xref: /linux/drivers/md/md.c (revision a58130ddc896e5a15e4de2bf50a1d89247118c23)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74 
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76 
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95 
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 	return mddev->sync_speed_min ?
101 		mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103 
104 static inline int speed_max(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_max ?
107 		mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109 
110 static struct ctl_table_header *raid_table_header;
111 
112 static ctl_table raid_table[] = {
113 	{
114 		.procname	= "speed_limit_min",
115 		.data		= &sysctl_speed_limit_min,
116 		.maxlen		= sizeof(int),
117 		.mode		= S_IRUGO|S_IWUSR,
118 		.proc_handler	= proc_dointvec,
119 	},
120 	{
121 		.procname	= "speed_limit_max",
122 		.data		= &sysctl_speed_limit_max,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{ }
128 };
129 
130 static ctl_table raid_dir_table[] = {
131 	{
132 		.procname	= "raid",
133 		.maxlen		= 0,
134 		.mode		= S_IRUGO|S_IXUGO,
135 		.child		= raid_table,
136 	},
137 	{ }
138 };
139 
140 static ctl_table raid_root_table[] = {
141 	{
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{  }
148 };
149 
150 static const struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157 
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159 			    struct mddev *mddev)
160 {
161 	struct bio *b;
162 
163 	if (!mddev || !mddev->bio_set)
164 		return bio_alloc(gfp_mask, nr_iovecs);
165 
166 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167 	if (!b)
168 		return NULL;
169 	return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172 
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174 			    struct mddev *mddev)
175 {
176 	if (!mddev || !mddev->bio_set)
177 		return bio_clone(bio, gfp_mask);
178 
179 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182 
183 void md_trim_bio(struct bio *bio, int offset, int size)
184 {
185 	/* 'bio' is a cloned bio which we need to trim to match
186 	 * the given offset and size.
187 	 * This requires adjusting bi_sector, bi_size, and bi_io_vec
188 	 */
189 	int i;
190 	struct bio_vec *bvec;
191 	int sofar = 0;
192 
193 	size <<= 9;
194 	if (offset == 0 && size == bio->bi_size)
195 		return;
196 
197 	bio->bi_sector += offset;
198 	bio->bi_size = size;
199 	offset <<= 9;
200 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201 
202 	while (bio->bi_idx < bio->bi_vcnt &&
203 	       bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
204 		/* remove this whole bio_vec */
205 		offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
206 		bio->bi_idx++;
207 	}
208 	if (bio->bi_idx < bio->bi_vcnt) {
209 		bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
210 		bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
211 	}
212 	/* avoid any complications with bi_idx being non-zero*/
213 	if (bio->bi_idx) {
214 		memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
215 			(bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
216 		bio->bi_vcnt -= bio->bi_idx;
217 		bio->bi_idx = 0;
218 	}
219 	/* Make sure vcnt and last bv are not too big */
220 	bio_for_each_segment(bvec, bio, i) {
221 		if (sofar + bvec->bv_len > size)
222 			bvec->bv_len = size - sofar;
223 		if (bvec->bv_len == 0) {
224 			bio->bi_vcnt = i;
225 			break;
226 		}
227 		sofar += bvec->bv_len;
228 	}
229 }
230 EXPORT_SYMBOL_GPL(md_trim_bio);
231 
232 /*
233  * We have a system wide 'event count' that is incremented
234  * on any 'interesting' event, and readers of /proc/mdstat
235  * can use 'poll' or 'select' to find out when the event
236  * count increases.
237  *
238  * Events are:
239  *  start array, stop array, error, add device, remove device,
240  *  start build, activate spare
241  */
242 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
243 static atomic_t md_event_count;
244 void md_new_event(struct mddev *mddev)
245 {
246 	atomic_inc(&md_event_count);
247 	wake_up(&md_event_waiters);
248 }
249 EXPORT_SYMBOL_GPL(md_new_event);
250 
251 /* Alternate version that can be called from interrupts
252  * when calling sysfs_notify isn't needed.
253  */
254 static void md_new_event_inintr(struct mddev *mddev)
255 {
256 	atomic_inc(&md_event_count);
257 	wake_up(&md_event_waiters);
258 }
259 
260 /*
261  * Enables to iterate over all existing md arrays
262  * all_mddevs_lock protects this list.
263  */
264 static LIST_HEAD(all_mddevs);
265 static DEFINE_SPINLOCK(all_mddevs_lock);
266 
267 
268 /*
269  * iterates through all used mddevs in the system.
270  * We take care to grab the all_mddevs_lock whenever navigating
271  * the list, and to always hold a refcount when unlocked.
272  * Any code which breaks out of this loop while own
273  * a reference to the current mddev and must mddev_put it.
274  */
275 #define for_each_mddev(_mddev,_tmp)					\
276 									\
277 	for (({ spin_lock(&all_mddevs_lock); 				\
278 		_tmp = all_mddevs.next;					\
279 		_mddev = NULL;});					\
280 	     ({ if (_tmp != &all_mddevs)				\
281 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
282 		spin_unlock(&all_mddevs_lock);				\
283 		if (_mddev) mddev_put(_mddev);				\
284 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
285 		_tmp != &all_mddevs;});					\
286 	     ({ spin_lock(&all_mddevs_lock);				\
287 		_tmp = _tmp->next;})					\
288 		)
289 
290 
291 /* Rather than calling directly into the personality make_request function,
292  * IO requests come here first so that we can check if the device is
293  * being suspended pending a reconfiguration.
294  * We hold a refcount over the call to ->make_request.  By the time that
295  * call has finished, the bio has been linked into some internal structure
296  * and so is visible to ->quiesce(), so we don't need the refcount any more.
297  */
298 static void md_make_request(struct request_queue *q, struct bio *bio)
299 {
300 	const int rw = bio_data_dir(bio);
301 	struct mddev *mddev = q->queuedata;
302 	int cpu;
303 	unsigned int sectors;
304 
305 	if (mddev == NULL || mddev->pers == NULL
306 	    || !mddev->ready) {
307 		bio_io_error(bio);
308 		return;
309 	}
310 	smp_rmb(); /* Ensure implications of  'active' are visible */
311 	rcu_read_lock();
312 	if (mddev->suspended) {
313 		DEFINE_WAIT(__wait);
314 		for (;;) {
315 			prepare_to_wait(&mddev->sb_wait, &__wait,
316 					TASK_UNINTERRUPTIBLE);
317 			if (!mddev->suspended)
318 				break;
319 			rcu_read_unlock();
320 			schedule();
321 			rcu_read_lock();
322 		}
323 		finish_wait(&mddev->sb_wait, &__wait);
324 	}
325 	atomic_inc(&mddev->active_io);
326 	rcu_read_unlock();
327 
328 	/*
329 	 * save the sectors now since our bio can
330 	 * go away inside make_request
331 	 */
332 	sectors = bio_sectors(bio);
333 	mddev->pers->make_request(mddev, bio);
334 
335 	cpu = part_stat_lock();
336 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
337 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
338 	part_stat_unlock();
339 
340 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
341 		wake_up(&mddev->sb_wait);
342 }
343 
344 /* mddev_suspend makes sure no new requests are submitted
345  * to the device, and that any requests that have been submitted
346  * are completely handled.
347  * Once ->stop is called and completes, the module will be completely
348  * unused.
349  */
350 void mddev_suspend(struct mddev *mddev)
351 {
352 	BUG_ON(mddev->suspended);
353 	mddev->suspended = 1;
354 	synchronize_rcu();
355 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
356 	mddev->pers->quiesce(mddev, 1);
357 
358 	del_timer_sync(&mddev->safemode_timer);
359 }
360 EXPORT_SYMBOL_GPL(mddev_suspend);
361 
362 void mddev_resume(struct mddev *mddev)
363 {
364 	mddev->suspended = 0;
365 	wake_up(&mddev->sb_wait);
366 	mddev->pers->quiesce(mddev, 0);
367 
368 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
369 	md_wakeup_thread(mddev->thread);
370 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
371 }
372 EXPORT_SYMBOL_GPL(mddev_resume);
373 
374 int mddev_congested(struct mddev *mddev, int bits)
375 {
376 	return mddev->suspended;
377 }
378 EXPORT_SYMBOL(mddev_congested);
379 
380 /*
381  * Generic flush handling for md
382  */
383 
384 static void md_end_flush(struct bio *bio, int err)
385 {
386 	struct md_rdev *rdev = bio->bi_private;
387 	struct mddev *mddev = rdev->mddev;
388 
389 	rdev_dec_pending(rdev, mddev);
390 
391 	if (atomic_dec_and_test(&mddev->flush_pending)) {
392 		/* The pre-request flush has finished */
393 		queue_work(md_wq, &mddev->flush_work);
394 	}
395 	bio_put(bio);
396 }
397 
398 static void md_submit_flush_data(struct work_struct *ws);
399 
400 static void submit_flushes(struct work_struct *ws)
401 {
402 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
403 	struct md_rdev *rdev;
404 
405 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
406 	atomic_set(&mddev->flush_pending, 1);
407 	rcu_read_lock();
408 	rdev_for_each_rcu(rdev, mddev)
409 		if (rdev->raid_disk >= 0 &&
410 		    !test_bit(Faulty, &rdev->flags)) {
411 			/* Take two references, one is dropped
412 			 * when request finishes, one after
413 			 * we reclaim rcu_read_lock
414 			 */
415 			struct bio *bi;
416 			atomic_inc(&rdev->nr_pending);
417 			atomic_inc(&rdev->nr_pending);
418 			rcu_read_unlock();
419 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
420 			bi->bi_end_io = md_end_flush;
421 			bi->bi_private = rdev;
422 			bi->bi_bdev = rdev->bdev;
423 			atomic_inc(&mddev->flush_pending);
424 			submit_bio(WRITE_FLUSH, bi);
425 			rcu_read_lock();
426 			rdev_dec_pending(rdev, mddev);
427 		}
428 	rcu_read_unlock();
429 	if (atomic_dec_and_test(&mddev->flush_pending))
430 		queue_work(md_wq, &mddev->flush_work);
431 }
432 
433 static void md_submit_flush_data(struct work_struct *ws)
434 {
435 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
436 	struct bio *bio = mddev->flush_bio;
437 
438 	if (bio->bi_size == 0)
439 		/* an empty barrier - all done */
440 		bio_endio(bio, 0);
441 	else {
442 		bio->bi_rw &= ~REQ_FLUSH;
443 		mddev->pers->make_request(mddev, bio);
444 	}
445 
446 	mddev->flush_bio = NULL;
447 	wake_up(&mddev->sb_wait);
448 }
449 
450 void md_flush_request(struct mddev *mddev, struct bio *bio)
451 {
452 	spin_lock_irq(&mddev->write_lock);
453 	wait_event_lock_irq(mddev->sb_wait,
454 			    !mddev->flush_bio,
455 			    mddev->write_lock, /*nothing*/);
456 	mddev->flush_bio = bio;
457 	spin_unlock_irq(&mddev->write_lock);
458 
459 	INIT_WORK(&mddev->flush_work, submit_flushes);
460 	queue_work(md_wq, &mddev->flush_work);
461 }
462 EXPORT_SYMBOL(md_flush_request);
463 
464 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
465 {
466 	struct mddev *mddev = cb->data;
467 	md_wakeup_thread(mddev->thread);
468 	kfree(cb);
469 }
470 EXPORT_SYMBOL(md_unplug);
471 
472 static inline struct mddev *mddev_get(struct mddev *mddev)
473 {
474 	atomic_inc(&mddev->active);
475 	return mddev;
476 }
477 
478 static void mddev_delayed_delete(struct work_struct *ws);
479 
480 static void mddev_put(struct mddev *mddev)
481 {
482 	struct bio_set *bs = NULL;
483 
484 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
485 		return;
486 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
487 	    mddev->ctime == 0 && !mddev->hold_active) {
488 		/* Array is not configured at all, and not held active,
489 		 * so destroy it */
490 		list_del_init(&mddev->all_mddevs);
491 		bs = mddev->bio_set;
492 		mddev->bio_set = NULL;
493 		if (mddev->gendisk) {
494 			/* We did a probe so need to clean up.  Call
495 			 * queue_work inside the spinlock so that
496 			 * flush_workqueue() after mddev_find will
497 			 * succeed in waiting for the work to be done.
498 			 */
499 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
500 			queue_work(md_misc_wq, &mddev->del_work);
501 		} else
502 			kfree(mddev);
503 	}
504 	spin_unlock(&all_mddevs_lock);
505 	if (bs)
506 		bioset_free(bs);
507 }
508 
509 void mddev_init(struct mddev *mddev)
510 {
511 	mutex_init(&mddev->open_mutex);
512 	mutex_init(&mddev->reconfig_mutex);
513 	mutex_init(&mddev->bitmap_info.mutex);
514 	INIT_LIST_HEAD(&mddev->disks);
515 	INIT_LIST_HEAD(&mddev->all_mddevs);
516 	init_timer(&mddev->safemode_timer);
517 	atomic_set(&mddev->active, 1);
518 	atomic_set(&mddev->openers, 0);
519 	atomic_set(&mddev->active_io, 0);
520 	spin_lock_init(&mddev->write_lock);
521 	atomic_set(&mddev->flush_pending, 0);
522 	init_waitqueue_head(&mddev->sb_wait);
523 	init_waitqueue_head(&mddev->recovery_wait);
524 	mddev->reshape_position = MaxSector;
525 	mddev->reshape_backwards = 0;
526 	mddev->resync_min = 0;
527 	mddev->resync_max = MaxSector;
528 	mddev->level = LEVEL_NONE;
529 }
530 EXPORT_SYMBOL_GPL(mddev_init);
531 
532 static struct mddev * mddev_find(dev_t unit)
533 {
534 	struct mddev *mddev, *new = NULL;
535 
536 	if (unit && MAJOR(unit) != MD_MAJOR)
537 		unit &= ~((1<<MdpMinorShift)-1);
538 
539  retry:
540 	spin_lock(&all_mddevs_lock);
541 
542 	if (unit) {
543 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
544 			if (mddev->unit == unit) {
545 				mddev_get(mddev);
546 				spin_unlock(&all_mddevs_lock);
547 				kfree(new);
548 				return mddev;
549 			}
550 
551 		if (new) {
552 			list_add(&new->all_mddevs, &all_mddevs);
553 			spin_unlock(&all_mddevs_lock);
554 			new->hold_active = UNTIL_IOCTL;
555 			return new;
556 		}
557 	} else if (new) {
558 		/* find an unused unit number */
559 		static int next_minor = 512;
560 		int start = next_minor;
561 		int is_free = 0;
562 		int dev = 0;
563 		while (!is_free) {
564 			dev = MKDEV(MD_MAJOR, next_minor);
565 			next_minor++;
566 			if (next_minor > MINORMASK)
567 				next_minor = 0;
568 			if (next_minor == start) {
569 				/* Oh dear, all in use. */
570 				spin_unlock(&all_mddevs_lock);
571 				kfree(new);
572 				return NULL;
573 			}
574 
575 			is_free = 1;
576 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
577 				if (mddev->unit == dev) {
578 					is_free = 0;
579 					break;
580 				}
581 		}
582 		new->unit = dev;
583 		new->md_minor = MINOR(dev);
584 		new->hold_active = UNTIL_STOP;
585 		list_add(&new->all_mddevs, &all_mddevs);
586 		spin_unlock(&all_mddevs_lock);
587 		return new;
588 	}
589 	spin_unlock(&all_mddevs_lock);
590 
591 	new = kzalloc(sizeof(*new), GFP_KERNEL);
592 	if (!new)
593 		return NULL;
594 
595 	new->unit = unit;
596 	if (MAJOR(unit) == MD_MAJOR)
597 		new->md_minor = MINOR(unit);
598 	else
599 		new->md_minor = MINOR(unit) >> MdpMinorShift;
600 
601 	mddev_init(new);
602 
603 	goto retry;
604 }
605 
606 static inline int mddev_lock(struct mddev * mddev)
607 {
608 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
609 }
610 
611 static inline int mddev_is_locked(struct mddev *mddev)
612 {
613 	return mutex_is_locked(&mddev->reconfig_mutex);
614 }
615 
616 static inline int mddev_trylock(struct mddev * mddev)
617 {
618 	return mutex_trylock(&mddev->reconfig_mutex);
619 }
620 
621 static struct attribute_group md_redundancy_group;
622 
623 static void mddev_unlock(struct mddev * mddev)
624 {
625 	if (mddev->to_remove) {
626 		/* These cannot be removed under reconfig_mutex as
627 		 * an access to the files will try to take reconfig_mutex
628 		 * while holding the file unremovable, which leads to
629 		 * a deadlock.
630 		 * So hold set sysfs_active while the remove in happeing,
631 		 * and anything else which might set ->to_remove or my
632 		 * otherwise change the sysfs namespace will fail with
633 		 * -EBUSY if sysfs_active is still set.
634 		 * We set sysfs_active under reconfig_mutex and elsewhere
635 		 * test it under the same mutex to ensure its correct value
636 		 * is seen.
637 		 */
638 		struct attribute_group *to_remove = mddev->to_remove;
639 		mddev->to_remove = NULL;
640 		mddev->sysfs_active = 1;
641 		mutex_unlock(&mddev->reconfig_mutex);
642 
643 		if (mddev->kobj.sd) {
644 			if (to_remove != &md_redundancy_group)
645 				sysfs_remove_group(&mddev->kobj, to_remove);
646 			if (mddev->pers == NULL ||
647 			    mddev->pers->sync_request == NULL) {
648 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
649 				if (mddev->sysfs_action)
650 					sysfs_put(mddev->sysfs_action);
651 				mddev->sysfs_action = NULL;
652 			}
653 		}
654 		mddev->sysfs_active = 0;
655 	} else
656 		mutex_unlock(&mddev->reconfig_mutex);
657 
658 	/* As we've dropped the mutex we need a spinlock to
659 	 * make sure the thread doesn't disappear
660 	 */
661 	spin_lock(&pers_lock);
662 	md_wakeup_thread(mddev->thread);
663 	spin_unlock(&pers_lock);
664 }
665 
666 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
667 {
668 	struct md_rdev *rdev;
669 
670 	rdev_for_each(rdev, mddev)
671 		if (rdev->desc_nr == nr)
672 			return rdev;
673 
674 	return NULL;
675 }
676 
677 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
678 {
679 	struct md_rdev *rdev;
680 
681 	rdev_for_each_rcu(rdev, mddev)
682 		if (rdev->desc_nr == nr)
683 			return rdev;
684 
685 	return NULL;
686 }
687 
688 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
689 {
690 	struct md_rdev *rdev;
691 
692 	rdev_for_each(rdev, mddev)
693 		if (rdev->bdev->bd_dev == dev)
694 			return rdev;
695 
696 	return NULL;
697 }
698 
699 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
700 {
701 	struct md_rdev *rdev;
702 
703 	rdev_for_each_rcu(rdev, mddev)
704 		if (rdev->bdev->bd_dev == dev)
705 			return rdev;
706 
707 	return NULL;
708 }
709 
710 static struct md_personality *find_pers(int level, char *clevel)
711 {
712 	struct md_personality *pers;
713 	list_for_each_entry(pers, &pers_list, list) {
714 		if (level != LEVEL_NONE && pers->level == level)
715 			return pers;
716 		if (strcmp(pers->name, clevel)==0)
717 			return pers;
718 	}
719 	return NULL;
720 }
721 
722 /* return the offset of the super block in 512byte sectors */
723 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
724 {
725 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
726 	return MD_NEW_SIZE_SECTORS(num_sectors);
727 }
728 
729 static int alloc_disk_sb(struct md_rdev * rdev)
730 {
731 	if (rdev->sb_page)
732 		MD_BUG();
733 
734 	rdev->sb_page = alloc_page(GFP_KERNEL);
735 	if (!rdev->sb_page) {
736 		printk(KERN_ALERT "md: out of memory.\n");
737 		return -ENOMEM;
738 	}
739 
740 	return 0;
741 }
742 
743 void md_rdev_clear(struct md_rdev *rdev)
744 {
745 	if (rdev->sb_page) {
746 		put_page(rdev->sb_page);
747 		rdev->sb_loaded = 0;
748 		rdev->sb_page = NULL;
749 		rdev->sb_start = 0;
750 		rdev->sectors = 0;
751 	}
752 	if (rdev->bb_page) {
753 		put_page(rdev->bb_page);
754 		rdev->bb_page = NULL;
755 	}
756 	kfree(rdev->badblocks.page);
757 	rdev->badblocks.page = NULL;
758 }
759 EXPORT_SYMBOL_GPL(md_rdev_clear);
760 
761 static void super_written(struct bio *bio, int error)
762 {
763 	struct md_rdev *rdev = bio->bi_private;
764 	struct mddev *mddev = rdev->mddev;
765 
766 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
767 		printk("md: super_written gets error=%d, uptodate=%d\n",
768 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
769 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
770 		md_error(mddev, rdev);
771 	}
772 
773 	if (atomic_dec_and_test(&mddev->pending_writes))
774 		wake_up(&mddev->sb_wait);
775 	bio_put(bio);
776 }
777 
778 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
779 		   sector_t sector, int size, struct page *page)
780 {
781 	/* write first size bytes of page to sector of rdev
782 	 * Increment mddev->pending_writes before returning
783 	 * and decrement it on completion, waking up sb_wait
784 	 * if zero is reached.
785 	 * If an error occurred, call md_error
786 	 */
787 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
788 
789 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
790 	bio->bi_sector = sector;
791 	bio_add_page(bio, page, size, 0);
792 	bio->bi_private = rdev;
793 	bio->bi_end_io = super_written;
794 
795 	atomic_inc(&mddev->pending_writes);
796 	submit_bio(WRITE_FLUSH_FUA, bio);
797 }
798 
799 void md_super_wait(struct mddev *mddev)
800 {
801 	/* wait for all superblock writes that were scheduled to complete */
802 	DEFINE_WAIT(wq);
803 	for(;;) {
804 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
805 		if (atomic_read(&mddev->pending_writes)==0)
806 			break;
807 		schedule();
808 	}
809 	finish_wait(&mddev->sb_wait, &wq);
810 }
811 
812 static void bi_complete(struct bio *bio, int error)
813 {
814 	complete((struct completion*)bio->bi_private);
815 }
816 
817 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
818 		 struct page *page, int rw, bool metadata_op)
819 {
820 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
821 	struct completion event;
822 	int ret;
823 
824 	rw |= REQ_SYNC;
825 
826 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
827 		rdev->meta_bdev : rdev->bdev;
828 	if (metadata_op)
829 		bio->bi_sector = sector + rdev->sb_start;
830 	else if (rdev->mddev->reshape_position != MaxSector &&
831 		 (rdev->mddev->reshape_backwards ==
832 		  (sector >= rdev->mddev->reshape_position)))
833 		bio->bi_sector = sector + rdev->new_data_offset;
834 	else
835 		bio->bi_sector = sector + rdev->data_offset;
836 	bio_add_page(bio, page, size, 0);
837 	init_completion(&event);
838 	bio->bi_private = &event;
839 	bio->bi_end_io = bi_complete;
840 	submit_bio(rw, bio);
841 	wait_for_completion(&event);
842 
843 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
844 	bio_put(bio);
845 	return ret;
846 }
847 EXPORT_SYMBOL_GPL(sync_page_io);
848 
849 static int read_disk_sb(struct md_rdev * rdev, int size)
850 {
851 	char b[BDEVNAME_SIZE];
852 	if (!rdev->sb_page) {
853 		MD_BUG();
854 		return -EINVAL;
855 	}
856 	if (rdev->sb_loaded)
857 		return 0;
858 
859 
860 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
861 		goto fail;
862 	rdev->sb_loaded = 1;
863 	return 0;
864 
865 fail:
866 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
867 		bdevname(rdev->bdev,b));
868 	return -EINVAL;
869 }
870 
871 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
872 {
873 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
874 		sb1->set_uuid1 == sb2->set_uuid1 &&
875 		sb1->set_uuid2 == sb2->set_uuid2 &&
876 		sb1->set_uuid3 == sb2->set_uuid3;
877 }
878 
879 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
880 {
881 	int ret;
882 	mdp_super_t *tmp1, *tmp2;
883 
884 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
885 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
886 
887 	if (!tmp1 || !tmp2) {
888 		ret = 0;
889 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
890 		goto abort;
891 	}
892 
893 	*tmp1 = *sb1;
894 	*tmp2 = *sb2;
895 
896 	/*
897 	 * nr_disks is not constant
898 	 */
899 	tmp1->nr_disks = 0;
900 	tmp2->nr_disks = 0;
901 
902 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
903 abort:
904 	kfree(tmp1);
905 	kfree(tmp2);
906 	return ret;
907 }
908 
909 
910 static u32 md_csum_fold(u32 csum)
911 {
912 	csum = (csum & 0xffff) + (csum >> 16);
913 	return (csum & 0xffff) + (csum >> 16);
914 }
915 
916 static unsigned int calc_sb_csum(mdp_super_t * sb)
917 {
918 	u64 newcsum = 0;
919 	u32 *sb32 = (u32*)sb;
920 	int i;
921 	unsigned int disk_csum, csum;
922 
923 	disk_csum = sb->sb_csum;
924 	sb->sb_csum = 0;
925 
926 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
927 		newcsum += sb32[i];
928 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
929 
930 
931 #ifdef CONFIG_ALPHA
932 	/* This used to use csum_partial, which was wrong for several
933 	 * reasons including that different results are returned on
934 	 * different architectures.  It isn't critical that we get exactly
935 	 * the same return value as before (we always csum_fold before
936 	 * testing, and that removes any differences).  However as we
937 	 * know that csum_partial always returned a 16bit value on
938 	 * alphas, do a fold to maximise conformity to previous behaviour.
939 	 */
940 	sb->sb_csum = md_csum_fold(disk_csum);
941 #else
942 	sb->sb_csum = disk_csum;
943 #endif
944 	return csum;
945 }
946 
947 
948 /*
949  * Handle superblock details.
950  * We want to be able to handle multiple superblock formats
951  * so we have a common interface to them all, and an array of
952  * different handlers.
953  * We rely on user-space to write the initial superblock, and support
954  * reading and updating of superblocks.
955  * Interface methods are:
956  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
957  *      loads and validates a superblock on dev.
958  *      if refdev != NULL, compare superblocks on both devices
959  *    Return:
960  *      0 - dev has a superblock that is compatible with refdev
961  *      1 - dev has a superblock that is compatible and newer than refdev
962  *          so dev should be used as the refdev in future
963  *     -EINVAL superblock incompatible or invalid
964  *     -othererror e.g. -EIO
965  *
966  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
967  *      Verify that dev is acceptable into mddev.
968  *       The first time, mddev->raid_disks will be 0, and data from
969  *       dev should be merged in.  Subsequent calls check that dev
970  *       is new enough.  Return 0 or -EINVAL
971  *
972  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
973  *     Update the superblock for rdev with data in mddev
974  *     This does not write to disc.
975  *
976  */
977 
978 struct super_type  {
979 	char		    *name;
980 	struct module	    *owner;
981 	int		    (*load_super)(struct md_rdev *rdev,
982 					  struct md_rdev *refdev,
983 					  int minor_version);
984 	int		    (*validate_super)(struct mddev *mddev,
985 					      struct md_rdev *rdev);
986 	void		    (*sync_super)(struct mddev *mddev,
987 					  struct md_rdev *rdev);
988 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
989 						sector_t num_sectors);
990 	int		    (*allow_new_offset)(struct md_rdev *rdev,
991 						unsigned long long new_offset);
992 };
993 
994 /*
995  * Check that the given mddev has no bitmap.
996  *
997  * This function is called from the run method of all personalities that do not
998  * support bitmaps. It prints an error message and returns non-zero if mddev
999  * has a bitmap. Otherwise, it returns 0.
1000  *
1001  */
1002 int md_check_no_bitmap(struct mddev *mddev)
1003 {
1004 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1005 		return 0;
1006 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1007 		mdname(mddev), mddev->pers->name);
1008 	return 1;
1009 }
1010 EXPORT_SYMBOL(md_check_no_bitmap);
1011 
1012 /*
1013  * load_super for 0.90.0
1014  */
1015 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1016 {
1017 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1018 	mdp_super_t *sb;
1019 	int ret;
1020 
1021 	/*
1022 	 * Calculate the position of the superblock (512byte sectors),
1023 	 * it's at the end of the disk.
1024 	 *
1025 	 * It also happens to be a multiple of 4Kb.
1026 	 */
1027 	rdev->sb_start = calc_dev_sboffset(rdev);
1028 
1029 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1030 	if (ret) return ret;
1031 
1032 	ret = -EINVAL;
1033 
1034 	bdevname(rdev->bdev, b);
1035 	sb = page_address(rdev->sb_page);
1036 
1037 	if (sb->md_magic != MD_SB_MAGIC) {
1038 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1039 		       b);
1040 		goto abort;
1041 	}
1042 
1043 	if (sb->major_version != 0 ||
1044 	    sb->minor_version < 90 ||
1045 	    sb->minor_version > 91) {
1046 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1047 			sb->major_version, sb->minor_version,
1048 			b);
1049 		goto abort;
1050 	}
1051 
1052 	if (sb->raid_disks <= 0)
1053 		goto abort;
1054 
1055 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1056 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1057 			b);
1058 		goto abort;
1059 	}
1060 
1061 	rdev->preferred_minor = sb->md_minor;
1062 	rdev->data_offset = 0;
1063 	rdev->new_data_offset = 0;
1064 	rdev->sb_size = MD_SB_BYTES;
1065 	rdev->badblocks.shift = -1;
1066 
1067 	if (sb->level == LEVEL_MULTIPATH)
1068 		rdev->desc_nr = -1;
1069 	else
1070 		rdev->desc_nr = sb->this_disk.number;
1071 
1072 	if (!refdev) {
1073 		ret = 1;
1074 	} else {
1075 		__u64 ev1, ev2;
1076 		mdp_super_t *refsb = page_address(refdev->sb_page);
1077 		if (!uuid_equal(refsb, sb)) {
1078 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1079 				b, bdevname(refdev->bdev,b2));
1080 			goto abort;
1081 		}
1082 		if (!sb_equal(refsb, sb)) {
1083 			printk(KERN_WARNING "md: %s has same UUID"
1084 			       " but different superblock to %s\n",
1085 			       b, bdevname(refdev->bdev, b2));
1086 			goto abort;
1087 		}
1088 		ev1 = md_event(sb);
1089 		ev2 = md_event(refsb);
1090 		if (ev1 > ev2)
1091 			ret = 1;
1092 		else
1093 			ret = 0;
1094 	}
1095 	rdev->sectors = rdev->sb_start;
1096 	/* Limit to 4TB as metadata cannot record more than that.
1097 	 * (not needed for Linear and RAID0 as metadata doesn't
1098 	 * record this size)
1099 	 */
1100 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1101 		rdev->sectors = (2ULL << 32) - 2;
1102 
1103 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1104 		/* "this cannot possibly happen" ... */
1105 		ret = -EINVAL;
1106 
1107  abort:
1108 	return ret;
1109 }
1110 
1111 /*
1112  * validate_super for 0.90.0
1113  */
1114 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1115 {
1116 	mdp_disk_t *desc;
1117 	mdp_super_t *sb = page_address(rdev->sb_page);
1118 	__u64 ev1 = md_event(sb);
1119 
1120 	rdev->raid_disk = -1;
1121 	clear_bit(Faulty, &rdev->flags);
1122 	clear_bit(In_sync, &rdev->flags);
1123 	clear_bit(WriteMostly, &rdev->flags);
1124 
1125 	if (mddev->raid_disks == 0) {
1126 		mddev->major_version = 0;
1127 		mddev->minor_version = sb->minor_version;
1128 		mddev->patch_version = sb->patch_version;
1129 		mddev->external = 0;
1130 		mddev->chunk_sectors = sb->chunk_size >> 9;
1131 		mddev->ctime = sb->ctime;
1132 		mddev->utime = sb->utime;
1133 		mddev->level = sb->level;
1134 		mddev->clevel[0] = 0;
1135 		mddev->layout = sb->layout;
1136 		mddev->raid_disks = sb->raid_disks;
1137 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1138 		mddev->events = ev1;
1139 		mddev->bitmap_info.offset = 0;
1140 		mddev->bitmap_info.space = 0;
1141 		/* bitmap can use 60 K after the 4K superblocks */
1142 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1143 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1144 		mddev->reshape_backwards = 0;
1145 
1146 		if (mddev->minor_version >= 91) {
1147 			mddev->reshape_position = sb->reshape_position;
1148 			mddev->delta_disks = sb->delta_disks;
1149 			mddev->new_level = sb->new_level;
1150 			mddev->new_layout = sb->new_layout;
1151 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1152 			if (mddev->delta_disks < 0)
1153 				mddev->reshape_backwards = 1;
1154 		} else {
1155 			mddev->reshape_position = MaxSector;
1156 			mddev->delta_disks = 0;
1157 			mddev->new_level = mddev->level;
1158 			mddev->new_layout = mddev->layout;
1159 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1160 		}
1161 
1162 		if (sb->state & (1<<MD_SB_CLEAN))
1163 			mddev->recovery_cp = MaxSector;
1164 		else {
1165 			if (sb->events_hi == sb->cp_events_hi &&
1166 				sb->events_lo == sb->cp_events_lo) {
1167 				mddev->recovery_cp = sb->recovery_cp;
1168 			} else
1169 				mddev->recovery_cp = 0;
1170 		}
1171 
1172 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1173 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1174 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1175 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1176 
1177 		mddev->max_disks = MD_SB_DISKS;
1178 
1179 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1180 		    mddev->bitmap_info.file == NULL) {
1181 			mddev->bitmap_info.offset =
1182 				mddev->bitmap_info.default_offset;
1183 			mddev->bitmap_info.space =
1184 				mddev->bitmap_info.space;
1185 		}
1186 
1187 	} else if (mddev->pers == NULL) {
1188 		/* Insist on good event counter while assembling, except
1189 		 * for spares (which don't need an event count) */
1190 		++ev1;
1191 		if (sb->disks[rdev->desc_nr].state & (
1192 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1193 			if (ev1 < mddev->events)
1194 				return -EINVAL;
1195 	} else if (mddev->bitmap) {
1196 		/* if adding to array with a bitmap, then we can accept an
1197 		 * older device ... but not too old.
1198 		 */
1199 		if (ev1 < mddev->bitmap->events_cleared)
1200 			return 0;
1201 	} else {
1202 		if (ev1 < mddev->events)
1203 			/* just a hot-add of a new device, leave raid_disk at -1 */
1204 			return 0;
1205 	}
1206 
1207 	if (mddev->level != LEVEL_MULTIPATH) {
1208 		desc = sb->disks + rdev->desc_nr;
1209 
1210 		if (desc->state & (1<<MD_DISK_FAULTY))
1211 			set_bit(Faulty, &rdev->flags);
1212 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1213 			    desc->raid_disk < mddev->raid_disks */) {
1214 			set_bit(In_sync, &rdev->flags);
1215 			rdev->raid_disk = desc->raid_disk;
1216 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1217 			/* active but not in sync implies recovery up to
1218 			 * reshape position.  We don't know exactly where
1219 			 * that is, so set to zero for now */
1220 			if (mddev->minor_version >= 91) {
1221 				rdev->recovery_offset = 0;
1222 				rdev->raid_disk = desc->raid_disk;
1223 			}
1224 		}
1225 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1226 			set_bit(WriteMostly, &rdev->flags);
1227 	} else /* MULTIPATH are always insync */
1228 		set_bit(In_sync, &rdev->flags);
1229 	return 0;
1230 }
1231 
1232 /*
1233  * sync_super for 0.90.0
1234  */
1235 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1236 {
1237 	mdp_super_t *sb;
1238 	struct md_rdev *rdev2;
1239 	int next_spare = mddev->raid_disks;
1240 
1241 
1242 	/* make rdev->sb match mddev data..
1243 	 *
1244 	 * 1/ zero out disks
1245 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1246 	 * 3/ any empty disks < next_spare become removed
1247 	 *
1248 	 * disks[0] gets initialised to REMOVED because
1249 	 * we cannot be sure from other fields if it has
1250 	 * been initialised or not.
1251 	 */
1252 	int i;
1253 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1254 
1255 	rdev->sb_size = MD_SB_BYTES;
1256 
1257 	sb = page_address(rdev->sb_page);
1258 
1259 	memset(sb, 0, sizeof(*sb));
1260 
1261 	sb->md_magic = MD_SB_MAGIC;
1262 	sb->major_version = mddev->major_version;
1263 	sb->patch_version = mddev->patch_version;
1264 	sb->gvalid_words  = 0; /* ignored */
1265 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1266 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1267 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1268 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1269 
1270 	sb->ctime = mddev->ctime;
1271 	sb->level = mddev->level;
1272 	sb->size = mddev->dev_sectors / 2;
1273 	sb->raid_disks = mddev->raid_disks;
1274 	sb->md_minor = mddev->md_minor;
1275 	sb->not_persistent = 0;
1276 	sb->utime = mddev->utime;
1277 	sb->state = 0;
1278 	sb->events_hi = (mddev->events>>32);
1279 	sb->events_lo = (u32)mddev->events;
1280 
1281 	if (mddev->reshape_position == MaxSector)
1282 		sb->minor_version = 90;
1283 	else {
1284 		sb->minor_version = 91;
1285 		sb->reshape_position = mddev->reshape_position;
1286 		sb->new_level = mddev->new_level;
1287 		sb->delta_disks = mddev->delta_disks;
1288 		sb->new_layout = mddev->new_layout;
1289 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1290 	}
1291 	mddev->minor_version = sb->minor_version;
1292 	if (mddev->in_sync)
1293 	{
1294 		sb->recovery_cp = mddev->recovery_cp;
1295 		sb->cp_events_hi = (mddev->events>>32);
1296 		sb->cp_events_lo = (u32)mddev->events;
1297 		if (mddev->recovery_cp == MaxSector)
1298 			sb->state = (1<< MD_SB_CLEAN);
1299 	} else
1300 		sb->recovery_cp = 0;
1301 
1302 	sb->layout = mddev->layout;
1303 	sb->chunk_size = mddev->chunk_sectors << 9;
1304 
1305 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1306 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1307 
1308 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1309 	rdev_for_each(rdev2, mddev) {
1310 		mdp_disk_t *d;
1311 		int desc_nr;
1312 		int is_active = test_bit(In_sync, &rdev2->flags);
1313 
1314 		if (rdev2->raid_disk >= 0 &&
1315 		    sb->minor_version >= 91)
1316 			/* we have nowhere to store the recovery_offset,
1317 			 * but if it is not below the reshape_position,
1318 			 * we can piggy-back on that.
1319 			 */
1320 			is_active = 1;
1321 		if (rdev2->raid_disk < 0 ||
1322 		    test_bit(Faulty, &rdev2->flags))
1323 			is_active = 0;
1324 		if (is_active)
1325 			desc_nr = rdev2->raid_disk;
1326 		else
1327 			desc_nr = next_spare++;
1328 		rdev2->desc_nr = desc_nr;
1329 		d = &sb->disks[rdev2->desc_nr];
1330 		nr_disks++;
1331 		d->number = rdev2->desc_nr;
1332 		d->major = MAJOR(rdev2->bdev->bd_dev);
1333 		d->minor = MINOR(rdev2->bdev->bd_dev);
1334 		if (is_active)
1335 			d->raid_disk = rdev2->raid_disk;
1336 		else
1337 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1338 		if (test_bit(Faulty, &rdev2->flags))
1339 			d->state = (1<<MD_DISK_FAULTY);
1340 		else if (is_active) {
1341 			d->state = (1<<MD_DISK_ACTIVE);
1342 			if (test_bit(In_sync, &rdev2->flags))
1343 				d->state |= (1<<MD_DISK_SYNC);
1344 			active++;
1345 			working++;
1346 		} else {
1347 			d->state = 0;
1348 			spare++;
1349 			working++;
1350 		}
1351 		if (test_bit(WriteMostly, &rdev2->flags))
1352 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1353 	}
1354 	/* now set the "removed" and "faulty" bits on any missing devices */
1355 	for (i=0 ; i < mddev->raid_disks ; i++) {
1356 		mdp_disk_t *d = &sb->disks[i];
1357 		if (d->state == 0 && d->number == 0) {
1358 			d->number = i;
1359 			d->raid_disk = i;
1360 			d->state = (1<<MD_DISK_REMOVED);
1361 			d->state |= (1<<MD_DISK_FAULTY);
1362 			failed++;
1363 		}
1364 	}
1365 	sb->nr_disks = nr_disks;
1366 	sb->active_disks = active;
1367 	sb->working_disks = working;
1368 	sb->failed_disks = failed;
1369 	sb->spare_disks = spare;
1370 
1371 	sb->this_disk = sb->disks[rdev->desc_nr];
1372 	sb->sb_csum = calc_sb_csum(sb);
1373 }
1374 
1375 /*
1376  * rdev_size_change for 0.90.0
1377  */
1378 static unsigned long long
1379 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1380 {
1381 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1382 		return 0; /* component must fit device */
1383 	if (rdev->mddev->bitmap_info.offset)
1384 		return 0; /* can't move bitmap */
1385 	rdev->sb_start = calc_dev_sboffset(rdev);
1386 	if (!num_sectors || num_sectors > rdev->sb_start)
1387 		num_sectors = rdev->sb_start;
1388 	/* Limit to 4TB as metadata cannot record more than that.
1389 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1390 	 */
1391 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1392 		num_sectors = (2ULL << 32) - 2;
1393 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1394 		       rdev->sb_page);
1395 	md_super_wait(rdev->mddev);
1396 	return num_sectors;
1397 }
1398 
1399 static int
1400 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1401 {
1402 	/* non-zero offset changes not possible with v0.90 */
1403 	return new_offset == 0;
1404 }
1405 
1406 /*
1407  * version 1 superblock
1408  */
1409 
1410 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1411 {
1412 	__le32 disk_csum;
1413 	u32 csum;
1414 	unsigned long long newcsum;
1415 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1416 	__le32 *isuper = (__le32*)sb;
1417 	int i;
1418 
1419 	disk_csum = sb->sb_csum;
1420 	sb->sb_csum = 0;
1421 	newcsum = 0;
1422 	for (i=0; size>=4; size -= 4 )
1423 		newcsum += le32_to_cpu(*isuper++);
1424 
1425 	if (size == 2)
1426 		newcsum += le16_to_cpu(*(__le16*) isuper);
1427 
1428 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1429 	sb->sb_csum = disk_csum;
1430 	return cpu_to_le32(csum);
1431 }
1432 
1433 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1434 			    int acknowledged);
1435 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1436 {
1437 	struct mdp_superblock_1 *sb;
1438 	int ret;
1439 	sector_t sb_start;
1440 	sector_t sectors;
1441 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1442 	int bmask;
1443 
1444 	/*
1445 	 * Calculate the position of the superblock in 512byte sectors.
1446 	 * It is always aligned to a 4K boundary and
1447 	 * depeding on minor_version, it can be:
1448 	 * 0: At least 8K, but less than 12K, from end of device
1449 	 * 1: At start of device
1450 	 * 2: 4K from start of device.
1451 	 */
1452 	switch(minor_version) {
1453 	case 0:
1454 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1455 		sb_start -= 8*2;
1456 		sb_start &= ~(sector_t)(4*2-1);
1457 		break;
1458 	case 1:
1459 		sb_start = 0;
1460 		break;
1461 	case 2:
1462 		sb_start = 8;
1463 		break;
1464 	default:
1465 		return -EINVAL;
1466 	}
1467 	rdev->sb_start = sb_start;
1468 
1469 	/* superblock is rarely larger than 1K, but it can be larger,
1470 	 * and it is safe to read 4k, so we do that
1471 	 */
1472 	ret = read_disk_sb(rdev, 4096);
1473 	if (ret) return ret;
1474 
1475 
1476 	sb = page_address(rdev->sb_page);
1477 
1478 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1479 	    sb->major_version != cpu_to_le32(1) ||
1480 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1481 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1482 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1483 		return -EINVAL;
1484 
1485 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1486 		printk("md: invalid superblock checksum on %s\n",
1487 			bdevname(rdev->bdev,b));
1488 		return -EINVAL;
1489 	}
1490 	if (le64_to_cpu(sb->data_size) < 10) {
1491 		printk("md: data_size too small on %s\n",
1492 		       bdevname(rdev->bdev,b));
1493 		return -EINVAL;
1494 	}
1495 	if (sb->pad0 ||
1496 	    sb->pad3[0] ||
1497 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1498 		/* Some padding is non-zero, might be a new feature */
1499 		return -EINVAL;
1500 
1501 	rdev->preferred_minor = 0xffff;
1502 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1503 	rdev->new_data_offset = rdev->data_offset;
1504 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1505 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1506 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1507 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1508 
1509 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1510 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1511 	if (rdev->sb_size & bmask)
1512 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1513 
1514 	if (minor_version
1515 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1516 		return -EINVAL;
1517 	if (minor_version
1518 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1519 		return -EINVAL;
1520 
1521 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1522 		rdev->desc_nr = -1;
1523 	else
1524 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1525 
1526 	if (!rdev->bb_page) {
1527 		rdev->bb_page = alloc_page(GFP_KERNEL);
1528 		if (!rdev->bb_page)
1529 			return -ENOMEM;
1530 	}
1531 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1532 	    rdev->badblocks.count == 0) {
1533 		/* need to load the bad block list.
1534 		 * Currently we limit it to one page.
1535 		 */
1536 		s32 offset;
1537 		sector_t bb_sector;
1538 		u64 *bbp;
1539 		int i;
1540 		int sectors = le16_to_cpu(sb->bblog_size);
1541 		if (sectors > (PAGE_SIZE / 512))
1542 			return -EINVAL;
1543 		offset = le32_to_cpu(sb->bblog_offset);
1544 		if (offset == 0)
1545 			return -EINVAL;
1546 		bb_sector = (long long)offset;
1547 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1548 				  rdev->bb_page, READ, true))
1549 			return -EIO;
1550 		bbp = (u64 *)page_address(rdev->bb_page);
1551 		rdev->badblocks.shift = sb->bblog_shift;
1552 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1553 			u64 bb = le64_to_cpu(*bbp);
1554 			int count = bb & (0x3ff);
1555 			u64 sector = bb >> 10;
1556 			sector <<= sb->bblog_shift;
1557 			count <<= sb->bblog_shift;
1558 			if (bb + 1 == 0)
1559 				break;
1560 			if (md_set_badblocks(&rdev->badblocks,
1561 					     sector, count, 1) == 0)
1562 				return -EINVAL;
1563 		}
1564 	} else if (sb->bblog_offset == 0)
1565 		rdev->badblocks.shift = -1;
1566 
1567 	if (!refdev) {
1568 		ret = 1;
1569 	} else {
1570 		__u64 ev1, ev2;
1571 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1572 
1573 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1574 		    sb->level != refsb->level ||
1575 		    sb->layout != refsb->layout ||
1576 		    sb->chunksize != refsb->chunksize) {
1577 			printk(KERN_WARNING "md: %s has strangely different"
1578 				" superblock to %s\n",
1579 				bdevname(rdev->bdev,b),
1580 				bdevname(refdev->bdev,b2));
1581 			return -EINVAL;
1582 		}
1583 		ev1 = le64_to_cpu(sb->events);
1584 		ev2 = le64_to_cpu(refsb->events);
1585 
1586 		if (ev1 > ev2)
1587 			ret = 1;
1588 		else
1589 			ret = 0;
1590 	}
1591 	if (minor_version) {
1592 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1593 		sectors -= rdev->data_offset;
1594 	} else
1595 		sectors = rdev->sb_start;
1596 	if (sectors < le64_to_cpu(sb->data_size))
1597 		return -EINVAL;
1598 	rdev->sectors = le64_to_cpu(sb->data_size);
1599 	return ret;
1600 }
1601 
1602 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1603 {
1604 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1605 	__u64 ev1 = le64_to_cpu(sb->events);
1606 
1607 	rdev->raid_disk = -1;
1608 	clear_bit(Faulty, &rdev->flags);
1609 	clear_bit(In_sync, &rdev->flags);
1610 	clear_bit(WriteMostly, &rdev->flags);
1611 
1612 	if (mddev->raid_disks == 0) {
1613 		mddev->major_version = 1;
1614 		mddev->patch_version = 0;
1615 		mddev->external = 0;
1616 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1617 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1618 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1619 		mddev->level = le32_to_cpu(sb->level);
1620 		mddev->clevel[0] = 0;
1621 		mddev->layout = le32_to_cpu(sb->layout);
1622 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1623 		mddev->dev_sectors = le64_to_cpu(sb->size);
1624 		mddev->events = ev1;
1625 		mddev->bitmap_info.offset = 0;
1626 		mddev->bitmap_info.space = 0;
1627 		/* Default location for bitmap is 1K after superblock
1628 		 * using 3K - total of 4K
1629 		 */
1630 		mddev->bitmap_info.default_offset = 1024 >> 9;
1631 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1632 		mddev->reshape_backwards = 0;
1633 
1634 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1635 		memcpy(mddev->uuid, sb->set_uuid, 16);
1636 
1637 		mddev->max_disks =  (4096-256)/2;
1638 
1639 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1640 		    mddev->bitmap_info.file == NULL) {
1641 			mddev->bitmap_info.offset =
1642 				(__s32)le32_to_cpu(sb->bitmap_offset);
1643 			/* Metadata doesn't record how much space is available.
1644 			 * For 1.0, we assume we can use up to the superblock
1645 			 * if before, else to 4K beyond superblock.
1646 			 * For others, assume no change is possible.
1647 			 */
1648 			if (mddev->minor_version > 0)
1649 				mddev->bitmap_info.space = 0;
1650 			else if (mddev->bitmap_info.offset > 0)
1651 				mddev->bitmap_info.space =
1652 					8 - mddev->bitmap_info.offset;
1653 			else
1654 				mddev->bitmap_info.space =
1655 					-mddev->bitmap_info.offset;
1656 		}
1657 
1658 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1659 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1660 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1661 			mddev->new_level = le32_to_cpu(sb->new_level);
1662 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1663 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1664 			if (mddev->delta_disks < 0 ||
1665 			    (mddev->delta_disks == 0 &&
1666 			     (le32_to_cpu(sb->feature_map)
1667 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1668 				mddev->reshape_backwards = 1;
1669 		} else {
1670 			mddev->reshape_position = MaxSector;
1671 			mddev->delta_disks = 0;
1672 			mddev->new_level = mddev->level;
1673 			mddev->new_layout = mddev->layout;
1674 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1675 		}
1676 
1677 	} else if (mddev->pers == NULL) {
1678 		/* Insist of good event counter while assembling, except for
1679 		 * spares (which don't need an event count) */
1680 		++ev1;
1681 		if (rdev->desc_nr >= 0 &&
1682 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1683 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1684 			if (ev1 < mddev->events)
1685 				return -EINVAL;
1686 	} else if (mddev->bitmap) {
1687 		/* If adding to array with a bitmap, then we can accept an
1688 		 * older device, but not too old.
1689 		 */
1690 		if (ev1 < mddev->bitmap->events_cleared)
1691 			return 0;
1692 	} else {
1693 		if (ev1 < mddev->events)
1694 			/* just a hot-add of a new device, leave raid_disk at -1 */
1695 			return 0;
1696 	}
1697 	if (mddev->level != LEVEL_MULTIPATH) {
1698 		int role;
1699 		if (rdev->desc_nr < 0 ||
1700 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1701 			role = 0xffff;
1702 			rdev->desc_nr = -1;
1703 		} else
1704 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1705 		switch(role) {
1706 		case 0xffff: /* spare */
1707 			break;
1708 		case 0xfffe: /* faulty */
1709 			set_bit(Faulty, &rdev->flags);
1710 			break;
1711 		default:
1712 			if ((le32_to_cpu(sb->feature_map) &
1713 			     MD_FEATURE_RECOVERY_OFFSET))
1714 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1715 			else
1716 				set_bit(In_sync, &rdev->flags);
1717 			rdev->raid_disk = role;
1718 			break;
1719 		}
1720 		if (sb->devflags & WriteMostly1)
1721 			set_bit(WriteMostly, &rdev->flags);
1722 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1723 			set_bit(Replacement, &rdev->flags);
1724 	} else /* MULTIPATH are always insync */
1725 		set_bit(In_sync, &rdev->flags);
1726 
1727 	return 0;
1728 }
1729 
1730 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1731 {
1732 	struct mdp_superblock_1 *sb;
1733 	struct md_rdev *rdev2;
1734 	int max_dev, i;
1735 	/* make rdev->sb match mddev and rdev data. */
1736 
1737 	sb = page_address(rdev->sb_page);
1738 
1739 	sb->feature_map = 0;
1740 	sb->pad0 = 0;
1741 	sb->recovery_offset = cpu_to_le64(0);
1742 	memset(sb->pad3, 0, sizeof(sb->pad3));
1743 
1744 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1745 	sb->events = cpu_to_le64(mddev->events);
1746 	if (mddev->in_sync)
1747 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1748 	else
1749 		sb->resync_offset = cpu_to_le64(0);
1750 
1751 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1752 
1753 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1754 	sb->size = cpu_to_le64(mddev->dev_sectors);
1755 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1756 	sb->level = cpu_to_le32(mddev->level);
1757 	sb->layout = cpu_to_le32(mddev->layout);
1758 
1759 	if (test_bit(WriteMostly, &rdev->flags))
1760 		sb->devflags |= WriteMostly1;
1761 	else
1762 		sb->devflags &= ~WriteMostly1;
1763 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1764 	sb->data_size = cpu_to_le64(rdev->sectors);
1765 
1766 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1767 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1768 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1769 	}
1770 
1771 	if (rdev->raid_disk >= 0 &&
1772 	    !test_bit(In_sync, &rdev->flags)) {
1773 		sb->feature_map |=
1774 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1775 		sb->recovery_offset =
1776 			cpu_to_le64(rdev->recovery_offset);
1777 	}
1778 	if (test_bit(Replacement, &rdev->flags))
1779 		sb->feature_map |=
1780 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1781 
1782 	if (mddev->reshape_position != MaxSector) {
1783 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1784 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1785 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1786 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1787 		sb->new_level = cpu_to_le32(mddev->new_level);
1788 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1789 		if (mddev->delta_disks == 0 &&
1790 		    mddev->reshape_backwards)
1791 			sb->feature_map
1792 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1793 		if (rdev->new_data_offset != rdev->data_offset) {
1794 			sb->feature_map
1795 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1796 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1797 							     - rdev->data_offset));
1798 		}
1799 	}
1800 
1801 	if (rdev->badblocks.count == 0)
1802 		/* Nothing to do for bad blocks*/ ;
1803 	else if (sb->bblog_offset == 0)
1804 		/* Cannot record bad blocks on this device */
1805 		md_error(mddev, rdev);
1806 	else {
1807 		struct badblocks *bb = &rdev->badblocks;
1808 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1809 		u64 *p = bb->page;
1810 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1811 		if (bb->changed) {
1812 			unsigned seq;
1813 
1814 retry:
1815 			seq = read_seqbegin(&bb->lock);
1816 
1817 			memset(bbp, 0xff, PAGE_SIZE);
1818 
1819 			for (i = 0 ; i < bb->count ; i++) {
1820 				u64 internal_bb = p[i];
1821 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1822 						| BB_LEN(internal_bb));
1823 				bbp[i] = cpu_to_le64(store_bb);
1824 			}
1825 			bb->changed = 0;
1826 			if (read_seqretry(&bb->lock, seq))
1827 				goto retry;
1828 
1829 			bb->sector = (rdev->sb_start +
1830 				      (int)le32_to_cpu(sb->bblog_offset));
1831 			bb->size = le16_to_cpu(sb->bblog_size);
1832 		}
1833 	}
1834 
1835 	max_dev = 0;
1836 	rdev_for_each(rdev2, mddev)
1837 		if (rdev2->desc_nr+1 > max_dev)
1838 			max_dev = rdev2->desc_nr+1;
1839 
1840 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1841 		int bmask;
1842 		sb->max_dev = cpu_to_le32(max_dev);
1843 		rdev->sb_size = max_dev * 2 + 256;
1844 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1845 		if (rdev->sb_size & bmask)
1846 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1847 	} else
1848 		max_dev = le32_to_cpu(sb->max_dev);
1849 
1850 	for (i=0; i<max_dev;i++)
1851 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1852 
1853 	rdev_for_each(rdev2, mddev) {
1854 		i = rdev2->desc_nr;
1855 		if (test_bit(Faulty, &rdev2->flags))
1856 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1857 		else if (test_bit(In_sync, &rdev2->flags))
1858 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1859 		else if (rdev2->raid_disk >= 0)
1860 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1861 		else
1862 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1863 	}
1864 
1865 	sb->sb_csum = calc_sb_1_csum(sb);
1866 }
1867 
1868 static unsigned long long
1869 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1870 {
1871 	struct mdp_superblock_1 *sb;
1872 	sector_t max_sectors;
1873 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1874 		return 0; /* component must fit device */
1875 	if (rdev->data_offset != rdev->new_data_offset)
1876 		return 0; /* too confusing */
1877 	if (rdev->sb_start < rdev->data_offset) {
1878 		/* minor versions 1 and 2; superblock before data */
1879 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1880 		max_sectors -= rdev->data_offset;
1881 		if (!num_sectors || num_sectors > max_sectors)
1882 			num_sectors = max_sectors;
1883 	} else if (rdev->mddev->bitmap_info.offset) {
1884 		/* minor version 0 with bitmap we can't move */
1885 		return 0;
1886 	} else {
1887 		/* minor version 0; superblock after data */
1888 		sector_t sb_start;
1889 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1890 		sb_start &= ~(sector_t)(4*2 - 1);
1891 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1892 		if (!num_sectors || num_sectors > max_sectors)
1893 			num_sectors = max_sectors;
1894 		rdev->sb_start = sb_start;
1895 	}
1896 	sb = page_address(rdev->sb_page);
1897 	sb->data_size = cpu_to_le64(num_sectors);
1898 	sb->super_offset = rdev->sb_start;
1899 	sb->sb_csum = calc_sb_1_csum(sb);
1900 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1901 		       rdev->sb_page);
1902 	md_super_wait(rdev->mddev);
1903 	return num_sectors;
1904 
1905 }
1906 
1907 static int
1908 super_1_allow_new_offset(struct md_rdev *rdev,
1909 			 unsigned long long new_offset)
1910 {
1911 	/* All necessary checks on new >= old have been done */
1912 	struct bitmap *bitmap;
1913 	if (new_offset >= rdev->data_offset)
1914 		return 1;
1915 
1916 	/* with 1.0 metadata, there is no metadata to tread on
1917 	 * so we can always move back */
1918 	if (rdev->mddev->minor_version == 0)
1919 		return 1;
1920 
1921 	/* otherwise we must be sure not to step on
1922 	 * any metadata, so stay:
1923 	 * 36K beyond start of superblock
1924 	 * beyond end of badblocks
1925 	 * beyond write-intent bitmap
1926 	 */
1927 	if (rdev->sb_start + (32+4)*2 > new_offset)
1928 		return 0;
1929 	bitmap = rdev->mddev->bitmap;
1930 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1931 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1932 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1933 		return 0;
1934 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1935 		return 0;
1936 
1937 	return 1;
1938 }
1939 
1940 static struct super_type super_types[] = {
1941 	[0] = {
1942 		.name	= "0.90.0",
1943 		.owner	= THIS_MODULE,
1944 		.load_super	    = super_90_load,
1945 		.validate_super	    = super_90_validate,
1946 		.sync_super	    = super_90_sync,
1947 		.rdev_size_change   = super_90_rdev_size_change,
1948 		.allow_new_offset   = super_90_allow_new_offset,
1949 	},
1950 	[1] = {
1951 		.name	= "md-1",
1952 		.owner	= THIS_MODULE,
1953 		.load_super	    = super_1_load,
1954 		.validate_super	    = super_1_validate,
1955 		.sync_super	    = super_1_sync,
1956 		.rdev_size_change   = super_1_rdev_size_change,
1957 		.allow_new_offset   = super_1_allow_new_offset,
1958 	},
1959 };
1960 
1961 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1962 {
1963 	if (mddev->sync_super) {
1964 		mddev->sync_super(mddev, rdev);
1965 		return;
1966 	}
1967 
1968 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1969 
1970 	super_types[mddev->major_version].sync_super(mddev, rdev);
1971 }
1972 
1973 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1974 {
1975 	struct md_rdev *rdev, *rdev2;
1976 
1977 	rcu_read_lock();
1978 	rdev_for_each_rcu(rdev, mddev1)
1979 		rdev_for_each_rcu(rdev2, mddev2)
1980 			if (rdev->bdev->bd_contains ==
1981 			    rdev2->bdev->bd_contains) {
1982 				rcu_read_unlock();
1983 				return 1;
1984 			}
1985 	rcu_read_unlock();
1986 	return 0;
1987 }
1988 
1989 static LIST_HEAD(pending_raid_disks);
1990 
1991 /*
1992  * Try to register data integrity profile for an mddev
1993  *
1994  * This is called when an array is started and after a disk has been kicked
1995  * from the array. It only succeeds if all working and active component devices
1996  * are integrity capable with matching profiles.
1997  */
1998 int md_integrity_register(struct mddev *mddev)
1999 {
2000 	struct md_rdev *rdev, *reference = NULL;
2001 
2002 	if (list_empty(&mddev->disks))
2003 		return 0; /* nothing to do */
2004 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2005 		return 0; /* shouldn't register, or already is */
2006 	rdev_for_each(rdev, mddev) {
2007 		/* skip spares and non-functional disks */
2008 		if (test_bit(Faulty, &rdev->flags))
2009 			continue;
2010 		if (rdev->raid_disk < 0)
2011 			continue;
2012 		if (!reference) {
2013 			/* Use the first rdev as the reference */
2014 			reference = rdev;
2015 			continue;
2016 		}
2017 		/* does this rdev's profile match the reference profile? */
2018 		if (blk_integrity_compare(reference->bdev->bd_disk,
2019 				rdev->bdev->bd_disk) < 0)
2020 			return -EINVAL;
2021 	}
2022 	if (!reference || !bdev_get_integrity(reference->bdev))
2023 		return 0;
2024 	/*
2025 	 * All component devices are integrity capable and have matching
2026 	 * profiles, register the common profile for the md device.
2027 	 */
2028 	if (blk_integrity_register(mddev->gendisk,
2029 			bdev_get_integrity(reference->bdev)) != 0) {
2030 		printk(KERN_ERR "md: failed to register integrity for %s\n",
2031 			mdname(mddev));
2032 		return -EINVAL;
2033 	}
2034 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2035 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2036 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2037 		       mdname(mddev));
2038 		return -EINVAL;
2039 	}
2040 	return 0;
2041 }
2042 EXPORT_SYMBOL(md_integrity_register);
2043 
2044 /* Disable data integrity if non-capable/non-matching disk is being added */
2045 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2046 {
2047 	struct blk_integrity *bi_rdev;
2048 	struct blk_integrity *bi_mddev;
2049 
2050 	if (!mddev->gendisk)
2051 		return;
2052 
2053 	bi_rdev = bdev_get_integrity(rdev->bdev);
2054 	bi_mddev = blk_get_integrity(mddev->gendisk);
2055 
2056 	if (!bi_mddev) /* nothing to do */
2057 		return;
2058 	if (rdev->raid_disk < 0) /* skip spares */
2059 		return;
2060 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2061 					     rdev->bdev->bd_disk) >= 0)
2062 		return;
2063 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2064 	blk_integrity_unregister(mddev->gendisk);
2065 }
2066 EXPORT_SYMBOL(md_integrity_add_rdev);
2067 
2068 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2069 {
2070 	char b[BDEVNAME_SIZE];
2071 	struct kobject *ko;
2072 	char *s;
2073 	int err;
2074 
2075 	if (rdev->mddev) {
2076 		MD_BUG();
2077 		return -EINVAL;
2078 	}
2079 
2080 	/* prevent duplicates */
2081 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2082 		return -EEXIST;
2083 
2084 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2085 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2086 			rdev->sectors < mddev->dev_sectors)) {
2087 		if (mddev->pers) {
2088 			/* Cannot change size, so fail
2089 			 * If mddev->level <= 0, then we don't care
2090 			 * about aligning sizes (e.g. linear)
2091 			 */
2092 			if (mddev->level > 0)
2093 				return -ENOSPC;
2094 		} else
2095 			mddev->dev_sectors = rdev->sectors;
2096 	}
2097 
2098 	/* Verify rdev->desc_nr is unique.
2099 	 * If it is -1, assign a free number, else
2100 	 * check number is not in use
2101 	 */
2102 	if (rdev->desc_nr < 0) {
2103 		int choice = 0;
2104 		if (mddev->pers) choice = mddev->raid_disks;
2105 		while (find_rdev_nr(mddev, choice))
2106 			choice++;
2107 		rdev->desc_nr = choice;
2108 	} else {
2109 		if (find_rdev_nr(mddev, rdev->desc_nr))
2110 			return -EBUSY;
2111 	}
2112 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2113 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2114 		       mdname(mddev), mddev->max_disks);
2115 		return -EBUSY;
2116 	}
2117 	bdevname(rdev->bdev,b);
2118 	while ( (s=strchr(b, '/')) != NULL)
2119 		*s = '!';
2120 
2121 	rdev->mddev = mddev;
2122 	printk(KERN_INFO "md: bind<%s>\n", b);
2123 
2124 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2125 		goto fail;
2126 
2127 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2128 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2129 		/* failure here is OK */;
2130 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2131 
2132 	list_add_rcu(&rdev->same_set, &mddev->disks);
2133 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2134 
2135 	/* May as well allow recovery to be retried once */
2136 	mddev->recovery_disabled++;
2137 
2138 	return 0;
2139 
2140  fail:
2141 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2142 	       b, mdname(mddev));
2143 	return err;
2144 }
2145 
2146 static void md_delayed_delete(struct work_struct *ws)
2147 {
2148 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2149 	kobject_del(&rdev->kobj);
2150 	kobject_put(&rdev->kobj);
2151 }
2152 
2153 static void unbind_rdev_from_array(struct md_rdev * rdev)
2154 {
2155 	char b[BDEVNAME_SIZE];
2156 	if (!rdev->mddev) {
2157 		MD_BUG();
2158 		return;
2159 	}
2160 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2161 	list_del_rcu(&rdev->same_set);
2162 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2163 	rdev->mddev = NULL;
2164 	sysfs_remove_link(&rdev->kobj, "block");
2165 	sysfs_put(rdev->sysfs_state);
2166 	rdev->sysfs_state = NULL;
2167 	rdev->badblocks.count = 0;
2168 	/* We need to delay this, otherwise we can deadlock when
2169 	 * writing to 'remove' to "dev/state".  We also need
2170 	 * to delay it due to rcu usage.
2171 	 */
2172 	synchronize_rcu();
2173 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2174 	kobject_get(&rdev->kobj);
2175 	queue_work(md_misc_wq, &rdev->del_work);
2176 }
2177 
2178 /*
2179  * prevent the device from being mounted, repartitioned or
2180  * otherwise reused by a RAID array (or any other kernel
2181  * subsystem), by bd_claiming the device.
2182  */
2183 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2184 {
2185 	int err = 0;
2186 	struct block_device *bdev;
2187 	char b[BDEVNAME_SIZE];
2188 
2189 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2190 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2191 	if (IS_ERR(bdev)) {
2192 		printk(KERN_ERR "md: could not open %s.\n",
2193 			__bdevname(dev, b));
2194 		return PTR_ERR(bdev);
2195 	}
2196 	rdev->bdev = bdev;
2197 	return err;
2198 }
2199 
2200 static void unlock_rdev(struct md_rdev *rdev)
2201 {
2202 	struct block_device *bdev = rdev->bdev;
2203 	rdev->bdev = NULL;
2204 	if (!bdev)
2205 		MD_BUG();
2206 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2207 }
2208 
2209 void md_autodetect_dev(dev_t dev);
2210 
2211 static void export_rdev(struct md_rdev * rdev)
2212 {
2213 	char b[BDEVNAME_SIZE];
2214 	printk(KERN_INFO "md: export_rdev(%s)\n",
2215 		bdevname(rdev->bdev,b));
2216 	if (rdev->mddev)
2217 		MD_BUG();
2218 	md_rdev_clear(rdev);
2219 #ifndef MODULE
2220 	if (test_bit(AutoDetected, &rdev->flags))
2221 		md_autodetect_dev(rdev->bdev->bd_dev);
2222 #endif
2223 	unlock_rdev(rdev);
2224 	kobject_put(&rdev->kobj);
2225 }
2226 
2227 static void kick_rdev_from_array(struct md_rdev * rdev)
2228 {
2229 	unbind_rdev_from_array(rdev);
2230 	export_rdev(rdev);
2231 }
2232 
2233 static void export_array(struct mddev *mddev)
2234 {
2235 	struct md_rdev *rdev, *tmp;
2236 
2237 	rdev_for_each_safe(rdev, tmp, mddev) {
2238 		if (!rdev->mddev) {
2239 			MD_BUG();
2240 			continue;
2241 		}
2242 		kick_rdev_from_array(rdev);
2243 	}
2244 	if (!list_empty(&mddev->disks))
2245 		MD_BUG();
2246 	mddev->raid_disks = 0;
2247 	mddev->major_version = 0;
2248 }
2249 
2250 static void print_desc(mdp_disk_t *desc)
2251 {
2252 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2253 		desc->major,desc->minor,desc->raid_disk,desc->state);
2254 }
2255 
2256 static void print_sb_90(mdp_super_t *sb)
2257 {
2258 	int i;
2259 
2260 	printk(KERN_INFO
2261 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2262 		sb->major_version, sb->minor_version, sb->patch_version,
2263 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2264 		sb->ctime);
2265 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2266 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2267 		sb->md_minor, sb->layout, sb->chunk_size);
2268 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2269 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2270 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2271 		sb->failed_disks, sb->spare_disks,
2272 		sb->sb_csum, (unsigned long)sb->events_lo);
2273 
2274 	printk(KERN_INFO);
2275 	for (i = 0; i < MD_SB_DISKS; i++) {
2276 		mdp_disk_t *desc;
2277 
2278 		desc = sb->disks + i;
2279 		if (desc->number || desc->major || desc->minor ||
2280 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2281 			printk("     D %2d: ", i);
2282 			print_desc(desc);
2283 		}
2284 	}
2285 	printk(KERN_INFO "md:     THIS: ");
2286 	print_desc(&sb->this_disk);
2287 }
2288 
2289 static void print_sb_1(struct mdp_superblock_1 *sb)
2290 {
2291 	__u8 *uuid;
2292 
2293 	uuid = sb->set_uuid;
2294 	printk(KERN_INFO
2295 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2296 	       "md:    Name: \"%s\" CT:%llu\n",
2297 		le32_to_cpu(sb->major_version),
2298 		le32_to_cpu(sb->feature_map),
2299 		uuid,
2300 		sb->set_name,
2301 		(unsigned long long)le64_to_cpu(sb->ctime)
2302 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2303 
2304 	uuid = sb->device_uuid;
2305 	printk(KERN_INFO
2306 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2307 			" RO:%llu\n"
2308 	       "md:     Dev:%08x UUID: %pU\n"
2309 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2310 	       "md:         (MaxDev:%u) \n",
2311 		le32_to_cpu(sb->level),
2312 		(unsigned long long)le64_to_cpu(sb->size),
2313 		le32_to_cpu(sb->raid_disks),
2314 		le32_to_cpu(sb->layout),
2315 		le32_to_cpu(sb->chunksize),
2316 		(unsigned long long)le64_to_cpu(sb->data_offset),
2317 		(unsigned long long)le64_to_cpu(sb->data_size),
2318 		(unsigned long long)le64_to_cpu(sb->super_offset),
2319 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2320 		le32_to_cpu(sb->dev_number),
2321 		uuid,
2322 		sb->devflags,
2323 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2324 		(unsigned long long)le64_to_cpu(sb->events),
2325 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2326 		le32_to_cpu(sb->sb_csum),
2327 		le32_to_cpu(sb->max_dev)
2328 		);
2329 }
2330 
2331 static void print_rdev(struct md_rdev *rdev, int major_version)
2332 {
2333 	char b[BDEVNAME_SIZE];
2334 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2335 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2336 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2337 	        rdev->desc_nr);
2338 	if (rdev->sb_loaded) {
2339 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2340 		switch (major_version) {
2341 		case 0:
2342 			print_sb_90(page_address(rdev->sb_page));
2343 			break;
2344 		case 1:
2345 			print_sb_1(page_address(rdev->sb_page));
2346 			break;
2347 		}
2348 	} else
2349 		printk(KERN_INFO "md: no rdev superblock!\n");
2350 }
2351 
2352 static void md_print_devices(void)
2353 {
2354 	struct list_head *tmp;
2355 	struct md_rdev *rdev;
2356 	struct mddev *mddev;
2357 	char b[BDEVNAME_SIZE];
2358 
2359 	printk("\n");
2360 	printk("md:	**********************************\n");
2361 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2362 	printk("md:	**********************************\n");
2363 	for_each_mddev(mddev, tmp) {
2364 
2365 		if (mddev->bitmap)
2366 			bitmap_print_sb(mddev->bitmap);
2367 		else
2368 			printk("%s: ", mdname(mddev));
2369 		rdev_for_each(rdev, mddev)
2370 			printk("<%s>", bdevname(rdev->bdev,b));
2371 		printk("\n");
2372 
2373 		rdev_for_each(rdev, mddev)
2374 			print_rdev(rdev, mddev->major_version);
2375 	}
2376 	printk("md:	**********************************\n");
2377 	printk("\n");
2378 }
2379 
2380 
2381 static void sync_sbs(struct mddev * mddev, int nospares)
2382 {
2383 	/* Update each superblock (in-memory image), but
2384 	 * if we are allowed to, skip spares which already
2385 	 * have the right event counter, or have one earlier
2386 	 * (which would mean they aren't being marked as dirty
2387 	 * with the rest of the array)
2388 	 */
2389 	struct md_rdev *rdev;
2390 	rdev_for_each(rdev, mddev) {
2391 		if (rdev->sb_events == mddev->events ||
2392 		    (nospares &&
2393 		     rdev->raid_disk < 0 &&
2394 		     rdev->sb_events+1 == mddev->events)) {
2395 			/* Don't update this superblock */
2396 			rdev->sb_loaded = 2;
2397 		} else {
2398 			sync_super(mddev, rdev);
2399 			rdev->sb_loaded = 1;
2400 		}
2401 	}
2402 }
2403 
2404 static void md_update_sb(struct mddev * mddev, int force_change)
2405 {
2406 	struct md_rdev *rdev;
2407 	int sync_req;
2408 	int nospares = 0;
2409 	int any_badblocks_changed = 0;
2410 
2411 repeat:
2412 	/* First make sure individual recovery_offsets are correct */
2413 	rdev_for_each(rdev, mddev) {
2414 		if (rdev->raid_disk >= 0 &&
2415 		    mddev->delta_disks >= 0 &&
2416 		    !test_bit(In_sync, &rdev->flags) &&
2417 		    mddev->curr_resync_completed > rdev->recovery_offset)
2418 				rdev->recovery_offset = mddev->curr_resync_completed;
2419 
2420 	}
2421 	if (!mddev->persistent) {
2422 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2423 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2424 		if (!mddev->external) {
2425 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2426 			rdev_for_each(rdev, mddev) {
2427 				if (rdev->badblocks.changed) {
2428 					rdev->badblocks.changed = 0;
2429 					md_ack_all_badblocks(&rdev->badblocks);
2430 					md_error(mddev, rdev);
2431 				}
2432 				clear_bit(Blocked, &rdev->flags);
2433 				clear_bit(BlockedBadBlocks, &rdev->flags);
2434 				wake_up(&rdev->blocked_wait);
2435 			}
2436 		}
2437 		wake_up(&mddev->sb_wait);
2438 		return;
2439 	}
2440 
2441 	spin_lock_irq(&mddev->write_lock);
2442 
2443 	mddev->utime = get_seconds();
2444 
2445 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2446 		force_change = 1;
2447 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2448 		/* just a clean<-> dirty transition, possibly leave spares alone,
2449 		 * though if events isn't the right even/odd, we will have to do
2450 		 * spares after all
2451 		 */
2452 		nospares = 1;
2453 	if (force_change)
2454 		nospares = 0;
2455 	if (mddev->degraded)
2456 		/* If the array is degraded, then skipping spares is both
2457 		 * dangerous and fairly pointless.
2458 		 * Dangerous because a device that was removed from the array
2459 		 * might have a event_count that still looks up-to-date,
2460 		 * so it can be re-added without a resync.
2461 		 * Pointless because if there are any spares to skip,
2462 		 * then a recovery will happen and soon that array won't
2463 		 * be degraded any more and the spare can go back to sleep then.
2464 		 */
2465 		nospares = 0;
2466 
2467 	sync_req = mddev->in_sync;
2468 
2469 	/* If this is just a dirty<->clean transition, and the array is clean
2470 	 * and 'events' is odd, we can roll back to the previous clean state */
2471 	if (nospares
2472 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2473 	    && mddev->can_decrease_events
2474 	    && mddev->events != 1) {
2475 		mddev->events--;
2476 		mddev->can_decrease_events = 0;
2477 	} else {
2478 		/* otherwise we have to go forward and ... */
2479 		mddev->events ++;
2480 		mddev->can_decrease_events = nospares;
2481 	}
2482 
2483 	if (!mddev->events) {
2484 		/*
2485 		 * oops, this 64-bit counter should never wrap.
2486 		 * Either we are in around ~1 trillion A.C., assuming
2487 		 * 1 reboot per second, or we have a bug:
2488 		 */
2489 		MD_BUG();
2490 		mddev->events --;
2491 	}
2492 
2493 	rdev_for_each(rdev, mddev) {
2494 		if (rdev->badblocks.changed)
2495 			any_badblocks_changed++;
2496 		if (test_bit(Faulty, &rdev->flags))
2497 			set_bit(FaultRecorded, &rdev->flags);
2498 	}
2499 
2500 	sync_sbs(mddev, nospares);
2501 	spin_unlock_irq(&mddev->write_lock);
2502 
2503 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2504 		 mdname(mddev), mddev->in_sync);
2505 
2506 	bitmap_update_sb(mddev->bitmap);
2507 	rdev_for_each(rdev, mddev) {
2508 		char b[BDEVNAME_SIZE];
2509 
2510 		if (rdev->sb_loaded != 1)
2511 			continue; /* no noise on spare devices */
2512 
2513 		if (!test_bit(Faulty, &rdev->flags) &&
2514 		    rdev->saved_raid_disk == -1) {
2515 			md_super_write(mddev,rdev,
2516 				       rdev->sb_start, rdev->sb_size,
2517 				       rdev->sb_page);
2518 			pr_debug("md: (write) %s's sb offset: %llu\n",
2519 				 bdevname(rdev->bdev, b),
2520 				 (unsigned long long)rdev->sb_start);
2521 			rdev->sb_events = mddev->events;
2522 			if (rdev->badblocks.size) {
2523 				md_super_write(mddev, rdev,
2524 					       rdev->badblocks.sector,
2525 					       rdev->badblocks.size << 9,
2526 					       rdev->bb_page);
2527 				rdev->badblocks.size = 0;
2528 			}
2529 
2530 		} else if (test_bit(Faulty, &rdev->flags))
2531 			pr_debug("md: %s (skipping faulty)\n",
2532 				 bdevname(rdev->bdev, b));
2533 		else
2534 			pr_debug("(skipping incremental s/r ");
2535 
2536 		if (mddev->level == LEVEL_MULTIPATH)
2537 			/* only need to write one superblock... */
2538 			break;
2539 	}
2540 	md_super_wait(mddev);
2541 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2542 
2543 	spin_lock_irq(&mddev->write_lock);
2544 	if (mddev->in_sync != sync_req ||
2545 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2546 		/* have to write it out again */
2547 		spin_unlock_irq(&mddev->write_lock);
2548 		goto repeat;
2549 	}
2550 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2551 	spin_unlock_irq(&mddev->write_lock);
2552 	wake_up(&mddev->sb_wait);
2553 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2554 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2555 
2556 	rdev_for_each(rdev, mddev) {
2557 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2558 			clear_bit(Blocked, &rdev->flags);
2559 
2560 		if (any_badblocks_changed)
2561 			md_ack_all_badblocks(&rdev->badblocks);
2562 		clear_bit(BlockedBadBlocks, &rdev->flags);
2563 		wake_up(&rdev->blocked_wait);
2564 	}
2565 }
2566 
2567 /* words written to sysfs files may, or may not, be \n terminated.
2568  * We want to accept with case. For this we use cmd_match.
2569  */
2570 static int cmd_match(const char *cmd, const char *str)
2571 {
2572 	/* See if cmd, written into a sysfs file, matches
2573 	 * str.  They must either be the same, or cmd can
2574 	 * have a trailing newline
2575 	 */
2576 	while (*cmd && *str && *cmd == *str) {
2577 		cmd++;
2578 		str++;
2579 	}
2580 	if (*cmd == '\n')
2581 		cmd++;
2582 	if (*str || *cmd)
2583 		return 0;
2584 	return 1;
2585 }
2586 
2587 struct rdev_sysfs_entry {
2588 	struct attribute attr;
2589 	ssize_t (*show)(struct md_rdev *, char *);
2590 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2591 };
2592 
2593 static ssize_t
2594 state_show(struct md_rdev *rdev, char *page)
2595 {
2596 	char *sep = "";
2597 	size_t len = 0;
2598 
2599 	if (test_bit(Faulty, &rdev->flags) ||
2600 	    rdev->badblocks.unacked_exist) {
2601 		len+= sprintf(page+len, "%sfaulty",sep);
2602 		sep = ",";
2603 	}
2604 	if (test_bit(In_sync, &rdev->flags)) {
2605 		len += sprintf(page+len, "%sin_sync",sep);
2606 		sep = ",";
2607 	}
2608 	if (test_bit(WriteMostly, &rdev->flags)) {
2609 		len += sprintf(page+len, "%swrite_mostly",sep);
2610 		sep = ",";
2611 	}
2612 	if (test_bit(Blocked, &rdev->flags) ||
2613 	    (rdev->badblocks.unacked_exist
2614 	     && !test_bit(Faulty, &rdev->flags))) {
2615 		len += sprintf(page+len, "%sblocked", sep);
2616 		sep = ",";
2617 	}
2618 	if (!test_bit(Faulty, &rdev->flags) &&
2619 	    !test_bit(In_sync, &rdev->flags)) {
2620 		len += sprintf(page+len, "%sspare", sep);
2621 		sep = ",";
2622 	}
2623 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2624 		len += sprintf(page+len, "%swrite_error", sep);
2625 		sep = ",";
2626 	}
2627 	if (test_bit(WantReplacement, &rdev->flags)) {
2628 		len += sprintf(page+len, "%swant_replacement", sep);
2629 		sep = ",";
2630 	}
2631 	if (test_bit(Replacement, &rdev->flags)) {
2632 		len += sprintf(page+len, "%sreplacement", sep);
2633 		sep = ",";
2634 	}
2635 
2636 	return len+sprintf(page+len, "\n");
2637 }
2638 
2639 static ssize_t
2640 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2641 {
2642 	/* can write
2643 	 *  faulty  - simulates an error
2644 	 *  remove  - disconnects the device
2645 	 *  writemostly - sets write_mostly
2646 	 *  -writemostly - clears write_mostly
2647 	 *  blocked - sets the Blocked flags
2648 	 *  -blocked - clears the Blocked and possibly simulates an error
2649 	 *  insync - sets Insync providing device isn't active
2650 	 *  write_error - sets WriteErrorSeen
2651 	 *  -write_error - clears WriteErrorSeen
2652 	 */
2653 	int err = -EINVAL;
2654 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2655 		md_error(rdev->mddev, rdev);
2656 		if (test_bit(Faulty, &rdev->flags))
2657 			err = 0;
2658 		else
2659 			err = -EBUSY;
2660 	} else if (cmd_match(buf, "remove")) {
2661 		if (rdev->raid_disk >= 0)
2662 			err = -EBUSY;
2663 		else {
2664 			struct mddev *mddev = rdev->mddev;
2665 			kick_rdev_from_array(rdev);
2666 			if (mddev->pers)
2667 				md_update_sb(mddev, 1);
2668 			md_new_event(mddev);
2669 			err = 0;
2670 		}
2671 	} else if (cmd_match(buf, "writemostly")) {
2672 		set_bit(WriteMostly, &rdev->flags);
2673 		err = 0;
2674 	} else if (cmd_match(buf, "-writemostly")) {
2675 		clear_bit(WriteMostly, &rdev->flags);
2676 		err = 0;
2677 	} else if (cmd_match(buf, "blocked")) {
2678 		set_bit(Blocked, &rdev->flags);
2679 		err = 0;
2680 	} else if (cmd_match(buf, "-blocked")) {
2681 		if (!test_bit(Faulty, &rdev->flags) &&
2682 		    rdev->badblocks.unacked_exist) {
2683 			/* metadata handler doesn't understand badblocks,
2684 			 * so we need to fail the device
2685 			 */
2686 			md_error(rdev->mddev, rdev);
2687 		}
2688 		clear_bit(Blocked, &rdev->flags);
2689 		clear_bit(BlockedBadBlocks, &rdev->flags);
2690 		wake_up(&rdev->blocked_wait);
2691 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2692 		md_wakeup_thread(rdev->mddev->thread);
2693 
2694 		err = 0;
2695 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2696 		set_bit(In_sync, &rdev->flags);
2697 		err = 0;
2698 	} else if (cmd_match(buf, "write_error")) {
2699 		set_bit(WriteErrorSeen, &rdev->flags);
2700 		err = 0;
2701 	} else if (cmd_match(buf, "-write_error")) {
2702 		clear_bit(WriteErrorSeen, &rdev->flags);
2703 		err = 0;
2704 	} else if (cmd_match(buf, "want_replacement")) {
2705 		/* Any non-spare device that is not a replacement can
2706 		 * become want_replacement at any time, but we then need to
2707 		 * check if recovery is needed.
2708 		 */
2709 		if (rdev->raid_disk >= 0 &&
2710 		    !test_bit(Replacement, &rdev->flags))
2711 			set_bit(WantReplacement, &rdev->flags);
2712 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2713 		md_wakeup_thread(rdev->mddev->thread);
2714 		err = 0;
2715 	} else if (cmd_match(buf, "-want_replacement")) {
2716 		/* Clearing 'want_replacement' is always allowed.
2717 		 * Once replacements starts it is too late though.
2718 		 */
2719 		err = 0;
2720 		clear_bit(WantReplacement, &rdev->flags);
2721 	} else if (cmd_match(buf, "replacement")) {
2722 		/* Can only set a device as a replacement when array has not
2723 		 * yet been started.  Once running, replacement is automatic
2724 		 * from spares, or by assigning 'slot'.
2725 		 */
2726 		if (rdev->mddev->pers)
2727 			err = -EBUSY;
2728 		else {
2729 			set_bit(Replacement, &rdev->flags);
2730 			err = 0;
2731 		}
2732 	} else if (cmd_match(buf, "-replacement")) {
2733 		/* Similarly, can only clear Replacement before start */
2734 		if (rdev->mddev->pers)
2735 			err = -EBUSY;
2736 		else {
2737 			clear_bit(Replacement, &rdev->flags);
2738 			err = 0;
2739 		}
2740 	}
2741 	if (!err)
2742 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2743 	return err ? err : len;
2744 }
2745 static struct rdev_sysfs_entry rdev_state =
2746 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2747 
2748 static ssize_t
2749 errors_show(struct md_rdev *rdev, char *page)
2750 {
2751 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2752 }
2753 
2754 static ssize_t
2755 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2756 {
2757 	char *e;
2758 	unsigned long n = simple_strtoul(buf, &e, 10);
2759 	if (*buf && (*e == 0 || *e == '\n')) {
2760 		atomic_set(&rdev->corrected_errors, n);
2761 		return len;
2762 	}
2763 	return -EINVAL;
2764 }
2765 static struct rdev_sysfs_entry rdev_errors =
2766 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2767 
2768 static ssize_t
2769 slot_show(struct md_rdev *rdev, char *page)
2770 {
2771 	if (rdev->raid_disk < 0)
2772 		return sprintf(page, "none\n");
2773 	else
2774 		return sprintf(page, "%d\n", rdev->raid_disk);
2775 }
2776 
2777 static ssize_t
2778 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2779 {
2780 	char *e;
2781 	int err;
2782 	int slot = simple_strtoul(buf, &e, 10);
2783 	if (strncmp(buf, "none", 4)==0)
2784 		slot = -1;
2785 	else if (e==buf || (*e && *e!= '\n'))
2786 		return -EINVAL;
2787 	if (rdev->mddev->pers && slot == -1) {
2788 		/* Setting 'slot' on an active array requires also
2789 		 * updating the 'rd%d' link, and communicating
2790 		 * with the personality with ->hot_*_disk.
2791 		 * For now we only support removing
2792 		 * failed/spare devices.  This normally happens automatically,
2793 		 * but not when the metadata is externally managed.
2794 		 */
2795 		if (rdev->raid_disk == -1)
2796 			return -EEXIST;
2797 		/* personality does all needed checks */
2798 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2799 			return -EINVAL;
2800 		err = rdev->mddev->pers->
2801 			hot_remove_disk(rdev->mddev, rdev);
2802 		if (err)
2803 			return err;
2804 		sysfs_unlink_rdev(rdev->mddev, rdev);
2805 		rdev->raid_disk = -1;
2806 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2807 		md_wakeup_thread(rdev->mddev->thread);
2808 	} else if (rdev->mddev->pers) {
2809 		/* Activating a spare .. or possibly reactivating
2810 		 * if we ever get bitmaps working here.
2811 		 */
2812 
2813 		if (rdev->raid_disk != -1)
2814 			return -EBUSY;
2815 
2816 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2817 			return -EBUSY;
2818 
2819 		if (rdev->mddev->pers->hot_add_disk == NULL)
2820 			return -EINVAL;
2821 
2822 		if (slot >= rdev->mddev->raid_disks &&
2823 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2824 			return -ENOSPC;
2825 
2826 		rdev->raid_disk = slot;
2827 		if (test_bit(In_sync, &rdev->flags))
2828 			rdev->saved_raid_disk = slot;
2829 		else
2830 			rdev->saved_raid_disk = -1;
2831 		clear_bit(In_sync, &rdev->flags);
2832 		err = rdev->mddev->pers->
2833 			hot_add_disk(rdev->mddev, rdev);
2834 		if (err) {
2835 			rdev->raid_disk = -1;
2836 			return err;
2837 		} else
2838 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2839 		if (sysfs_link_rdev(rdev->mddev, rdev))
2840 			/* failure here is OK */;
2841 		/* don't wakeup anyone, leave that to userspace. */
2842 	} else {
2843 		if (slot >= rdev->mddev->raid_disks &&
2844 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2845 			return -ENOSPC;
2846 		rdev->raid_disk = slot;
2847 		/* assume it is working */
2848 		clear_bit(Faulty, &rdev->flags);
2849 		clear_bit(WriteMostly, &rdev->flags);
2850 		set_bit(In_sync, &rdev->flags);
2851 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2852 	}
2853 	return len;
2854 }
2855 
2856 
2857 static struct rdev_sysfs_entry rdev_slot =
2858 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2859 
2860 static ssize_t
2861 offset_show(struct md_rdev *rdev, char *page)
2862 {
2863 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2864 }
2865 
2866 static ssize_t
2867 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2868 {
2869 	unsigned long long offset;
2870 	if (strict_strtoull(buf, 10, &offset) < 0)
2871 		return -EINVAL;
2872 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2873 		return -EBUSY;
2874 	if (rdev->sectors && rdev->mddev->external)
2875 		/* Must set offset before size, so overlap checks
2876 		 * can be sane */
2877 		return -EBUSY;
2878 	rdev->data_offset = offset;
2879 	rdev->new_data_offset = offset;
2880 	return len;
2881 }
2882 
2883 static struct rdev_sysfs_entry rdev_offset =
2884 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2885 
2886 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2887 {
2888 	return sprintf(page, "%llu\n",
2889 		       (unsigned long long)rdev->new_data_offset);
2890 }
2891 
2892 static ssize_t new_offset_store(struct md_rdev *rdev,
2893 				const char *buf, size_t len)
2894 {
2895 	unsigned long long new_offset;
2896 	struct mddev *mddev = rdev->mddev;
2897 
2898 	if (strict_strtoull(buf, 10, &new_offset) < 0)
2899 		return -EINVAL;
2900 
2901 	if (mddev->sync_thread)
2902 		return -EBUSY;
2903 	if (new_offset == rdev->data_offset)
2904 		/* reset is always permitted */
2905 		;
2906 	else if (new_offset > rdev->data_offset) {
2907 		/* must not push array size beyond rdev_sectors */
2908 		if (new_offset - rdev->data_offset
2909 		    + mddev->dev_sectors > rdev->sectors)
2910 				return -E2BIG;
2911 	}
2912 	/* Metadata worries about other space details. */
2913 
2914 	/* decreasing the offset is inconsistent with a backwards
2915 	 * reshape.
2916 	 */
2917 	if (new_offset < rdev->data_offset &&
2918 	    mddev->reshape_backwards)
2919 		return -EINVAL;
2920 	/* Increasing offset is inconsistent with forwards
2921 	 * reshape.  reshape_direction should be set to
2922 	 * 'backwards' first.
2923 	 */
2924 	if (new_offset > rdev->data_offset &&
2925 	    !mddev->reshape_backwards)
2926 		return -EINVAL;
2927 
2928 	if (mddev->pers && mddev->persistent &&
2929 	    !super_types[mddev->major_version]
2930 	    .allow_new_offset(rdev, new_offset))
2931 		return -E2BIG;
2932 	rdev->new_data_offset = new_offset;
2933 	if (new_offset > rdev->data_offset)
2934 		mddev->reshape_backwards = 1;
2935 	else if (new_offset < rdev->data_offset)
2936 		mddev->reshape_backwards = 0;
2937 
2938 	return len;
2939 }
2940 static struct rdev_sysfs_entry rdev_new_offset =
2941 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2942 
2943 static ssize_t
2944 rdev_size_show(struct md_rdev *rdev, char *page)
2945 {
2946 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2947 }
2948 
2949 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2950 {
2951 	/* check if two start/length pairs overlap */
2952 	if (s1+l1 <= s2)
2953 		return 0;
2954 	if (s2+l2 <= s1)
2955 		return 0;
2956 	return 1;
2957 }
2958 
2959 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2960 {
2961 	unsigned long long blocks;
2962 	sector_t new;
2963 
2964 	if (strict_strtoull(buf, 10, &blocks) < 0)
2965 		return -EINVAL;
2966 
2967 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2968 		return -EINVAL; /* sector conversion overflow */
2969 
2970 	new = blocks * 2;
2971 	if (new != blocks * 2)
2972 		return -EINVAL; /* unsigned long long to sector_t overflow */
2973 
2974 	*sectors = new;
2975 	return 0;
2976 }
2977 
2978 static ssize_t
2979 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2980 {
2981 	struct mddev *my_mddev = rdev->mddev;
2982 	sector_t oldsectors = rdev->sectors;
2983 	sector_t sectors;
2984 
2985 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2986 		return -EINVAL;
2987 	if (rdev->data_offset != rdev->new_data_offset)
2988 		return -EINVAL; /* too confusing */
2989 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2990 		if (my_mddev->persistent) {
2991 			sectors = super_types[my_mddev->major_version].
2992 				rdev_size_change(rdev, sectors);
2993 			if (!sectors)
2994 				return -EBUSY;
2995 		} else if (!sectors)
2996 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2997 				rdev->data_offset;
2998 	}
2999 	if (sectors < my_mddev->dev_sectors)
3000 		return -EINVAL; /* component must fit device */
3001 
3002 	rdev->sectors = sectors;
3003 	if (sectors > oldsectors && my_mddev->external) {
3004 		/* need to check that all other rdevs with the same ->bdev
3005 		 * do not overlap.  We need to unlock the mddev to avoid
3006 		 * a deadlock.  We have already changed rdev->sectors, and if
3007 		 * we have to change it back, we will have the lock again.
3008 		 */
3009 		struct mddev *mddev;
3010 		int overlap = 0;
3011 		struct list_head *tmp;
3012 
3013 		mddev_unlock(my_mddev);
3014 		for_each_mddev(mddev, tmp) {
3015 			struct md_rdev *rdev2;
3016 
3017 			mddev_lock(mddev);
3018 			rdev_for_each(rdev2, mddev)
3019 				if (rdev->bdev == rdev2->bdev &&
3020 				    rdev != rdev2 &&
3021 				    overlaps(rdev->data_offset, rdev->sectors,
3022 					     rdev2->data_offset,
3023 					     rdev2->sectors)) {
3024 					overlap = 1;
3025 					break;
3026 				}
3027 			mddev_unlock(mddev);
3028 			if (overlap) {
3029 				mddev_put(mddev);
3030 				break;
3031 			}
3032 		}
3033 		mddev_lock(my_mddev);
3034 		if (overlap) {
3035 			/* Someone else could have slipped in a size
3036 			 * change here, but doing so is just silly.
3037 			 * We put oldsectors back because we *know* it is
3038 			 * safe, and trust userspace not to race with
3039 			 * itself
3040 			 */
3041 			rdev->sectors = oldsectors;
3042 			return -EBUSY;
3043 		}
3044 	}
3045 	return len;
3046 }
3047 
3048 static struct rdev_sysfs_entry rdev_size =
3049 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3050 
3051 
3052 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3053 {
3054 	unsigned long long recovery_start = rdev->recovery_offset;
3055 
3056 	if (test_bit(In_sync, &rdev->flags) ||
3057 	    recovery_start == MaxSector)
3058 		return sprintf(page, "none\n");
3059 
3060 	return sprintf(page, "%llu\n", recovery_start);
3061 }
3062 
3063 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3064 {
3065 	unsigned long long recovery_start;
3066 
3067 	if (cmd_match(buf, "none"))
3068 		recovery_start = MaxSector;
3069 	else if (strict_strtoull(buf, 10, &recovery_start))
3070 		return -EINVAL;
3071 
3072 	if (rdev->mddev->pers &&
3073 	    rdev->raid_disk >= 0)
3074 		return -EBUSY;
3075 
3076 	rdev->recovery_offset = recovery_start;
3077 	if (recovery_start == MaxSector)
3078 		set_bit(In_sync, &rdev->flags);
3079 	else
3080 		clear_bit(In_sync, &rdev->flags);
3081 	return len;
3082 }
3083 
3084 static struct rdev_sysfs_entry rdev_recovery_start =
3085 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3086 
3087 
3088 static ssize_t
3089 badblocks_show(struct badblocks *bb, char *page, int unack);
3090 static ssize_t
3091 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3092 
3093 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3094 {
3095 	return badblocks_show(&rdev->badblocks, page, 0);
3096 }
3097 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3098 {
3099 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3100 	/* Maybe that ack was all we needed */
3101 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3102 		wake_up(&rdev->blocked_wait);
3103 	return rv;
3104 }
3105 static struct rdev_sysfs_entry rdev_bad_blocks =
3106 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3107 
3108 
3109 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3110 {
3111 	return badblocks_show(&rdev->badblocks, page, 1);
3112 }
3113 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3114 {
3115 	return badblocks_store(&rdev->badblocks, page, len, 1);
3116 }
3117 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3118 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3119 
3120 static struct attribute *rdev_default_attrs[] = {
3121 	&rdev_state.attr,
3122 	&rdev_errors.attr,
3123 	&rdev_slot.attr,
3124 	&rdev_offset.attr,
3125 	&rdev_new_offset.attr,
3126 	&rdev_size.attr,
3127 	&rdev_recovery_start.attr,
3128 	&rdev_bad_blocks.attr,
3129 	&rdev_unack_bad_blocks.attr,
3130 	NULL,
3131 };
3132 static ssize_t
3133 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3134 {
3135 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3136 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3137 	struct mddev *mddev = rdev->mddev;
3138 	ssize_t rv;
3139 
3140 	if (!entry->show)
3141 		return -EIO;
3142 
3143 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
3144 	if (!rv) {
3145 		if (rdev->mddev == NULL)
3146 			rv = -EBUSY;
3147 		else
3148 			rv = entry->show(rdev, page);
3149 		mddev_unlock(mddev);
3150 	}
3151 	return rv;
3152 }
3153 
3154 static ssize_t
3155 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3156 	      const char *page, size_t length)
3157 {
3158 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3159 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3160 	ssize_t rv;
3161 	struct mddev *mddev = rdev->mddev;
3162 
3163 	if (!entry->store)
3164 		return -EIO;
3165 	if (!capable(CAP_SYS_ADMIN))
3166 		return -EACCES;
3167 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3168 	if (!rv) {
3169 		if (rdev->mddev == NULL)
3170 			rv = -EBUSY;
3171 		else
3172 			rv = entry->store(rdev, page, length);
3173 		mddev_unlock(mddev);
3174 	}
3175 	return rv;
3176 }
3177 
3178 static void rdev_free(struct kobject *ko)
3179 {
3180 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3181 	kfree(rdev);
3182 }
3183 static const struct sysfs_ops rdev_sysfs_ops = {
3184 	.show		= rdev_attr_show,
3185 	.store		= rdev_attr_store,
3186 };
3187 static struct kobj_type rdev_ktype = {
3188 	.release	= rdev_free,
3189 	.sysfs_ops	= &rdev_sysfs_ops,
3190 	.default_attrs	= rdev_default_attrs,
3191 };
3192 
3193 int md_rdev_init(struct md_rdev *rdev)
3194 {
3195 	rdev->desc_nr = -1;
3196 	rdev->saved_raid_disk = -1;
3197 	rdev->raid_disk = -1;
3198 	rdev->flags = 0;
3199 	rdev->data_offset = 0;
3200 	rdev->new_data_offset = 0;
3201 	rdev->sb_events = 0;
3202 	rdev->last_read_error.tv_sec  = 0;
3203 	rdev->last_read_error.tv_nsec = 0;
3204 	rdev->sb_loaded = 0;
3205 	rdev->bb_page = NULL;
3206 	atomic_set(&rdev->nr_pending, 0);
3207 	atomic_set(&rdev->read_errors, 0);
3208 	atomic_set(&rdev->corrected_errors, 0);
3209 
3210 	INIT_LIST_HEAD(&rdev->same_set);
3211 	init_waitqueue_head(&rdev->blocked_wait);
3212 
3213 	/* Add space to store bad block list.
3214 	 * This reserves the space even on arrays where it cannot
3215 	 * be used - I wonder if that matters
3216 	 */
3217 	rdev->badblocks.count = 0;
3218 	rdev->badblocks.shift = 0;
3219 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3220 	seqlock_init(&rdev->badblocks.lock);
3221 	if (rdev->badblocks.page == NULL)
3222 		return -ENOMEM;
3223 
3224 	return 0;
3225 }
3226 EXPORT_SYMBOL_GPL(md_rdev_init);
3227 /*
3228  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3229  *
3230  * mark the device faulty if:
3231  *
3232  *   - the device is nonexistent (zero size)
3233  *   - the device has no valid superblock
3234  *
3235  * a faulty rdev _never_ has rdev->sb set.
3236  */
3237 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3238 {
3239 	char b[BDEVNAME_SIZE];
3240 	int err;
3241 	struct md_rdev *rdev;
3242 	sector_t size;
3243 
3244 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3245 	if (!rdev) {
3246 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3247 		return ERR_PTR(-ENOMEM);
3248 	}
3249 
3250 	err = md_rdev_init(rdev);
3251 	if (err)
3252 		goto abort_free;
3253 	err = alloc_disk_sb(rdev);
3254 	if (err)
3255 		goto abort_free;
3256 
3257 	err = lock_rdev(rdev, newdev, super_format == -2);
3258 	if (err)
3259 		goto abort_free;
3260 
3261 	kobject_init(&rdev->kobj, &rdev_ktype);
3262 
3263 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3264 	if (!size) {
3265 		printk(KERN_WARNING
3266 			"md: %s has zero or unknown size, marking faulty!\n",
3267 			bdevname(rdev->bdev,b));
3268 		err = -EINVAL;
3269 		goto abort_free;
3270 	}
3271 
3272 	if (super_format >= 0) {
3273 		err = super_types[super_format].
3274 			load_super(rdev, NULL, super_minor);
3275 		if (err == -EINVAL) {
3276 			printk(KERN_WARNING
3277 				"md: %s does not have a valid v%d.%d "
3278 			       "superblock, not importing!\n",
3279 				bdevname(rdev->bdev,b),
3280 			       super_format, super_minor);
3281 			goto abort_free;
3282 		}
3283 		if (err < 0) {
3284 			printk(KERN_WARNING
3285 				"md: could not read %s's sb, not importing!\n",
3286 				bdevname(rdev->bdev,b));
3287 			goto abort_free;
3288 		}
3289 	}
3290 	if (super_format == -1)
3291 		/* hot-add for 0.90, or non-persistent: so no badblocks */
3292 		rdev->badblocks.shift = -1;
3293 
3294 	return rdev;
3295 
3296 abort_free:
3297 	if (rdev->bdev)
3298 		unlock_rdev(rdev);
3299 	md_rdev_clear(rdev);
3300 	kfree(rdev);
3301 	return ERR_PTR(err);
3302 }
3303 
3304 /*
3305  * Check a full RAID array for plausibility
3306  */
3307 
3308 
3309 static void analyze_sbs(struct mddev * mddev)
3310 {
3311 	int i;
3312 	struct md_rdev *rdev, *freshest, *tmp;
3313 	char b[BDEVNAME_SIZE];
3314 
3315 	freshest = NULL;
3316 	rdev_for_each_safe(rdev, tmp, mddev)
3317 		switch (super_types[mddev->major_version].
3318 			load_super(rdev, freshest, mddev->minor_version)) {
3319 		case 1:
3320 			freshest = rdev;
3321 			break;
3322 		case 0:
3323 			break;
3324 		default:
3325 			printk( KERN_ERR \
3326 				"md: fatal superblock inconsistency in %s"
3327 				" -- removing from array\n",
3328 				bdevname(rdev->bdev,b));
3329 			kick_rdev_from_array(rdev);
3330 		}
3331 
3332 
3333 	super_types[mddev->major_version].
3334 		validate_super(mddev, freshest);
3335 
3336 	i = 0;
3337 	rdev_for_each_safe(rdev, tmp, mddev) {
3338 		if (mddev->max_disks &&
3339 		    (rdev->desc_nr >= mddev->max_disks ||
3340 		     i > mddev->max_disks)) {
3341 			printk(KERN_WARNING
3342 			       "md: %s: %s: only %d devices permitted\n",
3343 			       mdname(mddev), bdevname(rdev->bdev, b),
3344 			       mddev->max_disks);
3345 			kick_rdev_from_array(rdev);
3346 			continue;
3347 		}
3348 		if (rdev != freshest)
3349 			if (super_types[mddev->major_version].
3350 			    validate_super(mddev, rdev)) {
3351 				printk(KERN_WARNING "md: kicking non-fresh %s"
3352 					" from array!\n",
3353 					bdevname(rdev->bdev,b));
3354 				kick_rdev_from_array(rdev);
3355 				continue;
3356 			}
3357 		if (mddev->level == LEVEL_MULTIPATH) {
3358 			rdev->desc_nr = i++;
3359 			rdev->raid_disk = rdev->desc_nr;
3360 			set_bit(In_sync, &rdev->flags);
3361 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3362 			rdev->raid_disk = -1;
3363 			clear_bit(In_sync, &rdev->flags);
3364 		}
3365 	}
3366 }
3367 
3368 /* Read a fixed-point number.
3369  * Numbers in sysfs attributes should be in "standard" units where
3370  * possible, so time should be in seconds.
3371  * However we internally use a a much smaller unit such as
3372  * milliseconds or jiffies.
3373  * This function takes a decimal number with a possible fractional
3374  * component, and produces an integer which is the result of
3375  * multiplying that number by 10^'scale'.
3376  * all without any floating-point arithmetic.
3377  */
3378 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3379 {
3380 	unsigned long result = 0;
3381 	long decimals = -1;
3382 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3383 		if (*cp == '.')
3384 			decimals = 0;
3385 		else if (decimals < scale) {
3386 			unsigned int value;
3387 			value = *cp - '0';
3388 			result = result * 10 + value;
3389 			if (decimals >= 0)
3390 				decimals++;
3391 		}
3392 		cp++;
3393 	}
3394 	if (*cp == '\n')
3395 		cp++;
3396 	if (*cp)
3397 		return -EINVAL;
3398 	if (decimals < 0)
3399 		decimals = 0;
3400 	while (decimals < scale) {
3401 		result *= 10;
3402 		decimals ++;
3403 	}
3404 	*res = result;
3405 	return 0;
3406 }
3407 
3408 
3409 static void md_safemode_timeout(unsigned long data);
3410 
3411 static ssize_t
3412 safe_delay_show(struct mddev *mddev, char *page)
3413 {
3414 	int msec = (mddev->safemode_delay*1000)/HZ;
3415 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3416 }
3417 static ssize_t
3418 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3419 {
3420 	unsigned long msec;
3421 
3422 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3423 		return -EINVAL;
3424 	if (msec == 0)
3425 		mddev->safemode_delay = 0;
3426 	else {
3427 		unsigned long old_delay = mddev->safemode_delay;
3428 		mddev->safemode_delay = (msec*HZ)/1000;
3429 		if (mddev->safemode_delay == 0)
3430 			mddev->safemode_delay = 1;
3431 		if (mddev->safemode_delay < old_delay)
3432 			md_safemode_timeout((unsigned long)mddev);
3433 	}
3434 	return len;
3435 }
3436 static struct md_sysfs_entry md_safe_delay =
3437 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3438 
3439 static ssize_t
3440 level_show(struct mddev *mddev, char *page)
3441 {
3442 	struct md_personality *p = mddev->pers;
3443 	if (p)
3444 		return sprintf(page, "%s\n", p->name);
3445 	else if (mddev->clevel[0])
3446 		return sprintf(page, "%s\n", mddev->clevel);
3447 	else if (mddev->level != LEVEL_NONE)
3448 		return sprintf(page, "%d\n", mddev->level);
3449 	else
3450 		return 0;
3451 }
3452 
3453 static ssize_t
3454 level_store(struct mddev *mddev, const char *buf, size_t len)
3455 {
3456 	char clevel[16];
3457 	ssize_t rv = len;
3458 	struct md_personality *pers;
3459 	long level;
3460 	void *priv;
3461 	struct md_rdev *rdev;
3462 
3463 	if (mddev->pers == NULL) {
3464 		if (len == 0)
3465 			return 0;
3466 		if (len >= sizeof(mddev->clevel))
3467 			return -ENOSPC;
3468 		strncpy(mddev->clevel, buf, len);
3469 		if (mddev->clevel[len-1] == '\n')
3470 			len--;
3471 		mddev->clevel[len] = 0;
3472 		mddev->level = LEVEL_NONE;
3473 		return rv;
3474 	}
3475 
3476 	/* request to change the personality.  Need to ensure:
3477 	 *  - array is not engaged in resync/recovery/reshape
3478 	 *  - old personality can be suspended
3479 	 *  - new personality will access other array.
3480 	 */
3481 
3482 	if (mddev->sync_thread ||
3483 	    mddev->reshape_position != MaxSector ||
3484 	    mddev->sysfs_active)
3485 		return -EBUSY;
3486 
3487 	if (!mddev->pers->quiesce) {
3488 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3489 		       mdname(mddev), mddev->pers->name);
3490 		return -EINVAL;
3491 	}
3492 
3493 	/* Now find the new personality */
3494 	if (len == 0 || len >= sizeof(clevel))
3495 		return -EINVAL;
3496 	strncpy(clevel, buf, len);
3497 	if (clevel[len-1] == '\n')
3498 		len--;
3499 	clevel[len] = 0;
3500 	if (strict_strtol(clevel, 10, &level))
3501 		level = LEVEL_NONE;
3502 
3503 	if (request_module("md-%s", clevel) != 0)
3504 		request_module("md-level-%s", clevel);
3505 	spin_lock(&pers_lock);
3506 	pers = find_pers(level, clevel);
3507 	if (!pers || !try_module_get(pers->owner)) {
3508 		spin_unlock(&pers_lock);
3509 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3510 		return -EINVAL;
3511 	}
3512 	spin_unlock(&pers_lock);
3513 
3514 	if (pers == mddev->pers) {
3515 		/* Nothing to do! */
3516 		module_put(pers->owner);
3517 		return rv;
3518 	}
3519 	if (!pers->takeover) {
3520 		module_put(pers->owner);
3521 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3522 		       mdname(mddev), clevel);
3523 		return -EINVAL;
3524 	}
3525 
3526 	rdev_for_each(rdev, mddev)
3527 		rdev->new_raid_disk = rdev->raid_disk;
3528 
3529 	/* ->takeover must set new_* and/or delta_disks
3530 	 * if it succeeds, and may set them when it fails.
3531 	 */
3532 	priv = pers->takeover(mddev);
3533 	if (IS_ERR(priv)) {
3534 		mddev->new_level = mddev->level;
3535 		mddev->new_layout = mddev->layout;
3536 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3537 		mddev->raid_disks -= mddev->delta_disks;
3538 		mddev->delta_disks = 0;
3539 		mddev->reshape_backwards = 0;
3540 		module_put(pers->owner);
3541 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3542 		       mdname(mddev), clevel);
3543 		return PTR_ERR(priv);
3544 	}
3545 
3546 	/* Looks like we have a winner */
3547 	mddev_suspend(mddev);
3548 	mddev->pers->stop(mddev);
3549 
3550 	if (mddev->pers->sync_request == NULL &&
3551 	    pers->sync_request != NULL) {
3552 		/* need to add the md_redundancy_group */
3553 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3554 			printk(KERN_WARNING
3555 			       "md: cannot register extra attributes for %s\n",
3556 			       mdname(mddev));
3557 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3558 	}
3559 	if (mddev->pers->sync_request != NULL &&
3560 	    pers->sync_request == NULL) {
3561 		/* need to remove the md_redundancy_group */
3562 		if (mddev->to_remove == NULL)
3563 			mddev->to_remove = &md_redundancy_group;
3564 	}
3565 
3566 	if (mddev->pers->sync_request == NULL &&
3567 	    mddev->external) {
3568 		/* We are converting from a no-redundancy array
3569 		 * to a redundancy array and metadata is managed
3570 		 * externally so we need to be sure that writes
3571 		 * won't block due to a need to transition
3572 		 *      clean->dirty
3573 		 * until external management is started.
3574 		 */
3575 		mddev->in_sync = 0;
3576 		mddev->safemode_delay = 0;
3577 		mddev->safemode = 0;
3578 	}
3579 
3580 	rdev_for_each(rdev, mddev) {
3581 		if (rdev->raid_disk < 0)
3582 			continue;
3583 		if (rdev->new_raid_disk >= mddev->raid_disks)
3584 			rdev->new_raid_disk = -1;
3585 		if (rdev->new_raid_disk == rdev->raid_disk)
3586 			continue;
3587 		sysfs_unlink_rdev(mddev, rdev);
3588 	}
3589 	rdev_for_each(rdev, mddev) {
3590 		if (rdev->raid_disk < 0)
3591 			continue;
3592 		if (rdev->new_raid_disk == rdev->raid_disk)
3593 			continue;
3594 		rdev->raid_disk = rdev->new_raid_disk;
3595 		if (rdev->raid_disk < 0)
3596 			clear_bit(In_sync, &rdev->flags);
3597 		else {
3598 			if (sysfs_link_rdev(mddev, rdev))
3599 				printk(KERN_WARNING "md: cannot register rd%d"
3600 				       " for %s after level change\n",
3601 				       rdev->raid_disk, mdname(mddev));
3602 		}
3603 	}
3604 
3605 	module_put(mddev->pers->owner);
3606 	mddev->pers = pers;
3607 	mddev->private = priv;
3608 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3609 	mddev->level = mddev->new_level;
3610 	mddev->layout = mddev->new_layout;
3611 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3612 	mddev->delta_disks = 0;
3613 	mddev->reshape_backwards = 0;
3614 	mddev->degraded = 0;
3615 	if (mddev->pers->sync_request == NULL) {
3616 		/* this is now an array without redundancy, so
3617 		 * it must always be in_sync
3618 		 */
3619 		mddev->in_sync = 1;
3620 		del_timer_sync(&mddev->safemode_timer);
3621 	}
3622 	pers->run(mddev);
3623 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3624 	mddev_resume(mddev);
3625 	sysfs_notify(&mddev->kobj, NULL, "level");
3626 	md_new_event(mddev);
3627 	return rv;
3628 }
3629 
3630 static struct md_sysfs_entry md_level =
3631 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3632 
3633 
3634 static ssize_t
3635 layout_show(struct mddev *mddev, char *page)
3636 {
3637 	/* just a number, not meaningful for all levels */
3638 	if (mddev->reshape_position != MaxSector &&
3639 	    mddev->layout != mddev->new_layout)
3640 		return sprintf(page, "%d (%d)\n",
3641 			       mddev->new_layout, mddev->layout);
3642 	return sprintf(page, "%d\n", mddev->layout);
3643 }
3644 
3645 static ssize_t
3646 layout_store(struct mddev *mddev, const char *buf, size_t len)
3647 {
3648 	char *e;
3649 	unsigned long n = simple_strtoul(buf, &e, 10);
3650 
3651 	if (!*buf || (*e && *e != '\n'))
3652 		return -EINVAL;
3653 
3654 	if (mddev->pers) {
3655 		int err;
3656 		if (mddev->pers->check_reshape == NULL)
3657 			return -EBUSY;
3658 		mddev->new_layout = n;
3659 		err = mddev->pers->check_reshape(mddev);
3660 		if (err) {
3661 			mddev->new_layout = mddev->layout;
3662 			return err;
3663 		}
3664 	} else {
3665 		mddev->new_layout = n;
3666 		if (mddev->reshape_position == MaxSector)
3667 			mddev->layout = n;
3668 	}
3669 	return len;
3670 }
3671 static struct md_sysfs_entry md_layout =
3672 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3673 
3674 
3675 static ssize_t
3676 raid_disks_show(struct mddev *mddev, char *page)
3677 {
3678 	if (mddev->raid_disks == 0)
3679 		return 0;
3680 	if (mddev->reshape_position != MaxSector &&
3681 	    mddev->delta_disks != 0)
3682 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3683 			       mddev->raid_disks - mddev->delta_disks);
3684 	return sprintf(page, "%d\n", mddev->raid_disks);
3685 }
3686 
3687 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3688 
3689 static ssize_t
3690 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3691 {
3692 	char *e;
3693 	int rv = 0;
3694 	unsigned long n = simple_strtoul(buf, &e, 10);
3695 
3696 	if (!*buf || (*e && *e != '\n'))
3697 		return -EINVAL;
3698 
3699 	if (mddev->pers)
3700 		rv = update_raid_disks(mddev, n);
3701 	else if (mddev->reshape_position != MaxSector) {
3702 		struct md_rdev *rdev;
3703 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3704 
3705 		rdev_for_each(rdev, mddev) {
3706 			if (olddisks < n &&
3707 			    rdev->data_offset < rdev->new_data_offset)
3708 				return -EINVAL;
3709 			if (olddisks > n &&
3710 			    rdev->data_offset > rdev->new_data_offset)
3711 				return -EINVAL;
3712 		}
3713 		mddev->delta_disks = n - olddisks;
3714 		mddev->raid_disks = n;
3715 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3716 	} else
3717 		mddev->raid_disks = n;
3718 	return rv ? rv : len;
3719 }
3720 static struct md_sysfs_entry md_raid_disks =
3721 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3722 
3723 static ssize_t
3724 chunk_size_show(struct mddev *mddev, char *page)
3725 {
3726 	if (mddev->reshape_position != MaxSector &&
3727 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3728 		return sprintf(page, "%d (%d)\n",
3729 			       mddev->new_chunk_sectors << 9,
3730 			       mddev->chunk_sectors << 9);
3731 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3732 }
3733 
3734 static ssize_t
3735 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3736 {
3737 	char *e;
3738 	unsigned long n = simple_strtoul(buf, &e, 10);
3739 
3740 	if (!*buf || (*e && *e != '\n'))
3741 		return -EINVAL;
3742 
3743 	if (mddev->pers) {
3744 		int err;
3745 		if (mddev->pers->check_reshape == NULL)
3746 			return -EBUSY;
3747 		mddev->new_chunk_sectors = n >> 9;
3748 		err = mddev->pers->check_reshape(mddev);
3749 		if (err) {
3750 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3751 			return err;
3752 		}
3753 	} else {
3754 		mddev->new_chunk_sectors = n >> 9;
3755 		if (mddev->reshape_position == MaxSector)
3756 			mddev->chunk_sectors = n >> 9;
3757 	}
3758 	return len;
3759 }
3760 static struct md_sysfs_entry md_chunk_size =
3761 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3762 
3763 static ssize_t
3764 resync_start_show(struct mddev *mddev, char *page)
3765 {
3766 	if (mddev->recovery_cp == MaxSector)
3767 		return sprintf(page, "none\n");
3768 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3769 }
3770 
3771 static ssize_t
3772 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3773 {
3774 	char *e;
3775 	unsigned long long n = simple_strtoull(buf, &e, 10);
3776 
3777 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3778 		return -EBUSY;
3779 	if (cmd_match(buf, "none"))
3780 		n = MaxSector;
3781 	else if (!*buf || (*e && *e != '\n'))
3782 		return -EINVAL;
3783 
3784 	mddev->recovery_cp = n;
3785 	if (mddev->pers)
3786 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3787 	return len;
3788 }
3789 static struct md_sysfs_entry md_resync_start =
3790 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3791 
3792 /*
3793  * The array state can be:
3794  *
3795  * clear
3796  *     No devices, no size, no level
3797  *     Equivalent to STOP_ARRAY ioctl
3798  * inactive
3799  *     May have some settings, but array is not active
3800  *        all IO results in error
3801  *     When written, doesn't tear down array, but just stops it
3802  * suspended (not supported yet)
3803  *     All IO requests will block. The array can be reconfigured.
3804  *     Writing this, if accepted, will block until array is quiescent
3805  * readonly
3806  *     no resync can happen.  no superblocks get written.
3807  *     write requests fail
3808  * read-auto
3809  *     like readonly, but behaves like 'clean' on a write request.
3810  *
3811  * clean - no pending writes, but otherwise active.
3812  *     When written to inactive array, starts without resync
3813  *     If a write request arrives then
3814  *       if metadata is known, mark 'dirty' and switch to 'active'.
3815  *       if not known, block and switch to write-pending
3816  *     If written to an active array that has pending writes, then fails.
3817  * active
3818  *     fully active: IO and resync can be happening.
3819  *     When written to inactive array, starts with resync
3820  *
3821  * write-pending
3822  *     clean, but writes are blocked waiting for 'active' to be written.
3823  *
3824  * active-idle
3825  *     like active, but no writes have been seen for a while (100msec).
3826  *
3827  */
3828 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3829 		   write_pending, active_idle, bad_word};
3830 static char *array_states[] = {
3831 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3832 	"write-pending", "active-idle", NULL };
3833 
3834 static int match_word(const char *word, char **list)
3835 {
3836 	int n;
3837 	for (n=0; list[n]; n++)
3838 		if (cmd_match(word, list[n]))
3839 			break;
3840 	return n;
3841 }
3842 
3843 static ssize_t
3844 array_state_show(struct mddev *mddev, char *page)
3845 {
3846 	enum array_state st = inactive;
3847 
3848 	if (mddev->pers)
3849 		switch(mddev->ro) {
3850 		case 1:
3851 			st = readonly;
3852 			break;
3853 		case 2:
3854 			st = read_auto;
3855 			break;
3856 		case 0:
3857 			if (mddev->in_sync)
3858 				st = clean;
3859 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3860 				st = write_pending;
3861 			else if (mddev->safemode)
3862 				st = active_idle;
3863 			else
3864 				st = active;
3865 		}
3866 	else {
3867 		if (list_empty(&mddev->disks) &&
3868 		    mddev->raid_disks == 0 &&
3869 		    mddev->dev_sectors == 0)
3870 			st = clear;
3871 		else
3872 			st = inactive;
3873 	}
3874 	return sprintf(page, "%s\n", array_states[st]);
3875 }
3876 
3877 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3878 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3879 static int do_md_run(struct mddev * mddev);
3880 static int restart_array(struct mddev *mddev);
3881 
3882 static ssize_t
3883 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3884 {
3885 	int err = -EINVAL;
3886 	enum array_state st = match_word(buf, array_states);
3887 	switch(st) {
3888 	case bad_word:
3889 		break;
3890 	case clear:
3891 		/* stopping an active array */
3892 		err = do_md_stop(mddev, 0, NULL);
3893 		break;
3894 	case inactive:
3895 		/* stopping an active array */
3896 		if (mddev->pers)
3897 			err = do_md_stop(mddev, 2, NULL);
3898 		else
3899 			err = 0; /* already inactive */
3900 		break;
3901 	case suspended:
3902 		break; /* not supported yet */
3903 	case readonly:
3904 		if (mddev->pers)
3905 			err = md_set_readonly(mddev, NULL);
3906 		else {
3907 			mddev->ro = 1;
3908 			set_disk_ro(mddev->gendisk, 1);
3909 			err = do_md_run(mddev);
3910 		}
3911 		break;
3912 	case read_auto:
3913 		if (mddev->pers) {
3914 			if (mddev->ro == 0)
3915 				err = md_set_readonly(mddev, NULL);
3916 			else if (mddev->ro == 1)
3917 				err = restart_array(mddev);
3918 			if (err == 0) {
3919 				mddev->ro = 2;
3920 				set_disk_ro(mddev->gendisk, 0);
3921 			}
3922 		} else {
3923 			mddev->ro = 2;
3924 			err = do_md_run(mddev);
3925 		}
3926 		break;
3927 	case clean:
3928 		if (mddev->pers) {
3929 			restart_array(mddev);
3930 			spin_lock_irq(&mddev->write_lock);
3931 			if (atomic_read(&mddev->writes_pending) == 0) {
3932 				if (mddev->in_sync == 0) {
3933 					mddev->in_sync = 1;
3934 					if (mddev->safemode == 1)
3935 						mddev->safemode = 0;
3936 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3937 				}
3938 				err = 0;
3939 			} else
3940 				err = -EBUSY;
3941 			spin_unlock_irq(&mddev->write_lock);
3942 		} else
3943 			err = -EINVAL;
3944 		break;
3945 	case active:
3946 		if (mddev->pers) {
3947 			restart_array(mddev);
3948 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3949 			wake_up(&mddev->sb_wait);
3950 			err = 0;
3951 		} else {
3952 			mddev->ro = 0;
3953 			set_disk_ro(mddev->gendisk, 0);
3954 			err = do_md_run(mddev);
3955 		}
3956 		break;
3957 	case write_pending:
3958 	case active_idle:
3959 		/* these cannot be set */
3960 		break;
3961 	}
3962 	if (err)
3963 		return err;
3964 	else {
3965 		if (mddev->hold_active == UNTIL_IOCTL)
3966 			mddev->hold_active = 0;
3967 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3968 		return len;
3969 	}
3970 }
3971 static struct md_sysfs_entry md_array_state =
3972 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3973 
3974 static ssize_t
3975 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3976 	return sprintf(page, "%d\n",
3977 		       atomic_read(&mddev->max_corr_read_errors));
3978 }
3979 
3980 static ssize_t
3981 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3982 {
3983 	char *e;
3984 	unsigned long n = simple_strtoul(buf, &e, 10);
3985 
3986 	if (*buf && (*e == 0 || *e == '\n')) {
3987 		atomic_set(&mddev->max_corr_read_errors, n);
3988 		return len;
3989 	}
3990 	return -EINVAL;
3991 }
3992 
3993 static struct md_sysfs_entry max_corr_read_errors =
3994 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3995 	max_corrected_read_errors_store);
3996 
3997 static ssize_t
3998 null_show(struct mddev *mddev, char *page)
3999 {
4000 	return -EINVAL;
4001 }
4002 
4003 static ssize_t
4004 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4005 {
4006 	/* buf must be %d:%d\n? giving major and minor numbers */
4007 	/* The new device is added to the array.
4008 	 * If the array has a persistent superblock, we read the
4009 	 * superblock to initialise info and check validity.
4010 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4011 	 * which mainly checks size.
4012 	 */
4013 	char *e;
4014 	int major = simple_strtoul(buf, &e, 10);
4015 	int minor;
4016 	dev_t dev;
4017 	struct md_rdev *rdev;
4018 	int err;
4019 
4020 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4021 		return -EINVAL;
4022 	minor = simple_strtoul(e+1, &e, 10);
4023 	if (*e && *e != '\n')
4024 		return -EINVAL;
4025 	dev = MKDEV(major, minor);
4026 	if (major != MAJOR(dev) ||
4027 	    minor != MINOR(dev))
4028 		return -EOVERFLOW;
4029 
4030 
4031 	if (mddev->persistent) {
4032 		rdev = md_import_device(dev, mddev->major_version,
4033 					mddev->minor_version);
4034 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4035 			struct md_rdev *rdev0
4036 				= list_entry(mddev->disks.next,
4037 					     struct md_rdev, same_set);
4038 			err = super_types[mddev->major_version]
4039 				.load_super(rdev, rdev0, mddev->minor_version);
4040 			if (err < 0)
4041 				goto out;
4042 		}
4043 	} else if (mddev->external)
4044 		rdev = md_import_device(dev, -2, -1);
4045 	else
4046 		rdev = md_import_device(dev, -1, -1);
4047 
4048 	if (IS_ERR(rdev))
4049 		return PTR_ERR(rdev);
4050 	err = bind_rdev_to_array(rdev, mddev);
4051  out:
4052 	if (err)
4053 		export_rdev(rdev);
4054 	return err ? err : len;
4055 }
4056 
4057 static struct md_sysfs_entry md_new_device =
4058 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4059 
4060 static ssize_t
4061 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4062 {
4063 	char *end;
4064 	unsigned long chunk, end_chunk;
4065 
4066 	if (!mddev->bitmap)
4067 		goto out;
4068 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4069 	while (*buf) {
4070 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4071 		if (buf == end) break;
4072 		if (*end == '-') { /* range */
4073 			buf = end + 1;
4074 			end_chunk = simple_strtoul(buf, &end, 0);
4075 			if (buf == end) break;
4076 		}
4077 		if (*end && !isspace(*end)) break;
4078 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4079 		buf = skip_spaces(end);
4080 	}
4081 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4082 out:
4083 	return len;
4084 }
4085 
4086 static struct md_sysfs_entry md_bitmap =
4087 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4088 
4089 static ssize_t
4090 size_show(struct mddev *mddev, char *page)
4091 {
4092 	return sprintf(page, "%llu\n",
4093 		(unsigned long long)mddev->dev_sectors / 2);
4094 }
4095 
4096 static int update_size(struct mddev *mddev, sector_t num_sectors);
4097 
4098 static ssize_t
4099 size_store(struct mddev *mddev, const char *buf, size_t len)
4100 {
4101 	/* If array is inactive, we can reduce the component size, but
4102 	 * not increase it (except from 0).
4103 	 * If array is active, we can try an on-line resize
4104 	 */
4105 	sector_t sectors;
4106 	int err = strict_blocks_to_sectors(buf, &sectors);
4107 
4108 	if (err < 0)
4109 		return err;
4110 	if (mddev->pers) {
4111 		err = update_size(mddev, sectors);
4112 		md_update_sb(mddev, 1);
4113 	} else {
4114 		if (mddev->dev_sectors == 0 ||
4115 		    mddev->dev_sectors > sectors)
4116 			mddev->dev_sectors = sectors;
4117 		else
4118 			err = -ENOSPC;
4119 	}
4120 	return err ? err : len;
4121 }
4122 
4123 static struct md_sysfs_entry md_size =
4124 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4125 
4126 
4127 /* Metadata version.
4128  * This is one of
4129  *   'none' for arrays with no metadata (good luck...)
4130  *   'external' for arrays with externally managed metadata,
4131  * or N.M for internally known formats
4132  */
4133 static ssize_t
4134 metadata_show(struct mddev *mddev, char *page)
4135 {
4136 	if (mddev->persistent)
4137 		return sprintf(page, "%d.%d\n",
4138 			       mddev->major_version, mddev->minor_version);
4139 	else if (mddev->external)
4140 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4141 	else
4142 		return sprintf(page, "none\n");
4143 }
4144 
4145 static ssize_t
4146 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4147 {
4148 	int major, minor;
4149 	char *e;
4150 	/* Changing the details of 'external' metadata is
4151 	 * always permitted.  Otherwise there must be
4152 	 * no devices attached to the array.
4153 	 */
4154 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4155 		;
4156 	else if (!list_empty(&mddev->disks))
4157 		return -EBUSY;
4158 
4159 	if (cmd_match(buf, "none")) {
4160 		mddev->persistent = 0;
4161 		mddev->external = 0;
4162 		mddev->major_version = 0;
4163 		mddev->minor_version = 90;
4164 		return len;
4165 	}
4166 	if (strncmp(buf, "external:", 9) == 0) {
4167 		size_t namelen = len-9;
4168 		if (namelen >= sizeof(mddev->metadata_type))
4169 			namelen = sizeof(mddev->metadata_type)-1;
4170 		strncpy(mddev->metadata_type, buf+9, namelen);
4171 		mddev->metadata_type[namelen] = 0;
4172 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4173 			mddev->metadata_type[--namelen] = 0;
4174 		mddev->persistent = 0;
4175 		mddev->external = 1;
4176 		mddev->major_version = 0;
4177 		mddev->minor_version = 90;
4178 		return len;
4179 	}
4180 	major = simple_strtoul(buf, &e, 10);
4181 	if (e==buf || *e != '.')
4182 		return -EINVAL;
4183 	buf = e+1;
4184 	minor = simple_strtoul(buf, &e, 10);
4185 	if (e==buf || (*e && *e != '\n') )
4186 		return -EINVAL;
4187 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4188 		return -ENOENT;
4189 	mddev->major_version = major;
4190 	mddev->minor_version = minor;
4191 	mddev->persistent = 1;
4192 	mddev->external = 0;
4193 	return len;
4194 }
4195 
4196 static struct md_sysfs_entry md_metadata =
4197 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4198 
4199 static ssize_t
4200 action_show(struct mddev *mddev, char *page)
4201 {
4202 	char *type = "idle";
4203 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4204 		type = "frozen";
4205 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4206 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4207 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4208 			type = "reshape";
4209 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4210 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4211 				type = "resync";
4212 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4213 				type = "check";
4214 			else
4215 				type = "repair";
4216 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4217 			type = "recover";
4218 	}
4219 	return sprintf(page, "%s\n", type);
4220 }
4221 
4222 static void reap_sync_thread(struct mddev *mddev);
4223 
4224 static ssize_t
4225 action_store(struct mddev *mddev, const char *page, size_t len)
4226 {
4227 	if (!mddev->pers || !mddev->pers->sync_request)
4228 		return -EINVAL;
4229 
4230 	if (cmd_match(page, "frozen"))
4231 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4232 	else
4233 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4234 
4235 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4236 		if (mddev->sync_thread) {
4237 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4238 			reap_sync_thread(mddev);
4239 		}
4240 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4241 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4242 		return -EBUSY;
4243 	else if (cmd_match(page, "resync"))
4244 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4245 	else if (cmd_match(page, "recover")) {
4246 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4247 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4248 	} else if (cmd_match(page, "reshape")) {
4249 		int err;
4250 		if (mddev->pers->start_reshape == NULL)
4251 			return -EINVAL;
4252 		err = mddev->pers->start_reshape(mddev);
4253 		if (err)
4254 			return err;
4255 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4256 	} else {
4257 		if (cmd_match(page, "check"))
4258 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4259 		else if (!cmd_match(page, "repair"))
4260 			return -EINVAL;
4261 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4262 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4263 	}
4264 	if (mddev->ro == 2) {
4265 		/* A write to sync_action is enough to justify
4266 		 * canceling read-auto mode
4267 		 */
4268 		mddev->ro = 0;
4269 		md_wakeup_thread(mddev->sync_thread);
4270 	}
4271 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4272 	md_wakeup_thread(mddev->thread);
4273 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4274 	return len;
4275 }
4276 
4277 static ssize_t
4278 mismatch_cnt_show(struct mddev *mddev, char *page)
4279 {
4280 	return sprintf(page, "%llu\n",
4281 		       (unsigned long long)
4282 		       atomic64_read(&mddev->resync_mismatches));
4283 }
4284 
4285 static struct md_sysfs_entry md_scan_mode =
4286 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4287 
4288 
4289 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4290 
4291 static ssize_t
4292 sync_min_show(struct mddev *mddev, char *page)
4293 {
4294 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4295 		       mddev->sync_speed_min ? "local": "system");
4296 }
4297 
4298 static ssize_t
4299 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4300 {
4301 	int min;
4302 	char *e;
4303 	if (strncmp(buf, "system", 6)==0) {
4304 		mddev->sync_speed_min = 0;
4305 		return len;
4306 	}
4307 	min = simple_strtoul(buf, &e, 10);
4308 	if (buf == e || (*e && *e != '\n') || min <= 0)
4309 		return -EINVAL;
4310 	mddev->sync_speed_min = min;
4311 	return len;
4312 }
4313 
4314 static struct md_sysfs_entry md_sync_min =
4315 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4316 
4317 static ssize_t
4318 sync_max_show(struct mddev *mddev, char *page)
4319 {
4320 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4321 		       mddev->sync_speed_max ? "local": "system");
4322 }
4323 
4324 static ssize_t
4325 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4326 {
4327 	int max;
4328 	char *e;
4329 	if (strncmp(buf, "system", 6)==0) {
4330 		mddev->sync_speed_max = 0;
4331 		return len;
4332 	}
4333 	max = simple_strtoul(buf, &e, 10);
4334 	if (buf == e || (*e && *e != '\n') || max <= 0)
4335 		return -EINVAL;
4336 	mddev->sync_speed_max = max;
4337 	return len;
4338 }
4339 
4340 static struct md_sysfs_entry md_sync_max =
4341 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4342 
4343 static ssize_t
4344 degraded_show(struct mddev *mddev, char *page)
4345 {
4346 	return sprintf(page, "%d\n", mddev->degraded);
4347 }
4348 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4349 
4350 static ssize_t
4351 sync_force_parallel_show(struct mddev *mddev, char *page)
4352 {
4353 	return sprintf(page, "%d\n", mddev->parallel_resync);
4354 }
4355 
4356 static ssize_t
4357 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4358 {
4359 	long n;
4360 
4361 	if (strict_strtol(buf, 10, &n))
4362 		return -EINVAL;
4363 
4364 	if (n != 0 && n != 1)
4365 		return -EINVAL;
4366 
4367 	mddev->parallel_resync = n;
4368 
4369 	if (mddev->sync_thread)
4370 		wake_up(&resync_wait);
4371 
4372 	return len;
4373 }
4374 
4375 /* force parallel resync, even with shared block devices */
4376 static struct md_sysfs_entry md_sync_force_parallel =
4377 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4378        sync_force_parallel_show, sync_force_parallel_store);
4379 
4380 static ssize_t
4381 sync_speed_show(struct mddev *mddev, char *page)
4382 {
4383 	unsigned long resync, dt, db;
4384 	if (mddev->curr_resync == 0)
4385 		return sprintf(page, "none\n");
4386 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4387 	dt = (jiffies - mddev->resync_mark) / HZ;
4388 	if (!dt) dt++;
4389 	db = resync - mddev->resync_mark_cnt;
4390 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4391 }
4392 
4393 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4394 
4395 static ssize_t
4396 sync_completed_show(struct mddev *mddev, char *page)
4397 {
4398 	unsigned long long max_sectors, resync;
4399 
4400 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4401 		return sprintf(page, "none\n");
4402 
4403 	if (mddev->curr_resync == 1 ||
4404 	    mddev->curr_resync == 2)
4405 		return sprintf(page, "delayed\n");
4406 
4407 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4408 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4409 		max_sectors = mddev->resync_max_sectors;
4410 	else
4411 		max_sectors = mddev->dev_sectors;
4412 
4413 	resync = mddev->curr_resync_completed;
4414 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4415 }
4416 
4417 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4418 
4419 static ssize_t
4420 min_sync_show(struct mddev *mddev, char *page)
4421 {
4422 	return sprintf(page, "%llu\n",
4423 		       (unsigned long long)mddev->resync_min);
4424 }
4425 static ssize_t
4426 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4427 {
4428 	unsigned long long min;
4429 	if (strict_strtoull(buf, 10, &min))
4430 		return -EINVAL;
4431 	if (min > mddev->resync_max)
4432 		return -EINVAL;
4433 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4434 		return -EBUSY;
4435 
4436 	/* Must be a multiple of chunk_size */
4437 	if (mddev->chunk_sectors) {
4438 		sector_t temp = min;
4439 		if (sector_div(temp, mddev->chunk_sectors))
4440 			return -EINVAL;
4441 	}
4442 	mddev->resync_min = min;
4443 
4444 	return len;
4445 }
4446 
4447 static struct md_sysfs_entry md_min_sync =
4448 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4449 
4450 static ssize_t
4451 max_sync_show(struct mddev *mddev, char *page)
4452 {
4453 	if (mddev->resync_max == MaxSector)
4454 		return sprintf(page, "max\n");
4455 	else
4456 		return sprintf(page, "%llu\n",
4457 			       (unsigned long long)mddev->resync_max);
4458 }
4459 static ssize_t
4460 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4461 {
4462 	if (strncmp(buf, "max", 3) == 0)
4463 		mddev->resync_max = MaxSector;
4464 	else {
4465 		unsigned long long max;
4466 		if (strict_strtoull(buf, 10, &max))
4467 			return -EINVAL;
4468 		if (max < mddev->resync_min)
4469 			return -EINVAL;
4470 		if (max < mddev->resync_max &&
4471 		    mddev->ro == 0 &&
4472 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4473 			return -EBUSY;
4474 
4475 		/* Must be a multiple of chunk_size */
4476 		if (mddev->chunk_sectors) {
4477 			sector_t temp = max;
4478 			if (sector_div(temp, mddev->chunk_sectors))
4479 				return -EINVAL;
4480 		}
4481 		mddev->resync_max = max;
4482 	}
4483 	wake_up(&mddev->recovery_wait);
4484 	return len;
4485 }
4486 
4487 static struct md_sysfs_entry md_max_sync =
4488 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4489 
4490 static ssize_t
4491 suspend_lo_show(struct mddev *mddev, char *page)
4492 {
4493 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4494 }
4495 
4496 static ssize_t
4497 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4498 {
4499 	char *e;
4500 	unsigned long long new = simple_strtoull(buf, &e, 10);
4501 	unsigned long long old = mddev->suspend_lo;
4502 
4503 	if (mddev->pers == NULL ||
4504 	    mddev->pers->quiesce == NULL)
4505 		return -EINVAL;
4506 	if (buf == e || (*e && *e != '\n'))
4507 		return -EINVAL;
4508 
4509 	mddev->suspend_lo = new;
4510 	if (new >= old)
4511 		/* Shrinking suspended region */
4512 		mddev->pers->quiesce(mddev, 2);
4513 	else {
4514 		/* Expanding suspended region - need to wait */
4515 		mddev->pers->quiesce(mddev, 1);
4516 		mddev->pers->quiesce(mddev, 0);
4517 	}
4518 	return len;
4519 }
4520 static struct md_sysfs_entry md_suspend_lo =
4521 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4522 
4523 
4524 static ssize_t
4525 suspend_hi_show(struct mddev *mddev, char *page)
4526 {
4527 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4528 }
4529 
4530 static ssize_t
4531 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4532 {
4533 	char *e;
4534 	unsigned long long new = simple_strtoull(buf, &e, 10);
4535 	unsigned long long old = mddev->suspend_hi;
4536 
4537 	if (mddev->pers == NULL ||
4538 	    mddev->pers->quiesce == NULL)
4539 		return -EINVAL;
4540 	if (buf == e || (*e && *e != '\n'))
4541 		return -EINVAL;
4542 
4543 	mddev->suspend_hi = new;
4544 	if (new <= old)
4545 		/* Shrinking suspended region */
4546 		mddev->pers->quiesce(mddev, 2);
4547 	else {
4548 		/* Expanding suspended region - need to wait */
4549 		mddev->pers->quiesce(mddev, 1);
4550 		mddev->pers->quiesce(mddev, 0);
4551 	}
4552 	return len;
4553 }
4554 static struct md_sysfs_entry md_suspend_hi =
4555 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4556 
4557 static ssize_t
4558 reshape_position_show(struct mddev *mddev, char *page)
4559 {
4560 	if (mddev->reshape_position != MaxSector)
4561 		return sprintf(page, "%llu\n",
4562 			       (unsigned long long)mddev->reshape_position);
4563 	strcpy(page, "none\n");
4564 	return 5;
4565 }
4566 
4567 static ssize_t
4568 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4569 {
4570 	struct md_rdev *rdev;
4571 	char *e;
4572 	unsigned long long new = simple_strtoull(buf, &e, 10);
4573 	if (mddev->pers)
4574 		return -EBUSY;
4575 	if (buf == e || (*e && *e != '\n'))
4576 		return -EINVAL;
4577 	mddev->reshape_position = new;
4578 	mddev->delta_disks = 0;
4579 	mddev->reshape_backwards = 0;
4580 	mddev->new_level = mddev->level;
4581 	mddev->new_layout = mddev->layout;
4582 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4583 	rdev_for_each(rdev, mddev)
4584 		rdev->new_data_offset = rdev->data_offset;
4585 	return len;
4586 }
4587 
4588 static struct md_sysfs_entry md_reshape_position =
4589 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4590        reshape_position_store);
4591 
4592 static ssize_t
4593 reshape_direction_show(struct mddev *mddev, char *page)
4594 {
4595 	return sprintf(page, "%s\n",
4596 		       mddev->reshape_backwards ? "backwards" : "forwards");
4597 }
4598 
4599 static ssize_t
4600 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4601 {
4602 	int backwards = 0;
4603 	if (cmd_match(buf, "forwards"))
4604 		backwards = 0;
4605 	else if (cmd_match(buf, "backwards"))
4606 		backwards = 1;
4607 	else
4608 		return -EINVAL;
4609 	if (mddev->reshape_backwards == backwards)
4610 		return len;
4611 
4612 	/* check if we are allowed to change */
4613 	if (mddev->delta_disks)
4614 		return -EBUSY;
4615 
4616 	if (mddev->persistent &&
4617 	    mddev->major_version == 0)
4618 		return -EINVAL;
4619 
4620 	mddev->reshape_backwards = backwards;
4621 	return len;
4622 }
4623 
4624 static struct md_sysfs_entry md_reshape_direction =
4625 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4626        reshape_direction_store);
4627 
4628 static ssize_t
4629 array_size_show(struct mddev *mddev, char *page)
4630 {
4631 	if (mddev->external_size)
4632 		return sprintf(page, "%llu\n",
4633 			       (unsigned long long)mddev->array_sectors/2);
4634 	else
4635 		return sprintf(page, "default\n");
4636 }
4637 
4638 static ssize_t
4639 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4640 {
4641 	sector_t sectors;
4642 
4643 	if (strncmp(buf, "default", 7) == 0) {
4644 		if (mddev->pers)
4645 			sectors = mddev->pers->size(mddev, 0, 0);
4646 		else
4647 			sectors = mddev->array_sectors;
4648 
4649 		mddev->external_size = 0;
4650 	} else {
4651 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4652 			return -EINVAL;
4653 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4654 			return -E2BIG;
4655 
4656 		mddev->external_size = 1;
4657 	}
4658 
4659 	mddev->array_sectors = sectors;
4660 	if (mddev->pers) {
4661 		set_capacity(mddev->gendisk, mddev->array_sectors);
4662 		revalidate_disk(mddev->gendisk);
4663 	}
4664 	return len;
4665 }
4666 
4667 static struct md_sysfs_entry md_array_size =
4668 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4669        array_size_store);
4670 
4671 static struct attribute *md_default_attrs[] = {
4672 	&md_level.attr,
4673 	&md_layout.attr,
4674 	&md_raid_disks.attr,
4675 	&md_chunk_size.attr,
4676 	&md_size.attr,
4677 	&md_resync_start.attr,
4678 	&md_metadata.attr,
4679 	&md_new_device.attr,
4680 	&md_safe_delay.attr,
4681 	&md_array_state.attr,
4682 	&md_reshape_position.attr,
4683 	&md_reshape_direction.attr,
4684 	&md_array_size.attr,
4685 	&max_corr_read_errors.attr,
4686 	NULL,
4687 };
4688 
4689 static struct attribute *md_redundancy_attrs[] = {
4690 	&md_scan_mode.attr,
4691 	&md_mismatches.attr,
4692 	&md_sync_min.attr,
4693 	&md_sync_max.attr,
4694 	&md_sync_speed.attr,
4695 	&md_sync_force_parallel.attr,
4696 	&md_sync_completed.attr,
4697 	&md_min_sync.attr,
4698 	&md_max_sync.attr,
4699 	&md_suspend_lo.attr,
4700 	&md_suspend_hi.attr,
4701 	&md_bitmap.attr,
4702 	&md_degraded.attr,
4703 	NULL,
4704 };
4705 static struct attribute_group md_redundancy_group = {
4706 	.name = NULL,
4707 	.attrs = md_redundancy_attrs,
4708 };
4709 
4710 
4711 static ssize_t
4712 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4713 {
4714 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4715 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4716 	ssize_t rv;
4717 
4718 	if (!entry->show)
4719 		return -EIO;
4720 	spin_lock(&all_mddevs_lock);
4721 	if (list_empty(&mddev->all_mddevs)) {
4722 		spin_unlock(&all_mddevs_lock);
4723 		return -EBUSY;
4724 	}
4725 	mddev_get(mddev);
4726 	spin_unlock(&all_mddevs_lock);
4727 
4728 	rv = mddev_lock(mddev);
4729 	if (!rv) {
4730 		rv = entry->show(mddev, page);
4731 		mddev_unlock(mddev);
4732 	}
4733 	mddev_put(mddev);
4734 	return rv;
4735 }
4736 
4737 static ssize_t
4738 md_attr_store(struct kobject *kobj, struct attribute *attr,
4739 	      const char *page, size_t length)
4740 {
4741 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4742 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4743 	ssize_t rv;
4744 
4745 	if (!entry->store)
4746 		return -EIO;
4747 	if (!capable(CAP_SYS_ADMIN))
4748 		return -EACCES;
4749 	spin_lock(&all_mddevs_lock);
4750 	if (list_empty(&mddev->all_mddevs)) {
4751 		spin_unlock(&all_mddevs_lock);
4752 		return -EBUSY;
4753 	}
4754 	mddev_get(mddev);
4755 	spin_unlock(&all_mddevs_lock);
4756 	rv = mddev_lock(mddev);
4757 	if (!rv) {
4758 		rv = entry->store(mddev, page, length);
4759 		mddev_unlock(mddev);
4760 	}
4761 	mddev_put(mddev);
4762 	return rv;
4763 }
4764 
4765 static void md_free(struct kobject *ko)
4766 {
4767 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4768 
4769 	if (mddev->sysfs_state)
4770 		sysfs_put(mddev->sysfs_state);
4771 
4772 	if (mddev->gendisk) {
4773 		del_gendisk(mddev->gendisk);
4774 		put_disk(mddev->gendisk);
4775 	}
4776 	if (mddev->queue)
4777 		blk_cleanup_queue(mddev->queue);
4778 
4779 	kfree(mddev);
4780 }
4781 
4782 static const struct sysfs_ops md_sysfs_ops = {
4783 	.show	= md_attr_show,
4784 	.store	= md_attr_store,
4785 };
4786 static struct kobj_type md_ktype = {
4787 	.release	= md_free,
4788 	.sysfs_ops	= &md_sysfs_ops,
4789 	.default_attrs	= md_default_attrs,
4790 };
4791 
4792 int mdp_major = 0;
4793 
4794 static void mddev_delayed_delete(struct work_struct *ws)
4795 {
4796 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4797 
4798 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4799 	kobject_del(&mddev->kobj);
4800 	kobject_put(&mddev->kobj);
4801 }
4802 
4803 static int md_alloc(dev_t dev, char *name)
4804 {
4805 	static DEFINE_MUTEX(disks_mutex);
4806 	struct mddev *mddev = mddev_find(dev);
4807 	struct gendisk *disk;
4808 	int partitioned;
4809 	int shift;
4810 	int unit;
4811 	int error;
4812 
4813 	if (!mddev)
4814 		return -ENODEV;
4815 
4816 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4817 	shift = partitioned ? MdpMinorShift : 0;
4818 	unit = MINOR(mddev->unit) >> shift;
4819 
4820 	/* wait for any previous instance of this device to be
4821 	 * completely removed (mddev_delayed_delete).
4822 	 */
4823 	flush_workqueue(md_misc_wq);
4824 
4825 	mutex_lock(&disks_mutex);
4826 	error = -EEXIST;
4827 	if (mddev->gendisk)
4828 		goto abort;
4829 
4830 	if (name) {
4831 		/* Need to ensure that 'name' is not a duplicate.
4832 		 */
4833 		struct mddev *mddev2;
4834 		spin_lock(&all_mddevs_lock);
4835 
4836 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4837 			if (mddev2->gendisk &&
4838 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4839 				spin_unlock(&all_mddevs_lock);
4840 				goto abort;
4841 			}
4842 		spin_unlock(&all_mddevs_lock);
4843 	}
4844 
4845 	error = -ENOMEM;
4846 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4847 	if (!mddev->queue)
4848 		goto abort;
4849 	mddev->queue->queuedata = mddev;
4850 
4851 	blk_queue_make_request(mddev->queue, md_make_request);
4852 	blk_set_stacking_limits(&mddev->queue->limits);
4853 
4854 	disk = alloc_disk(1 << shift);
4855 	if (!disk) {
4856 		blk_cleanup_queue(mddev->queue);
4857 		mddev->queue = NULL;
4858 		goto abort;
4859 	}
4860 	disk->major = MAJOR(mddev->unit);
4861 	disk->first_minor = unit << shift;
4862 	if (name)
4863 		strcpy(disk->disk_name, name);
4864 	else if (partitioned)
4865 		sprintf(disk->disk_name, "md_d%d", unit);
4866 	else
4867 		sprintf(disk->disk_name, "md%d", unit);
4868 	disk->fops = &md_fops;
4869 	disk->private_data = mddev;
4870 	disk->queue = mddev->queue;
4871 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4872 	/* Allow extended partitions.  This makes the
4873 	 * 'mdp' device redundant, but we can't really
4874 	 * remove it now.
4875 	 */
4876 	disk->flags |= GENHD_FL_EXT_DEVT;
4877 	mddev->gendisk = disk;
4878 	/* As soon as we call add_disk(), another thread could get
4879 	 * through to md_open, so make sure it doesn't get too far
4880 	 */
4881 	mutex_lock(&mddev->open_mutex);
4882 	add_disk(disk);
4883 
4884 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4885 				     &disk_to_dev(disk)->kobj, "%s", "md");
4886 	if (error) {
4887 		/* This isn't possible, but as kobject_init_and_add is marked
4888 		 * __must_check, we must do something with the result
4889 		 */
4890 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4891 		       disk->disk_name);
4892 		error = 0;
4893 	}
4894 	if (mddev->kobj.sd &&
4895 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4896 		printk(KERN_DEBUG "pointless warning\n");
4897 	mutex_unlock(&mddev->open_mutex);
4898  abort:
4899 	mutex_unlock(&disks_mutex);
4900 	if (!error && mddev->kobj.sd) {
4901 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4902 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4903 	}
4904 	mddev_put(mddev);
4905 	return error;
4906 }
4907 
4908 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4909 {
4910 	md_alloc(dev, NULL);
4911 	return NULL;
4912 }
4913 
4914 static int add_named_array(const char *val, struct kernel_param *kp)
4915 {
4916 	/* val must be "md_*" where * is not all digits.
4917 	 * We allocate an array with a large free minor number, and
4918 	 * set the name to val.  val must not already be an active name.
4919 	 */
4920 	int len = strlen(val);
4921 	char buf[DISK_NAME_LEN];
4922 
4923 	while (len && val[len-1] == '\n')
4924 		len--;
4925 	if (len >= DISK_NAME_LEN)
4926 		return -E2BIG;
4927 	strlcpy(buf, val, len+1);
4928 	if (strncmp(buf, "md_", 3) != 0)
4929 		return -EINVAL;
4930 	return md_alloc(0, buf);
4931 }
4932 
4933 static void md_safemode_timeout(unsigned long data)
4934 {
4935 	struct mddev *mddev = (struct mddev *) data;
4936 
4937 	if (!atomic_read(&mddev->writes_pending)) {
4938 		mddev->safemode = 1;
4939 		if (mddev->external)
4940 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4941 	}
4942 	md_wakeup_thread(mddev->thread);
4943 }
4944 
4945 static int start_dirty_degraded;
4946 
4947 int md_run(struct mddev *mddev)
4948 {
4949 	int err;
4950 	struct md_rdev *rdev;
4951 	struct md_personality *pers;
4952 
4953 	if (list_empty(&mddev->disks))
4954 		/* cannot run an array with no devices.. */
4955 		return -EINVAL;
4956 
4957 	if (mddev->pers)
4958 		return -EBUSY;
4959 	/* Cannot run until previous stop completes properly */
4960 	if (mddev->sysfs_active)
4961 		return -EBUSY;
4962 
4963 	/*
4964 	 * Analyze all RAID superblock(s)
4965 	 */
4966 	if (!mddev->raid_disks) {
4967 		if (!mddev->persistent)
4968 			return -EINVAL;
4969 		analyze_sbs(mddev);
4970 	}
4971 
4972 	if (mddev->level != LEVEL_NONE)
4973 		request_module("md-level-%d", mddev->level);
4974 	else if (mddev->clevel[0])
4975 		request_module("md-%s", mddev->clevel);
4976 
4977 	/*
4978 	 * Drop all container device buffers, from now on
4979 	 * the only valid external interface is through the md
4980 	 * device.
4981 	 */
4982 	rdev_for_each(rdev, mddev) {
4983 		if (test_bit(Faulty, &rdev->flags))
4984 			continue;
4985 		sync_blockdev(rdev->bdev);
4986 		invalidate_bdev(rdev->bdev);
4987 
4988 		/* perform some consistency tests on the device.
4989 		 * We don't want the data to overlap the metadata,
4990 		 * Internal Bitmap issues have been handled elsewhere.
4991 		 */
4992 		if (rdev->meta_bdev) {
4993 			/* Nothing to check */;
4994 		} else if (rdev->data_offset < rdev->sb_start) {
4995 			if (mddev->dev_sectors &&
4996 			    rdev->data_offset + mddev->dev_sectors
4997 			    > rdev->sb_start) {
4998 				printk("md: %s: data overlaps metadata\n",
4999 				       mdname(mddev));
5000 				return -EINVAL;
5001 			}
5002 		} else {
5003 			if (rdev->sb_start + rdev->sb_size/512
5004 			    > rdev->data_offset) {
5005 				printk("md: %s: metadata overlaps data\n",
5006 				       mdname(mddev));
5007 				return -EINVAL;
5008 			}
5009 		}
5010 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5011 	}
5012 
5013 	if (mddev->bio_set == NULL)
5014 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5015 
5016 	spin_lock(&pers_lock);
5017 	pers = find_pers(mddev->level, mddev->clevel);
5018 	if (!pers || !try_module_get(pers->owner)) {
5019 		spin_unlock(&pers_lock);
5020 		if (mddev->level != LEVEL_NONE)
5021 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5022 			       mddev->level);
5023 		else
5024 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5025 			       mddev->clevel);
5026 		return -EINVAL;
5027 	}
5028 	mddev->pers = pers;
5029 	spin_unlock(&pers_lock);
5030 	if (mddev->level != pers->level) {
5031 		mddev->level = pers->level;
5032 		mddev->new_level = pers->level;
5033 	}
5034 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5035 
5036 	if (mddev->reshape_position != MaxSector &&
5037 	    pers->start_reshape == NULL) {
5038 		/* This personality cannot handle reshaping... */
5039 		mddev->pers = NULL;
5040 		module_put(pers->owner);
5041 		return -EINVAL;
5042 	}
5043 
5044 	if (pers->sync_request) {
5045 		/* Warn if this is a potentially silly
5046 		 * configuration.
5047 		 */
5048 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5049 		struct md_rdev *rdev2;
5050 		int warned = 0;
5051 
5052 		rdev_for_each(rdev, mddev)
5053 			rdev_for_each(rdev2, mddev) {
5054 				if (rdev < rdev2 &&
5055 				    rdev->bdev->bd_contains ==
5056 				    rdev2->bdev->bd_contains) {
5057 					printk(KERN_WARNING
5058 					       "%s: WARNING: %s appears to be"
5059 					       " on the same physical disk as"
5060 					       " %s.\n",
5061 					       mdname(mddev),
5062 					       bdevname(rdev->bdev,b),
5063 					       bdevname(rdev2->bdev,b2));
5064 					warned = 1;
5065 				}
5066 			}
5067 
5068 		if (warned)
5069 			printk(KERN_WARNING
5070 			       "True protection against single-disk"
5071 			       " failure might be compromised.\n");
5072 	}
5073 
5074 	mddev->recovery = 0;
5075 	/* may be over-ridden by personality */
5076 	mddev->resync_max_sectors = mddev->dev_sectors;
5077 
5078 	mddev->ok_start_degraded = start_dirty_degraded;
5079 
5080 	if (start_readonly && mddev->ro == 0)
5081 		mddev->ro = 2; /* read-only, but switch on first write */
5082 
5083 	err = mddev->pers->run(mddev);
5084 	if (err)
5085 		printk(KERN_ERR "md: pers->run() failed ...\n");
5086 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5087 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5088 			  " but 'external_size' not in effect?\n", __func__);
5089 		printk(KERN_ERR
5090 		       "md: invalid array_size %llu > default size %llu\n",
5091 		       (unsigned long long)mddev->array_sectors / 2,
5092 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5093 		err = -EINVAL;
5094 		mddev->pers->stop(mddev);
5095 	}
5096 	if (err == 0 && mddev->pers->sync_request &&
5097 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5098 		err = bitmap_create(mddev);
5099 		if (err) {
5100 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5101 			       mdname(mddev), err);
5102 			mddev->pers->stop(mddev);
5103 		}
5104 	}
5105 	if (err) {
5106 		module_put(mddev->pers->owner);
5107 		mddev->pers = NULL;
5108 		bitmap_destroy(mddev);
5109 		return err;
5110 	}
5111 	if (mddev->pers->sync_request) {
5112 		if (mddev->kobj.sd &&
5113 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5114 			printk(KERN_WARNING
5115 			       "md: cannot register extra attributes for %s\n",
5116 			       mdname(mddev));
5117 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5118 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5119 		mddev->ro = 0;
5120 
5121  	atomic_set(&mddev->writes_pending,0);
5122 	atomic_set(&mddev->max_corr_read_errors,
5123 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5124 	mddev->safemode = 0;
5125 	mddev->safemode_timer.function = md_safemode_timeout;
5126 	mddev->safemode_timer.data = (unsigned long) mddev;
5127 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5128 	mddev->in_sync = 1;
5129 	smp_wmb();
5130 	mddev->ready = 1;
5131 	rdev_for_each(rdev, mddev)
5132 		if (rdev->raid_disk >= 0)
5133 			if (sysfs_link_rdev(mddev, rdev))
5134 				/* failure here is OK */;
5135 
5136 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5137 
5138 	if (mddev->flags)
5139 		md_update_sb(mddev, 0);
5140 
5141 	md_new_event(mddev);
5142 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5143 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5144 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5145 	return 0;
5146 }
5147 EXPORT_SYMBOL_GPL(md_run);
5148 
5149 static int do_md_run(struct mddev *mddev)
5150 {
5151 	int err;
5152 
5153 	err = md_run(mddev);
5154 	if (err)
5155 		goto out;
5156 	err = bitmap_load(mddev);
5157 	if (err) {
5158 		bitmap_destroy(mddev);
5159 		goto out;
5160 	}
5161 
5162 	md_wakeup_thread(mddev->thread);
5163 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5164 
5165 	set_capacity(mddev->gendisk, mddev->array_sectors);
5166 	revalidate_disk(mddev->gendisk);
5167 	mddev->changed = 1;
5168 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5169 out:
5170 	return err;
5171 }
5172 
5173 static int restart_array(struct mddev *mddev)
5174 {
5175 	struct gendisk *disk = mddev->gendisk;
5176 
5177 	/* Complain if it has no devices */
5178 	if (list_empty(&mddev->disks))
5179 		return -ENXIO;
5180 	if (!mddev->pers)
5181 		return -EINVAL;
5182 	if (!mddev->ro)
5183 		return -EBUSY;
5184 	mddev->safemode = 0;
5185 	mddev->ro = 0;
5186 	set_disk_ro(disk, 0);
5187 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5188 		mdname(mddev));
5189 	/* Kick recovery or resync if necessary */
5190 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5191 	md_wakeup_thread(mddev->thread);
5192 	md_wakeup_thread(mddev->sync_thread);
5193 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5194 	return 0;
5195 }
5196 
5197 /* similar to deny_write_access, but accounts for our holding a reference
5198  * to the file ourselves */
5199 static int deny_bitmap_write_access(struct file * file)
5200 {
5201 	struct inode *inode = file->f_mapping->host;
5202 
5203 	spin_lock(&inode->i_lock);
5204 	if (atomic_read(&inode->i_writecount) > 1) {
5205 		spin_unlock(&inode->i_lock);
5206 		return -ETXTBSY;
5207 	}
5208 	atomic_set(&inode->i_writecount, -1);
5209 	spin_unlock(&inode->i_lock);
5210 
5211 	return 0;
5212 }
5213 
5214 void restore_bitmap_write_access(struct file *file)
5215 {
5216 	struct inode *inode = file->f_mapping->host;
5217 
5218 	spin_lock(&inode->i_lock);
5219 	atomic_set(&inode->i_writecount, 1);
5220 	spin_unlock(&inode->i_lock);
5221 }
5222 
5223 static void md_clean(struct mddev *mddev)
5224 {
5225 	mddev->array_sectors = 0;
5226 	mddev->external_size = 0;
5227 	mddev->dev_sectors = 0;
5228 	mddev->raid_disks = 0;
5229 	mddev->recovery_cp = 0;
5230 	mddev->resync_min = 0;
5231 	mddev->resync_max = MaxSector;
5232 	mddev->reshape_position = MaxSector;
5233 	mddev->external = 0;
5234 	mddev->persistent = 0;
5235 	mddev->level = LEVEL_NONE;
5236 	mddev->clevel[0] = 0;
5237 	mddev->flags = 0;
5238 	mddev->ro = 0;
5239 	mddev->metadata_type[0] = 0;
5240 	mddev->chunk_sectors = 0;
5241 	mddev->ctime = mddev->utime = 0;
5242 	mddev->layout = 0;
5243 	mddev->max_disks = 0;
5244 	mddev->events = 0;
5245 	mddev->can_decrease_events = 0;
5246 	mddev->delta_disks = 0;
5247 	mddev->reshape_backwards = 0;
5248 	mddev->new_level = LEVEL_NONE;
5249 	mddev->new_layout = 0;
5250 	mddev->new_chunk_sectors = 0;
5251 	mddev->curr_resync = 0;
5252 	atomic64_set(&mddev->resync_mismatches, 0);
5253 	mddev->suspend_lo = mddev->suspend_hi = 0;
5254 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5255 	mddev->recovery = 0;
5256 	mddev->in_sync = 0;
5257 	mddev->changed = 0;
5258 	mddev->degraded = 0;
5259 	mddev->safemode = 0;
5260 	mddev->merge_check_needed = 0;
5261 	mddev->bitmap_info.offset = 0;
5262 	mddev->bitmap_info.default_offset = 0;
5263 	mddev->bitmap_info.default_space = 0;
5264 	mddev->bitmap_info.chunksize = 0;
5265 	mddev->bitmap_info.daemon_sleep = 0;
5266 	mddev->bitmap_info.max_write_behind = 0;
5267 }
5268 
5269 static void __md_stop_writes(struct mddev *mddev)
5270 {
5271 	if (mddev->sync_thread) {
5272 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5273 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5274 		reap_sync_thread(mddev);
5275 	}
5276 
5277 	del_timer_sync(&mddev->safemode_timer);
5278 
5279 	bitmap_flush(mddev);
5280 	md_super_wait(mddev);
5281 
5282 	if (!mddev->in_sync || mddev->flags) {
5283 		/* mark array as shutdown cleanly */
5284 		mddev->in_sync = 1;
5285 		md_update_sb(mddev, 1);
5286 	}
5287 }
5288 
5289 void md_stop_writes(struct mddev *mddev)
5290 {
5291 	mddev_lock(mddev);
5292 	__md_stop_writes(mddev);
5293 	mddev_unlock(mddev);
5294 }
5295 EXPORT_SYMBOL_GPL(md_stop_writes);
5296 
5297 static void __md_stop(struct mddev *mddev)
5298 {
5299 	mddev->ready = 0;
5300 	mddev->pers->stop(mddev);
5301 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5302 		mddev->to_remove = &md_redundancy_group;
5303 	module_put(mddev->pers->owner);
5304 	mddev->pers = NULL;
5305 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5306 }
5307 
5308 void md_stop(struct mddev *mddev)
5309 {
5310 	/* stop the array and free an attached data structures.
5311 	 * This is called from dm-raid
5312 	 */
5313 	__md_stop(mddev);
5314 	bitmap_destroy(mddev);
5315 	if (mddev->bio_set)
5316 		bioset_free(mddev->bio_set);
5317 }
5318 
5319 EXPORT_SYMBOL_GPL(md_stop);
5320 
5321 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5322 {
5323 	int err = 0;
5324 	mutex_lock(&mddev->open_mutex);
5325 	if (atomic_read(&mddev->openers) > !!bdev) {
5326 		printk("md: %s still in use.\n",mdname(mddev));
5327 		err = -EBUSY;
5328 		goto out;
5329 	}
5330 	if (bdev)
5331 		sync_blockdev(bdev);
5332 	if (mddev->pers) {
5333 		__md_stop_writes(mddev);
5334 
5335 		err  = -ENXIO;
5336 		if (mddev->ro==1)
5337 			goto out;
5338 		mddev->ro = 1;
5339 		set_disk_ro(mddev->gendisk, 1);
5340 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5341 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5342 		err = 0;
5343 	}
5344 out:
5345 	mutex_unlock(&mddev->open_mutex);
5346 	return err;
5347 }
5348 
5349 /* mode:
5350  *   0 - completely stop and dis-assemble array
5351  *   2 - stop but do not disassemble array
5352  */
5353 static int do_md_stop(struct mddev * mddev, int mode,
5354 		      struct block_device *bdev)
5355 {
5356 	struct gendisk *disk = mddev->gendisk;
5357 	struct md_rdev *rdev;
5358 
5359 	mutex_lock(&mddev->open_mutex);
5360 	if (atomic_read(&mddev->openers) > !!bdev ||
5361 	    mddev->sysfs_active) {
5362 		printk("md: %s still in use.\n",mdname(mddev));
5363 		mutex_unlock(&mddev->open_mutex);
5364 		return -EBUSY;
5365 	}
5366 	if (bdev)
5367 		/* It is possible IO was issued on some other
5368 		 * open file which was closed before we took ->open_mutex.
5369 		 * As that was not the last close __blkdev_put will not
5370 		 * have called sync_blockdev, so we must.
5371 		 */
5372 		sync_blockdev(bdev);
5373 
5374 	if (mddev->pers) {
5375 		if (mddev->ro)
5376 			set_disk_ro(disk, 0);
5377 
5378 		__md_stop_writes(mddev);
5379 		__md_stop(mddev);
5380 		mddev->queue->merge_bvec_fn = NULL;
5381 		mddev->queue->backing_dev_info.congested_fn = NULL;
5382 
5383 		/* tell userspace to handle 'inactive' */
5384 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5385 
5386 		rdev_for_each(rdev, mddev)
5387 			if (rdev->raid_disk >= 0)
5388 				sysfs_unlink_rdev(mddev, rdev);
5389 
5390 		set_capacity(disk, 0);
5391 		mutex_unlock(&mddev->open_mutex);
5392 		mddev->changed = 1;
5393 		revalidate_disk(disk);
5394 
5395 		if (mddev->ro)
5396 			mddev->ro = 0;
5397 	} else
5398 		mutex_unlock(&mddev->open_mutex);
5399 	/*
5400 	 * Free resources if final stop
5401 	 */
5402 	if (mode == 0) {
5403 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5404 
5405 		bitmap_destroy(mddev);
5406 		if (mddev->bitmap_info.file) {
5407 			restore_bitmap_write_access(mddev->bitmap_info.file);
5408 			fput(mddev->bitmap_info.file);
5409 			mddev->bitmap_info.file = NULL;
5410 		}
5411 		mddev->bitmap_info.offset = 0;
5412 
5413 		export_array(mddev);
5414 
5415 		md_clean(mddev);
5416 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5417 		if (mddev->hold_active == UNTIL_STOP)
5418 			mddev->hold_active = 0;
5419 	}
5420 	blk_integrity_unregister(disk);
5421 	md_new_event(mddev);
5422 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5423 	return 0;
5424 }
5425 
5426 #ifndef MODULE
5427 static void autorun_array(struct mddev *mddev)
5428 {
5429 	struct md_rdev *rdev;
5430 	int err;
5431 
5432 	if (list_empty(&mddev->disks))
5433 		return;
5434 
5435 	printk(KERN_INFO "md: running: ");
5436 
5437 	rdev_for_each(rdev, mddev) {
5438 		char b[BDEVNAME_SIZE];
5439 		printk("<%s>", bdevname(rdev->bdev,b));
5440 	}
5441 	printk("\n");
5442 
5443 	err = do_md_run(mddev);
5444 	if (err) {
5445 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5446 		do_md_stop(mddev, 0, NULL);
5447 	}
5448 }
5449 
5450 /*
5451  * lets try to run arrays based on all disks that have arrived
5452  * until now. (those are in pending_raid_disks)
5453  *
5454  * the method: pick the first pending disk, collect all disks with
5455  * the same UUID, remove all from the pending list and put them into
5456  * the 'same_array' list. Then order this list based on superblock
5457  * update time (freshest comes first), kick out 'old' disks and
5458  * compare superblocks. If everything's fine then run it.
5459  *
5460  * If "unit" is allocated, then bump its reference count
5461  */
5462 static void autorun_devices(int part)
5463 {
5464 	struct md_rdev *rdev0, *rdev, *tmp;
5465 	struct mddev *mddev;
5466 	char b[BDEVNAME_SIZE];
5467 
5468 	printk(KERN_INFO "md: autorun ...\n");
5469 	while (!list_empty(&pending_raid_disks)) {
5470 		int unit;
5471 		dev_t dev;
5472 		LIST_HEAD(candidates);
5473 		rdev0 = list_entry(pending_raid_disks.next,
5474 					 struct md_rdev, same_set);
5475 
5476 		printk(KERN_INFO "md: considering %s ...\n",
5477 			bdevname(rdev0->bdev,b));
5478 		INIT_LIST_HEAD(&candidates);
5479 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5480 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5481 				printk(KERN_INFO "md:  adding %s ...\n",
5482 					bdevname(rdev->bdev,b));
5483 				list_move(&rdev->same_set, &candidates);
5484 			}
5485 		/*
5486 		 * now we have a set of devices, with all of them having
5487 		 * mostly sane superblocks. It's time to allocate the
5488 		 * mddev.
5489 		 */
5490 		if (part) {
5491 			dev = MKDEV(mdp_major,
5492 				    rdev0->preferred_minor << MdpMinorShift);
5493 			unit = MINOR(dev) >> MdpMinorShift;
5494 		} else {
5495 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5496 			unit = MINOR(dev);
5497 		}
5498 		if (rdev0->preferred_minor != unit) {
5499 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5500 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5501 			break;
5502 		}
5503 
5504 		md_probe(dev, NULL, NULL);
5505 		mddev = mddev_find(dev);
5506 		if (!mddev || !mddev->gendisk) {
5507 			if (mddev)
5508 				mddev_put(mddev);
5509 			printk(KERN_ERR
5510 				"md: cannot allocate memory for md drive.\n");
5511 			break;
5512 		}
5513 		if (mddev_lock(mddev))
5514 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5515 			       mdname(mddev));
5516 		else if (mddev->raid_disks || mddev->major_version
5517 			 || !list_empty(&mddev->disks)) {
5518 			printk(KERN_WARNING
5519 				"md: %s already running, cannot run %s\n",
5520 				mdname(mddev), bdevname(rdev0->bdev,b));
5521 			mddev_unlock(mddev);
5522 		} else {
5523 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5524 			mddev->persistent = 1;
5525 			rdev_for_each_list(rdev, tmp, &candidates) {
5526 				list_del_init(&rdev->same_set);
5527 				if (bind_rdev_to_array(rdev, mddev))
5528 					export_rdev(rdev);
5529 			}
5530 			autorun_array(mddev);
5531 			mddev_unlock(mddev);
5532 		}
5533 		/* on success, candidates will be empty, on error
5534 		 * it won't...
5535 		 */
5536 		rdev_for_each_list(rdev, tmp, &candidates) {
5537 			list_del_init(&rdev->same_set);
5538 			export_rdev(rdev);
5539 		}
5540 		mddev_put(mddev);
5541 	}
5542 	printk(KERN_INFO "md: ... autorun DONE.\n");
5543 }
5544 #endif /* !MODULE */
5545 
5546 static int get_version(void __user * arg)
5547 {
5548 	mdu_version_t ver;
5549 
5550 	ver.major = MD_MAJOR_VERSION;
5551 	ver.minor = MD_MINOR_VERSION;
5552 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5553 
5554 	if (copy_to_user(arg, &ver, sizeof(ver)))
5555 		return -EFAULT;
5556 
5557 	return 0;
5558 }
5559 
5560 static int get_array_info(struct mddev * mddev, void __user * arg)
5561 {
5562 	mdu_array_info_t info;
5563 	int nr,working,insync,failed,spare;
5564 	struct md_rdev *rdev;
5565 
5566 	nr = working = insync = failed = spare = 0;
5567 	rcu_read_lock();
5568 	rdev_for_each_rcu(rdev, mddev) {
5569 		nr++;
5570 		if (test_bit(Faulty, &rdev->flags))
5571 			failed++;
5572 		else {
5573 			working++;
5574 			if (test_bit(In_sync, &rdev->flags))
5575 				insync++;
5576 			else
5577 				spare++;
5578 		}
5579 	}
5580 	rcu_read_unlock();
5581 
5582 	info.major_version = mddev->major_version;
5583 	info.minor_version = mddev->minor_version;
5584 	info.patch_version = MD_PATCHLEVEL_VERSION;
5585 	info.ctime         = mddev->ctime;
5586 	info.level         = mddev->level;
5587 	info.size          = mddev->dev_sectors / 2;
5588 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5589 		info.size = -1;
5590 	info.nr_disks      = nr;
5591 	info.raid_disks    = mddev->raid_disks;
5592 	info.md_minor      = mddev->md_minor;
5593 	info.not_persistent= !mddev->persistent;
5594 
5595 	info.utime         = mddev->utime;
5596 	info.state         = 0;
5597 	if (mddev->in_sync)
5598 		info.state = (1<<MD_SB_CLEAN);
5599 	if (mddev->bitmap && mddev->bitmap_info.offset)
5600 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5601 	info.active_disks  = insync;
5602 	info.working_disks = working;
5603 	info.failed_disks  = failed;
5604 	info.spare_disks   = spare;
5605 
5606 	info.layout        = mddev->layout;
5607 	info.chunk_size    = mddev->chunk_sectors << 9;
5608 
5609 	if (copy_to_user(arg, &info, sizeof(info)))
5610 		return -EFAULT;
5611 
5612 	return 0;
5613 }
5614 
5615 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5616 {
5617 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5618 	char *ptr, *buf = NULL;
5619 	int err = -ENOMEM;
5620 
5621 	if (md_allow_write(mddev))
5622 		file = kmalloc(sizeof(*file), GFP_NOIO);
5623 	else
5624 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5625 
5626 	if (!file)
5627 		goto out;
5628 
5629 	/* bitmap disabled, zero the first byte and copy out */
5630 	if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5631 		file->pathname[0] = '\0';
5632 		goto copy_out;
5633 	}
5634 
5635 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5636 	if (!buf)
5637 		goto out;
5638 
5639 	ptr = d_path(&mddev->bitmap->storage.file->f_path,
5640 		     buf, sizeof(file->pathname));
5641 	if (IS_ERR(ptr))
5642 		goto out;
5643 
5644 	strcpy(file->pathname, ptr);
5645 
5646 copy_out:
5647 	err = 0;
5648 	if (copy_to_user(arg, file, sizeof(*file)))
5649 		err = -EFAULT;
5650 out:
5651 	kfree(buf);
5652 	kfree(file);
5653 	return err;
5654 }
5655 
5656 static int get_disk_info(struct mddev * mddev, void __user * arg)
5657 {
5658 	mdu_disk_info_t info;
5659 	struct md_rdev *rdev;
5660 
5661 	if (copy_from_user(&info, arg, sizeof(info)))
5662 		return -EFAULT;
5663 
5664 	rcu_read_lock();
5665 	rdev = find_rdev_nr_rcu(mddev, info.number);
5666 	if (rdev) {
5667 		info.major = MAJOR(rdev->bdev->bd_dev);
5668 		info.minor = MINOR(rdev->bdev->bd_dev);
5669 		info.raid_disk = rdev->raid_disk;
5670 		info.state = 0;
5671 		if (test_bit(Faulty, &rdev->flags))
5672 			info.state |= (1<<MD_DISK_FAULTY);
5673 		else if (test_bit(In_sync, &rdev->flags)) {
5674 			info.state |= (1<<MD_DISK_ACTIVE);
5675 			info.state |= (1<<MD_DISK_SYNC);
5676 		}
5677 		if (test_bit(WriteMostly, &rdev->flags))
5678 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5679 	} else {
5680 		info.major = info.minor = 0;
5681 		info.raid_disk = -1;
5682 		info.state = (1<<MD_DISK_REMOVED);
5683 	}
5684 	rcu_read_unlock();
5685 
5686 	if (copy_to_user(arg, &info, sizeof(info)))
5687 		return -EFAULT;
5688 
5689 	return 0;
5690 }
5691 
5692 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5693 {
5694 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5695 	struct md_rdev *rdev;
5696 	dev_t dev = MKDEV(info->major,info->minor);
5697 
5698 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5699 		return -EOVERFLOW;
5700 
5701 	if (!mddev->raid_disks) {
5702 		int err;
5703 		/* expecting a device which has a superblock */
5704 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5705 		if (IS_ERR(rdev)) {
5706 			printk(KERN_WARNING
5707 				"md: md_import_device returned %ld\n",
5708 				PTR_ERR(rdev));
5709 			return PTR_ERR(rdev);
5710 		}
5711 		if (!list_empty(&mddev->disks)) {
5712 			struct md_rdev *rdev0
5713 				= list_entry(mddev->disks.next,
5714 					     struct md_rdev, same_set);
5715 			err = super_types[mddev->major_version]
5716 				.load_super(rdev, rdev0, mddev->minor_version);
5717 			if (err < 0) {
5718 				printk(KERN_WARNING
5719 					"md: %s has different UUID to %s\n",
5720 					bdevname(rdev->bdev,b),
5721 					bdevname(rdev0->bdev,b2));
5722 				export_rdev(rdev);
5723 				return -EINVAL;
5724 			}
5725 		}
5726 		err = bind_rdev_to_array(rdev, mddev);
5727 		if (err)
5728 			export_rdev(rdev);
5729 		return err;
5730 	}
5731 
5732 	/*
5733 	 * add_new_disk can be used once the array is assembled
5734 	 * to add "hot spares".  They must already have a superblock
5735 	 * written
5736 	 */
5737 	if (mddev->pers) {
5738 		int err;
5739 		if (!mddev->pers->hot_add_disk) {
5740 			printk(KERN_WARNING
5741 				"%s: personality does not support diskops!\n",
5742 			       mdname(mddev));
5743 			return -EINVAL;
5744 		}
5745 		if (mddev->persistent)
5746 			rdev = md_import_device(dev, mddev->major_version,
5747 						mddev->minor_version);
5748 		else
5749 			rdev = md_import_device(dev, -1, -1);
5750 		if (IS_ERR(rdev)) {
5751 			printk(KERN_WARNING
5752 				"md: md_import_device returned %ld\n",
5753 				PTR_ERR(rdev));
5754 			return PTR_ERR(rdev);
5755 		}
5756 		/* set saved_raid_disk if appropriate */
5757 		if (!mddev->persistent) {
5758 			if (info->state & (1<<MD_DISK_SYNC)  &&
5759 			    info->raid_disk < mddev->raid_disks) {
5760 				rdev->raid_disk = info->raid_disk;
5761 				set_bit(In_sync, &rdev->flags);
5762 			} else
5763 				rdev->raid_disk = -1;
5764 		} else
5765 			super_types[mddev->major_version].
5766 				validate_super(mddev, rdev);
5767 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5768 		     rdev->raid_disk != info->raid_disk) {
5769 			/* This was a hot-add request, but events doesn't
5770 			 * match, so reject it.
5771 			 */
5772 			export_rdev(rdev);
5773 			return -EINVAL;
5774 		}
5775 
5776 		if (test_bit(In_sync, &rdev->flags))
5777 			rdev->saved_raid_disk = rdev->raid_disk;
5778 		else
5779 			rdev->saved_raid_disk = -1;
5780 
5781 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5782 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5783 			set_bit(WriteMostly, &rdev->flags);
5784 		else
5785 			clear_bit(WriteMostly, &rdev->flags);
5786 
5787 		rdev->raid_disk = -1;
5788 		err = bind_rdev_to_array(rdev, mddev);
5789 		if (!err && !mddev->pers->hot_remove_disk) {
5790 			/* If there is hot_add_disk but no hot_remove_disk
5791 			 * then added disks for geometry changes,
5792 			 * and should be added immediately.
5793 			 */
5794 			super_types[mddev->major_version].
5795 				validate_super(mddev, rdev);
5796 			err = mddev->pers->hot_add_disk(mddev, rdev);
5797 			if (err)
5798 				unbind_rdev_from_array(rdev);
5799 		}
5800 		if (err)
5801 			export_rdev(rdev);
5802 		else
5803 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5804 
5805 		md_update_sb(mddev, 1);
5806 		if (mddev->degraded)
5807 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5808 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5809 		if (!err)
5810 			md_new_event(mddev);
5811 		md_wakeup_thread(mddev->thread);
5812 		return err;
5813 	}
5814 
5815 	/* otherwise, add_new_disk is only allowed
5816 	 * for major_version==0 superblocks
5817 	 */
5818 	if (mddev->major_version != 0) {
5819 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5820 		       mdname(mddev));
5821 		return -EINVAL;
5822 	}
5823 
5824 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5825 		int err;
5826 		rdev = md_import_device(dev, -1, 0);
5827 		if (IS_ERR(rdev)) {
5828 			printk(KERN_WARNING
5829 				"md: error, md_import_device() returned %ld\n",
5830 				PTR_ERR(rdev));
5831 			return PTR_ERR(rdev);
5832 		}
5833 		rdev->desc_nr = info->number;
5834 		if (info->raid_disk < mddev->raid_disks)
5835 			rdev->raid_disk = info->raid_disk;
5836 		else
5837 			rdev->raid_disk = -1;
5838 
5839 		if (rdev->raid_disk < mddev->raid_disks)
5840 			if (info->state & (1<<MD_DISK_SYNC))
5841 				set_bit(In_sync, &rdev->flags);
5842 
5843 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5844 			set_bit(WriteMostly, &rdev->flags);
5845 
5846 		if (!mddev->persistent) {
5847 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5848 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5849 		} else
5850 			rdev->sb_start = calc_dev_sboffset(rdev);
5851 		rdev->sectors = rdev->sb_start;
5852 
5853 		err = bind_rdev_to_array(rdev, mddev);
5854 		if (err) {
5855 			export_rdev(rdev);
5856 			return err;
5857 		}
5858 	}
5859 
5860 	return 0;
5861 }
5862 
5863 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5864 {
5865 	char b[BDEVNAME_SIZE];
5866 	struct md_rdev *rdev;
5867 
5868 	rdev = find_rdev(mddev, dev);
5869 	if (!rdev)
5870 		return -ENXIO;
5871 
5872 	if (rdev->raid_disk >= 0)
5873 		goto busy;
5874 
5875 	kick_rdev_from_array(rdev);
5876 	md_update_sb(mddev, 1);
5877 	md_new_event(mddev);
5878 
5879 	return 0;
5880 busy:
5881 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5882 		bdevname(rdev->bdev,b), mdname(mddev));
5883 	return -EBUSY;
5884 }
5885 
5886 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5887 {
5888 	char b[BDEVNAME_SIZE];
5889 	int err;
5890 	struct md_rdev *rdev;
5891 
5892 	if (!mddev->pers)
5893 		return -ENODEV;
5894 
5895 	if (mddev->major_version != 0) {
5896 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5897 			" version-0 superblocks.\n",
5898 			mdname(mddev));
5899 		return -EINVAL;
5900 	}
5901 	if (!mddev->pers->hot_add_disk) {
5902 		printk(KERN_WARNING
5903 			"%s: personality does not support diskops!\n",
5904 			mdname(mddev));
5905 		return -EINVAL;
5906 	}
5907 
5908 	rdev = md_import_device(dev, -1, 0);
5909 	if (IS_ERR(rdev)) {
5910 		printk(KERN_WARNING
5911 			"md: error, md_import_device() returned %ld\n",
5912 			PTR_ERR(rdev));
5913 		return -EINVAL;
5914 	}
5915 
5916 	if (mddev->persistent)
5917 		rdev->sb_start = calc_dev_sboffset(rdev);
5918 	else
5919 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5920 
5921 	rdev->sectors = rdev->sb_start;
5922 
5923 	if (test_bit(Faulty, &rdev->flags)) {
5924 		printk(KERN_WARNING
5925 			"md: can not hot-add faulty %s disk to %s!\n",
5926 			bdevname(rdev->bdev,b), mdname(mddev));
5927 		err = -EINVAL;
5928 		goto abort_export;
5929 	}
5930 	clear_bit(In_sync, &rdev->flags);
5931 	rdev->desc_nr = -1;
5932 	rdev->saved_raid_disk = -1;
5933 	err = bind_rdev_to_array(rdev, mddev);
5934 	if (err)
5935 		goto abort_export;
5936 
5937 	/*
5938 	 * The rest should better be atomic, we can have disk failures
5939 	 * noticed in interrupt contexts ...
5940 	 */
5941 
5942 	rdev->raid_disk = -1;
5943 
5944 	md_update_sb(mddev, 1);
5945 
5946 	/*
5947 	 * Kick recovery, maybe this spare has to be added to the
5948 	 * array immediately.
5949 	 */
5950 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5951 	md_wakeup_thread(mddev->thread);
5952 	md_new_event(mddev);
5953 	return 0;
5954 
5955 abort_export:
5956 	export_rdev(rdev);
5957 	return err;
5958 }
5959 
5960 static int set_bitmap_file(struct mddev *mddev, int fd)
5961 {
5962 	int err;
5963 
5964 	if (mddev->pers) {
5965 		if (!mddev->pers->quiesce)
5966 			return -EBUSY;
5967 		if (mddev->recovery || mddev->sync_thread)
5968 			return -EBUSY;
5969 		/* we should be able to change the bitmap.. */
5970 	}
5971 
5972 
5973 	if (fd >= 0) {
5974 		if (mddev->bitmap)
5975 			return -EEXIST; /* cannot add when bitmap is present */
5976 		mddev->bitmap_info.file = fget(fd);
5977 
5978 		if (mddev->bitmap_info.file == NULL) {
5979 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5980 			       mdname(mddev));
5981 			return -EBADF;
5982 		}
5983 
5984 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5985 		if (err) {
5986 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5987 			       mdname(mddev));
5988 			fput(mddev->bitmap_info.file);
5989 			mddev->bitmap_info.file = NULL;
5990 			return err;
5991 		}
5992 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5993 	} else if (mddev->bitmap == NULL)
5994 		return -ENOENT; /* cannot remove what isn't there */
5995 	err = 0;
5996 	if (mddev->pers) {
5997 		mddev->pers->quiesce(mddev, 1);
5998 		if (fd >= 0) {
5999 			err = bitmap_create(mddev);
6000 			if (!err)
6001 				err = bitmap_load(mddev);
6002 		}
6003 		if (fd < 0 || err) {
6004 			bitmap_destroy(mddev);
6005 			fd = -1; /* make sure to put the file */
6006 		}
6007 		mddev->pers->quiesce(mddev, 0);
6008 	}
6009 	if (fd < 0) {
6010 		if (mddev->bitmap_info.file) {
6011 			restore_bitmap_write_access(mddev->bitmap_info.file);
6012 			fput(mddev->bitmap_info.file);
6013 		}
6014 		mddev->bitmap_info.file = NULL;
6015 	}
6016 
6017 	return err;
6018 }
6019 
6020 /*
6021  * set_array_info is used two different ways
6022  * The original usage is when creating a new array.
6023  * In this usage, raid_disks is > 0 and it together with
6024  *  level, size, not_persistent,layout,chunksize determine the
6025  *  shape of the array.
6026  *  This will always create an array with a type-0.90.0 superblock.
6027  * The newer usage is when assembling an array.
6028  *  In this case raid_disks will be 0, and the major_version field is
6029  *  use to determine which style super-blocks are to be found on the devices.
6030  *  The minor and patch _version numbers are also kept incase the
6031  *  super_block handler wishes to interpret them.
6032  */
6033 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6034 {
6035 
6036 	if (info->raid_disks == 0) {
6037 		/* just setting version number for superblock loading */
6038 		if (info->major_version < 0 ||
6039 		    info->major_version >= ARRAY_SIZE(super_types) ||
6040 		    super_types[info->major_version].name == NULL) {
6041 			/* maybe try to auto-load a module? */
6042 			printk(KERN_INFO
6043 				"md: superblock version %d not known\n",
6044 				info->major_version);
6045 			return -EINVAL;
6046 		}
6047 		mddev->major_version = info->major_version;
6048 		mddev->minor_version = info->minor_version;
6049 		mddev->patch_version = info->patch_version;
6050 		mddev->persistent = !info->not_persistent;
6051 		/* ensure mddev_put doesn't delete this now that there
6052 		 * is some minimal configuration.
6053 		 */
6054 		mddev->ctime         = get_seconds();
6055 		return 0;
6056 	}
6057 	mddev->major_version = MD_MAJOR_VERSION;
6058 	mddev->minor_version = MD_MINOR_VERSION;
6059 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6060 	mddev->ctime         = get_seconds();
6061 
6062 	mddev->level         = info->level;
6063 	mddev->clevel[0]     = 0;
6064 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6065 	mddev->raid_disks    = info->raid_disks;
6066 	/* don't set md_minor, it is determined by which /dev/md* was
6067 	 * openned
6068 	 */
6069 	if (info->state & (1<<MD_SB_CLEAN))
6070 		mddev->recovery_cp = MaxSector;
6071 	else
6072 		mddev->recovery_cp = 0;
6073 	mddev->persistent    = ! info->not_persistent;
6074 	mddev->external	     = 0;
6075 
6076 	mddev->layout        = info->layout;
6077 	mddev->chunk_sectors = info->chunk_size >> 9;
6078 
6079 	mddev->max_disks     = MD_SB_DISKS;
6080 
6081 	if (mddev->persistent)
6082 		mddev->flags         = 0;
6083 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6084 
6085 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6086 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6087 	mddev->bitmap_info.offset = 0;
6088 
6089 	mddev->reshape_position = MaxSector;
6090 
6091 	/*
6092 	 * Generate a 128 bit UUID
6093 	 */
6094 	get_random_bytes(mddev->uuid, 16);
6095 
6096 	mddev->new_level = mddev->level;
6097 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6098 	mddev->new_layout = mddev->layout;
6099 	mddev->delta_disks = 0;
6100 	mddev->reshape_backwards = 0;
6101 
6102 	return 0;
6103 }
6104 
6105 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6106 {
6107 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6108 
6109 	if (mddev->external_size)
6110 		return;
6111 
6112 	mddev->array_sectors = array_sectors;
6113 }
6114 EXPORT_SYMBOL(md_set_array_sectors);
6115 
6116 static int update_size(struct mddev *mddev, sector_t num_sectors)
6117 {
6118 	struct md_rdev *rdev;
6119 	int rv;
6120 	int fit = (num_sectors == 0);
6121 
6122 	if (mddev->pers->resize == NULL)
6123 		return -EINVAL;
6124 	/* The "num_sectors" is the number of sectors of each device that
6125 	 * is used.  This can only make sense for arrays with redundancy.
6126 	 * linear and raid0 always use whatever space is available. We can only
6127 	 * consider changing this number if no resync or reconstruction is
6128 	 * happening, and if the new size is acceptable. It must fit before the
6129 	 * sb_start or, if that is <data_offset, it must fit before the size
6130 	 * of each device.  If num_sectors is zero, we find the largest size
6131 	 * that fits.
6132 	 */
6133 	if (mddev->sync_thread)
6134 		return -EBUSY;
6135 
6136 	rdev_for_each(rdev, mddev) {
6137 		sector_t avail = rdev->sectors;
6138 
6139 		if (fit && (num_sectors == 0 || num_sectors > avail))
6140 			num_sectors = avail;
6141 		if (avail < num_sectors)
6142 			return -ENOSPC;
6143 	}
6144 	rv = mddev->pers->resize(mddev, num_sectors);
6145 	if (!rv)
6146 		revalidate_disk(mddev->gendisk);
6147 	return rv;
6148 }
6149 
6150 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6151 {
6152 	int rv;
6153 	struct md_rdev *rdev;
6154 	/* change the number of raid disks */
6155 	if (mddev->pers->check_reshape == NULL)
6156 		return -EINVAL;
6157 	if (raid_disks <= 0 ||
6158 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6159 		return -EINVAL;
6160 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6161 		return -EBUSY;
6162 
6163 	rdev_for_each(rdev, mddev) {
6164 		if (mddev->raid_disks < raid_disks &&
6165 		    rdev->data_offset < rdev->new_data_offset)
6166 			return -EINVAL;
6167 		if (mddev->raid_disks > raid_disks &&
6168 		    rdev->data_offset > rdev->new_data_offset)
6169 			return -EINVAL;
6170 	}
6171 
6172 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6173 	if (mddev->delta_disks < 0)
6174 		mddev->reshape_backwards = 1;
6175 	else if (mddev->delta_disks > 0)
6176 		mddev->reshape_backwards = 0;
6177 
6178 	rv = mddev->pers->check_reshape(mddev);
6179 	if (rv < 0) {
6180 		mddev->delta_disks = 0;
6181 		mddev->reshape_backwards = 0;
6182 	}
6183 	return rv;
6184 }
6185 
6186 
6187 /*
6188  * update_array_info is used to change the configuration of an
6189  * on-line array.
6190  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6191  * fields in the info are checked against the array.
6192  * Any differences that cannot be handled will cause an error.
6193  * Normally, only one change can be managed at a time.
6194  */
6195 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6196 {
6197 	int rv = 0;
6198 	int cnt = 0;
6199 	int state = 0;
6200 
6201 	/* calculate expected state,ignoring low bits */
6202 	if (mddev->bitmap && mddev->bitmap_info.offset)
6203 		state |= (1 << MD_SB_BITMAP_PRESENT);
6204 
6205 	if (mddev->major_version != info->major_version ||
6206 	    mddev->minor_version != info->minor_version ||
6207 /*	    mddev->patch_version != info->patch_version || */
6208 	    mddev->ctime         != info->ctime         ||
6209 	    mddev->level         != info->level         ||
6210 /*	    mddev->layout        != info->layout        || */
6211 	    !mddev->persistent	 != info->not_persistent||
6212 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6213 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6214 	    ((state^info->state) & 0xfffffe00)
6215 		)
6216 		return -EINVAL;
6217 	/* Check there is only one change */
6218 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6219 		cnt++;
6220 	if (mddev->raid_disks != info->raid_disks)
6221 		cnt++;
6222 	if (mddev->layout != info->layout)
6223 		cnt++;
6224 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6225 		cnt++;
6226 	if (cnt == 0)
6227 		return 0;
6228 	if (cnt > 1)
6229 		return -EINVAL;
6230 
6231 	if (mddev->layout != info->layout) {
6232 		/* Change layout
6233 		 * we don't need to do anything at the md level, the
6234 		 * personality will take care of it all.
6235 		 */
6236 		if (mddev->pers->check_reshape == NULL)
6237 			return -EINVAL;
6238 		else {
6239 			mddev->new_layout = info->layout;
6240 			rv = mddev->pers->check_reshape(mddev);
6241 			if (rv)
6242 				mddev->new_layout = mddev->layout;
6243 			return rv;
6244 		}
6245 	}
6246 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6247 		rv = update_size(mddev, (sector_t)info->size * 2);
6248 
6249 	if (mddev->raid_disks    != info->raid_disks)
6250 		rv = update_raid_disks(mddev, info->raid_disks);
6251 
6252 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6253 		if (mddev->pers->quiesce == NULL)
6254 			return -EINVAL;
6255 		if (mddev->recovery || mddev->sync_thread)
6256 			return -EBUSY;
6257 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6258 			/* add the bitmap */
6259 			if (mddev->bitmap)
6260 				return -EEXIST;
6261 			if (mddev->bitmap_info.default_offset == 0)
6262 				return -EINVAL;
6263 			mddev->bitmap_info.offset =
6264 				mddev->bitmap_info.default_offset;
6265 			mddev->bitmap_info.space =
6266 				mddev->bitmap_info.default_space;
6267 			mddev->pers->quiesce(mddev, 1);
6268 			rv = bitmap_create(mddev);
6269 			if (!rv)
6270 				rv = bitmap_load(mddev);
6271 			if (rv)
6272 				bitmap_destroy(mddev);
6273 			mddev->pers->quiesce(mddev, 0);
6274 		} else {
6275 			/* remove the bitmap */
6276 			if (!mddev->bitmap)
6277 				return -ENOENT;
6278 			if (mddev->bitmap->storage.file)
6279 				return -EINVAL;
6280 			mddev->pers->quiesce(mddev, 1);
6281 			bitmap_destroy(mddev);
6282 			mddev->pers->quiesce(mddev, 0);
6283 			mddev->bitmap_info.offset = 0;
6284 		}
6285 	}
6286 	md_update_sb(mddev, 1);
6287 	return rv;
6288 }
6289 
6290 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6291 {
6292 	struct md_rdev *rdev;
6293 	int err = 0;
6294 
6295 	if (mddev->pers == NULL)
6296 		return -ENODEV;
6297 
6298 	rcu_read_lock();
6299 	rdev = find_rdev_rcu(mddev, dev);
6300 	if (!rdev)
6301 		err =  -ENODEV;
6302 	else {
6303 		md_error(mddev, rdev);
6304 		if (!test_bit(Faulty, &rdev->flags))
6305 			err = -EBUSY;
6306 	}
6307 	rcu_read_unlock();
6308 	return err;
6309 }
6310 
6311 /*
6312  * We have a problem here : there is no easy way to give a CHS
6313  * virtual geometry. We currently pretend that we have a 2 heads
6314  * 4 sectors (with a BIG number of cylinders...). This drives
6315  * dosfs just mad... ;-)
6316  */
6317 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6318 {
6319 	struct mddev *mddev = bdev->bd_disk->private_data;
6320 
6321 	geo->heads = 2;
6322 	geo->sectors = 4;
6323 	geo->cylinders = mddev->array_sectors / 8;
6324 	return 0;
6325 }
6326 
6327 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6328 			unsigned int cmd, unsigned long arg)
6329 {
6330 	int err = 0;
6331 	void __user *argp = (void __user *)arg;
6332 	struct mddev *mddev = NULL;
6333 	int ro;
6334 
6335 	switch (cmd) {
6336 	case RAID_VERSION:
6337 	case GET_ARRAY_INFO:
6338 	case GET_DISK_INFO:
6339 		break;
6340 	default:
6341 		if (!capable(CAP_SYS_ADMIN))
6342 			return -EACCES;
6343 	}
6344 
6345 	/*
6346 	 * Commands dealing with the RAID driver but not any
6347 	 * particular array:
6348 	 */
6349 	switch (cmd)
6350 	{
6351 		case RAID_VERSION:
6352 			err = get_version(argp);
6353 			goto done;
6354 
6355 		case PRINT_RAID_DEBUG:
6356 			err = 0;
6357 			md_print_devices();
6358 			goto done;
6359 
6360 #ifndef MODULE
6361 		case RAID_AUTORUN:
6362 			err = 0;
6363 			autostart_arrays(arg);
6364 			goto done;
6365 #endif
6366 		default:;
6367 	}
6368 
6369 	/*
6370 	 * Commands creating/starting a new array:
6371 	 */
6372 
6373 	mddev = bdev->bd_disk->private_data;
6374 
6375 	if (!mddev) {
6376 		BUG();
6377 		goto abort;
6378 	}
6379 
6380 	/* Some actions do not requires the mutex */
6381 	switch (cmd) {
6382 	case GET_ARRAY_INFO:
6383 		if (!mddev->raid_disks && !mddev->external)
6384 			err = -ENODEV;
6385 		else
6386 			err = get_array_info(mddev, argp);
6387 		goto abort;
6388 
6389 	case GET_DISK_INFO:
6390 		if (!mddev->raid_disks && !mddev->external)
6391 			err = -ENODEV;
6392 		else
6393 			err = get_disk_info(mddev, argp);
6394 		goto abort;
6395 
6396 	case SET_DISK_FAULTY:
6397 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6398 		goto abort;
6399 	}
6400 
6401 	err = mddev_lock(mddev);
6402 	if (err) {
6403 		printk(KERN_INFO
6404 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6405 			err, cmd);
6406 		goto abort;
6407 	}
6408 
6409 	switch (cmd)
6410 	{
6411 		case SET_ARRAY_INFO:
6412 			{
6413 				mdu_array_info_t info;
6414 				if (!arg)
6415 					memset(&info, 0, sizeof(info));
6416 				else if (copy_from_user(&info, argp, sizeof(info))) {
6417 					err = -EFAULT;
6418 					goto abort_unlock;
6419 				}
6420 				if (mddev->pers) {
6421 					err = update_array_info(mddev, &info);
6422 					if (err) {
6423 						printk(KERN_WARNING "md: couldn't update"
6424 						       " array info. %d\n", err);
6425 						goto abort_unlock;
6426 					}
6427 					goto done_unlock;
6428 				}
6429 				if (!list_empty(&mddev->disks)) {
6430 					printk(KERN_WARNING
6431 					       "md: array %s already has disks!\n",
6432 					       mdname(mddev));
6433 					err = -EBUSY;
6434 					goto abort_unlock;
6435 				}
6436 				if (mddev->raid_disks) {
6437 					printk(KERN_WARNING
6438 					       "md: array %s already initialised!\n",
6439 					       mdname(mddev));
6440 					err = -EBUSY;
6441 					goto abort_unlock;
6442 				}
6443 				err = set_array_info(mddev, &info);
6444 				if (err) {
6445 					printk(KERN_WARNING "md: couldn't set"
6446 					       " array info. %d\n", err);
6447 					goto abort_unlock;
6448 				}
6449 			}
6450 			goto done_unlock;
6451 
6452 		default:;
6453 	}
6454 
6455 	/*
6456 	 * Commands querying/configuring an existing array:
6457 	 */
6458 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6459 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6460 	if ((!mddev->raid_disks && !mddev->external)
6461 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6462 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6463 	    && cmd != GET_BITMAP_FILE) {
6464 		err = -ENODEV;
6465 		goto abort_unlock;
6466 	}
6467 
6468 	/*
6469 	 * Commands even a read-only array can execute:
6470 	 */
6471 	switch (cmd)
6472 	{
6473 		case GET_BITMAP_FILE:
6474 			err = get_bitmap_file(mddev, argp);
6475 			goto done_unlock;
6476 
6477 		case RESTART_ARRAY_RW:
6478 			err = restart_array(mddev);
6479 			goto done_unlock;
6480 
6481 		case STOP_ARRAY:
6482 			err = do_md_stop(mddev, 0, bdev);
6483 			goto done_unlock;
6484 
6485 		case STOP_ARRAY_RO:
6486 			err = md_set_readonly(mddev, bdev);
6487 			goto done_unlock;
6488 
6489 		case BLKROSET:
6490 			if (get_user(ro, (int __user *)(arg))) {
6491 				err = -EFAULT;
6492 				goto done_unlock;
6493 			}
6494 			err = -EINVAL;
6495 
6496 			/* if the bdev is going readonly the value of mddev->ro
6497 			 * does not matter, no writes are coming
6498 			 */
6499 			if (ro)
6500 				goto done_unlock;
6501 
6502 			/* are we are already prepared for writes? */
6503 			if (mddev->ro != 1)
6504 				goto done_unlock;
6505 
6506 			/* transitioning to readauto need only happen for
6507 			 * arrays that call md_write_start
6508 			 */
6509 			if (mddev->pers) {
6510 				err = restart_array(mddev);
6511 				if (err == 0) {
6512 					mddev->ro = 2;
6513 					set_disk_ro(mddev->gendisk, 0);
6514 				}
6515 			}
6516 			goto done_unlock;
6517 	}
6518 
6519 	/*
6520 	 * The remaining ioctls are changing the state of the
6521 	 * superblock, so we do not allow them on read-only arrays.
6522 	 * However non-MD ioctls (e.g. get-size) will still come through
6523 	 * here and hit the 'default' below, so only disallow
6524 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6525 	 */
6526 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6527 		if (mddev->ro == 2) {
6528 			mddev->ro = 0;
6529 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6530 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6531 			md_wakeup_thread(mddev->thread);
6532 		} else {
6533 			err = -EROFS;
6534 			goto abort_unlock;
6535 		}
6536 	}
6537 
6538 	switch (cmd)
6539 	{
6540 		case ADD_NEW_DISK:
6541 		{
6542 			mdu_disk_info_t info;
6543 			if (copy_from_user(&info, argp, sizeof(info)))
6544 				err = -EFAULT;
6545 			else
6546 				err = add_new_disk(mddev, &info);
6547 			goto done_unlock;
6548 		}
6549 
6550 		case HOT_REMOVE_DISK:
6551 			err = hot_remove_disk(mddev, new_decode_dev(arg));
6552 			goto done_unlock;
6553 
6554 		case HOT_ADD_DISK:
6555 			err = hot_add_disk(mddev, new_decode_dev(arg));
6556 			goto done_unlock;
6557 
6558 		case RUN_ARRAY:
6559 			err = do_md_run(mddev);
6560 			goto done_unlock;
6561 
6562 		case SET_BITMAP_FILE:
6563 			err = set_bitmap_file(mddev, (int)arg);
6564 			goto done_unlock;
6565 
6566 		default:
6567 			err = -EINVAL;
6568 			goto abort_unlock;
6569 	}
6570 
6571 done_unlock:
6572 abort_unlock:
6573 	if (mddev->hold_active == UNTIL_IOCTL &&
6574 	    err != -EINVAL)
6575 		mddev->hold_active = 0;
6576 	mddev_unlock(mddev);
6577 
6578 	return err;
6579 done:
6580 	if (err)
6581 		MD_BUG();
6582 abort:
6583 	return err;
6584 }
6585 #ifdef CONFIG_COMPAT
6586 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6587 		    unsigned int cmd, unsigned long arg)
6588 {
6589 	switch (cmd) {
6590 	case HOT_REMOVE_DISK:
6591 	case HOT_ADD_DISK:
6592 	case SET_DISK_FAULTY:
6593 	case SET_BITMAP_FILE:
6594 		/* These take in integer arg, do not convert */
6595 		break;
6596 	default:
6597 		arg = (unsigned long)compat_ptr(arg);
6598 		break;
6599 	}
6600 
6601 	return md_ioctl(bdev, mode, cmd, arg);
6602 }
6603 #endif /* CONFIG_COMPAT */
6604 
6605 static int md_open(struct block_device *bdev, fmode_t mode)
6606 {
6607 	/*
6608 	 * Succeed if we can lock the mddev, which confirms that
6609 	 * it isn't being stopped right now.
6610 	 */
6611 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6612 	int err;
6613 
6614 	if (!mddev)
6615 		return -ENODEV;
6616 
6617 	if (mddev->gendisk != bdev->bd_disk) {
6618 		/* we are racing with mddev_put which is discarding this
6619 		 * bd_disk.
6620 		 */
6621 		mddev_put(mddev);
6622 		/* Wait until bdev->bd_disk is definitely gone */
6623 		flush_workqueue(md_misc_wq);
6624 		/* Then retry the open from the top */
6625 		return -ERESTARTSYS;
6626 	}
6627 	BUG_ON(mddev != bdev->bd_disk->private_data);
6628 
6629 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6630 		goto out;
6631 
6632 	err = 0;
6633 	atomic_inc(&mddev->openers);
6634 	mutex_unlock(&mddev->open_mutex);
6635 
6636 	check_disk_change(bdev);
6637  out:
6638 	return err;
6639 }
6640 
6641 static int md_release(struct gendisk *disk, fmode_t mode)
6642 {
6643  	struct mddev *mddev = disk->private_data;
6644 
6645 	BUG_ON(!mddev);
6646 	atomic_dec(&mddev->openers);
6647 	mddev_put(mddev);
6648 
6649 	return 0;
6650 }
6651 
6652 static int md_media_changed(struct gendisk *disk)
6653 {
6654 	struct mddev *mddev = disk->private_data;
6655 
6656 	return mddev->changed;
6657 }
6658 
6659 static int md_revalidate(struct gendisk *disk)
6660 {
6661 	struct mddev *mddev = disk->private_data;
6662 
6663 	mddev->changed = 0;
6664 	return 0;
6665 }
6666 static const struct block_device_operations md_fops =
6667 {
6668 	.owner		= THIS_MODULE,
6669 	.open		= md_open,
6670 	.release	= md_release,
6671 	.ioctl		= md_ioctl,
6672 #ifdef CONFIG_COMPAT
6673 	.compat_ioctl	= md_compat_ioctl,
6674 #endif
6675 	.getgeo		= md_getgeo,
6676 	.media_changed  = md_media_changed,
6677 	.revalidate_disk= md_revalidate,
6678 };
6679 
6680 static int md_thread(void * arg)
6681 {
6682 	struct md_thread *thread = arg;
6683 
6684 	/*
6685 	 * md_thread is a 'system-thread', it's priority should be very
6686 	 * high. We avoid resource deadlocks individually in each
6687 	 * raid personality. (RAID5 does preallocation) We also use RR and
6688 	 * the very same RT priority as kswapd, thus we will never get
6689 	 * into a priority inversion deadlock.
6690 	 *
6691 	 * we definitely have to have equal or higher priority than
6692 	 * bdflush, otherwise bdflush will deadlock if there are too
6693 	 * many dirty RAID5 blocks.
6694 	 */
6695 
6696 	allow_signal(SIGKILL);
6697 	while (!kthread_should_stop()) {
6698 
6699 		/* We need to wait INTERRUPTIBLE so that
6700 		 * we don't add to the load-average.
6701 		 * That means we need to be sure no signals are
6702 		 * pending
6703 		 */
6704 		if (signal_pending(current))
6705 			flush_signals(current);
6706 
6707 		wait_event_interruptible_timeout
6708 			(thread->wqueue,
6709 			 test_bit(THREAD_WAKEUP, &thread->flags)
6710 			 || kthread_should_stop(),
6711 			 thread->timeout);
6712 
6713 		clear_bit(THREAD_WAKEUP, &thread->flags);
6714 		if (!kthread_should_stop())
6715 			thread->run(thread);
6716 	}
6717 
6718 	return 0;
6719 }
6720 
6721 void md_wakeup_thread(struct md_thread *thread)
6722 {
6723 	if (thread) {
6724 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6725 		set_bit(THREAD_WAKEUP, &thread->flags);
6726 		wake_up(&thread->wqueue);
6727 	}
6728 }
6729 
6730 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6731 		struct mddev *mddev, const char *name)
6732 {
6733 	struct md_thread *thread;
6734 
6735 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6736 	if (!thread)
6737 		return NULL;
6738 
6739 	init_waitqueue_head(&thread->wqueue);
6740 
6741 	thread->run = run;
6742 	thread->mddev = mddev;
6743 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6744 	thread->tsk = kthread_run(md_thread, thread,
6745 				  "%s_%s",
6746 				  mdname(thread->mddev),
6747 				  name);
6748 	if (IS_ERR(thread->tsk)) {
6749 		kfree(thread);
6750 		return NULL;
6751 	}
6752 	return thread;
6753 }
6754 
6755 void md_unregister_thread(struct md_thread **threadp)
6756 {
6757 	struct md_thread *thread = *threadp;
6758 	if (!thread)
6759 		return;
6760 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6761 	/* Locking ensures that mddev_unlock does not wake_up a
6762 	 * non-existent thread
6763 	 */
6764 	spin_lock(&pers_lock);
6765 	*threadp = NULL;
6766 	spin_unlock(&pers_lock);
6767 
6768 	kthread_stop(thread->tsk);
6769 	kfree(thread);
6770 }
6771 
6772 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6773 {
6774 	if (!mddev) {
6775 		MD_BUG();
6776 		return;
6777 	}
6778 
6779 	if (!rdev || test_bit(Faulty, &rdev->flags))
6780 		return;
6781 
6782 	if (!mddev->pers || !mddev->pers->error_handler)
6783 		return;
6784 	mddev->pers->error_handler(mddev,rdev);
6785 	if (mddev->degraded)
6786 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6787 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6788 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6789 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6790 	md_wakeup_thread(mddev->thread);
6791 	if (mddev->event_work.func)
6792 		queue_work(md_misc_wq, &mddev->event_work);
6793 	md_new_event_inintr(mddev);
6794 }
6795 
6796 /* seq_file implementation /proc/mdstat */
6797 
6798 static void status_unused(struct seq_file *seq)
6799 {
6800 	int i = 0;
6801 	struct md_rdev *rdev;
6802 
6803 	seq_printf(seq, "unused devices: ");
6804 
6805 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6806 		char b[BDEVNAME_SIZE];
6807 		i++;
6808 		seq_printf(seq, "%s ",
6809 			      bdevname(rdev->bdev,b));
6810 	}
6811 	if (!i)
6812 		seq_printf(seq, "<none>");
6813 
6814 	seq_printf(seq, "\n");
6815 }
6816 
6817 
6818 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6819 {
6820 	sector_t max_sectors, resync, res;
6821 	unsigned long dt, db;
6822 	sector_t rt;
6823 	int scale;
6824 	unsigned int per_milli;
6825 
6826 	if (mddev->curr_resync <= 3)
6827 		resync = 0;
6828 	else
6829 		resync = mddev->curr_resync
6830 			- atomic_read(&mddev->recovery_active);
6831 
6832 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6833 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6834 		max_sectors = mddev->resync_max_sectors;
6835 	else
6836 		max_sectors = mddev->dev_sectors;
6837 
6838 	/*
6839 	 * Should not happen.
6840 	 */
6841 	if (!max_sectors) {
6842 		MD_BUG();
6843 		return;
6844 	}
6845 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6846 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6847 	 * u32, as those are the requirements for sector_div.
6848 	 * Thus 'scale' must be at least 10
6849 	 */
6850 	scale = 10;
6851 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6852 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6853 			scale++;
6854 	}
6855 	res = (resync>>scale)*1000;
6856 	sector_div(res, (u32)((max_sectors>>scale)+1));
6857 
6858 	per_milli = res;
6859 	{
6860 		int i, x = per_milli/50, y = 20-x;
6861 		seq_printf(seq, "[");
6862 		for (i = 0; i < x; i++)
6863 			seq_printf(seq, "=");
6864 		seq_printf(seq, ">");
6865 		for (i = 0; i < y; i++)
6866 			seq_printf(seq, ".");
6867 		seq_printf(seq, "] ");
6868 	}
6869 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6870 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6871 		    "reshape" :
6872 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6873 		     "check" :
6874 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6875 		      "resync" : "recovery"))),
6876 		   per_milli/10, per_milli % 10,
6877 		   (unsigned long long) resync/2,
6878 		   (unsigned long long) max_sectors/2);
6879 
6880 	/*
6881 	 * dt: time from mark until now
6882 	 * db: blocks written from mark until now
6883 	 * rt: remaining time
6884 	 *
6885 	 * rt is a sector_t, so could be 32bit or 64bit.
6886 	 * So we divide before multiply in case it is 32bit and close
6887 	 * to the limit.
6888 	 * We scale the divisor (db) by 32 to avoid losing precision
6889 	 * near the end of resync when the number of remaining sectors
6890 	 * is close to 'db'.
6891 	 * We then divide rt by 32 after multiplying by db to compensate.
6892 	 * The '+1' avoids division by zero if db is very small.
6893 	 */
6894 	dt = ((jiffies - mddev->resync_mark) / HZ);
6895 	if (!dt) dt++;
6896 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6897 		- mddev->resync_mark_cnt;
6898 
6899 	rt = max_sectors - resync;    /* number of remaining sectors */
6900 	sector_div(rt, db/32+1);
6901 	rt *= dt;
6902 	rt >>= 5;
6903 
6904 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6905 		   ((unsigned long)rt % 60)/6);
6906 
6907 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6908 }
6909 
6910 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6911 {
6912 	struct list_head *tmp;
6913 	loff_t l = *pos;
6914 	struct mddev *mddev;
6915 
6916 	if (l >= 0x10000)
6917 		return NULL;
6918 	if (!l--)
6919 		/* header */
6920 		return (void*)1;
6921 
6922 	spin_lock(&all_mddevs_lock);
6923 	list_for_each(tmp,&all_mddevs)
6924 		if (!l--) {
6925 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6926 			mddev_get(mddev);
6927 			spin_unlock(&all_mddevs_lock);
6928 			return mddev;
6929 		}
6930 	spin_unlock(&all_mddevs_lock);
6931 	if (!l--)
6932 		return (void*)2;/* tail */
6933 	return NULL;
6934 }
6935 
6936 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6937 {
6938 	struct list_head *tmp;
6939 	struct mddev *next_mddev, *mddev = v;
6940 
6941 	++*pos;
6942 	if (v == (void*)2)
6943 		return NULL;
6944 
6945 	spin_lock(&all_mddevs_lock);
6946 	if (v == (void*)1)
6947 		tmp = all_mddevs.next;
6948 	else
6949 		tmp = mddev->all_mddevs.next;
6950 	if (tmp != &all_mddevs)
6951 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6952 	else {
6953 		next_mddev = (void*)2;
6954 		*pos = 0x10000;
6955 	}
6956 	spin_unlock(&all_mddevs_lock);
6957 
6958 	if (v != (void*)1)
6959 		mddev_put(mddev);
6960 	return next_mddev;
6961 
6962 }
6963 
6964 static void md_seq_stop(struct seq_file *seq, void *v)
6965 {
6966 	struct mddev *mddev = v;
6967 
6968 	if (mddev && v != (void*)1 && v != (void*)2)
6969 		mddev_put(mddev);
6970 }
6971 
6972 static int md_seq_show(struct seq_file *seq, void *v)
6973 {
6974 	struct mddev *mddev = v;
6975 	sector_t sectors;
6976 	struct md_rdev *rdev;
6977 
6978 	if (v == (void*)1) {
6979 		struct md_personality *pers;
6980 		seq_printf(seq, "Personalities : ");
6981 		spin_lock(&pers_lock);
6982 		list_for_each_entry(pers, &pers_list, list)
6983 			seq_printf(seq, "[%s] ", pers->name);
6984 
6985 		spin_unlock(&pers_lock);
6986 		seq_printf(seq, "\n");
6987 		seq->poll_event = atomic_read(&md_event_count);
6988 		return 0;
6989 	}
6990 	if (v == (void*)2) {
6991 		status_unused(seq);
6992 		return 0;
6993 	}
6994 
6995 	if (mddev_lock(mddev) < 0)
6996 		return -EINTR;
6997 
6998 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6999 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7000 						mddev->pers ? "" : "in");
7001 		if (mddev->pers) {
7002 			if (mddev->ro==1)
7003 				seq_printf(seq, " (read-only)");
7004 			if (mddev->ro==2)
7005 				seq_printf(seq, " (auto-read-only)");
7006 			seq_printf(seq, " %s", mddev->pers->name);
7007 		}
7008 
7009 		sectors = 0;
7010 		rdev_for_each(rdev, mddev) {
7011 			char b[BDEVNAME_SIZE];
7012 			seq_printf(seq, " %s[%d]",
7013 				bdevname(rdev->bdev,b), rdev->desc_nr);
7014 			if (test_bit(WriteMostly, &rdev->flags))
7015 				seq_printf(seq, "(W)");
7016 			if (test_bit(Faulty, &rdev->flags)) {
7017 				seq_printf(seq, "(F)");
7018 				continue;
7019 			}
7020 			if (rdev->raid_disk < 0)
7021 				seq_printf(seq, "(S)"); /* spare */
7022 			if (test_bit(Replacement, &rdev->flags))
7023 				seq_printf(seq, "(R)");
7024 			sectors += rdev->sectors;
7025 		}
7026 
7027 		if (!list_empty(&mddev->disks)) {
7028 			if (mddev->pers)
7029 				seq_printf(seq, "\n      %llu blocks",
7030 					   (unsigned long long)
7031 					   mddev->array_sectors / 2);
7032 			else
7033 				seq_printf(seq, "\n      %llu blocks",
7034 					   (unsigned long long)sectors / 2);
7035 		}
7036 		if (mddev->persistent) {
7037 			if (mddev->major_version != 0 ||
7038 			    mddev->minor_version != 90) {
7039 				seq_printf(seq," super %d.%d",
7040 					   mddev->major_version,
7041 					   mddev->minor_version);
7042 			}
7043 		} else if (mddev->external)
7044 			seq_printf(seq, " super external:%s",
7045 				   mddev->metadata_type);
7046 		else
7047 			seq_printf(seq, " super non-persistent");
7048 
7049 		if (mddev->pers) {
7050 			mddev->pers->status(seq, mddev);
7051 	 		seq_printf(seq, "\n      ");
7052 			if (mddev->pers->sync_request) {
7053 				if (mddev->curr_resync > 2) {
7054 					status_resync(seq, mddev);
7055 					seq_printf(seq, "\n      ");
7056 				} else if (mddev->curr_resync >= 1)
7057 					seq_printf(seq, "\tresync=DELAYED\n      ");
7058 				else if (mddev->recovery_cp < MaxSector)
7059 					seq_printf(seq, "\tresync=PENDING\n      ");
7060 			}
7061 		} else
7062 			seq_printf(seq, "\n       ");
7063 
7064 		bitmap_status(seq, mddev->bitmap);
7065 
7066 		seq_printf(seq, "\n");
7067 	}
7068 	mddev_unlock(mddev);
7069 
7070 	return 0;
7071 }
7072 
7073 static const struct seq_operations md_seq_ops = {
7074 	.start  = md_seq_start,
7075 	.next   = md_seq_next,
7076 	.stop   = md_seq_stop,
7077 	.show   = md_seq_show,
7078 };
7079 
7080 static int md_seq_open(struct inode *inode, struct file *file)
7081 {
7082 	struct seq_file *seq;
7083 	int error;
7084 
7085 	error = seq_open(file, &md_seq_ops);
7086 	if (error)
7087 		return error;
7088 
7089 	seq = file->private_data;
7090 	seq->poll_event = atomic_read(&md_event_count);
7091 	return error;
7092 }
7093 
7094 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7095 {
7096 	struct seq_file *seq = filp->private_data;
7097 	int mask;
7098 
7099 	poll_wait(filp, &md_event_waiters, wait);
7100 
7101 	/* always allow read */
7102 	mask = POLLIN | POLLRDNORM;
7103 
7104 	if (seq->poll_event != atomic_read(&md_event_count))
7105 		mask |= POLLERR | POLLPRI;
7106 	return mask;
7107 }
7108 
7109 static const struct file_operations md_seq_fops = {
7110 	.owner		= THIS_MODULE,
7111 	.open           = md_seq_open,
7112 	.read           = seq_read,
7113 	.llseek         = seq_lseek,
7114 	.release	= seq_release_private,
7115 	.poll		= mdstat_poll,
7116 };
7117 
7118 int register_md_personality(struct md_personality *p)
7119 {
7120 	spin_lock(&pers_lock);
7121 	list_add_tail(&p->list, &pers_list);
7122 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7123 	spin_unlock(&pers_lock);
7124 	return 0;
7125 }
7126 
7127 int unregister_md_personality(struct md_personality *p)
7128 {
7129 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7130 	spin_lock(&pers_lock);
7131 	list_del_init(&p->list);
7132 	spin_unlock(&pers_lock);
7133 	return 0;
7134 }
7135 
7136 static int is_mddev_idle(struct mddev *mddev, int init)
7137 {
7138 	struct md_rdev * rdev;
7139 	int idle;
7140 	int curr_events;
7141 
7142 	idle = 1;
7143 	rcu_read_lock();
7144 	rdev_for_each_rcu(rdev, mddev) {
7145 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7146 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7147 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7148 			      atomic_read(&disk->sync_io);
7149 		/* sync IO will cause sync_io to increase before the disk_stats
7150 		 * as sync_io is counted when a request starts, and
7151 		 * disk_stats is counted when it completes.
7152 		 * So resync activity will cause curr_events to be smaller than
7153 		 * when there was no such activity.
7154 		 * non-sync IO will cause disk_stat to increase without
7155 		 * increasing sync_io so curr_events will (eventually)
7156 		 * be larger than it was before.  Once it becomes
7157 		 * substantially larger, the test below will cause
7158 		 * the array to appear non-idle, and resync will slow
7159 		 * down.
7160 		 * If there is a lot of outstanding resync activity when
7161 		 * we set last_event to curr_events, then all that activity
7162 		 * completing might cause the array to appear non-idle
7163 		 * and resync will be slowed down even though there might
7164 		 * not have been non-resync activity.  This will only
7165 		 * happen once though.  'last_events' will soon reflect
7166 		 * the state where there is little or no outstanding
7167 		 * resync requests, and further resync activity will
7168 		 * always make curr_events less than last_events.
7169 		 *
7170 		 */
7171 		if (init || curr_events - rdev->last_events > 64) {
7172 			rdev->last_events = curr_events;
7173 			idle = 0;
7174 		}
7175 	}
7176 	rcu_read_unlock();
7177 	return idle;
7178 }
7179 
7180 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7181 {
7182 	/* another "blocks" (512byte) blocks have been synced */
7183 	atomic_sub(blocks, &mddev->recovery_active);
7184 	wake_up(&mddev->recovery_wait);
7185 	if (!ok) {
7186 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7187 		md_wakeup_thread(mddev->thread);
7188 		// stop recovery, signal do_sync ....
7189 	}
7190 }
7191 
7192 
7193 /* md_write_start(mddev, bi)
7194  * If we need to update some array metadata (e.g. 'active' flag
7195  * in superblock) before writing, schedule a superblock update
7196  * and wait for it to complete.
7197  */
7198 void md_write_start(struct mddev *mddev, struct bio *bi)
7199 {
7200 	int did_change = 0;
7201 	if (bio_data_dir(bi) != WRITE)
7202 		return;
7203 
7204 	BUG_ON(mddev->ro == 1);
7205 	if (mddev->ro == 2) {
7206 		/* need to switch to read/write */
7207 		mddev->ro = 0;
7208 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7209 		md_wakeup_thread(mddev->thread);
7210 		md_wakeup_thread(mddev->sync_thread);
7211 		did_change = 1;
7212 	}
7213 	atomic_inc(&mddev->writes_pending);
7214 	if (mddev->safemode == 1)
7215 		mddev->safemode = 0;
7216 	if (mddev->in_sync) {
7217 		spin_lock_irq(&mddev->write_lock);
7218 		if (mddev->in_sync) {
7219 			mddev->in_sync = 0;
7220 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7221 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7222 			md_wakeup_thread(mddev->thread);
7223 			did_change = 1;
7224 		}
7225 		spin_unlock_irq(&mddev->write_lock);
7226 	}
7227 	if (did_change)
7228 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7229 	wait_event(mddev->sb_wait,
7230 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7231 }
7232 
7233 void md_write_end(struct mddev *mddev)
7234 {
7235 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7236 		if (mddev->safemode == 2)
7237 			md_wakeup_thread(mddev->thread);
7238 		else if (mddev->safemode_delay)
7239 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7240 	}
7241 }
7242 
7243 /* md_allow_write(mddev)
7244  * Calling this ensures that the array is marked 'active' so that writes
7245  * may proceed without blocking.  It is important to call this before
7246  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7247  * Must be called with mddev_lock held.
7248  *
7249  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7250  * is dropped, so return -EAGAIN after notifying userspace.
7251  */
7252 int md_allow_write(struct mddev *mddev)
7253 {
7254 	if (!mddev->pers)
7255 		return 0;
7256 	if (mddev->ro)
7257 		return 0;
7258 	if (!mddev->pers->sync_request)
7259 		return 0;
7260 
7261 	spin_lock_irq(&mddev->write_lock);
7262 	if (mddev->in_sync) {
7263 		mddev->in_sync = 0;
7264 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7265 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7266 		if (mddev->safemode_delay &&
7267 		    mddev->safemode == 0)
7268 			mddev->safemode = 1;
7269 		spin_unlock_irq(&mddev->write_lock);
7270 		md_update_sb(mddev, 0);
7271 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7272 	} else
7273 		spin_unlock_irq(&mddev->write_lock);
7274 
7275 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7276 		return -EAGAIN;
7277 	else
7278 		return 0;
7279 }
7280 EXPORT_SYMBOL_GPL(md_allow_write);
7281 
7282 #define SYNC_MARKS	10
7283 #define	SYNC_MARK_STEP	(3*HZ)
7284 void md_do_sync(struct md_thread *thread)
7285 {
7286 	struct mddev *mddev = thread->mddev;
7287 	struct mddev *mddev2;
7288 	unsigned int currspeed = 0,
7289 		 window;
7290 	sector_t max_sectors,j, io_sectors;
7291 	unsigned long mark[SYNC_MARKS];
7292 	sector_t mark_cnt[SYNC_MARKS];
7293 	int last_mark,m;
7294 	struct list_head *tmp;
7295 	sector_t last_check;
7296 	int skipped = 0;
7297 	struct md_rdev *rdev;
7298 	char *desc;
7299 	struct blk_plug plug;
7300 
7301 	/* just incase thread restarts... */
7302 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7303 		return;
7304 	if (mddev->ro) /* never try to sync a read-only array */
7305 		return;
7306 
7307 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7308 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7309 			desc = "data-check";
7310 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7311 			desc = "requested-resync";
7312 		else
7313 			desc = "resync";
7314 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7315 		desc = "reshape";
7316 	else
7317 		desc = "recovery";
7318 
7319 	/* we overload curr_resync somewhat here.
7320 	 * 0 == not engaged in resync at all
7321 	 * 2 == checking that there is no conflict with another sync
7322 	 * 1 == like 2, but have yielded to allow conflicting resync to
7323 	 *		commense
7324 	 * other == active in resync - this many blocks
7325 	 *
7326 	 * Before starting a resync we must have set curr_resync to
7327 	 * 2, and then checked that every "conflicting" array has curr_resync
7328 	 * less than ours.  When we find one that is the same or higher
7329 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7330 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7331 	 * This will mean we have to start checking from the beginning again.
7332 	 *
7333 	 */
7334 
7335 	do {
7336 		mddev->curr_resync = 2;
7337 
7338 	try_again:
7339 		if (kthread_should_stop())
7340 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7341 
7342 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7343 			goto skip;
7344 		for_each_mddev(mddev2, tmp) {
7345 			if (mddev2 == mddev)
7346 				continue;
7347 			if (!mddev->parallel_resync
7348 			&&  mddev2->curr_resync
7349 			&&  match_mddev_units(mddev, mddev2)) {
7350 				DEFINE_WAIT(wq);
7351 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7352 					/* arbitrarily yield */
7353 					mddev->curr_resync = 1;
7354 					wake_up(&resync_wait);
7355 				}
7356 				if (mddev > mddev2 && mddev->curr_resync == 1)
7357 					/* no need to wait here, we can wait the next
7358 					 * time 'round when curr_resync == 2
7359 					 */
7360 					continue;
7361 				/* We need to wait 'interruptible' so as not to
7362 				 * contribute to the load average, and not to
7363 				 * be caught by 'softlockup'
7364 				 */
7365 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7366 				if (!kthread_should_stop() &&
7367 				    mddev2->curr_resync >= mddev->curr_resync) {
7368 					printk(KERN_INFO "md: delaying %s of %s"
7369 					       " until %s has finished (they"
7370 					       " share one or more physical units)\n",
7371 					       desc, mdname(mddev), mdname(mddev2));
7372 					mddev_put(mddev2);
7373 					if (signal_pending(current))
7374 						flush_signals(current);
7375 					schedule();
7376 					finish_wait(&resync_wait, &wq);
7377 					goto try_again;
7378 				}
7379 				finish_wait(&resync_wait, &wq);
7380 			}
7381 		}
7382 	} while (mddev->curr_resync < 2);
7383 
7384 	j = 0;
7385 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7386 		/* resync follows the size requested by the personality,
7387 		 * which defaults to physical size, but can be virtual size
7388 		 */
7389 		max_sectors = mddev->resync_max_sectors;
7390 		atomic64_set(&mddev->resync_mismatches, 0);
7391 		/* we don't use the checkpoint if there's a bitmap */
7392 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7393 			j = mddev->resync_min;
7394 		else if (!mddev->bitmap)
7395 			j = mddev->recovery_cp;
7396 
7397 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7398 		max_sectors = mddev->resync_max_sectors;
7399 	else {
7400 		/* recovery follows the physical size of devices */
7401 		max_sectors = mddev->dev_sectors;
7402 		j = MaxSector;
7403 		rcu_read_lock();
7404 		rdev_for_each_rcu(rdev, mddev)
7405 			if (rdev->raid_disk >= 0 &&
7406 			    !test_bit(Faulty, &rdev->flags) &&
7407 			    !test_bit(In_sync, &rdev->flags) &&
7408 			    rdev->recovery_offset < j)
7409 				j = rdev->recovery_offset;
7410 		rcu_read_unlock();
7411 	}
7412 
7413 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7414 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7415 		" %d KB/sec/disk.\n", speed_min(mddev));
7416 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7417 	       "(but not more than %d KB/sec) for %s.\n",
7418 	       speed_max(mddev), desc);
7419 
7420 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7421 
7422 	io_sectors = 0;
7423 	for (m = 0; m < SYNC_MARKS; m++) {
7424 		mark[m] = jiffies;
7425 		mark_cnt[m] = io_sectors;
7426 	}
7427 	last_mark = 0;
7428 	mddev->resync_mark = mark[last_mark];
7429 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7430 
7431 	/*
7432 	 * Tune reconstruction:
7433 	 */
7434 	window = 32*(PAGE_SIZE/512);
7435 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7436 		window/2, (unsigned long long)max_sectors/2);
7437 
7438 	atomic_set(&mddev->recovery_active, 0);
7439 	last_check = 0;
7440 
7441 	if (j>2) {
7442 		printk(KERN_INFO
7443 		       "md: resuming %s of %s from checkpoint.\n",
7444 		       desc, mdname(mddev));
7445 		mddev->curr_resync = j;
7446 	} else
7447 		mddev->curr_resync = 3; /* no longer delayed */
7448 	mddev->curr_resync_completed = j;
7449 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7450 	md_new_event(mddev);
7451 
7452 	blk_start_plug(&plug);
7453 	while (j < max_sectors) {
7454 		sector_t sectors;
7455 
7456 		skipped = 0;
7457 
7458 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7459 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7460 		      (mddev->curr_resync - mddev->curr_resync_completed)
7461 		      > (max_sectors >> 4)) ||
7462 		     (j - mddev->curr_resync_completed)*2
7463 		     >= mddev->resync_max - mddev->curr_resync_completed
7464 			    )) {
7465 			/* time to update curr_resync_completed */
7466 			wait_event(mddev->recovery_wait,
7467 				   atomic_read(&mddev->recovery_active) == 0);
7468 			mddev->curr_resync_completed = j;
7469 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7470 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7471 		}
7472 
7473 		while (j >= mddev->resync_max && !kthread_should_stop()) {
7474 			/* As this condition is controlled by user-space,
7475 			 * we can block indefinitely, so use '_interruptible'
7476 			 * to avoid triggering warnings.
7477 			 */
7478 			flush_signals(current); /* just in case */
7479 			wait_event_interruptible(mddev->recovery_wait,
7480 						 mddev->resync_max > j
7481 						 || kthread_should_stop());
7482 		}
7483 
7484 		if (kthread_should_stop())
7485 			goto interrupted;
7486 
7487 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7488 						  currspeed < speed_min(mddev));
7489 		if (sectors == 0) {
7490 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7491 			goto out;
7492 		}
7493 
7494 		if (!skipped) { /* actual IO requested */
7495 			io_sectors += sectors;
7496 			atomic_add(sectors, &mddev->recovery_active);
7497 		}
7498 
7499 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7500 			break;
7501 
7502 		j += sectors;
7503 		if (j > 2)
7504 			mddev->curr_resync = j;
7505 		mddev->curr_mark_cnt = io_sectors;
7506 		if (last_check == 0)
7507 			/* this is the earliest that rebuild will be
7508 			 * visible in /proc/mdstat
7509 			 */
7510 			md_new_event(mddev);
7511 
7512 		if (last_check + window > io_sectors || j == max_sectors)
7513 			continue;
7514 
7515 		last_check = io_sectors;
7516 	repeat:
7517 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7518 			/* step marks */
7519 			int next = (last_mark+1) % SYNC_MARKS;
7520 
7521 			mddev->resync_mark = mark[next];
7522 			mddev->resync_mark_cnt = mark_cnt[next];
7523 			mark[next] = jiffies;
7524 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7525 			last_mark = next;
7526 		}
7527 
7528 
7529 		if (kthread_should_stop())
7530 			goto interrupted;
7531 
7532 
7533 		/*
7534 		 * this loop exits only if either when we are slower than
7535 		 * the 'hard' speed limit, or the system was IO-idle for
7536 		 * a jiffy.
7537 		 * the system might be non-idle CPU-wise, but we only care
7538 		 * about not overloading the IO subsystem. (things like an
7539 		 * e2fsck being done on the RAID array should execute fast)
7540 		 */
7541 		cond_resched();
7542 
7543 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7544 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7545 
7546 		if (currspeed > speed_min(mddev)) {
7547 			if ((currspeed > speed_max(mddev)) ||
7548 					!is_mddev_idle(mddev, 0)) {
7549 				msleep(500);
7550 				goto repeat;
7551 			}
7552 		}
7553 	}
7554 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7555 	/*
7556 	 * this also signals 'finished resyncing' to md_stop
7557 	 */
7558  out:
7559 	blk_finish_plug(&plug);
7560 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7561 
7562 	/* tell personality that we are finished */
7563 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7564 
7565 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7566 	    mddev->curr_resync > 2) {
7567 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7568 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7569 				if (mddev->curr_resync >= mddev->recovery_cp) {
7570 					printk(KERN_INFO
7571 					       "md: checkpointing %s of %s.\n",
7572 					       desc, mdname(mddev));
7573 					mddev->recovery_cp =
7574 						mddev->curr_resync_completed;
7575 				}
7576 			} else
7577 				mddev->recovery_cp = MaxSector;
7578 		} else {
7579 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7580 				mddev->curr_resync = MaxSector;
7581 			rcu_read_lock();
7582 			rdev_for_each_rcu(rdev, mddev)
7583 				if (rdev->raid_disk >= 0 &&
7584 				    mddev->delta_disks >= 0 &&
7585 				    !test_bit(Faulty, &rdev->flags) &&
7586 				    !test_bit(In_sync, &rdev->flags) &&
7587 				    rdev->recovery_offset < mddev->curr_resync)
7588 					rdev->recovery_offset = mddev->curr_resync;
7589 			rcu_read_unlock();
7590 		}
7591 	}
7592  skip:
7593 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7594 
7595 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7596 		/* We completed so min/max setting can be forgotten if used. */
7597 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7598 			mddev->resync_min = 0;
7599 		mddev->resync_max = MaxSector;
7600 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7601 		mddev->resync_min = mddev->curr_resync_completed;
7602 	mddev->curr_resync = 0;
7603 	wake_up(&resync_wait);
7604 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7605 	md_wakeup_thread(mddev->thread);
7606 	return;
7607 
7608  interrupted:
7609 	/*
7610 	 * got a signal, exit.
7611 	 */
7612 	printk(KERN_INFO
7613 	       "md: md_do_sync() got signal ... exiting\n");
7614 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7615 	goto out;
7616 
7617 }
7618 EXPORT_SYMBOL_GPL(md_do_sync);
7619 
7620 static int remove_and_add_spares(struct mddev *mddev)
7621 {
7622 	struct md_rdev *rdev;
7623 	int spares = 0;
7624 	int removed = 0;
7625 
7626 	rdev_for_each(rdev, mddev)
7627 		if (rdev->raid_disk >= 0 &&
7628 		    !test_bit(Blocked, &rdev->flags) &&
7629 		    (test_bit(Faulty, &rdev->flags) ||
7630 		     ! test_bit(In_sync, &rdev->flags)) &&
7631 		    atomic_read(&rdev->nr_pending)==0) {
7632 			if (mddev->pers->hot_remove_disk(
7633 				    mddev, rdev) == 0) {
7634 				sysfs_unlink_rdev(mddev, rdev);
7635 				rdev->raid_disk = -1;
7636 				removed++;
7637 			}
7638 		}
7639 	if (removed)
7640 		sysfs_notify(&mddev->kobj, NULL,
7641 			     "degraded");
7642 
7643 
7644 	rdev_for_each(rdev, mddev) {
7645 		if (rdev->raid_disk >= 0 &&
7646 		    !test_bit(In_sync, &rdev->flags) &&
7647 		    !test_bit(Faulty, &rdev->flags))
7648 			spares++;
7649 		if (rdev->raid_disk < 0
7650 		    && !test_bit(Faulty, &rdev->flags)) {
7651 			rdev->recovery_offset = 0;
7652 			if (mddev->pers->
7653 			    hot_add_disk(mddev, rdev) == 0) {
7654 				if (sysfs_link_rdev(mddev, rdev))
7655 					/* failure here is OK */;
7656 				spares++;
7657 				md_new_event(mddev);
7658 				set_bit(MD_CHANGE_DEVS, &mddev->flags);
7659 			}
7660 		}
7661 	}
7662 	if (removed)
7663 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7664 	return spares;
7665 }
7666 
7667 static void reap_sync_thread(struct mddev *mddev)
7668 {
7669 	struct md_rdev *rdev;
7670 
7671 	/* resync has finished, collect result */
7672 	md_unregister_thread(&mddev->sync_thread);
7673 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7674 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7675 		/* success...*/
7676 		/* activate any spares */
7677 		if (mddev->pers->spare_active(mddev)) {
7678 			sysfs_notify(&mddev->kobj, NULL,
7679 				     "degraded");
7680 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7681 		}
7682 	}
7683 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7684 	    mddev->pers->finish_reshape)
7685 		mddev->pers->finish_reshape(mddev);
7686 
7687 	/* If array is no-longer degraded, then any saved_raid_disk
7688 	 * information must be scrapped.  Also if any device is now
7689 	 * In_sync we must scrape the saved_raid_disk for that device
7690 	 * do the superblock for an incrementally recovered device
7691 	 * written out.
7692 	 */
7693 	rdev_for_each(rdev, mddev)
7694 		if (!mddev->degraded ||
7695 		    test_bit(In_sync, &rdev->flags))
7696 			rdev->saved_raid_disk = -1;
7697 
7698 	md_update_sb(mddev, 1);
7699 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7700 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7701 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7702 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7703 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7704 	/* flag recovery needed just to double check */
7705 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7706 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7707 	md_new_event(mddev);
7708 	if (mddev->event_work.func)
7709 		queue_work(md_misc_wq, &mddev->event_work);
7710 }
7711 
7712 /*
7713  * This routine is regularly called by all per-raid-array threads to
7714  * deal with generic issues like resync and super-block update.
7715  * Raid personalities that don't have a thread (linear/raid0) do not
7716  * need this as they never do any recovery or update the superblock.
7717  *
7718  * It does not do any resync itself, but rather "forks" off other threads
7719  * to do that as needed.
7720  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7721  * "->recovery" and create a thread at ->sync_thread.
7722  * When the thread finishes it sets MD_RECOVERY_DONE
7723  * and wakeups up this thread which will reap the thread and finish up.
7724  * This thread also removes any faulty devices (with nr_pending == 0).
7725  *
7726  * The overall approach is:
7727  *  1/ if the superblock needs updating, update it.
7728  *  2/ If a recovery thread is running, don't do anything else.
7729  *  3/ If recovery has finished, clean up, possibly marking spares active.
7730  *  4/ If there are any faulty devices, remove them.
7731  *  5/ If array is degraded, try to add spares devices
7732  *  6/ If array has spares or is not in-sync, start a resync thread.
7733  */
7734 void md_check_recovery(struct mddev *mddev)
7735 {
7736 	if (mddev->suspended)
7737 		return;
7738 
7739 	if (mddev->bitmap)
7740 		bitmap_daemon_work(mddev);
7741 
7742 	if (signal_pending(current)) {
7743 		if (mddev->pers->sync_request && !mddev->external) {
7744 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7745 			       mdname(mddev));
7746 			mddev->safemode = 2;
7747 		}
7748 		flush_signals(current);
7749 	}
7750 
7751 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7752 		return;
7753 	if ( ! (
7754 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7755 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7756 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7757 		(mddev->external == 0 && mddev->safemode == 1) ||
7758 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7759 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7760 		))
7761 		return;
7762 
7763 	if (mddev_trylock(mddev)) {
7764 		int spares = 0;
7765 
7766 		if (mddev->ro) {
7767 			/* Only thing we do on a ro array is remove
7768 			 * failed devices.
7769 			 */
7770 			struct md_rdev *rdev;
7771 			rdev_for_each(rdev, mddev)
7772 				if (rdev->raid_disk >= 0 &&
7773 				    !test_bit(Blocked, &rdev->flags) &&
7774 				    test_bit(Faulty, &rdev->flags) &&
7775 				    atomic_read(&rdev->nr_pending)==0) {
7776 					if (mddev->pers->hot_remove_disk(
7777 						    mddev, rdev) == 0) {
7778 						sysfs_unlink_rdev(mddev, rdev);
7779 						rdev->raid_disk = -1;
7780 					}
7781 				}
7782 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7783 			goto unlock;
7784 		}
7785 
7786 		if (!mddev->external) {
7787 			int did_change = 0;
7788 			spin_lock_irq(&mddev->write_lock);
7789 			if (mddev->safemode &&
7790 			    !atomic_read(&mddev->writes_pending) &&
7791 			    !mddev->in_sync &&
7792 			    mddev->recovery_cp == MaxSector) {
7793 				mddev->in_sync = 1;
7794 				did_change = 1;
7795 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7796 			}
7797 			if (mddev->safemode == 1)
7798 				mddev->safemode = 0;
7799 			spin_unlock_irq(&mddev->write_lock);
7800 			if (did_change)
7801 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7802 		}
7803 
7804 		if (mddev->flags)
7805 			md_update_sb(mddev, 0);
7806 
7807 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7808 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7809 			/* resync/recovery still happening */
7810 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7811 			goto unlock;
7812 		}
7813 		if (mddev->sync_thread) {
7814 			reap_sync_thread(mddev);
7815 			goto unlock;
7816 		}
7817 		/* Set RUNNING before clearing NEEDED to avoid
7818 		 * any transients in the value of "sync_action".
7819 		 */
7820 		mddev->curr_resync_completed = 0;
7821 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7822 		/* Clear some bits that don't mean anything, but
7823 		 * might be left set
7824 		 */
7825 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7826 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7827 
7828 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7829 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7830 			goto unlock;
7831 		/* no recovery is running.
7832 		 * remove any failed drives, then
7833 		 * add spares if possible.
7834 		 * Spares are also removed and re-added, to allow
7835 		 * the personality to fail the re-add.
7836 		 */
7837 
7838 		if (mddev->reshape_position != MaxSector) {
7839 			if (mddev->pers->check_reshape == NULL ||
7840 			    mddev->pers->check_reshape(mddev) != 0)
7841 				/* Cannot proceed */
7842 				goto unlock;
7843 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7844 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7845 		} else if ((spares = remove_and_add_spares(mddev))) {
7846 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7847 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7848 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7849 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7850 		} else if (mddev->recovery_cp < MaxSector) {
7851 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7852 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7853 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7854 			/* nothing to be done ... */
7855 			goto unlock;
7856 
7857 		if (mddev->pers->sync_request) {
7858 			if (spares) {
7859 				/* We are adding a device or devices to an array
7860 				 * which has the bitmap stored on all devices.
7861 				 * So make sure all bitmap pages get written
7862 				 */
7863 				bitmap_write_all(mddev->bitmap);
7864 			}
7865 			mddev->sync_thread = md_register_thread(md_do_sync,
7866 								mddev,
7867 								"resync");
7868 			if (!mddev->sync_thread) {
7869 				printk(KERN_ERR "%s: could not start resync"
7870 					" thread...\n",
7871 					mdname(mddev));
7872 				/* leave the spares where they are, it shouldn't hurt */
7873 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7874 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7875 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7876 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7877 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7878 			} else
7879 				md_wakeup_thread(mddev->sync_thread);
7880 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7881 			md_new_event(mddev);
7882 		}
7883 	unlock:
7884 		if (!mddev->sync_thread) {
7885 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7886 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7887 					       &mddev->recovery))
7888 				if (mddev->sysfs_action)
7889 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7890 		}
7891 		mddev_unlock(mddev);
7892 	}
7893 }
7894 
7895 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7896 {
7897 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7898 	wait_event_timeout(rdev->blocked_wait,
7899 			   !test_bit(Blocked, &rdev->flags) &&
7900 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7901 			   msecs_to_jiffies(5000));
7902 	rdev_dec_pending(rdev, mddev);
7903 }
7904 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7905 
7906 void md_finish_reshape(struct mddev *mddev)
7907 {
7908 	/* called be personality module when reshape completes. */
7909 	struct md_rdev *rdev;
7910 
7911 	rdev_for_each(rdev, mddev) {
7912 		if (rdev->data_offset > rdev->new_data_offset)
7913 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7914 		else
7915 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7916 		rdev->data_offset = rdev->new_data_offset;
7917 	}
7918 }
7919 EXPORT_SYMBOL(md_finish_reshape);
7920 
7921 /* Bad block management.
7922  * We can record which blocks on each device are 'bad' and so just
7923  * fail those blocks, or that stripe, rather than the whole device.
7924  * Entries in the bad-block table are 64bits wide.  This comprises:
7925  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7926  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7927  *  A 'shift' can be set so that larger blocks are tracked and
7928  *  consequently larger devices can be covered.
7929  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7930  *
7931  * Locking of the bad-block table uses a seqlock so md_is_badblock
7932  * might need to retry if it is very unlucky.
7933  * We will sometimes want to check for bad blocks in a bi_end_io function,
7934  * so we use the write_seqlock_irq variant.
7935  *
7936  * When looking for a bad block we specify a range and want to
7937  * know if any block in the range is bad.  So we binary-search
7938  * to the last range that starts at-or-before the given endpoint,
7939  * (or "before the sector after the target range")
7940  * then see if it ends after the given start.
7941  * We return
7942  *  0 if there are no known bad blocks in the range
7943  *  1 if there are known bad block which are all acknowledged
7944  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7945  * plus the start/length of the first bad section we overlap.
7946  */
7947 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7948 		   sector_t *first_bad, int *bad_sectors)
7949 {
7950 	int hi;
7951 	int lo;
7952 	u64 *p = bb->page;
7953 	int rv;
7954 	sector_t target = s + sectors;
7955 	unsigned seq;
7956 
7957 	if (bb->shift > 0) {
7958 		/* round the start down, and the end up */
7959 		s >>= bb->shift;
7960 		target += (1<<bb->shift) - 1;
7961 		target >>= bb->shift;
7962 		sectors = target - s;
7963 	}
7964 	/* 'target' is now the first block after the bad range */
7965 
7966 retry:
7967 	seq = read_seqbegin(&bb->lock);
7968 	lo = 0;
7969 	rv = 0;
7970 	hi = bb->count;
7971 
7972 	/* Binary search between lo and hi for 'target'
7973 	 * i.e. for the last range that starts before 'target'
7974 	 */
7975 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7976 	 * are known not to be the last range before target.
7977 	 * VARIANT: hi-lo is the number of possible
7978 	 * ranges, and decreases until it reaches 1
7979 	 */
7980 	while (hi - lo > 1) {
7981 		int mid = (lo + hi) / 2;
7982 		sector_t a = BB_OFFSET(p[mid]);
7983 		if (a < target)
7984 			/* This could still be the one, earlier ranges
7985 			 * could not. */
7986 			lo = mid;
7987 		else
7988 			/* This and later ranges are definitely out. */
7989 			hi = mid;
7990 	}
7991 	/* 'lo' might be the last that started before target, but 'hi' isn't */
7992 	if (hi > lo) {
7993 		/* need to check all range that end after 's' to see if
7994 		 * any are unacknowledged.
7995 		 */
7996 		while (lo >= 0 &&
7997 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7998 			if (BB_OFFSET(p[lo]) < target) {
7999 				/* starts before the end, and finishes after
8000 				 * the start, so they must overlap
8001 				 */
8002 				if (rv != -1 && BB_ACK(p[lo]))
8003 					rv = 1;
8004 				else
8005 					rv = -1;
8006 				*first_bad = BB_OFFSET(p[lo]);
8007 				*bad_sectors = BB_LEN(p[lo]);
8008 			}
8009 			lo--;
8010 		}
8011 	}
8012 
8013 	if (read_seqretry(&bb->lock, seq))
8014 		goto retry;
8015 
8016 	return rv;
8017 }
8018 EXPORT_SYMBOL_GPL(md_is_badblock);
8019 
8020 /*
8021  * Add a range of bad blocks to the table.
8022  * This might extend the table, or might contract it
8023  * if two adjacent ranges can be merged.
8024  * We binary-search to find the 'insertion' point, then
8025  * decide how best to handle it.
8026  */
8027 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8028 			    int acknowledged)
8029 {
8030 	u64 *p;
8031 	int lo, hi;
8032 	int rv = 1;
8033 
8034 	if (bb->shift < 0)
8035 		/* badblocks are disabled */
8036 		return 0;
8037 
8038 	if (bb->shift) {
8039 		/* round the start down, and the end up */
8040 		sector_t next = s + sectors;
8041 		s >>= bb->shift;
8042 		next += (1<<bb->shift) - 1;
8043 		next >>= bb->shift;
8044 		sectors = next - s;
8045 	}
8046 
8047 	write_seqlock_irq(&bb->lock);
8048 
8049 	p = bb->page;
8050 	lo = 0;
8051 	hi = bb->count;
8052 	/* Find the last range that starts at-or-before 's' */
8053 	while (hi - lo > 1) {
8054 		int mid = (lo + hi) / 2;
8055 		sector_t a = BB_OFFSET(p[mid]);
8056 		if (a <= s)
8057 			lo = mid;
8058 		else
8059 			hi = mid;
8060 	}
8061 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8062 		hi = lo;
8063 
8064 	if (hi > lo) {
8065 		/* we found a range that might merge with the start
8066 		 * of our new range
8067 		 */
8068 		sector_t a = BB_OFFSET(p[lo]);
8069 		sector_t e = a + BB_LEN(p[lo]);
8070 		int ack = BB_ACK(p[lo]);
8071 		if (e >= s) {
8072 			/* Yes, we can merge with a previous range */
8073 			if (s == a && s + sectors >= e)
8074 				/* new range covers old */
8075 				ack = acknowledged;
8076 			else
8077 				ack = ack && acknowledged;
8078 
8079 			if (e < s + sectors)
8080 				e = s + sectors;
8081 			if (e - a <= BB_MAX_LEN) {
8082 				p[lo] = BB_MAKE(a, e-a, ack);
8083 				s = e;
8084 			} else {
8085 				/* does not all fit in one range,
8086 				 * make p[lo] maximal
8087 				 */
8088 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8089 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8090 				s = a + BB_MAX_LEN;
8091 			}
8092 			sectors = e - s;
8093 		}
8094 	}
8095 	if (sectors && hi < bb->count) {
8096 		/* 'hi' points to the first range that starts after 's'.
8097 		 * Maybe we can merge with the start of that range */
8098 		sector_t a = BB_OFFSET(p[hi]);
8099 		sector_t e = a + BB_LEN(p[hi]);
8100 		int ack = BB_ACK(p[hi]);
8101 		if (a <= s + sectors) {
8102 			/* merging is possible */
8103 			if (e <= s + sectors) {
8104 				/* full overlap */
8105 				e = s + sectors;
8106 				ack = acknowledged;
8107 			} else
8108 				ack = ack && acknowledged;
8109 
8110 			a = s;
8111 			if (e - a <= BB_MAX_LEN) {
8112 				p[hi] = BB_MAKE(a, e-a, ack);
8113 				s = e;
8114 			} else {
8115 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8116 				s = a + BB_MAX_LEN;
8117 			}
8118 			sectors = e - s;
8119 			lo = hi;
8120 			hi++;
8121 		}
8122 	}
8123 	if (sectors == 0 && hi < bb->count) {
8124 		/* we might be able to combine lo and hi */
8125 		/* Note: 's' is at the end of 'lo' */
8126 		sector_t a = BB_OFFSET(p[hi]);
8127 		int lolen = BB_LEN(p[lo]);
8128 		int hilen = BB_LEN(p[hi]);
8129 		int newlen = lolen + hilen - (s - a);
8130 		if (s >= a && newlen < BB_MAX_LEN) {
8131 			/* yes, we can combine them */
8132 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8133 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8134 			memmove(p + hi, p + hi + 1,
8135 				(bb->count - hi - 1) * 8);
8136 			bb->count--;
8137 		}
8138 	}
8139 	while (sectors) {
8140 		/* didn't merge (it all).
8141 		 * Need to add a range just before 'hi' */
8142 		if (bb->count >= MD_MAX_BADBLOCKS) {
8143 			/* No room for more */
8144 			rv = 0;
8145 			break;
8146 		} else {
8147 			int this_sectors = sectors;
8148 			memmove(p + hi + 1, p + hi,
8149 				(bb->count - hi) * 8);
8150 			bb->count++;
8151 
8152 			if (this_sectors > BB_MAX_LEN)
8153 				this_sectors = BB_MAX_LEN;
8154 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8155 			sectors -= this_sectors;
8156 			s += this_sectors;
8157 		}
8158 	}
8159 
8160 	bb->changed = 1;
8161 	if (!acknowledged)
8162 		bb->unacked_exist = 1;
8163 	write_sequnlock_irq(&bb->lock);
8164 
8165 	return rv;
8166 }
8167 
8168 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8169 		       int is_new)
8170 {
8171 	int rv;
8172 	if (is_new)
8173 		s += rdev->new_data_offset;
8174 	else
8175 		s += rdev->data_offset;
8176 	rv = md_set_badblocks(&rdev->badblocks,
8177 			      s, sectors, 0);
8178 	if (rv) {
8179 		/* Make sure they get written out promptly */
8180 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8181 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8182 		md_wakeup_thread(rdev->mddev->thread);
8183 	}
8184 	return rv;
8185 }
8186 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8187 
8188 /*
8189  * Remove a range of bad blocks from the table.
8190  * This may involve extending the table if we spilt a region,
8191  * but it must not fail.  So if the table becomes full, we just
8192  * drop the remove request.
8193  */
8194 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8195 {
8196 	u64 *p;
8197 	int lo, hi;
8198 	sector_t target = s + sectors;
8199 	int rv = 0;
8200 
8201 	if (bb->shift > 0) {
8202 		/* When clearing we round the start up and the end down.
8203 		 * This should not matter as the shift should align with
8204 		 * the block size and no rounding should ever be needed.
8205 		 * However it is better the think a block is bad when it
8206 		 * isn't than to think a block is not bad when it is.
8207 		 */
8208 		s += (1<<bb->shift) - 1;
8209 		s >>= bb->shift;
8210 		target >>= bb->shift;
8211 		sectors = target - s;
8212 	}
8213 
8214 	write_seqlock_irq(&bb->lock);
8215 
8216 	p = bb->page;
8217 	lo = 0;
8218 	hi = bb->count;
8219 	/* Find the last range that starts before 'target' */
8220 	while (hi - lo > 1) {
8221 		int mid = (lo + hi) / 2;
8222 		sector_t a = BB_OFFSET(p[mid]);
8223 		if (a < target)
8224 			lo = mid;
8225 		else
8226 			hi = mid;
8227 	}
8228 	if (hi > lo) {
8229 		/* p[lo] is the last range that could overlap the
8230 		 * current range.  Earlier ranges could also overlap,
8231 		 * but only this one can overlap the end of the range.
8232 		 */
8233 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8234 			/* Partial overlap, leave the tail of this range */
8235 			int ack = BB_ACK(p[lo]);
8236 			sector_t a = BB_OFFSET(p[lo]);
8237 			sector_t end = a + BB_LEN(p[lo]);
8238 
8239 			if (a < s) {
8240 				/* we need to split this range */
8241 				if (bb->count >= MD_MAX_BADBLOCKS) {
8242 					rv = 0;
8243 					goto out;
8244 				}
8245 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8246 				bb->count++;
8247 				p[lo] = BB_MAKE(a, s-a, ack);
8248 				lo++;
8249 			}
8250 			p[lo] = BB_MAKE(target, end - target, ack);
8251 			/* there is no longer an overlap */
8252 			hi = lo;
8253 			lo--;
8254 		}
8255 		while (lo >= 0 &&
8256 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8257 			/* This range does overlap */
8258 			if (BB_OFFSET(p[lo]) < s) {
8259 				/* Keep the early parts of this range. */
8260 				int ack = BB_ACK(p[lo]);
8261 				sector_t start = BB_OFFSET(p[lo]);
8262 				p[lo] = BB_MAKE(start, s - start, ack);
8263 				/* now low doesn't overlap, so.. */
8264 				break;
8265 			}
8266 			lo--;
8267 		}
8268 		/* 'lo' is strictly before, 'hi' is strictly after,
8269 		 * anything between needs to be discarded
8270 		 */
8271 		if (hi - lo > 1) {
8272 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8273 			bb->count -= (hi - lo - 1);
8274 		}
8275 	}
8276 
8277 	bb->changed = 1;
8278 out:
8279 	write_sequnlock_irq(&bb->lock);
8280 	return rv;
8281 }
8282 
8283 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8284 			 int is_new)
8285 {
8286 	if (is_new)
8287 		s += rdev->new_data_offset;
8288 	else
8289 		s += rdev->data_offset;
8290 	return md_clear_badblocks(&rdev->badblocks,
8291 				  s, sectors);
8292 }
8293 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8294 
8295 /*
8296  * Acknowledge all bad blocks in a list.
8297  * This only succeeds if ->changed is clear.  It is used by
8298  * in-kernel metadata updates
8299  */
8300 void md_ack_all_badblocks(struct badblocks *bb)
8301 {
8302 	if (bb->page == NULL || bb->changed)
8303 		/* no point even trying */
8304 		return;
8305 	write_seqlock_irq(&bb->lock);
8306 
8307 	if (bb->changed == 0 && bb->unacked_exist) {
8308 		u64 *p = bb->page;
8309 		int i;
8310 		for (i = 0; i < bb->count ; i++) {
8311 			if (!BB_ACK(p[i])) {
8312 				sector_t start = BB_OFFSET(p[i]);
8313 				int len = BB_LEN(p[i]);
8314 				p[i] = BB_MAKE(start, len, 1);
8315 			}
8316 		}
8317 		bb->unacked_exist = 0;
8318 	}
8319 	write_sequnlock_irq(&bb->lock);
8320 }
8321 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8322 
8323 /* sysfs access to bad-blocks list.
8324  * We present two files.
8325  * 'bad-blocks' lists sector numbers and lengths of ranges that
8326  *    are recorded as bad.  The list is truncated to fit within
8327  *    the one-page limit of sysfs.
8328  *    Writing "sector length" to this file adds an acknowledged
8329  *    bad block list.
8330  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8331  *    been acknowledged.  Writing to this file adds bad blocks
8332  *    without acknowledging them.  This is largely for testing.
8333  */
8334 
8335 static ssize_t
8336 badblocks_show(struct badblocks *bb, char *page, int unack)
8337 {
8338 	size_t len;
8339 	int i;
8340 	u64 *p = bb->page;
8341 	unsigned seq;
8342 
8343 	if (bb->shift < 0)
8344 		return 0;
8345 
8346 retry:
8347 	seq = read_seqbegin(&bb->lock);
8348 
8349 	len = 0;
8350 	i = 0;
8351 
8352 	while (len < PAGE_SIZE && i < bb->count) {
8353 		sector_t s = BB_OFFSET(p[i]);
8354 		unsigned int length = BB_LEN(p[i]);
8355 		int ack = BB_ACK(p[i]);
8356 		i++;
8357 
8358 		if (unack && ack)
8359 			continue;
8360 
8361 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8362 				(unsigned long long)s << bb->shift,
8363 				length << bb->shift);
8364 	}
8365 	if (unack && len == 0)
8366 		bb->unacked_exist = 0;
8367 
8368 	if (read_seqretry(&bb->lock, seq))
8369 		goto retry;
8370 
8371 	return len;
8372 }
8373 
8374 #define DO_DEBUG 1
8375 
8376 static ssize_t
8377 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8378 {
8379 	unsigned long long sector;
8380 	int length;
8381 	char newline;
8382 #ifdef DO_DEBUG
8383 	/* Allow clearing via sysfs *only* for testing/debugging.
8384 	 * Normally only a successful write may clear a badblock
8385 	 */
8386 	int clear = 0;
8387 	if (page[0] == '-') {
8388 		clear = 1;
8389 		page++;
8390 	}
8391 #endif /* DO_DEBUG */
8392 
8393 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8394 	case 3:
8395 		if (newline != '\n')
8396 			return -EINVAL;
8397 	case 2:
8398 		if (length <= 0)
8399 			return -EINVAL;
8400 		break;
8401 	default:
8402 		return -EINVAL;
8403 	}
8404 
8405 #ifdef DO_DEBUG
8406 	if (clear) {
8407 		md_clear_badblocks(bb, sector, length);
8408 		return len;
8409 	}
8410 #endif /* DO_DEBUG */
8411 	if (md_set_badblocks(bb, sector, length, !unack))
8412 		return len;
8413 	else
8414 		return -ENOSPC;
8415 }
8416 
8417 static int md_notify_reboot(struct notifier_block *this,
8418 			    unsigned long code, void *x)
8419 {
8420 	struct list_head *tmp;
8421 	struct mddev *mddev;
8422 	int need_delay = 0;
8423 
8424 	for_each_mddev(mddev, tmp) {
8425 		if (mddev_trylock(mddev)) {
8426 			if (mddev->pers)
8427 				__md_stop_writes(mddev);
8428 			mddev->safemode = 2;
8429 			mddev_unlock(mddev);
8430 		}
8431 		need_delay = 1;
8432 	}
8433 	/*
8434 	 * certain more exotic SCSI devices are known to be
8435 	 * volatile wrt too early system reboots. While the
8436 	 * right place to handle this issue is the given
8437 	 * driver, we do want to have a safe RAID driver ...
8438 	 */
8439 	if (need_delay)
8440 		mdelay(1000*1);
8441 
8442 	return NOTIFY_DONE;
8443 }
8444 
8445 static struct notifier_block md_notifier = {
8446 	.notifier_call	= md_notify_reboot,
8447 	.next		= NULL,
8448 	.priority	= INT_MAX, /* before any real devices */
8449 };
8450 
8451 static void md_geninit(void)
8452 {
8453 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8454 
8455 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8456 }
8457 
8458 static int __init md_init(void)
8459 {
8460 	int ret = -ENOMEM;
8461 
8462 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8463 	if (!md_wq)
8464 		goto err_wq;
8465 
8466 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8467 	if (!md_misc_wq)
8468 		goto err_misc_wq;
8469 
8470 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8471 		goto err_md;
8472 
8473 	if ((ret = register_blkdev(0, "mdp")) < 0)
8474 		goto err_mdp;
8475 	mdp_major = ret;
8476 
8477 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8478 			    md_probe, NULL, NULL);
8479 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8480 			    md_probe, NULL, NULL);
8481 
8482 	register_reboot_notifier(&md_notifier);
8483 	raid_table_header = register_sysctl_table(raid_root_table);
8484 
8485 	md_geninit();
8486 	return 0;
8487 
8488 err_mdp:
8489 	unregister_blkdev(MD_MAJOR, "md");
8490 err_md:
8491 	destroy_workqueue(md_misc_wq);
8492 err_misc_wq:
8493 	destroy_workqueue(md_wq);
8494 err_wq:
8495 	return ret;
8496 }
8497 
8498 #ifndef MODULE
8499 
8500 /*
8501  * Searches all registered partitions for autorun RAID arrays
8502  * at boot time.
8503  */
8504 
8505 static LIST_HEAD(all_detected_devices);
8506 struct detected_devices_node {
8507 	struct list_head list;
8508 	dev_t dev;
8509 };
8510 
8511 void md_autodetect_dev(dev_t dev)
8512 {
8513 	struct detected_devices_node *node_detected_dev;
8514 
8515 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8516 	if (node_detected_dev) {
8517 		node_detected_dev->dev = dev;
8518 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8519 	} else {
8520 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8521 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8522 	}
8523 }
8524 
8525 
8526 static void autostart_arrays(int part)
8527 {
8528 	struct md_rdev *rdev;
8529 	struct detected_devices_node *node_detected_dev;
8530 	dev_t dev;
8531 	int i_scanned, i_passed;
8532 
8533 	i_scanned = 0;
8534 	i_passed = 0;
8535 
8536 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8537 
8538 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8539 		i_scanned++;
8540 		node_detected_dev = list_entry(all_detected_devices.next,
8541 					struct detected_devices_node, list);
8542 		list_del(&node_detected_dev->list);
8543 		dev = node_detected_dev->dev;
8544 		kfree(node_detected_dev);
8545 		rdev = md_import_device(dev,0, 90);
8546 		if (IS_ERR(rdev))
8547 			continue;
8548 
8549 		if (test_bit(Faulty, &rdev->flags)) {
8550 			MD_BUG();
8551 			continue;
8552 		}
8553 		set_bit(AutoDetected, &rdev->flags);
8554 		list_add(&rdev->same_set, &pending_raid_disks);
8555 		i_passed++;
8556 	}
8557 
8558 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8559 						i_scanned, i_passed);
8560 
8561 	autorun_devices(part);
8562 }
8563 
8564 #endif /* !MODULE */
8565 
8566 static __exit void md_exit(void)
8567 {
8568 	struct mddev *mddev;
8569 	struct list_head *tmp;
8570 
8571 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8572 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8573 
8574 	unregister_blkdev(MD_MAJOR,"md");
8575 	unregister_blkdev(mdp_major, "mdp");
8576 	unregister_reboot_notifier(&md_notifier);
8577 	unregister_sysctl_table(raid_table_header);
8578 	remove_proc_entry("mdstat", NULL);
8579 	for_each_mddev(mddev, tmp) {
8580 		export_array(mddev);
8581 		mddev->hold_active = 0;
8582 	}
8583 	destroy_workqueue(md_misc_wq);
8584 	destroy_workqueue(md_wq);
8585 }
8586 
8587 subsys_initcall(md_init);
8588 module_exit(md_exit)
8589 
8590 static int get_ro(char *buffer, struct kernel_param *kp)
8591 {
8592 	return sprintf(buffer, "%d", start_readonly);
8593 }
8594 static int set_ro(const char *val, struct kernel_param *kp)
8595 {
8596 	char *e;
8597 	int num = simple_strtoul(val, &e, 10);
8598 	if (*val && (*e == '\0' || *e == '\n')) {
8599 		start_readonly = num;
8600 		return 0;
8601 	}
8602 	return -EINVAL;
8603 }
8604 
8605 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8606 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8607 
8608 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8609 
8610 EXPORT_SYMBOL(register_md_personality);
8611 EXPORT_SYMBOL(unregister_md_personality);
8612 EXPORT_SYMBOL(md_error);
8613 EXPORT_SYMBOL(md_done_sync);
8614 EXPORT_SYMBOL(md_write_start);
8615 EXPORT_SYMBOL(md_write_end);
8616 EXPORT_SYMBOL(md_register_thread);
8617 EXPORT_SYMBOL(md_unregister_thread);
8618 EXPORT_SYMBOL(md_wakeup_thread);
8619 EXPORT_SYMBOL(md_check_recovery);
8620 MODULE_LICENSE("GPL");
8621 MODULE_DESCRIPTION("MD RAID framework");
8622 MODULE_ALIAS("md");
8623 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8624