xref: /linux/drivers/md/md.c (revision a17627ef8833ac30622a7b39b7be390e1b174405)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
47 
48 #include <linux/init.h>
49 
50 #include <linux/file.h>
51 
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
55 
56 #include <asm/unaligned.h>
57 
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
60 
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
63 
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66 
67 
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
71 
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
74 
75 static void md_print_devices(void);
76 
77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78 
79 /*
80  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81  * is 1000 KB/sec, so the extra system load does not show up that much.
82  * Increase it if you want to have more _guaranteed_ speed. Note that
83  * the RAID driver will use the maximum available bandwidth if the IO
84  * subsystem is idle. There is also an 'absolute maximum' reconstruction
85  * speed limit - in case reconstruction slows down your system despite
86  * idle IO detection.
87  *
88  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89  * or /sys/block/mdX/md/sync_speed_{min,max}
90  */
91 
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
95 {
96 	return mddev->sync_speed_min ?
97 		mddev->sync_speed_min : sysctl_speed_limit_min;
98 }
99 
100 static inline int speed_max(mddev_t *mddev)
101 {
102 	return mddev->sync_speed_max ?
103 		mddev->sync_speed_max : sysctl_speed_limit_max;
104 }
105 
106 static struct ctl_table_header *raid_table_header;
107 
108 static ctl_table raid_table[] = {
109 	{
110 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
111 		.procname	= "speed_limit_min",
112 		.data		= &sysctl_speed_limit_min,
113 		.maxlen		= sizeof(int),
114 		.mode		= S_IRUGO|S_IWUSR,
115 		.proc_handler	= &proc_dointvec,
116 	},
117 	{
118 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
119 		.procname	= "speed_limit_max",
120 		.data		= &sysctl_speed_limit_max,
121 		.maxlen		= sizeof(int),
122 		.mode		= S_IRUGO|S_IWUSR,
123 		.proc_handler	= &proc_dointvec,
124 	},
125 	{ .ctl_name = 0 }
126 };
127 
128 static ctl_table raid_dir_table[] = {
129 	{
130 		.ctl_name	= DEV_RAID,
131 		.procname	= "raid",
132 		.maxlen		= 0,
133 		.mode		= S_IRUGO|S_IXUGO,
134 		.child		= raid_table,
135 	},
136 	{ .ctl_name = 0 }
137 };
138 
139 static ctl_table raid_root_table[] = {
140 	{
141 		.ctl_name	= CTL_DEV,
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{ .ctl_name = 0 }
148 };
149 
150 static struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /*
155  * We have a system wide 'event count' that is incremented
156  * on any 'interesting' event, and readers of /proc/mdstat
157  * can use 'poll' or 'select' to find out when the event
158  * count increases.
159  *
160  * Events are:
161  *  start array, stop array, error, add device, remove device,
162  *  start build, activate spare
163  */
164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
165 static atomic_t md_event_count;
166 void md_new_event(mddev_t *mddev)
167 {
168 	atomic_inc(&md_event_count);
169 	wake_up(&md_event_waiters);
170 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
171 }
172 EXPORT_SYMBOL_GPL(md_new_event);
173 
174 /* Alternate version that can be called from interrupts
175  * when calling sysfs_notify isn't needed.
176  */
177 static void md_new_event_inintr(mddev_t *mddev)
178 {
179 	atomic_inc(&md_event_count);
180 	wake_up(&md_event_waiters);
181 }
182 
183 /*
184  * Enables to iterate over all existing md arrays
185  * all_mddevs_lock protects this list.
186  */
187 static LIST_HEAD(all_mddevs);
188 static DEFINE_SPINLOCK(all_mddevs_lock);
189 
190 
191 /*
192  * iterates through all used mddevs in the system.
193  * We take care to grab the all_mddevs_lock whenever navigating
194  * the list, and to always hold a refcount when unlocked.
195  * Any code which breaks out of this loop while own
196  * a reference to the current mddev and must mddev_put it.
197  */
198 #define ITERATE_MDDEV(mddev,tmp)					\
199 									\
200 	for (({ spin_lock(&all_mddevs_lock); 				\
201 		tmp = all_mddevs.next;					\
202 		mddev = NULL;});					\
203 	     ({ if (tmp != &all_mddevs)					\
204 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
205 		spin_unlock(&all_mddevs_lock);				\
206 		if (mddev) mddev_put(mddev);				\
207 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
208 		tmp != &all_mddevs;});					\
209 	     ({ spin_lock(&all_mddevs_lock);				\
210 		tmp = tmp->next;})					\
211 		)
212 
213 
214 static int md_fail_request (request_queue_t *q, struct bio *bio)
215 {
216 	bio_io_error(bio, bio->bi_size);
217 	return 0;
218 }
219 
220 static inline mddev_t *mddev_get(mddev_t *mddev)
221 {
222 	atomic_inc(&mddev->active);
223 	return mddev;
224 }
225 
226 static void mddev_put(mddev_t *mddev)
227 {
228 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
229 		return;
230 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
231 		list_del(&mddev->all_mddevs);
232 		spin_unlock(&all_mddevs_lock);
233 		blk_cleanup_queue(mddev->queue);
234 		kobject_unregister(&mddev->kobj);
235 	} else
236 		spin_unlock(&all_mddevs_lock);
237 }
238 
239 static mddev_t * mddev_find(dev_t unit)
240 {
241 	mddev_t *mddev, *new = NULL;
242 
243  retry:
244 	spin_lock(&all_mddevs_lock);
245 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
246 		if (mddev->unit == unit) {
247 			mddev_get(mddev);
248 			spin_unlock(&all_mddevs_lock);
249 			kfree(new);
250 			return mddev;
251 		}
252 
253 	if (new) {
254 		list_add(&new->all_mddevs, &all_mddevs);
255 		spin_unlock(&all_mddevs_lock);
256 		return new;
257 	}
258 	spin_unlock(&all_mddevs_lock);
259 
260 	new = kzalloc(sizeof(*new), GFP_KERNEL);
261 	if (!new)
262 		return NULL;
263 
264 	new->unit = unit;
265 	if (MAJOR(unit) == MD_MAJOR)
266 		new->md_minor = MINOR(unit);
267 	else
268 		new->md_minor = MINOR(unit) >> MdpMinorShift;
269 
270 	mutex_init(&new->reconfig_mutex);
271 	INIT_LIST_HEAD(&new->disks);
272 	INIT_LIST_HEAD(&new->all_mddevs);
273 	init_timer(&new->safemode_timer);
274 	atomic_set(&new->active, 1);
275 	spin_lock_init(&new->write_lock);
276 	init_waitqueue_head(&new->sb_wait);
277 	new->reshape_position = MaxSector;
278 
279 	new->queue = blk_alloc_queue(GFP_KERNEL);
280 	if (!new->queue) {
281 		kfree(new);
282 		return NULL;
283 	}
284 	set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
285 
286 	blk_queue_make_request(new->queue, md_fail_request);
287 
288 	goto retry;
289 }
290 
291 static inline int mddev_lock(mddev_t * mddev)
292 {
293 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
294 }
295 
296 static inline int mddev_trylock(mddev_t * mddev)
297 {
298 	return mutex_trylock(&mddev->reconfig_mutex);
299 }
300 
301 static inline void mddev_unlock(mddev_t * mddev)
302 {
303 	mutex_unlock(&mddev->reconfig_mutex);
304 
305 	md_wakeup_thread(mddev->thread);
306 }
307 
308 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
309 {
310 	mdk_rdev_t * rdev;
311 	struct list_head *tmp;
312 
313 	ITERATE_RDEV(mddev,rdev,tmp) {
314 		if (rdev->desc_nr == nr)
315 			return rdev;
316 	}
317 	return NULL;
318 }
319 
320 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
321 {
322 	struct list_head *tmp;
323 	mdk_rdev_t *rdev;
324 
325 	ITERATE_RDEV(mddev,rdev,tmp) {
326 		if (rdev->bdev->bd_dev == dev)
327 			return rdev;
328 	}
329 	return NULL;
330 }
331 
332 static struct mdk_personality *find_pers(int level, char *clevel)
333 {
334 	struct mdk_personality *pers;
335 	list_for_each_entry(pers, &pers_list, list) {
336 		if (level != LEVEL_NONE && pers->level == level)
337 			return pers;
338 		if (strcmp(pers->name, clevel)==0)
339 			return pers;
340 	}
341 	return NULL;
342 }
343 
344 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
345 {
346 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
347 	return MD_NEW_SIZE_BLOCKS(size);
348 }
349 
350 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
351 {
352 	sector_t size;
353 
354 	size = rdev->sb_offset;
355 
356 	if (chunk_size)
357 		size &= ~((sector_t)chunk_size/1024 - 1);
358 	return size;
359 }
360 
361 static int alloc_disk_sb(mdk_rdev_t * rdev)
362 {
363 	if (rdev->sb_page)
364 		MD_BUG();
365 
366 	rdev->sb_page = alloc_page(GFP_KERNEL);
367 	if (!rdev->sb_page) {
368 		printk(KERN_ALERT "md: out of memory.\n");
369 		return -EINVAL;
370 	}
371 
372 	return 0;
373 }
374 
375 static void free_disk_sb(mdk_rdev_t * rdev)
376 {
377 	if (rdev->sb_page) {
378 		put_page(rdev->sb_page);
379 		rdev->sb_loaded = 0;
380 		rdev->sb_page = NULL;
381 		rdev->sb_offset = 0;
382 		rdev->size = 0;
383 	}
384 }
385 
386 
387 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
388 {
389 	mdk_rdev_t *rdev = bio->bi_private;
390 	mddev_t *mddev = rdev->mddev;
391 	if (bio->bi_size)
392 		return 1;
393 
394 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
395 		printk("md: super_written gets error=%d, uptodate=%d\n",
396 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
397 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
398 		md_error(mddev, rdev);
399 	}
400 
401 	if (atomic_dec_and_test(&mddev->pending_writes))
402 		wake_up(&mddev->sb_wait);
403 	bio_put(bio);
404 	return 0;
405 }
406 
407 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
408 {
409 	struct bio *bio2 = bio->bi_private;
410 	mdk_rdev_t *rdev = bio2->bi_private;
411 	mddev_t *mddev = rdev->mddev;
412 	if (bio->bi_size)
413 		return 1;
414 
415 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
416 	    error == -EOPNOTSUPP) {
417 		unsigned long flags;
418 		/* barriers don't appear to be supported :-( */
419 		set_bit(BarriersNotsupp, &rdev->flags);
420 		mddev->barriers_work = 0;
421 		spin_lock_irqsave(&mddev->write_lock, flags);
422 		bio2->bi_next = mddev->biolist;
423 		mddev->biolist = bio2;
424 		spin_unlock_irqrestore(&mddev->write_lock, flags);
425 		wake_up(&mddev->sb_wait);
426 		bio_put(bio);
427 		return 0;
428 	}
429 	bio_put(bio2);
430 	bio->bi_private = rdev;
431 	return super_written(bio, bytes_done, error);
432 }
433 
434 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
435 		   sector_t sector, int size, struct page *page)
436 {
437 	/* write first size bytes of page to sector of rdev
438 	 * Increment mddev->pending_writes before returning
439 	 * and decrement it on completion, waking up sb_wait
440 	 * if zero is reached.
441 	 * If an error occurred, call md_error
442 	 *
443 	 * As we might need to resubmit the request if BIO_RW_BARRIER
444 	 * causes ENOTSUPP, we allocate a spare bio...
445 	 */
446 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
447 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
448 
449 	bio->bi_bdev = rdev->bdev;
450 	bio->bi_sector = sector;
451 	bio_add_page(bio, page, size, 0);
452 	bio->bi_private = rdev;
453 	bio->bi_end_io = super_written;
454 	bio->bi_rw = rw;
455 
456 	atomic_inc(&mddev->pending_writes);
457 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
458 		struct bio *rbio;
459 		rw |= (1<<BIO_RW_BARRIER);
460 		rbio = bio_clone(bio, GFP_NOIO);
461 		rbio->bi_private = bio;
462 		rbio->bi_end_io = super_written_barrier;
463 		submit_bio(rw, rbio);
464 	} else
465 		submit_bio(rw, bio);
466 }
467 
468 void md_super_wait(mddev_t *mddev)
469 {
470 	/* wait for all superblock writes that were scheduled to complete.
471 	 * if any had to be retried (due to BARRIER problems), retry them
472 	 */
473 	DEFINE_WAIT(wq);
474 	for(;;) {
475 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
476 		if (atomic_read(&mddev->pending_writes)==0)
477 			break;
478 		while (mddev->biolist) {
479 			struct bio *bio;
480 			spin_lock_irq(&mddev->write_lock);
481 			bio = mddev->biolist;
482 			mddev->biolist = bio->bi_next ;
483 			bio->bi_next = NULL;
484 			spin_unlock_irq(&mddev->write_lock);
485 			submit_bio(bio->bi_rw, bio);
486 		}
487 		schedule();
488 	}
489 	finish_wait(&mddev->sb_wait, &wq);
490 }
491 
492 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
493 {
494 	if (bio->bi_size)
495 		return 1;
496 
497 	complete((struct completion*)bio->bi_private);
498 	return 0;
499 }
500 
501 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
502 		   struct page *page, int rw)
503 {
504 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
505 	struct completion event;
506 	int ret;
507 
508 	rw |= (1 << BIO_RW_SYNC);
509 
510 	bio->bi_bdev = bdev;
511 	bio->bi_sector = sector;
512 	bio_add_page(bio, page, size, 0);
513 	init_completion(&event);
514 	bio->bi_private = &event;
515 	bio->bi_end_io = bi_complete;
516 	submit_bio(rw, bio);
517 	wait_for_completion(&event);
518 
519 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
520 	bio_put(bio);
521 	return ret;
522 }
523 EXPORT_SYMBOL_GPL(sync_page_io);
524 
525 static int read_disk_sb(mdk_rdev_t * rdev, int size)
526 {
527 	char b[BDEVNAME_SIZE];
528 	if (!rdev->sb_page) {
529 		MD_BUG();
530 		return -EINVAL;
531 	}
532 	if (rdev->sb_loaded)
533 		return 0;
534 
535 
536 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
537 		goto fail;
538 	rdev->sb_loaded = 1;
539 	return 0;
540 
541 fail:
542 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
543 		bdevname(rdev->bdev,b));
544 	return -EINVAL;
545 }
546 
547 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
548 {
549 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
550 		(sb1->set_uuid1 == sb2->set_uuid1) &&
551 		(sb1->set_uuid2 == sb2->set_uuid2) &&
552 		(sb1->set_uuid3 == sb2->set_uuid3))
553 
554 		return 1;
555 
556 	return 0;
557 }
558 
559 
560 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
561 {
562 	int ret;
563 	mdp_super_t *tmp1, *tmp2;
564 
565 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
566 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
567 
568 	if (!tmp1 || !tmp2) {
569 		ret = 0;
570 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
571 		goto abort;
572 	}
573 
574 	*tmp1 = *sb1;
575 	*tmp2 = *sb2;
576 
577 	/*
578 	 * nr_disks is not constant
579 	 */
580 	tmp1->nr_disks = 0;
581 	tmp2->nr_disks = 0;
582 
583 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
584 		ret = 0;
585 	else
586 		ret = 1;
587 
588 abort:
589 	kfree(tmp1);
590 	kfree(tmp2);
591 	return ret;
592 }
593 
594 
595 static u32 md_csum_fold(u32 csum)
596 {
597 	csum = (csum & 0xffff) + (csum >> 16);
598 	return (csum & 0xffff) + (csum >> 16);
599 }
600 
601 static unsigned int calc_sb_csum(mdp_super_t * sb)
602 {
603 	u64 newcsum = 0;
604 	u32 *sb32 = (u32*)sb;
605 	int i;
606 	unsigned int disk_csum, csum;
607 
608 	disk_csum = sb->sb_csum;
609 	sb->sb_csum = 0;
610 
611 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
612 		newcsum += sb32[i];
613 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
614 
615 
616 #ifdef CONFIG_ALPHA
617 	/* This used to use csum_partial, which was wrong for several
618 	 * reasons including that different results are returned on
619 	 * different architectures.  It isn't critical that we get exactly
620 	 * the same return value as before (we always csum_fold before
621 	 * testing, and that removes any differences).  However as we
622 	 * know that csum_partial always returned a 16bit value on
623 	 * alphas, do a fold to maximise conformity to previous behaviour.
624 	 */
625 	sb->sb_csum = md_csum_fold(disk_csum);
626 #else
627 	sb->sb_csum = disk_csum;
628 #endif
629 	return csum;
630 }
631 
632 
633 /*
634  * Handle superblock details.
635  * We want to be able to handle multiple superblock formats
636  * so we have a common interface to them all, and an array of
637  * different handlers.
638  * We rely on user-space to write the initial superblock, and support
639  * reading and updating of superblocks.
640  * Interface methods are:
641  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
642  *      loads and validates a superblock on dev.
643  *      if refdev != NULL, compare superblocks on both devices
644  *    Return:
645  *      0 - dev has a superblock that is compatible with refdev
646  *      1 - dev has a superblock that is compatible and newer than refdev
647  *          so dev should be used as the refdev in future
648  *     -EINVAL superblock incompatible or invalid
649  *     -othererror e.g. -EIO
650  *
651  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
652  *      Verify that dev is acceptable into mddev.
653  *       The first time, mddev->raid_disks will be 0, and data from
654  *       dev should be merged in.  Subsequent calls check that dev
655  *       is new enough.  Return 0 or -EINVAL
656  *
657  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
658  *     Update the superblock for rdev with data in mddev
659  *     This does not write to disc.
660  *
661  */
662 
663 struct super_type  {
664 	char 		*name;
665 	struct module	*owner;
666 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
667 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
668 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
669 };
670 
671 /*
672  * load_super for 0.90.0
673  */
674 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
675 {
676 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
677 	mdp_super_t *sb;
678 	int ret;
679 	sector_t sb_offset;
680 
681 	/*
682 	 * Calculate the position of the superblock,
683 	 * it's at the end of the disk.
684 	 *
685 	 * It also happens to be a multiple of 4Kb.
686 	 */
687 	sb_offset = calc_dev_sboffset(rdev->bdev);
688 	rdev->sb_offset = sb_offset;
689 
690 	ret = read_disk_sb(rdev, MD_SB_BYTES);
691 	if (ret) return ret;
692 
693 	ret = -EINVAL;
694 
695 	bdevname(rdev->bdev, b);
696 	sb = (mdp_super_t*)page_address(rdev->sb_page);
697 
698 	if (sb->md_magic != MD_SB_MAGIC) {
699 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
700 		       b);
701 		goto abort;
702 	}
703 
704 	if (sb->major_version != 0 ||
705 	    sb->minor_version < 90 ||
706 	    sb->minor_version > 91) {
707 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
708 			sb->major_version, sb->minor_version,
709 			b);
710 		goto abort;
711 	}
712 
713 	if (sb->raid_disks <= 0)
714 		goto abort;
715 
716 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
717 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
718 			b);
719 		goto abort;
720 	}
721 
722 	rdev->preferred_minor = sb->md_minor;
723 	rdev->data_offset = 0;
724 	rdev->sb_size = MD_SB_BYTES;
725 
726 	if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
727 		if (sb->level != 1 && sb->level != 4
728 		    && sb->level != 5 && sb->level != 6
729 		    && sb->level != 10) {
730 			/* FIXME use a better test */
731 			printk(KERN_WARNING
732 			       "md: bitmaps not supported for this level.\n");
733 			goto abort;
734 		}
735 	}
736 
737 	if (sb->level == LEVEL_MULTIPATH)
738 		rdev->desc_nr = -1;
739 	else
740 		rdev->desc_nr = sb->this_disk.number;
741 
742 	if (refdev == 0)
743 		ret = 1;
744 	else {
745 		__u64 ev1, ev2;
746 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
747 		if (!uuid_equal(refsb, sb)) {
748 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
749 				b, bdevname(refdev->bdev,b2));
750 			goto abort;
751 		}
752 		if (!sb_equal(refsb, sb)) {
753 			printk(KERN_WARNING "md: %s has same UUID"
754 			       " but different superblock to %s\n",
755 			       b, bdevname(refdev->bdev, b2));
756 			goto abort;
757 		}
758 		ev1 = md_event(sb);
759 		ev2 = md_event(refsb);
760 		if (ev1 > ev2)
761 			ret = 1;
762 		else
763 			ret = 0;
764 	}
765 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
766 
767 	if (rdev->size < sb->size && sb->level > 1)
768 		/* "this cannot possibly happen" ... */
769 		ret = -EINVAL;
770 
771  abort:
772 	return ret;
773 }
774 
775 /*
776  * validate_super for 0.90.0
777  */
778 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
779 {
780 	mdp_disk_t *desc;
781 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
782 	__u64 ev1 = md_event(sb);
783 
784 	rdev->raid_disk = -1;
785 	rdev->flags = 0;
786 	if (mddev->raid_disks == 0) {
787 		mddev->major_version = 0;
788 		mddev->minor_version = sb->minor_version;
789 		mddev->patch_version = sb->patch_version;
790 		mddev->persistent = ! sb->not_persistent;
791 		mddev->chunk_size = sb->chunk_size;
792 		mddev->ctime = sb->ctime;
793 		mddev->utime = sb->utime;
794 		mddev->level = sb->level;
795 		mddev->clevel[0] = 0;
796 		mddev->layout = sb->layout;
797 		mddev->raid_disks = sb->raid_disks;
798 		mddev->size = sb->size;
799 		mddev->events = ev1;
800 		mddev->bitmap_offset = 0;
801 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
802 
803 		if (mddev->minor_version >= 91) {
804 			mddev->reshape_position = sb->reshape_position;
805 			mddev->delta_disks = sb->delta_disks;
806 			mddev->new_level = sb->new_level;
807 			mddev->new_layout = sb->new_layout;
808 			mddev->new_chunk = sb->new_chunk;
809 		} else {
810 			mddev->reshape_position = MaxSector;
811 			mddev->delta_disks = 0;
812 			mddev->new_level = mddev->level;
813 			mddev->new_layout = mddev->layout;
814 			mddev->new_chunk = mddev->chunk_size;
815 		}
816 
817 		if (sb->state & (1<<MD_SB_CLEAN))
818 			mddev->recovery_cp = MaxSector;
819 		else {
820 			if (sb->events_hi == sb->cp_events_hi &&
821 				sb->events_lo == sb->cp_events_lo) {
822 				mddev->recovery_cp = sb->recovery_cp;
823 			} else
824 				mddev->recovery_cp = 0;
825 		}
826 
827 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
828 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
829 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
830 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
831 
832 		mddev->max_disks = MD_SB_DISKS;
833 
834 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
835 		    mddev->bitmap_file == NULL)
836 			mddev->bitmap_offset = mddev->default_bitmap_offset;
837 
838 	} else if (mddev->pers == NULL) {
839 		/* Insist on good event counter while assembling */
840 		++ev1;
841 		if (ev1 < mddev->events)
842 			return -EINVAL;
843 	} else if (mddev->bitmap) {
844 		/* if adding to array with a bitmap, then we can accept an
845 		 * older device ... but not too old.
846 		 */
847 		if (ev1 < mddev->bitmap->events_cleared)
848 			return 0;
849 	} else {
850 		if (ev1 < mddev->events)
851 			/* just a hot-add of a new device, leave raid_disk at -1 */
852 			return 0;
853 	}
854 
855 	if (mddev->level != LEVEL_MULTIPATH) {
856 		desc = sb->disks + rdev->desc_nr;
857 
858 		if (desc->state & (1<<MD_DISK_FAULTY))
859 			set_bit(Faulty, &rdev->flags);
860 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
861 			    desc->raid_disk < mddev->raid_disks */) {
862 			set_bit(In_sync, &rdev->flags);
863 			rdev->raid_disk = desc->raid_disk;
864 		}
865 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
866 			set_bit(WriteMostly, &rdev->flags);
867 	} else /* MULTIPATH are always insync */
868 		set_bit(In_sync, &rdev->flags);
869 	return 0;
870 }
871 
872 /*
873  * sync_super for 0.90.0
874  */
875 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
876 {
877 	mdp_super_t *sb;
878 	struct list_head *tmp;
879 	mdk_rdev_t *rdev2;
880 	int next_spare = mddev->raid_disks;
881 
882 
883 	/* make rdev->sb match mddev data..
884 	 *
885 	 * 1/ zero out disks
886 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
887 	 * 3/ any empty disks < next_spare become removed
888 	 *
889 	 * disks[0] gets initialised to REMOVED because
890 	 * we cannot be sure from other fields if it has
891 	 * been initialised or not.
892 	 */
893 	int i;
894 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
895 
896 	rdev->sb_size = MD_SB_BYTES;
897 
898 	sb = (mdp_super_t*)page_address(rdev->sb_page);
899 
900 	memset(sb, 0, sizeof(*sb));
901 
902 	sb->md_magic = MD_SB_MAGIC;
903 	sb->major_version = mddev->major_version;
904 	sb->patch_version = mddev->patch_version;
905 	sb->gvalid_words  = 0; /* ignored */
906 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
907 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
908 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
909 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
910 
911 	sb->ctime = mddev->ctime;
912 	sb->level = mddev->level;
913 	sb->size  = mddev->size;
914 	sb->raid_disks = mddev->raid_disks;
915 	sb->md_minor = mddev->md_minor;
916 	sb->not_persistent = !mddev->persistent;
917 	sb->utime = mddev->utime;
918 	sb->state = 0;
919 	sb->events_hi = (mddev->events>>32);
920 	sb->events_lo = (u32)mddev->events;
921 
922 	if (mddev->reshape_position == MaxSector)
923 		sb->minor_version = 90;
924 	else {
925 		sb->minor_version = 91;
926 		sb->reshape_position = mddev->reshape_position;
927 		sb->new_level = mddev->new_level;
928 		sb->delta_disks = mddev->delta_disks;
929 		sb->new_layout = mddev->new_layout;
930 		sb->new_chunk = mddev->new_chunk;
931 	}
932 	mddev->minor_version = sb->minor_version;
933 	if (mddev->in_sync)
934 	{
935 		sb->recovery_cp = mddev->recovery_cp;
936 		sb->cp_events_hi = (mddev->events>>32);
937 		sb->cp_events_lo = (u32)mddev->events;
938 		if (mddev->recovery_cp == MaxSector)
939 			sb->state = (1<< MD_SB_CLEAN);
940 	} else
941 		sb->recovery_cp = 0;
942 
943 	sb->layout = mddev->layout;
944 	sb->chunk_size = mddev->chunk_size;
945 
946 	if (mddev->bitmap && mddev->bitmap_file == NULL)
947 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
948 
949 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
950 	ITERATE_RDEV(mddev,rdev2,tmp) {
951 		mdp_disk_t *d;
952 		int desc_nr;
953 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
954 		    && !test_bit(Faulty, &rdev2->flags))
955 			desc_nr = rdev2->raid_disk;
956 		else
957 			desc_nr = next_spare++;
958 		rdev2->desc_nr = desc_nr;
959 		d = &sb->disks[rdev2->desc_nr];
960 		nr_disks++;
961 		d->number = rdev2->desc_nr;
962 		d->major = MAJOR(rdev2->bdev->bd_dev);
963 		d->minor = MINOR(rdev2->bdev->bd_dev);
964 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
965 		    && !test_bit(Faulty, &rdev2->flags))
966 			d->raid_disk = rdev2->raid_disk;
967 		else
968 			d->raid_disk = rdev2->desc_nr; /* compatibility */
969 		if (test_bit(Faulty, &rdev2->flags))
970 			d->state = (1<<MD_DISK_FAULTY);
971 		else if (test_bit(In_sync, &rdev2->flags)) {
972 			d->state = (1<<MD_DISK_ACTIVE);
973 			d->state |= (1<<MD_DISK_SYNC);
974 			active++;
975 			working++;
976 		} else {
977 			d->state = 0;
978 			spare++;
979 			working++;
980 		}
981 		if (test_bit(WriteMostly, &rdev2->flags))
982 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
983 	}
984 	/* now set the "removed" and "faulty" bits on any missing devices */
985 	for (i=0 ; i < mddev->raid_disks ; i++) {
986 		mdp_disk_t *d = &sb->disks[i];
987 		if (d->state == 0 && d->number == 0) {
988 			d->number = i;
989 			d->raid_disk = i;
990 			d->state = (1<<MD_DISK_REMOVED);
991 			d->state |= (1<<MD_DISK_FAULTY);
992 			failed++;
993 		}
994 	}
995 	sb->nr_disks = nr_disks;
996 	sb->active_disks = active;
997 	sb->working_disks = working;
998 	sb->failed_disks = failed;
999 	sb->spare_disks = spare;
1000 
1001 	sb->this_disk = sb->disks[rdev->desc_nr];
1002 	sb->sb_csum = calc_sb_csum(sb);
1003 }
1004 
1005 /*
1006  * version 1 superblock
1007  */
1008 
1009 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1010 {
1011 	__le32 disk_csum;
1012 	u32 csum;
1013 	unsigned long long newcsum;
1014 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1015 	__le32 *isuper = (__le32*)sb;
1016 	int i;
1017 
1018 	disk_csum = sb->sb_csum;
1019 	sb->sb_csum = 0;
1020 	newcsum = 0;
1021 	for (i=0; size>=4; size -= 4 )
1022 		newcsum += le32_to_cpu(*isuper++);
1023 
1024 	if (size == 2)
1025 		newcsum += le16_to_cpu(*(__le16*) isuper);
1026 
1027 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1028 	sb->sb_csum = disk_csum;
1029 	return cpu_to_le32(csum);
1030 }
1031 
1032 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1033 {
1034 	struct mdp_superblock_1 *sb;
1035 	int ret;
1036 	sector_t sb_offset;
1037 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1038 	int bmask;
1039 
1040 	/*
1041 	 * Calculate the position of the superblock.
1042 	 * It is always aligned to a 4K boundary and
1043 	 * depeding on minor_version, it can be:
1044 	 * 0: At least 8K, but less than 12K, from end of device
1045 	 * 1: At start of device
1046 	 * 2: 4K from start of device.
1047 	 */
1048 	switch(minor_version) {
1049 	case 0:
1050 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1051 		sb_offset -= 8*2;
1052 		sb_offset &= ~(sector_t)(4*2-1);
1053 		/* convert from sectors to K */
1054 		sb_offset /= 2;
1055 		break;
1056 	case 1:
1057 		sb_offset = 0;
1058 		break;
1059 	case 2:
1060 		sb_offset = 4;
1061 		break;
1062 	default:
1063 		return -EINVAL;
1064 	}
1065 	rdev->sb_offset = sb_offset;
1066 
1067 	/* superblock is rarely larger than 1K, but it can be larger,
1068 	 * and it is safe to read 4k, so we do that
1069 	 */
1070 	ret = read_disk_sb(rdev, 4096);
1071 	if (ret) return ret;
1072 
1073 
1074 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1075 
1076 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1077 	    sb->major_version != cpu_to_le32(1) ||
1078 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1079 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1080 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1081 		return -EINVAL;
1082 
1083 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1084 		printk("md: invalid superblock checksum on %s\n",
1085 			bdevname(rdev->bdev,b));
1086 		return -EINVAL;
1087 	}
1088 	if (le64_to_cpu(sb->data_size) < 10) {
1089 		printk("md: data_size too small on %s\n",
1090 		       bdevname(rdev->bdev,b));
1091 		return -EINVAL;
1092 	}
1093 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1094 		if (sb->level != cpu_to_le32(1) &&
1095 		    sb->level != cpu_to_le32(4) &&
1096 		    sb->level != cpu_to_le32(5) &&
1097 		    sb->level != cpu_to_le32(6) &&
1098 		    sb->level != cpu_to_le32(10)) {
1099 			printk(KERN_WARNING
1100 			       "md: bitmaps not supported for this level.\n");
1101 			return -EINVAL;
1102 		}
1103 	}
1104 
1105 	rdev->preferred_minor = 0xffff;
1106 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1107 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1108 
1109 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1110 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1111 	if (rdev->sb_size & bmask)
1112 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1113 
1114 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1115 		rdev->desc_nr = -1;
1116 	else
1117 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1118 
1119 	if (refdev == 0)
1120 		ret = 1;
1121 	else {
1122 		__u64 ev1, ev2;
1123 		struct mdp_superblock_1 *refsb =
1124 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1125 
1126 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1127 		    sb->level != refsb->level ||
1128 		    sb->layout != refsb->layout ||
1129 		    sb->chunksize != refsb->chunksize) {
1130 			printk(KERN_WARNING "md: %s has strangely different"
1131 				" superblock to %s\n",
1132 				bdevname(rdev->bdev,b),
1133 				bdevname(refdev->bdev,b2));
1134 			return -EINVAL;
1135 		}
1136 		ev1 = le64_to_cpu(sb->events);
1137 		ev2 = le64_to_cpu(refsb->events);
1138 
1139 		if (ev1 > ev2)
1140 			ret = 1;
1141 		else
1142 			ret = 0;
1143 	}
1144 	if (minor_version)
1145 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1146 	else
1147 		rdev->size = rdev->sb_offset;
1148 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1149 		return -EINVAL;
1150 	rdev->size = le64_to_cpu(sb->data_size)/2;
1151 	if (le32_to_cpu(sb->chunksize))
1152 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1153 
1154 	if (le64_to_cpu(sb->size) > rdev->size*2)
1155 		return -EINVAL;
1156 	return ret;
1157 }
1158 
1159 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1160 {
1161 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1162 	__u64 ev1 = le64_to_cpu(sb->events);
1163 
1164 	rdev->raid_disk = -1;
1165 	rdev->flags = 0;
1166 	if (mddev->raid_disks == 0) {
1167 		mddev->major_version = 1;
1168 		mddev->patch_version = 0;
1169 		mddev->persistent = 1;
1170 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1171 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1172 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1173 		mddev->level = le32_to_cpu(sb->level);
1174 		mddev->clevel[0] = 0;
1175 		mddev->layout = le32_to_cpu(sb->layout);
1176 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1177 		mddev->size = le64_to_cpu(sb->size)/2;
1178 		mddev->events = ev1;
1179 		mddev->bitmap_offset = 0;
1180 		mddev->default_bitmap_offset = 1024 >> 9;
1181 
1182 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1183 		memcpy(mddev->uuid, sb->set_uuid, 16);
1184 
1185 		mddev->max_disks =  (4096-256)/2;
1186 
1187 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1188 		    mddev->bitmap_file == NULL )
1189 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1190 
1191 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1192 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1193 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1194 			mddev->new_level = le32_to_cpu(sb->new_level);
1195 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1196 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1197 		} else {
1198 			mddev->reshape_position = MaxSector;
1199 			mddev->delta_disks = 0;
1200 			mddev->new_level = mddev->level;
1201 			mddev->new_layout = mddev->layout;
1202 			mddev->new_chunk = mddev->chunk_size;
1203 		}
1204 
1205 	} else if (mddev->pers == NULL) {
1206 		/* Insist of good event counter while assembling */
1207 		++ev1;
1208 		if (ev1 < mddev->events)
1209 			return -EINVAL;
1210 	} else if (mddev->bitmap) {
1211 		/* If adding to array with a bitmap, then we can accept an
1212 		 * older device, but not too old.
1213 		 */
1214 		if (ev1 < mddev->bitmap->events_cleared)
1215 			return 0;
1216 	} else {
1217 		if (ev1 < mddev->events)
1218 			/* just a hot-add of a new device, leave raid_disk at -1 */
1219 			return 0;
1220 	}
1221 	if (mddev->level != LEVEL_MULTIPATH) {
1222 		int role;
1223 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1224 		switch(role) {
1225 		case 0xffff: /* spare */
1226 			break;
1227 		case 0xfffe: /* faulty */
1228 			set_bit(Faulty, &rdev->flags);
1229 			break;
1230 		default:
1231 			if ((le32_to_cpu(sb->feature_map) &
1232 			     MD_FEATURE_RECOVERY_OFFSET))
1233 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1234 			else
1235 				set_bit(In_sync, &rdev->flags);
1236 			rdev->raid_disk = role;
1237 			break;
1238 		}
1239 		if (sb->devflags & WriteMostly1)
1240 			set_bit(WriteMostly, &rdev->flags);
1241 	} else /* MULTIPATH are always insync */
1242 		set_bit(In_sync, &rdev->flags);
1243 
1244 	return 0;
1245 }
1246 
1247 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1248 {
1249 	struct mdp_superblock_1 *sb;
1250 	struct list_head *tmp;
1251 	mdk_rdev_t *rdev2;
1252 	int max_dev, i;
1253 	/* make rdev->sb match mddev and rdev data. */
1254 
1255 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1256 
1257 	sb->feature_map = 0;
1258 	sb->pad0 = 0;
1259 	sb->recovery_offset = cpu_to_le64(0);
1260 	memset(sb->pad1, 0, sizeof(sb->pad1));
1261 	memset(sb->pad2, 0, sizeof(sb->pad2));
1262 	memset(sb->pad3, 0, sizeof(sb->pad3));
1263 
1264 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1265 	sb->events = cpu_to_le64(mddev->events);
1266 	if (mddev->in_sync)
1267 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1268 	else
1269 		sb->resync_offset = cpu_to_le64(0);
1270 
1271 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1272 
1273 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1274 	sb->size = cpu_to_le64(mddev->size<<1);
1275 
1276 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1277 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1278 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1279 	}
1280 
1281 	if (rdev->raid_disk >= 0 &&
1282 	    !test_bit(In_sync, &rdev->flags) &&
1283 	    rdev->recovery_offset > 0) {
1284 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1285 		sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1286 	}
1287 
1288 	if (mddev->reshape_position != MaxSector) {
1289 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1290 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1291 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1292 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1293 		sb->new_level = cpu_to_le32(mddev->new_level);
1294 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1295 	}
1296 
1297 	max_dev = 0;
1298 	ITERATE_RDEV(mddev,rdev2,tmp)
1299 		if (rdev2->desc_nr+1 > max_dev)
1300 			max_dev = rdev2->desc_nr+1;
1301 
1302 	if (max_dev > le32_to_cpu(sb->max_dev))
1303 		sb->max_dev = cpu_to_le32(max_dev);
1304 	for (i=0; i<max_dev;i++)
1305 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1306 
1307 	ITERATE_RDEV(mddev,rdev2,tmp) {
1308 		i = rdev2->desc_nr;
1309 		if (test_bit(Faulty, &rdev2->flags))
1310 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1311 		else if (test_bit(In_sync, &rdev2->flags))
1312 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1313 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1314 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1315 		else
1316 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1317 	}
1318 
1319 	sb->sb_csum = calc_sb_1_csum(sb);
1320 }
1321 
1322 
1323 static struct super_type super_types[] = {
1324 	[0] = {
1325 		.name	= "0.90.0",
1326 		.owner	= THIS_MODULE,
1327 		.load_super	= super_90_load,
1328 		.validate_super	= super_90_validate,
1329 		.sync_super	= super_90_sync,
1330 	},
1331 	[1] = {
1332 		.name	= "md-1",
1333 		.owner	= THIS_MODULE,
1334 		.load_super	= super_1_load,
1335 		.validate_super	= super_1_validate,
1336 		.sync_super	= super_1_sync,
1337 	},
1338 };
1339 
1340 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1341 {
1342 	struct list_head *tmp, *tmp2;
1343 	mdk_rdev_t *rdev, *rdev2;
1344 
1345 	ITERATE_RDEV(mddev1,rdev,tmp)
1346 		ITERATE_RDEV(mddev2, rdev2, tmp2)
1347 			if (rdev->bdev->bd_contains ==
1348 			    rdev2->bdev->bd_contains)
1349 				return 1;
1350 
1351 	return 0;
1352 }
1353 
1354 static LIST_HEAD(pending_raid_disks);
1355 
1356 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1357 {
1358 	char b[BDEVNAME_SIZE];
1359 	struct kobject *ko;
1360 	char *s;
1361 	int err;
1362 
1363 	if (rdev->mddev) {
1364 		MD_BUG();
1365 		return -EINVAL;
1366 	}
1367 	/* make sure rdev->size exceeds mddev->size */
1368 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1369 		if (mddev->pers) {
1370 			/* Cannot change size, so fail
1371 			 * If mddev->level <= 0, then we don't care
1372 			 * about aligning sizes (e.g. linear)
1373 			 */
1374 			if (mddev->level > 0)
1375 				return -ENOSPC;
1376 		} else
1377 			mddev->size = rdev->size;
1378 	}
1379 
1380 	/* Verify rdev->desc_nr is unique.
1381 	 * If it is -1, assign a free number, else
1382 	 * check number is not in use
1383 	 */
1384 	if (rdev->desc_nr < 0) {
1385 		int choice = 0;
1386 		if (mddev->pers) choice = mddev->raid_disks;
1387 		while (find_rdev_nr(mddev, choice))
1388 			choice++;
1389 		rdev->desc_nr = choice;
1390 	} else {
1391 		if (find_rdev_nr(mddev, rdev->desc_nr))
1392 			return -EBUSY;
1393 	}
1394 	bdevname(rdev->bdev,b);
1395 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1396 		return -ENOMEM;
1397 	while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1398 		*s = '!';
1399 
1400 	rdev->mddev = mddev;
1401 	printk(KERN_INFO "md: bind<%s>\n", b);
1402 
1403 	rdev->kobj.parent = &mddev->kobj;
1404 	if ((err = kobject_add(&rdev->kobj)))
1405 		goto fail;
1406 
1407 	if (rdev->bdev->bd_part)
1408 		ko = &rdev->bdev->bd_part->kobj;
1409 	else
1410 		ko = &rdev->bdev->bd_disk->kobj;
1411 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1412 		kobject_del(&rdev->kobj);
1413 		goto fail;
1414 	}
1415 	list_add(&rdev->same_set, &mddev->disks);
1416 	bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1417 	return 0;
1418 
1419  fail:
1420 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1421 	       b, mdname(mddev));
1422 	return err;
1423 }
1424 
1425 static void delayed_delete(struct work_struct *ws)
1426 {
1427 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1428 	kobject_del(&rdev->kobj);
1429 }
1430 
1431 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1432 {
1433 	char b[BDEVNAME_SIZE];
1434 	if (!rdev->mddev) {
1435 		MD_BUG();
1436 		return;
1437 	}
1438 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1439 	list_del_init(&rdev->same_set);
1440 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1441 	rdev->mddev = NULL;
1442 	sysfs_remove_link(&rdev->kobj, "block");
1443 
1444 	/* We need to delay this, otherwise we can deadlock when
1445 	 * writing to 'remove' to "dev/state"
1446 	 */
1447 	INIT_WORK(&rdev->del_work, delayed_delete);
1448 	schedule_work(&rdev->del_work);
1449 }
1450 
1451 /*
1452  * prevent the device from being mounted, repartitioned or
1453  * otherwise reused by a RAID array (or any other kernel
1454  * subsystem), by bd_claiming the device.
1455  */
1456 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1457 {
1458 	int err = 0;
1459 	struct block_device *bdev;
1460 	char b[BDEVNAME_SIZE];
1461 
1462 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1463 	if (IS_ERR(bdev)) {
1464 		printk(KERN_ERR "md: could not open %s.\n",
1465 			__bdevname(dev, b));
1466 		return PTR_ERR(bdev);
1467 	}
1468 	err = bd_claim(bdev, rdev);
1469 	if (err) {
1470 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1471 			bdevname(bdev, b));
1472 		blkdev_put(bdev);
1473 		return err;
1474 	}
1475 	rdev->bdev = bdev;
1476 	return err;
1477 }
1478 
1479 static void unlock_rdev(mdk_rdev_t *rdev)
1480 {
1481 	struct block_device *bdev = rdev->bdev;
1482 	rdev->bdev = NULL;
1483 	if (!bdev)
1484 		MD_BUG();
1485 	bd_release(bdev);
1486 	blkdev_put(bdev);
1487 }
1488 
1489 void md_autodetect_dev(dev_t dev);
1490 
1491 static void export_rdev(mdk_rdev_t * rdev)
1492 {
1493 	char b[BDEVNAME_SIZE];
1494 	printk(KERN_INFO "md: export_rdev(%s)\n",
1495 		bdevname(rdev->bdev,b));
1496 	if (rdev->mddev)
1497 		MD_BUG();
1498 	free_disk_sb(rdev);
1499 	list_del_init(&rdev->same_set);
1500 #ifndef MODULE
1501 	md_autodetect_dev(rdev->bdev->bd_dev);
1502 #endif
1503 	unlock_rdev(rdev);
1504 	kobject_put(&rdev->kobj);
1505 }
1506 
1507 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1508 {
1509 	unbind_rdev_from_array(rdev);
1510 	export_rdev(rdev);
1511 }
1512 
1513 static void export_array(mddev_t *mddev)
1514 {
1515 	struct list_head *tmp;
1516 	mdk_rdev_t *rdev;
1517 
1518 	ITERATE_RDEV(mddev,rdev,tmp) {
1519 		if (!rdev->mddev) {
1520 			MD_BUG();
1521 			continue;
1522 		}
1523 		kick_rdev_from_array(rdev);
1524 	}
1525 	if (!list_empty(&mddev->disks))
1526 		MD_BUG();
1527 	mddev->raid_disks = 0;
1528 	mddev->major_version = 0;
1529 }
1530 
1531 static void print_desc(mdp_disk_t *desc)
1532 {
1533 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1534 		desc->major,desc->minor,desc->raid_disk,desc->state);
1535 }
1536 
1537 static void print_sb(mdp_super_t *sb)
1538 {
1539 	int i;
1540 
1541 	printk(KERN_INFO
1542 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1543 		sb->major_version, sb->minor_version, sb->patch_version,
1544 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1545 		sb->ctime);
1546 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1547 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1548 		sb->md_minor, sb->layout, sb->chunk_size);
1549 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1550 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1551 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1552 		sb->failed_disks, sb->spare_disks,
1553 		sb->sb_csum, (unsigned long)sb->events_lo);
1554 
1555 	printk(KERN_INFO);
1556 	for (i = 0; i < MD_SB_DISKS; i++) {
1557 		mdp_disk_t *desc;
1558 
1559 		desc = sb->disks + i;
1560 		if (desc->number || desc->major || desc->minor ||
1561 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1562 			printk("     D %2d: ", i);
1563 			print_desc(desc);
1564 		}
1565 	}
1566 	printk(KERN_INFO "md:     THIS: ");
1567 	print_desc(&sb->this_disk);
1568 
1569 }
1570 
1571 static void print_rdev(mdk_rdev_t *rdev)
1572 {
1573 	char b[BDEVNAME_SIZE];
1574 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1575 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1576 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1577 	        rdev->desc_nr);
1578 	if (rdev->sb_loaded) {
1579 		printk(KERN_INFO "md: rdev superblock:\n");
1580 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1581 	} else
1582 		printk(KERN_INFO "md: no rdev superblock!\n");
1583 }
1584 
1585 static void md_print_devices(void)
1586 {
1587 	struct list_head *tmp, *tmp2;
1588 	mdk_rdev_t *rdev;
1589 	mddev_t *mddev;
1590 	char b[BDEVNAME_SIZE];
1591 
1592 	printk("\n");
1593 	printk("md:	**********************************\n");
1594 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1595 	printk("md:	**********************************\n");
1596 	ITERATE_MDDEV(mddev,tmp) {
1597 
1598 		if (mddev->bitmap)
1599 			bitmap_print_sb(mddev->bitmap);
1600 		else
1601 			printk("%s: ", mdname(mddev));
1602 		ITERATE_RDEV(mddev,rdev,tmp2)
1603 			printk("<%s>", bdevname(rdev->bdev,b));
1604 		printk("\n");
1605 
1606 		ITERATE_RDEV(mddev,rdev,tmp2)
1607 			print_rdev(rdev);
1608 	}
1609 	printk("md:	**********************************\n");
1610 	printk("\n");
1611 }
1612 
1613 
1614 static void sync_sbs(mddev_t * mddev, int nospares)
1615 {
1616 	/* Update each superblock (in-memory image), but
1617 	 * if we are allowed to, skip spares which already
1618 	 * have the right event counter, or have one earlier
1619 	 * (which would mean they aren't being marked as dirty
1620 	 * with the rest of the array)
1621 	 */
1622 	mdk_rdev_t *rdev;
1623 	struct list_head *tmp;
1624 
1625 	ITERATE_RDEV(mddev,rdev,tmp) {
1626 		if (rdev->sb_events == mddev->events ||
1627 		    (nospares &&
1628 		     rdev->raid_disk < 0 &&
1629 		     (rdev->sb_events&1)==0 &&
1630 		     rdev->sb_events+1 == mddev->events)) {
1631 			/* Don't update this superblock */
1632 			rdev->sb_loaded = 2;
1633 		} else {
1634 			super_types[mddev->major_version].
1635 				sync_super(mddev, rdev);
1636 			rdev->sb_loaded = 1;
1637 		}
1638 	}
1639 }
1640 
1641 static void md_update_sb(mddev_t * mddev, int force_change)
1642 {
1643 	int err;
1644 	struct list_head *tmp;
1645 	mdk_rdev_t *rdev;
1646 	int sync_req;
1647 	int nospares = 0;
1648 
1649 repeat:
1650 	spin_lock_irq(&mddev->write_lock);
1651 
1652 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1653 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1654 		force_change = 1;
1655 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1656 		/* just a clean<-> dirty transition, possibly leave spares alone,
1657 		 * though if events isn't the right even/odd, we will have to do
1658 		 * spares after all
1659 		 */
1660 		nospares = 1;
1661 	if (force_change)
1662 		nospares = 0;
1663 	if (mddev->degraded)
1664 		/* If the array is degraded, then skipping spares is both
1665 		 * dangerous and fairly pointless.
1666 		 * Dangerous because a device that was removed from the array
1667 		 * might have a event_count that still looks up-to-date,
1668 		 * so it can be re-added without a resync.
1669 		 * Pointless because if there are any spares to skip,
1670 		 * then a recovery will happen and soon that array won't
1671 		 * be degraded any more and the spare can go back to sleep then.
1672 		 */
1673 		nospares = 0;
1674 
1675 	sync_req = mddev->in_sync;
1676 	mddev->utime = get_seconds();
1677 
1678 	/* If this is just a dirty<->clean transition, and the array is clean
1679 	 * and 'events' is odd, we can roll back to the previous clean state */
1680 	if (nospares
1681 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1682 	    && (mddev->events & 1)
1683 	    && mddev->events != 1)
1684 		mddev->events--;
1685 	else {
1686 		/* otherwise we have to go forward and ... */
1687 		mddev->events ++;
1688 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1689 			/* .. if the array isn't clean, insist on an odd 'events' */
1690 			if ((mddev->events&1)==0) {
1691 				mddev->events++;
1692 				nospares = 0;
1693 			}
1694 		} else {
1695 			/* otherwise insist on an even 'events' (for clean states) */
1696 			if ((mddev->events&1)) {
1697 				mddev->events++;
1698 				nospares = 0;
1699 			}
1700 		}
1701 	}
1702 
1703 	if (!mddev->events) {
1704 		/*
1705 		 * oops, this 64-bit counter should never wrap.
1706 		 * Either we are in around ~1 trillion A.C., assuming
1707 		 * 1 reboot per second, or we have a bug:
1708 		 */
1709 		MD_BUG();
1710 		mddev->events --;
1711 	}
1712 	sync_sbs(mddev, nospares);
1713 
1714 	/*
1715 	 * do not write anything to disk if using
1716 	 * nonpersistent superblocks
1717 	 */
1718 	if (!mddev->persistent) {
1719 		clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1720 		spin_unlock_irq(&mddev->write_lock);
1721 		wake_up(&mddev->sb_wait);
1722 		return;
1723 	}
1724 	spin_unlock_irq(&mddev->write_lock);
1725 
1726 	dprintk(KERN_INFO
1727 		"md: updating %s RAID superblock on device (in sync %d)\n",
1728 		mdname(mddev),mddev->in_sync);
1729 
1730 	err = bitmap_update_sb(mddev->bitmap);
1731 	ITERATE_RDEV(mddev,rdev,tmp) {
1732 		char b[BDEVNAME_SIZE];
1733 		dprintk(KERN_INFO "md: ");
1734 		if (rdev->sb_loaded != 1)
1735 			continue; /* no noise on spare devices */
1736 		if (test_bit(Faulty, &rdev->flags))
1737 			dprintk("(skipping faulty ");
1738 
1739 		dprintk("%s ", bdevname(rdev->bdev,b));
1740 		if (!test_bit(Faulty, &rdev->flags)) {
1741 			md_super_write(mddev,rdev,
1742 				       rdev->sb_offset<<1, rdev->sb_size,
1743 				       rdev->sb_page);
1744 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1745 				bdevname(rdev->bdev,b),
1746 				(unsigned long long)rdev->sb_offset);
1747 			rdev->sb_events = mddev->events;
1748 
1749 		} else
1750 			dprintk(")\n");
1751 		if (mddev->level == LEVEL_MULTIPATH)
1752 			/* only need to write one superblock... */
1753 			break;
1754 	}
1755 	md_super_wait(mddev);
1756 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1757 
1758 	spin_lock_irq(&mddev->write_lock);
1759 	if (mddev->in_sync != sync_req ||
1760 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1761 		/* have to write it out again */
1762 		spin_unlock_irq(&mddev->write_lock);
1763 		goto repeat;
1764 	}
1765 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1766 	spin_unlock_irq(&mddev->write_lock);
1767 	wake_up(&mddev->sb_wait);
1768 
1769 }
1770 
1771 /* words written to sysfs files may, or my not, be \n terminated.
1772  * We want to accept with case. For this we use cmd_match.
1773  */
1774 static int cmd_match(const char *cmd, const char *str)
1775 {
1776 	/* See if cmd, written into a sysfs file, matches
1777 	 * str.  They must either be the same, or cmd can
1778 	 * have a trailing newline
1779 	 */
1780 	while (*cmd && *str && *cmd == *str) {
1781 		cmd++;
1782 		str++;
1783 	}
1784 	if (*cmd == '\n')
1785 		cmd++;
1786 	if (*str || *cmd)
1787 		return 0;
1788 	return 1;
1789 }
1790 
1791 struct rdev_sysfs_entry {
1792 	struct attribute attr;
1793 	ssize_t (*show)(mdk_rdev_t *, char *);
1794 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1795 };
1796 
1797 static ssize_t
1798 state_show(mdk_rdev_t *rdev, char *page)
1799 {
1800 	char *sep = "";
1801 	int len=0;
1802 
1803 	if (test_bit(Faulty, &rdev->flags)) {
1804 		len+= sprintf(page+len, "%sfaulty",sep);
1805 		sep = ",";
1806 	}
1807 	if (test_bit(In_sync, &rdev->flags)) {
1808 		len += sprintf(page+len, "%sin_sync",sep);
1809 		sep = ",";
1810 	}
1811 	if (test_bit(WriteMostly, &rdev->flags)) {
1812 		len += sprintf(page+len, "%swrite_mostly",sep);
1813 		sep = ",";
1814 	}
1815 	if (!test_bit(Faulty, &rdev->flags) &&
1816 	    !test_bit(In_sync, &rdev->flags)) {
1817 		len += sprintf(page+len, "%sspare", sep);
1818 		sep = ",";
1819 	}
1820 	return len+sprintf(page+len, "\n");
1821 }
1822 
1823 static ssize_t
1824 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1825 {
1826 	/* can write
1827 	 *  faulty  - simulates and error
1828 	 *  remove  - disconnects the device
1829 	 *  writemostly - sets write_mostly
1830 	 *  -writemostly - clears write_mostly
1831 	 */
1832 	int err = -EINVAL;
1833 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1834 		md_error(rdev->mddev, rdev);
1835 		err = 0;
1836 	} else if (cmd_match(buf, "remove")) {
1837 		if (rdev->raid_disk >= 0)
1838 			err = -EBUSY;
1839 		else {
1840 			mddev_t *mddev = rdev->mddev;
1841 			kick_rdev_from_array(rdev);
1842 			if (mddev->pers)
1843 				md_update_sb(mddev, 1);
1844 			md_new_event(mddev);
1845 			err = 0;
1846 		}
1847 	} else if (cmd_match(buf, "writemostly")) {
1848 		set_bit(WriteMostly, &rdev->flags);
1849 		err = 0;
1850 	} else if (cmd_match(buf, "-writemostly")) {
1851 		clear_bit(WriteMostly, &rdev->flags);
1852 		err = 0;
1853 	}
1854 	return err ? err : len;
1855 }
1856 static struct rdev_sysfs_entry rdev_state =
1857 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1858 
1859 static ssize_t
1860 super_show(mdk_rdev_t *rdev, char *page)
1861 {
1862 	if (rdev->sb_loaded && rdev->sb_size) {
1863 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1864 		return rdev->sb_size;
1865 	} else
1866 		return 0;
1867 }
1868 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1869 
1870 static ssize_t
1871 errors_show(mdk_rdev_t *rdev, char *page)
1872 {
1873 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1874 }
1875 
1876 static ssize_t
1877 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1878 {
1879 	char *e;
1880 	unsigned long n = simple_strtoul(buf, &e, 10);
1881 	if (*buf && (*e == 0 || *e == '\n')) {
1882 		atomic_set(&rdev->corrected_errors, n);
1883 		return len;
1884 	}
1885 	return -EINVAL;
1886 }
1887 static struct rdev_sysfs_entry rdev_errors =
1888 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1889 
1890 static ssize_t
1891 slot_show(mdk_rdev_t *rdev, char *page)
1892 {
1893 	if (rdev->raid_disk < 0)
1894 		return sprintf(page, "none\n");
1895 	else
1896 		return sprintf(page, "%d\n", rdev->raid_disk);
1897 }
1898 
1899 static ssize_t
1900 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1901 {
1902 	char *e;
1903 	int slot = simple_strtoul(buf, &e, 10);
1904 	if (strncmp(buf, "none", 4)==0)
1905 		slot = -1;
1906 	else if (e==buf || (*e && *e!= '\n'))
1907 		return -EINVAL;
1908 	if (rdev->mddev->pers)
1909 		/* Cannot set slot in active array (yet) */
1910 		return -EBUSY;
1911 	if (slot >= rdev->mddev->raid_disks)
1912 		return -ENOSPC;
1913 	rdev->raid_disk = slot;
1914 	/* assume it is working */
1915 	rdev->flags = 0;
1916 	set_bit(In_sync, &rdev->flags);
1917 	return len;
1918 }
1919 
1920 
1921 static struct rdev_sysfs_entry rdev_slot =
1922 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1923 
1924 static ssize_t
1925 offset_show(mdk_rdev_t *rdev, char *page)
1926 {
1927 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1928 }
1929 
1930 static ssize_t
1931 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1932 {
1933 	char *e;
1934 	unsigned long long offset = simple_strtoull(buf, &e, 10);
1935 	if (e==buf || (*e && *e != '\n'))
1936 		return -EINVAL;
1937 	if (rdev->mddev->pers)
1938 		return -EBUSY;
1939 	rdev->data_offset = offset;
1940 	return len;
1941 }
1942 
1943 static struct rdev_sysfs_entry rdev_offset =
1944 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1945 
1946 static ssize_t
1947 rdev_size_show(mdk_rdev_t *rdev, char *page)
1948 {
1949 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1950 }
1951 
1952 static ssize_t
1953 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1954 {
1955 	char *e;
1956 	unsigned long long size = simple_strtoull(buf, &e, 10);
1957 	if (e==buf || (*e && *e != '\n'))
1958 		return -EINVAL;
1959 	if (rdev->mddev->pers)
1960 		return -EBUSY;
1961 	rdev->size = size;
1962 	if (size < rdev->mddev->size || rdev->mddev->size == 0)
1963 		rdev->mddev->size = size;
1964 	return len;
1965 }
1966 
1967 static struct rdev_sysfs_entry rdev_size =
1968 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1969 
1970 static struct attribute *rdev_default_attrs[] = {
1971 	&rdev_state.attr,
1972 	&rdev_super.attr,
1973 	&rdev_errors.attr,
1974 	&rdev_slot.attr,
1975 	&rdev_offset.attr,
1976 	&rdev_size.attr,
1977 	NULL,
1978 };
1979 static ssize_t
1980 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1981 {
1982 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1983 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1984 
1985 	if (!entry->show)
1986 		return -EIO;
1987 	return entry->show(rdev, page);
1988 }
1989 
1990 static ssize_t
1991 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1992 	      const char *page, size_t length)
1993 {
1994 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1995 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1996 
1997 	if (!entry->store)
1998 		return -EIO;
1999 	if (!capable(CAP_SYS_ADMIN))
2000 		return -EACCES;
2001 	return entry->store(rdev, page, length);
2002 }
2003 
2004 static void rdev_free(struct kobject *ko)
2005 {
2006 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2007 	kfree(rdev);
2008 }
2009 static struct sysfs_ops rdev_sysfs_ops = {
2010 	.show		= rdev_attr_show,
2011 	.store		= rdev_attr_store,
2012 };
2013 static struct kobj_type rdev_ktype = {
2014 	.release	= rdev_free,
2015 	.sysfs_ops	= &rdev_sysfs_ops,
2016 	.default_attrs	= rdev_default_attrs,
2017 };
2018 
2019 /*
2020  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2021  *
2022  * mark the device faulty if:
2023  *
2024  *   - the device is nonexistent (zero size)
2025  *   - the device has no valid superblock
2026  *
2027  * a faulty rdev _never_ has rdev->sb set.
2028  */
2029 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2030 {
2031 	char b[BDEVNAME_SIZE];
2032 	int err;
2033 	mdk_rdev_t *rdev;
2034 	sector_t size;
2035 
2036 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2037 	if (!rdev) {
2038 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2039 		return ERR_PTR(-ENOMEM);
2040 	}
2041 
2042 	if ((err = alloc_disk_sb(rdev)))
2043 		goto abort_free;
2044 
2045 	err = lock_rdev(rdev, newdev);
2046 	if (err)
2047 		goto abort_free;
2048 
2049 	rdev->kobj.parent = NULL;
2050 	rdev->kobj.ktype = &rdev_ktype;
2051 	kobject_init(&rdev->kobj);
2052 
2053 	rdev->desc_nr = -1;
2054 	rdev->saved_raid_disk = -1;
2055 	rdev->raid_disk = -1;
2056 	rdev->flags = 0;
2057 	rdev->data_offset = 0;
2058 	rdev->sb_events = 0;
2059 	atomic_set(&rdev->nr_pending, 0);
2060 	atomic_set(&rdev->read_errors, 0);
2061 	atomic_set(&rdev->corrected_errors, 0);
2062 
2063 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2064 	if (!size) {
2065 		printk(KERN_WARNING
2066 			"md: %s has zero or unknown size, marking faulty!\n",
2067 			bdevname(rdev->bdev,b));
2068 		err = -EINVAL;
2069 		goto abort_free;
2070 	}
2071 
2072 	if (super_format >= 0) {
2073 		err = super_types[super_format].
2074 			load_super(rdev, NULL, super_minor);
2075 		if (err == -EINVAL) {
2076 			printk(KERN_WARNING
2077 				"md: %s has invalid sb, not importing!\n",
2078 				bdevname(rdev->bdev,b));
2079 			goto abort_free;
2080 		}
2081 		if (err < 0) {
2082 			printk(KERN_WARNING
2083 				"md: could not read %s's sb, not importing!\n",
2084 				bdevname(rdev->bdev,b));
2085 			goto abort_free;
2086 		}
2087 	}
2088 	INIT_LIST_HEAD(&rdev->same_set);
2089 
2090 	return rdev;
2091 
2092 abort_free:
2093 	if (rdev->sb_page) {
2094 		if (rdev->bdev)
2095 			unlock_rdev(rdev);
2096 		free_disk_sb(rdev);
2097 	}
2098 	kfree(rdev);
2099 	return ERR_PTR(err);
2100 }
2101 
2102 /*
2103  * Check a full RAID array for plausibility
2104  */
2105 
2106 
2107 static void analyze_sbs(mddev_t * mddev)
2108 {
2109 	int i;
2110 	struct list_head *tmp;
2111 	mdk_rdev_t *rdev, *freshest;
2112 	char b[BDEVNAME_SIZE];
2113 
2114 	freshest = NULL;
2115 	ITERATE_RDEV(mddev,rdev,tmp)
2116 		switch (super_types[mddev->major_version].
2117 			load_super(rdev, freshest, mddev->minor_version)) {
2118 		case 1:
2119 			freshest = rdev;
2120 			break;
2121 		case 0:
2122 			break;
2123 		default:
2124 			printk( KERN_ERR \
2125 				"md: fatal superblock inconsistency in %s"
2126 				" -- removing from array\n",
2127 				bdevname(rdev->bdev,b));
2128 			kick_rdev_from_array(rdev);
2129 		}
2130 
2131 
2132 	super_types[mddev->major_version].
2133 		validate_super(mddev, freshest);
2134 
2135 	i = 0;
2136 	ITERATE_RDEV(mddev,rdev,tmp) {
2137 		if (rdev != freshest)
2138 			if (super_types[mddev->major_version].
2139 			    validate_super(mddev, rdev)) {
2140 				printk(KERN_WARNING "md: kicking non-fresh %s"
2141 					" from array!\n",
2142 					bdevname(rdev->bdev,b));
2143 				kick_rdev_from_array(rdev);
2144 				continue;
2145 			}
2146 		if (mddev->level == LEVEL_MULTIPATH) {
2147 			rdev->desc_nr = i++;
2148 			rdev->raid_disk = rdev->desc_nr;
2149 			set_bit(In_sync, &rdev->flags);
2150 		} else if (rdev->raid_disk >= mddev->raid_disks) {
2151 			rdev->raid_disk = -1;
2152 			clear_bit(In_sync, &rdev->flags);
2153 		}
2154 	}
2155 
2156 
2157 
2158 	if (mddev->recovery_cp != MaxSector &&
2159 	    mddev->level >= 1)
2160 		printk(KERN_ERR "md: %s: raid array is not clean"
2161 		       " -- starting background reconstruction\n",
2162 		       mdname(mddev));
2163 
2164 }
2165 
2166 static ssize_t
2167 safe_delay_show(mddev_t *mddev, char *page)
2168 {
2169 	int msec = (mddev->safemode_delay*1000)/HZ;
2170 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2171 }
2172 static ssize_t
2173 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2174 {
2175 	int scale=1;
2176 	int dot=0;
2177 	int i;
2178 	unsigned long msec;
2179 	char buf[30];
2180 	char *e;
2181 	/* remove a period, and count digits after it */
2182 	if (len >= sizeof(buf))
2183 		return -EINVAL;
2184 	strlcpy(buf, cbuf, len);
2185 	buf[len] = 0;
2186 	for (i=0; i<len; i++) {
2187 		if (dot) {
2188 			if (isdigit(buf[i])) {
2189 				buf[i-1] = buf[i];
2190 				scale *= 10;
2191 			}
2192 			buf[i] = 0;
2193 		} else if (buf[i] == '.') {
2194 			dot=1;
2195 			buf[i] = 0;
2196 		}
2197 	}
2198 	msec = simple_strtoul(buf, &e, 10);
2199 	if (e == buf || (*e && *e != '\n'))
2200 		return -EINVAL;
2201 	msec = (msec * 1000) / scale;
2202 	if (msec == 0)
2203 		mddev->safemode_delay = 0;
2204 	else {
2205 		mddev->safemode_delay = (msec*HZ)/1000;
2206 		if (mddev->safemode_delay == 0)
2207 			mddev->safemode_delay = 1;
2208 	}
2209 	return len;
2210 }
2211 static struct md_sysfs_entry md_safe_delay =
2212 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2213 
2214 static ssize_t
2215 level_show(mddev_t *mddev, char *page)
2216 {
2217 	struct mdk_personality *p = mddev->pers;
2218 	if (p)
2219 		return sprintf(page, "%s\n", p->name);
2220 	else if (mddev->clevel[0])
2221 		return sprintf(page, "%s\n", mddev->clevel);
2222 	else if (mddev->level != LEVEL_NONE)
2223 		return sprintf(page, "%d\n", mddev->level);
2224 	else
2225 		return 0;
2226 }
2227 
2228 static ssize_t
2229 level_store(mddev_t *mddev, const char *buf, size_t len)
2230 {
2231 	int rv = len;
2232 	if (mddev->pers)
2233 		return -EBUSY;
2234 	if (len == 0)
2235 		return 0;
2236 	if (len >= sizeof(mddev->clevel))
2237 		return -ENOSPC;
2238 	strncpy(mddev->clevel, buf, len);
2239 	if (mddev->clevel[len-1] == '\n')
2240 		len--;
2241 	mddev->clevel[len] = 0;
2242 	mddev->level = LEVEL_NONE;
2243 	return rv;
2244 }
2245 
2246 static struct md_sysfs_entry md_level =
2247 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2248 
2249 
2250 static ssize_t
2251 layout_show(mddev_t *mddev, char *page)
2252 {
2253 	/* just a number, not meaningful for all levels */
2254 	if (mddev->reshape_position != MaxSector &&
2255 	    mddev->layout != mddev->new_layout)
2256 		return sprintf(page, "%d (%d)\n",
2257 			       mddev->new_layout, mddev->layout);
2258 	return sprintf(page, "%d\n", mddev->layout);
2259 }
2260 
2261 static ssize_t
2262 layout_store(mddev_t *mddev, const char *buf, size_t len)
2263 {
2264 	char *e;
2265 	unsigned long n = simple_strtoul(buf, &e, 10);
2266 
2267 	if (!*buf || (*e && *e != '\n'))
2268 		return -EINVAL;
2269 
2270 	if (mddev->pers)
2271 		return -EBUSY;
2272 	if (mddev->reshape_position != MaxSector)
2273 		mddev->new_layout = n;
2274 	else
2275 		mddev->layout = n;
2276 	return len;
2277 }
2278 static struct md_sysfs_entry md_layout =
2279 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2280 
2281 
2282 static ssize_t
2283 raid_disks_show(mddev_t *mddev, char *page)
2284 {
2285 	if (mddev->raid_disks == 0)
2286 		return 0;
2287 	if (mddev->reshape_position != MaxSector &&
2288 	    mddev->delta_disks != 0)
2289 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2290 			       mddev->raid_disks - mddev->delta_disks);
2291 	return sprintf(page, "%d\n", mddev->raid_disks);
2292 }
2293 
2294 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2295 
2296 static ssize_t
2297 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2298 {
2299 	char *e;
2300 	int rv = 0;
2301 	unsigned long n = simple_strtoul(buf, &e, 10);
2302 
2303 	if (!*buf || (*e && *e != '\n'))
2304 		return -EINVAL;
2305 
2306 	if (mddev->pers)
2307 		rv = update_raid_disks(mddev, n);
2308 	else if (mddev->reshape_position != MaxSector) {
2309 		int olddisks = mddev->raid_disks - mddev->delta_disks;
2310 		mddev->delta_disks = n - olddisks;
2311 		mddev->raid_disks = n;
2312 	} else
2313 		mddev->raid_disks = n;
2314 	return rv ? rv : len;
2315 }
2316 static struct md_sysfs_entry md_raid_disks =
2317 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2318 
2319 static ssize_t
2320 chunk_size_show(mddev_t *mddev, char *page)
2321 {
2322 	if (mddev->reshape_position != MaxSector &&
2323 	    mddev->chunk_size != mddev->new_chunk)
2324 		return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2325 			       mddev->chunk_size);
2326 	return sprintf(page, "%d\n", mddev->chunk_size);
2327 }
2328 
2329 static ssize_t
2330 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2331 {
2332 	/* can only set chunk_size if array is not yet active */
2333 	char *e;
2334 	unsigned long n = simple_strtoul(buf, &e, 10);
2335 
2336 	if (!*buf || (*e && *e != '\n'))
2337 		return -EINVAL;
2338 
2339 	if (mddev->pers)
2340 		return -EBUSY;
2341 	else if (mddev->reshape_position != MaxSector)
2342 		mddev->new_chunk = n;
2343 	else
2344 		mddev->chunk_size = n;
2345 	return len;
2346 }
2347 static struct md_sysfs_entry md_chunk_size =
2348 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2349 
2350 static ssize_t
2351 resync_start_show(mddev_t *mddev, char *page)
2352 {
2353 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2354 }
2355 
2356 static ssize_t
2357 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2358 {
2359 	/* can only set chunk_size if array is not yet active */
2360 	char *e;
2361 	unsigned long long n = simple_strtoull(buf, &e, 10);
2362 
2363 	if (mddev->pers)
2364 		return -EBUSY;
2365 	if (!*buf || (*e && *e != '\n'))
2366 		return -EINVAL;
2367 
2368 	mddev->recovery_cp = n;
2369 	return len;
2370 }
2371 static struct md_sysfs_entry md_resync_start =
2372 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2373 
2374 /*
2375  * The array state can be:
2376  *
2377  * clear
2378  *     No devices, no size, no level
2379  *     Equivalent to STOP_ARRAY ioctl
2380  * inactive
2381  *     May have some settings, but array is not active
2382  *        all IO results in error
2383  *     When written, doesn't tear down array, but just stops it
2384  * suspended (not supported yet)
2385  *     All IO requests will block. The array can be reconfigured.
2386  *     Writing this, if accepted, will block until array is quiessent
2387  * readonly
2388  *     no resync can happen.  no superblocks get written.
2389  *     write requests fail
2390  * read-auto
2391  *     like readonly, but behaves like 'clean' on a write request.
2392  *
2393  * clean - no pending writes, but otherwise active.
2394  *     When written to inactive array, starts without resync
2395  *     If a write request arrives then
2396  *       if metadata is known, mark 'dirty' and switch to 'active'.
2397  *       if not known, block and switch to write-pending
2398  *     If written to an active array that has pending writes, then fails.
2399  * active
2400  *     fully active: IO and resync can be happening.
2401  *     When written to inactive array, starts with resync
2402  *
2403  * write-pending
2404  *     clean, but writes are blocked waiting for 'active' to be written.
2405  *
2406  * active-idle
2407  *     like active, but no writes have been seen for a while (100msec).
2408  *
2409  */
2410 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2411 		   write_pending, active_idle, bad_word};
2412 static char *array_states[] = {
2413 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2414 	"write-pending", "active-idle", NULL };
2415 
2416 static int match_word(const char *word, char **list)
2417 {
2418 	int n;
2419 	for (n=0; list[n]; n++)
2420 		if (cmd_match(word, list[n]))
2421 			break;
2422 	return n;
2423 }
2424 
2425 static ssize_t
2426 array_state_show(mddev_t *mddev, char *page)
2427 {
2428 	enum array_state st = inactive;
2429 
2430 	if (mddev->pers)
2431 		switch(mddev->ro) {
2432 		case 1:
2433 			st = readonly;
2434 			break;
2435 		case 2:
2436 			st = read_auto;
2437 			break;
2438 		case 0:
2439 			if (mddev->in_sync)
2440 				st = clean;
2441 			else if (mddev->safemode)
2442 				st = active_idle;
2443 			else
2444 				st = active;
2445 		}
2446 	else {
2447 		if (list_empty(&mddev->disks) &&
2448 		    mddev->raid_disks == 0 &&
2449 		    mddev->size == 0)
2450 			st = clear;
2451 		else
2452 			st = inactive;
2453 	}
2454 	return sprintf(page, "%s\n", array_states[st]);
2455 }
2456 
2457 static int do_md_stop(mddev_t * mddev, int ro);
2458 static int do_md_run(mddev_t * mddev);
2459 static int restart_array(mddev_t *mddev);
2460 
2461 static ssize_t
2462 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2463 {
2464 	int err = -EINVAL;
2465 	enum array_state st = match_word(buf, array_states);
2466 	switch(st) {
2467 	case bad_word:
2468 		break;
2469 	case clear:
2470 		/* stopping an active array */
2471 		if (mddev->pers) {
2472 			if (atomic_read(&mddev->active) > 1)
2473 				return -EBUSY;
2474 			err = do_md_stop(mddev, 0);
2475 		}
2476 		break;
2477 	case inactive:
2478 		/* stopping an active array */
2479 		if (mddev->pers) {
2480 			if (atomic_read(&mddev->active) > 1)
2481 				return -EBUSY;
2482 			err = do_md_stop(mddev, 2);
2483 		}
2484 		break;
2485 	case suspended:
2486 		break; /* not supported yet */
2487 	case readonly:
2488 		if (mddev->pers)
2489 			err = do_md_stop(mddev, 1);
2490 		else {
2491 			mddev->ro = 1;
2492 			err = do_md_run(mddev);
2493 		}
2494 		break;
2495 	case read_auto:
2496 		/* stopping an active array */
2497 		if (mddev->pers) {
2498 			err = do_md_stop(mddev, 1);
2499 			if (err == 0)
2500 				mddev->ro = 2; /* FIXME mark devices writable */
2501 		} else {
2502 			mddev->ro = 2;
2503 			err = do_md_run(mddev);
2504 		}
2505 		break;
2506 	case clean:
2507 		if (mddev->pers) {
2508 			restart_array(mddev);
2509 			spin_lock_irq(&mddev->write_lock);
2510 			if (atomic_read(&mddev->writes_pending) == 0) {
2511 				mddev->in_sync = 1;
2512 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2513 			}
2514 			spin_unlock_irq(&mddev->write_lock);
2515 		} else {
2516 			mddev->ro = 0;
2517 			mddev->recovery_cp = MaxSector;
2518 			err = do_md_run(mddev);
2519 		}
2520 		break;
2521 	case active:
2522 		if (mddev->pers) {
2523 			restart_array(mddev);
2524 			clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2525 			wake_up(&mddev->sb_wait);
2526 			err = 0;
2527 		} else {
2528 			mddev->ro = 0;
2529 			err = do_md_run(mddev);
2530 		}
2531 		break;
2532 	case write_pending:
2533 	case active_idle:
2534 		/* these cannot be set */
2535 		break;
2536 	}
2537 	if (err)
2538 		return err;
2539 	else
2540 		return len;
2541 }
2542 static struct md_sysfs_entry md_array_state =
2543 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2544 
2545 static ssize_t
2546 null_show(mddev_t *mddev, char *page)
2547 {
2548 	return -EINVAL;
2549 }
2550 
2551 static ssize_t
2552 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2553 {
2554 	/* buf must be %d:%d\n? giving major and minor numbers */
2555 	/* The new device is added to the array.
2556 	 * If the array has a persistent superblock, we read the
2557 	 * superblock to initialise info and check validity.
2558 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2559 	 * which mainly checks size.
2560 	 */
2561 	char *e;
2562 	int major = simple_strtoul(buf, &e, 10);
2563 	int minor;
2564 	dev_t dev;
2565 	mdk_rdev_t *rdev;
2566 	int err;
2567 
2568 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2569 		return -EINVAL;
2570 	minor = simple_strtoul(e+1, &e, 10);
2571 	if (*e && *e != '\n')
2572 		return -EINVAL;
2573 	dev = MKDEV(major, minor);
2574 	if (major != MAJOR(dev) ||
2575 	    minor != MINOR(dev))
2576 		return -EOVERFLOW;
2577 
2578 
2579 	if (mddev->persistent) {
2580 		rdev = md_import_device(dev, mddev->major_version,
2581 					mddev->minor_version);
2582 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2583 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2584 						       mdk_rdev_t, same_set);
2585 			err = super_types[mddev->major_version]
2586 				.load_super(rdev, rdev0, mddev->minor_version);
2587 			if (err < 0)
2588 				goto out;
2589 		}
2590 	} else
2591 		rdev = md_import_device(dev, -1, -1);
2592 
2593 	if (IS_ERR(rdev))
2594 		return PTR_ERR(rdev);
2595 	err = bind_rdev_to_array(rdev, mddev);
2596  out:
2597 	if (err)
2598 		export_rdev(rdev);
2599 	return err ? err : len;
2600 }
2601 
2602 static struct md_sysfs_entry md_new_device =
2603 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2604 
2605 static ssize_t
2606 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2607 {
2608 	char *end;
2609 	unsigned long chunk, end_chunk;
2610 
2611 	if (!mddev->bitmap)
2612 		goto out;
2613 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2614 	while (*buf) {
2615 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
2616 		if (buf == end) break;
2617 		if (*end == '-') { /* range */
2618 			buf = end + 1;
2619 			end_chunk = simple_strtoul(buf, &end, 0);
2620 			if (buf == end) break;
2621 		}
2622 		if (*end && !isspace(*end)) break;
2623 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2624 		buf = end;
2625 		while (isspace(*buf)) buf++;
2626 	}
2627 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2628 out:
2629 	return len;
2630 }
2631 
2632 static struct md_sysfs_entry md_bitmap =
2633 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2634 
2635 static ssize_t
2636 size_show(mddev_t *mddev, char *page)
2637 {
2638 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2639 }
2640 
2641 static int update_size(mddev_t *mddev, unsigned long size);
2642 
2643 static ssize_t
2644 size_store(mddev_t *mddev, const char *buf, size_t len)
2645 {
2646 	/* If array is inactive, we can reduce the component size, but
2647 	 * not increase it (except from 0).
2648 	 * If array is active, we can try an on-line resize
2649 	 */
2650 	char *e;
2651 	int err = 0;
2652 	unsigned long long size = simple_strtoull(buf, &e, 10);
2653 	if (!*buf || *buf == '\n' ||
2654 	    (*e && *e != '\n'))
2655 		return -EINVAL;
2656 
2657 	if (mddev->pers) {
2658 		err = update_size(mddev, size);
2659 		md_update_sb(mddev, 1);
2660 	} else {
2661 		if (mddev->size == 0 ||
2662 		    mddev->size > size)
2663 			mddev->size = size;
2664 		else
2665 			err = -ENOSPC;
2666 	}
2667 	return err ? err : len;
2668 }
2669 
2670 static struct md_sysfs_entry md_size =
2671 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2672 
2673 
2674 /* Metdata version.
2675  * This is either 'none' for arrays with externally managed metadata,
2676  * or N.M for internally known formats
2677  */
2678 static ssize_t
2679 metadata_show(mddev_t *mddev, char *page)
2680 {
2681 	if (mddev->persistent)
2682 		return sprintf(page, "%d.%d\n",
2683 			       mddev->major_version, mddev->minor_version);
2684 	else
2685 		return sprintf(page, "none\n");
2686 }
2687 
2688 static ssize_t
2689 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2690 {
2691 	int major, minor;
2692 	char *e;
2693 	if (!list_empty(&mddev->disks))
2694 		return -EBUSY;
2695 
2696 	if (cmd_match(buf, "none")) {
2697 		mddev->persistent = 0;
2698 		mddev->major_version = 0;
2699 		mddev->minor_version = 90;
2700 		return len;
2701 	}
2702 	major = simple_strtoul(buf, &e, 10);
2703 	if (e==buf || *e != '.')
2704 		return -EINVAL;
2705 	buf = e+1;
2706 	minor = simple_strtoul(buf, &e, 10);
2707 	if (e==buf || (*e && *e != '\n') )
2708 		return -EINVAL;
2709 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2710 		return -ENOENT;
2711 	mddev->major_version = major;
2712 	mddev->minor_version = minor;
2713 	mddev->persistent = 1;
2714 	return len;
2715 }
2716 
2717 static struct md_sysfs_entry md_metadata =
2718 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2719 
2720 static ssize_t
2721 action_show(mddev_t *mddev, char *page)
2722 {
2723 	char *type = "idle";
2724 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2725 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2726 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2727 			type = "reshape";
2728 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2729 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2730 				type = "resync";
2731 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2732 				type = "check";
2733 			else
2734 				type = "repair";
2735 		} else
2736 			type = "recover";
2737 	}
2738 	return sprintf(page, "%s\n", type);
2739 }
2740 
2741 static ssize_t
2742 action_store(mddev_t *mddev, const char *page, size_t len)
2743 {
2744 	if (!mddev->pers || !mddev->pers->sync_request)
2745 		return -EINVAL;
2746 
2747 	if (cmd_match(page, "idle")) {
2748 		if (mddev->sync_thread) {
2749 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2750 			md_unregister_thread(mddev->sync_thread);
2751 			mddev->sync_thread = NULL;
2752 			mddev->recovery = 0;
2753 		}
2754 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2755 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2756 		return -EBUSY;
2757 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2758 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2759 	else if (cmd_match(page, "reshape")) {
2760 		int err;
2761 		if (mddev->pers->start_reshape == NULL)
2762 			return -EINVAL;
2763 		err = mddev->pers->start_reshape(mddev);
2764 		if (err)
2765 			return err;
2766 	} else {
2767 		if (cmd_match(page, "check"))
2768 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2769 		else if (!cmd_match(page, "repair"))
2770 			return -EINVAL;
2771 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2772 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2773 	}
2774 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2775 	md_wakeup_thread(mddev->thread);
2776 	return len;
2777 }
2778 
2779 static ssize_t
2780 mismatch_cnt_show(mddev_t *mddev, char *page)
2781 {
2782 	return sprintf(page, "%llu\n",
2783 		       (unsigned long long) mddev->resync_mismatches);
2784 }
2785 
2786 static struct md_sysfs_entry md_scan_mode =
2787 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2788 
2789 
2790 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2791 
2792 static ssize_t
2793 sync_min_show(mddev_t *mddev, char *page)
2794 {
2795 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
2796 		       mddev->sync_speed_min ? "local": "system");
2797 }
2798 
2799 static ssize_t
2800 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2801 {
2802 	int min;
2803 	char *e;
2804 	if (strncmp(buf, "system", 6)==0) {
2805 		mddev->sync_speed_min = 0;
2806 		return len;
2807 	}
2808 	min = simple_strtoul(buf, &e, 10);
2809 	if (buf == e || (*e && *e != '\n') || min <= 0)
2810 		return -EINVAL;
2811 	mddev->sync_speed_min = min;
2812 	return len;
2813 }
2814 
2815 static struct md_sysfs_entry md_sync_min =
2816 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2817 
2818 static ssize_t
2819 sync_max_show(mddev_t *mddev, char *page)
2820 {
2821 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
2822 		       mddev->sync_speed_max ? "local": "system");
2823 }
2824 
2825 static ssize_t
2826 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2827 {
2828 	int max;
2829 	char *e;
2830 	if (strncmp(buf, "system", 6)==0) {
2831 		mddev->sync_speed_max = 0;
2832 		return len;
2833 	}
2834 	max = simple_strtoul(buf, &e, 10);
2835 	if (buf == e || (*e && *e != '\n') || max <= 0)
2836 		return -EINVAL;
2837 	mddev->sync_speed_max = max;
2838 	return len;
2839 }
2840 
2841 static struct md_sysfs_entry md_sync_max =
2842 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2843 
2844 
2845 static ssize_t
2846 sync_speed_show(mddev_t *mddev, char *page)
2847 {
2848 	unsigned long resync, dt, db;
2849 	resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2850 	dt = ((jiffies - mddev->resync_mark) / HZ);
2851 	if (!dt) dt++;
2852 	db = resync - (mddev->resync_mark_cnt);
2853 	return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2854 }
2855 
2856 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2857 
2858 static ssize_t
2859 sync_completed_show(mddev_t *mddev, char *page)
2860 {
2861 	unsigned long max_blocks, resync;
2862 
2863 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2864 		max_blocks = mddev->resync_max_sectors;
2865 	else
2866 		max_blocks = mddev->size << 1;
2867 
2868 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2869 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2870 }
2871 
2872 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2873 
2874 static ssize_t
2875 suspend_lo_show(mddev_t *mddev, char *page)
2876 {
2877 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2878 }
2879 
2880 static ssize_t
2881 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2882 {
2883 	char *e;
2884 	unsigned long long new = simple_strtoull(buf, &e, 10);
2885 
2886 	if (mddev->pers->quiesce == NULL)
2887 		return -EINVAL;
2888 	if (buf == e || (*e && *e != '\n'))
2889 		return -EINVAL;
2890 	if (new >= mddev->suspend_hi ||
2891 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2892 		mddev->suspend_lo = new;
2893 		mddev->pers->quiesce(mddev, 2);
2894 		return len;
2895 	} else
2896 		return -EINVAL;
2897 }
2898 static struct md_sysfs_entry md_suspend_lo =
2899 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2900 
2901 
2902 static ssize_t
2903 suspend_hi_show(mddev_t *mddev, char *page)
2904 {
2905 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2906 }
2907 
2908 static ssize_t
2909 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2910 {
2911 	char *e;
2912 	unsigned long long new = simple_strtoull(buf, &e, 10);
2913 
2914 	if (mddev->pers->quiesce == NULL)
2915 		return -EINVAL;
2916 	if (buf == e || (*e && *e != '\n'))
2917 		return -EINVAL;
2918 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2919 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2920 		mddev->suspend_hi = new;
2921 		mddev->pers->quiesce(mddev, 1);
2922 		mddev->pers->quiesce(mddev, 0);
2923 		return len;
2924 	} else
2925 		return -EINVAL;
2926 }
2927 static struct md_sysfs_entry md_suspend_hi =
2928 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2929 
2930 static ssize_t
2931 reshape_position_show(mddev_t *mddev, char *page)
2932 {
2933 	if (mddev->reshape_position != MaxSector)
2934 		return sprintf(page, "%llu\n",
2935 			       (unsigned long long)mddev->reshape_position);
2936 	strcpy(page, "none\n");
2937 	return 5;
2938 }
2939 
2940 static ssize_t
2941 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
2942 {
2943 	char *e;
2944 	unsigned long long new = simple_strtoull(buf, &e, 10);
2945 	if (mddev->pers)
2946 		return -EBUSY;
2947 	if (buf == e || (*e && *e != '\n'))
2948 		return -EINVAL;
2949 	mddev->reshape_position = new;
2950 	mddev->delta_disks = 0;
2951 	mddev->new_level = mddev->level;
2952 	mddev->new_layout = mddev->layout;
2953 	mddev->new_chunk = mddev->chunk_size;
2954 	return len;
2955 }
2956 
2957 static struct md_sysfs_entry md_reshape_position =
2958 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
2959        reshape_position_store);
2960 
2961 
2962 static struct attribute *md_default_attrs[] = {
2963 	&md_level.attr,
2964 	&md_layout.attr,
2965 	&md_raid_disks.attr,
2966 	&md_chunk_size.attr,
2967 	&md_size.attr,
2968 	&md_resync_start.attr,
2969 	&md_metadata.attr,
2970 	&md_new_device.attr,
2971 	&md_safe_delay.attr,
2972 	&md_array_state.attr,
2973 	&md_reshape_position.attr,
2974 	NULL,
2975 };
2976 
2977 static struct attribute *md_redundancy_attrs[] = {
2978 	&md_scan_mode.attr,
2979 	&md_mismatches.attr,
2980 	&md_sync_min.attr,
2981 	&md_sync_max.attr,
2982 	&md_sync_speed.attr,
2983 	&md_sync_completed.attr,
2984 	&md_suspend_lo.attr,
2985 	&md_suspend_hi.attr,
2986 	&md_bitmap.attr,
2987 	NULL,
2988 };
2989 static struct attribute_group md_redundancy_group = {
2990 	.name = NULL,
2991 	.attrs = md_redundancy_attrs,
2992 };
2993 
2994 
2995 static ssize_t
2996 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2997 {
2998 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2999 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3000 	ssize_t rv;
3001 
3002 	if (!entry->show)
3003 		return -EIO;
3004 	rv = mddev_lock(mddev);
3005 	if (!rv) {
3006 		rv = entry->show(mddev, page);
3007 		mddev_unlock(mddev);
3008 	}
3009 	return rv;
3010 }
3011 
3012 static ssize_t
3013 md_attr_store(struct kobject *kobj, struct attribute *attr,
3014 	      const char *page, size_t length)
3015 {
3016 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3017 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3018 	ssize_t rv;
3019 
3020 	if (!entry->store)
3021 		return -EIO;
3022 	if (!capable(CAP_SYS_ADMIN))
3023 		return -EACCES;
3024 	rv = mddev_lock(mddev);
3025 	if (!rv) {
3026 		rv = entry->store(mddev, page, length);
3027 		mddev_unlock(mddev);
3028 	}
3029 	return rv;
3030 }
3031 
3032 static void md_free(struct kobject *ko)
3033 {
3034 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
3035 	kfree(mddev);
3036 }
3037 
3038 static struct sysfs_ops md_sysfs_ops = {
3039 	.show	= md_attr_show,
3040 	.store	= md_attr_store,
3041 };
3042 static struct kobj_type md_ktype = {
3043 	.release	= md_free,
3044 	.sysfs_ops	= &md_sysfs_ops,
3045 	.default_attrs	= md_default_attrs,
3046 };
3047 
3048 int mdp_major = 0;
3049 
3050 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3051 {
3052 	static DEFINE_MUTEX(disks_mutex);
3053 	mddev_t *mddev = mddev_find(dev);
3054 	struct gendisk *disk;
3055 	int partitioned = (MAJOR(dev) != MD_MAJOR);
3056 	int shift = partitioned ? MdpMinorShift : 0;
3057 	int unit = MINOR(dev) >> shift;
3058 
3059 	if (!mddev)
3060 		return NULL;
3061 
3062 	mutex_lock(&disks_mutex);
3063 	if (mddev->gendisk) {
3064 		mutex_unlock(&disks_mutex);
3065 		mddev_put(mddev);
3066 		return NULL;
3067 	}
3068 	disk = alloc_disk(1 << shift);
3069 	if (!disk) {
3070 		mutex_unlock(&disks_mutex);
3071 		mddev_put(mddev);
3072 		return NULL;
3073 	}
3074 	disk->major = MAJOR(dev);
3075 	disk->first_minor = unit << shift;
3076 	if (partitioned)
3077 		sprintf(disk->disk_name, "md_d%d", unit);
3078 	else
3079 		sprintf(disk->disk_name, "md%d", unit);
3080 	disk->fops = &md_fops;
3081 	disk->private_data = mddev;
3082 	disk->queue = mddev->queue;
3083 	add_disk(disk);
3084 	mddev->gendisk = disk;
3085 	mutex_unlock(&disks_mutex);
3086 	mddev->kobj.parent = &disk->kobj;
3087 	mddev->kobj.k_name = NULL;
3088 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
3089 	mddev->kobj.ktype = &md_ktype;
3090 	if (kobject_register(&mddev->kobj))
3091 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3092 		       disk->disk_name);
3093 	return NULL;
3094 }
3095 
3096 static void md_safemode_timeout(unsigned long data)
3097 {
3098 	mddev_t *mddev = (mddev_t *) data;
3099 
3100 	mddev->safemode = 1;
3101 	md_wakeup_thread(mddev->thread);
3102 }
3103 
3104 static int start_dirty_degraded;
3105 
3106 static int do_md_run(mddev_t * mddev)
3107 {
3108 	int err;
3109 	int chunk_size;
3110 	struct list_head *tmp;
3111 	mdk_rdev_t *rdev;
3112 	struct gendisk *disk;
3113 	struct mdk_personality *pers;
3114 	char b[BDEVNAME_SIZE];
3115 
3116 	if (list_empty(&mddev->disks))
3117 		/* cannot run an array with no devices.. */
3118 		return -EINVAL;
3119 
3120 	if (mddev->pers)
3121 		return -EBUSY;
3122 
3123 	/*
3124 	 * Analyze all RAID superblock(s)
3125 	 */
3126 	if (!mddev->raid_disks)
3127 		analyze_sbs(mddev);
3128 
3129 	chunk_size = mddev->chunk_size;
3130 
3131 	if (chunk_size) {
3132 		if (chunk_size > MAX_CHUNK_SIZE) {
3133 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
3134 				chunk_size, MAX_CHUNK_SIZE);
3135 			return -EINVAL;
3136 		}
3137 		/*
3138 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3139 		 */
3140 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
3141 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3142 			return -EINVAL;
3143 		}
3144 		if (chunk_size < PAGE_SIZE) {
3145 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3146 				chunk_size, PAGE_SIZE);
3147 			return -EINVAL;
3148 		}
3149 
3150 		/* devices must have minimum size of one chunk */
3151 		ITERATE_RDEV(mddev,rdev,tmp) {
3152 			if (test_bit(Faulty, &rdev->flags))
3153 				continue;
3154 			if (rdev->size < chunk_size / 1024) {
3155 				printk(KERN_WARNING
3156 					"md: Dev %s smaller than chunk_size:"
3157 					" %lluk < %dk\n",
3158 					bdevname(rdev->bdev,b),
3159 					(unsigned long long)rdev->size,
3160 					chunk_size / 1024);
3161 				return -EINVAL;
3162 			}
3163 		}
3164 	}
3165 
3166 #ifdef CONFIG_KMOD
3167 	if (mddev->level != LEVEL_NONE)
3168 		request_module("md-level-%d", mddev->level);
3169 	else if (mddev->clevel[0])
3170 		request_module("md-%s", mddev->clevel);
3171 #endif
3172 
3173 	/*
3174 	 * Drop all container device buffers, from now on
3175 	 * the only valid external interface is through the md
3176 	 * device.
3177 	 * Also find largest hardsector size
3178 	 */
3179 	ITERATE_RDEV(mddev,rdev,tmp) {
3180 		if (test_bit(Faulty, &rdev->flags))
3181 			continue;
3182 		sync_blockdev(rdev->bdev);
3183 		invalidate_bdev(rdev->bdev);
3184 	}
3185 
3186 	md_probe(mddev->unit, NULL, NULL);
3187 	disk = mddev->gendisk;
3188 	if (!disk)
3189 		return -ENOMEM;
3190 
3191 	spin_lock(&pers_lock);
3192 	pers = find_pers(mddev->level, mddev->clevel);
3193 	if (!pers || !try_module_get(pers->owner)) {
3194 		spin_unlock(&pers_lock);
3195 		if (mddev->level != LEVEL_NONE)
3196 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3197 			       mddev->level);
3198 		else
3199 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3200 			       mddev->clevel);
3201 		return -EINVAL;
3202 	}
3203 	mddev->pers = pers;
3204 	spin_unlock(&pers_lock);
3205 	mddev->level = pers->level;
3206 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3207 
3208 	if (mddev->reshape_position != MaxSector &&
3209 	    pers->start_reshape == NULL) {
3210 		/* This personality cannot handle reshaping... */
3211 		mddev->pers = NULL;
3212 		module_put(pers->owner);
3213 		return -EINVAL;
3214 	}
3215 
3216 	if (pers->sync_request) {
3217 		/* Warn if this is a potentially silly
3218 		 * configuration.
3219 		 */
3220 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3221 		mdk_rdev_t *rdev2;
3222 		struct list_head *tmp2;
3223 		int warned = 0;
3224 		ITERATE_RDEV(mddev, rdev, tmp) {
3225 			ITERATE_RDEV(mddev, rdev2, tmp2) {
3226 				if (rdev < rdev2 &&
3227 				    rdev->bdev->bd_contains ==
3228 				    rdev2->bdev->bd_contains) {
3229 					printk(KERN_WARNING
3230 					       "%s: WARNING: %s appears to be"
3231 					       " on the same physical disk as"
3232 					       " %s.\n",
3233 					       mdname(mddev),
3234 					       bdevname(rdev->bdev,b),
3235 					       bdevname(rdev2->bdev,b2));
3236 					warned = 1;
3237 				}
3238 			}
3239 		}
3240 		if (warned)
3241 			printk(KERN_WARNING
3242 			       "True protection against single-disk"
3243 			       " failure might be compromised.\n");
3244 	}
3245 
3246 	mddev->recovery = 0;
3247 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3248 	mddev->barriers_work = 1;
3249 	mddev->ok_start_degraded = start_dirty_degraded;
3250 
3251 	if (start_readonly)
3252 		mddev->ro = 2; /* read-only, but switch on first write */
3253 
3254 	err = mddev->pers->run(mddev);
3255 	if (!err && mddev->pers->sync_request) {
3256 		err = bitmap_create(mddev);
3257 		if (err) {
3258 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3259 			       mdname(mddev), err);
3260 			mddev->pers->stop(mddev);
3261 		}
3262 	}
3263 	if (err) {
3264 		printk(KERN_ERR "md: pers->run() failed ...\n");
3265 		module_put(mddev->pers->owner);
3266 		mddev->pers = NULL;
3267 		bitmap_destroy(mddev);
3268 		return err;
3269 	}
3270 	if (mddev->pers->sync_request) {
3271 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3272 			printk(KERN_WARNING
3273 			       "md: cannot register extra attributes for %s\n",
3274 			       mdname(mddev));
3275 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
3276 		mddev->ro = 0;
3277 
3278  	atomic_set(&mddev->writes_pending,0);
3279 	mddev->safemode = 0;
3280 	mddev->safemode_timer.function = md_safemode_timeout;
3281 	mddev->safemode_timer.data = (unsigned long) mddev;
3282 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3283 	mddev->in_sync = 1;
3284 
3285 	ITERATE_RDEV(mddev,rdev,tmp)
3286 		if (rdev->raid_disk >= 0) {
3287 			char nm[20];
3288 			sprintf(nm, "rd%d", rdev->raid_disk);
3289 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3290 				printk("md: cannot register %s for %s\n",
3291 				       nm, mdname(mddev));
3292 		}
3293 
3294 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3295 
3296 	if (mddev->flags)
3297 		md_update_sb(mddev, 0);
3298 
3299 	set_capacity(disk, mddev->array_size<<1);
3300 
3301 	/* If we call blk_queue_make_request here, it will
3302 	 * re-initialise max_sectors etc which may have been
3303 	 * refined inside -> run.  So just set the bits we need to set.
3304 	 * Most initialisation happended when we called
3305 	 * blk_queue_make_request(..., md_fail_request)
3306 	 * earlier.
3307 	 */
3308 	mddev->queue->queuedata = mddev;
3309 	mddev->queue->make_request_fn = mddev->pers->make_request;
3310 
3311 	/* If there is a partially-recovered drive we need to
3312 	 * start recovery here.  If we leave it to md_check_recovery,
3313 	 * it will remove the drives and not do the right thing
3314 	 */
3315 	if (mddev->degraded && !mddev->sync_thread) {
3316 		struct list_head *rtmp;
3317 		int spares = 0;
3318 		ITERATE_RDEV(mddev,rdev,rtmp)
3319 			if (rdev->raid_disk >= 0 &&
3320 			    !test_bit(In_sync, &rdev->flags) &&
3321 			    !test_bit(Faulty, &rdev->flags))
3322 				/* complete an interrupted recovery */
3323 				spares++;
3324 		if (spares && mddev->pers->sync_request) {
3325 			mddev->recovery = 0;
3326 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3327 			mddev->sync_thread = md_register_thread(md_do_sync,
3328 								mddev,
3329 								"%s_resync");
3330 			if (!mddev->sync_thread) {
3331 				printk(KERN_ERR "%s: could not start resync"
3332 				       " thread...\n",
3333 				       mdname(mddev));
3334 				/* leave the spares where they are, it shouldn't hurt */
3335 				mddev->recovery = 0;
3336 			}
3337 		}
3338 	}
3339 	md_wakeup_thread(mddev->thread);
3340 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3341 
3342 	mddev->changed = 1;
3343 	md_new_event(mddev);
3344 	kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
3345 	return 0;
3346 }
3347 
3348 static int restart_array(mddev_t *mddev)
3349 {
3350 	struct gendisk *disk = mddev->gendisk;
3351 	int err;
3352 
3353 	/*
3354 	 * Complain if it has no devices
3355 	 */
3356 	err = -ENXIO;
3357 	if (list_empty(&mddev->disks))
3358 		goto out;
3359 
3360 	if (mddev->pers) {
3361 		err = -EBUSY;
3362 		if (!mddev->ro)
3363 			goto out;
3364 
3365 		mddev->safemode = 0;
3366 		mddev->ro = 0;
3367 		set_disk_ro(disk, 0);
3368 
3369 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
3370 			mdname(mddev));
3371 		/*
3372 		 * Kick recovery or resync if necessary
3373 		 */
3374 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3375 		md_wakeup_thread(mddev->thread);
3376 		md_wakeup_thread(mddev->sync_thread);
3377 		err = 0;
3378 	} else
3379 		err = -EINVAL;
3380 
3381 out:
3382 	return err;
3383 }
3384 
3385 /* similar to deny_write_access, but accounts for our holding a reference
3386  * to the file ourselves */
3387 static int deny_bitmap_write_access(struct file * file)
3388 {
3389 	struct inode *inode = file->f_mapping->host;
3390 
3391 	spin_lock(&inode->i_lock);
3392 	if (atomic_read(&inode->i_writecount) > 1) {
3393 		spin_unlock(&inode->i_lock);
3394 		return -ETXTBSY;
3395 	}
3396 	atomic_set(&inode->i_writecount, -1);
3397 	spin_unlock(&inode->i_lock);
3398 
3399 	return 0;
3400 }
3401 
3402 static void restore_bitmap_write_access(struct file *file)
3403 {
3404 	struct inode *inode = file->f_mapping->host;
3405 
3406 	spin_lock(&inode->i_lock);
3407 	atomic_set(&inode->i_writecount, 1);
3408 	spin_unlock(&inode->i_lock);
3409 }
3410 
3411 /* mode:
3412  *   0 - completely stop and dis-assemble array
3413  *   1 - switch to readonly
3414  *   2 - stop but do not disassemble array
3415  */
3416 static int do_md_stop(mddev_t * mddev, int mode)
3417 {
3418 	int err = 0;
3419 	struct gendisk *disk = mddev->gendisk;
3420 
3421 	if (mddev->pers) {
3422 		if (atomic_read(&mddev->active)>2) {
3423 			printk("md: %s still in use.\n",mdname(mddev));
3424 			return -EBUSY;
3425 		}
3426 
3427 		if (mddev->sync_thread) {
3428 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3429 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3430 			md_unregister_thread(mddev->sync_thread);
3431 			mddev->sync_thread = NULL;
3432 		}
3433 
3434 		del_timer_sync(&mddev->safemode_timer);
3435 
3436 		invalidate_partition(disk, 0);
3437 
3438 		switch(mode) {
3439 		case 1: /* readonly */
3440 			err  = -ENXIO;
3441 			if (mddev->ro==1)
3442 				goto out;
3443 			mddev->ro = 1;
3444 			break;
3445 		case 0: /* disassemble */
3446 		case 2: /* stop */
3447 			bitmap_flush(mddev);
3448 			md_super_wait(mddev);
3449 			if (mddev->ro)
3450 				set_disk_ro(disk, 0);
3451 			blk_queue_make_request(mddev->queue, md_fail_request);
3452 			mddev->pers->stop(mddev);
3453 			mddev->queue->merge_bvec_fn = NULL;
3454 			mddev->queue->unplug_fn = NULL;
3455 			mddev->queue->issue_flush_fn = NULL;
3456 			mddev->queue->backing_dev_info.congested_fn = NULL;
3457 			if (mddev->pers->sync_request)
3458 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3459 
3460 			module_put(mddev->pers->owner);
3461 			mddev->pers = NULL;
3462 
3463 			set_capacity(disk, 0);
3464 			mddev->changed = 1;
3465 
3466 			if (mddev->ro)
3467 				mddev->ro = 0;
3468 		}
3469 		if (!mddev->in_sync || mddev->flags) {
3470 			/* mark array as shutdown cleanly */
3471 			mddev->in_sync = 1;
3472 			md_update_sb(mddev, 1);
3473 		}
3474 		if (mode == 1)
3475 			set_disk_ro(disk, 1);
3476 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3477 	}
3478 
3479 	/*
3480 	 * Free resources if final stop
3481 	 */
3482 	if (mode == 0) {
3483 		mdk_rdev_t *rdev;
3484 		struct list_head *tmp;
3485 
3486 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3487 
3488 		bitmap_destroy(mddev);
3489 		if (mddev->bitmap_file) {
3490 			restore_bitmap_write_access(mddev->bitmap_file);
3491 			fput(mddev->bitmap_file);
3492 			mddev->bitmap_file = NULL;
3493 		}
3494 		mddev->bitmap_offset = 0;
3495 
3496 		ITERATE_RDEV(mddev,rdev,tmp)
3497 			if (rdev->raid_disk >= 0) {
3498 				char nm[20];
3499 				sprintf(nm, "rd%d", rdev->raid_disk);
3500 				sysfs_remove_link(&mddev->kobj, nm);
3501 			}
3502 
3503 		/* make sure all delayed_delete calls have finished */
3504 		flush_scheduled_work();
3505 
3506 		export_array(mddev);
3507 
3508 		mddev->array_size = 0;
3509 		mddev->size = 0;
3510 		mddev->raid_disks = 0;
3511 		mddev->recovery_cp = 0;
3512 		mddev->reshape_position = MaxSector;
3513 
3514 	} else if (mddev->pers)
3515 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
3516 			mdname(mddev));
3517 	err = 0;
3518 	md_new_event(mddev);
3519 out:
3520 	return err;
3521 }
3522 
3523 #ifndef MODULE
3524 static void autorun_array(mddev_t *mddev)
3525 {
3526 	mdk_rdev_t *rdev;
3527 	struct list_head *tmp;
3528 	int err;
3529 
3530 	if (list_empty(&mddev->disks))
3531 		return;
3532 
3533 	printk(KERN_INFO "md: running: ");
3534 
3535 	ITERATE_RDEV(mddev,rdev,tmp) {
3536 		char b[BDEVNAME_SIZE];
3537 		printk("<%s>", bdevname(rdev->bdev,b));
3538 	}
3539 	printk("\n");
3540 
3541 	err = do_md_run (mddev);
3542 	if (err) {
3543 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3544 		do_md_stop (mddev, 0);
3545 	}
3546 }
3547 
3548 /*
3549  * lets try to run arrays based on all disks that have arrived
3550  * until now. (those are in pending_raid_disks)
3551  *
3552  * the method: pick the first pending disk, collect all disks with
3553  * the same UUID, remove all from the pending list and put them into
3554  * the 'same_array' list. Then order this list based on superblock
3555  * update time (freshest comes first), kick out 'old' disks and
3556  * compare superblocks. If everything's fine then run it.
3557  *
3558  * If "unit" is allocated, then bump its reference count
3559  */
3560 static void autorun_devices(int part)
3561 {
3562 	struct list_head *tmp;
3563 	mdk_rdev_t *rdev0, *rdev;
3564 	mddev_t *mddev;
3565 	char b[BDEVNAME_SIZE];
3566 
3567 	printk(KERN_INFO "md: autorun ...\n");
3568 	while (!list_empty(&pending_raid_disks)) {
3569 		int unit;
3570 		dev_t dev;
3571 		LIST_HEAD(candidates);
3572 		rdev0 = list_entry(pending_raid_disks.next,
3573 					 mdk_rdev_t, same_set);
3574 
3575 		printk(KERN_INFO "md: considering %s ...\n",
3576 			bdevname(rdev0->bdev,b));
3577 		INIT_LIST_HEAD(&candidates);
3578 		ITERATE_RDEV_PENDING(rdev,tmp)
3579 			if (super_90_load(rdev, rdev0, 0) >= 0) {
3580 				printk(KERN_INFO "md:  adding %s ...\n",
3581 					bdevname(rdev->bdev,b));
3582 				list_move(&rdev->same_set, &candidates);
3583 			}
3584 		/*
3585 		 * now we have a set of devices, with all of them having
3586 		 * mostly sane superblocks. It's time to allocate the
3587 		 * mddev.
3588 		 */
3589 		if (part) {
3590 			dev = MKDEV(mdp_major,
3591 				    rdev0->preferred_minor << MdpMinorShift);
3592 			unit = MINOR(dev) >> MdpMinorShift;
3593 		} else {
3594 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3595 			unit = MINOR(dev);
3596 		}
3597 		if (rdev0->preferred_minor != unit) {
3598 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3599 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3600 			break;
3601 		}
3602 
3603 		md_probe(dev, NULL, NULL);
3604 		mddev = mddev_find(dev);
3605 		if (!mddev) {
3606 			printk(KERN_ERR
3607 				"md: cannot allocate memory for md drive.\n");
3608 			break;
3609 		}
3610 		if (mddev_lock(mddev))
3611 			printk(KERN_WARNING "md: %s locked, cannot run\n",
3612 			       mdname(mddev));
3613 		else if (mddev->raid_disks || mddev->major_version
3614 			 || !list_empty(&mddev->disks)) {
3615 			printk(KERN_WARNING
3616 				"md: %s already running, cannot run %s\n",
3617 				mdname(mddev), bdevname(rdev0->bdev,b));
3618 			mddev_unlock(mddev);
3619 		} else {
3620 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
3621 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3622 				list_del_init(&rdev->same_set);
3623 				if (bind_rdev_to_array(rdev, mddev))
3624 					export_rdev(rdev);
3625 			}
3626 			autorun_array(mddev);
3627 			mddev_unlock(mddev);
3628 		}
3629 		/* on success, candidates will be empty, on error
3630 		 * it won't...
3631 		 */
3632 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3633 			export_rdev(rdev);
3634 		mddev_put(mddev);
3635 	}
3636 	printk(KERN_INFO "md: ... autorun DONE.\n");
3637 }
3638 #endif /* !MODULE */
3639 
3640 static int get_version(void __user * arg)
3641 {
3642 	mdu_version_t ver;
3643 
3644 	ver.major = MD_MAJOR_VERSION;
3645 	ver.minor = MD_MINOR_VERSION;
3646 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
3647 
3648 	if (copy_to_user(arg, &ver, sizeof(ver)))
3649 		return -EFAULT;
3650 
3651 	return 0;
3652 }
3653 
3654 static int get_array_info(mddev_t * mddev, void __user * arg)
3655 {
3656 	mdu_array_info_t info;
3657 	int nr,working,active,failed,spare;
3658 	mdk_rdev_t *rdev;
3659 	struct list_head *tmp;
3660 
3661 	nr=working=active=failed=spare=0;
3662 	ITERATE_RDEV(mddev,rdev,tmp) {
3663 		nr++;
3664 		if (test_bit(Faulty, &rdev->flags))
3665 			failed++;
3666 		else {
3667 			working++;
3668 			if (test_bit(In_sync, &rdev->flags))
3669 				active++;
3670 			else
3671 				spare++;
3672 		}
3673 	}
3674 
3675 	info.major_version = mddev->major_version;
3676 	info.minor_version = mddev->minor_version;
3677 	info.patch_version = MD_PATCHLEVEL_VERSION;
3678 	info.ctime         = mddev->ctime;
3679 	info.level         = mddev->level;
3680 	info.size          = mddev->size;
3681 	if (info.size != mddev->size) /* overflow */
3682 		info.size = -1;
3683 	info.nr_disks      = nr;
3684 	info.raid_disks    = mddev->raid_disks;
3685 	info.md_minor      = mddev->md_minor;
3686 	info.not_persistent= !mddev->persistent;
3687 
3688 	info.utime         = mddev->utime;
3689 	info.state         = 0;
3690 	if (mddev->in_sync)
3691 		info.state = (1<<MD_SB_CLEAN);
3692 	if (mddev->bitmap && mddev->bitmap_offset)
3693 		info.state = (1<<MD_SB_BITMAP_PRESENT);
3694 	info.active_disks  = active;
3695 	info.working_disks = working;
3696 	info.failed_disks  = failed;
3697 	info.spare_disks   = spare;
3698 
3699 	info.layout        = mddev->layout;
3700 	info.chunk_size    = mddev->chunk_size;
3701 
3702 	if (copy_to_user(arg, &info, sizeof(info)))
3703 		return -EFAULT;
3704 
3705 	return 0;
3706 }
3707 
3708 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3709 {
3710 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3711 	char *ptr, *buf = NULL;
3712 	int err = -ENOMEM;
3713 
3714 	md_allow_write(mddev);
3715 
3716 	file = kmalloc(sizeof(*file), GFP_KERNEL);
3717 	if (!file)
3718 		goto out;
3719 
3720 	/* bitmap disabled, zero the first byte and copy out */
3721 	if (!mddev->bitmap || !mddev->bitmap->file) {
3722 		file->pathname[0] = '\0';
3723 		goto copy_out;
3724 	}
3725 
3726 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3727 	if (!buf)
3728 		goto out;
3729 
3730 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3731 	if (!ptr)
3732 		goto out;
3733 
3734 	strcpy(file->pathname, ptr);
3735 
3736 copy_out:
3737 	err = 0;
3738 	if (copy_to_user(arg, file, sizeof(*file)))
3739 		err = -EFAULT;
3740 out:
3741 	kfree(buf);
3742 	kfree(file);
3743 	return err;
3744 }
3745 
3746 static int get_disk_info(mddev_t * mddev, void __user * arg)
3747 {
3748 	mdu_disk_info_t info;
3749 	unsigned int nr;
3750 	mdk_rdev_t *rdev;
3751 
3752 	if (copy_from_user(&info, arg, sizeof(info)))
3753 		return -EFAULT;
3754 
3755 	nr = info.number;
3756 
3757 	rdev = find_rdev_nr(mddev, nr);
3758 	if (rdev) {
3759 		info.major = MAJOR(rdev->bdev->bd_dev);
3760 		info.minor = MINOR(rdev->bdev->bd_dev);
3761 		info.raid_disk = rdev->raid_disk;
3762 		info.state = 0;
3763 		if (test_bit(Faulty, &rdev->flags))
3764 			info.state |= (1<<MD_DISK_FAULTY);
3765 		else if (test_bit(In_sync, &rdev->flags)) {
3766 			info.state |= (1<<MD_DISK_ACTIVE);
3767 			info.state |= (1<<MD_DISK_SYNC);
3768 		}
3769 		if (test_bit(WriteMostly, &rdev->flags))
3770 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
3771 	} else {
3772 		info.major = info.minor = 0;
3773 		info.raid_disk = -1;
3774 		info.state = (1<<MD_DISK_REMOVED);
3775 	}
3776 
3777 	if (copy_to_user(arg, &info, sizeof(info)))
3778 		return -EFAULT;
3779 
3780 	return 0;
3781 }
3782 
3783 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3784 {
3785 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3786 	mdk_rdev_t *rdev;
3787 	dev_t dev = MKDEV(info->major,info->minor);
3788 
3789 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3790 		return -EOVERFLOW;
3791 
3792 	if (!mddev->raid_disks) {
3793 		int err;
3794 		/* expecting a device which has a superblock */
3795 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3796 		if (IS_ERR(rdev)) {
3797 			printk(KERN_WARNING
3798 				"md: md_import_device returned %ld\n",
3799 				PTR_ERR(rdev));
3800 			return PTR_ERR(rdev);
3801 		}
3802 		if (!list_empty(&mddev->disks)) {
3803 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3804 							mdk_rdev_t, same_set);
3805 			int err = super_types[mddev->major_version]
3806 				.load_super(rdev, rdev0, mddev->minor_version);
3807 			if (err < 0) {
3808 				printk(KERN_WARNING
3809 					"md: %s has different UUID to %s\n",
3810 					bdevname(rdev->bdev,b),
3811 					bdevname(rdev0->bdev,b2));
3812 				export_rdev(rdev);
3813 				return -EINVAL;
3814 			}
3815 		}
3816 		err = bind_rdev_to_array(rdev, mddev);
3817 		if (err)
3818 			export_rdev(rdev);
3819 		return err;
3820 	}
3821 
3822 	/*
3823 	 * add_new_disk can be used once the array is assembled
3824 	 * to add "hot spares".  They must already have a superblock
3825 	 * written
3826 	 */
3827 	if (mddev->pers) {
3828 		int err;
3829 		if (!mddev->pers->hot_add_disk) {
3830 			printk(KERN_WARNING
3831 				"%s: personality does not support diskops!\n",
3832 			       mdname(mddev));
3833 			return -EINVAL;
3834 		}
3835 		if (mddev->persistent)
3836 			rdev = md_import_device(dev, mddev->major_version,
3837 						mddev->minor_version);
3838 		else
3839 			rdev = md_import_device(dev, -1, -1);
3840 		if (IS_ERR(rdev)) {
3841 			printk(KERN_WARNING
3842 				"md: md_import_device returned %ld\n",
3843 				PTR_ERR(rdev));
3844 			return PTR_ERR(rdev);
3845 		}
3846 		/* set save_raid_disk if appropriate */
3847 		if (!mddev->persistent) {
3848 			if (info->state & (1<<MD_DISK_SYNC)  &&
3849 			    info->raid_disk < mddev->raid_disks)
3850 				rdev->raid_disk = info->raid_disk;
3851 			else
3852 				rdev->raid_disk = -1;
3853 		} else
3854 			super_types[mddev->major_version].
3855 				validate_super(mddev, rdev);
3856 		rdev->saved_raid_disk = rdev->raid_disk;
3857 
3858 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
3859 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3860 			set_bit(WriteMostly, &rdev->flags);
3861 
3862 		rdev->raid_disk = -1;
3863 		err = bind_rdev_to_array(rdev, mddev);
3864 		if (!err && !mddev->pers->hot_remove_disk) {
3865 			/* If there is hot_add_disk but no hot_remove_disk
3866 			 * then added disks for geometry changes,
3867 			 * and should be added immediately.
3868 			 */
3869 			super_types[mddev->major_version].
3870 				validate_super(mddev, rdev);
3871 			err = mddev->pers->hot_add_disk(mddev, rdev);
3872 			if (err)
3873 				unbind_rdev_from_array(rdev);
3874 		}
3875 		if (err)
3876 			export_rdev(rdev);
3877 
3878 		md_update_sb(mddev, 1);
3879 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3880 		md_wakeup_thread(mddev->thread);
3881 		return err;
3882 	}
3883 
3884 	/* otherwise, add_new_disk is only allowed
3885 	 * for major_version==0 superblocks
3886 	 */
3887 	if (mddev->major_version != 0) {
3888 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3889 		       mdname(mddev));
3890 		return -EINVAL;
3891 	}
3892 
3893 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
3894 		int err;
3895 		rdev = md_import_device (dev, -1, 0);
3896 		if (IS_ERR(rdev)) {
3897 			printk(KERN_WARNING
3898 				"md: error, md_import_device() returned %ld\n",
3899 				PTR_ERR(rdev));
3900 			return PTR_ERR(rdev);
3901 		}
3902 		rdev->desc_nr = info->number;
3903 		if (info->raid_disk < mddev->raid_disks)
3904 			rdev->raid_disk = info->raid_disk;
3905 		else
3906 			rdev->raid_disk = -1;
3907 
3908 		rdev->flags = 0;
3909 
3910 		if (rdev->raid_disk < mddev->raid_disks)
3911 			if (info->state & (1<<MD_DISK_SYNC))
3912 				set_bit(In_sync, &rdev->flags);
3913 
3914 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3915 			set_bit(WriteMostly, &rdev->flags);
3916 
3917 		if (!mddev->persistent) {
3918 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
3919 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3920 		} else
3921 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3922 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3923 
3924 		err = bind_rdev_to_array(rdev, mddev);
3925 		if (err) {
3926 			export_rdev(rdev);
3927 			return err;
3928 		}
3929 	}
3930 
3931 	return 0;
3932 }
3933 
3934 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3935 {
3936 	char b[BDEVNAME_SIZE];
3937 	mdk_rdev_t *rdev;
3938 
3939 	if (!mddev->pers)
3940 		return -ENODEV;
3941 
3942 	rdev = find_rdev(mddev, dev);
3943 	if (!rdev)
3944 		return -ENXIO;
3945 
3946 	if (rdev->raid_disk >= 0)
3947 		goto busy;
3948 
3949 	kick_rdev_from_array(rdev);
3950 	md_update_sb(mddev, 1);
3951 	md_new_event(mddev);
3952 
3953 	return 0;
3954 busy:
3955 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3956 		bdevname(rdev->bdev,b), mdname(mddev));
3957 	return -EBUSY;
3958 }
3959 
3960 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3961 {
3962 	char b[BDEVNAME_SIZE];
3963 	int err;
3964 	unsigned int size;
3965 	mdk_rdev_t *rdev;
3966 
3967 	if (!mddev->pers)
3968 		return -ENODEV;
3969 
3970 	if (mddev->major_version != 0) {
3971 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3972 			" version-0 superblocks.\n",
3973 			mdname(mddev));
3974 		return -EINVAL;
3975 	}
3976 	if (!mddev->pers->hot_add_disk) {
3977 		printk(KERN_WARNING
3978 			"%s: personality does not support diskops!\n",
3979 			mdname(mddev));
3980 		return -EINVAL;
3981 	}
3982 
3983 	rdev = md_import_device (dev, -1, 0);
3984 	if (IS_ERR(rdev)) {
3985 		printk(KERN_WARNING
3986 			"md: error, md_import_device() returned %ld\n",
3987 			PTR_ERR(rdev));
3988 		return -EINVAL;
3989 	}
3990 
3991 	if (mddev->persistent)
3992 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3993 	else
3994 		rdev->sb_offset =
3995 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3996 
3997 	size = calc_dev_size(rdev, mddev->chunk_size);
3998 	rdev->size = size;
3999 
4000 	if (test_bit(Faulty, &rdev->flags)) {
4001 		printk(KERN_WARNING
4002 			"md: can not hot-add faulty %s disk to %s!\n",
4003 			bdevname(rdev->bdev,b), mdname(mddev));
4004 		err = -EINVAL;
4005 		goto abort_export;
4006 	}
4007 	clear_bit(In_sync, &rdev->flags);
4008 	rdev->desc_nr = -1;
4009 	rdev->saved_raid_disk = -1;
4010 	err = bind_rdev_to_array(rdev, mddev);
4011 	if (err)
4012 		goto abort_export;
4013 
4014 	/*
4015 	 * The rest should better be atomic, we can have disk failures
4016 	 * noticed in interrupt contexts ...
4017 	 */
4018 
4019 	if (rdev->desc_nr == mddev->max_disks) {
4020 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4021 			mdname(mddev));
4022 		err = -EBUSY;
4023 		goto abort_unbind_export;
4024 	}
4025 
4026 	rdev->raid_disk = -1;
4027 
4028 	md_update_sb(mddev, 1);
4029 
4030 	/*
4031 	 * Kick recovery, maybe this spare has to be added to the
4032 	 * array immediately.
4033 	 */
4034 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4035 	md_wakeup_thread(mddev->thread);
4036 	md_new_event(mddev);
4037 	return 0;
4038 
4039 abort_unbind_export:
4040 	unbind_rdev_from_array(rdev);
4041 
4042 abort_export:
4043 	export_rdev(rdev);
4044 	return err;
4045 }
4046 
4047 static int set_bitmap_file(mddev_t *mddev, int fd)
4048 {
4049 	int err;
4050 
4051 	if (mddev->pers) {
4052 		if (!mddev->pers->quiesce)
4053 			return -EBUSY;
4054 		if (mddev->recovery || mddev->sync_thread)
4055 			return -EBUSY;
4056 		/* we should be able to change the bitmap.. */
4057 	}
4058 
4059 
4060 	if (fd >= 0) {
4061 		if (mddev->bitmap)
4062 			return -EEXIST; /* cannot add when bitmap is present */
4063 		mddev->bitmap_file = fget(fd);
4064 
4065 		if (mddev->bitmap_file == NULL) {
4066 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4067 			       mdname(mddev));
4068 			return -EBADF;
4069 		}
4070 
4071 		err = deny_bitmap_write_access(mddev->bitmap_file);
4072 		if (err) {
4073 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4074 			       mdname(mddev));
4075 			fput(mddev->bitmap_file);
4076 			mddev->bitmap_file = NULL;
4077 			return err;
4078 		}
4079 		mddev->bitmap_offset = 0; /* file overrides offset */
4080 	} else if (mddev->bitmap == NULL)
4081 		return -ENOENT; /* cannot remove what isn't there */
4082 	err = 0;
4083 	if (mddev->pers) {
4084 		mddev->pers->quiesce(mddev, 1);
4085 		if (fd >= 0)
4086 			err = bitmap_create(mddev);
4087 		if (fd < 0 || err) {
4088 			bitmap_destroy(mddev);
4089 			fd = -1; /* make sure to put the file */
4090 		}
4091 		mddev->pers->quiesce(mddev, 0);
4092 	}
4093 	if (fd < 0) {
4094 		if (mddev->bitmap_file) {
4095 			restore_bitmap_write_access(mddev->bitmap_file);
4096 			fput(mddev->bitmap_file);
4097 		}
4098 		mddev->bitmap_file = NULL;
4099 	}
4100 
4101 	return err;
4102 }
4103 
4104 /*
4105  * set_array_info is used two different ways
4106  * The original usage is when creating a new array.
4107  * In this usage, raid_disks is > 0 and it together with
4108  *  level, size, not_persistent,layout,chunksize determine the
4109  *  shape of the array.
4110  *  This will always create an array with a type-0.90.0 superblock.
4111  * The newer usage is when assembling an array.
4112  *  In this case raid_disks will be 0, and the major_version field is
4113  *  use to determine which style super-blocks are to be found on the devices.
4114  *  The minor and patch _version numbers are also kept incase the
4115  *  super_block handler wishes to interpret them.
4116  */
4117 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4118 {
4119 
4120 	if (info->raid_disks == 0) {
4121 		/* just setting version number for superblock loading */
4122 		if (info->major_version < 0 ||
4123 		    info->major_version >= ARRAY_SIZE(super_types) ||
4124 		    super_types[info->major_version].name == NULL) {
4125 			/* maybe try to auto-load a module? */
4126 			printk(KERN_INFO
4127 				"md: superblock version %d not known\n",
4128 				info->major_version);
4129 			return -EINVAL;
4130 		}
4131 		mddev->major_version = info->major_version;
4132 		mddev->minor_version = info->minor_version;
4133 		mddev->patch_version = info->patch_version;
4134 		mddev->persistent = !info->not_persistent;
4135 		return 0;
4136 	}
4137 	mddev->major_version = MD_MAJOR_VERSION;
4138 	mddev->minor_version = MD_MINOR_VERSION;
4139 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
4140 	mddev->ctime         = get_seconds();
4141 
4142 	mddev->level         = info->level;
4143 	mddev->clevel[0]     = 0;
4144 	mddev->size          = info->size;
4145 	mddev->raid_disks    = info->raid_disks;
4146 	/* don't set md_minor, it is determined by which /dev/md* was
4147 	 * openned
4148 	 */
4149 	if (info->state & (1<<MD_SB_CLEAN))
4150 		mddev->recovery_cp = MaxSector;
4151 	else
4152 		mddev->recovery_cp = 0;
4153 	mddev->persistent    = ! info->not_persistent;
4154 
4155 	mddev->layout        = info->layout;
4156 	mddev->chunk_size    = info->chunk_size;
4157 
4158 	mddev->max_disks     = MD_SB_DISKS;
4159 
4160 	mddev->flags         = 0;
4161 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4162 
4163 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4164 	mddev->bitmap_offset = 0;
4165 
4166 	mddev->reshape_position = MaxSector;
4167 
4168 	/*
4169 	 * Generate a 128 bit UUID
4170 	 */
4171 	get_random_bytes(mddev->uuid, 16);
4172 
4173 	mddev->new_level = mddev->level;
4174 	mddev->new_chunk = mddev->chunk_size;
4175 	mddev->new_layout = mddev->layout;
4176 	mddev->delta_disks = 0;
4177 
4178 	return 0;
4179 }
4180 
4181 static int update_size(mddev_t *mddev, unsigned long size)
4182 {
4183 	mdk_rdev_t * rdev;
4184 	int rv;
4185 	struct list_head *tmp;
4186 	int fit = (size == 0);
4187 
4188 	if (mddev->pers->resize == NULL)
4189 		return -EINVAL;
4190 	/* The "size" is the amount of each device that is used.
4191 	 * This can only make sense for arrays with redundancy.
4192 	 * linear and raid0 always use whatever space is available
4193 	 * We can only consider changing the size if no resync
4194 	 * or reconstruction is happening, and if the new size
4195 	 * is acceptable. It must fit before the sb_offset or,
4196 	 * if that is <data_offset, it must fit before the
4197 	 * size of each device.
4198 	 * If size is zero, we find the largest size that fits.
4199 	 */
4200 	if (mddev->sync_thread)
4201 		return -EBUSY;
4202 	ITERATE_RDEV(mddev,rdev,tmp) {
4203 		sector_t avail;
4204 		avail = rdev->size * 2;
4205 
4206 		if (fit && (size == 0 || size > avail/2))
4207 			size = avail/2;
4208 		if (avail < ((sector_t)size << 1))
4209 			return -ENOSPC;
4210 	}
4211 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
4212 	if (!rv) {
4213 		struct block_device *bdev;
4214 
4215 		bdev = bdget_disk(mddev->gendisk, 0);
4216 		if (bdev) {
4217 			mutex_lock(&bdev->bd_inode->i_mutex);
4218 			i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4219 			mutex_unlock(&bdev->bd_inode->i_mutex);
4220 			bdput(bdev);
4221 		}
4222 	}
4223 	return rv;
4224 }
4225 
4226 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4227 {
4228 	int rv;
4229 	/* change the number of raid disks */
4230 	if (mddev->pers->check_reshape == NULL)
4231 		return -EINVAL;
4232 	if (raid_disks <= 0 ||
4233 	    raid_disks >= mddev->max_disks)
4234 		return -EINVAL;
4235 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4236 		return -EBUSY;
4237 	mddev->delta_disks = raid_disks - mddev->raid_disks;
4238 
4239 	rv = mddev->pers->check_reshape(mddev);
4240 	return rv;
4241 }
4242 
4243 
4244 /*
4245  * update_array_info is used to change the configuration of an
4246  * on-line array.
4247  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4248  * fields in the info are checked against the array.
4249  * Any differences that cannot be handled will cause an error.
4250  * Normally, only one change can be managed at a time.
4251  */
4252 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4253 {
4254 	int rv = 0;
4255 	int cnt = 0;
4256 	int state = 0;
4257 
4258 	/* calculate expected state,ignoring low bits */
4259 	if (mddev->bitmap && mddev->bitmap_offset)
4260 		state |= (1 << MD_SB_BITMAP_PRESENT);
4261 
4262 	if (mddev->major_version != info->major_version ||
4263 	    mddev->minor_version != info->minor_version ||
4264 /*	    mddev->patch_version != info->patch_version || */
4265 	    mddev->ctime         != info->ctime         ||
4266 	    mddev->level         != info->level         ||
4267 /*	    mddev->layout        != info->layout        || */
4268 	    !mddev->persistent	 != info->not_persistent||
4269 	    mddev->chunk_size    != info->chunk_size    ||
4270 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4271 	    ((state^info->state) & 0xfffffe00)
4272 		)
4273 		return -EINVAL;
4274 	/* Check there is only one change */
4275 	if (info->size >= 0 && mddev->size != info->size) cnt++;
4276 	if (mddev->raid_disks != info->raid_disks) cnt++;
4277 	if (mddev->layout != info->layout) cnt++;
4278 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4279 	if (cnt == 0) return 0;
4280 	if (cnt > 1) return -EINVAL;
4281 
4282 	if (mddev->layout != info->layout) {
4283 		/* Change layout
4284 		 * we don't need to do anything at the md level, the
4285 		 * personality will take care of it all.
4286 		 */
4287 		if (mddev->pers->reconfig == NULL)
4288 			return -EINVAL;
4289 		else
4290 			return mddev->pers->reconfig(mddev, info->layout, -1);
4291 	}
4292 	if (info->size >= 0 && mddev->size != info->size)
4293 		rv = update_size(mddev, info->size);
4294 
4295 	if (mddev->raid_disks    != info->raid_disks)
4296 		rv = update_raid_disks(mddev, info->raid_disks);
4297 
4298 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4299 		if (mddev->pers->quiesce == NULL)
4300 			return -EINVAL;
4301 		if (mddev->recovery || mddev->sync_thread)
4302 			return -EBUSY;
4303 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4304 			/* add the bitmap */
4305 			if (mddev->bitmap)
4306 				return -EEXIST;
4307 			if (mddev->default_bitmap_offset == 0)
4308 				return -EINVAL;
4309 			mddev->bitmap_offset = mddev->default_bitmap_offset;
4310 			mddev->pers->quiesce(mddev, 1);
4311 			rv = bitmap_create(mddev);
4312 			if (rv)
4313 				bitmap_destroy(mddev);
4314 			mddev->pers->quiesce(mddev, 0);
4315 		} else {
4316 			/* remove the bitmap */
4317 			if (!mddev->bitmap)
4318 				return -ENOENT;
4319 			if (mddev->bitmap->file)
4320 				return -EINVAL;
4321 			mddev->pers->quiesce(mddev, 1);
4322 			bitmap_destroy(mddev);
4323 			mddev->pers->quiesce(mddev, 0);
4324 			mddev->bitmap_offset = 0;
4325 		}
4326 	}
4327 	md_update_sb(mddev, 1);
4328 	return rv;
4329 }
4330 
4331 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4332 {
4333 	mdk_rdev_t *rdev;
4334 
4335 	if (mddev->pers == NULL)
4336 		return -ENODEV;
4337 
4338 	rdev = find_rdev(mddev, dev);
4339 	if (!rdev)
4340 		return -ENODEV;
4341 
4342 	md_error(mddev, rdev);
4343 	return 0;
4344 }
4345 
4346 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4347 {
4348 	mddev_t *mddev = bdev->bd_disk->private_data;
4349 
4350 	geo->heads = 2;
4351 	geo->sectors = 4;
4352 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
4353 	return 0;
4354 }
4355 
4356 static int md_ioctl(struct inode *inode, struct file *file,
4357 			unsigned int cmd, unsigned long arg)
4358 {
4359 	int err = 0;
4360 	void __user *argp = (void __user *)arg;
4361 	mddev_t *mddev = NULL;
4362 
4363 	if (!capable(CAP_SYS_ADMIN))
4364 		return -EACCES;
4365 
4366 	/*
4367 	 * Commands dealing with the RAID driver but not any
4368 	 * particular array:
4369 	 */
4370 	switch (cmd)
4371 	{
4372 		case RAID_VERSION:
4373 			err = get_version(argp);
4374 			goto done;
4375 
4376 		case PRINT_RAID_DEBUG:
4377 			err = 0;
4378 			md_print_devices();
4379 			goto done;
4380 
4381 #ifndef MODULE
4382 		case RAID_AUTORUN:
4383 			err = 0;
4384 			autostart_arrays(arg);
4385 			goto done;
4386 #endif
4387 		default:;
4388 	}
4389 
4390 	/*
4391 	 * Commands creating/starting a new array:
4392 	 */
4393 
4394 	mddev = inode->i_bdev->bd_disk->private_data;
4395 
4396 	if (!mddev) {
4397 		BUG();
4398 		goto abort;
4399 	}
4400 
4401 	err = mddev_lock(mddev);
4402 	if (err) {
4403 		printk(KERN_INFO
4404 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
4405 			err, cmd);
4406 		goto abort;
4407 	}
4408 
4409 	switch (cmd)
4410 	{
4411 		case SET_ARRAY_INFO:
4412 			{
4413 				mdu_array_info_t info;
4414 				if (!arg)
4415 					memset(&info, 0, sizeof(info));
4416 				else if (copy_from_user(&info, argp, sizeof(info))) {
4417 					err = -EFAULT;
4418 					goto abort_unlock;
4419 				}
4420 				if (mddev->pers) {
4421 					err = update_array_info(mddev, &info);
4422 					if (err) {
4423 						printk(KERN_WARNING "md: couldn't update"
4424 						       " array info. %d\n", err);
4425 						goto abort_unlock;
4426 					}
4427 					goto done_unlock;
4428 				}
4429 				if (!list_empty(&mddev->disks)) {
4430 					printk(KERN_WARNING
4431 					       "md: array %s already has disks!\n",
4432 					       mdname(mddev));
4433 					err = -EBUSY;
4434 					goto abort_unlock;
4435 				}
4436 				if (mddev->raid_disks) {
4437 					printk(KERN_WARNING
4438 					       "md: array %s already initialised!\n",
4439 					       mdname(mddev));
4440 					err = -EBUSY;
4441 					goto abort_unlock;
4442 				}
4443 				err = set_array_info(mddev, &info);
4444 				if (err) {
4445 					printk(KERN_WARNING "md: couldn't set"
4446 					       " array info. %d\n", err);
4447 					goto abort_unlock;
4448 				}
4449 			}
4450 			goto done_unlock;
4451 
4452 		default:;
4453 	}
4454 
4455 	/*
4456 	 * Commands querying/configuring an existing array:
4457 	 */
4458 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4459 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4460 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4461 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4462 	    		&& cmd != GET_BITMAP_FILE) {
4463 		err = -ENODEV;
4464 		goto abort_unlock;
4465 	}
4466 
4467 	/*
4468 	 * Commands even a read-only array can execute:
4469 	 */
4470 	switch (cmd)
4471 	{
4472 		case GET_ARRAY_INFO:
4473 			err = get_array_info(mddev, argp);
4474 			goto done_unlock;
4475 
4476 		case GET_BITMAP_FILE:
4477 			err = get_bitmap_file(mddev, argp);
4478 			goto done_unlock;
4479 
4480 		case GET_DISK_INFO:
4481 			err = get_disk_info(mddev, argp);
4482 			goto done_unlock;
4483 
4484 		case RESTART_ARRAY_RW:
4485 			err = restart_array(mddev);
4486 			goto done_unlock;
4487 
4488 		case STOP_ARRAY:
4489 			err = do_md_stop (mddev, 0);
4490 			goto done_unlock;
4491 
4492 		case STOP_ARRAY_RO:
4493 			err = do_md_stop (mddev, 1);
4494 			goto done_unlock;
4495 
4496 	/*
4497 	 * We have a problem here : there is no easy way to give a CHS
4498 	 * virtual geometry. We currently pretend that we have a 2 heads
4499 	 * 4 sectors (with a BIG number of cylinders...). This drives
4500 	 * dosfs just mad... ;-)
4501 	 */
4502 	}
4503 
4504 	/*
4505 	 * The remaining ioctls are changing the state of the
4506 	 * superblock, so we do not allow them on read-only arrays.
4507 	 * However non-MD ioctls (e.g. get-size) will still come through
4508 	 * here and hit the 'default' below, so only disallow
4509 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4510 	 */
4511 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
4512 	    mddev->ro && mddev->pers) {
4513 		if (mddev->ro == 2) {
4514 			mddev->ro = 0;
4515 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4516 		md_wakeup_thread(mddev->thread);
4517 
4518 		} else {
4519 			err = -EROFS;
4520 			goto abort_unlock;
4521 		}
4522 	}
4523 
4524 	switch (cmd)
4525 	{
4526 		case ADD_NEW_DISK:
4527 		{
4528 			mdu_disk_info_t info;
4529 			if (copy_from_user(&info, argp, sizeof(info)))
4530 				err = -EFAULT;
4531 			else
4532 				err = add_new_disk(mddev, &info);
4533 			goto done_unlock;
4534 		}
4535 
4536 		case HOT_REMOVE_DISK:
4537 			err = hot_remove_disk(mddev, new_decode_dev(arg));
4538 			goto done_unlock;
4539 
4540 		case HOT_ADD_DISK:
4541 			err = hot_add_disk(mddev, new_decode_dev(arg));
4542 			goto done_unlock;
4543 
4544 		case SET_DISK_FAULTY:
4545 			err = set_disk_faulty(mddev, new_decode_dev(arg));
4546 			goto done_unlock;
4547 
4548 		case RUN_ARRAY:
4549 			err = do_md_run (mddev);
4550 			goto done_unlock;
4551 
4552 		case SET_BITMAP_FILE:
4553 			err = set_bitmap_file(mddev, (int)arg);
4554 			goto done_unlock;
4555 
4556 		default:
4557 			err = -EINVAL;
4558 			goto abort_unlock;
4559 	}
4560 
4561 done_unlock:
4562 abort_unlock:
4563 	mddev_unlock(mddev);
4564 
4565 	return err;
4566 done:
4567 	if (err)
4568 		MD_BUG();
4569 abort:
4570 	return err;
4571 }
4572 
4573 static int md_open(struct inode *inode, struct file *file)
4574 {
4575 	/*
4576 	 * Succeed if we can lock the mddev, which confirms that
4577 	 * it isn't being stopped right now.
4578 	 */
4579 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4580 	int err;
4581 
4582 	if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4583 		goto out;
4584 
4585 	err = 0;
4586 	mddev_get(mddev);
4587 	mddev_unlock(mddev);
4588 
4589 	check_disk_change(inode->i_bdev);
4590  out:
4591 	return err;
4592 }
4593 
4594 static int md_release(struct inode *inode, struct file * file)
4595 {
4596  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4597 
4598 	BUG_ON(!mddev);
4599 	mddev_put(mddev);
4600 
4601 	return 0;
4602 }
4603 
4604 static int md_media_changed(struct gendisk *disk)
4605 {
4606 	mddev_t *mddev = disk->private_data;
4607 
4608 	return mddev->changed;
4609 }
4610 
4611 static int md_revalidate(struct gendisk *disk)
4612 {
4613 	mddev_t *mddev = disk->private_data;
4614 
4615 	mddev->changed = 0;
4616 	return 0;
4617 }
4618 static struct block_device_operations md_fops =
4619 {
4620 	.owner		= THIS_MODULE,
4621 	.open		= md_open,
4622 	.release	= md_release,
4623 	.ioctl		= md_ioctl,
4624 	.getgeo		= md_getgeo,
4625 	.media_changed	= md_media_changed,
4626 	.revalidate_disk= md_revalidate,
4627 };
4628 
4629 static int md_thread(void * arg)
4630 {
4631 	mdk_thread_t *thread = arg;
4632 
4633 	/*
4634 	 * md_thread is a 'system-thread', it's priority should be very
4635 	 * high. We avoid resource deadlocks individually in each
4636 	 * raid personality. (RAID5 does preallocation) We also use RR and
4637 	 * the very same RT priority as kswapd, thus we will never get
4638 	 * into a priority inversion deadlock.
4639 	 *
4640 	 * we definitely have to have equal or higher priority than
4641 	 * bdflush, otherwise bdflush will deadlock if there are too
4642 	 * many dirty RAID5 blocks.
4643 	 */
4644 
4645 	current->flags |= PF_NOFREEZE;
4646 	allow_signal(SIGKILL);
4647 	while (!kthread_should_stop()) {
4648 
4649 		/* We need to wait INTERRUPTIBLE so that
4650 		 * we don't add to the load-average.
4651 		 * That means we need to be sure no signals are
4652 		 * pending
4653 		 */
4654 		if (signal_pending(current))
4655 			flush_signals(current);
4656 
4657 		wait_event_interruptible_timeout
4658 			(thread->wqueue,
4659 			 test_bit(THREAD_WAKEUP, &thread->flags)
4660 			 || kthread_should_stop(),
4661 			 thread->timeout);
4662 
4663 		clear_bit(THREAD_WAKEUP, &thread->flags);
4664 
4665 		thread->run(thread->mddev);
4666 	}
4667 
4668 	return 0;
4669 }
4670 
4671 void md_wakeup_thread(mdk_thread_t *thread)
4672 {
4673 	if (thread) {
4674 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4675 		set_bit(THREAD_WAKEUP, &thread->flags);
4676 		wake_up(&thread->wqueue);
4677 	}
4678 }
4679 
4680 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4681 				 const char *name)
4682 {
4683 	mdk_thread_t *thread;
4684 
4685 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4686 	if (!thread)
4687 		return NULL;
4688 
4689 	init_waitqueue_head(&thread->wqueue);
4690 
4691 	thread->run = run;
4692 	thread->mddev = mddev;
4693 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
4694 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4695 	if (IS_ERR(thread->tsk)) {
4696 		kfree(thread);
4697 		return NULL;
4698 	}
4699 	return thread;
4700 }
4701 
4702 void md_unregister_thread(mdk_thread_t *thread)
4703 {
4704 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4705 
4706 	kthread_stop(thread->tsk);
4707 	kfree(thread);
4708 }
4709 
4710 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4711 {
4712 	if (!mddev) {
4713 		MD_BUG();
4714 		return;
4715 	}
4716 
4717 	if (!rdev || test_bit(Faulty, &rdev->flags))
4718 		return;
4719 /*
4720 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4721 		mdname(mddev),
4722 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4723 		__builtin_return_address(0),__builtin_return_address(1),
4724 		__builtin_return_address(2),__builtin_return_address(3));
4725 */
4726 	if (!mddev->pers)
4727 		return;
4728 	if (!mddev->pers->error_handler)
4729 		return;
4730 	mddev->pers->error_handler(mddev,rdev);
4731 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4732 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4733 	md_wakeup_thread(mddev->thread);
4734 	md_new_event_inintr(mddev);
4735 }
4736 
4737 /* seq_file implementation /proc/mdstat */
4738 
4739 static void status_unused(struct seq_file *seq)
4740 {
4741 	int i = 0;
4742 	mdk_rdev_t *rdev;
4743 	struct list_head *tmp;
4744 
4745 	seq_printf(seq, "unused devices: ");
4746 
4747 	ITERATE_RDEV_PENDING(rdev,tmp) {
4748 		char b[BDEVNAME_SIZE];
4749 		i++;
4750 		seq_printf(seq, "%s ",
4751 			      bdevname(rdev->bdev,b));
4752 	}
4753 	if (!i)
4754 		seq_printf(seq, "<none>");
4755 
4756 	seq_printf(seq, "\n");
4757 }
4758 
4759 
4760 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4761 {
4762 	sector_t max_blocks, resync, res;
4763 	unsigned long dt, db, rt;
4764 	int scale;
4765 	unsigned int per_milli;
4766 
4767 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4768 
4769 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4770 		max_blocks = mddev->resync_max_sectors >> 1;
4771 	else
4772 		max_blocks = mddev->size;
4773 
4774 	/*
4775 	 * Should not happen.
4776 	 */
4777 	if (!max_blocks) {
4778 		MD_BUG();
4779 		return;
4780 	}
4781 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
4782 	 * in a sector_t, and (max_blocks>>scale) will fit in a
4783 	 * u32, as those are the requirements for sector_div.
4784 	 * Thus 'scale' must be at least 10
4785 	 */
4786 	scale = 10;
4787 	if (sizeof(sector_t) > sizeof(unsigned long)) {
4788 		while ( max_blocks/2 > (1ULL<<(scale+32)))
4789 			scale++;
4790 	}
4791 	res = (resync>>scale)*1000;
4792 	sector_div(res, (u32)((max_blocks>>scale)+1));
4793 
4794 	per_milli = res;
4795 	{
4796 		int i, x = per_milli/50, y = 20-x;
4797 		seq_printf(seq, "[");
4798 		for (i = 0; i < x; i++)
4799 			seq_printf(seq, "=");
4800 		seq_printf(seq, ">");
4801 		for (i = 0; i < y; i++)
4802 			seq_printf(seq, ".");
4803 		seq_printf(seq, "] ");
4804 	}
4805 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4806 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4807 		    "reshape" :
4808 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
4809 		     "check" :
4810 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4811 		      "resync" : "recovery"))),
4812 		   per_milli/10, per_milli % 10,
4813 		   (unsigned long long) resync,
4814 		   (unsigned long long) max_blocks);
4815 
4816 	/*
4817 	 * We do not want to overflow, so the order of operands and
4818 	 * the * 100 / 100 trick are important. We do a +1 to be
4819 	 * safe against division by zero. We only estimate anyway.
4820 	 *
4821 	 * dt: time from mark until now
4822 	 * db: blocks written from mark until now
4823 	 * rt: remaining time
4824 	 */
4825 	dt = ((jiffies - mddev->resync_mark) / HZ);
4826 	if (!dt) dt++;
4827 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4828 		- mddev->resync_mark_cnt;
4829 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4830 
4831 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4832 
4833 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4834 }
4835 
4836 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4837 {
4838 	struct list_head *tmp;
4839 	loff_t l = *pos;
4840 	mddev_t *mddev;
4841 
4842 	if (l >= 0x10000)
4843 		return NULL;
4844 	if (!l--)
4845 		/* header */
4846 		return (void*)1;
4847 
4848 	spin_lock(&all_mddevs_lock);
4849 	list_for_each(tmp,&all_mddevs)
4850 		if (!l--) {
4851 			mddev = list_entry(tmp, mddev_t, all_mddevs);
4852 			mddev_get(mddev);
4853 			spin_unlock(&all_mddevs_lock);
4854 			return mddev;
4855 		}
4856 	spin_unlock(&all_mddevs_lock);
4857 	if (!l--)
4858 		return (void*)2;/* tail */
4859 	return NULL;
4860 }
4861 
4862 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4863 {
4864 	struct list_head *tmp;
4865 	mddev_t *next_mddev, *mddev = v;
4866 
4867 	++*pos;
4868 	if (v == (void*)2)
4869 		return NULL;
4870 
4871 	spin_lock(&all_mddevs_lock);
4872 	if (v == (void*)1)
4873 		tmp = all_mddevs.next;
4874 	else
4875 		tmp = mddev->all_mddevs.next;
4876 	if (tmp != &all_mddevs)
4877 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4878 	else {
4879 		next_mddev = (void*)2;
4880 		*pos = 0x10000;
4881 	}
4882 	spin_unlock(&all_mddevs_lock);
4883 
4884 	if (v != (void*)1)
4885 		mddev_put(mddev);
4886 	return next_mddev;
4887 
4888 }
4889 
4890 static void md_seq_stop(struct seq_file *seq, void *v)
4891 {
4892 	mddev_t *mddev = v;
4893 
4894 	if (mddev && v != (void*)1 && v != (void*)2)
4895 		mddev_put(mddev);
4896 }
4897 
4898 struct mdstat_info {
4899 	int event;
4900 };
4901 
4902 static int md_seq_show(struct seq_file *seq, void *v)
4903 {
4904 	mddev_t *mddev = v;
4905 	sector_t size;
4906 	struct list_head *tmp2;
4907 	mdk_rdev_t *rdev;
4908 	struct mdstat_info *mi = seq->private;
4909 	struct bitmap *bitmap;
4910 
4911 	if (v == (void*)1) {
4912 		struct mdk_personality *pers;
4913 		seq_printf(seq, "Personalities : ");
4914 		spin_lock(&pers_lock);
4915 		list_for_each_entry(pers, &pers_list, list)
4916 			seq_printf(seq, "[%s] ", pers->name);
4917 
4918 		spin_unlock(&pers_lock);
4919 		seq_printf(seq, "\n");
4920 		mi->event = atomic_read(&md_event_count);
4921 		return 0;
4922 	}
4923 	if (v == (void*)2) {
4924 		status_unused(seq);
4925 		return 0;
4926 	}
4927 
4928 	if (mddev_lock(mddev) < 0)
4929 		return -EINTR;
4930 
4931 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4932 		seq_printf(seq, "%s : %sactive", mdname(mddev),
4933 						mddev->pers ? "" : "in");
4934 		if (mddev->pers) {
4935 			if (mddev->ro==1)
4936 				seq_printf(seq, " (read-only)");
4937 			if (mddev->ro==2)
4938 				seq_printf(seq, "(auto-read-only)");
4939 			seq_printf(seq, " %s", mddev->pers->name);
4940 		}
4941 
4942 		size = 0;
4943 		ITERATE_RDEV(mddev,rdev,tmp2) {
4944 			char b[BDEVNAME_SIZE];
4945 			seq_printf(seq, " %s[%d]",
4946 				bdevname(rdev->bdev,b), rdev->desc_nr);
4947 			if (test_bit(WriteMostly, &rdev->flags))
4948 				seq_printf(seq, "(W)");
4949 			if (test_bit(Faulty, &rdev->flags)) {
4950 				seq_printf(seq, "(F)");
4951 				continue;
4952 			} else if (rdev->raid_disk < 0)
4953 				seq_printf(seq, "(S)"); /* spare */
4954 			size += rdev->size;
4955 		}
4956 
4957 		if (!list_empty(&mddev->disks)) {
4958 			if (mddev->pers)
4959 				seq_printf(seq, "\n      %llu blocks",
4960 					(unsigned long long)mddev->array_size);
4961 			else
4962 				seq_printf(seq, "\n      %llu blocks",
4963 					(unsigned long long)size);
4964 		}
4965 		if (mddev->persistent) {
4966 			if (mddev->major_version != 0 ||
4967 			    mddev->minor_version != 90) {
4968 				seq_printf(seq," super %d.%d",
4969 					   mddev->major_version,
4970 					   mddev->minor_version);
4971 			}
4972 		} else
4973 			seq_printf(seq, " super non-persistent");
4974 
4975 		if (mddev->pers) {
4976 			mddev->pers->status (seq, mddev);
4977 	 		seq_printf(seq, "\n      ");
4978 			if (mddev->pers->sync_request) {
4979 				if (mddev->curr_resync > 2) {
4980 					status_resync (seq, mddev);
4981 					seq_printf(seq, "\n      ");
4982 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4983 					seq_printf(seq, "\tresync=DELAYED\n      ");
4984 				else if (mddev->recovery_cp < MaxSector)
4985 					seq_printf(seq, "\tresync=PENDING\n      ");
4986 			}
4987 		} else
4988 			seq_printf(seq, "\n       ");
4989 
4990 		if ((bitmap = mddev->bitmap)) {
4991 			unsigned long chunk_kb;
4992 			unsigned long flags;
4993 			spin_lock_irqsave(&bitmap->lock, flags);
4994 			chunk_kb = bitmap->chunksize >> 10;
4995 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4996 				"%lu%s chunk",
4997 				bitmap->pages - bitmap->missing_pages,
4998 				bitmap->pages,
4999 				(bitmap->pages - bitmap->missing_pages)
5000 					<< (PAGE_SHIFT - 10),
5001 				chunk_kb ? chunk_kb : bitmap->chunksize,
5002 				chunk_kb ? "KB" : "B");
5003 			if (bitmap->file) {
5004 				seq_printf(seq, ", file: ");
5005 				seq_path(seq, bitmap->file->f_path.mnt,
5006 					 bitmap->file->f_path.dentry," \t\n");
5007 			}
5008 
5009 			seq_printf(seq, "\n");
5010 			spin_unlock_irqrestore(&bitmap->lock, flags);
5011 		}
5012 
5013 		seq_printf(seq, "\n");
5014 	}
5015 	mddev_unlock(mddev);
5016 
5017 	return 0;
5018 }
5019 
5020 static struct seq_operations md_seq_ops = {
5021 	.start  = md_seq_start,
5022 	.next   = md_seq_next,
5023 	.stop   = md_seq_stop,
5024 	.show   = md_seq_show,
5025 };
5026 
5027 static int md_seq_open(struct inode *inode, struct file *file)
5028 {
5029 	int error;
5030 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5031 	if (mi == NULL)
5032 		return -ENOMEM;
5033 
5034 	error = seq_open(file, &md_seq_ops);
5035 	if (error)
5036 		kfree(mi);
5037 	else {
5038 		struct seq_file *p = file->private_data;
5039 		p->private = mi;
5040 		mi->event = atomic_read(&md_event_count);
5041 	}
5042 	return error;
5043 }
5044 
5045 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5046 {
5047 	struct seq_file *m = filp->private_data;
5048 	struct mdstat_info *mi = m->private;
5049 	int mask;
5050 
5051 	poll_wait(filp, &md_event_waiters, wait);
5052 
5053 	/* always allow read */
5054 	mask = POLLIN | POLLRDNORM;
5055 
5056 	if (mi->event != atomic_read(&md_event_count))
5057 		mask |= POLLERR | POLLPRI;
5058 	return mask;
5059 }
5060 
5061 static const struct file_operations md_seq_fops = {
5062 	.owner		= THIS_MODULE,
5063 	.open           = md_seq_open,
5064 	.read           = seq_read,
5065 	.llseek         = seq_lseek,
5066 	.release	= seq_release_private,
5067 	.poll		= mdstat_poll,
5068 };
5069 
5070 int register_md_personality(struct mdk_personality *p)
5071 {
5072 	spin_lock(&pers_lock);
5073 	list_add_tail(&p->list, &pers_list);
5074 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5075 	spin_unlock(&pers_lock);
5076 	return 0;
5077 }
5078 
5079 int unregister_md_personality(struct mdk_personality *p)
5080 {
5081 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5082 	spin_lock(&pers_lock);
5083 	list_del_init(&p->list);
5084 	spin_unlock(&pers_lock);
5085 	return 0;
5086 }
5087 
5088 static int is_mddev_idle(mddev_t *mddev)
5089 {
5090 	mdk_rdev_t * rdev;
5091 	struct list_head *tmp;
5092 	int idle;
5093 	unsigned long curr_events;
5094 
5095 	idle = 1;
5096 	ITERATE_RDEV(mddev,rdev,tmp) {
5097 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5098 		curr_events = disk_stat_read(disk, sectors[0]) +
5099 				disk_stat_read(disk, sectors[1]) -
5100 				atomic_read(&disk->sync_io);
5101 		/* The difference between curr_events and last_events
5102 		 * will be affected by any new non-sync IO (making
5103 		 * curr_events bigger) and any difference in the amount of
5104 		 * in-flight syncio (making current_events bigger or smaller)
5105 		 * The amount in-flight is currently limited to
5106 		 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
5107 		 * which is at most 4096 sectors.
5108 		 * These numbers are fairly fragile and should be made
5109 		 * more robust, probably by enforcing the
5110 		 * 'window size' that md_do_sync sort-of uses.
5111 		 *
5112 		 * Note: the following is an unsigned comparison.
5113 		 */
5114 		if ((long)curr_events - (long)rdev->last_events > 4096) {
5115 			rdev->last_events = curr_events;
5116 			idle = 0;
5117 		}
5118 	}
5119 	return idle;
5120 }
5121 
5122 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5123 {
5124 	/* another "blocks" (512byte) blocks have been synced */
5125 	atomic_sub(blocks, &mddev->recovery_active);
5126 	wake_up(&mddev->recovery_wait);
5127 	if (!ok) {
5128 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5129 		md_wakeup_thread(mddev->thread);
5130 		// stop recovery, signal do_sync ....
5131 	}
5132 }
5133 
5134 
5135 /* md_write_start(mddev, bi)
5136  * If we need to update some array metadata (e.g. 'active' flag
5137  * in superblock) before writing, schedule a superblock update
5138  * and wait for it to complete.
5139  */
5140 void md_write_start(mddev_t *mddev, struct bio *bi)
5141 {
5142 	if (bio_data_dir(bi) != WRITE)
5143 		return;
5144 
5145 	BUG_ON(mddev->ro == 1);
5146 	if (mddev->ro == 2) {
5147 		/* need to switch to read/write */
5148 		mddev->ro = 0;
5149 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5150 		md_wakeup_thread(mddev->thread);
5151 	}
5152 	atomic_inc(&mddev->writes_pending);
5153 	if (mddev->in_sync) {
5154 		spin_lock_irq(&mddev->write_lock);
5155 		if (mddev->in_sync) {
5156 			mddev->in_sync = 0;
5157 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5158 			md_wakeup_thread(mddev->thread);
5159 		}
5160 		spin_unlock_irq(&mddev->write_lock);
5161 	}
5162 	wait_event(mddev->sb_wait, mddev->flags==0);
5163 }
5164 
5165 void md_write_end(mddev_t *mddev)
5166 {
5167 	if (atomic_dec_and_test(&mddev->writes_pending)) {
5168 		if (mddev->safemode == 2)
5169 			md_wakeup_thread(mddev->thread);
5170 		else if (mddev->safemode_delay)
5171 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5172 	}
5173 }
5174 
5175 /* md_allow_write(mddev)
5176  * Calling this ensures that the array is marked 'active' so that writes
5177  * may proceed without blocking.  It is important to call this before
5178  * attempting a GFP_KERNEL allocation while holding the mddev lock.
5179  * Must be called with mddev_lock held.
5180  */
5181 void md_allow_write(mddev_t *mddev)
5182 {
5183 	if (!mddev->pers)
5184 		return;
5185 	if (mddev->ro)
5186 		return;
5187 
5188 	spin_lock_irq(&mddev->write_lock);
5189 	if (mddev->in_sync) {
5190 		mddev->in_sync = 0;
5191 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5192 		if (mddev->safemode_delay &&
5193 		    mddev->safemode == 0)
5194 			mddev->safemode = 1;
5195 		spin_unlock_irq(&mddev->write_lock);
5196 		md_update_sb(mddev, 0);
5197 	} else
5198 		spin_unlock_irq(&mddev->write_lock);
5199 }
5200 EXPORT_SYMBOL_GPL(md_allow_write);
5201 
5202 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5203 
5204 #define SYNC_MARKS	10
5205 #define	SYNC_MARK_STEP	(3*HZ)
5206 void md_do_sync(mddev_t *mddev)
5207 {
5208 	mddev_t *mddev2;
5209 	unsigned int currspeed = 0,
5210 		 window;
5211 	sector_t max_sectors,j, io_sectors;
5212 	unsigned long mark[SYNC_MARKS];
5213 	sector_t mark_cnt[SYNC_MARKS];
5214 	int last_mark,m;
5215 	struct list_head *tmp;
5216 	sector_t last_check;
5217 	int skipped = 0;
5218 	struct list_head *rtmp;
5219 	mdk_rdev_t *rdev;
5220 	char *desc;
5221 
5222 	/* just incase thread restarts... */
5223 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5224 		return;
5225 	if (mddev->ro) /* never try to sync a read-only array */
5226 		return;
5227 
5228 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5229 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5230 			desc = "data-check";
5231 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5232 			desc = "requested-resync";
5233 		else
5234 			desc = "resync";
5235 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5236 		desc = "reshape";
5237 	else
5238 		desc = "recovery";
5239 
5240 	/* we overload curr_resync somewhat here.
5241 	 * 0 == not engaged in resync at all
5242 	 * 2 == checking that there is no conflict with another sync
5243 	 * 1 == like 2, but have yielded to allow conflicting resync to
5244 	 *		commense
5245 	 * other == active in resync - this many blocks
5246 	 *
5247 	 * Before starting a resync we must have set curr_resync to
5248 	 * 2, and then checked that every "conflicting" array has curr_resync
5249 	 * less than ours.  When we find one that is the same or higher
5250 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
5251 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5252 	 * This will mean we have to start checking from the beginning again.
5253 	 *
5254 	 */
5255 
5256 	do {
5257 		mddev->curr_resync = 2;
5258 
5259 	try_again:
5260 		if (kthread_should_stop()) {
5261 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5262 			goto skip;
5263 		}
5264 		ITERATE_MDDEV(mddev2,tmp) {
5265 			if (mddev2 == mddev)
5266 				continue;
5267 			if (mddev2->curr_resync &&
5268 			    match_mddev_units(mddev,mddev2)) {
5269 				DEFINE_WAIT(wq);
5270 				if (mddev < mddev2 && mddev->curr_resync == 2) {
5271 					/* arbitrarily yield */
5272 					mddev->curr_resync = 1;
5273 					wake_up(&resync_wait);
5274 				}
5275 				if (mddev > mddev2 && mddev->curr_resync == 1)
5276 					/* no need to wait here, we can wait the next
5277 					 * time 'round when curr_resync == 2
5278 					 */
5279 					continue;
5280 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5281 				if (!kthread_should_stop() &&
5282 				    mddev2->curr_resync >= mddev->curr_resync) {
5283 					printk(KERN_INFO "md: delaying %s of %s"
5284 					       " until %s has finished (they"
5285 					       " share one or more physical units)\n",
5286 					       desc, mdname(mddev), mdname(mddev2));
5287 					mddev_put(mddev2);
5288 					schedule();
5289 					finish_wait(&resync_wait, &wq);
5290 					goto try_again;
5291 				}
5292 				finish_wait(&resync_wait, &wq);
5293 			}
5294 		}
5295 	} while (mddev->curr_resync < 2);
5296 
5297 	j = 0;
5298 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5299 		/* resync follows the size requested by the personality,
5300 		 * which defaults to physical size, but can be virtual size
5301 		 */
5302 		max_sectors = mddev->resync_max_sectors;
5303 		mddev->resync_mismatches = 0;
5304 		/* we don't use the checkpoint if there's a bitmap */
5305 		if (!mddev->bitmap &&
5306 		    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5307 			j = mddev->recovery_cp;
5308 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5309 		max_sectors = mddev->size << 1;
5310 	else {
5311 		/* recovery follows the physical size of devices */
5312 		max_sectors = mddev->size << 1;
5313 		j = MaxSector;
5314 		ITERATE_RDEV(mddev,rdev,rtmp)
5315 			if (rdev->raid_disk >= 0 &&
5316 			    !test_bit(Faulty, &rdev->flags) &&
5317 			    !test_bit(In_sync, &rdev->flags) &&
5318 			    rdev->recovery_offset < j)
5319 				j = rdev->recovery_offset;
5320 	}
5321 
5322 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5323 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
5324 		" %d KB/sec/disk.\n", speed_min(mddev));
5325 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5326 	       "(but not more than %d KB/sec) for %s.\n",
5327 	       speed_max(mddev), desc);
5328 
5329 	is_mddev_idle(mddev); /* this also initializes IO event counters */
5330 
5331 	io_sectors = 0;
5332 	for (m = 0; m < SYNC_MARKS; m++) {
5333 		mark[m] = jiffies;
5334 		mark_cnt[m] = io_sectors;
5335 	}
5336 	last_mark = 0;
5337 	mddev->resync_mark = mark[last_mark];
5338 	mddev->resync_mark_cnt = mark_cnt[last_mark];
5339 
5340 	/*
5341 	 * Tune reconstruction:
5342 	 */
5343 	window = 32*(PAGE_SIZE/512);
5344 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5345 		window/2,(unsigned long long) max_sectors/2);
5346 
5347 	atomic_set(&mddev->recovery_active, 0);
5348 	init_waitqueue_head(&mddev->recovery_wait);
5349 	last_check = 0;
5350 
5351 	if (j>2) {
5352 		printk(KERN_INFO
5353 		       "md: resuming %s of %s from checkpoint.\n",
5354 		       desc, mdname(mddev));
5355 		mddev->curr_resync = j;
5356 	}
5357 
5358 	while (j < max_sectors) {
5359 		sector_t sectors;
5360 
5361 		skipped = 0;
5362 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
5363 					    currspeed < speed_min(mddev));
5364 		if (sectors == 0) {
5365 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5366 			goto out;
5367 		}
5368 
5369 		if (!skipped) { /* actual IO requested */
5370 			io_sectors += sectors;
5371 			atomic_add(sectors, &mddev->recovery_active);
5372 		}
5373 
5374 		j += sectors;
5375 		if (j>1) mddev->curr_resync = j;
5376 		mddev->curr_mark_cnt = io_sectors;
5377 		if (last_check == 0)
5378 			/* this is the earliers that rebuilt will be
5379 			 * visible in /proc/mdstat
5380 			 */
5381 			md_new_event(mddev);
5382 
5383 		if (last_check + window > io_sectors || j == max_sectors)
5384 			continue;
5385 
5386 		last_check = io_sectors;
5387 
5388 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5389 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5390 			break;
5391 
5392 	repeat:
5393 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5394 			/* step marks */
5395 			int next = (last_mark+1) % SYNC_MARKS;
5396 
5397 			mddev->resync_mark = mark[next];
5398 			mddev->resync_mark_cnt = mark_cnt[next];
5399 			mark[next] = jiffies;
5400 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5401 			last_mark = next;
5402 		}
5403 
5404 
5405 		if (kthread_should_stop()) {
5406 			/*
5407 			 * got a signal, exit.
5408 			 */
5409 			printk(KERN_INFO
5410 				"md: md_do_sync() got signal ... exiting\n");
5411 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5412 			goto out;
5413 		}
5414 
5415 		/*
5416 		 * this loop exits only if either when we are slower than
5417 		 * the 'hard' speed limit, or the system was IO-idle for
5418 		 * a jiffy.
5419 		 * the system might be non-idle CPU-wise, but we only care
5420 		 * about not overloading the IO subsystem. (things like an
5421 		 * e2fsck being done on the RAID array should execute fast)
5422 		 */
5423 		mddev->queue->unplug_fn(mddev->queue);
5424 		cond_resched();
5425 
5426 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5427 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
5428 
5429 		if (currspeed > speed_min(mddev)) {
5430 			if ((currspeed > speed_max(mddev)) ||
5431 					!is_mddev_idle(mddev)) {
5432 				msleep(500);
5433 				goto repeat;
5434 			}
5435 		}
5436 	}
5437 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5438 	/*
5439 	 * this also signals 'finished resyncing' to md_stop
5440 	 */
5441  out:
5442 	mddev->queue->unplug_fn(mddev->queue);
5443 
5444 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5445 
5446 	/* tell personality that we are finished */
5447 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5448 
5449 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5450 	    !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5451 	    mddev->curr_resync > 2) {
5452 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5453 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5454 				if (mddev->curr_resync >= mddev->recovery_cp) {
5455 					printk(KERN_INFO
5456 					       "md: checkpointing %s of %s.\n",
5457 					       desc, mdname(mddev));
5458 					mddev->recovery_cp = mddev->curr_resync;
5459 				}
5460 			} else
5461 				mddev->recovery_cp = MaxSector;
5462 		} else {
5463 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5464 				mddev->curr_resync = MaxSector;
5465 			ITERATE_RDEV(mddev,rdev,rtmp)
5466 				if (rdev->raid_disk >= 0 &&
5467 				    !test_bit(Faulty, &rdev->flags) &&
5468 				    !test_bit(In_sync, &rdev->flags) &&
5469 				    rdev->recovery_offset < mddev->curr_resync)
5470 					rdev->recovery_offset = mddev->curr_resync;
5471 		}
5472 	}
5473 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5474 
5475  skip:
5476 	mddev->curr_resync = 0;
5477 	wake_up(&resync_wait);
5478 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5479 	md_wakeup_thread(mddev->thread);
5480 }
5481 EXPORT_SYMBOL_GPL(md_do_sync);
5482 
5483 
5484 static int remove_and_add_spares(mddev_t *mddev)
5485 {
5486 	mdk_rdev_t *rdev;
5487 	struct list_head *rtmp;
5488 	int spares = 0;
5489 
5490 	ITERATE_RDEV(mddev,rdev,rtmp)
5491 		if (rdev->raid_disk >= 0 &&
5492 		    (test_bit(Faulty, &rdev->flags) ||
5493 		     ! test_bit(In_sync, &rdev->flags)) &&
5494 		    atomic_read(&rdev->nr_pending)==0) {
5495 			if (mddev->pers->hot_remove_disk(
5496 				    mddev, rdev->raid_disk)==0) {
5497 				char nm[20];
5498 				sprintf(nm,"rd%d", rdev->raid_disk);
5499 				sysfs_remove_link(&mddev->kobj, nm);
5500 				rdev->raid_disk = -1;
5501 			}
5502 		}
5503 
5504 	if (mddev->degraded) {
5505 		ITERATE_RDEV(mddev,rdev,rtmp)
5506 			if (rdev->raid_disk < 0
5507 			    && !test_bit(Faulty, &rdev->flags)) {
5508 				rdev->recovery_offset = 0;
5509 				if (mddev->pers->hot_add_disk(mddev,rdev)) {
5510 					char nm[20];
5511 					sprintf(nm, "rd%d", rdev->raid_disk);
5512 					if (sysfs_create_link(&mddev->kobj,
5513 							      &rdev->kobj, nm))
5514 						printk(KERN_WARNING
5515 						       "md: cannot register "
5516 						       "%s for %s\n",
5517 						       nm, mdname(mddev));
5518 					spares++;
5519 					md_new_event(mddev);
5520 				} else
5521 					break;
5522 			}
5523 	}
5524 	return spares;
5525 }
5526 /*
5527  * This routine is regularly called by all per-raid-array threads to
5528  * deal with generic issues like resync and super-block update.
5529  * Raid personalities that don't have a thread (linear/raid0) do not
5530  * need this as they never do any recovery or update the superblock.
5531  *
5532  * It does not do any resync itself, but rather "forks" off other threads
5533  * to do that as needed.
5534  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5535  * "->recovery" and create a thread at ->sync_thread.
5536  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5537  * and wakeups up this thread which will reap the thread and finish up.
5538  * This thread also removes any faulty devices (with nr_pending == 0).
5539  *
5540  * The overall approach is:
5541  *  1/ if the superblock needs updating, update it.
5542  *  2/ If a recovery thread is running, don't do anything else.
5543  *  3/ If recovery has finished, clean up, possibly marking spares active.
5544  *  4/ If there are any faulty devices, remove them.
5545  *  5/ If array is degraded, try to add spares devices
5546  *  6/ If array has spares or is not in-sync, start a resync thread.
5547  */
5548 void md_check_recovery(mddev_t *mddev)
5549 {
5550 	mdk_rdev_t *rdev;
5551 	struct list_head *rtmp;
5552 
5553 
5554 	if (mddev->bitmap)
5555 		bitmap_daemon_work(mddev->bitmap);
5556 
5557 	if (mddev->ro)
5558 		return;
5559 
5560 	if (signal_pending(current)) {
5561 		if (mddev->pers->sync_request) {
5562 			printk(KERN_INFO "md: %s in immediate safe mode\n",
5563 			       mdname(mddev));
5564 			mddev->safemode = 2;
5565 		}
5566 		flush_signals(current);
5567 	}
5568 
5569 	if ( ! (
5570 		mddev->flags ||
5571 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5572 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5573 		(mddev->safemode == 1) ||
5574 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5575 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5576 		))
5577 		return;
5578 
5579 	if (mddev_trylock(mddev)) {
5580 		int spares = 0;
5581 
5582 		spin_lock_irq(&mddev->write_lock);
5583 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5584 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5585 			mddev->in_sync = 1;
5586 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5587 		}
5588 		if (mddev->safemode == 1)
5589 			mddev->safemode = 0;
5590 		spin_unlock_irq(&mddev->write_lock);
5591 
5592 		if (mddev->flags)
5593 			md_update_sb(mddev, 0);
5594 
5595 
5596 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5597 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5598 			/* resync/recovery still happening */
5599 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5600 			goto unlock;
5601 		}
5602 		if (mddev->sync_thread) {
5603 			/* resync has finished, collect result */
5604 			md_unregister_thread(mddev->sync_thread);
5605 			mddev->sync_thread = NULL;
5606 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5607 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5608 				/* success...*/
5609 				/* activate any spares */
5610 				mddev->pers->spare_active(mddev);
5611 			}
5612 			md_update_sb(mddev, 1);
5613 
5614 			/* if array is no-longer degraded, then any saved_raid_disk
5615 			 * information must be scrapped
5616 			 */
5617 			if (!mddev->degraded)
5618 				ITERATE_RDEV(mddev,rdev,rtmp)
5619 					rdev->saved_raid_disk = -1;
5620 
5621 			mddev->recovery = 0;
5622 			/* flag recovery needed just to double check */
5623 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5624 			md_new_event(mddev);
5625 			goto unlock;
5626 		}
5627 		/* Clear some bits that don't mean anything, but
5628 		 * might be left set
5629 		 */
5630 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5631 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5632 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5633 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5634 
5635 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5636 			goto unlock;
5637 		/* no recovery is running.
5638 		 * remove any failed drives, then
5639 		 * add spares if possible.
5640 		 * Spare are also removed and re-added, to allow
5641 		 * the personality to fail the re-add.
5642 		 */
5643 
5644 		if (mddev->reshape_position != MaxSector) {
5645 			if (mddev->pers->check_reshape(mddev) != 0)
5646 				/* Cannot proceed */
5647 				goto unlock;
5648 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5649 		} else if ((spares = remove_and_add_spares(mddev))) {
5650 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5651 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5652 		} else if (mddev->recovery_cp < MaxSector) {
5653 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5654 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5655 			/* nothing to be done ... */
5656 			goto unlock;
5657 
5658 		if (mddev->pers->sync_request) {
5659 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5660 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5661 				/* We are adding a device or devices to an array
5662 				 * which has the bitmap stored on all devices.
5663 				 * So make sure all bitmap pages get written
5664 				 */
5665 				bitmap_write_all(mddev->bitmap);
5666 			}
5667 			mddev->sync_thread = md_register_thread(md_do_sync,
5668 								mddev,
5669 								"%s_resync");
5670 			if (!mddev->sync_thread) {
5671 				printk(KERN_ERR "%s: could not start resync"
5672 					" thread...\n",
5673 					mdname(mddev));
5674 				/* leave the spares where they are, it shouldn't hurt */
5675 				mddev->recovery = 0;
5676 			} else
5677 				md_wakeup_thread(mddev->sync_thread);
5678 			md_new_event(mddev);
5679 		}
5680 	unlock:
5681 		mddev_unlock(mddev);
5682 	}
5683 }
5684 
5685 static int md_notify_reboot(struct notifier_block *this,
5686 			    unsigned long code, void *x)
5687 {
5688 	struct list_head *tmp;
5689 	mddev_t *mddev;
5690 
5691 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5692 
5693 		printk(KERN_INFO "md: stopping all md devices.\n");
5694 
5695 		ITERATE_MDDEV(mddev,tmp)
5696 			if (mddev_trylock(mddev)) {
5697 				do_md_stop (mddev, 1);
5698 				mddev_unlock(mddev);
5699 			}
5700 		/*
5701 		 * certain more exotic SCSI devices are known to be
5702 		 * volatile wrt too early system reboots. While the
5703 		 * right place to handle this issue is the given
5704 		 * driver, we do want to have a safe RAID driver ...
5705 		 */
5706 		mdelay(1000*1);
5707 	}
5708 	return NOTIFY_DONE;
5709 }
5710 
5711 static struct notifier_block md_notifier = {
5712 	.notifier_call	= md_notify_reboot,
5713 	.next		= NULL,
5714 	.priority	= INT_MAX, /* before any real devices */
5715 };
5716 
5717 static void md_geninit(void)
5718 {
5719 	struct proc_dir_entry *p;
5720 
5721 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5722 
5723 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
5724 	if (p)
5725 		p->proc_fops = &md_seq_fops;
5726 }
5727 
5728 static int __init md_init(void)
5729 {
5730 	if (register_blkdev(MAJOR_NR, "md"))
5731 		return -1;
5732 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5733 		unregister_blkdev(MAJOR_NR, "md");
5734 		return -1;
5735 	}
5736 	blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5737 			    md_probe, NULL, NULL);
5738 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5739 			    md_probe, NULL, NULL);
5740 
5741 	register_reboot_notifier(&md_notifier);
5742 	raid_table_header = register_sysctl_table(raid_root_table);
5743 
5744 	md_geninit();
5745 	return (0);
5746 }
5747 
5748 
5749 #ifndef MODULE
5750 
5751 /*
5752  * Searches all registered partitions for autorun RAID arrays
5753  * at boot time.
5754  */
5755 static dev_t detected_devices[128];
5756 static int dev_cnt;
5757 
5758 void md_autodetect_dev(dev_t dev)
5759 {
5760 	if (dev_cnt >= 0 && dev_cnt < 127)
5761 		detected_devices[dev_cnt++] = dev;
5762 }
5763 
5764 
5765 static void autostart_arrays(int part)
5766 {
5767 	mdk_rdev_t *rdev;
5768 	int i;
5769 
5770 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5771 
5772 	for (i = 0; i < dev_cnt; i++) {
5773 		dev_t dev = detected_devices[i];
5774 
5775 		rdev = md_import_device(dev,0, 0);
5776 		if (IS_ERR(rdev))
5777 			continue;
5778 
5779 		if (test_bit(Faulty, &rdev->flags)) {
5780 			MD_BUG();
5781 			continue;
5782 		}
5783 		list_add(&rdev->same_set, &pending_raid_disks);
5784 	}
5785 	dev_cnt = 0;
5786 
5787 	autorun_devices(part);
5788 }
5789 
5790 #endif /* !MODULE */
5791 
5792 static __exit void md_exit(void)
5793 {
5794 	mddev_t *mddev;
5795 	struct list_head *tmp;
5796 
5797 	blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
5798 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
5799 
5800 	unregister_blkdev(MAJOR_NR,"md");
5801 	unregister_blkdev(mdp_major, "mdp");
5802 	unregister_reboot_notifier(&md_notifier);
5803 	unregister_sysctl_table(raid_table_header);
5804 	remove_proc_entry("mdstat", NULL);
5805 	ITERATE_MDDEV(mddev,tmp) {
5806 		struct gendisk *disk = mddev->gendisk;
5807 		if (!disk)
5808 			continue;
5809 		export_array(mddev);
5810 		del_gendisk(disk);
5811 		put_disk(disk);
5812 		mddev->gendisk = NULL;
5813 		mddev_put(mddev);
5814 	}
5815 }
5816 
5817 module_init(md_init)
5818 module_exit(md_exit)
5819 
5820 static int get_ro(char *buffer, struct kernel_param *kp)
5821 {
5822 	return sprintf(buffer, "%d", start_readonly);
5823 }
5824 static int set_ro(const char *val, struct kernel_param *kp)
5825 {
5826 	char *e;
5827 	int num = simple_strtoul(val, &e, 10);
5828 	if (*val && (*e == '\0' || *e == '\n')) {
5829 		start_readonly = num;
5830 		return 0;
5831 	}
5832 	return -EINVAL;
5833 }
5834 
5835 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5836 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5837 
5838 
5839 EXPORT_SYMBOL(register_md_personality);
5840 EXPORT_SYMBOL(unregister_md_personality);
5841 EXPORT_SYMBOL(md_error);
5842 EXPORT_SYMBOL(md_done_sync);
5843 EXPORT_SYMBOL(md_write_start);
5844 EXPORT_SYMBOL(md_write_end);
5845 EXPORT_SYMBOL(md_register_thread);
5846 EXPORT_SYMBOL(md_unregister_thread);
5847 EXPORT_SYMBOL(md_wakeup_thread);
5848 EXPORT_SYMBOL(md_check_recovery);
5849 MODULE_LICENSE("GPL");
5850 MODULE_ALIAS("md");
5851 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
5852