1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/kthread.h> 37 #include <linux/linkage.h> 38 #include <linux/raid/md.h> 39 #include <linux/raid/bitmap.h> 40 #include <linux/sysctl.h> 41 #include <linux/buffer_head.h> /* for invalidate_bdev */ 42 #include <linux/poll.h> 43 #include <linux/mutex.h> 44 #include <linux/ctype.h> 45 #include <linux/freezer.h> 46 47 #include <linux/init.h> 48 49 #include <linux/file.h> 50 51 #ifdef CONFIG_KMOD 52 #include <linux/kmod.h> 53 #endif 54 55 #include <asm/unaligned.h> 56 57 #define MAJOR_NR MD_MAJOR 58 #define MD_DRIVER 59 60 /* 63 partitions with the alternate major number (mdp) */ 61 #define MdpMinorShift 6 62 63 #define DEBUG 0 64 #define dprintk(x...) ((void)(DEBUG && printk(x))) 65 66 67 #ifndef MODULE 68 static void autostart_arrays (int part); 69 #endif 70 71 static LIST_HEAD(pers_list); 72 static DEFINE_SPINLOCK(pers_lock); 73 74 static void md_print_devices(void); 75 76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 77 78 /* 79 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 80 * is 1000 KB/sec, so the extra system load does not show up that much. 81 * Increase it if you want to have more _guaranteed_ speed. Note that 82 * the RAID driver will use the maximum available bandwidth if the IO 83 * subsystem is idle. There is also an 'absolute maximum' reconstruction 84 * speed limit - in case reconstruction slows down your system despite 85 * idle IO detection. 86 * 87 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 88 * or /sys/block/mdX/md/sync_speed_{min,max} 89 */ 90 91 static int sysctl_speed_limit_min = 1000; 92 static int sysctl_speed_limit_max = 200000; 93 static inline int speed_min(mddev_t *mddev) 94 { 95 return mddev->sync_speed_min ? 96 mddev->sync_speed_min : sysctl_speed_limit_min; 97 } 98 99 static inline int speed_max(mddev_t *mddev) 100 { 101 return mddev->sync_speed_max ? 102 mddev->sync_speed_max : sysctl_speed_limit_max; 103 } 104 105 static struct ctl_table_header *raid_table_header; 106 107 static ctl_table raid_table[] = { 108 { 109 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN, 110 .procname = "speed_limit_min", 111 .data = &sysctl_speed_limit_min, 112 .maxlen = sizeof(int), 113 .mode = S_IRUGO|S_IWUSR, 114 .proc_handler = &proc_dointvec, 115 }, 116 { 117 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX, 118 .procname = "speed_limit_max", 119 .data = &sysctl_speed_limit_max, 120 .maxlen = sizeof(int), 121 .mode = S_IRUGO|S_IWUSR, 122 .proc_handler = &proc_dointvec, 123 }, 124 { .ctl_name = 0 } 125 }; 126 127 static ctl_table raid_dir_table[] = { 128 { 129 .ctl_name = DEV_RAID, 130 .procname = "raid", 131 .maxlen = 0, 132 .mode = S_IRUGO|S_IXUGO, 133 .child = raid_table, 134 }, 135 { .ctl_name = 0 } 136 }; 137 138 static ctl_table raid_root_table[] = { 139 { 140 .ctl_name = CTL_DEV, 141 .procname = "dev", 142 .maxlen = 0, 143 .mode = 0555, 144 .child = raid_dir_table, 145 }, 146 { .ctl_name = 0 } 147 }; 148 149 static struct block_device_operations md_fops; 150 151 static int start_readonly; 152 153 /* 154 * We have a system wide 'event count' that is incremented 155 * on any 'interesting' event, and readers of /proc/mdstat 156 * can use 'poll' or 'select' to find out when the event 157 * count increases. 158 * 159 * Events are: 160 * start array, stop array, error, add device, remove device, 161 * start build, activate spare 162 */ 163 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 164 static atomic_t md_event_count; 165 void md_new_event(mddev_t *mddev) 166 { 167 atomic_inc(&md_event_count); 168 wake_up(&md_event_waiters); 169 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 170 } 171 EXPORT_SYMBOL_GPL(md_new_event); 172 173 /* Alternate version that can be called from interrupts 174 * when calling sysfs_notify isn't needed. 175 */ 176 static void md_new_event_inintr(mddev_t *mddev) 177 { 178 atomic_inc(&md_event_count); 179 wake_up(&md_event_waiters); 180 } 181 182 /* 183 * Enables to iterate over all existing md arrays 184 * all_mddevs_lock protects this list. 185 */ 186 static LIST_HEAD(all_mddevs); 187 static DEFINE_SPINLOCK(all_mddevs_lock); 188 189 190 /* 191 * iterates through all used mddevs in the system. 192 * We take care to grab the all_mddevs_lock whenever navigating 193 * the list, and to always hold a refcount when unlocked. 194 * Any code which breaks out of this loop while own 195 * a reference to the current mddev and must mddev_put it. 196 */ 197 #define ITERATE_MDDEV(mddev,tmp) \ 198 \ 199 for (({ spin_lock(&all_mddevs_lock); \ 200 tmp = all_mddevs.next; \ 201 mddev = NULL;}); \ 202 ({ if (tmp != &all_mddevs) \ 203 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 204 spin_unlock(&all_mddevs_lock); \ 205 if (mddev) mddev_put(mddev); \ 206 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 207 tmp != &all_mddevs;}); \ 208 ({ spin_lock(&all_mddevs_lock); \ 209 tmp = tmp->next;}) \ 210 ) 211 212 213 static int md_fail_request (request_queue_t *q, struct bio *bio) 214 { 215 bio_io_error(bio, bio->bi_size); 216 return 0; 217 } 218 219 static inline mddev_t *mddev_get(mddev_t *mddev) 220 { 221 atomic_inc(&mddev->active); 222 return mddev; 223 } 224 225 static void mddev_put(mddev_t *mddev) 226 { 227 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 228 return; 229 if (!mddev->raid_disks && list_empty(&mddev->disks)) { 230 list_del(&mddev->all_mddevs); 231 spin_unlock(&all_mddevs_lock); 232 blk_cleanup_queue(mddev->queue); 233 kobject_unregister(&mddev->kobj); 234 } else 235 spin_unlock(&all_mddevs_lock); 236 } 237 238 static mddev_t * mddev_find(dev_t unit) 239 { 240 mddev_t *mddev, *new = NULL; 241 242 retry: 243 spin_lock(&all_mddevs_lock); 244 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 245 if (mddev->unit == unit) { 246 mddev_get(mddev); 247 spin_unlock(&all_mddevs_lock); 248 kfree(new); 249 return mddev; 250 } 251 252 if (new) { 253 list_add(&new->all_mddevs, &all_mddevs); 254 spin_unlock(&all_mddevs_lock); 255 return new; 256 } 257 spin_unlock(&all_mddevs_lock); 258 259 new = kzalloc(sizeof(*new), GFP_KERNEL); 260 if (!new) 261 return NULL; 262 263 new->unit = unit; 264 if (MAJOR(unit) == MD_MAJOR) 265 new->md_minor = MINOR(unit); 266 else 267 new->md_minor = MINOR(unit) >> MdpMinorShift; 268 269 mutex_init(&new->reconfig_mutex); 270 INIT_LIST_HEAD(&new->disks); 271 INIT_LIST_HEAD(&new->all_mddevs); 272 init_timer(&new->safemode_timer); 273 atomic_set(&new->active, 1); 274 spin_lock_init(&new->write_lock); 275 init_waitqueue_head(&new->sb_wait); 276 277 new->queue = blk_alloc_queue(GFP_KERNEL); 278 if (!new->queue) { 279 kfree(new); 280 return NULL; 281 } 282 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags); 283 284 blk_queue_make_request(new->queue, md_fail_request); 285 286 goto retry; 287 } 288 289 static inline int mddev_lock(mddev_t * mddev) 290 { 291 return mutex_lock_interruptible(&mddev->reconfig_mutex); 292 } 293 294 static inline int mddev_trylock(mddev_t * mddev) 295 { 296 return mutex_trylock(&mddev->reconfig_mutex); 297 } 298 299 static inline void mddev_unlock(mddev_t * mddev) 300 { 301 mutex_unlock(&mddev->reconfig_mutex); 302 303 md_wakeup_thread(mddev->thread); 304 } 305 306 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 307 { 308 mdk_rdev_t * rdev; 309 struct list_head *tmp; 310 311 ITERATE_RDEV(mddev,rdev,tmp) { 312 if (rdev->desc_nr == nr) 313 return rdev; 314 } 315 return NULL; 316 } 317 318 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 319 { 320 struct list_head *tmp; 321 mdk_rdev_t *rdev; 322 323 ITERATE_RDEV(mddev,rdev,tmp) { 324 if (rdev->bdev->bd_dev == dev) 325 return rdev; 326 } 327 return NULL; 328 } 329 330 static struct mdk_personality *find_pers(int level, char *clevel) 331 { 332 struct mdk_personality *pers; 333 list_for_each_entry(pers, &pers_list, list) { 334 if (level != LEVEL_NONE && pers->level == level) 335 return pers; 336 if (strcmp(pers->name, clevel)==0) 337 return pers; 338 } 339 return NULL; 340 } 341 342 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 343 { 344 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 345 return MD_NEW_SIZE_BLOCKS(size); 346 } 347 348 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size) 349 { 350 sector_t size; 351 352 size = rdev->sb_offset; 353 354 if (chunk_size) 355 size &= ~((sector_t)chunk_size/1024 - 1); 356 return size; 357 } 358 359 static int alloc_disk_sb(mdk_rdev_t * rdev) 360 { 361 if (rdev->sb_page) 362 MD_BUG(); 363 364 rdev->sb_page = alloc_page(GFP_KERNEL); 365 if (!rdev->sb_page) { 366 printk(KERN_ALERT "md: out of memory.\n"); 367 return -EINVAL; 368 } 369 370 return 0; 371 } 372 373 static void free_disk_sb(mdk_rdev_t * rdev) 374 { 375 if (rdev->sb_page) { 376 put_page(rdev->sb_page); 377 rdev->sb_loaded = 0; 378 rdev->sb_page = NULL; 379 rdev->sb_offset = 0; 380 rdev->size = 0; 381 } 382 } 383 384 385 static int super_written(struct bio *bio, unsigned int bytes_done, int error) 386 { 387 mdk_rdev_t *rdev = bio->bi_private; 388 mddev_t *mddev = rdev->mddev; 389 if (bio->bi_size) 390 return 1; 391 392 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 393 printk("md: super_written gets error=%d, uptodate=%d\n", 394 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 395 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 396 md_error(mddev, rdev); 397 } 398 399 if (atomic_dec_and_test(&mddev->pending_writes)) 400 wake_up(&mddev->sb_wait); 401 bio_put(bio); 402 return 0; 403 } 404 405 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error) 406 { 407 struct bio *bio2 = bio->bi_private; 408 mdk_rdev_t *rdev = bio2->bi_private; 409 mddev_t *mddev = rdev->mddev; 410 if (bio->bi_size) 411 return 1; 412 413 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 414 error == -EOPNOTSUPP) { 415 unsigned long flags; 416 /* barriers don't appear to be supported :-( */ 417 set_bit(BarriersNotsupp, &rdev->flags); 418 mddev->barriers_work = 0; 419 spin_lock_irqsave(&mddev->write_lock, flags); 420 bio2->bi_next = mddev->biolist; 421 mddev->biolist = bio2; 422 spin_unlock_irqrestore(&mddev->write_lock, flags); 423 wake_up(&mddev->sb_wait); 424 bio_put(bio); 425 return 0; 426 } 427 bio_put(bio2); 428 bio->bi_private = rdev; 429 return super_written(bio, bytes_done, error); 430 } 431 432 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 433 sector_t sector, int size, struct page *page) 434 { 435 /* write first size bytes of page to sector of rdev 436 * Increment mddev->pending_writes before returning 437 * and decrement it on completion, waking up sb_wait 438 * if zero is reached. 439 * If an error occurred, call md_error 440 * 441 * As we might need to resubmit the request if BIO_RW_BARRIER 442 * causes ENOTSUPP, we allocate a spare bio... 443 */ 444 struct bio *bio = bio_alloc(GFP_NOIO, 1); 445 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC); 446 447 bio->bi_bdev = rdev->bdev; 448 bio->bi_sector = sector; 449 bio_add_page(bio, page, size, 0); 450 bio->bi_private = rdev; 451 bio->bi_end_io = super_written; 452 bio->bi_rw = rw; 453 454 atomic_inc(&mddev->pending_writes); 455 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 456 struct bio *rbio; 457 rw |= (1<<BIO_RW_BARRIER); 458 rbio = bio_clone(bio, GFP_NOIO); 459 rbio->bi_private = bio; 460 rbio->bi_end_io = super_written_barrier; 461 submit_bio(rw, rbio); 462 } else 463 submit_bio(rw, bio); 464 } 465 466 void md_super_wait(mddev_t *mddev) 467 { 468 /* wait for all superblock writes that were scheduled to complete. 469 * if any had to be retried (due to BARRIER problems), retry them 470 */ 471 DEFINE_WAIT(wq); 472 for(;;) { 473 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 474 if (atomic_read(&mddev->pending_writes)==0) 475 break; 476 while (mddev->biolist) { 477 struct bio *bio; 478 spin_lock_irq(&mddev->write_lock); 479 bio = mddev->biolist; 480 mddev->biolist = bio->bi_next ; 481 bio->bi_next = NULL; 482 spin_unlock_irq(&mddev->write_lock); 483 submit_bio(bio->bi_rw, bio); 484 } 485 schedule(); 486 } 487 finish_wait(&mddev->sb_wait, &wq); 488 } 489 490 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error) 491 { 492 if (bio->bi_size) 493 return 1; 494 495 complete((struct completion*)bio->bi_private); 496 return 0; 497 } 498 499 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 500 struct page *page, int rw) 501 { 502 struct bio *bio = bio_alloc(GFP_NOIO, 1); 503 struct completion event; 504 int ret; 505 506 rw |= (1 << BIO_RW_SYNC); 507 508 bio->bi_bdev = bdev; 509 bio->bi_sector = sector; 510 bio_add_page(bio, page, size, 0); 511 init_completion(&event); 512 bio->bi_private = &event; 513 bio->bi_end_io = bi_complete; 514 submit_bio(rw, bio); 515 wait_for_completion(&event); 516 517 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 518 bio_put(bio); 519 return ret; 520 } 521 EXPORT_SYMBOL_GPL(sync_page_io); 522 523 static int read_disk_sb(mdk_rdev_t * rdev, int size) 524 { 525 char b[BDEVNAME_SIZE]; 526 if (!rdev->sb_page) { 527 MD_BUG(); 528 return -EINVAL; 529 } 530 if (rdev->sb_loaded) 531 return 0; 532 533 534 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ)) 535 goto fail; 536 rdev->sb_loaded = 1; 537 return 0; 538 539 fail: 540 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 541 bdevname(rdev->bdev,b)); 542 return -EINVAL; 543 } 544 545 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 546 { 547 if ( (sb1->set_uuid0 == sb2->set_uuid0) && 548 (sb1->set_uuid1 == sb2->set_uuid1) && 549 (sb1->set_uuid2 == sb2->set_uuid2) && 550 (sb1->set_uuid3 == sb2->set_uuid3)) 551 552 return 1; 553 554 return 0; 555 } 556 557 558 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 559 { 560 int ret; 561 mdp_super_t *tmp1, *tmp2; 562 563 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 564 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 565 566 if (!tmp1 || !tmp2) { 567 ret = 0; 568 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n"); 569 goto abort; 570 } 571 572 *tmp1 = *sb1; 573 *tmp2 = *sb2; 574 575 /* 576 * nr_disks is not constant 577 */ 578 tmp1->nr_disks = 0; 579 tmp2->nr_disks = 0; 580 581 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4)) 582 ret = 0; 583 else 584 ret = 1; 585 586 abort: 587 kfree(tmp1); 588 kfree(tmp2); 589 return ret; 590 } 591 592 static unsigned int calc_sb_csum(mdp_super_t * sb) 593 { 594 unsigned int disk_csum, csum; 595 596 disk_csum = sb->sb_csum; 597 sb->sb_csum = 0; 598 csum = csum_partial((void *)sb, MD_SB_BYTES, 0); 599 sb->sb_csum = disk_csum; 600 return csum; 601 } 602 603 604 /* 605 * Handle superblock details. 606 * We want to be able to handle multiple superblock formats 607 * so we have a common interface to them all, and an array of 608 * different handlers. 609 * We rely on user-space to write the initial superblock, and support 610 * reading and updating of superblocks. 611 * Interface methods are: 612 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 613 * loads and validates a superblock on dev. 614 * if refdev != NULL, compare superblocks on both devices 615 * Return: 616 * 0 - dev has a superblock that is compatible with refdev 617 * 1 - dev has a superblock that is compatible and newer than refdev 618 * so dev should be used as the refdev in future 619 * -EINVAL superblock incompatible or invalid 620 * -othererror e.g. -EIO 621 * 622 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 623 * Verify that dev is acceptable into mddev. 624 * The first time, mddev->raid_disks will be 0, and data from 625 * dev should be merged in. Subsequent calls check that dev 626 * is new enough. Return 0 or -EINVAL 627 * 628 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 629 * Update the superblock for rdev with data in mddev 630 * This does not write to disc. 631 * 632 */ 633 634 struct super_type { 635 char *name; 636 struct module *owner; 637 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version); 638 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 639 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 640 }; 641 642 /* 643 * load_super for 0.90.0 644 */ 645 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 646 { 647 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 648 mdp_super_t *sb; 649 int ret; 650 sector_t sb_offset; 651 652 /* 653 * Calculate the position of the superblock, 654 * it's at the end of the disk. 655 * 656 * It also happens to be a multiple of 4Kb. 657 */ 658 sb_offset = calc_dev_sboffset(rdev->bdev); 659 rdev->sb_offset = sb_offset; 660 661 ret = read_disk_sb(rdev, MD_SB_BYTES); 662 if (ret) return ret; 663 664 ret = -EINVAL; 665 666 bdevname(rdev->bdev, b); 667 sb = (mdp_super_t*)page_address(rdev->sb_page); 668 669 if (sb->md_magic != MD_SB_MAGIC) { 670 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 671 b); 672 goto abort; 673 } 674 675 if (sb->major_version != 0 || 676 sb->minor_version < 90 || 677 sb->minor_version > 91) { 678 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 679 sb->major_version, sb->minor_version, 680 b); 681 goto abort; 682 } 683 684 if (sb->raid_disks <= 0) 685 goto abort; 686 687 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) { 688 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 689 b); 690 goto abort; 691 } 692 693 rdev->preferred_minor = sb->md_minor; 694 rdev->data_offset = 0; 695 rdev->sb_size = MD_SB_BYTES; 696 697 if (sb->level == LEVEL_MULTIPATH) 698 rdev->desc_nr = -1; 699 else 700 rdev->desc_nr = sb->this_disk.number; 701 702 if (refdev == 0) 703 ret = 1; 704 else { 705 __u64 ev1, ev2; 706 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 707 if (!uuid_equal(refsb, sb)) { 708 printk(KERN_WARNING "md: %s has different UUID to %s\n", 709 b, bdevname(refdev->bdev,b2)); 710 goto abort; 711 } 712 if (!sb_equal(refsb, sb)) { 713 printk(KERN_WARNING "md: %s has same UUID" 714 " but different superblock to %s\n", 715 b, bdevname(refdev->bdev, b2)); 716 goto abort; 717 } 718 ev1 = md_event(sb); 719 ev2 = md_event(refsb); 720 if (ev1 > ev2) 721 ret = 1; 722 else 723 ret = 0; 724 } 725 rdev->size = calc_dev_size(rdev, sb->chunk_size); 726 727 if (rdev->size < sb->size && sb->level > 1) 728 /* "this cannot possibly happen" ... */ 729 ret = -EINVAL; 730 731 abort: 732 return ret; 733 } 734 735 /* 736 * validate_super for 0.90.0 737 */ 738 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 739 { 740 mdp_disk_t *desc; 741 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 742 __u64 ev1 = md_event(sb); 743 744 rdev->raid_disk = -1; 745 rdev->flags = 0; 746 if (mddev->raid_disks == 0) { 747 mddev->major_version = 0; 748 mddev->minor_version = sb->minor_version; 749 mddev->patch_version = sb->patch_version; 750 mddev->persistent = ! sb->not_persistent; 751 mddev->chunk_size = sb->chunk_size; 752 mddev->ctime = sb->ctime; 753 mddev->utime = sb->utime; 754 mddev->level = sb->level; 755 mddev->clevel[0] = 0; 756 mddev->layout = sb->layout; 757 mddev->raid_disks = sb->raid_disks; 758 mddev->size = sb->size; 759 mddev->events = ev1; 760 mddev->bitmap_offset = 0; 761 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 762 763 if (mddev->minor_version >= 91) { 764 mddev->reshape_position = sb->reshape_position; 765 mddev->delta_disks = sb->delta_disks; 766 mddev->new_level = sb->new_level; 767 mddev->new_layout = sb->new_layout; 768 mddev->new_chunk = sb->new_chunk; 769 } else { 770 mddev->reshape_position = MaxSector; 771 mddev->delta_disks = 0; 772 mddev->new_level = mddev->level; 773 mddev->new_layout = mddev->layout; 774 mddev->new_chunk = mddev->chunk_size; 775 } 776 777 if (sb->state & (1<<MD_SB_CLEAN)) 778 mddev->recovery_cp = MaxSector; 779 else { 780 if (sb->events_hi == sb->cp_events_hi && 781 sb->events_lo == sb->cp_events_lo) { 782 mddev->recovery_cp = sb->recovery_cp; 783 } else 784 mddev->recovery_cp = 0; 785 } 786 787 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 788 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 789 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 790 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 791 792 mddev->max_disks = MD_SB_DISKS; 793 794 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 795 mddev->bitmap_file == NULL) { 796 if (mddev->level != 1 && mddev->level != 4 797 && mddev->level != 5 && mddev->level != 6 798 && mddev->level != 10) { 799 /* FIXME use a better test */ 800 printk(KERN_WARNING "md: bitmaps not supported for this level.\n"); 801 return -EINVAL; 802 } 803 mddev->bitmap_offset = mddev->default_bitmap_offset; 804 } 805 806 } else if (mddev->pers == NULL) { 807 /* Insist on good event counter while assembling */ 808 ++ev1; 809 if (ev1 < mddev->events) 810 return -EINVAL; 811 } else if (mddev->bitmap) { 812 /* if adding to array with a bitmap, then we can accept an 813 * older device ... but not too old. 814 */ 815 if (ev1 < mddev->bitmap->events_cleared) 816 return 0; 817 } else { 818 if (ev1 < mddev->events) 819 /* just a hot-add of a new device, leave raid_disk at -1 */ 820 return 0; 821 } 822 823 if (mddev->level != LEVEL_MULTIPATH) { 824 desc = sb->disks + rdev->desc_nr; 825 826 if (desc->state & (1<<MD_DISK_FAULTY)) 827 set_bit(Faulty, &rdev->flags); 828 else if (desc->state & (1<<MD_DISK_SYNC) /* && 829 desc->raid_disk < mddev->raid_disks */) { 830 set_bit(In_sync, &rdev->flags); 831 rdev->raid_disk = desc->raid_disk; 832 } 833 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 834 set_bit(WriteMostly, &rdev->flags); 835 } else /* MULTIPATH are always insync */ 836 set_bit(In_sync, &rdev->flags); 837 return 0; 838 } 839 840 /* 841 * sync_super for 0.90.0 842 */ 843 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 844 { 845 mdp_super_t *sb; 846 struct list_head *tmp; 847 mdk_rdev_t *rdev2; 848 int next_spare = mddev->raid_disks; 849 850 851 /* make rdev->sb match mddev data.. 852 * 853 * 1/ zero out disks 854 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 855 * 3/ any empty disks < next_spare become removed 856 * 857 * disks[0] gets initialised to REMOVED because 858 * we cannot be sure from other fields if it has 859 * been initialised or not. 860 */ 861 int i; 862 int active=0, working=0,failed=0,spare=0,nr_disks=0; 863 864 rdev->sb_size = MD_SB_BYTES; 865 866 sb = (mdp_super_t*)page_address(rdev->sb_page); 867 868 memset(sb, 0, sizeof(*sb)); 869 870 sb->md_magic = MD_SB_MAGIC; 871 sb->major_version = mddev->major_version; 872 sb->patch_version = mddev->patch_version; 873 sb->gvalid_words = 0; /* ignored */ 874 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 875 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 876 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 877 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 878 879 sb->ctime = mddev->ctime; 880 sb->level = mddev->level; 881 sb->size = mddev->size; 882 sb->raid_disks = mddev->raid_disks; 883 sb->md_minor = mddev->md_minor; 884 sb->not_persistent = !mddev->persistent; 885 sb->utime = mddev->utime; 886 sb->state = 0; 887 sb->events_hi = (mddev->events>>32); 888 sb->events_lo = (u32)mddev->events; 889 890 if (mddev->reshape_position == MaxSector) 891 sb->minor_version = 90; 892 else { 893 sb->minor_version = 91; 894 sb->reshape_position = mddev->reshape_position; 895 sb->new_level = mddev->new_level; 896 sb->delta_disks = mddev->delta_disks; 897 sb->new_layout = mddev->new_layout; 898 sb->new_chunk = mddev->new_chunk; 899 } 900 mddev->minor_version = sb->minor_version; 901 if (mddev->in_sync) 902 { 903 sb->recovery_cp = mddev->recovery_cp; 904 sb->cp_events_hi = (mddev->events>>32); 905 sb->cp_events_lo = (u32)mddev->events; 906 if (mddev->recovery_cp == MaxSector) 907 sb->state = (1<< MD_SB_CLEAN); 908 } else 909 sb->recovery_cp = 0; 910 911 sb->layout = mddev->layout; 912 sb->chunk_size = mddev->chunk_size; 913 914 if (mddev->bitmap && mddev->bitmap_file == NULL) 915 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 916 917 sb->disks[0].state = (1<<MD_DISK_REMOVED); 918 ITERATE_RDEV(mddev,rdev2,tmp) { 919 mdp_disk_t *d; 920 int desc_nr; 921 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 922 && !test_bit(Faulty, &rdev2->flags)) 923 desc_nr = rdev2->raid_disk; 924 else 925 desc_nr = next_spare++; 926 rdev2->desc_nr = desc_nr; 927 d = &sb->disks[rdev2->desc_nr]; 928 nr_disks++; 929 d->number = rdev2->desc_nr; 930 d->major = MAJOR(rdev2->bdev->bd_dev); 931 d->minor = MINOR(rdev2->bdev->bd_dev); 932 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 933 && !test_bit(Faulty, &rdev2->flags)) 934 d->raid_disk = rdev2->raid_disk; 935 else 936 d->raid_disk = rdev2->desc_nr; /* compatibility */ 937 if (test_bit(Faulty, &rdev2->flags)) 938 d->state = (1<<MD_DISK_FAULTY); 939 else if (test_bit(In_sync, &rdev2->flags)) { 940 d->state = (1<<MD_DISK_ACTIVE); 941 d->state |= (1<<MD_DISK_SYNC); 942 active++; 943 working++; 944 } else { 945 d->state = 0; 946 spare++; 947 working++; 948 } 949 if (test_bit(WriteMostly, &rdev2->flags)) 950 d->state |= (1<<MD_DISK_WRITEMOSTLY); 951 } 952 /* now set the "removed" and "faulty" bits on any missing devices */ 953 for (i=0 ; i < mddev->raid_disks ; i++) { 954 mdp_disk_t *d = &sb->disks[i]; 955 if (d->state == 0 && d->number == 0) { 956 d->number = i; 957 d->raid_disk = i; 958 d->state = (1<<MD_DISK_REMOVED); 959 d->state |= (1<<MD_DISK_FAULTY); 960 failed++; 961 } 962 } 963 sb->nr_disks = nr_disks; 964 sb->active_disks = active; 965 sb->working_disks = working; 966 sb->failed_disks = failed; 967 sb->spare_disks = spare; 968 969 sb->this_disk = sb->disks[rdev->desc_nr]; 970 sb->sb_csum = calc_sb_csum(sb); 971 } 972 973 /* 974 * version 1 superblock 975 */ 976 977 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 978 { 979 __le32 disk_csum; 980 u32 csum; 981 unsigned long long newcsum; 982 int size = 256 + le32_to_cpu(sb->max_dev)*2; 983 __le32 *isuper = (__le32*)sb; 984 int i; 985 986 disk_csum = sb->sb_csum; 987 sb->sb_csum = 0; 988 newcsum = 0; 989 for (i=0; size>=4; size -= 4 ) 990 newcsum += le32_to_cpu(*isuper++); 991 992 if (size == 2) 993 newcsum += le16_to_cpu(*(__le16*) isuper); 994 995 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 996 sb->sb_csum = disk_csum; 997 return cpu_to_le32(csum); 998 } 999 1000 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1001 { 1002 struct mdp_superblock_1 *sb; 1003 int ret; 1004 sector_t sb_offset; 1005 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1006 int bmask; 1007 1008 /* 1009 * Calculate the position of the superblock. 1010 * It is always aligned to a 4K boundary and 1011 * depeding on minor_version, it can be: 1012 * 0: At least 8K, but less than 12K, from end of device 1013 * 1: At start of device 1014 * 2: 4K from start of device. 1015 */ 1016 switch(minor_version) { 1017 case 0: 1018 sb_offset = rdev->bdev->bd_inode->i_size >> 9; 1019 sb_offset -= 8*2; 1020 sb_offset &= ~(sector_t)(4*2-1); 1021 /* convert from sectors to K */ 1022 sb_offset /= 2; 1023 break; 1024 case 1: 1025 sb_offset = 0; 1026 break; 1027 case 2: 1028 sb_offset = 4; 1029 break; 1030 default: 1031 return -EINVAL; 1032 } 1033 rdev->sb_offset = sb_offset; 1034 1035 /* superblock is rarely larger than 1K, but it can be larger, 1036 * and it is safe to read 4k, so we do that 1037 */ 1038 ret = read_disk_sb(rdev, 4096); 1039 if (ret) return ret; 1040 1041 1042 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1043 1044 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1045 sb->major_version != cpu_to_le32(1) || 1046 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1047 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) || 1048 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1049 return -EINVAL; 1050 1051 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1052 printk("md: invalid superblock checksum on %s\n", 1053 bdevname(rdev->bdev,b)); 1054 return -EINVAL; 1055 } 1056 if (le64_to_cpu(sb->data_size) < 10) { 1057 printk("md: data_size too small on %s\n", 1058 bdevname(rdev->bdev,b)); 1059 return -EINVAL; 1060 } 1061 rdev->preferred_minor = 0xffff; 1062 rdev->data_offset = le64_to_cpu(sb->data_offset); 1063 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1064 1065 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1066 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1; 1067 if (rdev->sb_size & bmask) 1068 rdev-> sb_size = (rdev->sb_size | bmask)+1; 1069 1070 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1071 rdev->desc_nr = -1; 1072 else 1073 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1074 1075 if (refdev == 0) 1076 ret = 1; 1077 else { 1078 __u64 ev1, ev2; 1079 struct mdp_superblock_1 *refsb = 1080 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1081 1082 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1083 sb->level != refsb->level || 1084 sb->layout != refsb->layout || 1085 sb->chunksize != refsb->chunksize) { 1086 printk(KERN_WARNING "md: %s has strangely different" 1087 " superblock to %s\n", 1088 bdevname(rdev->bdev,b), 1089 bdevname(refdev->bdev,b2)); 1090 return -EINVAL; 1091 } 1092 ev1 = le64_to_cpu(sb->events); 1093 ev2 = le64_to_cpu(refsb->events); 1094 1095 if (ev1 > ev2) 1096 ret = 1; 1097 else 1098 ret = 0; 1099 } 1100 if (minor_version) 1101 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2; 1102 else 1103 rdev->size = rdev->sb_offset; 1104 if (rdev->size < le64_to_cpu(sb->data_size)/2) 1105 return -EINVAL; 1106 rdev->size = le64_to_cpu(sb->data_size)/2; 1107 if (le32_to_cpu(sb->chunksize)) 1108 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1); 1109 1110 if (le64_to_cpu(sb->size) > rdev->size*2) 1111 return -EINVAL; 1112 return ret; 1113 } 1114 1115 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1116 { 1117 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1118 __u64 ev1 = le64_to_cpu(sb->events); 1119 1120 rdev->raid_disk = -1; 1121 rdev->flags = 0; 1122 if (mddev->raid_disks == 0) { 1123 mddev->major_version = 1; 1124 mddev->patch_version = 0; 1125 mddev->persistent = 1; 1126 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9; 1127 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1128 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1129 mddev->level = le32_to_cpu(sb->level); 1130 mddev->clevel[0] = 0; 1131 mddev->layout = le32_to_cpu(sb->layout); 1132 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1133 mddev->size = le64_to_cpu(sb->size)/2; 1134 mddev->events = ev1; 1135 mddev->bitmap_offset = 0; 1136 mddev->default_bitmap_offset = 1024 >> 9; 1137 1138 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1139 memcpy(mddev->uuid, sb->set_uuid, 16); 1140 1141 mddev->max_disks = (4096-256)/2; 1142 1143 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1144 mddev->bitmap_file == NULL ) { 1145 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6 1146 && mddev->level != 10) { 1147 printk(KERN_WARNING "md: bitmaps not supported for this level.\n"); 1148 return -EINVAL; 1149 } 1150 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset); 1151 } 1152 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1153 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1154 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1155 mddev->new_level = le32_to_cpu(sb->new_level); 1156 mddev->new_layout = le32_to_cpu(sb->new_layout); 1157 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9; 1158 } else { 1159 mddev->reshape_position = MaxSector; 1160 mddev->delta_disks = 0; 1161 mddev->new_level = mddev->level; 1162 mddev->new_layout = mddev->layout; 1163 mddev->new_chunk = mddev->chunk_size; 1164 } 1165 1166 } else if (mddev->pers == NULL) { 1167 /* Insist of good event counter while assembling */ 1168 ++ev1; 1169 if (ev1 < mddev->events) 1170 return -EINVAL; 1171 } else if (mddev->bitmap) { 1172 /* If adding to array with a bitmap, then we can accept an 1173 * older device, but not too old. 1174 */ 1175 if (ev1 < mddev->bitmap->events_cleared) 1176 return 0; 1177 } else { 1178 if (ev1 < mddev->events) 1179 /* just a hot-add of a new device, leave raid_disk at -1 */ 1180 return 0; 1181 } 1182 if (mddev->level != LEVEL_MULTIPATH) { 1183 int role; 1184 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1185 switch(role) { 1186 case 0xffff: /* spare */ 1187 break; 1188 case 0xfffe: /* faulty */ 1189 set_bit(Faulty, &rdev->flags); 1190 break; 1191 default: 1192 if ((le32_to_cpu(sb->feature_map) & 1193 MD_FEATURE_RECOVERY_OFFSET)) 1194 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1195 else 1196 set_bit(In_sync, &rdev->flags); 1197 rdev->raid_disk = role; 1198 break; 1199 } 1200 if (sb->devflags & WriteMostly1) 1201 set_bit(WriteMostly, &rdev->flags); 1202 } else /* MULTIPATH are always insync */ 1203 set_bit(In_sync, &rdev->flags); 1204 1205 return 0; 1206 } 1207 1208 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1209 { 1210 struct mdp_superblock_1 *sb; 1211 struct list_head *tmp; 1212 mdk_rdev_t *rdev2; 1213 int max_dev, i; 1214 /* make rdev->sb match mddev and rdev data. */ 1215 1216 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1217 1218 sb->feature_map = 0; 1219 sb->pad0 = 0; 1220 sb->recovery_offset = cpu_to_le64(0); 1221 memset(sb->pad1, 0, sizeof(sb->pad1)); 1222 memset(sb->pad2, 0, sizeof(sb->pad2)); 1223 memset(sb->pad3, 0, sizeof(sb->pad3)); 1224 1225 sb->utime = cpu_to_le64((__u64)mddev->utime); 1226 sb->events = cpu_to_le64(mddev->events); 1227 if (mddev->in_sync) 1228 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1229 else 1230 sb->resync_offset = cpu_to_le64(0); 1231 1232 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1233 1234 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1235 sb->size = cpu_to_le64(mddev->size<<1); 1236 1237 if (mddev->bitmap && mddev->bitmap_file == NULL) { 1238 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset); 1239 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1240 } 1241 1242 if (rdev->raid_disk >= 0 && 1243 !test_bit(In_sync, &rdev->flags) && 1244 rdev->recovery_offset > 0) { 1245 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1246 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset); 1247 } 1248 1249 if (mddev->reshape_position != MaxSector) { 1250 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1251 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1252 sb->new_layout = cpu_to_le32(mddev->new_layout); 1253 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1254 sb->new_level = cpu_to_le32(mddev->new_level); 1255 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9); 1256 } 1257 1258 max_dev = 0; 1259 ITERATE_RDEV(mddev,rdev2,tmp) 1260 if (rdev2->desc_nr+1 > max_dev) 1261 max_dev = rdev2->desc_nr+1; 1262 1263 sb->max_dev = cpu_to_le32(max_dev); 1264 for (i=0; i<max_dev;i++) 1265 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1266 1267 ITERATE_RDEV(mddev,rdev2,tmp) { 1268 i = rdev2->desc_nr; 1269 if (test_bit(Faulty, &rdev2->flags)) 1270 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1271 else if (test_bit(In_sync, &rdev2->flags)) 1272 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1273 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0) 1274 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1275 else 1276 sb->dev_roles[i] = cpu_to_le16(0xffff); 1277 } 1278 1279 sb->sb_csum = calc_sb_1_csum(sb); 1280 } 1281 1282 1283 static struct super_type super_types[] = { 1284 [0] = { 1285 .name = "0.90.0", 1286 .owner = THIS_MODULE, 1287 .load_super = super_90_load, 1288 .validate_super = super_90_validate, 1289 .sync_super = super_90_sync, 1290 }, 1291 [1] = { 1292 .name = "md-1", 1293 .owner = THIS_MODULE, 1294 .load_super = super_1_load, 1295 .validate_super = super_1_validate, 1296 .sync_super = super_1_sync, 1297 }, 1298 }; 1299 1300 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev) 1301 { 1302 struct list_head *tmp; 1303 mdk_rdev_t *rdev; 1304 1305 ITERATE_RDEV(mddev,rdev,tmp) 1306 if (rdev->bdev->bd_contains == dev->bdev->bd_contains) 1307 return rdev; 1308 1309 return NULL; 1310 } 1311 1312 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1313 { 1314 struct list_head *tmp; 1315 mdk_rdev_t *rdev; 1316 1317 ITERATE_RDEV(mddev1,rdev,tmp) 1318 if (match_dev_unit(mddev2, rdev)) 1319 return 1; 1320 1321 return 0; 1322 } 1323 1324 static LIST_HEAD(pending_raid_disks); 1325 1326 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1327 { 1328 mdk_rdev_t *same_pdev; 1329 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1330 struct kobject *ko; 1331 char *s; 1332 1333 if (rdev->mddev) { 1334 MD_BUG(); 1335 return -EINVAL; 1336 } 1337 /* make sure rdev->size exceeds mddev->size */ 1338 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) { 1339 if (mddev->pers) 1340 /* Cannot change size, so fail */ 1341 return -ENOSPC; 1342 else 1343 mddev->size = rdev->size; 1344 } 1345 same_pdev = match_dev_unit(mddev, rdev); 1346 if (same_pdev) 1347 printk(KERN_WARNING 1348 "%s: WARNING: %s appears to be on the same physical" 1349 " disk as %s. True\n protection against single-disk" 1350 " failure might be compromised.\n", 1351 mdname(mddev), bdevname(rdev->bdev,b), 1352 bdevname(same_pdev->bdev,b2)); 1353 1354 /* Verify rdev->desc_nr is unique. 1355 * If it is -1, assign a free number, else 1356 * check number is not in use 1357 */ 1358 if (rdev->desc_nr < 0) { 1359 int choice = 0; 1360 if (mddev->pers) choice = mddev->raid_disks; 1361 while (find_rdev_nr(mddev, choice)) 1362 choice++; 1363 rdev->desc_nr = choice; 1364 } else { 1365 if (find_rdev_nr(mddev, rdev->desc_nr)) 1366 return -EBUSY; 1367 } 1368 bdevname(rdev->bdev,b); 1369 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0) 1370 return -ENOMEM; 1371 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL) 1372 *s = '!'; 1373 1374 list_add(&rdev->same_set, &mddev->disks); 1375 rdev->mddev = mddev; 1376 printk(KERN_INFO "md: bind<%s>\n", b); 1377 1378 rdev->kobj.parent = &mddev->kobj; 1379 kobject_add(&rdev->kobj); 1380 1381 if (rdev->bdev->bd_part) 1382 ko = &rdev->bdev->bd_part->kobj; 1383 else 1384 ko = &rdev->bdev->bd_disk->kobj; 1385 sysfs_create_link(&rdev->kobj, ko, "block"); 1386 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk); 1387 return 0; 1388 } 1389 1390 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1391 { 1392 char b[BDEVNAME_SIZE]; 1393 if (!rdev->mddev) { 1394 MD_BUG(); 1395 return; 1396 } 1397 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1398 list_del_init(&rdev->same_set); 1399 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1400 rdev->mddev = NULL; 1401 sysfs_remove_link(&rdev->kobj, "block"); 1402 kobject_del(&rdev->kobj); 1403 } 1404 1405 /* 1406 * prevent the device from being mounted, repartitioned or 1407 * otherwise reused by a RAID array (or any other kernel 1408 * subsystem), by bd_claiming the device. 1409 */ 1410 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev) 1411 { 1412 int err = 0; 1413 struct block_device *bdev; 1414 char b[BDEVNAME_SIZE]; 1415 1416 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1417 if (IS_ERR(bdev)) { 1418 printk(KERN_ERR "md: could not open %s.\n", 1419 __bdevname(dev, b)); 1420 return PTR_ERR(bdev); 1421 } 1422 err = bd_claim(bdev, rdev); 1423 if (err) { 1424 printk(KERN_ERR "md: could not bd_claim %s.\n", 1425 bdevname(bdev, b)); 1426 blkdev_put(bdev); 1427 return err; 1428 } 1429 rdev->bdev = bdev; 1430 return err; 1431 } 1432 1433 static void unlock_rdev(mdk_rdev_t *rdev) 1434 { 1435 struct block_device *bdev = rdev->bdev; 1436 rdev->bdev = NULL; 1437 if (!bdev) 1438 MD_BUG(); 1439 bd_release(bdev); 1440 blkdev_put(bdev); 1441 } 1442 1443 void md_autodetect_dev(dev_t dev); 1444 1445 static void export_rdev(mdk_rdev_t * rdev) 1446 { 1447 char b[BDEVNAME_SIZE]; 1448 printk(KERN_INFO "md: export_rdev(%s)\n", 1449 bdevname(rdev->bdev,b)); 1450 if (rdev->mddev) 1451 MD_BUG(); 1452 free_disk_sb(rdev); 1453 list_del_init(&rdev->same_set); 1454 #ifndef MODULE 1455 md_autodetect_dev(rdev->bdev->bd_dev); 1456 #endif 1457 unlock_rdev(rdev); 1458 kobject_put(&rdev->kobj); 1459 } 1460 1461 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1462 { 1463 unbind_rdev_from_array(rdev); 1464 export_rdev(rdev); 1465 } 1466 1467 static void export_array(mddev_t *mddev) 1468 { 1469 struct list_head *tmp; 1470 mdk_rdev_t *rdev; 1471 1472 ITERATE_RDEV(mddev,rdev,tmp) { 1473 if (!rdev->mddev) { 1474 MD_BUG(); 1475 continue; 1476 } 1477 kick_rdev_from_array(rdev); 1478 } 1479 if (!list_empty(&mddev->disks)) 1480 MD_BUG(); 1481 mddev->raid_disks = 0; 1482 mddev->major_version = 0; 1483 } 1484 1485 static void print_desc(mdp_disk_t *desc) 1486 { 1487 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 1488 desc->major,desc->minor,desc->raid_disk,desc->state); 1489 } 1490 1491 static void print_sb(mdp_super_t *sb) 1492 { 1493 int i; 1494 1495 printk(KERN_INFO 1496 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 1497 sb->major_version, sb->minor_version, sb->patch_version, 1498 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 1499 sb->ctime); 1500 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 1501 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 1502 sb->md_minor, sb->layout, sb->chunk_size); 1503 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 1504 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 1505 sb->utime, sb->state, sb->active_disks, sb->working_disks, 1506 sb->failed_disks, sb->spare_disks, 1507 sb->sb_csum, (unsigned long)sb->events_lo); 1508 1509 printk(KERN_INFO); 1510 for (i = 0; i < MD_SB_DISKS; i++) { 1511 mdp_disk_t *desc; 1512 1513 desc = sb->disks + i; 1514 if (desc->number || desc->major || desc->minor || 1515 desc->raid_disk || (desc->state && (desc->state != 4))) { 1516 printk(" D %2d: ", i); 1517 print_desc(desc); 1518 } 1519 } 1520 printk(KERN_INFO "md: THIS: "); 1521 print_desc(&sb->this_disk); 1522 1523 } 1524 1525 static void print_rdev(mdk_rdev_t *rdev) 1526 { 1527 char b[BDEVNAME_SIZE]; 1528 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n", 1529 bdevname(rdev->bdev,b), (unsigned long long)rdev->size, 1530 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 1531 rdev->desc_nr); 1532 if (rdev->sb_loaded) { 1533 printk(KERN_INFO "md: rdev superblock:\n"); 1534 print_sb((mdp_super_t*)page_address(rdev->sb_page)); 1535 } else 1536 printk(KERN_INFO "md: no rdev superblock!\n"); 1537 } 1538 1539 static void md_print_devices(void) 1540 { 1541 struct list_head *tmp, *tmp2; 1542 mdk_rdev_t *rdev; 1543 mddev_t *mddev; 1544 char b[BDEVNAME_SIZE]; 1545 1546 printk("\n"); 1547 printk("md: **********************************\n"); 1548 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 1549 printk("md: **********************************\n"); 1550 ITERATE_MDDEV(mddev,tmp) { 1551 1552 if (mddev->bitmap) 1553 bitmap_print_sb(mddev->bitmap); 1554 else 1555 printk("%s: ", mdname(mddev)); 1556 ITERATE_RDEV(mddev,rdev,tmp2) 1557 printk("<%s>", bdevname(rdev->bdev,b)); 1558 printk("\n"); 1559 1560 ITERATE_RDEV(mddev,rdev,tmp2) 1561 print_rdev(rdev); 1562 } 1563 printk("md: **********************************\n"); 1564 printk("\n"); 1565 } 1566 1567 1568 static void sync_sbs(mddev_t * mddev, int nospares) 1569 { 1570 /* Update each superblock (in-memory image), but 1571 * if we are allowed to, skip spares which already 1572 * have the right event counter, or have one earlier 1573 * (which would mean they aren't being marked as dirty 1574 * with the rest of the array) 1575 */ 1576 mdk_rdev_t *rdev; 1577 struct list_head *tmp; 1578 1579 ITERATE_RDEV(mddev,rdev,tmp) { 1580 if (rdev->sb_events == mddev->events || 1581 (nospares && 1582 rdev->raid_disk < 0 && 1583 (rdev->sb_events&1)==0 && 1584 rdev->sb_events+1 == mddev->events)) { 1585 /* Don't update this superblock */ 1586 rdev->sb_loaded = 2; 1587 } else { 1588 super_types[mddev->major_version]. 1589 sync_super(mddev, rdev); 1590 rdev->sb_loaded = 1; 1591 } 1592 } 1593 } 1594 1595 static void md_update_sb(mddev_t * mddev, int force_change) 1596 { 1597 int err; 1598 struct list_head *tmp; 1599 mdk_rdev_t *rdev; 1600 int sync_req; 1601 int nospares = 0; 1602 1603 repeat: 1604 spin_lock_irq(&mddev->write_lock); 1605 1606 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1607 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 1608 force_change = 1; 1609 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 1610 /* just a clean<-> dirty transition, possibly leave spares alone, 1611 * though if events isn't the right even/odd, we will have to do 1612 * spares after all 1613 */ 1614 nospares = 1; 1615 if (force_change) 1616 nospares = 0; 1617 if (mddev->degraded) 1618 /* If the array is degraded, then skipping spares is both 1619 * dangerous and fairly pointless. 1620 * Dangerous because a device that was removed from the array 1621 * might have a event_count that still looks up-to-date, 1622 * so it can be re-added without a resync. 1623 * Pointless because if there are any spares to skip, 1624 * then a recovery will happen and soon that array won't 1625 * be degraded any more and the spare can go back to sleep then. 1626 */ 1627 nospares = 0; 1628 1629 sync_req = mddev->in_sync; 1630 mddev->utime = get_seconds(); 1631 1632 /* If this is just a dirty<->clean transition, and the array is clean 1633 * and 'events' is odd, we can roll back to the previous clean state */ 1634 if (nospares 1635 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 1636 && (mddev->events & 1) 1637 && mddev->events != 1) 1638 mddev->events--; 1639 else { 1640 /* otherwise we have to go forward and ... */ 1641 mddev->events ++; 1642 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */ 1643 /* .. if the array isn't clean, insist on an odd 'events' */ 1644 if ((mddev->events&1)==0) { 1645 mddev->events++; 1646 nospares = 0; 1647 } 1648 } else { 1649 /* otherwise insist on an even 'events' (for clean states) */ 1650 if ((mddev->events&1)) { 1651 mddev->events++; 1652 nospares = 0; 1653 } 1654 } 1655 } 1656 1657 if (!mddev->events) { 1658 /* 1659 * oops, this 64-bit counter should never wrap. 1660 * Either we are in around ~1 trillion A.C., assuming 1661 * 1 reboot per second, or we have a bug: 1662 */ 1663 MD_BUG(); 1664 mddev->events --; 1665 } 1666 sync_sbs(mddev, nospares); 1667 1668 /* 1669 * do not write anything to disk if using 1670 * nonpersistent superblocks 1671 */ 1672 if (!mddev->persistent) { 1673 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1674 spin_unlock_irq(&mddev->write_lock); 1675 wake_up(&mddev->sb_wait); 1676 return; 1677 } 1678 spin_unlock_irq(&mddev->write_lock); 1679 1680 dprintk(KERN_INFO 1681 "md: updating %s RAID superblock on device (in sync %d)\n", 1682 mdname(mddev),mddev->in_sync); 1683 1684 err = bitmap_update_sb(mddev->bitmap); 1685 ITERATE_RDEV(mddev,rdev,tmp) { 1686 char b[BDEVNAME_SIZE]; 1687 dprintk(KERN_INFO "md: "); 1688 if (rdev->sb_loaded != 1) 1689 continue; /* no noise on spare devices */ 1690 if (test_bit(Faulty, &rdev->flags)) 1691 dprintk("(skipping faulty "); 1692 1693 dprintk("%s ", bdevname(rdev->bdev,b)); 1694 if (!test_bit(Faulty, &rdev->flags)) { 1695 md_super_write(mddev,rdev, 1696 rdev->sb_offset<<1, rdev->sb_size, 1697 rdev->sb_page); 1698 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 1699 bdevname(rdev->bdev,b), 1700 (unsigned long long)rdev->sb_offset); 1701 rdev->sb_events = mddev->events; 1702 1703 } else 1704 dprintk(")\n"); 1705 if (mddev->level == LEVEL_MULTIPATH) 1706 /* only need to write one superblock... */ 1707 break; 1708 } 1709 md_super_wait(mddev); 1710 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 1711 1712 spin_lock_irq(&mddev->write_lock); 1713 if (mddev->in_sync != sync_req || 1714 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 1715 /* have to write it out again */ 1716 spin_unlock_irq(&mddev->write_lock); 1717 goto repeat; 1718 } 1719 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1720 spin_unlock_irq(&mddev->write_lock); 1721 wake_up(&mddev->sb_wait); 1722 1723 } 1724 1725 /* words written to sysfs files may, or my not, be \n terminated. 1726 * We want to accept with case. For this we use cmd_match. 1727 */ 1728 static int cmd_match(const char *cmd, const char *str) 1729 { 1730 /* See if cmd, written into a sysfs file, matches 1731 * str. They must either be the same, or cmd can 1732 * have a trailing newline 1733 */ 1734 while (*cmd && *str && *cmd == *str) { 1735 cmd++; 1736 str++; 1737 } 1738 if (*cmd == '\n') 1739 cmd++; 1740 if (*str || *cmd) 1741 return 0; 1742 return 1; 1743 } 1744 1745 struct rdev_sysfs_entry { 1746 struct attribute attr; 1747 ssize_t (*show)(mdk_rdev_t *, char *); 1748 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 1749 }; 1750 1751 static ssize_t 1752 state_show(mdk_rdev_t *rdev, char *page) 1753 { 1754 char *sep = ""; 1755 int len=0; 1756 1757 if (test_bit(Faulty, &rdev->flags)) { 1758 len+= sprintf(page+len, "%sfaulty",sep); 1759 sep = ","; 1760 } 1761 if (test_bit(In_sync, &rdev->flags)) { 1762 len += sprintf(page+len, "%sin_sync",sep); 1763 sep = ","; 1764 } 1765 if (test_bit(WriteMostly, &rdev->flags)) { 1766 len += sprintf(page+len, "%swrite_mostly",sep); 1767 sep = ","; 1768 } 1769 if (!test_bit(Faulty, &rdev->flags) && 1770 !test_bit(In_sync, &rdev->flags)) { 1771 len += sprintf(page+len, "%sspare", sep); 1772 sep = ","; 1773 } 1774 return len+sprintf(page+len, "\n"); 1775 } 1776 1777 static ssize_t 1778 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1779 { 1780 /* can write 1781 * faulty - simulates and error 1782 * remove - disconnects the device 1783 * writemostly - sets write_mostly 1784 * -writemostly - clears write_mostly 1785 */ 1786 int err = -EINVAL; 1787 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 1788 md_error(rdev->mddev, rdev); 1789 err = 0; 1790 } else if (cmd_match(buf, "remove")) { 1791 if (rdev->raid_disk >= 0) 1792 err = -EBUSY; 1793 else { 1794 mddev_t *mddev = rdev->mddev; 1795 kick_rdev_from_array(rdev); 1796 if (mddev->pers) 1797 md_update_sb(mddev, 1); 1798 md_new_event(mddev); 1799 err = 0; 1800 } 1801 } else if (cmd_match(buf, "writemostly")) { 1802 set_bit(WriteMostly, &rdev->flags); 1803 err = 0; 1804 } else if (cmd_match(buf, "-writemostly")) { 1805 clear_bit(WriteMostly, &rdev->flags); 1806 err = 0; 1807 } 1808 return err ? err : len; 1809 } 1810 static struct rdev_sysfs_entry rdev_state = 1811 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 1812 1813 static ssize_t 1814 super_show(mdk_rdev_t *rdev, char *page) 1815 { 1816 if (rdev->sb_loaded && rdev->sb_size) { 1817 memcpy(page, page_address(rdev->sb_page), rdev->sb_size); 1818 return rdev->sb_size; 1819 } else 1820 return 0; 1821 } 1822 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super); 1823 1824 static ssize_t 1825 errors_show(mdk_rdev_t *rdev, char *page) 1826 { 1827 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 1828 } 1829 1830 static ssize_t 1831 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1832 { 1833 char *e; 1834 unsigned long n = simple_strtoul(buf, &e, 10); 1835 if (*buf && (*e == 0 || *e == '\n')) { 1836 atomic_set(&rdev->corrected_errors, n); 1837 return len; 1838 } 1839 return -EINVAL; 1840 } 1841 static struct rdev_sysfs_entry rdev_errors = 1842 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 1843 1844 static ssize_t 1845 slot_show(mdk_rdev_t *rdev, char *page) 1846 { 1847 if (rdev->raid_disk < 0) 1848 return sprintf(page, "none\n"); 1849 else 1850 return sprintf(page, "%d\n", rdev->raid_disk); 1851 } 1852 1853 static ssize_t 1854 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1855 { 1856 char *e; 1857 int slot = simple_strtoul(buf, &e, 10); 1858 if (strncmp(buf, "none", 4)==0) 1859 slot = -1; 1860 else if (e==buf || (*e && *e!= '\n')) 1861 return -EINVAL; 1862 if (rdev->mddev->pers) 1863 /* Cannot set slot in active array (yet) */ 1864 return -EBUSY; 1865 if (slot >= rdev->mddev->raid_disks) 1866 return -ENOSPC; 1867 rdev->raid_disk = slot; 1868 /* assume it is working */ 1869 rdev->flags = 0; 1870 set_bit(In_sync, &rdev->flags); 1871 return len; 1872 } 1873 1874 1875 static struct rdev_sysfs_entry rdev_slot = 1876 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 1877 1878 static ssize_t 1879 offset_show(mdk_rdev_t *rdev, char *page) 1880 { 1881 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 1882 } 1883 1884 static ssize_t 1885 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1886 { 1887 char *e; 1888 unsigned long long offset = simple_strtoull(buf, &e, 10); 1889 if (e==buf || (*e && *e != '\n')) 1890 return -EINVAL; 1891 if (rdev->mddev->pers) 1892 return -EBUSY; 1893 rdev->data_offset = offset; 1894 return len; 1895 } 1896 1897 static struct rdev_sysfs_entry rdev_offset = 1898 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 1899 1900 static ssize_t 1901 rdev_size_show(mdk_rdev_t *rdev, char *page) 1902 { 1903 return sprintf(page, "%llu\n", (unsigned long long)rdev->size); 1904 } 1905 1906 static ssize_t 1907 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1908 { 1909 char *e; 1910 unsigned long long size = simple_strtoull(buf, &e, 10); 1911 if (e==buf || (*e && *e != '\n')) 1912 return -EINVAL; 1913 if (rdev->mddev->pers) 1914 return -EBUSY; 1915 rdev->size = size; 1916 if (size < rdev->mddev->size || rdev->mddev->size == 0) 1917 rdev->mddev->size = size; 1918 return len; 1919 } 1920 1921 static struct rdev_sysfs_entry rdev_size = 1922 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 1923 1924 static struct attribute *rdev_default_attrs[] = { 1925 &rdev_state.attr, 1926 &rdev_super.attr, 1927 &rdev_errors.attr, 1928 &rdev_slot.attr, 1929 &rdev_offset.attr, 1930 &rdev_size.attr, 1931 NULL, 1932 }; 1933 static ssize_t 1934 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 1935 { 1936 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 1937 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 1938 1939 if (!entry->show) 1940 return -EIO; 1941 return entry->show(rdev, page); 1942 } 1943 1944 static ssize_t 1945 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 1946 const char *page, size_t length) 1947 { 1948 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 1949 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 1950 1951 if (!entry->store) 1952 return -EIO; 1953 if (!capable(CAP_SYS_ADMIN)) 1954 return -EACCES; 1955 return entry->store(rdev, page, length); 1956 } 1957 1958 static void rdev_free(struct kobject *ko) 1959 { 1960 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 1961 kfree(rdev); 1962 } 1963 static struct sysfs_ops rdev_sysfs_ops = { 1964 .show = rdev_attr_show, 1965 .store = rdev_attr_store, 1966 }; 1967 static struct kobj_type rdev_ktype = { 1968 .release = rdev_free, 1969 .sysfs_ops = &rdev_sysfs_ops, 1970 .default_attrs = rdev_default_attrs, 1971 }; 1972 1973 /* 1974 * Import a device. If 'super_format' >= 0, then sanity check the superblock 1975 * 1976 * mark the device faulty if: 1977 * 1978 * - the device is nonexistent (zero size) 1979 * - the device has no valid superblock 1980 * 1981 * a faulty rdev _never_ has rdev->sb set. 1982 */ 1983 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 1984 { 1985 char b[BDEVNAME_SIZE]; 1986 int err; 1987 mdk_rdev_t *rdev; 1988 sector_t size; 1989 1990 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 1991 if (!rdev) { 1992 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 1993 return ERR_PTR(-ENOMEM); 1994 } 1995 1996 if ((err = alloc_disk_sb(rdev))) 1997 goto abort_free; 1998 1999 err = lock_rdev(rdev, newdev); 2000 if (err) 2001 goto abort_free; 2002 2003 rdev->kobj.parent = NULL; 2004 rdev->kobj.ktype = &rdev_ktype; 2005 kobject_init(&rdev->kobj); 2006 2007 rdev->desc_nr = -1; 2008 rdev->saved_raid_disk = -1; 2009 rdev->raid_disk = -1; 2010 rdev->flags = 0; 2011 rdev->data_offset = 0; 2012 rdev->sb_events = 0; 2013 atomic_set(&rdev->nr_pending, 0); 2014 atomic_set(&rdev->read_errors, 0); 2015 atomic_set(&rdev->corrected_errors, 0); 2016 2017 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2018 if (!size) { 2019 printk(KERN_WARNING 2020 "md: %s has zero or unknown size, marking faulty!\n", 2021 bdevname(rdev->bdev,b)); 2022 err = -EINVAL; 2023 goto abort_free; 2024 } 2025 2026 if (super_format >= 0) { 2027 err = super_types[super_format]. 2028 load_super(rdev, NULL, super_minor); 2029 if (err == -EINVAL) { 2030 printk(KERN_WARNING 2031 "md: %s has invalid sb, not importing!\n", 2032 bdevname(rdev->bdev,b)); 2033 goto abort_free; 2034 } 2035 if (err < 0) { 2036 printk(KERN_WARNING 2037 "md: could not read %s's sb, not importing!\n", 2038 bdevname(rdev->bdev,b)); 2039 goto abort_free; 2040 } 2041 } 2042 INIT_LIST_HEAD(&rdev->same_set); 2043 2044 return rdev; 2045 2046 abort_free: 2047 if (rdev->sb_page) { 2048 if (rdev->bdev) 2049 unlock_rdev(rdev); 2050 free_disk_sb(rdev); 2051 } 2052 kfree(rdev); 2053 return ERR_PTR(err); 2054 } 2055 2056 /* 2057 * Check a full RAID array for plausibility 2058 */ 2059 2060 2061 static void analyze_sbs(mddev_t * mddev) 2062 { 2063 int i; 2064 struct list_head *tmp; 2065 mdk_rdev_t *rdev, *freshest; 2066 char b[BDEVNAME_SIZE]; 2067 2068 freshest = NULL; 2069 ITERATE_RDEV(mddev,rdev,tmp) 2070 switch (super_types[mddev->major_version]. 2071 load_super(rdev, freshest, mddev->minor_version)) { 2072 case 1: 2073 freshest = rdev; 2074 break; 2075 case 0: 2076 break; 2077 default: 2078 printk( KERN_ERR \ 2079 "md: fatal superblock inconsistency in %s" 2080 " -- removing from array\n", 2081 bdevname(rdev->bdev,b)); 2082 kick_rdev_from_array(rdev); 2083 } 2084 2085 2086 super_types[mddev->major_version]. 2087 validate_super(mddev, freshest); 2088 2089 i = 0; 2090 ITERATE_RDEV(mddev,rdev,tmp) { 2091 if (rdev != freshest) 2092 if (super_types[mddev->major_version]. 2093 validate_super(mddev, rdev)) { 2094 printk(KERN_WARNING "md: kicking non-fresh %s" 2095 " from array!\n", 2096 bdevname(rdev->bdev,b)); 2097 kick_rdev_from_array(rdev); 2098 continue; 2099 } 2100 if (mddev->level == LEVEL_MULTIPATH) { 2101 rdev->desc_nr = i++; 2102 rdev->raid_disk = rdev->desc_nr; 2103 set_bit(In_sync, &rdev->flags); 2104 } 2105 } 2106 2107 2108 2109 if (mddev->recovery_cp != MaxSector && 2110 mddev->level >= 1) 2111 printk(KERN_ERR "md: %s: raid array is not clean" 2112 " -- starting background reconstruction\n", 2113 mdname(mddev)); 2114 2115 } 2116 2117 static ssize_t 2118 safe_delay_show(mddev_t *mddev, char *page) 2119 { 2120 int msec = (mddev->safemode_delay*1000)/HZ; 2121 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2122 } 2123 static ssize_t 2124 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2125 { 2126 int scale=1; 2127 int dot=0; 2128 int i; 2129 unsigned long msec; 2130 char buf[30]; 2131 char *e; 2132 /* remove a period, and count digits after it */ 2133 if (len >= sizeof(buf)) 2134 return -EINVAL; 2135 strlcpy(buf, cbuf, len); 2136 buf[len] = 0; 2137 for (i=0; i<len; i++) { 2138 if (dot) { 2139 if (isdigit(buf[i])) { 2140 buf[i-1] = buf[i]; 2141 scale *= 10; 2142 } 2143 buf[i] = 0; 2144 } else if (buf[i] == '.') { 2145 dot=1; 2146 buf[i] = 0; 2147 } 2148 } 2149 msec = simple_strtoul(buf, &e, 10); 2150 if (e == buf || (*e && *e != '\n')) 2151 return -EINVAL; 2152 msec = (msec * 1000) / scale; 2153 if (msec == 0) 2154 mddev->safemode_delay = 0; 2155 else { 2156 mddev->safemode_delay = (msec*HZ)/1000; 2157 if (mddev->safemode_delay == 0) 2158 mddev->safemode_delay = 1; 2159 } 2160 return len; 2161 } 2162 static struct md_sysfs_entry md_safe_delay = 2163 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2164 2165 static ssize_t 2166 level_show(mddev_t *mddev, char *page) 2167 { 2168 struct mdk_personality *p = mddev->pers; 2169 if (p) 2170 return sprintf(page, "%s\n", p->name); 2171 else if (mddev->clevel[0]) 2172 return sprintf(page, "%s\n", mddev->clevel); 2173 else if (mddev->level != LEVEL_NONE) 2174 return sprintf(page, "%d\n", mddev->level); 2175 else 2176 return 0; 2177 } 2178 2179 static ssize_t 2180 level_store(mddev_t *mddev, const char *buf, size_t len) 2181 { 2182 int rv = len; 2183 if (mddev->pers) 2184 return -EBUSY; 2185 if (len == 0) 2186 return 0; 2187 if (len >= sizeof(mddev->clevel)) 2188 return -ENOSPC; 2189 strncpy(mddev->clevel, buf, len); 2190 if (mddev->clevel[len-1] == '\n') 2191 len--; 2192 mddev->clevel[len] = 0; 2193 mddev->level = LEVEL_NONE; 2194 return rv; 2195 } 2196 2197 static struct md_sysfs_entry md_level = 2198 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 2199 2200 2201 static ssize_t 2202 layout_show(mddev_t *mddev, char *page) 2203 { 2204 /* just a number, not meaningful for all levels */ 2205 return sprintf(page, "%d\n", mddev->layout); 2206 } 2207 2208 static ssize_t 2209 layout_store(mddev_t *mddev, const char *buf, size_t len) 2210 { 2211 char *e; 2212 unsigned long n = simple_strtoul(buf, &e, 10); 2213 if (mddev->pers) 2214 return -EBUSY; 2215 2216 if (!*buf || (*e && *e != '\n')) 2217 return -EINVAL; 2218 2219 mddev->layout = n; 2220 return len; 2221 } 2222 static struct md_sysfs_entry md_layout = 2223 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 2224 2225 2226 static ssize_t 2227 raid_disks_show(mddev_t *mddev, char *page) 2228 { 2229 if (mddev->raid_disks == 0) 2230 return 0; 2231 return sprintf(page, "%d\n", mddev->raid_disks); 2232 } 2233 2234 static int update_raid_disks(mddev_t *mddev, int raid_disks); 2235 2236 static ssize_t 2237 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 2238 { 2239 char *e; 2240 int rv = 0; 2241 unsigned long n = simple_strtoul(buf, &e, 10); 2242 2243 if (!*buf || (*e && *e != '\n')) 2244 return -EINVAL; 2245 2246 if (mddev->pers) 2247 rv = update_raid_disks(mddev, n); 2248 else 2249 mddev->raid_disks = n; 2250 return rv ? rv : len; 2251 } 2252 static struct md_sysfs_entry md_raid_disks = 2253 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 2254 2255 static ssize_t 2256 chunk_size_show(mddev_t *mddev, char *page) 2257 { 2258 return sprintf(page, "%d\n", mddev->chunk_size); 2259 } 2260 2261 static ssize_t 2262 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 2263 { 2264 /* can only set chunk_size if array is not yet active */ 2265 char *e; 2266 unsigned long n = simple_strtoul(buf, &e, 10); 2267 2268 if (mddev->pers) 2269 return -EBUSY; 2270 if (!*buf || (*e && *e != '\n')) 2271 return -EINVAL; 2272 2273 mddev->chunk_size = n; 2274 return len; 2275 } 2276 static struct md_sysfs_entry md_chunk_size = 2277 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 2278 2279 static ssize_t 2280 resync_start_show(mddev_t *mddev, char *page) 2281 { 2282 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 2283 } 2284 2285 static ssize_t 2286 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 2287 { 2288 /* can only set chunk_size if array is not yet active */ 2289 char *e; 2290 unsigned long long n = simple_strtoull(buf, &e, 10); 2291 2292 if (mddev->pers) 2293 return -EBUSY; 2294 if (!*buf || (*e && *e != '\n')) 2295 return -EINVAL; 2296 2297 mddev->recovery_cp = n; 2298 return len; 2299 } 2300 static struct md_sysfs_entry md_resync_start = 2301 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 2302 2303 /* 2304 * The array state can be: 2305 * 2306 * clear 2307 * No devices, no size, no level 2308 * Equivalent to STOP_ARRAY ioctl 2309 * inactive 2310 * May have some settings, but array is not active 2311 * all IO results in error 2312 * When written, doesn't tear down array, but just stops it 2313 * suspended (not supported yet) 2314 * All IO requests will block. The array can be reconfigured. 2315 * Writing this, if accepted, will block until array is quiessent 2316 * readonly 2317 * no resync can happen. no superblocks get written. 2318 * write requests fail 2319 * read-auto 2320 * like readonly, but behaves like 'clean' on a write request. 2321 * 2322 * clean - no pending writes, but otherwise active. 2323 * When written to inactive array, starts without resync 2324 * If a write request arrives then 2325 * if metadata is known, mark 'dirty' and switch to 'active'. 2326 * if not known, block and switch to write-pending 2327 * If written to an active array that has pending writes, then fails. 2328 * active 2329 * fully active: IO and resync can be happening. 2330 * When written to inactive array, starts with resync 2331 * 2332 * write-pending 2333 * clean, but writes are blocked waiting for 'active' to be written. 2334 * 2335 * active-idle 2336 * like active, but no writes have been seen for a while (100msec). 2337 * 2338 */ 2339 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 2340 write_pending, active_idle, bad_word}; 2341 static char *array_states[] = { 2342 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 2343 "write-pending", "active-idle", NULL }; 2344 2345 static int match_word(const char *word, char **list) 2346 { 2347 int n; 2348 for (n=0; list[n]; n++) 2349 if (cmd_match(word, list[n])) 2350 break; 2351 return n; 2352 } 2353 2354 static ssize_t 2355 array_state_show(mddev_t *mddev, char *page) 2356 { 2357 enum array_state st = inactive; 2358 2359 if (mddev->pers) 2360 switch(mddev->ro) { 2361 case 1: 2362 st = readonly; 2363 break; 2364 case 2: 2365 st = read_auto; 2366 break; 2367 case 0: 2368 if (mddev->in_sync) 2369 st = clean; 2370 else if (mddev->safemode) 2371 st = active_idle; 2372 else 2373 st = active; 2374 } 2375 else { 2376 if (list_empty(&mddev->disks) && 2377 mddev->raid_disks == 0 && 2378 mddev->size == 0) 2379 st = clear; 2380 else 2381 st = inactive; 2382 } 2383 return sprintf(page, "%s\n", array_states[st]); 2384 } 2385 2386 static int do_md_stop(mddev_t * mddev, int ro); 2387 static int do_md_run(mddev_t * mddev); 2388 static int restart_array(mddev_t *mddev); 2389 2390 static ssize_t 2391 array_state_store(mddev_t *mddev, const char *buf, size_t len) 2392 { 2393 int err = -EINVAL; 2394 enum array_state st = match_word(buf, array_states); 2395 switch(st) { 2396 case bad_word: 2397 break; 2398 case clear: 2399 /* stopping an active array */ 2400 if (mddev->pers) { 2401 if (atomic_read(&mddev->active) > 1) 2402 return -EBUSY; 2403 err = do_md_stop(mddev, 0); 2404 } 2405 break; 2406 case inactive: 2407 /* stopping an active array */ 2408 if (mddev->pers) { 2409 if (atomic_read(&mddev->active) > 1) 2410 return -EBUSY; 2411 err = do_md_stop(mddev, 2); 2412 } 2413 break; 2414 case suspended: 2415 break; /* not supported yet */ 2416 case readonly: 2417 if (mddev->pers) 2418 err = do_md_stop(mddev, 1); 2419 else { 2420 mddev->ro = 1; 2421 err = do_md_run(mddev); 2422 } 2423 break; 2424 case read_auto: 2425 /* stopping an active array */ 2426 if (mddev->pers) { 2427 err = do_md_stop(mddev, 1); 2428 if (err == 0) 2429 mddev->ro = 2; /* FIXME mark devices writable */ 2430 } else { 2431 mddev->ro = 2; 2432 err = do_md_run(mddev); 2433 } 2434 break; 2435 case clean: 2436 if (mddev->pers) { 2437 restart_array(mddev); 2438 spin_lock_irq(&mddev->write_lock); 2439 if (atomic_read(&mddev->writes_pending) == 0) { 2440 mddev->in_sync = 1; 2441 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 2442 } 2443 spin_unlock_irq(&mddev->write_lock); 2444 } else { 2445 mddev->ro = 0; 2446 mddev->recovery_cp = MaxSector; 2447 err = do_md_run(mddev); 2448 } 2449 break; 2450 case active: 2451 if (mddev->pers) { 2452 restart_array(mddev); 2453 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2454 wake_up(&mddev->sb_wait); 2455 err = 0; 2456 } else { 2457 mddev->ro = 0; 2458 err = do_md_run(mddev); 2459 } 2460 break; 2461 case write_pending: 2462 case active_idle: 2463 /* these cannot be set */ 2464 break; 2465 } 2466 if (err) 2467 return err; 2468 else 2469 return len; 2470 } 2471 static struct md_sysfs_entry md_array_state = 2472 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 2473 2474 static ssize_t 2475 null_show(mddev_t *mddev, char *page) 2476 { 2477 return -EINVAL; 2478 } 2479 2480 static ssize_t 2481 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 2482 { 2483 /* buf must be %d:%d\n? giving major and minor numbers */ 2484 /* The new device is added to the array. 2485 * If the array has a persistent superblock, we read the 2486 * superblock to initialise info and check validity. 2487 * Otherwise, only checking done is that in bind_rdev_to_array, 2488 * which mainly checks size. 2489 */ 2490 char *e; 2491 int major = simple_strtoul(buf, &e, 10); 2492 int minor; 2493 dev_t dev; 2494 mdk_rdev_t *rdev; 2495 int err; 2496 2497 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 2498 return -EINVAL; 2499 minor = simple_strtoul(e+1, &e, 10); 2500 if (*e && *e != '\n') 2501 return -EINVAL; 2502 dev = MKDEV(major, minor); 2503 if (major != MAJOR(dev) || 2504 minor != MINOR(dev)) 2505 return -EOVERFLOW; 2506 2507 2508 if (mddev->persistent) { 2509 rdev = md_import_device(dev, mddev->major_version, 2510 mddev->minor_version); 2511 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 2512 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 2513 mdk_rdev_t, same_set); 2514 err = super_types[mddev->major_version] 2515 .load_super(rdev, rdev0, mddev->minor_version); 2516 if (err < 0) 2517 goto out; 2518 } 2519 } else 2520 rdev = md_import_device(dev, -1, -1); 2521 2522 if (IS_ERR(rdev)) 2523 return PTR_ERR(rdev); 2524 err = bind_rdev_to_array(rdev, mddev); 2525 out: 2526 if (err) 2527 export_rdev(rdev); 2528 return err ? err : len; 2529 } 2530 2531 static struct md_sysfs_entry md_new_device = 2532 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 2533 2534 static ssize_t 2535 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 2536 { 2537 char *end; 2538 unsigned long chunk, end_chunk; 2539 2540 if (!mddev->bitmap) 2541 goto out; 2542 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 2543 while (*buf) { 2544 chunk = end_chunk = simple_strtoul(buf, &end, 0); 2545 if (buf == end) break; 2546 if (*end == '-') { /* range */ 2547 buf = end + 1; 2548 end_chunk = simple_strtoul(buf, &end, 0); 2549 if (buf == end) break; 2550 } 2551 if (*end && !isspace(*end)) break; 2552 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 2553 buf = end; 2554 while (isspace(*buf)) buf++; 2555 } 2556 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 2557 out: 2558 return len; 2559 } 2560 2561 static struct md_sysfs_entry md_bitmap = 2562 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 2563 2564 static ssize_t 2565 size_show(mddev_t *mddev, char *page) 2566 { 2567 return sprintf(page, "%llu\n", (unsigned long long)mddev->size); 2568 } 2569 2570 static int update_size(mddev_t *mddev, unsigned long size); 2571 2572 static ssize_t 2573 size_store(mddev_t *mddev, const char *buf, size_t len) 2574 { 2575 /* If array is inactive, we can reduce the component size, but 2576 * not increase it (except from 0). 2577 * If array is active, we can try an on-line resize 2578 */ 2579 char *e; 2580 int err = 0; 2581 unsigned long long size = simple_strtoull(buf, &e, 10); 2582 if (!*buf || *buf == '\n' || 2583 (*e && *e != '\n')) 2584 return -EINVAL; 2585 2586 if (mddev->pers) { 2587 err = update_size(mddev, size); 2588 md_update_sb(mddev, 1); 2589 } else { 2590 if (mddev->size == 0 || 2591 mddev->size > size) 2592 mddev->size = size; 2593 else 2594 err = -ENOSPC; 2595 } 2596 return err ? err : len; 2597 } 2598 2599 static struct md_sysfs_entry md_size = 2600 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 2601 2602 2603 /* Metdata version. 2604 * This is either 'none' for arrays with externally managed metadata, 2605 * or N.M for internally known formats 2606 */ 2607 static ssize_t 2608 metadata_show(mddev_t *mddev, char *page) 2609 { 2610 if (mddev->persistent) 2611 return sprintf(page, "%d.%d\n", 2612 mddev->major_version, mddev->minor_version); 2613 else 2614 return sprintf(page, "none\n"); 2615 } 2616 2617 static ssize_t 2618 metadata_store(mddev_t *mddev, const char *buf, size_t len) 2619 { 2620 int major, minor; 2621 char *e; 2622 if (!list_empty(&mddev->disks)) 2623 return -EBUSY; 2624 2625 if (cmd_match(buf, "none")) { 2626 mddev->persistent = 0; 2627 mddev->major_version = 0; 2628 mddev->minor_version = 90; 2629 return len; 2630 } 2631 major = simple_strtoul(buf, &e, 10); 2632 if (e==buf || *e != '.') 2633 return -EINVAL; 2634 buf = e+1; 2635 minor = simple_strtoul(buf, &e, 10); 2636 if (e==buf || (*e && *e != '\n') ) 2637 return -EINVAL; 2638 if (major >= sizeof(super_types)/sizeof(super_types[0]) || 2639 super_types[major].name == NULL) 2640 return -ENOENT; 2641 mddev->major_version = major; 2642 mddev->minor_version = minor; 2643 mddev->persistent = 1; 2644 return len; 2645 } 2646 2647 static struct md_sysfs_entry md_metadata = 2648 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 2649 2650 static ssize_t 2651 action_show(mddev_t *mddev, char *page) 2652 { 2653 char *type = "idle"; 2654 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 2655 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) { 2656 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2657 type = "reshape"; 2658 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2659 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2660 type = "resync"; 2661 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2662 type = "check"; 2663 else 2664 type = "repair"; 2665 } else 2666 type = "recover"; 2667 } 2668 return sprintf(page, "%s\n", type); 2669 } 2670 2671 static ssize_t 2672 action_store(mddev_t *mddev, const char *page, size_t len) 2673 { 2674 if (!mddev->pers || !mddev->pers->sync_request) 2675 return -EINVAL; 2676 2677 if (cmd_match(page, "idle")) { 2678 if (mddev->sync_thread) { 2679 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2680 md_unregister_thread(mddev->sync_thread); 2681 mddev->sync_thread = NULL; 2682 mddev->recovery = 0; 2683 } 2684 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 2685 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 2686 return -EBUSY; 2687 else if (cmd_match(page, "resync") || cmd_match(page, "recover")) 2688 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2689 else if (cmd_match(page, "reshape")) { 2690 int err; 2691 if (mddev->pers->start_reshape == NULL) 2692 return -EINVAL; 2693 err = mddev->pers->start_reshape(mddev); 2694 if (err) 2695 return err; 2696 } else { 2697 if (cmd_match(page, "check")) 2698 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 2699 else if (!cmd_match(page, "repair")) 2700 return -EINVAL; 2701 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 2702 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 2703 } 2704 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2705 md_wakeup_thread(mddev->thread); 2706 return len; 2707 } 2708 2709 static ssize_t 2710 mismatch_cnt_show(mddev_t *mddev, char *page) 2711 { 2712 return sprintf(page, "%llu\n", 2713 (unsigned long long) mddev->resync_mismatches); 2714 } 2715 2716 static struct md_sysfs_entry md_scan_mode = 2717 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 2718 2719 2720 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 2721 2722 static ssize_t 2723 sync_min_show(mddev_t *mddev, char *page) 2724 { 2725 return sprintf(page, "%d (%s)\n", speed_min(mddev), 2726 mddev->sync_speed_min ? "local": "system"); 2727 } 2728 2729 static ssize_t 2730 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 2731 { 2732 int min; 2733 char *e; 2734 if (strncmp(buf, "system", 6)==0) { 2735 mddev->sync_speed_min = 0; 2736 return len; 2737 } 2738 min = simple_strtoul(buf, &e, 10); 2739 if (buf == e || (*e && *e != '\n') || min <= 0) 2740 return -EINVAL; 2741 mddev->sync_speed_min = min; 2742 return len; 2743 } 2744 2745 static struct md_sysfs_entry md_sync_min = 2746 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 2747 2748 static ssize_t 2749 sync_max_show(mddev_t *mddev, char *page) 2750 { 2751 return sprintf(page, "%d (%s)\n", speed_max(mddev), 2752 mddev->sync_speed_max ? "local": "system"); 2753 } 2754 2755 static ssize_t 2756 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 2757 { 2758 int max; 2759 char *e; 2760 if (strncmp(buf, "system", 6)==0) { 2761 mddev->sync_speed_max = 0; 2762 return len; 2763 } 2764 max = simple_strtoul(buf, &e, 10); 2765 if (buf == e || (*e && *e != '\n') || max <= 0) 2766 return -EINVAL; 2767 mddev->sync_speed_max = max; 2768 return len; 2769 } 2770 2771 static struct md_sysfs_entry md_sync_max = 2772 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 2773 2774 2775 static ssize_t 2776 sync_speed_show(mddev_t *mddev, char *page) 2777 { 2778 unsigned long resync, dt, db; 2779 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)); 2780 dt = ((jiffies - mddev->resync_mark) / HZ); 2781 if (!dt) dt++; 2782 db = resync - (mddev->resync_mark_cnt); 2783 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */ 2784 } 2785 2786 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 2787 2788 static ssize_t 2789 sync_completed_show(mddev_t *mddev, char *page) 2790 { 2791 unsigned long max_blocks, resync; 2792 2793 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2794 max_blocks = mddev->resync_max_sectors; 2795 else 2796 max_blocks = mddev->size << 1; 2797 2798 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active)); 2799 return sprintf(page, "%lu / %lu\n", resync, max_blocks); 2800 } 2801 2802 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 2803 2804 static ssize_t 2805 suspend_lo_show(mddev_t *mddev, char *page) 2806 { 2807 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 2808 } 2809 2810 static ssize_t 2811 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 2812 { 2813 char *e; 2814 unsigned long long new = simple_strtoull(buf, &e, 10); 2815 2816 if (mddev->pers->quiesce == NULL) 2817 return -EINVAL; 2818 if (buf == e || (*e && *e != '\n')) 2819 return -EINVAL; 2820 if (new >= mddev->suspend_hi || 2821 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 2822 mddev->suspend_lo = new; 2823 mddev->pers->quiesce(mddev, 2); 2824 return len; 2825 } else 2826 return -EINVAL; 2827 } 2828 static struct md_sysfs_entry md_suspend_lo = 2829 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 2830 2831 2832 static ssize_t 2833 suspend_hi_show(mddev_t *mddev, char *page) 2834 { 2835 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 2836 } 2837 2838 static ssize_t 2839 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 2840 { 2841 char *e; 2842 unsigned long long new = simple_strtoull(buf, &e, 10); 2843 2844 if (mddev->pers->quiesce == NULL) 2845 return -EINVAL; 2846 if (buf == e || (*e && *e != '\n')) 2847 return -EINVAL; 2848 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 2849 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 2850 mddev->suspend_hi = new; 2851 mddev->pers->quiesce(mddev, 1); 2852 mddev->pers->quiesce(mddev, 0); 2853 return len; 2854 } else 2855 return -EINVAL; 2856 } 2857 static struct md_sysfs_entry md_suspend_hi = 2858 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 2859 2860 2861 static struct attribute *md_default_attrs[] = { 2862 &md_level.attr, 2863 &md_layout.attr, 2864 &md_raid_disks.attr, 2865 &md_chunk_size.attr, 2866 &md_size.attr, 2867 &md_resync_start.attr, 2868 &md_metadata.attr, 2869 &md_new_device.attr, 2870 &md_safe_delay.attr, 2871 &md_array_state.attr, 2872 NULL, 2873 }; 2874 2875 static struct attribute *md_redundancy_attrs[] = { 2876 &md_scan_mode.attr, 2877 &md_mismatches.attr, 2878 &md_sync_min.attr, 2879 &md_sync_max.attr, 2880 &md_sync_speed.attr, 2881 &md_sync_completed.attr, 2882 &md_suspend_lo.attr, 2883 &md_suspend_hi.attr, 2884 &md_bitmap.attr, 2885 NULL, 2886 }; 2887 static struct attribute_group md_redundancy_group = { 2888 .name = NULL, 2889 .attrs = md_redundancy_attrs, 2890 }; 2891 2892 2893 static ssize_t 2894 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2895 { 2896 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 2897 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 2898 ssize_t rv; 2899 2900 if (!entry->show) 2901 return -EIO; 2902 rv = mddev_lock(mddev); 2903 if (!rv) { 2904 rv = entry->show(mddev, page); 2905 mddev_unlock(mddev); 2906 } 2907 return rv; 2908 } 2909 2910 static ssize_t 2911 md_attr_store(struct kobject *kobj, struct attribute *attr, 2912 const char *page, size_t length) 2913 { 2914 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 2915 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 2916 ssize_t rv; 2917 2918 if (!entry->store) 2919 return -EIO; 2920 if (!capable(CAP_SYS_ADMIN)) 2921 return -EACCES; 2922 rv = mddev_lock(mddev); 2923 if (!rv) { 2924 rv = entry->store(mddev, page, length); 2925 mddev_unlock(mddev); 2926 } 2927 return rv; 2928 } 2929 2930 static void md_free(struct kobject *ko) 2931 { 2932 mddev_t *mddev = container_of(ko, mddev_t, kobj); 2933 kfree(mddev); 2934 } 2935 2936 static struct sysfs_ops md_sysfs_ops = { 2937 .show = md_attr_show, 2938 .store = md_attr_store, 2939 }; 2940 static struct kobj_type md_ktype = { 2941 .release = md_free, 2942 .sysfs_ops = &md_sysfs_ops, 2943 .default_attrs = md_default_attrs, 2944 }; 2945 2946 int mdp_major = 0; 2947 2948 static struct kobject *md_probe(dev_t dev, int *part, void *data) 2949 { 2950 static DEFINE_MUTEX(disks_mutex); 2951 mddev_t *mddev = mddev_find(dev); 2952 struct gendisk *disk; 2953 int partitioned = (MAJOR(dev) != MD_MAJOR); 2954 int shift = partitioned ? MdpMinorShift : 0; 2955 int unit = MINOR(dev) >> shift; 2956 2957 if (!mddev) 2958 return NULL; 2959 2960 mutex_lock(&disks_mutex); 2961 if (mddev->gendisk) { 2962 mutex_unlock(&disks_mutex); 2963 mddev_put(mddev); 2964 return NULL; 2965 } 2966 disk = alloc_disk(1 << shift); 2967 if (!disk) { 2968 mutex_unlock(&disks_mutex); 2969 mddev_put(mddev); 2970 return NULL; 2971 } 2972 disk->major = MAJOR(dev); 2973 disk->first_minor = unit << shift; 2974 if (partitioned) 2975 sprintf(disk->disk_name, "md_d%d", unit); 2976 else 2977 sprintf(disk->disk_name, "md%d", unit); 2978 disk->fops = &md_fops; 2979 disk->private_data = mddev; 2980 disk->queue = mddev->queue; 2981 add_disk(disk); 2982 mddev->gendisk = disk; 2983 mutex_unlock(&disks_mutex); 2984 mddev->kobj.parent = &disk->kobj; 2985 mddev->kobj.k_name = NULL; 2986 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md"); 2987 mddev->kobj.ktype = &md_ktype; 2988 kobject_register(&mddev->kobj); 2989 return NULL; 2990 } 2991 2992 static void md_safemode_timeout(unsigned long data) 2993 { 2994 mddev_t *mddev = (mddev_t *) data; 2995 2996 mddev->safemode = 1; 2997 md_wakeup_thread(mddev->thread); 2998 } 2999 3000 static int start_dirty_degraded; 3001 3002 static int do_md_run(mddev_t * mddev) 3003 { 3004 int err; 3005 int chunk_size; 3006 struct list_head *tmp; 3007 mdk_rdev_t *rdev; 3008 struct gendisk *disk; 3009 struct mdk_personality *pers; 3010 char b[BDEVNAME_SIZE]; 3011 3012 if (list_empty(&mddev->disks)) 3013 /* cannot run an array with no devices.. */ 3014 return -EINVAL; 3015 3016 if (mddev->pers) 3017 return -EBUSY; 3018 3019 /* 3020 * Analyze all RAID superblock(s) 3021 */ 3022 if (!mddev->raid_disks) 3023 analyze_sbs(mddev); 3024 3025 chunk_size = mddev->chunk_size; 3026 3027 if (chunk_size) { 3028 if (chunk_size > MAX_CHUNK_SIZE) { 3029 printk(KERN_ERR "too big chunk_size: %d > %d\n", 3030 chunk_size, MAX_CHUNK_SIZE); 3031 return -EINVAL; 3032 } 3033 /* 3034 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE 3035 */ 3036 if ( (1 << ffz(~chunk_size)) != chunk_size) { 3037 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size); 3038 return -EINVAL; 3039 } 3040 if (chunk_size < PAGE_SIZE) { 3041 printk(KERN_ERR "too small chunk_size: %d < %ld\n", 3042 chunk_size, PAGE_SIZE); 3043 return -EINVAL; 3044 } 3045 3046 /* devices must have minimum size of one chunk */ 3047 ITERATE_RDEV(mddev,rdev,tmp) { 3048 if (test_bit(Faulty, &rdev->flags)) 3049 continue; 3050 if (rdev->size < chunk_size / 1024) { 3051 printk(KERN_WARNING 3052 "md: Dev %s smaller than chunk_size:" 3053 " %lluk < %dk\n", 3054 bdevname(rdev->bdev,b), 3055 (unsigned long long)rdev->size, 3056 chunk_size / 1024); 3057 return -EINVAL; 3058 } 3059 } 3060 } 3061 3062 #ifdef CONFIG_KMOD 3063 if (mddev->level != LEVEL_NONE) 3064 request_module("md-level-%d", mddev->level); 3065 else if (mddev->clevel[0]) 3066 request_module("md-%s", mddev->clevel); 3067 #endif 3068 3069 /* 3070 * Drop all container device buffers, from now on 3071 * the only valid external interface is through the md 3072 * device. 3073 * Also find largest hardsector size 3074 */ 3075 ITERATE_RDEV(mddev,rdev,tmp) { 3076 if (test_bit(Faulty, &rdev->flags)) 3077 continue; 3078 sync_blockdev(rdev->bdev); 3079 invalidate_bdev(rdev->bdev, 0); 3080 } 3081 3082 md_probe(mddev->unit, NULL, NULL); 3083 disk = mddev->gendisk; 3084 if (!disk) 3085 return -ENOMEM; 3086 3087 spin_lock(&pers_lock); 3088 pers = find_pers(mddev->level, mddev->clevel); 3089 if (!pers || !try_module_get(pers->owner)) { 3090 spin_unlock(&pers_lock); 3091 if (mddev->level != LEVEL_NONE) 3092 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 3093 mddev->level); 3094 else 3095 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 3096 mddev->clevel); 3097 return -EINVAL; 3098 } 3099 mddev->pers = pers; 3100 spin_unlock(&pers_lock); 3101 mddev->level = pers->level; 3102 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3103 3104 if (mddev->reshape_position != MaxSector && 3105 pers->start_reshape == NULL) { 3106 /* This personality cannot handle reshaping... */ 3107 mddev->pers = NULL; 3108 module_put(pers->owner); 3109 return -EINVAL; 3110 } 3111 3112 mddev->recovery = 0; 3113 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */ 3114 mddev->barriers_work = 1; 3115 mddev->ok_start_degraded = start_dirty_degraded; 3116 3117 if (start_readonly) 3118 mddev->ro = 2; /* read-only, but switch on first write */ 3119 3120 err = mddev->pers->run(mddev); 3121 if (!err && mddev->pers->sync_request) { 3122 err = bitmap_create(mddev); 3123 if (err) { 3124 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 3125 mdname(mddev), err); 3126 mddev->pers->stop(mddev); 3127 } 3128 } 3129 if (err) { 3130 printk(KERN_ERR "md: pers->run() failed ...\n"); 3131 module_put(mddev->pers->owner); 3132 mddev->pers = NULL; 3133 bitmap_destroy(mddev); 3134 return err; 3135 } 3136 if (mddev->pers->sync_request) 3137 sysfs_create_group(&mddev->kobj, &md_redundancy_group); 3138 else if (mddev->ro == 2) /* auto-readonly not meaningful */ 3139 mddev->ro = 0; 3140 3141 atomic_set(&mddev->writes_pending,0); 3142 mddev->safemode = 0; 3143 mddev->safemode_timer.function = md_safemode_timeout; 3144 mddev->safemode_timer.data = (unsigned long) mddev; 3145 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 3146 mddev->in_sync = 1; 3147 3148 ITERATE_RDEV(mddev,rdev,tmp) 3149 if (rdev->raid_disk >= 0) { 3150 char nm[20]; 3151 sprintf(nm, "rd%d", rdev->raid_disk); 3152 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm); 3153 } 3154 3155 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3156 3157 if (mddev->flags) 3158 md_update_sb(mddev, 0); 3159 3160 set_capacity(disk, mddev->array_size<<1); 3161 3162 /* If we call blk_queue_make_request here, it will 3163 * re-initialise max_sectors etc which may have been 3164 * refined inside -> run. So just set the bits we need to set. 3165 * Most initialisation happended when we called 3166 * blk_queue_make_request(..., md_fail_request) 3167 * earlier. 3168 */ 3169 mddev->queue->queuedata = mddev; 3170 mddev->queue->make_request_fn = mddev->pers->make_request; 3171 3172 /* If there is a partially-recovered drive we need to 3173 * start recovery here. If we leave it to md_check_recovery, 3174 * it will remove the drives and not do the right thing 3175 */ 3176 if (mddev->degraded && !mddev->sync_thread) { 3177 struct list_head *rtmp; 3178 int spares = 0; 3179 ITERATE_RDEV(mddev,rdev,rtmp) 3180 if (rdev->raid_disk >= 0 && 3181 !test_bit(In_sync, &rdev->flags) && 3182 !test_bit(Faulty, &rdev->flags)) 3183 /* complete an interrupted recovery */ 3184 spares++; 3185 if (spares && mddev->pers->sync_request) { 3186 mddev->recovery = 0; 3187 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3188 mddev->sync_thread = md_register_thread(md_do_sync, 3189 mddev, 3190 "%s_resync"); 3191 if (!mddev->sync_thread) { 3192 printk(KERN_ERR "%s: could not start resync" 3193 " thread...\n", 3194 mdname(mddev)); 3195 /* leave the spares where they are, it shouldn't hurt */ 3196 mddev->recovery = 0; 3197 } 3198 } 3199 } 3200 md_wakeup_thread(mddev->thread); 3201 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 3202 3203 mddev->changed = 1; 3204 md_new_event(mddev); 3205 kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE); 3206 return 0; 3207 } 3208 3209 static int restart_array(mddev_t *mddev) 3210 { 3211 struct gendisk *disk = mddev->gendisk; 3212 int err; 3213 3214 /* 3215 * Complain if it has no devices 3216 */ 3217 err = -ENXIO; 3218 if (list_empty(&mddev->disks)) 3219 goto out; 3220 3221 if (mddev->pers) { 3222 err = -EBUSY; 3223 if (!mddev->ro) 3224 goto out; 3225 3226 mddev->safemode = 0; 3227 mddev->ro = 0; 3228 set_disk_ro(disk, 0); 3229 3230 printk(KERN_INFO "md: %s switched to read-write mode.\n", 3231 mdname(mddev)); 3232 /* 3233 * Kick recovery or resync if necessary 3234 */ 3235 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3236 md_wakeup_thread(mddev->thread); 3237 md_wakeup_thread(mddev->sync_thread); 3238 err = 0; 3239 } else 3240 err = -EINVAL; 3241 3242 out: 3243 return err; 3244 } 3245 3246 /* similar to deny_write_access, but accounts for our holding a reference 3247 * to the file ourselves */ 3248 static int deny_bitmap_write_access(struct file * file) 3249 { 3250 struct inode *inode = file->f_mapping->host; 3251 3252 spin_lock(&inode->i_lock); 3253 if (atomic_read(&inode->i_writecount) > 1) { 3254 spin_unlock(&inode->i_lock); 3255 return -ETXTBSY; 3256 } 3257 atomic_set(&inode->i_writecount, -1); 3258 spin_unlock(&inode->i_lock); 3259 3260 return 0; 3261 } 3262 3263 static void restore_bitmap_write_access(struct file *file) 3264 { 3265 struct inode *inode = file->f_mapping->host; 3266 3267 spin_lock(&inode->i_lock); 3268 atomic_set(&inode->i_writecount, 1); 3269 spin_unlock(&inode->i_lock); 3270 } 3271 3272 /* mode: 3273 * 0 - completely stop and dis-assemble array 3274 * 1 - switch to readonly 3275 * 2 - stop but do not disassemble array 3276 */ 3277 static int do_md_stop(mddev_t * mddev, int mode) 3278 { 3279 int err = 0; 3280 struct gendisk *disk = mddev->gendisk; 3281 3282 if (mddev->pers) { 3283 if (atomic_read(&mddev->active)>2) { 3284 printk("md: %s still in use.\n",mdname(mddev)); 3285 return -EBUSY; 3286 } 3287 3288 if (mddev->sync_thread) { 3289 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3290 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3291 md_unregister_thread(mddev->sync_thread); 3292 mddev->sync_thread = NULL; 3293 } 3294 3295 del_timer_sync(&mddev->safemode_timer); 3296 3297 invalidate_partition(disk, 0); 3298 3299 switch(mode) { 3300 case 1: /* readonly */ 3301 err = -ENXIO; 3302 if (mddev->ro==1) 3303 goto out; 3304 mddev->ro = 1; 3305 break; 3306 case 0: /* disassemble */ 3307 case 2: /* stop */ 3308 bitmap_flush(mddev); 3309 md_super_wait(mddev); 3310 if (mddev->ro) 3311 set_disk_ro(disk, 0); 3312 blk_queue_make_request(mddev->queue, md_fail_request); 3313 mddev->pers->stop(mddev); 3314 if (mddev->pers->sync_request) 3315 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 3316 3317 module_put(mddev->pers->owner); 3318 mddev->pers = NULL; 3319 3320 set_capacity(disk, 0); 3321 mddev->changed = 1; 3322 3323 if (mddev->ro) 3324 mddev->ro = 0; 3325 } 3326 if (!mddev->in_sync || mddev->flags) { 3327 /* mark array as shutdown cleanly */ 3328 mddev->in_sync = 1; 3329 md_update_sb(mddev, 1); 3330 } 3331 if (mode == 1) 3332 set_disk_ro(disk, 1); 3333 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3334 } 3335 3336 /* 3337 * Free resources if final stop 3338 */ 3339 if (mode == 0) { 3340 mdk_rdev_t *rdev; 3341 struct list_head *tmp; 3342 3343 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 3344 3345 bitmap_destroy(mddev); 3346 if (mddev->bitmap_file) { 3347 restore_bitmap_write_access(mddev->bitmap_file); 3348 fput(mddev->bitmap_file); 3349 mddev->bitmap_file = NULL; 3350 } 3351 mddev->bitmap_offset = 0; 3352 3353 ITERATE_RDEV(mddev,rdev,tmp) 3354 if (rdev->raid_disk >= 0) { 3355 char nm[20]; 3356 sprintf(nm, "rd%d", rdev->raid_disk); 3357 sysfs_remove_link(&mddev->kobj, nm); 3358 } 3359 3360 export_array(mddev); 3361 3362 mddev->array_size = 0; 3363 mddev->size = 0; 3364 mddev->raid_disks = 0; 3365 mddev->recovery_cp = 0; 3366 3367 } else if (mddev->pers) 3368 printk(KERN_INFO "md: %s switched to read-only mode.\n", 3369 mdname(mddev)); 3370 err = 0; 3371 md_new_event(mddev); 3372 out: 3373 return err; 3374 } 3375 3376 #ifndef MODULE 3377 static void autorun_array(mddev_t *mddev) 3378 { 3379 mdk_rdev_t *rdev; 3380 struct list_head *tmp; 3381 int err; 3382 3383 if (list_empty(&mddev->disks)) 3384 return; 3385 3386 printk(KERN_INFO "md: running: "); 3387 3388 ITERATE_RDEV(mddev,rdev,tmp) { 3389 char b[BDEVNAME_SIZE]; 3390 printk("<%s>", bdevname(rdev->bdev,b)); 3391 } 3392 printk("\n"); 3393 3394 err = do_md_run (mddev); 3395 if (err) { 3396 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 3397 do_md_stop (mddev, 0); 3398 } 3399 } 3400 3401 /* 3402 * lets try to run arrays based on all disks that have arrived 3403 * until now. (those are in pending_raid_disks) 3404 * 3405 * the method: pick the first pending disk, collect all disks with 3406 * the same UUID, remove all from the pending list and put them into 3407 * the 'same_array' list. Then order this list based on superblock 3408 * update time (freshest comes first), kick out 'old' disks and 3409 * compare superblocks. If everything's fine then run it. 3410 * 3411 * If "unit" is allocated, then bump its reference count 3412 */ 3413 static void autorun_devices(int part) 3414 { 3415 struct list_head *tmp; 3416 mdk_rdev_t *rdev0, *rdev; 3417 mddev_t *mddev; 3418 char b[BDEVNAME_SIZE]; 3419 3420 printk(KERN_INFO "md: autorun ...\n"); 3421 while (!list_empty(&pending_raid_disks)) { 3422 int unit; 3423 dev_t dev; 3424 LIST_HEAD(candidates); 3425 rdev0 = list_entry(pending_raid_disks.next, 3426 mdk_rdev_t, same_set); 3427 3428 printk(KERN_INFO "md: considering %s ...\n", 3429 bdevname(rdev0->bdev,b)); 3430 INIT_LIST_HEAD(&candidates); 3431 ITERATE_RDEV_PENDING(rdev,tmp) 3432 if (super_90_load(rdev, rdev0, 0) >= 0) { 3433 printk(KERN_INFO "md: adding %s ...\n", 3434 bdevname(rdev->bdev,b)); 3435 list_move(&rdev->same_set, &candidates); 3436 } 3437 /* 3438 * now we have a set of devices, with all of them having 3439 * mostly sane superblocks. It's time to allocate the 3440 * mddev. 3441 */ 3442 if (part) { 3443 dev = MKDEV(mdp_major, 3444 rdev0->preferred_minor << MdpMinorShift); 3445 unit = MINOR(dev) >> MdpMinorShift; 3446 } else { 3447 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 3448 unit = MINOR(dev); 3449 } 3450 if (rdev0->preferred_minor != unit) { 3451 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 3452 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 3453 break; 3454 } 3455 3456 md_probe(dev, NULL, NULL); 3457 mddev = mddev_find(dev); 3458 if (!mddev) { 3459 printk(KERN_ERR 3460 "md: cannot allocate memory for md drive.\n"); 3461 break; 3462 } 3463 if (mddev_lock(mddev)) 3464 printk(KERN_WARNING "md: %s locked, cannot run\n", 3465 mdname(mddev)); 3466 else if (mddev->raid_disks || mddev->major_version 3467 || !list_empty(&mddev->disks)) { 3468 printk(KERN_WARNING 3469 "md: %s already running, cannot run %s\n", 3470 mdname(mddev), bdevname(rdev0->bdev,b)); 3471 mddev_unlock(mddev); 3472 } else { 3473 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 3474 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) { 3475 list_del_init(&rdev->same_set); 3476 if (bind_rdev_to_array(rdev, mddev)) 3477 export_rdev(rdev); 3478 } 3479 autorun_array(mddev); 3480 mddev_unlock(mddev); 3481 } 3482 /* on success, candidates will be empty, on error 3483 * it won't... 3484 */ 3485 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) 3486 export_rdev(rdev); 3487 mddev_put(mddev); 3488 } 3489 printk(KERN_INFO "md: ... autorun DONE.\n"); 3490 } 3491 #endif /* !MODULE */ 3492 3493 static int get_version(void __user * arg) 3494 { 3495 mdu_version_t ver; 3496 3497 ver.major = MD_MAJOR_VERSION; 3498 ver.minor = MD_MINOR_VERSION; 3499 ver.patchlevel = MD_PATCHLEVEL_VERSION; 3500 3501 if (copy_to_user(arg, &ver, sizeof(ver))) 3502 return -EFAULT; 3503 3504 return 0; 3505 } 3506 3507 static int get_array_info(mddev_t * mddev, void __user * arg) 3508 { 3509 mdu_array_info_t info; 3510 int nr,working,active,failed,spare; 3511 mdk_rdev_t *rdev; 3512 struct list_head *tmp; 3513 3514 nr=working=active=failed=spare=0; 3515 ITERATE_RDEV(mddev,rdev,tmp) { 3516 nr++; 3517 if (test_bit(Faulty, &rdev->flags)) 3518 failed++; 3519 else { 3520 working++; 3521 if (test_bit(In_sync, &rdev->flags)) 3522 active++; 3523 else 3524 spare++; 3525 } 3526 } 3527 3528 info.major_version = mddev->major_version; 3529 info.minor_version = mddev->minor_version; 3530 info.patch_version = MD_PATCHLEVEL_VERSION; 3531 info.ctime = mddev->ctime; 3532 info.level = mddev->level; 3533 info.size = mddev->size; 3534 if (info.size != mddev->size) /* overflow */ 3535 info.size = -1; 3536 info.nr_disks = nr; 3537 info.raid_disks = mddev->raid_disks; 3538 info.md_minor = mddev->md_minor; 3539 info.not_persistent= !mddev->persistent; 3540 3541 info.utime = mddev->utime; 3542 info.state = 0; 3543 if (mddev->in_sync) 3544 info.state = (1<<MD_SB_CLEAN); 3545 if (mddev->bitmap && mddev->bitmap_offset) 3546 info.state = (1<<MD_SB_BITMAP_PRESENT); 3547 info.active_disks = active; 3548 info.working_disks = working; 3549 info.failed_disks = failed; 3550 info.spare_disks = spare; 3551 3552 info.layout = mddev->layout; 3553 info.chunk_size = mddev->chunk_size; 3554 3555 if (copy_to_user(arg, &info, sizeof(info))) 3556 return -EFAULT; 3557 3558 return 0; 3559 } 3560 3561 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 3562 { 3563 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 3564 char *ptr, *buf = NULL; 3565 int err = -ENOMEM; 3566 3567 md_allow_write(mddev); 3568 3569 file = kmalloc(sizeof(*file), GFP_KERNEL); 3570 if (!file) 3571 goto out; 3572 3573 /* bitmap disabled, zero the first byte and copy out */ 3574 if (!mddev->bitmap || !mddev->bitmap->file) { 3575 file->pathname[0] = '\0'; 3576 goto copy_out; 3577 } 3578 3579 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 3580 if (!buf) 3581 goto out; 3582 3583 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname)); 3584 if (!ptr) 3585 goto out; 3586 3587 strcpy(file->pathname, ptr); 3588 3589 copy_out: 3590 err = 0; 3591 if (copy_to_user(arg, file, sizeof(*file))) 3592 err = -EFAULT; 3593 out: 3594 kfree(buf); 3595 kfree(file); 3596 return err; 3597 } 3598 3599 static int get_disk_info(mddev_t * mddev, void __user * arg) 3600 { 3601 mdu_disk_info_t info; 3602 unsigned int nr; 3603 mdk_rdev_t *rdev; 3604 3605 if (copy_from_user(&info, arg, sizeof(info))) 3606 return -EFAULT; 3607 3608 nr = info.number; 3609 3610 rdev = find_rdev_nr(mddev, nr); 3611 if (rdev) { 3612 info.major = MAJOR(rdev->bdev->bd_dev); 3613 info.minor = MINOR(rdev->bdev->bd_dev); 3614 info.raid_disk = rdev->raid_disk; 3615 info.state = 0; 3616 if (test_bit(Faulty, &rdev->flags)) 3617 info.state |= (1<<MD_DISK_FAULTY); 3618 else if (test_bit(In_sync, &rdev->flags)) { 3619 info.state |= (1<<MD_DISK_ACTIVE); 3620 info.state |= (1<<MD_DISK_SYNC); 3621 } 3622 if (test_bit(WriteMostly, &rdev->flags)) 3623 info.state |= (1<<MD_DISK_WRITEMOSTLY); 3624 } else { 3625 info.major = info.minor = 0; 3626 info.raid_disk = -1; 3627 info.state = (1<<MD_DISK_REMOVED); 3628 } 3629 3630 if (copy_to_user(arg, &info, sizeof(info))) 3631 return -EFAULT; 3632 3633 return 0; 3634 } 3635 3636 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 3637 { 3638 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 3639 mdk_rdev_t *rdev; 3640 dev_t dev = MKDEV(info->major,info->minor); 3641 3642 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 3643 return -EOVERFLOW; 3644 3645 if (!mddev->raid_disks) { 3646 int err; 3647 /* expecting a device which has a superblock */ 3648 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 3649 if (IS_ERR(rdev)) { 3650 printk(KERN_WARNING 3651 "md: md_import_device returned %ld\n", 3652 PTR_ERR(rdev)); 3653 return PTR_ERR(rdev); 3654 } 3655 if (!list_empty(&mddev->disks)) { 3656 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3657 mdk_rdev_t, same_set); 3658 int err = super_types[mddev->major_version] 3659 .load_super(rdev, rdev0, mddev->minor_version); 3660 if (err < 0) { 3661 printk(KERN_WARNING 3662 "md: %s has different UUID to %s\n", 3663 bdevname(rdev->bdev,b), 3664 bdevname(rdev0->bdev,b2)); 3665 export_rdev(rdev); 3666 return -EINVAL; 3667 } 3668 } 3669 err = bind_rdev_to_array(rdev, mddev); 3670 if (err) 3671 export_rdev(rdev); 3672 return err; 3673 } 3674 3675 /* 3676 * add_new_disk can be used once the array is assembled 3677 * to add "hot spares". They must already have a superblock 3678 * written 3679 */ 3680 if (mddev->pers) { 3681 int err; 3682 if (!mddev->pers->hot_add_disk) { 3683 printk(KERN_WARNING 3684 "%s: personality does not support diskops!\n", 3685 mdname(mddev)); 3686 return -EINVAL; 3687 } 3688 if (mddev->persistent) 3689 rdev = md_import_device(dev, mddev->major_version, 3690 mddev->minor_version); 3691 else 3692 rdev = md_import_device(dev, -1, -1); 3693 if (IS_ERR(rdev)) { 3694 printk(KERN_WARNING 3695 "md: md_import_device returned %ld\n", 3696 PTR_ERR(rdev)); 3697 return PTR_ERR(rdev); 3698 } 3699 /* set save_raid_disk if appropriate */ 3700 if (!mddev->persistent) { 3701 if (info->state & (1<<MD_DISK_SYNC) && 3702 info->raid_disk < mddev->raid_disks) 3703 rdev->raid_disk = info->raid_disk; 3704 else 3705 rdev->raid_disk = -1; 3706 } else 3707 super_types[mddev->major_version]. 3708 validate_super(mddev, rdev); 3709 rdev->saved_raid_disk = rdev->raid_disk; 3710 3711 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 3712 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 3713 set_bit(WriteMostly, &rdev->flags); 3714 3715 rdev->raid_disk = -1; 3716 err = bind_rdev_to_array(rdev, mddev); 3717 if (!err && !mddev->pers->hot_remove_disk) { 3718 /* If there is hot_add_disk but no hot_remove_disk 3719 * then added disks for geometry changes, 3720 * and should be added immediately. 3721 */ 3722 super_types[mddev->major_version]. 3723 validate_super(mddev, rdev); 3724 err = mddev->pers->hot_add_disk(mddev, rdev); 3725 if (err) 3726 unbind_rdev_from_array(rdev); 3727 } 3728 if (err) 3729 export_rdev(rdev); 3730 3731 md_update_sb(mddev, 1); 3732 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3733 md_wakeup_thread(mddev->thread); 3734 return err; 3735 } 3736 3737 /* otherwise, add_new_disk is only allowed 3738 * for major_version==0 superblocks 3739 */ 3740 if (mddev->major_version != 0) { 3741 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 3742 mdname(mddev)); 3743 return -EINVAL; 3744 } 3745 3746 if (!(info->state & (1<<MD_DISK_FAULTY))) { 3747 int err; 3748 rdev = md_import_device (dev, -1, 0); 3749 if (IS_ERR(rdev)) { 3750 printk(KERN_WARNING 3751 "md: error, md_import_device() returned %ld\n", 3752 PTR_ERR(rdev)); 3753 return PTR_ERR(rdev); 3754 } 3755 rdev->desc_nr = info->number; 3756 if (info->raid_disk < mddev->raid_disks) 3757 rdev->raid_disk = info->raid_disk; 3758 else 3759 rdev->raid_disk = -1; 3760 3761 rdev->flags = 0; 3762 3763 if (rdev->raid_disk < mddev->raid_disks) 3764 if (info->state & (1<<MD_DISK_SYNC)) 3765 set_bit(In_sync, &rdev->flags); 3766 3767 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 3768 set_bit(WriteMostly, &rdev->flags); 3769 3770 if (!mddev->persistent) { 3771 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 3772 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 3773 } else 3774 rdev->sb_offset = calc_dev_sboffset(rdev->bdev); 3775 rdev->size = calc_dev_size(rdev, mddev->chunk_size); 3776 3777 err = bind_rdev_to_array(rdev, mddev); 3778 if (err) { 3779 export_rdev(rdev); 3780 return err; 3781 } 3782 } 3783 3784 return 0; 3785 } 3786 3787 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 3788 { 3789 char b[BDEVNAME_SIZE]; 3790 mdk_rdev_t *rdev; 3791 3792 if (!mddev->pers) 3793 return -ENODEV; 3794 3795 rdev = find_rdev(mddev, dev); 3796 if (!rdev) 3797 return -ENXIO; 3798 3799 if (rdev->raid_disk >= 0) 3800 goto busy; 3801 3802 kick_rdev_from_array(rdev); 3803 md_update_sb(mddev, 1); 3804 md_new_event(mddev); 3805 3806 return 0; 3807 busy: 3808 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n", 3809 bdevname(rdev->bdev,b), mdname(mddev)); 3810 return -EBUSY; 3811 } 3812 3813 static int hot_add_disk(mddev_t * mddev, dev_t dev) 3814 { 3815 char b[BDEVNAME_SIZE]; 3816 int err; 3817 unsigned int size; 3818 mdk_rdev_t *rdev; 3819 3820 if (!mddev->pers) 3821 return -ENODEV; 3822 3823 if (mddev->major_version != 0) { 3824 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 3825 " version-0 superblocks.\n", 3826 mdname(mddev)); 3827 return -EINVAL; 3828 } 3829 if (!mddev->pers->hot_add_disk) { 3830 printk(KERN_WARNING 3831 "%s: personality does not support diskops!\n", 3832 mdname(mddev)); 3833 return -EINVAL; 3834 } 3835 3836 rdev = md_import_device (dev, -1, 0); 3837 if (IS_ERR(rdev)) { 3838 printk(KERN_WARNING 3839 "md: error, md_import_device() returned %ld\n", 3840 PTR_ERR(rdev)); 3841 return -EINVAL; 3842 } 3843 3844 if (mddev->persistent) 3845 rdev->sb_offset = calc_dev_sboffset(rdev->bdev); 3846 else 3847 rdev->sb_offset = 3848 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 3849 3850 size = calc_dev_size(rdev, mddev->chunk_size); 3851 rdev->size = size; 3852 3853 if (test_bit(Faulty, &rdev->flags)) { 3854 printk(KERN_WARNING 3855 "md: can not hot-add faulty %s disk to %s!\n", 3856 bdevname(rdev->bdev,b), mdname(mddev)); 3857 err = -EINVAL; 3858 goto abort_export; 3859 } 3860 clear_bit(In_sync, &rdev->flags); 3861 rdev->desc_nr = -1; 3862 rdev->saved_raid_disk = -1; 3863 err = bind_rdev_to_array(rdev, mddev); 3864 if (err) 3865 goto abort_export; 3866 3867 /* 3868 * The rest should better be atomic, we can have disk failures 3869 * noticed in interrupt contexts ... 3870 */ 3871 3872 if (rdev->desc_nr == mddev->max_disks) { 3873 printk(KERN_WARNING "%s: can not hot-add to full array!\n", 3874 mdname(mddev)); 3875 err = -EBUSY; 3876 goto abort_unbind_export; 3877 } 3878 3879 rdev->raid_disk = -1; 3880 3881 md_update_sb(mddev, 1); 3882 3883 /* 3884 * Kick recovery, maybe this spare has to be added to the 3885 * array immediately. 3886 */ 3887 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3888 md_wakeup_thread(mddev->thread); 3889 md_new_event(mddev); 3890 return 0; 3891 3892 abort_unbind_export: 3893 unbind_rdev_from_array(rdev); 3894 3895 abort_export: 3896 export_rdev(rdev); 3897 return err; 3898 } 3899 3900 static int set_bitmap_file(mddev_t *mddev, int fd) 3901 { 3902 int err; 3903 3904 if (mddev->pers) { 3905 if (!mddev->pers->quiesce) 3906 return -EBUSY; 3907 if (mddev->recovery || mddev->sync_thread) 3908 return -EBUSY; 3909 /* we should be able to change the bitmap.. */ 3910 } 3911 3912 3913 if (fd >= 0) { 3914 if (mddev->bitmap) 3915 return -EEXIST; /* cannot add when bitmap is present */ 3916 mddev->bitmap_file = fget(fd); 3917 3918 if (mddev->bitmap_file == NULL) { 3919 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 3920 mdname(mddev)); 3921 return -EBADF; 3922 } 3923 3924 err = deny_bitmap_write_access(mddev->bitmap_file); 3925 if (err) { 3926 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 3927 mdname(mddev)); 3928 fput(mddev->bitmap_file); 3929 mddev->bitmap_file = NULL; 3930 return err; 3931 } 3932 mddev->bitmap_offset = 0; /* file overrides offset */ 3933 } else if (mddev->bitmap == NULL) 3934 return -ENOENT; /* cannot remove what isn't there */ 3935 err = 0; 3936 if (mddev->pers) { 3937 mddev->pers->quiesce(mddev, 1); 3938 if (fd >= 0) 3939 err = bitmap_create(mddev); 3940 if (fd < 0 || err) { 3941 bitmap_destroy(mddev); 3942 fd = -1; /* make sure to put the file */ 3943 } 3944 mddev->pers->quiesce(mddev, 0); 3945 } 3946 if (fd < 0) { 3947 if (mddev->bitmap_file) { 3948 restore_bitmap_write_access(mddev->bitmap_file); 3949 fput(mddev->bitmap_file); 3950 } 3951 mddev->bitmap_file = NULL; 3952 } 3953 3954 return err; 3955 } 3956 3957 /* 3958 * set_array_info is used two different ways 3959 * The original usage is when creating a new array. 3960 * In this usage, raid_disks is > 0 and it together with 3961 * level, size, not_persistent,layout,chunksize determine the 3962 * shape of the array. 3963 * This will always create an array with a type-0.90.0 superblock. 3964 * The newer usage is when assembling an array. 3965 * In this case raid_disks will be 0, and the major_version field is 3966 * use to determine which style super-blocks are to be found on the devices. 3967 * The minor and patch _version numbers are also kept incase the 3968 * super_block handler wishes to interpret them. 3969 */ 3970 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 3971 { 3972 3973 if (info->raid_disks == 0) { 3974 /* just setting version number for superblock loading */ 3975 if (info->major_version < 0 || 3976 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) || 3977 super_types[info->major_version].name == NULL) { 3978 /* maybe try to auto-load a module? */ 3979 printk(KERN_INFO 3980 "md: superblock version %d not known\n", 3981 info->major_version); 3982 return -EINVAL; 3983 } 3984 mddev->major_version = info->major_version; 3985 mddev->minor_version = info->minor_version; 3986 mddev->patch_version = info->patch_version; 3987 mddev->persistent = !info->not_persistent; 3988 return 0; 3989 } 3990 mddev->major_version = MD_MAJOR_VERSION; 3991 mddev->minor_version = MD_MINOR_VERSION; 3992 mddev->patch_version = MD_PATCHLEVEL_VERSION; 3993 mddev->ctime = get_seconds(); 3994 3995 mddev->level = info->level; 3996 mddev->clevel[0] = 0; 3997 mddev->size = info->size; 3998 mddev->raid_disks = info->raid_disks; 3999 /* don't set md_minor, it is determined by which /dev/md* was 4000 * openned 4001 */ 4002 if (info->state & (1<<MD_SB_CLEAN)) 4003 mddev->recovery_cp = MaxSector; 4004 else 4005 mddev->recovery_cp = 0; 4006 mddev->persistent = ! info->not_persistent; 4007 4008 mddev->layout = info->layout; 4009 mddev->chunk_size = info->chunk_size; 4010 4011 mddev->max_disks = MD_SB_DISKS; 4012 4013 mddev->flags = 0; 4014 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4015 4016 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 4017 mddev->bitmap_offset = 0; 4018 4019 mddev->reshape_position = MaxSector; 4020 4021 /* 4022 * Generate a 128 bit UUID 4023 */ 4024 get_random_bytes(mddev->uuid, 16); 4025 4026 mddev->new_level = mddev->level; 4027 mddev->new_chunk = mddev->chunk_size; 4028 mddev->new_layout = mddev->layout; 4029 mddev->delta_disks = 0; 4030 4031 return 0; 4032 } 4033 4034 static int update_size(mddev_t *mddev, unsigned long size) 4035 { 4036 mdk_rdev_t * rdev; 4037 int rv; 4038 struct list_head *tmp; 4039 int fit = (size == 0); 4040 4041 if (mddev->pers->resize == NULL) 4042 return -EINVAL; 4043 /* The "size" is the amount of each device that is used. 4044 * This can only make sense for arrays with redundancy. 4045 * linear and raid0 always use whatever space is available 4046 * We can only consider changing the size if no resync 4047 * or reconstruction is happening, and if the new size 4048 * is acceptable. It must fit before the sb_offset or, 4049 * if that is <data_offset, it must fit before the 4050 * size of each device. 4051 * If size is zero, we find the largest size that fits. 4052 */ 4053 if (mddev->sync_thread) 4054 return -EBUSY; 4055 ITERATE_RDEV(mddev,rdev,tmp) { 4056 sector_t avail; 4057 avail = rdev->size * 2; 4058 4059 if (fit && (size == 0 || size > avail/2)) 4060 size = avail/2; 4061 if (avail < ((sector_t)size << 1)) 4062 return -ENOSPC; 4063 } 4064 rv = mddev->pers->resize(mddev, (sector_t)size *2); 4065 if (!rv) { 4066 struct block_device *bdev; 4067 4068 bdev = bdget_disk(mddev->gendisk, 0); 4069 if (bdev) { 4070 mutex_lock(&bdev->bd_inode->i_mutex); 4071 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10); 4072 mutex_unlock(&bdev->bd_inode->i_mutex); 4073 bdput(bdev); 4074 } 4075 } 4076 return rv; 4077 } 4078 4079 static int update_raid_disks(mddev_t *mddev, int raid_disks) 4080 { 4081 int rv; 4082 /* change the number of raid disks */ 4083 if (mddev->pers->check_reshape == NULL) 4084 return -EINVAL; 4085 if (raid_disks <= 0 || 4086 raid_disks >= mddev->max_disks) 4087 return -EINVAL; 4088 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 4089 return -EBUSY; 4090 mddev->delta_disks = raid_disks - mddev->raid_disks; 4091 4092 rv = mddev->pers->check_reshape(mddev); 4093 return rv; 4094 } 4095 4096 4097 /* 4098 * update_array_info is used to change the configuration of an 4099 * on-line array. 4100 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 4101 * fields in the info are checked against the array. 4102 * Any differences that cannot be handled will cause an error. 4103 * Normally, only one change can be managed at a time. 4104 */ 4105 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 4106 { 4107 int rv = 0; 4108 int cnt = 0; 4109 int state = 0; 4110 4111 /* calculate expected state,ignoring low bits */ 4112 if (mddev->bitmap && mddev->bitmap_offset) 4113 state |= (1 << MD_SB_BITMAP_PRESENT); 4114 4115 if (mddev->major_version != info->major_version || 4116 mddev->minor_version != info->minor_version || 4117 /* mddev->patch_version != info->patch_version || */ 4118 mddev->ctime != info->ctime || 4119 mddev->level != info->level || 4120 /* mddev->layout != info->layout || */ 4121 !mddev->persistent != info->not_persistent|| 4122 mddev->chunk_size != info->chunk_size || 4123 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 4124 ((state^info->state) & 0xfffffe00) 4125 ) 4126 return -EINVAL; 4127 /* Check there is only one change */ 4128 if (info->size >= 0 && mddev->size != info->size) cnt++; 4129 if (mddev->raid_disks != info->raid_disks) cnt++; 4130 if (mddev->layout != info->layout) cnt++; 4131 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++; 4132 if (cnt == 0) return 0; 4133 if (cnt > 1) return -EINVAL; 4134 4135 if (mddev->layout != info->layout) { 4136 /* Change layout 4137 * we don't need to do anything at the md level, the 4138 * personality will take care of it all. 4139 */ 4140 if (mddev->pers->reconfig == NULL) 4141 return -EINVAL; 4142 else 4143 return mddev->pers->reconfig(mddev, info->layout, -1); 4144 } 4145 if (info->size >= 0 && mddev->size != info->size) 4146 rv = update_size(mddev, info->size); 4147 4148 if (mddev->raid_disks != info->raid_disks) 4149 rv = update_raid_disks(mddev, info->raid_disks); 4150 4151 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 4152 if (mddev->pers->quiesce == NULL) 4153 return -EINVAL; 4154 if (mddev->recovery || mddev->sync_thread) 4155 return -EBUSY; 4156 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 4157 /* add the bitmap */ 4158 if (mddev->bitmap) 4159 return -EEXIST; 4160 if (mddev->default_bitmap_offset == 0) 4161 return -EINVAL; 4162 mddev->bitmap_offset = mddev->default_bitmap_offset; 4163 mddev->pers->quiesce(mddev, 1); 4164 rv = bitmap_create(mddev); 4165 if (rv) 4166 bitmap_destroy(mddev); 4167 mddev->pers->quiesce(mddev, 0); 4168 } else { 4169 /* remove the bitmap */ 4170 if (!mddev->bitmap) 4171 return -ENOENT; 4172 if (mddev->bitmap->file) 4173 return -EINVAL; 4174 mddev->pers->quiesce(mddev, 1); 4175 bitmap_destroy(mddev); 4176 mddev->pers->quiesce(mddev, 0); 4177 mddev->bitmap_offset = 0; 4178 } 4179 } 4180 md_update_sb(mddev, 1); 4181 return rv; 4182 } 4183 4184 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 4185 { 4186 mdk_rdev_t *rdev; 4187 4188 if (mddev->pers == NULL) 4189 return -ENODEV; 4190 4191 rdev = find_rdev(mddev, dev); 4192 if (!rdev) 4193 return -ENODEV; 4194 4195 md_error(mddev, rdev); 4196 return 0; 4197 } 4198 4199 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 4200 { 4201 mddev_t *mddev = bdev->bd_disk->private_data; 4202 4203 geo->heads = 2; 4204 geo->sectors = 4; 4205 geo->cylinders = get_capacity(mddev->gendisk) / 8; 4206 return 0; 4207 } 4208 4209 static int md_ioctl(struct inode *inode, struct file *file, 4210 unsigned int cmd, unsigned long arg) 4211 { 4212 int err = 0; 4213 void __user *argp = (void __user *)arg; 4214 mddev_t *mddev = NULL; 4215 4216 if (!capable(CAP_SYS_ADMIN)) 4217 return -EACCES; 4218 4219 /* 4220 * Commands dealing with the RAID driver but not any 4221 * particular array: 4222 */ 4223 switch (cmd) 4224 { 4225 case RAID_VERSION: 4226 err = get_version(argp); 4227 goto done; 4228 4229 case PRINT_RAID_DEBUG: 4230 err = 0; 4231 md_print_devices(); 4232 goto done; 4233 4234 #ifndef MODULE 4235 case RAID_AUTORUN: 4236 err = 0; 4237 autostart_arrays(arg); 4238 goto done; 4239 #endif 4240 default:; 4241 } 4242 4243 /* 4244 * Commands creating/starting a new array: 4245 */ 4246 4247 mddev = inode->i_bdev->bd_disk->private_data; 4248 4249 if (!mddev) { 4250 BUG(); 4251 goto abort; 4252 } 4253 4254 err = mddev_lock(mddev); 4255 if (err) { 4256 printk(KERN_INFO 4257 "md: ioctl lock interrupted, reason %d, cmd %d\n", 4258 err, cmd); 4259 goto abort; 4260 } 4261 4262 switch (cmd) 4263 { 4264 case SET_ARRAY_INFO: 4265 { 4266 mdu_array_info_t info; 4267 if (!arg) 4268 memset(&info, 0, sizeof(info)); 4269 else if (copy_from_user(&info, argp, sizeof(info))) { 4270 err = -EFAULT; 4271 goto abort_unlock; 4272 } 4273 if (mddev->pers) { 4274 err = update_array_info(mddev, &info); 4275 if (err) { 4276 printk(KERN_WARNING "md: couldn't update" 4277 " array info. %d\n", err); 4278 goto abort_unlock; 4279 } 4280 goto done_unlock; 4281 } 4282 if (!list_empty(&mddev->disks)) { 4283 printk(KERN_WARNING 4284 "md: array %s already has disks!\n", 4285 mdname(mddev)); 4286 err = -EBUSY; 4287 goto abort_unlock; 4288 } 4289 if (mddev->raid_disks) { 4290 printk(KERN_WARNING 4291 "md: array %s already initialised!\n", 4292 mdname(mddev)); 4293 err = -EBUSY; 4294 goto abort_unlock; 4295 } 4296 err = set_array_info(mddev, &info); 4297 if (err) { 4298 printk(KERN_WARNING "md: couldn't set" 4299 " array info. %d\n", err); 4300 goto abort_unlock; 4301 } 4302 } 4303 goto done_unlock; 4304 4305 default:; 4306 } 4307 4308 /* 4309 * Commands querying/configuring an existing array: 4310 */ 4311 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 4312 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 4313 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 4314 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 4315 && cmd != GET_BITMAP_FILE) { 4316 err = -ENODEV; 4317 goto abort_unlock; 4318 } 4319 4320 /* 4321 * Commands even a read-only array can execute: 4322 */ 4323 switch (cmd) 4324 { 4325 case GET_ARRAY_INFO: 4326 err = get_array_info(mddev, argp); 4327 goto done_unlock; 4328 4329 case GET_BITMAP_FILE: 4330 err = get_bitmap_file(mddev, argp); 4331 goto done_unlock; 4332 4333 case GET_DISK_INFO: 4334 err = get_disk_info(mddev, argp); 4335 goto done_unlock; 4336 4337 case RESTART_ARRAY_RW: 4338 err = restart_array(mddev); 4339 goto done_unlock; 4340 4341 case STOP_ARRAY: 4342 err = do_md_stop (mddev, 0); 4343 goto done_unlock; 4344 4345 case STOP_ARRAY_RO: 4346 err = do_md_stop (mddev, 1); 4347 goto done_unlock; 4348 4349 /* 4350 * We have a problem here : there is no easy way to give a CHS 4351 * virtual geometry. We currently pretend that we have a 2 heads 4352 * 4 sectors (with a BIG number of cylinders...). This drives 4353 * dosfs just mad... ;-) 4354 */ 4355 } 4356 4357 /* 4358 * The remaining ioctls are changing the state of the 4359 * superblock, so we do not allow them on read-only arrays. 4360 * However non-MD ioctls (e.g. get-size) will still come through 4361 * here and hit the 'default' below, so only disallow 4362 * 'md' ioctls, and switch to rw mode if started auto-readonly. 4363 */ 4364 if (_IOC_TYPE(cmd) == MD_MAJOR && 4365 mddev->ro && mddev->pers) { 4366 if (mddev->ro == 2) { 4367 mddev->ro = 0; 4368 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4369 md_wakeup_thread(mddev->thread); 4370 4371 } else { 4372 err = -EROFS; 4373 goto abort_unlock; 4374 } 4375 } 4376 4377 switch (cmd) 4378 { 4379 case ADD_NEW_DISK: 4380 { 4381 mdu_disk_info_t info; 4382 if (copy_from_user(&info, argp, sizeof(info))) 4383 err = -EFAULT; 4384 else 4385 err = add_new_disk(mddev, &info); 4386 goto done_unlock; 4387 } 4388 4389 case HOT_REMOVE_DISK: 4390 err = hot_remove_disk(mddev, new_decode_dev(arg)); 4391 goto done_unlock; 4392 4393 case HOT_ADD_DISK: 4394 err = hot_add_disk(mddev, new_decode_dev(arg)); 4395 goto done_unlock; 4396 4397 case SET_DISK_FAULTY: 4398 err = set_disk_faulty(mddev, new_decode_dev(arg)); 4399 goto done_unlock; 4400 4401 case RUN_ARRAY: 4402 err = do_md_run (mddev); 4403 goto done_unlock; 4404 4405 case SET_BITMAP_FILE: 4406 err = set_bitmap_file(mddev, (int)arg); 4407 goto done_unlock; 4408 4409 default: 4410 err = -EINVAL; 4411 goto abort_unlock; 4412 } 4413 4414 done_unlock: 4415 abort_unlock: 4416 mddev_unlock(mddev); 4417 4418 return err; 4419 done: 4420 if (err) 4421 MD_BUG(); 4422 abort: 4423 return err; 4424 } 4425 4426 static int md_open(struct inode *inode, struct file *file) 4427 { 4428 /* 4429 * Succeed if we can lock the mddev, which confirms that 4430 * it isn't being stopped right now. 4431 */ 4432 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 4433 int err; 4434 4435 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1))) 4436 goto out; 4437 4438 err = 0; 4439 mddev_get(mddev); 4440 mddev_unlock(mddev); 4441 4442 check_disk_change(inode->i_bdev); 4443 out: 4444 return err; 4445 } 4446 4447 static int md_release(struct inode *inode, struct file * file) 4448 { 4449 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 4450 4451 BUG_ON(!mddev); 4452 mddev_put(mddev); 4453 4454 return 0; 4455 } 4456 4457 static int md_media_changed(struct gendisk *disk) 4458 { 4459 mddev_t *mddev = disk->private_data; 4460 4461 return mddev->changed; 4462 } 4463 4464 static int md_revalidate(struct gendisk *disk) 4465 { 4466 mddev_t *mddev = disk->private_data; 4467 4468 mddev->changed = 0; 4469 return 0; 4470 } 4471 static struct block_device_operations md_fops = 4472 { 4473 .owner = THIS_MODULE, 4474 .open = md_open, 4475 .release = md_release, 4476 .ioctl = md_ioctl, 4477 .getgeo = md_getgeo, 4478 .media_changed = md_media_changed, 4479 .revalidate_disk= md_revalidate, 4480 }; 4481 4482 static int md_thread(void * arg) 4483 { 4484 mdk_thread_t *thread = arg; 4485 4486 /* 4487 * md_thread is a 'system-thread', it's priority should be very 4488 * high. We avoid resource deadlocks individually in each 4489 * raid personality. (RAID5 does preallocation) We also use RR and 4490 * the very same RT priority as kswapd, thus we will never get 4491 * into a priority inversion deadlock. 4492 * 4493 * we definitely have to have equal or higher priority than 4494 * bdflush, otherwise bdflush will deadlock if there are too 4495 * many dirty RAID5 blocks. 4496 */ 4497 4498 current->flags |= PF_NOFREEZE; 4499 allow_signal(SIGKILL); 4500 while (!kthread_should_stop()) { 4501 4502 /* We need to wait INTERRUPTIBLE so that 4503 * we don't add to the load-average. 4504 * That means we need to be sure no signals are 4505 * pending 4506 */ 4507 if (signal_pending(current)) 4508 flush_signals(current); 4509 4510 wait_event_interruptible_timeout 4511 (thread->wqueue, 4512 test_bit(THREAD_WAKEUP, &thread->flags) 4513 || kthread_should_stop(), 4514 thread->timeout); 4515 4516 clear_bit(THREAD_WAKEUP, &thread->flags); 4517 4518 thread->run(thread->mddev); 4519 } 4520 4521 return 0; 4522 } 4523 4524 void md_wakeup_thread(mdk_thread_t *thread) 4525 { 4526 if (thread) { 4527 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 4528 set_bit(THREAD_WAKEUP, &thread->flags); 4529 wake_up(&thread->wqueue); 4530 } 4531 } 4532 4533 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 4534 const char *name) 4535 { 4536 mdk_thread_t *thread; 4537 4538 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 4539 if (!thread) 4540 return NULL; 4541 4542 init_waitqueue_head(&thread->wqueue); 4543 4544 thread->run = run; 4545 thread->mddev = mddev; 4546 thread->timeout = MAX_SCHEDULE_TIMEOUT; 4547 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev)); 4548 if (IS_ERR(thread->tsk)) { 4549 kfree(thread); 4550 return NULL; 4551 } 4552 return thread; 4553 } 4554 4555 void md_unregister_thread(mdk_thread_t *thread) 4556 { 4557 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid); 4558 4559 kthread_stop(thread->tsk); 4560 kfree(thread); 4561 } 4562 4563 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 4564 { 4565 if (!mddev) { 4566 MD_BUG(); 4567 return; 4568 } 4569 4570 if (!rdev || test_bit(Faulty, &rdev->flags)) 4571 return; 4572 /* 4573 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 4574 mdname(mddev), 4575 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 4576 __builtin_return_address(0),__builtin_return_address(1), 4577 __builtin_return_address(2),__builtin_return_address(3)); 4578 */ 4579 if (!mddev->pers) 4580 return; 4581 if (!mddev->pers->error_handler) 4582 return; 4583 mddev->pers->error_handler(mddev,rdev); 4584 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4585 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4586 md_wakeup_thread(mddev->thread); 4587 md_new_event_inintr(mddev); 4588 } 4589 4590 /* seq_file implementation /proc/mdstat */ 4591 4592 static void status_unused(struct seq_file *seq) 4593 { 4594 int i = 0; 4595 mdk_rdev_t *rdev; 4596 struct list_head *tmp; 4597 4598 seq_printf(seq, "unused devices: "); 4599 4600 ITERATE_RDEV_PENDING(rdev,tmp) { 4601 char b[BDEVNAME_SIZE]; 4602 i++; 4603 seq_printf(seq, "%s ", 4604 bdevname(rdev->bdev,b)); 4605 } 4606 if (!i) 4607 seq_printf(seq, "<none>"); 4608 4609 seq_printf(seq, "\n"); 4610 } 4611 4612 4613 static void status_resync(struct seq_file *seq, mddev_t * mddev) 4614 { 4615 sector_t max_blocks, resync, res; 4616 unsigned long dt, db, rt; 4617 int scale; 4618 unsigned int per_milli; 4619 4620 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2; 4621 4622 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 4623 max_blocks = mddev->resync_max_sectors >> 1; 4624 else 4625 max_blocks = mddev->size; 4626 4627 /* 4628 * Should not happen. 4629 */ 4630 if (!max_blocks) { 4631 MD_BUG(); 4632 return; 4633 } 4634 /* Pick 'scale' such that (resync>>scale)*1000 will fit 4635 * in a sector_t, and (max_blocks>>scale) will fit in a 4636 * u32, as those are the requirements for sector_div. 4637 * Thus 'scale' must be at least 10 4638 */ 4639 scale = 10; 4640 if (sizeof(sector_t) > sizeof(unsigned long)) { 4641 while ( max_blocks/2 > (1ULL<<(scale+32))) 4642 scale++; 4643 } 4644 res = (resync>>scale)*1000; 4645 sector_div(res, (u32)((max_blocks>>scale)+1)); 4646 4647 per_milli = res; 4648 { 4649 int i, x = per_milli/50, y = 20-x; 4650 seq_printf(seq, "["); 4651 for (i = 0; i < x; i++) 4652 seq_printf(seq, "="); 4653 seq_printf(seq, ">"); 4654 for (i = 0; i < y; i++) 4655 seq_printf(seq, "."); 4656 seq_printf(seq, "] "); 4657 } 4658 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 4659 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 4660 "reshape" : 4661 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 4662 "check" : 4663 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 4664 "resync" : "recovery"))), 4665 per_milli/10, per_milli % 10, 4666 (unsigned long long) resync, 4667 (unsigned long long) max_blocks); 4668 4669 /* 4670 * We do not want to overflow, so the order of operands and 4671 * the * 100 / 100 trick are important. We do a +1 to be 4672 * safe against division by zero. We only estimate anyway. 4673 * 4674 * dt: time from mark until now 4675 * db: blocks written from mark until now 4676 * rt: remaining time 4677 */ 4678 dt = ((jiffies - mddev->resync_mark) / HZ); 4679 if (!dt) dt++; 4680 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 4681 - mddev->resync_mark_cnt; 4682 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100; 4683 4684 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6); 4685 4686 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 4687 } 4688 4689 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 4690 { 4691 struct list_head *tmp; 4692 loff_t l = *pos; 4693 mddev_t *mddev; 4694 4695 if (l >= 0x10000) 4696 return NULL; 4697 if (!l--) 4698 /* header */ 4699 return (void*)1; 4700 4701 spin_lock(&all_mddevs_lock); 4702 list_for_each(tmp,&all_mddevs) 4703 if (!l--) { 4704 mddev = list_entry(tmp, mddev_t, all_mddevs); 4705 mddev_get(mddev); 4706 spin_unlock(&all_mddevs_lock); 4707 return mddev; 4708 } 4709 spin_unlock(&all_mddevs_lock); 4710 if (!l--) 4711 return (void*)2;/* tail */ 4712 return NULL; 4713 } 4714 4715 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4716 { 4717 struct list_head *tmp; 4718 mddev_t *next_mddev, *mddev = v; 4719 4720 ++*pos; 4721 if (v == (void*)2) 4722 return NULL; 4723 4724 spin_lock(&all_mddevs_lock); 4725 if (v == (void*)1) 4726 tmp = all_mddevs.next; 4727 else 4728 tmp = mddev->all_mddevs.next; 4729 if (tmp != &all_mddevs) 4730 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 4731 else { 4732 next_mddev = (void*)2; 4733 *pos = 0x10000; 4734 } 4735 spin_unlock(&all_mddevs_lock); 4736 4737 if (v != (void*)1) 4738 mddev_put(mddev); 4739 return next_mddev; 4740 4741 } 4742 4743 static void md_seq_stop(struct seq_file *seq, void *v) 4744 { 4745 mddev_t *mddev = v; 4746 4747 if (mddev && v != (void*)1 && v != (void*)2) 4748 mddev_put(mddev); 4749 } 4750 4751 struct mdstat_info { 4752 int event; 4753 }; 4754 4755 static int md_seq_show(struct seq_file *seq, void *v) 4756 { 4757 mddev_t *mddev = v; 4758 sector_t size; 4759 struct list_head *tmp2; 4760 mdk_rdev_t *rdev; 4761 struct mdstat_info *mi = seq->private; 4762 struct bitmap *bitmap; 4763 4764 if (v == (void*)1) { 4765 struct mdk_personality *pers; 4766 seq_printf(seq, "Personalities : "); 4767 spin_lock(&pers_lock); 4768 list_for_each_entry(pers, &pers_list, list) 4769 seq_printf(seq, "[%s] ", pers->name); 4770 4771 spin_unlock(&pers_lock); 4772 seq_printf(seq, "\n"); 4773 mi->event = atomic_read(&md_event_count); 4774 return 0; 4775 } 4776 if (v == (void*)2) { 4777 status_unused(seq); 4778 return 0; 4779 } 4780 4781 if (mddev_lock(mddev) < 0) 4782 return -EINTR; 4783 4784 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 4785 seq_printf(seq, "%s : %sactive", mdname(mddev), 4786 mddev->pers ? "" : "in"); 4787 if (mddev->pers) { 4788 if (mddev->ro==1) 4789 seq_printf(seq, " (read-only)"); 4790 if (mddev->ro==2) 4791 seq_printf(seq, "(auto-read-only)"); 4792 seq_printf(seq, " %s", mddev->pers->name); 4793 } 4794 4795 size = 0; 4796 ITERATE_RDEV(mddev,rdev,tmp2) { 4797 char b[BDEVNAME_SIZE]; 4798 seq_printf(seq, " %s[%d]", 4799 bdevname(rdev->bdev,b), rdev->desc_nr); 4800 if (test_bit(WriteMostly, &rdev->flags)) 4801 seq_printf(seq, "(W)"); 4802 if (test_bit(Faulty, &rdev->flags)) { 4803 seq_printf(seq, "(F)"); 4804 continue; 4805 } else if (rdev->raid_disk < 0) 4806 seq_printf(seq, "(S)"); /* spare */ 4807 size += rdev->size; 4808 } 4809 4810 if (!list_empty(&mddev->disks)) { 4811 if (mddev->pers) 4812 seq_printf(seq, "\n %llu blocks", 4813 (unsigned long long)mddev->array_size); 4814 else 4815 seq_printf(seq, "\n %llu blocks", 4816 (unsigned long long)size); 4817 } 4818 if (mddev->persistent) { 4819 if (mddev->major_version != 0 || 4820 mddev->minor_version != 90) { 4821 seq_printf(seq," super %d.%d", 4822 mddev->major_version, 4823 mddev->minor_version); 4824 } 4825 } else 4826 seq_printf(seq, " super non-persistent"); 4827 4828 if (mddev->pers) { 4829 mddev->pers->status (seq, mddev); 4830 seq_printf(seq, "\n "); 4831 if (mddev->pers->sync_request) { 4832 if (mddev->curr_resync > 2) { 4833 status_resync (seq, mddev); 4834 seq_printf(seq, "\n "); 4835 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 4836 seq_printf(seq, "\tresync=DELAYED\n "); 4837 else if (mddev->recovery_cp < MaxSector) 4838 seq_printf(seq, "\tresync=PENDING\n "); 4839 } 4840 } else 4841 seq_printf(seq, "\n "); 4842 4843 if ((bitmap = mddev->bitmap)) { 4844 unsigned long chunk_kb; 4845 unsigned long flags; 4846 spin_lock_irqsave(&bitmap->lock, flags); 4847 chunk_kb = bitmap->chunksize >> 10; 4848 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 4849 "%lu%s chunk", 4850 bitmap->pages - bitmap->missing_pages, 4851 bitmap->pages, 4852 (bitmap->pages - bitmap->missing_pages) 4853 << (PAGE_SHIFT - 10), 4854 chunk_kb ? chunk_kb : bitmap->chunksize, 4855 chunk_kb ? "KB" : "B"); 4856 if (bitmap->file) { 4857 seq_printf(seq, ", file: "); 4858 seq_path(seq, bitmap->file->f_path.mnt, 4859 bitmap->file->f_path.dentry," \t\n"); 4860 } 4861 4862 seq_printf(seq, "\n"); 4863 spin_unlock_irqrestore(&bitmap->lock, flags); 4864 } 4865 4866 seq_printf(seq, "\n"); 4867 } 4868 mddev_unlock(mddev); 4869 4870 return 0; 4871 } 4872 4873 static struct seq_operations md_seq_ops = { 4874 .start = md_seq_start, 4875 .next = md_seq_next, 4876 .stop = md_seq_stop, 4877 .show = md_seq_show, 4878 }; 4879 4880 static int md_seq_open(struct inode *inode, struct file *file) 4881 { 4882 int error; 4883 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 4884 if (mi == NULL) 4885 return -ENOMEM; 4886 4887 error = seq_open(file, &md_seq_ops); 4888 if (error) 4889 kfree(mi); 4890 else { 4891 struct seq_file *p = file->private_data; 4892 p->private = mi; 4893 mi->event = atomic_read(&md_event_count); 4894 } 4895 return error; 4896 } 4897 4898 static int md_seq_release(struct inode *inode, struct file *file) 4899 { 4900 struct seq_file *m = file->private_data; 4901 struct mdstat_info *mi = m->private; 4902 m->private = NULL; 4903 kfree(mi); 4904 return seq_release(inode, file); 4905 } 4906 4907 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 4908 { 4909 struct seq_file *m = filp->private_data; 4910 struct mdstat_info *mi = m->private; 4911 int mask; 4912 4913 poll_wait(filp, &md_event_waiters, wait); 4914 4915 /* always allow read */ 4916 mask = POLLIN | POLLRDNORM; 4917 4918 if (mi->event != atomic_read(&md_event_count)) 4919 mask |= POLLERR | POLLPRI; 4920 return mask; 4921 } 4922 4923 static struct file_operations md_seq_fops = { 4924 .owner = THIS_MODULE, 4925 .open = md_seq_open, 4926 .read = seq_read, 4927 .llseek = seq_lseek, 4928 .release = md_seq_release, 4929 .poll = mdstat_poll, 4930 }; 4931 4932 int register_md_personality(struct mdk_personality *p) 4933 { 4934 spin_lock(&pers_lock); 4935 list_add_tail(&p->list, &pers_list); 4936 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 4937 spin_unlock(&pers_lock); 4938 return 0; 4939 } 4940 4941 int unregister_md_personality(struct mdk_personality *p) 4942 { 4943 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 4944 spin_lock(&pers_lock); 4945 list_del_init(&p->list); 4946 spin_unlock(&pers_lock); 4947 return 0; 4948 } 4949 4950 static int is_mddev_idle(mddev_t *mddev) 4951 { 4952 mdk_rdev_t * rdev; 4953 struct list_head *tmp; 4954 int idle; 4955 unsigned long curr_events; 4956 4957 idle = 1; 4958 ITERATE_RDEV(mddev,rdev,tmp) { 4959 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 4960 curr_events = disk_stat_read(disk, sectors[0]) + 4961 disk_stat_read(disk, sectors[1]) - 4962 atomic_read(&disk->sync_io); 4963 /* The difference between curr_events and last_events 4964 * will be affected by any new non-sync IO (making 4965 * curr_events bigger) and any difference in the amount of 4966 * in-flight syncio (making current_events bigger or smaller) 4967 * The amount in-flight is currently limited to 4968 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6 4969 * which is at most 4096 sectors. 4970 * These numbers are fairly fragile and should be made 4971 * more robust, probably by enforcing the 4972 * 'window size' that md_do_sync sort-of uses. 4973 * 4974 * Note: the following is an unsigned comparison. 4975 */ 4976 if ((curr_events - rdev->last_events + 4096) > 8192) { 4977 rdev->last_events = curr_events; 4978 idle = 0; 4979 } 4980 } 4981 return idle; 4982 } 4983 4984 void md_done_sync(mddev_t *mddev, int blocks, int ok) 4985 { 4986 /* another "blocks" (512byte) blocks have been synced */ 4987 atomic_sub(blocks, &mddev->recovery_active); 4988 wake_up(&mddev->recovery_wait); 4989 if (!ok) { 4990 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 4991 md_wakeup_thread(mddev->thread); 4992 // stop recovery, signal do_sync .... 4993 } 4994 } 4995 4996 4997 /* md_write_start(mddev, bi) 4998 * If we need to update some array metadata (e.g. 'active' flag 4999 * in superblock) before writing, schedule a superblock update 5000 * and wait for it to complete. 5001 */ 5002 void md_write_start(mddev_t *mddev, struct bio *bi) 5003 { 5004 if (bio_data_dir(bi) != WRITE) 5005 return; 5006 5007 BUG_ON(mddev->ro == 1); 5008 if (mddev->ro == 2) { 5009 /* need to switch to read/write */ 5010 mddev->ro = 0; 5011 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5012 md_wakeup_thread(mddev->thread); 5013 } 5014 atomic_inc(&mddev->writes_pending); 5015 if (mddev->in_sync) { 5016 spin_lock_irq(&mddev->write_lock); 5017 if (mddev->in_sync) { 5018 mddev->in_sync = 0; 5019 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5020 md_wakeup_thread(mddev->thread); 5021 } 5022 spin_unlock_irq(&mddev->write_lock); 5023 } 5024 wait_event(mddev->sb_wait, mddev->flags==0); 5025 } 5026 5027 void md_write_end(mddev_t *mddev) 5028 { 5029 if (atomic_dec_and_test(&mddev->writes_pending)) { 5030 if (mddev->safemode == 2) 5031 md_wakeup_thread(mddev->thread); 5032 else if (mddev->safemode_delay) 5033 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 5034 } 5035 } 5036 5037 /* md_allow_write(mddev) 5038 * Calling this ensures that the array is marked 'active' so that writes 5039 * may proceed without blocking. It is important to call this before 5040 * attempting a GFP_KERNEL allocation while holding the mddev lock. 5041 * Must be called with mddev_lock held. 5042 */ 5043 void md_allow_write(mddev_t *mddev) 5044 { 5045 if (!mddev->pers) 5046 return; 5047 if (mddev->ro) 5048 return; 5049 5050 spin_lock_irq(&mddev->write_lock); 5051 if (mddev->in_sync) { 5052 mddev->in_sync = 0; 5053 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5054 if (mddev->safemode_delay && 5055 mddev->safemode == 0) 5056 mddev->safemode = 1; 5057 spin_unlock_irq(&mddev->write_lock); 5058 md_update_sb(mddev, 0); 5059 } else 5060 spin_unlock_irq(&mddev->write_lock); 5061 } 5062 EXPORT_SYMBOL_GPL(md_allow_write); 5063 5064 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 5065 5066 #define SYNC_MARKS 10 5067 #define SYNC_MARK_STEP (3*HZ) 5068 void md_do_sync(mddev_t *mddev) 5069 { 5070 mddev_t *mddev2; 5071 unsigned int currspeed = 0, 5072 window; 5073 sector_t max_sectors,j, io_sectors; 5074 unsigned long mark[SYNC_MARKS]; 5075 sector_t mark_cnt[SYNC_MARKS]; 5076 int last_mark,m; 5077 struct list_head *tmp; 5078 sector_t last_check; 5079 int skipped = 0; 5080 struct list_head *rtmp; 5081 mdk_rdev_t *rdev; 5082 char *desc; 5083 5084 /* just incase thread restarts... */ 5085 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 5086 return; 5087 if (mddev->ro) /* never try to sync a read-only array */ 5088 return; 5089 5090 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5091 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 5092 desc = "data-check"; 5093 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5094 desc = "requested-resync"; 5095 else 5096 desc = "resync"; 5097 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5098 desc = "reshape"; 5099 else 5100 desc = "recovery"; 5101 5102 /* we overload curr_resync somewhat here. 5103 * 0 == not engaged in resync at all 5104 * 2 == checking that there is no conflict with another sync 5105 * 1 == like 2, but have yielded to allow conflicting resync to 5106 * commense 5107 * other == active in resync - this many blocks 5108 * 5109 * Before starting a resync we must have set curr_resync to 5110 * 2, and then checked that every "conflicting" array has curr_resync 5111 * less than ours. When we find one that is the same or higher 5112 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 5113 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 5114 * This will mean we have to start checking from the beginning again. 5115 * 5116 */ 5117 5118 do { 5119 mddev->curr_resync = 2; 5120 5121 try_again: 5122 if (kthread_should_stop()) { 5123 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5124 goto skip; 5125 } 5126 ITERATE_MDDEV(mddev2,tmp) { 5127 if (mddev2 == mddev) 5128 continue; 5129 if (mddev2->curr_resync && 5130 match_mddev_units(mddev,mddev2)) { 5131 DEFINE_WAIT(wq); 5132 if (mddev < mddev2 && mddev->curr_resync == 2) { 5133 /* arbitrarily yield */ 5134 mddev->curr_resync = 1; 5135 wake_up(&resync_wait); 5136 } 5137 if (mddev > mddev2 && mddev->curr_resync == 1) 5138 /* no need to wait here, we can wait the next 5139 * time 'round when curr_resync == 2 5140 */ 5141 continue; 5142 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE); 5143 if (!kthread_should_stop() && 5144 mddev2->curr_resync >= mddev->curr_resync) { 5145 printk(KERN_INFO "md: delaying %s of %s" 5146 " until %s has finished (they" 5147 " share one or more physical units)\n", 5148 desc, mdname(mddev), mdname(mddev2)); 5149 mddev_put(mddev2); 5150 schedule(); 5151 finish_wait(&resync_wait, &wq); 5152 goto try_again; 5153 } 5154 finish_wait(&resync_wait, &wq); 5155 } 5156 } 5157 } while (mddev->curr_resync < 2); 5158 5159 j = 0; 5160 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5161 /* resync follows the size requested by the personality, 5162 * which defaults to physical size, but can be virtual size 5163 */ 5164 max_sectors = mddev->resync_max_sectors; 5165 mddev->resync_mismatches = 0; 5166 /* we don't use the checkpoint if there's a bitmap */ 5167 if (!mddev->bitmap && 5168 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5169 j = mddev->recovery_cp; 5170 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5171 max_sectors = mddev->size << 1; 5172 else { 5173 /* recovery follows the physical size of devices */ 5174 max_sectors = mddev->size << 1; 5175 j = MaxSector; 5176 ITERATE_RDEV(mddev,rdev,rtmp) 5177 if (rdev->raid_disk >= 0 && 5178 !test_bit(Faulty, &rdev->flags) && 5179 !test_bit(In_sync, &rdev->flags) && 5180 rdev->recovery_offset < j) 5181 j = rdev->recovery_offset; 5182 } 5183 5184 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 5185 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 5186 " %d KB/sec/disk.\n", speed_min(mddev)); 5187 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 5188 "(but not more than %d KB/sec) for %s.\n", 5189 speed_max(mddev), desc); 5190 5191 is_mddev_idle(mddev); /* this also initializes IO event counters */ 5192 5193 io_sectors = 0; 5194 for (m = 0; m < SYNC_MARKS; m++) { 5195 mark[m] = jiffies; 5196 mark_cnt[m] = io_sectors; 5197 } 5198 last_mark = 0; 5199 mddev->resync_mark = mark[last_mark]; 5200 mddev->resync_mark_cnt = mark_cnt[last_mark]; 5201 5202 /* 5203 * Tune reconstruction: 5204 */ 5205 window = 32*(PAGE_SIZE/512); 5206 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 5207 window/2,(unsigned long long) max_sectors/2); 5208 5209 atomic_set(&mddev->recovery_active, 0); 5210 init_waitqueue_head(&mddev->recovery_wait); 5211 last_check = 0; 5212 5213 if (j>2) { 5214 printk(KERN_INFO 5215 "md: resuming %s of %s from checkpoint.\n", 5216 desc, mdname(mddev)); 5217 mddev->curr_resync = j; 5218 } 5219 5220 while (j < max_sectors) { 5221 sector_t sectors; 5222 5223 skipped = 0; 5224 sectors = mddev->pers->sync_request(mddev, j, &skipped, 5225 currspeed < speed_min(mddev)); 5226 if (sectors == 0) { 5227 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 5228 goto out; 5229 } 5230 5231 if (!skipped) { /* actual IO requested */ 5232 io_sectors += sectors; 5233 atomic_add(sectors, &mddev->recovery_active); 5234 } 5235 5236 j += sectors; 5237 if (j>1) mddev->curr_resync = j; 5238 mddev->curr_mark_cnt = io_sectors; 5239 if (last_check == 0) 5240 /* this is the earliers that rebuilt will be 5241 * visible in /proc/mdstat 5242 */ 5243 md_new_event(mddev); 5244 5245 if (last_check + window > io_sectors || j == max_sectors) 5246 continue; 5247 5248 last_check = io_sectors; 5249 5250 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) || 5251 test_bit(MD_RECOVERY_ERR, &mddev->recovery)) 5252 break; 5253 5254 repeat: 5255 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 5256 /* step marks */ 5257 int next = (last_mark+1) % SYNC_MARKS; 5258 5259 mddev->resync_mark = mark[next]; 5260 mddev->resync_mark_cnt = mark_cnt[next]; 5261 mark[next] = jiffies; 5262 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 5263 last_mark = next; 5264 } 5265 5266 5267 if (kthread_should_stop()) { 5268 /* 5269 * got a signal, exit. 5270 */ 5271 printk(KERN_INFO 5272 "md: md_do_sync() got signal ... exiting\n"); 5273 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5274 goto out; 5275 } 5276 5277 /* 5278 * this loop exits only if either when we are slower than 5279 * the 'hard' speed limit, or the system was IO-idle for 5280 * a jiffy. 5281 * the system might be non-idle CPU-wise, but we only care 5282 * about not overloading the IO subsystem. (things like an 5283 * e2fsck being done on the RAID array should execute fast) 5284 */ 5285 mddev->queue->unplug_fn(mddev->queue); 5286 cond_resched(); 5287 5288 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 5289 /((jiffies-mddev->resync_mark)/HZ +1) +1; 5290 5291 if (currspeed > speed_min(mddev)) { 5292 if ((currspeed > speed_max(mddev)) || 5293 !is_mddev_idle(mddev)) { 5294 msleep(500); 5295 goto repeat; 5296 } 5297 } 5298 } 5299 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 5300 /* 5301 * this also signals 'finished resyncing' to md_stop 5302 */ 5303 out: 5304 mddev->queue->unplug_fn(mddev->queue); 5305 5306 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 5307 5308 /* tell personality that we are finished */ 5309 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 5310 5311 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && 5312 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 5313 mddev->curr_resync > 2) { 5314 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5315 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5316 if (mddev->curr_resync >= mddev->recovery_cp) { 5317 printk(KERN_INFO 5318 "md: checkpointing %s of %s.\n", 5319 desc, mdname(mddev)); 5320 mddev->recovery_cp = mddev->curr_resync; 5321 } 5322 } else 5323 mddev->recovery_cp = MaxSector; 5324 } else { 5325 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5326 mddev->curr_resync = MaxSector; 5327 ITERATE_RDEV(mddev,rdev,rtmp) 5328 if (rdev->raid_disk >= 0 && 5329 !test_bit(Faulty, &rdev->flags) && 5330 !test_bit(In_sync, &rdev->flags) && 5331 rdev->recovery_offset < mddev->curr_resync) 5332 rdev->recovery_offset = mddev->curr_resync; 5333 } 5334 } 5335 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5336 5337 skip: 5338 mddev->curr_resync = 0; 5339 wake_up(&resync_wait); 5340 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 5341 md_wakeup_thread(mddev->thread); 5342 } 5343 EXPORT_SYMBOL_GPL(md_do_sync); 5344 5345 5346 /* 5347 * This routine is regularly called by all per-raid-array threads to 5348 * deal with generic issues like resync and super-block update. 5349 * Raid personalities that don't have a thread (linear/raid0) do not 5350 * need this as they never do any recovery or update the superblock. 5351 * 5352 * It does not do any resync itself, but rather "forks" off other threads 5353 * to do that as needed. 5354 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 5355 * "->recovery" and create a thread at ->sync_thread. 5356 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR) 5357 * and wakeups up this thread which will reap the thread and finish up. 5358 * This thread also removes any faulty devices (with nr_pending == 0). 5359 * 5360 * The overall approach is: 5361 * 1/ if the superblock needs updating, update it. 5362 * 2/ If a recovery thread is running, don't do anything else. 5363 * 3/ If recovery has finished, clean up, possibly marking spares active. 5364 * 4/ If there are any faulty devices, remove them. 5365 * 5/ If array is degraded, try to add spares devices 5366 * 6/ If array has spares or is not in-sync, start a resync thread. 5367 */ 5368 void md_check_recovery(mddev_t *mddev) 5369 { 5370 mdk_rdev_t *rdev; 5371 struct list_head *rtmp; 5372 5373 5374 if (mddev->bitmap) 5375 bitmap_daemon_work(mddev->bitmap); 5376 5377 if (mddev->ro) 5378 return; 5379 5380 if (signal_pending(current)) { 5381 if (mddev->pers->sync_request) { 5382 printk(KERN_INFO "md: %s in immediate safe mode\n", 5383 mdname(mddev)); 5384 mddev->safemode = 2; 5385 } 5386 flush_signals(current); 5387 } 5388 5389 if ( ! ( 5390 mddev->flags || 5391 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 5392 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 5393 (mddev->safemode == 1) || 5394 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 5395 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 5396 )) 5397 return; 5398 5399 if (mddev_trylock(mddev)) { 5400 int spares =0; 5401 5402 spin_lock_irq(&mddev->write_lock); 5403 if (mddev->safemode && !atomic_read(&mddev->writes_pending) && 5404 !mddev->in_sync && mddev->recovery_cp == MaxSector) { 5405 mddev->in_sync = 1; 5406 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5407 } 5408 if (mddev->safemode == 1) 5409 mddev->safemode = 0; 5410 spin_unlock_irq(&mddev->write_lock); 5411 5412 if (mddev->flags) 5413 md_update_sb(mddev, 0); 5414 5415 5416 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 5417 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 5418 /* resync/recovery still happening */ 5419 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5420 goto unlock; 5421 } 5422 if (mddev->sync_thread) { 5423 /* resync has finished, collect result */ 5424 md_unregister_thread(mddev->sync_thread); 5425 mddev->sync_thread = NULL; 5426 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && 5427 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5428 /* success...*/ 5429 /* activate any spares */ 5430 mddev->pers->spare_active(mddev); 5431 } 5432 md_update_sb(mddev, 1); 5433 5434 /* if array is no-longer degraded, then any saved_raid_disk 5435 * information must be scrapped 5436 */ 5437 if (!mddev->degraded) 5438 ITERATE_RDEV(mddev,rdev,rtmp) 5439 rdev->saved_raid_disk = -1; 5440 5441 mddev->recovery = 0; 5442 /* flag recovery needed just to double check */ 5443 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5444 md_new_event(mddev); 5445 goto unlock; 5446 } 5447 /* Clear some bits that don't mean anything, but 5448 * might be left set 5449 */ 5450 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5451 clear_bit(MD_RECOVERY_ERR, &mddev->recovery); 5452 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 5453 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 5454 5455 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 5456 goto unlock; 5457 /* no recovery is running. 5458 * remove any failed drives, then 5459 * add spares if possible. 5460 * Spare are also removed and re-added, to allow 5461 * the personality to fail the re-add. 5462 */ 5463 ITERATE_RDEV(mddev,rdev,rtmp) 5464 if (rdev->raid_disk >= 0 && 5465 (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) && 5466 atomic_read(&rdev->nr_pending)==0) { 5467 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) { 5468 char nm[20]; 5469 sprintf(nm,"rd%d", rdev->raid_disk); 5470 sysfs_remove_link(&mddev->kobj, nm); 5471 rdev->raid_disk = -1; 5472 } 5473 } 5474 5475 if (mddev->degraded) { 5476 ITERATE_RDEV(mddev,rdev,rtmp) 5477 if (rdev->raid_disk < 0 5478 && !test_bit(Faulty, &rdev->flags)) { 5479 rdev->recovery_offset = 0; 5480 if (mddev->pers->hot_add_disk(mddev,rdev)) { 5481 char nm[20]; 5482 sprintf(nm, "rd%d", rdev->raid_disk); 5483 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm); 5484 spares++; 5485 md_new_event(mddev); 5486 } else 5487 break; 5488 } 5489 } 5490 5491 if (spares) { 5492 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5493 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5494 } else if (mddev->recovery_cp < MaxSector) { 5495 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5496 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 5497 /* nothing to be done ... */ 5498 goto unlock; 5499 5500 if (mddev->pers->sync_request) { 5501 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5502 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 5503 /* We are adding a device or devices to an array 5504 * which has the bitmap stored on all devices. 5505 * So make sure all bitmap pages get written 5506 */ 5507 bitmap_write_all(mddev->bitmap); 5508 } 5509 mddev->sync_thread = md_register_thread(md_do_sync, 5510 mddev, 5511 "%s_resync"); 5512 if (!mddev->sync_thread) { 5513 printk(KERN_ERR "%s: could not start resync" 5514 " thread...\n", 5515 mdname(mddev)); 5516 /* leave the spares where they are, it shouldn't hurt */ 5517 mddev->recovery = 0; 5518 } else 5519 md_wakeup_thread(mddev->sync_thread); 5520 md_new_event(mddev); 5521 } 5522 unlock: 5523 mddev_unlock(mddev); 5524 } 5525 } 5526 5527 static int md_notify_reboot(struct notifier_block *this, 5528 unsigned long code, void *x) 5529 { 5530 struct list_head *tmp; 5531 mddev_t *mddev; 5532 5533 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 5534 5535 printk(KERN_INFO "md: stopping all md devices.\n"); 5536 5537 ITERATE_MDDEV(mddev,tmp) 5538 if (mddev_trylock(mddev)) { 5539 do_md_stop (mddev, 1); 5540 mddev_unlock(mddev); 5541 } 5542 /* 5543 * certain more exotic SCSI devices are known to be 5544 * volatile wrt too early system reboots. While the 5545 * right place to handle this issue is the given 5546 * driver, we do want to have a safe RAID driver ... 5547 */ 5548 mdelay(1000*1); 5549 } 5550 return NOTIFY_DONE; 5551 } 5552 5553 static struct notifier_block md_notifier = { 5554 .notifier_call = md_notify_reboot, 5555 .next = NULL, 5556 .priority = INT_MAX, /* before any real devices */ 5557 }; 5558 5559 static void md_geninit(void) 5560 { 5561 struct proc_dir_entry *p; 5562 5563 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 5564 5565 p = create_proc_entry("mdstat", S_IRUGO, NULL); 5566 if (p) 5567 p->proc_fops = &md_seq_fops; 5568 } 5569 5570 static int __init md_init(void) 5571 { 5572 if (register_blkdev(MAJOR_NR, "md")) 5573 return -1; 5574 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 5575 unregister_blkdev(MAJOR_NR, "md"); 5576 return -1; 5577 } 5578 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE, 5579 md_probe, NULL, NULL); 5580 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 5581 md_probe, NULL, NULL); 5582 5583 register_reboot_notifier(&md_notifier); 5584 raid_table_header = register_sysctl_table(raid_root_table, 1); 5585 5586 md_geninit(); 5587 return (0); 5588 } 5589 5590 5591 #ifndef MODULE 5592 5593 /* 5594 * Searches all registered partitions for autorun RAID arrays 5595 * at boot time. 5596 */ 5597 static dev_t detected_devices[128]; 5598 static int dev_cnt; 5599 5600 void md_autodetect_dev(dev_t dev) 5601 { 5602 if (dev_cnt >= 0 && dev_cnt < 127) 5603 detected_devices[dev_cnt++] = dev; 5604 } 5605 5606 5607 static void autostart_arrays(int part) 5608 { 5609 mdk_rdev_t *rdev; 5610 int i; 5611 5612 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 5613 5614 for (i = 0; i < dev_cnt; i++) { 5615 dev_t dev = detected_devices[i]; 5616 5617 rdev = md_import_device(dev,0, 0); 5618 if (IS_ERR(rdev)) 5619 continue; 5620 5621 if (test_bit(Faulty, &rdev->flags)) { 5622 MD_BUG(); 5623 continue; 5624 } 5625 list_add(&rdev->same_set, &pending_raid_disks); 5626 } 5627 dev_cnt = 0; 5628 5629 autorun_devices(part); 5630 } 5631 5632 #endif /* !MODULE */ 5633 5634 static __exit void md_exit(void) 5635 { 5636 mddev_t *mddev; 5637 struct list_head *tmp; 5638 5639 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS); 5640 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 5641 5642 unregister_blkdev(MAJOR_NR,"md"); 5643 unregister_blkdev(mdp_major, "mdp"); 5644 unregister_reboot_notifier(&md_notifier); 5645 unregister_sysctl_table(raid_table_header); 5646 remove_proc_entry("mdstat", NULL); 5647 ITERATE_MDDEV(mddev,tmp) { 5648 struct gendisk *disk = mddev->gendisk; 5649 if (!disk) 5650 continue; 5651 export_array(mddev); 5652 del_gendisk(disk); 5653 put_disk(disk); 5654 mddev->gendisk = NULL; 5655 mddev_put(mddev); 5656 } 5657 } 5658 5659 module_init(md_init) 5660 module_exit(md_exit) 5661 5662 static int get_ro(char *buffer, struct kernel_param *kp) 5663 { 5664 return sprintf(buffer, "%d", start_readonly); 5665 } 5666 static int set_ro(const char *val, struct kernel_param *kp) 5667 { 5668 char *e; 5669 int num = simple_strtoul(val, &e, 10); 5670 if (*val && (*e == '\0' || *e == '\n')) { 5671 start_readonly = num; 5672 return 0; 5673 } 5674 return -EINVAL; 5675 } 5676 5677 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 5678 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 5679 5680 5681 EXPORT_SYMBOL(register_md_personality); 5682 EXPORT_SYMBOL(unregister_md_personality); 5683 EXPORT_SYMBOL(md_error); 5684 EXPORT_SYMBOL(md_done_sync); 5685 EXPORT_SYMBOL(md_write_start); 5686 EXPORT_SYMBOL(md_write_end); 5687 EXPORT_SYMBOL(md_register_thread); 5688 EXPORT_SYMBOL(md_unregister_thread); 5689 EXPORT_SYMBOL(md_wakeup_thread); 5690 EXPORT_SYMBOL(md_check_recovery); 5691 MODULE_LICENSE("GPL"); 5692 MODULE_ALIAS("md"); 5693 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 5694