks >= 0 && 2422 !test_bit(In_sync, &rdev->flags) && 2423 mddev->curr_resync_completed > rdev->recovery_offset) 2424 rdev->recovery_offset = mddev->curr_resync_completed; 2425 2426 } 2427 if (!mddev->persistent) { 2428 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2429 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2430 if (!mddev->external) { 2431 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2432 rdev_for_each(rdev, mddev) { 2433 if (rdev->badblocks.changed) { 2434 rdev->badblocks.changed = 0; 2435 md_ack_all_badblocks(&rdev->badblocks); 2436 md_error(mddev, rdev); 2437 } 2438 clear_bit(Blocked, &rdev->flags); 2439 clear_bit(BlockedBadBlocks, &rdev->flags); 2440 wake_up(&rdev->blocked_wait); 2441 } 2442 } 2443 wake_up(&mddev->sb_wait); 2444 return; 2445 } 2446 2447 spin_lock_irq(&mddev->write_lock); 2448 2449 mddev->utime = get_seconds(); 2450 2451 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2452 force_change = 1; 2453 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2454 /* just a clean<-> dirty transition, possibly leave spares alone, 2455 * though if events isn't the right even/odd, we will have to do 2456 * spares after all 2457 */ 2458 nospares = 1; 2459 if (force_change) 2460 nospares = 0; 2461 if (mddev->degraded) 2462 /* If the array is degraded, then skipping spares is both 2463 * dangerous and fairly pointless. 2464 * Dangerous because a device that was removed from the array 2465 * might have a event_count that still looks up-to-date, 2466 * so it can be re-added without a resync. 2467 * Pointless because if there are any spares to skip, 2468 * then a recovery will happen and soon that array won't 2469 * be degraded any more and the spare can go back to sleep then. 2470 */ 2471 nospares = 0; 2472 2473 sync_req = mddev->in_sync; 2474 2475 /* If this is just a dirty<->clean transition, and the array is clean 2476 * and 'events' is odd, we can roll back to the previous clean state */ 2477 if (nospares 2478 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2479 && mddev->can_decrease_events 2480 && mddev->events != 1) { 2481 mddev->events--; 2482 mddev->can_decrease_events = 0; 2483 } else { 2484 /* otherwise we have to go forward and ... */ 2485 mddev->events ++; 2486 mddev->can_decrease_events = nospares; 2487 } 2488 2489 if (!mddev->events) { 2490 /* 2491 * oops, this 64-bit counter should never wrap. 2492 * Either we are in around ~1 trillion A.C., assuming 2493 * 1 reboot per second, or we have a bug: 2494 */ 2495 MD_BUG(); 2496 mddev->events --; 2497 } 2498 2499 rdev_for_each(rdev, mddev) { 2500 if (rdev->badblocks.changed) 2501 any_badblocks_changed++; 2502 if (test_bit(Faulty, &rdev->flags)) 2503 set_bit(FaultRecorded, &rdev->flags); 2504 } 2505 2506 sync_sbs(mddev, nospares); 2507 spin_unlock_irq(&mddev->write_lock); 2508 2509 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2510 mdname(mddev), mddev->in_sync); 2511 2512 bitmap_update_sb(mddev->bitmap); 2513 rdev_for_each(rdev, mddev) { 2514 char b[BDEVNAME_SIZE]; 2515 2516 if (rdev->sb_loaded != 1) 2517 continue; /* no noise on spare devices */ 2518 2519 if (!test_bit(Faulty, &rdev->flags) && 2520 rdev->saved_raid_disk == -1) { 2521 md_super_write(mddev,rdev, 2522 rdev->sb_start, rdev->sb_size, 2523 rdev->sb_page); 2524 pr_debug("md: (write) %s's sb offset: %llu\n", 2525 bdevname(rdev->bdev, b), 2526 (unsigned long long)rdev->sb_start); 2527 rdev->sb_events = mddev->events; 2528 if (rdev->badblocks.size) { 2529 md_super_write(mddev, rdev, 2530 rdev->badblocks.sector, 2531 rdev->badblocks.size << 9, 2532 rdev->bb_page); 2533 rdev->badblocks.size = 0; 2534 } 2535 2536 } else if (test_bit(Faulty, &rdev->flags)) 2537 pr_debug("md: %s (skipping faulty)\n", 2538 bdevname(rdev->bdev, b)); 2539 else 2540 pr_debug("(skipping incremental s/r "); 2541 2542 if (mddev->level == LEVEL_MULTIPATH) 2543 /* only need to write one superblock... */ 2544 break; 2545 } 2546 md_super_wait(mddev); 2547 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2548 2549 spin_lock_irq(&mddev->write_lock); 2550 if (mddev->in_sync != sync_req || 2551 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2552 /* have to write it out again */ 2553 spin_unlock_irq(&mddev->write_lock); 2554 goto repeat; 2555 } 2556 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2557 spin_unlock_irq(&mddev->write_lock); 2558 wake_up(&mddev->sb_wait); 2559 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2560 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2561 2562 rdev_for_each(rdev, mddev) { 2563 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2564 clear_bit(Blocked, &rdev->flags); 2565 2566 if (any_badblocks_changed) 2567 md_ack_all_badblocks(&rdev->badblocks); 2568 clear_bit(BlockedBadBlocks, &rdev->flags); 2569 wake_up(&rdev->blocked_wait); 2570 } 2571 } 2572 2573 /* words written to sysfs files may, or may not, be \n terminated. 2574 * We want to accept with case. For this we use cmd_match. 2575 */ 2576 static int cmd_match(const char *cmd, const char *str) 2577 { 2578 /* See if cmd, written into a sysfs file, matches 2579 * str. They must either be the same, or cmd can 2580 * have a trailing newline 2581 */ 2582 while (*cmd && *str && *cmd == *str) { 2583 cmd++; 2584 str++; 2585 } 2586 if (*cmd == '\n') 2587 cmd++; 2588 if (*str || *cmd) 2589 return 0; 2590 return 1; 2591 } 2592 2593 struct rdev_sysfs_entry { 2594 struct attribute attr; 2595 ssize_t (*show)(struct md_rdev *, char *); 2596 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2597 }; 2598 2599 static ssize_t 2600 state_show(struct md_rdev *rdev, char *page) 2601 { 2602 char *sep = ""; 2603 size_t len = 0; 2604 2605 if (test_bit(Faulty, &rdev->flags) || 2606 rdev->badblocks.unacked_exist) { 2607 len+= sprintf(page+len, "%sfaulty",sep); 2608 sep = ","; 2609 } 2610 if (test_bit(In_sync, &rdev->flags)) { 2611 len += sprintf(page+len, "%sin_sync",sep); 2612 sep = ","; 2613 } 2614 if (test_bit(WriteMostly, &rdev->flags)) { 2615 len += sprintf(page+len, "%swrite_mostly",sep); 2616 sep = ","; 2617 } 2618 if (test_bit(Blocked, &rdev->flags) || 2619 (rdev->badblocks.unacked_exist 2620 && !test_bit(Faulty, &rdev->flags))) { 2621 len += sprintf(page+len, "%sblocked", sep); 2622 sep = ","; 2623 } 2624 if (!test_bit(Faulty, &rdev->flags) && 2625 !test_bit(In_sync, &rdev->flags)) { 2626 len += sprintf(page+len, "%sspare", sep); 2627 sep = ","; 2628 } 2629 if (test_bit(WriteErrorSeen, &rdev->flags)) { 2630 len += sprintf(page+len, "%swrite_error", sep); 2631 sep = ","; 2632 } 2633 if (test_bit(WantReplacement, &rdev->flags)) { 2634 len += sprintf(page+len, "%swant_replacement", sep); 2635 sep = ","; 2636 } 2637 if (test_bit(Replacement, &rdev->flags)) { 2638 len += sprintf(page+len, "%sreplacement", sep); 2639 sep = ","; 2640 } 2641 2642 return len+sprintf(page+len, "\n"); 2643 } 2644 2645 static ssize_t 2646 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2647 { 2648 /* can write 2649 * faulty - simulates an error 2650 * remove - disconnects the device 2651 * writemostly - sets write_mostly 2652 * -writemostly - clears write_mostly 2653 * blocked - sets the Blocked flags 2654 * -blocked - clears the Blocked and possibly simulates an error 2655 * insync - sets Insync providing device isn't active 2656 * write_error - sets WriteErrorSeen 2657 * -write_error - clears WriteErrorSeen 2658 */ 2659 int err = -EINVAL; 2660 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2661 md_error(rdev->mddev, rdev); 2662 if (test_bit(Faulty, &rdev->flags)) 2663 err = 0; 2664 else 2665 err = -EBUSY; 2666 } else if (cmd_match(buf, "remove")) { 2667 if (rdev->raid_disk >= 0) 2668 err = -EBUSY; 2669 else { 2670 struct mddev *mddev = rdev->mddev; 2671 kick_rdev_from_array(rdev); 2672 if (mddev->pers) 2673 md_update_sb(mddev, 1); 2674 md_new_event(mddev); 2675 err = 0; 2676 } 2677 } else if (cmd_match(buf, "writemostly")) { 2678 set_bit(WriteMostly, &rdev->flags); 2679 err = 0; 2680 } else if (cmd_match(buf, "-writemostly")) { 2681 clear_bit(WriteMostly, &rdev->flags); 2682 err = 0; 2683 } else if (cmd_match(buf, "blocked")) { 2684 set_bit(Blocked, &rdev->flags); 2685 err = 0; 2686 } else if (cmd_match(buf, "-blocked")) { 2687 if (!test_bit(Faulty, &rdev->flags) && 2688 rdev->badblocks.unacked_exist) { 2689 /* metadata handler doesn't understand badblocks, 2690 * so we need to fail the device 2691 */ 2692 md_error(rdev->mddev, rdev); 2693 } 2694 clear_bit(Blocked, &rdev->flags); 2695 clear_bit(BlockedBadBlocks, &rdev->flags); 2696 wake_up(&rdev->blocked_wait); 2697 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2698 md_wakeup_thread(rdev->mddev->thread); 2699 2700 err = 0; 2701 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2702 set_bit(In_sync, &rdev->flags); 2703 err = 0; 2704 } else if (cmd_match(buf, "write_error")) { 2705 set_bit(WriteErrorSeen, &rdev->flags); 2706 err = 0; 2707 } else if (cmd_match(buf, "-write_error")) { 2708 clear_bit(WriteErrorSeen, &rdev->flags); 2709 err = 0; 2710 } else if (cmd_match(buf, "want_replacement")) { 2711 /* Any non-spare device that is not a replacement can 2712 * become want_replacement at any time, but we then need to 2713 * check if recovery is needed. 2714 */ 2715 if (rdev->raid_disk >= 0 && 2716 !test_bit(Replacement, &rdev->flags)) 2717 set_bit(WantReplacement, &rdev->flags); 2718 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2719 md_wakeup_thread(rdev->mddev->thread); 2720 err = 0; 2721 } else if (cmd_match(buf, "-want_replacement")) { 2722 /* Clearing 'want_replacement' is always allowed. 2723 * Once replacements starts it is too late though. 2724 */ 2725 err = 0; 2726 clear_bit(WantReplacement, &rdev->flags); 2727 } else if (cmd_match(buf, "replacement")) { 2728 /* Can only set a device as a replacement when array has not 2729 * yet been started. Once running, replacement is automatic 2730 * from spares, or by assigning 'slot'. 2731 */ 2732 if (rdev->mddev->pers) 2733 err = -EBUSY; 2734 else { 2735 set_bit(Replacement, &rdev->flags); 2736 err = 0; 2737 } 2738 } else if (cmd_match(buf, "-replacement")) { 2739 /* Similarly, can only clear Replacement before start */ 2740 if (rdev->mddev->pers) 2741 err = -EBUSY; 2742 else { 2743 clear_bit(Replacement, &rdev->flags); 2744 err = 0; 2745 } 2746 } 2747 if (!err) 2748 sysfs_notify_dirent_safe(rdev->sysfs_state); 2749 return err ? err : len; 2750 } 2751 static struct rdev_sysfs_entry rdev_state = 2752 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2753 2754 static ssize_t 2755 errors_show(struct md_rdev *rdev, char *page) 2756 { 2757 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2758 } 2759 2760 static ssize_t 2761 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2762 { 2763 char *e; 2764 unsigned long n = simple_strtoul(buf, &e, 10); 2765 if (*buf && (*e == 0 || *e == '\n')) { 2766 atomic_set(&rdev->corrected_errors, n); 2767 return len; 2768 } 2769 return -EINVAL; 2770 } 2771 static struct rdev_sysfs_entry rdev_errors = 2772 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2773 2774 static ssize_t 2775 slot_show(struct md_rdev *rdev, char *page) 2776 { 2777 if (rdev->raid_disk < 0) 2778 return sprintf(page, "none\n"); 2779 else 2780 return sprintf(page, "%d\n", rdev->raid_disk); 2781 } 2782 2783 static ssize_t 2784 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2785 { 2786 char *e; 2787 int err; 2788 int slot = simple_strtoul(buf, &e, 10); 2789 if (strncmp(buf, "none", 4)==0) 2790 slot = -1; 2791 else if (e==buf || (*e && *e!= '\n')) 2792 return -EINVAL; 2793 if (rdev->mddev->pers && slot == -1) { 2794 /* Setting 'slot' on an active array requires also 2795 * updating the 'rd%d' link, and communicating 2796 * with the personality with ->hot_*_disk. 2797 * For now we only support removing 2798 * failed/spare devices. This normally happens automatically, 2799 * but not when the metadata is externally managed. 2800 */ 2801 if (rdev->raid_disk == -1) 2802 return -EEXIST; 2803 /* personality does all needed checks */ 2804 if (rdev->mddev->pers->hot_remove_disk == NULL) 2805 return -EINVAL; 2806 err = rdev->mddev->pers-> 2807 hot_remove_disk(rdev->mddev, rdev); 2808 if (err) 2809 return err; 2810 sysfs_unlink_rdev(rdev->mddev, rdev); 2811 rdev->raid_disk = -1; 2812 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2813 md_wakeup_thread(rdev->mddev->thread); 2814 } else if (rdev->mddev->pers) { 2815 /* Activating a spare .. or possibly reactivating 2816 * if we ever get bitmaps working here. 2817 */ 2818 2819 if (rdev->raid_disk != -1) 2820 return -EBUSY; 2821 2822 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2823 return -EBUSY; 2824 2825 if (rdev->mddev->pers->hot_add_disk == NULL) 2826 return -EINVAL; 2827 2828 if (slot >= rdev->mddev->raid_disks && 2829 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2830 return -ENOSPC; 2831 2832 rdev->raid_disk = slot; 2833 if (test_bit(In_sync, &rdev->flags)) 2834 rdev->saved_raid_disk = slot; 2835 else 2836 rdev->saved_raid_disk = -1; 2837 clear_bit(In_sync, &rdev->flags); 2838 err = rdev->mddev->pers-> 2839 hot_add_disk(rdev->mddev, rdev); 2840 if (err) { 2841 rdev->raid_disk = -1; 2842 return err; 2843 } else 2844 sysfs_notify_dirent_safe(rdev->sysfs_state); 2845 if (sysfs_link_rdev(rdev->mddev, rdev)) 2846 /* failure here is OK */; 2847 /* don't wakeup anyone, leave that to userspace. */ 2848 } else { 2849 if (slot >= rdev->mddev->raid_disks && 2850 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2851 return -ENOSPC; 2852 rdev->raid_disk = slot; 2853 /* assume it is working */ 2854 clear_bit(Faulty, &rdev->flags); 2855 clear_bit(WriteMostly, &rdev->flags); 2856 set_bit(In_sync, &rdev->flags); 2857 sysfs_notify_dirent_safe(rdev->sysfs_state); 2858 } 2859 return len; 2860 } 2861 2862 2863 static struct rdev_sysfs_entry rdev_slot = 2864 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2865 2866 static ssize_t 2867 offset_show(struct md_rdev *rdev, char *page) 2868 { 2869 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2870 } 2871 2872 static ssize_t 2873 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2874 { 2875 unsigned long long offset; 2876 if (strict_strtoull(buf, 10, &offset) < 0) 2877 return -EINVAL; 2878 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2879 return -EBUSY; 2880 if (rdev->sectors && rdev->mddev->external) 2881 /* Must set offset before size, so overlap checks 2882 * can be sane */ 2883 return -EBUSY; 2884 rdev->data_offset = offset; 2885 rdev->new_data_offset = offset; 2886 return len; 2887 } 2888 2889 static struct rdev_sysfs_entry rdev_offset = 2890 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2891 2892 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2893 { 2894 return sprintf(page, "%llu\n", 2895 (unsigned long long)rdev->new_data_offset); 2896 } 2897 2898 static ssize_t new_offset_store(struct md_rdev *rdev, 2899 const char *buf, size_t len) 2900 { 2901 unsigned long long new_offset; 2902 struct mddev *mddev = rdev->mddev; 2903 2904 if (strict_strtoull(buf, 10, &new_offset) < 0) 2905 return -EINVAL; 2906 2907 if (mddev->sync_thread) 2908 return -EBUSY; 2909 if (new_offset == rdev->data_offset) 2910 /* reset is always permitted */ 2911 ; 2912 else if (new_offset > rdev->data_offset) { 2913 /* must not push array size beyond rdev_sectors */ 2914 if (new_offset - rdev->data_offset 2915 + mddev->dev_sectors > rdev->sectors) 2916 return -E2BIG; 2917 } 2918 /* Metadata worries about other space details. */ 2919 2920 /* decreasing the offset is inconsistent with a backwards 2921 * reshape. 2922 */ 2923 if (new_offset < rdev->data_offset && 2924 mddev->reshape_backwards) 2925 return -EINVAL; 2926 /* Increasing offset is inconsistent with forwards 2927 * reshape. reshape_direction should be set to 2928 * 'backwards' first. 2929 */ 2930 if (new_offset > rdev->data_offset && 2931 !mddev->reshape_backwards) 2932 return -EINVAL; 2933 2934 if (mddev->pers && mddev->persistent && 2935 !super_types[mddev->major_version] 2936 .allow_new_offset(rdev, new_offset)) 2937 return -E2BIG; 2938 rdev->new_data_offset = new_offset; 2939 if (new_offset > rdev->data_offset) 2940 mddev->reshape_backwards = 1; 2941 else if (new_offset < rdev->data_offset) 2942 mddev->reshape_backwards = 0; 2943 2944 return len; 2945 } 2946 static struct rdev_sysfs_entry rdev_new_offset = 2947 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2948 2949 static ssize_t 2950 rdev_size_show(struct md_rdev *rdev, char *page) 2951 { 2952 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2953 } 2954 2955 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2956 { 2957 /* check if two start/length pairs overlap */ 2958 if (s1+l1 <= s2) 2959 return 0; 2960 if (s2+l2 <= s1) 2961 return 0; 2962 return 1; 2963 } 2964 2965 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2966 { 2967 unsigned long long blocks; 2968 sector_t new; 2969 2970 if (strict_strtoull(buf, 10, &blocks) < 0) 2971 return -EINVAL; 2972 2973 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2974 return -EINVAL; /* sector conversion overflow */ 2975 2976 new = blocks * 2; 2977 if (new != blocks * 2) 2978 return -EINVAL; /* unsigned long long to sector_t overflow */ 2979 2980 *sectors = new; 2981 return 0; 2982 } 2983 2984 static ssize_t 2985 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2986 { 2987 struct mddev *my_mddev = rdev->mddev; 2988 sector_t oldsectors = rdev->sectors; 2989 sector_t sectors; 2990 2991 if (strict_blocks_to_sectors(buf, §ors) < 0) 2992 return -EINVAL; 2993 if (rdev->data_offset != rdev->new_data_offset) 2994 return -EINVAL; /* too confusing */ 2995 if (my_mddev->pers && rdev->raid_disk >= 0) { 2996 if (my_mddev->persistent) { 2997 sectors = super_types[my_mddev->major_version]. 2998 rdev_size_change(rdev, sectors); 2999 if (!sectors) 3000 return -EBUSY; 3001 } else if (!sectors) 3002 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3003 rdev->data_offset; 3004 } 3005 if (sectors < my_mddev->dev_sectors) 3006 return -EINVAL; /* component must fit device */ 3007 3008 rdev->sectors = sectors; 3009 if (sectors > oldsectors && my_mddev->external) { 3010 /* need to check that all other rdevs with the same ->bdev 3011 * do not overlap. We need to unlock the mddev to avoid 3012 * a deadlock. We have already changed rdev->sectors, and if 3013 * we have to change it back, we will have the lock again. 3014 */ 3015 struct mddev *mddev; 3016 int overlap = 0; 3017 struct list_head *tmp; 3018 3019 mddev_unlock(my_mddev); 3020 for_each_mddev(mddev, tmp) { 3021 struct md_rdev *rdev2; 3022 3023 mddev_lock(mddev); 3024 rdev_for_each(rdev2, mddev) 3025 if (rdev->bdev == rdev2->bdev && 3026 rdev != rdev2 && 3027 overlaps(rdev->data_offset, rdev->sectors, 3028 rdev2->data_offset, 3029 rdev2->sectors)) { 3030 overlap = 1; 3031 break; 3032 } 3033 mddev_unlock(mddev); 3034 if (overlap) { 3035 mddev_put(mddev); 3036 break; 3037 } 3038 } 3039 mddev_lock(my_mddev); 3040 if (overlap) { 3041 /* Someone else could have slipped in a size 3042 * change here, but doing so is just silly. 3043 * We put oldsectors back because we *know* it is 3044 * safe, and trust userspace not to race with 3045 * itself 3046 */ 3047 rdev->sectors = oldsectors; 3048 return -EBUSY; 3049 } 3050 } 3051 return len; 3052 } 3053 3054 static struct rdev_sysfs_entry rdev_size = 3055 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3056 3057 3058 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3059 { 3060 unsigned long long recovery_start = rdev->recovery_offset; 3061 3062 if (test_bit(In_sync, &rdev->flags) || 3063 recovery_start == MaxSector) 3064 return sprintf(page, "none\n"); 3065 3066 return sprintf(page, "%llu\n", recovery_start); 3067 } 3068 3069 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3070 { 3071 unsigned long long recovery_start; 3072 3073 if (cmd_match(buf, "none")) 3074 recovery_start = MaxSector; 3075 else if (strict_strtoull(buf, 10, &recovery_start)) 3076 return -EINVAL; 3077 3078 if (rdev->mddev->pers && 3079 rdev->raid_disk >= 0) 3080 return -EBUSY; 3081 3082 rdev->recovery_offset = recovery_start; 3083 if (recovery_start == MaxSector) 3084 set_bit(In_sync, &rdev->flags); 3085 else 3086 clear_bit(In_sync, &rdev->flags); 3087 return len; 3088 } 3089 3090 static struct rdev_sysfs_entry rdev_recovery_start = 3091 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3092 3093 3094 static ssize_t 3095 badblocks_show(struct badblocks *bb, char *page, int unack); 3096 static ssize_t 3097 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 3098 3099 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3100 { 3101 return badblocks_show(&rdev->badblocks, page, 0); 3102 } 3103 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3104 { 3105 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3106 /* Maybe that ack was all we needed */ 3107 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3108 wake_up(&rdev->blocked_wait); 3109 return rv; 3110 } 3111 static struct rdev_sysfs_entry rdev_bad_blocks = 3112 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3113 3114 3115 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3116 { 3117 return badblocks_show(&rdev->badblocks, page, 1); 3118 } 3119 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3120 { 3121 return badblocks_store(&rdev->badblocks, page, len, 1); 3122 } 3123 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3124 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3125 3126 static struct attribute *rdev_default_attrs[] = { 3127 &rdev_state.attr, 3128 &rdev_errors.attr, 3129 &rdev_slot.attr, 3130 &rdev_offset.attr, 3131 &rdev_new_offset.attr, 3132 &rdev_size.attr, 3133 &rdev_recovery_start.attr, 3134 &rdev_bad_blocks.attr, 3135 &rdev_unack_bad_blocks.attr, 3136 NULL, 3137 }; 3138 static ssize_t 3139 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3140 { 3141 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3142 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3143 struct mddev *mddev = rdev->mddev; 3144 ssize_t rv; 3145 3146 if (!entry->show) 3147 return -EIO; 3148 3149 rv = mddev ? mddev_lock(mddev) : -EBUSY; 3150 if (!rv) { 3151 if (rdev->mddev == NULL) 3152 rv = -EBUSY; 3153 else 3154 rv = entry->show(rdev, page); 3155 mddev_unlock(mddev); 3156 } 3157 return rv; 3158 } 3159 3160 static ssize_t 3161 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3162 const char *page, size_t length) 3163 { 3164 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3165 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3166 ssize_t rv; 3167 struct mddev *mddev = rdev->mddev; 3168 3169 if (!entry->store) 3170 return -EIO; 3171 if (!capable(CAP_SYS_ADMIN)) 3172 return -EACCES; 3173 rv = mddev ? mddev_lock(mddev): -EBUSY; 3174 if (!rv) { 3175 if (rdev->mddev == NULL) 3176 rv = -EBUSY; 3177 else 3178 rv = entry->store(rdev, page, length); 3179 mddev_unlock(mddev); 3180 } 3181 return rv; 3182 } 3183 3184 static void rdev_free(struct kobject *ko) 3185 { 3186 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3187 kfree(rdev); 3188 } 3189 static const struct sysfs_ops rdev_sysfs_ops = { 3190 .show = rdev_attr_show, 3191 .store = rdev_attr_store, 3192 }; 3193 static struct kobj_type rdev_ktype = { 3194 .release = rdev_free, 3195 .sysfs_ops = &rdev_sysfs_ops, 3196 .default_attrs = rdev_default_attrs, 3197 }; 3198 3199 int md_rdev_init(struct md_rdev *rdev) 3200 { 3201 rdev->desc_nr = -1; 3202 rdev->saved_raid_disk = -1; 3203 rdev->raid_disk = -1; 3204 rdev->flags = 0; 3205 rdev->data_offset = 0; 3206 rdev->new_data_offset = 0; 3207 rdev->sb_events = 0; 3208 rdev->last_read_error.tv_sec = 0; 3209 rdev->last_read_error.tv_nsec = 0; 3210 rdev->sb_loaded = 0; 3211 rdev->bb_page = NULL; 3212 atomic_set(&rdev->nr_pending, 0); 3213 atomic_set(&rdev->read_errors, 0); 3214 atomic_set(&rdev->corrected_errors, 0); 3215 3216 INIT_LIST_HEAD(&rdev->same_set); 3217 init_waitqueue_head(&rdev->blocked_wait); 3218 3219 /* Add space to store bad block list. 3220 * This reserves the space even on arrays where it cannot 3221 * be used - I wonder if that matters 3222 */ 3223 rdev->badblocks.count = 0; 3224 rdev->badblocks.shift = 0; 3225 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3226 seqlock_init(&rdev->badblocks.lock); 3227 if (rdev->badblocks.page == NULL) 3228 return -ENOMEM; 3229 3230 return 0; 3231 } 3232 EXPORT_SYMBOL_GPL(md_rdev_init); 3233 /* 3234 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3235 * 3236 * mark the device faulty if: 3237 * 3238 * - the device is nonexistent (zero size) 3239 * - the device has no valid superblock 3240 * 3241 * a faulty rdev _never_ has rdev->sb set. 3242 */ 3243 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3244 { 3245 char b[BDEVNAME_SIZE]; 3246 int err; 3247 struct md_rdev *rdev; 3248 sector_t size; 3249 3250 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3251 if (!rdev) { 3252 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3253 return ERR_PTR(-ENOMEM); 3254 } 3255 3256 err = md_rdev_init(rdev); 3257 if (err) 3258 goto abort_free; 3259 err = alloc_disk_sb(rdev); 3260 if (err) 3261 goto abort_free; 3262 3263 err = lock_rdev(rdev, newdev, super_format == -2); 3264 if (err) 3265 goto abort_free; 3266 3267 kobject_init(&rdev->kobj, &rdev_ktype); 3268 3269 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3270 if (!size) { 3271 printk(KERN_WARNING 3272 "md: %s has zero or unknown size, marking faulty!\n", 3273 bdevname(rdev->bdev,b)); 3274 err = -EINVAL; 3275 goto abort_free; 3276 } 3277 3278 if (super_format >= 0) { 3279 err = super_types[super_format]. 3280 load_super(rdev, NULL, super_minor); 3281 if (err == -EINVAL) { 3282 printk(KERN_WARNING 3283 "md: %s does not have a valid v%d.%d " 3284 "superblock, not importing!\n", 3285 bdevname(rdev->bdev,b), 3286 super_format, super_minor); 3287 goto abort_free; 3288 } 3289 if (err < 0) { 3290 printk(KERN_WARNING 3291 "md: could not read %s's sb, not importing!\n", 3292 bdevname(rdev->bdev,b)); 3293 goto abort_free; 3294 } 3295 } 3296 if (super_format == -1) 3297 /* hot-add for 0.90, or non-persistent: so no badblocks */ 3298 rdev->badblocks.shift = -1; 3299 3300 return rdev; 3301 3302 abort_free: 3303 if (rdev->bdev) 3304 unlock_rdev(rdev); 3305 md_rdev_clear(rdev); 3306 kfree(rdev); 3307 return ERR_PTR(err); 3308 } 3309 3310 /* 3311 * Check a full RAID array for plausibility 3312 */ 3313 3314 3315 static void analyze_sbs(struct mddev * mddev) 3316 { 3317 int i; 3318 struct md_rdev *rdev, *freshest, *tmp; 3319 char b[BDEVNAME_SIZE]; 3320 3321 freshest = NULL; 3322 rdev_for_each_safe(rdev, tmp, mddev) 3323 switch (super_types[mddev->major_version]. 3324 load_super(rdev, freshest, mddev->minor_version)) { 3325 case 1: 3326 freshest = rdev; 3327 break; 3328 case 0: 3329 break; 3330 default: 3331 printk( KERN_ERR \ 3332 "md: fatal superblock inconsistency in %s" 3333 " -- removing from array\n", 3334 bdevname(rdev->bdev,b)); 3335 kick_rdev_from_array(rdev); 3336 } 3337 3338 3339 super_types[mddev->major_version]. 3340 validate_super(mddev, freshest); 3341 3342 i = 0; 3343 rdev_for_each_safe(rdev, tmp, mddev) { 3344 if (mddev->max_disks && 3345 (rdev->desc_nr >= mddev->max_disks || 3346 i > mddev->max_disks)) { 3347 printk(KERN_WARNING 3348 "md: %s: %s: only %d devices permitted\n", 3349 mdname(mddev), bdevname(rdev->bdev, b), 3350 mddev->max_disks); 3351 kick_rdev_from_array(rdev); 3352 continue; 3353 } 3354 if (rdev != freshest) 3355 if (super_types[mddev->major_version]. 3356 validate_super(mddev, rdev)) { 3357 printk(KERN_WARNING "md: kicking non-fresh %s" 3358 " from array!\n", 3359 bdevname(rdev->bdev,b)); 3360 kick_rdev_from_array(rdev); 3361 continue; 3362 } 3363 if (mddev->level == LEVEL_MULTIPATH) { 3364 rdev->desc_nr = i++; 3365 rdev->raid_disk = rdev->desc_nr; 3366 set_bit(In_sync, &rdev->flags); 3367 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3368 rdev->raid_disk = -1; 3369 clear_bit(In_sync, &rdev->flags); 3370 } 3371 } 3372 } 3373 3374 /* Read a fixed-point number. 3375 * Numbers in sysfs attributes should be in "standard" units where 3376 * possible, so time should be in seconds. 3377 * However we internally use a a much smaller unit such as 3378 * milliseconds or jiffies. 3379 * This function takes a decimal number with a possible fractional 3380 * component, and produces an integer which is the result of 3381 * multiplying that number by 10^'scale'. 3382 * all without any floating-point arithmetic. 3383 */ 3384 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3385 { 3386 unsigned long result = 0; 3387 long decimals = -1; 3388 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3389 if (*cp == '.') 3390 decimals = 0; 3391 else if (decimals < scale) { 3392 unsigned int value; 3393 value = *cp - '0'; 3394 result = result * 10 + value; 3395 if (decimals >= 0) 3396 decimals++; 3397 } 3398 cp++; 3399 } 3400 if (*cp == '\n') 3401 cp++; 3402 if (*cp) 3403 return -EINVAL; 3404 if (decimals < 0) 3405 decimals = 0; 3406 while (decimals < scale) { 3407 result *= 10; 3408 decimals ++; 3409 } 3410 *res = result; 3411 return 0; 3412 } 3413 3414 3415 static void md_safemode_timeout(unsigned long data); 3416 3417 static ssize_t 3418 safe_delay_show(struct mddev *mddev, char *page) 3419 { 3420 int msec = (mddev->safemode_delay*1000)/HZ; 3421 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3422 } 3423 static ssize_t 3424 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3425 { 3426 unsigned long msec; 3427 3428 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3429 return -EINVAL; 3430 if (msec == 0) 3431 mddev->safemode_delay = 0; 3432 else { 3433 unsigned long old_delay = mddev->safemode_delay; 3434 mddev->safemode_delay = (msec*HZ)/1000; 3435 if (mddev->safemode_delay == 0) 3436 mddev->safemode_delay = 1; 3437 if (mddev->safemode_delay < old_delay) 3438 md_safemode_timeout((unsigned long)mddev); 3439 } 3440 return len; 3441 } 3442 static struct md_sysfs_entry md_safe_delay = 3443 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3444 3445 static ssize_t 3446 level_show(struct mddev *mddev, char *page) 3447 { 3448 struct md_personality *p = mddev->pers; 3449 if (p) 3450 return sprintf(page, "%s\n", p->name); 3451 else if (mddev->clevel[0]) 3452 return sprintf(page, "%s\n", mddev->clevel); 3453 else if (mddev->level != LEVEL_NONE) 3454 return sprintf(page, "%d\n", mddev->level); 3455 else 3456 return 0; 3457 } 3458 3459 static ssize_t 3460 level_store(struct mddev *mddev, const char *buf, size_t len) 3461 { 3462 char clevel[16]; 3463 ssize_t rv = len; 3464 struct md_personality *pers; 3465 long level; 3466 void *priv; 3467 struct md_rdev *rdev; 3468 3469 if (mddev->pers == NULL) { 3470 if (len == 0) 3471 return 0; 3472 if (len >= sizeof(mddev->clevel)) 3473 return -ENOSPC; 3474 strncpy(mddev->clevel, buf, len); 3475 if (mddev->clevel[len-1] == '\n') 3476 len--; 3477 mddev->clevel[len] = 0; 3478 mddev->level = LEVEL_NONE; 3479 return rv; 3480 } 3481 3482 /* request to change the personality. Need to ensure: 3483 * - array is not engaged in resync/recovery/reshape 3484 * - old personality can be suspended 3485 * - new personality will access other array. 3486 */ 3487 3488 if (mddev->sync_thread || 3489 mddev->reshape_position != MaxSector || 3490 mddev->sysfs_active) 3491 return -EBUSY; 3492 3493 if (!mddev->pers->quiesce) { 3494 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3495 mdname(mddev), mddev->pers->name); 3496 return -EINVAL; 3497 } 3498 3499 /* Now find the new personality */ 3500 if (len == 0 || len >= sizeof(clevel)) 3501 return -EINVAL; 3502 strncpy(clevel, buf, len); 3503 if (clevel[len-1] == '\n') 3504 len--; 3505 clevel[len] = 0; 3506 if (strict_strtol(clevel, 10, &level)) 3507 level = LEVEL_NONE; 3508 3509 if (request_module("md-%s", clevel) != 0) 3510 request_module("md-level-%s", clevel); 3511 spin_lock(&pers_lock); 3512 pers = find_pers(level, clevel); 3513 if (!pers || !try_module_get(pers->owner)) { 3514 spin_unlock(&pers_lock); 3515 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3516 return -EINVAL; 3517 } 3518 spin_unlock(&pers_lock); 3519 3520 if (pers == mddev->pers) { 3521 /* Nothing to do! */ 3522 module_put(pers->owner); 3523 return rv; 3524 } 3525 if (!pers->takeover) { 3526 module_put(pers->owner); 3527 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3528 mdname(mddev), clevel); 3529 return -EINVAL; 3530 } 3531 3532 rdev_for_each(rdev, mddev) 3533 rdev->new_raid_disk = rdev->raid_disk; 3534 3535 /* ->takeover must set new_* and/or delta_disks 3536 * if it succeeds, and may set them when it fails. 3537 */ 3538 priv = pers->takeover(mddev); 3539 if (IS_ERR(priv)) { 3540 mddev->new_level = mddev->level; 3541 mddev->new_layout = mddev->layout; 3542 mddev->new_chunk_sectors = mddev->chunk_sectors; 3543 mddev->raid_disks -= mddev->delta_disks; 3544 mddev->delta_disks = 0; 3545 mddev->reshape_backwards = 0; 3546 module_put(pers->owner); 3547 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3548 mdname(mddev), clevel); 3549 return PTR_ERR(priv); 3550 } 3551 3552 /* Looks like we have a winner */ 3553 mddev_suspend(mddev); 3554 mddev->pers->stop(mddev); 3555 3556 if (mddev->pers->sync_request == NULL && 3557 pers->sync_request != NULL) { 3558 /* need to add the md_redundancy_group */ 3559 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3560 printk(KERN_WARNING 3561 "md: cannot register extra attributes for %s\n", 3562 mdname(mddev)); 3563 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3564 } 3565 if (mddev->pers->sync_request != NULL && 3566 pers->sync_request == NULL) { 3567 /* need to remove the md_redundancy_group */ 3568 if (mddev->to_remove == NULL) 3569 mddev->to_remove = &md_redundancy_group; 3570 } 3571 3572 if (mddev->pers->sync_request == NULL && 3573 mddev->external) { 3574 /* We are converting from a no-redundancy array 3575 * to a redundancy array and metadata is managed 3576 * externally so we need to be sure that writes 3577 * won't block due to a need to transition 3578 * clean->dirty 3579 * until external management is started. 3580 */ 3581 mddev->in_sync = 0; 3582 mddev->safemode_delay = 0; 3583 mddev->safemode = 0; 3584 } 3585 3586 rdev_for_each(rdev, mddev) { 3587 if (rdev->raid_disk < 0) 3588 continue; 3589 if (rdev->new_raid_disk >= mddev->raid_disks) 3590 rdev->new_raid_disk = -1; 3591 if (rdev->new_raid_disk == rdev->raid_disk) 3592 continue; 3593 sysfs_unlink_rdev(mddev, rdev); 3594 } 3595 rdev_for_each(rdev, mddev) { 3596 if (rdev->raid_disk < 0) 3597 continue; 3598 if (rdev->new_raid_disk == rdev->raid_disk) 3599 continue; 3600 rdev->raid_disk = rdev->new_raid_disk; 3601 if (rdev->raid_disk < 0) 3602 clear_bit(In_sync, &rdev->flags); 3603 else { 3604 if (sysfs_link_rdev(mddev, rdev)) 3605 printk(KERN_WARNING "md: cannot register rd%d" 3606 " for %s after level change\n", 3607 rdev->raid_disk, mdname(mddev)); 3608 } 3609 } 3610 3611 module_put(mddev->pers->owner); 3612 mddev->pers = pers; 3613 mddev->private = priv; 3614 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3615 mddev->level = mddev->new_level; 3616 mddev->layout = mddev->new_layout; 3617 mddev->chunk_sectors = mddev->new_chunk_sectors; 3618 mddev->delta_disks = 0; 3619 mddev->reshape_backwards = 0; 3620 mddev->degraded = 0; 3621 if (mddev->pers->sync_request == NULL) { 3622 /* this is now an array without redundancy, so 3623 * it must always be in_sync 3624 */ 3625 mddev->in_sync = 1; 3626 del_timer_sync(&mddev->safemode_timer); 3627 } 3628 pers->run(mddev); 3629 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3630 mddev_resume(mddev); 3631 sysfs_notify(&mddev->kobj, NULL, "level"); 3632 md_new_event(mddev); 3633 return rv; 3634 } 3635 3636 static struct md_sysfs_entry md_level = 3637 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3638 3639 3640 static ssize_t 3641 layout_show(struct mddev *mddev, char *page) 3642 { 3643 /* just a number, not meaningful for all levels */ 3644 if (mddev->reshape_position != MaxSector && 3645 mddev->layout != mddev->new_layout) 3646 return sprintf(page, "%d (%d)\n", 3647 mddev->new_layout, mddev->layout); 3648 return sprintf(page, "%d\n", mddev->layout); 3649 } 3650 3651 static ssize_t 3652 layout_store(struct mddev *mddev, const char *buf, size_t len) 3653 { 3654 char *e; 3655 unsigned long n = simple_strtoul(buf, &e, 10); 3656 3657 if (!*buf || (*e && *e != '\n')) 3658 return -EINVAL; 3659 3660 if (mddev->pers) { 3661 int err; 3662 if (mddev->pers->check_reshape == NULL) 3663 return -EBUSY; 3664 mddev->new_layout = n; 3665 err = mddev->pers->check_reshape(mddev); 3666 if (err) { 3667 mddev->new_layout = mddev->layout; 3668 return err; 3669 } 3670 } else { 3671 mddev->new_layout = n; 3672 if (mddev->reshape_position == MaxSector) 3673 mddev->layout = n; 3674 } 3675 return len; 3676 } 3677 static struct md_sysfs_entry md_layout = 3678 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3679 3680 3681 static ssize_t 3682 raid_disks_show(struct mddev *mddev, char *page) 3683 { 3684 if (mddev->raid_disks == 0) 3685 return 0; 3686 if (mddev->reshape_position != MaxSector && 3687 mddev->delta_disks != 0) 3688 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3689 mddev->raid_disks - mddev->delta_disks); 3690 return sprintf(page, "%d\n", mddev->raid_disks); 3691 } 3692 3693 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3694 3695 static ssize_t 3696 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3697 { 3698 char *e; 3699 int rv = 0; 3700 unsigned long n = simple_strtoul(buf, &e, 10); 3701 3702 if (!*buf || (*e && *e != '\n')) 3703 return -EINVAL; 3704 3705 if (mddev->pers) 3706 rv = update_raid_disks(mddev, n); 3707 else if (mddev->reshape_position != MaxSector) { 3708 struct md_rdev *rdev; 3709 int olddisks = mddev->raid_disks - mddev->delta_disks; 3710 3711 rdev_for_each(rdev, mddev) { 3712 if (olddisks < n && 3713 rdev->data_offset < rdev->new_data_offset) 3714 return -EINVAL; 3715 if (olddisks > n && 3716 rdev->data_offset > rdev->new_data_offset) 3717 return -EINVAL; 3718 } 3719 mddev->delta_disks = n - olddisks; 3720 mddev->raid_disks = n; 3721 mddev->reshape_backwards = (mddev->delta_disks < 0); 3722 } else 3723 mddev->raid_disks = n; 3724 return rv ? rv : len; 3725 } 3726 static struct md_sysfs_entry md_raid_disks = 3727 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3728 3729 static ssize_t 3730 chunk_size_show(struct mddev *mddev, char *page) 3731 { 3732 if (mddev->reshape_position != MaxSector && 3733 mddev->chunk_sectors != mddev->new_chunk_sectors) 3734 return sprintf(page, "%d (%d)\n", 3735 mddev->new_chunk_sectors << 9, 3736 mddev->chunk_sectors << 9); 3737 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3738 } 3739 3740 static ssize_t 3741 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3742 { 3743 char *e; 3744 unsigned long n = simple_strtoul(buf, &e, 10); 3745 3746 if (!*buf || (*e && *e != '\n')) 3747 return -EINVAL; 3748 3749 if (mddev->pers) { 3750 int err; 3751 if (mddev->pers->check_reshape == NULL) 3752 return -EBUSY; 3753 mddev->new_chunk_sectors = n >> 9; 3754 err = mddev->pers->check_reshape(mddev); 3755 if (err) { 3756 mddev->new_chunk_sectors = mddev->chunk_sectors; 3757 return err; 3758 } 3759 } else { 3760 mddev->new_chunk_sectors = n >> 9; 3761 if (mddev->reshape_position == MaxSector) 3762 mddev->chunk_sectors = n >> 9; 3763 } 3764 return len; 3765 } 3766 static struct md_sysfs_entry md_chunk_size = 3767 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3768 3769 static ssize_t 3770 resync_start_show(struct mddev *mddev, char *page) 3771 { 3772 if (mddev->recovery_cp == MaxSector) 3773 return sprintf(page, "none\n"); 3774 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3775 } 3776 3777 static ssize_t 3778 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3779 { 3780 char *e; 3781 unsigned long long n = simple_strtoull(buf, &e, 10); 3782 3783 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3784 return -EBUSY; 3785 if (cmd_match(buf, "none")) 3786 n = MaxSector; 3787 else if (!*buf || (*e && *e != '\n')) 3788 return -EINVAL; 3789 3790 mddev->recovery_cp = n; 3791 return len; 3792 } 3793 static struct md_sysfs_entry md_resync_start = 3794 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3795 3796 /* 3797 * The array state can be: 3798 * 3799 * clear 3800 * No devices, no size, no level 3801 * Equivalent to STOP_ARRAY ioctl 3802 * inactive 3803 * May have some settings, but array is not active 3804 * all IO results in error 3805 * When written, doesn't tear down array, but just stops it 3806 * suspended (not supported yet) 3807 * All IO requests will block. The array can be reconfigured. 3808 * Writing this, if accepted, will block until array is quiescent 3809 * readonly 3810 * no resync can happen. no superblocks get written. 3811 * write requests fail 3812 * read-auto 3813 * like readonly, but behaves like 'clean' on a write request. 3814 * 3815 * clean - no pending writes, but otherwise active. 3816 * When written to inactive array, starts without resync 3817 * If a write request arrives then 3818 * if metadata is known, mark 'dirty' and switch to 'active'. 3819 * if not known, block and switch to write-pending 3820 * If written to an active array that has pending writes, then fails. 3821 * active 3822 * fully active: IO and resync can be happening. 3823 * When written to inactive array, starts with resync 3824 * 3825 * write-pending 3826 * clean, but writes are blocked waiting for 'active' to be written. 3827 * 3828 * active-idle 3829 * like active, but no writes have been seen for a while (100msec). 3830 * 3831 */ 3832 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3833 write_pending, active_idle, bad_word}; 3834 static char *array_states[] = { 3835 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3836 "write-pending", "active-idle", NULL }; 3837 3838 static int match_word(const char *word, char **list) 3839 { 3840 int n; 3841 for (n=0; list[n]; n++) 3842 if (cmd_match(word, list[n])) 3843 break; 3844 return n; 3845 } 3846 3847 static ssize_t 3848 array_state_show(struct mddev *mddev, char *page) 3849 { 3850 enum array_state st = inactive; 3851 3852 if (mddev->pers) 3853 switch(mddev->ro) { 3854 case 1: 3855 st = readonly; 3856 break; 3857 case 2: 3858 st = read_auto; 3859 break; 3860 case 0: 3861 if (mddev->in_sync) 3862 st = clean; 3863 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3864 st = write_pending; 3865 else if (mddev->safemode) 3866 st = active_idle; 3867 else 3868 st = active; 3869 } 3870 else { 3871 if (list_empty(&mddev->disks) && 3872 mddev->raid_disks == 0 && 3873 mddev->dev_sectors == 0) 3874 st = clear; 3875 else 3876 st = inactive; 3877 } 3878 return sprintf(page, "%s\n", array_states[st]); 3879 } 3880 3881 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev); 3882 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev); 3883 static int do_md_run(struct mddev * mddev); 3884 static int restart_array(struct mddev *mddev); 3885 3886 static ssize_t 3887 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3888 { 3889 int err = -EINVAL; 3890 enum array_state st = match_word(buf, array_states); 3891 switch(st) { 3892 case bad_word: 3893 break; 3894 case clear: 3895 /* stopping an active array */ 3896 err = do_md_stop(mddev, 0, NULL); 3897 break; 3898 case inactive: 3899 /* stopping an active array */ 3900 if (mddev->pers) 3901 err = do_md_stop(mddev, 2, NULL); 3902 else 3903 err = 0; /* already inactive */ 3904 break; 3905 case suspended: 3906 break; /* not supported yet */ 3907 case readonly: 3908 if (mddev->pers) 3909 err = md_set_readonly(mddev, NULL); 3910 else { 3911 mddev->ro = 1; 3912 set_disk_ro(mddev->gendisk, 1); 3913 err = do_md_run(mddev); 3914 } 3915 break; 3916 case read_auto: 3917 if (mddev->pers) { 3918 if (mddev->ro == 0) 3919 err = md_set_readonly(mddev, NULL); 3920 else if (mddev->ro == 1) 3921 err = restart_array(mddev); 3922 if (err == 0) { 3923 mddev->ro = 2; 3924 set_disk_ro(mddev->gendisk, 0); 3925 } 3926 } else { 3927 mddev->ro = 2; 3928 err = do_md_run(mddev); 3929 } 3930 break; 3931 case clean: 3932 if (mddev->pers) { 3933 restart_array(mddev); 3934 spin_lock_irq(&mddev->write_lock); 3935 if (atomic_read(&mddev->writes_pending) == 0) { 3936 if (mddev->in_sync == 0) { 3937 mddev->in_sync = 1; 3938 if (mddev->safemode == 1) 3939 mddev->safemode = 0; 3940 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3941 } 3942 err = 0; 3943 } else 3944 err = -EBUSY; 3945 spin_unlock_irq(&mddev->write_lock); 3946 } else 3947 err = -EINVAL; 3948 break; 3949 case active: 3950 if (mddev->pers) { 3951 restart_array(mddev); 3952 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3953 wake_up(&mddev->sb_wait); 3954 err = 0; 3955 } else { 3956 mddev->ro = 0; 3957 set_disk_ro(mddev->gendisk, 0); 3958 err = do_md_run(mddev); 3959 } 3960 break; 3961 case write_pending: 3962 case active_idle: 3963 /* these cannot be set */ 3964 break; 3965 } 3966 if (err) 3967 return err; 3968 else { 3969 if (mddev->hold_active == UNTIL_IOCTL) 3970 mddev->hold_active = 0; 3971 sysfs_notify_dirent_safe(mddev->sysfs_state); 3972 return len; 3973 } 3974 } 3975 static struct md_sysfs_entry md_array_state = 3976 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3977 3978 static ssize_t 3979 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 3980 return sprintf(page, "%d\n", 3981 atomic_read(&mddev->max_corr_read_errors)); 3982 } 3983 3984 static ssize_t 3985 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 3986 { 3987 char *e; 3988 unsigned long n = simple_strtoul(buf, &e, 10); 3989 3990 if (*buf && (*e == 0 || *e == '\n')) { 3991 atomic_set(&mddev->max_corr_read_errors, n); 3992 return len; 3993 } 3994 return -EINVAL; 3995 } 3996 3997 static struct md_sysfs_entry max_corr_read_errors = 3998 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3999 max_corrected_read_errors_store); 4000 4001 static ssize_t 4002 null_show(struct mddev *mddev, char *page) 4003 { 4004 return -EINVAL; 4005 } 4006 4007 static ssize_t 4008 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4009 { 4010 /* buf must be %d:%d\n? giving major and minor numbers */ 4011 /* The new device is added to the array. 4012 * If the array has a persistent superblock, we read the 4013 * superblock to initialise info and check validity. 4014 * Otherwise, only checking done is that in bind_rdev_to_array, 4015 * which mainly checks size. 4016 */ 4017 char *e; 4018 int major = simple_strtoul(buf, &e, 10); 4019 int minor; 4020 dev_t dev; 4021 struct md_rdev *rdev; 4022 int err; 4023 4024 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4025 return -EINVAL; 4026 minor = simple_strtoul(e+1, &e, 10); 4027 if (*e && *e != '\n') 4028 return -EINVAL; 4029 dev = MKDEV(major, minor); 4030 if (major != MAJOR(dev) || 4031 minor != MINOR(dev)) 4032 return -EOVERFLOW; 4033 4034 4035 if (mddev->persistent) { 4036 rdev = md_import_device(dev, mddev->major_version, 4037 mddev->minor_version); 4038 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4039 struct md_rdev *rdev0 4040 = list_entry(mddev->disks.next, 4041 struct md_rdev, same_set); 4042 err = super_types[mddev->major_version] 4043 .load_super(rdev, rdev0, mddev->minor_version); 4044 if (err < 0) 4045 goto out; 4046 } 4047 } else if (mddev->external) 4048 rdev = md_import_device(dev, -2, -1); 4049 else 4050 rdev = md_import_device(dev, -1, -1); 4051 4052 if (IS_ERR(rdev)) 4053 return PTR_ERR(rdev); 4054 err = bind_rdev_to_array(rdev, mddev); 4055 out: 4056 if (err) 4057 export_rdev(rdev); 4058 return err ? err : len; 4059 } 4060 4061 static struct md_sysfs_entry md_new_device = 4062 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4063 4064 static ssize_t 4065 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4066 { 4067 char *end; 4068 unsigned long chunk, end_chunk; 4069 4070 if (!mddev->bitmap) 4071 goto out; 4072 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4073 while (*buf) { 4074 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4075 if (buf == end) break; 4076 if (*end == '-') { /* range */ 4077 buf = end + 1; 4078 end_chunk = simple_strtoul(buf, &end, 0); 4079 if (buf == end) break; 4080 } 4081 if (*end && !isspace(*end)) break; 4082 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4083 buf = skip_spaces(end); 4084 } 4085 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4086 out: 4087 return len; 4088 } 4089 4090 static struct md_sysfs_entry md_bitmap = 4091 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4092 4093 static ssize_t 4094 size_show(struct mddev *mddev, char *page) 4095 { 4096 return sprintf(page, "%llu\n", 4097 (unsigned long long)mddev->dev_sectors / 2); 4098 } 4099 4100 static int update_size(struct mddev *mddev, sector_t num_sectors); 4101 4102 static ssize_t 4103 size_store(struct mddev *mddev, const char *buf, size_t len) 4104 { 4105 /* If array is inactive, we can reduce the component size, but 4106 * not increase it (except from 0). 4107 * If array is active, we can try an on-line resize 4108 */ 4109 sector_t sectors; 4110 int err = strict_blocks_to_sectors(buf, §ors); 4111 4112 if (err < 0) 4113 return err; 4114 if (mddev->pers) { 4115 err = update_size(mddev, sectors); 4116 md_update_sb(mddev, 1); 4117 } else { 4118 if (mddev->dev_sectors == 0 || 4119 mddev->dev_sectors > sectors) 4120 mddev->dev_sectors = sectors; 4121 else 4122 err = -ENOSPC; 4123 } 4124 return err ? err : len; 4125 } 4126 4127 static struct md_sysfs_entry md_size = 4128 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4129 4130 4131 /* Metdata version. 4132 * This is one of 4133 * 'none' for arrays with no metadata (good luck...) 4134 * 'external' for arrays with externally managed metadata, 4135 * or N.M for internally known formats 4136 */ 4137 static ssize_t 4138 metadata_show(struct mddev *mddev, char *page) 4139 { 4140 if (mddev->persistent) 4141 return sprintf(page, "%d.%d\n", 4142 mddev->major_version, mddev->minor_version); 4143 else if (mddev->external) 4144 return sprintf(page, "external:%s\n", mddev->metadata_type); 4145 else 4146 return sprintf(page, "none\n"); 4147 } 4148 4149 static ssize_t 4150 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4151 { 4152 int major, minor; 4153 char *e; 4154 /* Changing the details of 'external' metadata is 4155 * always permitted. Otherwise there must be 4156 * no devices attached to the array. 4157 */ 4158 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4159 ; 4160 else if (!list_empty(&mddev->disks)) 4161 return -EBUSY; 4162 4163 if (cmd_match(buf, "none")) { 4164 mddev->persistent = 0; 4165 mddev->external = 0; 4166 mddev->major_version = 0; 4167 mddev->minor_version = 90; 4168 return len; 4169 } 4170 if (strncmp(buf, "external:", 9) == 0) { 4171 size_t namelen = len-9; 4172 if (namelen >= sizeof(mddev->metadata_type)) 4173 namelen = sizeof(mddev->metadata_type)-1; 4174 strncpy(mddev->metadata_type, buf+9, namelen); 4175 mddev->metadata_type[namelen] = 0; 4176 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4177 mddev->metadata_type[--namelen] = 0; 4178 mddev->persistent = 0; 4179 mddev->external = 1; 4180 mddev->major_version = 0; 4181 mddev->minor_version = 90; 4182 return len; 4183 } 4184 major = simple_strtoul(buf, &e, 10); 4185 if (e==buf || *e != '.') 4186 return -EINVAL; 4187 buf = e+1; 4188 minor = simple_strtoul(buf, &e, 10); 4189 if (e==buf || (*e && *e != '\n') ) 4190 return -EINVAL; 4191 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4192 return -ENOENT; 4193 mddev->major_version = major; 4194 mddev->minor_version = minor; 4195 mddev->persistent = 1; 4196 mddev->external = 0; 4197 return len; 4198 } 4199 4200 static struct md_sysfs_entry md_metadata = 4201 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4202 4203 static ssize_t 4204 action_show(struct mddev *mddev, char *page) 4205 { 4206 char *type = "idle"; 4207 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4208 type = "frozen"; 4209 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4210 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 4211 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4212 type = "reshape"; 4213 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4214 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 4215 type = "resync"; 4216 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 4217 type = "check"; 4218 else 4219 type = "repair"; 4220 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 4221 type = "recover"; 4222 } 4223 return sprintf(page, "%s\n", type); 4224 } 4225 4226 static void reap_sync_thread(struct mddev *mddev); 4227 4228 static ssize_t 4229 action_store(struct mddev *mddev, const char *page, size_t len) 4230 { 4231 if (!mddev->pers || !mddev->pers->sync_request) 4232 return -EINVAL; 4233 4234 if (cmd_match(page, "frozen")) 4235 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4236 else 4237 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4238 4239 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4240 if (mddev->sync_thread) { 4241 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4242 reap_sync_thread(mddev); 4243 } 4244 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4245 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4246 return -EBUSY; 4247 else if (cmd_match(page, "resync")) 4248 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4249 else if (cmd_match(page, "recover")) { 4250 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4251 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4252 } else if (cmd_match(page, "reshape")) { 4253 int err; 4254 if (mddev->pers->start_reshape == NULL) 4255 return -EINVAL; 4256 err = mddev->pers->start_reshape(mddev); 4257 if (err) 4258 return err; 4259 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4260 } else { 4261 if (cmd_match(page, "check")) 4262 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4263 else if (!cmd_match(page, "repair")) 4264 return -EINVAL; 4265 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4266 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4267 } 4268 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4269 md_wakeup_thread(mddev->thread); 4270 sysfs_notify_dirent_safe(mddev->sysfs_action); 4271 return len; 4272 } 4273 4274 static ssize_t 4275 mismatch_cnt_show(struct mddev *mddev, char *page) 4276 { 4277 return sprintf(page, "%llu\n", 4278 (unsigned long long) mddev->resync_mismatches); 4279 } 4280 4281 static struct md_sysfs_entry md_scan_mode = 4282 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4283 4284 4285 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4286 4287 static ssize_t 4288 sync_min_show(struct mddev *mddev, char *page) 4289 { 4290 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4291 mddev->sync_speed_min ? "local": "system"); 4292 } 4293 4294 static ssize_t 4295 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4296 { 4297 int min; 4298 char *e; 4299 if (strncmp(buf, "system", 6)==0) { 4300 mddev->sync_speed_min = 0; 4301 return len; 4302 } 4303 min = simple_strtoul(buf, &e, 10); 4304 if (buf == e || (*e && *e != '\n') || min <= 0) 4305 return -EINVAL; 4306 mddev->sync_speed_min = min; 4307 return len; 4308 } 4309 4310 static struct md_sysfs_entry md_sync_min = 4311 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4312 4313 static ssize_t 4314 sync_max_show(struct mddev *mddev, char *page) 4315 { 4316 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4317 mddev->sync_speed_max ? "local": "system"); 4318 } 4319 4320 static ssize_t 4321 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4322 { 4323 int max; 4324 char *e; 4325 if (strncmp(buf, "system", 6)==0) { 4326 mddev->sync_speed_max = 0; 4327 return len; 4328 } 4329 max = simple_strtoul(buf, &e, 10); 4330 if (buf == e || (*e && *e != '\n') || max <= 0) 4331 return -EINVAL; 4332 mddev->sync_speed_max = max; 4333 return len; 4334 } 4335 4336 static struct md_sysfs_entry md_sync_max = 4337 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4338 4339 static ssize_t 4340 degraded_show(struct mddev *mddev, char *page) 4341 { 4342 return sprintf(page, "%d\n", mddev->degraded); 4343 } 4344 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4345 4346 static ssize_t 4347 sync_force_parallel_show(struct mddev *mddev, char *page) 4348 { 4349 return sprintf(page, "%d\n", mddev->parallel_resync); 4350 } 4351 4352 static ssize_t 4353 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4354 { 4355 long n; 4356 4357 if (strict_strtol(buf, 10, &n)) 4358 return -EINVAL; 4359 4360 if (n != 0 && n != 1) 4361 return -EINVAL; 4362 4363 mddev->parallel_resync = n; 4364 4365 if (mddev->sync_thread) 4366 wake_up(&resync_wait); 4367 4368 return len; 4369 } 4370 4371 /* force parallel resync, even with shared block devices */ 4372 static struct md_sysfs_entry md_sync_force_parallel = 4373 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4374 sync_force_parallel_show, sync_force_parallel_store); 4375 4376 static ssize_t 4377 sync_speed_show(struct mddev *mddev, char *page) 4378 { 4379 unsigned long resync, dt, db; 4380 if (mddev->curr_resync == 0) 4381 return sprintf(page, "none\n"); 4382 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4383 dt = (jiffies - mddev->resync_mark) / HZ; 4384 if (!dt) dt++; 4385 db = resync - mddev->resync_mark_cnt; 4386 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4387 } 4388 4389 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4390 4391 static ssize_t 4392 sync_completed_show(struct mddev *mddev, char *page) 4393 { 4394 unsigned long long max_sectors, resync; 4395 4396 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4397 return sprintf(page, "none\n"); 4398 4399 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4400 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4401 max_sectors = mddev->resync_max_sectors; 4402 else 4403 max_sectors = mddev->dev_sectors; 4404 4405 resync = mddev->curr_resync_completed; 4406 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4407 } 4408 4409 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 4410 4411 static ssize_t 4412 min_sync_show(struct mddev *mddev, char *page) 4413 { 4414 return sprintf(page, "%llu\n", 4415 (unsigned long long)mddev->resync_min); 4416 } 4417 static ssize_t 4418 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4419 { 4420 unsigned long long min; 4421 if (strict_strtoull(buf, 10, &min)) 4422 return -EINVAL; 4423 if (min > mddev->resync_max) 4424 return -EINVAL; 4425 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4426 return -EBUSY; 4427 4428 /* Must be a multiple of chunk_size */ 4429 if (mddev->chunk_sectors) { 4430 sector_t temp = min; 4431 if (sector_div(temp, mddev->chunk_sectors)) 4432 return -EINVAL; 4433 } 4434 mddev->resync_min = min; 4435 4436 return len; 4437 } 4438 4439 static struct md_sysfs_entry md_min_sync = 4440 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4441 4442 static ssize_t 4443 max_sync_show(struct mddev *mddev, char *page) 4444 { 4445 if (mddev->resync_max == MaxSector) 4446 return sprintf(page, "max\n"); 4447 else 4448 return sprintf(page, "%llu\n", 4449 (unsigned long long)mddev->resync_max); 4450 } 4451 static ssize_t 4452 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4453 { 4454 if (strncmp(buf, "max", 3) == 0) 4455 mddev->resync_max = MaxSector; 4456 else { 4457 unsigned long long max; 4458 if (strict_strtoull(buf, 10, &max)) 4459 return -EINVAL; 4460 if (max < mddev->resync_min) 4461 return -EINVAL; 4462 if (max < mddev->resync_max && 4463 mddev->ro == 0 && 4464 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4465 return -EBUSY; 4466 4467 /* Must be a multiple of chunk_size */ 4468 if (mddev->chunk_sectors) { 4469 sector_t temp = max; 4470 if (sector_div(temp, mddev->chunk_sectors)) 4471 return -EINVAL; 4472 } 4473 mddev->resync_max = max; 4474 } 4475 wake_up(&mddev->recovery_wait); 4476 return len; 4477 } 4478 4479 static struct md_sysfs_entry md_max_sync = 4480 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4481 4482 static ssize_t 4483 suspend_lo_show(struct mddev *mddev, char *page) 4484 { 4485 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4486 } 4487 4488 static ssize_t 4489 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4490 { 4491 char *e; 4492 unsigned long long new = simple_strtoull(buf, &e, 10); 4493 unsigned long long old = mddev->suspend_lo; 4494 4495 if (mddev->pers == NULL || 4496 mddev->pers->quiesce == NULL) 4497 return -EINVAL; 4498 if (buf == e || (*e && *e != '\n')) 4499 return -EINVAL; 4500 4501 mddev->suspend_lo = new; 4502 if (new >= old) 4503 /* Shrinking suspended region */ 4504 mddev->pers->quiesce(mddev, 2); 4505 else { 4506 /* Expanding suspended region - need to wait */ 4507 mddev->pers->quiesce(mddev, 1); 4508 mddev->pers->quiesce(mddev, 0); 4509 } 4510 return len; 4511 } 4512 static struct md_sysfs_entry md_suspend_lo = 4513 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4514 4515 4516 static ssize_t 4517 suspend_hi_show(struct mddev *mddev, char *page) 4518 { 4519 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4520 } 4521 4522 static ssize_t 4523 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4524 { 4525 char *e; 4526 unsigned long long new = simple_strtoull(buf, &e, 10); 4527 unsigned long long old = mddev->suspend_hi; 4528 4529 if (mddev->pers == NULL || 4530 mddev->pers->quiesce == NULL) 4531 return -EINVAL; 4532 if (buf == e || (*e && *e != '\n')) 4533 return -EINVAL; 4534 4535 mddev->suspend_hi = new; 4536 if (new <= old) 4537 /* Shrinking suspended region */ 4538 mddev->pers->quiesce(mddev, 2); 4539 else { 4540 /* Expanding suspended region - need to wait */ 4541 mddev->pers->quiesce(mddev, 1); 4542 mddev->pers->quiesce(mddev, 0); 4543 } 4544 return len; 4545 } 4546 static struct md_sysfs_entry md_suspend_hi = 4547 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4548 4549 static ssize_t 4550 reshape_position_show(struct mddev *mddev, char *page) 4551 { 4552 if (mddev->reshape_position != MaxSector) 4553 return sprintf(page, "%llu\n", 4554 (unsigned long long)mddev->reshape_position); 4555 strcpy(page, "none\n"); 4556 return 5; 4557 } 4558 4559 static ssize_t 4560 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4561 { 4562 struct md_rdev *rdev; 4563 char *e; 4564 unsigned long long new = simple_strtoull(buf, &e, 10); 4565 if (mddev->pers) 4566 return -EBUSY; 4567 if (buf == e || (*e && *e != '\n')) 4568 return -EINVAL; 4569 mddev->reshape_position = new; 4570 mddev->delta_disks = 0; 4571 mddev->reshape_backwards = 0; 4572 mddev->new_level = mddev->level; 4573 mddev->new_layout = mddev->layout; 4574 mddev->new_chunk_sectors = mddev->chunk_sectors; 4575 rdev_for_each(rdev, mddev) 4576 rdev->new_data_offset = rdev->data_offset; 4577 return len; 4578 } 4579 4580 static struct md_sysfs_entry md_reshape_position = 4581 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4582 reshape_position_store); 4583 4584 static ssize_t 4585 reshape_direction_show(struct mddev *mddev, char *page) 4586 { 4587 return sprintf(page, "%s\n", 4588 mddev->reshape_backwards ? "backwards" : "forwards"); 4589 } 4590 4591 static ssize_t 4592 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4593 { 4594 int backwards = 0; 4595 if (cmd_match(buf, "forwards")) 4596 backwards = 0; 4597 else if (cmd_match(buf, "backwards")) 4598 backwards = 1; 4599 else 4600 return -EINVAL; 4601 if (mddev->reshape_backwards == backwards) 4602 return len; 4603 4604 /* check if we are allowed to change */ 4605 if (mddev->delta_disks) 4606 return -EBUSY; 4607 4608 if (mddev->persistent && 4609 mddev->major_version == 0) 4610 return -EINVAL; 4611 4612 mddev->reshape_backwards = backwards; 4613 return len; 4614 } 4615 4616 static struct md_sysfs_entry md_reshape_direction = 4617 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4618 reshape_direction_store); 4619 4620 static ssize_t 4621 array_size_show(struct mddev *mddev, char *page) 4622 { 4623 if (mddev->external_size) 4624 return sprintf(page, "%llu\n", 4625 (unsigned long long)mddev->array_sectors/2); 4626 else 4627 return sprintf(page, "default\n"); 4628 } 4629 4630 static ssize_t 4631 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4632 { 4633 sector_t sectors; 4634 4635 if (strncmp(buf, "default", 7) == 0) { 4636 if (mddev->pers) 4637 sectors = mddev->pers->size(mddev, 0, 0); 4638 else 4639 sectors = mddev->array_sectors; 4640 4641 mddev->external_size = 0; 4642 } else { 4643 if (strict_blocks_to_sectors(buf, §ors) < 0) 4644 return -EINVAL; 4645 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4646 return -E2BIG; 4647 4648 mddev->external_size = 1; 4649 } 4650 4651 mddev->array_sectors = sectors; 4652 if (mddev->pers) { 4653 set_capacity(mddev->gendisk, mddev->array_sectors); 4654 revalidate_disk(mddev->gendisk); 4655 } 4656 return len; 4657 } 4658 4659 static struct md_sysfs_entry md_array_size = 4660 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4661 array_size_store); 4662 4663 static struct attribute *md_default_attrs[] = { 4664 &md_level.attr, 4665 &md_layout.attr, 4666 &md_raid_disks.attr, 4667 &md_chunk_size.attr, 4668 &md_size.attr, 4669 &md_resync_start.attr, 4670 &md_metadata.attr, 4671 &md_new_device.attr, 4672 &md_safe_delay.attr, 4673 &md_array_state.attr, 4674 &md_reshape_position.attr, 4675 &md_reshape_direction.attr, 4676 &md_array_size.attr, 4677 &max_corr_read_errors.attr, 4678 NULL, 4679 }; 4680 4681 static struct attribute *md_redundancy_attrs[] = { 4682 &md_scan_mode.attr, 4683 &md_mismatches.attr, 4684 &md_sync_min.attr, 4685 &md_sync_max.attr, 4686 &md_sync_speed.attr, 4687 &md_sync_force_parallel.attr, 4688 &md_sync_completed.attr, 4689 &md_min_sync.attr, 4690 &md_max_sync.attr, 4691 &md_suspend_lo.attr, 4692 &md_suspend_hi.attr, 4693 &md_bitmap.attr, 4694 &md_degraded.attr, 4695 NULL, 4696 }; 4697 static struct attribute_group md_redundancy_group = { 4698 .name = NULL, 4699 .attrs = md_redundancy_attrs, 4700 }; 4701 4702 4703 static ssize_t 4704 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4705 { 4706 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4707 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4708 ssize_t rv; 4709 4710 if (!entry->show) 4711 return -EIO; 4712 spin_lock(&all_mddevs_lock); 4713 if (list_empty(&mddev->all_mddevs)) { 4714 spin_unlock(&all_mddevs_lock); 4715 return -EBUSY; 4716 } 4717 mddev_get(mddev); 4718 spin_unlock(&all_mddevs_lock); 4719 4720 rv = mddev_lock(mddev); 4721 if (!rv) { 4722 rv = entry->show(mddev, page); 4723 mddev_unlock(mddev); 4724 } 4725 mddev_put(mddev); 4726 return rv; 4727 } 4728 4729 static ssize_t 4730 md_attr_store(struct kobject *kobj, struct attribute *attr, 4731 const char *page, size_t length) 4732 { 4733 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4734 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4735 ssize_t rv; 4736 4737 if (!entry->store) 4738 return -EIO; 4739 if (!capable(CAP_SYS_ADMIN)) 4740 return -EACCES; 4741 spin_lock(&all_mddevs_lock); 4742 if (list_empty(&mddev->all_mddevs)) { 4743 spin_unlock(&all_mddevs_lock); 4744 return -EBUSY; 4745 } 4746 mddev_get(mddev); 4747 spin_unlock(&all_mddevs_lock); 4748 rv = mddev_lock(mddev); 4749 if (!rv) { 4750 rv = entry->store(mddev, page, length); 4751 mddev_unlock(mddev); 4752 } 4753 mddev_put(mddev); 4754 return rv; 4755 } 4756 4757 static void md_free(struct kobject *ko) 4758 { 4759 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4760 4761 if (mddev->sysfs_state) 4762 sysfs_put(mddev->sysfs_state); 4763 4764 if (mddev->gendisk) { 4765 del_gendisk(mddev->gendisk); 4766 put_disk(mddev->gendisk); 4767 } 4768 if (mddev->queue) 4769 blk_cleanup_queue(mddev->queue); 4770 4771 kfree(mddev); 4772 } 4773 4774 static const struct sysfs_ops md_sysfs_ops = { 4775 .show = md_attr_show, 4776 .store = md_attr_store, 4777 }; 4778 static struct kobj_type md_ktype = { 4779 .release = md_free, 4780 .sysfs_ops = &md_sysfs_ops, 4781 .default_attrs = md_default_attrs, 4782 }; 4783 4784 int mdp_major = 0; 4785 4786 static void mddev_delayed_delete(struct work_struct *ws) 4787 { 4788 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4789 4790 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4791 kobject_del(&mddev->kobj); 4792 kobject_put(&mddev->kobj); 4793 } 4794 4795 static int md_alloc(dev_t dev, char *name) 4796 { 4797 static DEFINE_MUTEX(disks_mutex); 4798 struct mddev *mddev = mddev_find(dev); 4799 struct gendisk *disk; 4800 int partitioned; 4801 int shift; 4802 int unit; 4803 int error; 4804 4805 if (!mddev) 4806 return -ENODEV; 4807 4808 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4809 shift = partitioned ? MdpMinorShift : 0; 4810 unit = MINOR(mddev->unit) >> shift; 4811 4812 /* wait for any previous instance of this device to be 4813 * completely removed (mddev_delayed_delete). 4814 */ 4815 flush_workqueue(md_misc_wq); 4816 4817 mutex_lock(&disks_mutex); 4818 error = -EEXIST; 4819 if (mddev->gendisk) 4820 goto abort; 4821 4822 if (name) { 4823 /* Need to ensure that 'name' is not a duplicate. 4824 */ 4825 struct mddev *mddev2; 4826 spin_lock(&all_mddevs_lock); 4827 4828 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4829 if (mddev2->gendisk && 4830 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4831 spin_unlock(&all_mddevs_lock); 4832 goto abort; 4833 } 4834 spin_unlock(&all_mddevs_lock); 4835 } 4836 4837 error = -ENOMEM; 4838 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4839 if (!mddev->queue) 4840 goto abort; 4841 mddev->queue->queuedata = mddev; 4842 4843 blk_queue_make_request(mddev->queue, md_make_request); 4844 blk_set_stacking_limits(&mddev->queue->limits); 4845 4846 disk = alloc_disk(1 << shift); 4847 if (!disk) { 4848 blk_cleanup_queue(mddev->queue); 4849 mddev->queue = NULL; 4850 goto abort; 4851 } 4852 disk->major = MAJOR(mddev->unit); 4853 disk->first_minor = unit << shift; 4854 if (name) 4855 strcpy(disk->disk_name, name); 4856 else if (partitioned) 4857 sprintf(disk->disk_name, "md_d%d", unit); 4858 else 4859 sprintf(disk->disk_name, "md%d", unit); 4860 disk->fops = &md_fops; 4861 disk->private_data = mddev; 4862 disk->queue = mddev->queue; 4863 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4864 /* Allow extended partitions. This makes the 4865 * 'mdp' device redundant, but we can't really 4866 * remove it now. 4867 */ 4868 disk->flags |= GENHD_FL_EXT_DEVT; 4869 mddev->gendisk = disk; 4870 /* As soon as we call add_disk(), another thread could get 4871 * through to md_open, so make sure it doesn't get too far 4872 */ 4873 mutex_lock(&mddev->open_mutex); 4874 add_disk(disk); 4875 4876 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4877 &disk_to_dev(disk)->kobj, "%s", "md"); 4878 if (error) { 4879 /* This isn't possible, but as kobject_init_and_add is marked 4880 * __must_check, we must do something with the result 4881 */ 4882 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4883 disk->disk_name); 4884 error = 0; 4885 } 4886 if (mddev->kobj.sd && 4887 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4888 printk(KERN_DEBUG "pointless warning\n"); 4889 mutex_unlock(&mddev->open_mutex); 4890 abort: 4891 mutex_unlock(&disks_mutex); 4892 if (!error && mddev->kobj.sd) { 4893 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4894 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4895 } 4896 mddev_put(mddev); 4897 return error; 4898 } 4899 4900 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4901 { 4902 md_alloc(dev, NULL); 4903 return NULL; 4904 } 4905 4906 static int add_named_array(const char *val, struct kernel_param *kp) 4907 { 4908 /* val must be "md_*" where * is not all digits. 4909 * We allocate an array with a large free minor number, and 4910 * set the name to val. val must not already be an active name. 4911 */ 4912 int len = strlen(val); 4913 char buf[DISK_NAME_LEN]; 4914 4915 while (len && val[len-1] == '\n') 4916 len--; 4917 if (len >= DISK_NAME_LEN) 4918 return -E2BIG; 4919 strlcpy(buf, val, len+1); 4920 if (strncmp(buf, "md_", 3) != 0) 4921 return -EINVAL; 4922 return md_alloc(0, buf); 4923 } 4924 4925 static void md_safemode_timeout(unsigned long data) 4926 { 4927 struct mddev *mddev = (struct mddev *) data; 4928 4929 if (!atomic_read(&mddev->writes_pending)) { 4930 mddev->safemode = 1; 4931 if (mddev->external) 4932 sysfs_notify_dirent_safe(mddev->sysfs_state); 4933 } 4934 md_wakeup_thread(mddev->thread); 4935 } 4936 4937 static int start_dirty_degraded; 4938 4939 int md_run(struct mddev *mddev) 4940 { 4941 int err; 4942 struct md_rdev *rdev; 4943 struct md_personality *pers; 4944 4945 if (list_empty(&mddev->disks)) 4946 /* cannot run an array with no devices.. */ 4947 return -EINVAL; 4948 4949 if (mddev->pers) 4950 return -EBUSY; 4951 /* Cannot run until previous stop completes properly */ 4952 if (mddev->sysfs_active) 4953 return -EBUSY; 4954 4955 /* 4956 * Analyze all RAID superblock(s) 4957 */ 4958 if (!mddev->raid_disks) { 4959 if (!mddev->persistent) 4960 return -EINVAL; 4961 analyze_sbs(mddev); 4962 } 4963 4964 if (mddev->level != LEVEL_NONE) 4965 request_module("md-level-%d", mddev->level); 4966 else if (mddev->clevel[0]) 4967 request_module("md-%s", mddev->clevel); 4968 4969 /* 4970 * Drop all container device buffers, from now on 4971 * the only valid external interface is through the md 4972 * device. 4973 */ 4974 rdev_for_each(rdev, mddev) { 4975 if (test_bit(Faulty, &rdev->flags)) 4976 continue; 4977 sync_blockdev(rdev->bdev); 4978 invalidate_bdev(rdev->bdev); 4979 4980 /* perform some consistency tests on the device. 4981 * We don't want the data to overlap the metadata, 4982 * Internal Bitmap issues have been handled elsewhere. 4983 */ 4984 if (rdev->meta_bdev) { 4985 /* Nothing to check */; 4986 } else if (rdev->data_offset < rdev->sb_start) { 4987 if (mddev->dev_sectors && 4988 rdev->data_offset + mddev->dev_sectors 4989 > rdev->sb_start) { 4990 printk("md: %s: data overlaps metadata\n", 4991 mdname(mddev)); 4992 return -EINVAL; 4993 } 4994 } else { 4995 if (rdev->sb_start + rdev->sb_size/512 4996 > rdev->data_offset) { 4997 printk("md: %s: metadata overlaps data\n", 4998 mdname(mddev)); 4999 return -EINVAL; 5000 } 5001 } 5002 sysfs_notify_dirent_safe(rdev->sysfs_state); 5003 } 5004 5005 if (mddev->bio_set == NULL) 5006 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 5007 sizeof(struct mddev *)); 5008 5009 spin_lock(&pers_lock); 5010 pers = find_pers(mddev->level, mddev->clevel); 5011 if (!pers || !try_module_get(pers->owner)) { 5012 spin_unlock(&pers_lock); 5013 if (mddev->level != LEVEL_NONE) 5014 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5015 mddev->level); 5016 else 5017 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5018 mddev->clevel); 5019 return -EINVAL; 5020 } 5021 mddev->pers = pers; 5022 spin_unlock(&pers_lock); 5023 if (mddev->level != pers->level) { 5024 mddev->level = pers->level; 5025 mddev->new_level = pers->level; 5026 } 5027 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5028 5029 if (mddev->reshape_position != MaxSector && 5030 pers->start_reshape == NULL) { 5031 /* This personality cannot handle reshaping... */ 5032 mddev->pers = NULL; 5033 module_put(pers->owner); 5034 return -EINVAL; 5035 } 5036 5037 if (pers->sync_request) { 5038 /* Warn if this is a potentially silly 5039 * configuration. 5040 */ 5041 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5042 struct md_rdev *rdev2; 5043 int warned = 0; 5044 5045 rdev_for_each(rdev, mddev) 5046 rdev_for_each(rdev2, mddev) { 5047 if (rdev < rdev2 && 5048 rdev->bdev->bd_contains == 5049 rdev2->bdev->bd_contains) { 5050 printk(KERN_WARNING 5051 "%s: WARNING: %s appears to be" 5052 " on the same physical disk as" 5053 " %s.\n", 5054 mdname(mddev), 5055 bdevname(rdev->bdev,b), 5056 bdevname(rdev2->bdev,b2)); 5057 warned = 1; 5058 } 5059 } 5060 5061 if (warned) 5062 printk(KERN_WARNING 5063 "True protection against single-disk" 5064 " failure might be compromised.\n"); 5065 } 5066 5067 mddev->recovery = 0; 5068 /* may be over-ridden by personality */ 5069 mddev->resync_max_sectors = mddev->dev_sectors; 5070 5071 mddev->ok_start_degraded = start_dirty_degraded; 5072 5073 if (start_readonly && mddev->ro == 0) 5074 mddev->ro = 2; /* read-only, but switch on first write */ 5075 5076 err = mddev->pers->run(mddev); 5077 if (err) 5078 printk(KERN_ERR "md: pers->run() failed ...\n"); 5079 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 5080 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5081 " but 'external_size' not in effect?\n", __func__); 5082 printk(KERN_ERR 5083 "md: invalid array_size %llu > default size %llu\n", 5084 (unsigned long long)mddev->array_sectors / 2, 5085 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 5086 err = -EINVAL; 5087 mddev->pers->stop(mddev); 5088 } 5089 if (err == 0 && mddev->pers->sync_request && 5090 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5091 err = bitmap_create(mddev); 5092 if (err) { 5093 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5094 mdname(mddev), err); 5095 mddev->pers->stop(mddev); 5096 } 5097 } 5098 if (err) { 5099 module_put(mddev->pers->owner); 5100 mddev->pers = NULL; 5101 bitmap_destroy(mddev); 5102 return err; 5103 } 5104 if (mddev->pers->sync_request) { 5105 if (mddev->kobj.sd && 5106 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5107 printk(KERN_WARNING 5108 "md: cannot register extra attributes for %s\n", 5109 mdname(mddev)); 5110 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5111 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5112 mddev->ro = 0; 5113 5114 atomic_set(&mddev->writes_pending,0); 5115 atomic_set(&mddev->max_corr_read_errors, 5116 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5117 mddev->safemode = 0; 5118 mddev->safemode_timer.function = md_safemode_timeout; 5119 mddev->safemode_timer.data = (unsigned long) mddev; 5120 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5121 mddev->in_sync = 1; 5122 smp_wmb(); 5123 mddev->ready = 1; 5124 rdev_for_each(rdev, mddev) 5125 if (rdev->raid_disk >= 0) 5126 if (sysfs_link_rdev(mddev, rdev)) 5127 /* failure here is OK */; 5128 5129 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5130 5131 if (mddev->flags) 5132 md_update_sb(mddev, 0); 5133 5134 md_new_event(mddev); 5135 sysfs_notify_dirent_safe(mddev->sysfs_state); 5136 sysfs_notify_dirent_safe(mddev->sysfs_action); 5137 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5138 return 0; 5139 } 5140 EXPORT_SYMBOL_GPL(md_run); 5141 5142 static int do_md_run(struct mddev *mddev) 5143 { 5144 int err; 5145 5146 err = md_run(mddev); 5147 if (err) 5148 goto out; 5149 err = bitmap_load(mddev); 5150 if (err) { 5151 bitmap_destroy(mddev); 5152 goto out; 5153 } 5154 5155 md_wakeup_thread(mddev->thread); 5156 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5157 5158 set_capacity(mddev->gendisk, mddev->array_sectors); 5159 revalidate_disk(mddev->gendisk); 5160 mddev->changed = 1; 5161 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5162 out: 5163 return err; 5164 } 5165 5166 static int restart_array(struct mddev *mddev) 5167 { 5168 struct gendisk *disk = mddev->gendisk; 5169 5170 /* Complain if it has no devices */ 5171 if (list_empty(&mddev->disks)) 5172 return -ENXIO; 5173 if (!mddev->pers) 5174 return -EINVAL; 5175 if (!mddev->ro) 5176 return -EBUSY; 5177 mddev->safemode = 0; 5178 mddev->ro = 0; 5179 set_disk_ro(disk, 0); 5180 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5181 mdname(mddev)); 5182 /* Kick recovery or resync if necessary */ 5183 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5184 md_wakeup_thread(mddev->thread); 5185 md_wakeup_thread(mddev->sync_thread); 5186 sysfs_notify_dirent_safe(mddev->sysfs_state); 5187 return 0; 5188 } 5189 5190 /* similar to deny_write_access, but accounts for our holding a reference 5191 * to the file ourselves */ 5192 static int deny_bitmap_write_access(struct file * file) 5193 { 5194 struct inode *inode = file->f_mapping->host; 5195 5196 spin_lock(&inode->i_lock); 5197 if (atomic_read(&inode->i_writecount) > 1) { 5198 spin_unlock(&inode->i_lock); 5199 return -ETXTBSY; 5200 } 5201 atomic_set(&inode->i_writecount, -1); 5202 spin_unlock(&inode->i_lock); 5203 5204 return 0; 5205 } 5206 5207 void restore_bitmap_write_access(struct file *file) 5208 { 5209 struct inode *inode = file->f_mapping->host; 5210 5211 spin_lock(&inode->i_lock); 5212 atomic_set(&inode->i_writecount, 1); 5213 spin_unlock(&inode->i_lock); 5214 } 5215 5216 static void md_clean(struct mddev *mddev) 5217 { 5218 mddev->array_sectors = 0; 5219 mddev->external_size = 0; 5220 mddev->dev_sectors = 0; 5221 mddev->raid_disks = 0; 5222 mddev->recovery_cp = 0; 5223 mddev->resync_min = 0; 5224 mddev->resync_max = MaxSector; 5225 mddev->reshape_position = MaxSector; 5226 mddev->external = 0; 5227 mddev->persistent = 0; 5228 mddev->level = LEVEL_NONE; 5229 mddev->clevel[0] = 0; 5230 mddev->flags = 0; 5231 mddev->ro = 0; 5232 mddev->metadata_type[0] = 0; 5233 mddev->chunk_sectors = 0; 5234 mddev->ctime = mddev->utime = 0; 5235 mddev->layout = 0; 5236 mddev->max_disks = 0; 5237 mddev->events = 0; 5238 mddev->can_decrease_events = 0; 5239 mddev->delta_disks = 0; 5240 mddev->reshape_backwards = 0; 5241 mddev->new_level = LEVEL_NONE; 5242 mddev->new_layout = 0; 5243 mddev->new_chunk_sectors = 0; 5244 mddev->curr_resync = 0; 5245 mddev->resync_mismatches = 0; 5246 mddev->suspend_lo = mddev->suspend_hi = 0; 5247 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5248 mddev->recovery = 0; 5249 mddev->in_sync = 0; 5250 mddev->changed = 0; 5251 mddev->degraded = 0; 5252 mddev->safemode = 0; 5253 mddev->merge_check_needed = 0; 5254 mddev->bitmap_info.offset = 0; 5255 mddev->bitmap_info.default_offset = 0; 5256 mddev->bitmap_info.default_space = 0; 5257 mddev->bitmap_info.chunksize = 0; 5258 mddev->bitmap_info.daemon_sleep = 0; 5259 mddev->bitmap_info.max_write_behind = 0; 5260 } 5261 5262 static void __md_stop_writes(struct mddev *mddev) 5263 { 5264 if (mddev->sync_thread) { 5265 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5266 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5267 reap_sync_thread(mddev); 5268 } 5269 5270 del_timer_sync(&mddev->safemode_timer); 5271 5272 bitmap_flush(mddev); 5273 md_super_wait(mddev); 5274 5275 if (!mddev->in_sync || mddev->flags) { 5276 /* mark array as shutdown cleanly */ 5277 mddev->in_sync = 1; 5278 md_update_sb(mddev, 1); 5279 } 5280 } 5281 5282 void md_stop_writes(struct mddev *mddev) 5283 { 5284 mddev_lock(mddev); 5285 __md_stop_writes(mddev); 5286 mddev_unlock(mddev); 5287 } 5288 EXPORT_SYMBOL_GPL(md_stop_writes); 5289 5290 void md_stop(struct mddev *mddev) 5291 { 5292 mddev->ready = 0; 5293 mddev->pers->stop(mddev); 5294 if (mddev->pers->sync_request && mddev->to_remove == NULL) 5295 mddev->to_remove = &md_redundancy_group; 5296 module_put(mddev->pers->owner); 5297 mddev->pers = NULL; 5298 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5299 } 5300 EXPORT_SYMBOL_GPL(md_stop); 5301 5302 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5303 { 5304 int err = 0; 5305 mutex_lock(&mddev->open_mutex); 5306 if (atomic_read(&mddev->openers) > !!bdev) { 5307 printk("md: %s still in use.\n",mdname(mddev)); 5308 err = -EBUSY; 5309 goto out; 5310 } 5311 if (bdev) 5312 sync_blockdev(bdev); 5313 if (mddev->pers) { 5314 __md_stop_writes(mddev); 5315 5316 err = -ENXIO; 5317 if (mddev->ro==1) 5318 goto out; 5319 mddev->ro = 1; 5320 set_disk_ro(mddev->gendisk, 1); 5321 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5322 sysfs_notify_dirent_safe(mddev->sysfs_state); 5323 err = 0; 5324 } 5325 out: 5326 mutex_unlock(&mddev->open_mutex); 5327 return err; 5328 } 5329 5330 /* mode: 5331 * 0 - completely stop and dis-assemble array 5332 * 2 - stop but do not disassemble array 5333 */ 5334 static int do_md_stop(struct mddev * mddev, int mode, 5335 struct block_device *bdev) 5336 { 5337 struct gendisk *disk = mddev->gendisk; 5338 struct md_rdev *rdev; 5339 5340 mutex_lock(&mddev->open_mutex); 5341 if (atomic_read(&mddev->openers) > !!bdev || 5342 mddev->sysfs_active) { 5343 printk("md: %s still in use.\n",mdname(mddev)); 5344 mutex_unlock(&mddev->open_mutex); 5345 return -EBUSY; 5346 } 5347 if (bdev) 5348 /* It is possible IO was issued on some other 5349 * open file which was closed before we took ->open_mutex. 5350 * As that was not the last close __blkdev_put will not 5351 * have called sync_blockdev, so we must. 5352 */ 5353 sync_blockdev(bdev); 5354 5355 if (mddev->pers) { 5356 if (mddev->ro) 5357 set_disk_ro(disk, 0); 5358 5359 __md_stop_writes(mddev); 5360 md_stop(mddev); 5361 mddev->queue->merge_bvec_fn = NULL; 5362 mddev->queue->backing_dev_info.congested_fn = NULL; 5363 5364 /* tell userspace to handle 'inactive' */ 5365 sysfs_notify_dirent_safe(mddev->sysfs_state); 5366 5367 rdev_for_each(rdev, mddev) 5368 if (rdev->raid_disk >= 0) 5369 sysfs_unlink_rdev(mddev, rdev); 5370 5371 set_capacity(disk, 0); 5372 mutex_unlock(&mddev->open_mutex); 5373 mddev->changed = 1; 5374 revalidate_disk(disk); 5375 5376 if (mddev->ro) 5377 mddev->ro = 0; 5378 } else 5379 mutex_unlock(&mddev->open_mutex); 5380 /* 5381 * Free resources if final stop 5382 */ 5383 if (mode == 0) { 5384 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5385 5386 bitmap_destroy(mddev); 5387 if (mddev->bitmap_info.file) { 5388 restore_bitmap_write_access(mddev->bitmap_info.file); 5389 fput(mddev->bitmap_info.file); 5390 mddev->bitmap_info.file = NULL; 5391 } 5392 mddev->bitmap_info.offset = 0; 5393 5394 export_array(mddev); 5395 5396 md_clean(mddev); 5397 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5398 if (mddev->hold_active == UNTIL_STOP) 5399 mddev->hold_active = 0; 5400 } 5401 blk_integrity_unregister(disk); 5402 md_new_event(mddev); 5403 sysfs_notify_dirent_safe(mddev->sysfs_state); 5404 return 0; 5405 } 5406 5407 #ifndef MODULE 5408 static void autorun_array(struct mddev *mddev) 5409 { 5410 struct md_rdev *rdev; 5411 int err; 5412 5413 if (list_empty(&mddev->disks)) 5414 return; 5415 5416 printk(KERN_INFO "md: running: "); 5417 5418 rdev_for_each(rdev, mddev) { 5419 char b[BDEVNAME_SIZE]; 5420 printk("<%s>", bdevname(rdev->bdev,b)); 5421 } 5422 printk("\n"); 5423 5424 err = do_md_run(mddev); 5425 if (err) { 5426 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5427 do_md_stop(mddev, 0, NULL); 5428 } 5429 } 5430 5431 /* 5432 * lets try to run arrays based on all disks that have arrived 5433 * until now. (those are in pending_raid_disks) 5434 * 5435 * the method: pick the first pending disk, collect all disks with 5436 * the same UUID, remove all from the pending list and put them into 5437 * the 'same_array' list. Then order this list based on superblock 5438 * update time (freshest comes first), kick out 'old' disks and 5439 * compare superblocks. If everything's fine then run it. 5440 * 5441 * If "unit" is allocated, then bump its reference count 5442 */ 5443 static void autorun_devices(int part) 5444 { 5445 struct md_rdev *rdev0, *rdev, *tmp; 5446 struct mddev *mddev; 5447 char b[BDEVNAME_SIZE]; 5448 5449 printk(KERN_INFO "md: autorun ...\n"); 5450 while (!list_empty(&pending_raid_disks)) { 5451 int unit; 5452 dev_t dev; 5453 LIST_HEAD(candidates); 5454 rdev0 = list_entry(pending_raid_disks.next, 5455 struct md_rdev, same_set); 5456 5457 printk(KERN_INFO "md: considering %s ...\n", 5458 bdevname(rdev0->bdev,b)); 5459 INIT_LIST_HEAD(&candidates); 5460 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5461 if (super_90_load(rdev, rdev0, 0) >= 0) { 5462 printk(KERN_INFO "md: adding %s ...\n", 5463 bdevname(rdev->bdev,b)); 5464 list_move(&rdev->same_set, &candidates); 5465 } 5466 /* 5467 * now we have a set of devices, with all of them having 5468 * mostly sane superblocks. It's time to allocate the 5469 * mddev. 5470 */ 5471 if (part) { 5472 dev = MKDEV(mdp_major, 5473 rdev0->preferred_minor << MdpMinorShift); 5474 unit = MINOR(dev) >> MdpMinorShift; 5475 } else { 5476 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5477 unit = MINOR(dev); 5478 } 5479 if (rdev0->preferred_minor != unit) { 5480 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5481 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5482 break; 5483 } 5484 5485 md_probe(dev, NULL, NULL); 5486 mddev = mddev_find(dev); 5487 if (!mddev || !mddev->gendisk) { 5488 if (mddev) 5489 mddev_put(mddev); 5490 printk(KERN_ERR 5491 "md: cannot allocate memory for md drive.\n"); 5492 break; 5493 } 5494 if (mddev_lock(mddev)) 5495 printk(KERN_WARNING "md: %s locked, cannot run\n", 5496 mdname(mddev)); 5497 else if (mddev->raid_disks || mddev->major_version 5498 || !list_empty(&mddev->disks)) { 5499 printk(KERN_WARNING 5500 "md: %s already running, cannot run %s\n", 5501 mdname(mddev), bdevname(rdev0->bdev,b)); 5502 mddev_unlock(mddev); 5503 } else { 5504 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5505 mddev->persistent = 1; 5506 rdev_for_each_list(rdev, tmp, &candidates) { 5507 list_del_init(&rdev->same_set); 5508 if (bind_rdev_to_array(rdev, mddev)) 5509 export_rdev(rdev); 5510 } 5511 autorun_array(mddev); 5512 mddev_unlock(mddev); 5513 } 5514 /* on success, candidates will be empty, on error 5515 * it won't... 5516 */ 5517 rdev_for_each_list(rdev, tmp, &candidates) { 5518 list_del_init(&rdev->same_set); 5519 export_rdev(rdev); 5520 } 5521 mddev_put(mddev); 5522 } 5523 printk(KERN_INFO "md: ... autorun DONE.\n"); 5524 } 5525 #endif /* !MODULE */ 5526 5527 static int get_version(void __user * arg) 5528 { 5529 mdu_version_t ver; 5530 5531 ver.major = MD_MAJOR_VERSION; 5532 ver.minor = MD_MINOR_VERSION; 5533 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5534 5535 if (copy_to_user(arg, &ver, sizeof(ver))) 5536 return -EFAULT; 5537 5538 return 0; 5539 } 5540 5541 static int get_array_info(struct mddev * mddev, void __user * arg) 5542 { 5543 mdu_array_info_t info; 5544 int nr,working,insync,failed,spare; 5545 struct md_rdev *rdev; 5546 5547 nr=working=insync=failed=spare=0; 5548 rdev_for_each(rdev, mddev) { 5549 nr++; 5550 if (test_bit(Faulty, &rdev->flags)) 5551 failed++; 5552 else { 5553 working++; 5554 if (test_bit(In_sync, &rdev->flags)) 5555 insync++; 5556 else 5557 spare++; 5558 } 5559 } 5560 5561 info.major_version = mddev->major_version; 5562 info.minor_version = mddev->minor_version; 5563 info.patch_version = MD_PATCHLEVEL_VERSION; 5564 info.ctime = mddev->ctime; 5565 info.level = mddev->level; 5566 info.size = mddev->dev_sectors / 2; 5567 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5568 info.size = -1; 5569 info.nr_disks = nr; 5570 info.raid_disks = mddev->raid_disks; 5571 info.md_minor = mddev->md_minor; 5572 info.not_persistent= !mddev->persistent; 5573 5574 info.utime = mddev->utime; 5575 info.state = 0; 5576 if (mddev->in_sync) 5577 info.state = (1<<MD_SB_CLEAN); 5578 if (mddev->bitmap && mddev->bitmap_info.offset) 5579 info.state = (1<<MD_SB_BITMAP_PRESENT); 5580 info.active_disks = insync; 5581 info.working_disks = working; 5582 info.failed_disks = failed; 5583 info.spare_disks = spare; 5584 5585 info.layout = mddev->layout; 5586 info.chunk_size = mddev->chunk_sectors << 9; 5587 5588 if (copy_to_user(arg, &info, sizeof(info))) 5589 return -EFAULT; 5590 5591 return 0; 5592 } 5593 5594 static int get_bitmap_file(struct mddev * mddev, void __user * arg) 5595 { 5596 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5597 char *ptr, *buf = NULL; 5598 int err = -ENOMEM; 5599 5600 if (md_allow_write(mddev)) 5601 file = kmalloc(sizeof(*file), GFP_NOIO); 5602 else 5603 file = kmalloc(sizeof(*file), GFP_KERNEL); 5604 5605 if (!file) 5606 goto out; 5607 5608 /* bitmap disabled, zero the first byte and copy out */ 5609 if (!mddev->bitmap || !mddev->bitmap->storage.file) { 5610 file->pathname[0] = '\0'; 5611 goto copy_out; 5612 } 5613 5614 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5615 if (!buf) 5616 goto out; 5617 5618 ptr = d_path(&mddev->bitmap->storage.file->f_path, 5619 buf, sizeof(file->pathname)); 5620 if (IS_ERR(ptr)) 5621 goto out; 5622 5623 strcpy(file->pathname, ptr); 5624 5625 copy_out: 5626 err = 0; 5627 if (copy_to_user(arg, file, sizeof(*file))) 5628 err = -EFAULT; 5629 out: 5630 kfree(buf); 5631 kfree(file); 5632 return err; 5633 } 5634 5635 static int get_disk_info(struct mddev * mddev, void __user * arg) 5636 { 5637 mdu_disk_info_t info; 5638 struct md_rdev *rdev; 5639 5640 if (copy_from_user(&info, arg, sizeof(info))) 5641 return -EFAULT; 5642 5643 rdev = find_rdev_nr(mddev, info.number); 5644 if (rdev) { 5645 info.major = MAJOR(rdev->bdev->bd_dev); 5646 info.minor = MINOR(rdev->bdev->bd_dev); 5647 info.raid_disk = rdev->raid_disk; 5648 info.state = 0; 5649 if (test_bit(Faulty, &rdev->flags)) 5650 info.state |= (1<<MD_DISK_FAULTY); 5651 else if (test_bit(In_sync, &rdev->flags)) { 5652 info.state |= (1<<MD_DISK_ACTIVE); 5653 info.state |= (1<<MD_DISK_SYNC); 5654 } 5655 if (test_bit(WriteMostly, &rdev->flags)) 5656 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5657 } else { 5658 info.major = info.minor = 0; 5659 info.raid_disk = -1; 5660 info.state = (1<<MD_DISK_REMOVED); 5661 } 5662 5663 if (copy_to_user(arg, &info, sizeof(info))) 5664 return -EFAULT; 5665 5666 return 0; 5667 } 5668 5669 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) 5670 { 5671 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5672 struct md_rdev *rdev; 5673 dev_t dev = MKDEV(info->major,info->minor); 5674 5675 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5676 return -EOVERFLOW; 5677 5678 if (!mddev->raid_disks) { 5679 int err; 5680 /* expecting a device which has a superblock */ 5681 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5682 if (IS_ERR(rdev)) { 5683 printk(KERN_WARNING 5684 "md: md_import_device returned %ld\n", 5685 PTR_ERR(rdev)); 5686 return PTR_ERR(rdev); 5687 } 5688 if (!list_empty(&mddev->disks)) { 5689 struct md_rdev *rdev0 5690 = list_entry(mddev->disks.next, 5691 struct md_rdev, same_set); 5692 err = super_types[mddev->major_version] 5693 .load_super(rdev, rdev0, mddev->minor_version); 5694 if (err < 0) { 5695 printk(KERN_WARNING 5696 "md: %s has different UUID to %s\n", 5697 bdevname(rdev->bdev,b), 5698 bdevname(rdev0->bdev,b2)); 5699 export_rdev(rdev); 5700 return -EINVAL; 5701 } 5702 } 5703 err = bind_rdev_to_array(rdev, mddev); 5704 if (err) 5705 export_rdev(rdev); 5706 return err; 5707 } 5708 5709 /* 5710 * add_new_disk can be used once the array is assembled 5711 * to add "hot spares". They must already have a superblock 5712 * written 5713 */ 5714 if (mddev->pers) { 5715 int err; 5716 if (!mddev->pers->hot_add_disk) { 5717 printk(KERN_WARNING 5718 "%s: personality does not support diskops!\n", 5719 mdname(mddev)); 5720 return -EINVAL; 5721 } 5722 if (mddev->persistent) 5723 rdev = md_import_device(dev, mddev->major_version, 5724 mddev->minor_version); 5725 else 5726 rdev = md_import_device(dev, -1, -1); 5727 if (IS_ERR(rdev)) { 5728 printk(KERN_WARNING 5729 "md: md_import_device returned %ld\n", 5730 PTR_ERR(rdev)); 5731 return PTR_ERR(rdev); 5732 } 5733 /* set saved_raid_disk if appropriate */ 5734 if (!mddev->persistent) { 5735 if (info->state & (1<<MD_DISK_SYNC) && 5736 info->raid_disk < mddev->raid_disks) { 5737 rdev->raid_disk = info->raid_disk; 5738 set_bit(In_sync, &rdev->flags); 5739 } else 5740 rdev->raid_disk = -1; 5741 } else 5742 super_types[mddev->major_version]. 5743 validate_super(mddev, rdev); 5744 if ((info->state & (1<<MD_DISK_SYNC)) && 5745 rdev->raid_disk != info->raid_disk) { 5746 /* This was a hot-add request, but events doesn't 5747 * match, so reject it. 5748 */ 5749 export_rdev(rdev); 5750 return -EINVAL; 5751 } 5752 5753 if (test_bit(In_sync, &rdev->flags)) 5754 rdev->saved_raid_disk = rdev->raid_disk; 5755 else 5756 rdev->saved_raid_disk = -1; 5757 5758 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5759 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5760 set_bit(WriteMostly, &rdev->flags); 5761 else 5762 clear_bit(WriteMostly, &rdev->flags); 5763 5764 rdev->raid_disk = -1; 5765 err = bind_rdev_to_array(rdev, mddev); 5766 if (!err && !mddev->pers->hot_remove_disk) { 5767 /* If there is hot_add_disk but no hot_remove_disk 5768 * then added disks for geometry changes, 5769 * and should be added immediately. 5770 */ 5771 super_types[mddev->major_version]. 5772 validate_super(mddev, rdev); 5773 err = mddev->pers->hot_add_disk(mddev, rdev); 5774 if (err) 5775 unbind_rdev_from_array(rdev); 5776 } 5777 if (err) 5778 export_rdev(rdev); 5779 else 5780 sysfs_notify_dirent_safe(rdev->sysfs_state); 5781 5782 md_update_sb(mddev, 1); 5783 if (mddev->degraded) 5784 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5785 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5786 if (!err) 5787 md_new_event(mddev); 5788 md_wakeup_thread(mddev->thread); 5789 return err; 5790 } 5791 5792 /* otherwise, add_new_disk is only allowed 5793 * for major_version==0 superblocks 5794 */ 5795 if (mddev->major_version != 0) { 5796 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5797 mdname(mddev)); 5798 return -EINVAL; 5799 } 5800 5801 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5802 int err; 5803 rdev = md_import_device(dev, -1, 0); 5804 if (IS_ERR(rdev)) { 5805 printk(KERN_WARNING 5806 "md: error, md_import_device() returned %ld\n", 5807 PTR_ERR(rdev)); 5808 return PTR_ERR(rdev); 5809 } 5810 rdev->desc_nr = info->number; 5811 if (info->raid_disk < mddev->raid_disks) 5812 rdev->raid_disk = info->raid_disk; 5813 else 5814 rdev->raid_disk = -1; 5815 5816 if (rdev->raid_disk < mddev->raid_disks) 5817 if (info->state & (1<<MD_DISK_SYNC)) 5818 set_bit(In_sync, &rdev->flags); 5819 5820 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5821 set_bit(WriteMostly, &rdev->flags); 5822 5823 if (!mddev->persistent) { 5824 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5825 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5826 } else 5827 rdev->sb_start = calc_dev_sboffset(rdev); 5828 rdev->sectors = rdev->sb_start; 5829 5830 err = bind_rdev_to_array(rdev, mddev); 5831 if (err) { 5832 export_rdev(rdev); 5833 return err; 5834 } 5835 } 5836 5837 return 0; 5838 } 5839 5840 static int hot_remove_disk(struct mddev * mddev, dev_t dev) 5841 { 5842 char b[BDEVNAME_SIZE]; 5843 struct md_rdev *rdev; 5844 5845 rdev = find_rdev(mddev, dev); 5846 if (!rdev) 5847 return -ENXIO; 5848 5849 if (rdev->raid_disk >= 0) 5850 goto busy; 5851 5852 kick_rdev_from_array(rdev); 5853 md_update_sb(mddev, 1); 5854 md_new_event(mddev); 5855 5856 return 0; 5857 busy: 5858 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5859 bdevname(rdev->bdev,b), mdname(mddev)); 5860 return -EBUSY; 5861 } 5862 5863 static int hot_add_disk(struct mddev * mddev, dev_t dev) 5864 { 5865 char b[BDEVNAME_SIZE]; 5866 int err; 5867 struct md_rdev *rdev; 5868 5869 if (!mddev->pers) 5870 return -ENODEV; 5871 5872 if (mddev->major_version != 0) { 5873 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5874 " version-0 superblocks.\n", 5875 mdname(mddev)); 5876 return -EINVAL; 5877 } 5878 if (!mddev->pers->hot_add_disk) { 5879 printk(KERN_WARNING 5880 "%s: personality does not support diskops!\n", 5881 mdname(mddev)); 5882 return -EINVAL; 5883 } 5884 5885 rdev = md_import_device(dev, -1, 0); 5886 if (IS_ERR(rdev)) { 5887 printk(KERN_WARNING 5888 "md: error, md_import_device() returned %ld\n", 5889 PTR_ERR(rdev)); 5890 return -EINVAL; 5891 } 5892 5893 if (mddev->persistent) 5894 rdev->sb_start = calc_dev_sboffset(rdev); 5895 else 5896 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5897 5898 rdev->sectors = rdev->sb_start; 5899 5900 if (test_bit(Faulty, &rdev->flags)) { 5901 printk(KERN_WARNING 5902 "md: can not hot-add faulty %s disk to %s!\n", 5903 bdevname(rdev->bdev,b), mdname(mddev)); 5904 err = -EINVAL; 5905 goto abort_export; 5906 } 5907 clear_bit(In_sync, &rdev->flags); 5908 rdev->desc_nr = -1; 5909 rdev->saved_raid_disk = -1; 5910 err = bind_rdev_to_array(rdev, mddev); 5911 if (err) 5912 goto abort_export; 5913 5914 /* 5915 * The rest should better be atomic, we can have disk failures 5916 * noticed in interrupt contexts ... 5917 */ 5918 5919 rdev->raid_disk = -1; 5920 5921 md_update_sb(mddev, 1); 5922 5923 /* 5924 * Kick recovery, maybe this spare has to be added to the 5925 * array immediately. 5926 */ 5927 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5928 md_wakeup_thread(mddev->thread); 5929 md_new_event(mddev); 5930 return 0; 5931 5932 abort_export: 5933 export_rdev(rdev); 5934 return err; 5935 } 5936 5937 static int set_bitmap_file(struct mddev *mddev, int fd) 5938 { 5939 int err; 5940 5941 if (mddev->pers) { 5942 if (!mddev->pers->quiesce) 5943 return -EBUSY; 5944 if (mddev->recovery || mddev->sync_thread) 5945 return -EBUSY; 5946 /* we should be able to change the bitmap.. */ 5947 } 5948 5949 5950 if (fd >= 0) { 5951 if (mddev->bitmap) 5952 return -EEXIST; /* cannot add when bitmap is present */ 5953 mddev->bitmap_info.file = fget(fd); 5954 5955 if (mddev->bitmap_info.file == NULL) { 5956 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5957 mdname(mddev)); 5958 return -EBADF; 5959 } 5960 5961 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5962 if (err) { 5963 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5964 mdname(mddev)); 5965 fput(mddev->bitmap_info.file); 5966 mddev->bitmap_info.file = NULL; 5967 return err; 5968 } 5969 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5970 } else if (mddev->bitmap == NULL) 5971 return -ENOENT; /* cannot remove what isn't there */ 5972 err = 0; 5973 if (mddev->pers) { 5974 mddev->pers->quiesce(mddev, 1); 5975 if (fd >= 0) { 5976 err = bitmap_create(mddev); 5977 if (!err) 5978 err = bitmap_load(mddev); 5979 } 5980 if (fd < 0 || err) { 5981 bitmap_destroy(mddev); 5982 fd = -1; /* make sure to put the file */ 5983 } 5984 mddev->pers->quiesce(mddev, 0); 5985 } 5986 if (fd < 0) { 5987 if (mddev->bitmap_info.file) { 5988 restore_bitmap_write_access(mddev->bitmap_info.file); 5989 fput(mddev->bitmap_info.file); 5990 } 5991 mddev->bitmap_info.file = NULL; 5992 } 5993 5994 return err; 5995 } 5996 5997 /* 5998 * set_array_info is used two different ways 5999 * The original usage is when creating a new array. 6000 * In this usage, raid_disks is > 0 and it together with 6001 * level, size, not_persistent,layout,chunksize determine the 6002 * shape of the array. 6003 * This will always create an array with a type-0.90.0 superblock. 6004 * The newer usage is when assembling an array. 6005 * In this case raid_disks will be 0, and the major_version field is 6006 * use to determine which style super-blocks are to be found on the devices. 6007 * The minor and patch _version numbers are also kept incase the 6008 * super_block handler wishes to interpret them. 6009 */ 6010 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info) 6011 { 6012 6013 if (info->raid_disks == 0) { 6014 /* just setting version number for superblock loading */ 6015 if (info->major_version < 0 || 6016 info->major_version >= ARRAY_SIZE(super_types) || 6017 super_types[info->major_version].name == NULL) { 6018 /* maybe try to auto-load a module? */ 6019 printk(KERN_INFO 6020 "md: superblock version %d not known\n", 6021 info->major_version); 6022 return -EINVAL; 6023 } 6024 mddev->major_version = info->major_version; 6025 mddev->minor_version = info->minor_version; 6026 mddev->patch_version = info->patch_version; 6027 mddev->persistent = !info->not_persistent; 6028 /* ensure mddev_put doesn't delete this now that there 6029 * is some minimal configuration. 6030 */ 6031 mddev->ctime = get_seconds(); 6032 return 0; 6033 } 6034 mddev->major_version = MD_MAJOR_VERSION; 6035 mddev->minor_version = MD_MINOR_VERSION; 6036 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6037 mddev->ctime = get_seconds(); 6038 6039 mddev->level = info->level; 6040 mddev->clevel[0] = 0; 6041 mddev->dev_sectors = 2 * (sector_t)info->size; 6042 mddev->raid_disks = info->raid_disks; 6043 /* don't set md_minor, it is determined by which /dev/md* was 6044 * openned 6045 */ 6046 if (info->state & (1<<MD_SB_CLEAN)) 6047 mddev->recovery_cp = MaxSector; 6048 else 6049 mddev->recovery_cp = 0; 6050 mddev->persistent = ! info->not_persistent; 6051 mddev->external = 0; 6052 6053 mddev->layout = info->layout; 6054 mddev->chunk_sectors = info->chunk_size >> 9; 6055 6056 mddev->max_disks = MD_SB_DISKS; 6057 6058 if (mddev->persistent) 6059 mddev->flags = 0; 6060 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6061 6062 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6063 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6064 mddev->bitmap_info.offset = 0; 6065 6066 mddev->reshape_position = MaxSector; 6067 6068 /* 6069 * Generate a 128 bit UUID 6070 */ 6071 get_random_bytes(mddev->uuid, 16); 6072 6073 mddev->new_level = mddev->level; 6074 mddev->new_chunk_sectors = mddev->chunk_sectors; 6075 mddev->new_layout = mddev->layout; 6076 mddev->delta_disks = 0; 6077 mddev->reshape_backwards = 0; 6078 6079 return 0; 6080 } 6081 6082 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6083 { 6084 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6085 6086 if (mddev->external_size) 6087 return; 6088 6089 mddev->array_sectors = array_sectors; 6090 } 6091 EXPORT_SYMBOL(md_set_array_sectors); 6092 6093 static int update_size(struct mddev *mddev, sector_t num_sectors) 6094 { 6095 struct md_rdev *rdev; 6096 int rv; 6097 int fit = (num_sectors == 0); 6098 6099 if (mddev->pers->resize == NULL) 6100 return -EINVAL; 6101 /* The "num_sectors" is the number of sectors of each device that 6102 * is used. This can only make sense for arrays with redundancy. 6103 * linear and raid0 always use whatever space is available. We can only 6104 * consider changing this number if no resync or reconstruction is 6105 * happening, and if the new size is acceptable. It must fit before the 6106 * sb_start or, if that is <data_offset, it must fit before the size 6107 * of each device. If num_sectors is zero, we find the largest size 6108 * that fits. 6109 */ 6110 if (mddev->sync_thread) 6111 return -EBUSY; 6112 6113 rdev_for_each(rdev, mddev) { 6114 sector_t avail = rdev->sectors; 6115 6116 if (fit && (num_sectors == 0 || num_sectors > avail)) 6117 num_sectors = avail; 6118 if (avail < num_sectors) 6119 return -ENOSPC; 6120 } 6121 rv = mddev->pers->resize(mddev, num_sectors); 6122 if (!rv) 6123 revalidate_disk(mddev->gendisk); 6124 return rv; 6125 } 6126 6127 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6128 { 6129 int rv; 6130 struct md_rdev *rdev; 6131 /* change the number of raid disks */ 6132 if (mddev->pers->check_reshape == NULL) 6133 return -EINVAL; 6134 if (raid_disks <= 0 || 6135 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6136 return -EINVAL; 6137 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 6138 return -EBUSY; 6139 6140 rdev_for_each(rdev, mddev) { 6141 if (mddev->raid_disks < raid_disks && 6142 rdev->data_offset < rdev->new_data_offset) 6143 return -EINVAL; 6144 if (mddev->raid_disks > raid_disks && 6145 rdev->data_offset > rdev->new_data_offset) 6146 return -EINVAL; 6147 } 6148 6149 mddev->delta_disks = raid_disks - mddev->raid_disks; 6150 if (mddev->delta_disks < 0) 6151 mddev->reshape_backwards = 1; 6152 else if (mddev->delta_disks > 0) 6153 mddev->reshape_backwards = 0; 6154 6155 rv = mddev->pers->check_reshape(mddev); 6156 if (rv < 0) { 6157 mddev->delta_disks = 0; 6158 mddev->reshape_backwards = 0; 6159 } 6160 return rv; 6161 } 6162 6163 6164 /* 6165 * update_array_info is used to change the configuration of an 6166 * on-line array. 6167 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6168 * fields in the info are checked against the array. 6169 * Any differences that cannot be handled will cause an error. 6170 * Normally, only one change can be managed at a time. 6171 */ 6172 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6173 { 6174 int rv = 0; 6175 int cnt = 0; 6176 int state = 0; 6177 6178 /* calculate expected state,ignoring low bits */ 6179 if (mddev->bitmap && mddev->bitmap_info.offset) 6180 state |= (1 << MD_SB_BITMAP_PRESENT); 6181 6182 if (mddev->major_version != info->major_version || 6183 mddev->minor_version != info->minor_version || 6184 /* mddev->patch_version != info->patch_version || */ 6185 mddev->ctime != info->ctime || 6186 mddev->level != info->level || 6187 /* mddev->layout != info->layout || */ 6188 !mddev->persistent != info->not_persistent|| 6189 mddev->chunk_sectors != info->chunk_size >> 9 || 6190 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6191 ((state^info->state) & 0xfffffe00) 6192 ) 6193 return -EINVAL; 6194 /* Check there is only one change */ 6195 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6196 cnt++; 6197 if (mddev->raid_disks != info->raid_disks) 6198 cnt++; 6199 if (mddev->layout != info->layout) 6200 cnt++; 6201 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6202 cnt++; 6203 if (cnt == 0) 6204 return 0; 6205 if (cnt > 1) 6206 return -EINVAL; 6207 6208 if (mddev->layout != info->layout) { 6209 /* Change layout 6210 * we don't need to do anything at the md level, the 6211 * personality will take care of it all. 6212 */ 6213 if (mddev->pers->check_reshape == NULL) 6214 return -EINVAL; 6215 else { 6216 mddev->new_layout = info->layout; 6217 rv = mddev->pers->check_reshape(mddev); 6218 if (rv) 6219 mddev->new_layout = mddev->layout; 6220 return rv; 6221 } 6222 } 6223 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6224 rv = update_size(mddev, (sector_t)info->size * 2); 6225 6226 if (mddev->raid_disks != info->raid_disks) 6227 rv = update_raid_disks(mddev, info->raid_disks); 6228 6229 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6230 if (mddev->pers->quiesce == NULL) 6231 return -EINVAL; 6232 if (mddev->recovery || mddev->sync_thread) 6233 return -EBUSY; 6234 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6235 /* add the bitmap */ 6236 if (mddev->bitmap) 6237 return -EEXIST; 6238 if (mddev->bitmap_info.default_offset == 0) 6239 return -EINVAL; 6240 mddev->bitmap_info.offset = 6241 mddev->bitmap_info.default_offset; 6242 mddev->bitmap_info.space = 6243 mddev->bitmap_info.default_space; 6244 mddev->pers->quiesce(mddev, 1); 6245 rv = bitmap_create(mddev); 6246 if (!rv) 6247 rv = bitmap_load(mddev); 6248 if (rv) 6249 bitmap_destroy(mddev); 6250 mddev->pers->quiesce(mddev, 0); 6251 } else { 6252 /* remove the bitmap */ 6253 if (!mddev->bitmap) 6254 return -ENOENT; 6255 if (mddev->bitmap->storage.file) 6256 return -EINVAL; 6257 mddev->pers->quiesce(mddev, 1); 6258 bitmap_destroy(mddev); 6259 mddev->pers->quiesce(mddev, 0); 6260 mddev->bitmap_info.offset = 0; 6261 } 6262 } 6263 md_update_sb(mddev, 1); 6264 return rv; 6265 } 6266 6267 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6268 { 6269 struct md_rdev *rdev; 6270 6271 if (mddev->pers == NULL) 6272 return -ENODEV; 6273 6274 rdev = find_rdev(mddev, dev); 6275 if (!rdev) 6276 return -ENODEV; 6277 6278 md_error(mddev, rdev); 6279 if (!test_bit(Faulty, &rdev->flags)) 6280 return -EBUSY; 6281 return 0; 6282 } 6283 6284 /* 6285 * We have a problem here : there is no easy way to give a CHS 6286 * virtual geometry. We currently pretend that we have a 2 heads 6287 * 4 sectors (with a BIG number of cylinders...). This drives 6288 * dosfs just mad... ;-) 6289 */ 6290 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6291 { 6292 struct mddev *mddev = bdev->bd_disk->private_data; 6293 6294 geo->heads = 2; 6295 geo->sectors = 4; 6296 geo->cylinders = mddev->array_sectors / 8; 6297 return 0; 6298 } 6299 6300 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6301 unsigned int cmd, unsigned long arg) 6302 { 6303 int err = 0; 6304 void __user *argp = (void __user *)arg; 6305 struct mddev *mddev = NULL; 6306 int ro; 6307 6308 switch (cmd) { 6309 case RAID_VERSION: 6310 case GET_ARRAY_INFO: 6311 case GET_DISK_INFO: 6312 break; 6313 default: 6314 if (!capable(CAP_SYS_ADMIN)) 6315 return -EACCES; 6316 } 6317 6318 /* 6319 * Commands dealing with the RAID driver but not any 6320 * particular array: 6321 */ 6322 switch (cmd) 6323 { 6324 case RAID_VERSION: 6325 err = get_version(argp); 6326 goto done; 6327 6328 case PRINT_RAID_DEBUG: 6329 err = 0; 6330 md_print_devices(); 6331 goto done; 6332 6333 #ifndef MODULE 6334 case RAID_AUTORUN: 6335 err = 0; 6336 autostart_arrays(arg); 6337 goto done; 6338 #endif 6339 default:; 6340 } 6341 6342 /* 6343 * Commands creating/starting a new array: 6344 */ 6345 6346 mddev = bdev->bd_disk->private_data; 6347 6348 if (!mddev) { 6349 BUG(); 6350 goto abort; 6351 } 6352 6353 err = mddev_lock(mddev); 6354 if (err) { 6355 printk(KERN_INFO 6356 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6357 err, cmd); 6358 goto abort; 6359 } 6360 6361 switch (cmd) 6362 { 6363 case SET_ARRAY_INFO: 6364 { 6365 mdu_array_info_t info; 6366 if (!arg) 6367 memset(&info, 0, sizeof(info)); 6368 else if (copy_from_user(&info, argp, sizeof(info))) { 6369 err = -EFAULT; 6370 goto abort_unlock; 6371 } 6372 if (mddev->pers) { 6373 err = update_array_info(mddev, &info); 6374 if (err) { 6375 printk(KERN_WARNING "md: couldn't update" 6376 " array info. %d\n", err); 6377 goto abort_unlock; 6378 } 6379 goto done_unlock; 6380 } 6381 if (!list_empty(&mddev->disks)) { 6382 printk(KERN_WARNING 6383 "md: array %s already has disks!\n", 6384 mdname(mddev)); 6385 err = -EBUSY; 6386 goto abort_unlock; 6387 } 6388 if (mddev->raid_disks) { 6389 printk(KERN_WARNING 6390 "md: array %s already initialised!\n", 6391 mdname(mddev)); 6392 err = -EBUSY; 6393 goto abort_unlock; 6394 } 6395 err = set_array_info(mddev, &info); 6396 if (err) { 6397 printk(KERN_WARNING "md: couldn't set" 6398 " array info. %d\n", err); 6399 goto abort_unlock; 6400 } 6401 } 6402 goto done_unlock; 6403 6404 default:; 6405 } 6406 6407 /* 6408 * Commands querying/configuring an existing array: 6409 */ 6410 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6411 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6412 if ((!mddev->raid_disks && !mddev->external) 6413 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6414 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6415 && cmd != GET_BITMAP_FILE) { 6416 err = -ENODEV; 6417 goto abort_unlock; 6418 } 6419 6420 /* 6421 * Commands even a read-only array can execute: 6422 */ 6423 switch (cmd) 6424 { 6425 case GET_ARRAY_INFO: 6426 err = get_array_info(mddev, argp); 6427 goto done_unlock; 6428 6429 case GET_BITMAP_FILE: 6430 err = get_bitmap_file(mddev, argp); 6431 goto done_unlock; 6432 6433 case GET_DISK_INFO: 6434 err = get_disk_info(mddev, argp); 6435 goto done_unlock; 6436 6437 case RESTART_ARRAY_RW: 6438 err = restart_array(mddev); 6439 goto done_unlock; 6440 6441 case STOP_ARRAY: 6442 err = do_md_stop(mddev, 0, bdev); 6443 goto done_unlock; 6444 6445 case STOP_ARRAY_RO: 6446 err = md_set_readonly(mddev, bdev); 6447 goto done_unlock; 6448 6449 case BLKROSET: 6450 if (get_user(ro, (int __user *)(arg))) { 6451 err = -EFAULT; 6452 goto done_unlock; 6453 } 6454 err = -EINVAL; 6455 6456 /* if the bdev is going readonly the value of mddev->ro 6457 * does not matter, no writes are coming 6458 */ 6459 if (ro) 6460 goto done_unlock; 6461 6462 /* are we are already prepared for writes? */ 6463 if (mddev->ro != 1) 6464 goto done_unlock; 6465 6466 /* transitioning to readauto need only happen for 6467 * arrays that call md_write_start 6468 */ 6469 if (mddev->pers) { 6470 err = restart_array(mddev); 6471 if (err == 0) { 6472 mddev->ro = 2; 6473 set_disk_ro(mddev->gendisk, 0); 6474 } 6475 } 6476 goto done_unlock; 6477 } 6478 6479 /* 6480 * The remaining ioctls are changing the state of the 6481 * superblock, so we do not allow them on read-only arrays. 6482 * However non-MD ioctls (e.g. get-size) will still come through 6483 * here and hit the 'default' below, so only disallow 6484 * 'md' ioctls, and switch to rw mode if started auto-readonly. 6485 */ 6486 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 6487 if (mddev->ro == 2) { 6488 mddev->ro = 0; 6489 sysfs_notify_dirent_safe(mddev->sysfs_state); 6490 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6491 md_wakeup_thread(mddev->thread); 6492 } else { 6493 err = -EROFS; 6494 goto abort_unlock; 6495 } 6496 } 6497 6498 switch (cmd) 6499 { 6500 case ADD_NEW_DISK: 6501 { 6502 mdu_disk_info_t info; 6503 if (copy_from_user(&info, argp, sizeof(info))) 6504 err = -EFAULT; 6505 else 6506 err = add_new_disk(mddev, &info); 6507 goto done_unlock; 6508 } 6509 6510 case HOT_REMOVE_DISK: 6511 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6512 goto done_unlock; 6513 6514 case HOT_ADD_DISK: 6515 err = hot_add_disk(mddev, new_decode_dev(arg)); 6516 goto done_unlock; 6517 6518 case SET_DISK_FAULTY: 6519 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6520 goto done_unlock; 6521 6522 case RUN_ARRAY: 6523 err = do_md_run(mddev); 6524 goto done_unlock; 6525 6526 case SET_BITMAP_FILE: 6527 err = set_bitmap_file(mddev, (int)arg); 6528 goto done_unlock; 6529 6530 default: 6531 err = -EINVAL; 6532 goto abort_unlock; 6533 } 6534 6535 done_unlock: 6536 abort_unlock: 6537 if (mddev->hold_active == UNTIL_IOCTL && 6538 err != -EINVAL) 6539 mddev->hold_active = 0; 6540 mddev_unlock(mddev); 6541 6542 return err; 6543 done: 6544 if (err) 6545 MD_BUG(); 6546 abort: 6547 return err; 6548 } 6549 #ifdef CONFIG_COMPAT 6550 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6551 unsigned int cmd, unsigned long arg) 6552 { 6553 switch (cmd) { 6554 case HOT_REMOVE_DISK: 6555 case HOT_ADD_DISK: 6556 case SET_DISK_FAULTY: 6557 case SET_BITMAP_FILE: 6558 /* These take in integer arg, do not convert */ 6559 break; 6560 default: 6561 arg = (unsigned long)compat_ptr(arg); 6562 break; 6563 } 6564 6565 return md_ioctl(bdev, mode, cmd, arg); 6566 } 6567 #endif /* CONFIG_COMPAT */ 6568 6569 static int md_open(struct block_device *bdev, fmode_t mode) 6570 { 6571 /* 6572 * Succeed if we can lock the mddev, which confirms that 6573 * it isn't being stopped right now. 6574 */ 6575 struct mddev *mddev = mddev_find(bdev->bd_dev); 6576 int err; 6577 6578 if (!mddev) 6579 return -ENODEV; 6580 6581 if (mddev->gendisk != bdev->bd_disk) { 6582 /* we are racing with mddev_put which is discarding this 6583 * bd_disk. 6584 */ 6585 mddev_put(mddev); 6586 /* Wait until bdev->bd_disk is definitely gone */ 6587 flush_workqueue(md_misc_wq); 6588 /* Then retry the open from the top */ 6589 return -ERESTARTSYS; 6590 } 6591 BUG_ON(mddev != bdev->bd_disk->private_data); 6592 6593 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6594 goto out; 6595 6596 err = 0; 6597 atomic_inc(&mddev->openers); 6598 mutex_unlock(&mddev->open_mutex); 6599 6600 check_disk_change(bdev); 6601 out: 6602 return err; 6603 } 6604 6605 static int md_release(struct gendisk *disk, fmode_t mode) 6606 { 6607 struct mddev *mddev = disk->private_data; 6608 6609 BUG_ON(!mddev); 6610 atomic_dec(&mddev->openers); 6611 mddev_put(mddev); 6612 6613 return 0; 6614 } 6615 6616 static int md_media_changed(struct gendisk *disk) 6617 { 6618 struct mddev *mddev = disk->private_data; 6619 6620 return mddev->changed; 6621 } 6622 6623 static int md_revalidate(struct gendisk *disk) 6624 { 6625 struct mddev *mddev = disk->private_data; 6626 6627 mddev->changed = 0; 6628 return 0; 6629 } 6630 static const struct block_device_operations md_fops = 6631 { 6632 .owner = THIS_MODULE, 6633 .open = md_open, 6634 .release = md_release, 6635 .ioctl = md_ioctl, 6636 #ifdef CONFIG_COMPAT 6637 .compat_ioctl = md_compat_ioctl, 6638 #endif 6639 .getgeo = md_getgeo, 6640 .media_changed = md_media_changed, 6641 .revalidate_disk= md_revalidate, 6642 }; 6643 6644 static int md_thread(void * arg) 6645 { 6646 struct md_thread *thread = arg; 6647 6648 /* 6649 * md_thread is a 'system-thread', it's priority should be very 6650 * high. We avoid resource deadlocks individually in each 6651 * raid personality. (RAID5 does preallocation) We also use RR and 6652 * the very same RT priority as kswapd, thus we will never get 6653 * into a priority inversion deadlock. 6654 * 6655 * we definitely have to have equal or higher priority than 6656 * bdflush, otherwise bdflush will deadlock if there are too 6657 * many dirty RAID5 blocks. 6658 */ 6659 6660 allow_signal(SIGKILL); 6661 while (!kthread_should_stop()) { 6662 6663 /* We need to wait INTERRUPTIBLE so that 6664 * we don't add to the load-average. 6665 * That means we need to be sure no signals are 6666 * pending 6667 */ 6668 if (signal_pending(current)) 6669 flush_signals(current); 6670 6671 wait_event_interruptible_timeout 6672 (thread->wqueue, 6673 test_bit(THREAD_WAKEUP, &thread->flags) 6674 || kthread_should_stop(), 6675 thread->timeout); 6676 6677 clear_bit(THREAD_WAKEUP, &thread->flags); 6678 if (!kthread_should_stop()) 6679 thread->run(thread->mddev); 6680 } 6681 6682 return 0; 6683 } 6684 6685 void md_wakeup_thread(struct md_thread *thread) 6686 { 6687 if (thread) { 6688 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6689 set_bit(THREAD_WAKEUP, &thread->flags); 6690 wake_up(&thread->wqueue); 6691 } 6692 } 6693 6694 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev, 6695 const char *name) 6696 { 6697 struct md_thread *thread; 6698 6699 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6700 if (!thread) 6701 return NULL; 6702 6703 init_waitqueue_head(&thread->wqueue); 6704 6705 thread->run = run; 6706 thread->mddev = mddev; 6707 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6708 thread->tsk = kthread_run(md_thread, thread, 6709 "%s_%s", 6710 mdname(thread->mddev), 6711 name); 6712 if (IS_ERR(thread->tsk)) { 6713 kfree(thread); 6714 return NULL; 6715 } 6716 return thread; 6717 } 6718 6719 void md_unregister_thread(struct md_thread **threadp) 6720 { 6721 struct md_thread *thread = *threadp; 6722 if (!thread) 6723 return; 6724 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6725 /* Locking ensures that mddev_unlock does not wake_up a 6726 * non-existent thread 6727 */ 6728 spin_lock(&pers_lock); 6729 *threadp = NULL; 6730 spin_unlock(&pers_lock); 6731 6732 kthread_stop(thread->tsk); 6733 kfree(thread); 6734 } 6735 6736 void md_error(struct mddev *mddev, struct md_rdev *rdev) 6737 { 6738 if (!mddev) { 6739 MD_BUG(); 6740 return; 6741 } 6742 6743 if (!rdev || test_bit(Faulty, &rdev->flags)) 6744 return; 6745 6746 if (!mddev->pers || !mddev->pers->error_handler) 6747 return; 6748 mddev->pers->error_handler(mddev,rdev); 6749 if (mddev->degraded) 6750 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6751 sysfs_notify_dirent_safe(rdev->sysfs_state); 6752 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6753 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6754 md_wakeup_thread(mddev->thread); 6755 if (mddev->event_work.func) 6756 queue_work(md_misc_wq, &mddev->event_work); 6757 md_new_event_inintr(mddev); 6758 } 6759 6760 /* seq_file implementation /proc/mdstat */ 6761 6762 static void status_unused(struct seq_file *seq) 6763 { 6764 int i = 0; 6765 struct md_rdev *rdev; 6766 6767 seq_printf(seq, "unused devices: "); 6768 6769 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6770 char b[BDEVNAME_SIZE]; 6771 i++; 6772 seq_printf(seq, "%s ", 6773 bdevname(rdev->bdev,b)); 6774 } 6775 if (!i) 6776 seq_printf(seq, "<none>"); 6777 6778 seq_printf(seq, "\n"); 6779 } 6780 6781 6782 static void status_resync(struct seq_file *seq, struct mddev * mddev) 6783 { 6784 sector_t max_sectors, resync, res; 6785 unsigned long dt, db; 6786 sector_t rt; 6787 int scale; 6788 unsigned int per_milli; 6789 6790 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); 6791 6792 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 6793 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6794 max_sectors = mddev->resync_max_sectors; 6795 else 6796 max_sectors = mddev->dev_sectors; 6797 6798 /* 6799 * Should not happen. 6800 */ 6801 if (!max_sectors) { 6802 MD_BUG(); 6803 return; 6804 } 6805 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6806 * in a sector_t, and (max_sectors>>scale) will fit in a 6807 * u32, as those are the requirements for sector_div. 6808 * Thus 'scale' must be at least 10 6809 */ 6810 scale = 10; 6811 if (sizeof(sector_t) > sizeof(unsigned long)) { 6812 while ( max_sectors/2 > (1ULL<<(scale+32))) 6813 scale++; 6814 } 6815 res = (resync>>scale)*1000; 6816 sector_div(res, (u32)((max_sectors>>scale)+1)); 6817 6818 per_milli = res; 6819 { 6820 int i, x = per_milli/50, y = 20-x; 6821 seq_printf(seq, "["); 6822 for (i = 0; i < x; i++) 6823 seq_printf(seq, "="); 6824 seq_printf(seq, ">"); 6825 for (i = 0; i < y; i++) 6826 seq_printf(seq, "."); 6827 seq_printf(seq, "] "); 6828 } 6829 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6830 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6831 "reshape" : 6832 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6833 "check" : 6834 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6835 "resync" : "recovery"))), 6836 per_milli/10, per_milli % 10, 6837 (unsigned long long) resync/2, 6838 (unsigned long long) max_sectors/2); 6839 6840 /* 6841 * dt: time from mark until now 6842 * db: blocks written from mark until now 6843 * rt: remaining time 6844 * 6845 * rt is a sector_t, so could be 32bit or 64bit. 6846 * So we divide before multiply in case it is 32bit and close 6847 * to the limit. 6848 * We scale the divisor (db) by 32 to avoid losing precision 6849 * near the end of resync when the number of remaining sectors 6850 * is close to 'db'. 6851 * We then divide rt by 32 after multiplying by db to compensate. 6852 * The '+1' avoids division by zero if db is very small. 6853 */ 6854 dt = ((jiffies - mddev->resync_mark) / HZ); 6855 if (!dt) dt++; 6856 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6857 - mddev->resync_mark_cnt; 6858 6859 rt = max_sectors - resync; /* number of remaining sectors */ 6860 sector_div(rt, db/32+1); 6861 rt *= dt; 6862 rt >>= 5; 6863 6864 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6865 ((unsigned long)rt % 60)/6); 6866 6867 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6868 } 6869 6870 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6871 { 6872 struct list_head *tmp; 6873 loff_t l = *pos; 6874 struct mddev *mddev; 6875 6876 if (l >= 0x10000) 6877 return NULL; 6878 if (!l--) 6879 /* header */ 6880 return (void*)1; 6881 6882 spin_lock(&all_mddevs_lock); 6883 list_for_each(tmp,&all_mddevs) 6884 if (!l--) { 6885 mddev = list_entry(tmp, struct mddev, all_mddevs); 6886 mddev_get(mddev); 6887 spin_unlock(&all_mddevs_lock); 6888 return mddev; 6889 } 6890 spin_unlock(&all_mddevs_lock); 6891 if (!l--) 6892 return (void*)2;/* tail */ 6893 return NULL; 6894 } 6895 6896 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6897 { 6898 struct list_head *tmp; 6899 struct mddev *next_mddev, *mddev = v; 6900 6901 ++*pos; 6902 if (v == (void*)2) 6903 return NULL; 6904 6905 spin_lock(&all_mddevs_lock); 6906 if (v == (void*)1) 6907 tmp = all_mddevs.next; 6908 else 6909 tmp = mddev->all_mddevs.next; 6910 if (tmp != &all_mddevs) 6911 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 6912 else { 6913 next_mddev = (void*)2; 6914 *pos = 0x10000; 6915 } 6916 spin_unlock(&all_mddevs_lock); 6917 6918 if (v != (void*)1) 6919 mddev_put(mddev); 6920 return next_mddev; 6921 6922 } 6923 6924 static void md_seq_stop(struct seq_file *seq, void *v) 6925 { 6926 struct mddev *mddev = v; 6927 6928 if (mddev && v != (void*)1 && v != (void*)2) 6929 mddev_put(mddev); 6930 } 6931 6932 static int md_seq_show(struct seq_file *seq, void *v) 6933 { 6934 struct mddev *mddev = v; 6935 sector_t sectors; 6936 struct md_rdev *rdev; 6937 6938 if (v == (void*)1) { 6939 struct md_personality *pers; 6940 seq_printf(seq, "Personalities : "); 6941 spin_lock(&pers_lock); 6942 list_for_each_entry(pers, &pers_list, list) 6943 seq_printf(seq, "[%s] ", pers->name); 6944 6945 spin_unlock(&pers_lock); 6946 seq_printf(seq, "\n"); 6947 seq->poll_event = atomic_read(&md_event_count); 6948 return 0; 6949 } 6950 if (v == (void*)2) { 6951 status_unused(seq); 6952 return 0; 6953 } 6954 6955 if (mddev_lock(mddev) < 0) 6956 return -EINTR; 6957 6958 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 6959 seq_printf(seq, "%s : %sactive", mdname(mddev), 6960 mddev->pers ? "" : "in"); 6961 if (mddev->pers) { 6962 if (mddev->ro==1) 6963 seq_printf(seq, " (read-only)"); 6964 if (mddev->ro==2) 6965 seq_printf(seq, " (auto-read-only)"); 6966 seq_printf(seq, " %s", mddev->pers->name); 6967 } 6968 6969 sectors = 0; 6970 rdev_for_each(rdev, mddev) { 6971 char b[BDEVNAME_SIZE]; 6972 seq_printf(seq, " %s[%d]", 6973 bdevname(rdev->bdev,b), rdev->desc_nr); 6974 if (test_bit(WriteMostly, &rdev->flags)) 6975 seq_printf(seq, "(W)"); 6976 if (test_bit(Faulty, &rdev->flags)) { 6977 seq_printf(seq, "(F)"); 6978 continue; 6979 } 6980 if (rdev->raid_disk < 0) 6981 seq_printf(seq, "(S)"); /* spare */ 6982 if (test_bit(Replacement, &rdev->flags)) 6983 seq_printf(seq, "(R)"); 6984 sectors += rdev->sectors; 6985 } 6986 6987 if (!list_empty(&mddev->disks)) { 6988 if (mddev->pers) 6989 seq_printf(seq, "\n %llu blocks", 6990 (unsigned long long) 6991 mddev->array_sectors / 2); 6992 else 6993 seq_printf(seq, "\n %llu blocks", 6994 (unsigned long long)sectors / 2); 6995 } 6996 if (mddev->persistent) { 6997 if (mddev->major_version != 0 || 6998 mddev->minor_version != 90) { 6999 seq_printf(seq," super %d.%d", 7000 mddev->major_version, 7001 mddev->minor_version); 7002 } 7003 } else if (mddev->external) 7004 seq_printf(seq, " super external:%s", 7005 mddev->metadata_type); 7006 else 7007 seq_printf(seq, " super non-persistent"); 7008 7009 if (mddev->pers) { 7010 mddev->pers->status(seq, mddev); 7011 seq_printf(seq, "\n "); 7012 if (mddev->pers->sync_request) { 7013 if (mddev->curr_resync > 2) { 7014 status_resync(seq, mddev); 7015 seq_printf(seq, "\n "); 7016 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 7017 seq_printf(seq, "\tresync=DELAYED\n "); 7018 else if (mddev->recovery_cp < MaxSector) 7019 seq_printf(seq, "\tresync=PENDING\n "); 7020 } 7021 } else 7022 seq_printf(seq, "\n "); 7023 7024 bitmap_status(seq, mddev->bitmap); 7025 7026 seq_printf(seq, "\n"); 7027 } 7028 mddev_unlock(mddev); 7029 7030 return 0; 7031 } 7032 7033 static const struct seq_operations md_seq_ops = { 7034 .start = md_seq_start, 7035 .next = md_seq_next, 7036 .stop = md_seq_stop, 7037 .show = md_seq_show, 7038 }; 7039 7040 static int md_seq_open(struct inode *inode, struct file *file) 7041 { 7042 struct seq_file *seq; 7043 int error; 7044 7045 error = seq_open(file, &md_seq_ops); 7046 if (error) 7047 return error; 7048 7049 seq = file->private_data; 7050 seq->poll_event = atomic_read(&md_event_count); 7051 return error; 7052 } 7053 7054 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7055 { 7056 struct seq_file *seq = filp->private_data; 7057 int mask; 7058 7059 poll_wait(filp, &md_event_waiters, wait); 7060 7061 /* always allow read */ 7062 mask = POLLIN | POLLRDNORM; 7063 7064 if (seq->poll_event != atomic_read(&md_event_count)) 7065 mask |= POLLERR | POLLPRI; 7066 return mask; 7067 } 7068 7069 static const struct file_operations md_seq_fops = { 7070 .owner = THIS_MODULE, 7071 .open = md_seq_open, 7072 .read = seq_read, 7073 .llseek = seq_lseek, 7074 .release = seq_release_private, 7075 .poll = mdstat_poll, 7076 }; 7077 7078 int register_md_personality(struct md_personality *p) 7079 { 7080 spin_lock(&pers_lock); 7081 list_add_tail(&p->list, &pers_list); 7082 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 7083 spin_unlock(&pers_lock); 7084 return 0; 7085 } 7086 7087 int unregister_md_personality(struct md_personality *p) 7088 { 7089 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7090 spin_lock(&pers_lock); 7091 list_del_init(&p->list); 7092 spin_unlock(&pers_lock); 7093 return 0; 7094 } 7095 7096 static int is_mddev_idle(struct mddev *mddev, int init) 7097 { 7098 struct md_rdev * rdev; 7099 int idle; 7100 int curr_events; 7101 7102 idle = 1; 7103 rcu_read_lock(); 7104 rdev_for_each_rcu(rdev, mddev) { 7105 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7106 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7107 (int)part_stat_read(&disk->part0, sectors[1]) - 7108 atomic_read(&disk->sync_io); 7109 /* sync IO will cause sync_io to increase before the disk_stats 7110 * as sync_io is counted when a request starts, and 7111 * disk_stats is counted when it completes. 7112 * So resync activity will cause curr_events to be smaller than 7113 * when there was no such activity. 7114 * non-sync IO will cause disk_stat to increase without 7115 * increasing sync_io so curr_events will (eventually) 7116 * be larger than it was before. Once it becomes 7117 * substantially larger, the test below will cause 7118 * the array to appear non-idle, and resync will slow 7119 * down. 7120 * If there is a lot of outstanding resync activity when 7121 * we set last_event to curr_events, then all that activity 7122 * completing might cause the array to appear non-idle 7123 * and resync will be slowed down even though there might 7124 * not have been non-resync activity. This will only 7125 * happen once though. 'last_events' will soon reflect 7126 * the state where there is little or no outstanding 7127 * resync requests, and further resync activity will 7128 * always make curr_events less than last_events. 7129 * 7130 */ 7131 if (init || curr_events - rdev->last_events > 64) { 7132 rdev->last_events = curr_events; 7133 idle = 0; 7134 } 7135 } 7136 rcu_read_unlock(); 7137 return idle; 7138 } 7139 7140 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7141 { 7142 /* another "blocks" (512byte) blocks have been synced */ 7143 atomic_sub(blocks, &mddev->recovery_active); 7144 wake_up(&mddev->recovery_wait); 7145 if (!ok) { 7146 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7147 md_wakeup_thread(mddev->thread); 7148 // stop recovery, signal do_sync .... 7149 } 7150 } 7151 7152 7153 /* md_write_start(mddev, bi) 7154 * If we need to update some array metadata (e.g. 'active' flag 7155 * in superblock) before writing, schedule a superblock update 7156 * and wait for it to complete. 7157 */ 7158 void md_write_start(struct mddev *mddev, struct bio *bi) 7159 { 7160 int did_change = 0; 7161 if (bio_data_dir(bi) != WRITE) 7162 return; 7163 7164 BUG_ON(mddev->ro == 1); 7165 if (mddev->ro == 2) { 7166 /* need to switch to read/write */ 7167 mddev->ro = 0; 7168 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7169 md_wakeup_thread(mddev->thread); 7170 md_wakeup_thread(mddev->sync_thread); 7171 did_change = 1; 7172 } 7173 atomic_inc(&mddev->writes_pending); 7174 if (mddev->safemode == 1) 7175 mddev->safemode = 0; 7176 if (mddev->in_sync) { 7177 spin_lock_irq(&mddev->write_lock); 7178 if (mddev->in_sync) { 7179 mddev->in_sync = 0; 7180 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7181 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7182 md_wakeup_thread(mddev->thread); 7183 did_change = 1; 7184 } 7185 spin_unlock_irq(&mddev->write_lock); 7186 } 7187 if (did_change) 7188 sysfs_notify_dirent_safe(mddev->sysfs_state); 7189 wait_event(mddev->sb_wait, 7190 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7191 } 7192 7193 void md_write_end(struct mddev *mddev) 7194 { 7195 if (atomic_dec_and_test(&mddev->writes_pending)) { 7196 if (mddev->safemode == 2) 7197 md_wakeup_thread(mddev->thread); 7198 else if (mddev->safemode_delay) 7199 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7200 } 7201 } 7202 7203 /* md_allow_write(mddev) 7204 * Calling this ensures that the array is marked 'active' so that writes 7205 * may proceed without blocking. It is important to call this before 7206 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7207 * Must be called with mddev_lock held. 7208 * 7209 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7210 * is dropped, so return -EAGAIN after notifying userspace. 7211 */ 7212 int md_allow_write(struct mddev *mddev) 7213 { 7214 if (!mddev->pers) 7215 return 0; 7216 if (mddev->ro) 7217 return 0; 7218 if (!mddev->pers->sync_request) 7219 return 0; 7220 7221 spin_lock_irq(&mddev->write_lock); 7222 if (mddev->in_sync) { 7223 mddev->in_sync = 0; 7224 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7225 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7226 if (mddev->safemode_delay && 7227 mddev->safemode == 0) 7228 mddev->safemode = 1; 7229 spin_unlock_irq(&mddev->write_lock); 7230 md_update_sb(mddev, 0); 7231 sysfs_notify_dirent_safe(mddev->sysfs_state); 7232 } else 7233 spin_unlock_irq(&mddev->write_lock); 7234 7235 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7236 return -EAGAIN; 7237 else 7238 return 0; 7239 } 7240 EXPORT_SYMBOL_GPL(md_allow_write); 7241 7242 #define SYNC_MARKS 10 7243 #define SYNC_MARK_STEP (3*HZ) 7244 void md_do_sync(struct mddev *mddev) 7245 { 7246 struct mddev *mddev2; 7247 unsigned int currspeed = 0, 7248 window; 7249 sector_t max_sectors,j, io_sectors; 7250 unsigned long mark[SYNC_MARKS]; 7251 sector_t mark_cnt[SYNC_MARKS]; 7252 int last_mark,m; 7253 struct list_head *tmp; 7254 sector_t last_check; 7255 int skipped = 0; 7256 struct md_rdev *rdev; 7257 char *desc; 7258 struct blk_plug plug; 7259 7260 /* just incase thread restarts... */ 7261 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7262 return; 7263 if (mddev->ro) /* never try to sync a read-only array */ 7264 return; 7265 7266 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7267 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 7268 desc = "data-check"; 7269 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7270 desc = "requested-resync"; 7271 else 7272 desc = "resync"; 7273 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7274 desc = "reshape"; 7275 else 7276 desc = "recovery"; 7277 7278 /* we overload curr_resync somewhat here. 7279 * 0 == not engaged in resync at all 7280 * 2 == checking that there is no conflict with another sync 7281 * 1 == like 2, but have yielded to allow conflicting resync to 7282 * commense 7283 * other == active in resync - this many blocks 7284 * 7285 * Before starting a resync we must have set curr_resync to 7286 * 2, and then checked that every "conflicting" array has curr_resync 7287 * less than ours. When we find one that is the same or higher 7288 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7289 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7290 * This will mean we have to start checking from the beginning again. 7291 * 7292 */ 7293 7294 do { 7295 mddev->curr_resync = 2; 7296 7297 try_again: 7298 if (kthread_should_stop()) 7299 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7300 7301 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7302 goto skip; 7303 for_each_mddev(mddev2, tmp) { 7304 if (mddev2 == mddev) 7305 continue; 7306 if (!mddev->parallel_resync 7307 && mddev2->curr_resync 7308 && match_mddev_units(mddev, mddev2)) { 7309 DEFINE_WAIT(wq); 7310 if (mddev < mddev2 && mddev->curr_resync == 2) { 7311 /* arbitrarily yield */ 7312 mddev->curr_resync = 1; 7313 wake_up(&resync_wait); 7314 } 7315 if (mddev > mddev2 && mddev->curr_resync == 1) 7316 /* no need to wait here, we can wait the next 7317 * time 'round when curr_resync == 2 7318 */ 7319 continue; 7320 /* We need to wait 'interruptible' so as not to 7321 * contribute to the load average, and not to 7322 * be caught by 'softlockup' 7323 */ 7324 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7325 if (!kthread_should_stop() && 7326 mddev2->curr_resync >= mddev->curr_resync) { 7327 printk(KERN_INFO "md: delaying %s of %s" 7328 " until %s has finished (they" 7329 " share one or more physical units)\n", 7330 desc, mdname(mddev), mdname(mddev2)); 7331 mddev_put(mddev2); 7332 if (signal_pending(current)) 7333 flush_signals(current); 7334 schedule(); 7335 finish_wait(&resync_wait, &wq); 7336 goto try_again; 7337 } 7338 finish_wait(&resync_wait, &wq); 7339 } 7340 } 7341 } while (mddev->curr_resync < 2); 7342 7343 j = 0; 7344 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7345 /* resync follows the size requested by the personality, 7346 * which defaults to physical size, but can be virtual size 7347 */ 7348 max_sectors = mddev->resync_max_sectors; 7349 mddev->resync_mismatches = 0; 7350 /* we don't use the checkpoint if there's a bitmap */ 7351 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7352 j = mddev->resync_min; 7353 else if (!mddev->bitmap) 7354 j = mddev->recovery_cp; 7355 7356 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7357 max_sectors = mddev->resync_max_sectors; 7358 else { 7359 /* recovery follows the physical size of devices */ 7360 max_sectors = mddev->dev_sectors; 7361 j = MaxSector; 7362 rcu_read_lock(); 7363 rdev_for_each_rcu(rdev, mddev) 7364 if (rdev->raid_disk >= 0 && 7365 !test_bit(Faulty, &rdev->flags) && 7366 !test_bit(In_sync, &rdev->flags) && 7367 rdev->recovery_offset < j) 7368 j = rdev->recovery_offset; 7369 rcu_read_unlock(); 7370 } 7371 7372 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7373 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7374 " %d KB/sec/disk.\n", speed_min(mddev)); 7375 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7376 "(but not more than %d KB/sec) for %s.\n", 7377 speed_max(mddev), desc); 7378 7379 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7380 7381 io_sectors = 0; 7382 for (m = 0; m < SYNC_MARKS; m++) { 7383 mark[m] = jiffies; 7384 mark_cnt[m] = io_sectors; 7385 } 7386 last_mark = 0; 7387 mddev->resync_mark = mark[last_mark]; 7388 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7389 7390 /* 7391 * Tune reconstruction: 7392 */ 7393 window = 32*(PAGE_SIZE/512); 7394 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7395 window/2, (unsigned long long)max_sectors/2); 7396 7397 atomic_set(&mddev->recovery_active, 0); 7398 last_check = 0; 7399 7400 if (j>2) { 7401 printk(KERN_INFO 7402 "md: resuming %s of %s from checkpoint.\n", 7403 desc, mdname(mddev)); 7404 mddev->curr_resync = j; 7405 } 7406 mddev->curr_resync_completed = j; 7407 7408 blk_start_plug(&plug); 7409 while (j < max_sectors) { 7410 sector_t sectors; 7411 7412 skipped = 0; 7413 7414 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7415 ((mddev->curr_resync > mddev->curr_resync_completed && 7416 (mddev->curr_resync - mddev->curr_resync_completed) 7417 > (max_sectors >> 4)) || 7418 (j - mddev->curr_resync_completed)*2 7419 >= mddev->resync_max - mddev->curr_resync_completed 7420 )) { 7421 /* time to update curr_resync_completed */ 7422 wait_event(mddev->recovery_wait, 7423 atomic_read(&mddev->recovery_active) == 0); 7424 mddev->curr_resync_completed = j; 7425 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7426 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7427 } 7428 7429 while (j >= mddev->resync_max && !kthread_should_stop()) { 7430 /* As this condition is controlled by user-space, 7431 * we can block indefinitely, so use '_interruptible' 7432 * to avoid triggering warnings. 7433 */ 7434 flush_signals(current); /* just in case */ 7435 wait_event_interruptible(mddev->recovery_wait, 7436 mddev->resync_max > j 7437 || kthread_should_stop()); 7438 } 7439 7440 if (kthread_should_stop()) 7441 goto interrupted; 7442 7443 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7444 currspeed < speed_min(mddev)); 7445 if (sectors == 0) { 7446 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7447 goto out; 7448 } 7449 7450 if (!skipped) { /* actual IO requested */ 7451 io_sectors += sectors; 7452 atomic_add(sectors, &mddev->recovery_active); 7453 } 7454 7455 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7456 break; 7457 7458 j += sectors; 7459 if (j>1) mddev->curr_resync = j; 7460 mddev->curr_mark_cnt = io_sectors; 7461 if (last_check == 0) 7462 /* this is the earliest that rebuild will be 7463 * visible in /proc/mdstat 7464 */ 7465 md_new_event(mddev); 7466 7467 if (last_check + window > io_sectors || j == max_sectors) 7468 continue; 7469 7470 last_check = io_sectors; 7471 repeat: 7472 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7473 /* step marks */ 7474 int next = (last_mark+1) % SYNC_MARKS; 7475 7476 mddev->resync_mark = mark[next]; 7477 mddev->resync_mark_cnt = mark_cnt[next]; 7478 mark[next] = jiffies; 7479 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7480 last_mark = next; 7481 } 7482 7483 7484 if (kthread_should_stop()) 7485 goto interrupted; 7486 7487 7488 /* 7489 * this loop exits only if either when we are slower than 7490 * the 'hard' speed limit, or the system was IO-idle for 7491 * a jiffy. 7492 * the system might be non-idle CPU-wise, but we only care 7493 * about not overloading the IO subsystem. (things like an 7494 * e2fsck being done on the RAID array should execute fast) 7495 */ 7496 cond_resched(); 7497 7498 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 7499 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7500 7501 if (currspeed > speed_min(mddev)) { 7502 if ((currspeed > speed_max(mddev)) || 7503 !is_mddev_idle(mddev, 0)) { 7504 msleep(500); 7505 goto repeat; 7506 } 7507 } 7508 } 7509 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 7510 /* 7511 * this also signals 'finished resyncing' to md_stop 7512 */ 7513 out: 7514 blk_finish_plug(&plug); 7515 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7516 7517 /* tell personality that we are finished */ 7518 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7519 7520 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7521 mddev->curr_resync > 2) { 7522 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7523 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7524 if (mddev->curr_resync >= mddev->recovery_cp) { 7525 printk(KERN_INFO 7526 "md: checkpointing %s of %s.\n", 7527 desc, mdname(mddev)); 7528 mddev->recovery_cp = 7529 mddev->curr_resync_completed; 7530 } 7531 } else 7532 mddev->recovery_cp = MaxSector; 7533 } else { 7534 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7535 mddev->curr_resync = MaxSector; 7536 rcu_read_lock(); 7537 rdev_for_each_rcu(rdev, mddev) 7538 if (rdev->raid_disk >= 0 && 7539 mddev->delta_disks >= 0 && 7540 !test_bit(Faulty, &rdev->flags) && 7541 !test_bit(In_sync, &rdev->flags) && 7542 rdev->recovery_offset < mddev->curr_resync) 7543 rdev->recovery_offset = mddev->curr_resync; 7544 rcu_read_unlock(); 7545 } 7546 } 7547 skip: 7548 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7549 7550 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7551 /* We completed so min/max setting can be forgotten if used. */ 7552 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7553 mddev->resync_min = 0; 7554 mddev->resync_max = MaxSector; 7555 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7556 mddev->resync_min = mddev->curr_resync_completed; 7557 mddev->curr_resync = 0; 7558 wake_up(&resync_wait); 7559 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7560 md_wakeup_thread(mddev->thread); 7561 return; 7562 7563 interrupted: 7564 /* 7565 * got a signal, exit. 7566 */ 7567 printk(KERN_INFO 7568 "md: md_do_sync() got signal ... exiting\n"); 7569 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7570 goto out; 7571 7572 } 7573 EXPORT_SYMBOL_GPL(md_do_sync); 7574 7575 static int remove_and_add_spares(struct mddev *mddev) 7576 { 7577 struct md_rdev *rdev; 7578 int spares = 0; 7579 int removed = 0; 7580 7581 mddev->curr_resync_completed = 0; 7582 7583 rdev_for_each(rdev, mddev) 7584 if (rdev->raid_disk >= 0 && 7585 !test_bit(Blocked, &rdev->flags) && 7586 (test_bit(Faulty, &rdev->flags) || 7587 ! test_bit(In_sync, &rdev->flags)) && 7588 atomic_read(&rdev->nr_pending)==0) { 7589 if (mddev->pers->hot_remove_disk( 7590 mddev, rdev) == 0) { 7591 sysfs_unlink_rdev(mddev, rdev); 7592 rdev->raid_disk = -1; 7593 removed++; 7594 } 7595 } 7596 if (removed) 7597 sysfs_notify(&mddev->kobj, NULL, 7598 "degraded"); 7599 7600 7601 rdev_for_each(rdev, mddev) { 7602 if (rdev->raid_disk >= 0 && 7603 !test_bit(In_sync, &rdev->flags) && 7604 !test_bit(Faulty, &rdev->flags)) 7605 spares++; 7606 if (rdev->raid_disk < 0 7607 && !test_bit(Faulty, &rdev->flags)) { 7608 rdev->recovery_offset = 0; 7609 if (mddev->pers-> 7610 hot_add_disk(mddev, rdev) == 0) { 7611 if (sysfs_link_rdev(mddev, rdev)) 7612 /* failure here is OK */; 7613 spares++; 7614 md_new_event(mddev); 7615 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7616 } 7617 } 7618 } 7619 return spares; 7620 } 7621 7622 static void reap_sync_thread(struct mddev *mddev) 7623 { 7624 struct md_rdev *rdev; 7625 7626 /* resync has finished, collect result */ 7627 md_unregister_thread(&mddev->sync_thread); 7628 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7629 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7630 /* success...*/ 7631 /* activate any spares */ 7632 if (mddev->pers->spare_active(mddev)) 7633 sysfs_notify(&mddev->kobj, NULL, 7634 "degraded"); 7635 } 7636 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7637 mddev->pers->finish_reshape) 7638 mddev->pers->finish_reshape(mddev); 7639 7640 /* If array is no-longer degraded, then any saved_raid_disk 7641 * information must be scrapped. Also if any device is now 7642 * In_sync we must scrape the saved_raid_disk for that device 7643 * do the superblock for an incrementally recovered device 7644 * written out. 7645 */ 7646 rdev_for_each(rdev, mddev) 7647 if (!mddev->degraded || 7648 test_bit(In_sync, &rdev->flags)) 7649 rdev->saved_raid_disk = -1; 7650 7651 md_update_sb(mddev, 1); 7652 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7653 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7654 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7655 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7656 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7657 /* flag recovery needed just to double check */ 7658 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7659 sysfs_notify_dirent_safe(mddev->sysfs_action); 7660 md_new_event(mddev); 7661 if (mddev->event_work.func) 7662 queue_work(md_misc_wq, &mddev->event_work); 7663 } 7664 7665 /* 7666 * This routine is regularly called by all per-raid-array threads to 7667 * deal with generic issues like resync and super-block update. 7668 * Raid personalities that don't have a thread (linear/raid0) do not 7669 * need this as they never do any recovery or update the superblock. 7670 * 7671 * It does not do any resync itself, but rather "forks" off other threads 7672 * to do that as needed. 7673 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7674 * "->recovery" and create a thread at ->sync_thread. 7675 * When the thread finishes it sets MD_RECOVERY_DONE 7676 * and wakeups up this thread which will reap the thread and finish up. 7677 * This thread also removes any faulty devices (with nr_pending == 0). 7678 * 7679 * The overall approach is: 7680 * 1/ if the superblock needs updating, update it. 7681 * 2/ If a recovery thread is running, don't do anything else. 7682 * 3/ If recovery has finished, clean up, possibly marking spares active. 7683 * 4/ If there are any faulty devices, remove them. 7684 * 5/ If array is degraded, try to add spares devices 7685 * 6/ If array has spares or is not in-sync, start a resync thread. 7686 */ 7687 void md_check_recovery(struct mddev *mddev) 7688 { 7689 if (mddev->suspended) 7690 return; 7691 7692 if (mddev->bitmap) 7693 bitmap_daemon_work(mddev); 7694 7695 if (signal_pending(current)) { 7696 if (mddev->pers->sync_request && !mddev->external) { 7697 printk(KERN_INFO "md: %s in immediate safe mode\n", 7698 mdname(mddev)); 7699 mddev->safemode = 2; 7700 } 7701 flush_signals(current); 7702 } 7703 7704 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7705 return; 7706 if ( ! ( 7707 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) || 7708 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7709 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7710 (mddev->external == 0 && mddev->safemode == 1) || 7711 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7712 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7713 )) 7714 return; 7715 7716 if (mddev_trylock(mddev)) { 7717 int spares = 0; 7718 7719 if (mddev->ro) { 7720 /* Only thing we do on a ro array is remove 7721 * failed devices. 7722 */ 7723 struct md_rdev *rdev; 7724 rdev_for_each(rdev, mddev) 7725 if (rdev->raid_disk >= 0 && 7726 !test_bit(Blocked, &rdev->flags) && 7727 test_bit(Faulty, &rdev->flags) && 7728 atomic_read(&rdev->nr_pending)==0) { 7729 if (mddev->pers->hot_remove_disk( 7730 mddev, rdev) == 0) { 7731 sysfs_unlink_rdev(mddev, rdev); 7732 rdev->raid_disk = -1; 7733 } 7734 } 7735 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7736 goto unlock; 7737 } 7738 7739 if (!mddev->external) { 7740 int did_change = 0; 7741 spin_lock_irq(&mddev->write_lock); 7742 if (mddev->safemode && 7743 !atomic_read(&mddev->writes_pending) && 7744 !mddev->in_sync && 7745 mddev->recovery_cp == MaxSector) { 7746 mddev->in_sync = 1; 7747 did_change = 1; 7748 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7749 } 7750 if (mddev->safemode == 1) 7751 mddev->safemode = 0; 7752 spin_unlock_irq(&mddev->write_lock); 7753 if (did_change) 7754 sysfs_notify_dirent_safe(mddev->sysfs_state); 7755 } 7756 7757 if (mddev->flags) 7758 md_update_sb(mddev, 0); 7759 7760 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7761 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7762 /* resync/recovery still happening */ 7763 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7764 goto unlock; 7765 } 7766 if (mddev->sync_thread) { 7767 reap_sync_thread(mddev); 7768 goto unlock; 7769 } 7770 /* Set RUNNING before clearing NEEDED to avoid 7771 * any transients in the value of "sync_action". 7772 */ 7773 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7774 /* Clear some bits that don't mean anything, but 7775 * might be left set 7776 */ 7777 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7778 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7779 7780 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7781 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7782 goto unlock; 7783 /* no recovery is running. 7784 * remove any failed drives, then 7785 * add spares if possible. 7786 * Spare are also removed and re-added, to allow 7787 * the personality to fail the re-add. 7788 */ 7789 7790 if (mddev->reshape_position != MaxSector) { 7791 if (mddev->pers->check_reshape == NULL || 7792 mddev->pers->check_reshape(mddev) != 0) 7793 /* Cannot proceed */ 7794 goto unlock; 7795 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7796 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7797 } else if ((spares = remove_and_add_spares(mddev))) { 7798 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7799 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7800 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7801 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7802 } else if (mddev->recovery_cp < MaxSector) { 7803 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7804 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7805 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7806 /* nothing to be done ... */ 7807 goto unlock; 7808 7809 if (mddev->pers->sync_request) { 7810 if (spares) { 7811 /* We are adding a device or devices to an array 7812 * which has the bitmap stored on all devices. 7813 * So make sure all bitmap pages get written 7814 */ 7815 bitmap_write_all(mddev->bitmap); 7816 } 7817 mddev->sync_thread = md_register_thread(md_do_sync, 7818 mddev, 7819 "resync"); 7820 if (!mddev->sync_thread) { 7821 printk(KERN_ERR "%s: could not start resync" 7822 " thread...\n", 7823 mdname(mddev)); 7824 /* leave the spares where they are, it shouldn't hurt */ 7825 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7826 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7827 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7828 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7829 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7830 } else 7831 md_wakeup_thread(mddev->sync_thread); 7832 sysfs_notify_dirent_safe(mddev->sysfs_action); 7833 md_new_event(mddev); 7834 } 7835 unlock: 7836 if (!mddev->sync_thread) { 7837 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7838 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7839 &mddev->recovery)) 7840 if (mddev->sysfs_action) 7841 sysfs_notify_dirent_safe(mddev->sysfs_action); 7842 } 7843 mddev_unlock(mddev); 7844 } 7845 } 7846 7847 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 7848 { 7849 sysfs_notify_dirent_safe(rdev->sysfs_state); 7850 wait_event_timeout(rdev->blocked_wait, 7851 !test_bit(Blocked, &rdev->flags) && 7852 !test_bit(BlockedBadBlocks, &rdev->flags), 7853 msecs_to_jiffies(5000)); 7854 rdev_dec_pending(rdev, mddev); 7855 } 7856 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7857 7858 void md_finish_reshape(struct mddev *mddev) 7859 { 7860 /* called be personality module when reshape completes. */ 7861 struct md_rdev *rdev; 7862 7863 rdev_for_each(rdev, mddev) { 7864 if (rdev->data_offset > rdev->new_data_offset) 7865 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 7866 else 7867 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 7868 rdev->data_offset = rdev->new_data_offset; 7869 } 7870 } 7871 EXPORT_SYMBOL(md_finish_reshape); 7872 7873 /* Bad block management. 7874 * We can record which blocks on each device are 'bad' and so just 7875 * fail those blocks, or that stripe, rather than the whole device. 7876 * Entries in the bad-block table are 64bits wide. This comprises: 7877 * Length of bad-range, in sectors: 0-511 for lengths 1-512 7878 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 7879 * A 'shift' can be set so that larger blocks are tracked and 7880 * consequently larger devices can be covered. 7881 * 'Acknowledged' flag - 1 bit. - the most significant bit. 7882 * 7883 * Locking of the bad-block table uses a seqlock so md_is_badblock 7884 * might need to retry if it is very unlucky. 7885 * We will sometimes want to check for bad blocks in a bi_end_io function, 7886 * so we use the write_seqlock_irq variant. 7887 * 7888 * When looking for a bad block we specify a range and want to 7889 * know if any block in the range is bad. So we binary-search 7890 * to the last range that starts at-or-before the given endpoint, 7891 * (or "before the sector after the target range") 7892 * then see if it ends after the given start. 7893 * We return 7894 * 0 if there are no known bad blocks in the range 7895 * 1 if there are known bad block which are all acknowledged 7896 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 7897 * plus the start/length of the first bad section we overlap. 7898 */ 7899 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 7900 sector_t *first_bad, int *bad_sectors) 7901 { 7902 int hi; 7903 int lo = 0; 7904 u64 *p = bb->page; 7905 int rv = 0; 7906 sector_t target = s + sectors; 7907 unsigned seq; 7908 7909 if (bb->shift > 0) { 7910 /* round the start down, and the end up */ 7911 s >>= bb->shift; 7912 target += (1<<bb->shift) - 1; 7913 target >>= bb->shift; 7914 sectors = target - s; 7915 } 7916 /* 'target' is now the first block after the bad range */ 7917 7918 retry: 7919 seq = read_seqbegin(&bb->lock); 7920 7921 hi = bb->count; 7922 7923 /* Binary search between lo and hi for 'target' 7924 * i.e. for the last range that starts before 'target' 7925 */ 7926 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 7927 * are known not to be the last range before target. 7928 * VARIANT: hi-lo is the number of possible 7929 * ranges, and decreases until it reaches 1 7930 */ 7931 while (hi - lo > 1) { 7932 int mid = (lo + hi) / 2; 7933 sector_t a = BB_OFFSET(p[mid]); 7934 if (a < target) 7935 /* This could still be the one, earlier ranges 7936 * could not. */ 7937 lo = mid; 7938 else 7939 /* This and later ranges are definitely out. */ 7940 hi = mid; 7941 } 7942 /* 'lo' might be the last that started before target, but 'hi' isn't */ 7943 if (hi > lo) { 7944 /* need to check all range that end after 's' to see if 7945 * any are unacknowledged. 7946 */ 7947 while (lo >= 0 && 7948 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 7949 if (BB_OFFSET(p[lo]) < target) { 7950 /* starts before the end, and finishes after 7951 * the start, so they must overlap 7952 */ 7953 if (rv != -1 && BB_ACK(p[lo])) 7954 rv = 1; 7955 else 7956 rv = -1; 7957 *first_bad = BB_OFFSET(p[lo]); 7958 *bad_sectors = BB_LEN(p[lo]); 7959 } 7960 lo--; 7961 } 7962 } 7963 7964 if (read_seqretry(&bb->lock, seq)) 7965 goto retry; 7966 7967 return rv; 7968 } 7969 EXPORT_SYMBOL_GPL(md_is_badblock); 7970 7971 /* 7972 * Add a range of bad blocks to the table. 7973 * This might extend the table, or might contract it 7974 * if two adjacent ranges can be merged. 7975 * We binary-search to find the 'insertion' point, then 7976 * decide how best to handle it. 7977 */ 7978 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 7979 int acknowledged) 7980 { 7981 u64 *p; 7982 int lo, hi; 7983 int rv = 1; 7984 7985 if (bb->shift < 0) 7986 /* badblocks are disabled */ 7987 return 0; 7988 7989 if (bb->shift) { 7990 /* round the start down, and the end up */ 7991 sector_t next = s + sectors; 7992 s >>= bb->shift; 7993 next += (1<<bb->shift) - 1; 7994 next >>= bb->shift; 7995 sectors = next - s; 7996 } 7997 7998 write_seqlock_irq(&bb->lock); 7999 8000 p = bb->page; 8001 lo = 0; 8002 hi = bb->count; 8003 /* Find the last range that starts at-or-before 's' */ 8004 while (hi - lo > 1) { 8005 int mid = (lo + hi) / 2; 8006 sector_t a = BB_OFFSET(p[mid]); 8007 if (a <= s) 8008 lo = mid; 8009 else 8010 hi = mid; 8011 } 8012 if (hi > lo && BB_OFFSET(p[lo]) > s) 8013 hi = lo; 8014 8015 if (hi > lo) { 8016 /* we found a range that might merge with the start 8017 * of our new range 8018 */ 8019 sector_t a = BB_OFFSET(p[lo]); 8020 sector_t e = a + BB_LEN(p[lo]); 8021 int ack = BB_ACK(p[lo]); 8022 if (e >= s) { 8023 /* Yes, we can merge with a previous range */ 8024 if (s == a && s + sectors >= e) 8025 /* new range covers old */ 8026 ack = acknowledged; 8027 else 8028 ack = ack && acknowledged; 8029 8030 if (e < s + sectors) 8031 e = s + sectors; 8032 if (e - a <= BB_MAX_LEN) { 8033 p[lo] = BB_MAKE(a, e-a, ack); 8034 s = e; 8035 } else { 8036 /* does not all fit in one range, 8037 * make p[lo] maximal 8038 */ 8039 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8040 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8041 s = a + BB_MAX_LEN; 8042 } 8043 sectors = e - s; 8044 } 8045 } 8046 if (sectors && hi < bb->count) { 8047 /* 'hi' points to the first range that starts after 's'. 8048 * Maybe we can merge with the start of that range */ 8049 sector_t a = BB_OFFSET(p[hi]); 8050 sector_t e = a + BB_LEN(p[hi]); 8051 int ack = BB_ACK(p[hi]); 8052 if (a <= s + sectors) { 8053 /* merging is possible */ 8054 if (e <= s + sectors) { 8055 /* full overlap */ 8056 e = s + sectors; 8057 ack = acknowledged; 8058 } else 8059 ack = ack && acknowledged; 8060 8061 a = s; 8062 if (e - a <= BB_MAX_LEN) { 8063 p[hi] = BB_MAKE(a, e-a, ack); 8064 s = e; 8065 } else { 8066 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8067 s = a + BB_MAX_LEN; 8068 } 8069 sectors = e - s; 8070 lo = hi; 8071 hi++; 8072 } 8073 } 8074 if (sectors == 0 && hi < bb->count) { 8075 /* we might be able to combine lo and hi */ 8076 /* Note: 's' is at the end of 'lo' */ 8077 sector_t a = BB_OFFSET(p[hi]); 8078 int lolen = BB_LEN(p[lo]); 8079 int hilen = BB_LEN(p[hi]); 8080 int newlen = lolen + hilen - (s - a); 8081 if (s >= a && newlen < BB_MAX_LEN) { 8082 /* yes, we can combine them */ 8083 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8084 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8085 memmove(p + hi, p + hi + 1, 8086 (bb->count - hi - 1) * 8); 8087 bb->count--; 8088 } 8089 } 8090 while (sectors) { 8091 /* didn't merge (it all). 8092 * Need to add a range just before 'hi' */ 8093 if (bb->count >= MD_MAX_BADBLOCKS) { 8094 /* No room for more */ 8095 rv = 0; 8096 break; 8097 } else { 8098 int this_sectors = sectors; 8099 memmove(p + hi + 1, p + hi, 8100 (bb->count - hi) * 8); 8101 bb->count++; 8102 8103 if (this_sectors > BB_MAX_LEN) 8104 this_sectors = BB_MAX_LEN; 8105 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8106 sectors -= this_sectors; 8107 s += this_sectors; 8108 } 8109 } 8110 8111 bb->changed = 1; 8112 if (!acknowledged) 8113 bb->unacked_exist = 1; 8114 write_sequnlock_irq(&bb->lock); 8115 8116 return rv; 8117 } 8118 8119 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8120 int is_new) 8121 { 8122 int rv; 8123 if (is_new) 8124 s += rdev->new_data_offset; 8125 else 8126 s += rdev->data_offset; 8127 rv = md_set_badblocks(&rdev->badblocks, 8128 s, sectors, 0); 8129 if (rv) { 8130 /* Make sure they get written out promptly */ 8131 sysfs_notify_dirent_safe(rdev->sysfs_state); 8132 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8133 md_wakeup_thread(rdev->mddev->thread); 8134 } 8135 return rv; 8136 } 8137 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8138 8139 /* 8140 * Remove a range of bad blocks from the table. 8141 * This may involve extending the table if we spilt a region, 8142 * but it must not fail. So if the table becomes full, we just 8143 * drop the remove request. 8144 */ 8145 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8146 { 8147 u64 *p; 8148 int lo, hi; 8149 sector_t target = s + sectors; 8150 int rv = 0; 8151 8152 if (bb->shift > 0) { 8153 /* When clearing we round the start up and the end down. 8154 * This should not matter as the shift should align with 8155 * the block size and no rounding should ever be needed. 8156 * However it is better the think a block is bad when it 8157 * isn't than to think a block is not bad when it is. 8158 */ 8159 s += (1<<bb->shift) - 1; 8160 s >>= bb->shift; 8161 target >>= bb->shift; 8162 sectors = target - s; 8163 } 8164 8165 write_seqlock_irq(&bb->lock); 8166 8167 p = bb->page; 8168 lo = 0; 8169 hi = bb->count; 8170 /* Find the last range that starts before 'target' */ 8171 while (hi - lo > 1) { 8172 int mid = (lo + hi) / 2; 8173 sector_t a = BB_OFFSET(p[mid]); 8174 if (a < target) 8175 lo = mid; 8176 else 8177 hi = mid; 8178 } 8179 if (hi > lo) { 8180 /* p[lo] is the last range that could overlap the 8181 * current range. Earlier ranges could also overlap, 8182 * but only this one can overlap the end of the range. 8183 */ 8184 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8185 /* Partial overlap, leave the tail of this range */ 8186 int ack = BB_ACK(p[lo]); 8187 sector_t a = BB_OFFSET(p[lo]); 8188 sector_t end = a + BB_LEN(p[lo]); 8189 8190 if (a < s) { 8191 /* we need to split this range */ 8192 if (bb->count >= MD_MAX_BADBLOCKS) { 8193 rv = 0; 8194 goto out; 8195 } 8196 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8197 bb->count++; 8198 p[lo] = BB_MAKE(a, s-a, ack); 8199 lo++; 8200 } 8201 p[lo] = BB_MAKE(target, end - target, ack); 8202 /* there is no longer an overlap */ 8203 hi = lo; 8204 lo--; 8205 } 8206 while (lo >= 0 && 8207 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8208 /* This range does overlap */ 8209 if (BB_OFFSET(p[lo]) < s) { 8210 /* Keep the early parts of this range. */ 8211 int ack = BB_ACK(p[lo]); 8212 sector_t start = BB_OFFSET(p[lo]); 8213 p[lo] = BB_MAKE(start, s - start, ack); 8214 /* now low doesn't overlap, so.. */ 8215 break; 8216 } 8217 lo--; 8218 } 8219 /* 'lo' is strictly before, 'hi' is strictly after, 8220 * anything between needs to be discarded 8221 */ 8222 if (hi - lo > 1) { 8223 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8224 bb->count -= (hi - lo - 1); 8225 } 8226 } 8227 8228 bb->changed = 1; 8229 out: 8230 write_sequnlock_irq(&bb->lock); 8231 return rv; 8232 } 8233 8234 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8235 int is_new) 8236 { 8237 if (is_new) 8238 s += rdev->new_data_offset; 8239 else 8240 s += rdev->data_offset; 8241 return md_clear_badblocks(&rdev->badblocks, 8242 s, sectors); 8243 } 8244 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8245 8246 /* 8247 * Acknowledge all bad blocks in a list. 8248 * This only succeeds if ->changed is clear. It is used by 8249 * in-kernel metadata updates 8250 */ 8251 void md_ack_all_badblocks(struct badblocks *bb) 8252 { 8253 if (bb->page == NULL || bb->changed) 8254 /* no point even trying */ 8255 return; 8256 write_seqlock_irq(&bb->lock); 8257 8258 if (bb->changed == 0 && bb->unacked_exist) { 8259 u64 *p = bb->page; 8260 int i; 8261 for (i = 0; i < bb->count ; i++) { 8262 if (!BB_ACK(p[i])) { 8263 sector_t start = BB_OFFSET(p[i]); 8264 int len = BB_LEN(p[i]); 8265 p[i] = BB_MAKE(start, len, 1); 8266 } 8267 } 8268 bb->unacked_exist = 0; 8269 } 8270 write_sequnlock_irq(&bb->lock); 8271 } 8272 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8273 8274 /* sysfs access to bad-blocks list. 8275 * We present two files. 8276 * 'bad-blocks' lists sector numbers and lengths of ranges that 8277 * are recorded as bad. The list is truncated to fit within 8278 * the one-page limit of sysfs. 8279 * Writing "sector length" to this file adds an acknowledged 8280 * bad block list. 8281 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8282 * been acknowledged. Writing to this file adds bad blocks 8283 * without acknowledging them. This is largely for testing. 8284 */ 8285 8286 static ssize_t 8287 badblocks_show(struct badblocks *bb, char *page, int unack) 8288 { 8289 size_t len; 8290 int i; 8291 u64 *p = bb->page; 8292 unsigned seq; 8293 8294 if (bb->shift < 0) 8295 return 0; 8296 8297 retry: 8298 seq = read_seqbegin(&bb->lock); 8299 8300 len = 0; 8301 i = 0; 8302 8303 while (len < PAGE_SIZE && i < bb->count) { 8304 sector_t s = BB_OFFSET(p[i]); 8305 unsigned int length = BB_LEN(p[i]); 8306 int ack = BB_ACK(p[i]); 8307 i++; 8308 8309 if (unack && ack) 8310 continue; 8311 8312 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8313 (unsigned long long)s << bb->shift, 8314 length << bb->shift); 8315 } 8316 if (unack && len == 0) 8317 bb->unacked_exist = 0; 8318 8319 if (read_seqretry(&bb->lock, seq)) 8320 goto retry; 8321 8322 return len; 8323 } 8324 8325 #define DO_DEBUG 1 8326 8327 static ssize_t 8328 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8329 { 8330 unsigned long long sector; 8331 int length; 8332 char newline; 8333 #ifdef DO_DEBUG 8334 /* Allow clearing via sysfs *only* for testing/debugging. 8335 * Normally only a successful write may clear a badblock 8336 */ 8337 int clear = 0; 8338 if (page[0] == '-') { 8339 clear = 1; 8340 page++; 8341 } 8342 #endif /* DO_DEBUG */ 8343 8344 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8345 case 3: 8346 if (newline != '\n') 8347 return -EINVAL; 8348 case 2: 8349 if (length <= 0) 8350 return -EINVAL; 8351 break; 8352 default: 8353 return -EINVAL; 8354 } 8355 8356 #ifdef DO_DEBUG 8357 if (clear) { 8358 md_clear_badblocks(bb, sector, length); 8359 return len; 8360 } 8361 #endif /* DO_DEBUG */ 8362 if (md_set_badblocks(bb, sector, length, !unack)) 8363 return len; 8364 else 8365 return -ENOSPC; 8366 } 8367 8368 static int md_notify_reboot(struct notifier_block *this, 8369 unsigned long code, void *x) 8370 { 8371 struct list_head *tmp; 8372 struct mddev *mddev; 8373 int need_delay = 0; 8374 8375 for_each_mddev(mddev, tmp) { 8376 if (mddev_trylock(mddev)) { 8377 if (mddev->pers) 8378 __md_stop_writes(mddev); 8379 mddev->safemode = 2; 8380 mddev_unlock(mddev); 8381 } 8382 need_delay = 1; 8383 } 8384 /* 8385 * certain more exotic SCSI devices are known to be 8386 * volatile wrt too early system reboots. While the 8387 * right place to handle this issue is the given 8388 * driver, we do want to have a safe RAID driver ... 8389 */ 8390 if (need_delay) 8391 mdelay(1000*1); 8392 8393 return NOTIFY_DONE; 8394 } 8395 8396 static struct notifier_block md_notifier = { 8397 .notifier_call = md_notify_reboot, 8398 .next = NULL, 8399 .priority = INT_MAX, /* before any real devices */ 8400 }; 8401 8402 static void md_geninit(void) 8403 { 8404 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8405 8406 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8407 } 8408 8409 static int __init md_init(void) 8410 { 8411 int ret = -ENOMEM; 8412 8413 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8414 if (!md_wq) 8415 goto err_wq; 8416 8417 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8418 if (!md_misc_wq) 8419 goto err_misc_wq; 8420 8421 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8422 goto err_md; 8423 8424 if ((ret = register_blkdev(0, "mdp")) < 0) 8425 goto err_mdp; 8426 mdp_major = ret; 8427 8428 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 8429 md_probe, NULL, NULL); 8430 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8431 md_probe, NULL, NULL); 8432 8433 register_reboot_notifier(&md_notifier); 8434 raid_table_header = register_sysctl_table(raid_root_table); 8435 8436 md_geninit(); 8437 return 0; 8438 8439 err_mdp: 8440 unregister_blkdev(MD_MAJOR, "md"); 8441 err_md: 8442 destroy_workqueue(md_misc_wq); 8443 err_misc_wq: 8444 destroy_workqueue(md_wq); 8445 err_wq: 8446 return ret; 8447 } 8448 8449 #ifndef MODULE 8450 8451 /* 8452 * Searches all registered partitions for autorun RAID arrays 8453 * at boot time. 8454 */ 8455 8456 static LIST_HEAD(all_detected_devices); 8457 struct detected_devices_node { 8458 struct list_head list; 8459 dev_t dev; 8460 }; 8461 8462 void md_autodetect_dev(dev_t dev) 8463 { 8464 struct detected_devices_node *node_detected_dev; 8465 8466 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8467 if (node_detected_dev) { 8468 node_detected_dev->dev = dev; 8469 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8470 } else { 8471 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8472 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8473 } 8474 } 8475 8476 8477 static void autostart_arrays(int part) 8478 { 8479 struct md_rdev *rdev; 8480 struct detected_devices_node *node_detected_dev; 8481 dev_t dev; 8482 int i_scanned, i_passed; 8483 8484 i_scanned = 0; 8485 i_passed = 0; 8486 8487 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8488 8489 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8490 i_scanned++; 8491 node_detected_dev = list_entry(all_detected_devices.next, 8492 struct detected_devices_node, list); 8493 list_del(&node_detected_dev->list); 8494 dev = node_detected_dev->dev; 8495 kfree(node_detected_dev); 8496 rdev = md_import_device(dev,0, 90); 8497 if (IS_ERR(rdev)) 8498 continue; 8499 8500 if (test_bit(Faulty, &rdev->flags)) { 8501 MD_BUG(); 8502 continue; 8503 } 8504 set_bit(AutoDetected, &rdev->flags); 8505 list_add(&rdev->same_set, &pending_raid_disks); 8506 i_passed++; 8507 } 8508 8509 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8510 i_scanned, i_passed); 8511 8512 autorun_devices(part); 8513 } 8514 8515 #endif /* !MODULE */ 8516 8517 static __exit void md_exit(void) 8518 { 8519 struct mddev *mddev; 8520 struct list_head *tmp; 8521 8522 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 8523 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8524 8525 unregister_blkdev(MD_MAJOR,"md"); 8526 unregister_blkdev(mdp_major, "mdp"); 8527 unregister_reboot_notifier(&md_notifier); 8528 unregister_sysctl_table(raid_table_header); 8529 remove_proc_entry("mdstat", NULL); 8530 for_each_mddev(mddev, tmp) { 8531 export_array(mddev); 8532 mddev->hold_active = 0; 8533 } 8534 destroy_workqueue(md_misc_wq); 8535 destroy_workqueue(md_wq); 8536 } 8537 8538 subsys_initcall(md_init); 8539 module_exit(md_exit) 8540 8541 static int get_ro(char *buffer, struct kernel_param *kp) 8542 { 8543 return sprintf(buffer, "%d", start_readonly); 8544 } 8545 static int set_ro(const char *val, struct kernel_param *kp) 8546 { 8547 char *e; 8548 int num = simple_strtoul(val, &e, 10); 8549 if (*val && (*e == '\0' || *e == '\n')) { 8550 start_readonly = num; 8551 return 0; 8552 } 8553 return -EINVAL; 8554 } 8555 8556 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8557 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8558 8559 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8560 8561 EXPORT_SYMBOL(register_md_personality); 8562 EXPORT_SYMBOL(unregister_md_personality); 8563 EXPORT_SYMBOL(md_error); 8564 EXPORT_SYMBOL(md_done_sync); 8565 EXPORT_SYMBOL(md_write_start); 8566 EXPORT_SYMBOL(md_write_end); 8567 EXPORT_SYMBOL(md_register_thread); 8568 EXPORT_SYMBOL(md_unregister_thread); 8569 EXPORT_SYMBOL(md_wakeup_thread); 8570 EXPORT_SYMBOL(md_check_recovery); 8571 MODULE_LICENSE("GPL"); 8572 MODULE_DESCRIPTION("MD RAID framework"); 8573 MODULE_ALIAS("md"); 8574 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8575