1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 34 Errors, Warnings, etc. 35 Please use: 36 pr_crit() for error conditions that risk data loss 37 pr_err() for error conditions that are unexpected, like an IO error 38 or internal inconsistency 39 pr_warn() for error conditions that could have been predicated, like 40 adding a device to an array when it has incompatible metadata 41 pr_info() for every interesting, very rare events, like an array starting 42 or stopping, or resync starting or stopping 43 pr_debug() for everything else. 44 45 */ 46 47 #include <linux/sched/signal.h> 48 #include <linux/kthread.h> 49 #include <linux/blkdev.h> 50 #include <linux/badblocks.h> 51 #include <linux/sysctl.h> 52 #include <linux/seq_file.h> 53 #include <linux/fs.h> 54 #include <linux/poll.h> 55 #include <linux/ctype.h> 56 #include <linux/string.h> 57 #include <linux/hdreg.h> 58 #include <linux/proc_fs.h> 59 #include <linux/random.h> 60 #include <linux/module.h> 61 #include <linux/reboot.h> 62 #include <linux/file.h> 63 #include <linux/compat.h> 64 #include <linux/delay.h> 65 #include <linux/raid/md_p.h> 66 #include <linux/raid/md_u.h> 67 #include <linux/slab.h> 68 #include <linux/percpu-refcount.h> 69 70 #include <trace/events/block.h> 71 #include "md.h" 72 #include "md-bitmap.h" 73 #include "md-cluster.h" 74 75 #ifndef MODULE 76 static void autostart_arrays(int part); 77 #endif 78 79 /* pers_list is a list of registered personalities protected 80 * by pers_lock. 81 * pers_lock does extra service to protect accesses to 82 * mddev->thread when the mutex cannot be held. 83 */ 84 static LIST_HEAD(pers_list); 85 static DEFINE_SPINLOCK(pers_lock); 86 87 struct md_cluster_operations *md_cluster_ops; 88 EXPORT_SYMBOL(md_cluster_ops); 89 struct module *md_cluster_mod; 90 EXPORT_SYMBOL(md_cluster_mod); 91 92 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 93 static struct workqueue_struct *md_wq; 94 static struct workqueue_struct *md_misc_wq; 95 96 static int remove_and_add_spares(struct mddev *mddev, 97 struct md_rdev *this); 98 static void mddev_detach(struct mddev *mddev); 99 100 /* 101 * Default number of read corrections we'll attempt on an rdev 102 * before ejecting it from the array. We divide the read error 103 * count by 2 for every hour elapsed between read errors. 104 */ 105 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 106 /* 107 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 108 * is 1000 KB/sec, so the extra system load does not show up that much. 109 * Increase it if you want to have more _guaranteed_ speed. Note that 110 * the RAID driver will use the maximum available bandwidth if the IO 111 * subsystem is idle. There is also an 'absolute maximum' reconstruction 112 * speed limit - in case reconstruction slows down your system despite 113 * idle IO detection. 114 * 115 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 116 * or /sys/block/mdX/md/sync_speed_{min,max} 117 */ 118 119 static int sysctl_speed_limit_min = 1000; 120 static int sysctl_speed_limit_max = 200000; 121 static inline int speed_min(struct mddev *mddev) 122 { 123 return mddev->sync_speed_min ? 124 mddev->sync_speed_min : sysctl_speed_limit_min; 125 } 126 127 static inline int speed_max(struct mddev *mddev) 128 { 129 return mddev->sync_speed_max ? 130 mddev->sync_speed_max : sysctl_speed_limit_max; 131 } 132 133 static struct ctl_table_header *raid_table_header; 134 135 static struct ctl_table raid_table[] = { 136 { 137 .procname = "speed_limit_min", 138 .data = &sysctl_speed_limit_min, 139 .maxlen = sizeof(int), 140 .mode = S_IRUGO|S_IWUSR, 141 .proc_handler = proc_dointvec, 142 }, 143 { 144 .procname = "speed_limit_max", 145 .data = &sysctl_speed_limit_max, 146 .maxlen = sizeof(int), 147 .mode = S_IRUGO|S_IWUSR, 148 .proc_handler = proc_dointvec, 149 }, 150 { } 151 }; 152 153 static struct ctl_table raid_dir_table[] = { 154 { 155 .procname = "raid", 156 .maxlen = 0, 157 .mode = S_IRUGO|S_IXUGO, 158 .child = raid_table, 159 }, 160 { } 161 }; 162 163 static struct ctl_table raid_root_table[] = { 164 { 165 .procname = "dev", 166 .maxlen = 0, 167 .mode = 0555, 168 .child = raid_dir_table, 169 }, 170 { } 171 }; 172 173 static const struct block_device_operations md_fops; 174 175 static int start_readonly; 176 177 /* 178 * The original mechanism for creating an md device is to create 179 * a device node in /dev and to open it. This causes races with device-close. 180 * The preferred method is to write to the "new_array" module parameter. 181 * This can avoid races. 182 * Setting create_on_open to false disables the original mechanism 183 * so all the races disappear. 184 */ 185 static bool create_on_open = true; 186 187 /* bio_clone_mddev 188 * like bio_clone_bioset, but with a local bio set 189 */ 190 191 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 192 struct mddev *mddev) 193 { 194 struct bio *b; 195 196 if (!mddev || !mddev->bio_set) 197 return bio_alloc(gfp_mask, nr_iovecs); 198 199 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 200 if (!b) 201 return NULL; 202 return b; 203 } 204 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 205 206 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 207 { 208 if (!mddev || !mddev->sync_set) 209 return bio_alloc(GFP_NOIO, 1); 210 211 return bio_alloc_bioset(GFP_NOIO, 1, mddev->sync_set); 212 } 213 214 /* 215 * We have a system wide 'event count' that is incremented 216 * on any 'interesting' event, and readers of /proc/mdstat 217 * can use 'poll' or 'select' to find out when the event 218 * count increases. 219 * 220 * Events are: 221 * start array, stop array, error, add device, remove device, 222 * start build, activate spare 223 */ 224 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 225 static atomic_t md_event_count; 226 void md_new_event(struct mddev *mddev) 227 { 228 atomic_inc(&md_event_count); 229 wake_up(&md_event_waiters); 230 } 231 EXPORT_SYMBOL_GPL(md_new_event); 232 233 /* 234 * Enables to iterate over all existing md arrays 235 * all_mddevs_lock protects this list. 236 */ 237 static LIST_HEAD(all_mddevs); 238 static DEFINE_SPINLOCK(all_mddevs_lock); 239 240 /* 241 * iterates through all used mddevs in the system. 242 * We take care to grab the all_mddevs_lock whenever navigating 243 * the list, and to always hold a refcount when unlocked. 244 * Any code which breaks out of this loop while own 245 * a reference to the current mddev and must mddev_put it. 246 */ 247 #define for_each_mddev(_mddev,_tmp) \ 248 \ 249 for (({ spin_lock(&all_mddevs_lock); \ 250 _tmp = all_mddevs.next; \ 251 _mddev = NULL;}); \ 252 ({ if (_tmp != &all_mddevs) \ 253 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 254 spin_unlock(&all_mddevs_lock); \ 255 if (_mddev) mddev_put(_mddev); \ 256 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 257 _tmp != &all_mddevs;}); \ 258 ({ spin_lock(&all_mddevs_lock); \ 259 _tmp = _tmp->next;}) \ 260 ) 261 262 /* Rather than calling directly into the personality make_request function, 263 * IO requests come here first so that we can check if the device is 264 * being suspended pending a reconfiguration. 265 * We hold a refcount over the call to ->make_request. By the time that 266 * call has finished, the bio has been linked into some internal structure 267 * and so is visible to ->quiesce(), so we don't need the refcount any more. 268 */ 269 static bool is_suspended(struct mddev *mddev, struct bio *bio) 270 { 271 if (mddev->suspended) 272 return true; 273 if (bio_data_dir(bio) != WRITE) 274 return false; 275 if (mddev->suspend_lo >= mddev->suspend_hi) 276 return false; 277 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 278 return false; 279 if (bio_end_sector(bio) < mddev->suspend_lo) 280 return false; 281 return true; 282 } 283 284 void md_handle_request(struct mddev *mddev, struct bio *bio) 285 { 286 check_suspended: 287 rcu_read_lock(); 288 if (is_suspended(mddev, bio)) { 289 DEFINE_WAIT(__wait); 290 for (;;) { 291 prepare_to_wait(&mddev->sb_wait, &__wait, 292 TASK_UNINTERRUPTIBLE); 293 if (!is_suspended(mddev, bio)) 294 break; 295 rcu_read_unlock(); 296 schedule(); 297 rcu_read_lock(); 298 } 299 finish_wait(&mddev->sb_wait, &__wait); 300 } 301 atomic_inc(&mddev->active_io); 302 rcu_read_unlock(); 303 304 if (!mddev->pers->make_request(mddev, bio)) { 305 atomic_dec(&mddev->active_io); 306 wake_up(&mddev->sb_wait); 307 goto check_suspended; 308 } 309 310 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 311 wake_up(&mddev->sb_wait); 312 } 313 EXPORT_SYMBOL(md_handle_request); 314 315 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 316 { 317 const int rw = bio_data_dir(bio); 318 struct mddev *mddev = q->queuedata; 319 unsigned int sectors; 320 int cpu; 321 322 blk_queue_split(q, &bio); 323 324 if (mddev == NULL || mddev->pers == NULL) { 325 bio_io_error(bio); 326 return BLK_QC_T_NONE; 327 } 328 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 329 if (bio_sectors(bio) != 0) 330 bio->bi_status = BLK_STS_IOERR; 331 bio_endio(bio); 332 return BLK_QC_T_NONE; 333 } 334 335 /* 336 * save the sectors now since our bio can 337 * go away inside make_request 338 */ 339 sectors = bio_sectors(bio); 340 /* bio could be mergeable after passing to underlayer */ 341 bio->bi_opf &= ~REQ_NOMERGE; 342 343 md_handle_request(mddev, bio); 344 345 cpu = part_stat_lock(); 346 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 347 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 348 part_stat_unlock(); 349 350 return BLK_QC_T_NONE; 351 } 352 353 /* mddev_suspend makes sure no new requests are submitted 354 * to the device, and that any requests that have been submitted 355 * are completely handled. 356 * Once mddev_detach() is called and completes, the module will be 357 * completely unused. 358 */ 359 void mddev_suspend(struct mddev *mddev) 360 { 361 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 362 lockdep_assert_held(&mddev->reconfig_mutex); 363 if (mddev->suspended++) 364 return; 365 synchronize_rcu(); 366 wake_up(&mddev->sb_wait); 367 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 368 smp_mb__after_atomic(); 369 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 370 mddev->pers->quiesce(mddev, 1); 371 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 372 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 373 374 del_timer_sync(&mddev->safemode_timer); 375 } 376 EXPORT_SYMBOL_GPL(mddev_suspend); 377 378 void mddev_resume(struct mddev *mddev) 379 { 380 lockdep_assert_held(&mddev->reconfig_mutex); 381 if (--mddev->suspended) 382 return; 383 wake_up(&mddev->sb_wait); 384 mddev->pers->quiesce(mddev, 0); 385 386 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 387 md_wakeup_thread(mddev->thread); 388 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 389 } 390 EXPORT_SYMBOL_GPL(mddev_resume); 391 392 int mddev_congested(struct mddev *mddev, int bits) 393 { 394 struct md_personality *pers = mddev->pers; 395 int ret = 0; 396 397 rcu_read_lock(); 398 if (mddev->suspended) 399 ret = 1; 400 else if (pers && pers->congested) 401 ret = pers->congested(mddev, bits); 402 rcu_read_unlock(); 403 return ret; 404 } 405 EXPORT_SYMBOL_GPL(mddev_congested); 406 static int md_congested(void *data, int bits) 407 { 408 struct mddev *mddev = data; 409 return mddev_congested(mddev, bits); 410 } 411 412 /* 413 * Generic flush handling for md 414 */ 415 416 static void md_end_flush(struct bio *bio) 417 { 418 struct md_rdev *rdev = bio->bi_private; 419 struct mddev *mddev = rdev->mddev; 420 421 rdev_dec_pending(rdev, mddev); 422 423 if (atomic_dec_and_test(&mddev->flush_pending)) { 424 /* The pre-request flush has finished */ 425 queue_work(md_wq, &mddev->flush_work); 426 } 427 bio_put(bio); 428 } 429 430 static void md_submit_flush_data(struct work_struct *ws); 431 432 static void submit_flushes(struct work_struct *ws) 433 { 434 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 435 struct md_rdev *rdev; 436 437 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 438 atomic_set(&mddev->flush_pending, 1); 439 rcu_read_lock(); 440 rdev_for_each_rcu(rdev, mddev) 441 if (rdev->raid_disk >= 0 && 442 !test_bit(Faulty, &rdev->flags)) { 443 /* Take two references, one is dropped 444 * when request finishes, one after 445 * we reclaim rcu_read_lock 446 */ 447 struct bio *bi; 448 atomic_inc(&rdev->nr_pending); 449 atomic_inc(&rdev->nr_pending); 450 rcu_read_unlock(); 451 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 452 bi->bi_end_io = md_end_flush; 453 bi->bi_private = rdev; 454 bio_set_dev(bi, rdev->bdev); 455 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 456 atomic_inc(&mddev->flush_pending); 457 submit_bio(bi); 458 rcu_read_lock(); 459 rdev_dec_pending(rdev, mddev); 460 } 461 rcu_read_unlock(); 462 if (atomic_dec_and_test(&mddev->flush_pending)) 463 queue_work(md_wq, &mddev->flush_work); 464 } 465 466 static void md_submit_flush_data(struct work_struct *ws) 467 { 468 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 469 struct bio *bio = mddev->flush_bio; 470 471 /* 472 * must reset flush_bio before calling into md_handle_request to avoid a 473 * deadlock, because other bios passed md_handle_request suspend check 474 * could wait for this and below md_handle_request could wait for those 475 * bios because of suspend check 476 */ 477 mddev->flush_bio = NULL; 478 wake_up(&mddev->sb_wait); 479 480 if (bio->bi_iter.bi_size == 0) 481 /* an empty barrier - all done */ 482 bio_endio(bio); 483 else { 484 bio->bi_opf &= ~REQ_PREFLUSH; 485 md_handle_request(mddev, bio); 486 } 487 } 488 489 void md_flush_request(struct mddev *mddev, struct bio *bio) 490 { 491 spin_lock_irq(&mddev->lock); 492 wait_event_lock_irq(mddev->sb_wait, 493 !mddev->flush_bio, 494 mddev->lock); 495 mddev->flush_bio = bio; 496 spin_unlock_irq(&mddev->lock); 497 498 INIT_WORK(&mddev->flush_work, submit_flushes); 499 queue_work(md_wq, &mddev->flush_work); 500 } 501 EXPORT_SYMBOL(md_flush_request); 502 503 static inline struct mddev *mddev_get(struct mddev *mddev) 504 { 505 atomic_inc(&mddev->active); 506 return mddev; 507 } 508 509 static void mddev_delayed_delete(struct work_struct *ws); 510 511 static void mddev_put(struct mddev *mddev) 512 { 513 struct bio_set *bs = NULL, *sync_bs = NULL; 514 515 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 516 return; 517 if (!mddev->raid_disks && list_empty(&mddev->disks) && 518 mddev->ctime == 0 && !mddev->hold_active) { 519 /* Array is not configured at all, and not held active, 520 * so destroy it */ 521 list_del_init(&mddev->all_mddevs); 522 bs = mddev->bio_set; 523 sync_bs = mddev->sync_set; 524 mddev->bio_set = NULL; 525 mddev->sync_set = NULL; 526 if (mddev->gendisk) { 527 /* We did a probe so need to clean up. Call 528 * queue_work inside the spinlock so that 529 * flush_workqueue() after mddev_find will 530 * succeed in waiting for the work to be done. 531 */ 532 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 533 queue_work(md_misc_wq, &mddev->del_work); 534 } else 535 kfree(mddev); 536 } 537 spin_unlock(&all_mddevs_lock); 538 if (bs) 539 bioset_free(bs); 540 if (sync_bs) 541 bioset_free(sync_bs); 542 } 543 544 static void md_safemode_timeout(struct timer_list *t); 545 546 void mddev_init(struct mddev *mddev) 547 { 548 mutex_init(&mddev->open_mutex); 549 mutex_init(&mddev->reconfig_mutex); 550 mutex_init(&mddev->bitmap_info.mutex); 551 INIT_LIST_HEAD(&mddev->disks); 552 INIT_LIST_HEAD(&mddev->all_mddevs); 553 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 554 atomic_set(&mddev->active, 1); 555 atomic_set(&mddev->openers, 0); 556 atomic_set(&mddev->active_io, 0); 557 spin_lock_init(&mddev->lock); 558 atomic_set(&mddev->flush_pending, 0); 559 init_waitqueue_head(&mddev->sb_wait); 560 init_waitqueue_head(&mddev->recovery_wait); 561 mddev->reshape_position = MaxSector; 562 mddev->reshape_backwards = 0; 563 mddev->last_sync_action = "none"; 564 mddev->resync_min = 0; 565 mddev->resync_max = MaxSector; 566 mddev->level = LEVEL_NONE; 567 } 568 EXPORT_SYMBOL_GPL(mddev_init); 569 570 static struct mddev *mddev_find(dev_t unit) 571 { 572 struct mddev *mddev, *new = NULL; 573 574 if (unit && MAJOR(unit) != MD_MAJOR) 575 unit &= ~((1<<MdpMinorShift)-1); 576 577 retry: 578 spin_lock(&all_mddevs_lock); 579 580 if (unit) { 581 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 582 if (mddev->unit == unit) { 583 mddev_get(mddev); 584 spin_unlock(&all_mddevs_lock); 585 kfree(new); 586 return mddev; 587 } 588 589 if (new) { 590 list_add(&new->all_mddevs, &all_mddevs); 591 spin_unlock(&all_mddevs_lock); 592 new->hold_active = UNTIL_IOCTL; 593 return new; 594 } 595 } else if (new) { 596 /* find an unused unit number */ 597 static int next_minor = 512; 598 int start = next_minor; 599 int is_free = 0; 600 int dev = 0; 601 while (!is_free) { 602 dev = MKDEV(MD_MAJOR, next_minor); 603 next_minor++; 604 if (next_minor > MINORMASK) 605 next_minor = 0; 606 if (next_minor == start) { 607 /* Oh dear, all in use. */ 608 spin_unlock(&all_mddevs_lock); 609 kfree(new); 610 return NULL; 611 } 612 613 is_free = 1; 614 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 615 if (mddev->unit == dev) { 616 is_free = 0; 617 break; 618 } 619 } 620 new->unit = dev; 621 new->md_minor = MINOR(dev); 622 new->hold_active = UNTIL_STOP; 623 list_add(&new->all_mddevs, &all_mddevs); 624 spin_unlock(&all_mddevs_lock); 625 return new; 626 } 627 spin_unlock(&all_mddevs_lock); 628 629 new = kzalloc(sizeof(*new), GFP_KERNEL); 630 if (!new) 631 return NULL; 632 633 new->unit = unit; 634 if (MAJOR(unit) == MD_MAJOR) 635 new->md_minor = MINOR(unit); 636 else 637 new->md_minor = MINOR(unit) >> MdpMinorShift; 638 639 mddev_init(new); 640 641 goto retry; 642 } 643 644 static struct attribute_group md_redundancy_group; 645 646 void mddev_unlock(struct mddev *mddev) 647 { 648 if (mddev->to_remove) { 649 /* These cannot be removed under reconfig_mutex as 650 * an access to the files will try to take reconfig_mutex 651 * while holding the file unremovable, which leads to 652 * a deadlock. 653 * So hold set sysfs_active while the remove in happeing, 654 * and anything else which might set ->to_remove or my 655 * otherwise change the sysfs namespace will fail with 656 * -EBUSY if sysfs_active is still set. 657 * We set sysfs_active under reconfig_mutex and elsewhere 658 * test it under the same mutex to ensure its correct value 659 * is seen. 660 */ 661 struct attribute_group *to_remove = mddev->to_remove; 662 mddev->to_remove = NULL; 663 mddev->sysfs_active = 1; 664 mutex_unlock(&mddev->reconfig_mutex); 665 666 if (mddev->kobj.sd) { 667 if (to_remove != &md_redundancy_group) 668 sysfs_remove_group(&mddev->kobj, to_remove); 669 if (mddev->pers == NULL || 670 mddev->pers->sync_request == NULL) { 671 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 672 if (mddev->sysfs_action) 673 sysfs_put(mddev->sysfs_action); 674 mddev->sysfs_action = NULL; 675 } 676 } 677 mddev->sysfs_active = 0; 678 } else 679 mutex_unlock(&mddev->reconfig_mutex); 680 681 /* As we've dropped the mutex we need a spinlock to 682 * make sure the thread doesn't disappear 683 */ 684 spin_lock(&pers_lock); 685 md_wakeup_thread(mddev->thread); 686 wake_up(&mddev->sb_wait); 687 spin_unlock(&pers_lock); 688 } 689 EXPORT_SYMBOL_GPL(mddev_unlock); 690 691 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 692 { 693 struct md_rdev *rdev; 694 695 rdev_for_each_rcu(rdev, mddev) 696 if (rdev->desc_nr == nr) 697 return rdev; 698 699 return NULL; 700 } 701 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 702 703 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 704 { 705 struct md_rdev *rdev; 706 707 rdev_for_each(rdev, mddev) 708 if (rdev->bdev->bd_dev == dev) 709 return rdev; 710 711 return NULL; 712 } 713 714 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 715 { 716 struct md_rdev *rdev; 717 718 rdev_for_each_rcu(rdev, mddev) 719 if (rdev->bdev->bd_dev == dev) 720 return rdev; 721 722 return NULL; 723 } 724 725 static struct md_personality *find_pers(int level, char *clevel) 726 { 727 struct md_personality *pers; 728 list_for_each_entry(pers, &pers_list, list) { 729 if (level != LEVEL_NONE && pers->level == level) 730 return pers; 731 if (strcmp(pers->name, clevel)==0) 732 return pers; 733 } 734 return NULL; 735 } 736 737 /* return the offset of the super block in 512byte sectors */ 738 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 739 { 740 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 741 return MD_NEW_SIZE_SECTORS(num_sectors); 742 } 743 744 static int alloc_disk_sb(struct md_rdev *rdev) 745 { 746 rdev->sb_page = alloc_page(GFP_KERNEL); 747 if (!rdev->sb_page) 748 return -ENOMEM; 749 return 0; 750 } 751 752 void md_rdev_clear(struct md_rdev *rdev) 753 { 754 if (rdev->sb_page) { 755 put_page(rdev->sb_page); 756 rdev->sb_loaded = 0; 757 rdev->sb_page = NULL; 758 rdev->sb_start = 0; 759 rdev->sectors = 0; 760 } 761 if (rdev->bb_page) { 762 put_page(rdev->bb_page); 763 rdev->bb_page = NULL; 764 } 765 badblocks_exit(&rdev->badblocks); 766 } 767 EXPORT_SYMBOL_GPL(md_rdev_clear); 768 769 static void super_written(struct bio *bio) 770 { 771 struct md_rdev *rdev = bio->bi_private; 772 struct mddev *mddev = rdev->mddev; 773 774 if (bio->bi_status) { 775 pr_err("md: super_written gets error=%d\n", bio->bi_status); 776 md_error(mddev, rdev); 777 if (!test_bit(Faulty, &rdev->flags) 778 && (bio->bi_opf & MD_FAILFAST)) { 779 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 780 set_bit(LastDev, &rdev->flags); 781 } 782 } else 783 clear_bit(LastDev, &rdev->flags); 784 785 if (atomic_dec_and_test(&mddev->pending_writes)) 786 wake_up(&mddev->sb_wait); 787 rdev_dec_pending(rdev, mddev); 788 bio_put(bio); 789 } 790 791 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 792 sector_t sector, int size, struct page *page) 793 { 794 /* write first size bytes of page to sector of rdev 795 * Increment mddev->pending_writes before returning 796 * and decrement it on completion, waking up sb_wait 797 * if zero is reached. 798 * If an error occurred, call md_error 799 */ 800 struct bio *bio; 801 int ff = 0; 802 803 if (test_bit(Faulty, &rdev->flags)) 804 return; 805 806 bio = md_bio_alloc_sync(mddev); 807 808 atomic_inc(&rdev->nr_pending); 809 810 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 811 bio->bi_iter.bi_sector = sector; 812 bio_add_page(bio, page, size, 0); 813 bio->bi_private = rdev; 814 bio->bi_end_io = super_written; 815 816 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 817 test_bit(FailFast, &rdev->flags) && 818 !test_bit(LastDev, &rdev->flags)) 819 ff = MD_FAILFAST; 820 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 821 822 atomic_inc(&mddev->pending_writes); 823 submit_bio(bio); 824 } 825 826 int md_super_wait(struct mddev *mddev) 827 { 828 /* wait for all superblock writes that were scheduled to complete */ 829 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 830 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 831 return -EAGAIN; 832 return 0; 833 } 834 835 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 836 struct page *page, int op, int op_flags, bool metadata_op) 837 { 838 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 839 int ret; 840 841 if (metadata_op && rdev->meta_bdev) 842 bio_set_dev(bio, rdev->meta_bdev); 843 else 844 bio_set_dev(bio, rdev->bdev); 845 bio_set_op_attrs(bio, op, op_flags); 846 if (metadata_op) 847 bio->bi_iter.bi_sector = sector + rdev->sb_start; 848 else if (rdev->mddev->reshape_position != MaxSector && 849 (rdev->mddev->reshape_backwards == 850 (sector >= rdev->mddev->reshape_position))) 851 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 852 else 853 bio->bi_iter.bi_sector = sector + rdev->data_offset; 854 bio_add_page(bio, page, size, 0); 855 856 submit_bio_wait(bio); 857 858 ret = !bio->bi_status; 859 bio_put(bio); 860 return ret; 861 } 862 EXPORT_SYMBOL_GPL(sync_page_io); 863 864 static int read_disk_sb(struct md_rdev *rdev, int size) 865 { 866 char b[BDEVNAME_SIZE]; 867 868 if (rdev->sb_loaded) 869 return 0; 870 871 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 872 goto fail; 873 rdev->sb_loaded = 1; 874 return 0; 875 876 fail: 877 pr_err("md: disabled device %s, could not read superblock.\n", 878 bdevname(rdev->bdev,b)); 879 return -EINVAL; 880 } 881 882 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 883 { 884 return sb1->set_uuid0 == sb2->set_uuid0 && 885 sb1->set_uuid1 == sb2->set_uuid1 && 886 sb1->set_uuid2 == sb2->set_uuid2 && 887 sb1->set_uuid3 == sb2->set_uuid3; 888 } 889 890 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 891 { 892 int ret; 893 mdp_super_t *tmp1, *tmp2; 894 895 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 896 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 897 898 if (!tmp1 || !tmp2) { 899 ret = 0; 900 goto abort; 901 } 902 903 *tmp1 = *sb1; 904 *tmp2 = *sb2; 905 906 /* 907 * nr_disks is not constant 908 */ 909 tmp1->nr_disks = 0; 910 tmp2->nr_disks = 0; 911 912 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 913 abort: 914 kfree(tmp1); 915 kfree(tmp2); 916 return ret; 917 } 918 919 static u32 md_csum_fold(u32 csum) 920 { 921 csum = (csum & 0xffff) + (csum >> 16); 922 return (csum & 0xffff) + (csum >> 16); 923 } 924 925 static unsigned int calc_sb_csum(mdp_super_t *sb) 926 { 927 u64 newcsum = 0; 928 u32 *sb32 = (u32*)sb; 929 int i; 930 unsigned int disk_csum, csum; 931 932 disk_csum = sb->sb_csum; 933 sb->sb_csum = 0; 934 935 for (i = 0; i < MD_SB_BYTES/4 ; i++) 936 newcsum += sb32[i]; 937 csum = (newcsum & 0xffffffff) + (newcsum>>32); 938 939 #ifdef CONFIG_ALPHA 940 /* This used to use csum_partial, which was wrong for several 941 * reasons including that different results are returned on 942 * different architectures. It isn't critical that we get exactly 943 * the same return value as before (we always csum_fold before 944 * testing, and that removes any differences). However as we 945 * know that csum_partial always returned a 16bit value on 946 * alphas, do a fold to maximise conformity to previous behaviour. 947 */ 948 sb->sb_csum = md_csum_fold(disk_csum); 949 #else 950 sb->sb_csum = disk_csum; 951 #endif 952 return csum; 953 } 954 955 /* 956 * Handle superblock details. 957 * We want to be able to handle multiple superblock formats 958 * so we have a common interface to them all, and an array of 959 * different handlers. 960 * We rely on user-space to write the initial superblock, and support 961 * reading and updating of superblocks. 962 * Interface methods are: 963 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 964 * loads and validates a superblock on dev. 965 * if refdev != NULL, compare superblocks on both devices 966 * Return: 967 * 0 - dev has a superblock that is compatible with refdev 968 * 1 - dev has a superblock that is compatible and newer than refdev 969 * so dev should be used as the refdev in future 970 * -EINVAL superblock incompatible or invalid 971 * -othererror e.g. -EIO 972 * 973 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 974 * Verify that dev is acceptable into mddev. 975 * The first time, mddev->raid_disks will be 0, and data from 976 * dev should be merged in. Subsequent calls check that dev 977 * is new enough. Return 0 or -EINVAL 978 * 979 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 980 * Update the superblock for rdev with data in mddev 981 * This does not write to disc. 982 * 983 */ 984 985 struct super_type { 986 char *name; 987 struct module *owner; 988 int (*load_super)(struct md_rdev *rdev, 989 struct md_rdev *refdev, 990 int minor_version); 991 int (*validate_super)(struct mddev *mddev, 992 struct md_rdev *rdev); 993 void (*sync_super)(struct mddev *mddev, 994 struct md_rdev *rdev); 995 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 996 sector_t num_sectors); 997 int (*allow_new_offset)(struct md_rdev *rdev, 998 unsigned long long new_offset); 999 }; 1000 1001 /* 1002 * Check that the given mddev has no bitmap. 1003 * 1004 * This function is called from the run method of all personalities that do not 1005 * support bitmaps. It prints an error message and returns non-zero if mddev 1006 * has a bitmap. Otherwise, it returns 0. 1007 * 1008 */ 1009 int md_check_no_bitmap(struct mddev *mddev) 1010 { 1011 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1012 return 0; 1013 pr_warn("%s: bitmaps are not supported for %s\n", 1014 mdname(mddev), mddev->pers->name); 1015 return 1; 1016 } 1017 EXPORT_SYMBOL(md_check_no_bitmap); 1018 1019 /* 1020 * load_super for 0.90.0 1021 */ 1022 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1023 { 1024 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1025 mdp_super_t *sb; 1026 int ret; 1027 1028 /* 1029 * Calculate the position of the superblock (512byte sectors), 1030 * it's at the end of the disk. 1031 * 1032 * It also happens to be a multiple of 4Kb. 1033 */ 1034 rdev->sb_start = calc_dev_sboffset(rdev); 1035 1036 ret = read_disk_sb(rdev, MD_SB_BYTES); 1037 if (ret) 1038 return ret; 1039 1040 ret = -EINVAL; 1041 1042 bdevname(rdev->bdev, b); 1043 sb = page_address(rdev->sb_page); 1044 1045 if (sb->md_magic != MD_SB_MAGIC) { 1046 pr_warn("md: invalid raid superblock magic on %s\n", b); 1047 goto abort; 1048 } 1049 1050 if (sb->major_version != 0 || 1051 sb->minor_version < 90 || 1052 sb->minor_version > 91) { 1053 pr_warn("Bad version number %d.%d on %s\n", 1054 sb->major_version, sb->minor_version, b); 1055 goto abort; 1056 } 1057 1058 if (sb->raid_disks <= 0) 1059 goto abort; 1060 1061 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1062 pr_warn("md: invalid superblock checksum on %s\n", b); 1063 goto abort; 1064 } 1065 1066 rdev->preferred_minor = sb->md_minor; 1067 rdev->data_offset = 0; 1068 rdev->new_data_offset = 0; 1069 rdev->sb_size = MD_SB_BYTES; 1070 rdev->badblocks.shift = -1; 1071 1072 if (sb->level == LEVEL_MULTIPATH) 1073 rdev->desc_nr = -1; 1074 else 1075 rdev->desc_nr = sb->this_disk.number; 1076 1077 if (!refdev) { 1078 ret = 1; 1079 } else { 1080 __u64 ev1, ev2; 1081 mdp_super_t *refsb = page_address(refdev->sb_page); 1082 if (!md_uuid_equal(refsb, sb)) { 1083 pr_warn("md: %s has different UUID to %s\n", 1084 b, bdevname(refdev->bdev,b2)); 1085 goto abort; 1086 } 1087 if (!md_sb_equal(refsb, sb)) { 1088 pr_warn("md: %s has same UUID but different superblock to %s\n", 1089 b, bdevname(refdev->bdev, b2)); 1090 goto abort; 1091 } 1092 ev1 = md_event(sb); 1093 ev2 = md_event(refsb); 1094 if (ev1 > ev2) 1095 ret = 1; 1096 else 1097 ret = 0; 1098 } 1099 rdev->sectors = rdev->sb_start; 1100 /* Limit to 4TB as metadata cannot record more than that. 1101 * (not needed for Linear and RAID0 as metadata doesn't 1102 * record this size) 1103 */ 1104 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) && 1105 sb->level >= 1) 1106 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1107 1108 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1109 /* "this cannot possibly happen" ... */ 1110 ret = -EINVAL; 1111 1112 abort: 1113 return ret; 1114 } 1115 1116 /* 1117 * validate_super for 0.90.0 1118 */ 1119 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1120 { 1121 mdp_disk_t *desc; 1122 mdp_super_t *sb = page_address(rdev->sb_page); 1123 __u64 ev1 = md_event(sb); 1124 1125 rdev->raid_disk = -1; 1126 clear_bit(Faulty, &rdev->flags); 1127 clear_bit(In_sync, &rdev->flags); 1128 clear_bit(Bitmap_sync, &rdev->flags); 1129 clear_bit(WriteMostly, &rdev->flags); 1130 1131 if (mddev->raid_disks == 0) { 1132 mddev->major_version = 0; 1133 mddev->minor_version = sb->minor_version; 1134 mddev->patch_version = sb->patch_version; 1135 mddev->external = 0; 1136 mddev->chunk_sectors = sb->chunk_size >> 9; 1137 mddev->ctime = sb->ctime; 1138 mddev->utime = sb->utime; 1139 mddev->level = sb->level; 1140 mddev->clevel[0] = 0; 1141 mddev->layout = sb->layout; 1142 mddev->raid_disks = sb->raid_disks; 1143 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1144 mddev->events = ev1; 1145 mddev->bitmap_info.offset = 0; 1146 mddev->bitmap_info.space = 0; 1147 /* bitmap can use 60 K after the 4K superblocks */ 1148 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1149 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1150 mddev->reshape_backwards = 0; 1151 1152 if (mddev->minor_version >= 91) { 1153 mddev->reshape_position = sb->reshape_position; 1154 mddev->delta_disks = sb->delta_disks; 1155 mddev->new_level = sb->new_level; 1156 mddev->new_layout = sb->new_layout; 1157 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1158 if (mddev->delta_disks < 0) 1159 mddev->reshape_backwards = 1; 1160 } else { 1161 mddev->reshape_position = MaxSector; 1162 mddev->delta_disks = 0; 1163 mddev->new_level = mddev->level; 1164 mddev->new_layout = mddev->layout; 1165 mddev->new_chunk_sectors = mddev->chunk_sectors; 1166 } 1167 1168 if (sb->state & (1<<MD_SB_CLEAN)) 1169 mddev->recovery_cp = MaxSector; 1170 else { 1171 if (sb->events_hi == sb->cp_events_hi && 1172 sb->events_lo == sb->cp_events_lo) { 1173 mddev->recovery_cp = sb->recovery_cp; 1174 } else 1175 mddev->recovery_cp = 0; 1176 } 1177 1178 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1179 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1180 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1181 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1182 1183 mddev->max_disks = MD_SB_DISKS; 1184 1185 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1186 mddev->bitmap_info.file == NULL) { 1187 mddev->bitmap_info.offset = 1188 mddev->bitmap_info.default_offset; 1189 mddev->bitmap_info.space = 1190 mddev->bitmap_info.default_space; 1191 } 1192 1193 } else if (mddev->pers == NULL) { 1194 /* Insist on good event counter while assembling, except 1195 * for spares (which don't need an event count) */ 1196 ++ev1; 1197 if (sb->disks[rdev->desc_nr].state & ( 1198 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1199 if (ev1 < mddev->events) 1200 return -EINVAL; 1201 } else if (mddev->bitmap) { 1202 /* if adding to array with a bitmap, then we can accept an 1203 * older device ... but not too old. 1204 */ 1205 if (ev1 < mddev->bitmap->events_cleared) 1206 return 0; 1207 if (ev1 < mddev->events) 1208 set_bit(Bitmap_sync, &rdev->flags); 1209 } else { 1210 if (ev1 < mddev->events) 1211 /* just a hot-add of a new device, leave raid_disk at -1 */ 1212 return 0; 1213 } 1214 1215 if (mddev->level != LEVEL_MULTIPATH) { 1216 desc = sb->disks + rdev->desc_nr; 1217 1218 if (desc->state & (1<<MD_DISK_FAULTY)) 1219 set_bit(Faulty, &rdev->flags); 1220 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1221 desc->raid_disk < mddev->raid_disks */) { 1222 set_bit(In_sync, &rdev->flags); 1223 rdev->raid_disk = desc->raid_disk; 1224 rdev->saved_raid_disk = desc->raid_disk; 1225 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1226 /* active but not in sync implies recovery up to 1227 * reshape position. We don't know exactly where 1228 * that is, so set to zero for now */ 1229 if (mddev->minor_version >= 91) { 1230 rdev->recovery_offset = 0; 1231 rdev->raid_disk = desc->raid_disk; 1232 } 1233 } 1234 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1235 set_bit(WriteMostly, &rdev->flags); 1236 if (desc->state & (1<<MD_DISK_FAILFAST)) 1237 set_bit(FailFast, &rdev->flags); 1238 } else /* MULTIPATH are always insync */ 1239 set_bit(In_sync, &rdev->flags); 1240 return 0; 1241 } 1242 1243 /* 1244 * sync_super for 0.90.0 1245 */ 1246 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1247 { 1248 mdp_super_t *sb; 1249 struct md_rdev *rdev2; 1250 int next_spare = mddev->raid_disks; 1251 1252 /* make rdev->sb match mddev data.. 1253 * 1254 * 1/ zero out disks 1255 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1256 * 3/ any empty disks < next_spare become removed 1257 * 1258 * disks[0] gets initialised to REMOVED because 1259 * we cannot be sure from other fields if it has 1260 * been initialised or not. 1261 */ 1262 int i; 1263 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1264 1265 rdev->sb_size = MD_SB_BYTES; 1266 1267 sb = page_address(rdev->sb_page); 1268 1269 memset(sb, 0, sizeof(*sb)); 1270 1271 sb->md_magic = MD_SB_MAGIC; 1272 sb->major_version = mddev->major_version; 1273 sb->patch_version = mddev->patch_version; 1274 sb->gvalid_words = 0; /* ignored */ 1275 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1276 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1277 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1278 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1279 1280 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1281 sb->level = mddev->level; 1282 sb->size = mddev->dev_sectors / 2; 1283 sb->raid_disks = mddev->raid_disks; 1284 sb->md_minor = mddev->md_minor; 1285 sb->not_persistent = 0; 1286 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1287 sb->state = 0; 1288 sb->events_hi = (mddev->events>>32); 1289 sb->events_lo = (u32)mddev->events; 1290 1291 if (mddev->reshape_position == MaxSector) 1292 sb->minor_version = 90; 1293 else { 1294 sb->minor_version = 91; 1295 sb->reshape_position = mddev->reshape_position; 1296 sb->new_level = mddev->new_level; 1297 sb->delta_disks = mddev->delta_disks; 1298 sb->new_layout = mddev->new_layout; 1299 sb->new_chunk = mddev->new_chunk_sectors << 9; 1300 } 1301 mddev->minor_version = sb->minor_version; 1302 if (mddev->in_sync) 1303 { 1304 sb->recovery_cp = mddev->recovery_cp; 1305 sb->cp_events_hi = (mddev->events>>32); 1306 sb->cp_events_lo = (u32)mddev->events; 1307 if (mddev->recovery_cp == MaxSector) 1308 sb->state = (1<< MD_SB_CLEAN); 1309 } else 1310 sb->recovery_cp = 0; 1311 1312 sb->layout = mddev->layout; 1313 sb->chunk_size = mddev->chunk_sectors << 9; 1314 1315 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1316 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1317 1318 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1319 rdev_for_each(rdev2, mddev) { 1320 mdp_disk_t *d; 1321 int desc_nr; 1322 int is_active = test_bit(In_sync, &rdev2->flags); 1323 1324 if (rdev2->raid_disk >= 0 && 1325 sb->minor_version >= 91) 1326 /* we have nowhere to store the recovery_offset, 1327 * but if it is not below the reshape_position, 1328 * we can piggy-back on that. 1329 */ 1330 is_active = 1; 1331 if (rdev2->raid_disk < 0 || 1332 test_bit(Faulty, &rdev2->flags)) 1333 is_active = 0; 1334 if (is_active) 1335 desc_nr = rdev2->raid_disk; 1336 else 1337 desc_nr = next_spare++; 1338 rdev2->desc_nr = desc_nr; 1339 d = &sb->disks[rdev2->desc_nr]; 1340 nr_disks++; 1341 d->number = rdev2->desc_nr; 1342 d->major = MAJOR(rdev2->bdev->bd_dev); 1343 d->minor = MINOR(rdev2->bdev->bd_dev); 1344 if (is_active) 1345 d->raid_disk = rdev2->raid_disk; 1346 else 1347 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1348 if (test_bit(Faulty, &rdev2->flags)) 1349 d->state = (1<<MD_DISK_FAULTY); 1350 else if (is_active) { 1351 d->state = (1<<MD_DISK_ACTIVE); 1352 if (test_bit(In_sync, &rdev2->flags)) 1353 d->state |= (1<<MD_DISK_SYNC); 1354 active++; 1355 working++; 1356 } else { 1357 d->state = 0; 1358 spare++; 1359 working++; 1360 } 1361 if (test_bit(WriteMostly, &rdev2->flags)) 1362 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1363 if (test_bit(FailFast, &rdev2->flags)) 1364 d->state |= (1<<MD_DISK_FAILFAST); 1365 } 1366 /* now set the "removed" and "faulty" bits on any missing devices */ 1367 for (i=0 ; i < mddev->raid_disks ; i++) { 1368 mdp_disk_t *d = &sb->disks[i]; 1369 if (d->state == 0 && d->number == 0) { 1370 d->number = i; 1371 d->raid_disk = i; 1372 d->state = (1<<MD_DISK_REMOVED); 1373 d->state |= (1<<MD_DISK_FAULTY); 1374 failed++; 1375 } 1376 } 1377 sb->nr_disks = nr_disks; 1378 sb->active_disks = active; 1379 sb->working_disks = working; 1380 sb->failed_disks = failed; 1381 sb->spare_disks = spare; 1382 1383 sb->this_disk = sb->disks[rdev->desc_nr]; 1384 sb->sb_csum = calc_sb_csum(sb); 1385 } 1386 1387 /* 1388 * rdev_size_change for 0.90.0 1389 */ 1390 static unsigned long long 1391 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1392 { 1393 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1394 return 0; /* component must fit device */ 1395 if (rdev->mddev->bitmap_info.offset) 1396 return 0; /* can't move bitmap */ 1397 rdev->sb_start = calc_dev_sboffset(rdev); 1398 if (!num_sectors || num_sectors > rdev->sb_start) 1399 num_sectors = rdev->sb_start; 1400 /* Limit to 4TB as metadata cannot record more than that. 1401 * 4TB == 2^32 KB, or 2*2^32 sectors. 1402 */ 1403 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) && 1404 rdev->mddev->level >= 1) 1405 num_sectors = (sector_t)(2ULL << 32) - 2; 1406 do { 1407 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1408 rdev->sb_page); 1409 } while (md_super_wait(rdev->mddev) < 0); 1410 return num_sectors; 1411 } 1412 1413 static int 1414 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1415 { 1416 /* non-zero offset changes not possible with v0.90 */ 1417 return new_offset == 0; 1418 } 1419 1420 /* 1421 * version 1 superblock 1422 */ 1423 1424 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1425 { 1426 __le32 disk_csum; 1427 u32 csum; 1428 unsigned long long newcsum; 1429 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1430 __le32 *isuper = (__le32*)sb; 1431 1432 disk_csum = sb->sb_csum; 1433 sb->sb_csum = 0; 1434 newcsum = 0; 1435 for (; size >= 4; size -= 4) 1436 newcsum += le32_to_cpu(*isuper++); 1437 1438 if (size == 2) 1439 newcsum += le16_to_cpu(*(__le16*) isuper); 1440 1441 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1442 sb->sb_csum = disk_csum; 1443 return cpu_to_le32(csum); 1444 } 1445 1446 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1447 { 1448 struct mdp_superblock_1 *sb; 1449 int ret; 1450 sector_t sb_start; 1451 sector_t sectors; 1452 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1453 int bmask; 1454 1455 /* 1456 * Calculate the position of the superblock in 512byte sectors. 1457 * It is always aligned to a 4K boundary and 1458 * depeding on minor_version, it can be: 1459 * 0: At least 8K, but less than 12K, from end of device 1460 * 1: At start of device 1461 * 2: 4K from start of device. 1462 */ 1463 switch(minor_version) { 1464 case 0: 1465 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1466 sb_start -= 8*2; 1467 sb_start &= ~(sector_t)(4*2-1); 1468 break; 1469 case 1: 1470 sb_start = 0; 1471 break; 1472 case 2: 1473 sb_start = 8; 1474 break; 1475 default: 1476 return -EINVAL; 1477 } 1478 rdev->sb_start = sb_start; 1479 1480 /* superblock is rarely larger than 1K, but it can be larger, 1481 * and it is safe to read 4k, so we do that 1482 */ 1483 ret = read_disk_sb(rdev, 4096); 1484 if (ret) return ret; 1485 1486 sb = page_address(rdev->sb_page); 1487 1488 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1489 sb->major_version != cpu_to_le32(1) || 1490 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1491 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1492 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1493 return -EINVAL; 1494 1495 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1496 pr_warn("md: invalid superblock checksum on %s\n", 1497 bdevname(rdev->bdev,b)); 1498 return -EINVAL; 1499 } 1500 if (le64_to_cpu(sb->data_size) < 10) { 1501 pr_warn("md: data_size too small on %s\n", 1502 bdevname(rdev->bdev,b)); 1503 return -EINVAL; 1504 } 1505 if (sb->pad0 || 1506 sb->pad3[0] || 1507 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1508 /* Some padding is non-zero, might be a new feature */ 1509 return -EINVAL; 1510 1511 rdev->preferred_minor = 0xffff; 1512 rdev->data_offset = le64_to_cpu(sb->data_offset); 1513 rdev->new_data_offset = rdev->data_offset; 1514 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1515 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1516 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1517 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1518 1519 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1520 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1521 if (rdev->sb_size & bmask) 1522 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1523 1524 if (minor_version 1525 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1526 return -EINVAL; 1527 if (minor_version 1528 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1529 return -EINVAL; 1530 1531 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1532 rdev->desc_nr = -1; 1533 else 1534 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1535 1536 if (!rdev->bb_page) { 1537 rdev->bb_page = alloc_page(GFP_KERNEL); 1538 if (!rdev->bb_page) 1539 return -ENOMEM; 1540 } 1541 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1542 rdev->badblocks.count == 0) { 1543 /* need to load the bad block list. 1544 * Currently we limit it to one page. 1545 */ 1546 s32 offset; 1547 sector_t bb_sector; 1548 u64 *bbp; 1549 int i; 1550 int sectors = le16_to_cpu(sb->bblog_size); 1551 if (sectors > (PAGE_SIZE / 512)) 1552 return -EINVAL; 1553 offset = le32_to_cpu(sb->bblog_offset); 1554 if (offset == 0) 1555 return -EINVAL; 1556 bb_sector = (long long)offset; 1557 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1558 rdev->bb_page, REQ_OP_READ, 0, true)) 1559 return -EIO; 1560 bbp = (u64 *)page_address(rdev->bb_page); 1561 rdev->badblocks.shift = sb->bblog_shift; 1562 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1563 u64 bb = le64_to_cpu(*bbp); 1564 int count = bb & (0x3ff); 1565 u64 sector = bb >> 10; 1566 sector <<= sb->bblog_shift; 1567 count <<= sb->bblog_shift; 1568 if (bb + 1 == 0) 1569 break; 1570 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1571 return -EINVAL; 1572 } 1573 } else if (sb->bblog_offset != 0) 1574 rdev->badblocks.shift = 0; 1575 1576 if ((le32_to_cpu(sb->feature_map) & 1577 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1578 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1579 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1580 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1581 } 1582 1583 if (!refdev) { 1584 ret = 1; 1585 } else { 1586 __u64 ev1, ev2; 1587 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1588 1589 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1590 sb->level != refsb->level || 1591 sb->layout != refsb->layout || 1592 sb->chunksize != refsb->chunksize) { 1593 pr_warn("md: %s has strangely different superblock to %s\n", 1594 bdevname(rdev->bdev,b), 1595 bdevname(refdev->bdev,b2)); 1596 return -EINVAL; 1597 } 1598 ev1 = le64_to_cpu(sb->events); 1599 ev2 = le64_to_cpu(refsb->events); 1600 1601 if (ev1 > ev2) 1602 ret = 1; 1603 else 1604 ret = 0; 1605 } 1606 if (minor_version) { 1607 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1608 sectors -= rdev->data_offset; 1609 } else 1610 sectors = rdev->sb_start; 1611 if (sectors < le64_to_cpu(sb->data_size)) 1612 return -EINVAL; 1613 rdev->sectors = le64_to_cpu(sb->data_size); 1614 return ret; 1615 } 1616 1617 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1618 { 1619 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1620 __u64 ev1 = le64_to_cpu(sb->events); 1621 1622 rdev->raid_disk = -1; 1623 clear_bit(Faulty, &rdev->flags); 1624 clear_bit(In_sync, &rdev->flags); 1625 clear_bit(Bitmap_sync, &rdev->flags); 1626 clear_bit(WriteMostly, &rdev->flags); 1627 1628 if (mddev->raid_disks == 0) { 1629 mddev->major_version = 1; 1630 mddev->patch_version = 0; 1631 mddev->external = 0; 1632 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1633 mddev->ctime = le64_to_cpu(sb->ctime); 1634 mddev->utime = le64_to_cpu(sb->utime); 1635 mddev->level = le32_to_cpu(sb->level); 1636 mddev->clevel[0] = 0; 1637 mddev->layout = le32_to_cpu(sb->layout); 1638 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1639 mddev->dev_sectors = le64_to_cpu(sb->size); 1640 mddev->events = ev1; 1641 mddev->bitmap_info.offset = 0; 1642 mddev->bitmap_info.space = 0; 1643 /* Default location for bitmap is 1K after superblock 1644 * using 3K - total of 4K 1645 */ 1646 mddev->bitmap_info.default_offset = 1024 >> 9; 1647 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1648 mddev->reshape_backwards = 0; 1649 1650 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1651 memcpy(mddev->uuid, sb->set_uuid, 16); 1652 1653 mddev->max_disks = (4096-256)/2; 1654 1655 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1656 mddev->bitmap_info.file == NULL) { 1657 mddev->bitmap_info.offset = 1658 (__s32)le32_to_cpu(sb->bitmap_offset); 1659 /* Metadata doesn't record how much space is available. 1660 * For 1.0, we assume we can use up to the superblock 1661 * if before, else to 4K beyond superblock. 1662 * For others, assume no change is possible. 1663 */ 1664 if (mddev->minor_version > 0) 1665 mddev->bitmap_info.space = 0; 1666 else if (mddev->bitmap_info.offset > 0) 1667 mddev->bitmap_info.space = 1668 8 - mddev->bitmap_info.offset; 1669 else 1670 mddev->bitmap_info.space = 1671 -mddev->bitmap_info.offset; 1672 } 1673 1674 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1675 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1676 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1677 mddev->new_level = le32_to_cpu(sb->new_level); 1678 mddev->new_layout = le32_to_cpu(sb->new_layout); 1679 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1680 if (mddev->delta_disks < 0 || 1681 (mddev->delta_disks == 0 && 1682 (le32_to_cpu(sb->feature_map) 1683 & MD_FEATURE_RESHAPE_BACKWARDS))) 1684 mddev->reshape_backwards = 1; 1685 } else { 1686 mddev->reshape_position = MaxSector; 1687 mddev->delta_disks = 0; 1688 mddev->new_level = mddev->level; 1689 mddev->new_layout = mddev->layout; 1690 mddev->new_chunk_sectors = mddev->chunk_sectors; 1691 } 1692 1693 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1694 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1695 1696 if (le32_to_cpu(sb->feature_map) & 1697 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1698 if (le32_to_cpu(sb->feature_map) & 1699 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1700 return -EINVAL; 1701 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1702 (le32_to_cpu(sb->feature_map) & 1703 MD_FEATURE_MULTIPLE_PPLS)) 1704 return -EINVAL; 1705 set_bit(MD_HAS_PPL, &mddev->flags); 1706 } 1707 } else if (mddev->pers == NULL) { 1708 /* Insist of good event counter while assembling, except for 1709 * spares (which don't need an event count) */ 1710 ++ev1; 1711 if (rdev->desc_nr >= 0 && 1712 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1713 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1714 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1715 if (ev1 < mddev->events) 1716 return -EINVAL; 1717 } else if (mddev->bitmap) { 1718 /* If adding to array with a bitmap, then we can accept an 1719 * older device, but not too old. 1720 */ 1721 if (ev1 < mddev->bitmap->events_cleared) 1722 return 0; 1723 if (ev1 < mddev->events) 1724 set_bit(Bitmap_sync, &rdev->flags); 1725 } else { 1726 if (ev1 < mddev->events) 1727 /* just a hot-add of a new device, leave raid_disk at -1 */ 1728 return 0; 1729 } 1730 if (mddev->level != LEVEL_MULTIPATH) { 1731 int role; 1732 if (rdev->desc_nr < 0 || 1733 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1734 role = MD_DISK_ROLE_SPARE; 1735 rdev->desc_nr = -1; 1736 } else 1737 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1738 switch(role) { 1739 case MD_DISK_ROLE_SPARE: /* spare */ 1740 break; 1741 case MD_DISK_ROLE_FAULTY: /* faulty */ 1742 set_bit(Faulty, &rdev->flags); 1743 break; 1744 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1745 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1746 /* journal device without journal feature */ 1747 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1748 return -EINVAL; 1749 } 1750 set_bit(Journal, &rdev->flags); 1751 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1752 rdev->raid_disk = 0; 1753 break; 1754 default: 1755 rdev->saved_raid_disk = role; 1756 if ((le32_to_cpu(sb->feature_map) & 1757 MD_FEATURE_RECOVERY_OFFSET)) { 1758 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1759 if (!(le32_to_cpu(sb->feature_map) & 1760 MD_FEATURE_RECOVERY_BITMAP)) 1761 rdev->saved_raid_disk = -1; 1762 } else 1763 set_bit(In_sync, &rdev->flags); 1764 rdev->raid_disk = role; 1765 break; 1766 } 1767 if (sb->devflags & WriteMostly1) 1768 set_bit(WriteMostly, &rdev->flags); 1769 if (sb->devflags & FailFast1) 1770 set_bit(FailFast, &rdev->flags); 1771 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1772 set_bit(Replacement, &rdev->flags); 1773 } else /* MULTIPATH are always insync */ 1774 set_bit(In_sync, &rdev->flags); 1775 1776 return 0; 1777 } 1778 1779 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1780 { 1781 struct mdp_superblock_1 *sb; 1782 struct md_rdev *rdev2; 1783 int max_dev, i; 1784 /* make rdev->sb match mddev and rdev data. */ 1785 1786 sb = page_address(rdev->sb_page); 1787 1788 sb->feature_map = 0; 1789 sb->pad0 = 0; 1790 sb->recovery_offset = cpu_to_le64(0); 1791 memset(sb->pad3, 0, sizeof(sb->pad3)); 1792 1793 sb->utime = cpu_to_le64((__u64)mddev->utime); 1794 sb->events = cpu_to_le64(mddev->events); 1795 if (mddev->in_sync) 1796 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1797 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1798 sb->resync_offset = cpu_to_le64(MaxSector); 1799 else 1800 sb->resync_offset = cpu_to_le64(0); 1801 1802 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1803 1804 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1805 sb->size = cpu_to_le64(mddev->dev_sectors); 1806 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1807 sb->level = cpu_to_le32(mddev->level); 1808 sb->layout = cpu_to_le32(mddev->layout); 1809 if (test_bit(FailFast, &rdev->flags)) 1810 sb->devflags |= FailFast1; 1811 else 1812 sb->devflags &= ~FailFast1; 1813 1814 if (test_bit(WriteMostly, &rdev->flags)) 1815 sb->devflags |= WriteMostly1; 1816 else 1817 sb->devflags &= ~WriteMostly1; 1818 sb->data_offset = cpu_to_le64(rdev->data_offset); 1819 sb->data_size = cpu_to_le64(rdev->sectors); 1820 1821 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1822 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1823 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1824 } 1825 1826 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1827 !test_bit(In_sync, &rdev->flags)) { 1828 sb->feature_map |= 1829 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1830 sb->recovery_offset = 1831 cpu_to_le64(rdev->recovery_offset); 1832 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1833 sb->feature_map |= 1834 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1835 } 1836 /* Note: recovery_offset and journal_tail share space */ 1837 if (test_bit(Journal, &rdev->flags)) 1838 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1839 if (test_bit(Replacement, &rdev->flags)) 1840 sb->feature_map |= 1841 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1842 1843 if (mddev->reshape_position != MaxSector) { 1844 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1845 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1846 sb->new_layout = cpu_to_le32(mddev->new_layout); 1847 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1848 sb->new_level = cpu_to_le32(mddev->new_level); 1849 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1850 if (mddev->delta_disks == 0 && 1851 mddev->reshape_backwards) 1852 sb->feature_map 1853 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1854 if (rdev->new_data_offset != rdev->data_offset) { 1855 sb->feature_map 1856 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1857 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1858 - rdev->data_offset)); 1859 } 1860 } 1861 1862 if (mddev_is_clustered(mddev)) 1863 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1864 1865 if (rdev->badblocks.count == 0) 1866 /* Nothing to do for bad blocks*/ ; 1867 else if (sb->bblog_offset == 0) 1868 /* Cannot record bad blocks on this device */ 1869 md_error(mddev, rdev); 1870 else { 1871 struct badblocks *bb = &rdev->badblocks; 1872 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1873 u64 *p = bb->page; 1874 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1875 if (bb->changed) { 1876 unsigned seq; 1877 1878 retry: 1879 seq = read_seqbegin(&bb->lock); 1880 1881 memset(bbp, 0xff, PAGE_SIZE); 1882 1883 for (i = 0 ; i < bb->count ; i++) { 1884 u64 internal_bb = p[i]; 1885 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1886 | BB_LEN(internal_bb)); 1887 bbp[i] = cpu_to_le64(store_bb); 1888 } 1889 bb->changed = 0; 1890 if (read_seqretry(&bb->lock, seq)) 1891 goto retry; 1892 1893 bb->sector = (rdev->sb_start + 1894 (int)le32_to_cpu(sb->bblog_offset)); 1895 bb->size = le16_to_cpu(sb->bblog_size); 1896 } 1897 } 1898 1899 max_dev = 0; 1900 rdev_for_each(rdev2, mddev) 1901 if (rdev2->desc_nr+1 > max_dev) 1902 max_dev = rdev2->desc_nr+1; 1903 1904 if (max_dev > le32_to_cpu(sb->max_dev)) { 1905 int bmask; 1906 sb->max_dev = cpu_to_le32(max_dev); 1907 rdev->sb_size = max_dev * 2 + 256; 1908 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1909 if (rdev->sb_size & bmask) 1910 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1911 } else 1912 max_dev = le32_to_cpu(sb->max_dev); 1913 1914 for (i=0; i<max_dev;i++) 1915 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1916 1917 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1918 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1919 1920 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 1921 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 1922 sb->feature_map |= 1923 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 1924 else 1925 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 1926 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 1927 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 1928 } 1929 1930 rdev_for_each(rdev2, mddev) { 1931 i = rdev2->desc_nr; 1932 if (test_bit(Faulty, &rdev2->flags)) 1933 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1934 else if (test_bit(In_sync, &rdev2->flags)) 1935 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1936 else if (test_bit(Journal, &rdev2->flags)) 1937 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 1938 else if (rdev2->raid_disk >= 0) 1939 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1940 else 1941 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1942 } 1943 1944 sb->sb_csum = calc_sb_1_csum(sb); 1945 } 1946 1947 static unsigned long long 1948 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1949 { 1950 struct mdp_superblock_1 *sb; 1951 sector_t max_sectors; 1952 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1953 return 0; /* component must fit device */ 1954 if (rdev->data_offset != rdev->new_data_offset) 1955 return 0; /* too confusing */ 1956 if (rdev->sb_start < rdev->data_offset) { 1957 /* minor versions 1 and 2; superblock before data */ 1958 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1959 max_sectors -= rdev->data_offset; 1960 if (!num_sectors || num_sectors > max_sectors) 1961 num_sectors = max_sectors; 1962 } else if (rdev->mddev->bitmap_info.offset) { 1963 /* minor version 0 with bitmap we can't move */ 1964 return 0; 1965 } else { 1966 /* minor version 0; superblock after data */ 1967 sector_t sb_start; 1968 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1969 sb_start &= ~(sector_t)(4*2 - 1); 1970 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1971 if (!num_sectors || num_sectors > max_sectors) 1972 num_sectors = max_sectors; 1973 rdev->sb_start = sb_start; 1974 } 1975 sb = page_address(rdev->sb_page); 1976 sb->data_size = cpu_to_le64(num_sectors); 1977 sb->super_offset = cpu_to_le64(rdev->sb_start); 1978 sb->sb_csum = calc_sb_1_csum(sb); 1979 do { 1980 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1981 rdev->sb_page); 1982 } while (md_super_wait(rdev->mddev) < 0); 1983 return num_sectors; 1984 1985 } 1986 1987 static int 1988 super_1_allow_new_offset(struct md_rdev *rdev, 1989 unsigned long long new_offset) 1990 { 1991 /* All necessary checks on new >= old have been done */ 1992 struct bitmap *bitmap; 1993 if (new_offset >= rdev->data_offset) 1994 return 1; 1995 1996 /* with 1.0 metadata, there is no metadata to tread on 1997 * so we can always move back */ 1998 if (rdev->mddev->minor_version == 0) 1999 return 1; 2000 2001 /* otherwise we must be sure not to step on 2002 * any metadata, so stay: 2003 * 36K beyond start of superblock 2004 * beyond end of badblocks 2005 * beyond write-intent bitmap 2006 */ 2007 if (rdev->sb_start + (32+4)*2 > new_offset) 2008 return 0; 2009 bitmap = rdev->mddev->bitmap; 2010 if (bitmap && !rdev->mddev->bitmap_info.file && 2011 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2012 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2013 return 0; 2014 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2015 return 0; 2016 2017 return 1; 2018 } 2019 2020 static struct super_type super_types[] = { 2021 [0] = { 2022 .name = "0.90.0", 2023 .owner = THIS_MODULE, 2024 .load_super = super_90_load, 2025 .validate_super = super_90_validate, 2026 .sync_super = super_90_sync, 2027 .rdev_size_change = super_90_rdev_size_change, 2028 .allow_new_offset = super_90_allow_new_offset, 2029 }, 2030 [1] = { 2031 .name = "md-1", 2032 .owner = THIS_MODULE, 2033 .load_super = super_1_load, 2034 .validate_super = super_1_validate, 2035 .sync_super = super_1_sync, 2036 .rdev_size_change = super_1_rdev_size_change, 2037 .allow_new_offset = super_1_allow_new_offset, 2038 }, 2039 }; 2040 2041 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2042 { 2043 if (mddev->sync_super) { 2044 mddev->sync_super(mddev, rdev); 2045 return; 2046 } 2047 2048 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2049 2050 super_types[mddev->major_version].sync_super(mddev, rdev); 2051 } 2052 2053 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2054 { 2055 struct md_rdev *rdev, *rdev2; 2056 2057 rcu_read_lock(); 2058 rdev_for_each_rcu(rdev, mddev1) { 2059 if (test_bit(Faulty, &rdev->flags) || 2060 test_bit(Journal, &rdev->flags) || 2061 rdev->raid_disk == -1) 2062 continue; 2063 rdev_for_each_rcu(rdev2, mddev2) { 2064 if (test_bit(Faulty, &rdev2->flags) || 2065 test_bit(Journal, &rdev2->flags) || 2066 rdev2->raid_disk == -1) 2067 continue; 2068 if (rdev->bdev->bd_contains == 2069 rdev2->bdev->bd_contains) { 2070 rcu_read_unlock(); 2071 return 1; 2072 } 2073 } 2074 } 2075 rcu_read_unlock(); 2076 return 0; 2077 } 2078 2079 static LIST_HEAD(pending_raid_disks); 2080 2081 /* 2082 * Try to register data integrity profile for an mddev 2083 * 2084 * This is called when an array is started and after a disk has been kicked 2085 * from the array. It only succeeds if all working and active component devices 2086 * are integrity capable with matching profiles. 2087 */ 2088 int md_integrity_register(struct mddev *mddev) 2089 { 2090 struct md_rdev *rdev, *reference = NULL; 2091 2092 if (list_empty(&mddev->disks)) 2093 return 0; /* nothing to do */ 2094 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2095 return 0; /* shouldn't register, or already is */ 2096 rdev_for_each(rdev, mddev) { 2097 /* skip spares and non-functional disks */ 2098 if (test_bit(Faulty, &rdev->flags)) 2099 continue; 2100 if (rdev->raid_disk < 0) 2101 continue; 2102 if (!reference) { 2103 /* Use the first rdev as the reference */ 2104 reference = rdev; 2105 continue; 2106 } 2107 /* does this rdev's profile match the reference profile? */ 2108 if (blk_integrity_compare(reference->bdev->bd_disk, 2109 rdev->bdev->bd_disk) < 0) 2110 return -EINVAL; 2111 } 2112 if (!reference || !bdev_get_integrity(reference->bdev)) 2113 return 0; 2114 /* 2115 * All component devices are integrity capable and have matching 2116 * profiles, register the common profile for the md device. 2117 */ 2118 blk_integrity_register(mddev->gendisk, 2119 bdev_get_integrity(reference->bdev)); 2120 2121 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2122 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2123 pr_err("md: failed to create integrity pool for %s\n", 2124 mdname(mddev)); 2125 return -EINVAL; 2126 } 2127 return 0; 2128 } 2129 EXPORT_SYMBOL(md_integrity_register); 2130 2131 /* 2132 * Attempt to add an rdev, but only if it is consistent with the current 2133 * integrity profile 2134 */ 2135 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2136 { 2137 struct blk_integrity *bi_rdev; 2138 struct blk_integrity *bi_mddev; 2139 char name[BDEVNAME_SIZE]; 2140 2141 if (!mddev->gendisk) 2142 return 0; 2143 2144 bi_rdev = bdev_get_integrity(rdev->bdev); 2145 bi_mddev = blk_get_integrity(mddev->gendisk); 2146 2147 if (!bi_mddev) /* nothing to do */ 2148 return 0; 2149 2150 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2151 pr_err("%s: incompatible integrity profile for %s\n", 2152 mdname(mddev), bdevname(rdev->bdev, name)); 2153 return -ENXIO; 2154 } 2155 2156 return 0; 2157 } 2158 EXPORT_SYMBOL(md_integrity_add_rdev); 2159 2160 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2161 { 2162 char b[BDEVNAME_SIZE]; 2163 struct kobject *ko; 2164 int err; 2165 2166 /* prevent duplicates */ 2167 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2168 return -EEXIST; 2169 2170 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2171 mddev->pers) 2172 return -EROFS; 2173 2174 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2175 if (!test_bit(Journal, &rdev->flags) && 2176 rdev->sectors && 2177 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2178 if (mddev->pers) { 2179 /* Cannot change size, so fail 2180 * If mddev->level <= 0, then we don't care 2181 * about aligning sizes (e.g. linear) 2182 */ 2183 if (mddev->level > 0) 2184 return -ENOSPC; 2185 } else 2186 mddev->dev_sectors = rdev->sectors; 2187 } 2188 2189 /* Verify rdev->desc_nr is unique. 2190 * If it is -1, assign a free number, else 2191 * check number is not in use 2192 */ 2193 rcu_read_lock(); 2194 if (rdev->desc_nr < 0) { 2195 int choice = 0; 2196 if (mddev->pers) 2197 choice = mddev->raid_disks; 2198 while (md_find_rdev_nr_rcu(mddev, choice)) 2199 choice++; 2200 rdev->desc_nr = choice; 2201 } else { 2202 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2203 rcu_read_unlock(); 2204 return -EBUSY; 2205 } 2206 } 2207 rcu_read_unlock(); 2208 if (!test_bit(Journal, &rdev->flags) && 2209 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2210 pr_warn("md: %s: array is limited to %d devices\n", 2211 mdname(mddev), mddev->max_disks); 2212 return -EBUSY; 2213 } 2214 bdevname(rdev->bdev,b); 2215 strreplace(b, '/', '!'); 2216 2217 rdev->mddev = mddev; 2218 pr_debug("md: bind<%s>\n", b); 2219 2220 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2221 goto fail; 2222 2223 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2224 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2225 /* failure here is OK */; 2226 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2227 2228 list_add_rcu(&rdev->same_set, &mddev->disks); 2229 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2230 2231 /* May as well allow recovery to be retried once */ 2232 mddev->recovery_disabled++; 2233 2234 return 0; 2235 2236 fail: 2237 pr_warn("md: failed to register dev-%s for %s\n", 2238 b, mdname(mddev)); 2239 return err; 2240 } 2241 2242 static void md_delayed_delete(struct work_struct *ws) 2243 { 2244 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2245 kobject_del(&rdev->kobj); 2246 kobject_put(&rdev->kobj); 2247 } 2248 2249 static void unbind_rdev_from_array(struct md_rdev *rdev) 2250 { 2251 char b[BDEVNAME_SIZE]; 2252 2253 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2254 list_del_rcu(&rdev->same_set); 2255 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2256 rdev->mddev = NULL; 2257 sysfs_remove_link(&rdev->kobj, "block"); 2258 sysfs_put(rdev->sysfs_state); 2259 rdev->sysfs_state = NULL; 2260 rdev->badblocks.count = 0; 2261 /* We need to delay this, otherwise we can deadlock when 2262 * writing to 'remove' to "dev/state". We also need 2263 * to delay it due to rcu usage. 2264 */ 2265 synchronize_rcu(); 2266 INIT_WORK(&rdev->del_work, md_delayed_delete); 2267 kobject_get(&rdev->kobj); 2268 queue_work(md_misc_wq, &rdev->del_work); 2269 } 2270 2271 /* 2272 * prevent the device from being mounted, repartitioned or 2273 * otherwise reused by a RAID array (or any other kernel 2274 * subsystem), by bd_claiming the device. 2275 */ 2276 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2277 { 2278 int err = 0; 2279 struct block_device *bdev; 2280 char b[BDEVNAME_SIZE]; 2281 2282 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2283 shared ? (struct md_rdev *)lock_rdev : rdev); 2284 if (IS_ERR(bdev)) { 2285 pr_warn("md: could not open %s.\n", __bdevname(dev, b)); 2286 return PTR_ERR(bdev); 2287 } 2288 rdev->bdev = bdev; 2289 return err; 2290 } 2291 2292 static void unlock_rdev(struct md_rdev *rdev) 2293 { 2294 struct block_device *bdev = rdev->bdev; 2295 rdev->bdev = NULL; 2296 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2297 } 2298 2299 void md_autodetect_dev(dev_t dev); 2300 2301 static void export_rdev(struct md_rdev *rdev) 2302 { 2303 char b[BDEVNAME_SIZE]; 2304 2305 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2306 md_rdev_clear(rdev); 2307 #ifndef MODULE 2308 if (test_bit(AutoDetected, &rdev->flags)) 2309 md_autodetect_dev(rdev->bdev->bd_dev); 2310 #endif 2311 unlock_rdev(rdev); 2312 kobject_put(&rdev->kobj); 2313 } 2314 2315 void md_kick_rdev_from_array(struct md_rdev *rdev) 2316 { 2317 unbind_rdev_from_array(rdev); 2318 export_rdev(rdev); 2319 } 2320 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2321 2322 static void export_array(struct mddev *mddev) 2323 { 2324 struct md_rdev *rdev; 2325 2326 while (!list_empty(&mddev->disks)) { 2327 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2328 same_set); 2329 md_kick_rdev_from_array(rdev); 2330 } 2331 mddev->raid_disks = 0; 2332 mddev->major_version = 0; 2333 } 2334 2335 static bool set_in_sync(struct mddev *mddev) 2336 { 2337 lockdep_assert_held(&mddev->lock); 2338 if (!mddev->in_sync) { 2339 mddev->sync_checkers++; 2340 spin_unlock(&mddev->lock); 2341 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2342 spin_lock(&mddev->lock); 2343 if (!mddev->in_sync && 2344 percpu_ref_is_zero(&mddev->writes_pending)) { 2345 mddev->in_sync = 1; 2346 /* 2347 * Ensure ->in_sync is visible before we clear 2348 * ->sync_checkers. 2349 */ 2350 smp_mb(); 2351 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2352 sysfs_notify_dirent_safe(mddev->sysfs_state); 2353 } 2354 if (--mddev->sync_checkers == 0) 2355 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2356 } 2357 if (mddev->safemode == 1) 2358 mddev->safemode = 0; 2359 return mddev->in_sync; 2360 } 2361 2362 static void sync_sbs(struct mddev *mddev, int nospares) 2363 { 2364 /* Update each superblock (in-memory image), but 2365 * if we are allowed to, skip spares which already 2366 * have the right event counter, or have one earlier 2367 * (which would mean they aren't being marked as dirty 2368 * with the rest of the array) 2369 */ 2370 struct md_rdev *rdev; 2371 rdev_for_each(rdev, mddev) { 2372 if (rdev->sb_events == mddev->events || 2373 (nospares && 2374 rdev->raid_disk < 0 && 2375 rdev->sb_events+1 == mddev->events)) { 2376 /* Don't update this superblock */ 2377 rdev->sb_loaded = 2; 2378 } else { 2379 sync_super(mddev, rdev); 2380 rdev->sb_loaded = 1; 2381 } 2382 } 2383 } 2384 2385 static bool does_sb_need_changing(struct mddev *mddev) 2386 { 2387 struct md_rdev *rdev; 2388 struct mdp_superblock_1 *sb; 2389 int role; 2390 2391 /* Find a good rdev */ 2392 rdev_for_each(rdev, mddev) 2393 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2394 break; 2395 2396 /* No good device found. */ 2397 if (!rdev) 2398 return false; 2399 2400 sb = page_address(rdev->sb_page); 2401 /* Check if a device has become faulty or a spare become active */ 2402 rdev_for_each(rdev, mddev) { 2403 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2404 /* Device activated? */ 2405 if (role == 0xffff && rdev->raid_disk >=0 && 2406 !test_bit(Faulty, &rdev->flags)) 2407 return true; 2408 /* Device turned faulty? */ 2409 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2410 return true; 2411 } 2412 2413 /* Check if any mddev parameters have changed */ 2414 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2415 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2416 (mddev->layout != le32_to_cpu(sb->layout)) || 2417 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2418 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2419 return true; 2420 2421 return false; 2422 } 2423 2424 void md_update_sb(struct mddev *mddev, int force_change) 2425 { 2426 struct md_rdev *rdev; 2427 int sync_req; 2428 int nospares = 0; 2429 int any_badblocks_changed = 0; 2430 int ret = -1; 2431 2432 if (mddev->ro) { 2433 if (force_change) 2434 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2435 return; 2436 } 2437 2438 repeat: 2439 if (mddev_is_clustered(mddev)) { 2440 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2441 force_change = 1; 2442 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2443 nospares = 1; 2444 ret = md_cluster_ops->metadata_update_start(mddev); 2445 /* Has someone else has updated the sb */ 2446 if (!does_sb_need_changing(mddev)) { 2447 if (ret == 0) 2448 md_cluster_ops->metadata_update_cancel(mddev); 2449 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2450 BIT(MD_SB_CHANGE_DEVS) | 2451 BIT(MD_SB_CHANGE_CLEAN)); 2452 return; 2453 } 2454 } 2455 2456 /* 2457 * First make sure individual recovery_offsets are correct 2458 * curr_resync_completed can only be used during recovery. 2459 * During reshape/resync it might use array-addresses rather 2460 * that device addresses. 2461 */ 2462 rdev_for_each(rdev, mddev) { 2463 if (rdev->raid_disk >= 0 && 2464 mddev->delta_disks >= 0 && 2465 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2466 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2467 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2468 !test_bit(Journal, &rdev->flags) && 2469 !test_bit(In_sync, &rdev->flags) && 2470 mddev->curr_resync_completed > rdev->recovery_offset) 2471 rdev->recovery_offset = mddev->curr_resync_completed; 2472 2473 } 2474 if (!mddev->persistent) { 2475 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2476 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2477 if (!mddev->external) { 2478 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2479 rdev_for_each(rdev, mddev) { 2480 if (rdev->badblocks.changed) { 2481 rdev->badblocks.changed = 0; 2482 ack_all_badblocks(&rdev->badblocks); 2483 md_error(mddev, rdev); 2484 } 2485 clear_bit(Blocked, &rdev->flags); 2486 clear_bit(BlockedBadBlocks, &rdev->flags); 2487 wake_up(&rdev->blocked_wait); 2488 } 2489 } 2490 wake_up(&mddev->sb_wait); 2491 return; 2492 } 2493 2494 spin_lock(&mddev->lock); 2495 2496 mddev->utime = ktime_get_real_seconds(); 2497 2498 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2499 force_change = 1; 2500 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2501 /* just a clean<-> dirty transition, possibly leave spares alone, 2502 * though if events isn't the right even/odd, we will have to do 2503 * spares after all 2504 */ 2505 nospares = 1; 2506 if (force_change) 2507 nospares = 0; 2508 if (mddev->degraded) 2509 /* If the array is degraded, then skipping spares is both 2510 * dangerous and fairly pointless. 2511 * Dangerous because a device that was removed from the array 2512 * might have a event_count that still looks up-to-date, 2513 * so it can be re-added without a resync. 2514 * Pointless because if there are any spares to skip, 2515 * then a recovery will happen and soon that array won't 2516 * be degraded any more and the spare can go back to sleep then. 2517 */ 2518 nospares = 0; 2519 2520 sync_req = mddev->in_sync; 2521 2522 /* If this is just a dirty<->clean transition, and the array is clean 2523 * and 'events' is odd, we can roll back to the previous clean state */ 2524 if (nospares 2525 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2526 && mddev->can_decrease_events 2527 && mddev->events != 1) { 2528 mddev->events--; 2529 mddev->can_decrease_events = 0; 2530 } else { 2531 /* otherwise we have to go forward and ... */ 2532 mddev->events ++; 2533 mddev->can_decrease_events = nospares; 2534 } 2535 2536 /* 2537 * This 64-bit counter should never wrap. 2538 * Either we are in around ~1 trillion A.C., assuming 2539 * 1 reboot per second, or we have a bug... 2540 */ 2541 WARN_ON(mddev->events == 0); 2542 2543 rdev_for_each(rdev, mddev) { 2544 if (rdev->badblocks.changed) 2545 any_badblocks_changed++; 2546 if (test_bit(Faulty, &rdev->flags)) 2547 set_bit(FaultRecorded, &rdev->flags); 2548 } 2549 2550 sync_sbs(mddev, nospares); 2551 spin_unlock(&mddev->lock); 2552 2553 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2554 mdname(mddev), mddev->in_sync); 2555 2556 if (mddev->queue) 2557 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2558 rewrite: 2559 bitmap_update_sb(mddev->bitmap); 2560 rdev_for_each(rdev, mddev) { 2561 char b[BDEVNAME_SIZE]; 2562 2563 if (rdev->sb_loaded != 1) 2564 continue; /* no noise on spare devices */ 2565 2566 if (!test_bit(Faulty, &rdev->flags)) { 2567 md_super_write(mddev,rdev, 2568 rdev->sb_start, rdev->sb_size, 2569 rdev->sb_page); 2570 pr_debug("md: (write) %s's sb offset: %llu\n", 2571 bdevname(rdev->bdev, b), 2572 (unsigned long long)rdev->sb_start); 2573 rdev->sb_events = mddev->events; 2574 if (rdev->badblocks.size) { 2575 md_super_write(mddev, rdev, 2576 rdev->badblocks.sector, 2577 rdev->badblocks.size << 9, 2578 rdev->bb_page); 2579 rdev->badblocks.size = 0; 2580 } 2581 2582 } else 2583 pr_debug("md: %s (skipping faulty)\n", 2584 bdevname(rdev->bdev, b)); 2585 2586 if (mddev->level == LEVEL_MULTIPATH) 2587 /* only need to write one superblock... */ 2588 break; 2589 } 2590 if (md_super_wait(mddev) < 0) 2591 goto rewrite; 2592 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2593 2594 if (mddev_is_clustered(mddev) && ret == 0) 2595 md_cluster_ops->metadata_update_finish(mddev); 2596 2597 if (mddev->in_sync != sync_req || 2598 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2599 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2600 /* have to write it out again */ 2601 goto repeat; 2602 wake_up(&mddev->sb_wait); 2603 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2604 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2605 2606 rdev_for_each(rdev, mddev) { 2607 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2608 clear_bit(Blocked, &rdev->flags); 2609 2610 if (any_badblocks_changed) 2611 ack_all_badblocks(&rdev->badblocks); 2612 clear_bit(BlockedBadBlocks, &rdev->flags); 2613 wake_up(&rdev->blocked_wait); 2614 } 2615 } 2616 EXPORT_SYMBOL(md_update_sb); 2617 2618 static int add_bound_rdev(struct md_rdev *rdev) 2619 { 2620 struct mddev *mddev = rdev->mddev; 2621 int err = 0; 2622 bool add_journal = test_bit(Journal, &rdev->flags); 2623 2624 if (!mddev->pers->hot_remove_disk || add_journal) { 2625 /* If there is hot_add_disk but no hot_remove_disk 2626 * then added disks for geometry changes, 2627 * and should be added immediately. 2628 */ 2629 super_types[mddev->major_version]. 2630 validate_super(mddev, rdev); 2631 if (add_journal) 2632 mddev_suspend(mddev); 2633 err = mddev->pers->hot_add_disk(mddev, rdev); 2634 if (add_journal) 2635 mddev_resume(mddev); 2636 if (err) { 2637 md_kick_rdev_from_array(rdev); 2638 return err; 2639 } 2640 } 2641 sysfs_notify_dirent_safe(rdev->sysfs_state); 2642 2643 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2644 if (mddev->degraded) 2645 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2646 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2647 md_new_event(mddev); 2648 md_wakeup_thread(mddev->thread); 2649 return 0; 2650 } 2651 2652 /* words written to sysfs files may, or may not, be \n terminated. 2653 * We want to accept with case. For this we use cmd_match. 2654 */ 2655 static int cmd_match(const char *cmd, const char *str) 2656 { 2657 /* See if cmd, written into a sysfs file, matches 2658 * str. They must either be the same, or cmd can 2659 * have a trailing newline 2660 */ 2661 while (*cmd && *str && *cmd == *str) { 2662 cmd++; 2663 str++; 2664 } 2665 if (*cmd == '\n') 2666 cmd++; 2667 if (*str || *cmd) 2668 return 0; 2669 return 1; 2670 } 2671 2672 struct rdev_sysfs_entry { 2673 struct attribute attr; 2674 ssize_t (*show)(struct md_rdev *, char *); 2675 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2676 }; 2677 2678 static ssize_t 2679 state_show(struct md_rdev *rdev, char *page) 2680 { 2681 char *sep = ","; 2682 size_t len = 0; 2683 unsigned long flags = READ_ONCE(rdev->flags); 2684 2685 if (test_bit(Faulty, &flags) || 2686 (!test_bit(ExternalBbl, &flags) && 2687 rdev->badblocks.unacked_exist)) 2688 len += sprintf(page+len, "faulty%s", sep); 2689 if (test_bit(In_sync, &flags)) 2690 len += sprintf(page+len, "in_sync%s", sep); 2691 if (test_bit(Journal, &flags)) 2692 len += sprintf(page+len, "journal%s", sep); 2693 if (test_bit(WriteMostly, &flags)) 2694 len += sprintf(page+len, "write_mostly%s", sep); 2695 if (test_bit(Blocked, &flags) || 2696 (rdev->badblocks.unacked_exist 2697 && !test_bit(Faulty, &flags))) 2698 len += sprintf(page+len, "blocked%s", sep); 2699 if (!test_bit(Faulty, &flags) && 2700 !test_bit(Journal, &flags) && 2701 !test_bit(In_sync, &flags)) 2702 len += sprintf(page+len, "spare%s", sep); 2703 if (test_bit(WriteErrorSeen, &flags)) 2704 len += sprintf(page+len, "write_error%s", sep); 2705 if (test_bit(WantReplacement, &flags)) 2706 len += sprintf(page+len, "want_replacement%s", sep); 2707 if (test_bit(Replacement, &flags)) 2708 len += sprintf(page+len, "replacement%s", sep); 2709 if (test_bit(ExternalBbl, &flags)) 2710 len += sprintf(page+len, "external_bbl%s", sep); 2711 if (test_bit(FailFast, &flags)) 2712 len += sprintf(page+len, "failfast%s", sep); 2713 2714 if (len) 2715 len -= strlen(sep); 2716 2717 return len+sprintf(page+len, "\n"); 2718 } 2719 2720 static ssize_t 2721 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2722 { 2723 /* can write 2724 * faulty - simulates an error 2725 * remove - disconnects the device 2726 * writemostly - sets write_mostly 2727 * -writemostly - clears write_mostly 2728 * blocked - sets the Blocked flags 2729 * -blocked - clears the Blocked and possibly simulates an error 2730 * insync - sets Insync providing device isn't active 2731 * -insync - clear Insync for a device with a slot assigned, 2732 * so that it gets rebuilt based on bitmap 2733 * write_error - sets WriteErrorSeen 2734 * -write_error - clears WriteErrorSeen 2735 * {,-}failfast - set/clear FailFast 2736 */ 2737 int err = -EINVAL; 2738 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2739 md_error(rdev->mddev, rdev); 2740 if (test_bit(Faulty, &rdev->flags)) 2741 err = 0; 2742 else 2743 err = -EBUSY; 2744 } else if (cmd_match(buf, "remove")) { 2745 if (rdev->mddev->pers) { 2746 clear_bit(Blocked, &rdev->flags); 2747 remove_and_add_spares(rdev->mddev, rdev); 2748 } 2749 if (rdev->raid_disk >= 0) 2750 err = -EBUSY; 2751 else { 2752 struct mddev *mddev = rdev->mddev; 2753 err = 0; 2754 if (mddev_is_clustered(mddev)) 2755 err = md_cluster_ops->remove_disk(mddev, rdev); 2756 2757 if (err == 0) { 2758 md_kick_rdev_from_array(rdev); 2759 if (mddev->pers) { 2760 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2761 md_wakeup_thread(mddev->thread); 2762 } 2763 md_new_event(mddev); 2764 } 2765 } 2766 } else if (cmd_match(buf, "writemostly")) { 2767 set_bit(WriteMostly, &rdev->flags); 2768 err = 0; 2769 } else if (cmd_match(buf, "-writemostly")) { 2770 clear_bit(WriteMostly, &rdev->flags); 2771 err = 0; 2772 } else if (cmd_match(buf, "blocked")) { 2773 set_bit(Blocked, &rdev->flags); 2774 err = 0; 2775 } else if (cmd_match(buf, "-blocked")) { 2776 if (!test_bit(Faulty, &rdev->flags) && 2777 !test_bit(ExternalBbl, &rdev->flags) && 2778 rdev->badblocks.unacked_exist) { 2779 /* metadata handler doesn't understand badblocks, 2780 * so we need to fail the device 2781 */ 2782 md_error(rdev->mddev, rdev); 2783 } 2784 clear_bit(Blocked, &rdev->flags); 2785 clear_bit(BlockedBadBlocks, &rdev->flags); 2786 wake_up(&rdev->blocked_wait); 2787 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2788 md_wakeup_thread(rdev->mddev->thread); 2789 2790 err = 0; 2791 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2792 set_bit(In_sync, &rdev->flags); 2793 err = 0; 2794 } else if (cmd_match(buf, "failfast")) { 2795 set_bit(FailFast, &rdev->flags); 2796 err = 0; 2797 } else if (cmd_match(buf, "-failfast")) { 2798 clear_bit(FailFast, &rdev->flags); 2799 err = 0; 2800 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2801 !test_bit(Journal, &rdev->flags)) { 2802 if (rdev->mddev->pers == NULL) { 2803 clear_bit(In_sync, &rdev->flags); 2804 rdev->saved_raid_disk = rdev->raid_disk; 2805 rdev->raid_disk = -1; 2806 err = 0; 2807 } 2808 } else if (cmd_match(buf, "write_error")) { 2809 set_bit(WriteErrorSeen, &rdev->flags); 2810 err = 0; 2811 } else if (cmd_match(buf, "-write_error")) { 2812 clear_bit(WriteErrorSeen, &rdev->flags); 2813 err = 0; 2814 } else if (cmd_match(buf, "want_replacement")) { 2815 /* Any non-spare device that is not a replacement can 2816 * become want_replacement at any time, but we then need to 2817 * check if recovery is needed. 2818 */ 2819 if (rdev->raid_disk >= 0 && 2820 !test_bit(Journal, &rdev->flags) && 2821 !test_bit(Replacement, &rdev->flags)) 2822 set_bit(WantReplacement, &rdev->flags); 2823 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2824 md_wakeup_thread(rdev->mddev->thread); 2825 err = 0; 2826 } else if (cmd_match(buf, "-want_replacement")) { 2827 /* Clearing 'want_replacement' is always allowed. 2828 * Once replacements starts it is too late though. 2829 */ 2830 err = 0; 2831 clear_bit(WantReplacement, &rdev->flags); 2832 } else if (cmd_match(buf, "replacement")) { 2833 /* Can only set a device as a replacement when array has not 2834 * yet been started. Once running, replacement is automatic 2835 * from spares, or by assigning 'slot'. 2836 */ 2837 if (rdev->mddev->pers) 2838 err = -EBUSY; 2839 else { 2840 set_bit(Replacement, &rdev->flags); 2841 err = 0; 2842 } 2843 } else if (cmd_match(buf, "-replacement")) { 2844 /* Similarly, can only clear Replacement before start */ 2845 if (rdev->mddev->pers) 2846 err = -EBUSY; 2847 else { 2848 clear_bit(Replacement, &rdev->flags); 2849 err = 0; 2850 } 2851 } else if (cmd_match(buf, "re-add")) { 2852 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) { 2853 /* clear_bit is performed _after_ all the devices 2854 * have their local Faulty bit cleared. If any writes 2855 * happen in the meantime in the local node, they 2856 * will land in the local bitmap, which will be synced 2857 * by this node eventually 2858 */ 2859 if (!mddev_is_clustered(rdev->mddev) || 2860 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2861 clear_bit(Faulty, &rdev->flags); 2862 err = add_bound_rdev(rdev); 2863 } 2864 } else 2865 err = -EBUSY; 2866 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 2867 set_bit(ExternalBbl, &rdev->flags); 2868 rdev->badblocks.shift = 0; 2869 err = 0; 2870 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 2871 clear_bit(ExternalBbl, &rdev->flags); 2872 err = 0; 2873 } 2874 if (!err) 2875 sysfs_notify_dirent_safe(rdev->sysfs_state); 2876 return err ? err : len; 2877 } 2878 static struct rdev_sysfs_entry rdev_state = 2879 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2880 2881 static ssize_t 2882 errors_show(struct md_rdev *rdev, char *page) 2883 { 2884 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2885 } 2886 2887 static ssize_t 2888 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2889 { 2890 unsigned int n; 2891 int rv; 2892 2893 rv = kstrtouint(buf, 10, &n); 2894 if (rv < 0) 2895 return rv; 2896 atomic_set(&rdev->corrected_errors, n); 2897 return len; 2898 } 2899 static struct rdev_sysfs_entry rdev_errors = 2900 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2901 2902 static ssize_t 2903 slot_show(struct md_rdev *rdev, char *page) 2904 { 2905 if (test_bit(Journal, &rdev->flags)) 2906 return sprintf(page, "journal\n"); 2907 else if (rdev->raid_disk < 0) 2908 return sprintf(page, "none\n"); 2909 else 2910 return sprintf(page, "%d\n", rdev->raid_disk); 2911 } 2912 2913 static ssize_t 2914 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2915 { 2916 int slot; 2917 int err; 2918 2919 if (test_bit(Journal, &rdev->flags)) 2920 return -EBUSY; 2921 if (strncmp(buf, "none", 4)==0) 2922 slot = -1; 2923 else { 2924 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2925 if (err < 0) 2926 return err; 2927 } 2928 if (rdev->mddev->pers && slot == -1) { 2929 /* Setting 'slot' on an active array requires also 2930 * updating the 'rd%d' link, and communicating 2931 * with the personality with ->hot_*_disk. 2932 * For now we only support removing 2933 * failed/spare devices. This normally happens automatically, 2934 * but not when the metadata is externally managed. 2935 */ 2936 if (rdev->raid_disk == -1) 2937 return -EEXIST; 2938 /* personality does all needed checks */ 2939 if (rdev->mddev->pers->hot_remove_disk == NULL) 2940 return -EINVAL; 2941 clear_bit(Blocked, &rdev->flags); 2942 remove_and_add_spares(rdev->mddev, rdev); 2943 if (rdev->raid_disk >= 0) 2944 return -EBUSY; 2945 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2946 md_wakeup_thread(rdev->mddev->thread); 2947 } else if (rdev->mddev->pers) { 2948 /* Activating a spare .. or possibly reactivating 2949 * if we ever get bitmaps working here. 2950 */ 2951 int err; 2952 2953 if (rdev->raid_disk != -1) 2954 return -EBUSY; 2955 2956 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2957 return -EBUSY; 2958 2959 if (rdev->mddev->pers->hot_add_disk == NULL) 2960 return -EINVAL; 2961 2962 if (slot >= rdev->mddev->raid_disks && 2963 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2964 return -ENOSPC; 2965 2966 rdev->raid_disk = slot; 2967 if (test_bit(In_sync, &rdev->flags)) 2968 rdev->saved_raid_disk = slot; 2969 else 2970 rdev->saved_raid_disk = -1; 2971 clear_bit(In_sync, &rdev->flags); 2972 clear_bit(Bitmap_sync, &rdev->flags); 2973 err = rdev->mddev->pers-> 2974 hot_add_disk(rdev->mddev, rdev); 2975 if (err) { 2976 rdev->raid_disk = -1; 2977 return err; 2978 } else 2979 sysfs_notify_dirent_safe(rdev->sysfs_state); 2980 if (sysfs_link_rdev(rdev->mddev, rdev)) 2981 /* failure here is OK */; 2982 /* don't wakeup anyone, leave that to userspace. */ 2983 } else { 2984 if (slot >= rdev->mddev->raid_disks && 2985 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2986 return -ENOSPC; 2987 rdev->raid_disk = slot; 2988 /* assume it is working */ 2989 clear_bit(Faulty, &rdev->flags); 2990 clear_bit(WriteMostly, &rdev->flags); 2991 set_bit(In_sync, &rdev->flags); 2992 sysfs_notify_dirent_safe(rdev->sysfs_state); 2993 } 2994 return len; 2995 } 2996 2997 static struct rdev_sysfs_entry rdev_slot = 2998 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2999 3000 static ssize_t 3001 offset_show(struct md_rdev *rdev, char *page) 3002 { 3003 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3004 } 3005 3006 static ssize_t 3007 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3008 { 3009 unsigned long long offset; 3010 if (kstrtoull(buf, 10, &offset) < 0) 3011 return -EINVAL; 3012 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3013 return -EBUSY; 3014 if (rdev->sectors && rdev->mddev->external) 3015 /* Must set offset before size, so overlap checks 3016 * can be sane */ 3017 return -EBUSY; 3018 rdev->data_offset = offset; 3019 rdev->new_data_offset = offset; 3020 return len; 3021 } 3022 3023 static struct rdev_sysfs_entry rdev_offset = 3024 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3025 3026 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3027 { 3028 return sprintf(page, "%llu\n", 3029 (unsigned long long)rdev->new_data_offset); 3030 } 3031 3032 static ssize_t new_offset_store(struct md_rdev *rdev, 3033 const char *buf, size_t len) 3034 { 3035 unsigned long long new_offset; 3036 struct mddev *mddev = rdev->mddev; 3037 3038 if (kstrtoull(buf, 10, &new_offset) < 0) 3039 return -EINVAL; 3040 3041 if (mddev->sync_thread || 3042 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3043 return -EBUSY; 3044 if (new_offset == rdev->data_offset) 3045 /* reset is always permitted */ 3046 ; 3047 else if (new_offset > rdev->data_offset) { 3048 /* must not push array size beyond rdev_sectors */ 3049 if (new_offset - rdev->data_offset 3050 + mddev->dev_sectors > rdev->sectors) 3051 return -E2BIG; 3052 } 3053 /* Metadata worries about other space details. */ 3054 3055 /* decreasing the offset is inconsistent with a backwards 3056 * reshape. 3057 */ 3058 if (new_offset < rdev->data_offset && 3059 mddev->reshape_backwards) 3060 return -EINVAL; 3061 /* Increasing offset is inconsistent with forwards 3062 * reshape. reshape_direction should be set to 3063 * 'backwards' first. 3064 */ 3065 if (new_offset > rdev->data_offset && 3066 !mddev->reshape_backwards) 3067 return -EINVAL; 3068 3069 if (mddev->pers && mddev->persistent && 3070 !super_types[mddev->major_version] 3071 .allow_new_offset(rdev, new_offset)) 3072 return -E2BIG; 3073 rdev->new_data_offset = new_offset; 3074 if (new_offset > rdev->data_offset) 3075 mddev->reshape_backwards = 1; 3076 else if (new_offset < rdev->data_offset) 3077 mddev->reshape_backwards = 0; 3078 3079 return len; 3080 } 3081 static struct rdev_sysfs_entry rdev_new_offset = 3082 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3083 3084 static ssize_t 3085 rdev_size_show(struct md_rdev *rdev, char *page) 3086 { 3087 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3088 } 3089 3090 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3091 { 3092 /* check if two start/length pairs overlap */ 3093 if (s1+l1 <= s2) 3094 return 0; 3095 if (s2+l2 <= s1) 3096 return 0; 3097 return 1; 3098 } 3099 3100 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3101 { 3102 unsigned long long blocks; 3103 sector_t new; 3104 3105 if (kstrtoull(buf, 10, &blocks) < 0) 3106 return -EINVAL; 3107 3108 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3109 return -EINVAL; /* sector conversion overflow */ 3110 3111 new = blocks * 2; 3112 if (new != blocks * 2) 3113 return -EINVAL; /* unsigned long long to sector_t overflow */ 3114 3115 *sectors = new; 3116 return 0; 3117 } 3118 3119 static ssize_t 3120 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3121 { 3122 struct mddev *my_mddev = rdev->mddev; 3123 sector_t oldsectors = rdev->sectors; 3124 sector_t sectors; 3125 3126 if (test_bit(Journal, &rdev->flags)) 3127 return -EBUSY; 3128 if (strict_blocks_to_sectors(buf, §ors) < 0) 3129 return -EINVAL; 3130 if (rdev->data_offset != rdev->new_data_offset) 3131 return -EINVAL; /* too confusing */ 3132 if (my_mddev->pers && rdev->raid_disk >= 0) { 3133 if (my_mddev->persistent) { 3134 sectors = super_types[my_mddev->major_version]. 3135 rdev_size_change(rdev, sectors); 3136 if (!sectors) 3137 return -EBUSY; 3138 } else if (!sectors) 3139 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3140 rdev->data_offset; 3141 if (!my_mddev->pers->resize) 3142 /* Cannot change size for RAID0 or Linear etc */ 3143 return -EINVAL; 3144 } 3145 if (sectors < my_mddev->dev_sectors) 3146 return -EINVAL; /* component must fit device */ 3147 3148 rdev->sectors = sectors; 3149 if (sectors > oldsectors && my_mddev->external) { 3150 /* Need to check that all other rdevs with the same 3151 * ->bdev do not overlap. 'rcu' is sufficient to walk 3152 * the rdev lists safely. 3153 * This check does not provide a hard guarantee, it 3154 * just helps avoid dangerous mistakes. 3155 */ 3156 struct mddev *mddev; 3157 int overlap = 0; 3158 struct list_head *tmp; 3159 3160 rcu_read_lock(); 3161 for_each_mddev(mddev, tmp) { 3162 struct md_rdev *rdev2; 3163 3164 rdev_for_each(rdev2, mddev) 3165 if (rdev->bdev == rdev2->bdev && 3166 rdev != rdev2 && 3167 overlaps(rdev->data_offset, rdev->sectors, 3168 rdev2->data_offset, 3169 rdev2->sectors)) { 3170 overlap = 1; 3171 break; 3172 } 3173 if (overlap) { 3174 mddev_put(mddev); 3175 break; 3176 } 3177 } 3178 rcu_read_unlock(); 3179 if (overlap) { 3180 /* Someone else could have slipped in a size 3181 * change here, but doing so is just silly. 3182 * We put oldsectors back because we *know* it is 3183 * safe, and trust userspace not to race with 3184 * itself 3185 */ 3186 rdev->sectors = oldsectors; 3187 return -EBUSY; 3188 } 3189 } 3190 return len; 3191 } 3192 3193 static struct rdev_sysfs_entry rdev_size = 3194 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3195 3196 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3197 { 3198 unsigned long long recovery_start = rdev->recovery_offset; 3199 3200 if (test_bit(In_sync, &rdev->flags) || 3201 recovery_start == MaxSector) 3202 return sprintf(page, "none\n"); 3203 3204 return sprintf(page, "%llu\n", recovery_start); 3205 } 3206 3207 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3208 { 3209 unsigned long long recovery_start; 3210 3211 if (cmd_match(buf, "none")) 3212 recovery_start = MaxSector; 3213 else if (kstrtoull(buf, 10, &recovery_start)) 3214 return -EINVAL; 3215 3216 if (rdev->mddev->pers && 3217 rdev->raid_disk >= 0) 3218 return -EBUSY; 3219 3220 rdev->recovery_offset = recovery_start; 3221 if (recovery_start == MaxSector) 3222 set_bit(In_sync, &rdev->flags); 3223 else 3224 clear_bit(In_sync, &rdev->flags); 3225 return len; 3226 } 3227 3228 static struct rdev_sysfs_entry rdev_recovery_start = 3229 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3230 3231 /* sysfs access to bad-blocks list. 3232 * We present two files. 3233 * 'bad-blocks' lists sector numbers and lengths of ranges that 3234 * are recorded as bad. The list is truncated to fit within 3235 * the one-page limit of sysfs. 3236 * Writing "sector length" to this file adds an acknowledged 3237 * bad block list. 3238 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3239 * been acknowledged. Writing to this file adds bad blocks 3240 * without acknowledging them. This is largely for testing. 3241 */ 3242 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3243 { 3244 return badblocks_show(&rdev->badblocks, page, 0); 3245 } 3246 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3247 { 3248 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3249 /* Maybe that ack was all we needed */ 3250 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3251 wake_up(&rdev->blocked_wait); 3252 return rv; 3253 } 3254 static struct rdev_sysfs_entry rdev_bad_blocks = 3255 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3256 3257 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3258 { 3259 return badblocks_show(&rdev->badblocks, page, 1); 3260 } 3261 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3262 { 3263 return badblocks_store(&rdev->badblocks, page, len, 1); 3264 } 3265 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3266 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3267 3268 static ssize_t 3269 ppl_sector_show(struct md_rdev *rdev, char *page) 3270 { 3271 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3272 } 3273 3274 static ssize_t 3275 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3276 { 3277 unsigned long long sector; 3278 3279 if (kstrtoull(buf, 10, §or) < 0) 3280 return -EINVAL; 3281 if (sector != (sector_t)sector) 3282 return -EINVAL; 3283 3284 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3285 rdev->raid_disk >= 0) 3286 return -EBUSY; 3287 3288 if (rdev->mddev->persistent) { 3289 if (rdev->mddev->major_version == 0) 3290 return -EINVAL; 3291 if ((sector > rdev->sb_start && 3292 sector - rdev->sb_start > S16_MAX) || 3293 (sector < rdev->sb_start && 3294 rdev->sb_start - sector > -S16_MIN)) 3295 return -EINVAL; 3296 rdev->ppl.offset = sector - rdev->sb_start; 3297 } else if (!rdev->mddev->external) { 3298 return -EBUSY; 3299 } 3300 rdev->ppl.sector = sector; 3301 return len; 3302 } 3303 3304 static struct rdev_sysfs_entry rdev_ppl_sector = 3305 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3306 3307 static ssize_t 3308 ppl_size_show(struct md_rdev *rdev, char *page) 3309 { 3310 return sprintf(page, "%u\n", rdev->ppl.size); 3311 } 3312 3313 static ssize_t 3314 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3315 { 3316 unsigned int size; 3317 3318 if (kstrtouint(buf, 10, &size) < 0) 3319 return -EINVAL; 3320 3321 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3322 rdev->raid_disk >= 0) 3323 return -EBUSY; 3324 3325 if (rdev->mddev->persistent) { 3326 if (rdev->mddev->major_version == 0) 3327 return -EINVAL; 3328 if (size > U16_MAX) 3329 return -EINVAL; 3330 } else if (!rdev->mddev->external) { 3331 return -EBUSY; 3332 } 3333 rdev->ppl.size = size; 3334 return len; 3335 } 3336 3337 static struct rdev_sysfs_entry rdev_ppl_size = 3338 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3339 3340 static struct attribute *rdev_default_attrs[] = { 3341 &rdev_state.attr, 3342 &rdev_errors.attr, 3343 &rdev_slot.attr, 3344 &rdev_offset.attr, 3345 &rdev_new_offset.attr, 3346 &rdev_size.attr, 3347 &rdev_recovery_start.attr, 3348 &rdev_bad_blocks.attr, 3349 &rdev_unack_bad_blocks.attr, 3350 &rdev_ppl_sector.attr, 3351 &rdev_ppl_size.attr, 3352 NULL, 3353 }; 3354 static ssize_t 3355 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3356 { 3357 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3358 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3359 3360 if (!entry->show) 3361 return -EIO; 3362 if (!rdev->mddev) 3363 return -EBUSY; 3364 return entry->show(rdev, page); 3365 } 3366 3367 static ssize_t 3368 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3369 const char *page, size_t length) 3370 { 3371 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3372 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3373 ssize_t rv; 3374 struct mddev *mddev = rdev->mddev; 3375 3376 if (!entry->store) 3377 return -EIO; 3378 if (!capable(CAP_SYS_ADMIN)) 3379 return -EACCES; 3380 rv = mddev ? mddev_lock(mddev): -EBUSY; 3381 if (!rv) { 3382 if (rdev->mddev == NULL) 3383 rv = -EBUSY; 3384 else 3385 rv = entry->store(rdev, page, length); 3386 mddev_unlock(mddev); 3387 } 3388 return rv; 3389 } 3390 3391 static void rdev_free(struct kobject *ko) 3392 { 3393 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3394 kfree(rdev); 3395 } 3396 static const struct sysfs_ops rdev_sysfs_ops = { 3397 .show = rdev_attr_show, 3398 .store = rdev_attr_store, 3399 }; 3400 static struct kobj_type rdev_ktype = { 3401 .release = rdev_free, 3402 .sysfs_ops = &rdev_sysfs_ops, 3403 .default_attrs = rdev_default_attrs, 3404 }; 3405 3406 int md_rdev_init(struct md_rdev *rdev) 3407 { 3408 rdev->desc_nr = -1; 3409 rdev->saved_raid_disk = -1; 3410 rdev->raid_disk = -1; 3411 rdev->flags = 0; 3412 rdev->data_offset = 0; 3413 rdev->new_data_offset = 0; 3414 rdev->sb_events = 0; 3415 rdev->last_read_error = 0; 3416 rdev->sb_loaded = 0; 3417 rdev->bb_page = NULL; 3418 atomic_set(&rdev->nr_pending, 0); 3419 atomic_set(&rdev->read_errors, 0); 3420 atomic_set(&rdev->corrected_errors, 0); 3421 3422 INIT_LIST_HEAD(&rdev->same_set); 3423 init_waitqueue_head(&rdev->blocked_wait); 3424 3425 /* Add space to store bad block list. 3426 * This reserves the space even on arrays where it cannot 3427 * be used - I wonder if that matters 3428 */ 3429 return badblocks_init(&rdev->badblocks, 0); 3430 } 3431 EXPORT_SYMBOL_GPL(md_rdev_init); 3432 /* 3433 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3434 * 3435 * mark the device faulty if: 3436 * 3437 * - the device is nonexistent (zero size) 3438 * - the device has no valid superblock 3439 * 3440 * a faulty rdev _never_ has rdev->sb set. 3441 */ 3442 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3443 { 3444 char b[BDEVNAME_SIZE]; 3445 int err; 3446 struct md_rdev *rdev; 3447 sector_t size; 3448 3449 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3450 if (!rdev) 3451 return ERR_PTR(-ENOMEM); 3452 3453 err = md_rdev_init(rdev); 3454 if (err) 3455 goto abort_free; 3456 err = alloc_disk_sb(rdev); 3457 if (err) 3458 goto abort_free; 3459 3460 err = lock_rdev(rdev, newdev, super_format == -2); 3461 if (err) 3462 goto abort_free; 3463 3464 kobject_init(&rdev->kobj, &rdev_ktype); 3465 3466 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3467 if (!size) { 3468 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3469 bdevname(rdev->bdev,b)); 3470 err = -EINVAL; 3471 goto abort_free; 3472 } 3473 3474 if (super_format >= 0) { 3475 err = super_types[super_format]. 3476 load_super(rdev, NULL, super_minor); 3477 if (err == -EINVAL) { 3478 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3479 bdevname(rdev->bdev,b), 3480 super_format, super_minor); 3481 goto abort_free; 3482 } 3483 if (err < 0) { 3484 pr_warn("md: could not read %s's sb, not importing!\n", 3485 bdevname(rdev->bdev,b)); 3486 goto abort_free; 3487 } 3488 } 3489 3490 return rdev; 3491 3492 abort_free: 3493 if (rdev->bdev) 3494 unlock_rdev(rdev); 3495 md_rdev_clear(rdev); 3496 kfree(rdev); 3497 return ERR_PTR(err); 3498 } 3499 3500 /* 3501 * Check a full RAID array for plausibility 3502 */ 3503 3504 static void analyze_sbs(struct mddev *mddev) 3505 { 3506 int i; 3507 struct md_rdev *rdev, *freshest, *tmp; 3508 char b[BDEVNAME_SIZE]; 3509 3510 freshest = NULL; 3511 rdev_for_each_safe(rdev, tmp, mddev) 3512 switch (super_types[mddev->major_version]. 3513 load_super(rdev, freshest, mddev->minor_version)) { 3514 case 1: 3515 freshest = rdev; 3516 break; 3517 case 0: 3518 break; 3519 default: 3520 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3521 bdevname(rdev->bdev,b)); 3522 md_kick_rdev_from_array(rdev); 3523 } 3524 3525 super_types[mddev->major_version]. 3526 validate_super(mddev, freshest); 3527 3528 i = 0; 3529 rdev_for_each_safe(rdev, tmp, mddev) { 3530 if (mddev->max_disks && 3531 (rdev->desc_nr >= mddev->max_disks || 3532 i > mddev->max_disks)) { 3533 pr_warn("md: %s: %s: only %d devices permitted\n", 3534 mdname(mddev), bdevname(rdev->bdev, b), 3535 mddev->max_disks); 3536 md_kick_rdev_from_array(rdev); 3537 continue; 3538 } 3539 if (rdev != freshest) { 3540 if (super_types[mddev->major_version]. 3541 validate_super(mddev, rdev)) { 3542 pr_warn("md: kicking non-fresh %s from array!\n", 3543 bdevname(rdev->bdev,b)); 3544 md_kick_rdev_from_array(rdev); 3545 continue; 3546 } 3547 } 3548 if (mddev->level == LEVEL_MULTIPATH) { 3549 rdev->desc_nr = i++; 3550 rdev->raid_disk = rdev->desc_nr; 3551 set_bit(In_sync, &rdev->flags); 3552 } else if (rdev->raid_disk >= 3553 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3554 !test_bit(Journal, &rdev->flags)) { 3555 rdev->raid_disk = -1; 3556 clear_bit(In_sync, &rdev->flags); 3557 } 3558 } 3559 } 3560 3561 /* Read a fixed-point number. 3562 * Numbers in sysfs attributes should be in "standard" units where 3563 * possible, so time should be in seconds. 3564 * However we internally use a a much smaller unit such as 3565 * milliseconds or jiffies. 3566 * This function takes a decimal number with a possible fractional 3567 * component, and produces an integer which is the result of 3568 * multiplying that number by 10^'scale'. 3569 * all without any floating-point arithmetic. 3570 */ 3571 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3572 { 3573 unsigned long result = 0; 3574 long decimals = -1; 3575 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3576 if (*cp == '.') 3577 decimals = 0; 3578 else if (decimals < scale) { 3579 unsigned int value; 3580 value = *cp - '0'; 3581 result = result * 10 + value; 3582 if (decimals >= 0) 3583 decimals++; 3584 } 3585 cp++; 3586 } 3587 if (*cp == '\n') 3588 cp++; 3589 if (*cp) 3590 return -EINVAL; 3591 if (decimals < 0) 3592 decimals = 0; 3593 while (decimals < scale) { 3594 result *= 10; 3595 decimals ++; 3596 } 3597 *res = result; 3598 return 0; 3599 } 3600 3601 static ssize_t 3602 safe_delay_show(struct mddev *mddev, char *page) 3603 { 3604 int msec = (mddev->safemode_delay*1000)/HZ; 3605 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3606 } 3607 static ssize_t 3608 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3609 { 3610 unsigned long msec; 3611 3612 if (mddev_is_clustered(mddev)) { 3613 pr_warn("md: Safemode is disabled for clustered mode\n"); 3614 return -EINVAL; 3615 } 3616 3617 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3618 return -EINVAL; 3619 if (msec == 0) 3620 mddev->safemode_delay = 0; 3621 else { 3622 unsigned long old_delay = mddev->safemode_delay; 3623 unsigned long new_delay = (msec*HZ)/1000; 3624 3625 if (new_delay == 0) 3626 new_delay = 1; 3627 mddev->safemode_delay = new_delay; 3628 if (new_delay < old_delay || old_delay == 0) 3629 mod_timer(&mddev->safemode_timer, jiffies+1); 3630 } 3631 return len; 3632 } 3633 static struct md_sysfs_entry md_safe_delay = 3634 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3635 3636 static ssize_t 3637 level_show(struct mddev *mddev, char *page) 3638 { 3639 struct md_personality *p; 3640 int ret; 3641 spin_lock(&mddev->lock); 3642 p = mddev->pers; 3643 if (p) 3644 ret = sprintf(page, "%s\n", p->name); 3645 else if (mddev->clevel[0]) 3646 ret = sprintf(page, "%s\n", mddev->clevel); 3647 else if (mddev->level != LEVEL_NONE) 3648 ret = sprintf(page, "%d\n", mddev->level); 3649 else 3650 ret = 0; 3651 spin_unlock(&mddev->lock); 3652 return ret; 3653 } 3654 3655 static ssize_t 3656 level_store(struct mddev *mddev, const char *buf, size_t len) 3657 { 3658 char clevel[16]; 3659 ssize_t rv; 3660 size_t slen = len; 3661 struct md_personality *pers, *oldpers; 3662 long level; 3663 void *priv, *oldpriv; 3664 struct md_rdev *rdev; 3665 3666 if (slen == 0 || slen >= sizeof(clevel)) 3667 return -EINVAL; 3668 3669 rv = mddev_lock(mddev); 3670 if (rv) 3671 return rv; 3672 3673 if (mddev->pers == NULL) { 3674 strncpy(mddev->clevel, buf, slen); 3675 if (mddev->clevel[slen-1] == '\n') 3676 slen--; 3677 mddev->clevel[slen] = 0; 3678 mddev->level = LEVEL_NONE; 3679 rv = len; 3680 goto out_unlock; 3681 } 3682 rv = -EROFS; 3683 if (mddev->ro) 3684 goto out_unlock; 3685 3686 /* request to change the personality. Need to ensure: 3687 * - array is not engaged in resync/recovery/reshape 3688 * - old personality can be suspended 3689 * - new personality will access other array. 3690 */ 3691 3692 rv = -EBUSY; 3693 if (mddev->sync_thread || 3694 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3695 mddev->reshape_position != MaxSector || 3696 mddev->sysfs_active) 3697 goto out_unlock; 3698 3699 rv = -EINVAL; 3700 if (!mddev->pers->quiesce) { 3701 pr_warn("md: %s: %s does not support online personality change\n", 3702 mdname(mddev), mddev->pers->name); 3703 goto out_unlock; 3704 } 3705 3706 /* Now find the new personality */ 3707 strncpy(clevel, buf, slen); 3708 if (clevel[slen-1] == '\n') 3709 slen--; 3710 clevel[slen] = 0; 3711 if (kstrtol(clevel, 10, &level)) 3712 level = LEVEL_NONE; 3713 3714 if (request_module("md-%s", clevel) != 0) 3715 request_module("md-level-%s", clevel); 3716 spin_lock(&pers_lock); 3717 pers = find_pers(level, clevel); 3718 if (!pers || !try_module_get(pers->owner)) { 3719 spin_unlock(&pers_lock); 3720 pr_warn("md: personality %s not loaded\n", clevel); 3721 rv = -EINVAL; 3722 goto out_unlock; 3723 } 3724 spin_unlock(&pers_lock); 3725 3726 if (pers == mddev->pers) { 3727 /* Nothing to do! */ 3728 module_put(pers->owner); 3729 rv = len; 3730 goto out_unlock; 3731 } 3732 if (!pers->takeover) { 3733 module_put(pers->owner); 3734 pr_warn("md: %s: %s does not support personality takeover\n", 3735 mdname(mddev), clevel); 3736 rv = -EINVAL; 3737 goto out_unlock; 3738 } 3739 3740 rdev_for_each(rdev, mddev) 3741 rdev->new_raid_disk = rdev->raid_disk; 3742 3743 /* ->takeover must set new_* and/or delta_disks 3744 * if it succeeds, and may set them when it fails. 3745 */ 3746 priv = pers->takeover(mddev); 3747 if (IS_ERR(priv)) { 3748 mddev->new_level = mddev->level; 3749 mddev->new_layout = mddev->layout; 3750 mddev->new_chunk_sectors = mddev->chunk_sectors; 3751 mddev->raid_disks -= mddev->delta_disks; 3752 mddev->delta_disks = 0; 3753 mddev->reshape_backwards = 0; 3754 module_put(pers->owner); 3755 pr_warn("md: %s: %s would not accept array\n", 3756 mdname(mddev), clevel); 3757 rv = PTR_ERR(priv); 3758 goto out_unlock; 3759 } 3760 3761 /* Looks like we have a winner */ 3762 mddev_suspend(mddev); 3763 mddev_detach(mddev); 3764 3765 spin_lock(&mddev->lock); 3766 oldpers = mddev->pers; 3767 oldpriv = mddev->private; 3768 mddev->pers = pers; 3769 mddev->private = priv; 3770 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3771 mddev->level = mddev->new_level; 3772 mddev->layout = mddev->new_layout; 3773 mddev->chunk_sectors = mddev->new_chunk_sectors; 3774 mddev->delta_disks = 0; 3775 mddev->reshape_backwards = 0; 3776 mddev->degraded = 0; 3777 spin_unlock(&mddev->lock); 3778 3779 if (oldpers->sync_request == NULL && 3780 mddev->external) { 3781 /* We are converting from a no-redundancy array 3782 * to a redundancy array and metadata is managed 3783 * externally so we need to be sure that writes 3784 * won't block due to a need to transition 3785 * clean->dirty 3786 * until external management is started. 3787 */ 3788 mddev->in_sync = 0; 3789 mddev->safemode_delay = 0; 3790 mddev->safemode = 0; 3791 } 3792 3793 oldpers->free(mddev, oldpriv); 3794 3795 if (oldpers->sync_request == NULL && 3796 pers->sync_request != NULL) { 3797 /* need to add the md_redundancy_group */ 3798 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3799 pr_warn("md: cannot register extra attributes for %s\n", 3800 mdname(mddev)); 3801 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3802 } 3803 if (oldpers->sync_request != NULL && 3804 pers->sync_request == NULL) { 3805 /* need to remove the md_redundancy_group */ 3806 if (mddev->to_remove == NULL) 3807 mddev->to_remove = &md_redundancy_group; 3808 } 3809 3810 module_put(oldpers->owner); 3811 3812 rdev_for_each(rdev, mddev) { 3813 if (rdev->raid_disk < 0) 3814 continue; 3815 if (rdev->new_raid_disk >= mddev->raid_disks) 3816 rdev->new_raid_disk = -1; 3817 if (rdev->new_raid_disk == rdev->raid_disk) 3818 continue; 3819 sysfs_unlink_rdev(mddev, rdev); 3820 } 3821 rdev_for_each(rdev, mddev) { 3822 if (rdev->raid_disk < 0) 3823 continue; 3824 if (rdev->new_raid_disk == rdev->raid_disk) 3825 continue; 3826 rdev->raid_disk = rdev->new_raid_disk; 3827 if (rdev->raid_disk < 0) 3828 clear_bit(In_sync, &rdev->flags); 3829 else { 3830 if (sysfs_link_rdev(mddev, rdev)) 3831 pr_warn("md: cannot register rd%d for %s after level change\n", 3832 rdev->raid_disk, mdname(mddev)); 3833 } 3834 } 3835 3836 if (pers->sync_request == NULL) { 3837 /* this is now an array without redundancy, so 3838 * it must always be in_sync 3839 */ 3840 mddev->in_sync = 1; 3841 del_timer_sync(&mddev->safemode_timer); 3842 } 3843 blk_set_stacking_limits(&mddev->queue->limits); 3844 pers->run(mddev); 3845 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3846 mddev_resume(mddev); 3847 if (!mddev->thread) 3848 md_update_sb(mddev, 1); 3849 sysfs_notify(&mddev->kobj, NULL, "level"); 3850 md_new_event(mddev); 3851 rv = len; 3852 out_unlock: 3853 mddev_unlock(mddev); 3854 return rv; 3855 } 3856 3857 static struct md_sysfs_entry md_level = 3858 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3859 3860 static ssize_t 3861 layout_show(struct mddev *mddev, char *page) 3862 { 3863 /* just a number, not meaningful for all levels */ 3864 if (mddev->reshape_position != MaxSector && 3865 mddev->layout != mddev->new_layout) 3866 return sprintf(page, "%d (%d)\n", 3867 mddev->new_layout, mddev->layout); 3868 return sprintf(page, "%d\n", mddev->layout); 3869 } 3870 3871 static ssize_t 3872 layout_store(struct mddev *mddev, const char *buf, size_t len) 3873 { 3874 unsigned int n; 3875 int err; 3876 3877 err = kstrtouint(buf, 10, &n); 3878 if (err < 0) 3879 return err; 3880 err = mddev_lock(mddev); 3881 if (err) 3882 return err; 3883 3884 if (mddev->pers) { 3885 if (mddev->pers->check_reshape == NULL) 3886 err = -EBUSY; 3887 else if (mddev->ro) 3888 err = -EROFS; 3889 else { 3890 mddev->new_layout = n; 3891 err = mddev->pers->check_reshape(mddev); 3892 if (err) 3893 mddev->new_layout = mddev->layout; 3894 } 3895 } else { 3896 mddev->new_layout = n; 3897 if (mddev->reshape_position == MaxSector) 3898 mddev->layout = n; 3899 } 3900 mddev_unlock(mddev); 3901 return err ?: len; 3902 } 3903 static struct md_sysfs_entry md_layout = 3904 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3905 3906 static ssize_t 3907 raid_disks_show(struct mddev *mddev, char *page) 3908 { 3909 if (mddev->raid_disks == 0) 3910 return 0; 3911 if (mddev->reshape_position != MaxSector && 3912 mddev->delta_disks != 0) 3913 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3914 mddev->raid_disks - mddev->delta_disks); 3915 return sprintf(page, "%d\n", mddev->raid_disks); 3916 } 3917 3918 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3919 3920 static ssize_t 3921 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3922 { 3923 unsigned int n; 3924 int err; 3925 3926 err = kstrtouint(buf, 10, &n); 3927 if (err < 0) 3928 return err; 3929 3930 err = mddev_lock(mddev); 3931 if (err) 3932 return err; 3933 if (mddev->pers) 3934 err = update_raid_disks(mddev, n); 3935 else if (mddev->reshape_position != MaxSector) { 3936 struct md_rdev *rdev; 3937 int olddisks = mddev->raid_disks - mddev->delta_disks; 3938 3939 err = -EINVAL; 3940 rdev_for_each(rdev, mddev) { 3941 if (olddisks < n && 3942 rdev->data_offset < rdev->new_data_offset) 3943 goto out_unlock; 3944 if (olddisks > n && 3945 rdev->data_offset > rdev->new_data_offset) 3946 goto out_unlock; 3947 } 3948 err = 0; 3949 mddev->delta_disks = n - olddisks; 3950 mddev->raid_disks = n; 3951 mddev->reshape_backwards = (mddev->delta_disks < 0); 3952 } else 3953 mddev->raid_disks = n; 3954 out_unlock: 3955 mddev_unlock(mddev); 3956 return err ? err : len; 3957 } 3958 static struct md_sysfs_entry md_raid_disks = 3959 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3960 3961 static ssize_t 3962 chunk_size_show(struct mddev *mddev, char *page) 3963 { 3964 if (mddev->reshape_position != MaxSector && 3965 mddev->chunk_sectors != mddev->new_chunk_sectors) 3966 return sprintf(page, "%d (%d)\n", 3967 mddev->new_chunk_sectors << 9, 3968 mddev->chunk_sectors << 9); 3969 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3970 } 3971 3972 static ssize_t 3973 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3974 { 3975 unsigned long n; 3976 int err; 3977 3978 err = kstrtoul(buf, 10, &n); 3979 if (err < 0) 3980 return err; 3981 3982 err = mddev_lock(mddev); 3983 if (err) 3984 return err; 3985 if (mddev->pers) { 3986 if (mddev->pers->check_reshape == NULL) 3987 err = -EBUSY; 3988 else if (mddev->ro) 3989 err = -EROFS; 3990 else { 3991 mddev->new_chunk_sectors = n >> 9; 3992 err = mddev->pers->check_reshape(mddev); 3993 if (err) 3994 mddev->new_chunk_sectors = mddev->chunk_sectors; 3995 } 3996 } else { 3997 mddev->new_chunk_sectors = n >> 9; 3998 if (mddev->reshape_position == MaxSector) 3999 mddev->chunk_sectors = n >> 9; 4000 } 4001 mddev_unlock(mddev); 4002 return err ?: len; 4003 } 4004 static struct md_sysfs_entry md_chunk_size = 4005 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4006 4007 static ssize_t 4008 resync_start_show(struct mddev *mddev, char *page) 4009 { 4010 if (mddev->recovery_cp == MaxSector) 4011 return sprintf(page, "none\n"); 4012 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4013 } 4014 4015 static ssize_t 4016 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4017 { 4018 unsigned long long n; 4019 int err; 4020 4021 if (cmd_match(buf, "none")) 4022 n = MaxSector; 4023 else { 4024 err = kstrtoull(buf, 10, &n); 4025 if (err < 0) 4026 return err; 4027 if (n != (sector_t)n) 4028 return -EINVAL; 4029 } 4030 4031 err = mddev_lock(mddev); 4032 if (err) 4033 return err; 4034 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4035 err = -EBUSY; 4036 4037 if (!err) { 4038 mddev->recovery_cp = n; 4039 if (mddev->pers) 4040 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4041 } 4042 mddev_unlock(mddev); 4043 return err ?: len; 4044 } 4045 static struct md_sysfs_entry md_resync_start = 4046 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4047 resync_start_show, resync_start_store); 4048 4049 /* 4050 * The array state can be: 4051 * 4052 * clear 4053 * No devices, no size, no level 4054 * Equivalent to STOP_ARRAY ioctl 4055 * inactive 4056 * May have some settings, but array is not active 4057 * all IO results in error 4058 * When written, doesn't tear down array, but just stops it 4059 * suspended (not supported yet) 4060 * All IO requests will block. The array can be reconfigured. 4061 * Writing this, if accepted, will block until array is quiescent 4062 * readonly 4063 * no resync can happen. no superblocks get written. 4064 * write requests fail 4065 * read-auto 4066 * like readonly, but behaves like 'clean' on a write request. 4067 * 4068 * clean - no pending writes, but otherwise active. 4069 * When written to inactive array, starts without resync 4070 * If a write request arrives then 4071 * if metadata is known, mark 'dirty' and switch to 'active'. 4072 * if not known, block and switch to write-pending 4073 * If written to an active array that has pending writes, then fails. 4074 * active 4075 * fully active: IO and resync can be happening. 4076 * When written to inactive array, starts with resync 4077 * 4078 * write-pending 4079 * clean, but writes are blocked waiting for 'active' to be written. 4080 * 4081 * active-idle 4082 * like active, but no writes have been seen for a while (100msec). 4083 * 4084 */ 4085 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4086 write_pending, active_idle, bad_word}; 4087 static char *array_states[] = { 4088 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4089 "write-pending", "active-idle", NULL }; 4090 4091 static int match_word(const char *word, char **list) 4092 { 4093 int n; 4094 for (n=0; list[n]; n++) 4095 if (cmd_match(word, list[n])) 4096 break; 4097 return n; 4098 } 4099 4100 static ssize_t 4101 array_state_show(struct mddev *mddev, char *page) 4102 { 4103 enum array_state st = inactive; 4104 4105 if (mddev->pers) 4106 switch(mddev->ro) { 4107 case 1: 4108 st = readonly; 4109 break; 4110 case 2: 4111 st = read_auto; 4112 break; 4113 case 0: 4114 spin_lock(&mddev->lock); 4115 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4116 st = write_pending; 4117 else if (mddev->in_sync) 4118 st = clean; 4119 else if (mddev->safemode) 4120 st = active_idle; 4121 else 4122 st = active; 4123 spin_unlock(&mddev->lock); 4124 } 4125 else { 4126 if (list_empty(&mddev->disks) && 4127 mddev->raid_disks == 0 && 4128 mddev->dev_sectors == 0) 4129 st = clear; 4130 else 4131 st = inactive; 4132 } 4133 return sprintf(page, "%s\n", array_states[st]); 4134 } 4135 4136 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4137 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4138 static int do_md_run(struct mddev *mddev); 4139 static int restart_array(struct mddev *mddev); 4140 4141 static ssize_t 4142 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4143 { 4144 int err = 0; 4145 enum array_state st = match_word(buf, array_states); 4146 4147 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4148 /* don't take reconfig_mutex when toggling between 4149 * clean and active 4150 */ 4151 spin_lock(&mddev->lock); 4152 if (st == active) { 4153 restart_array(mddev); 4154 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4155 md_wakeup_thread(mddev->thread); 4156 wake_up(&mddev->sb_wait); 4157 } else /* st == clean */ { 4158 restart_array(mddev); 4159 if (!set_in_sync(mddev)) 4160 err = -EBUSY; 4161 } 4162 if (!err) 4163 sysfs_notify_dirent_safe(mddev->sysfs_state); 4164 spin_unlock(&mddev->lock); 4165 return err ?: len; 4166 } 4167 err = mddev_lock(mddev); 4168 if (err) 4169 return err; 4170 err = -EINVAL; 4171 switch(st) { 4172 case bad_word: 4173 break; 4174 case clear: 4175 /* stopping an active array */ 4176 err = do_md_stop(mddev, 0, NULL); 4177 break; 4178 case inactive: 4179 /* stopping an active array */ 4180 if (mddev->pers) 4181 err = do_md_stop(mddev, 2, NULL); 4182 else 4183 err = 0; /* already inactive */ 4184 break; 4185 case suspended: 4186 break; /* not supported yet */ 4187 case readonly: 4188 if (mddev->pers) 4189 err = md_set_readonly(mddev, NULL); 4190 else { 4191 mddev->ro = 1; 4192 set_disk_ro(mddev->gendisk, 1); 4193 err = do_md_run(mddev); 4194 } 4195 break; 4196 case read_auto: 4197 if (mddev->pers) { 4198 if (mddev->ro == 0) 4199 err = md_set_readonly(mddev, NULL); 4200 else if (mddev->ro == 1) 4201 err = restart_array(mddev); 4202 if (err == 0) { 4203 mddev->ro = 2; 4204 set_disk_ro(mddev->gendisk, 0); 4205 } 4206 } else { 4207 mddev->ro = 2; 4208 err = do_md_run(mddev); 4209 } 4210 break; 4211 case clean: 4212 if (mddev->pers) { 4213 err = restart_array(mddev); 4214 if (err) 4215 break; 4216 spin_lock(&mddev->lock); 4217 if (!set_in_sync(mddev)) 4218 err = -EBUSY; 4219 spin_unlock(&mddev->lock); 4220 } else 4221 err = -EINVAL; 4222 break; 4223 case active: 4224 if (mddev->pers) { 4225 err = restart_array(mddev); 4226 if (err) 4227 break; 4228 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4229 wake_up(&mddev->sb_wait); 4230 err = 0; 4231 } else { 4232 mddev->ro = 0; 4233 set_disk_ro(mddev->gendisk, 0); 4234 err = do_md_run(mddev); 4235 } 4236 break; 4237 case write_pending: 4238 case active_idle: 4239 /* these cannot be set */ 4240 break; 4241 } 4242 4243 if (!err) { 4244 if (mddev->hold_active == UNTIL_IOCTL) 4245 mddev->hold_active = 0; 4246 sysfs_notify_dirent_safe(mddev->sysfs_state); 4247 } 4248 mddev_unlock(mddev); 4249 return err ?: len; 4250 } 4251 static struct md_sysfs_entry md_array_state = 4252 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4253 4254 static ssize_t 4255 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4256 return sprintf(page, "%d\n", 4257 atomic_read(&mddev->max_corr_read_errors)); 4258 } 4259 4260 static ssize_t 4261 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4262 { 4263 unsigned int n; 4264 int rv; 4265 4266 rv = kstrtouint(buf, 10, &n); 4267 if (rv < 0) 4268 return rv; 4269 atomic_set(&mddev->max_corr_read_errors, n); 4270 return len; 4271 } 4272 4273 static struct md_sysfs_entry max_corr_read_errors = 4274 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4275 max_corrected_read_errors_store); 4276 4277 static ssize_t 4278 null_show(struct mddev *mddev, char *page) 4279 { 4280 return -EINVAL; 4281 } 4282 4283 static ssize_t 4284 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4285 { 4286 /* buf must be %d:%d\n? giving major and minor numbers */ 4287 /* The new device is added to the array. 4288 * If the array has a persistent superblock, we read the 4289 * superblock to initialise info and check validity. 4290 * Otherwise, only checking done is that in bind_rdev_to_array, 4291 * which mainly checks size. 4292 */ 4293 char *e; 4294 int major = simple_strtoul(buf, &e, 10); 4295 int minor; 4296 dev_t dev; 4297 struct md_rdev *rdev; 4298 int err; 4299 4300 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4301 return -EINVAL; 4302 minor = simple_strtoul(e+1, &e, 10); 4303 if (*e && *e != '\n') 4304 return -EINVAL; 4305 dev = MKDEV(major, minor); 4306 if (major != MAJOR(dev) || 4307 minor != MINOR(dev)) 4308 return -EOVERFLOW; 4309 4310 flush_workqueue(md_misc_wq); 4311 4312 err = mddev_lock(mddev); 4313 if (err) 4314 return err; 4315 if (mddev->persistent) { 4316 rdev = md_import_device(dev, mddev->major_version, 4317 mddev->minor_version); 4318 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4319 struct md_rdev *rdev0 4320 = list_entry(mddev->disks.next, 4321 struct md_rdev, same_set); 4322 err = super_types[mddev->major_version] 4323 .load_super(rdev, rdev0, mddev->minor_version); 4324 if (err < 0) 4325 goto out; 4326 } 4327 } else if (mddev->external) 4328 rdev = md_import_device(dev, -2, -1); 4329 else 4330 rdev = md_import_device(dev, -1, -1); 4331 4332 if (IS_ERR(rdev)) { 4333 mddev_unlock(mddev); 4334 return PTR_ERR(rdev); 4335 } 4336 err = bind_rdev_to_array(rdev, mddev); 4337 out: 4338 if (err) 4339 export_rdev(rdev); 4340 mddev_unlock(mddev); 4341 if (!err) 4342 md_new_event(mddev); 4343 return err ? err : len; 4344 } 4345 4346 static struct md_sysfs_entry md_new_device = 4347 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4348 4349 static ssize_t 4350 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4351 { 4352 char *end; 4353 unsigned long chunk, end_chunk; 4354 int err; 4355 4356 err = mddev_lock(mddev); 4357 if (err) 4358 return err; 4359 if (!mddev->bitmap) 4360 goto out; 4361 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4362 while (*buf) { 4363 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4364 if (buf == end) break; 4365 if (*end == '-') { /* range */ 4366 buf = end + 1; 4367 end_chunk = simple_strtoul(buf, &end, 0); 4368 if (buf == end) break; 4369 } 4370 if (*end && !isspace(*end)) break; 4371 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4372 buf = skip_spaces(end); 4373 } 4374 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4375 out: 4376 mddev_unlock(mddev); 4377 return len; 4378 } 4379 4380 static struct md_sysfs_entry md_bitmap = 4381 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4382 4383 static ssize_t 4384 size_show(struct mddev *mddev, char *page) 4385 { 4386 return sprintf(page, "%llu\n", 4387 (unsigned long long)mddev->dev_sectors / 2); 4388 } 4389 4390 static int update_size(struct mddev *mddev, sector_t num_sectors); 4391 4392 static ssize_t 4393 size_store(struct mddev *mddev, const char *buf, size_t len) 4394 { 4395 /* If array is inactive, we can reduce the component size, but 4396 * not increase it (except from 0). 4397 * If array is active, we can try an on-line resize 4398 */ 4399 sector_t sectors; 4400 int err = strict_blocks_to_sectors(buf, §ors); 4401 4402 if (err < 0) 4403 return err; 4404 err = mddev_lock(mddev); 4405 if (err) 4406 return err; 4407 if (mddev->pers) { 4408 err = update_size(mddev, sectors); 4409 if (err == 0) 4410 md_update_sb(mddev, 1); 4411 } else { 4412 if (mddev->dev_sectors == 0 || 4413 mddev->dev_sectors > sectors) 4414 mddev->dev_sectors = sectors; 4415 else 4416 err = -ENOSPC; 4417 } 4418 mddev_unlock(mddev); 4419 return err ? err : len; 4420 } 4421 4422 static struct md_sysfs_entry md_size = 4423 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4424 4425 /* Metadata version. 4426 * This is one of 4427 * 'none' for arrays with no metadata (good luck...) 4428 * 'external' for arrays with externally managed metadata, 4429 * or N.M for internally known formats 4430 */ 4431 static ssize_t 4432 metadata_show(struct mddev *mddev, char *page) 4433 { 4434 if (mddev->persistent) 4435 return sprintf(page, "%d.%d\n", 4436 mddev->major_version, mddev->minor_version); 4437 else if (mddev->external) 4438 return sprintf(page, "external:%s\n", mddev->metadata_type); 4439 else 4440 return sprintf(page, "none\n"); 4441 } 4442 4443 static ssize_t 4444 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4445 { 4446 int major, minor; 4447 char *e; 4448 int err; 4449 /* Changing the details of 'external' metadata is 4450 * always permitted. Otherwise there must be 4451 * no devices attached to the array. 4452 */ 4453 4454 err = mddev_lock(mddev); 4455 if (err) 4456 return err; 4457 err = -EBUSY; 4458 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4459 ; 4460 else if (!list_empty(&mddev->disks)) 4461 goto out_unlock; 4462 4463 err = 0; 4464 if (cmd_match(buf, "none")) { 4465 mddev->persistent = 0; 4466 mddev->external = 0; 4467 mddev->major_version = 0; 4468 mddev->minor_version = 90; 4469 goto out_unlock; 4470 } 4471 if (strncmp(buf, "external:", 9) == 0) { 4472 size_t namelen = len-9; 4473 if (namelen >= sizeof(mddev->metadata_type)) 4474 namelen = sizeof(mddev->metadata_type)-1; 4475 strncpy(mddev->metadata_type, buf+9, namelen); 4476 mddev->metadata_type[namelen] = 0; 4477 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4478 mddev->metadata_type[--namelen] = 0; 4479 mddev->persistent = 0; 4480 mddev->external = 1; 4481 mddev->major_version = 0; 4482 mddev->minor_version = 90; 4483 goto out_unlock; 4484 } 4485 major = simple_strtoul(buf, &e, 10); 4486 err = -EINVAL; 4487 if (e==buf || *e != '.') 4488 goto out_unlock; 4489 buf = e+1; 4490 minor = simple_strtoul(buf, &e, 10); 4491 if (e==buf || (*e && *e != '\n') ) 4492 goto out_unlock; 4493 err = -ENOENT; 4494 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4495 goto out_unlock; 4496 mddev->major_version = major; 4497 mddev->minor_version = minor; 4498 mddev->persistent = 1; 4499 mddev->external = 0; 4500 err = 0; 4501 out_unlock: 4502 mddev_unlock(mddev); 4503 return err ?: len; 4504 } 4505 4506 static struct md_sysfs_entry md_metadata = 4507 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4508 4509 static ssize_t 4510 action_show(struct mddev *mddev, char *page) 4511 { 4512 char *type = "idle"; 4513 unsigned long recovery = mddev->recovery; 4514 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4515 type = "frozen"; 4516 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4517 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4518 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4519 type = "reshape"; 4520 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4521 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4522 type = "resync"; 4523 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4524 type = "check"; 4525 else 4526 type = "repair"; 4527 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4528 type = "recover"; 4529 else if (mddev->reshape_position != MaxSector) 4530 type = "reshape"; 4531 } 4532 return sprintf(page, "%s\n", type); 4533 } 4534 4535 static ssize_t 4536 action_store(struct mddev *mddev, const char *page, size_t len) 4537 { 4538 if (!mddev->pers || !mddev->pers->sync_request) 4539 return -EINVAL; 4540 4541 4542 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4543 if (cmd_match(page, "frozen")) 4544 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4545 else 4546 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4547 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4548 mddev_lock(mddev) == 0) { 4549 flush_workqueue(md_misc_wq); 4550 if (mddev->sync_thread) { 4551 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4552 md_reap_sync_thread(mddev); 4553 } 4554 mddev_unlock(mddev); 4555 } 4556 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4557 return -EBUSY; 4558 else if (cmd_match(page, "resync")) 4559 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4560 else if (cmd_match(page, "recover")) { 4561 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4562 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4563 } else if (cmd_match(page, "reshape")) { 4564 int err; 4565 if (mddev->pers->start_reshape == NULL) 4566 return -EINVAL; 4567 err = mddev_lock(mddev); 4568 if (!err) { 4569 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4570 err = -EBUSY; 4571 else { 4572 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4573 err = mddev->pers->start_reshape(mddev); 4574 } 4575 mddev_unlock(mddev); 4576 } 4577 if (err) 4578 return err; 4579 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4580 } else { 4581 if (cmd_match(page, "check")) 4582 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4583 else if (!cmd_match(page, "repair")) 4584 return -EINVAL; 4585 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4586 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4587 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4588 } 4589 if (mddev->ro == 2) { 4590 /* A write to sync_action is enough to justify 4591 * canceling read-auto mode 4592 */ 4593 mddev->ro = 0; 4594 md_wakeup_thread(mddev->sync_thread); 4595 } 4596 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4597 md_wakeup_thread(mddev->thread); 4598 sysfs_notify_dirent_safe(mddev->sysfs_action); 4599 return len; 4600 } 4601 4602 static struct md_sysfs_entry md_scan_mode = 4603 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4604 4605 static ssize_t 4606 last_sync_action_show(struct mddev *mddev, char *page) 4607 { 4608 return sprintf(page, "%s\n", mddev->last_sync_action); 4609 } 4610 4611 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4612 4613 static ssize_t 4614 mismatch_cnt_show(struct mddev *mddev, char *page) 4615 { 4616 return sprintf(page, "%llu\n", 4617 (unsigned long long) 4618 atomic64_read(&mddev->resync_mismatches)); 4619 } 4620 4621 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4622 4623 static ssize_t 4624 sync_min_show(struct mddev *mddev, char *page) 4625 { 4626 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4627 mddev->sync_speed_min ? "local": "system"); 4628 } 4629 4630 static ssize_t 4631 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4632 { 4633 unsigned int min; 4634 int rv; 4635 4636 if (strncmp(buf, "system", 6)==0) { 4637 min = 0; 4638 } else { 4639 rv = kstrtouint(buf, 10, &min); 4640 if (rv < 0) 4641 return rv; 4642 if (min == 0) 4643 return -EINVAL; 4644 } 4645 mddev->sync_speed_min = min; 4646 return len; 4647 } 4648 4649 static struct md_sysfs_entry md_sync_min = 4650 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4651 4652 static ssize_t 4653 sync_max_show(struct mddev *mddev, char *page) 4654 { 4655 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4656 mddev->sync_speed_max ? "local": "system"); 4657 } 4658 4659 static ssize_t 4660 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4661 { 4662 unsigned int max; 4663 int rv; 4664 4665 if (strncmp(buf, "system", 6)==0) { 4666 max = 0; 4667 } else { 4668 rv = kstrtouint(buf, 10, &max); 4669 if (rv < 0) 4670 return rv; 4671 if (max == 0) 4672 return -EINVAL; 4673 } 4674 mddev->sync_speed_max = max; 4675 return len; 4676 } 4677 4678 static struct md_sysfs_entry md_sync_max = 4679 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4680 4681 static ssize_t 4682 degraded_show(struct mddev *mddev, char *page) 4683 { 4684 return sprintf(page, "%d\n", mddev->degraded); 4685 } 4686 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4687 4688 static ssize_t 4689 sync_force_parallel_show(struct mddev *mddev, char *page) 4690 { 4691 return sprintf(page, "%d\n", mddev->parallel_resync); 4692 } 4693 4694 static ssize_t 4695 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4696 { 4697 long n; 4698 4699 if (kstrtol(buf, 10, &n)) 4700 return -EINVAL; 4701 4702 if (n != 0 && n != 1) 4703 return -EINVAL; 4704 4705 mddev->parallel_resync = n; 4706 4707 if (mddev->sync_thread) 4708 wake_up(&resync_wait); 4709 4710 return len; 4711 } 4712 4713 /* force parallel resync, even with shared block devices */ 4714 static struct md_sysfs_entry md_sync_force_parallel = 4715 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4716 sync_force_parallel_show, sync_force_parallel_store); 4717 4718 static ssize_t 4719 sync_speed_show(struct mddev *mddev, char *page) 4720 { 4721 unsigned long resync, dt, db; 4722 if (mddev->curr_resync == 0) 4723 return sprintf(page, "none\n"); 4724 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4725 dt = (jiffies - mddev->resync_mark) / HZ; 4726 if (!dt) dt++; 4727 db = resync - mddev->resync_mark_cnt; 4728 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4729 } 4730 4731 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4732 4733 static ssize_t 4734 sync_completed_show(struct mddev *mddev, char *page) 4735 { 4736 unsigned long long max_sectors, resync; 4737 4738 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4739 return sprintf(page, "none\n"); 4740 4741 if (mddev->curr_resync == 1 || 4742 mddev->curr_resync == 2) 4743 return sprintf(page, "delayed\n"); 4744 4745 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4746 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4747 max_sectors = mddev->resync_max_sectors; 4748 else 4749 max_sectors = mddev->dev_sectors; 4750 4751 resync = mddev->curr_resync_completed; 4752 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4753 } 4754 4755 static struct md_sysfs_entry md_sync_completed = 4756 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4757 4758 static ssize_t 4759 min_sync_show(struct mddev *mddev, char *page) 4760 { 4761 return sprintf(page, "%llu\n", 4762 (unsigned long long)mddev->resync_min); 4763 } 4764 static ssize_t 4765 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4766 { 4767 unsigned long long min; 4768 int err; 4769 4770 if (kstrtoull(buf, 10, &min)) 4771 return -EINVAL; 4772 4773 spin_lock(&mddev->lock); 4774 err = -EINVAL; 4775 if (min > mddev->resync_max) 4776 goto out_unlock; 4777 4778 err = -EBUSY; 4779 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4780 goto out_unlock; 4781 4782 /* Round down to multiple of 4K for safety */ 4783 mddev->resync_min = round_down(min, 8); 4784 err = 0; 4785 4786 out_unlock: 4787 spin_unlock(&mddev->lock); 4788 return err ?: len; 4789 } 4790 4791 static struct md_sysfs_entry md_min_sync = 4792 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4793 4794 static ssize_t 4795 max_sync_show(struct mddev *mddev, char *page) 4796 { 4797 if (mddev->resync_max == MaxSector) 4798 return sprintf(page, "max\n"); 4799 else 4800 return sprintf(page, "%llu\n", 4801 (unsigned long long)mddev->resync_max); 4802 } 4803 static ssize_t 4804 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4805 { 4806 int err; 4807 spin_lock(&mddev->lock); 4808 if (strncmp(buf, "max", 3) == 0) 4809 mddev->resync_max = MaxSector; 4810 else { 4811 unsigned long long max; 4812 int chunk; 4813 4814 err = -EINVAL; 4815 if (kstrtoull(buf, 10, &max)) 4816 goto out_unlock; 4817 if (max < mddev->resync_min) 4818 goto out_unlock; 4819 4820 err = -EBUSY; 4821 if (max < mddev->resync_max && 4822 mddev->ro == 0 && 4823 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4824 goto out_unlock; 4825 4826 /* Must be a multiple of chunk_size */ 4827 chunk = mddev->chunk_sectors; 4828 if (chunk) { 4829 sector_t temp = max; 4830 4831 err = -EINVAL; 4832 if (sector_div(temp, chunk)) 4833 goto out_unlock; 4834 } 4835 mddev->resync_max = max; 4836 } 4837 wake_up(&mddev->recovery_wait); 4838 err = 0; 4839 out_unlock: 4840 spin_unlock(&mddev->lock); 4841 return err ?: len; 4842 } 4843 4844 static struct md_sysfs_entry md_max_sync = 4845 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4846 4847 static ssize_t 4848 suspend_lo_show(struct mddev *mddev, char *page) 4849 { 4850 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4851 } 4852 4853 static ssize_t 4854 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4855 { 4856 unsigned long long new; 4857 int err; 4858 4859 err = kstrtoull(buf, 10, &new); 4860 if (err < 0) 4861 return err; 4862 if (new != (sector_t)new) 4863 return -EINVAL; 4864 4865 err = mddev_lock(mddev); 4866 if (err) 4867 return err; 4868 err = -EINVAL; 4869 if (mddev->pers == NULL || 4870 mddev->pers->quiesce == NULL) 4871 goto unlock; 4872 mddev_suspend(mddev); 4873 mddev->suspend_lo = new; 4874 mddev_resume(mddev); 4875 4876 err = 0; 4877 unlock: 4878 mddev_unlock(mddev); 4879 return err ?: len; 4880 } 4881 static struct md_sysfs_entry md_suspend_lo = 4882 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4883 4884 static ssize_t 4885 suspend_hi_show(struct mddev *mddev, char *page) 4886 { 4887 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4888 } 4889 4890 static ssize_t 4891 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4892 { 4893 unsigned long long new; 4894 int err; 4895 4896 err = kstrtoull(buf, 10, &new); 4897 if (err < 0) 4898 return err; 4899 if (new != (sector_t)new) 4900 return -EINVAL; 4901 4902 err = mddev_lock(mddev); 4903 if (err) 4904 return err; 4905 err = -EINVAL; 4906 if (mddev->pers == NULL) 4907 goto unlock; 4908 4909 mddev_suspend(mddev); 4910 mddev->suspend_hi = new; 4911 mddev_resume(mddev); 4912 4913 err = 0; 4914 unlock: 4915 mddev_unlock(mddev); 4916 return err ?: len; 4917 } 4918 static struct md_sysfs_entry md_suspend_hi = 4919 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4920 4921 static ssize_t 4922 reshape_position_show(struct mddev *mddev, char *page) 4923 { 4924 if (mddev->reshape_position != MaxSector) 4925 return sprintf(page, "%llu\n", 4926 (unsigned long long)mddev->reshape_position); 4927 strcpy(page, "none\n"); 4928 return 5; 4929 } 4930 4931 static ssize_t 4932 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4933 { 4934 struct md_rdev *rdev; 4935 unsigned long long new; 4936 int err; 4937 4938 err = kstrtoull(buf, 10, &new); 4939 if (err < 0) 4940 return err; 4941 if (new != (sector_t)new) 4942 return -EINVAL; 4943 err = mddev_lock(mddev); 4944 if (err) 4945 return err; 4946 err = -EBUSY; 4947 if (mddev->pers) 4948 goto unlock; 4949 mddev->reshape_position = new; 4950 mddev->delta_disks = 0; 4951 mddev->reshape_backwards = 0; 4952 mddev->new_level = mddev->level; 4953 mddev->new_layout = mddev->layout; 4954 mddev->new_chunk_sectors = mddev->chunk_sectors; 4955 rdev_for_each(rdev, mddev) 4956 rdev->new_data_offset = rdev->data_offset; 4957 err = 0; 4958 unlock: 4959 mddev_unlock(mddev); 4960 return err ?: len; 4961 } 4962 4963 static struct md_sysfs_entry md_reshape_position = 4964 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4965 reshape_position_store); 4966 4967 static ssize_t 4968 reshape_direction_show(struct mddev *mddev, char *page) 4969 { 4970 return sprintf(page, "%s\n", 4971 mddev->reshape_backwards ? "backwards" : "forwards"); 4972 } 4973 4974 static ssize_t 4975 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4976 { 4977 int backwards = 0; 4978 int err; 4979 4980 if (cmd_match(buf, "forwards")) 4981 backwards = 0; 4982 else if (cmd_match(buf, "backwards")) 4983 backwards = 1; 4984 else 4985 return -EINVAL; 4986 if (mddev->reshape_backwards == backwards) 4987 return len; 4988 4989 err = mddev_lock(mddev); 4990 if (err) 4991 return err; 4992 /* check if we are allowed to change */ 4993 if (mddev->delta_disks) 4994 err = -EBUSY; 4995 else if (mddev->persistent && 4996 mddev->major_version == 0) 4997 err = -EINVAL; 4998 else 4999 mddev->reshape_backwards = backwards; 5000 mddev_unlock(mddev); 5001 return err ?: len; 5002 } 5003 5004 static struct md_sysfs_entry md_reshape_direction = 5005 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5006 reshape_direction_store); 5007 5008 static ssize_t 5009 array_size_show(struct mddev *mddev, char *page) 5010 { 5011 if (mddev->external_size) 5012 return sprintf(page, "%llu\n", 5013 (unsigned long long)mddev->array_sectors/2); 5014 else 5015 return sprintf(page, "default\n"); 5016 } 5017 5018 static ssize_t 5019 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5020 { 5021 sector_t sectors; 5022 int err; 5023 5024 err = mddev_lock(mddev); 5025 if (err) 5026 return err; 5027 5028 /* cluster raid doesn't support change array_sectors */ 5029 if (mddev_is_clustered(mddev)) { 5030 mddev_unlock(mddev); 5031 return -EINVAL; 5032 } 5033 5034 if (strncmp(buf, "default", 7) == 0) { 5035 if (mddev->pers) 5036 sectors = mddev->pers->size(mddev, 0, 0); 5037 else 5038 sectors = mddev->array_sectors; 5039 5040 mddev->external_size = 0; 5041 } else { 5042 if (strict_blocks_to_sectors(buf, §ors) < 0) 5043 err = -EINVAL; 5044 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5045 err = -E2BIG; 5046 else 5047 mddev->external_size = 1; 5048 } 5049 5050 if (!err) { 5051 mddev->array_sectors = sectors; 5052 if (mddev->pers) { 5053 set_capacity(mddev->gendisk, mddev->array_sectors); 5054 revalidate_disk(mddev->gendisk); 5055 } 5056 } 5057 mddev_unlock(mddev); 5058 return err ?: len; 5059 } 5060 5061 static struct md_sysfs_entry md_array_size = 5062 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5063 array_size_store); 5064 5065 static ssize_t 5066 consistency_policy_show(struct mddev *mddev, char *page) 5067 { 5068 int ret; 5069 5070 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5071 ret = sprintf(page, "journal\n"); 5072 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5073 ret = sprintf(page, "ppl\n"); 5074 } else if (mddev->bitmap) { 5075 ret = sprintf(page, "bitmap\n"); 5076 } else if (mddev->pers) { 5077 if (mddev->pers->sync_request) 5078 ret = sprintf(page, "resync\n"); 5079 else 5080 ret = sprintf(page, "none\n"); 5081 } else { 5082 ret = sprintf(page, "unknown\n"); 5083 } 5084 5085 return ret; 5086 } 5087 5088 static ssize_t 5089 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5090 { 5091 int err = 0; 5092 5093 if (mddev->pers) { 5094 if (mddev->pers->change_consistency_policy) 5095 err = mddev->pers->change_consistency_policy(mddev, buf); 5096 else 5097 err = -EBUSY; 5098 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5099 set_bit(MD_HAS_PPL, &mddev->flags); 5100 } else { 5101 err = -EINVAL; 5102 } 5103 5104 return err ? err : len; 5105 } 5106 5107 static struct md_sysfs_entry md_consistency_policy = 5108 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5109 consistency_policy_store); 5110 5111 static struct attribute *md_default_attrs[] = { 5112 &md_level.attr, 5113 &md_layout.attr, 5114 &md_raid_disks.attr, 5115 &md_chunk_size.attr, 5116 &md_size.attr, 5117 &md_resync_start.attr, 5118 &md_metadata.attr, 5119 &md_new_device.attr, 5120 &md_safe_delay.attr, 5121 &md_array_state.attr, 5122 &md_reshape_position.attr, 5123 &md_reshape_direction.attr, 5124 &md_array_size.attr, 5125 &max_corr_read_errors.attr, 5126 &md_consistency_policy.attr, 5127 NULL, 5128 }; 5129 5130 static struct attribute *md_redundancy_attrs[] = { 5131 &md_scan_mode.attr, 5132 &md_last_scan_mode.attr, 5133 &md_mismatches.attr, 5134 &md_sync_min.attr, 5135 &md_sync_max.attr, 5136 &md_sync_speed.attr, 5137 &md_sync_force_parallel.attr, 5138 &md_sync_completed.attr, 5139 &md_min_sync.attr, 5140 &md_max_sync.attr, 5141 &md_suspend_lo.attr, 5142 &md_suspend_hi.attr, 5143 &md_bitmap.attr, 5144 &md_degraded.attr, 5145 NULL, 5146 }; 5147 static struct attribute_group md_redundancy_group = { 5148 .name = NULL, 5149 .attrs = md_redundancy_attrs, 5150 }; 5151 5152 static ssize_t 5153 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5154 { 5155 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5156 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5157 ssize_t rv; 5158 5159 if (!entry->show) 5160 return -EIO; 5161 spin_lock(&all_mddevs_lock); 5162 if (list_empty(&mddev->all_mddevs)) { 5163 spin_unlock(&all_mddevs_lock); 5164 return -EBUSY; 5165 } 5166 mddev_get(mddev); 5167 spin_unlock(&all_mddevs_lock); 5168 5169 rv = entry->show(mddev, page); 5170 mddev_put(mddev); 5171 return rv; 5172 } 5173 5174 static ssize_t 5175 md_attr_store(struct kobject *kobj, struct attribute *attr, 5176 const char *page, size_t length) 5177 { 5178 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5179 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5180 ssize_t rv; 5181 5182 if (!entry->store) 5183 return -EIO; 5184 if (!capable(CAP_SYS_ADMIN)) 5185 return -EACCES; 5186 spin_lock(&all_mddevs_lock); 5187 if (list_empty(&mddev->all_mddevs)) { 5188 spin_unlock(&all_mddevs_lock); 5189 return -EBUSY; 5190 } 5191 mddev_get(mddev); 5192 spin_unlock(&all_mddevs_lock); 5193 rv = entry->store(mddev, page, length); 5194 mddev_put(mddev); 5195 return rv; 5196 } 5197 5198 static void md_free(struct kobject *ko) 5199 { 5200 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5201 5202 if (mddev->sysfs_state) 5203 sysfs_put(mddev->sysfs_state); 5204 5205 if (mddev->queue) 5206 blk_cleanup_queue(mddev->queue); 5207 if (mddev->gendisk) { 5208 del_gendisk(mddev->gendisk); 5209 put_disk(mddev->gendisk); 5210 } 5211 percpu_ref_exit(&mddev->writes_pending); 5212 5213 kfree(mddev); 5214 } 5215 5216 static const struct sysfs_ops md_sysfs_ops = { 5217 .show = md_attr_show, 5218 .store = md_attr_store, 5219 }; 5220 static struct kobj_type md_ktype = { 5221 .release = md_free, 5222 .sysfs_ops = &md_sysfs_ops, 5223 .default_attrs = md_default_attrs, 5224 }; 5225 5226 int mdp_major = 0; 5227 5228 static void mddev_delayed_delete(struct work_struct *ws) 5229 { 5230 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5231 5232 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5233 kobject_del(&mddev->kobj); 5234 kobject_put(&mddev->kobj); 5235 } 5236 5237 static void no_op(struct percpu_ref *r) {} 5238 5239 int mddev_init_writes_pending(struct mddev *mddev) 5240 { 5241 if (mddev->writes_pending.percpu_count_ptr) 5242 return 0; 5243 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0) 5244 return -ENOMEM; 5245 /* We want to start with the refcount at zero */ 5246 percpu_ref_put(&mddev->writes_pending); 5247 return 0; 5248 } 5249 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5250 5251 static int md_alloc(dev_t dev, char *name) 5252 { 5253 /* 5254 * If dev is zero, name is the name of a device to allocate with 5255 * an arbitrary minor number. It will be "md_???" 5256 * If dev is non-zero it must be a device number with a MAJOR of 5257 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5258 * the device is being created by opening a node in /dev. 5259 * If "name" is not NULL, the device is being created by 5260 * writing to /sys/module/md_mod/parameters/new_array. 5261 */ 5262 static DEFINE_MUTEX(disks_mutex); 5263 struct mddev *mddev = mddev_find(dev); 5264 struct gendisk *disk; 5265 int partitioned; 5266 int shift; 5267 int unit; 5268 int error; 5269 5270 if (!mddev) 5271 return -ENODEV; 5272 5273 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5274 shift = partitioned ? MdpMinorShift : 0; 5275 unit = MINOR(mddev->unit) >> shift; 5276 5277 /* wait for any previous instance of this device to be 5278 * completely removed (mddev_delayed_delete). 5279 */ 5280 flush_workqueue(md_misc_wq); 5281 5282 mutex_lock(&disks_mutex); 5283 error = -EEXIST; 5284 if (mddev->gendisk) 5285 goto abort; 5286 5287 if (name && !dev) { 5288 /* Need to ensure that 'name' is not a duplicate. 5289 */ 5290 struct mddev *mddev2; 5291 spin_lock(&all_mddevs_lock); 5292 5293 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5294 if (mddev2->gendisk && 5295 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5296 spin_unlock(&all_mddevs_lock); 5297 goto abort; 5298 } 5299 spin_unlock(&all_mddevs_lock); 5300 } 5301 if (name && dev) 5302 /* 5303 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5304 */ 5305 mddev->hold_active = UNTIL_STOP; 5306 5307 error = -ENOMEM; 5308 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5309 if (!mddev->queue) 5310 goto abort; 5311 mddev->queue->queuedata = mddev; 5312 5313 blk_queue_make_request(mddev->queue, md_make_request); 5314 blk_set_stacking_limits(&mddev->queue->limits); 5315 5316 disk = alloc_disk(1 << shift); 5317 if (!disk) { 5318 blk_cleanup_queue(mddev->queue); 5319 mddev->queue = NULL; 5320 goto abort; 5321 } 5322 disk->major = MAJOR(mddev->unit); 5323 disk->first_minor = unit << shift; 5324 if (name) 5325 strcpy(disk->disk_name, name); 5326 else if (partitioned) 5327 sprintf(disk->disk_name, "md_d%d", unit); 5328 else 5329 sprintf(disk->disk_name, "md%d", unit); 5330 disk->fops = &md_fops; 5331 disk->private_data = mddev; 5332 disk->queue = mddev->queue; 5333 blk_queue_write_cache(mddev->queue, true, true); 5334 /* Allow extended partitions. This makes the 5335 * 'mdp' device redundant, but we can't really 5336 * remove it now. 5337 */ 5338 disk->flags |= GENHD_FL_EXT_DEVT; 5339 mddev->gendisk = disk; 5340 /* As soon as we call add_disk(), another thread could get 5341 * through to md_open, so make sure it doesn't get too far 5342 */ 5343 mutex_lock(&mddev->open_mutex); 5344 add_disk(disk); 5345 5346 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 5347 &disk_to_dev(disk)->kobj, "%s", "md"); 5348 if (error) { 5349 /* This isn't possible, but as kobject_init_and_add is marked 5350 * __must_check, we must do something with the result 5351 */ 5352 pr_debug("md: cannot register %s/md - name in use\n", 5353 disk->disk_name); 5354 error = 0; 5355 } 5356 if (mddev->kobj.sd && 5357 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5358 pr_debug("pointless warning\n"); 5359 mutex_unlock(&mddev->open_mutex); 5360 abort: 5361 mutex_unlock(&disks_mutex); 5362 if (!error && mddev->kobj.sd) { 5363 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5364 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5365 } 5366 mddev_put(mddev); 5367 return error; 5368 } 5369 5370 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5371 { 5372 if (create_on_open) 5373 md_alloc(dev, NULL); 5374 return NULL; 5375 } 5376 5377 static int add_named_array(const char *val, const struct kernel_param *kp) 5378 { 5379 /* 5380 * val must be "md_*" or "mdNNN". 5381 * For "md_*" we allocate an array with a large free minor number, and 5382 * set the name to val. val must not already be an active name. 5383 * For "mdNNN" we allocate an array with the minor number NNN 5384 * which must not already be in use. 5385 */ 5386 int len = strlen(val); 5387 char buf[DISK_NAME_LEN]; 5388 unsigned long devnum; 5389 5390 while (len && val[len-1] == '\n') 5391 len--; 5392 if (len >= DISK_NAME_LEN) 5393 return -E2BIG; 5394 strlcpy(buf, val, len+1); 5395 if (strncmp(buf, "md_", 3) == 0) 5396 return md_alloc(0, buf); 5397 if (strncmp(buf, "md", 2) == 0 && 5398 isdigit(buf[2]) && 5399 kstrtoul(buf+2, 10, &devnum) == 0 && 5400 devnum <= MINORMASK) 5401 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5402 5403 return -EINVAL; 5404 } 5405 5406 static void md_safemode_timeout(struct timer_list *t) 5407 { 5408 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5409 5410 mddev->safemode = 1; 5411 if (mddev->external) 5412 sysfs_notify_dirent_safe(mddev->sysfs_state); 5413 5414 md_wakeup_thread(mddev->thread); 5415 } 5416 5417 static int start_dirty_degraded; 5418 5419 int md_run(struct mddev *mddev) 5420 { 5421 int err; 5422 struct md_rdev *rdev; 5423 struct md_personality *pers; 5424 5425 if (list_empty(&mddev->disks)) 5426 /* cannot run an array with no devices.. */ 5427 return -EINVAL; 5428 5429 if (mddev->pers) 5430 return -EBUSY; 5431 /* Cannot run until previous stop completes properly */ 5432 if (mddev->sysfs_active) 5433 return -EBUSY; 5434 5435 /* 5436 * Analyze all RAID superblock(s) 5437 */ 5438 if (!mddev->raid_disks) { 5439 if (!mddev->persistent) 5440 return -EINVAL; 5441 analyze_sbs(mddev); 5442 } 5443 5444 if (mddev->level != LEVEL_NONE) 5445 request_module("md-level-%d", mddev->level); 5446 else if (mddev->clevel[0]) 5447 request_module("md-%s", mddev->clevel); 5448 5449 /* 5450 * Drop all container device buffers, from now on 5451 * the only valid external interface is through the md 5452 * device. 5453 */ 5454 rdev_for_each(rdev, mddev) { 5455 if (test_bit(Faulty, &rdev->flags)) 5456 continue; 5457 sync_blockdev(rdev->bdev); 5458 invalidate_bdev(rdev->bdev); 5459 if (mddev->ro != 1 && 5460 (bdev_read_only(rdev->bdev) || 5461 bdev_read_only(rdev->meta_bdev))) { 5462 mddev->ro = 1; 5463 if (mddev->gendisk) 5464 set_disk_ro(mddev->gendisk, 1); 5465 } 5466 5467 /* perform some consistency tests on the device. 5468 * We don't want the data to overlap the metadata, 5469 * Internal Bitmap issues have been handled elsewhere. 5470 */ 5471 if (rdev->meta_bdev) { 5472 /* Nothing to check */; 5473 } else if (rdev->data_offset < rdev->sb_start) { 5474 if (mddev->dev_sectors && 5475 rdev->data_offset + mddev->dev_sectors 5476 > rdev->sb_start) { 5477 pr_warn("md: %s: data overlaps metadata\n", 5478 mdname(mddev)); 5479 return -EINVAL; 5480 } 5481 } else { 5482 if (rdev->sb_start + rdev->sb_size/512 5483 > rdev->data_offset) { 5484 pr_warn("md: %s: metadata overlaps data\n", 5485 mdname(mddev)); 5486 return -EINVAL; 5487 } 5488 } 5489 sysfs_notify_dirent_safe(rdev->sysfs_state); 5490 } 5491 5492 if (mddev->bio_set == NULL) { 5493 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5494 if (!mddev->bio_set) 5495 return -ENOMEM; 5496 } 5497 if (mddev->sync_set == NULL) { 5498 mddev->sync_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5499 if (!mddev->sync_set) 5500 return -ENOMEM; 5501 } 5502 5503 spin_lock(&pers_lock); 5504 pers = find_pers(mddev->level, mddev->clevel); 5505 if (!pers || !try_module_get(pers->owner)) { 5506 spin_unlock(&pers_lock); 5507 if (mddev->level != LEVEL_NONE) 5508 pr_warn("md: personality for level %d is not loaded!\n", 5509 mddev->level); 5510 else 5511 pr_warn("md: personality for level %s is not loaded!\n", 5512 mddev->clevel); 5513 return -EINVAL; 5514 } 5515 spin_unlock(&pers_lock); 5516 if (mddev->level != pers->level) { 5517 mddev->level = pers->level; 5518 mddev->new_level = pers->level; 5519 } 5520 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5521 5522 if (mddev->reshape_position != MaxSector && 5523 pers->start_reshape == NULL) { 5524 /* This personality cannot handle reshaping... */ 5525 module_put(pers->owner); 5526 return -EINVAL; 5527 } 5528 5529 if (pers->sync_request) { 5530 /* Warn if this is a potentially silly 5531 * configuration. 5532 */ 5533 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5534 struct md_rdev *rdev2; 5535 int warned = 0; 5536 5537 rdev_for_each(rdev, mddev) 5538 rdev_for_each(rdev2, mddev) { 5539 if (rdev < rdev2 && 5540 rdev->bdev->bd_contains == 5541 rdev2->bdev->bd_contains) { 5542 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5543 mdname(mddev), 5544 bdevname(rdev->bdev,b), 5545 bdevname(rdev2->bdev,b2)); 5546 warned = 1; 5547 } 5548 } 5549 5550 if (warned) 5551 pr_warn("True protection against single-disk failure might be compromised.\n"); 5552 } 5553 5554 mddev->recovery = 0; 5555 /* may be over-ridden by personality */ 5556 mddev->resync_max_sectors = mddev->dev_sectors; 5557 5558 mddev->ok_start_degraded = start_dirty_degraded; 5559 5560 if (start_readonly && mddev->ro == 0) 5561 mddev->ro = 2; /* read-only, but switch on first write */ 5562 5563 /* 5564 * NOTE: some pers->run(), for example r5l_recovery_log(), wakes 5565 * up mddev->thread. It is important to initialize critical 5566 * resources for mddev->thread BEFORE calling pers->run(). 5567 */ 5568 err = pers->run(mddev); 5569 if (err) 5570 pr_warn("md: pers->run() failed ...\n"); 5571 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5572 WARN_ONCE(!mddev->external_size, 5573 "%s: default size too small, but 'external_size' not in effect?\n", 5574 __func__); 5575 pr_warn("md: invalid array_size %llu > default size %llu\n", 5576 (unsigned long long)mddev->array_sectors / 2, 5577 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5578 err = -EINVAL; 5579 } 5580 if (err == 0 && pers->sync_request && 5581 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5582 struct bitmap *bitmap; 5583 5584 bitmap = bitmap_create(mddev, -1); 5585 if (IS_ERR(bitmap)) { 5586 err = PTR_ERR(bitmap); 5587 pr_warn("%s: failed to create bitmap (%d)\n", 5588 mdname(mddev), err); 5589 } else 5590 mddev->bitmap = bitmap; 5591 5592 } 5593 if (err) { 5594 mddev_detach(mddev); 5595 if (mddev->private) 5596 pers->free(mddev, mddev->private); 5597 mddev->private = NULL; 5598 module_put(pers->owner); 5599 bitmap_destroy(mddev); 5600 return err; 5601 } 5602 if (mddev->queue) { 5603 bool nonrot = true; 5604 5605 rdev_for_each(rdev, mddev) { 5606 if (rdev->raid_disk >= 0 && 5607 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5608 nonrot = false; 5609 break; 5610 } 5611 } 5612 if (mddev->degraded) 5613 nonrot = false; 5614 if (nonrot) 5615 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mddev->queue); 5616 else 5617 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, mddev->queue); 5618 mddev->queue->backing_dev_info->congested_data = mddev; 5619 mddev->queue->backing_dev_info->congested_fn = md_congested; 5620 } 5621 if (pers->sync_request) { 5622 if (mddev->kobj.sd && 5623 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5624 pr_warn("md: cannot register extra attributes for %s\n", 5625 mdname(mddev)); 5626 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5627 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5628 mddev->ro = 0; 5629 5630 atomic_set(&mddev->max_corr_read_errors, 5631 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5632 mddev->safemode = 0; 5633 if (mddev_is_clustered(mddev)) 5634 mddev->safemode_delay = 0; 5635 else 5636 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5637 mddev->in_sync = 1; 5638 smp_wmb(); 5639 spin_lock(&mddev->lock); 5640 mddev->pers = pers; 5641 spin_unlock(&mddev->lock); 5642 rdev_for_each(rdev, mddev) 5643 if (rdev->raid_disk >= 0) 5644 if (sysfs_link_rdev(mddev, rdev)) 5645 /* failure here is OK */; 5646 5647 if (mddev->degraded && !mddev->ro) 5648 /* This ensures that recovering status is reported immediately 5649 * via sysfs - until a lack of spares is confirmed. 5650 */ 5651 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5652 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5653 5654 if (mddev->sb_flags) 5655 md_update_sb(mddev, 0); 5656 5657 md_new_event(mddev); 5658 sysfs_notify_dirent_safe(mddev->sysfs_state); 5659 sysfs_notify_dirent_safe(mddev->sysfs_action); 5660 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5661 return 0; 5662 } 5663 EXPORT_SYMBOL_GPL(md_run); 5664 5665 static int do_md_run(struct mddev *mddev) 5666 { 5667 int err; 5668 5669 err = md_run(mddev); 5670 if (err) 5671 goto out; 5672 err = bitmap_load(mddev); 5673 if (err) { 5674 bitmap_destroy(mddev); 5675 goto out; 5676 } 5677 5678 if (mddev_is_clustered(mddev)) 5679 md_allow_write(mddev); 5680 5681 md_wakeup_thread(mddev->thread); 5682 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5683 5684 set_capacity(mddev->gendisk, mddev->array_sectors); 5685 revalidate_disk(mddev->gendisk); 5686 mddev->changed = 1; 5687 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5688 out: 5689 return err; 5690 } 5691 5692 static int restart_array(struct mddev *mddev) 5693 { 5694 struct gendisk *disk = mddev->gendisk; 5695 struct md_rdev *rdev; 5696 bool has_journal = false; 5697 bool has_readonly = false; 5698 5699 /* Complain if it has no devices */ 5700 if (list_empty(&mddev->disks)) 5701 return -ENXIO; 5702 if (!mddev->pers) 5703 return -EINVAL; 5704 if (!mddev->ro) 5705 return -EBUSY; 5706 5707 rcu_read_lock(); 5708 rdev_for_each_rcu(rdev, mddev) { 5709 if (test_bit(Journal, &rdev->flags) && 5710 !test_bit(Faulty, &rdev->flags)) 5711 has_journal = true; 5712 if (bdev_read_only(rdev->bdev)) 5713 has_readonly = true; 5714 } 5715 rcu_read_unlock(); 5716 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 5717 /* Don't restart rw with journal missing/faulty */ 5718 return -EINVAL; 5719 if (has_readonly) 5720 return -EROFS; 5721 5722 mddev->safemode = 0; 5723 mddev->ro = 0; 5724 set_disk_ro(disk, 0); 5725 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 5726 /* Kick recovery or resync if necessary */ 5727 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5728 md_wakeup_thread(mddev->thread); 5729 md_wakeup_thread(mddev->sync_thread); 5730 sysfs_notify_dirent_safe(mddev->sysfs_state); 5731 return 0; 5732 } 5733 5734 static void md_clean(struct mddev *mddev) 5735 { 5736 mddev->array_sectors = 0; 5737 mddev->external_size = 0; 5738 mddev->dev_sectors = 0; 5739 mddev->raid_disks = 0; 5740 mddev->recovery_cp = 0; 5741 mddev->resync_min = 0; 5742 mddev->resync_max = MaxSector; 5743 mddev->reshape_position = MaxSector; 5744 mddev->external = 0; 5745 mddev->persistent = 0; 5746 mddev->level = LEVEL_NONE; 5747 mddev->clevel[0] = 0; 5748 mddev->flags = 0; 5749 mddev->sb_flags = 0; 5750 mddev->ro = 0; 5751 mddev->metadata_type[0] = 0; 5752 mddev->chunk_sectors = 0; 5753 mddev->ctime = mddev->utime = 0; 5754 mddev->layout = 0; 5755 mddev->max_disks = 0; 5756 mddev->events = 0; 5757 mddev->can_decrease_events = 0; 5758 mddev->delta_disks = 0; 5759 mddev->reshape_backwards = 0; 5760 mddev->new_level = LEVEL_NONE; 5761 mddev->new_layout = 0; 5762 mddev->new_chunk_sectors = 0; 5763 mddev->curr_resync = 0; 5764 atomic64_set(&mddev->resync_mismatches, 0); 5765 mddev->suspend_lo = mddev->suspend_hi = 0; 5766 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5767 mddev->recovery = 0; 5768 mddev->in_sync = 0; 5769 mddev->changed = 0; 5770 mddev->degraded = 0; 5771 mddev->safemode = 0; 5772 mddev->private = NULL; 5773 mddev->cluster_info = NULL; 5774 mddev->bitmap_info.offset = 0; 5775 mddev->bitmap_info.default_offset = 0; 5776 mddev->bitmap_info.default_space = 0; 5777 mddev->bitmap_info.chunksize = 0; 5778 mddev->bitmap_info.daemon_sleep = 0; 5779 mddev->bitmap_info.max_write_behind = 0; 5780 mddev->bitmap_info.nodes = 0; 5781 } 5782 5783 static void __md_stop_writes(struct mddev *mddev) 5784 { 5785 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5786 flush_workqueue(md_misc_wq); 5787 if (mddev->sync_thread) { 5788 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5789 md_reap_sync_thread(mddev); 5790 } 5791 5792 del_timer_sync(&mddev->safemode_timer); 5793 5794 if (mddev->pers && mddev->pers->quiesce) { 5795 mddev->pers->quiesce(mddev, 1); 5796 mddev->pers->quiesce(mddev, 0); 5797 } 5798 bitmap_flush(mddev); 5799 5800 if (mddev->ro == 0 && 5801 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5802 mddev->sb_flags)) { 5803 /* mark array as shutdown cleanly */ 5804 if (!mddev_is_clustered(mddev)) 5805 mddev->in_sync = 1; 5806 md_update_sb(mddev, 1); 5807 } 5808 } 5809 5810 void md_stop_writes(struct mddev *mddev) 5811 { 5812 mddev_lock_nointr(mddev); 5813 __md_stop_writes(mddev); 5814 mddev_unlock(mddev); 5815 } 5816 EXPORT_SYMBOL_GPL(md_stop_writes); 5817 5818 static void mddev_detach(struct mddev *mddev) 5819 { 5820 bitmap_wait_behind_writes(mddev); 5821 if (mddev->pers && mddev->pers->quiesce) { 5822 mddev->pers->quiesce(mddev, 1); 5823 mddev->pers->quiesce(mddev, 0); 5824 } 5825 md_unregister_thread(&mddev->thread); 5826 if (mddev->queue) 5827 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5828 } 5829 5830 static void __md_stop(struct mddev *mddev) 5831 { 5832 struct md_personality *pers = mddev->pers; 5833 bitmap_destroy(mddev); 5834 mddev_detach(mddev); 5835 /* Ensure ->event_work is done */ 5836 flush_workqueue(md_misc_wq); 5837 spin_lock(&mddev->lock); 5838 mddev->pers = NULL; 5839 spin_unlock(&mddev->lock); 5840 pers->free(mddev, mddev->private); 5841 mddev->private = NULL; 5842 if (pers->sync_request && mddev->to_remove == NULL) 5843 mddev->to_remove = &md_redundancy_group; 5844 module_put(pers->owner); 5845 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5846 } 5847 5848 void md_stop(struct mddev *mddev) 5849 { 5850 /* stop the array and free an attached data structures. 5851 * This is called from dm-raid 5852 */ 5853 __md_stop(mddev); 5854 if (mddev->bio_set) { 5855 bioset_free(mddev->bio_set); 5856 mddev->bio_set = NULL; 5857 } 5858 if (mddev->sync_set) { 5859 bioset_free(mddev->sync_set); 5860 mddev->sync_set = NULL; 5861 } 5862 } 5863 5864 EXPORT_SYMBOL_GPL(md_stop); 5865 5866 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5867 { 5868 int err = 0; 5869 int did_freeze = 0; 5870 5871 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5872 did_freeze = 1; 5873 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5874 md_wakeup_thread(mddev->thread); 5875 } 5876 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5877 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5878 if (mddev->sync_thread) 5879 /* Thread might be blocked waiting for metadata update 5880 * which will now never happen */ 5881 wake_up_process(mddev->sync_thread->tsk); 5882 5883 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 5884 return -EBUSY; 5885 mddev_unlock(mddev); 5886 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5887 &mddev->recovery)); 5888 wait_event(mddev->sb_wait, 5889 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 5890 mddev_lock_nointr(mddev); 5891 5892 mutex_lock(&mddev->open_mutex); 5893 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5894 mddev->sync_thread || 5895 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5896 pr_warn("md: %s still in use.\n",mdname(mddev)); 5897 if (did_freeze) { 5898 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5899 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5900 md_wakeup_thread(mddev->thread); 5901 } 5902 err = -EBUSY; 5903 goto out; 5904 } 5905 if (mddev->pers) { 5906 __md_stop_writes(mddev); 5907 5908 err = -ENXIO; 5909 if (mddev->ro==1) 5910 goto out; 5911 mddev->ro = 1; 5912 set_disk_ro(mddev->gendisk, 1); 5913 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5914 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5915 md_wakeup_thread(mddev->thread); 5916 sysfs_notify_dirent_safe(mddev->sysfs_state); 5917 err = 0; 5918 } 5919 out: 5920 mutex_unlock(&mddev->open_mutex); 5921 return err; 5922 } 5923 5924 /* mode: 5925 * 0 - completely stop and dis-assemble array 5926 * 2 - stop but do not disassemble array 5927 */ 5928 static int do_md_stop(struct mddev *mddev, int mode, 5929 struct block_device *bdev) 5930 { 5931 struct gendisk *disk = mddev->gendisk; 5932 struct md_rdev *rdev; 5933 int did_freeze = 0; 5934 5935 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5936 did_freeze = 1; 5937 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5938 md_wakeup_thread(mddev->thread); 5939 } 5940 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5941 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5942 if (mddev->sync_thread) 5943 /* Thread might be blocked waiting for metadata update 5944 * which will now never happen */ 5945 wake_up_process(mddev->sync_thread->tsk); 5946 5947 mddev_unlock(mddev); 5948 wait_event(resync_wait, (mddev->sync_thread == NULL && 5949 !test_bit(MD_RECOVERY_RUNNING, 5950 &mddev->recovery))); 5951 mddev_lock_nointr(mddev); 5952 5953 mutex_lock(&mddev->open_mutex); 5954 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5955 mddev->sysfs_active || 5956 mddev->sync_thread || 5957 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5958 pr_warn("md: %s still in use.\n",mdname(mddev)); 5959 mutex_unlock(&mddev->open_mutex); 5960 if (did_freeze) { 5961 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5962 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5963 md_wakeup_thread(mddev->thread); 5964 } 5965 return -EBUSY; 5966 } 5967 if (mddev->pers) { 5968 if (mddev->ro) 5969 set_disk_ro(disk, 0); 5970 5971 __md_stop_writes(mddev); 5972 __md_stop(mddev); 5973 mddev->queue->backing_dev_info->congested_fn = NULL; 5974 5975 /* tell userspace to handle 'inactive' */ 5976 sysfs_notify_dirent_safe(mddev->sysfs_state); 5977 5978 rdev_for_each(rdev, mddev) 5979 if (rdev->raid_disk >= 0) 5980 sysfs_unlink_rdev(mddev, rdev); 5981 5982 set_capacity(disk, 0); 5983 mutex_unlock(&mddev->open_mutex); 5984 mddev->changed = 1; 5985 revalidate_disk(disk); 5986 5987 if (mddev->ro) 5988 mddev->ro = 0; 5989 } else 5990 mutex_unlock(&mddev->open_mutex); 5991 /* 5992 * Free resources if final stop 5993 */ 5994 if (mode == 0) { 5995 pr_info("md: %s stopped.\n", mdname(mddev)); 5996 5997 if (mddev->bitmap_info.file) { 5998 struct file *f = mddev->bitmap_info.file; 5999 spin_lock(&mddev->lock); 6000 mddev->bitmap_info.file = NULL; 6001 spin_unlock(&mddev->lock); 6002 fput(f); 6003 } 6004 mddev->bitmap_info.offset = 0; 6005 6006 export_array(mddev); 6007 6008 md_clean(mddev); 6009 if (mddev->hold_active == UNTIL_STOP) 6010 mddev->hold_active = 0; 6011 } 6012 md_new_event(mddev); 6013 sysfs_notify_dirent_safe(mddev->sysfs_state); 6014 return 0; 6015 } 6016 6017 #ifndef MODULE 6018 static void autorun_array(struct mddev *mddev) 6019 { 6020 struct md_rdev *rdev; 6021 int err; 6022 6023 if (list_empty(&mddev->disks)) 6024 return; 6025 6026 pr_info("md: running: "); 6027 6028 rdev_for_each(rdev, mddev) { 6029 char b[BDEVNAME_SIZE]; 6030 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6031 } 6032 pr_cont("\n"); 6033 6034 err = do_md_run(mddev); 6035 if (err) { 6036 pr_warn("md: do_md_run() returned %d\n", err); 6037 do_md_stop(mddev, 0, NULL); 6038 } 6039 } 6040 6041 /* 6042 * lets try to run arrays based on all disks that have arrived 6043 * until now. (those are in pending_raid_disks) 6044 * 6045 * the method: pick the first pending disk, collect all disks with 6046 * the same UUID, remove all from the pending list and put them into 6047 * the 'same_array' list. Then order this list based on superblock 6048 * update time (freshest comes first), kick out 'old' disks and 6049 * compare superblocks. If everything's fine then run it. 6050 * 6051 * If "unit" is allocated, then bump its reference count 6052 */ 6053 static void autorun_devices(int part) 6054 { 6055 struct md_rdev *rdev0, *rdev, *tmp; 6056 struct mddev *mddev; 6057 char b[BDEVNAME_SIZE]; 6058 6059 pr_info("md: autorun ...\n"); 6060 while (!list_empty(&pending_raid_disks)) { 6061 int unit; 6062 dev_t dev; 6063 LIST_HEAD(candidates); 6064 rdev0 = list_entry(pending_raid_disks.next, 6065 struct md_rdev, same_set); 6066 6067 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6068 INIT_LIST_HEAD(&candidates); 6069 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6070 if (super_90_load(rdev, rdev0, 0) >= 0) { 6071 pr_debug("md: adding %s ...\n", 6072 bdevname(rdev->bdev,b)); 6073 list_move(&rdev->same_set, &candidates); 6074 } 6075 /* 6076 * now we have a set of devices, with all of them having 6077 * mostly sane superblocks. It's time to allocate the 6078 * mddev. 6079 */ 6080 if (part) { 6081 dev = MKDEV(mdp_major, 6082 rdev0->preferred_minor << MdpMinorShift); 6083 unit = MINOR(dev) >> MdpMinorShift; 6084 } else { 6085 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6086 unit = MINOR(dev); 6087 } 6088 if (rdev0->preferred_minor != unit) { 6089 pr_warn("md: unit number in %s is bad: %d\n", 6090 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6091 break; 6092 } 6093 6094 md_probe(dev, NULL, NULL); 6095 mddev = mddev_find(dev); 6096 if (!mddev || !mddev->gendisk) { 6097 if (mddev) 6098 mddev_put(mddev); 6099 break; 6100 } 6101 if (mddev_lock(mddev)) 6102 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6103 else if (mddev->raid_disks || mddev->major_version 6104 || !list_empty(&mddev->disks)) { 6105 pr_warn("md: %s already running, cannot run %s\n", 6106 mdname(mddev), bdevname(rdev0->bdev,b)); 6107 mddev_unlock(mddev); 6108 } else { 6109 pr_debug("md: created %s\n", mdname(mddev)); 6110 mddev->persistent = 1; 6111 rdev_for_each_list(rdev, tmp, &candidates) { 6112 list_del_init(&rdev->same_set); 6113 if (bind_rdev_to_array(rdev, mddev)) 6114 export_rdev(rdev); 6115 } 6116 autorun_array(mddev); 6117 mddev_unlock(mddev); 6118 } 6119 /* on success, candidates will be empty, on error 6120 * it won't... 6121 */ 6122 rdev_for_each_list(rdev, tmp, &candidates) { 6123 list_del_init(&rdev->same_set); 6124 export_rdev(rdev); 6125 } 6126 mddev_put(mddev); 6127 } 6128 pr_info("md: ... autorun DONE.\n"); 6129 } 6130 #endif /* !MODULE */ 6131 6132 static int get_version(void __user *arg) 6133 { 6134 mdu_version_t ver; 6135 6136 ver.major = MD_MAJOR_VERSION; 6137 ver.minor = MD_MINOR_VERSION; 6138 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6139 6140 if (copy_to_user(arg, &ver, sizeof(ver))) 6141 return -EFAULT; 6142 6143 return 0; 6144 } 6145 6146 static int get_array_info(struct mddev *mddev, void __user *arg) 6147 { 6148 mdu_array_info_t info; 6149 int nr,working,insync,failed,spare; 6150 struct md_rdev *rdev; 6151 6152 nr = working = insync = failed = spare = 0; 6153 rcu_read_lock(); 6154 rdev_for_each_rcu(rdev, mddev) { 6155 nr++; 6156 if (test_bit(Faulty, &rdev->flags)) 6157 failed++; 6158 else { 6159 working++; 6160 if (test_bit(In_sync, &rdev->flags)) 6161 insync++; 6162 else if (test_bit(Journal, &rdev->flags)) 6163 /* TODO: add journal count to md_u.h */ 6164 ; 6165 else 6166 spare++; 6167 } 6168 } 6169 rcu_read_unlock(); 6170 6171 info.major_version = mddev->major_version; 6172 info.minor_version = mddev->minor_version; 6173 info.patch_version = MD_PATCHLEVEL_VERSION; 6174 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6175 info.level = mddev->level; 6176 info.size = mddev->dev_sectors / 2; 6177 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6178 info.size = -1; 6179 info.nr_disks = nr; 6180 info.raid_disks = mddev->raid_disks; 6181 info.md_minor = mddev->md_minor; 6182 info.not_persistent= !mddev->persistent; 6183 6184 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6185 info.state = 0; 6186 if (mddev->in_sync) 6187 info.state = (1<<MD_SB_CLEAN); 6188 if (mddev->bitmap && mddev->bitmap_info.offset) 6189 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6190 if (mddev_is_clustered(mddev)) 6191 info.state |= (1<<MD_SB_CLUSTERED); 6192 info.active_disks = insync; 6193 info.working_disks = working; 6194 info.failed_disks = failed; 6195 info.spare_disks = spare; 6196 6197 info.layout = mddev->layout; 6198 info.chunk_size = mddev->chunk_sectors << 9; 6199 6200 if (copy_to_user(arg, &info, sizeof(info))) 6201 return -EFAULT; 6202 6203 return 0; 6204 } 6205 6206 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6207 { 6208 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6209 char *ptr; 6210 int err; 6211 6212 file = kzalloc(sizeof(*file), GFP_NOIO); 6213 if (!file) 6214 return -ENOMEM; 6215 6216 err = 0; 6217 spin_lock(&mddev->lock); 6218 /* bitmap enabled */ 6219 if (mddev->bitmap_info.file) { 6220 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6221 sizeof(file->pathname)); 6222 if (IS_ERR(ptr)) 6223 err = PTR_ERR(ptr); 6224 else 6225 memmove(file->pathname, ptr, 6226 sizeof(file->pathname)-(ptr-file->pathname)); 6227 } 6228 spin_unlock(&mddev->lock); 6229 6230 if (err == 0 && 6231 copy_to_user(arg, file, sizeof(*file))) 6232 err = -EFAULT; 6233 6234 kfree(file); 6235 return err; 6236 } 6237 6238 static int get_disk_info(struct mddev *mddev, void __user * arg) 6239 { 6240 mdu_disk_info_t info; 6241 struct md_rdev *rdev; 6242 6243 if (copy_from_user(&info, arg, sizeof(info))) 6244 return -EFAULT; 6245 6246 rcu_read_lock(); 6247 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6248 if (rdev) { 6249 info.major = MAJOR(rdev->bdev->bd_dev); 6250 info.minor = MINOR(rdev->bdev->bd_dev); 6251 info.raid_disk = rdev->raid_disk; 6252 info.state = 0; 6253 if (test_bit(Faulty, &rdev->flags)) 6254 info.state |= (1<<MD_DISK_FAULTY); 6255 else if (test_bit(In_sync, &rdev->flags)) { 6256 info.state |= (1<<MD_DISK_ACTIVE); 6257 info.state |= (1<<MD_DISK_SYNC); 6258 } 6259 if (test_bit(Journal, &rdev->flags)) 6260 info.state |= (1<<MD_DISK_JOURNAL); 6261 if (test_bit(WriteMostly, &rdev->flags)) 6262 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6263 if (test_bit(FailFast, &rdev->flags)) 6264 info.state |= (1<<MD_DISK_FAILFAST); 6265 } else { 6266 info.major = info.minor = 0; 6267 info.raid_disk = -1; 6268 info.state = (1<<MD_DISK_REMOVED); 6269 } 6270 rcu_read_unlock(); 6271 6272 if (copy_to_user(arg, &info, sizeof(info))) 6273 return -EFAULT; 6274 6275 return 0; 6276 } 6277 6278 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6279 { 6280 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6281 struct md_rdev *rdev; 6282 dev_t dev = MKDEV(info->major,info->minor); 6283 6284 if (mddev_is_clustered(mddev) && 6285 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6286 pr_warn("%s: Cannot add to clustered mddev.\n", 6287 mdname(mddev)); 6288 return -EINVAL; 6289 } 6290 6291 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6292 return -EOVERFLOW; 6293 6294 if (!mddev->raid_disks) { 6295 int err; 6296 /* expecting a device which has a superblock */ 6297 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6298 if (IS_ERR(rdev)) { 6299 pr_warn("md: md_import_device returned %ld\n", 6300 PTR_ERR(rdev)); 6301 return PTR_ERR(rdev); 6302 } 6303 if (!list_empty(&mddev->disks)) { 6304 struct md_rdev *rdev0 6305 = list_entry(mddev->disks.next, 6306 struct md_rdev, same_set); 6307 err = super_types[mddev->major_version] 6308 .load_super(rdev, rdev0, mddev->minor_version); 6309 if (err < 0) { 6310 pr_warn("md: %s has different UUID to %s\n", 6311 bdevname(rdev->bdev,b), 6312 bdevname(rdev0->bdev,b2)); 6313 export_rdev(rdev); 6314 return -EINVAL; 6315 } 6316 } 6317 err = bind_rdev_to_array(rdev, mddev); 6318 if (err) 6319 export_rdev(rdev); 6320 return err; 6321 } 6322 6323 /* 6324 * add_new_disk can be used once the array is assembled 6325 * to add "hot spares". They must already have a superblock 6326 * written 6327 */ 6328 if (mddev->pers) { 6329 int err; 6330 if (!mddev->pers->hot_add_disk) { 6331 pr_warn("%s: personality does not support diskops!\n", 6332 mdname(mddev)); 6333 return -EINVAL; 6334 } 6335 if (mddev->persistent) 6336 rdev = md_import_device(dev, mddev->major_version, 6337 mddev->minor_version); 6338 else 6339 rdev = md_import_device(dev, -1, -1); 6340 if (IS_ERR(rdev)) { 6341 pr_warn("md: md_import_device returned %ld\n", 6342 PTR_ERR(rdev)); 6343 return PTR_ERR(rdev); 6344 } 6345 /* set saved_raid_disk if appropriate */ 6346 if (!mddev->persistent) { 6347 if (info->state & (1<<MD_DISK_SYNC) && 6348 info->raid_disk < mddev->raid_disks) { 6349 rdev->raid_disk = info->raid_disk; 6350 set_bit(In_sync, &rdev->flags); 6351 clear_bit(Bitmap_sync, &rdev->flags); 6352 } else 6353 rdev->raid_disk = -1; 6354 rdev->saved_raid_disk = rdev->raid_disk; 6355 } else 6356 super_types[mddev->major_version]. 6357 validate_super(mddev, rdev); 6358 if ((info->state & (1<<MD_DISK_SYNC)) && 6359 rdev->raid_disk != info->raid_disk) { 6360 /* This was a hot-add request, but events doesn't 6361 * match, so reject it. 6362 */ 6363 export_rdev(rdev); 6364 return -EINVAL; 6365 } 6366 6367 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6368 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6369 set_bit(WriteMostly, &rdev->flags); 6370 else 6371 clear_bit(WriteMostly, &rdev->flags); 6372 if (info->state & (1<<MD_DISK_FAILFAST)) 6373 set_bit(FailFast, &rdev->flags); 6374 else 6375 clear_bit(FailFast, &rdev->flags); 6376 6377 if (info->state & (1<<MD_DISK_JOURNAL)) { 6378 struct md_rdev *rdev2; 6379 bool has_journal = false; 6380 6381 /* make sure no existing journal disk */ 6382 rdev_for_each(rdev2, mddev) { 6383 if (test_bit(Journal, &rdev2->flags)) { 6384 has_journal = true; 6385 break; 6386 } 6387 } 6388 if (has_journal || mddev->bitmap) { 6389 export_rdev(rdev); 6390 return -EBUSY; 6391 } 6392 set_bit(Journal, &rdev->flags); 6393 } 6394 /* 6395 * check whether the device shows up in other nodes 6396 */ 6397 if (mddev_is_clustered(mddev)) { 6398 if (info->state & (1 << MD_DISK_CANDIDATE)) 6399 set_bit(Candidate, &rdev->flags); 6400 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6401 /* --add initiated by this node */ 6402 err = md_cluster_ops->add_new_disk(mddev, rdev); 6403 if (err) { 6404 export_rdev(rdev); 6405 return err; 6406 } 6407 } 6408 } 6409 6410 rdev->raid_disk = -1; 6411 err = bind_rdev_to_array(rdev, mddev); 6412 6413 if (err) 6414 export_rdev(rdev); 6415 6416 if (mddev_is_clustered(mddev)) { 6417 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6418 if (!err) { 6419 err = md_cluster_ops->new_disk_ack(mddev, 6420 err == 0); 6421 if (err) 6422 md_kick_rdev_from_array(rdev); 6423 } 6424 } else { 6425 if (err) 6426 md_cluster_ops->add_new_disk_cancel(mddev); 6427 else 6428 err = add_bound_rdev(rdev); 6429 } 6430 6431 } else if (!err) 6432 err = add_bound_rdev(rdev); 6433 6434 return err; 6435 } 6436 6437 /* otherwise, add_new_disk is only allowed 6438 * for major_version==0 superblocks 6439 */ 6440 if (mddev->major_version != 0) { 6441 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6442 return -EINVAL; 6443 } 6444 6445 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6446 int err; 6447 rdev = md_import_device(dev, -1, 0); 6448 if (IS_ERR(rdev)) { 6449 pr_warn("md: error, md_import_device() returned %ld\n", 6450 PTR_ERR(rdev)); 6451 return PTR_ERR(rdev); 6452 } 6453 rdev->desc_nr = info->number; 6454 if (info->raid_disk < mddev->raid_disks) 6455 rdev->raid_disk = info->raid_disk; 6456 else 6457 rdev->raid_disk = -1; 6458 6459 if (rdev->raid_disk < mddev->raid_disks) 6460 if (info->state & (1<<MD_DISK_SYNC)) 6461 set_bit(In_sync, &rdev->flags); 6462 6463 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6464 set_bit(WriteMostly, &rdev->flags); 6465 if (info->state & (1<<MD_DISK_FAILFAST)) 6466 set_bit(FailFast, &rdev->flags); 6467 6468 if (!mddev->persistent) { 6469 pr_debug("md: nonpersistent superblock ...\n"); 6470 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6471 } else 6472 rdev->sb_start = calc_dev_sboffset(rdev); 6473 rdev->sectors = rdev->sb_start; 6474 6475 err = bind_rdev_to_array(rdev, mddev); 6476 if (err) { 6477 export_rdev(rdev); 6478 return err; 6479 } 6480 } 6481 6482 return 0; 6483 } 6484 6485 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6486 { 6487 char b[BDEVNAME_SIZE]; 6488 struct md_rdev *rdev; 6489 6490 rdev = find_rdev(mddev, dev); 6491 if (!rdev) 6492 return -ENXIO; 6493 6494 if (rdev->raid_disk < 0) 6495 goto kick_rdev; 6496 6497 clear_bit(Blocked, &rdev->flags); 6498 remove_and_add_spares(mddev, rdev); 6499 6500 if (rdev->raid_disk >= 0) 6501 goto busy; 6502 6503 kick_rdev: 6504 if (mddev_is_clustered(mddev)) 6505 md_cluster_ops->remove_disk(mddev, rdev); 6506 6507 md_kick_rdev_from_array(rdev); 6508 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6509 if (mddev->thread) 6510 md_wakeup_thread(mddev->thread); 6511 else 6512 md_update_sb(mddev, 1); 6513 md_new_event(mddev); 6514 6515 return 0; 6516 busy: 6517 pr_debug("md: cannot remove active disk %s from %s ...\n", 6518 bdevname(rdev->bdev,b), mdname(mddev)); 6519 return -EBUSY; 6520 } 6521 6522 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6523 { 6524 char b[BDEVNAME_SIZE]; 6525 int err; 6526 struct md_rdev *rdev; 6527 6528 if (!mddev->pers) 6529 return -ENODEV; 6530 6531 if (mddev->major_version != 0) { 6532 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6533 mdname(mddev)); 6534 return -EINVAL; 6535 } 6536 if (!mddev->pers->hot_add_disk) { 6537 pr_warn("%s: personality does not support diskops!\n", 6538 mdname(mddev)); 6539 return -EINVAL; 6540 } 6541 6542 rdev = md_import_device(dev, -1, 0); 6543 if (IS_ERR(rdev)) { 6544 pr_warn("md: error, md_import_device() returned %ld\n", 6545 PTR_ERR(rdev)); 6546 return -EINVAL; 6547 } 6548 6549 if (mddev->persistent) 6550 rdev->sb_start = calc_dev_sboffset(rdev); 6551 else 6552 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6553 6554 rdev->sectors = rdev->sb_start; 6555 6556 if (test_bit(Faulty, &rdev->flags)) { 6557 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6558 bdevname(rdev->bdev,b), mdname(mddev)); 6559 err = -EINVAL; 6560 goto abort_export; 6561 } 6562 6563 clear_bit(In_sync, &rdev->flags); 6564 rdev->desc_nr = -1; 6565 rdev->saved_raid_disk = -1; 6566 err = bind_rdev_to_array(rdev, mddev); 6567 if (err) 6568 goto abort_export; 6569 6570 /* 6571 * The rest should better be atomic, we can have disk failures 6572 * noticed in interrupt contexts ... 6573 */ 6574 6575 rdev->raid_disk = -1; 6576 6577 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6578 if (!mddev->thread) 6579 md_update_sb(mddev, 1); 6580 /* 6581 * Kick recovery, maybe this spare has to be added to the 6582 * array immediately. 6583 */ 6584 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6585 md_wakeup_thread(mddev->thread); 6586 md_new_event(mddev); 6587 return 0; 6588 6589 abort_export: 6590 export_rdev(rdev); 6591 return err; 6592 } 6593 6594 static int set_bitmap_file(struct mddev *mddev, int fd) 6595 { 6596 int err = 0; 6597 6598 if (mddev->pers) { 6599 if (!mddev->pers->quiesce || !mddev->thread) 6600 return -EBUSY; 6601 if (mddev->recovery || mddev->sync_thread) 6602 return -EBUSY; 6603 /* we should be able to change the bitmap.. */ 6604 } 6605 6606 if (fd >= 0) { 6607 struct inode *inode; 6608 struct file *f; 6609 6610 if (mddev->bitmap || mddev->bitmap_info.file) 6611 return -EEXIST; /* cannot add when bitmap is present */ 6612 f = fget(fd); 6613 6614 if (f == NULL) { 6615 pr_warn("%s: error: failed to get bitmap file\n", 6616 mdname(mddev)); 6617 return -EBADF; 6618 } 6619 6620 inode = f->f_mapping->host; 6621 if (!S_ISREG(inode->i_mode)) { 6622 pr_warn("%s: error: bitmap file must be a regular file\n", 6623 mdname(mddev)); 6624 err = -EBADF; 6625 } else if (!(f->f_mode & FMODE_WRITE)) { 6626 pr_warn("%s: error: bitmap file must open for write\n", 6627 mdname(mddev)); 6628 err = -EBADF; 6629 } else if (atomic_read(&inode->i_writecount) != 1) { 6630 pr_warn("%s: error: bitmap file is already in use\n", 6631 mdname(mddev)); 6632 err = -EBUSY; 6633 } 6634 if (err) { 6635 fput(f); 6636 return err; 6637 } 6638 mddev->bitmap_info.file = f; 6639 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6640 } else if (mddev->bitmap == NULL) 6641 return -ENOENT; /* cannot remove what isn't there */ 6642 err = 0; 6643 if (mddev->pers) { 6644 if (fd >= 0) { 6645 struct bitmap *bitmap; 6646 6647 bitmap = bitmap_create(mddev, -1); 6648 mddev_suspend(mddev); 6649 if (!IS_ERR(bitmap)) { 6650 mddev->bitmap = bitmap; 6651 err = bitmap_load(mddev); 6652 } else 6653 err = PTR_ERR(bitmap); 6654 if (err) { 6655 bitmap_destroy(mddev); 6656 fd = -1; 6657 } 6658 mddev_resume(mddev); 6659 } else if (fd < 0) { 6660 mddev_suspend(mddev); 6661 bitmap_destroy(mddev); 6662 mddev_resume(mddev); 6663 } 6664 } 6665 if (fd < 0) { 6666 struct file *f = mddev->bitmap_info.file; 6667 if (f) { 6668 spin_lock(&mddev->lock); 6669 mddev->bitmap_info.file = NULL; 6670 spin_unlock(&mddev->lock); 6671 fput(f); 6672 } 6673 } 6674 6675 return err; 6676 } 6677 6678 /* 6679 * set_array_info is used two different ways 6680 * The original usage is when creating a new array. 6681 * In this usage, raid_disks is > 0 and it together with 6682 * level, size, not_persistent,layout,chunksize determine the 6683 * shape of the array. 6684 * This will always create an array with a type-0.90.0 superblock. 6685 * The newer usage is when assembling an array. 6686 * In this case raid_disks will be 0, and the major_version field is 6687 * use to determine which style super-blocks are to be found on the devices. 6688 * The minor and patch _version numbers are also kept incase the 6689 * super_block handler wishes to interpret them. 6690 */ 6691 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6692 { 6693 6694 if (info->raid_disks == 0) { 6695 /* just setting version number for superblock loading */ 6696 if (info->major_version < 0 || 6697 info->major_version >= ARRAY_SIZE(super_types) || 6698 super_types[info->major_version].name == NULL) { 6699 /* maybe try to auto-load a module? */ 6700 pr_warn("md: superblock version %d not known\n", 6701 info->major_version); 6702 return -EINVAL; 6703 } 6704 mddev->major_version = info->major_version; 6705 mddev->minor_version = info->minor_version; 6706 mddev->patch_version = info->patch_version; 6707 mddev->persistent = !info->not_persistent; 6708 /* ensure mddev_put doesn't delete this now that there 6709 * is some minimal configuration. 6710 */ 6711 mddev->ctime = ktime_get_real_seconds(); 6712 return 0; 6713 } 6714 mddev->major_version = MD_MAJOR_VERSION; 6715 mddev->minor_version = MD_MINOR_VERSION; 6716 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6717 mddev->ctime = ktime_get_real_seconds(); 6718 6719 mddev->level = info->level; 6720 mddev->clevel[0] = 0; 6721 mddev->dev_sectors = 2 * (sector_t)info->size; 6722 mddev->raid_disks = info->raid_disks; 6723 /* don't set md_minor, it is determined by which /dev/md* was 6724 * openned 6725 */ 6726 if (info->state & (1<<MD_SB_CLEAN)) 6727 mddev->recovery_cp = MaxSector; 6728 else 6729 mddev->recovery_cp = 0; 6730 mddev->persistent = ! info->not_persistent; 6731 mddev->external = 0; 6732 6733 mddev->layout = info->layout; 6734 mddev->chunk_sectors = info->chunk_size >> 9; 6735 6736 if (mddev->persistent) { 6737 mddev->max_disks = MD_SB_DISKS; 6738 mddev->flags = 0; 6739 mddev->sb_flags = 0; 6740 } 6741 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6742 6743 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6744 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6745 mddev->bitmap_info.offset = 0; 6746 6747 mddev->reshape_position = MaxSector; 6748 6749 /* 6750 * Generate a 128 bit UUID 6751 */ 6752 get_random_bytes(mddev->uuid, 16); 6753 6754 mddev->new_level = mddev->level; 6755 mddev->new_chunk_sectors = mddev->chunk_sectors; 6756 mddev->new_layout = mddev->layout; 6757 mddev->delta_disks = 0; 6758 mddev->reshape_backwards = 0; 6759 6760 return 0; 6761 } 6762 6763 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6764 { 6765 lockdep_assert_held(&mddev->reconfig_mutex); 6766 6767 if (mddev->external_size) 6768 return; 6769 6770 mddev->array_sectors = array_sectors; 6771 } 6772 EXPORT_SYMBOL(md_set_array_sectors); 6773 6774 static int update_size(struct mddev *mddev, sector_t num_sectors) 6775 { 6776 struct md_rdev *rdev; 6777 int rv; 6778 int fit = (num_sectors == 0); 6779 sector_t old_dev_sectors = mddev->dev_sectors; 6780 6781 if (mddev->pers->resize == NULL) 6782 return -EINVAL; 6783 /* The "num_sectors" is the number of sectors of each device that 6784 * is used. This can only make sense for arrays with redundancy. 6785 * linear and raid0 always use whatever space is available. We can only 6786 * consider changing this number if no resync or reconstruction is 6787 * happening, and if the new size is acceptable. It must fit before the 6788 * sb_start or, if that is <data_offset, it must fit before the size 6789 * of each device. If num_sectors is zero, we find the largest size 6790 * that fits. 6791 */ 6792 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6793 mddev->sync_thread) 6794 return -EBUSY; 6795 if (mddev->ro) 6796 return -EROFS; 6797 6798 rdev_for_each(rdev, mddev) { 6799 sector_t avail = rdev->sectors; 6800 6801 if (fit && (num_sectors == 0 || num_sectors > avail)) 6802 num_sectors = avail; 6803 if (avail < num_sectors) 6804 return -ENOSPC; 6805 } 6806 rv = mddev->pers->resize(mddev, num_sectors); 6807 if (!rv) { 6808 if (mddev_is_clustered(mddev)) 6809 md_cluster_ops->update_size(mddev, old_dev_sectors); 6810 else if (mddev->queue) { 6811 set_capacity(mddev->gendisk, mddev->array_sectors); 6812 revalidate_disk(mddev->gendisk); 6813 } 6814 } 6815 return rv; 6816 } 6817 6818 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6819 { 6820 int rv; 6821 struct md_rdev *rdev; 6822 /* change the number of raid disks */ 6823 if (mddev->pers->check_reshape == NULL) 6824 return -EINVAL; 6825 if (mddev->ro) 6826 return -EROFS; 6827 if (raid_disks <= 0 || 6828 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6829 return -EINVAL; 6830 if (mddev->sync_thread || 6831 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6832 mddev->reshape_position != MaxSector) 6833 return -EBUSY; 6834 6835 rdev_for_each(rdev, mddev) { 6836 if (mddev->raid_disks < raid_disks && 6837 rdev->data_offset < rdev->new_data_offset) 6838 return -EINVAL; 6839 if (mddev->raid_disks > raid_disks && 6840 rdev->data_offset > rdev->new_data_offset) 6841 return -EINVAL; 6842 } 6843 6844 mddev->delta_disks = raid_disks - mddev->raid_disks; 6845 if (mddev->delta_disks < 0) 6846 mddev->reshape_backwards = 1; 6847 else if (mddev->delta_disks > 0) 6848 mddev->reshape_backwards = 0; 6849 6850 rv = mddev->pers->check_reshape(mddev); 6851 if (rv < 0) { 6852 mddev->delta_disks = 0; 6853 mddev->reshape_backwards = 0; 6854 } 6855 return rv; 6856 } 6857 6858 /* 6859 * update_array_info is used to change the configuration of an 6860 * on-line array. 6861 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6862 * fields in the info are checked against the array. 6863 * Any differences that cannot be handled will cause an error. 6864 * Normally, only one change can be managed at a time. 6865 */ 6866 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6867 { 6868 int rv = 0; 6869 int cnt = 0; 6870 int state = 0; 6871 6872 /* calculate expected state,ignoring low bits */ 6873 if (mddev->bitmap && mddev->bitmap_info.offset) 6874 state |= (1 << MD_SB_BITMAP_PRESENT); 6875 6876 if (mddev->major_version != info->major_version || 6877 mddev->minor_version != info->minor_version || 6878 /* mddev->patch_version != info->patch_version || */ 6879 mddev->ctime != info->ctime || 6880 mddev->level != info->level || 6881 /* mddev->layout != info->layout || */ 6882 mddev->persistent != !info->not_persistent || 6883 mddev->chunk_sectors != info->chunk_size >> 9 || 6884 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6885 ((state^info->state) & 0xfffffe00) 6886 ) 6887 return -EINVAL; 6888 /* Check there is only one change */ 6889 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6890 cnt++; 6891 if (mddev->raid_disks != info->raid_disks) 6892 cnt++; 6893 if (mddev->layout != info->layout) 6894 cnt++; 6895 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6896 cnt++; 6897 if (cnt == 0) 6898 return 0; 6899 if (cnt > 1) 6900 return -EINVAL; 6901 6902 if (mddev->layout != info->layout) { 6903 /* Change layout 6904 * we don't need to do anything at the md level, the 6905 * personality will take care of it all. 6906 */ 6907 if (mddev->pers->check_reshape == NULL) 6908 return -EINVAL; 6909 else { 6910 mddev->new_layout = info->layout; 6911 rv = mddev->pers->check_reshape(mddev); 6912 if (rv) 6913 mddev->new_layout = mddev->layout; 6914 return rv; 6915 } 6916 } 6917 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6918 rv = update_size(mddev, (sector_t)info->size * 2); 6919 6920 if (mddev->raid_disks != info->raid_disks) 6921 rv = update_raid_disks(mddev, info->raid_disks); 6922 6923 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6924 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6925 rv = -EINVAL; 6926 goto err; 6927 } 6928 if (mddev->recovery || mddev->sync_thread) { 6929 rv = -EBUSY; 6930 goto err; 6931 } 6932 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6933 struct bitmap *bitmap; 6934 /* add the bitmap */ 6935 if (mddev->bitmap) { 6936 rv = -EEXIST; 6937 goto err; 6938 } 6939 if (mddev->bitmap_info.default_offset == 0) { 6940 rv = -EINVAL; 6941 goto err; 6942 } 6943 mddev->bitmap_info.offset = 6944 mddev->bitmap_info.default_offset; 6945 mddev->bitmap_info.space = 6946 mddev->bitmap_info.default_space; 6947 bitmap = bitmap_create(mddev, -1); 6948 mddev_suspend(mddev); 6949 if (!IS_ERR(bitmap)) { 6950 mddev->bitmap = bitmap; 6951 rv = bitmap_load(mddev); 6952 } else 6953 rv = PTR_ERR(bitmap); 6954 if (rv) 6955 bitmap_destroy(mddev); 6956 mddev_resume(mddev); 6957 } else { 6958 /* remove the bitmap */ 6959 if (!mddev->bitmap) { 6960 rv = -ENOENT; 6961 goto err; 6962 } 6963 if (mddev->bitmap->storage.file) { 6964 rv = -EINVAL; 6965 goto err; 6966 } 6967 if (mddev->bitmap_info.nodes) { 6968 /* hold PW on all the bitmap lock */ 6969 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 6970 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 6971 rv = -EPERM; 6972 md_cluster_ops->unlock_all_bitmaps(mddev); 6973 goto err; 6974 } 6975 6976 mddev->bitmap_info.nodes = 0; 6977 md_cluster_ops->leave(mddev); 6978 } 6979 mddev_suspend(mddev); 6980 bitmap_destroy(mddev); 6981 mddev_resume(mddev); 6982 mddev->bitmap_info.offset = 0; 6983 } 6984 } 6985 md_update_sb(mddev, 1); 6986 return rv; 6987 err: 6988 return rv; 6989 } 6990 6991 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6992 { 6993 struct md_rdev *rdev; 6994 int err = 0; 6995 6996 if (mddev->pers == NULL) 6997 return -ENODEV; 6998 6999 rcu_read_lock(); 7000 rdev = find_rdev_rcu(mddev, dev); 7001 if (!rdev) 7002 err = -ENODEV; 7003 else { 7004 md_error(mddev, rdev); 7005 if (!test_bit(Faulty, &rdev->flags)) 7006 err = -EBUSY; 7007 } 7008 rcu_read_unlock(); 7009 return err; 7010 } 7011 7012 /* 7013 * We have a problem here : there is no easy way to give a CHS 7014 * virtual geometry. We currently pretend that we have a 2 heads 7015 * 4 sectors (with a BIG number of cylinders...). This drives 7016 * dosfs just mad... ;-) 7017 */ 7018 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7019 { 7020 struct mddev *mddev = bdev->bd_disk->private_data; 7021 7022 geo->heads = 2; 7023 geo->sectors = 4; 7024 geo->cylinders = mddev->array_sectors / 8; 7025 return 0; 7026 } 7027 7028 static inline bool md_ioctl_valid(unsigned int cmd) 7029 { 7030 switch (cmd) { 7031 case ADD_NEW_DISK: 7032 case BLKROSET: 7033 case GET_ARRAY_INFO: 7034 case GET_BITMAP_FILE: 7035 case GET_DISK_INFO: 7036 case HOT_ADD_DISK: 7037 case HOT_REMOVE_DISK: 7038 case RAID_AUTORUN: 7039 case RAID_VERSION: 7040 case RESTART_ARRAY_RW: 7041 case RUN_ARRAY: 7042 case SET_ARRAY_INFO: 7043 case SET_BITMAP_FILE: 7044 case SET_DISK_FAULTY: 7045 case STOP_ARRAY: 7046 case STOP_ARRAY_RO: 7047 case CLUSTERED_DISK_NACK: 7048 return true; 7049 default: 7050 return false; 7051 } 7052 } 7053 7054 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7055 unsigned int cmd, unsigned long arg) 7056 { 7057 int err = 0; 7058 void __user *argp = (void __user *)arg; 7059 struct mddev *mddev = NULL; 7060 int ro; 7061 bool did_set_md_closing = false; 7062 7063 if (!md_ioctl_valid(cmd)) 7064 return -ENOTTY; 7065 7066 switch (cmd) { 7067 case RAID_VERSION: 7068 case GET_ARRAY_INFO: 7069 case GET_DISK_INFO: 7070 break; 7071 default: 7072 if (!capable(CAP_SYS_ADMIN)) 7073 return -EACCES; 7074 } 7075 7076 /* 7077 * Commands dealing with the RAID driver but not any 7078 * particular array: 7079 */ 7080 switch (cmd) { 7081 case RAID_VERSION: 7082 err = get_version(argp); 7083 goto out; 7084 7085 #ifndef MODULE 7086 case RAID_AUTORUN: 7087 err = 0; 7088 autostart_arrays(arg); 7089 goto out; 7090 #endif 7091 default:; 7092 } 7093 7094 /* 7095 * Commands creating/starting a new array: 7096 */ 7097 7098 mddev = bdev->bd_disk->private_data; 7099 7100 if (!mddev) { 7101 BUG(); 7102 goto out; 7103 } 7104 7105 /* Some actions do not requires the mutex */ 7106 switch (cmd) { 7107 case GET_ARRAY_INFO: 7108 if (!mddev->raid_disks && !mddev->external) 7109 err = -ENODEV; 7110 else 7111 err = get_array_info(mddev, argp); 7112 goto out; 7113 7114 case GET_DISK_INFO: 7115 if (!mddev->raid_disks && !mddev->external) 7116 err = -ENODEV; 7117 else 7118 err = get_disk_info(mddev, argp); 7119 goto out; 7120 7121 case SET_DISK_FAULTY: 7122 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7123 goto out; 7124 7125 case GET_BITMAP_FILE: 7126 err = get_bitmap_file(mddev, argp); 7127 goto out; 7128 7129 } 7130 7131 if (cmd == ADD_NEW_DISK) 7132 /* need to ensure md_delayed_delete() has completed */ 7133 flush_workqueue(md_misc_wq); 7134 7135 if (cmd == HOT_REMOVE_DISK) 7136 /* need to ensure recovery thread has run */ 7137 wait_event_interruptible_timeout(mddev->sb_wait, 7138 !test_bit(MD_RECOVERY_NEEDED, 7139 &mddev->recovery), 7140 msecs_to_jiffies(5000)); 7141 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7142 /* Need to flush page cache, and ensure no-one else opens 7143 * and writes 7144 */ 7145 mutex_lock(&mddev->open_mutex); 7146 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7147 mutex_unlock(&mddev->open_mutex); 7148 err = -EBUSY; 7149 goto out; 7150 } 7151 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7152 set_bit(MD_CLOSING, &mddev->flags); 7153 did_set_md_closing = true; 7154 mutex_unlock(&mddev->open_mutex); 7155 sync_blockdev(bdev); 7156 } 7157 err = mddev_lock(mddev); 7158 if (err) { 7159 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7160 err, cmd); 7161 goto out; 7162 } 7163 7164 if (cmd == SET_ARRAY_INFO) { 7165 mdu_array_info_t info; 7166 if (!arg) 7167 memset(&info, 0, sizeof(info)); 7168 else if (copy_from_user(&info, argp, sizeof(info))) { 7169 err = -EFAULT; 7170 goto unlock; 7171 } 7172 if (mddev->pers) { 7173 err = update_array_info(mddev, &info); 7174 if (err) { 7175 pr_warn("md: couldn't update array info. %d\n", err); 7176 goto unlock; 7177 } 7178 goto unlock; 7179 } 7180 if (!list_empty(&mddev->disks)) { 7181 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7182 err = -EBUSY; 7183 goto unlock; 7184 } 7185 if (mddev->raid_disks) { 7186 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7187 err = -EBUSY; 7188 goto unlock; 7189 } 7190 err = set_array_info(mddev, &info); 7191 if (err) { 7192 pr_warn("md: couldn't set array info. %d\n", err); 7193 goto unlock; 7194 } 7195 goto unlock; 7196 } 7197 7198 /* 7199 * Commands querying/configuring an existing array: 7200 */ 7201 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7202 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7203 if ((!mddev->raid_disks && !mddev->external) 7204 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7205 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7206 && cmd != GET_BITMAP_FILE) { 7207 err = -ENODEV; 7208 goto unlock; 7209 } 7210 7211 /* 7212 * Commands even a read-only array can execute: 7213 */ 7214 switch (cmd) { 7215 case RESTART_ARRAY_RW: 7216 err = restart_array(mddev); 7217 goto unlock; 7218 7219 case STOP_ARRAY: 7220 err = do_md_stop(mddev, 0, bdev); 7221 goto unlock; 7222 7223 case STOP_ARRAY_RO: 7224 err = md_set_readonly(mddev, bdev); 7225 goto unlock; 7226 7227 case HOT_REMOVE_DISK: 7228 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7229 goto unlock; 7230 7231 case ADD_NEW_DISK: 7232 /* We can support ADD_NEW_DISK on read-only arrays 7233 * only if we are re-adding a preexisting device. 7234 * So require mddev->pers and MD_DISK_SYNC. 7235 */ 7236 if (mddev->pers) { 7237 mdu_disk_info_t info; 7238 if (copy_from_user(&info, argp, sizeof(info))) 7239 err = -EFAULT; 7240 else if (!(info.state & (1<<MD_DISK_SYNC))) 7241 /* Need to clear read-only for this */ 7242 break; 7243 else 7244 err = add_new_disk(mddev, &info); 7245 goto unlock; 7246 } 7247 break; 7248 7249 case BLKROSET: 7250 if (get_user(ro, (int __user *)(arg))) { 7251 err = -EFAULT; 7252 goto unlock; 7253 } 7254 err = -EINVAL; 7255 7256 /* if the bdev is going readonly the value of mddev->ro 7257 * does not matter, no writes are coming 7258 */ 7259 if (ro) 7260 goto unlock; 7261 7262 /* are we are already prepared for writes? */ 7263 if (mddev->ro != 1) 7264 goto unlock; 7265 7266 /* transitioning to readauto need only happen for 7267 * arrays that call md_write_start 7268 */ 7269 if (mddev->pers) { 7270 err = restart_array(mddev); 7271 if (err == 0) { 7272 mddev->ro = 2; 7273 set_disk_ro(mddev->gendisk, 0); 7274 } 7275 } 7276 goto unlock; 7277 } 7278 7279 /* 7280 * The remaining ioctls are changing the state of the 7281 * superblock, so we do not allow them on read-only arrays. 7282 */ 7283 if (mddev->ro && mddev->pers) { 7284 if (mddev->ro == 2) { 7285 mddev->ro = 0; 7286 sysfs_notify_dirent_safe(mddev->sysfs_state); 7287 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7288 /* mddev_unlock will wake thread */ 7289 /* If a device failed while we were read-only, we 7290 * need to make sure the metadata is updated now. 7291 */ 7292 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7293 mddev_unlock(mddev); 7294 wait_event(mddev->sb_wait, 7295 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7296 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7297 mddev_lock_nointr(mddev); 7298 } 7299 } else { 7300 err = -EROFS; 7301 goto unlock; 7302 } 7303 } 7304 7305 switch (cmd) { 7306 case ADD_NEW_DISK: 7307 { 7308 mdu_disk_info_t info; 7309 if (copy_from_user(&info, argp, sizeof(info))) 7310 err = -EFAULT; 7311 else 7312 err = add_new_disk(mddev, &info); 7313 goto unlock; 7314 } 7315 7316 case CLUSTERED_DISK_NACK: 7317 if (mddev_is_clustered(mddev)) 7318 md_cluster_ops->new_disk_ack(mddev, false); 7319 else 7320 err = -EINVAL; 7321 goto unlock; 7322 7323 case HOT_ADD_DISK: 7324 err = hot_add_disk(mddev, new_decode_dev(arg)); 7325 goto unlock; 7326 7327 case RUN_ARRAY: 7328 err = do_md_run(mddev); 7329 goto unlock; 7330 7331 case SET_BITMAP_FILE: 7332 err = set_bitmap_file(mddev, (int)arg); 7333 goto unlock; 7334 7335 default: 7336 err = -EINVAL; 7337 goto unlock; 7338 } 7339 7340 unlock: 7341 if (mddev->hold_active == UNTIL_IOCTL && 7342 err != -EINVAL) 7343 mddev->hold_active = 0; 7344 mddev_unlock(mddev); 7345 out: 7346 if(did_set_md_closing) 7347 clear_bit(MD_CLOSING, &mddev->flags); 7348 return err; 7349 } 7350 #ifdef CONFIG_COMPAT 7351 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7352 unsigned int cmd, unsigned long arg) 7353 { 7354 switch (cmd) { 7355 case HOT_REMOVE_DISK: 7356 case HOT_ADD_DISK: 7357 case SET_DISK_FAULTY: 7358 case SET_BITMAP_FILE: 7359 /* These take in integer arg, do not convert */ 7360 break; 7361 default: 7362 arg = (unsigned long)compat_ptr(arg); 7363 break; 7364 } 7365 7366 return md_ioctl(bdev, mode, cmd, arg); 7367 } 7368 #endif /* CONFIG_COMPAT */ 7369 7370 static int md_open(struct block_device *bdev, fmode_t mode) 7371 { 7372 /* 7373 * Succeed if we can lock the mddev, which confirms that 7374 * it isn't being stopped right now. 7375 */ 7376 struct mddev *mddev = mddev_find(bdev->bd_dev); 7377 int err; 7378 7379 if (!mddev) 7380 return -ENODEV; 7381 7382 if (mddev->gendisk != bdev->bd_disk) { 7383 /* we are racing with mddev_put which is discarding this 7384 * bd_disk. 7385 */ 7386 mddev_put(mddev); 7387 /* Wait until bdev->bd_disk is definitely gone */ 7388 flush_workqueue(md_misc_wq); 7389 /* Then retry the open from the top */ 7390 return -ERESTARTSYS; 7391 } 7392 BUG_ON(mddev != bdev->bd_disk->private_data); 7393 7394 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7395 goto out; 7396 7397 if (test_bit(MD_CLOSING, &mddev->flags)) { 7398 mutex_unlock(&mddev->open_mutex); 7399 err = -ENODEV; 7400 goto out; 7401 } 7402 7403 err = 0; 7404 atomic_inc(&mddev->openers); 7405 mutex_unlock(&mddev->open_mutex); 7406 7407 check_disk_change(bdev); 7408 out: 7409 if (err) 7410 mddev_put(mddev); 7411 return err; 7412 } 7413 7414 static void md_release(struct gendisk *disk, fmode_t mode) 7415 { 7416 struct mddev *mddev = disk->private_data; 7417 7418 BUG_ON(!mddev); 7419 atomic_dec(&mddev->openers); 7420 mddev_put(mddev); 7421 } 7422 7423 static int md_media_changed(struct gendisk *disk) 7424 { 7425 struct mddev *mddev = disk->private_data; 7426 7427 return mddev->changed; 7428 } 7429 7430 static int md_revalidate(struct gendisk *disk) 7431 { 7432 struct mddev *mddev = disk->private_data; 7433 7434 mddev->changed = 0; 7435 return 0; 7436 } 7437 static const struct block_device_operations md_fops = 7438 { 7439 .owner = THIS_MODULE, 7440 .open = md_open, 7441 .release = md_release, 7442 .ioctl = md_ioctl, 7443 #ifdef CONFIG_COMPAT 7444 .compat_ioctl = md_compat_ioctl, 7445 #endif 7446 .getgeo = md_getgeo, 7447 .media_changed = md_media_changed, 7448 .revalidate_disk= md_revalidate, 7449 }; 7450 7451 static int md_thread(void *arg) 7452 { 7453 struct md_thread *thread = arg; 7454 7455 /* 7456 * md_thread is a 'system-thread', it's priority should be very 7457 * high. We avoid resource deadlocks individually in each 7458 * raid personality. (RAID5 does preallocation) We also use RR and 7459 * the very same RT priority as kswapd, thus we will never get 7460 * into a priority inversion deadlock. 7461 * 7462 * we definitely have to have equal or higher priority than 7463 * bdflush, otherwise bdflush will deadlock if there are too 7464 * many dirty RAID5 blocks. 7465 */ 7466 7467 allow_signal(SIGKILL); 7468 while (!kthread_should_stop()) { 7469 7470 /* We need to wait INTERRUPTIBLE so that 7471 * we don't add to the load-average. 7472 * That means we need to be sure no signals are 7473 * pending 7474 */ 7475 if (signal_pending(current)) 7476 flush_signals(current); 7477 7478 wait_event_interruptible_timeout 7479 (thread->wqueue, 7480 test_bit(THREAD_WAKEUP, &thread->flags) 7481 || kthread_should_stop() || kthread_should_park(), 7482 thread->timeout); 7483 7484 clear_bit(THREAD_WAKEUP, &thread->flags); 7485 if (kthread_should_park()) 7486 kthread_parkme(); 7487 if (!kthread_should_stop()) 7488 thread->run(thread); 7489 } 7490 7491 return 0; 7492 } 7493 7494 void md_wakeup_thread(struct md_thread *thread) 7495 { 7496 if (thread) { 7497 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7498 set_bit(THREAD_WAKEUP, &thread->flags); 7499 wake_up(&thread->wqueue); 7500 } 7501 } 7502 EXPORT_SYMBOL(md_wakeup_thread); 7503 7504 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7505 struct mddev *mddev, const char *name) 7506 { 7507 struct md_thread *thread; 7508 7509 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7510 if (!thread) 7511 return NULL; 7512 7513 init_waitqueue_head(&thread->wqueue); 7514 7515 thread->run = run; 7516 thread->mddev = mddev; 7517 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7518 thread->tsk = kthread_run(md_thread, thread, 7519 "%s_%s", 7520 mdname(thread->mddev), 7521 name); 7522 if (IS_ERR(thread->tsk)) { 7523 kfree(thread); 7524 return NULL; 7525 } 7526 return thread; 7527 } 7528 EXPORT_SYMBOL(md_register_thread); 7529 7530 void md_unregister_thread(struct md_thread **threadp) 7531 { 7532 struct md_thread *thread = *threadp; 7533 if (!thread) 7534 return; 7535 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7536 /* Locking ensures that mddev_unlock does not wake_up a 7537 * non-existent thread 7538 */ 7539 spin_lock(&pers_lock); 7540 *threadp = NULL; 7541 spin_unlock(&pers_lock); 7542 7543 kthread_stop(thread->tsk); 7544 kfree(thread); 7545 } 7546 EXPORT_SYMBOL(md_unregister_thread); 7547 7548 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7549 { 7550 if (!rdev || test_bit(Faulty, &rdev->flags)) 7551 return; 7552 7553 if (!mddev->pers || !mddev->pers->error_handler) 7554 return; 7555 mddev->pers->error_handler(mddev,rdev); 7556 if (mddev->degraded) 7557 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7558 sysfs_notify_dirent_safe(rdev->sysfs_state); 7559 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7560 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7561 md_wakeup_thread(mddev->thread); 7562 if (mddev->event_work.func) 7563 queue_work(md_misc_wq, &mddev->event_work); 7564 md_new_event(mddev); 7565 } 7566 EXPORT_SYMBOL(md_error); 7567 7568 /* seq_file implementation /proc/mdstat */ 7569 7570 static void status_unused(struct seq_file *seq) 7571 { 7572 int i = 0; 7573 struct md_rdev *rdev; 7574 7575 seq_printf(seq, "unused devices: "); 7576 7577 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7578 char b[BDEVNAME_SIZE]; 7579 i++; 7580 seq_printf(seq, "%s ", 7581 bdevname(rdev->bdev,b)); 7582 } 7583 if (!i) 7584 seq_printf(seq, "<none>"); 7585 7586 seq_printf(seq, "\n"); 7587 } 7588 7589 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7590 { 7591 sector_t max_sectors, resync, res; 7592 unsigned long dt, db; 7593 sector_t rt; 7594 int scale; 7595 unsigned int per_milli; 7596 7597 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7598 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7599 max_sectors = mddev->resync_max_sectors; 7600 else 7601 max_sectors = mddev->dev_sectors; 7602 7603 resync = mddev->curr_resync; 7604 if (resync <= 3) { 7605 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7606 /* Still cleaning up */ 7607 resync = max_sectors; 7608 } else if (resync > max_sectors) 7609 resync = max_sectors; 7610 else 7611 resync -= atomic_read(&mddev->recovery_active); 7612 7613 if (resync == 0) { 7614 if (mddev->recovery_cp < MaxSector) { 7615 seq_printf(seq, "\tresync=PENDING"); 7616 return 1; 7617 } 7618 return 0; 7619 } 7620 if (resync < 3) { 7621 seq_printf(seq, "\tresync=DELAYED"); 7622 return 1; 7623 } 7624 7625 WARN_ON(max_sectors == 0); 7626 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7627 * in a sector_t, and (max_sectors>>scale) will fit in a 7628 * u32, as those are the requirements for sector_div. 7629 * Thus 'scale' must be at least 10 7630 */ 7631 scale = 10; 7632 if (sizeof(sector_t) > sizeof(unsigned long)) { 7633 while ( max_sectors/2 > (1ULL<<(scale+32))) 7634 scale++; 7635 } 7636 res = (resync>>scale)*1000; 7637 sector_div(res, (u32)((max_sectors>>scale)+1)); 7638 7639 per_milli = res; 7640 { 7641 int i, x = per_milli/50, y = 20-x; 7642 seq_printf(seq, "["); 7643 for (i = 0; i < x; i++) 7644 seq_printf(seq, "="); 7645 seq_printf(seq, ">"); 7646 for (i = 0; i < y; i++) 7647 seq_printf(seq, "."); 7648 seq_printf(seq, "] "); 7649 } 7650 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7651 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7652 "reshape" : 7653 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7654 "check" : 7655 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7656 "resync" : "recovery"))), 7657 per_milli/10, per_milli % 10, 7658 (unsigned long long) resync/2, 7659 (unsigned long long) max_sectors/2); 7660 7661 /* 7662 * dt: time from mark until now 7663 * db: blocks written from mark until now 7664 * rt: remaining time 7665 * 7666 * rt is a sector_t, so could be 32bit or 64bit. 7667 * So we divide before multiply in case it is 32bit and close 7668 * to the limit. 7669 * We scale the divisor (db) by 32 to avoid losing precision 7670 * near the end of resync when the number of remaining sectors 7671 * is close to 'db'. 7672 * We then divide rt by 32 after multiplying by db to compensate. 7673 * The '+1' avoids division by zero if db is very small. 7674 */ 7675 dt = ((jiffies - mddev->resync_mark) / HZ); 7676 if (!dt) dt++; 7677 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7678 - mddev->resync_mark_cnt; 7679 7680 rt = max_sectors - resync; /* number of remaining sectors */ 7681 sector_div(rt, db/32+1); 7682 rt *= dt; 7683 rt >>= 5; 7684 7685 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7686 ((unsigned long)rt % 60)/6); 7687 7688 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7689 return 1; 7690 } 7691 7692 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7693 { 7694 struct list_head *tmp; 7695 loff_t l = *pos; 7696 struct mddev *mddev; 7697 7698 if (l >= 0x10000) 7699 return NULL; 7700 if (!l--) 7701 /* header */ 7702 return (void*)1; 7703 7704 spin_lock(&all_mddevs_lock); 7705 list_for_each(tmp,&all_mddevs) 7706 if (!l--) { 7707 mddev = list_entry(tmp, struct mddev, all_mddevs); 7708 mddev_get(mddev); 7709 spin_unlock(&all_mddevs_lock); 7710 return mddev; 7711 } 7712 spin_unlock(&all_mddevs_lock); 7713 if (!l--) 7714 return (void*)2;/* tail */ 7715 return NULL; 7716 } 7717 7718 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7719 { 7720 struct list_head *tmp; 7721 struct mddev *next_mddev, *mddev = v; 7722 7723 ++*pos; 7724 if (v == (void*)2) 7725 return NULL; 7726 7727 spin_lock(&all_mddevs_lock); 7728 if (v == (void*)1) 7729 tmp = all_mddevs.next; 7730 else 7731 tmp = mddev->all_mddevs.next; 7732 if (tmp != &all_mddevs) 7733 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7734 else { 7735 next_mddev = (void*)2; 7736 *pos = 0x10000; 7737 } 7738 spin_unlock(&all_mddevs_lock); 7739 7740 if (v != (void*)1) 7741 mddev_put(mddev); 7742 return next_mddev; 7743 7744 } 7745 7746 static void md_seq_stop(struct seq_file *seq, void *v) 7747 { 7748 struct mddev *mddev = v; 7749 7750 if (mddev && v != (void*)1 && v != (void*)2) 7751 mddev_put(mddev); 7752 } 7753 7754 static int md_seq_show(struct seq_file *seq, void *v) 7755 { 7756 struct mddev *mddev = v; 7757 sector_t sectors; 7758 struct md_rdev *rdev; 7759 7760 if (v == (void*)1) { 7761 struct md_personality *pers; 7762 seq_printf(seq, "Personalities : "); 7763 spin_lock(&pers_lock); 7764 list_for_each_entry(pers, &pers_list, list) 7765 seq_printf(seq, "[%s] ", pers->name); 7766 7767 spin_unlock(&pers_lock); 7768 seq_printf(seq, "\n"); 7769 seq->poll_event = atomic_read(&md_event_count); 7770 return 0; 7771 } 7772 if (v == (void*)2) { 7773 status_unused(seq); 7774 return 0; 7775 } 7776 7777 spin_lock(&mddev->lock); 7778 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7779 seq_printf(seq, "%s : %sactive", mdname(mddev), 7780 mddev->pers ? "" : "in"); 7781 if (mddev->pers) { 7782 if (mddev->ro==1) 7783 seq_printf(seq, " (read-only)"); 7784 if (mddev->ro==2) 7785 seq_printf(seq, " (auto-read-only)"); 7786 seq_printf(seq, " %s", mddev->pers->name); 7787 } 7788 7789 sectors = 0; 7790 rcu_read_lock(); 7791 rdev_for_each_rcu(rdev, mddev) { 7792 char b[BDEVNAME_SIZE]; 7793 seq_printf(seq, " %s[%d]", 7794 bdevname(rdev->bdev,b), rdev->desc_nr); 7795 if (test_bit(WriteMostly, &rdev->flags)) 7796 seq_printf(seq, "(W)"); 7797 if (test_bit(Journal, &rdev->flags)) 7798 seq_printf(seq, "(J)"); 7799 if (test_bit(Faulty, &rdev->flags)) { 7800 seq_printf(seq, "(F)"); 7801 continue; 7802 } 7803 if (rdev->raid_disk < 0) 7804 seq_printf(seq, "(S)"); /* spare */ 7805 if (test_bit(Replacement, &rdev->flags)) 7806 seq_printf(seq, "(R)"); 7807 sectors += rdev->sectors; 7808 } 7809 rcu_read_unlock(); 7810 7811 if (!list_empty(&mddev->disks)) { 7812 if (mddev->pers) 7813 seq_printf(seq, "\n %llu blocks", 7814 (unsigned long long) 7815 mddev->array_sectors / 2); 7816 else 7817 seq_printf(seq, "\n %llu blocks", 7818 (unsigned long long)sectors / 2); 7819 } 7820 if (mddev->persistent) { 7821 if (mddev->major_version != 0 || 7822 mddev->minor_version != 90) { 7823 seq_printf(seq," super %d.%d", 7824 mddev->major_version, 7825 mddev->minor_version); 7826 } 7827 } else if (mddev->external) 7828 seq_printf(seq, " super external:%s", 7829 mddev->metadata_type); 7830 else 7831 seq_printf(seq, " super non-persistent"); 7832 7833 if (mddev->pers) { 7834 mddev->pers->status(seq, mddev); 7835 seq_printf(seq, "\n "); 7836 if (mddev->pers->sync_request) { 7837 if (status_resync(seq, mddev)) 7838 seq_printf(seq, "\n "); 7839 } 7840 } else 7841 seq_printf(seq, "\n "); 7842 7843 bitmap_status(seq, mddev->bitmap); 7844 7845 seq_printf(seq, "\n"); 7846 } 7847 spin_unlock(&mddev->lock); 7848 7849 return 0; 7850 } 7851 7852 static const struct seq_operations md_seq_ops = { 7853 .start = md_seq_start, 7854 .next = md_seq_next, 7855 .stop = md_seq_stop, 7856 .show = md_seq_show, 7857 }; 7858 7859 static int md_seq_open(struct inode *inode, struct file *file) 7860 { 7861 struct seq_file *seq; 7862 int error; 7863 7864 error = seq_open(file, &md_seq_ops); 7865 if (error) 7866 return error; 7867 7868 seq = file->private_data; 7869 seq->poll_event = atomic_read(&md_event_count); 7870 return error; 7871 } 7872 7873 static int md_unloading; 7874 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7875 { 7876 struct seq_file *seq = filp->private_data; 7877 int mask; 7878 7879 if (md_unloading) 7880 return POLLIN|POLLRDNORM|POLLERR|POLLPRI; 7881 poll_wait(filp, &md_event_waiters, wait); 7882 7883 /* always allow read */ 7884 mask = POLLIN | POLLRDNORM; 7885 7886 if (seq->poll_event != atomic_read(&md_event_count)) 7887 mask |= POLLERR | POLLPRI; 7888 return mask; 7889 } 7890 7891 static const struct file_operations md_seq_fops = { 7892 .owner = THIS_MODULE, 7893 .open = md_seq_open, 7894 .read = seq_read, 7895 .llseek = seq_lseek, 7896 .release = seq_release, 7897 .poll = mdstat_poll, 7898 }; 7899 7900 int register_md_personality(struct md_personality *p) 7901 { 7902 pr_debug("md: %s personality registered for level %d\n", 7903 p->name, p->level); 7904 spin_lock(&pers_lock); 7905 list_add_tail(&p->list, &pers_list); 7906 spin_unlock(&pers_lock); 7907 return 0; 7908 } 7909 EXPORT_SYMBOL(register_md_personality); 7910 7911 int unregister_md_personality(struct md_personality *p) 7912 { 7913 pr_debug("md: %s personality unregistered\n", p->name); 7914 spin_lock(&pers_lock); 7915 list_del_init(&p->list); 7916 spin_unlock(&pers_lock); 7917 return 0; 7918 } 7919 EXPORT_SYMBOL(unregister_md_personality); 7920 7921 int register_md_cluster_operations(struct md_cluster_operations *ops, 7922 struct module *module) 7923 { 7924 int ret = 0; 7925 spin_lock(&pers_lock); 7926 if (md_cluster_ops != NULL) 7927 ret = -EALREADY; 7928 else { 7929 md_cluster_ops = ops; 7930 md_cluster_mod = module; 7931 } 7932 spin_unlock(&pers_lock); 7933 return ret; 7934 } 7935 EXPORT_SYMBOL(register_md_cluster_operations); 7936 7937 int unregister_md_cluster_operations(void) 7938 { 7939 spin_lock(&pers_lock); 7940 md_cluster_ops = NULL; 7941 spin_unlock(&pers_lock); 7942 return 0; 7943 } 7944 EXPORT_SYMBOL(unregister_md_cluster_operations); 7945 7946 int md_setup_cluster(struct mddev *mddev, int nodes) 7947 { 7948 if (!md_cluster_ops) 7949 request_module("md-cluster"); 7950 spin_lock(&pers_lock); 7951 /* ensure module won't be unloaded */ 7952 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 7953 pr_warn("can't find md-cluster module or get it's reference.\n"); 7954 spin_unlock(&pers_lock); 7955 return -ENOENT; 7956 } 7957 spin_unlock(&pers_lock); 7958 7959 return md_cluster_ops->join(mddev, nodes); 7960 } 7961 7962 void md_cluster_stop(struct mddev *mddev) 7963 { 7964 if (!md_cluster_ops) 7965 return; 7966 md_cluster_ops->leave(mddev); 7967 module_put(md_cluster_mod); 7968 } 7969 7970 static int is_mddev_idle(struct mddev *mddev, int init) 7971 { 7972 struct md_rdev *rdev; 7973 int idle; 7974 int curr_events; 7975 7976 idle = 1; 7977 rcu_read_lock(); 7978 rdev_for_each_rcu(rdev, mddev) { 7979 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7980 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7981 (int)part_stat_read(&disk->part0, sectors[1]) - 7982 atomic_read(&disk->sync_io); 7983 /* sync IO will cause sync_io to increase before the disk_stats 7984 * as sync_io is counted when a request starts, and 7985 * disk_stats is counted when it completes. 7986 * So resync activity will cause curr_events to be smaller than 7987 * when there was no such activity. 7988 * non-sync IO will cause disk_stat to increase without 7989 * increasing sync_io so curr_events will (eventually) 7990 * be larger than it was before. Once it becomes 7991 * substantially larger, the test below will cause 7992 * the array to appear non-idle, and resync will slow 7993 * down. 7994 * If there is a lot of outstanding resync activity when 7995 * we set last_event to curr_events, then all that activity 7996 * completing might cause the array to appear non-idle 7997 * and resync will be slowed down even though there might 7998 * not have been non-resync activity. This will only 7999 * happen once though. 'last_events' will soon reflect 8000 * the state where there is little or no outstanding 8001 * resync requests, and further resync activity will 8002 * always make curr_events less than last_events. 8003 * 8004 */ 8005 if (init || curr_events - rdev->last_events > 64) { 8006 rdev->last_events = curr_events; 8007 idle = 0; 8008 } 8009 } 8010 rcu_read_unlock(); 8011 return idle; 8012 } 8013 8014 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8015 { 8016 /* another "blocks" (512byte) blocks have been synced */ 8017 atomic_sub(blocks, &mddev->recovery_active); 8018 wake_up(&mddev->recovery_wait); 8019 if (!ok) { 8020 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8021 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8022 md_wakeup_thread(mddev->thread); 8023 // stop recovery, signal do_sync .... 8024 } 8025 } 8026 EXPORT_SYMBOL(md_done_sync); 8027 8028 /* md_write_start(mddev, bi) 8029 * If we need to update some array metadata (e.g. 'active' flag 8030 * in superblock) before writing, schedule a superblock update 8031 * and wait for it to complete. 8032 * A return value of 'false' means that the write wasn't recorded 8033 * and cannot proceed as the array is being suspend. 8034 */ 8035 bool md_write_start(struct mddev *mddev, struct bio *bi) 8036 { 8037 int did_change = 0; 8038 if (bio_data_dir(bi) != WRITE) 8039 return true; 8040 8041 BUG_ON(mddev->ro == 1); 8042 if (mddev->ro == 2) { 8043 /* need to switch to read/write */ 8044 mddev->ro = 0; 8045 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8046 md_wakeup_thread(mddev->thread); 8047 md_wakeup_thread(mddev->sync_thread); 8048 did_change = 1; 8049 } 8050 rcu_read_lock(); 8051 percpu_ref_get(&mddev->writes_pending); 8052 smp_mb(); /* Match smp_mb in set_in_sync() */ 8053 if (mddev->safemode == 1) 8054 mddev->safemode = 0; 8055 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8056 if (mddev->in_sync || mddev->sync_checkers) { 8057 spin_lock(&mddev->lock); 8058 if (mddev->in_sync) { 8059 mddev->in_sync = 0; 8060 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8061 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8062 md_wakeup_thread(mddev->thread); 8063 did_change = 1; 8064 } 8065 spin_unlock(&mddev->lock); 8066 } 8067 rcu_read_unlock(); 8068 if (did_change) 8069 sysfs_notify_dirent_safe(mddev->sysfs_state); 8070 wait_event(mddev->sb_wait, 8071 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8072 mddev->suspended); 8073 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8074 percpu_ref_put(&mddev->writes_pending); 8075 return false; 8076 } 8077 return true; 8078 } 8079 EXPORT_SYMBOL(md_write_start); 8080 8081 /* md_write_inc can only be called when md_write_start() has 8082 * already been called at least once of the current request. 8083 * It increments the counter and is useful when a single request 8084 * is split into several parts. Each part causes an increment and 8085 * so needs a matching md_write_end(). 8086 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8087 * a spinlocked region. 8088 */ 8089 void md_write_inc(struct mddev *mddev, struct bio *bi) 8090 { 8091 if (bio_data_dir(bi) != WRITE) 8092 return; 8093 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8094 percpu_ref_get(&mddev->writes_pending); 8095 } 8096 EXPORT_SYMBOL(md_write_inc); 8097 8098 void md_write_end(struct mddev *mddev) 8099 { 8100 percpu_ref_put(&mddev->writes_pending); 8101 8102 if (mddev->safemode == 2) 8103 md_wakeup_thread(mddev->thread); 8104 else if (mddev->safemode_delay) 8105 /* The roundup() ensures this only performs locking once 8106 * every ->safemode_delay jiffies 8107 */ 8108 mod_timer(&mddev->safemode_timer, 8109 roundup(jiffies, mddev->safemode_delay) + 8110 mddev->safemode_delay); 8111 } 8112 8113 EXPORT_SYMBOL(md_write_end); 8114 8115 /* md_allow_write(mddev) 8116 * Calling this ensures that the array is marked 'active' so that writes 8117 * may proceed without blocking. It is important to call this before 8118 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8119 * Must be called with mddev_lock held. 8120 */ 8121 void md_allow_write(struct mddev *mddev) 8122 { 8123 if (!mddev->pers) 8124 return; 8125 if (mddev->ro) 8126 return; 8127 if (!mddev->pers->sync_request) 8128 return; 8129 8130 spin_lock(&mddev->lock); 8131 if (mddev->in_sync) { 8132 mddev->in_sync = 0; 8133 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8134 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8135 if (mddev->safemode_delay && 8136 mddev->safemode == 0) 8137 mddev->safemode = 1; 8138 spin_unlock(&mddev->lock); 8139 md_update_sb(mddev, 0); 8140 sysfs_notify_dirent_safe(mddev->sysfs_state); 8141 /* wait for the dirty state to be recorded in the metadata */ 8142 wait_event(mddev->sb_wait, 8143 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8144 } else 8145 spin_unlock(&mddev->lock); 8146 } 8147 EXPORT_SYMBOL_GPL(md_allow_write); 8148 8149 #define SYNC_MARKS 10 8150 #define SYNC_MARK_STEP (3*HZ) 8151 #define UPDATE_FREQUENCY (5*60*HZ) 8152 void md_do_sync(struct md_thread *thread) 8153 { 8154 struct mddev *mddev = thread->mddev; 8155 struct mddev *mddev2; 8156 unsigned int currspeed = 0, 8157 window; 8158 sector_t max_sectors,j, io_sectors, recovery_done; 8159 unsigned long mark[SYNC_MARKS]; 8160 unsigned long update_time; 8161 sector_t mark_cnt[SYNC_MARKS]; 8162 int last_mark,m; 8163 struct list_head *tmp; 8164 sector_t last_check; 8165 int skipped = 0; 8166 struct md_rdev *rdev; 8167 char *desc, *action = NULL; 8168 struct blk_plug plug; 8169 int ret; 8170 8171 /* just incase thread restarts... */ 8172 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8173 return; 8174 if (mddev->ro) {/* never try to sync a read-only array */ 8175 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8176 return; 8177 } 8178 8179 if (mddev_is_clustered(mddev)) { 8180 ret = md_cluster_ops->resync_start(mddev); 8181 if (ret) 8182 goto skip; 8183 8184 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8185 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8186 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8187 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8188 && ((unsigned long long)mddev->curr_resync_completed 8189 < (unsigned long long)mddev->resync_max_sectors)) 8190 goto skip; 8191 } 8192 8193 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8194 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8195 desc = "data-check"; 8196 action = "check"; 8197 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8198 desc = "requested-resync"; 8199 action = "repair"; 8200 } else 8201 desc = "resync"; 8202 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8203 desc = "reshape"; 8204 else 8205 desc = "recovery"; 8206 8207 mddev->last_sync_action = action ?: desc; 8208 8209 /* we overload curr_resync somewhat here. 8210 * 0 == not engaged in resync at all 8211 * 2 == checking that there is no conflict with another sync 8212 * 1 == like 2, but have yielded to allow conflicting resync to 8213 * commense 8214 * other == active in resync - this many blocks 8215 * 8216 * Before starting a resync we must have set curr_resync to 8217 * 2, and then checked that every "conflicting" array has curr_resync 8218 * less than ours. When we find one that is the same or higher 8219 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8220 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8221 * This will mean we have to start checking from the beginning again. 8222 * 8223 */ 8224 8225 do { 8226 int mddev2_minor = -1; 8227 mddev->curr_resync = 2; 8228 8229 try_again: 8230 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8231 goto skip; 8232 for_each_mddev(mddev2, tmp) { 8233 if (mddev2 == mddev) 8234 continue; 8235 if (!mddev->parallel_resync 8236 && mddev2->curr_resync 8237 && match_mddev_units(mddev, mddev2)) { 8238 DEFINE_WAIT(wq); 8239 if (mddev < mddev2 && mddev->curr_resync == 2) { 8240 /* arbitrarily yield */ 8241 mddev->curr_resync = 1; 8242 wake_up(&resync_wait); 8243 } 8244 if (mddev > mddev2 && mddev->curr_resync == 1) 8245 /* no need to wait here, we can wait the next 8246 * time 'round when curr_resync == 2 8247 */ 8248 continue; 8249 /* We need to wait 'interruptible' so as not to 8250 * contribute to the load average, and not to 8251 * be caught by 'softlockup' 8252 */ 8253 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8254 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8255 mddev2->curr_resync >= mddev->curr_resync) { 8256 if (mddev2_minor != mddev2->md_minor) { 8257 mddev2_minor = mddev2->md_minor; 8258 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8259 desc, mdname(mddev), 8260 mdname(mddev2)); 8261 } 8262 mddev_put(mddev2); 8263 if (signal_pending(current)) 8264 flush_signals(current); 8265 schedule(); 8266 finish_wait(&resync_wait, &wq); 8267 goto try_again; 8268 } 8269 finish_wait(&resync_wait, &wq); 8270 } 8271 } 8272 } while (mddev->curr_resync < 2); 8273 8274 j = 0; 8275 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8276 /* resync follows the size requested by the personality, 8277 * which defaults to physical size, but can be virtual size 8278 */ 8279 max_sectors = mddev->resync_max_sectors; 8280 atomic64_set(&mddev->resync_mismatches, 0); 8281 /* we don't use the checkpoint if there's a bitmap */ 8282 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8283 j = mddev->resync_min; 8284 else if (!mddev->bitmap) 8285 j = mddev->recovery_cp; 8286 8287 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8288 max_sectors = mddev->resync_max_sectors; 8289 else { 8290 /* recovery follows the physical size of devices */ 8291 max_sectors = mddev->dev_sectors; 8292 j = MaxSector; 8293 rcu_read_lock(); 8294 rdev_for_each_rcu(rdev, mddev) 8295 if (rdev->raid_disk >= 0 && 8296 !test_bit(Journal, &rdev->flags) && 8297 !test_bit(Faulty, &rdev->flags) && 8298 !test_bit(In_sync, &rdev->flags) && 8299 rdev->recovery_offset < j) 8300 j = rdev->recovery_offset; 8301 rcu_read_unlock(); 8302 8303 /* If there is a bitmap, we need to make sure all 8304 * writes that started before we added a spare 8305 * complete before we start doing a recovery. 8306 * Otherwise the write might complete and (via 8307 * bitmap_endwrite) set a bit in the bitmap after the 8308 * recovery has checked that bit and skipped that 8309 * region. 8310 */ 8311 if (mddev->bitmap) { 8312 mddev->pers->quiesce(mddev, 1); 8313 mddev->pers->quiesce(mddev, 0); 8314 } 8315 } 8316 8317 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8318 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8319 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8320 speed_max(mddev), desc); 8321 8322 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8323 8324 io_sectors = 0; 8325 for (m = 0; m < SYNC_MARKS; m++) { 8326 mark[m] = jiffies; 8327 mark_cnt[m] = io_sectors; 8328 } 8329 last_mark = 0; 8330 mddev->resync_mark = mark[last_mark]; 8331 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8332 8333 /* 8334 * Tune reconstruction: 8335 */ 8336 window = 32*(PAGE_SIZE/512); 8337 pr_debug("md: using %dk window, over a total of %lluk.\n", 8338 window/2, (unsigned long long)max_sectors/2); 8339 8340 atomic_set(&mddev->recovery_active, 0); 8341 last_check = 0; 8342 8343 if (j>2) { 8344 pr_debug("md: resuming %s of %s from checkpoint.\n", 8345 desc, mdname(mddev)); 8346 mddev->curr_resync = j; 8347 } else 8348 mddev->curr_resync = 3; /* no longer delayed */ 8349 mddev->curr_resync_completed = j; 8350 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8351 md_new_event(mddev); 8352 update_time = jiffies; 8353 8354 blk_start_plug(&plug); 8355 while (j < max_sectors) { 8356 sector_t sectors; 8357 8358 skipped = 0; 8359 8360 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8361 ((mddev->curr_resync > mddev->curr_resync_completed && 8362 (mddev->curr_resync - mddev->curr_resync_completed) 8363 > (max_sectors >> 4)) || 8364 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8365 (j - mddev->curr_resync_completed)*2 8366 >= mddev->resync_max - mddev->curr_resync_completed || 8367 mddev->curr_resync_completed > mddev->resync_max 8368 )) { 8369 /* time to update curr_resync_completed */ 8370 wait_event(mddev->recovery_wait, 8371 atomic_read(&mddev->recovery_active) == 0); 8372 mddev->curr_resync_completed = j; 8373 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8374 j > mddev->recovery_cp) 8375 mddev->recovery_cp = j; 8376 update_time = jiffies; 8377 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8378 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8379 } 8380 8381 while (j >= mddev->resync_max && 8382 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8383 /* As this condition is controlled by user-space, 8384 * we can block indefinitely, so use '_interruptible' 8385 * to avoid triggering warnings. 8386 */ 8387 flush_signals(current); /* just in case */ 8388 wait_event_interruptible(mddev->recovery_wait, 8389 mddev->resync_max > j 8390 || test_bit(MD_RECOVERY_INTR, 8391 &mddev->recovery)); 8392 } 8393 8394 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8395 break; 8396 8397 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8398 if (sectors == 0) { 8399 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8400 break; 8401 } 8402 8403 if (!skipped) { /* actual IO requested */ 8404 io_sectors += sectors; 8405 atomic_add(sectors, &mddev->recovery_active); 8406 } 8407 8408 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8409 break; 8410 8411 j += sectors; 8412 if (j > max_sectors) 8413 /* when skipping, extra large numbers can be returned. */ 8414 j = max_sectors; 8415 if (j > 2) 8416 mddev->curr_resync = j; 8417 mddev->curr_mark_cnt = io_sectors; 8418 if (last_check == 0) 8419 /* this is the earliest that rebuild will be 8420 * visible in /proc/mdstat 8421 */ 8422 md_new_event(mddev); 8423 8424 if (last_check + window > io_sectors || j == max_sectors) 8425 continue; 8426 8427 last_check = io_sectors; 8428 repeat: 8429 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8430 /* step marks */ 8431 int next = (last_mark+1) % SYNC_MARKS; 8432 8433 mddev->resync_mark = mark[next]; 8434 mddev->resync_mark_cnt = mark_cnt[next]; 8435 mark[next] = jiffies; 8436 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8437 last_mark = next; 8438 } 8439 8440 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8441 break; 8442 8443 /* 8444 * this loop exits only if either when we are slower than 8445 * the 'hard' speed limit, or the system was IO-idle for 8446 * a jiffy. 8447 * the system might be non-idle CPU-wise, but we only care 8448 * about not overloading the IO subsystem. (things like an 8449 * e2fsck being done on the RAID array should execute fast) 8450 */ 8451 cond_resched(); 8452 8453 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8454 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8455 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8456 8457 if (currspeed > speed_min(mddev)) { 8458 if (currspeed > speed_max(mddev)) { 8459 msleep(500); 8460 goto repeat; 8461 } 8462 if (!is_mddev_idle(mddev, 0)) { 8463 /* 8464 * Give other IO more of a chance. 8465 * The faster the devices, the less we wait. 8466 */ 8467 wait_event(mddev->recovery_wait, 8468 !atomic_read(&mddev->recovery_active)); 8469 } 8470 } 8471 } 8472 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8473 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8474 ? "interrupted" : "done"); 8475 /* 8476 * this also signals 'finished resyncing' to md_stop 8477 */ 8478 blk_finish_plug(&plug); 8479 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8480 8481 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8482 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8483 mddev->curr_resync > 3) { 8484 mddev->curr_resync_completed = mddev->curr_resync; 8485 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8486 } 8487 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8488 8489 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8490 mddev->curr_resync > 3) { 8491 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8492 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8493 if (mddev->curr_resync >= mddev->recovery_cp) { 8494 pr_debug("md: checkpointing %s of %s.\n", 8495 desc, mdname(mddev)); 8496 if (test_bit(MD_RECOVERY_ERROR, 8497 &mddev->recovery)) 8498 mddev->recovery_cp = 8499 mddev->curr_resync_completed; 8500 else 8501 mddev->recovery_cp = 8502 mddev->curr_resync; 8503 } 8504 } else 8505 mddev->recovery_cp = MaxSector; 8506 } else { 8507 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8508 mddev->curr_resync = MaxSector; 8509 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8510 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8511 rcu_read_lock(); 8512 rdev_for_each_rcu(rdev, mddev) 8513 if (rdev->raid_disk >= 0 && 8514 mddev->delta_disks >= 0 && 8515 !test_bit(Journal, &rdev->flags) && 8516 !test_bit(Faulty, &rdev->flags) && 8517 !test_bit(In_sync, &rdev->flags) && 8518 rdev->recovery_offset < mddev->curr_resync) 8519 rdev->recovery_offset = mddev->curr_resync; 8520 rcu_read_unlock(); 8521 } 8522 } 8523 } 8524 skip: 8525 /* set CHANGE_PENDING here since maybe another update is needed, 8526 * so other nodes are informed. It should be harmless for normal 8527 * raid */ 8528 set_mask_bits(&mddev->sb_flags, 0, 8529 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8530 8531 spin_lock(&mddev->lock); 8532 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8533 /* We completed so min/max setting can be forgotten if used. */ 8534 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8535 mddev->resync_min = 0; 8536 mddev->resync_max = MaxSector; 8537 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8538 mddev->resync_min = mddev->curr_resync_completed; 8539 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8540 mddev->curr_resync = 0; 8541 spin_unlock(&mddev->lock); 8542 8543 wake_up(&resync_wait); 8544 md_wakeup_thread(mddev->thread); 8545 return; 8546 } 8547 EXPORT_SYMBOL_GPL(md_do_sync); 8548 8549 static int remove_and_add_spares(struct mddev *mddev, 8550 struct md_rdev *this) 8551 { 8552 struct md_rdev *rdev; 8553 int spares = 0; 8554 int removed = 0; 8555 bool remove_some = false; 8556 8557 rdev_for_each(rdev, mddev) { 8558 if ((this == NULL || rdev == this) && 8559 rdev->raid_disk >= 0 && 8560 !test_bit(Blocked, &rdev->flags) && 8561 test_bit(Faulty, &rdev->flags) && 8562 atomic_read(&rdev->nr_pending)==0) { 8563 /* Faulty non-Blocked devices with nr_pending == 0 8564 * never get nr_pending incremented, 8565 * never get Faulty cleared, and never get Blocked set. 8566 * So we can synchronize_rcu now rather than once per device 8567 */ 8568 remove_some = true; 8569 set_bit(RemoveSynchronized, &rdev->flags); 8570 } 8571 } 8572 8573 if (remove_some) 8574 synchronize_rcu(); 8575 rdev_for_each(rdev, mddev) { 8576 if ((this == NULL || rdev == this) && 8577 rdev->raid_disk >= 0 && 8578 !test_bit(Blocked, &rdev->flags) && 8579 ((test_bit(RemoveSynchronized, &rdev->flags) || 8580 (!test_bit(In_sync, &rdev->flags) && 8581 !test_bit(Journal, &rdev->flags))) && 8582 atomic_read(&rdev->nr_pending)==0)) { 8583 if (mddev->pers->hot_remove_disk( 8584 mddev, rdev) == 0) { 8585 sysfs_unlink_rdev(mddev, rdev); 8586 rdev->raid_disk = -1; 8587 removed++; 8588 } 8589 } 8590 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 8591 clear_bit(RemoveSynchronized, &rdev->flags); 8592 } 8593 8594 if (removed && mddev->kobj.sd) 8595 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8596 8597 if (this && removed) 8598 goto no_add; 8599 8600 rdev_for_each(rdev, mddev) { 8601 if (this && this != rdev) 8602 continue; 8603 if (test_bit(Candidate, &rdev->flags)) 8604 continue; 8605 if (rdev->raid_disk >= 0 && 8606 !test_bit(In_sync, &rdev->flags) && 8607 !test_bit(Journal, &rdev->flags) && 8608 !test_bit(Faulty, &rdev->flags)) 8609 spares++; 8610 if (rdev->raid_disk >= 0) 8611 continue; 8612 if (test_bit(Faulty, &rdev->flags)) 8613 continue; 8614 if (!test_bit(Journal, &rdev->flags)) { 8615 if (mddev->ro && 8616 ! (rdev->saved_raid_disk >= 0 && 8617 !test_bit(Bitmap_sync, &rdev->flags))) 8618 continue; 8619 8620 rdev->recovery_offset = 0; 8621 } 8622 if (mddev->pers-> 8623 hot_add_disk(mddev, rdev) == 0) { 8624 if (sysfs_link_rdev(mddev, rdev)) 8625 /* failure here is OK */; 8626 if (!test_bit(Journal, &rdev->flags)) 8627 spares++; 8628 md_new_event(mddev); 8629 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8630 } 8631 } 8632 no_add: 8633 if (removed) 8634 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8635 return spares; 8636 } 8637 8638 static void md_start_sync(struct work_struct *ws) 8639 { 8640 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8641 8642 mddev->sync_thread = md_register_thread(md_do_sync, 8643 mddev, 8644 "resync"); 8645 if (!mddev->sync_thread) { 8646 pr_warn("%s: could not start resync thread...\n", 8647 mdname(mddev)); 8648 /* leave the spares where they are, it shouldn't hurt */ 8649 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8650 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8651 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8652 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8653 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8654 wake_up(&resync_wait); 8655 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8656 &mddev->recovery)) 8657 if (mddev->sysfs_action) 8658 sysfs_notify_dirent_safe(mddev->sysfs_action); 8659 } else 8660 md_wakeup_thread(mddev->sync_thread); 8661 sysfs_notify_dirent_safe(mddev->sysfs_action); 8662 md_new_event(mddev); 8663 } 8664 8665 /* 8666 * This routine is regularly called by all per-raid-array threads to 8667 * deal with generic issues like resync and super-block update. 8668 * Raid personalities that don't have a thread (linear/raid0) do not 8669 * need this as they never do any recovery or update the superblock. 8670 * 8671 * It does not do any resync itself, but rather "forks" off other threads 8672 * to do that as needed. 8673 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8674 * "->recovery" and create a thread at ->sync_thread. 8675 * When the thread finishes it sets MD_RECOVERY_DONE 8676 * and wakeups up this thread which will reap the thread and finish up. 8677 * This thread also removes any faulty devices (with nr_pending == 0). 8678 * 8679 * The overall approach is: 8680 * 1/ if the superblock needs updating, update it. 8681 * 2/ If a recovery thread is running, don't do anything else. 8682 * 3/ If recovery has finished, clean up, possibly marking spares active. 8683 * 4/ If there are any faulty devices, remove them. 8684 * 5/ If array is degraded, try to add spares devices 8685 * 6/ If array has spares or is not in-sync, start a resync thread. 8686 */ 8687 void md_check_recovery(struct mddev *mddev) 8688 { 8689 if (mddev->suspended) 8690 return; 8691 8692 if (mddev->bitmap) 8693 bitmap_daemon_work(mddev); 8694 8695 if (signal_pending(current)) { 8696 if (mddev->pers->sync_request && !mddev->external) { 8697 pr_debug("md: %s in immediate safe mode\n", 8698 mdname(mddev)); 8699 mddev->safemode = 2; 8700 } 8701 flush_signals(current); 8702 } 8703 8704 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8705 return; 8706 if ( ! ( 8707 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 8708 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8709 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8710 (mddev->external == 0 && mddev->safemode == 1) || 8711 (mddev->safemode == 2 8712 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8713 )) 8714 return; 8715 8716 if (mddev_trylock(mddev)) { 8717 int spares = 0; 8718 8719 if (!mddev->external && mddev->safemode == 1) 8720 mddev->safemode = 0; 8721 8722 if (mddev->ro) { 8723 struct md_rdev *rdev; 8724 if (!mddev->external && mddev->in_sync) 8725 /* 'Blocked' flag not needed as failed devices 8726 * will be recorded if array switched to read/write. 8727 * Leaving it set will prevent the device 8728 * from being removed. 8729 */ 8730 rdev_for_each(rdev, mddev) 8731 clear_bit(Blocked, &rdev->flags); 8732 /* On a read-only array we can: 8733 * - remove failed devices 8734 * - add already-in_sync devices if the array itself 8735 * is in-sync. 8736 * As we only add devices that are already in-sync, 8737 * we can activate the spares immediately. 8738 */ 8739 remove_and_add_spares(mddev, NULL); 8740 /* There is no thread, but we need to call 8741 * ->spare_active and clear saved_raid_disk 8742 */ 8743 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8744 md_reap_sync_thread(mddev); 8745 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8746 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8747 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8748 goto unlock; 8749 } 8750 8751 if (mddev_is_clustered(mddev)) { 8752 struct md_rdev *rdev; 8753 /* kick the device if another node issued a 8754 * remove disk. 8755 */ 8756 rdev_for_each(rdev, mddev) { 8757 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 8758 rdev->raid_disk < 0) 8759 md_kick_rdev_from_array(rdev); 8760 } 8761 } 8762 8763 if (!mddev->external && !mddev->in_sync) { 8764 spin_lock(&mddev->lock); 8765 set_in_sync(mddev); 8766 spin_unlock(&mddev->lock); 8767 } 8768 8769 if (mddev->sb_flags) 8770 md_update_sb(mddev, 0); 8771 8772 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8773 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8774 /* resync/recovery still happening */ 8775 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8776 goto unlock; 8777 } 8778 if (mddev->sync_thread) { 8779 md_reap_sync_thread(mddev); 8780 goto unlock; 8781 } 8782 /* Set RUNNING before clearing NEEDED to avoid 8783 * any transients in the value of "sync_action". 8784 */ 8785 mddev->curr_resync_completed = 0; 8786 spin_lock(&mddev->lock); 8787 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8788 spin_unlock(&mddev->lock); 8789 /* Clear some bits that don't mean anything, but 8790 * might be left set 8791 */ 8792 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8793 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8794 8795 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8796 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8797 goto not_running; 8798 /* no recovery is running. 8799 * remove any failed drives, then 8800 * add spares if possible. 8801 * Spares are also removed and re-added, to allow 8802 * the personality to fail the re-add. 8803 */ 8804 8805 if (mddev->reshape_position != MaxSector) { 8806 if (mddev->pers->check_reshape == NULL || 8807 mddev->pers->check_reshape(mddev) != 0) 8808 /* Cannot proceed */ 8809 goto not_running; 8810 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8811 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8812 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8813 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8814 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8815 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8816 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8817 } else if (mddev->recovery_cp < MaxSector) { 8818 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8819 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8820 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8821 /* nothing to be done ... */ 8822 goto not_running; 8823 8824 if (mddev->pers->sync_request) { 8825 if (spares) { 8826 /* We are adding a device or devices to an array 8827 * which has the bitmap stored on all devices. 8828 * So make sure all bitmap pages get written 8829 */ 8830 bitmap_write_all(mddev->bitmap); 8831 } 8832 INIT_WORK(&mddev->del_work, md_start_sync); 8833 queue_work(md_misc_wq, &mddev->del_work); 8834 goto unlock; 8835 } 8836 not_running: 8837 if (!mddev->sync_thread) { 8838 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8839 wake_up(&resync_wait); 8840 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8841 &mddev->recovery)) 8842 if (mddev->sysfs_action) 8843 sysfs_notify_dirent_safe(mddev->sysfs_action); 8844 } 8845 unlock: 8846 wake_up(&mddev->sb_wait); 8847 mddev_unlock(mddev); 8848 } else if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 8849 /* Write superblock - thread that called mddev_suspend() 8850 * holds reconfig_mutex for us. 8851 */ 8852 set_bit(MD_UPDATING_SB, &mddev->flags); 8853 smp_mb__after_atomic(); 8854 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 8855 md_update_sb(mddev, 0); 8856 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 8857 wake_up(&mddev->sb_wait); 8858 } 8859 } 8860 EXPORT_SYMBOL(md_check_recovery); 8861 8862 void md_reap_sync_thread(struct mddev *mddev) 8863 { 8864 struct md_rdev *rdev; 8865 8866 /* resync has finished, collect result */ 8867 md_unregister_thread(&mddev->sync_thread); 8868 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8869 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8870 /* success...*/ 8871 /* activate any spares */ 8872 if (mddev->pers->spare_active(mddev)) { 8873 sysfs_notify(&mddev->kobj, NULL, 8874 "degraded"); 8875 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8876 } 8877 } 8878 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8879 mddev->pers->finish_reshape) 8880 mddev->pers->finish_reshape(mddev); 8881 8882 /* If array is no-longer degraded, then any saved_raid_disk 8883 * information must be scrapped. 8884 */ 8885 if (!mddev->degraded) 8886 rdev_for_each(rdev, mddev) 8887 rdev->saved_raid_disk = -1; 8888 8889 md_update_sb(mddev, 1); 8890 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 8891 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 8892 * clustered raid */ 8893 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 8894 md_cluster_ops->resync_finish(mddev); 8895 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8896 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8897 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8898 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8899 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8900 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8901 wake_up(&resync_wait); 8902 /* flag recovery needed just to double check */ 8903 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8904 sysfs_notify_dirent_safe(mddev->sysfs_action); 8905 md_new_event(mddev); 8906 if (mddev->event_work.func) 8907 queue_work(md_misc_wq, &mddev->event_work); 8908 } 8909 EXPORT_SYMBOL(md_reap_sync_thread); 8910 8911 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 8912 { 8913 sysfs_notify_dirent_safe(rdev->sysfs_state); 8914 wait_event_timeout(rdev->blocked_wait, 8915 !test_bit(Blocked, &rdev->flags) && 8916 !test_bit(BlockedBadBlocks, &rdev->flags), 8917 msecs_to_jiffies(5000)); 8918 rdev_dec_pending(rdev, mddev); 8919 } 8920 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 8921 8922 void md_finish_reshape(struct mddev *mddev) 8923 { 8924 /* called be personality module when reshape completes. */ 8925 struct md_rdev *rdev; 8926 8927 rdev_for_each(rdev, mddev) { 8928 if (rdev->data_offset > rdev->new_data_offset) 8929 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 8930 else 8931 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 8932 rdev->data_offset = rdev->new_data_offset; 8933 } 8934 } 8935 EXPORT_SYMBOL(md_finish_reshape); 8936 8937 /* Bad block management */ 8938 8939 /* Returns 1 on success, 0 on failure */ 8940 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8941 int is_new) 8942 { 8943 struct mddev *mddev = rdev->mddev; 8944 int rv; 8945 if (is_new) 8946 s += rdev->new_data_offset; 8947 else 8948 s += rdev->data_offset; 8949 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 8950 if (rv == 0) { 8951 /* Make sure they get written out promptly */ 8952 if (test_bit(ExternalBbl, &rdev->flags)) 8953 sysfs_notify(&rdev->kobj, NULL, 8954 "unacknowledged_bad_blocks"); 8955 sysfs_notify_dirent_safe(rdev->sysfs_state); 8956 set_mask_bits(&mddev->sb_flags, 0, 8957 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 8958 md_wakeup_thread(rdev->mddev->thread); 8959 return 1; 8960 } else 8961 return 0; 8962 } 8963 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8964 8965 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8966 int is_new) 8967 { 8968 int rv; 8969 if (is_new) 8970 s += rdev->new_data_offset; 8971 else 8972 s += rdev->data_offset; 8973 rv = badblocks_clear(&rdev->badblocks, s, sectors); 8974 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 8975 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 8976 return rv; 8977 } 8978 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8979 8980 static int md_notify_reboot(struct notifier_block *this, 8981 unsigned long code, void *x) 8982 { 8983 struct list_head *tmp; 8984 struct mddev *mddev; 8985 int need_delay = 0; 8986 8987 for_each_mddev(mddev, tmp) { 8988 if (mddev_trylock(mddev)) { 8989 if (mddev->pers) 8990 __md_stop_writes(mddev); 8991 if (mddev->persistent) 8992 mddev->safemode = 2; 8993 mddev_unlock(mddev); 8994 } 8995 need_delay = 1; 8996 } 8997 /* 8998 * certain more exotic SCSI devices are known to be 8999 * volatile wrt too early system reboots. While the 9000 * right place to handle this issue is the given 9001 * driver, we do want to have a safe RAID driver ... 9002 */ 9003 if (need_delay) 9004 mdelay(1000*1); 9005 9006 return NOTIFY_DONE; 9007 } 9008 9009 static struct notifier_block md_notifier = { 9010 .notifier_call = md_notify_reboot, 9011 .next = NULL, 9012 .priority = INT_MAX, /* before any real devices */ 9013 }; 9014 9015 static void md_geninit(void) 9016 { 9017 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9018 9019 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 9020 } 9021 9022 static int __init md_init(void) 9023 { 9024 int ret = -ENOMEM; 9025 9026 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9027 if (!md_wq) 9028 goto err_wq; 9029 9030 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9031 if (!md_misc_wq) 9032 goto err_misc_wq; 9033 9034 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9035 goto err_md; 9036 9037 if ((ret = register_blkdev(0, "mdp")) < 0) 9038 goto err_mdp; 9039 mdp_major = ret; 9040 9041 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9042 md_probe, NULL, NULL); 9043 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9044 md_probe, NULL, NULL); 9045 9046 register_reboot_notifier(&md_notifier); 9047 raid_table_header = register_sysctl_table(raid_root_table); 9048 9049 md_geninit(); 9050 return 0; 9051 9052 err_mdp: 9053 unregister_blkdev(MD_MAJOR, "md"); 9054 err_md: 9055 destroy_workqueue(md_misc_wq); 9056 err_misc_wq: 9057 destroy_workqueue(md_wq); 9058 err_wq: 9059 return ret; 9060 } 9061 9062 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9063 { 9064 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9065 struct md_rdev *rdev2; 9066 int role, ret; 9067 char b[BDEVNAME_SIZE]; 9068 9069 /* 9070 * If size is changed in another node then we need to 9071 * do resize as well. 9072 */ 9073 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9074 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9075 if (ret) 9076 pr_info("md-cluster: resize failed\n"); 9077 else 9078 bitmap_update_sb(mddev->bitmap); 9079 } 9080 9081 /* Check for change of roles in the active devices */ 9082 rdev_for_each(rdev2, mddev) { 9083 if (test_bit(Faulty, &rdev2->flags)) 9084 continue; 9085 9086 /* Check if the roles changed */ 9087 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9088 9089 if (test_bit(Candidate, &rdev2->flags)) { 9090 if (role == 0xfffe) { 9091 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9092 md_kick_rdev_from_array(rdev2); 9093 continue; 9094 } 9095 else 9096 clear_bit(Candidate, &rdev2->flags); 9097 } 9098 9099 if (role != rdev2->raid_disk) { 9100 /* got activated */ 9101 if (rdev2->raid_disk == -1 && role != 0xffff) { 9102 rdev2->saved_raid_disk = role; 9103 ret = remove_and_add_spares(mddev, rdev2); 9104 pr_info("Activated spare: %s\n", 9105 bdevname(rdev2->bdev,b)); 9106 /* wakeup mddev->thread here, so array could 9107 * perform resync with the new activated disk */ 9108 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9109 md_wakeup_thread(mddev->thread); 9110 9111 } 9112 /* device faulty 9113 * We just want to do the minimum to mark the disk 9114 * as faulty. The recovery is performed by the 9115 * one who initiated the error. 9116 */ 9117 if ((role == 0xfffe) || (role == 0xfffd)) { 9118 md_error(mddev, rdev2); 9119 clear_bit(Blocked, &rdev2->flags); 9120 } 9121 } 9122 } 9123 9124 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9125 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9126 9127 /* Finally set the event to be up to date */ 9128 mddev->events = le64_to_cpu(sb->events); 9129 } 9130 9131 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9132 { 9133 int err; 9134 struct page *swapout = rdev->sb_page; 9135 struct mdp_superblock_1 *sb; 9136 9137 /* Store the sb page of the rdev in the swapout temporary 9138 * variable in case we err in the future 9139 */ 9140 rdev->sb_page = NULL; 9141 err = alloc_disk_sb(rdev); 9142 if (err == 0) { 9143 ClearPageUptodate(rdev->sb_page); 9144 rdev->sb_loaded = 0; 9145 err = super_types[mddev->major_version]. 9146 load_super(rdev, NULL, mddev->minor_version); 9147 } 9148 if (err < 0) { 9149 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9150 __func__, __LINE__, rdev->desc_nr, err); 9151 if (rdev->sb_page) 9152 put_page(rdev->sb_page); 9153 rdev->sb_page = swapout; 9154 rdev->sb_loaded = 1; 9155 return err; 9156 } 9157 9158 sb = page_address(rdev->sb_page); 9159 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9160 * is not set 9161 */ 9162 9163 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9164 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9165 9166 /* The other node finished recovery, call spare_active to set 9167 * device In_sync and mddev->degraded 9168 */ 9169 if (rdev->recovery_offset == MaxSector && 9170 !test_bit(In_sync, &rdev->flags) && 9171 mddev->pers->spare_active(mddev)) 9172 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9173 9174 put_page(swapout); 9175 return 0; 9176 } 9177 9178 void md_reload_sb(struct mddev *mddev, int nr) 9179 { 9180 struct md_rdev *rdev; 9181 int err; 9182 9183 /* Find the rdev */ 9184 rdev_for_each_rcu(rdev, mddev) { 9185 if (rdev->desc_nr == nr) 9186 break; 9187 } 9188 9189 if (!rdev || rdev->desc_nr != nr) { 9190 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9191 return; 9192 } 9193 9194 err = read_rdev(mddev, rdev); 9195 if (err < 0) 9196 return; 9197 9198 check_sb_changes(mddev, rdev); 9199 9200 /* Read all rdev's to update recovery_offset */ 9201 rdev_for_each_rcu(rdev, mddev) 9202 read_rdev(mddev, rdev); 9203 } 9204 EXPORT_SYMBOL(md_reload_sb); 9205 9206 #ifndef MODULE 9207 9208 /* 9209 * Searches all registered partitions for autorun RAID arrays 9210 * at boot time. 9211 */ 9212 9213 static DEFINE_MUTEX(detected_devices_mutex); 9214 static LIST_HEAD(all_detected_devices); 9215 struct detected_devices_node { 9216 struct list_head list; 9217 dev_t dev; 9218 }; 9219 9220 void md_autodetect_dev(dev_t dev) 9221 { 9222 struct detected_devices_node *node_detected_dev; 9223 9224 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9225 if (node_detected_dev) { 9226 node_detected_dev->dev = dev; 9227 mutex_lock(&detected_devices_mutex); 9228 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9229 mutex_unlock(&detected_devices_mutex); 9230 } 9231 } 9232 9233 static void autostart_arrays(int part) 9234 { 9235 struct md_rdev *rdev; 9236 struct detected_devices_node *node_detected_dev; 9237 dev_t dev; 9238 int i_scanned, i_passed; 9239 9240 i_scanned = 0; 9241 i_passed = 0; 9242 9243 pr_info("md: Autodetecting RAID arrays.\n"); 9244 9245 mutex_lock(&detected_devices_mutex); 9246 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9247 i_scanned++; 9248 node_detected_dev = list_entry(all_detected_devices.next, 9249 struct detected_devices_node, list); 9250 list_del(&node_detected_dev->list); 9251 dev = node_detected_dev->dev; 9252 kfree(node_detected_dev); 9253 mutex_unlock(&detected_devices_mutex); 9254 rdev = md_import_device(dev,0, 90); 9255 mutex_lock(&detected_devices_mutex); 9256 if (IS_ERR(rdev)) 9257 continue; 9258 9259 if (test_bit(Faulty, &rdev->flags)) 9260 continue; 9261 9262 set_bit(AutoDetected, &rdev->flags); 9263 list_add(&rdev->same_set, &pending_raid_disks); 9264 i_passed++; 9265 } 9266 mutex_unlock(&detected_devices_mutex); 9267 9268 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9269 9270 autorun_devices(part); 9271 } 9272 9273 #endif /* !MODULE */ 9274 9275 static __exit void md_exit(void) 9276 { 9277 struct mddev *mddev; 9278 struct list_head *tmp; 9279 int delay = 1; 9280 9281 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9282 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9283 9284 unregister_blkdev(MD_MAJOR,"md"); 9285 unregister_blkdev(mdp_major, "mdp"); 9286 unregister_reboot_notifier(&md_notifier); 9287 unregister_sysctl_table(raid_table_header); 9288 9289 /* We cannot unload the modules while some process is 9290 * waiting for us in select() or poll() - wake them up 9291 */ 9292 md_unloading = 1; 9293 while (waitqueue_active(&md_event_waiters)) { 9294 /* not safe to leave yet */ 9295 wake_up(&md_event_waiters); 9296 msleep(delay); 9297 delay += delay; 9298 } 9299 remove_proc_entry("mdstat", NULL); 9300 9301 for_each_mddev(mddev, tmp) { 9302 export_array(mddev); 9303 mddev->ctime = 0; 9304 mddev->hold_active = 0; 9305 /* 9306 * for_each_mddev() will call mddev_put() at the end of each 9307 * iteration. As the mddev is now fully clear, this will 9308 * schedule the mddev for destruction by a workqueue, and the 9309 * destroy_workqueue() below will wait for that to complete. 9310 */ 9311 } 9312 destroy_workqueue(md_misc_wq); 9313 destroy_workqueue(md_wq); 9314 } 9315 9316 subsys_initcall(md_init); 9317 module_exit(md_exit) 9318 9319 static int get_ro(char *buffer, const struct kernel_param *kp) 9320 { 9321 return sprintf(buffer, "%d", start_readonly); 9322 } 9323 static int set_ro(const char *val, const struct kernel_param *kp) 9324 { 9325 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9326 } 9327 9328 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9329 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9330 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9331 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9332 9333 MODULE_LICENSE("GPL"); 9334 MODULE_DESCRIPTION("MD RAID framework"); 9335 MODULE_ALIAS("md"); 9336 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9337