1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/kernel.h> 37 #include <linux/kthread.h> 38 #include <linux/linkage.h> 39 #include <linux/raid/md.h> 40 #include <linux/raid/bitmap.h> 41 #include <linux/sysctl.h> 42 #include <linux/buffer_head.h> /* for invalidate_bdev */ 43 #include <linux/poll.h> 44 #include <linux/mutex.h> 45 #include <linux/ctype.h> 46 #include <linux/freezer.h> 47 48 #include <linux/init.h> 49 50 #include <linux/file.h> 51 52 #ifdef CONFIG_KMOD 53 #include <linux/kmod.h> 54 #endif 55 56 #include <asm/unaligned.h> 57 58 #define MAJOR_NR MD_MAJOR 59 #define MD_DRIVER 60 61 /* 63 partitions with the alternate major number (mdp) */ 62 #define MdpMinorShift 6 63 64 #define DEBUG 0 65 #define dprintk(x...) ((void)(DEBUG && printk(x))) 66 67 68 #ifndef MODULE 69 static void autostart_arrays (int part); 70 #endif 71 72 static LIST_HEAD(pers_list); 73 static DEFINE_SPINLOCK(pers_lock); 74 75 static void md_print_devices(void); 76 77 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 78 79 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 80 81 /* 82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 83 * is 1000 KB/sec, so the extra system load does not show up that much. 84 * Increase it if you want to have more _guaranteed_ speed. Note that 85 * the RAID driver will use the maximum available bandwidth if the IO 86 * subsystem is idle. There is also an 'absolute maximum' reconstruction 87 * speed limit - in case reconstruction slows down your system despite 88 * idle IO detection. 89 * 90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 91 * or /sys/block/mdX/md/sync_speed_{min,max} 92 */ 93 94 static int sysctl_speed_limit_min = 1000; 95 static int sysctl_speed_limit_max = 200000; 96 static inline int speed_min(mddev_t *mddev) 97 { 98 return mddev->sync_speed_min ? 99 mddev->sync_speed_min : sysctl_speed_limit_min; 100 } 101 102 static inline int speed_max(mddev_t *mddev) 103 { 104 return mddev->sync_speed_max ? 105 mddev->sync_speed_max : sysctl_speed_limit_max; 106 } 107 108 static struct ctl_table_header *raid_table_header; 109 110 static ctl_table raid_table[] = { 111 { 112 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN, 113 .procname = "speed_limit_min", 114 .data = &sysctl_speed_limit_min, 115 .maxlen = sizeof(int), 116 .mode = S_IRUGO|S_IWUSR, 117 .proc_handler = &proc_dointvec, 118 }, 119 { 120 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX, 121 .procname = "speed_limit_max", 122 .data = &sysctl_speed_limit_max, 123 .maxlen = sizeof(int), 124 .mode = S_IRUGO|S_IWUSR, 125 .proc_handler = &proc_dointvec, 126 }, 127 { .ctl_name = 0 } 128 }; 129 130 static ctl_table raid_dir_table[] = { 131 { 132 .ctl_name = DEV_RAID, 133 .procname = "raid", 134 .maxlen = 0, 135 .mode = S_IRUGO|S_IXUGO, 136 .child = raid_table, 137 }, 138 { .ctl_name = 0 } 139 }; 140 141 static ctl_table raid_root_table[] = { 142 { 143 .ctl_name = CTL_DEV, 144 .procname = "dev", 145 .maxlen = 0, 146 .mode = 0555, 147 .child = raid_dir_table, 148 }, 149 { .ctl_name = 0 } 150 }; 151 152 static struct block_device_operations md_fops; 153 154 static int start_readonly; 155 156 /* 157 * We have a system wide 'event count' that is incremented 158 * on any 'interesting' event, and readers of /proc/mdstat 159 * can use 'poll' or 'select' to find out when the event 160 * count increases. 161 * 162 * Events are: 163 * start array, stop array, error, add device, remove device, 164 * start build, activate spare 165 */ 166 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 167 static atomic_t md_event_count; 168 void md_new_event(mddev_t *mddev) 169 { 170 atomic_inc(&md_event_count); 171 wake_up(&md_event_waiters); 172 } 173 EXPORT_SYMBOL_GPL(md_new_event); 174 175 /* Alternate version that can be called from interrupts 176 * when calling sysfs_notify isn't needed. 177 */ 178 static void md_new_event_inintr(mddev_t *mddev) 179 { 180 atomic_inc(&md_event_count); 181 wake_up(&md_event_waiters); 182 } 183 184 /* 185 * Enables to iterate over all existing md arrays 186 * all_mddevs_lock protects this list. 187 */ 188 static LIST_HEAD(all_mddevs); 189 static DEFINE_SPINLOCK(all_mddevs_lock); 190 191 192 /* 193 * iterates through all used mddevs in the system. 194 * We take care to grab the all_mddevs_lock whenever navigating 195 * the list, and to always hold a refcount when unlocked. 196 * Any code which breaks out of this loop while own 197 * a reference to the current mddev and must mddev_put it. 198 */ 199 #define for_each_mddev(mddev,tmp) \ 200 \ 201 for (({ spin_lock(&all_mddevs_lock); \ 202 tmp = all_mddevs.next; \ 203 mddev = NULL;}); \ 204 ({ if (tmp != &all_mddevs) \ 205 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 206 spin_unlock(&all_mddevs_lock); \ 207 if (mddev) mddev_put(mddev); \ 208 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 209 tmp != &all_mddevs;}); \ 210 ({ spin_lock(&all_mddevs_lock); \ 211 tmp = tmp->next;}) \ 212 ) 213 214 215 static int md_fail_request (struct request_queue *q, struct bio *bio) 216 { 217 bio_io_error(bio); 218 return 0; 219 } 220 221 static inline mddev_t *mddev_get(mddev_t *mddev) 222 { 223 atomic_inc(&mddev->active); 224 return mddev; 225 } 226 227 static void mddev_put(mddev_t *mddev) 228 { 229 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 230 return; 231 if (!mddev->raid_disks && list_empty(&mddev->disks)) { 232 list_del(&mddev->all_mddevs); 233 spin_unlock(&all_mddevs_lock); 234 blk_cleanup_queue(mddev->queue); 235 kobject_put(&mddev->kobj); 236 } else 237 spin_unlock(&all_mddevs_lock); 238 } 239 240 static mddev_t * mddev_find(dev_t unit) 241 { 242 mddev_t *mddev, *new = NULL; 243 244 retry: 245 spin_lock(&all_mddevs_lock); 246 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 247 if (mddev->unit == unit) { 248 mddev_get(mddev); 249 spin_unlock(&all_mddevs_lock); 250 kfree(new); 251 return mddev; 252 } 253 254 if (new) { 255 list_add(&new->all_mddevs, &all_mddevs); 256 spin_unlock(&all_mddevs_lock); 257 return new; 258 } 259 spin_unlock(&all_mddevs_lock); 260 261 new = kzalloc(sizeof(*new), GFP_KERNEL); 262 if (!new) 263 return NULL; 264 265 new->unit = unit; 266 if (MAJOR(unit) == MD_MAJOR) 267 new->md_minor = MINOR(unit); 268 else 269 new->md_minor = MINOR(unit) >> MdpMinorShift; 270 271 mutex_init(&new->reconfig_mutex); 272 INIT_LIST_HEAD(&new->disks); 273 INIT_LIST_HEAD(&new->all_mddevs); 274 init_timer(&new->safemode_timer); 275 atomic_set(&new->active, 1); 276 atomic_set(&new->openers, 0); 277 spin_lock_init(&new->write_lock); 278 init_waitqueue_head(&new->sb_wait); 279 init_waitqueue_head(&new->recovery_wait); 280 new->reshape_position = MaxSector; 281 new->resync_min = 0; 282 new->resync_max = MaxSector; 283 new->level = LEVEL_NONE; 284 285 new->queue = blk_alloc_queue(GFP_KERNEL); 286 if (!new->queue) { 287 kfree(new); 288 return NULL; 289 } 290 /* Can be unlocked because the queue is new: no concurrency */ 291 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, new->queue); 292 293 blk_queue_make_request(new->queue, md_fail_request); 294 295 goto retry; 296 } 297 298 static inline int mddev_lock(mddev_t * mddev) 299 { 300 return mutex_lock_interruptible(&mddev->reconfig_mutex); 301 } 302 303 static inline int mddev_trylock(mddev_t * mddev) 304 { 305 return mutex_trylock(&mddev->reconfig_mutex); 306 } 307 308 static inline void mddev_unlock(mddev_t * mddev) 309 { 310 mutex_unlock(&mddev->reconfig_mutex); 311 312 md_wakeup_thread(mddev->thread); 313 } 314 315 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 316 { 317 mdk_rdev_t * rdev; 318 struct list_head *tmp; 319 320 rdev_for_each(rdev, tmp, mddev) { 321 if (rdev->desc_nr == nr) 322 return rdev; 323 } 324 return NULL; 325 } 326 327 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 328 { 329 struct list_head *tmp; 330 mdk_rdev_t *rdev; 331 332 rdev_for_each(rdev, tmp, mddev) { 333 if (rdev->bdev->bd_dev == dev) 334 return rdev; 335 } 336 return NULL; 337 } 338 339 static struct mdk_personality *find_pers(int level, char *clevel) 340 { 341 struct mdk_personality *pers; 342 list_for_each_entry(pers, &pers_list, list) { 343 if (level != LEVEL_NONE && pers->level == level) 344 return pers; 345 if (strcmp(pers->name, clevel)==0) 346 return pers; 347 } 348 return NULL; 349 } 350 351 /* return the offset of the super block in 512byte sectors */ 352 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 353 { 354 sector_t num_sectors = bdev->bd_inode->i_size / 512; 355 return MD_NEW_SIZE_SECTORS(num_sectors); 356 } 357 358 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size) 359 { 360 sector_t num_sectors = rdev->sb_start; 361 362 if (chunk_size) 363 num_sectors &= ~((sector_t)chunk_size/512 - 1); 364 return num_sectors; 365 } 366 367 static int alloc_disk_sb(mdk_rdev_t * rdev) 368 { 369 if (rdev->sb_page) 370 MD_BUG(); 371 372 rdev->sb_page = alloc_page(GFP_KERNEL); 373 if (!rdev->sb_page) { 374 printk(KERN_ALERT "md: out of memory.\n"); 375 return -ENOMEM; 376 } 377 378 return 0; 379 } 380 381 static void free_disk_sb(mdk_rdev_t * rdev) 382 { 383 if (rdev->sb_page) { 384 put_page(rdev->sb_page); 385 rdev->sb_loaded = 0; 386 rdev->sb_page = NULL; 387 rdev->sb_start = 0; 388 rdev->size = 0; 389 } 390 } 391 392 393 static void super_written(struct bio *bio, int error) 394 { 395 mdk_rdev_t *rdev = bio->bi_private; 396 mddev_t *mddev = rdev->mddev; 397 398 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 399 printk("md: super_written gets error=%d, uptodate=%d\n", 400 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 401 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 402 md_error(mddev, rdev); 403 } 404 405 if (atomic_dec_and_test(&mddev->pending_writes)) 406 wake_up(&mddev->sb_wait); 407 bio_put(bio); 408 } 409 410 static void super_written_barrier(struct bio *bio, int error) 411 { 412 struct bio *bio2 = bio->bi_private; 413 mdk_rdev_t *rdev = bio2->bi_private; 414 mddev_t *mddev = rdev->mddev; 415 416 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 417 error == -EOPNOTSUPP) { 418 unsigned long flags; 419 /* barriers don't appear to be supported :-( */ 420 set_bit(BarriersNotsupp, &rdev->flags); 421 mddev->barriers_work = 0; 422 spin_lock_irqsave(&mddev->write_lock, flags); 423 bio2->bi_next = mddev->biolist; 424 mddev->biolist = bio2; 425 spin_unlock_irqrestore(&mddev->write_lock, flags); 426 wake_up(&mddev->sb_wait); 427 bio_put(bio); 428 } else { 429 bio_put(bio2); 430 bio->bi_private = rdev; 431 super_written(bio, error); 432 } 433 } 434 435 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 436 sector_t sector, int size, struct page *page) 437 { 438 /* write first size bytes of page to sector of rdev 439 * Increment mddev->pending_writes before returning 440 * and decrement it on completion, waking up sb_wait 441 * if zero is reached. 442 * If an error occurred, call md_error 443 * 444 * As we might need to resubmit the request if BIO_RW_BARRIER 445 * causes ENOTSUPP, we allocate a spare bio... 446 */ 447 struct bio *bio = bio_alloc(GFP_NOIO, 1); 448 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC); 449 450 bio->bi_bdev = rdev->bdev; 451 bio->bi_sector = sector; 452 bio_add_page(bio, page, size, 0); 453 bio->bi_private = rdev; 454 bio->bi_end_io = super_written; 455 bio->bi_rw = rw; 456 457 atomic_inc(&mddev->pending_writes); 458 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 459 struct bio *rbio; 460 rw |= (1<<BIO_RW_BARRIER); 461 rbio = bio_clone(bio, GFP_NOIO); 462 rbio->bi_private = bio; 463 rbio->bi_end_io = super_written_barrier; 464 submit_bio(rw, rbio); 465 } else 466 submit_bio(rw, bio); 467 } 468 469 void md_super_wait(mddev_t *mddev) 470 { 471 /* wait for all superblock writes that were scheduled to complete. 472 * if any had to be retried (due to BARRIER problems), retry them 473 */ 474 DEFINE_WAIT(wq); 475 for(;;) { 476 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 477 if (atomic_read(&mddev->pending_writes)==0) 478 break; 479 while (mddev->biolist) { 480 struct bio *bio; 481 spin_lock_irq(&mddev->write_lock); 482 bio = mddev->biolist; 483 mddev->biolist = bio->bi_next ; 484 bio->bi_next = NULL; 485 spin_unlock_irq(&mddev->write_lock); 486 submit_bio(bio->bi_rw, bio); 487 } 488 schedule(); 489 } 490 finish_wait(&mddev->sb_wait, &wq); 491 } 492 493 static void bi_complete(struct bio *bio, int error) 494 { 495 complete((struct completion*)bio->bi_private); 496 } 497 498 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 499 struct page *page, int rw) 500 { 501 struct bio *bio = bio_alloc(GFP_NOIO, 1); 502 struct completion event; 503 int ret; 504 505 rw |= (1 << BIO_RW_SYNC); 506 507 bio->bi_bdev = bdev; 508 bio->bi_sector = sector; 509 bio_add_page(bio, page, size, 0); 510 init_completion(&event); 511 bio->bi_private = &event; 512 bio->bi_end_io = bi_complete; 513 submit_bio(rw, bio); 514 wait_for_completion(&event); 515 516 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 517 bio_put(bio); 518 return ret; 519 } 520 EXPORT_SYMBOL_GPL(sync_page_io); 521 522 static int read_disk_sb(mdk_rdev_t * rdev, int size) 523 { 524 char b[BDEVNAME_SIZE]; 525 if (!rdev->sb_page) { 526 MD_BUG(); 527 return -EINVAL; 528 } 529 if (rdev->sb_loaded) 530 return 0; 531 532 533 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ)) 534 goto fail; 535 rdev->sb_loaded = 1; 536 return 0; 537 538 fail: 539 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 540 bdevname(rdev->bdev,b)); 541 return -EINVAL; 542 } 543 544 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 545 { 546 return sb1->set_uuid0 == sb2->set_uuid0 && 547 sb1->set_uuid1 == sb2->set_uuid1 && 548 sb1->set_uuid2 == sb2->set_uuid2 && 549 sb1->set_uuid3 == sb2->set_uuid3; 550 } 551 552 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 553 { 554 int ret; 555 mdp_super_t *tmp1, *tmp2; 556 557 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 558 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 559 560 if (!tmp1 || !tmp2) { 561 ret = 0; 562 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 563 goto abort; 564 } 565 566 *tmp1 = *sb1; 567 *tmp2 = *sb2; 568 569 /* 570 * nr_disks is not constant 571 */ 572 tmp1->nr_disks = 0; 573 tmp2->nr_disks = 0; 574 575 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 576 abort: 577 kfree(tmp1); 578 kfree(tmp2); 579 return ret; 580 } 581 582 583 static u32 md_csum_fold(u32 csum) 584 { 585 csum = (csum & 0xffff) + (csum >> 16); 586 return (csum & 0xffff) + (csum >> 16); 587 } 588 589 static unsigned int calc_sb_csum(mdp_super_t * sb) 590 { 591 u64 newcsum = 0; 592 u32 *sb32 = (u32*)sb; 593 int i; 594 unsigned int disk_csum, csum; 595 596 disk_csum = sb->sb_csum; 597 sb->sb_csum = 0; 598 599 for (i = 0; i < MD_SB_BYTES/4 ; i++) 600 newcsum += sb32[i]; 601 csum = (newcsum & 0xffffffff) + (newcsum>>32); 602 603 604 #ifdef CONFIG_ALPHA 605 /* This used to use csum_partial, which was wrong for several 606 * reasons including that different results are returned on 607 * different architectures. It isn't critical that we get exactly 608 * the same return value as before (we always csum_fold before 609 * testing, and that removes any differences). However as we 610 * know that csum_partial always returned a 16bit value on 611 * alphas, do a fold to maximise conformity to previous behaviour. 612 */ 613 sb->sb_csum = md_csum_fold(disk_csum); 614 #else 615 sb->sb_csum = disk_csum; 616 #endif 617 return csum; 618 } 619 620 621 /* 622 * Handle superblock details. 623 * We want to be able to handle multiple superblock formats 624 * so we have a common interface to them all, and an array of 625 * different handlers. 626 * We rely on user-space to write the initial superblock, and support 627 * reading and updating of superblocks. 628 * Interface methods are: 629 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 630 * loads and validates a superblock on dev. 631 * if refdev != NULL, compare superblocks on both devices 632 * Return: 633 * 0 - dev has a superblock that is compatible with refdev 634 * 1 - dev has a superblock that is compatible and newer than refdev 635 * so dev should be used as the refdev in future 636 * -EINVAL superblock incompatible or invalid 637 * -othererror e.g. -EIO 638 * 639 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 640 * Verify that dev is acceptable into mddev. 641 * The first time, mddev->raid_disks will be 0, and data from 642 * dev should be merged in. Subsequent calls check that dev 643 * is new enough. Return 0 or -EINVAL 644 * 645 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 646 * Update the superblock for rdev with data in mddev 647 * This does not write to disc. 648 * 649 */ 650 651 struct super_type { 652 char *name; 653 struct module *owner; 654 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, 655 int minor_version); 656 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 657 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 658 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev, 659 sector_t num_sectors); 660 }; 661 662 /* 663 * load_super for 0.90.0 664 */ 665 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 666 { 667 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 668 mdp_super_t *sb; 669 int ret; 670 671 /* 672 * Calculate the position of the superblock (512byte sectors), 673 * it's at the end of the disk. 674 * 675 * It also happens to be a multiple of 4Kb. 676 */ 677 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 678 679 ret = read_disk_sb(rdev, MD_SB_BYTES); 680 if (ret) return ret; 681 682 ret = -EINVAL; 683 684 bdevname(rdev->bdev, b); 685 sb = (mdp_super_t*)page_address(rdev->sb_page); 686 687 if (sb->md_magic != MD_SB_MAGIC) { 688 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 689 b); 690 goto abort; 691 } 692 693 if (sb->major_version != 0 || 694 sb->minor_version < 90 || 695 sb->minor_version > 91) { 696 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 697 sb->major_version, sb->minor_version, 698 b); 699 goto abort; 700 } 701 702 if (sb->raid_disks <= 0) 703 goto abort; 704 705 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 706 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 707 b); 708 goto abort; 709 } 710 711 rdev->preferred_minor = sb->md_minor; 712 rdev->data_offset = 0; 713 rdev->sb_size = MD_SB_BYTES; 714 715 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) { 716 if (sb->level != 1 && sb->level != 4 717 && sb->level != 5 && sb->level != 6 718 && sb->level != 10) { 719 /* FIXME use a better test */ 720 printk(KERN_WARNING 721 "md: bitmaps not supported for this level.\n"); 722 goto abort; 723 } 724 } 725 726 if (sb->level == LEVEL_MULTIPATH) 727 rdev->desc_nr = -1; 728 else 729 rdev->desc_nr = sb->this_disk.number; 730 731 if (!refdev) { 732 ret = 1; 733 } else { 734 __u64 ev1, ev2; 735 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 736 if (!uuid_equal(refsb, sb)) { 737 printk(KERN_WARNING "md: %s has different UUID to %s\n", 738 b, bdevname(refdev->bdev,b2)); 739 goto abort; 740 } 741 if (!sb_equal(refsb, sb)) { 742 printk(KERN_WARNING "md: %s has same UUID" 743 " but different superblock to %s\n", 744 b, bdevname(refdev->bdev, b2)); 745 goto abort; 746 } 747 ev1 = md_event(sb); 748 ev2 = md_event(refsb); 749 if (ev1 > ev2) 750 ret = 1; 751 else 752 ret = 0; 753 } 754 rdev->size = calc_num_sectors(rdev, sb->chunk_size) / 2; 755 756 if (rdev->size < sb->size && sb->level > 1) 757 /* "this cannot possibly happen" ... */ 758 ret = -EINVAL; 759 760 abort: 761 return ret; 762 } 763 764 /* 765 * validate_super for 0.90.0 766 */ 767 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 768 { 769 mdp_disk_t *desc; 770 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 771 __u64 ev1 = md_event(sb); 772 773 rdev->raid_disk = -1; 774 clear_bit(Faulty, &rdev->flags); 775 clear_bit(In_sync, &rdev->flags); 776 clear_bit(WriteMostly, &rdev->flags); 777 clear_bit(BarriersNotsupp, &rdev->flags); 778 779 if (mddev->raid_disks == 0) { 780 mddev->major_version = 0; 781 mddev->minor_version = sb->minor_version; 782 mddev->patch_version = sb->patch_version; 783 mddev->external = 0; 784 mddev->chunk_size = sb->chunk_size; 785 mddev->ctime = sb->ctime; 786 mddev->utime = sb->utime; 787 mddev->level = sb->level; 788 mddev->clevel[0] = 0; 789 mddev->layout = sb->layout; 790 mddev->raid_disks = sb->raid_disks; 791 mddev->size = sb->size; 792 mddev->events = ev1; 793 mddev->bitmap_offset = 0; 794 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 795 796 if (mddev->minor_version >= 91) { 797 mddev->reshape_position = sb->reshape_position; 798 mddev->delta_disks = sb->delta_disks; 799 mddev->new_level = sb->new_level; 800 mddev->new_layout = sb->new_layout; 801 mddev->new_chunk = sb->new_chunk; 802 } else { 803 mddev->reshape_position = MaxSector; 804 mddev->delta_disks = 0; 805 mddev->new_level = mddev->level; 806 mddev->new_layout = mddev->layout; 807 mddev->new_chunk = mddev->chunk_size; 808 } 809 810 if (sb->state & (1<<MD_SB_CLEAN)) 811 mddev->recovery_cp = MaxSector; 812 else { 813 if (sb->events_hi == sb->cp_events_hi && 814 sb->events_lo == sb->cp_events_lo) { 815 mddev->recovery_cp = sb->recovery_cp; 816 } else 817 mddev->recovery_cp = 0; 818 } 819 820 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 821 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 822 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 823 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 824 825 mddev->max_disks = MD_SB_DISKS; 826 827 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 828 mddev->bitmap_file == NULL) 829 mddev->bitmap_offset = mddev->default_bitmap_offset; 830 831 } else if (mddev->pers == NULL) { 832 /* Insist on good event counter while assembling */ 833 ++ev1; 834 if (ev1 < mddev->events) 835 return -EINVAL; 836 } else if (mddev->bitmap) { 837 /* if adding to array with a bitmap, then we can accept an 838 * older device ... but not too old. 839 */ 840 if (ev1 < mddev->bitmap->events_cleared) 841 return 0; 842 } else { 843 if (ev1 < mddev->events) 844 /* just a hot-add of a new device, leave raid_disk at -1 */ 845 return 0; 846 } 847 848 if (mddev->level != LEVEL_MULTIPATH) { 849 desc = sb->disks + rdev->desc_nr; 850 851 if (desc->state & (1<<MD_DISK_FAULTY)) 852 set_bit(Faulty, &rdev->flags); 853 else if (desc->state & (1<<MD_DISK_SYNC) /* && 854 desc->raid_disk < mddev->raid_disks */) { 855 set_bit(In_sync, &rdev->flags); 856 rdev->raid_disk = desc->raid_disk; 857 } 858 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 859 set_bit(WriteMostly, &rdev->flags); 860 } else /* MULTIPATH are always insync */ 861 set_bit(In_sync, &rdev->flags); 862 return 0; 863 } 864 865 /* 866 * sync_super for 0.90.0 867 */ 868 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 869 { 870 mdp_super_t *sb; 871 struct list_head *tmp; 872 mdk_rdev_t *rdev2; 873 int next_spare = mddev->raid_disks; 874 875 876 /* make rdev->sb match mddev data.. 877 * 878 * 1/ zero out disks 879 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 880 * 3/ any empty disks < next_spare become removed 881 * 882 * disks[0] gets initialised to REMOVED because 883 * we cannot be sure from other fields if it has 884 * been initialised or not. 885 */ 886 int i; 887 int active=0, working=0,failed=0,spare=0,nr_disks=0; 888 889 rdev->sb_size = MD_SB_BYTES; 890 891 sb = (mdp_super_t*)page_address(rdev->sb_page); 892 893 memset(sb, 0, sizeof(*sb)); 894 895 sb->md_magic = MD_SB_MAGIC; 896 sb->major_version = mddev->major_version; 897 sb->patch_version = mddev->patch_version; 898 sb->gvalid_words = 0; /* ignored */ 899 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 900 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 901 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 902 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 903 904 sb->ctime = mddev->ctime; 905 sb->level = mddev->level; 906 sb->size = mddev->size; 907 sb->raid_disks = mddev->raid_disks; 908 sb->md_minor = mddev->md_minor; 909 sb->not_persistent = 0; 910 sb->utime = mddev->utime; 911 sb->state = 0; 912 sb->events_hi = (mddev->events>>32); 913 sb->events_lo = (u32)mddev->events; 914 915 if (mddev->reshape_position == MaxSector) 916 sb->minor_version = 90; 917 else { 918 sb->minor_version = 91; 919 sb->reshape_position = mddev->reshape_position; 920 sb->new_level = mddev->new_level; 921 sb->delta_disks = mddev->delta_disks; 922 sb->new_layout = mddev->new_layout; 923 sb->new_chunk = mddev->new_chunk; 924 } 925 mddev->minor_version = sb->minor_version; 926 if (mddev->in_sync) 927 { 928 sb->recovery_cp = mddev->recovery_cp; 929 sb->cp_events_hi = (mddev->events>>32); 930 sb->cp_events_lo = (u32)mddev->events; 931 if (mddev->recovery_cp == MaxSector) 932 sb->state = (1<< MD_SB_CLEAN); 933 } else 934 sb->recovery_cp = 0; 935 936 sb->layout = mddev->layout; 937 sb->chunk_size = mddev->chunk_size; 938 939 if (mddev->bitmap && mddev->bitmap_file == NULL) 940 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 941 942 sb->disks[0].state = (1<<MD_DISK_REMOVED); 943 rdev_for_each(rdev2, tmp, mddev) { 944 mdp_disk_t *d; 945 int desc_nr; 946 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 947 && !test_bit(Faulty, &rdev2->flags)) 948 desc_nr = rdev2->raid_disk; 949 else 950 desc_nr = next_spare++; 951 rdev2->desc_nr = desc_nr; 952 d = &sb->disks[rdev2->desc_nr]; 953 nr_disks++; 954 d->number = rdev2->desc_nr; 955 d->major = MAJOR(rdev2->bdev->bd_dev); 956 d->minor = MINOR(rdev2->bdev->bd_dev); 957 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 958 && !test_bit(Faulty, &rdev2->flags)) 959 d->raid_disk = rdev2->raid_disk; 960 else 961 d->raid_disk = rdev2->desc_nr; /* compatibility */ 962 if (test_bit(Faulty, &rdev2->flags)) 963 d->state = (1<<MD_DISK_FAULTY); 964 else if (test_bit(In_sync, &rdev2->flags)) { 965 d->state = (1<<MD_DISK_ACTIVE); 966 d->state |= (1<<MD_DISK_SYNC); 967 active++; 968 working++; 969 } else { 970 d->state = 0; 971 spare++; 972 working++; 973 } 974 if (test_bit(WriteMostly, &rdev2->flags)) 975 d->state |= (1<<MD_DISK_WRITEMOSTLY); 976 } 977 /* now set the "removed" and "faulty" bits on any missing devices */ 978 for (i=0 ; i < mddev->raid_disks ; i++) { 979 mdp_disk_t *d = &sb->disks[i]; 980 if (d->state == 0 && d->number == 0) { 981 d->number = i; 982 d->raid_disk = i; 983 d->state = (1<<MD_DISK_REMOVED); 984 d->state |= (1<<MD_DISK_FAULTY); 985 failed++; 986 } 987 } 988 sb->nr_disks = nr_disks; 989 sb->active_disks = active; 990 sb->working_disks = working; 991 sb->failed_disks = failed; 992 sb->spare_disks = spare; 993 994 sb->this_disk = sb->disks[rdev->desc_nr]; 995 sb->sb_csum = calc_sb_csum(sb); 996 } 997 998 /* 999 * rdev_size_change for 0.90.0 1000 */ 1001 static unsigned long long 1002 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1003 { 1004 if (num_sectors && num_sectors < rdev->mddev->size * 2) 1005 return 0; /* component must fit device */ 1006 if (rdev->mddev->bitmap_offset) 1007 return 0; /* can't move bitmap */ 1008 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 1009 if (!num_sectors || num_sectors > rdev->sb_start) 1010 num_sectors = rdev->sb_start; 1011 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1012 rdev->sb_page); 1013 md_super_wait(rdev->mddev); 1014 return num_sectors / 2; /* kB for sysfs */ 1015 } 1016 1017 1018 /* 1019 * version 1 superblock 1020 */ 1021 1022 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1023 { 1024 __le32 disk_csum; 1025 u32 csum; 1026 unsigned long long newcsum; 1027 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1028 __le32 *isuper = (__le32*)sb; 1029 int i; 1030 1031 disk_csum = sb->sb_csum; 1032 sb->sb_csum = 0; 1033 newcsum = 0; 1034 for (i=0; size>=4; size -= 4 ) 1035 newcsum += le32_to_cpu(*isuper++); 1036 1037 if (size == 2) 1038 newcsum += le16_to_cpu(*(__le16*) isuper); 1039 1040 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1041 sb->sb_csum = disk_csum; 1042 return cpu_to_le32(csum); 1043 } 1044 1045 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1046 { 1047 struct mdp_superblock_1 *sb; 1048 int ret; 1049 sector_t sb_start; 1050 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1051 int bmask; 1052 1053 /* 1054 * Calculate the position of the superblock in 512byte sectors. 1055 * It is always aligned to a 4K boundary and 1056 * depeding on minor_version, it can be: 1057 * 0: At least 8K, but less than 12K, from end of device 1058 * 1: At start of device 1059 * 2: 4K from start of device. 1060 */ 1061 switch(minor_version) { 1062 case 0: 1063 sb_start = rdev->bdev->bd_inode->i_size >> 9; 1064 sb_start -= 8*2; 1065 sb_start &= ~(sector_t)(4*2-1); 1066 break; 1067 case 1: 1068 sb_start = 0; 1069 break; 1070 case 2: 1071 sb_start = 8; 1072 break; 1073 default: 1074 return -EINVAL; 1075 } 1076 rdev->sb_start = sb_start; 1077 1078 /* superblock is rarely larger than 1K, but it can be larger, 1079 * and it is safe to read 4k, so we do that 1080 */ 1081 ret = read_disk_sb(rdev, 4096); 1082 if (ret) return ret; 1083 1084 1085 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1086 1087 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1088 sb->major_version != cpu_to_le32(1) || 1089 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1090 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1091 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1092 return -EINVAL; 1093 1094 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1095 printk("md: invalid superblock checksum on %s\n", 1096 bdevname(rdev->bdev,b)); 1097 return -EINVAL; 1098 } 1099 if (le64_to_cpu(sb->data_size) < 10) { 1100 printk("md: data_size too small on %s\n", 1101 bdevname(rdev->bdev,b)); 1102 return -EINVAL; 1103 } 1104 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) { 1105 if (sb->level != cpu_to_le32(1) && 1106 sb->level != cpu_to_le32(4) && 1107 sb->level != cpu_to_le32(5) && 1108 sb->level != cpu_to_le32(6) && 1109 sb->level != cpu_to_le32(10)) { 1110 printk(KERN_WARNING 1111 "md: bitmaps not supported for this level.\n"); 1112 return -EINVAL; 1113 } 1114 } 1115 1116 rdev->preferred_minor = 0xffff; 1117 rdev->data_offset = le64_to_cpu(sb->data_offset); 1118 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1119 1120 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1121 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1; 1122 if (rdev->sb_size & bmask) 1123 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1124 1125 if (minor_version 1126 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1127 return -EINVAL; 1128 1129 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1130 rdev->desc_nr = -1; 1131 else 1132 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1133 1134 if (!refdev) { 1135 ret = 1; 1136 } else { 1137 __u64 ev1, ev2; 1138 struct mdp_superblock_1 *refsb = 1139 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1140 1141 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1142 sb->level != refsb->level || 1143 sb->layout != refsb->layout || 1144 sb->chunksize != refsb->chunksize) { 1145 printk(KERN_WARNING "md: %s has strangely different" 1146 " superblock to %s\n", 1147 bdevname(rdev->bdev,b), 1148 bdevname(refdev->bdev,b2)); 1149 return -EINVAL; 1150 } 1151 ev1 = le64_to_cpu(sb->events); 1152 ev2 = le64_to_cpu(refsb->events); 1153 1154 if (ev1 > ev2) 1155 ret = 1; 1156 else 1157 ret = 0; 1158 } 1159 if (minor_version) 1160 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2; 1161 else 1162 rdev->size = rdev->sb_start / 2; 1163 if (rdev->size < le64_to_cpu(sb->data_size)/2) 1164 return -EINVAL; 1165 rdev->size = le64_to_cpu(sb->data_size)/2; 1166 if (le32_to_cpu(sb->chunksize)) 1167 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1); 1168 1169 if (le64_to_cpu(sb->size) > rdev->size*2) 1170 return -EINVAL; 1171 return ret; 1172 } 1173 1174 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1175 { 1176 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1177 __u64 ev1 = le64_to_cpu(sb->events); 1178 1179 rdev->raid_disk = -1; 1180 clear_bit(Faulty, &rdev->flags); 1181 clear_bit(In_sync, &rdev->flags); 1182 clear_bit(WriteMostly, &rdev->flags); 1183 clear_bit(BarriersNotsupp, &rdev->flags); 1184 1185 if (mddev->raid_disks == 0) { 1186 mddev->major_version = 1; 1187 mddev->patch_version = 0; 1188 mddev->external = 0; 1189 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9; 1190 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1191 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1192 mddev->level = le32_to_cpu(sb->level); 1193 mddev->clevel[0] = 0; 1194 mddev->layout = le32_to_cpu(sb->layout); 1195 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1196 mddev->size = le64_to_cpu(sb->size)/2; 1197 mddev->events = ev1; 1198 mddev->bitmap_offset = 0; 1199 mddev->default_bitmap_offset = 1024 >> 9; 1200 1201 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1202 memcpy(mddev->uuid, sb->set_uuid, 16); 1203 1204 mddev->max_disks = (4096-256)/2; 1205 1206 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1207 mddev->bitmap_file == NULL ) 1208 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset); 1209 1210 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1211 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1212 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1213 mddev->new_level = le32_to_cpu(sb->new_level); 1214 mddev->new_layout = le32_to_cpu(sb->new_layout); 1215 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9; 1216 } else { 1217 mddev->reshape_position = MaxSector; 1218 mddev->delta_disks = 0; 1219 mddev->new_level = mddev->level; 1220 mddev->new_layout = mddev->layout; 1221 mddev->new_chunk = mddev->chunk_size; 1222 } 1223 1224 } else if (mddev->pers == NULL) { 1225 /* Insist of good event counter while assembling */ 1226 ++ev1; 1227 if (ev1 < mddev->events) 1228 return -EINVAL; 1229 } else if (mddev->bitmap) { 1230 /* If adding to array with a bitmap, then we can accept an 1231 * older device, but not too old. 1232 */ 1233 if (ev1 < mddev->bitmap->events_cleared) 1234 return 0; 1235 } else { 1236 if (ev1 < mddev->events) 1237 /* just a hot-add of a new device, leave raid_disk at -1 */ 1238 return 0; 1239 } 1240 if (mddev->level != LEVEL_MULTIPATH) { 1241 int role; 1242 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1243 switch(role) { 1244 case 0xffff: /* spare */ 1245 break; 1246 case 0xfffe: /* faulty */ 1247 set_bit(Faulty, &rdev->flags); 1248 break; 1249 default: 1250 if ((le32_to_cpu(sb->feature_map) & 1251 MD_FEATURE_RECOVERY_OFFSET)) 1252 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1253 else 1254 set_bit(In_sync, &rdev->flags); 1255 rdev->raid_disk = role; 1256 break; 1257 } 1258 if (sb->devflags & WriteMostly1) 1259 set_bit(WriteMostly, &rdev->flags); 1260 } else /* MULTIPATH are always insync */ 1261 set_bit(In_sync, &rdev->flags); 1262 1263 return 0; 1264 } 1265 1266 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1267 { 1268 struct mdp_superblock_1 *sb; 1269 struct list_head *tmp; 1270 mdk_rdev_t *rdev2; 1271 int max_dev, i; 1272 /* make rdev->sb match mddev and rdev data. */ 1273 1274 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1275 1276 sb->feature_map = 0; 1277 sb->pad0 = 0; 1278 sb->recovery_offset = cpu_to_le64(0); 1279 memset(sb->pad1, 0, sizeof(sb->pad1)); 1280 memset(sb->pad2, 0, sizeof(sb->pad2)); 1281 memset(sb->pad3, 0, sizeof(sb->pad3)); 1282 1283 sb->utime = cpu_to_le64((__u64)mddev->utime); 1284 sb->events = cpu_to_le64(mddev->events); 1285 if (mddev->in_sync) 1286 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1287 else 1288 sb->resync_offset = cpu_to_le64(0); 1289 1290 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1291 1292 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1293 sb->size = cpu_to_le64(mddev->size<<1); 1294 1295 if (mddev->bitmap && mddev->bitmap_file == NULL) { 1296 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset); 1297 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1298 } 1299 1300 if (rdev->raid_disk >= 0 && 1301 !test_bit(In_sync, &rdev->flags) && 1302 rdev->recovery_offset > 0) { 1303 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1304 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset); 1305 } 1306 1307 if (mddev->reshape_position != MaxSector) { 1308 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1309 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1310 sb->new_layout = cpu_to_le32(mddev->new_layout); 1311 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1312 sb->new_level = cpu_to_le32(mddev->new_level); 1313 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9); 1314 } 1315 1316 max_dev = 0; 1317 rdev_for_each(rdev2, tmp, mddev) 1318 if (rdev2->desc_nr+1 > max_dev) 1319 max_dev = rdev2->desc_nr+1; 1320 1321 if (max_dev > le32_to_cpu(sb->max_dev)) 1322 sb->max_dev = cpu_to_le32(max_dev); 1323 for (i=0; i<max_dev;i++) 1324 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1325 1326 rdev_for_each(rdev2, tmp, mddev) { 1327 i = rdev2->desc_nr; 1328 if (test_bit(Faulty, &rdev2->flags)) 1329 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1330 else if (test_bit(In_sync, &rdev2->flags)) 1331 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1332 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0) 1333 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1334 else 1335 sb->dev_roles[i] = cpu_to_le16(0xffff); 1336 } 1337 1338 sb->sb_csum = calc_sb_1_csum(sb); 1339 } 1340 1341 static unsigned long long 1342 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1343 { 1344 struct mdp_superblock_1 *sb; 1345 sector_t max_sectors; 1346 if (num_sectors && num_sectors < rdev->mddev->size * 2) 1347 return 0; /* component must fit device */ 1348 if (rdev->sb_start < rdev->data_offset) { 1349 /* minor versions 1 and 2; superblock before data */ 1350 max_sectors = rdev->bdev->bd_inode->i_size >> 9; 1351 max_sectors -= rdev->data_offset; 1352 if (!num_sectors || num_sectors > max_sectors) 1353 num_sectors = max_sectors; 1354 } else if (rdev->mddev->bitmap_offset) { 1355 /* minor version 0 with bitmap we can't move */ 1356 return 0; 1357 } else { 1358 /* minor version 0; superblock after data */ 1359 sector_t sb_start; 1360 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2; 1361 sb_start &= ~(sector_t)(4*2 - 1); 1362 max_sectors = rdev->size * 2 + sb_start - rdev->sb_start; 1363 if (!num_sectors || num_sectors > max_sectors) 1364 num_sectors = max_sectors; 1365 rdev->sb_start = sb_start; 1366 } 1367 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page); 1368 sb->data_size = cpu_to_le64(num_sectors); 1369 sb->super_offset = rdev->sb_start; 1370 sb->sb_csum = calc_sb_1_csum(sb); 1371 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1372 rdev->sb_page); 1373 md_super_wait(rdev->mddev); 1374 return num_sectors / 2; /* kB for sysfs */ 1375 } 1376 1377 static struct super_type super_types[] = { 1378 [0] = { 1379 .name = "0.90.0", 1380 .owner = THIS_MODULE, 1381 .load_super = super_90_load, 1382 .validate_super = super_90_validate, 1383 .sync_super = super_90_sync, 1384 .rdev_size_change = super_90_rdev_size_change, 1385 }, 1386 [1] = { 1387 .name = "md-1", 1388 .owner = THIS_MODULE, 1389 .load_super = super_1_load, 1390 .validate_super = super_1_validate, 1391 .sync_super = super_1_sync, 1392 .rdev_size_change = super_1_rdev_size_change, 1393 }, 1394 }; 1395 1396 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1397 { 1398 mdk_rdev_t *rdev, *rdev2; 1399 1400 rcu_read_lock(); 1401 rdev_for_each_rcu(rdev, mddev1) 1402 rdev_for_each_rcu(rdev2, mddev2) 1403 if (rdev->bdev->bd_contains == 1404 rdev2->bdev->bd_contains) { 1405 rcu_read_unlock(); 1406 return 1; 1407 } 1408 rcu_read_unlock(); 1409 return 0; 1410 } 1411 1412 static LIST_HEAD(pending_raid_disks); 1413 1414 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1415 { 1416 char b[BDEVNAME_SIZE]; 1417 struct kobject *ko; 1418 char *s; 1419 int err; 1420 1421 if (rdev->mddev) { 1422 MD_BUG(); 1423 return -EINVAL; 1424 } 1425 1426 /* prevent duplicates */ 1427 if (find_rdev(mddev, rdev->bdev->bd_dev)) 1428 return -EEXIST; 1429 1430 /* make sure rdev->size exceeds mddev->size */ 1431 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) { 1432 if (mddev->pers) { 1433 /* Cannot change size, so fail 1434 * If mddev->level <= 0, then we don't care 1435 * about aligning sizes (e.g. linear) 1436 */ 1437 if (mddev->level > 0) 1438 return -ENOSPC; 1439 } else 1440 mddev->size = rdev->size; 1441 } 1442 1443 /* Verify rdev->desc_nr is unique. 1444 * If it is -1, assign a free number, else 1445 * check number is not in use 1446 */ 1447 if (rdev->desc_nr < 0) { 1448 int choice = 0; 1449 if (mddev->pers) choice = mddev->raid_disks; 1450 while (find_rdev_nr(mddev, choice)) 1451 choice++; 1452 rdev->desc_nr = choice; 1453 } else { 1454 if (find_rdev_nr(mddev, rdev->desc_nr)) 1455 return -EBUSY; 1456 } 1457 bdevname(rdev->bdev,b); 1458 while ( (s=strchr(b, '/')) != NULL) 1459 *s = '!'; 1460 1461 rdev->mddev = mddev; 1462 printk(KERN_INFO "md: bind<%s>\n", b); 1463 1464 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 1465 goto fail; 1466 1467 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 1468 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) { 1469 kobject_del(&rdev->kobj); 1470 goto fail; 1471 } 1472 list_add_rcu(&rdev->same_set, &mddev->disks); 1473 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk); 1474 return 0; 1475 1476 fail: 1477 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1478 b, mdname(mddev)); 1479 return err; 1480 } 1481 1482 static void md_delayed_delete(struct work_struct *ws) 1483 { 1484 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1485 kobject_del(&rdev->kobj); 1486 kobject_put(&rdev->kobj); 1487 } 1488 1489 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1490 { 1491 char b[BDEVNAME_SIZE]; 1492 if (!rdev->mddev) { 1493 MD_BUG(); 1494 return; 1495 } 1496 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1497 list_del_rcu(&rdev->same_set); 1498 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1499 rdev->mddev = NULL; 1500 sysfs_remove_link(&rdev->kobj, "block"); 1501 1502 /* We need to delay this, otherwise we can deadlock when 1503 * writing to 'remove' to "dev/state". We also need 1504 * to delay it due to rcu usage. 1505 */ 1506 synchronize_rcu(); 1507 INIT_WORK(&rdev->del_work, md_delayed_delete); 1508 kobject_get(&rdev->kobj); 1509 schedule_work(&rdev->del_work); 1510 } 1511 1512 /* 1513 * prevent the device from being mounted, repartitioned or 1514 * otherwise reused by a RAID array (or any other kernel 1515 * subsystem), by bd_claiming the device. 1516 */ 1517 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) 1518 { 1519 int err = 0; 1520 struct block_device *bdev; 1521 char b[BDEVNAME_SIZE]; 1522 1523 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1524 if (IS_ERR(bdev)) { 1525 printk(KERN_ERR "md: could not open %s.\n", 1526 __bdevname(dev, b)); 1527 return PTR_ERR(bdev); 1528 } 1529 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev); 1530 if (err) { 1531 printk(KERN_ERR "md: could not bd_claim %s.\n", 1532 bdevname(bdev, b)); 1533 blkdev_put(bdev); 1534 return err; 1535 } 1536 if (!shared) 1537 set_bit(AllReserved, &rdev->flags); 1538 rdev->bdev = bdev; 1539 return err; 1540 } 1541 1542 static void unlock_rdev(mdk_rdev_t *rdev) 1543 { 1544 struct block_device *bdev = rdev->bdev; 1545 rdev->bdev = NULL; 1546 if (!bdev) 1547 MD_BUG(); 1548 bd_release(bdev); 1549 blkdev_put(bdev); 1550 } 1551 1552 void md_autodetect_dev(dev_t dev); 1553 1554 static void export_rdev(mdk_rdev_t * rdev) 1555 { 1556 char b[BDEVNAME_SIZE]; 1557 printk(KERN_INFO "md: export_rdev(%s)\n", 1558 bdevname(rdev->bdev,b)); 1559 if (rdev->mddev) 1560 MD_BUG(); 1561 free_disk_sb(rdev); 1562 #ifndef MODULE 1563 if (test_bit(AutoDetected, &rdev->flags)) 1564 md_autodetect_dev(rdev->bdev->bd_dev); 1565 #endif 1566 unlock_rdev(rdev); 1567 kobject_put(&rdev->kobj); 1568 } 1569 1570 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1571 { 1572 unbind_rdev_from_array(rdev); 1573 export_rdev(rdev); 1574 } 1575 1576 static void export_array(mddev_t *mddev) 1577 { 1578 struct list_head *tmp; 1579 mdk_rdev_t *rdev; 1580 1581 rdev_for_each(rdev, tmp, mddev) { 1582 if (!rdev->mddev) { 1583 MD_BUG(); 1584 continue; 1585 } 1586 kick_rdev_from_array(rdev); 1587 } 1588 if (!list_empty(&mddev->disks)) 1589 MD_BUG(); 1590 mddev->raid_disks = 0; 1591 mddev->major_version = 0; 1592 } 1593 1594 static void print_desc(mdp_disk_t *desc) 1595 { 1596 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 1597 desc->major,desc->minor,desc->raid_disk,desc->state); 1598 } 1599 1600 static void print_sb(mdp_super_t *sb) 1601 { 1602 int i; 1603 1604 printk(KERN_INFO 1605 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 1606 sb->major_version, sb->minor_version, sb->patch_version, 1607 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 1608 sb->ctime); 1609 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 1610 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 1611 sb->md_minor, sb->layout, sb->chunk_size); 1612 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 1613 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 1614 sb->utime, sb->state, sb->active_disks, sb->working_disks, 1615 sb->failed_disks, sb->spare_disks, 1616 sb->sb_csum, (unsigned long)sb->events_lo); 1617 1618 printk(KERN_INFO); 1619 for (i = 0; i < MD_SB_DISKS; i++) { 1620 mdp_disk_t *desc; 1621 1622 desc = sb->disks + i; 1623 if (desc->number || desc->major || desc->minor || 1624 desc->raid_disk || (desc->state && (desc->state != 4))) { 1625 printk(" D %2d: ", i); 1626 print_desc(desc); 1627 } 1628 } 1629 printk(KERN_INFO "md: THIS: "); 1630 print_desc(&sb->this_disk); 1631 1632 } 1633 1634 static void print_rdev(mdk_rdev_t *rdev) 1635 { 1636 char b[BDEVNAME_SIZE]; 1637 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n", 1638 bdevname(rdev->bdev,b), (unsigned long long)rdev->size, 1639 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 1640 rdev->desc_nr); 1641 if (rdev->sb_loaded) { 1642 printk(KERN_INFO "md: rdev superblock:\n"); 1643 print_sb((mdp_super_t*)page_address(rdev->sb_page)); 1644 } else 1645 printk(KERN_INFO "md: no rdev superblock!\n"); 1646 } 1647 1648 static void md_print_devices(void) 1649 { 1650 struct list_head *tmp, *tmp2; 1651 mdk_rdev_t *rdev; 1652 mddev_t *mddev; 1653 char b[BDEVNAME_SIZE]; 1654 1655 printk("\n"); 1656 printk("md: **********************************\n"); 1657 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 1658 printk("md: **********************************\n"); 1659 for_each_mddev(mddev, tmp) { 1660 1661 if (mddev->bitmap) 1662 bitmap_print_sb(mddev->bitmap); 1663 else 1664 printk("%s: ", mdname(mddev)); 1665 rdev_for_each(rdev, tmp2, mddev) 1666 printk("<%s>", bdevname(rdev->bdev,b)); 1667 printk("\n"); 1668 1669 rdev_for_each(rdev, tmp2, mddev) 1670 print_rdev(rdev); 1671 } 1672 printk("md: **********************************\n"); 1673 printk("\n"); 1674 } 1675 1676 1677 static void sync_sbs(mddev_t * mddev, int nospares) 1678 { 1679 /* Update each superblock (in-memory image), but 1680 * if we are allowed to, skip spares which already 1681 * have the right event counter, or have one earlier 1682 * (which would mean they aren't being marked as dirty 1683 * with the rest of the array) 1684 */ 1685 mdk_rdev_t *rdev; 1686 struct list_head *tmp; 1687 1688 rdev_for_each(rdev, tmp, mddev) { 1689 if (rdev->sb_events == mddev->events || 1690 (nospares && 1691 rdev->raid_disk < 0 && 1692 (rdev->sb_events&1)==0 && 1693 rdev->sb_events+1 == mddev->events)) { 1694 /* Don't update this superblock */ 1695 rdev->sb_loaded = 2; 1696 } else { 1697 super_types[mddev->major_version]. 1698 sync_super(mddev, rdev); 1699 rdev->sb_loaded = 1; 1700 } 1701 } 1702 } 1703 1704 static void md_update_sb(mddev_t * mddev, int force_change) 1705 { 1706 struct list_head *tmp; 1707 mdk_rdev_t *rdev; 1708 int sync_req; 1709 int nospares = 0; 1710 1711 if (mddev->external) 1712 return; 1713 repeat: 1714 spin_lock_irq(&mddev->write_lock); 1715 1716 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1717 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 1718 force_change = 1; 1719 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 1720 /* just a clean<-> dirty transition, possibly leave spares alone, 1721 * though if events isn't the right even/odd, we will have to do 1722 * spares after all 1723 */ 1724 nospares = 1; 1725 if (force_change) 1726 nospares = 0; 1727 if (mddev->degraded) 1728 /* If the array is degraded, then skipping spares is both 1729 * dangerous and fairly pointless. 1730 * Dangerous because a device that was removed from the array 1731 * might have a event_count that still looks up-to-date, 1732 * so it can be re-added without a resync. 1733 * Pointless because if there are any spares to skip, 1734 * then a recovery will happen and soon that array won't 1735 * be degraded any more and the spare can go back to sleep then. 1736 */ 1737 nospares = 0; 1738 1739 sync_req = mddev->in_sync; 1740 mddev->utime = get_seconds(); 1741 1742 /* If this is just a dirty<->clean transition, and the array is clean 1743 * and 'events' is odd, we can roll back to the previous clean state */ 1744 if (nospares 1745 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 1746 && (mddev->events & 1) 1747 && mddev->events != 1) 1748 mddev->events--; 1749 else { 1750 /* otherwise we have to go forward and ... */ 1751 mddev->events ++; 1752 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */ 1753 /* .. if the array isn't clean, insist on an odd 'events' */ 1754 if ((mddev->events&1)==0) { 1755 mddev->events++; 1756 nospares = 0; 1757 } 1758 } else { 1759 /* otherwise insist on an even 'events' (for clean states) */ 1760 if ((mddev->events&1)) { 1761 mddev->events++; 1762 nospares = 0; 1763 } 1764 } 1765 } 1766 1767 if (!mddev->events) { 1768 /* 1769 * oops, this 64-bit counter should never wrap. 1770 * Either we are in around ~1 trillion A.C., assuming 1771 * 1 reboot per second, or we have a bug: 1772 */ 1773 MD_BUG(); 1774 mddev->events --; 1775 } 1776 1777 /* 1778 * do not write anything to disk if using 1779 * nonpersistent superblocks 1780 */ 1781 if (!mddev->persistent) { 1782 if (!mddev->external) 1783 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1784 1785 spin_unlock_irq(&mddev->write_lock); 1786 wake_up(&mddev->sb_wait); 1787 return; 1788 } 1789 sync_sbs(mddev, nospares); 1790 spin_unlock_irq(&mddev->write_lock); 1791 1792 dprintk(KERN_INFO 1793 "md: updating %s RAID superblock on device (in sync %d)\n", 1794 mdname(mddev),mddev->in_sync); 1795 1796 bitmap_update_sb(mddev->bitmap); 1797 rdev_for_each(rdev, tmp, mddev) { 1798 char b[BDEVNAME_SIZE]; 1799 dprintk(KERN_INFO "md: "); 1800 if (rdev->sb_loaded != 1) 1801 continue; /* no noise on spare devices */ 1802 if (test_bit(Faulty, &rdev->flags)) 1803 dprintk("(skipping faulty "); 1804 1805 dprintk("%s ", bdevname(rdev->bdev,b)); 1806 if (!test_bit(Faulty, &rdev->flags)) { 1807 md_super_write(mddev,rdev, 1808 rdev->sb_start, rdev->sb_size, 1809 rdev->sb_page); 1810 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 1811 bdevname(rdev->bdev,b), 1812 (unsigned long long)rdev->sb_start); 1813 rdev->sb_events = mddev->events; 1814 1815 } else 1816 dprintk(")\n"); 1817 if (mddev->level == LEVEL_MULTIPATH) 1818 /* only need to write one superblock... */ 1819 break; 1820 } 1821 md_super_wait(mddev); 1822 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 1823 1824 spin_lock_irq(&mddev->write_lock); 1825 if (mddev->in_sync != sync_req || 1826 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 1827 /* have to write it out again */ 1828 spin_unlock_irq(&mddev->write_lock); 1829 goto repeat; 1830 } 1831 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1832 spin_unlock_irq(&mddev->write_lock); 1833 wake_up(&mddev->sb_wait); 1834 1835 } 1836 1837 /* words written to sysfs files may, or may not, be \n terminated. 1838 * We want to accept with case. For this we use cmd_match. 1839 */ 1840 static int cmd_match(const char *cmd, const char *str) 1841 { 1842 /* See if cmd, written into a sysfs file, matches 1843 * str. They must either be the same, or cmd can 1844 * have a trailing newline 1845 */ 1846 while (*cmd && *str && *cmd == *str) { 1847 cmd++; 1848 str++; 1849 } 1850 if (*cmd == '\n') 1851 cmd++; 1852 if (*str || *cmd) 1853 return 0; 1854 return 1; 1855 } 1856 1857 struct rdev_sysfs_entry { 1858 struct attribute attr; 1859 ssize_t (*show)(mdk_rdev_t *, char *); 1860 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 1861 }; 1862 1863 static ssize_t 1864 state_show(mdk_rdev_t *rdev, char *page) 1865 { 1866 char *sep = ""; 1867 size_t len = 0; 1868 1869 if (test_bit(Faulty, &rdev->flags)) { 1870 len+= sprintf(page+len, "%sfaulty",sep); 1871 sep = ","; 1872 } 1873 if (test_bit(In_sync, &rdev->flags)) { 1874 len += sprintf(page+len, "%sin_sync",sep); 1875 sep = ","; 1876 } 1877 if (test_bit(WriteMostly, &rdev->flags)) { 1878 len += sprintf(page+len, "%swrite_mostly",sep); 1879 sep = ","; 1880 } 1881 if (test_bit(Blocked, &rdev->flags)) { 1882 len += sprintf(page+len, "%sblocked", sep); 1883 sep = ","; 1884 } 1885 if (!test_bit(Faulty, &rdev->flags) && 1886 !test_bit(In_sync, &rdev->flags)) { 1887 len += sprintf(page+len, "%sspare", sep); 1888 sep = ","; 1889 } 1890 return len+sprintf(page+len, "\n"); 1891 } 1892 1893 static ssize_t 1894 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1895 { 1896 /* can write 1897 * faulty - simulates and error 1898 * remove - disconnects the device 1899 * writemostly - sets write_mostly 1900 * -writemostly - clears write_mostly 1901 * blocked - sets the Blocked flag 1902 * -blocked - clears the Blocked flag 1903 */ 1904 int err = -EINVAL; 1905 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 1906 md_error(rdev->mddev, rdev); 1907 err = 0; 1908 } else if (cmd_match(buf, "remove")) { 1909 if (rdev->raid_disk >= 0) 1910 err = -EBUSY; 1911 else { 1912 mddev_t *mddev = rdev->mddev; 1913 kick_rdev_from_array(rdev); 1914 if (mddev->pers) 1915 md_update_sb(mddev, 1); 1916 md_new_event(mddev); 1917 err = 0; 1918 } 1919 } else if (cmd_match(buf, "writemostly")) { 1920 set_bit(WriteMostly, &rdev->flags); 1921 err = 0; 1922 } else if (cmd_match(buf, "-writemostly")) { 1923 clear_bit(WriteMostly, &rdev->flags); 1924 err = 0; 1925 } else if (cmd_match(buf, "blocked")) { 1926 set_bit(Blocked, &rdev->flags); 1927 err = 0; 1928 } else if (cmd_match(buf, "-blocked")) { 1929 clear_bit(Blocked, &rdev->flags); 1930 wake_up(&rdev->blocked_wait); 1931 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 1932 md_wakeup_thread(rdev->mddev->thread); 1933 1934 err = 0; 1935 } 1936 if (!err) 1937 sysfs_notify(&rdev->kobj, NULL, "state"); 1938 return err ? err : len; 1939 } 1940 static struct rdev_sysfs_entry rdev_state = 1941 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 1942 1943 static ssize_t 1944 errors_show(mdk_rdev_t *rdev, char *page) 1945 { 1946 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 1947 } 1948 1949 static ssize_t 1950 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1951 { 1952 char *e; 1953 unsigned long n = simple_strtoul(buf, &e, 10); 1954 if (*buf && (*e == 0 || *e == '\n')) { 1955 atomic_set(&rdev->corrected_errors, n); 1956 return len; 1957 } 1958 return -EINVAL; 1959 } 1960 static struct rdev_sysfs_entry rdev_errors = 1961 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 1962 1963 static ssize_t 1964 slot_show(mdk_rdev_t *rdev, char *page) 1965 { 1966 if (rdev->raid_disk < 0) 1967 return sprintf(page, "none\n"); 1968 else 1969 return sprintf(page, "%d\n", rdev->raid_disk); 1970 } 1971 1972 static ssize_t 1973 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1974 { 1975 char *e; 1976 int err; 1977 char nm[20]; 1978 int slot = simple_strtoul(buf, &e, 10); 1979 if (strncmp(buf, "none", 4)==0) 1980 slot = -1; 1981 else if (e==buf || (*e && *e!= '\n')) 1982 return -EINVAL; 1983 if (rdev->mddev->pers && slot == -1) { 1984 /* Setting 'slot' on an active array requires also 1985 * updating the 'rd%d' link, and communicating 1986 * with the personality with ->hot_*_disk. 1987 * For now we only support removing 1988 * failed/spare devices. This normally happens automatically, 1989 * but not when the metadata is externally managed. 1990 */ 1991 if (rdev->raid_disk == -1) 1992 return -EEXIST; 1993 /* personality does all needed checks */ 1994 if (rdev->mddev->pers->hot_add_disk == NULL) 1995 return -EINVAL; 1996 err = rdev->mddev->pers-> 1997 hot_remove_disk(rdev->mddev, rdev->raid_disk); 1998 if (err) 1999 return err; 2000 sprintf(nm, "rd%d", rdev->raid_disk); 2001 sysfs_remove_link(&rdev->mddev->kobj, nm); 2002 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2003 md_wakeup_thread(rdev->mddev->thread); 2004 } else if (rdev->mddev->pers) { 2005 mdk_rdev_t *rdev2; 2006 struct list_head *tmp; 2007 /* Activating a spare .. or possibly reactivating 2008 * if we every get bitmaps working here. 2009 */ 2010 2011 if (rdev->raid_disk != -1) 2012 return -EBUSY; 2013 2014 if (rdev->mddev->pers->hot_add_disk == NULL) 2015 return -EINVAL; 2016 2017 rdev_for_each(rdev2, tmp, rdev->mddev) 2018 if (rdev2->raid_disk == slot) 2019 return -EEXIST; 2020 2021 rdev->raid_disk = slot; 2022 if (test_bit(In_sync, &rdev->flags)) 2023 rdev->saved_raid_disk = slot; 2024 else 2025 rdev->saved_raid_disk = -1; 2026 err = rdev->mddev->pers-> 2027 hot_add_disk(rdev->mddev, rdev); 2028 if (err) { 2029 rdev->raid_disk = -1; 2030 return err; 2031 } else 2032 sysfs_notify(&rdev->kobj, NULL, "state"); 2033 sprintf(nm, "rd%d", rdev->raid_disk); 2034 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm)) 2035 printk(KERN_WARNING 2036 "md: cannot register " 2037 "%s for %s\n", 2038 nm, mdname(rdev->mddev)); 2039 2040 /* don't wakeup anyone, leave that to userspace. */ 2041 } else { 2042 if (slot >= rdev->mddev->raid_disks) 2043 return -ENOSPC; 2044 rdev->raid_disk = slot; 2045 /* assume it is working */ 2046 clear_bit(Faulty, &rdev->flags); 2047 clear_bit(WriteMostly, &rdev->flags); 2048 set_bit(In_sync, &rdev->flags); 2049 sysfs_notify(&rdev->kobj, NULL, "state"); 2050 } 2051 return len; 2052 } 2053 2054 2055 static struct rdev_sysfs_entry rdev_slot = 2056 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2057 2058 static ssize_t 2059 offset_show(mdk_rdev_t *rdev, char *page) 2060 { 2061 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2062 } 2063 2064 static ssize_t 2065 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2066 { 2067 char *e; 2068 unsigned long long offset = simple_strtoull(buf, &e, 10); 2069 if (e==buf || (*e && *e != '\n')) 2070 return -EINVAL; 2071 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2072 return -EBUSY; 2073 if (rdev->size && rdev->mddev->external) 2074 /* Must set offset before size, so overlap checks 2075 * can be sane */ 2076 return -EBUSY; 2077 rdev->data_offset = offset; 2078 return len; 2079 } 2080 2081 static struct rdev_sysfs_entry rdev_offset = 2082 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2083 2084 static ssize_t 2085 rdev_size_show(mdk_rdev_t *rdev, char *page) 2086 { 2087 return sprintf(page, "%llu\n", (unsigned long long)rdev->size); 2088 } 2089 2090 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2091 { 2092 /* check if two start/length pairs overlap */ 2093 if (s1+l1 <= s2) 2094 return 0; 2095 if (s2+l2 <= s1) 2096 return 0; 2097 return 1; 2098 } 2099 2100 static ssize_t 2101 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2102 { 2103 unsigned long long size; 2104 unsigned long long oldsize = rdev->size; 2105 mddev_t *my_mddev = rdev->mddev; 2106 2107 if (strict_strtoull(buf, 10, &size) < 0) 2108 return -EINVAL; 2109 if (size < my_mddev->size) 2110 return -EINVAL; 2111 if (my_mddev->pers && rdev->raid_disk >= 0) { 2112 if (my_mddev->persistent) { 2113 size = super_types[my_mddev->major_version]. 2114 rdev_size_change(rdev, size * 2); 2115 if (!size) 2116 return -EBUSY; 2117 } else if (!size) { 2118 size = (rdev->bdev->bd_inode->i_size >> 10); 2119 size -= rdev->data_offset/2; 2120 } 2121 if (size < my_mddev->size) 2122 return -EINVAL; /* component must fit device */ 2123 } 2124 2125 rdev->size = size; 2126 if (size > oldsize && my_mddev->external) { 2127 /* need to check that all other rdevs with the same ->bdev 2128 * do not overlap. We need to unlock the mddev to avoid 2129 * a deadlock. We have already changed rdev->size, and if 2130 * we have to change it back, we will have the lock again. 2131 */ 2132 mddev_t *mddev; 2133 int overlap = 0; 2134 struct list_head *tmp, *tmp2; 2135 2136 mddev_unlock(my_mddev); 2137 for_each_mddev(mddev, tmp) { 2138 mdk_rdev_t *rdev2; 2139 2140 mddev_lock(mddev); 2141 rdev_for_each(rdev2, tmp2, mddev) 2142 if (test_bit(AllReserved, &rdev2->flags) || 2143 (rdev->bdev == rdev2->bdev && 2144 rdev != rdev2 && 2145 overlaps(rdev->data_offset, rdev->size * 2, 2146 rdev2->data_offset, 2147 rdev2->size * 2))) { 2148 overlap = 1; 2149 break; 2150 } 2151 mddev_unlock(mddev); 2152 if (overlap) { 2153 mddev_put(mddev); 2154 break; 2155 } 2156 } 2157 mddev_lock(my_mddev); 2158 if (overlap) { 2159 /* Someone else could have slipped in a size 2160 * change here, but doing so is just silly. 2161 * We put oldsize back because we *know* it is 2162 * safe, and trust userspace not to race with 2163 * itself 2164 */ 2165 rdev->size = oldsize; 2166 return -EBUSY; 2167 } 2168 } 2169 return len; 2170 } 2171 2172 static struct rdev_sysfs_entry rdev_size = 2173 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2174 2175 static struct attribute *rdev_default_attrs[] = { 2176 &rdev_state.attr, 2177 &rdev_errors.attr, 2178 &rdev_slot.attr, 2179 &rdev_offset.attr, 2180 &rdev_size.attr, 2181 NULL, 2182 }; 2183 static ssize_t 2184 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2185 { 2186 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2187 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2188 mddev_t *mddev = rdev->mddev; 2189 ssize_t rv; 2190 2191 if (!entry->show) 2192 return -EIO; 2193 2194 rv = mddev ? mddev_lock(mddev) : -EBUSY; 2195 if (!rv) { 2196 if (rdev->mddev == NULL) 2197 rv = -EBUSY; 2198 else 2199 rv = entry->show(rdev, page); 2200 mddev_unlock(mddev); 2201 } 2202 return rv; 2203 } 2204 2205 static ssize_t 2206 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2207 const char *page, size_t length) 2208 { 2209 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2210 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2211 ssize_t rv; 2212 mddev_t *mddev = rdev->mddev; 2213 2214 if (!entry->store) 2215 return -EIO; 2216 if (!capable(CAP_SYS_ADMIN)) 2217 return -EACCES; 2218 rv = mddev ? mddev_lock(mddev): -EBUSY; 2219 if (!rv) { 2220 if (rdev->mddev == NULL) 2221 rv = -EBUSY; 2222 else 2223 rv = entry->store(rdev, page, length); 2224 mddev_unlock(mddev); 2225 } 2226 return rv; 2227 } 2228 2229 static void rdev_free(struct kobject *ko) 2230 { 2231 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 2232 kfree(rdev); 2233 } 2234 static struct sysfs_ops rdev_sysfs_ops = { 2235 .show = rdev_attr_show, 2236 .store = rdev_attr_store, 2237 }; 2238 static struct kobj_type rdev_ktype = { 2239 .release = rdev_free, 2240 .sysfs_ops = &rdev_sysfs_ops, 2241 .default_attrs = rdev_default_attrs, 2242 }; 2243 2244 /* 2245 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2246 * 2247 * mark the device faulty if: 2248 * 2249 * - the device is nonexistent (zero size) 2250 * - the device has no valid superblock 2251 * 2252 * a faulty rdev _never_ has rdev->sb set. 2253 */ 2254 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2255 { 2256 char b[BDEVNAME_SIZE]; 2257 int err; 2258 mdk_rdev_t *rdev; 2259 sector_t size; 2260 2261 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2262 if (!rdev) { 2263 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2264 return ERR_PTR(-ENOMEM); 2265 } 2266 2267 if ((err = alloc_disk_sb(rdev))) 2268 goto abort_free; 2269 2270 err = lock_rdev(rdev, newdev, super_format == -2); 2271 if (err) 2272 goto abort_free; 2273 2274 kobject_init(&rdev->kobj, &rdev_ktype); 2275 2276 rdev->desc_nr = -1; 2277 rdev->saved_raid_disk = -1; 2278 rdev->raid_disk = -1; 2279 rdev->flags = 0; 2280 rdev->data_offset = 0; 2281 rdev->sb_events = 0; 2282 atomic_set(&rdev->nr_pending, 0); 2283 atomic_set(&rdev->read_errors, 0); 2284 atomic_set(&rdev->corrected_errors, 0); 2285 2286 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2287 if (!size) { 2288 printk(KERN_WARNING 2289 "md: %s has zero or unknown size, marking faulty!\n", 2290 bdevname(rdev->bdev,b)); 2291 err = -EINVAL; 2292 goto abort_free; 2293 } 2294 2295 if (super_format >= 0) { 2296 err = super_types[super_format]. 2297 load_super(rdev, NULL, super_minor); 2298 if (err == -EINVAL) { 2299 printk(KERN_WARNING 2300 "md: %s does not have a valid v%d.%d " 2301 "superblock, not importing!\n", 2302 bdevname(rdev->bdev,b), 2303 super_format, super_minor); 2304 goto abort_free; 2305 } 2306 if (err < 0) { 2307 printk(KERN_WARNING 2308 "md: could not read %s's sb, not importing!\n", 2309 bdevname(rdev->bdev,b)); 2310 goto abort_free; 2311 } 2312 } 2313 2314 INIT_LIST_HEAD(&rdev->same_set); 2315 init_waitqueue_head(&rdev->blocked_wait); 2316 2317 return rdev; 2318 2319 abort_free: 2320 if (rdev->sb_page) { 2321 if (rdev->bdev) 2322 unlock_rdev(rdev); 2323 free_disk_sb(rdev); 2324 } 2325 kfree(rdev); 2326 return ERR_PTR(err); 2327 } 2328 2329 /* 2330 * Check a full RAID array for plausibility 2331 */ 2332 2333 2334 static void analyze_sbs(mddev_t * mddev) 2335 { 2336 int i; 2337 struct list_head *tmp; 2338 mdk_rdev_t *rdev, *freshest; 2339 char b[BDEVNAME_SIZE]; 2340 2341 freshest = NULL; 2342 rdev_for_each(rdev, tmp, mddev) 2343 switch (super_types[mddev->major_version]. 2344 load_super(rdev, freshest, mddev->minor_version)) { 2345 case 1: 2346 freshest = rdev; 2347 break; 2348 case 0: 2349 break; 2350 default: 2351 printk( KERN_ERR \ 2352 "md: fatal superblock inconsistency in %s" 2353 " -- removing from array\n", 2354 bdevname(rdev->bdev,b)); 2355 kick_rdev_from_array(rdev); 2356 } 2357 2358 2359 super_types[mddev->major_version]. 2360 validate_super(mddev, freshest); 2361 2362 i = 0; 2363 rdev_for_each(rdev, tmp, mddev) { 2364 if (rdev != freshest) 2365 if (super_types[mddev->major_version]. 2366 validate_super(mddev, rdev)) { 2367 printk(KERN_WARNING "md: kicking non-fresh %s" 2368 " from array!\n", 2369 bdevname(rdev->bdev,b)); 2370 kick_rdev_from_array(rdev); 2371 continue; 2372 } 2373 if (mddev->level == LEVEL_MULTIPATH) { 2374 rdev->desc_nr = i++; 2375 rdev->raid_disk = rdev->desc_nr; 2376 set_bit(In_sync, &rdev->flags); 2377 } else if (rdev->raid_disk >= mddev->raid_disks) { 2378 rdev->raid_disk = -1; 2379 clear_bit(In_sync, &rdev->flags); 2380 } 2381 } 2382 2383 2384 2385 if (mddev->recovery_cp != MaxSector && 2386 mddev->level >= 1) 2387 printk(KERN_ERR "md: %s: raid array is not clean" 2388 " -- starting background reconstruction\n", 2389 mdname(mddev)); 2390 2391 } 2392 2393 static void md_safemode_timeout(unsigned long data); 2394 2395 static ssize_t 2396 safe_delay_show(mddev_t *mddev, char *page) 2397 { 2398 int msec = (mddev->safemode_delay*1000)/HZ; 2399 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2400 } 2401 static ssize_t 2402 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2403 { 2404 int scale=1; 2405 int dot=0; 2406 int i; 2407 unsigned long msec; 2408 char buf[30]; 2409 char *e; 2410 /* remove a period, and count digits after it */ 2411 if (len >= sizeof(buf)) 2412 return -EINVAL; 2413 strlcpy(buf, cbuf, len); 2414 buf[len] = 0; 2415 for (i=0; i<len; i++) { 2416 if (dot) { 2417 if (isdigit(buf[i])) { 2418 buf[i-1] = buf[i]; 2419 scale *= 10; 2420 } 2421 buf[i] = 0; 2422 } else if (buf[i] == '.') { 2423 dot=1; 2424 buf[i] = 0; 2425 } 2426 } 2427 msec = simple_strtoul(buf, &e, 10); 2428 if (e == buf || (*e && *e != '\n')) 2429 return -EINVAL; 2430 msec = (msec * 1000) / scale; 2431 if (msec == 0) 2432 mddev->safemode_delay = 0; 2433 else { 2434 unsigned long old_delay = mddev->safemode_delay; 2435 mddev->safemode_delay = (msec*HZ)/1000; 2436 if (mddev->safemode_delay == 0) 2437 mddev->safemode_delay = 1; 2438 if (mddev->safemode_delay < old_delay) 2439 md_safemode_timeout((unsigned long)mddev); 2440 } 2441 return len; 2442 } 2443 static struct md_sysfs_entry md_safe_delay = 2444 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2445 2446 static ssize_t 2447 level_show(mddev_t *mddev, char *page) 2448 { 2449 struct mdk_personality *p = mddev->pers; 2450 if (p) 2451 return sprintf(page, "%s\n", p->name); 2452 else if (mddev->clevel[0]) 2453 return sprintf(page, "%s\n", mddev->clevel); 2454 else if (mddev->level != LEVEL_NONE) 2455 return sprintf(page, "%d\n", mddev->level); 2456 else 2457 return 0; 2458 } 2459 2460 static ssize_t 2461 level_store(mddev_t *mddev, const char *buf, size_t len) 2462 { 2463 ssize_t rv = len; 2464 if (mddev->pers) 2465 return -EBUSY; 2466 if (len == 0) 2467 return 0; 2468 if (len >= sizeof(mddev->clevel)) 2469 return -ENOSPC; 2470 strncpy(mddev->clevel, buf, len); 2471 if (mddev->clevel[len-1] == '\n') 2472 len--; 2473 mddev->clevel[len] = 0; 2474 mddev->level = LEVEL_NONE; 2475 return rv; 2476 } 2477 2478 static struct md_sysfs_entry md_level = 2479 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 2480 2481 2482 static ssize_t 2483 layout_show(mddev_t *mddev, char *page) 2484 { 2485 /* just a number, not meaningful for all levels */ 2486 if (mddev->reshape_position != MaxSector && 2487 mddev->layout != mddev->new_layout) 2488 return sprintf(page, "%d (%d)\n", 2489 mddev->new_layout, mddev->layout); 2490 return sprintf(page, "%d\n", mddev->layout); 2491 } 2492 2493 static ssize_t 2494 layout_store(mddev_t *mddev, const char *buf, size_t len) 2495 { 2496 char *e; 2497 unsigned long n = simple_strtoul(buf, &e, 10); 2498 2499 if (!*buf || (*e && *e != '\n')) 2500 return -EINVAL; 2501 2502 if (mddev->pers) 2503 return -EBUSY; 2504 if (mddev->reshape_position != MaxSector) 2505 mddev->new_layout = n; 2506 else 2507 mddev->layout = n; 2508 return len; 2509 } 2510 static struct md_sysfs_entry md_layout = 2511 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 2512 2513 2514 static ssize_t 2515 raid_disks_show(mddev_t *mddev, char *page) 2516 { 2517 if (mddev->raid_disks == 0) 2518 return 0; 2519 if (mddev->reshape_position != MaxSector && 2520 mddev->delta_disks != 0) 2521 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 2522 mddev->raid_disks - mddev->delta_disks); 2523 return sprintf(page, "%d\n", mddev->raid_disks); 2524 } 2525 2526 static int update_raid_disks(mddev_t *mddev, int raid_disks); 2527 2528 static ssize_t 2529 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 2530 { 2531 char *e; 2532 int rv = 0; 2533 unsigned long n = simple_strtoul(buf, &e, 10); 2534 2535 if (!*buf || (*e && *e != '\n')) 2536 return -EINVAL; 2537 2538 if (mddev->pers) 2539 rv = update_raid_disks(mddev, n); 2540 else if (mddev->reshape_position != MaxSector) { 2541 int olddisks = mddev->raid_disks - mddev->delta_disks; 2542 mddev->delta_disks = n - olddisks; 2543 mddev->raid_disks = n; 2544 } else 2545 mddev->raid_disks = n; 2546 return rv ? rv : len; 2547 } 2548 static struct md_sysfs_entry md_raid_disks = 2549 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 2550 2551 static ssize_t 2552 chunk_size_show(mddev_t *mddev, char *page) 2553 { 2554 if (mddev->reshape_position != MaxSector && 2555 mddev->chunk_size != mddev->new_chunk) 2556 return sprintf(page, "%d (%d)\n", mddev->new_chunk, 2557 mddev->chunk_size); 2558 return sprintf(page, "%d\n", mddev->chunk_size); 2559 } 2560 2561 static ssize_t 2562 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 2563 { 2564 /* can only set chunk_size if array is not yet active */ 2565 char *e; 2566 unsigned long n = simple_strtoul(buf, &e, 10); 2567 2568 if (!*buf || (*e && *e != '\n')) 2569 return -EINVAL; 2570 2571 if (mddev->pers) 2572 return -EBUSY; 2573 else if (mddev->reshape_position != MaxSector) 2574 mddev->new_chunk = n; 2575 else 2576 mddev->chunk_size = n; 2577 return len; 2578 } 2579 static struct md_sysfs_entry md_chunk_size = 2580 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 2581 2582 static ssize_t 2583 resync_start_show(mddev_t *mddev, char *page) 2584 { 2585 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 2586 } 2587 2588 static ssize_t 2589 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 2590 { 2591 char *e; 2592 unsigned long long n = simple_strtoull(buf, &e, 10); 2593 2594 if (mddev->pers) 2595 return -EBUSY; 2596 if (!*buf || (*e && *e != '\n')) 2597 return -EINVAL; 2598 2599 mddev->recovery_cp = n; 2600 return len; 2601 } 2602 static struct md_sysfs_entry md_resync_start = 2603 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 2604 2605 /* 2606 * The array state can be: 2607 * 2608 * clear 2609 * No devices, no size, no level 2610 * Equivalent to STOP_ARRAY ioctl 2611 * inactive 2612 * May have some settings, but array is not active 2613 * all IO results in error 2614 * When written, doesn't tear down array, but just stops it 2615 * suspended (not supported yet) 2616 * All IO requests will block. The array can be reconfigured. 2617 * Writing this, if accepted, will block until array is quiescent 2618 * readonly 2619 * no resync can happen. no superblocks get written. 2620 * write requests fail 2621 * read-auto 2622 * like readonly, but behaves like 'clean' on a write request. 2623 * 2624 * clean - no pending writes, but otherwise active. 2625 * When written to inactive array, starts without resync 2626 * If a write request arrives then 2627 * if metadata is known, mark 'dirty' and switch to 'active'. 2628 * if not known, block and switch to write-pending 2629 * If written to an active array that has pending writes, then fails. 2630 * active 2631 * fully active: IO and resync can be happening. 2632 * When written to inactive array, starts with resync 2633 * 2634 * write-pending 2635 * clean, but writes are blocked waiting for 'active' to be written. 2636 * 2637 * active-idle 2638 * like active, but no writes have been seen for a while (100msec). 2639 * 2640 */ 2641 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 2642 write_pending, active_idle, bad_word}; 2643 static char *array_states[] = { 2644 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 2645 "write-pending", "active-idle", NULL }; 2646 2647 static int match_word(const char *word, char **list) 2648 { 2649 int n; 2650 for (n=0; list[n]; n++) 2651 if (cmd_match(word, list[n])) 2652 break; 2653 return n; 2654 } 2655 2656 static ssize_t 2657 array_state_show(mddev_t *mddev, char *page) 2658 { 2659 enum array_state st = inactive; 2660 2661 if (mddev->pers) 2662 switch(mddev->ro) { 2663 case 1: 2664 st = readonly; 2665 break; 2666 case 2: 2667 st = read_auto; 2668 break; 2669 case 0: 2670 if (mddev->in_sync) 2671 st = clean; 2672 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2673 st = write_pending; 2674 else if (mddev->safemode) 2675 st = active_idle; 2676 else 2677 st = active; 2678 } 2679 else { 2680 if (list_empty(&mddev->disks) && 2681 mddev->raid_disks == 0 && 2682 mddev->size == 0) 2683 st = clear; 2684 else 2685 st = inactive; 2686 } 2687 return sprintf(page, "%s\n", array_states[st]); 2688 } 2689 2690 static int do_md_stop(mddev_t * mddev, int ro, int is_open); 2691 static int do_md_run(mddev_t * mddev); 2692 static int restart_array(mddev_t *mddev); 2693 2694 static ssize_t 2695 array_state_store(mddev_t *mddev, const char *buf, size_t len) 2696 { 2697 int err = -EINVAL; 2698 enum array_state st = match_word(buf, array_states); 2699 switch(st) { 2700 case bad_word: 2701 break; 2702 case clear: 2703 /* stopping an active array */ 2704 if (atomic_read(&mddev->openers) > 0) 2705 return -EBUSY; 2706 err = do_md_stop(mddev, 0, 0); 2707 break; 2708 case inactive: 2709 /* stopping an active array */ 2710 if (mddev->pers) { 2711 if (atomic_read(&mddev->openers) > 0) 2712 return -EBUSY; 2713 err = do_md_stop(mddev, 2, 0); 2714 } else 2715 err = 0; /* already inactive */ 2716 break; 2717 case suspended: 2718 break; /* not supported yet */ 2719 case readonly: 2720 if (mddev->pers) 2721 err = do_md_stop(mddev, 1, 0); 2722 else { 2723 mddev->ro = 1; 2724 set_disk_ro(mddev->gendisk, 1); 2725 err = do_md_run(mddev); 2726 } 2727 break; 2728 case read_auto: 2729 if (mddev->pers) { 2730 if (mddev->ro != 1) 2731 err = do_md_stop(mddev, 1, 0); 2732 else 2733 err = restart_array(mddev); 2734 if (err == 0) { 2735 mddev->ro = 2; 2736 set_disk_ro(mddev->gendisk, 0); 2737 } 2738 } else { 2739 mddev->ro = 2; 2740 err = do_md_run(mddev); 2741 } 2742 break; 2743 case clean: 2744 if (mddev->pers) { 2745 restart_array(mddev); 2746 spin_lock_irq(&mddev->write_lock); 2747 if (atomic_read(&mddev->writes_pending) == 0) { 2748 if (mddev->in_sync == 0) { 2749 mddev->in_sync = 1; 2750 if (mddev->safemode == 1) 2751 mddev->safemode = 0; 2752 if (mddev->persistent) 2753 set_bit(MD_CHANGE_CLEAN, 2754 &mddev->flags); 2755 } 2756 err = 0; 2757 } else 2758 err = -EBUSY; 2759 spin_unlock_irq(&mddev->write_lock); 2760 } else { 2761 mddev->ro = 0; 2762 mddev->recovery_cp = MaxSector; 2763 err = do_md_run(mddev); 2764 } 2765 break; 2766 case active: 2767 if (mddev->pers) { 2768 restart_array(mddev); 2769 if (mddev->external) 2770 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2771 wake_up(&mddev->sb_wait); 2772 err = 0; 2773 } else { 2774 mddev->ro = 0; 2775 set_disk_ro(mddev->gendisk, 0); 2776 err = do_md_run(mddev); 2777 } 2778 break; 2779 case write_pending: 2780 case active_idle: 2781 /* these cannot be set */ 2782 break; 2783 } 2784 if (err) 2785 return err; 2786 else { 2787 sysfs_notify(&mddev->kobj, NULL, "array_state"); 2788 return len; 2789 } 2790 } 2791 static struct md_sysfs_entry md_array_state = 2792 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 2793 2794 static ssize_t 2795 null_show(mddev_t *mddev, char *page) 2796 { 2797 return -EINVAL; 2798 } 2799 2800 static ssize_t 2801 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 2802 { 2803 /* buf must be %d:%d\n? giving major and minor numbers */ 2804 /* The new device is added to the array. 2805 * If the array has a persistent superblock, we read the 2806 * superblock to initialise info and check validity. 2807 * Otherwise, only checking done is that in bind_rdev_to_array, 2808 * which mainly checks size. 2809 */ 2810 char *e; 2811 int major = simple_strtoul(buf, &e, 10); 2812 int minor; 2813 dev_t dev; 2814 mdk_rdev_t *rdev; 2815 int err; 2816 2817 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 2818 return -EINVAL; 2819 minor = simple_strtoul(e+1, &e, 10); 2820 if (*e && *e != '\n') 2821 return -EINVAL; 2822 dev = MKDEV(major, minor); 2823 if (major != MAJOR(dev) || 2824 minor != MINOR(dev)) 2825 return -EOVERFLOW; 2826 2827 2828 if (mddev->persistent) { 2829 rdev = md_import_device(dev, mddev->major_version, 2830 mddev->minor_version); 2831 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 2832 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 2833 mdk_rdev_t, same_set); 2834 err = super_types[mddev->major_version] 2835 .load_super(rdev, rdev0, mddev->minor_version); 2836 if (err < 0) 2837 goto out; 2838 } 2839 } else if (mddev->external) 2840 rdev = md_import_device(dev, -2, -1); 2841 else 2842 rdev = md_import_device(dev, -1, -1); 2843 2844 if (IS_ERR(rdev)) 2845 return PTR_ERR(rdev); 2846 err = bind_rdev_to_array(rdev, mddev); 2847 out: 2848 if (err) 2849 export_rdev(rdev); 2850 return err ? err : len; 2851 } 2852 2853 static struct md_sysfs_entry md_new_device = 2854 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 2855 2856 static ssize_t 2857 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 2858 { 2859 char *end; 2860 unsigned long chunk, end_chunk; 2861 2862 if (!mddev->bitmap) 2863 goto out; 2864 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 2865 while (*buf) { 2866 chunk = end_chunk = simple_strtoul(buf, &end, 0); 2867 if (buf == end) break; 2868 if (*end == '-') { /* range */ 2869 buf = end + 1; 2870 end_chunk = simple_strtoul(buf, &end, 0); 2871 if (buf == end) break; 2872 } 2873 if (*end && !isspace(*end)) break; 2874 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 2875 buf = end; 2876 while (isspace(*buf)) buf++; 2877 } 2878 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 2879 out: 2880 return len; 2881 } 2882 2883 static struct md_sysfs_entry md_bitmap = 2884 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 2885 2886 static ssize_t 2887 size_show(mddev_t *mddev, char *page) 2888 { 2889 return sprintf(page, "%llu\n", (unsigned long long)mddev->size); 2890 } 2891 2892 static int update_size(mddev_t *mddev, sector_t num_sectors); 2893 2894 static ssize_t 2895 size_store(mddev_t *mddev, const char *buf, size_t len) 2896 { 2897 /* If array is inactive, we can reduce the component size, but 2898 * not increase it (except from 0). 2899 * If array is active, we can try an on-line resize 2900 */ 2901 char *e; 2902 int err = 0; 2903 unsigned long long size = simple_strtoull(buf, &e, 10); 2904 if (!*buf || *buf == '\n' || 2905 (*e && *e != '\n')) 2906 return -EINVAL; 2907 2908 if (mddev->pers) { 2909 err = update_size(mddev, size * 2); 2910 md_update_sb(mddev, 1); 2911 } else { 2912 if (mddev->size == 0 || 2913 mddev->size > size) 2914 mddev->size = size; 2915 else 2916 err = -ENOSPC; 2917 } 2918 return err ? err : len; 2919 } 2920 2921 static struct md_sysfs_entry md_size = 2922 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 2923 2924 2925 /* Metdata version. 2926 * This is one of 2927 * 'none' for arrays with no metadata (good luck...) 2928 * 'external' for arrays with externally managed metadata, 2929 * or N.M for internally known formats 2930 */ 2931 static ssize_t 2932 metadata_show(mddev_t *mddev, char *page) 2933 { 2934 if (mddev->persistent) 2935 return sprintf(page, "%d.%d\n", 2936 mddev->major_version, mddev->minor_version); 2937 else if (mddev->external) 2938 return sprintf(page, "external:%s\n", mddev->metadata_type); 2939 else 2940 return sprintf(page, "none\n"); 2941 } 2942 2943 static ssize_t 2944 metadata_store(mddev_t *mddev, const char *buf, size_t len) 2945 { 2946 int major, minor; 2947 char *e; 2948 if (!list_empty(&mddev->disks)) 2949 return -EBUSY; 2950 2951 if (cmd_match(buf, "none")) { 2952 mddev->persistent = 0; 2953 mddev->external = 0; 2954 mddev->major_version = 0; 2955 mddev->minor_version = 90; 2956 return len; 2957 } 2958 if (strncmp(buf, "external:", 9) == 0) { 2959 size_t namelen = len-9; 2960 if (namelen >= sizeof(mddev->metadata_type)) 2961 namelen = sizeof(mddev->metadata_type)-1; 2962 strncpy(mddev->metadata_type, buf+9, namelen); 2963 mddev->metadata_type[namelen] = 0; 2964 if (namelen && mddev->metadata_type[namelen-1] == '\n') 2965 mddev->metadata_type[--namelen] = 0; 2966 mddev->persistent = 0; 2967 mddev->external = 1; 2968 mddev->major_version = 0; 2969 mddev->minor_version = 90; 2970 return len; 2971 } 2972 major = simple_strtoul(buf, &e, 10); 2973 if (e==buf || *e != '.') 2974 return -EINVAL; 2975 buf = e+1; 2976 minor = simple_strtoul(buf, &e, 10); 2977 if (e==buf || (*e && *e != '\n') ) 2978 return -EINVAL; 2979 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 2980 return -ENOENT; 2981 mddev->major_version = major; 2982 mddev->minor_version = minor; 2983 mddev->persistent = 1; 2984 mddev->external = 0; 2985 return len; 2986 } 2987 2988 static struct md_sysfs_entry md_metadata = 2989 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 2990 2991 static ssize_t 2992 action_show(mddev_t *mddev, char *page) 2993 { 2994 char *type = "idle"; 2995 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 2996 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 2997 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2998 type = "reshape"; 2999 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3000 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3001 type = "resync"; 3002 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 3003 type = "check"; 3004 else 3005 type = "repair"; 3006 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 3007 type = "recover"; 3008 } 3009 return sprintf(page, "%s\n", type); 3010 } 3011 3012 static ssize_t 3013 action_store(mddev_t *mddev, const char *page, size_t len) 3014 { 3015 if (!mddev->pers || !mddev->pers->sync_request) 3016 return -EINVAL; 3017 3018 if (cmd_match(page, "idle")) { 3019 if (mddev->sync_thread) { 3020 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3021 md_unregister_thread(mddev->sync_thread); 3022 mddev->sync_thread = NULL; 3023 mddev->recovery = 0; 3024 } 3025 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3026 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 3027 return -EBUSY; 3028 else if (cmd_match(page, "resync")) 3029 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3030 else if (cmd_match(page, "recover")) { 3031 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3032 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3033 } else if (cmd_match(page, "reshape")) { 3034 int err; 3035 if (mddev->pers->start_reshape == NULL) 3036 return -EINVAL; 3037 err = mddev->pers->start_reshape(mddev); 3038 if (err) 3039 return err; 3040 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3041 } else { 3042 if (cmd_match(page, "check")) 3043 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3044 else if (!cmd_match(page, "repair")) 3045 return -EINVAL; 3046 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3047 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3048 } 3049 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3050 md_wakeup_thread(mddev->thread); 3051 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 3052 return len; 3053 } 3054 3055 static ssize_t 3056 mismatch_cnt_show(mddev_t *mddev, char *page) 3057 { 3058 return sprintf(page, "%llu\n", 3059 (unsigned long long) mddev->resync_mismatches); 3060 } 3061 3062 static struct md_sysfs_entry md_scan_mode = 3063 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 3064 3065 3066 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 3067 3068 static ssize_t 3069 sync_min_show(mddev_t *mddev, char *page) 3070 { 3071 return sprintf(page, "%d (%s)\n", speed_min(mddev), 3072 mddev->sync_speed_min ? "local": "system"); 3073 } 3074 3075 static ssize_t 3076 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 3077 { 3078 int min; 3079 char *e; 3080 if (strncmp(buf, "system", 6)==0) { 3081 mddev->sync_speed_min = 0; 3082 return len; 3083 } 3084 min = simple_strtoul(buf, &e, 10); 3085 if (buf == e || (*e && *e != '\n') || min <= 0) 3086 return -EINVAL; 3087 mddev->sync_speed_min = min; 3088 return len; 3089 } 3090 3091 static struct md_sysfs_entry md_sync_min = 3092 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 3093 3094 static ssize_t 3095 sync_max_show(mddev_t *mddev, char *page) 3096 { 3097 return sprintf(page, "%d (%s)\n", speed_max(mddev), 3098 mddev->sync_speed_max ? "local": "system"); 3099 } 3100 3101 static ssize_t 3102 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 3103 { 3104 int max; 3105 char *e; 3106 if (strncmp(buf, "system", 6)==0) { 3107 mddev->sync_speed_max = 0; 3108 return len; 3109 } 3110 max = simple_strtoul(buf, &e, 10); 3111 if (buf == e || (*e && *e != '\n') || max <= 0) 3112 return -EINVAL; 3113 mddev->sync_speed_max = max; 3114 return len; 3115 } 3116 3117 static struct md_sysfs_entry md_sync_max = 3118 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 3119 3120 static ssize_t 3121 degraded_show(mddev_t *mddev, char *page) 3122 { 3123 return sprintf(page, "%d\n", mddev->degraded); 3124 } 3125 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 3126 3127 static ssize_t 3128 sync_force_parallel_show(mddev_t *mddev, char *page) 3129 { 3130 return sprintf(page, "%d\n", mddev->parallel_resync); 3131 } 3132 3133 static ssize_t 3134 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len) 3135 { 3136 long n; 3137 3138 if (strict_strtol(buf, 10, &n)) 3139 return -EINVAL; 3140 3141 if (n != 0 && n != 1) 3142 return -EINVAL; 3143 3144 mddev->parallel_resync = n; 3145 3146 if (mddev->sync_thread) 3147 wake_up(&resync_wait); 3148 3149 return len; 3150 } 3151 3152 /* force parallel resync, even with shared block devices */ 3153 static struct md_sysfs_entry md_sync_force_parallel = 3154 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 3155 sync_force_parallel_show, sync_force_parallel_store); 3156 3157 static ssize_t 3158 sync_speed_show(mddev_t *mddev, char *page) 3159 { 3160 unsigned long resync, dt, db; 3161 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 3162 dt = (jiffies - mddev->resync_mark) / HZ; 3163 if (!dt) dt++; 3164 db = resync - mddev->resync_mark_cnt; 3165 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 3166 } 3167 3168 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 3169 3170 static ssize_t 3171 sync_completed_show(mddev_t *mddev, char *page) 3172 { 3173 unsigned long max_blocks, resync; 3174 3175 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3176 max_blocks = mddev->resync_max_sectors; 3177 else 3178 max_blocks = mddev->size << 1; 3179 3180 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active)); 3181 return sprintf(page, "%lu / %lu\n", resync, max_blocks); 3182 } 3183 3184 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 3185 3186 static ssize_t 3187 min_sync_show(mddev_t *mddev, char *page) 3188 { 3189 return sprintf(page, "%llu\n", 3190 (unsigned long long)mddev->resync_min); 3191 } 3192 static ssize_t 3193 min_sync_store(mddev_t *mddev, const char *buf, size_t len) 3194 { 3195 unsigned long long min; 3196 if (strict_strtoull(buf, 10, &min)) 3197 return -EINVAL; 3198 if (min > mddev->resync_max) 3199 return -EINVAL; 3200 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3201 return -EBUSY; 3202 3203 /* Must be a multiple of chunk_size */ 3204 if (mddev->chunk_size) { 3205 if (min & (sector_t)((mddev->chunk_size>>9)-1)) 3206 return -EINVAL; 3207 } 3208 mddev->resync_min = min; 3209 3210 return len; 3211 } 3212 3213 static struct md_sysfs_entry md_min_sync = 3214 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 3215 3216 static ssize_t 3217 max_sync_show(mddev_t *mddev, char *page) 3218 { 3219 if (mddev->resync_max == MaxSector) 3220 return sprintf(page, "max\n"); 3221 else 3222 return sprintf(page, "%llu\n", 3223 (unsigned long long)mddev->resync_max); 3224 } 3225 static ssize_t 3226 max_sync_store(mddev_t *mddev, const char *buf, size_t len) 3227 { 3228 if (strncmp(buf, "max", 3) == 0) 3229 mddev->resync_max = MaxSector; 3230 else { 3231 unsigned long long max; 3232 if (strict_strtoull(buf, 10, &max)) 3233 return -EINVAL; 3234 if (max < mddev->resync_min) 3235 return -EINVAL; 3236 if (max < mddev->resync_max && 3237 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3238 return -EBUSY; 3239 3240 /* Must be a multiple of chunk_size */ 3241 if (mddev->chunk_size) { 3242 if (max & (sector_t)((mddev->chunk_size>>9)-1)) 3243 return -EINVAL; 3244 } 3245 mddev->resync_max = max; 3246 } 3247 wake_up(&mddev->recovery_wait); 3248 return len; 3249 } 3250 3251 static struct md_sysfs_entry md_max_sync = 3252 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 3253 3254 static ssize_t 3255 suspend_lo_show(mddev_t *mddev, char *page) 3256 { 3257 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 3258 } 3259 3260 static ssize_t 3261 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 3262 { 3263 char *e; 3264 unsigned long long new = simple_strtoull(buf, &e, 10); 3265 3266 if (mddev->pers->quiesce == NULL) 3267 return -EINVAL; 3268 if (buf == e || (*e && *e != '\n')) 3269 return -EINVAL; 3270 if (new >= mddev->suspend_hi || 3271 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 3272 mddev->suspend_lo = new; 3273 mddev->pers->quiesce(mddev, 2); 3274 return len; 3275 } else 3276 return -EINVAL; 3277 } 3278 static struct md_sysfs_entry md_suspend_lo = 3279 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 3280 3281 3282 static ssize_t 3283 suspend_hi_show(mddev_t *mddev, char *page) 3284 { 3285 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 3286 } 3287 3288 static ssize_t 3289 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 3290 { 3291 char *e; 3292 unsigned long long new = simple_strtoull(buf, &e, 10); 3293 3294 if (mddev->pers->quiesce == NULL) 3295 return -EINVAL; 3296 if (buf == e || (*e && *e != '\n')) 3297 return -EINVAL; 3298 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 3299 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 3300 mddev->suspend_hi = new; 3301 mddev->pers->quiesce(mddev, 1); 3302 mddev->pers->quiesce(mddev, 0); 3303 return len; 3304 } else 3305 return -EINVAL; 3306 } 3307 static struct md_sysfs_entry md_suspend_hi = 3308 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 3309 3310 static ssize_t 3311 reshape_position_show(mddev_t *mddev, char *page) 3312 { 3313 if (mddev->reshape_position != MaxSector) 3314 return sprintf(page, "%llu\n", 3315 (unsigned long long)mddev->reshape_position); 3316 strcpy(page, "none\n"); 3317 return 5; 3318 } 3319 3320 static ssize_t 3321 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 3322 { 3323 char *e; 3324 unsigned long long new = simple_strtoull(buf, &e, 10); 3325 if (mddev->pers) 3326 return -EBUSY; 3327 if (buf == e || (*e && *e != '\n')) 3328 return -EINVAL; 3329 mddev->reshape_position = new; 3330 mddev->delta_disks = 0; 3331 mddev->new_level = mddev->level; 3332 mddev->new_layout = mddev->layout; 3333 mddev->new_chunk = mddev->chunk_size; 3334 return len; 3335 } 3336 3337 static struct md_sysfs_entry md_reshape_position = 3338 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 3339 reshape_position_store); 3340 3341 3342 static struct attribute *md_default_attrs[] = { 3343 &md_level.attr, 3344 &md_layout.attr, 3345 &md_raid_disks.attr, 3346 &md_chunk_size.attr, 3347 &md_size.attr, 3348 &md_resync_start.attr, 3349 &md_metadata.attr, 3350 &md_new_device.attr, 3351 &md_safe_delay.attr, 3352 &md_array_state.attr, 3353 &md_reshape_position.attr, 3354 NULL, 3355 }; 3356 3357 static struct attribute *md_redundancy_attrs[] = { 3358 &md_scan_mode.attr, 3359 &md_mismatches.attr, 3360 &md_sync_min.attr, 3361 &md_sync_max.attr, 3362 &md_sync_speed.attr, 3363 &md_sync_force_parallel.attr, 3364 &md_sync_completed.attr, 3365 &md_min_sync.attr, 3366 &md_max_sync.attr, 3367 &md_suspend_lo.attr, 3368 &md_suspend_hi.attr, 3369 &md_bitmap.attr, 3370 &md_degraded.attr, 3371 NULL, 3372 }; 3373 static struct attribute_group md_redundancy_group = { 3374 .name = NULL, 3375 .attrs = md_redundancy_attrs, 3376 }; 3377 3378 3379 static ssize_t 3380 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3381 { 3382 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 3383 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 3384 ssize_t rv; 3385 3386 if (!entry->show) 3387 return -EIO; 3388 rv = mddev_lock(mddev); 3389 if (!rv) { 3390 rv = entry->show(mddev, page); 3391 mddev_unlock(mddev); 3392 } 3393 return rv; 3394 } 3395 3396 static ssize_t 3397 md_attr_store(struct kobject *kobj, struct attribute *attr, 3398 const char *page, size_t length) 3399 { 3400 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 3401 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 3402 ssize_t rv; 3403 3404 if (!entry->store) 3405 return -EIO; 3406 if (!capable(CAP_SYS_ADMIN)) 3407 return -EACCES; 3408 rv = mddev_lock(mddev); 3409 if (!rv) { 3410 rv = entry->store(mddev, page, length); 3411 mddev_unlock(mddev); 3412 } 3413 return rv; 3414 } 3415 3416 static void md_free(struct kobject *ko) 3417 { 3418 mddev_t *mddev = container_of(ko, mddev_t, kobj); 3419 kfree(mddev); 3420 } 3421 3422 static struct sysfs_ops md_sysfs_ops = { 3423 .show = md_attr_show, 3424 .store = md_attr_store, 3425 }; 3426 static struct kobj_type md_ktype = { 3427 .release = md_free, 3428 .sysfs_ops = &md_sysfs_ops, 3429 .default_attrs = md_default_attrs, 3430 }; 3431 3432 int mdp_major = 0; 3433 3434 static struct kobject *md_probe(dev_t dev, int *part, void *data) 3435 { 3436 static DEFINE_MUTEX(disks_mutex); 3437 mddev_t *mddev = mddev_find(dev); 3438 struct gendisk *disk; 3439 int partitioned = (MAJOR(dev) != MD_MAJOR); 3440 int shift = partitioned ? MdpMinorShift : 0; 3441 int unit = MINOR(dev) >> shift; 3442 int error; 3443 3444 if (!mddev) 3445 return NULL; 3446 3447 mutex_lock(&disks_mutex); 3448 if (mddev->gendisk) { 3449 mutex_unlock(&disks_mutex); 3450 mddev_put(mddev); 3451 return NULL; 3452 } 3453 disk = alloc_disk(1 << shift); 3454 if (!disk) { 3455 mutex_unlock(&disks_mutex); 3456 mddev_put(mddev); 3457 return NULL; 3458 } 3459 disk->major = MAJOR(dev); 3460 disk->first_minor = unit << shift; 3461 if (partitioned) 3462 sprintf(disk->disk_name, "md_d%d", unit); 3463 else 3464 sprintf(disk->disk_name, "md%d", unit); 3465 disk->fops = &md_fops; 3466 disk->private_data = mddev; 3467 disk->queue = mddev->queue; 3468 add_disk(disk); 3469 mddev->gendisk = disk; 3470 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 3471 &disk_to_dev(disk)->kobj, "%s", "md"); 3472 mutex_unlock(&disks_mutex); 3473 if (error) 3474 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 3475 disk->disk_name); 3476 else 3477 kobject_uevent(&mddev->kobj, KOBJ_ADD); 3478 return NULL; 3479 } 3480 3481 static void md_safemode_timeout(unsigned long data) 3482 { 3483 mddev_t *mddev = (mddev_t *) data; 3484 3485 if (!atomic_read(&mddev->writes_pending)) { 3486 mddev->safemode = 1; 3487 if (mddev->external) 3488 set_bit(MD_NOTIFY_ARRAY_STATE, &mddev->flags); 3489 } 3490 md_wakeup_thread(mddev->thread); 3491 } 3492 3493 static int start_dirty_degraded; 3494 3495 static int do_md_run(mddev_t * mddev) 3496 { 3497 int err; 3498 int chunk_size; 3499 struct list_head *tmp; 3500 mdk_rdev_t *rdev; 3501 struct gendisk *disk; 3502 struct mdk_personality *pers; 3503 char b[BDEVNAME_SIZE]; 3504 3505 if (list_empty(&mddev->disks)) 3506 /* cannot run an array with no devices.. */ 3507 return -EINVAL; 3508 3509 if (mddev->pers) 3510 return -EBUSY; 3511 3512 /* 3513 * Analyze all RAID superblock(s) 3514 */ 3515 if (!mddev->raid_disks) { 3516 if (!mddev->persistent) 3517 return -EINVAL; 3518 analyze_sbs(mddev); 3519 } 3520 3521 chunk_size = mddev->chunk_size; 3522 3523 if (chunk_size) { 3524 if (chunk_size > MAX_CHUNK_SIZE) { 3525 printk(KERN_ERR "too big chunk_size: %d > %d\n", 3526 chunk_size, MAX_CHUNK_SIZE); 3527 return -EINVAL; 3528 } 3529 /* 3530 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE 3531 */ 3532 if ( (1 << ffz(~chunk_size)) != chunk_size) { 3533 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size); 3534 return -EINVAL; 3535 } 3536 if (chunk_size < PAGE_SIZE) { 3537 printk(KERN_ERR "too small chunk_size: %d < %ld\n", 3538 chunk_size, PAGE_SIZE); 3539 return -EINVAL; 3540 } 3541 3542 /* devices must have minimum size of one chunk */ 3543 rdev_for_each(rdev, tmp, mddev) { 3544 if (test_bit(Faulty, &rdev->flags)) 3545 continue; 3546 if (rdev->size < chunk_size / 1024) { 3547 printk(KERN_WARNING 3548 "md: Dev %s smaller than chunk_size:" 3549 " %lluk < %dk\n", 3550 bdevname(rdev->bdev,b), 3551 (unsigned long long)rdev->size, 3552 chunk_size / 1024); 3553 return -EINVAL; 3554 } 3555 } 3556 } 3557 3558 #ifdef CONFIG_KMOD 3559 if (mddev->level != LEVEL_NONE) 3560 request_module("md-level-%d", mddev->level); 3561 else if (mddev->clevel[0]) 3562 request_module("md-%s", mddev->clevel); 3563 #endif 3564 3565 /* 3566 * Drop all container device buffers, from now on 3567 * the only valid external interface is through the md 3568 * device. 3569 */ 3570 rdev_for_each(rdev, tmp, mddev) { 3571 if (test_bit(Faulty, &rdev->flags)) 3572 continue; 3573 sync_blockdev(rdev->bdev); 3574 invalidate_bdev(rdev->bdev); 3575 3576 /* perform some consistency tests on the device. 3577 * We don't want the data to overlap the metadata, 3578 * Internal Bitmap issues has handled elsewhere. 3579 */ 3580 if (rdev->data_offset < rdev->sb_start) { 3581 if (mddev->size && 3582 rdev->data_offset + mddev->size*2 3583 > rdev->sb_start) { 3584 printk("md: %s: data overlaps metadata\n", 3585 mdname(mddev)); 3586 return -EINVAL; 3587 } 3588 } else { 3589 if (rdev->sb_start + rdev->sb_size/512 3590 > rdev->data_offset) { 3591 printk("md: %s: metadata overlaps data\n", 3592 mdname(mddev)); 3593 return -EINVAL; 3594 } 3595 } 3596 sysfs_notify(&rdev->kobj, NULL, "state"); 3597 } 3598 3599 md_probe(mddev->unit, NULL, NULL); 3600 disk = mddev->gendisk; 3601 if (!disk) 3602 return -ENOMEM; 3603 3604 spin_lock(&pers_lock); 3605 pers = find_pers(mddev->level, mddev->clevel); 3606 if (!pers || !try_module_get(pers->owner)) { 3607 spin_unlock(&pers_lock); 3608 if (mddev->level != LEVEL_NONE) 3609 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 3610 mddev->level); 3611 else 3612 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 3613 mddev->clevel); 3614 return -EINVAL; 3615 } 3616 mddev->pers = pers; 3617 spin_unlock(&pers_lock); 3618 mddev->level = pers->level; 3619 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3620 3621 if (mddev->reshape_position != MaxSector && 3622 pers->start_reshape == NULL) { 3623 /* This personality cannot handle reshaping... */ 3624 mddev->pers = NULL; 3625 module_put(pers->owner); 3626 return -EINVAL; 3627 } 3628 3629 if (pers->sync_request) { 3630 /* Warn if this is a potentially silly 3631 * configuration. 3632 */ 3633 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 3634 mdk_rdev_t *rdev2; 3635 struct list_head *tmp2; 3636 int warned = 0; 3637 rdev_for_each(rdev, tmp, mddev) { 3638 rdev_for_each(rdev2, tmp2, mddev) { 3639 if (rdev < rdev2 && 3640 rdev->bdev->bd_contains == 3641 rdev2->bdev->bd_contains) { 3642 printk(KERN_WARNING 3643 "%s: WARNING: %s appears to be" 3644 " on the same physical disk as" 3645 " %s.\n", 3646 mdname(mddev), 3647 bdevname(rdev->bdev,b), 3648 bdevname(rdev2->bdev,b2)); 3649 warned = 1; 3650 } 3651 } 3652 } 3653 if (warned) 3654 printk(KERN_WARNING 3655 "True protection against single-disk" 3656 " failure might be compromised.\n"); 3657 } 3658 3659 mddev->recovery = 0; 3660 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */ 3661 mddev->barriers_work = 1; 3662 mddev->ok_start_degraded = start_dirty_degraded; 3663 3664 if (start_readonly) 3665 mddev->ro = 2; /* read-only, but switch on first write */ 3666 3667 err = mddev->pers->run(mddev); 3668 if (err) 3669 printk(KERN_ERR "md: pers->run() failed ...\n"); 3670 else if (mddev->pers->sync_request) { 3671 err = bitmap_create(mddev); 3672 if (err) { 3673 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 3674 mdname(mddev), err); 3675 mddev->pers->stop(mddev); 3676 } 3677 } 3678 if (err) { 3679 module_put(mddev->pers->owner); 3680 mddev->pers = NULL; 3681 bitmap_destroy(mddev); 3682 return err; 3683 } 3684 if (mddev->pers->sync_request) { 3685 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3686 printk(KERN_WARNING 3687 "md: cannot register extra attributes for %s\n", 3688 mdname(mddev)); 3689 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 3690 mddev->ro = 0; 3691 3692 atomic_set(&mddev->writes_pending,0); 3693 mddev->safemode = 0; 3694 mddev->safemode_timer.function = md_safemode_timeout; 3695 mddev->safemode_timer.data = (unsigned long) mddev; 3696 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 3697 mddev->in_sync = 1; 3698 3699 rdev_for_each(rdev, tmp, mddev) 3700 if (rdev->raid_disk >= 0) { 3701 char nm[20]; 3702 sprintf(nm, "rd%d", rdev->raid_disk); 3703 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 3704 printk("md: cannot register %s for %s\n", 3705 nm, mdname(mddev)); 3706 } 3707 3708 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3709 3710 if (mddev->flags) 3711 md_update_sb(mddev, 0); 3712 3713 set_capacity(disk, mddev->array_sectors); 3714 3715 /* If we call blk_queue_make_request here, it will 3716 * re-initialise max_sectors etc which may have been 3717 * refined inside -> run. So just set the bits we need to set. 3718 * Most initialisation happended when we called 3719 * blk_queue_make_request(..., md_fail_request) 3720 * earlier. 3721 */ 3722 mddev->queue->queuedata = mddev; 3723 mddev->queue->make_request_fn = mddev->pers->make_request; 3724 3725 /* If there is a partially-recovered drive we need to 3726 * start recovery here. If we leave it to md_check_recovery, 3727 * it will remove the drives and not do the right thing 3728 */ 3729 if (mddev->degraded && !mddev->sync_thread) { 3730 struct list_head *rtmp; 3731 int spares = 0; 3732 rdev_for_each(rdev, rtmp, mddev) 3733 if (rdev->raid_disk >= 0 && 3734 !test_bit(In_sync, &rdev->flags) && 3735 !test_bit(Faulty, &rdev->flags)) 3736 /* complete an interrupted recovery */ 3737 spares++; 3738 if (spares && mddev->pers->sync_request) { 3739 mddev->recovery = 0; 3740 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3741 mddev->sync_thread = md_register_thread(md_do_sync, 3742 mddev, 3743 "%s_resync"); 3744 if (!mddev->sync_thread) { 3745 printk(KERN_ERR "%s: could not start resync" 3746 " thread...\n", 3747 mdname(mddev)); 3748 /* leave the spares where they are, it shouldn't hurt */ 3749 mddev->recovery = 0; 3750 } 3751 } 3752 } 3753 md_wakeup_thread(mddev->thread); 3754 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 3755 3756 mddev->changed = 1; 3757 md_new_event(mddev); 3758 sysfs_notify(&mddev->kobj, NULL, "array_state"); 3759 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 3760 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3761 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 3762 return 0; 3763 } 3764 3765 static int restart_array(mddev_t *mddev) 3766 { 3767 struct gendisk *disk = mddev->gendisk; 3768 3769 /* Complain if it has no devices */ 3770 if (list_empty(&mddev->disks)) 3771 return -ENXIO; 3772 if (!mddev->pers) 3773 return -EINVAL; 3774 if (!mddev->ro) 3775 return -EBUSY; 3776 mddev->safemode = 0; 3777 mddev->ro = 0; 3778 set_disk_ro(disk, 0); 3779 printk(KERN_INFO "md: %s switched to read-write mode.\n", 3780 mdname(mddev)); 3781 /* Kick recovery or resync if necessary */ 3782 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3783 md_wakeup_thread(mddev->thread); 3784 md_wakeup_thread(mddev->sync_thread); 3785 sysfs_notify(&mddev->kobj, NULL, "array_state"); 3786 return 0; 3787 } 3788 3789 /* similar to deny_write_access, but accounts for our holding a reference 3790 * to the file ourselves */ 3791 static int deny_bitmap_write_access(struct file * file) 3792 { 3793 struct inode *inode = file->f_mapping->host; 3794 3795 spin_lock(&inode->i_lock); 3796 if (atomic_read(&inode->i_writecount) > 1) { 3797 spin_unlock(&inode->i_lock); 3798 return -ETXTBSY; 3799 } 3800 atomic_set(&inode->i_writecount, -1); 3801 spin_unlock(&inode->i_lock); 3802 3803 return 0; 3804 } 3805 3806 static void restore_bitmap_write_access(struct file *file) 3807 { 3808 struct inode *inode = file->f_mapping->host; 3809 3810 spin_lock(&inode->i_lock); 3811 atomic_set(&inode->i_writecount, 1); 3812 spin_unlock(&inode->i_lock); 3813 } 3814 3815 /* mode: 3816 * 0 - completely stop and dis-assemble array 3817 * 1 - switch to readonly 3818 * 2 - stop but do not disassemble array 3819 */ 3820 static int do_md_stop(mddev_t * mddev, int mode, int is_open) 3821 { 3822 int err = 0; 3823 struct gendisk *disk = mddev->gendisk; 3824 3825 if (atomic_read(&mddev->openers) > is_open) { 3826 printk("md: %s still in use.\n",mdname(mddev)); 3827 return -EBUSY; 3828 } 3829 3830 if (mddev->pers) { 3831 3832 if (mddev->sync_thread) { 3833 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3834 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3835 md_unregister_thread(mddev->sync_thread); 3836 mddev->sync_thread = NULL; 3837 } 3838 3839 del_timer_sync(&mddev->safemode_timer); 3840 3841 switch(mode) { 3842 case 1: /* readonly */ 3843 err = -ENXIO; 3844 if (mddev->ro==1) 3845 goto out; 3846 mddev->ro = 1; 3847 break; 3848 case 0: /* disassemble */ 3849 case 2: /* stop */ 3850 bitmap_flush(mddev); 3851 md_super_wait(mddev); 3852 if (mddev->ro) 3853 set_disk_ro(disk, 0); 3854 blk_queue_make_request(mddev->queue, md_fail_request); 3855 mddev->pers->stop(mddev); 3856 mddev->queue->merge_bvec_fn = NULL; 3857 mddev->queue->unplug_fn = NULL; 3858 mddev->queue->backing_dev_info.congested_fn = NULL; 3859 if (mddev->pers->sync_request) 3860 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 3861 3862 module_put(mddev->pers->owner); 3863 mddev->pers = NULL; 3864 /* tell userspace to handle 'inactive' */ 3865 sysfs_notify(&mddev->kobj, NULL, "array_state"); 3866 3867 set_capacity(disk, 0); 3868 mddev->changed = 1; 3869 3870 if (mddev->ro) 3871 mddev->ro = 0; 3872 } 3873 if (!mddev->in_sync || mddev->flags) { 3874 /* mark array as shutdown cleanly */ 3875 mddev->in_sync = 1; 3876 md_update_sb(mddev, 1); 3877 } 3878 if (mode == 1) 3879 set_disk_ro(disk, 1); 3880 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3881 } 3882 3883 /* 3884 * Free resources if final stop 3885 */ 3886 if (mode == 0) { 3887 mdk_rdev_t *rdev; 3888 struct list_head *tmp; 3889 3890 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 3891 3892 bitmap_destroy(mddev); 3893 if (mddev->bitmap_file) { 3894 restore_bitmap_write_access(mddev->bitmap_file); 3895 fput(mddev->bitmap_file); 3896 mddev->bitmap_file = NULL; 3897 } 3898 mddev->bitmap_offset = 0; 3899 3900 rdev_for_each(rdev, tmp, mddev) 3901 if (rdev->raid_disk >= 0) { 3902 char nm[20]; 3903 sprintf(nm, "rd%d", rdev->raid_disk); 3904 sysfs_remove_link(&mddev->kobj, nm); 3905 } 3906 3907 /* make sure all md_delayed_delete calls have finished */ 3908 flush_scheduled_work(); 3909 3910 export_array(mddev); 3911 3912 mddev->array_sectors = 0; 3913 mddev->size = 0; 3914 mddev->raid_disks = 0; 3915 mddev->recovery_cp = 0; 3916 mddev->resync_min = 0; 3917 mddev->resync_max = MaxSector; 3918 mddev->reshape_position = MaxSector; 3919 mddev->external = 0; 3920 mddev->persistent = 0; 3921 mddev->level = LEVEL_NONE; 3922 mddev->clevel[0] = 0; 3923 mddev->flags = 0; 3924 mddev->ro = 0; 3925 mddev->metadata_type[0] = 0; 3926 mddev->chunk_size = 0; 3927 mddev->ctime = mddev->utime = 0; 3928 mddev->layout = 0; 3929 mddev->max_disks = 0; 3930 mddev->events = 0; 3931 mddev->delta_disks = 0; 3932 mddev->new_level = LEVEL_NONE; 3933 mddev->new_layout = 0; 3934 mddev->new_chunk = 0; 3935 mddev->curr_resync = 0; 3936 mddev->resync_mismatches = 0; 3937 mddev->suspend_lo = mddev->suspend_hi = 0; 3938 mddev->sync_speed_min = mddev->sync_speed_max = 0; 3939 mddev->recovery = 0; 3940 mddev->in_sync = 0; 3941 mddev->changed = 0; 3942 mddev->degraded = 0; 3943 mddev->barriers_work = 0; 3944 mddev->safemode = 0; 3945 3946 } else if (mddev->pers) 3947 printk(KERN_INFO "md: %s switched to read-only mode.\n", 3948 mdname(mddev)); 3949 err = 0; 3950 md_new_event(mddev); 3951 sysfs_notify(&mddev->kobj, NULL, "array_state"); 3952 out: 3953 return err; 3954 } 3955 3956 #ifndef MODULE 3957 static void autorun_array(mddev_t *mddev) 3958 { 3959 mdk_rdev_t *rdev; 3960 struct list_head *tmp; 3961 int err; 3962 3963 if (list_empty(&mddev->disks)) 3964 return; 3965 3966 printk(KERN_INFO "md: running: "); 3967 3968 rdev_for_each(rdev, tmp, mddev) { 3969 char b[BDEVNAME_SIZE]; 3970 printk("<%s>", bdevname(rdev->bdev,b)); 3971 } 3972 printk("\n"); 3973 3974 err = do_md_run (mddev); 3975 if (err) { 3976 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 3977 do_md_stop (mddev, 0, 0); 3978 } 3979 } 3980 3981 /* 3982 * lets try to run arrays based on all disks that have arrived 3983 * until now. (those are in pending_raid_disks) 3984 * 3985 * the method: pick the first pending disk, collect all disks with 3986 * the same UUID, remove all from the pending list and put them into 3987 * the 'same_array' list. Then order this list based on superblock 3988 * update time (freshest comes first), kick out 'old' disks and 3989 * compare superblocks. If everything's fine then run it. 3990 * 3991 * If "unit" is allocated, then bump its reference count 3992 */ 3993 static void autorun_devices(int part) 3994 { 3995 struct list_head *tmp; 3996 mdk_rdev_t *rdev0, *rdev; 3997 mddev_t *mddev; 3998 char b[BDEVNAME_SIZE]; 3999 4000 printk(KERN_INFO "md: autorun ...\n"); 4001 while (!list_empty(&pending_raid_disks)) { 4002 int unit; 4003 dev_t dev; 4004 LIST_HEAD(candidates); 4005 rdev0 = list_entry(pending_raid_disks.next, 4006 mdk_rdev_t, same_set); 4007 4008 printk(KERN_INFO "md: considering %s ...\n", 4009 bdevname(rdev0->bdev,b)); 4010 INIT_LIST_HEAD(&candidates); 4011 rdev_for_each_list(rdev, tmp, pending_raid_disks) 4012 if (super_90_load(rdev, rdev0, 0) >= 0) { 4013 printk(KERN_INFO "md: adding %s ...\n", 4014 bdevname(rdev->bdev,b)); 4015 list_move(&rdev->same_set, &candidates); 4016 } 4017 /* 4018 * now we have a set of devices, with all of them having 4019 * mostly sane superblocks. It's time to allocate the 4020 * mddev. 4021 */ 4022 if (part) { 4023 dev = MKDEV(mdp_major, 4024 rdev0->preferred_minor << MdpMinorShift); 4025 unit = MINOR(dev) >> MdpMinorShift; 4026 } else { 4027 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 4028 unit = MINOR(dev); 4029 } 4030 if (rdev0->preferred_minor != unit) { 4031 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 4032 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 4033 break; 4034 } 4035 4036 md_probe(dev, NULL, NULL); 4037 mddev = mddev_find(dev); 4038 if (!mddev || !mddev->gendisk) { 4039 if (mddev) 4040 mddev_put(mddev); 4041 printk(KERN_ERR 4042 "md: cannot allocate memory for md drive.\n"); 4043 break; 4044 } 4045 if (mddev_lock(mddev)) 4046 printk(KERN_WARNING "md: %s locked, cannot run\n", 4047 mdname(mddev)); 4048 else if (mddev->raid_disks || mddev->major_version 4049 || !list_empty(&mddev->disks)) { 4050 printk(KERN_WARNING 4051 "md: %s already running, cannot run %s\n", 4052 mdname(mddev), bdevname(rdev0->bdev,b)); 4053 mddev_unlock(mddev); 4054 } else { 4055 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 4056 mddev->persistent = 1; 4057 rdev_for_each_list(rdev, tmp, candidates) { 4058 list_del_init(&rdev->same_set); 4059 if (bind_rdev_to_array(rdev, mddev)) 4060 export_rdev(rdev); 4061 } 4062 autorun_array(mddev); 4063 mddev_unlock(mddev); 4064 } 4065 /* on success, candidates will be empty, on error 4066 * it won't... 4067 */ 4068 rdev_for_each_list(rdev, tmp, candidates) { 4069 list_del_init(&rdev->same_set); 4070 export_rdev(rdev); 4071 } 4072 mddev_put(mddev); 4073 } 4074 printk(KERN_INFO "md: ... autorun DONE.\n"); 4075 } 4076 #endif /* !MODULE */ 4077 4078 static int get_version(void __user * arg) 4079 { 4080 mdu_version_t ver; 4081 4082 ver.major = MD_MAJOR_VERSION; 4083 ver.minor = MD_MINOR_VERSION; 4084 ver.patchlevel = MD_PATCHLEVEL_VERSION; 4085 4086 if (copy_to_user(arg, &ver, sizeof(ver))) 4087 return -EFAULT; 4088 4089 return 0; 4090 } 4091 4092 static int get_array_info(mddev_t * mddev, void __user * arg) 4093 { 4094 mdu_array_info_t info; 4095 int nr,working,active,failed,spare; 4096 mdk_rdev_t *rdev; 4097 struct list_head *tmp; 4098 4099 nr=working=active=failed=spare=0; 4100 rdev_for_each(rdev, tmp, mddev) { 4101 nr++; 4102 if (test_bit(Faulty, &rdev->flags)) 4103 failed++; 4104 else { 4105 working++; 4106 if (test_bit(In_sync, &rdev->flags)) 4107 active++; 4108 else 4109 spare++; 4110 } 4111 } 4112 4113 info.major_version = mddev->major_version; 4114 info.minor_version = mddev->minor_version; 4115 info.patch_version = MD_PATCHLEVEL_VERSION; 4116 info.ctime = mddev->ctime; 4117 info.level = mddev->level; 4118 info.size = mddev->size; 4119 if (info.size != mddev->size) /* overflow */ 4120 info.size = -1; 4121 info.nr_disks = nr; 4122 info.raid_disks = mddev->raid_disks; 4123 info.md_minor = mddev->md_minor; 4124 info.not_persistent= !mddev->persistent; 4125 4126 info.utime = mddev->utime; 4127 info.state = 0; 4128 if (mddev->in_sync) 4129 info.state = (1<<MD_SB_CLEAN); 4130 if (mddev->bitmap && mddev->bitmap_offset) 4131 info.state = (1<<MD_SB_BITMAP_PRESENT); 4132 info.active_disks = active; 4133 info.working_disks = working; 4134 info.failed_disks = failed; 4135 info.spare_disks = spare; 4136 4137 info.layout = mddev->layout; 4138 info.chunk_size = mddev->chunk_size; 4139 4140 if (copy_to_user(arg, &info, sizeof(info))) 4141 return -EFAULT; 4142 4143 return 0; 4144 } 4145 4146 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 4147 { 4148 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 4149 char *ptr, *buf = NULL; 4150 int err = -ENOMEM; 4151 4152 if (md_allow_write(mddev)) 4153 file = kmalloc(sizeof(*file), GFP_NOIO); 4154 else 4155 file = kmalloc(sizeof(*file), GFP_KERNEL); 4156 4157 if (!file) 4158 goto out; 4159 4160 /* bitmap disabled, zero the first byte and copy out */ 4161 if (!mddev->bitmap || !mddev->bitmap->file) { 4162 file->pathname[0] = '\0'; 4163 goto copy_out; 4164 } 4165 4166 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 4167 if (!buf) 4168 goto out; 4169 4170 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); 4171 if (IS_ERR(ptr)) 4172 goto out; 4173 4174 strcpy(file->pathname, ptr); 4175 4176 copy_out: 4177 err = 0; 4178 if (copy_to_user(arg, file, sizeof(*file))) 4179 err = -EFAULT; 4180 out: 4181 kfree(buf); 4182 kfree(file); 4183 return err; 4184 } 4185 4186 static int get_disk_info(mddev_t * mddev, void __user * arg) 4187 { 4188 mdu_disk_info_t info; 4189 mdk_rdev_t *rdev; 4190 4191 if (copy_from_user(&info, arg, sizeof(info))) 4192 return -EFAULT; 4193 4194 rdev = find_rdev_nr(mddev, info.number); 4195 if (rdev) { 4196 info.major = MAJOR(rdev->bdev->bd_dev); 4197 info.minor = MINOR(rdev->bdev->bd_dev); 4198 info.raid_disk = rdev->raid_disk; 4199 info.state = 0; 4200 if (test_bit(Faulty, &rdev->flags)) 4201 info.state |= (1<<MD_DISK_FAULTY); 4202 else if (test_bit(In_sync, &rdev->flags)) { 4203 info.state |= (1<<MD_DISK_ACTIVE); 4204 info.state |= (1<<MD_DISK_SYNC); 4205 } 4206 if (test_bit(WriteMostly, &rdev->flags)) 4207 info.state |= (1<<MD_DISK_WRITEMOSTLY); 4208 } else { 4209 info.major = info.minor = 0; 4210 info.raid_disk = -1; 4211 info.state = (1<<MD_DISK_REMOVED); 4212 } 4213 4214 if (copy_to_user(arg, &info, sizeof(info))) 4215 return -EFAULT; 4216 4217 return 0; 4218 } 4219 4220 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 4221 { 4222 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4223 mdk_rdev_t *rdev; 4224 dev_t dev = MKDEV(info->major,info->minor); 4225 4226 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 4227 return -EOVERFLOW; 4228 4229 if (!mddev->raid_disks) { 4230 int err; 4231 /* expecting a device which has a superblock */ 4232 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 4233 if (IS_ERR(rdev)) { 4234 printk(KERN_WARNING 4235 "md: md_import_device returned %ld\n", 4236 PTR_ERR(rdev)); 4237 return PTR_ERR(rdev); 4238 } 4239 if (!list_empty(&mddev->disks)) { 4240 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 4241 mdk_rdev_t, same_set); 4242 int err = super_types[mddev->major_version] 4243 .load_super(rdev, rdev0, mddev->minor_version); 4244 if (err < 0) { 4245 printk(KERN_WARNING 4246 "md: %s has different UUID to %s\n", 4247 bdevname(rdev->bdev,b), 4248 bdevname(rdev0->bdev,b2)); 4249 export_rdev(rdev); 4250 return -EINVAL; 4251 } 4252 } 4253 err = bind_rdev_to_array(rdev, mddev); 4254 if (err) 4255 export_rdev(rdev); 4256 return err; 4257 } 4258 4259 /* 4260 * add_new_disk can be used once the array is assembled 4261 * to add "hot spares". They must already have a superblock 4262 * written 4263 */ 4264 if (mddev->pers) { 4265 int err; 4266 if (!mddev->pers->hot_add_disk) { 4267 printk(KERN_WARNING 4268 "%s: personality does not support diskops!\n", 4269 mdname(mddev)); 4270 return -EINVAL; 4271 } 4272 if (mddev->persistent) 4273 rdev = md_import_device(dev, mddev->major_version, 4274 mddev->minor_version); 4275 else 4276 rdev = md_import_device(dev, -1, -1); 4277 if (IS_ERR(rdev)) { 4278 printk(KERN_WARNING 4279 "md: md_import_device returned %ld\n", 4280 PTR_ERR(rdev)); 4281 return PTR_ERR(rdev); 4282 } 4283 /* set save_raid_disk if appropriate */ 4284 if (!mddev->persistent) { 4285 if (info->state & (1<<MD_DISK_SYNC) && 4286 info->raid_disk < mddev->raid_disks) 4287 rdev->raid_disk = info->raid_disk; 4288 else 4289 rdev->raid_disk = -1; 4290 } else 4291 super_types[mddev->major_version]. 4292 validate_super(mddev, rdev); 4293 rdev->saved_raid_disk = rdev->raid_disk; 4294 4295 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 4296 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 4297 set_bit(WriteMostly, &rdev->flags); 4298 4299 rdev->raid_disk = -1; 4300 err = bind_rdev_to_array(rdev, mddev); 4301 if (!err && !mddev->pers->hot_remove_disk) { 4302 /* If there is hot_add_disk but no hot_remove_disk 4303 * then added disks for geometry changes, 4304 * and should be added immediately. 4305 */ 4306 super_types[mddev->major_version]. 4307 validate_super(mddev, rdev); 4308 err = mddev->pers->hot_add_disk(mddev, rdev); 4309 if (err) 4310 unbind_rdev_from_array(rdev); 4311 } 4312 if (err) 4313 export_rdev(rdev); 4314 else 4315 sysfs_notify(&rdev->kobj, NULL, "state"); 4316 4317 md_update_sb(mddev, 1); 4318 if (mddev->degraded) 4319 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4320 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4321 md_wakeup_thread(mddev->thread); 4322 return err; 4323 } 4324 4325 /* otherwise, add_new_disk is only allowed 4326 * for major_version==0 superblocks 4327 */ 4328 if (mddev->major_version != 0) { 4329 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 4330 mdname(mddev)); 4331 return -EINVAL; 4332 } 4333 4334 if (!(info->state & (1<<MD_DISK_FAULTY))) { 4335 int err; 4336 rdev = md_import_device (dev, -1, 0); 4337 if (IS_ERR(rdev)) { 4338 printk(KERN_WARNING 4339 "md: error, md_import_device() returned %ld\n", 4340 PTR_ERR(rdev)); 4341 return PTR_ERR(rdev); 4342 } 4343 rdev->desc_nr = info->number; 4344 if (info->raid_disk < mddev->raid_disks) 4345 rdev->raid_disk = info->raid_disk; 4346 else 4347 rdev->raid_disk = -1; 4348 4349 if (rdev->raid_disk < mddev->raid_disks) 4350 if (info->state & (1<<MD_DISK_SYNC)) 4351 set_bit(In_sync, &rdev->flags); 4352 4353 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 4354 set_bit(WriteMostly, &rdev->flags); 4355 4356 if (!mddev->persistent) { 4357 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 4358 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 4359 } else 4360 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 4361 rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2; 4362 4363 err = bind_rdev_to_array(rdev, mddev); 4364 if (err) { 4365 export_rdev(rdev); 4366 return err; 4367 } 4368 } 4369 4370 return 0; 4371 } 4372 4373 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 4374 { 4375 char b[BDEVNAME_SIZE]; 4376 mdk_rdev_t *rdev; 4377 4378 rdev = find_rdev(mddev, dev); 4379 if (!rdev) 4380 return -ENXIO; 4381 4382 if (rdev->raid_disk >= 0) 4383 goto busy; 4384 4385 kick_rdev_from_array(rdev); 4386 md_update_sb(mddev, 1); 4387 md_new_event(mddev); 4388 4389 return 0; 4390 busy: 4391 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 4392 bdevname(rdev->bdev,b), mdname(mddev)); 4393 return -EBUSY; 4394 } 4395 4396 static int hot_add_disk(mddev_t * mddev, dev_t dev) 4397 { 4398 char b[BDEVNAME_SIZE]; 4399 int err; 4400 mdk_rdev_t *rdev; 4401 4402 if (!mddev->pers) 4403 return -ENODEV; 4404 4405 if (mddev->major_version != 0) { 4406 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 4407 " version-0 superblocks.\n", 4408 mdname(mddev)); 4409 return -EINVAL; 4410 } 4411 if (!mddev->pers->hot_add_disk) { 4412 printk(KERN_WARNING 4413 "%s: personality does not support diskops!\n", 4414 mdname(mddev)); 4415 return -EINVAL; 4416 } 4417 4418 rdev = md_import_device (dev, -1, 0); 4419 if (IS_ERR(rdev)) { 4420 printk(KERN_WARNING 4421 "md: error, md_import_device() returned %ld\n", 4422 PTR_ERR(rdev)); 4423 return -EINVAL; 4424 } 4425 4426 if (mddev->persistent) 4427 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 4428 else 4429 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 4430 4431 rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2; 4432 4433 if (test_bit(Faulty, &rdev->flags)) { 4434 printk(KERN_WARNING 4435 "md: can not hot-add faulty %s disk to %s!\n", 4436 bdevname(rdev->bdev,b), mdname(mddev)); 4437 err = -EINVAL; 4438 goto abort_export; 4439 } 4440 clear_bit(In_sync, &rdev->flags); 4441 rdev->desc_nr = -1; 4442 rdev->saved_raid_disk = -1; 4443 err = bind_rdev_to_array(rdev, mddev); 4444 if (err) 4445 goto abort_export; 4446 4447 /* 4448 * The rest should better be atomic, we can have disk failures 4449 * noticed in interrupt contexts ... 4450 */ 4451 4452 if (rdev->desc_nr == mddev->max_disks) { 4453 printk(KERN_WARNING "%s: can not hot-add to full array!\n", 4454 mdname(mddev)); 4455 err = -EBUSY; 4456 goto abort_unbind_export; 4457 } 4458 4459 rdev->raid_disk = -1; 4460 4461 md_update_sb(mddev, 1); 4462 4463 /* 4464 * Kick recovery, maybe this spare has to be added to the 4465 * array immediately. 4466 */ 4467 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4468 md_wakeup_thread(mddev->thread); 4469 md_new_event(mddev); 4470 return 0; 4471 4472 abort_unbind_export: 4473 unbind_rdev_from_array(rdev); 4474 4475 abort_export: 4476 export_rdev(rdev); 4477 return err; 4478 } 4479 4480 static int set_bitmap_file(mddev_t *mddev, int fd) 4481 { 4482 int err; 4483 4484 if (mddev->pers) { 4485 if (!mddev->pers->quiesce) 4486 return -EBUSY; 4487 if (mddev->recovery || mddev->sync_thread) 4488 return -EBUSY; 4489 /* we should be able to change the bitmap.. */ 4490 } 4491 4492 4493 if (fd >= 0) { 4494 if (mddev->bitmap) 4495 return -EEXIST; /* cannot add when bitmap is present */ 4496 mddev->bitmap_file = fget(fd); 4497 4498 if (mddev->bitmap_file == NULL) { 4499 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 4500 mdname(mddev)); 4501 return -EBADF; 4502 } 4503 4504 err = deny_bitmap_write_access(mddev->bitmap_file); 4505 if (err) { 4506 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 4507 mdname(mddev)); 4508 fput(mddev->bitmap_file); 4509 mddev->bitmap_file = NULL; 4510 return err; 4511 } 4512 mddev->bitmap_offset = 0; /* file overrides offset */ 4513 } else if (mddev->bitmap == NULL) 4514 return -ENOENT; /* cannot remove what isn't there */ 4515 err = 0; 4516 if (mddev->pers) { 4517 mddev->pers->quiesce(mddev, 1); 4518 if (fd >= 0) 4519 err = bitmap_create(mddev); 4520 if (fd < 0 || err) { 4521 bitmap_destroy(mddev); 4522 fd = -1; /* make sure to put the file */ 4523 } 4524 mddev->pers->quiesce(mddev, 0); 4525 } 4526 if (fd < 0) { 4527 if (mddev->bitmap_file) { 4528 restore_bitmap_write_access(mddev->bitmap_file); 4529 fput(mddev->bitmap_file); 4530 } 4531 mddev->bitmap_file = NULL; 4532 } 4533 4534 return err; 4535 } 4536 4537 /* 4538 * set_array_info is used two different ways 4539 * The original usage is when creating a new array. 4540 * In this usage, raid_disks is > 0 and it together with 4541 * level, size, not_persistent,layout,chunksize determine the 4542 * shape of the array. 4543 * This will always create an array with a type-0.90.0 superblock. 4544 * The newer usage is when assembling an array. 4545 * In this case raid_disks will be 0, and the major_version field is 4546 * use to determine which style super-blocks are to be found on the devices. 4547 * The minor and patch _version numbers are also kept incase the 4548 * super_block handler wishes to interpret them. 4549 */ 4550 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 4551 { 4552 4553 if (info->raid_disks == 0) { 4554 /* just setting version number for superblock loading */ 4555 if (info->major_version < 0 || 4556 info->major_version >= ARRAY_SIZE(super_types) || 4557 super_types[info->major_version].name == NULL) { 4558 /* maybe try to auto-load a module? */ 4559 printk(KERN_INFO 4560 "md: superblock version %d not known\n", 4561 info->major_version); 4562 return -EINVAL; 4563 } 4564 mddev->major_version = info->major_version; 4565 mddev->minor_version = info->minor_version; 4566 mddev->patch_version = info->patch_version; 4567 mddev->persistent = !info->not_persistent; 4568 return 0; 4569 } 4570 mddev->major_version = MD_MAJOR_VERSION; 4571 mddev->minor_version = MD_MINOR_VERSION; 4572 mddev->patch_version = MD_PATCHLEVEL_VERSION; 4573 mddev->ctime = get_seconds(); 4574 4575 mddev->level = info->level; 4576 mddev->clevel[0] = 0; 4577 mddev->size = info->size; 4578 mddev->raid_disks = info->raid_disks; 4579 /* don't set md_minor, it is determined by which /dev/md* was 4580 * openned 4581 */ 4582 if (info->state & (1<<MD_SB_CLEAN)) 4583 mddev->recovery_cp = MaxSector; 4584 else 4585 mddev->recovery_cp = 0; 4586 mddev->persistent = ! info->not_persistent; 4587 mddev->external = 0; 4588 4589 mddev->layout = info->layout; 4590 mddev->chunk_size = info->chunk_size; 4591 4592 mddev->max_disks = MD_SB_DISKS; 4593 4594 if (mddev->persistent) 4595 mddev->flags = 0; 4596 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4597 4598 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 4599 mddev->bitmap_offset = 0; 4600 4601 mddev->reshape_position = MaxSector; 4602 4603 /* 4604 * Generate a 128 bit UUID 4605 */ 4606 get_random_bytes(mddev->uuid, 16); 4607 4608 mddev->new_level = mddev->level; 4609 mddev->new_chunk = mddev->chunk_size; 4610 mddev->new_layout = mddev->layout; 4611 mddev->delta_disks = 0; 4612 4613 return 0; 4614 } 4615 4616 static int update_size(mddev_t *mddev, sector_t num_sectors) 4617 { 4618 mdk_rdev_t * rdev; 4619 int rv; 4620 struct list_head *tmp; 4621 int fit = (num_sectors == 0); 4622 4623 if (mddev->pers->resize == NULL) 4624 return -EINVAL; 4625 /* The "num_sectors" is the number of sectors of each device that 4626 * is used. This can only make sense for arrays with redundancy. 4627 * linear and raid0 always use whatever space is available. We can only 4628 * consider changing this number if no resync or reconstruction is 4629 * happening, and if the new size is acceptable. It must fit before the 4630 * sb_start or, if that is <data_offset, it must fit before the size 4631 * of each device. If num_sectors is zero, we find the largest size 4632 * that fits. 4633 4634 */ 4635 if (mddev->sync_thread) 4636 return -EBUSY; 4637 if (mddev->bitmap) 4638 /* Sorry, cannot grow a bitmap yet, just remove it, 4639 * grow, and re-add. 4640 */ 4641 return -EBUSY; 4642 rdev_for_each(rdev, tmp, mddev) { 4643 sector_t avail; 4644 avail = rdev->size * 2; 4645 4646 if (fit && (num_sectors == 0 || num_sectors > avail)) 4647 num_sectors = avail; 4648 if (avail < num_sectors) 4649 return -ENOSPC; 4650 } 4651 rv = mddev->pers->resize(mddev, num_sectors); 4652 if (!rv) { 4653 struct block_device *bdev; 4654 4655 bdev = bdget_disk(mddev->gendisk, 0); 4656 if (bdev) { 4657 mutex_lock(&bdev->bd_inode->i_mutex); 4658 i_size_write(bdev->bd_inode, 4659 (loff_t)mddev->array_sectors << 9); 4660 mutex_unlock(&bdev->bd_inode->i_mutex); 4661 bdput(bdev); 4662 } 4663 } 4664 return rv; 4665 } 4666 4667 static int update_raid_disks(mddev_t *mddev, int raid_disks) 4668 { 4669 int rv; 4670 /* change the number of raid disks */ 4671 if (mddev->pers->check_reshape == NULL) 4672 return -EINVAL; 4673 if (raid_disks <= 0 || 4674 raid_disks >= mddev->max_disks) 4675 return -EINVAL; 4676 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 4677 return -EBUSY; 4678 mddev->delta_disks = raid_disks - mddev->raid_disks; 4679 4680 rv = mddev->pers->check_reshape(mddev); 4681 return rv; 4682 } 4683 4684 4685 /* 4686 * update_array_info is used to change the configuration of an 4687 * on-line array. 4688 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 4689 * fields in the info are checked against the array. 4690 * Any differences that cannot be handled will cause an error. 4691 * Normally, only one change can be managed at a time. 4692 */ 4693 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 4694 { 4695 int rv = 0; 4696 int cnt = 0; 4697 int state = 0; 4698 4699 /* calculate expected state,ignoring low bits */ 4700 if (mddev->bitmap && mddev->bitmap_offset) 4701 state |= (1 << MD_SB_BITMAP_PRESENT); 4702 4703 if (mddev->major_version != info->major_version || 4704 mddev->minor_version != info->minor_version || 4705 /* mddev->patch_version != info->patch_version || */ 4706 mddev->ctime != info->ctime || 4707 mddev->level != info->level || 4708 /* mddev->layout != info->layout || */ 4709 !mddev->persistent != info->not_persistent|| 4710 mddev->chunk_size != info->chunk_size || 4711 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 4712 ((state^info->state) & 0xfffffe00) 4713 ) 4714 return -EINVAL; 4715 /* Check there is only one change */ 4716 if (info->size >= 0 && mddev->size != info->size) cnt++; 4717 if (mddev->raid_disks != info->raid_disks) cnt++; 4718 if (mddev->layout != info->layout) cnt++; 4719 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++; 4720 if (cnt == 0) return 0; 4721 if (cnt > 1) return -EINVAL; 4722 4723 if (mddev->layout != info->layout) { 4724 /* Change layout 4725 * we don't need to do anything at the md level, the 4726 * personality will take care of it all. 4727 */ 4728 if (mddev->pers->reconfig == NULL) 4729 return -EINVAL; 4730 else 4731 return mddev->pers->reconfig(mddev, info->layout, -1); 4732 } 4733 if (info->size >= 0 && mddev->size != info->size) 4734 rv = update_size(mddev, (sector_t)info->size * 2); 4735 4736 if (mddev->raid_disks != info->raid_disks) 4737 rv = update_raid_disks(mddev, info->raid_disks); 4738 4739 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 4740 if (mddev->pers->quiesce == NULL) 4741 return -EINVAL; 4742 if (mddev->recovery || mddev->sync_thread) 4743 return -EBUSY; 4744 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 4745 /* add the bitmap */ 4746 if (mddev->bitmap) 4747 return -EEXIST; 4748 if (mddev->default_bitmap_offset == 0) 4749 return -EINVAL; 4750 mddev->bitmap_offset = mddev->default_bitmap_offset; 4751 mddev->pers->quiesce(mddev, 1); 4752 rv = bitmap_create(mddev); 4753 if (rv) 4754 bitmap_destroy(mddev); 4755 mddev->pers->quiesce(mddev, 0); 4756 } else { 4757 /* remove the bitmap */ 4758 if (!mddev->bitmap) 4759 return -ENOENT; 4760 if (mddev->bitmap->file) 4761 return -EINVAL; 4762 mddev->pers->quiesce(mddev, 1); 4763 bitmap_destroy(mddev); 4764 mddev->pers->quiesce(mddev, 0); 4765 mddev->bitmap_offset = 0; 4766 } 4767 } 4768 md_update_sb(mddev, 1); 4769 return rv; 4770 } 4771 4772 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 4773 { 4774 mdk_rdev_t *rdev; 4775 4776 if (mddev->pers == NULL) 4777 return -ENODEV; 4778 4779 rdev = find_rdev(mddev, dev); 4780 if (!rdev) 4781 return -ENODEV; 4782 4783 md_error(mddev, rdev); 4784 return 0; 4785 } 4786 4787 /* 4788 * We have a problem here : there is no easy way to give a CHS 4789 * virtual geometry. We currently pretend that we have a 2 heads 4790 * 4 sectors (with a BIG number of cylinders...). This drives 4791 * dosfs just mad... ;-) 4792 */ 4793 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 4794 { 4795 mddev_t *mddev = bdev->bd_disk->private_data; 4796 4797 geo->heads = 2; 4798 geo->sectors = 4; 4799 geo->cylinders = get_capacity(mddev->gendisk) / 8; 4800 return 0; 4801 } 4802 4803 static int md_ioctl(struct inode *inode, struct file *file, 4804 unsigned int cmd, unsigned long arg) 4805 { 4806 int err = 0; 4807 void __user *argp = (void __user *)arg; 4808 mddev_t *mddev = NULL; 4809 4810 if (!capable(CAP_SYS_ADMIN)) 4811 return -EACCES; 4812 4813 /* 4814 * Commands dealing with the RAID driver but not any 4815 * particular array: 4816 */ 4817 switch (cmd) 4818 { 4819 case RAID_VERSION: 4820 err = get_version(argp); 4821 goto done; 4822 4823 case PRINT_RAID_DEBUG: 4824 err = 0; 4825 md_print_devices(); 4826 goto done; 4827 4828 #ifndef MODULE 4829 case RAID_AUTORUN: 4830 err = 0; 4831 autostart_arrays(arg); 4832 goto done; 4833 #endif 4834 default:; 4835 } 4836 4837 /* 4838 * Commands creating/starting a new array: 4839 */ 4840 4841 mddev = inode->i_bdev->bd_disk->private_data; 4842 4843 if (!mddev) { 4844 BUG(); 4845 goto abort; 4846 } 4847 4848 err = mddev_lock(mddev); 4849 if (err) { 4850 printk(KERN_INFO 4851 "md: ioctl lock interrupted, reason %d, cmd %d\n", 4852 err, cmd); 4853 goto abort; 4854 } 4855 4856 switch (cmd) 4857 { 4858 case SET_ARRAY_INFO: 4859 { 4860 mdu_array_info_t info; 4861 if (!arg) 4862 memset(&info, 0, sizeof(info)); 4863 else if (copy_from_user(&info, argp, sizeof(info))) { 4864 err = -EFAULT; 4865 goto abort_unlock; 4866 } 4867 if (mddev->pers) { 4868 err = update_array_info(mddev, &info); 4869 if (err) { 4870 printk(KERN_WARNING "md: couldn't update" 4871 " array info. %d\n", err); 4872 goto abort_unlock; 4873 } 4874 goto done_unlock; 4875 } 4876 if (!list_empty(&mddev->disks)) { 4877 printk(KERN_WARNING 4878 "md: array %s already has disks!\n", 4879 mdname(mddev)); 4880 err = -EBUSY; 4881 goto abort_unlock; 4882 } 4883 if (mddev->raid_disks) { 4884 printk(KERN_WARNING 4885 "md: array %s already initialised!\n", 4886 mdname(mddev)); 4887 err = -EBUSY; 4888 goto abort_unlock; 4889 } 4890 err = set_array_info(mddev, &info); 4891 if (err) { 4892 printk(KERN_WARNING "md: couldn't set" 4893 " array info. %d\n", err); 4894 goto abort_unlock; 4895 } 4896 } 4897 goto done_unlock; 4898 4899 default:; 4900 } 4901 4902 /* 4903 * Commands querying/configuring an existing array: 4904 */ 4905 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 4906 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 4907 if ((!mddev->raid_disks && !mddev->external) 4908 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 4909 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 4910 && cmd != GET_BITMAP_FILE) { 4911 err = -ENODEV; 4912 goto abort_unlock; 4913 } 4914 4915 /* 4916 * Commands even a read-only array can execute: 4917 */ 4918 switch (cmd) 4919 { 4920 case GET_ARRAY_INFO: 4921 err = get_array_info(mddev, argp); 4922 goto done_unlock; 4923 4924 case GET_BITMAP_FILE: 4925 err = get_bitmap_file(mddev, argp); 4926 goto done_unlock; 4927 4928 case GET_DISK_INFO: 4929 err = get_disk_info(mddev, argp); 4930 goto done_unlock; 4931 4932 case RESTART_ARRAY_RW: 4933 err = restart_array(mddev); 4934 goto done_unlock; 4935 4936 case STOP_ARRAY: 4937 err = do_md_stop (mddev, 0, 1); 4938 goto done_unlock; 4939 4940 case STOP_ARRAY_RO: 4941 err = do_md_stop (mddev, 1, 1); 4942 goto done_unlock; 4943 4944 } 4945 4946 /* 4947 * The remaining ioctls are changing the state of the 4948 * superblock, so we do not allow them on read-only arrays. 4949 * However non-MD ioctls (e.g. get-size) will still come through 4950 * here and hit the 'default' below, so only disallow 4951 * 'md' ioctls, and switch to rw mode if started auto-readonly. 4952 */ 4953 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 4954 if (mddev->ro == 2) { 4955 mddev->ro = 0; 4956 sysfs_notify(&mddev->kobj, NULL, "array_state"); 4957 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4958 md_wakeup_thread(mddev->thread); 4959 } else { 4960 err = -EROFS; 4961 goto abort_unlock; 4962 } 4963 } 4964 4965 switch (cmd) 4966 { 4967 case ADD_NEW_DISK: 4968 { 4969 mdu_disk_info_t info; 4970 if (copy_from_user(&info, argp, sizeof(info))) 4971 err = -EFAULT; 4972 else 4973 err = add_new_disk(mddev, &info); 4974 goto done_unlock; 4975 } 4976 4977 case HOT_REMOVE_DISK: 4978 err = hot_remove_disk(mddev, new_decode_dev(arg)); 4979 goto done_unlock; 4980 4981 case HOT_ADD_DISK: 4982 err = hot_add_disk(mddev, new_decode_dev(arg)); 4983 goto done_unlock; 4984 4985 case SET_DISK_FAULTY: 4986 err = set_disk_faulty(mddev, new_decode_dev(arg)); 4987 goto done_unlock; 4988 4989 case RUN_ARRAY: 4990 err = do_md_run (mddev); 4991 goto done_unlock; 4992 4993 case SET_BITMAP_FILE: 4994 err = set_bitmap_file(mddev, (int)arg); 4995 goto done_unlock; 4996 4997 default: 4998 err = -EINVAL; 4999 goto abort_unlock; 5000 } 5001 5002 done_unlock: 5003 abort_unlock: 5004 mddev_unlock(mddev); 5005 5006 return err; 5007 done: 5008 if (err) 5009 MD_BUG(); 5010 abort: 5011 return err; 5012 } 5013 5014 static int md_open(struct inode *inode, struct file *file) 5015 { 5016 /* 5017 * Succeed if we can lock the mddev, which confirms that 5018 * it isn't being stopped right now. 5019 */ 5020 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 5021 int err; 5022 5023 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1))) 5024 goto out; 5025 5026 err = 0; 5027 mddev_get(mddev); 5028 atomic_inc(&mddev->openers); 5029 mddev_unlock(mddev); 5030 5031 check_disk_change(inode->i_bdev); 5032 out: 5033 return err; 5034 } 5035 5036 static int md_release(struct inode *inode, struct file * file) 5037 { 5038 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 5039 5040 BUG_ON(!mddev); 5041 atomic_dec(&mddev->openers); 5042 mddev_put(mddev); 5043 5044 return 0; 5045 } 5046 5047 static int md_media_changed(struct gendisk *disk) 5048 { 5049 mddev_t *mddev = disk->private_data; 5050 5051 return mddev->changed; 5052 } 5053 5054 static int md_revalidate(struct gendisk *disk) 5055 { 5056 mddev_t *mddev = disk->private_data; 5057 5058 mddev->changed = 0; 5059 return 0; 5060 } 5061 static struct block_device_operations md_fops = 5062 { 5063 .owner = THIS_MODULE, 5064 .open = md_open, 5065 .release = md_release, 5066 .ioctl = md_ioctl, 5067 .getgeo = md_getgeo, 5068 .media_changed = md_media_changed, 5069 .revalidate_disk= md_revalidate, 5070 }; 5071 5072 static int md_thread(void * arg) 5073 { 5074 mdk_thread_t *thread = arg; 5075 5076 /* 5077 * md_thread is a 'system-thread', it's priority should be very 5078 * high. We avoid resource deadlocks individually in each 5079 * raid personality. (RAID5 does preallocation) We also use RR and 5080 * the very same RT priority as kswapd, thus we will never get 5081 * into a priority inversion deadlock. 5082 * 5083 * we definitely have to have equal or higher priority than 5084 * bdflush, otherwise bdflush will deadlock if there are too 5085 * many dirty RAID5 blocks. 5086 */ 5087 5088 allow_signal(SIGKILL); 5089 while (!kthread_should_stop()) { 5090 5091 /* We need to wait INTERRUPTIBLE so that 5092 * we don't add to the load-average. 5093 * That means we need to be sure no signals are 5094 * pending 5095 */ 5096 if (signal_pending(current)) 5097 flush_signals(current); 5098 5099 wait_event_interruptible_timeout 5100 (thread->wqueue, 5101 test_bit(THREAD_WAKEUP, &thread->flags) 5102 || kthread_should_stop(), 5103 thread->timeout); 5104 5105 clear_bit(THREAD_WAKEUP, &thread->flags); 5106 5107 thread->run(thread->mddev); 5108 } 5109 5110 return 0; 5111 } 5112 5113 void md_wakeup_thread(mdk_thread_t *thread) 5114 { 5115 if (thread) { 5116 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 5117 set_bit(THREAD_WAKEUP, &thread->flags); 5118 wake_up(&thread->wqueue); 5119 } 5120 } 5121 5122 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 5123 const char *name) 5124 { 5125 mdk_thread_t *thread; 5126 5127 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 5128 if (!thread) 5129 return NULL; 5130 5131 init_waitqueue_head(&thread->wqueue); 5132 5133 thread->run = run; 5134 thread->mddev = mddev; 5135 thread->timeout = MAX_SCHEDULE_TIMEOUT; 5136 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev)); 5137 if (IS_ERR(thread->tsk)) { 5138 kfree(thread); 5139 return NULL; 5140 } 5141 return thread; 5142 } 5143 5144 void md_unregister_thread(mdk_thread_t *thread) 5145 { 5146 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 5147 5148 kthread_stop(thread->tsk); 5149 kfree(thread); 5150 } 5151 5152 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 5153 { 5154 if (!mddev) { 5155 MD_BUG(); 5156 return; 5157 } 5158 5159 if (!rdev || test_bit(Faulty, &rdev->flags)) 5160 return; 5161 5162 if (mddev->external) 5163 set_bit(Blocked, &rdev->flags); 5164 /* 5165 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 5166 mdname(mddev), 5167 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 5168 __builtin_return_address(0),__builtin_return_address(1), 5169 __builtin_return_address(2),__builtin_return_address(3)); 5170 */ 5171 if (!mddev->pers) 5172 return; 5173 if (!mddev->pers->error_handler) 5174 return; 5175 mddev->pers->error_handler(mddev,rdev); 5176 if (mddev->degraded) 5177 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5178 set_bit(StateChanged, &rdev->flags); 5179 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5180 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5181 md_wakeup_thread(mddev->thread); 5182 md_new_event_inintr(mddev); 5183 } 5184 5185 /* seq_file implementation /proc/mdstat */ 5186 5187 static void status_unused(struct seq_file *seq) 5188 { 5189 int i = 0; 5190 mdk_rdev_t *rdev; 5191 struct list_head *tmp; 5192 5193 seq_printf(seq, "unused devices: "); 5194 5195 rdev_for_each_list(rdev, tmp, pending_raid_disks) { 5196 char b[BDEVNAME_SIZE]; 5197 i++; 5198 seq_printf(seq, "%s ", 5199 bdevname(rdev->bdev,b)); 5200 } 5201 if (!i) 5202 seq_printf(seq, "<none>"); 5203 5204 seq_printf(seq, "\n"); 5205 } 5206 5207 5208 static void status_resync(struct seq_file *seq, mddev_t * mddev) 5209 { 5210 sector_t max_blocks, resync, res; 5211 unsigned long dt, db, rt; 5212 int scale; 5213 unsigned int per_milli; 5214 5215 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2; 5216 5217 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 5218 max_blocks = mddev->resync_max_sectors >> 1; 5219 else 5220 max_blocks = mddev->size; 5221 5222 /* 5223 * Should not happen. 5224 */ 5225 if (!max_blocks) { 5226 MD_BUG(); 5227 return; 5228 } 5229 /* Pick 'scale' such that (resync>>scale)*1000 will fit 5230 * in a sector_t, and (max_blocks>>scale) will fit in a 5231 * u32, as those are the requirements for sector_div. 5232 * Thus 'scale' must be at least 10 5233 */ 5234 scale = 10; 5235 if (sizeof(sector_t) > sizeof(unsigned long)) { 5236 while ( max_blocks/2 > (1ULL<<(scale+32))) 5237 scale++; 5238 } 5239 res = (resync>>scale)*1000; 5240 sector_div(res, (u32)((max_blocks>>scale)+1)); 5241 5242 per_milli = res; 5243 { 5244 int i, x = per_milli/50, y = 20-x; 5245 seq_printf(seq, "["); 5246 for (i = 0; i < x; i++) 5247 seq_printf(seq, "="); 5248 seq_printf(seq, ">"); 5249 for (i = 0; i < y; i++) 5250 seq_printf(seq, "."); 5251 seq_printf(seq, "] "); 5252 } 5253 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 5254 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 5255 "reshape" : 5256 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 5257 "check" : 5258 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 5259 "resync" : "recovery"))), 5260 per_milli/10, per_milli % 10, 5261 (unsigned long long) resync, 5262 (unsigned long long) max_blocks); 5263 5264 /* 5265 * We do not want to overflow, so the order of operands and 5266 * the * 100 / 100 trick are important. We do a +1 to be 5267 * safe against division by zero. We only estimate anyway. 5268 * 5269 * dt: time from mark until now 5270 * db: blocks written from mark until now 5271 * rt: remaining time 5272 */ 5273 dt = ((jiffies - mddev->resync_mark) / HZ); 5274 if (!dt) dt++; 5275 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 5276 - mddev->resync_mark_cnt; 5277 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100; 5278 5279 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6); 5280 5281 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 5282 } 5283 5284 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 5285 { 5286 struct list_head *tmp; 5287 loff_t l = *pos; 5288 mddev_t *mddev; 5289 5290 if (l >= 0x10000) 5291 return NULL; 5292 if (!l--) 5293 /* header */ 5294 return (void*)1; 5295 5296 spin_lock(&all_mddevs_lock); 5297 list_for_each(tmp,&all_mddevs) 5298 if (!l--) { 5299 mddev = list_entry(tmp, mddev_t, all_mddevs); 5300 mddev_get(mddev); 5301 spin_unlock(&all_mddevs_lock); 5302 return mddev; 5303 } 5304 spin_unlock(&all_mddevs_lock); 5305 if (!l--) 5306 return (void*)2;/* tail */ 5307 return NULL; 5308 } 5309 5310 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 5311 { 5312 struct list_head *tmp; 5313 mddev_t *next_mddev, *mddev = v; 5314 5315 ++*pos; 5316 if (v == (void*)2) 5317 return NULL; 5318 5319 spin_lock(&all_mddevs_lock); 5320 if (v == (void*)1) 5321 tmp = all_mddevs.next; 5322 else 5323 tmp = mddev->all_mddevs.next; 5324 if (tmp != &all_mddevs) 5325 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 5326 else { 5327 next_mddev = (void*)2; 5328 *pos = 0x10000; 5329 } 5330 spin_unlock(&all_mddevs_lock); 5331 5332 if (v != (void*)1) 5333 mddev_put(mddev); 5334 return next_mddev; 5335 5336 } 5337 5338 static void md_seq_stop(struct seq_file *seq, void *v) 5339 { 5340 mddev_t *mddev = v; 5341 5342 if (mddev && v != (void*)1 && v != (void*)2) 5343 mddev_put(mddev); 5344 } 5345 5346 struct mdstat_info { 5347 int event; 5348 }; 5349 5350 static int md_seq_show(struct seq_file *seq, void *v) 5351 { 5352 mddev_t *mddev = v; 5353 sector_t size; 5354 struct list_head *tmp2; 5355 mdk_rdev_t *rdev; 5356 struct mdstat_info *mi = seq->private; 5357 struct bitmap *bitmap; 5358 5359 if (v == (void*)1) { 5360 struct mdk_personality *pers; 5361 seq_printf(seq, "Personalities : "); 5362 spin_lock(&pers_lock); 5363 list_for_each_entry(pers, &pers_list, list) 5364 seq_printf(seq, "[%s] ", pers->name); 5365 5366 spin_unlock(&pers_lock); 5367 seq_printf(seq, "\n"); 5368 mi->event = atomic_read(&md_event_count); 5369 return 0; 5370 } 5371 if (v == (void*)2) { 5372 status_unused(seq); 5373 return 0; 5374 } 5375 5376 if (mddev_lock(mddev) < 0) 5377 return -EINTR; 5378 5379 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 5380 seq_printf(seq, "%s : %sactive", mdname(mddev), 5381 mddev->pers ? "" : "in"); 5382 if (mddev->pers) { 5383 if (mddev->ro==1) 5384 seq_printf(seq, " (read-only)"); 5385 if (mddev->ro==2) 5386 seq_printf(seq, " (auto-read-only)"); 5387 seq_printf(seq, " %s", mddev->pers->name); 5388 } 5389 5390 size = 0; 5391 rdev_for_each(rdev, tmp2, mddev) { 5392 char b[BDEVNAME_SIZE]; 5393 seq_printf(seq, " %s[%d]", 5394 bdevname(rdev->bdev,b), rdev->desc_nr); 5395 if (test_bit(WriteMostly, &rdev->flags)) 5396 seq_printf(seq, "(W)"); 5397 if (test_bit(Faulty, &rdev->flags)) { 5398 seq_printf(seq, "(F)"); 5399 continue; 5400 } else if (rdev->raid_disk < 0) 5401 seq_printf(seq, "(S)"); /* spare */ 5402 size += rdev->size; 5403 } 5404 5405 if (!list_empty(&mddev->disks)) { 5406 if (mddev->pers) 5407 seq_printf(seq, "\n %llu blocks", 5408 (unsigned long long) 5409 mddev->array_sectors / 2); 5410 else 5411 seq_printf(seq, "\n %llu blocks", 5412 (unsigned long long)size); 5413 } 5414 if (mddev->persistent) { 5415 if (mddev->major_version != 0 || 5416 mddev->minor_version != 90) { 5417 seq_printf(seq," super %d.%d", 5418 mddev->major_version, 5419 mddev->minor_version); 5420 } 5421 } else if (mddev->external) 5422 seq_printf(seq, " super external:%s", 5423 mddev->metadata_type); 5424 else 5425 seq_printf(seq, " super non-persistent"); 5426 5427 if (mddev->pers) { 5428 mddev->pers->status (seq, mddev); 5429 seq_printf(seq, "\n "); 5430 if (mddev->pers->sync_request) { 5431 if (mddev->curr_resync > 2) { 5432 status_resync (seq, mddev); 5433 seq_printf(seq, "\n "); 5434 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 5435 seq_printf(seq, "\tresync=DELAYED\n "); 5436 else if (mddev->recovery_cp < MaxSector) 5437 seq_printf(seq, "\tresync=PENDING\n "); 5438 } 5439 } else 5440 seq_printf(seq, "\n "); 5441 5442 if ((bitmap = mddev->bitmap)) { 5443 unsigned long chunk_kb; 5444 unsigned long flags; 5445 spin_lock_irqsave(&bitmap->lock, flags); 5446 chunk_kb = bitmap->chunksize >> 10; 5447 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 5448 "%lu%s chunk", 5449 bitmap->pages - bitmap->missing_pages, 5450 bitmap->pages, 5451 (bitmap->pages - bitmap->missing_pages) 5452 << (PAGE_SHIFT - 10), 5453 chunk_kb ? chunk_kb : bitmap->chunksize, 5454 chunk_kb ? "KB" : "B"); 5455 if (bitmap->file) { 5456 seq_printf(seq, ", file: "); 5457 seq_path(seq, &bitmap->file->f_path, " \t\n"); 5458 } 5459 5460 seq_printf(seq, "\n"); 5461 spin_unlock_irqrestore(&bitmap->lock, flags); 5462 } 5463 5464 seq_printf(seq, "\n"); 5465 } 5466 mddev_unlock(mddev); 5467 5468 return 0; 5469 } 5470 5471 static struct seq_operations md_seq_ops = { 5472 .start = md_seq_start, 5473 .next = md_seq_next, 5474 .stop = md_seq_stop, 5475 .show = md_seq_show, 5476 }; 5477 5478 static int md_seq_open(struct inode *inode, struct file *file) 5479 { 5480 int error; 5481 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 5482 if (mi == NULL) 5483 return -ENOMEM; 5484 5485 error = seq_open(file, &md_seq_ops); 5486 if (error) 5487 kfree(mi); 5488 else { 5489 struct seq_file *p = file->private_data; 5490 p->private = mi; 5491 mi->event = atomic_read(&md_event_count); 5492 } 5493 return error; 5494 } 5495 5496 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 5497 { 5498 struct seq_file *m = filp->private_data; 5499 struct mdstat_info *mi = m->private; 5500 int mask; 5501 5502 poll_wait(filp, &md_event_waiters, wait); 5503 5504 /* always allow read */ 5505 mask = POLLIN | POLLRDNORM; 5506 5507 if (mi->event != atomic_read(&md_event_count)) 5508 mask |= POLLERR | POLLPRI; 5509 return mask; 5510 } 5511 5512 static const struct file_operations md_seq_fops = { 5513 .owner = THIS_MODULE, 5514 .open = md_seq_open, 5515 .read = seq_read, 5516 .llseek = seq_lseek, 5517 .release = seq_release_private, 5518 .poll = mdstat_poll, 5519 }; 5520 5521 int register_md_personality(struct mdk_personality *p) 5522 { 5523 spin_lock(&pers_lock); 5524 list_add_tail(&p->list, &pers_list); 5525 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 5526 spin_unlock(&pers_lock); 5527 return 0; 5528 } 5529 5530 int unregister_md_personality(struct mdk_personality *p) 5531 { 5532 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 5533 spin_lock(&pers_lock); 5534 list_del_init(&p->list); 5535 spin_unlock(&pers_lock); 5536 return 0; 5537 } 5538 5539 static int is_mddev_idle(mddev_t *mddev) 5540 { 5541 mdk_rdev_t * rdev; 5542 int idle; 5543 long curr_events; 5544 5545 idle = 1; 5546 rcu_read_lock(); 5547 rdev_for_each_rcu(rdev, mddev) { 5548 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 5549 curr_events = part_stat_read(&disk->part0, sectors[0]) + 5550 part_stat_read(&disk->part0, sectors[1]) - 5551 atomic_read(&disk->sync_io); 5552 /* sync IO will cause sync_io to increase before the disk_stats 5553 * as sync_io is counted when a request starts, and 5554 * disk_stats is counted when it completes. 5555 * So resync activity will cause curr_events to be smaller than 5556 * when there was no such activity. 5557 * non-sync IO will cause disk_stat to increase without 5558 * increasing sync_io so curr_events will (eventually) 5559 * be larger than it was before. Once it becomes 5560 * substantially larger, the test below will cause 5561 * the array to appear non-idle, and resync will slow 5562 * down. 5563 * If there is a lot of outstanding resync activity when 5564 * we set last_event to curr_events, then all that activity 5565 * completing might cause the array to appear non-idle 5566 * and resync will be slowed down even though there might 5567 * not have been non-resync activity. This will only 5568 * happen once though. 'last_events' will soon reflect 5569 * the state where there is little or no outstanding 5570 * resync requests, and further resync activity will 5571 * always make curr_events less than last_events. 5572 * 5573 */ 5574 if (curr_events - rdev->last_events > 4096) { 5575 rdev->last_events = curr_events; 5576 idle = 0; 5577 } 5578 } 5579 rcu_read_unlock(); 5580 return idle; 5581 } 5582 5583 void md_done_sync(mddev_t *mddev, int blocks, int ok) 5584 { 5585 /* another "blocks" (512byte) blocks have been synced */ 5586 atomic_sub(blocks, &mddev->recovery_active); 5587 wake_up(&mddev->recovery_wait); 5588 if (!ok) { 5589 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5590 md_wakeup_thread(mddev->thread); 5591 // stop recovery, signal do_sync .... 5592 } 5593 } 5594 5595 5596 /* md_write_start(mddev, bi) 5597 * If we need to update some array metadata (e.g. 'active' flag 5598 * in superblock) before writing, schedule a superblock update 5599 * and wait for it to complete. 5600 */ 5601 void md_write_start(mddev_t *mddev, struct bio *bi) 5602 { 5603 int did_change = 0; 5604 if (bio_data_dir(bi) != WRITE) 5605 return; 5606 5607 BUG_ON(mddev->ro == 1); 5608 if (mddev->ro == 2) { 5609 /* need to switch to read/write */ 5610 mddev->ro = 0; 5611 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5612 md_wakeup_thread(mddev->thread); 5613 md_wakeup_thread(mddev->sync_thread); 5614 did_change = 1; 5615 } 5616 atomic_inc(&mddev->writes_pending); 5617 if (mddev->safemode == 1) 5618 mddev->safemode = 0; 5619 if (mddev->in_sync) { 5620 spin_lock_irq(&mddev->write_lock); 5621 if (mddev->in_sync) { 5622 mddev->in_sync = 0; 5623 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5624 md_wakeup_thread(mddev->thread); 5625 did_change = 1; 5626 } 5627 spin_unlock_irq(&mddev->write_lock); 5628 } 5629 if (did_change) 5630 sysfs_notify(&mddev->kobj, NULL, "array_state"); 5631 wait_event(mddev->sb_wait, 5632 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) && 5633 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 5634 } 5635 5636 void md_write_end(mddev_t *mddev) 5637 { 5638 if (atomic_dec_and_test(&mddev->writes_pending)) { 5639 if (mddev->safemode == 2) 5640 md_wakeup_thread(mddev->thread); 5641 else if (mddev->safemode_delay) 5642 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 5643 } 5644 } 5645 5646 /* md_allow_write(mddev) 5647 * Calling this ensures that the array is marked 'active' so that writes 5648 * may proceed without blocking. It is important to call this before 5649 * attempting a GFP_KERNEL allocation while holding the mddev lock. 5650 * Must be called with mddev_lock held. 5651 * 5652 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 5653 * is dropped, so return -EAGAIN after notifying userspace. 5654 */ 5655 int md_allow_write(mddev_t *mddev) 5656 { 5657 if (!mddev->pers) 5658 return 0; 5659 if (mddev->ro) 5660 return 0; 5661 if (!mddev->pers->sync_request) 5662 return 0; 5663 5664 spin_lock_irq(&mddev->write_lock); 5665 if (mddev->in_sync) { 5666 mddev->in_sync = 0; 5667 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5668 if (mddev->safemode_delay && 5669 mddev->safemode == 0) 5670 mddev->safemode = 1; 5671 spin_unlock_irq(&mddev->write_lock); 5672 md_update_sb(mddev, 0); 5673 sysfs_notify(&mddev->kobj, NULL, "array_state"); 5674 } else 5675 spin_unlock_irq(&mddev->write_lock); 5676 5677 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 5678 return -EAGAIN; 5679 else 5680 return 0; 5681 } 5682 EXPORT_SYMBOL_GPL(md_allow_write); 5683 5684 #define SYNC_MARKS 10 5685 #define SYNC_MARK_STEP (3*HZ) 5686 void md_do_sync(mddev_t *mddev) 5687 { 5688 mddev_t *mddev2; 5689 unsigned int currspeed = 0, 5690 window; 5691 sector_t max_sectors,j, io_sectors; 5692 unsigned long mark[SYNC_MARKS]; 5693 sector_t mark_cnt[SYNC_MARKS]; 5694 int last_mark,m; 5695 struct list_head *tmp; 5696 sector_t last_check; 5697 int skipped = 0; 5698 struct list_head *rtmp; 5699 mdk_rdev_t *rdev; 5700 char *desc; 5701 5702 /* just incase thread restarts... */ 5703 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 5704 return; 5705 if (mddev->ro) /* never try to sync a read-only array */ 5706 return; 5707 5708 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5709 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 5710 desc = "data-check"; 5711 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5712 desc = "requested-resync"; 5713 else 5714 desc = "resync"; 5715 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5716 desc = "reshape"; 5717 else 5718 desc = "recovery"; 5719 5720 /* we overload curr_resync somewhat here. 5721 * 0 == not engaged in resync at all 5722 * 2 == checking that there is no conflict with another sync 5723 * 1 == like 2, but have yielded to allow conflicting resync to 5724 * commense 5725 * other == active in resync - this many blocks 5726 * 5727 * Before starting a resync we must have set curr_resync to 5728 * 2, and then checked that every "conflicting" array has curr_resync 5729 * less than ours. When we find one that is the same or higher 5730 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 5731 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 5732 * This will mean we have to start checking from the beginning again. 5733 * 5734 */ 5735 5736 do { 5737 mddev->curr_resync = 2; 5738 5739 try_again: 5740 if (kthread_should_stop()) { 5741 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5742 goto skip; 5743 } 5744 for_each_mddev(mddev2, tmp) { 5745 if (mddev2 == mddev) 5746 continue; 5747 if (!mddev->parallel_resync 5748 && mddev2->curr_resync 5749 && match_mddev_units(mddev, mddev2)) { 5750 DEFINE_WAIT(wq); 5751 if (mddev < mddev2 && mddev->curr_resync == 2) { 5752 /* arbitrarily yield */ 5753 mddev->curr_resync = 1; 5754 wake_up(&resync_wait); 5755 } 5756 if (mddev > mddev2 && mddev->curr_resync == 1) 5757 /* no need to wait here, we can wait the next 5758 * time 'round when curr_resync == 2 5759 */ 5760 continue; 5761 /* We need to wait 'interruptible' so as not to 5762 * contribute to the load average, and not to 5763 * be caught by 'softlockup' 5764 */ 5765 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 5766 if (!kthread_should_stop() && 5767 mddev2->curr_resync >= mddev->curr_resync) { 5768 printk(KERN_INFO "md: delaying %s of %s" 5769 " until %s has finished (they" 5770 " share one or more physical units)\n", 5771 desc, mdname(mddev), mdname(mddev2)); 5772 mddev_put(mddev2); 5773 if (signal_pending(current)) 5774 flush_signals(current); 5775 schedule(); 5776 finish_wait(&resync_wait, &wq); 5777 goto try_again; 5778 } 5779 finish_wait(&resync_wait, &wq); 5780 } 5781 } 5782 } while (mddev->curr_resync < 2); 5783 5784 j = 0; 5785 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5786 /* resync follows the size requested by the personality, 5787 * which defaults to physical size, but can be virtual size 5788 */ 5789 max_sectors = mddev->resync_max_sectors; 5790 mddev->resync_mismatches = 0; 5791 /* we don't use the checkpoint if there's a bitmap */ 5792 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5793 j = mddev->resync_min; 5794 else if (!mddev->bitmap) 5795 j = mddev->recovery_cp; 5796 5797 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5798 max_sectors = mddev->size << 1; 5799 else { 5800 /* recovery follows the physical size of devices */ 5801 max_sectors = mddev->size << 1; 5802 j = MaxSector; 5803 rdev_for_each(rdev, rtmp, mddev) 5804 if (rdev->raid_disk >= 0 && 5805 !test_bit(Faulty, &rdev->flags) && 5806 !test_bit(In_sync, &rdev->flags) && 5807 rdev->recovery_offset < j) 5808 j = rdev->recovery_offset; 5809 } 5810 5811 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 5812 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 5813 " %d KB/sec/disk.\n", speed_min(mddev)); 5814 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 5815 "(but not more than %d KB/sec) for %s.\n", 5816 speed_max(mddev), desc); 5817 5818 is_mddev_idle(mddev); /* this also initializes IO event counters */ 5819 5820 io_sectors = 0; 5821 for (m = 0; m < SYNC_MARKS; m++) { 5822 mark[m] = jiffies; 5823 mark_cnt[m] = io_sectors; 5824 } 5825 last_mark = 0; 5826 mddev->resync_mark = mark[last_mark]; 5827 mddev->resync_mark_cnt = mark_cnt[last_mark]; 5828 5829 /* 5830 * Tune reconstruction: 5831 */ 5832 window = 32*(PAGE_SIZE/512); 5833 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 5834 window/2,(unsigned long long) max_sectors/2); 5835 5836 atomic_set(&mddev->recovery_active, 0); 5837 last_check = 0; 5838 5839 if (j>2) { 5840 printk(KERN_INFO 5841 "md: resuming %s of %s from checkpoint.\n", 5842 desc, mdname(mddev)); 5843 mddev->curr_resync = j; 5844 } 5845 5846 while (j < max_sectors) { 5847 sector_t sectors; 5848 5849 skipped = 0; 5850 if (j >= mddev->resync_max) { 5851 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5852 wait_event(mddev->recovery_wait, 5853 mddev->resync_max > j 5854 || kthread_should_stop()); 5855 } 5856 if (kthread_should_stop()) 5857 goto interrupted; 5858 sectors = mddev->pers->sync_request(mddev, j, &skipped, 5859 currspeed < speed_min(mddev)); 5860 if (sectors == 0) { 5861 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5862 goto out; 5863 } 5864 5865 if (!skipped) { /* actual IO requested */ 5866 io_sectors += sectors; 5867 atomic_add(sectors, &mddev->recovery_active); 5868 } 5869 5870 j += sectors; 5871 if (j>1) mddev->curr_resync = j; 5872 mddev->curr_mark_cnt = io_sectors; 5873 if (last_check == 0) 5874 /* this is the earliers that rebuilt will be 5875 * visible in /proc/mdstat 5876 */ 5877 md_new_event(mddev); 5878 5879 if (last_check + window > io_sectors || j == max_sectors) 5880 continue; 5881 5882 last_check = io_sectors; 5883 5884 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5885 break; 5886 5887 repeat: 5888 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 5889 /* step marks */ 5890 int next = (last_mark+1) % SYNC_MARKS; 5891 5892 mddev->resync_mark = mark[next]; 5893 mddev->resync_mark_cnt = mark_cnt[next]; 5894 mark[next] = jiffies; 5895 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 5896 last_mark = next; 5897 } 5898 5899 5900 if (kthread_should_stop()) 5901 goto interrupted; 5902 5903 5904 /* 5905 * this loop exits only if either when we are slower than 5906 * the 'hard' speed limit, or the system was IO-idle for 5907 * a jiffy. 5908 * the system might be non-idle CPU-wise, but we only care 5909 * about not overloading the IO subsystem. (things like an 5910 * e2fsck being done on the RAID array should execute fast) 5911 */ 5912 blk_unplug(mddev->queue); 5913 cond_resched(); 5914 5915 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 5916 /((jiffies-mddev->resync_mark)/HZ +1) +1; 5917 5918 if (currspeed > speed_min(mddev)) { 5919 if ((currspeed > speed_max(mddev)) || 5920 !is_mddev_idle(mddev)) { 5921 msleep(500); 5922 goto repeat; 5923 } 5924 } 5925 } 5926 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 5927 /* 5928 * this also signals 'finished resyncing' to md_stop 5929 */ 5930 out: 5931 blk_unplug(mddev->queue); 5932 5933 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 5934 5935 /* tell personality that we are finished */ 5936 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 5937 5938 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 5939 mddev->curr_resync > 2) { 5940 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5941 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5942 if (mddev->curr_resync >= mddev->recovery_cp) { 5943 printk(KERN_INFO 5944 "md: checkpointing %s of %s.\n", 5945 desc, mdname(mddev)); 5946 mddev->recovery_cp = mddev->curr_resync; 5947 } 5948 } else 5949 mddev->recovery_cp = MaxSector; 5950 } else { 5951 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5952 mddev->curr_resync = MaxSector; 5953 rdev_for_each(rdev, rtmp, mddev) 5954 if (rdev->raid_disk >= 0 && 5955 !test_bit(Faulty, &rdev->flags) && 5956 !test_bit(In_sync, &rdev->flags) && 5957 rdev->recovery_offset < mddev->curr_resync) 5958 rdev->recovery_offset = mddev->curr_resync; 5959 } 5960 } 5961 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5962 5963 skip: 5964 mddev->curr_resync = 0; 5965 mddev->resync_min = 0; 5966 mddev->resync_max = MaxSector; 5967 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5968 wake_up(&resync_wait); 5969 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 5970 md_wakeup_thread(mddev->thread); 5971 return; 5972 5973 interrupted: 5974 /* 5975 * got a signal, exit. 5976 */ 5977 printk(KERN_INFO 5978 "md: md_do_sync() got signal ... exiting\n"); 5979 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5980 goto out; 5981 5982 } 5983 EXPORT_SYMBOL_GPL(md_do_sync); 5984 5985 5986 static int remove_and_add_spares(mddev_t *mddev) 5987 { 5988 mdk_rdev_t *rdev; 5989 struct list_head *rtmp; 5990 int spares = 0; 5991 5992 rdev_for_each(rdev, rtmp, mddev) 5993 if (rdev->raid_disk >= 0 && 5994 !test_bit(Blocked, &rdev->flags) && 5995 (test_bit(Faulty, &rdev->flags) || 5996 ! test_bit(In_sync, &rdev->flags)) && 5997 atomic_read(&rdev->nr_pending)==0) { 5998 if (mddev->pers->hot_remove_disk( 5999 mddev, rdev->raid_disk)==0) { 6000 char nm[20]; 6001 sprintf(nm,"rd%d", rdev->raid_disk); 6002 sysfs_remove_link(&mddev->kobj, nm); 6003 rdev->raid_disk = -1; 6004 } 6005 } 6006 6007 if (mddev->degraded && ! mddev->ro) { 6008 rdev_for_each(rdev, rtmp, mddev) { 6009 if (rdev->raid_disk >= 0 && 6010 !test_bit(In_sync, &rdev->flags) && 6011 !test_bit(Blocked, &rdev->flags)) 6012 spares++; 6013 if (rdev->raid_disk < 0 6014 && !test_bit(Faulty, &rdev->flags)) { 6015 rdev->recovery_offset = 0; 6016 if (mddev->pers-> 6017 hot_add_disk(mddev, rdev) == 0) { 6018 char nm[20]; 6019 sprintf(nm, "rd%d", rdev->raid_disk); 6020 if (sysfs_create_link(&mddev->kobj, 6021 &rdev->kobj, nm)) 6022 printk(KERN_WARNING 6023 "md: cannot register " 6024 "%s for %s\n", 6025 nm, mdname(mddev)); 6026 spares++; 6027 md_new_event(mddev); 6028 } else 6029 break; 6030 } 6031 } 6032 } 6033 return spares; 6034 } 6035 /* 6036 * This routine is regularly called by all per-raid-array threads to 6037 * deal with generic issues like resync and super-block update. 6038 * Raid personalities that don't have a thread (linear/raid0) do not 6039 * need this as they never do any recovery or update the superblock. 6040 * 6041 * It does not do any resync itself, but rather "forks" off other threads 6042 * to do that as needed. 6043 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 6044 * "->recovery" and create a thread at ->sync_thread. 6045 * When the thread finishes it sets MD_RECOVERY_DONE 6046 * and wakeups up this thread which will reap the thread and finish up. 6047 * This thread also removes any faulty devices (with nr_pending == 0). 6048 * 6049 * The overall approach is: 6050 * 1/ if the superblock needs updating, update it. 6051 * 2/ If a recovery thread is running, don't do anything else. 6052 * 3/ If recovery has finished, clean up, possibly marking spares active. 6053 * 4/ If there are any faulty devices, remove them. 6054 * 5/ If array is degraded, try to add spares devices 6055 * 6/ If array has spares or is not in-sync, start a resync thread. 6056 */ 6057 void md_check_recovery(mddev_t *mddev) 6058 { 6059 mdk_rdev_t *rdev; 6060 struct list_head *rtmp; 6061 6062 6063 if (mddev->bitmap) 6064 bitmap_daemon_work(mddev->bitmap); 6065 6066 if (test_and_clear_bit(MD_NOTIFY_ARRAY_STATE, &mddev->flags)) 6067 sysfs_notify(&mddev->kobj, NULL, "array_state"); 6068 6069 if (mddev->ro) 6070 return; 6071 6072 if (signal_pending(current)) { 6073 if (mddev->pers->sync_request && !mddev->external) { 6074 printk(KERN_INFO "md: %s in immediate safe mode\n", 6075 mdname(mddev)); 6076 mddev->safemode = 2; 6077 } 6078 flush_signals(current); 6079 } 6080 6081 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 6082 return; 6083 if ( ! ( 6084 (mddev->flags && !mddev->external) || 6085 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 6086 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 6087 (mddev->external == 0 && mddev->safemode == 1) || 6088 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 6089 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 6090 )) 6091 return; 6092 6093 if (mddev_trylock(mddev)) { 6094 int spares = 0; 6095 6096 if (mddev->ro) { 6097 /* Only thing we do on a ro array is remove 6098 * failed devices. 6099 */ 6100 remove_and_add_spares(mddev); 6101 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6102 goto unlock; 6103 } 6104 6105 if (!mddev->external) { 6106 int did_change = 0; 6107 spin_lock_irq(&mddev->write_lock); 6108 if (mddev->safemode && 6109 !atomic_read(&mddev->writes_pending) && 6110 !mddev->in_sync && 6111 mddev->recovery_cp == MaxSector) { 6112 mddev->in_sync = 1; 6113 did_change = 1; 6114 if (mddev->persistent) 6115 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6116 } 6117 if (mddev->safemode == 1) 6118 mddev->safemode = 0; 6119 spin_unlock_irq(&mddev->write_lock); 6120 if (did_change) 6121 sysfs_notify(&mddev->kobj, NULL, "array_state"); 6122 } 6123 6124 if (mddev->flags) 6125 md_update_sb(mddev, 0); 6126 6127 rdev_for_each(rdev, rtmp, mddev) 6128 if (test_and_clear_bit(StateChanged, &rdev->flags)) 6129 sysfs_notify(&rdev->kobj, NULL, "state"); 6130 6131 6132 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 6133 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 6134 /* resync/recovery still happening */ 6135 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6136 goto unlock; 6137 } 6138 if (mddev->sync_thread) { 6139 /* resync has finished, collect result */ 6140 md_unregister_thread(mddev->sync_thread); 6141 mddev->sync_thread = NULL; 6142 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 6143 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 6144 /* success...*/ 6145 /* activate any spares */ 6146 if (mddev->pers->spare_active(mddev)) 6147 sysfs_notify(&mddev->kobj, NULL, 6148 "degraded"); 6149 } 6150 md_update_sb(mddev, 1); 6151 6152 /* if array is no-longer degraded, then any saved_raid_disk 6153 * information must be scrapped 6154 */ 6155 if (!mddev->degraded) 6156 rdev_for_each(rdev, rtmp, mddev) 6157 rdev->saved_raid_disk = -1; 6158 6159 mddev->recovery = 0; 6160 /* flag recovery needed just to double check */ 6161 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6162 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 6163 md_new_event(mddev); 6164 goto unlock; 6165 } 6166 /* Set RUNNING before clearing NEEDED to avoid 6167 * any transients in the value of "sync_action". 6168 */ 6169 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6170 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6171 /* Clear some bits that don't mean anything, but 6172 * might be left set 6173 */ 6174 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 6175 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 6176 6177 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 6178 goto unlock; 6179 /* no recovery is running. 6180 * remove any failed drives, then 6181 * add spares if possible. 6182 * Spare are also removed and re-added, to allow 6183 * the personality to fail the re-add. 6184 */ 6185 6186 if (mddev->reshape_position != MaxSector) { 6187 if (mddev->pers->check_reshape(mddev) != 0) 6188 /* Cannot proceed */ 6189 goto unlock; 6190 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6191 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6192 } else if ((spares = remove_and_add_spares(mddev))) { 6193 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6194 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6195 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 6196 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6197 } else if (mddev->recovery_cp < MaxSector) { 6198 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6199 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6200 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 6201 /* nothing to be done ... */ 6202 goto unlock; 6203 6204 if (mddev->pers->sync_request) { 6205 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 6206 /* We are adding a device or devices to an array 6207 * which has the bitmap stored on all devices. 6208 * So make sure all bitmap pages get written 6209 */ 6210 bitmap_write_all(mddev->bitmap); 6211 } 6212 mddev->sync_thread = md_register_thread(md_do_sync, 6213 mddev, 6214 "%s_resync"); 6215 if (!mddev->sync_thread) { 6216 printk(KERN_ERR "%s: could not start resync" 6217 " thread...\n", 6218 mdname(mddev)); 6219 /* leave the spares where they are, it shouldn't hurt */ 6220 mddev->recovery = 0; 6221 } else 6222 md_wakeup_thread(mddev->sync_thread); 6223 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 6224 md_new_event(mddev); 6225 } 6226 unlock: 6227 if (!mddev->sync_thread) { 6228 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6229 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 6230 &mddev->recovery)) 6231 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 6232 } 6233 mddev_unlock(mddev); 6234 } 6235 } 6236 6237 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 6238 { 6239 sysfs_notify(&rdev->kobj, NULL, "state"); 6240 wait_event_timeout(rdev->blocked_wait, 6241 !test_bit(Blocked, &rdev->flags), 6242 msecs_to_jiffies(5000)); 6243 rdev_dec_pending(rdev, mddev); 6244 } 6245 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 6246 6247 static int md_notify_reboot(struct notifier_block *this, 6248 unsigned long code, void *x) 6249 { 6250 struct list_head *tmp; 6251 mddev_t *mddev; 6252 6253 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 6254 6255 printk(KERN_INFO "md: stopping all md devices.\n"); 6256 6257 for_each_mddev(mddev, tmp) 6258 if (mddev_trylock(mddev)) { 6259 /* Force a switch to readonly even array 6260 * appears to still be in use. Hence 6261 * the '100'. 6262 */ 6263 do_md_stop (mddev, 1, 100); 6264 mddev_unlock(mddev); 6265 } 6266 /* 6267 * certain more exotic SCSI devices are known to be 6268 * volatile wrt too early system reboots. While the 6269 * right place to handle this issue is the given 6270 * driver, we do want to have a safe RAID driver ... 6271 */ 6272 mdelay(1000*1); 6273 } 6274 return NOTIFY_DONE; 6275 } 6276 6277 static struct notifier_block md_notifier = { 6278 .notifier_call = md_notify_reboot, 6279 .next = NULL, 6280 .priority = INT_MAX, /* before any real devices */ 6281 }; 6282 6283 static void md_geninit(void) 6284 { 6285 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 6286 6287 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 6288 } 6289 6290 static int __init md_init(void) 6291 { 6292 if (register_blkdev(MAJOR_NR, "md")) 6293 return -1; 6294 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 6295 unregister_blkdev(MAJOR_NR, "md"); 6296 return -1; 6297 } 6298 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE, 6299 md_probe, NULL, NULL); 6300 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 6301 md_probe, NULL, NULL); 6302 6303 register_reboot_notifier(&md_notifier); 6304 raid_table_header = register_sysctl_table(raid_root_table); 6305 6306 md_geninit(); 6307 return (0); 6308 } 6309 6310 6311 #ifndef MODULE 6312 6313 /* 6314 * Searches all registered partitions for autorun RAID arrays 6315 * at boot time. 6316 */ 6317 6318 static LIST_HEAD(all_detected_devices); 6319 struct detected_devices_node { 6320 struct list_head list; 6321 dev_t dev; 6322 }; 6323 6324 void md_autodetect_dev(dev_t dev) 6325 { 6326 struct detected_devices_node *node_detected_dev; 6327 6328 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 6329 if (node_detected_dev) { 6330 node_detected_dev->dev = dev; 6331 list_add_tail(&node_detected_dev->list, &all_detected_devices); 6332 } else { 6333 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 6334 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 6335 } 6336 } 6337 6338 6339 static void autostart_arrays(int part) 6340 { 6341 mdk_rdev_t *rdev; 6342 struct detected_devices_node *node_detected_dev; 6343 dev_t dev; 6344 int i_scanned, i_passed; 6345 6346 i_scanned = 0; 6347 i_passed = 0; 6348 6349 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 6350 6351 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 6352 i_scanned++; 6353 node_detected_dev = list_entry(all_detected_devices.next, 6354 struct detected_devices_node, list); 6355 list_del(&node_detected_dev->list); 6356 dev = node_detected_dev->dev; 6357 kfree(node_detected_dev); 6358 rdev = md_import_device(dev,0, 90); 6359 if (IS_ERR(rdev)) 6360 continue; 6361 6362 if (test_bit(Faulty, &rdev->flags)) { 6363 MD_BUG(); 6364 continue; 6365 } 6366 set_bit(AutoDetected, &rdev->flags); 6367 list_add(&rdev->same_set, &pending_raid_disks); 6368 i_passed++; 6369 } 6370 6371 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 6372 i_scanned, i_passed); 6373 6374 autorun_devices(part); 6375 } 6376 6377 #endif /* !MODULE */ 6378 6379 static __exit void md_exit(void) 6380 { 6381 mddev_t *mddev; 6382 struct list_head *tmp; 6383 6384 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS); 6385 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 6386 6387 unregister_blkdev(MAJOR_NR,"md"); 6388 unregister_blkdev(mdp_major, "mdp"); 6389 unregister_reboot_notifier(&md_notifier); 6390 unregister_sysctl_table(raid_table_header); 6391 remove_proc_entry("mdstat", NULL); 6392 for_each_mddev(mddev, tmp) { 6393 struct gendisk *disk = mddev->gendisk; 6394 if (!disk) 6395 continue; 6396 export_array(mddev); 6397 del_gendisk(disk); 6398 put_disk(disk); 6399 mddev->gendisk = NULL; 6400 mddev_put(mddev); 6401 } 6402 } 6403 6404 subsys_initcall(md_init); 6405 module_exit(md_exit) 6406 6407 static int get_ro(char *buffer, struct kernel_param *kp) 6408 { 6409 return sprintf(buffer, "%d", start_readonly); 6410 } 6411 static int set_ro(const char *val, struct kernel_param *kp) 6412 { 6413 char *e; 6414 int num = simple_strtoul(val, &e, 10); 6415 if (*val && (*e == '\0' || *e == '\n')) { 6416 start_readonly = num; 6417 return 0; 6418 } 6419 return -EINVAL; 6420 } 6421 6422 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 6423 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 6424 6425 6426 EXPORT_SYMBOL(register_md_personality); 6427 EXPORT_SYMBOL(unregister_md_personality); 6428 EXPORT_SYMBOL(md_error); 6429 EXPORT_SYMBOL(md_done_sync); 6430 EXPORT_SYMBOL(md_write_start); 6431 EXPORT_SYMBOL(md_write_end); 6432 EXPORT_SYMBOL(md_register_thread); 6433 EXPORT_SYMBOL(md_unregister_thread); 6434 EXPORT_SYMBOL(md_wakeup_thread); 6435 EXPORT_SYMBOL(md_check_recovery); 6436 MODULE_LICENSE("GPL"); 6437 MODULE_ALIAS("md"); 6438 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 6439