1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 /* pers_list is a list of registered personalities protected 62 * by pers_lock. 63 * pers_lock does extra service to protect accesses to 64 * mddev->thread when the mutex cannot be held. 65 */ 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static void md_print_devices(void); 70 71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 72 static struct workqueue_struct *md_wq; 73 static struct workqueue_struct *md_misc_wq; 74 75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 76 77 /* 78 * Default number of read corrections we'll attempt on an rdev 79 * before ejecting it from the array. We divide the read error 80 * count by 2 for every hour elapsed between read errors. 81 */ 82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 83 /* 84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 85 * is 1000 KB/sec, so the extra system load does not show up that much. 86 * Increase it if you want to have more _guaranteed_ speed. Note that 87 * the RAID driver will use the maximum available bandwidth if the IO 88 * subsystem is idle. There is also an 'absolute maximum' reconstruction 89 * speed limit - in case reconstruction slows down your system despite 90 * idle IO detection. 91 * 92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 93 * or /sys/block/mdX/md/sync_speed_{min,max} 94 */ 95 96 static int sysctl_speed_limit_min = 1000; 97 static int sysctl_speed_limit_max = 200000; 98 static inline int speed_min(struct mddev *mddev) 99 { 100 return mddev->sync_speed_min ? 101 mddev->sync_speed_min : sysctl_speed_limit_min; 102 } 103 104 static inline int speed_max(struct mddev *mddev) 105 { 106 return mddev->sync_speed_max ? 107 mddev->sync_speed_max : sysctl_speed_limit_max; 108 } 109 110 static struct ctl_table_header *raid_table_header; 111 112 static ctl_table raid_table[] = { 113 { 114 .procname = "speed_limit_min", 115 .data = &sysctl_speed_limit_min, 116 .maxlen = sizeof(int), 117 .mode = S_IRUGO|S_IWUSR, 118 .proc_handler = proc_dointvec, 119 }, 120 { 121 .procname = "speed_limit_max", 122 .data = &sysctl_speed_limit_max, 123 .maxlen = sizeof(int), 124 .mode = S_IRUGO|S_IWUSR, 125 .proc_handler = proc_dointvec, 126 }, 127 { } 128 }; 129 130 static ctl_table raid_dir_table[] = { 131 { 132 .procname = "raid", 133 .maxlen = 0, 134 .mode = S_IRUGO|S_IXUGO, 135 .child = raid_table, 136 }, 137 { } 138 }; 139 140 static ctl_table raid_root_table[] = { 141 { 142 .procname = "dev", 143 .maxlen = 0, 144 .mode = 0555, 145 .child = raid_dir_table, 146 }, 147 { } 148 }; 149 150 static const struct block_device_operations md_fops; 151 152 static int start_readonly; 153 154 /* bio_clone_mddev 155 * like bio_clone, but with a local bio set 156 */ 157 158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 159 struct mddev *mddev) 160 { 161 struct bio *b; 162 163 if (!mddev || !mddev->bio_set) 164 return bio_alloc(gfp_mask, nr_iovecs); 165 166 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 167 if (!b) 168 return NULL; 169 return b; 170 } 171 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 172 173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 174 struct mddev *mddev) 175 { 176 if (!mddev || !mddev->bio_set) 177 return bio_clone(bio, gfp_mask); 178 179 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 180 } 181 EXPORT_SYMBOL_GPL(bio_clone_mddev); 182 183 void md_trim_bio(struct bio *bio, int offset, int size) 184 { 185 /* 'bio' is a cloned bio which we need to trim to match 186 * the given offset and size. 187 * This requires adjusting bi_sector, bi_size, and bi_io_vec 188 */ 189 int i; 190 struct bio_vec *bvec; 191 int sofar = 0; 192 193 size <<= 9; 194 if (offset == 0 && size == bio->bi_size) 195 return; 196 197 bio->bi_sector += offset; 198 bio->bi_size = size; 199 offset <<= 9; 200 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 201 202 while (bio->bi_idx < bio->bi_vcnt && 203 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) { 204 /* remove this whole bio_vec */ 205 offset -= bio->bi_io_vec[bio->bi_idx].bv_len; 206 bio->bi_idx++; 207 } 208 if (bio->bi_idx < bio->bi_vcnt) { 209 bio->bi_io_vec[bio->bi_idx].bv_offset += offset; 210 bio->bi_io_vec[bio->bi_idx].bv_len -= offset; 211 } 212 /* avoid any complications with bi_idx being non-zero*/ 213 if (bio->bi_idx) { 214 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx, 215 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec)); 216 bio->bi_vcnt -= bio->bi_idx; 217 bio->bi_idx = 0; 218 } 219 /* Make sure vcnt and last bv are not too big */ 220 bio_for_each_segment(bvec, bio, i) { 221 if (sofar + bvec->bv_len > size) 222 bvec->bv_len = size - sofar; 223 if (bvec->bv_len == 0) { 224 bio->bi_vcnt = i; 225 break; 226 } 227 sofar += bvec->bv_len; 228 } 229 } 230 EXPORT_SYMBOL_GPL(md_trim_bio); 231 232 /* 233 * We have a system wide 'event count' that is incremented 234 * on any 'interesting' event, and readers of /proc/mdstat 235 * can use 'poll' or 'select' to find out when the event 236 * count increases. 237 * 238 * Events are: 239 * start array, stop array, error, add device, remove device, 240 * start build, activate spare 241 */ 242 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 243 static atomic_t md_event_count; 244 void md_new_event(struct mddev *mddev) 245 { 246 atomic_inc(&md_event_count); 247 wake_up(&md_event_waiters); 248 } 249 EXPORT_SYMBOL_GPL(md_new_event); 250 251 /* Alternate version that can be called from interrupts 252 * when calling sysfs_notify isn't needed. 253 */ 254 static void md_new_event_inintr(struct mddev *mddev) 255 { 256 atomic_inc(&md_event_count); 257 wake_up(&md_event_waiters); 258 } 259 260 /* 261 * Enables to iterate over all existing md arrays 262 * all_mddevs_lock protects this list. 263 */ 264 static LIST_HEAD(all_mddevs); 265 static DEFINE_SPINLOCK(all_mddevs_lock); 266 267 268 /* 269 * iterates through all used mddevs in the system. 270 * We take care to grab the all_mddevs_lock whenever navigating 271 * the list, and to always hold a refcount when unlocked. 272 * Any code which breaks out of this loop while own 273 * a reference to the current mddev and must mddev_put it. 274 */ 275 #define for_each_mddev(_mddev,_tmp) \ 276 \ 277 for (({ spin_lock(&all_mddevs_lock); \ 278 _tmp = all_mddevs.next; \ 279 _mddev = NULL;}); \ 280 ({ if (_tmp != &all_mddevs) \ 281 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 282 spin_unlock(&all_mddevs_lock); \ 283 if (_mddev) mddev_put(_mddev); \ 284 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 285 _tmp != &all_mddevs;}); \ 286 ({ spin_lock(&all_mddevs_lock); \ 287 _tmp = _tmp->next;}) \ 288 ) 289 290 291 /* Rather than calling directly into the personality make_request function, 292 * IO requests come here first so that we can check if the device is 293 * being suspended pending a reconfiguration. 294 * We hold a refcount over the call to ->make_request. By the time that 295 * call has finished, the bio has been linked into some internal structure 296 * and so is visible to ->quiesce(), so we don't need the refcount any more. 297 */ 298 static void md_make_request(struct request_queue *q, struct bio *bio) 299 { 300 const int rw = bio_data_dir(bio); 301 struct mddev *mddev = q->queuedata; 302 int cpu; 303 unsigned int sectors; 304 305 if (mddev == NULL || mddev->pers == NULL 306 || !mddev->ready) { 307 bio_io_error(bio); 308 return; 309 } 310 smp_rmb(); /* Ensure implications of 'active' are visible */ 311 rcu_read_lock(); 312 if (mddev->suspended) { 313 DEFINE_WAIT(__wait); 314 for (;;) { 315 prepare_to_wait(&mddev->sb_wait, &__wait, 316 TASK_UNINTERRUPTIBLE); 317 if (!mddev->suspended) 318 break; 319 rcu_read_unlock(); 320 schedule(); 321 rcu_read_lock(); 322 } 323 finish_wait(&mddev->sb_wait, &__wait); 324 } 325 atomic_inc(&mddev->active_io); 326 rcu_read_unlock(); 327 328 /* 329 * save the sectors now since our bio can 330 * go away inside make_request 331 */ 332 sectors = bio_sectors(bio); 333 mddev->pers->make_request(mddev, bio); 334 335 cpu = part_stat_lock(); 336 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 337 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 338 part_stat_unlock(); 339 340 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 341 wake_up(&mddev->sb_wait); 342 } 343 344 /* mddev_suspend makes sure no new requests are submitted 345 * to the device, and that any requests that have been submitted 346 * are completely handled. 347 * Once ->stop is called and completes, the module will be completely 348 * unused. 349 */ 350 void mddev_suspend(struct mddev *mddev) 351 { 352 BUG_ON(mddev->suspended); 353 mddev->suspended = 1; 354 synchronize_rcu(); 355 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 356 mddev->pers->quiesce(mddev, 1); 357 358 del_timer_sync(&mddev->safemode_timer); 359 } 360 EXPORT_SYMBOL_GPL(mddev_suspend); 361 362 void mddev_resume(struct mddev *mddev) 363 { 364 mddev->suspended = 0; 365 wake_up(&mddev->sb_wait); 366 mddev->pers->quiesce(mddev, 0); 367 368 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 369 md_wakeup_thread(mddev->thread); 370 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 371 } 372 EXPORT_SYMBOL_GPL(mddev_resume); 373 374 int mddev_congested(struct mddev *mddev, int bits) 375 { 376 return mddev->suspended; 377 } 378 EXPORT_SYMBOL(mddev_congested); 379 380 /* 381 * Generic flush handling for md 382 */ 383 384 static void md_end_flush(struct bio *bio, int err) 385 { 386 struct md_rdev *rdev = bio->bi_private; 387 struct mddev *mddev = rdev->mddev; 388 389 rdev_dec_pending(rdev, mddev); 390 391 if (atomic_dec_and_test(&mddev->flush_pending)) { 392 /* The pre-request flush has finished */ 393 queue_work(md_wq, &mddev->flush_work); 394 } 395 bio_put(bio); 396 } 397 398 static void md_submit_flush_data(struct work_struct *ws); 399 400 static void submit_flushes(struct work_struct *ws) 401 { 402 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 403 struct md_rdev *rdev; 404 405 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 406 atomic_set(&mddev->flush_pending, 1); 407 rcu_read_lock(); 408 rdev_for_each_rcu(rdev, mddev) 409 if (rdev->raid_disk >= 0 && 410 !test_bit(Faulty, &rdev->flags)) { 411 /* Take two references, one is dropped 412 * when request finishes, one after 413 * we reclaim rcu_read_lock 414 */ 415 struct bio *bi; 416 atomic_inc(&rdev->nr_pending); 417 atomic_inc(&rdev->nr_pending); 418 rcu_read_unlock(); 419 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 420 bi->bi_end_io = md_end_flush; 421 bi->bi_private = rdev; 422 bi->bi_bdev = rdev->bdev; 423 atomic_inc(&mddev->flush_pending); 424 submit_bio(WRITE_FLUSH, bi); 425 rcu_read_lock(); 426 rdev_dec_pending(rdev, mddev); 427 } 428 rcu_read_unlock(); 429 if (atomic_dec_and_test(&mddev->flush_pending)) 430 queue_work(md_wq, &mddev->flush_work); 431 } 432 433 static void md_submit_flush_data(struct work_struct *ws) 434 { 435 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 436 struct bio *bio = mddev->flush_bio; 437 438 if (bio->bi_size == 0) 439 /* an empty barrier - all done */ 440 bio_endio(bio, 0); 441 else { 442 bio->bi_rw &= ~REQ_FLUSH; 443 mddev->pers->make_request(mddev, bio); 444 } 445 446 mddev->flush_bio = NULL; 447 wake_up(&mddev->sb_wait); 448 } 449 450 void md_flush_request(struct mddev *mddev, struct bio *bio) 451 { 452 spin_lock_irq(&mddev->write_lock); 453 wait_event_lock_irq(mddev->sb_wait, 454 !mddev->flush_bio, 455 mddev->write_lock, /*nothing*/); 456 mddev->flush_bio = bio; 457 spin_unlock_irq(&mddev->write_lock); 458 459 INIT_WORK(&mddev->flush_work, submit_flushes); 460 queue_work(md_wq, &mddev->flush_work); 461 } 462 EXPORT_SYMBOL(md_flush_request); 463 464 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 465 { 466 struct mddev *mddev = cb->data; 467 md_wakeup_thread(mddev->thread); 468 kfree(cb); 469 } 470 EXPORT_SYMBOL(md_unplug); 471 472 static inline struct mddev *mddev_get(struct mddev *mddev) 473 { 474 atomic_inc(&mddev->active); 475 return mddev; 476 } 477 478 static void mddev_delayed_delete(struct work_struct *ws); 479 480 static void mddev_put(struct mddev *mddev) 481 { 482 struct bio_set *bs = NULL; 483 484 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 485 return; 486 if (!mddev->raid_disks && list_empty(&mddev->disks) && 487 mddev->ctime == 0 && !mddev->hold_active) { 488 /* Array is not configured at all, and not held active, 489 * so destroy it */ 490 list_del_init(&mddev->all_mddevs); 491 bs = mddev->bio_set; 492 mddev->bio_set = NULL; 493 if (mddev->gendisk) { 494 /* We did a probe so need to clean up. Call 495 * queue_work inside the spinlock so that 496 * flush_workqueue() after mddev_find will 497 * succeed in waiting for the work to be done. 498 */ 499 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 500 queue_work(md_misc_wq, &mddev->del_work); 501 } else 502 kfree(mddev); 503 } 504 spin_unlock(&all_mddevs_lock); 505 if (bs) 506 bioset_free(bs); 507 } 508 509 void mddev_init(struct mddev *mddev) 510 { 511 mutex_init(&mddev->open_mutex); 512 mutex_init(&mddev->reconfig_mutex); 513 mutex_init(&mddev->bitmap_info.mutex); 514 INIT_LIST_HEAD(&mddev->disks); 515 INIT_LIST_HEAD(&mddev->all_mddevs); 516 init_timer(&mddev->safemode_timer); 517 atomic_set(&mddev->active, 1); 518 atomic_set(&mddev->openers, 0); 519 atomic_set(&mddev->active_io, 0); 520 spin_lock_init(&mddev->write_lock); 521 atomic_set(&mddev->flush_pending, 0); 522 init_waitqueue_head(&mddev->sb_wait); 523 init_waitqueue_head(&mddev->recovery_wait); 524 mddev->reshape_position = MaxSector; 525 mddev->reshape_backwards = 0; 526 mddev->resync_min = 0; 527 mddev->resync_max = MaxSector; 528 mddev->level = LEVEL_NONE; 529 } 530 EXPORT_SYMBOL_GPL(mddev_init); 531 532 static struct mddev * mddev_find(dev_t unit) 533 { 534 struct mddev *mddev, *new = NULL; 535 536 if (unit && MAJOR(unit) != MD_MAJOR) 537 unit &= ~((1<<MdpMinorShift)-1); 538 539 retry: 540 spin_lock(&all_mddevs_lock); 541 542 if (unit) { 543 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 544 if (mddev->unit == unit) { 545 mddev_get(mddev); 546 spin_unlock(&all_mddevs_lock); 547 kfree(new); 548 return mddev; 549 } 550 551 if (new) { 552 list_add(&new->all_mddevs, &all_mddevs); 553 spin_unlock(&all_mddevs_lock); 554 new->hold_active = UNTIL_IOCTL; 555 return new; 556 } 557 } else if (new) { 558 /* find an unused unit number */ 559 static int next_minor = 512; 560 int start = next_minor; 561 int is_free = 0; 562 int dev = 0; 563 while (!is_free) { 564 dev = MKDEV(MD_MAJOR, next_minor); 565 next_minor++; 566 if (next_minor > MINORMASK) 567 next_minor = 0; 568 if (next_minor == start) { 569 /* Oh dear, all in use. */ 570 spin_unlock(&all_mddevs_lock); 571 kfree(new); 572 return NULL; 573 } 574 575 is_free = 1; 576 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 577 if (mddev->unit == dev) { 578 is_free = 0; 579 break; 580 } 581 } 582 new->unit = dev; 583 new->md_minor = MINOR(dev); 584 new->hold_active = UNTIL_STOP; 585 list_add(&new->all_mddevs, &all_mddevs); 586 spin_unlock(&all_mddevs_lock); 587 return new; 588 } 589 spin_unlock(&all_mddevs_lock); 590 591 new = kzalloc(sizeof(*new), GFP_KERNEL); 592 if (!new) 593 return NULL; 594 595 new->unit = unit; 596 if (MAJOR(unit) == MD_MAJOR) 597 new->md_minor = MINOR(unit); 598 else 599 new->md_minor = MINOR(unit) >> MdpMinorShift; 600 601 mddev_init(new); 602 603 goto retry; 604 } 605 606 static inline int mddev_lock(struct mddev * mddev) 607 { 608 return mutex_lock_interruptible(&mddev->reconfig_mutex); 609 } 610 611 static inline int mddev_is_locked(struct mddev *mddev) 612 { 613 return mutex_is_locked(&mddev->reconfig_mutex); 614 } 615 616 static inline int mddev_trylock(struct mddev * mddev) 617 { 618 return mutex_trylock(&mddev->reconfig_mutex); 619 } 620 621 static struct attribute_group md_redundancy_group; 622 623 static void mddev_unlock(struct mddev * mddev) 624 { 625 if (mddev->to_remove) { 626 /* These cannot be removed under reconfig_mutex as 627 * an access to the files will try to take reconfig_mutex 628 * while holding the file unremovable, which leads to 629 * a deadlock. 630 * So hold set sysfs_active while the remove in happeing, 631 * and anything else which might set ->to_remove or my 632 * otherwise change the sysfs namespace will fail with 633 * -EBUSY if sysfs_active is still set. 634 * We set sysfs_active under reconfig_mutex and elsewhere 635 * test it under the same mutex to ensure its correct value 636 * is seen. 637 */ 638 struct attribute_group *to_remove = mddev->to_remove; 639 mddev->to_remove = NULL; 640 mddev->sysfs_active = 1; 641 mutex_unlock(&mddev->reconfig_mutex); 642 643 if (mddev->kobj.sd) { 644 if (to_remove != &md_redundancy_group) 645 sysfs_remove_group(&mddev->kobj, to_remove); 646 if (mddev->pers == NULL || 647 mddev->pers->sync_request == NULL) { 648 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 649 if (mddev->sysfs_action) 650 sysfs_put(mddev->sysfs_action); 651 mddev->sysfs_action = NULL; 652 } 653 } 654 mddev->sysfs_active = 0; 655 } else 656 mutex_unlock(&mddev->reconfig_mutex); 657 658 /* As we've dropped the mutex we need a spinlock to 659 * make sure the thread doesn't disappear 660 */ 661 spin_lock(&pers_lock); 662 md_wakeup_thread(mddev->thread); 663 spin_unlock(&pers_lock); 664 } 665 666 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr) 667 { 668 struct md_rdev *rdev; 669 670 rdev_for_each(rdev, mddev) 671 if (rdev->desc_nr == nr) 672 return rdev; 673 674 return NULL; 675 } 676 677 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr) 678 { 679 struct md_rdev *rdev; 680 681 rdev_for_each_rcu(rdev, mddev) 682 if (rdev->desc_nr == nr) 683 return rdev; 684 685 return NULL; 686 } 687 688 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 689 { 690 struct md_rdev *rdev; 691 692 rdev_for_each(rdev, mddev) 693 if (rdev->bdev->bd_dev == dev) 694 return rdev; 695 696 return NULL; 697 } 698 699 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 700 { 701 struct md_rdev *rdev; 702 703 rdev_for_each_rcu(rdev, mddev) 704 if (rdev->bdev->bd_dev == dev) 705 return rdev; 706 707 return NULL; 708 } 709 710 static struct md_personality *find_pers(int level, char *clevel) 711 { 712 struct md_personality *pers; 713 list_for_each_entry(pers, &pers_list, list) { 714 if (level != LEVEL_NONE && pers->level == level) 715 return pers; 716 if (strcmp(pers->name, clevel)==0) 717 return pers; 718 } 719 return NULL; 720 } 721 722 /* return the offset of the super block in 512byte sectors */ 723 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 724 { 725 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 726 return MD_NEW_SIZE_SECTORS(num_sectors); 727 } 728 729 static int alloc_disk_sb(struct md_rdev * rdev) 730 { 731 if (rdev->sb_page) 732 MD_BUG(); 733 734 rdev->sb_page = alloc_page(GFP_KERNEL); 735 if (!rdev->sb_page) { 736 printk(KERN_ALERT "md: out of memory.\n"); 737 return -ENOMEM; 738 } 739 740 return 0; 741 } 742 743 void md_rdev_clear(struct md_rdev *rdev) 744 { 745 if (rdev->sb_page) { 746 put_page(rdev->sb_page); 747 rdev->sb_loaded = 0; 748 rdev->sb_page = NULL; 749 rdev->sb_start = 0; 750 rdev->sectors = 0; 751 } 752 if (rdev->bb_page) { 753 put_page(rdev->bb_page); 754 rdev->bb_page = NULL; 755 } 756 kfree(rdev->badblocks.page); 757 rdev->badblocks.page = NULL; 758 } 759 EXPORT_SYMBOL_GPL(md_rdev_clear); 760 761 static void super_written(struct bio *bio, int error) 762 { 763 struct md_rdev *rdev = bio->bi_private; 764 struct mddev *mddev = rdev->mddev; 765 766 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 767 printk("md: super_written gets error=%d, uptodate=%d\n", 768 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 769 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 770 md_error(mddev, rdev); 771 } 772 773 if (atomic_dec_and_test(&mddev->pending_writes)) 774 wake_up(&mddev->sb_wait); 775 bio_put(bio); 776 } 777 778 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 779 sector_t sector, int size, struct page *page) 780 { 781 /* write first size bytes of page to sector of rdev 782 * Increment mddev->pending_writes before returning 783 * and decrement it on completion, waking up sb_wait 784 * if zero is reached. 785 * If an error occurred, call md_error 786 */ 787 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 788 789 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 790 bio->bi_sector = sector; 791 bio_add_page(bio, page, size, 0); 792 bio->bi_private = rdev; 793 bio->bi_end_io = super_written; 794 795 atomic_inc(&mddev->pending_writes); 796 submit_bio(WRITE_FLUSH_FUA, bio); 797 } 798 799 void md_super_wait(struct mddev *mddev) 800 { 801 /* wait for all superblock writes that were scheduled to complete */ 802 DEFINE_WAIT(wq); 803 for(;;) { 804 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 805 if (atomic_read(&mddev->pending_writes)==0) 806 break; 807 schedule(); 808 } 809 finish_wait(&mddev->sb_wait, &wq); 810 } 811 812 static void bi_complete(struct bio *bio, int error) 813 { 814 complete((struct completion*)bio->bi_private); 815 } 816 817 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 818 struct page *page, int rw, bool metadata_op) 819 { 820 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 821 struct completion event; 822 int ret; 823 824 rw |= REQ_SYNC; 825 826 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 827 rdev->meta_bdev : rdev->bdev; 828 if (metadata_op) 829 bio->bi_sector = sector + rdev->sb_start; 830 else if (rdev->mddev->reshape_position != MaxSector && 831 (rdev->mddev->reshape_backwards == 832 (sector >= rdev->mddev->reshape_position))) 833 bio->bi_sector = sector + rdev->new_data_offset; 834 else 835 bio->bi_sector = sector + rdev->data_offset; 836 bio_add_page(bio, page, size, 0); 837 init_completion(&event); 838 bio->bi_private = &event; 839 bio->bi_end_io = bi_complete; 840 submit_bio(rw, bio); 841 wait_for_completion(&event); 842 843 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 844 bio_put(bio); 845 return ret; 846 } 847 EXPORT_SYMBOL_GPL(sync_page_io); 848 849 static int read_disk_sb(struct md_rdev * rdev, int size) 850 { 851 char b[BDEVNAME_SIZE]; 852 if (!rdev->sb_page) { 853 MD_BUG(); 854 return -EINVAL; 855 } 856 if (rdev->sb_loaded) 857 return 0; 858 859 860 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 861 goto fail; 862 rdev->sb_loaded = 1; 863 return 0; 864 865 fail: 866 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 867 bdevname(rdev->bdev,b)); 868 return -EINVAL; 869 } 870 871 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 872 { 873 return sb1->set_uuid0 == sb2->set_uuid0 && 874 sb1->set_uuid1 == sb2->set_uuid1 && 875 sb1->set_uuid2 == sb2->set_uuid2 && 876 sb1->set_uuid3 == sb2->set_uuid3; 877 } 878 879 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 880 { 881 int ret; 882 mdp_super_t *tmp1, *tmp2; 883 884 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 885 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 886 887 if (!tmp1 || !tmp2) { 888 ret = 0; 889 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 890 goto abort; 891 } 892 893 *tmp1 = *sb1; 894 *tmp2 = *sb2; 895 896 /* 897 * nr_disks is not constant 898 */ 899 tmp1->nr_disks = 0; 900 tmp2->nr_disks = 0; 901 902 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 903 abort: 904 kfree(tmp1); 905 kfree(tmp2); 906 return ret; 907 } 908 909 910 static u32 md_csum_fold(u32 csum) 911 { 912 csum = (csum & 0xffff) + (csum >> 16); 913 return (csum & 0xffff) + (csum >> 16); 914 } 915 916 static unsigned int calc_sb_csum(mdp_super_t * sb) 917 { 918 u64 newcsum = 0; 919 u32 *sb32 = (u32*)sb; 920 int i; 921 unsigned int disk_csum, csum; 922 923 disk_csum = sb->sb_csum; 924 sb->sb_csum = 0; 925 926 for (i = 0; i < MD_SB_BYTES/4 ; i++) 927 newcsum += sb32[i]; 928 csum = (newcsum & 0xffffffff) + (newcsum>>32); 929 930 931 #ifdef CONFIG_ALPHA 932 /* This used to use csum_partial, which was wrong for several 933 * reasons including that different results are returned on 934 * different architectures. It isn't critical that we get exactly 935 * the same return value as before (we always csum_fold before 936 * testing, and that removes any differences). However as we 937 * know that csum_partial always returned a 16bit value on 938 * alphas, do a fold to maximise conformity to previous behaviour. 939 */ 940 sb->sb_csum = md_csum_fold(disk_csum); 941 #else 942 sb->sb_csum = disk_csum; 943 #endif 944 return csum; 945 } 946 947 948 /* 949 * Handle superblock details. 950 * We want to be able to handle multiple superblock formats 951 * so we have a common interface to them all, and an array of 952 * different handlers. 953 * We rely on user-space to write the initial superblock, and support 954 * reading and updating of superblocks. 955 * Interface methods are: 956 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 957 * loads and validates a superblock on dev. 958 * if refdev != NULL, compare superblocks on both devices 959 * Return: 960 * 0 - dev has a superblock that is compatible with refdev 961 * 1 - dev has a superblock that is compatible and newer than refdev 962 * so dev should be used as the refdev in future 963 * -EINVAL superblock incompatible or invalid 964 * -othererror e.g. -EIO 965 * 966 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 967 * Verify that dev is acceptable into mddev. 968 * The first time, mddev->raid_disks will be 0, and data from 969 * dev should be merged in. Subsequent calls check that dev 970 * is new enough. Return 0 or -EINVAL 971 * 972 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 973 * Update the superblock for rdev with data in mddev 974 * This does not write to disc. 975 * 976 */ 977 978 struct super_type { 979 char *name; 980 struct module *owner; 981 int (*load_super)(struct md_rdev *rdev, 982 struct md_rdev *refdev, 983 int minor_version); 984 int (*validate_super)(struct mddev *mddev, 985 struct md_rdev *rdev); 986 void (*sync_super)(struct mddev *mddev, 987 struct md_rdev *rdev); 988 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 989 sector_t num_sectors); 990 int (*allow_new_offset)(struct md_rdev *rdev, 991 unsigned long long new_offset); 992 }; 993 994 /* 995 * Check that the given mddev has no bitmap. 996 * 997 * This function is called from the run method of all personalities that do not 998 * support bitmaps. It prints an error message and returns non-zero if mddev 999 * has a bitmap. Otherwise, it returns 0. 1000 * 1001 */ 1002 int md_check_no_bitmap(struct mddev *mddev) 1003 { 1004 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1005 return 0; 1006 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 1007 mdname(mddev), mddev->pers->name); 1008 return 1; 1009 } 1010 EXPORT_SYMBOL(md_check_no_bitmap); 1011 1012 /* 1013 * load_super for 0.90.0 1014 */ 1015 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1016 { 1017 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1018 mdp_super_t *sb; 1019 int ret; 1020 1021 /* 1022 * Calculate the position of the superblock (512byte sectors), 1023 * it's at the end of the disk. 1024 * 1025 * It also happens to be a multiple of 4Kb. 1026 */ 1027 rdev->sb_start = calc_dev_sboffset(rdev); 1028 1029 ret = read_disk_sb(rdev, MD_SB_BYTES); 1030 if (ret) return ret; 1031 1032 ret = -EINVAL; 1033 1034 bdevname(rdev->bdev, b); 1035 sb = page_address(rdev->sb_page); 1036 1037 if (sb->md_magic != MD_SB_MAGIC) { 1038 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 1039 b); 1040 goto abort; 1041 } 1042 1043 if (sb->major_version != 0 || 1044 sb->minor_version < 90 || 1045 sb->minor_version > 91) { 1046 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1047 sb->major_version, sb->minor_version, 1048 b); 1049 goto abort; 1050 } 1051 1052 if (sb->raid_disks <= 0) 1053 goto abort; 1054 1055 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1056 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1057 b); 1058 goto abort; 1059 } 1060 1061 rdev->preferred_minor = sb->md_minor; 1062 rdev->data_offset = 0; 1063 rdev->new_data_offset = 0; 1064 rdev->sb_size = MD_SB_BYTES; 1065 rdev->badblocks.shift = -1; 1066 1067 if (sb->level == LEVEL_MULTIPATH) 1068 rdev->desc_nr = -1; 1069 else 1070 rdev->desc_nr = sb->this_disk.number; 1071 1072 if (!refdev) { 1073 ret = 1; 1074 } else { 1075 __u64 ev1, ev2; 1076 mdp_super_t *refsb = page_address(refdev->sb_page); 1077 if (!uuid_equal(refsb, sb)) { 1078 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1079 b, bdevname(refdev->bdev,b2)); 1080 goto abort; 1081 } 1082 if (!sb_equal(refsb, sb)) { 1083 printk(KERN_WARNING "md: %s has same UUID" 1084 " but different superblock to %s\n", 1085 b, bdevname(refdev->bdev, b2)); 1086 goto abort; 1087 } 1088 ev1 = md_event(sb); 1089 ev2 = md_event(refsb); 1090 if (ev1 > ev2) 1091 ret = 1; 1092 else 1093 ret = 0; 1094 } 1095 rdev->sectors = rdev->sb_start; 1096 /* Limit to 4TB as metadata cannot record more than that. 1097 * (not needed for Linear and RAID0 as metadata doesn't 1098 * record this size) 1099 */ 1100 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1101 rdev->sectors = (2ULL << 32) - 2; 1102 1103 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1104 /* "this cannot possibly happen" ... */ 1105 ret = -EINVAL; 1106 1107 abort: 1108 return ret; 1109 } 1110 1111 /* 1112 * validate_super for 0.90.0 1113 */ 1114 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1115 { 1116 mdp_disk_t *desc; 1117 mdp_super_t *sb = page_address(rdev->sb_page); 1118 __u64 ev1 = md_event(sb); 1119 1120 rdev->raid_disk = -1; 1121 clear_bit(Faulty, &rdev->flags); 1122 clear_bit(In_sync, &rdev->flags); 1123 clear_bit(WriteMostly, &rdev->flags); 1124 1125 if (mddev->raid_disks == 0) { 1126 mddev->major_version = 0; 1127 mddev->minor_version = sb->minor_version; 1128 mddev->patch_version = sb->patch_version; 1129 mddev->external = 0; 1130 mddev->chunk_sectors = sb->chunk_size >> 9; 1131 mddev->ctime = sb->ctime; 1132 mddev->utime = sb->utime; 1133 mddev->level = sb->level; 1134 mddev->clevel[0] = 0; 1135 mddev->layout = sb->layout; 1136 mddev->raid_disks = sb->raid_disks; 1137 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1138 mddev->events = ev1; 1139 mddev->bitmap_info.offset = 0; 1140 mddev->bitmap_info.space = 0; 1141 /* bitmap can use 60 K after the 4K superblocks */ 1142 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1143 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1144 mddev->reshape_backwards = 0; 1145 1146 if (mddev->minor_version >= 91) { 1147 mddev->reshape_position = sb->reshape_position; 1148 mddev->delta_disks = sb->delta_disks; 1149 mddev->new_level = sb->new_level; 1150 mddev->new_layout = sb->new_layout; 1151 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1152 if (mddev->delta_disks < 0) 1153 mddev->reshape_backwards = 1; 1154 } else { 1155 mddev->reshape_position = MaxSector; 1156 mddev->delta_disks = 0; 1157 mddev->new_level = mddev->level; 1158 mddev->new_layout = mddev->layout; 1159 mddev->new_chunk_sectors = mddev->chunk_sectors; 1160 } 1161 1162 if (sb->state & (1<<MD_SB_CLEAN)) 1163 mddev->recovery_cp = MaxSector; 1164 else { 1165 if (sb->events_hi == sb->cp_events_hi && 1166 sb->events_lo == sb->cp_events_lo) { 1167 mddev->recovery_cp = sb->recovery_cp; 1168 } else 1169 mddev->recovery_cp = 0; 1170 } 1171 1172 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1173 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1174 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1175 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1176 1177 mddev->max_disks = MD_SB_DISKS; 1178 1179 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1180 mddev->bitmap_info.file == NULL) { 1181 mddev->bitmap_info.offset = 1182 mddev->bitmap_info.default_offset; 1183 mddev->bitmap_info.space = 1184 mddev->bitmap_info.space; 1185 } 1186 1187 } else if (mddev->pers == NULL) { 1188 /* Insist on good event counter while assembling, except 1189 * for spares (which don't need an event count) */ 1190 ++ev1; 1191 if (sb->disks[rdev->desc_nr].state & ( 1192 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1193 if (ev1 < mddev->events) 1194 return -EINVAL; 1195 } else if (mddev->bitmap) { 1196 /* if adding to array with a bitmap, then we can accept an 1197 * older device ... but not too old. 1198 */ 1199 if (ev1 < mddev->bitmap->events_cleared) 1200 return 0; 1201 } else { 1202 if (ev1 < mddev->events) 1203 /* just a hot-add of a new device, leave raid_disk at -1 */ 1204 return 0; 1205 } 1206 1207 if (mddev->level != LEVEL_MULTIPATH) { 1208 desc = sb->disks + rdev->desc_nr; 1209 1210 if (desc->state & (1<<MD_DISK_FAULTY)) 1211 set_bit(Faulty, &rdev->flags); 1212 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1213 desc->raid_disk < mddev->raid_disks */) { 1214 set_bit(In_sync, &rdev->flags); 1215 rdev->raid_disk = desc->raid_disk; 1216 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1217 /* active but not in sync implies recovery up to 1218 * reshape position. We don't know exactly where 1219 * that is, so set to zero for now */ 1220 if (mddev->minor_version >= 91) { 1221 rdev->recovery_offset = 0; 1222 rdev->raid_disk = desc->raid_disk; 1223 } 1224 } 1225 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1226 set_bit(WriteMostly, &rdev->flags); 1227 } else /* MULTIPATH are always insync */ 1228 set_bit(In_sync, &rdev->flags); 1229 return 0; 1230 } 1231 1232 /* 1233 * sync_super for 0.90.0 1234 */ 1235 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1236 { 1237 mdp_super_t *sb; 1238 struct md_rdev *rdev2; 1239 int next_spare = mddev->raid_disks; 1240 1241 1242 /* make rdev->sb match mddev data.. 1243 * 1244 * 1/ zero out disks 1245 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1246 * 3/ any empty disks < next_spare become removed 1247 * 1248 * disks[0] gets initialised to REMOVED because 1249 * we cannot be sure from other fields if it has 1250 * been initialised or not. 1251 */ 1252 int i; 1253 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1254 1255 rdev->sb_size = MD_SB_BYTES; 1256 1257 sb = page_address(rdev->sb_page); 1258 1259 memset(sb, 0, sizeof(*sb)); 1260 1261 sb->md_magic = MD_SB_MAGIC; 1262 sb->major_version = mddev->major_version; 1263 sb->patch_version = mddev->patch_version; 1264 sb->gvalid_words = 0; /* ignored */ 1265 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1266 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1267 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1268 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1269 1270 sb->ctime = mddev->ctime; 1271 sb->level = mddev->level; 1272 sb->size = mddev->dev_sectors / 2; 1273 sb->raid_disks = mddev->raid_disks; 1274 sb->md_minor = mddev->md_minor; 1275 sb->not_persistent = 0; 1276 sb->utime = mddev->utime; 1277 sb->state = 0; 1278 sb->events_hi = (mddev->events>>32); 1279 sb->events_lo = (u32)mddev->events; 1280 1281 if (mddev->reshape_position == MaxSector) 1282 sb->minor_version = 90; 1283 else { 1284 sb->minor_version = 91; 1285 sb->reshape_position = mddev->reshape_position; 1286 sb->new_level = mddev->new_level; 1287 sb->delta_disks = mddev->delta_disks; 1288 sb->new_layout = mddev->new_layout; 1289 sb->new_chunk = mddev->new_chunk_sectors << 9; 1290 } 1291 mddev->minor_version = sb->minor_version; 1292 if (mddev->in_sync) 1293 { 1294 sb->recovery_cp = mddev->recovery_cp; 1295 sb->cp_events_hi = (mddev->events>>32); 1296 sb->cp_events_lo = (u32)mddev->events; 1297 if (mddev->recovery_cp == MaxSector) 1298 sb->state = (1<< MD_SB_CLEAN); 1299 } else 1300 sb->recovery_cp = 0; 1301 1302 sb->layout = mddev->layout; 1303 sb->chunk_size = mddev->chunk_sectors << 9; 1304 1305 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1306 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1307 1308 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1309 rdev_for_each(rdev2, mddev) { 1310 mdp_disk_t *d; 1311 int desc_nr; 1312 int is_active = test_bit(In_sync, &rdev2->flags); 1313 1314 if (rdev2->raid_disk >= 0 && 1315 sb->minor_version >= 91) 1316 /* we have nowhere to store the recovery_offset, 1317 * but if it is not below the reshape_position, 1318 * we can piggy-back on that. 1319 */ 1320 is_active = 1; 1321 if (rdev2->raid_disk < 0 || 1322 test_bit(Faulty, &rdev2->flags)) 1323 is_active = 0; 1324 if (is_active) 1325 desc_nr = rdev2->raid_disk; 1326 else 1327 desc_nr = next_spare++; 1328 rdev2->desc_nr = desc_nr; 1329 d = &sb->disks[rdev2->desc_nr]; 1330 nr_disks++; 1331 d->number = rdev2->desc_nr; 1332 d->major = MAJOR(rdev2->bdev->bd_dev); 1333 d->minor = MINOR(rdev2->bdev->bd_dev); 1334 if (is_active) 1335 d->raid_disk = rdev2->raid_disk; 1336 else 1337 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1338 if (test_bit(Faulty, &rdev2->flags)) 1339 d->state = (1<<MD_DISK_FAULTY); 1340 else if (is_active) { 1341 d->state = (1<<MD_DISK_ACTIVE); 1342 if (test_bit(In_sync, &rdev2->flags)) 1343 d->state |= (1<<MD_DISK_SYNC); 1344 active++; 1345 working++; 1346 } else { 1347 d->state = 0; 1348 spare++; 1349 working++; 1350 } 1351 if (test_bit(WriteMostly, &rdev2->flags)) 1352 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1353 } 1354 /* now set the "removed" and "faulty" bits on any missing devices */ 1355 for (i=0 ; i < mddev->raid_disks ; i++) { 1356 mdp_disk_t *d = &sb->disks[i]; 1357 if (d->state == 0 && d->number == 0) { 1358 d->number = i; 1359 d->raid_disk = i; 1360 d->state = (1<<MD_DISK_REMOVED); 1361 d->state |= (1<<MD_DISK_FAULTY); 1362 failed++; 1363 } 1364 } 1365 sb->nr_disks = nr_disks; 1366 sb->active_disks = active; 1367 sb->working_disks = working; 1368 sb->failed_disks = failed; 1369 sb->spare_disks = spare; 1370 1371 sb->this_disk = sb->disks[rdev->desc_nr]; 1372 sb->sb_csum = calc_sb_csum(sb); 1373 } 1374 1375 /* 1376 * rdev_size_change for 0.90.0 1377 */ 1378 static unsigned long long 1379 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1380 { 1381 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1382 return 0; /* component must fit device */ 1383 if (rdev->mddev->bitmap_info.offset) 1384 return 0; /* can't move bitmap */ 1385 rdev->sb_start = calc_dev_sboffset(rdev); 1386 if (!num_sectors || num_sectors > rdev->sb_start) 1387 num_sectors = rdev->sb_start; 1388 /* Limit to 4TB as metadata cannot record more than that. 1389 * 4TB == 2^32 KB, or 2*2^32 sectors. 1390 */ 1391 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1392 num_sectors = (2ULL << 32) - 2; 1393 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1394 rdev->sb_page); 1395 md_super_wait(rdev->mddev); 1396 return num_sectors; 1397 } 1398 1399 static int 1400 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1401 { 1402 /* non-zero offset changes not possible with v0.90 */ 1403 return new_offset == 0; 1404 } 1405 1406 /* 1407 * version 1 superblock 1408 */ 1409 1410 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1411 { 1412 __le32 disk_csum; 1413 u32 csum; 1414 unsigned long long newcsum; 1415 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1416 __le32 *isuper = (__le32*)sb; 1417 int i; 1418 1419 disk_csum = sb->sb_csum; 1420 sb->sb_csum = 0; 1421 newcsum = 0; 1422 for (i=0; size>=4; size -= 4 ) 1423 newcsum += le32_to_cpu(*isuper++); 1424 1425 if (size == 2) 1426 newcsum += le16_to_cpu(*(__le16*) isuper); 1427 1428 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1429 sb->sb_csum = disk_csum; 1430 return cpu_to_le32(csum); 1431 } 1432 1433 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1434 int acknowledged); 1435 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1436 { 1437 struct mdp_superblock_1 *sb; 1438 int ret; 1439 sector_t sb_start; 1440 sector_t sectors; 1441 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1442 int bmask; 1443 1444 /* 1445 * Calculate the position of the superblock in 512byte sectors. 1446 * It is always aligned to a 4K boundary and 1447 * depeding on minor_version, it can be: 1448 * 0: At least 8K, but less than 12K, from end of device 1449 * 1: At start of device 1450 * 2: 4K from start of device. 1451 */ 1452 switch(minor_version) { 1453 case 0: 1454 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1455 sb_start -= 8*2; 1456 sb_start &= ~(sector_t)(4*2-1); 1457 break; 1458 case 1: 1459 sb_start = 0; 1460 break; 1461 case 2: 1462 sb_start = 8; 1463 break; 1464 default: 1465 return -EINVAL; 1466 } 1467 rdev->sb_start = sb_start; 1468 1469 /* superblock is rarely larger than 1K, but it can be larger, 1470 * and it is safe to read 4k, so we do that 1471 */ 1472 ret = read_disk_sb(rdev, 4096); 1473 if (ret) return ret; 1474 1475 1476 sb = page_address(rdev->sb_page); 1477 1478 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1479 sb->major_version != cpu_to_le32(1) || 1480 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1481 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1482 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1483 return -EINVAL; 1484 1485 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1486 printk("md: invalid superblock checksum on %s\n", 1487 bdevname(rdev->bdev,b)); 1488 return -EINVAL; 1489 } 1490 if (le64_to_cpu(sb->data_size) < 10) { 1491 printk("md: data_size too small on %s\n", 1492 bdevname(rdev->bdev,b)); 1493 return -EINVAL; 1494 } 1495 if (sb->pad0 || 1496 sb->pad3[0] || 1497 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1498 /* Some padding is non-zero, might be a new feature */ 1499 return -EINVAL; 1500 1501 rdev->preferred_minor = 0xffff; 1502 rdev->data_offset = le64_to_cpu(sb->data_offset); 1503 rdev->new_data_offset = rdev->data_offset; 1504 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1505 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1506 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1507 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1508 1509 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1510 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1511 if (rdev->sb_size & bmask) 1512 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1513 1514 if (minor_version 1515 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1516 return -EINVAL; 1517 if (minor_version 1518 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1519 return -EINVAL; 1520 1521 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1522 rdev->desc_nr = -1; 1523 else 1524 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1525 1526 if (!rdev->bb_page) { 1527 rdev->bb_page = alloc_page(GFP_KERNEL); 1528 if (!rdev->bb_page) 1529 return -ENOMEM; 1530 } 1531 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1532 rdev->badblocks.count == 0) { 1533 /* need to load the bad block list. 1534 * Currently we limit it to one page. 1535 */ 1536 s32 offset; 1537 sector_t bb_sector; 1538 u64 *bbp; 1539 int i; 1540 int sectors = le16_to_cpu(sb->bblog_size); 1541 if (sectors > (PAGE_SIZE / 512)) 1542 return -EINVAL; 1543 offset = le32_to_cpu(sb->bblog_offset); 1544 if (offset == 0) 1545 return -EINVAL; 1546 bb_sector = (long long)offset; 1547 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1548 rdev->bb_page, READ, true)) 1549 return -EIO; 1550 bbp = (u64 *)page_address(rdev->bb_page); 1551 rdev->badblocks.shift = sb->bblog_shift; 1552 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1553 u64 bb = le64_to_cpu(*bbp); 1554 int count = bb & (0x3ff); 1555 u64 sector = bb >> 10; 1556 sector <<= sb->bblog_shift; 1557 count <<= sb->bblog_shift; 1558 if (bb + 1 == 0) 1559 break; 1560 if (md_set_badblocks(&rdev->badblocks, 1561 sector, count, 1) == 0) 1562 return -EINVAL; 1563 } 1564 } else if (sb->bblog_offset == 0) 1565 rdev->badblocks.shift = -1; 1566 1567 if (!refdev) { 1568 ret = 1; 1569 } else { 1570 __u64 ev1, ev2; 1571 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1572 1573 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1574 sb->level != refsb->level || 1575 sb->layout != refsb->layout || 1576 sb->chunksize != refsb->chunksize) { 1577 printk(KERN_WARNING "md: %s has strangely different" 1578 " superblock to %s\n", 1579 bdevname(rdev->bdev,b), 1580 bdevname(refdev->bdev,b2)); 1581 return -EINVAL; 1582 } 1583 ev1 = le64_to_cpu(sb->events); 1584 ev2 = le64_to_cpu(refsb->events); 1585 1586 if (ev1 > ev2) 1587 ret = 1; 1588 else 1589 ret = 0; 1590 } 1591 if (minor_version) { 1592 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1593 sectors -= rdev->data_offset; 1594 } else 1595 sectors = rdev->sb_start; 1596 if (sectors < le64_to_cpu(sb->data_size)) 1597 return -EINVAL; 1598 rdev->sectors = le64_to_cpu(sb->data_size); 1599 return ret; 1600 } 1601 1602 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1603 { 1604 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1605 __u64 ev1 = le64_to_cpu(sb->events); 1606 1607 rdev->raid_disk = -1; 1608 clear_bit(Faulty, &rdev->flags); 1609 clear_bit(In_sync, &rdev->flags); 1610 clear_bit(WriteMostly, &rdev->flags); 1611 1612 if (mddev->raid_disks == 0) { 1613 mddev->major_version = 1; 1614 mddev->patch_version = 0; 1615 mddev->external = 0; 1616 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1617 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1618 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1619 mddev->level = le32_to_cpu(sb->level); 1620 mddev->clevel[0] = 0; 1621 mddev->layout = le32_to_cpu(sb->layout); 1622 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1623 mddev->dev_sectors = le64_to_cpu(sb->size); 1624 mddev->events = ev1; 1625 mddev->bitmap_info.offset = 0; 1626 mddev->bitmap_info.space = 0; 1627 /* Default location for bitmap is 1K after superblock 1628 * using 3K - total of 4K 1629 */ 1630 mddev->bitmap_info.default_offset = 1024 >> 9; 1631 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1632 mddev->reshape_backwards = 0; 1633 1634 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1635 memcpy(mddev->uuid, sb->set_uuid, 16); 1636 1637 mddev->max_disks = (4096-256)/2; 1638 1639 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1640 mddev->bitmap_info.file == NULL) { 1641 mddev->bitmap_info.offset = 1642 (__s32)le32_to_cpu(sb->bitmap_offset); 1643 /* Metadata doesn't record how much space is available. 1644 * For 1.0, we assume we can use up to the superblock 1645 * if before, else to 4K beyond superblock. 1646 * For others, assume no change is possible. 1647 */ 1648 if (mddev->minor_version > 0) 1649 mddev->bitmap_info.space = 0; 1650 else if (mddev->bitmap_info.offset > 0) 1651 mddev->bitmap_info.space = 1652 8 - mddev->bitmap_info.offset; 1653 else 1654 mddev->bitmap_info.space = 1655 -mddev->bitmap_info.offset; 1656 } 1657 1658 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1659 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1660 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1661 mddev->new_level = le32_to_cpu(sb->new_level); 1662 mddev->new_layout = le32_to_cpu(sb->new_layout); 1663 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1664 if (mddev->delta_disks < 0 || 1665 (mddev->delta_disks == 0 && 1666 (le32_to_cpu(sb->feature_map) 1667 & MD_FEATURE_RESHAPE_BACKWARDS))) 1668 mddev->reshape_backwards = 1; 1669 } else { 1670 mddev->reshape_position = MaxSector; 1671 mddev->delta_disks = 0; 1672 mddev->new_level = mddev->level; 1673 mddev->new_layout = mddev->layout; 1674 mddev->new_chunk_sectors = mddev->chunk_sectors; 1675 } 1676 1677 } else if (mddev->pers == NULL) { 1678 /* Insist of good event counter while assembling, except for 1679 * spares (which don't need an event count) */ 1680 ++ev1; 1681 if (rdev->desc_nr >= 0 && 1682 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1683 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1684 if (ev1 < mddev->events) 1685 return -EINVAL; 1686 } else if (mddev->bitmap) { 1687 /* If adding to array with a bitmap, then we can accept an 1688 * older device, but not too old. 1689 */ 1690 if (ev1 < mddev->bitmap->events_cleared) 1691 return 0; 1692 } else { 1693 if (ev1 < mddev->events) 1694 /* just a hot-add of a new device, leave raid_disk at -1 */ 1695 return 0; 1696 } 1697 if (mddev->level != LEVEL_MULTIPATH) { 1698 int role; 1699 if (rdev->desc_nr < 0 || 1700 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1701 role = 0xffff; 1702 rdev->desc_nr = -1; 1703 } else 1704 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1705 switch(role) { 1706 case 0xffff: /* spare */ 1707 break; 1708 case 0xfffe: /* faulty */ 1709 set_bit(Faulty, &rdev->flags); 1710 break; 1711 default: 1712 if ((le32_to_cpu(sb->feature_map) & 1713 MD_FEATURE_RECOVERY_OFFSET)) 1714 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1715 else 1716 set_bit(In_sync, &rdev->flags); 1717 rdev->raid_disk = role; 1718 break; 1719 } 1720 if (sb->devflags & WriteMostly1) 1721 set_bit(WriteMostly, &rdev->flags); 1722 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1723 set_bit(Replacement, &rdev->flags); 1724 } else /* MULTIPATH are always insync */ 1725 set_bit(In_sync, &rdev->flags); 1726 1727 return 0; 1728 } 1729 1730 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1731 { 1732 struct mdp_superblock_1 *sb; 1733 struct md_rdev *rdev2; 1734 int max_dev, i; 1735 /* make rdev->sb match mddev and rdev data. */ 1736 1737 sb = page_address(rdev->sb_page); 1738 1739 sb->feature_map = 0; 1740 sb->pad0 = 0; 1741 sb->recovery_offset = cpu_to_le64(0); 1742 memset(sb->pad3, 0, sizeof(sb->pad3)); 1743 1744 sb->utime = cpu_to_le64((__u64)mddev->utime); 1745 sb->events = cpu_to_le64(mddev->events); 1746 if (mddev->in_sync) 1747 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1748 else 1749 sb->resync_offset = cpu_to_le64(0); 1750 1751 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1752 1753 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1754 sb->size = cpu_to_le64(mddev->dev_sectors); 1755 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1756 sb->level = cpu_to_le32(mddev->level); 1757 sb->layout = cpu_to_le32(mddev->layout); 1758 1759 if (test_bit(WriteMostly, &rdev->flags)) 1760 sb->devflags |= WriteMostly1; 1761 else 1762 sb->devflags &= ~WriteMostly1; 1763 sb->data_offset = cpu_to_le64(rdev->data_offset); 1764 sb->data_size = cpu_to_le64(rdev->sectors); 1765 1766 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1767 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1768 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1769 } 1770 1771 if (rdev->raid_disk >= 0 && 1772 !test_bit(In_sync, &rdev->flags)) { 1773 sb->feature_map |= 1774 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1775 sb->recovery_offset = 1776 cpu_to_le64(rdev->recovery_offset); 1777 } 1778 if (test_bit(Replacement, &rdev->flags)) 1779 sb->feature_map |= 1780 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1781 1782 if (mddev->reshape_position != MaxSector) { 1783 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1784 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1785 sb->new_layout = cpu_to_le32(mddev->new_layout); 1786 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1787 sb->new_level = cpu_to_le32(mddev->new_level); 1788 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1789 if (mddev->delta_disks == 0 && 1790 mddev->reshape_backwards) 1791 sb->feature_map 1792 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1793 if (rdev->new_data_offset != rdev->data_offset) { 1794 sb->feature_map 1795 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1796 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1797 - rdev->data_offset)); 1798 } 1799 } 1800 1801 if (rdev->badblocks.count == 0) 1802 /* Nothing to do for bad blocks*/ ; 1803 else if (sb->bblog_offset == 0) 1804 /* Cannot record bad blocks on this device */ 1805 md_error(mddev, rdev); 1806 else { 1807 struct badblocks *bb = &rdev->badblocks; 1808 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1809 u64 *p = bb->page; 1810 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1811 if (bb->changed) { 1812 unsigned seq; 1813 1814 retry: 1815 seq = read_seqbegin(&bb->lock); 1816 1817 memset(bbp, 0xff, PAGE_SIZE); 1818 1819 for (i = 0 ; i < bb->count ; i++) { 1820 u64 internal_bb = p[i]; 1821 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1822 | BB_LEN(internal_bb)); 1823 bbp[i] = cpu_to_le64(store_bb); 1824 } 1825 bb->changed = 0; 1826 if (read_seqretry(&bb->lock, seq)) 1827 goto retry; 1828 1829 bb->sector = (rdev->sb_start + 1830 (int)le32_to_cpu(sb->bblog_offset)); 1831 bb->size = le16_to_cpu(sb->bblog_size); 1832 } 1833 } 1834 1835 max_dev = 0; 1836 rdev_for_each(rdev2, mddev) 1837 if (rdev2->desc_nr+1 > max_dev) 1838 max_dev = rdev2->desc_nr+1; 1839 1840 if (max_dev > le32_to_cpu(sb->max_dev)) { 1841 int bmask; 1842 sb->max_dev = cpu_to_le32(max_dev); 1843 rdev->sb_size = max_dev * 2 + 256; 1844 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1845 if (rdev->sb_size & bmask) 1846 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1847 } else 1848 max_dev = le32_to_cpu(sb->max_dev); 1849 1850 for (i=0; i<max_dev;i++) 1851 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1852 1853 rdev_for_each(rdev2, mddev) { 1854 i = rdev2->desc_nr; 1855 if (test_bit(Faulty, &rdev2->flags)) 1856 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1857 else if (test_bit(In_sync, &rdev2->flags)) 1858 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1859 else if (rdev2->raid_disk >= 0) 1860 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1861 else 1862 sb->dev_roles[i] = cpu_to_le16(0xffff); 1863 } 1864 1865 sb->sb_csum = calc_sb_1_csum(sb); 1866 } 1867 1868 static unsigned long long 1869 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1870 { 1871 struct mdp_superblock_1 *sb; 1872 sector_t max_sectors; 1873 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1874 return 0; /* component must fit device */ 1875 if (rdev->data_offset != rdev->new_data_offset) 1876 return 0; /* too confusing */ 1877 if (rdev->sb_start < rdev->data_offset) { 1878 /* minor versions 1 and 2; superblock before data */ 1879 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1880 max_sectors -= rdev->data_offset; 1881 if (!num_sectors || num_sectors > max_sectors) 1882 num_sectors = max_sectors; 1883 } else if (rdev->mddev->bitmap_info.offset) { 1884 /* minor version 0 with bitmap we can't move */ 1885 return 0; 1886 } else { 1887 /* minor version 0; superblock after data */ 1888 sector_t sb_start; 1889 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1890 sb_start &= ~(sector_t)(4*2 - 1); 1891 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1892 if (!num_sectors || num_sectors > max_sectors) 1893 num_sectors = max_sectors; 1894 rdev->sb_start = sb_start; 1895 } 1896 sb = page_address(rdev->sb_page); 1897 sb->data_size = cpu_to_le64(num_sectors); 1898 sb->super_offset = rdev->sb_start; 1899 sb->sb_csum = calc_sb_1_csum(sb); 1900 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1901 rdev->sb_page); 1902 md_super_wait(rdev->mddev); 1903 return num_sectors; 1904 1905 } 1906 1907 static int 1908 super_1_allow_new_offset(struct md_rdev *rdev, 1909 unsigned long long new_offset) 1910 { 1911 /* All necessary checks on new >= old have been done */ 1912 struct bitmap *bitmap; 1913 if (new_offset >= rdev->data_offset) 1914 return 1; 1915 1916 /* with 1.0 metadata, there is no metadata to tread on 1917 * so we can always move back */ 1918 if (rdev->mddev->minor_version == 0) 1919 return 1; 1920 1921 /* otherwise we must be sure not to step on 1922 * any metadata, so stay: 1923 * 36K beyond start of superblock 1924 * beyond end of badblocks 1925 * beyond write-intent bitmap 1926 */ 1927 if (rdev->sb_start + (32+4)*2 > new_offset) 1928 return 0; 1929 bitmap = rdev->mddev->bitmap; 1930 if (bitmap && !rdev->mddev->bitmap_info.file && 1931 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1932 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1933 return 0; 1934 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1935 return 0; 1936 1937 return 1; 1938 } 1939 1940 static struct super_type super_types[] = { 1941 [0] = { 1942 .name = "0.90.0", 1943 .owner = THIS_MODULE, 1944 .load_super = super_90_load, 1945 .validate_super = super_90_validate, 1946 .sync_super = super_90_sync, 1947 .rdev_size_change = super_90_rdev_size_change, 1948 .allow_new_offset = super_90_allow_new_offset, 1949 }, 1950 [1] = { 1951 .name = "md-1", 1952 .owner = THIS_MODULE, 1953 .load_super = super_1_load, 1954 .validate_super = super_1_validate, 1955 .sync_super = super_1_sync, 1956 .rdev_size_change = super_1_rdev_size_change, 1957 .allow_new_offset = super_1_allow_new_offset, 1958 }, 1959 }; 1960 1961 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1962 { 1963 if (mddev->sync_super) { 1964 mddev->sync_super(mddev, rdev); 1965 return; 1966 } 1967 1968 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1969 1970 super_types[mddev->major_version].sync_super(mddev, rdev); 1971 } 1972 1973 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1974 { 1975 struct md_rdev *rdev, *rdev2; 1976 1977 rcu_read_lock(); 1978 rdev_for_each_rcu(rdev, mddev1) 1979 rdev_for_each_rcu(rdev2, mddev2) 1980 if (rdev->bdev->bd_contains == 1981 rdev2->bdev->bd_contains) { 1982 rcu_read_unlock(); 1983 return 1; 1984 } 1985 rcu_read_unlock(); 1986 return 0; 1987 } 1988 1989 static LIST_HEAD(pending_raid_disks); 1990 1991 /* 1992 * Try to register data integrity profile for an mddev 1993 * 1994 * This is called when an array is started and after a disk has been kicked 1995 * from the array. It only succeeds if all working and active component devices 1996 * are integrity capable with matching profiles. 1997 */ 1998 int md_integrity_register(struct mddev *mddev) 1999 { 2000 struct md_rdev *rdev, *reference = NULL; 2001 2002 if (list_empty(&mddev->disks)) 2003 return 0; /* nothing to do */ 2004 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2005 return 0; /* shouldn't register, or already is */ 2006 rdev_for_each(rdev, mddev) { 2007 /* skip spares and non-functional disks */ 2008 if (test_bit(Faulty, &rdev->flags)) 2009 continue; 2010 if (rdev->raid_disk < 0) 2011 continue; 2012 if (!reference) { 2013 /* Use the first rdev as the reference */ 2014 reference = rdev; 2015 continue; 2016 } 2017 /* does this rdev's profile match the reference profile? */ 2018 if (blk_integrity_compare(reference->bdev->bd_disk, 2019 rdev->bdev->bd_disk) < 0) 2020 return -EINVAL; 2021 } 2022 if (!reference || !bdev_get_integrity(reference->bdev)) 2023 return 0; 2024 /* 2025 * All component devices are integrity capable and have matching 2026 * profiles, register the common profile for the md device. 2027 */ 2028 if (blk_integrity_register(mddev->gendisk, 2029 bdev_get_integrity(reference->bdev)) != 0) { 2030 printk(KERN_ERR "md: failed to register integrity for %s\n", 2031 mdname(mddev)); 2032 return -EINVAL; 2033 } 2034 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 2035 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2036 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 2037 mdname(mddev)); 2038 return -EINVAL; 2039 } 2040 return 0; 2041 } 2042 EXPORT_SYMBOL(md_integrity_register); 2043 2044 /* Disable data integrity if non-capable/non-matching disk is being added */ 2045 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2046 { 2047 struct blk_integrity *bi_rdev; 2048 struct blk_integrity *bi_mddev; 2049 2050 if (!mddev->gendisk) 2051 return; 2052 2053 bi_rdev = bdev_get_integrity(rdev->bdev); 2054 bi_mddev = blk_get_integrity(mddev->gendisk); 2055 2056 if (!bi_mddev) /* nothing to do */ 2057 return; 2058 if (rdev->raid_disk < 0) /* skip spares */ 2059 return; 2060 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2061 rdev->bdev->bd_disk) >= 0) 2062 return; 2063 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2064 blk_integrity_unregister(mddev->gendisk); 2065 } 2066 EXPORT_SYMBOL(md_integrity_add_rdev); 2067 2068 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev) 2069 { 2070 char b[BDEVNAME_SIZE]; 2071 struct kobject *ko; 2072 char *s; 2073 int err; 2074 2075 if (rdev->mddev) { 2076 MD_BUG(); 2077 return -EINVAL; 2078 } 2079 2080 /* prevent duplicates */ 2081 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2082 return -EEXIST; 2083 2084 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2085 if (rdev->sectors && (mddev->dev_sectors == 0 || 2086 rdev->sectors < mddev->dev_sectors)) { 2087 if (mddev->pers) { 2088 /* Cannot change size, so fail 2089 * If mddev->level <= 0, then we don't care 2090 * about aligning sizes (e.g. linear) 2091 */ 2092 if (mddev->level > 0) 2093 return -ENOSPC; 2094 } else 2095 mddev->dev_sectors = rdev->sectors; 2096 } 2097 2098 /* Verify rdev->desc_nr is unique. 2099 * If it is -1, assign a free number, else 2100 * check number is not in use 2101 */ 2102 if (rdev->desc_nr < 0) { 2103 int choice = 0; 2104 if (mddev->pers) choice = mddev->raid_disks; 2105 while (find_rdev_nr(mddev, choice)) 2106 choice++; 2107 rdev->desc_nr = choice; 2108 } else { 2109 if (find_rdev_nr(mddev, rdev->desc_nr)) 2110 return -EBUSY; 2111 } 2112 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2113 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2114 mdname(mddev), mddev->max_disks); 2115 return -EBUSY; 2116 } 2117 bdevname(rdev->bdev,b); 2118 while ( (s=strchr(b, '/')) != NULL) 2119 *s = '!'; 2120 2121 rdev->mddev = mddev; 2122 printk(KERN_INFO "md: bind<%s>\n", b); 2123 2124 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2125 goto fail; 2126 2127 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2128 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2129 /* failure here is OK */; 2130 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2131 2132 list_add_rcu(&rdev->same_set, &mddev->disks); 2133 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2134 2135 /* May as well allow recovery to be retried once */ 2136 mddev->recovery_disabled++; 2137 2138 return 0; 2139 2140 fail: 2141 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2142 b, mdname(mddev)); 2143 return err; 2144 } 2145 2146 static void md_delayed_delete(struct work_struct *ws) 2147 { 2148 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2149 kobject_del(&rdev->kobj); 2150 kobject_put(&rdev->kobj); 2151 } 2152 2153 static void unbind_rdev_from_array(struct md_rdev * rdev) 2154 { 2155 char b[BDEVNAME_SIZE]; 2156 if (!rdev->mddev) { 2157 MD_BUG(); 2158 return; 2159 } 2160 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2161 list_del_rcu(&rdev->same_set); 2162 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2163 rdev->mddev = NULL; 2164 sysfs_remove_link(&rdev->kobj, "block"); 2165 sysfs_put(rdev->sysfs_state); 2166 rdev->sysfs_state = NULL; 2167 rdev->badblocks.count = 0; 2168 /* We need to delay this, otherwise we can deadlock when 2169 * writing to 'remove' to "dev/state". We also need 2170 * to delay it due to rcu usage. 2171 */ 2172 synchronize_rcu(); 2173 INIT_WORK(&rdev->del_work, md_delayed_delete); 2174 kobject_get(&rdev->kobj); 2175 queue_work(md_misc_wq, &rdev->del_work); 2176 } 2177 2178 /* 2179 * prevent the device from being mounted, repartitioned or 2180 * otherwise reused by a RAID array (or any other kernel 2181 * subsystem), by bd_claiming the device. 2182 */ 2183 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2184 { 2185 int err = 0; 2186 struct block_device *bdev; 2187 char b[BDEVNAME_SIZE]; 2188 2189 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2190 shared ? (struct md_rdev *)lock_rdev : rdev); 2191 if (IS_ERR(bdev)) { 2192 printk(KERN_ERR "md: could not open %s.\n", 2193 __bdevname(dev, b)); 2194 return PTR_ERR(bdev); 2195 } 2196 rdev->bdev = bdev; 2197 return err; 2198 } 2199 2200 static void unlock_rdev(struct md_rdev *rdev) 2201 { 2202 struct block_device *bdev = rdev->bdev; 2203 rdev->bdev = NULL; 2204 if (!bdev) 2205 MD_BUG(); 2206 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2207 } 2208 2209 void md_autodetect_dev(dev_t dev); 2210 2211 static void export_rdev(struct md_rdev * rdev) 2212 { 2213 char b[BDEVNAME_SIZE]; 2214 printk(KERN_INFO "md: export_rdev(%s)\n", 2215 bdevname(rdev->bdev,b)); 2216 if (rdev->mddev) 2217 MD_BUG(); 2218 md_rdev_clear(rdev); 2219 #ifndef MODULE 2220 if (test_bit(AutoDetected, &rdev->flags)) 2221 md_autodetect_dev(rdev->bdev->bd_dev); 2222 #endif 2223 unlock_rdev(rdev); 2224 kobject_put(&rdev->kobj); 2225 } 2226 2227 static void kick_rdev_from_array(struct md_rdev * rdev) 2228 { 2229 unbind_rdev_from_array(rdev); 2230 export_rdev(rdev); 2231 } 2232 2233 static void export_array(struct mddev *mddev) 2234 { 2235 struct md_rdev *rdev, *tmp; 2236 2237 rdev_for_each_safe(rdev, tmp, mddev) { 2238 if (!rdev->mddev) { 2239 MD_BUG(); 2240 continue; 2241 } 2242 kick_rdev_from_array(rdev); 2243 } 2244 if (!list_empty(&mddev->disks)) 2245 MD_BUG(); 2246 mddev->raid_disks = 0; 2247 mddev->major_version = 0; 2248 } 2249 2250 static void print_desc(mdp_disk_t *desc) 2251 { 2252 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2253 desc->major,desc->minor,desc->raid_disk,desc->state); 2254 } 2255 2256 static void print_sb_90(mdp_super_t *sb) 2257 { 2258 int i; 2259 2260 printk(KERN_INFO 2261 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2262 sb->major_version, sb->minor_version, sb->patch_version, 2263 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2264 sb->ctime); 2265 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2266 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2267 sb->md_minor, sb->layout, sb->chunk_size); 2268 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2269 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2270 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2271 sb->failed_disks, sb->spare_disks, 2272 sb->sb_csum, (unsigned long)sb->events_lo); 2273 2274 printk(KERN_INFO); 2275 for (i = 0; i < MD_SB_DISKS; i++) { 2276 mdp_disk_t *desc; 2277 2278 desc = sb->disks + i; 2279 if (desc->number || desc->major || desc->minor || 2280 desc->raid_disk || (desc->state && (desc->state != 4))) { 2281 printk(" D %2d: ", i); 2282 print_desc(desc); 2283 } 2284 } 2285 printk(KERN_INFO "md: THIS: "); 2286 print_desc(&sb->this_disk); 2287 } 2288 2289 static void print_sb_1(struct mdp_superblock_1 *sb) 2290 { 2291 __u8 *uuid; 2292 2293 uuid = sb->set_uuid; 2294 printk(KERN_INFO 2295 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2296 "md: Name: \"%s\" CT:%llu\n", 2297 le32_to_cpu(sb->major_version), 2298 le32_to_cpu(sb->feature_map), 2299 uuid, 2300 sb->set_name, 2301 (unsigned long long)le64_to_cpu(sb->ctime) 2302 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2303 2304 uuid = sb->device_uuid; 2305 printk(KERN_INFO 2306 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2307 " RO:%llu\n" 2308 "md: Dev:%08x UUID: %pU\n" 2309 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2310 "md: (MaxDev:%u) \n", 2311 le32_to_cpu(sb->level), 2312 (unsigned long long)le64_to_cpu(sb->size), 2313 le32_to_cpu(sb->raid_disks), 2314 le32_to_cpu(sb->layout), 2315 le32_to_cpu(sb->chunksize), 2316 (unsigned long long)le64_to_cpu(sb->data_offset), 2317 (unsigned long long)le64_to_cpu(sb->data_size), 2318 (unsigned long long)le64_to_cpu(sb->super_offset), 2319 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2320 le32_to_cpu(sb->dev_number), 2321 uuid, 2322 sb->devflags, 2323 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2324 (unsigned long long)le64_to_cpu(sb->events), 2325 (unsigned long long)le64_to_cpu(sb->resync_offset), 2326 le32_to_cpu(sb->sb_csum), 2327 le32_to_cpu(sb->max_dev) 2328 ); 2329 } 2330 2331 static void print_rdev(struct md_rdev *rdev, int major_version) 2332 { 2333 char b[BDEVNAME_SIZE]; 2334 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2335 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2336 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2337 rdev->desc_nr); 2338 if (rdev->sb_loaded) { 2339 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2340 switch (major_version) { 2341 case 0: 2342 print_sb_90(page_address(rdev->sb_page)); 2343 break; 2344 case 1: 2345 print_sb_1(page_address(rdev->sb_page)); 2346 break; 2347 } 2348 } else 2349 printk(KERN_INFO "md: no rdev superblock!\n"); 2350 } 2351 2352 static void md_print_devices(void) 2353 { 2354 struct list_head *tmp; 2355 struct md_rdev *rdev; 2356 struct mddev *mddev; 2357 char b[BDEVNAME_SIZE]; 2358 2359 printk("\n"); 2360 printk("md: **********************************\n"); 2361 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2362 printk("md: **********************************\n"); 2363 for_each_mddev(mddev, tmp) { 2364 2365 if (mddev->bitmap) 2366 bitmap_print_sb(mddev->bitmap); 2367 else 2368 printk("%s: ", mdname(mddev)); 2369 rdev_for_each(rdev, mddev) 2370 printk("<%s>", bdevname(rdev->bdev,b)); 2371 printk("\n"); 2372 2373 rdev_for_each(rdev, mddev) 2374 print_rdev(rdev, mddev->major_version); 2375 } 2376 printk("md: **********************************\n"); 2377 printk("\n"); 2378 } 2379 2380 2381 static void sync_sbs(struct mddev * mddev, int nospares) 2382 { 2383 /* Update each superblock (in-memory image), but 2384 * if we are allowed to, skip spares which already 2385 * have the right event counter, or have one earlier 2386 * (which would mean they aren't being marked as dirty 2387 * with the rest of the array) 2388 */ 2389 struct md_rdev *rdev; 2390 rdev_for_each(rdev, mddev) { 2391 if (rdev->sb_events == mddev->events || 2392 (nospares && 2393 rdev->raid_disk < 0 && 2394 rdev->sb_events+1 == mddev->events)) { 2395 /* Don't update this superblock */ 2396 rdev->sb_loaded = 2; 2397 } else { 2398 sync_super(mddev, rdev); 2399 rdev->sb_loaded = 1; 2400 } 2401 } 2402 } 2403 2404 static void md_update_sb(struct mddev * mddev, int force_change) 2405 { 2406 struct md_rdev *rdev; 2407 int sync_req; 2408 int nospares = 0; 2409 int any_badblocks_changed = 0; 2410 2411 repeat: 2412 /* First make sure individual recovery_offsets are correct */ 2413 rdev_for_each(rdev, mddev) { 2414 if (rdev->raid_disk >= 0 && 2415 mddev->delta_disks >= 0 && 2416 !test_bit(In_sync, &rdev->flags) && 2417 mddev->curr_resync_completed > rdev->recovery_offset) 2418 rdev->recovery_offset = mddev->curr_resync_completed; 2419 2420 } 2421 if (!mddev->persistent) { 2422 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2423 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2424 if (!mddev->external) { 2425 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2426 rdev_for_each(rdev, mddev) { 2427 if (rdev->badblocks.changed) { 2428 rdev->badblocks.changed = 0; 2429 md_ack_all_badblocks(&rdev->badblocks); 2430 md_error(mddev, rdev); 2431 } 2432 clear_bit(Blocked, &rdev->flags); 2433 clear_bit(BlockedBadBlocks, &rdev->flags); 2434 wake_up(&rdev->blocked_wait); 2435 } 2436 } 2437 wake_up(&mddev->sb_wait); 2438 return; 2439 } 2440 2441 spin_lock_irq(&mddev->write_lock); 2442 2443 mddev->utime = get_seconds(); 2444 2445 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2446 force_change = 1; 2447 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2448 /* just a clean<-> dirty transition, possibly leave spares alone, 2449 * though if events isn't the right even/odd, we will have to do 2450 * spares after all 2451 */ 2452 nospares = 1; 2453 if (force_change) 2454 nospares = 0; 2455 if (mddev->degraded) 2456 /* If the array is degraded, then skipping spares is both 2457 * dangerous and fairly pointless. 2458 * Dangerous because a device that was removed from the array 2459 * might have a event_count that still looks up-to-date, 2460 * so it can be re-added without a resync. 2461 * Pointless because if there are any spares to skip, 2462 * then a recovery will happen and soon that array won't 2463 * be degraded any more and the spare can go back to sleep then. 2464 */ 2465 nospares = 0; 2466 2467 sync_req = mddev->in_sync; 2468 2469 /* If this is just a dirty<->clean transition, and the array is clean 2470 * and 'events' is odd, we can roll back to the previous clean state */ 2471 if (nospares 2472 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2473 && mddev->can_decrease_events 2474 && mddev->events != 1) { 2475 mddev->events--; 2476 mddev->can_decrease_events = 0; 2477 } else { 2478 /* otherwise we have to go forward and ... */ 2479 mddev->events ++; 2480 mddev->can_decrease_events = nospares; 2481 } 2482 2483 if (!mddev->events) { 2484 /* 2485 * oops, this 64-bit counter should never wrap. 2486 * Either we are in around ~1 trillion A.C., assuming 2487 * 1 reboot per second, or we have a bug: 2488 */ 2489 MD_BUG(); 2490 mddev->events --; 2491 } 2492 2493 rdev_for_each(rdev, mddev) { 2494 if (rdev->badblocks.changed) 2495 any_badblocks_changed++; 2496 if (test_bit(Faulty, &rdev->flags)) 2497 set_bit(FaultRecorded, &rdev->flags); 2498 } 2499 2500 sync_sbs(mddev, nospares); 2501 spin_unlock_irq(&mddev->write_lock); 2502 2503 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2504 mdname(mddev), mddev->in_sync); 2505 2506 bitmap_update_sb(mddev->bitmap); 2507 rdev_for_each(rdev, mddev) { 2508 char b[BDEVNAME_SIZE]; 2509 2510 if (rdev->sb_loaded != 1) 2511 continue; /* no noise on spare devices */ 2512 2513 if (!test_bit(Faulty, &rdev->flags) && 2514 rdev->saved_raid_disk == -1) { 2515 md_super_write(mddev,rdev, 2516 rdev->sb_start, rdev->sb_size, 2517 rdev->sb_page); 2518 pr_debug("md: (write) %s's sb offset: %llu\n", 2519 bdevname(rdev->bdev, b), 2520 (unsigned long long)rdev->sb_start); 2521 rdev->sb_events = mddev->events; 2522 if (rdev->badblocks.size) { 2523 md_super_write(mddev, rdev, 2524 rdev->badblocks.sector, 2525 rdev->badblocks.size << 9, 2526 rdev->bb_page); 2527 rdev->badblocks.size = 0; 2528 } 2529 2530 } else if (test_bit(Faulty, &rdev->flags)) 2531 pr_debug("md: %s (skipping faulty)\n", 2532 bdevname(rdev->bdev, b)); 2533 else 2534 pr_debug("(skipping incremental s/r "); 2535 2536 if (mddev->level == LEVEL_MULTIPATH) 2537 /* only need to write one superblock... */ 2538 break; 2539 } 2540 md_super_wait(mddev); 2541 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2542 2543 spin_lock_irq(&mddev->write_lock); 2544 if (mddev->in_sync != sync_req || 2545 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2546 /* have to write it out again */ 2547 spin_unlock_irq(&mddev->write_lock); 2548 goto repeat; 2549 } 2550 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2551 spin_unlock_irq(&mddev->write_lock); 2552 wake_up(&mddev->sb_wait); 2553 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2554 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2555 2556 rdev_for_each(rdev, mddev) { 2557 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2558 clear_bit(Blocked, &rdev->flags); 2559 2560 if (any_badblocks_changed) 2561 md_ack_all_badblocks(&rdev->badblocks); 2562 clear_bit(BlockedBadBlocks, &rdev->flags); 2563 wake_up(&rdev->blocked_wait); 2564 } 2565 } 2566 2567 /* words written to sysfs files may, or may not, be \n terminated. 2568 * We want to accept with case. For this we use cmd_match. 2569 */ 2570 static int cmd_match(const char *cmd, const char *str) 2571 { 2572 /* See if cmd, written into a sysfs file, matches 2573 * str. They must either be the same, or cmd can 2574 * have a trailing newline 2575 */ 2576 while (*cmd && *str && *cmd == *str) { 2577 cmd++; 2578 str++; 2579 } 2580 if (*cmd == '\n') 2581 cmd++; 2582 if (*str || *cmd) 2583 return 0; 2584 return 1; 2585 } 2586 2587 struct rdev_sysfs_entry { 2588 struct attribute attr; 2589 ssize_t (*show)(struct md_rdev *, char *); 2590 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2591 }; 2592 2593 static ssize_t 2594 state_show(struct md_rdev *rdev, char *page) 2595 { 2596 char *sep = ""; 2597 size_t len = 0; 2598 2599 if (test_bit(Faulty, &rdev->flags) || 2600 rdev->badblocks.unacked_exist) { 2601 len+= sprintf(page+len, "%sfaulty",sep); 2602 sep = ","; 2603 } 2604 if (test_bit(In_sync, &rdev->flags)) { 2605 len += sprintf(page+len, "%sin_sync",sep); 2606 sep = ","; 2607 } 2608 if (test_bit(WriteMostly, &rdev->flags)) { 2609 len += sprintf(page+len, "%swrite_mostly",sep); 2610 sep = ","; 2611 } 2612 if (test_bit(Blocked, &rdev->flags) || 2613 (rdev->badblocks.unacked_exist 2614 && !test_bit(Faulty, &rdev->flags))) { 2615 len += sprintf(page+len, "%sblocked", sep); 2616 sep = ","; 2617 } 2618 if (!test_bit(Faulty, &rdev->flags) && 2619 !test_bit(In_sync, &rdev->flags)) { 2620 len += sprintf(page+len, "%sspare", sep); 2621 sep = ","; 2622 } 2623 if (test_bit(WriteErrorSeen, &rdev->flags)) { 2624 len += sprintf(page+len, "%swrite_error", sep); 2625 sep = ","; 2626 } 2627 if (test_bit(WantReplacement, &rdev->flags)) { 2628 len += sprintf(page+len, "%swant_replacement", sep); 2629 sep = ","; 2630 } 2631 if (test_bit(Replacement, &rdev->flags)) { 2632 len += sprintf(page+len, "%sreplacement", sep); 2633 sep = ","; 2634 } 2635 2636 return len+sprintf(page+len, "\n"); 2637 } 2638 2639 static ssize_t 2640 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2641 { 2642 /* can write 2643 * faulty - simulates an error 2644 * remove - disconnects the device 2645 * writemostly - sets write_mostly 2646 * -writemostly - clears write_mostly 2647 * blocked - sets the Blocked flags 2648 * -blocked - clears the Blocked and possibly simulates an error 2649 * insync - sets Insync providing device isn't active 2650 * write_error - sets WriteErrorSeen 2651 * -write_error - clears WriteErrorSeen 2652 */ 2653 int err = -EINVAL; 2654 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2655 md_error(rdev->mddev, rdev); 2656 if (test_bit(Faulty, &rdev->flags)) 2657 err = 0; 2658 else 2659 err = -EBUSY; 2660 } else if (cmd_match(buf, "remove")) { 2661 if (rdev->raid_disk >= 0) 2662 err = -EBUSY; 2663 else { 2664 struct mddev *mddev = rdev->mddev; 2665 kick_rdev_from_array(rdev); 2666 if (mddev->pers) 2667 md_update_sb(mddev, 1); 2668 md_new_event(mddev); 2669 err = 0; 2670 } 2671 } else if (cmd_match(buf, "writemostly")) { 2672 set_bit(WriteMostly, &rdev->flags); 2673 err = 0; 2674 } else if (cmd_match(buf, "-writemostly")) { 2675 clear_bit(WriteMostly, &rdev->flags); 2676 err = 0; 2677 } else if (cmd_match(buf, "blocked")) { 2678 set_bit(Blocked, &rdev->flags); 2679 err = 0; 2680 } else if (cmd_match(buf, "-blocked")) { 2681 if (!test_bit(Faulty, &rdev->flags) && 2682 rdev->badblocks.unacked_exist) { 2683 /* metadata handler doesn't understand badblocks, 2684 * so we need to fail the device 2685 */ 2686 md_error(rdev->mddev, rdev); 2687 } 2688 clear_bit(Blocked, &rdev->flags); 2689 clear_bit(BlockedBadBlocks, &rdev->flags); 2690 wake_up(&rdev->blocked_wait); 2691 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2692 md_wakeup_thread(rdev->mddev->thread); 2693 2694 err = 0; 2695 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2696 set_bit(In_sync, &rdev->flags); 2697 err = 0; 2698 } else if (cmd_match(buf, "write_error")) { 2699 set_bit(WriteErrorSeen, &rdev->flags); 2700 err = 0; 2701 } else if (cmd_match(buf, "-write_error")) { 2702 clear_bit(WriteErrorSeen, &rdev->flags); 2703 err = 0; 2704 } else if (cmd_match(buf, "want_replacement")) { 2705 /* Any non-spare device that is not a replacement can 2706 * become want_replacement at any time, but we then need to 2707 * check if recovery is needed. 2708 */ 2709 if (rdev->raid_disk >= 0 && 2710 !test_bit(Replacement, &rdev->flags)) 2711 set_bit(WantReplacement, &rdev->flags); 2712 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2713 md_wakeup_thread(rdev->mddev->thread); 2714 err = 0; 2715 } else if (cmd_match(buf, "-want_replacement")) { 2716 /* Clearing 'want_replacement' is always allowed. 2717 * Once replacements starts it is too late though. 2718 */ 2719 err = 0; 2720 clear_bit(WantReplacement, &rdev->flags); 2721 } else if (cmd_match(buf, "replacement")) { 2722 /* Can only set a device as a replacement when array has not 2723 * yet been started. Once running, replacement is automatic 2724 * from spares, or by assigning 'slot'. 2725 */ 2726 if (rdev->mddev->pers) 2727 err = -EBUSY; 2728 else { 2729 set_bit(Replacement, &rdev->flags); 2730 err = 0; 2731 } 2732 } else if (cmd_match(buf, "-replacement")) { 2733 /* Similarly, can only clear Replacement before start */ 2734 if (rdev->mddev->pers) 2735 err = -EBUSY; 2736 else { 2737 clear_bit(Replacement, &rdev->flags); 2738 err = 0; 2739 } 2740 } 2741 if (!err) 2742 sysfs_notify_dirent_safe(rdev->sysfs_state); 2743 return err ? err : len; 2744 } 2745 static struct rdev_sysfs_entry rdev_state = 2746 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2747 2748 static ssize_t 2749 errors_show(struct md_rdev *rdev, char *page) 2750 { 2751 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2752 } 2753 2754 static ssize_t 2755 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2756 { 2757 char *e; 2758 unsigned long n = simple_strtoul(buf, &e, 10); 2759 if (*buf && (*e == 0 || *e == '\n')) { 2760 atomic_set(&rdev->corrected_errors, n); 2761 return len; 2762 } 2763 return -EINVAL; 2764 } 2765 static struct rdev_sysfs_entry rdev_errors = 2766 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2767 2768 static ssize_t 2769 slot_show(struct md_rdev *rdev, char *page) 2770 { 2771 if (rdev->raid_disk < 0) 2772 return sprintf(page, "none\n"); 2773 else 2774 return sprintf(page, "%d\n", rdev->raid_disk); 2775 } 2776 2777 static ssize_t 2778 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2779 { 2780 char *e; 2781 int err; 2782 int slot = simple_strtoul(buf, &e, 10); 2783 if (strncmp(buf, "none", 4)==0) 2784 slot = -1; 2785 else if (e==buf || (*e && *e!= '\n')) 2786 return -EINVAL; 2787 if (rdev->mddev->pers && slot == -1) { 2788 /* Setting 'slot' on an active array requires also 2789 * updating the 'rd%d' link, and communicating 2790 * with the personality with ->hot_*_disk. 2791 * For now we only support removing 2792 * failed/spare devices. This normally happens automatically, 2793 * but not when the metadata is externally managed. 2794 */ 2795 if (rdev->raid_disk == -1) 2796 return -EEXIST; 2797 /* personality does all needed checks */ 2798 if (rdev->mddev->pers->hot_remove_disk == NULL) 2799 return -EINVAL; 2800 err = rdev->mddev->pers-> 2801 hot_remove_disk(rdev->mddev, rdev); 2802 if (err) 2803 return err; 2804 sysfs_unlink_rdev(rdev->mddev, rdev); 2805 rdev->raid_disk = -1; 2806 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2807 md_wakeup_thread(rdev->mddev->thread); 2808 } else if (rdev->mddev->pers) { 2809 /* Activating a spare .. or possibly reactivating 2810 * if we ever get bitmaps working here. 2811 */ 2812 2813 if (rdev->raid_disk != -1) 2814 return -EBUSY; 2815 2816 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2817 return -EBUSY; 2818 2819 if (rdev->mddev->pers->hot_add_disk == NULL) 2820 return -EINVAL; 2821 2822 if (slot >= rdev->mddev->raid_disks && 2823 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2824 return -ENOSPC; 2825 2826 rdev->raid_disk = slot; 2827 if (test_bit(In_sync, &rdev->flags)) 2828 rdev->saved_raid_disk = slot; 2829 else 2830 rdev->saved_raid_disk = -1; 2831 clear_bit(In_sync, &rdev->flags); 2832 err = rdev->mddev->pers-> 2833 hot_add_disk(rdev->mddev, rdev); 2834 if (err) { 2835 rdev->raid_disk = -1; 2836 return err; 2837 } else 2838 sysfs_notify_dirent_safe(rdev->sysfs_state); 2839 if (sysfs_link_rdev(rdev->mddev, rdev)) 2840 /* failure here is OK */; 2841 /* don't wakeup anyone, leave that to userspace. */ 2842 } else { 2843 if (slot >= rdev->mddev->raid_disks && 2844 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2845 return -ENOSPC; 2846 rdev->raid_disk = slot; 2847 /* assume it is working */ 2848 clear_bit(Faulty, &rdev->flags); 2849 clear_bit(WriteMostly, &rdev->flags); 2850 set_bit(In_sync, &rdev->flags); 2851 sysfs_notify_dirent_safe(rdev->sysfs_state); 2852 } 2853 return len; 2854 } 2855 2856 2857 static struct rdev_sysfs_entry rdev_slot = 2858 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2859 2860 static ssize_t 2861 offset_show(struct md_rdev *rdev, char *page) 2862 { 2863 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2864 } 2865 2866 static ssize_t 2867 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2868 { 2869 unsigned long long offset; 2870 if (strict_strtoull(buf, 10, &offset) < 0) 2871 return -EINVAL; 2872 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2873 return -EBUSY; 2874 if (rdev->sectors && rdev->mddev->external) 2875 /* Must set offset before size, so overlap checks 2876 * can be sane */ 2877 return -EBUSY; 2878 rdev->data_offset = offset; 2879 rdev->new_data_offset = offset; 2880 return len; 2881 } 2882 2883 static struct rdev_sysfs_entry rdev_offset = 2884 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2885 2886 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2887 { 2888 return sprintf(page, "%llu\n", 2889 (unsigned long long)rdev->new_data_offset); 2890 } 2891 2892 static ssize_t new_offset_store(struct md_rdev *rdev, 2893 const char *buf, size_t len) 2894 { 2895 unsigned long long new_offset; 2896 struct mddev *mddev = rdev->mddev; 2897 2898 if (strict_strtoull(buf, 10, &new_offset) < 0) 2899 return -EINVAL; 2900 2901 if (mddev->sync_thread) 2902 return -EBUSY; 2903 if (new_offset == rdev->data_offset) 2904 /* reset is always permitted */ 2905 ; 2906 else if (new_offset > rdev->data_offset) { 2907 /* must not push array size beyond rdev_sectors */ 2908 if (new_offset - rdev->data_offset 2909 + mddev->dev_sectors > rdev->sectors) 2910 return -E2BIG; 2911 } 2912 /* Metadata worries about other space details. */ 2913 2914 /* decreasing the offset is inconsistent with a backwards 2915 * reshape. 2916 */ 2917 if (new_offset < rdev->data_offset && 2918 mddev->reshape_backwards) 2919 return -EINVAL; 2920 /* Increasing offset is inconsistent with forwards 2921 * reshape. reshape_direction should be set to 2922 * 'backwards' first. 2923 */ 2924 if (new_offset > rdev->data_offset && 2925 !mddev->reshape_backwards) 2926 return -EINVAL; 2927 2928 if (mddev->pers && mddev->persistent && 2929 !super_types[mddev->major_version] 2930 .allow_new_offset(rdev, new_offset)) 2931 return -E2BIG; 2932 rdev->new_data_offset = new_offset; 2933 if (new_offset > rdev->data_offset) 2934 mddev->reshape_backwards = 1; 2935 else if (new_offset < rdev->data_offset) 2936 mddev->reshape_backwards = 0; 2937 2938 return len; 2939 } 2940 static struct rdev_sysfs_entry rdev_new_offset = 2941 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2942 2943 static ssize_t 2944 rdev_size_show(struct md_rdev *rdev, char *page) 2945 { 2946 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2947 } 2948 2949 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2950 { 2951 /* check if two start/length pairs overlap */ 2952 if (s1+l1 <= s2) 2953 return 0; 2954 if (s2+l2 <= s1) 2955 return 0; 2956 return 1; 2957 } 2958 2959 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2960 { 2961 unsigned long long blocks; 2962 sector_t new; 2963 2964 if (strict_strtoull(buf, 10, &blocks) < 0) 2965 return -EINVAL; 2966 2967 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2968 return -EINVAL; /* sector conversion overflow */ 2969 2970 new = blocks * 2; 2971 if (new != blocks * 2) 2972 return -EINVAL; /* unsigned long long to sector_t overflow */ 2973 2974 *sectors = new; 2975 return 0; 2976 } 2977 2978 static ssize_t 2979 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2980 { 2981 struct mddev *my_mddev = rdev->mddev; 2982 sector_t oldsectors = rdev->sectors; 2983 sector_t sectors; 2984 2985 if (strict_blocks_to_sectors(buf, §ors) < 0) 2986 return -EINVAL; 2987 if (rdev->data_offset != rdev->new_data_offset) 2988 return -EINVAL; /* too confusing */ 2989 if (my_mddev->pers && rdev->raid_disk >= 0) { 2990 if (my_mddev->persistent) { 2991 sectors = super_types[my_mddev->major_version]. 2992 rdev_size_change(rdev, sectors); 2993 if (!sectors) 2994 return -EBUSY; 2995 } else if (!sectors) 2996 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2997 rdev->data_offset; 2998 } 2999 if (sectors < my_mddev->dev_sectors) 3000 return -EINVAL; /* component must fit device */ 3001 3002 rdev->sectors = sectors; 3003 if (sectors > oldsectors && my_mddev->external) { 3004 /* need to check that all other rdevs with the same ->bdev 3005 * do not overlap. We need to unlock the mddev to avoid 3006 * a deadlock. We have already changed rdev->sectors, and if 3007 * we have to change it back, we will have the lock again. 3008 */ 3009 struct mddev *mddev; 3010 int overlap = 0; 3011 struct list_head *tmp; 3012 3013 mddev_unlock(my_mddev); 3014 for_each_mddev(mddev, tmp) { 3015 struct md_rdev *rdev2; 3016 3017 mddev_lock(mddev); 3018 rdev_for_each(rdev2, mddev) 3019 if (rdev->bdev == rdev2->bdev && 3020 rdev != rdev2 && 3021 overlaps(rdev->data_offset, rdev->sectors, 3022 rdev2->data_offset, 3023 rdev2->sectors)) { 3024 overlap = 1; 3025 break; 3026 } 3027 mddev_unlock(mddev); 3028 if (overlap) { 3029 mddev_put(mddev); 3030 break; 3031 } 3032 } 3033 mddev_lock(my_mddev); 3034 if (overlap) { 3035 /* Someone else could have slipped in a size 3036 * change here, but doing so is just silly. 3037 * We put oldsectors back because we *know* it is 3038 * safe, and trust userspace not to race with 3039 * itself 3040 */ 3041 rdev->sectors = oldsectors; 3042 return -EBUSY; 3043 } 3044 } 3045 return len; 3046 } 3047 3048 static struct rdev_sysfs_entry rdev_size = 3049 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3050 3051 3052 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3053 { 3054 unsigned long long recovery_start = rdev->recovery_offset; 3055 3056 if (test_bit(In_sync, &rdev->flags) || 3057 recovery_start == MaxSector) 3058 return sprintf(page, "none\n"); 3059 3060 return sprintf(page, "%llu\n", recovery_start); 3061 } 3062 3063 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3064 { 3065 unsigned long long recovery_start; 3066 3067 if (cmd_match(buf, "none")) 3068 recovery_start = MaxSector; 3069 else if (strict_strtoull(buf, 10, &recovery_start)) 3070 return -EINVAL; 3071 3072 if (rdev->mddev->pers && 3073 rdev->raid_disk >= 0) 3074 return -EBUSY; 3075 3076 rdev->recovery_offset = recovery_start; 3077 if (recovery_start == MaxSector) 3078 set_bit(In_sync, &rdev->flags); 3079 else 3080 clear_bit(In_sync, &rdev->flags); 3081 return len; 3082 } 3083 3084 static struct rdev_sysfs_entry rdev_recovery_start = 3085 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3086 3087 3088 static ssize_t 3089 badblocks_show(struct badblocks *bb, char *page, int unack); 3090 static ssize_t 3091 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 3092 3093 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3094 { 3095 return badblocks_show(&rdev->badblocks, page, 0); 3096 } 3097 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3098 { 3099 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3100 /* Maybe that ack was all we needed */ 3101 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3102 wake_up(&rdev->blocked_wait); 3103 return rv; 3104 } 3105 static struct rdev_sysfs_entry rdev_bad_blocks = 3106 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3107 3108 3109 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3110 { 3111 return badblocks_show(&rdev->badblocks, page, 1); 3112 } 3113 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3114 { 3115 return badblocks_store(&rdev->badblocks, page, len, 1); 3116 } 3117 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3118 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3119 3120 static struct attribute *rdev_default_attrs[] = { 3121 &rdev_state.attr, 3122 &rdev_errors.attr, 3123 &rdev_slot.attr, 3124 &rdev_offset.attr, 3125 &rdev_new_offset.attr, 3126 &rdev_size.attr, 3127 &rdev_recovery_start.attr, 3128 &rdev_bad_blocks.attr, 3129 &rdev_unack_bad_blocks.attr, 3130 NULL, 3131 }; 3132 static ssize_t 3133 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3134 { 3135 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3136 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3137 struct mddev *mddev = rdev->mddev; 3138 ssize_t rv; 3139 3140 if (!entry->show) 3141 return -EIO; 3142 3143 rv = mddev ? mddev_lock(mddev) : -EBUSY; 3144 if (!rv) { 3145 if (rdev->mddev == NULL) 3146 rv = -EBUSY; 3147 else 3148 rv = entry->show(rdev, page); 3149 mddev_unlock(mddev); 3150 } 3151 return rv; 3152 } 3153 3154 static ssize_t 3155 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3156 const char *page, size_t length) 3157 { 3158 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3159 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3160 ssize_t rv; 3161 struct mddev *mddev = rdev->mddev; 3162 3163 if (!entry->store) 3164 return -EIO; 3165 if (!capable(CAP_SYS_ADMIN)) 3166 return -EACCES; 3167 rv = mddev ? mddev_lock(mddev): -EBUSY; 3168 if (!rv) { 3169 if (rdev->mddev == NULL) 3170 rv = -EBUSY; 3171 else 3172 rv = entry->store(rdev, page, length); 3173 mddev_unlock(mddev); 3174 } 3175 return rv; 3176 } 3177 3178 static void rdev_free(struct kobject *ko) 3179 { 3180 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3181 kfree(rdev); 3182 } 3183 static const struct sysfs_ops rdev_sysfs_ops = { 3184 .show = rdev_attr_show, 3185 .store = rdev_attr_store, 3186 }; 3187 static struct kobj_type rdev_ktype = { 3188 .release = rdev_free, 3189 .sysfs_ops = &rdev_sysfs_ops, 3190 .default_attrs = rdev_default_attrs, 3191 }; 3192 3193 int md_rdev_init(struct md_rdev *rdev) 3194 { 3195 rdev->desc_nr = -1; 3196 rdev->saved_raid_disk = -1; 3197 rdev->raid_disk = -1; 3198 rdev->flags = 0; 3199 rdev->data_offset = 0; 3200 rdev->new_data_offset = 0; 3201 rdev->sb_events = 0; 3202 rdev->last_read_error.tv_sec = 0; 3203 rdev->last_read_error.tv_nsec = 0; 3204 rdev->sb_loaded = 0; 3205 rdev->bb_page = NULL; 3206 atomic_set(&rdev->nr_pending, 0); 3207 atomic_set(&rdev->read_errors, 0); 3208 atomic_set(&rdev->corrected_errors, 0); 3209 3210 INIT_LIST_HEAD(&rdev->same_set); 3211 init_waitqueue_head(&rdev->blocked_wait); 3212 3213 /* Add space to store bad block list. 3214 * This reserves the space even on arrays where it cannot 3215 * be used - I wonder if that matters 3216 */ 3217 rdev->badblocks.count = 0; 3218 rdev->badblocks.shift = 0; 3219 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3220 seqlock_init(&rdev->badblocks.lock); 3221 if (rdev->badblocks.page == NULL) 3222 return -ENOMEM; 3223 3224 return 0; 3225 } 3226 EXPORT_SYMBOL_GPL(md_rdev_init); 3227 /* 3228 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3229 * 3230 * mark the device faulty if: 3231 * 3232 * - the device is nonexistent (zero size) 3233 * - the device has no valid superblock 3234 * 3235 * a faulty rdev _never_ has rdev->sb set. 3236 */ 3237 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3238 { 3239 char b[BDEVNAME_SIZE]; 3240 int err; 3241 struct md_rdev *rdev; 3242 sector_t size; 3243 3244 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3245 if (!rdev) { 3246 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3247 return ERR_PTR(-ENOMEM); 3248 } 3249 3250 err = md_rdev_init(rdev); 3251 if (err) 3252 goto abort_free; 3253 err = alloc_disk_sb(rdev); 3254 if (err) 3255 goto abort_free; 3256 3257 err = lock_rdev(rdev, newdev, super_format == -2); 3258 if (err) 3259 goto abort_free; 3260 3261 kobject_init(&rdev->kobj, &rdev_ktype); 3262 3263 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3264 if (!size) { 3265 printk(KERN_WARNING 3266 "md: %s has zero or unknown size, marking faulty!\n", 3267 bdevname(rdev->bdev,b)); 3268 err = -EINVAL; 3269 goto abort_free; 3270 } 3271 3272 if (super_format >= 0) { 3273 err = super_types[super_format]. 3274 load_super(rdev, NULL, super_minor); 3275 if (err == -EINVAL) { 3276 printk(KERN_WARNING 3277 "md: %s does not have a valid v%d.%d " 3278 "superblock, not importing!\n", 3279 bdevname(rdev->bdev,b), 3280 super_format, super_minor); 3281 goto abort_free; 3282 } 3283 if (err < 0) { 3284 printk(KERN_WARNING 3285 "md: could not read %s's sb, not importing!\n", 3286 bdevname(rdev->bdev,b)); 3287 goto abort_free; 3288 } 3289 } 3290 if (super_format == -1) 3291 /* hot-add for 0.90, or non-persistent: so no badblocks */ 3292 rdev->badblocks.shift = -1; 3293 3294 return rdev; 3295 3296 abort_free: 3297 if (rdev->bdev) 3298 unlock_rdev(rdev); 3299 md_rdev_clear(rdev); 3300 kfree(rdev); 3301 return ERR_PTR(err); 3302 } 3303 3304 /* 3305 * Check a full RAID array for plausibility 3306 */ 3307 3308 3309 static void analyze_sbs(struct mddev * mddev) 3310 { 3311 int i; 3312 struct md_rdev *rdev, *freshest, *tmp; 3313 char b[BDEVNAME_SIZE]; 3314 3315 freshest = NULL; 3316 rdev_for_each_safe(rdev, tmp, mddev) 3317 switch (super_types[mddev->major_version]. 3318 load_super(rdev, freshest, mddev->minor_version)) { 3319 case 1: 3320 freshest = rdev; 3321 break; 3322 case 0: 3323 break; 3324 default: 3325 printk( KERN_ERR \ 3326 "md: fatal superblock inconsistency in %s" 3327 " -- removing from array\n", 3328 bdevname(rdev->bdev,b)); 3329 kick_rdev_from_array(rdev); 3330 } 3331 3332 3333 super_types[mddev->major_version]. 3334 validate_super(mddev, freshest); 3335 3336 i = 0; 3337 rdev_for_each_safe(rdev, tmp, mddev) { 3338 if (mddev->max_disks && 3339 (rdev->desc_nr >= mddev->max_disks || 3340 i > mddev->max_disks)) { 3341 printk(KERN_WARNING 3342 "md: %s: %s: only %d devices permitted\n", 3343 mdname(mddev), bdevname(rdev->bdev, b), 3344 mddev->max_disks); 3345 kick_rdev_from_array(rdev); 3346 continue; 3347 } 3348 if (rdev != freshest) 3349 if (super_types[mddev->major_version]. 3350 validate_super(mddev, rdev)) { 3351 printk(KERN_WARNING "md: kicking non-fresh %s" 3352 " from array!\n", 3353 bdevname(rdev->bdev,b)); 3354 kick_rdev_from_array(rdev); 3355 continue; 3356 } 3357 if (mddev->level == LEVEL_MULTIPATH) { 3358 rdev->desc_nr = i++; 3359 rdev->raid_disk = rdev->desc_nr; 3360 set_bit(In_sync, &rdev->flags); 3361 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3362 rdev->raid_disk = -1; 3363 clear_bit(In_sync, &rdev->flags); 3364 } 3365 } 3366 } 3367 3368 /* Read a fixed-point number. 3369 * Numbers in sysfs attributes should be in "standard" units where 3370 * possible, so time should be in seconds. 3371 * However we internally use a a much smaller unit such as 3372 * milliseconds or jiffies. 3373 * This function takes a decimal number with a possible fractional 3374 * component, and produces an integer which is the result of 3375 * multiplying that number by 10^'scale'. 3376 * all without any floating-point arithmetic. 3377 */ 3378 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3379 { 3380 unsigned long result = 0; 3381 long decimals = -1; 3382 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3383 if (*cp == '.') 3384 decimals = 0; 3385 else if (decimals < scale) { 3386 unsigned int value; 3387 value = *cp - '0'; 3388 result = result * 10 + value; 3389 if (decimals >= 0) 3390 decimals++; 3391 } 3392 cp++; 3393 } 3394 if (*cp == '\n') 3395 cp++; 3396 if (*cp) 3397 return -EINVAL; 3398 if (decimals < 0) 3399 decimals = 0; 3400 while (decimals < scale) { 3401 result *= 10; 3402 decimals ++; 3403 } 3404 *res = result; 3405 return 0; 3406 } 3407 3408 3409 static void md_safemode_timeout(unsigned long data); 3410 3411 static ssize_t 3412 safe_delay_show(struct mddev *mddev, char *page) 3413 { 3414 int msec = (mddev->safemode_delay*1000)/HZ; 3415 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3416 } 3417 static ssize_t 3418 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3419 { 3420 unsigned long msec; 3421 3422 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3423 return -EINVAL; 3424 if (msec == 0) 3425 mddev->safemode_delay = 0; 3426 else { 3427 unsigned long old_delay = mddev->safemode_delay; 3428 mddev->safemode_delay = (msec*HZ)/1000; 3429 if (mddev->safemode_delay == 0) 3430 mddev->safemode_delay = 1; 3431 if (mddev->safemode_delay < old_delay) 3432 md_safemode_timeout((unsigned long)mddev); 3433 } 3434 return len; 3435 } 3436 static struct md_sysfs_entry md_safe_delay = 3437 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3438 3439 static ssize_t 3440 level_show(struct mddev *mddev, char *page) 3441 { 3442 struct md_personality *p = mddev->pers; 3443 if (p) 3444 return sprintf(page, "%s\n", p->name); 3445 else if (mddev->clevel[0]) 3446 return sprintf(page, "%s\n", mddev->clevel); 3447 else if (mddev->level != LEVEL_NONE) 3448 return sprintf(page, "%d\n", mddev->level); 3449 else 3450 return 0; 3451 } 3452 3453 static ssize_t 3454 level_store(struct mddev *mddev, const char *buf, size_t len) 3455 { 3456 char clevel[16]; 3457 ssize_t rv = len; 3458 struct md_personality *pers; 3459 long level; 3460 void *priv; 3461 struct md_rdev *rdev; 3462 3463 if (mddev->pers == NULL) { 3464 if (len == 0) 3465 return 0; 3466 if (len >= sizeof(mddev->clevel)) 3467 return -ENOSPC; 3468 strncpy(mddev->clevel, buf, len); 3469 if (mddev->clevel[len-1] == '\n') 3470 len--; 3471 mddev->clevel[len] = 0; 3472 mddev->level = LEVEL_NONE; 3473 return rv; 3474 } 3475 3476 /* request to change the personality. Need to ensure: 3477 * - array is not engaged in resync/recovery/reshape 3478 * - old personality can be suspended 3479 * - new personality will access other array. 3480 */ 3481 3482 if (mddev->sync_thread || 3483 mddev->reshape_position != MaxSector || 3484 mddev->sysfs_active) 3485 return -EBUSY; 3486 3487 if (!mddev->pers->quiesce) { 3488 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3489 mdname(mddev), mddev->pers->name); 3490 return -EINVAL; 3491 } 3492 3493 /* Now find the new personality */ 3494 if (len == 0 || len >= sizeof(clevel)) 3495 return -EINVAL; 3496 strncpy(clevel, buf, len); 3497 if (clevel[len-1] == '\n') 3498 len--; 3499 clevel[len] = 0; 3500 if (strict_strtol(clevel, 10, &level)) 3501 level = LEVEL_NONE; 3502 3503 if (request_module("md-%s", clevel) != 0) 3504 request_module("md-level-%s", clevel); 3505 spin_lock(&pers_lock); 3506 pers = find_pers(level, clevel); 3507 if (!pers || !try_module_get(pers->owner)) { 3508 spin_unlock(&pers_lock); 3509 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3510 return -EINVAL; 3511 } 3512 spin_unlock(&pers_lock); 3513 3514 if (pers == mddev->pers) { 3515 /* Nothing to do! */ 3516 module_put(pers->owner); 3517 return rv; 3518 } 3519 if (!pers->takeover) { 3520 module_put(pers->owner); 3521 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3522 mdname(mddev), clevel); 3523 return -EINVAL; 3524 } 3525 3526 rdev_for_each(rdev, mddev) 3527 rdev->new_raid_disk = rdev->raid_disk; 3528 3529 /* ->takeover must set new_* and/or delta_disks 3530 * if it succeeds, and may set them when it fails. 3531 */ 3532 priv = pers->takeover(mddev); 3533 if (IS_ERR(priv)) { 3534 mddev->new_level = mddev->level; 3535 mddev->new_layout = mddev->layout; 3536 mddev->new_chunk_sectors = mddev->chunk_sectors; 3537 mddev->raid_disks -= mddev->delta_disks; 3538 mddev->delta_disks = 0; 3539 mddev->reshape_backwards = 0; 3540 module_put(pers->owner); 3541 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3542 mdname(mddev), clevel); 3543 return PTR_ERR(priv); 3544 } 3545 3546 /* Looks like we have a winner */ 3547 mddev_suspend(mddev); 3548 mddev->pers->stop(mddev); 3549 3550 if (mddev->pers->sync_request == NULL && 3551 pers->sync_request != NULL) { 3552 /* need to add the md_redundancy_group */ 3553 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3554 printk(KERN_WARNING 3555 "md: cannot register extra attributes for %s\n", 3556 mdname(mddev)); 3557 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3558 } 3559 if (mddev->pers->sync_request != NULL && 3560 pers->sync_request == NULL) { 3561 /* need to remove the md_redundancy_group */ 3562 if (mddev->to_remove == NULL) 3563 mddev->to_remove = &md_redundancy_group; 3564 } 3565 3566 if (mddev->pers->sync_request == NULL && 3567 mddev->external) { 3568 /* We are converting from a no-redundancy array 3569 * to a redundancy array and metadata is managed 3570 * externally so we need to be sure that writes 3571 * won't block due to a need to transition 3572 * clean->dirty 3573 * until external management is started. 3574 */ 3575 mddev->in_sync = 0; 3576 mddev->safemode_delay = 0; 3577 mddev->safemode = 0; 3578 } 3579 3580 rdev_for_each(rdev, mddev) { 3581 if (rdev->raid_disk < 0) 3582 continue; 3583 if (rdev->new_raid_disk >= mddev->raid_disks) 3584 rdev->new_raid_disk = -1; 3585 if (rdev->new_raid_disk == rdev->raid_disk) 3586 continue; 3587 sysfs_unlink_rdev(mddev, rdev); 3588 } 3589 rdev_for_each(rdev, mddev) { 3590 if (rdev->raid_disk < 0) 3591 continue; 3592 if (rdev->new_raid_disk == rdev->raid_disk) 3593 continue; 3594 rdev->raid_disk = rdev->new_raid_disk; 3595 if (rdev->raid_disk < 0) 3596 clear_bit(In_sync, &rdev->flags); 3597 else { 3598 if (sysfs_link_rdev(mddev, rdev)) 3599 printk(KERN_WARNING "md: cannot register rd%d" 3600 " for %s after level change\n", 3601 rdev->raid_disk, mdname(mddev)); 3602 } 3603 } 3604 3605 module_put(mddev->pers->owner); 3606 mddev->pers = pers; 3607 mddev->private = priv; 3608 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3609 mddev->level = mddev->new_level; 3610 mddev->layout = mddev->new_layout; 3611 mddev->chunk_sectors = mddev->new_chunk_sectors; 3612 mddev->delta_disks = 0; 3613 mddev->reshape_backwards = 0; 3614 mddev->degraded = 0; 3615 if (mddev->pers->sync_request == NULL) { 3616 /* this is now an array without redundancy, so 3617 * it must always be in_sync 3618 */ 3619 mddev->in_sync = 1; 3620 del_timer_sync(&mddev->safemode_timer); 3621 } 3622 pers->run(mddev); 3623 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3624 mddev_resume(mddev); 3625 sysfs_notify(&mddev->kobj, NULL, "level"); 3626 md_new_event(mddev); 3627 return rv; 3628 } 3629 3630 static struct md_sysfs_entry md_level = 3631 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3632 3633 3634 static ssize_t 3635 layout_show(struct mddev *mddev, char *page) 3636 { 3637 /* just a number, not meaningful for all levels */ 3638 if (mddev->reshape_position != MaxSector && 3639 mddev->layout != mddev->new_layout) 3640 return sprintf(page, "%d (%d)\n", 3641 mddev->new_layout, mddev->layout); 3642 return sprintf(page, "%d\n", mddev->layout); 3643 } 3644 3645 static ssize_t 3646 layout_store(struct mddev *mddev, const char *buf, size_t len) 3647 { 3648 char *e; 3649 unsigned long n = simple_strtoul(buf, &e, 10); 3650 3651 if (!*buf || (*e && *e != '\n')) 3652 return -EINVAL; 3653 3654 if (mddev->pers) { 3655 int err; 3656 if (mddev->pers->check_reshape == NULL) 3657 return -EBUSY; 3658 mddev->new_layout = n; 3659 err = mddev->pers->check_reshape(mddev); 3660 if (err) { 3661 mddev->new_layout = mddev->layout; 3662 return err; 3663 } 3664 } else { 3665 mddev->new_layout = n; 3666 if (mddev->reshape_position == MaxSector) 3667 mddev->layout = n; 3668 } 3669 return len; 3670 } 3671 static struct md_sysfs_entry md_layout = 3672 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3673 3674 3675 static ssize_t 3676 raid_disks_show(struct mddev *mddev, char *page) 3677 { 3678 if (mddev->raid_disks == 0) 3679 return 0; 3680 if (mddev->reshape_position != MaxSector && 3681 mddev->delta_disks != 0) 3682 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3683 mddev->raid_disks - mddev->delta_disks); 3684 return sprintf(page, "%d\n", mddev->raid_disks); 3685 } 3686 3687 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3688 3689 static ssize_t 3690 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3691 { 3692 char *e; 3693 int rv = 0; 3694 unsigned long n = simple_strtoul(buf, &e, 10); 3695 3696 if (!*buf || (*e && *e != '\n')) 3697 return -EINVAL; 3698 3699 if (mddev->pers) 3700 rv = update_raid_disks(mddev, n); 3701 else if (mddev->reshape_position != MaxSector) { 3702 struct md_rdev *rdev; 3703 int olddisks = mddev->raid_disks - mddev->delta_disks; 3704 3705 rdev_for_each(rdev, mddev) { 3706 if (olddisks < n && 3707 rdev->data_offset < rdev->new_data_offset) 3708 return -EINVAL; 3709 if (olddisks > n && 3710 rdev->data_offset > rdev->new_data_offset) 3711 return -EINVAL; 3712 } 3713 mddev->delta_disks = n - olddisks; 3714 mddev->raid_disks = n; 3715 mddev->reshape_backwards = (mddev->delta_disks < 0); 3716 } else 3717 mddev->raid_disks = n; 3718 return rv ? rv : len; 3719 } 3720 static struct md_sysfs_entry md_raid_disks = 3721 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3722 3723 static ssize_t 3724 chunk_size_show(struct mddev *mddev, char *page) 3725 { 3726 if (mddev->reshape_position != MaxSector && 3727 mddev->chunk_sectors != mddev->new_chunk_sectors) 3728 return sprintf(page, "%d (%d)\n", 3729 mddev->new_chunk_sectors << 9, 3730 mddev->chunk_sectors << 9); 3731 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3732 } 3733 3734 static ssize_t 3735 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3736 { 3737 char *e; 3738 unsigned long n = simple_strtoul(buf, &e, 10); 3739 3740 if (!*buf || (*e && *e != '\n')) 3741 return -EINVAL; 3742 3743 if (mddev->pers) { 3744 int err; 3745 if (mddev->pers->check_reshape == NULL) 3746 return -EBUSY; 3747 mddev->new_chunk_sectors = n >> 9; 3748 err = mddev->pers->check_reshape(mddev); 3749 if (err) { 3750 mddev->new_chunk_sectors = mddev->chunk_sectors; 3751 return err; 3752 } 3753 } else { 3754 mddev->new_chunk_sectors = n >> 9; 3755 if (mddev->reshape_position == MaxSector) 3756 mddev->chunk_sectors = n >> 9; 3757 } 3758 return len; 3759 } 3760 static struct md_sysfs_entry md_chunk_size = 3761 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3762 3763 static ssize_t 3764 resync_start_show(struct mddev *mddev, char *page) 3765 { 3766 if (mddev->recovery_cp == MaxSector) 3767 return sprintf(page, "none\n"); 3768 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3769 } 3770 3771 static ssize_t 3772 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3773 { 3774 char *e; 3775 unsigned long long n = simple_strtoull(buf, &e, 10); 3776 3777 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3778 return -EBUSY; 3779 if (cmd_match(buf, "none")) 3780 n = MaxSector; 3781 else if (!*buf || (*e && *e != '\n')) 3782 return -EINVAL; 3783 3784 mddev->recovery_cp = n; 3785 if (mddev->pers) 3786 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3787 return len; 3788 } 3789 static struct md_sysfs_entry md_resync_start = 3790 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3791 3792 /* 3793 * The array state can be: 3794 * 3795 * clear 3796 * No devices, no size, no level 3797 * Equivalent to STOP_ARRAY ioctl 3798 * inactive 3799 * May have some settings, but array is not active 3800 * all IO results in error 3801 * When written, doesn't tear down array, but just stops it 3802 * suspended (not supported yet) 3803 * All IO requests will block. The array can be reconfigured. 3804 * Writing this, if accepted, will block until array is quiescent 3805 * readonly 3806 * no resync can happen. no superblocks get written. 3807 * write requests fail 3808 * read-auto 3809 * like readonly, but behaves like 'clean' on a write request. 3810 * 3811 * clean - no pending writes, but otherwise active. 3812 * When written to inactive array, starts without resync 3813 * If a write request arrives then 3814 * if metadata is known, mark 'dirty' and switch to 'active'. 3815 * if not known, block and switch to write-pending 3816 * If written to an active array that has pending writes, then fails. 3817 * active 3818 * fully active: IO and resync can be happening. 3819 * When written to inactive array, starts with resync 3820 * 3821 * write-pending 3822 * clean, but writes are blocked waiting for 'active' to be written. 3823 * 3824 * active-idle 3825 * like active, but no writes have been seen for a while (100msec). 3826 * 3827 */ 3828 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3829 write_pending, active_idle, bad_word}; 3830 static char *array_states[] = { 3831 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3832 "write-pending", "active-idle", NULL }; 3833 3834 static int match_word(const char *word, char **list) 3835 { 3836 int n; 3837 for (n=0; list[n]; n++) 3838 if (cmd_match(word, list[n])) 3839 break; 3840 return n; 3841 } 3842 3843 static ssize_t 3844 array_state_show(struct mddev *mddev, char *page) 3845 { 3846 enum array_state st = inactive; 3847 3848 if (mddev->pers) 3849 switch(mddev->ro) { 3850 case 1: 3851 st = readonly; 3852 break; 3853 case 2: 3854 st = read_auto; 3855 break; 3856 case 0: 3857 if (mddev->in_sync) 3858 st = clean; 3859 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3860 st = write_pending; 3861 else if (mddev->safemode) 3862 st = active_idle; 3863 else 3864 st = active; 3865 } 3866 else { 3867 if (list_empty(&mddev->disks) && 3868 mddev->raid_disks == 0 && 3869 mddev->dev_sectors == 0) 3870 st = clear; 3871 else 3872 st = inactive; 3873 } 3874 return sprintf(page, "%s\n", array_states[st]); 3875 } 3876 3877 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev); 3878 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev); 3879 static int do_md_run(struct mddev * mddev); 3880 static int restart_array(struct mddev *mddev); 3881 3882 static ssize_t 3883 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3884 { 3885 int err = -EINVAL; 3886 enum array_state st = match_word(buf, array_states); 3887 switch(st) { 3888 case bad_word: 3889 break; 3890 case clear: 3891 /* stopping an active array */ 3892 err = do_md_stop(mddev, 0, NULL); 3893 break; 3894 case inactive: 3895 /* stopping an active array */ 3896 if (mddev->pers) 3897 err = do_md_stop(mddev, 2, NULL); 3898 else 3899 err = 0; /* already inactive */ 3900 break; 3901 case suspended: 3902 break; /* not supported yet */ 3903 case readonly: 3904 if (mddev->pers) 3905 err = md_set_readonly(mddev, NULL); 3906 else { 3907 mddev->ro = 1; 3908 set_disk_ro(mddev->gendisk, 1); 3909 err = do_md_run(mddev); 3910 } 3911 break; 3912 case read_auto: 3913 if (mddev->pers) { 3914 if (mddev->ro == 0) 3915 err = md_set_readonly(mddev, NULL); 3916 else if (mddev->ro == 1) 3917 err = restart_array(mddev); 3918 if (err == 0) { 3919 mddev->ro = 2; 3920 set_disk_ro(mddev->gendisk, 0); 3921 } 3922 } else { 3923 mddev->ro = 2; 3924 err = do_md_run(mddev); 3925 } 3926 break; 3927 case clean: 3928 if (mddev->pers) { 3929 restart_array(mddev); 3930 spin_lock_irq(&mddev->write_lock); 3931 if (atomic_read(&mddev->writes_pending) == 0) { 3932 if (mddev->in_sync == 0) { 3933 mddev->in_sync = 1; 3934 if (mddev->safemode == 1) 3935 mddev->safemode = 0; 3936 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3937 } 3938 err = 0; 3939 } else 3940 err = -EBUSY; 3941 spin_unlock_irq(&mddev->write_lock); 3942 } else 3943 err = -EINVAL; 3944 break; 3945 case active: 3946 if (mddev->pers) { 3947 restart_array(mddev); 3948 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3949 wake_up(&mddev->sb_wait); 3950 err = 0; 3951 } else { 3952 mddev->ro = 0; 3953 set_disk_ro(mddev->gendisk, 0); 3954 err = do_md_run(mddev); 3955 } 3956 break; 3957 case write_pending: 3958 case active_idle: 3959 /* these cannot be set */ 3960 break; 3961 } 3962 if (err) 3963 return err; 3964 else { 3965 if (mddev->hold_active == UNTIL_IOCTL) 3966 mddev->hold_active = 0; 3967 sysfs_notify_dirent_safe(mddev->sysfs_state); 3968 return len; 3969 } 3970 } 3971 static struct md_sysfs_entry md_array_state = 3972 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3973 3974 static ssize_t 3975 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 3976 return sprintf(page, "%d\n", 3977 atomic_read(&mddev->max_corr_read_errors)); 3978 } 3979 3980 static ssize_t 3981 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 3982 { 3983 char *e; 3984 unsigned long n = simple_strtoul(buf, &e, 10); 3985 3986 if (*buf && (*e == 0 || *e == '\n')) { 3987 atomic_set(&mddev->max_corr_read_errors, n); 3988 return len; 3989 } 3990 return -EINVAL; 3991 } 3992 3993 static struct md_sysfs_entry max_corr_read_errors = 3994 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3995 max_corrected_read_errors_store); 3996 3997 static ssize_t 3998 null_show(struct mddev *mddev, char *page) 3999 { 4000 return -EINVAL; 4001 } 4002 4003 static ssize_t 4004 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4005 { 4006 /* buf must be %d:%d\n? giving major and minor numbers */ 4007 /* The new device is added to the array. 4008 * If the array has a persistent superblock, we read the 4009 * superblock to initialise info and check validity. 4010 * Otherwise, only checking done is that in bind_rdev_to_array, 4011 * which mainly checks size. 4012 */ 4013 char *e; 4014 int major = simple_strtoul(buf, &e, 10); 4015 int minor; 4016 dev_t dev; 4017 struct md_rdev *rdev; 4018 int err; 4019 4020 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4021 return -EINVAL; 4022 minor = simple_strtoul(e+1, &e, 10); 4023 if (*e && *e != '\n') 4024 return -EINVAL; 4025 dev = MKDEV(major, minor); 4026 if (major != MAJOR(dev) || 4027 minor != MINOR(dev)) 4028 return -EOVERFLOW; 4029 4030 4031 if (mddev->persistent) { 4032 rdev = md_import_device(dev, mddev->major_version, 4033 mddev->minor_version); 4034 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4035 struct md_rdev *rdev0 4036 = list_entry(mddev->disks.next, 4037 struct md_rdev, same_set); 4038 err = super_types[mddev->major_version] 4039 .load_super(rdev, rdev0, mddev->minor_version); 4040 if (err < 0) 4041 goto out; 4042 } 4043 } else if (mddev->external) 4044 rdev = md_import_device(dev, -2, -1); 4045 else 4046 rdev = md_import_device(dev, -1, -1); 4047 4048 if (IS_ERR(rdev)) 4049 return PTR_ERR(rdev); 4050 err = bind_rdev_to_array(rdev, mddev); 4051 out: 4052 if (err) 4053 export_rdev(rdev); 4054 return err ? err : len; 4055 } 4056 4057 static struct md_sysfs_entry md_new_device = 4058 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4059 4060 static ssize_t 4061 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4062 { 4063 char *end; 4064 unsigned long chunk, end_chunk; 4065 4066 if (!mddev->bitmap) 4067 goto out; 4068 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4069 while (*buf) { 4070 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4071 if (buf == end) break; 4072 if (*end == '-') { /* range */ 4073 buf = end + 1; 4074 end_chunk = simple_strtoul(buf, &end, 0); 4075 if (buf == end) break; 4076 } 4077 if (*end && !isspace(*end)) break; 4078 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4079 buf = skip_spaces(end); 4080 } 4081 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4082 out: 4083 return len; 4084 } 4085 4086 static struct md_sysfs_entry md_bitmap = 4087 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4088 4089 static ssize_t 4090 size_show(struct mddev *mddev, char *page) 4091 { 4092 return sprintf(page, "%llu\n", 4093 (unsigned long long)mddev->dev_sectors / 2); 4094 } 4095 4096 static int update_size(struct mddev *mddev, sector_t num_sectors); 4097 4098 static ssize_t 4099 size_store(struct mddev *mddev, const char *buf, size_t len) 4100 { 4101 /* If array is inactive, we can reduce the component size, but 4102 * not increase it (except from 0). 4103 * If array is active, we can try an on-line resize 4104 */ 4105 sector_t sectors; 4106 int err = strict_blocks_to_sectors(buf, §ors); 4107 4108 if (err < 0) 4109 return err; 4110 if (mddev->pers) { 4111 err = update_size(mddev, sectors); 4112 md_update_sb(mddev, 1); 4113 } else { 4114 if (mddev->dev_sectors == 0 || 4115 mddev->dev_sectors > sectors) 4116 mddev->dev_sectors = sectors; 4117 else 4118 err = -ENOSPC; 4119 } 4120 return err ? err : len; 4121 } 4122 4123 static struct md_sysfs_entry md_size = 4124 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4125 4126 4127 /* Metadata version. 4128 * This is one of 4129 * 'none' for arrays with no metadata (good luck...) 4130 * 'external' for arrays with externally managed metadata, 4131 * or N.M for internally known formats 4132 */ 4133 static ssize_t 4134 metadata_show(struct mddev *mddev, char *page) 4135 { 4136 if (mddev->persistent) 4137 return sprintf(page, "%d.%d\n", 4138 mddev->major_version, mddev->minor_version); 4139 else if (mddev->external) 4140 return sprintf(page, "external:%s\n", mddev->metadata_type); 4141 else 4142 return sprintf(page, "none\n"); 4143 } 4144 4145 static ssize_t 4146 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4147 { 4148 int major, minor; 4149 char *e; 4150 /* Changing the details of 'external' metadata is 4151 * always permitted. Otherwise there must be 4152 * no devices attached to the array. 4153 */ 4154 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4155 ; 4156 else if (!list_empty(&mddev->disks)) 4157 return -EBUSY; 4158 4159 if (cmd_match(buf, "none")) { 4160 mddev->persistent = 0; 4161 mddev->external = 0; 4162 mddev->major_version = 0; 4163 mddev->minor_version = 90; 4164 return len; 4165 } 4166 if (strncmp(buf, "external:", 9) == 0) { 4167 size_t namelen = len-9; 4168 if (namelen >= sizeof(mddev->metadata_type)) 4169 namelen = sizeof(mddev->metadata_type)-1; 4170 strncpy(mddev->metadata_type, buf+9, namelen); 4171 mddev->metadata_type[namelen] = 0; 4172 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4173 mddev->metadata_type[--namelen] = 0; 4174 mddev->persistent = 0; 4175 mddev->external = 1; 4176 mddev->major_version = 0; 4177 mddev->minor_version = 90; 4178 return len; 4179 } 4180 major = simple_strtoul(buf, &e, 10); 4181 if (e==buf || *e != '.') 4182 return -EINVAL; 4183 buf = e+1; 4184 minor = simple_strtoul(buf, &e, 10); 4185 if (e==buf || (*e && *e != '\n') ) 4186 return -EINVAL; 4187 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4188 return -ENOENT; 4189 mddev->major_version = major; 4190 mddev->minor_version = minor; 4191 mddev->persistent = 1; 4192 mddev->external = 0; 4193 return len; 4194 } 4195 4196 static struct md_sysfs_entry md_metadata = 4197 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4198 4199 static ssize_t 4200 action_show(struct mddev *mddev, char *page) 4201 { 4202 char *type = "idle"; 4203 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4204 type = "frozen"; 4205 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4206 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 4207 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4208 type = "reshape"; 4209 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4210 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 4211 type = "resync"; 4212 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 4213 type = "check"; 4214 else 4215 type = "repair"; 4216 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 4217 type = "recover"; 4218 } 4219 return sprintf(page, "%s\n", type); 4220 } 4221 4222 static void reap_sync_thread(struct mddev *mddev); 4223 4224 static ssize_t 4225 action_store(struct mddev *mddev, const char *page, size_t len) 4226 { 4227 if (!mddev->pers || !mddev->pers->sync_request) 4228 return -EINVAL; 4229 4230 if (cmd_match(page, "frozen")) 4231 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4232 else 4233 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4234 4235 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4236 if (mddev->sync_thread) { 4237 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4238 reap_sync_thread(mddev); 4239 } 4240 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4241 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4242 return -EBUSY; 4243 else if (cmd_match(page, "resync")) 4244 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4245 else if (cmd_match(page, "recover")) { 4246 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4247 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4248 } else if (cmd_match(page, "reshape")) { 4249 int err; 4250 if (mddev->pers->start_reshape == NULL) 4251 return -EINVAL; 4252 err = mddev->pers->start_reshape(mddev); 4253 if (err) 4254 return err; 4255 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4256 } else { 4257 if (cmd_match(page, "check")) 4258 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4259 else if (!cmd_match(page, "repair")) 4260 return -EINVAL; 4261 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4262 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4263 } 4264 if (mddev->ro == 2) { 4265 /* A write to sync_action is enough to justify 4266 * canceling read-auto mode 4267 */ 4268 mddev->ro = 0; 4269 md_wakeup_thread(mddev->sync_thread); 4270 } 4271 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4272 md_wakeup_thread(mddev->thread); 4273 sysfs_notify_dirent_safe(mddev->sysfs_action); 4274 return len; 4275 } 4276 4277 static ssize_t 4278 mismatch_cnt_show(struct mddev *mddev, char *page) 4279 { 4280 return sprintf(page, "%llu\n", 4281 (unsigned long long) 4282 atomic64_read(&mddev->resync_mismatches)); 4283 } 4284 4285 static struct md_sysfs_entry md_scan_mode = 4286 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4287 4288 4289 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4290 4291 static ssize_t 4292 sync_min_show(struct mddev *mddev, char *page) 4293 { 4294 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4295 mddev->sync_speed_min ? "local": "system"); 4296 } 4297 4298 static ssize_t 4299 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4300 { 4301 int min; 4302 char *e; 4303 if (strncmp(buf, "system", 6)==0) { 4304 mddev->sync_speed_min = 0; 4305 return len; 4306 } 4307 min = simple_strtoul(buf, &e, 10); 4308 if (buf == e || (*e && *e != '\n') || min <= 0) 4309 return -EINVAL; 4310 mddev->sync_speed_min = min; 4311 return len; 4312 } 4313 4314 static struct md_sysfs_entry md_sync_min = 4315 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4316 4317 static ssize_t 4318 sync_max_show(struct mddev *mddev, char *page) 4319 { 4320 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4321 mddev->sync_speed_max ? "local": "system"); 4322 } 4323 4324 static ssize_t 4325 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4326 { 4327 int max; 4328 char *e; 4329 if (strncmp(buf, "system", 6)==0) { 4330 mddev->sync_speed_max = 0; 4331 return len; 4332 } 4333 max = simple_strtoul(buf, &e, 10); 4334 if (buf == e || (*e && *e != '\n') || max <= 0) 4335 return -EINVAL; 4336 mddev->sync_speed_max = max; 4337 return len; 4338 } 4339 4340 static struct md_sysfs_entry md_sync_max = 4341 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4342 4343 static ssize_t 4344 degraded_show(struct mddev *mddev, char *page) 4345 { 4346 return sprintf(page, "%d\n", mddev->degraded); 4347 } 4348 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4349 4350 static ssize_t 4351 sync_force_parallel_show(struct mddev *mddev, char *page) 4352 { 4353 return sprintf(page, "%d\n", mddev->parallel_resync); 4354 } 4355 4356 static ssize_t 4357 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4358 { 4359 long n; 4360 4361 if (strict_strtol(buf, 10, &n)) 4362 return -EINVAL; 4363 4364 if (n != 0 && n != 1) 4365 return -EINVAL; 4366 4367 mddev->parallel_resync = n; 4368 4369 if (mddev->sync_thread) 4370 wake_up(&resync_wait); 4371 4372 return len; 4373 } 4374 4375 /* force parallel resync, even with shared block devices */ 4376 static struct md_sysfs_entry md_sync_force_parallel = 4377 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4378 sync_force_parallel_show, sync_force_parallel_store); 4379 4380 static ssize_t 4381 sync_speed_show(struct mddev *mddev, char *page) 4382 { 4383 unsigned long resync, dt, db; 4384 if (mddev->curr_resync == 0) 4385 return sprintf(page, "none\n"); 4386 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4387 dt = (jiffies - mddev->resync_mark) / HZ; 4388 if (!dt) dt++; 4389 db = resync - mddev->resync_mark_cnt; 4390 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4391 } 4392 4393 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4394 4395 static ssize_t 4396 sync_completed_show(struct mddev *mddev, char *page) 4397 { 4398 unsigned long long max_sectors, resync; 4399 4400 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4401 return sprintf(page, "none\n"); 4402 4403 if (mddev->curr_resync == 1 || 4404 mddev->curr_resync == 2) 4405 return sprintf(page, "delayed\n"); 4406 4407 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4408 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4409 max_sectors = mddev->resync_max_sectors; 4410 else 4411 max_sectors = mddev->dev_sectors; 4412 4413 resync = mddev->curr_resync_completed; 4414 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4415 } 4416 4417 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 4418 4419 static ssize_t 4420 min_sync_show(struct mddev *mddev, char *page) 4421 { 4422 return sprintf(page, "%llu\n", 4423 (unsigned long long)mddev->resync_min); 4424 } 4425 static ssize_t 4426 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4427 { 4428 unsigned long long min; 4429 if (strict_strtoull(buf, 10, &min)) 4430 return -EINVAL; 4431 if (min > mddev->resync_max) 4432 return -EINVAL; 4433 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4434 return -EBUSY; 4435 4436 /* Must be a multiple of chunk_size */ 4437 if (mddev->chunk_sectors) { 4438 sector_t temp = min; 4439 if (sector_div(temp, mddev->chunk_sectors)) 4440 return -EINVAL; 4441 } 4442 mddev->resync_min = min; 4443 4444 return len; 4445 } 4446 4447 static struct md_sysfs_entry md_min_sync = 4448 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4449 4450 static ssize_t 4451 max_sync_show(struct mddev *mddev, char *page) 4452 { 4453 if (mddev->resync_max == MaxSector) 4454 return sprintf(page, "max\n"); 4455 else 4456 return sprintf(page, "%llu\n", 4457 (unsigned long long)mddev->resync_max); 4458 } 4459 static ssize_t 4460 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4461 { 4462 if (strncmp(buf, "max", 3) == 0) 4463 mddev->resync_max = MaxSector; 4464 else { 4465 unsigned long long max; 4466 if (strict_strtoull(buf, 10, &max)) 4467 return -EINVAL; 4468 if (max < mddev->resync_min) 4469 return -EINVAL; 4470 if (max < mddev->resync_max && 4471 mddev->ro == 0 && 4472 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4473 return -EBUSY; 4474 4475 /* Must be a multiple of chunk_size */ 4476 if (mddev->chunk_sectors) { 4477 sector_t temp = max; 4478 if (sector_div(temp, mddev->chunk_sectors)) 4479 return -EINVAL; 4480 } 4481 mddev->resync_max = max; 4482 } 4483 wake_up(&mddev->recovery_wait); 4484 return len; 4485 } 4486 4487 static struct md_sysfs_entry md_max_sync = 4488 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4489 4490 static ssize_t 4491 suspend_lo_show(struct mddev *mddev, char *page) 4492 { 4493 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4494 } 4495 4496 static ssize_t 4497 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4498 { 4499 char *e; 4500 unsigned long long new = simple_strtoull(buf, &e, 10); 4501 unsigned long long old = mddev->suspend_lo; 4502 4503 if (mddev->pers == NULL || 4504 mddev->pers->quiesce == NULL) 4505 return -EINVAL; 4506 if (buf == e || (*e && *e != '\n')) 4507 return -EINVAL; 4508 4509 mddev->suspend_lo = new; 4510 if (new >= old) 4511 /* Shrinking suspended region */ 4512 mddev->pers->quiesce(mddev, 2); 4513 else { 4514 /* Expanding suspended region - need to wait */ 4515 mddev->pers->quiesce(mddev, 1); 4516 mddev->pers->quiesce(mddev, 0); 4517 } 4518 return len; 4519 } 4520 static struct md_sysfs_entry md_suspend_lo = 4521 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4522 4523 4524 static ssize_t 4525 suspend_hi_show(struct mddev *mddev, char *page) 4526 { 4527 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4528 } 4529 4530 static ssize_t 4531 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4532 { 4533 char *e; 4534 unsigned long long new = simple_strtoull(buf, &e, 10); 4535 unsigned long long old = mddev->suspend_hi; 4536 4537 if (mddev->pers == NULL || 4538 mddev->pers->quiesce == NULL) 4539 return -EINVAL; 4540 if (buf == e || (*e && *e != '\n')) 4541 return -EINVAL; 4542 4543 mddev->suspend_hi = new; 4544 if (new <= old) 4545 /* Shrinking suspended region */ 4546 mddev->pers->quiesce(mddev, 2); 4547 else { 4548 /* Expanding suspended region - need to wait */ 4549 mddev->pers->quiesce(mddev, 1); 4550 mddev->pers->quiesce(mddev, 0); 4551 } 4552 return len; 4553 } 4554 static struct md_sysfs_entry md_suspend_hi = 4555 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4556 4557 static ssize_t 4558 reshape_position_show(struct mddev *mddev, char *page) 4559 { 4560 if (mddev->reshape_position != MaxSector) 4561 return sprintf(page, "%llu\n", 4562 (unsigned long long)mddev->reshape_position); 4563 strcpy(page, "none\n"); 4564 return 5; 4565 } 4566 4567 static ssize_t 4568 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4569 { 4570 struct md_rdev *rdev; 4571 char *e; 4572 unsigned long long new = simple_strtoull(buf, &e, 10); 4573 if (mddev->pers) 4574 return -EBUSY; 4575 if (buf == e || (*e && *e != '\n')) 4576 return -EINVAL; 4577 mddev->reshape_position = new; 4578 mddev->delta_disks = 0; 4579 mddev->reshape_backwards = 0; 4580 mddev->new_level = mddev->level; 4581 mddev->new_layout = mddev->layout; 4582 mddev->new_chunk_sectors = mddev->chunk_sectors; 4583 rdev_for_each(rdev, mddev) 4584 rdev->new_data_offset = rdev->data_offset; 4585 return len; 4586 } 4587 4588 static struct md_sysfs_entry md_reshape_position = 4589 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4590 reshape_position_store); 4591 4592 static ssize_t 4593 reshape_direction_show(struct mddev *mddev, char *page) 4594 { 4595 return sprintf(page, "%s\n", 4596 mddev->reshape_backwards ? "backwards" : "forwards"); 4597 } 4598 4599 static ssize_t 4600 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4601 { 4602 int backwards = 0; 4603 if (cmd_match(buf, "forwards")) 4604 backwards = 0; 4605 else if (cmd_match(buf, "backwards")) 4606 backwards = 1; 4607 else 4608 return -EINVAL; 4609 if (mddev->reshape_backwards == backwards) 4610 return len; 4611 4612 /* check if we are allowed to change */ 4613 if (mddev->delta_disks) 4614 return -EBUSY; 4615 4616 if (mddev->persistent && 4617 mddev->major_version == 0) 4618 return -EINVAL; 4619 4620 mddev->reshape_backwards = backwards; 4621 return len; 4622 } 4623 4624 static struct md_sysfs_entry md_reshape_direction = 4625 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4626 reshape_direction_store); 4627 4628 static ssize_t 4629 array_size_show(struct mddev *mddev, char *page) 4630 { 4631 if (mddev->external_size) 4632 return sprintf(page, "%llu\n", 4633 (unsigned long long)mddev->array_sectors/2); 4634 else 4635 return sprintf(page, "default\n"); 4636 } 4637 4638 static ssize_t 4639 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4640 { 4641 sector_t sectors; 4642 4643 if (strncmp(buf, "default", 7) == 0) { 4644 if (mddev->pers) 4645 sectors = mddev->pers->size(mddev, 0, 0); 4646 else 4647 sectors = mddev->array_sectors; 4648 4649 mddev->external_size = 0; 4650 } else { 4651 if (strict_blocks_to_sectors(buf, §ors) < 0) 4652 return -EINVAL; 4653 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4654 return -E2BIG; 4655 4656 mddev->external_size = 1; 4657 } 4658 4659 mddev->array_sectors = sectors; 4660 if (mddev->pers) { 4661 set_capacity(mddev->gendisk, mddev->array_sectors); 4662 revalidate_disk(mddev->gendisk); 4663 } 4664 return len; 4665 } 4666 4667 static struct md_sysfs_entry md_array_size = 4668 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4669 array_size_store); 4670 4671 static struct attribute *md_default_attrs[] = { 4672 &md_level.attr, 4673 &md_layout.attr, 4674 &md_raid_disks.attr, 4675 &md_chunk_size.attr, 4676 &md_size.attr, 4677 &md_resync_start.attr, 4678 &md_metadata.attr, 4679 &md_new_device.attr, 4680 &md_safe_delay.attr, 4681 &md_array_state.attr, 4682 &md_reshape_position.attr, 4683 &md_reshape_direction.attr, 4684 &md_array_size.attr, 4685 &max_corr_read_errors.attr, 4686 NULL, 4687 }; 4688 4689 static struct attribute *md_redundancy_attrs[] = { 4690 &md_scan_mode.attr, 4691 &md_mismatches.attr, 4692 &md_sync_min.attr, 4693 &md_sync_max.attr, 4694 &md_sync_speed.attr, 4695 &md_sync_force_parallel.attr, 4696 &md_sync_completed.attr, 4697 &md_min_sync.attr, 4698 &md_max_sync.attr, 4699 &md_suspend_lo.attr, 4700 &md_suspend_hi.attr, 4701 &md_bitmap.attr, 4702 &md_degraded.attr, 4703 NULL, 4704 }; 4705 static struct attribute_group md_redundancy_group = { 4706 .name = NULL, 4707 .attrs = md_redundancy_attrs, 4708 }; 4709 4710 4711 static ssize_t 4712 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4713 { 4714 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4715 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4716 ssize_t rv; 4717 4718 if (!entry->show) 4719 return -EIO; 4720 spin_lock(&all_mddevs_lock); 4721 if (list_empty(&mddev->all_mddevs)) { 4722 spin_unlock(&all_mddevs_lock); 4723 return -EBUSY; 4724 } 4725 mddev_get(mddev); 4726 spin_unlock(&all_mddevs_lock); 4727 4728 rv = mddev_lock(mddev); 4729 if (!rv) { 4730 rv = entry->show(mddev, page); 4731 mddev_unlock(mddev); 4732 } 4733 mddev_put(mddev); 4734 return rv; 4735 } 4736 4737 static ssize_t 4738 md_attr_store(struct kobject *kobj, struct attribute *attr, 4739 const char *page, size_t length) 4740 { 4741 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4742 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4743 ssize_t rv; 4744 4745 if (!entry->store) 4746 return -EIO; 4747 if (!capable(CAP_SYS_ADMIN)) 4748 return -EACCES; 4749 spin_lock(&all_mddevs_lock); 4750 if (list_empty(&mddev->all_mddevs)) { 4751 spin_unlock(&all_mddevs_lock); 4752 return -EBUSY; 4753 } 4754 mddev_get(mddev); 4755 spin_unlock(&all_mddevs_lock); 4756 rv = mddev_lock(mddev); 4757 if (!rv) { 4758 rv = entry->store(mddev, page, length); 4759 mddev_unlock(mddev); 4760 } 4761 mddev_put(mddev); 4762 return rv; 4763 } 4764 4765 static void md_free(struct kobject *ko) 4766 { 4767 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4768 4769 if (mddev->sysfs_state) 4770 sysfs_put(mddev->sysfs_state); 4771 4772 if (mddev->gendisk) { 4773 del_gendisk(mddev->gendisk); 4774 put_disk(mddev->gendisk); 4775 } 4776 if (mddev->queue) 4777 blk_cleanup_queue(mddev->queue); 4778 4779 kfree(mddev); 4780 } 4781 4782 static const struct sysfs_ops md_sysfs_ops = { 4783 .show = md_attr_show, 4784 .store = md_attr_store, 4785 }; 4786 static struct kobj_type md_ktype = { 4787 .release = md_free, 4788 .sysfs_ops = &md_sysfs_ops, 4789 .default_attrs = md_default_attrs, 4790 }; 4791 4792 int mdp_major = 0; 4793 4794 static void mddev_delayed_delete(struct work_struct *ws) 4795 { 4796 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4797 4798 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4799 kobject_del(&mddev->kobj); 4800 kobject_put(&mddev->kobj); 4801 } 4802 4803 static int md_alloc(dev_t dev, char *name) 4804 { 4805 static DEFINE_MUTEX(disks_mutex); 4806 struct mddev *mddev = mddev_find(dev); 4807 struct gendisk *disk; 4808 int partitioned; 4809 int shift; 4810 int unit; 4811 int error; 4812 4813 if (!mddev) 4814 return -ENODEV; 4815 4816 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4817 shift = partitioned ? MdpMinorShift : 0; 4818 unit = MINOR(mddev->unit) >> shift; 4819 4820 /* wait for any previous instance of this device to be 4821 * completely removed (mddev_delayed_delete). 4822 */ 4823 flush_workqueue(md_misc_wq); 4824 4825 mutex_lock(&disks_mutex); 4826 error = -EEXIST; 4827 if (mddev->gendisk) 4828 goto abort; 4829 4830 if (name) { 4831 /* Need to ensure that 'name' is not a duplicate. 4832 */ 4833 struct mddev *mddev2; 4834 spin_lock(&all_mddevs_lock); 4835 4836 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4837 if (mddev2->gendisk && 4838 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4839 spin_unlock(&all_mddevs_lock); 4840 goto abort; 4841 } 4842 spin_unlock(&all_mddevs_lock); 4843 } 4844 4845 error = -ENOMEM; 4846 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4847 if (!mddev->queue) 4848 goto abort; 4849 mddev->queue->queuedata = mddev; 4850 4851 blk_queue_make_request(mddev->queue, md_make_request); 4852 blk_set_stacking_limits(&mddev->queue->limits); 4853 4854 disk = alloc_disk(1 << shift); 4855 if (!disk) { 4856 blk_cleanup_queue(mddev->queue); 4857 mddev->queue = NULL; 4858 goto abort; 4859 } 4860 disk->major = MAJOR(mddev->unit); 4861 disk->first_minor = unit << shift; 4862 if (name) 4863 strcpy(disk->disk_name, name); 4864 else if (partitioned) 4865 sprintf(disk->disk_name, "md_d%d", unit); 4866 else 4867 sprintf(disk->disk_name, "md%d", unit); 4868 disk->fops = &md_fops; 4869 disk->private_data = mddev; 4870 disk->queue = mddev->queue; 4871 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4872 /* Allow extended partitions. This makes the 4873 * 'mdp' device redundant, but we can't really 4874 * remove it now. 4875 */ 4876 disk->flags |= GENHD_FL_EXT_DEVT; 4877 mddev->gendisk = disk; 4878 /* As soon as we call add_disk(), another thread could get 4879 * through to md_open, so make sure it doesn't get too far 4880 */ 4881 mutex_lock(&mddev->open_mutex); 4882 add_disk(disk); 4883 4884 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4885 &disk_to_dev(disk)->kobj, "%s", "md"); 4886 if (error) { 4887 /* This isn't possible, but as kobject_init_and_add is marked 4888 * __must_check, we must do something with the result 4889 */ 4890 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4891 disk->disk_name); 4892 error = 0; 4893 } 4894 if (mddev->kobj.sd && 4895 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4896 printk(KERN_DEBUG "pointless warning\n"); 4897 mutex_unlock(&mddev->open_mutex); 4898 abort: 4899 mutex_unlock(&disks_mutex); 4900 if (!error && mddev->kobj.sd) { 4901 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4902 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4903 } 4904 mddev_put(mddev); 4905 return error; 4906 } 4907 4908 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4909 { 4910 md_alloc(dev, NULL); 4911 return NULL; 4912 } 4913 4914 static int add_named_array(const char *val, struct kernel_param *kp) 4915 { 4916 /* val must be "md_*" where * is not all digits. 4917 * We allocate an array with a large free minor number, and 4918 * set the name to val. val must not already be an active name. 4919 */ 4920 int len = strlen(val); 4921 char buf[DISK_NAME_LEN]; 4922 4923 while (len && val[len-1] == '\n') 4924 len--; 4925 if (len >= DISK_NAME_LEN) 4926 return -E2BIG; 4927 strlcpy(buf, val, len+1); 4928 if (strncmp(buf, "md_", 3) != 0) 4929 return -EINVAL; 4930 return md_alloc(0, buf); 4931 } 4932 4933 static void md_safemode_timeout(unsigned long data) 4934 { 4935 struct mddev *mddev = (struct mddev *) data; 4936 4937 if (!atomic_read(&mddev->writes_pending)) { 4938 mddev->safemode = 1; 4939 if (mddev->external) 4940 sysfs_notify_dirent_safe(mddev->sysfs_state); 4941 } 4942 md_wakeup_thread(mddev->thread); 4943 } 4944 4945 static int start_dirty_degraded; 4946 4947 int md_run(struct mddev *mddev) 4948 { 4949 int err; 4950 struct md_rdev *rdev; 4951 struct md_personality *pers; 4952 4953 if (list_empty(&mddev->disks)) 4954 /* cannot run an array with no devices.. */ 4955 return -EINVAL; 4956 4957 if (mddev->pers) 4958 return -EBUSY; 4959 /* Cannot run until previous stop completes properly */ 4960 if (mddev->sysfs_active) 4961 return -EBUSY; 4962 4963 /* 4964 * Analyze all RAID superblock(s) 4965 */ 4966 if (!mddev->raid_disks) { 4967 if (!mddev->persistent) 4968 return -EINVAL; 4969 analyze_sbs(mddev); 4970 } 4971 4972 if (mddev->level != LEVEL_NONE) 4973 request_module("md-level-%d", mddev->level); 4974 else if (mddev->clevel[0]) 4975 request_module("md-%s", mddev->clevel); 4976 4977 /* 4978 * Drop all container device buffers, from now on 4979 * the only valid external interface is through the md 4980 * device. 4981 */ 4982 rdev_for_each(rdev, mddev) { 4983 if (test_bit(Faulty, &rdev->flags)) 4984 continue; 4985 sync_blockdev(rdev->bdev); 4986 invalidate_bdev(rdev->bdev); 4987 4988 /* perform some consistency tests on the device. 4989 * We don't want the data to overlap the metadata, 4990 * Internal Bitmap issues have been handled elsewhere. 4991 */ 4992 if (rdev->meta_bdev) { 4993 /* Nothing to check */; 4994 } else if (rdev->data_offset < rdev->sb_start) { 4995 if (mddev->dev_sectors && 4996 rdev->data_offset + mddev->dev_sectors 4997 > rdev->sb_start) { 4998 printk("md: %s: data overlaps metadata\n", 4999 mdname(mddev)); 5000 return -EINVAL; 5001 } 5002 } else { 5003 if (rdev->sb_start + rdev->sb_size/512 5004 > rdev->data_offset) { 5005 printk("md: %s: metadata overlaps data\n", 5006 mdname(mddev)); 5007 return -EINVAL; 5008 } 5009 } 5010 sysfs_notify_dirent_safe(rdev->sysfs_state); 5011 } 5012 5013 if (mddev->bio_set == NULL) 5014 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 5015 5016 spin_lock(&pers_lock); 5017 pers = find_pers(mddev->level, mddev->clevel); 5018 if (!pers || !try_module_get(pers->owner)) { 5019 spin_unlock(&pers_lock); 5020 if (mddev->level != LEVEL_NONE) 5021 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5022 mddev->level); 5023 else 5024 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5025 mddev->clevel); 5026 return -EINVAL; 5027 } 5028 mddev->pers = pers; 5029 spin_unlock(&pers_lock); 5030 if (mddev->level != pers->level) { 5031 mddev->level = pers->level; 5032 mddev->new_level = pers->level; 5033 } 5034 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5035 5036 if (mddev->reshape_position != MaxSector && 5037 pers->start_reshape == NULL) { 5038 /* This personality cannot handle reshaping... */ 5039 mddev->pers = NULL; 5040 module_put(pers->owner); 5041 return -EINVAL; 5042 } 5043 5044 if (pers->sync_request) { 5045 /* Warn if this is a potentially silly 5046 * configuration. 5047 */ 5048 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5049 struct md_rdev *rdev2; 5050 int warned = 0; 5051 5052 rdev_for_each(rdev, mddev) 5053 rdev_for_each(rdev2, mddev) { 5054 if (rdev < rdev2 && 5055 rdev->bdev->bd_contains == 5056 rdev2->bdev->bd_contains) { 5057 printk(KERN_WARNING 5058 "%s: WARNING: %s appears to be" 5059 " on the same physical disk as" 5060 " %s.\n", 5061 mdname(mddev), 5062 bdevname(rdev->bdev,b), 5063 bdevname(rdev2->bdev,b2)); 5064 warned = 1; 5065 } 5066 } 5067 5068 if (warned) 5069 printk(KERN_WARNING 5070 "True protection against single-disk" 5071 " failure might be compromised.\n"); 5072 } 5073 5074 mddev->recovery = 0; 5075 /* may be over-ridden by personality */ 5076 mddev->resync_max_sectors = mddev->dev_sectors; 5077 5078 mddev->ok_start_degraded = start_dirty_degraded; 5079 5080 if (start_readonly && mddev->ro == 0) 5081 mddev->ro = 2; /* read-only, but switch on first write */ 5082 5083 err = mddev->pers->run(mddev); 5084 if (err) 5085 printk(KERN_ERR "md: pers->run() failed ...\n"); 5086 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 5087 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5088 " but 'external_size' not in effect?\n", __func__); 5089 printk(KERN_ERR 5090 "md: invalid array_size %llu > default size %llu\n", 5091 (unsigned long long)mddev->array_sectors / 2, 5092 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 5093 err = -EINVAL; 5094 mddev->pers->stop(mddev); 5095 } 5096 if (err == 0 && mddev->pers->sync_request && 5097 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5098 err = bitmap_create(mddev); 5099 if (err) { 5100 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5101 mdname(mddev), err); 5102 mddev->pers->stop(mddev); 5103 } 5104 } 5105 if (err) { 5106 module_put(mddev->pers->owner); 5107 mddev->pers = NULL; 5108 bitmap_destroy(mddev); 5109 return err; 5110 } 5111 if (mddev->pers->sync_request) { 5112 if (mddev->kobj.sd && 5113 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5114 printk(KERN_WARNING 5115 "md: cannot register extra attributes for %s\n", 5116 mdname(mddev)); 5117 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5118 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5119 mddev->ro = 0; 5120 5121 atomic_set(&mddev->writes_pending,0); 5122 atomic_set(&mddev->max_corr_read_errors, 5123 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5124 mddev->safemode = 0; 5125 mddev->safemode_timer.function = md_safemode_timeout; 5126 mddev->safemode_timer.data = (unsigned long) mddev; 5127 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5128 mddev->in_sync = 1; 5129 smp_wmb(); 5130 mddev->ready = 1; 5131 rdev_for_each(rdev, mddev) 5132 if (rdev->raid_disk >= 0) 5133 if (sysfs_link_rdev(mddev, rdev)) 5134 /* failure here is OK */; 5135 5136 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5137 5138 if (mddev->flags) 5139 md_update_sb(mddev, 0); 5140 5141 md_new_event(mddev); 5142 sysfs_notify_dirent_safe(mddev->sysfs_state); 5143 sysfs_notify_dirent_safe(mddev->sysfs_action); 5144 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5145 return 0; 5146 } 5147 EXPORT_SYMBOL_GPL(md_run); 5148 5149 static int do_md_run(struct mddev *mddev) 5150 { 5151 int err; 5152 5153 err = md_run(mddev); 5154 if (err) 5155 goto out; 5156 err = bitmap_load(mddev); 5157 if (err) { 5158 bitmap_destroy(mddev); 5159 goto out; 5160 } 5161 5162 md_wakeup_thread(mddev->thread); 5163 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5164 5165 set_capacity(mddev->gendisk, mddev->array_sectors); 5166 revalidate_disk(mddev->gendisk); 5167 mddev->changed = 1; 5168 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5169 out: 5170 return err; 5171 } 5172 5173 static int restart_array(struct mddev *mddev) 5174 { 5175 struct gendisk *disk = mddev->gendisk; 5176 5177 /* Complain if it has no devices */ 5178 if (list_empty(&mddev->disks)) 5179 return -ENXIO; 5180 if (!mddev->pers) 5181 return -EINVAL; 5182 if (!mddev->ro) 5183 return -EBUSY; 5184 mddev->safemode = 0; 5185 mddev->ro = 0; 5186 set_disk_ro(disk, 0); 5187 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5188 mdname(mddev)); 5189 /* Kick recovery or resync if necessary */ 5190 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5191 md_wakeup_thread(mddev->thread); 5192 md_wakeup_thread(mddev->sync_thread); 5193 sysfs_notify_dirent_safe(mddev->sysfs_state); 5194 return 0; 5195 } 5196 5197 /* similar to deny_write_access, but accounts for our holding a reference 5198 * to the file ourselves */ 5199 static int deny_bitmap_write_access(struct file * file) 5200 { 5201 struct inode *inode = file->f_mapping->host; 5202 5203 spin_lock(&inode->i_lock); 5204 if (atomic_read(&inode->i_writecount) > 1) { 5205 spin_unlock(&inode->i_lock); 5206 return -ETXTBSY; 5207 } 5208 atomic_set(&inode->i_writecount, -1); 5209 spin_unlock(&inode->i_lock); 5210 5211 return 0; 5212 } 5213 5214 void restore_bitmap_write_access(struct file *file) 5215 { 5216 struct inode *inode = file->f_mapping->host; 5217 5218 spin_lock(&inode->i_lock); 5219 atomic_set(&inode->i_writecount, 1); 5220 spin_unlock(&inode->i_lock); 5221 } 5222 5223 static void md_clean(struct mddev *mddev) 5224 { 5225 mddev->array_sectors = 0; 5226 mddev->external_size = 0; 5227 mddev->dev_sectors = 0; 5228 mddev->raid_disks = 0; 5229 mddev->recovery_cp = 0; 5230 mddev->resync_min = 0; 5231 mddev->resync_max = MaxSector; 5232 mddev->reshape_position = MaxSector; 5233 mddev->external = 0; 5234 mddev->persistent = 0; 5235 mddev->level = LEVEL_NONE; 5236 mddev->clevel[0] = 0; 5237 mddev->flags = 0; 5238 mddev->ro = 0; 5239 mddev->metadata_type[0] = 0; 5240 mddev->chunk_sectors = 0; 5241 mddev->ctime = mddev->utime = 0; 5242 mddev->layout = 0; 5243 mddev->max_disks = 0; 5244 mddev->events = 0; 5245 mddev->can_decrease_events = 0; 5246 mddev->delta_disks = 0; 5247 mddev->reshape_backwards = 0; 5248 mddev->new_level = LEVEL_NONE; 5249 mddev->new_layout = 0; 5250 mddev->new_chunk_sectors = 0; 5251 mddev->curr_resync = 0; 5252 atomic64_set(&mddev->resync_mismatches, 0); 5253 mddev->suspend_lo = mddev->suspend_hi = 0; 5254 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5255 mddev->recovery = 0; 5256 mddev->in_sync = 0; 5257 mddev->changed = 0; 5258 mddev->degraded = 0; 5259 mddev->safemode = 0; 5260 mddev->merge_check_needed = 0; 5261 mddev->bitmap_info.offset = 0; 5262 mddev->bitmap_info.default_offset = 0; 5263 mddev->bitmap_info.default_space = 0; 5264 mddev->bitmap_info.chunksize = 0; 5265 mddev->bitmap_info.daemon_sleep = 0; 5266 mddev->bitmap_info.max_write_behind = 0; 5267 } 5268 5269 static void __md_stop_writes(struct mddev *mddev) 5270 { 5271 if (mddev->sync_thread) { 5272 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5273 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5274 reap_sync_thread(mddev); 5275 } 5276 5277 del_timer_sync(&mddev->safemode_timer); 5278 5279 bitmap_flush(mddev); 5280 md_super_wait(mddev); 5281 5282 if (!mddev->in_sync || mddev->flags) { 5283 /* mark array as shutdown cleanly */ 5284 mddev->in_sync = 1; 5285 md_update_sb(mddev, 1); 5286 } 5287 } 5288 5289 void md_stop_writes(struct mddev *mddev) 5290 { 5291 mddev_lock(mddev); 5292 __md_stop_writes(mddev); 5293 mddev_unlock(mddev); 5294 } 5295 EXPORT_SYMBOL_GPL(md_stop_writes); 5296 5297 static void __md_stop(struct mddev *mddev) 5298 { 5299 mddev->ready = 0; 5300 mddev->pers->stop(mddev); 5301 if (mddev->pers->sync_request && mddev->to_remove == NULL) 5302 mddev->to_remove = &md_redundancy_group; 5303 module_put(mddev->pers->owner); 5304 mddev->pers = NULL; 5305 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5306 } 5307 5308 void md_stop(struct mddev *mddev) 5309 { 5310 /* stop the array and free an attached data structures. 5311 * This is called from dm-raid 5312 */ 5313 __md_stop(mddev); 5314 bitmap_destroy(mddev); 5315 if (mddev->bio_set) 5316 bioset_free(mddev->bio_set); 5317 } 5318 5319 EXPORT_SYMBOL_GPL(md_stop); 5320 5321 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5322 { 5323 int err = 0; 5324 mutex_lock(&mddev->open_mutex); 5325 if (atomic_read(&mddev->openers) > !!bdev) { 5326 printk("md: %s still in use.\n",mdname(mddev)); 5327 err = -EBUSY; 5328 goto out; 5329 } 5330 if (bdev) 5331 sync_blockdev(bdev); 5332 if (mddev->pers) { 5333 __md_stop_writes(mddev); 5334 5335 err = -ENXIO; 5336 if (mddev->ro==1) 5337 goto out; 5338 mddev->ro = 1; 5339 set_disk_ro(mddev->gendisk, 1); 5340 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5341 sysfs_notify_dirent_safe(mddev->sysfs_state); 5342 err = 0; 5343 } 5344 out: 5345 mutex_unlock(&mddev->open_mutex); 5346 return err; 5347 } 5348 5349 /* mode: 5350 * 0 - completely stop and dis-assemble array 5351 * 2 - stop but do not disassemble array 5352 */ 5353 static int do_md_stop(struct mddev * mddev, int mode, 5354 struct block_device *bdev) 5355 { 5356 struct gendisk *disk = mddev->gendisk; 5357 struct md_rdev *rdev; 5358 5359 mutex_lock(&mddev->open_mutex); 5360 if (atomic_read(&mddev->openers) > !!bdev || 5361 mddev->sysfs_active) { 5362 printk("md: %s still in use.\n",mdname(mddev)); 5363 mutex_unlock(&mddev->open_mutex); 5364 return -EBUSY; 5365 } 5366 if (bdev) 5367 /* It is possible IO was issued on some other 5368 * open file which was closed before we took ->open_mutex. 5369 * As that was not the last close __blkdev_put will not 5370 * have called sync_blockdev, so we must. 5371 */ 5372 sync_blockdev(bdev); 5373 5374 if (mddev->pers) { 5375 if (mddev->ro) 5376 set_disk_ro(disk, 0); 5377 5378 __md_stop_writes(mddev); 5379 __md_stop(mddev); 5380 mddev->queue->merge_bvec_fn = NULL; 5381 mddev->queue->backing_dev_info.congested_fn = NULL; 5382 5383 /* tell userspace to handle 'inactive' */ 5384 sysfs_notify_dirent_safe(mddev->sysfs_state); 5385 5386 rdev_for_each(rdev, mddev) 5387 if (rdev->raid_disk >= 0) 5388 sysfs_unlink_rdev(mddev, rdev); 5389 5390 set_capacity(disk, 0); 5391 mutex_unlock(&mddev->open_mutex); 5392 mddev->changed = 1; 5393 revalidate_disk(disk); 5394 5395 if (mddev->ro) 5396 mddev->ro = 0; 5397 } else 5398 mutex_unlock(&mddev->open_mutex); 5399 /* 5400 * Free resources if final stop 5401 */ 5402 if (mode == 0) { 5403 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5404 5405 bitmap_destroy(mddev); 5406 if (mddev->bitmap_info.file) { 5407 restore_bitmap_write_access(mddev->bitmap_info.file); 5408 fput(mddev->bitmap_info.file); 5409 mddev->bitmap_info.file = NULL; 5410 } 5411 mddev->bitmap_info.offset = 0; 5412 5413 export_array(mddev); 5414 5415 md_clean(mddev); 5416 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5417 if (mddev->hold_active == UNTIL_STOP) 5418 mddev->hold_active = 0; 5419 } 5420 blk_integrity_unregister(disk); 5421 md_new_event(mddev); 5422 sysfs_notify_dirent_safe(mddev->sysfs_state); 5423 return 0; 5424 } 5425 5426 #ifndef MODULE 5427 static void autorun_array(struct mddev *mddev) 5428 { 5429 struct md_rdev *rdev; 5430 int err; 5431 5432 if (list_empty(&mddev->disks)) 5433 return; 5434 5435 printk(KERN_INFO "md: running: "); 5436 5437 rdev_for_each(rdev, mddev) { 5438 char b[BDEVNAME_SIZE]; 5439 printk("<%s>", bdevname(rdev->bdev,b)); 5440 } 5441 printk("\n"); 5442 5443 err = do_md_run(mddev); 5444 if (err) { 5445 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5446 do_md_stop(mddev, 0, NULL); 5447 } 5448 } 5449 5450 /* 5451 * lets try to run arrays based on all disks that have arrived 5452 * until now. (those are in pending_raid_disks) 5453 * 5454 * the method: pick the first pending disk, collect all disks with 5455 * the same UUID, remove all from the pending list and put them into 5456 * the 'same_array' list. Then order this list based on superblock 5457 * update time (freshest comes first), kick out 'old' disks and 5458 * compare superblocks. If everything's fine then run it. 5459 * 5460 * If "unit" is allocated, then bump its reference count 5461 */ 5462 static void autorun_devices(int part) 5463 { 5464 struct md_rdev *rdev0, *rdev, *tmp; 5465 struct mddev *mddev; 5466 char b[BDEVNAME_SIZE]; 5467 5468 printk(KERN_INFO "md: autorun ...\n"); 5469 while (!list_empty(&pending_raid_disks)) { 5470 int unit; 5471 dev_t dev; 5472 LIST_HEAD(candidates); 5473 rdev0 = list_entry(pending_raid_disks.next, 5474 struct md_rdev, same_set); 5475 5476 printk(KERN_INFO "md: considering %s ...\n", 5477 bdevname(rdev0->bdev,b)); 5478 INIT_LIST_HEAD(&candidates); 5479 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5480 if (super_90_load(rdev, rdev0, 0) >= 0) { 5481 printk(KERN_INFO "md: adding %s ...\n", 5482 bdevname(rdev->bdev,b)); 5483 list_move(&rdev->same_set, &candidates); 5484 } 5485 /* 5486 * now we have a set of devices, with all of them having 5487 * mostly sane superblocks. It's time to allocate the 5488 * mddev. 5489 */ 5490 if (part) { 5491 dev = MKDEV(mdp_major, 5492 rdev0->preferred_minor << MdpMinorShift); 5493 unit = MINOR(dev) >> MdpMinorShift; 5494 } else { 5495 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5496 unit = MINOR(dev); 5497 } 5498 if (rdev0->preferred_minor != unit) { 5499 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5500 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5501 break; 5502 } 5503 5504 md_probe(dev, NULL, NULL); 5505 mddev = mddev_find(dev); 5506 if (!mddev || !mddev->gendisk) { 5507 if (mddev) 5508 mddev_put(mddev); 5509 printk(KERN_ERR 5510 "md: cannot allocate memory for md drive.\n"); 5511 break; 5512 } 5513 if (mddev_lock(mddev)) 5514 printk(KERN_WARNING "md: %s locked, cannot run\n", 5515 mdname(mddev)); 5516 else if (mddev->raid_disks || mddev->major_version 5517 || !list_empty(&mddev->disks)) { 5518 printk(KERN_WARNING 5519 "md: %s already running, cannot run %s\n", 5520 mdname(mddev), bdevname(rdev0->bdev,b)); 5521 mddev_unlock(mddev); 5522 } else { 5523 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5524 mddev->persistent = 1; 5525 rdev_for_each_list(rdev, tmp, &candidates) { 5526 list_del_init(&rdev->same_set); 5527 if (bind_rdev_to_array(rdev, mddev)) 5528 export_rdev(rdev); 5529 } 5530 autorun_array(mddev); 5531 mddev_unlock(mddev); 5532 } 5533 /* on success, candidates will be empty, on error 5534 * it won't... 5535 */ 5536 rdev_for_each_list(rdev, tmp, &candidates) { 5537 list_del_init(&rdev->same_set); 5538 export_rdev(rdev); 5539 } 5540 mddev_put(mddev); 5541 } 5542 printk(KERN_INFO "md: ... autorun DONE.\n"); 5543 } 5544 #endif /* !MODULE */ 5545 5546 static int get_version(void __user * arg) 5547 { 5548 mdu_version_t ver; 5549 5550 ver.major = MD_MAJOR_VERSION; 5551 ver.minor = MD_MINOR_VERSION; 5552 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5553 5554 if (copy_to_user(arg, &ver, sizeof(ver))) 5555 return -EFAULT; 5556 5557 return 0; 5558 } 5559 5560 static int get_array_info(struct mddev * mddev, void __user * arg) 5561 { 5562 mdu_array_info_t info; 5563 int nr,working,insync,failed,spare; 5564 struct md_rdev *rdev; 5565 5566 nr = working = insync = failed = spare = 0; 5567 rcu_read_lock(); 5568 rdev_for_each_rcu(rdev, mddev) { 5569 nr++; 5570 if (test_bit(Faulty, &rdev->flags)) 5571 failed++; 5572 else { 5573 working++; 5574 if (test_bit(In_sync, &rdev->flags)) 5575 insync++; 5576 else 5577 spare++; 5578 } 5579 } 5580 rcu_read_unlock(); 5581 5582 info.major_version = mddev->major_version; 5583 info.minor_version = mddev->minor_version; 5584 info.patch_version = MD_PATCHLEVEL_VERSION; 5585 info.ctime = mddev->ctime; 5586 info.level = mddev->level; 5587 info.size = mddev->dev_sectors / 2; 5588 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5589 info.size = -1; 5590 info.nr_disks = nr; 5591 info.raid_disks = mddev->raid_disks; 5592 info.md_minor = mddev->md_minor; 5593 info.not_persistent= !mddev->persistent; 5594 5595 info.utime = mddev->utime; 5596 info.state = 0; 5597 if (mddev->in_sync) 5598 info.state = (1<<MD_SB_CLEAN); 5599 if (mddev->bitmap && mddev->bitmap_info.offset) 5600 info.state = (1<<MD_SB_BITMAP_PRESENT); 5601 info.active_disks = insync; 5602 info.working_disks = working; 5603 info.failed_disks = failed; 5604 info.spare_disks = spare; 5605 5606 info.layout = mddev->layout; 5607 info.chunk_size = mddev->chunk_sectors << 9; 5608 5609 if (copy_to_user(arg, &info, sizeof(info))) 5610 return -EFAULT; 5611 5612 return 0; 5613 } 5614 5615 static int get_bitmap_file(struct mddev * mddev, void __user * arg) 5616 { 5617 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5618 char *ptr, *buf = NULL; 5619 int err = -ENOMEM; 5620 5621 if (md_allow_write(mddev)) 5622 file = kmalloc(sizeof(*file), GFP_NOIO); 5623 else 5624 file = kmalloc(sizeof(*file), GFP_KERNEL); 5625 5626 if (!file) 5627 goto out; 5628 5629 /* bitmap disabled, zero the first byte and copy out */ 5630 if (!mddev->bitmap || !mddev->bitmap->storage.file) { 5631 file->pathname[0] = '\0'; 5632 goto copy_out; 5633 } 5634 5635 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5636 if (!buf) 5637 goto out; 5638 5639 ptr = d_path(&mddev->bitmap->storage.file->f_path, 5640 buf, sizeof(file->pathname)); 5641 if (IS_ERR(ptr)) 5642 goto out; 5643 5644 strcpy(file->pathname, ptr); 5645 5646 copy_out: 5647 err = 0; 5648 if (copy_to_user(arg, file, sizeof(*file))) 5649 err = -EFAULT; 5650 out: 5651 kfree(buf); 5652 kfree(file); 5653 return err; 5654 } 5655 5656 static int get_disk_info(struct mddev * mddev, void __user * arg) 5657 { 5658 mdu_disk_info_t info; 5659 struct md_rdev *rdev; 5660 5661 if (copy_from_user(&info, arg, sizeof(info))) 5662 return -EFAULT; 5663 5664 rcu_read_lock(); 5665 rdev = find_rdev_nr_rcu(mddev, info.number); 5666 if (rdev) { 5667 info.major = MAJOR(rdev->bdev->bd_dev); 5668 info.minor = MINOR(rdev->bdev->bd_dev); 5669 info.raid_disk = rdev->raid_disk; 5670 info.state = 0; 5671 if (test_bit(Faulty, &rdev->flags)) 5672 info.state |= (1<<MD_DISK_FAULTY); 5673 else if (test_bit(In_sync, &rdev->flags)) { 5674 info.state |= (1<<MD_DISK_ACTIVE); 5675 info.state |= (1<<MD_DISK_SYNC); 5676 } 5677 if (test_bit(WriteMostly, &rdev->flags)) 5678 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5679 } else { 5680 info.major = info.minor = 0; 5681 info.raid_disk = -1; 5682 info.state = (1<<MD_DISK_REMOVED); 5683 } 5684 rcu_read_unlock(); 5685 5686 if (copy_to_user(arg, &info, sizeof(info))) 5687 return -EFAULT; 5688 5689 return 0; 5690 } 5691 5692 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) 5693 { 5694 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5695 struct md_rdev *rdev; 5696 dev_t dev = MKDEV(info->major,info->minor); 5697 5698 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5699 return -EOVERFLOW; 5700 5701 if (!mddev->raid_disks) { 5702 int err; 5703 /* expecting a device which has a superblock */ 5704 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5705 if (IS_ERR(rdev)) { 5706 printk(KERN_WARNING 5707 "md: md_import_device returned %ld\n", 5708 PTR_ERR(rdev)); 5709 return PTR_ERR(rdev); 5710 } 5711 if (!list_empty(&mddev->disks)) { 5712 struct md_rdev *rdev0 5713 = list_entry(mddev->disks.next, 5714 struct md_rdev, same_set); 5715 err = super_types[mddev->major_version] 5716 .load_super(rdev, rdev0, mddev->minor_version); 5717 if (err < 0) { 5718 printk(KERN_WARNING 5719 "md: %s has different UUID to %s\n", 5720 bdevname(rdev->bdev,b), 5721 bdevname(rdev0->bdev,b2)); 5722 export_rdev(rdev); 5723 return -EINVAL; 5724 } 5725 } 5726 err = bind_rdev_to_array(rdev, mddev); 5727 if (err) 5728 export_rdev(rdev); 5729 return err; 5730 } 5731 5732 /* 5733 * add_new_disk can be used once the array is assembled 5734 * to add "hot spares". They must already have a superblock 5735 * written 5736 */ 5737 if (mddev->pers) { 5738 int err; 5739 if (!mddev->pers->hot_add_disk) { 5740 printk(KERN_WARNING 5741 "%s: personality does not support diskops!\n", 5742 mdname(mddev)); 5743 return -EINVAL; 5744 } 5745 if (mddev->persistent) 5746 rdev = md_import_device(dev, mddev->major_version, 5747 mddev->minor_version); 5748 else 5749 rdev = md_import_device(dev, -1, -1); 5750 if (IS_ERR(rdev)) { 5751 printk(KERN_WARNING 5752 "md: md_import_device returned %ld\n", 5753 PTR_ERR(rdev)); 5754 return PTR_ERR(rdev); 5755 } 5756 /* set saved_raid_disk if appropriate */ 5757 if (!mddev->persistent) { 5758 if (info->state & (1<<MD_DISK_SYNC) && 5759 info->raid_disk < mddev->raid_disks) { 5760 rdev->raid_disk = info->raid_disk; 5761 set_bit(In_sync, &rdev->flags); 5762 } else 5763 rdev->raid_disk = -1; 5764 } else 5765 super_types[mddev->major_version]. 5766 validate_super(mddev, rdev); 5767 if ((info->state & (1<<MD_DISK_SYNC)) && 5768 rdev->raid_disk != info->raid_disk) { 5769 /* This was a hot-add request, but events doesn't 5770 * match, so reject it. 5771 */ 5772 export_rdev(rdev); 5773 return -EINVAL; 5774 } 5775 5776 if (test_bit(In_sync, &rdev->flags)) 5777 rdev->saved_raid_disk = rdev->raid_disk; 5778 else 5779 rdev->saved_raid_disk = -1; 5780 5781 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5782 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5783 set_bit(WriteMostly, &rdev->flags); 5784 else 5785 clear_bit(WriteMostly, &rdev->flags); 5786 5787 rdev->raid_disk = -1; 5788 err = bind_rdev_to_array(rdev, mddev); 5789 if (!err && !mddev->pers->hot_remove_disk) { 5790 /* If there is hot_add_disk but no hot_remove_disk 5791 * then added disks for geometry changes, 5792 * and should be added immediately. 5793 */ 5794 super_types[mddev->major_version]. 5795 validate_super(mddev, rdev); 5796 err = mddev->pers->hot_add_disk(mddev, rdev); 5797 if (err) 5798 unbind_rdev_from_array(rdev); 5799 } 5800 if (err) 5801 export_rdev(rdev); 5802 else 5803 sysfs_notify_dirent_safe(rdev->sysfs_state); 5804 5805 md_update_sb(mddev, 1); 5806 if (mddev->degraded) 5807 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5808 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5809 if (!err) 5810 md_new_event(mddev); 5811 md_wakeup_thread(mddev->thread); 5812 return err; 5813 } 5814 5815 /* otherwise, add_new_disk is only allowed 5816 * for major_version==0 superblocks 5817 */ 5818 if (mddev->major_version != 0) { 5819 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5820 mdname(mddev)); 5821 return -EINVAL; 5822 } 5823 5824 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5825 int err; 5826 rdev = md_import_device(dev, -1, 0); 5827 if (IS_ERR(rdev)) { 5828 printk(KERN_WARNING 5829 "md: error, md_import_device() returned %ld\n", 5830 PTR_ERR(rdev)); 5831 return PTR_ERR(rdev); 5832 } 5833 rdev->desc_nr = info->number; 5834 if (info->raid_disk < mddev->raid_disks) 5835 rdev->raid_disk = info->raid_disk; 5836 else 5837 rdev->raid_disk = -1; 5838 5839 if (rdev->raid_disk < mddev->raid_disks) 5840 if (info->state & (1<<MD_DISK_SYNC)) 5841 set_bit(In_sync, &rdev->flags); 5842 5843 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5844 set_bit(WriteMostly, &rdev->flags); 5845 5846 if (!mddev->persistent) { 5847 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5848 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5849 } else 5850 rdev->sb_start = calc_dev_sboffset(rdev); 5851 rdev->sectors = rdev->sb_start; 5852 5853 err = bind_rdev_to_array(rdev, mddev); 5854 if (err) { 5855 export_rdev(rdev); 5856 return err; 5857 } 5858 } 5859 5860 return 0; 5861 } 5862 5863 static int hot_remove_disk(struct mddev * mddev, dev_t dev) 5864 { 5865 char b[BDEVNAME_SIZE]; 5866 struct md_rdev *rdev; 5867 5868 rdev = find_rdev(mddev, dev); 5869 if (!rdev) 5870 return -ENXIO; 5871 5872 if (rdev->raid_disk >= 0) 5873 goto busy; 5874 5875 kick_rdev_from_array(rdev); 5876 md_update_sb(mddev, 1); 5877 md_new_event(mddev); 5878 5879 return 0; 5880 busy: 5881 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5882 bdevname(rdev->bdev,b), mdname(mddev)); 5883 return -EBUSY; 5884 } 5885 5886 static int hot_add_disk(struct mddev * mddev, dev_t dev) 5887 { 5888 char b[BDEVNAME_SIZE]; 5889 int err; 5890 struct md_rdev *rdev; 5891 5892 if (!mddev->pers) 5893 return -ENODEV; 5894 5895 if (mddev->major_version != 0) { 5896 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5897 " version-0 superblocks.\n", 5898 mdname(mddev)); 5899 return -EINVAL; 5900 } 5901 if (!mddev->pers->hot_add_disk) { 5902 printk(KERN_WARNING 5903 "%s: personality does not support diskops!\n", 5904 mdname(mddev)); 5905 return -EINVAL; 5906 } 5907 5908 rdev = md_import_device(dev, -1, 0); 5909 if (IS_ERR(rdev)) { 5910 printk(KERN_WARNING 5911 "md: error, md_import_device() returned %ld\n", 5912 PTR_ERR(rdev)); 5913 return -EINVAL; 5914 } 5915 5916 if (mddev->persistent) 5917 rdev->sb_start = calc_dev_sboffset(rdev); 5918 else 5919 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5920 5921 rdev->sectors = rdev->sb_start; 5922 5923 if (test_bit(Faulty, &rdev->flags)) { 5924 printk(KERN_WARNING 5925 "md: can not hot-add faulty %s disk to %s!\n", 5926 bdevname(rdev->bdev,b), mdname(mddev)); 5927 err = -EINVAL; 5928 goto abort_export; 5929 } 5930 clear_bit(In_sync, &rdev->flags); 5931 rdev->desc_nr = -1; 5932 rdev->saved_raid_disk = -1; 5933 err = bind_rdev_to_array(rdev, mddev); 5934 if (err) 5935 goto abort_export; 5936 5937 /* 5938 * The rest should better be atomic, we can have disk failures 5939 * noticed in interrupt contexts ... 5940 */ 5941 5942 rdev->raid_disk = -1; 5943 5944 md_update_sb(mddev, 1); 5945 5946 /* 5947 * Kick recovery, maybe this spare has to be added to the 5948 * array immediately. 5949 */ 5950 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5951 md_wakeup_thread(mddev->thread); 5952 md_new_event(mddev); 5953 return 0; 5954 5955 abort_export: 5956 export_rdev(rdev); 5957 return err; 5958 } 5959 5960 static int set_bitmap_file(struct mddev *mddev, int fd) 5961 { 5962 int err; 5963 5964 if (mddev->pers) { 5965 if (!mddev->pers->quiesce) 5966 return -EBUSY; 5967 if (mddev->recovery || mddev->sync_thread) 5968 return -EBUSY; 5969 /* we should be able to change the bitmap.. */ 5970 } 5971 5972 5973 if (fd >= 0) { 5974 if (mddev->bitmap) 5975 return -EEXIST; /* cannot add when bitmap is present */ 5976 mddev->bitmap_info.file = fget(fd); 5977 5978 if (mddev->bitmap_info.file == NULL) { 5979 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5980 mdname(mddev)); 5981 return -EBADF; 5982 } 5983 5984 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5985 if (err) { 5986 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5987 mdname(mddev)); 5988 fput(mddev->bitmap_info.file); 5989 mddev->bitmap_info.file = NULL; 5990 return err; 5991 } 5992 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5993 } else if (mddev->bitmap == NULL) 5994 return -ENOENT; /* cannot remove what isn't there */ 5995 err = 0; 5996 if (mddev->pers) { 5997 mddev->pers->quiesce(mddev, 1); 5998 if (fd >= 0) { 5999 err = bitmap_create(mddev); 6000 if (!err) 6001 err = bitmap_load(mddev); 6002 } 6003 if (fd < 0 || err) { 6004 bitmap_destroy(mddev); 6005 fd = -1; /* make sure to put the file */ 6006 } 6007 mddev->pers->quiesce(mddev, 0); 6008 } 6009 if (fd < 0) { 6010 if (mddev->bitmap_info.file) { 6011 restore_bitmap_write_access(mddev->bitmap_info.file); 6012 fput(mddev->bitmap_info.file); 6013 } 6014 mddev->bitmap_info.file = NULL; 6015 } 6016 6017 return err; 6018 } 6019 6020 /* 6021 * set_array_info is used two different ways 6022 * The original usage is when creating a new array. 6023 * In this usage, raid_disks is > 0 and it together with 6024 * level, size, not_persistent,layout,chunksize determine the 6025 * shape of the array. 6026 * This will always create an array with a type-0.90.0 superblock. 6027 * The newer usage is when assembling an array. 6028 * In this case raid_disks will be 0, and the major_version field is 6029 * use to determine which style super-blocks are to be found on the devices. 6030 * The minor and patch _version numbers are also kept incase the 6031 * super_block handler wishes to interpret them. 6032 */ 6033 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info) 6034 { 6035 6036 if (info->raid_disks == 0) { 6037 /* just setting version number for superblock loading */ 6038 if (info->major_version < 0 || 6039 info->major_version >= ARRAY_SIZE(super_types) || 6040 super_types[info->major_version].name == NULL) { 6041 /* maybe try to auto-load a module? */ 6042 printk(KERN_INFO 6043 "md: superblock version %d not known\n", 6044 info->major_version); 6045 return -EINVAL; 6046 } 6047 mddev->major_version = info->major_version; 6048 mddev->minor_version = info->minor_version; 6049 mddev->patch_version = info->patch_version; 6050 mddev->persistent = !info->not_persistent; 6051 /* ensure mddev_put doesn't delete this now that there 6052 * is some minimal configuration. 6053 */ 6054 mddev->ctime = get_seconds(); 6055 return 0; 6056 } 6057 mddev->major_version = MD_MAJOR_VERSION; 6058 mddev->minor_version = MD_MINOR_VERSION; 6059 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6060 mddev->ctime = get_seconds(); 6061 6062 mddev->level = info->level; 6063 mddev->clevel[0] = 0; 6064 mddev->dev_sectors = 2 * (sector_t)info->size; 6065 mddev->raid_disks = info->raid_disks; 6066 /* don't set md_minor, it is determined by which /dev/md* was 6067 * openned 6068 */ 6069 if (info->state & (1<<MD_SB_CLEAN)) 6070 mddev->recovery_cp = MaxSector; 6071 else 6072 mddev->recovery_cp = 0; 6073 mddev->persistent = ! info->not_persistent; 6074 mddev->external = 0; 6075 6076 mddev->layout = info->layout; 6077 mddev->chunk_sectors = info->chunk_size >> 9; 6078 6079 mddev->max_disks = MD_SB_DISKS; 6080 6081 if (mddev->persistent) 6082 mddev->flags = 0; 6083 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6084 6085 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6086 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6087 mddev->bitmap_info.offset = 0; 6088 6089 mddev->reshape_position = MaxSector; 6090 6091 /* 6092 * Generate a 128 bit UUID 6093 */ 6094 get_random_bytes(mddev->uuid, 16); 6095 6096 mddev->new_level = mddev->level; 6097 mddev->new_chunk_sectors = mddev->chunk_sectors; 6098 mddev->new_layout = mddev->layout; 6099 mddev->delta_disks = 0; 6100 mddev->reshape_backwards = 0; 6101 6102 return 0; 6103 } 6104 6105 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6106 { 6107 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6108 6109 if (mddev->external_size) 6110 return; 6111 6112 mddev->array_sectors = array_sectors; 6113 } 6114 EXPORT_SYMBOL(md_set_array_sectors); 6115 6116 static int update_size(struct mddev *mddev, sector_t num_sectors) 6117 { 6118 struct md_rdev *rdev; 6119 int rv; 6120 int fit = (num_sectors == 0); 6121 6122 if (mddev->pers->resize == NULL) 6123 return -EINVAL; 6124 /* The "num_sectors" is the number of sectors of each device that 6125 * is used. This can only make sense for arrays with redundancy. 6126 * linear and raid0 always use whatever space is available. We can only 6127 * consider changing this number if no resync or reconstruction is 6128 * happening, and if the new size is acceptable. It must fit before the 6129 * sb_start or, if that is <data_offset, it must fit before the size 6130 * of each device. If num_sectors is zero, we find the largest size 6131 * that fits. 6132 */ 6133 if (mddev->sync_thread) 6134 return -EBUSY; 6135 6136 rdev_for_each(rdev, mddev) { 6137 sector_t avail = rdev->sectors; 6138 6139 if (fit && (num_sectors == 0 || num_sectors > avail)) 6140 num_sectors = avail; 6141 if (avail < num_sectors) 6142 return -ENOSPC; 6143 } 6144 rv = mddev->pers->resize(mddev, num_sectors); 6145 if (!rv) 6146 revalidate_disk(mddev->gendisk); 6147 return rv; 6148 } 6149 6150 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6151 { 6152 int rv; 6153 struct md_rdev *rdev; 6154 /* change the number of raid disks */ 6155 if (mddev->pers->check_reshape == NULL) 6156 return -EINVAL; 6157 if (raid_disks <= 0 || 6158 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6159 return -EINVAL; 6160 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 6161 return -EBUSY; 6162 6163 rdev_for_each(rdev, mddev) { 6164 if (mddev->raid_disks < raid_disks && 6165 rdev->data_offset < rdev->new_data_offset) 6166 return -EINVAL; 6167 if (mddev->raid_disks > raid_disks && 6168 rdev->data_offset > rdev->new_data_offset) 6169 return -EINVAL; 6170 } 6171 6172 mddev->delta_disks = raid_disks - mddev->raid_disks; 6173 if (mddev->delta_disks < 0) 6174 mddev->reshape_backwards = 1; 6175 else if (mddev->delta_disks > 0) 6176 mddev->reshape_backwards = 0; 6177 6178 rv = mddev->pers->check_reshape(mddev); 6179 if (rv < 0) { 6180 mddev->delta_disks = 0; 6181 mddev->reshape_backwards = 0; 6182 } 6183 return rv; 6184 } 6185 6186 6187 /* 6188 * update_array_info is used to change the configuration of an 6189 * on-line array. 6190 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6191 * fields in the info are checked against the array. 6192 * Any differences that cannot be handled will cause an error. 6193 * Normally, only one change can be managed at a time. 6194 */ 6195 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6196 { 6197 int rv = 0; 6198 int cnt = 0; 6199 int state = 0; 6200 6201 /* calculate expected state,ignoring low bits */ 6202 if (mddev->bitmap && mddev->bitmap_info.offset) 6203 state |= (1 << MD_SB_BITMAP_PRESENT); 6204 6205 if (mddev->major_version != info->major_version || 6206 mddev->minor_version != info->minor_version || 6207 /* mddev->patch_version != info->patch_version || */ 6208 mddev->ctime != info->ctime || 6209 mddev->level != info->level || 6210 /* mddev->layout != info->layout || */ 6211 !mddev->persistent != info->not_persistent|| 6212 mddev->chunk_sectors != info->chunk_size >> 9 || 6213 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6214 ((state^info->state) & 0xfffffe00) 6215 ) 6216 return -EINVAL; 6217 /* Check there is only one change */ 6218 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6219 cnt++; 6220 if (mddev->raid_disks != info->raid_disks) 6221 cnt++; 6222 if (mddev->layout != info->layout) 6223 cnt++; 6224 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6225 cnt++; 6226 if (cnt == 0) 6227 return 0; 6228 if (cnt > 1) 6229 return -EINVAL; 6230 6231 if (mddev->layout != info->layout) { 6232 /* Change layout 6233 * we don't need to do anything at the md level, the 6234 * personality will take care of it all. 6235 */ 6236 if (mddev->pers->check_reshape == NULL) 6237 return -EINVAL; 6238 else { 6239 mddev->new_layout = info->layout; 6240 rv = mddev->pers->check_reshape(mddev); 6241 if (rv) 6242 mddev->new_layout = mddev->layout; 6243 return rv; 6244 } 6245 } 6246 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6247 rv = update_size(mddev, (sector_t)info->size * 2); 6248 6249 if (mddev->raid_disks != info->raid_disks) 6250 rv = update_raid_disks(mddev, info->raid_disks); 6251 6252 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6253 if (mddev->pers->quiesce == NULL) 6254 return -EINVAL; 6255 if (mddev->recovery || mddev->sync_thread) 6256 return -EBUSY; 6257 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6258 /* add the bitmap */ 6259 if (mddev->bitmap) 6260 return -EEXIST; 6261 if (mddev->bitmap_info.default_offset == 0) 6262 return -EINVAL; 6263 mddev->bitmap_info.offset = 6264 mddev->bitmap_info.default_offset; 6265 mddev->bitmap_info.space = 6266 mddev->bitmap_info.default_space; 6267 mddev->pers->quiesce(mddev, 1); 6268 rv = bitmap_create(mddev); 6269 if (!rv) 6270 rv = bitmap_load(mddev); 6271 if (rv) 6272 bitmap_destroy(mddev); 6273 mddev->pers->quiesce(mddev, 0); 6274 } else { 6275 /* remove the bitmap */ 6276 if (!mddev->bitmap) 6277 return -ENOENT; 6278 if (mddev->bitmap->storage.file) 6279 return -EINVAL; 6280 mddev->pers->quiesce(mddev, 1); 6281 bitmap_destroy(mddev); 6282 mddev->pers->quiesce(mddev, 0); 6283 mddev->bitmap_info.offset = 0; 6284 } 6285 } 6286 md_update_sb(mddev, 1); 6287 return rv; 6288 } 6289 6290 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6291 { 6292 struct md_rdev *rdev; 6293 int err = 0; 6294 6295 if (mddev->pers == NULL) 6296 return -ENODEV; 6297 6298 rcu_read_lock(); 6299 rdev = find_rdev_rcu(mddev, dev); 6300 if (!rdev) 6301 err = -ENODEV; 6302 else { 6303 md_error(mddev, rdev); 6304 if (!test_bit(Faulty, &rdev->flags)) 6305 err = -EBUSY; 6306 } 6307 rcu_read_unlock(); 6308 return err; 6309 } 6310 6311 /* 6312 * We have a problem here : there is no easy way to give a CHS 6313 * virtual geometry. We currently pretend that we have a 2 heads 6314 * 4 sectors (with a BIG number of cylinders...). This drives 6315 * dosfs just mad... ;-) 6316 */ 6317 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6318 { 6319 struct mddev *mddev = bdev->bd_disk->private_data; 6320 6321 geo->heads = 2; 6322 geo->sectors = 4; 6323 geo->cylinders = mddev->array_sectors / 8; 6324 return 0; 6325 } 6326 6327 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6328 unsigned int cmd, unsigned long arg) 6329 { 6330 int err = 0; 6331 void __user *argp = (void __user *)arg; 6332 struct mddev *mddev = NULL; 6333 int ro; 6334 6335 switch (cmd) { 6336 case RAID_VERSION: 6337 case GET_ARRAY_INFO: 6338 case GET_DISK_INFO: 6339 break; 6340 default: 6341 if (!capable(CAP_SYS_ADMIN)) 6342 return -EACCES; 6343 } 6344 6345 /* 6346 * Commands dealing with the RAID driver but not any 6347 * particular array: 6348 */ 6349 switch (cmd) 6350 { 6351 case RAID_VERSION: 6352 err = get_version(argp); 6353 goto done; 6354 6355 case PRINT_RAID_DEBUG: 6356 err = 0; 6357 md_print_devices(); 6358 goto done; 6359 6360 #ifndef MODULE 6361 case RAID_AUTORUN: 6362 err = 0; 6363 autostart_arrays(arg); 6364 goto done; 6365 #endif 6366 default:; 6367 } 6368 6369 /* 6370 * Commands creating/starting a new array: 6371 */ 6372 6373 mddev = bdev->bd_disk->private_data; 6374 6375 if (!mddev) { 6376 BUG(); 6377 goto abort; 6378 } 6379 6380 /* Some actions do not requires the mutex */ 6381 switch (cmd) { 6382 case GET_ARRAY_INFO: 6383 if (!mddev->raid_disks && !mddev->external) 6384 err = -ENODEV; 6385 else 6386 err = get_array_info(mddev, argp); 6387 goto abort; 6388 6389 case GET_DISK_INFO: 6390 if (!mddev->raid_disks && !mddev->external) 6391 err = -ENODEV; 6392 else 6393 err = get_disk_info(mddev, argp); 6394 goto abort; 6395 6396 case SET_DISK_FAULTY: 6397 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6398 goto abort; 6399 } 6400 6401 err = mddev_lock(mddev); 6402 if (err) { 6403 printk(KERN_INFO 6404 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6405 err, cmd); 6406 goto abort; 6407 } 6408 6409 switch (cmd) 6410 { 6411 case SET_ARRAY_INFO: 6412 { 6413 mdu_array_info_t info; 6414 if (!arg) 6415 memset(&info, 0, sizeof(info)); 6416 else if (copy_from_user(&info, argp, sizeof(info))) { 6417 err = -EFAULT; 6418 goto abort_unlock; 6419 } 6420 if (mddev->pers) { 6421 err = update_array_info(mddev, &info); 6422 if (err) { 6423 printk(KERN_WARNING "md: couldn't update" 6424 " array info. %d\n", err); 6425 goto abort_unlock; 6426 } 6427 goto done_unlock; 6428 } 6429 if (!list_empty(&mddev->disks)) { 6430 printk(KERN_WARNING 6431 "md: array %s already has disks!\n", 6432 mdname(mddev)); 6433 err = -EBUSY; 6434 goto abort_unlock; 6435 } 6436 if (mddev->raid_disks) { 6437 printk(KERN_WARNING 6438 "md: array %s already initialised!\n", 6439 mdname(mddev)); 6440 err = -EBUSY; 6441 goto abort_unlock; 6442 } 6443 err = set_array_info(mddev, &info); 6444 if (err) { 6445 printk(KERN_WARNING "md: couldn't set" 6446 " array info. %d\n", err); 6447 goto abort_unlock; 6448 } 6449 } 6450 goto done_unlock; 6451 6452 default:; 6453 } 6454 6455 /* 6456 * Commands querying/configuring an existing array: 6457 */ 6458 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6459 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6460 if ((!mddev->raid_disks && !mddev->external) 6461 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6462 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6463 && cmd != GET_BITMAP_FILE) { 6464 err = -ENODEV; 6465 goto abort_unlock; 6466 } 6467 6468 /* 6469 * Commands even a read-only array can execute: 6470 */ 6471 switch (cmd) 6472 { 6473 case GET_BITMAP_FILE: 6474 err = get_bitmap_file(mddev, argp); 6475 goto done_unlock; 6476 6477 case RESTART_ARRAY_RW: 6478 err = restart_array(mddev); 6479 goto done_unlock; 6480 6481 case STOP_ARRAY: 6482 err = do_md_stop(mddev, 0, bdev); 6483 goto done_unlock; 6484 6485 case STOP_ARRAY_RO: 6486 err = md_set_readonly(mddev, bdev); 6487 goto done_unlock; 6488 6489 case BLKROSET: 6490 if (get_user(ro, (int __user *)(arg))) { 6491 err = -EFAULT; 6492 goto done_unlock; 6493 } 6494 err = -EINVAL; 6495 6496 /* if the bdev is going readonly the value of mddev->ro 6497 * does not matter, no writes are coming 6498 */ 6499 if (ro) 6500 goto done_unlock; 6501 6502 /* are we are already prepared for writes? */ 6503 if (mddev->ro != 1) 6504 goto done_unlock; 6505 6506 /* transitioning to readauto need only happen for 6507 * arrays that call md_write_start 6508 */ 6509 if (mddev->pers) { 6510 err = restart_array(mddev); 6511 if (err == 0) { 6512 mddev->ro = 2; 6513 set_disk_ro(mddev->gendisk, 0); 6514 } 6515 } 6516 goto done_unlock; 6517 } 6518 6519 /* 6520 * The remaining ioctls are changing the state of the 6521 * superblock, so we do not allow them on read-only arrays. 6522 * However non-MD ioctls (e.g. get-size) will still come through 6523 * here and hit the 'default' below, so only disallow 6524 * 'md' ioctls, and switch to rw mode if started auto-readonly. 6525 */ 6526 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 6527 if (mddev->ro == 2) { 6528 mddev->ro = 0; 6529 sysfs_notify_dirent_safe(mddev->sysfs_state); 6530 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6531 md_wakeup_thread(mddev->thread); 6532 } else { 6533 err = -EROFS; 6534 goto abort_unlock; 6535 } 6536 } 6537 6538 switch (cmd) 6539 { 6540 case ADD_NEW_DISK: 6541 { 6542 mdu_disk_info_t info; 6543 if (copy_from_user(&info, argp, sizeof(info))) 6544 err = -EFAULT; 6545 else 6546 err = add_new_disk(mddev, &info); 6547 goto done_unlock; 6548 } 6549 6550 case HOT_REMOVE_DISK: 6551 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6552 goto done_unlock; 6553 6554 case HOT_ADD_DISK: 6555 err = hot_add_disk(mddev, new_decode_dev(arg)); 6556 goto done_unlock; 6557 6558 case RUN_ARRAY: 6559 err = do_md_run(mddev); 6560 goto done_unlock; 6561 6562 case SET_BITMAP_FILE: 6563 err = set_bitmap_file(mddev, (int)arg); 6564 goto done_unlock; 6565 6566 default: 6567 err = -EINVAL; 6568 goto abort_unlock; 6569 } 6570 6571 done_unlock: 6572 abort_unlock: 6573 if (mddev->hold_active == UNTIL_IOCTL && 6574 err != -EINVAL) 6575 mddev->hold_active = 0; 6576 mddev_unlock(mddev); 6577 6578 return err; 6579 done: 6580 if (err) 6581 MD_BUG(); 6582 abort: 6583 return err; 6584 } 6585 #ifdef CONFIG_COMPAT 6586 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6587 unsigned int cmd, unsigned long arg) 6588 { 6589 switch (cmd) { 6590 case HOT_REMOVE_DISK: 6591 case HOT_ADD_DISK: 6592 case SET_DISK_FAULTY: 6593 case SET_BITMAP_FILE: 6594 /* These take in integer arg, do not convert */ 6595 break; 6596 default: 6597 arg = (unsigned long)compat_ptr(arg); 6598 break; 6599 } 6600 6601 return md_ioctl(bdev, mode, cmd, arg); 6602 } 6603 #endif /* CONFIG_COMPAT */ 6604 6605 static int md_open(struct block_device *bdev, fmode_t mode) 6606 { 6607 /* 6608 * Succeed if we can lock the mddev, which confirms that 6609 * it isn't being stopped right now. 6610 */ 6611 struct mddev *mddev = mddev_find(bdev->bd_dev); 6612 int err; 6613 6614 if (!mddev) 6615 return -ENODEV; 6616 6617 if (mddev->gendisk != bdev->bd_disk) { 6618 /* we are racing with mddev_put which is discarding this 6619 * bd_disk. 6620 */ 6621 mddev_put(mddev); 6622 /* Wait until bdev->bd_disk is definitely gone */ 6623 flush_workqueue(md_misc_wq); 6624 /* Then retry the open from the top */ 6625 return -ERESTARTSYS; 6626 } 6627 BUG_ON(mddev != bdev->bd_disk->private_data); 6628 6629 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6630 goto out; 6631 6632 err = 0; 6633 atomic_inc(&mddev->openers); 6634 mutex_unlock(&mddev->open_mutex); 6635 6636 check_disk_change(bdev); 6637 out: 6638 return err; 6639 } 6640 6641 static int md_release(struct gendisk *disk, fmode_t mode) 6642 { 6643 struct mddev *mddev = disk->private_data; 6644 6645 BUG_ON(!mddev); 6646 atomic_dec(&mddev->openers); 6647 mddev_put(mddev); 6648 6649 return 0; 6650 } 6651 6652 static int md_media_changed(struct gendisk *disk) 6653 { 6654 struct mddev *mddev = disk->private_data; 6655 6656 return mddev->changed; 6657 } 6658 6659 static int md_revalidate(struct gendisk *disk) 6660 { 6661 struct mddev *mddev = disk->private_data; 6662 6663 mddev->changed = 0; 6664 return 0; 6665 } 6666 static const struct block_device_operations md_fops = 6667 { 6668 .owner = THIS_MODULE, 6669 .open = md_open, 6670 .release = md_release, 6671 .ioctl = md_ioctl, 6672 #ifdef CONFIG_COMPAT 6673 .compat_ioctl = md_compat_ioctl, 6674 #endif 6675 .getgeo = md_getgeo, 6676 .media_changed = md_media_changed, 6677 .revalidate_disk= md_revalidate, 6678 }; 6679 6680 static int md_thread(void * arg) 6681 { 6682 struct md_thread *thread = arg; 6683 6684 /* 6685 * md_thread is a 'system-thread', it's priority should be very 6686 * high. We avoid resource deadlocks individually in each 6687 * raid personality. (RAID5 does preallocation) We also use RR and 6688 * the very same RT priority as kswapd, thus we will never get 6689 * into a priority inversion deadlock. 6690 * 6691 * we definitely have to have equal or higher priority than 6692 * bdflush, otherwise bdflush will deadlock if there are too 6693 * many dirty RAID5 blocks. 6694 */ 6695 6696 allow_signal(SIGKILL); 6697 while (!kthread_should_stop()) { 6698 6699 /* We need to wait INTERRUPTIBLE so that 6700 * we don't add to the load-average. 6701 * That means we need to be sure no signals are 6702 * pending 6703 */ 6704 if (signal_pending(current)) 6705 flush_signals(current); 6706 6707 wait_event_interruptible_timeout 6708 (thread->wqueue, 6709 test_bit(THREAD_WAKEUP, &thread->flags) 6710 || kthread_should_stop(), 6711 thread->timeout); 6712 6713 clear_bit(THREAD_WAKEUP, &thread->flags); 6714 if (!kthread_should_stop()) 6715 thread->run(thread); 6716 } 6717 6718 return 0; 6719 } 6720 6721 void md_wakeup_thread(struct md_thread *thread) 6722 { 6723 if (thread) { 6724 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6725 set_bit(THREAD_WAKEUP, &thread->flags); 6726 wake_up(&thread->wqueue); 6727 } 6728 } 6729 6730 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 6731 struct mddev *mddev, const char *name) 6732 { 6733 struct md_thread *thread; 6734 6735 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6736 if (!thread) 6737 return NULL; 6738 6739 init_waitqueue_head(&thread->wqueue); 6740 6741 thread->run = run; 6742 thread->mddev = mddev; 6743 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6744 thread->tsk = kthread_run(md_thread, thread, 6745 "%s_%s", 6746 mdname(thread->mddev), 6747 name); 6748 if (IS_ERR(thread->tsk)) { 6749 kfree(thread); 6750 return NULL; 6751 } 6752 return thread; 6753 } 6754 6755 void md_unregister_thread(struct md_thread **threadp) 6756 { 6757 struct md_thread *thread = *threadp; 6758 if (!thread) 6759 return; 6760 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6761 /* Locking ensures that mddev_unlock does not wake_up a 6762 * non-existent thread 6763 */ 6764 spin_lock(&pers_lock); 6765 *threadp = NULL; 6766 spin_unlock(&pers_lock); 6767 6768 kthread_stop(thread->tsk); 6769 kfree(thread); 6770 } 6771 6772 void md_error(struct mddev *mddev, struct md_rdev *rdev) 6773 { 6774 if (!mddev) { 6775 MD_BUG(); 6776 return; 6777 } 6778 6779 if (!rdev || test_bit(Faulty, &rdev->flags)) 6780 return; 6781 6782 if (!mddev->pers || !mddev->pers->error_handler) 6783 return; 6784 mddev->pers->error_handler(mddev,rdev); 6785 if (mddev->degraded) 6786 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6787 sysfs_notify_dirent_safe(rdev->sysfs_state); 6788 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6789 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6790 md_wakeup_thread(mddev->thread); 6791 if (mddev->event_work.func) 6792 queue_work(md_misc_wq, &mddev->event_work); 6793 md_new_event_inintr(mddev); 6794 } 6795 6796 /* seq_file implementation /proc/mdstat */ 6797 6798 static void status_unused(struct seq_file *seq) 6799 { 6800 int i = 0; 6801 struct md_rdev *rdev; 6802 6803 seq_printf(seq, "unused devices: "); 6804 6805 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6806 char b[BDEVNAME_SIZE]; 6807 i++; 6808 seq_printf(seq, "%s ", 6809 bdevname(rdev->bdev,b)); 6810 } 6811 if (!i) 6812 seq_printf(seq, "<none>"); 6813 6814 seq_printf(seq, "\n"); 6815 } 6816 6817 6818 static void status_resync(struct seq_file *seq, struct mddev * mddev) 6819 { 6820 sector_t max_sectors, resync, res; 6821 unsigned long dt, db; 6822 sector_t rt; 6823 int scale; 6824 unsigned int per_milli; 6825 6826 if (mddev->curr_resync <= 3) 6827 resync = 0; 6828 else 6829 resync = mddev->curr_resync 6830 - atomic_read(&mddev->recovery_active); 6831 6832 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 6833 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6834 max_sectors = mddev->resync_max_sectors; 6835 else 6836 max_sectors = mddev->dev_sectors; 6837 6838 /* 6839 * Should not happen. 6840 */ 6841 if (!max_sectors) { 6842 MD_BUG(); 6843 return; 6844 } 6845 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6846 * in a sector_t, and (max_sectors>>scale) will fit in a 6847 * u32, as those are the requirements for sector_div. 6848 * Thus 'scale' must be at least 10 6849 */ 6850 scale = 10; 6851 if (sizeof(sector_t) > sizeof(unsigned long)) { 6852 while ( max_sectors/2 > (1ULL<<(scale+32))) 6853 scale++; 6854 } 6855 res = (resync>>scale)*1000; 6856 sector_div(res, (u32)((max_sectors>>scale)+1)); 6857 6858 per_milli = res; 6859 { 6860 int i, x = per_milli/50, y = 20-x; 6861 seq_printf(seq, "["); 6862 for (i = 0; i < x; i++) 6863 seq_printf(seq, "="); 6864 seq_printf(seq, ">"); 6865 for (i = 0; i < y; i++) 6866 seq_printf(seq, "."); 6867 seq_printf(seq, "] "); 6868 } 6869 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6870 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6871 "reshape" : 6872 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6873 "check" : 6874 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6875 "resync" : "recovery"))), 6876 per_milli/10, per_milli % 10, 6877 (unsigned long long) resync/2, 6878 (unsigned long long) max_sectors/2); 6879 6880 /* 6881 * dt: time from mark until now 6882 * db: blocks written from mark until now 6883 * rt: remaining time 6884 * 6885 * rt is a sector_t, so could be 32bit or 64bit. 6886 * So we divide before multiply in case it is 32bit and close 6887 * to the limit. 6888 * We scale the divisor (db) by 32 to avoid losing precision 6889 * near the end of resync when the number of remaining sectors 6890 * is close to 'db'. 6891 * We then divide rt by 32 after multiplying by db to compensate. 6892 * The '+1' avoids division by zero if db is very small. 6893 */ 6894 dt = ((jiffies - mddev->resync_mark) / HZ); 6895 if (!dt) dt++; 6896 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6897 - mddev->resync_mark_cnt; 6898 6899 rt = max_sectors - resync; /* number of remaining sectors */ 6900 sector_div(rt, db/32+1); 6901 rt *= dt; 6902 rt >>= 5; 6903 6904 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6905 ((unsigned long)rt % 60)/6); 6906 6907 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6908 } 6909 6910 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6911 { 6912 struct list_head *tmp; 6913 loff_t l = *pos; 6914 struct mddev *mddev; 6915 6916 if (l >= 0x10000) 6917 return NULL; 6918 if (!l--) 6919 /* header */ 6920 return (void*)1; 6921 6922 spin_lock(&all_mddevs_lock); 6923 list_for_each(tmp,&all_mddevs) 6924 if (!l--) { 6925 mddev = list_entry(tmp, struct mddev, all_mddevs); 6926 mddev_get(mddev); 6927 spin_unlock(&all_mddevs_lock); 6928 return mddev; 6929 } 6930 spin_unlock(&all_mddevs_lock); 6931 if (!l--) 6932 return (void*)2;/* tail */ 6933 return NULL; 6934 } 6935 6936 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6937 { 6938 struct list_head *tmp; 6939 struct mddev *next_mddev, *mddev = v; 6940 6941 ++*pos; 6942 if (v == (void*)2) 6943 return NULL; 6944 6945 spin_lock(&all_mddevs_lock); 6946 if (v == (void*)1) 6947 tmp = all_mddevs.next; 6948 else 6949 tmp = mddev->all_mddevs.next; 6950 if (tmp != &all_mddevs) 6951 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 6952 else { 6953 next_mddev = (void*)2; 6954 *pos = 0x10000; 6955 } 6956 spin_unlock(&all_mddevs_lock); 6957 6958 if (v != (void*)1) 6959 mddev_put(mddev); 6960 return next_mddev; 6961 6962 } 6963 6964 static void md_seq_stop(struct seq_file *seq, void *v) 6965 { 6966 struct mddev *mddev = v; 6967 6968 if (mddev && v != (void*)1 && v != (void*)2) 6969 mddev_put(mddev); 6970 } 6971 6972 static int md_seq_show(struct seq_file *seq, void *v) 6973 { 6974 struct mddev *mddev = v; 6975 sector_t sectors; 6976 struct md_rdev *rdev; 6977 6978 if (v == (void*)1) { 6979 struct md_personality *pers; 6980 seq_printf(seq, "Personalities : "); 6981 spin_lock(&pers_lock); 6982 list_for_each_entry(pers, &pers_list, list) 6983 seq_printf(seq, "[%s] ", pers->name); 6984 6985 spin_unlock(&pers_lock); 6986 seq_printf(seq, "\n"); 6987 seq->poll_event = atomic_read(&md_event_count); 6988 return 0; 6989 } 6990 if (v == (void*)2) { 6991 status_unused(seq); 6992 return 0; 6993 } 6994 6995 if (mddev_lock(mddev) < 0) 6996 return -EINTR; 6997 6998 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 6999 seq_printf(seq, "%s : %sactive", mdname(mddev), 7000 mddev->pers ? "" : "in"); 7001 if (mddev->pers) { 7002 if (mddev->ro==1) 7003 seq_printf(seq, " (read-only)"); 7004 if (mddev->ro==2) 7005 seq_printf(seq, " (auto-read-only)"); 7006 seq_printf(seq, " %s", mddev->pers->name); 7007 } 7008 7009 sectors = 0; 7010 rdev_for_each(rdev, mddev) { 7011 char b[BDEVNAME_SIZE]; 7012 seq_printf(seq, " %s[%d]", 7013 bdevname(rdev->bdev,b), rdev->desc_nr); 7014 if (test_bit(WriteMostly, &rdev->flags)) 7015 seq_printf(seq, "(W)"); 7016 if (test_bit(Faulty, &rdev->flags)) { 7017 seq_printf(seq, "(F)"); 7018 continue; 7019 } 7020 if (rdev->raid_disk < 0) 7021 seq_printf(seq, "(S)"); /* spare */ 7022 if (test_bit(Replacement, &rdev->flags)) 7023 seq_printf(seq, "(R)"); 7024 sectors += rdev->sectors; 7025 } 7026 7027 if (!list_empty(&mddev->disks)) { 7028 if (mddev->pers) 7029 seq_printf(seq, "\n %llu blocks", 7030 (unsigned long long) 7031 mddev->array_sectors / 2); 7032 else 7033 seq_printf(seq, "\n %llu blocks", 7034 (unsigned long long)sectors / 2); 7035 } 7036 if (mddev->persistent) { 7037 if (mddev->major_version != 0 || 7038 mddev->minor_version != 90) { 7039 seq_printf(seq," super %d.%d", 7040 mddev->major_version, 7041 mddev->minor_version); 7042 } 7043 } else if (mddev->external) 7044 seq_printf(seq, " super external:%s", 7045 mddev->metadata_type); 7046 else 7047 seq_printf(seq, " super non-persistent"); 7048 7049 if (mddev->pers) { 7050 mddev->pers->status(seq, mddev); 7051 seq_printf(seq, "\n "); 7052 if (mddev->pers->sync_request) { 7053 if (mddev->curr_resync > 2) { 7054 status_resync(seq, mddev); 7055 seq_printf(seq, "\n "); 7056 } else if (mddev->curr_resync >= 1) 7057 seq_printf(seq, "\tresync=DELAYED\n "); 7058 else if (mddev->recovery_cp < MaxSector) 7059 seq_printf(seq, "\tresync=PENDING\n "); 7060 } 7061 } else 7062 seq_printf(seq, "\n "); 7063 7064 bitmap_status(seq, mddev->bitmap); 7065 7066 seq_printf(seq, "\n"); 7067 } 7068 mddev_unlock(mddev); 7069 7070 return 0; 7071 } 7072 7073 static const struct seq_operations md_seq_ops = { 7074 .start = md_seq_start, 7075 .next = md_seq_next, 7076 .stop = md_seq_stop, 7077 .show = md_seq_show, 7078 }; 7079 7080 static int md_seq_open(struct inode *inode, struct file *file) 7081 { 7082 struct seq_file *seq; 7083 int error; 7084 7085 error = seq_open(file, &md_seq_ops); 7086 if (error) 7087 return error; 7088 7089 seq = file->private_data; 7090 seq->poll_event = atomic_read(&md_event_count); 7091 return error; 7092 } 7093 7094 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7095 { 7096 struct seq_file *seq = filp->private_data; 7097 int mask; 7098 7099 poll_wait(filp, &md_event_waiters, wait); 7100 7101 /* always allow read */ 7102 mask = POLLIN | POLLRDNORM; 7103 7104 if (seq->poll_event != atomic_read(&md_event_count)) 7105 mask |= POLLERR | POLLPRI; 7106 return mask; 7107 } 7108 7109 static const struct file_operations md_seq_fops = { 7110 .owner = THIS_MODULE, 7111 .open = md_seq_open, 7112 .read = seq_read, 7113 .llseek = seq_lseek, 7114 .release = seq_release_private, 7115 .poll = mdstat_poll, 7116 }; 7117 7118 int register_md_personality(struct md_personality *p) 7119 { 7120 spin_lock(&pers_lock); 7121 list_add_tail(&p->list, &pers_list); 7122 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 7123 spin_unlock(&pers_lock); 7124 return 0; 7125 } 7126 7127 int unregister_md_personality(struct md_personality *p) 7128 { 7129 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7130 spin_lock(&pers_lock); 7131 list_del_init(&p->list); 7132 spin_unlock(&pers_lock); 7133 return 0; 7134 } 7135 7136 static int is_mddev_idle(struct mddev *mddev, int init) 7137 { 7138 struct md_rdev * rdev; 7139 int idle; 7140 int curr_events; 7141 7142 idle = 1; 7143 rcu_read_lock(); 7144 rdev_for_each_rcu(rdev, mddev) { 7145 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7146 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7147 (int)part_stat_read(&disk->part0, sectors[1]) - 7148 atomic_read(&disk->sync_io); 7149 /* sync IO will cause sync_io to increase before the disk_stats 7150 * as sync_io is counted when a request starts, and 7151 * disk_stats is counted when it completes. 7152 * So resync activity will cause curr_events to be smaller than 7153 * when there was no such activity. 7154 * non-sync IO will cause disk_stat to increase without 7155 * increasing sync_io so curr_events will (eventually) 7156 * be larger than it was before. Once it becomes 7157 * substantially larger, the test below will cause 7158 * the array to appear non-idle, and resync will slow 7159 * down. 7160 * If there is a lot of outstanding resync activity when 7161 * we set last_event to curr_events, then all that activity 7162 * completing might cause the array to appear non-idle 7163 * and resync will be slowed down even though there might 7164 * not have been non-resync activity. This will only 7165 * happen once though. 'last_events' will soon reflect 7166 * the state where there is little or no outstanding 7167 * resync requests, and further resync activity will 7168 * always make curr_events less than last_events. 7169 * 7170 */ 7171 if (init || curr_events - rdev->last_events > 64) { 7172 rdev->last_events = curr_events; 7173 idle = 0; 7174 } 7175 } 7176 rcu_read_unlock(); 7177 return idle; 7178 } 7179 7180 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7181 { 7182 /* another "blocks" (512byte) blocks have been synced */ 7183 atomic_sub(blocks, &mddev->recovery_active); 7184 wake_up(&mddev->recovery_wait); 7185 if (!ok) { 7186 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7187 md_wakeup_thread(mddev->thread); 7188 // stop recovery, signal do_sync .... 7189 } 7190 } 7191 7192 7193 /* md_write_start(mddev, bi) 7194 * If we need to update some array metadata (e.g. 'active' flag 7195 * in superblock) before writing, schedule a superblock update 7196 * and wait for it to complete. 7197 */ 7198 void md_write_start(struct mddev *mddev, struct bio *bi) 7199 { 7200 int did_change = 0; 7201 if (bio_data_dir(bi) != WRITE) 7202 return; 7203 7204 BUG_ON(mddev->ro == 1); 7205 if (mddev->ro == 2) { 7206 /* need to switch to read/write */ 7207 mddev->ro = 0; 7208 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7209 md_wakeup_thread(mddev->thread); 7210 md_wakeup_thread(mddev->sync_thread); 7211 did_change = 1; 7212 } 7213 atomic_inc(&mddev->writes_pending); 7214 if (mddev->safemode == 1) 7215 mddev->safemode = 0; 7216 if (mddev->in_sync) { 7217 spin_lock_irq(&mddev->write_lock); 7218 if (mddev->in_sync) { 7219 mddev->in_sync = 0; 7220 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7221 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7222 md_wakeup_thread(mddev->thread); 7223 did_change = 1; 7224 } 7225 spin_unlock_irq(&mddev->write_lock); 7226 } 7227 if (did_change) 7228 sysfs_notify_dirent_safe(mddev->sysfs_state); 7229 wait_event(mddev->sb_wait, 7230 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7231 } 7232 7233 void md_write_end(struct mddev *mddev) 7234 { 7235 if (atomic_dec_and_test(&mddev->writes_pending)) { 7236 if (mddev->safemode == 2) 7237 md_wakeup_thread(mddev->thread); 7238 else if (mddev->safemode_delay) 7239 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7240 } 7241 } 7242 7243 /* md_allow_write(mddev) 7244 * Calling this ensures that the array is marked 'active' so that writes 7245 * may proceed without blocking. It is important to call this before 7246 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7247 * Must be called with mddev_lock held. 7248 * 7249 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7250 * is dropped, so return -EAGAIN after notifying userspace. 7251 */ 7252 int md_allow_write(struct mddev *mddev) 7253 { 7254 if (!mddev->pers) 7255 return 0; 7256 if (mddev->ro) 7257 return 0; 7258 if (!mddev->pers->sync_request) 7259 return 0; 7260 7261 spin_lock_irq(&mddev->write_lock); 7262 if (mddev->in_sync) { 7263 mddev->in_sync = 0; 7264 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7265 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7266 if (mddev->safemode_delay && 7267 mddev->safemode == 0) 7268 mddev->safemode = 1; 7269 spin_unlock_irq(&mddev->write_lock); 7270 md_update_sb(mddev, 0); 7271 sysfs_notify_dirent_safe(mddev->sysfs_state); 7272 } else 7273 spin_unlock_irq(&mddev->write_lock); 7274 7275 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7276 return -EAGAIN; 7277 else 7278 return 0; 7279 } 7280 EXPORT_SYMBOL_GPL(md_allow_write); 7281 7282 #define SYNC_MARKS 10 7283 #define SYNC_MARK_STEP (3*HZ) 7284 void md_do_sync(struct md_thread *thread) 7285 { 7286 struct mddev *mddev = thread->mddev; 7287 struct mddev *mddev2; 7288 unsigned int currspeed = 0, 7289 window; 7290 sector_t max_sectors,j, io_sectors; 7291 unsigned long mark[SYNC_MARKS]; 7292 sector_t mark_cnt[SYNC_MARKS]; 7293 int last_mark,m; 7294 struct list_head *tmp; 7295 sector_t last_check; 7296 int skipped = 0; 7297 struct md_rdev *rdev; 7298 char *desc; 7299 struct blk_plug plug; 7300 7301 /* just incase thread restarts... */ 7302 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7303 return; 7304 if (mddev->ro) /* never try to sync a read-only array */ 7305 return; 7306 7307 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7308 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 7309 desc = "data-check"; 7310 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7311 desc = "requested-resync"; 7312 else 7313 desc = "resync"; 7314 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7315 desc = "reshape"; 7316 else 7317 desc = "recovery"; 7318 7319 /* we overload curr_resync somewhat here. 7320 * 0 == not engaged in resync at all 7321 * 2 == checking that there is no conflict with another sync 7322 * 1 == like 2, but have yielded to allow conflicting resync to 7323 * commense 7324 * other == active in resync - this many blocks 7325 * 7326 * Before starting a resync we must have set curr_resync to 7327 * 2, and then checked that every "conflicting" array has curr_resync 7328 * less than ours. When we find one that is the same or higher 7329 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7330 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7331 * This will mean we have to start checking from the beginning again. 7332 * 7333 */ 7334 7335 do { 7336 mddev->curr_resync = 2; 7337 7338 try_again: 7339 if (kthread_should_stop()) 7340 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7341 7342 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7343 goto skip; 7344 for_each_mddev(mddev2, tmp) { 7345 if (mddev2 == mddev) 7346 continue; 7347 if (!mddev->parallel_resync 7348 && mddev2->curr_resync 7349 && match_mddev_units(mddev, mddev2)) { 7350 DEFINE_WAIT(wq); 7351 if (mddev < mddev2 && mddev->curr_resync == 2) { 7352 /* arbitrarily yield */ 7353 mddev->curr_resync = 1; 7354 wake_up(&resync_wait); 7355 } 7356 if (mddev > mddev2 && mddev->curr_resync == 1) 7357 /* no need to wait here, we can wait the next 7358 * time 'round when curr_resync == 2 7359 */ 7360 continue; 7361 /* We need to wait 'interruptible' so as not to 7362 * contribute to the load average, and not to 7363 * be caught by 'softlockup' 7364 */ 7365 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7366 if (!kthread_should_stop() && 7367 mddev2->curr_resync >= mddev->curr_resync) { 7368 printk(KERN_INFO "md: delaying %s of %s" 7369 " until %s has finished (they" 7370 " share one or more physical units)\n", 7371 desc, mdname(mddev), mdname(mddev2)); 7372 mddev_put(mddev2); 7373 if (signal_pending(current)) 7374 flush_signals(current); 7375 schedule(); 7376 finish_wait(&resync_wait, &wq); 7377 goto try_again; 7378 } 7379 finish_wait(&resync_wait, &wq); 7380 } 7381 } 7382 } while (mddev->curr_resync < 2); 7383 7384 j = 0; 7385 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7386 /* resync follows the size requested by the personality, 7387 * which defaults to physical size, but can be virtual size 7388 */ 7389 max_sectors = mddev->resync_max_sectors; 7390 atomic64_set(&mddev->resync_mismatches, 0); 7391 /* we don't use the checkpoint if there's a bitmap */ 7392 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7393 j = mddev->resync_min; 7394 else if (!mddev->bitmap) 7395 j = mddev->recovery_cp; 7396 7397 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7398 max_sectors = mddev->resync_max_sectors; 7399 else { 7400 /* recovery follows the physical size of devices */ 7401 max_sectors = mddev->dev_sectors; 7402 j = MaxSector; 7403 rcu_read_lock(); 7404 rdev_for_each_rcu(rdev, mddev) 7405 if (rdev->raid_disk >= 0 && 7406 !test_bit(Faulty, &rdev->flags) && 7407 !test_bit(In_sync, &rdev->flags) && 7408 rdev->recovery_offset < j) 7409 j = rdev->recovery_offset; 7410 rcu_read_unlock(); 7411 } 7412 7413 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7414 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7415 " %d KB/sec/disk.\n", speed_min(mddev)); 7416 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7417 "(but not more than %d KB/sec) for %s.\n", 7418 speed_max(mddev), desc); 7419 7420 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7421 7422 io_sectors = 0; 7423 for (m = 0; m < SYNC_MARKS; m++) { 7424 mark[m] = jiffies; 7425 mark_cnt[m] = io_sectors; 7426 } 7427 last_mark = 0; 7428 mddev->resync_mark = mark[last_mark]; 7429 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7430 7431 /* 7432 * Tune reconstruction: 7433 */ 7434 window = 32*(PAGE_SIZE/512); 7435 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7436 window/2, (unsigned long long)max_sectors/2); 7437 7438 atomic_set(&mddev->recovery_active, 0); 7439 last_check = 0; 7440 7441 if (j>2) { 7442 printk(KERN_INFO 7443 "md: resuming %s of %s from checkpoint.\n", 7444 desc, mdname(mddev)); 7445 mddev->curr_resync = j; 7446 } else 7447 mddev->curr_resync = 3; /* no longer delayed */ 7448 mddev->curr_resync_completed = j; 7449 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7450 md_new_event(mddev); 7451 7452 blk_start_plug(&plug); 7453 while (j < max_sectors) { 7454 sector_t sectors; 7455 7456 skipped = 0; 7457 7458 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7459 ((mddev->curr_resync > mddev->curr_resync_completed && 7460 (mddev->curr_resync - mddev->curr_resync_completed) 7461 > (max_sectors >> 4)) || 7462 (j - mddev->curr_resync_completed)*2 7463 >= mddev->resync_max - mddev->curr_resync_completed 7464 )) { 7465 /* time to update curr_resync_completed */ 7466 wait_event(mddev->recovery_wait, 7467 atomic_read(&mddev->recovery_active) == 0); 7468 mddev->curr_resync_completed = j; 7469 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7470 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7471 } 7472 7473 while (j >= mddev->resync_max && !kthread_should_stop()) { 7474 /* As this condition is controlled by user-space, 7475 * we can block indefinitely, so use '_interruptible' 7476 * to avoid triggering warnings. 7477 */ 7478 flush_signals(current); /* just in case */ 7479 wait_event_interruptible(mddev->recovery_wait, 7480 mddev->resync_max > j 7481 || kthread_should_stop()); 7482 } 7483 7484 if (kthread_should_stop()) 7485 goto interrupted; 7486 7487 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7488 currspeed < speed_min(mddev)); 7489 if (sectors == 0) { 7490 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7491 goto out; 7492 } 7493 7494 if (!skipped) { /* actual IO requested */ 7495 io_sectors += sectors; 7496 atomic_add(sectors, &mddev->recovery_active); 7497 } 7498 7499 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7500 break; 7501 7502 j += sectors; 7503 if (j > 2) 7504 mddev->curr_resync = j; 7505 mddev->curr_mark_cnt = io_sectors; 7506 if (last_check == 0) 7507 /* this is the earliest that rebuild will be 7508 * visible in /proc/mdstat 7509 */ 7510 md_new_event(mddev); 7511 7512 if (last_check + window > io_sectors || j == max_sectors) 7513 continue; 7514 7515 last_check = io_sectors; 7516 repeat: 7517 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7518 /* step marks */ 7519 int next = (last_mark+1) % SYNC_MARKS; 7520 7521 mddev->resync_mark = mark[next]; 7522 mddev->resync_mark_cnt = mark_cnt[next]; 7523 mark[next] = jiffies; 7524 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7525 last_mark = next; 7526 } 7527 7528 7529 if (kthread_should_stop()) 7530 goto interrupted; 7531 7532 7533 /* 7534 * this loop exits only if either when we are slower than 7535 * the 'hard' speed limit, or the system was IO-idle for 7536 * a jiffy. 7537 * the system might be non-idle CPU-wise, but we only care 7538 * about not overloading the IO subsystem. (things like an 7539 * e2fsck being done on the RAID array should execute fast) 7540 */ 7541 cond_resched(); 7542 7543 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 7544 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7545 7546 if (currspeed > speed_min(mddev)) { 7547 if ((currspeed > speed_max(mddev)) || 7548 !is_mddev_idle(mddev, 0)) { 7549 msleep(500); 7550 goto repeat; 7551 } 7552 } 7553 } 7554 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 7555 /* 7556 * this also signals 'finished resyncing' to md_stop 7557 */ 7558 out: 7559 blk_finish_plug(&plug); 7560 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7561 7562 /* tell personality that we are finished */ 7563 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7564 7565 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7566 mddev->curr_resync > 2) { 7567 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7568 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7569 if (mddev->curr_resync >= mddev->recovery_cp) { 7570 printk(KERN_INFO 7571 "md: checkpointing %s of %s.\n", 7572 desc, mdname(mddev)); 7573 mddev->recovery_cp = 7574 mddev->curr_resync_completed; 7575 } 7576 } else 7577 mddev->recovery_cp = MaxSector; 7578 } else { 7579 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7580 mddev->curr_resync = MaxSector; 7581 rcu_read_lock(); 7582 rdev_for_each_rcu(rdev, mddev) 7583 if (rdev->raid_disk >= 0 && 7584 mddev->delta_disks >= 0 && 7585 !test_bit(Faulty, &rdev->flags) && 7586 !test_bit(In_sync, &rdev->flags) && 7587 rdev->recovery_offset < mddev->curr_resync) 7588 rdev->recovery_offset = mddev->curr_resync; 7589 rcu_read_unlock(); 7590 } 7591 } 7592 skip: 7593 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7594 7595 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7596 /* We completed so min/max setting can be forgotten if used. */ 7597 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7598 mddev->resync_min = 0; 7599 mddev->resync_max = MaxSector; 7600 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7601 mddev->resync_min = mddev->curr_resync_completed; 7602 mddev->curr_resync = 0; 7603 wake_up(&resync_wait); 7604 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7605 md_wakeup_thread(mddev->thread); 7606 return; 7607 7608 interrupted: 7609 /* 7610 * got a signal, exit. 7611 */ 7612 printk(KERN_INFO 7613 "md: md_do_sync() got signal ... exiting\n"); 7614 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7615 goto out; 7616 7617 } 7618 EXPORT_SYMBOL_GPL(md_do_sync); 7619 7620 static int remove_and_add_spares(struct mddev *mddev) 7621 { 7622 struct md_rdev *rdev; 7623 int spares = 0; 7624 int removed = 0; 7625 7626 rdev_for_each(rdev, mddev) 7627 if (rdev->raid_disk >= 0 && 7628 !test_bit(Blocked, &rdev->flags) && 7629 (test_bit(Faulty, &rdev->flags) || 7630 ! test_bit(In_sync, &rdev->flags)) && 7631 atomic_read(&rdev->nr_pending)==0) { 7632 if (mddev->pers->hot_remove_disk( 7633 mddev, rdev) == 0) { 7634 sysfs_unlink_rdev(mddev, rdev); 7635 rdev->raid_disk = -1; 7636 removed++; 7637 } 7638 } 7639 if (removed) 7640 sysfs_notify(&mddev->kobj, NULL, 7641 "degraded"); 7642 7643 7644 rdev_for_each(rdev, mddev) { 7645 if (rdev->raid_disk >= 0 && 7646 !test_bit(In_sync, &rdev->flags) && 7647 !test_bit(Faulty, &rdev->flags)) 7648 spares++; 7649 if (rdev->raid_disk < 0 7650 && !test_bit(Faulty, &rdev->flags)) { 7651 rdev->recovery_offset = 0; 7652 if (mddev->pers-> 7653 hot_add_disk(mddev, rdev) == 0) { 7654 if (sysfs_link_rdev(mddev, rdev)) 7655 /* failure here is OK */; 7656 spares++; 7657 md_new_event(mddev); 7658 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7659 } 7660 } 7661 } 7662 if (removed) 7663 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7664 return spares; 7665 } 7666 7667 static void reap_sync_thread(struct mddev *mddev) 7668 { 7669 struct md_rdev *rdev; 7670 7671 /* resync has finished, collect result */ 7672 md_unregister_thread(&mddev->sync_thread); 7673 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7674 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7675 /* success...*/ 7676 /* activate any spares */ 7677 if (mddev->pers->spare_active(mddev)) { 7678 sysfs_notify(&mddev->kobj, NULL, 7679 "degraded"); 7680 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7681 } 7682 } 7683 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7684 mddev->pers->finish_reshape) 7685 mddev->pers->finish_reshape(mddev); 7686 7687 /* If array is no-longer degraded, then any saved_raid_disk 7688 * information must be scrapped. Also if any device is now 7689 * In_sync we must scrape the saved_raid_disk for that device 7690 * do the superblock for an incrementally recovered device 7691 * written out. 7692 */ 7693 rdev_for_each(rdev, mddev) 7694 if (!mddev->degraded || 7695 test_bit(In_sync, &rdev->flags)) 7696 rdev->saved_raid_disk = -1; 7697 7698 md_update_sb(mddev, 1); 7699 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7700 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7701 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7702 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7703 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7704 /* flag recovery needed just to double check */ 7705 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7706 sysfs_notify_dirent_safe(mddev->sysfs_action); 7707 md_new_event(mddev); 7708 if (mddev->event_work.func) 7709 queue_work(md_misc_wq, &mddev->event_work); 7710 } 7711 7712 /* 7713 * This routine is regularly called by all per-raid-array threads to 7714 * deal with generic issues like resync and super-block update. 7715 * Raid personalities that don't have a thread (linear/raid0) do not 7716 * need this as they never do any recovery or update the superblock. 7717 * 7718 * It does not do any resync itself, but rather "forks" off other threads 7719 * to do that as needed. 7720 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7721 * "->recovery" and create a thread at ->sync_thread. 7722 * When the thread finishes it sets MD_RECOVERY_DONE 7723 * and wakeups up this thread which will reap the thread and finish up. 7724 * This thread also removes any faulty devices (with nr_pending == 0). 7725 * 7726 * The overall approach is: 7727 * 1/ if the superblock needs updating, update it. 7728 * 2/ If a recovery thread is running, don't do anything else. 7729 * 3/ If recovery has finished, clean up, possibly marking spares active. 7730 * 4/ If there are any faulty devices, remove them. 7731 * 5/ If array is degraded, try to add spares devices 7732 * 6/ If array has spares or is not in-sync, start a resync thread. 7733 */ 7734 void md_check_recovery(struct mddev *mddev) 7735 { 7736 if (mddev->suspended) 7737 return; 7738 7739 if (mddev->bitmap) 7740 bitmap_daemon_work(mddev); 7741 7742 if (signal_pending(current)) { 7743 if (mddev->pers->sync_request && !mddev->external) { 7744 printk(KERN_INFO "md: %s in immediate safe mode\n", 7745 mdname(mddev)); 7746 mddev->safemode = 2; 7747 } 7748 flush_signals(current); 7749 } 7750 7751 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7752 return; 7753 if ( ! ( 7754 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) || 7755 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7756 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7757 (mddev->external == 0 && mddev->safemode == 1) || 7758 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7759 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7760 )) 7761 return; 7762 7763 if (mddev_trylock(mddev)) { 7764 int spares = 0; 7765 7766 if (mddev->ro) { 7767 /* Only thing we do on a ro array is remove 7768 * failed devices. 7769 */ 7770 struct md_rdev *rdev; 7771 rdev_for_each(rdev, mddev) 7772 if (rdev->raid_disk >= 0 && 7773 !test_bit(Blocked, &rdev->flags) && 7774 test_bit(Faulty, &rdev->flags) && 7775 atomic_read(&rdev->nr_pending)==0) { 7776 if (mddev->pers->hot_remove_disk( 7777 mddev, rdev) == 0) { 7778 sysfs_unlink_rdev(mddev, rdev); 7779 rdev->raid_disk = -1; 7780 } 7781 } 7782 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7783 goto unlock; 7784 } 7785 7786 if (!mddev->external) { 7787 int did_change = 0; 7788 spin_lock_irq(&mddev->write_lock); 7789 if (mddev->safemode && 7790 !atomic_read(&mddev->writes_pending) && 7791 !mddev->in_sync && 7792 mddev->recovery_cp == MaxSector) { 7793 mddev->in_sync = 1; 7794 did_change = 1; 7795 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7796 } 7797 if (mddev->safemode == 1) 7798 mddev->safemode = 0; 7799 spin_unlock_irq(&mddev->write_lock); 7800 if (did_change) 7801 sysfs_notify_dirent_safe(mddev->sysfs_state); 7802 } 7803 7804 if (mddev->flags) 7805 md_update_sb(mddev, 0); 7806 7807 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7808 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7809 /* resync/recovery still happening */ 7810 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7811 goto unlock; 7812 } 7813 if (mddev->sync_thread) { 7814 reap_sync_thread(mddev); 7815 goto unlock; 7816 } 7817 /* Set RUNNING before clearing NEEDED to avoid 7818 * any transients in the value of "sync_action". 7819 */ 7820 mddev->curr_resync_completed = 0; 7821 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7822 /* Clear some bits that don't mean anything, but 7823 * might be left set 7824 */ 7825 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7826 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7827 7828 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7829 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7830 goto unlock; 7831 /* no recovery is running. 7832 * remove any failed drives, then 7833 * add spares if possible. 7834 * Spares are also removed and re-added, to allow 7835 * the personality to fail the re-add. 7836 */ 7837 7838 if (mddev->reshape_position != MaxSector) { 7839 if (mddev->pers->check_reshape == NULL || 7840 mddev->pers->check_reshape(mddev) != 0) 7841 /* Cannot proceed */ 7842 goto unlock; 7843 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7844 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7845 } else if ((spares = remove_and_add_spares(mddev))) { 7846 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7847 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7848 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7849 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7850 } else if (mddev->recovery_cp < MaxSector) { 7851 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7852 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7853 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7854 /* nothing to be done ... */ 7855 goto unlock; 7856 7857 if (mddev->pers->sync_request) { 7858 if (spares) { 7859 /* We are adding a device or devices to an array 7860 * which has the bitmap stored on all devices. 7861 * So make sure all bitmap pages get written 7862 */ 7863 bitmap_write_all(mddev->bitmap); 7864 } 7865 mddev->sync_thread = md_register_thread(md_do_sync, 7866 mddev, 7867 "resync"); 7868 if (!mddev->sync_thread) { 7869 printk(KERN_ERR "%s: could not start resync" 7870 " thread...\n", 7871 mdname(mddev)); 7872 /* leave the spares where they are, it shouldn't hurt */ 7873 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7874 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7875 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7876 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7877 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7878 } else 7879 md_wakeup_thread(mddev->sync_thread); 7880 sysfs_notify_dirent_safe(mddev->sysfs_action); 7881 md_new_event(mddev); 7882 } 7883 unlock: 7884 if (!mddev->sync_thread) { 7885 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7886 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7887 &mddev->recovery)) 7888 if (mddev->sysfs_action) 7889 sysfs_notify_dirent_safe(mddev->sysfs_action); 7890 } 7891 mddev_unlock(mddev); 7892 } 7893 } 7894 7895 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 7896 { 7897 sysfs_notify_dirent_safe(rdev->sysfs_state); 7898 wait_event_timeout(rdev->blocked_wait, 7899 !test_bit(Blocked, &rdev->flags) && 7900 !test_bit(BlockedBadBlocks, &rdev->flags), 7901 msecs_to_jiffies(5000)); 7902 rdev_dec_pending(rdev, mddev); 7903 } 7904 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7905 7906 void md_finish_reshape(struct mddev *mddev) 7907 { 7908 /* called be personality module when reshape completes. */ 7909 struct md_rdev *rdev; 7910 7911 rdev_for_each(rdev, mddev) { 7912 if (rdev->data_offset > rdev->new_data_offset) 7913 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 7914 else 7915 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 7916 rdev->data_offset = rdev->new_data_offset; 7917 } 7918 } 7919 EXPORT_SYMBOL(md_finish_reshape); 7920 7921 /* Bad block management. 7922 * We can record which blocks on each device are 'bad' and so just 7923 * fail those blocks, or that stripe, rather than the whole device. 7924 * Entries in the bad-block table are 64bits wide. This comprises: 7925 * Length of bad-range, in sectors: 0-511 for lengths 1-512 7926 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 7927 * A 'shift' can be set so that larger blocks are tracked and 7928 * consequently larger devices can be covered. 7929 * 'Acknowledged' flag - 1 bit. - the most significant bit. 7930 * 7931 * Locking of the bad-block table uses a seqlock so md_is_badblock 7932 * might need to retry if it is very unlucky. 7933 * We will sometimes want to check for bad blocks in a bi_end_io function, 7934 * so we use the write_seqlock_irq variant. 7935 * 7936 * When looking for a bad block we specify a range and want to 7937 * know if any block in the range is bad. So we binary-search 7938 * to the last range that starts at-or-before the given endpoint, 7939 * (or "before the sector after the target range") 7940 * then see if it ends after the given start. 7941 * We return 7942 * 0 if there are no known bad blocks in the range 7943 * 1 if there are known bad block which are all acknowledged 7944 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 7945 * plus the start/length of the first bad section we overlap. 7946 */ 7947 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 7948 sector_t *first_bad, int *bad_sectors) 7949 { 7950 int hi; 7951 int lo; 7952 u64 *p = bb->page; 7953 int rv; 7954 sector_t target = s + sectors; 7955 unsigned seq; 7956 7957 if (bb->shift > 0) { 7958 /* round the start down, and the end up */ 7959 s >>= bb->shift; 7960 target += (1<<bb->shift) - 1; 7961 target >>= bb->shift; 7962 sectors = target - s; 7963 } 7964 /* 'target' is now the first block after the bad range */ 7965 7966 retry: 7967 seq = read_seqbegin(&bb->lock); 7968 lo = 0; 7969 rv = 0; 7970 hi = bb->count; 7971 7972 /* Binary search between lo and hi for 'target' 7973 * i.e. for the last range that starts before 'target' 7974 */ 7975 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 7976 * are known not to be the last range before target. 7977 * VARIANT: hi-lo is the number of possible 7978 * ranges, and decreases until it reaches 1 7979 */ 7980 while (hi - lo > 1) { 7981 int mid = (lo + hi) / 2; 7982 sector_t a = BB_OFFSET(p[mid]); 7983 if (a < target) 7984 /* This could still be the one, earlier ranges 7985 * could not. */ 7986 lo = mid; 7987 else 7988 /* This and later ranges are definitely out. */ 7989 hi = mid; 7990 } 7991 /* 'lo' might be the last that started before target, but 'hi' isn't */ 7992 if (hi > lo) { 7993 /* need to check all range that end after 's' to see if 7994 * any are unacknowledged. 7995 */ 7996 while (lo >= 0 && 7997 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 7998 if (BB_OFFSET(p[lo]) < target) { 7999 /* starts before the end, and finishes after 8000 * the start, so they must overlap 8001 */ 8002 if (rv != -1 && BB_ACK(p[lo])) 8003 rv = 1; 8004 else 8005 rv = -1; 8006 *first_bad = BB_OFFSET(p[lo]); 8007 *bad_sectors = BB_LEN(p[lo]); 8008 } 8009 lo--; 8010 } 8011 } 8012 8013 if (read_seqretry(&bb->lock, seq)) 8014 goto retry; 8015 8016 return rv; 8017 } 8018 EXPORT_SYMBOL_GPL(md_is_badblock); 8019 8020 /* 8021 * Add a range of bad blocks to the table. 8022 * This might extend the table, or might contract it 8023 * if two adjacent ranges can be merged. 8024 * We binary-search to find the 'insertion' point, then 8025 * decide how best to handle it. 8026 */ 8027 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 8028 int acknowledged) 8029 { 8030 u64 *p; 8031 int lo, hi; 8032 int rv = 1; 8033 8034 if (bb->shift < 0) 8035 /* badblocks are disabled */ 8036 return 0; 8037 8038 if (bb->shift) { 8039 /* round the start down, and the end up */ 8040 sector_t next = s + sectors; 8041 s >>= bb->shift; 8042 next += (1<<bb->shift) - 1; 8043 next >>= bb->shift; 8044 sectors = next - s; 8045 } 8046 8047 write_seqlock_irq(&bb->lock); 8048 8049 p = bb->page; 8050 lo = 0; 8051 hi = bb->count; 8052 /* Find the last range that starts at-or-before 's' */ 8053 while (hi - lo > 1) { 8054 int mid = (lo + hi) / 2; 8055 sector_t a = BB_OFFSET(p[mid]); 8056 if (a <= s) 8057 lo = mid; 8058 else 8059 hi = mid; 8060 } 8061 if (hi > lo && BB_OFFSET(p[lo]) > s) 8062 hi = lo; 8063 8064 if (hi > lo) { 8065 /* we found a range that might merge with the start 8066 * of our new range 8067 */ 8068 sector_t a = BB_OFFSET(p[lo]); 8069 sector_t e = a + BB_LEN(p[lo]); 8070 int ack = BB_ACK(p[lo]); 8071 if (e >= s) { 8072 /* Yes, we can merge with a previous range */ 8073 if (s == a && s + sectors >= e) 8074 /* new range covers old */ 8075 ack = acknowledged; 8076 else 8077 ack = ack && acknowledged; 8078 8079 if (e < s + sectors) 8080 e = s + sectors; 8081 if (e - a <= BB_MAX_LEN) { 8082 p[lo] = BB_MAKE(a, e-a, ack); 8083 s = e; 8084 } else { 8085 /* does not all fit in one range, 8086 * make p[lo] maximal 8087 */ 8088 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8089 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8090 s = a + BB_MAX_LEN; 8091 } 8092 sectors = e - s; 8093 } 8094 } 8095 if (sectors && hi < bb->count) { 8096 /* 'hi' points to the first range that starts after 's'. 8097 * Maybe we can merge with the start of that range */ 8098 sector_t a = BB_OFFSET(p[hi]); 8099 sector_t e = a + BB_LEN(p[hi]); 8100 int ack = BB_ACK(p[hi]); 8101 if (a <= s + sectors) { 8102 /* merging is possible */ 8103 if (e <= s + sectors) { 8104 /* full overlap */ 8105 e = s + sectors; 8106 ack = acknowledged; 8107 } else 8108 ack = ack && acknowledged; 8109 8110 a = s; 8111 if (e - a <= BB_MAX_LEN) { 8112 p[hi] = BB_MAKE(a, e-a, ack); 8113 s = e; 8114 } else { 8115 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8116 s = a + BB_MAX_LEN; 8117 } 8118 sectors = e - s; 8119 lo = hi; 8120 hi++; 8121 } 8122 } 8123 if (sectors == 0 && hi < bb->count) { 8124 /* we might be able to combine lo and hi */ 8125 /* Note: 's' is at the end of 'lo' */ 8126 sector_t a = BB_OFFSET(p[hi]); 8127 int lolen = BB_LEN(p[lo]); 8128 int hilen = BB_LEN(p[hi]); 8129 int newlen = lolen + hilen - (s - a); 8130 if (s >= a && newlen < BB_MAX_LEN) { 8131 /* yes, we can combine them */ 8132 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8133 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8134 memmove(p + hi, p + hi + 1, 8135 (bb->count - hi - 1) * 8); 8136 bb->count--; 8137 } 8138 } 8139 while (sectors) { 8140 /* didn't merge (it all). 8141 * Need to add a range just before 'hi' */ 8142 if (bb->count >= MD_MAX_BADBLOCKS) { 8143 /* No room for more */ 8144 rv = 0; 8145 break; 8146 } else { 8147 int this_sectors = sectors; 8148 memmove(p + hi + 1, p + hi, 8149 (bb->count - hi) * 8); 8150 bb->count++; 8151 8152 if (this_sectors > BB_MAX_LEN) 8153 this_sectors = BB_MAX_LEN; 8154 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8155 sectors -= this_sectors; 8156 s += this_sectors; 8157 } 8158 } 8159 8160 bb->changed = 1; 8161 if (!acknowledged) 8162 bb->unacked_exist = 1; 8163 write_sequnlock_irq(&bb->lock); 8164 8165 return rv; 8166 } 8167 8168 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8169 int is_new) 8170 { 8171 int rv; 8172 if (is_new) 8173 s += rdev->new_data_offset; 8174 else 8175 s += rdev->data_offset; 8176 rv = md_set_badblocks(&rdev->badblocks, 8177 s, sectors, 0); 8178 if (rv) { 8179 /* Make sure they get written out promptly */ 8180 sysfs_notify_dirent_safe(rdev->sysfs_state); 8181 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8182 md_wakeup_thread(rdev->mddev->thread); 8183 } 8184 return rv; 8185 } 8186 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8187 8188 /* 8189 * Remove a range of bad blocks from the table. 8190 * This may involve extending the table if we spilt a region, 8191 * but it must not fail. So if the table becomes full, we just 8192 * drop the remove request. 8193 */ 8194 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8195 { 8196 u64 *p; 8197 int lo, hi; 8198 sector_t target = s + sectors; 8199 int rv = 0; 8200 8201 if (bb->shift > 0) { 8202 /* When clearing we round the start up and the end down. 8203 * This should not matter as the shift should align with 8204 * the block size and no rounding should ever be needed. 8205 * However it is better the think a block is bad when it 8206 * isn't than to think a block is not bad when it is. 8207 */ 8208 s += (1<<bb->shift) - 1; 8209 s >>= bb->shift; 8210 target >>= bb->shift; 8211 sectors = target - s; 8212 } 8213 8214 write_seqlock_irq(&bb->lock); 8215 8216 p = bb->page; 8217 lo = 0; 8218 hi = bb->count; 8219 /* Find the last range that starts before 'target' */ 8220 while (hi - lo > 1) { 8221 int mid = (lo + hi) / 2; 8222 sector_t a = BB_OFFSET(p[mid]); 8223 if (a < target) 8224 lo = mid; 8225 else 8226 hi = mid; 8227 } 8228 if (hi > lo) { 8229 /* p[lo] is the last range that could overlap the 8230 * current range. Earlier ranges could also overlap, 8231 * but only this one can overlap the end of the range. 8232 */ 8233 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8234 /* Partial overlap, leave the tail of this range */ 8235 int ack = BB_ACK(p[lo]); 8236 sector_t a = BB_OFFSET(p[lo]); 8237 sector_t end = a + BB_LEN(p[lo]); 8238 8239 if (a < s) { 8240 /* we need to split this range */ 8241 if (bb->count >= MD_MAX_BADBLOCKS) { 8242 rv = 0; 8243 goto out; 8244 } 8245 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8246 bb->count++; 8247 p[lo] = BB_MAKE(a, s-a, ack); 8248 lo++; 8249 } 8250 p[lo] = BB_MAKE(target, end - target, ack); 8251 /* there is no longer an overlap */ 8252 hi = lo; 8253 lo--; 8254 } 8255 while (lo >= 0 && 8256 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8257 /* This range does overlap */ 8258 if (BB_OFFSET(p[lo]) < s) { 8259 /* Keep the early parts of this range. */ 8260 int ack = BB_ACK(p[lo]); 8261 sector_t start = BB_OFFSET(p[lo]); 8262 p[lo] = BB_MAKE(start, s - start, ack); 8263 /* now low doesn't overlap, so.. */ 8264 break; 8265 } 8266 lo--; 8267 } 8268 /* 'lo' is strictly before, 'hi' is strictly after, 8269 * anything between needs to be discarded 8270 */ 8271 if (hi - lo > 1) { 8272 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8273 bb->count -= (hi - lo - 1); 8274 } 8275 } 8276 8277 bb->changed = 1; 8278 out: 8279 write_sequnlock_irq(&bb->lock); 8280 return rv; 8281 } 8282 8283 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8284 int is_new) 8285 { 8286 if (is_new) 8287 s += rdev->new_data_offset; 8288 else 8289 s += rdev->data_offset; 8290 return md_clear_badblocks(&rdev->badblocks, 8291 s, sectors); 8292 } 8293 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8294 8295 /* 8296 * Acknowledge all bad blocks in a list. 8297 * This only succeeds if ->changed is clear. It is used by 8298 * in-kernel metadata updates 8299 */ 8300 void md_ack_all_badblocks(struct badblocks *bb) 8301 { 8302 if (bb->page == NULL || bb->changed) 8303 /* no point even trying */ 8304 return; 8305 write_seqlock_irq(&bb->lock); 8306 8307 if (bb->changed == 0 && bb->unacked_exist) { 8308 u64 *p = bb->page; 8309 int i; 8310 for (i = 0; i < bb->count ; i++) { 8311 if (!BB_ACK(p[i])) { 8312 sector_t start = BB_OFFSET(p[i]); 8313 int len = BB_LEN(p[i]); 8314 p[i] = BB_MAKE(start, len, 1); 8315 } 8316 } 8317 bb->unacked_exist = 0; 8318 } 8319 write_sequnlock_irq(&bb->lock); 8320 } 8321 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8322 8323 /* sysfs access to bad-blocks list. 8324 * We present two files. 8325 * 'bad-blocks' lists sector numbers and lengths of ranges that 8326 * are recorded as bad. The list is truncated to fit within 8327 * the one-page limit of sysfs. 8328 * Writing "sector length" to this file adds an acknowledged 8329 * bad block list. 8330 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8331 * been acknowledged. Writing to this file adds bad blocks 8332 * without acknowledging them. This is largely for testing. 8333 */ 8334 8335 static ssize_t 8336 badblocks_show(struct badblocks *bb, char *page, int unack) 8337 { 8338 size_t len; 8339 int i; 8340 u64 *p = bb->page; 8341 unsigned seq; 8342 8343 if (bb->shift < 0) 8344 return 0; 8345 8346 retry: 8347 seq = read_seqbegin(&bb->lock); 8348 8349 len = 0; 8350 i = 0; 8351 8352 while (len < PAGE_SIZE && i < bb->count) { 8353 sector_t s = BB_OFFSET(p[i]); 8354 unsigned int length = BB_LEN(p[i]); 8355 int ack = BB_ACK(p[i]); 8356 i++; 8357 8358 if (unack && ack) 8359 continue; 8360 8361 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8362 (unsigned long long)s << bb->shift, 8363 length << bb->shift); 8364 } 8365 if (unack && len == 0) 8366 bb->unacked_exist = 0; 8367 8368 if (read_seqretry(&bb->lock, seq)) 8369 goto retry; 8370 8371 return len; 8372 } 8373 8374 #define DO_DEBUG 1 8375 8376 static ssize_t 8377 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8378 { 8379 unsigned long long sector; 8380 int length; 8381 char newline; 8382 #ifdef DO_DEBUG 8383 /* Allow clearing via sysfs *only* for testing/debugging. 8384 * Normally only a successful write may clear a badblock 8385 */ 8386 int clear = 0; 8387 if (page[0] == '-') { 8388 clear = 1; 8389 page++; 8390 } 8391 #endif /* DO_DEBUG */ 8392 8393 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8394 case 3: 8395 if (newline != '\n') 8396 return -EINVAL; 8397 case 2: 8398 if (length <= 0) 8399 return -EINVAL; 8400 break; 8401 default: 8402 return -EINVAL; 8403 } 8404 8405 #ifdef DO_DEBUG 8406 if (clear) { 8407 md_clear_badblocks(bb, sector, length); 8408 return len; 8409 } 8410 #endif /* DO_DEBUG */ 8411 if (md_set_badblocks(bb, sector, length, !unack)) 8412 return len; 8413 else 8414 return -ENOSPC; 8415 } 8416 8417 static int md_notify_reboot(struct notifier_block *this, 8418 unsigned long code, void *x) 8419 { 8420 struct list_head *tmp; 8421 struct mddev *mddev; 8422 int need_delay = 0; 8423 8424 for_each_mddev(mddev, tmp) { 8425 if (mddev_trylock(mddev)) { 8426 if (mddev->pers) 8427 __md_stop_writes(mddev); 8428 mddev->safemode = 2; 8429 mddev_unlock(mddev); 8430 } 8431 need_delay = 1; 8432 } 8433 /* 8434 * certain more exotic SCSI devices are known to be 8435 * volatile wrt too early system reboots. While the 8436 * right place to handle this issue is the given 8437 * driver, we do want to have a safe RAID driver ... 8438 */ 8439 if (need_delay) 8440 mdelay(1000*1); 8441 8442 return NOTIFY_DONE; 8443 } 8444 8445 static struct notifier_block md_notifier = { 8446 .notifier_call = md_notify_reboot, 8447 .next = NULL, 8448 .priority = INT_MAX, /* before any real devices */ 8449 }; 8450 8451 static void md_geninit(void) 8452 { 8453 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8454 8455 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8456 } 8457 8458 static int __init md_init(void) 8459 { 8460 int ret = -ENOMEM; 8461 8462 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8463 if (!md_wq) 8464 goto err_wq; 8465 8466 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8467 if (!md_misc_wq) 8468 goto err_misc_wq; 8469 8470 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8471 goto err_md; 8472 8473 if ((ret = register_blkdev(0, "mdp")) < 0) 8474 goto err_mdp; 8475 mdp_major = ret; 8476 8477 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 8478 md_probe, NULL, NULL); 8479 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8480 md_probe, NULL, NULL); 8481 8482 register_reboot_notifier(&md_notifier); 8483 raid_table_header = register_sysctl_table(raid_root_table); 8484 8485 md_geninit(); 8486 return 0; 8487 8488 err_mdp: 8489 unregister_blkdev(MD_MAJOR, "md"); 8490 err_md: 8491 destroy_workqueue(md_misc_wq); 8492 err_misc_wq: 8493 destroy_workqueue(md_wq); 8494 err_wq: 8495 return ret; 8496 } 8497 8498 #ifndef MODULE 8499 8500 /* 8501 * Searches all registered partitions for autorun RAID arrays 8502 * at boot time. 8503 */ 8504 8505 static LIST_HEAD(all_detected_devices); 8506 struct detected_devices_node { 8507 struct list_head list; 8508 dev_t dev; 8509 }; 8510 8511 void md_autodetect_dev(dev_t dev) 8512 { 8513 struct detected_devices_node *node_detected_dev; 8514 8515 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8516 if (node_detected_dev) { 8517 node_detected_dev->dev = dev; 8518 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8519 } else { 8520 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8521 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8522 } 8523 } 8524 8525 8526 static void autostart_arrays(int part) 8527 { 8528 struct md_rdev *rdev; 8529 struct detected_devices_node *node_detected_dev; 8530 dev_t dev; 8531 int i_scanned, i_passed; 8532 8533 i_scanned = 0; 8534 i_passed = 0; 8535 8536 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8537 8538 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8539 i_scanned++; 8540 node_detected_dev = list_entry(all_detected_devices.next, 8541 struct detected_devices_node, list); 8542 list_del(&node_detected_dev->list); 8543 dev = node_detected_dev->dev; 8544 kfree(node_detected_dev); 8545 rdev = md_import_device(dev,0, 90); 8546 if (IS_ERR(rdev)) 8547 continue; 8548 8549 if (test_bit(Faulty, &rdev->flags)) { 8550 MD_BUG(); 8551 continue; 8552 } 8553 set_bit(AutoDetected, &rdev->flags); 8554 list_add(&rdev->same_set, &pending_raid_disks); 8555 i_passed++; 8556 } 8557 8558 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8559 i_scanned, i_passed); 8560 8561 autorun_devices(part); 8562 } 8563 8564 #endif /* !MODULE */ 8565 8566 static __exit void md_exit(void) 8567 { 8568 struct mddev *mddev; 8569 struct list_head *tmp; 8570 8571 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 8572 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8573 8574 unregister_blkdev(MD_MAJOR,"md"); 8575 unregister_blkdev(mdp_major, "mdp"); 8576 unregister_reboot_notifier(&md_notifier); 8577 unregister_sysctl_table(raid_table_header); 8578 remove_proc_entry("mdstat", NULL); 8579 for_each_mddev(mddev, tmp) { 8580 export_array(mddev); 8581 mddev->hold_active = 0; 8582 } 8583 destroy_workqueue(md_misc_wq); 8584 destroy_workqueue(md_wq); 8585 } 8586 8587 subsys_initcall(md_init); 8588 module_exit(md_exit) 8589 8590 static int get_ro(char *buffer, struct kernel_param *kp) 8591 { 8592 return sprintf(buffer, "%d", start_readonly); 8593 } 8594 static int set_ro(const char *val, struct kernel_param *kp) 8595 { 8596 char *e; 8597 int num = simple_strtoul(val, &e, 10); 8598 if (*val && (*e == '\0' || *e == '\n')) { 8599 start_readonly = num; 8600 return 0; 8601 } 8602 return -EINVAL; 8603 } 8604 8605 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8606 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8607 8608 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8609 8610 EXPORT_SYMBOL(register_md_personality); 8611 EXPORT_SYMBOL(unregister_md_personality); 8612 EXPORT_SYMBOL(md_error); 8613 EXPORT_SYMBOL(md_done_sync); 8614 EXPORT_SYMBOL(md_write_start); 8615 EXPORT_SYMBOL(md_write_end); 8616 EXPORT_SYMBOL(md_register_thread); 8617 EXPORT_SYMBOL(md_unregister_thread); 8618 EXPORT_SYMBOL(md_wakeup_thread); 8619 EXPORT_SYMBOL(md_check_recovery); 8620 MODULE_LICENSE("GPL"); 8621 MODULE_DESCRIPTION("MD RAID framework"); 8622 MODULE_ALIAS("md"); 8623 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8624