1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/buffer_head.h> /* for invalidate_bdev */ 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/reboot.h> 47 #include <linux/file.h> 48 #include <linux/compat.h> 49 #include <linux/delay.h> 50 #include <linux/raid/md_p.h> 51 #include <linux/raid/md_u.h> 52 #include <linux/slab.h> 53 #include "md.h" 54 #include "bitmap.h" 55 56 #define DEBUG 0 57 #define dprintk(x...) ((void)(DEBUG && printk(x))) 58 59 60 #ifndef MODULE 61 static void autostart_arrays(int part); 62 #endif 63 64 static LIST_HEAD(pers_list); 65 static DEFINE_SPINLOCK(pers_lock); 66 67 static void md_print_devices(void); 68 69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 70 71 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 72 73 /* 74 * Default number of read corrections we'll attempt on an rdev 75 * before ejecting it from the array. We divide the read error 76 * count by 2 for every hour elapsed between read errors. 77 */ 78 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 79 /* 80 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 81 * is 1000 KB/sec, so the extra system load does not show up that much. 82 * Increase it if you want to have more _guaranteed_ speed. Note that 83 * the RAID driver will use the maximum available bandwidth if the IO 84 * subsystem is idle. There is also an 'absolute maximum' reconstruction 85 * speed limit - in case reconstruction slows down your system despite 86 * idle IO detection. 87 * 88 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 89 * or /sys/block/mdX/md/sync_speed_{min,max} 90 */ 91 92 static int sysctl_speed_limit_min = 1000; 93 static int sysctl_speed_limit_max = 200000; 94 static inline int speed_min(mddev_t *mddev) 95 { 96 return mddev->sync_speed_min ? 97 mddev->sync_speed_min : sysctl_speed_limit_min; 98 } 99 100 static inline int speed_max(mddev_t *mddev) 101 { 102 return mddev->sync_speed_max ? 103 mddev->sync_speed_max : sysctl_speed_limit_max; 104 } 105 106 static struct ctl_table_header *raid_table_header; 107 108 static ctl_table raid_table[] = { 109 { 110 .procname = "speed_limit_min", 111 .data = &sysctl_speed_limit_min, 112 .maxlen = sizeof(int), 113 .mode = S_IRUGO|S_IWUSR, 114 .proc_handler = proc_dointvec, 115 }, 116 { 117 .procname = "speed_limit_max", 118 .data = &sysctl_speed_limit_max, 119 .maxlen = sizeof(int), 120 .mode = S_IRUGO|S_IWUSR, 121 .proc_handler = proc_dointvec, 122 }, 123 { } 124 }; 125 126 static ctl_table raid_dir_table[] = { 127 { 128 .procname = "raid", 129 .maxlen = 0, 130 .mode = S_IRUGO|S_IXUGO, 131 .child = raid_table, 132 }, 133 { } 134 }; 135 136 static ctl_table raid_root_table[] = { 137 { 138 .procname = "dev", 139 .maxlen = 0, 140 .mode = 0555, 141 .child = raid_dir_table, 142 }, 143 { } 144 }; 145 146 static const struct block_device_operations md_fops; 147 148 static int start_readonly; 149 150 /* 151 * We have a system wide 'event count' that is incremented 152 * on any 'interesting' event, and readers of /proc/mdstat 153 * can use 'poll' or 'select' to find out when the event 154 * count increases. 155 * 156 * Events are: 157 * start array, stop array, error, add device, remove device, 158 * start build, activate spare 159 */ 160 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 161 static atomic_t md_event_count; 162 void md_new_event(mddev_t *mddev) 163 { 164 atomic_inc(&md_event_count); 165 wake_up(&md_event_waiters); 166 } 167 EXPORT_SYMBOL_GPL(md_new_event); 168 169 /* Alternate version that can be called from interrupts 170 * when calling sysfs_notify isn't needed. 171 */ 172 static void md_new_event_inintr(mddev_t *mddev) 173 { 174 atomic_inc(&md_event_count); 175 wake_up(&md_event_waiters); 176 } 177 178 /* 179 * Enables to iterate over all existing md arrays 180 * all_mddevs_lock protects this list. 181 */ 182 static LIST_HEAD(all_mddevs); 183 static DEFINE_SPINLOCK(all_mddevs_lock); 184 185 186 /* 187 * iterates through all used mddevs in the system. 188 * We take care to grab the all_mddevs_lock whenever navigating 189 * the list, and to always hold a refcount when unlocked. 190 * Any code which breaks out of this loop while own 191 * a reference to the current mddev and must mddev_put it. 192 */ 193 #define for_each_mddev(mddev,tmp) \ 194 \ 195 for (({ spin_lock(&all_mddevs_lock); \ 196 tmp = all_mddevs.next; \ 197 mddev = NULL;}); \ 198 ({ if (tmp != &all_mddevs) \ 199 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 200 spin_unlock(&all_mddevs_lock); \ 201 if (mddev) mddev_put(mddev); \ 202 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 203 tmp != &all_mddevs;}); \ 204 ({ spin_lock(&all_mddevs_lock); \ 205 tmp = tmp->next;}) \ 206 ) 207 208 209 /* Rather than calling directly into the personality make_request function, 210 * IO requests come here first so that we can check if the device is 211 * being suspended pending a reconfiguration. 212 * We hold a refcount over the call to ->make_request. By the time that 213 * call has finished, the bio has been linked into some internal structure 214 * and so is visible to ->quiesce(), so we don't need the refcount any more. 215 */ 216 static int md_make_request(struct request_queue *q, struct bio *bio) 217 { 218 const int rw = bio_data_dir(bio); 219 mddev_t *mddev = q->queuedata; 220 int rv; 221 int cpu; 222 223 if (mddev == NULL || mddev->pers == NULL) { 224 bio_io_error(bio); 225 return 0; 226 } 227 rcu_read_lock(); 228 if (mddev->suspended || mddev->barrier) { 229 DEFINE_WAIT(__wait); 230 for (;;) { 231 prepare_to_wait(&mddev->sb_wait, &__wait, 232 TASK_UNINTERRUPTIBLE); 233 if (!mddev->suspended && !mddev->barrier) 234 break; 235 rcu_read_unlock(); 236 schedule(); 237 rcu_read_lock(); 238 } 239 finish_wait(&mddev->sb_wait, &__wait); 240 } 241 atomic_inc(&mddev->active_io); 242 rcu_read_unlock(); 243 244 rv = mddev->pers->make_request(mddev, bio); 245 246 cpu = part_stat_lock(); 247 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 248 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 249 bio_sectors(bio)); 250 part_stat_unlock(); 251 252 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 253 wake_up(&mddev->sb_wait); 254 255 return rv; 256 } 257 258 /* mddev_suspend makes sure no new requests are submitted 259 * to the device, and that any requests that have been submitted 260 * are completely handled. 261 * Once ->stop is called and completes, the module will be completely 262 * unused. 263 */ 264 static void mddev_suspend(mddev_t *mddev) 265 { 266 BUG_ON(mddev->suspended); 267 mddev->suspended = 1; 268 synchronize_rcu(); 269 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 270 mddev->pers->quiesce(mddev, 1); 271 } 272 273 static void mddev_resume(mddev_t *mddev) 274 { 275 mddev->suspended = 0; 276 wake_up(&mddev->sb_wait); 277 mddev->pers->quiesce(mddev, 0); 278 } 279 280 int mddev_congested(mddev_t *mddev, int bits) 281 { 282 if (mddev->barrier) 283 return 1; 284 return mddev->suspended; 285 } 286 EXPORT_SYMBOL(mddev_congested); 287 288 /* 289 * Generic barrier handling for md 290 */ 291 292 #define POST_REQUEST_BARRIER ((void*)1) 293 294 static void md_end_barrier(struct bio *bio, int err) 295 { 296 mdk_rdev_t *rdev = bio->bi_private; 297 mddev_t *mddev = rdev->mddev; 298 if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER) 299 set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags); 300 301 rdev_dec_pending(rdev, mddev); 302 303 if (atomic_dec_and_test(&mddev->flush_pending)) { 304 if (mddev->barrier == POST_REQUEST_BARRIER) { 305 /* This was a post-request barrier */ 306 mddev->barrier = NULL; 307 wake_up(&mddev->sb_wait); 308 } else 309 /* The pre-request barrier has finished */ 310 schedule_work(&mddev->barrier_work); 311 } 312 bio_put(bio); 313 } 314 315 static void submit_barriers(mddev_t *mddev) 316 { 317 mdk_rdev_t *rdev; 318 319 rcu_read_lock(); 320 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 321 if (rdev->raid_disk >= 0 && 322 !test_bit(Faulty, &rdev->flags)) { 323 /* Take two references, one is dropped 324 * when request finishes, one after 325 * we reclaim rcu_read_lock 326 */ 327 struct bio *bi; 328 atomic_inc(&rdev->nr_pending); 329 atomic_inc(&rdev->nr_pending); 330 rcu_read_unlock(); 331 bi = bio_alloc(GFP_KERNEL, 0); 332 bi->bi_end_io = md_end_barrier; 333 bi->bi_private = rdev; 334 bi->bi_bdev = rdev->bdev; 335 atomic_inc(&mddev->flush_pending); 336 submit_bio(WRITE_BARRIER, bi); 337 rcu_read_lock(); 338 rdev_dec_pending(rdev, mddev); 339 } 340 rcu_read_unlock(); 341 } 342 343 static void md_submit_barrier(struct work_struct *ws) 344 { 345 mddev_t *mddev = container_of(ws, mddev_t, barrier_work); 346 struct bio *bio = mddev->barrier; 347 348 atomic_set(&mddev->flush_pending, 1); 349 350 if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags)) 351 bio_endio(bio, -EOPNOTSUPP); 352 else if (bio->bi_size == 0) 353 /* an empty barrier - all done */ 354 bio_endio(bio, 0); 355 else { 356 bio->bi_rw &= ~(1<<BIO_RW_BARRIER); 357 if (mddev->pers->make_request(mddev, bio)) 358 generic_make_request(bio); 359 mddev->barrier = POST_REQUEST_BARRIER; 360 submit_barriers(mddev); 361 } 362 if (atomic_dec_and_test(&mddev->flush_pending)) { 363 mddev->barrier = NULL; 364 wake_up(&mddev->sb_wait); 365 } 366 } 367 368 void md_barrier_request(mddev_t *mddev, struct bio *bio) 369 { 370 spin_lock_irq(&mddev->write_lock); 371 wait_event_lock_irq(mddev->sb_wait, 372 !mddev->barrier, 373 mddev->write_lock, /*nothing*/); 374 mddev->barrier = bio; 375 spin_unlock_irq(&mddev->write_lock); 376 377 atomic_set(&mddev->flush_pending, 1); 378 INIT_WORK(&mddev->barrier_work, md_submit_barrier); 379 380 submit_barriers(mddev); 381 382 if (atomic_dec_and_test(&mddev->flush_pending)) 383 schedule_work(&mddev->barrier_work); 384 } 385 EXPORT_SYMBOL(md_barrier_request); 386 387 static inline mddev_t *mddev_get(mddev_t *mddev) 388 { 389 atomic_inc(&mddev->active); 390 return mddev; 391 } 392 393 static void mddev_delayed_delete(struct work_struct *ws); 394 395 static void mddev_put(mddev_t *mddev) 396 { 397 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 398 return; 399 if (!mddev->raid_disks && list_empty(&mddev->disks) && 400 mddev->ctime == 0 && !mddev->hold_active) { 401 /* Array is not configured at all, and not held active, 402 * so destroy it */ 403 list_del(&mddev->all_mddevs); 404 if (mddev->gendisk) { 405 /* we did a probe so need to clean up. 406 * Call schedule_work inside the spinlock 407 * so that flush_scheduled_work() after 408 * mddev_find will succeed in waiting for the 409 * work to be done. 410 */ 411 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 412 schedule_work(&mddev->del_work); 413 } else 414 kfree(mddev); 415 } 416 spin_unlock(&all_mddevs_lock); 417 } 418 419 static void mddev_init(mddev_t *mddev) 420 { 421 mutex_init(&mddev->open_mutex); 422 mutex_init(&mddev->reconfig_mutex); 423 mutex_init(&mddev->bitmap_info.mutex); 424 INIT_LIST_HEAD(&mddev->disks); 425 INIT_LIST_HEAD(&mddev->all_mddevs); 426 init_timer(&mddev->safemode_timer); 427 atomic_set(&mddev->active, 1); 428 atomic_set(&mddev->openers, 0); 429 atomic_set(&mddev->active_io, 0); 430 spin_lock_init(&mddev->write_lock); 431 atomic_set(&mddev->flush_pending, 0); 432 init_waitqueue_head(&mddev->sb_wait); 433 init_waitqueue_head(&mddev->recovery_wait); 434 mddev->reshape_position = MaxSector; 435 mddev->resync_min = 0; 436 mddev->resync_max = MaxSector; 437 mddev->level = LEVEL_NONE; 438 } 439 440 static mddev_t * mddev_find(dev_t unit) 441 { 442 mddev_t *mddev, *new = NULL; 443 444 retry: 445 spin_lock(&all_mddevs_lock); 446 447 if (unit) { 448 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 449 if (mddev->unit == unit) { 450 mddev_get(mddev); 451 spin_unlock(&all_mddevs_lock); 452 kfree(new); 453 return mddev; 454 } 455 456 if (new) { 457 list_add(&new->all_mddevs, &all_mddevs); 458 spin_unlock(&all_mddevs_lock); 459 new->hold_active = UNTIL_IOCTL; 460 return new; 461 } 462 } else if (new) { 463 /* find an unused unit number */ 464 static int next_minor = 512; 465 int start = next_minor; 466 int is_free = 0; 467 int dev = 0; 468 while (!is_free) { 469 dev = MKDEV(MD_MAJOR, next_minor); 470 next_minor++; 471 if (next_minor > MINORMASK) 472 next_minor = 0; 473 if (next_minor == start) { 474 /* Oh dear, all in use. */ 475 spin_unlock(&all_mddevs_lock); 476 kfree(new); 477 return NULL; 478 } 479 480 is_free = 1; 481 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 482 if (mddev->unit == dev) { 483 is_free = 0; 484 break; 485 } 486 } 487 new->unit = dev; 488 new->md_minor = MINOR(dev); 489 new->hold_active = UNTIL_STOP; 490 list_add(&new->all_mddevs, &all_mddevs); 491 spin_unlock(&all_mddevs_lock); 492 return new; 493 } 494 spin_unlock(&all_mddevs_lock); 495 496 new = kzalloc(sizeof(*new), GFP_KERNEL); 497 if (!new) 498 return NULL; 499 500 new->unit = unit; 501 if (MAJOR(unit) == MD_MAJOR) 502 new->md_minor = MINOR(unit); 503 else 504 new->md_minor = MINOR(unit) >> MdpMinorShift; 505 506 mddev_init(new); 507 508 goto retry; 509 } 510 511 static inline int mddev_lock(mddev_t * mddev) 512 { 513 return mutex_lock_interruptible(&mddev->reconfig_mutex); 514 } 515 516 static inline int mddev_is_locked(mddev_t *mddev) 517 { 518 return mutex_is_locked(&mddev->reconfig_mutex); 519 } 520 521 static inline int mddev_trylock(mddev_t * mddev) 522 { 523 return mutex_trylock(&mddev->reconfig_mutex); 524 } 525 526 static struct attribute_group md_redundancy_group; 527 528 static void mddev_unlock(mddev_t * mddev) 529 { 530 if (mddev->to_remove) { 531 /* These cannot be removed under reconfig_mutex as 532 * an access to the files will try to take reconfig_mutex 533 * while holding the file unremovable, which leads to 534 * a deadlock. 535 * So hold open_mutex instead - we are allowed to take 536 * it while holding reconfig_mutex, and md_run can 537 * use it to wait for the remove to complete. 538 */ 539 struct attribute_group *to_remove = mddev->to_remove; 540 mddev->to_remove = NULL; 541 mutex_lock(&mddev->open_mutex); 542 mutex_unlock(&mddev->reconfig_mutex); 543 544 if (to_remove != &md_redundancy_group) 545 sysfs_remove_group(&mddev->kobj, to_remove); 546 if (mddev->pers == NULL || 547 mddev->pers->sync_request == NULL) { 548 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 549 if (mddev->sysfs_action) 550 sysfs_put(mddev->sysfs_action); 551 mddev->sysfs_action = NULL; 552 } 553 mutex_unlock(&mddev->open_mutex); 554 } else 555 mutex_unlock(&mddev->reconfig_mutex); 556 557 md_wakeup_thread(mddev->thread); 558 } 559 560 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 561 { 562 mdk_rdev_t *rdev; 563 564 list_for_each_entry(rdev, &mddev->disks, same_set) 565 if (rdev->desc_nr == nr) 566 return rdev; 567 568 return NULL; 569 } 570 571 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 572 { 573 mdk_rdev_t *rdev; 574 575 list_for_each_entry(rdev, &mddev->disks, same_set) 576 if (rdev->bdev->bd_dev == dev) 577 return rdev; 578 579 return NULL; 580 } 581 582 static struct mdk_personality *find_pers(int level, char *clevel) 583 { 584 struct mdk_personality *pers; 585 list_for_each_entry(pers, &pers_list, list) { 586 if (level != LEVEL_NONE && pers->level == level) 587 return pers; 588 if (strcmp(pers->name, clevel)==0) 589 return pers; 590 } 591 return NULL; 592 } 593 594 /* return the offset of the super block in 512byte sectors */ 595 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 596 { 597 sector_t num_sectors = bdev->bd_inode->i_size / 512; 598 return MD_NEW_SIZE_SECTORS(num_sectors); 599 } 600 601 static int alloc_disk_sb(mdk_rdev_t * rdev) 602 { 603 if (rdev->sb_page) 604 MD_BUG(); 605 606 rdev->sb_page = alloc_page(GFP_KERNEL); 607 if (!rdev->sb_page) { 608 printk(KERN_ALERT "md: out of memory.\n"); 609 return -ENOMEM; 610 } 611 612 return 0; 613 } 614 615 static void free_disk_sb(mdk_rdev_t * rdev) 616 { 617 if (rdev->sb_page) { 618 put_page(rdev->sb_page); 619 rdev->sb_loaded = 0; 620 rdev->sb_page = NULL; 621 rdev->sb_start = 0; 622 rdev->sectors = 0; 623 } 624 } 625 626 627 static void super_written(struct bio *bio, int error) 628 { 629 mdk_rdev_t *rdev = bio->bi_private; 630 mddev_t *mddev = rdev->mddev; 631 632 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 633 printk("md: super_written gets error=%d, uptodate=%d\n", 634 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 635 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 636 md_error(mddev, rdev); 637 } 638 639 if (atomic_dec_and_test(&mddev->pending_writes)) 640 wake_up(&mddev->sb_wait); 641 bio_put(bio); 642 } 643 644 static void super_written_barrier(struct bio *bio, int error) 645 { 646 struct bio *bio2 = bio->bi_private; 647 mdk_rdev_t *rdev = bio2->bi_private; 648 mddev_t *mddev = rdev->mddev; 649 650 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 651 error == -EOPNOTSUPP) { 652 unsigned long flags; 653 /* barriers don't appear to be supported :-( */ 654 set_bit(BarriersNotsupp, &rdev->flags); 655 mddev->barriers_work = 0; 656 spin_lock_irqsave(&mddev->write_lock, flags); 657 bio2->bi_next = mddev->biolist; 658 mddev->biolist = bio2; 659 spin_unlock_irqrestore(&mddev->write_lock, flags); 660 wake_up(&mddev->sb_wait); 661 bio_put(bio); 662 } else { 663 bio_put(bio2); 664 bio->bi_private = rdev; 665 super_written(bio, error); 666 } 667 } 668 669 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 670 sector_t sector, int size, struct page *page) 671 { 672 /* write first size bytes of page to sector of rdev 673 * Increment mddev->pending_writes before returning 674 * and decrement it on completion, waking up sb_wait 675 * if zero is reached. 676 * If an error occurred, call md_error 677 * 678 * As we might need to resubmit the request if BIO_RW_BARRIER 679 * causes ENOTSUPP, we allocate a spare bio... 680 */ 681 struct bio *bio = bio_alloc(GFP_NOIO, 1); 682 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG); 683 684 bio->bi_bdev = rdev->bdev; 685 bio->bi_sector = sector; 686 bio_add_page(bio, page, size, 0); 687 bio->bi_private = rdev; 688 bio->bi_end_io = super_written; 689 bio->bi_rw = rw; 690 691 atomic_inc(&mddev->pending_writes); 692 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 693 struct bio *rbio; 694 rw |= (1<<BIO_RW_BARRIER); 695 rbio = bio_clone(bio, GFP_NOIO); 696 rbio->bi_private = bio; 697 rbio->bi_end_io = super_written_barrier; 698 submit_bio(rw, rbio); 699 } else 700 submit_bio(rw, bio); 701 } 702 703 void md_super_wait(mddev_t *mddev) 704 { 705 /* wait for all superblock writes that were scheduled to complete. 706 * if any had to be retried (due to BARRIER problems), retry them 707 */ 708 DEFINE_WAIT(wq); 709 for(;;) { 710 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 711 if (atomic_read(&mddev->pending_writes)==0) 712 break; 713 while (mddev->biolist) { 714 struct bio *bio; 715 spin_lock_irq(&mddev->write_lock); 716 bio = mddev->biolist; 717 mddev->biolist = bio->bi_next ; 718 bio->bi_next = NULL; 719 spin_unlock_irq(&mddev->write_lock); 720 submit_bio(bio->bi_rw, bio); 721 } 722 schedule(); 723 } 724 finish_wait(&mddev->sb_wait, &wq); 725 } 726 727 static void bi_complete(struct bio *bio, int error) 728 { 729 complete((struct completion*)bio->bi_private); 730 } 731 732 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 733 struct page *page, int rw) 734 { 735 struct bio *bio = bio_alloc(GFP_NOIO, 1); 736 struct completion event; 737 int ret; 738 739 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG); 740 741 bio->bi_bdev = bdev; 742 bio->bi_sector = sector; 743 bio_add_page(bio, page, size, 0); 744 init_completion(&event); 745 bio->bi_private = &event; 746 bio->bi_end_io = bi_complete; 747 submit_bio(rw, bio); 748 wait_for_completion(&event); 749 750 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 751 bio_put(bio); 752 return ret; 753 } 754 EXPORT_SYMBOL_GPL(sync_page_io); 755 756 static int read_disk_sb(mdk_rdev_t * rdev, int size) 757 { 758 char b[BDEVNAME_SIZE]; 759 if (!rdev->sb_page) { 760 MD_BUG(); 761 return -EINVAL; 762 } 763 if (rdev->sb_loaded) 764 return 0; 765 766 767 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ)) 768 goto fail; 769 rdev->sb_loaded = 1; 770 return 0; 771 772 fail: 773 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 774 bdevname(rdev->bdev,b)); 775 return -EINVAL; 776 } 777 778 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 779 { 780 return sb1->set_uuid0 == sb2->set_uuid0 && 781 sb1->set_uuid1 == sb2->set_uuid1 && 782 sb1->set_uuid2 == sb2->set_uuid2 && 783 sb1->set_uuid3 == sb2->set_uuid3; 784 } 785 786 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 787 { 788 int ret; 789 mdp_super_t *tmp1, *tmp2; 790 791 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 792 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 793 794 if (!tmp1 || !tmp2) { 795 ret = 0; 796 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 797 goto abort; 798 } 799 800 *tmp1 = *sb1; 801 *tmp2 = *sb2; 802 803 /* 804 * nr_disks is not constant 805 */ 806 tmp1->nr_disks = 0; 807 tmp2->nr_disks = 0; 808 809 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 810 abort: 811 kfree(tmp1); 812 kfree(tmp2); 813 return ret; 814 } 815 816 817 static u32 md_csum_fold(u32 csum) 818 { 819 csum = (csum & 0xffff) + (csum >> 16); 820 return (csum & 0xffff) + (csum >> 16); 821 } 822 823 static unsigned int calc_sb_csum(mdp_super_t * sb) 824 { 825 u64 newcsum = 0; 826 u32 *sb32 = (u32*)sb; 827 int i; 828 unsigned int disk_csum, csum; 829 830 disk_csum = sb->sb_csum; 831 sb->sb_csum = 0; 832 833 for (i = 0; i < MD_SB_BYTES/4 ; i++) 834 newcsum += sb32[i]; 835 csum = (newcsum & 0xffffffff) + (newcsum>>32); 836 837 838 #ifdef CONFIG_ALPHA 839 /* This used to use csum_partial, which was wrong for several 840 * reasons including that different results are returned on 841 * different architectures. It isn't critical that we get exactly 842 * the same return value as before (we always csum_fold before 843 * testing, and that removes any differences). However as we 844 * know that csum_partial always returned a 16bit value on 845 * alphas, do a fold to maximise conformity to previous behaviour. 846 */ 847 sb->sb_csum = md_csum_fold(disk_csum); 848 #else 849 sb->sb_csum = disk_csum; 850 #endif 851 return csum; 852 } 853 854 855 /* 856 * Handle superblock details. 857 * We want to be able to handle multiple superblock formats 858 * so we have a common interface to them all, and an array of 859 * different handlers. 860 * We rely on user-space to write the initial superblock, and support 861 * reading and updating of superblocks. 862 * Interface methods are: 863 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 864 * loads and validates a superblock on dev. 865 * if refdev != NULL, compare superblocks on both devices 866 * Return: 867 * 0 - dev has a superblock that is compatible with refdev 868 * 1 - dev has a superblock that is compatible and newer than refdev 869 * so dev should be used as the refdev in future 870 * -EINVAL superblock incompatible or invalid 871 * -othererror e.g. -EIO 872 * 873 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 874 * Verify that dev is acceptable into mddev. 875 * The first time, mddev->raid_disks will be 0, and data from 876 * dev should be merged in. Subsequent calls check that dev 877 * is new enough. Return 0 or -EINVAL 878 * 879 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 880 * Update the superblock for rdev with data in mddev 881 * This does not write to disc. 882 * 883 */ 884 885 struct super_type { 886 char *name; 887 struct module *owner; 888 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, 889 int minor_version); 890 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 891 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 892 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev, 893 sector_t num_sectors); 894 }; 895 896 /* 897 * Check that the given mddev has no bitmap. 898 * 899 * This function is called from the run method of all personalities that do not 900 * support bitmaps. It prints an error message and returns non-zero if mddev 901 * has a bitmap. Otherwise, it returns 0. 902 * 903 */ 904 int md_check_no_bitmap(mddev_t *mddev) 905 { 906 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 907 return 0; 908 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 909 mdname(mddev), mddev->pers->name); 910 return 1; 911 } 912 EXPORT_SYMBOL(md_check_no_bitmap); 913 914 /* 915 * load_super for 0.90.0 916 */ 917 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 918 { 919 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 920 mdp_super_t *sb; 921 int ret; 922 923 /* 924 * Calculate the position of the superblock (512byte sectors), 925 * it's at the end of the disk. 926 * 927 * It also happens to be a multiple of 4Kb. 928 */ 929 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 930 931 ret = read_disk_sb(rdev, MD_SB_BYTES); 932 if (ret) return ret; 933 934 ret = -EINVAL; 935 936 bdevname(rdev->bdev, b); 937 sb = (mdp_super_t*)page_address(rdev->sb_page); 938 939 if (sb->md_magic != MD_SB_MAGIC) { 940 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 941 b); 942 goto abort; 943 } 944 945 if (sb->major_version != 0 || 946 sb->minor_version < 90 || 947 sb->minor_version > 91) { 948 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 949 sb->major_version, sb->minor_version, 950 b); 951 goto abort; 952 } 953 954 if (sb->raid_disks <= 0) 955 goto abort; 956 957 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 958 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 959 b); 960 goto abort; 961 } 962 963 rdev->preferred_minor = sb->md_minor; 964 rdev->data_offset = 0; 965 rdev->sb_size = MD_SB_BYTES; 966 967 if (sb->level == LEVEL_MULTIPATH) 968 rdev->desc_nr = -1; 969 else 970 rdev->desc_nr = sb->this_disk.number; 971 972 if (!refdev) { 973 ret = 1; 974 } else { 975 __u64 ev1, ev2; 976 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 977 if (!uuid_equal(refsb, sb)) { 978 printk(KERN_WARNING "md: %s has different UUID to %s\n", 979 b, bdevname(refdev->bdev,b2)); 980 goto abort; 981 } 982 if (!sb_equal(refsb, sb)) { 983 printk(KERN_WARNING "md: %s has same UUID" 984 " but different superblock to %s\n", 985 b, bdevname(refdev->bdev, b2)); 986 goto abort; 987 } 988 ev1 = md_event(sb); 989 ev2 = md_event(refsb); 990 if (ev1 > ev2) 991 ret = 1; 992 else 993 ret = 0; 994 } 995 rdev->sectors = rdev->sb_start; 996 997 if (rdev->sectors < sb->size * 2 && sb->level > 1) 998 /* "this cannot possibly happen" ... */ 999 ret = -EINVAL; 1000 1001 abort: 1002 return ret; 1003 } 1004 1005 /* 1006 * validate_super for 0.90.0 1007 */ 1008 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1009 { 1010 mdp_disk_t *desc; 1011 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 1012 __u64 ev1 = md_event(sb); 1013 1014 rdev->raid_disk = -1; 1015 clear_bit(Faulty, &rdev->flags); 1016 clear_bit(In_sync, &rdev->flags); 1017 clear_bit(WriteMostly, &rdev->flags); 1018 clear_bit(BarriersNotsupp, &rdev->flags); 1019 1020 if (mddev->raid_disks == 0) { 1021 mddev->major_version = 0; 1022 mddev->minor_version = sb->minor_version; 1023 mddev->patch_version = sb->patch_version; 1024 mddev->external = 0; 1025 mddev->chunk_sectors = sb->chunk_size >> 9; 1026 mddev->ctime = sb->ctime; 1027 mddev->utime = sb->utime; 1028 mddev->level = sb->level; 1029 mddev->clevel[0] = 0; 1030 mddev->layout = sb->layout; 1031 mddev->raid_disks = sb->raid_disks; 1032 mddev->dev_sectors = sb->size * 2; 1033 mddev->events = ev1; 1034 mddev->bitmap_info.offset = 0; 1035 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1036 1037 if (mddev->minor_version >= 91) { 1038 mddev->reshape_position = sb->reshape_position; 1039 mddev->delta_disks = sb->delta_disks; 1040 mddev->new_level = sb->new_level; 1041 mddev->new_layout = sb->new_layout; 1042 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1043 } else { 1044 mddev->reshape_position = MaxSector; 1045 mddev->delta_disks = 0; 1046 mddev->new_level = mddev->level; 1047 mddev->new_layout = mddev->layout; 1048 mddev->new_chunk_sectors = mddev->chunk_sectors; 1049 } 1050 1051 if (sb->state & (1<<MD_SB_CLEAN)) 1052 mddev->recovery_cp = MaxSector; 1053 else { 1054 if (sb->events_hi == sb->cp_events_hi && 1055 sb->events_lo == sb->cp_events_lo) { 1056 mddev->recovery_cp = sb->recovery_cp; 1057 } else 1058 mddev->recovery_cp = 0; 1059 } 1060 1061 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1062 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1063 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1064 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1065 1066 mddev->max_disks = MD_SB_DISKS; 1067 1068 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1069 mddev->bitmap_info.file == NULL) 1070 mddev->bitmap_info.offset = 1071 mddev->bitmap_info.default_offset; 1072 1073 } else if (mddev->pers == NULL) { 1074 /* Insist on good event counter while assembling, except 1075 * for spares (which don't need an event count) */ 1076 ++ev1; 1077 if (sb->disks[rdev->desc_nr].state & ( 1078 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1079 if (ev1 < mddev->events) 1080 return -EINVAL; 1081 } else if (mddev->bitmap) { 1082 /* if adding to array with a bitmap, then we can accept an 1083 * older device ... but not too old. 1084 */ 1085 if (ev1 < mddev->bitmap->events_cleared) 1086 return 0; 1087 } else { 1088 if (ev1 < mddev->events) 1089 /* just a hot-add of a new device, leave raid_disk at -1 */ 1090 return 0; 1091 } 1092 1093 if (mddev->level != LEVEL_MULTIPATH) { 1094 desc = sb->disks + rdev->desc_nr; 1095 1096 if (desc->state & (1<<MD_DISK_FAULTY)) 1097 set_bit(Faulty, &rdev->flags); 1098 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1099 desc->raid_disk < mddev->raid_disks */) { 1100 set_bit(In_sync, &rdev->flags); 1101 rdev->raid_disk = desc->raid_disk; 1102 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1103 /* active but not in sync implies recovery up to 1104 * reshape position. We don't know exactly where 1105 * that is, so set to zero for now */ 1106 if (mddev->minor_version >= 91) { 1107 rdev->recovery_offset = 0; 1108 rdev->raid_disk = desc->raid_disk; 1109 } 1110 } 1111 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1112 set_bit(WriteMostly, &rdev->flags); 1113 } else /* MULTIPATH are always insync */ 1114 set_bit(In_sync, &rdev->flags); 1115 return 0; 1116 } 1117 1118 /* 1119 * sync_super for 0.90.0 1120 */ 1121 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1122 { 1123 mdp_super_t *sb; 1124 mdk_rdev_t *rdev2; 1125 int next_spare = mddev->raid_disks; 1126 1127 1128 /* make rdev->sb match mddev data.. 1129 * 1130 * 1/ zero out disks 1131 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1132 * 3/ any empty disks < next_spare become removed 1133 * 1134 * disks[0] gets initialised to REMOVED because 1135 * we cannot be sure from other fields if it has 1136 * been initialised or not. 1137 */ 1138 int i; 1139 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1140 1141 rdev->sb_size = MD_SB_BYTES; 1142 1143 sb = (mdp_super_t*)page_address(rdev->sb_page); 1144 1145 memset(sb, 0, sizeof(*sb)); 1146 1147 sb->md_magic = MD_SB_MAGIC; 1148 sb->major_version = mddev->major_version; 1149 sb->patch_version = mddev->patch_version; 1150 sb->gvalid_words = 0; /* ignored */ 1151 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1152 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1153 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1154 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1155 1156 sb->ctime = mddev->ctime; 1157 sb->level = mddev->level; 1158 sb->size = mddev->dev_sectors / 2; 1159 sb->raid_disks = mddev->raid_disks; 1160 sb->md_minor = mddev->md_minor; 1161 sb->not_persistent = 0; 1162 sb->utime = mddev->utime; 1163 sb->state = 0; 1164 sb->events_hi = (mddev->events>>32); 1165 sb->events_lo = (u32)mddev->events; 1166 1167 if (mddev->reshape_position == MaxSector) 1168 sb->minor_version = 90; 1169 else { 1170 sb->minor_version = 91; 1171 sb->reshape_position = mddev->reshape_position; 1172 sb->new_level = mddev->new_level; 1173 sb->delta_disks = mddev->delta_disks; 1174 sb->new_layout = mddev->new_layout; 1175 sb->new_chunk = mddev->new_chunk_sectors << 9; 1176 } 1177 mddev->minor_version = sb->minor_version; 1178 if (mddev->in_sync) 1179 { 1180 sb->recovery_cp = mddev->recovery_cp; 1181 sb->cp_events_hi = (mddev->events>>32); 1182 sb->cp_events_lo = (u32)mddev->events; 1183 if (mddev->recovery_cp == MaxSector) 1184 sb->state = (1<< MD_SB_CLEAN); 1185 } else 1186 sb->recovery_cp = 0; 1187 1188 sb->layout = mddev->layout; 1189 sb->chunk_size = mddev->chunk_sectors << 9; 1190 1191 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1192 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1193 1194 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1195 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1196 mdp_disk_t *d; 1197 int desc_nr; 1198 int is_active = test_bit(In_sync, &rdev2->flags); 1199 1200 if (rdev2->raid_disk >= 0 && 1201 sb->minor_version >= 91) 1202 /* we have nowhere to store the recovery_offset, 1203 * but if it is not below the reshape_position, 1204 * we can piggy-back on that. 1205 */ 1206 is_active = 1; 1207 if (rdev2->raid_disk < 0 || 1208 test_bit(Faulty, &rdev2->flags)) 1209 is_active = 0; 1210 if (is_active) 1211 desc_nr = rdev2->raid_disk; 1212 else 1213 desc_nr = next_spare++; 1214 rdev2->desc_nr = desc_nr; 1215 d = &sb->disks[rdev2->desc_nr]; 1216 nr_disks++; 1217 d->number = rdev2->desc_nr; 1218 d->major = MAJOR(rdev2->bdev->bd_dev); 1219 d->minor = MINOR(rdev2->bdev->bd_dev); 1220 if (is_active) 1221 d->raid_disk = rdev2->raid_disk; 1222 else 1223 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1224 if (test_bit(Faulty, &rdev2->flags)) 1225 d->state = (1<<MD_DISK_FAULTY); 1226 else if (is_active) { 1227 d->state = (1<<MD_DISK_ACTIVE); 1228 if (test_bit(In_sync, &rdev2->flags)) 1229 d->state |= (1<<MD_DISK_SYNC); 1230 active++; 1231 working++; 1232 } else { 1233 d->state = 0; 1234 spare++; 1235 working++; 1236 } 1237 if (test_bit(WriteMostly, &rdev2->flags)) 1238 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1239 } 1240 /* now set the "removed" and "faulty" bits on any missing devices */ 1241 for (i=0 ; i < mddev->raid_disks ; i++) { 1242 mdp_disk_t *d = &sb->disks[i]; 1243 if (d->state == 0 && d->number == 0) { 1244 d->number = i; 1245 d->raid_disk = i; 1246 d->state = (1<<MD_DISK_REMOVED); 1247 d->state |= (1<<MD_DISK_FAULTY); 1248 failed++; 1249 } 1250 } 1251 sb->nr_disks = nr_disks; 1252 sb->active_disks = active; 1253 sb->working_disks = working; 1254 sb->failed_disks = failed; 1255 sb->spare_disks = spare; 1256 1257 sb->this_disk = sb->disks[rdev->desc_nr]; 1258 sb->sb_csum = calc_sb_csum(sb); 1259 } 1260 1261 /* 1262 * rdev_size_change for 0.90.0 1263 */ 1264 static unsigned long long 1265 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1266 { 1267 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1268 return 0; /* component must fit device */ 1269 if (rdev->mddev->bitmap_info.offset) 1270 return 0; /* can't move bitmap */ 1271 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 1272 if (!num_sectors || num_sectors > rdev->sb_start) 1273 num_sectors = rdev->sb_start; 1274 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1275 rdev->sb_page); 1276 md_super_wait(rdev->mddev); 1277 return num_sectors / 2; /* kB for sysfs */ 1278 } 1279 1280 1281 /* 1282 * version 1 superblock 1283 */ 1284 1285 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1286 { 1287 __le32 disk_csum; 1288 u32 csum; 1289 unsigned long long newcsum; 1290 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1291 __le32 *isuper = (__le32*)sb; 1292 int i; 1293 1294 disk_csum = sb->sb_csum; 1295 sb->sb_csum = 0; 1296 newcsum = 0; 1297 for (i=0; size>=4; size -= 4 ) 1298 newcsum += le32_to_cpu(*isuper++); 1299 1300 if (size == 2) 1301 newcsum += le16_to_cpu(*(__le16*) isuper); 1302 1303 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1304 sb->sb_csum = disk_csum; 1305 return cpu_to_le32(csum); 1306 } 1307 1308 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1309 { 1310 struct mdp_superblock_1 *sb; 1311 int ret; 1312 sector_t sb_start; 1313 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1314 int bmask; 1315 1316 /* 1317 * Calculate the position of the superblock in 512byte sectors. 1318 * It is always aligned to a 4K boundary and 1319 * depeding on minor_version, it can be: 1320 * 0: At least 8K, but less than 12K, from end of device 1321 * 1: At start of device 1322 * 2: 4K from start of device. 1323 */ 1324 switch(minor_version) { 1325 case 0: 1326 sb_start = rdev->bdev->bd_inode->i_size >> 9; 1327 sb_start -= 8*2; 1328 sb_start &= ~(sector_t)(4*2-1); 1329 break; 1330 case 1: 1331 sb_start = 0; 1332 break; 1333 case 2: 1334 sb_start = 8; 1335 break; 1336 default: 1337 return -EINVAL; 1338 } 1339 rdev->sb_start = sb_start; 1340 1341 /* superblock is rarely larger than 1K, but it can be larger, 1342 * and it is safe to read 4k, so we do that 1343 */ 1344 ret = read_disk_sb(rdev, 4096); 1345 if (ret) return ret; 1346 1347 1348 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1349 1350 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1351 sb->major_version != cpu_to_le32(1) || 1352 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1353 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1354 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1355 return -EINVAL; 1356 1357 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1358 printk("md: invalid superblock checksum on %s\n", 1359 bdevname(rdev->bdev,b)); 1360 return -EINVAL; 1361 } 1362 if (le64_to_cpu(sb->data_size) < 10) { 1363 printk("md: data_size too small on %s\n", 1364 bdevname(rdev->bdev,b)); 1365 return -EINVAL; 1366 } 1367 1368 rdev->preferred_minor = 0xffff; 1369 rdev->data_offset = le64_to_cpu(sb->data_offset); 1370 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1371 1372 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1373 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1374 if (rdev->sb_size & bmask) 1375 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1376 1377 if (minor_version 1378 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1379 return -EINVAL; 1380 1381 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1382 rdev->desc_nr = -1; 1383 else 1384 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1385 1386 if (!refdev) { 1387 ret = 1; 1388 } else { 1389 __u64 ev1, ev2; 1390 struct mdp_superblock_1 *refsb = 1391 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1392 1393 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1394 sb->level != refsb->level || 1395 sb->layout != refsb->layout || 1396 sb->chunksize != refsb->chunksize) { 1397 printk(KERN_WARNING "md: %s has strangely different" 1398 " superblock to %s\n", 1399 bdevname(rdev->bdev,b), 1400 bdevname(refdev->bdev,b2)); 1401 return -EINVAL; 1402 } 1403 ev1 = le64_to_cpu(sb->events); 1404 ev2 = le64_to_cpu(refsb->events); 1405 1406 if (ev1 > ev2) 1407 ret = 1; 1408 else 1409 ret = 0; 1410 } 1411 if (minor_version) 1412 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) - 1413 le64_to_cpu(sb->data_offset); 1414 else 1415 rdev->sectors = rdev->sb_start; 1416 if (rdev->sectors < le64_to_cpu(sb->data_size)) 1417 return -EINVAL; 1418 rdev->sectors = le64_to_cpu(sb->data_size); 1419 if (le64_to_cpu(sb->size) > rdev->sectors) 1420 return -EINVAL; 1421 return ret; 1422 } 1423 1424 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1425 { 1426 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1427 __u64 ev1 = le64_to_cpu(sb->events); 1428 1429 rdev->raid_disk = -1; 1430 clear_bit(Faulty, &rdev->flags); 1431 clear_bit(In_sync, &rdev->flags); 1432 clear_bit(WriteMostly, &rdev->flags); 1433 clear_bit(BarriersNotsupp, &rdev->flags); 1434 1435 if (mddev->raid_disks == 0) { 1436 mddev->major_version = 1; 1437 mddev->patch_version = 0; 1438 mddev->external = 0; 1439 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1440 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1441 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1442 mddev->level = le32_to_cpu(sb->level); 1443 mddev->clevel[0] = 0; 1444 mddev->layout = le32_to_cpu(sb->layout); 1445 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1446 mddev->dev_sectors = le64_to_cpu(sb->size); 1447 mddev->events = ev1; 1448 mddev->bitmap_info.offset = 0; 1449 mddev->bitmap_info.default_offset = 1024 >> 9; 1450 1451 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1452 memcpy(mddev->uuid, sb->set_uuid, 16); 1453 1454 mddev->max_disks = (4096-256)/2; 1455 1456 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1457 mddev->bitmap_info.file == NULL ) 1458 mddev->bitmap_info.offset = 1459 (__s32)le32_to_cpu(sb->bitmap_offset); 1460 1461 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1462 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1463 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1464 mddev->new_level = le32_to_cpu(sb->new_level); 1465 mddev->new_layout = le32_to_cpu(sb->new_layout); 1466 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1467 } else { 1468 mddev->reshape_position = MaxSector; 1469 mddev->delta_disks = 0; 1470 mddev->new_level = mddev->level; 1471 mddev->new_layout = mddev->layout; 1472 mddev->new_chunk_sectors = mddev->chunk_sectors; 1473 } 1474 1475 } else if (mddev->pers == NULL) { 1476 /* Insist of good event counter while assembling, except for 1477 * spares (which don't need an event count) */ 1478 ++ev1; 1479 if (rdev->desc_nr >= 0 && 1480 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1481 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1482 if (ev1 < mddev->events) 1483 return -EINVAL; 1484 } else if (mddev->bitmap) { 1485 /* If adding to array with a bitmap, then we can accept an 1486 * older device, but not too old. 1487 */ 1488 if (ev1 < mddev->bitmap->events_cleared) 1489 return 0; 1490 } else { 1491 if (ev1 < mddev->events) 1492 /* just a hot-add of a new device, leave raid_disk at -1 */ 1493 return 0; 1494 } 1495 if (mddev->level != LEVEL_MULTIPATH) { 1496 int role; 1497 if (rdev->desc_nr < 0 || 1498 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1499 role = 0xffff; 1500 rdev->desc_nr = -1; 1501 } else 1502 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1503 switch(role) { 1504 case 0xffff: /* spare */ 1505 break; 1506 case 0xfffe: /* faulty */ 1507 set_bit(Faulty, &rdev->flags); 1508 break; 1509 default: 1510 if ((le32_to_cpu(sb->feature_map) & 1511 MD_FEATURE_RECOVERY_OFFSET)) 1512 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1513 else 1514 set_bit(In_sync, &rdev->flags); 1515 rdev->raid_disk = role; 1516 break; 1517 } 1518 if (sb->devflags & WriteMostly1) 1519 set_bit(WriteMostly, &rdev->flags); 1520 } else /* MULTIPATH are always insync */ 1521 set_bit(In_sync, &rdev->flags); 1522 1523 return 0; 1524 } 1525 1526 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1527 { 1528 struct mdp_superblock_1 *sb; 1529 mdk_rdev_t *rdev2; 1530 int max_dev, i; 1531 /* make rdev->sb match mddev and rdev data. */ 1532 1533 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1534 1535 sb->feature_map = 0; 1536 sb->pad0 = 0; 1537 sb->recovery_offset = cpu_to_le64(0); 1538 memset(sb->pad1, 0, sizeof(sb->pad1)); 1539 memset(sb->pad2, 0, sizeof(sb->pad2)); 1540 memset(sb->pad3, 0, sizeof(sb->pad3)); 1541 1542 sb->utime = cpu_to_le64((__u64)mddev->utime); 1543 sb->events = cpu_to_le64(mddev->events); 1544 if (mddev->in_sync) 1545 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1546 else 1547 sb->resync_offset = cpu_to_le64(0); 1548 1549 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1550 1551 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1552 sb->size = cpu_to_le64(mddev->dev_sectors); 1553 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1554 sb->level = cpu_to_le32(mddev->level); 1555 sb->layout = cpu_to_le32(mddev->layout); 1556 1557 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1558 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1559 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1560 } 1561 1562 if (rdev->raid_disk >= 0 && 1563 !test_bit(In_sync, &rdev->flags)) { 1564 sb->feature_map |= 1565 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1566 sb->recovery_offset = 1567 cpu_to_le64(rdev->recovery_offset); 1568 } 1569 1570 if (mddev->reshape_position != MaxSector) { 1571 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1572 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1573 sb->new_layout = cpu_to_le32(mddev->new_layout); 1574 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1575 sb->new_level = cpu_to_le32(mddev->new_level); 1576 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1577 } 1578 1579 max_dev = 0; 1580 list_for_each_entry(rdev2, &mddev->disks, same_set) 1581 if (rdev2->desc_nr+1 > max_dev) 1582 max_dev = rdev2->desc_nr+1; 1583 1584 if (max_dev > le32_to_cpu(sb->max_dev)) { 1585 int bmask; 1586 sb->max_dev = cpu_to_le32(max_dev); 1587 rdev->sb_size = max_dev * 2 + 256; 1588 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1589 if (rdev->sb_size & bmask) 1590 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1591 } 1592 for (i=0; i<max_dev;i++) 1593 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1594 1595 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1596 i = rdev2->desc_nr; 1597 if (test_bit(Faulty, &rdev2->flags)) 1598 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1599 else if (test_bit(In_sync, &rdev2->flags)) 1600 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1601 else if (rdev2->raid_disk >= 0) 1602 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1603 else 1604 sb->dev_roles[i] = cpu_to_le16(0xffff); 1605 } 1606 1607 sb->sb_csum = calc_sb_1_csum(sb); 1608 } 1609 1610 static unsigned long long 1611 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1612 { 1613 struct mdp_superblock_1 *sb; 1614 sector_t max_sectors; 1615 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1616 return 0; /* component must fit device */ 1617 if (rdev->sb_start < rdev->data_offset) { 1618 /* minor versions 1 and 2; superblock before data */ 1619 max_sectors = rdev->bdev->bd_inode->i_size >> 9; 1620 max_sectors -= rdev->data_offset; 1621 if (!num_sectors || num_sectors > max_sectors) 1622 num_sectors = max_sectors; 1623 } else if (rdev->mddev->bitmap_info.offset) { 1624 /* minor version 0 with bitmap we can't move */ 1625 return 0; 1626 } else { 1627 /* minor version 0; superblock after data */ 1628 sector_t sb_start; 1629 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2; 1630 sb_start &= ~(sector_t)(4*2 - 1); 1631 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1632 if (!num_sectors || num_sectors > max_sectors) 1633 num_sectors = max_sectors; 1634 rdev->sb_start = sb_start; 1635 } 1636 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page); 1637 sb->data_size = cpu_to_le64(num_sectors); 1638 sb->super_offset = rdev->sb_start; 1639 sb->sb_csum = calc_sb_1_csum(sb); 1640 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1641 rdev->sb_page); 1642 md_super_wait(rdev->mddev); 1643 return num_sectors / 2; /* kB for sysfs */ 1644 } 1645 1646 static struct super_type super_types[] = { 1647 [0] = { 1648 .name = "0.90.0", 1649 .owner = THIS_MODULE, 1650 .load_super = super_90_load, 1651 .validate_super = super_90_validate, 1652 .sync_super = super_90_sync, 1653 .rdev_size_change = super_90_rdev_size_change, 1654 }, 1655 [1] = { 1656 .name = "md-1", 1657 .owner = THIS_MODULE, 1658 .load_super = super_1_load, 1659 .validate_super = super_1_validate, 1660 .sync_super = super_1_sync, 1661 .rdev_size_change = super_1_rdev_size_change, 1662 }, 1663 }; 1664 1665 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1666 { 1667 mdk_rdev_t *rdev, *rdev2; 1668 1669 rcu_read_lock(); 1670 rdev_for_each_rcu(rdev, mddev1) 1671 rdev_for_each_rcu(rdev2, mddev2) 1672 if (rdev->bdev->bd_contains == 1673 rdev2->bdev->bd_contains) { 1674 rcu_read_unlock(); 1675 return 1; 1676 } 1677 rcu_read_unlock(); 1678 return 0; 1679 } 1680 1681 static LIST_HEAD(pending_raid_disks); 1682 1683 /* 1684 * Try to register data integrity profile for an mddev 1685 * 1686 * This is called when an array is started and after a disk has been kicked 1687 * from the array. It only succeeds if all working and active component devices 1688 * are integrity capable with matching profiles. 1689 */ 1690 int md_integrity_register(mddev_t *mddev) 1691 { 1692 mdk_rdev_t *rdev, *reference = NULL; 1693 1694 if (list_empty(&mddev->disks)) 1695 return 0; /* nothing to do */ 1696 if (blk_get_integrity(mddev->gendisk)) 1697 return 0; /* already registered */ 1698 list_for_each_entry(rdev, &mddev->disks, same_set) { 1699 /* skip spares and non-functional disks */ 1700 if (test_bit(Faulty, &rdev->flags)) 1701 continue; 1702 if (rdev->raid_disk < 0) 1703 continue; 1704 /* 1705 * If at least one rdev is not integrity capable, we can not 1706 * enable data integrity for the md device. 1707 */ 1708 if (!bdev_get_integrity(rdev->bdev)) 1709 return -EINVAL; 1710 if (!reference) { 1711 /* Use the first rdev as the reference */ 1712 reference = rdev; 1713 continue; 1714 } 1715 /* does this rdev's profile match the reference profile? */ 1716 if (blk_integrity_compare(reference->bdev->bd_disk, 1717 rdev->bdev->bd_disk) < 0) 1718 return -EINVAL; 1719 } 1720 /* 1721 * All component devices are integrity capable and have matching 1722 * profiles, register the common profile for the md device. 1723 */ 1724 if (blk_integrity_register(mddev->gendisk, 1725 bdev_get_integrity(reference->bdev)) != 0) { 1726 printk(KERN_ERR "md: failed to register integrity for %s\n", 1727 mdname(mddev)); 1728 return -EINVAL; 1729 } 1730 printk(KERN_NOTICE "md: data integrity on %s enabled\n", 1731 mdname(mddev)); 1732 return 0; 1733 } 1734 EXPORT_SYMBOL(md_integrity_register); 1735 1736 /* Disable data integrity if non-capable/non-matching disk is being added */ 1737 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 1738 { 1739 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); 1740 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk); 1741 1742 if (!bi_mddev) /* nothing to do */ 1743 return; 1744 if (rdev->raid_disk < 0) /* skip spares */ 1745 return; 1746 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 1747 rdev->bdev->bd_disk) >= 0) 1748 return; 1749 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 1750 blk_integrity_unregister(mddev->gendisk); 1751 } 1752 EXPORT_SYMBOL(md_integrity_add_rdev); 1753 1754 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1755 { 1756 char b[BDEVNAME_SIZE]; 1757 struct kobject *ko; 1758 char *s; 1759 int err; 1760 1761 if (rdev->mddev) { 1762 MD_BUG(); 1763 return -EINVAL; 1764 } 1765 1766 /* prevent duplicates */ 1767 if (find_rdev(mddev, rdev->bdev->bd_dev)) 1768 return -EEXIST; 1769 1770 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 1771 if (rdev->sectors && (mddev->dev_sectors == 0 || 1772 rdev->sectors < mddev->dev_sectors)) { 1773 if (mddev->pers) { 1774 /* Cannot change size, so fail 1775 * If mddev->level <= 0, then we don't care 1776 * about aligning sizes (e.g. linear) 1777 */ 1778 if (mddev->level > 0) 1779 return -ENOSPC; 1780 } else 1781 mddev->dev_sectors = rdev->sectors; 1782 } 1783 1784 /* Verify rdev->desc_nr is unique. 1785 * If it is -1, assign a free number, else 1786 * check number is not in use 1787 */ 1788 if (rdev->desc_nr < 0) { 1789 int choice = 0; 1790 if (mddev->pers) choice = mddev->raid_disks; 1791 while (find_rdev_nr(mddev, choice)) 1792 choice++; 1793 rdev->desc_nr = choice; 1794 } else { 1795 if (find_rdev_nr(mddev, rdev->desc_nr)) 1796 return -EBUSY; 1797 } 1798 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 1799 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 1800 mdname(mddev), mddev->max_disks); 1801 return -EBUSY; 1802 } 1803 bdevname(rdev->bdev,b); 1804 while ( (s=strchr(b, '/')) != NULL) 1805 *s = '!'; 1806 1807 rdev->mddev = mddev; 1808 printk(KERN_INFO "md: bind<%s>\n", b); 1809 1810 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 1811 goto fail; 1812 1813 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 1814 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) { 1815 kobject_del(&rdev->kobj); 1816 goto fail; 1817 } 1818 rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, NULL, "state"); 1819 1820 list_add_rcu(&rdev->same_set, &mddev->disks); 1821 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk); 1822 1823 /* May as well allow recovery to be retried once */ 1824 mddev->recovery_disabled = 0; 1825 1826 return 0; 1827 1828 fail: 1829 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1830 b, mdname(mddev)); 1831 return err; 1832 } 1833 1834 static void md_delayed_delete(struct work_struct *ws) 1835 { 1836 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1837 kobject_del(&rdev->kobj); 1838 kobject_put(&rdev->kobj); 1839 } 1840 1841 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1842 { 1843 char b[BDEVNAME_SIZE]; 1844 if (!rdev->mddev) { 1845 MD_BUG(); 1846 return; 1847 } 1848 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1849 list_del_rcu(&rdev->same_set); 1850 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1851 rdev->mddev = NULL; 1852 sysfs_remove_link(&rdev->kobj, "block"); 1853 sysfs_put(rdev->sysfs_state); 1854 rdev->sysfs_state = NULL; 1855 /* We need to delay this, otherwise we can deadlock when 1856 * writing to 'remove' to "dev/state". We also need 1857 * to delay it due to rcu usage. 1858 */ 1859 synchronize_rcu(); 1860 INIT_WORK(&rdev->del_work, md_delayed_delete); 1861 kobject_get(&rdev->kobj); 1862 schedule_work(&rdev->del_work); 1863 } 1864 1865 /* 1866 * prevent the device from being mounted, repartitioned or 1867 * otherwise reused by a RAID array (or any other kernel 1868 * subsystem), by bd_claiming the device. 1869 */ 1870 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) 1871 { 1872 int err = 0; 1873 struct block_device *bdev; 1874 char b[BDEVNAME_SIZE]; 1875 1876 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1877 if (IS_ERR(bdev)) { 1878 printk(KERN_ERR "md: could not open %s.\n", 1879 __bdevname(dev, b)); 1880 return PTR_ERR(bdev); 1881 } 1882 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev); 1883 if (err) { 1884 printk(KERN_ERR "md: could not bd_claim %s.\n", 1885 bdevname(bdev, b)); 1886 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1887 return err; 1888 } 1889 if (!shared) 1890 set_bit(AllReserved, &rdev->flags); 1891 rdev->bdev = bdev; 1892 return err; 1893 } 1894 1895 static void unlock_rdev(mdk_rdev_t *rdev) 1896 { 1897 struct block_device *bdev = rdev->bdev; 1898 rdev->bdev = NULL; 1899 if (!bdev) 1900 MD_BUG(); 1901 bd_release(bdev); 1902 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1903 } 1904 1905 void md_autodetect_dev(dev_t dev); 1906 1907 static void export_rdev(mdk_rdev_t * rdev) 1908 { 1909 char b[BDEVNAME_SIZE]; 1910 printk(KERN_INFO "md: export_rdev(%s)\n", 1911 bdevname(rdev->bdev,b)); 1912 if (rdev->mddev) 1913 MD_BUG(); 1914 free_disk_sb(rdev); 1915 #ifndef MODULE 1916 if (test_bit(AutoDetected, &rdev->flags)) 1917 md_autodetect_dev(rdev->bdev->bd_dev); 1918 #endif 1919 unlock_rdev(rdev); 1920 kobject_put(&rdev->kobj); 1921 } 1922 1923 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1924 { 1925 unbind_rdev_from_array(rdev); 1926 export_rdev(rdev); 1927 } 1928 1929 static void export_array(mddev_t *mddev) 1930 { 1931 mdk_rdev_t *rdev, *tmp; 1932 1933 rdev_for_each(rdev, tmp, mddev) { 1934 if (!rdev->mddev) { 1935 MD_BUG(); 1936 continue; 1937 } 1938 kick_rdev_from_array(rdev); 1939 } 1940 if (!list_empty(&mddev->disks)) 1941 MD_BUG(); 1942 mddev->raid_disks = 0; 1943 mddev->major_version = 0; 1944 } 1945 1946 static void print_desc(mdp_disk_t *desc) 1947 { 1948 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 1949 desc->major,desc->minor,desc->raid_disk,desc->state); 1950 } 1951 1952 static void print_sb_90(mdp_super_t *sb) 1953 { 1954 int i; 1955 1956 printk(KERN_INFO 1957 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 1958 sb->major_version, sb->minor_version, sb->patch_version, 1959 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 1960 sb->ctime); 1961 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 1962 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 1963 sb->md_minor, sb->layout, sb->chunk_size); 1964 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 1965 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 1966 sb->utime, sb->state, sb->active_disks, sb->working_disks, 1967 sb->failed_disks, sb->spare_disks, 1968 sb->sb_csum, (unsigned long)sb->events_lo); 1969 1970 printk(KERN_INFO); 1971 for (i = 0; i < MD_SB_DISKS; i++) { 1972 mdp_disk_t *desc; 1973 1974 desc = sb->disks + i; 1975 if (desc->number || desc->major || desc->minor || 1976 desc->raid_disk || (desc->state && (desc->state != 4))) { 1977 printk(" D %2d: ", i); 1978 print_desc(desc); 1979 } 1980 } 1981 printk(KERN_INFO "md: THIS: "); 1982 print_desc(&sb->this_disk); 1983 } 1984 1985 static void print_sb_1(struct mdp_superblock_1 *sb) 1986 { 1987 __u8 *uuid; 1988 1989 uuid = sb->set_uuid; 1990 printk(KERN_INFO 1991 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 1992 "md: Name: \"%s\" CT:%llu\n", 1993 le32_to_cpu(sb->major_version), 1994 le32_to_cpu(sb->feature_map), 1995 uuid, 1996 sb->set_name, 1997 (unsigned long long)le64_to_cpu(sb->ctime) 1998 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 1999 2000 uuid = sb->device_uuid; 2001 printk(KERN_INFO 2002 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2003 " RO:%llu\n" 2004 "md: Dev:%08x UUID: %pU\n" 2005 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2006 "md: (MaxDev:%u) \n", 2007 le32_to_cpu(sb->level), 2008 (unsigned long long)le64_to_cpu(sb->size), 2009 le32_to_cpu(sb->raid_disks), 2010 le32_to_cpu(sb->layout), 2011 le32_to_cpu(sb->chunksize), 2012 (unsigned long long)le64_to_cpu(sb->data_offset), 2013 (unsigned long long)le64_to_cpu(sb->data_size), 2014 (unsigned long long)le64_to_cpu(sb->super_offset), 2015 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2016 le32_to_cpu(sb->dev_number), 2017 uuid, 2018 sb->devflags, 2019 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2020 (unsigned long long)le64_to_cpu(sb->events), 2021 (unsigned long long)le64_to_cpu(sb->resync_offset), 2022 le32_to_cpu(sb->sb_csum), 2023 le32_to_cpu(sb->max_dev) 2024 ); 2025 } 2026 2027 static void print_rdev(mdk_rdev_t *rdev, int major_version) 2028 { 2029 char b[BDEVNAME_SIZE]; 2030 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2031 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2032 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2033 rdev->desc_nr); 2034 if (rdev->sb_loaded) { 2035 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2036 switch (major_version) { 2037 case 0: 2038 print_sb_90((mdp_super_t*)page_address(rdev->sb_page)); 2039 break; 2040 case 1: 2041 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page)); 2042 break; 2043 } 2044 } else 2045 printk(KERN_INFO "md: no rdev superblock!\n"); 2046 } 2047 2048 static void md_print_devices(void) 2049 { 2050 struct list_head *tmp; 2051 mdk_rdev_t *rdev; 2052 mddev_t *mddev; 2053 char b[BDEVNAME_SIZE]; 2054 2055 printk("\n"); 2056 printk("md: **********************************\n"); 2057 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2058 printk("md: **********************************\n"); 2059 for_each_mddev(mddev, tmp) { 2060 2061 if (mddev->bitmap) 2062 bitmap_print_sb(mddev->bitmap); 2063 else 2064 printk("%s: ", mdname(mddev)); 2065 list_for_each_entry(rdev, &mddev->disks, same_set) 2066 printk("<%s>", bdevname(rdev->bdev,b)); 2067 printk("\n"); 2068 2069 list_for_each_entry(rdev, &mddev->disks, same_set) 2070 print_rdev(rdev, mddev->major_version); 2071 } 2072 printk("md: **********************************\n"); 2073 printk("\n"); 2074 } 2075 2076 2077 static void sync_sbs(mddev_t * mddev, int nospares) 2078 { 2079 /* Update each superblock (in-memory image), but 2080 * if we are allowed to, skip spares which already 2081 * have the right event counter, or have one earlier 2082 * (which would mean they aren't being marked as dirty 2083 * with the rest of the array) 2084 */ 2085 mdk_rdev_t *rdev; 2086 2087 /* First make sure individual recovery_offsets are correct */ 2088 list_for_each_entry(rdev, &mddev->disks, same_set) { 2089 if (rdev->raid_disk >= 0 && 2090 !test_bit(In_sync, &rdev->flags) && 2091 mddev->curr_resync_completed > rdev->recovery_offset) 2092 rdev->recovery_offset = mddev->curr_resync_completed; 2093 2094 } 2095 list_for_each_entry(rdev, &mddev->disks, same_set) { 2096 if (rdev->sb_events == mddev->events || 2097 (nospares && 2098 rdev->raid_disk < 0 && 2099 rdev->sb_events+1 == mddev->events)) { 2100 /* Don't update this superblock */ 2101 rdev->sb_loaded = 2; 2102 } else { 2103 super_types[mddev->major_version]. 2104 sync_super(mddev, rdev); 2105 rdev->sb_loaded = 1; 2106 } 2107 } 2108 } 2109 2110 static void md_update_sb(mddev_t * mddev, int force_change) 2111 { 2112 mdk_rdev_t *rdev; 2113 int sync_req; 2114 int nospares = 0; 2115 2116 mddev->utime = get_seconds(); 2117 if (mddev->external) 2118 return; 2119 repeat: 2120 spin_lock_irq(&mddev->write_lock); 2121 2122 set_bit(MD_CHANGE_PENDING, &mddev->flags); 2123 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2124 force_change = 1; 2125 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2126 /* just a clean<-> dirty transition, possibly leave spares alone, 2127 * though if events isn't the right even/odd, we will have to do 2128 * spares after all 2129 */ 2130 nospares = 1; 2131 if (force_change) 2132 nospares = 0; 2133 if (mddev->degraded) 2134 /* If the array is degraded, then skipping spares is both 2135 * dangerous and fairly pointless. 2136 * Dangerous because a device that was removed from the array 2137 * might have a event_count that still looks up-to-date, 2138 * so it can be re-added without a resync. 2139 * Pointless because if there are any spares to skip, 2140 * then a recovery will happen and soon that array won't 2141 * be degraded any more and the spare can go back to sleep then. 2142 */ 2143 nospares = 0; 2144 2145 sync_req = mddev->in_sync; 2146 2147 /* If this is just a dirty<->clean transition, and the array is clean 2148 * and 'events' is odd, we can roll back to the previous clean state */ 2149 if (nospares 2150 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2151 && mddev->can_decrease_events 2152 && mddev->events != 1) { 2153 mddev->events--; 2154 mddev->can_decrease_events = 0; 2155 } else { 2156 /* otherwise we have to go forward and ... */ 2157 mddev->events ++; 2158 mddev->can_decrease_events = nospares; 2159 } 2160 2161 if (!mddev->events) { 2162 /* 2163 * oops, this 64-bit counter should never wrap. 2164 * Either we are in around ~1 trillion A.C., assuming 2165 * 1 reboot per second, or we have a bug: 2166 */ 2167 MD_BUG(); 2168 mddev->events --; 2169 } 2170 2171 /* 2172 * do not write anything to disk if using 2173 * nonpersistent superblocks 2174 */ 2175 if (!mddev->persistent) { 2176 if (!mddev->external) 2177 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2178 2179 spin_unlock_irq(&mddev->write_lock); 2180 wake_up(&mddev->sb_wait); 2181 return; 2182 } 2183 sync_sbs(mddev, nospares); 2184 spin_unlock_irq(&mddev->write_lock); 2185 2186 dprintk(KERN_INFO 2187 "md: updating %s RAID superblock on device (in sync %d)\n", 2188 mdname(mddev),mddev->in_sync); 2189 2190 bitmap_update_sb(mddev->bitmap); 2191 list_for_each_entry(rdev, &mddev->disks, same_set) { 2192 char b[BDEVNAME_SIZE]; 2193 dprintk(KERN_INFO "md: "); 2194 if (rdev->sb_loaded != 1) 2195 continue; /* no noise on spare devices */ 2196 if (test_bit(Faulty, &rdev->flags)) 2197 dprintk("(skipping faulty "); 2198 2199 dprintk("%s ", bdevname(rdev->bdev,b)); 2200 if (!test_bit(Faulty, &rdev->flags)) { 2201 md_super_write(mddev,rdev, 2202 rdev->sb_start, rdev->sb_size, 2203 rdev->sb_page); 2204 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 2205 bdevname(rdev->bdev,b), 2206 (unsigned long long)rdev->sb_start); 2207 rdev->sb_events = mddev->events; 2208 2209 } else 2210 dprintk(")\n"); 2211 if (mddev->level == LEVEL_MULTIPATH) 2212 /* only need to write one superblock... */ 2213 break; 2214 } 2215 md_super_wait(mddev); 2216 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2217 2218 spin_lock_irq(&mddev->write_lock); 2219 if (mddev->in_sync != sync_req || 2220 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2221 /* have to write it out again */ 2222 spin_unlock_irq(&mddev->write_lock); 2223 goto repeat; 2224 } 2225 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2226 spin_unlock_irq(&mddev->write_lock); 2227 wake_up(&mddev->sb_wait); 2228 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2229 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2230 2231 } 2232 2233 /* words written to sysfs files may, or may not, be \n terminated. 2234 * We want to accept with case. For this we use cmd_match. 2235 */ 2236 static int cmd_match(const char *cmd, const char *str) 2237 { 2238 /* See if cmd, written into a sysfs file, matches 2239 * str. They must either be the same, or cmd can 2240 * have a trailing newline 2241 */ 2242 while (*cmd && *str && *cmd == *str) { 2243 cmd++; 2244 str++; 2245 } 2246 if (*cmd == '\n') 2247 cmd++; 2248 if (*str || *cmd) 2249 return 0; 2250 return 1; 2251 } 2252 2253 struct rdev_sysfs_entry { 2254 struct attribute attr; 2255 ssize_t (*show)(mdk_rdev_t *, char *); 2256 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 2257 }; 2258 2259 static ssize_t 2260 state_show(mdk_rdev_t *rdev, char *page) 2261 { 2262 char *sep = ""; 2263 size_t len = 0; 2264 2265 if (test_bit(Faulty, &rdev->flags)) { 2266 len+= sprintf(page+len, "%sfaulty",sep); 2267 sep = ","; 2268 } 2269 if (test_bit(In_sync, &rdev->flags)) { 2270 len += sprintf(page+len, "%sin_sync",sep); 2271 sep = ","; 2272 } 2273 if (test_bit(WriteMostly, &rdev->flags)) { 2274 len += sprintf(page+len, "%swrite_mostly",sep); 2275 sep = ","; 2276 } 2277 if (test_bit(Blocked, &rdev->flags)) { 2278 len += sprintf(page+len, "%sblocked", sep); 2279 sep = ","; 2280 } 2281 if (!test_bit(Faulty, &rdev->flags) && 2282 !test_bit(In_sync, &rdev->flags)) { 2283 len += sprintf(page+len, "%sspare", sep); 2284 sep = ","; 2285 } 2286 return len+sprintf(page+len, "\n"); 2287 } 2288 2289 static ssize_t 2290 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2291 { 2292 /* can write 2293 * faulty - simulates and error 2294 * remove - disconnects the device 2295 * writemostly - sets write_mostly 2296 * -writemostly - clears write_mostly 2297 * blocked - sets the Blocked flag 2298 * -blocked - clears the Blocked flag 2299 * insync - sets Insync providing device isn't active 2300 */ 2301 int err = -EINVAL; 2302 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2303 md_error(rdev->mddev, rdev); 2304 err = 0; 2305 } else if (cmd_match(buf, "remove")) { 2306 if (rdev->raid_disk >= 0) 2307 err = -EBUSY; 2308 else { 2309 mddev_t *mddev = rdev->mddev; 2310 kick_rdev_from_array(rdev); 2311 if (mddev->pers) 2312 md_update_sb(mddev, 1); 2313 md_new_event(mddev); 2314 err = 0; 2315 } 2316 } else if (cmd_match(buf, "writemostly")) { 2317 set_bit(WriteMostly, &rdev->flags); 2318 err = 0; 2319 } else if (cmd_match(buf, "-writemostly")) { 2320 clear_bit(WriteMostly, &rdev->flags); 2321 err = 0; 2322 } else if (cmd_match(buf, "blocked")) { 2323 set_bit(Blocked, &rdev->flags); 2324 err = 0; 2325 } else if (cmd_match(buf, "-blocked")) { 2326 clear_bit(Blocked, &rdev->flags); 2327 wake_up(&rdev->blocked_wait); 2328 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2329 md_wakeup_thread(rdev->mddev->thread); 2330 2331 err = 0; 2332 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2333 set_bit(In_sync, &rdev->flags); 2334 err = 0; 2335 } 2336 if (!err && rdev->sysfs_state) 2337 sysfs_notify_dirent(rdev->sysfs_state); 2338 return err ? err : len; 2339 } 2340 static struct rdev_sysfs_entry rdev_state = 2341 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2342 2343 static ssize_t 2344 errors_show(mdk_rdev_t *rdev, char *page) 2345 { 2346 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2347 } 2348 2349 static ssize_t 2350 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2351 { 2352 char *e; 2353 unsigned long n = simple_strtoul(buf, &e, 10); 2354 if (*buf && (*e == 0 || *e == '\n')) { 2355 atomic_set(&rdev->corrected_errors, n); 2356 return len; 2357 } 2358 return -EINVAL; 2359 } 2360 static struct rdev_sysfs_entry rdev_errors = 2361 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2362 2363 static ssize_t 2364 slot_show(mdk_rdev_t *rdev, char *page) 2365 { 2366 if (rdev->raid_disk < 0) 2367 return sprintf(page, "none\n"); 2368 else 2369 return sprintf(page, "%d\n", rdev->raid_disk); 2370 } 2371 2372 static ssize_t 2373 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2374 { 2375 char *e; 2376 int err; 2377 char nm[20]; 2378 int slot = simple_strtoul(buf, &e, 10); 2379 if (strncmp(buf, "none", 4)==0) 2380 slot = -1; 2381 else if (e==buf || (*e && *e!= '\n')) 2382 return -EINVAL; 2383 if (rdev->mddev->pers && slot == -1) { 2384 /* Setting 'slot' on an active array requires also 2385 * updating the 'rd%d' link, and communicating 2386 * with the personality with ->hot_*_disk. 2387 * For now we only support removing 2388 * failed/spare devices. This normally happens automatically, 2389 * but not when the metadata is externally managed. 2390 */ 2391 if (rdev->raid_disk == -1) 2392 return -EEXIST; 2393 /* personality does all needed checks */ 2394 if (rdev->mddev->pers->hot_add_disk == NULL) 2395 return -EINVAL; 2396 err = rdev->mddev->pers-> 2397 hot_remove_disk(rdev->mddev, rdev->raid_disk); 2398 if (err) 2399 return err; 2400 sprintf(nm, "rd%d", rdev->raid_disk); 2401 sysfs_remove_link(&rdev->mddev->kobj, nm); 2402 rdev->raid_disk = -1; 2403 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2404 md_wakeup_thread(rdev->mddev->thread); 2405 } else if (rdev->mddev->pers) { 2406 mdk_rdev_t *rdev2; 2407 /* Activating a spare .. or possibly reactivating 2408 * if we ever get bitmaps working here. 2409 */ 2410 2411 if (rdev->raid_disk != -1) 2412 return -EBUSY; 2413 2414 if (rdev->mddev->pers->hot_add_disk == NULL) 2415 return -EINVAL; 2416 2417 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set) 2418 if (rdev2->raid_disk == slot) 2419 return -EEXIST; 2420 2421 rdev->raid_disk = slot; 2422 if (test_bit(In_sync, &rdev->flags)) 2423 rdev->saved_raid_disk = slot; 2424 else 2425 rdev->saved_raid_disk = -1; 2426 err = rdev->mddev->pers-> 2427 hot_add_disk(rdev->mddev, rdev); 2428 if (err) { 2429 rdev->raid_disk = -1; 2430 return err; 2431 } else 2432 sysfs_notify_dirent(rdev->sysfs_state); 2433 sprintf(nm, "rd%d", rdev->raid_disk); 2434 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm)) 2435 printk(KERN_WARNING 2436 "md: cannot register " 2437 "%s for %s\n", 2438 nm, mdname(rdev->mddev)); 2439 2440 /* don't wakeup anyone, leave that to userspace. */ 2441 } else { 2442 if (slot >= rdev->mddev->raid_disks) 2443 return -ENOSPC; 2444 rdev->raid_disk = slot; 2445 /* assume it is working */ 2446 clear_bit(Faulty, &rdev->flags); 2447 clear_bit(WriteMostly, &rdev->flags); 2448 set_bit(In_sync, &rdev->flags); 2449 sysfs_notify_dirent(rdev->sysfs_state); 2450 } 2451 return len; 2452 } 2453 2454 2455 static struct rdev_sysfs_entry rdev_slot = 2456 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2457 2458 static ssize_t 2459 offset_show(mdk_rdev_t *rdev, char *page) 2460 { 2461 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2462 } 2463 2464 static ssize_t 2465 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2466 { 2467 char *e; 2468 unsigned long long offset = simple_strtoull(buf, &e, 10); 2469 if (e==buf || (*e && *e != '\n')) 2470 return -EINVAL; 2471 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2472 return -EBUSY; 2473 if (rdev->sectors && rdev->mddev->external) 2474 /* Must set offset before size, so overlap checks 2475 * can be sane */ 2476 return -EBUSY; 2477 rdev->data_offset = offset; 2478 return len; 2479 } 2480 2481 static struct rdev_sysfs_entry rdev_offset = 2482 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2483 2484 static ssize_t 2485 rdev_size_show(mdk_rdev_t *rdev, char *page) 2486 { 2487 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2488 } 2489 2490 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2491 { 2492 /* check if two start/length pairs overlap */ 2493 if (s1+l1 <= s2) 2494 return 0; 2495 if (s2+l2 <= s1) 2496 return 0; 2497 return 1; 2498 } 2499 2500 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2501 { 2502 unsigned long long blocks; 2503 sector_t new; 2504 2505 if (strict_strtoull(buf, 10, &blocks) < 0) 2506 return -EINVAL; 2507 2508 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2509 return -EINVAL; /* sector conversion overflow */ 2510 2511 new = blocks * 2; 2512 if (new != blocks * 2) 2513 return -EINVAL; /* unsigned long long to sector_t overflow */ 2514 2515 *sectors = new; 2516 return 0; 2517 } 2518 2519 static ssize_t 2520 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2521 { 2522 mddev_t *my_mddev = rdev->mddev; 2523 sector_t oldsectors = rdev->sectors; 2524 sector_t sectors; 2525 2526 if (strict_blocks_to_sectors(buf, §ors) < 0) 2527 return -EINVAL; 2528 if (my_mddev->pers && rdev->raid_disk >= 0) { 2529 if (my_mddev->persistent) { 2530 sectors = super_types[my_mddev->major_version]. 2531 rdev_size_change(rdev, sectors); 2532 if (!sectors) 2533 return -EBUSY; 2534 } else if (!sectors) 2535 sectors = (rdev->bdev->bd_inode->i_size >> 9) - 2536 rdev->data_offset; 2537 } 2538 if (sectors < my_mddev->dev_sectors) 2539 return -EINVAL; /* component must fit device */ 2540 2541 rdev->sectors = sectors; 2542 if (sectors > oldsectors && my_mddev->external) { 2543 /* need to check that all other rdevs with the same ->bdev 2544 * do not overlap. We need to unlock the mddev to avoid 2545 * a deadlock. We have already changed rdev->sectors, and if 2546 * we have to change it back, we will have the lock again. 2547 */ 2548 mddev_t *mddev; 2549 int overlap = 0; 2550 struct list_head *tmp; 2551 2552 mddev_unlock(my_mddev); 2553 for_each_mddev(mddev, tmp) { 2554 mdk_rdev_t *rdev2; 2555 2556 mddev_lock(mddev); 2557 list_for_each_entry(rdev2, &mddev->disks, same_set) 2558 if (test_bit(AllReserved, &rdev2->flags) || 2559 (rdev->bdev == rdev2->bdev && 2560 rdev != rdev2 && 2561 overlaps(rdev->data_offset, rdev->sectors, 2562 rdev2->data_offset, 2563 rdev2->sectors))) { 2564 overlap = 1; 2565 break; 2566 } 2567 mddev_unlock(mddev); 2568 if (overlap) { 2569 mddev_put(mddev); 2570 break; 2571 } 2572 } 2573 mddev_lock(my_mddev); 2574 if (overlap) { 2575 /* Someone else could have slipped in a size 2576 * change here, but doing so is just silly. 2577 * We put oldsectors back because we *know* it is 2578 * safe, and trust userspace not to race with 2579 * itself 2580 */ 2581 rdev->sectors = oldsectors; 2582 return -EBUSY; 2583 } 2584 } 2585 return len; 2586 } 2587 2588 static struct rdev_sysfs_entry rdev_size = 2589 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2590 2591 2592 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page) 2593 { 2594 unsigned long long recovery_start = rdev->recovery_offset; 2595 2596 if (test_bit(In_sync, &rdev->flags) || 2597 recovery_start == MaxSector) 2598 return sprintf(page, "none\n"); 2599 2600 return sprintf(page, "%llu\n", recovery_start); 2601 } 2602 2603 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2604 { 2605 unsigned long long recovery_start; 2606 2607 if (cmd_match(buf, "none")) 2608 recovery_start = MaxSector; 2609 else if (strict_strtoull(buf, 10, &recovery_start)) 2610 return -EINVAL; 2611 2612 if (rdev->mddev->pers && 2613 rdev->raid_disk >= 0) 2614 return -EBUSY; 2615 2616 rdev->recovery_offset = recovery_start; 2617 if (recovery_start == MaxSector) 2618 set_bit(In_sync, &rdev->flags); 2619 else 2620 clear_bit(In_sync, &rdev->flags); 2621 return len; 2622 } 2623 2624 static struct rdev_sysfs_entry rdev_recovery_start = 2625 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 2626 2627 static struct attribute *rdev_default_attrs[] = { 2628 &rdev_state.attr, 2629 &rdev_errors.attr, 2630 &rdev_slot.attr, 2631 &rdev_offset.attr, 2632 &rdev_size.attr, 2633 &rdev_recovery_start.attr, 2634 NULL, 2635 }; 2636 static ssize_t 2637 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2638 { 2639 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2640 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2641 mddev_t *mddev = rdev->mddev; 2642 ssize_t rv; 2643 2644 if (!entry->show) 2645 return -EIO; 2646 2647 rv = mddev ? mddev_lock(mddev) : -EBUSY; 2648 if (!rv) { 2649 if (rdev->mddev == NULL) 2650 rv = -EBUSY; 2651 else 2652 rv = entry->show(rdev, page); 2653 mddev_unlock(mddev); 2654 } 2655 return rv; 2656 } 2657 2658 static ssize_t 2659 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2660 const char *page, size_t length) 2661 { 2662 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2663 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2664 ssize_t rv; 2665 mddev_t *mddev = rdev->mddev; 2666 2667 if (!entry->store) 2668 return -EIO; 2669 if (!capable(CAP_SYS_ADMIN)) 2670 return -EACCES; 2671 rv = mddev ? mddev_lock(mddev): -EBUSY; 2672 if (!rv) { 2673 if (rdev->mddev == NULL) 2674 rv = -EBUSY; 2675 else 2676 rv = entry->store(rdev, page, length); 2677 mddev_unlock(mddev); 2678 } 2679 return rv; 2680 } 2681 2682 static void rdev_free(struct kobject *ko) 2683 { 2684 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 2685 kfree(rdev); 2686 } 2687 static const struct sysfs_ops rdev_sysfs_ops = { 2688 .show = rdev_attr_show, 2689 .store = rdev_attr_store, 2690 }; 2691 static struct kobj_type rdev_ktype = { 2692 .release = rdev_free, 2693 .sysfs_ops = &rdev_sysfs_ops, 2694 .default_attrs = rdev_default_attrs, 2695 }; 2696 2697 /* 2698 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2699 * 2700 * mark the device faulty if: 2701 * 2702 * - the device is nonexistent (zero size) 2703 * - the device has no valid superblock 2704 * 2705 * a faulty rdev _never_ has rdev->sb set. 2706 */ 2707 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2708 { 2709 char b[BDEVNAME_SIZE]; 2710 int err; 2711 mdk_rdev_t *rdev; 2712 sector_t size; 2713 2714 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2715 if (!rdev) { 2716 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2717 return ERR_PTR(-ENOMEM); 2718 } 2719 2720 if ((err = alloc_disk_sb(rdev))) 2721 goto abort_free; 2722 2723 err = lock_rdev(rdev, newdev, super_format == -2); 2724 if (err) 2725 goto abort_free; 2726 2727 kobject_init(&rdev->kobj, &rdev_ktype); 2728 2729 rdev->desc_nr = -1; 2730 rdev->saved_raid_disk = -1; 2731 rdev->raid_disk = -1; 2732 rdev->flags = 0; 2733 rdev->data_offset = 0; 2734 rdev->sb_events = 0; 2735 rdev->last_read_error.tv_sec = 0; 2736 rdev->last_read_error.tv_nsec = 0; 2737 atomic_set(&rdev->nr_pending, 0); 2738 atomic_set(&rdev->read_errors, 0); 2739 atomic_set(&rdev->corrected_errors, 0); 2740 2741 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2742 if (!size) { 2743 printk(KERN_WARNING 2744 "md: %s has zero or unknown size, marking faulty!\n", 2745 bdevname(rdev->bdev,b)); 2746 err = -EINVAL; 2747 goto abort_free; 2748 } 2749 2750 if (super_format >= 0) { 2751 err = super_types[super_format]. 2752 load_super(rdev, NULL, super_minor); 2753 if (err == -EINVAL) { 2754 printk(KERN_WARNING 2755 "md: %s does not have a valid v%d.%d " 2756 "superblock, not importing!\n", 2757 bdevname(rdev->bdev,b), 2758 super_format, super_minor); 2759 goto abort_free; 2760 } 2761 if (err < 0) { 2762 printk(KERN_WARNING 2763 "md: could not read %s's sb, not importing!\n", 2764 bdevname(rdev->bdev,b)); 2765 goto abort_free; 2766 } 2767 } 2768 2769 INIT_LIST_HEAD(&rdev->same_set); 2770 init_waitqueue_head(&rdev->blocked_wait); 2771 2772 return rdev; 2773 2774 abort_free: 2775 if (rdev->sb_page) { 2776 if (rdev->bdev) 2777 unlock_rdev(rdev); 2778 free_disk_sb(rdev); 2779 } 2780 kfree(rdev); 2781 return ERR_PTR(err); 2782 } 2783 2784 /* 2785 * Check a full RAID array for plausibility 2786 */ 2787 2788 2789 static void analyze_sbs(mddev_t * mddev) 2790 { 2791 int i; 2792 mdk_rdev_t *rdev, *freshest, *tmp; 2793 char b[BDEVNAME_SIZE]; 2794 2795 freshest = NULL; 2796 rdev_for_each(rdev, tmp, mddev) 2797 switch (super_types[mddev->major_version]. 2798 load_super(rdev, freshest, mddev->minor_version)) { 2799 case 1: 2800 freshest = rdev; 2801 break; 2802 case 0: 2803 break; 2804 default: 2805 printk( KERN_ERR \ 2806 "md: fatal superblock inconsistency in %s" 2807 " -- removing from array\n", 2808 bdevname(rdev->bdev,b)); 2809 kick_rdev_from_array(rdev); 2810 } 2811 2812 2813 super_types[mddev->major_version]. 2814 validate_super(mddev, freshest); 2815 2816 i = 0; 2817 rdev_for_each(rdev, tmp, mddev) { 2818 if (mddev->max_disks && 2819 (rdev->desc_nr >= mddev->max_disks || 2820 i > mddev->max_disks)) { 2821 printk(KERN_WARNING 2822 "md: %s: %s: only %d devices permitted\n", 2823 mdname(mddev), bdevname(rdev->bdev, b), 2824 mddev->max_disks); 2825 kick_rdev_from_array(rdev); 2826 continue; 2827 } 2828 if (rdev != freshest) 2829 if (super_types[mddev->major_version]. 2830 validate_super(mddev, rdev)) { 2831 printk(KERN_WARNING "md: kicking non-fresh %s" 2832 " from array!\n", 2833 bdevname(rdev->bdev,b)); 2834 kick_rdev_from_array(rdev); 2835 continue; 2836 } 2837 if (mddev->level == LEVEL_MULTIPATH) { 2838 rdev->desc_nr = i++; 2839 rdev->raid_disk = rdev->desc_nr; 2840 set_bit(In_sync, &rdev->flags); 2841 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 2842 rdev->raid_disk = -1; 2843 clear_bit(In_sync, &rdev->flags); 2844 } 2845 } 2846 } 2847 2848 /* Read a fixed-point number. 2849 * Numbers in sysfs attributes should be in "standard" units where 2850 * possible, so time should be in seconds. 2851 * However we internally use a a much smaller unit such as 2852 * milliseconds or jiffies. 2853 * This function takes a decimal number with a possible fractional 2854 * component, and produces an integer which is the result of 2855 * multiplying that number by 10^'scale'. 2856 * all without any floating-point arithmetic. 2857 */ 2858 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 2859 { 2860 unsigned long result = 0; 2861 long decimals = -1; 2862 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 2863 if (*cp == '.') 2864 decimals = 0; 2865 else if (decimals < scale) { 2866 unsigned int value; 2867 value = *cp - '0'; 2868 result = result * 10 + value; 2869 if (decimals >= 0) 2870 decimals++; 2871 } 2872 cp++; 2873 } 2874 if (*cp == '\n') 2875 cp++; 2876 if (*cp) 2877 return -EINVAL; 2878 if (decimals < 0) 2879 decimals = 0; 2880 while (decimals < scale) { 2881 result *= 10; 2882 decimals ++; 2883 } 2884 *res = result; 2885 return 0; 2886 } 2887 2888 2889 static void md_safemode_timeout(unsigned long data); 2890 2891 static ssize_t 2892 safe_delay_show(mddev_t *mddev, char *page) 2893 { 2894 int msec = (mddev->safemode_delay*1000)/HZ; 2895 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2896 } 2897 static ssize_t 2898 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2899 { 2900 unsigned long msec; 2901 2902 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 2903 return -EINVAL; 2904 if (msec == 0) 2905 mddev->safemode_delay = 0; 2906 else { 2907 unsigned long old_delay = mddev->safemode_delay; 2908 mddev->safemode_delay = (msec*HZ)/1000; 2909 if (mddev->safemode_delay == 0) 2910 mddev->safemode_delay = 1; 2911 if (mddev->safemode_delay < old_delay) 2912 md_safemode_timeout((unsigned long)mddev); 2913 } 2914 return len; 2915 } 2916 static struct md_sysfs_entry md_safe_delay = 2917 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2918 2919 static ssize_t 2920 level_show(mddev_t *mddev, char *page) 2921 { 2922 struct mdk_personality *p = mddev->pers; 2923 if (p) 2924 return sprintf(page, "%s\n", p->name); 2925 else if (mddev->clevel[0]) 2926 return sprintf(page, "%s\n", mddev->clevel); 2927 else if (mddev->level != LEVEL_NONE) 2928 return sprintf(page, "%d\n", mddev->level); 2929 else 2930 return 0; 2931 } 2932 2933 static ssize_t 2934 level_store(mddev_t *mddev, const char *buf, size_t len) 2935 { 2936 char clevel[16]; 2937 ssize_t rv = len; 2938 struct mdk_personality *pers; 2939 long level; 2940 void *priv; 2941 mdk_rdev_t *rdev; 2942 2943 if (mddev->pers == NULL) { 2944 if (len == 0) 2945 return 0; 2946 if (len >= sizeof(mddev->clevel)) 2947 return -ENOSPC; 2948 strncpy(mddev->clevel, buf, len); 2949 if (mddev->clevel[len-1] == '\n') 2950 len--; 2951 mddev->clevel[len] = 0; 2952 mddev->level = LEVEL_NONE; 2953 return rv; 2954 } 2955 2956 /* request to change the personality. Need to ensure: 2957 * - array is not engaged in resync/recovery/reshape 2958 * - old personality can be suspended 2959 * - new personality will access other array. 2960 */ 2961 2962 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 2963 return -EBUSY; 2964 2965 if (!mddev->pers->quiesce) { 2966 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 2967 mdname(mddev), mddev->pers->name); 2968 return -EINVAL; 2969 } 2970 2971 /* Now find the new personality */ 2972 if (len == 0 || len >= sizeof(clevel)) 2973 return -EINVAL; 2974 strncpy(clevel, buf, len); 2975 if (clevel[len-1] == '\n') 2976 len--; 2977 clevel[len] = 0; 2978 if (strict_strtol(clevel, 10, &level)) 2979 level = LEVEL_NONE; 2980 2981 if (request_module("md-%s", clevel) != 0) 2982 request_module("md-level-%s", clevel); 2983 spin_lock(&pers_lock); 2984 pers = find_pers(level, clevel); 2985 if (!pers || !try_module_get(pers->owner)) { 2986 spin_unlock(&pers_lock); 2987 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 2988 return -EINVAL; 2989 } 2990 spin_unlock(&pers_lock); 2991 2992 if (pers == mddev->pers) { 2993 /* Nothing to do! */ 2994 module_put(pers->owner); 2995 return rv; 2996 } 2997 if (!pers->takeover) { 2998 module_put(pers->owner); 2999 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3000 mdname(mddev), clevel); 3001 return -EINVAL; 3002 } 3003 3004 /* ->takeover must set new_* and/or delta_disks 3005 * if it succeeds, and may set them when it fails. 3006 */ 3007 priv = pers->takeover(mddev); 3008 if (IS_ERR(priv)) { 3009 mddev->new_level = mddev->level; 3010 mddev->new_layout = mddev->layout; 3011 mddev->new_chunk_sectors = mddev->chunk_sectors; 3012 mddev->raid_disks -= mddev->delta_disks; 3013 mddev->delta_disks = 0; 3014 module_put(pers->owner); 3015 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3016 mdname(mddev), clevel); 3017 return PTR_ERR(priv); 3018 } 3019 3020 /* Looks like we have a winner */ 3021 mddev_suspend(mddev); 3022 mddev->pers->stop(mddev); 3023 3024 if (mddev->pers->sync_request == NULL && 3025 pers->sync_request != NULL) { 3026 /* need to add the md_redundancy_group */ 3027 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3028 printk(KERN_WARNING 3029 "md: cannot register extra attributes for %s\n", 3030 mdname(mddev)); 3031 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3032 } 3033 if (mddev->pers->sync_request != NULL && 3034 pers->sync_request == NULL) { 3035 /* need to remove the md_redundancy_group */ 3036 if (mddev->to_remove == NULL) 3037 mddev->to_remove = &md_redundancy_group; 3038 } 3039 3040 if (mddev->pers->sync_request == NULL && 3041 mddev->external) { 3042 /* We are converting from a no-redundancy array 3043 * to a redundancy array and metadata is managed 3044 * externally so we need to be sure that writes 3045 * won't block due to a need to transition 3046 * clean->dirty 3047 * until external management is started. 3048 */ 3049 mddev->in_sync = 0; 3050 mddev->safemode_delay = 0; 3051 mddev->safemode = 0; 3052 } 3053 3054 module_put(mddev->pers->owner); 3055 /* Invalidate devices that are now superfluous */ 3056 list_for_each_entry(rdev, &mddev->disks, same_set) 3057 if (rdev->raid_disk >= mddev->raid_disks) { 3058 rdev->raid_disk = -1; 3059 clear_bit(In_sync, &rdev->flags); 3060 } 3061 mddev->pers = pers; 3062 mddev->private = priv; 3063 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3064 mddev->level = mddev->new_level; 3065 mddev->layout = mddev->new_layout; 3066 mddev->chunk_sectors = mddev->new_chunk_sectors; 3067 mddev->delta_disks = 0; 3068 if (mddev->pers->sync_request == NULL) { 3069 /* this is now an array without redundancy, so 3070 * it must always be in_sync 3071 */ 3072 mddev->in_sync = 1; 3073 del_timer_sync(&mddev->safemode_timer); 3074 } 3075 pers->run(mddev); 3076 mddev_resume(mddev); 3077 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3078 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3079 md_wakeup_thread(mddev->thread); 3080 sysfs_notify(&mddev->kobj, NULL, "level"); 3081 md_new_event(mddev); 3082 return rv; 3083 } 3084 3085 static struct md_sysfs_entry md_level = 3086 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3087 3088 3089 static ssize_t 3090 layout_show(mddev_t *mddev, char *page) 3091 { 3092 /* just a number, not meaningful for all levels */ 3093 if (mddev->reshape_position != MaxSector && 3094 mddev->layout != mddev->new_layout) 3095 return sprintf(page, "%d (%d)\n", 3096 mddev->new_layout, mddev->layout); 3097 return sprintf(page, "%d\n", mddev->layout); 3098 } 3099 3100 static ssize_t 3101 layout_store(mddev_t *mddev, const char *buf, size_t len) 3102 { 3103 char *e; 3104 unsigned long n = simple_strtoul(buf, &e, 10); 3105 3106 if (!*buf || (*e && *e != '\n')) 3107 return -EINVAL; 3108 3109 if (mddev->pers) { 3110 int err; 3111 if (mddev->pers->check_reshape == NULL) 3112 return -EBUSY; 3113 mddev->new_layout = n; 3114 err = mddev->pers->check_reshape(mddev); 3115 if (err) { 3116 mddev->new_layout = mddev->layout; 3117 return err; 3118 } 3119 } else { 3120 mddev->new_layout = n; 3121 if (mddev->reshape_position == MaxSector) 3122 mddev->layout = n; 3123 } 3124 return len; 3125 } 3126 static struct md_sysfs_entry md_layout = 3127 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3128 3129 3130 static ssize_t 3131 raid_disks_show(mddev_t *mddev, char *page) 3132 { 3133 if (mddev->raid_disks == 0) 3134 return 0; 3135 if (mddev->reshape_position != MaxSector && 3136 mddev->delta_disks != 0) 3137 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3138 mddev->raid_disks - mddev->delta_disks); 3139 return sprintf(page, "%d\n", mddev->raid_disks); 3140 } 3141 3142 static int update_raid_disks(mddev_t *mddev, int raid_disks); 3143 3144 static ssize_t 3145 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 3146 { 3147 char *e; 3148 int rv = 0; 3149 unsigned long n = simple_strtoul(buf, &e, 10); 3150 3151 if (!*buf || (*e && *e != '\n')) 3152 return -EINVAL; 3153 3154 if (mddev->pers) 3155 rv = update_raid_disks(mddev, n); 3156 else if (mddev->reshape_position != MaxSector) { 3157 int olddisks = mddev->raid_disks - mddev->delta_disks; 3158 mddev->delta_disks = n - olddisks; 3159 mddev->raid_disks = n; 3160 } else 3161 mddev->raid_disks = n; 3162 return rv ? rv : len; 3163 } 3164 static struct md_sysfs_entry md_raid_disks = 3165 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3166 3167 static ssize_t 3168 chunk_size_show(mddev_t *mddev, char *page) 3169 { 3170 if (mddev->reshape_position != MaxSector && 3171 mddev->chunk_sectors != mddev->new_chunk_sectors) 3172 return sprintf(page, "%d (%d)\n", 3173 mddev->new_chunk_sectors << 9, 3174 mddev->chunk_sectors << 9); 3175 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3176 } 3177 3178 static ssize_t 3179 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 3180 { 3181 char *e; 3182 unsigned long n = simple_strtoul(buf, &e, 10); 3183 3184 if (!*buf || (*e && *e != '\n')) 3185 return -EINVAL; 3186 3187 if (mddev->pers) { 3188 int err; 3189 if (mddev->pers->check_reshape == NULL) 3190 return -EBUSY; 3191 mddev->new_chunk_sectors = n >> 9; 3192 err = mddev->pers->check_reshape(mddev); 3193 if (err) { 3194 mddev->new_chunk_sectors = mddev->chunk_sectors; 3195 return err; 3196 } 3197 } else { 3198 mddev->new_chunk_sectors = n >> 9; 3199 if (mddev->reshape_position == MaxSector) 3200 mddev->chunk_sectors = n >> 9; 3201 } 3202 return len; 3203 } 3204 static struct md_sysfs_entry md_chunk_size = 3205 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3206 3207 static ssize_t 3208 resync_start_show(mddev_t *mddev, char *page) 3209 { 3210 if (mddev->recovery_cp == MaxSector) 3211 return sprintf(page, "none\n"); 3212 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3213 } 3214 3215 static ssize_t 3216 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 3217 { 3218 char *e; 3219 unsigned long long n = simple_strtoull(buf, &e, 10); 3220 3221 if (mddev->pers) 3222 return -EBUSY; 3223 if (cmd_match(buf, "none")) 3224 n = MaxSector; 3225 else if (!*buf || (*e && *e != '\n')) 3226 return -EINVAL; 3227 3228 mddev->recovery_cp = n; 3229 return len; 3230 } 3231 static struct md_sysfs_entry md_resync_start = 3232 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3233 3234 /* 3235 * The array state can be: 3236 * 3237 * clear 3238 * No devices, no size, no level 3239 * Equivalent to STOP_ARRAY ioctl 3240 * inactive 3241 * May have some settings, but array is not active 3242 * all IO results in error 3243 * When written, doesn't tear down array, but just stops it 3244 * suspended (not supported yet) 3245 * All IO requests will block. The array can be reconfigured. 3246 * Writing this, if accepted, will block until array is quiescent 3247 * readonly 3248 * no resync can happen. no superblocks get written. 3249 * write requests fail 3250 * read-auto 3251 * like readonly, but behaves like 'clean' on a write request. 3252 * 3253 * clean - no pending writes, but otherwise active. 3254 * When written to inactive array, starts without resync 3255 * If a write request arrives then 3256 * if metadata is known, mark 'dirty' and switch to 'active'. 3257 * if not known, block and switch to write-pending 3258 * If written to an active array that has pending writes, then fails. 3259 * active 3260 * fully active: IO and resync can be happening. 3261 * When written to inactive array, starts with resync 3262 * 3263 * write-pending 3264 * clean, but writes are blocked waiting for 'active' to be written. 3265 * 3266 * active-idle 3267 * like active, but no writes have been seen for a while (100msec). 3268 * 3269 */ 3270 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3271 write_pending, active_idle, bad_word}; 3272 static char *array_states[] = { 3273 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3274 "write-pending", "active-idle", NULL }; 3275 3276 static int match_word(const char *word, char **list) 3277 { 3278 int n; 3279 for (n=0; list[n]; n++) 3280 if (cmd_match(word, list[n])) 3281 break; 3282 return n; 3283 } 3284 3285 static ssize_t 3286 array_state_show(mddev_t *mddev, char *page) 3287 { 3288 enum array_state st = inactive; 3289 3290 if (mddev->pers) 3291 switch(mddev->ro) { 3292 case 1: 3293 st = readonly; 3294 break; 3295 case 2: 3296 st = read_auto; 3297 break; 3298 case 0: 3299 if (mddev->in_sync) 3300 st = clean; 3301 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 3302 st = write_pending; 3303 else if (mddev->safemode) 3304 st = active_idle; 3305 else 3306 st = active; 3307 } 3308 else { 3309 if (list_empty(&mddev->disks) && 3310 mddev->raid_disks == 0 && 3311 mddev->dev_sectors == 0) 3312 st = clear; 3313 else 3314 st = inactive; 3315 } 3316 return sprintf(page, "%s\n", array_states[st]); 3317 } 3318 3319 static int do_md_stop(mddev_t * mddev, int ro, int is_open); 3320 static int md_set_readonly(mddev_t * mddev, int is_open); 3321 static int do_md_run(mddev_t * mddev); 3322 static int restart_array(mddev_t *mddev); 3323 3324 static ssize_t 3325 array_state_store(mddev_t *mddev, const char *buf, size_t len) 3326 { 3327 int err = -EINVAL; 3328 enum array_state st = match_word(buf, array_states); 3329 switch(st) { 3330 case bad_word: 3331 break; 3332 case clear: 3333 /* stopping an active array */ 3334 if (atomic_read(&mddev->openers) > 0) 3335 return -EBUSY; 3336 err = do_md_stop(mddev, 0, 0); 3337 break; 3338 case inactive: 3339 /* stopping an active array */ 3340 if (mddev->pers) { 3341 if (atomic_read(&mddev->openers) > 0) 3342 return -EBUSY; 3343 err = do_md_stop(mddev, 2, 0); 3344 } else 3345 err = 0; /* already inactive */ 3346 break; 3347 case suspended: 3348 break; /* not supported yet */ 3349 case readonly: 3350 if (mddev->pers) 3351 err = md_set_readonly(mddev, 0); 3352 else { 3353 mddev->ro = 1; 3354 set_disk_ro(mddev->gendisk, 1); 3355 err = do_md_run(mddev); 3356 } 3357 break; 3358 case read_auto: 3359 if (mddev->pers) { 3360 if (mddev->ro == 0) 3361 err = md_set_readonly(mddev, 0); 3362 else if (mddev->ro == 1) 3363 err = restart_array(mddev); 3364 if (err == 0) { 3365 mddev->ro = 2; 3366 set_disk_ro(mddev->gendisk, 0); 3367 } 3368 } else { 3369 mddev->ro = 2; 3370 err = do_md_run(mddev); 3371 } 3372 break; 3373 case clean: 3374 if (mddev->pers) { 3375 restart_array(mddev); 3376 spin_lock_irq(&mddev->write_lock); 3377 if (atomic_read(&mddev->writes_pending) == 0) { 3378 if (mddev->in_sync == 0) { 3379 mddev->in_sync = 1; 3380 if (mddev->safemode == 1) 3381 mddev->safemode = 0; 3382 if (mddev->persistent) 3383 set_bit(MD_CHANGE_CLEAN, 3384 &mddev->flags); 3385 } 3386 err = 0; 3387 } else 3388 err = -EBUSY; 3389 spin_unlock_irq(&mddev->write_lock); 3390 } else 3391 err = -EINVAL; 3392 break; 3393 case active: 3394 if (mddev->pers) { 3395 restart_array(mddev); 3396 if (mddev->external) 3397 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 3398 wake_up(&mddev->sb_wait); 3399 err = 0; 3400 } else { 3401 mddev->ro = 0; 3402 set_disk_ro(mddev->gendisk, 0); 3403 err = do_md_run(mddev); 3404 } 3405 break; 3406 case write_pending: 3407 case active_idle: 3408 /* these cannot be set */ 3409 break; 3410 } 3411 if (err) 3412 return err; 3413 else { 3414 sysfs_notify_dirent(mddev->sysfs_state); 3415 return len; 3416 } 3417 } 3418 static struct md_sysfs_entry md_array_state = 3419 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3420 3421 static ssize_t 3422 max_corrected_read_errors_show(mddev_t *mddev, char *page) { 3423 return sprintf(page, "%d\n", 3424 atomic_read(&mddev->max_corr_read_errors)); 3425 } 3426 3427 static ssize_t 3428 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len) 3429 { 3430 char *e; 3431 unsigned long n = simple_strtoul(buf, &e, 10); 3432 3433 if (*buf && (*e == 0 || *e == '\n')) { 3434 atomic_set(&mddev->max_corr_read_errors, n); 3435 return len; 3436 } 3437 return -EINVAL; 3438 } 3439 3440 static struct md_sysfs_entry max_corr_read_errors = 3441 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3442 max_corrected_read_errors_store); 3443 3444 static ssize_t 3445 null_show(mddev_t *mddev, char *page) 3446 { 3447 return -EINVAL; 3448 } 3449 3450 static ssize_t 3451 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 3452 { 3453 /* buf must be %d:%d\n? giving major and minor numbers */ 3454 /* The new device is added to the array. 3455 * If the array has a persistent superblock, we read the 3456 * superblock to initialise info and check validity. 3457 * Otherwise, only checking done is that in bind_rdev_to_array, 3458 * which mainly checks size. 3459 */ 3460 char *e; 3461 int major = simple_strtoul(buf, &e, 10); 3462 int minor; 3463 dev_t dev; 3464 mdk_rdev_t *rdev; 3465 int err; 3466 3467 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3468 return -EINVAL; 3469 minor = simple_strtoul(e+1, &e, 10); 3470 if (*e && *e != '\n') 3471 return -EINVAL; 3472 dev = MKDEV(major, minor); 3473 if (major != MAJOR(dev) || 3474 minor != MINOR(dev)) 3475 return -EOVERFLOW; 3476 3477 3478 if (mddev->persistent) { 3479 rdev = md_import_device(dev, mddev->major_version, 3480 mddev->minor_version); 3481 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3482 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3483 mdk_rdev_t, same_set); 3484 err = super_types[mddev->major_version] 3485 .load_super(rdev, rdev0, mddev->minor_version); 3486 if (err < 0) 3487 goto out; 3488 } 3489 } else if (mddev->external) 3490 rdev = md_import_device(dev, -2, -1); 3491 else 3492 rdev = md_import_device(dev, -1, -1); 3493 3494 if (IS_ERR(rdev)) 3495 return PTR_ERR(rdev); 3496 err = bind_rdev_to_array(rdev, mddev); 3497 out: 3498 if (err) 3499 export_rdev(rdev); 3500 return err ? err : len; 3501 } 3502 3503 static struct md_sysfs_entry md_new_device = 3504 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 3505 3506 static ssize_t 3507 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 3508 { 3509 char *end; 3510 unsigned long chunk, end_chunk; 3511 3512 if (!mddev->bitmap) 3513 goto out; 3514 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 3515 while (*buf) { 3516 chunk = end_chunk = simple_strtoul(buf, &end, 0); 3517 if (buf == end) break; 3518 if (*end == '-') { /* range */ 3519 buf = end + 1; 3520 end_chunk = simple_strtoul(buf, &end, 0); 3521 if (buf == end) break; 3522 } 3523 if (*end && !isspace(*end)) break; 3524 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 3525 buf = skip_spaces(end); 3526 } 3527 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 3528 out: 3529 return len; 3530 } 3531 3532 static struct md_sysfs_entry md_bitmap = 3533 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 3534 3535 static ssize_t 3536 size_show(mddev_t *mddev, char *page) 3537 { 3538 return sprintf(page, "%llu\n", 3539 (unsigned long long)mddev->dev_sectors / 2); 3540 } 3541 3542 static int update_size(mddev_t *mddev, sector_t num_sectors); 3543 3544 static ssize_t 3545 size_store(mddev_t *mddev, const char *buf, size_t len) 3546 { 3547 /* If array is inactive, we can reduce the component size, but 3548 * not increase it (except from 0). 3549 * If array is active, we can try an on-line resize 3550 */ 3551 sector_t sectors; 3552 int err = strict_blocks_to_sectors(buf, §ors); 3553 3554 if (err < 0) 3555 return err; 3556 if (mddev->pers) { 3557 err = update_size(mddev, sectors); 3558 md_update_sb(mddev, 1); 3559 } else { 3560 if (mddev->dev_sectors == 0 || 3561 mddev->dev_sectors > sectors) 3562 mddev->dev_sectors = sectors; 3563 else 3564 err = -ENOSPC; 3565 } 3566 return err ? err : len; 3567 } 3568 3569 static struct md_sysfs_entry md_size = 3570 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 3571 3572 3573 /* Metdata version. 3574 * This is one of 3575 * 'none' for arrays with no metadata (good luck...) 3576 * 'external' for arrays with externally managed metadata, 3577 * or N.M for internally known formats 3578 */ 3579 static ssize_t 3580 metadata_show(mddev_t *mddev, char *page) 3581 { 3582 if (mddev->persistent) 3583 return sprintf(page, "%d.%d\n", 3584 mddev->major_version, mddev->minor_version); 3585 else if (mddev->external) 3586 return sprintf(page, "external:%s\n", mddev->metadata_type); 3587 else 3588 return sprintf(page, "none\n"); 3589 } 3590 3591 static ssize_t 3592 metadata_store(mddev_t *mddev, const char *buf, size_t len) 3593 { 3594 int major, minor; 3595 char *e; 3596 /* Changing the details of 'external' metadata is 3597 * always permitted. Otherwise there must be 3598 * no devices attached to the array. 3599 */ 3600 if (mddev->external && strncmp(buf, "external:", 9) == 0) 3601 ; 3602 else if (!list_empty(&mddev->disks)) 3603 return -EBUSY; 3604 3605 if (cmd_match(buf, "none")) { 3606 mddev->persistent = 0; 3607 mddev->external = 0; 3608 mddev->major_version = 0; 3609 mddev->minor_version = 90; 3610 return len; 3611 } 3612 if (strncmp(buf, "external:", 9) == 0) { 3613 size_t namelen = len-9; 3614 if (namelen >= sizeof(mddev->metadata_type)) 3615 namelen = sizeof(mddev->metadata_type)-1; 3616 strncpy(mddev->metadata_type, buf+9, namelen); 3617 mddev->metadata_type[namelen] = 0; 3618 if (namelen && mddev->metadata_type[namelen-1] == '\n') 3619 mddev->metadata_type[--namelen] = 0; 3620 mddev->persistent = 0; 3621 mddev->external = 1; 3622 mddev->major_version = 0; 3623 mddev->minor_version = 90; 3624 return len; 3625 } 3626 major = simple_strtoul(buf, &e, 10); 3627 if (e==buf || *e != '.') 3628 return -EINVAL; 3629 buf = e+1; 3630 minor = simple_strtoul(buf, &e, 10); 3631 if (e==buf || (*e && *e != '\n') ) 3632 return -EINVAL; 3633 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 3634 return -ENOENT; 3635 mddev->major_version = major; 3636 mddev->minor_version = minor; 3637 mddev->persistent = 1; 3638 mddev->external = 0; 3639 return len; 3640 } 3641 3642 static struct md_sysfs_entry md_metadata = 3643 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 3644 3645 static ssize_t 3646 action_show(mddev_t *mddev, char *page) 3647 { 3648 char *type = "idle"; 3649 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3650 type = "frozen"; 3651 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3652 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 3653 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3654 type = "reshape"; 3655 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3656 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3657 type = "resync"; 3658 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 3659 type = "check"; 3660 else 3661 type = "repair"; 3662 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 3663 type = "recover"; 3664 } 3665 return sprintf(page, "%s\n", type); 3666 } 3667 3668 static ssize_t 3669 action_store(mddev_t *mddev, const char *page, size_t len) 3670 { 3671 if (!mddev->pers || !mddev->pers->sync_request) 3672 return -EINVAL; 3673 3674 if (cmd_match(page, "frozen")) 3675 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3676 else 3677 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3678 3679 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 3680 if (mddev->sync_thread) { 3681 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3682 md_unregister_thread(mddev->sync_thread); 3683 mddev->sync_thread = NULL; 3684 mddev->recovery = 0; 3685 } 3686 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3687 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 3688 return -EBUSY; 3689 else if (cmd_match(page, "resync")) 3690 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3691 else if (cmd_match(page, "recover")) { 3692 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3693 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3694 } else if (cmd_match(page, "reshape")) { 3695 int err; 3696 if (mddev->pers->start_reshape == NULL) 3697 return -EINVAL; 3698 err = mddev->pers->start_reshape(mddev); 3699 if (err) 3700 return err; 3701 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3702 } else { 3703 if (cmd_match(page, "check")) 3704 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3705 else if (!cmd_match(page, "repair")) 3706 return -EINVAL; 3707 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3708 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3709 } 3710 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3711 md_wakeup_thread(mddev->thread); 3712 sysfs_notify_dirent(mddev->sysfs_action); 3713 return len; 3714 } 3715 3716 static ssize_t 3717 mismatch_cnt_show(mddev_t *mddev, char *page) 3718 { 3719 return sprintf(page, "%llu\n", 3720 (unsigned long long) mddev->resync_mismatches); 3721 } 3722 3723 static struct md_sysfs_entry md_scan_mode = 3724 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 3725 3726 3727 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 3728 3729 static ssize_t 3730 sync_min_show(mddev_t *mddev, char *page) 3731 { 3732 return sprintf(page, "%d (%s)\n", speed_min(mddev), 3733 mddev->sync_speed_min ? "local": "system"); 3734 } 3735 3736 static ssize_t 3737 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 3738 { 3739 int min; 3740 char *e; 3741 if (strncmp(buf, "system", 6)==0) { 3742 mddev->sync_speed_min = 0; 3743 return len; 3744 } 3745 min = simple_strtoul(buf, &e, 10); 3746 if (buf == e || (*e && *e != '\n') || min <= 0) 3747 return -EINVAL; 3748 mddev->sync_speed_min = min; 3749 return len; 3750 } 3751 3752 static struct md_sysfs_entry md_sync_min = 3753 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 3754 3755 static ssize_t 3756 sync_max_show(mddev_t *mddev, char *page) 3757 { 3758 return sprintf(page, "%d (%s)\n", speed_max(mddev), 3759 mddev->sync_speed_max ? "local": "system"); 3760 } 3761 3762 static ssize_t 3763 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 3764 { 3765 int max; 3766 char *e; 3767 if (strncmp(buf, "system", 6)==0) { 3768 mddev->sync_speed_max = 0; 3769 return len; 3770 } 3771 max = simple_strtoul(buf, &e, 10); 3772 if (buf == e || (*e && *e != '\n') || max <= 0) 3773 return -EINVAL; 3774 mddev->sync_speed_max = max; 3775 return len; 3776 } 3777 3778 static struct md_sysfs_entry md_sync_max = 3779 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 3780 3781 static ssize_t 3782 degraded_show(mddev_t *mddev, char *page) 3783 { 3784 return sprintf(page, "%d\n", mddev->degraded); 3785 } 3786 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 3787 3788 static ssize_t 3789 sync_force_parallel_show(mddev_t *mddev, char *page) 3790 { 3791 return sprintf(page, "%d\n", mddev->parallel_resync); 3792 } 3793 3794 static ssize_t 3795 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len) 3796 { 3797 long n; 3798 3799 if (strict_strtol(buf, 10, &n)) 3800 return -EINVAL; 3801 3802 if (n != 0 && n != 1) 3803 return -EINVAL; 3804 3805 mddev->parallel_resync = n; 3806 3807 if (mddev->sync_thread) 3808 wake_up(&resync_wait); 3809 3810 return len; 3811 } 3812 3813 /* force parallel resync, even with shared block devices */ 3814 static struct md_sysfs_entry md_sync_force_parallel = 3815 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 3816 sync_force_parallel_show, sync_force_parallel_store); 3817 3818 static ssize_t 3819 sync_speed_show(mddev_t *mddev, char *page) 3820 { 3821 unsigned long resync, dt, db; 3822 if (mddev->curr_resync == 0) 3823 return sprintf(page, "none\n"); 3824 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 3825 dt = (jiffies - mddev->resync_mark) / HZ; 3826 if (!dt) dt++; 3827 db = resync - mddev->resync_mark_cnt; 3828 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 3829 } 3830 3831 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 3832 3833 static ssize_t 3834 sync_completed_show(mddev_t *mddev, char *page) 3835 { 3836 unsigned long max_sectors, resync; 3837 3838 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3839 return sprintf(page, "none\n"); 3840 3841 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3842 max_sectors = mddev->resync_max_sectors; 3843 else 3844 max_sectors = mddev->dev_sectors; 3845 3846 resync = mddev->curr_resync_completed; 3847 return sprintf(page, "%lu / %lu\n", resync, max_sectors); 3848 } 3849 3850 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 3851 3852 static ssize_t 3853 min_sync_show(mddev_t *mddev, char *page) 3854 { 3855 return sprintf(page, "%llu\n", 3856 (unsigned long long)mddev->resync_min); 3857 } 3858 static ssize_t 3859 min_sync_store(mddev_t *mddev, const char *buf, size_t len) 3860 { 3861 unsigned long long min; 3862 if (strict_strtoull(buf, 10, &min)) 3863 return -EINVAL; 3864 if (min > mddev->resync_max) 3865 return -EINVAL; 3866 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3867 return -EBUSY; 3868 3869 /* Must be a multiple of chunk_size */ 3870 if (mddev->chunk_sectors) { 3871 sector_t temp = min; 3872 if (sector_div(temp, mddev->chunk_sectors)) 3873 return -EINVAL; 3874 } 3875 mddev->resync_min = min; 3876 3877 return len; 3878 } 3879 3880 static struct md_sysfs_entry md_min_sync = 3881 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 3882 3883 static ssize_t 3884 max_sync_show(mddev_t *mddev, char *page) 3885 { 3886 if (mddev->resync_max == MaxSector) 3887 return sprintf(page, "max\n"); 3888 else 3889 return sprintf(page, "%llu\n", 3890 (unsigned long long)mddev->resync_max); 3891 } 3892 static ssize_t 3893 max_sync_store(mddev_t *mddev, const char *buf, size_t len) 3894 { 3895 if (strncmp(buf, "max", 3) == 0) 3896 mddev->resync_max = MaxSector; 3897 else { 3898 unsigned long long max; 3899 if (strict_strtoull(buf, 10, &max)) 3900 return -EINVAL; 3901 if (max < mddev->resync_min) 3902 return -EINVAL; 3903 if (max < mddev->resync_max && 3904 mddev->ro == 0 && 3905 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3906 return -EBUSY; 3907 3908 /* Must be a multiple of chunk_size */ 3909 if (mddev->chunk_sectors) { 3910 sector_t temp = max; 3911 if (sector_div(temp, mddev->chunk_sectors)) 3912 return -EINVAL; 3913 } 3914 mddev->resync_max = max; 3915 } 3916 wake_up(&mddev->recovery_wait); 3917 return len; 3918 } 3919 3920 static struct md_sysfs_entry md_max_sync = 3921 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 3922 3923 static ssize_t 3924 suspend_lo_show(mddev_t *mddev, char *page) 3925 { 3926 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 3927 } 3928 3929 static ssize_t 3930 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 3931 { 3932 char *e; 3933 unsigned long long new = simple_strtoull(buf, &e, 10); 3934 3935 if (mddev->pers == NULL || 3936 mddev->pers->quiesce == NULL) 3937 return -EINVAL; 3938 if (buf == e || (*e && *e != '\n')) 3939 return -EINVAL; 3940 if (new >= mddev->suspend_hi || 3941 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 3942 mddev->suspend_lo = new; 3943 mddev->pers->quiesce(mddev, 2); 3944 return len; 3945 } else 3946 return -EINVAL; 3947 } 3948 static struct md_sysfs_entry md_suspend_lo = 3949 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 3950 3951 3952 static ssize_t 3953 suspend_hi_show(mddev_t *mddev, char *page) 3954 { 3955 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 3956 } 3957 3958 static ssize_t 3959 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 3960 { 3961 char *e; 3962 unsigned long long new = simple_strtoull(buf, &e, 10); 3963 3964 if (mddev->pers == NULL || 3965 mddev->pers->quiesce == NULL) 3966 return -EINVAL; 3967 if (buf == e || (*e && *e != '\n')) 3968 return -EINVAL; 3969 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 3970 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 3971 mddev->suspend_hi = new; 3972 mddev->pers->quiesce(mddev, 1); 3973 mddev->pers->quiesce(mddev, 0); 3974 return len; 3975 } else 3976 return -EINVAL; 3977 } 3978 static struct md_sysfs_entry md_suspend_hi = 3979 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 3980 3981 static ssize_t 3982 reshape_position_show(mddev_t *mddev, char *page) 3983 { 3984 if (mddev->reshape_position != MaxSector) 3985 return sprintf(page, "%llu\n", 3986 (unsigned long long)mddev->reshape_position); 3987 strcpy(page, "none\n"); 3988 return 5; 3989 } 3990 3991 static ssize_t 3992 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 3993 { 3994 char *e; 3995 unsigned long long new = simple_strtoull(buf, &e, 10); 3996 if (mddev->pers) 3997 return -EBUSY; 3998 if (buf == e || (*e && *e != '\n')) 3999 return -EINVAL; 4000 mddev->reshape_position = new; 4001 mddev->delta_disks = 0; 4002 mddev->new_level = mddev->level; 4003 mddev->new_layout = mddev->layout; 4004 mddev->new_chunk_sectors = mddev->chunk_sectors; 4005 return len; 4006 } 4007 4008 static struct md_sysfs_entry md_reshape_position = 4009 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4010 reshape_position_store); 4011 4012 static ssize_t 4013 array_size_show(mddev_t *mddev, char *page) 4014 { 4015 if (mddev->external_size) 4016 return sprintf(page, "%llu\n", 4017 (unsigned long long)mddev->array_sectors/2); 4018 else 4019 return sprintf(page, "default\n"); 4020 } 4021 4022 static ssize_t 4023 array_size_store(mddev_t *mddev, const char *buf, size_t len) 4024 { 4025 sector_t sectors; 4026 4027 if (strncmp(buf, "default", 7) == 0) { 4028 if (mddev->pers) 4029 sectors = mddev->pers->size(mddev, 0, 0); 4030 else 4031 sectors = mddev->array_sectors; 4032 4033 mddev->external_size = 0; 4034 } else { 4035 if (strict_blocks_to_sectors(buf, §ors) < 0) 4036 return -EINVAL; 4037 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4038 return -E2BIG; 4039 4040 mddev->external_size = 1; 4041 } 4042 4043 mddev->array_sectors = sectors; 4044 set_capacity(mddev->gendisk, mddev->array_sectors); 4045 if (mddev->pers) 4046 revalidate_disk(mddev->gendisk); 4047 4048 return len; 4049 } 4050 4051 static struct md_sysfs_entry md_array_size = 4052 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4053 array_size_store); 4054 4055 static struct attribute *md_default_attrs[] = { 4056 &md_level.attr, 4057 &md_layout.attr, 4058 &md_raid_disks.attr, 4059 &md_chunk_size.attr, 4060 &md_size.attr, 4061 &md_resync_start.attr, 4062 &md_metadata.attr, 4063 &md_new_device.attr, 4064 &md_safe_delay.attr, 4065 &md_array_state.attr, 4066 &md_reshape_position.attr, 4067 &md_array_size.attr, 4068 &max_corr_read_errors.attr, 4069 NULL, 4070 }; 4071 4072 static struct attribute *md_redundancy_attrs[] = { 4073 &md_scan_mode.attr, 4074 &md_mismatches.attr, 4075 &md_sync_min.attr, 4076 &md_sync_max.attr, 4077 &md_sync_speed.attr, 4078 &md_sync_force_parallel.attr, 4079 &md_sync_completed.attr, 4080 &md_min_sync.attr, 4081 &md_max_sync.attr, 4082 &md_suspend_lo.attr, 4083 &md_suspend_hi.attr, 4084 &md_bitmap.attr, 4085 &md_degraded.attr, 4086 NULL, 4087 }; 4088 static struct attribute_group md_redundancy_group = { 4089 .name = NULL, 4090 .attrs = md_redundancy_attrs, 4091 }; 4092 4093 4094 static ssize_t 4095 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4096 { 4097 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4098 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4099 ssize_t rv; 4100 4101 if (!entry->show) 4102 return -EIO; 4103 rv = mddev_lock(mddev); 4104 if (!rv) { 4105 rv = entry->show(mddev, page); 4106 mddev_unlock(mddev); 4107 } 4108 return rv; 4109 } 4110 4111 static ssize_t 4112 md_attr_store(struct kobject *kobj, struct attribute *attr, 4113 const char *page, size_t length) 4114 { 4115 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4116 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4117 ssize_t rv; 4118 4119 if (!entry->store) 4120 return -EIO; 4121 if (!capable(CAP_SYS_ADMIN)) 4122 return -EACCES; 4123 rv = mddev_lock(mddev); 4124 if (mddev->hold_active == UNTIL_IOCTL) 4125 mddev->hold_active = 0; 4126 if (!rv) { 4127 rv = entry->store(mddev, page, length); 4128 mddev_unlock(mddev); 4129 } 4130 return rv; 4131 } 4132 4133 static void md_free(struct kobject *ko) 4134 { 4135 mddev_t *mddev = container_of(ko, mddev_t, kobj); 4136 4137 if (mddev->sysfs_state) 4138 sysfs_put(mddev->sysfs_state); 4139 4140 if (mddev->gendisk) { 4141 del_gendisk(mddev->gendisk); 4142 put_disk(mddev->gendisk); 4143 } 4144 if (mddev->queue) 4145 blk_cleanup_queue(mddev->queue); 4146 4147 kfree(mddev); 4148 } 4149 4150 static const struct sysfs_ops md_sysfs_ops = { 4151 .show = md_attr_show, 4152 .store = md_attr_store, 4153 }; 4154 static struct kobj_type md_ktype = { 4155 .release = md_free, 4156 .sysfs_ops = &md_sysfs_ops, 4157 .default_attrs = md_default_attrs, 4158 }; 4159 4160 int mdp_major = 0; 4161 4162 static void mddev_delayed_delete(struct work_struct *ws) 4163 { 4164 mddev_t *mddev = container_of(ws, mddev_t, del_work); 4165 4166 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4167 kobject_del(&mddev->kobj); 4168 kobject_put(&mddev->kobj); 4169 } 4170 4171 static int md_alloc(dev_t dev, char *name) 4172 { 4173 static DEFINE_MUTEX(disks_mutex); 4174 mddev_t *mddev = mddev_find(dev); 4175 struct gendisk *disk; 4176 int partitioned; 4177 int shift; 4178 int unit; 4179 int error; 4180 4181 if (!mddev) 4182 return -ENODEV; 4183 4184 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4185 shift = partitioned ? MdpMinorShift : 0; 4186 unit = MINOR(mddev->unit) >> shift; 4187 4188 /* wait for any previous instance if this device 4189 * to be completed removed (mddev_delayed_delete). 4190 */ 4191 flush_scheduled_work(); 4192 4193 mutex_lock(&disks_mutex); 4194 error = -EEXIST; 4195 if (mddev->gendisk) 4196 goto abort; 4197 4198 if (name) { 4199 /* Need to ensure that 'name' is not a duplicate. 4200 */ 4201 mddev_t *mddev2; 4202 spin_lock(&all_mddevs_lock); 4203 4204 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4205 if (mddev2->gendisk && 4206 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4207 spin_unlock(&all_mddevs_lock); 4208 goto abort; 4209 } 4210 spin_unlock(&all_mddevs_lock); 4211 } 4212 4213 error = -ENOMEM; 4214 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4215 if (!mddev->queue) 4216 goto abort; 4217 mddev->queue->queuedata = mddev; 4218 4219 /* Can be unlocked because the queue is new: no concurrency */ 4220 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue); 4221 4222 blk_queue_make_request(mddev->queue, md_make_request); 4223 4224 disk = alloc_disk(1 << shift); 4225 if (!disk) { 4226 blk_cleanup_queue(mddev->queue); 4227 mddev->queue = NULL; 4228 goto abort; 4229 } 4230 disk->major = MAJOR(mddev->unit); 4231 disk->first_minor = unit << shift; 4232 if (name) 4233 strcpy(disk->disk_name, name); 4234 else if (partitioned) 4235 sprintf(disk->disk_name, "md_d%d", unit); 4236 else 4237 sprintf(disk->disk_name, "md%d", unit); 4238 disk->fops = &md_fops; 4239 disk->private_data = mddev; 4240 disk->queue = mddev->queue; 4241 /* Allow extended partitions. This makes the 4242 * 'mdp' device redundant, but we can't really 4243 * remove it now. 4244 */ 4245 disk->flags |= GENHD_FL_EXT_DEVT; 4246 add_disk(disk); 4247 mddev->gendisk = disk; 4248 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4249 &disk_to_dev(disk)->kobj, "%s", "md"); 4250 if (error) { 4251 /* This isn't possible, but as kobject_init_and_add is marked 4252 * __must_check, we must do something with the result 4253 */ 4254 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4255 disk->disk_name); 4256 error = 0; 4257 } 4258 if (sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4259 printk(KERN_DEBUG "pointless warning\n"); 4260 abort: 4261 mutex_unlock(&disks_mutex); 4262 if (!error) { 4263 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4264 mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, NULL, "array_state"); 4265 } 4266 mddev_put(mddev); 4267 return error; 4268 } 4269 4270 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4271 { 4272 md_alloc(dev, NULL); 4273 return NULL; 4274 } 4275 4276 static int add_named_array(const char *val, struct kernel_param *kp) 4277 { 4278 /* val must be "md_*" where * is not all digits. 4279 * We allocate an array with a large free minor number, and 4280 * set the name to val. val must not already be an active name. 4281 */ 4282 int len = strlen(val); 4283 char buf[DISK_NAME_LEN]; 4284 4285 while (len && val[len-1] == '\n') 4286 len--; 4287 if (len >= DISK_NAME_LEN) 4288 return -E2BIG; 4289 strlcpy(buf, val, len+1); 4290 if (strncmp(buf, "md_", 3) != 0) 4291 return -EINVAL; 4292 return md_alloc(0, buf); 4293 } 4294 4295 static void md_safemode_timeout(unsigned long data) 4296 { 4297 mddev_t *mddev = (mddev_t *) data; 4298 4299 if (!atomic_read(&mddev->writes_pending)) { 4300 mddev->safemode = 1; 4301 if (mddev->external) 4302 sysfs_notify_dirent(mddev->sysfs_state); 4303 } 4304 md_wakeup_thread(mddev->thread); 4305 } 4306 4307 static int start_dirty_degraded; 4308 4309 static int md_run(mddev_t *mddev) 4310 { 4311 int err; 4312 mdk_rdev_t *rdev; 4313 struct mdk_personality *pers; 4314 4315 if (list_empty(&mddev->disks)) 4316 /* cannot run an array with no devices.. */ 4317 return -EINVAL; 4318 4319 if (mddev->pers) 4320 return -EBUSY; 4321 4322 /* These two calls synchronise us with the 4323 * sysfs_remove_group calls in mddev_unlock, 4324 * so they must have completed. 4325 */ 4326 mutex_lock(&mddev->open_mutex); 4327 mutex_unlock(&mddev->open_mutex); 4328 4329 /* 4330 * Analyze all RAID superblock(s) 4331 */ 4332 if (!mddev->raid_disks) { 4333 if (!mddev->persistent) 4334 return -EINVAL; 4335 analyze_sbs(mddev); 4336 } 4337 4338 if (mddev->level != LEVEL_NONE) 4339 request_module("md-level-%d", mddev->level); 4340 else if (mddev->clevel[0]) 4341 request_module("md-%s", mddev->clevel); 4342 4343 /* 4344 * Drop all container device buffers, from now on 4345 * the only valid external interface is through the md 4346 * device. 4347 */ 4348 list_for_each_entry(rdev, &mddev->disks, same_set) { 4349 if (test_bit(Faulty, &rdev->flags)) 4350 continue; 4351 sync_blockdev(rdev->bdev); 4352 invalidate_bdev(rdev->bdev); 4353 4354 /* perform some consistency tests on the device. 4355 * We don't want the data to overlap the metadata, 4356 * Internal Bitmap issues have been handled elsewhere. 4357 */ 4358 if (rdev->data_offset < rdev->sb_start) { 4359 if (mddev->dev_sectors && 4360 rdev->data_offset + mddev->dev_sectors 4361 > rdev->sb_start) { 4362 printk("md: %s: data overlaps metadata\n", 4363 mdname(mddev)); 4364 return -EINVAL; 4365 } 4366 } else { 4367 if (rdev->sb_start + rdev->sb_size/512 4368 > rdev->data_offset) { 4369 printk("md: %s: metadata overlaps data\n", 4370 mdname(mddev)); 4371 return -EINVAL; 4372 } 4373 } 4374 sysfs_notify_dirent(rdev->sysfs_state); 4375 } 4376 4377 spin_lock(&pers_lock); 4378 pers = find_pers(mddev->level, mddev->clevel); 4379 if (!pers || !try_module_get(pers->owner)) { 4380 spin_unlock(&pers_lock); 4381 if (mddev->level != LEVEL_NONE) 4382 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 4383 mddev->level); 4384 else 4385 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 4386 mddev->clevel); 4387 return -EINVAL; 4388 } 4389 mddev->pers = pers; 4390 spin_unlock(&pers_lock); 4391 if (mddev->level != pers->level) { 4392 mddev->level = pers->level; 4393 mddev->new_level = pers->level; 4394 } 4395 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4396 4397 if (mddev->reshape_position != MaxSector && 4398 pers->start_reshape == NULL) { 4399 /* This personality cannot handle reshaping... */ 4400 mddev->pers = NULL; 4401 module_put(pers->owner); 4402 return -EINVAL; 4403 } 4404 4405 if (pers->sync_request) { 4406 /* Warn if this is a potentially silly 4407 * configuration. 4408 */ 4409 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4410 mdk_rdev_t *rdev2; 4411 int warned = 0; 4412 4413 list_for_each_entry(rdev, &mddev->disks, same_set) 4414 list_for_each_entry(rdev2, &mddev->disks, same_set) { 4415 if (rdev < rdev2 && 4416 rdev->bdev->bd_contains == 4417 rdev2->bdev->bd_contains) { 4418 printk(KERN_WARNING 4419 "%s: WARNING: %s appears to be" 4420 " on the same physical disk as" 4421 " %s.\n", 4422 mdname(mddev), 4423 bdevname(rdev->bdev,b), 4424 bdevname(rdev2->bdev,b2)); 4425 warned = 1; 4426 } 4427 } 4428 4429 if (warned) 4430 printk(KERN_WARNING 4431 "True protection against single-disk" 4432 " failure might be compromised.\n"); 4433 } 4434 4435 mddev->recovery = 0; 4436 /* may be over-ridden by personality */ 4437 mddev->resync_max_sectors = mddev->dev_sectors; 4438 4439 mddev->barriers_work = 1; 4440 mddev->ok_start_degraded = start_dirty_degraded; 4441 4442 if (start_readonly && mddev->ro == 0) 4443 mddev->ro = 2; /* read-only, but switch on first write */ 4444 4445 err = mddev->pers->run(mddev); 4446 if (err) 4447 printk(KERN_ERR "md: pers->run() failed ...\n"); 4448 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 4449 WARN_ONCE(!mddev->external_size, "%s: default size too small," 4450 " but 'external_size' not in effect?\n", __func__); 4451 printk(KERN_ERR 4452 "md: invalid array_size %llu > default size %llu\n", 4453 (unsigned long long)mddev->array_sectors / 2, 4454 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 4455 err = -EINVAL; 4456 mddev->pers->stop(mddev); 4457 } 4458 if (err == 0 && mddev->pers->sync_request) { 4459 err = bitmap_create(mddev); 4460 if (err) { 4461 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 4462 mdname(mddev), err); 4463 mddev->pers->stop(mddev); 4464 } 4465 } 4466 if (err) { 4467 module_put(mddev->pers->owner); 4468 mddev->pers = NULL; 4469 bitmap_destroy(mddev); 4470 return err; 4471 } 4472 if (mddev->pers->sync_request) { 4473 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4474 printk(KERN_WARNING 4475 "md: cannot register extra attributes for %s\n", 4476 mdname(mddev)); 4477 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 4478 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 4479 mddev->ro = 0; 4480 4481 atomic_set(&mddev->writes_pending,0); 4482 atomic_set(&mddev->max_corr_read_errors, 4483 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 4484 mddev->safemode = 0; 4485 mddev->safemode_timer.function = md_safemode_timeout; 4486 mddev->safemode_timer.data = (unsigned long) mddev; 4487 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 4488 mddev->in_sync = 1; 4489 4490 list_for_each_entry(rdev, &mddev->disks, same_set) 4491 if (rdev->raid_disk >= 0) { 4492 char nm[20]; 4493 sprintf(nm, "rd%d", rdev->raid_disk); 4494 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 4495 printk("md: cannot register %s for %s\n", 4496 nm, mdname(mddev)); 4497 } 4498 4499 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4500 4501 if (mddev->flags) 4502 md_update_sb(mddev, 0); 4503 4504 md_wakeup_thread(mddev->thread); 4505 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 4506 4507 md_new_event(mddev); 4508 sysfs_notify_dirent(mddev->sysfs_state); 4509 if (mddev->sysfs_action) 4510 sysfs_notify_dirent(mddev->sysfs_action); 4511 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4512 return 0; 4513 } 4514 4515 static int do_md_run(mddev_t *mddev) 4516 { 4517 int err; 4518 4519 err = md_run(mddev); 4520 if (err) 4521 goto out; 4522 4523 set_capacity(mddev->gendisk, mddev->array_sectors); 4524 revalidate_disk(mddev->gendisk); 4525 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4526 out: 4527 return err; 4528 } 4529 4530 static int restart_array(mddev_t *mddev) 4531 { 4532 struct gendisk *disk = mddev->gendisk; 4533 4534 /* Complain if it has no devices */ 4535 if (list_empty(&mddev->disks)) 4536 return -ENXIO; 4537 if (!mddev->pers) 4538 return -EINVAL; 4539 if (!mddev->ro) 4540 return -EBUSY; 4541 mddev->safemode = 0; 4542 mddev->ro = 0; 4543 set_disk_ro(disk, 0); 4544 printk(KERN_INFO "md: %s switched to read-write mode.\n", 4545 mdname(mddev)); 4546 /* Kick recovery or resync if necessary */ 4547 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4548 md_wakeup_thread(mddev->thread); 4549 md_wakeup_thread(mddev->sync_thread); 4550 sysfs_notify_dirent(mddev->sysfs_state); 4551 return 0; 4552 } 4553 4554 /* similar to deny_write_access, but accounts for our holding a reference 4555 * to the file ourselves */ 4556 static int deny_bitmap_write_access(struct file * file) 4557 { 4558 struct inode *inode = file->f_mapping->host; 4559 4560 spin_lock(&inode->i_lock); 4561 if (atomic_read(&inode->i_writecount) > 1) { 4562 spin_unlock(&inode->i_lock); 4563 return -ETXTBSY; 4564 } 4565 atomic_set(&inode->i_writecount, -1); 4566 spin_unlock(&inode->i_lock); 4567 4568 return 0; 4569 } 4570 4571 void restore_bitmap_write_access(struct file *file) 4572 { 4573 struct inode *inode = file->f_mapping->host; 4574 4575 spin_lock(&inode->i_lock); 4576 atomic_set(&inode->i_writecount, 1); 4577 spin_unlock(&inode->i_lock); 4578 } 4579 4580 static void md_clean(mddev_t *mddev) 4581 { 4582 mddev->array_sectors = 0; 4583 mddev->external_size = 0; 4584 mddev->dev_sectors = 0; 4585 mddev->raid_disks = 0; 4586 mddev->recovery_cp = 0; 4587 mddev->resync_min = 0; 4588 mddev->resync_max = MaxSector; 4589 mddev->reshape_position = MaxSector; 4590 mddev->external = 0; 4591 mddev->persistent = 0; 4592 mddev->level = LEVEL_NONE; 4593 mddev->clevel[0] = 0; 4594 mddev->flags = 0; 4595 mddev->ro = 0; 4596 mddev->metadata_type[0] = 0; 4597 mddev->chunk_sectors = 0; 4598 mddev->ctime = mddev->utime = 0; 4599 mddev->layout = 0; 4600 mddev->max_disks = 0; 4601 mddev->events = 0; 4602 mddev->can_decrease_events = 0; 4603 mddev->delta_disks = 0; 4604 mddev->new_level = LEVEL_NONE; 4605 mddev->new_layout = 0; 4606 mddev->new_chunk_sectors = 0; 4607 mddev->curr_resync = 0; 4608 mddev->resync_mismatches = 0; 4609 mddev->suspend_lo = mddev->suspend_hi = 0; 4610 mddev->sync_speed_min = mddev->sync_speed_max = 0; 4611 mddev->recovery = 0; 4612 mddev->in_sync = 0; 4613 mddev->degraded = 0; 4614 mddev->barriers_work = 0; 4615 mddev->safemode = 0; 4616 mddev->bitmap_info.offset = 0; 4617 mddev->bitmap_info.default_offset = 0; 4618 mddev->bitmap_info.chunksize = 0; 4619 mddev->bitmap_info.daemon_sleep = 0; 4620 mddev->bitmap_info.max_write_behind = 0; 4621 } 4622 4623 static void md_stop_writes(mddev_t *mddev) 4624 { 4625 if (mddev->sync_thread) { 4626 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4627 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4628 md_unregister_thread(mddev->sync_thread); 4629 mddev->sync_thread = NULL; 4630 } 4631 4632 del_timer_sync(&mddev->safemode_timer); 4633 4634 bitmap_flush(mddev); 4635 md_super_wait(mddev); 4636 4637 if (!mddev->in_sync || mddev->flags) { 4638 /* mark array as shutdown cleanly */ 4639 mddev->in_sync = 1; 4640 md_update_sb(mddev, 1); 4641 } 4642 } 4643 4644 static void md_stop(mddev_t *mddev) 4645 { 4646 md_stop_writes(mddev); 4647 4648 mddev->pers->stop(mddev); 4649 if (mddev->pers->sync_request && mddev->to_remove == NULL) 4650 mddev->to_remove = &md_redundancy_group; 4651 module_put(mddev->pers->owner); 4652 mddev->pers = NULL; 4653 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4654 } 4655 4656 static int md_set_readonly(mddev_t *mddev, int is_open) 4657 { 4658 int err = 0; 4659 mutex_lock(&mddev->open_mutex); 4660 if (atomic_read(&mddev->openers) > is_open) { 4661 printk("md: %s still in use.\n",mdname(mddev)); 4662 err = -EBUSY; 4663 goto out; 4664 } 4665 if (mddev->pers) { 4666 md_stop_writes(mddev); 4667 4668 err = -ENXIO; 4669 if (mddev->ro==1) 4670 goto out; 4671 mddev->ro = 1; 4672 set_disk_ro(mddev->gendisk, 1); 4673 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4674 sysfs_notify_dirent(mddev->sysfs_state); 4675 err = 0; 4676 } 4677 out: 4678 mutex_unlock(&mddev->open_mutex); 4679 return err; 4680 } 4681 4682 /* mode: 4683 * 0 - completely stop and dis-assemble array 4684 * 2 - stop but do not disassemble array 4685 */ 4686 static int do_md_stop(mddev_t * mddev, int mode, int is_open) 4687 { 4688 int err = 0; 4689 struct gendisk *disk = mddev->gendisk; 4690 mdk_rdev_t *rdev; 4691 4692 mutex_lock(&mddev->open_mutex); 4693 if (atomic_read(&mddev->openers) > is_open) { 4694 printk("md: %s still in use.\n",mdname(mddev)); 4695 err = -EBUSY; 4696 } else if (mddev->pers) { 4697 4698 if (mddev->ro) 4699 set_disk_ro(disk, 0); 4700 4701 md_stop(mddev); 4702 mddev->queue->merge_bvec_fn = NULL; 4703 mddev->queue->unplug_fn = NULL; 4704 mddev->queue->backing_dev_info.congested_fn = NULL; 4705 4706 /* tell userspace to handle 'inactive' */ 4707 sysfs_notify_dirent(mddev->sysfs_state); 4708 4709 list_for_each_entry(rdev, &mddev->disks, same_set) 4710 if (rdev->raid_disk >= 0) { 4711 char nm[20]; 4712 sprintf(nm, "rd%d", rdev->raid_disk); 4713 sysfs_remove_link(&mddev->kobj, nm); 4714 } 4715 4716 set_capacity(disk, 0); 4717 revalidate_disk(disk); 4718 4719 if (mddev->ro) 4720 mddev->ro = 0; 4721 4722 err = 0; 4723 } 4724 mutex_unlock(&mddev->open_mutex); 4725 if (err) 4726 return err; 4727 /* 4728 * Free resources if final stop 4729 */ 4730 if (mode == 0) { 4731 4732 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 4733 4734 bitmap_destroy(mddev); 4735 if (mddev->bitmap_info.file) { 4736 restore_bitmap_write_access(mddev->bitmap_info.file); 4737 fput(mddev->bitmap_info.file); 4738 mddev->bitmap_info.file = NULL; 4739 } 4740 mddev->bitmap_info.offset = 0; 4741 4742 export_array(mddev); 4743 4744 md_clean(mddev); 4745 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4746 if (mddev->hold_active == UNTIL_STOP) 4747 mddev->hold_active = 0; 4748 4749 } 4750 err = 0; 4751 blk_integrity_unregister(disk); 4752 md_new_event(mddev); 4753 sysfs_notify_dirent(mddev->sysfs_state); 4754 return err; 4755 } 4756 4757 #ifndef MODULE 4758 static void autorun_array(mddev_t *mddev) 4759 { 4760 mdk_rdev_t *rdev; 4761 int err; 4762 4763 if (list_empty(&mddev->disks)) 4764 return; 4765 4766 printk(KERN_INFO "md: running: "); 4767 4768 list_for_each_entry(rdev, &mddev->disks, same_set) { 4769 char b[BDEVNAME_SIZE]; 4770 printk("<%s>", bdevname(rdev->bdev,b)); 4771 } 4772 printk("\n"); 4773 4774 err = do_md_run(mddev); 4775 if (err) { 4776 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 4777 do_md_stop(mddev, 0, 0); 4778 } 4779 } 4780 4781 /* 4782 * lets try to run arrays based on all disks that have arrived 4783 * until now. (those are in pending_raid_disks) 4784 * 4785 * the method: pick the first pending disk, collect all disks with 4786 * the same UUID, remove all from the pending list and put them into 4787 * the 'same_array' list. Then order this list based on superblock 4788 * update time (freshest comes first), kick out 'old' disks and 4789 * compare superblocks. If everything's fine then run it. 4790 * 4791 * If "unit" is allocated, then bump its reference count 4792 */ 4793 static void autorun_devices(int part) 4794 { 4795 mdk_rdev_t *rdev0, *rdev, *tmp; 4796 mddev_t *mddev; 4797 char b[BDEVNAME_SIZE]; 4798 4799 printk(KERN_INFO "md: autorun ...\n"); 4800 while (!list_empty(&pending_raid_disks)) { 4801 int unit; 4802 dev_t dev; 4803 LIST_HEAD(candidates); 4804 rdev0 = list_entry(pending_raid_disks.next, 4805 mdk_rdev_t, same_set); 4806 4807 printk(KERN_INFO "md: considering %s ...\n", 4808 bdevname(rdev0->bdev,b)); 4809 INIT_LIST_HEAD(&candidates); 4810 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 4811 if (super_90_load(rdev, rdev0, 0) >= 0) { 4812 printk(KERN_INFO "md: adding %s ...\n", 4813 bdevname(rdev->bdev,b)); 4814 list_move(&rdev->same_set, &candidates); 4815 } 4816 /* 4817 * now we have a set of devices, with all of them having 4818 * mostly sane superblocks. It's time to allocate the 4819 * mddev. 4820 */ 4821 if (part) { 4822 dev = MKDEV(mdp_major, 4823 rdev0->preferred_minor << MdpMinorShift); 4824 unit = MINOR(dev) >> MdpMinorShift; 4825 } else { 4826 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 4827 unit = MINOR(dev); 4828 } 4829 if (rdev0->preferred_minor != unit) { 4830 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 4831 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 4832 break; 4833 } 4834 4835 md_probe(dev, NULL, NULL); 4836 mddev = mddev_find(dev); 4837 if (!mddev || !mddev->gendisk) { 4838 if (mddev) 4839 mddev_put(mddev); 4840 printk(KERN_ERR 4841 "md: cannot allocate memory for md drive.\n"); 4842 break; 4843 } 4844 if (mddev_lock(mddev)) 4845 printk(KERN_WARNING "md: %s locked, cannot run\n", 4846 mdname(mddev)); 4847 else if (mddev->raid_disks || mddev->major_version 4848 || !list_empty(&mddev->disks)) { 4849 printk(KERN_WARNING 4850 "md: %s already running, cannot run %s\n", 4851 mdname(mddev), bdevname(rdev0->bdev,b)); 4852 mddev_unlock(mddev); 4853 } else { 4854 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 4855 mddev->persistent = 1; 4856 rdev_for_each_list(rdev, tmp, &candidates) { 4857 list_del_init(&rdev->same_set); 4858 if (bind_rdev_to_array(rdev, mddev)) 4859 export_rdev(rdev); 4860 } 4861 autorun_array(mddev); 4862 mddev_unlock(mddev); 4863 } 4864 /* on success, candidates will be empty, on error 4865 * it won't... 4866 */ 4867 rdev_for_each_list(rdev, tmp, &candidates) { 4868 list_del_init(&rdev->same_set); 4869 export_rdev(rdev); 4870 } 4871 mddev_put(mddev); 4872 } 4873 printk(KERN_INFO "md: ... autorun DONE.\n"); 4874 } 4875 #endif /* !MODULE */ 4876 4877 static int get_version(void __user * arg) 4878 { 4879 mdu_version_t ver; 4880 4881 ver.major = MD_MAJOR_VERSION; 4882 ver.minor = MD_MINOR_VERSION; 4883 ver.patchlevel = MD_PATCHLEVEL_VERSION; 4884 4885 if (copy_to_user(arg, &ver, sizeof(ver))) 4886 return -EFAULT; 4887 4888 return 0; 4889 } 4890 4891 static int get_array_info(mddev_t * mddev, void __user * arg) 4892 { 4893 mdu_array_info_t info; 4894 int nr,working,insync,failed,spare; 4895 mdk_rdev_t *rdev; 4896 4897 nr=working=insync=failed=spare=0; 4898 list_for_each_entry(rdev, &mddev->disks, same_set) { 4899 nr++; 4900 if (test_bit(Faulty, &rdev->flags)) 4901 failed++; 4902 else { 4903 working++; 4904 if (test_bit(In_sync, &rdev->flags)) 4905 insync++; 4906 else 4907 spare++; 4908 } 4909 } 4910 4911 info.major_version = mddev->major_version; 4912 info.minor_version = mddev->minor_version; 4913 info.patch_version = MD_PATCHLEVEL_VERSION; 4914 info.ctime = mddev->ctime; 4915 info.level = mddev->level; 4916 info.size = mddev->dev_sectors / 2; 4917 if (info.size != mddev->dev_sectors / 2) /* overflow */ 4918 info.size = -1; 4919 info.nr_disks = nr; 4920 info.raid_disks = mddev->raid_disks; 4921 info.md_minor = mddev->md_minor; 4922 info.not_persistent= !mddev->persistent; 4923 4924 info.utime = mddev->utime; 4925 info.state = 0; 4926 if (mddev->in_sync) 4927 info.state = (1<<MD_SB_CLEAN); 4928 if (mddev->bitmap && mddev->bitmap_info.offset) 4929 info.state = (1<<MD_SB_BITMAP_PRESENT); 4930 info.active_disks = insync; 4931 info.working_disks = working; 4932 info.failed_disks = failed; 4933 info.spare_disks = spare; 4934 4935 info.layout = mddev->layout; 4936 info.chunk_size = mddev->chunk_sectors << 9; 4937 4938 if (copy_to_user(arg, &info, sizeof(info))) 4939 return -EFAULT; 4940 4941 return 0; 4942 } 4943 4944 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 4945 { 4946 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 4947 char *ptr, *buf = NULL; 4948 int err = -ENOMEM; 4949 4950 if (md_allow_write(mddev)) 4951 file = kmalloc(sizeof(*file), GFP_NOIO); 4952 else 4953 file = kmalloc(sizeof(*file), GFP_KERNEL); 4954 4955 if (!file) 4956 goto out; 4957 4958 /* bitmap disabled, zero the first byte and copy out */ 4959 if (!mddev->bitmap || !mddev->bitmap->file) { 4960 file->pathname[0] = '\0'; 4961 goto copy_out; 4962 } 4963 4964 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 4965 if (!buf) 4966 goto out; 4967 4968 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); 4969 if (IS_ERR(ptr)) 4970 goto out; 4971 4972 strcpy(file->pathname, ptr); 4973 4974 copy_out: 4975 err = 0; 4976 if (copy_to_user(arg, file, sizeof(*file))) 4977 err = -EFAULT; 4978 out: 4979 kfree(buf); 4980 kfree(file); 4981 return err; 4982 } 4983 4984 static int get_disk_info(mddev_t * mddev, void __user * arg) 4985 { 4986 mdu_disk_info_t info; 4987 mdk_rdev_t *rdev; 4988 4989 if (copy_from_user(&info, arg, sizeof(info))) 4990 return -EFAULT; 4991 4992 rdev = find_rdev_nr(mddev, info.number); 4993 if (rdev) { 4994 info.major = MAJOR(rdev->bdev->bd_dev); 4995 info.minor = MINOR(rdev->bdev->bd_dev); 4996 info.raid_disk = rdev->raid_disk; 4997 info.state = 0; 4998 if (test_bit(Faulty, &rdev->flags)) 4999 info.state |= (1<<MD_DISK_FAULTY); 5000 else if (test_bit(In_sync, &rdev->flags)) { 5001 info.state |= (1<<MD_DISK_ACTIVE); 5002 info.state |= (1<<MD_DISK_SYNC); 5003 } 5004 if (test_bit(WriteMostly, &rdev->flags)) 5005 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5006 } else { 5007 info.major = info.minor = 0; 5008 info.raid_disk = -1; 5009 info.state = (1<<MD_DISK_REMOVED); 5010 } 5011 5012 if (copy_to_user(arg, &info, sizeof(info))) 5013 return -EFAULT; 5014 5015 return 0; 5016 } 5017 5018 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 5019 { 5020 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5021 mdk_rdev_t *rdev; 5022 dev_t dev = MKDEV(info->major,info->minor); 5023 5024 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5025 return -EOVERFLOW; 5026 5027 if (!mddev->raid_disks) { 5028 int err; 5029 /* expecting a device which has a superblock */ 5030 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5031 if (IS_ERR(rdev)) { 5032 printk(KERN_WARNING 5033 "md: md_import_device returned %ld\n", 5034 PTR_ERR(rdev)); 5035 return PTR_ERR(rdev); 5036 } 5037 if (!list_empty(&mddev->disks)) { 5038 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 5039 mdk_rdev_t, same_set); 5040 err = super_types[mddev->major_version] 5041 .load_super(rdev, rdev0, mddev->minor_version); 5042 if (err < 0) { 5043 printk(KERN_WARNING 5044 "md: %s has different UUID to %s\n", 5045 bdevname(rdev->bdev,b), 5046 bdevname(rdev0->bdev,b2)); 5047 export_rdev(rdev); 5048 return -EINVAL; 5049 } 5050 } 5051 err = bind_rdev_to_array(rdev, mddev); 5052 if (err) 5053 export_rdev(rdev); 5054 return err; 5055 } 5056 5057 /* 5058 * add_new_disk can be used once the array is assembled 5059 * to add "hot spares". They must already have a superblock 5060 * written 5061 */ 5062 if (mddev->pers) { 5063 int err; 5064 if (!mddev->pers->hot_add_disk) { 5065 printk(KERN_WARNING 5066 "%s: personality does not support diskops!\n", 5067 mdname(mddev)); 5068 return -EINVAL; 5069 } 5070 if (mddev->persistent) 5071 rdev = md_import_device(dev, mddev->major_version, 5072 mddev->minor_version); 5073 else 5074 rdev = md_import_device(dev, -1, -1); 5075 if (IS_ERR(rdev)) { 5076 printk(KERN_WARNING 5077 "md: md_import_device returned %ld\n", 5078 PTR_ERR(rdev)); 5079 return PTR_ERR(rdev); 5080 } 5081 /* set save_raid_disk if appropriate */ 5082 if (!mddev->persistent) { 5083 if (info->state & (1<<MD_DISK_SYNC) && 5084 info->raid_disk < mddev->raid_disks) 5085 rdev->raid_disk = info->raid_disk; 5086 else 5087 rdev->raid_disk = -1; 5088 } else 5089 super_types[mddev->major_version]. 5090 validate_super(mddev, rdev); 5091 rdev->saved_raid_disk = rdev->raid_disk; 5092 5093 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5094 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5095 set_bit(WriteMostly, &rdev->flags); 5096 else 5097 clear_bit(WriteMostly, &rdev->flags); 5098 5099 rdev->raid_disk = -1; 5100 err = bind_rdev_to_array(rdev, mddev); 5101 if (!err && !mddev->pers->hot_remove_disk) { 5102 /* If there is hot_add_disk but no hot_remove_disk 5103 * then added disks for geometry changes, 5104 * and should be added immediately. 5105 */ 5106 super_types[mddev->major_version]. 5107 validate_super(mddev, rdev); 5108 err = mddev->pers->hot_add_disk(mddev, rdev); 5109 if (err) 5110 unbind_rdev_from_array(rdev); 5111 } 5112 if (err) 5113 export_rdev(rdev); 5114 else 5115 sysfs_notify_dirent(rdev->sysfs_state); 5116 5117 md_update_sb(mddev, 1); 5118 if (mddev->degraded) 5119 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5120 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5121 md_wakeup_thread(mddev->thread); 5122 return err; 5123 } 5124 5125 /* otherwise, add_new_disk is only allowed 5126 * for major_version==0 superblocks 5127 */ 5128 if (mddev->major_version != 0) { 5129 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5130 mdname(mddev)); 5131 return -EINVAL; 5132 } 5133 5134 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5135 int err; 5136 rdev = md_import_device(dev, -1, 0); 5137 if (IS_ERR(rdev)) { 5138 printk(KERN_WARNING 5139 "md: error, md_import_device() returned %ld\n", 5140 PTR_ERR(rdev)); 5141 return PTR_ERR(rdev); 5142 } 5143 rdev->desc_nr = info->number; 5144 if (info->raid_disk < mddev->raid_disks) 5145 rdev->raid_disk = info->raid_disk; 5146 else 5147 rdev->raid_disk = -1; 5148 5149 if (rdev->raid_disk < mddev->raid_disks) 5150 if (info->state & (1<<MD_DISK_SYNC)) 5151 set_bit(In_sync, &rdev->flags); 5152 5153 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5154 set_bit(WriteMostly, &rdev->flags); 5155 5156 if (!mddev->persistent) { 5157 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5158 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 5159 } else 5160 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 5161 rdev->sectors = rdev->sb_start; 5162 5163 err = bind_rdev_to_array(rdev, mddev); 5164 if (err) { 5165 export_rdev(rdev); 5166 return err; 5167 } 5168 } 5169 5170 return 0; 5171 } 5172 5173 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 5174 { 5175 char b[BDEVNAME_SIZE]; 5176 mdk_rdev_t *rdev; 5177 5178 rdev = find_rdev(mddev, dev); 5179 if (!rdev) 5180 return -ENXIO; 5181 5182 if (rdev->raid_disk >= 0) 5183 goto busy; 5184 5185 kick_rdev_from_array(rdev); 5186 md_update_sb(mddev, 1); 5187 md_new_event(mddev); 5188 5189 return 0; 5190 busy: 5191 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5192 bdevname(rdev->bdev,b), mdname(mddev)); 5193 return -EBUSY; 5194 } 5195 5196 static int hot_add_disk(mddev_t * mddev, dev_t dev) 5197 { 5198 char b[BDEVNAME_SIZE]; 5199 int err; 5200 mdk_rdev_t *rdev; 5201 5202 if (!mddev->pers) 5203 return -ENODEV; 5204 5205 if (mddev->major_version != 0) { 5206 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5207 " version-0 superblocks.\n", 5208 mdname(mddev)); 5209 return -EINVAL; 5210 } 5211 if (!mddev->pers->hot_add_disk) { 5212 printk(KERN_WARNING 5213 "%s: personality does not support diskops!\n", 5214 mdname(mddev)); 5215 return -EINVAL; 5216 } 5217 5218 rdev = md_import_device(dev, -1, 0); 5219 if (IS_ERR(rdev)) { 5220 printk(KERN_WARNING 5221 "md: error, md_import_device() returned %ld\n", 5222 PTR_ERR(rdev)); 5223 return -EINVAL; 5224 } 5225 5226 if (mddev->persistent) 5227 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 5228 else 5229 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 5230 5231 rdev->sectors = rdev->sb_start; 5232 5233 if (test_bit(Faulty, &rdev->flags)) { 5234 printk(KERN_WARNING 5235 "md: can not hot-add faulty %s disk to %s!\n", 5236 bdevname(rdev->bdev,b), mdname(mddev)); 5237 err = -EINVAL; 5238 goto abort_export; 5239 } 5240 clear_bit(In_sync, &rdev->flags); 5241 rdev->desc_nr = -1; 5242 rdev->saved_raid_disk = -1; 5243 err = bind_rdev_to_array(rdev, mddev); 5244 if (err) 5245 goto abort_export; 5246 5247 /* 5248 * The rest should better be atomic, we can have disk failures 5249 * noticed in interrupt contexts ... 5250 */ 5251 5252 rdev->raid_disk = -1; 5253 5254 md_update_sb(mddev, 1); 5255 5256 /* 5257 * Kick recovery, maybe this spare has to be added to the 5258 * array immediately. 5259 */ 5260 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5261 md_wakeup_thread(mddev->thread); 5262 md_new_event(mddev); 5263 return 0; 5264 5265 abort_export: 5266 export_rdev(rdev); 5267 return err; 5268 } 5269 5270 static int set_bitmap_file(mddev_t *mddev, int fd) 5271 { 5272 int err; 5273 5274 if (mddev->pers) { 5275 if (!mddev->pers->quiesce) 5276 return -EBUSY; 5277 if (mddev->recovery || mddev->sync_thread) 5278 return -EBUSY; 5279 /* we should be able to change the bitmap.. */ 5280 } 5281 5282 5283 if (fd >= 0) { 5284 if (mddev->bitmap) 5285 return -EEXIST; /* cannot add when bitmap is present */ 5286 mddev->bitmap_info.file = fget(fd); 5287 5288 if (mddev->bitmap_info.file == NULL) { 5289 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5290 mdname(mddev)); 5291 return -EBADF; 5292 } 5293 5294 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5295 if (err) { 5296 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5297 mdname(mddev)); 5298 fput(mddev->bitmap_info.file); 5299 mddev->bitmap_info.file = NULL; 5300 return err; 5301 } 5302 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5303 } else if (mddev->bitmap == NULL) 5304 return -ENOENT; /* cannot remove what isn't there */ 5305 err = 0; 5306 if (mddev->pers) { 5307 mddev->pers->quiesce(mddev, 1); 5308 if (fd >= 0) 5309 err = bitmap_create(mddev); 5310 if (fd < 0 || err) { 5311 bitmap_destroy(mddev); 5312 fd = -1; /* make sure to put the file */ 5313 } 5314 mddev->pers->quiesce(mddev, 0); 5315 } 5316 if (fd < 0) { 5317 if (mddev->bitmap_info.file) { 5318 restore_bitmap_write_access(mddev->bitmap_info.file); 5319 fput(mddev->bitmap_info.file); 5320 } 5321 mddev->bitmap_info.file = NULL; 5322 } 5323 5324 return err; 5325 } 5326 5327 /* 5328 * set_array_info is used two different ways 5329 * The original usage is when creating a new array. 5330 * In this usage, raid_disks is > 0 and it together with 5331 * level, size, not_persistent,layout,chunksize determine the 5332 * shape of the array. 5333 * This will always create an array with a type-0.90.0 superblock. 5334 * The newer usage is when assembling an array. 5335 * In this case raid_disks will be 0, and the major_version field is 5336 * use to determine which style super-blocks are to be found on the devices. 5337 * The minor and patch _version numbers are also kept incase the 5338 * super_block handler wishes to interpret them. 5339 */ 5340 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 5341 { 5342 5343 if (info->raid_disks == 0) { 5344 /* just setting version number for superblock loading */ 5345 if (info->major_version < 0 || 5346 info->major_version >= ARRAY_SIZE(super_types) || 5347 super_types[info->major_version].name == NULL) { 5348 /* maybe try to auto-load a module? */ 5349 printk(KERN_INFO 5350 "md: superblock version %d not known\n", 5351 info->major_version); 5352 return -EINVAL; 5353 } 5354 mddev->major_version = info->major_version; 5355 mddev->minor_version = info->minor_version; 5356 mddev->patch_version = info->patch_version; 5357 mddev->persistent = !info->not_persistent; 5358 /* ensure mddev_put doesn't delete this now that there 5359 * is some minimal configuration. 5360 */ 5361 mddev->ctime = get_seconds(); 5362 return 0; 5363 } 5364 mddev->major_version = MD_MAJOR_VERSION; 5365 mddev->minor_version = MD_MINOR_VERSION; 5366 mddev->patch_version = MD_PATCHLEVEL_VERSION; 5367 mddev->ctime = get_seconds(); 5368 5369 mddev->level = info->level; 5370 mddev->clevel[0] = 0; 5371 mddev->dev_sectors = 2 * (sector_t)info->size; 5372 mddev->raid_disks = info->raid_disks; 5373 /* don't set md_minor, it is determined by which /dev/md* was 5374 * openned 5375 */ 5376 if (info->state & (1<<MD_SB_CLEAN)) 5377 mddev->recovery_cp = MaxSector; 5378 else 5379 mddev->recovery_cp = 0; 5380 mddev->persistent = ! info->not_persistent; 5381 mddev->external = 0; 5382 5383 mddev->layout = info->layout; 5384 mddev->chunk_sectors = info->chunk_size >> 9; 5385 5386 mddev->max_disks = MD_SB_DISKS; 5387 5388 if (mddev->persistent) 5389 mddev->flags = 0; 5390 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5391 5392 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 5393 mddev->bitmap_info.offset = 0; 5394 5395 mddev->reshape_position = MaxSector; 5396 5397 /* 5398 * Generate a 128 bit UUID 5399 */ 5400 get_random_bytes(mddev->uuid, 16); 5401 5402 mddev->new_level = mddev->level; 5403 mddev->new_chunk_sectors = mddev->chunk_sectors; 5404 mddev->new_layout = mddev->layout; 5405 mddev->delta_disks = 0; 5406 5407 return 0; 5408 } 5409 5410 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors) 5411 { 5412 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 5413 5414 if (mddev->external_size) 5415 return; 5416 5417 mddev->array_sectors = array_sectors; 5418 } 5419 EXPORT_SYMBOL(md_set_array_sectors); 5420 5421 static int update_size(mddev_t *mddev, sector_t num_sectors) 5422 { 5423 mdk_rdev_t *rdev; 5424 int rv; 5425 int fit = (num_sectors == 0); 5426 5427 if (mddev->pers->resize == NULL) 5428 return -EINVAL; 5429 /* The "num_sectors" is the number of sectors of each device that 5430 * is used. This can only make sense for arrays with redundancy. 5431 * linear and raid0 always use whatever space is available. We can only 5432 * consider changing this number if no resync or reconstruction is 5433 * happening, and if the new size is acceptable. It must fit before the 5434 * sb_start or, if that is <data_offset, it must fit before the size 5435 * of each device. If num_sectors is zero, we find the largest size 5436 * that fits. 5437 5438 */ 5439 if (mddev->sync_thread) 5440 return -EBUSY; 5441 if (mddev->bitmap) 5442 /* Sorry, cannot grow a bitmap yet, just remove it, 5443 * grow, and re-add. 5444 */ 5445 return -EBUSY; 5446 list_for_each_entry(rdev, &mddev->disks, same_set) { 5447 sector_t avail = rdev->sectors; 5448 5449 if (fit && (num_sectors == 0 || num_sectors > avail)) 5450 num_sectors = avail; 5451 if (avail < num_sectors) 5452 return -ENOSPC; 5453 } 5454 rv = mddev->pers->resize(mddev, num_sectors); 5455 if (!rv) 5456 revalidate_disk(mddev->gendisk); 5457 return rv; 5458 } 5459 5460 static int update_raid_disks(mddev_t *mddev, int raid_disks) 5461 { 5462 int rv; 5463 /* change the number of raid disks */ 5464 if (mddev->pers->check_reshape == NULL) 5465 return -EINVAL; 5466 if (raid_disks <= 0 || 5467 (mddev->max_disks && raid_disks >= mddev->max_disks)) 5468 return -EINVAL; 5469 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 5470 return -EBUSY; 5471 mddev->delta_disks = raid_disks - mddev->raid_disks; 5472 5473 rv = mddev->pers->check_reshape(mddev); 5474 return rv; 5475 } 5476 5477 5478 /* 5479 * update_array_info is used to change the configuration of an 5480 * on-line array. 5481 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 5482 * fields in the info are checked against the array. 5483 * Any differences that cannot be handled will cause an error. 5484 * Normally, only one change can be managed at a time. 5485 */ 5486 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 5487 { 5488 int rv = 0; 5489 int cnt = 0; 5490 int state = 0; 5491 5492 /* calculate expected state,ignoring low bits */ 5493 if (mddev->bitmap && mddev->bitmap_info.offset) 5494 state |= (1 << MD_SB_BITMAP_PRESENT); 5495 5496 if (mddev->major_version != info->major_version || 5497 mddev->minor_version != info->minor_version || 5498 /* mddev->patch_version != info->patch_version || */ 5499 mddev->ctime != info->ctime || 5500 mddev->level != info->level || 5501 /* mddev->layout != info->layout || */ 5502 !mddev->persistent != info->not_persistent|| 5503 mddev->chunk_sectors != info->chunk_size >> 9 || 5504 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 5505 ((state^info->state) & 0xfffffe00) 5506 ) 5507 return -EINVAL; 5508 /* Check there is only one change */ 5509 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5510 cnt++; 5511 if (mddev->raid_disks != info->raid_disks) 5512 cnt++; 5513 if (mddev->layout != info->layout) 5514 cnt++; 5515 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 5516 cnt++; 5517 if (cnt == 0) 5518 return 0; 5519 if (cnt > 1) 5520 return -EINVAL; 5521 5522 if (mddev->layout != info->layout) { 5523 /* Change layout 5524 * we don't need to do anything at the md level, the 5525 * personality will take care of it all. 5526 */ 5527 if (mddev->pers->check_reshape == NULL) 5528 return -EINVAL; 5529 else { 5530 mddev->new_layout = info->layout; 5531 rv = mddev->pers->check_reshape(mddev); 5532 if (rv) 5533 mddev->new_layout = mddev->layout; 5534 return rv; 5535 } 5536 } 5537 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5538 rv = update_size(mddev, (sector_t)info->size * 2); 5539 5540 if (mddev->raid_disks != info->raid_disks) 5541 rv = update_raid_disks(mddev, info->raid_disks); 5542 5543 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 5544 if (mddev->pers->quiesce == NULL) 5545 return -EINVAL; 5546 if (mddev->recovery || mddev->sync_thread) 5547 return -EBUSY; 5548 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 5549 /* add the bitmap */ 5550 if (mddev->bitmap) 5551 return -EEXIST; 5552 if (mddev->bitmap_info.default_offset == 0) 5553 return -EINVAL; 5554 mddev->bitmap_info.offset = 5555 mddev->bitmap_info.default_offset; 5556 mddev->pers->quiesce(mddev, 1); 5557 rv = bitmap_create(mddev); 5558 if (rv) 5559 bitmap_destroy(mddev); 5560 mddev->pers->quiesce(mddev, 0); 5561 } else { 5562 /* remove the bitmap */ 5563 if (!mddev->bitmap) 5564 return -ENOENT; 5565 if (mddev->bitmap->file) 5566 return -EINVAL; 5567 mddev->pers->quiesce(mddev, 1); 5568 bitmap_destroy(mddev); 5569 mddev->pers->quiesce(mddev, 0); 5570 mddev->bitmap_info.offset = 0; 5571 } 5572 } 5573 md_update_sb(mddev, 1); 5574 return rv; 5575 } 5576 5577 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 5578 { 5579 mdk_rdev_t *rdev; 5580 5581 if (mddev->pers == NULL) 5582 return -ENODEV; 5583 5584 rdev = find_rdev(mddev, dev); 5585 if (!rdev) 5586 return -ENODEV; 5587 5588 md_error(mddev, rdev); 5589 return 0; 5590 } 5591 5592 /* 5593 * We have a problem here : there is no easy way to give a CHS 5594 * virtual geometry. We currently pretend that we have a 2 heads 5595 * 4 sectors (with a BIG number of cylinders...). This drives 5596 * dosfs just mad... ;-) 5597 */ 5598 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 5599 { 5600 mddev_t *mddev = bdev->bd_disk->private_data; 5601 5602 geo->heads = 2; 5603 geo->sectors = 4; 5604 geo->cylinders = mddev->array_sectors / 8; 5605 return 0; 5606 } 5607 5608 static int md_ioctl(struct block_device *bdev, fmode_t mode, 5609 unsigned int cmd, unsigned long arg) 5610 { 5611 int err = 0; 5612 void __user *argp = (void __user *)arg; 5613 mddev_t *mddev = NULL; 5614 int ro; 5615 5616 if (!capable(CAP_SYS_ADMIN)) 5617 return -EACCES; 5618 5619 /* 5620 * Commands dealing with the RAID driver but not any 5621 * particular array: 5622 */ 5623 switch (cmd) 5624 { 5625 case RAID_VERSION: 5626 err = get_version(argp); 5627 goto done; 5628 5629 case PRINT_RAID_DEBUG: 5630 err = 0; 5631 md_print_devices(); 5632 goto done; 5633 5634 #ifndef MODULE 5635 case RAID_AUTORUN: 5636 err = 0; 5637 autostart_arrays(arg); 5638 goto done; 5639 #endif 5640 default:; 5641 } 5642 5643 /* 5644 * Commands creating/starting a new array: 5645 */ 5646 5647 mddev = bdev->bd_disk->private_data; 5648 5649 if (!mddev) { 5650 BUG(); 5651 goto abort; 5652 } 5653 5654 err = mddev_lock(mddev); 5655 if (err) { 5656 printk(KERN_INFO 5657 "md: ioctl lock interrupted, reason %d, cmd %d\n", 5658 err, cmd); 5659 goto abort; 5660 } 5661 5662 switch (cmd) 5663 { 5664 case SET_ARRAY_INFO: 5665 { 5666 mdu_array_info_t info; 5667 if (!arg) 5668 memset(&info, 0, sizeof(info)); 5669 else if (copy_from_user(&info, argp, sizeof(info))) { 5670 err = -EFAULT; 5671 goto abort_unlock; 5672 } 5673 if (mddev->pers) { 5674 err = update_array_info(mddev, &info); 5675 if (err) { 5676 printk(KERN_WARNING "md: couldn't update" 5677 " array info. %d\n", err); 5678 goto abort_unlock; 5679 } 5680 goto done_unlock; 5681 } 5682 if (!list_empty(&mddev->disks)) { 5683 printk(KERN_WARNING 5684 "md: array %s already has disks!\n", 5685 mdname(mddev)); 5686 err = -EBUSY; 5687 goto abort_unlock; 5688 } 5689 if (mddev->raid_disks) { 5690 printk(KERN_WARNING 5691 "md: array %s already initialised!\n", 5692 mdname(mddev)); 5693 err = -EBUSY; 5694 goto abort_unlock; 5695 } 5696 err = set_array_info(mddev, &info); 5697 if (err) { 5698 printk(KERN_WARNING "md: couldn't set" 5699 " array info. %d\n", err); 5700 goto abort_unlock; 5701 } 5702 } 5703 goto done_unlock; 5704 5705 default:; 5706 } 5707 5708 /* 5709 * Commands querying/configuring an existing array: 5710 */ 5711 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 5712 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 5713 if ((!mddev->raid_disks && !mddev->external) 5714 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 5715 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 5716 && cmd != GET_BITMAP_FILE) { 5717 err = -ENODEV; 5718 goto abort_unlock; 5719 } 5720 5721 /* 5722 * Commands even a read-only array can execute: 5723 */ 5724 switch (cmd) 5725 { 5726 case GET_ARRAY_INFO: 5727 err = get_array_info(mddev, argp); 5728 goto done_unlock; 5729 5730 case GET_BITMAP_FILE: 5731 err = get_bitmap_file(mddev, argp); 5732 goto done_unlock; 5733 5734 case GET_DISK_INFO: 5735 err = get_disk_info(mddev, argp); 5736 goto done_unlock; 5737 5738 case RESTART_ARRAY_RW: 5739 err = restart_array(mddev); 5740 goto done_unlock; 5741 5742 case STOP_ARRAY: 5743 err = do_md_stop(mddev, 0, 1); 5744 goto done_unlock; 5745 5746 case STOP_ARRAY_RO: 5747 err = md_set_readonly(mddev, 1); 5748 goto done_unlock; 5749 5750 case BLKROSET: 5751 if (get_user(ro, (int __user *)(arg))) { 5752 err = -EFAULT; 5753 goto done_unlock; 5754 } 5755 err = -EINVAL; 5756 5757 /* if the bdev is going readonly the value of mddev->ro 5758 * does not matter, no writes are coming 5759 */ 5760 if (ro) 5761 goto done_unlock; 5762 5763 /* are we are already prepared for writes? */ 5764 if (mddev->ro != 1) 5765 goto done_unlock; 5766 5767 /* transitioning to readauto need only happen for 5768 * arrays that call md_write_start 5769 */ 5770 if (mddev->pers) { 5771 err = restart_array(mddev); 5772 if (err == 0) { 5773 mddev->ro = 2; 5774 set_disk_ro(mddev->gendisk, 0); 5775 } 5776 } 5777 goto done_unlock; 5778 } 5779 5780 /* 5781 * The remaining ioctls are changing the state of the 5782 * superblock, so we do not allow them on read-only arrays. 5783 * However non-MD ioctls (e.g. get-size) will still come through 5784 * here and hit the 'default' below, so only disallow 5785 * 'md' ioctls, and switch to rw mode if started auto-readonly. 5786 */ 5787 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 5788 if (mddev->ro == 2) { 5789 mddev->ro = 0; 5790 sysfs_notify_dirent(mddev->sysfs_state); 5791 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5792 md_wakeup_thread(mddev->thread); 5793 } else { 5794 err = -EROFS; 5795 goto abort_unlock; 5796 } 5797 } 5798 5799 switch (cmd) 5800 { 5801 case ADD_NEW_DISK: 5802 { 5803 mdu_disk_info_t info; 5804 if (copy_from_user(&info, argp, sizeof(info))) 5805 err = -EFAULT; 5806 else 5807 err = add_new_disk(mddev, &info); 5808 goto done_unlock; 5809 } 5810 5811 case HOT_REMOVE_DISK: 5812 err = hot_remove_disk(mddev, new_decode_dev(arg)); 5813 goto done_unlock; 5814 5815 case HOT_ADD_DISK: 5816 err = hot_add_disk(mddev, new_decode_dev(arg)); 5817 goto done_unlock; 5818 5819 case SET_DISK_FAULTY: 5820 err = set_disk_faulty(mddev, new_decode_dev(arg)); 5821 goto done_unlock; 5822 5823 case RUN_ARRAY: 5824 err = do_md_run(mddev); 5825 goto done_unlock; 5826 5827 case SET_BITMAP_FILE: 5828 err = set_bitmap_file(mddev, (int)arg); 5829 goto done_unlock; 5830 5831 default: 5832 err = -EINVAL; 5833 goto abort_unlock; 5834 } 5835 5836 done_unlock: 5837 abort_unlock: 5838 if (mddev->hold_active == UNTIL_IOCTL && 5839 err != -EINVAL) 5840 mddev->hold_active = 0; 5841 mddev_unlock(mddev); 5842 5843 return err; 5844 done: 5845 if (err) 5846 MD_BUG(); 5847 abort: 5848 return err; 5849 } 5850 #ifdef CONFIG_COMPAT 5851 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 5852 unsigned int cmd, unsigned long arg) 5853 { 5854 switch (cmd) { 5855 case HOT_REMOVE_DISK: 5856 case HOT_ADD_DISK: 5857 case SET_DISK_FAULTY: 5858 case SET_BITMAP_FILE: 5859 /* These take in integer arg, do not convert */ 5860 break; 5861 default: 5862 arg = (unsigned long)compat_ptr(arg); 5863 break; 5864 } 5865 5866 return md_ioctl(bdev, mode, cmd, arg); 5867 } 5868 #endif /* CONFIG_COMPAT */ 5869 5870 static int md_open(struct block_device *bdev, fmode_t mode) 5871 { 5872 /* 5873 * Succeed if we can lock the mddev, which confirms that 5874 * it isn't being stopped right now. 5875 */ 5876 mddev_t *mddev = mddev_find(bdev->bd_dev); 5877 int err; 5878 5879 if (mddev->gendisk != bdev->bd_disk) { 5880 /* we are racing with mddev_put which is discarding this 5881 * bd_disk. 5882 */ 5883 mddev_put(mddev); 5884 /* Wait until bdev->bd_disk is definitely gone */ 5885 flush_scheduled_work(); 5886 /* Then retry the open from the top */ 5887 return -ERESTARTSYS; 5888 } 5889 BUG_ON(mddev != bdev->bd_disk->private_data); 5890 5891 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 5892 goto out; 5893 5894 err = 0; 5895 atomic_inc(&mddev->openers); 5896 mutex_unlock(&mddev->open_mutex); 5897 5898 out: 5899 return err; 5900 } 5901 5902 static int md_release(struct gendisk *disk, fmode_t mode) 5903 { 5904 mddev_t *mddev = disk->private_data; 5905 5906 BUG_ON(!mddev); 5907 atomic_dec(&mddev->openers); 5908 mddev_put(mddev); 5909 5910 return 0; 5911 } 5912 static const struct block_device_operations md_fops = 5913 { 5914 .owner = THIS_MODULE, 5915 .open = md_open, 5916 .release = md_release, 5917 .ioctl = md_ioctl, 5918 #ifdef CONFIG_COMPAT 5919 .compat_ioctl = md_compat_ioctl, 5920 #endif 5921 .getgeo = md_getgeo, 5922 }; 5923 5924 static int md_thread(void * arg) 5925 { 5926 mdk_thread_t *thread = arg; 5927 5928 /* 5929 * md_thread is a 'system-thread', it's priority should be very 5930 * high. We avoid resource deadlocks individually in each 5931 * raid personality. (RAID5 does preallocation) We also use RR and 5932 * the very same RT priority as kswapd, thus we will never get 5933 * into a priority inversion deadlock. 5934 * 5935 * we definitely have to have equal or higher priority than 5936 * bdflush, otherwise bdflush will deadlock if there are too 5937 * many dirty RAID5 blocks. 5938 */ 5939 5940 allow_signal(SIGKILL); 5941 while (!kthread_should_stop()) { 5942 5943 /* We need to wait INTERRUPTIBLE so that 5944 * we don't add to the load-average. 5945 * That means we need to be sure no signals are 5946 * pending 5947 */ 5948 if (signal_pending(current)) 5949 flush_signals(current); 5950 5951 wait_event_interruptible_timeout 5952 (thread->wqueue, 5953 test_bit(THREAD_WAKEUP, &thread->flags) 5954 || kthread_should_stop(), 5955 thread->timeout); 5956 5957 clear_bit(THREAD_WAKEUP, &thread->flags); 5958 5959 thread->run(thread->mddev); 5960 } 5961 5962 return 0; 5963 } 5964 5965 void md_wakeup_thread(mdk_thread_t *thread) 5966 { 5967 if (thread) { 5968 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 5969 set_bit(THREAD_WAKEUP, &thread->flags); 5970 wake_up(&thread->wqueue); 5971 } 5972 } 5973 5974 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 5975 const char *name) 5976 { 5977 mdk_thread_t *thread; 5978 5979 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 5980 if (!thread) 5981 return NULL; 5982 5983 init_waitqueue_head(&thread->wqueue); 5984 5985 thread->run = run; 5986 thread->mddev = mddev; 5987 thread->timeout = MAX_SCHEDULE_TIMEOUT; 5988 thread->tsk = kthread_run(md_thread, thread, 5989 "%s_%s", 5990 mdname(thread->mddev), 5991 name ?: mddev->pers->name); 5992 if (IS_ERR(thread->tsk)) { 5993 kfree(thread); 5994 return NULL; 5995 } 5996 return thread; 5997 } 5998 5999 void md_unregister_thread(mdk_thread_t *thread) 6000 { 6001 if (!thread) 6002 return; 6003 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6004 6005 kthread_stop(thread->tsk); 6006 kfree(thread); 6007 } 6008 6009 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 6010 { 6011 if (!mddev) { 6012 MD_BUG(); 6013 return; 6014 } 6015 6016 if (!rdev || test_bit(Faulty, &rdev->flags)) 6017 return; 6018 6019 if (mddev->external) 6020 set_bit(Blocked, &rdev->flags); 6021 /* 6022 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 6023 mdname(mddev), 6024 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 6025 __builtin_return_address(0),__builtin_return_address(1), 6026 __builtin_return_address(2),__builtin_return_address(3)); 6027 */ 6028 if (!mddev->pers) 6029 return; 6030 if (!mddev->pers->error_handler) 6031 return; 6032 mddev->pers->error_handler(mddev,rdev); 6033 if (mddev->degraded) 6034 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6035 sysfs_notify_dirent(rdev->sysfs_state); 6036 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6037 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6038 md_wakeup_thread(mddev->thread); 6039 md_new_event_inintr(mddev); 6040 } 6041 6042 /* seq_file implementation /proc/mdstat */ 6043 6044 static void status_unused(struct seq_file *seq) 6045 { 6046 int i = 0; 6047 mdk_rdev_t *rdev; 6048 6049 seq_printf(seq, "unused devices: "); 6050 6051 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6052 char b[BDEVNAME_SIZE]; 6053 i++; 6054 seq_printf(seq, "%s ", 6055 bdevname(rdev->bdev,b)); 6056 } 6057 if (!i) 6058 seq_printf(seq, "<none>"); 6059 6060 seq_printf(seq, "\n"); 6061 } 6062 6063 6064 static void status_resync(struct seq_file *seq, mddev_t * mddev) 6065 { 6066 sector_t max_sectors, resync, res; 6067 unsigned long dt, db; 6068 sector_t rt; 6069 int scale; 6070 unsigned int per_milli; 6071 6072 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); 6073 6074 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 6075 max_sectors = mddev->resync_max_sectors; 6076 else 6077 max_sectors = mddev->dev_sectors; 6078 6079 /* 6080 * Should not happen. 6081 */ 6082 if (!max_sectors) { 6083 MD_BUG(); 6084 return; 6085 } 6086 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6087 * in a sector_t, and (max_sectors>>scale) will fit in a 6088 * u32, as those are the requirements for sector_div. 6089 * Thus 'scale' must be at least 10 6090 */ 6091 scale = 10; 6092 if (sizeof(sector_t) > sizeof(unsigned long)) { 6093 while ( max_sectors/2 > (1ULL<<(scale+32))) 6094 scale++; 6095 } 6096 res = (resync>>scale)*1000; 6097 sector_div(res, (u32)((max_sectors>>scale)+1)); 6098 6099 per_milli = res; 6100 { 6101 int i, x = per_milli/50, y = 20-x; 6102 seq_printf(seq, "["); 6103 for (i = 0; i < x; i++) 6104 seq_printf(seq, "="); 6105 seq_printf(seq, ">"); 6106 for (i = 0; i < y; i++) 6107 seq_printf(seq, "."); 6108 seq_printf(seq, "] "); 6109 } 6110 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6111 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6112 "reshape" : 6113 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6114 "check" : 6115 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6116 "resync" : "recovery"))), 6117 per_milli/10, per_milli % 10, 6118 (unsigned long long) resync/2, 6119 (unsigned long long) max_sectors/2); 6120 6121 /* 6122 * dt: time from mark until now 6123 * db: blocks written from mark until now 6124 * rt: remaining time 6125 * 6126 * rt is a sector_t, so could be 32bit or 64bit. 6127 * So we divide before multiply in case it is 32bit and close 6128 * to the limit. 6129 * We scale the divisor (db) by 32 to avoid loosing precision 6130 * near the end of resync when the number of remaining sectors 6131 * is close to 'db'. 6132 * We then divide rt by 32 after multiplying by db to compensate. 6133 * The '+1' avoids division by zero if db is very small. 6134 */ 6135 dt = ((jiffies - mddev->resync_mark) / HZ); 6136 if (!dt) dt++; 6137 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6138 - mddev->resync_mark_cnt; 6139 6140 rt = max_sectors - resync; /* number of remaining sectors */ 6141 sector_div(rt, db/32+1); 6142 rt *= dt; 6143 rt >>= 5; 6144 6145 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6146 ((unsigned long)rt % 60)/6); 6147 6148 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6149 } 6150 6151 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6152 { 6153 struct list_head *tmp; 6154 loff_t l = *pos; 6155 mddev_t *mddev; 6156 6157 if (l >= 0x10000) 6158 return NULL; 6159 if (!l--) 6160 /* header */ 6161 return (void*)1; 6162 6163 spin_lock(&all_mddevs_lock); 6164 list_for_each(tmp,&all_mddevs) 6165 if (!l--) { 6166 mddev = list_entry(tmp, mddev_t, all_mddevs); 6167 mddev_get(mddev); 6168 spin_unlock(&all_mddevs_lock); 6169 return mddev; 6170 } 6171 spin_unlock(&all_mddevs_lock); 6172 if (!l--) 6173 return (void*)2;/* tail */ 6174 return NULL; 6175 } 6176 6177 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6178 { 6179 struct list_head *tmp; 6180 mddev_t *next_mddev, *mddev = v; 6181 6182 ++*pos; 6183 if (v == (void*)2) 6184 return NULL; 6185 6186 spin_lock(&all_mddevs_lock); 6187 if (v == (void*)1) 6188 tmp = all_mddevs.next; 6189 else 6190 tmp = mddev->all_mddevs.next; 6191 if (tmp != &all_mddevs) 6192 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 6193 else { 6194 next_mddev = (void*)2; 6195 *pos = 0x10000; 6196 } 6197 spin_unlock(&all_mddevs_lock); 6198 6199 if (v != (void*)1) 6200 mddev_put(mddev); 6201 return next_mddev; 6202 6203 } 6204 6205 static void md_seq_stop(struct seq_file *seq, void *v) 6206 { 6207 mddev_t *mddev = v; 6208 6209 if (mddev && v != (void*)1 && v != (void*)2) 6210 mddev_put(mddev); 6211 } 6212 6213 struct mdstat_info { 6214 int event; 6215 }; 6216 6217 static int md_seq_show(struct seq_file *seq, void *v) 6218 { 6219 mddev_t *mddev = v; 6220 sector_t sectors; 6221 mdk_rdev_t *rdev; 6222 struct mdstat_info *mi = seq->private; 6223 struct bitmap *bitmap; 6224 6225 if (v == (void*)1) { 6226 struct mdk_personality *pers; 6227 seq_printf(seq, "Personalities : "); 6228 spin_lock(&pers_lock); 6229 list_for_each_entry(pers, &pers_list, list) 6230 seq_printf(seq, "[%s] ", pers->name); 6231 6232 spin_unlock(&pers_lock); 6233 seq_printf(seq, "\n"); 6234 mi->event = atomic_read(&md_event_count); 6235 return 0; 6236 } 6237 if (v == (void*)2) { 6238 status_unused(seq); 6239 return 0; 6240 } 6241 6242 if (mddev_lock(mddev) < 0) 6243 return -EINTR; 6244 6245 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 6246 seq_printf(seq, "%s : %sactive", mdname(mddev), 6247 mddev->pers ? "" : "in"); 6248 if (mddev->pers) { 6249 if (mddev->ro==1) 6250 seq_printf(seq, " (read-only)"); 6251 if (mddev->ro==2) 6252 seq_printf(seq, " (auto-read-only)"); 6253 seq_printf(seq, " %s", mddev->pers->name); 6254 } 6255 6256 sectors = 0; 6257 list_for_each_entry(rdev, &mddev->disks, same_set) { 6258 char b[BDEVNAME_SIZE]; 6259 seq_printf(seq, " %s[%d]", 6260 bdevname(rdev->bdev,b), rdev->desc_nr); 6261 if (test_bit(WriteMostly, &rdev->flags)) 6262 seq_printf(seq, "(W)"); 6263 if (test_bit(Faulty, &rdev->flags)) { 6264 seq_printf(seq, "(F)"); 6265 continue; 6266 } else if (rdev->raid_disk < 0) 6267 seq_printf(seq, "(S)"); /* spare */ 6268 sectors += rdev->sectors; 6269 } 6270 6271 if (!list_empty(&mddev->disks)) { 6272 if (mddev->pers) 6273 seq_printf(seq, "\n %llu blocks", 6274 (unsigned long long) 6275 mddev->array_sectors / 2); 6276 else 6277 seq_printf(seq, "\n %llu blocks", 6278 (unsigned long long)sectors / 2); 6279 } 6280 if (mddev->persistent) { 6281 if (mddev->major_version != 0 || 6282 mddev->minor_version != 90) { 6283 seq_printf(seq," super %d.%d", 6284 mddev->major_version, 6285 mddev->minor_version); 6286 } 6287 } else if (mddev->external) 6288 seq_printf(seq, " super external:%s", 6289 mddev->metadata_type); 6290 else 6291 seq_printf(seq, " super non-persistent"); 6292 6293 if (mddev->pers) { 6294 mddev->pers->status(seq, mddev); 6295 seq_printf(seq, "\n "); 6296 if (mddev->pers->sync_request) { 6297 if (mddev->curr_resync > 2) { 6298 status_resync(seq, mddev); 6299 seq_printf(seq, "\n "); 6300 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 6301 seq_printf(seq, "\tresync=DELAYED\n "); 6302 else if (mddev->recovery_cp < MaxSector) 6303 seq_printf(seq, "\tresync=PENDING\n "); 6304 } 6305 } else 6306 seq_printf(seq, "\n "); 6307 6308 if ((bitmap = mddev->bitmap)) { 6309 unsigned long chunk_kb; 6310 unsigned long flags; 6311 spin_lock_irqsave(&bitmap->lock, flags); 6312 chunk_kb = mddev->bitmap_info.chunksize >> 10; 6313 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 6314 "%lu%s chunk", 6315 bitmap->pages - bitmap->missing_pages, 6316 bitmap->pages, 6317 (bitmap->pages - bitmap->missing_pages) 6318 << (PAGE_SHIFT - 10), 6319 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize, 6320 chunk_kb ? "KB" : "B"); 6321 if (bitmap->file) { 6322 seq_printf(seq, ", file: "); 6323 seq_path(seq, &bitmap->file->f_path, " \t\n"); 6324 } 6325 6326 seq_printf(seq, "\n"); 6327 spin_unlock_irqrestore(&bitmap->lock, flags); 6328 } 6329 6330 seq_printf(seq, "\n"); 6331 } 6332 mddev_unlock(mddev); 6333 6334 return 0; 6335 } 6336 6337 static const struct seq_operations md_seq_ops = { 6338 .start = md_seq_start, 6339 .next = md_seq_next, 6340 .stop = md_seq_stop, 6341 .show = md_seq_show, 6342 }; 6343 6344 static int md_seq_open(struct inode *inode, struct file *file) 6345 { 6346 int error; 6347 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 6348 if (mi == NULL) 6349 return -ENOMEM; 6350 6351 error = seq_open(file, &md_seq_ops); 6352 if (error) 6353 kfree(mi); 6354 else { 6355 struct seq_file *p = file->private_data; 6356 p->private = mi; 6357 mi->event = atomic_read(&md_event_count); 6358 } 6359 return error; 6360 } 6361 6362 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 6363 { 6364 struct seq_file *m = filp->private_data; 6365 struct mdstat_info *mi = m->private; 6366 int mask; 6367 6368 poll_wait(filp, &md_event_waiters, wait); 6369 6370 /* always allow read */ 6371 mask = POLLIN | POLLRDNORM; 6372 6373 if (mi->event != atomic_read(&md_event_count)) 6374 mask |= POLLERR | POLLPRI; 6375 return mask; 6376 } 6377 6378 static const struct file_operations md_seq_fops = { 6379 .owner = THIS_MODULE, 6380 .open = md_seq_open, 6381 .read = seq_read, 6382 .llseek = seq_lseek, 6383 .release = seq_release_private, 6384 .poll = mdstat_poll, 6385 }; 6386 6387 int register_md_personality(struct mdk_personality *p) 6388 { 6389 spin_lock(&pers_lock); 6390 list_add_tail(&p->list, &pers_list); 6391 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 6392 spin_unlock(&pers_lock); 6393 return 0; 6394 } 6395 6396 int unregister_md_personality(struct mdk_personality *p) 6397 { 6398 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 6399 spin_lock(&pers_lock); 6400 list_del_init(&p->list); 6401 spin_unlock(&pers_lock); 6402 return 0; 6403 } 6404 6405 static int is_mddev_idle(mddev_t *mddev, int init) 6406 { 6407 mdk_rdev_t * rdev; 6408 int idle; 6409 int curr_events; 6410 6411 idle = 1; 6412 rcu_read_lock(); 6413 rdev_for_each_rcu(rdev, mddev) { 6414 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 6415 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 6416 (int)part_stat_read(&disk->part0, sectors[1]) - 6417 atomic_read(&disk->sync_io); 6418 /* sync IO will cause sync_io to increase before the disk_stats 6419 * as sync_io is counted when a request starts, and 6420 * disk_stats is counted when it completes. 6421 * So resync activity will cause curr_events to be smaller than 6422 * when there was no such activity. 6423 * non-sync IO will cause disk_stat to increase without 6424 * increasing sync_io so curr_events will (eventually) 6425 * be larger than it was before. Once it becomes 6426 * substantially larger, the test below will cause 6427 * the array to appear non-idle, and resync will slow 6428 * down. 6429 * If there is a lot of outstanding resync activity when 6430 * we set last_event to curr_events, then all that activity 6431 * completing might cause the array to appear non-idle 6432 * and resync will be slowed down even though there might 6433 * not have been non-resync activity. This will only 6434 * happen once though. 'last_events' will soon reflect 6435 * the state where there is little or no outstanding 6436 * resync requests, and further resync activity will 6437 * always make curr_events less than last_events. 6438 * 6439 */ 6440 if (init || curr_events - rdev->last_events > 64) { 6441 rdev->last_events = curr_events; 6442 idle = 0; 6443 } 6444 } 6445 rcu_read_unlock(); 6446 return idle; 6447 } 6448 6449 void md_done_sync(mddev_t *mddev, int blocks, int ok) 6450 { 6451 /* another "blocks" (512byte) blocks have been synced */ 6452 atomic_sub(blocks, &mddev->recovery_active); 6453 wake_up(&mddev->recovery_wait); 6454 if (!ok) { 6455 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6456 md_wakeup_thread(mddev->thread); 6457 // stop recovery, signal do_sync .... 6458 } 6459 } 6460 6461 6462 /* md_write_start(mddev, bi) 6463 * If we need to update some array metadata (e.g. 'active' flag 6464 * in superblock) before writing, schedule a superblock update 6465 * and wait for it to complete. 6466 */ 6467 void md_write_start(mddev_t *mddev, struct bio *bi) 6468 { 6469 int did_change = 0; 6470 if (bio_data_dir(bi) != WRITE) 6471 return; 6472 6473 BUG_ON(mddev->ro == 1); 6474 if (mddev->ro == 2) { 6475 /* need to switch to read/write */ 6476 mddev->ro = 0; 6477 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6478 md_wakeup_thread(mddev->thread); 6479 md_wakeup_thread(mddev->sync_thread); 6480 did_change = 1; 6481 } 6482 atomic_inc(&mddev->writes_pending); 6483 if (mddev->safemode == 1) 6484 mddev->safemode = 0; 6485 if (mddev->in_sync) { 6486 spin_lock_irq(&mddev->write_lock); 6487 if (mddev->in_sync) { 6488 mddev->in_sync = 0; 6489 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6490 md_wakeup_thread(mddev->thread); 6491 did_change = 1; 6492 } 6493 spin_unlock_irq(&mddev->write_lock); 6494 } 6495 if (did_change) 6496 sysfs_notify_dirent(mddev->sysfs_state); 6497 wait_event(mddev->sb_wait, 6498 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) && 6499 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6500 } 6501 6502 void md_write_end(mddev_t *mddev) 6503 { 6504 if (atomic_dec_and_test(&mddev->writes_pending)) { 6505 if (mddev->safemode == 2) 6506 md_wakeup_thread(mddev->thread); 6507 else if (mddev->safemode_delay) 6508 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 6509 } 6510 } 6511 6512 /* md_allow_write(mddev) 6513 * Calling this ensures that the array is marked 'active' so that writes 6514 * may proceed without blocking. It is important to call this before 6515 * attempting a GFP_KERNEL allocation while holding the mddev lock. 6516 * Must be called with mddev_lock held. 6517 * 6518 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 6519 * is dropped, so return -EAGAIN after notifying userspace. 6520 */ 6521 int md_allow_write(mddev_t *mddev) 6522 { 6523 if (!mddev->pers) 6524 return 0; 6525 if (mddev->ro) 6526 return 0; 6527 if (!mddev->pers->sync_request) 6528 return 0; 6529 6530 spin_lock_irq(&mddev->write_lock); 6531 if (mddev->in_sync) { 6532 mddev->in_sync = 0; 6533 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6534 if (mddev->safemode_delay && 6535 mddev->safemode == 0) 6536 mddev->safemode = 1; 6537 spin_unlock_irq(&mddev->write_lock); 6538 md_update_sb(mddev, 0); 6539 sysfs_notify_dirent(mddev->sysfs_state); 6540 } else 6541 spin_unlock_irq(&mddev->write_lock); 6542 6543 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 6544 return -EAGAIN; 6545 else 6546 return 0; 6547 } 6548 EXPORT_SYMBOL_GPL(md_allow_write); 6549 6550 #define SYNC_MARKS 10 6551 #define SYNC_MARK_STEP (3*HZ) 6552 void md_do_sync(mddev_t *mddev) 6553 { 6554 mddev_t *mddev2; 6555 unsigned int currspeed = 0, 6556 window; 6557 sector_t max_sectors,j, io_sectors; 6558 unsigned long mark[SYNC_MARKS]; 6559 sector_t mark_cnt[SYNC_MARKS]; 6560 int last_mark,m; 6561 struct list_head *tmp; 6562 sector_t last_check; 6563 int skipped = 0; 6564 mdk_rdev_t *rdev; 6565 char *desc; 6566 6567 /* just incase thread restarts... */ 6568 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 6569 return; 6570 if (mddev->ro) /* never try to sync a read-only array */ 6571 return; 6572 6573 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6574 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 6575 desc = "data-check"; 6576 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6577 desc = "requested-resync"; 6578 else 6579 desc = "resync"; 6580 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6581 desc = "reshape"; 6582 else 6583 desc = "recovery"; 6584 6585 /* we overload curr_resync somewhat here. 6586 * 0 == not engaged in resync at all 6587 * 2 == checking that there is no conflict with another sync 6588 * 1 == like 2, but have yielded to allow conflicting resync to 6589 * commense 6590 * other == active in resync - this many blocks 6591 * 6592 * Before starting a resync we must have set curr_resync to 6593 * 2, and then checked that every "conflicting" array has curr_resync 6594 * less than ours. When we find one that is the same or higher 6595 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 6596 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 6597 * This will mean we have to start checking from the beginning again. 6598 * 6599 */ 6600 6601 do { 6602 mddev->curr_resync = 2; 6603 6604 try_again: 6605 if (kthread_should_stop()) 6606 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6607 6608 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6609 goto skip; 6610 for_each_mddev(mddev2, tmp) { 6611 if (mddev2 == mddev) 6612 continue; 6613 if (!mddev->parallel_resync 6614 && mddev2->curr_resync 6615 && match_mddev_units(mddev, mddev2)) { 6616 DEFINE_WAIT(wq); 6617 if (mddev < mddev2 && mddev->curr_resync == 2) { 6618 /* arbitrarily yield */ 6619 mddev->curr_resync = 1; 6620 wake_up(&resync_wait); 6621 } 6622 if (mddev > mddev2 && mddev->curr_resync == 1) 6623 /* no need to wait here, we can wait the next 6624 * time 'round when curr_resync == 2 6625 */ 6626 continue; 6627 /* We need to wait 'interruptible' so as not to 6628 * contribute to the load average, and not to 6629 * be caught by 'softlockup' 6630 */ 6631 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 6632 if (!kthread_should_stop() && 6633 mddev2->curr_resync >= mddev->curr_resync) { 6634 printk(KERN_INFO "md: delaying %s of %s" 6635 " until %s has finished (they" 6636 " share one or more physical units)\n", 6637 desc, mdname(mddev), mdname(mddev2)); 6638 mddev_put(mddev2); 6639 if (signal_pending(current)) 6640 flush_signals(current); 6641 schedule(); 6642 finish_wait(&resync_wait, &wq); 6643 goto try_again; 6644 } 6645 finish_wait(&resync_wait, &wq); 6646 } 6647 } 6648 } while (mddev->curr_resync < 2); 6649 6650 j = 0; 6651 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6652 /* resync follows the size requested by the personality, 6653 * which defaults to physical size, but can be virtual size 6654 */ 6655 max_sectors = mddev->resync_max_sectors; 6656 mddev->resync_mismatches = 0; 6657 /* we don't use the checkpoint if there's a bitmap */ 6658 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6659 j = mddev->resync_min; 6660 else if (!mddev->bitmap) 6661 j = mddev->recovery_cp; 6662 6663 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6664 max_sectors = mddev->dev_sectors; 6665 else { 6666 /* recovery follows the physical size of devices */ 6667 max_sectors = mddev->dev_sectors; 6668 j = MaxSector; 6669 rcu_read_lock(); 6670 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 6671 if (rdev->raid_disk >= 0 && 6672 !test_bit(Faulty, &rdev->flags) && 6673 !test_bit(In_sync, &rdev->flags) && 6674 rdev->recovery_offset < j) 6675 j = rdev->recovery_offset; 6676 rcu_read_unlock(); 6677 } 6678 6679 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 6680 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 6681 " %d KB/sec/disk.\n", speed_min(mddev)); 6682 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 6683 "(but not more than %d KB/sec) for %s.\n", 6684 speed_max(mddev), desc); 6685 6686 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 6687 6688 io_sectors = 0; 6689 for (m = 0; m < SYNC_MARKS; m++) { 6690 mark[m] = jiffies; 6691 mark_cnt[m] = io_sectors; 6692 } 6693 last_mark = 0; 6694 mddev->resync_mark = mark[last_mark]; 6695 mddev->resync_mark_cnt = mark_cnt[last_mark]; 6696 6697 /* 6698 * Tune reconstruction: 6699 */ 6700 window = 32*(PAGE_SIZE/512); 6701 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 6702 window/2,(unsigned long long) max_sectors/2); 6703 6704 atomic_set(&mddev->recovery_active, 0); 6705 last_check = 0; 6706 6707 if (j>2) { 6708 printk(KERN_INFO 6709 "md: resuming %s of %s from checkpoint.\n", 6710 desc, mdname(mddev)); 6711 mddev->curr_resync = j; 6712 } 6713 mddev->curr_resync_completed = mddev->curr_resync; 6714 6715 while (j < max_sectors) { 6716 sector_t sectors; 6717 6718 skipped = 0; 6719 6720 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 6721 ((mddev->curr_resync > mddev->curr_resync_completed && 6722 (mddev->curr_resync - mddev->curr_resync_completed) 6723 > (max_sectors >> 4)) || 6724 (j - mddev->curr_resync_completed)*2 6725 >= mddev->resync_max - mddev->curr_resync_completed 6726 )) { 6727 /* time to update curr_resync_completed */ 6728 blk_unplug(mddev->queue); 6729 wait_event(mddev->recovery_wait, 6730 atomic_read(&mddev->recovery_active) == 0); 6731 mddev->curr_resync_completed = 6732 mddev->curr_resync; 6733 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6734 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6735 } 6736 6737 while (j >= mddev->resync_max && !kthread_should_stop()) { 6738 /* As this condition is controlled by user-space, 6739 * we can block indefinitely, so use '_interruptible' 6740 * to avoid triggering warnings. 6741 */ 6742 flush_signals(current); /* just in case */ 6743 wait_event_interruptible(mddev->recovery_wait, 6744 mddev->resync_max > j 6745 || kthread_should_stop()); 6746 } 6747 6748 if (kthread_should_stop()) 6749 goto interrupted; 6750 6751 sectors = mddev->pers->sync_request(mddev, j, &skipped, 6752 currspeed < speed_min(mddev)); 6753 if (sectors == 0) { 6754 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6755 goto out; 6756 } 6757 6758 if (!skipped) { /* actual IO requested */ 6759 io_sectors += sectors; 6760 atomic_add(sectors, &mddev->recovery_active); 6761 } 6762 6763 j += sectors; 6764 if (j>1) mddev->curr_resync = j; 6765 mddev->curr_mark_cnt = io_sectors; 6766 if (last_check == 0) 6767 /* this is the earliers that rebuilt will be 6768 * visible in /proc/mdstat 6769 */ 6770 md_new_event(mddev); 6771 6772 if (last_check + window > io_sectors || j == max_sectors) 6773 continue; 6774 6775 last_check = io_sectors; 6776 6777 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6778 break; 6779 6780 repeat: 6781 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 6782 /* step marks */ 6783 int next = (last_mark+1) % SYNC_MARKS; 6784 6785 mddev->resync_mark = mark[next]; 6786 mddev->resync_mark_cnt = mark_cnt[next]; 6787 mark[next] = jiffies; 6788 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 6789 last_mark = next; 6790 } 6791 6792 6793 if (kthread_should_stop()) 6794 goto interrupted; 6795 6796 6797 /* 6798 * this loop exits only if either when we are slower than 6799 * the 'hard' speed limit, or the system was IO-idle for 6800 * a jiffy. 6801 * the system might be non-idle CPU-wise, but we only care 6802 * about not overloading the IO subsystem. (things like an 6803 * e2fsck being done on the RAID array should execute fast) 6804 */ 6805 blk_unplug(mddev->queue); 6806 cond_resched(); 6807 6808 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 6809 /((jiffies-mddev->resync_mark)/HZ +1) +1; 6810 6811 if (currspeed > speed_min(mddev)) { 6812 if ((currspeed > speed_max(mddev)) || 6813 !is_mddev_idle(mddev, 0)) { 6814 msleep(500); 6815 goto repeat; 6816 } 6817 } 6818 } 6819 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 6820 /* 6821 * this also signals 'finished resyncing' to md_stop 6822 */ 6823 out: 6824 blk_unplug(mddev->queue); 6825 6826 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 6827 6828 /* tell personality that we are finished */ 6829 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 6830 6831 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 6832 mddev->curr_resync > 2) { 6833 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6834 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6835 if (mddev->curr_resync >= mddev->recovery_cp) { 6836 printk(KERN_INFO 6837 "md: checkpointing %s of %s.\n", 6838 desc, mdname(mddev)); 6839 mddev->recovery_cp = mddev->curr_resync; 6840 } 6841 } else 6842 mddev->recovery_cp = MaxSector; 6843 } else { 6844 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6845 mddev->curr_resync = MaxSector; 6846 rcu_read_lock(); 6847 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 6848 if (rdev->raid_disk >= 0 && 6849 !test_bit(Faulty, &rdev->flags) && 6850 !test_bit(In_sync, &rdev->flags) && 6851 rdev->recovery_offset < mddev->curr_resync) 6852 rdev->recovery_offset = mddev->curr_resync; 6853 rcu_read_unlock(); 6854 } 6855 } 6856 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6857 6858 skip: 6859 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6860 /* We completed so min/max setting can be forgotten if used. */ 6861 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6862 mddev->resync_min = 0; 6863 mddev->resync_max = MaxSector; 6864 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6865 mddev->resync_min = mddev->curr_resync_completed; 6866 mddev->curr_resync = 0; 6867 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6868 mddev->curr_resync_completed = 0; 6869 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6870 wake_up(&resync_wait); 6871 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 6872 md_wakeup_thread(mddev->thread); 6873 return; 6874 6875 interrupted: 6876 /* 6877 * got a signal, exit. 6878 */ 6879 printk(KERN_INFO 6880 "md: md_do_sync() got signal ... exiting\n"); 6881 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6882 goto out; 6883 6884 } 6885 EXPORT_SYMBOL_GPL(md_do_sync); 6886 6887 6888 static int remove_and_add_spares(mddev_t *mddev) 6889 { 6890 mdk_rdev_t *rdev; 6891 int spares = 0; 6892 6893 mddev->curr_resync_completed = 0; 6894 6895 list_for_each_entry(rdev, &mddev->disks, same_set) 6896 if (rdev->raid_disk >= 0 && 6897 !test_bit(Blocked, &rdev->flags) && 6898 (test_bit(Faulty, &rdev->flags) || 6899 ! test_bit(In_sync, &rdev->flags)) && 6900 atomic_read(&rdev->nr_pending)==0) { 6901 if (mddev->pers->hot_remove_disk( 6902 mddev, rdev->raid_disk)==0) { 6903 char nm[20]; 6904 sprintf(nm,"rd%d", rdev->raid_disk); 6905 sysfs_remove_link(&mddev->kobj, nm); 6906 rdev->raid_disk = -1; 6907 } 6908 } 6909 6910 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) { 6911 list_for_each_entry(rdev, &mddev->disks, same_set) { 6912 if (rdev->raid_disk >= 0 && 6913 !test_bit(In_sync, &rdev->flags) && 6914 !test_bit(Blocked, &rdev->flags)) 6915 spares++; 6916 if (rdev->raid_disk < 0 6917 && !test_bit(Faulty, &rdev->flags)) { 6918 rdev->recovery_offset = 0; 6919 if (mddev->pers-> 6920 hot_add_disk(mddev, rdev) == 0) { 6921 char nm[20]; 6922 sprintf(nm, "rd%d", rdev->raid_disk); 6923 if (sysfs_create_link(&mddev->kobj, 6924 &rdev->kobj, nm)) 6925 printk(KERN_WARNING 6926 "md: cannot register " 6927 "%s for %s\n", 6928 nm, mdname(mddev)); 6929 spares++; 6930 md_new_event(mddev); 6931 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6932 } else 6933 break; 6934 } 6935 } 6936 } 6937 return spares; 6938 } 6939 /* 6940 * This routine is regularly called by all per-raid-array threads to 6941 * deal with generic issues like resync and super-block update. 6942 * Raid personalities that don't have a thread (linear/raid0) do not 6943 * need this as they never do any recovery or update the superblock. 6944 * 6945 * It does not do any resync itself, but rather "forks" off other threads 6946 * to do that as needed. 6947 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 6948 * "->recovery" and create a thread at ->sync_thread. 6949 * When the thread finishes it sets MD_RECOVERY_DONE 6950 * and wakeups up this thread which will reap the thread and finish up. 6951 * This thread also removes any faulty devices (with nr_pending == 0). 6952 * 6953 * The overall approach is: 6954 * 1/ if the superblock needs updating, update it. 6955 * 2/ If a recovery thread is running, don't do anything else. 6956 * 3/ If recovery has finished, clean up, possibly marking spares active. 6957 * 4/ If there are any faulty devices, remove them. 6958 * 5/ If array is degraded, try to add spares devices 6959 * 6/ If array has spares or is not in-sync, start a resync thread. 6960 */ 6961 void md_check_recovery(mddev_t *mddev) 6962 { 6963 mdk_rdev_t *rdev; 6964 6965 6966 if (mddev->bitmap) 6967 bitmap_daemon_work(mddev); 6968 6969 if (mddev->ro) 6970 return; 6971 6972 if (signal_pending(current)) { 6973 if (mddev->pers->sync_request && !mddev->external) { 6974 printk(KERN_INFO "md: %s in immediate safe mode\n", 6975 mdname(mddev)); 6976 mddev->safemode = 2; 6977 } 6978 flush_signals(current); 6979 } 6980 6981 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 6982 return; 6983 if ( ! ( 6984 (mddev->flags && !mddev->external) || 6985 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 6986 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 6987 (mddev->external == 0 && mddev->safemode == 1) || 6988 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 6989 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 6990 )) 6991 return; 6992 6993 if (mddev_trylock(mddev)) { 6994 int spares = 0; 6995 6996 if (mddev->ro) { 6997 /* Only thing we do on a ro array is remove 6998 * failed devices. 6999 */ 7000 remove_and_add_spares(mddev); 7001 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7002 goto unlock; 7003 } 7004 7005 if (!mddev->external) { 7006 int did_change = 0; 7007 spin_lock_irq(&mddev->write_lock); 7008 if (mddev->safemode && 7009 !atomic_read(&mddev->writes_pending) && 7010 !mddev->in_sync && 7011 mddev->recovery_cp == MaxSector) { 7012 mddev->in_sync = 1; 7013 did_change = 1; 7014 if (mddev->persistent) 7015 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7016 } 7017 if (mddev->safemode == 1) 7018 mddev->safemode = 0; 7019 spin_unlock_irq(&mddev->write_lock); 7020 if (did_change) 7021 sysfs_notify_dirent(mddev->sysfs_state); 7022 } 7023 7024 if (mddev->flags) 7025 md_update_sb(mddev, 0); 7026 7027 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7028 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7029 /* resync/recovery still happening */ 7030 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7031 goto unlock; 7032 } 7033 if (mddev->sync_thread) { 7034 /* resync has finished, collect result */ 7035 md_unregister_thread(mddev->sync_thread); 7036 mddev->sync_thread = NULL; 7037 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7038 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7039 /* success...*/ 7040 /* activate any spares */ 7041 if (mddev->pers->spare_active(mddev)) 7042 sysfs_notify(&mddev->kobj, NULL, 7043 "degraded"); 7044 } 7045 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7046 mddev->pers->finish_reshape) 7047 mddev->pers->finish_reshape(mddev); 7048 md_update_sb(mddev, 1); 7049 7050 /* if array is no-longer degraded, then any saved_raid_disk 7051 * information must be scrapped 7052 */ 7053 if (!mddev->degraded) 7054 list_for_each_entry(rdev, &mddev->disks, same_set) 7055 rdev->saved_raid_disk = -1; 7056 7057 mddev->recovery = 0; 7058 /* flag recovery needed just to double check */ 7059 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7060 sysfs_notify_dirent(mddev->sysfs_action); 7061 md_new_event(mddev); 7062 goto unlock; 7063 } 7064 /* Set RUNNING before clearing NEEDED to avoid 7065 * any transients in the value of "sync_action". 7066 */ 7067 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7068 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7069 /* Clear some bits that don't mean anything, but 7070 * might be left set 7071 */ 7072 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7073 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7074 7075 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7076 goto unlock; 7077 /* no recovery is running. 7078 * remove any failed drives, then 7079 * add spares if possible. 7080 * Spare are also removed and re-added, to allow 7081 * the personality to fail the re-add. 7082 */ 7083 7084 if (mddev->reshape_position != MaxSector) { 7085 if (mddev->pers->check_reshape == NULL || 7086 mddev->pers->check_reshape(mddev) != 0) 7087 /* Cannot proceed */ 7088 goto unlock; 7089 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7090 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7091 } else if ((spares = remove_and_add_spares(mddev))) { 7092 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7093 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7094 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7095 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7096 } else if (mddev->recovery_cp < MaxSector) { 7097 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7098 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7099 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7100 /* nothing to be done ... */ 7101 goto unlock; 7102 7103 if (mddev->pers->sync_request) { 7104 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 7105 /* We are adding a device or devices to an array 7106 * which has the bitmap stored on all devices. 7107 * So make sure all bitmap pages get written 7108 */ 7109 bitmap_write_all(mddev->bitmap); 7110 } 7111 mddev->sync_thread = md_register_thread(md_do_sync, 7112 mddev, 7113 "resync"); 7114 if (!mddev->sync_thread) { 7115 printk(KERN_ERR "%s: could not start resync" 7116 " thread...\n", 7117 mdname(mddev)); 7118 /* leave the spares where they are, it shouldn't hurt */ 7119 mddev->recovery = 0; 7120 } else 7121 md_wakeup_thread(mddev->sync_thread); 7122 sysfs_notify_dirent(mddev->sysfs_action); 7123 md_new_event(mddev); 7124 } 7125 unlock: 7126 if (!mddev->sync_thread) { 7127 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7128 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7129 &mddev->recovery)) 7130 if (mddev->sysfs_action) 7131 sysfs_notify_dirent(mddev->sysfs_action); 7132 } 7133 mddev_unlock(mddev); 7134 } 7135 } 7136 7137 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 7138 { 7139 sysfs_notify_dirent(rdev->sysfs_state); 7140 wait_event_timeout(rdev->blocked_wait, 7141 !test_bit(Blocked, &rdev->flags), 7142 msecs_to_jiffies(5000)); 7143 rdev_dec_pending(rdev, mddev); 7144 } 7145 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7146 7147 static int md_notify_reboot(struct notifier_block *this, 7148 unsigned long code, void *x) 7149 { 7150 struct list_head *tmp; 7151 mddev_t *mddev; 7152 7153 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 7154 7155 printk(KERN_INFO "md: stopping all md devices.\n"); 7156 7157 for_each_mddev(mddev, tmp) 7158 if (mddev_trylock(mddev)) { 7159 /* Force a switch to readonly even array 7160 * appears to still be in use. Hence 7161 * the '100'. 7162 */ 7163 md_set_readonly(mddev, 100); 7164 mddev_unlock(mddev); 7165 } 7166 /* 7167 * certain more exotic SCSI devices are known to be 7168 * volatile wrt too early system reboots. While the 7169 * right place to handle this issue is the given 7170 * driver, we do want to have a safe RAID driver ... 7171 */ 7172 mdelay(1000*1); 7173 } 7174 return NOTIFY_DONE; 7175 } 7176 7177 static struct notifier_block md_notifier = { 7178 .notifier_call = md_notify_reboot, 7179 .next = NULL, 7180 .priority = INT_MAX, /* before any real devices */ 7181 }; 7182 7183 static void md_geninit(void) 7184 { 7185 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 7186 7187 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 7188 } 7189 7190 static int __init md_init(void) 7191 { 7192 if (register_blkdev(MD_MAJOR, "md")) 7193 return -1; 7194 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 7195 unregister_blkdev(MD_MAJOR, "md"); 7196 return -1; 7197 } 7198 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 7199 md_probe, NULL, NULL); 7200 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 7201 md_probe, NULL, NULL); 7202 7203 register_reboot_notifier(&md_notifier); 7204 raid_table_header = register_sysctl_table(raid_root_table); 7205 7206 md_geninit(); 7207 return 0; 7208 } 7209 7210 7211 #ifndef MODULE 7212 7213 /* 7214 * Searches all registered partitions for autorun RAID arrays 7215 * at boot time. 7216 */ 7217 7218 static LIST_HEAD(all_detected_devices); 7219 struct detected_devices_node { 7220 struct list_head list; 7221 dev_t dev; 7222 }; 7223 7224 void md_autodetect_dev(dev_t dev) 7225 { 7226 struct detected_devices_node *node_detected_dev; 7227 7228 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 7229 if (node_detected_dev) { 7230 node_detected_dev->dev = dev; 7231 list_add_tail(&node_detected_dev->list, &all_detected_devices); 7232 } else { 7233 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 7234 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 7235 } 7236 } 7237 7238 7239 static void autostart_arrays(int part) 7240 { 7241 mdk_rdev_t *rdev; 7242 struct detected_devices_node *node_detected_dev; 7243 dev_t dev; 7244 int i_scanned, i_passed; 7245 7246 i_scanned = 0; 7247 i_passed = 0; 7248 7249 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 7250 7251 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 7252 i_scanned++; 7253 node_detected_dev = list_entry(all_detected_devices.next, 7254 struct detected_devices_node, list); 7255 list_del(&node_detected_dev->list); 7256 dev = node_detected_dev->dev; 7257 kfree(node_detected_dev); 7258 rdev = md_import_device(dev,0, 90); 7259 if (IS_ERR(rdev)) 7260 continue; 7261 7262 if (test_bit(Faulty, &rdev->flags)) { 7263 MD_BUG(); 7264 continue; 7265 } 7266 set_bit(AutoDetected, &rdev->flags); 7267 list_add(&rdev->same_set, &pending_raid_disks); 7268 i_passed++; 7269 } 7270 7271 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 7272 i_scanned, i_passed); 7273 7274 autorun_devices(part); 7275 } 7276 7277 #endif /* !MODULE */ 7278 7279 static __exit void md_exit(void) 7280 { 7281 mddev_t *mddev; 7282 struct list_head *tmp; 7283 7284 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 7285 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 7286 7287 unregister_blkdev(MD_MAJOR,"md"); 7288 unregister_blkdev(mdp_major, "mdp"); 7289 unregister_reboot_notifier(&md_notifier); 7290 unregister_sysctl_table(raid_table_header); 7291 remove_proc_entry("mdstat", NULL); 7292 for_each_mddev(mddev, tmp) { 7293 export_array(mddev); 7294 mddev->hold_active = 0; 7295 } 7296 } 7297 7298 subsys_initcall(md_init); 7299 module_exit(md_exit) 7300 7301 static int get_ro(char *buffer, struct kernel_param *kp) 7302 { 7303 return sprintf(buffer, "%d", start_readonly); 7304 } 7305 static int set_ro(const char *val, struct kernel_param *kp) 7306 { 7307 char *e; 7308 int num = simple_strtoul(val, &e, 10); 7309 if (*val && (*e == '\0' || *e == '\n')) { 7310 start_readonly = num; 7311 return 0; 7312 } 7313 return -EINVAL; 7314 } 7315 7316 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 7317 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 7318 7319 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 7320 7321 EXPORT_SYMBOL(register_md_personality); 7322 EXPORT_SYMBOL(unregister_md_personality); 7323 EXPORT_SYMBOL(md_error); 7324 EXPORT_SYMBOL(md_done_sync); 7325 EXPORT_SYMBOL(md_write_start); 7326 EXPORT_SYMBOL(md_write_end); 7327 EXPORT_SYMBOL(md_register_thread); 7328 EXPORT_SYMBOL(md_unregister_thread); 7329 EXPORT_SYMBOL(md_wakeup_thread); 7330 EXPORT_SYMBOL(md_check_recovery); 7331 MODULE_LICENSE("GPL"); 7332 MODULE_DESCRIPTION("MD RAID framework"); 7333 MODULE_ALIAS("md"); 7334 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 7335