xref: /linux/drivers/md/md.c (revision a5766f11cfd3a0c03450d99c8fe548c2940be884)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
47 
48 #include <linux/init.h>
49 
50 #include <linux/file.h>
51 
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
55 
56 #include <asm/unaligned.h>
57 
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
60 
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
63 
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66 
67 
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
71 
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
74 
75 static void md_print_devices(void);
76 
77 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
78 
79 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
80 
81 /*
82  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83  * is 1000 KB/sec, so the extra system load does not show up that much.
84  * Increase it if you want to have more _guaranteed_ speed. Note that
85  * the RAID driver will use the maximum available bandwidth if the IO
86  * subsystem is idle. There is also an 'absolute maximum' reconstruction
87  * speed limit - in case reconstruction slows down your system despite
88  * idle IO detection.
89  *
90  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91  * or /sys/block/mdX/md/sync_speed_{min,max}
92  */
93 
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
97 {
98 	return mddev->sync_speed_min ?
99 		mddev->sync_speed_min : sysctl_speed_limit_min;
100 }
101 
102 static inline int speed_max(mddev_t *mddev)
103 {
104 	return mddev->sync_speed_max ?
105 		mddev->sync_speed_max : sysctl_speed_limit_max;
106 }
107 
108 static struct ctl_table_header *raid_table_header;
109 
110 static ctl_table raid_table[] = {
111 	{
112 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
113 		.procname	= "speed_limit_min",
114 		.data		= &sysctl_speed_limit_min,
115 		.maxlen		= sizeof(int),
116 		.mode		= S_IRUGO|S_IWUSR,
117 		.proc_handler	= &proc_dointvec,
118 	},
119 	{
120 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
121 		.procname	= "speed_limit_max",
122 		.data		= &sysctl_speed_limit_max,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= &proc_dointvec,
126 	},
127 	{ .ctl_name = 0 }
128 };
129 
130 static ctl_table raid_dir_table[] = {
131 	{
132 		.ctl_name	= DEV_RAID,
133 		.procname	= "raid",
134 		.maxlen		= 0,
135 		.mode		= S_IRUGO|S_IXUGO,
136 		.child		= raid_table,
137 	},
138 	{ .ctl_name = 0 }
139 };
140 
141 static ctl_table raid_root_table[] = {
142 	{
143 		.ctl_name	= CTL_DEV,
144 		.procname	= "dev",
145 		.maxlen		= 0,
146 		.mode		= 0555,
147 		.child		= raid_dir_table,
148 	},
149 	{ .ctl_name = 0 }
150 };
151 
152 static struct block_device_operations md_fops;
153 
154 static int start_readonly;
155 
156 /*
157  * We have a system wide 'event count' that is incremented
158  * on any 'interesting' event, and readers of /proc/mdstat
159  * can use 'poll' or 'select' to find out when the event
160  * count increases.
161  *
162  * Events are:
163  *  start array, stop array, error, add device, remove device,
164  *  start build, activate spare
165  */
166 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
167 static atomic_t md_event_count;
168 void md_new_event(mddev_t *mddev)
169 {
170 	atomic_inc(&md_event_count);
171 	wake_up(&md_event_waiters);
172 }
173 EXPORT_SYMBOL_GPL(md_new_event);
174 
175 /* Alternate version that can be called from interrupts
176  * when calling sysfs_notify isn't needed.
177  */
178 static void md_new_event_inintr(mddev_t *mddev)
179 {
180 	atomic_inc(&md_event_count);
181 	wake_up(&md_event_waiters);
182 }
183 
184 /*
185  * Enables to iterate over all existing md arrays
186  * all_mddevs_lock protects this list.
187  */
188 static LIST_HEAD(all_mddevs);
189 static DEFINE_SPINLOCK(all_mddevs_lock);
190 
191 
192 /*
193  * iterates through all used mddevs in the system.
194  * We take care to grab the all_mddevs_lock whenever navigating
195  * the list, and to always hold a refcount when unlocked.
196  * Any code which breaks out of this loop while own
197  * a reference to the current mddev and must mddev_put it.
198  */
199 #define for_each_mddev(mddev,tmp)					\
200 									\
201 	for (({ spin_lock(&all_mddevs_lock); 				\
202 		tmp = all_mddevs.next;					\
203 		mddev = NULL;});					\
204 	     ({ if (tmp != &all_mddevs)					\
205 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
206 		spin_unlock(&all_mddevs_lock);				\
207 		if (mddev) mddev_put(mddev);				\
208 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
209 		tmp != &all_mddevs;});					\
210 	     ({ spin_lock(&all_mddevs_lock);				\
211 		tmp = tmp->next;})					\
212 		)
213 
214 
215 static int md_fail_request (struct request_queue *q, struct bio *bio)
216 {
217 	bio_io_error(bio);
218 	return 0;
219 }
220 
221 static inline mddev_t *mddev_get(mddev_t *mddev)
222 {
223 	atomic_inc(&mddev->active);
224 	return mddev;
225 }
226 
227 static void mddev_put(mddev_t *mddev)
228 {
229 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
230 		return;
231 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
232 		list_del(&mddev->all_mddevs);
233 		spin_unlock(&all_mddevs_lock);
234 		blk_cleanup_queue(mddev->queue);
235 		kobject_put(&mddev->kobj);
236 	} else
237 		spin_unlock(&all_mddevs_lock);
238 }
239 
240 static mddev_t * mddev_find(dev_t unit)
241 {
242 	mddev_t *mddev, *new = NULL;
243 
244  retry:
245 	spin_lock(&all_mddevs_lock);
246 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
247 		if (mddev->unit == unit) {
248 			mddev_get(mddev);
249 			spin_unlock(&all_mddevs_lock);
250 			kfree(new);
251 			return mddev;
252 		}
253 
254 	if (new) {
255 		list_add(&new->all_mddevs, &all_mddevs);
256 		spin_unlock(&all_mddevs_lock);
257 		return new;
258 	}
259 	spin_unlock(&all_mddevs_lock);
260 
261 	new = kzalloc(sizeof(*new), GFP_KERNEL);
262 	if (!new)
263 		return NULL;
264 
265 	new->unit = unit;
266 	if (MAJOR(unit) == MD_MAJOR)
267 		new->md_minor = MINOR(unit);
268 	else
269 		new->md_minor = MINOR(unit) >> MdpMinorShift;
270 
271 	mutex_init(&new->reconfig_mutex);
272 	INIT_LIST_HEAD(&new->disks);
273 	INIT_LIST_HEAD(&new->all_mddevs);
274 	init_timer(&new->safemode_timer);
275 	atomic_set(&new->active, 1);
276 	atomic_set(&new->openers, 0);
277 	spin_lock_init(&new->write_lock);
278 	init_waitqueue_head(&new->sb_wait);
279 	init_waitqueue_head(&new->recovery_wait);
280 	new->reshape_position = MaxSector;
281 	new->resync_min = 0;
282 	new->resync_max = MaxSector;
283 	new->level = LEVEL_NONE;
284 
285 	new->queue = blk_alloc_queue(GFP_KERNEL);
286 	if (!new->queue) {
287 		kfree(new);
288 		return NULL;
289 	}
290 	/* Can be unlocked because the queue is new: no concurrency */
291 	queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, new->queue);
292 
293 	blk_queue_make_request(new->queue, md_fail_request);
294 
295 	goto retry;
296 }
297 
298 static inline int mddev_lock(mddev_t * mddev)
299 {
300 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
301 }
302 
303 static inline int mddev_trylock(mddev_t * mddev)
304 {
305 	return mutex_trylock(&mddev->reconfig_mutex);
306 }
307 
308 static inline void mddev_unlock(mddev_t * mddev)
309 {
310 	mutex_unlock(&mddev->reconfig_mutex);
311 
312 	md_wakeup_thread(mddev->thread);
313 }
314 
315 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
316 {
317 	mdk_rdev_t * rdev;
318 	struct list_head *tmp;
319 
320 	rdev_for_each(rdev, tmp, mddev) {
321 		if (rdev->desc_nr == nr)
322 			return rdev;
323 	}
324 	return NULL;
325 }
326 
327 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
328 {
329 	struct list_head *tmp;
330 	mdk_rdev_t *rdev;
331 
332 	rdev_for_each(rdev, tmp, mddev) {
333 		if (rdev->bdev->bd_dev == dev)
334 			return rdev;
335 	}
336 	return NULL;
337 }
338 
339 static struct mdk_personality *find_pers(int level, char *clevel)
340 {
341 	struct mdk_personality *pers;
342 	list_for_each_entry(pers, &pers_list, list) {
343 		if (level != LEVEL_NONE && pers->level == level)
344 			return pers;
345 		if (strcmp(pers->name, clevel)==0)
346 			return pers;
347 	}
348 	return NULL;
349 }
350 
351 /* return the offset of the super block in 512byte sectors */
352 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
353 {
354 	sector_t num_sectors = bdev->bd_inode->i_size / 512;
355 	return MD_NEW_SIZE_SECTORS(num_sectors);
356 }
357 
358 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
359 {
360 	sector_t num_sectors = rdev->sb_start;
361 
362 	if (chunk_size)
363 		num_sectors &= ~((sector_t)chunk_size/512 - 1);
364 	return num_sectors;
365 }
366 
367 static int alloc_disk_sb(mdk_rdev_t * rdev)
368 {
369 	if (rdev->sb_page)
370 		MD_BUG();
371 
372 	rdev->sb_page = alloc_page(GFP_KERNEL);
373 	if (!rdev->sb_page) {
374 		printk(KERN_ALERT "md: out of memory.\n");
375 		return -ENOMEM;
376 	}
377 
378 	return 0;
379 }
380 
381 static void free_disk_sb(mdk_rdev_t * rdev)
382 {
383 	if (rdev->sb_page) {
384 		put_page(rdev->sb_page);
385 		rdev->sb_loaded = 0;
386 		rdev->sb_page = NULL;
387 		rdev->sb_start = 0;
388 		rdev->size = 0;
389 	}
390 }
391 
392 
393 static void super_written(struct bio *bio, int error)
394 {
395 	mdk_rdev_t *rdev = bio->bi_private;
396 	mddev_t *mddev = rdev->mddev;
397 
398 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
399 		printk("md: super_written gets error=%d, uptodate=%d\n",
400 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
401 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
402 		md_error(mddev, rdev);
403 	}
404 
405 	if (atomic_dec_and_test(&mddev->pending_writes))
406 		wake_up(&mddev->sb_wait);
407 	bio_put(bio);
408 }
409 
410 static void super_written_barrier(struct bio *bio, int error)
411 {
412 	struct bio *bio2 = bio->bi_private;
413 	mdk_rdev_t *rdev = bio2->bi_private;
414 	mddev_t *mddev = rdev->mddev;
415 
416 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
417 	    error == -EOPNOTSUPP) {
418 		unsigned long flags;
419 		/* barriers don't appear to be supported :-( */
420 		set_bit(BarriersNotsupp, &rdev->flags);
421 		mddev->barriers_work = 0;
422 		spin_lock_irqsave(&mddev->write_lock, flags);
423 		bio2->bi_next = mddev->biolist;
424 		mddev->biolist = bio2;
425 		spin_unlock_irqrestore(&mddev->write_lock, flags);
426 		wake_up(&mddev->sb_wait);
427 		bio_put(bio);
428 	} else {
429 		bio_put(bio2);
430 		bio->bi_private = rdev;
431 		super_written(bio, error);
432 	}
433 }
434 
435 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
436 		   sector_t sector, int size, struct page *page)
437 {
438 	/* write first size bytes of page to sector of rdev
439 	 * Increment mddev->pending_writes before returning
440 	 * and decrement it on completion, waking up sb_wait
441 	 * if zero is reached.
442 	 * If an error occurred, call md_error
443 	 *
444 	 * As we might need to resubmit the request if BIO_RW_BARRIER
445 	 * causes ENOTSUPP, we allocate a spare bio...
446 	 */
447 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
448 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
449 
450 	bio->bi_bdev = rdev->bdev;
451 	bio->bi_sector = sector;
452 	bio_add_page(bio, page, size, 0);
453 	bio->bi_private = rdev;
454 	bio->bi_end_io = super_written;
455 	bio->bi_rw = rw;
456 
457 	atomic_inc(&mddev->pending_writes);
458 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
459 		struct bio *rbio;
460 		rw |= (1<<BIO_RW_BARRIER);
461 		rbio = bio_clone(bio, GFP_NOIO);
462 		rbio->bi_private = bio;
463 		rbio->bi_end_io = super_written_barrier;
464 		submit_bio(rw, rbio);
465 	} else
466 		submit_bio(rw, bio);
467 }
468 
469 void md_super_wait(mddev_t *mddev)
470 {
471 	/* wait for all superblock writes that were scheduled to complete.
472 	 * if any had to be retried (due to BARRIER problems), retry them
473 	 */
474 	DEFINE_WAIT(wq);
475 	for(;;) {
476 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
477 		if (atomic_read(&mddev->pending_writes)==0)
478 			break;
479 		while (mddev->biolist) {
480 			struct bio *bio;
481 			spin_lock_irq(&mddev->write_lock);
482 			bio = mddev->biolist;
483 			mddev->biolist = bio->bi_next ;
484 			bio->bi_next = NULL;
485 			spin_unlock_irq(&mddev->write_lock);
486 			submit_bio(bio->bi_rw, bio);
487 		}
488 		schedule();
489 	}
490 	finish_wait(&mddev->sb_wait, &wq);
491 }
492 
493 static void bi_complete(struct bio *bio, int error)
494 {
495 	complete((struct completion*)bio->bi_private);
496 }
497 
498 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
499 		   struct page *page, int rw)
500 {
501 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
502 	struct completion event;
503 	int ret;
504 
505 	rw |= (1 << BIO_RW_SYNC);
506 
507 	bio->bi_bdev = bdev;
508 	bio->bi_sector = sector;
509 	bio_add_page(bio, page, size, 0);
510 	init_completion(&event);
511 	bio->bi_private = &event;
512 	bio->bi_end_io = bi_complete;
513 	submit_bio(rw, bio);
514 	wait_for_completion(&event);
515 
516 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
517 	bio_put(bio);
518 	return ret;
519 }
520 EXPORT_SYMBOL_GPL(sync_page_io);
521 
522 static int read_disk_sb(mdk_rdev_t * rdev, int size)
523 {
524 	char b[BDEVNAME_SIZE];
525 	if (!rdev->sb_page) {
526 		MD_BUG();
527 		return -EINVAL;
528 	}
529 	if (rdev->sb_loaded)
530 		return 0;
531 
532 
533 	if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
534 		goto fail;
535 	rdev->sb_loaded = 1;
536 	return 0;
537 
538 fail:
539 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
540 		bdevname(rdev->bdev,b));
541 	return -EINVAL;
542 }
543 
544 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
545 {
546 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
547 		sb1->set_uuid1 == sb2->set_uuid1 &&
548 		sb1->set_uuid2 == sb2->set_uuid2 &&
549 		sb1->set_uuid3 == sb2->set_uuid3;
550 }
551 
552 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
553 {
554 	int ret;
555 	mdp_super_t *tmp1, *tmp2;
556 
557 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
558 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
559 
560 	if (!tmp1 || !tmp2) {
561 		ret = 0;
562 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
563 		goto abort;
564 	}
565 
566 	*tmp1 = *sb1;
567 	*tmp2 = *sb2;
568 
569 	/*
570 	 * nr_disks is not constant
571 	 */
572 	tmp1->nr_disks = 0;
573 	tmp2->nr_disks = 0;
574 
575 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
576 abort:
577 	kfree(tmp1);
578 	kfree(tmp2);
579 	return ret;
580 }
581 
582 
583 static u32 md_csum_fold(u32 csum)
584 {
585 	csum = (csum & 0xffff) + (csum >> 16);
586 	return (csum & 0xffff) + (csum >> 16);
587 }
588 
589 static unsigned int calc_sb_csum(mdp_super_t * sb)
590 {
591 	u64 newcsum = 0;
592 	u32 *sb32 = (u32*)sb;
593 	int i;
594 	unsigned int disk_csum, csum;
595 
596 	disk_csum = sb->sb_csum;
597 	sb->sb_csum = 0;
598 
599 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
600 		newcsum += sb32[i];
601 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
602 
603 
604 #ifdef CONFIG_ALPHA
605 	/* This used to use csum_partial, which was wrong for several
606 	 * reasons including that different results are returned on
607 	 * different architectures.  It isn't critical that we get exactly
608 	 * the same return value as before (we always csum_fold before
609 	 * testing, and that removes any differences).  However as we
610 	 * know that csum_partial always returned a 16bit value on
611 	 * alphas, do a fold to maximise conformity to previous behaviour.
612 	 */
613 	sb->sb_csum = md_csum_fold(disk_csum);
614 #else
615 	sb->sb_csum = disk_csum;
616 #endif
617 	return csum;
618 }
619 
620 
621 /*
622  * Handle superblock details.
623  * We want to be able to handle multiple superblock formats
624  * so we have a common interface to them all, and an array of
625  * different handlers.
626  * We rely on user-space to write the initial superblock, and support
627  * reading and updating of superblocks.
628  * Interface methods are:
629  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
630  *      loads and validates a superblock on dev.
631  *      if refdev != NULL, compare superblocks on both devices
632  *    Return:
633  *      0 - dev has a superblock that is compatible with refdev
634  *      1 - dev has a superblock that is compatible and newer than refdev
635  *          so dev should be used as the refdev in future
636  *     -EINVAL superblock incompatible or invalid
637  *     -othererror e.g. -EIO
638  *
639  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
640  *      Verify that dev is acceptable into mddev.
641  *       The first time, mddev->raid_disks will be 0, and data from
642  *       dev should be merged in.  Subsequent calls check that dev
643  *       is new enough.  Return 0 or -EINVAL
644  *
645  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
646  *     Update the superblock for rdev with data in mddev
647  *     This does not write to disc.
648  *
649  */
650 
651 struct super_type  {
652 	char		    *name;
653 	struct module	    *owner;
654 	int		    (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
655 					  int minor_version);
656 	int		    (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
657 	void		    (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
658 	unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
659 						sector_t num_sectors);
660 };
661 
662 /*
663  * load_super for 0.90.0
664  */
665 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
666 {
667 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
668 	mdp_super_t *sb;
669 	int ret;
670 
671 	/*
672 	 * Calculate the position of the superblock (512byte sectors),
673 	 * it's at the end of the disk.
674 	 *
675 	 * It also happens to be a multiple of 4Kb.
676 	 */
677 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
678 
679 	ret = read_disk_sb(rdev, MD_SB_BYTES);
680 	if (ret) return ret;
681 
682 	ret = -EINVAL;
683 
684 	bdevname(rdev->bdev, b);
685 	sb = (mdp_super_t*)page_address(rdev->sb_page);
686 
687 	if (sb->md_magic != MD_SB_MAGIC) {
688 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
689 		       b);
690 		goto abort;
691 	}
692 
693 	if (sb->major_version != 0 ||
694 	    sb->minor_version < 90 ||
695 	    sb->minor_version > 91) {
696 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
697 			sb->major_version, sb->minor_version,
698 			b);
699 		goto abort;
700 	}
701 
702 	if (sb->raid_disks <= 0)
703 		goto abort;
704 
705 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
706 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
707 			b);
708 		goto abort;
709 	}
710 
711 	rdev->preferred_minor = sb->md_minor;
712 	rdev->data_offset = 0;
713 	rdev->sb_size = MD_SB_BYTES;
714 
715 	if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
716 		if (sb->level != 1 && sb->level != 4
717 		    && sb->level != 5 && sb->level != 6
718 		    && sb->level != 10) {
719 			/* FIXME use a better test */
720 			printk(KERN_WARNING
721 			       "md: bitmaps not supported for this level.\n");
722 			goto abort;
723 		}
724 	}
725 
726 	if (sb->level == LEVEL_MULTIPATH)
727 		rdev->desc_nr = -1;
728 	else
729 		rdev->desc_nr = sb->this_disk.number;
730 
731 	if (!refdev) {
732 		ret = 1;
733 	} else {
734 		__u64 ev1, ev2;
735 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
736 		if (!uuid_equal(refsb, sb)) {
737 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
738 				b, bdevname(refdev->bdev,b2));
739 			goto abort;
740 		}
741 		if (!sb_equal(refsb, sb)) {
742 			printk(KERN_WARNING "md: %s has same UUID"
743 			       " but different superblock to %s\n",
744 			       b, bdevname(refdev->bdev, b2));
745 			goto abort;
746 		}
747 		ev1 = md_event(sb);
748 		ev2 = md_event(refsb);
749 		if (ev1 > ev2)
750 			ret = 1;
751 		else
752 			ret = 0;
753 	}
754 	rdev->size = calc_num_sectors(rdev, sb->chunk_size) / 2;
755 
756 	if (rdev->size < sb->size && sb->level > 1)
757 		/* "this cannot possibly happen" ... */
758 		ret = -EINVAL;
759 
760  abort:
761 	return ret;
762 }
763 
764 /*
765  * validate_super for 0.90.0
766  */
767 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
768 {
769 	mdp_disk_t *desc;
770 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
771 	__u64 ev1 = md_event(sb);
772 
773 	rdev->raid_disk = -1;
774 	clear_bit(Faulty, &rdev->flags);
775 	clear_bit(In_sync, &rdev->flags);
776 	clear_bit(WriteMostly, &rdev->flags);
777 	clear_bit(BarriersNotsupp, &rdev->flags);
778 
779 	if (mddev->raid_disks == 0) {
780 		mddev->major_version = 0;
781 		mddev->minor_version = sb->minor_version;
782 		mddev->patch_version = sb->patch_version;
783 		mddev->external = 0;
784 		mddev->chunk_size = sb->chunk_size;
785 		mddev->ctime = sb->ctime;
786 		mddev->utime = sb->utime;
787 		mddev->level = sb->level;
788 		mddev->clevel[0] = 0;
789 		mddev->layout = sb->layout;
790 		mddev->raid_disks = sb->raid_disks;
791 		mddev->size = sb->size;
792 		mddev->events = ev1;
793 		mddev->bitmap_offset = 0;
794 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
795 
796 		if (mddev->minor_version >= 91) {
797 			mddev->reshape_position = sb->reshape_position;
798 			mddev->delta_disks = sb->delta_disks;
799 			mddev->new_level = sb->new_level;
800 			mddev->new_layout = sb->new_layout;
801 			mddev->new_chunk = sb->new_chunk;
802 		} else {
803 			mddev->reshape_position = MaxSector;
804 			mddev->delta_disks = 0;
805 			mddev->new_level = mddev->level;
806 			mddev->new_layout = mddev->layout;
807 			mddev->new_chunk = mddev->chunk_size;
808 		}
809 
810 		if (sb->state & (1<<MD_SB_CLEAN))
811 			mddev->recovery_cp = MaxSector;
812 		else {
813 			if (sb->events_hi == sb->cp_events_hi &&
814 				sb->events_lo == sb->cp_events_lo) {
815 				mddev->recovery_cp = sb->recovery_cp;
816 			} else
817 				mddev->recovery_cp = 0;
818 		}
819 
820 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
821 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
822 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
823 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
824 
825 		mddev->max_disks = MD_SB_DISKS;
826 
827 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
828 		    mddev->bitmap_file == NULL)
829 			mddev->bitmap_offset = mddev->default_bitmap_offset;
830 
831 	} else if (mddev->pers == NULL) {
832 		/* Insist on good event counter while assembling */
833 		++ev1;
834 		if (ev1 < mddev->events)
835 			return -EINVAL;
836 	} else if (mddev->bitmap) {
837 		/* if adding to array with a bitmap, then we can accept an
838 		 * older device ... but not too old.
839 		 */
840 		if (ev1 < mddev->bitmap->events_cleared)
841 			return 0;
842 	} else {
843 		if (ev1 < mddev->events)
844 			/* just a hot-add of a new device, leave raid_disk at -1 */
845 			return 0;
846 	}
847 
848 	if (mddev->level != LEVEL_MULTIPATH) {
849 		desc = sb->disks + rdev->desc_nr;
850 
851 		if (desc->state & (1<<MD_DISK_FAULTY))
852 			set_bit(Faulty, &rdev->flags);
853 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
854 			    desc->raid_disk < mddev->raid_disks */) {
855 			set_bit(In_sync, &rdev->flags);
856 			rdev->raid_disk = desc->raid_disk;
857 		}
858 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
859 			set_bit(WriteMostly, &rdev->flags);
860 	} else /* MULTIPATH are always insync */
861 		set_bit(In_sync, &rdev->flags);
862 	return 0;
863 }
864 
865 /*
866  * sync_super for 0.90.0
867  */
868 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
869 {
870 	mdp_super_t *sb;
871 	struct list_head *tmp;
872 	mdk_rdev_t *rdev2;
873 	int next_spare = mddev->raid_disks;
874 
875 
876 	/* make rdev->sb match mddev data..
877 	 *
878 	 * 1/ zero out disks
879 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
880 	 * 3/ any empty disks < next_spare become removed
881 	 *
882 	 * disks[0] gets initialised to REMOVED because
883 	 * we cannot be sure from other fields if it has
884 	 * been initialised or not.
885 	 */
886 	int i;
887 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
888 
889 	rdev->sb_size = MD_SB_BYTES;
890 
891 	sb = (mdp_super_t*)page_address(rdev->sb_page);
892 
893 	memset(sb, 0, sizeof(*sb));
894 
895 	sb->md_magic = MD_SB_MAGIC;
896 	sb->major_version = mddev->major_version;
897 	sb->patch_version = mddev->patch_version;
898 	sb->gvalid_words  = 0; /* ignored */
899 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
900 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
901 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
902 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
903 
904 	sb->ctime = mddev->ctime;
905 	sb->level = mddev->level;
906 	sb->size  = mddev->size;
907 	sb->raid_disks = mddev->raid_disks;
908 	sb->md_minor = mddev->md_minor;
909 	sb->not_persistent = 0;
910 	sb->utime = mddev->utime;
911 	sb->state = 0;
912 	sb->events_hi = (mddev->events>>32);
913 	sb->events_lo = (u32)mddev->events;
914 
915 	if (mddev->reshape_position == MaxSector)
916 		sb->minor_version = 90;
917 	else {
918 		sb->minor_version = 91;
919 		sb->reshape_position = mddev->reshape_position;
920 		sb->new_level = mddev->new_level;
921 		sb->delta_disks = mddev->delta_disks;
922 		sb->new_layout = mddev->new_layout;
923 		sb->new_chunk = mddev->new_chunk;
924 	}
925 	mddev->minor_version = sb->minor_version;
926 	if (mddev->in_sync)
927 	{
928 		sb->recovery_cp = mddev->recovery_cp;
929 		sb->cp_events_hi = (mddev->events>>32);
930 		sb->cp_events_lo = (u32)mddev->events;
931 		if (mddev->recovery_cp == MaxSector)
932 			sb->state = (1<< MD_SB_CLEAN);
933 	} else
934 		sb->recovery_cp = 0;
935 
936 	sb->layout = mddev->layout;
937 	sb->chunk_size = mddev->chunk_size;
938 
939 	if (mddev->bitmap && mddev->bitmap_file == NULL)
940 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
941 
942 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
943 	rdev_for_each(rdev2, tmp, mddev) {
944 		mdp_disk_t *d;
945 		int desc_nr;
946 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
947 		    && !test_bit(Faulty, &rdev2->flags))
948 			desc_nr = rdev2->raid_disk;
949 		else
950 			desc_nr = next_spare++;
951 		rdev2->desc_nr = desc_nr;
952 		d = &sb->disks[rdev2->desc_nr];
953 		nr_disks++;
954 		d->number = rdev2->desc_nr;
955 		d->major = MAJOR(rdev2->bdev->bd_dev);
956 		d->minor = MINOR(rdev2->bdev->bd_dev);
957 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
958 		    && !test_bit(Faulty, &rdev2->flags))
959 			d->raid_disk = rdev2->raid_disk;
960 		else
961 			d->raid_disk = rdev2->desc_nr; /* compatibility */
962 		if (test_bit(Faulty, &rdev2->flags))
963 			d->state = (1<<MD_DISK_FAULTY);
964 		else if (test_bit(In_sync, &rdev2->flags)) {
965 			d->state = (1<<MD_DISK_ACTIVE);
966 			d->state |= (1<<MD_DISK_SYNC);
967 			active++;
968 			working++;
969 		} else {
970 			d->state = 0;
971 			spare++;
972 			working++;
973 		}
974 		if (test_bit(WriteMostly, &rdev2->flags))
975 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
976 	}
977 	/* now set the "removed" and "faulty" bits on any missing devices */
978 	for (i=0 ; i < mddev->raid_disks ; i++) {
979 		mdp_disk_t *d = &sb->disks[i];
980 		if (d->state == 0 && d->number == 0) {
981 			d->number = i;
982 			d->raid_disk = i;
983 			d->state = (1<<MD_DISK_REMOVED);
984 			d->state |= (1<<MD_DISK_FAULTY);
985 			failed++;
986 		}
987 	}
988 	sb->nr_disks = nr_disks;
989 	sb->active_disks = active;
990 	sb->working_disks = working;
991 	sb->failed_disks = failed;
992 	sb->spare_disks = spare;
993 
994 	sb->this_disk = sb->disks[rdev->desc_nr];
995 	sb->sb_csum = calc_sb_csum(sb);
996 }
997 
998 /*
999  * rdev_size_change for 0.90.0
1000  */
1001 static unsigned long long
1002 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1003 {
1004 	if (num_sectors && num_sectors < rdev->mddev->size * 2)
1005 		return 0; /* component must fit device */
1006 	if (rdev->mddev->bitmap_offset)
1007 		return 0; /* can't move bitmap */
1008 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1009 	if (!num_sectors || num_sectors > rdev->sb_start)
1010 		num_sectors = rdev->sb_start;
1011 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1012 		       rdev->sb_page);
1013 	md_super_wait(rdev->mddev);
1014 	return num_sectors / 2; /* kB for sysfs */
1015 }
1016 
1017 
1018 /*
1019  * version 1 superblock
1020  */
1021 
1022 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1023 {
1024 	__le32 disk_csum;
1025 	u32 csum;
1026 	unsigned long long newcsum;
1027 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1028 	__le32 *isuper = (__le32*)sb;
1029 	int i;
1030 
1031 	disk_csum = sb->sb_csum;
1032 	sb->sb_csum = 0;
1033 	newcsum = 0;
1034 	for (i=0; size>=4; size -= 4 )
1035 		newcsum += le32_to_cpu(*isuper++);
1036 
1037 	if (size == 2)
1038 		newcsum += le16_to_cpu(*(__le16*) isuper);
1039 
1040 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1041 	sb->sb_csum = disk_csum;
1042 	return cpu_to_le32(csum);
1043 }
1044 
1045 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1046 {
1047 	struct mdp_superblock_1 *sb;
1048 	int ret;
1049 	sector_t sb_start;
1050 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1051 	int bmask;
1052 
1053 	/*
1054 	 * Calculate the position of the superblock in 512byte sectors.
1055 	 * It is always aligned to a 4K boundary and
1056 	 * depeding on minor_version, it can be:
1057 	 * 0: At least 8K, but less than 12K, from end of device
1058 	 * 1: At start of device
1059 	 * 2: 4K from start of device.
1060 	 */
1061 	switch(minor_version) {
1062 	case 0:
1063 		sb_start = rdev->bdev->bd_inode->i_size >> 9;
1064 		sb_start -= 8*2;
1065 		sb_start &= ~(sector_t)(4*2-1);
1066 		break;
1067 	case 1:
1068 		sb_start = 0;
1069 		break;
1070 	case 2:
1071 		sb_start = 8;
1072 		break;
1073 	default:
1074 		return -EINVAL;
1075 	}
1076 	rdev->sb_start = sb_start;
1077 
1078 	/* superblock is rarely larger than 1K, but it can be larger,
1079 	 * and it is safe to read 4k, so we do that
1080 	 */
1081 	ret = read_disk_sb(rdev, 4096);
1082 	if (ret) return ret;
1083 
1084 
1085 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1086 
1087 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1088 	    sb->major_version != cpu_to_le32(1) ||
1089 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1090 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1091 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1092 		return -EINVAL;
1093 
1094 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1095 		printk("md: invalid superblock checksum on %s\n",
1096 			bdevname(rdev->bdev,b));
1097 		return -EINVAL;
1098 	}
1099 	if (le64_to_cpu(sb->data_size) < 10) {
1100 		printk("md: data_size too small on %s\n",
1101 		       bdevname(rdev->bdev,b));
1102 		return -EINVAL;
1103 	}
1104 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1105 		if (sb->level != cpu_to_le32(1) &&
1106 		    sb->level != cpu_to_le32(4) &&
1107 		    sb->level != cpu_to_le32(5) &&
1108 		    sb->level != cpu_to_le32(6) &&
1109 		    sb->level != cpu_to_le32(10)) {
1110 			printk(KERN_WARNING
1111 			       "md: bitmaps not supported for this level.\n");
1112 			return -EINVAL;
1113 		}
1114 	}
1115 
1116 	rdev->preferred_minor = 0xffff;
1117 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1118 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1119 
1120 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1121 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1122 	if (rdev->sb_size & bmask)
1123 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1124 
1125 	if (minor_version
1126 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1127 		return -EINVAL;
1128 
1129 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1130 		rdev->desc_nr = -1;
1131 	else
1132 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1133 
1134 	if (!refdev) {
1135 		ret = 1;
1136 	} else {
1137 		__u64 ev1, ev2;
1138 		struct mdp_superblock_1 *refsb =
1139 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1140 
1141 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1142 		    sb->level != refsb->level ||
1143 		    sb->layout != refsb->layout ||
1144 		    sb->chunksize != refsb->chunksize) {
1145 			printk(KERN_WARNING "md: %s has strangely different"
1146 				" superblock to %s\n",
1147 				bdevname(rdev->bdev,b),
1148 				bdevname(refdev->bdev,b2));
1149 			return -EINVAL;
1150 		}
1151 		ev1 = le64_to_cpu(sb->events);
1152 		ev2 = le64_to_cpu(refsb->events);
1153 
1154 		if (ev1 > ev2)
1155 			ret = 1;
1156 		else
1157 			ret = 0;
1158 	}
1159 	if (minor_version)
1160 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1161 	else
1162 		rdev->size = rdev->sb_start / 2;
1163 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1164 		return -EINVAL;
1165 	rdev->size = le64_to_cpu(sb->data_size)/2;
1166 	if (le32_to_cpu(sb->chunksize))
1167 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1168 
1169 	if (le64_to_cpu(sb->size) > rdev->size*2)
1170 		return -EINVAL;
1171 	return ret;
1172 }
1173 
1174 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1175 {
1176 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1177 	__u64 ev1 = le64_to_cpu(sb->events);
1178 
1179 	rdev->raid_disk = -1;
1180 	clear_bit(Faulty, &rdev->flags);
1181 	clear_bit(In_sync, &rdev->flags);
1182 	clear_bit(WriteMostly, &rdev->flags);
1183 	clear_bit(BarriersNotsupp, &rdev->flags);
1184 
1185 	if (mddev->raid_disks == 0) {
1186 		mddev->major_version = 1;
1187 		mddev->patch_version = 0;
1188 		mddev->external = 0;
1189 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1190 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1191 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1192 		mddev->level = le32_to_cpu(sb->level);
1193 		mddev->clevel[0] = 0;
1194 		mddev->layout = le32_to_cpu(sb->layout);
1195 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1196 		mddev->size = le64_to_cpu(sb->size)/2;
1197 		mddev->events = ev1;
1198 		mddev->bitmap_offset = 0;
1199 		mddev->default_bitmap_offset = 1024 >> 9;
1200 
1201 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1202 		memcpy(mddev->uuid, sb->set_uuid, 16);
1203 
1204 		mddev->max_disks =  (4096-256)/2;
1205 
1206 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1207 		    mddev->bitmap_file == NULL )
1208 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1209 
1210 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1211 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1212 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1213 			mddev->new_level = le32_to_cpu(sb->new_level);
1214 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1215 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1216 		} else {
1217 			mddev->reshape_position = MaxSector;
1218 			mddev->delta_disks = 0;
1219 			mddev->new_level = mddev->level;
1220 			mddev->new_layout = mddev->layout;
1221 			mddev->new_chunk = mddev->chunk_size;
1222 		}
1223 
1224 	} else if (mddev->pers == NULL) {
1225 		/* Insist of good event counter while assembling */
1226 		++ev1;
1227 		if (ev1 < mddev->events)
1228 			return -EINVAL;
1229 	} else if (mddev->bitmap) {
1230 		/* If adding to array with a bitmap, then we can accept an
1231 		 * older device, but not too old.
1232 		 */
1233 		if (ev1 < mddev->bitmap->events_cleared)
1234 			return 0;
1235 	} else {
1236 		if (ev1 < mddev->events)
1237 			/* just a hot-add of a new device, leave raid_disk at -1 */
1238 			return 0;
1239 	}
1240 	if (mddev->level != LEVEL_MULTIPATH) {
1241 		int role;
1242 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1243 		switch(role) {
1244 		case 0xffff: /* spare */
1245 			break;
1246 		case 0xfffe: /* faulty */
1247 			set_bit(Faulty, &rdev->flags);
1248 			break;
1249 		default:
1250 			if ((le32_to_cpu(sb->feature_map) &
1251 			     MD_FEATURE_RECOVERY_OFFSET))
1252 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1253 			else
1254 				set_bit(In_sync, &rdev->flags);
1255 			rdev->raid_disk = role;
1256 			break;
1257 		}
1258 		if (sb->devflags & WriteMostly1)
1259 			set_bit(WriteMostly, &rdev->flags);
1260 	} else /* MULTIPATH are always insync */
1261 		set_bit(In_sync, &rdev->flags);
1262 
1263 	return 0;
1264 }
1265 
1266 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1267 {
1268 	struct mdp_superblock_1 *sb;
1269 	struct list_head *tmp;
1270 	mdk_rdev_t *rdev2;
1271 	int max_dev, i;
1272 	/* make rdev->sb match mddev and rdev data. */
1273 
1274 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1275 
1276 	sb->feature_map = 0;
1277 	sb->pad0 = 0;
1278 	sb->recovery_offset = cpu_to_le64(0);
1279 	memset(sb->pad1, 0, sizeof(sb->pad1));
1280 	memset(sb->pad2, 0, sizeof(sb->pad2));
1281 	memset(sb->pad3, 0, sizeof(sb->pad3));
1282 
1283 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1284 	sb->events = cpu_to_le64(mddev->events);
1285 	if (mddev->in_sync)
1286 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1287 	else
1288 		sb->resync_offset = cpu_to_le64(0);
1289 
1290 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1291 
1292 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1293 	sb->size = cpu_to_le64(mddev->size<<1);
1294 
1295 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1296 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1297 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1298 	}
1299 
1300 	if (rdev->raid_disk >= 0 &&
1301 	    !test_bit(In_sync, &rdev->flags) &&
1302 	    rdev->recovery_offset > 0) {
1303 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1304 		sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1305 	}
1306 
1307 	if (mddev->reshape_position != MaxSector) {
1308 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1309 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1310 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1311 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1312 		sb->new_level = cpu_to_le32(mddev->new_level);
1313 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1314 	}
1315 
1316 	max_dev = 0;
1317 	rdev_for_each(rdev2, tmp, mddev)
1318 		if (rdev2->desc_nr+1 > max_dev)
1319 			max_dev = rdev2->desc_nr+1;
1320 
1321 	if (max_dev > le32_to_cpu(sb->max_dev))
1322 		sb->max_dev = cpu_to_le32(max_dev);
1323 	for (i=0; i<max_dev;i++)
1324 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1325 
1326 	rdev_for_each(rdev2, tmp, mddev) {
1327 		i = rdev2->desc_nr;
1328 		if (test_bit(Faulty, &rdev2->flags))
1329 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1330 		else if (test_bit(In_sync, &rdev2->flags))
1331 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1332 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1333 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1334 		else
1335 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1336 	}
1337 
1338 	sb->sb_csum = calc_sb_1_csum(sb);
1339 }
1340 
1341 static unsigned long long
1342 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1343 {
1344 	struct mdp_superblock_1 *sb;
1345 	sector_t max_sectors;
1346 	if (num_sectors && num_sectors < rdev->mddev->size * 2)
1347 		return 0; /* component must fit device */
1348 	if (rdev->sb_start < rdev->data_offset) {
1349 		/* minor versions 1 and 2; superblock before data */
1350 		max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1351 		max_sectors -= rdev->data_offset;
1352 		if (!num_sectors || num_sectors > max_sectors)
1353 			num_sectors = max_sectors;
1354 	} else if (rdev->mddev->bitmap_offset) {
1355 		/* minor version 0 with bitmap we can't move */
1356 		return 0;
1357 	} else {
1358 		/* minor version 0; superblock after data */
1359 		sector_t sb_start;
1360 		sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1361 		sb_start &= ~(sector_t)(4*2 - 1);
1362 		max_sectors = rdev->size * 2 + sb_start - rdev->sb_start;
1363 		if (!num_sectors || num_sectors > max_sectors)
1364 			num_sectors = max_sectors;
1365 		rdev->sb_start = sb_start;
1366 	}
1367 	sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1368 	sb->data_size = cpu_to_le64(num_sectors);
1369 	sb->super_offset = rdev->sb_start;
1370 	sb->sb_csum = calc_sb_1_csum(sb);
1371 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1372 		       rdev->sb_page);
1373 	md_super_wait(rdev->mddev);
1374 	return num_sectors / 2; /* kB for sysfs */
1375 }
1376 
1377 static struct super_type super_types[] = {
1378 	[0] = {
1379 		.name	= "0.90.0",
1380 		.owner	= THIS_MODULE,
1381 		.load_super	    = super_90_load,
1382 		.validate_super	    = super_90_validate,
1383 		.sync_super	    = super_90_sync,
1384 		.rdev_size_change   = super_90_rdev_size_change,
1385 	},
1386 	[1] = {
1387 		.name	= "md-1",
1388 		.owner	= THIS_MODULE,
1389 		.load_super	    = super_1_load,
1390 		.validate_super	    = super_1_validate,
1391 		.sync_super	    = super_1_sync,
1392 		.rdev_size_change   = super_1_rdev_size_change,
1393 	},
1394 };
1395 
1396 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1397 {
1398 	mdk_rdev_t *rdev, *rdev2;
1399 
1400 	rcu_read_lock();
1401 	rdev_for_each_rcu(rdev, mddev1)
1402 		rdev_for_each_rcu(rdev2, mddev2)
1403 			if (rdev->bdev->bd_contains ==
1404 			    rdev2->bdev->bd_contains) {
1405 				rcu_read_unlock();
1406 				return 1;
1407 			}
1408 	rcu_read_unlock();
1409 	return 0;
1410 }
1411 
1412 static LIST_HEAD(pending_raid_disks);
1413 
1414 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1415 {
1416 	char b[BDEVNAME_SIZE];
1417 	struct kobject *ko;
1418 	char *s;
1419 	int err;
1420 
1421 	if (rdev->mddev) {
1422 		MD_BUG();
1423 		return -EINVAL;
1424 	}
1425 
1426 	/* prevent duplicates */
1427 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1428 		return -EEXIST;
1429 
1430 	/* make sure rdev->size exceeds mddev->size */
1431 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1432 		if (mddev->pers) {
1433 			/* Cannot change size, so fail
1434 			 * If mddev->level <= 0, then we don't care
1435 			 * about aligning sizes (e.g. linear)
1436 			 */
1437 			if (mddev->level > 0)
1438 				return -ENOSPC;
1439 		} else
1440 			mddev->size = rdev->size;
1441 	}
1442 
1443 	/* Verify rdev->desc_nr is unique.
1444 	 * If it is -1, assign a free number, else
1445 	 * check number is not in use
1446 	 */
1447 	if (rdev->desc_nr < 0) {
1448 		int choice = 0;
1449 		if (mddev->pers) choice = mddev->raid_disks;
1450 		while (find_rdev_nr(mddev, choice))
1451 			choice++;
1452 		rdev->desc_nr = choice;
1453 	} else {
1454 		if (find_rdev_nr(mddev, rdev->desc_nr))
1455 			return -EBUSY;
1456 	}
1457 	bdevname(rdev->bdev,b);
1458 	while ( (s=strchr(b, '/')) != NULL)
1459 		*s = '!';
1460 
1461 	rdev->mddev = mddev;
1462 	printk(KERN_INFO "md: bind<%s>\n", b);
1463 
1464 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1465 		goto fail;
1466 
1467 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1468 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1469 		kobject_del(&rdev->kobj);
1470 		goto fail;
1471 	}
1472 	list_add_rcu(&rdev->same_set, &mddev->disks);
1473 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1474 	return 0;
1475 
1476  fail:
1477 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1478 	       b, mdname(mddev));
1479 	return err;
1480 }
1481 
1482 static void md_delayed_delete(struct work_struct *ws)
1483 {
1484 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1485 	kobject_del(&rdev->kobj);
1486 	kobject_put(&rdev->kobj);
1487 }
1488 
1489 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1490 {
1491 	char b[BDEVNAME_SIZE];
1492 	if (!rdev->mddev) {
1493 		MD_BUG();
1494 		return;
1495 	}
1496 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1497 	list_del_rcu(&rdev->same_set);
1498 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1499 	rdev->mddev = NULL;
1500 	sysfs_remove_link(&rdev->kobj, "block");
1501 
1502 	/* We need to delay this, otherwise we can deadlock when
1503 	 * writing to 'remove' to "dev/state".  We also need
1504 	 * to delay it due to rcu usage.
1505 	 */
1506 	synchronize_rcu();
1507 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1508 	kobject_get(&rdev->kobj);
1509 	schedule_work(&rdev->del_work);
1510 }
1511 
1512 /*
1513  * prevent the device from being mounted, repartitioned or
1514  * otherwise reused by a RAID array (or any other kernel
1515  * subsystem), by bd_claiming the device.
1516  */
1517 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1518 {
1519 	int err = 0;
1520 	struct block_device *bdev;
1521 	char b[BDEVNAME_SIZE];
1522 
1523 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1524 	if (IS_ERR(bdev)) {
1525 		printk(KERN_ERR "md: could not open %s.\n",
1526 			__bdevname(dev, b));
1527 		return PTR_ERR(bdev);
1528 	}
1529 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1530 	if (err) {
1531 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1532 			bdevname(bdev, b));
1533 		blkdev_put(bdev);
1534 		return err;
1535 	}
1536 	if (!shared)
1537 		set_bit(AllReserved, &rdev->flags);
1538 	rdev->bdev = bdev;
1539 	return err;
1540 }
1541 
1542 static void unlock_rdev(mdk_rdev_t *rdev)
1543 {
1544 	struct block_device *bdev = rdev->bdev;
1545 	rdev->bdev = NULL;
1546 	if (!bdev)
1547 		MD_BUG();
1548 	bd_release(bdev);
1549 	blkdev_put(bdev);
1550 }
1551 
1552 void md_autodetect_dev(dev_t dev);
1553 
1554 static void export_rdev(mdk_rdev_t * rdev)
1555 {
1556 	char b[BDEVNAME_SIZE];
1557 	printk(KERN_INFO "md: export_rdev(%s)\n",
1558 		bdevname(rdev->bdev,b));
1559 	if (rdev->mddev)
1560 		MD_BUG();
1561 	free_disk_sb(rdev);
1562 #ifndef MODULE
1563 	if (test_bit(AutoDetected, &rdev->flags))
1564 		md_autodetect_dev(rdev->bdev->bd_dev);
1565 #endif
1566 	unlock_rdev(rdev);
1567 	kobject_put(&rdev->kobj);
1568 }
1569 
1570 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1571 {
1572 	unbind_rdev_from_array(rdev);
1573 	export_rdev(rdev);
1574 }
1575 
1576 static void export_array(mddev_t *mddev)
1577 {
1578 	struct list_head *tmp;
1579 	mdk_rdev_t *rdev;
1580 
1581 	rdev_for_each(rdev, tmp, mddev) {
1582 		if (!rdev->mddev) {
1583 			MD_BUG();
1584 			continue;
1585 		}
1586 		kick_rdev_from_array(rdev);
1587 	}
1588 	if (!list_empty(&mddev->disks))
1589 		MD_BUG();
1590 	mddev->raid_disks = 0;
1591 	mddev->major_version = 0;
1592 }
1593 
1594 static void print_desc(mdp_disk_t *desc)
1595 {
1596 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1597 		desc->major,desc->minor,desc->raid_disk,desc->state);
1598 }
1599 
1600 static void print_sb(mdp_super_t *sb)
1601 {
1602 	int i;
1603 
1604 	printk(KERN_INFO
1605 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1606 		sb->major_version, sb->minor_version, sb->patch_version,
1607 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1608 		sb->ctime);
1609 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1610 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1611 		sb->md_minor, sb->layout, sb->chunk_size);
1612 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1613 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1614 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1615 		sb->failed_disks, sb->spare_disks,
1616 		sb->sb_csum, (unsigned long)sb->events_lo);
1617 
1618 	printk(KERN_INFO);
1619 	for (i = 0; i < MD_SB_DISKS; i++) {
1620 		mdp_disk_t *desc;
1621 
1622 		desc = sb->disks + i;
1623 		if (desc->number || desc->major || desc->minor ||
1624 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1625 			printk("     D %2d: ", i);
1626 			print_desc(desc);
1627 		}
1628 	}
1629 	printk(KERN_INFO "md:     THIS: ");
1630 	print_desc(&sb->this_disk);
1631 
1632 }
1633 
1634 static void print_rdev(mdk_rdev_t *rdev)
1635 {
1636 	char b[BDEVNAME_SIZE];
1637 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1638 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1639 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1640 	        rdev->desc_nr);
1641 	if (rdev->sb_loaded) {
1642 		printk(KERN_INFO "md: rdev superblock:\n");
1643 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1644 	} else
1645 		printk(KERN_INFO "md: no rdev superblock!\n");
1646 }
1647 
1648 static void md_print_devices(void)
1649 {
1650 	struct list_head *tmp, *tmp2;
1651 	mdk_rdev_t *rdev;
1652 	mddev_t *mddev;
1653 	char b[BDEVNAME_SIZE];
1654 
1655 	printk("\n");
1656 	printk("md:	**********************************\n");
1657 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1658 	printk("md:	**********************************\n");
1659 	for_each_mddev(mddev, tmp) {
1660 
1661 		if (mddev->bitmap)
1662 			bitmap_print_sb(mddev->bitmap);
1663 		else
1664 			printk("%s: ", mdname(mddev));
1665 		rdev_for_each(rdev, tmp2, mddev)
1666 			printk("<%s>", bdevname(rdev->bdev,b));
1667 		printk("\n");
1668 
1669 		rdev_for_each(rdev, tmp2, mddev)
1670 			print_rdev(rdev);
1671 	}
1672 	printk("md:	**********************************\n");
1673 	printk("\n");
1674 }
1675 
1676 
1677 static void sync_sbs(mddev_t * mddev, int nospares)
1678 {
1679 	/* Update each superblock (in-memory image), but
1680 	 * if we are allowed to, skip spares which already
1681 	 * have the right event counter, or have one earlier
1682 	 * (which would mean they aren't being marked as dirty
1683 	 * with the rest of the array)
1684 	 */
1685 	mdk_rdev_t *rdev;
1686 	struct list_head *tmp;
1687 
1688 	rdev_for_each(rdev, tmp, mddev) {
1689 		if (rdev->sb_events == mddev->events ||
1690 		    (nospares &&
1691 		     rdev->raid_disk < 0 &&
1692 		     (rdev->sb_events&1)==0 &&
1693 		     rdev->sb_events+1 == mddev->events)) {
1694 			/* Don't update this superblock */
1695 			rdev->sb_loaded = 2;
1696 		} else {
1697 			super_types[mddev->major_version].
1698 				sync_super(mddev, rdev);
1699 			rdev->sb_loaded = 1;
1700 		}
1701 	}
1702 }
1703 
1704 static void md_update_sb(mddev_t * mddev, int force_change)
1705 {
1706 	struct list_head *tmp;
1707 	mdk_rdev_t *rdev;
1708 	int sync_req;
1709 	int nospares = 0;
1710 
1711 	if (mddev->external)
1712 		return;
1713 repeat:
1714 	spin_lock_irq(&mddev->write_lock);
1715 
1716 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1717 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1718 		force_change = 1;
1719 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1720 		/* just a clean<-> dirty transition, possibly leave spares alone,
1721 		 * though if events isn't the right even/odd, we will have to do
1722 		 * spares after all
1723 		 */
1724 		nospares = 1;
1725 	if (force_change)
1726 		nospares = 0;
1727 	if (mddev->degraded)
1728 		/* If the array is degraded, then skipping spares is both
1729 		 * dangerous and fairly pointless.
1730 		 * Dangerous because a device that was removed from the array
1731 		 * might have a event_count that still looks up-to-date,
1732 		 * so it can be re-added without a resync.
1733 		 * Pointless because if there are any spares to skip,
1734 		 * then a recovery will happen and soon that array won't
1735 		 * be degraded any more and the spare can go back to sleep then.
1736 		 */
1737 		nospares = 0;
1738 
1739 	sync_req = mddev->in_sync;
1740 	mddev->utime = get_seconds();
1741 
1742 	/* If this is just a dirty<->clean transition, and the array is clean
1743 	 * and 'events' is odd, we can roll back to the previous clean state */
1744 	if (nospares
1745 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1746 	    && (mddev->events & 1)
1747 	    && mddev->events != 1)
1748 		mddev->events--;
1749 	else {
1750 		/* otherwise we have to go forward and ... */
1751 		mddev->events ++;
1752 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1753 			/* .. if the array isn't clean, insist on an odd 'events' */
1754 			if ((mddev->events&1)==0) {
1755 				mddev->events++;
1756 				nospares = 0;
1757 			}
1758 		} else {
1759 			/* otherwise insist on an even 'events' (for clean states) */
1760 			if ((mddev->events&1)) {
1761 				mddev->events++;
1762 				nospares = 0;
1763 			}
1764 		}
1765 	}
1766 
1767 	if (!mddev->events) {
1768 		/*
1769 		 * oops, this 64-bit counter should never wrap.
1770 		 * Either we are in around ~1 trillion A.C., assuming
1771 		 * 1 reboot per second, or we have a bug:
1772 		 */
1773 		MD_BUG();
1774 		mddev->events --;
1775 	}
1776 
1777 	/*
1778 	 * do not write anything to disk if using
1779 	 * nonpersistent superblocks
1780 	 */
1781 	if (!mddev->persistent) {
1782 		if (!mddev->external)
1783 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1784 
1785 		spin_unlock_irq(&mddev->write_lock);
1786 		wake_up(&mddev->sb_wait);
1787 		return;
1788 	}
1789 	sync_sbs(mddev, nospares);
1790 	spin_unlock_irq(&mddev->write_lock);
1791 
1792 	dprintk(KERN_INFO
1793 		"md: updating %s RAID superblock on device (in sync %d)\n",
1794 		mdname(mddev),mddev->in_sync);
1795 
1796 	bitmap_update_sb(mddev->bitmap);
1797 	rdev_for_each(rdev, tmp, mddev) {
1798 		char b[BDEVNAME_SIZE];
1799 		dprintk(KERN_INFO "md: ");
1800 		if (rdev->sb_loaded != 1)
1801 			continue; /* no noise on spare devices */
1802 		if (test_bit(Faulty, &rdev->flags))
1803 			dprintk("(skipping faulty ");
1804 
1805 		dprintk("%s ", bdevname(rdev->bdev,b));
1806 		if (!test_bit(Faulty, &rdev->flags)) {
1807 			md_super_write(mddev,rdev,
1808 				       rdev->sb_start, rdev->sb_size,
1809 				       rdev->sb_page);
1810 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1811 				bdevname(rdev->bdev,b),
1812 				(unsigned long long)rdev->sb_start);
1813 			rdev->sb_events = mddev->events;
1814 
1815 		} else
1816 			dprintk(")\n");
1817 		if (mddev->level == LEVEL_MULTIPATH)
1818 			/* only need to write one superblock... */
1819 			break;
1820 	}
1821 	md_super_wait(mddev);
1822 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1823 
1824 	spin_lock_irq(&mddev->write_lock);
1825 	if (mddev->in_sync != sync_req ||
1826 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1827 		/* have to write it out again */
1828 		spin_unlock_irq(&mddev->write_lock);
1829 		goto repeat;
1830 	}
1831 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1832 	spin_unlock_irq(&mddev->write_lock);
1833 	wake_up(&mddev->sb_wait);
1834 
1835 }
1836 
1837 /* words written to sysfs files may, or may not, be \n terminated.
1838  * We want to accept with case. For this we use cmd_match.
1839  */
1840 static int cmd_match(const char *cmd, const char *str)
1841 {
1842 	/* See if cmd, written into a sysfs file, matches
1843 	 * str.  They must either be the same, or cmd can
1844 	 * have a trailing newline
1845 	 */
1846 	while (*cmd && *str && *cmd == *str) {
1847 		cmd++;
1848 		str++;
1849 	}
1850 	if (*cmd == '\n')
1851 		cmd++;
1852 	if (*str || *cmd)
1853 		return 0;
1854 	return 1;
1855 }
1856 
1857 struct rdev_sysfs_entry {
1858 	struct attribute attr;
1859 	ssize_t (*show)(mdk_rdev_t *, char *);
1860 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1861 };
1862 
1863 static ssize_t
1864 state_show(mdk_rdev_t *rdev, char *page)
1865 {
1866 	char *sep = "";
1867 	size_t len = 0;
1868 
1869 	if (test_bit(Faulty, &rdev->flags)) {
1870 		len+= sprintf(page+len, "%sfaulty",sep);
1871 		sep = ",";
1872 	}
1873 	if (test_bit(In_sync, &rdev->flags)) {
1874 		len += sprintf(page+len, "%sin_sync",sep);
1875 		sep = ",";
1876 	}
1877 	if (test_bit(WriteMostly, &rdev->flags)) {
1878 		len += sprintf(page+len, "%swrite_mostly",sep);
1879 		sep = ",";
1880 	}
1881 	if (test_bit(Blocked, &rdev->flags)) {
1882 		len += sprintf(page+len, "%sblocked", sep);
1883 		sep = ",";
1884 	}
1885 	if (!test_bit(Faulty, &rdev->flags) &&
1886 	    !test_bit(In_sync, &rdev->flags)) {
1887 		len += sprintf(page+len, "%sspare", sep);
1888 		sep = ",";
1889 	}
1890 	return len+sprintf(page+len, "\n");
1891 }
1892 
1893 static ssize_t
1894 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1895 {
1896 	/* can write
1897 	 *  faulty  - simulates and error
1898 	 *  remove  - disconnects the device
1899 	 *  writemostly - sets write_mostly
1900 	 *  -writemostly - clears write_mostly
1901 	 *  blocked - sets the Blocked flag
1902 	 *  -blocked - clears the Blocked flag
1903 	 */
1904 	int err = -EINVAL;
1905 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1906 		md_error(rdev->mddev, rdev);
1907 		err = 0;
1908 	} else if (cmd_match(buf, "remove")) {
1909 		if (rdev->raid_disk >= 0)
1910 			err = -EBUSY;
1911 		else {
1912 			mddev_t *mddev = rdev->mddev;
1913 			kick_rdev_from_array(rdev);
1914 			if (mddev->pers)
1915 				md_update_sb(mddev, 1);
1916 			md_new_event(mddev);
1917 			err = 0;
1918 		}
1919 	} else if (cmd_match(buf, "writemostly")) {
1920 		set_bit(WriteMostly, &rdev->flags);
1921 		err = 0;
1922 	} else if (cmd_match(buf, "-writemostly")) {
1923 		clear_bit(WriteMostly, &rdev->flags);
1924 		err = 0;
1925 	} else if (cmd_match(buf, "blocked")) {
1926 		set_bit(Blocked, &rdev->flags);
1927 		err = 0;
1928 	} else if (cmd_match(buf, "-blocked")) {
1929 		clear_bit(Blocked, &rdev->flags);
1930 		wake_up(&rdev->blocked_wait);
1931 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
1932 		md_wakeup_thread(rdev->mddev->thread);
1933 
1934 		err = 0;
1935 	}
1936 	if (!err)
1937 		sysfs_notify(&rdev->kobj, NULL, "state");
1938 	return err ? err : len;
1939 }
1940 static struct rdev_sysfs_entry rdev_state =
1941 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1942 
1943 static ssize_t
1944 errors_show(mdk_rdev_t *rdev, char *page)
1945 {
1946 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1947 }
1948 
1949 static ssize_t
1950 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1951 {
1952 	char *e;
1953 	unsigned long n = simple_strtoul(buf, &e, 10);
1954 	if (*buf && (*e == 0 || *e == '\n')) {
1955 		atomic_set(&rdev->corrected_errors, n);
1956 		return len;
1957 	}
1958 	return -EINVAL;
1959 }
1960 static struct rdev_sysfs_entry rdev_errors =
1961 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1962 
1963 static ssize_t
1964 slot_show(mdk_rdev_t *rdev, char *page)
1965 {
1966 	if (rdev->raid_disk < 0)
1967 		return sprintf(page, "none\n");
1968 	else
1969 		return sprintf(page, "%d\n", rdev->raid_disk);
1970 }
1971 
1972 static ssize_t
1973 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1974 {
1975 	char *e;
1976 	int err;
1977 	char nm[20];
1978 	int slot = simple_strtoul(buf, &e, 10);
1979 	if (strncmp(buf, "none", 4)==0)
1980 		slot = -1;
1981 	else if (e==buf || (*e && *e!= '\n'))
1982 		return -EINVAL;
1983 	if (rdev->mddev->pers && slot == -1) {
1984 		/* Setting 'slot' on an active array requires also
1985 		 * updating the 'rd%d' link, and communicating
1986 		 * with the personality with ->hot_*_disk.
1987 		 * For now we only support removing
1988 		 * failed/spare devices.  This normally happens automatically,
1989 		 * but not when the metadata is externally managed.
1990 		 */
1991 		if (rdev->raid_disk == -1)
1992 			return -EEXIST;
1993 		/* personality does all needed checks */
1994 		if (rdev->mddev->pers->hot_add_disk == NULL)
1995 			return -EINVAL;
1996 		err = rdev->mddev->pers->
1997 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
1998 		if (err)
1999 			return err;
2000 		sprintf(nm, "rd%d", rdev->raid_disk);
2001 		sysfs_remove_link(&rdev->mddev->kobj, nm);
2002 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2003 		md_wakeup_thread(rdev->mddev->thread);
2004 	} else if (rdev->mddev->pers) {
2005 		mdk_rdev_t *rdev2;
2006 		struct list_head *tmp;
2007 		/* Activating a spare .. or possibly reactivating
2008 		 * if we every get bitmaps working here.
2009 		 */
2010 
2011 		if (rdev->raid_disk != -1)
2012 			return -EBUSY;
2013 
2014 		if (rdev->mddev->pers->hot_add_disk == NULL)
2015 			return -EINVAL;
2016 
2017 		rdev_for_each(rdev2, tmp, rdev->mddev)
2018 			if (rdev2->raid_disk == slot)
2019 				return -EEXIST;
2020 
2021 		rdev->raid_disk = slot;
2022 		if (test_bit(In_sync, &rdev->flags))
2023 			rdev->saved_raid_disk = slot;
2024 		else
2025 			rdev->saved_raid_disk = -1;
2026 		err = rdev->mddev->pers->
2027 			hot_add_disk(rdev->mddev, rdev);
2028 		if (err) {
2029 			rdev->raid_disk = -1;
2030 			return err;
2031 		} else
2032 			sysfs_notify(&rdev->kobj, NULL, "state");
2033 		sprintf(nm, "rd%d", rdev->raid_disk);
2034 		if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2035 			printk(KERN_WARNING
2036 			       "md: cannot register "
2037 			       "%s for %s\n",
2038 			       nm, mdname(rdev->mddev));
2039 
2040 		/* don't wakeup anyone, leave that to userspace. */
2041 	} else {
2042 		if (slot >= rdev->mddev->raid_disks)
2043 			return -ENOSPC;
2044 		rdev->raid_disk = slot;
2045 		/* assume it is working */
2046 		clear_bit(Faulty, &rdev->flags);
2047 		clear_bit(WriteMostly, &rdev->flags);
2048 		set_bit(In_sync, &rdev->flags);
2049 		sysfs_notify(&rdev->kobj, NULL, "state");
2050 	}
2051 	return len;
2052 }
2053 
2054 
2055 static struct rdev_sysfs_entry rdev_slot =
2056 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2057 
2058 static ssize_t
2059 offset_show(mdk_rdev_t *rdev, char *page)
2060 {
2061 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2062 }
2063 
2064 static ssize_t
2065 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2066 {
2067 	char *e;
2068 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2069 	if (e==buf || (*e && *e != '\n'))
2070 		return -EINVAL;
2071 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2072 		return -EBUSY;
2073 	if (rdev->size && rdev->mddev->external)
2074 		/* Must set offset before size, so overlap checks
2075 		 * can be sane */
2076 		return -EBUSY;
2077 	rdev->data_offset = offset;
2078 	return len;
2079 }
2080 
2081 static struct rdev_sysfs_entry rdev_offset =
2082 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2083 
2084 static ssize_t
2085 rdev_size_show(mdk_rdev_t *rdev, char *page)
2086 {
2087 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
2088 }
2089 
2090 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2091 {
2092 	/* check if two start/length pairs overlap */
2093 	if (s1+l1 <= s2)
2094 		return 0;
2095 	if (s2+l2 <= s1)
2096 		return 0;
2097 	return 1;
2098 }
2099 
2100 static ssize_t
2101 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2102 {
2103 	unsigned long long size;
2104 	unsigned long long oldsize = rdev->size;
2105 	mddev_t *my_mddev = rdev->mddev;
2106 
2107 	if (strict_strtoull(buf, 10, &size) < 0)
2108 		return -EINVAL;
2109 	if (size < my_mddev->size)
2110 		return -EINVAL;
2111 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2112 		if (my_mddev->persistent) {
2113 			size = super_types[my_mddev->major_version].
2114 				rdev_size_change(rdev, size * 2);
2115 			if (!size)
2116 				return -EBUSY;
2117 		} else if (!size) {
2118 			size = (rdev->bdev->bd_inode->i_size >> 10);
2119 			size -= rdev->data_offset/2;
2120 		}
2121 		if (size < my_mddev->size)
2122 			return -EINVAL; /* component must fit device */
2123 	}
2124 
2125 	rdev->size = size;
2126 	if (size > oldsize && my_mddev->external) {
2127 		/* need to check that all other rdevs with the same ->bdev
2128 		 * do not overlap.  We need to unlock the mddev to avoid
2129 		 * a deadlock.  We have already changed rdev->size, and if
2130 		 * we have to change it back, we will have the lock again.
2131 		 */
2132 		mddev_t *mddev;
2133 		int overlap = 0;
2134 		struct list_head *tmp, *tmp2;
2135 
2136 		mddev_unlock(my_mddev);
2137 		for_each_mddev(mddev, tmp) {
2138 			mdk_rdev_t *rdev2;
2139 
2140 			mddev_lock(mddev);
2141 			rdev_for_each(rdev2, tmp2, mddev)
2142 				if (test_bit(AllReserved, &rdev2->flags) ||
2143 				    (rdev->bdev == rdev2->bdev &&
2144 				     rdev != rdev2 &&
2145 				     overlaps(rdev->data_offset, rdev->size * 2,
2146 					      rdev2->data_offset,
2147 					      rdev2->size * 2))) {
2148 					overlap = 1;
2149 					break;
2150 				}
2151 			mddev_unlock(mddev);
2152 			if (overlap) {
2153 				mddev_put(mddev);
2154 				break;
2155 			}
2156 		}
2157 		mddev_lock(my_mddev);
2158 		if (overlap) {
2159 			/* Someone else could have slipped in a size
2160 			 * change here, but doing so is just silly.
2161 			 * We put oldsize back because we *know* it is
2162 			 * safe, and trust userspace not to race with
2163 			 * itself
2164 			 */
2165 			rdev->size = oldsize;
2166 			return -EBUSY;
2167 		}
2168 	}
2169 	return len;
2170 }
2171 
2172 static struct rdev_sysfs_entry rdev_size =
2173 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2174 
2175 static struct attribute *rdev_default_attrs[] = {
2176 	&rdev_state.attr,
2177 	&rdev_errors.attr,
2178 	&rdev_slot.attr,
2179 	&rdev_offset.attr,
2180 	&rdev_size.attr,
2181 	NULL,
2182 };
2183 static ssize_t
2184 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2185 {
2186 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2187 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2188 	mddev_t *mddev = rdev->mddev;
2189 	ssize_t rv;
2190 
2191 	if (!entry->show)
2192 		return -EIO;
2193 
2194 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2195 	if (!rv) {
2196 		if (rdev->mddev == NULL)
2197 			rv = -EBUSY;
2198 		else
2199 			rv = entry->show(rdev, page);
2200 		mddev_unlock(mddev);
2201 	}
2202 	return rv;
2203 }
2204 
2205 static ssize_t
2206 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2207 	      const char *page, size_t length)
2208 {
2209 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2210 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2211 	ssize_t rv;
2212 	mddev_t *mddev = rdev->mddev;
2213 
2214 	if (!entry->store)
2215 		return -EIO;
2216 	if (!capable(CAP_SYS_ADMIN))
2217 		return -EACCES;
2218 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2219 	if (!rv) {
2220 		if (rdev->mddev == NULL)
2221 			rv = -EBUSY;
2222 		else
2223 			rv = entry->store(rdev, page, length);
2224 		mddev_unlock(mddev);
2225 	}
2226 	return rv;
2227 }
2228 
2229 static void rdev_free(struct kobject *ko)
2230 {
2231 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2232 	kfree(rdev);
2233 }
2234 static struct sysfs_ops rdev_sysfs_ops = {
2235 	.show		= rdev_attr_show,
2236 	.store		= rdev_attr_store,
2237 };
2238 static struct kobj_type rdev_ktype = {
2239 	.release	= rdev_free,
2240 	.sysfs_ops	= &rdev_sysfs_ops,
2241 	.default_attrs	= rdev_default_attrs,
2242 };
2243 
2244 /*
2245  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2246  *
2247  * mark the device faulty if:
2248  *
2249  *   - the device is nonexistent (zero size)
2250  *   - the device has no valid superblock
2251  *
2252  * a faulty rdev _never_ has rdev->sb set.
2253  */
2254 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2255 {
2256 	char b[BDEVNAME_SIZE];
2257 	int err;
2258 	mdk_rdev_t *rdev;
2259 	sector_t size;
2260 
2261 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2262 	if (!rdev) {
2263 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2264 		return ERR_PTR(-ENOMEM);
2265 	}
2266 
2267 	if ((err = alloc_disk_sb(rdev)))
2268 		goto abort_free;
2269 
2270 	err = lock_rdev(rdev, newdev, super_format == -2);
2271 	if (err)
2272 		goto abort_free;
2273 
2274 	kobject_init(&rdev->kobj, &rdev_ktype);
2275 
2276 	rdev->desc_nr = -1;
2277 	rdev->saved_raid_disk = -1;
2278 	rdev->raid_disk = -1;
2279 	rdev->flags = 0;
2280 	rdev->data_offset = 0;
2281 	rdev->sb_events = 0;
2282 	atomic_set(&rdev->nr_pending, 0);
2283 	atomic_set(&rdev->read_errors, 0);
2284 	atomic_set(&rdev->corrected_errors, 0);
2285 
2286 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2287 	if (!size) {
2288 		printk(KERN_WARNING
2289 			"md: %s has zero or unknown size, marking faulty!\n",
2290 			bdevname(rdev->bdev,b));
2291 		err = -EINVAL;
2292 		goto abort_free;
2293 	}
2294 
2295 	if (super_format >= 0) {
2296 		err = super_types[super_format].
2297 			load_super(rdev, NULL, super_minor);
2298 		if (err == -EINVAL) {
2299 			printk(KERN_WARNING
2300 				"md: %s does not have a valid v%d.%d "
2301 			       "superblock, not importing!\n",
2302 				bdevname(rdev->bdev,b),
2303 			       super_format, super_minor);
2304 			goto abort_free;
2305 		}
2306 		if (err < 0) {
2307 			printk(KERN_WARNING
2308 				"md: could not read %s's sb, not importing!\n",
2309 				bdevname(rdev->bdev,b));
2310 			goto abort_free;
2311 		}
2312 	}
2313 
2314 	INIT_LIST_HEAD(&rdev->same_set);
2315 	init_waitqueue_head(&rdev->blocked_wait);
2316 
2317 	return rdev;
2318 
2319 abort_free:
2320 	if (rdev->sb_page) {
2321 		if (rdev->bdev)
2322 			unlock_rdev(rdev);
2323 		free_disk_sb(rdev);
2324 	}
2325 	kfree(rdev);
2326 	return ERR_PTR(err);
2327 }
2328 
2329 /*
2330  * Check a full RAID array for plausibility
2331  */
2332 
2333 
2334 static void analyze_sbs(mddev_t * mddev)
2335 {
2336 	int i;
2337 	struct list_head *tmp;
2338 	mdk_rdev_t *rdev, *freshest;
2339 	char b[BDEVNAME_SIZE];
2340 
2341 	freshest = NULL;
2342 	rdev_for_each(rdev, tmp, mddev)
2343 		switch (super_types[mddev->major_version].
2344 			load_super(rdev, freshest, mddev->minor_version)) {
2345 		case 1:
2346 			freshest = rdev;
2347 			break;
2348 		case 0:
2349 			break;
2350 		default:
2351 			printk( KERN_ERR \
2352 				"md: fatal superblock inconsistency in %s"
2353 				" -- removing from array\n",
2354 				bdevname(rdev->bdev,b));
2355 			kick_rdev_from_array(rdev);
2356 		}
2357 
2358 
2359 	super_types[mddev->major_version].
2360 		validate_super(mddev, freshest);
2361 
2362 	i = 0;
2363 	rdev_for_each(rdev, tmp, mddev) {
2364 		if (rdev != freshest)
2365 			if (super_types[mddev->major_version].
2366 			    validate_super(mddev, rdev)) {
2367 				printk(KERN_WARNING "md: kicking non-fresh %s"
2368 					" from array!\n",
2369 					bdevname(rdev->bdev,b));
2370 				kick_rdev_from_array(rdev);
2371 				continue;
2372 			}
2373 		if (mddev->level == LEVEL_MULTIPATH) {
2374 			rdev->desc_nr = i++;
2375 			rdev->raid_disk = rdev->desc_nr;
2376 			set_bit(In_sync, &rdev->flags);
2377 		} else if (rdev->raid_disk >= mddev->raid_disks) {
2378 			rdev->raid_disk = -1;
2379 			clear_bit(In_sync, &rdev->flags);
2380 		}
2381 	}
2382 
2383 
2384 
2385 	if (mddev->recovery_cp != MaxSector &&
2386 	    mddev->level >= 1)
2387 		printk(KERN_ERR "md: %s: raid array is not clean"
2388 		       " -- starting background reconstruction\n",
2389 		       mdname(mddev));
2390 
2391 }
2392 
2393 static void md_safemode_timeout(unsigned long data);
2394 
2395 static ssize_t
2396 safe_delay_show(mddev_t *mddev, char *page)
2397 {
2398 	int msec = (mddev->safemode_delay*1000)/HZ;
2399 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2400 }
2401 static ssize_t
2402 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2403 {
2404 	int scale=1;
2405 	int dot=0;
2406 	int i;
2407 	unsigned long msec;
2408 	char buf[30];
2409 	char *e;
2410 	/* remove a period, and count digits after it */
2411 	if (len >= sizeof(buf))
2412 		return -EINVAL;
2413 	strlcpy(buf, cbuf, len);
2414 	buf[len] = 0;
2415 	for (i=0; i<len; i++) {
2416 		if (dot) {
2417 			if (isdigit(buf[i])) {
2418 				buf[i-1] = buf[i];
2419 				scale *= 10;
2420 			}
2421 			buf[i] = 0;
2422 		} else if (buf[i] == '.') {
2423 			dot=1;
2424 			buf[i] = 0;
2425 		}
2426 	}
2427 	msec = simple_strtoul(buf, &e, 10);
2428 	if (e == buf || (*e && *e != '\n'))
2429 		return -EINVAL;
2430 	msec = (msec * 1000) / scale;
2431 	if (msec == 0)
2432 		mddev->safemode_delay = 0;
2433 	else {
2434 		unsigned long old_delay = mddev->safemode_delay;
2435 		mddev->safemode_delay = (msec*HZ)/1000;
2436 		if (mddev->safemode_delay == 0)
2437 			mddev->safemode_delay = 1;
2438 		if (mddev->safemode_delay < old_delay)
2439 			md_safemode_timeout((unsigned long)mddev);
2440 	}
2441 	return len;
2442 }
2443 static struct md_sysfs_entry md_safe_delay =
2444 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2445 
2446 static ssize_t
2447 level_show(mddev_t *mddev, char *page)
2448 {
2449 	struct mdk_personality *p = mddev->pers;
2450 	if (p)
2451 		return sprintf(page, "%s\n", p->name);
2452 	else if (mddev->clevel[0])
2453 		return sprintf(page, "%s\n", mddev->clevel);
2454 	else if (mddev->level != LEVEL_NONE)
2455 		return sprintf(page, "%d\n", mddev->level);
2456 	else
2457 		return 0;
2458 }
2459 
2460 static ssize_t
2461 level_store(mddev_t *mddev, const char *buf, size_t len)
2462 {
2463 	ssize_t rv = len;
2464 	if (mddev->pers)
2465 		return -EBUSY;
2466 	if (len == 0)
2467 		return 0;
2468 	if (len >= sizeof(mddev->clevel))
2469 		return -ENOSPC;
2470 	strncpy(mddev->clevel, buf, len);
2471 	if (mddev->clevel[len-1] == '\n')
2472 		len--;
2473 	mddev->clevel[len] = 0;
2474 	mddev->level = LEVEL_NONE;
2475 	return rv;
2476 }
2477 
2478 static struct md_sysfs_entry md_level =
2479 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2480 
2481 
2482 static ssize_t
2483 layout_show(mddev_t *mddev, char *page)
2484 {
2485 	/* just a number, not meaningful for all levels */
2486 	if (mddev->reshape_position != MaxSector &&
2487 	    mddev->layout != mddev->new_layout)
2488 		return sprintf(page, "%d (%d)\n",
2489 			       mddev->new_layout, mddev->layout);
2490 	return sprintf(page, "%d\n", mddev->layout);
2491 }
2492 
2493 static ssize_t
2494 layout_store(mddev_t *mddev, const char *buf, size_t len)
2495 {
2496 	char *e;
2497 	unsigned long n = simple_strtoul(buf, &e, 10);
2498 
2499 	if (!*buf || (*e && *e != '\n'))
2500 		return -EINVAL;
2501 
2502 	if (mddev->pers)
2503 		return -EBUSY;
2504 	if (mddev->reshape_position != MaxSector)
2505 		mddev->new_layout = n;
2506 	else
2507 		mddev->layout = n;
2508 	return len;
2509 }
2510 static struct md_sysfs_entry md_layout =
2511 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2512 
2513 
2514 static ssize_t
2515 raid_disks_show(mddev_t *mddev, char *page)
2516 {
2517 	if (mddev->raid_disks == 0)
2518 		return 0;
2519 	if (mddev->reshape_position != MaxSector &&
2520 	    mddev->delta_disks != 0)
2521 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2522 			       mddev->raid_disks - mddev->delta_disks);
2523 	return sprintf(page, "%d\n", mddev->raid_disks);
2524 }
2525 
2526 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2527 
2528 static ssize_t
2529 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2530 {
2531 	char *e;
2532 	int rv = 0;
2533 	unsigned long n = simple_strtoul(buf, &e, 10);
2534 
2535 	if (!*buf || (*e && *e != '\n'))
2536 		return -EINVAL;
2537 
2538 	if (mddev->pers)
2539 		rv = update_raid_disks(mddev, n);
2540 	else if (mddev->reshape_position != MaxSector) {
2541 		int olddisks = mddev->raid_disks - mddev->delta_disks;
2542 		mddev->delta_disks = n - olddisks;
2543 		mddev->raid_disks = n;
2544 	} else
2545 		mddev->raid_disks = n;
2546 	return rv ? rv : len;
2547 }
2548 static struct md_sysfs_entry md_raid_disks =
2549 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2550 
2551 static ssize_t
2552 chunk_size_show(mddev_t *mddev, char *page)
2553 {
2554 	if (mddev->reshape_position != MaxSector &&
2555 	    mddev->chunk_size != mddev->new_chunk)
2556 		return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2557 			       mddev->chunk_size);
2558 	return sprintf(page, "%d\n", mddev->chunk_size);
2559 }
2560 
2561 static ssize_t
2562 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2563 {
2564 	/* can only set chunk_size if array is not yet active */
2565 	char *e;
2566 	unsigned long n = simple_strtoul(buf, &e, 10);
2567 
2568 	if (!*buf || (*e && *e != '\n'))
2569 		return -EINVAL;
2570 
2571 	if (mddev->pers)
2572 		return -EBUSY;
2573 	else if (mddev->reshape_position != MaxSector)
2574 		mddev->new_chunk = n;
2575 	else
2576 		mddev->chunk_size = n;
2577 	return len;
2578 }
2579 static struct md_sysfs_entry md_chunk_size =
2580 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2581 
2582 static ssize_t
2583 resync_start_show(mddev_t *mddev, char *page)
2584 {
2585 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2586 }
2587 
2588 static ssize_t
2589 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2590 {
2591 	char *e;
2592 	unsigned long long n = simple_strtoull(buf, &e, 10);
2593 
2594 	if (mddev->pers)
2595 		return -EBUSY;
2596 	if (!*buf || (*e && *e != '\n'))
2597 		return -EINVAL;
2598 
2599 	mddev->recovery_cp = n;
2600 	return len;
2601 }
2602 static struct md_sysfs_entry md_resync_start =
2603 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2604 
2605 /*
2606  * The array state can be:
2607  *
2608  * clear
2609  *     No devices, no size, no level
2610  *     Equivalent to STOP_ARRAY ioctl
2611  * inactive
2612  *     May have some settings, but array is not active
2613  *        all IO results in error
2614  *     When written, doesn't tear down array, but just stops it
2615  * suspended (not supported yet)
2616  *     All IO requests will block. The array can be reconfigured.
2617  *     Writing this, if accepted, will block until array is quiescent
2618  * readonly
2619  *     no resync can happen.  no superblocks get written.
2620  *     write requests fail
2621  * read-auto
2622  *     like readonly, but behaves like 'clean' on a write request.
2623  *
2624  * clean - no pending writes, but otherwise active.
2625  *     When written to inactive array, starts without resync
2626  *     If a write request arrives then
2627  *       if metadata is known, mark 'dirty' and switch to 'active'.
2628  *       if not known, block and switch to write-pending
2629  *     If written to an active array that has pending writes, then fails.
2630  * active
2631  *     fully active: IO and resync can be happening.
2632  *     When written to inactive array, starts with resync
2633  *
2634  * write-pending
2635  *     clean, but writes are blocked waiting for 'active' to be written.
2636  *
2637  * active-idle
2638  *     like active, but no writes have been seen for a while (100msec).
2639  *
2640  */
2641 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2642 		   write_pending, active_idle, bad_word};
2643 static char *array_states[] = {
2644 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2645 	"write-pending", "active-idle", NULL };
2646 
2647 static int match_word(const char *word, char **list)
2648 {
2649 	int n;
2650 	for (n=0; list[n]; n++)
2651 		if (cmd_match(word, list[n]))
2652 			break;
2653 	return n;
2654 }
2655 
2656 static ssize_t
2657 array_state_show(mddev_t *mddev, char *page)
2658 {
2659 	enum array_state st = inactive;
2660 
2661 	if (mddev->pers)
2662 		switch(mddev->ro) {
2663 		case 1:
2664 			st = readonly;
2665 			break;
2666 		case 2:
2667 			st = read_auto;
2668 			break;
2669 		case 0:
2670 			if (mddev->in_sync)
2671 				st = clean;
2672 			else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2673 				st = write_pending;
2674 			else if (mddev->safemode)
2675 				st = active_idle;
2676 			else
2677 				st = active;
2678 		}
2679 	else {
2680 		if (list_empty(&mddev->disks) &&
2681 		    mddev->raid_disks == 0 &&
2682 		    mddev->size == 0)
2683 			st = clear;
2684 		else
2685 			st = inactive;
2686 	}
2687 	return sprintf(page, "%s\n", array_states[st]);
2688 }
2689 
2690 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
2691 static int do_md_run(mddev_t * mddev);
2692 static int restart_array(mddev_t *mddev);
2693 
2694 static ssize_t
2695 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2696 {
2697 	int err = -EINVAL;
2698 	enum array_state st = match_word(buf, array_states);
2699 	switch(st) {
2700 	case bad_word:
2701 		break;
2702 	case clear:
2703 		/* stopping an active array */
2704 		if (atomic_read(&mddev->openers) > 0)
2705 			return -EBUSY;
2706 		err = do_md_stop(mddev, 0, 0);
2707 		break;
2708 	case inactive:
2709 		/* stopping an active array */
2710 		if (mddev->pers) {
2711 			if (atomic_read(&mddev->openers) > 0)
2712 				return -EBUSY;
2713 			err = do_md_stop(mddev, 2, 0);
2714 		} else
2715 			err = 0; /* already inactive */
2716 		break;
2717 	case suspended:
2718 		break; /* not supported yet */
2719 	case readonly:
2720 		if (mddev->pers)
2721 			err = do_md_stop(mddev, 1, 0);
2722 		else {
2723 			mddev->ro = 1;
2724 			set_disk_ro(mddev->gendisk, 1);
2725 			err = do_md_run(mddev);
2726 		}
2727 		break;
2728 	case read_auto:
2729 		if (mddev->pers) {
2730 			if (mddev->ro != 1)
2731 				err = do_md_stop(mddev, 1, 0);
2732 			else
2733 				err = restart_array(mddev);
2734 			if (err == 0) {
2735 				mddev->ro = 2;
2736 				set_disk_ro(mddev->gendisk, 0);
2737 			}
2738 		} else {
2739 			mddev->ro = 2;
2740 			err = do_md_run(mddev);
2741 		}
2742 		break;
2743 	case clean:
2744 		if (mddev->pers) {
2745 			restart_array(mddev);
2746 			spin_lock_irq(&mddev->write_lock);
2747 			if (atomic_read(&mddev->writes_pending) == 0) {
2748 				if (mddev->in_sync == 0) {
2749 					mddev->in_sync = 1;
2750 					if (mddev->safemode == 1)
2751 						mddev->safemode = 0;
2752 					if (mddev->persistent)
2753 						set_bit(MD_CHANGE_CLEAN,
2754 							&mddev->flags);
2755 				}
2756 				err = 0;
2757 			} else
2758 				err = -EBUSY;
2759 			spin_unlock_irq(&mddev->write_lock);
2760 		} else {
2761 			mddev->ro = 0;
2762 			mddev->recovery_cp = MaxSector;
2763 			err = do_md_run(mddev);
2764 		}
2765 		break;
2766 	case active:
2767 		if (mddev->pers) {
2768 			restart_array(mddev);
2769 			if (mddev->external)
2770 				clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2771 			wake_up(&mddev->sb_wait);
2772 			err = 0;
2773 		} else {
2774 			mddev->ro = 0;
2775 			set_disk_ro(mddev->gendisk, 0);
2776 			err = do_md_run(mddev);
2777 		}
2778 		break;
2779 	case write_pending:
2780 	case active_idle:
2781 		/* these cannot be set */
2782 		break;
2783 	}
2784 	if (err)
2785 		return err;
2786 	else {
2787 		sysfs_notify(&mddev->kobj, NULL, "array_state");
2788 		return len;
2789 	}
2790 }
2791 static struct md_sysfs_entry md_array_state =
2792 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2793 
2794 static ssize_t
2795 null_show(mddev_t *mddev, char *page)
2796 {
2797 	return -EINVAL;
2798 }
2799 
2800 static ssize_t
2801 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2802 {
2803 	/* buf must be %d:%d\n? giving major and minor numbers */
2804 	/* The new device is added to the array.
2805 	 * If the array has a persistent superblock, we read the
2806 	 * superblock to initialise info and check validity.
2807 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2808 	 * which mainly checks size.
2809 	 */
2810 	char *e;
2811 	int major = simple_strtoul(buf, &e, 10);
2812 	int minor;
2813 	dev_t dev;
2814 	mdk_rdev_t *rdev;
2815 	int err;
2816 
2817 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2818 		return -EINVAL;
2819 	minor = simple_strtoul(e+1, &e, 10);
2820 	if (*e && *e != '\n')
2821 		return -EINVAL;
2822 	dev = MKDEV(major, minor);
2823 	if (major != MAJOR(dev) ||
2824 	    minor != MINOR(dev))
2825 		return -EOVERFLOW;
2826 
2827 
2828 	if (mddev->persistent) {
2829 		rdev = md_import_device(dev, mddev->major_version,
2830 					mddev->minor_version);
2831 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2832 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2833 						       mdk_rdev_t, same_set);
2834 			err = super_types[mddev->major_version]
2835 				.load_super(rdev, rdev0, mddev->minor_version);
2836 			if (err < 0)
2837 				goto out;
2838 		}
2839 	} else if (mddev->external)
2840 		rdev = md_import_device(dev, -2, -1);
2841 	else
2842 		rdev = md_import_device(dev, -1, -1);
2843 
2844 	if (IS_ERR(rdev))
2845 		return PTR_ERR(rdev);
2846 	err = bind_rdev_to_array(rdev, mddev);
2847  out:
2848 	if (err)
2849 		export_rdev(rdev);
2850 	return err ? err : len;
2851 }
2852 
2853 static struct md_sysfs_entry md_new_device =
2854 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2855 
2856 static ssize_t
2857 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2858 {
2859 	char *end;
2860 	unsigned long chunk, end_chunk;
2861 
2862 	if (!mddev->bitmap)
2863 		goto out;
2864 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2865 	while (*buf) {
2866 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
2867 		if (buf == end) break;
2868 		if (*end == '-') { /* range */
2869 			buf = end + 1;
2870 			end_chunk = simple_strtoul(buf, &end, 0);
2871 			if (buf == end) break;
2872 		}
2873 		if (*end && !isspace(*end)) break;
2874 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2875 		buf = end;
2876 		while (isspace(*buf)) buf++;
2877 	}
2878 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2879 out:
2880 	return len;
2881 }
2882 
2883 static struct md_sysfs_entry md_bitmap =
2884 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2885 
2886 static ssize_t
2887 size_show(mddev_t *mddev, char *page)
2888 {
2889 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2890 }
2891 
2892 static int update_size(mddev_t *mddev, sector_t num_sectors);
2893 
2894 static ssize_t
2895 size_store(mddev_t *mddev, const char *buf, size_t len)
2896 {
2897 	/* If array is inactive, we can reduce the component size, but
2898 	 * not increase it (except from 0).
2899 	 * If array is active, we can try an on-line resize
2900 	 */
2901 	char *e;
2902 	int err = 0;
2903 	unsigned long long size = simple_strtoull(buf, &e, 10);
2904 	if (!*buf || *buf == '\n' ||
2905 	    (*e && *e != '\n'))
2906 		return -EINVAL;
2907 
2908 	if (mddev->pers) {
2909 		err = update_size(mddev, size * 2);
2910 		md_update_sb(mddev, 1);
2911 	} else {
2912 		if (mddev->size == 0 ||
2913 		    mddev->size > size)
2914 			mddev->size = size;
2915 		else
2916 			err = -ENOSPC;
2917 	}
2918 	return err ? err : len;
2919 }
2920 
2921 static struct md_sysfs_entry md_size =
2922 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2923 
2924 
2925 /* Metdata version.
2926  * This is one of
2927  *   'none' for arrays with no metadata (good luck...)
2928  *   'external' for arrays with externally managed metadata,
2929  * or N.M for internally known formats
2930  */
2931 static ssize_t
2932 metadata_show(mddev_t *mddev, char *page)
2933 {
2934 	if (mddev->persistent)
2935 		return sprintf(page, "%d.%d\n",
2936 			       mddev->major_version, mddev->minor_version);
2937 	else if (mddev->external)
2938 		return sprintf(page, "external:%s\n", mddev->metadata_type);
2939 	else
2940 		return sprintf(page, "none\n");
2941 }
2942 
2943 static ssize_t
2944 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2945 {
2946 	int major, minor;
2947 	char *e;
2948 	if (!list_empty(&mddev->disks))
2949 		return -EBUSY;
2950 
2951 	if (cmd_match(buf, "none")) {
2952 		mddev->persistent = 0;
2953 		mddev->external = 0;
2954 		mddev->major_version = 0;
2955 		mddev->minor_version = 90;
2956 		return len;
2957 	}
2958 	if (strncmp(buf, "external:", 9) == 0) {
2959 		size_t namelen = len-9;
2960 		if (namelen >= sizeof(mddev->metadata_type))
2961 			namelen = sizeof(mddev->metadata_type)-1;
2962 		strncpy(mddev->metadata_type, buf+9, namelen);
2963 		mddev->metadata_type[namelen] = 0;
2964 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
2965 			mddev->metadata_type[--namelen] = 0;
2966 		mddev->persistent = 0;
2967 		mddev->external = 1;
2968 		mddev->major_version = 0;
2969 		mddev->minor_version = 90;
2970 		return len;
2971 	}
2972 	major = simple_strtoul(buf, &e, 10);
2973 	if (e==buf || *e != '.')
2974 		return -EINVAL;
2975 	buf = e+1;
2976 	minor = simple_strtoul(buf, &e, 10);
2977 	if (e==buf || (*e && *e != '\n') )
2978 		return -EINVAL;
2979 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2980 		return -ENOENT;
2981 	mddev->major_version = major;
2982 	mddev->minor_version = minor;
2983 	mddev->persistent = 1;
2984 	mddev->external = 0;
2985 	return len;
2986 }
2987 
2988 static struct md_sysfs_entry md_metadata =
2989 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2990 
2991 static ssize_t
2992 action_show(mddev_t *mddev, char *page)
2993 {
2994 	char *type = "idle";
2995 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2996 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2997 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2998 			type = "reshape";
2999 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3000 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3001 				type = "resync";
3002 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3003 				type = "check";
3004 			else
3005 				type = "repair";
3006 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3007 			type = "recover";
3008 	}
3009 	return sprintf(page, "%s\n", type);
3010 }
3011 
3012 static ssize_t
3013 action_store(mddev_t *mddev, const char *page, size_t len)
3014 {
3015 	if (!mddev->pers || !mddev->pers->sync_request)
3016 		return -EINVAL;
3017 
3018 	if (cmd_match(page, "idle")) {
3019 		if (mddev->sync_thread) {
3020 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3021 			md_unregister_thread(mddev->sync_thread);
3022 			mddev->sync_thread = NULL;
3023 			mddev->recovery = 0;
3024 		}
3025 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3026 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3027 		return -EBUSY;
3028 	else if (cmd_match(page, "resync"))
3029 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3030 	else if (cmd_match(page, "recover")) {
3031 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3032 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3033 	} else if (cmd_match(page, "reshape")) {
3034 		int err;
3035 		if (mddev->pers->start_reshape == NULL)
3036 			return -EINVAL;
3037 		err = mddev->pers->start_reshape(mddev);
3038 		if (err)
3039 			return err;
3040 		sysfs_notify(&mddev->kobj, NULL, "degraded");
3041 	} else {
3042 		if (cmd_match(page, "check"))
3043 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3044 		else if (!cmd_match(page, "repair"))
3045 			return -EINVAL;
3046 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3047 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3048 	}
3049 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3050 	md_wakeup_thread(mddev->thread);
3051 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
3052 	return len;
3053 }
3054 
3055 static ssize_t
3056 mismatch_cnt_show(mddev_t *mddev, char *page)
3057 {
3058 	return sprintf(page, "%llu\n",
3059 		       (unsigned long long) mddev->resync_mismatches);
3060 }
3061 
3062 static struct md_sysfs_entry md_scan_mode =
3063 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3064 
3065 
3066 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3067 
3068 static ssize_t
3069 sync_min_show(mddev_t *mddev, char *page)
3070 {
3071 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
3072 		       mddev->sync_speed_min ? "local": "system");
3073 }
3074 
3075 static ssize_t
3076 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3077 {
3078 	int min;
3079 	char *e;
3080 	if (strncmp(buf, "system", 6)==0) {
3081 		mddev->sync_speed_min = 0;
3082 		return len;
3083 	}
3084 	min = simple_strtoul(buf, &e, 10);
3085 	if (buf == e || (*e && *e != '\n') || min <= 0)
3086 		return -EINVAL;
3087 	mddev->sync_speed_min = min;
3088 	return len;
3089 }
3090 
3091 static struct md_sysfs_entry md_sync_min =
3092 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3093 
3094 static ssize_t
3095 sync_max_show(mddev_t *mddev, char *page)
3096 {
3097 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
3098 		       mddev->sync_speed_max ? "local": "system");
3099 }
3100 
3101 static ssize_t
3102 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3103 {
3104 	int max;
3105 	char *e;
3106 	if (strncmp(buf, "system", 6)==0) {
3107 		mddev->sync_speed_max = 0;
3108 		return len;
3109 	}
3110 	max = simple_strtoul(buf, &e, 10);
3111 	if (buf == e || (*e && *e != '\n') || max <= 0)
3112 		return -EINVAL;
3113 	mddev->sync_speed_max = max;
3114 	return len;
3115 }
3116 
3117 static struct md_sysfs_entry md_sync_max =
3118 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3119 
3120 static ssize_t
3121 degraded_show(mddev_t *mddev, char *page)
3122 {
3123 	return sprintf(page, "%d\n", mddev->degraded);
3124 }
3125 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3126 
3127 static ssize_t
3128 sync_force_parallel_show(mddev_t *mddev, char *page)
3129 {
3130 	return sprintf(page, "%d\n", mddev->parallel_resync);
3131 }
3132 
3133 static ssize_t
3134 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3135 {
3136 	long n;
3137 
3138 	if (strict_strtol(buf, 10, &n))
3139 		return -EINVAL;
3140 
3141 	if (n != 0 && n != 1)
3142 		return -EINVAL;
3143 
3144 	mddev->parallel_resync = n;
3145 
3146 	if (mddev->sync_thread)
3147 		wake_up(&resync_wait);
3148 
3149 	return len;
3150 }
3151 
3152 /* force parallel resync, even with shared block devices */
3153 static struct md_sysfs_entry md_sync_force_parallel =
3154 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3155        sync_force_parallel_show, sync_force_parallel_store);
3156 
3157 static ssize_t
3158 sync_speed_show(mddev_t *mddev, char *page)
3159 {
3160 	unsigned long resync, dt, db;
3161 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3162 	dt = (jiffies - mddev->resync_mark) / HZ;
3163 	if (!dt) dt++;
3164 	db = resync - mddev->resync_mark_cnt;
3165 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3166 }
3167 
3168 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3169 
3170 static ssize_t
3171 sync_completed_show(mddev_t *mddev, char *page)
3172 {
3173 	unsigned long max_blocks, resync;
3174 
3175 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3176 		max_blocks = mddev->resync_max_sectors;
3177 	else
3178 		max_blocks = mddev->size << 1;
3179 
3180 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3181 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
3182 }
3183 
3184 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3185 
3186 static ssize_t
3187 min_sync_show(mddev_t *mddev, char *page)
3188 {
3189 	return sprintf(page, "%llu\n",
3190 		       (unsigned long long)mddev->resync_min);
3191 }
3192 static ssize_t
3193 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3194 {
3195 	unsigned long long min;
3196 	if (strict_strtoull(buf, 10, &min))
3197 		return -EINVAL;
3198 	if (min > mddev->resync_max)
3199 		return -EINVAL;
3200 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3201 		return -EBUSY;
3202 
3203 	/* Must be a multiple of chunk_size */
3204 	if (mddev->chunk_size) {
3205 		if (min & (sector_t)((mddev->chunk_size>>9)-1))
3206 			return -EINVAL;
3207 	}
3208 	mddev->resync_min = min;
3209 
3210 	return len;
3211 }
3212 
3213 static struct md_sysfs_entry md_min_sync =
3214 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3215 
3216 static ssize_t
3217 max_sync_show(mddev_t *mddev, char *page)
3218 {
3219 	if (mddev->resync_max == MaxSector)
3220 		return sprintf(page, "max\n");
3221 	else
3222 		return sprintf(page, "%llu\n",
3223 			       (unsigned long long)mddev->resync_max);
3224 }
3225 static ssize_t
3226 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3227 {
3228 	if (strncmp(buf, "max", 3) == 0)
3229 		mddev->resync_max = MaxSector;
3230 	else {
3231 		unsigned long long max;
3232 		if (strict_strtoull(buf, 10, &max))
3233 			return -EINVAL;
3234 		if (max < mddev->resync_min)
3235 			return -EINVAL;
3236 		if (max < mddev->resync_max &&
3237 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3238 			return -EBUSY;
3239 
3240 		/* Must be a multiple of chunk_size */
3241 		if (mddev->chunk_size) {
3242 			if (max & (sector_t)((mddev->chunk_size>>9)-1))
3243 				return -EINVAL;
3244 		}
3245 		mddev->resync_max = max;
3246 	}
3247 	wake_up(&mddev->recovery_wait);
3248 	return len;
3249 }
3250 
3251 static struct md_sysfs_entry md_max_sync =
3252 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3253 
3254 static ssize_t
3255 suspend_lo_show(mddev_t *mddev, char *page)
3256 {
3257 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3258 }
3259 
3260 static ssize_t
3261 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3262 {
3263 	char *e;
3264 	unsigned long long new = simple_strtoull(buf, &e, 10);
3265 
3266 	if (mddev->pers->quiesce == NULL)
3267 		return -EINVAL;
3268 	if (buf == e || (*e && *e != '\n'))
3269 		return -EINVAL;
3270 	if (new >= mddev->suspend_hi ||
3271 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3272 		mddev->suspend_lo = new;
3273 		mddev->pers->quiesce(mddev, 2);
3274 		return len;
3275 	} else
3276 		return -EINVAL;
3277 }
3278 static struct md_sysfs_entry md_suspend_lo =
3279 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3280 
3281 
3282 static ssize_t
3283 suspend_hi_show(mddev_t *mddev, char *page)
3284 {
3285 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3286 }
3287 
3288 static ssize_t
3289 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3290 {
3291 	char *e;
3292 	unsigned long long new = simple_strtoull(buf, &e, 10);
3293 
3294 	if (mddev->pers->quiesce == NULL)
3295 		return -EINVAL;
3296 	if (buf == e || (*e && *e != '\n'))
3297 		return -EINVAL;
3298 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3299 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3300 		mddev->suspend_hi = new;
3301 		mddev->pers->quiesce(mddev, 1);
3302 		mddev->pers->quiesce(mddev, 0);
3303 		return len;
3304 	} else
3305 		return -EINVAL;
3306 }
3307 static struct md_sysfs_entry md_suspend_hi =
3308 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3309 
3310 static ssize_t
3311 reshape_position_show(mddev_t *mddev, char *page)
3312 {
3313 	if (mddev->reshape_position != MaxSector)
3314 		return sprintf(page, "%llu\n",
3315 			       (unsigned long long)mddev->reshape_position);
3316 	strcpy(page, "none\n");
3317 	return 5;
3318 }
3319 
3320 static ssize_t
3321 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3322 {
3323 	char *e;
3324 	unsigned long long new = simple_strtoull(buf, &e, 10);
3325 	if (mddev->pers)
3326 		return -EBUSY;
3327 	if (buf == e || (*e && *e != '\n'))
3328 		return -EINVAL;
3329 	mddev->reshape_position = new;
3330 	mddev->delta_disks = 0;
3331 	mddev->new_level = mddev->level;
3332 	mddev->new_layout = mddev->layout;
3333 	mddev->new_chunk = mddev->chunk_size;
3334 	return len;
3335 }
3336 
3337 static struct md_sysfs_entry md_reshape_position =
3338 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3339        reshape_position_store);
3340 
3341 
3342 static struct attribute *md_default_attrs[] = {
3343 	&md_level.attr,
3344 	&md_layout.attr,
3345 	&md_raid_disks.attr,
3346 	&md_chunk_size.attr,
3347 	&md_size.attr,
3348 	&md_resync_start.attr,
3349 	&md_metadata.attr,
3350 	&md_new_device.attr,
3351 	&md_safe_delay.attr,
3352 	&md_array_state.attr,
3353 	&md_reshape_position.attr,
3354 	NULL,
3355 };
3356 
3357 static struct attribute *md_redundancy_attrs[] = {
3358 	&md_scan_mode.attr,
3359 	&md_mismatches.attr,
3360 	&md_sync_min.attr,
3361 	&md_sync_max.attr,
3362 	&md_sync_speed.attr,
3363 	&md_sync_force_parallel.attr,
3364 	&md_sync_completed.attr,
3365 	&md_min_sync.attr,
3366 	&md_max_sync.attr,
3367 	&md_suspend_lo.attr,
3368 	&md_suspend_hi.attr,
3369 	&md_bitmap.attr,
3370 	&md_degraded.attr,
3371 	NULL,
3372 };
3373 static struct attribute_group md_redundancy_group = {
3374 	.name = NULL,
3375 	.attrs = md_redundancy_attrs,
3376 };
3377 
3378 
3379 static ssize_t
3380 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3381 {
3382 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3383 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3384 	ssize_t rv;
3385 
3386 	if (!entry->show)
3387 		return -EIO;
3388 	rv = mddev_lock(mddev);
3389 	if (!rv) {
3390 		rv = entry->show(mddev, page);
3391 		mddev_unlock(mddev);
3392 	}
3393 	return rv;
3394 }
3395 
3396 static ssize_t
3397 md_attr_store(struct kobject *kobj, struct attribute *attr,
3398 	      const char *page, size_t length)
3399 {
3400 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3401 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3402 	ssize_t rv;
3403 
3404 	if (!entry->store)
3405 		return -EIO;
3406 	if (!capable(CAP_SYS_ADMIN))
3407 		return -EACCES;
3408 	rv = mddev_lock(mddev);
3409 	if (!rv) {
3410 		rv = entry->store(mddev, page, length);
3411 		mddev_unlock(mddev);
3412 	}
3413 	return rv;
3414 }
3415 
3416 static void md_free(struct kobject *ko)
3417 {
3418 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
3419 	kfree(mddev);
3420 }
3421 
3422 static struct sysfs_ops md_sysfs_ops = {
3423 	.show	= md_attr_show,
3424 	.store	= md_attr_store,
3425 };
3426 static struct kobj_type md_ktype = {
3427 	.release	= md_free,
3428 	.sysfs_ops	= &md_sysfs_ops,
3429 	.default_attrs	= md_default_attrs,
3430 };
3431 
3432 int mdp_major = 0;
3433 
3434 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3435 {
3436 	static DEFINE_MUTEX(disks_mutex);
3437 	mddev_t *mddev = mddev_find(dev);
3438 	struct gendisk *disk;
3439 	int partitioned = (MAJOR(dev) != MD_MAJOR);
3440 	int shift = partitioned ? MdpMinorShift : 0;
3441 	int unit = MINOR(dev) >> shift;
3442 	int error;
3443 
3444 	if (!mddev)
3445 		return NULL;
3446 
3447 	mutex_lock(&disks_mutex);
3448 	if (mddev->gendisk) {
3449 		mutex_unlock(&disks_mutex);
3450 		mddev_put(mddev);
3451 		return NULL;
3452 	}
3453 	disk = alloc_disk(1 << shift);
3454 	if (!disk) {
3455 		mutex_unlock(&disks_mutex);
3456 		mddev_put(mddev);
3457 		return NULL;
3458 	}
3459 	disk->major = MAJOR(dev);
3460 	disk->first_minor = unit << shift;
3461 	if (partitioned)
3462 		sprintf(disk->disk_name, "md_d%d", unit);
3463 	else
3464 		sprintf(disk->disk_name, "md%d", unit);
3465 	disk->fops = &md_fops;
3466 	disk->private_data = mddev;
3467 	disk->queue = mddev->queue;
3468 	add_disk(disk);
3469 	mddev->gendisk = disk;
3470 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
3471 				     &disk_to_dev(disk)->kobj, "%s", "md");
3472 	mutex_unlock(&disks_mutex);
3473 	if (error)
3474 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3475 		       disk->disk_name);
3476 	else
3477 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
3478 	return NULL;
3479 }
3480 
3481 static void md_safemode_timeout(unsigned long data)
3482 {
3483 	mddev_t *mddev = (mddev_t *) data;
3484 
3485 	if (!atomic_read(&mddev->writes_pending)) {
3486 		mddev->safemode = 1;
3487 		if (mddev->external)
3488 			set_bit(MD_NOTIFY_ARRAY_STATE, &mddev->flags);
3489 	}
3490 	md_wakeup_thread(mddev->thread);
3491 }
3492 
3493 static int start_dirty_degraded;
3494 
3495 static int do_md_run(mddev_t * mddev)
3496 {
3497 	int err;
3498 	int chunk_size;
3499 	struct list_head *tmp;
3500 	mdk_rdev_t *rdev;
3501 	struct gendisk *disk;
3502 	struct mdk_personality *pers;
3503 	char b[BDEVNAME_SIZE];
3504 
3505 	if (list_empty(&mddev->disks))
3506 		/* cannot run an array with no devices.. */
3507 		return -EINVAL;
3508 
3509 	if (mddev->pers)
3510 		return -EBUSY;
3511 
3512 	/*
3513 	 * Analyze all RAID superblock(s)
3514 	 */
3515 	if (!mddev->raid_disks) {
3516 		if (!mddev->persistent)
3517 			return -EINVAL;
3518 		analyze_sbs(mddev);
3519 	}
3520 
3521 	chunk_size = mddev->chunk_size;
3522 
3523 	if (chunk_size) {
3524 		if (chunk_size > MAX_CHUNK_SIZE) {
3525 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
3526 				chunk_size, MAX_CHUNK_SIZE);
3527 			return -EINVAL;
3528 		}
3529 		/*
3530 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3531 		 */
3532 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
3533 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3534 			return -EINVAL;
3535 		}
3536 		if (chunk_size < PAGE_SIZE) {
3537 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3538 				chunk_size, PAGE_SIZE);
3539 			return -EINVAL;
3540 		}
3541 
3542 		/* devices must have minimum size of one chunk */
3543 		rdev_for_each(rdev, tmp, mddev) {
3544 			if (test_bit(Faulty, &rdev->flags))
3545 				continue;
3546 			if (rdev->size < chunk_size / 1024) {
3547 				printk(KERN_WARNING
3548 					"md: Dev %s smaller than chunk_size:"
3549 					" %lluk < %dk\n",
3550 					bdevname(rdev->bdev,b),
3551 					(unsigned long long)rdev->size,
3552 					chunk_size / 1024);
3553 				return -EINVAL;
3554 			}
3555 		}
3556 	}
3557 
3558 #ifdef CONFIG_KMOD
3559 	if (mddev->level != LEVEL_NONE)
3560 		request_module("md-level-%d", mddev->level);
3561 	else if (mddev->clevel[0])
3562 		request_module("md-%s", mddev->clevel);
3563 #endif
3564 
3565 	/*
3566 	 * Drop all container device buffers, from now on
3567 	 * the only valid external interface is through the md
3568 	 * device.
3569 	 */
3570 	rdev_for_each(rdev, tmp, mddev) {
3571 		if (test_bit(Faulty, &rdev->flags))
3572 			continue;
3573 		sync_blockdev(rdev->bdev);
3574 		invalidate_bdev(rdev->bdev);
3575 
3576 		/* perform some consistency tests on the device.
3577 		 * We don't want the data to overlap the metadata,
3578 		 * Internal Bitmap issues has handled elsewhere.
3579 		 */
3580 		if (rdev->data_offset < rdev->sb_start) {
3581 			if (mddev->size &&
3582 			    rdev->data_offset + mddev->size*2
3583 			    > rdev->sb_start) {
3584 				printk("md: %s: data overlaps metadata\n",
3585 				       mdname(mddev));
3586 				return -EINVAL;
3587 			}
3588 		} else {
3589 			if (rdev->sb_start + rdev->sb_size/512
3590 			    > rdev->data_offset) {
3591 				printk("md: %s: metadata overlaps data\n",
3592 				       mdname(mddev));
3593 				return -EINVAL;
3594 			}
3595 		}
3596 		sysfs_notify(&rdev->kobj, NULL, "state");
3597 	}
3598 
3599 	md_probe(mddev->unit, NULL, NULL);
3600 	disk = mddev->gendisk;
3601 	if (!disk)
3602 		return -ENOMEM;
3603 
3604 	spin_lock(&pers_lock);
3605 	pers = find_pers(mddev->level, mddev->clevel);
3606 	if (!pers || !try_module_get(pers->owner)) {
3607 		spin_unlock(&pers_lock);
3608 		if (mddev->level != LEVEL_NONE)
3609 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3610 			       mddev->level);
3611 		else
3612 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3613 			       mddev->clevel);
3614 		return -EINVAL;
3615 	}
3616 	mddev->pers = pers;
3617 	spin_unlock(&pers_lock);
3618 	mddev->level = pers->level;
3619 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3620 
3621 	if (mddev->reshape_position != MaxSector &&
3622 	    pers->start_reshape == NULL) {
3623 		/* This personality cannot handle reshaping... */
3624 		mddev->pers = NULL;
3625 		module_put(pers->owner);
3626 		return -EINVAL;
3627 	}
3628 
3629 	if (pers->sync_request) {
3630 		/* Warn if this is a potentially silly
3631 		 * configuration.
3632 		 */
3633 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3634 		mdk_rdev_t *rdev2;
3635 		struct list_head *tmp2;
3636 		int warned = 0;
3637 		rdev_for_each(rdev, tmp, mddev) {
3638 			rdev_for_each(rdev2, tmp2, mddev) {
3639 				if (rdev < rdev2 &&
3640 				    rdev->bdev->bd_contains ==
3641 				    rdev2->bdev->bd_contains) {
3642 					printk(KERN_WARNING
3643 					       "%s: WARNING: %s appears to be"
3644 					       " on the same physical disk as"
3645 					       " %s.\n",
3646 					       mdname(mddev),
3647 					       bdevname(rdev->bdev,b),
3648 					       bdevname(rdev2->bdev,b2));
3649 					warned = 1;
3650 				}
3651 			}
3652 		}
3653 		if (warned)
3654 			printk(KERN_WARNING
3655 			       "True protection against single-disk"
3656 			       " failure might be compromised.\n");
3657 	}
3658 
3659 	mddev->recovery = 0;
3660 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3661 	mddev->barriers_work = 1;
3662 	mddev->ok_start_degraded = start_dirty_degraded;
3663 
3664 	if (start_readonly)
3665 		mddev->ro = 2; /* read-only, but switch on first write */
3666 
3667 	err = mddev->pers->run(mddev);
3668 	if (err)
3669 		printk(KERN_ERR "md: pers->run() failed ...\n");
3670 	else if (mddev->pers->sync_request) {
3671 		err = bitmap_create(mddev);
3672 		if (err) {
3673 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3674 			       mdname(mddev), err);
3675 			mddev->pers->stop(mddev);
3676 		}
3677 	}
3678 	if (err) {
3679 		module_put(mddev->pers->owner);
3680 		mddev->pers = NULL;
3681 		bitmap_destroy(mddev);
3682 		return err;
3683 	}
3684 	if (mddev->pers->sync_request) {
3685 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3686 			printk(KERN_WARNING
3687 			       "md: cannot register extra attributes for %s\n",
3688 			       mdname(mddev));
3689 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
3690 		mddev->ro = 0;
3691 
3692  	atomic_set(&mddev->writes_pending,0);
3693 	mddev->safemode = 0;
3694 	mddev->safemode_timer.function = md_safemode_timeout;
3695 	mddev->safemode_timer.data = (unsigned long) mddev;
3696 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3697 	mddev->in_sync = 1;
3698 
3699 	rdev_for_each(rdev, tmp, mddev)
3700 		if (rdev->raid_disk >= 0) {
3701 			char nm[20];
3702 			sprintf(nm, "rd%d", rdev->raid_disk);
3703 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3704 				printk("md: cannot register %s for %s\n",
3705 				       nm, mdname(mddev));
3706 		}
3707 
3708 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3709 
3710 	if (mddev->flags)
3711 		md_update_sb(mddev, 0);
3712 
3713 	set_capacity(disk, mddev->array_sectors);
3714 
3715 	/* If we call blk_queue_make_request here, it will
3716 	 * re-initialise max_sectors etc which may have been
3717 	 * refined inside -> run.  So just set the bits we need to set.
3718 	 * Most initialisation happended when we called
3719 	 * blk_queue_make_request(..., md_fail_request)
3720 	 * earlier.
3721 	 */
3722 	mddev->queue->queuedata = mddev;
3723 	mddev->queue->make_request_fn = mddev->pers->make_request;
3724 
3725 	/* If there is a partially-recovered drive we need to
3726 	 * start recovery here.  If we leave it to md_check_recovery,
3727 	 * it will remove the drives and not do the right thing
3728 	 */
3729 	if (mddev->degraded && !mddev->sync_thread) {
3730 		struct list_head *rtmp;
3731 		int spares = 0;
3732 		rdev_for_each(rdev, rtmp, mddev)
3733 			if (rdev->raid_disk >= 0 &&
3734 			    !test_bit(In_sync, &rdev->flags) &&
3735 			    !test_bit(Faulty, &rdev->flags))
3736 				/* complete an interrupted recovery */
3737 				spares++;
3738 		if (spares && mddev->pers->sync_request) {
3739 			mddev->recovery = 0;
3740 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3741 			mddev->sync_thread = md_register_thread(md_do_sync,
3742 								mddev,
3743 								"%s_resync");
3744 			if (!mddev->sync_thread) {
3745 				printk(KERN_ERR "%s: could not start resync"
3746 				       " thread...\n",
3747 				       mdname(mddev));
3748 				/* leave the spares where they are, it shouldn't hurt */
3749 				mddev->recovery = 0;
3750 			}
3751 		}
3752 	}
3753 	md_wakeup_thread(mddev->thread);
3754 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3755 
3756 	mddev->changed = 1;
3757 	md_new_event(mddev);
3758 	sysfs_notify(&mddev->kobj, NULL, "array_state");
3759 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
3760 	sysfs_notify(&mddev->kobj, NULL, "degraded");
3761 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
3762 	return 0;
3763 }
3764 
3765 static int restart_array(mddev_t *mddev)
3766 {
3767 	struct gendisk *disk = mddev->gendisk;
3768 
3769 	/* Complain if it has no devices */
3770 	if (list_empty(&mddev->disks))
3771 		return -ENXIO;
3772 	if (!mddev->pers)
3773 		return -EINVAL;
3774 	if (!mddev->ro)
3775 		return -EBUSY;
3776 	mddev->safemode = 0;
3777 	mddev->ro = 0;
3778 	set_disk_ro(disk, 0);
3779 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
3780 		mdname(mddev));
3781 	/* Kick recovery or resync if necessary */
3782 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3783 	md_wakeup_thread(mddev->thread);
3784 	md_wakeup_thread(mddev->sync_thread);
3785 	sysfs_notify(&mddev->kobj, NULL, "array_state");
3786 	return 0;
3787 }
3788 
3789 /* similar to deny_write_access, but accounts for our holding a reference
3790  * to the file ourselves */
3791 static int deny_bitmap_write_access(struct file * file)
3792 {
3793 	struct inode *inode = file->f_mapping->host;
3794 
3795 	spin_lock(&inode->i_lock);
3796 	if (atomic_read(&inode->i_writecount) > 1) {
3797 		spin_unlock(&inode->i_lock);
3798 		return -ETXTBSY;
3799 	}
3800 	atomic_set(&inode->i_writecount, -1);
3801 	spin_unlock(&inode->i_lock);
3802 
3803 	return 0;
3804 }
3805 
3806 static void restore_bitmap_write_access(struct file *file)
3807 {
3808 	struct inode *inode = file->f_mapping->host;
3809 
3810 	spin_lock(&inode->i_lock);
3811 	atomic_set(&inode->i_writecount, 1);
3812 	spin_unlock(&inode->i_lock);
3813 }
3814 
3815 /* mode:
3816  *   0 - completely stop and dis-assemble array
3817  *   1 - switch to readonly
3818  *   2 - stop but do not disassemble array
3819  */
3820 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
3821 {
3822 	int err = 0;
3823 	struct gendisk *disk = mddev->gendisk;
3824 
3825 	if (atomic_read(&mddev->openers) > is_open) {
3826 		printk("md: %s still in use.\n",mdname(mddev));
3827 		return -EBUSY;
3828 	}
3829 
3830 	if (mddev->pers) {
3831 
3832 		if (mddev->sync_thread) {
3833 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3834 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3835 			md_unregister_thread(mddev->sync_thread);
3836 			mddev->sync_thread = NULL;
3837 		}
3838 
3839 		del_timer_sync(&mddev->safemode_timer);
3840 
3841 		switch(mode) {
3842 		case 1: /* readonly */
3843 			err  = -ENXIO;
3844 			if (mddev->ro==1)
3845 				goto out;
3846 			mddev->ro = 1;
3847 			break;
3848 		case 0: /* disassemble */
3849 		case 2: /* stop */
3850 			bitmap_flush(mddev);
3851 			md_super_wait(mddev);
3852 			if (mddev->ro)
3853 				set_disk_ro(disk, 0);
3854 			blk_queue_make_request(mddev->queue, md_fail_request);
3855 			mddev->pers->stop(mddev);
3856 			mddev->queue->merge_bvec_fn = NULL;
3857 			mddev->queue->unplug_fn = NULL;
3858 			mddev->queue->backing_dev_info.congested_fn = NULL;
3859 			if (mddev->pers->sync_request)
3860 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3861 
3862 			module_put(mddev->pers->owner);
3863 			mddev->pers = NULL;
3864 			/* tell userspace to handle 'inactive' */
3865 			sysfs_notify(&mddev->kobj, NULL, "array_state");
3866 
3867 			set_capacity(disk, 0);
3868 			mddev->changed = 1;
3869 
3870 			if (mddev->ro)
3871 				mddev->ro = 0;
3872 		}
3873 		if (!mddev->in_sync || mddev->flags) {
3874 			/* mark array as shutdown cleanly */
3875 			mddev->in_sync = 1;
3876 			md_update_sb(mddev, 1);
3877 		}
3878 		if (mode == 1)
3879 			set_disk_ro(disk, 1);
3880 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3881 	}
3882 
3883 	/*
3884 	 * Free resources if final stop
3885 	 */
3886 	if (mode == 0) {
3887 		mdk_rdev_t *rdev;
3888 		struct list_head *tmp;
3889 
3890 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3891 
3892 		bitmap_destroy(mddev);
3893 		if (mddev->bitmap_file) {
3894 			restore_bitmap_write_access(mddev->bitmap_file);
3895 			fput(mddev->bitmap_file);
3896 			mddev->bitmap_file = NULL;
3897 		}
3898 		mddev->bitmap_offset = 0;
3899 
3900 		rdev_for_each(rdev, tmp, mddev)
3901 			if (rdev->raid_disk >= 0) {
3902 				char nm[20];
3903 				sprintf(nm, "rd%d", rdev->raid_disk);
3904 				sysfs_remove_link(&mddev->kobj, nm);
3905 			}
3906 
3907 		/* make sure all md_delayed_delete calls have finished */
3908 		flush_scheduled_work();
3909 
3910 		export_array(mddev);
3911 
3912 		mddev->array_sectors = 0;
3913 		mddev->size = 0;
3914 		mddev->raid_disks = 0;
3915 		mddev->recovery_cp = 0;
3916 		mddev->resync_min = 0;
3917 		mddev->resync_max = MaxSector;
3918 		mddev->reshape_position = MaxSector;
3919 		mddev->external = 0;
3920 		mddev->persistent = 0;
3921 		mddev->level = LEVEL_NONE;
3922 		mddev->clevel[0] = 0;
3923 		mddev->flags = 0;
3924 		mddev->ro = 0;
3925 		mddev->metadata_type[0] = 0;
3926 		mddev->chunk_size = 0;
3927 		mddev->ctime = mddev->utime = 0;
3928 		mddev->layout = 0;
3929 		mddev->max_disks = 0;
3930 		mddev->events = 0;
3931 		mddev->delta_disks = 0;
3932 		mddev->new_level = LEVEL_NONE;
3933 		mddev->new_layout = 0;
3934 		mddev->new_chunk = 0;
3935 		mddev->curr_resync = 0;
3936 		mddev->resync_mismatches = 0;
3937 		mddev->suspend_lo = mddev->suspend_hi = 0;
3938 		mddev->sync_speed_min = mddev->sync_speed_max = 0;
3939 		mddev->recovery = 0;
3940 		mddev->in_sync = 0;
3941 		mddev->changed = 0;
3942 		mddev->degraded = 0;
3943 		mddev->barriers_work = 0;
3944 		mddev->safemode = 0;
3945 
3946 	} else if (mddev->pers)
3947 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
3948 			mdname(mddev));
3949 	err = 0;
3950 	md_new_event(mddev);
3951 	sysfs_notify(&mddev->kobj, NULL, "array_state");
3952 out:
3953 	return err;
3954 }
3955 
3956 #ifndef MODULE
3957 static void autorun_array(mddev_t *mddev)
3958 {
3959 	mdk_rdev_t *rdev;
3960 	struct list_head *tmp;
3961 	int err;
3962 
3963 	if (list_empty(&mddev->disks))
3964 		return;
3965 
3966 	printk(KERN_INFO "md: running: ");
3967 
3968 	rdev_for_each(rdev, tmp, mddev) {
3969 		char b[BDEVNAME_SIZE];
3970 		printk("<%s>", bdevname(rdev->bdev,b));
3971 	}
3972 	printk("\n");
3973 
3974 	err = do_md_run (mddev);
3975 	if (err) {
3976 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3977 		do_md_stop (mddev, 0, 0);
3978 	}
3979 }
3980 
3981 /*
3982  * lets try to run arrays based on all disks that have arrived
3983  * until now. (those are in pending_raid_disks)
3984  *
3985  * the method: pick the first pending disk, collect all disks with
3986  * the same UUID, remove all from the pending list and put them into
3987  * the 'same_array' list. Then order this list based on superblock
3988  * update time (freshest comes first), kick out 'old' disks and
3989  * compare superblocks. If everything's fine then run it.
3990  *
3991  * If "unit" is allocated, then bump its reference count
3992  */
3993 static void autorun_devices(int part)
3994 {
3995 	struct list_head *tmp;
3996 	mdk_rdev_t *rdev0, *rdev;
3997 	mddev_t *mddev;
3998 	char b[BDEVNAME_SIZE];
3999 
4000 	printk(KERN_INFO "md: autorun ...\n");
4001 	while (!list_empty(&pending_raid_disks)) {
4002 		int unit;
4003 		dev_t dev;
4004 		LIST_HEAD(candidates);
4005 		rdev0 = list_entry(pending_raid_disks.next,
4006 					 mdk_rdev_t, same_set);
4007 
4008 		printk(KERN_INFO "md: considering %s ...\n",
4009 			bdevname(rdev0->bdev,b));
4010 		INIT_LIST_HEAD(&candidates);
4011 		rdev_for_each_list(rdev, tmp, pending_raid_disks)
4012 			if (super_90_load(rdev, rdev0, 0) >= 0) {
4013 				printk(KERN_INFO "md:  adding %s ...\n",
4014 					bdevname(rdev->bdev,b));
4015 				list_move(&rdev->same_set, &candidates);
4016 			}
4017 		/*
4018 		 * now we have a set of devices, with all of them having
4019 		 * mostly sane superblocks. It's time to allocate the
4020 		 * mddev.
4021 		 */
4022 		if (part) {
4023 			dev = MKDEV(mdp_major,
4024 				    rdev0->preferred_minor << MdpMinorShift);
4025 			unit = MINOR(dev) >> MdpMinorShift;
4026 		} else {
4027 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4028 			unit = MINOR(dev);
4029 		}
4030 		if (rdev0->preferred_minor != unit) {
4031 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4032 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4033 			break;
4034 		}
4035 
4036 		md_probe(dev, NULL, NULL);
4037 		mddev = mddev_find(dev);
4038 		if (!mddev || !mddev->gendisk) {
4039 			if (mddev)
4040 				mddev_put(mddev);
4041 			printk(KERN_ERR
4042 				"md: cannot allocate memory for md drive.\n");
4043 			break;
4044 		}
4045 		if (mddev_lock(mddev))
4046 			printk(KERN_WARNING "md: %s locked, cannot run\n",
4047 			       mdname(mddev));
4048 		else if (mddev->raid_disks || mddev->major_version
4049 			 || !list_empty(&mddev->disks)) {
4050 			printk(KERN_WARNING
4051 				"md: %s already running, cannot run %s\n",
4052 				mdname(mddev), bdevname(rdev0->bdev,b));
4053 			mddev_unlock(mddev);
4054 		} else {
4055 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
4056 			mddev->persistent = 1;
4057 			rdev_for_each_list(rdev, tmp, candidates) {
4058 				list_del_init(&rdev->same_set);
4059 				if (bind_rdev_to_array(rdev, mddev))
4060 					export_rdev(rdev);
4061 			}
4062 			autorun_array(mddev);
4063 			mddev_unlock(mddev);
4064 		}
4065 		/* on success, candidates will be empty, on error
4066 		 * it won't...
4067 		 */
4068 		rdev_for_each_list(rdev, tmp, candidates) {
4069 			list_del_init(&rdev->same_set);
4070 			export_rdev(rdev);
4071 		}
4072 		mddev_put(mddev);
4073 	}
4074 	printk(KERN_INFO "md: ... autorun DONE.\n");
4075 }
4076 #endif /* !MODULE */
4077 
4078 static int get_version(void __user * arg)
4079 {
4080 	mdu_version_t ver;
4081 
4082 	ver.major = MD_MAJOR_VERSION;
4083 	ver.minor = MD_MINOR_VERSION;
4084 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
4085 
4086 	if (copy_to_user(arg, &ver, sizeof(ver)))
4087 		return -EFAULT;
4088 
4089 	return 0;
4090 }
4091 
4092 static int get_array_info(mddev_t * mddev, void __user * arg)
4093 {
4094 	mdu_array_info_t info;
4095 	int nr,working,active,failed,spare;
4096 	mdk_rdev_t *rdev;
4097 	struct list_head *tmp;
4098 
4099 	nr=working=active=failed=spare=0;
4100 	rdev_for_each(rdev, tmp, mddev) {
4101 		nr++;
4102 		if (test_bit(Faulty, &rdev->flags))
4103 			failed++;
4104 		else {
4105 			working++;
4106 			if (test_bit(In_sync, &rdev->flags))
4107 				active++;
4108 			else
4109 				spare++;
4110 		}
4111 	}
4112 
4113 	info.major_version = mddev->major_version;
4114 	info.minor_version = mddev->minor_version;
4115 	info.patch_version = MD_PATCHLEVEL_VERSION;
4116 	info.ctime         = mddev->ctime;
4117 	info.level         = mddev->level;
4118 	info.size          = mddev->size;
4119 	if (info.size != mddev->size) /* overflow */
4120 		info.size = -1;
4121 	info.nr_disks      = nr;
4122 	info.raid_disks    = mddev->raid_disks;
4123 	info.md_minor      = mddev->md_minor;
4124 	info.not_persistent= !mddev->persistent;
4125 
4126 	info.utime         = mddev->utime;
4127 	info.state         = 0;
4128 	if (mddev->in_sync)
4129 		info.state = (1<<MD_SB_CLEAN);
4130 	if (mddev->bitmap && mddev->bitmap_offset)
4131 		info.state = (1<<MD_SB_BITMAP_PRESENT);
4132 	info.active_disks  = active;
4133 	info.working_disks = working;
4134 	info.failed_disks  = failed;
4135 	info.spare_disks   = spare;
4136 
4137 	info.layout        = mddev->layout;
4138 	info.chunk_size    = mddev->chunk_size;
4139 
4140 	if (copy_to_user(arg, &info, sizeof(info)))
4141 		return -EFAULT;
4142 
4143 	return 0;
4144 }
4145 
4146 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4147 {
4148 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4149 	char *ptr, *buf = NULL;
4150 	int err = -ENOMEM;
4151 
4152 	if (md_allow_write(mddev))
4153 		file = kmalloc(sizeof(*file), GFP_NOIO);
4154 	else
4155 		file = kmalloc(sizeof(*file), GFP_KERNEL);
4156 
4157 	if (!file)
4158 		goto out;
4159 
4160 	/* bitmap disabled, zero the first byte and copy out */
4161 	if (!mddev->bitmap || !mddev->bitmap->file) {
4162 		file->pathname[0] = '\0';
4163 		goto copy_out;
4164 	}
4165 
4166 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4167 	if (!buf)
4168 		goto out;
4169 
4170 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4171 	if (IS_ERR(ptr))
4172 		goto out;
4173 
4174 	strcpy(file->pathname, ptr);
4175 
4176 copy_out:
4177 	err = 0;
4178 	if (copy_to_user(arg, file, sizeof(*file)))
4179 		err = -EFAULT;
4180 out:
4181 	kfree(buf);
4182 	kfree(file);
4183 	return err;
4184 }
4185 
4186 static int get_disk_info(mddev_t * mddev, void __user * arg)
4187 {
4188 	mdu_disk_info_t info;
4189 	mdk_rdev_t *rdev;
4190 
4191 	if (copy_from_user(&info, arg, sizeof(info)))
4192 		return -EFAULT;
4193 
4194 	rdev = find_rdev_nr(mddev, info.number);
4195 	if (rdev) {
4196 		info.major = MAJOR(rdev->bdev->bd_dev);
4197 		info.minor = MINOR(rdev->bdev->bd_dev);
4198 		info.raid_disk = rdev->raid_disk;
4199 		info.state = 0;
4200 		if (test_bit(Faulty, &rdev->flags))
4201 			info.state |= (1<<MD_DISK_FAULTY);
4202 		else if (test_bit(In_sync, &rdev->flags)) {
4203 			info.state |= (1<<MD_DISK_ACTIVE);
4204 			info.state |= (1<<MD_DISK_SYNC);
4205 		}
4206 		if (test_bit(WriteMostly, &rdev->flags))
4207 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
4208 	} else {
4209 		info.major = info.minor = 0;
4210 		info.raid_disk = -1;
4211 		info.state = (1<<MD_DISK_REMOVED);
4212 	}
4213 
4214 	if (copy_to_user(arg, &info, sizeof(info)))
4215 		return -EFAULT;
4216 
4217 	return 0;
4218 }
4219 
4220 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4221 {
4222 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4223 	mdk_rdev_t *rdev;
4224 	dev_t dev = MKDEV(info->major,info->minor);
4225 
4226 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4227 		return -EOVERFLOW;
4228 
4229 	if (!mddev->raid_disks) {
4230 		int err;
4231 		/* expecting a device which has a superblock */
4232 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4233 		if (IS_ERR(rdev)) {
4234 			printk(KERN_WARNING
4235 				"md: md_import_device returned %ld\n",
4236 				PTR_ERR(rdev));
4237 			return PTR_ERR(rdev);
4238 		}
4239 		if (!list_empty(&mddev->disks)) {
4240 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4241 							mdk_rdev_t, same_set);
4242 			int err = super_types[mddev->major_version]
4243 				.load_super(rdev, rdev0, mddev->minor_version);
4244 			if (err < 0) {
4245 				printk(KERN_WARNING
4246 					"md: %s has different UUID to %s\n",
4247 					bdevname(rdev->bdev,b),
4248 					bdevname(rdev0->bdev,b2));
4249 				export_rdev(rdev);
4250 				return -EINVAL;
4251 			}
4252 		}
4253 		err = bind_rdev_to_array(rdev, mddev);
4254 		if (err)
4255 			export_rdev(rdev);
4256 		return err;
4257 	}
4258 
4259 	/*
4260 	 * add_new_disk can be used once the array is assembled
4261 	 * to add "hot spares".  They must already have a superblock
4262 	 * written
4263 	 */
4264 	if (mddev->pers) {
4265 		int err;
4266 		if (!mddev->pers->hot_add_disk) {
4267 			printk(KERN_WARNING
4268 				"%s: personality does not support diskops!\n",
4269 			       mdname(mddev));
4270 			return -EINVAL;
4271 		}
4272 		if (mddev->persistent)
4273 			rdev = md_import_device(dev, mddev->major_version,
4274 						mddev->minor_version);
4275 		else
4276 			rdev = md_import_device(dev, -1, -1);
4277 		if (IS_ERR(rdev)) {
4278 			printk(KERN_WARNING
4279 				"md: md_import_device returned %ld\n",
4280 				PTR_ERR(rdev));
4281 			return PTR_ERR(rdev);
4282 		}
4283 		/* set save_raid_disk if appropriate */
4284 		if (!mddev->persistent) {
4285 			if (info->state & (1<<MD_DISK_SYNC)  &&
4286 			    info->raid_disk < mddev->raid_disks)
4287 				rdev->raid_disk = info->raid_disk;
4288 			else
4289 				rdev->raid_disk = -1;
4290 		} else
4291 			super_types[mddev->major_version].
4292 				validate_super(mddev, rdev);
4293 		rdev->saved_raid_disk = rdev->raid_disk;
4294 
4295 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
4296 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4297 			set_bit(WriteMostly, &rdev->flags);
4298 
4299 		rdev->raid_disk = -1;
4300 		err = bind_rdev_to_array(rdev, mddev);
4301 		if (!err && !mddev->pers->hot_remove_disk) {
4302 			/* If there is hot_add_disk but no hot_remove_disk
4303 			 * then added disks for geometry changes,
4304 			 * and should be added immediately.
4305 			 */
4306 			super_types[mddev->major_version].
4307 				validate_super(mddev, rdev);
4308 			err = mddev->pers->hot_add_disk(mddev, rdev);
4309 			if (err)
4310 				unbind_rdev_from_array(rdev);
4311 		}
4312 		if (err)
4313 			export_rdev(rdev);
4314 		else
4315 			sysfs_notify(&rdev->kobj, NULL, "state");
4316 
4317 		md_update_sb(mddev, 1);
4318 		if (mddev->degraded)
4319 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4320 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4321 		md_wakeup_thread(mddev->thread);
4322 		return err;
4323 	}
4324 
4325 	/* otherwise, add_new_disk is only allowed
4326 	 * for major_version==0 superblocks
4327 	 */
4328 	if (mddev->major_version != 0) {
4329 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4330 		       mdname(mddev));
4331 		return -EINVAL;
4332 	}
4333 
4334 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
4335 		int err;
4336 		rdev = md_import_device (dev, -1, 0);
4337 		if (IS_ERR(rdev)) {
4338 			printk(KERN_WARNING
4339 				"md: error, md_import_device() returned %ld\n",
4340 				PTR_ERR(rdev));
4341 			return PTR_ERR(rdev);
4342 		}
4343 		rdev->desc_nr = info->number;
4344 		if (info->raid_disk < mddev->raid_disks)
4345 			rdev->raid_disk = info->raid_disk;
4346 		else
4347 			rdev->raid_disk = -1;
4348 
4349 		if (rdev->raid_disk < mddev->raid_disks)
4350 			if (info->state & (1<<MD_DISK_SYNC))
4351 				set_bit(In_sync, &rdev->flags);
4352 
4353 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4354 			set_bit(WriteMostly, &rdev->flags);
4355 
4356 		if (!mddev->persistent) {
4357 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
4358 			rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4359 		} else
4360 			rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4361 		rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2;
4362 
4363 		err = bind_rdev_to_array(rdev, mddev);
4364 		if (err) {
4365 			export_rdev(rdev);
4366 			return err;
4367 		}
4368 	}
4369 
4370 	return 0;
4371 }
4372 
4373 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4374 {
4375 	char b[BDEVNAME_SIZE];
4376 	mdk_rdev_t *rdev;
4377 
4378 	rdev = find_rdev(mddev, dev);
4379 	if (!rdev)
4380 		return -ENXIO;
4381 
4382 	if (rdev->raid_disk >= 0)
4383 		goto busy;
4384 
4385 	kick_rdev_from_array(rdev);
4386 	md_update_sb(mddev, 1);
4387 	md_new_event(mddev);
4388 
4389 	return 0;
4390 busy:
4391 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4392 		bdevname(rdev->bdev,b), mdname(mddev));
4393 	return -EBUSY;
4394 }
4395 
4396 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4397 {
4398 	char b[BDEVNAME_SIZE];
4399 	int err;
4400 	mdk_rdev_t *rdev;
4401 
4402 	if (!mddev->pers)
4403 		return -ENODEV;
4404 
4405 	if (mddev->major_version != 0) {
4406 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4407 			" version-0 superblocks.\n",
4408 			mdname(mddev));
4409 		return -EINVAL;
4410 	}
4411 	if (!mddev->pers->hot_add_disk) {
4412 		printk(KERN_WARNING
4413 			"%s: personality does not support diskops!\n",
4414 			mdname(mddev));
4415 		return -EINVAL;
4416 	}
4417 
4418 	rdev = md_import_device (dev, -1, 0);
4419 	if (IS_ERR(rdev)) {
4420 		printk(KERN_WARNING
4421 			"md: error, md_import_device() returned %ld\n",
4422 			PTR_ERR(rdev));
4423 		return -EINVAL;
4424 	}
4425 
4426 	if (mddev->persistent)
4427 		rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4428 	else
4429 		rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4430 
4431 	rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2;
4432 
4433 	if (test_bit(Faulty, &rdev->flags)) {
4434 		printk(KERN_WARNING
4435 			"md: can not hot-add faulty %s disk to %s!\n",
4436 			bdevname(rdev->bdev,b), mdname(mddev));
4437 		err = -EINVAL;
4438 		goto abort_export;
4439 	}
4440 	clear_bit(In_sync, &rdev->flags);
4441 	rdev->desc_nr = -1;
4442 	rdev->saved_raid_disk = -1;
4443 	err = bind_rdev_to_array(rdev, mddev);
4444 	if (err)
4445 		goto abort_export;
4446 
4447 	/*
4448 	 * The rest should better be atomic, we can have disk failures
4449 	 * noticed in interrupt contexts ...
4450 	 */
4451 
4452 	if (rdev->desc_nr == mddev->max_disks) {
4453 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4454 			mdname(mddev));
4455 		err = -EBUSY;
4456 		goto abort_unbind_export;
4457 	}
4458 
4459 	rdev->raid_disk = -1;
4460 
4461 	md_update_sb(mddev, 1);
4462 
4463 	/*
4464 	 * Kick recovery, maybe this spare has to be added to the
4465 	 * array immediately.
4466 	 */
4467 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4468 	md_wakeup_thread(mddev->thread);
4469 	md_new_event(mddev);
4470 	return 0;
4471 
4472 abort_unbind_export:
4473 	unbind_rdev_from_array(rdev);
4474 
4475 abort_export:
4476 	export_rdev(rdev);
4477 	return err;
4478 }
4479 
4480 static int set_bitmap_file(mddev_t *mddev, int fd)
4481 {
4482 	int err;
4483 
4484 	if (mddev->pers) {
4485 		if (!mddev->pers->quiesce)
4486 			return -EBUSY;
4487 		if (mddev->recovery || mddev->sync_thread)
4488 			return -EBUSY;
4489 		/* we should be able to change the bitmap.. */
4490 	}
4491 
4492 
4493 	if (fd >= 0) {
4494 		if (mddev->bitmap)
4495 			return -EEXIST; /* cannot add when bitmap is present */
4496 		mddev->bitmap_file = fget(fd);
4497 
4498 		if (mddev->bitmap_file == NULL) {
4499 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4500 			       mdname(mddev));
4501 			return -EBADF;
4502 		}
4503 
4504 		err = deny_bitmap_write_access(mddev->bitmap_file);
4505 		if (err) {
4506 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4507 			       mdname(mddev));
4508 			fput(mddev->bitmap_file);
4509 			mddev->bitmap_file = NULL;
4510 			return err;
4511 		}
4512 		mddev->bitmap_offset = 0; /* file overrides offset */
4513 	} else if (mddev->bitmap == NULL)
4514 		return -ENOENT; /* cannot remove what isn't there */
4515 	err = 0;
4516 	if (mddev->pers) {
4517 		mddev->pers->quiesce(mddev, 1);
4518 		if (fd >= 0)
4519 			err = bitmap_create(mddev);
4520 		if (fd < 0 || err) {
4521 			bitmap_destroy(mddev);
4522 			fd = -1; /* make sure to put the file */
4523 		}
4524 		mddev->pers->quiesce(mddev, 0);
4525 	}
4526 	if (fd < 0) {
4527 		if (mddev->bitmap_file) {
4528 			restore_bitmap_write_access(mddev->bitmap_file);
4529 			fput(mddev->bitmap_file);
4530 		}
4531 		mddev->bitmap_file = NULL;
4532 	}
4533 
4534 	return err;
4535 }
4536 
4537 /*
4538  * set_array_info is used two different ways
4539  * The original usage is when creating a new array.
4540  * In this usage, raid_disks is > 0 and it together with
4541  *  level, size, not_persistent,layout,chunksize determine the
4542  *  shape of the array.
4543  *  This will always create an array with a type-0.90.0 superblock.
4544  * The newer usage is when assembling an array.
4545  *  In this case raid_disks will be 0, and the major_version field is
4546  *  use to determine which style super-blocks are to be found on the devices.
4547  *  The minor and patch _version numbers are also kept incase the
4548  *  super_block handler wishes to interpret them.
4549  */
4550 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4551 {
4552 
4553 	if (info->raid_disks == 0) {
4554 		/* just setting version number for superblock loading */
4555 		if (info->major_version < 0 ||
4556 		    info->major_version >= ARRAY_SIZE(super_types) ||
4557 		    super_types[info->major_version].name == NULL) {
4558 			/* maybe try to auto-load a module? */
4559 			printk(KERN_INFO
4560 				"md: superblock version %d not known\n",
4561 				info->major_version);
4562 			return -EINVAL;
4563 		}
4564 		mddev->major_version = info->major_version;
4565 		mddev->minor_version = info->minor_version;
4566 		mddev->patch_version = info->patch_version;
4567 		mddev->persistent = !info->not_persistent;
4568 		return 0;
4569 	}
4570 	mddev->major_version = MD_MAJOR_VERSION;
4571 	mddev->minor_version = MD_MINOR_VERSION;
4572 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
4573 	mddev->ctime         = get_seconds();
4574 
4575 	mddev->level         = info->level;
4576 	mddev->clevel[0]     = 0;
4577 	mddev->size          = info->size;
4578 	mddev->raid_disks    = info->raid_disks;
4579 	/* don't set md_minor, it is determined by which /dev/md* was
4580 	 * openned
4581 	 */
4582 	if (info->state & (1<<MD_SB_CLEAN))
4583 		mddev->recovery_cp = MaxSector;
4584 	else
4585 		mddev->recovery_cp = 0;
4586 	mddev->persistent    = ! info->not_persistent;
4587 	mddev->external	     = 0;
4588 
4589 	mddev->layout        = info->layout;
4590 	mddev->chunk_size    = info->chunk_size;
4591 
4592 	mddev->max_disks     = MD_SB_DISKS;
4593 
4594 	if (mddev->persistent)
4595 		mddev->flags         = 0;
4596 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4597 
4598 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4599 	mddev->bitmap_offset = 0;
4600 
4601 	mddev->reshape_position = MaxSector;
4602 
4603 	/*
4604 	 * Generate a 128 bit UUID
4605 	 */
4606 	get_random_bytes(mddev->uuid, 16);
4607 
4608 	mddev->new_level = mddev->level;
4609 	mddev->new_chunk = mddev->chunk_size;
4610 	mddev->new_layout = mddev->layout;
4611 	mddev->delta_disks = 0;
4612 
4613 	return 0;
4614 }
4615 
4616 static int update_size(mddev_t *mddev, sector_t num_sectors)
4617 {
4618 	mdk_rdev_t * rdev;
4619 	int rv;
4620 	struct list_head *tmp;
4621 	int fit = (num_sectors == 0);
4622 
4623 	if (mddev->pers->resize == NULL)
4624 		return -EINVAL;
4625 	/* The "num_sectors" is the number of sectors of each device that
4626 	 * is used.  This can only make sense for arrays with redundancy.
4627 	 * linear and raid0 always use whatever space is available. We can only
4628 	 * consider changing this number if no resync or reconstruction is
4629 	 * happening, and if the new size is acceptable. It must fit before the
4630 	 * sb_start or, if that is <data_offset, it must fit before the size
4631 	 * of each device.  If num_sectors is zero, we find the largest size
4632 	 * that fits.
4633 
4634 	 */
4635 	if (mddev->sync_thread)
4636 		return -EBUSY;
4637 	if (mddev->bitmap)
4638 		/* Sorry, cannot grow a bitmap yet, just remove it,
4639 		 * grow, and re-add.
4640 		 */
4641 		return -EBUSY;
4642 	rdev_for_each(rdev, tmp, mddev) {
4643 		sector_t avail;
4644 		avail = rdev->size * 2;
4645 
4646 		if (fit && (num_sectors == 0 || num_sectors > avail))
4647 			num_sectors = avail;
4648 		if (avail < num_sectors)
4649 			return -ENOSPC;
4650 	}
4651 	rv = mddev->pers->resize(mddev, num_sectors);
4652 	if (!rv) {
4653 		struct block_device *bdev;
4654 
4655 		bdev = bdget_disk(mddev->gendisk, 0);
4656 		if (bdev) {
4657 			mutex_lock(&bdev->bd_inode->i_mutex);
4658 			i_size_write(bdev->bd_inode,
4659 				     (loff_t)mddev->array_sectors << 9);
4660 			mutex_unlock(&bdev->bd_inode->i_mutex);
4661 			bdput(bdev);
4662 		}
4663 	}
4664 	return rv;
4665 }
4666 
4667 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4668 {
4669 	int rv;
4670 	/* change the number of raid disks */
4671 	if (mddev->pers->check_reshape == NULL)
4672 		return -EINVAL;
4673 	if (raid_disks <= 0 ||
4674 	    raid_disks >= mddev->max_disks)
4675 		return -EINVAL;
4676 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4677 		return -EBUSY;
4678 	mddev->delta_disks = raid_disks - mddev->raid_disks;
4679 
4680 	rv = mddev->pers->check_reshape(mddev);
4681 	return rv;
4682 }
4683 
4684 
4685 /*
4686  * update_array_info is used to change the configuration of an
4687  * on-line array.
4688  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4689  * fields in the info are checked against the array.
4690  * Any differences that cannot be handled will cause an error.
4691  * Normally, only one change can be managed at a time.
4692  */
4693 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4694 {
4695 	int rv = 0;
4696 	int cnt = 0;
4697 	int state = 0;
4698 
4699 	/* calculate expected state,ignoring low bits */
4700 	if (mddev->bitmap && mddev->bitmap_offset)
4701 		state |= (1 << MD_SB_BITMAP_PRESENT);
4702 
4703 	if (mddev->major_version != info->major_version ||
4704 	    mddev->minor_version != info->minor_version ||
4705 /*	    mddev->patch_version != info->patch_version || */
4706 	    mddev->ctime         != info->ctime         ||
4707 	    mddev->level         != info->level         ||
4708 /*	    mddev->layout        != info->layout        || */
4709 	    !mddev->persistent	 != info->not_persistent||
4710 	    mddev->chunk_size    != info->chunk_size    ||
4711 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4712 	    ((state^info->state) & 0xfffffe00)
4713 		)
4714 		return -EINVAL;
4715 	/* Check there is only one change */
4716 	if (info->size >= 0 && mddev->size != info->size) cnt++;
4717 	if (mddev->raid_disks != info->raid_disks) cnt++;
4718 	if (mddev->layout != info->layout) cnt++;
4719 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4720 	if (cnt == 0) return 0;
4721 	if (cnt > 1) return -EINVAL;
4722 
4723 	if (mddev->layout != info->layout) {
4724 		/* Change layout
4725 		 * we don't need to do anything at the md level, the
4726 		 * personality will take care of it all.
4727 		 */
4728 		if (mddev->pers->reconfig == NULL)
4729 			return -EINVAL;
4730 		else
4731 			return mddev->pers->reconfig(mddev, info->layout, -1);
4732 	}
4733 	if (info->size >= 0 && mddev->size != info->size)
4734 		rv = update_size(mddev, (sector_t)info->size * 2);
4735 
4736 	if (mddev->raid_disks    != info->raid_disks)
4737 		rv = update_raid_disks(mddev, info->raid_disks);
4738 
4739 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4740 		if (mddev->pers->quiesce == NULL)
4741 			return -EINVAL;
4742 		if (mddev->recovery || mddev->sync_thread)
4743 			return -EBUSY;
4744 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4745 			/* add the bitmap */
4746 			if (mddev->bitmap)
4747 				return -EEXIST;
4748 			if (mddev->default_bitmap_offset == 0)
4749 				return -EINVAL;
4750 			mddev->bitmap_offset = mddev->default_bitmap_offset;
4751 			mddev->pers->quiesce(mddev, 1);
4752 			rv = bitmap_create(mddev);
4753 			if (rv)
4754 				bitmap_destroy(mddev);
4755 			mddev->pers->quiesce(mddev, 0);
4756 		} else {
4757 			/* remove the bitmap */
4758 			if (!mddev->bitmap)
4759 				return -ENOENT;
4760 			if (mddev->bitmap->file)
4761 				return -EINVAL;
4762 			mddev->pers->quiesce(mddev, 1);
4763 			bitmap_destroy(mddev);
4764 			mddev->pers->quiesce(mddev, 0);
4765 			mddev->bitmap_offset = 0;
4766 		}
4767 	}
4768 	md_update_sb(mddev, 1);
4769 	return rv;
4770 }
4771 
4772 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4773 {
4774 	mdk_rdev_t *rdev;
4775 
4776 	if (mddev->pers == NULL)
4777 		return -ENODEV;
4778 
4779 	rdev = find_rdev(mddev, dev);
4780 	if (!rdev)
4781 		return -ENODEV;
4782 
4783 	md_error(mddev, rdev);
4784 	return 0;
4785 }
4786 
4787 /*
4788  * We have a problem here : there is no easy way to give a CHS
4789  * virtual geometry. We currently pretend that we have a 2 heads
4790  * 4 sectors (with a BIG number of cylinders...). This drives
4791  * dosfs just mad... ;-)
4792  */
4793 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4794 {
4795 	mddev_t *mddev = bdev->bd_disk->private_data;
4796 
4797 	geo->heads = 2;
4798 	geo->sectors = 4;
4799 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
4800 	return 0;
4801 }
4802 
4803 static int md_ioctl(struct inode *inode, struct file *file,
4804 			unsigned int cmd, unsigned long arg)
4805 {
4806 	int err = 0;
4807 	void __user *argp = (void __user *)arg;
4808 	mddev_t *mddev = NULL;
4809 
4810 	if (!capable(CAP_SYS_ADMIN))
4811 		return -EACCES;
4812 
4813 	/*
4814 	 * Commands dealing with the RAID driver but not any
4815 	 * particular array:
4816 	 */
4817 	switch (cmd)
4818 	{
4819 		case RAID_VERSION:
4820 			err = get_version(argp);
4821 			goto done;
4822 
4823 		case PRINT_RAID_DEBUG:
4824 			err = 0;
4825 			md_print_devices();
4826 			goto done;
4827 
4828 #ifndef MODULE
4829 		case RAID_AUTORUN:
4830 			err = 0;
4831 			autostart_arrays(arg);
4832 			goto done;
4833 #endif
4834 		default:;
4835 	}
4836 
4837 	/*
4838 	 * Commands creating/starting a new array:
4839 	 */
4840 
4841 	mddev = inode->i_bdev->bd_disk->private_data;
4842 
4843 	if (!mddev) {
4844 		BUG();
4845 		goto abort;
4846 	}
4847 
4848 	err = mddev_lock(mddev);
4849 	if (err) {
4850 		printk(KERN_INFO
4851 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
4852 			err, cmd);
4853 		goto abort;
4854 	}
4855 
4856 	switch (cmd)
4857 	{
4858 		case SET_ARRAY_INFO:
4859 			{
4860 				mdu_array_info_t info;
4861 				if (!arg)
4862 					memset(&info, 0, sizeof(info));
4863 				else if (copy_from_user(&info, argp, sizeof(info))) {
4864 					err = -EFAULT;
4865 					goto abort_unlock;
4866 				}
4867 				if (mddev->pers) {
4868 					err = update_array_info(mddev, &info);
4869 					if (err) {
4870 						printk(KERN_WARNING "md: couldn't update"
4871 						       " array info. %d\n", err);
4872 						goto abort_unlock;
4873 					}
4874 					goto done_unlock;
4875 				}
4876 				if (!list_empty(&mddev->disks)) {
4877 					printk(KERN_WARNING
4878 					       "md: array %s already has disks!\n",
4879 					       mdname(mddev));
4880 					err = -EBUSY;
4881 					goto abort_unlock;
4882 				}
4883 				if (mddev->raid_disks) {
4884 					printk(KERN_WARNING
4885 					       "md: array %s already initialised!\n",
4886 					       mdname(mddev));
4887 					err = -EBUSY;
4888 					goto abort_unlock;
4889 				}
4890 				err = set_array_info(mddev, &info);
4891 				if (err) {
4892 					printk(KERN_WARNING "md: couldn't set"
4893 					       " array info. %d\n", err);
4894 					goto abort_unlock;
4895 				}
4896 			}
4897 			goto done_unlock;
4898 
4899 		default:;
4900 	}
4901 
4902 	/*
4903 	 * Commands querying/configuring an existing array:
4904 	 */
4905 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4906 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4907 	if ((!mddev->raid_disks && !mddev->external)
4908 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4909 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4910 	    && cmd != GET_BITMAP_FILE) {
4911 		err = -ENODEV;
4912 		goto abort_unlock;
4913 	}
4914 
4915 	/*
4916 	 * Commands even a read-only array can execute:
4917 	 */
4918 	switch (cmd)
4919 	{
4920 		case GET_ARRAY_INFO:
4921 			err = get_array_info(mddev, argp);
4922 			goto done_unlock;
4923 
4924 		case GET_BITMAP_FILE:
4925 			err = get_bitmap_file(mddev, argp);
4926 			goto done_unlock;
4927 
4928 		case GET_DISK_INFO:
4929 			err = get_disk_info(mddev, argp);
4930 			goto done_unlock;
4931 
4932 		case RESTART_ARRAY_RW:
4933 			err = restart_array(mddev);
4934 			goto done_unlock;
4935 
4936 		case STOP_ARRAY:
4937 			err = do_md_stop (mddev, 0, 1);
4938 			goto done_unlock;
4939 
4940 		case STOP_ARRAY_RO:
4941 			err = do_md_stop (mddev, 1, 1);
4942 			goto done_unlock;
4943 
4944 	}
4945 
4946 	/*
4947 	 * The remaining ioctls are changing the state of the
4948 	 * superblock, so we do not allow them on read-only arrays.
4949 	 * However non-MD ioctls (e.g. get-size) will still come through
4950 	 * here and hit the 'default' below, so only disallow
4951 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4952 	 */
4953 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
4954 		if (mddev->ro == 2) {
4955 			mddev->ro = 0;
4956 			sysfs_notify(&mddev->kobj, NULL, "array_state");
4957 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4958 			md_wakeup_thread(mddev->thread);
4959 		} else {
4960 			err = -EROFS;
4961 			goto abort_unlock;
4962 		}
4963 	}
4964 
4965 	switch (cmd)
4966 	{
4967 		case ADD_NEW_DISK:
4968 		{
4969 			mdu_disk_info_t info;
4970 			if (copy_from_user(&info, argp, sizeof(info)))
4971 				err = -EFAULT;
4972 			else
4973 				err = add_new_disk(mddev, &info);
4974 			goto done_unlock;
4975 		}
4976 
4977 		case HOT_REMOVE_DISK:
4978 			err = hot_remove_disk(mddev, new_decode_dev(arg));
4979 			goto done_unlock;
4980 
4981 		case HOT_ADD_DISK:
4982 			err = hot_add_disk(mddev, new_decode_dev(arg));
4983 			goto done_unlock;
4984 
4985 		case SET_DISK_FAULTY:
4986 			err = set_disk_faulty(mddev, new_decode_dev(arg));
4987 			goto done_unlock;
4988 
4989 		case RUN_ARRAY:
4990 			err = do_md_run (mddev);
4991 			goto done_unlock;
4992 
4993 		case SET_BITMAP_FILE:
4994 			err = set_bitmap_file(mddev, (int)arg);
4995 			goto done_unlock;
4996 
4997 		default:
4998 			err = -EINVAL;
4999 			goto abort_unlock;
5000 	}
5001 
5002 done_unlock:
5003 abort_unlock:
5004 	mddev_unlock(mddev);
5005 
5006 	return err;
5007 done:
5008 	if (err)
5009 		MD_BUG();
5010 abort:
5011 	return err;
5012 }
5013 
5014 static int md_open(struct inode *inode, struct file *file)
5015 {
5016 	/*
5017 	 * Succeed if we can lock the mddev, which confirms that
5018 	 * it isn't being stopped right now.
5019 	 */
5020 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
5021 	int err;
5022 
5023 	if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
5024 		goto out;
5025 
5026 	err = 0;
5027 	mddev_get(mddev);
5028 	atomic_inc(&mddev->openers);
5029 	mddev_unlock(mddev);
5030 
5031 	check_disk_change(inode->i_bdev);
5032  out:
5033 	return err;
5034 }
5035 
5036 static int md_release(struct inode *inode, struct file * file)
5037 {
5038  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
5039 
5040 	BUG_ON(!mddev);
5041 	atomic_dec(&mddev->openers);
5042 	mddev_put(mddev);
5043 
5044 	return 0;
5045 }
5046 
5047 static int md_media_changed(struct gendisk *disk)
5048 {
5049 	mddev_t *mddev = disk->private_data;
5050 
5051 	return mddev->changed;
5052 }
5053 
5054 static int md_revalidate(struct gendisk *disk)
5055 {
5056 	mddev_t *mddev = disk->private_data;
5057 
5058 	mddev->changed = 0;
5059 	return 0;
5060 }
5061 static struct block_device_operations md_fops =
5062 {
5063 	.owner		= THIS_MODULE,
5064 	.open		= md_open,
5065 	.release	= md_release,
5066 	.ioctl		= md_ioctl,
5067 	.getgeo		= md_getgeo,
5068 	.media_changed	= md_media_changed,
5069 	.revalidate_disk= md_revalidate,
5070 };
5071 
5072 static int md_thread(void * arg)
5073 {
5074 	mdk_thread_t *thread = arg;
5075 
5076 	/*
5077 	 * md_thread is a 'system-thread', it's priority should be very
5078 	 * high. We avoid resource deadlocks individually in each
5079 	 * raid personality. (RAID5 does preallocation) We also use RR and
5080 	 * the very same RT priority as kswapd, thus we will never get
5081 	 * into a priority inversion deadlock.
5082 	 *
5083 	 * we definitely have to have equal or higher priority than
5084 	 * bdflush, otherwise bdflush will deadlock if there are too
5085 	 * many dirty RAID5 blocks.
5086 	 */
5087 
5088 	allow_signal(SIGKILL);
5089 	while (!kthread_should_stop()) {
5090 
5091 		/* We need to wait INTERRUPTIBLE so that
5092 		 * we don't add to the load-average.
5093 		 * That means we need to be sure no signals are
5094 		 * pending
5095 		 */
5096 		if (signal_pending(current))
5097 			flush_signals(current);
5098 
5099 		wait_event_interruptible_timeout
5100 			(thread->wqueue,
5101 			 test_bit(THREAD_WAKEUP, &thread->flags)
5102 			 || kthread_should_stop(),
5103 			 thread->timeout);
5104 
5105 		clear_bit(THREAD_WAKEUP, &thread->flags);
5106 
5107 		thread->run(thread->mddev);
5108 	}
5109 
5110 	return 0;
5111 }
5112 
5113 void md_wakeup_thread(mdk_thread_t *thread)
5114 {
5115 	if (thread) {
5116 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5117 		set_bit(THREAD_WAKEUP, &thread->flags);
5118 		wake_up(&thread->wqueue);
5119 	}
5120 }
5121 
5122 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5123 				 const char *name)
5124 {
5125 	mdk_thread_t *thread;
5126 
5127 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5128 	if (!thread)
5129 		return NULL;
5130 
5131 	init_waitqueue_head(&thread->wqueue);
5132 
5133 	thread->run = run;
5134 	thread->mddev = mddev;
5135 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
5136 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5137 	if (IS_ERR(thread->tsk)) {
5138 		kfree(thread);
5139 		return NULL;
5140 	}
5141 	return thread;
5142 }
5143 
5144 void md_unregister_thread(mdk_thread_t *thread)
5145 {
5146 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5147 
5148 	kthread_stop(thread->tsk);
5149 	kfree(thread);
5150 }
5151 
5152 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5153 {
5154 	if (!mddev) {
5155 		MD_BUG();
5156 		return;
5157 	}
5158 
5159 	if (!rdev || test_bit(Faulty, &rdev->flags))
5160 		return;
5161 
5162 	if (mddev->external)
5163 		set_bit(Blocked, &rdev->flags);
5164 /*
5165 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5166 		mdname(mddev),
5167 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5168 		__builtin_return_address(0),__builtin_return_address(1),
5169 		__builtin_return_address(2),__builtin_return_address(3));
5170 */
5171 	if (!mddev->pers)
5172 		return;
5173 	if (!mddev->pers->error_handler)
5174 		return;
5175 	mddev->pers->error_handler(mddev,rdev);
5176 	if (mddev->degraded)
5177 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5178 	set_bit(StateChanged, &rdev->flags);
5179 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5180 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5181 	md_wakeup_thread(mddev->thread);
5182 	md_new_event_inintr(mddev);
5183 }
5184 
5185 /* seq_file implementation /proc/mdstat */
5186 
5187 static void status_unused(struct seq_file *seq)
5188 {
5189 	int i = 0;
5190 	mdk_rdev_t *rdev;
5191 	struct list_head *tmp;
5192 
5193 	seq_printf(seq, "unused devices: ");
5194 
5195 	rdev_for_each_list(rdev, tmp, pending_raid_disks) {
5196 		char b[BDEVNAME_SIZE];
5197 		i++;
5198 		seq_printf(seq, "%s ",
5199 			      bdevname(rdev->bdev,b));
5200 	}
5201 	if (!i)
5202 		seq_printf(seq, "<none>");
5203 
5204 	seq_printf(seq, "\n");
5205 }
5206 
5207 
5208 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5209 {
5210 	sector_t max_blocks, resync, res;
5211 	unsigned long dt, db, rt;
5212 	int scale;
5213 	unsigned int per_milli;
5214 
5215 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
5216 
5217 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5218 		max_blocks = mddev->resync_max_sectors >> 1;
5219 	else
5220 		max_blocks = mddev->size;
5221 
5222 	/*
5223 	 * Should not happen.
5224 	 */
5225 	if (!max_blocks) {
5226 		MD_BUG();
5227 		return;
5228 	}
5229 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
5230 	 * in a sector_t, and (max_blocks>>scale) will fit in a
5231 	 * u32, as those are the requirements for sector_div.
5232 	 * Thus 'scale' must be at least 10
5233 	 */
5234 	scale = 10;
5235 	if (sizeof(sector_t) > sizeof(unsigned long)) {
5236 		while ( max_blocks/2 > (1ULL<<(scale+32)))
5237 			scale++;
5238 	}
5239 	res = (resync>>scale)*1000;
5240 	sector_div(res, (u32)((max_blocks>>scale)+1));
5241 
5242 	per_milli = res;
5243 	{
5244 		int i, x = per_milli/50, y = 20-x;
5245 		seq_printf(seq, "[");
5246 		for (i = 0; i < x; i++)
5247 			seq_printf(seq, "=");
5248 		seq_printf(seq, ">");
5249 		for (i = 0; i < y; i++)
5250 			seq_printf(seq, ".");
5251 		seq_printf(seq, "] ");
5252 	}
5253 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5254 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5255 		    "reshape" :
5256 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5257 		     "check" :
5258 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5259 		      "resync" : "recovery"))),
5260 		   per_milli/10, per_milli % 10,
5261 		   (unsigned long long) resync,
5262 		   (unsigned long long) max_blocks);
5263 
5264 	/*
5265 	 * We do not want to overflow, so the order of operands and
5266 	 * the * 100 / 100 trick are important. We do a +1 to be
5267 	 * safe against division by zero. We only estimate anyway.
5268 	 *
5269 	 * dt: time from mark until now
5270 	 * db: blocks written from mark until now
5271 	 * rt: remaining time
5272 	 */
5273 	dt = ((jiffies - mddev->resync_mark) / HZ);
5274 	if (!dt) dt++;
5275 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5276 		- mddev->resync_mark_cnt;
5277 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5278 
5279 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5280 
5281 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5282 }
5283 
5284 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5285 {
5286 	struct list_head *tmp;
5287 	loff_t l = *pos;
5288 	mddev_t *mddev;
5289 
5290 	if (l >= 0x10000)
5291 		return NULL;
5292 	if (!l--)
5293 		/* header */
5294 		return (void*)1;
5295 
5296 	spin_lock(&all_mddevs_lock);
5297 	list_for_each(tmp,&all_mddevs)
5298 		if (!l--) {
5299 			mddev = list_entry(tmp, mddev_t, all_mddevs);
5300 			mddev_get(mddev);
5301 			spin_unlock(&all_mddevs_lock);
5302 			return mddev;
5303 		}
5304 	spin_unlock(&all_mddevs_lock);
5305 	if (!l--)
5306 		return (void*)2;/* tail */
5307 	return NULL;
5308 }
5309 
5310 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5311 {
5312 	struct list_head *tmp;
5313 	mddev_t *next_mddev, *mddev = v;
5314 
5315 	++*pos;
5316 	if (v == (void*)2)
5317 		return NULL;
5318 
5319 	spin_lock(&all_mddevs_lock);
5320 	if (v == (void*)1)
5321 		tmp = all_mddevs.next;
5322 	else
5323 		tmp = mddev->all_mddevs.next;
5324 	if (tmp != &all_mddevs)
5325 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5326 	else {
5327 		next_mddev = (void*)2;
5328 		*pos = 0x10000;
5329 	}
5330 	spin_unlock(&all_mddevs_lock);
5331 
5332 	if (v != (void*)1)
5333 		mddev_put(mddev);
5334 	return next_mddev;
5335 
5336 }
5337 
5338 static void md_seq_stop(struct seq_file *seq, void *v)
5339 {
5340 	mddev_t *mddev = v;
5341 
5342 	if (mddev && v != (void*)1 && v != (void*)2)
5343 		mddev_put(mddev);
5344 }
5345 
5346 struct mdstat_info {
5347 	int event;
5348 };
5349 
5350 static int md_seq_show(struct seq_file *seq, void *v)
5351 {
5352 	mddev_t *mddev = v;
5353 	sector_t size;
5354 	struct list_head *tmp2;
5355 	mdk_rdev_t *rdev;
5356 	struct mdstat_info *mi = seq->private;
5357 	struct bitmap *bitmap;
5358 
5359 	if (v == (void*)1) {
5360 		struct mdk_personality *pers;
5361 		seq_printf(seq, "Personalities : ");
5362 		spin_lock(&pers_lock);
5363 		list_for_each_entry(pers, &pers_list, list)
5364 			seq_printf(seq, "[%s] ", pers->name);
5365 
5366 		spin_unlock(&pers_lock);
5367 		seq_printf(seq, "\n");
5368 		mi->event = atomic_read(&md_event_count);
5369 		return 0;
5370 	}
5371 	if (v == (void*)2) {
5372 		status_unused(seq);
5373 		return 0;
5374 	}
5375 
5376 	if (mddev_lock(mddev) < 0)
5377 		return -EINTR;
5378 
5379 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5380 		seq_printf(seq, "%s : %sactive", mdname(mddev),
5381 						mddev->pers ? "" : "in");
5382 		if (mddev->pers) {
5383 			if (mddev->ro==1)
5384 				seq_printf(seq, " (read-only)");
5385 			if (mddev->ro==2)
5386 				seq_printf(seq, " (auto-read-only)");
5387 			seq_printf(seq, " %s", mddev->pers->name);
5388 		}
5389 
5390 		size = 0;
5391 		rdev_for_each(rdev, tmp2, mddev) {
5392 			char b[BDEVNAME_SIZE];
5393 			seq_printf(seq, " %s[%d]",
5394 				bdevname(rdev->bdev,b), rdev->desc_nr);
5395 			if (test_bit(WriteMostly, &rdev->flags))
5396 				seq_printf(seq, "(W)");
5397 			if (test_bit(Faulty, &rdev->flags)) {
5398 				seq_printf(seq, "(F)");
5399 				continue;
5400 			} else if (rdev->raid_disk < 0)
5401 				seq_printf(seq, "(S)"); /* spare */
5402 			size += rdev->size;
5403 		}
5404 
5405 		if (!list_empty(&mddev->disks)) {
5406 			if (mddev->pers)
5407 				seq_printf(seq, "\n      %llu blocks",
5408 					   (unsigned long long)
5409 					   mddev->array_sectors / 2);
5410 			else
5411 				seq_printf(seq, "\n      %llu blocks",
5412 					   (unsigned long long)size);
5413 		}
5414 		if (mddev->persistent) {
5415 			if (mddev->major_version != 0 ||
5416 			    mddev->minor_version != 90) {
5417 				seq_printf(seq," super %d.%d",
5418 					   mddev->major_version,
5419 					   mddev->minor_version);
5420 			}
5421 		} else if (mddev->external)
5422 			seq_printf(seq, " super external:%s",
5423 				   mddev->metadata_type);
5424 		else
5425 			seq_printf(seq, " super non-persistent");
5426 
5427 		if (mddev->pers) {
5428 			mddev->pers->status (seq, mddev);
5429 	 		seq_printf(seq, "\n      ");
5430 			if (mddev->pers->sync_request) {
5431 				if (mddev->curr_resync > 2) {
5432 					status_resync (seq, mddev);
5433 					seq_printf(seq, "\n      ");
5434 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5435 					seq_printf(seq, "\tresync=DELAYED\n      ");
5436 				else if (mddev->recovery_cp < MaxSector)
5437 					seq_printf(seq, "\tresync=PENDING\n      ");
5438 			}
5439 		} else
5440 			seq_printf(seq, "\n       ");
5441 
5442 		if ((bitmap = mddev->bitmap)) {
5443 			unsigned long chunk_kb;
5444 			unsigned long flags;
5445 			spin_lock_irqsave(&bitmap->lock, flags);
5446 			chunk_kb = bitmap->chunksize >> 10;
5447 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5448 				"%lu%s chunk",
5449 				bitmap->pages - bitmap->missing_pages,
5450 				bitmap->pages,
5451 				(bitmap->pages - bitmap->missing_pages)
5452 					<< (PAGE_SHIFT - 10),
5453 				chunk_kb ? chunk_kb : bitmap->chunksize,
5454 				chunk_kb ? "KB" : "B");
5455 			if (bitmap->file) {
5456 				seq_printf(seq, ", file: ");
5457 				seq_path(seq, &bitmap->file->f_path, " \t\n");
5458 			}
5459 
5460 			seq_printf(seq, "\n");
5461 			spin_unlock_irqrestore(&bitmap->lock, flags);
5462 		}
5463 
5464 		seq_printf(seq, "\n");
5465 	}
5466 	mddev_unlock(mddev);
5467 
5468 	return 0;
5469 }
5470 
5471 static struct seq_operations md_seq_ops = {
5472 	.start  = md_seq_start,
5473 	.next   = md_seq_next,
5474 	.stop   = md_seq_stop,
5475 	.show   = md_seq_show,
5476 };
5477 
5478 static int md_seq_open(struct inode *inode, struct file *file)
5479 {
5480 	int error;
5481 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5482 	if (mi == NULL)
5483 		return -ENOMEM;
5484 
5485 	error = seq_open(file, &md_seq_ops);
5486 	if (error)
5487 		kfree(mi);
5488 	else {
5489 		struct seq_file *p = file->private_data;
5490 		p->private = mi;
5491 		mi->event = atomic_read(&md_event_count);
5492 	}
5493 	return error;
5494 }
5495 
5496 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5497 {
5498 	struct seq_file *m = filp->private_data;
5499 	struct mdstat_info *mi = m->private;
5500 	int mask;
5501 
5502 	poll_wait(filp, &md_event_waiters, wait);
5503 
5504 	/* always allow read */
5505 	mask = POLLIN | POLLRDNORM;
5506 
5507 	if (mi->event != atomic_read(&md_event_count))
5508 		mask |= POLLERR | POLLPRI;
5509 	return mask;
5510 }
5511 
5512 static const struct file_operations md_seq_fops = {
5513 	.owner		= THIS_MODULE,
5514 	.open           = md_seq_open,
5515 	.read           = seq_read,
5516 	.llseek         = seq_lseek,
5517 	.release	= seq_release_private,
5518 	.poll		= mdstat_poll,
5519 };
5520 
5521 int register_md_personality(struct mdk_personality *p)
5522 {
5523 	spin_lock(&pers_lock);
5524 	list_add_tail(&p->list, &pers_list);
5525 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5526 	spin_unlock(&pers_lock);
5527 	return 0;
5528 }
5529 
5530 int unregister_md_personality(struct mdk_personality *p)
5531 {
5532 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5533 	spin_lock(&pers_lock);
5534 	list_del_init(&p->list);
5535 	spin_unlock(&pers_lock);
5536 	return 0;
5537 }
5538 
5539 static int is_mddev_idle(mddev_t *mddev)
5540 {
5541 	mdk_rdev_t * rdev;
5542 	int idle;
5543 	long curr_events;
5544 
5545 	idle = 1;
5546 	rcu_read_lock();
5547 	rdev_for_each_rcu(rdev, mddev) {
5548 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5549 		curr_events = part_stat_read(&disk->part0, sectors[0]) +
5550 				part_stat_read(&disk->part0, sectors[1]) -
5551 				atomic_read(&disk->sync_io);
5552 		/* sync IO will cause sync_io to increase before the disk_stats
5553 		 * as sync_io is counted when a request starts, and
5554 		 * disk_stats is counted when it completes.
5555 		 * So resync activity will cause curr_events to be smaller than
5556 		 * when there was no such activity.
5557 		 * non-sync IO will cause disk_stat to increase without
5558 		 * increasing sync_io so curr_events will (eventually)
5559 		 * be larger than it was before.  Once it becomes
5560 		 * substantially larger, the test below will cause
5561 		 * the array to appear non-idle, and resync will slow
5562 		 * down.
5563 		 * If there is a lot of outstanding resync activity when
5564 		 * we set last_event to curr_events, then all that activity
5565 		 * completing might cause the array to appear non-idle
5566 		 * and resync will be slowed down even though there might
5567 		 * not have been non-resync activity.  This will only
5568 		 * happen once though.  'last_events' will soon reflect
5569 		 * the state where there is little or no outstanding
5570 		 * resync requests, and further resync activity will
5571 		 * always make curr_events less than last_events.
5572 		 *
5573 		 */
5574 		if (curr_events - rdev->last_events > 4096) {
5575 			rdev->last_events = curr_events;
5576 			idle = 0;
5577 		}
5578 	}
5579 	rcu_read_unlock();
5580 	return idle;
5581 }
5582 
5583 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5584 {
5585 	/* another "blocks" (512byte) blocks have been synced */
5586 	atomic_sub(blocks, &mddev->recovery_active);
5587 	wake_up(&mddev->recovery_wait);
5588 	if (!ok) {
5589 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5590 		md_wakeup_thread(mddev->thread);
5591 		// stop recovery, signal do_sync ....
5592 	}
5593 }
5594 
5595 
5596 /* md_write_start(mddev, bi)
5597  * If we need to update some array metadata (e.g. 'active' flag
5598  * in superblock) before writing, schedule a superblock update
5599  * and wait for it to complete.
5600  */
5601 void md_write_start(mddev_t *mddev, struct bio *bi)
5602 {
5603 	int did_change = 0;
5604 	if (bio_data_dir(bi) != WRITE)
5605 		return;
5606 
5607 	BUG_ON(mddev->ro == 1);
5608 	if (mddev->ro == 2) {
5609 		/* need to switch to read/write */
5610 		mddev->ro = 0;
5611 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5612 		md_wakeup_thread(mddev->thread);
5613 		md_wakeup_thread(mddev->sync_thread);
5614 		did_change = 1;
5615 	}
5616 	atomic_inc(&mddev->writes_pending);
5617 	if (mddev->safemode == 1)
5618 		mddev->safemode = 0;
5619 	if (mddev->in_sync) {
5620 		spin_lock_irq(&mddev->write_lock);
5621 		if (mddev->in_sync) {
5622 			mddev->in_sync = 0;
5623 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5624 			md_wakeup_thread(mddev->thread);
5625 			did_change = 1;
5626 		}
5627 		spin_unlock_irq(&mddev->write_lock);
5628 	}
5629 	if (did_change)
5630 		sysfs_notify(&mddev->kobj, NULL, "array_state");
5631 	wait_event(mddev->sb_wait,
5632 		   !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
5633 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5634 }
5635 
5636 void md_write_end(mddev_t *mddev)
5637 {
5638 	if (atomic_dec_and_test(&mddev->writes_pending)) {
5639 		if (mddev->safemode == 2)
5640 			md_wakeup_thread(mddev->thread);
5641 		else if (mddev->safemode_delay)
5642 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5643 	}
5644 }
5645 
5646 /* md_allow_write(mddev)
5647  * Calling this ensures that the array is marked 'active' so that writes
5648  * may proceed without blocking.  It is important to call this before
5649  * attempting a GFP_KERNEL allocation while holding the mddev lock.
5650  * Must be called with mddev_lock held.
5651  *
5652  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
5653  * is dropped, so return -EAGAIN after notifying userspace.
5654  */
5655 int md_allow_write(mddev_t *mddev)
5656 {
5657 	if (!mddev->pers)
5658 		return 0;
5659 	if (mddev->ro)
5660 		return 0;
5661 	if (!mddev->pers->sync_request)
5662 		return 0;
5663 
5664 	spin_lock_irq(&mddev->write_lock);
5665 	if (mddev->in_sync) {
5666 		mddev->in_sync = 0;
5667 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5668 		if (mddev->safemode_delay &&
5669 		    mddev->safemode == 0)
5670 			mddev->safemode = 1;
5671 		spin_unlock_irq(&mddev->write_lock);
5672 		md_update_sb(mddev, 0);
5673 		sysfs_notify(&mddev->kobj, NULL, "array_state");
5674 	} else
5675 		spin_unlock_irq(&mddev->write_lock);
5676 
5677 	if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
5678 		return -EAGAIN;
5679 	else
5680 		return 0;
5681 }
5682 EXPORT_SYMBOL_GPL(md_allow_write);
5683 
5684 #define SYNC_MARKS	10
5685 #define	SYNC_MARK_STEP	(3*HZ)
5686 void md_do_sync(mddev_t *mddev)
5687 {
5688 	mddev_t *mddev2;
5689 	unsigned int currspeed = 0,
5690 		 window;
5691 	sector_t max_sectors,j, io_sectors;
5692 	unsigned long mark[SYNC_MARKS];
5693 	sector_t mark_cnt[SYNC_MARKS];
5694 	int last_mark,m;
5695 	struct list_head *tmp;
5696 	sector_t last_check;
5697 	int skipped = 0;
5698 	struct list_head *rtmp;
5699 	mdk_rdev_t *rdev;
5700 	char *desc;
5701 
5702 	/* just incase thread restarts... */
5703 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5704 		return;
5705 	if (mddev->ro) /* never try to sync a read-only array */
5706 		return;
5707 
5708 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5709 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5710 			desc = "data-check";
5711 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5712 			desc = "requested-resync";
5713 		else
5714 			desc = "resync";
5715 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5716 		desc = "reshape";
5717 	else
5718 		desc = "recovery";
5719 
5720 	/* we overload curr_resync somewhat here.
5721 	 * 0 == not engaged in resync at all
5722 	 * 2 == checking that there is no conflict with another sync
5723 	 * 1 == like 2, but have yielded to allow conflicting resync to
5724 	 *		commense
5725 	 * other == active in resync - this many blocks
5726 	 *
5727 	 * Before starting a resync we must have set curr_resync to
5728 	 * 2, and then checked that every "conflicting" array has curr_resync
5729 	 * less than ours.  When we find one that is the same or higher
5730 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
5731 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5732 	 * This will mean we have to start checking from the beginning again.
5733 	 *
5734 	 */
5735 
5736 	do {
5737 		mddev->curr_resync = 2;
5738 
5739 	try_again:
5740 		if (kthread_should_stop()) {
5741 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5742 			goto skip;
5743 		}
5744 		for_each_mddev(mddev2, tmp) {
5745 			if (mddev2 == mddev)
5746 				continue;
5747 			if (!mddev->parallel_resync
5748 			&&  mddev2->curr_resync
5749 			&&  match_mddev_units(mddev, mddev2)) {
5750 				DEFINE_WAIT(wq);
5751 				if (mddev < mddev2 && mddev->curr_resync == 2) {
5752 					/* arbitrarily yield */
5753 					mddev->curr_resync = 1;
5754 					wake_up(&resync_wait);
5755 				}
5756 				if (mddev > mddev2 && mddev->curr_resync == 1)
5757 					/* no need to wait here, we can wait the next
5758 					 * time 'round when curr_resync == 2
5759 					 */
5760 					continue;
5761 				/* We need to wait 'interruptible' so as not to
5762 				 * contribute to the load average, and not to
5763 				 * be caught by 'softlockup'
5764 				 */
5765 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
5766 				if (!kthread_should_stop() &&
5767 				    mddev2->curr_resync >= mddev->curr_resync) {
5768 					printk(KERN_INFO "md: delaying %s of %s"
5769 					       " until %s has finished (they"
5770 					       " share one or more physical units)\n",
5771 					       desc, mdname(mddev), mdname(mddev2));
5772 					mddev_put(mddev2);
5773 					if (signal_pending(current))
5774 						flush_signals(current);
5775 					schedule();
5776 					finish_wait(&resync_wait, &wq);
5777 					goto try_again;
5778 				}
5779 				finish_wait(&resync_wait, &wq);
5780 			}
5781 		}
5782 	} while (mddev->curr_resync < 2);
5783 
5784 	j = 0;
5785 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5786 		/* resync follows the size requested by the personality,
5787 		 * which defaults to physical size, but can be virtual size
5788 		 */
5789 		max_sectors = mddev->resync_max_sectors;
5790 		mddev->resync_mismatches = 0;
5791 		/* we don't use the checkpoint if there's a bitmap */
5792 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5793 			j = mddev->resync_min;
5794 		else if (!mddev->bitmap)
5795 			j = mddev->recovery_cp;
5796 
5797 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5798 		max_sectors = mddev->size << 1;
5799 	else {
5800 		/* recovery follows the physical size of devices */
5801 		max_sectors = mddev->size << 1;
5802 		j = MaxSector;
5803 		rdev_for_each(rdev, rtmp, mddev)
5804 			if (rdev->raid_disk >= 0 &&
5805 			    !test_bit(Faulty, &rdev->flags) &&
5806 			    !test_bit(In_sync, &rdev->flags) &&
5807 			    rdev->recovery_offset < j)
5808 				j = rdev->recovery_offset;
5809 	}
5810 
5811 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5812 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
5813 		" %d KB/sec/disk.\n", speed_min(mddev));
5814 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5815 	       "(but not more than %d KB/sec) for %s.\n",
5816 	       speed_max(mddev), desc);
5817 
5818 	is_mddev_idle(mddev); /* this also initializes IO event counters */
5819 
5820 	io_sectors = 0;
5821 	for (m = 0; m < SYNC_MARKS; m++) {
5822 		mark[m] = jiffies;
5823 		mark_cnt[m] = io_sectors;
5824 	}
5825 	last_mark = 0;
5826 	mddev->resync_mark = mark[last_mark];
5827 	mddev->resync_mark_cnt = mark_cnt[last_mark];
5828 
5829 	/*
5830 	 * Tune reconstruction:
5831 	 */
5832 	window = 32*(PAGE_SIZE/512);
5833 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5834 		window/2,(unsigned long long) max_sectors/2);
5835 
5836 	atomic_set(&mddev->recovery_active, 0);
5837 	last_check = 0;
5838 
5839 	if (j>2) {
5840 		printk(KERN_INFO
5841 		       "md: resuming %s of %s from checkpoint.\n",
5842 		       desc, mdname(mddev));
5843 		mddev->curr_resync = j;
5844 	}
5845 
5846 	while (j < max_sectors) {
5847 		sector_t sectors;
5848 
5849 		skipped = 0;
5850 		if (j >= mddev->resync_max) {
5851 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5852 			wait_event(mddev->recovery_wait,
5853 				   mddev->resync_max > j
5854 				   || kthread_should_stop());
5855 		}
5856 		if (kthread_should_stop())
5857 			goto interrupted;
5858 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
5859 						  currspeed < speed_min(mddev));
5860 		if (sectors == 0) {
5861 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5862 			goto out;
5863 		}
5864 
5865 		if (!skipped) { /* actual IO requested */
5866 			io_sectors += sectors;
5867 			atomic_add(sectors, &mddev->recovery_active);
5868 		}
5869 
5870 		j += sectors;
5871 		if (j>1) mddev->curr_resync = j;
5872 		mddev->curr_mark_cnt = io_sectors;
5873 		if (last_check == 0)
5874 			/* this is the earliers that rebuilt will be
5875 			 * visible in /proc/mdstat
5876 			 */
5877 			md_new_event(mddev);
5878 
5879 		if (last_check + window > io_sectors || j == max_sectors)
5880 			continue;
5881 
5882 		last_check = io_sectors;
5883 
5884 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5885 			break;
5886 
5887 	repeat:
5888 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5889 			/* step marks */
5890 			int next = (last_mark+1) % SYNC_MARKS;
5891 
5892 			mddev->resync_mark = mark[next];
5893 			mddev->resync_mark_cnt = mark_cnt[next];
5894 			mark[next] = jiffies;
5895 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5896 			last_mark = next;
5897 		}
5898 
5899 
5900 		if (kthread_should_stop())
5901 			goto interrupted;
5902 
5903 
5904 		/*
5905 		 * this loop exits only if either when we are slower than
5906 		 * the 'hard' speed limit, or the system was IO-idle for
5907 		 * a jiffy.
5908 		 * the system might be non-idle CPU-wise, but we only care
5909 		 * about not overloading the IO subsystem. (things like an
5910 		 * e2fsck being done on the RAID array should execute fast)
5911 		 */
5912 		blk_unplug(mddev->queue);
5913 		cond_resched();
5914 
5915 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5916 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
5917 
5918 		if (currspeed > speed_min(mddev)) {
5919 			if ((currspeed > speed_max(mddev)) ||
5920 					!is_mddev_idle(mddev)) {
5921 				msleep(500);
5922 				goto repeat;
5923 			}
5924 		}
5925 	}
5926 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5927 	/*
5928 	 * this also signals 'finished resyncing' to md_stop
5929 	 */
5930  out:
5931 	blk_unplug(mddev->queue);
5932 
5933 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5934 
5935 	/* tell personality that we are finished */
5936 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5937 
5938 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5939 	    mddev->curr_resync > 2) {
5940 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5941 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5942 				if (mddev->curr_resync >= mddev->recovery_cp) {
5943 					printk(KERN_INFO
5944 					       "md: checkpointing %s of %s.\n",
5945 					       desc, mdname(mddev));
5946 					mddev->recovery_cp = mddev->curr_resync;
5947 				}
5948 			} else
5949 				mddev->recovery_cp = MaxSector;
5950 		} else {
5951 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5952 				mddev->curr_resync = MaxSector;
5953 			rdev_for_each(rdev, rtmp, mddev)
5954 				if (rdev->raid_disk >= 0 &&
5955 				    !test_bit(Faulty, &rdev->flags) &&
5956 				    !test_bit(In_sync, &rdev->flags) &&
5957 				    rdev->recovery_offset < mddev->curr_resync)
5958 					rdev->recovery_offset = mddev->curr_resync;
5959 		}
5960 	}
5961 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5962 
5963  skip:
5964 	mddev->curr_resync = 0;
5965 	mddev->resync_min = 0;
5966 	mddev->resync_max = MaxSector;
5967 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5968 	wake_up(&resync_wait);
5969 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5970 	md_wakeup_thread(mddev->thread);
5971 	return;
5972 
5973  interrupted:
5974 	/*
5975 	 * got a signal, exit.
5976 	 */
5977 	printk(KERN_INFO
5978 	       "md: md_do_sync() got signal ... exiting\n");
5979 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5980 	goto out;
5981 
5982 }
5983 EXPORT_SYMBOL_GPL(md_do_sync);
5984 
5985 
5986 static int remove_and_add_spares(mddev_t *mddev)
5987 {
5988 	mdk_rdev_t *rdev;
5989 	struct list_head *rtmp;
5990 	int spares = 0;
5991 
5992 	rdev_for_each(rdev, rtmp, mddev)
5993 		if (rdev->raid_disk >= 0 &&
5994 		    !test_bit(Blocked, &rdev->flags) &&
5995 		    (test_bit(Faulty, &rdev->flags) ||
5996 		     ! test_bit(In_sync, &rdev->flags)) &&
5997 		    atomic_read(&rdev->nr_pending)==0) {
5998 			if (mddev->pers->hot_remove_disk(
5999 				    mddev, rdev->raid_disk)==0) {
6000 				char nm[20];
6001 				sprintf(nm,"rd%d", rdev->raid_disk);
6002 				sysfs_remove_link(&mddev->kobj, nm);
6003 				rdev->raid_disk = -1;
6004 			}
6005 		}
6006 
6007 	if (mddev->degraded && ! mddev->ro) {
6008 		rdev_for_each(rdev, rtmp, mddev) {
6009 			if (rdev->raid_disk >= 0 &&
6010 			    !test_bit(In_sync, &rdev->flags) &&
6011 			    !test_bit(Blocked, &rdev->flags))
6012 				spares++;
6013 			if (rdev->raid_disk < 0
6014 			    && !test_bit(Faulty, &rdev->flags)) {
6015 				rdev->recovery_offset = 0;
6016 				if (mddev->pers->
6017 				    hot_add_disk(mddev, rdev) == 0) {
6018 					char nm[20];
6019 					sprintf(nm, "rd%d", rdev->raid_disk);
6020 					if (sysfs_create_link(&mddev->kobj,
6021 							      &rdev->kobj, nm))
6022 						printk(KERN_WARNING
6023 						       "md: cannot register "
6024 						       "%s for %s\n",
6025 						       nm, mdname(mddev));
6026 					spares++;
6027 					md_new_event(mddev);
6028 				} else
6029 					break;
6030 			}
6031 		}
6032 	}
6033 	return spares;
6034 }
6035 /*
6036  * This routine is regularly called by all per-raid-array threads to
6037  * deal with generic issues like resync and super-block update.
6038  * Raid personalities that don't have a thread (linear/raid0) do not
6039  * need this as they never do any recovery or update the superblock.
6040  *
6041  * It does not do any resync itself, but rather "forks" off other threads
6042  * to do that as needed.
6043  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6044  * "->recovery" and create a thread at ->sync_thread.
6045  * When the thread finishes it sets MD_RECOVERY_DONE
6046  * and wakeups up this thread which will reap the thread and finish up.
6047  * This thread also removes any faulty devices (with nr_pending == 0).
6048  *
6049  * The overall approach is:
6050  *  1/ if the superblock needs updating, update it.
6051  *  2/ If a recovery thread is running, don't do anything else.
6052  *  3/ If recovery has finished, clean up, possibly marking spares active.
6053  *  4/ If there are any faulty devices, remove them.
6054  *  5/ If array is degraded, try to add spares devices
6055  *  6/ If array has spares or is not in-sync, start a resync thread.
6056  */
6057 void md_check_recovery(mddev_t *mddev)
6058 {
6059 	mdk_rdev_t *rdev;
6060 	struct list_head *rtmp;
6061 
6062 
6063 	if (mddev->bitmap)
6064 		bitmap_daemon_work(mddev->bitmap);
6065 
6066 	if (test_and_clear_bit(MD_NOTIFY_ARRAY_STATE, &mddev->flags))
6067 		sysfs_notify(&mddev->kobj, NULL, "array_state");
6068 
6069 	if (mddev->ro)
6070 		return;
6071 
6072 	if (signal_pending(current)) {
6073 		if (mddev->pers->sync_request && !mddev->external) {
6074 			printk(KERN_INFO "md: %s in immediate safe mode\n",
6075 			       mdname(mddev));
6076 			mddev->safemode = 2;
6077 		}
6078 		flush_signals(current);
6079 	}
6080 
6081 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6082 		return;
6083 	if ( ! (
6084 		(mddev->flags && !mddev->external) ||
6085 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6086 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6087 		(mddev->external == 0 && mddev->safemode == 1) ||
6088 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6089 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6090 		))
6091 		return;
6092 
6093 	if (mddev_trylock(mddev)) {
6094 		int spares = 0;
6095 
6096 		if (mddev->ro) {
6097 			/* Only thing we do on a ro array is remove
6098 			 * failed devices.
6099 			 */
6100 			remove_and_add_spares(mddev);
6101 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6102 			goto unlock;
6103 		}
6104 
6105 		if (!mddev->external) {
6106 			int did_change = 0;
6107 			spin_lock_irq(&mddev->write_lock);
6108 			if (mddev->safemode &&
6109 			    !atomic_read(&mddev->writes_pending) &&
6110 			    !mddev->in_sync &&
6111 			    mddev->recovery_cp == MaxSector) {
6112 				mddev->in_sync = 1;
6113 				did_change = 1;
6114 				if (mddev->persistent)
6115 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6116 			}
6117 			if (mddev->safemode == 1)
6118 				mddev->safemode = 0;
6119 			spin_unlock_irq(&mddev->write_lock);
6120 			if (did_change)
6121 				sysfs_notify(&mddev->kobj, NULL, "array_state");
6122 		}
6123 
6124 		if (mddev->flags)
6125 			md_update_sb(mddev, 0);
6126 
6127 		rdev_for_each(rdev, rtmp, mddev)
6128 			if (test_and_clear_bit(StateChanged, &rdev->flags))
6129 				sysfs_notify(&rdev->kobj, NULL, "state");
6130 
6131 
6132 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6133 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6134 			/* resync/recovery still happening */
6135 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6136 			goto unlock;
6137 		}
6138 		if (mddev->sync_thread) {
6139 			/* resync has finished, collect result */
6140 			md_unregister_thread(mddev->sync_thread);
6141 			mddev->sync_thread = NULL;
6142 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6143 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6144 				/* success...*/
6145 				/* activate any spares */
6146 				if (mddev->pers->spare_active(mddev))
6147 					sysfs_notify(&mddev->kobj, NULL,
6148 						     "degraded");
6149 			}
6150 			md_update_sb(mddev, 1);
6151 
6152 			/* if array is no-longer degraded, then any saved_raid_disk
6153 			 * information must be scrapped
6154 			 */
6155 			if (!mddev->degraded)
6156 				rdev_for_each(rdev, rtmp, mddev)
6157 					rdev->saved_raid_disk = -1;
6158 
6159 			mddev->recovery = 0;
6160 			/* flag recovery needed just to double check */
6161 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6162 			sysfs_notify(&mddev->kobj, NULL, "sync_action");
6163 			md_new_event(mddev);
6164 			goto unlock;
6165 		}
6166 		/* Set RUNNING before clearing NEEDED to avoid
6167 		 * any transients in the value of "sync_action".
6168 		 */
6169 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6170 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6171 		/* Clear some bits that don't mean anything, but
6172 		 * might be left set
6173 		 */
6174 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6175 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6176 
6177 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6178 			goto unlock;
6179 		/* no recovery is running.
6180 		 * remove any failed drives, then
6181 		 * add spares if possible.
6182 		 * Spare are also removed and re-added, to allow
6183 		 * the personality to fail the re-add.
6184 		 */
6185 
6186 		if (mddev->reshape_position != MaxSector) {
6187 			if (mddev->pers->check_reshape(mddev) != 0)
6188 				/* Cannot proceed */
6189 				goto unlock;
6190 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6191 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6192 		} else if ((spares = remove_and_add_spares(mddev))) {
6193 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6194 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6195 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6196 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6197 		} else if (mddev->recovery_cp < MaxSector) {
6198 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6199 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6200 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6201 			/* nothing to be done ... */
6202 			goto unlock;
6203 
6204 		if (mddev->pers->sync_request) {
6205 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6206 				/* We are adding a device or devices to an array
6207 				 * which has the bitmap stored on all devices.
6208 				 * So make sure all bitmap pages get written
6209 				 */
6210 				bitmap_write_all(mddev->bitmap);
6211 			}
6212 			mddev->sync_thread = md_register_thread(md_do_sync,
6213 								mddev,
6214 								"%s_resync");
6215 			if (!mddev->sync_thread) {
6216 				printk(KERN_ERR "%s: could not start resync"
6217 					" thread...\n",
6218 					mdname(mddev));
6219 				/* leave the spares where they are, it shouldn't hurt */
6220 				mddev->recovery = 0;
6221 			} else
6222 				md_wakeup_thread(mddev->sync_thread);
6223 			sysfs_notify(&mddev->kobj, NULL, "sync_action");
6224 			md_new_event(mddev);
6225 		}
6226 	unlock:
6227 		if (!mddev->sync_thread) {
6228 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6229 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6230 					       &mddev->recovery))
6231 				sysfs_notify(&mddev->kobj, NULL, "sync_action");
6232 		}
6233 		mddev_unlock(mddev);
6234 	}
6235 }
6236 
6237 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6238 {
6239 	sysfs_notify(&rdev->kobj, NULL, "state");
6240 	wait_event_timeout(rdev->blocked_wait,
6241 			   !test_bit(Blocked, &rdev->flags),
6242 			   msecs_to_jiffies(5000));
6243 	rdev_dec_pending(rdev, mddev);
6244 }
6245 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6246 
6247 static int md_notify_reboot(struct notifier_block *this,
6248 			    unsigned long code, void *x)
6249 {
6250 	struct list_head *tmp;
6251 	mddev_t *mddev;
6252 
6253 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6254 
6255 		printk(KERN_INFO "md: stopping all md devices.\n");
6256 
6257 		for_each_mddev(mddev, tmp)
6258 			if (mddev_trylock(mddev)) {
6259 				/* Force a switch to readonly even array
6260 				 * appears to still be in use.  Hence
6261 				 * the '100'.
6262 				 */
6263 				do_md_stop (mddev, 1, 100);
6264 				mddev_unlock(mddev);
6265 			}
6266 		/*
6267 		 * certain more exotic SCSI devices are known to be
6268 		 * volatile wrt too early system reboots. While the
6269 		 * right place to handle this issue is the given
6270 		 * driver, we do want to have a safe RAID driver ...
6271 		 */
6272 		mdelay(1000*1);
6273 	}
6274 	return NOTIFY_DONE;
6275 }
6276 
6277 static struct notifier_block md_notifier = {
6278 	.notifier_call	= md_notify_reboot,
6279 	.next		= NULL,
6280 	.priority	= INT_MAX, /* before any real devices */
6281 };
6282 
6283 static void md_geninit(void)
6284 {
6285 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6286 
6287 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6288 }
6289 
6290 static int __init md_init(void)
6291 {
6292 	if (register_blkdev(MAJOR_NR, "md"))
6293 		return -1;
6294 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6295 		unregister_blkdev(MAJOR_NR, "md");
6296 		return -1;
6297 	}
6298 	blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
6299 			    md_probe, NULL, NULL);
6300 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6301 			    md_probe, NULL, NULL);
6302 
6303 	register_reboot_notifier(&md_notifier);
6304 	raid_table_header = register_sysctl_table(raid_root_table);
6305 
6306 	md_geninit();
6307 	return (0);
6308 }
6309 
6310 
6311 #ifndef MODULE
6312 
6313 /*
6314  * Searches all registered partitions for autorun RAID arrays
6315  * at boot time.
6316  */
6317 
6318 static LIST_HEAD(all_detected_devices);
6319 struct detected_devices_node {
6320 	struct list_head list;
6321 	dev_t dev;
6322 };
6323 
6324 void md_autodetect_dev(dev_t dev)
6325 {
6326 	struct detected_devices_node *node_detected_dev;
6327 
6328 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6329 	if (node_detected_dev) {
6330 		node_detected_dev->dev = dev;
6331 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
6332 	} else {
6333 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6334 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6335 	}
6336 }
6337 
6338 
6339 static void autostart_arrays(int part)
6340 {
6341 	mdk_rdev_t *rdev;
6342 	struct detected_devices_node *node_detected_dev;
6343 	dev_t dev;
6344 	int i_scanned, i_passed;
6345 
6346 	i_scanned = 0;
6347 	i_passed = 0;
6348 
6349 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6350 
6351 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6352 		i_scanned++;
6353 		node_detected_dev = list_entry(all_detected_devices.next,
6354 					struct detected_devices_node, list);
6355 		list_del(&node_detected_dev->list);
6356 		dev = node_detected_dev->dev;
6357 		kfree(node_detected_dev);
6358 		rdev = md_import_device(dev,0, 90);
6359 		if (IS_ERR(rdev))
6360 			continue;
6361 
6362 		if (test_bit(Faulty, &rdev->flags)) {
6363 			MD_BUG();
6364 			continue;
6365 		}
6366 		set_bit(AutoDetected, &rdev->flags);
6367 		list_add(&rdev->same_set, &pending_raid_disks);
6368 		i_passed++;
6369 	}
6370 
6371 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6372 						i_scanned, i_passed);
6373 
6374 	autorun_devices(part);
6375 }
6376 
6377 #endif /* !MODULE */
6378 
6379 static __exit void md_exit(void)
6380 {
6381 	mddev_t *mddev;
6382 	struct list_head *tmp;
6383 
6384 	blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
6385 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6386 
6387 	unregister_blkdev(MAJOR_NR,"md");
6388 	unregister_blkdev(mdp_major, "mdp");
6389 	unregister_reboot_notifier(&md_notifier);
6390 	unregister_sysctl_table(raid_table_header);
6391 	remove_proc_entry("mdstat", NULL);
6392 	for_each_mddev(mddev, tmp) {
6393 		struct gendisk *disk = mddev->gendisk;
6394 		if (!disk)
6395 			continue;
6396 		export_array(mddev);
6397 		del_gendisk(disk);
6398 		put_disk(disk);
6399 		mddev->gendisk = NULL;
6400 		mddev_put(mddev);
6401 	}
6402 }
6403 
6404 subsys_initcall(md_init);
6405 module_exit(md_exit)
6406 
6407 static int get_ro(char *buffer, struct kernel_param *kp)
6408 {
6409 	return sprintf(buffer, "%d", start_readonly);
6410 }
6411 static int set_ro(const char *val, struct kernel_param *kp)
6412 {
6413 	char *e;
6414 	int num = simple_strtoul(val, &e, 10);
6415 	if (*val && (*e == '\0' || *e == '\n')) {
6416 		start_readonly = num;
6417 		return 0;
6418 	}
6419 	return -EINVAL;
6420 }
6421 
6422 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6423 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6424 
6425 
6426 EXPORT_SYMBOL(register_md_personality);
6427 EXPORT_SYMBOL(unregister_md_personality);
6428 EXPORT_SYMBOL(md_error);
6429 EXPORT_SYMBOL(md_done_sync);
6430 EXPORT_SYMBOL(md_write_start);
6431 EXPORT_SYMBOL(md_write_end);
6432 EXPORT_SYMBOL(md_register_thread);
6433 EXPORT_SYMBOL(md_unregister_thread);
6434 EXPORT_SYMBOL(md_wakeup_thread);
6435 EXPORT_SYMBOL(md_check_recovery);
6436 MODULE_LICENSE("GPL");
6437 MODULE_ALIAS("md");
6438 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
6439