1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/raid/md.h> 37 #include <linux/raid/bitmap.h> 38 #include <linux/sysctl.h> 39 #include <linux/buffer_head.h> /* for invalidate_bdev */ 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/hdreg.h> 43 #include <linux/proc_fs.h> 44 #include <linux/random.h> 45 #include <linux/reboot.h> 46 #include <linux/file.h> 47 #include <linux/delay.h> 48 49 #define MAJOR_NR MD_MAJOR 50 51 /* 63 partitions with the alternate major number (mdp) */ 52 #define MdpMinorShift 6 53 54 #define DEBUG 0 55 #define dprintk(x...) ((void)(DEBUG && printk(x))) 56 57 58 #ifndef MODULE 59 static void autostart_arrays(int part); 60 #endif 61 62 static LIST_HEAD(pers_list); 63 static DEFINE_SPINLOCK(pers_lock); 64 65 static void md_print_devices(void); 66 67 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 68 69 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 70 71 /* 72 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 73 * is 1000 KB/sec, so the extra system load does not show up that much. 74 * Increase it if you want to have more _guaranteed_ speed. Note that 75 * the RAID driver will use the maximum available bandwidth if the IO 76 * subsystem is idle. There is also an 'absolute maximum' reconstruction 77 * speed limit - in case reconstruction slows down your system despite 78 * idle IO detection. 79 * 80 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 81 * or /sys/block/mdX/md/sync_speed_{min,max} 82 */ 83 84 static int sysctl_speed_limit_min = 1000; 85 static int sysctl_speed_limit_max = 200000; 86 static inline int speed_min(mddev_t *mddev) 87 { 88 return mddev->sync_speed_min ? 89 mddev->sync_speed_min : sysctl_speed_limit_min; 90 } 91 92 static inline int speed_max(mddev_t *mddev) 93 { 94 return mddev->sync_speed_max ? 95 mddev->sync_speed_max : sysctl_speed_limit_max; 96 } 97 98 static struct ctl_table_header *raid_table_header; 99 100 static ctl_table raid_table[] = { 101 { 102 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN, 103 .procname = "speed_limit_min", 104 .data = &sysctl_speed_limit_min, 105 .maxlen = sizeof(int), 106 .mode = S_IRUGO|S_IWUSR, 107 .proc_handler = &proc_dointvec, 108 }, 109 { 110 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX, 111 .procname = "speed_limit_max", 112 .data = &sysctl_speed_limit_max, 113 .maxlen = sizeof(int), 114 .mode = S_IRUGO|S_IWUSR, 115 .proc_handler = &proc_dointvec, 116 }, 117 { .ctl_name = 0 } 118 }; 119 120 static ctl_table raid_dir_table[] = { 121 { 122 .ctl_name = DEV_RAID, 123 .procname = "raid", 124 .maxlen = 0, 125 .mode = S_IRUGO|S_IXUGO, 126 .child = raid_table, 127 }, 128 { .ctl_name = 0 } 129 }; 130 131 static ctl_table raid_root_table[] = { 132 { 133 .ctl_name = CTL_DEV, 134 .procname = "dev", 135 .maxlen = 0, 136 .mode = 0555, 137 .child = raid_dir_table, 138 }, 139 { .ctl_name = 0 } 140 }; 141 142 static struct block_device_operations md_fops; 143 144 static int start_readonly; 145 146 /* 147 * We have a system wide 'event count' that is incremented 148 * on any 'interesting' event, and readers of /proc/mdstat 149 * can use 'poll' or 'select' to find out when the event 150 * count increases. 151 * 152 * Events are: 153 * start array, stop array, error, add device, remove device, 154 * start build, activate spare 155 */ 156 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 157 static atomic_t md_event_count; 158 void md_new_event(mddev_t *mddev) 159 { 160 atomic_inc(&md_event_count); 161 wake_up(&md_event_waiters); 162 } 163 EXPORT_SYMBOL_GPL(md_new_event); 164 165 /* Alternate version that can be called from interrupts 166 * when calling sysfs_notify isn't needed. 167 */ 168 static void md_new_event_inintr(mddev_t *mddev) 169 { 170 atomic_inc(&md_event_count); 171 wake_up(&md_event_waiters); 172 } 173 174 /* 175 * Enables to iterate over all existing md arrays 176 * all_mddevs_lock protects this list. 177 */ 178 static LIST_HEAD(all_mddevs); 179 static DEFINE_SPINLOCK(all_mddevs_lock); 180 181 182 /* 183 * iterates through all used mddevs in the system. 184 * We take care to grab the all_mddevs_lock whenever navigating 185 * the list, and to always hold a refcount when unlocked. 186 * Any code which breaks out of this loop while own 187 * a reference to the current mddev and must mddev_put it. 188 */ 189 #define for_each_mddev(mddev,tmp) \ 190 \ 191 for (({ spin_lock(&all_mddevs_lock); \ 192 tmp = all_mddevs.next; \ 193 mddev = NULL;}); \ 194 ({ if (tmp != &all_mddevs) \ 195 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 196 spin_unlock(&all_mddevs_lock); \ 197 if (mddev) mddev_put(mddev); \ 198 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 199 tmp != &all_mddevs;}); \ 200 ({ spin_lock(&all_mddevs_lock); \ 201 tmp = tmp->next;}) \ 202 ) 203 204 205 static int md_fail_request(struct request_queue *q, struct bio *bio) 206 { 207 bio_io_error(bio); 208 return 0; 209 } 210 211 static inline mddev_t *mddev_get(mddev_t *mddev) 212 { 213 atomic_inc(&mddev->active); 214 return mddev; 215 } 216 217 static void mddev_delayed_delete(struct work_struct *ws) 218 { 219 mddev_t *mddev = container_of(ws, mddev_t, del_work); 220 kobject_del(&mddev->kobj); 221 kobject_put(&mddev->kobj); 222 } 223 224 static void mddev_put(mddev_t *mddev) 225 { 226 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 227 return; 228 if (!mddev->raid_disks && list_empty(&mddev->disks) && 229 !mddev->hold_active) { 230 list_del(&mddev->all_mddevs); 231 if (mddev->gendisk) { 232 /* we did a probe so need to clean up. 233 * Call schedule_work inside the spinlock 234 * so that flush_scheduled_work() after 235 * mddev_find will succeed in waiting for the 236 * work to be done. 237 */ 238 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 239 schedule_work(&mddev->del_work); 240 } else 241 kfree(mddev); 242 } 243 spin_unlock(&all_mddevs_lock); 244 } 245 246 static mddev_t * mddev_find(dev_t unit) 247 { 248 mddev_t *mddev, *new = NULL; 249 250 retry: 251 spin_lock(&all_mddevs_lock); 252 253 if (unit) { 254 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 255 if (mddev->unit == unit) { 256 mddev_get(mddev); 257 spin_unlock(&all_mddevs_lock); 258 kfree(new); 259 return mddev; 260 } 261 262 if (new) { 263 list_add(&new->all_mddevs, &all_mddevs); 264 spin_unlock(&all_mddevs_lock); 265 new->hold_active = UNTIL_IOCTL; 266 return new; 267 } 268 } else if (new) { 269 /* find an unused unit number */ 270 static int next_minor = 512; 271 int start = next_minor; 272 int is_free = 0; 273 int dev = 0; 274 while (!is_free) { 275 dev = MKDEV(MD_MAJOR, next_minor); 276 next_minor++; 277 if (next_minor > MINORMASK) 278 next_minor = 0; 279 if (next_minor == start) { 280 /* Oh dear, all in use. */ 281 spin_unlock(&all_mddevs_lock); 282 kfree(new); 283 return NULL; 284 } 285 286 is_free = 1; 287 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 288 if (mddev->unit == dev) { 289 is_free = 0; 290 break; 291 } 292 } 293 new->unit = dev; 294 new->md_minor = MINOR(dev); 295 new->hold_active = UNTIL_STOP; 296 list_add(&new->all_mddevs, &all_mddevs); 297 spin_unlock(&all_mddevs_lock); 298 return new; 299 } 300 spin_unlock(&all_mddevs_lock); 301 302 new = kzalloc(sizeof(*new), GFP_KERNEL); 303 if (!new) 304 return NULL; 305 306 new->unit = unit; 307 if (MAJOR(unit) == MD_MAJOR) 308 new->md_minor = MINOR(unit); 309 else 310 new->md_minor = MINOR(unit) >> MdpMinorShift; 311 312 mutex_init(&new->reconfig_mutex); 313 INIT_LIST_HEAD(&new->disks); 314 INIT_LIST_HEAD(&new->all_mddevs); 315 init_timer(&new->safemode_timer); 316 atomic_set(&new->active, 1); 317 atomic_set(&new->openers, 0); 318 spin_lock_init(&new->write_lock); 319 init_waitqueue_head(&new->sb_wait); 320 init_waitqueue_head(&new->recovery_wait); 321 new->reshape_position = MaxSector; 322 new->resync_min = 0; 323 new->resync_max = MaxSector; 324 new->level = LEVEL_NONE; 325 326 goto retry; 327 } 328 329 static inline int mddev_lock(mddev_t * mddev) 330 { 331 return mutex_lock_interruptible(&mddev->reconfig_mutex); 332 } 333 334 static inline int mddev_trylock(mddev_t * mddev) 335 { 336 return mutex_trylock(&mddev->reconfig_mutex); 337 } 338 339 static inline void mddev_unlock(mddev_t * mddev) 340 { 341 mutex_unlock(&mddev->reconfig_mutex); 342 343 md_wakeup_thread(mddev->thread); 344 } 345 346 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 347 { 348 mdk_rdev_t *rdev; 349 350 list_for_each_entry(rdev, &mddev->disks, same_set) 351 if (rdev->desc_nr == nr) 352 return rdev; 353 354 return NULL; 355 } 356 357 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 358 { 359 mdk_rdev_t *rdev; 360 361 list_for_each_entry(rdev, &mddev->disks, same_set) 362 if (rdev->bdev->bd_dev == dev) 363 return rdev; 364 365 return NULL; 366 } 367 368 static struct mdk_personality *find_pers(int level, char *clevel) 369 { 370 struct mdk_personality *pers; 371 list_for_each_entry(pers, &pers_list, list) { 372 if (level != LEVEL_NONE && pers->level == level) 373 return pers; 374 if (strcmp(pers->name, clevel)==0) 375 return pers; 376 } 377 return NULL; 378 } 379 380 /* return the offset of the super block in 512byte sectors */ 381 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 382 { 383 sector_t num_sectors = bdev->bd_inode->i_size / 512; 384 return MD_NEW_SIZE_SECTORS(num_sectors); 385 } 386 387 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size) 388 { 389 sector_t num_sectors = rdev->sb_start; 390 391 if (chunk_size) 392 num_sectors &= ~((sector_t)chunk_size/512 - 1); 393 return num_sectors; 394 } 395 396 static int alloc_disk_sb(mdk_rdev_t * rdev) 397 { 398 if (rdev->sb_page) 399 MD_BUG(); 400 401 rdev->sb_page = alloc_page(GFP_KERNEL); 402 if (!rdev->sb_page) { 403 printk(KERN_ALERT "md: out of memory.\n"); 404 return -ENOMEM; 405 } 406 407 return 0; 408 } 409 410 static void free_disk_sb(mdk_rdev_t * rdev) 411 { 412 if (rdev->sb_page) { 413 put_page(rdev->sb_page); 414 rdev->sb_loaded = 0; 415 rdev->sb_page = NULL; 416 rdev->sb_start = 0; 417 rdev->size = 0; 418 } 419 } 420 421 422 static void super_written(struct bio *bio, int error) 423 { 424 mdk_rdev_t *rdev = bio->bi_private; 425 mddev_t *mddev = rdev->mddev; 426 427 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 428 printk("md: super_written gets error=%d, uptodate=%d\n", 429 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 430 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 431 md_error(mddev, rdev); 432 } 433 434 if (atomic_dec_and_test(&mddev->pending_writes)) 435 wake_up(&mddev->sb_wait); 436 bio_put(bio); 437 } 438 439 static void super_written_barrier(struct bio *bio, int error) 440 { 441 struct bio *bio2 = bio->bi_private; 442 mdk_rdev_t *rdev = bio2->bi_private; 443 mddev_t *mddev = rdev->mddev; 444 445 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 446 error == -EOPNOTSUPP) { 447 unsigned long flags; 448 /* barriers don't appear to be supported :-( */ 449 set_bit(BarriersNotsupp, &rdev->flags); 450 mddev->barriers_work = 0; 451 spin_lock_irqsave(&mddev->write_lock, flags); 452 bio2->bi_next = mddev->biolist; 453 mddev->biolist = bio2; 454 spin_unlock_irqrestore(&mddev->write_lock, flags); 455 wake_up(&mddev->sb_wait); 456 bio_put(bio); 457 } else { 458 bio_put(bio2); 459 bio->bi_private = rdev; 460 super_written(bio, error); 461 } 462 } 463 464 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 465 sector_t sector, int size, struct page *page) 466 { 467 /* write first size bytes of page to sector of rdev 468 * Increment mddev->pending_writes before returning 469 * and decrement it on completion, waking up sb_wait 470 * if zero is reached. 471 * If an error occurred, call md_error 472 * 473 * As we might need to resubmit the request if BIO_RW_BARRIER 474 * causes ENOTSUPP, we allocate a spare bio... 475 */ 476 struct bio *bio = bio_alloc(GFP_NOIO, 1); 477 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC); 478 479 bio->bi_bdev = rdev->bdev; 480 bio->bi_sector = sector; 481 bio_add_page(bio, page, size, 0); 482 bio->bi_private = rdev; 483 bio->bi_end_io = super_written; 484 bio->bi_rw = rw; 485 486 atomic_inc(&mddev->pending_writes); 487 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 488 struct bio *rbio; 489 rw |= (1<<BIO_RW_BARRIER); 490 rbio = bio_clone(bio, GFP_NOIO); 491 rbio->bi_private = bio; 492 rbio->bi_end_io = super_written_barrier; 493 submit_bio(rw, rbio); 494 } else 495 submit_bio(rw, bio); 496 } 497 498 void md_super_wait(mddev_t *mddev) 499 { 500 /* wait for all superblock writes that were scheduled to complete. 501 * if any had to be retried (due to BARRIER problems), retry them 502 */ 503 DEFINE_WAIT(wq); 504 for(;;) { 505 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 506 if (atomic_read(&mddev->pending_writes)==0) 507 break; 508 while (mddev->biolist) { 509 struct bio *bio; 510 spin_lock_irq(&mddev->write_lock); 511 bio = mddev->biolist; 512 mddev->biolist = bio->bi_next ; 513 bio->bi_next = NULL; 514 spin_unlock_irq(&mddev->write_lock); 515 submit_bio(bio->bi_rw, bio); 516 } 517 schedule(); 518 } 519 finish_wait(&mddev->sb_wait, &wq); 520 } 521 522 static void bi_complete(struct bio *bio, int error) 523 { 524 complete((struct completion*)bio->bi_private); 525 } 526 527 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 528 struct page *page, int rw) 529 { 530 struct bio *bio = bio_alloc(GFP_NOIO, 1); 531 struct completion event; 532 int ret; 533 534 rw |= (1 << BIO_RW_SYNC); 535 536 bio->bi_bdev = bdev; 537 bio->bi_sector = sector; 538 bio_add_page(bio, page, size, 0); 539 init_completion(&event); 540 bio->bi_private = &event; 541 bio->bi_end_io = bi_complete; 542 submit_bio(rw, bio); 543 wait_for_completion(&event); 544 545 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 546 bio_put(bio); 547 return ret; 548 } 549 EXPORT_SYMBOL_GPL(sync_page_io); 550 551 static int read_disk_sb(mdk_rdev_t * rdev, int size) 552 { 553 char b[BDEVNAME_SIZE]; 554 if (!rdev->sb_page) { 555 MD_BUG(); 556 return -EINVAL; 557 } 558 if (rdev->sb_loaded) 559 return 0; 560 561 562 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ)) 563 goto fail; 564 rdev->sb_loaded = 1; 565 return 0; 566 567 fail: 568 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 569 bdevname(rdev->bdev,b)); 570 return -EINVAL; 571 } 572 573 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 574 { 575 return sb1->set_uuid0 == sb2->set_uuid0 && 576 sb1->set_uuid1 == sb2->set_uuid1 && 577 sb1->set_uuid2 == sb2->set_uuid2 && 578 sb1->set_uuid3 == sb2->set_uuid3; 579 } 580 581 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 582 { 583 int ret; 584 mdp_super_t *tmp1, *tmp2; 585 586 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 587 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 588 589 if (!tmp1 || !tmp2) { 590 ret = 0; 591 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 592 goto abort; 593 } 594 595 *tmp1 = *sb1; 596 *tmp2 = *sb2; 597 598 /* 599 * nr_disks is not constant 600 */ 601 tmp1->nr_disks = 0; 602 tmp2->nr_disks = 0; 603 604 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 605 abort: 606 kfree(tmp1); 607 kfree(tmp2); 608 return ret; 609 } 610 611 612 static u32 md_csum_fold(u32 csum) 613 { 614 csum = (csum & 0xffff) + (csum >> 16); 615 return (csum & 0xffff) + (csum >> 16); 616 } 617 618 static unsigned int calc_sb_csum(mdp_super_t * sb) 619 { 620 u64 newcsum = 0; 621 u32 *sb32 = (u32*)sb; 622 int i; 623 unsigned int disk_csum, csum; 624 625 disk_csum = sb->sb_csum; 626 sb->sb_csum = 0; 627 628 for (i = 0; i < MD_SB_BYTES/4 ; i++) 629 newcsum += sb32[i]; 630 csum = (newcsum & 0xffffffff) + (newcsum>>32); 631 632 633 #ifdef CONFIG_ALPHA 634 /* This used to use csum_partial, which was wrong for several 635 * reasons including that different results are returned on 636 * different architectures. It isn't critical that we get exactly 637 * the same return value as before (we always csum_fold before 638 * testing, and that removes any differences). However as we 639 * know that csum_partial always returned a 16bit value on 640 * alphas, do a fold to maximise conformity to previous behaviour. 641 */ 642 sb->sb_csum = md_csum_fold(disk_csum); 643 #else 644 sb->sb_csum = disk_csum; 645 #endif 646 return csum; 647 } 648 649 650 /* 651 * Handle superblock details. 652 * We want to be able to handle multiple superblock formats 653 * so we have a common interface to them all, and an array of 654 * different handlers. 655 * We rely on user-space to write the initial superblock, and support 656 * reading and updating of superblocks. 657 * Interface methods are: 658 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 659 * loads and validates a superblock on dev. 660 * if refdev != NULL, compare superblocks on both devices 661 * Return: 662 * 0 - dev has a superblock that is compatible with refdev 663 * 1 - dev has a superblock that is compatible and newer than refdev 664 * so dev should be used as the refdev in future 665 * -EINVAL superblock incompatible or invalid 666 * -othererror e.g. -EIO 667 * 668 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 669 * Verify that dev is acceptable into mddev. 670 * The first time, mddev->raid_disks will be 0, and data from 671 * dev should be merged in. Subsequent calls check that dev 672 * is new enough. Return 0 or -EINVAL 673 * 674 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 675 * Update the superblock for rdev with data in mddev 676 * This does not write to disc. 677 * 678 */ 679 680 struct super_type { 681 char *name; 682 struct module *owner; 683 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, 684 int minor_version); 685 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 686 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 687 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev, 688 sector_t num_sectors); 689 }; 690 691 /* 692 * load_super for 0.90.0 693 */ 694 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 695 { 696 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 697 mdp_super_t *sb; 698 int ret; 699 700 /* 701 * Calculate the position of the superblock (512byte sectors), 702 * it's at the end of the disk. 703 * 704 * It also happens to be a multiple of 4Kb. 705 */ 706 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 707 708 ret = read_disk_sb(rdev, MD_SB_BYTES); 709 if (ret) return ret; 710 711 ret = -EINVAL; 712 713 bdevname(rdev->bdev, b); 714 sb = (mdp_super_t*)page_address(rdev->sb_page); 715 716 if (sb->md_magic != MD_SB_MAGIC) { 717 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 718 b); 719 goto abort; 720 } 721 722 if (sb->major_version != 0 || 723 sb->minor_version < 90 || 724 sb->minor_version > 91) { 725 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 726 sb->major_version, sb->minor_version, 727 b); 728 goto abort; 729 } 730 731 if (sb->raid_disks <= 0) 732 goto abort; 733 734 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 735 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 736 b); 737 goto abort; 738 } 739 740 rdev->preferred_minor = sb->md_minor; 741 rdev->data_offset = 0; 742 rdev->sb_size = MD_SB_BYTES; 743 744 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) { 745 if (sb->level != 1 && sb->level != 4 746 && sb->level != 5 && sb->level != 6 747 && sb->level != 10) { 748 /* FIXME use a better test */ 749 printk(KERN_WARNING 750 "md: bitmaps not supported for this level.\n"); 751 goto abort; 752 } 753 } 754 755 if (sb->level == LEVEL_MULTIPATH) 756 rdev->desc_nr = -1; 757 else 758 rdev->desc_nr = sb->this_disk.number; 759 760 if (!refdev) { 761 ret = 1; 762 } else { 763 __u64 ev1, ev2; 764 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 765 if (!uuid_equal(refsb, sb)) { 766 printk(KERN_WARNING "md: %s has different UUID to %s\n", 767 b, bdevname(refdev->bdev,b2)); 768 goto abort; 769 } 770 if (!sb_equal(refsb, sb)) { 771 printk(KERN_WARNING "md: %s has same UUID" 772 " but different superblock to %s\n", 773 b, bdevname(refdev->bdev, b2)); 774 goto abort; 775 } 776 ev1 = md_event(sb); 777 ev2 = md_event(refsb); 778 if (ev1 > ev2) 779 ret = 1; 780 else 781 ret = 0; 782 } 783 rdev->size = calc_num_sectors(rdev, sb->chunk_size) / 2; 784 785 if (rdev->size < sb->size && sb->level > 1) 786 /* "this cannot possibly happen" ... */ 787 ret = -EINVAL; 788 789 abort: 790 return ret; 791 } 792 793 /* 794 * validate_super for 0.90.0 795 */ 796 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 797 { 798 mdp_disk_t *desc; 799 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 800 __u64 ev1 = md_event(sb); 801 802 rdev->raid_disk = -1; 803 clear_bit(Faulty, &rdev->flags); 804 clear_bit(In_sync, &rdev->flags); 805 clear_bit(WriteMostly, &rdev->flags); 806 clear_bit(BarriersNotsupp, &rdev->flags); 807 808 if (mddev->raid_disks == 0) { 809 mddev->major_version = 0; 810 mddev->minor_version = sb->minor_version; 811 mddev->patch_version = sb->patch_version; 812 mddev->external = 0; 813 mddev->chunk_size = sb->chunk_size; 814 mddev->ctime = sb->ctime; 815 mddev->utime = sb->utime; 816 mddev->level = sb->level; 817 mddev->clevel[0] = 0; 818 mddev->layout = sb->layout; 819 mddev->raid_disks = sb->raid_disks; 820 mddev->size = sb->size; 821 mddev->events = ev1; 822 mddev->bitmap_offset = 0; 823 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 824 825 if (mddev->minor_version >= 91) { 826 mddev->reshape_position = sb->reshape_position; 827 mddev->delta_disks = sb->delta_disks; 828 mddev->new_level = sb->new_level; 829 mddev->new_layout = sb->new_layout; 830 mddev->new_chunk = sb->new_chunk; 831 } else { 832 mddev->reshape_position = MaxSector; 833 mddev->delta_disks = 0; 834 mddev->new_level = mddev->level; 835 mddev->new_layout = mddev->layout; 836 mddev->new_chunk = mddev->chunk_size; 837 } 838 839 if (sb->state & (1<<MD_SB_CLEAN)) 840 mddev->recovery_cp = MaxSector; 841 else { 842 if (sb->events_hi == sb->cp_events_hi && 843 sb->events_lo == sb->cp_events_lo) { 844 mddev->recovery_cp = sb->recovery_cp; 845 } else 846 mddev->recovery_cp = 0; 847 } 848 849 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 850 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 851 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 852 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 853 854 mddev->max_disks = MD_SB_DISKS; 855 856 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 857 mddev->bitmap_file == NULL) 858 mddev->bitmap_offset = mddev->default_bitmap_offset; 859 860 } else if (mddev->pers == NULL) { 861 /* Insist on good event counter while assembling */ 862 ++ev1; 863 if (ev1 < mddev->events) 864 return -EINVAL; 865 } else if (mddev->bitmap) { 866 /* if adding to array with a bitmap, then we can accept an 867 * older device ... but not too old. 868 */ 869 if (ev1 < mddev->bitmap->events_cleared) 870 return 0; 871 } else { 872 if (ev1 < mddev->events) 873 /* just a hot-add of a new device, leave raid_disk at -1 */ 874 return 0; 875 } 876 877 if (mddev->level != LEVEL_MULTIPATH) { 878 desc = sb->disks + rdev->desc_nr; 879 880 if (desc->state & (1<<MD_DISK_FAULTY)) 881 set_bit(Faulty, &rdev->flags); 882 else if (desc->state & (1<<MD_DISK_SYNC) /* && 883 desc->raid_disk < mddev->raid_disks */) { 884 set_bit(In_sync, &rdev->flags); 885 rdev->raid_disk = desc->raid_disk; 886 } 887 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 888 set_bit(WriteMostly, &rdev->flags); 889 } else /* MULTIPATH are always insync */ 890 set_bit(In_sync, &rdev->flags); 891 return 0; 892 } 893 894 /* 895 * sync_super for 0.90.0 896 */ 897 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 898 { 899 mdp_super_t *sb; 900 mdk_rdev_t *rdev2; 901 int next_spare = mddev->raid_disks; 902 903 904 /* make rdev->sb match mddev data.. 905 * 906 * 1/ zero out disks 907 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 908 * 3/ any empty disks < next_spare become removed 909 * 910 * disks[0] gets initialised to REMOVED because 911 * we cannot be sure from other fields if it has 912 * been initialised or not. 913 */ 914 int i; 915 int active=0, working=0,failed=0,spare=0,nr_disks=0; 916 917 rdev->sb_size = MD_SB_BYTES; 918 919 sb = (mdp_super_t*)page_address(rdev->sb_page); 920 921 memset(sb, 0, sizeof(*sb)); 922 923 sb->md_magic = MD_SB_MAGIC; 924 sb->major_version = mddev->major_version; 925 sb->patch_version = mddev->patch_version; 926 sb->gvalid_words = 0; /* ignored */ 927 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 928 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 929 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 930 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 931 932 sb->ctime = mddev->ctime; 933 sb->level = mddev->level; 934 sb->size = mddev->size; 935 sb->raid_disks = mddev->raid_disks; 936 sb->md_minor = mddev->md_minor; 937 sb->not_persistent = 0; 938 sb->utime = mddev->utime; 939 sb->state = 0; 940 sb->events_hi = (mddev->events>>32); 941 sb->events_lo = (u32)mddev->events; 942 943 if (mddev->reshape_position == MaxSector) 944 sb->minor_version = 90; 945 else { 946 sb->minor_version = 91; 947 sb->reshape_position = mddev->reshape_position; 948 sb->new_level = mddev->new_level; 949 sb->delta_disks = mddev->delta_disks; 950 sb->new_layout = mddev->new_layout; 951 sb->new_chunk = mddev->new_chunk; 952 } 953 mddev->minor_version = sb->minor_version; 954 if (mddev->in_sync) 955 { 956 sb->recovery_cp = mddev->recovery_cp; 957 sb->cp_events_hi = (mddev->events>>32); 958 sb->cp_events_lo = (u32)mddev->events; 959 if (mddev->recovery_cp == MaxSector) 960 sb->state = (1<< MD_SB_CLEAN); 961 } else 962 sb->recovery_cp = 0; 963 964 sb->layout = mddev->layout; 965 sb->chunk_size = mddev->chunk_size; 966 967 if (mddev->bitmap && mddev->bitmap_file == NULL) 968 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 969 970 sb->disks[0].state = (1<<MD_DISK_REMOVED); 971 list_for_each_entry(rdev2, &mddev->disks, same_set) { 972 mdp_disk_t *d; 973 int desc_nr; 974 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 975 && !test_bit(Faulty, &rdev2->flags)) 976 desc_nr = rdev2->raid_disk; 977 else 978 desc_nr = next_spare++; 979 rdev2->desc_nr = desc_nr; 980 d = &sb->disks[rdev2->desc_nr]; 981 nr_disks++; 982 d->number = rdev2->desc_nr; 983 d->major = MAJOR(rdev2->bdev->bd_dev); 984 d->minor = MINOR(rdev2->bdev->bd_dev); 985 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 986 && !test_bit(Faulty, &rdev2->flags)) 987 d->raid_disk = rdev2->raid_disk; 988 else 989 d->raid_disk = rdev2->desc_nr; /* compatibility */ 990 if (test_bit(Faulty, &rdev2->flags)) 991 d->state = (1<<MD_DISK_FAULTY); 992 else if (test_bit(In_sync, &rdev2->flags)) { 993 d->state = (1<<MD_DISK_ACTIVE); 994 d->state |= (1<<MD_DISK_SYNC); 995 active++; 996 working++; 997 } else { 998 d->state = 0; 999 spare++; 1000 working++; 1001 } 1002 if (test_bit(WriteMostly, &rdev2->flags)) 1003 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1004 } 1005 /* now set the "removed" and "faulty" bits on any missing devices */ 1006 for (i=0 ; i < mddev->raid_disks ; i++) { 1007 mdp_disk_t *d = &sb->disks[i]; 1008 if (d->state == 0 && d->number == 0) { 1009 d->number = i; 1010 d->raid_disk = i; 1011 d->state = (1<<MD_DISK_REMOVED); 1012 d->state |= (1<<MD_DISK_FAULTY); 1013 failed++; 1014 } 1015 } 1016 sb->nr_disks = nr_disks; 1017 sb->active_disks = active; 1018 sb->working_disks = working; 1019 sb->failed_disks = failed; 1020 sb->spare_disks = spare; 1021 1022 sb->this_disk = sb->disks[rdev->desc_nr]; 1023 sb->sb_csum = calc_sb_csum(sb); 1024 } 1025 1026 /* 1027 * rdev_size_change for 0.90.0 1028 */ 1029 static unsigned long long 1030 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1031 { 1032 if (num_sectors && num_sectors < rdev->mddev->size * 2) 1033 return 0; /* component must fit device */ 1034 if (rdev->mddev->bitmap_offset) 1035 return 0; /* can't move bitmap */ 1036 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 1037 if (!num_sectors || num_sectors > rdev->sb_start) 1038 num_sectors = rdev->sb_start; 1039 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1040 rdev->sb_page); 1041 md_super_wait(rdev->mddev); 1042 return num_sectors / 2; /* kB for sysfs */ 1043 } 1044 1045 1046 /* 1047 * version 1 superblock 1048 */ 1049 1050 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1051 { 1052 __le32 disk_csum; 1053 u32 csum; 1054 unsigned long long newcsum; 1055 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1056 __le32 *isuper = (__le32*)sb; 1057 int i; 1058 1059 disk_csum = sb->sb_csum; 1060 sb->sb_csum = 0; 1061 newcsum = 0; 1062 for (i=0; size>=4; size -= 4 ) 1063 newcsum += le32_to_cpu(*isuper++); 1064 1065 if (size == 2) 1066 newcsum += le16_to_cpu(*(__le16*) isuper); 1067 1068 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1069 sb->sb_csum = disk_csum; 1070 return cpu_to_le32(csum); 1071 } 1072 1073 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1074 { 1075 struct mdp_superblock_1 *sb; 1076 int ret; 1077 sector_t sb_start; 1078 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1079 int bmask; 1080 1081 /* 1082 * Calculate the position of the superblock in 512byte sectors. 1083 * It is always aligned to a 4K boundary and 1084 * depeding on minor_version, it can be: 1085 * 0: At least 8K, but less than 12K, from end of device 1086 * 1: At start of device 1087 * 2: 4K from start of device. 1088 */ 1089 switch(minor_version) { 1090 case 0: 1091 sb_start = rdev->bdev->bd_inode->i_size >> 9; 1092 sb_start -= 8*2; 1093 sb_start &= ~(sector_t)(4*2-1); 1094 break; 1095 case 1: 1096 sb_start = 0; 1097 break; 1098 case 2: 1099 sb_start = 8; 1100 break; 1101 default: 1102 return -EINVAL; 1103 } 1104 rdev->sb_start = sb_start; 1105 1106 /* superblock is rarely larger than 1K, but it can be larger, 1107 * and it is safe to read 4k, so we do that 1108 */ 1109 ret = read_disk_sb(rdev, 4096); 1110 if (ret) return ret; 1111 1112 1113 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1114 1115 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1116 sb->major_version != cpu_to_le32(1) || 1117 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1118 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1119 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1120 return -EINVAL; 1121 1122 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1123 printk("md: invalid superblock checksum on %s\n", 1124 bdevname(rdev->bdev,b)); 1125 return -EINVAL; 1126 } 1127 if (le64_to_cpu(sb->data_size) < 10) { 1128 printk("md: data_size too small on %s\n", 1129 bdevname(rdev->bdev,b)); 1130 return -EINVAL; 1131 } 1132 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) { 1133 if (sb->level != cpu_to_le32(1) && 1134 sb->level != cpu_to_le32(4) && 1135 sb->level != cpu_to_le32(5) && 1136 sb->level != cpu_to_le32(6) && 1137 sb->level != cpu_to_le32(10)) { 1138 printk(KERN_WARNING 1139 "md: bitmaps not supported for this level.\n"); 1140 return -EINVAL; 1141 } 1142 } 1143 1144 rdev->preferred_minor = 0xffff; 1145 rdev->data_offset = le64_to_cpu(sb->data_offset); 1146 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1147 1148 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1149 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1; 1150 if (rdev->sb_size & bmask) 1151 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1152 1153 if (minor_version 1154 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1155 return -EINVAL; 1156 1157 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1158 rdev->desc_nr = -1; 1159 else 1160 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1161 1162 if (!refdev) { 1163 ret = 1; 1164 } else { 1165 __u64 ev1, ev2; 1166 struct mdp_superblock_1 *refsb = 1167 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1168 1169 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1170 sb->level != refsb->level || 1171 sb->layout != refsb->layout || 1172 sb->chunksize != refsb->chunksize) { 1173 printk(KERN_WARNING "md: %s has strangely different" 1174 " superblock to %s\n", 1175 bdevname(rdev->bdev,b), 1176 bdevname(refdev->bdev,b2)); 1177 return -EINVAL; 1178 } 1179 ev1 = le64_to_cpu(sb->events); 1180 ev2 = le64_to_cpu(refsb->events); 1181 1182 if (ev1 > ev2) 1183 ret = 1; 1184 else 1185 ret = 0; 1186 } 1187 if (minor_version) 1188 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2; 1189 else 1190 rdev->size = rdev->sb_start / 2; 1191 if (rdev->size < le64_to_cpu(sb->data_size)/2) 1192 return -EINVAL; 1193 rdev->size = le64_to_cpu(sb->data_size)/2; 1194 if (le32_to_cpu(sb->chunksize)) 1195 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1); 1196 1197 if (le64_to_cpu(sb->size) > rdev->size*2) 1198 return -EINVAL; 1199 return ret; 1200 } 1201 1202 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1203 { 1204 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1205 __u64 ev1 = le64_to_cpu(sb->events); 1206 1207 rdev->raid_disk = -1; 1208 clear_bit(Faulty, &rdev->flags); 1209 clear_bit(In_sync, &rdev->flags); 1210 clear_bit(WriteMostly, &rdev->flags); 1211 clear_bit(BarriersNotsupp, &rdev->flags); 1212 1213 if (mddev->raid_disks == 0) { 1214 mddev->major_version = 1; 1215 mddev->patch_version = 0; 1216 mddev->external = 0; 1217 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9; 1218 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1219 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1220 mddev->level = le32_to_cpu(sb->level); 1221 mddev->clevel[0] = 0; 1222 mddev->layout = le32_to_cpu(sb->layout); 1223 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1224 mddev->size = le64_to_cpu(sb->size)/2; 1225 mddev->events = ev1; 1226 mddev->bitmap_offset = 0; 1227 mddev->default_bitmap_offset = 1024 >> 9; 1228 1229 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1230 memcpy(mddev->uuid, sb->set_uuid, 16); 1231 1232 mddev->max_disks = (4096-256)/2; 1233 1234 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1235 mddev->bitmap_file == NULL ) 1236 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset); 1237 1238 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1239 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1240 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1241 mddev->new_level = le32_to_cpu(sb->new_level); 1242 mddev->new_layout = le32_to_cpu(sb->new_layout); 1243 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9; 1244 } else { 1245 mddev->reshape_position = MaxSector; 1246 mddev->delta_disks = 0; 1247 mddev->new_level = mddev->level; 1248 mddev->new_layout = mddev->layout; 1249 mddev->new_chunk = mddev->chunk_size; 1250 } 1251 1252 } else if (mddev->pers == NULL) { 1253 /* Insist of good event counter while assembling */ 1254 ++ev1; 1255 if (ev1 < mddev->events) 1256 return -EINVAL; 1257 } else if (mddev->bitmap) { 1258 /* If adding to array with a bitmap, then we can accept an 1259 * older device, but not too old. 1260 */ 1261 if (ev1 < mddev->bitmap->events_cleared) 1262 return 0; 1263 } else { 1264 if (ev1 < mddev->events) 1265 /* just a hot-add of a new device, leave raid_disk at -1 */ 1266 return 0; 1267 } 1268 if (mddev->level != LEVEL_MULTIPATH) { 1269 int role; 1270 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1271 switch(role) { 1272 case 0xffff: /* spare */ 1273 break; 1274 case 0xfffe: /* faulty */ 1275 set_bit(Faulty, &rdev->flags); 1276 break; 1277 default: 1278 if ((le32_to_cpu(sb->feature_map) & 1279 MD_FEATURE_RECOVERY_OFFSET)) 1280 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1281 else 1282 set_bit(In_sync, &rdev->flags); 1283 rdev->raid_disk = role; 1284 break; 1285 } 1286 if (sb->devflags & WriteMostly1) 1287 set_bit(WriteMostly, &rdev->flags); 1288 } else /* MULTIPATH are always insync */ 1289 set_bit(In_sync, &rdev->flags); 1290 1291 return 0; 1292 } 1293 1294 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1295 { 1296 struct mdp_superblock_1 *sb; 1297 mdk_rdev_t *rdev2; 1298 int max_dev, i; 1299 /* make rdev->sb match mddev and rdev data. */ 1300 1301 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1302 1303 sb->feature_map = 0; 1304 sb->pad0 = 0; 1305 sb->recovery_offset = cpu_to_le64(0); 1306 memset(sb->pad1, 0, sizeof(sb->pad1)); 1307 memset(sb->pad2, 0, sizeof(sb->pad2)); 1308 memset(sb->pad3, 0, sizeof(sb->pad3)); 1309 1310 sb->utime = cpu_to_le64((__u64)mddev->utime); 1311 sb->events = cpu_to_le64(mddev->events); 1312 if (mddev->in_sync) 1313 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1314 else 1315 sb->resync_offset = cpu_to_le64(0); 1316 1317 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1318 1319 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1320 sb->size = cpu_to_le64(mddev->size<<1); 1321 1322 if (mddev->bitmap && mddev->bitmap_file == NULL) { 1323 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset); 1324 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1325 } 1326 1327 if (rdev->raid_disk >= 0 && 1328 !test_bit(In_sync, &rdev->flags) && 1329 rdev->recovery_offset > 0) { 1330 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1331 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset); 1332 } 1333 1334 if (mddev->reshape_position != MaxSector) { 1335 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1336 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1337 sb->new_layout = cpu_to_le32(mddev->new_layout); 1338 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1339 sb->new_level = cpu_to_le32(mddev->new_level); 1340 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9); 1341 } 1342 1343 max_dev = 0; 1344 list_for_each_entry(rdev2, &mddev->disks, same_set) 1345 if (rdev2->desc_nr+1 > max_dev) 1346 max_dev = rdev2->desc_nr+1; 1347 1348 if (max_dev > le32_to_cpu(sb->max_dev)) 1349 sb->max_dev = cpu_to_le32(max_dev); 1350 for (i=0; i<max_dev;i++) 1351 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1352 1353 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1354 i = rdev2->desc_nr; 1355 if (test_bit(Faulty, &rdev2->flags)) 1356 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1357 else if (test_bit(In_sync, &rdev2->flags)) 1358 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1359 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0) 1360 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1361 else 1362 sb->dev_roles[i] = cpu_to_le16(0xffff); 1363 } 1364 1365 sb->sb_csum = calc_sb_1_csum(sb); 1366 } 1367 1368 static unsigned long long 1369 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1370 { 1371 struct mdp_superblock_1 *sb; 1372 sector_t max_sectors; 1373 if (num_sectors && num_sectors < rdev->mddev->size * 2) 1374 return 0; /* component must fit device */ 1375 if (rdev->sb_start < rdev->data_offset) { 1376 /* minor versions 1 and 2; superblock before data */ 1377 max_sectors = rdev->bdev->bd_inode->i_size >> 9; 1378 max_sectors -= rdev->data_offset; 1379 if (!num_sectors || num_sectors > max_sectors) 1380 num_sectors = max_sectors; 1381 } else if (rdev->mddev->bitmap_offset) { 1382 /* minor version 0 with bitmap we can't move */ 1383 return 0; 1384 } else { 1385 /* minor version 0; superblock after data */ 1386 sector_t sb_start; 1387 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2; 1388 sb_start &= ~(sector_t)(4*2 - 1); 1389 max_sectors = rdev->size * 2 + sb_start - rdev->sb_start; 1390 if (!num_sectors || num_sectors > max_sectors) 1391 num_sectors = max_sectors; 1392 rdev->sb_start = sb_start; 1393 } 1394 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page); 1395 sb->data_size = cpu_to_le64(num_sectors); 1396 sb->super_offset = rdev->sb_start; 1397 sb->sb_csum = calc_sb_1_csum(sb); 1398 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1399 rdev->sb_page); 1400 md_super_wait(rdev->mddev); 1401 return num_sectors / 2; /* kB for sysfs */ 1402 } 1403 1404 static struct super_type super_types[] = { 1405 [0] = { 1406 .name = "0.90.0", 1407 .owner = THIS_MODULE, 1408 .load_super = super_90_load, 1409 .validate_super = super_90_validate, 1410 .sync_super = super_90_sync, 1411 .rdev_size_change = super_90_rdev_size_change, 1412 }, 1413 [1] = { 1414 .name = "md-1", 1415 .owner = THIS_MODULE, 1416 .load_super = super_1_load, 1417 .validate_super = super_1_validate, 1418 .sync_super = super_1_sync, 1419 .rdev_size_change = super_1_rdev_size_change, 1420 }, 1421 }; 1422 1423 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1424 { 1425 mdk_rdev_t *rdev, *rdev2; 1426 1427 rcu_read_lock(); 1428 rdev_for_each_rcu(rdev, mddev1) 1429 rdev_for_each_rcu(rdev2, mddev2) 1430 if (rdev->bdev->bd_contains == 1431 rdev2->bdev->bd_contains) { 1432 rcu_read_unlock(); 1433 return 1; 1434 } 1435 rcu_read_unlock(); 1436 return 0; 1437 } 1438 1439 static LIST_HEAD(pending_raid_disks); 1440 1441 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1442 { 1443 char b[BDEVNAME_SIZE]; 1444 struct kobject *ko; 1445 char *s; 1446 int err; 1447 1448 if (rdev->mddev) { 1449 MD_BUG(); 1450 return -EINVAL; 1451 } 1452 1453 /* prevent duplicates */ 1454 if (find_rdev(mddev, rdev->bdev->bd_dev)) 1455 return -EEXIST; 1456 1457 /* make sure rdev->size exceeds mddev->size */ 1458 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) { 1459 if (mddev->pers) { 1460 /* Cannot change size, so fail 1461 * If mddev->level <= 0, then we don't care 1462 * about aligning sizes (e.g. linear) 1463 */ 1464 if (mddev->level > 0) 1465 return -ENOSPC; 1466 } else 1467 mddev->size = rdev->size; 1468 } 1469 1470 /* Verify rdev->desc_nr is unique. 1471 * If it is -1, assign a free number, else 1472 * check number is not in use 1473 */ 1474 if (rdev->desc_nr < 0) { 1475 int choice = 0; 1476 if (mddev->pers) choice = mddev->raid_disks; 1477 while (find_rdev_nr(mddev, choice)) 1478 choice++; 1479 rdev->desc_nr = choice; 1480 } else { 1481 if (find_rdev_nr(mddev, rdev->desc_nr)) 1482 return -EBUSY; 1483 } 1484 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 1485 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 1486 mdname(mddev), mddev->max_disks); 1487 return -EBUSY; 1488 } 1489 bdevname(rdev->bdev,b); 1490 while ( (s=strchr(b, '/')) != NULL) 1491 *s = '!'; 1492 1493 rdev->mddev = mddev; 1494 printk(KERN_INFO "md: bind<%s>\n", b); 1495 1496 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 1497 goto fail; 1498 1499 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 1500 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) { 1501 kobject_del(&rdev->kobj); 1502 goto fail; 1503 } 1504 rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state"); 1505 1506 list_add_rcu(&rdev->same_set, &mddev->disks); 1507 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk); 1508 1509 /* May as well allow recovery to be retried once */ 1510 mddev->recovery_disabled = 0; 1511 return 0; 1512 1513 fail: 1514 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1515 b, mdname(mddev)); 1516 return err; 1517 } 1518 1519 static void md_delayed_delete(struct work_struct *ws) 1520 { 1521 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1522 kobject_del(&rdev->kobj); 1523 kobject_put(&rdev->kobj); 1524 } 1525 1526 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1527 { 1528 char b[BDEVNAME_SIZE]; 1529 if (!rdev->mddev) { 1530 MD_BUG(); 1531 return; 1532 } 1533 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1534 list_del_rcu(&rdev->same_set); 1535 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1536 rdev->mddev = NULL; 1537 sysfs_remove_link(&rdev->kobj, "block"); 1538 sysfs_put(rdev->sysfs_state); 1539 rdev->sysfs_state = NULL; 1540 /* We need to delay this, otherwise we can deadlock when 1541 * writing to 'remove' to "dev/state". We also need 1542 * to delay it due to rcu usage. 1543 */ 1544 synchronize_rcu(); 1545 INIT_WORK(&rdev->del_work, md_delayed_delete); 1546 kobject_get(&rdev->kobj); 1547 schedule_work(&rdev->del_work); 1548 } 1549 1550 /* 1551 * prevent the device from being mounted, repartitioned or 1552 * otherwise reused by a RAID array (or any other kernel 1553 * subsystem), by bd_claiming the device. 1554 */ 1555 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) 1556 { 1557 int err = 0; 1558 struct block_device *bdev; 1559 char b[BDEVNAME_SIZE]; 1560 1561 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1562 if (IS_ERR(bdev)) { 1563 printk(KERN_ERR "md: could not open %s.\n", 1564 __bdevname(dev, b)); 1565 return PTR_ERR(bdev); 1566 } 1567 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev); 1568 if (err) { 1569 printk(KERN_ERR "md: could not bd_claim %s.\n", 1570 bdevname(bdev, b)); 1571 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1572 return err; 1573 } 1574 if (!shared) 1575 set_bit(AllReserved, &rdev->flags); 1576 rdev->bdev = bdev; 1577 return err; 1578 } 1579 1580 static void unlock_rdev(mdk_rdev_t *rdev) 1581 { 1582 struct block_device *bdev = rdev->bdev; 1583 rdev->bdev = NULL; 1584 if (!bdev) 1585 MD_BUG(); 1586 bd_release(bdev); 1587 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1588 } 1589 1590 void md_autodetect_dev(dev_t dev); 1591 1592 static void export_rdev(mdk_rdev_t * rdev) 1593 { 1594 char b[BDEVNAME_SIZE]; 1595 printk(KERN_INFO "md: export_rdev(%s)\n", 1596 bdevname(rdev->bdev,b)); 1597 if (rdev->mddev) 1598 MD_BUG(); 1599 free_disk_sb(rdev); 1600 #ifndef MODULE 1601 if (test_bit(AutoDetected, &rdev->flags)) 1602 md_autodetect_dev(rdev->bdev->bd_dev); 1603 #endif 1604 unlock_rdev(rdev); 1605 kobject_put(&rdev->kobj); 1606 } 1607 1608 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1609 { 1610 unbind_rdev_from_array(rdev); 1611 export_rdev(rdev); 1612 } 1613 1614 static void export_array(mddev_t *mddev) 1615 { 1616 mdk_rdev_t *rdev, *tmp; 1617 1618 rdev_for_each(rdev, tmp, mddev) { 1619 if (!rdev->mddev) { 1620 MD_BUG(); 1621 continue; 1622 } 1623 kick_rdev_from_array(rdev); 1624 } 1625 if (!list_empty(&mddev->disks)) 1626 MD_BUG(); 1627 mddev->raid_disks = 0; 1628 mddev->major_version = 0; 1629 } 1630 1631 static void print_desc(mdp_disk_t *desc) 1632 { 1633 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 1634 desc->major,desc->minor,desc->raid_disk,desc->state); 1635 } 1636 1637 static void print_sb_90(mdp_super_t *sb) 1638 { 1639 int i; 1640 1641 printk(KERN_INFO 1642 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 1643 sb->major_version, sb->minor_version, sb->patch_version, 1644 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 1645 sb->ctime); 1646 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 1647 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 1648 sb->md_minor, sb->layout, sb->chunk_size); 1649 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 1650 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 1651 sb->utime, sb->state, sb->active_disks, sb->working_disks, 1652 sb->failed_disks, sb->spare_disks, 1653 sb->sb_csum, (unsigned long)sb->events_lo); 1654 1655 printk(KERN_INFO); 1656 for (i = 0; i < MD_SB_DISKS; i++) { 1657 mdp_disk_t *desc; 1658 1659 desc = sb->disks + i; 1660 if (desc->number || desc->major || desc->minor || 1661 desc->raid_disk || (desc->state && (desc->state != 4))) { 1662 printk(" D %2d: ", i); 1663 print_desc(desc); 1664 } 1665 } 1666 printk(KERN_INFO "md: THIS: "); 1667 print_desc(&sb->this_disk); 1668 } 1669 1670 static void print_sb_1(struct mdp_superblock_1 *sb) 1671 { 1672 __u8 *uuid; 1673 1674 uuid = sb->set_uuid; 1675 printk(KERN_INFO "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x" 1676 ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n" 1677 KERN_INFO "md: Name: \"%s\" CT:%llu\n", 1678 le32_to_cpu(sb->major_version), 1679 le32_to_cpu(sb->feature_map), 1680 uuid[0], uuid[1], uuid[2], uuid[3], 1681 uuid[4], uuid[5], uuid[6], uuid[7], 1682 uuid[8], uuid[9], uuid[10], uuid[11], 1683 uuid[12], uuid[13], uuid[14], uuid[15], 1684 sb->set_name, 1685 (unsigned long long)le64_to_cpu(sb->ctime) 1686 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 1687 1688 uuid = sb->device_uuid; 1689 printk(KERN_INFO "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 1690 " RO:%llu\n" 1691 KERN_INFO "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x" 1692 ":%02x%02x%02x%02x%02x%02x\n" 1693 KERN_INFO "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 1694 KERN_INFO "md: (MaxDev:%u) \n", 1695 le32_to_cpu(sb->level), 1696 (unsigned long long)le64_to_cpu(sb->size), 1697 le32_to_cpu(sb->raid_disks), 1698 le32_to_cpu(sb->layout), 1699 le32_to_cpu(sb->chunksize), 1700 (unsigned long long)le64_to_cpu(sb->data_offset), 1701 (unsigned long long)le64_to_cpu(sb->data_size), 1702 (unsigned long long)le64_to_cpu(sb->super_offset), 1703 (unsigned long long)le64_to_cpu(sb->recovery_offset), 1704 le32_to_cpu(sb->dev_number), 1705 uuid[0], uuid[1], uuid[2], uuid[3], 1706 uuid[4], uuid[5], uuid[6], uuid[7], 1707 uuid[8], uuid[9], uuid[10], uuid[11], 1708 uuid[12], uuid[13], uuid[14], uuid[15], 1709 sb->devflags, 1710 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 1711 (unsigned long long)le64_to_cpu(sb->events), 1712 (unsigned long long)le64_to_cpu(sb->resync_offset), 1713 le32_to_cpu(sb->sb_csum), 1714 le32_to_cpu(sb->max_dev) 1715 ); 1716 } 1717 1718 static void print_rdev(mdk_rdev_t *rdev, int major_version) 1719 { 1720 char b[BDEVNAME_SIZE]; 1721 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n", 1722 bdevname(rdev->bdev,b), (unsigned long long)rdev->size, 1723 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 1724 rdev->desc_nr); 1725 if (rdev->sb_loaded) { 1726 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 1727 switch (major_version) { 1728 case 0: 1729 print_sb_90((mdp_super_t*)page_address(rdev->sb_page)); 1730 break; 1731 case 1: 1732 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page)); 1733 break; 1734 } 1735 } else 1736 printk(KERN_INFO "md: no rdev superblock!\n"); 1737 } 1738 1739 static void md_print_devices(void) 1740 { 1741 struct list_head *tmp; 1742 mdk_rdev_t *rdev; 1743 mddev_t *mddev; 1744 char b[BDEVNAME_SIZE]; 1745 1746 printk("\n"); 1747 printk("md: **********************************\n"); 1748 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 1749 printk("md: **********************************\n"); 1750 for_each_mddev(mddev, tmp) { 1751 1752 if (mddev->bitmap) 1753 bitmap_print_sb(mddev->bitmap); 1754 else 1755 printk("%s: ", mdname(mddev)); 1756 list_for_each_entry(rdev, &mddev->disks, same_set) 1757 printk("<%s>", bdevname(rdev->bdev,b)); 1758 printk("\n"); 1759 1760 list_for_each_entry(rdev, &mddev->disks, same_set) 1761 print_rdev(rdev, mddev->major_version); 1762 } 1763 printk("md: **********************************\n"); 1764 printk("\n"); 1765 } 1766 1767 1768 static void sync_sbs(mddev_t * mddev, int nospares) 1769 { 1770 /* Update each superblock (in-memory image), but 1771 * if we are allowed to, skip spares which already 1772 * have the right event counter, or have one earlier 1773 * (which would mean they aren't being marked as dirty 1774 * with the rest of the array) 1775 */ 1776 mdk_rdev_t *rdev; 1777 1778 list_for_each_entry(rdev, &mddev->disks, same_set) { 1779 if (rdev->sb_events == mddev->events || 1780 (nospares && 1781 rdev->raid_disk < 0 && 1782 (rdev->sb_events&1)==0 && 1783 rdev->sb_events+1 == mddev->events)) { 1784 /* Don't update this superblock */ 1785 rdev->sb_loaded = 2; 1786 } else { 1787 super_types[mddev->major_version]. 1788 sync_super(mddev, rdev); 1789 rdev->sb_loaded = 1; 1790 } 1791 } 1792 } 1793 1794 static void md_update_sb(mddev_t * mddev, int force_change) 1795 { 1796 mdk_rdev_t *rdev; 1797 int sync_req; 1798 int nospares = 0; 1799 1800 if (mddev->external) 1801 return; 1802 repeat: 1803 spin_lock_irq(&mddev->write_lock); 1804 1805 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1806 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 1807 force_change = 1; 1808 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 1809 /* just a clean<-> dirty transition, possibly leave spares alone, 1810 * though if events isn't the right even/odd, we will have to do 1811 * spares after all 1812 */ 1813 nospares = 1; 1814 if (force_change) 1815 nospares = 0; 1816 if (mddev->degraded) 1817 /* If the array is degraded, then skipping spares is both 1818 * dangerous and fairly pointless. 1819 * Dangerous because a device that was removed from the array 1820 * might have a event_count that still looks up-to-date, 1821 * so it can be re-added without a resync. 1822 * Pointless because if there are any spares to skip, 1823 * then a recovery will happen and soon that array won't 1824 * be degraded any more and the spare can go back to sleep then. 1825 */ 1826 nospares = 0; 1827 1828 sync_req = mddev->in_sync; 1829 mddev->utime = get_seconds(); 1830 1831 /* If this is just a dirty<->clean transition, and the array is clean 1832 * and 'events' is odd, we can roll back to the previous clean state */ 1833 if (nospares 1834 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 1835 && (mddev->events & 1) 1836 && mddev->events != 1) 1837 mddev->events--; 1838 else { 1839 /* otherwise we have to go forward and ... */ 1840 mddev->events ++; 1841 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */ 1842 /* .. if the array isn't clean, insist on an odd 'events' */ 1843 if ((mddev->events&1)==0) { 1844 mddev->events++; 1845 nospares = 0; 1846 } 1847 } else { 1848 /* otherwise insist on an even 'events' (for clean states) */ 1849 if ((mddev->events&1)) { 1850 mddev->events++; 1851 nospares = 0; 1852 } 1853 } 1854 } 1855 1856 if (!mddev->events) { 1857 /* 1858 * oops, this 64-bit counter should never wrap. 1859 * Either we are in around ~1 trillion A.C., assuming 1860 * 1 reboot per second, or we have a bug: 1861 */ 1862 MD_BUG(); 1863 mddev->events --; 1864 } 1865 1866 /* 1867 * do not write anything to disk if using 1868 * nonpersistent superblocks 1869 */ 1870 if (!mddev->persistent) { 1871 if (!mddev->external) 1872 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1873 1874 spin_unlock_irq(&mddev->write_lock); 1875 wake_up(&mddev->sb_wait); 1876 return; 1877 } 1878 sync_sbs(mddev, nospares); 1879 spin_unlock_irq(&mddev->write_lock); 1880 1881 dprintk(KERN_INFO 1882 "md: updating %s RAID superblock on device (in sync %d)\n", 1883 mdname(mddev),mddev->in_sync); 1884 1885 bitmap_update_sb(mddev->bitmap); 1886 list_for_each_entry(rdev, &mddev->disks, same_set) { 1887 char b[BDEVNAME_SIZE]; 1888 dprintk(KERN_INFO "md: "); 1889 if (rdev->sb_loaded != 1) 1890 continue; /* no noise on spare devices */ 1891 if (test_bit(Faulty, &rdev->flags)) 1892 dprintk("(skipping faulty "); 1893 1894 dprintk("%s ", bdevname(rdev->bdev,b)); 1895 if (!test_bit(Faulty, &rdev->flags)) { 1896 md_super_write(mddev,rdev, 1897 rdev->sb_start, rdev->sb_size, 1898 rdev->sb_page); 1899 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 1900 bdevname(rdev->bdev,b), 1901 (unsigned long long)rdev->sb_start); 1902 rdev->sb_events = mddev->events; 1903 1904 } else 1905 dprintk(")\n"); 1906 if (mddev->level == LEVEL_MULTIPATH) 1907 /* only need to write one superblock... */ 1908 break; 1909 } 1910 md_super_wait(mddev); 1911 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 1912 1913 spin_lock_irq(&mddev->write_lock); 1914 if (mddev->in_sync != sync_req || 1915 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 1916 /* have to write it out again */ 1917 spin_unlock_irq(&mddev->write_lock); 1918 goto repeat; 1919 } 1920 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1921 spin_unlock_irq(&mddev->write_lock); 1922 wake_up(&mddev->sb_wait); 1923 1924 } 1925 1926 /* words written to sysfs files may, or may not, be \n terminated. 1927 * We want to accept with case. For this we use cmd_match. 1928 */ 1929 static int cmd_match(const char *cmd, const char *str) 1930 { 1931 /* See if cmd, written into a sysfs file, matches 1932 * str. They must either be the same, or cmd can 1933 * have a trailing newline 1934 */ 1935 while (*cmd && *str && *cmd == *str) { 1936 cmd++; 1937 str++; 1938 } 1939 if (*cmd == '\n') 1940 cmd++; 1941 if (*str || *cmd) 1942 return 0; 1943 return 1; 1944 } 1945 1946 struct rdev_sysfs_entry { 1947 struct attribute attr; 1948 ssize_t (*show)(mdk_rdev_t *, char *); 1949 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 1950 }; 1951 1952 static ssize_t 1953 state_show(mdk_rdev_t *rdev, char *page) 1954 { 1955 char *sep = ""; 1956 size_t len = 0; 1957 1958 if (test_bit(Faulty, &rdev->flags)) { 1959 len+= sprintf(page+len, "%sfaulty",sep); 1960 sep = ","; 1961 } 1962 if (test_bit(In_sync, &rdev->flags)) { 1963 len += sprintf(page+len, "%sin_sync",sep); 1964 sep = ","; 1965 } 1966 if (test_bit(WriteMostly, &rdev->flags)) { 1967 len += sprintf(page+len, "%swrite_mostly",sep); 1968 sep = ","; 1969 } 1970 if (test_bit(Blocked, &rdev->flags)) { 1971 len += sprintf(page+len, "%sblocked", sep); 1972 sep = ","; 1973 } 1974 if (!test_bit(Faulty, &rdev->flags) && 1975 !test_bit(In_sync, &rdev->flags)) { 1976 len += sprintf(page+len, "%sspare", sep); 1977 sep = ","; 1978 } 1979 return len+sprintf(page+len, "\n"); 1980 } 1981 1982 static ssize_t 1983 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1984 { 1985 /* can write 1986 * faulty - simulates and error 1987 * remove - disconnects the device 1988 * writemostly - sets write_mostly 1989 * -writemostly - clears write_mostly 1990 * blocked - sets the Blocked flag 1991 * -blocked - clears the Blocked flag 1992 */ 1993 int err = -EINVAL; 1994 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 1995 md_error(rdev->mddev, rdev); 1996 err = 0; 1997 } else if (cmd_match(buf, "remove")) { 1998 if (rdev->raid_disk >= 0) 1999 err = -EBUSY; 2000 else { 2001 mddev_t *mddev = rdev->mddev; 2002 kick_rdev_from_array(rdev); 2003 if (mddev->pers) 2004 md_update_sb(mddev, 1); 2005 md_new_event(mddev); 2006 err = 0; 2007 } 2008 } else if (cmd_match(buf, "writemostly")) { 2009 set_bit(WriteMostly, &rdev->flags); 2010 err = 0; 2011 } else if (cmd_match(buf, "-writemostly")) { 2012 clear_bit(WriteMostly, &rdev->flags); 2013 err = 0; 2014 } else if (cmd_match(buf, "blocked")) { 2015 set_bit(Blocked, &rdev->flags); 2016 err = 0; 2017 } else if (cmd_match(buf, "-blocked")) { 2018 clear_bit(Blocked, &rdev->flags); 2019 wake_up(&rdev->blocked_wait); 2020 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2021 md_wakeup_thread(rdev->mddev->thread); 2022 2023 err = 0; 2024 } 2025 if (!err && rdev->sysfs_state) 2026 sysfs_notify_dirent(rdev->sysfs_state); 2027 return err ? err : len; 2028 } 2029 static struct rdev_sysfs_entry rdev_state = 2030 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2031 2032 static ssize_t 2033 errors_show(mdk_rdev_t *rdev, char *page) 2034 { 2035 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2036 } 2037 2038 static ssize_t 2039 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2040 { 2041 char *e; 2042 unsigned long n = simple_strtoul(buf, &e, 10); 2043 if (*buf && (*e == 0 || *e == '\n')) { 2044 atomic_set(&rdev->corrected_errors, n); 2045 return len; 2046 } 2047 return -EINVAL; 2048 } 2049 static struct rdev_sysfs_entry rdev_errors = 2050 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2051 2052 static ssize_t 2053 slot_show(mdk_rdev_t *rdev, char *page) 2054 { 2055 if (rdev->raid_disk < 0) 2056 return sprintf(page, "none\n"); 2057 else 2058 return sprintf(page, "%d\n", rdev->raid_disk); 2059 } 2060 2061 static ssize_t 2062 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2063 { 2064 char *e; 2065 int err; 2066 char nm[20]; 2067 int slot = simple_strtoul(buf, &e, 10); 2068 if (strncmp(buf, "none", 4)==0) 2069 slot = -1; 2070 else if (e==buf || (*e && *e!= '\n')) 2071 return -EINVAL; 2072 if (rdev->mddev->pers && slot == -1) { 2073 /* Setting 'slot' on an active array requires also 2074 * updating the 'rd%d' link, and communicating 2075 * with the personality with ->hot_*_disk. 2076 * For now we only support removing 2077 * failed/spare devices. This normally happens automatically, 2078 * but not when the metadata is externally managed. 2079 */ 2080 if (rdev->raid_disk == -1) 2081 return -EEXIST; 2082 /* personality does all needed checks */ 2083 if (rdev->mddev->pers->hot_add_disk == NULL) 2084 return -EINVAL; 2085 err = rdev->mddev->pers-> 2086 hot_remove_disk(rdev->mddev, rdev->raid_disk); 2087 if (err) 2088 return err; 2089 sprintf(nm, "rd%d", rdev->raid_disk); 2090 sysfs_remove_link(&rdev->mddev->kobj, nm); 2091 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2092 md_wakeup_thread(rdev->mddev->thread); 2093 } else if (rdev->mddev->pers) { 2094 mdk_rdev_t *rdev2; 2095 /* Activating a spare .. or possibly reactivating 2096 * if we every get bitmaps working here. 2097 */ 2098 2099 if (rdev->raid_disk != -1) 2100 return -EBUSY; 2101 2102 if (rdev->mddev->pers->hot_add_disk == NULL) 2103 return -EINVAL; 2104 2105 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set) 2106 if (rdev2->raid_disk == slot) 2107 return -EEXIST; 2108 2109 rdev->raid_disk = slot; 2110 if (test_bit(In_sync, &rdev->flags)) 2111 rdev->saved_raid_disk = slot; 2112 else 2113 rdev->saved_raid_disk = -1; 2114 err = rdev->mddev->pers-> 2115 hot_add_disk(rdev->mddev, rdev); 2116 if (err) { 2117 rdev->raid_disk = -1; 2118 return err; 2119 } else 2120 sysfs_notify_dirent(rdev->sysfs_state); 2121 sprintf(nm, "rd%d", rdev->raid_disk); 2122 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm)) 2123 printk(KERN_WARNING 2124 "md: cannot register " 2125 "%s for %s\n", 2126 nm, mdname(rdev->mddev)); 2127 2128 /* don't wakeup anyone, leave that to userspace. */ 2129 } else { 2130 if (slot >= rdev->mddev->raid_disks) 2131 return -ENOSPC; 2132 rdev->raid_disk = slot; 2133 /* assume it is working */ 2134 clear_bit(Faulty, &rdev->flags); 2135 clear_bit(WriteMostly, &rdev->flags); 2136 set_bit(In_sync, &rdev->flags); 2137 sysfs_notify_dirent(rdev->sysfs_state); 2138 } 2139 return len; 2140 } 2141 2142 2143 static struct rdev_sysfs_entry rdev_slot = 2144 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2145 2146 static ssize_t 2147 offset_show(mdk_rdev_t *rdev, char *page) 2148 { 2149 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2150 } 2151 2152 static ssize_t 2153 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2154 { 2155 char *e; 2156 unsigned long long offset = simple_strtoull(buf, &e, 10); 2157 if (e==buf || (*e && *e != '\n')) 2158 return -EINVAL; 2159 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2160 return -EBUSY; 2161 if (rdev->size && rdev->mddev->external) 2162 /* Must set offset before size, so overlap checks 2163 * can be sane */ 2164 return -EBUSY; 2165 rdev->data_offset = offset; 2166 return len; 2167 } 2168 2169 static struct rdev_sysfs_entry rdev_offset = 2170 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2171 2172 static ssize_t 2173 rdev_size_show(mdk_rdev_t *rdev, char *page) 2174 { 2175 return sprintf(page, "%llu\n", (unsigned long long)rdev->size); 2176 } 2177 2178 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2179 { 2180 /* check if two start/length pairs overlap */ 2181 if (s1+l1 <= s2) 2182 return 0; 2183 if (s2+l2 <= s1) 2184 return 0; 2185 return 1; 2186 } 2187 2188 static ssize_t 2189 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2190 { 2191 unsigned long long size; 2192 unsigned long long oldsize = rdev->size; 2193 mddev_t *my_mddev = rdev->mddev; 2194 2195 if (strict_strtoull(buf, 10, &size) < 0) 2196 return -EINVAL; 2197 if (my_mddev->pers && rdev->raid_disk >= 0) { 2198 if (my_mddev->persistent) { 2199 size = super_types[my_mddev->major_version]. 2200 rdev_size_change(rdev, size * 2); 2201 if (!size) 2202 return -EBUSY; 2203 } else if (!size) { 2204 size = (rdev->bdev->bd_inode->i_size >> 10); 2205 size -= rdev->data_offset/2; 2206 } 2207 } 2208 if (size < my_mddev->size) 2209 return -EINVAL; /* component must fit device */ 2210 2211 rdev->size = size; 2212 if (size > oldsize && my_mddev->external) { 2213 /* need to check that all other rdevs with the same ->bdev 2214 * do not overlap. We need to unlock the mddev to avoid 2215 * a deadlock. We have already changed rdev->size, and if 2216 * we have to change it back, we will have the lock again. 2217 */ 2218 mddev_t *mddev; 2219 int overlap = 0; 2220 struct list_head *tmp; 2221 2222 mddev_unlock(my_mddev); 2223 for_each_mddev(mddev, tmp) { 2224 mdk_rdev_t *rdev2; 2225 2226 mddev_lock(mddev); 2227 list_for_each_entry(rdev2, &mddev->disks, same_set) 2228 if (test_bit(AllReserved, &rdev2->flags) || 2229 (rdev->bdev == rdev2->bdev && 2230 rdev != rdev2 && 2231 overlaps(rdev->data_offset, rdev->size * 2, 2232 rdev2->data_offset, 2233 rdev2->size * 2))) { 2234 overlap = 1; 2235 break; 2236 } 2237 mddev_unlock(mddev); 2238 if (overlap) { 2239 mddev_put(mddev); 2240 break; 2241 } 2242 } 2243 mddev_lock(my_mddev); 2244 if (overlap) { 2245 /* Someone else could have slipped in a size 2246 * change here, but doing so is just silly. 2247 * We put oldsize back because we *know* it is 2248 * safe, and trust userspace not to race with 2249 * itself 2250 */ 2251 rdev->size = oldsize; 2252 return -EBUSY; 2253 } 2254 } 2255 return len; 2256 } 2257 2258 static struct rdev_sysfs_entry rdev_size = 2259 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2260 2261 static struct attribute *rdev_default_attrs[] = { 2262 &rdev_state.attr, 2263 &rdev_errors.attr, 2264 &rdev_slot.attr, 2265 &rdev_offset.attr, 2266 &rdev_size.attr, 2267 NULL, 2268 }; 2269 static ssize_t 2270 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2271 { 2272 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2273 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2274 mddev_t *mddev = rdev->mddev; 2275 ssize_t rv; 2276 2277 if (!entry->show) 2278 return -EIO; 2279 2280 rv = mddev ? mddev_lock(mddev) : -EBUSY; 2281 if (!rv) { 2282 if (rdev->mddev == NULL) 2283 rv = -EBUSY; 2284 else 2285 rv = entry->show(rdev, page); 2286 mddev_unlock(mddev); 2287 } 2288 return rv; 2289 } 2290 2291 static ssize_t 2292 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2293 const char *page, size_t length) 2294 { 2295 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2296 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2297 ssize_t rv; 2298 mddev_t *mddev = rdev->mddev; 2299 2300 if (!entry->store) 2301 return -EIO; 2302 if (!capable(CAP_SYS_ADMIN)) 2303 return -EACCES; 2304 rv = mddev ? mddev_lock(mddev): -EBUSY; 2305 if (!rv) { 2306 if (rdev->mddev == NULL) 2307 rv = -EBUSY; 2308 else 2309 rv = entry->store(rdev, page, length); 2310 mddev_unlock(mddev); 2311 } 2312 return rv; 2313 } 2314 2315 static void rdev_free(struct kobject *ko) 2316 { 2317 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 2318 kfree(rdev); 2319 } 2320 static struct sysfs_ops rdev_sysfs_ops = { 2321 .show = rdev_attr_show, 2322 .store = rdev_attr_store, 2323 }; 2324 static struct kobj_type rdev_ktype = { 2325 .release = rdev_free, 2326 .sysfs_ops = &rdev_sysfs_ops, 2327 .default_attrs = rdev_default_attrs, 2328 }; 2329 2330 /* 2331 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2332 * 2333 * mark the device faulty if: 2334 * 2335 * - the device is nonexistent (zero size) 2336 * - the device has no valid superblock 2337 * 2338 * a faulty rdev _never_ has rdev->sb set. 2339 */ 2340 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2341 { 2342 char b[BDEVNAME_SIZE]; 2343 int err; 2344 mdk_rdev_t *rdev; 2345 sector_t size; 2346 2347 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2348 if (!rdev) { 2349 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2350 return ERR_PTR(-ENOMEM); 2351 } 2352 2353 if ((err = alloc_disk_sb(rdev))) 2354 goto abort_free; 2355 2356 err = lock_rdev(rdev, newdev, super_format == -2); 2357 if (err) 2358 goto abort_free; 2359 2360 kobject_init(&rdev->kobj, &rdev_ktype); 2361 2362 rdev->desc_nr = -1; 2363 rdev->saved_raid_disk = -1; 2364 rdev->raid_disk = -1; 2365 rdev->flags = 0; 2366 rdev->data_offset = 0; 2367 rdev->sb_events = 0; 2368 atomic_set(&rdev->nr_pending, 0); 2369 atomic_set(&rdev->read_errors, 0); 2370 atomic_set(&rdev->corrected_errors, 0); 2371 2372 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2373 if (!size) { 2374 printk(KERN_WARNING 2375 "md: %s has zero or unknown size, marking faulty!\n", 2376 bdevname(rdev->bdev,b)); 2377 err = -EINVAL; 2378 goto abort_free; 2379 } 2380 2381 if (super_format >= 0) { 2382 err = super_types[super_format]. 2383 load_super(rdev, NULL, super_minor); 2384 if (err == -EINVAL) { 2385 printk(KERN_WARNING 2386 "md: %s does not have a valid v%d.%d " 2387 "superblock, not importing!\n", 2388 bdevname(rdev->bdev,b), 2389 super_format, super_minor); 2390 goto abort_free; 2391 } 2392 if (err < 0) { 2393 printk(KERN_WARNING 2394 "md: could not read %s's sb, not importing!\n", 2395 bdevname(rdev->bdev,b)); 2396 goto abort_free; 2397 } 2398 } 2399 2400 INIT_LIST_HEAD(&rdev->same_set); 2401 init_waitqueue_head(&rdev->blocked_wait); 2402 2403 return rdev; 2404 2405 abort_free: 2406 if (rdev->sb_page) { 2407 if (rdev->bdev) 2408 unlock_rdev(rdev); 2409 free_disk_sb(rdev); 2410 } 2411 kfree(rdev); 2412 return ERR_PTR(err); 2413 } 2414 2415 /* 2416 * Check a full RAID array for plausibility 2417 */ 2418 2419 2420 static void analyze_sbs(mddev_t * mddev) 2421 { 2422 int i; 2423 mdk_rdev_t *rdev, *freshest, *tmp; 2424 char b[BDEVNAME_SIZE]; 2425 2426 freshest = NULL; 2427 rdev_for_each(rdev, tmp, mddev) 2428 switch (super_types[mddev->major_version]. 2429 load_super(rdev, freshest, mddev->minor_version)) { 2430 case 1: 2431 freshest = rdev; 2432 break; 2433 case 0: 2434 break; 2435 default: 2436 printk( KERN_ERR \ 2437 "md: fatal superblock inconsistency in %s" 2438 " -- removing from array\n", 2439 bdevname(rdev->bdev,b)); 2440 kick_rdev_from_array(rdev); 2441 } 2442 2443 2444 super_types[mddev->major_version]. 2445 validate_super(mddev, freshest); 2446 2447 i = 0; 2448 rdev_for_each(rdev, tmp, mddev) { 2449 if (rdev->desc_nr >= mddev->max_disks || 2450 i > mddev->max_disks) { 2451 printk(KERN_WARNING 2452 "md: %s: %s: only %d devices permitted\n", 2453 mdname(mddev), bdevname(rdev->bdev, b), 2454 mddev->max_disks); 2455 kick_rdev_from_array(rdev); 2456 continue; 2457 } 2458 if (rdev != freshest) 2459 if (super_types[mddev->major_version]. 2460 validate_super(mddev, rdev)) { 2461 printk(KERN_WARNING "md: kicking non-fresh %s" 2462 " from array!\n", 2463 bdevname(rdev->bdev,b)); 2464 kick_rdev_from_array(rdev); 2465 continue; 2466 } 2467 if (mddev->level == LEVEL_MULTIPATH) { 2468 rdev->desc_nr = i++; 2469 rdev->raid_disk = rdev->desc_nr; 2470 set_bit(In_sync, &rdev->flags); 2471 } else if (rdev->raid_disk >= mddev->raid_disks) { 2472 rdev->raid_disk = -1; 2473 clear_bit(In_sync, &rdev->flags); 2474 } 2475 } 2476 2477 2478 2479 if (mddev->recovery_cp != MaxSector && 2480 mddev->level >= 1) 2481 printk(KERN_ERR "md: %s: raid array is not clean" 2482 " -- starting background reconstruction\n", 2483 mdname(mddev)); 2484 2485 } 2486 2487 static void md_safemode_timeout(unsigned long data); 2488 2489 static ssize_t 2490 safe_delay_show(mddev_t *mddev, char *page) 2491 { 2492 int msec = (mddev->safemode_delay*1000)/HZ; 2493 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2494 } 2495 static ssize_t 2496 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2497 { 2498 int scale=1; 2499 int dot=0; 2500 int i; 2501 unsigned long msec; 2502 char buf[30]; 2503 2504 /* remove a period, and count digits after it */ 2505 if (len >= sizeof(buf)) 2506 return -EINVAL; 2507 strlcpy(buf, cbuf, sizeof(buf)); 2508 for (i=0; i<len; i++) { 2509 if (dot) { 2510 if (isdigit(buf[i])) { 2511 buf[i-1] = buf[i]; 2512 scale *= 10; 2513 } 2514 buf[i] = 0; 2515 } else if (buf[i] == '.') { 2516 dot=1; 2517 buf[i] = 0; 2518 } 2519 } 2520 if (strict_strtoul(buf, 10, &msec) < 0) 2521 return -EINVAL; 2522 msec = (msec * 1000) / scale; 2523 if (msec == 0) 2524 mddev->safemode_delay = 0; 2525 else { 2526 unsigned long old_delay = mddev->safemode_delay; 2527 mddev->safemode_delay = (msec*HZ)/1000; 2528 if (mddev->safemode_delay == 0) 2529 mddev->safemode_delay = 1; 2530 if (mddev->safemode_delay < old_delay) 2531 md_safemode_timeout((unsigned long)mddev); 2532 } 2533 return len; 2534 } 2535 static struct md_sysfs_entry md_safe_delay = 2536 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2537 2538 static ssize_t 2539 level_show(mddev_t *mddev, char *page) 2540 { 2541 struct mdk_personality *p = mddev->pers; 2542 if (p) 2543 return sprintf(page, "%s\n", p->name); 2544 else if (mddev->clevel[0]) 2545 return sprintf(page, "%s\n", mddev->clevel); 2546 else if (mddev->level != LEVEL_NONE) 2547 return sprintf(page, "%d\n", mddev->level); 2548 else 2549 return 0; 2550 } 2551 2552 static ssize_t 2553 level_store(mddev_t *mddev, const char *buf, size_t len) 2554 { 2555 ssize_t rv = len; 2556 if (mddev->pers) 2557 return -EBUSY; 2558 if (len == 0) 2559 return 0; 2560 if (len >= sizeof(mddev->clevel)) 2561 return -ENOSPC; 2562 strncpy(mddev->clevel, buf, len); 2563 if (mddev->clevel[len-1] == '\n') 2564 len--; 2565 mddev->clevel[len] = 0; 2566 mddev->level = LEVEL_NONE; 2567 return rv; 2568 } 2569 2570 static struct md_sysfs_entry md_level = 2571 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 2572 2573 2574 static ssize_t 2575 layout_show(mddev_t *mddev, char *page) 2576 { 2577 /* just a number, not meaningful for all levels */ 2578 if (mddev->reshape_position != MaxSector && 2579 mddev->layout != mddev->new_layout) 2580 return sprintf(page, "%d (%d)\n", 2581 mddev->new_layout, mddev->layout); 2582 return sprintf(page, "%d\n", mddev->layout); 2583 } 2584 2585 static ssize_t 2586 layout_store(mddev_t *mddev, const char *buf, size_t len) 2587 { 2588 char *e; 2589 unsigned long n = simple_strtoul(buf, &e, 10); 2590 2591 if (!*buf || (*e && *e != '\n')) 2592 return -EINVAL; 2593 2594 if (mddev->pers) 2595 return -EBUSY; 2596 if (mddev->reshape_position != MaxSector) 2597 mddev->new_layout = n; 2598 else 2599 mddev->layout = n; 2600 return len; 2601 } 2602 static struct md_sysfs_entry md_layout = 2603 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 2604 2605 2606 static ssize_t 2607 raid_disks_show(mddev_t *mddev, char *page) 2608 { 2609 if (mddev->raid_disks == 0) 2610 return 0; 2611 if (mddev->reshape_position != MaxSector && 2612 mddev->delta_disks != 0) 2613 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 2614 mddev->raid_disks - mddev->delta_disks); 2615 return sprintf(page, "%d\n", mddev->raid_disks); 2616 } 2617 2618 static int update_raid_disks(mddev_t *mddev, int raid_disks); 2619 2620 static ssize_t 2621 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 2622 { 2623 char *e; 2624 int rv = 0; 2625 unsigned long n = simple_strtoul(buf, &e, 10); 2626 2627 if (!*buf || (*e && *e != '\n')) 2628 return -EINVAL; 2629 2630 if (mddev->pers) 2631 rv = update_raid_disks(mddev, n); 2632 else if (mddev->reshape_position != MaxSector) { 2633 int olddisks = mddev->raid_disks - mddev->delta_disks; 2634 mddev->delta_disks = n - olddisks; 2635 mddev->raid_disks = n; 2636 } else 2637 mddev->raid_disks = n; 2638 return rv ? rv : len; 2639 } 2640 static struct md_sysfs_entry md_raid_disks = 2641 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 2642 2643 static ssize_t 2644 chunk_size_show(mddev_t *mddev, char *page) 2645 { 2646 if (mddev->reshape_position != MaxSector && 2647 mddev->chunk_size != mddev->new_chunk) 2648 return sprintf(page, "%d (%d)\n", mddev->new_chunk, 2649 mddev->chunk_size); 2650 return sprintf(page, "%d\n", mddev->chunk_size); 2651 } 2652 2653 static ssize_t 2654 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 2655 { 2656 /* can only set chunk_size if array is not yet active */ 2657 char *e; 2658 unsigned long n = simple_strtoul(buf, &e, 10); 2659 2660 if (!*buf || (*e && *e != '\n')) 2661 return -EINVAL; 2662 2663 if (mddev->pers) 2664 return -EBUSY; 2665 else if (mddev->reshape_position != MaxSector) 2666 mddev->new_chunk = n; 2667 else 2668 mddev->chunk_size = n; 2669 return len; 2670 } 2671 static struct md_sysfs_entry md_chunk_size = 2672 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 2673 2674 static ssize_t 2675 resync_start_show(mddev_t *mddev, char *page) 2676 { 2677 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 2678 } 2679 2680 static ssize_t 2681 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 2682 { 2683 char *e; 2684 unsigned long long n = simple_strtoull(buf, &e, 10); 2685 2686 if (mddev->pers) 2687 return -EBUSY; 2688 if (!*buf || (*e && *e != '\n')) 2689 return -EINVAL; 2690 2691 mddev->recovery_cp = n; 2692 return len; 2693 } 2694 static struct md_sysfs_entry md_resync_start = 2695 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 2696 2697 /* 2698 * The array state can be: 2699 * 2700 * clear 2701 * No devices, no size, no level 2702 * Equivalent to STOP_ARRAY ioctl 2703 * inactive 2704 * May have some settings, but array is not active 2705 * all IO results in error 2706 * When written, doesn't tear down array, but just stops it 2707 * suspended (not supported yet) 2708 * All IO requests will block. The array can be reconfigured. 2709 * Writing this, if accepted, will block until array is quiescent 2710 * readonly 2711 * no resync can happen. no superblocks get written. 2712 * write requests fail 2713 * read-auto 2714 * like readonly, but behaves like 'clean' on a write request. 2715 * 2716 * clean - no pending writes, but otherwise active. 2717 * When written to inactive array, starts without resync 2718 * If a write request arrives then 2719 * if metadata is known, mark 'dirty' and switch to 'active'. 2720 * if not known, block and switch to write-pending 2721 * If written to an active array that has pending writes, then fails. 2722 * active 2723 * fully active: IO and resync can be happening. 2724 * When written to inactive array, starts with resync 2725 * 2726 * write-pending 2727 * clean, but writes are blocked waiting for 'active' to be written. 2728 * 2729 * active-idle 2730 * like active, but no writes have been seen for a while (100msec). 2731 * 2732 */ 2733 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 2734 write_pending, active_idle, bad_word}; 2735 static char *array_states[] = { 2736 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 2737 "write-pending", "active-idle", NULL }; 2738 2739 static int match_word(const char *word, char **list) 2740 { 2741 int n; 2742 for (n=0; list[n]; n++) 2743 if (cmd_match(word, list[n])) 2744 break; 2745 return n; 2746 } 2747 2748 static ssize_t 2749 array_state_show(mddev_t *mddev, char *page) 2750 { 2751 enum array_state st = inactive; 2752 2753 if (mddev->pers) 2754 switch(mddev->ro) { 2755 case 1: 2756 st = readonly; 2757 break; 2758 case 2: 2759 st = read_auto; 2760 break; 2761 case 0: 2762 if (mddev->in_sync) 2763 st = clean; 2764 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2765 st = write_pending; 2766 else if (mddev->safemode) 2767 st = active_idle; 2768 else 2769 st = active; 2770 } 2771 else { 2772 if (list_empty(&mddev->disks) && 2773 mddev->raid_disks == 0 && 2774 mddev->size == 0) 2775 st = clear; 2776 else 2777 st = inactive; 2778 } 2779 return sprintf(page, "%s\n", array_states[st]); 2780 } 2781 2782 static int do_md_stop(mddev_t * mddev, int ro, int is_open); 2783 static int do_md_run(mddev_t * mddev); 2784 static int restart_array(mddev_t *mddev); 2785 2786 static ssize_t 2787 array_state_store(mddev_t *mddev, const char *buf, size_t len) 2788 { 2789 int err = -EINVAL; 2790 enum array_state st = match_word(buf, array_states); 2791 switch(st) { 2792 case bad_word: 2793 break; 2794 case clear: 2795 /* stopping an active array */ 2796 if (atomic_read(&mddev->openers) > 0) 2797 return -EBUSY; 2798 err = do_md_stop(mddev, 0, 0); 2799 break; 2800 case inactive: 2801 /* stopping an active array */ 2802 if (mddev->pers) { 2803 if (atomic_read(&mddev->openers) > 0) 2804 return -EBUSY; 2805 err = do_md_stop(mddev, 2, 0); 2806 } else 2807 err = 0; /* already inactive */ 2808 break; 2809 case suspended: 2810 break; /* not supported yet */ 2811 case readonly: 2812 if (mddev->pers) 2813 err = do_md_stop(mddev, 1, 0); 2814 else { 2815 mddev->ro = 1; 2816 set_disk_ro(mddev->gendisk, 1); 2817 err = do_md_run(mddev); 2818 } 2819 break; 2820 case read_auto: 2821 if (mddev->pers) { 2822 if (mddev->ro == 0) 2823 err = do_md_stop(mddev, 1, 0); 2824 else if (mddev->ro == 1) 2825 err = restart_array(mddev); 2826 if (err == 0) { 2827 mddev->ro = 2; 2828 set_disk_ro(mddev->gendisk, 0); 2829 } 2830 } else { 2831 mddev->ro = 2; 2832 err = do_md_run(mddev); 2833 } 2834 break; 2835 case clean: 2836 if (mddev->pers) { 2837 restart_array(mddev); 2838 spin_lock_irq(&mddev->write_lock); 2839 if (atomic_read(&mddev->writes_pending) == 0) { 2840 if (mddev->in_sync == 0) { 2841 mddev->in_sync = 1; 2842 if (mddev->safemode == 1) 2843 mddev->safemode = 0; 2844 if (mddev->persistent) 2845 set_bit(MD_CHANGE_CLEAN, 2846 &mddev->flags); 2847 } 2848 err = 0; 2849 } else 2850 err = -EBUSY; 2851 spin_unlock_irq(&mddev->write_lock); 2852 } else { 2853 mddev->ro = 0; 2854 mddev->recovery_cp = MaxSector; 2855 err = do_md_run(mddev); 2856 } 2857 break; 2858 case active: 2859 if (mddev->pers) { 2860 restart_array(mddev); 2861 if (mddev->external) 2862 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2863 wake_up(&mddev->sb_wait); 2864 err = 0; 2865 } else { 2866 mddev->ro = 0; 2867 set_disk_ro(mddev->gendisk, 0); 2868 err = do_md_run(mddev); 2869 } 2870 break; 2871 case write_pending: 2872 case active_idle: 2873 /* these cannot be set */ 2874 break; 2875 } 2876 if (err) 2877 return err; 2878 else { 2879 sysfs_notify_dirent(mddev->sysfs_state); 2880 return len; 2881 } 2882 } 2883 static struct md_sysfs_entry md_array_state = 2884 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 2885 2886 static ssize_t 2887 null_show(mddev_t *mddev, char *page) 2888 { 2889 return -EINVAL; 2890 } 2891 2892 static ssize_t 2893 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 2894 { 2895 /* buf must be %d:%d\n? giving major and minor numbers */ 2896 /* The new device is added to the array. 2897 * If the array has a persistent superblock, we read the 2898 * superblock to initialise info and check validity. 2899 * Otherwise, only checking done is that in bind_rdev_to_array, 2900 * which mainly checks size. 2901 */ 2902 char *e; 2903 int major = simple_strtoul(buf, &e, 10); 2904 int minor; 2905 dev_t dev; 2906 mdk_rdev_t *rdev; 2907 int err; 2908 2909 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 2910 return -EINVAL; 2911 minor = simple_strtoul(e+1, &e, 10); 2912 if (*e && *e != '\n') 2913 return -EINVAL; 2914 dev = MKDEV(major, minor); 2915 if (major != MAJOR(dev) || 2916 minor != MINOR(dev)) 2917 return -EOVERFLOW; 2918 2919 2920 if (mddev->persistent) { 2921 rdev = md_import_device(dev, mddev->major_version, 2922 mddev->minor_version); 2923 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 2924 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 2925 mdk_rdev_t, same_set); 2926 err = super_types[mddev->major_version] 2927 .load_super(rdev, rdev0, mddev->minor_version); 2928 if (err < 0) 2929 goto out; 2930 } 2931 } else if (mddev->external) 2932 rdev = md_import_device(dev, -2, -1); 2933 else 2934 rdev = md_import_device(dev, -1, -1); 2935 2936 if (IS_ERR(rdev)) 2937 return PTR_ERR(rdev); 2938 err = bind_rdev_to_array(rdev, mddev); 2939 out: 2940 if (err) 2941 export_rdev(rdev); 2942 return err ? err : len; 2943 } 2944 2945 static struct md_sysfs_entry md_new_device = 2946 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 2947 2948 static ssize_t 2949 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 2950 { 2951 char *end; 2952 unsigned long chunk, end_chunk; 2953 2954 if (!mddev->bitmap) 2955 goto out; 2956 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 2957 while (*buf) { 2958 chunk = end_chunk = simple_strtoul(buf, &end, 0); 2959 if (buf == end) break; 2960 if (*end == '-') { /* range */ 2961 buf = end + 1; 2962 end_chunk = simple_strtoul(buf, &end, 0); 2963 if (buf == end) break; 2964 } 2965 if (*end && !isspace(*end)) break; 2966 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 2967 buf = end; 2968 while (isspace(*buf)) buf++; 2969 } 2970 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 2971 out: 2972 return len; 2973 } 2974 2975 static struct md_sysfs_entry md_bitmap = 2976 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 2977 2978 static ssize_t 2979 size_show(mddev_t *mddev, char *page) 2980 { 2981 return sprintf(page, "%llu\n", (unsigned long long)mddev->size); 2982 } 2983 2984 static int update_size(mddev_t *mddev, sector_t num_sectors); 2985 2986 static ssize_t 2987 size_store(mddev_t *mddev, const char *buf, size_t len) 2988 { 2989 /* If array is inactive, we can reduce the component size, but 2990 * not increase it (except from 0). 2991 * If array is active, we can try an on-line resize 2992 */ 2993 char *e; 2994 int err = 0; 2995 unsigned long long size = simple_strtoull(buf, &e, 10); 2996 if (!*buf || *buf == '\n' || 2997 (*e && *e != '\n')) 2998 return -EINVAL; 2999 3000 if (mddev->pers) { 3001 err = update_size(mddev, size * 2); 3002 md_update_sb(mddev, 1); 3003 } else { 3004 if (mddev->size == 0 || 3005 mddev->size > size) 3006 mddev->size = size; 3007 else 3008 err = -ENOSPC; 3009 } 3010 return err ? err : len; 3011 } 3012 3013 static struct md_sysfs_entry md_size = 3014 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 3015 3016 3017 /* Metdata version. 3018 * This is one of 3019 * 'none' for arrays with no metadata (good luck...) 3020 * 'external' for arrays with externally managed metadata, 3021 * or N.M for internally known formats 3022 */ 3023 static ssize_t 3024 metadata_show(mddev_t *mddev, char *page) 3025 { 3026 if (mddev->persistent) 3027 return sprintf(page, "%d.%d\n", 3028 mddev->major_version, mddev->minor_version); 3029 else if (mddev->external) 3030 return sprintf(page, "external:%s\n", mddev->metadata_type); 3031 else 3032 return sprintf(page, "none\n"); 3033 } 3034 3035 static ssize_t 3036 metadata_store(mddev_t *mddev, const char *buf, size_t len) 3037 { 3038 int major, minor; 3039 char *e; 3040 /* Changing the details of 'external' metadata is 3041 * always permitted. Otherwise there must be 3042 * no devices attached to the array. 3043 */ 3044 if (mddev->external && strncmp(buf, "external:", 9) == 0) 3045 ; 3046 else if (!list_empty(&mddev->disks)) 3047 return -EBUSY; 3048 3049 if (cmd_match(buf, "none")) { 3050 mddev->persistent = 0; 3051 mddev->external = 0; 3052 mddev->major_version = 0; 3053 mddev->minor_version = 90; 3054 return len; 3055 } 3056 if (strncmp(buf, "external:", 9) == 0) { 3057 size_t namelen = len-9; 3058 if (namelen >= sizeof(mddev->metadata_type)) 3059 namelen = sizeof(mddev->metadata_type)-1; 3060 strncpy(mddev->metadata_type, buf+9, namelen); 3061 mddev->metadata_type[namelen] = 0; 3062 if (namelen && mddev->metadata_type[namelen-1] == '\n') 3063 mddev->metadata_type[--namelen] = 0; 3064 mddev->persistent = 0; 3065 mddev->external = 1; 3066 mddev->major_version = 0; 3067 mddev->minor_version = 90; 3068 return len; 3069 } 3070 major = simple_strtoul(buf, &e, 10); 3071 if (e==buf || *e != '.') 3072 return -EINVAL; 3073 buf = e+1; 3074 minor = simple_strtoul(buf, &e, 10); 3075 if (e==buf || (*e && *e != '\n') ) 3076 return -EINVAL; 3077 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 3078 return -ENOENT; 3079 mddev->major_version = major; 3080 mddev->minor_version = minor; 3081 mddev->persistent = 1; 3082 mddev->external = 0; 3083 return len; 3084 } 3085 3086 static struct md_sysfs_entry md_metadata = 3087 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 3088 3089 static ssize_t 3090 action_show(mddev_t *mddev, char *page) 3091 { 3092 char *type = "idle"; 3093 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3094 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 3095 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3096 type = "reshape"; 3097 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3098 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3099 type = "resync"; 3100 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 3101 type = "check"; 3102 else 3103 type = "repair"; 3104 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 3105 type = "recover"; 3106 } 3107 return sprintf(page, "%s\n", type); 3108 } 3109 3110 static ssize_t 3111 action_store(mddev_t *mddev, const char *page, size_t len) 3112 { 3113 if (!mddev->pers || !mddev->pers->sync_request) 3114 return -EINVAL; 3115 3116 if (cmd_match(page, "idle")) { 3117 if (mddev->sync_thread) { 3118 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3119 md_unregister_thread(mddev->sync_thread); 3120 mddev->sync_thread = NULL; 3121 mddev->recovery = 0; 3122 } 3123 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3124 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 3125 return -EBUSY; 3126 else if (cmd_match(page, "resync")) 3127 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3128 else if (cmd_match(page, "recover")) { 3129 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3130 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3131 } else if (cmd_match(page, "reshape")) { 3132 int err; 3133 if (mddev->pers->start_reshape == NULL) 3134 return -EINVAL; 3135 err = mddev->pers->start_reshape(mddev); 3136 if (err) 3137 return err; 3138 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3139 } else { 3140 if (cmd_match(page, "check")) 3141 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3142 else if (!cmd_match(page, "repair")) 3143 return -EINVAL; 3144 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3145 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3146 } 3147 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3148 md_wakeup_thread(mddev->thread); 3149 sysfs_notify_dirent(mddev->sysfs_action); 3150 return len; 3151 } 3152 3153 static ssize_t 3154 mismatch_cnt_show(mddev_t *mddev, char *page) 3155 { 3156 return sprintf(page, "%llu\n", 3157 (unsigned long long) mddev->resync_mismatches); 3158 } 3159 3160 static struct md_sysfs_entry md_scan_mode = 3161 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 3162 3163 3164 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 3165 3166 static ssize_t 3167 sync_min_show(mddev_t *mddev, char *page) 3168 { 3169 return sprintf(page, "%d (%s)\n", speed_min(mddev), 3170 mddev->sync_speed_min ? "local": "system"); 3171 } 3172 3173 static ssize_t 3174 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 3175 { 3176 int min; 3177 char *e; 3178 if (strncmp(buf, "system", 6)==0) { 3179 mddev->sync_speed_min = 0; 3180 return len; 3181 } 3182 min = simple_strtoul(buf, &e, 10); 3183 if (buf == e || (*e && *e != '\n') || min <= 0) 3184 return -EINVAL; 3185 mddev->sync_speed_min = min; 3186 return len; 3187 } 3188 3189 static struct md_sysfs_entry md_sync_min = 3190 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 3191 3192 static ssize_t 3193 sync_max_show(mddev_t *mddev, char *page) 3194 { 3195 return sprintf(page, "%d (%s)\n", speed_max(mddev), 3196 mddev->sync_speed_max ? "local": "system"); 3197 } 3198 3199 static ssize_t 3200 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 3201 { 3202 int max; 3203 char *e; 3204 if (strncmp(buf, "system", 6)==0) { 3205 mddev->sync_speed_max = 0; 3206 return len; 3207 } 3208 max = simple_strtoul(buf, &e, 10); 3209 if (buf == e || (*e && *e != '\n') || max <= 0) 3210 return -EINVAL; 3211 mddev->sync_speed_max = max; 3212 return len; 3213 } 3214 3215 static struct md_sysfs_entry md_sync_max = 3216 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 3217 3218 static ssize_t 3219 degraded_show(mddev_t *mddev, char *page) 3220 { 3221 return sprintf(page, "%d\n", mddev->degraded); 3222 } 3223 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 3224 3225 static ssize_t 3226 sync_force_parallel_show(mddev_t *mddev, char *page) 3227 { 3228 return sprintf(page, "%d\n", mddev->parallel_resync); 3229 } 3230 3231 static ssize_t 3232 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len) 3233 { 3234 long n; 3235 3236 if (strict_strtol(buf, 10, &n)) 3237 return -EINVAL; 3238 3239 if (n != 0 && n != 1) 3240 return -EINVAL; 3241 3242 mddev->parallel_resync = n; 3243 3244 if (mddev->sync_thread) 3245 wake_up(&resync_wait); 3246 3247 return len; 3248 } 3249 3250 /* force parallel resync, even with shared block devices */ 3251 static struct md_sysfs_entry md_sync_force_parallel = 3252 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 3253 sync_force_parallel_show, sync_force_parallel_store); 3254 3255 static ssize_t 3256 sync_speed_show(mddev_t *mddev, char *page) 3257 { 3258 unsigned long resync, dt, db; 3259 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 3260 dt = (jiffies - mddev->resync_mark) / HZ; 3261 if (!dt) dt++; 3262 db = resync - mddev->resync_mark_cnt; 3263 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 3264 } 3265 3266 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 3267 3268 static ssize_t 3269 sync_completed_show(mddev_t *mddev, char *page) 3270 { 3271 unsigned long max_blocks, resync; 3272 3273 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3274 max_blocks = mddev->resync_max_sectors; 3275 else 3276 max_blocks = mddev->size << 1; 3277 3278 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active)); 3279 return sprintf(page, "%lu / %lu\n", resync, max_blocks); 3280 } 3281 3282 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 3283 3284 static ssize_t 3285 min_sync_show(mddev_t *mddev, char *page) 3286 { 3287 return sprintf(page, "%llu\n", 3288 (unsigned long long)mddev->resync_min); 3289 } 3290 static ssize_t 3291 min_sync_store(mddev_t *mddev, const char *buf, size_t len) 3292 { 3293 unsigned long long min; 3294 if (strict_strtoull(buf, 10, &min)) 3295 return -EINVAL; 3296 if (min > mddev->resync_max) 3297 return -EINVAL; 3298 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3299 return -EBUSY; 3300 3301 /* Must be a multiple of chunk_size */ 3302 if (mddev->chunk_size) { 3303 if (min & (sector_t)((mddev->chunk_size>>9)-1)) 3304 return -EINVAL; 3305 } 3306 mddev->resync_min = min; 3307 3308 return len; 3309 } 3310 3311 static struct md_sysfs_entry md_min_sync = 3312 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 3313 3314 static ssize_t 3315 max_sync_show(mddev_t *mddev, char *page) 3316 { 3317 if (mddev->resync_max == MaxSector) 3318 return sprintf(page, "max\n"); 3319 else 3320 return sprintf(page, "%llu\n", 3321 (unsigned long long)mddev->resync_max); 3322 } 3323 static ssize_t 3324 max_sync_store(mddev_t *mddev, const char *buf, size_t len) 3325 { 3326 if (strncmp(buf, "max", 3) == 0) 3327 mddev->resync_max = MaxSector; 3328 else { 3329 unsigned long long max; 3330 if (strict_strtoull(buf, 10, &max)) 3331 return -EINVAL; 3332 if (max < mddev->resync_min) 3333 return -EINVAL; 3334 if (max < mddev->resync_max && 3335 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3336 return -EBUSY; 3337 3338 /* Must be a multiple of chunk_size */ 3339 if (mddev->chunk_size) { 3340 if (max & (sector_t)((mddev->chunk_size>>9)-1)) 3341 return -EINVAL; 3342 } 3343 mddev->resync_max = max; 3344 } 3345 wake_up(&mddev->recovery_wait); 3346 return len; 3347 } 3348 3349 static struct md_sysfs_entry md_max_sync = 3350 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 3351 3352 static ssize_t 3353 suspend_lo_show(mddev_t *mddev, char *page) 3354 { 3355 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 3356 } 3357 3358 static ssize_t 3359 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 3360 { 3361 char *e; 3362 unsigned long long new = simple_strtoull(buf, &e, 10); 3363 3364 if (mddev->pers->quiesce == NULL) 3365 return -EINVAL; 3366 if (buf == e || (*e && *e != '\n')) 3367 return -EINVAL; 3368 if (new >= mddev->suspend_hi || 3369 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 3370 mddev->suspend_lo = new; 3371 mddev->pers->quiesce(mddev, 2); 3372 return len; 3373 } else 3374 return -EINVAL; 3375 } 3376 static struct md_sysfs_entry md_suspend_lo = 3377 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 3378 3379 3380 static ssize_t 3381 suspend_hi_show(mddev_t *mddev, char *page) 3382 { 3383 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 3384 } 3385 3386 static ssize_t 3387 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 3388 { 3389 char *e; 3390 unsigned long long new = simple_strtoull(buf, &e, 10); 3391 3392 if (mddev->pers->quiesce == NULL) 3393 return -EINVAL; 3394 if (buf == e || (*e && *e != '\n')) 3395 return -EINVAL; 3396 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 3397 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 3398 mddev->suspend_hi = new; 3399 mddev->pers->quiesce(mddev, 1); 3400 mddev->pers->quiesce(mddev, 0); 3401 return len; 3402 } else 3403 return -EINVAL; 3404 } 3405 static struct md_sysfs_entry md_suspend_hi = 3406 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 3407 3408 static ssize_t 3409 reshape_position_show(mddev_t *mddev, char *page) 3410 { 3411 if (mddev->reshape_position != MaxSector) 3412 return sprintf(page, "%llu\n", 3413 (unsigned long long)mddev->reshape_position); 3414 strcpy(page, "none\n"); 3415 return 5; 3416 } 3417 3418 static ssize_t 3419 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 3420 { 3421 char *e; 3422 unsigned long long new = simple_strtoull(buf, &e, 10); 3423 if (mddev->pers) 3424 return -EBUSY; 3425 if (buf == e || (*e && *e != '\n')) 3426 return -EINVAL; 3427 mddev->reshape_position = new; 3428 mddev->delta_disks = 0; 3429 mddev->new_level = mddev->level; 3430 mddev->new_layout = mddev->layout; 3431 mddev->new_chunk = mddev->chunk_size; 3432 return len; 3433 } 3434 3435 static struct md_sysfs_entry md_reshape_position = 3436 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 3437 reshape_position_store); 3438 3439 3440 static struct attribute *md_default_attrs[] = { 3441 &md_level.attr, 3442 &md_layout.attr, 3443 &md_raid_disks.attr, 3444 &md_chunk_size.attr, 3445 &md_size.attr, 3446 &md_resync_start.attr, 3447 &md_metadata.attr, 3448 &md_new_device.attr, 3449 &md_safe_delay.attr, 3450 &md_array_state.attr, 3451 &md_reshape_position.attr, 3452 NULL, 3453 }; 3454 3455 static struct attribute *md_redundancy_attrs[] = { 3456 &md_scan_mode.attr, 3457 &md_mismatches.attr, 3458 &md_sync_min.attr, 3459 &md_sync_max.attr, 3460 &md_sync_speed.attr, 3461 &md_sync_force_parallel.attr, 3462 &md_sync_completed.attr, 3463 &md_min_sync.attr, 3464 &md_max_sync.attr, 3465 &md_suspend_lo.attr, 3466 &md_suspend_hi.attr, 3467 &md_bitmap.attr, 3468 &md_degraded.attr, 3469 NULL, 3470 }; 3471 static struct attribute_group md_redundancy_group = { 3472 .name = NULL, 3473 .attrs = md_redundancy_attrs, 3474 }; 3475 3476 3477 static ssize_t 3478 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3479 { 3480 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 3481 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 3482 ssize_t rv; 3483 3484 if (!entry->show) 3485 return -EIO; 3486 rv = mddev_lock(mddev); 3487 if (!rv) { 3488 rv = entry->show(mddev, page); 3489 mddev_unlock(mddev); 3490 } 3491 return rv; 3492 } 3493 3494 static ssize_t 3495 md_attr_store(struct kobject *kobj, struct attribute *attr, 3496 const char *page, size_t length) 3497 { 3498 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 3499 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 3500 ssize_t rv; 3501 3502 if (!entry->store) 3503 return -EIO; 3504 if (!capable(CAP_SYS_ADMIN)) 3505 return -EACCES; 3506 rv = mddev_lock(mddev); 3507 if (mddev->hold_active == UNTIL_IOCTL) 3508 mddev->hold_active = 0; 3509 if (!rv) { 3510 rv = entry->store(mddev, page, length); 3511 mddev_unlock(mddev); 3512 } 3513 return rv; 3514 } 3515 3516 static void md_free(struct kobject *ko) 3517 { 3518 mddev_t *mddev = container_of(ko, mddev_t, kobj); 3519 3520 if (mddev->sysfs_state) 3521 sysfs_put(mddev->sysfs_state); 3522 3523 if (mddev->gendisk) { 3524 del_gendisk(mddev->gendisk); 3525 put_disk(mddev->gendisk); 3526 } 3527 if (mddev->queue) 3528 blk_cleanup_queue(mddev->queue); 3529 3530 kfree(mddev); 3531 } 3532 3533 static struct sysfs_ops md_sysfs_ops = { 3534 .show = md_attr_show, 3535 .store = md_attr_store, 3536 }; 3537 static struct kobj_type md_ktype = { 3538 .release = md_free, 3539 .sysfs_ops = &md_sysfs_ops, 3540 .default_attrs = md_default_attrs, 3541 }; 3542 3543 int mdp_major = 0; 3544 3545 static int md_alloc(dev_t dev, char *name) 3546 { 3547 static DEFINE_MUTEX(disks_mutex); 3548 mddev_t *mddev = mddev_find(dev); 3549 struct gendisk *disk; 3550 int partitioned; 3551 int shift; 3552 int unit; 3553 int error; 3554 3555 if (!mddev) 3556 return -ENODEV; 3557 3558 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 3559 shift = partitioned ? MdpMinorShift : 0; 3560 unit = MINOR(mddev->unit) >> shift; 3561 3562 /* wait for any previous instance if this device 3563 * to be completed removed (mddev_delayed_delete). 3564 */ 3565 flush_scheduled_work(); 3566 3567 mutex_lock(&disks_mutex); 3568 if (mddev->gendisk) { 3569 mutex_unlock(&disks_mutex); 3570 mddev_put(mddev); 3571 return -EEXIST; 3572 } 3573 3574 if (name) { 3575 /* Need to ensure that 'name' is not a duplicate. 3576 */ 3577 mddev_t *mddev2; 3578 spin_lock(&all_mddevs_lock); 3579 3580 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 3581 if (mddev2->gendisk && 3582 strcmp(mddev2->gendisk->disk_name, name) == 0) { 3583 spin_unlock(&all_mddevs_lock); 3584 return -EEXIST; 3585 } 3586 spin_unlock(&all_mddevs_lock); 3587 } 3588 3589 mddev->queue = blk_alloc_queue(GFP_KERNEL); 3590 if (!mddev->queue) { 3591 mutex_unlock(&disks_mutex); 3592 mddev_put(mddev); 3593 return -ENOMEM; 3594 } 3595 /* Can be unlocked because the queue is new: no concurrency */ 3596 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue); 3597 3598 blk_queue_make_request(mddev->queue, md_fail_request); 3599 3600 disk = alloc_disk(1 << shift); 3601 if (!disk) { 3602 mutex_unlock(&disks_mutex); 3603 blk_cleanup_queue(mddev->queue); 3604 mddev->queue = NULL; 3605 mddev_put(mddev); 3606 return -ENOMEM; 3607 } 3608 disk->major = MAJOR(mddev->unit); 3609 disk->first_minor = unit << shift; 3610 if (name) 3611 strcpy(disk->disk_name, name); 3612 else if (partitioned) 3613 sprintf(disk->disk_name, "md_d%d", unit); 3614 else 3615 sprintf(disk->disk_name, "md%d", unit); 3616 disk->fops = &md_fops; 3617 disk->private_data = mddev; 3618 disk->queue = mddev->queue; 3619 /* Allow extended partitions. This makes the 3620 * 'mdp' device redundant, but we can't really 3621 * remove it now. 3622 */ 3623 disk->flags |= GENHD_FL_EXT_DEVT; 3624 add_disk(disk); 3625 mddev->gendisk = disk; 3626 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 3627 &disk_to_dev(disk)->kobj, "%s", "md"); 3628 mutex_unlock(&disks_mutex); 3629 if (error) 3630 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 3631 disk->disk_name); 3632 else { 3633 kobject_uevent(&mddev->kobj, KOBJ_ADD); 3634 mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state"); 3635 } 3636 mddev_put(mddev); 3637 return 0; 3638 } 3639 3640 static struct kobject *md_probe(dev_t dev, int *part, void *data) 3641 { 3642 md_alloc(dev, NULL); 3643 return NULL; 3644 } 3645 3646 static int add_named_array(const char *val, struct kernel_param *kp) 3647 { 3648 /* val must be "md_*" where * is not all digits. 3649 * We allocate an array with a large free minor number, and 3650 * set the name to val. val must not already be an active name. 3651 */ 3652 int len = strlen(val); 3653 char buf[DISK_NAME_LEN]; 3654 3655 while (len && val[len-1] == '\n') 3656 len--; 3657 if (len >= DISK_NAME_LEN) 3658 return -E2BIG; 3659 strlcpy(buf, val, len+1); 3660 if (strncmp(buf, "md_", 3) != 0) 3661 return -EINVAL; 3662 return md_alloc(0, buf); 3663 } 3664 3665 static void md_safemode_timeout(unsigned long data) 3666 { 3667 mddev_t *mddev = (mddev_t *) data; 3668 3669 if (!atomic_read(&mddev->writes_pending)) { 3670 mddev->safemode = 1; 3671 if (mddev->external) 3672 sysfs_notify_dirent(mddev->sysfs_state); 3673 } 3674 md_wakeup_thread(mddev->thread); 3675 } 3676 3677 static int start_dirty_degraded; 3678 3679 static int do_md_run(mddev_t * mddev) 3680 { 3681 int err; 3682 int chunk_size; 3683 mdk_rdev_t *rdev; 3684 struct gendisk *disk; 3685 struct mdk_personality *pers; 3686 char b[BDEVNAME_SIZE]; 3687 3688 if (list_empty(&mddev->disks)) 3689 /* cannot run an array with no devices.. */ 3690 return -EINVAL; 3691 3692 if (mddev->pers) 3693 return -EBUSY; 3694 3695 /* 3696 * Analyze all RAID superblock(s) 3697 */ 3698 if (!mddev->raid_disks) { 3699 if (!mddev->persistent) 3700 return -EINVAL; 3701 analyze_sbs(mddev); 3702 } 3703 3704 chunk_size = mddev->chunk_size; 3705 3706 if (chunk_size) { 3707 if (chunk_size > MAX_CHUNK_SIZE) { 3708 printk(KERN_ERR "too big chunk_size: %d > %d\n", 3709 chunk_size, MAX_CHUNK_SIZE); 3710 return -EINVAL; 3711 } 3712 /* 3713 * chunk-size has to be a power of 2 3714 */ 3715 if ( (1 << ffz(~chunk_size)) != chunk_size) { 3716 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size); 3717 return -EINVAL; 3718 } 3719 3720 /* devices must have minimum size of one chunk */ 3721 list_for_each_entry(rdev, &mddev->disks, same_set) { 3722 if (test_bit(Faulty, &rdev->flags)) 3723 continue; 3724 if (rdev->size < chunk_size / 1024) { 3725 printk(KERN_WARNING 3726 "md: Dev %s smaller than chunk_size:" 3727 " %lluk < %dk\n", 3728 bdevname(rdev->bdev,b), 3729 (unsigned long long)rdev->size, 3730 chunk_size / 1024); 3731 return -EINVAL; 3732 } 3733 } 3734 } 3735 3736 if (mddev->level != LEVEL_NONE) 3737 request_module("md-level-%d", mddev->level); 3738 else if (mddev->clevel[0]) 3739 request_module("md-%s", mddev->clevel); 3740 3741 /* 3742 * Drop all container device buffers, from now on 3743 * the only valid external interface is through the md 3744 * device. 3745 */ 3746 list_for_each_entry(rdev, &mddev->disks, same_set) { 3747 if (test_bit(Faulty, &rdev->flags)) 3748 continue; 3749 sync_blockdev(rdev->bdev); 3750 invalidate_bdev(rdev->bdev); 3751 3752 /* perform some consistency tests on the device. 3753 * We don't want the data to overlap the metadata, 3754 * Internal Bitmap issues has handled elsewhere. 3755 */ 3756 if (rdev->data_offset < rdev->sb_start) { 3757 if (mddev->size && 3758 rdev->data_offset + mddev->size*2 3759 > rdev->sb_start) { 3760 printk("md: %s: data overlaps metadata\n", 3761 mdname(mddev)); 3762 return -EINVAL; 3763 } 3764 } else { 3765 if (rdev->sb_start + rdev->sb_size/512 3766 > rdev->data_offset) { 3767 printk("md: %s: metadata overlaps data\n", 3768 mdname(mddev)); 3769 return -EINVAL; 3770 } 3771 } 3772 sysfs_notify_dirent(rdev->sysfs_state); 3773 } 3774 3775 md_probe(mddev->unit, NULL, NULL); 3776 disk = mddev->gendisk; 3777 if (!disk) 3778 return -ENOMEM; 3779 3780 spin_lock(&pers_lock); 3781 pers = find_pers(mddev->level, mddev->clevel); 3782 if (!pers || !try_module_get(pers->owner)) { 3783 spin_unlock(&pers_lock); 3784 if (mddev->level != LEVEL_NONE) 3785 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 3786 mddev->level); 3787 else 3788 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 3789 mddev->clevel); 3790 return -EINVAL; 3791 } 3792 mddev->pers = pers; 3793 spin_unlock(&pers_lock); 3794 mddev->level = pers->level; 3795 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3796 3797 if (mddev->reshape_position != MaxSector && 3798 pers->start_reshape == NULL) { 3799 /* This personality cannot handle reshaping... */ 3800 mddev->pers = NULL; 3801 module_put(pers->owner); 3802 return -EINVAL; 3803 } 3804 3805 if (pers->sync_request) { 3806 /* Warn if this is a potentially silly 3807 * configuration. 3808 */ 3809 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 3810 mdk_rdev_t *rdev2; 3811 int warned = 0; 3812 3813 list_for_each_entry(rdev, &mddev->disks, same_set) 3814 list_for_each_entry(rdev2, &mddev->disks, same_set) { 3815 if (rdev < rdev2 && 3816 rdev->bdev->bd_contains == 3817 rdev2->bdev->bd_contains) { 3818 printk(KERN_WARNING 3819 "%s: WARNING: %s appears to be" 3820 " on the same physical disk as" 3821 " %s.\n", 3822 mdname(mddev), 3823 bdevname(rdev->bdev,b), 3824 bdevname(rdev2->bdev,b2)); 3825 warned = 1; 3826 } 3827 } 3828 3829 if (warned) 3830 printk(KERN_WARNING 3831 "True protection against single-disk" 3832 " failure might be compromised.\n"); 3833 } 3834 3835 mddev->recovery = 0; 3836 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */ 3837 mddev->barriers_work = 1; 3838 mddev->ok_start_degraded = start_dirty_degraded; 3839 3840 if (start_readonly) 3841 mddev->ro = 2; /* read-only, but switch on first write */ 3842 3843 err = mddev->pers->run(mddev); 3844 if (err) 3845 printk(KERN_ERR "md: pers->run() failed ...\n"); 3846 else if (mddev->pers->sync_request) { 3847 err = bitmap_create(mddev); 3848 if (err) { 3849 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 3850 mdname(mddev), err); 3851 mddev->pers->stop(mddev); 3852 } 3853 } 3854 if (err) { 3855 module_put(mddev->pers->owner); 3856 mddev->pers = NULL; 3857 bitmap_destroy(mddev); 3858 return err; 3859 } 3860 if (mddev->pers->sync_request) { 3861 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3862 printk(KERN_WARNING 3863 "md: cannot register extra attributes for %s\n", 3864 mdname(mddev)); 3865 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3866 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 3867 mddev->ro = 0; 3868 3869 atomic_set(&mddev->writes_pending,0); 3870 mddev->safemode = 0; 3871 mddev->safemode_timer.function = md_safemode_timeout; 3872 mddev->safemode_timer.data = (unsigned long) mddev; 3873 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 3874 mddev->in_sync = 1; 3875 3876 list_for_each_entry(rdev, &mddev->disks, same_set) 3877 if (rdev->raid_disk >= 0) { 3878 char nm[20]; 3879 sprintf(nm, "rd%d", rdev->raid_disk); 3880 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 3881 printk("md: cannot register %s for %s\n", 3882 nm, mdname(mddev)); 3883 } 3884 3885 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3886 3887 if (mddev->flags) 3888 md_update_sb(mddev, 0); 3889 3890 set_capacity(disk, mddev->array_sectors); 3891 3892 /* If we call blk_queue_make_request here, it will 3893 * re-initialise max_sectors etc which may have been 3894 * refined inside -> run. So just set the bits we need to set. 3895 * Most initialisation happended when we called 3896 * blk_queue_make_request(..., md_fail_request) 3897 * earlier. 3898 */ 3899 mddev->queue->queuedata = mddev; 3900 mddev->queue->make_request_fn = mddev->pers->make_request; 3901 3902 /* If there is a partially-recovered drive we need to 3903 * start recovery here. If we leave it to md_check_recovery, 3904 * it will remove the drives and not do the right thing 3905 */ 3906 if (mddev->degraded && !mddev->sync_thread) { 3907 int spares = 0; 3908 list_for_each_entry(rdev, &mddev->disks, same_set) 3909 if (rdev->raid_disk >= 0 && 3910 !test_bit(In_sync, &rdev->flags) && 3911 !test_bit(Faulty, &rdev->flags)) 3912 /* complete an interrupted recovery */ 3913 spares++; 3914 if (spares && mddev->pers->sync_request) { 3915 mddev->recovery = 0; 3916 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3917 mddev->sync_thread = md_register_thread(md_do_sync, 3918 mddev, 3919 "%s_resync"); 3920 if (!mddev->sync_thread) { 3921 printk(KERN_ERR "%s: could not start resync" 3922 " thread...\n", 3923 mdname(mddev)); 3924 /* leave the spares where they are, it shouldn't hurt */ 3925 mddev->recovery = 0; 3926 } 3927 } 3928 } 3929 md_wakeup_thread(mddev->thread); 3930 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 3931 3932 mddev->changed = 1; 3933 md_new_event(mddev); 3934 sysfs_notify_dirent(mddev->sysfs_state); 3935 if (mddev->sysfs_action) 3936 sysfs_notify_dirent(mddev->sysfs_action); 3937 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3938 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 3939 return 0; 3940 } 3941 3942 static int restart_array(mddev_t *mddev) 3943 { 3944 struct gendisk *disk = mddev->gendisk; 3945 3946 /* Complain if it has no devices */ 3947 if (list_empty(&mddev->disks)) 3948 return -ENXIO; 3949 if (!mddev->pers) 3950 return -EINVAL; 3951 if (!mddev->ro) 3952 return -EBUSY; 3953 mddev->safemode = 0; 3954 mddev->ro = 0; 3955 set_disk_ro(disk, 0); 3956 printk(KERN_INFO "md: %s switched to read-write mode.\n", 3957 mdname(mddev)); 3958 /* Kick recovery or resync if necessary */ 3959 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3960 md_wakeup_thread(mddev->thread); 3961 md_wakeup_thread(mddev->sync_thread); 3962 sysfs_notify_dirent(mddev->sysfs_state); 3963 return 0; 3964 } 3965 3966 /* similar to deny_write_access, but accounts for our holding a reference 3967 * to the file ourselves */ 3968 static int deny_bitmap_write_access(struct file * file) 3969 { 3970 struct inode *inode = file->f_mapping->host; 3971 3972 spin_lock(&inode->i_lock); 3973 if (atomic_read(&inode->i_writecount) > 1) { 3974 spin_unlock(&inode->i_lock); 3975 return -ETXTBSY; 3976 } 3977 atomic_set(&inode->i_writecount, -1); 3978 spin_unlock(&inode->i_lock); 3979 3980 return 0; 3981 } 3982 3983 static void restore_bitmap_write_access(struct file *file) 3984 { 3985 struct inode *inode = file->f_mapping->host; 3986 3987 spin_lock(&inode->i_lock); 3988 atomic_set(&inode->i_writecount, 1); 3989 spin_unlock(&inode->i_lock); 3990 } 3991 3992 /* mode: 3993 * 0 - completely stop and dis-assemble array 3994 * 1 - switch to readonly 3995 * 2 - stop but do not disassemble array 3996 */ 3997 static int do_md_stop(mddev_t * mddev, int mode, int is_open) 3998 { 3999 int err = 0; 4000 struct gendisk *disk = mddev->gendisk; 4001 4002 if (atomic_read(&mddev->openers) > is_open) { 4003 printk("md: %s still in use.\n",mdname(mddev)); 4004 return -EBUSY; 4005 } 4006 4007 if (mddev->pers) { 4008 4009 if (mddev->sync_thread) { 4010 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4011 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4012 md_unregister_thread(mddev->sync_thread); 4013 mddev->sync_thread = NULL; 4014 } 4015 4016 del_timer_sync(&mddev->safemode_timer); 4017 4018 switch(mode) { 4019 case 1: /* readonly */ 4020 err = -ENXIO; 4021 if (mddev->ro==1) 4022 goto out; 4023 mddev->ro = 1; 4024 break; 4025 case 0: /* disassemble */ 4026 case 2: /* stop */ 4027 bitmap_flush(mddev); 4028 md_super_wait(mddev); 4029 if (mddev->ro) 4030 set_disk_ro(disk, 0); 4031 blk_queue_make_request(mddev->queue, md_fail_request); 4032 mddev->pers->stop(mddev); 4033 mddev->queue->merge_bvec_fn = NULL; 4034 mddev->queue->unplug_fn = NULL; 4035 mddev->queue->backing_dev_info.congested_fn = NULL; 4036 if (mddev->pers->sync_request) { 4037 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 4038 if (mddev->sysfs_action) 4039 sysfs_put(mddev->sysfs_action); 4040 mddev->sysfs_action = NULL; 4041 } 4042 module_put(mddev->pers->owner); 4043 mddev->pers = NULL; 4044 /* tell userspace to handle 'inactive' */ 4045 sysfs_notify_dirent(mddev->sysfs_state); 4046 4047 set_capacity(disk, 0); 4048 mddev->changed = 1; 4049 4050 if (mddev->ro) 4051 mddev->ro = 0; 4052 } 4053 if (!mddev->in_sync || mddev->flags) { 4054 /* mark array as shutdown cleanly */ 4055 mddev->in_sync = 1; 4056 md_update_sb(mddev, 1); 4057 } 4058 if (mode == 1) 4059 set_disk_ro(disk, 1); 4060 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4061 } 4062 4063 /* 4064 * Free resources if final stop 4065 */ 4066 if (mode == 0) { 4067 mdk_rdev_t *rdev; 4068 4069 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 4070 4071 bitmap_destroy(mddev); 4072 if (mddev->bitmap_file) { 4073 restore_bitmap_write_access(mddev->bitmap_file); 4074 fput(mddev->bitmap_file); 4075 mddev->bitmap_file = NULL; 4076 } 4077 mddev->bitmap_offset = 0; 4078 4079 list_for_each_entry(rdev, &mddev->disks, same_set) 4080 if (rdev->raid_disk >= 0) { 4081 char nm[20]; 4082 sprintf(nm, "rd%d", rdev->raid_disk); 4083 sysfs_remove_link(&mddev->kobj, nm); 4084 } 4085 4086 /* make sure all md_delayed_delete calls have finished */ 4087 flush_scheduled_work(); 4088 4089 export_array(mddev); 4090 4091 mddev->array_sectors = 0; 4092 mddev->size = 0; 4093 mddev->raid_disks = 0; 4094 mddev->recovery_cp = 0; 4095 mddev->resync_min = 0; 4096 mddev->resync_max = MaxSector; 4097 mddev->reshape_position = MaxSector; 4098 mddev->external = 0; 4099 mddev->persistent = 0; 4100 mddev->level = LEVEL_NONE; 4101 mddev->clevel[0] = 0; 4102 mddev->flags = 0; 4103 mddev->ro = 0; 4104 mddev->metadata_type[0] = 0; 4105 mddev->chunk_size = 0; 4106 mddev->ctime = mddev->utime = 0; 4107 mddev->layout = 0; 4108 mddev->max_disks = 0; 4109 mddev->events = 0; 4110 mddev->delta_disks = 0; 4111 mddev->new_level = LEVEL_NONE; 4112 mddev->new_layout = 0; 4113 mddev->new_chunk = 0; 4114 mddev->curr_resync = 0; 4115 mddev->resync_mismatches = 0; 4116 mddev->suspend_lo = mddev->suspend_hi = 0; 4117 mddev->sync_speed_min = mddev->sync_speed_max = 0; 4118 mddev->recovery = 0; 4119 mddev->in_sync = 0; 4120 mddev->changed = 0; 4121 mddev->degraded = 0; 4122 mddev->barriers_work = 0; 4123 mddev->safemode = 0; 4124 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4125 if (mddev->hold_active == UNTIL_STOP) 4126 mddev->hold_active = 0; 4127 4128 } else if (mddev->pers) 4129 printk(KERN_INFO "md: %s switched to read-only mode.\n", 4130 mdname(mddev)); 4131 err = 0; 4132 md_new_event(mddev); 4133 sysfs_notify_dirent(mddev->sysfs_state); 4134 out: 4135 return err; 4136 } 4137 4138 #ifndef MODULE 4139 static void autorun_array(mddev_t *mddev) 4140 { 4141 mdk_rdev_t *rdev; 4142 int err; 4143 4144 if (list_empty(&mddev->disks)) 4145 return; 4146 4147 printk(KERN_INFO "md: running: "); 4148 4149 list_for_each_entry(rdev, &mddev->disks, same_set) { 4150 char b[BDEVNAME_SIZE]; 4151 printk("<%s>", bdevname(rdev->bdev,b)); 4152 } 4153 printk("\n"); 4154 4155 err = do_md_run(mddev); 4156 if (err) { 4157 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 4158 do_md_stop(mddev, 0, 0); 4159 } 4160 } 4161 4162 /* 4163 * lets try to run arrays based on all disks that have arrived 4164 * until now. (those are in pending_raid_disks) 4165 * 4166 * the method: pick the first pending disk, collect all disks with 4167 * the same UUID, remove all from the pending list and put them into 4168 * the 'same_array' list. Then order this list based on superblock 4169 * update time (freshest comes first), kick out 'old' disks and 4170 * compare superblocks. If everything's fine then run it. 4171 * 4172 * If "unit" is allocated, then bump its reference count 4173 */ 4174 static void autorun_devices(int part) 4175 { 4176 mdk_rdev_t *rdev0, *rdev, *tmp; 4177 mddev_t *mddev; 4178 char b[BDEVNAME_SIZE]; 4179 4180 printk(KERN_INFO "md: autorun ...\n"); 4181 while (!list_empty(&pending_raid_disks)) { 4182 int unit; 4183 dev_t dev; 4184 LIST_HEAD(candidates); 4185 rdev0 = list_entry(pending_raid_disks.next, 4186 mdk_rdev_t, same_set); 4187 4188 printk(KERN_INFO "md: considering %s ...\n", 4189 bdevname(rdev0->bdev,b)); 4190 INIT_LIST_HEAD(&candidates); 4191 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 4192 if (super_90_load(rdev, rdev0, 0) >= 0) { 4193 printk(KERN_INFO "md: adding %s ...\n", 4194 bdevname(rdev->bdev,b)); 4195 list_move(&rdev->same_set, &candidates); 4196 } 4197 /* 4198 * now we have a set of devices, with all of them having 4199 * mostly sane superblocks. It's time to allocate the 4200 * mddev. 4201 */ 4202 if (part) { 4203 dev = MKDEV(mdp_major, 4204 rdev0->preferred_minor << MdpMinorShift); 4205 unit = MINOR(dev) >> MdpMinorShift; 4206 } else { 4207 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 4208 unit = MINOR(dev); 4209 } 4210 if (rdev0->preferred_minor != unit) { 4211 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 4212 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 4213 break; 4214 } 4215 4216 md_probe(dev, NULL, NULL); 4217 mddev = mddev_find(dev); 4218 if (!mddev || !mddev->gendisk) { 4219 if (mddev) 4220 mddev_put(mddev); 4221 printk(KERN_ERR 4222 "md: cannot allocate memory for md drive.\n"); 4223 break; 4224 } 4225 if (mddev_lock(mddev)) 4226 printk(KERN_WARNING "md: %s locked, cannot run\n", 4227 mdname(mddev)); 4228 else if (mddev->raid_disks || mddev->major_version 4229 || !list_empty(&mddev->disks)) { 4230 printk(KERN_WARNING 4231 "md: %s already running, cannot run %s\n", 4232 mdname(mddev), bdevname(rdev0->bdev,b)); 4233 mddev_unlock(mddev); 4234 } else { 4235 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 4236 mddev->persistent = 1; 4237 rdev_for_each_list(rdev, tmp, &candidates) { 4238 list_del_init(&rdev->same_set); 4239 if (bind_rdev_to_array(rdev, mddev)) 4240 export_rdev(rdev); 4241 } 4242 autorun_array(mddev); 4243 mddev_unlock(mddev); 4244 } 4245 /* on success, candidates will be empty, on error 4246 * it won't... 4247 */ 4248 rdev_for_each_list(rdev, tmp, &candidates) { 4249 list_del_init(&rdev->same_set); 4250 export_rdev(rdev); 4251 } 4252 mddev_put(mddev); 4253 } 4254 printk(KERN_INFO "md: ... autorun DONE.\n"); 4255 } 4256 #endif /* !MODULE */ 4257 4258 static int get_version(void __user * arg) 4259 { 4260 mdu_version_t ver; 4261 4262 ver.major = MD_MAJOR_VERSION; 4263 ver.minor = MD_MINOR_VERSION; 4264 ver.patchlevel = MD_PATCHLEVEL_VERSION; 4265 4266 if (copy_to_user(arg, &ver, sizeof(ver))) 4267 return -EFAULT; 4268 4269 return 0; 4270 } 4271 4272 static int get_array_info(mddev_t * mddev, void __user * arg) 4273 { 4274 mdu_array_info_t info; 4275 int nr,working,active,failed,spare; 4276 mdk_rdev_t *rdev; 4277 4278 nr=working=active=failed=spare=0; 4279 list_for_each_entry(rdev, &mddev->disks, same_set) { 4280 nr++; 4281 if (test_bit(Faulty, &rdev->flags)) 4282 failed++; 4283 else { 4284 working++; 4285 if (test_bit(In_sync, &rdev->flags)) 4286 active++; 4287 else 4288 spare++; 4289 } 4290 } 4291 4292 info.major_version = mddev->major_version; 4293 info.minor_version = mddev->minor_version; 4294 info.patch_version = MD_PATCHLEVEL_VERSION; 4295 info.ctime = mddev->ctime; 4296 info.level = mddev->level; 4297 info.size = mddev->size; 4298 if (info.size != mddev->size) /* overflow */ 4299 info.size = -1; 4300 info.nr_disks = nr; 4301 info.raid_disks = mddev->raid_disks; 4302 info.md_minor = mddev->md_minor; 4303 info.not_persistent= !mddev->persistent; 4304 4305 info.utime = mddev->utime; 4306 info.state = 0; 4307 if (mddev->in_sync) 4308 info.state = (1<<MD_SB_CLEAN); 4309 if (mddev->bitmap && mddev->bitmap_offset) 4310 info.state = (1<<MD_SB_BITMAP_PRESENT); 4311 info.active_disks = active; 4312 info.working_disks = working; 4313 info.failed_disks = failed; 4314 info.spare_disks = spare; 4315 4316 info.layout = mddev->layout; 4317 info.chunk_size = mddev->chunk_size; 4318 4319 if (copy_to_user(arg, &info, sizeof(info))) 4320 return -EFAULT; 4321 4322 return 0; 4323 } 4324 4325 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 4326 { 4327 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 4328 char *ptr, *buf = NULL; 4329 int err = -ENOMEM; 4330 4331 if (md_allow_write(mddev)) 4332 file = kmalloc(sizeof(*file), GFP_NOIO); 4333 else 4334 file = kmalloc(sizeof(*file), GFP_KERNEL); 4335 4336 if (!file) 4337 goto out; 4338 4339 /* bitmap disabled, zero the first byte and copy out */ 4340 if (!mddev->bitmap || !mddev->bitmap->file) { 4341 file->pathname[0] = '\0'; 4342 goto copy_out; 4343 } 4344 4345 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 4346 if (!buf) 4347 goto out; 4348 4349 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); 4350 if (IS_ERR(ptr)) 4351 goto out; 4352 4353 strcpy(file->pathname, ptr); 4354 4355 copy_out: 4356 err = 0; 4357 if (copy_to_user(arg, file, sizeof(*file))) 4358 err = -EFAULT; 4359 out: 4360 kfree(buf); 4361 kfree(file); 4362 return err; 4363 } 4364 4365 static int get_disk_info(mddev_t * mddev, void __user * arg) 4366 { 4367 mdu_disk_info_t info; 4368 mdk_rdev_t *rdev; 4369 4370 if (copy_from_user(&info, arg, sizeof(info))) 4371 return -EFAULT; 4372 4373 rdev = find_rdev_nr(mddev, info.number); 4374 if (rdev) { 4375 info.major = MAJOR(rdev->bdev->bd_dev); 4376 info.minor = MINOR(rdev->bdev->bd_dev); 4377 info.raid_disk = rdev->raid_disk; 4378 info.state = 0; 4379 if (test_bit(Faulty, &rdev->flags)) 4380 info.state |= (1<<MD_DISK_FAULTY); 4381 else if (test_bit(In_sync, &rdev->flags)) { 4382 info.state |= (1<<MD_DISK_ACTIVE); 4383 info.state |= (1<<MD_DISK_SYNC); 4384 } 4385 if (test_bit(WriteMostly, &rdev->flags)) 4386 info.state |= (1<<MD_DISK_WRITEMOSTLY); 4387 } else { 4388 info.major = info.minor = 0; 4389 info.raid_disk = -1; 4390 info.state = (1<<MD_DISK_REMOVED); 4391 } 4392 4393 if (copy_to_user(arg, &info, sizeof(info))) 4394 return -EFAULT; 4395 4396 return 0; 4397 } 4398 4399 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 4400 { 4401 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4402 mdk_rdev_t *rdev; 4403 dev_t dev = MKDEV(info->major,info->minor); 4404 4405 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 4406 return -EOVERFLOW; 4407 4408 if (!mddev->raid_disks) { 4409 int err; 4410 /* expecting a device which has a superblock */ 4411 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 4412 if (IS_ERR(rdev)) { 4413 printk(KERN_WARNING 4414 "md: md_import_device returned %ld\n", 4415 PTR_ERR(rdev)); 4416 return PTR_ERR(rdev); 4417 } 4418 if (!list_empty(&mddev->disks)) { 4419 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 4420 mdk_rdev_t, same_set); 4421 int err = super_types[mddev->major_version] 4422 .load_super(rdev, rdev0, mddev->minor_version); 4423 if (err < 0) { 4424 printk(KERN_WARNING 4425 "md: %s has different UUID to %s\n", 4426 bdevname(rdev->bdev,b), 4427 bdevname(rdev0->bdev,b2)); 4428 export_rdev(rdev); 4429 return -EINVAL; 4430 } 4431 } 4432 err = bind_rdev_to_array(rdev, mddev); 4433 if (err) 4434 export_rdev(rdev); 4435 return err; 4436 } 4437 4438 /* 4439 * add_new_disk can be used once the array is assembled 4440 * to add "hot spares". They must already have a superblock 4441 * written 4442 */ 4443 if (mddev->pers) { 4444 int err; 4445 if (!mddev->pers->hot_add_disk) { 4446 printk(KERN_WARNING 4447 "%s: personality does not support diskops!\n", 4448 mdname(mddev)); 4449 return -EINVAL; 4450 } 4451 if (mddev->persistent) 4452 rdev = md_import_device(dev, mddev->major_version, 4453 mddev->minor_version); 4454 else 4455 rdev = md_import_device(dev, -1, -1); 4456 if (IS_ERR(rdev)) { 4457 printk(KERN_WARNING 4458 "md: md_import_device returned %ld\n", 4459 PTR_ERR(rdev)); 4460 return PTR_ERR(rdev); 4461 } 4462 /* set save_raid_disk if appropriate */ 4463 if (!mddev->persistent) { 4464 if (info->state & (1<<MD_DISK_SYNC) && 4465 info->raid_disk < mddev->raid_disks) 4466 rdev->raid_disk = info->raid_disk; 4467 else 4468 rdev->raid_disk = -1; 4469 } else 4470 super_types[mddev->major_version]. 4471 validate_super(mddev, rdev); 4472 rdev->saved_raid_disk = rdev->raid_disk; 4473 4474 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 4475 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 4476 set_bit(WriteMostly, &rdev->flags); 4477 4478 rdev->raid_disk = -1; 4479 err = bind_rdev_to_array(rdev, mddev); 4480 if (!err && !mddev->pers->hot_remove_disk) { 4481 /* If there is hot_add_disk but no hot_remove_disk 4482 * then added disks for geometry changes, 4483 * and should be added immediately. 4484 */ 4485 super_types[mddev->major_version]. 4486 validate_super(mddev, rdev); 4487 err = mddev->pers->hot_add_disk(mddev, rdev); 4488 if (err) 4489 unbind_rdev_from_array(rdev); 4490 } 4491 if (err) 4492 export_rdev(rdev); 4493 else 4494 sysfs_notify_dirent(rdev->sysfs_state); 4495 4496 md_update_sb(mddev, 1); 4497 if (mddev->degraded) 4498 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4499 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4500 md_wakeup_thread(mddev->thread); 4501 return err; 4502 } 4503 4504 /* otherwise, add_new_disk is only allowed 4505 * for major_version==0 superblocks 4506 */ 4507 if (mddev->major_version != 0) { 4508 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 4509 mdname(mddev)); 4510 return -EINVAL; 4511 } 4512 4513 if (!(info->state & (1<<MD_DISK_FAULTY))) { 4514 int err; 4515 rdev = md_import_device(dev, -1, 0); 4516 if (IS_ERR(rdev)) { 4517 printk(KERN_WARNING 4518 "md: error, md_import_device() returned %ld\n", 4519 PTR_ERR(rdev)); 4520 return PTR_ERR(rdev); 4521 } 4522 rdev->desc_nr = info->number; 4523 if (info->raid_disk < mddev->raid_disks) 4524 rdev->raid_disk = info->raid_disk; 4525 else 4526 rdev->raid_disk = -1; 4527 4528 if (rdev->raid_disk < mddev->raid_disks) 4529 if (info->state & (1<<MD_DISK_SYNC)) 4530 set_bit(In_sync, &rdev->flags); 4531 4532 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 4533 set_bit(WriteMostly, &rdev->flags); 4534 4535 if (!mddev->persistent) { 4536 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 4537 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 4538 } else 4539 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 4540 rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2; 4541 4542 err = bind_rdev_to_array(rdev, mddev); 4543 if (err) { 4544 export_rdev(rdev); 4545 return err; 4546 } 4547 } 4548 4549 return 0; 4550 } 4551 4552 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 4553 { 4554 char b[BDEVNAME_SIZE]; 4555 mdk_rdev_t *rdev; 4556 4557 rdev = find_rdev(mddev, dev); 4558 if (!rdev) 4559 return -ENXIO; 4560 4561 if (rdev->raid_disk >= 0) 4562 goto busy; 4563 4564 kick_rdev_from_array(rdev); 4565 md_update_sb(mddev, 1); 4566 md_new_event(mddev); 4567 4568 return 0; 4569 busy: 4570 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 4571 bdevname(rdev->bdev,b), mdname(mddev)); 4572 return -EBUSY; 4573 } 4574 4575 static int hot_add_disk(mddev_t * mddev, dev_t dev) 4576 { 4577 char b[BDEVNAME_SIZE]; 4578 int err; 4579 mdk_rdev_t *rdev; 4580 4581 if (!mddev->pers) 4582 return -ENODEV; 4583 4584 if (mddev->major_version != 0) { 4585 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 4586 " version-0 superblocks.\n", 4587 mdname(mddev)); 4588 return -EINVAL; 4589 } 4590 if (!mddev->pers->hot_add_disk) { 4591 printk(KERN_WARNING 4592 "%s: personality does not support diskops!\n", 4593 mdname(mddev)); 4594 return -EINVAL; 4595 } 4596 4597 rdev = md_import_device(dev, -1, 0); 4598 if (IS_ERR(rdev)) { 4599 printk(KERN_WARNING 4600 "md: error, md_import_device() returned %ld\n", 4601 PTR_ERR(rdev)); 4602 return -EINVAL; 4603 } 4604 4605 if (mddev->persistent) 4606 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 4607 else 4608 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 4609 4610 rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2; 4611 4612 if (test_bit(Faulty, &rdev->flags)) { 4613 printk(KERN_WARNING 4614 "md: can not hot-add faulty %s disk to %s!\n", 4615 bdevname(rdev->bdev,b), mdname(mddev)); 4616 err = -EINVAL; 4617 goto abort_export; 4618 } 4619 clear_bit(In_sync, &rdev->flags); 4620 rdev->desc_nr = -1; 4621 rdev->saved_raid_disk = -1; 4622 err = bind_rdev_to_array(rdev, mddev); 4623 if (err) 4624 goto abort_export; 4625 4626 /* 4627 * The rest should better be atomic, we can have disk failures 4628 * noticed in interrupt contexts ... 4629 */ 4630 4631 rdev->raid_disk = -1; 4632 4633 md_update_sb(mddev, 1); 4634 4635 /* 4636 * Kick recovery, maybe this spare has to be added to the 4637 * array immediately. 4638 */ 4639 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4640 md_wakeup_thread(mddev->thread); 4641 md_new_event(mddev); 4642 return 0; 4643 4644 abort_export: 4645 export_rdev(rdev); 4646 return err; 4647 } 4648 4649 static int set_bitmap_file(mddev_t *mddev, int fd) 4650 { 4651 int err; 4652 4653 if (mddev->pers) { 4654 if (!mddev->pers->quiesce) 4655 return -EBUSY; 4656 if (mddev->recovery || mddev->sync_thread) 4657 return -EBUSY; 4658 /* we should be able to change the bitmap.. */ 4659 } 4660 4661 4662 if (fd >= 0) { 4663 if (mddev->bitmap) 4664 return -EEXIST; /* cannot add when bitmap is present */ 4665 mddev->bitmap_file = fget(fd); 4666 4667 if (mddev->bitmap_file == NULL) { 4668 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 4669 mdname(mddev)); 4670 return -EBADF; 4671 } 4672 4673 err = deny_bitmap_write_access(mddev->bitmap_file); 4674 if (err) { 4675 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 4676 mdname(mddev)); 4677 fput(mddev->bitmap_file); 4678 mddev->bitmap_file = NULL; 4679 return err; 4680 } 4681 mddev->bitmap_offset = 0; /* file overrides offset */ 4682 } else if (mddev->bitmap == NULL) 4683 return -ENOENT; /* cannot remove what isn't there */ 4684 err = 0; 4685 if (mddev->pers) { 4686 mddev->pers->quiesce(mddev, 1); 4687 if (fd >= 0) 4688 err = bitmap_create(mddev); 4689 if (fd < 0 || err) { 4690 bitmap_destroy(mddev); 4691 fd = -1; /* make sure to put the file */ 4692 } 4693 mddev->pers->quiesce(mddev, 0); 4694 } 4695 if (fd < 0) { 4696 if (mddev->bitmap_file) { 4697 restore_bitmap_write_access(mddev->bitmap_file); 4698 fput(mddev->bitmap_file); 4699 } 4700 mddev->bitmap_file = NULL; 4701 } 4702 4703 return err; 4704 } 4705 4706 /* 4707 * set_array_info is used two different ways 4708 * The original usage is when creating a new array. 4709 * In this usage, raid_disks is > 0 and it together with 4710 * level, size, not_persistent,layout,chunksize determine the 4711 * shape of the array. 4712 * This will always create an array with a type-0.90.0 superblock. 4713 * The newer usage is when assembling an array. 4714 * In this case raid_disks will be 0, and the major_version field is 4715 * use to determine which style super-blocks are to be found on the devices. 4716 * The minor and patch _version numbers are also kept incase the 4717 * super_block handler wishes to interpret them. 4718 */ 4719 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 4720 { 4721 4722 if (info->raid_disks == 0) { 4723 /* just setting version number for superblock loading */ 4724 if (info->major_version < 0 || 4725 info->major_version >= ARRAY_SIZE(super_types) || 4726 super_types[info->major_version].name == NULL) { 4727 /* maybe try to auto-load a module? */ 4728 printk(KERN_INFO 4729 "md: superblock version %d not known\n", 4730 info->major_version); 4731 return -EINVAL; 4732 } 4733 mddev->major_version = info->major_version; 4734 mddev->minor_version = info->minor_version; 4735 mddev->patch_version = info->patch_version; 4736 mddev->persistent = !info->not_persistent; 4737 return 0; 4738 } 4739 mddev->major_version = MD_MAJOR_VERSION; 4740 mddev->minor_version = MD_MINOR_VERSION; 4741 mddev->patch_version = MD_PATCHLEVEL_VERSION; 4742 mddev->ctime = get_seconds(); 4743 4744 mddev->level = info->level; 4745 mddev->clevel[0] = 0; 4746 mddev->size = info->size; 4747 mddev->raid_disks = info->raid_disks; 4748 /* don't set md_minor, it is determined by which /dev/md* was 4749 * openned 4750 */ 4751 if (info->state & (1<<MD_SB_CLEAN)) 4752 mddev->recovery_cp = MaxSector; 4753 else 4754 mddev->recovery_cp = 0; 4755 mddev->persistent = ! info->not_persistent; 4756 mddev->external = 0; 4757 4758 mddev->layout = info->layout; 4759 mddev->chunk_size = info->chunk_size; 4760 4761 mddev->max_disks = MD_SB_DISKS; 4762 4763 if (mddev->persistent) 4764 mddev->flags = 0; 4765 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4766 4767 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 4768 mddev->bitmap_offset = 0; 4769 4770 mddev->reshape_position = MaxSector; 4771 4772 /* 4773 * Generate a 128 bit UUID 4774 */ 4775 get_random_bytes(mddev->uuid, 16); 4776 4777 mddev->new_level = mddev->level; 4778 mddev->new_chunk = mddev->chunk_size; 4779 mddev->new_layout = mddev->layout; 4780 mddev->delta_disks = 0; 4781 4782 return 0; 4783 } 4784 4785 static int update_size(mddev_t *mddev, sector_t num_sectors) 4786 { 4787 mdk_rdev_t *rdev; 4788 int rv; 4789 int fit = (num_sectors == 0); 4790 4791 if (mddev->pers->resize == NULL) 4792 return -EINVAL; 4793 /* The "num_sectors" is the number of sectors of each device that 4794 * is used. This can only make sense for arrays with redundancy. 4795 * linear and raid0 always use whatever space is available. We can only 4796 * consider changing this number if no resync or reconstruction is 4797 * happening, and if the new size is acceptable. It must fit before the 4798 * sb_start or, if that is <data_offset, it must fit before the size 4799 * of each device. If num_sectors is zero, we find the largest size 4800 * that fits. 4801 4802 */ 4803 if (mddev->sync_thread) 4804 return -EBUSY; 4805 if (mddev->bitmap) 4806 /* Sorry, cannot grow a bitmap yet, just remove it, 4807 * grow, and re-add. 4808 */ 4809 return -EBUSY; 4810 list_for_each_entry(rdev, &mddev->disks, same_set) { 4811 sector_t avail; 4812 avail = rdev->size * 2; 4813 4814 if (fit && (num_sectors == 0 || num_sectors > avail)) 4815 num_sectors = avail; 4816 if (avail < num_sectors) 4817 return -ENOSPC; 4818 } 4819 rv = mddev->pers->resize(mddev, num_sectors); 4820 if (!rv) { 4821 struct block_device *bdev; 4822 4823 bdev = bdget_disk(mddev->gendisk, 0); 4824 if (bdev) { 4825 mutex_lock(&bdev->bd_inode->i_mutex); 4826 i_size_write(bdev->bd_inode, 4827 (loff_t)mddev->array_sectors << 9); 4828 mutex_unlock(&bdev->bd_inode->i_mutex); 4829 bdput(bdev); 4830 } 4831 } 4832 return rv; 4833 } 4834 4835 static int update_raid_disks(mddev_t *mddev, int raid_disks) 4836 { 4837 int rv; 4838 /* change the number of raid disks */ 4839 if (mddev->pers->check_reshape == NULL) 4840 return -EINVAL; 4841 if (raid_disks <= 0 || 4842 raid_disks >= mddev->max_disks) 4843 return -EINVAL; 4844 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 4845 return -EBUSY; 4846 mddev->delta_disks = raid_disks - mddev->raid_disks; 4847 4848 rv = mddev->pers->check_reshape(mddev); 4849 return rv; 4850 } 4851 4852 4853 /* 4854 * update_array_info is used to change the configuration of an 4855 * on-line array. 4856 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 4857 * fields in the info are checked against the array. 4858 * Any differences that cannot be handled will cause an error. 4859 * Normally, only one change can be managed at a time. 4860 */ 4861 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 4862 { 4863 int rv = 0; 4864 int cnt = 0; 4865 int state = 0; 4866 4867 /* calculate expected state,ignoring low bits */ 4868 if (mddev->bitmap && mddev->bitmap_offset) 4869 state |= (1 << MD_SB_BITMAP_PRESENT); 4870 4871 if (mddev->major_version != info->major_version || 4872 mddev->minor_version != info->minor_version || 4873 /* mddev->patch_version != info->patch_version || */ 4874 mddev->ctime != info->ctime || 4875 mddev->level != info->level || 4876 /* mddev->layout != info->layout || */ 4877 !mddev->persistent != info->not_persistent|| 4878 mddev->chunk_size != info->chunk_size || 4879 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 4880 ((state^info->state) & 0xfffffe00) 4881 ) 4882 return -EINVAL; 4883 /* Check there is only one change */ 4884 if (info->size >= 0 && mddev->size != info->size) cnt++; 4885 if (mddev->raid_disks != info->raid_disks) cnt++; 4886 if (mddev->layout != info->layout) cnt++; 4887 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++; 4888 if (cnt == 0) return 0; 4889 if (cnt > 1) return -EINVAL; 4890 4891 if (mddev->layout != info->layout) { 4892 /* Change layout 4893 * we don't need to do anything at the md level, the 4894 * personality will take care of it all. 4895 */ 4896 if (mddev->pers->reconfig == NULL) 4897 return -EINVAL; 4898 else 4899 return mddev->pers->reconfig(mddev, info->layout, -1); 4900 } 4901 if (info->size >= 0 && mddev->size != info->size) 4902 rv = update_size(mddev, (sector_t)info->size * 2); 4903 4904 if (mddev->raid_disks != info->raid_disks) 4905 rv = update_raid_disks(mddev, info->raid_disks); 4906 4907 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 4908 if (mddev->pers->quiesce == NULL) 4909 return -EINVAL; 4910 if (mddev->recovery || mddev->sync_thread) 4911 return -EBUSY; 4912 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 4913 /* add the bitmap */ 4914 if (mddev->bitmap) 4915 return -EEXIST; 4916 if (mddev->default_bitmap_offset == 0) 4917 return -EINVAL; 4918 mddev->bitmap_offset = mddev->default_bitmap_offset; 4919 mddev->pers->quiesce(mddev, 1); 4920 rv = bitmap_create(mddev); 4921 if (rv) 4922 bitmap_destroy(mddev); 4923 mddev->pers->quiesce(mddev, 0); 4924 } else { 4925 /* remove the bitmap */ 4926 if (!mddev->bitmap) 4927 return -ENOENT; 4928 if (mddev->bitmap->file) 4929 return -EINVAL; 4930 mddev->pers->quiesce(mddev, 1); 4931 bitmap_destroy(mddev); 4932 mddev->pers->quiesce(mddev, 0); 4933 mddev->bitmap_offset = 0; 4934 } 4935 } 4936 md_update_sb(mddev, 1); 4937 return rv; 4938 } 4939 4940 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 4941 { 4942 mdk_rdev_t *rdev; 4943 4944 if (mddev->pers == NULL) 4945 return -ENODEV; 4946 4947 rdev = find_rdev(mddev, dev); 4948 if (!rdev) 4949 return -ENODEV; 4950 4951 md_error(mddev, rdev); 4952 return 0; 4953 } 4954 4955 /* 4956 * We have a problem here : there is no easy way to give a CHS 4957 * virtual geometry. We currently pretend that we have a 2 heads 4958 * 4 sectors (with a BIG number of cylinders...). This drives 4959 * dosfs just mad... ;-) 4960 */ 4961 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 4962 { 4963 mddev_t *mddev = bdev->bd_disk->private_data; 4964 4965 geo->heads = 2; 4966 geo->sectors = 4; 4967 geo->cylinders = get_capacity(mddev->gendisk) / 8; 4968 return 0; 4969 } 4970 4971 static int md_ioctl(struct block_device *bdev, fmode_t mode, 4972 unsigned int cmd, unsigned long arg) 4973 { 4974 int err = 0; 4975 void __user *argp = (void __user *)arg; 4976 mddev_t *mddev = NULL; 4977 4978 if (!capable(CAP_SYS_ADMIN)) 4979 return -EACCES; 4980 4981 /* 4982 * Commands dealing with the RAID driver but not any 4983 * particular array: 4984 */ 4985 switch (cmd) 4986 { 4987 case RAID_VERSION: 4988 err = get_version(argp); 4989 goto done; 4990 4991 case PRINT_RAID_DEBUG: 4992 err = 0; 4993 md_print_devices(); 4994 goto done; 4995 4996 #ifndef MODULE 4997 case RAID_AUTORUN: 4998 err = 0; 4999 autostart_arrays(arg); 5000 goto done; 5001 #endif 5002 default:; 5003 } 5004 5005 /* 5006 * Commands creating/starting a new array: 5007 */ 5008 5009 mddev = bdev->bd_disk->private_data; 5010 5011 if (!mddev) { 5012 BUG(); 5013 goto abort; 5014 } 5015 5016 err = mddev_lock(mddev); 5017 if (err) { 5018 printk(KERN_INFO 5019 "md: ioctl lock interrupted, reason %d, cmd %d\n", 5020 err, cmd); 5021 goto abort; 5022 } 5023 5024 switch (cmd) 5025 { 5026 case SET_ARRAY_INFO: 5027 { 5028 mdu_array_info_t info; 5029 if (!arg) 5030 memset(&info, 0, sizeof(info)); 5031 else if (copy_from_user(&info, argp, sizeof(info))) { 5032 err = -EFAULT; 5033 goto abort_unlock; 5034 } 5035 if (mddev->pers) { 5036 err = update_array_info(mddev, &info); 5037 if (err) { 5038 printk(KERN_WARNING "md: couldn't update" 5039 " array info. %d\n", err); 5040 goto abort_unlock; 5041 } 5042 goto done_unlock; 5043 } 5044 if (!list_empty(&mddev->disks)) { 5045 printk(KERN_WARNING 5046 "md: array %s already has disks!\n", 5047 mdname(mddev)); 5048 err = -EBUSY; 5049 goto abort_unlock; 5050 } 5051 if (mddev->raid_disks) { 5052 printk(KERN_WARNING 5053 "md: array %s already initialised!\n", 5054 mdname(mddev)); 5055 err = -EBUSY; 5056 goto abort_unlock; 5057 } 5058 err = set_array_info(mddev, &info); 5059 if (err) { 5060 printk(KERN_WARNING "md: couldn't set" 5061 " array info. %d\n", err); 5062 goto abort_unlock; 5063 } 5064 } 5065 goto done_unlock; 5066 5067 default:; 5068 } 5069 5070 /* 5071 * Commands querying/configuring an existing array: 5072 */ 5073 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 5074 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 5075 if ((!mddev->raid_disks && !mddev->external) 5076 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 5077 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 5078 && cmd != GET_BITMAP_FILE) { 5079 err = -ENODEV; 5080 goto abort_unlock; 5081 } 5082 5083 /* 5084 * Commands even a read-only array can execute: 5085 */ 5086 switch (cmd) 5087 { 5088 case GET_ARRAY_INFO: 5089 err = get_array_info(mddev, argp); 5090 goto done_unlock; 5091 5092 case GET_BITMAP_FILE: 5093 err = get_bitmap_file(mddev, argp); 5094 goto done_unlock; 5095 5096 case GET_DISK_INFO: 5097 err = get_disk_info(mddev, argp); 5098 goto done_unlock; 5099 5100 case RESTART_ARRAY_RW: 5101 err = restart_array(mddev); 5102 goto done_unlock; 5103 5104 case STOP_ARRAY: 5105 err = do_md_stop(mddev, 0, 1); 5106 goto done_unlock; 5107 5108 case STOP_ARRAY_RO: 5109 err = do_md_stop(mddev, 1, 1); 5110 goto done_unlock; 5111 5112 } 5113 5114 /* 5115 * The remaining ioctls are changing the state of the 5116 * superblock, so we do not allow them on read-only arrays. 5117 * However non-MD ioctls (e.g. get-size) will still come through 5118 * here and hit the 'default' below, so only disallow 5119 * 'md' ioctls, and switch to rw mode if started auto-readonly. 5120 */ 5121 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 5122 if (mddev->ro == 2) { 5123 mddev->ro = 0; 5124 sysfs_notify_dirent(mddev->sysfs_state); 5125 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5126 md_wakeup_thread(mddev->thread); 5127 } else { 5128 err = -EROFS; 5129 goto abort_unlock; 5130 } 5131 } 5132 5133 switch (cmd) 5134 { 5135 case ADD_NEW_DISK: 5136 { 5137 mdu_disk_info_t info; 5138 if (copy_from_user(&info, argp, sizeof(info))) 5139 err = -EFAULT; 5140 else 5141 err = add_new_disk(mddev, &info); 5142 goto done_unlock; 5143 } 5144 5145 case HOT_REMOVE_DISK: 5146 err = hot_remove_disk(mddev, new_decode_dev(arg)); 5147 goto done_unlock; 5148 5149 case HOT_ADD_DISK: 5150 err = hot_add_disk(mddev, new_decode_dev(arg)); 5151 goto done_unlock; 5152 5153 case SET_DISK_FAULTY: 5154 err = set_disk_faulty(mddev, new_decode_dev(arg)); 5155 goto done_unlock; 5156 5157 case RUN_ARRAY: 5158 err = do_md_run(mddev); 5159 goto done_unlock; 5160 5161 case SET_BITMAP_FILE: 5162 err = set_bitmap_file(mddev, (int)arg); 5163 goto done_unlock; 5164 5165 default: 5166 err = -EINVAL; 5167 goto abort_unlock; 5168 } 5169 5170 done_unlock: 5171 abort_unlock: 5172 if (mddev->hold_active == UNTIL_IOCTL && 5173 err != -EINVAL) 5174 mddev->hold_active = 0; 5175 mddev_unlock(mddev); 5176 5177 return err; 5178 done: 5179 if (err) 5180 MD_BUG(); 5181 abort: 5182 return err; 5183 } 5184 5185 static int md_open(struct block_device *bdev, fmode_t mode) 5186 { 5187 /* 5188 * Succeed if we can lock the mddev, which confirms that 5189 * it isn't being stopped right now. 5190 */ 5191 mddev_t *mddev = mddev_find(bdev->bd_dev); 5192 int err; 5193 5194 if (mddev->gendisk != bdev->bd_disk) { 5195 /* we are racing with mddev_put which is discarding this 5196 * bd_disk. 5197 */ 5198 mddev_put(mddev); 5199 /* Wait until bdev->bd_disk is definitely gone */ 5200 flush_scheduled_work(); 5201 /* Then retry the open from the top */ 5202 return -ERESTARTSYS; 5203 } 5204 BUG_ON(mddev != bdev->bd_disk->private_data); 5205 5206 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1))) 5207 goto out; 5208 5209 err = 0; 5210 atomic_inc(&mddev->openers); 5211 mddev_unlock(mddev); 5212 5213 check_disk_change(bdev); 5214 out: 5215 return err; 5216 } 5217 5218 static int md_release(struct gendisk *disk, fmode_t mode) 5219 { 5220 mddev_t *mddev = disk->private_data; 5221 5222 BUG_ON(!mddev); 5223 atomic_dec(&mddev->openers); 5224 mddev_put(mddev); 5225 5226 return 0; 5227 } 5228 5229 static int md_media_changed(struct gendisk *disk) 5230 { 5231 mddev_t *mddev = disk->private_data; 5232 5233 return mddev->changed; 5234 } 5235 5236 static int md_revalidate(struct gendisk *disk) 5237 { 5238 mddev_t *mddev = disk->private_data; 5239 5240 mddev->changed = 0; 5241 return 0; 5242 } 5243 static struct block_device_operations md_fops = 5244 { 5245 .owner = THIS_MODULE, 5246 .open = md_open, 5247 .release = md_release, 5248 .locked_ioctl = md_ioctl, 5249 .getgeo = md_getgeo, 5250 .media_changed = md_media_changed, 5251 .revalidate_disk= md_revalidate, 5252 }; 5253 5254 static int md_thread(void * arg) 5255 { 5256 mdk_thread_t *thread = arg; 5257 5258 /* 5259 * md_thread is a 'system-thread', it's priority should be very 5260 * high. We avoid resource deadlocks individually in each 5261 * raid personality. (RAID5 does preallocation) We also use RR and 5262 * the very same RT priority as kswapd, thus we will never get 5263 * into a priority inversion deadlock. 5264 * 5265 * we definitely have to have equal or higher priority than 5266 * bdflush, otherwise bdflush will deadlock if there are too 5267 * many dirty RAID5 blocks. 5268 */ 5269 5270 allow_signal(SIGKILL); 5271 while (!kthread_should_stop()) { 5272 5273 /* We need to wait INTERRUPTIBLE so that 5274 * we don't add to the load-average. 5275 * That means we need to be sure no signals are 5276 * pending 5277 */ 5278 if (signal_pending(current)) 5279 flush_signals(current); 5280 5281 wait_event_interruptible_timeout 5282 (thread->wqueue, 5283 test_bit(THREAD_WAKEUP, &thread->flags) 5284 || kthread_should_stop(), 5285 thread->timeout); 5286 5287 clear_bit(THREAD_WAKEUP, &thread->flags); 5288 5289 thread->run(thread->mddev); 5290 } 5291 5292 return 0; 5293 } 5294 5295 void md_wakeup_thread(mdk_thread_t *thread) 5296 { 5297 if (thread) { 5298 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 5299 set_bit(THREAD_WAKEUP, &thread->flags); 5300 wake_up(&thread->wqueue); 5301 } 5302 } 5303 5304 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 5305 const char *name) 5306 { 5307 mdk_thread_t *thread; 5308 5309 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 5310 if (!thread) 5311 return NULL; 5312 5313 init_waitqueue_head(&thread->wqueue); 5314 5315 thread->run = run; 5316 thread->mddev = mddev; 5317 thread->timeout = MAX_SCHEDULE_TIMEOUT; 5318 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev)); 5319 if (IS_ERR(thread->tsk)) { 5320 kfree(thread); 5321 return NULL; 5322 } 5323 return thread; 5324 } 5325 5326 void md_unregister_thread(mdk_thread_t *thread) 5327 { 5328 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 5329 5330 kthread_stop(thread->tsk); 5331 kfree(thread); 5332 } 5333 5334 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 5335 { 5336 if (!mddev) { 5337 MD_BUG(); 5338 return; 5339 } 5340 5341 if (!rdev || test_bit(Faulty, &rdev->flags)) 5342 return; 5343 5344 if (mddev->external) 5345 set_bit(Blocked, &rdev->flags); 5346 /* 5347 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 5348 mdname(mddev), 5349 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 5350 __builtin_return_address(0),__builtin_return_address(1), 5351 __builtin_return_address(2),__builtin_return_address(3)); 5352 */ 5353 if (!mddev->pers) 5354 return; 5355 if (!mddev->pers->error_handler) 5356 return; 5357 mddev->pers->error_handler(mddev,rdev); 5358 if (mddev->degraded) 5359 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5360 set_bit(StateChanged, &rdev->flags); 5361 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5362 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5363 md_wakeup_thread(mddev->thread); 5364 md_new_event_inintr(mddev); 5365 } 5366 5367 /* seq_file implementation /proc/mdstat */ 5368 5369 static void status_unused(struct seq_file *seq) 5370 { 5371 int i = 0; 5372 mdk_rdev_t *rdev; 5373 5374 seq_printf(seq, "unused devices: "); 5375 5376 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 5377 char b[BDEVNAME_SIZE]; 5378 i++; 5379 seq_printf(seq, "%s ", 5380 bdevname(rdev->bdev,b)); 5381 } 5382 if (!i) 5383 seq_printf(seq, "<none>"); 5384 5385 seq_printf(seq, "\n"); 5386 } 5387 5388 5389 static void status_resync(struct seq_file *seq, mddev_t * mddev) 5390 { 5391 sector_t max_blocks, resync, res; 5392 unsigned long dt, db, rt; 5393 int scale; 5394 unsigned int per_milli; 5395 5396 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2; 5397 5398 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 5399 max_blocks = mddev->resync_max_sectors >> 1; 5400 else 5401 max_blocks = mddev->size; 5402 5403 /* 5404 * Should not happen. 5405 */ 5406 if (!max_blocks) { 5407 MD_BUG(); 5408 return; 5409 } 5410 /* Pick 'scale' such that (resync>>scale)*1000 will fit 5411 * in a sector_t, and (max_blocks>>scale) will fit in a 5412 * u32, as those are the requirements for sector_div. 5413 * Thus 'scale' must be at least 10 5414 */ 5415 scale = 10; 5416 if (sizeof(sector_t) > sizeof(unsigned long)) { 5417 while ( max_blocks/2 > (1ULL<<(scale+32))) 5418 scale++; 5419 } 5420 res = (resync>>scale)*1000; 5421 sector_div(res, (u32)((max_blocks>>scale)+1)); 5422 5423 per_milli = res; 5424 { 5425 int i, x = per_milli/50, y = 20-x; 5426 seq_printf(seq, "["); 5427 for (i = 0; i < x; i++) 5428 seq_printf(seq, "="); 5429 seq_printf(seq, ">"); 5430 for (i = 0; i < y; i++) 5431 seq_printf(seq, "."); 5432 seq_printf(seq, "] "); 5433 } 5434 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 5435 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 5436 "reshape" : 5437 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 5438 "check" : 5439 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 5440 "resync" : "recovery"))), 5441 per_milli/10, per_milli % 10, 5442 (unsigned long long) resync, 5443 (unsigned long long) max_blocks); 5444 5445 /* 5446 * We do not want to overflow, so the order of operands and 5447 * the * 100 / 100 trick are important. We do a +1 to be 5448 * safe against division by zero. We only estimate anyway. 5449 * 5450 * dt: time from mark until now 5451 * db: blocks written from mark until now 5452 * rt: remaining time 5453 */ 5454 dt = ((jiffies - mddev->resync_mark) / HZ); 5455 if (!dt) dt++; 5456 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 5457 - mddev->resync_mark_cnt; 5458 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100; 5459 5460 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6); 5461 5462 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 5463 } 5464 5465 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 5466 { 5467 struct list_head *tmp; 5468 loff_t l = *pos; 5469 mddev_t *mddev; 5470 5471 if (l >= 0x10000) 5472 return NULL; 5473 if (!l--) 5474 /* header */ 5475 return (void*)1; 5476 5477 spin_lock(&all_mddevs_lock); 5478 list_for_each(tmp,&all_mddevs) 5479 if (!l--) { 5480 mddev = list_entry(tmp, mddev_t, all_mddevs); 5481 mddev_get(mddev); 5482 spin_unlock(&all_mddevs_lock); 5483 return mddev; 5484 } 5485 spin_unlock(&all_mddevs_lock); 5486 if (!l--) 5487 return (void*)2;/* tail */ 5488 return NULL; 5489 } 5490 5491 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 5492 { 5493 struct list_head *tmp; 5494 mddev_t *next_mddev, *mddev = v; 5495 5496 ++*pos; 5497 if (v == (void*)2) 5498 return NULL; 5499 5500 spin_lock(&all_mddevs_lock); 5501 if (v == (void*)1) 5502 tmp = all_mddevs.next; 5503 else 5504 tmp = mddev->all_mddevs.next; 5505 if (tmp != &all_mddevs) 5506 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 5507 else { 5508 next_mddev = (void*)2; 5509 *pos = 0x10000; 5510 } 5511 spin_unlock(&all_mddevs_lock); 5512 5513 if (v != (void*)1) 5514 mddev_put(mddev); 5515 return next_mddev; 5516 5517 } 5518 5519 static void md_seq_stop(struct seq_file *seq, void *v) 5520 { 5521 mddev_t *mddev = v; 5522 5523 if (mddev && v != (void*)1 && v != (void*)2) 5524 mddev_put(mddev); 5525 } 5526 5527 struct mdstat_info { 5528 int event; 5529 }; 5530 5531 static int md_seq_show(struct seq_file *seq, void *v) 5532 { 5533 mddev_t *mddev = v; 5534 sector_t size; 5535 mdk_rdev_t *rdev; 5536 struct mdstat_info *mi = seq->private; 5537 struct bitmap *bitmap; 5538 5539 if (v == (void*)1) { 5540 struct mdk_personality *pers; 5541 seq_printf(seq, "Personalities : "); 5542 spin_lock(&pers_lock); 5543 list_for_each_entry(pers, &pers_list, list) 5544 seq_printf(seq, "[%s] ", pers->name); 5545 5546 spin_unlock(&pers_lock); 5547 seq_printf(seq, "\n"); 5548 mi->event = atomic_read(&md_event_count); 5549 return 0; 5550 } 5551 if (v == (void*)2) { 5552 status_unused(seq); 5553 return 0; 5554 } 5555 5556 if (mddev_lock(mddev) < 0) 5557 return -EINTR; 5558 5559 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 5560 seq_printf(seq, "%s : %sactive", mdname(mddev), 5561 mddev->pers ? "" : "in"); 5562 if (mddev->pers) { 5563 if (mddev->ro==1) 5564 seq_printf(seq, " (read-only)"); 5565 if (mddev->ro==2) 5566 seq_printf(seq, " (auto-read-only)"); 5567 seq_printf(seq, " %s", mddev->pers->name); 5568 } 5569 5570 size = 0; 5571 list_for_each_entry(rdev, &mddev->disks, same_set) { 5572 char b[BDEVNAME_SIZE]; 5573 seq_printf(seq, " %s[%d]", 5574 bdevname(rdev->bdev,b), rdev->desc_nr); 5575 if (test_bit(WriteMostly, &rdev->flags)) 5576 seq_printf(seq, "(W)"); 5577 if (test_bit(Faulty, &rdev->flags)) { 5578 seq_printf(seq, "(F)"); 5579 continue; 5580 } else if (rdev->raid_disk < 0) 5581 seq_printf(seq, "(S)"); /* spare */ 5582 size += rdev->size; 5583 } 5584 5585 if (!list_empty(&mddev->disks)) { 5586 if (mddev->pers) 5587 seq_printf(seq, "\n %llu blocks", 5588 (unsigned long long) 5589 mddev->array_sectors / 2); 5590 else 5591 seq_printf(seq, "\n %llu blocks", 5592 (unsigned long long)size); 5593 } 5594 if (mddev->persistent) { 5595 if (mddev->major_version != 0 || 5596 mddev->minor_version != 90) { 5597 seq_printf(seq," super %d.%d", 5598 mddev->major_version, 5599 mddev->minor_version); 5600 } 5601 } else if (mddev->external) 5602 seq_printf(seq, " super external:%s", 5603 mddev->metadata_type); 5604 else 5605 seq_printf(seq, " super non-persistent"); 5606 5607 if (mddev->pers) { 5608 mddev->pers->status(seq, mddev); 5609 seq_printf(seq, "\n "); 5610 if (mddev->pers->sync_request) { 5611 if (mddev->curr_resync > 2) { 5612 status_resync(seq, mddev); 5613 seq_printf(seq, "\n "); 5614 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 5615 seq_printf(seq, "\tresync=DELAYED\n "); 5616 else if (mddev->recovery_cp < MaxSector) 5617 seq_printf(seq, "\tresync=PENDING\n "); 5618 } 5619 } else 5620 seq_printf(seq, "\n "); 5621 5622 if ((bitmap = mddev->bitmap)) { 5623 unsigned long chunk_kb; 5624 unsigned long flags; 5625 spin_lock_irqsave(&bitmap->lock, flags); 5626 chunk_kb = bitmap->chunksize >> 10; 5627 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 5628 "%lu%s chunk", 5629 bitmap->pages - bitmap->missing_pages, 5630 bitmap->pages, 5631 (bitmap->pages - bitmap->missing_pages) 5632 << (PAGE_SHIFT - 10), 5633 chunk_kb ? chunk_kb : bitmap->chunksize, 5634 chunk_kb ? "KB" : "B"); 5635 if (bitmap->file) { 5636 seq_printf(seq, ", file: "); 5637 seq_path(seq, &bitmap->file->f_path, " \t\n"); 5638 } 5639 5640 seq_printf(seq, "\n"); 5641 spin_unlock_irqrestore(&bitmap->lock, flags); 5642 } 5643 5644 seq_printf(seq, "\n"); 5645 } 5646 mddev_unlock(mddev); 5647 5648 return 0; 5649 } 5650 5651 static struct seq_operations md_seq_ops = { 5652 .start = md_seq_start, 5653 .next = md_seq_next, 5654 .stop = md_seq_stop, 5655 .show = md_seq_show, 5656 }; 5657 5658 static int md_seq_open(struct inode *inode, struct file *file) 5659 { 5660 int error; 5661 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 5662 if (mi == NULL) 5663 return -ENOMEM; 5664 5665 error = seq_open(file, &md_seq_ops); 5666 if (error) 5667 kfree(mi); 5668 else { 5669 struct seq_file *p = file->private_data; 5670 p->private = mi; 5671 mi->event = atomic_read(&md_event_count); 5672 } 5673 return error; 5674 } 5675 5676 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 5677 { 5678 struct seq_file *m = filp->private_data; 5679 struct mdstat_info *mi = m->private; 5680 int mask; 5681 5682 poll_wait(filp, &md_event_waiters, wait); 5683 5684 /* always allow read */ 5685 mask = POLLIN | POLLRDNORM; 5686 5687 if (mi->event != atomic_read(&md_event_count)) 5688 mask |= POLLERR | POLLPRI; 5689 return mask; 5690 } 5691 5692 static const struct file_operations md_seq_fops = { 5693 .owner = THIS_MODULE, 5694 .open = md_seq_open, 5695 .read = seq_read, 5696 .llseek = seq_lseek, 5697 .release = seq_release_private, 5698 .poll = mdstat_poll, 5699 }; 5700 5701 int register_md_personality(struct mdk_personality *p) 5702 { 5703 spin_lock(&pers_lock); 5704 list_add_tail(&p->list, &pers_list); 5705 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 5706 spin_unlock(&pers_lock); 5707 return 0; 5708 } 5709 5710 int unregister_md_personality(struct mdk_personality *p) 5711 { 5712 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 5713 spin_lock(&pers_lock); 5714 list_del_init(&p->list); 5715 spin_unlock(&pers_lock); 5716 return 0; 5717 } 5718 5719 static int is_mddev_idle(mddev_t *mddev) 5720 { 5721 mdk_rdev_t * rdev; 5722 int idle; 5723 long curr_events; 5724 5725 idle = 1; 5726 rcu_read_lock(); 5727 rdev_for_each_rcu(rdev, mddev) { 5728 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 5729 curr_events = part_stat_read(&disk->part0, sectors[0]) + 5730 part_stat_read(&disk->part0, sectors[1]) - 5731 atomic_read(&disk->sync_io); 5732 /* sync IO will cause sync_io to increase before the disk_stats 5733 * as sync_io is counted when a request starts, and 5734 * disk_stats is counted when it completes. 5735 * So resync activity will cause curr_events to be smaller than 5736 * when there was no such activity. 5737 * non-sync IO will cause disk_stat to increase without 5738 * increasing sync_io so curr_events will (eventually) 5739 * be larger than it was before. Once it becomes 5740 * substantially larger, the test below will cause 5741 * the array to appear non-idle, and resync will slow 5742 * down. 5743 * If there is a lot of outstanding resync activity when 5744 * we set last_event to curr_events, then all that activity 5745 * completing might cause the array to appear non-idle 5746 * and resync will be slowed down even though there might 5747 * not have been non-resync activity. This will only 5748 * happen once though. 'last_events' will soon reflect 5749 * the state where there is little or no outstanding 5750 * resync requests, and further resync activity will 5751 * always make curr_events less than last_events. 5752 * 5753 */ 5754 if (curr_events - rdev->last_events > 4096) { 5755 rdev->last_events = curr_events; 5756 idle = 0; 5757 } 5758 } 5759 rcu_read_unlock(); 5760 return idle; 5761 } 5762 5763 void md_done_sync(mddev_t *mddev, int blocks, int ok) 5764 { 5765 /* another "blocks" (512byte) blocks have been synced */ 5766 atomic_sub(blocks, &mddev->recovery_active); 5767 wake_up(&mddev->recovery_wait); 5768 if (!ok) { 5769 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5770 md_wakeup_thread(mddev->thread); 5771 // stop recovery, signal do_sync .... 5772 } 5773 } 5774 5775 5776 /* md_write_start(mddev, bi) 5777 * If we need to update some array metadata (e.g. 'active' flag 5778 * in superblock) before writing, schedule a superblock update 5779 * and wait for it to complete. 5780 */ 5781 void md_write_start(mddev_t *mddev, struct bio *bi) 5782 { 5783 int did_change = 0; 5784 if (bio_data_dir(bi) != WRITE) 5785 return; 5786 5787 BUG_ON(mddev->ro == 1); 5788 if (mddev->ro == 2) { 5789 /* need to switch to read/write */ 5790 mddev->ro = 0; 5791 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5792 md_wakeup_thread(mddev->thread); 5793 md_wakeup_thread(mddev->sync_thread); 5794 did_change = 1; 5795 } 5796 atomic_inc(&mddev->writes_pending); 5797 if (mddev->safemode == 1) 5798 mddev->safemode = 0; 5799 if (mddev->in_sync) { 5800 spin_lock_irq(&mddev->write_lock); 5801 if (mddev->in_sync) { 5802 mddev->in_sync = 0; 5803 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5804 md_wakeup_thread(mddev->thread); 5805 did_change = 1; 5806 } 5807 spin_unlock_irq(&mddev->write_lock); 5808 } 5809 if (did_change) 5810 sysfs_notify_dirent(mddev->sysfs_state); 5811 wait_event(mddev->sb_wait, 5812 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) && 5813 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 5814 } 5815 5816 void md_write_end(mddev_t *mddev) 5817 { 5818 if (atomic_dec_and_test(&mddev->writes_pending)) { 5819 if (mddev->safemode == 2) 5820 md_wakeup_thread(mddev->thread); 5821 else if (mddev->safemode_delay) 5822 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 5823 } 5824 } 5825 5826 /* md_allow_write(mddev) 5827 * Calling this ensures that the array is marked 'active' so that writes 5828 * may proceed without blocking. It is important to call this before 5829 * attempting a GFP_KERNEL allocation while holding the mddev lock. 5830 * Must be called with mddev_lock held. 5831 * 5832 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 5833 * is dropped, so return -EAGAIN after notifying userspace. 5834 */ 5835 int md_allow_write(mddev_t *mddev) 5836 { 5837 if (!mddev->pers) 5838 return 0; 5839 if (mddev->ro) 5840 return 0; 5841 if (!mddev->pers->sync_request) 5842 return 0; 5843 5844 spin_lock_irq(&mddev->write_lock); 5845 if (mddev->in_sync) { 5846 mddev->in_sync = 0; 5847 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5848 if (mddev->safemode_delay && 5849 mddev->safemode == 0) 5850 mddev->safemode = 1; 5851 spin_unlock_irq(&mddev->write_lock); 5852 md_update_sb(mddev, 0); 5853 sysfs_notify_dirent(mddev->sysfs_state); 5854 } else 5855 spin_unlock_irq(&mddev->write_lock); 5856 5857 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 5858 return -EAGAIN; 5859 else 5860 return 0; 5861 } 5862 EXPORT_SYMBOL_GPL(md_allow_write); 5863 5864 #define SYNC_MARKS 10 5865 #define SYNC_MARK_STEP (3*HZ) 5866 void md_do_sync(mddev_t *mddev) 5867 { 5868 mddev_t *mddev2; 5869 unsigned int currspeed = 0, 5870 window; 5871 sector_t max_sectors,j, io_sectors; 5872 unsigned long mark[SYNC_MARKS]; 5873 sector_t mark_cnt[SYNC_MARKS]; 5874 int last_mark,m; 5875 struct list_head *tmp; 5876 sector_t last_check; 5877 int skipped = 0; 5878 mdk_rdev_t *rdev; 5879 char *desc; 5880 5881 /* just incase thread restarts... */ 5882 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 5883 return; 5884 if (mddev->ro) /* never try to sync a read-only array */ 5885 return; 5886 5887 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5888 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 5889 desc = "data-check"; 5890 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5891 desc = "requested-resync"; 5892 else 5893 desc = "resync"; 5894 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5895 desc = "reshape"; 5896 else 5897 desc = "recovery"; 5898 5899 /* we overload curr_resync somewhat here. 5900 * 0 == not engaged in resync at all 5901 * 2 == checking that there is no conflict with another sync 5902 * 1 == like 2, but have yielded to allow conflicting resync to 5903 * commense 5904 * other == active in resync - this many blocks 5905 * 5906 * Before starting a resync we must have set curr_resync to 5907 * 2, and then checked that every "conflicting" array has curr_resync 5908 * less than ours. When we find one that is the same or higher 5909 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 5910 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 5911 * This will mean we have to start checking from the beginning again. 5912 * 5913 */ 5914 5915 do { 5916 mddev->curr_resync = 2; 5917 5918 try_again: 5919 if (kthread_should_stop()) { 5920 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5921 goto skip; 5922 } 5923 for_each_mddev(mddev2, tmp) { 5924 if (mddev2 == mddev) 5925 continue; 5926 if (!mddev->parallel_resync 5927 && mddev2->curr_resync 5928 && match_mddev_units(mddev, mddev2)) { 5929 DEFINE_WAIT(wq); 5930 if (mddev < mddev2 && mddev->curr_resync == 2) { 5931 /* arbitrarily yield */ 5932 mddev->curr_resync = 1; 5933 wake_up(&resync_wait); 5934 } 5935 if (mddev > mddev2 && mddev->curr_resync == 1) 5936 /* no need to wait here, we can wait the next 5937 * time 'round when curr_resync == 2 5938 */ 5939 continue; 5940 /* We need to wait 'interruptible' so as not to 5941 * contribute to the load average, and not to 5942 * be caught by 'softlockup' 5943 */ 5944 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 5945 if (!kthread_should_stop() && 5946 mddev2->curr_resync >= mddev->curr_resync) { 5947 printk(KERN_INFO "md: delaying %s of %s" 5948 " until %s has finished (they" 5949 " share one or more physical units)\n", 5950 desc, mdname(mddev), mdname(mddev2)); 5951 mddev_put(mddev2); 5952 if (signal_pending(current)) 5953 flush_signals(current); 5954 schedule(); 5955 finish_wait(&resync_wait, &wq); 5956 goto try_again; 5957 } 5958 finish_wait(&resync_wait, &wq); 5959 } 5960 } 5961 } while (mddev->curr_resync < 2); 5962 5963 j = 0; 5964 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5965 /* resync follows the size requested by the personality, 5966 * which defaults to physical size, but can be virtual size 5967 */ 5968 max_sectors = mddev->resync_max_sectors; 5969 mddev->resync_mismatches = 0; 5970 /* we don't use the checkpoint if there's a bitmap */ 5971 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5972 j = mddev->resync_min; 5973 else if (!mddev->bitmap) 5974 j = mddev->recovery_cp; 5975 5976 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5977 max_sectors = mddev->size << 1; 5978 else { 5979 /* recovery follows the physical size of devices */ 5980 max_sectors = mddev->size << 1; 5981 j = MaxSector; 5982 list_for_each_entry(rdev, &mddev->disks, same_set) 5983 if (rdev->raid_disk >= 0 && 5984 !test_bit(Faulty, &rdev->flags) && 5985 !test_bit(In_sync, &rdev->flags) && 5986 rdev->recovery_offset < j) 5987 j = rdev->recovery_offset; 5988 } 5989 5990 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 5991 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 5992 " %d KB/sec/disk.\n", speed_min(mddev)); 5993 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 5994 "(but not more than %d KB/sec) for %s.\n", 5995 speed_max(mddev), desc); 5996 5997 is_mddev_idle(mddev); /* this also initializes IO event counters */ 5998 5999 io_sectors = 0; 6000 for (m = 0; m < SYNC_MARKS; m++) { 6001 mark[m] = jiffies; 6002 mark_cnt[m] = io_sectors; 6003 } 6004 last_mark = 0; 6005 mddev->resync_mark = mark[last_mark]; 6006 mddev->resync_mark_cnt = mark_cnt[last_mark]; 6007 6008 /* 6009 * Tune reconstruction: 6010 */ 6011 window = 32*(PAGE_SIZE/512); 6012 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 6013 window/2,(unsigned long long) max_sectors/2); 6014 6015 atomic_set(&mddev->recovery_active, 0); 6016 last_check = 0; 6017 6018 if (j>2) { 6019 printk(KERN_INFO 6020 "md: resuming %s of %s from checkpoint.\n", 6021 desc, mdname(mddev)); 6022 mddev->curr_resync = j; 6023 } 6024 6025 while (j < max_sectors) { 6026 sector_t sectors; 6027 6028 skipped = 0; 6029 if (j >= mddev->resync_max) { 6030 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6031 wait_event(mddev->recovery_wait, 6032 mddev->resync_max > j 6033 || kthread_should_stop()); 6034 } 6035 if (kthread_should_stop()) 6036 goto interrupted; 6037 sectors = mddev->pers->sync_request(mddev, j, &skipped, 6038 currspeed < speed_min(mddev)); 6039 if (sectors == 0) { 6040 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6041 goto out; 6042 } 6043 6044 if (!skipped) { /* actual IO requested */ 6045 io_sectors += sectors; 6046 atomic_add(sectors, &mddev->recovery_active); 6047 } 6048 6049 j += sectors; 6050 if (j>1) mddev->curr_resync = j; 6051 mddev->curr_mark_cnt = io_sectors; 6052 if (last_check == 0) 6053 /* this is the earliers that rebuilt will be 6054 * visible in /proc/mdstat 6055 */ 6056 md_new_event(mddev); 6057 6058 if (last_check + window > io_sectors || j == max_sectors) 6059 continue; 6060 6061 last_check = io_sectors; 6062 6063 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6064 break; 6065 6066 repeat: 6067 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 6068 /* step marks */ 6069 int next = (last_mark+1) % SYNC_MARKS; 6070 6071 mddev->resync_mark = mark[next]; 6072 mddev->resync_mark_cnt = mark_cnt[next]; 6073 mark[next] = jiffies; 6074 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 6075 last_mark = next; 6076 } 6077 6078 6079 if (kthread_should_stop()) 6080 goto interrupted; 6081 6082 6083 /* 6084 * this loop exits only if either when we are slower than 6085 * the 'hard' speed limit, or the system was IO-idle for 6086 * a jiffy. 6087 * the system might be non-idle CPU-wise, but we only care 6088 * about not overloading the IO subsystem. (things like an 6089 * e2fsck being done on the RAID array should execute fast) 6090 */ 6091 blk_unplug(mddev->queue); 6092 cond_resched(); 6093 6094 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 6095 /((jiffies-mddev->resync_mark)/HZ +1) +1; 6096 6097 if (currspeed > speed_min(mddev)) { 6098 if ((currspeed > speed_max(mddev)) || 6099 !is_mddev_idle(mddev)) { 6100 msleep(500); 6101 goto repeat; 6102 } 6103 } 6104 } 6105 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 6106 /* 6107 * this also signals 'finished resyncing' to md_stop 6108 */ 6109 out: 6110 blk_unplug(mddev->queue); 6111 6112 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 6113 6114 /* tell personality that we are finished */ 6115 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 6116 6117 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 6118 mddev->curr_resync > 2) { 6119 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6120 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6121 if (mddev->curr_resync >= mddev->recovery_cp) { 6122 printk(KERN_INFO 6123 "md: checkpointing %s of %s.\n", 6124 desc, mdname(mddev)); 6125 mddev->recovery_cp = mddev->curr_resync; 6126 } 6127 } else 6128 mddev->recovery_cp = MaxSector; 6129 } else { 6130 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6131 mddev->curr_resync = MaxSector; 6132 list_for_each_entry(rdev, &mddev->disks, same_set) 6133 if (rdev->raid_disk >= 0 && 6134 !test_bit(Faulty, &rdev->flags) && 6135 !test_bit(In_sync, &rdev->flags) && 6136 rdev->recovery_offset < mddev->curr_resync) 6137 rdev->recovery_offset = mddev->curr_resync; 6138 } 6139 } 6140 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6141 6142 skip: 6143 mddev->curr_resync = 0; 6144 mddev->resync_min = 0; 6145 mddev->resync_max = MaxSector; 6146 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6147 wake_up(&resync_wait); 6148 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 6149 md_wakeup_thread(mddev->thread); 6150 return; 6151 6152 interrupted: 6153 /* 6154 * got a signal, exit. 6155 */ 6156 printk(KERN_INFO 6157 "md: md_do_sync() got signal ... exiting\n"); 6158 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6159 goto out; 6160 6161 } 6162 EXPORT_SYMBOL_GPL(md_do_sync); 6163 6164 6165 static int remove_and_add_spares(mddev_t *mddev) 6166 { 6167 mdk_rdev_t *rdev; 6168 int spares = 0; 6169 6170 list_for_each_entry(rdev, &mddev->disks, same_set) 6171 if (rdev->raid_disk >= 0 && 6172 !test_bit(Blocked, &rdev->flags) && 6173 (test_bit(Faulty, &rdev->flags) || 6174 ! test_bit(In_sync, &rdev->flags)) && 6175 atomic_read(&rdev->nr_pending)==0) { 6176 if (mddev->pers->hot_remove_disk( 6177 mddev, rdev->raid_disk)==0) { 6178 char nm[20]; 6179 sprintf(nm,"rd%d", rdev->raid_disk); 6180 sysfs_remove_link(&mddev->kobj, nm); 6181 rdev->raid_disk = -1; 6182 } 6183 } 6184 6185 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) { 6186 list_for_each_entry(rdev, &mddev->disks, same_set) { 6187 if (rdev->raid_disk >= 0 && 6188 !test_bit(In_sync, &rdev->flags) && 6189 !test_bit(Blocked, &rdev->flags)) 6190 spares++; 6191 if (rdev->raid_disk < 0 6192 && !test_bit(Faulty, &rdev->flags)) { 6193 rdev->recovery_offset = 0; 6194 if (mddev->pers-> 6195 hot_add_disk(mddev, rdev) == 0) { 6196 char nm[20]; 6197 sprintf(nm, "rd%d", rdev->raid_disk); 6198 if (sysfs_create_link(&mddev->kobj, 6199 &rdev->kobj, nm)) 6200 printk(KERN_WARNING 6201 "md: cannot register " 6202 "%s for %s\n", 6203 nm, mdname(mddev)); 6204 spares++; 6205 md_new_event(mddev); 6206 } else 6207 break; 6208 } 6209 } 6210 } 6211 return spares; 6212 } 6213 /* 6214 * This routine is regularly called by all per-raid-array threads to 6215 * deal with generic issues like resync and super-block update. 6216 * Raid personalities that don't have a thread (linear/raid0) do not 6217 * need this as they never do any recovery or update the superblock. 6218 * 6219 * It does not do any resync itself, but rather "forks" off other threads 6220 * to do that as needed. 6221 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 6222 * "->recovery" and create a thread at ->sync_thread. 6223 * When the thread finishes it sets MD_RECOVERY_DONE 6224 * and wakeups up this thread which will reap the thread and finish up. 6225 * This thread also removes any faulty devices (with nr_pending == 0). 6226 * 6227 * The overall approach is: 6228 * 1/ if the superblock needs updating, update it. 6229 * 2/ If a recovery thread is running, don't do anything else. 6230 * 3/ If recovery has finished, clean up, possibly marking spares active. 6231 * 4/ If there are any faulty devices, remove them. 6232 * 5/ If array is degraded, try to add spares devices 6233 * 6/ If array has spares or is not in-sync, start a resync thread. 6234 */ 6235 void md_check_recovery(mddev_t *mddev) 6236 { 6237 mdk_rdev_t *rdev; 6238 6239 6240 if (mddev->bitmap) 6241 bitmap_daemon_work(mddev->bitmap); 6242 6243 if (mddev->ro) 6244 return; 6245 6246 if (signal_pending(current)) { 6247 if (mddev->pers->sync_request && !mddev->external) { 6248 printk(KERN_INFO "md: %s in immediate safe mode\n", 6249 mdname(mddev)); 6250 mddev->safemode = 2; 6251 } 6252 flush_signals(current); 6253 } 6254 6255 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 6256 return; 6257 if ( ! ( 6258 (mddev->flags && !mddev->external) || 6259 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 6260 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 6261 (mddev->external == 0 && mddev->safemode == 1) || 6262 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 6263 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 6264 )) 6265 return; 6266 6267 if (mddev_trylock(mddev)) { 6268 int spares = 0; 6269 6270 if (mddev->ro) { 6271 /* Only thing we do on a ro array is remove 6272 * failed devices. 6273 */ 6274 remove_and_add_spares(mddev); 6275 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6276 goto unlock; 6277 } 6278 6279 if (!mddev->external) { 6280 int did_change = 0; 6281 spin_lock_irq(&mddev->write_lock); 6282 if (mddev->safemode && 6283 !atomic_read(&mddev->writes_pending) && 6284 !mddev->in_sync && 6285 mddev->recovery_cp == MaxSector) { 6286 mddev->in_sync = 1; 6287 did_change = 1; 6288 if (mddev->persistent) 6289 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6290 } 6291 if (mddev->safemode == 1) 6292 mddev->safemode = 0; 6293 spin_unlock_irq(&mddev->write_lock); 6294 if (did_change) 6295 sysfs_notify_dirent(mddev->sysfs_state); 6296 } 6297 6298 if (mddev->flags) 6299 md_update_sb(mddev, 0); 6300 6301 list_for_each_entry(rdev, &mddev->disks, same_set) 6302 if (test_and_clear_bit(StateChanged, &rdev->flags)) 6303 sysfs_notify_dirent(rdev->sysfs_state); 6304 6305 6306 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 6307 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 6308 /* resync/recovery still happening */ 6309 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6310 goto unlock; 6311 } 6312 if (mddev->sync_thread) { 6313 /* resync has finished, collect result */ 6314 md_unregister_thread(mddev->sync_thread); 6315 mddev->sync_thread = NULL; 6316 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 6317 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 6318 /* success...*/ 6319 /* activate any spares */ 6320 if (mddev->pers->spare_active(mddev)) 6321 sysfs_notify(&mddev->kobj, NULL, 6322 "degraded"); 6323 } 6324 md_update_sb(mddev, 1); 6325 6326 /* if array is no-longer degraded, then any saved_raid_disk 6327 * information must be scrapped 6328 */ 6329 if (!mddev->degraded) 6330 list_for_each_entry(rdev, &mddev->disks, same_set) 6331 rdev->saved_raid_disk = -1; 6332 6333 mddev->recovery = 0; 6334 /* flag recovery needed just to double check */ 6335 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6336 sysfs_notify_dirent(mddev->sysfs_action); 6337 md_new_event(mddev); 6338 goto unlock; 6339 } 6340 /* Set RUNNING before clearing NEEDED to avoid 6341 * any transients in the value of "sync_action". 6342 */ 6343 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6344 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6345 /* Clear some bits that don't mean anything, but 6346 * might be left set 6347 */ 6348 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 6349 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 6350 6351 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 6352 goto unlock; 6353 /* no recovery is running. 6354 * remove any failed drives, then 6355 * add spares if possible. 6356 * Spare are also removed and re-added, to allow 6357 * the personality to fail the re-add. 6358 */ 6359 6360 if (mddev->reshape_position != MaxSector) { 6361 if (mddev->pers->check_reshape(mddev) != 0) 6362 /* Cannot proceed */ 6363 goto unlock; 6364 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6365 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6366 } else if ((spares = remove_and_add_spares(mddev))) { 6367 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6368 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6369 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 6370 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6371 } else if (mddev->recovery_cp < MaxSector) { 6372 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6373 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6374 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 6375 /* nothing to be done ... */ 6376 goto unlock; 6377 6378 if (mddev->pers->sync_request) { 6379 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 6380 /* We are adding a device or devices to an array 6381 * which has the bitmap stored on all devices. 6382 * So make sure all bitmap pages get written 6383 */ 6384 bitmap_write_all(mddev->bitmap); 6385 } 6386 mddev->sync_thread = md_register_thread(md_do_sync, 6387 mddev, 6388 "%s_resync"); 6389 if (!mddev->sync_thread) { 6390 printk(KERN_ERR "%s: could not start resync" 6391 " thread...\n", 6392 mdname(mddev)); 6393 /* leave the spares where they are, it shouldn't hurt */ 6394 mddev->recovery = 0; 6395 } else 6396 md_wakeup_thread(mddev->sync_thread); 6397 sysfs_notify_dirent(mddev->sysfs_action); 6398 md_new_event(mddev); 6399 } 6400 unlock: 6401 if (!mddev->sync_thread) { 6402 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6403 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 6404 &mddev->recovery)) 6405 if (mddev->sysfs_action) 6406 sysfs_notify_dirent(mddev->sysfs_action); 6407 } 6408 mddev_unlock(mddev); 6409 } 6410 } 6411 6412 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 6413 { 6414 sysfs_notify_dirent(rdev->sysfs_state); 6415 wait_event_timeout(rdev->blocked_wait, 6416 !test_bit(Blocked, &rdev->flags), 6417 msecs_to_jiffies(5000)); 6418 rdev_dec_pending(rdev, mddev); 6419 } 6420 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 6421 6422 static int md_notify_reboot(struct notifier_block *this, 6423 unsigned long code, void *x) 6424 { 6425 struct list_head *tmp; 6426 mddev_t *mddev; 6427 6428 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 6429 6430 printk(KERN_INFO "md: stopping all md devices.\n"); 6431 6432 for_each_mddev(mddev, tmp) 6433 if (mddev_trylock(mddev)) { 6434 /* Force a switch to readonly even array 6435 * appears to still be in use. Hence 6436 * the '100'. 6437 */ 6438 do_md_stop(mddev, 1, 100); 6439 mddev_unlock(mddev); 6440 } 6441 /* 6442 * certain more exotic SCSI devices are known to be 6443 * volatile wrt too early system reboots. While the 6444 * right place to handle this issue is the given 6445 * driver, we do want to have a safe RAID driver ... 6446 */ 6447 mdelay(1000*1); 6448 } 6449 return NOTIFY_DONE; 6450 } 6451 6452 static struct notifier_block md_notifier = { 6453 .notifier_call = md_notify_reboot, 6454 .next = NULL, 6455 .priority = INT_MAX, /* before any real devices */ 6456 }; 6457 6458 static void md_geninit(void) 6459 { 6460 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 6461 6462 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 6463 } 6464 6465 static int __init md_init(void) 6466 { 6467 if (register_blkdev(MAJOR_NR, "md")) 6468 return -1; 6469 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 6470 unregister_blkdev(MAJOR_NR, "md"); 6471 return -1; 6472 } 6473 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE, 6474 md_probe, NULL, NULL); 6475 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 6476 md_probe, NULL, NULL); 6477 6478 register_reboot_notifier(&md_notifier); 6479 raid_table_header = register_sysctl_table(raid_root_table); 6480 6481 md_geninit(); 6482 return 0; 6483 } 6484 6485 6486 #ifndef MODULE 6487 6488 /* 6489 * Searches all registered partitions for autorun RAID arrays 6490 * at boot time. 6491 */ 6492 6493 static LIST_HEAD(all_detected_devices); 6494 struct detected_devices_node { 6495 struct list_head list; 6496 dev_t dev; 6497 }; 6498 6499 void md_autodetect_dev(dev_t dev) 6500 { 6501 struct detected_devices_node *node_detected_dev; 6502 6503 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 6504 if (node_detected_dev) { 6505 node_detected_dev->dev = dev; 6506 list_add_tail(&node_detected_dev->list, &all_detected_devices); 6507 } else { 6508 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 6509 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 6510 } 6511 } 6512 6513 6514 static void autostart_arrays(int part) 6515 { 6516 mdk_rdev_t *rdev; 6517 struct detected_devices_node *node_detected_dev; 6518 dev_t dev; 6519 int i_scanned, i_passed; 6520 6521 i_scanned = 0; 6522 i_passed = 0; 6523 6524 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 6525 6526 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 6527 i_scanned++; 6528 node_detected_dev = list_entry(all_detected_devices.next, 6529 struct detected_devices_node, list); 6530 list_del(&node_detected_dev->list); 6531 dev = node_detected_dev->dev; 6532 kfree(node_detected_dev); 6533 rdev = md_import_device(dev,0, 90); 6534 if (IS_ERR(rdev)) 6535 continue; 6536 6537 if (test_bit(Faulty, &rdev->flags)) { 6538 MD_BUG(); 6539 continue; 6540 } 6541 set_bit(AutoDetected, &rdev->flags); 6542 list_add(&rdev->same_set, &pending_raid_disks); 6543 i_passed++; 6544 } 6545 6546 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 6547 i_scanned, i_passed); 6548 6549 autorun_devices(part); 6550 } 6551 6552 #endif /* !MODULE */ 6553 6554 static __exit void md_exit(void) 6555 { 6556 mddev_t *mddev; 6557 struct list_head *tmp; 6558 6559 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS); 6560 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 6561 6562 unregister_blkdev(MAJOR_NR,"md"); 6563 unregister_blkdev(mdp_major, "mdp"); 6564 unregister_reboot_notifier(&md_notifier); 6565 unregister_sysctl_table(raid_table_header); 6566 remove_proc_entry("mdstat", NULL); 6567 for_each_mddev(mddev, tmp) { 6568 export_array(mddev); 6569 mddev->hold_active = 0; 6570 } 6571 } 6572 6573 subsys_initcall(md_init); 6574 module_exit(md_exit) 6575 6576 static int get_ro(char *buffer, struct kernel_param *kp) 6577 { 6578 return sprintf(buffer, "%d", start_readonly); 6579 } 6580 static int set_ro(const char *val, struct kernel_param *kp) 6581 { 6582 char *e; 6583 int num = simple_strtoul(val, &e, 10); 6584 if (*val && (*e == '\0' || *e == '\n')) { 6585 start_readonly = num; 6586 return 0; 6587 } 6588 return -EINVAL; 6589 } 6590 6591 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 6592 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 6593 6594 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 6595 6596 EXPORT_SYMBOL(register_md_personality); 6597 EXPORT_SYMBOL(unregister_md_personality); 6598 EXPORT_SYMBOL(md_error); 6599 EXPORT_SYMBOL(md_done_sync); 6600 EXPORT_SYMBOL(md_write_start); 6601 EXPORT_SYMBOL(md_write_end); 6602 EXPORT_SYMBOL(md_register_thread); 6603 EXPORT_SYMBOL(md_unregister_thread); 6604 EXPORT_SYMBOL(md_wakeup_thread); 6605 EXPORT_SYMBOL(md_check_recovery); 6606 MODULE_LICENSE("GPL"); 6607 MODULE_ALIAS("md"); 6608 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 6609