xref: /linux/drivers/md/md.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/kthread.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/buffer_head.h> /* for invalidate_bdev */
42 #include <linux/poll.h>
43 #include <linux/mutex.h>
44 #include <linux/ctype.h>
45 #include <linux/freezer.h>
46 
47 #include <linux/init.h>
48 
49 #include <linux/file.h>
50 
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54 
55 #include <asm/unaligned.h>
56 
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59 
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62 
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65 
66 
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70 
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
73 
74 static void md_print_devices(void);
75 
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77 
78 /*
79  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
80  * is 1000 KB/sec, so the extra system load does not show up that much.
81  * Increase it if you want to have more _guaranteed_ speed. Note that
82  * the RAID driver will use the maximum available bandwidth if the IO
83  * subsystem is idle. There is also an 'absolute maximum' reconstruction
84  * speed limit - in case reconstruction slows down your system despite
85  * idle IO detection.
86  *
87  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
88  * or /sys/block/mdX/md/sync_speed_{min,max}
89  */
90 
91 static int sysctl_speed_limit_min = 1000;
92 static int sysctl_speed_limit_max = 200000;
93 static inline int speed_min(mddev_t *mddev)
94 {
95 	return mddev->sync_speed_min ?
96 		mddev->sync_speed_min : sysctl_speed_limit_min;
97 }
98 
99 static inline int speed_max(mddev_t *mddev)
100 {
101 	return mddev->sync_speed_max ?
102 		mddev->sync_speed_max : sysctl_speed_limit_max;
103 }
104 
105 static struct ctl_table_header *raid_table_header;
106 
107 static ctl_table raid_table[] = {
108 	{
109 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
110 		.procname	= "speed_limit_min",
111 		.data		= &sysctl_speed_limit_min,
112 		.maxlen		= sizeof(int),
113 		.mode		= S_IRUGO|S_IWUSR,
114 		.proc_handler	= &proc_dointvec,
115 	},
116 	{
117 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
118 		.procname	= "speed_limit_max",
119 		.data		= &sysctl_speed_limit_max,
120 		.maxlen		= sizeof(int),
121 		.mode		= S_IRUGO|S_IWUSR,
122 		.proc_handler	= &proc_dointvec,
123 	},
124 	{ .ctl_name = 0 }
125 };
126 
127 static ctl_table raid_dir_table[] = {
128 	{
129 		.ctl_name	= DEV_RAID,
130 		.procname	= "raid",
131 		.maxlen		= 0,
132 		.mode		= S_IRUGO|S_IXUGO,
133 		.child		= raid_table,
134 	},
135 	{ .ctl_name = 0 }
136 };
137 
138 static ctl_table raid_root_table[] = {
139 	{
140 		.ctl_name	= CTL_DEV,
141 		.procname	= "dev",
142 		.maxlen		= 0,
143 		.mode		= 0555,
144 		.child		= raid_dir_table,
145 	},
146 	{ .ctl_name = 0 }
147 };
148 
149 static struct block_device_operations md_fops;
150 
151 static int start_readonly;
152 
153 /*
154  * We have a system wide 'event count' that is incremented
155  * on any 'interesting' event, and readers of /proc/mdstat
156  * can use 'poll' or 'select' to find out when the event
157  * count increases.
158  *
159  * Events are:
160  *  start array, stop array, error, add device, remove device,
161  *  start build, activate spare
162  */
163 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
164 static atomic_t md_event_count;
165 void md_new_event(mddev_t *mddev)
166 {
167 	atomic_inc(&md_event_count);
168 	wake_up(&md_event_waiters);
169 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
170 }
171 EXPORT_SYMBOL_GPL(md_new_event);
172 
173 /* Alternate version that can be called from interrupts
174  * when calling sysfs_notify isn't needed.
175  */
176 static void md_new_event_inintr(mddev_t *mddev)
177 {
178 	atomic_inc(&md_event_count);
179 	wake_up(&md_event_waiters);
180 }
181 
182 /*
183  * Enables to iterate over all existing md arrays
184  * all_mddevs_lock protects this list.
185  */
186 static LIST_HEAD(all_mddevs);
187 static DEFINE_SPINLOCK(all_mddevs_lock);
188 
189 
190 /*
191  * iterates through all used mddevs in the system.
192  * We take care to grab the all_mddevs_lock whenever navigating
193  * the list, and to always hold a refcount when unlocked.
194  * Any code which breaks out of this loop while own
195  * a reference to the current mddev and must mddev_put it.
196  */
197 #define ITERATE_MDDEV(mddev,tmp)					\
198 									\
199 	for (({ spin_lock(&all_mddevs_lock); 				\
200 		tmp = all_mddevs.next;					\
201 		mddev = NULL;});					\
202 	     ({ if (tmp != &all_mddevs)					\
203 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
204 		spin_unlock(&all_mddevs_lock);				\
205 		if (mddev) mddev_put(mddev);				\
206 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
207 		tmp != &all_mddevs;});					\
208 	     ({ spin_lock(&all_mddevs_lock);				\
209 		tmp = tmp->next;})					\
210 		)
211 
212 
213 static int md_fail_request (request_queue_t *q, struct bio *bio)
214 {
215 	bio_io_error(bio, bio->bi_size);
216 	return 0;
217 }
218 
219 static inline mddev_t *mddev_get(mddev_t *mddev)
220 {
221 	atomic_inc(&mddev->active);
222 	return mddev;
223 }
224 
225 static void mddev_put(mddev_t *mddev)
226 {
227 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
228 		return;
229 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
230 		list_del(&mddev->all_mddevs);
231 		spin_unlock(&all_mddevs_lock);
232 		blk_cleanup_queue(mddev->queue);
233 		kobject_unregister(&mddev->kobj);
234 	} else
235 		spin_unlock(&all_mddevs_lock);
236 }
237 
238 static mddev_t * mddev_find(dev_t unit)
239 {
240 	mddev_t *mddev, *new = NULL;
241 
242  retry:
243 	spin_lock(&all_mddevs_lock);
244 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
245 		if (mddev->unit == unit) {
246 			mddev_get(mddev);
247 			spin_unlock(&all_mddevs_lock);
248 			kfree(new);
249 			return mddev;
250 		}
251 
252 	if (new) {
253 		list_add(&new->all_mddevs, &all_mddevs);
254 		spin_unlock(&all_mddevs_lock);
255 		return new;
256 	}
257 	spin_unlock(&all_mddevs_lock);
258 
259 	new = kzalloc(sizeof(*new), GFP_KERNEL);
260 	if (!new)
261 		return NULL;
262 
263 	new->unit = unit;
264 	if (MAJOR(unit) == MD_MAJOR)
265 		new->md_minor = MINOR(unit);
266 	else
267 		new->md_minor = MINOR(unit) >> MdpMinorShift;
268 
269 	mutex_init(&new->reconfig_mutex);
270 	INIT_LIST_HEAD(&new->disks);
271 	INIT_LIST_HEAD(&new->all_mddevs);
272 	init_timer(&new->safemode_timer);
273 	atomic_set(&new->active, 1);
274 	spin_lock_init(&new->write_lock);
275 	init_waitqueue_head(&new->sb_wait);
276 
277 	new->queue = blk_alloc_queue(GFP_KERNEL);
278 	if (!new->queue) {
279 		kfree(new);
280 		return NULL;
281 	}
282 	set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
283 
284 	blk_queue_make_request(new->queue, md_fail_request);
285 
286 	goto retry;
287 }
288 
289 static inline int mddev_lock(mddev_t * mddev)
290 {
291 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
292 }
293 
294 static inline int mddev_trylock(mddev_t * mddev)
295 {
296 	return mutex_trylock(&mddev->reconfig_mutex);
297 }
298 
299 static inline void mddev_unlock(mddev_t * mddev)
300 {
301 	mutex_unlock(&mddev->reconfig_mutex);
302 
303 	md_wakeup_thread(mddev->thread);
304 }
305 
306 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
307 {
308 	mdk_rdev_t * rdev;
309 	struct list_head *tmp;
310 
311 	ITERATE_RDEV(mddev,rdev,tmp) {
312 		if (rdev->desc_nr == nr)
313 			return rdev;
314 	}
315 	return NULL;
316 }
317 
318 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
319 {
320 	struct list_head *tmp;
321 	mdk_rdev_t *rdev;
322 
323 	ITERATE_RDEV(mddev,rdev,tmp) {
324 		if (rdev->bdev->bd_dev == dev)
325 			return rdev;
326 	}
327 	return NULL;
328 }
329 
330 static struct mdk_personality *find_pers(int level, char *clevel)
331 {
332 	struct mdk_personality *pers;
333 	list_for_each_entry(pers, &pers_list, list) {
334 		if (level != LEVEL_NONE && pers->level == level)
335 			return pers;
336 		if (strcmp(pers->name, clevel)==0)
337 			return pers;
338 	}
339 	return NULL;
340 }
341 
342 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
343 {
344 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
345 	return MD_NEW_SIZE_BLOCKS(size);
346 }
347 
348 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
349 {
350 	sector_t size;
351 
352 	size = rdev->sb_offset;
353 
354 	if (chunk_size)
355 		size &= ~((sector_t)chunk_size/1024 - 1);
356 	return size;
357 }
358 
359 static int alloc_disk_sb(mdk_rdev_t * rdev)
360 {
361 	if (rdev->sb_page)
362 		MD_BUG();
363 
364 	rdev->sb_page = alloc_page(GFP_KERNEL);
365 	if (!rdev->sb_page) {
366 		printk(KERN_ALERT "md: out of memory.\n");
367 		return -EINVAL;
368 	}
369 
370 	return 0;
371 }
372 
373 static void free_disk_sb(mdk_rdev_t * rdev)
374 {
375 	if (rdev->sb_page) {
376 		put_page(rdev->sb_page);
377 		rdev->sb_loaded = 0;
378 		rdev->sb_page = NULL;
379 		rdev->sb_offset = 0;
380 		rdev->size = 0;
381 	}
382 }
383 
384 
385 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
386 {
387 	mdk_rdev_t *rdev = bio->bi_private;
388 	mddev_t *mddev = rdev->mddev;
389 	if (bio->bi_size)
390 		return 1;
391 
392 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
393 		printk("md: super_written gets error=%d, uptodate=%d\n",
394 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
395 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
396 		md_error(mddev, rdev);
397 	}
398 
399 	if (atomic_dec_and_test(&mddev->pending_writes))
400 		wake_up(&mddev->sb_wait);
401 	bio_put(bio);
402 	return 0;
403 }
404 
405 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
406 {
407 	struct bio *bio2 = bio->bi_private;
408 	mdk_rdev_t *rdev = bio2->bi_private;
409 	mddev_t *mddev = rdev->mddev;
410 	if (bio->bi_size)
411 		return 1;
412 
413 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
414 	    error == -EOPNOTSUPP) {
415 		unsigned long flags;
416 		/* barriers don't appear to be supported :-( */
417 		set_bit(BarriersNotsupp, &rdev->flags);
418 		mddev->barriers_work = 0;
419 		spin_lock_irqsave(&mddev->write_lock, flags);
420 		bio2->bi_next = mddev->biolist;
421 		mddev->biolist = bio2;
422 		spin_unlock_irqrestore(&mddev->write_lock, flags);
423 		wake_up(&mddev->sb_wait);
424 		bio_put(bio);
425 		return 0;
426 	}
427 	bio_put(bio2);
428 	bio->bi_private = rdev;
429 	return super_written(bio, bytes_done, error);
430 }
431 
432 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
433 		   sector_t sector, int size, struct page *page)
434 {
435 	/* write first size bytes of page to sector of rdev
436 	 * Increment mddev->pending_writes before returning
437 	 * and decrement it on completion, waking up sb_wait
438 	 * if zero is reached.
439 	 * If an error occurred, call md_error
440 	 *
441 	 * As we might need to resubmit the request if BIO_RW_BARRIER
442 	 * causes ENOTSUPP, we allocate a spare bio...
443 	 */
444 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
445 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
446 
447 	bio->bi_bdev = rdev->bdev;
448 	bio->bi_sector = sector;
449 	bio_add_page(bio, page, size, 0);
450 	bio->bi_private = rdev;
451 	bio->bi_end_io = super_written;
452 	bio->bi_rw = rw;
453 
454 	atomic_inc(&mddev->pending_writes);
455 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
456 		struct bio *rbio;
457 		rw |= (1<<BIO_RW_BARRIER);
458 		rbio = bio_clone(bio, GFP_NOIO);
459 		rbio->bi_private = bio;
460 		rbio->bi_end_io = super_written_barrier;
461 		submit_bio(rw, rbio);
462 	} else
463 		submit_bio(rw, bio);
464 }
465 
466 void md_super_wait(mddev_t *mddev)
467 {
468 	/* wait for all superblock writes that were scheduled to complete.
469 	 * if any had to be retried (due to BARRIER problems), retry them
470 	 */
471 	DEFINE_WAIT(wq);
472 	for(;;) {
473 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
474 		if (atomic_read(&mddev->pending_writes)==0)
475 			break;
476 		while (mddev->biolist) {
477 			struct bio *bio;
478 			spin_lock_irq(&mddev->write_lock);
479 			bio = mddev->biolist;
480 			mddev->biolist = bio->bi_next ;
481 			bio->bi_next = NULL;
482 			spin_unlock_irq(&mddev->write_lock);
483 			submit_bio(bio->bi_rw, bio);
484 		}
485 		schedule();
486 	}
487 	finish_wait(&mddev->sb_wait, &wq);
488 }
489 
490 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
491 {
492 	if (bio->bi_size)
493 		return 1;
494 
495 	complete((struct completion*)bio->bi_private);
496 	return 0;
497 }
498 
499 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
500 		   struct page *page, int rw)
501 {
502 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
503 	struct completion event;
504 	int ret;
505 
506 	rw |= (1 << BIO_RW_SYNC);
507 
508 	bio->bi_bdev = bdev;
509 	bio->bi_sector = sector;
510 	bio_add_page(bio, page, size, 0);
511 	init_completion(&event);
512 	bio->bi_private = &event;
513 	bio->bi_end_io = bi_complete;
514 	submit_bio(rw, bio);
515 	wait_for_completion(&event);
516 
517 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
518 	bio_put(bio);
519 	return ret;
520 }
521 EXPORT_SYMBOL_GPL(sync_page_io);
522 
523 static int read_disk_sb(mdk_rdev_t * rdev, int size)
524 {
525 	char b[BDEVNAME_SIZE];
526 	if (!rdev->sb_page) {
527 		MD_BUG();
528 		return -EINVAL;
529 	}
530 	if (rdev->sb_loaded)
531 		return 0;
532 
533 
534 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
535 		goto fail;
536 	rdev->sb_loaded = 1;
537 	return 0;
538 
539 fail:
540 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
541 		bdevname(rdev->bdev,b));
542 	return -EINVAL;
543 }
544 
545 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
546 {
547 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
548 		(sb1->set_uuid1 == sb2->set_uuid1) &&
549 		(sb1->set_uuid2 == sb2->set_uuid2) &&
550 		(sb1->set_uuid3 == sb2->set_uuid3))
551 
552 		return 1;
553 
554 	return 0;
555 }
556 
557 
558 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
559 {
560 	int ret;
561 	mdp_super_t *tmp1, *tmp2;
562 
563 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
564 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
565 
566 	if (!tmp1 || !tmp2) {
567 		ret = 0;
568 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
569 		goto abort;
570 	}
571 
572 	*tmp1 = *sb1;
573 	*tmp2 = *sb2;
574 
575 	/*
576 	 * nr_disks is not constant
577 	 */
578 	tmp1->nr_disks = 0;
579 	tmp2->nr_disks = 0;
580 
581 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
582 		ret = 0;
583 	else
584 		ret = 1;
585 
586 abort:
587 	kfree(tmp1);
588 	kfree(tmp2);
589 	return ret;
590 }
591 
592 static unsigned int calc_sb_csum(mdp_super_t * sb)
593 {
594 	unsigned int disk_csum, csum;
595 
596 	disk_csum = sb->sb_csum;
597 	sb->sb_csum = 0;
598 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
599 	sb->sb_csum = disk_csum;
600 	return csum;
601 }
602 
603 
604 /*
605  * Handle superblock details.
606  * We want to be able to handle multiple superblock formats
607  * so we have a common interface to them all, and an array of
608  * different handlers.
609  * We rely on user-space to write the initial superblock, and support
610  * reading and updating of superblocks.
611  * Interface methods are:
612  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
613  *      loads and validates a superblock on dev.
614  *      if refdev != NULL, compare superblocks on both devices
615  *    Return:
616  *      0 - dev has a superblock that is compatible with refdev
617  *      1 - dev has a superblock that is compatible and newer than refdev
618  *          so dev should be used as the refdev in future
619  *     -EINVAL superblock incompatible or invalid
620  *     -othererror e.g. -EIO
621  *
622  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
623  *      Verify that dev is acceptable into mddev.
624  *       The first time, mddev->raid_disks will be 0, and data from
625  *       dev should be merged in.  Subsequent calls check that dev
626  *       is new enough.  Return 0 or -EINVAL
627  *
628  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
629  *     Update the superblock for rdev with data in mddev
630  *     This does not write to disc.
631  *
632  */
633 
634 struct super_type  {
635 	char 		*name;
636 	struct module	*owner;
637 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
638 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
639 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
640 };
641 
642 /*
643  * load_super for 0.90.0
644  */
645 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
646 {
647 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
648 	mdp_super_t *sb;
649 	int ret;
650 	sector_t sb_offset;
651 
652 	/*
653 	 * Calculate the position of the superblock,
654 	 * it's at the end of the disk.
655 	 *
656 	 * It also happens to be a multiple of 4Kb.
657 	 */
658 	sb_offset = calc_dev_sboffset(rdev->bdev);
659 	rdev->sb_offset = sb_offset;
660 
661 	ret = read_disk_sb(rdev, MD_SB_BYTES);
662 	if (ret) return ret;
663 
664 	ret = -EINVAL;
665 
666 	bdevname(rdev->bdev, b);
667 	sb = (mdp_super_t*)page_address(rdev->sb_page);
668 
669 	if (sb->md_magic != MD_SB_MAGIC) {
670 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
671 		       b);
672 		goto abort;
673 	}
674 
675 	if (sb->major_version != 0 ||
676 	    sb->minor_version < 90 ||
677 	    sb->minor_version > 91) {
678 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
679 			sb->major_version, sb->minor_version,
680 			b);
681 		goto abort;
682 	}
683 
684 	if (sb->raid_disks <= 0)
685 		goto abort;
686 
687 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
688 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
689 			b);
690 		goto abort;
691 	}
692 
693 	rdev->preferred_minor = sb->md_minor;
694 	rdev->data_offset = 0;
695 	rdev->sb_size = MD_SB_BYTES;
696 
697 	if (sb->level == LEVEL_MULTIPATH)
698 		rdev->desc_nr = -1;
699 	else
700 		rdev->desc_nr = sb->this_disk.number;
701 
702 	if (refdev == 0)
703 		ret = 1;
704 	else {
705 		__u64 ev1, ev2;
706 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
707 		if (!uuid_equal(refsb, sb)) {
708 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
709 				b, bdevname(refdev->bdev,b2));
710 			goto abort;
711 		}
712 		if (!sb_equal(refsb, sb)) {
713 			printk(KERN_WARNING "md: %s has same UUID"
714 			       " but different superblock to %s\n",
715 			       b, bdevname(refdev->bdev, b2));
716 			goto abort;
717 		}
718 		ev1 = md_event(sb);
719 		ev2 = md_event(refsb);
720 		if (ev1 > ev2)
721 			ret = 1;
722 		else
723 			ret = 0;
724 	}
725 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
726 
727 	if (rdev->size < sb->size && sb->level > 1)
728 		/* "this cannot possibly happen" ... */
729 		ret = -EINVAL;
730 
731  abort:
732 	return ret;
733 }
734 
735 /*
736  * validate_super for 0.90.0
737  */
738 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
739 {
740 	mdp_disk_t *desc;
741 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
742 	__u64 ev1 = md_event(sb);
743 
744 	rdev->raid_disk = -1;
745 	rdev->flags = 0;
746 	if (mddev->raid_disks == 0) {
747 		mddev->major_version = 0;
748 		mddev->minor_version = sb->minor_version;
749 		mddev->patch_version = sb->patch_version;
750 		mddev->persistent = ! sb->not_persistent;
751 		mddev->chunk_size = sb->chunk_size;
752 		mddev->ctime = sb->ctime;
753 		mddev->utime = sb->utime;
754 		mddev->level = sb->level;
755 		mddev->clevel[0] = 0;
756 		mddev->layout = sb->layout;
757 		mddev->raid_disks = sb->raid_disks;
758 		mddev->size = sb->size;
759 		mddev->events = ev1;
760 		mddev->bitmap_offset = 0;
761 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
762 
763 		if (mddev->minor_version >= 91) {
764 			mddev->reshape_position = sb->reshape_position;
765 			mddev->delta_disks = sb->delta_disks;
766 			mddev->new_level = sb->new_level;
767 			mddev->new_layout = sb->new_layout;
768 			mddev->new_chunk = sb->new_chunk;
769 		} else {
770 			mddev->reshape_position = MaxSector;
771 			mddev->delta_disks = 0;
772 			mddev->new_level = mddev->level;
773 			mddev->new_layout = mddev->layout;
774 			mddev->new_chunk = mddev->chunk_size;
775 		}
776 
777 		if (sb->state & (1<<MD_SB_CLEAN))
778 			mddev->recovery_cp = MaxSector;
779 		else {
780 			if (sb->events_hi == sb->cp_events_hi &&
781 				sb->events_lo == sb->cp_events_lo) {
782 				mddev->recovery_cp = sb->recovery_cp;
783 			} else
784 				mddev->recovery_cp = 0;
785 		}
786 
787 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
788 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
789 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
790 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
791 
792 		mddev->max_disks = MD_SB_DISKS;
793 
794 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
795 		    mddev->bitmap_file == NULL) {
796 			if (mddev->level != 1 && mddev->level != 4
797 			    && mddev->level != 5 && mddev->level != 6
798 			    && mddev->level != 10) {
799 				/* FIXME use a better test */
800 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
801 				return -EINVAL;
802 			}
803 			mddev->bitmap_offset = mddev->default_bitmap_offset;
804 		}
805 
806 	} else if (mddev->pers == NULL) {
807 		/* Insist on good event counter while assembling */
808 		++ev1;
809 		if (ev1 < mddev->events)
810 			return -EINVAL;
811 	} else if (mddev->bitmap) {
812 		/* if adding to array with a bitmap, then we can accept an
813 		 * older device ... but not too old.
814 		 */
815 		if (ev1 < mddev->bitmap->events_cleared)
816 			return 0;
817 	} else {
818 		if (ev1 < mddev->events)
819 			/* just a hot-add of a new device, leave raid_disk at -1 */
820 			return 0;
821 	}
822 
823 	if (mddev->level != LEVEL_MULTIPATH) {
824 		desc = sb->disks + rdev->desc_nr;
825 
826 		if (desc->state & (1<<MD_DISK_FAULTY))
827 			set_bit(Faulty, &rdev->flags);
828 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
829 			    desc->raid_disk < mddev->raid_disks */) {
830 			set_bit(In_sync, &rdev->flags);
831 			rdev->raid_disk = desc->raid_disk;
832 		}
833 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
834 			set_bit(WriteMostly, &rdev->flags);
835 	} else /* MULTIPATH are always insync */
836 		set_bit(In_sync, &rdev->flags);
837 	return 0;
838 }
839 
840 /*
841  * sync_super for 0.90.0
842  */
843 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
844 {
845 	mdp_super_t *sb;
846 	struct list_head *tmp;
847 	mdk_rdev_t *rdev2;
848 	int next_spare = mddev->raid_disks;
849 
850 
851 	/* make rdev->sb match mddev data..
852 	 *
853 	 * 1/ zero out disks
854 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
855 	 * 3/ any empty disks < next_spare become removed
856 	 *
857 	 * disks[0] gets initialised to REMOVED because
858 	 * we cannot be sure from other fields if it has
859 	 * been initialised or not.
860 	 */
861 	int i;
862 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
863 
864 	rdev->sb_size = MD_SB_BYTES;
865 
866 	sb = (mdp_super_t*)page_address(rdev->sb_page);
867 
868 	memset(sb, 0, sizeof(*sb));
869 
870 	sb->md_magic = MD_SB_MAGIC;
871 	sb->major_version = mddev->major_version;
872 	sb->patch_version = mddev->patch_version;
873 	sb->gvalid_words  = 0; /* ignored */
874 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
875 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
876 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
877 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
878 
879 	sb->ctime = mddev->ctime;
880 	sb->level = mddev->level;
881 	sb->size  = mddev->size;
882 	sb->raid_disks = mddev->raid_disks;
883 	sb->md_minor = mddev->md_minor;
884 	sb->not_persistent = !mddev->persistent;
885 	sb->utime = mddev->utime;
886 	sb->state = 0;
887 	sb->events_hi = (mddev->events>>32);
888 	sb->events_lo = (u32)mddev->events;
889 
890 	if (mddev->reshape_position == MaxSector)
891 		sb->minor_version = 90;
892 	else {
893 		sb->minor_version = 91;
894 		sb->reshape_position = mddev->reshape_position;
895 		sb->new_level = mddev->new_level;
896 		sb->delta_disks = mddev->delta_disks;
897 		sb->new_layout = mddev->new_layout;
898 		sb->new_chunk = mddev->new_chunk;
899 	}
900 	mddev->minor_version = sb->minor_version;
901 	if (mddev->in_sync)
902 	{
903 		sb->recovery_cp = mddev->recovery_cp;
904 		sb->cp_events_hi = (mddev->events>>32);
905 		sb->cp_events_lo = (u32)mddev->events;
906 		if (mddev->recovery_cp == MaxSector)
907 			sb->state = (1<< MD_SB_CLEAN);
908 	} else
909 		sb->recovery_cp = 0;
910 
911 	sb->layout = mddev->layout;
912 	sb->chunk_size = mddev->chunk_size;
913 
914 	if (mddev->bitmap && mddev->bitmap_file == NULL)
915 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
916 
917 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
918 	ITERATE_RDEV(mddev,rdev2,tmp) {
919 		mdp_disk_t *d;
920 		int desc_nr;
921 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
922 		    && !test_bit(Faulty, &rdev2->flags))
923 			desc_nr = rdev2->raid_disk;
924 		else
925 			desc_nr = next_spare++;
926 		rdev2->desc_nr = desc_nr;
927 		d = &sb->disks[rdev2->desc_nr];
928 		nr_disks++;
929 		d->number = rdev2->desc_nr;
930 		d->major = MAJOR(rdev2->bdev->bd_dev);
931 		d->minor = MINOR(rdev2->bdev->bd_dev);
932 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
933 		    && !test_bit(Faulty, &rdev2->flags))
934 			d->raid_disk = rdev2->raid_disk;
935 		else
936 			d->raid_disk = rdev2->desc_nr; /* compatibility */
937 		if (test_bit(Faulty, &rdev2->flags))
938 			d->state = (1<<MD_DISK_FAULTY);
939 		else if (test_bit(In_sync, &rdev2->flags)) {
940 			d->state = (1<<MD_DISK_ACTIVE);
941 			d->state |= (1<<MD_DISK_SYNC);
942 			active++;
943 			working++;
944 		} else {
945 			d->state = 0;
946 			spare++;
947 			working++;
948 		}
949 		if (test_bit(WriteMostly, &rdev2->flags))
950 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
951 	}
952 	/* now set the "removed" and "faulty" bits on any missing devices */
953 	for (i=0 ; i < mddev->raid_disks ; i++) {
954 		mdp_disk_t *d = &sb->disks[i];
955 		if (d->state == 0 && d->number == 0) {
956 			d->number = i;
957 			d->raid_disk = i;
958 			d->state = (1<<MD_DISK_REMOVED);
959 			d->state |= (1<<MD_DISK_FAULTY);
960 			failed++;
961 		}
962 	}
963 	sb->nr_disks = nr_disks;
964 	sb->active_disks = active;
965 	sb->working_disks = working;
966 	sb->failed_disks = failed;
967 	sb->spare_disks = spare;
968 
969 	sb->this_disk = sb->disks[rdev->desc_nr];
970 	sb->sb_csum = calc_sb_csum(sb);
971 }
972 
973 /*
974  * version 1 superblock
975  */
976 
977 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
978 {
979 	__le32 disk_csum;
980 	u32 csum;
981 	unsigned long long newcsum;
982 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
983 	__le32 *isuper = (__le32*)sb;
984 	int i;
985 
986 	disk_csum = sb->sb_csum;
987 	sb->sb_csum = 0;
988 	newcsum = 0;
989 	for (i=0; size>=4; size -= 4 )
990 		newcsum += le32_to_cpu(*isuper++);
991 
992 	if (size == 2)
993 		newcsum += le16_to_cpu(*(__le16*) isuper);
994 
995 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
996 	sb->sb_csum = disk_csum;
997 	return cpu_to_le32(csum);
998 }
999 
1000 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1001 {
1002 	struct mdp_superblock_1 *sb;
1003 	int ret;
1004 	sector_t sb_offset;
1005 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1006 	int bmask;
1007 
1008 	/*
1009 	 * Calculate the position of the superblock.
1010 	 * It is always aligned to a 4K boundary and
1011 	 * depeding on minor_version, it can be:
1012 	 * 0: At least 8K, but less than 12K, from end of device
1013 	 * 1: At start of device
1014 	 * 2: 4K from start of device.
1015 	 */
1016 	switch(minor_version) {
1017 	case 0:
1018 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1019 		sb_offset -= 8*2;
1020 		sb_offset &= ~(sector_t)(4*2-1);
1021 		/* convert from sectors to K */
1022 		sb_offset /= 2;
1023 		break;
1024 	case 1:
1025 		sb_offset = 0;
1026 		break;
1027 	case 2:
1028 		sb_offset = 4;
1029 		break;
1030 	default:
1031 		return -EINVAL;
1032 	}
1033 	rdev->sb_offset = sb_offset;
1034 
1035 	/* superblock is rarely larger than 1K, but it can be larger,
1036 	 * and it is safe to read 4k, so we do that
1037 	 */
1038 	ret = read_disk_sb(rdev, 4096);
1039 	if (ret) return ret;
1040 
1041 
1042 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1043 
1044 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1045 	    sb->major_version != cpu_to_le32(1) ||
1046 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1047 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1048 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1049 		return -EINVAL;
1050 
1051 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1052 		printk("md: invalid superblock checksum on %s\n",
1053 			bdevname(rdev->bdev,b));
1054 		return -EINVAL;
1055 	}
1056 	if (le64_to_cpu(sb->data_size) < 10) {
1057 		printk("md: data_size too small on %s\n",
1058 		       bdevname(rdev->bdev,b));
1059 		return -EINVAL;
1060 	}
1061 	rdev->preferred_minor = 0xffff;
1062 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1063 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1064 
1065 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1066 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1067 	if (rdev->sb_size & bmask)
1068 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1069 
1070 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1071 		rdev->desc_nr = -1;
1072 	else
1073 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1074 
1075 	if (refdev == 0)
1076 		ret = 1;
1077 	else {
1078 		__u64 ev1, ev2;
1079 		struct mdp_superblock_1 *refsb =
1080 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1081 
1082 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1083 		    sb->level != refsb->level ||
1084 		    sb->layout != refsb->layout ||
1085 		    sb->chunksize != refsb->chunksize) {
1086 			printk(KERN_WARNING "md: %s has strangely different"
1087 				" superblock to %s\n",
1088 				bdevname(rdev->bdev,b),
1089 				bdevname(refdev->bdev,b2));
1090 			return -EINVAL;
1091 		}
1092 		ev1 = le64_to_cpu(sb->events);
1093 		ev2 = le64_to_cpu(refsb->events);
1094 
1095 		if (ev1 > ev2)
1096 			ret = 1;
1097 		else
1098 			ret = 0;
1099 	}
1100 	if (minor_version)
1101 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1102 	else
1103 		rdev->size = rdev->sb_offset;
1104 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1105 		return -EINVAL;
1106 	rdev->size = le64_to_cpu(sb->data_size)/2;
1107 	if (le32_to_cpu(sb->chunksize))
1108 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1109 
1110 	if (le64_to_cpu(sb->size) > rdev->size*2)
1111 		return -EINVAL;
1112 	return ret;
1113 }
1114 
1115 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1116 {
1117 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1118 	__u64 ev1 = le64_to_cpu(sb->events);
1119 
1120 	rdev->raid_disk = -1;
1121 	rdev->flags = 0;
1122 	if (mddev->raid_disks == 0) {
1123 		mddev->major_version = 1;
1124 		mddev->patch_version = 0;
1125 		mddev->persistent = 1;
1126 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1127 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1128 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1129 		mddev->level = le32_to_cpu(sb->level);
1130 		mddev->clevel[0] = 0;
1131 		mddev->layout = le32_to_cpu(sb->layout);
1132 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1133 		mddev->size = le64_to_cpu(sb->size)/2;
1134 		mddev->events = ev1;
1135 		mddev->bitmap_offset = 0;
1136 		mddev->default_bitmap_offset = 1024 >> 9;
1137 
1138 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1139 		memcpy(mddev->uuid, sb->set_uuid, 16);
1140 
1141 		mddev->max_disks =  (4096-256)/2;
1142 
1143 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1144 		    mddev->bitmap_file == NULL ) {
1145 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1146 			    && mddev->level != 10) {
1147 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1148 				return -EINVAL;
1149 			}
1150 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1151 		}
1152 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1153 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1154 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1155 			mddev->new_level = le32_to_cpu(sb->new_level);
1156 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1157 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1158 		} else {
1159 			mddev->reshape_position = MaxSector;
1160 			mddev->delta_disks = 0;
1161 			mddev->new_level = mddev->level;
1162 			mddev->new_layout = mddev->layout;
1163 			mddev->new_chunk = mddev->chunk_size;
1164 		}
1165 
1166 	} else if (mddev->pers == NULL) {
1167 		/* Insist of good event counter while assembling */
1168 		++ev1;
1169 		if (ev1 < mddev->events)
1170 			return -EINVAL;
1171 	} else if (mddev->bitmap) {
1172 		/* If adding to array with a bitmap, then we can accept an
1173 		 * older device, but not too old.
1174 		 */
1175 		if (ev1 < mddev->bitmap->events_cleared)
1176 			return 0;
1177 	} else {
1178 		if (ev1 < mddev->events)
1179 			/* just a hot-add of a new device, leave raid_disk at -1 */
1180 			return 0;
1181 	}
1182 	if (mddev->level != LEVEL_MULTIPATH) {
1183 		int role;
1184 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1185 		switch(role) {
1186 		case 0xffff: /* spare */
1187 			break;
1188 		case 0xfffe: /* faulty */
1189 			set_bit(Faulty, &rdev->flags);
1190 			break;
1191 		default:
1192 			if ((le32_to_cpu(sb->feature_map) &
1193 			     MD_FEATURE_RECOVERY_OFFSET))
1194 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1195 			else
1196 				set_bit(In_sync, &rdev->flags);
1197 			rdev->raid_disk = role;
1198 			break;
1199 		}
1200 		if (sb->devflags & WriteMostly1)
1201 			set_bit(WriteMostly, &rdev->flags);
1202 	} else /* MULTIPATH are always insync */
1203 		set_bit(In_sync, &rdev->flags);
1204 
1205 	return 0;
1206 }
1207 
1208 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1209 {
1210 	struct mdp_superblock_1 *sb;
1211 	struct list_head *tmp;
1212 	mdk_rdev_t *rdev2;
1213 	int max_dev, i;
1214 	/* make rdev->sb match mddev and rdev data. */
1215 
1216 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1217 
1218 	sb->feature_map = 0;
1219 	sb->pad0 = 0;
1220 	sb->recovery_offset = cpu_to_le64(0);
1221 	memset(sb->pad1, 0, sizeof(sb->pad1));
1222 	memset(sb->pad2, 0, sizeof(sb->pad2));
1223 	memset(sb->pad3, 0, sizeof(sb->pad3));
1224 
1225 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1226 	sb->events = cpu_to_le64(mddev->events);
1227 	if (mddev->in_sync)
1228 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1229 	else
1230 		sb->resync_offset = cpu_to_le64(0);
1231 
1232 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1233 
1234 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1235 	sb->size = cpu_to_le64(mddev->size<<1);
1236 
1237 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1238 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1239 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1240 	}
1241 
1242 	if (rdev->raid_disk >= 0 &&
1243 	    !test_bit(In_sync, &rdev->flags) &&
1244 	    rdev->recovery_offset > 0) {
1245 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1246 		sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1247 	}
1248 
1249 	if (mddev->reshape_position != MaxSector) {
1250 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1251 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1252 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1253 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1254 		sb->new_level = cpu_to_le32(mddev->new_level);
1255 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1256 	}
1257 
1258 	max_dev = 0;
1259 	ITERATE_RDEV(mddev,rdev2,tmp)
1260 		if (rdev2->desc_nr+1 > max_dev)
1261 			max_dev = rdev2->desc_nr+1;
1262 
1263 	sb->max_dev = cpu_to_le32(max_dev);
1264 	for (i=0; i<max_dev;i++)
1265 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1266 
1267 	ITERATE_RDEV(mddev,rdev2,tmp) {
1268 		i = rdev2->desc_nr;
1269 		if (test_bit(Faulty, &rdev2->flags))
1270 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1271 		else if (test_bit(In_sync, &rdev2->flags))
1272 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1273 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1274 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1275 		else
1276 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1277 	}
1278 
1279 	sb->sb_csum = calc_sb_1_csum(sb);
1280 }
1281 
1282 
1283 static struct super_type super_types[] = {
1284 	[0] = {
1285 		.name	= "0.90.0",
1286 		.owner	= THIS_MODULE,
1287 		.load_super	= super_90_load,
1288 		.validate_super	= super_90_validate,
1289 		.sync_super	= super_90_sync,
1290 	},
1291 	[1] = {
1292 		.name	= "md-1",
1293 		.owner	= THIS_MODULE,
1294 		.load_super	= super_1_load,
1295 		.validate_super	= super_1_validate,
1296 		.sync_super	= super_1_sync,
1297 	},
1298 };
1299 
1300 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1301 {
1302 	struct list_head *tmp;
1303 	mdk_rdev_t *rdev;
1304 
1305 	ITERATE_RDEV(mddev,rdev,tmp)
1306 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1307 			return rdev;
1308 
1309 	return NULL;
1310 }
1311 
1312 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1313 {
1314 	struct list_head *tmp;
1315 	mdk_rdev_t *rdev;
1316 
1317 	ITERATE_RDEV(mddev1,rdev,tmp)
1318 		if (match_dev_unit(mddev2, rdev))
1319 			return 1;
1320 
1321 	return 0;
1322 }
1323 
1324 static LIST_HEAD(pending_raid_disks);
1325 
1326 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1327 {
1328 	mdk_rdev_t *same_pdev;
1329 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1330 	struct kobject *ko;
1331 	char *s;
1332 
1333 	if (rdev->mddev) {
1334 		MD_BUG();
1335 		return -EINVAL;
1336 	}
1337 	/* make sure rdev->size exceeds mddev->size */
1338 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1339 		if (mddev->pers)
1340 			/* Cannot change size, so fail */
1341 			return -ENOSPC;
1342 		else
1343 			mddev->size = rdev->size;
1344 	}
1345 	same_pdev = match_dev_unit(mddev, rdev);
1346 	if (same_pdev)
1347 		printk(KERN_WARNING
1348 			"%s: WARNING: %s appears to be on the same physical"
1349 	 		" disk as %s. True\n     protection against single-disk"
1350 			" failure might be compromised.\n",
1351 			mdname(mddev), bdevname(rdev->bdev,b),
1352 			bdevname(same_pdev->bdev,b2));
1353 
1354 	/* Verify rdev->desc_nr is unique.
1355 	 * If it is -1, assign a free number, else
1356 	 * check number is not in use
1357 	 */
1358 	if (rdev->desc_nr < 0) {
1359 		int choice = 0;
1360 		if (mddev->pers) choice = mddev->raid_disks;
1361 		while (find_rdev_nr(mddev, choice))
1362 			choice++;
1363 		rdev->desc_nr = choice;
1364 	} else {
1365 		if (find_rdev_nr(mddev, rdev->desc_nr))
1366 			return -EBUSY;
1367 	}
1368 	bdevname(rdev->bdev,b);
1369 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1370 		return -ENOMEM;
1371 	while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1372 		*s = '!';
1373 
1374 	list_add(&rdev->same_set, &mddev->disks);
1375 	rdev->mddev = mddev;
1376 	printk(KERN_INFO "md: bind<%s>\n", b);
1377 
1378 	rdev->kobj.parent = &mddev->kobj;
1379 	kobject_add(&rdev->kobj);
1380 
1381 	if (rdev->bdev->bd_part)
1382 		ko = &rdev->bdev->bd_part->kobj;
1383 	else
1384 		ko = &rdev->bdev->bd_disk->kobj;
1385 	sysfs_create_link(&rdev->kobj, ko, "block");
1386 	bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1387 	return 0;
1388 }
1389 
1390 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1391 {
1392 	char b[BDEVNAME_SIZE];
1393 	if (!rdev->mddev) {
1394 		MD_BUG();
1395 		return;
1396 	}
1397 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1398 	list_del_init(&rdev->same_set);
1399 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1400 	rdev->mddev = NULL;
1401 	sysfs_remove_link(&rdev->kobj, "block");
1402 	kobject_del(&rdev->kobj);
1403 }
1404 
1405 /*
1406  * prevent the device from being mounted, repartitioned or
1407  * otherwise reused by a RAID array (or any other kernel
1408  * subsystem), by bd_claiming the device.
1409  */
1410 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1411 {
1412 	int err = 0;
1413 	struct block_device *bdev;
1414 	char b[BDEVNAME_SIZE];
1415 
1416 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1417 	if (IS_ERR(bdev)) {
1418 		printk(KERN_ERR "md: could not open %s.\n",
1419 			__bdevname(dev, b));
1420 		return PTR_ERR(bdev);
1421 	}
1422 	err = bd_claim(bdev, rdev);
1423 	if (err) {
1424 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1425 			bdevname(bdev, b));
1426 		blkdev_put(bdev);
1427 		return err;
1428 	}
1429 	rdev->bdev = bdev;
1430 	return err;
1431 }
1432 
1433 static void unlock_rdev(mdk_rdev_t *rdev)
1434 {
1435 	struct block_device *bdev = rdev->bdev;
1436 	rdev->bdev = NULL;
1437 	if (!bdev)
1438 		MD_BUG();
1439 	bd_release(bdev);
1440 	blkdev_put(bdev);
1441 }
1442 
1443 void md_autodetect_dev(dev_t dev);
1444 
1445 static void export_rdev(mdk_rdev_t * rdev)
1446 {
1447 	char b[BDEVNAME_SIZE];
1448 	printk(KERN_INFO "md: export_rdev(%s)\n",
1449 		bdevname(rdev->bdev,b));
1450 	if (rdev->mddev)
1451 		MD_BUG();
1452 	free_disk_sb(rdev);
1453 	list_del_init(&rdev->same_set);
1454 #ifndef MODULE
1455 	md_autodetect_dev(rdev->bdev->bd_dev);
1456 #endif
1457 	unlock_rdev(rdev);
1458 	kobject_put(&rdev->kobj);
1459 }
1460 
1461 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1462 {
1463 	unbind_rdev_from_array(rdev);
1464 	export_rdev(rdev);
1465 }
1466 
1467 static void export_array(mddev_t *mddev)
1468 {
1469 	struct list_head *tmp;
1470 	mdk_rdev_t *rdev;
1471 
1472 	ITERATE_RDEV(mddev,rdev,tmp) {
1473 		if (!rdev->mddev) {
1474 			MD_BUG();
1475 			continue;
1476 		}
1477 		kick_rdev_from_array(rdev);
1478 	}
1479 	if (!list_empty(&mddev->disks))
1480 		MD_BUG();
1481 	mddev->raid_disks = 0;
1482 	mddev->major_version = 0;
1483 }
1484 
1485 static void print_desc(mdp_disk_t *desc)
1486 {
1487 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1488 		desc->major,desc->minor,desc->raid_disk,desc->state);
1489 }
1490 
1491 static void print_sb(mdp_super_t *sb)
1492 {
1493 	int i;
1494 
1495 	printk(KERN_INFO
1496 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1497 		sb->major_version, sb->minor_version, sb->patch_version,
1498 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1499 		sb->ctime);
1500 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1501 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1502 		sb->md_minor, sb->layout, sb->chunk_size);
1503 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1504 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1505 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1506 		sb->failed_disks, sb->spare_disks,
1507 		sb->sb_csum, (unsigned long)sb->events_lo);
1508 
1509 	printk(KERN_INFO);
1510 	for (i = 0; i < MD_SB_DISKS; i++) {
1511 		mdp_disk_t *desc;
1512 
1513 		desc = sb->disks + i;
1514 		if (desc->number || desc->major || desc->minor ||
1515 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1516 			printk("     D %2d: ", i);
1517 			print_desc(desc);
1518 		}
1519 	}
1520 	printk(KERN_INFO "md:     THIS: ");
1521 	print_desc(&sb->this_disk);
1522 
1523 }
1524 
1525 static void print_rdev(mdk_rdev_t *rdev)
1526 {
1527 	char b[BDEVNAME_SIZE];
1528 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1529 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1530 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1531 	        rdev->desc_nr);
1532 	if (rdev->sb_loaded) {
1533 		printk(KERN_INFO "md: rdev superblock:\n");
1534 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1535 	} else
1536 		printk(KERN_INFO "md: no rdev superblock!\n");
1537 }
1538 
1539 static void md_print_devices(void)
1540 {
1541 	struct list_head *tmp, *tmp2;
1542 	mdk_rdev_t *rdev;
1543 	mddev_t *mddev;
1544 	char b[BDEVNAME_SIZE];
1545 
1546 	printk("\n");
1547 	printk("md:	**********************************\n");
1548 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1549 	printk("md:	**********************************\n");
1550 	ITERATE_MDDEV(mddev,tmp) {
1551 
1552 		if (mddev->bitmap)
1553 			bitmap_print_sb(mddev->bitmap);
1554 		else
1555 			printk("%s: ", mdname(mddev));
1556 		ITERATE_RDEV(mddev,rdev,tmp2)
1557 			printk("<%s>", bdevname(rdev->bdev,b));
1558 		printk("\n");
1559 
1560 		ITERATE_RDEV(mddev,rdev,tmp2)
1561 			print_rdev(rdev);
1562 	}
1563 	printk("md:	**********************************\n");
1564 	printk("\n");
1565 }
1566 
1567 
1568 static void sync_sbs(mddev_t * mddev, int nospares)
1569 {
1570 	/* Update each superblock (in-memory image), but
1571 	 * if we are allowed to, skip spares which already
1572 	 * have the right event counter, or have one earlier
1573 	 * (which would mean they aren't being marked as dirty
1574 	 * with the rest of the array)
1575 	 */
1576 	mdk_rdev_t *rdev;
1577 	struct list_head *tmp;
1578 
1579 	ITERATE_RDEV(mddev,rdev,tmp) {
1580 		if (rdev->sb_events == mddev->events ||
1581 		    (nospares &&
1582 		     rdev->raid_disk < 0 &&
1583 		     (rdev->sb_events&1)==0 &&
1584 		     rdev->sb_events+1 == mddev->events)) {
1585 			/* Don't update this superblock */
1586 			rdev->sb_loaded = 2;
1587 		} else {
1588 			super_types[mddev->major_version].
1589 				sync_super(mddev, rdev);
1590 			rdev->sb_loaded = 1;
1591 		}
1592 	}
1593 }
1594 
1595 static void md_update_sb(mddev_t * mddev, int force_change)
1596 {
1597 	int err;
1598 	struct list_head *tmp;
1599 	mdk_rdev_t *rdev;
1600 	int sync_req;
1601 	int nospares = 0;
1602 
1603 repeat:
1604 	spin_lock_irq(&mddev->write_lock);
1605 
1606 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1607 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1608 		force_change = 1;
1609 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1610 		/* just a clean<-> dirty transition, possibly leave spares alone,
1611 		 * though if events isn't the right even/odd, we will have to do
1612 		 * spares after all
1613 		 */
1614 		nospares = 1;
1615 	if (force_change)
1616 		nospares = 0;
1617 	if (mddev->degraded)
1618 		/* If the array is degraded, then skipping spares is both
1619 		 * dangerous and fairly pointless.
1620 		 * Dangerous because a device that was removed from the array
1621 		 * might have a event_count that still looks up-to-date,
1622 		 * so it can be re-added without a resync.
1623 		 * Pointless because if there are any spares to skip,
1624 		 * then a recovery will happen and soon that array won't
1625 		 * be degraded any more and the spare can go back to sleep then.
1626 		 */
1627 		nospares = 0;
1628 
1629 	sync_req = mddev->in_sync;
1630 	mddev->utime = get_seconds();
1631 
1632 	/* If this is just a dirty<->clean transition, and the array is clean
1633 	 * and 'events' is odd, we can roll back to the previous clean state */
1634 	if (nospares
1635 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1636 	    && (mddev->events & 1)
1637 	    && mddev->events != 1)
1638 		mddev->events--;
1639 	else {
1640 		/* otherwise we have to go forward and ... */
1641 		mddev->events ++;
1642 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1643 			/* .. if the array isn't clean, insist on an odd 'events' */
1644 			if ((mddev->events&1)==0) {
1645 				mddev->events++;
1646 				nospares = 0;
1647 			}
1648 		} else {
1649 			/* otherwise insist on an even 'events' (for clean states) */
1650 			if ((mddev->events&1)) {
1651 				mddev->events++;
1652 				nospares = 0;
1653 			}
1654 		}
1655 	}
1656 
1657 	if (!mddev->events) {
1658 		/*
1659 		 * oops, this 64-bit counter should never wrap.
1660 		 * Either we are in around ~1 trillion A.C., assuming
1661 		 * 1 reboot per second, or we have a bug:
1662 		 */
1663 		MD_BUG();
1664 		mddev->events --;
1665 	}
1666 	sync_sbs(mddev, nospares);
1667 
1668 	/*
1669 	 * do not write anything to disk if using
1670 	 * nonpersistent superblocks
1671 	 */
1672 	if (!mddev->persistent) {
1673 		clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1674 		spin_unlock_irq(&mddev->write_lock);
1675 		wake_up(&mddev->sb_wait);
1676 		return;
1677 	}
1678 	spin_unlock_irq(&mddev->write_lock);
1679 
1680 	dprintk(KERN_INFO
1681 		"md: updating %s RAID superblock on device (in sync %d)\n",
1682 		mdname(mddev),mddev->in_sync);
1683 
1684 	err = bitmap_update_sb(mddev->bitmap);
1685 	ITERATE_RDEV(mddev,rdev,tmp) {
1686 		char b[BDEVNAME_SIZE];
1687 		dprintk(KERN_INFO "md: ");
1688 		if (rdev->sb_loaded != 1)
1689 			continue; /* no noise on spare devices */
1690 		if (test_bit(Faulty, &rdev->flags))
1691 			dprintk("(skipping faulty ");
1692 
1693 		dprintk("%s ", bdevname(rdev->bdev,b));
1694 		if (!test_bit(Faulty, &rdev->flags)) {
1695 			md_super_write(mddev,rdev,
1696 				       rdev->sb_offset<<1, rdev->sb_size,
1697 				       rdev->sb_page);
1698 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1699 				bdevname(rdev->bdev,b),
1700 				(unsigned long long)rdev->sb_offset);
1701 			rdev->sb_events = mddev->events;
1702 
1703 		} else
1704 			dprintk(")\n");
1705 		if (mddev->level == LEVEL_MULTIPATH)
1706 			/* only need to write one superblock... */
1707 			break;
1708 	}
1709 	md_super_wait(mddev);
1710 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1711 
1712 	spin_lock_irq(&mddev->write_lock);
1713 	if (mddev->in_sync != sync_req ||
1714 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1715 		/* have to write it out again */
1716 		spin_unlock_irq(&mddev->write_lock);
1717 		goto repeat;
1718 	}
1719 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1720 	spin_unlock_irq(&mddev->write_lock);
1721 	wake_up(&mddev->sb_wait);
1722 
1723 }
1724 
1725 /* words written to sysfs files may, or my not, be \n terminated.
1726  * We want to accept with case. For this we use cmd_match.
1727  */
1728 static int cmd_match(const char *cmd, const char *str)
1729 {
1730 	/* See if cmd, written into a sysfs file, matches
1731 	 * str.  They must either be the same, or cmd can
1732 	 * have a trailing newline
1733 	 */
1734 	while (*cmd && *str && *cmd == *str) {
1735 		cmd++;
1736 		str++;
1737 	}
1738 	if (*cmd == '\n')
1739 		cmd++;
1740 	if (*str || *cmd)
1741 		return 0;
1742 	return 1;
1743 }
1744 
1745 struct rdev_sysfs_entry {
1746 	struct attribute attr;
1747 	ssize_t (*show)(mdk_rdev_t *, char *);
1748 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1749 };
1750 
1751 static ssize_t
1752 state_show(mdk_rdev_t *rdev, char *page)
1753 {
1754 	char *sep = "";
1755 	int len=0;
1756 
1757 	if (test_bit(Faulty, &rdev->flags)) {
1758 		len+= sprintf(page+len, "%sfaulty",sep);
1759 		sep = ",";
1760 	}
1761 	if (test_bit(In_sync, &rdev->flags)) {
1762 		len += sprintf(page+len, "%sin_sync",sep);
1763 		sep = ",";
1764 	}
1765 	if (test_bit(WriteMostly, &rdev->flags)) {
1766 		len += sprintf(page+len, "%swrite_mostly",sep);
1767 		sep = ",";
1768 	}
1769 	if (!test_bit(Faulty, &rdev->flags) &&
1770 	    !test_bit(In_sync, &rdev->flags)) {
1771 		len += sprintf(page+len, "%sspare", sep);
1772 		sep = ",";
1773 	}
1774 	return len+sprintf(page+len, "\n");
1775 }
1776 
1777 static ssize_t
1778 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1779 {
1780 	/* can write
1781 	 *  faulty  - simulates and error
1782 	 *  remove  - disconnects the device
1783 	 *  writemostly - sets write_mostly
1784 	 *  -writemostly - clears write_mostly
1785 	 */
1786 	int err = -EINVAL;
1787 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1788 		md_error(rdev->mddev, rdev);
1789 		err = 0;
1790 	} else if (cmd_match(buf, "remove")) {
1791 		if (rdev->raid_disk >= 0)
1792 			err = -EBUSY;
1793 		else {
1794 			mddev_t *mddev = rdev->mddev;
1795 			kick_rdev_from_array(rdev);
1796 			if (mddev->pers)
1797 				md_update_sb(mddev, 1);
1798 			md_new_event(mddev);
1799 			err = 0;
1800 		}
1801 	} else if (cmd_match(buf, "writemostly")) {
1802 		set_bit(WriteMostly, &rdev->flags);
1803 		err = 0;
1804 	} else if (cmd_match(buf, "-writemostly")) {
1805 		clear_bit(WriteMostly, &rdev->flags);
1806 		err = 0;
1807 	}
1808 	return err ? err : len;
1809 }
1810 static struct rdev_sysfs_entry rdev_state =
1811 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1812 
1813 static ssize_t
1814 super_show(mdk_rdev_t *rdev, char *page)
1815 {
1816 	if (rdev->sb_loaded && rdev->sb_size) {
1817 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1818 		return rdev->sb_size;
1819 	} else
1820 		return 0;
1821 }
1822 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1823 
1824 static ssize_t
1825 errors_show(mdk_rdev_t *rdev, char *page)
1826 {
1827 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1828 }
1829 
1830 static ssize_t
1831 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1832 {
1833 	char *e;
1834 	unsigned long n = simple_strtoul(buf, &e, 10);
1835 	if (*buf && (*e == 0 || *e == '\n')) {
1836 		atomic_set(&rdev->corrected_errors, n);
1837 		return len;
1838 	}
1839 	return -EINVAL;
1840 }
1841 static struct rdev_sysfs_entry rdev_errors =
1842 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1843 
1844 static ssize_t
1845 slot_show(mdk_rdev_t *rdev, char *page)
1846 {
1847 	if (rdev->raid_disk < 0)
1848 		return sprintf(page, "none\n");
1849 	else
1850 		return sprintf(page, "%d\n", rdev->raid_disk);
1851 }
1852 
1853 static ssize_t
1854 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1855 {
1856 	char *e;
1857 	int slot = simple_strtoul(buf, &e, 10);
1858 	if (strncmp(buf, "none", 4)==0)
1859 		slot = -1;
1860 	else if (e==buf || (*e && *e!= '\n'))
1861 		return -EINVAL;
1862 	if (rdev->mddev->pers)
1863 		/* Cannot set slot in active array (yet) */
1864 		return -EBUSY;
1865 	if (slot >= rdev->mddev->raid_disks)
1866 		return -ENOSPC;
1867 	rdev->raid_disk = slot;
1868 	/* assume it is working */
1869 	rdev->flags = 0;
1870 	set_bit(In_sync, &rdev->flags);
1871 	return len;
1872 }
1873 
1874 
1875 static struct rdev_sysfs_entry rdev_slot =
1876 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1877 
1878 static ssize_t
1879 offset_show(mdk_rdev_t *rdev, char *page)
1880 {
1881 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1882 }
1883 
1884 static ssize_t
1885 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1886 {
1887 	char *e;
1888 	unsigned long long offset = simple_strtoull(buf, &e, 10);
1889 	if (e==buf || (*e && *e != '\n'))
1890 		return -EINVAL;
1891 	if (rdev->mddev->pers)
1892 		return -EBUSY;
1893 	rdev->data_offset = offset;
1894 	return len;
1895 }
1896 
1897 static struct rdev_sysfs_entry rdev_offset =
1898 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1899 
1900 static ssize_t
1901 rdev_size_show(mdk_rdev_t *rdev, char *page)
1902 {
1903 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1904 }
1905 
1906 static ssize_t
1907 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1908 {
1909 	char *e;
1910 	unsigned long long size = simple_strtoull(buf, &e, 10);
1911 	if (e==buf || (*e && *e != '\n'))
1912 		return -EINVAL;
1913 	if (rdev->mddev->pers)
1914 		return -EBUSY;
1915 	rdev->size = size;
1916 	if (size < rdev->mddev->size || rdev->mddev->size == 0)
1917 		rdev->mddev->size = size;
1918 	return len;
1919 }
1920 
1921 static struct rdev_sysfs_entry rdev_size =
1922 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1923 
1924 static struct attribute *rdev_default_attrs[] = {
1925 	&rdev_state.attr,
1926 	&rdev_super.attr,
1927 	&rdev_errors.attr,
1928 	&rdev_slot.attr,
1929 	&rdev_offset.attr,
1930 	&rdev_size.attr,
1931 	NULL,
1932 };
1933 static ssize_t
1934 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1935 {
1936 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1937 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1938 
1939 	if (!entry->show)
1940 		return -EIO;
1941 	return entry->show(rdev, page);
1942 }
1943 
1944 static ssize_t
1945 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1946 	      const char *page, size_t length)
1947 {
1948 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1949 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1950 
1951 	if (!entry->store)
1952 		return -EIO;
1953 	if (!capable(CAP_SYS_ADMIN))
1954 		return -EACCES;
1955 	return entry->store(rdev, page, length);
1956 }
1957 
1958 static void rdev_free(struct kobject *ko)
1959 {
1960 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1961 	kfree(rdev);
1962 }
1963 static struct sysfs_ops rdev_sysfs_ops = {
1964 	.show		= rdev_attr_show,
1965 	.store		= rdev_attr_store,
1966 };
1967 static struct kobj_type rdev_ktype = {
1968 	.release	= rdev_free,
1969 	.sysfs_ops	= &rdev_sysfs_ops,
1970 	.default_attrs	= rdev_default_attrs,
1971 };
1972 
1973 /*
1974  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1975  *
1976  * mark the device faulty if:
1977  *
1978  *   - the device is nonexistent (zero size)
1979  *   - the device has no valid superblock
1980  *
1981  * a faulty rdev _never_ has rdev->sb set.
1982  */
1983 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1984 {
1985 	char b[BDEVNAME_SIZE];
1986 	int err;
1987 	mdk_rdev_t *rdev;
1988 	sector_t size;
1989 
1990 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1991 	if (!rdev) {
1992 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1993 		return ERR_PTR(-ENOMEM);
1994 	}
1995 
1996 	if ((err = alloc_disk_sb(rdev)))
1997 		goto abort_free;
1998 
1999 	err = lock_rdev(rdev, newdev);
2000 	if (err)
2001 		goto abort_free;
2002 
2003 	rdev->kobj.parent = NULL;
2004 	rdev->kobj.ktype = &rdev_ktype;
2005 	kobject_init(&rdev->kobj);
2006 
2007 	rdev->desc_nr = -1;
2008 	rdev->saved_raid_disk = -1;
2009 	rdev->raid_disk = -1;
2010 	rdev->flags = 0;
2011 	rdev->data_offset = 0;
2012 	rdev->sb_events = 0;
2013 	atomic_set(&rdev->nr_pending, 0);
2014 	atomic_set(&rdev->read_errors, 0);
2015 	atomic_set(&rdev->corrected_errors, 0);
2016 
2017 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2018 	if (!size) {
2019 		printk(KERN_WARNING
2020 			"md: %s has zero or unknown size, marking faulty!\n",
2021 			bdevname(rdev->bdev,b));
2022 		err = -EINVAL;
2023 		goto abort_free;
2024 	}
2025 
2026 	if (super_format >= 0) {
2027 		err = super_types[super_format].
2028 			load_super(rdev, NULL, super_minor);
2029 		if (err == -EINVAL) {
2030 			printk(KERN_WARNING
2031 				"md: %s has invalid sb, not importing!\n",
2032 				bdevname(rdev->bdev,b));
2033 			goto abort_free;
2034 		}
2035 		if (err < 0) {
2036 			printk(KERN_WARNING
2037 				"md: could not read %s's sb, not importing!\n",
2038 				bdevname(rdev->bdev,b));
2039 			goto abort_free;
2040 		}
2041 	}
2042 	INIT_LIST_HEAD(&rdev->same_set);
2043 
2044 	return rdev;
2045 
2046 abort_free:
2047 	if (rdev->sb_page) {
2048 		if (rdev->bdev)
2049 			unlock_rdev(rdev);
2050 		free_disk_sb(rdev);
2051 	}
2052 	kfree(rdev);
2053 	return ERR_PTR(err);
2054 }
2055 
2056 /*
2057  * Check a full RAID array for plausibility
2058  */
2059 
2060 
2061 static void analyze_sbs(mddev_t * mddev)
2062 {
2063 	int i;
2064 	struct list_head *tmp;
2065 	mdk_rdev_t *rdev, *freshest;
2066 	char b[BDEVNAME_SIZE];
2067 
2068 	freshest = NULL;
2069 	ITERATE_RDEV(mddev,rdev,tmp)
2070 		switch (super_types[mddev->major_version].
2071 			load_super(rdev, freshest, mddev->minor_version)) {
2072 		case 1:
2073 			freshest = rdev;
2074 			break;
2075 		case 0:
2076 			break;
2077 		default:
2078 			printk( KERN_ERR \
2079 				"md: fatal superblock inconsistency in %s"
2080 				" -- removing from array\n",
2081 				bdevname(rdev->bdev,b));
2082 			kick_rdev_from_array(rdev);
2083 		}
2084 
2085 
2086 	super_types[mddev->major_version].
2087 		validate_super(mddev, freshest);
2088 
2089 	i = 0;
2090 	ITERATE_RDEV(mddev,rdev,tmp) {
2091 		if (rdev != freshest)
2092 			if (super_types[mddev->major_version].
2093 			    validate_super(mddev, rdev)) {
2094 				printk(KERN_WARNING "md: kicking non-fresh %s"
2095 					" from array!\n",
2096 					bdevname(rdev->bdev,b));
2097 				kick_rdev_from_array(rdev);
2098 				continue;
2099 			}
2100 		if (mddev->level == LEVEL_MULTIPATH) {
2101 			rdev->desc_nr = i++;
2102 			rdev->raid_disk = rdev->desc_nr;
2103 			set_bit(In_sync, &rdev->flags);
2104 		}
2105 	}
2106 
2107 
2108 
2109 	if (mddev->recovery_cp != MaxSector &&
2110 	    mddev->level >= 1)
2111 		printk(KERN_ERR "md: %s: raid array is not clean"
2112 		       " -- starting background reconstruction\n",
2113 		       mdname(mddev));
2114 
2115 }
2116 
2117 static ssize_t
2118 safe_delay_show(mddev_t *mddev, char *page)
2119 {
2120 	int msec = (mddev->safemode_delay*1000)/HZ;
2121 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2122 }
2123 static ssize_t
2124 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2125 {
2126 	int scale=1;
2127 	int dot=0;
2128 	int i;
2129 	unsigned long msec;
2130 	char buf[30];
2131 	char *e;
2132 	/* remove a period, and count digits after it */
2133 	if (len >= sizeof(buf))
2134 		return -EINVAL;
2135 	strlcpy(buf, cbuf, len);
2136 	buf[len] = 0;
2137 	for (i=0; i<len; i++) {
2138 		if (dot) {
2139 			if (isdigit(buf[i])) {
2140 				buf[i-1] = buf[i];
2141 				scale *= 10;
2142 			}
2143 			buf[i] = 0;
2144 		} else if (buf[i] == '.') {
2145 			dot=1;
2146 			buf[i] = 0;
2147 		}
2148 	}
2149 	msec = simple_strtoul(buf, &e, 10);
2150 	if (e == buf || (*e && *e != '\n'))
2151 		return -EINVAL;
2152 	msec = (msec * 1000) / scale;
2153 	if (msec == 0)
2154 		mddev->safemode_delay = 0;
2155 	else {
2156 		mddev->safemode_delay = (msec*HZ)/1000;
2157 		if (mddev->safemode_delay == 0)
2158 			mddev->safemode_delay = 1;
2159 	}
2160 	return len;
2161 }
2162 static struct md_sysfs_entry md_safe_delay =
2163 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2164 
2165 static ssize_t
2166 level_show(mddev_t *mddev, char *page)
2167 {
2168 	struct mdk_personality *p = mddev->pers;
2169 	if (p)
2170 		return sprintf(page, "%s\n", p->name);
2171 	else if (mddev->clevel[0])
2172 		return sprintf(page, "%s\n", mddev->clevel);
2173 	else if (mddev->level != LEVEL_NONE)
2174 		return sprintf(page, "%d\n", mddev->level);
2175 	else
2176 		return 0;
2177 }
2178 
2179 static ssize_t
2180 level_store(mddev_t *mddev, const char *buf, size_t len)
2181 {
2182 	int rv = len;
2183 	if (mddev->pers)
2184 		return -EBUSY;
2185 	if (len == 0)
2186 		return 0;
2187 	if (len >= sizeof(mddev->clevel))
2188 		return -ENOSPC;
2189 	strncpy(mddev->clevel, buf, len);
2190 	if (mddev->clevel[len-1] == '\n')
2191 		len--;
2192 	mddev->clevel[len] = 0;
2193 	mddev->level = LEVEL_NONE;
2194 	return rv;
2195 }
2196 
2197 static struct md_sysfs_entry md_level =
2198 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2199 
2200 
2201 static ssize_t
2202 layout_show(mddev_t *mddev, char *page)
2203 {
2204 	/* just a number, not meaningful for all levels */
2205 	return sprintf(page, "%d\n", mddev->layout);
2206 }
2207 
2208 static ssize_t
2209 layout_store(mddev_t *mddev, const char *buf, size_t len)
2210 {
2211 	char *e;
2212 	unsigned long n = simple_strtoul(buf, &e, 10);
2213 	if (mddev->pers)
2214 		return -EBUSY;
2215 
2216 	if (!*buf || (*e && *e != '\n'))
2217 		return -EINVAL;
2218 
2219 	mddev->layout = n;
2220 	return len;
2221 }
2222 static struct md_sysfs_entry md_layout =
2223 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2224 
2225 
2226 static ssize_t
2227 raid_disks_show(mddev_t *mddev, char *page)
2228 {
2229 	if (mddev->raid_disks == 0)
2230 		return 0;
2231 	return sprintf(page, "%d\n", mddev->raid_disks);
2232 }
2233 
2234 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2235 
2236 static ssize_t
2237 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2238 {
2239 	char *e;
2240 	int rv = 0;
2241 	unsigned long n = simple_strtoul(buf, &e, 10);
2242 
2243 	if (!*buf || (*e && *e != '\n'))
2244 		return -EINVAL;
2245 
2246 	if (mddev->pers)
2247 		rv = update_raid_disks(mddev, n);
2248 	else
2249 		mddev->raid_disks = n;
2250 	return rv ? rv : len;
2251 }
2252 static struct md_sysfs_entry md_raid_disks =
2253 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2254 
2255 static ssize_t
2256 chunk_size_show(mddev_t *mddev, char *page)
2257 {
2258 	return sprintf(page, "%d\n", mddev->chunk_size);
2259 }
2260 
2261 static ssize_t
2262 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2263 {
2264 	/* can only set chunk_size if array is not yet active */
2265 	char *e;
2266 	unsigned long n = simple_strtoul(buf, &e, 10);
2267 
2268 	if (mddev->pers)
2269 		return -EBUSY;
2270 	if (!*buf || (*e && *e != '\n'))
2271 		return -EINVAL;
2272 
2273 	mddev->chunk_size = n;
2274 	return len;
2275 }
2276 static struct md_sysfs_entry md_chunk_size =
2277 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2278 
2279 static ssize_t
2280 resync_start_show(mddev_t *mddev, char *page)
2281 {
2282 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2283 }
2284 
2285 static ssize_t
2286 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2287 {
2288 	/* can only set chunk_size if array is not yet active */
2289 	char *e;
2290 	unsigned long long n = simple_strtoull(buf, &e, 10);
2291 
2292 	if (mddev->pers)
2293 		return -EBUSY;
2294 	if (!*buf || (*e && *e != '\n'))
2295 		return -EINVAL;
2296 
2297 	mddev->recovery_cp = n;
2298 	return len;
2299 }
2300 static struct md_sysfs_entry md_resync_start =
2301 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2302 
2303 /*
2304  * The array state can be:
2305  *
2306  * clear
2307  *     No devices, no size, no level
2308  *     Equivalent to STOP_ARRAY ioctl
2309  * inactive
2310  *     May have some settings, but array is not active
2311  *        all IO results in error
2312  *     When written, doesn't tear down array, but just stops it
2313  * suspended (not supported yet)
2314  *     All IO requests will block. The array can be reconfigured.
2315  *     Writing this, if accepted, will block until array is quiessent
2316  * readonly
2317  *     no resync can happen.  no superblocks get written.
2318  *     write requests fail
2319  * read-auto
2320  *     like readonly, but behaves like 'clean' on a write request.
2321  *
2322  * clean - no pending writes, but otherwise active.
2323  *     When written to inactive array, starts without resync
2324  *     If a write request arrives then
2325  *       if metadata is known, mark 'dirty' and switch to 'active'.
2326  *       if not known, block and switch to write-pending
2327  *     If written to an active array that has pending writes, then fails.
2328  * active
2329  *     fully active: IO and resync can be happening.
2330  *     When written to inactive array, starts with resync
2331  *
2332  * write-pending
2333  *     clean, but writes are blocked waiting for 'active' to be written.
2334  *
2335  * active-idle
2336  *     like active, but no writes have been seen for a while (100msec).
2337  *
2338  */
2339 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2340 		   write_pending, active_idle, bad_word};
2341 static char *array_states[] = {
2342 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2343 	"write-pending", "active-idle", NULL };
2344 
2345 static int match_word(const char *word, char **list)
2346 {
2347 	int n;
2348 	for (n=0; list[n]; n++)
2349 		if (cmd_match(word, list[n]))
2350 			break;
2351 	return n;
2352 }
2353 
2354 static ssize_t
2355 array_state_show(mddev_t *mddev, char *page)
2356 {
2357 	enum array_state st = inactive;
2358 
2359 	if (mddev->pers)
2360 		switch(mddev->ro) {
2361 		case 1:
2362 			st = readonly;
2363 			break;
2364 		case 2:
2365 			st = read_auto;
2366 			break;
2367 		case 0:
2368 			if (mddev->in_sync)
2369 				st = clean;
2370 			else if (mddev->safemode)
2371 				st = active_idle;
2372 			else
2373 				st = active;
2374 		}
2375 	else {
2376 		if (list_empty(&mddev->disks) &&
2377 		    mddev->raid_disks == 0 &&
2378 		    mddev->size == 0)
2379 			st = clear;
2380 		else
2381 			st = inactive;
2382 	}
2383 	return sprintf(page, "%s\n", array_states[st]);
2384 }
2385 
2386 static int do_md_stop(mddev_t * mddev, int ro);
2387 static int do_md_run(mddev_t * mddev);
2388 static int restart_array(mddev_t *mddev);
2389 
2390 static ssize_t
2391 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2392 {
2393 	int err = -EINVAL;
2394 	enum array_state st = match_word(buf, array_states);
2395 	switch(st) {
2396 	case bad_word:
2397 		break;
2398 	case clear:
2399 		/* stopping an active array */
2400 		if (mddev->pers) {
2401 			if (atomic_read(&mddev->active) > 1)
2402 				return -EBUSY;
2403 			err = do_md_stop(mddev, 0);
2404 		}
2405 		break;
2406 	case inactive:
2407 		/* stopping an active array */
2408 		if (mddev->pers) {
2409 			if (atomic_read(&mddev->active) > 1)
2410 				return -EBUSY;
2411 			err = do_md_stop(mddev, 2);
2412 		}
2413 		break;
2414 	case suspended:
2415 		break; /* not supported yet */
2416 	case readonly:
2417 		if (mddev->pers)
2418 			err = do_md_stop(mddev, 1);
2419 		else {
2420 			mddev->ro = 1;
2421 			err = do_md_run(mddev);
2422 		}
2423 		break;
2424 	case read_auto:
2425 		/* stopping an active array */
2426 		if (mddev->pers) {
2427 			err = do_md_stop(mddev, 1);
2428 			if (err == 0)
2429 				mddev->ro = 2; /* FIXME mark devices writable */
2430 		} else {
2431 			mddev->ro = 2;
2432 			err = do_md_run(mddev);
2433 		}
2434 		break;
2435 	case clean:
2436 		if (mddev->pers) {
2437 			restart_array(mddev);
2438 			spin_lock_irq(&mddev->write_lock);
2439 			if (atomic_read(&mddev->writes_pending) == 0) {
2440 				mddev->in_sync = 1;
2441 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2442 			}
2443 			spin_unlock_irq(&mddev->write_lock);
2444 		} else {
2445 			mddev->ro = 0;
2446 			mddev->recovery_cp = MaxSector;
2447 			err = do_md_run(mddev);
2448 		}
2449 		break;
2450 	case active:
2451 		if (mddev->pers) {
2452 			restart_array(mddev);
2453 			clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2454 			wake_up(&mddev->sb_wait);
2455 			err = 0;
2456 		} else {
2457 			mddev->ro = 0;
2458 			err = do_md_run(mddev);
2459 		}
2460 		break;
2461 	case write_pending:
2462 	case active_idle:
2463 		/* these cannot be set */
2464 		break;
2465 	}
2466 	if (err)
2467 		return err;
2468 	else
2469 		return len;
2470 }
2471 static struct md_sysfs_entry md_array_state =
2472 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2473 
2474 static ssize_t
2475 null_show(mddev_t *mddev, char *page)
2476 {
2477 	return -EINVAL;
2478 }
2479 
2480 static ssize_t
2481 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2482 {
2483 	/* buf must be %d:%d\n? giving major and minor numbers */
2484 	/* The new device is added to the array.
2485 	 * If the array has a persistent superblock, we read the
2486 	 * superblock to initialise info and check validity.
2487 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2488 	 * which mainly checks size.
2489 	 */
2490 	char *e;
2491 	int major = simple_strtoul(buf, &e, 10);
2492 	int minor;
2493 	dev_t dev;
2494 	mdk_rdev_t *rdev;
2495 	int err;
2496 
2497 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2498 		return -EINVAL;
2499 	minor = simple_strtoul(e+1, &e, 10);
2500 	if (*e && *e != '\n')
2501 		return -EINVAL;
2502 	dev = MKDEV(major, minor);
2503 	if (major != MAJOR(dev) ||
2504 	    minor != MINOR(dev))
2505 		return -EOVERFLOW;
2506 
2507 
2508 	if (mddev->persistent) {
2509 		rdev = md_import_device(dev, mddev->major_version,
2510 					mddev->minor_version);
2511 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2512 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2513 						       mdk_rdev_t, same_set);
2514 			err = super_types[mddev->major_version]
2515 				.load_super(rdev, rdev0, mddev->minor_version);
2516 			if (err < 0)
2517 				goto out;
2518 		}
2519 	} else
2520 		rdev = md_import_device(dev, -1, -1);
2521 
2522 	if (IS_ERR(rdev))
2523 		return PTR_ERR(rdev);
2524 	err = bind_rdev_to_array(rdev, mddev);
2525  out:
2526 	if (err)
2527 		export_rdev(rdev);
2528 	return err ? err : len;
2529 }
2530 
2531 static struct md_sysfs_entry md_new_device =
2532 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2533 
2534 static ssize_t
2535 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2536 {
2537 	char *end;
2538 	unsigned long chunk, end_chunk;
2539 
2540 	if (!mddev->bitmap)
2541 		goto out;
2542 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2543 	while (*buf) {
2544 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
2545 		if (buf == end) break;
2546 		if (*end == '-') { /* range */
2547 			buf = end + 1;
2548 			end_chunk = simple_strtoul(buf, &end, 0);
2549 			if (buf == end) break;
2550 		}
2551 		if (*end && !isspace(*end)) break;
2552 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2553 		buf = end;
2554 		while (isspace(*buf)) buf++;
2555 	}
2556 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2557 out:
2558 	return len;
2559 }
2560 
2561 static struct md_sysfs_entry md_bitmap =
2562 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2563 
2564 static ssize_t
2565 size_show(mddev_t *mddev, char *page)
2566 {
2567 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2568 }
2569 
2570 static int update_size(mddev_t *mddev, unsigned long size);
2571 
2572 static ssize_t
2573 size_store(mddev_t *mddev, const char *buf, size_t len)
2574 {
2575 	/* If array is inactive, we can reduce the component size, but
2576 	 * not increase it (except from 0).
2577 	 * If array is active, we can try an on-line resize
2578 	 */
2579 	char *e;
2580 	int err = 0;
2581 	unsigned long long size = simple_strtoull(buf, &e, 10);
2582 	if (!*buf || *buf == '\n' ||
2583 	    (*e && *e != '\n'))
2584 		return -EINVAL;
2585 
2586 	if (mddev->pers) {
2587 		err = update_size(mddev, size);
2588 		md_update_sb(mddev, 1);
2589 	} else {
2590 		if (mddev->size == 0 ||
2591 		    mddev->size > size)
2592 			mddev->size = size;
2593 		else
2594 			err = -ENOSPC;
2595 	}
2596 	return err ? err : len;
2597 }
2598 
2599 static struct md_sysfs_entry md_size =
2600 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2601 
2602 
2603 /* Metdata version.
2604  * This is either 'none' for arrays with externally managed metadata,
2605  * or N.M for internally known formats
2606  */
2607 static ssize_t
2608 metadata_show(mddev_t *mddev, char *page)
2609 {
2610 	if (mddev->persistent)
2611 		return sprintf(page, "%d.%d\n",
2612 			       mddev->major_version, mddev->minor_version);
2613 	else
2614 		return sprintf(page, "none\n");
2615 }
2616 
2617 static ssize_t
2618 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2619 {
2620 	int major, minor;
2621 	char *e;
2622 	if (!list_empty(&mddev->disks))
2623 		return -EBUSY;
2624 
2625 	if (cmd_match(buf, "none")) {
2626 		mddev->persistent = 0;
2627 		mddev->major_version = 0;
2628 		mddev->minor_version = 90;
2629 		return len;
2630 	}
2631 	major = simple_strtoul(buf, &e, 10);
2632 	if (e==buf || *e != '.')
2633 		return -EINVAL;
2634 	buf = e+1;
2635 	minor = simple_strtoul(buf, &e, 10);
2636 	if (e==buf || (*e && *e != '\n') )
2637 		return -EINVAL;
2638 	if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2639 	    super_types[major].name == NULL)
2640 		return -ENOENT;
2641 	mddev->major_version = major;
2642 	mddev->minor_version = minor;
2643 	mddev->persistent = 1;
2644 	return len;
2645 }
2646 
2647 static struct md_sysfs_entry md_metadata =
2648 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2649 
2650 static ssize_t
2651 action_show(mddev_t *mddev, char *page)
2652 {
2653 	char *type = "idle";
2654 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2655 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2656 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2657 			type = "reshape";
2658 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2659 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2660 				type = "resync";
2661 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2662 				type = "check";
2663 			else
2664 				type = "repair";
2665 		} else
2666 			type = "recover";
2667 	}
2668 	return sprintf(page, "%s\n", type);
2669 }
2670 
2671 static ssize_t
2672 action_store(mddev_t *mddev, const char *page, size_t len)
2673 {
2674 	if (!mddev->pers || !mddev->pers->sync_request)
2675 		return -EINVAL;
2676 
2677 	if (cmd_match(page, "idle")) {
2678 		if (mddev->sync_thread) {
2679 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2680 			md_unregister_thread(mddev->sync_thread);
2681 			mddev->sync_thread = NULL;
2682 			mddev->recovery = 0;
2683 		}
2684 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2685 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2686 		return -EBUSY;
2687 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2688 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2689 	else if (cmd_match(page, "reshape")) {
2690 		int err;
2691 		if (mddev->pers->start_reshape == NULL)
2692 			return -EINVAL;
2693 		err = mddev->pers->start_reshape(mddev);
2694 		if (err)
2695 			return err;
2696 	} else {
2697 		if (cmd_match(page, "check"))
2698 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2699 		else if (!cmd_match(page, "repair"))
2700 			return -EINVAL;
2701 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2702 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2703 	}
2704 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2705 	md_wakeup_thread(mddev->thread);
2706 	return len;
2707 }
2708 
2709 static ssize_t
2710 mismatch_cnt_show(mddev_t *mddev, char *page)
2711 {
2712 	return sprintf(page, "%llu\n",
2713 		       (unsigned long long) mddev->resync_mismatches);
2714 }
2715 
2716 static struct md_sysfs_entry md_scan_mode =
2717 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2718 
2719 
2720 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2721 
2722 static ssize_t
2723 sync_min_show(mddev_t *mddev, char *page)
2724 {
2725 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
2726 		       mddev->sync_speed_min ? "local": "system");
2727 }
2728 
2729 static ssize_t
2730 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2731 {
2732 	int min;
2733 	char *e;
2734 	if (strncmp(buf, "system", 6)==0) {
2735 		mddev->sync_speed_min = 0;
2736 		return len;
2737 	}
2738 	min = simple_strtoul(buf, &e, 10);
2739 	if (buf == e || (*e && *e != '\n') || min <= 0)
2740 		return -EINVAL;
2741 	mddev->sync_speed_min = min;
2742 	return len;
2743 }
2744 
2745 static struct md_sysfs_entry md_sync_min =
2746 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2747 
2748 static ssize_t
2749 sync_max_show(mddev_t *mddev, char *page)
2750 {
2751 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
2752 		       mddev->sync_speed_max ? "local": "system");
2753 }
2754 
2755 static ssize_t
2756 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2757 {
2758 	int max;
2759 	char *e;
2760 	if (strncmp(buf, "system", 6)==0) {
2761 		mddev->sync_speed_max = 0;
2762 		return len;
2763 	}
2764 	max = simple_strtoul(buf, &e, 10);
2765 	if (buf == e || (*e && *e != '\n') || max <= 0)
2766 		return -EINVAL;
2767 	mddev->sync_speed_max = max;
2768 	return len;
2769 }
2770 
2771 static struct md_sysfs_entry md_sync_max =
2772 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2773 
2774 
2775 static ssize_t
2776 sync_speed_show(mddev_t *mddev, char *page)
2777 {
2778 	unsigned long resync, dt, db;
2779 	resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2780 	dt = ((jiffies - mddev->resync_mark) / HZ);
2781 	if (!dt) dt++;
2782 	db = resync - (mddev->resync_mark_cnt);
2783 	return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2784 }
2785 
2786 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2787 
2788 static ssize_t
2789 sync_completed_show(mddev_t *mddev, char *page)
2790 {
2791 	unsigned long max_blocks, resync;
2792 
2793 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2794 		max_blocks = mddev->resync_max_sectors;
2795 	else
2796 		max_blocks = mddev->size << 1;
2797 
2798 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2799 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2800 }
2801 
2802 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2803 
2804 static ssize_t
2805 suspend_lo_show(mddev_t *mddev, char *page)
2806 {
2807 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2808 }
2809 
2810 static ssize_t
2811 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2812 {
2813 	char *e;
2814 	unsigned long long new = simple_strtoull(buf, &e, 10);
2815 
2816 	if (mddev->pers->quiesce == NULL)
2817 		return -EINVAL;
2818 	if (buf == e || (*e && *e != '\n'))
2819 		return -EINVAL;
2820 	if (new >= mddev->suspend_hi ||
2821 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2822 		mddev->suspend_lo = new;
2823 		mddev->pers->quiesce(mddev, 2);
2824 		return len;
2825 	} else
2826 		return -EINVAL;
2827 }
2828 static struct md_sysfs_entry md_suspend_lo =
2829 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2830 
2831 
2832 static ssize_t
2833 suspend_hi_show(mddev_t *mddev, char *page)
2834 {
2835 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2836 }
2837 
2838 static ssize_t
2839 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2840 {
2841 	char *e;
2842 	unsigned long long new = simple_strtoull(buf, &e, 10);
2843 
2844 	if (mddev->pers->quiesce == NULL)
2845 		return -EINVAL;
2846 	if (buf == e || (*e && *e != '\n'))
2847 		return -EINVAL;
2848 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2849 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2850 		mddev->suspend_hi = new;
2851 		mddev->pers->quiesce(mddev, 1);
2852 		mddev->pers->quiesce(mddev, 0);
2853 		return len;
2854 	} else
2855 		return -EINVAL;
2856 }
2857 static struct md_sysfs_entry md_suspend_hi =
2858 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2859 
2860 
2861 static struct attribute *md_default_attrs[] = {
2862 	&md_level.attr,
2863 	&md_layout.attr,
2864 	&md_raid_disks.attr,
2865 	&md_chunk_size.attr,
2866 	&md_size.attr,
2867 	&md_resync_start.attr,
2868 	&md_metadata.attr,
2869 	&md_new_device.attr,
2870 	&md_safe_delay.attr,
2871 	&md_array_state.attr,
2872 	NULL,
2873 };
2874 
2875 static struct attribute *md_redundancy_attrs[] = {
2876 	&md_scan_mode.attr,
2877 	&md_mismatches.attr,
2878 	&md_sync_min.attr,
2879 	&md_sync_max.attr,
2880 	&md_sync_speed.attr,
2881 	&md_sync_completed.attr,
2882 	&md_suspend_lo.attr,
2883 	&md_suspend_hi.attr,
2884 	&md_bitmap.attr,
2885 	NULL,
2886 };
2887 static struct attribute_group md_redundancy_group = {
2888 	.name = NULL,
2889 	.attrs = md_redundancy_attrs,
2890 };
2891 
2892 
2893 static ssize_t
2894 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2895 {
2896 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2897 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2898 	ssize_t rv;
2899 
2900 	if (!entry->show)
2901 		return -EIO;
2902 	rv = mddev_lock(mddev);
2903 	if (!rv) {
2904 		rv = entry->show(mddev, page);
2905 		mddev_unlock(mddev);
2906 	}
2907 	return rv;
2908 }
2909 
2910 static ssize_t
2911 md_attr_store(struct kobject *kobj, struct attribute *attr,
2912 	      const char *page, size_t length)
2913 {
2914 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2915 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2916 	ssize_t rv;
2917 
2918 	if (!entry->store)
2919 		return -EIO;
2920 	if (!capable(CAP_SYS_ADMIN))
2921 		return -EACCES;
2922 	rv = mddev_lock(mddev);
2923 	if (!rv) {
2924 		rv = entry->store(mddev, page, length);
2925 		mddev_unlock(mddev);
2926 	}
2927 	return rv;
2928 }
2929 
2930 static void md_free(struct kobject *ko)
2931 {
2932 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
2933 	kfree(mddev);
2934 }
2935 
2936 static struct sysfs_ops md_sysfs_ops = {
2937 	.show	= md_attr_show,
2938 	.store	= md_attr_store,
2939 };
2940 static struct kobj_type md_ktype = {
2941 	.release	= md_free,
2942 	.sysfs_ops	= &md_sysfs_ops,
2943 	.default_attrs	= md_default_attrs,
2944 };
2945 
2946 int mdp_major = 0;
2947 
2948 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2949 {
2950 	static DEFINE_MUTEX(disks_mutex);
2951 	mddev_t *mddev = mddev_find(dev);
2952 	struct gendisk *disk;
2953 	int partitioned = (MAJOR(dev) != MD_MAJOR);
2954 	int shift = partitioned ? MdpMinorShift : 0;
2955 	int unit = MINOR(dev) >> shift;
2956 
2957 	if (!mddev)
2958 		return NULL;
2959 
2960 	mutex_lock(&disks_mutex);
2961 	if (mddev->gendisk) {
2962 		mutex_unlock(&disks_mutex);
2963 		mddev_put(mddev);
2964 		return NULL;
2965 	}
2966 	disk = alloc_disk(1 << shift);
2967 	if (!disk) {
2968 		mutex_unlock(&disks_mutex);
2969 		mddev_put(mddev);
2970 		return NULL;
2971 	}
2972 	disk->major = MAJOR(dev);
2973 	disk->first_minor = unit << shift;
2974 	if (partitioned)
2975 		sprintf(disk->disk_name, "md_d%d", unit);
2976 	else
2977 		sprintf(disk->disk_name, "md%d", unit);
2978 	disk->fops = &md_fops;
2979 	disk->private_data = mddev;
2980 	disk->queue = mddev->queue;
2981 	add_disk(disk);
2982 	mddev->gendisk = disk;
2983 	mutex_unlock(&disks_mutex);
2984 	mddev->kobj.parent = &disk->kobj;
2985 	mddev->kobj.k_name = NULL;
2986 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2987 	mddev->kobj.ktype = &md_ktype;
2988 	kobject_register(&mddev->kobj);
2989 	return NULL;
2990 }
2991 
2992 static void md_safemode_timeout(unsigned long data)
2993 {
2994 	mddev_t *mddev = (mddev_t *) data;
2995 
2996 	mddev->safemode = 1;
2997 	md_wakeup_thread(mddev->thread);
2998 }
2999 
3000 static int start_dirty_degraded;
3001 
3002 static int do_md_run(mddev_t * mddev)
3003 {
3004 	int err;
3005 	int chunk_size;
3006 	struct list_head *tmp;
3007 	mdk_rdev_t *rdev;
3008 	struct gendisk *disk;
3009 	struct mdk_personality *pers;
3010 	char b[BDEVNAME_SIZE];
3011 
3012 	if (list_empty(&mddev->disks))
3013 		/* cannot run an array with no devices.. */
3014 		return -EINVAL;
3015 
3016 	if (mddev->pers)
3017 		return -EBUSY;
3018 
3019 	/*
3020 	 * Analyze all RAID superblock(s)
3021 	 */
3022 	if (!mddev->raid_disks)
3023 		analyze_sbs(mddev);
3024 
3025 	chunk_size = mddev->chunk_size;
3026 
3027 	if (chunk_size) {
3028 		if (chunk_size > MAX_CHUNK_SIZE) {
3029 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
3030 				chunk_size, MAX_CHUNK_SIZE);
3031 			return -EINVAL;
3032 		}
3033 		/*
3034 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3035 		 */
3036 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
3037 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3038 			return -EINVAL;
3039 		}
3040 		if (chunk_size < PAGE_SIZE) {
3041 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3042 				chunk_size, PAGE_SIZE);
3043 			return -EINVAL;
3044 		}
3045 
3046 		/* devices must have minimum size of one chunk */
3047 		ITERATE_RDEV(mddev,rdev,tmp) {
3048 			if (test_bit(Faulty, &rdev->flags))
3049 				continue;
3050 			if (rdev->size < chunk_size / 1024) {
3051 				printk(KERN_WARNING
3052 					"md: Dev %s smaller than chunk_size:"
3053 					" %lluk < %dk\n",
3054 					bdevname(rdev->bdev,b),
3055 					(unsigned long long)rdev->size,
3056 					chunk_size / 1024);
3057 				return -EINVAL;
3058 			}
3059 		}
3060 	}
3061 
3062 #ifdef CONFIG_KMOD
3063 	if (mddev->level != LEVEL_NONE)
3064 		request_module("md-level-%d", mddev->level);
3065 	else if (mddev->clevel[0])
3066 		request_module("md-%s", mddev->clevel);
3067 #endif
3068 
3069 	/*
3070 	 * Drop all container device buffers, from now on
3071 	 * the only valid external interface is through the md
3072 	 * device.
3073 	 * Also find largest hardsector size
3074 	 */
3075 	ITERATE_RDEV(mddev,rdev,tmp) {
3076 		if (test_bit(Faulty, &rdev->flags))
3077 			continue;
3078 		sync_blockdev(rdev->bdev);
3079 		invalidate_bdev(rdev->bdev, 0);
3080 	}
3081 
3082 	md_probe(mddev->unit, NULL, NULL);
3083 	disk = mddev->gendisk;
3084 	if (!disk)
3085 		return -ENOMEM;
3086 
3087 	spin_lock(&pers_lock);
3088 	pers = find_pers(mddev->level, mddev->clevel);
3089 	if (!pers || !try_module_get(pers->owner)) {
3090 		spin_unlock(&pers_lock);
3091 		if (mddev->level != LEVEL_NONE)
3092 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3093 			       mddev->level);
3094 		else
3095 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3096 			       mddev->clevel);
3097 		return -EINVAL;
3098 	}
3099 	mddev->pers = pers;
3100 	spin_unlock(&pers_lock);
3101 	mddev->level = pers->level;
3102 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3103 
3104 	if (mddev->reshape_position != MaxSector &&
3105 	    pers->start_reshape == NULL) {
3106 		/* This personality cannot handle reshaping... */
3107 		mddev->pers = NULL;
3108 		module_put(pers->owner);
3109 		return -EINVAL;
3110 	}
3111 
3112 	mddev->recovery = 0;
3113 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3114 	mddev->barriers_work = 1;
3115 	mddev->ok_start_degraded = start_dirty_degraded;
3116 
3117 	if (start_readonly)
3118 		mddev->ro = 2; /* read-only, but switch on first write */
3119 
3120 	err = mddev->pers->run(mddev);
3121 	if (!err && mddev->pers->sync_request) {
3122 		err = bitmap_create(mddev);
3123 		if (err) {
3124 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3125 			       mdname(mddev), err);
3126 			mddev->pers->stop(mddev);
3127 		}
3128 	}
3129 	if (err) {
3130 		printk(KERN_ERR "md: pers->run() failed ...\n");
3131 		module_put(mddev->pers->owner);
3132 		mddev->pers = NULL;
3133 		bitmap_destroy(mddev);
3134 		return err;
3135 	}
3136 	if (mddev->pers->sync_request)
3137 		sysfs_create_group(&mddev->kobj, &md_redundancy_group);
3138 	else if (mddev->ro == 2) /* auto-readonly not meaningful */
3139 		mddev->ro = 0;
3140 
3141  	atomic_set(&mddev->writes_pending,0);
3142 	mddev->safemode = 0;
3143 	mddev->safemode_timer.function = md_safemode_timeout;
3144 	mddev->safemode_timer.data = (unsigned long) mddev;
3145 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3146 	mddev->in_sync = 1;
3147 
3148 	ITERATE_RDEV(mddev,rdev,tmp)
3149 		if (rdev->raid_disk >= 0) {
3150 			char nm[20];
3151 			sprintf(nm, "rd%d", rdev->raid_disk);
3152 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3153 		}
3154 
3155 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3156 
3157 	if (mddev->flags)
3158 		md_update_sb(mddev, 0);
3159 
3160 	set_capacity(disk, mddev->array_size<<1);
3161 
3162 	/* If we call blk_queue_make_request here, it will
3163 	 * re-initialise max_sectors etc which may have been
3164 	 * refined inside -> run.  So just set the bits we need to set.
3165 	 * Most initialisation happended when we called
3166 	 * blk_queue_make_request(..., md_fail_request)
3167 	 * earlier.
3168 	 */
3169 	mddev->queue->queuedata = mddev;
3170 	mddev->queue->make_request_fn = mddev->pers->make_request;
3171 
3172 	/* If there is a partially-recovered drive we need to
3173 	 * start recovery here.  If we leave it to md_check_recovery,
3174 	 * it will remove the drives and not do the right thing
3175 	 */
3176 	if (mddev->degraded && !mddev->sync_thread) {
3177 		struct list_head *rtmp;
3178 		int spares = 0;
3179 		ITERATE_RDEV(mddev,rdev,rtmp)
3180 			if (rdev->raid_disk >= 0 &&
3181 			    !test_bit(In_sync, &rdev->flags) &&
3182 			    !test_bit(Faulty, &rdev->flags))
3183 				/* complete an interrupted recovery */
3184 				spares++;
3185 		if (spares && mddev->pers->sync_request) {
3186 			mddev->recovery = 0;
3187 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3188 			mddev->sync_thread = md_register_thread(md_do_sync,
3189 								mddev,
3190 								"%s_resync");
3191 			if (!mddev->sync_thread) {
3192 				printk(KERN_ERR "%s: could not start resync"
3193 				       " thread...\n",
3194 				       mdname(mddev));
3195 				/* leave the spares where they are, it shouldn't hurt */
3196 				mddev->recovery = 0;
3197 			}
3198 		}
3199 	}
3200 	md_wakeup_thread(mddev->thread);
3201 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3202 
3203 	mddev->changed = 1;
3204 	md_new_event(mddev);
3205 	kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
3206 	return 0;
3207 }
3208 
3209 static int restart_array(mddev_t *mddev)
3210 {
3211 	struct gendisk *disk = mddev->gendisk;
3212 	int err;
3213 
3214 	/*
3215 	 * Complain if it has no devices
3216 	 */
3217 	err = -ENXIO;
3218 	if (list_empty(&mddev->disks))
3219 		goto out;
3220 
3221 	if (mddev->pers) {
3222 		err = -EBUSY;
3223 		if (!mddev->ro)
3224 			goto out;
3225 
3226 		mddev->safemode = 0;
3227 		mddev->ro = 0;
3228 		set_disk_ro(disk, 0);
3229 
3230 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
3231 			mdname(mddev));
3232 		/*
3233 		 * Kick recovery or resync if necessary
3234 		 */
3235 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3236 		md_wakeup_thread(mddev->thread);
3237 		md_wakeup_thread(mddev->sync_thread);
3238 		err = 0;
3239 	} else
3240 		err = -EINVAL;
3241 
3242 out:
3243 	return err;
3244 }
3245 
3246 /* similar to deny_write_access, but accounts for our holding a reference
3247  * to the file ourselves */
3248 static int deny_bitmap_write_access(struct file * file)
3249 {
3250 	struct inode *inode = file->f_mapping->host;
3251 
3252 	spin_lock(&inode->i_lock);
3253 	if (atomic_read(&inode->i_writecount) > 1) {
3254 		spin_unlock(&inode->i_lock);
3255 		return -ETXTBSY;
3256 	}
3257 	atomic_set(&inode->i_writecount, -1);
3258 	spin_unlock(&inode->i_lock);
3259 
3260 	return 0;
3261 }
3262 
3263 static void restore_bitmap_write_access(struct file *file)
3264 {
3265 	struct inode *inode = file->f_mapping->host;
3266 
3267 	spin_lock(&inode->i_lock);
3268 	atomic_set(&inode->i_writecount, 1);
3269 	spin_unlock(&inode->i_lock);
3270 }
3271 
3272 /* mode:
3273  *   0 - completely stop and dis-assemble array
3274  *   1 - switch to readonly
3275  *   2 - stop but do not disassemble array
3276  */
3277 static int do_md_stop(mddev_t * mddev, int mode)
3278 {
3279 	int err = 0;
3280 	struct gendisk *disk = mddev->gendisk;
3281 
3282 	if (mddev->pers) {
3283 		if (atomic_read(&mddev->active)>2) {
3284 			printk("md: %s still in use.\n",mdname(mddev));
3285 			return -EBUSY;
3286 		}
3287 
3288 		if (mddev->sync_thread) {
3289 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3290 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3291 			md_unregister_thread(mddev->sync_thread);
3292 			mddev->sync_thread = NULL;
3293 		}
3294 
3295 		del_timer_sync(&mddev->safemode_timer);
3296 
3297 		invalidate_partition(disk, 0);
3298 
3299 		switch(mode) {
3300 		case 1: /* readonly */
3301 			err  = -ENXIO;
3302 			if (mddev->ro==1)
3303 				goto out;
3304 			mddev->ro = 1;
3305 			break;
3306 		case 0: /* disassemble */
3307 		case 2: /* stop */
3308 			bitmap_flush(mddev);
3309 			md_super_wait(mddev);
3310 			if (mddev->ro)
3311 				set_disk_ro(disk, 0);
3312 			blk_queue_make_request(mddev->queue, md_fail_request);
3313 			mddev->pers->stop(mddev);
3314 			if (mddev->pers->sync_request)
3315 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3316 
3317 			module_put(mddev->pers->owner);
3318 			mddev->pers = NULL;
3319 
3320 			set_capacity(disk, 0);
3321 			mddev->changed = 1;
3322 
3323 			if (mddev->ro)
3324 				mddev->ro = 0;
3325 		}
3326 		if (!mddev->in_sync || mddev->flags) {
3327 			/* mark array as shutdown cleanly */
3328 			mddev->in_sync = 1;
3329 			md_update_sb(mddev, 1);
3330 		}
3331 		if (mode == 1)
3332 			set_disk_ro(disk, 1);
3333 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3334 	}
3335 
3336 	/*
3337 	 * Free resources if final stop
3338 	 */
3339 	if (mode == 0) {
3340 		mdk_rdev_t *rdev;
3341 		struct list_head *tmp;
3342 
3343 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3344 
3345 		bitmap_destroy(mddev);
3346 		if (mddev->bitmap_file) {
3347 			restore_bitmap_write_access(mddev->bitmap_file);
3348 			fput(mddev->bitmap_file);
3349 			mddev->bitmap_file = NULL;
3350 		}
3351 		mddev->bitmap_offset = 0;
3352 
3353 		ITERATE_RDEV(mddev,rdev,tmp)
3354 			if (rdev->raid_disk >= 0) {
3355 				char nm[20];
3356 				sprintf(nm, "rd%d", rdev->raid_disk);
3357 				sysfs_remove_link(&mddev->kobj, nm);
3358 			}
3359 
3360 		export_array(mddev);
3361 
3362 		mddev->array_size = 0;
3363 		mddev->size = 0;
3364 		mddev->raid_disks = 0;
3365 		mddev->recovery_cp = 0;
3366 
3367 	} else if (mddev->pers)
3368 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
3369 			mdname(mddev));
3370 	err = 0;
3371 	md_new_event(mddev);
3372 out:
3373 	return err;
3374 }
3375 
3376 #ifndef MODULE
3377 static void autorun_array(mddev_t *mddev)
3378 {
3379 	mdk_rdev_t *rdev;
3380 	struct list_head *tmp;
3381 	int err;
3382 
3383 	if (list_empty(&mddev->disks))
3384 		return;
3385 
3386 	printk(KERN_INFO "md: running: ");
3387 
3388 	ITERATE_RDEV(mddev,rdev,tmp) {
3389 		char b[BDEVNAME_SIZE];
3390 		printk("<%s>", bdevname(rdev->bdev,b));
3391 	}
3392 	printk("\n");
3393 
3394 	err = do_md_run (mddev);
3395 	if (err) {
3396 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3397 		do_md_stop (mddev, 0);
3398 	}
3399 }
3400 
3401 /*
3402  * lets try to run arrays based on all disks that have arrived
3403  * until now. (those are in pending_raid_disks)
3404  *
3405  * the method: pick the first pending disk, collect all disks with
3406  * the same UUID, remove all from the pending list and put them into
3407  * the 'same_array' list. Then order this list based on superblock
3408  * update time (freshest comes first), kick out 'old' disks and
3409  * compare superblocks. If everything's fine then run it.
3410  *
3411  * If "unit" is allocated, then bump its reference count
3412  */
3413 static void autorun_devices(int part)
3414 {
3415 	struct list_head *tmp;
3416 	mdk_rdev_t *rdev0, *rdev;
3417 	mddev_t *mddev;
3418 	char b[BDEVNAME_SIZE];
3419 
3420 	printk(KERN_INFO "md: autorun ...\n");
3421 	while (!list_empty(&pending_raid_disks)) {
3422 		int unit;
3423 		dev_t dev;
3424 		LIST_HEAD(candidates);
3425 		rdev0 = list_entry(pending_raid_disks.next,
3426 					 mdk_rdev_t, same_set);
3427 
3428 		printk(KERN_INFO "md: considering %s ...\n",
3429 			bdevname(rdev0->bdev,b));
3430 		INIT_LIST_HEAD(&candidates);
3431 		ITERATE_RDEV_PENDING(rdev,tmp)
3432 			if (super_90_load(rdev, rdev0, 0) >= 0) {
3433 				printk(KERN_INFO "md:  adding %s ...\n",
3434 					bdevname(rdev->bdev,b));
3435 				list_move(&rdev->same_set, &candidates);
3436 			}
3437 		/*
3438 		 * now we have a set of devices, with all of them having
3439 		 * mostly sane superblocks. It's time to allocate the
3440 		 * mddev.
3441 		 */
3442 		if (part) {
3443 			dev = MKDEV(mdp_major,
3444 				    rdev0->preferred_minor << MdpMinorShift);
3445 			unit = MINOR(dev) >> MdpMinorShift;
3446 		} else {
3447 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3448 			unit = MINOR(dev);
3449 		}
3450 		if (rdev0->preferred_minor != unit) {
3451 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3452 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3453 			break;
3454 		}
3455 
3456 		md_probe(dev, NULL, NULL);
3457 		mddev = mddev_find(dev);
3458 		if (!mddev) {
3459 			printk(KERN_ERR
3460 				"md: cannot allocate memory for md drive.\n");
3461 			break;
3462 		}
3463 		if (mddev_lock(mddev))
3464 			printk(KERN_WARNING "md: %s locked, cannot run\n",
3465 			       mdname(mddev));
3466 		else if (mddev->raid_disks || mddev->major_version
3467 			 || !list_empty(&mddev->disks)) {
3468 			printk(KERN_WARNING
3469 				"md: %s already running, cannot run %s\n",
3470 				mdname(mddev), bdevname(rdev0->bdev,b));
3471 			mddev_unlock(mddev);
3472 		} else {
3473 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
3474 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3475 				list_del_init(&rdev->same_set);
3476 				if (bind_rdev_to_array(rdev, mddev))
3477 					export_rdev(rdev);
3478 			}
3479 			autorun_array(mddev);
3480 			mddev_unlock(mddev);
3481 		}
3482 		/* on success, candidates will be empty, on error
3483 		 * it won't...
3484 		 */
3485 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3486 			export_rdev(rdev);
3487 		mddev_put(mddev);
3488 	}
3489 	printk(KERN_INFO "md: ... autorun DONE.\n");
3490 }
3491 #endif /* !MODULE */
3492 
3493 static int get_version(void __user * arg)
3494 {
3495 	mdu_version_t ver;
3496 
3497 	ver.major = MD_MAJOR_VERSION;
3498 	ver.minor = MD_MINOR_VERSION;
3499 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
3500 
3501 	if (copy_to_user(arg, &ver, sizeof(ver)))
3502 		return -EFAULT;
3503 
3504 	return 0;
3505 }
3506 
3507 static int get_array_info(mddev_t * mddev, void __user * arg)
3508 {
3509 	mdu_array_info_t info;
3510 	int nr,working,active,failed,spare;
3511 	mdk_rdev_t *rdev;
3512 	struct list_head *tmp;
3513 
3514 	nr=working=active=failed=spare=0;
3515 	ITERATE_RDEV(mddev,rdev,tmp) {
3516 		nr++;
3517 		if (test_bit(Faulty, &rdev->flags))
3518 			failed++;
3519 		else {
3520 			working++;
3521 			if (test_bit(In_sync, &rdev->flags))
3522 				active++;
3523 			else
3524 				spare++;
3525 		}
3526 	}
3527 
3528 	info.major_version = mddev->major_version;
3529 	info.minor_version = mddev->minor_version;
3530 	info.patch_version = MD_PATCHLEVEL_VERSION;
3531 	info.ctime         = mddev->ctime;
3532 	info.level         = mddev->level;
3533 	info.size          = mddev->size;
3534 	if (info.size != mddev->size) /* overflow */
3535 		info.size = -1;
3536 	info.nr_disks      = nr;
3537 	info.raid_disks    = mddev->raid_disks;
3538 	info.md_minor      = mddev->md_minor;
3539 	info.not_persistent= !mddev->persistent;
3540 
3541 	info.utime         = mddev->utime;
3542 	info.state         = 0;
3543 	if (mddev->in_sync)
3544 		info.state = (1<<MD_SB_CLEAN);
3545 	if (mddev->bitmap && mddev->bitmap_offset)
3546 		info.state = (1<<MD_SB_BITMAP_PRESENT);
3547 	info.active_disks  = active;
3548 	info.working_disks = working;
3549 	info.failed_disks  = failed;
3550 	info.spare_disks   = spare;
3551 
3552 	info.layout        = mddev->layout;
3553 	info.chunk_size    = mddev->chunk_size;
3554 
3555 	if (copy_to_user(arg, &info, sizeof(info)))
3556 		return -EFAULT;
3557 
3558 	return 0;
3559 }
3560 
3561 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3562 {
3563 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3564 	char *ptr, *buf = NULL;
3565 	int err = -ENOMEM;
3566 
3567 	md_allow_write(mddev);
3568 
3569 	file = kmalloc(sizeof(*file), GFP_KERNEL);
3570 	if (!file)
3571 		goto out;
3572 
3573 	/* bitmap disabled, zero the first byte and copy out */
3574 	if (!mddev->bitmap || !mddev->bitmap->file) {
3575 		file->pathname[0] = '\0';
3576 		goto copy_out;
3577 	}
3578 
3579 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3580 	if (!buf)
3581 		goto out;
3582 
3583 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3584 	if (!ptr)
3585 		goto out;
3586 
3587 	strcpy(file->pathname, ptr);
3588 
3589 copy_out:
3590 	err = 0;
3591 	if (copy_to_user(arg, file, sizeof(*file)))
3592 		err = -EFAULT;
3593 out:
3594 	kfree(buf);
3595 	kfree(file);
3596 	return err;
3597 }
3598 
3599 static int get_disk_info(mddev_t * mddev, void __user * arg)
3600 {
3601 	mdu_disk_info_t info;
3602 	unsigned int nr;
3603 	mdk_rdev_t *rdev;
3604 
3605 	if (copy_from_user(&info, arg, sizeof(info)))
3606 		return -EFAULT;
3607 
3608 	nr = info.number;
3609 
3610 	rdev = find_rdev_nr(mddev, nr);
3611 	if (rdev) {
3612 		info.major = MAJOR(rdev->bdev->bd_dev);
3613 		info.minor = MINOR(rdev->bdev->bd_dev);
3614 		info.raid_disk = rdev->raid_disk;
3615 		info.state = 0;
3616 		if (test_bit(Faulty, &rdev->flags))
3617 			info.state |= (1<<MD_DISK_FAULTY);
3618 		else if (test_bit(In_sync, &rdev->flags)) {
3619 			info.state |= (1<<MD_DISK_ACTIVE);
3620 			info.state |= (1<<MD_DISK_SYNC);
3621 		}
3622 		if (test_bit(WriteMostly, &rdev->flags))
3623 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
3624 	} else {
3625 		info.major = info.minor = 0;
3626 		info.raid_disk = -1;
3627 		info.state = (1<<MD_DISK_REMOVED);
3628 	}
3629 
3630 	if (copy_to_user(arg, &info, sizeof(info)))
3631 		return -EFAULT;
3632 
3633 	return 0;
3634 }
3635 
3636 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3637 {
3638 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3639 	mdk_rdev_t *rdev;
3640 	dev_t dev = MKDEV(info->major,info->minor);
3641 
3642 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3643 		return -EOVERFLOW;
3644 
3645 	if (!mddev->raid_disks) {
3646 		int err;
3647 		/* expecting a device which has a superblock */
3648 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3649 		if (IS_ERR(rdev)) {
3650 			printk(KERN_WARNING
3651 				"md: md_import_device returned %ld\n",
3652 				PTR_ERR(rdev));
3653 			return PTR_ERR(rdev);
3654 		}
3655 		if (!list_empty(&mddev->disks)) {
3656 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3657 							mdk_rdev_t, same_set);
3658 			int err = super_types[mddev->major_version]
3659 				.load_super(rdev, rdev0, mddev->minor_version);
3660 			if (err < 0) {
3661 				printk(KERN_WARNING
3662 					"md: %s has different UUID to %s\n",
3663 					bdevname(rdev->bdev,b),
3664 					bdevname(rdev0->bdev,b2));
3665 				export_rdev(rdev);
3666 				return -EINVAL;
3667 			}
3668 		}
3669 		err = bind_rdev_to_array(rdev, mddev);
3670 		if (err)
3671 			export_rdev(rdev);
3672 		return err;
3673 	}
3674 
3675 	/*
3676 	 * add_new_disk can be used once the array is assembled
3677 	 * to add "hot spares".  They must already have a superblock
3678 	 * written
3679 	 */
3680 	if (mddev->pers) {
3681 		int err;
3682 		if (!mddev->pers->hot_add_disk) {
3683 			printk(KERN_WARNING
3684 				"%s: personality does not support diskops!\n",
3685 			       mdname(mddev));
3686 			return -EINVAL;
3687 		}
3688 		if (mddev->persistent)
3689 			rdev = md_import_device(dev, mddev->major_version,
3690 						mddev->minor_version);
3691 		else
3692 			rdev = md_import_device(dev, -1, -1);
3693 		if (IS_ERR(rdev)) {
3694 			printk(KERN_WARNING
3695 				"md: md_import_device returned %ld\n",
3696 				PTR_ERR(rdev));
3697 			return PTR_ERR(rdev);
3698 		}
3699 		/* set save_raid_disk if appropriate */
3700 		if (!mddev->persistent) {
3701 			if (info->state & (1<<MD_DISK_SYNC)  &&
3702 			    info->raid_disk < mddev->raid_disks)
3703 				rdev->raid_disk = info->raid_disk;
3704 			else
3705 				rdev->raid_disk = -1;
3706 		} else
3707 			super_types[mddev->major_version].
3708 				validate_super(mddev, rdev);
3709 		rdev->saved_raid_disk = rdev->raid_disk;
3710 
3711 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
3712 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3713 			set_bit(WriteMostly, &rdev->flags);
3714 
3715 		rdev->raid_disk = -1;
3716 		err = bind_rdev_to_array(rdev, mddev);
3717 		if (!err && !mddev->pers->hot_remove_disk) {
3718 			/* If there is hot_add_disk but no hot_remove_disk
3719 			 * then added disks for geometry changes,
3720 			 * and should be added immediately.
3721 			 */
3722 			super_types[mddev->major_version].
3723 				validate_super(mddev, rdev);
3724 			err = mddev->pers->hot_add_disk(mddev, rdev);
3725 			if (err)
3726 				unbind_rdev_from_array(rdev);
3727 		}
3728 		if (err)
3729 			export_rdev(rdev);
3730 
3731 		md_update_sb(mddev, 1);
3732 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3733 		md_wakeup_thread(mddev->thread);
3734 		return err;
3735 	}
3736 
3737 	/* otherwise, add_new_disk is only allowed
3738 	 * for major_version==0 superblocks
3739 	 */
3740 	if (mddev->major_version != 0) {
3741 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3742 		       mdname(mddev));
3743 		return -EINVAL;
3744 	}
3745 
3746 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
3747 		int err;
3748 		rdev = md_import_device (dev, -1, 0);
3749 		if (IS_ERR(rdev)) {
3750 			printk(KERN_WARNING
3751 				"md: error, md_import_device() returned %ld\n",
3752 				PTR_ERR(rdev));
3753 			return PTR_ERR(rdev);
3754 		}
3755 		rdev->desc_nr = info->number;
3756 		if (info->raid_disk < mddev->raid_disks)
3757 			rdev->raid_disk = info->raid_disk;
3758 		else
3759 			rdev->raid_disk = -1;
3760 
3761 		rdev->flags = 0;
3762 
3763 		if (rdev->raid_disk < mddev->raid_disks)
3764 			if (info->state & (1<<MD_DISK_SYNC))
3765 				set_bit(In_sync, &rdev->flags);
3766 
3767 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3768 			set_bit(WriteMostly, &rdev->flags);
3769 
3770 		if (!mddev->persistent) {
3771 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
3772 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3773 		} else
3774 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3775 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3776 
3777 		err = bind_rdev_to_array(rdev, mddev);
3778 		if (err) {
3779 			export_rdev(rdev);
3780 			return err;
3781 		}
3782 	}
3783 
3784 	return 0;
3785 }
3786 
3787 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3788 {
3789 	char b[BDEVNAME_SIZE];
3790 	mdk_rdev_t *rdev;
3791 
3792 	if (!mddev->pers)
3793 		return -ENODEV;
3794 
3795 	rdev = find_rdev(mddev, dev);
3796 	if (!rdev)
3797 		return -ENXIO;
3798 
3799 	if (rdev->raid_disk >= 0)
3800 		goto busy;
3801 
3802 	kick_rdev_from_array(rdev);
3803 	md_update_sb(mddev, 1);
3804 	md_new_event(mddev);
3805 
3806 	return 0;
3807 busy:
3808 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3809 		bdevname(rdev->bdev,b), mdname(mddev));
3810 	return -EBUSY;
3811 }
3812 
3813 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3814 {
3815 	char b[BDEVNAME_SIZE];
3816 	int err;
3817 	unsigned int size;
3818 	mdk_rdev_t *rdev;
3819 
3820 	if (!mddev->pers)
3821 		return -ENODEV;
3822 
3823 	if (mddev->major_version != 0) {
3824 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3825 			" version-0 superblocks.\n",
3826 			mdname(mddev));
3827 		return -EINVAL;
3828 	}
3829 	if (!mddev->pers->hot_add_disk) {
3830 		printk(KERN_WARNING
3831 			"%s: personality does not support diskops!\n",
3832 			mdname(mddev));
3833 		return -EINVAL;
3834 	}
3835 
3836 	rdev = md_import_device (dev, -1, 0);
3837 	if (IS_ERR(rdev)) {
3838 		printk(KERN_WARNING
3839 			"md: error, md_import_device() returned %ld\n",
3840 			PTR_ERR(rdev));
3841 		return -EINVAL;
3842 	}
3843 
3844 	if (mddev->persistent)
3845 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3846 	else
3847 		rdev->sb_offset =
3848 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3849 
3850 	size = calc_dev_size(rdev, mddev->chunk_size);
3851 	rdev->size = size;
3852 
3853 	if (test_bit(Faulty, &rdev->flags)) {
3854 		printk(KERN_WARNING
3855 			"md: can not hot-add faulty %s disk to %s!\n",
3856 			bdevname(rdev->bdev,b), mdname(mddev));
3857 		err = -EINVAL;
3858 		goto abort_export;
3859 	}
3860 	clear_bit(In_sync, &rdev->flags);
3861 	rdev->desc_nr = -1;
3862 	rdev->saved_raid_disk = -1;
3863 	err = bind_rdev_to_array(rdev, mddev);
3864 	if (err)
3865 		goto abort_export;
3866 
3867 	/*
3868 	 * The rest should better be atomic, we can have disk failures
3869 	 * noticed in interrupt contexts ...
3870 	 */
3871 
3872 	if (rdev->desc_nr == mddev->max_disks) {
3873 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3874 			mdname(mddev));
3875 		err = -EBUSY;
3876 		goto abort_unbind_export;
3877 	}
3878 
3879 	rdev->raid_disk = -1;
3880 
3881 	md_update_sb(mddev, 1);
3882 
3883 	/*
3884 	 * Kick recovery, maybe this spare has to be added to the
3885 	 * array immediately.
3886 	 */
3887 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3888 	md_wakeup_thread(mddev->thread);
3889 	md_new_event(mddev);
3890 	return 0;
3891 
3892 abort_unbind_export:
3893 	unbind_rdev_from_array(rdev);
3894 
3895 abort_export:
3896 	export_rdev(rdev);
3897 	return err;
3898 }
3899 
3900 static int set_bitmap_file(mddev_t *mddev, int fd)
3901 {
3902 	int err;
3903 
3904 	if (mddev->pers) {
3905 		if (!mddev->pers->quiesce)
3906 			return -EBUSY;
3907 		if (mddev->recovery || mddev->sync_thread)
3908 			return -EBUSY;
3909 		/* we should be able to change the bitmap.. */
3910 	}
3911 
3912 
3913 	if (fd >= 0) {
3914 		if (mddev->bitmap)
3915 			return -EEXIST; /* cannot add when bitmap is present */
3916 		mddev->bitmap_file = fget(fd);
3917 
3918 		if (mddev->bitmap_file == NULL) {
3919 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3920 			       mdname(mddev));
3921 			return -EBADF;
3922 		}
3923 
3924 		err = deny_bitmap_write_access(mddev->bitmap_file);
3925 		if (err) {
3926 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3927 			       mdname(mddev));
3928 			fput(mddev->bitmap_file);
3929 			mddev->bitmap_file = NULL;
3930 			return err;
3931 		}
3932 		mddev->bitmap_offset = 0; /* file overrides offset */
3933 	} else if (mddev->bitmap == NULL)
3934 		return -ENOENT; /* cannot remove what isn't there */
3935 	err = 0;
3936 	if (mddev->pers) {
3937 		mddev->pers->quiesce(mddev, 1);
3938 		if (fd >= 0)
3939 			err = bitmap_create(mddev);
3940 		if (fd < 0 || err) {
3941 			bitmap_destroy(mddev);
3942 			fd = -1; /* make sure to put the file */
3943 		}
3944 		mddev->pers->quiesce(mddev, 0);
3945 	}
3946 	if (fd < 0) {
3947 		if (mddev->bitmap_file) {
3948 			restore_bitmap_write_access(mddev->bitmap_file);
3949 			fput(mddev->bitmap_file);
3950 		}
3951 		mddev->bitmap_file = NULL;
3952 	}
3953 
3954 	return err;
3955 }
3956 
3957 /*
3958  * set_array_info is used two different ways
3959  * The original usage is when creating a new array.
3960  * In this usage, raid_disks is > 0 and it together with
3961  *  level, size, not_persistent,layout,chunksize determine the
3962  *  shape of the array.
3963  *  This will always create an array with a type-0.90.0 superblock.
3964  * The newer usage is when assembling an array.
3965  *  In this case raid_disks will be 0, and the major_version field is
3966  *  use to determine which style super-blocks are to be found on the devices.
3967  *  The minor and patch _version numbers are also kept incase the
3968  *  super_block handler wishes to interpret them.
3969  */
3970 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3971 {
3972 
3973 	if (info->raid_disks == 0) {
3974 		/* just setting version number for superblock loading */
3975 		if (info->major_version < 0 ||
3976 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3977 		    super_types[info->major_version].name == NULL) {
3978 			/* maybe try to auto-load a module? */
3979 			printk(KERN_INFO
3980 				"md: superblock version %d not known\n",
3981 				info->major_version);
3982 			return -EINVAL;
3983 		}
3984 		mddev->major_version = info->major_version;
3985 		mddev->minor_version = info->minor_version;
3986 		mddev->patch_version = info->patch_version;
3987 		mddev->persistent = !info->not_persistent;
3988 		return 0;
3989 	}
3990 	mddev->major_version = MD_MAJOR_VERSION;
3991 	mddev->minor_version = MD_MINOR_VERSION;
3992 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
3993 	mddev->ctime         = get_seconds();
3994 
3995 	mddev->level         = info->level;
3996 	mddev->clevel[0]     = 0;
3997 	mddev->size          = info->size;
3998 	mddev->raid_disks    = info->raid_disks;
3999 	/* don't set md_minor, it is determined by which /dev/md* was
4000 	 * openned
4001 	 */
4002 	if (info->state & (1<<MD_SB_CLEAN))
4003 		mddev->recovery_cp = MaxSector;
4004 	else
4005 		mddev->recovery_cp = 0;
4006 	mddev->persistent    = ! info->not_persistent;
4007 
4008 	mddev->layout        = info->layout;
4009 	mddev->chunk_size    = info->chunk_size;
4010 
4011 	mddev->max_disks     = MD_SB_DISKS;
4012 
4013 	mddev->flags         = 0;
4014 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4015 
4016 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4017 	mddev->bitmap_offset = 0;
4018 
4019 	mddev->reshape_position = MaxSector;
4020 
4021 	/*
4022 	 * Generate a 128 bit UUID
4023 	 */
4024 	get_random_bytes(mddev->uuid, 16);
4025 
4026 	mddev->new_level = mddev->level;
4027 	mddev->new_chunk = mddev->chunk_size;
4028 	mddev->new_layout = mddev->layout;
4029 	mddev->delta_disks = 0;
4030 
4031 	return 0;
4032 }
4033 
4034 static int update_size(mddev_t *mddev, unsigned long size)
4035 {
4036 	mdk_rdev_t * rdev;
4037 	int rv;
4038 	struct list_head *tmp;
4039 	int fit = (size == 0);
4040 
4041 	if (mddev->pers->resize == NULL)
4042 		return -EINVAL;
4043 	/* The "size" is the amount of each device that is used.
4044 	 * This can only make sense for arrays with redundancy.
4045 	 * linear and raid0 always use whatever space is available
4046 	 * We can only consider changing the size if no resync
4047 	 * or reconstruction is happening, and if the new size
4048 	 * is acceptable. It must fit before the sb_offset or,
4049 	 * if that is <data_offset, it must fit before the
4050 	 * size of each device.
4051 	 * If size is zero, we find the largest size that fits.
4052 	 */
4053 	if (mddev->sync_thread)
4054 		return -EBUSY;
4055 	ITERATE_RDEV(mddev,rdev,tmp) {
4056 		sector_t avail;
4057 		avail = rdev->size * 2;
4058 
4059 		if (fit && (size == 0 || size > avail/2))
4060 			size = avail/2;
4061 		if (avail < ((sector_t)size << 1))
4062 			return -ENOSPC;
4063 	}
4064 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
4065 	if (!rv) {
4066 		struct block_device *bdev;
4067 
4068 		bdev = bdget_disk(mddev->gendisk, 0);
4069 		if (bdev) {
4070 			mutex_lock(&bdev->bd_inode->i_mutex);
4071 			i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4072 			mutex_unlock(&bdev->bd_inode->i_mutex);
4073 			bdput(bdev);
4074 		}
4075 	}
4076 	return rv;
4077 }
4078 
4079 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4080 {
4081 	int rv;
4082 	/* change the number of raid disks */
4083 	if (mddev->pers->check_reshape == NULL)
4084 		return -EINVAL;
4085 	if (raid_disks <= 0 ||
4086 	    raid_disks >= mddev->max_disks)
4087 		return -EINVAL;
4088 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4089 		return -EBUSY;
4090 	mddev->delta_disks = raid_disks - mddev->raid_disks;
4091 
4092 	rv = mddev->pers->check_reshape(mddev);
4093 	return rv;
4094 }
4095 
4096 
4097 /*
4098  * update_array_info is used to change the configuration of an
4099  * on-line array.
4100  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4101  * fields in the info are checked against the array.
4102  * Any differences that cannot be handled will cause an error.
4103  * Normally, only one change can be managed at a time.
4104  */
4105 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4106 {
4107 	int rv = 0;
4108 	int cnt = 0;
4109 	int state = 0;
4110 
4111 	/* calculate expected state,ignoring low bits */
4112 	if (mddev->bitmap && mddev->bitmap_offset)
4113 		state |= (1 << MD_SB_BITMAP_PRESENT);
4114 
4115 	if (mddev->major_version != info->major_version ||
4116 	    mddev->minor_version != info->minor_version ||
4117 /*	    mddev->patch_version != info->patch_version || */
4118 	    mddev->ctime         != info->ctime         ||
4119 	    mddev->level         != info->level         ||
4120 /*	    mddev->layout        != info->layout        || */
4121 	    !mddev->persistent	 != info->not_persistent||
4122 	    mddev->chunk_size    != info->chunk_size    ||
4123 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4124 	    ((state^info->state) & 0xfffffe00)
4125 		)
4126 		return -EINVAL;
4127 	/* Check there is only one change */
4128 	if (info->size >= 0 && mddev->size != info->size) cnt++;
4129 	if (mddev->raid_disks != info->raid_disks) cnt++;
4130 	if (mddev->layout != info->layout) cnt++;
4131 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4132 	if (cnt == 0) return 0;
4133 	if (cnt > 1) return -EINVAL;
4134 
4135 	if (mddev->layout != info->layout) {
4136 		/* Change layout
4137 		 * we don't need to do anything at the md level, the
4138 		 * personality will take care of it all.
4139 		 */
4140 		if (mddev->pers->reconfig == NULL)
4141 			return -EINVAL;
4142 		else
4143 			return mddev->pers->reconfig(mddev, info->layout, -1);
4144 	}
4145 	if (info->size >= 0 && mddev->size != info->size)
4146 		rv = update_size(mddev, info->size);
4147 
4148 	if (mddev->raid_disks    != info->raid_disks)
4149 		rv = update_raid_disks(mddev, info->raid_disks);
4150 
4151 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4152 		if (mddev->pers->quiesce == NULL)
4153 			return -EINVAL;
4154 		if (mddev->recovery || mddev->sync_thread)
4155 			return -EBUSY;
4156 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4157 			/* add the bitmap */
4158 			if (mddev->bitmap)
4159 				return -EEXIST;
4160 			if (mddev->default_bitmap_offset == 0)
4161 				return -EINVAL;
4162 			mddev->bitmap_offset = mddev->default_bitmap_offset;
4163 			mddev->pers->quiesce(mddev, 1);
4164 			rv = bitmap_create(mddev);
4165 			if (rv)
4166 				bitmap_destroy(mddev);
4167 			mddev->pers->quiesce(mddev, 0);
4168 		} else {
4169 			/* remove the bitmap */
4170 			if (!mddev->bitmap)
4171 				return -ENOENT;
4172 			if (mddev->bitmap->file)
4173 				return -EINVAL;
4174 			mddev->pers->quiesce(mddev, 1);
4175 			bitmap_destroy(mddev);
4176 			mddev->pers->quiesce(mddev, 0);
4177 			mddev->bitmap_offset = 0;
4178 		}
4179 	}
4180 	md_update_sb(mddev, 1);
4181 	return rv;
4182 }
4183 
4184 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4185 {
4186 	mdk_rdev_t *rdev;
4187 
4188 	if (mddev->pers == NULL)
4189 		return -ENODEV;
4190 
4191 	rdev = find_rdev(mddev, dev);
4192 	if (!rdev)
4193 		return -ENODEV;
4194 
4195 	md_error(mddev, rdev);
4196 	return 0;
4197 }
4198 
4199 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4200 {
4201 	mddev_t *mddev = bdev->bd_disk->private_data;
4202 
4203 	geo->heads = 2;
4204 	geo->sectors = 4;
4205 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
4206 	return 0;
4207 }
4208 
4209 static int md_ioctl(struct inode *inode, struct file *file,
4210 			unsigned int cmd, unsigned long arg)
4211 {
4212 	int err = 0;
4213 	void __user *argp = (void __user *)arg;
4214 	mddev_t *mddev = NULL;
4215 
4216 	if (!capable(CAP_SYS_ADMIN))
4217 		return -EACCES;
4218 
4219 	/*
4220 	 * Commands dealing with the RAID driver but not any
4221 	 * particular array:
4222 	 */
4223 	switch (cmd)
4224 	{
4225 		case RAID_VERSION:
4226 			err = get_version(argp);
4227 			goto done;
4228 
4229 		case PRINT_RAID_DEBUG:
4230 			err = 0;
4231 			md_print_devices();
4232 			goto done;
4233 
4234 #ifndef MODULE
4235 		case RAID_AUTORUN:
4236 			err = 0;
4237 			autostart_arrays(arg);
4238 			goto done;
4239 #endif
4240 		default:;
4241 	}
4242 
4243 	/*
4244 	 * Commands creating/starting a new array:
4245 	 */
4246 
4247 	mddev = inode->i_bdev->bd_disk->private_data;
4248 
4249 	if (!mddev) {
4250 		BUG();
4251 		goto abort;
4252 	}
4253 
4254 	err = mddev_lock(mddev);
4255 	if (err) {
4256 		printk(KERN_INFO
4257 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
4258 			err, cmd);
4259 		goto abort;
4260 	}
4261 
4262 	switch (cmd)
4263 	{
4264 		case SET_ARRAY_INFO:
4265 			{
4266 				mdu_array_info_t info;
4267 				if (!arg)
4268 					memset(&info, 0, sizeof(info));
4269 				else if (copy_from_user(&info, argp, sizeof(info))) {
4270 					err = -EFAULT;
4271 					goto abort_unlock;
4272 				}
4273 				if (mddev->pers) {
4274 					err = update_array_info(mddev, &info);
4275 					if (err) {
4276 						printk(KERN_WARNING "md: couldn't update"
4277 						       " array info. %d\n", err);
4278 						goto abort_unlock;
4279 					}
4280 					goto done_unlock;
4281 				}
4282 				if (!list_empty(&mddev->disks)) {
4283 					printk(KERN_WARNING
4284 					       "md: array %s already has disks!\n",
4285 					       mdname(mddev));
4286 					err = -EBUSY;
4287 					goto abort_unlock;
4288 				}
4289 				if (mddev->raid_disks) {
4290 					printk(KERN_WARNING
4291 					       "md: array %s already initialised!\n",
4292 					       mdname(mddev));
4293 					err = -EBUSY;
4294 					goto abort_unlock;
4295 				}
4296 				err = set_array_info(mddev, &info);
4297 				if (err) {
4298 					printk(KERN_WARNING "md: couldn't set"
4299 					       " array info. %d\n", err);
4300 					goto abort_unlock;
4301 				}
4302 			}
4303 			goto done_unlock;
4304 
4305 		default:;
4306 	}
4307 
4308 	/*
4309 	 * Commands querying/configuring an existing array:
4310 	 */
4311 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4312 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4313 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4314 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4315 	    		&& cmd != GET_BITMAP_FILE) {
4316 		err = -ENODEV;
4317 		goto abort_unlock;
4318 	}
4319 
4320 	/*
4321 	 * Commands even a read-only array can execute:
4322 	 */
4323 	switch (cmd)
4324 	{
4325 		case GET_ARRAY_INFO:
4326 			err = get_array_info(mddev, argp);
4327 			goto done_unlock;
4328 
4329 		case GET_BITMAP_FILE:
4330 			err = get_bitmap_file(mddev, argp);
4331 			goto done_unlock;
4332 
4333 		case GET_DISK_INFO:
4334 			err = get_disk_info(mddev, argp);
4335 			goto done_unlock;
4336 
4337 		case RESTART_ARRAY_RW:
4338 			err = restart_array(mddev);
4339 			goto done_unlock;
4340 
4341 		case STOP_ARRAY:
4342 			err = do_md_stop (mddev, 0);
4343 			goto done_unlock;
4344 
4345 		case STOP_ARRAY_RO:
4346 			err = do_md_stop (mddev, 1);
4347 			goto done_unlock;
4348 
4349 	/*
4350 	 * We have a problem here : there is no easy way to give a CHS
4351 	 * virtual geometry. We currently pretend that we have a 2 heads
4352 	 * 4 sectors (with a BIG number of cylinders...). This drives
4353 	 * dosfs just mad... ;-)
4354 	 */
4355 	}
4356 
4357 	/*
4358 	 * The remaining ioctls are changing the state of the
4359 	 * superblock, so we do not allow them on read-only arrays.
4360 	 * However non-MD ioctls (e.g. get-size) will still come through
4361 	 * here and hit the 'default' below, so only disallow
4362 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4363 	 */
4364 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
4365 	    mddev->ro && mddev->pers) {
4366 		if (mddev->ro == 2) {
4367 			mddev->ro = 0;
4368 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4369 		md_wakeup_thread(mddev->thread);
4370 
4371 		} else {
4372 			err = -EROFS;
4373 			goto abort_unlock;
4374 		}
4375 	}
4376 
4377 	switch (cmd)
4378 	{
4379 		case ADD_NEW_DISK:
4380 		{
4381 			mdu_disk_info_t info;
4382 			if (copy_from_user(&info, argp, sizeof(info)))
4383 				err = -EFAULT;
4384 			else
4385 				err = add_new_disk(mddev, &info);
4386 			goto done_unlock;
4387 		}
4388 
4389 		case HOT_REMOVE_DISK:
4390 			err = hot_remove_disk(mddev, new_decode_dev(arg));
4391 			goto done_unlock;
4392 
4393 		case HOT_ADD_DISK:
4394 			err = hot_add_disk(mddev, new_decode_dev(arg));
4395 			goto done_unlock;
4396 
4397 		case SET_DISK_FAULTY:
4398 			err = set_disk_faulty(mddev, new_decode_dev(arg));
4399 			goto done_unlock;
4400 
4401 		case RUN_ARRAY:
4402 			err = do_md_run (mddev);
4403 			goto done_unlock;
4404 
4405 		case SET_BITMAP_FILE:
4406 			err = set_bitmap_file(mddev, (int)arg);
4407 			goto done_unlock;
4408 
4409 		default:
4410 			err = -EINVAL;
4411 			goto abort_unlock;
4412 	}
4413 
4414 done_unlock:
4415 abort_unlock:
4416 	mddev_unlock(mddev);
4417 
4418 	return err;
4419 done:
4420 	if (err)
4421 		MD_BUG();
4422 abort:
4423 	return err;
4424 }
4425 
4426 static int md_open(struct inode *inode, struct file *file)
4427 {
4428 	/*
4429 	 * Succeed if we can lock the mddev, which confirms that
4430 	 * it isn't being stopped right now.
4431 	 */
4432 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4433 	int err;
4434 
4435 	if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4436 		goto out;
4437 
4438 	err = 0;
4439 	mddev_get(mddev);
4440 	mddev_unlock(mddev);
4441 
4442 	check_disk_change(inode->i_bdev);
4443  out:
4444 	return err;
4445 }
4446 
4447 static int md_release(struct inode *inode, struct file * file)
4448 {
4449  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4450 
4451 	BUG_ON(!mddev);
4452 	mddev_put(mddev);
4453 
4454 	return 0;
4455 }
4456 
4457 static int md_media_changed(struct gendisk *disk)
4458 {
4459 	mddev_t *mddev = disk->private_data;
4460 
4461 	return mddev->changed;
4462 }
4463 
4464 static int md_revalidate(struct gendisk *disk)
4465 {
4466 	mddev_t *mddev = disk->private_data;
4467 
4468 	mddev->changed = 0;
4469 	return 0;
4470 }
4471 static struct block_device_operations md_fops =
4472 {
4473 	.owner		= THIS_MODULE,
4474 	.open		= md_open,
4475 	.release	= md_release,
4476 	.ioctl		= md_ioctl,
4477 	.getgeo		= md_getgeo,
4478 	.media_changed	= md_media_changed,
4479 	.revalidate_disk= md_revalidate,
4480 };
4481 
4482 static int md_thread(void * arg)
4483 {
4484 	mdk_thread_t *thread = arg;
4485 
4486 	/*
4487 	 * md_thread is a 'system-thread', it's priority should be very
4488 	 * high. We avoid resource deadlocks individually in each
4489 	 * raid personality. (RAID5 does preallocation) We also use RR and
4490 	 * the very same RT priority as kswapd, thus we will never get
4491 	 * into a priority inversion deadlock.
4492 	 *
4493 	 * we definitely have to have equal or higher priority than
4494 	 * bdflush, otherwise bdflush will deadlock if there are too
4495 	 * many dirty RAID5 blocks.
4496 	 */
4497 
4498 	current->flags |= PF_NOFREEZE;
4499 	allow_signal(SIGKILL);
4500 	while (!kthread_should_stop()) {
4501 
4502 		/* We need to wait INTERRUPTIBLE so that
4503 		 * we don't add to the load-average.
4504 		 * That means we need to be sure no signals are
4505 		 * pending
4506 		 */
4507 		if (signal_pending(current))
4508 			flush_signals(current);
4509 
4510 		wait_event_interruptible_timeout
4511 			(thread->wqueue,
4512 			 test_bit(THREAD_WAKEUP, &thread->flags)
4513 			 || kthread_should_stop(),
4514 			 thread->timeout);
4515 
4516 		clear_bit(THREAD_WAKEUP, &thread->flags);
4517 
4518 		thread->run(thread->mddev);
4519 	}
4520 
4521 	return 0;
4522 }
4523 
4524 void md_wakeup_thread(mdk_thread_t *thread)
4525 {
4526 	if (thread) {
4527 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4528 		set_bit(THREAD_WAKEUP, &thread->flags);
4529 		wake_up(&thread->wqueue);
4530 	}
4531 }
4532 
4533 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4534 				 const char *name)
4535 {
4536 	mdk_thread_t *thread;
4537 
4538 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4539 	if (!thread)
4540 		return NULL;
4541 
4542 	init_waitqueue_head(&thread->wqueue);
4543 
4544 	thread->run = run;
4545 	thread->mddev = mddev;
4546 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
4547 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4548 	if (IS_ERR(thread->tsk)) {
4549 		kfree(thread);
4550 		return NULL;
4551 	}
4552 	return thread;
4553 }
4554 
4555 void md_unregister_thread(mdk_thread_t *thread)
4556 {
4557 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4558 
4559 	kthread_stop(thread->tsk);
4560 	kfree(thread);
4561 }
4562 
4563 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4564 {
4565 	if (!mddev) {
4566 		MD_BUG();
4567 		return;
4568 	}
4569 
4570 	if (!rdev || test_bit(Faulty, &rdev->flags))
4571 		return;
4572 /*
4573 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4574 		mdname(mddev),
4575 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4576 		__builtin_return_address(0),__builtin_return_address(1),
4577 		__builtin_return_address(2),__builtin_return_address(3));
4578 */
4579 	if (!mddev->pers)
4580 		return;
4581 	if (!mddev->pers->error_handler)
4582 		return;
4583 	mddev->pers->error_handler(mddev,rdev);
4584 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4585 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4586 	md_wakeup_thread(mddev->thread);
4587 	md_new_event_inintr(mddev);
4588 }
4589 
4590 /* seq_file implementation /proc/mdstat */
4591 
4592 static void status_unused(struct seq_file *seq)
4593 {
4594 	int i = 0;
4595 	mdk_rdev_t *rdev;
4596 	struct list_head *tmp;
4597 
4598 	seq_printf(seq, "unused devices: ");
4599 
4600 	ITERATE_RDEV_PENDING(rdev,tmp) {
4601 		char b[BDEVNAME_SIZE];
4602 		i++;
4603 		seq_printf(seq, "%s ",
4604 			      bdevname(rdev->bdev,b));
4605 	}
4606 	if (!i)
4607 		seq_printf(seq, "<none>");
4608 
4609 	seq_printf(seq, "\n");
4610 }
4611 
4612 
4613 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4614 {
4615 	sector_t max_blocks, resync, res;
4616 	unsigned long dt, db, rt;
4617 	int scale;
4618 	unsigned int per_milli;
4619 
4620 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4621 
4622 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4623 		max_blocks = mddev->resync_max_sectors >> 1;
4624 	else
4625 		max_blocks = mddev->size;
4626 
4627 	/*
4628 	 * Should not happen.
4629 	 */
4630 	if (!max_blocks) {
4631 		MD_BUG();
4632 		return;
4633 	}
4634 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
4635 	 * in a sector_t, and (max_blocks>>scale) will fit in a
4636 	 * u32, as those are the requirements for sector_div.
4637 	 * Thus 'scale' must be at least 10
4638 	 */
4639 	scale = 10;
4640 	if (sizeof(sector_t) > sizeof(unsigned long)) {
4641 		while ( max_blocks/2 > (1ULL<<(scale+32)))
4642 			scale++;
4643 	}
4644 	res = (resync>>scale)*1000;
4645 	sector_div(res, (u32)((max_blocks>>scale)+1));
4646 
4647 	per_milli = res;
4648 	{
4649 		int i, x = per_milli/50, y = 20-x;
4650 		seq_printf(seq, "[");
4651 		for (i = 0; i < x; i++)
4652 			seq_printf(seq, "=");
4653 		seq_printf(seq, ">");
4654 		for (i = 0; i < y; i++)
4655 			seq_printf(seq, ".");
4656 		seq_printf(seq, "] ");
4657 	}
4658 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4659 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4660 		    "reshape" :
4661 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
4662 		     "check" :
4663 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4664 		      "resync" : "recovery"))),
4665 		   per_milli/10, per_milli % 10,
4666 		   (unsigned long long) resync,
4667 		   (unsigned long long) max_blocks);
4668 
4669 	/*
4670 	 * We do not want to overflow, so the order of operands and
4671 	 * the * 100 / 100 trick are important. We do a +1 to be
4672 	 * safe against division by zero. We only estimate anyway.
4673 	 *
4674 	 * dt: time from mark until now
4675 	 * db: blocks written from mark until now
4676 	 * rt: remaining time
4677 	 */
4678 	dt = ((jiffies - mddev->resync_mark) / HZ);
4679 	if (!dt) dt++;
4680 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4681 		- mddev->resync_mark_cnt;
4682 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4683 
4684 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4685 
4686 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4687 }
4688 
4689 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4690 {
4691 	struct list_head *tmp;
4692 	loff_t l = *pos;
4693 	mddev_t *mddev;
4694 
4695 	if (l >= 0x10000)
4696 		return NULL;
4697 	if (!l--)
4698 		/* header */
4699 		return (void*)1;
4700 
4701 	spin_lock(&all_mddevs_lock);
4702 	list_for_each(tmp,&all_mddevs)
4703 		if (!l--) {
4704 			mddev = list_entry(tmp, mddev_t, all_mddevs);
4705 			mddev_get(mddev);
4706 			spin_unlock(&all_mddevs_lock);
4707 			return mddev;
4708 		}
4709 	spin_unlock(&all_mddevs_lock);
4710 	if (!l--)
4711 		return (void*)2;/* tail */
4712 	return NULL;
4713 }
4714 
4715 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4716 {
4717 	struct list_head *tmp;
4718 	mddev_t *next_mddev, *mddev = v;
4719 
4720 	++*pos;
4721 	if (v == (void*)2)
4722 		return NULL;
4723 
4724 	spin_lock(&all_mddevs_lock);
4725 	if (v == (void*)1)
4726 		tmp = all_mddevs.next;
4727 	else
4728 		tmp = mddev->all_mddevs.next;
4729 	if (tmp != &all_mddevs)
4730 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4731 	else {
4732 		next_mddev = (void*)2;
4733 		*pos = 0x10000;
4734 	}
4735 	spin_unlock(&all_mddevs_lock);
4736 
4737 	if (v != (void*)1)
4738 		mddev_put(mddev);
4739 	return next_mddev;
4740 
4741 }
4742 
4743 static void md_seq_stop(struct seq_file *seq, void *v)
4744 {
4745 	mddev_t *mddev = v;
4746 
4747 	if (mddev && v != (void*)1 && v != (void*)2)
4748 		mddev_put(mddev);
4749 }
4750 
4751 struct mdstat_info {
4752 	int event;
4753 };
4754 
4755 static int md_seq_show(struct seq_file *seq, void *v)
4756 {
4757 	mddev_t *mddev = v;
4758 	sector_t size;
4759 	struct list_head *tmp2;
4760 	mdk_rdev_t *rdev;
4761 	struct mdstat_info *mi = seq->private;
4762 	struct bitmap *bitmap;
4763 
4764 	if (v == (void*)1) {
4765 		struct mdk_personality *pers;
4766 		seq_printf(seq, "Personalities : ");
4767 		spin_lock(&pers_lock);
4768 		list_for_each_entry(pers, &pers_list, list)
4769 			seq_printf(seq, "[%s] ", pers->name);
4770 
4771 		spin_unlock(&pers_lock);
4772 		seq_printf(seq, "\n");
4773 		mi->event = atomic_read(&md_event_count);
4774 		return 0;
4775 	}
4776 	if (v == (void*)2) {
4777 		status_unused(seq);
4778 		return 0;
4779 	}
4780 
4781 	if (mddev_lock(mddev) < 0)
4782 		return -EINTR;
4783 
4784 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4785 		seq_printf(seq, "%s : %sactive", mdname(mddev),
4786 						mddev->pers ? "" : "in");
4787 		if (mddev->pers) {
4788 			if (mddev->ro==1)
4789 				seq_printf(seq, " (read-only)");
4790 			if (mddev->ro==2)
4791 				seq_printf(seq, "(auto-read-only)");
4792 			seq_printf(seq, " %s", mddev->pers->name);
4793 		}
4794 
4795 		size = 0;
4796 		ITERATE_RDEV(mddev,rdev,tmp2) {
4797 			char b[BDEVNAME_SIZE];
4798 			seq_printf(seq, " %s[%d]",
4799 				bdevname(rdev->bdev,b), rdev->desc_nr);
4800 			if (test_bit(WriteMostly, &rdev->flags))
4801 				seq_printf(seq, "(W)");
4802 			if (test_bit(Faulty, &rdev->flags)) {
4803 				seq_printf(seq, "(F)");
4804 				continue;
4805 			} else if (rdev->raid_disk < 0)
4806 				seq_printf(seq, "(S)"); /* spare */
4807 			size += rdev->size;
4808 		}
4809 
4810 		if (!list_empty(&mddev->disks)) {
4811 			if (mddev->pers)
4812 				seq_printf(seq, "\n      %llu blocks",
4813 					(unsigned long long)mddev->array_size);
4814 			else
4815 				seq_printf(seq, "\n      %llu blocks",
4816 					(unsigned long long)size);
4817 		}
4818 		if (mddev->persistent) {
4819 			if (mddev->major_version != 0 ||
4820 			    mddev->minor_version != 90) {
4821 				seq_printf(seq," super %d.%d",
4822 					   mddev->major_version,
4823 					   mddev->minor_version);
4824 			}
4825 		} else
4826 			seq_printf(seq, " super non-persistent");
4827 
4828 		if (mddev->pers) {
4829 			mddev->pers->status (seq, mddev);
4830 	 		seq_printf(seq, "\n      ");
4831 			if (mddev->pers->sync_request) {
4832 				if (mddev->curr_resync > 2) {
4833 					status_resync (seq, mddev);
4834 					seq_printf(seq, "\n      ");
4835 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4836 					seq_printf(seq, "\tresync=DELAYED\n      ");
4837 				else if (mddev->recovery_cp < MaxSector)
4838 					seq_printf(seq, "\tresync=PENDING\n      ");
4839 			}
4840 		} else
4841 			seq_printf(seq, "\n       ");
4842 
4843 		if ((bitmap = mddev->bitmap)) {
4844 			unsigned long chunk_kb;
4845 			unsigned long flags;
4846 			spin_lock_irqsave(&bitmap->lock, flags);
4847 			chunk_kb = bitmap->chunksize >> 10;
4848 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4849 				"%lu%s chunk",
4850 				bitmap->pages - bitmap->missing_pages,
4851 				bitmap->pages,
4852 				(bitmap->pages - bitmap->missing_pages)
4853 					<< (PAGE_SHIFT - 10),
4854 				chunk_kb ? chunk_kb : bitmap->chunksize,
4855 				chunk_kb ? "KB" : "B");
4856 			if (bitmap->file) {
4857 				seq_printf(seq, ", file: ");
4858 				seq_path(seq, bitmap->file->f_path.mnt,
4859 					 bitmap->file->f_path.dentry," \t\n");
4860 			}
4861 
4862 			seq_printf(seq, "\n");
4863 			spin_unlock_irqrestore(&bitmap->lock, flags);
4864 		}
4865 
4866 		seq_printf(seq, "\n");
4867 	}
4868 	mddev_unlock(mddev);
4869 
4870 	return 0;
4871 }
4872 
4873 static struct seq_operations md_seq_ops = {
4874 	.start  = md_seq_start,
4875 	.next   = md_seq_next,
4876 	.stop   = md_seq_stop,
4877 	.show   = md_seq_show,
4878 };
4879 
4880 static int md_seq_open(struct inode *inode, struct file *file)
4881 {
4882 	int error;
4883 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4884 	if (mi == NULL)
4885 		return -ENOMEM;
4886 
4887 	error = seq_open(file, &md_seq_ops);
4888 	if (error)
4889 		kfree(mi);
4890 	else {
4891 		struct seq_file *p = file->private_data;
4892 		p->private = mi;
4893 		mi->event = atomic_read(&md_event_count);
4894 	}
4895 	return error;
4896 }
4897 
4898 static int md_seq_release(struct inode *inode, struct file *file)
4899 {
4900 	struct seq_file *m = file->private_data;
4901 	struct mdstat_info *mi = m->private;
4902 	m->private = NULL;
4903 	kfree(mi);
4904 	return seq_release(inode, file);
4905 }
4906 
4907 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4908 {
4909 	struct seq_file *m = filp->private_data;
4910 	struct mdstat_info *mi = m->private;
4911 	int mask;
4912 
4913 	poll_wait(filp, &md_event_waiters, wait);
4914 
4915 	/* always allow read */
4916 	mask = POLLIN | POLLRDNORM;
4917 
4918 	if (mi->event != atomic_read(&md_event_count))
4919 		mask |= POLLERR | POLLPRI;
4920 	return mask;
4921 }
4922 
4923 static struct file_operations md_seq_fops = {
4924 	.owner		= THIS_MODULE,
4925 	.open           = md_seq_open,
4926 	.read           = seq_read,
4927 	.llseek         = seq_lseek,
4928 	.release	= md_seq_release,
4929 	.poll		= mdstat_poll,
4930 };
4931 
4932 int register_md_personality(struct mdk_personality *p)
4933 {
4934 	spin_lock(&pers_lock);
4935 	list_add_tail(&p->list, &pers_list);
4936 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4937 	spin_unlock(&pers_lock);
4938 	return 0;
4939 }
4940 
4941 int unregister_md_personality(struct mdk_personality *p)
4942 {
4943 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4944 	spin_lock(&pers_lock);
4945 	list_del_init(&p->list);
4946 	spin_unlock(&pers_lock);
4947 	return 0;
4948 }
4949 
4950 static int is_mddev_idle(mddev_t *mddev)
4951 {
4952 	mdk_rdev_t * rdev;
4953 	struct list_head *tmp;
4954 	int idle;
4955 	unsigned long curr_events;
4956 
4957 	idle = 1;
4958 	ITERATE_RDEV(mddev,rdev,tmp) {
4959 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4960 		curr_events = disk_stat_read(disk, sectors[0]) +
4961 				disk_stat_read(disk, sectors[1]) -
4962 				atomic_read(&disk->sync_io);
4963 		/* The difference between curr_events and last_events
4964 		 * will be affected by any new non-sync IO (making
4965 		 * curr_events bigger) and any difference in the amount of
4966 		 * in-flight syncio (making current_events bigger or smaller)
4967 		 * The amount in-flight is currently limited to
4968 		 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4969 		 * which is at most 4096 sectors.
4970 		 * These numbers are fairly fragile and should be made
4971 		 * more robust, probably by enforcing the
4972 		 * 'window size' that md_do_sync sort-of uses.
4973 		 *
4974 		 * Note: the following is an unsigned comparison.
4975 		 */
4976 		if ((curr_events - rdev->last_events + 4096) > 8192) {
4977 			rdev->last_events = curr_events;
4978 			idle = 0;
4979 		}
4980 	}
4981 	return idle;
4982 }
4983 
4984 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4985 {
4986 	/* another "blocks" (512byte) blocks have been synced */
4987 	atomic_sub(blocks, &mddev->recovery_active);
4988 	wake_up(&mddev->recovery_wait);
4989 	if (!ok) {
4990 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4991 		md_wakeup_thread(mddev->thread);
4992 		// stop recovery, signal do_sync ....
4993 	}
4994 }
4995 
4996 
4997 /* md_write_start(mddev, bi)
4998  * If we need to update some array metadata (e.g. 'active' flag
4999  * in superblock) before writing, schedule a superblock update
5000  * and wait for it to complete.
5001  */
5002 void md_write_start(mddev_t *mddev, struct bio *bi)
5003 {
5004 	if (bio_data_dir(bi) != WRITE)
5005 		return;
5006 
5007 	BUG_ON(mddev->ro == 1);
5008 	if (mddev->ro == 2) {
5009 		/* need to switch to read/write */
5010 		mddev->ro = 0;
5011 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5012 		md_wakeup_thread(mddev->thread);
5013 	}
5014 	atomic_inc(&mddev->writes_pending);
5015 	if (mddev->in_sync) {
5016 		spin_lock_irq(&mddev->write_lock);
5017 		if (mddev->in_sync) {
5018 			mddev->in_sync = 0;
5019 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5020 			md_wakeup_thread(mddev->thread);
5021 		}
5022 		spin_unlock_irq(&mddev->write_lock);
5023 	}
5024 	wait_event(mddev->sb_wait, mddev->flags==0);
5025 }
5026 
5027 void md_write_end(mddev_t *mddev)
5028 {
5029 	if (atomic_dec_and_test(&mddev->writes_pending)) {
5030 		if (mddev->safemode == 2)
5031 			md_wakeup_thread(mddev->thread);
5032 		else if (mddev->safemode_delay)
5033 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5034 	}
5035 }
5036 
5037 /* md_allow_write(mddev)
5038  * Calling this ensures that the array is marked 'active' so that writes
5039  * may proceed without blocking.  It is important to call this before
5040  * attempting a GFP_KERNEL allocation while holding the mddev lock.
5041  * Must be called with mddev_lock held.
5042  */
5043 void md_allow_write(mddev_t *mddev)
5044 {
5045 	if (!mddev->pers)
5046 		return;
5047 	if (mddev->ro)
5048 		return;
5049 
5050 	spin_lock_irq(&mddev->write_lock);
5051 	if (mddev->in_sync) {
5052 		mddev->in_sync = 0;
5053 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5054 		if (mddev->safemode_delay &&
5055 		    mddev->safemode == 0)
5056 			mddev->safemode = 1;
5057 		spin_unlock_irq(&mddev->write_lock);
5058 		md_update_sb(mddev, 0);
5059 	} else
5060 		spin_unlock_irq(&mddev->write_lock);
5061 }
5062 EXPORT_SYMBOL_GPL(md_allow_write);
5063 
5064 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5065 
5066 #define SYNC_MARKS	10
5067 #define	SYNC_MARK_STEP	(3*HZ)
5068 void md_do_sync(mddev_t *mddev)
5069 {
5070 	mddev_t *mddev2;
5071 	unsigned int currspeed = 0,
5072 		 window;
5073 	sector_t max_sectors,j, io_sectors;
5074 	unsigned long mark[SYNC_MARKS];
5075 	sector_t mark_cnt[SYNC_MARKS];
5076 	int last_mark,m;
5077 	struct list_head *tmp;
5078 	sector_t last_check;
5079 	int skipped = 0;
5080 	struct list_head *rtmp;
5081 	mdk_rdev_t *rdev;
5082 	char *desc;
5083 
5084 	/* just incase thread restarts... */
5085 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5086 		return;
5087 	if (mddev->ro) /* never try to sync a read-only array */
5088 		return;
5089 
5090 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5091 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5092 			desc = "data-check";
5093 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5094 			desc = "requested-resync";
5095 		else
5096 			desc = "resync";
5097 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5098 		desc = "reshape";
5099 	else
5100 		desc = "recovery";
5101 
5102 	/* we overload curr_resync somewhat here.
5103 	 * 0 == not engaged in resync at all
5104 	 * 2 == checking that there is no conflict with another sync
5105 	 * 1 == like 2, but have yielded to allow conflicting resync to
5106 	 *		commense
5107 	 * other == active in resync - this many blocks
5108 	 *
5109 	 * Before starting a resync we must have set curr_resync to
5110 	 * 2, and then checked that every "conflicting" array has curr_resync
5111 	 * less than ours.  When we find one that is the same or higher
5112 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
5113 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5114 	 * This will mean we have to start checking from the beginning again.
5115 	 *
5116 	 */
5117 
5118 	do {
5119 		mddev->curr_resync = 2;
5120 
5121 	try_again:
5122 		if (kthread_should_stop()) {
5123 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5124 			goto skip;
5125 		}
5126 		ITERATE_MDDEV(mddev2,tmp) {
5127 			if (mddev2 == mddev)
5128 				continue;
5129 			if (mddev2->curr_resync &&
5130 			    match_mddev_units(mddev,mddev2)) {
5131 				DEFINE_WAIT(wq);
5132 				if (mddev < mddev2 && mddev->curr_resync == 2) {
5133 					/* arbitrarily yield */
5134 					mddev->curr_resync = 1;
5135 					wake_up(&resync_wait);
5136 				}
5137 				if (mddev > mddev2 && mddev->curr_resync == 1)
5138 					/* no need to wait here, we can wait the next
5139 					 * time 'round when curr_resync == 2
5140 					 */
5141 					continue;
5142 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5143 				if (!kthread_should_stop() &&
5144 				    mddev2->curr_resync >= mddev->curr_resync) {
5145 					printk(KERN_INFO "md: delaying %s of %s"
5146 					       " until %s has finished (they"
5147 					       " share one or more physical units)\n",
5148 					       desc, mdname(mddev), mdname(mddev2));
5149 					mddev_put(mddev2);
5150 					schedule();
5151 					finish_wait(&resync_wait, &wq);
5152 					goto try_again;
5153 				}
5154 				finish_wait(&resync_wait, &wq);
5155 			}
5156 		}
5157 	} while (mddev->curr_resync < 2);
5158 
5159 	j = 0;
5160 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5161 		/* resync follows the size requested by the personality,
5162 		 * which defaults to physical size, but can be virtual size
5163 		 */
5164 		max_sectors = mddev->resync_max_sectors;
5165 		mddev->resync_mismatches = 0;
5166 		/* we don't use the checkpoint if there's a bitmap */
5167 		if (!mddev->bitmap &&
5168 		    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5169 			j = mddev->recovery_cp;
5170 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5171 		max_sectors = mddev->size << 1;
5172 	else {
5173 		/* recovery follows the physical size of devices */
5174 		max_sectors = mddev->size << 1;
5175 		j = MaxSector;
5176 		ITERATE_RDEV(mddev,rdev,rtmp)
5177 			if (rdev->raid_disk >= 0 &&
5178 			    !test_bit(Faulty, &rdev->flags) &&
5179 			    !test_bit(In_sync, &rdev->flags) &&
5180 			    rdev->recovery_offset < j)
5181 				j = rdev->recovery_offset;
5182 	}
5183 
5184 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5185 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
5186 		" %d KB/sec/disk.\n", speed_min(mddev));
5187 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5188 	       "(but not more than %d KB/sec) for %s.\n",
5189 	       speed_max(mddev), desc);
5190 
5191 	is_mddev_idle(mddev); /* this also initializes IO event counters */
5192 
5193 	io_sectors = 0;
5194 	for (m = 0; m < SYNC_MARKS; m++) {
5195 		mark[m] = jiffies;
5196 		mark_cnt[m] = io_sectors;
5197 	}
5198 	last_mark = 0;
5199 	mddev->resync_mark = mark[last_mark];
5200 	mddev->resync_mark_cnt = mark_cnt[last_mark];
5201 
5202 	/*
5203 	 * Tune reconstruction:
5204 	 */
5205 	window = 32*(PAGE_SIZE/512);
5206 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5207 		window/2,(unsigned long long) max_sectors/2);
5208 
5209 	atomic_set(&mddev->recovery_active, 0);
5210 	init_waitqueue_head(&mddev->recovery_wait);
5211 	last_check = 0;
5212 
5213 	if (j>2) {
5214 		printk(KERN_INFO
5215 		       "md: resuming %s of %s from checkpoint.\n",
5216 		       desc, mdname(mddev));
5217 		mddev->curr_resync = j;
5218 	}
5219 
5220 	while (j < max_sectors) {
5221 		sector_t sectors;
5222 
5223 		skipped = 0;
5224 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
5225 					    currspeed < speed_min(mddev));
5226 		if (sectors == 0) {
5227 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5228 			goto out;
5229 		}
5230 
5231 		if (!skipped) { /* actual IO requested */
5232 			io_sectors += sectors;
5233 			atomic_add(sectors, &mddev->recovery_active);
5234 		}
5235 
5236 		j += sectors;
5237 		if (j>1) mddev->curr_resync = j;
5238 		mddev->curr_mark_cnt = io_sectors;
5239 		if (last_check == 0)
5240 			/* this is the earliers that rebuilt will be
5241 			 * visible in /proc/mdstat
5242 			 */
5243 			md_new_event(mddev);
5244 
5245 		if (last_check + window > io_sectors || j == max_sectors)
5246 			continue;
5247 
5248 		last_check = io_sectors;
5249 
5250 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5251 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5252 			break;
5253 
5254 	repeat:
5255 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5256 			/* step marks */
5257 			int next = (last_mark+1) % SYNC_MARKS;
5258 
5259 			mddev->resync_mark = mark[next];
5260 			mddev->resync_mark_cnt = mark_cnt[next];
5261 			mark[next] = jiffies;
5262 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5263 			last_mark = next;
5264 		}
5265 
5266 
5267 		if (kthread_should_stop()) {
5268 			/*
5269 			 * got a signal, exit.
5270 			 */
5271 			printk(KERN_INFO
5272 				"md: md_do_sync() got signal ... exiting\n");
5273 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5274 			goto out;
5275 		}
5276 
5277 		/*
5278 		 * this loop exits only if either when we are slower than
5279 		 * the 'hard' speed limit, or the system was IO-idle for
5280 		 * a jiffy.
5281 		 * the system might be non-idle CPU-wise, but we only care
5282 		 * about not overloading the IO subsystem. (things like an
5283 		 * e2fsck being done on the RAID array should execute fast)
5284 		 */
5285 		mddev->queue->unplug_fn(mddev->queue);
5286 		cond_resched();
5287 
5288 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5289 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
5290 
5291 		if (currspeed > speed_min(mddev)) {
5292 			if ((currspeed > speed_max(mddev)) ||
5293 					!is_mddev_idle(mddev)) {
5294 				msleep(500);
5295 				goto repeat;
5296 			}
5297 		}
5298 	}
5299 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5300 	/*
5301 	 * this also signals 'finished resyncing' to md_stop
5302 	 */
5303  out:
5304 	mddev->queue->unplug_fn(mddev->queue);
5305 
5306 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5307 
5308 	/* tell personality that we are finished */
5309 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5310 
5311 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5312 	    !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5313 	    mddev->curr_resync > 2) {
5314 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5315 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5316 				if (mddev->curr_resync >= mddev->recovery_cp) {
5317 					printk(KERN_INFO
5318 					       "md: checkpointing %s of %s.\n",
5319 					       desc, mdname(mddev));
5320 					mddev->recovery_cp = mddev->curr_resync;
5321 				}
5322 			} else
5323 				mddev->recovery_cp = MaxSector;
5324 		} else {
5325 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5326 				mddev->curr_resync = MaxSector;
5327 			ITERATE_RDEV(mddev,rdev,rtmp)
5328 				if (rdev->raid_disk >= 0 &&
5329 				    !test_bit(Faulty, &rdev->flags) &&
5330 				    !test_bit(In_sync, &rdev->flags) &&
5331 				    rdev->recovery_offset < mddev->curr_resync)
5332 					rdev->recovery_offset = mddev->curr_resync;
5333 		}
5334 	}
5335 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5336 
5337  skip:
5338 	mddev->curr_resync = 0;
5339 	wake_up(&resync_wait);
5340 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5341 	md_wakeup_thread(mddev->thread);
5342 }
5343 EXPORT_SYMBOL_GPL(md_do_sync);
5344 
5345 
5346 /*
5347  * This routine is regularly called by all per-raid-array threads to
5348  * deal with generic issues like resync and super-block update.
5349  * Raid personalities that don't have a thread (linear/raid0) do not
5350  * need this as they never do any recovery or update the superblock.
5351  *
5352  * It does not do any resync itself, but rather "forks" off other threads
5353  * to do that as needed.
5354  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5355  * "->recovery" and create a thread at ->sync_thread.
5356  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5357  * and wakeups up this thread which will reap the thread and finish up.
5358  * This thread also removes any faulty devices (with nr_pending == 0).
5359  *
5360  * The overall approach is:
5361  *  1/ if the superblock needs updating, update it.
5362  *  2/ If a recovery thread is running, don't do anything else.
5363  *  3/ If recovery has finished, clean up, possibly marking spares active.
5364  *  4/ If there are any faulty devices, remove them.
5365  *  5/ If array is degraded, try to add spares devices
5366  *  6/ If array has spares or is not in-sync, start a resync thread.
5367  */
5368 void md_check_recovery(mddev_t *mddev)
5369 {
5370 	mdk_rdev_t *rdev;
5371 	struct list_head *rtmp;
5372 
5373 
5374 	if (mddev->bitmap)
5375 		bitmap_daemon_work(mddev->bitmap);
5376 
5377 	if (mddev->ro)
5378 		return;
5379 
5380 	if (signal_pending(current)) {
5381 		if (mddev->pers->sync_request) {
5382 			printk(KERN_INFO "md: %s in immediate safe mode\n",
5383 			       mdname(mddev));
5384 			mddev->safemode = 2;
5385 		}
5386 		flush_signals(current);
5387 	}
5388 
5389 	if ( ! (
5390 		mddev->flags ||
5391 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5392 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5393 		(mddev->safemode == 1) ||
5394 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5395 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5396 		))
5397 		return;
5398 
5399 	if (mddev_trylock(mddev)) {
5400 		int spares =0;
5401 
5402 		spin_lock_irq(&mddev->write_lock);
5403 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5404 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5405 			mddev->in_sync = 1;
5406 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5407 		}
5408 		if (mddev->safemode == 1)
5409 			mddev->safemode = 0;
5410 		spin_unlock_irq(&mddev->write_lock);
5411 
5412 		if (mddev->flags)
5413 			md_update_sb(mddev, 0);
5414 
5415 
5416 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5417 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5418 			/* resync/recovery still happening */
5419 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5420 			goto unlock;
5421 		}
5422 		if (mddev->sync_thread) {
5423 			/* resync has finished, collect result */
5424 			md_unregister_thread(mddev->sync_thread);
5425 			mddev->sync_thread = NULL;
5426 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5427 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5428 				/* success...*/
5429 				/* activate any spares */
5430 				mddev->pers->spare_active(mddev);
5431 			}
5432 			md_update_sb(mddev, 1);
5433 
5434 			/* if array is no-longer degraded, then any saved_raid_disk
5435 			 * information must be scrapped
5436 			 */
5437 			if (!mddev->degraded)
5438 				ITERATE_RDEV(mddev,rdev,rtmp)
5439 					rdev->saved_raid_disk = -1;
5440 
5441 			mddev->recovery = 0;
5442 			/* flag recovery needed just to double check */
5443 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5444 			md_new_event(mddev);
5445 			goto unlock;
5446 		}
5447 		/* Clear some bits that don't mean anything, but
5448 		 * might be left set
5449 		 */
5450 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5451 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5452 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5453 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5454 
5455 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5456 			goto unlock;
5457 		/* no recovery is running.
5458 		 * remove any failed drives, then
5459 		 * add spares if possible.
5460 		 * Spare are also removed and re-added, to allow
5461 		 * the personality to fail the re-add.
5462 		 */
5463 		ITERATE_RDEV(mddev,rdev,rtmp)
5464 			if (rdev->raid_disk >= 0 &&
5465 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
5466 			    atomic_read(&rdev->nr_pending)==0) {
5467 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
5468 					char nm[20];
5469 					sprintf(nm,"rd%d", rdev->raid_disk);
5470 					sysfs_remove_link(&mddev->kobj, nm);
5471 					rdev->raid_disk = -1;
5472 				}
5473 			}
5474 
5475 		if (mddev->degraded) {
5476 			ITERATE_RDEV(mddev,rdev,rtmp)
5477 				if (rdev->raid_disk < 0
5478 				    && !test_bit(Faulty, &rdev->flags)) {
5479 					rdev->recovery_offset = 0;
5480 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
5481 						char nm[20];
5482 						sprintf(nm, "rd%d", rdev->raid_disk);
5483 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
5484 						spares++;
5485 						md_new_event(mddev);
5486 					} else
5487 						break;
5488 				}
5489 		}
5490 
5491 		if (spares) {
5492 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5493 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5494 		} else if (mddev->recovery_cp < MaxSector) {
5495 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5496 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5497 			/* nothing to be done ... */
5498 			goto unlock;
5499 
5500 		if (mddev->pers->sync_request) {
5501 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5502 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5503 				/* We are adding a device or devices to an array
5504 				 * which has the bitmap stored on all devices.
5505 				 * So make sure all bitmap pages get written
5506 				 */
5507 				bitmap_write_all(mddev->bitmap);
5508 			}
5509 			mddev->sync_thread = md_register_thread(md_do_sync,
5510 								mddev,
5511 								"%s_resync");
5512 			if (!mddev->sync_thread) {
5513 				printk(KERN_ERR "%s: could not start resync"
5514 					" thread...\n",
5515 					mdname(mddev));
5516 				/* leave the spares where they are, it shouldn't hurt */
5517 				mddev->recovery = 0;
5518 			} else
5519 				md_wakeup_thread(mddev->sync_thread);
5520 			md_new_event(mddev);
5521 		}
5522 	unlock:
5523 		mddev_unlock(mddev);
5524 	}
5525 }
5526 
5527 static int md_notify_reboot(struct notifier_block *this,
5528 			    unsigned long code, void *x)
5529 {
5530 	struct list_head *tmp;
5531 	mddev_t *mddev;
5532 
5533 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5534 
5535 		printk(KERN_INFO "md: stopping all md devices.\n");
5536 
5537 		ITERATE_MDDEV(mddev,tmp)
5538 			if (mddev_trylock(mddev)) {
5539 				do_md_stop (mddev, 1);
5540 				mddev_unlock(mddev);
5541 			}
5542 		/*
5543 		 * certain more exotic SCSI devices are known to be
5544 		 * volatile wrt too early system reboots. While the
5545 		 * right place to handle this issue is the given
5546 		 * driver, we do want to have a safe RAID driver ...
5547 		 */
5548 		mdelay(1000*1);
5549 	}
5550 	return NOTIFY_DONE;
5551 }
5552 
5553 static struct notifier_block md_notifier = {
5554 	.notifier_call	= md_notify_reboot,
5555 	.next		= NULL,
5556 	.priority	= INT_MAX, /* before any real devices */
5557 };
5558 
5559 static void md_geninit(void)
5560 {
5561 	struct proc_dir_entry *p;
5562 
5563 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5564 
5565 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
5566 	if (p)
5567 		p->proc_fops = &md_seq_fops;
5568 }
5569 
5570 static int __init md_init(void)
5571 {
5572 	if (register_blkdev(MAJOR_NR, "md"))
5573 		return -1;
5574 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5575 		unregister_blkdev(MAJOR_NR, "md");
5576 		return -1;
5577 	}
5578 	blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5579 			    md_probe, NULL, NULL);
5580 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5581 			    md_probe, NULL, NULL);
5582 
5583 	register_reboot_notifier(&md_notifier);
5584 	raid_table_header = register_sysctl_table(raid_root_table, 1);
5585 
5586 	md_geninit();
5587 	return (0);
5588 }
5589 
5590 
5591 #ifndef MODULE
5592 
5593 /*
5594  * Searches all registered partitions for autorun RAID arrays
5595  * at boot time.
5596  */
5597 static dev_t detected_devices[128];
5598 static int dev_cnt;
5599 
5600 void md_autodetect_dev(dev_t dev)
5601 {
5602 	if (dev_cnt >= 0 && dev_cnt < 127)
5603 		detected_devices[dev_cnt++] = dev;
5604 }
5605 
5606 
5607 static void autostart_arrays(int part)
5608 {
5609 	mdk_rdev_t *rdev;
5610 	int i;
5611 
5612 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5613 
5614 	for (i = 0; i < dev_cnt; i++) {
5615 		dev_t dev = detected_devices[i];
5616 
5617 		rdev = md_import_device(dev,0, 0);
5618 		if (IS_ERR(rdev))
5619 			continue;
5620 
5621 		if (test_bit(Faulty, &rdev->flags)) {
5622 			MD_BUG();
5623 			continue;
5624 		}
5625 		list_add(&rdev->same_set, &pending_raid_disks);
5626 	}
5627 	dev_cnt = 0;
5628 
5629 	autorun_devices(part);
5630 }
5631 
5632 #endif /* !MODULE */
5633 
5634 static __exit void md_exit(void)
5635 {
5636 	mddev_t *mddev;
5637 	struct list_head *tmp;
5638 
5639 	blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
5640 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
5641 
5642 	unregister_blkdev(MAJOR_NR,"md");
5643 	unregister_blkdev(mdp_major, "mdp");
5644 	unregister_reboot_notifier(&md_notifier);
5645 	unregister_sysctl_table(raid_table_header);
5646 	remove_proc_entry("mdstat", NULL);
5647 	ITERATE_MDDEV(mddev,tmp) {
5648 		struct gendisk *disk = mddev->gendisk;
5649 		if (!disk)
5650 			continue;
5651 		export_array(mddev);
5652 		del_gendisk(disk);
5653 		put_disk(disk);
5654 		mddev->gendisk = NULL;
5655 		mddev_put(mddev);
5656 	}
5657 }
5658 
5659 module_init(md_init)
5660 module_exit(md_exit)
5661 
5662 static int get_ro(char *buffer, struct kernel_param *kp)
5663 {
5664 	return sprintf(buffer, "%d", start_readonly);
5665 }
5666 static int set_ro(const char *val, struct kernel_param *kp)
5667 {
5668 	char *e;
5669 	int num = simple_strtoul(val, &e, 10);
5670 	if (*val && (*e == '\0' || *e == '\n')) {
5671 		start_readonly = num;
5672 		return 0;
5673 	}
5674 	return -EINVAL;
5675 }
5676 
5677 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5678 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5679 
5680 
5681 EXPORT_SYMBOL(register_md_personality);
5682 EXPORT_SYMBOL(unregister_md_personality);
5683 EXPORT_SYMBOL(md_error);
5684 EXPORT_SYMBOL(md_done_sync);
5685 EXPORT_SYMBOL(md_write_start);
5686 EXPORT_SYMBOL(md_write_end);
5687 EXPORT_SYMBOL(md_register_thread);
5688 EXPORT_SYMBOL(md_unregister_thread);
5689 EXPORT_SYMBOL(md_wakeup_thread);
5690 EXPORT_SYMBOL(md_check_recovery);
5691 MODULE_LICENSE("GPL");
5692 MODULE_ALIAS("md");
5693 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
5694