1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected by pers_lock. */ 74 static LIST_HEAD(pers_list); 75 static DEFINE_SPINLOCK(pers_lock); 76 77 static const struct kobj_type md_ktype; 78 79 struct md_cluster_operations *md_cluster_ops; 80 EXPORT_SYMBOL(md_cluster_ops); 81 static struct module *md_cluster_mod; 82 83 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 84 static struct workqueue_struct *md_wq; 85 86 /* 87 * This workqueue is used for sync_work to register new sync_thread, and for 88 * del_work to remove rdev, and for event_work that is only set by dm-raid. 89 * 90 * Noted that sync_work will grab reconfig_mutex, hence never flush this 91 * workqueue whith reconfig_mutex grabbed. 92 */ 93 static struct workqueue_struct *md_misc_wq; 94 struct workqueue_struct *md_bitmap_wq; 95 96 static int remove_and_add_spares(struct mddev *mddev, 97 struct md_rdev *this); 98 static void mddev_detach(struct mddev *mddev); 99 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev); 100 static void md_wakeup_thread_directly(struct md_thread __rcu *thread); 101 102 enum md_ro_state { 103 MD_RDWR, 104 MD_RDONLY, 105 MD_AUTO_READ, 106 MD_MAX_STATE 107 }; 108 109 static bool md_is_rdwr(struct mddev *mddev) 110 { 111 return (mddev->ro == MD_RDWR); 112 } 113 114 /* 115 * Default number of read corrections we'll attempt on an rdev 116 * before ejecting it from the array. We divide the read error 117 * count by 2 for every hour elapsed between read errors. 118 */ 119 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 120 /* Default safemode delay: 200 msec */ 121 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 122 /* 123 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 124 * is 1000 KB/sec, so the extra system load does not show up that much. 125 * Increase it if you want to have more _guaranteed_ speed. Note that 126 * the RAID driver will use the maximum available bandwidth if the IO 127 * subsystem is idle. There is also an 'absolute maximum' reconstruction 128 * speed limit - in case reconstruction slows down your system despite 129 * idle IO detection. 130 * 131 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 132 * or /sys/block/mdX/md/sync_speed_{min,max} 133 */ 134 135 static int sysctl_speed_limit_min = 1000; 136 static int sysctl_speed_limit_max = 200000; 137 static inline int speed_min(struct mddev *mddev) 138 { 139 return mddev->sync_speed_min ? 140 mddev->sync_speed_min : sysctl_speed_limit_min; 141 } 142 143 static inline int speed_max(struct mddev *mddev) 144 { 145 return mddev->sync_speed_max ? 146 mddev->sync_speed_max : sysctl_speed_limit_max; 147 } 148 149 static void rdev_uninit_serial(struct md_rdev *rdev) 150 { 151 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 152 return; 153 154 kvfree(rdev->serial); 155 rdev->serial = NULL; 156 } 157 158 static void rdevs_uninit_serial(struct mddev *mddev) 159 { 160 struct md_rdev *rdev; 161 162 rdev_for_each(rdev, mddev) 163 rdev_uninit_serial(rdev); 164 } 165 166 static int rdev_init_serial(struct md_rdev *rdev) 167 { 168 /* serial_nums equals with BARRIER_BUCKETS_NR */ 169 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 170 struct serial_in_rdev *serial = NULL; 171 172 if (test_bit(CollisionCheck, &rdev->flags)) 173 return 0; 174 175 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 176 GFP_KERNEL); 177 if (!serial) 178 return -ENOMEM; 179 180 for (i = 0; i < serial_nums; i++) { 181 struct serial_in_rdev *serial_tmp = &serial[i]; 182 183 spin_lock_init(&serial_tmp->serial_lock); 184 serial_tmp->serial_rb = RB_ROOT_CACHED; 185 init_waitqueue_head(&serial_tmp->serial_io_wait); 186 } 187 188 rdev->serial = serial; 189 set_bit(CollisionCheck, &rdev->flags); 190 191 return 0; 192 } 193 194 static int rdevs_init_serial(struct mddev *mddev) 195 { 196 struct md_rdev *rdev; 197 int ret = 0; 198 199 rdev_for_each(rdev, mddev) { 200 ret = rdev_init_serial(rdev); 201 if (ret) 202 break; 203 } 204 205 /* Free all resources if pool is not existed */ 206 if (ret && !mddev->serial_info_pool) 207 rdevs_uninit_serial(mddev); 208 209 return ret; 210 } 211 212 /* 213 * rdev needs to enable serial stuffs if it meets the conditions: 214 * 1. it is multi-queue device flaged with writemostly. 215 * 2. the write-behind mode is enabled. 216 */ 217 static int rdev_need_serial(struct md_rdev *rdev) 218 { 219 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 220 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 221 test_bit(WriteMostly, &rdev->flags)); 222 } 223 224 /* 225 * Init resource for rdev(s), then create serial_info_pool if: 226 * 1. rdev is the first device which return true from rdev_enable_serial. 227 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 228 */ 229 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev) 230 { 231 int ret = 0; 232 233 if (rdev && !rdev_need_serial(rdev) && 234 !test_bit(CollisionCheck, &rdev->flags)) 235 return; 236 237 if (!rdev) 238 ret = rdevs_init_serial(mddev); 239 else 240 ret = rdev_init_serial(rdev); 241 if (ret) 242 return; 243 244 if (mddev->serial_info_pool == NULL) { 245 /* 246 * already in memalloc noio context by 247 * mddev_suspend() 248 */ 249 mddev->serial_info_pool = 250 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 251 sizeof(struct serial_info)); 252 if (!mddev->serial_info_pool) { 253 rdevs_uninit_serial(mddev); 254 pr_err("can't alloc memory pool for serialization\n"); 255 } 256 } 257 } 258 259 /* 260 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 261 * 1. rdev is the last device flaged with CollisionCheck. 262 * 2. when bitmap is destroyed while policy is not enabled. 263 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 264 */ 265 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev) 266 { 267 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 268 return; 269 270 if (mddev->serial_info_pool) { 271 struct md_rdev *temp; 272 int num = 0; /* used to track if other rdevs need the pool */ 273 274 rdev_for_each(temp, mddev) { 275 if (!rdev) { 276 if (!mddev->serialize_policy || 277 !rdev_need_serial(temp)) 278 rdev_uninit_serial(temp); 279 else 280 num++; 281 } else if (temp != rdev && 282 test_bit(CollisionCheck, &temp->flags)) 283 num++; 284 } 285 286 if (rdev) 287 rdev_uninit_serial(rdev); 288 289 if (num) 290 pr_info("The mempool could be used by other devices\n"); 291 else { 292 mempool_destroy(mddev->serial_info_pool); 293 mddev->serial_info_pool = NULL; 294 } 295 } 296 } 297 298 static struct ctl_table_header *raid_table_header; 299 300 static struct ctl_table raid_table[] = { 301 { 302 .procname = "speed_limit_min", 303 .data = &sysctl_speed_limit_min, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { 309 .procname = "speed_limit_max", 310 .data = &sysctl_speed_limit_max, 311 .maxlen = sizeof(int), 312 .mode = S_IRUGO|S_IWUSR, 313 .proc_handler = proc_dointvec, 314 }, 315 }; 316 317 static int start_readonly; 318 319 /* 320 * The original mechanism for creating an md device is to create 321 * a device node in /dev and to open it. This causes races with device-close. 322 * The preferred method is to write to the "new_array" module parameter. 323 * This can avoid races. 324 * Setting create_on_open to false disables the original mechanism 325 * so all the races disappear. 326 */ 327 static bool create_on_open = true; 328 329 /* 330 * We have a system wide 'event count' that is incremented 331 * on any 'interesting' event, and readers of /proc/mdstat 332 * can use 'poll' or 'select' to find out when the event 333 * count increases. 334 * 335 * Events are: 336 * start array, stop array, error, add device, remove device, 337 * start build, activate spare 338 */ 339 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 340 static atomic_t md_event_count; 341 void md_new_event(void) 342 { 343 atomic_inc(&md_event_count); 344 wake_up(&md_event_waiters); 345 } 346 EXPORT_SYMBOL_GPL(md_new_event); 347 348 /* 349 * Enables to iterate over all existing md arrays 350 * all_mddevs_lock protects this list. 351 */ 352 static LIST_HEAD(all_mddevs); 353 static DEFINE_SPINLOCK(all_mddevs_lock); 354 355 static bool is_md_suspended(struct mddev *mddev) 356 { 357 return percpu_ref_is_dying(&mddev->active_io); 358 } 359 /* Rather than calling directly into the personality make_request function, 360 * IO requests come here first so that we can check if the device is 361 * being suspended pending a reconfiguration. 362 * We hold a refcount over the call to ->make_request. By the time that 363 * call has finished, the bio has been linked into some internal structure 364 * and so is visible to ->quiesce(), so we don't need the refcount any more. 365 */ 366 static bool is_suspended(struct mddev *mddev, struct bio *bio) 367 { 368 if (is_md_suspended(mddev)) 369 return true; 370 if (bio_data_dir(bio) != WRITE) 371 return false; 372 if (READ_ONCE(mddev->suspend_lo) >= READ_ONCE(mddev->suspend_hi)) 373 return false; 374 if (bio->bi_iter.bi_sector >= READ_ONCE(mddev->suspend_hi)) 375 return false; 376 if (bio_end_sector(bio) < READ_ONCE(mddev->suspend_lo)) 377 return false; 378 return true; 379 } 380 381 void md_handle_request(struct mddev *mddev, struct bio *bio) 382 { 383 check_suspended: 384 if (is_suspended(mddev, bio)) { 385 DEFINE_WAIT(__wait); 386 /* Bail out if REQ_NOWAIT is set for the bio */ 387 if (bio->bi_opf & REQ_NOWAIT) { 388 bio_wouldblock_error(bio); 389 return; 390 } 391 for (;;) { 392 prepare_to_wait(&mddev->sb_wait, &__wait, 393 TASK_UNINTERRUPTIBLE); 394 if (!is_suspended(mddev, bio)) 395 break; 396 schedule(); 397 } 398 finish_wait(&mddev->sb_wait, &__wait); 399 } 400 if (!percpu_ref_tryget_live(&mddev->active_io)) 401 goto check_suspended; 402 403 if (!mddev->pers->make_request(mddev, bio)) { 404 percpu_ref_put(&mddev->active_io); 405 goto check_suspended; 406 } 407 408 percpu_ref_put(&mddev->active_io); 409 } 410 EXPORT_SYMBOL(md_handle_request); 411 412 static void md_submit_bio(struct bio *bio) 413 { 414 const int rw = bio_data_dir(bio); 415 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 416 417 if (mddev == NULL || mddev->pers == NULL) { 418 bio_io_error(bio); 419 return; 420 } 421 422 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 423 bio_io_error(bio); 424 return; 425 } 426 427 bio = bio_split_to_limits(bio); 428 if (!bio) 429 return; 430 431 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) { 432 if (bio_sectors(bio) != 0) 433 bio->bi_status = BLK_STS_IOERR; 434 bio_endio(bio); 435 return; 436 } 437 438 /* bio could be mergeable after passing to underlayer */ 439 bio->bi_opf &= ~REQ_NOMERGE; 440 441 md_handle_request(mddev, bio); 442 } 443 444 /* 445 * Make sure no new requests are submitted to the device, and any requests that 446 * have been submitted are completely handled. 447 */ 448 int mddev_suspend(struct mddev *mddev, bool interruptible) 449 { 450 int err = 0; 451 452 /* 453 * hold reconfig_mutex to wait for normal io will deadlock, because 454 * other context can't update super_block, and normal io can rely on 455 * updating super_block. 456 */ 457 lockdep_assert_not_held(&mddev->reconfig_mutex); 458 459 if (interruptible) 460 err = mutex_lock_interruptible(&mddev->suspend_mutex); 461 else 462 mutex_lock(&mddev->suspend_mutex); 463 if (err) 464 return err; 465 466 if (mddev->suspended) { 467 WRITE_ONCE(mddev->suspended, mddev->suspended + 1); 468 mutex_unlock(&mddev->suspend_mutex); 469 return 0; 470 } 471 472 percpu_ref_kill(&mddev->active_io); 473 if (interruptible) 474 err = wait_event_interruptible(mddev->sb_wait, 475 percpu_ref_is_zero(&mddev->active_io)); 476 else 477 wait_event(mddev->sb_wait, 478 percpu_ref_is_zero(&mddev->active_io)); 479 if (err) { 480 percpu_ref_resurrect(&mddev->active_io); 481 mutex_unlock(&mddev->suspend_mutex); 482 return err; 483 } 484 485 /* 486 * For raid456, io might be waiting for reshape to make progress, 487 * allow new reshape to start while waiting for io to be done to 488 * prevent deadlock. 489 */ 490 WRITE_ONCE(mddev->suspended, mddev->suspended + 1); 491 492 del_timer_sync(&mddev->safemode_timer); 493 /* restrict memory reclaim I/O during raid array is suspend */ 494 mddev->noio_flag = memalloc_noio_save(); 495 496 mutex_unlock(&mddev->suspend_mutex); 497 return 0; 498 } 499 EXPORT_SYMBOL_GPL(mddev_suspend); 500 501 static void __mddev_resume(struct mddev *mddev, bool recovery_needed) 502 { 503 lockdep_assert_not_held(&mddev->reconfig_mutex); 504 505 mutex_lock(&mddev->suspend_mutex); 506 WRITE_ONCE(mddev->suspended, mddev->suspended - 1); 507 if (mddev->suspended) { 508 mutex_unlock(&mddev->suspend_mutex); 509 return; 510 } 511 512 /* entred the memalloc scope from mddev_suspend() */ 513 memalloc_noio_restore(mddev->noio_flag); 514 515 percpu_ref_resurrect(&mddev->active_io); 516 wake_up(&mddev->sb_wait); 517 518 if (recovery_needed) 519 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 520 md_wakeup_thread(mddev->thread); 521 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 522 523 mutex_unlock(&mddev->suspend_mutex); 524 } 525 526 void mddev_resume(struct mddev *mddev) 527 { 528 return __mddev_resume(mddev, true); 529 } 530 EXPORT_SYMBOL_GPL(mddev_resume); 531 532 /* 533 * Generic flush handling for md 534 */ 535 536 static void md_end_flush(struct bio *bio) 537 { 538 struct md_rdev *rdev = bio->bi_private; 539 struct mddev *mddev = rdev->mddev; 540 541 bio_put(bio); 542 543 rdev_dec_pending(rdev, mddev); 544 545 if (atomic_dec_and_test(&mddev->flush_pending)) { 546 /* The pre-request flush has finished */ 547 queue_work(md_wq, &mddev->flush_work); 548 } 549 } 550 551 static void md_submit_flush_data(struct work_struct *ws); 552 553 static void submit_flushes(struct work_struct *ws) 554 { 555 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 556 struct md_rdev *rdev; 557 558 mddev->start_flush = ktime_get_boottime(); 559 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 560 atomic_set(&mddev->flush_pending, 1); 561 rcu_read_lock(); 562 rdev_for_each_rcu(rdev, mddev) 563 if (rdev->raid_disk >= 0 && 564 !test_bit(Faulty, &rdev->flags)) { 565 /* Take two references, one is dropped 566 * when request finishes, one after 567 * we reclaim rcu_read_lock 568 */ 569 struct bio *bi; 570 atomic_inc(&rdev->nr_pending); 571 atomic_inc(&rdev->nr_pending); 572 rcu_read_unlock(); 573 bi = bio_alloc_bioset(rdev->bdev, 0, 574 REQ_OP_WRITE | REQ_PREFLUSH, 575 GFP_NOIO, &mddev->bio_set); 576 bi->bi_end_io = md_end_flush; 577 bi->bi_private = rdev; 578 atomic_inc(&mddev->flush_pending); 579 submit_bio(bi); 580 rcu_read_lock(); 581 rdev_dec_pending(rdev, mddev); 582 } 583 rcu_read_unlock(); 584 if (atomic_dec_and_test(&mddev->flush_pending)) 585 queue_work(md_wq, &mddev->flush_work); 586 } 587 588 static void md_submit_flush_data(struct work_struct *ws) 589 { 590 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 591 struct bio *bio = mddev->flush_bio; 592 593 /* 594 * must reset flush_bio before calling into md_handle_request to avoid a 595 * deadlock, because other bios passed md_handle_request suspend check 596 * could wait for this and below md_handle_request could wait for those 597 * bios because of suspend check 598 */ 599 spin_lock_irq(&mddev->lock); 600 mddev->prev_flush_start = mddev->start_flush; 601 mddev->flush_bio = NULL; 602 spin_unlock_irq(&mddev->lock); 603 wake_up(&mddev->sb_wait); 604 605 if (bio->bi_iter.bi_size == 0) { 606 /* an empty barrier - all done */ 607 bio_endio(bio); 608 } else { 609 bio->bi_opf &= ~REQ_PREFLUSH; 610 md_handle_request(mddev, bio); 611 } 612 } 613 614 /* 615 * Manages consolidation of flushes and submitting any flushes needed for 616 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 617 * being finished in another context. Returns false if the flushing is 618 * complete but still needs the I/O portion of the bio to be processed. 619 */ 620 bool md_flush_request(struct mddev *mddev, struct bio *bio) 621 { 622 ktime_t req_start = ktime_get_boottime(); 623 spin_lock_irq(&mddev->lock); 624 /* flush requests wait until ongoing flush completes, 625 * hence coalescing all the pending requests. 626 */ 627 wait_event_lock_irq(mddev->sb_wait, 628 !mddev->flush_bio || 629 ktime_before(req_start, mddev->prev_flush_start), 630 mddev->lock); 631 /* new request after previous flush is completed */ 632 if (ktime_after(req_start, mddev->prev_flush_start)) { 633 WARN_ON(mddev->flush_bio); 634 mddev->flush_bio = bio; 635 bio = NULL; 636 } 637 spin_unlock_irq(&mddev->lock); 638 639 if (!bio) { 640 INIT_WORK(&mddev->flush_work, submit_flushes); 641 queue_work(md_wq, &mddev->flush_work); 642 } else { 643 /* flush was performed for some other bio while we waited. */ 644 if (bio->bi_iter.bi_size == 0) 645 /* an empty barrier - all done */ 646 bio_endio(bio); 647 else { 648 bio->bi_opf &= ~REQ_PREFLUSH; 649 return false; 650 } 651 } 652 return true; 653 } 654 EXPORT_SYMBOL(md_flush_request); 655 656 static inline struct mddev *mddev_get(struct mddev *mddev) 657 { 658 lockdep_assert_held(&all_mddevs_lock); 659 660 if (test_bit(MD_DELETED, &mddev->flags)) 661 return NULL; 662 atomic_inc(&mddev->active); 663 return mddev; 664 } 665 666 static void mddev_delayed_delete(struct work_struct *ws); 667 668 static void __mddev_put(struct mddev *mddev) 669 { 670 if (mddev->raid_disks || !list_empty(&mddev->disks) || 671 mddev->ctime || mddev->hold_active) 672 return; 673 674 /* Array is not configured at all, and not held active, so destroy it */ 675 set_bit(MD_DELETED, &mddev->flags); 676 677 /* 678 * Call queue_work inside the spinlock so that flush_workqueue() after 679 * mddev_find will succeed in waiting for the work to be done. 680 */ 681 queue_work(md_misc_wq, &mddev->del_work); 682 } 683 684 void mddev_put(struct mddev *mddev) 685 { 686 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 687 return; 688 689 __mddev_put(mddev); 690 spin_unlock(&all_mddevs_lock); 691 } 692 693 static void md_safemode_timeout(struct timer_list *t); 694 static void md_start_sync(struct work_struct *ws); 695 696 static void active_io_release(struct percpu_ref *ref) 697 { 698 struct mddev *mddev = container_of(ref, struct mddev, active_io); 699 700 wake_up(&mddev->sb_wait); 701 } 702 703 static void no_op(struct percpu_ref *r) {} 704 705 int mddev_init(struct mddev *mddev) 706 { 707 708 if (percpu_ref_init(&mddev->active_io, active_io_release, 709 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) 710 return -ENOMEM; 711 712 if (percpu_ref_init(&mddev->writes_pending, no_op, 713 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) { 714 percpu_ref_exit(&mddev->active_io); 715 return -ENOMEM; 716 } 717 718 /* We want to start with the refcount at zero */ 719 percpu_ref_put(&mddev->writes_pending); 720 721 mutex_init(&mddev->open_mutex); 722 mutex_init(&mddev->reconfig_mutex); 723 mutex_init(&mddev->sync_mutex); 724 mutex_init(&mddev->suspend_mutex); 725 mutex_init(&mddev->bitmap_info.mutex); 726 INIT_LIST_HEAD(&mddev->disks); 727 INIT_LIST_HEAD(&mddev->all_mddevs); 728 INIT_LIST_HEAD(&mddev->deleting); 729 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 730 atomic_set(&mddev->active, 1); 731 atomic_set(&mddev->openers, 0); 732 atomic_set(&mddev->sync_seq, 0); 733 spin_lock_init(&mddev->lock); 734 atomic_set(&mddev->flush_pending, 0); 735 init_waitqueue_head(&mddev->sb_wait); 736 init_waitqueue_head(&mddev->recovery_wait); 737 mddev->reshape_position = MaxSector; 738 mddev->reshape_backwards = 0; 739 mddev->last_sync_action = "none"; 740 mddev->resync_min = 0; 741 mddev->resync_max = MaxSector; 742 mddev->level = LEVEL_NONE; 743 744 INIT_WORK(&mddev->sync_work, md_start_sync); 745 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 746 747 return 0; 748 } 749 EXPORT_SYMBOL_GPL(mddev_init); 750 751 void mddev_destroy(struct mddev *mddev) 752 { 753 percpu_ref_exit(&mddev->active_io); 754 percpu_ref_exit(&mddev->writes_pending); 755 } 756 EXPORT_SYMBOL_GPL(mddev_destroy); 757 758 static struct mddev *mddev_find_locked(dev_t unit) 759 { 760 struct mddev *mddev; 761 762 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 763 if (mddev->unit == unit) 764 return mddev; 765 766 return NULL; 767 } 768 769 /* find an unused unit number */ 770 static dev_t mddev_alloc_unit(void) 771 { 772 static int next_minor = 512; 773 int start = next_minor; 774 bool is_free = 0; 775 dev_t dev = 0; 776 777 while (!is_free) { 778 dev = MKDEV(MD_MAJOR, next_minor); 779 next_minor++; 780 if (next_minor > MINORMASK) 781 next_minor = 0; 782 if (next_minor == start) 783 return 0; /* Oh dear, all in use. */ 784 is_free = !mddev_find_locked(dev); 785 } 786 787 return dev; 788 } 789 790 static struct mddev *mddev_alloc(dev_t unit) 791 { 792 struct mddev *new; 793 int error; 794 795 if (unit && MAJOR(unit) != MD_MAJOR) 796 unit &= ~((1 << MdpMinorShift) - 1); 797 798 new = kzalloc(sizeof(*new), GFP_KERNEL); 799 if (!new) 800 return ERR_PTR(-ENOMEM); 801 802 error = mddev_init(new); 803 if (error) 804 goto out_free_new; 805 806 spin_lock(&all_mddevs_lock); 807 if (unit) { 808 error = -EEXIST; 809 if (mddev_find_locked(unit)) 810 goto out_destroy_new; 811 new->unit = unit; 812 if (MAJOR(unit) == MD_MAJOR) 813 new->md_minor = MINOR(unit); 814 else 815 new->md_minor = MINOR(unit) >> MdpMinorShift; 816 new->hold_active = UNTIL_IOCTL; 817 } else { 818 error = -ENODEV; 819 new->unit = mddev_alloc_unit(); 820 if (!new->unit) 821 goto out_destroy_new; 822 new->md_minor = MINOR(new->unit); 823 new->hold_active = UNTIL_STOP; 824 } 825 826 list_add(&new->all_mddevs, &all_mddevs); 827 spin_unlock(&all_mddevs_lock); 828 return new; 829 830 out_destroy_new: 831 spin_unlock(&all_mddevs_lock); 832 mddev_destroy(new); 833 out_free_new: 834 kfree(new); 835 return ERR_PTR(error); 836 } 837 838 static void mddev_free(struct mddev *mddev) 839 { 840 spin_lock(&all_mddevs_lock); 841 list_del(&mddev->all_mddevs); 842 spin_unlock(&all_mddevs_lock); 843 844 mddev_destroy(mddev); 845 kfree(mddev); 846 } 847 848 static const struct attribute_group md_redundancy_group; 849 850 void mddev_unlock(struct mddev *mddev) 851 { 852 struct md_rdev *rdev; 853 struct md_rdev *tmp; 854 LIST_HEAD(delete); 855 856 if (!list_empty(&mddev->deleting)) 857 list_splice_init(&mddev->deleting, &delete); 858 859 if (mddev->to_remove) { 860 /* These cannot be removed under reconfig_mutex as 861 * an access to the files will try to take reconfig_mutex 862 * while holding the file unremovable, which leads to 863 * a deadlock. 864 * So hold set sysfs_active while the remove in happeing, 865 * and anything else which might set ->to_remove or my 866 * otherwise change the sysfs namespace will fail with 867 * -EBUSY if sysfs_active is still set. 868 * We set sysfs_active under reconfig_mutex and elsewhere 869 * test it under the same mutex to ensure its correct value 870 * is seen. 871 */ 872 const struct attribute_group *to_remove = mddev->to_remove; 873 mddev->to_remove = NULL; 874 mddev->sysfs_active = 1; 875 mutex_unlock(&mddev->reconfig_mutex); 876 877 if (mddev->kobj.sd) { 878 if (to_remove != &md_redundancy_group) 879 sysfs_remove_group(&mddev->kobj, to_remove); 880 if (mddev->pers == NULL || 881 mddev->pers->sync_request == NULL) { 882 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 883 if (mddev->sysfs_action) 884 sysfs_put(mddev->sysfs_action); 885 if (mddev->sysfs_completed) 886 sysfs_put(mddev->sysfs_completed); 887 if (mddev->sysfs_degraded) 888 sysfs_put(mddev->sysfs_degraded); 889 mddev->sysfs_action = NULL; 890 mddev->sysfs_completed = NULL; 891 mddev->sysfs_degraded = NULL; 892 } 893 } 894 mddev->sysfs_active = 0; 895 } else 896 mutex_unlock(&mddev->reconfig_mutex); 897 898 md_wakeup_thread(mddev->thread); 899 wake_up(&mddev->sb_wait); 900 901 list_for_each_entry_safe(rdev, tmp, &delete, same_set) { 902 list_del_init(&rdev->same_set); 903 kobject_del(&rdev->kobj); 904 export_rdev(rdev, mddev); 905 } 906 } 907 EXPORT_SYMBOL_GPL(mddev_unlock); 908 909 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 910 { 911 struct md_rdev *rdev; 912 913 rdev_for_each_rcu(rdev, mddev) 914 if (rdev->desc_nr == nr) 915 return rdev; 916 917 return NULL; 918 } 919 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 920 921 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 922 { 923 struct md_rdev *rdev; 924 925 rdev_for_each(rdev, mddev) 926 if (rdev->bdev->bd_dev == dev) 927 return rdev; 928 929 return NULL; 930 } 931 932 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 933 { 934 struct md_rdev *rdev; 935 936 rdev_for_each_rcu(rdev, mddev) 937 if (rdev->bdev->bd_dev == dev) 938 return rdev; 939 940 return NULL; 941 } 942 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 943 944 static struct md_personality *find_pers(int level, char *clevel) 945 { 946 struct md_personality *pers; 947 list_for_each_entry(pers, &pers_list, list) { 948 if (level != LEVEL_NONE && pers->level == level) 949 return pers; 950 if (strcmp(pers->name, clevel)==0) 951 return pers; 952 } 953 return NULL; 954 } 955 956 /* return the offset of the super block in 512byte sectors */ 957 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 958 { 959 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 960 } 961 962 static int alloc_disk_sb(struct md_rdev *rdev) 963 { 964 rdev->sb_page = alloc_page(GFP_KERNEL); 965 if (!rdev->sb_page) 966 return -ENOMEM; 967 return 0; 968 } 969 970 void md_rdev_clear(struct md_rdev *rdev) 971 { 972 if (rdev->sb_page) { 973 put_page(rdev->sb_page); 974 rdev->sb_loaded = 0; 975 rdev->sb_page = NULL; 976 rdev->sb_start = 0; 977 rdev->sectors = 0; 978 } 979 if (rdev->bb_page) { 980 put_page(rdev->bb_page); 981 rdev->bb_page = NULL; 982 } 983 badblocks_exit(&rdev->badblocks); 984 } 985 EXPORT_SYMBOL_GPL(md_rdev_clear); 986 987 static void super_written(struct bio *bio) 988 { 989 struct md_rdev *rdev = bio->bi_private; 990 struct mddev *mddev = rdev->mddev; 991 992 if (bio->bi_status) { 993 pr_err("md: %s gets error=%d\n", __func__, 994 blk_status_to_errno(bio->bi_status)); 995 md_error(mddev, rdev); 996 if (!test_bit(Faulty, &rdev->flags) 997 && (bio->bi_opf & MD_FAILFAST)) { 998 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 999 set_bit(LastDev, &rdev->flags); 1000 } 1001 } else 1002 clear_bit(LastDev, &rdev->flags); 1003 1004 bio_put(bio); 1005 1006 rdev_dec_pending(rdev, mddev); 1007 1008 if (atomic_dec_and_test(&mddev->pending_writes)) 1009 wake_up(&mddev->sb_wait); 1010 } 1011 1012 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 1013 sector_t sector, int size, struct page *page) 1014 { 1015 /* write first size bytes of page to sector of rdev 1016 * Increment mddev->pending_writes before returning 1017 * and decrement it on completion, waking up sb_wait 1018 * if zero is reached. 1019 * If an error occurred, call md_error 1020 */ 1021 struct bio *bio; 1022 1023 if (!page) 1024 return; 1025 1026 if (test_bit(Faulty, &rdev->flags)) 1027 return; 1028 1029 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 1030 1, 1031 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA, 1032 GFP_NOIO, &mddev->sync_set); 1033 1034 atomic_inc(&rdev->nr_pending); 1035 1036 bio->bi_iter.bi_sector = sector; 1037 __bio_add_page(bio, page, size, 0); 1038 bio->bi_private = rdev; 1039 bio->bi_end_io = super_written; 1040 1041 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 1042 test_bit(FailFast, &rdev->flags) && 1043 !test_bit(LastDev, &rdev->flags)) 1044 bio->bi_opf |= MD_FAILFAST; 1045 1046 atomic_inc(&mddev->pending_writes); 1047 submit_bio(bio); 1048 } 1049 1050 int md_super_wait(struct mddev *mddev) 1051 { 1052 /* wait for all superblock writes that were scheduled to complete */ 1053 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 1054 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 1055 return -EAGAIN; 1056 return 0; 1057 } 1058 1059 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 1060 struct page *page, blk_opf_t opf, bool metadata_op) 1061 { 1062 struct bio bio; 1063 struct bio_vec bvec; 1064 1065 if (metadata_op && rdev->meta_bdev) 1066 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 1067 else 1068 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 1069 1070 if (metadata_op) 1071 bio.bi_iter.bi_sector = sector + rdev->sb_start; 1072 else if (rdev->mddev->reshape_position != MaxSector && 1073 (rdev->mddev->reshape_backwards == 1074 (sector >= rdev->mddev->reshape_position))) 1075 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 1076 else 1077 bio.bi_iter.bi_sector = sector + rdev->data_offset; 1078 __bio_add_page(&bio, page, size, 0); 1079 1080 submit_bio_wait(&bio); 1081 1082 return !bio.bi_status; 1083 } 1084 EXPORT_SYMBOL_GPL(sync_page_io); 1085 1086 static int read_disk_sb(struct md_rdev *rdev, int size) 1087 { 1088 if (rdev->sb_loaded) 1089 return 0; 1090 1091 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 1092 goto fail; 1093 rdev->sb_loaded = 1; 1094 return 0; 1095 1096 fail: 1097 pr_err("md: disabled device %pg, could not read superblock.\n", 1098 rdev->bdev); 1099 return -EINVAL; 1100 } 1101 1102 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1103 { 1104 return sb1->set_uuid0 == sb2->set_uuid0 && 1105 sb1->set_uuid1 == sb2->set_uuid1 && 1106 sb1->set_uuid2 == sb2->set_uuid2 && 1107 sb1->set_uuid3 == sb2->set_uuid3; 1108 } 1109 1110 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1111 { 1112 int ret; 1113 mdp_super_t *tmp1, *tmp2; 1114 1115 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1116 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1117 1118 if (!tmp1 || !tmp2) { 1119 ret = 0; 1120 goto abort; 1121 } 1122 1123 *tmp1 = *sb1; 1124 *tmp2 = *sb2; 1125 1126 /* 1127 * nr_disks is not constant 1128 */ 1129 tmp1->nr_disks = 0; 1130 tmp2->nr_disks = 0; 1131 1132 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1133 abort: 1134 kfree(tmp1); 1135 kfree(tmp2); 1136 return ret; 1137 } 1138 1139 static u32 md_csum_fold(u32 csum) 1140 { 1141 csum = (csum & 0xffff) + (csum >> 16); 1142 return (csum & 0xffff) + (csum >> 16); 1143 } 1144 1145 static unsigned int calc_sb_csum(mdp_super_t *sb) 1146 { 1147 u64 newcsum = 0; 1148 u32 *sb32 = (u32*)sb; 1149 int i; 1150 unsigned int disk_csum, csum; 1151 1152 disk_csum = sb->sb_csum; 1153 sb->sb_csum = 0; 1154 1155 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1156 newcsum += sb32[i]; 1157 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1158 1159 #ifdef CONFIG_ALPHA 1160 /* This used to use csum_partial, which was wrong for several 1161 * reasons including that different results are returned on 1162 * different architectures. It isn't critical that we get exactly 1163 * the same return value as before (we always csum_fold before 1164 * testing, and that removes any differences). However as we 1165 * know that csum_partial always returned a 16bit value on 1166 * alphas, do a fold to maximise conformity to previous behaviour. 1167 */ 1168 sb->sb_csum = md_csum_fold(disk_csum); 1169 #else 1170 sb->sb_csum = disk_csum; 1171 #endif 1172 return csum; 1173 } 1174 1175 /* 1176 * Handle superblock details. 1177 * We want to be able to handle multiple superblock formats 1178 * so we have a common interface to them all, and an array of 1179 * different handlers. 1180 * We rely on user-space to write the initial superblock, and support 1181 * reading and updating of superblocks. 1182 * Interface methods are: 1183 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1184 * loads and validates a superblock on dev. 1185 * if refdev != NULL, compare superblocks on both devices 1186 * Return: 1187 * 0 - dev has a superblock that is compatible with refdev 1188 * 1 - dev has a superblock that is compatible and newer than refdev 1189 * so dev should be used as the refdev in future 1190 * -EINVAL superblock incompatible or invalid 1191 * -othererror e.g. -EIO 1192 * 1193 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1194 * Verify that dev is acceptable into mddev. 1195 * The first time, mddev->raid_disks will be 0, and data from 1196 * dev should be merged in. Subsequent calls check that dev 1197 * is new enough. Return 0 or -EINVAL 1198 * 1199 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1200 * Update the superblock for rdev with data in mddev 1201 * This does not write to disc. 1202 * 1203 */ 1204 1205 struct super_type { 1206 char *name; 1207 struct module *owner; 1208 int (*load_super)(struct md_rdev *rdev, 1209 struct md_rdev *refdev, 1210 int minor_version); 1211 int (*validate_super)(struct mddev *mddev, 1212 struct md_rdev *rdev); 1213 void (*sync_super)(struct mddev *mddev, 1214 struct md_rdev *rdev); 1215 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1216 sector_t num_sectors); 1217 int (*allow_new_offset)(struct md_rdev *rdev, 1218 unsigned long long new_offset); 1219 }; 1220 1221 /* 1222 * Check that the given mddev has no bitmap. 1223 * 1224 * This function is called from the run method of all personalities that do not 1225 * support bitmaps. It prints an error message and returns non-zero if mddev 1226 * has a bitmap. Otherwise, it returns 0. 1227 * 1228 */ 1229 int md_check_no_bitmap(struct mddev *mddev) 1230 { 1231 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1232 return 0; 1233 pr_warn("%s: bitmaps are not supported for %s\n", 1234 mdname(mddev), mddev->pers->name); 1235 return 1; 1236 } 1237 EXPORT_SYMBOL(md_check_no_bitmap); 1238 1239 /* 1240 * load_super for 0.90.0 1241 */ 1242 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1243 { 1244 mdp_super_t *sb; 1245 int ret; 1246 bool spare_disk = true; 1247 1248 /* 1249 * Calculate the position of the superblock (512byte sectors), 1250 * it's at the end of the disk. 1251 * 1252 * It also happens to be a multiple of 4Kb. 1253 */ 1254 rdev->sb_start = calc_dev_sboffset(rdev); 1255 1256 ret = read_disk_sb(rdev, MD_SB_BYTES); 1257 if (ret) 1258 return ret; 1259 1260 ret = -EINVAL; 1261 1262 sb = page_address(rdev->sb_page); 1263 1264 if (sb->md_magic != MD_SB_MAGIC) { 1265 pr_warn("md: invalid raid superblock magic on %pg\n", 1266 rdev->bdev); 1267 goto abort; 1268 } 1269 1270 if (sb->major_version != 0 || 1271 sb->minor_version < 90 || 1272 sb->minor_version > 91) { 1273 pr_warn("Bad version number %d.%d on %pg\n", 1274 sb->major_version, sb->minor_version, rdev->bdev); 1275 goto abort; 1276 } 1277 1278 if (sb->raid_disks <= 0) 1279 goto abort; 1280 1281 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1282 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1283 goto abort; 1284 } 1285 1286 rdev->preferred_minor = sb->md_minor; 1287 rdev->data_offset = 0; 1288 rdev->new_data_offset = 0; 1289 rdev->sb_size = MD_SB_BYTES; 1290 rdev->badblocks.shift = -1; 1291 1292 if (sb->level == LEVEL_MULTIPATH) 1293 rdev->desc_nr = -1; 1294 else 1295 rdev->desc_nr = sb->this_disk.number; 1296 1297 /* not spare disk, or LEVEL_MULTIPATH */ 1298 if (sb->level == LEVEL_MULTIPATH || 1299 (rdev->desc_nr >= 0 && 1300 rdev->desc_nr < MD_SB_DISKS && 1301 sb->disks[rdev->desc_nr].state & 1302 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1303 spare_disk = false; 1304 1305 if (!refdev) { 1306 if (!spare_disk) 1307 ret = 1; 1308 else 1309 ret = 0; 1310 } else { 1311 __u64 ev1, ev2; 1312 mdp_super_t *refsb = page_address(refdev->sb_page); 1313 if (!md_uuid_equal(refsb, sb)) { 1314 pr_warn("md: %pg has different UUID to %pg\n", 1315 rdev->bdev, refdev->bdev); 1316 goto abort; 1317 } 1318 if (!md_sb_equal(refsb, sb)) { 1319 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1320 rdev->bdev, refdev->bdev); 1321 goto abort; 1322 } 1323 ev1 = md_event(sb); 1324 ev2 = md_event(refsb); 1325 1326 if (!spare_disk && ev1 > ev2) 1327 ret = 1; 1328 else 1329 ret = 0; 1330 } 1331 rdev->sectors = rdev->sb_start; 1332 /* Limit to 4TB as metadata cannot record more than that. 1333 * (not needed for Linear and RAID0 as metadata doesn't 1334 * record this size) 1335 */ 1336 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1337 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1338 1339 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1340 /* "this cannot possibly happen" ... */ 1341 ret = -EINVAL; 1342 1343 abort: 1344 return ret; 1345 } 1346 1347 /* 1348 * validate_super for 0.90.0 1349 */ 1350 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1351 { 1352 mdp_disk_t *desc; 1353 mdp_super_t *sb = page_address(rdev->sb_page); 1354 __u64 ev1 = md_event(sb); 1355 1356 rdev->raid_disk = -1; 1357 clear_bit(Faulty, &rdev->flags); 1358 clear_bit(In_sync, &rdev->flags); 1359 clear_bit(Bitmap_sync, &rdev->flags); 1360 clear_bit(WriteMostly, &rdev->flags); 1361 1362 if (mddev->raid_disks == 0) { 1363 mddev->major_version = 0; 1364 mddev->minor_version = sb->minor_version; 1365 mddev->patch_version = sb->patch_version; 1366 mddev->external = 0; 1367 mddev->chunk_sectors = sb->chunk_size >> 9; 1368 mddev->ctime = sb->ctime; 1369 mddev->utime = sb->utime; 1370 mddev->level = sb->level; 1371 mddev->clevel[0] = 0; 1372 mddev->layout = sb->layout; 1373 mddev->raid_disks = sb->raid_disks; 1374 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1375 mddev->events = ev1; 1376 mddev->bitmap_info.offset = 0; 1377 mddev->bitmap_info.space = 0; 1378 /* bitmap can use 60 K after the 4K superblocks */ 1379 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1380 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1381 mddev->reshape_backwards = 0; 1382 1383 if (mddev->minor_version >= 91) { 1384 mddev->reshape_position = sb->reshape_position; 1385 mddev->delta_disks = sb->delta_disks; 1386 mddev->new_level = sb->new_level; 1387 mddev->new_layout = sb->new_layout; 1388 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1389 if (mddev->delta_disks < 0) 1390 mddev->reshape_backwards = 1; 1391 } else { 1392 mddev->reshape_position = MaxSector; 1393 mddev->delta_disks = 0; 1394 mddev->new_level = mddev->level; 1395 mddev->new_layout = mddev->layout; 1396 mddev->new_chunk_sectors = mddev->chunk_sectors; 1397 } 1398 if (mddev->level == 0) 1399 mddev->layout = -1; 1400 1401 if (sb->state & (1<<MD_SB_CLEAN)) 1402 mddev->recovery_cp = MaxSector; 1403 else { 1404 if (sb->events_hi == sb->cp_events_hi && 1405 sb->events_lo == sb->cp_events_lo) { 1406 mddev->recovery_cp = sb->recovery_cp; 1407 } else 1408 mddev->recovery_cp = 0; 1409 } 1410 1411 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1412 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1413 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1414 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1415 1416 mddev->max_disks = MD_SB_DISKS; 1417 1418 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1419 mddev->bitmap_info.file == NULL) { 1420 mddev->bitmap_info.offset = 1421 mddev->bitmap_info.default_offset; 1422 mddev->bitmap_info.space = 1423 mddev->bitmap_info.default_space; 1424 } 1425 1426 } else if (mddev->pers == NULL) { 1427 /* Insist on good event counter while assembling, except 1428 * for spares (which don't need an event count) */ 1429 ++ev1; 1430 if (sb->disks[rdev->desc_nr].state & ( 1431 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1432 if (ev1 < mddev->events) 1433 return -EINVAL; 1434 } else if (mddev->bitmap) { 1435 /* if adding to array with a bitmap, then we can accept an 1436 * older device ... but not too old. 1437 */ 1438 if (ev1 < mddev->bitmap->events_cleared) 1439 return 0; 1440 if (ev1 < mddev->events) 1441 set_bit(Bitmap_sync, &rdev->flags); 1442 } else { 1443 if (ev1 < mddev->events) 1444 /* just a hot-add of a new device, leave raid_disk at -1 */ 1445 return 0; 1446 } 1447 1448 if (mddev->level != LEVEL_MULTIPATH) { 1449 desc = sb->disks + rdev->desc_nr; 1450 1451 if (desc->state & (1<<MD_DISK_FAULTY)) 1452 set_bit(Faulty, &rdev->flags); 1453 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1454 desc->raid_disk < mddev->raid_disks */) { 1455 set_bit(In_sync, &rdev->flags); 1456 rdev->raid_disk = desc->raid_disk; 1457 rdev->saved_raid_disk = desc->raid_disk; 1458 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1459 /* active but not in sync implies recovery up to 1460 * reshape position. We don't know exactly where 1461 * that is, so set to zero for now */ 1462 if (mddev->minor_version >= 91) { 1463 rdev->recovery_offset = 0; 1464 rdev->raid_disk = desc->raid_disk; 1465 } 1466 } 1467 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1468 set_bit(WriteMostly, &rdev->flags); 1469 if (desc->state & (1<<MD_DISK_FAILFAST)) 1470 set_bit(FailFast, &rdev->flags); 1471 } else /* MULTIPATH are always insync */ 1472 set_bit(In_sync, &rdev->flags); 1473 return 0; 1474 } 1475 1476 /* 1477 * sync_super for 0.90.0 1478 */ 1479 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1480 { 1481 mdp_super_t *sb; 1482 struct md_rdev *rdev2; 1483 int next_spare = mddev->raid_disks; 1484 1485 /* make rdev->sb match mddev data.. 1486 * 1487 * 1/ zero out disks 1488 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1489 * 3/ any empty disks < next_spare become removed 1490 * 1491 * disks[0] gets initialised to REMOVED because 1492 * we cannot be sure from other fields if it has 1493 * been initialised or not. 1494 */ 1495 int i; 1496 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1497 1498 rdev->sb_size = MD_SB_BYTES; 1499 1500 sb = page_address(rdev->sb_page); 1501 1502 memset(sb, 0, sizeof(*sb)); 1503 1504 sb->md_magic = MD_SB_MAGIC; 1505 sb->major_version = mddev->major_version; 1506 sb->patch_version = mddev->patch_version; 1507 sb->gvalid_words = 0; /* ignored */ 1508 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1509 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1510 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1511 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1512 1513 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1514 sb->level = mddev->level; 1515 sb->size = mddev->dev_sectors / 2; 1516 sb->raid_disks = mddev->raid_disks; 1517 sb->md_minor = mddev->md_minor; 1518 sb->not_persistent = 0; 1519 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1520 sb->state = 0; 1521 sb->events_hi = (mddev->events>>32); 1522 sb->events_lo = (u32)mddev->events; 1523 1524 if (mddev->reshape_position == MaxSector) 1525 sb->minor_version = 90; 1526 else { 1527 sb->minor_version = 91; 1528 sb->reshape_position = mddev->reshape_position; 1529 sb->new_level = mddev->new_level; 1530 sb->delta_disks = mddev->delta_disks; 1531 sb->new_layout = mddev->new_layout; 1532 sb->new_chunk = mddev->new_chunk_sectors << 9; 1533 } 1534 mddev->minor_version = sb->minor_version; 1535 if (mddev->in_sync) 1536 { 1537 sb->recovery_cp = mddev->recovery_cp; 1538 sb->cp_events_hi = (mddev->events>>32); 1539 sb->cp_events_lo = (u32)mddev->events; 1540 if (mddev->recovery_cp == MaxSector) 1541 sb->state = (1<< MD_SB_CLEAN); 1542 } else 1543 sb->recovery_cp = 0; 1544 1545 sb->layout = mddev->layout; 1546 sb->chunk_size = mddev->chunk_sectors << 9; 1547 1548 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1549 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1550 1551 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1552 rdev_for_each(rdev2, mddev) { 1553 mdp_disk_t *d; 1554 int desc_nr; 1555 int is_active = test_bit(In_sync, &rdev2->flags); 1556 1557 if (rdev2->raid_disk >= 0 && 1558 sb->minor_version >= 91) 1559 /* we have nowhere to store the recovery_offset, 1560 * but if it is not below the reshape_position, 1561 * we can piggy-back on that. 1562 */ 1563 is_active = 1; 1564 if (rdev2->raid_disk < 0 || 1565 test_bit(Faulty, &rdev2->flags)) 1566 is_active = 0; 1567 if (is_active) 1568 desc_nr = rdev2->raid_disk; 1569 else 1570 desc_nr = next_spare++; 1571 rdev2->desc_nr = desc_nr; 1572 d = &sb->disks[rdev2->desc_nr]; 1573 nr_disks++; 1574 d->number = rdev2->desc_nr; 1575 d->major = MAJOR(rdev2->bdev->bd_dev); 1576 d->minor = MINOR(rdev2->bdev->bd_dev); 1577 if (is_active) 1578 d->raid_disk = rdev2->raid_disk; 1579 else 1580 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1581 if (test_bit(Faulty, &rdev2->flags)) 1582 d->state = (1<<MD_DISK_FAULTY); 1583 else if (is_active) { 1584 d->state = (1<<MD_DISK_ACTIVE); 1585 if (test_bit(In_sync, &rdev2->flags)) 1586 d->state |= (1<<MD_DISK_SYNC); 1587 active++; 1588 working++; 1589 } else { 1590 d->state = 0; 1591 spare++; 1592 working++; 1593 } 1594 if (test_bit(WriteMostly, &rdev2->flags)) 1595 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1596 if (test_bit(FailFast, &rdev2->flags)) 1597 d->state |= (1<<MD_DISK_FAILFAST); 1598 } 1599 /* now set the "removed" and "faulty" bits on any missing devices */ 1600 for (i=0 ; i < mddev->raid_disks ; i++) { 1601 mdp_disk_t *d = &sb->disks[i]; 1602 if (d->state == 0 && d->number == 0) { 1603 d->number = i; 1604 d->raid_disk = i; 1605 d->state = (1<<MD_DISK_REMOVED); 1606 d->state |= (1<<MD_DISK_FAULTY); 1607 failed++; 1608 } 1609 } 1610 sb->nr_disks = nr_disks; 1611 sb->active_disks = active; 1612 sb->working_disks = working; 1613 sb->failed_disks = failed; 1614 sb->spare_disks = spare; 1615 1616 sb->this_disk = sb->disks[rdev->desc_nr]; 1617 sb->sb_csum = calc_sb_csum(sb); 1618 } 1619 1620 /* 1621 * rdev_size_change for 0.90.0 1622 */ 1623 static unsigned long long 1624 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1625 { 1626 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1627 return 0; /* component must fit device */ 1628 if (rdev->mddev->bitmap_info.offset) 1629 return 0; /* can't move bitmap */ 1630 rdev->sb_start = calc_dev_sboffset(rdev); 1631 if (!num_sectors || num_sectors > rdev->sb_start) 1632 num_sectors = rdev->sb_start; 1633 /* Limit to 4TB as metadata cannot record more than that. 1634 * 4TB == 2^32 KB, or 2*2^32 sectors. 1635 */ 1636 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1637 num_sectors = (sector_t)(2ULL << 32) - 2; 1638 do { 1639 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1640 rdev->sb_page); 1641 } while (md_super_wait(rdev->mddev) < 0); 1642 return num_sectors; 1643 } 1644 1645 static int 1646 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1647 { 1648 /* non-zero offset changes not possible with v0.90 */ 1649 return new_offset == 0; 1650 } 1651 1652 /* 1653 * version 1 superblock 1654 */ 1655 1656 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1657 { 1658 __le32 disk_csum; 1659 u32 csum; 1660 unsigned long long newcsum; 1661 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1662 __le32 *isuper = (__le32*)sb; 1663 1664 disk_csum = sb->sb_csum; 1665 sb->sb_csum = 0; 1666 newcsum = 0; 1667 for (; size >= 4; size -= 4) 1668 newcsum += le32_to_cpu(*isuper++); 1669 1670 if (size == 2) 1671 newcsum += le16_to_cpu(*(__le16*) isuper); 1672 1673 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1674 sb->sb_csum = disk_csum; 1675 return cpu_to_le32(csum); 1676 } 1677 1678 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1679 { 1680 struct mdp_superblock_1 *sb; 1681 int ret; 1682 sector_t sb_start; 1683 sector_t sectors; 1684 int bmask; 1685 bool spare_disk = true; 1686 1687 /* 1688 * Calculate the position of the superblock in 512byte sectors. 1689 * It is always aligned to a 4K boundary and 1690 * depeding on minor_version, it can be: 1691 * 0: At least 8K, but less than 12K, from end of device 1692 * 1: At start of device 1693 * 2: 4K from start of device. 1694 */ 1695 switch(minor_version) { 1696 case 0: 1697 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1698 sb_start &= ~(sector_t)(4*2-1); 1699 break; 1700 case 1: 1701 sb_start = 0; 1702 break; 1703 case 2: 1704 sb_start = 8; 1705 break; 1706 default: 1707 return -EINVAL; 1708 } 1709 rdev->sb_start = sb_start; 1710 1711 /* superblock is rarely larger than 1K, but it can be larger, 1712 * and it is safe to read 4k, so we do that 1713 */ 1714 ret = read_disk_sb(rdev, 4096); 1715 if (ret) return ret; 1716 1717 sb = page_address(rdev->sb_page); 1718 1719 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1720 sb->major_version != cpu_to_le32(1) || 1721 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1722 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1723 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1724 return -EINVAL; 1725 1726 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1727 pr_warn("md: invalid superblock checksum on %pg\n", 1728 rdev->bdev); 1729 return -EINVAL; 1730 } 1731 if (le64_to_cpu(sb->data_size) < 10) { 1732 pr_warn("md: data_size too small on %pg\n", 1733 rdev->bdev); 1734 return -EINVAL; 1735 } 1736 if (sb->pad0 || 1737 sb->pad3[0] || 1738 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1739 /* Some padding is non-zero, might be a new feature */ 1740 return -EINVAL; 1741 1742 rdev->preferred_minor = 0xffff; 1743 rdev->data_offset = le64_to_cpu(sb->data_offset); 1744 rdev->new_data_offset = rdev->data_offset; 1745 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1746 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1747 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1748 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1749 1750 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1751 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1752 if (rdev->sb_size & bmask) 1753 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1754 1755 if (minor_version 1756 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1757 return -EINVAL; 1758 if (minor_version 1759 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1760 return -EINVAL; 1761 1762 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1763 rdev->desc_nr = -1; 1764 else 1765 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1766 1767 if (!rdev->bb_page) { 1768 rdev->bb_page = alloc_page(GFP_KERNEL); 1769 if (!rdev->bb_page) 1770 return -ENOMEM; 1771 } 1772 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1773 rdev->badblocks.count == 0) { 1774 /* need to load the bad block list. 1775 * Currently we limit it to one page. 1776 */ 1777 s32 offset; 1778 sector_t bb_sector; 1779 __le64 *bbp; 1780 int i; 1781 int sectors = le16_to_cpu(sb->bblog_size); 1782 if (sectors > (PAGE_SIZE / 512)) 1783 return -EINVAL; 1784 offset = le32_to_cpu(sb->bblog_offset); 1785 if (offset == 0) 1786 return -EINVAL; 1787 bb_sector = (long long)offset; 1788 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1789 rdev->bb_page, REQ_OP_READ, true)) 1790 return -EIO; 1791 bbp = (__le64 *)page_address(rdev->bb_page); 1792 rdev->badblocks.shift = sb->bblog_shift; 1793 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1794 u64 bb = le64_to_cpu(*bbp); 1795 int count = bb & (0x3ff); 1796 u64 sector = bb >> 10; 1797 sector <<= sb->bblog_shift; 1798 count <<= sb->bblog_shift; 1799 if (bb + 1 == 0) 1800 break; 1801 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1802 return -EINVAL; 1803 } 1804 } else if (sb->bblog_offset != 0) 1805 rdev->badblocks.shift = 0; 1806 1807 if ((le32_to_cpu(sb->feature_map) & 1808 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1809 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1810 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1811 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1812 } 1813 1814 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1815 sb->level != 0) 1816 return -EINVAL; 1817 1818 /* not spare disk, or LEVEL_MULTIPATH */ 1819 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1820 (rdev->desc_nr >= 0 && 1821 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1822 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1823 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1824 spare_disk = false; 1825 1826 if (!refdev) { 1827 if (!spare_disk) 1828 ret = 1; 1829 else 1830 ret = 0; 1831 } else { 1832 __u64 ev1, ev2; 1833 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1834 1835 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1836 sb->level != refsb->level || 1837 sb->layout != refsb->layout || 1838 sb->chunksize != refsb->chunksize) { 1839 pr_warn("md: %pg has strangely different superblock to %pg\n", 1840 rdev->bdev, 1841 refdev->bdev); 1842 return -EINVAL; 1843 } 1844 ev1 = le64_to_cpu(sb->events); 1845 ev2 = le64_to_cpu(refsb->events); 1846 1847 if (!spare_disk && ev1 > ev2) 1848 ret = 1; 1849 else 1850 ret = 0; 1851 } 1852 if (minor_version) 1853 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1854 else 1855 sectors = rdev->sb_start; 1856 if (sectors < le64_to_cpu(sb->data_size)) 1857 return -EINVAL; 1858 rdev->sectors = le64_to_cpu(sb->data_size); 1859 return ret; 1860 } 1861 1862 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1863 { 1864 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1865 __u64 ev1 = le64_to_cpu(sb->events); 1866 1867 rdev->raid_disk = -1; 1868 clear_bit(Faulty, &rdev->flags); 1869 clear_bit(In_sync, &rdev->flags); 1870 clear_bit(Bitmap_sync, &rdev->flags); 1871 clear_bit(WriteMostly, &rdev->flags); 1872 1873 if (mddev->raid_disks == 0) { 1874 mddev->major_version = 1; 1875 mddev->patch_version = 0; 1876 mddev->external = 0; 1877 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1878 mddev->ctime = le64_to_cpu(sb->ctime); 1879 mddev->utime = le64_to_cpu(sb->utime); 1880 mddev->level = le32_to_cpu(sb->level); 1881 mddev->clevel[0] = 0; 1882 mddev->layout = le32_to_cpu(sb->layout); 1883 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1884 mddev->dev_sectors = le64_to_cpu(sb->size); 1885 mddev->events = ev1; 1886 mddev->bitmap_info.offset = 0; 1887 mddev->bitmap_info.space = 0; 1888 /* Default location for bitmap is 1K after superblock 1889 * using 3K - total of 4K 1890 */ 1891 mddev->bitmap_info.default_offset = 1024 >> 9; 1892 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1893 mddev->reshape_backwards = 0; 1894 1895 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1896 memcpy(mddev->uuid, sb->set_uuid, 16); 1897 1898 mddev->max_disks = (4096-256)/2; 1899 1900 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1901 mddev->bitmap_info.file == NULL) { 1902 mddev->bitmap_info.offset = 1903 (__s32)le32_to_cpu(sb->bitmap_offset); 1904 /* Metadata doesn't record how much space is available. 1905 * For 1.0, we assume we can use up to the superblock 1906 * if before, else to 4K beyond superblock. 1907 * For others, assume no change is possible. 1908 */ 1909 if (mddev->minor_version > 0) 1910 mddev->bitmap_info.space = 0; 1911 else if (mddev->bitmap_info.offset > 0) 1912 mddev->bitmap_info.space = 1913 8 - mddev->bitmap_info.offset; 1914 else 1915 mddev->bitmap_info.space = 1916 -mddev->bitmap_info.offset; 1917 } 1918 1919 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1920 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1921 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1922 mddev->new_level = le32_to_cpu(sb->new_level); 1923 mddev->new_layout = le32_to_cpu(sb->new_layout); 1924 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1925 if (mddev->delta_disks < 0 || 1926 (mddev->delta_disks == 0 && 1927 (le32_to_cpu(sb->feature_map) 1928 & MD_FEATURE_RESHAPE_BACKWARDS))) 1929 mddev->reshape_backwards = 1; 1930 } else { 1931 mddev->reshape_position = MaxSector; 1932 mddev->delta_disks = 0; 1933 mddev->new_level = mddev->level; 1934 mddev->new_layout = mddev->layout; 1935 mddev->new_chunk_sectors = mddev->chunk_sectors; 1936 } 1937 1938 if (mddev->level == 0 && 1939 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1940 mddev->layout = -1; 1941 1942 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1943 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1944 1945 if (le32_to_cpu(sb->feature_map) & 1946 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1947 if (le32_to_cpu(sb->feature_map) & 1948 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1949 return -EINVAL; 1950 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1951 (le32_to_cpu(sb->feature_map) & 1952 MD_FEATURE_MULTIPLE_PPLS)) 1953 return -EINVAL; 1954 set_bit(MD_HAS_PPL, &mddev->flags); 1955 } 1956 } else if (mddev->pers == NULL) { 1957 /* Insist of good event counter while assembling, except for 1958 * spares (which don't need an event count) */ 1959 ++ev1; 1960 if (rdev->desc_nr >= 0 && 1961 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1962 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1963 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1964 if (ev1 < mddev->events) 1965 return -EINVAL; 1966 } else if (mddev->bitmap) { 1967 /* If adding to array with a bitmap, then we can accept an 1968 * older device, but not too old. 1969 */ 1970 if (ev1 < mddev->bitmap->events_cleared) 1971 return 0; 1972 if (ev1 < mddev->events) 1973 set_bit(Bitmap_sync, &rdev->flags); 1974 } else { 1975 if (ev1 < mddev->events) 1976 /* just a hot-add of a new device, leave raid_disk at -1 */ 1977 return 0; 1978 } 1979 if (mddev->level != LEVEL_MULTIPATH) { 1980 int role; 1981 if (rdev->desc_nr < 0 || 1982 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1983 role = MD_DISK_ROLE_SPARE; 1984 rdev->desc_nr = -1; 1985 } else 1986 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1987 switch(role) { 1988 case MD_DISK_ROLE_SPARE: /* spare */ 1989 break; 1990 case MD_DISK_ROLE_FAULTY: /* faulty */ 1991 set_bit(Faulty, &rdev->flags); 1992 break; 1993 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1994 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1995 /* journal device without journal feature */ 1996 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1997 return -EINVAL; 1998 } 1999 set_bit(Journal, &rdev->flags); 2000 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 2001 rdev->raid_disk = 0; 2002 break; 2003 default: 2004 rdev->saved_raid_disk = role; 2005 if ((le32_to_cpu(sb->feature_map) & 2006 MD_FEATURE_RECOVERY_OFFSET)) { 2007 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 2008 if (!(le32_to_cpu(sb->feature_map) & 2009 MD_FEATURE_RECOVERY_BITMAP)) 2010 rdev->saved_raid_disk = -1; 2011 } else { 2012 /* 2013 * If the array is FROZEN, then the device can't 2014 * be in_sync with rest of array. 2015 */ 2016 if (!test_bit(MD_RECOVERY_FROZEN, 2017 &mddev->recovery)) 2018 set_bit(In_sync, &rdev->flags); 2019 } 2020 rdev->raid_disk = role; 2021 break; 2022 } 2023 if (sb->devflags & WriteMostly1) 2024 set_bit(WriteMostly, &rdev->flags); 2025 if (sb->devflags & FailFast1) 2026 set_bit(FailFast, &rdev->flags); 2027 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 2028 set_bit(Replacement, &rdev->flags); 2029 } else /* MULTIPATH are always insync */ 2030 set_bit(In_sync, &rdev->flags); 2031 2032 return 0; 2033 } 2034 2035 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 2036 { 2037 struct mdp_superblock_1 *sb; 2038 struct md_rdev *rdev2; 2039 int max_dev, i; 2040 /* make rdev->sb match mddev and rdev data. */ 2041 2042 sb = page_address(rdev->sb_page); 2043 2044 sb->feature_map = 0; 2045 sb->pad0 = 0; 2046 sb->recovery_offset = cpu_to_le64(0); 2047 memset(sb->pad3, 0, sizeof(sb->pad3)); 2048 2049 sb->utime = cpu_to_le64((__u64)mddev->utime); 2050 sb->events = cpu_to_le64(mddev->events); 2051 if (mddev->in_sync) 2052 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2053 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2054 sb->resync_offset = cpu_to_le64(MaxSector); 2055 else 2056 sb->resync_offset = cpu_to_le64(0); 2057 2058 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2059 2060 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2061 sb->size = cpu_to_le64(mddev->dev_sectors); 2062 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2063 sb->level = cpu_to_le32(mddev->level); 2064 sb->layout = cpu_to_le32(mddev->layout); 2065 if (test_bit(FailFast, &rdev->flags)) 2066 sb->devflags |= FailFast1; 2067 else 2068 sb->devflags &= ~FailFast1; 2069 2070 if (test_bit(WriteMostly, &rdev->flags)) 2071 sb->devflags |= WriteMostly1; 2072 else 2073 sb->devflags &= ~WriteMostly1; 2074 sb->data_offset = cpu_to_le64(rdev->data_offset); 2075 sb->data_size = cpu_to_le64(rdev->sectors); 2076 2077 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2078 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2079 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2080 } 2081 2082 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2083 !test_bit(In_sync, &rdev->flags)) { 2084 sb->feature_map |= 2085 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2086 sb->recovery_offset = 2087 cpu_to_le64(rdev->recovery_offset); 2088 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2089 sb->feature_map |= 2090 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2091 } 2092 /* Note: recovery_offset and journal_tail share space */ 2093 if (test_bit(Journal, &rdev->flags)) 2094 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2095 if (test_bit(Replacement, &rdev->flags)) 2096 sb->feature_map |= 2097 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2098 2099 if (mddev->reshape_position != MaxSector) { 2100 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2101 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2102 sb->new_layout = cpu_to_le32(mddev->new_layout); 2103 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2104 sb->new_level = cpu_to_le32(mddev->new_level); 2105 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2106 if (mddev->delta_disks == 0 && 2107 mddev->reshape_backwards) 2108 sb->feature_map 2109 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2110 if (rdev->new_data_offset != rdev->data_offset) { 2111 sb->feature_map 2112 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2113 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2114 - rdev->data_offset)); 2115 } 2116 } 2117 2118 if (mddev_is_clustered(mddev)) 2119 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2120 2121 if (rdev->badblocks.count == 0) 2122 /* Nothing to do for bad blocks*/ ; 2123 else if (sb->bblog_offset == 0) 2124 /* Cannot record bad blocks on this device */ 2125 md_error(mddev, rdev); 2126 else { 2127 struct badblocks *bb = &rdev->badblocks; 2128 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2129 u64 *p = bb->page; 2130 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2131 if (bb->changed) { 2132 unsigned seq; 2133 2134 retry: 2135 seq = read_seqbegin(&bb->lock); 2136 2137 memset(bbp, 0xff, PAGE_SIZE); 2138 2139 for (i = 0 ; i < bb->count ; i++) { 2140 u64 internal_bb = p[i]; 2141 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2142 | BB_LEN(internal_bb)); 2143 bbp[i] = cpu_to_le64(store_bb); 2144 } 2145 bb->changed = 0; 2146 if (read_seqretry(&bb->lock, seq)) 2147 goto retry; 2148 2149 bb->sector = (rdev->sb_start + 2150 (int)le32_to_cpu(sb->bblog_offset)); 2151 bb->size = le16_to_cpu(sb->bblog_size); 2152 } 2153 } 2154 2155 max_dev = 0; 2156 rdev_for_each(rdev2, mddev) 2157 if (rdev2->desc_nr+1 > max_dev) 2158 max_dev = rdev2->desc_nr+1; 2159 2160 if (max_dev > le32_to_cpu(sb->max_dev)) { 2161 int bmask; 2162 sb->max_dev = cpu_to_le32(max_dev); 2163 rdev->sb_size = max_dev * 2 + 256; 2164 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2165 if (rdev->sb_size & bmask) 2166 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2167 } else 2168 max_dev = le32_to_cpu(sb->max_dev); 2169 2170 for (i=0; i<max_dev;i++) 2171 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2172 2173 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2174 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2175 2176 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2177 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2178 sb->feature_map |= 2179 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2180 else 2181 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2182 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2183 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2184 } 2185 2186 rdev_for_each(rdev2, mddev) { 2187 i = rdev2->desc_nr; 2188 if (test_bit(Faulty, &rdev2->flags)) 2189 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2190 else if (test_bit(In_sync, &rdev2->flags)) 2191 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2192 else if (test_bit(Journal, &rdev2->flags)) 2193 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2194 else if (rdev2->raid_disk >= 0) 2195 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2196 else 2197 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2198 } 2199 2200 sb->sb_csum = calc_sb_1_csum(sb); 2201 } 2202 2203 static sector_t super_1_choose_bm_space(sector_t dev_size) 2204 { 2205 sector_t bm_space; 2206 2207 /* if the device is bigger than 8Gig, save 64k for bitmap 2208 * usage, if bigger than 200Gig, save 128k 2209 */ 2210 if (dev_size < 64*2) 2211 bm_space = 0; 2212 else if (dev_size - 64*2 >= 200*1024*1024*2) 2213 bm_space = 128*2; 2214 else if (dev_size - 4*2 > 8*1024*1024*2) 2215 bm_space = 64*2; 2216 else 2217 bm_space = 4*2; 2218 return bm_space; 2219 } 2220 2221 static unsigned long long 2222 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2223 { 2224 struct mdp_superblock_1 *sb; 2225 sector_t max_sectors; 2226 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2227 return 0; /* component must fit device */ 2228 if (rdev->data_offset != rdev->new_data_offset) 2229 return 0; /* too confusing */ 2230 if (rdev->sb_start < rdev->data_offset) { 2231 /* minor versions 1 and 2; superblock before data */ 2232 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2233 if (!num_sectors || num_sectors > max_sectors) 2234 num_sectors = max_sectors; 2235 } else if (rdev->mddev->bitmap_info.offset) { 2236 /* minor version 0 with bitmap we can't move */ 2237 return 0; 2238 } else { 2239 /* minor version 0; superblock after data */ 2240 sector_t sb_start, bm_space; 2241 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2242 2243 /* 8K is for superblock */ 2244 sb_start = dev_size - 8*2; 2245 sb_start &= ~(sector_t)(4*2 - 1); 2246 2247 bm_space = super_1_choose_bm_space(dev_size); 2248 2249 /* Space that can be used to store date needs to decrease 2250 * superblock bitmap space and bad block space(4K) 2251 */ 2252 max_sectors = sb_start - bm_space - 4*2; 2253 2254 if (!num_sectors || num_sectors > max_sectors) 2255 num_sectors = max_sectors; 2256 rdev->sb_start = sb_start; 2257 } 2258 sb = page_address(rdev->sb_page); 2259 sb->data_size = cpu_to_le64(num_sectors); 2260 sb->super_offset = cpu_to_le64(rdev->sb_start); 2261 sb->sb_csum = calc_sb_1_csum(sb); 2262 do { 2263 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2264 rdev->sb_page); 2265 } while (md_super_wait(rdev->mddev) < 0); 2266 return num_sectors; 2267 2268 } 2269 2270 static int 2271 super_1_allow_new_offset(struct md_rdev *rdev, 2272 unsigned long long new_offset) 2273 { 2274 /* All necessary checks on new >= old have been done */ 2275 struct bitmap *bitmap; 2276 if (new_offset >= rdev->data_offset) 2277 return 1; 2278 2279 /* with 1.0 metadata, there is no metadata to tread on 2280 * so we can always move back */ 2281 if (rdev->mddev->minor_version == 0) 2282 return 1; 2283 2284 /* otherwise we must be sure not to step on 2285 * any metadata, so stay: 2286 * 36K beyond start of superblock 2287 * beyond end of badblocks 2288 * beyond write-intent bitmap 2289 */ 2290 if (rdev->sb_start + (32+4)*2 > new_offset) 2291 return 0; 2292 bitmap = rdev->mddev->bitmap; 2293 if (bitmap && !rdev->mddev->bitmap_info.file && 2294 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2295 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2296 return 0; 2297 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2298 return 0; 2299 2300 return 1; 2301 } 2302 2303 static struct super_type super_types[] = { 2304 [0] = { 2305 .name = "0.90.0", 2306 .owner = THIS_MODULE, 2307 .load_super = super_90_load, 2308 .validate_super = super_90_validate, 2309 .sync_super = super_90_sync, 2310 .rdev_size_change = super_90_rdev_size_change, 2311 .allow_new_offset = super_90_allow_new_offset, 2312 }, 2313 [1] = { 2314 .name = "md-1", 2315 .owner = THIS_MODULE, 2316 .load_super = super_1_load, 2317 .validate_super = super_1_validate, 2318 .sync_super = super_1_sync, 2319 .rdev_size_change = super_1_rdev_size_change, 2320 .allow_new_offset = super_1_allow_new_offset, 2321 }, 2322 }; 2323 2324 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2325 { 2326 if (mddev->sync_super) { 2327 mddev->sync_super(mddev, rdev); 2328 return; 2329 } 2330 2331 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2332 2333 super_types[mddev->major_version].sync_super(mddev, rdev); 2334 } 2335 2336 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2337 { 2338 struct md_rdev *rdev, *rdev2; 2339 2340 rcu_read_lock(); 2341 rdev_for_each_rcu(rdev, mddev1) { 2342 if (test_bit(Faulty, &rdev->flags) || 2343 test_bit(Journal, &rdev->flags) || 2344 rdev->raid_disk == -1) 2345 continue; 2346 rdev_for_each_rcu(rdev2, mddev2) { 2347 if (test_bit(Faulty, &rdev2->flags) || 2348 test_bit(Journal, &rdev2->flags) || 2349 rdev2->raid_disk == -1) 2350 continue; 2351 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2352 rcu_read_unlock(); 2353 return 1; 2354 } 2355 } 2356 } 2357 rcu_read_unlock(); 2358 return 0; 2359 } 2360 2361 static LIST_HEAD(pending_raid_disks); 2362 2363 /* 2364 * Try to register data integrity profile for an mddev 2365 * 2366 * This is called when an array is started and after a disk has been kicked 2367 * from the array. It only succeeds if all working and active component devices 2368 * are integrity capable with matching profiles. 2369 */ 2370 int md_integrity_register(struct mddev *mddev) 2371 { 2372 struct md_rdev *rdev, *reference = NULL; 2373 2374 if (list_empty(&mddev->disks)) 2375 return 0; /* nothing to do */ 2376 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2377 return 0; /* shouldn't register, or already is */ 2378 rdev_for_each(rdev, mddev) { 2379 /* skip spares and non-functional disks */ 2380 if (test_bit(Faulty, &rdev->flags)) 2381 continue; 2382 if (rdev->raid_disk < 0) 2383 continue; 2384 if (!reference) { 2385 /* Use the first rdev as the reference */ 2386 reference = rdev; 2387 continue; 2388 } 2389 /* does this rdev's profile match the reference profile? */ 2390 if (blk_integrity_compare(reference->bdev->bd_disk, 2391 rdev->bdev->bd_disk) < 0) 2392 return -EINVAL; 2393 } 2394 if (!reference || !bdev_get_integrity(reference->bdev)) 2395 return 0; 2396 /* 2397 * All component devices are integrity capable and have matching 2398 * profiles, register the common profile for the md device. 2399 */ 2400 blk_integrity_register(mddev->gendisk, 2401 bdev_get_integrity(reference->bdev)); 2402 2403 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2404 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2405 (mddev->level != 1 && mddev->level != 10 && 2406 bioset_integrity_create(&mddev->io_clone_set, BIO_POOL_SIZE))) { 2407 /* 2408 * No need to handle the failure of bioset_integrity_create, 2409 * because the function is called by md_run() -> pers->run(), 2410 * md_run calls bioset_exit -> bioset_integrity_free in case 2411 * of failure case. 2412 */ 2413 pr_err("md: failed to create integrity pool for %s\n", 2414 mdname(mddev)); 2415 return -EINVAL; 2416 } 2417 return 0; 2418 } 2419 EXPORT_SYMBOL(md_integrity_register); 2420 2421 /* 2422 * Attempt to add an rdev, but only if it is consistent with the current 2423 * integrity profile 2424 */ 2425 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2426 { 2427 struct blk_integrity *bi_mddev; 2428 2429 if (!mddev->gendisk) 2430 return 0; 2431 2432 bi_mddev = blk_get_integrity(mddev->gendisk); 2433 2434 if (!bi_mddev) /* nothing to do */ 2435 return 0; 2436 2437 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2438 pr_err("%s: incompatible integrity profile for %pg\n", 2439 mdname(mddev), rdev->bdev); 2440 return -ENXIO; 2441 } 2442 2443 return 0; 2444 } 2445 EXPORT_SYMBOL(md_integrity_add_rdev); 2446 2447 static bool rdev_read_only(struct md_rdev *rdev) 2448 { 2449 return bdev_read_only(rdev->bdev) || 2450 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2451 } 2452 2453 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2454 { 2455 char b[BDEVNAME_SIZE]; 2456 int err; 2457 2458 /* prevent duplicates */ 2459 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2460 return -EEXIST; 2461 2462 if (rdev_read_only(rdev) && mddev->pers) 2463 return -EROFS; 2464 2465 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2466 if (!test_bit(Journal, &rdev->flags) && 2467 rdev->sectors && 2468 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2469 if (mddev->pers) { 2470 /* Cannot change size, so fail 2471 * If mddev->level <= 0, then we don't care 2472 * about aligning sizes (e.g. linear) 2473 */ 2474 if (mddev->level > 0) 2475 return -ENOSPC; 2476 } else 2477 mddev->dev_sectors = rdev->sectors; 2478 } 2479 2480 /* Verify rdev->desc_nr is unique. 2481 * If it is -1, assign a free number, else 2482 * check number is not in use 2483 */ 2484 rcu_read_lock(); 2485 if (rdev->desc_nr < 0) { 2486 int choice = 0; 2487 if (mddev->pers) 2488 choice = mddev->raid_disks; 2489 while (md_find_rdev_nr_rcu(mddev, choice)) 2490 choice++; 2491 rdev->desc_nr = choice; 2492 } else { 2493 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2494 rcu_read_unlock(); 2495 return -EBUSY; 2496 } 2497 } 2498 rcu_read_unlock(); 2499 if (!test_bit(Journal, &rdev->flags) && 2500 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2501 pr_warn("md: %s: array is limited to %d devices\n", 2502 mdname(mddev), mddev->max_disks); 2503 return -EBUSY; 2504 } 2505 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2506 strreplace(b, '/', '!'); 2507 2508 rdev->mddev = mddev; 2509 pr_debug("md: bind<%s>\n", b); 2510 2511 if (mddev->raid_disks) 2512 mddev_create_serial_pool(mddev, rdev); 2513 2514 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2515 goto fail; 2516 2517 /* failure here is OK */ 2518 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2519 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2520 rdev->sysfs_unack_badblocks = 2521 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2522 rdev->sysfs_badblocks = 2523 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2524 2525 list_add_rcu(&rdev->same_set, &mddev->disks); 2526 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2527 2528 /* May as well allow recovery to be retried once */ 2529 mddev->recovery_disabled++; 2530 2531 return 0; 2532 2533 fail: 2534 pr_warn("md: failed to register dev-%s for %s\n", 2535 b, mdname(mddev)); 2536 return err; 2537 } 2538 2539 void md_autodetect_dev(dev_t dev); 2540 2541 /* just for claiming the bdev */ 2542 static struct md_rdev claim_rdev; 2543 2544 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev) 2545 { 2546 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2547 md_rdev_clear(rdev); 2548 #ifndef MODULE 2549 if (test_bit(AutoDetected, &rdev->flags)) 2550 md_autodetect_dev(rdev->bdev->bd_dev); 2551 #endif 2552 bdev_release(rdev->bdev_handle); 2553 rdev->bdev = NULL; 2554 kobject_put(&rdev->kobj); 2555 } 2556 2557 static void md_kick_rdev_from_array(struct md_rdev *rdev) 2558 { 2559 struct mddev *mddev = rdev->mddev; 2560 2561 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2562 list_del_rcu(&rdev->same_set); 2563 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2564 mddev_destroy_serial_pool(rdev->mddev, rdev); 2565 rdev->mddev = NULL; 2566 sysfs_remove_link(&rdev->kobj, "block"); 2567 sysfs_put(rdev->sysfs_state); 2568 sysfs_put(rdev->sysfs_unack_badblocks); 2569 sysfs_put(rdev->sysfs_badblocks); 2570 rdev->sysfs_state = NULL; 2571 rdev->sysfs_unack_badblocks = NULL; 2572 rdev->sysfs_badblocks = NULL; 2573 rdev->badblocks.count = 0; 2574 2575 synchronize_rcu(); 2576 2577 /* 2578 * kobject_del() will wait for all in progress writers to be done, where 2579 * reconfig_mutex is held, hence it can't be called under 2580 * reconfig_mutex and it's delayed to mddev_unlock(). 2581 */ 2582 list_add(&rdev->same_set, &mddev->deleting); 2583 } 2584 2585 static void export_array(struct mddev *mddev) 2586 { 2587 struct md_rdev *rdev; 2588 2589 while (!list_empty(&mddev->disks)) { 2590 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2591 same_set); 2592 md_kick_rdev_from_array(rdev); 2593 } 2594 mddev->raid_disks = 0; 2595 mddev->major_version = 0; 2596 } 2597 2598 static bool set_in_sync(struct mddev *mddev) 2599 { 2600 lockdep_assert_held(&mddev->lock); 2601 if (!mddev->in_sync) { 2602 mddev->sync_checkers++; 2603 spin_unlock(&mddev->lock); 2604 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2605 spin_lock(&mddev->lock); 2606 if (!mddev->in_sync && 2607 percpu_ref_is_zero(&mddev->writes_pending)) { 2608 mddev->in_sync = 1; 2609 /* 2610 * Ensure ->in_sync is visible before we clear 2611 * ->sync_checkers. 2612 */ 2613 smp_mb(); 2614 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2615 sysfs_notify_dirent_safe(mddev->sysfs_state); 2616 } 2617 if (--mddev->sync_checkers == 0) 2618 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2619 } 2620 if (mddev->safemode == 1) 2621 mddev->safemode = 0; 2622 return mddev->in_sync; 2623 } 2624 2625 static void sync_sbs(struct mddev *mddev, int nospares) 2626 { 2627 /* Update each superblock (in-memory image), but 2628 * if we are allowed to, skip spares which already 2629 * have the right event counter, or have one earlier 2630 * (which would mean they aren't being marked as dirty 2631 * with the rest of the array) 2632 */ 2633 struct md_rdev *rdev; 2634 rdev_for_each(rdev, mddev) { 2635 if (rdev->sb_events == mddev->events || 2636 (nospares && 2637 rdev->raid_disk < 0 && 2638 rdev->sb_events+1 == mddev->events)) { 2639 /* Don't update this superblock */ 2640 rdev->sb_loaded = 2; 2641 } else { 2642 sync_super(mddev, rdev); 2643 rdev->sb_loaded = 1; 2644 } 2645 } 2646 } 2647 2648 static bool does_sb_need_changing(struct mddev *mddev) 2649 { 2650 struct md_rdev *rdev = NULL, *iter; 2651 struct mdp_superblock_1 *sb; 2652 int role; 2653 2654 /* Find a good rdev */ 2655 rdev_for_each(iter, mddev) 2656 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2657 rdev = iter; 2658 break; 2659 } 2660 2661 /* No good device found. */ 2662 if (!rdev) 2663 return false; 2664 2665 sb = page_address(rdev->sb_page); 2666 /* Check if a device has become faulty or a spare become active */ 2667 rdev_for_each(rdev, mddev) { 2668 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2669 /* Device activated? */ 2670 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2671 !test_bit(Faulty, &rdev->flags)) 2672 return true; 2673 /* Device turned faulty? */ 2674 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2675 return true; 2676 } 2677 2678 /* Check if any mddev parameters have changed */ 2679 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2680 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2681 (mddev->layout != le32_to_cpu(sb->layout)) || 2682 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2683 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2684 return true; 2685 2686 return false; 2687 } 2688 2689 void md_update_sb(struct mddev *mddev, int force_change) 2690 { 2691 struct md_rdev *rdev; 2692 int sync_req; 2693 int nospares = 0; 2694 int any_badblocks_changed = 0; 2695 int ret = -1; 2696 2697 if (!md_is_rdwr(mddev)) { 2698 if (force_change) 2699 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2700 return; 2701 } 2702 2703 repeat: 2704 if (mddev_is_clustered(mddev)) { 2705 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2706 force_change = 1; 2707 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2708 nospares = 1; 2709 ret = md_cluster_ops->metadata_update_start(mddev); 2710 /* Has someone else has updated the sb */ 2711 if (!does_sb_need_changing(mddev)) { 2712 if (ret == 0) 2713 md_cluster_ops->metadata_update_cancel(mddev); 2714 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2715 BIT(MD_SB_CHANGE_DEVS) | 2716 BIT(MD_SB_CHANGE_CLEAN)); 2717 return; 2718 } 2719 } 2720 2721 /* 2722 * First make sure individual recovery_offsets are correct 2723 * curr_resync_completed can only be used during recovery. 2724 * During reshape/resync it might use array-addresses rather 2725 * that device addresses. 2726 */ 2727 rdev_for_each(rdev, mddev) { 2728 if (rdev->raid_disk >= 0 && 2729 mddev->delta_disks >= 0 && 2730 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2731 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2732 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2733 !test_bit(Journal, &rdev->flags) && 2734 !test_bit(In_sync, &rdev->flags) && 2735 mddev->curr_resync_completed > rdev->recovery_offset) 2736 rdev->recovery_offset = mddev->curr_resync_completed; 2737 2738 } 2739 if (!mddev->persistent) { 2740 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2741 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2742 if (!mddev->external) { 2743 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2744 rdev_for_each(rdev, mddev) { 2745 if (rdev->badblocks.changed) { 2746 rdev->badblocks.changed = 0; 2747 ack_all_badblocks(&rdev->badblocks); 2748 md_error(mddev, rdev); 2749 } 2750 clear_bit(Blocked, &rdev->flags); 2751 clear_bit(BlockedBadBlocks, &rdev->flags); 2752 wake_up(&rdev->blocked_wait); 2753 } 2754 } 2755 wake_up(&mddev->sb_wait); 2756 return; 2757 } 2758 2759 spin_lock(&mddev->lock); 2760 2761 mddev->utime = ktime_get_real_seconds(); 2762 2763 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2764 force_change = 1; 2765 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2766 /* just a clean<-> dirty transition, possibly leave spares alone, 2767 * though if events isn't the right even/odd, we will have to do 2768 * spares after all 2769 */ 2770 nospares = 1; 2771 if (force_change) 2772 nospares = 0; 2773 if (mddev->degraded) 2774 /* If the array is degraded, then skipping spares is both 2775 * dangerous and fairly pointless. 2776 * Dangerous because a device that was removed from the array 2777 * might have a event_count that still looks up-to-date, 2778 * so it can be re-added without a resync. 2779 * Pointless because if there are any spares to skip, 2780 * then a recovery will happen and soon that array won't 2781 * be degraded any more and the spare can go back to sleep then. 2782 */ 2783 nospares = 0; 2784 2785 sync_req = mddev->in_sync; 2786 2787 /* If this is just a dirty<->clean transition, and the array is clean 2788 * and 'events' is odd, we can roll back to the previous clean state */ 2789 if (nospares 2790 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2791 && mddev->can_decrease_events 2792 && mddev->events != 1) { 2793 mddev->events--; 2794 mddev->can_decrease_events = 0; 2795 } else { 2796 /* otherwise we have to go forward and ... */ 2797 mddev->events ++; 2798 mddev->can_decrease_events = nospares; 2799 } 2800 2801 /* 2802 * This 64-bit counter should never wrap. 2803 * Either we are in around ~1 trillion A.C., assuming 2804 * 1 reboot per second, or we have a bug... 2805 */ 2806 WARN_ON(mddev->events == 0); 2807 2808 rdev_for_each(rdev, mddev) { 2809 if (rdev->badblocks.changed) 2810 any_badblocks_changed++; 2811 if (test_bit(Faulty, &rdev->flags)) 2812 set_bit(FaultRecorded, &rdev->flags); 2813 } 2814 2815 sync_sbs(mddev, nospares); 2816 spin_unlock(&mddev->lock); 2817 2818 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2819 mdname(mddev), mddev->in_sync); 2820 2821 if (mddev->queue) 2822 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2823 rewrite: 2824 md_bitmap_update_sb(mddev->bitmap); 2825 rdev_for_each(rdev, mddev) { 2826 if (rdev->sb_loaded != 1) 2827 continue; /* no noise on spare devices */ 2828 2829 if (!test_bit(Faulty, &rdev->flags)) { 2830 md_super_write(mddev,rdev, 2831 rdev->sb_start, rdev->sb_size, 2832 rdev->sb_page); 2833 pr_debug("md: (write) %pg's sb offset: %llu\n", 2834 rdev->bdev, 2835 (unsigned long long)rdev->sb_start); 2836 rdev->sb_events = mddev->events; 2837 if (rdev->badblocks.size) { 2838 md_super_write(mddev, rdev, 2839 rdev->badblocks.sector, 2840 rdev->badblocks.size << 9, 2841 rdev->bb_page); 2842 rdev->badblocks.size = 0; 2843 } 2844 2845 } else 2846 pr_debug("md: %pg (skipping faulty)\n", 2847 rdev->bdev); 2848 2849 if (mddev->level == LEVEL_MULTIPATH) 2850 /* only need to write one superblock... */ 2851 break; 2852 } 2853 if (md_super_wait(mddev) < 0) 2854 goto rewrite; 2855 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2856 2857 if (mddev_is_clustered(mddev) && ret == 0) 2858 md_cluster_ops->metadata_update_finish(mddev); 2859 2860 if (mddev->in_sync != sync_req || 2861 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2862 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2863 /* have to write it out again */ 2864 goto repeat; 2865 wake_up(&mddev->sb_wait); 2866 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2867 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2868 2869 rdev_for_each(rdev, mddev) { 2870 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2871 clear_bit(Blocked, &rdev->flags); 2872 2873 if (any_badblocks_changed) 2874 ack_all_badblocks(&rdev->badblocks); 2875 clear_bit(BlockedBadBlocks, &rdev->flags); 2876 wake_up(&rdev->blocked_wait); 2877 } 2878 } 2879 EXPORT_SYMBOL(md_update_sb); 2880 2881 static int add_bound_rdev(struct md_rdev *rdev) 2882 { 2883 struct mddev *mddev = rdev->mddev; 2884 int err = 0; 2885 bool add_journal = test_bit(Journal, &rdev->flags); 2886 2887 if (!mddev->pers->hot_remove_disk || add_journal) { 2888 /* If there is hot_add_disk but no hot_remove_disk 2889 * then added disks for geometry changes, 2890 * and should be added immediately. 2891 */ 2892 super_types[mddev->major_version]. 2893 validate_super(mddev, rdev); 2894 err = mddev->pers->hot_add_disk(mddev, rdev); 2895 if (err) { 2896 md_kick_rdev_from_array(rdev); 2897 return err; 2898 } 2899 } 2900 sysfs_notify_dirent_safe(rdev->sysfs_state); 2901 2902 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2903 if (mddev->degraded) 2904 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2905 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2906 md_new_event(); 2907 md_wakeup_thread(mddev->thread); 2908 return 0; 2909 } 2910 2911 /* words written to sysfs files may, or may not, be \n terminated. 2912 * We want to accept with case. For this we use cmd_match. 2913 */ 2914 static int cmd_match(const char *cmd, const char *str) 2915 { 2916 /* See if cmd, written into a sysfs file, matches 2917 * str. They must either be the same, or cmd can 2918 * have a trailing newline 2919 */ 2920 while (*cmd && *str && *cmd == *str) { 2921 cmd++; 2922 str++; 2923 } 2924 if (*cmd == '\n') 2925 cmd++; 2926 if (*str || *cmd) 2927 return 0; 2928 return 1; 2929 } 2930 2931 struct rdev_sysfs_entry { 2932 struct attribute attr; 2933 ssize_t (*show)(struct md_rdev *, char *); 2934 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2935 }; 2936 2937 static ssize_t 2938 state_show(struct md_rdev *rdev, char *page) 2939 { 2940 char *sep = ","; 2941 size_t len = 0; 2942 unsigned long flags = READ_ONCE(rdev->flags); 2943 2944 if (test_bit(Faulty, &flags) || 2945 (!test_bit(ExternalBbl, &flags) && 2946 rdev->badblocks.unacked_exist)) 2947 len += sprintf(page+len, "faulty%s", sep); 2948 if (test_bit(In_sync, &flags)) 2949 len += sprintf(page+len, "in_sync%s", sep); 2950 if (test_bit(Journal, &flags)) 2951 len += sprintf(page+len, "journal%s", sep); 2952 if (test_bit(WriteMostly, &flags)) 2953 len += sprintf(page+len, "write_mostly%s", sep); 2954 if (test_bit(Blocked, &flags) || 2955 (rdev->badblocks.unacked_exist 2956 && !test_bit(Faulty, &flags))) 2957 len += sprintf(page+len, "blocked%s", sep); 2958 if (!test_bit(Faulty, &flags) && 2959 !test_bit(Journal, &flags) && 2960 !test_bit(In_sync, &flags)) 2961 len += sprintf(page+len, "spare%s", sep); 2962 if (test_bit(WriteErrorSeen, &flags)) 2963 len += sprintf(page+len, "write_error%s", sep); 2964 if (test_bit(WantReplacement, &flags)) 2965 len += sprintf(page+len, "want_replacement%s", sep); 2966 if (test_bit(Replacement, &flags)) 2967 len += sprintf(page+len, "replacement%s", sep); 2968 if (test_bit(ExternalBbl, &flags)) 2969 len += sprintf(page+len, "external_bbl%s", sep); 2970 if (test_bit(FailFast, &flags)) 2971 len += sprintf(page+len, "failfast%s", sep); 2972 2973 if (len) 2974 len -= strlen(sep); 2975 2976 return len+sprintf(page+len, "\n"); 2977 } 2978 2979 static ssize_t 2980 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2981 { 2982 /* can write 2983 * faulty - simulates an error 2984 * remove - disconnects the device 2985 * writemostly - sets write_mostly 2986 * -writemostly - clears write_mostly 2987 * blocked - sets the Blocked flags 2988 * -blocked - clears the Blocked and possibly simulates an error 2989 * insync - sets Insync providing device isn't active 2990 * -insync - clear Insync for a device with a slot assigned, 2991 * so that it gets rebuilt based on bitmap 2992 * write_error - sets WriteErrorSeen 2993 * -write_error - clears WriteErrorSeen 2994 * {,-}failfast - set/clear FailFast 2995 */ 2996 2997 struct mddev *mddev = rdev->mddev; 2998 int err = -EINVAL; 2999 bool need_update_sb = false; 3000 3001 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 3002 md_error(rdev->mddev, rdev); 3003 3004 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 3005 err = -EBUSY; 3006 else 3007 err = 0; 3008 } else if (cmd_match(buf, "remove")) { 3009 if (rdev->mddev->pers) { 3010 clear_bit(Blocked, &rdev->flags); 3011 remove_and_add_spares(rdev->mddev, rdev); 3012 } 3013 if (rdev->raid_disk >= 0) 3014 err = -EBUSY; 3015 else { 3016 err = 0; 3017 if (mddev_is_clustered(mddev)) 3018 err = md_cluster_ops->remove_disk(mddev, rdev); 3019 3020 if (err == 0) { 3021 md_kick_rdev_from_array(rdev); 3022 if (mddev->pers) { 3023 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3024 md_wakeup_thread(mddev->thread); 3025 } 3026 md_new_event(); 3027 } 3028 } 3029 } else if (cmd_match(buf, "writemostly")) { 3030 set_bit(WriteMostly, &rdev->flags); 3031 mddev_create_serial_pool(rdev->mddev, rdev); 3032 need_update_sb = true; 3033 err = 0; 3034 } else if (cmd_match(buf, "-writemostly")) { 3035 mddev_destroy_serial_pool(rdev->mddev, rdev); 3036 clear_bit(WriteMostly, &rdev->flags); 3037 need_update_sb = true; 3038 err = 0; 3039 } else if (cmd_match(buf, "blocked")) { 3040 set_bit(Blocked, &rdev->flags); 3041 err = 0; 3042 } else if (cmd_match(buf, "-blocked")) { 3043 if (!test_bit(Faulty, &rdev->flags) && 3044 !test_bit(ExternalBbl, &rdev->flags) && 3045 rdev->badblocks.unacked_exist) { 3046 /* metadata handler doesn't understand badblocks, 3047 * so we need to fail the device 3048 */ 3049 md_error(rdev->mddev, rdev); 3050 } 3051 clear_bit(Blocked, &rdev->flags); 3052 clear_bit(BlockedBadBlocks, &rdev->flags); 3053 wake_up(&rdev->blocked_wait); 3054 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3055 md_wakeup_thread(rdev->mddev->thread); 3056 3057 err = 0; 3058 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3059 set_bit(In_sync, &rdev->flags); 3060 err = 0; 3061 } else if (cmd_match(buf, "failfast")) { 3062 set_bit(FailFast, &rdev->flags); 3063 need_update_sb = true; 3064 err = 0; 3065 } else if (cmd_match(buf, "-failfast")) { 3066 clear_bit(FailFast, &rdev->flags); 3067 need_update_sb = true; 3068 err = 0; 3069 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3070 !test_bit(Journal, &rdev->flags)) { 3071 if (rdev->mddev->pers == NULL) { 3072 clear_bit(In_sync, &rdev->flags); 3073 rdev->saved_raid_disk = rdev->raid_disk; 3074 rdev->raid_disk = -1; 3075 err = 0; 3076 } 3077 } else if (cmd_match(buf, "write_error")) { 3078 set_bit(WriteErrorSeen, &rdev->flags); 3079 err = 0; 3080 } else if (cmd_match(buf, "-write_error")) { 3081 clear_bit(WriteErrorSeen, &rdev->flags); 3082 err = 0; 3083 } else if (cmd_match(buf, "want_replacement")) { 3084 /* Any non-spare device that is not a replacement can 3085 * become want_replacement at any time, but we then need to 3086 * check if recovery is needed. 3087 */ 3088 if (rdev->raid_disk >= 0 && 3089 !test_bit(Journal, &rdev->flags) && 3090 !test_bit(Replacement, &rdev->flags)) 3091 set_bit(WantReplacement, &rdev->flags); 3092 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3093 md_wakeup_thread(rdev->mddev->thread); 3094 err = 0; 3095 } else if (cmd_match(buf, "-want_replacement")) { 3096 /* Clearing 'want_replacement' is always allowed. 3097 * Once replacements starts it is too late though. 3098 */ 3099 err = 0; 3100 clear_bit(WantReplacement, &rdev->flags); 3101 } else if (cmd_match(buf, "replacement")) { 3102 /* Can only set a device as a replacement when array has not 3103 * yet been started. Once running, replacement is automatic 3104 * from spares, or by assigning 'slot'. 3105 */ 3106 if (rdev->mddev->pers) 3107 err = -EBUSY; 3108 else { 3109 set_bit(Replacement, &rdev->flags); 3110 err = 0; 3111 } 3112 } else if (cmd_match(buf, "-replacement")) { 3113 /* Similarly, can only clear Replacement before start */ 3114 if (rdev->mddev->pers) 3115 err = -EBUSY; 3116 else { 3117 clear_bit(Replacement, &rdev->flags); 3118 err = 0; 3119 } 3120 } else if (cmd_match(buf, "re-add")) { 3121 if (!rdev->mddev->pers) 3122 err = -EINVAL; 3123 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3124 rdev->saved_raid_disk >= 0) { 3125 /* clear_bit is performed _after_ all the devices 3126 * have their local Faulty bit cleared. If any writes 3127 * happen in the meantime in the local node, they 3128 * will land in the local bitmap, which will be synced 3129 * by this node eventually 3130 */ 3131 if (!mddev_is_clustered(rdev->mddev) || 3132 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3133 clear_bit(Faulty, &rdev->flags); 3134 err = add_bound_rdev(rdev); 3135 } 3136 } else 3137 err = -EBUSY; 3138 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3139 set_bit(ExternalBbl, &rdev->flags); 3140 rdev->badblocks.shift = 0; 3141 err = 0; 3142 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3143 clear_bit(ExternalBbl, &rdev->flags); 3144 err = 0; 3145 } 3146 if (need_update_sb) 3147 md_update_sb(mddev, 1); 3148 if (!err) 3149 sysfs_notify_dirent_safe(rdev->sysfs_state); 3150 return err ? err : len; 3151 } 3152 static struct rdev_sysfs_entry rdev_state = 3153 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3154 3155 static ssize_t 3156 errors_show(struct md_rdev *rdev, char *page) 3157 { 3158 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3159 } 3160 3161 static ssize_t 3162 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3163 { 3164 unsigned int n; 3165 int rv; 3166 3167 rv = kstrtouint(buf, 10, &n); 3168 if (rv < 0) 3169 return rv; 3170 atomic_set(&rdev->corrected_errors, n); 3171 return len; 3172 } 3173 static struct rdev_sysfs_entry rdev_errors = 3174 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3175 3176 static ssize_t 3177 slot_show(struct md_rdev *rdev, char *page) 3178 { 3179 if (test_bit(Journal, &rdev->flags)) 3180 return sprintf(page, "journal\n"); 3181 else if (rdev->raid_disk < 0) 3182 return sprintf(page, "none\n"); 3183 else 3184 return sprintf(page, "%d\n", rdev->raid_disk); 3185 } 3186 3187 static ssize_t 3188 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3189 { 3190 int slot; 3191 int err; 3192 3193 if (test_bit(Journal, &rdev->flags)) 3194 return -EBUSY; 3195 if (strncmp(buf, "none", 4)==0) 3196 slot = -1; 3197 else { 3198 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3199 if (err < 0) 3200 return err; 3201 if (slot < 0) 3202 /* overflow */ 3203 return -ENOSPC; 3204 } 3205 if (rdev->mddev->pers && slot == -1) { 3206 /* Setting 'slot' on an active array requires also 3207 * updating the 'rd%d' link, and communicating 3208 * with the personality with ->hot_*_disk. 3209 * For now we only support removing 3210 * failed/spare devices. This normally happens automatically, 3211 * but not when the metadata is externally managed. 3212 */ 3213 if (rdev->raid_disk == -1) 3214 return -EEXIST; 3215 /* personality does all needed checks */ 3216 if (rdev->mddev->pers->hot_remove_disk == NULL) 3217 return -EINVAL; 3218 clear_bit(Blocked, &rdev->flags); 3219 remove_and_add_spares(rdev->mddev, rdev); 3220 if (rdev->raid_disk >= 0) 3221 return -EBUSY; 3222 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3223 md_wakeup_thread(rdev->mddev->thread); 3224 } else if (rdev->mddev->pers) { 3225 /* Activating a spare .. or possibly reactivating 3226 * if we ever get bitmaps working here. 3227 */ 3228 int err; 3229 3230 if (rdev->raid_disk != -1) 3231 return -EBUSY; 3232 3233 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3234 return -EBUSY; 3235 3236 if (rdev->mddev->pers->hot_add_disk == NULL) 3237 return -EINVAL; 3238 3239 if (slot >= rdev->mddev->raid_disks && 3240 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3241 return -ENOSPC; 3242 3243 rdev->raid_disk = slot; 3244 if (test_bit(In_sync, &rdev->flags)) 3245 rdev->saved_raid_disk = slot; 3246 else 3247 rdev->saved_raid_disk = -1; 3248 clear_bit(In_sync, &rdev->flags); 3249 clear_bit(Bitmap_sync, &rdev->flags); 3250 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3251 if (err) { 3252 rdev->raid_disk = -1; 3253 return err; 3254 } else 3255 sysfs_notify_dirent_safe(rdev->sysfs_state); 3256 /* failure here is OK */; 3257 sysfs_link_rdev(rdev->mddev, rdev); 3258 /* don't wakeup anyone, leave that to userspace. */ 3259 } else { 3260 if (slot >= rdev->mddev->raid_disks && 3261 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3262 return -ENOSPC; 3263 rdev->raid_disk = slot; 3264 /* assume it is working */ 3265 clear_bit(Faulty, &rdev->flags); 3266 clear_bit(WriteMostly, &rdev->flags); 3267 set_bit(In_sync, &rdev->flags); 3268 sysfs_notify_dirent_safe(rdev->sysfs_state); 3269 } 3270 return len; 3271 } 3272 3273 static struct rdev_sysfs_entry rdev_slot = 3274 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3275 3276 static ssize_t 3277 offset_show(struct md_rdev *rdev, char *page) 3278 { 3279 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3280 } 3281 3282 static ssize_t 3283 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3284 { 3285 unsigned long long offset; 3286 if (kstrtoull(buf, 10, &offset) < 0) 3287 return -EINVAL; 3288 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3289 return -EBUSY; 3290 if (rdev->sectors && rdev->mddev->external) 3291 /* Must set offset before size, so overlap checks 3292 * can be sane */ 3293 return -EBUSY; 3294 rdev->data_offset = offset; 3295 rdev->new_data_offset = offset; 3296 return len; 3297 } 3298 3299 static struct rdev_sysfs_entry rdev_offset = 3300 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3301 3302 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3303 { 3304 return sprintf(page, "%llu\n", 3305 (unsigned long long)rdev->new_data_offset); 3306 } 3307 3308 static ssize_t new_offset_store(struct md_rdev *rdev, 3309 const char *buf, size_t len) 3310 { 3311 unsigned long long new_offset; 3312 struct mddev *mddev = rdev->mddev; 3313 3314 if (kstrtoull(buf, 10, &new_offset) < 0) 3315 return -EINVAL; 3316 3317 if (mddev->sync_thread || 3318 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3319 return -EBUSY; 3320 if (new_offset == rdev->data_offset) 3321 /* reset is always permitted */ 3322 ; 3323 else if (new_offset > rdev->data_offset) { 3324 /* must not push array size beyond rdev_sectors */ 3325 if (new_offset - rdev->data_offset 3326 + mddev->dev_sectors > rdev->sectors) 3327 return -E2BIG; 3328 } 3329 /* Metadata worries about other space details. */ 3330 3331 /* decreasing the offset is inconsistent with a backwards 3332 * reshape. 3333 */ 3334 if (new_offset < rdev->data_offset && 3335 mddev->reshape_backwards) 3336 return -EINVAL; 3337 /* Increasing offset is inconsistent with forwards 3338 * reshape. reshape_direction should be set to 3339 * 'backwards' first. 3340 */ 3341 if (new_offset > rdev->data_offset && 3342 !mddev->reshape_backwards) 3343 return -EINVAL; 3344 3345 if (mddev->pers && mddev->persistent && 3346 !super_types[mddev->major_version] 3347 .allow_new_offset(rdev, new_offset)) 3348 return -E2BIG; 3349 rdev->new_data_offset = new_offset; 3350 if (new_offset > rdev->data_offset) 3351 mddev->reshape_backwards = 1; 3352 else if (new_offset < rdev->data_offset) 3353 mddev->reshape_backwards = 0; 3354 3355 return len; 3356 } 3357 static struct rdev_sysfs_entry rdev_new_offset = 3358 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3359 3360 static ssize_t 3361 rdev_size_show(struct md_rdev *rdev, char *page) 3362 { 3363 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3364 } 3365 3366 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3367 { 3368 /* check if two start/length pairs overlap */ 3369 if (a->data_offset + a->sectors <= b->data_offset) 3370 return false; 3371 if (b->data_offset + b->sectors <= a->data_offset) 3372 return false; 3373 return true; 3374 } 3375 3376 static bool md_rdev_overlaps(struct md_rdev *rdev) 3377 { 3378 struct mddev *mddev; 3379 struct md_rdev *rdev2; 3380 3381 spin_lock(&all_mddevs_lock); 3382 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3383 if (test_bit(MD_DELETED, &mddev->flags)) 3384 continue; 3385 rdev_for_each(rdev2, mddev) { 3386 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3387 md_rdevs_overlap(rdev, rdev2)) { 3388 spin_unlock(&all_mddevs_lock); 3389 return true; 3390 } 3391 } 3392 } 3393 spin_unlock(&all_mddevs_lock); 3394 return false; 3395 } 3396 3397 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3398 { 3399 unsigned long long blocks; 3400 sector_t new; 3401 3402 if (kstrtoull(buf, 10, &blocks) < 0) 3403 return -EINVAL; 3404 3405 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3406 return -EINVAL; /* sector conversion overflow */ 3407 3408 new = blocks * 2; 3409 if (new != blocks * 2) 3410 return -EINVAL; /* unsigned long long to sector_t overflow */ 3411 3412 *sectors = new; 3413 return 0; 3414 } 3415 3416 static ssize_t 3417 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3418 { 3419 struct mddev *my_mddev = rdev->mddev; 3420 sector_t oldsectors = rdev->sectors; 3421 sector_t sectors; 3422 3423 if (test_bit(Journal, &rdev->flags)) 3424 return -EBUSY; 3425 if (strict_blocks_to_sectors(buf, §ors) < 0) 3426 return -EINVAL; 3427 if (rdev->data_offset != rdev->new_data_offset) 3428 return -EINVAL; /* too confusing */ 3429 if (my_mddev->pers && rdev->raid_disk >= 0) { 3430 if (my_mddev->persistent) { 3431 sectors = super_types[my_mddev->major_version]. 3432 rdev_size_change(rdev, sectors); 3433 if (!sectors) 3434 return -EBUSY; 3435 } else if (!sectors) 3436 sectors = bdev_nr_sectors(rdev->bdev) - 3437 rdev->data_offset; 3438 if (!my_mddev->pers->resize) 3439 /* Cannot change size for RAID0 or Linear etc */ 3440 return -EINVAL; 3441 } 3442 if (sectors < my_mddev->dev_sectors) 3443 return -EINVAL; /* component must fit device */ 3444 3445 rdev->sectors = sectors; 3446 3447 /* 3448 * Check that all other rdevs with the same bdev do not overlap. This 3449 * check does not provide a hard guarantee, it just helps avoid 3450 * dangerous mistakes. 3451 */ 3452 if (sectors > oldsectors && my_mddev->external && 3453 md_rdev_overlaps(rdev)) { 3454 /* 3455 * Someone else could have slipped in a size change here, but 3456 * doing so is just silly. We put oldsectors back because we 3457 * know it is safe, and trust userspace not to race with itself. 3458 */ 3459 rdev->sectors = oldsectors; 3460 return -EBUSY; 3461 } 3462 return len; 3463 } 3464 3465 static struct rdev_sysfs_entry rdev_size = 3466 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3467 3468 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3469 { 3470 unsigned long long recovery_start = rdev->recovery_offset; 3471 3472 if (test_bit(In_sync, &rdev->flags) || 3473 recovery_start == MaxSector) 3474 return sprintf(page, "none\n"); 3475 3476 return sprintf(page, "%llu\n", recovery_start); 3477 } 3478 3479 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3480 { 3481 unsigned long long recovery_start; 3482 3483 if (cmd_match(buf, "none")) 3484 recovery_start = MaxSector; 3485 else if (kstrtoull(buf, 10, &recovery_start)) 3486 return -EINVAL; 3487 3488 if (rdev->mddev->pers && 3489 rdev->raid_disk >= 0) 3490 return -EBUSY; 3491 3492 rdev->recovery_offset = recovery_start; 3493 if (recovery_start == MaxSector) 3494 set_bit(In_sync, &rdev->flags); 3495 else 3496 clear_bit(In_sync, &rdev->flags); 3497 return len; 3498 } 3499 3500 static struct rdev_sysfs_entry rdev_recovery_start = 3501 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3502 3503 /* sysfs access to bad-blocks list. 3504 * We present two files. 3505 * 'bad-blocks' lists sector numbers and lengths of ranges that 3506 * are recorded as bad. The list is truncated to fit within 3507 * the one-page limit of sysfs. 3508 * Writing "sector length" to this file adds an acknowledged 3509 * bad block list. 3510 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3511 * been acknowledged. Writing to this file adds bad blocks 3512 * without acknowledging them. This is largely for testing. 3513 */ 3514 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3515 { 3516 return badblocks_show(&rdev->badblocks, page, 0); 3517 } 3518 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3519 { 3520 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3521 /* Maybe that ack was all we needed */ 3522 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3523 wake_up(&rdev->blocked_wait); 3524 return rv; 3525 } 3526 static struct rdev_sysfs_entry rdev_bad_blocks = 3527 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3528 3529 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3530 { 3531 return badblocks_show(&rdev->badblocks, page, 1); 3532 } 3533 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3534 { 3535 return badblocks_store(&rdev->badblocks, page, len, 1); 3536 } 3537 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3538 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3539 3540 static ssize_t 3541 ppl_sector_show(struct md_rdev *rdev, char *page) 3542 { 3543 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3544 } 3545 3546 static ssize_t 3547 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3548 { 3549 unsigned long long sector; 3550 3551 if (kstrtoull(buf, 10, §or) < 0) 3552 return -EINVAL; 3553 if (sector != (sector_t)sector) 3554 return -EINVAL; 3555 3556 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3557 rdev->raid_disk >= 0) 3558 return -EBUSY; 3559 3560 if (rdev->mddev->persistent) { 3561 if (rdev->mddev->major_version == 0) 3562 return -EINVAL; 3563 if ((sector > rdev->sb_start && 3564 sector - rdev->sb_start > S16_MAX) || 3565 (sector < rdev->sb_start && 3566 rdev->sb_start - sector > -S16_MIN)) 3567 return -EINVAL; 3568 rdev->ppl.offset = sector - rdev->sb_start; 3569 } else if (!rdev->mddev->external) { 3570 return -EBUSY; 3571 } 3572 rdev->ppl.sector = sector; 3573 return len; 3574 } 3575 3576 static struct rdev_sysfs_entry rdev_ppl_sector = 3577 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3578 3579 static ssize_t 3580 ppl_size_show(struct md_rdev *rdev, char *page) 3581 { 3582 return sprintf(page, "%u\n", rdev->ppl.size); 3583 } 3584 3585 static ssize_t 3586 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3587 { 3588 unsigned int size; 3589 3590 if (kstrtouint(buf, 10, &size) < 0) 3591 return -EINVAL; 3592 3593 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3594 rdev->raid_disk >= 0) 3595 return -EBUSY; 3596 3597 if (rdev->mddev->persistent) { 3598 if (rdev->mddev->major_version == 0) 3599 return -EINVAL; 3600 if (size > U16_MAX) 3601 return -EINVAL; 3602 } else if (!rdev->mddev->external) { 3603 return -EBUSY; 3604 } 3605 rdev->ppl.size = size; 3606 return len; 3607 } 3608 3609 static struct rdev_sysfs_entry rdev_ppl_size = 3610 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3611 3612 static struct attribute *rdev_default_attrs[] = { 3613 &rdev_state.attr, 3614 &rdev_errors.attr, 3615 &rdev_slot.attr, 3616 &rdev_offset.attr, 3617 &rdev_new_offset.attr, 3618 &rdev_size.attr, 3619 &rdev_recovery_start.attr, 3620 &rdev_bad_blocks.attr, 3621 &rdev_unack_bad_blocks.attr, 3622 &rdev_ppl_sector.attr, 3623 &rdev_ppl_size.attr, 3624 NULL, 3625 }; 3626 ATTRIBUTE_GROUPS(rdev_default); 3627 static ssize_t 3628 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3629 { 3630 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3631 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3632 3633 if (!entry->show) 3634 return -EIO; 3635 if (!rdev->mddev) 3636 return -ENODEV; 3637 return entry->show(rdev, page); 3638 } 3639 3640 static ssize_t 3641 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3642 const char *page, size_t length) 3643 { 3644 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3645 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3646 struct kernfs_node *kn = NULL; 3647 bool suspend = false; 3648 ssize_t rv; 3649 struct mddev *mddev = rdev->mddev; 3650 3651 if (!entry->store) 3652 return -EIO; 3653 if (!capable(CAP_SYS_ADMIN)) 3654 return -EACCES; 3655 if (!mddev) 3656 return -ENODEV; 3657 3658 if (entry->store == state_store) { 3659 if (cmd_match(page, "remove")) 3660 kn = sysfs_break_active_protection(kobj, attr); 3661 if (cmd_match(page, "remove") || cmd_match(page, "re-add") || 3662 cmd_match(page, "writemostly") || 3663 cmd_match(page, "-writemostly")) 3664 suspend = true; 3665 } 3666 3667 rv = suspend ? mddev_suspend_and_lock(mddev) : mddev_lock(mddev); 3668 if (!rv) { 3669 if (rdev->mddev == NULL) 3670 rv = -ENODEV; 3671 else 3672 rv = entry->store(rdev, page, length); 3673 suspend ? mddev_unlock_and_resume(mddev) : mddev_unlock(mddev); 3674 } 3675 3676 if (kn) 3677 sysfs_unbreak_active_protection(kn); 3678 3679 return rv; 3680 } 3681 3682 static void rdev_free(struct kobject *ko) 3683 { 3684 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3685 kfree(rdev); 3686 } 3687 static const struct sysfs_ops rdev_sysfs_ops = { 3688 .show = rdev_attr_show, 3689 .store = rdev_attr_store, 3690 }; 3691 static const struct kobj_type rdev_ktype = { 3692 .release = rdev_free, 3693 .sysfs_ops = &rdev_sysfs_ops, 3694 .default_groups = rdev_default_groups, 3695 }; 3696 3697 int md_rdev_init(struct md_rdev *rdev) 3698 { 3699 rdev->desc_nr = -1; 3700 rdev->saved_raid_disk = -1; 3701 rdev->raid_disk = -1; 3702 rdev->flags = 0; 3703 rdev->data_offset = 0; 3704 rdev->new_data_offset = 0; 3705 rdev->sb_events = 0; 3706 rdev->last_read_error = 0; 3707 rdev->sb_loaded = 0; 3708 rdev->bb_page = NULL; 3709 atomic_set(&rdev->nr_pending, 0); 3710 atomic_set(&rdev->read_errors, 0); 3711 atomic_set(&rdev->corrected_errors, 0); 3712 3713 INIT_LIST_HEAD(&rdev->same_set); 3714 init_waitqueue_head(&rdev->blocked_wait); 3715 3716 /* Add space to store bad block list. 3717 * This reserves the space even on arrays where it cannot 3718 * be used - I wonder if that matters 3719 */ 3720 return badblocks_init(&rdev->badblocks, 0); 3721 } 3722 EXPORT_SYMBOL_GPL(md_rdev_init); 3723 3724 /* 3725 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3726 * 3727 * mark the device faulty if: 3728 * 3729 * - the device is nonexistent (zero size) 3730 * - the device has no valid superblock 3731 * 3732 * a faulty rdev _never_ has rdev->sb set. 3733 */ 3734 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3735 { 3736 struct md_rdev *rdev; 3737 sector_t size; 3738 int err; 3739 3740 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3741 if (!rdev) 3742 return ERR_PTR(-ENOMEM); 3743 3744 err = md_rdev_init(rdev); 3745 if (err) 3746 goto out_free_rdev; 3747 err = alloc_disk_sb(rdev); 3748 if (err) 3749 goto out_clear_rdev; 3750 3751 rdev->bdev_handle = bdev_open_by_dev(newdev, 3752 BLK_OPEN_READ | BLK_OPEN_WRITE, 3753 super_format == -2 ? &claim_rdev : rdev, NULL); 3754 if (IS_ERR(rdev->bdev_handle)) { 3755 pr_warn("md: could not open device unknown-block(%u,%u).\n", 3756 MAJOR(newdev), MINOR(newdev)); 3757 err = PTR_ERR(rdev->bdev_handle); 3758 goto out_clear_rdev; 3759 } 3760 rdev->bdev = rdev->bdev_handle->bdev; 3761 3762 kobject_init(&rdev->kobj, &rdev_ktype); 3763 3764 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3765 if (!size) { 3766 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3767 rdev->bdev); 3768 err = -EINVAL; 3769 goto out_blkdev_put; 3770 } 3771 3772 if (super_format >= 0) { 3773 err = super_types[super_format]. 3774 load_super(rdev, NULL, super_minor); 3775 if (err == -EINVAL) { 3776 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3777 rdev->bdev, 3778 super_format, super_minor); 3779 goto out_blkdev_put; 3780 } 3781 if (err < 0) { 3782 pr_warn("md: could not read %pg's sb, not importing!\n", 3783 rdev->bdev); 3784 goto out_blkdev_put; 3785 } 3786 } 3787 3788 return rdev; 3789 3790 out_blkdev_put: 3791 bdev_release(rdev->bdev_handle); 3792 out_clear_rdev: 3793 md_rdev_clear(rdev); 3794 out_free_rdev: 3795 kfree(rdev); 3796 return ERR_PTR(err); 3797 } 3798 3799 /* 3800 * Check a full RAID array for plausibility 3801 */ 3802 3803 static int analyze_sbs(struct mddev *mddev) 3804 { 3805 int i; 3806 struct md_rdev *rdev, *freshest, *tmp; 3807 3808 freshest = NULL; 3809 rdev_for_each_safe(rdev, tmp, mddev) 3810 switch (super_types[mddev->major_version]. 3811 load_super(rdev, freshest, mddev->minor_version)) { 3812 case 1: 3813 freshest = rdev; 3814 break; 3815 case 0: 3816 break; 3817 default: 3818 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3819 rdev->bdev); 3820 md_kick_rdev_from_array(rdev); 3821 } 3822 3823 /* Cannot find a valid fresh disk */ 3824 if (!freshest) { 3825 pr_warn("md: cannot find a valid disk\n"); 3826 return -EINVAL; 3827 } 3828 3829 super_types[mddev->major_version]. 3830 validate_super(mddev, freshest); 3831 3832 i = 0; 3833 rdev_for_each_safe(rdev, tmp, mddev) { 3834 if (mddev->max_disks && 3835 (rdev->desc_nr >= mddev->max_disks || 3836 i > mddev->max_disks)) { 3837 pr_warn("md: %s: %pg: only %d devices permitted\n", 3838 mdname(mddev), rdev->bdev, 3839 mddev->max_disks); 3840 md_kick_rdev_from_array(rdev); 3841 continue; 3842 } 3843 if (rdev != freshest) { 3844 if (super_types[mddev->major_version]. 3845 validate_super(mddev, rdev)) { 3846 pr_warn("md: kicking non-fresh %pg from array!\n", 3847 rdev->bdev); 3848 md_kick_rdev_from_array(rdev); 3849 continue; 3850 } 3851 } 3852 if (mddev->level == LEVEL_MULTIPATH) { 3853 rdev->desc_nr = i++; 3854 rdev->raid_disk = rdev->desc_nr; 3855 set_bit(In_sync, &rdev->flags); 3856 } else if (rdev->raid_disk >= 3857 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3858 !test_bit(Journal, &rdev->flags)) { 3859 rdev->raid_disk = -1; 3860 clear_bit(In_sync, &rdev->flags); 3861 } 3862 } 3863 3864 return 0; 3865 } 3866 3867 /* Read a fixed-point number. 3868 * Numbers in sysfs attributes should be in "standard" units where 3869 * possible, so time should be in seconds. 3870 * However we internally use a a much smaller unit such as 3871 * milliseconds or jiffies. 3872 * This function takes a decimal number with a possible fractional 3873 * component, and produces an integer which is the result of 3874 * multiplying that number by 10^'scale'. 3875 * all without any floating-point arithmetic. 3876 */ 3877 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3878 { 3879 unsigned long result = 0; 3880 long decimals = -1; 3881 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3882 if (*cp == '.') 3883 decimals = 0; 3884 else if (decimals < scale) { 3885 unsigned int value; 3886 value = *cp - '0'; 3887 result = result * 10 + value; 3888 if (decimals >= 0) 3889 decimals++; 3890 } 3891 cp++; 3892 } 3893 if (*cp == '\n') 3894 cp++; 3895 if (*cp) 3896 return -EINVAL; 3897 if (decimals < 0) 3898 decimals = 0; 3899 *res = result * int_pow(10, scale - decimals); 3900 return 0; 3901 } 3902 3903 static ssize_t 3904 safe_delay_show(struct mddev *mddev, char *page) 3905 { 3906 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ; 3907 3908 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000); 3909 } 3910 static ssize_t 3911 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3912 { 3913 unsigned long msec; 3914 3915 if (mddev_is_clustered(mddev)) { 3916 pr_warn("md: Safemode is disabled for clustered mode\n"); 3917 return -EINVAL; 3918 } 3919 3920 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ) 3921 return -EINVAL; 3922 if (msec == 0) 3923 mddev->safemode_delay = 0; 3924 else { 3925 unsigned long old_delay = mddev->safemode_delay; 3926 unsigned long new_delay = (msec*HZ)/1000; 3927 3928 if (new_delay == 0) 3929 new_delay = 1; 3930 mddev->safemode_delay = new_delay; 3931 if (new_delay < old_delay || old_delay == 0) 3932 mod_timer(&mddev->safemode_timer, jiffies+1); 3933 } 3934 return len; 3935 } 3936 static struct md_sysfs_entry md_safe_delay = 3937 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3938 3939 static ssize_t 3940 level_show(struct mddev *mddev, char *page) 3941 { 3942 struct md_personality *p; 3943 int ret; 3944 spin_lock(&mddev->lock); 3945 p = mddev->pers; 3946 if (p) 3947 ret = sprintf(page, "%s\n", p->name); 3948 else if (mddev->clevel[0]) 3949 ret = sprintf(page, "%s\n", mddev->clevel); 3950 else if (mddev->level != LEVEL_NONE) 3951 ret = sprintf(page, "%d\n", mddev->level); 3952 else 3953 ret = 0; 3954 spin_unlock(&mddev->lock); 3955 return ret; 3956 } 3957 3958 static ssize_t 3959 level_store(struct mddev *mddev, const char *buf, size_t len) 3960 { 3961 char clevel[16]; 3962 ssize_t rv; 3963 size_t slen = len; 3964 struct md_personality *pers, *oldpers; 3965 long level; 3966 void *priv, *oldpriv; 3967 struct md_rdev *rdev; 3968 3969 if (slen == 0 || slen >= sizeof(clevel)) 3970 return -EINVAL; 3971 3972 rv = mddev_suspend_and_lock(mddev); 3973 if (rv) 3974 return rv; 3975 3976 if (mddev->pers == NULL) { 3977 memcpy(mddev->clevel, buf, slen); 3978 if (mddev->clevel[slen-1] == '\n') 3979 slen--; 3980 mddev->clevel[slen] = 0; 3981 mddev->level = LEVEL_NONE; 3982 rv = len; 3983 goto out_unlock; 3984 } 3985 rv = -EROFS; 3986 if (!md_is_rdwr(mddev)) 3987 goto out_unlock; 3988 3989 /* request to change the personality. Need to ensure: 3990 * - array is not engaged in resync/recovery/reshape 3991 * - old personality can be suspended 3992 * - new personality will access other array. 3993 */ 3994 3995 rv = -EBUSY; 3996 if (mddev->sync_thread || 3997 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3998 mddev->reshape_position != MaxSector || 3999 mddev->sysfs_active) 4000 goto out_unlock; 4001 4002 rv = -EINVAL; 4003 if (!mddev->pers->quiesce) { 4004 pr_warn("md: %s: %s does not support online personality change\n", 4005 mdname(mddev), mddev->pers->name); 4006 goto out_unlock; 4007 } 4008 4009 /* Now find the new personality */ 4010 memcpy(clevel, buf, slen); 4011 if (clevel[slen-1] == '\n') 4012 slen--; 4013 clevel[slen] = 0; 4014 if (kstrtol(clevel, 10, &level)) 4015 level = LEVEL_NONE; 4016 4017 if (request_module("md-%s", clevel) != 0) 4018 request_module("md-level-%s", clevel); 4019 spin_lock(&pers_lock); 4020 pers = find_pers(level, clevel); 4021 if (!pers || !try_module_get(pers->owner)) { 4022 spin_unlock(&pers_lock); 4023 pr_warn("md: personality %s not loaded\n", clevel); 4024 rv = -EINVAL; 4025 goto out_unlock; 4026 } 4027 spin_unlock(&pers_lock); 4028 4029 if (pers == mddev->pers) { 4030 /* Nothing to do! */ 4031 module_put(pers->owner); 4032 rv = len; 4033 goto out_unlock; 4034 } 4035 if (!pers->takeover) { 4036 module_put(pers->owner); 4037 pr_warn("md: %s: %s does not support personality takeover\n", 4038 mdname(mddev), clevel); 4039 rv = -EINVAL; 4040 goto out_unlock; 4041 } 4042 4043 rdev_for_each(rdev, mddev) 4044 rdev->new_raid_disk = rdev->raid_disk; 4045 4046 /* ->takeover must set new_* and/or delta_disks 4047 * if it succeeds, and may set them when it fails. 4048 */ 4049 priv = pers->takeover(mddev); 4050 if (IS_ERR(priv)) { 4051 mddev->new_level = mddev->level; 4052 mddev->new_layout = mddev->layout; 4053 mddev->new_chunk_sectors = mddev->chunk_sectors; 4054 mddev->raid_disks -= mddev->delta_disks; 4055 mddev->delta_disks = 0; 4056 mddev->reshape_backwards = 0; 4057 module_put(pers->owner); 4058 pr_warn("md: %s: %s would not accept array\n", 4059 mdname(mddev), clevel); 4060 rv = PTR_ERR(priv); 4061 goto out_unlock; 4062 } 4063 4064 /* Looks like we have a winner */ 4065 mddev_detach(mddev); 4066 4067 spin_lock(&mddev->lock); 4068 oldpers = mddev->pers; 4069 oldpriv = mddev->private; 4070 mddev->pers = pers; 4071 mddev->private = priv; 4072 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4073 mddev->level = mddev->new_level; 4074 mddev->layout = mddev->new_layout; 4075 mddev->chunk_sectors = mddev->new_chunk_sectors; 4076 mddev->delta_disks = 0; 4077 mddev->reshape_backwards = 0; 4078 mddev->degraded = 0; 4079 spin_unlock(&mddev->lock); 4080 4081 if (oldpers->sync_request == NULL && 4082 mddev->external) { 4083 /* We are converting from a no-redundancy array 4084 * to a redundancy array and metadata is managed 4085 * externally so we need to be sure that writes 4086 * won't block due to a need to transition 4087 * clean->dirty 4088 * until external management is started. 4089 */ 4090 mddev->in_sync = 0; 4091 mddev->safemode_delay = 0; 4092 mddev->safemode = 0; 4093 } 4094 4095 oldpers->free(mddev, oldpriv); 4096 4097 if (oldpers->sync_request == NULL && 4098 pers->sync_request != NULL) { 4099 /* need to add the md_redundancy_group */ 4100 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4101 pr_warn("md: cannot register extra attributes for %s\n", 4102 mdname(mddev)); 4103 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4104 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4105 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4106 } 4107 if (oldpers->sync_request != NULL && 4108 pers->sync_request == NULL) { 4109 /* need to remove the md_redundancy_group */ 4110 if (mddev->to_remove == NULL) 4111 mddev->to_remove = &md_redundancy_group; 4112 } 4113 4114 module_put(oldpers->owner); 4115 4116 rdev_for_each(rdev, mddev) { 4117 if (rdev->raid_disk < 0) 4118 continue; 4119 if (rdev->new_raid_disk >= mddev->raid_disks) 4120 rdev->new_raid_disk = -1; 4121 if (rdev->new_raid_disk == rdev->raid_disk) 4122 continue; 4123 sysfs_unlink_rdev(mddev, rdev); 4124 } 4125 rdev_for_each(rdev, mddev) { 4126 if (rdev->raid_disk < 0) 4127 continue; 4128 if (rdev->new_raid_disk == rdev->raid_disk) 4129 continue; 4130 rdev->raid_disk = rdev->new_raid_disk; 4131 if (rdev->raid_disk < 0) 4132 clear_bit(In_sync, &rdev->flags); 4133 else { 4134 if (sysfs_link_rdev(mddev, rdev)) 4135 pr_warn("md: cannot register rd%d for %s after level change\n", 4136 rdev->raid_disk, mdname(mddev)); 4137 } 4138 } 4139 4140 if (pers->sync_request == NULL) { 4141 /* this is now an array without redundancy, so 4142 * it must always be in_sync 4143 */ 4144 mddev->in_sync = 1; 4145 del_timer_sync(&mddev->safemode_timer); 4146 } 4147 blk_set_stacking_limits(&mddev->queue->limits); 4148 pers->run(mddev); 4149 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4150 if (!mddev->thread) 4151 md_update_sb(mddev, 1); 4152 sysfs_notify_dirent_safe(mddev->sysfs_level); 4153 md_new_event(); 4154 rv = len; 4155 out_unlock: 4156 mddev_unlock_and_resume(mddev); 4157 return rv; 4158 } 4159 4160 static struct md_sysfs_entry md_level = 4161 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4162 4163 static ssize_t 4164 layout_show(struct mddev *mddev, char *page) 4165 { 4166 /* just a number, not meaningful for all levels */ 4167 if (mddev->reshape_position != MaxSector && 4168 mddev->layout != mddev->new_layout) 4169 return sprintf(page, "%d (%d)\n", 4170 mddev->new_layout, mddev->layout); 4171 return sprintf(page, "%d\n", mddev->layout); 4172 } 4173 4174 static ssize_t 4175 layout_store(struct mddev *mddev, const char *buf, size_t len) 4176 { 4177 unsigned int n; 4178 int err; 4179 4180 err = kstrtouint(buf, 10, &n); 4181 if (err < 0) 4182 return err; 4183 err = mddev_lock(mddev); 4184 if (err) 4185 return err; 4186 4187 if (mddev->pers) { 4188 if (mddev->pers->check_reshape == NULL) 4189 err = -EBUSY; 4190 else if (!md_is_rdwr(mddev)) 4191 err = -EROFS; 4192 else { 4193 mddev->new_layout = n; 4194 err = mddev->pers->check_reshape(mddev); 4195 if (err) 4196 mddev->new_layout = mddev->layout; 4197 } 4198 } else { 4199 mddev->new_layout = n; 4200 if (mddev->reshape_position == MaxSector) 4201 mddev->layout = n; 4202 } 4203 mddev_unlock(mddev); 4204 return err ?: len; 4205 } 4206 static struct md_sysfs_entry md_layout = 4207 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4208 4209 static ssize_t 4210 raid_disks_show(struct mddev *mddev, char *page) 4211 { 4212 if (mddev->raid_disks == 0) 4213 return 0; 4214 if (mddev->reshape_position != MaxSector && 4215 mddev->delta_disks != 0) 4216 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4217 mddev->raid_disks - mddev->delta_disks); 4218 return sprintf(page, "%d\n", mddev->raid_disks); 4219 } 4220 4221 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4222 4223 static ssize_t 4224 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4225 { 4226 unsigned int n; 4227 int err; 4228 4229 err = kstrtouint(buf, 10, &n); 4230 if (err < 0) 4231 return err; 4232 4233 err = mddev_lock(mddev); 4234 if (err) 4235 return err; 4236 if (mddev->pers) 4237 err = update_raid_disks(mddev, n); 4238 else if (mddev->reshape_position != MaxSector) { 4239 struct md_rdev *rdev; 4240 int olddisks = mddev->raid_disks - mddev->delta_disks; 4241 4242 err = -EINVAL; 4243 rdev_for_each(rdev, mddev) { 4244 if (olddisks < n && 4245 rdev->data_offset < rdev->new_data_offset) 4246 goto out_unlock; 4247 if (olddisks > n && 4248 rdev->data_offset > rdev->new_data_offset) 4249 goto out_unlock; 4250 } 4251 err = 0; 4252 mddev->delta_disks = n - olddisks; 4253 mddev->raid_disks = n; 4254 mddev->reshape_backwards = (mddev->delta_disks < 0); 4255 } else 4256 mddev->raid_disks = n; 4257 out_unlock: 4258 mddev_unlock(mddev); 4259 return err ? err : len; 4260 } 4261 static struct md_sysfs_entry md_raid_disks = 4262 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4263 4264 static ssize_t 4265 uuid_show(struct mddev *mddev, char *page) 4266 { 4267 return sprintf(page, "%pU\n", mddev->uuid); 4268 } 4269 static struct md_sysfs_entry md_uuid = 4270 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4271 4272 static ssize_t 4273 chunk_size_show(struct mddev *mddev, char *page) 4274 { 4275 if (mddev->reshape_position != MaxSector && 4276 mddev->chunk_sectors != mddev->new_chunk_sectors) 4277 return sprintf(page, "%d (%d)\n", 4278 mddev->new_chunk_sectors << 9, 4279 mddev->chunk_sectors << 9); 4280 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4281 } 4282 4283 static ssize_t 4284 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4285 { 4286 unsigned long n; 4287 int err; 4288 4289 err = kstrtoul(buf, 10, &n); 4290 if (err < 0) 4291 return err; 4292 4293 err = mddev_lock(mddev); 4294 if (err) 4295 return err; 4296 if (mddev->pers) { 4297 if (mddev->pers->check_reshape == NULL) 4298 err = -EBUSY; 4299 else if (!md_is_rdwr(mddev)) 4300 err = -EROFS; 4301 else { 4302 mddev->new_chunk_sectors = n >> 9; 4303 err = mddev->pers->check_reshape(mddev); 4304 if (err) 4305 mddev->new_chunk_sectors = mddev->chunk_sectors; 4306 } 4307 } else { 4308 mddev->new_chunk_sectors = n >> 9; 4309 if (mddev->reshape_position == MaxSector) 4310 mddev->chunk_sectors = n >> 9; 4311 } 4312 mddev_unlock(mddev); 4313 return err ?: len; 4314 } 4315 static struct md_sysfs_entry md_chunk_size = 4316 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4317 4318 static ssize_t 4319 resync_start_show(struct mddev *mddev, char *page) 4320 { 4321 if (mddev->recovery_cp == MaxSector) 4322 return sprintf(page, "none\n"); 4323 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4324 } 4325 4326 static ssize_t 4327 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4328 { 4329 unsigned long long n; 4330 int err; 4331 4332 if (cmd_match(buf, "none")) 4333 n = MaxSector; 4334 else { 4335 err = kstrtoull(buf, 10, &n); 4336 if (err < 0) 4337 return err; 4338 if (n != (sector_t)n) 4339 return -EINVAL; 4340 } 4341 4342 err = mddev_lock(mddev); 4343 if (err) 4344 return err; 4345 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4346 err = -EBUSY; 4347 4348 if (!err) { 4349 mddev->recovery_cp = n; 4350 if (mddev->pers) 4351 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4352 } 4353 mddev_unlock(mddev); 4354 return err ?: len; 4355 } 4356 static struct md_sysfs_entry md_resync_start = 4357 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4358 resync_start_show, resync_start_store); 4359 4360 /* 4361 * The array state can be: 4362 * 4363 * clear 4364 * No devices, no size, no level 4365 * Equivalent to STOP_ARRAY ioctl 4366 * inactive 4367 * May have some settings, but array is not active 4368 * all IO results in error 4369 * When written, doesn't tear down array, but just stops it 4370 * suspended (not supported yet) 4371 * All IO requests will block. The array can be reconfigured. 4372 * Writing this, if accepted, will block until array is quiescent 4373 * readonly 4374 * no resync can happen. no superblocks get written. 4375 * write requests fail 4376 * read-auto 4377 * like readonly, but behaves like 'clean' on a write request. 4378 * 4379 * clean - no pending writes, but otherwise active. 4380 * When written to inactive array, starts without resync 4381 * If a write request arrives then 4382 * if metadata is known, mark 'dirty' and switch to 'active'. 4383 * if not known, block and switch to write-pending 4384 * If written to an active array that has pending writes, then fails. 4385 * active 4386 * fully active: IO and resync can be happening. 4387 * When written to inactive array, starts with resync 4388 * 4389 * write-pending 4390 * clean, but writes are blocked waiting for 'active' to be written. 4391 * 4392 * active-idle 4393 * like active, but no writes have been seen for a while (100msec). 4394 * 4395 * broken 4396 * Array is failed. It's useful because mounted-arrays aren't stopped 4397 * when array is failed, so this state will at least alert the user that 4398 * something is wrong. 4399 */ 4400 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4401 write_pending, active_idle, broken, bad_word}; 4402 static char *array_states[] = { 4403 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4404 "write-pending", "active-idle", "broken", NULL }; 4405 4406 static int match_word(const char *word, char **list) 4407 { 4408 int n; 4409 for (n=0; list[n]; n++) 4410 if (cmd_match(word, list[n])) 4411 break; 4412 return n; 4413 } 4414 4415 static ssize_t 4416 array_state_show(struct mddev *mddev, char *page) 4417 { 4418 enum array_state st = inactive; 4419 4420 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4421 switch(mddev->ro) { 4422 case MD_RDONLY: 4423 st = readonly; 4424 break; 4425 case MD_AUTO_READ: 4426 st = read_auto; 4427 break; 4428 case MD_RDWR: 4429 spin_lock(&mddev->lock); 4430 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4431 st = write_pending; 4432 else if (mddev->in_sync) 4433 st = clean; 4434 else if (mddev->safemode) 4435 st = active_idle; 4436 else 4437 st = active; 4438 spin_unlock(&mddev->lock); 4439 } 4440 4441 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4442 st = broken; 4443 } else { 4444 if (list_empty(&mddev->disks) && 4445 mddev->raid_disks == 0 && 4446 mddev->dev_sectors == 0) 4447 st = clear; 4448 else 4449 st = inactive; 4450 } 4451 return sprintf(page, "%s\n", array_states[st]); 4452 } 4453 4454 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4455 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4456 static int restart_array(struct mddev *mddev); 4457 4458 static ssize_t 4459 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4460 { 4461 int err = 0; 4462 enum array_state st = match_word(buf, array_states); 4463 4464 /* No lock dependent actions */ 4465 switch (st) { 4466 case suspended: /* not supported yet */ 4467 case write_pending: /* cannot be set */ 4468 case active_idle: /* cannot be set */ 4469 case broken: /* cannot be set */ 4470 case bad_word: 4471 return -EINVAL; 4472 default: 4473 break; 4474 } 4475 4476 if (mddev->pers && (st == active || st == clean) && 4477 mddev->ro != MD_RDONLY) { 4478 /* don't take reconfig_mutex when toggling between 4479 * clean and active 4480 */ 4481 spin_lock(&mddev->lock); 4482 if (st == active) { 4483 restart_array(mddev); 4484 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4485 md_wakeup_thread(mddev->thread); 4486 wake_up(&mddev->sb_wait); 4487 } else /* st == clean */ { 4488 restart_array(mddev); 4489 if (!set_in_sync(mddev)) 4490 err = -EBUSY; 4491 } 4492 if (!err) 4493 sysfs_notify_dirent_safe(mddev->sysfs_state); 4494 spin_unlock(&mddev->lock); 4495 return err ?: len; 4496 } 4497 err = mddev_lock(mddev); 4498 if (err) 4499 return err; 4500 4501 switch (st) { 4502 case inactive: 4503 /* stop an active array, return 0 otherwise */ 4504 if (mddev->pers) 4505 err = do_md_stop(mddev, 2, NULL); 4506 break; 4507 case clear: 4508 err = do_md_stop(mddev, 0, NULL); 4509 break; 4510 case readonly: 4511 if (mddev->pers) 4512 err = md_set_readonly(mddev, NULL); 4513 else { 4514 mddev->ro = MD_RDONLY; 4515 set_disk_ro(mddev->gendisk, 1); 4516 err = do_md_run(mddev); 4517 } 4518 break; 4519 case read_auto: 4520 if (mddev->pers) { 4521 if (md_is_rdwr(mddev)) 4522 err = md_set_readonly(mddev, NULL); 4523 else if (mddev->ro == MD_RDONLY) 4524 err = restart_array(mddev); 4525 if (err == 0) { 4526 mddev->ro = MD_AUTO_READ; 4527 set_disk_ro(mddev->gendisk, 0); 4528 } 4529 } else { 4530 mddev->ro = MD_AUTO_READ; 4531 err = do_md_run(mddev); 4532 } 4533 break; 4534 case clean: 4535 if (mddev->pers) { 4536 err = restart_array(mddev); 4537 if (err) 4538 break; 4539 spin_lock(&mddev->lock); 4540 if (!set_in_sync(mddev)) 4541 err = -EBUSY; 4542 spin_unlock(&mddev->lock); 4543 } else 4544 err = -EINVAL; 4545 break; 4546 case active: 4547 if (mddev->pers) { 4548 err = restart_array(mddev); 4549 if (err) 4550 break; 4551 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4552 wake_up(&mddev->sb_wait); 4553 err = 0; 4554 } else { 4555 mddev->ro = MD_RDWR; 4556 set_disk_ro(mddev->gendisk, 0); 4557 err = do_md_run(mddev); 4558 } 4559 break; 4560 default: 4561 err = -EINVAL; 4562 break; 4563 } 4564 4565 if (!err) { 4566 if (mddev->hold_active == UNTIL_IOCTL) 4567 mddev->hold_active = 0; 4568 sysfs_notify_dirent_safe(mddev->sysfs_state); 4569 } 4570 mddev_unlock(mddev); 4571 return err ?: len; 4572 } 4573 static struct md_sysfs_entry md_array_state = 4574 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4575 4576 static ssize_t 4577 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4578 return sprintf(page, "%d\n", 4579 atomic_read(&mddev->max_corr_read_errors)); 4580 } 4581 4582 static ssize_t 4583 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4584 { 4585 unsigned int n; 4586 int rv; 4587 4588 rv = kstrtouint(buf, 10, &n); 4589 if (rv < 0) 4590 return rv; 4591 if (n > INT_MAX) 4592 return -EINVAL; 4593 atomic_set(&mddev->max_corr_read_errors, n); 4594 return len; 4595 } 4596 4597 static struct md_sysfs_entry max_corr_read_errors = 4598 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4599 max_corrected_read_errors_store); 4600 4601 static ssize_t 4602 null_show(struct mddev *mddev, char *page) 4603 { 4604 return -EINVAL; 4605 } 4606 4607 static ssize_t 4608 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4609 { 4610 /* buf must be %d:%d\n? giving major and minor numbers */ 4611 /* The new device is added to the array. 4612 * If the array has a persistent superblock, we read the 4613 * superblock to initialise info and check validity. 4614 * Otherwise, only checking done is that in bind_rdev_to_array, 4615 * which mainly checks size. 4616 */ 4617 char *e; 4618 int major = simple_strtoul(buf, &e, 10); 4619 int minor; 4620 dev_t dev; 4621 struct md_rdev *rdev; 4622 int err; 4623 4624 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4625 return -EINVAL; 4626 minor = simple_strtoul(e+1, &e, 10); 4627 if (*e && *e != '\n') 4628 return -EINVAL; 4629 dev = MKDEV(major, minor); 4630 if (major != MAJOR(dev) || 4631 minor != MINOR(dev)) 4632 return -EOVERFLOW; 4633 4634 err = mddev_suspend_and_lock(mddev); 4635 if (err) 4636 return err; 4637 if (mddev->persistent) { 4638 rdev = md_import_device(dev, mddev->major_version, 4639 mddev->minor_version); 4640 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4641 struct md_rdev *rdev0 4642 = list_entry(mddev->disks.next, 4643 struct md_rdev, same_set); 4644 err = super_types[mddev->major_version] 4645 .load_super(rdev, rdev0, mddev->minor_version); 4646 if (err < 0) 4647 goto out; 4648 } 4649 } else if (mddev->external) 4650 rdev = md_import_device(dev, -2, -1); 4651 else 4652 rdev = md_import_device(dev, -1, -1); 4653 4654 if (IS_ERR(rdev)) { 4655 mddev_unlock_and_resume(mddev); 4656 return PTR_ERR(rdev); 4657 } 4658 err = bind_rdev_to_array(rdev, mddev); 4659 out: 4660 if (err) 4661 export_rdev(rdev, mddev); 4662 mddev_unlock_and_resume(mddev); 4663 if (!err) 4664 md_new_event(); 4665 return err ? err : len; 4666 } 4667 4668 static struct md_sysfs_entry md_new_device = 4669 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4670 4671 static ssize_t 4672 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4673 { 4674 char *end; 4675 unsigned long chunk, end_chunk; 4676 int err; 4677 4678 err = mddev_lock(mddev); 4679 if (err) 4680 return err; 4681 if (!mddev->bitmap) 4682 goto out; 4683 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4684 while (*buf) { 4685 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4686 if (buf == end) break; 4687 if (*end == '-') { /* range */ 4688 buf = end + 1; 4689 end_chunk = simple_strtoul(buf, &end, 0); 4690 if (buf == end) break; 4691 } 4692 if (*end && !isspace(*end)) break; 4693 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4694 buf = skip_spaces(end); 4695 } 4696 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4697 out: 4698 mddev_unlock(mddev); 4699 return len; 4700 } 4701 4702 static struct md_sysfs_entry md_bitmap = 4703 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4704 4705 static ssize_t 4706 size_show(struct mddev *mddev, char *page) 4707 { 4708 return sprintf(page, "%llu\n", 4709 (unsigned long long)mddev->dev_sectors / 2); 4710 } 4711 4712 static int update_size(struct mddev *mddev, sector_t num_sectors); 4713 4714 static ssize_t 4715 size_store(struct mddev *mddev, const char *buf, size_t len) 4716 { 4717 /* If array is inactive, we can reduce the component size, but 4718 * not increase it (except from 0). 4719 * If array is active, we can try an on-line resize 4720 */ 4721 sector_t sectors; 4722 int err = strict_blocks_to_sectors(buf, §ors); 4723 4724 if (err < 0) 4725 return err; 4726 err = mddev_lock(mddev); 4727 if (err) 4728 return err; 4729 if (mddev->pers) { 4730 err = update_size(mddev, sectors); 4731 if (err == 0) 4732 md_update_sb(mddev, 1); 4733 } else { 4734 if (mddev->dev_sectors == 0 || 4735 mddev->dev_sectors > sectors) 4736 mddev->dev_sectors = sectors; 4737 else 4738 err = -ENOSPC; 4739 } 4740 mddev_unlock(mddev); 4741 return err ? err : len; 4742 } 4743 4744 static struct md_sysfs_entry md_size = 4745 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4746 4747 /* Metadata version. 4748 * This is one of 4749 * 'none' for arrays with no metadata (good luck...) 4750 * 'external' for arrays with externally managed metadata, 4751 * or N.M for internally known formats 4752 */ 4753 static ssize_t 4754 metadata_show(struct mddev *mddev, char *page) 4755 { 4756 if (mddev->persistent) 4757 return sprintf(page, "%d.%d\n", 4758 mddev->major_version, mddev->minor_version); 4759 else if (mddev->external) 4760 return sprintf(page, "external:%s\n", mddev->metadata_type); 4761 else 4762 return sprintf(page, "none\n"); 4763 } 4764 4765 static ssize_t 4766 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4767 { 4768 int major, minor; 4769 char *e; 4770 int err; 4771 /* Changing the details of 'external' metadata is 4772 * always permitted. Otherwise there must be 4773 * no devices attached to the array. 4774 */ 4775 4776 err = mddev_lock(mddev); 4777 if (err) 4778 return err; 4779 err = -EBUSY; 4780 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4781 ; 4782 else if (!list_empty(&mddev->disks)) 4783 goto out_unlock; 4784 4785 err = 0; 4786 if (cmd_match(buf, "none")) { 4787 mddev->persistent = 0; 4788 mddev->external = 0; 4789 mddev->major_version = 0; 4790 mddev->minor_version = 90; 4791 goto out_unlock; 4792 } 4793 if (strncmp(buf, "external:", 9) == 0) { 4794 size_t namelen = len-9; 4795 if (namelen >= sizeof(mddev->metadata_type)) 4796 namelen = sizeof(mddev->metadata_type)-1; 4797 memcpy(mddev->metadata_type, buf+9, namelen); 4798 mddev->metadata_type[namelen] = 0; 4799 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4800 mddev->metadata_type[--namelen] = 0; 4801 mddev->persistent = 0; 4802 mddev->external = 1; 4803 mddev->major_version = 0; 4804 mddev->minor_version = 90; 4805 goto out_unlock; 4806 } 4807 major = simple_strtoul(buf, &e, 10); 4808 err = -EINVAL; 4809 if (e==buf || *e != '.') 4810 goto out_unlock; 4811 buf = e+1; 4812 minor = simple_strtoul(buf, &e, 10); 4813 if (e==buf || (*e && *e != '\n') ) 4814 goto out_unlock; 4815 err = -ENOENT; 4816 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4817 goto out_unlock; 4818 mddev->major_version = major; 4819 mddev->minor_version = minor; 4820 mddev->persistent = 1; 4821 mddev->external = 0; 4822 err = 0; 4823 out_unlock: 4824 mddev_unlock(mddev); 4825 return err ?: len; 4826 } 4827 4828 static struct md_sysfs_entry md_metadata = 4829 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4830 4831 static ssize_t 4832 action_show(struct mddev *mddev, char *page) 4833 { 4834 char *type = "idle"; 4835 unsigned long recovery = mddev->recovery; 4836 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4837 type = "frozen"; 4838 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4839 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4840 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4841 type = "reshape"; 4842 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4843 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4844 type = "resync"; 4845 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4846 type = "check"; 4847 else 4848 type = "repair"; 4849 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4850 type = "recover"; 4851 else if (mddev->reshape_position != MaxSector) 4852 type = "reshape"; 4853 } 4854 return sprintf(page, "%s\n", type); 4855 } 4856 4857 /** 4858 * stop_sync_thread() - wait for sync_thread to stop if it's running. 4859 * @mddev: the array. 4860 * @locked: if set, reconfig_mutex will still be held after this function 4861 * return; if not set, reconfig_mutex will be released after this 4862 * function return. 4863 * @check_seq: if set, only wait for curent running sync_thread to stop, noted 4864 * that new sync_thread can still start. 4865 */ 4866 static void stop_sync_thread(struct mddev *mddev, bool locked, bool check_seq) 4867 { 4868 int sync_seq; 4869 4870 if (check_seq) 4871 sync_seq = atomic_read(&mddev->sync_seq); 4872 4873 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4874 if (!locked) 4875 mddev_unlock(mddev); 4876 return; 4877 } 4878 4879 mddev_unlock(mddev); 4880 4881 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4882 /* 4883 * Thread might be blocked waiting for metadata update which will now 4884 * never happen 4885 */ 4886 md_wakeup_thread_directly(mddev->sync_thread); 4887 if (work_pending(&mddev->sync_work)) 4888 flush_work(&mddev->sync_work); 4889 4890 wait_event(resync_wait, 4891 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4892 (check_seq && sync_seq != atomic_read(&mddev->sync_seq))); 4893 4894 if (locked) 4895 mddev_lock_nointr(mddev); 4896 } 4897 4898 static void idle_sync_thread(struct mddev *mddev) 4899 { 4900 mutex_lock(&mddev->sync_mutex); 4901 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4902 4903 if (mddev_lock(mddev)) { 4904 mutex_unlock(&mddev->sync_mutex); 4905 return; 4906 } 4907 4908 stop_sync_thread(mddev, false, true); 4909 mutex_unlock(&mddev->sync_mutex); 4910 } 4911 4912 static void frozen_sync_thread(struct mddev *mddev) 4913 { 4914 mutex_lock(&mddev->sync_mutex); 4915 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4916 4917 if (mddev_lock(mddev)) { 4918 mutex_unlock(&mddev->sync_mutex); 4919 return; 4920 } 4921 4922 stop_sync_thread(mddev, false, false); 4923 mutex_unlock(&mddev->sync_mutex); 4924 } 4925 4926 static ssize_t 4927 action_store(struct mddev *mddev, const char *page, size_t len) 4928 { 4929 if (!mddev->pers || !mddev->pers->sync_request) 4930 return -EINVAL; 4931 4932 4933 if (cmd_match(page, "idle")) 4934 idle_sync_thread(mddev); 4935 else if (cmd_match(page, "frozen")) 4936 frozen_sync_thread(mddev); 4937 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4938 return -EBUSY; 4939 else if (cmd_match(page, "resync")) 4940 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4941 else if (cmd_match(page, "recover")) { 4942 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4943 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4944 } else if (cmd_match(page, "reshape")) { 4945 int err; 4946 if (mddev->pers->start_reshape == NULL) 4947 return -EINVAL; 4948 err = mddev_lock(mddev); 4949 if (!err) { 4950 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4951 err = -EBUSY; 4952 } else if (mddev->reshape_position == MaxSector || 4953 mddev->pers->check_reshape == NULL || 4954 mddev->pers->check_reshape(mddev)) { 4955 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4956 err = mddev->pers->start_reshape(mddev); 4957 } else { 4958 /* 4959 * If reshape is still in progress, and 4960 * md_check_recovery() can continue to reshape, 4961 * don't restart reshape because data can be 4962 * corrupted for raid456. 4963 */ 4964 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4965 } 4966 mddev_unlock(mddev); 4967 } 4968 if (err) 4969 return err; 4970 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4971 } else { 4972 if (cmd_match(page, "check")) 4973 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4974 else if (!cmd_match(page, "repair")) 4975 return -EINVAL; 4976 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4977 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4978 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4979 } 4980 if (mddev->ro == MD_AUTO_READ) { 4981 /* A write to sync_action is enough to justify 4982 * canceling read-auto mode 4983 */ 4984 flush_work(&mddev->sync_work); 4985 mddev->ro = MD_RDWR; 4986 md_wakeup_thread(mddev->sync_thread); 4987 } 4988 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4989 md_wakeup_thread(mddev->thread); 4990 sysfs_notify_dirent_safe(mddev->sysfs_action); 4991 return len; 4992 } 4993 4994 static struct md_sysfs_entry md_scan_mode = 4995 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4996 4997 static ssize_t 4998 last_sync_action_show(struct mddev *mddev, char *page) 4999 { 5000 return sprintf(page, "%s\n", mddev->last_sync_action); 5001 } 5002 5003 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 5004 5005 static ssize_t 5006 mismatch_cnt_show(struct mddev *mddev, char *page) 5007 { 5008 return sprintf(page, "%llu\n", 5009 (unsigned long long) 5010 atomic64_read(&mddev->resync_mismatches)); 5011 } 5012 5013 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 5014 5015 static ssize_t 5016 sync_min_show(struct mddev *mddev, char *page) 5017 { 5018 return sprintf(page, "%d (%s)\n", speed_min(mddev), 5019 mddev->sync_speed_min ? "local": "system"); 5020 } 5021 5022 static ssize_t 5023 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 5024 { 5025 unsigned int min; 5026 int rv; 5027 5028 if (strncmp(buf, "system", 6)==0) { 5029 min = 0; 5030 } else { 5031 rv = kstrtouint(buf, 10, &min); 5032 if (rv < 0) 5033 return rv; 5034 if (min == 0) 5035 return -EINVAL; 5036 } 5037 mddev->sync_speed_min = min; 5038 return len; 5039 } 5040 5041 static struct md_sysfs_entry md_sync_min = 5042 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 5043 5044 static ssize_t 5045 sync_max_show(struct mddev *mddev, char *page) 5046 { 5047 return sprintf(page, "%d (%s)\n", speed_max(mddev), 5048 mddev->sync_speed_max ? "local": "system"); 5049 } 5050 5051 static ssize_t 5052 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 5053 { 5054 unsigned int max; 5055 int rv; 5056 5057 if (strncmp(buf, "system", 6)==0) { 5058 max = 0; 5059 } else { 5060 rv = kstrtouint(buf, 10, &max); 5061 if (rv < 0) 5062 return rv; 5063 if (max == 0) 5064 return -EINVAL; 5065 } 5066 mddev->sync_speed_max = max; 5067 return len; 5068 } 5069 5070 static struct md_sysfs_entry md_sync_max = 5071 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 5072 5073 static ssize_t 5074 degraded_show(struct mddev *mddev, char *page) 5075 { 5076 return sprintf(page, "%d\n", mddev->degraded); 5077 } 5078 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 5079 5080 static ssize_t 5081 sync_force_parallel_show(struct mddev *mddev, char *page) 5082 { 5083 return sprintf(page, "%d\n", mddev->parallel_resync); 5084 } 5085 5086 static ssize_t 5087 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 5088 { 5089 long n; 5090 5091 if (kstrtol(buf, 10, &n)) 5092 return -EINVAL; 5093 5094 if (n != 0 && n != 1) 5095 return -EINVAL; 5096 5097 mddev->parallel_resync = n; 5098 5099 if (mddev->sync_thread) 5100 wake_up(&resync_wait); 5101 5102 return len; 5103 } 5104 5105 /* force parallel resync, even with shared block devices */ 5106 static struct md_sysfs_entry md_sync_force_parallel = 5107 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5108 sync_force_parallel_show, sync_force_parallel_store); 5109 5110 static ssize_t 5111 sync_speed_show(struct mddev *mddev, char *page) 5112 { 5113 unsigned long resync, dt, db; 5114 if (mddev->curr_resync == MD_RESYNC_NONE) 5115 return sprintf(page, "none\n"); 5116 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5117 dt = (jiffies - mddev->resync_mark) / HZ; 5118 if (!dt) dt++; 5119 db = resync - mddev->resync_mark_cnt; 5120 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5121 } 5122 5123 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5124 5125 static ssize_t 5126 sync_completed_show(struct mddev *mddev, char *page) 5127 { 5128 unsigned long long max_sectors, resync; 5129 5130 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5131 return sprintf(page, "none\n"); 5132 5133 if (mddev->curr_resync == MD_RESYNC_YIELDED || 5134 mddev->curr_resync == MD_RESYNC_DELAYED) 5135 return sprintf(page, "delayed\n"); 5136 5137 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5138 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5139 max_sectors = mddev->resync_max_sectors; 5140 else 5141 max_sectors = mddev->dev_sectors; 5142 5143 resync = mddev->curr_resync_completed; 5144 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5145 } 5146 5147 static struct md_sysfs_entry md_sync_completed = 5148 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5149 5150 static ssize_t 5151 min_sync_show(struct mddev *mddev, char *page) 5152 { 5153 return sprintf(page, "%llu\n", 5154 (unsigned long long)mddev->resync_min); 5155 } 5156 static ssize_t 5157 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5158 { 5159 unsigned long long min; 5160 int err; 5161 5162 if (kstrtoull(buf, 10, &min)) 5163 return -EINVAL; 5164 5165 spin_lock(&mddev->lock); 5166 err = -EINVAL; 5167 if (min > mddev->resync_max) 5168 goto out_unlock; 5169 5170 err = -EBUSY; 5171 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5172 goto out_unlock; 5173 5174 /* Round down to multiple of 4K for safety */ 5175 mddev->resync_min = round_down(min, 8); 5176 err = 0; 5177 5178 out_unlock: 5179 spin_unlock(&mddev->lock); 5180 return err ?: len; 5181 } 5182 5183 static struct md_sysfs_entry md_min_sync = 5184 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5185 5186 static ssize_t 5187 max_sync_show(struct mddev *mddev, char *page) 5188 { 5189 if (mddev->resync_max == MaxSector) 5190 return sprintf(page, "max\n"); 5191 else 5192 return sprintf(page, "%llu\n", 5193 (unsigned long long)mddev->resync_max); 5194 } 5195 static ssize_t 5196 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5197 { 5198 int err; 5199 spin_lock(&mddev->lock); 5200 if (strncmp(buf, "max", 3) == 0) 5201 mddev->resync_max = MaxSector; 5202 else { 5203 unsigned long long max; 5204 int chunk; 5205 5206 err = -EINVAL; 5207 if (kstrtoull(buf, 10, &max)) 5208 goto out_unlock; 5209 if (max < mddev->resync_min) 5210 goto out_unlock; 5211 5212 err = -EBUSY; 5213 if (max < mddev->resync_max && md_is_rdwr(mddev) && 5214 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5215 goto out_unlock; 5216 5217 /* Must be a multiple of chunk_size */ 5218 chunk = mddev->chunk_sectors; 5219 if (chunk) { 5220 sector_t temp = max; 5221 5222 err = -EINVAL; 5223 if (sector_div(temp, chunk)) 5224 goto out_unlock; 5225 } 5226 mddev->resync_max = max; 5227 } 5228 wake_up(&mddev->recovery_wait); 5229 err = 0; 5230 out_unlock: 5231 spin_unlock(&mddev->lock); 5232 return err ?: len; 5233 } 5234 5235 static struct md_sysfs_entry md_max_sync = 5236 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5237 5238 static ssize_t 5239 suspend_lo_show(struct mddev *mddev, char *page) 5240 { 5241 return sprintf(page, "%llu\n", 5242 (unsigned long long)READ_ONCE(mddev->suspend_lo)); 5243 } 5244 5245 static ssize_t 5246 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5247 { 5248 unsigned long long new; 5249 int err; 5250 5251 err = kstrtoull(buf, 10, &new); 5252 if (err < 0) 5253 return err; 5254 if (new != (sector_t)new) 5255 return -EINVAL; 5256 5257 err = mddev_suspend(mddev, true); 5258 if (err) 5259 return err; 5260 5261 WRITE_ONCE(mddev->suspend_lo, new); 5262 mddev_resume(mddev); 5263 5264 return len; 5265 } 5266 static struct md_sysfs_entry md_suspend_lo = 5267 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5268 5269 static ssize_t 5270 suspend_hi_show(struct mddev *mddev, char *page) 5271 { 5272 return sprintf(page, "%llu\n", 5273 (unsigned long long)READ_ONCE(mddev->suspend_hi)); 5274 } 5275 5276 static ssize_t 5277 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5278 { 5279 unsigned long long new; 5280 int err; 5281 5282 err = kstrtoull(buf, 10, &new); 5283 if (err < 0) 5284 return err; 5285 if (new != (sector_t)new) 5286 return -EINVAL; 5287 5288 err = mddev_suspend(mddev, true); 5289 if (err) 5290 return err; 5291 5292 WRITE_ONCE(mddev->suspend_hi, new); 5293 mddev_resume(mddev); 5294 5295 return len; 5296 } 5297 static struct md_sysfs_entry md_suspend_hi = 5298 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5299 5300 static ssize_t 5301 reshape_position_show(struct mddev *mddev, char *page) 5302 { 5303 if (mddev->reshape_position != MaxSector) 5304 return sprintf(page, "%llu\n", 5305 (unsigned long long)mddev->reshape_position); 5306 strcpy(page, "none\n"); 5307 return 5; 5308 } 5309 5310 static ssize_t 5311 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5312 { 5313 struct md_rdev *rdev; 5314 unsigned long long new; 5315 int err; 5316 5317 err = kstrtoull(buf, 10, &new); 5318 if (err < 0) 5319 return err; 5320 if (new != (sector_t)new) 5321 return -EINVAL; 5322 err = mddev_lock(mddev); 5323 if (err) 5324 return err; 5325 err = -EBUSY; 5326 if (mddev->pers) 5327 goto unlock; 5328 mddev->reshape_position = new; 5329 mddev->delta_disks = 0; 5330 mddev->reshape_backwards = 0; 5331 mddev->new_level = mddev->level; 5332 mddev->new_layout = mddev->layout; 5333 mddev->new_chunk_sectors = mddev->chunk_sectors; 5334 rdev_for_each(rdev, mddev) 5335 rdev->new_data_offset = rdev->data_offset; 5336 err = 0; 5337 unlock: 5338 mddev_unlock(mddev); 5339 return err ?: len; 5340 } 5341 5342 static struct md_sysfs_entry md_reshape_position = 5343 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5344 reshape_position_store); 5345 5346 static ssize_t 5347 reshape_direction_show(struct mddev *mddev, char *page) 5348 { 5349 return sprintf(page, "%s\n", 5350 mddev->reshape_backwards ? "backwards" : "forwards"); 5351 } 5352 5353 static ssize_t 5354 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5355 { 5356 int backwards = 0; 5357 int err; 5358 5359 if (cmd_match(buf, "forwards")) 5360 backwards = 0; 5361 else if (cmd_match(buf, "backwards")) 5362 backwards = 1; 5363 else 5364 return -EINVAL; 5365 if (mddev->reshape_backwards == backwards) 5366 return len; 5367 5368 err = mddev_lock(mddev); 5369 if (err) 5370 return err; 5371 /* check if we are allowed to change */ 5372 if (mddev->delta_disks) 5373 err = -EBUSY; 5374 else if (mddev->persistent && 5375 mddev->major_version == 0) 5376 err = -EINVAL; 5377 else 5378 mddev->reshape_backwards = backwards; 5379 mddev_unlock(mddev); 5380 return err ?: len; 5381 } 5382 5383 static struct md_sysfs_entry md_reshape_direction = 5384 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5385 reshape_direction_store); 5386 5387 static ssize_t 5388 array_size_show(struct mddev *mddev, char *page) 5389 { 5390 if (mddev->external_size) 5391 return sprintf(page, "%llu\n", 5392 (unsigned long long)mddev->array_sectors/2); 5393 else 5394 return sprintf(page, "default\n"); 5395 } 5396 5397 static ssize_t 5398 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5399 { 5400 sector_t sectors; 5401 int err; 5402 5403 err = mddev_lock(mddev); 5404 if (err) 5405 return err; 5406 5407 /* cluster raid doesn't support change array_sectors */ 5408 if (mddev_is_clustered(mddev)) { 5409 mddev_unlock(mddev); 5410 return -EINVAL; 5411 } 5412 5413 if (strncmp(buf, "default", 7) == 0) { 5414 if (mddev->pers) 5415 sectors = mddev->pers->size(mddev, 0, 0); 5416 else 5417 sectors = mddev->array_sectors; 5418 5419 mddev->external_size = 0; 5420 } else { 5421 if (strict_blocks_to_sectors(buf, §ors) < 0) 5422 err = -EINVAL; 5423 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5424 err = -E2BIG; 5425 else 5426 mddev->external_size = 1; 5427 } 5428 5429 if (!err) { 5430 mddev->array_sectors = sectors; 5431 if (mddev->pers) 5432 set_capacity_and_notify(mddev->gendisk, 5433 mddev->array_sectors); 5434 } 5435 mddev_unlock(mddev); 5436 return err ?: len; 5437 } 5438 5439 static struct md_sysfs_entry md_array_size = 5440 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5441 array_size_store); 5442 5443 static ssize_t 5444 consistency_policy_show(struct mddev *mddev, char *page) 5445 { 5446 int ret; 5447 5448 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5449 ret = sprintf(page, "journal\n"); 5450 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5451 ret = sprintf(page, "ppl\n"); 5452 } else if (mddev->bitmap) { 5453 ret = sprintf(page, "bitmap\n"); 5454 } else if (mddev->pers) { 5455 if (mddev->pers->sync_request) 5456 ret = sprintf(page, "resync\n"); 5457 else 5458 ret = sprintf(page, "none\n"); 5459 } else { 5460 ret = sprintf(page, "unknown\n"); 5461 } 5462 5463 return ret; 5464 } 5465 5466 static ssize_t 5467 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5468 { 5469 int err = 0; 5470 5471 if (mddev->pers) { 5472 if (mddev->pers->change_consistency_policy) 5473 err = mddev->pers->change_consistency_policy(mddev, buf); 5474 else 5475 err = -EBUSY; 5476 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5477 set_bit(MD_HAS_PPL, &mddev->flags); 5478 } else { 5479 err = -EINVAL; 5480 } 5481 5482 return err ? err : len; 5483 } 5484 5485 static struct md_sysfs_entry md_consistency_policy = 5486 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5487 consistency_policy_store); 5488 5489 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5490 { 5491 return sprintf(page, "%d\n", mddev->fail_last_dev); 5492 } 5493 5494 /* 5495 * Setting fail_last_dev to true to allow last device to be forcibly removed 5496 * from RAID1/RAID10. 5497 */ 5498 static ssize_t 5499 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5500 { 5501 int ret; 5502 bool value; 5503 5504 ret = kstrtobool(buf, &value); 5505 if (ret) 5506 return ret; 5507 5508 if (value != mddev->fail_last_dev) 5509 mddev->fail_last_dev = value; 5510 5511 return len; 5512 } 5513 static struct md_sysfs_entry md_fail_last_dev = 5514 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5515 fail_last_dev_store); 5516 5517 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5518 { 5519 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5520 return sprintf(page, "n/a\n"); 5521 else 5522 return sprintf(page, "%d\n", mddev->serialize_policy); 5523 } 5524 5525 /* 5526 * Setting serialize_policy to true to enforce write IO is not reordered 5527 * for raid1. 5528 */ 5529 static ssize_t 5530 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5531 { 5532 int err; 5533 bool value; 5534 5535 err = kstrtobool(buf, &value); 5536 if (err) 5537 return err; 5538 5539 if (value == mddev->serialize_policy) 5540 return len; 5541 5542 err = mddev_suspend_and_lock(mddev); 5543 if (err) 5544 return err; 5545 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5546 pr_err("md: serialize_policy is only effective for raid1\n"); 5547 err = -EINVAL; 5548 goto unlock; 5549 } 5550 5551 if (value) 5552 mddev_create_serial_pool(mddev, NULL); 5553 else 5554 mddev_destroy_serial_pool(mddev, NULL); 5555 mddev->serialize_policy = value; 5556 unlock: 5557 mddev_unlock_and_resume(mddev); 5558 return err ?: len; 5559 } 5560 5561 static struct md_sysfs_entry md_serialize_policy = 5562 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5563 serialize_policy_store); 5564 5565 5566 static struct attribute *md_default_attrs[] = { 5567 &md_level.attr, 5568 &md_layout.attr, 5569 &md_raid_disks.attr, 5570 &md_uuid.attr, 5571 &md_chunk_size.attr, 5572 &md_size.attr, 5573 &md_resync_start.attr, 5574 &md_metadata.attr, 5575 &md_new_device.attr, 5576 &md_safe_delay.attr, 5577 &md_array_state.attr, 5578 &md_reshape_position.attr, 5579 &md_reshape_direction.attr, 5580 &md_array_size.attr, 5581 &max_corr_read_errors.attr, 5582 &md_consistency_policy.attr, 5583 &md_fail_last_dev.attr, 5584 &md_serialize_policy.attr, 5585 NULL, 5586 }; 5587 5588 static const struct attribute_group md_default_group = { 5589 .attrs = md_default_attrs, 5590 }; 5591 5592 static struct attribute *md_redundancy_attrs[] = { 5593 &md_scan_mode.attr, 5594 &md_last_scan_mode.attr, 5595 &md_mismatches.attr, 5596 &md_sync_min.attr, 5597 &md_sync_max.attr, 5598 &md_sync_speed.attr, 5599 &md_sync_force_parallel.attr, 5600 &md_sync_completed.attr, 5601 &md_min_sync.attr, 5602 &md_max_sync.attr, 5603 &md_suspend_lo.attr, 5604 &md_suspend_hi.attr, 5605 &md_bitmap.attr, 5606 &md_degraded.attr, 5607 NULL, 5608 }; 5609 static const struct attribute_group md_redundancy_group = { 5610 .name = NULL, 5611 .attrs = md_redundancy_attrs, 5612 }; 5613 5614 static const struct attribute_group *md_attr_groups[] = { 5615 &md_default_group, 5616 &md_bitmap_group, 5617 NULL, 5618 }; 5619 5620 static ssize_t 5621 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5622 { 5623 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5624 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5625 ssize_t rv; 5626 5627 if (!entry->show) 5628 return -EIO; 5629 spin_lock(&all_mddevs_lock); 5630 if (!mddev_get(mddev)) { 5631 spin_unlock(&all_mddevs_lock); 5632 return -EBUSY; 5633 } 5634 spin_unlock(&all_mddevs_lock); 5635 5636 rv = entry->show(mddev, page); 5637 mddev_put(mddev); 5638 return rv; 5639 } 5640 5641 static ssize_t 5642 md_attr_store(struct kobject *kobj, struct attribute *attr, 5643 const char *page, size_t length) 5644 { 5645 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5646 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5647 ssize_t rv; 5648 5649 if (!entry->store) 5650 return -EIO; 5651 if (!capable(CAP_SYS_ADMIN)) 5652 return -EACCES; 5653 spin_lock(&all_mddevs_lock); 5654 if (!mddev_get(mddev)) { 5655 spin_unlock(&all_mddevs_lock); 5656 return -EBUSY; 5657 } 5658 spin_unlock(&all_mddevs_lock); 5659 rv = entry->store(mddev, page, length); 5660 mddev_put(mddev); 5661 return rv; 5662 } 5663 5664 static void md_kobj_release(struct kobject *ko) 5665 { 5666 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5667 5668 if (mddev->sysfs_state) 5669 sysfs_put(mddev->sysfs_state); 5670 if (mddev->sysfs_level) 5671 sysfs_put(mddev->sysfs_level); 5672 5673 del_gendisk(mddev->gendisk); 5674 put_disk(mddev->gendisk); 5675 } 5676 5677 static const struct sysfs_ops md_sysfs_ops = { 5678 .show = md_attr_show, 5679 .store = md_attr_store, 5680 }; 5681 static const struct kobj_type md_ktype = { 5682 .release = md_kobj_release, 5683 .sysfs_ops = &md_sysfs_ops, 5684 .default_groups = md_attr_groups, 5685 }; 5686 5687 int mdp_major = 0; 5688 5689 static void mddev_delayed_delete(struct work_struct *ws) 5690 { 5691 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5692 5693 kobject_put(&mddev->kobj); 5694 } 5695 5696 struct mddev *md_alloc(dev_t dev, char *name) 5697 { 5698 /* 5699 * If dev is zero, name is the name of a device to allocate with 5700 * an arbitrary minor number. It will be "md_???" 5701 * If dev is non-zero it must be a device number with a MAJOR of 5702 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5703 * the device is being created by opening a node in /dev. 5704 * If "name" is not NULL, the device is being created by 5705 * writing to /sys/module/md_mod/parameters/new_array. 5706 */ 5707 static DEFINE_MUTEX(disks_mutex); 5708 struct mddev *mddev; 5709 struct gendisk *disk; 5710 int partitioned; 5711 int shift; 5712 int unit; 5713 int error ; 5714 5715 /* 5716 * Wait for any previous instance of this device to be completely 5717 * removed (mddev_delayed_delete). 5718 */ 5719 flush_workqueue(md_misc_wq); 5720 5721 mutex_lock(&disks_mutex); 5722 mddev = mddev_alloc(dev); 5723 if (IS_ERR(mddev)) { 5724 error = PTR_ERR(mddev); 5725 goto out_unlock; 5726 } 5727 5728 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5729 shift = partitioned ? MdpMinorShift : 0; 5730 unit = MINOR(mddev->unit) >> shift; 5731 5732 if (name && !dev) { 5733 /* Need to ensure that 'name' is not a duplicate. 5734 */ 5735 struct mddev *mddev2; 5736 spin_lock(&all_mddevs_lock); 5737 5738 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5739 if (mddev2->gendisk && 5740 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5741 spin_unlock(&all_mddevs_lock); 5742 error = -EEXIST; 5743 goto out_free_mddev; 5744 } 5745 spin_unlock(&all_mddevs_lock); 5746 } 5747 if (name && dev) 5748 /* 5749 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5750 */ 5751 mddev->hold_active = UNTIL_STOP; 5752 5753 error = -ENOMEM; 5754 disk = blk_alloc_disk(NUMA_NO_NODE); 5755 if (!disk) 5756 goto out_free_mddev; 5757 5758 disk->major = MAJOR(mddev->unit); 5759 disk->first_minor = unit << shift; 5760 disk->minors = 1 << shift; 5761 if (name) 5762 strcpy(disk->disk_name, name); 5763 else if (partitioned) 5764 sprintf(disk->disk_name, "md_d%d", unit); 5765 else 5766 sprintf(disk->disk_name, "md%d", unit); 5767 disk->fops = &md_fops; 5768 disk->private_data = mddev; 5769 5770 mddev->queue = disk->queue; 5771 blk_set_stacking_limits(&mddev->queue->limits); 5772 blk_queue_write_cache(mddev->queue, true, true); 5773 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5774 mddev->gendisk = disk; 5775 error = add_disk(disk); 5776 if (error) 5777 goto out_put_disk; 5778 5779 kobject_init(&mddev->kobj, &md_ktype); 5780 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5781 if (error) { 5782 /* 5783 * The disk is already live at this point. Clear the hold flag 5784 * and let mddev_put take care of the deletion, as it isn't any 5785 * different from a normal close on last release now. 5786 */ 5787 mddev->hold_active = 0; 5788 mutex_unlock(&disks_mutex); 5789 mddev_put(mddev); 5790 return ERR_PTR(error); 5791 } 5792 5793 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5794 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5795 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5796 mutex_unlock(&disks_mutex); 5797 return mddev; 5798 5799 out_put_disk: 5800 put_disk(disk); 5801 out_free_mddev: 5802 mddev_free(mddev); 5803 out_unlock: 5804 mutex_unlock(&disks_mutex); 5805 return ERR_PTR(error); 5806 } 5807 5808 static int md_alloc_and_put(dev_t dev, char *name) 5809 { 5810 struct mddev *mddev = md_alloc(dev, name); 5811 5812 if (IS_ERR(mddev)) 5813 return PTR_ERR(mddev); 5814 mddev_put(mddev); 5815 return 0; 5816 } 5817 5818 static void md_probe(dev_t dev) 5819 { 5820 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5821 return; 5822 if (create_on_open) 5823 md_alloc_and_put(dev, NULL); 5824 } 5825 5826 static int add_named_array(const char *val, const struct kernel_param *kp) 5827 { 5828 /* 5829 * val must be "md_*" or "mdNNN". 5830 * For "md_*" we allocate an array with a large free minor number, and 5831 * set the name to val. val must not already be an active name. 5832 * For "mdNNN" we allocate an array with the minor number NNN 5833 * which must not already be in use. 5834 */ 5835 int len = strlen(val); 5836 char buf[DISK_NAME_LEN]; 5837 unsigned long devnum; 5838 5839 while (len && val[len-1] == '\n') 5840 len--; 5841 if (len >= DISK_NAME_LEN) 5842 return -E2BIG; 5843 strscpy(buf, val, len+1); 5844 if (strncmp(buf, "md_", 3) == 0) 5845 return md_alloc_and_put(0, buf); 5846 if (strncmp(buf, "md", 2) == 0 && 5847 isdigit(buf[2]) && 5848 kstrtoul(buf+2, 10, &devnum) == 0 && 5849 devnum <= MINORMASK) 5850 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5851 5852 return -EINVAL; 5853 } 5854 5855 static void md_safemode_timeout(struct timer_list *t) 5856 { 5857 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5858 5859 mddev->safemode = 1; 5860 if (mddev->external) 5861 sysfs_notify_dirent_safe(mddev->sysfs_state); 5862 5863 md_wakeup_thread(mddev->thread); 5864 } 5865 5866 static int start_dirty_degraded; 5867 5868 int md_run(struct mddev *mddev) 5869 { 5870 int err; 5871 struct md_rdev *rdev; 5872 struct md_personality *pers; 5873 bool nowait = true; 5874 5875 if (list_empty(&mddev->disks)) 5876 /* cannot run an array with no devices.. */ 5877 return -EINVAL; 5878 5879 if (mddev->pers) 5880 return -EBUSY; 5881 /* Cannot run until previous stop completes properly */ 5882 if (mddev->sysfs_active) 5883 return -EBUSY; 5884 5885 /* 5886 * Analyze all RAID superblock(s) 5887 */ 5888 if (!mddev->raid_disks) { 5889 if (!mddev->persistent) 5890 return -EINVAL; 5891 err = analyze_sbs(mddev); 5892 if (err) 5893 return -EINVAL; 5894 } 5895 5896 if (mddev->level != LEVEL_NONE) 5897 request_module("md-level-%d", mddev->level); 5898 else if (mddev->clevel[0]) 5899 request_module("md-%s", mddev->clevel); 5900 5901 /* 5902 * Drop all container device buffers, from now on 5903 * the only valid external interface is through the md 5904 * device. 5905 */ 5906 mddev->has_superblocks = false; 5907 rdev_for_each(rdev, mddev) { 5908 if (test_bit(Faulty, &rdev->flags)) 5909 continue; 5910 sync_blockdev(rdev->bdev); 5911 invalidate_bdev(rdev->bdev); 5912 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) { 5913 mddev->ro = MD_RDONLY; 5914 if (mddev->gendisk) 5915 set_disk_ro(mddev->gendisk, 1); 5916 } 5917 5918 if (rdev->sb_page) 5919 mddev->has_superblocks = true; 5920 5921 /* perform some consistency tests on the device. 5922 * We don't want the data to overlap the metadata, 5923 * Internal Bitmap issues have been handled elsewhere. 5924 */ 5925 if (rdev->meta_bdev) { 5926 /* Nothing to check */; 5927 } else if (rdev->data_offset < rdev->sb_start) { 5928 if (mddev->dev_sectors && 5929 rdev->data_offset + mddev->dev_sectors 5930 > rdev->sb_start) { 5931 pr_warn("md: %s: data overlaps metadata\n", 5932 mdname(mddev)); 5933 return -EINVAL; 5934 } 5935 } else { 5936 if (rdev->sb_start + rdev->sb_size/512 5937 > rdev->data_offset) { 5938 pr_warn("md: %s: metadata overlaps data\n", 5939 mdname(mddev)); 5940 return -EINVAL; 5941 } 5942 } 5943 sysfs_notify_dirent_safe(rdev->sysfs_state); 5944 nowait = nowait && bdev_nowait(rdev->bdev); 5945 } 5946 5947 if (!bioset_initialized(&mddev->bio_set)) { 5948 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5949 if (err) 5950 return err; 5951 } 5952 if (!bioset_initialized(&mddev->sync_set)) { 5953 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5954 if (err) 5955 goto exit_bio_set; 5956 } 5957 5958 if (!bioset_initialized(&mddev->io_clone_set)) { 5959 err = bioset_init(&mddev->io_clone_set, BIO_POOL_SIZE, 5960 offsetof(struct md_io_clone, bio_clone), 0); 5961 if (err) 5962 goto exit_sync_set; 5963 } 5964 5965 spin_lock(&pers_lock); 5966 pers = find_pers(mddev->level, mddev->clevel); 5967 if (!pers || !try_module_get(pers->owner)) { 5968 spin_unlock(&pers_lock); 5969 if (mddev->level != LEVEL_NONE) 5970 pr_warn("md: personality for level %d is not loaded!\n", 5971 mddev->level); 5972 else 5973 pr_warn("md: personality for level %s is not loaded!\n", 5974 mddev->clevel); 5975 err = -EINVAL; 5976 goto abort; 5977 } 5978 spin_unlock(&pers_lock); 5979 if (mddev->level != pers->level) { 5980 mddev->level = pers->level; 5981 mddev->new_level = pers->level; 5982 } 5983 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5984 5985 if (mddev->reshape_position != MaxSector && 5986 pers->start_reshape == NULL) { 5987 /* This personality cannot handle reshaping... */ 5988 module_put(pers->owner); 5989 err = -EINVAL; 5990 goto abort; 5991 } 5992 5993 if (pers->sync_request) { 5994 /* Warn if this is a potentially silly 5995 * configuration. 5996 */ 5997 struct md_rdev *rdev2; 5998 int warned = 0; 5999 6000 rdev_for_each(rdev, mddev) 6001 rdev_for_each(rdev2, mddev) { 6002 if (rdev < rdev2 && 6003 rdev->bdev->bd_disk == 6004 rdev2->bdev->bd_disk) { 6005 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 6006 mdname(mddev), 6007 rdev->bdev, 6008 rdev2->bdev); 6009 warned = 1; 6010 } 6011 } 6012 6013 if (warned) 6014 pr_warn("True protection against single-disk failure might be compromised.\n"); 6015 } 6016 6017 mddev->recovery = 0; 6018 /* may be over-ridden by personality */ 6019 mddev->resync_max_sectors = mddev->dev_sectors; 6020 6021 mddev->ok_start_degraded = start_dirty_degraded; 6022 6023 if (start_readonly && md_is_rdwr(mddev)) 6024 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */ 6025 6026 err = pers->run(mddev); 6027 if (err) 6028 pr_warn("md: pers->run() failed ...\n"); 6029 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 6030 WARN_ONCE(!mddev->external_size, 6031 "%s: default size too small, but 'external_size' not in effect?\n", 6032 __func__); 6033 pr_warn("md: invalid array_size %llu > default size %llu\n", 6034 (unsigned long long)mddev->array_sectors / 2, 6035 (unsigned long long)pers->size(mddev, 0, 0) / 2); 6036 err = -EINVAL; 6037 } 6038 if (err == 0 && pers->sync_request && 6039 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 6040 struct bitmap *bitmap; 6041 6042 bitmap = md_bitmap_create(mddev, -1); 6043 if (IS_ERR(bitmap)) { 6044 err = PTR_ERR(bitmap); 6045 pr_warn("%s: failed to create bitmap (%d)\n", 6046 mdname(mddev), err); 6047 } else 6048 mddev->bitmap = bitmap; 6049 6050 } 6051 if (err) 6052 goto bitmap_abort; 6053 6054 if (mddev->bitmap_info.max_write_behind > 0) { 6055 bool create_pool = false; 6056 6057 rdev_for_each(rdev, mddev) { 6058 if (test_bit(WriteMostly, &rdev->flags) && 6059 rdev_init_serial(rdev)) 6060 create_pool = true; 6061 } 6062 if (create_pool && mddev->serial_info_pool == NULL) { 6063 mddev->serial_info_pool = 6064 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 6065 sizeof(struct serial_info)); 6066 if (!mddev->serial_info_pool) { 6067 err = -ENOMEM; 6068 goto bitmap_abort; 6069 } 6070 } 6071 } 6072 6073 if (mddev->queue) { 6074 bool nonrot = true; 6075 6076 rdev_for_each(rdev, mddev) { 6077 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 6078 nonrot = false; 6079 break; 6080 } 6081 } 6082 if (mddev->degraded) 6083 nonrot = false; 6084 if (nonrot) 6085 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6086 else 6087 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6088 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 6089 6090 /* Set the NOWAIT flags if all underlying devices support it */ 6091 if (nowait) 6092 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 6093 } 6094 if (pers->sync_request) { 6095 if (mddev->kobj.sd && 6096 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6097 pr_warn("md: cannot register extra attributes for %s\n", 6098 mdname(mddev)); 6099 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6100 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6101 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6102 } else if (mddev->ro == MD_AUTO_READ) 6103 mddev->ro = MD_RDWR; 6104 6105 atomic_set(&mddev->max_corr_read_errors, 6106 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6107 mddev->safemode = 0; 6108 if (mddev_is_clustered(mddev)) 6109 mddev->safemode_delay = 0; 6110 else 6111 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6112 mddev->in_sync = 1; 6113 smp_wmb(); 6114 spin_lock(&mddev->lock); 6115 mddev->pers = pers; 6116 spin_unlock(&mddev->lock); 6117 rdev_for_each(rdev, mddev) 6118 if (rdev->raid_disk >= 0) 6119 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6120 6121 if (mddev->degraded && md_is_rdwr(mddev)) 6122 /* This ensures that recovering status is reported immediately 6123 * via sysfs - until a lack of spares is confirmed. 6124 */ 6125 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6126 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6127 6128 if (mddev->sb_flags) 6129 md_update_sb(mddev, 0); 6130 6131 md_new_event(); 6132 return 0; 6133 6134 bitmap_abort: 6135 mddev_detach(mddev); 6136 if (mddev->private) 6137 pers->free(mddev, mddev->private); 6138 mddev->private = NULL; 6139 module_put(pers->owner); 6140 md_bitmap_destroy(mddev); 6141 abort: 6142 bioset_exit(&mddev->io_clone_set); 6143 exit_sync_set: 6144 bioset_exit(&mddev->sync_set); 6145 exit_bio_set: 6146 bioset_exit(&mddev->bio_set); 6147 return err; 6148 } 6149 EXPORT_SYMBOL_GPL(md_run); 6150 6151 int do_md_run(struct mddev *mddev) 6152 { 6153 int err; 6154 6155 set_bit(MD_NOT_READY, &mddev->flags); 6156 err = md_run(mddev); 6157 if (err) 6158 goto out; 6159 err = md_bitmap_load(mddev); 6160 if (err) { 6161 md_bitmap_destroy(mddev); 6162 goto out; 6163 } 6164 6165 if (mddev_is_clustered(mddev)) 6166 md_allow_write(mddev); 6167 6168 /* run start up tasks that require md_thread */ 6169 md_start(mddev); 6170 6171 md_wakeup_thread(mddev->thread); 6172 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6173 6174 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6175 clear_bit(MD_NOT_READY, &mddev->flags); 6176 mddev->changed = 1; 6177 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6178 sysfs_notify_dirent_safe(mddev->sysfs_state); 6179 sysfs_notify_dirent_safe(mddev->sysfs_action); 6180 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6181 out: 6182 clear_bit(MD_NOT_READY, &mddev->flags); 6183 return err; 6184 } 6185 6186 int md_start(struct mddev *mddev) 6187 { 6188 int ret = 0; 6189 6190 if (mddev->pers->start) { 6191 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6192 md_wakeup_thread(mddev->thread); 6193 ret = mddev->pers->start(mddev); 6194 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6195 md_wakeup_thread(mddev->sync_thread); 6196 } 6197 return ret; 6198 } 6199 EXPORT_SYMBOL_GPL(md_start); 6200 6201 static int restart_array(struct mddev *mddev) 6202 { 6203 struct gendisk *disk = mddev->gendisk; 6204 struct md_rdev *rdev; 6205 bool has_journal = false; 6206 bool has_readonly = false; 6207 6208 /* Complain if it has no devices */ 6209 if (list_empty(&mddev->disks)) 6210 return -ENXIO; 6211 if (!mddev->pers) 6212 return -EINVAL; 6213 if (md_is_rdwr(mddev)) 6214 return -EBUSY; 6215 6216 rcu_read_lock(); 6217 rdev_for_each_rcu(rdev, mddev) { 6218 if (test_bit(Journal, &rdev->flags) && 6219 !test_bit(Faulty, &rdev->flags)) 6220 has_journal = true; 6221 if (rdev_read_only(rdev)) 6222 has_readonly = true; 6223 } 6224 rcu_read_unlock(); 6225 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6226 /* Don't restart rw with journal missing/faulty */ 6227 return -EINVAL; 6228 if (has_readonly) 6229 return -EROFS; 6230 6231 mddev->safemode = 0; 6232 mddev->ro = MD_RDWR; 6233 set_disk_ro(disk, 0); 6234 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6235 /* Kick recovery or resync if necessary */ 6236 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6237 md_wakeup_thread(mddev->thread); 6238 md_wakeup_thread(mddev->sync_thread); 6239 sysfs_notify_dirent_safe(mddev->sysfs_state); 6240 return 0; 6241 } 6242 6243 static void md_clean(struct mddev *mddev) 6244 { 6245 mddev->array_sectors = 0; 6246 mddev->external_size = 0; 6247 mddev->dev_sectors = 0; 6248 mddev->raid_disks = 0; 6249 mddev->recovery_cp = 0; 6250 mddev->resync_min = 0; 6251 mddev->resync_max = MaxSector; 6252 mddev->reshape_position = MaxSector; 6253 /* we still need mddev->external in export_rdev, do not clear it yet */ 6254 mddev->persistent = 0; 6255 mddev->level = LEVEL_NONE; 6256 mddev->clevel[0] = 0; 6257 mddev->flags = 0; 6258 mddev->sb_flags = 0; 6259 mddev->ro = MD_RDWR; 6260 mddev->metadata_type[0] = 0; 6261 mddev->chunk_sectors = 0; 6262 mddev->ctime = mddev->utime = 0; 6263 mddev->layout = 0; 6264 mddev->max_disks = 0; 6265 mddev->events = 0; 6266 mddev->can_decrease_events = 0; 6267 mddev->delta_disks = 0; 6268 mddev->reshape_backwards = 0; 6269 mddev->new_level = LEVEL_NONE; 6270 mddev->new_layout = 0; 6271 mddev->new_chunk_sectors = 0; 6272 mddev->curr_resync = MD_RESYNC_NONE; 6273 atomic64_set(&mddev->resync_mismatches, 0); 6274 mddev->suspend_lo = mddev->suspend_hi = 0; 6275 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6276 mddev->recovery = 0; 6277 mddev->in_sync = 0; 6278 mddev->changed = 0; 6279 mddev->degraded = 0; 6280 mddev->safemode = 0; 6281 mddev->private = NULL; 6282 mddev->cluster_info = NULL; 6283 mddev->bitmap_info.offset = 0; 6284 mddev->bitmap_info.default_offset = 0; 6285 mddev->bitmap_info.default_space = 0; 6286 mddev->bitmap_info.chunksize = 0; 6287 mddev->bitmap_info.daemon_sleep = 0; 6288 mddev->bitmap_info.max_write_behind = 0; 6289 mddev->bitmap_info.nodes = 0; 6290 } 6291 6292 static void __md_stop_writes(struct mddev *mddev) 6293 { 6294 stop_sync_thread(mddev, true, false); 6295 del_timer_sync(&mddev->safemode_timer); 6296 6297 if (mddev->pers && mddev->pers->quiesce) { 6298 mddev->pers->quiesce(mddev, 1); 6299 mddev->pers->quiesce(mddev, 0); 6300 } 6301 md_bitmap_flush(mddev); 6302 6303 if (md_is_rdwr(mddev) && 6304 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6305 mddev->sb_flags)) { 6306 /* mark array as shutdown cleanly */ 6307 if (!mddev_is_clustered(mddev)) 6308 mddev->in_sync = 1; 6309 md_update_sb(mddev, 1); 6310 } 6311 /* disable policy to guarantee rdevs free resources for serialization */ 6312 mddev->serialize_policy = 0; 6313 mddev_destroy_serial_pool(mddev, NULL); 6314 } 6315 6316 void md_stop_writes(struct mddev *mddev) 6317 { 6318 mddev_lock_nointr(mddev); 6319 __md_stop_writes(mddev); 6320 mddev_unlock(mddev); 6321 } 6322 EXPORT_SYMBOL_GPL(md_stop_writes); 6323 6324 static void mddev_detach(struct mddev *mddev) 6325 { 6326 md_bitmap_wait_behind_writes(mddev); 6327 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) { 6328 mddev->pers->quiesce(mddev, 1); 6329 mddev->pers->quiesce(mddev, 0); 6330 } 6331 md_unregister_thread(mddev, &mddev->thread); 6332 if (mddev->queue) 6333 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6334 } 6335 6336 static void __md_stop(struct mddev *mddev) 6337 { 6338 struct md_personality *pers = mddev->pers; 6339 md_bitmap_destroy(mddev); 6340 mddev_detach(mddev); 6341 spin_lock(&mddev->lock); 6342 mddev->pers = NULL; 6343 spin_unlock(&mddev->lock); 6344 if (mddev->private) 6345 pers->free(mddev, mddev->private); 6346 mddev->private = NULL; 6347 if (pers->sync_request && mddev->to_remove == NULL) 6348 mddev->to_remove = &md_redundancy_group; 6349 module_put(pers->owner); 6350 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6351 6352 bioset_exit(&mddev->bio_set); 6353 bioset_exit(&mddev->sync_set); 6354 bioset_exit(&mddev->io_clone_set); 6355 } 6356 6357 void md_stop(struct mddev *mddev) 6358 { 6359 lockdep_assert_held(&mddev->reconfig_mutex); 6360 6361 /* stop the array and free an attached data structures. 6362 * This is called from dm-raid 6363 */ 6364 __md_stop_writes(mddev); 6365 __md_stop(mddev); 6366 } 6367 6368 EXPORT_SYMBOL_GPL(md_stop); 6369 6370 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6371 { 6372 int err = 0; 6373 int did_freeze = 0; 6374 6375 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6376 return -EBUSY; 6377 6378 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6379 did_freeze = 1; 6380 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6381 md_wakeup_thread(mddev->thread); 6382 } 6383 6384 stop_sync_thread(mddev, false, false); 6385 wait_event(mddev->sb_wait, 6386 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6387 mddev_lock_nointr(mddev); 6388 6389 mutex_lock(&mddev->open_mutex); 6390 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6391 mddev->sync_thread || 6392 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6393 pr_warn("md: %s still in use.\n",mdname(mddev)); 6394 err = -EBUSY; 6395 goto out; 6396 } 6397 6398 if (mddev->pers) { 6399 __md_stop_writes(mddev); 6400 6401 if (mddev->ro == MD_RDONLY) { 6402 err = -ENXIO; 6403 goto out; 6404 } 6405 6406 mddev->ro = MD_RDONLY; 6407 set_disk_ro(mddev->gendisk, 1); 6408 } 6409 6410 out: 6411 if ((mddev->pers && !err) || did_freeze) { 6412 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6413 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6414 md_wakeup_thread(mddev->thread); 6415 sysfs_notify_dirent_safe(mddev->sysfs_state); 6416 } 6417 6418 mutex_unlock(&mddev->open_mutex); 6419 return err; 6420 } 6421 6422 /* mode: 6423 * 0 - completely stop and dis-assemble array 6424 * 2 - stop but do not disassemble array 6425 */ 6426 static int do_md_stop(struct mddev *mddev, int mode, 6427 struct block_device *bdev) 6428 { 6429 struct gendisk *disk = mddev->gendisk; 6430 struct md_rdev *rdev; 6431 int did_freeze = 0; 6432 6433 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6434 did_freeze = 1; 6435 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6436 md_wakeup_thread(mddev->thread); 6437 } 6438 6439 stop_sync_thread(mddev, true, false); 6440 6441 mutex_lock(&mddev->open_mutex); 6442 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6443 mddev->sysfs_active || 6444 mddev->sync_thread || 6445 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6446 pr_warn("md: %s still in use.\n",mdname(mddev)); 6447 mutex_unlock(&mddev->open_mutex); 6448 if (did_freeze) { 6449 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6450 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6451 md_wakeup_thread(mddev->thread); 6452 } 6453 return -EBUSY; 6454 } 6455 if (mddev->pers) { 6456 if (!md_is_rdwr(mddev)) 6457 set_disk_ro(disk, 0); 6458 6459 __md_stop_writes(mddev); 6460 __md_stop(mddev); 6461 6462 /* tell userspace to handle 'inactive' */ 6463 sysfs_notify_dirent_safe(mddev->sysfs_state); 6464 6465 rdev_for_each(rdev, mddev) 6466 if (rdev->raid_disk >= 0) 6467 sysfs_unlink_rdev(mddev, rdev); 6468 6469 set_capacity_and_notify(disk, 0); 6470 mutex_unlock(&mddev->open_mutex); 6471 mddev->changed = 1; 6472 6473 if (!md_is_rdwr(mddev)) 6474 mddev->ro = MD_RDWR; 6475 } else 6476 mutex_unlock(&mddev->open_mutex); 6477 /* 6478 * Free resources if final stop 6479 */ 6480 if (mode == 0) { 6481 pr_info("md: %s stopped.\n", mdname(mddev)); 6482 6483 if (mddev->bitmap_info.file) { 6484 struct file *f = mddev->bitmap_info.file; 6485 spin_lock(&mddev->lock); 6486 mddev->bitmap_info.file = NULL; 6487 spin_unlock(&mddev->lock); 6488 fput(f); 6489 } 6490 mddev->bitmap_info.offset = 0; 6491 6492 export_array(mddev); 6493 6494 md_clean(mddev); 6495 if (mddev->hold_active == UNTIL_STOP) 6496 mddev->hold_active = 0; 6497 } 6498 md_new_event(); 6499 sysfs_notify_dirent_safe(mddev->sysfs_state); 6500 return 0; 6501 } 6502 6503 #ifndef MODULE 6504 static void autorun_array(struct mddev *mddev) 6505 { 6506 struct md_rdev *rdev; 6507 int err; 6508 6509 if (list_empty(&mddev->disks)) 6510 return; 6511 6512 pr_info("md: running: "); 6513 6514 rdev_for_each(rdev, mddev) { 6515 pr_cont("<%pg>", rdev->bdev); 6516 } 6517 pr_cont("\n"); 6518 6519 err = do_md_run(mddev); 6520 if (err) { 6521 pr_warn("md: do_md_run() returned %d\n", err); 6522 do_md_stop(mddev, 0, NULL); 6523 } 6524 } 6525 6526 /* 6527 * lets try to run arrays based on all disks that have arrived 6528 * until now. (those are in pending_raid_disks) 6529 * 6530 * the method: pick the first pending disk, collect all disks with 6531 * the same UUID, remove all from the pending list and put them into 6532 * the 'same_array' list. Then order this list based on superblock 6533 * update time (freshest comes first), kick out 'old' disks and 6534 * compare superblocks. If everything's fine then run it. 6535 * 6536 * If "unit" is allocated, then bump its reference count 6537 */ 6538 static void autorun_devices(int part) 6539 { 6540 struct md_rdev *rdev0, *rdev, *tmp; 6541 struct mddev *mddev; 6542 6543 pr_info("md: autorun ...\n"); 6544 while (!list_empty(&pending_raid_disks)) { 6545 int unit; 6546 dev_t dev; 6547 LIST_HEAD(candidates); 6548 rdev0 = list_entry(pending_raid_disks.next, 6549 struct md_rdev, same_set); 6550 6551 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6552 INIT_LIST_HEAD(&candidates); 6553 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6554 if (super_90_load(rdev, rdev0, 0) >= 0) { 6555 pr_debug("md: adding %pg ...\n", 6556 rdev->bdev); 6557 list_move(&rdev->same_set, &candidates); 6558 } 6559 /* 6560 * now we have a set of devices, with all of them having 6561 * mostly sane superblocks. It's time to allocate the 6562 * mddev. 6563 */ 6564 if (part) { 6565 dev = MKDEV(mdp_major, 6566 rdev0->preferred_minor << MdpMinorShift); 6567 unit = MINOR(dev) >> MdpMinorShift; 6568 } else { 6569 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6570 unit = MINOR(dev); 6571 } 6572 if (rdev0->preferred_minor != unit) { 6573 pr_warn("md: unit number in %pg is bad: %d\n", 6574 rdev0->bdev, rdev0->preferred_minor); 6575 break; 6576 } 6577 6578 mddev = md_alloc(dev, NULL); 6579 if (IS_ERR(mddev)) 6580 break; 6581 6582 if (mddev_suspend_and_lock(mddev)) 6583 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6584 else if (mddev->raid_disks || mddev->major_version 6585 || !list_empty(&mddev->disks)) { 6586 pr_warn("md: %s already running, cannot run %pg\n", 6587 mdname(mddev), rdev0->bdev); 6588 mddev_unlock_and_resume(mddev); 6589 } else { 6590 pr_debug("md: created %s\n", mdname(mddev)); 6591 mddev->persistent = 1; 6592 rdev_for_each_list(rdev, tmp, &candidates) { 6593 list_del_init(&rdev->same_set); 6594 if (bind_rdev_to_array(rdev, mddev)) 6595 export_rdev(rdev, mddev); 6596 } 6597 autorun_array(mddev); 6598 mddev_unlock_and_resume(mddev); 6599 } 6600 /* on success, candidates will be empty, on error 6601 * it won't... 6602 */ 6603 rdev_for_each_list(rdev, tmp, &candidates) { 6604 list_del_init(&rdev->same_set); 6605 export_rdev(rdev, mddev); 6606 } 6607 mddev_put(mddev); 6608 } 6609 pr_info("md: ... autorun DONE.\n"); 6610 } 6611 #endif /* !MODULE */ 6612 6613 static int get_version(void __user *arg) 6614 { 6615 mdu_version_t ver; 6616 6617 ver.major = MD_MAJOR_VERSION; 6618 ver.minor = MD_MINOR_VERSION; 6619 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6620 6621 if (copy_to_user(arg, &ver, sizeof(ver))) 6622 return -EFAULT; 6623 6624 return 0; 6625 } 6626 6627 static int get_array_info(struct mddev *mddev, void __user *arg) 6628 { 6629 mdu_array_info_t info; 6630 int nr,working,insync,failed,spare; 6631 struct md_rdev *rdev; 6632 6633 nr = working = insync = failed = spare = 0; 6634 rcu_read_lock(); 6635 rdev_for_each_rcu(rdev, mddev) { 6636 nr++; 6637 if (test_bit(Faulty, &rdev->flags)) 6638 failed++; 6639 else { 6640 working++; 6641 if (test_bit(In_sync, &rdev->flags)) 6642 insync++; 6643 else if (test_bit(Journal, &rdev->flags)) 6644 /* TODO: add journal count to md_u.h */ 6645 ; 6646 else 6647 spare++; 6648 } 6649 } 6650 rcu_read_unlock(); 6651 6652 info.major_version = mddev->major_version; 6653 info.minor_version = mddev->minor_version; 6654 info.patch_version = MD_PATCHLEVEL_VERSION; 6655 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6656 info.level = mddev->level; 6657 info.size = mddev->dev_sectors / 2; 6658 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6659 info.size = -1; 6660 info.nr_disks = nr; 6661 info.raid_disks = mddev->raid_disks; 6662 info.md_minor = mddev->md_minor; 6663 info.not_persistent= !mddev->persistent; 6664 6665 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6666 info.state = 0; 6667 if (mddev->in_sync) 6668 info.state = (1<<MD_SB_CLEAN); 6669 if (mddev->bitmap && mddev->bitmap_info.offset) 6670 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6671 if (mddev_is_clustered(mddev)) 6672 info.state |= (1<<MD_SB_CLUSTERED); 6673 info.active_disks = insync; 6674 info.working_disks = working; 6675 info.failed_disks = failed; 6676 info.spare_disks = spare; 6677 6678 info.layout = mddev->layout; 6679 info.chunk_size = mddev->chunk_sectors << 9; 6680 6681 if (copy_to_user(arg, &info, sizeof(info))) 6682 return -EFAULT; 6683 6684 return 0; 6685 } 6686 6687 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6688 { 6689 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6690 char *ptr; 6691 int err; 6692 6693 file = kzalloc(sizeof(*file), GFP_NOIO); 6694 if (!file) 6695 return -ENOMEM; 6696 6697 err = 0; 6698 spin_lock(&mddev->lock); 6699 /* bitmap enabled */ 6700 if (mddev->bitmap_info.file) { 6701 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6702 sizeof(file->pathname)); 6703 if (IS_ERR(ptr)) 6704 err = PTR_ERR(ptr); 6705 else 6706 memmove(file->pathname, ptr, 6707 sizeof(file->pathname)-(ptr-file->pathname)); 6708 } 6709 spin_unlock(&mddev->lock); 6710 6711 if (err == 0 && 6712 copy_to_user(arg, file, sizeof(*file))) 6713 err = -EFAULT; 6714 6715 kfree(file); 6716 return err; 6717 } 6718 6719 static int get_disk_info(struct mddev *mddev, void __user * arg) 6720 { 6721 mdu_disk_info_t info; 6722 struct md_rdev *rdev; 6723 6724 if (copy_from_user(&info, arg, sizeof(info))) 6725 return -EFAULT; 6726 6727 rcu_read_lock(); 6728 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6729 if (rdev) { 6730 info.major = MAJOR(rdev->bdev->bd_dev); 6731 info.minor = MINOR(rdev->bdev->bd_dev); 6732 info.raid_disk = rdev->raid_disk; 6733 info.state = 0; 6734 if (test_bit(Faulty, &rdev->flags)) 6735 info.state |= (1<<MD_DISK_FAULTY); 6736 else if (test_bit(In_sync, &rdev->flags)) { 6737 info.state |= (1<<MD_DISK_ACTIVE); 6738 info.state |= (1<<MD_DISK_SYNC); 6739 } 6740 if (test_bit(Journal, &rdev->flags)) 6741 info.state |= (1<<MD_DISK_JOURNAL); 6742 if (test_bit(WriteMostly, &rdev->flags)) 6743 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6744 if (test_bit(FailFast, &rdev->flags)) 6745 info.state |= (1<<MD_DISK_FAILFAST); 6746 } else { 6747 info.major = info.minor = 0; 6748 info.raid_disk = -1; 6749 info.state = (1<<MD_DISK_REMOVED); 6750 } 6751 rcu_read_unlock(); 6752 6753 if (copy_to_user(arg, &info, sizeof(info))) 6754 return -EFAULT; 6755 6756 return 0; 6757 } 6758 6759 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6760 { 6761 struct md_rdev *rdev; 6762 dev_t dev = MKDEV(info->major,info->minor); 6763 6764 if (mddev_is_clustered(mddev) && 6765 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6766 pr_warn("%s: Cannot add to clustered mddev.\n", 6767 mdname(mddev)); 6768 return -EINVAL; 6769 } 6770 6771 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6772 return -EOVERFLOW; 6773 6774 if (!mddev->raid_disks) { 6775 int err; 6776 /* expecting a device which has a superblock */ 6777 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6778 if (IS_ERR(rdev)) { 6779 pr_warn("md: md_import_device returned %ld\n", 6780 PTR_ERR(rdev)); 6781 return PTR_ERR(rdev); 6782 } 6783 if (!list_empty(&mddev->disks)) { 6784 struct md_rdev *rdev0 6785 = list_entry(mddev->disks.next, 6786 struct md_rdev, same_set); 6787 err = super_types[mddev->major_version] 6788 .load_super(rdev, rdev0, mddev->minor_version); 6789 if (err < 0) { 6790 pr_warn("md: %pg has different UUID to %pg\n", 6791 rdev->bdev, 6792 rdev0->bdev); 6793 export_rdev(rdev, mddev); 6794 return -EINVAL; 6795 } 6796 } 6797 err = bind_rdev_to_array(rdev, mddev); 6798 if (err) 6799 export_rdev(rdev, mddev); 6800 return err; 6801 } 6802 6803 /* 6804 * md_add_new_disk can be used once the array is assembled 6805 * to add "hot spares". They must already have a superblock 6806 * written 6807 */ 6808 if (mddev->pers) { 6809 int err; 6810 if (!mddev->pers->hot_add_disk) { 6811 pr_warn("%s: personality does not support diskops!\n", 6812 mdname(mddev)); 6813 return -EINVAL; 6814 } 6815 if (mddev->persistent) 6816 rdev = md_import_device(dev, mddev->major_version, 6817 mddev->minor_version); 6818 else 6819 rdev = md_import_device(dev, -1, -1); 6820 if (IS_ERR(rdev)) { 6821 pr_warn("md: md_import_device returned %ld\n", 6822 PTR_ERR(rdev)); 6823 return PTR_ERR(rdev); 6824 } 6825 /* set saved_raid_disk if appropriate */ 6826 if (!mddev->persistent) { 6827 if (info->state & (1<<MD_DISK_SYNC) && 6828 info->raid_disk < mddev->raid_disks) { 6829 rdev->raid_disk = info->raid_disk; 6830 clear_bit(Bitmap_sync, &rdev->flags); 6831 } else 6832 rdev->raid_disk = -1; 6833 rdev->saved_raid_disk = rdev->raid_disk; 6834 } else 6835 super_types[mddev->major_version]. 6836 validate_super(mddev, rdev); 6837 if ((info->state & (1<<MD_DISK_SYNC)) && 6838 rdev->raid_disk != info->raid_disk) { 6839 /* This was a hot-add request, but events doesn't 6840 * match, so reject it. 6841 */ 6842 export_rdev(rdev, mddev); 6843 return -EINVAL; 6844 } 6845 6846 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6847 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6848 set_bit(WriteMostly, &rdev->flags); 6849 else 6850 clear_bit(WriteMostly, &rdev->flags); 6851 if (info->state & (1<<MD_DISK_FAILFAST)) 6852 set_bit(FailFast, &rdev->flags); 6853 else 6854 clear_bit(FailFast, &rdev->flags); 6855 6856 if (info->state & (1<<MD_DISK_JOURNAL)) { 6857 struct md_rdev *rdev2; 6858 bool has_journal = false; 6859 6860 /* make sure no existing journal disk */ 6861 rdev_for_each(rdev2, mddev) { 6862 if (test_bit(Journal, &rdev2->flags)) { 6863 has_journal = true; 6864 break; 6865 } 6866 } 6867 if (has_journal || mddev->bitmap) { 6868 export_rdev(rdev, mddev); 6869 return -EBUSY; 6870 } 6871 set_bit(Journal, &rdev->flags); 6872 } 6873 /* 6874 * check whether the device shows up in other nodes 6875 */ 6876 if (mddev_is_clustered(mddev)) { 6877 if (info->state & (1 << MD_DISK_CANDIDATE)) 6878 set_bit(Candidate, &rdev->flags); 6879 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6880 /* --add initiated by this node */ 6881 err = md_cluster_ops->add_new_disk(mddev, rdev); 6882 if (err) { 6883 export_rdev(rdev, mddev); 6884 return err; 6885 } 6886 } 6887 } 6888 6889 rdev->raid_disk = -1; 6890 err = bind_rdev_to_array(rdev, mddev); 6891 6892 if (err) 6893 export_rdev(rdev, mddev); 6894 6895 if (mddev_is_clustered(mddev)) { 6896 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6897 if (!err) { 6898 err = md_cluster_ops->new_disk_ack(mddev, 6899 err == 0); 6900 if (err) 6901 md_kick_rdev_from_array(rdev); 6902 } 6903 } else { 6904 if (err) 6905 md_cluster_ops->add_new_disk_cancel(mddev); 6906 else 6907 err = add_bound_rdev(rdev); 6908 } 6909 6910 } else if (!err) 6911 err = add_bound_rdev(rdev); 6912 6913 return err; 6914 } 6915 6916 /* otherwise, md_add_new_disk is only allowed 6917 * for major_version==0 superblocks 6918 */ 6919 if (mddev->major_version != 0) { 6920 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6921 return -EINVAL; 6922 } 6923 6924 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6925 int err; 6926 rdev = md_import_device(dev, -1, 0); 6927 if (IS_ERR(rdev)) { 6928 pr_warn("md: error, md_import_device() returned %ld\n", 6929 PTR_ERR(rdev)); 6930 return PTR_ERR(rdev); 6931 } 6932 rdev->desc_nr = info->number; 6933 if (info->raid_disk < mddev->raid_disks) 6934 rdev->raid_disk = info->raid_disk; 6935 else 6936 rdev->raid_disk = -1; 6937 6938 if (rdev->raid_disk < mddev->raid_disks) 6939 if (info->state & (1<<MD_DISK_SYNC)) 6940 set_bit(In_sync, &rdev->flags); 6941 6942 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6943 set_bit(WriteMostly, &rdev->flags); 6944 if (info->state & (1<<MD_DISK_FAILFAST)) 6945 set_bit(FailFast, &rdev->flags); 6946 6947 if (!mddev->persistent) { 6948 pr_debug("md: nonpersistent superblock ...\n"); 6949 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6950 } else 6951 rdev->sb_start = calc_dev_sboffset(rdev); 6952 rdev->sectors = rdev->sb_start; 6953 6954 err = bind_rdev_to_array(rdev, mddev); 6955 if (err) { 6956 export_rdev(rdev, mddev); 6957 return err; 6958 } 6959 } 6960 6961 return 0; 6962 } 6963 6964 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6965 { 6966 struct md_rdev *rdev; 6967 6968 if (!mddev->pers) 6969 return -ENODEV; 6970 6971 rdev = find_rdev(mddev, dev); 6972 if (!rdev) 6973 return -ENXIO; 6974 6975 if (rdev->raid_disk < 0) 6976 goto kick_rdev; 6977 6978 clear_bit(Blocked, &rdev->flags); 6979 remove_and_add_spares(mddev, rdev); 6980 6981 if (rdev->raid_disk >= 0) 6982 goto busy; 6983 6984 kick_rdev: 6985 if (mddev_is_clustered(mddev)) { 6986 if (md_cluster_ops->remove_disk(mddev, rdev)) 6987 goto busy; 6988 } 6989 6990 md_kick_rdev_from_array(rdev); 6991 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6992 if (mddev->thread) 6993 md_wakeup_thread(mddev->thread); 6994 else 6995 md_update_sb(mddev, 1); 6996 md_new_event(); 6997 6998 return 0; 6999 busy: 7000 pr_debug("md: cannot remove active disk %pg from %s ...\n", 7001 rdev->bdev, mdname(mddev)); 7002 return -EBUSY; 7003 } 7004 7005 static int hot_add_disk(struct mddev *mddev, dev_t dev) 7006 { 7007 int err; 7008 struct md_rdev *rdev; 7009 7010 if (!mddev->pers) 7011 return -ENODEV; 7012 7013 if (mddev->major_version != 0) { 7014 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 7015 mdname(mddev)); 7016 return -EINVAL; 7017 } 7018 if (!mddev->pers->hot_add_disk) { 7019 pr_warn("%s: personality does not support diskops!\n", 7020 mdname(mddev)); 7021 return -EINVAL; 7022 } 7023 7024 rdev = md_import_device(dev, -1, 0); 7025 if (IS_ERR(rdev)) { 7026 pr_warn("md: error, md_import_device() returned %ld\n", 7027 PTR_ERR(rdev)); 7028 return -EINVAL; 7029 } 7030 7031 if (mddev->persistent) 7032 rdev->sb_start = calc_dev_sboffset(rdev); 7033 else 7034 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 7035 7036 rdev->sectors = rdev->sb_start; 7037 7038 if (test_bit(Faulty, &rdev->flags)) { 7039 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 7040 rdev->bdev, mdname(mddev)); 7041 err = -EINVAL; 7042 goto abort_export; 7043 } 7044 7045 clear_bit(In_sync, &rdev->flags); 7046 rdev->desc_nr = -1; 7047 rdev->saved_raid_disk = -1; 7048 err = bind_rdev_to_array(rdev, mddev); 7049 if (err) 7050 goto abort_export; 7051 7052 /* 7053 * The rest should better be atomic, we can have disk failures 7054 * noticed in interrupt contexts ... 7055 */ 7056 7057 rdev->raid_disk = -1; 7058 7059 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7060 if (!mddev->thread) 7061 md_update_sb(mddev, 1); 7062 /* 7063 * If the new disk does not support REQ_NOWAIT, 7064 * disable on the whole MD. 7065 */ 7066 if (!bdev_nowait(rdev->bdev)) { 7067 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 7068 mdname(mddev), rdev->bdev); 7069 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 7070 } 7071 /* 7072 * Kick recovery, maybe this spare has to be added to the 7073 * array immediately. 7074 */ 7075 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7076 md_wakeup_thread(mddev->thread); 7077 md_new_event(); 7078 return 0; 7079 7080 abort_export: 7081 export_rdev(rdev, mddev); 7082 return err; 7083 } 7084 7085 static int set_bitmap_file(struct mddev *mddev, int fd) 7086 { 7087 int err = 0; 7088 7089 if (mddev->pers) { 7090 if (!mddev->pers->quiesce || !mddev->thread) 7091 return -EBUSY; 7092 if (mddev->recovery || mddev->sync_thread) 7093 return -EBUSY; 7094 /* we should be able to change the bitmap.. */ 7095 } 7096 7097 if (fd >= 0) { 7098 struct inode *inode; 7099 struct file *f; 7100 7101 if (mddev->bitmap || mddev->bitmap_info.file) 7102 return -EEXIST; /* cannot add when bitmap is present */ 7103 7104 if (!IS_ENABLED(CONFIG_MD_BITMAP_FILE)) { 7105 pr_warn("%s: bitmap files not supported by this kernel\n", 7106 mdname(mddev)); 7107 return -EINVAL; 7108 } 7109 pr_warn("%s: using deprecated bitmap file support\n", 7110 mdname(mddev)); 7111 7112 f = fget(fd); 7113 7114 if (f == NULL) { 7115 pr_warn("%s: error: failed to get bitmap file\n", 7116 mdname(mddev)); 7117 return -EBADF; 7118 } 7119 7120 inode = f->f_mapping->host; 7121 if (!S_ISREG(inode->i_mode)) { 7122 pr_warn("%s: error: bitmap file must be a regular file\n", 7123 mdname(mddev)); 7124 err = -EBADF; 7125 } else if (!(f->f_mode & FMODE_WRITE)) { 7126 pr_warn("%s: error: bitmap file must open for write\n", 7127 mdname(mddev)); 7128 err = -EBADF; 7129 } else if (atomic_read(&inode->i_writecount) != 1) { 7130 pr_warn("%s: error: bitmap file is already in use\n", 7131 mdname(mddev)); 7132 err = -EBUSY; 7133 } 7134 if (err) { 7135 fput(f); 7136 return err; 7137 } 7138 mddev->bitmap_info.file = f; 7139 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7140 } else if (mddev->bitmap == NULL) 7141 return -ENOENT; /* cannot remove what isn't there */ 7142 err = 0; 7143 if (mddev->pers) { 7144 if (fd >= 0) { 7145 struct bitmap *bitmap; 7146 7147 bitmap = md_bitmap_create(mddev, -1); 7148 if (!IS_ERR(bitmap)) { 7149 mddev->bitmap = bitmap; 7150 err = md_bitmap_load(mddev); 7151 } else 7152 err = PTR_ERR(bitmap); 7153 if (err) { 7154 md_bitmap_destroy(mddev); 7155 fd = -1; 7156 } 7157 } else if (fd < 0) { 7158 md_bitmap_destroy(mddev); 7159 } 7160 } 7161 if (fd < 0) { 7162 struct file *f = mddev->bitmap_info.file; 7163 if (f) { 7164 spin_lock(&mddev->lock); 7165 mddev->bitmap_info.file = NULL; 7166 spin_unlock(&mddev->lock); 7167 fput(f); 7168 } 7169 } 7170 7171 return err; 7172 } 7173 7174 /* 7175 * md_set_array_info is used two different ways 7176 * The original usage is when creating a new array. 7177 * In this usage, raid_disks is > 0 and it together with 7178 * level, size, not_persistent,layout,chunksize determine the 7179 * shape of the array. 7180 * This will always create an array with a type-0.90.0 superblock. 7181 * The newer usage is when assembling an array. 7182 * In this case raid_disks will be 0, and the major_version field is 7183 * use to determine which style super-blocks are to be found on the devices. 7184 * The minor and patch _version numbers are also kept incase the 7185 * super_block handler wishes to interpret them. 7186 */ 7187 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7188 { 7189 if (info->raid_disks == 0) { 7190 /* just setting version number for superblock loading */ 7191 if (info->major_version < 0 || 7192 info->major_version >= ARRAY_SIZE(super_types) || 7193 super_types[info->major_version].name == NULL) { 7194 /* maybe try to auto-load a module? */ 7195 pr_warn("md: superblock version %d not known\n", 7196 info->major_version); 7197 return -EINVAL; 7198 } 7199 mddev->major_version = info->major_version; 7200 mddev->minor_version = info->minor_version; 7201 mddev->patch_version = info->patch_version; 7202 mddev->persistent = !info->not_persistent; 7203 /* ensure mddev_put doesn't delete this now that there 7204 * is some minimal configuration. 7205 */ 7206 mddev->ctime = ktime_get_real_seconds(); 7207 return 0; 7208 } 7209 mddev->major_version = MD_MAJOR_VERSION; 7210 mddev->minor_version = MD_MINOR_VERSION; 7211 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7212 mddev->ctime = ktime_get_real_seconds(); 7213 7214 mddev->level = info->level; 7215 mddev->clevel[0] = 0; 7216 mddev->dev_sectors = 2 * (sector_t)info->size; 7217 mddev->raid_disks = info->raid_disks; 7218 /* don't set md_minor, it is determined by which /dev/md* was 7219 * openned 7220 */ 7221 if (info->state & (1<<MD_SB_CLEAN)) 7222 mddev->recovery_cp = MaxSector; 7223 else 7224 mddev->recovery_cp = 0; 7225 mddev->persistent = ! info->not_persistent; 7226 mddev->external = 0; 7227 7228 mddev->layout = info->layout; 7229 if (mddev->level == 0) 7230 /* Cannot trust RAID0 layout info here */ 7231 mddev->layout = -1; 7232 mddev->chunk_sectors = info->chunk_size >> 9; 7233 7234 if (mddev->persistent) { 7235 mddev->max_disks = MD_SB_DISKS; 7236 mddev->flags = 0; 7237 mddev->sb_flags = 0; 7238 } 7239 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7240 7241 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7242 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7243 mddev->bitmap_info.offset = 0; 7244 7245 mddev->reshape_position = MaxSector; 7246 7247 /* 7248 * Generate a 128 bit UUID 7249 */ 7250 get_random_bytes(mddev->uuid, 16); 7251 7252 mddev->new_level = mddev->level; 7253 mddev->new_chunk_sectors = mddev->chunk_sectors; 7254 mddev->new_layout = mddev->layout; 7255 mddev->delta_disks = 0; 7256 mddev->reshape_backwards = 0; 7257 7258 return 0; 7259 } 7260 7261 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7262 { 7263 lockdep_assert_held(&mddev->reconfig_mutex); 7264 7265 if (mddev->external_size) 7266 return; 7267 7268 mddev->array_sectors = array_sectors; 7269 } 7270 EXPORT_SYMBOL(md_set_array_sectors); 7271 7272 static int update_size(struct mddev *mddev, sector_t num_sectors) 7273 { 7274 struct md_rdev *rdev; 7275 int rv; 7276 int fit = (num_sectors == 0); 7277 sector_t old_dev_sectors = mddev->dev_sectors; 7278 7279 if (mddev->pers->resize == NULL) 7280 return -EINVAL; 7281 /* The "num_sectors" is the number of sectors of each device that 7282 * is used. This can only make sense for arrays with redundancy. 7283 * linear and raid0 always use whatever space is available. We can only 7284 * consider changing this number if no resync or reconstruction is 7285 * happening, and if the new size is acceptable. It must fit before the 7286 * sb_start or, if that is <data_offset, it must fit before the size 7287 * of each device. If num_sectors is zero, we find the largest size 7288 * that fits. 7289 */ 7290 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7291 mddev->sync_thread) 7292 return -EBUSY; 7293 if (!md_is_rdwr(mddev)) 7294 return -EROFS; 7295 7296 rdev_for_each(rdev, mddev) { 7297 sector_t avail = rdev->sectors; 7298 7299 if (fit && (num_sectors == 0 || num_sectors > avail)) 7300 num_sectors = avail; 7301 if (avail < num_sectors) 7302 return -ENOSPC; 7303 } 7304 rv = mddev->pers->resize(mddev, num_sectors); 7305 if (!rv) { 7306 if (mddev_is_clustered(mddev)) 7307 md_cluster_ops->update_size(mddev, old_dev_sectors); 7308 else if (mddev->queue) { 7309 set_capacity_and_notify(mddev->gendisk, 7310 mddev->array_sectors); 7311 } 7312 } 7313 return rv; 7314 } 7315 7316 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7317 { 7318 int rv; 7319 struct md_rdev *rdev; 7320 /* change the number of raid disks */ 7321 if (mddev->pers->check_reshape == NULL) 7322 return -EINVAL; 7323 if (!md_is_rdwr(mddev)) 7324 return -EROFS; 7325 if (raid_disks <= 0 || 7326 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7327 return -EINVAL; 7328 if (mddev->sync_thread || 7329 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7330 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7331 mddev->reshape_position != MaxSector) 7332 return -EBUSY; 7333 7334 rdev_for_each(rdev, mddev) { 7335 if (mddev->raid_disks < raid_disks && 7336 rdev->data_offset < rdev->new_data_offset) 7337 return -EINVAL; 7338 if (mddev->raid_disks > raid_disks && 7339 rdev->data_offset > rdev->new_data_offset) 7340 return -EINVAL; 7341 } 7342 7343 mddev->delta_disks = raid_disks - mddev->raid_disks; 7344 if (mddev->delta_disks < 0) 7345 mddev->reshape_backwards = 1; 7346 else if (mddev->delta_disks > 0) 7347 mddev->reshape_backwards = 0; 7348 7349 rv = mddev->pers->check_reshape(mddev); 7350 if (rv < 0) { 7351 mddev->delta_disks = 0; 7352 mddev->reshape_backwards = 0; 7353 } 7354 return rv; 7355 } 7356 7357 /* 7358 * update_array_info is used to change the configuration of an 7359 * on-line array. 7360 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7361 * fields in the info are checked against the array. 7362 * Any differences that cannot be handled will cause an error. 7363 * Normally, only one change can be managed at a time. 7364 */ 7365 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7366 { 7367 int rv = 0; 7368 int cnt = 0; 7369 int state = 0; 7370 7371 /* calculate expected state,ignoring low bits */ 7372 if (mddev->bitmap && mddev->bitmap_info.offset) 7373 state |= (1 << MD_SB_BITMAP_PRESENT); 7374 7375 if (mddev->major_version != info->major_version || 7376 mddev->minor_version != info->minor_version || 7377 /* mddev->patch_version != info->patch_version || */ 7378 mddev->ctime != info->ctime || 7379 mddev->level != info->level || 7380 /* mddev->layout != info->layout || */ 7381 mddev->persistent != !info->not_persistent || 7382 mddev->chunk_sectors != info->chunk_size >> 9 || 7383 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7384 ((state^info->state) & 0xfffffe00) 7385 ) 7386 return -EINVAL; 7387 /* Check there is only one change */ 7388 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7389 cnt++; 7390 if (mddev->raid_disks != info->raid_disks) 7391 cnt++; 7392 if (mddev->layout != info->layout) 7393 cnt++; 7394 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7395 cnt++; 7396 if (cnt == 0) 7397 return 0; 7398 if (cnt > 1) 7399 return -EINVAL; 7400 7401 if (mddev->layout != info->layout) { 7402 /* Change layout 7403 * we don't need to do anything at the md level, the 7404 * personality will take care of it all. 7405 */ 7406 if (mddev->pers->check_reshape == NULL) 7407 return -EINVAL; 7408 else { 7409 mddev->new_layout = info->layout; 7410 rv = mddev->pers->check_reshape(mddev); 7411 if (rv) 7412 mddev->new_layout = mddev->layout; 7413 return rv; 7414 } 7415 } 7416 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7417 rv = update_size(mddev, (sector_t)info->size * 2); 7418 7419 if (mddev->raid_disks != info->raid_disks) 7420 rv = update_raid_disks(mddev, info->raid_disks); 7421 7422 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7423 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7424 rv = -EINVAL; 7425 goto err; 7426 } 7427 if (mddev->recovery || mddev->sync_thread) { 7428 rv = -EBUSY; 7429 goto err; 7430 } 7431 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7432 struct bitmap *bitmap; 7433 /* add the bitmap */ 7434 if (mddev->bitmap) { 7435 rv = -EEXIST; 7436 goto err; 7437 } 7438 if (mddev->bitmap_info.default_offset == 0) { 7439 rv = -EINVAL; 7440 goto err; 7441 } 7442 mddev->bitmap_info.offset = 7443 mddev->bitmap_info.default_offset; 7444 mddev->bitmap_info.space = 7445 mddev->bitmap_info.default_space; 7446 bitmap = md_bitmap_create(mddev, -1); 7447 if (!IS_ERR(bitmap)) { 7448 mddev->bitmap = bitmap; 7449 rv = md_bitmap_load(mddev); 7450 } else 7451 rv = PTR_ERR(bitmap); 7452 if (rv) 7453 md_bitmap_destroy(mddev); 7454 } else { 7455 /* remove the bitmap */ 7456 if (!mddev->bitmap) { 7457 rv = -ENOENT; 7458 goto err; 7459 } 7460 if (mddev->bitmap->storage.file) { 7461 rv = -EINVAL; 7462 goto err; 7463 } 7464 if (mddev->bitmap_info.nodes) { 7465 /* hold PW on all the bitmap lock */ 7466 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7467 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7468 rv = -EPERM; 7469 md_cluster_ops->unlock_all_bitmaps(mddev); 7470 goto err; 7471 } 7472 7473 mddev->bitmap_info.nodes = 0; 7474 md_cluster_ops->leave(mddev); 7475 module_put(md_cluster_mod); 7476 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7477 } 7478 md_bitmap_destroy(mddev); 7479 mddev->bitmap_info.offset = 0; 7480 } 7481 } 7482 md_update_sb(mddev, 1); 7483 return rv; 7484 err: 7485 return rv; 7486 } 7487 7488 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7489 { 7490 struct md_rdev *rdev; 7491 int err = 0; 7492 7493 if (mddev->pers == NULL) 7494 return -ENODEV; 7495 7496 rcu_read_lock(); 7497 rdev = md_find_rdev_rcu(mddev, dev); 7498 if (!rdev) 7499 err = -ENODEV; 7500 else { 7501 md_error(mddev, rdev); 7502 if (test_bit(MD_BROKEN, &mddev->flags)) 7503 err = -EBUSY; 7504 } 7505 rcu_read_unlock(); 7506 return err; 7507 } 7508 7509 /* 7510 * We have a problem here : there is no easy way to give a CHS 7511 * virtual geometry. We currently pretend that we have a 2 heads 7512 * 4 sectors (with a BIG number of cylinders...). This drives 7513 * dosfs just mad... ;-) 7514 */ 7515 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7516 { 7517 struct mddev *mddev = bdev->bd_disk->private_data; 7518 7519 geo->heads = 2; 7520 geo->sectors = 4; 7521 geo->cylinders = mddev->array_sectors / 8; 7522 return 0; 7523 } 7524 7525 static inline bool md_ioctl_valid(unsigned int cmd) 7526 { 7527 switch (cmd) { 7528 case ADD_NEW_DISK: 7529 case GET_ARRAY_INFO: 7530 case GET_BITMAP_FILE: 7531 case GET_DISK_INFO: 7532 case HOT_ADD_DISK: 7533 case HOT_REMOVE_DISK: 7534 case RAID_VERSION: 7535 case RESTART_ARRAY_RW: 7536 case RUN_ARRAY: 7537 case SET_ARRAY_INFO: 7538 case SET_BITMAP_FILE: 7539 case SET_DISK_FAULTY: 7540 case STOP_ARRAY: 7541 case STOP_ARRAY_RO: 7542 case CLUSTERED_DISK_NACK: 7543 return true; 7544 default: 7545 return false; 7546 } 7547 } 7548 7549 static bool md_ioctl_need_suspend(unsigned int cmd) 7550 { 7551 switch (cmd) { 7552 case ADD_NEW_DISK: 7553 case HOT_ADD_DISK: 7554 case HOT_REMOVE_DISK: 7555 case SET_BITMAP_FILE: 7556 case SET_ARRAY_INFO: 7557 return true; 7558 default: 7559 return false; 7560 } 7561 } 7562 7563 static int __md_set_array_info(struct mddev *mddev, void __user *argp) 7564 { 7565 mdu_array_info_t info; 7566 int err; 7567 7568 if (!argp) 7569 memset(&info, 0, sizeof(info)); 7570 else if (copy_from_user(&info, argp, sizeof(info))) 7571 return -EFAULT; 7572 7573 if (mddev->pers) { 7574 err = update_array_info(mddev, &info); 7575 if (err) 7576 pr_warn("md: couldn't update array info. %d\n", err); 7577 return err; 7578 } 7579 7580 if (!list_empty(&mddev->disks)) { 7581 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7582 return -EBUSY; 7583 } 7584 7585 if (mddev->raid_disks) { 7586 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7587 return -EBUSY; 7588 } 7589 7590 err = md_set_array_info(mddev, &info); 7591 if (err) 7592 pr_warn("md: couldn't set array info. %d\n", err); 7593 7594 return err; 7595 } 7596 7597 static int md_ioctl(struct block_device *bdev, blk_mode_t mode, 7598 unsigned int cmd, unsigned long arg) 7599 { 7600 int err = 0; 7601 void __user *argp = (void __user *)arg; 7602 struct mddev *mddev = NULL; 7603 bool did_set_md_closing = false; 7604 7605 if (!md_ioctl_valid(cmd)) 7606 return -ENOTTY; 7607 7608 switch (cmd) { 7609 case RAID_VERSION: 7610 case GET_ARRAY_INFO: 7611 case GET_DISK_INFO: 7612 break; 7613 default: 7614 if (!capable(CAP_SYS_ADMIN)) 7615 return -EACCES; 7616 } 7617 7618 /* 7619 * Commands dealing with the RAID driver but not any 7620 * particular array: 7621 */ 7622 switch (cmd) { 7623 case RAID_VERSION: 7624 err = get_version(argp); 7625 goto out; 7626 default:; 7627 } 7628 7629 /* 7630 * Commands creating/starting a new array: 7631 */ 7632 7633 mddev = bdev->bd_disk->private_data; 7634 7635 if (!mddev) { 7636 BUG(); 7637 goto out; 7638 } 7639 7640 /* Some actions do not requires the mutex */ 7641 switch (cmd) { 7642 case GET_ARRAY_INFO: 7643 if (!mddev->raid_disks && !mddev->external) 7644 err = -ENODEV; 7645 else 7646 err = get_array_info(mddev, argp); 7647 goto out; 7648 7649 case GET_DISK_INFO: 7650 if (!mddev->raid_disks && !mddev->external) 7651 err = -ENODEV; 7652 else 7653 err = get_disk_info(mddev, argp); 7654 goto out; 7655 7656 case SET_DISK_FAULTY: 7657 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7658 goto out; 7659 7660 case GET_BITMAP_FILE: 7661 err = get_bitmap_file(mddev, argp); 7662 goto out; 7663 7664 } 7665 7666 if (cmd == HOT_REMOVE_DISK) 7667 /* need to ensure recovery thread has run */ 7668 wait_event_interruptible_timeout(mddev->sb_wait, 7669 !test_bit(MD_RECOVERY_NEEDED, 7670 &mddev->recovery), 7671 msecs_to_jiffies(5000)); 7672 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7673 /* Need to flush page cache, and ensure no-one else opens 7674 * and writes 7675 */ 7676 mutex_lock(&mddev->open_mutex); 7677 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7678 mutex_unlock(&mddev->open_mutex); 7679 err = -EBUSY; 7680 goto out; 7681 } 7682 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7683 mutex_unlock(&mddev->open_mutex); 7684 err = -EBUSY; 7685 goto out; 7686 } 7687 did_set_md_closing = true; 7688 mutex_unlock(&mddev->open_mutex); 7689 sync_blockdev(bdev); 7690 } 7691 7692 if (!md_is_rdwr(mddev)) 7693 flush_work(&mddev->sync_work); 7694 7695 err = md_ioctl_need_suspend(cmd) ? mddev_suspend_and_lock(mddev) : 7696 mddev_lock(mddev); 7697 if (err) { 7698 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7699 err, cmd); 7700 goto out; 7701 } 7702 7703 if (cmd == SET_ARRAY_INFO) { 7704 err = __md_set_array_info(mddev, argp); 7705 goto unlock; 7706 } 7707 7708 /* 7709 * Commands querying/configuring an existing array: 7710 */ 7711 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7712 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7713 if ((!mddev->raid_disks && !mddev->external) 7714 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7715 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7716 && cmd != GET_BITMAP_FILE) { 7717 err = -ENODEV; 7718 goto unlock; 7719 } 7720 7721 /* 7722 * Commands even a read-only array can execute: 7723 */ 7724 switch (cmd) { 7725 case RESTART_ARRAY_RW: 7726 err = restart_array(mddev); 7727 goto unlock; 7728 7729 case STOP_ARRAY: 7730 err = do_md_stop(mddev, 0, bdev); 7731 goto unlock; 7732 7733 case STOP_ARRAY_RO: 7734 err = md_set_readonly(mddev, bdev); 7735 goto unlock; 7736 7737 case HOT_REMOVE_DISK: 7738 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7739 goto unlock; 7740 7741 case ADD_NEW_DISK: 7742 /* We can support ADD_NEW_DISK on read-only arrays 7743 * only if we are re-adding a preexisting device. 7744 * So require mddev->pers and MD_DISK_SYNC. 7745 */ 7746 if (mddev->pers) { 7747 mdu_disk_info_t info; 7748 if (copy_from_user(&info, argp, sizeof(info))) 7749 err = -EFAULT; 7750 else if (!(info.state & (1<<MD_DISK_SYNC))) 7751 /* Need to clear read-only for this */ 7752 break; 7753 else 7754 err = md_add_new_disk(mddev, &info); 7755 goto unlock; 7756 } 7757 break; 7758 } 7759 7760 /* 7761 * The remaining ioctls are changing the state of the 7762 * superblock, so we do not allow them on read-only arrays. 7763 */ 7764 if (!md_is_rdwr(mddev) && mddev->pers) { 7765 if (mddev->ro != MD_AUTO_READ) { 7766 err = -EROFS; 7767 goto unlock; 7768 } 7769 mddev->ro = MD_RDWR; 7770 sysfs_notify_dirent_safe(mddev->sysfs_state); 7771 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7772 /* mddev_unlock will wake thread */ 7773 /* If a device failed while we were read-only, we 7774 * need to make sure the metadata is updated now. 7775 */ 7776 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7777 mddev_unlock(mddev); 7778 wait_event(mddev->sb_wait, 7779 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7780 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7781 mddev_lock_nointr(mddev); 7782 } 7783 } 7784 7785 switch (cmd) { 7786 case ADD_NEW_DISK: 7787 { 7788 mdu_disk_info_t info; 7789 if (copy_from_user(&info, argp, sizeof(info))) 7790 err = -EFAULT; 7791 else 7792 err = md_add_new_disk(mddev, &info); 7793 goto unlock; 7794 } 7795 7796 case CLUSTERED_DISK_NACK: 7797 if (mddev_is_clustered(mddev)) 7798 md_cluster_ops->new_disk_ack(mddev, false); 7799 else 7800 err = -EINVAL; 7801 goto unlock; 7802 7803 case HOT_ADD_DISK: 7804 err = hot_add_disk(mddev, new_decode_dev(arg)); 7805 goto unlock; 7806 7807 case RUN_ARRAY: 7808 err = do_md_run(mddev); 7809 goto unlock; 7810 7811 case SET_BITMAP_FILE: 7812 err = set_bitmap_file(mddev, (int)arg); 7813 goto unlock; 7814 7815 default: 7816 err = -EINVAL; 7817 goto unlock; 7818 } 7819 7820 unlock: 7821 if (mddev->hold_active == UNTIL_IOCTL && 7822 err != -EINVAL) 7823 mddev->hold_active = 0; 7824 7825 md_ioctl_need_suspend(cmd) ? mddev_unlock_and_resume(mddev) : 7826 mddev_unlock(mddev); 7827 7828 out: 7829 if(did_set_md_closing) 7830 clear_bit(MD_CLOSING, &mddev->flags); 7831 return err; 7832 } 7833 #ifdef CONFIG_COMPAT 7834 static int md_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 7835 unsigned int cmd, unsigned long arg) 7836 { 7837 switch (cmd) { 7838 case HOT_REMOVE_DISK: 7839 case HOT_ADD_DISK: 7840 case SET_DISK_FAULTY: 7841 case SET_BITMAP_FILE: 7842 /* These take in integer arg, do not convert */ 7843 break; 7844 default: 7845 arg = (unsigned long)compat_ptr(arg); 7846 break; 7847 } 7848 7849 return md_ioctl(bdev, mode, cmd, arg); 7850 } 7851 #endif /* CONFIG_COMPAT */ 7852 7853 static int md_set_read_only(struct block_device *bdev, bool ro) 7854 { 7855 struct mddev *mddev = bdev->bd_disk->private_data; 7856 int err; 7857 7858 err = mddev_lock(mddev); 7859 if (err) 7860 return err; 7861 7862 if (!mddev->raid_disks && !mddev->external) { 7863 err = -ENODEV; 7864 goto out_unlock; 7865 } 7866 7867 /* 7868 * Transitioning to read-auto need only happen for arrays that call 7869 * md_write_start and which are not ready for writes yet. 7870 */ 7871 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) { 7872 err = restart_array(mddev); 7873 if (err) 7874 goto out_unlock; 7875 mddev->ro = MD_AUTO_READ; 7876 } 7877 7878 out_unlock: 7879 mddev_unlock(mddev); 7880 return err; 7881 } 7882 7883 static int md_open(struct gendisk *disk, blk_mode_t mode) 7884 { 7885 struct mddev *mddev; 7886 int err; 7887 7888 spin_lock(&all_mddevs_lock); 7889 mddev = mddev_get(disk->private_data); 7890 spin_unlock(&all_mddevs_lock); 7891 if (!mddev) 7892 return -ENODEV; 7893 7894 err = mutex_lock_interruptible(&mddev->open_mutex); 7895 if (err) 7896 goto out; 7897 7898 err = -ENODEV; 7899 if (test_bit(MD_CLOSING, &mddev->flags)) 7900 goto out_unlock; 7901 7902 atomic_inc(&mddev->openers); 7903 mutex_unlock(&mddev->open_mutex); 7904 7905 disk_check_media_change(disk); 7906 return 0; 7907 7908 out_unlock: 7909 mutex_unlock(&mddev->open_mutex); 7910 out: 7911 mddev_put(mddev); 7912 return err; 7913 } 7914 7915 static void md_release(struct gendisk *disk) 7916 { 7917 struct mddev *mddev = disk->private_data; 7918 7919 BUG_ON(!mddev); 7920 atomic_dec(&mddev->openers); 7921 mddev_put(mddev); 7922 } 7923 7924 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7925 { 7926 struct mddev *mddev = disk->private_data; 7927 unsigned int ret = 0; 7928 7929 if (mddev->changed) 7930 ret = DISK_EVENT_MEDIA_CHANGE; 7931 mddev->changed = 0; 7932 return ret; 7933 } 7934 7935 static void md_free_disk(struct gendisk *disk) 7936 { 7937 struct mddev *mddev = disk->private_data; 7938 7939 mddev_free(mddev); 7940 } 7941 7942 const struct block_device_operations md_fops = 7943 { 7944 .owner = THIS_MODULE, 7945 .submit_bio = md_submit_bio, 7946 .open = md_open, 7947 .release = md_release, 7948 .ioctl = md_ioctl, 7949 #ifdef CONFIG_COMPAT 7950 .compat_ioctl = md_compat_ioctl, 7951 #endif 7952 .getgeo = md_getgeo, 7953 .check_events = md_check_events, 7954 .set_read_only = md_set_read_only, 7955 .free_disk = md_free_disk, 7956 }; 7957 7958 static int md_thread(void *arg) 7959 { 7960 struct md_thread *thread = arg; 7961 7962 /* 7963 * md_thread is a 'system-thread', it's priority should be very 7964 * high. We avoid resource deadlocks individually in each 7965 * raid personality. (RAID5 does preallocation) We also use RR and 7966 * the very same RT priority as kswapd, thus we will never get 7967 * into a priority inversion deadlock. 7968 * 7969 * we definitely have to have equal or higher priority than 7970 * bdflush, otherwise bdflush will deadlock if there are too 7971 * many dirty RAID5 blocks. 7972 */ 7973 7974 allow_signal(SIGKILL); 7975 while (!kthread_should_stop()) { 7976 7977 /* We need to wait INTERRUPTIBLE so that 7978 * we don't add to the load-average. 7979 * That means we need to be sure no signals are 7980 * pending 7981 */ 7982 if (signal_pending(current)) 7983 flush_signals(current); 7984 7985 wait_event_interruptible_timeout 7986 (thread->wqueue, 7987 test_bit(THREAD_WAKEUP, &thread->flags) 7988 || kthread_should_stop() || kthread_should_park(), 7989 thread->timeout); 7990 7991 clear_bit(THREAD_WAKEUP, &thread->flags); 7992 if (kthread_should_park()) 7993 kthread_parkme(); 7994 if (!kthread_should_stop()) 7995 thread->run(thread); 7996 } 7997 7998 return 0; 7999 } 8000 8001 static void md_wakeup_thread_directly(struct md_thread __rcu *thread) 8002 { 8003 struct md_thread *t; 8004 8005 rcu_read_lock(); 8006 t = rcu_dereference(thread); 8007 if (t) 8008 wake_up_process(t->tsk); 8009 rcu_read_unlock(); 8010 } 8011 8012 void md_wakeup_thread(struct md_thread __rcu *thread) 8013 { 8014 struct md_thread *t; 8015 8016 rcu_read_lock(); 8017 t = rcu_dereference(thread); 8018 if (t) { 8019 pr_debug("md: waking up MD thread %s.\n", t->tsk->comm); 8020 set_bit(THREAD_WAKEUP, &t->flags); 8021 wake_up(&t->wqueue); 8022 } 8023 rcu_read_unlock(); 8024 } 8025 EXPORT_SYMBOL(md_wakeup_thread); 8026 8027 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 8028 struct mddev *mddev, const char *name) 8029 { 8030 struct md_thread *thread; 8031 8032 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 8033 if (!thread) 8034 return NULL; 8035 8036 init_waitqueue_head(&thread->wqueue); 8037 8038 thread->run = run; 8039 thread->mddev = mddev; 8040 thread->timeout = MAX_SCHEDULE_TIMEOUT; 8041 thread->tsk = kthread_run(md_thread, thread, 8042 "%s_%s", 8043 mdname(thread->mddev), 8044 name); 8045 if (IS_ERR(thread->tsk)) { 8046 kfree(thread); 8047 return NULL; 8048 } 8049 return thread; 8050 } 8051 EXPORT_SYMBOL(md_register_thread); 8052 8053 void md_unregister_thread(struct mddev *mddev, struct md_thread __rcu **threadp) 8054 { 8055 struct md_thread *thread = rcu_dereference_protected(*threadp, 8056 lockdep_is_held(&mddev->reconfig_mutex)); 8057 8058 if (!thread) 8059 return; 8060 8061 rcu_assign_pointer(*threadp, NULL); 8062 synchronize_rcu(); 8063 8064 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 8065 kthread_stop(thread->tsk); 8066 kfree(thread); 8067 } 8068 EXPORT_SYMBOL(md_unregister_thread); 8069 8070 void md_error(struct mddev *mddev, struct md_rdev *rdev) 8071 { 8072 if (!rdev || test_bit(Faulty, &rdev->flags)) 8073 return; 8074 8075 if (!mddev->pers || !mddev->pers->error_handler) 8076 return; 8077 mddev->pers->error_handler(mddev, rdev); 8078 8079 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR) 8080 return; 8081 8082 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 8083 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8084 sysfs_notify_dirent_safe(rdev->sysfs_state); 8085 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8086 if (!test_bit(MD_BROKEN, &mddev->flags)) { 8087 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8088 md_wakeup_thread(mddev->thread); 8089 } 8090 if (mddev->event_work.func) 8091 queue_work(md_misc_wq, &mddev->event_work); 8092 md_new_event(); 8093 } 8094 EXPORT_SYMBOL(md_error); 8095 8096 /* seq_file implementation /proc/mdstat */ 8097 8098 static void status_unused(struct seq_file *seq) 8099 { 8100 int i = 0; 8101 struct md_rdev *rdev; 8102 8103 seq_printf(seq, "unused devices: "); 8104 8105 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8106 i++; 8107 seq_printf(seq, "%pg ", rdev->bdev); 8108 } 8109 if (!i) 8110 seq_printf(seq, "<none>"); 8111 8112 seq_printf(seq, "\n"); 8113 } 8114 8115 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8116 { 8117 sector_t max_sectors, resync, res; 8118 unsigned long dt, db = 0; 8119 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8120 int scale, recovery_active; 8121 unsigned int per_milli; 8122 8123 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8124 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8125 max_sectors = mddev->resync_max_sectors; 8126 else 8127 max_sectors = mddev->dev_sectors; 8128 8129 resync = mddev->curr_resync; 8130 if (resync < MD_RESYNC_ACTIVE) { 8131 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8132 /* Still cleaning up */ 8133 resync = max_sectors; 8134 } else if (resync > max_sectors) { 8135 resync = max_sectors; 8136 } else { 8137 res = atomic_read(&mddev->recovery_active); 8138 /* 8139 * Resync has started, but the subtraction has overflowed or 8140 * yielded one of the special values. Force it to active to 8141 * ensure the status reports an active resync. 8142 */ 8143 if (resync < res || resync - res < MD_RESYNC_ACTIVE) 8144 resync = MD_RESYNC_ACTIVE; 8145 else 8146 resync -= res; 8147 } 8148 8149 if (resync == MD_RESYNC_NONE) { 8150 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8151 struct md_rdev *rdev; 8152 8153 rdev_for_each(rdev, mddev) 8154 if (rdev->raid_disk >= 0 && 8155 !test_bit(Faulty, &rdev->flags) && 8156 rdev->recovery_offset != MaxSector && 8157 rdev->recovery_offset) { 8158 seq_printf(seq, "\trecover=REMOTE"); 8159 return 1; 8160 } 8161 if (mddev->reshape_position != MaxSector) 8162 seq_printf(seq, "\treshape=REMOTE"); 8163 else 8164 seq_printf(seq, "\tresync=REMOTE"); 8165 return 1; 8166 } 8167 if (mddev->recovery_cp < MaxSector) { 8168 seq_printf(seq, "\tresync=PENDING"); 8169 return 1; 8170 } 8171 return 0; 8172 } 8173 if (resync < MD_RESYNC_ACTIVE) { 8174 seq_printf(seq, "\tresync=DELAYED"); 8175 return 1; 8176 } 8177 8178 WARN_ON(max_sectors == 0); 8179 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8180 * in a sector_t, and (max_sectors>>scale) will fit in a 8181 * u32, as those are the requirements for sector_div. 8182 * Thus 'scale' must be at least 10 8183 */ 8184 scale = 10; 8185 if (sizeof(sector_t) > sizeof(unsigned long)) { 8186 while ( max_sectors/2 > (1ULL<<(scale+32))) 8187 scale++; 8188 } 8189 res = (resync>>scale)*1000; 8190 sector_div(res, (u32)((max_sectors>>scale)+1)); 8191 8192 per_milli = res; 8193 { 8194 int i, x = per_milli/50, y = 20-x; 8195 seq_printf(seq, "["); 8196 for (i = 0; i < x; i++) 8197 seq_printf(seq, "="); 8198 seq_printf(seq, ">"); 8199 for (i = 0; i < y; i++) 8200 seq_printf(seq, "."); 8201 seq_printf(seq, "] "); 8202 } 8203 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8204 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8205 "reshape" : 8206 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8207 "check" : 8208 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8209 "resync" : "recovery"))), 8210 per_milli/10, per_milli % 10, 8211 (unsigned long long) resync/2, 8212 (unsigned long long) max_sectors/2); 8213 8214 /* 8215 * dt: time from mark until now 8216 * db: blocks written from mark until now 8217 * rt: remaining time 8218 * 8219 * rt is a sector_t, which is always 64bit now. We are keeping 8220 * the original algorithm, but it is not really necessary. 8221 * 8222 * Original algorithm: 8223 * So we divide before multiply in case it is 32bit and close 8224 * to the limit. 8225 * We scale the divisor (db) by 32 to avoid losing precision 8226 * near the end of resync when the number of remaining sectors 8227 * is close to 'db'. 8228 * We then divide rt by 32 after multiplying by db to compensate. 8229 * The '+1' avoids division by zero if db is very small. 8230 */ 8231 dt = ((jiffies - mddev->resync_mark) / HZ); 8232 if (!dt) dt++; 8233 8234 curr_mark_cnt = mddev->curr_mark_cnt; 8235 recovery_active = atomic_read(&mddev->recovery_active); 8236 resync_mark_cnt = mddev->resync_mark_cnt; 8237 8238 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8239 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8240 8241 rt = max_sectors - resync; /* number of remaining sectors */ 8242 rt = div64_u64(rt, db/32+1); 8243 rt *= dt; 8244 rt >>= 5; 8245 8246 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8247 ((unsigned long)rt % 60)/6); 8248 8249 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8250 return 1; 8251 } 8252 8253 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8254 __acquires(&all_mddevs_lock) 8255 { 8256 struct md_personality *pers; 8257 8258 seq_puts(seq, "Personalities : "); 8259 spin_lock(&pers_lock); 8260 list_for_each_entry(pers, &pers_list, list) 8261 seq_printf(seq, "[%s] ", pers->name); 8262 8263 spin_unlock(&pers_lock); 8264 seq_puts(seq, "\n"); 8265 seq->poll_event = atomic_read(&md_event_count); 8266 8267 spin_lock(&all_mddevs_lock); 8268 8269 return seq_list_start(&all_mddevs, *pos); 8270 } 8271 8272 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8273 { 8274 return seq_list_next(v, &all_mddevs, pos); 8275 } 8276 8277 static void md_seq_stop(struct seq_file *seq, void *v) 8278 __releases(&all_mddevs_lock) 8279 { 8280 status_unused(seq); 8281 spin_unlock(&all_mddevs_lock); 8282 } 8283 8284 static int md_seq_show(struct seq_file *seq, void *v) 8285 { 8286 struct mddev *mddev = list_entry(v, struct mddev, all_mddevs); 8287 sector_t sectors; 8288 struct md_rdev *rdev; 8289 8290 if (!mddev_get(mddev)) 8291 return 0; 8292 8293 spin_unlock(&all_mddevs_lock); 8294 spin_lock(&mddev->lock); 8295 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8296 seq_printf(seq, "%s : %sactive", mdname(mddev), 8297 mddev->pers ? "" : "in"); 8298 if (mddev->pers) { 8299 if (mddev->ro == MD_RDONLY) 8300 seq_printf(seq, " (read-only)"); 8301 if (mddev->ro == MD_AUTO_READ) 8302 seq_printf(seq, " (auto-read-only)"); 8303 seq_printf(seq, " %s", mddev->pers->name); 8304 } 8305 8306 sectors = 0; 8307 rcu_read_lock(); 8308 rdev_for_each_rcu(rdev, mddev) { 8309 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8310 8311 if (test_bit(WriteMostly, &rdev->flags)) 8312 seq_printf(seq, "(W)"); 8313 if (test_bit(Journal, &rdev->flags)) 8314 seq_printf(seq, "(J)"); 8315 if (test_bit(Faulty, &rdev->flags)) { 8316 seq_printf(seq, "(F)"); 8317 continue; 8318 } 8319 if (rdev->raid_disk < 0) 8320 seq_printf(seq, "(S)"); /* spare */ 8321 if (test_bit(Replacement, &rdev->flags)) 8322 seq_printf(seq, "(R)"); 8323 sectors += rdev->sectors; 8324 } 8325 rcu_read_unlock(); 8326 8327 if (!list_empty(&mddev->disks)) { 8328 if (mddev->pers) 8329 seq_printf(seq, "\n %llu blocks", 8330 (unsigned long long) 8331 mddev->array_sectors / 2); 8332 else 8333 seq_printf(seq, "\n %llu blocks", 8334 (unsigned long long)sectors / 2); 8335 } 8336 if (mddev->persistent) { 8337 if (mddev->major_version != 0 || 8338 mddev->minor_version != 90) { 8339 seq_printf(seq," super %d.%d", 8340 mddev->major_version, 8341 mddev->minor_version); 8342 } 8343 } else if (mddev->external) 8344 seq_printf(seq, " super external:%s", 8345 mddev->metadata_type); 8346 else 8347 seq_printf(seq, " super non-persistent"); 8348 8349 if (mddev->pers) { 8350 mddev->pers->status(seq, mddev); 8351 seq_printf(seq, "\n "); 8352 if (mddev->pers->sync_request) { 8353 if (status_resync(seq, mddev)) 8354 seq_printf(seq, "\n "); 8355 } 8356 } else 8357 seq_printf(seq, "\n "); 8358 8359 md_bitmap_status(seq, mddev->bitmap); 8360 8361 seq_printf(seq, "\n"); 8362 } 8363 spin_unlock(&mddev->lock); 8364 spin_lock(&all_mddevs_lock); 8365 if (atomic_dec_and_test(&mddev->active)) 8366 __mddev_put(mddev); 8367 8368 return 0; 8369 } 8370 8371 static const struct seq_operations md_seq_ops = { 8372 .start = md_seq_start, 8373 .next = md_seq_next, 8374 .stop = md_seq_stop, 8375 .show = md_seq_show, 8376 }; 8377 8378 static int md_seq_open(struct inode *inode, struct file *file) 8379 { 8380 struct seq_file *seq; 8381 int error; 8382 8383 error = seq_open(file, &md_seq_ops); 8384 if (error) 8385 return error; 8386 8387 seq = file->private_data; 8388 seq->poll_event = atomic_read(&md_event_count); 8389 return error; 8390 } 8391 8392 static int md_unloading; 8393 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8394 { 8395 struct seq_file *seq = filp->private_data; 8396 __poll_t mask; 8397 8398 if (md_unloading) 8399 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8400 poll_wait(filp, &md_event_waiters, wait); 8401 8402 /* always allow read */ 8403 mask = EPOLLIN | EPOLLRDNORM; 8404 8405 if (seq->poll_event != atomic_read(&md_event_count)) 8406 mask |= EPOLLERR | EPOLLPRI; 8407 return mask; 8408 } 8409 8410 static const struct proc_ops mdstat_proc_ops = { 8411 .proc_open = md_seq_open, 8412 .proc_read = seq_read, 8413 .proc_lseek = seq_lseek, 8414 .proc_release = seq_release, 8415 .proc_poll = mdstat_poll, 8416 }; 8417 8418 int register_md_personality(struct md_personality *p) 8419 { 8420 pr_debug("md: %s personality registered for level %d\n", 8421 p->name, p->level); 8422 spin_lock(&pers_lock); 8423 list_add_tail(&p->list, &pers_list); 8424 spin_unlock(&pers_lock); 8425 return 0; 8426 } 8427 EXPORT_SYMBOL(register_md_personality); 8428 8429 int unregister_md_personality(struct md_personality *p) 8430 { 8431 pr_debug("md: %s personality unregistered\n", p->name); 8432 spin_lock(&pers_lock); 8433 list_del_init(&p->list); 8434 spin_unlock(&pers_lock); 8435 return 0; 8436 } 8437 EXPORT_SYMBOL(unregister_md_personality); 8438 8439 int register_md_cluster_operations(struct md_cluster_operations *ops, 8440 struct module *module) 8441 { 8442 int ret = 0; 8443 spin_lock(&pers_lock); 8444 if (md_cluster_ops != NULL) 8445 ret = -EALREADY; 8446 else { 8447 md_cluster_ops = ops; 8448 md_cluster_mod = module; 8449 } 8450 spin_unlock(&pers_lock); 8451 return ret; 8452 } 8453 EXPORT_SYMBOL(register_md_cluster_operations); 8454 8455 int unregister_md_cluster_operations(void) 8456 { 8457 spin_lock(&pers_lock); 8458 md_cluster_ops = NULL; 8459 spin_unlock(&pers_lock); 8460 return 0; 8461 } 8462 EXPORT_SYMBOL(unregister_md_cluster_operations); 8463 8464 int md_setup_cluster(struct mddev *mddev, int nodes) 8465 { 8466 int ret; 8467 if (!md_cluster_ops) 8468 request_module("md-cluster"); 8469 spin_lock(&pers_lock); 8470 /* ensure module won't be unloaded */ 8471 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8472 pr_warn("can't find md-cluster module or get its reference.\n"); 8473 spin_unlock(&pers_lock); 8474 return -ENOENT; 8475 } 8476 spin_unlock(&pers_lock); 8477 8478 ret = md_cluster_ops->join(mddev, nodes); 8479 if (!ret) 8480 mddev->safemode_delay = 0; 8481 return ret; 8482 } 8483 8484 void md_cluster_stop(struct mddev *mddev) 8485 { 8486 if (!md_cluster_ops) 8487 return; 8488 md_cluster_ops->leave(mddev); 8489 module_put(md_cluster_mod); 8490 } 8491 8492 static int is_mddev_idle(struct mddev *mddev, int init) 8493 { 8494 struct md_rdev *rdev; 8495 int idle; 8496 int curr_events; 8497 8498 idle = 1; 8499 rcu_read_lock(); 8500 rdev_for_each_rcu(rdev, mddev) { 8501 struct gendisk *disk = rdev->bdev->bd_disk; 8502 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8503 atomic_read(&disk->sync_io); 8504 /* sync IO will cause sync_io to increase before the disk_stats 8505 * as sync_io is counted when a request starts, and 8506 * disk_stats is counted when it completes. 8507 * So resync activity will cause curr_events to be smaller than 8508 * when there was no such activity. 8509 * non-sync IO will cause disk_stat to increase without 8510 * increasing sync_io so curr_events will (eventually) 8511 * be larger than it was before. Once it becomes 8512 * substantially larger, the test below will cause 8513 * the array to appear non-idle, and resync will slow 8514 * down. 8515 * If there is a lot of outstanding resync activity when 8516 * we set last_event to curr_events, then all that activity 8517 * completing might cause the array to appear non-idle 8518 * and resync will be slowed down even though there might 8519 * not have been non-resync activity. This will only 8520 * happen once though. 'last_events' will soon reflect 8521 * the state where there is little or no outstanding 8522 * resync requests, and further resync activity will 8523 * always make curr_events less than last_events. 8524 * 8525 */ 8526 if (init || curr_events - rdev->last_events > 64) { 8527 rdev->last_events = curr_events; 8528 idle = 0; 8529 } 8530 } 8531 rcu_read_unlock(); 8532 return idle; 8533 } 8534 8535 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8536 { 8537 /* another "blocks" (512byte) blocks have been synced */ 8538 atomic_sub(blocks, &mddev->recovery_active); 8539 wake_up(&mddev->recovery_wait); 8540 if (!ok) { 8541 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8542 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8543 md_wakeup_thread(mddev->thread); 8544 // stop recovery, signal do_sync .... 8545 } 8546 } 8547 EXPORT_SYMBOL(md_done_sync); 8548 8549 /* md_write_start(mddev, bi) 8550 * If we need to update some array metadata (e.g. 'active' flag 8551 * in superblock) before writing, schedule a superblock update 8552 * and wait for it to complete. 8553 * A return value of 'false' means that the write wasn't recorded 8554 * and cannot proceed as the array is being suspend. 8555 */ 8556 bool md_write_start(struct mddev *mddev, struct bio *bi) 8557 { 8558 int did_change = 0; 8559 8560 if (bio_data_dir(bi) != WRITE) 8561 return true; 8562 8563 BUG_ON(mddev->ro == MD_RDONLY); 8564 if (mddev->ro == MD_AUTO_READ) { 8565 /* need to switch to read/write */ 8566 flush_work(&mddev->sync_work); 8567 mddev->ro = MD_RDWR; 8568 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8569 md_wakeup_thread(mddev->thread); 8570 md_wakeup_thread(mddev->sync_thread); 8571 did_change = 1; 8572 } 8573 rcu_read_lock(); 8574 percpu_ref_get(&mddev->writes_pending); 8575 smp_mb(); /* Match smp_mb in set_in_sync() */ 8576 if (mddev->safemode == 1) 8577 mddev->safemode = 0; 8578 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8579 if (mddev->in_sync || mddev->sync_checkers) { 8580 spin_lock(&mddev->lock); 8581 if (mddev->in_sync) { 8582 mddev->in_sync = 0; 8583 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8584 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8585 md_wakeup_thread(mddev->thread); 8586 did_change = 1; 8587 } 8588 spin_unlock(&mddev->lock); 8589 } 8590 rcu_read_unlock(); 8591 if (did_change) 8592 sysfs_notify_dirent_safe(mddev->sysfs_state); 8593 if (!mddev->has_superblocks) 8594 return true; 8595 wait_event(mddev->sb_wait, 8596 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8597 is_md_suspended(mddev)); 8598 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8599 percpu_ref_put(&mddev->writes_pending); 8600 return false; 8601 } 8602 return true; 8603 } 8604 EXPORT_SYMBOL(md_write_start); 8605 8606 /* md_write_inc can only be called when md_write_start() has 8607 * already been called at least once of the current request. 8608 * It increments the counter and is useful when a single request 8609 * is split into several parts. Each part causes an increment and 8610 * so needs a matching md_write_end(). 8611 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8612 * a spinlocked region. 8613 */ 8614 void md_write_inc(struct mddev *mddev, struct bio *bi) 8615 { 8616 if (bio_data_dir(bi) != WRITE) 8617 return; 8618 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev)); 8619 percpu_ref_get(&mddev->writes_pending); 8620 } 8621 EXPORT_SYMBOL(md_write_inc); 8622 8623 void md_write_end(struct mddev *mddev) 8624 { 8625 percpu_ref_put(&mddev->writes_pending); 8626 8627 if (mddev->safemode == 2) 8628 md_wakeup_thread(mddev->thread); 8629 else if (mddev->safemode_delay) 8630 /* The roundup() ensures this only performs locking once 8631 * every ->safemode_delay jiffies 8632 */ 8633 mod_timer(&mddev->safemode_timer, 8634 roundup(jiffies, mddev->safemode_delay) + 8635 mddev->safemode_delay); 8636 } 8637 8638 EXPORT_SYMBOL(md_write_end); 8639 8640 /* This is used by raid0 and raid10 */ 8641 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8642 struct bio *bio, sector_t start, sector_t size) 8643 { 8644 struct bio *discard_bio = NULL; 8645 8646 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8647 &discard_bio) || !discard_bio) 8648 return; 8649 8650 bio_chain(discard_bio, bio); 8651 bio_clone_blkg_association(discard_bio, bio); 8652 if (mddev->gendisk) 8653 trace_block_bio_remap(discard_bio, 8654 disk_devt(mddev->gendisk), 8655 bio->bi_iter.bi_sector); 8656 submit_bio_noacct(discard_bio); 8657 } 8658 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8659 8660 static void md_end_clone_io(struct bio *bio) 8661 { 8662 struct md_io_clone *md_io_clone = bio->bi_private; 8663 struct bio *orig_bio = md_io_clone->orig_bio; 8664 struct mddev *mddev = md_io_clone->mddev; 8665 8666 if (bio->bi_status && !orig_bio->bi_status) 8667 orig_bio->bi_status = bio->bi_status; 8668 8669 if (md_io_clone->start_time) 8670 bio_end_io_acct(orig_bio, md_io_clone->start_time); 8671 8672 bio_put(bio); 8673 bio_endio(orig_bio); 8674 percpu_ref_put(&mddev->active_io); 8675 } 8676 8677 static void md_clone_bio(struct mddev *mddev, struct bio **bio) 8678 { 8679 struct block_device *bdev = (*bio)->bi_bdev; 8680 struct md_io_clone *md_io_clone; 8681 struct bio *clone = 8682 bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_clone_set); 8683 8684 md_io_clone = container_of(clone, struct md_io_clone, bio_clone); 8685 md_io_clone->orig_bio = *bio; 8686 md_io_clone->mddev = mddev; 8687 if (blk_queue_io_stat(bdev->bd_disk->queue)) 8688 md_io_clone->start_time = bio_start_io_acct(*bio); 8689 8690 clone->bi_end_io = md_end_clone_io; 8691 clone->bi_private = md_io_clone; 8692 *bio = clone; 8693 } 8694 8695 void md_account_bio(struct mddev *mddev, struct bio **bio) 8696 { 8697 percpu_ref_get(&mddev->active_io); 8698 md_clone_bio(mddev, bio); 8699 } 8700 EXPORT_SYMBOL_GPL(md_account_bio); 8701 8702 /* md_allow_write(mddev) 8703 * Calling this ensures that the array is marked 'active' so that writes 8704 * may proceed without blocking. It is important to call this before 8705 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8706 * Must be called with mddev_lock held. 8707 */ 8708 void md_allow_write(struct mddev *mddev) 8709 { 8710 if (!mddev->pers) 8711 return; 8712 if (!md_is_rdwr(mddev)) 8713 return; 8714 if (!mddev->pers->sync_request) 8715 return; 8716 8717 spin_lock(&mddev->lock); 8718 if (mddev->in_sync) { 8719 mddev->in_sync = 0; 8720 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8721 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8722 if (mddev->safemode_delay && 8723 mddev->safemode == 0) 8724 mddev->safemode = 1; 8725 spin_unlock(&mddev->lock); 8726 md_update_sb(mddev, 0); 8727 sysfs_notify_dirent_safe(mddev->sysfs_state); 8728 /* wait for the dirty state to be recorded in the metadata */ 8729 wait_event(mddev->sb_wait, 8730 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8731 } else 8732 spin_unlock(&mddev->lock); 8733 } 8734 EXPORT_SYMBOL_GPL(md_allow_write); 8735 8736 #define SYNC_MARKS 10 8737 #define SYNC_MARK_STEP (3*HZ) 8738 #define UPDATE_FREQUENCY (5*60*HZ) 8739 void md_do_sync(struct md_thread *thread) 8740 { 8741 struct mddev *mddev = thread->mddev; 8742 struct mddev *mddev2; 8743 unsigned int currspeed = 0, window; 8744 sector_t max_sectors,j, io_sectors, recovery_done; 8745 unsigned long mark[SYNC_MARKS]; 8746 unsigned long update_time; 8747 sector_t mark_cnt[SYNC_MARKS]; 8748 int last_mark,m; 8749 sector_t last_check; 8750 int skipped = 0; 8751 struct md_rdev *rdev; 8752 char *desc, *action = NULL; 8753 struct blk_plug plug; 8754 int ret; 8755 8756 /* just incase thread restarts... */ 8757 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8758 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8759 return; 8760 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */ 8761 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8762 return; 8763 } 8764 8765 if (mddev_is_clustered(mddev)) { 8766 ret = md_cluster_ops->resync_start(mddev); 8767 if (ret) 8768 goto skip; 8769 8770 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8771 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8772 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8773 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8774 && ((unsigned long long)mddev->curr_resync_completed 8775 < (unsigned long long)mddev->resync_max_sectors)) 8776 goto skip; 8777 } 8778 8779 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8780 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8781 desc = "data-check"; 8782 action = "check"; 8783 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8784 desc = "requested-resync"; 8785 action = "repair"; 8786 } else 8787 desc = "resync"; 8788 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8789 desc = "reshape"; 8790 else 8791 desc = "recovery"; 8792 8793 mddev->last_sync_action = action ?: desc; 8794 8795 /* 8796 * Before starting a resync we must have set curr_resync to 8797 * 2, and then checked that every "conflicting" array has curr_resync 8798 * less than ours. When we find one that is the same or higher 8799 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8800 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8801 * This will mean we have to start checking from the beginning again. 8802 * 8803 */ 8804 8805 do { 8806 int mddev2_minor = -1; 8807 mddev->curr_resync = MD_RESYNC_DELAYED; 8808 8809 try_again: 8810 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8811 goto skip; 8812 spin_lock(&all_mddevs_lock); 8813 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8814 if (test_bit(MD_DELETED, &mddev2->flags)) 8815 continue; 8816 if (mddev2 == mddev) 8817 continue; 8818 if (!mddev->parallel_resync 8819 && mddev2->curr_resync 8820 && match_mddev_units(mddev, mddev2)) { 8821 DEFINE_WAIT(wq); 8822 if (mddev < mddev2 && 8823 mddev->curr_resync == MD_RESYNC_DELAYED) { 8824 /* arbitrarily yield */ 8825 mddev->curr_resync = MD_RESYNC_YIELDED; 8826 wake_up(&resync_wait); 8827 } 8828 if (mddev > mddev2 && 8829 mddev->curr_resync == MD_RESYNC_YIELDED) 8830 /* no need to wait here, we can wait the next 8831 * time 'round when curr_resync == 2 8832 */ 8833 continue; 8834 /* We need to wait 'interruptible' so as not to 8835 * contribute to the load average, and not to 8836 * be caught by 'softlockup' 8837 */ 8838 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8839 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8840 mddev2->curr_resync >= mddev->curr_resync) { 8841 if (mddev2_minor != mddev2->md_minor) { 8842 mddev2_minor = mddev2->md_minor; 8843 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8844 desc, mdname(mddev), 8845 mdname(mddev2)); 8846 } 8847 spin_unlock(&all_mddevs_lock); 8848 8849 if (signal_pending(current)) 8850 flush_signals(current); 8851 schedule(); 8852 finish_wait(&resync_wait, &wq); 8853 goto try_again; 8854 } 8855 finish_wait(&resync_wait, &wq); 8856 } 8857 } 8858 spin_unlock(&all_mddevs_lock); 8859 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8860 8861 j = 0; 8862 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8863 /* resync follows the size requested by the personality, 8864 * which defaults to physical size, but can be virtual size 8865 */ 8866 max_sectors = mddev->resync_max_sectors; 8867 atomic64_set(&mddev->resync_mismatches, 0); 8868 /* we don't use the checkpoint if there's a bitmap */ 8869 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8870 j = mddev->resync_min; 8871 else if (!mddev->bitmap) 8872 j = mddev->recovery_cp; 8873 8874 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8875 max_sectors = mddev->resync_max_sectors; 8876 /* 8877 * If the original node aborts reshaping then we continue the 8878 * reshaping, so set j again to avoid restart reshape from the 8879 * first beginning 8880 */ 8881 if (mddev_is_clustered(mddev) && 8882 mddev->reshape_position != MaxSector) 8883 j = mddev->reshape_position; 8884 } else { 8885 /* recovery follows the physical size of devices */ 8886 max_sectors = mddev->dev_sectors; 8887 j = MaxSector; 8888 rcu_read_lock(); 8889 rdev_for_each_rcu(rdev, mddev) 8890 if (rdev->raid_disk >= 0 && 8891 !test_bit(Journal, &rdev->flags) && 8892 !test_bit(Faulty, &rdev->flags) && 8893 !test_bit(In_sync, &rdev->flags) && 8894 rdev->recovery_offset < j) 8895 j = rdev->recovery_offset; 8896 rcu_read_unlock(); 8897 8898 /* If there is a bitmap, we need to make sure all 8899 * writes that started before we added a spare 8900 * complete before we start doing a recovery. 8901 * Otherwise the write might complete and (via 8902 * bitmap_endwrite) set a bit in the bitmap after the 8903 * recovery has checked that bit and skipped that 8904 * region. 8905 */ 8906 if (mddev->bitmap) { 8907 mddev->pers->quiesce(mddev, 1); 8908 mddev->pers->quiesce(mddev, 0); 8909 } 8910 } 8911 8912 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8913 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8914 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8915 speed_max(mddev), desc); 8916 8917 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8918 8919 io_sectors = 0; 8920 for (m = 0; m < SYNC_MARKS; m++) { 8921 mark[m] = jiffies; 8922 mark_cnt[m] = io_sectors; 8923 } 8924 last_mark = 0; 8925 mddev->resync_mark = mark[last_mark]; 8926 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8927 8928 /* 8929 * Tune reconstruction: 8930 */ 8931 window = 32 * (PAGE_SIZE / 512); 8932 pr_debug("md: using %dk window, over a total of %lluk.\n", 8933 window/2, (unsigned long long)max_sectors/2); 8934 8935 atomic_set(&mddev->recovery_active, 0); 8936 last_check = 0; 8937 8938 if (j >= MD_RESYNC_ACTIVE) { 8939 pr_debug("md: resuming %s of %s from checkpoint.\n", 8940 desc, mdname(mddev)); 8941 mddev->curr_resync = j; 8942 } else 8943 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 8944 mddev->curr_resync_completed = j; 8945 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8946 md_new_event(); 8947 update_time = jiffies; 8948 8949 blk_start_plug(&plug); 8950 while (j < max_sectors) { 8951 sector_t sectors; 8952 8953 skipped = 0; 8954 8955 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8956 ((mddev->curr_resync > mddev->curr_resync_completed && 8957 (mddev->curr_resync - mddev->curr_resync_completed) 8958 > (max_sectors >> 4)) || 8959 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8960 (j - mddev->curr_resync_completed)*2 8961 >= mddev->resync_max - mddev->curr_resync_completed || 8962 mddev->curr_resync_completed > mddev->resync_max 8963 )) { 8964 /* time to update curr_resync_completed */ 8965 wait_event(mddev->recovery_wait, 8966 atomic_read(&mddev->recovery_active) == 0); 8967 mddev->curr_resync_completed = j; 8968 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8969 j > mddev->recovery_cp) 8970 mddev->recovery_cp = j; 8971 update_time = jiffies; 8972 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8973 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8974 } 8975 8976 while (j >= mddev->resync_max && 8977 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8978 /* As this condition is controlled by user-space, 8979 * we can block indefinitely, so use '_interruptible' 8980 * to avoid triggering warnings. 8981 */ 8982 flush_signals(current); /* just in case */ 8983 wait_event_interruptible(mddev->recovery_wait, 8984 mddev->resync_max > j 8985 || test_bit(MD_RECOVERY_INTR, 8986 &mddev->recovery)); 8987 } 8988 8989 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8990 break; 8991 8992 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8993 if (sectors == 0) { 8994 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8995 break; 8996 } 8997 8998 if (!skipped) { /* actual IO requested */ 8999 io_sectors += sectors; 9000 atomic_add(sectors, &mddev->recovery_active); 9001 } 9002 9003 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9004 break; 9005 9006 j += sectors; 9007 if (j > max_sectors) 9008 /* when skipping, extra large numbers can be returned. */ 9009 j = max_sectors; 9010 if (j >= MD_RESYNC_ACTIVE) 9011 mddev->curr_resync = j; 9012 mddev->curr_mark_cnt = io_sectors; 9013 if (last_check == 0) 9014 /* this is the earliest that rebuild will be 9015 * visible in /proc/mdstat 9016 */ 9017 md_new_event(); 9018 9019 if (last_check + window > io_sectors || j == max_sectors) 9020 continue; 9021 9022 last_check = io_sectors; 9023 repeat: 9024 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 9025 /* step marks */ 9026 int next = (last_mark+1) % SYNC_MARKS; 9027 9028 mddev->resync_mark = mark[next]; 9029 mddev->resync_mark_cnt = mark_cnt[next]; 9030 mark[next] = jiffies; 9031 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 9032 last_mark = next; 9033 } 9034 9035 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9036 break; 9037 9038 /* 9039 * this loop exits only if either when we are slower than 9040 * the 'hard' speed limit, or the system was IO-idle for 9041 * a jiffy. 9042 * the system might be non-idle CPU-wise, but we only care 9043 * about not overloading the IO subsystem. (things like an 9044 * e2fsck being done on the RAID array should execute fast) 9045 */ 9046 cond_resched(); 9047 9048 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9049 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9050 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9051 9052 if (currspeed > speed_min(mddev)) { 9053 if (currspeed > speed_max(mddev)) { 9054 msleep(500); 9055 goto repeat; 9056 } 9057 if (!is_mddev_idle(mddev, 0)) { 9058 /* 9059 * Give other IO more of a chance. 9060 * The faster the devices, the less we wait. 9061 */ 9062 wait_event(mddev->recovery_wait, 9063 !atomic_read(&mddev->recovery_active)); 9064 } 9065 } 9066 } 9067 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9068 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9069 ? "interrupted" : "done"); 9070 /* 9071 * this also signals 'finished resyncing' to md_stop 9072 */ 9073 blk_finish_plug(&plug); 9074 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9075 9076 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9077 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9078 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9079 mddev->curr_resync_completed = mddev->curr_resync; 9080 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9081 } 9082 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9083 9084 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9085 mddev->curr_resync > MD_RESYNC_ACTIVE) { 9086 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9087 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9088 if (mddev->curr_resync >= mddev->recovery_cp) { 9089 pr_debug("md: checkpointing %s of %s.\n", 9090 desc, mdname(mddev)); 9091 if (test_bit(MD_RECOVERY_ERROR, 9092 &mddev->recovery)) 9093 mddev->recovery_cp = 9094 mddev->curr_resync_completed; 9095 else 9096 mddev->recovery_cp = 9097 mddev->curr_resync; 9098 } 9099 } else 9100 mddev->recovery_cp = MaxSector; 9101 } else { 9102 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9103 mddev->curr_resync = MaxSector; 9104 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9105 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9106 rcu_read_lock(); 9107 rdev_for_each_rcu(rdev, mddev) 9108 if (rdev->raid_disk >= 0 && 9109 mddev->delta_disks >= 0 && 9110 !test_bit(Journal, &rdev->flags) && 9111 !test_bit(Faulty, &rdev->flags) && 9112 !test_bit(In_sync, &rdev->flags) && 9113 rdev->recovery_offset < mddev->curr_resync) 9114 rdev->recovery_offset = mddev->curr_resync; 9115 rcu_read_unlock(); 9116 } 9117 } 9118 } 9119 skip: 9120 /* set CHANGE_PENDING here since maybe another update is needed, 9121 * so other nodes are informed. It should be harmless for normal 9122 * raid */ 9123 set_mask_bits(&mddev->sb_flags, 0, 9124 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9125 9126 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9127 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9128 mddev->delta_disks > 0 && 9129 mddev->pers->finish_reshape && 9130 mddev->pers->size && 9131 mddev->queue) { 9132 mddev_lock_nointr(mddev); 9133 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9134 mddev_unlock(mddev); 9135 if (!mddev_is_clustered(mddev)) 9136 set_capacity_and_notify(mddev->gendisk, 9137 mddev->array_sectors); 9138 } 9139 9140 spin_lock(&mddev->lock); 9141 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9142 /* We completed so min/max setting can be forgotten if used. */ 9143 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9144 mddev->resync_min = 0; 9145 mddev->resync_max = MaxSector; 9146 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9147 mddev->resync_min = mddev->curr_resync_completed; 9148 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9149 mddev->curr_resync = MD_RESYNC_NONE; 9150 spin_unlock(&mddev->lock); 9151 9152 wake_up(&resync_wait); 9153 md_wakeup_thread(mddev->thread); 9154 return; 9155 } 9156 EXPORT_SYMBOL_GPL(md_do_sync); 9157 9158 static bool rdev_removeable(struct md_rdev *rdev) 9159 { 9160 /* rdev is not used. */ 9161 if (rdev->raid_disk < 0) 9162 return false; 9163 9164 /* There are still inflight io, don't remove this rdev. */ 9165 if (atomic_read(&rdev->nr_pending)) 9166 return false; 9167 9168 /* 9169 * An error occurred but has not yet been acknowledged by the metadata 9170 * handler, don't remove this rdev. 9171 */ 9172 if (test_bit(Blocked, &rdev->flags)) 9173 return false; 9174 9175 /* Fautly rdev is not used, it's safe to remove it. */ 9176 if (test_bit(Faulty, &rdev->flags)) 9177 return true; 9178 9179 /* Journal disk can only be removed if it's faulty. */ 9180 if (test_bit(Journal, &rdev->flags)) 9181 return false; 9182 9183 /* 9184 * 'In_sync' is cleared while 'raid_disk' is valid, which means 9185 * replacement has just become active from pers->spare_active(), and 9186 * then pers->hot_remove_disk() will replace this rdev with replacement. 9187 */ 9188 if (!test_bit(In_sync, &rdev->flags)) 9189 return true; 9190 9191 return false; 9192 } 9193 9194 static bool rdev_is_spare(struct md_rdev *rdev) 9195 { 9196 return !test_bit(Candidate, &rdev->flags) && rdev->raid_disk >= 0 && 9197 !test_bit(In_sync, &rdev->flags) && 9198 !test_bit(Journal, &rdev->flags) && 9199 !test_bit(Faulty, &rdev->flags); 9200 } 9201 9202 static bool rdev_addable(struct md_rdev *rdev) 9203 { 9204 /* rdev is already used, don't add it again. */ 9205 if (test_bit(Candidate, &rdev->flags) || rdev->raid_disk >= 0 || 9206 test_bit(Faulty, &rdev->flags)) 9207 return false; 9208 9209 /* Allow to add journal disk. */ 9210 if (test_bit(Journal, &rdev->flags)) 9211 return true; 9212 9213 /* Allow to add if array is read-write. */ 9214 if (md_is_rdwr(rdev->mddev)) 9215 return true; 9216 9217 /* 9218 * For read-only array, only allow to readd a rdev. And if bitmap is 9219 * used, don't allow to readd a rdev that is too old. 9220 */ 9221 if (rdev->saved_raid_disk >= 0 && !test_bit(Bitmap_sync, &rdev->flags)) 9222 return true; 9223 9224 return false; 9225 } 9226 9227 static bool md_spares_need_change(struct mddev *mddev) 9228 { 9229 struct md_rdev *rdev; 9230 9231 rdev_for_each(rdev, mddev) 9232 if (rdev_removeable(rdev) || rdev_addable(rdev)) 9233 return true; 9234 return false; 9235 } 9236 9237 static int remove_and_add_spares(struct mddev *mddev, 9238 struct md_rdev *this) 9239 { 9240 struct md_rdev *rdev; 9241 int spares = 0; 9242 int removed = 0; 9243 bool remove_some = false; 9244 9245 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9246 /* Mustn't remove devices when resync thread is running */ 9247 return 0; 9248 9249 rdev_for_each(rdev, mddev) { 9250 if ((this == NULL || rdev == this) && 9251 rdev->raid_disk >= 0 && 9252 !test_bit(Blocked, &rdev->flags) && 9253 test_bit(Faulty, &rdev->flags) && 9254 atomic_read(&rdev->nr_pending)==0) { 9255 /* Faulty non-Blocked devices with nr_pending == 0 9256 * never get nr_pending incremented, 9257 * never get Faulty cleared, and never get Blocked set. 9258 * So we can synchronize_rcu now rather than once per device 9259 */ 9260 remove_some = true; 9261 set_bit(RemoveSynchronized, &rdev->flags); 9262 } 9263 } 9264 9265 if (remove_some) 9266 synchronize_rcu(); 9267 rdev_for_each(rdev, mddev) { 9268 if ((this == NULL || rdev == this) && 9269 (test_bit(RemoveSynchronized, &rdev->flags) || 9270 rdev_removeable(rdev))) { 9271 if (mddev->pers->hot_remove_disk( 9272 mddev, rdev) == 0) { 9273 sysfs_unlink_rdev(mddev, rdev); 9274 rdev->saved_raid_disk = rdev->raid_disk; 9275 rdev->raid_disk = -1; 9276 removed++; 9277 } 9278 } 9279 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9280 clear_bit(RemoveSynchronized, &rdev->flags); 9281 } 9282 9283 if (removed && mddev->kobj.sd) 9284 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9285 9286 if (this && removed) 9287 goto no_add; 9288 9289 rdev_for_each(rdev, mddev) { 9290 if (this && this != rdev) 9291 continue; 9292 if (rdev_is_spare(rdev)) 9293 spares++; 9294 if (!rdev_addable(rdev)) 9295 continue; 9296 if (!test_bit(Journal, &rdev->flags)) 9297 rdev->recovery_offset = 0; 9298 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9299 /* failure here is OK */ 9300 sysfs_link_rdev(mddev, rdev); 9301 if (!test_bit(Journal, &rdev->flags)) 9302 spares++; 9303 md_new_event(); 9304 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9305 } 9306 } 9307 no_add: 9308 if (removed) 9309 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9310 return spares; 9311 } 9312 9313 static bool md_choose_sync_action(struct mddev *mddev, int *spares) 9314 { 9315 /* Check if reshape is in progress first. */ 9316 if (mddev->reshape_position != MaxSector) { 9317 if (mddev->pers->check_reshape == NULL || 9318 mddev->pers->check_reshape(mddev) != 0) 9319 return false; 9320 9321 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9322 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9323 return true; 9324 } 9325 9326 /* 9327 * Remove any failed drives, then add spares if possible. Spares are 9328 * also removed and re-added, to allow the personality to fail the 9329 * re-add. 9330 */ 9331 *spares = remove_and_add_spares(mddev, NULL); 9332 if (*spares) { 9333 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9334 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9335 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9336 9337 /* Start new recovery. */ 9338 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9339 return true; 9340 } 9341 9342 /* Check if recovery is in progress. */ 9343 if (mddev->recovery_cp < MaxSector) { 9344 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9345 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9346 return true; 9347 } 9348 9349 /* Delay to choose resync/check/repair in md_do_sync(). */ 9350 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9351 return true; 9352 9353 /* Nothing to be done */ 9354 return false; 9355 } 9356 9357 static void md_start_sync(struct work_struct *ws) 9358 { 9359 struct mddev *mddev = container_of(ws, struct mddev, sync_work); 9360 int spares = 0; 9361 bool suspend = false; 9362 9363 if (md_spares_need_change(mddev)) 9364 suspend = true; 9365 9366 suspend ? mddev_suspend_and_lock_nointr(mddev) : 9367 mddev_lock_nointr(mddev); 9368 9369 if (!md_is_rdwr(mddev)) { 9370 /* 9371 * On a read-only array we can: 9372 * - remove failed devices 9373 * - add already-in_sync devices if the array itself is in-sync. 9374 * As we only add devices that are already in-sync, we can 9375 * activate the spares immediately. 9376 */ 9377 remove_and_add_spares(mddev, NULL); 9378 goto not_running; 9379 } 9380 9381 if (!md_choose_sync_action(mddev, &spares)) 9382 goto not_running; 9383 9384 if (!mddev->pers->sync_request) 9385 goto not_running; 9386 9387 /* 9388 * We are adding a device or devices to an array which has the bitmap 9389 * stored on all devices. So make sure all bitmap pages get written. 9390 */ 9391 if (spares) 9392 md_bitmap_write_all(mddev->bitmap); 9393 9394 rcu_assign_pointer(mddev->sync_thread, 9395 md_register_thread(md_do_sync, mddev, "resync")); 9396 if (!mddev->sync_thread) { 9397 pr_warn("%s: could not start resync thread...\n", 9398 mdname(mddev)); 9399 /* leave the spares where they are, it shouldn't hurt */ 9400 goto not_running; 9401 } 9402 9403 mddev_unlock(mddev); 9404 /* 9405 * md_start_sync was triggered by MD_RECOVERY_NEEDED, so we should 9406 * not set it again. Otherwise, we may cause issue like this one: 9407 * https://bugzilla.kernel.org/show_bug.cgi?id=218200 9408 * Therefore, use __mddev_resume(mddev, false). 9409 */ 9410 if (suspend) 9411 __mddev_resume(mddev, false); 9412 md_wakeup_thread(mddev->sync_thread); 9413 sysfs_notify_dirent_safe(mddev->sysfs_action); 9414 md_new_event(); 9415 return; 9416 9417 not_running: 9418 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9419 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9420 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9421 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9422 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9423 mddev_unlock(mddev); 9424 /* 9425 * md_start_sync was triggered by MD_RECOVERY_NEEDED, so we should 9426 * not set it again. Otherwise, we may cause issue like this one: 9427 * https://bugzilla.kernel.org/show_bug.cgi?id=218200 9428 * Therefore, use __mddev_resume(mddev, false). 9429 */ 9430 if (suspend) 9431 __mddev_resume(mddev, false); 9432 9433 wake_up(&resync_wait); 9434 if (test_and_clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 9435 mddev->sysfs_action) 9436 sysfs_notify_dirent_safe(mddev->sysfs_action); 9437 } 9438 9439 /* 9440 * This routine is regularly called by all per-raid-array threads to 9441 * deal with generic issues like resync and super-block update. 9442 * Raid personalities that don't have a thread (linear/raid0) do not 9443 * need this as they never do any recovery or update the superblock. 9444 * 9445 * It does not do any resync itself, but rather "forks" off other threads 9446 * to do that as needed. 9447 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9448 * "->recovery" and create a thread at ->sync_thread. 9449 * When the thread finishes it sets MD_RECOVERY_DONE 9450 * and wakeups up this thread which will reap the thread and finish up. 9451 * This thread also removes any faulty devices (with nr_pending == 0). 9452 * 9453 * The overall approach is: 9454 * 1/ if the superblock needs updating, update it. 9455 * 2/ If a recovery thread is running, don't do anything else. 9456 * 3/ If recovery has finished, clean up, possibly marking spares active. 9457 * 4/ If there are any faulty devices, remove them. 9458 * 5/ If array is degraded, try to add spares devices 9459 * 6/ If array has spares or is not in-sync, start a resync thread. 9460 */ 9461 void md_check_recovery(struct mddev *mddev) 9462 { 9463 if (READ_ONCE(mddev->suspended)) 9464 return; 9465 9466 if (mddev->bitmap) 9467 md_bitmap_daemon_work(mddev); 9468 9469 if (signal_pending(current)) { 9470 if (mddev->pers->sync_request && !mddev->external) { 9471 pr_debug("md: %s in immediate safe mode\n", 9472 mdname(mddev)); 9473 mddev->safemode = 2; 9474 } 9475 flush_signals(current); 9476 } 9477 9478 if (!md_is_rdwr(mddev) && 9479 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9480 return; 9481 if ( ! ( 9482 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9483 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9484 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9485 (mddev->external == 0 && mddev->safemode == 1) || 9486 (mddev->safemode == 2 9487 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9488 )) 9489 return; 9490 9491 if (mddev_trylock(mddev)) { 9492 bool try_set_sync = mddev->safemode != 0; 9493 9494 if (!mddev->external && mddev->safemode == 1) 9495 mddev->safemode = 0; 9496 9497 if (!md_is_rdwr(mddev)) { 9498 struct md_rdev *rdev; 9499 9500 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 9501 /* sync_work already queued. */ 9502 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9503 goto unlock; 9504 } 9505 9506 if (!mddev->external && mddev->in_sync) 9507 /* 9508 * 'Blocked' flag not needed as failed devices 9509 * will be recorded if array switched to read/write. 9510 * Leaving it set will prevent the device 9511 * from being removed. 9512 */ 9513 rdev_for_each(rdev, mddev) 9514 clear_bit(Blocked, &rdev->flags); 9515 9516 /* 9517 * There is no thread, but we need to call 9518 * ->spare_active and clear saved_raid_disk 9519 */ 9520 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9521 md_reap_sync_thread(mddev); 9522 9523 /* 9524 * Let md_start_sync() to remove and add rdevs to the 9525 * array. 9526 */ 9527 if (md_spares_need_change(mddev)) { 9528 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9529 queue_work(md_misc_wq, &mddev->sync_work); 9530 } 9531 9532 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9533 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9534 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9535 9536 goto unlock; 9537 } 9538 9539 if (mddev_is_clustered(mddev)) { 9540 struct md_rdev *rdev, *tmp; 9541 /* kick the device if another node issued a 9542 * remove disk. 9543 */ 9544 rdev_for_each_safe(rdev, tmp, mddev) { 9545 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9546 rdev->raid_disk < 0) 9547 md_kick_rdev_from_array(rdev); 9548 } 9549 } 9550 9551 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9552 spin_lock(&mddev->lock); 9553 set_in_sync(mddev); 9554 spin_unlock(&mddev->lock); 9555 } 9556 9557 if (mddev->sb_flags) 9558 md_update_sb(mddev, 0); 9559 9560 /* 9561 * Never start a new sync thread if MD_RECOVERY_RUNNING is 9562 * still set. 9563 */ 9564 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 9565 if (!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9566 /* resync/recovery still happening */ 9567 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9568 goto unlock; 9569 } 9570 9571 if (WARN_ON_ONCE(!mddev->sync_thread)) 9572 goto unlock; 9573 9574 md_reap_sync_thread(mddev); 9575 goto unlock; 9576 } 9577 9578 /* Set RUNNING before clearing NEEDED to avoid 9579 * any transients in the value of "sync_action". 9580 */ 9581 mddev->curr_resync_completed = 0; 9582 spin_lock(&mddev->lock); 9583 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9584 spin_unlock(&mddev->lock); 9585 /* Clear some bits that don't mean anything, but 9586 * might be left set 9587 */ 9588 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9589 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9590 9591 if (test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) && 9592 !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 9593 queue_work(md_misc_wq, &mddev->sync_work); 9594 } else { 9595 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9596 wake_up(&resync_wait); 9597 } 9598 9599 unlock: 9600 wake_up(&mddev->sb_wait); 9601 mddev_unlock(mddev); 9602 } 9603 } 9604 EXPORT_SYMBOL(md_check_recovery); 9605 9606 void md_reap_sync_thread(struct mddev *mddev) 9607 { 9608 struct md_rdev *rdev; 9609 sector_t old_dev_sectors = mddev->dev_sectors; 9610 bool is_reshaped = false; 9611 9612 /* resync has finished, collect result */ 9613 md_unregister_thread(mddev, &mddev->sync_thread); 9614 atomic_inc(&mddev->sync_seq); 9615 9616 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9617 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9618 mddev->degraded != mddev->raid_disks) { 9619 /* success...*/ 9620 /* activate any spares */ 9621 if (mddev->pers->spare_active(mddev)) { 9622 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9623 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9624 } 9625 } 9626 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9627 mddev->pers->finish_reshape) { 9628 mddev->pers->finish_reshape(mddev); 9629 if (mddev_is_clustered(mddev)) 9630 is_reshaped = true; 9631 } 9632 9633 /* If array is no-longer degraded, then any saved_raid_disk 9634 * information must be scrapped. 9635 */ 9636 if (!mddev->degraded) 9637 rdev_for_each(rdev, mddev) 9638 rdev->saved_raid_disk = -1; 9639 9640 md_update_sb(mddev, 1); 9641 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9642 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9643 * clustered raid */ 9644 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9645 md_cluster_ops->resync_finish(mddev); 9646 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9647 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9648 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9649 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9650 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9651 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9652 /* 9653 * We call md_cluster_ops->update_size here because sync_size could 9654 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9655 * so it is time to update size across cluster. 9656 */ 9657 if (mddev_is_clustered(mddev) && is_reshaped 9658 && !test_bit(MD_CLOSING, &mddev->flags)) 9659 md_cluster_ops->update_size(mddev, old_dev_sectors); 9660 /* flag recovery needed just to double check */ 9661 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9662 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9663 sysfs_notify_dirent_safe(mddev->sysfs_action); 9664 md_new_event(); 9665 if (mddev->event_work.func) 9666 queue_work(md_misc_wq, &mddev->event_work); 9667 wake_up(&resync_wait); 9668 } 9669 EXPORT_SYMBOL(md_reap_sync_thread); 9670 9671 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9672 { 9673 sysfs_notify_dirent_safe(rdev->sysfs_state); 9674 wait_event_timeout(rdev->blocked_wait, 9675 !test_bit(Blocked, &rdev->flags) && 9676 !test_bit(BlockedBadBlocks, &rdev->flags), 9677 msecs_to_jiffies(5000)); 9678 rdev_dec_pending(rdev, mddev); 9679 } 9680 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9681 9682 void md_finish_reshape(struct mddev *mddev) 9683 { 9684 /* called be personality module when reshape completes. */ 9685 struct md_rdev *rdev; 9686 9687 rdev_for_each(rdev, mddev) { 9688 if (rdev->data_offset > rdev->new_data_offset) 9689 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9690 else 9691 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9692 rdev->data_offset = rdev->new_data_offset; 9693 } 9694 } 9695 EXPORT_SYMBOL(md_finish_reshape); 9696 9697 /* Bad block management */ 9698 9699 /* Returns 1 on success, 0 on failure */ 9700 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9701 int is_new) 9702 { 9703 struct mddev *mddev = rdev->mddev; 9704 int rv; 9705 if (is_new) 9706 s += rdev->new_data_offset; 9707 else 9708 s += rdev->data_offset; 9709 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9710 if (rv == 0) { 9711 /* Make sure they get written out promptly */ 9712 if (test_bit(ExternalBbl, &rdev->flags)) 9713 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9714 sysfs_notify_dirent_safe(rdev->sysfs_state); 9715 set_mask_bits(&mddev->sb_flags, 0, 9716 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9717 md_wakeup_thread(rdev->mddev->thread); 9718 return 1; 9719 } else 9720 return 0; 9721 } 9722 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9723 9724 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9725 int is_new) 9726 { 9727 int rv; 9728 if (is_new) 9729 s += rdev->new_data_offset; 9730 else 9731 s += rdev->data_offset; 9732 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9733 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9734 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9735 return rv; 9736 } 9737 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9738 9739 static int md_notify_reboot(struct notifier_block *this, 9740 unsigned long code, void *x) 9741 { 9742 struct mddev *mddev, *n; 9743 int need_delay = 0; 9744 9745 spin_lock(&all_mddevs_lock); 9746 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9747 if (!mddev_get(mddev)) 9748 continue; 9749 spin_unlock(&all_mddevs_lock); 9750 if (mddev_trylock(mddev)) { 9751 if (mddev->pers) 9752 __md_stop_writes(mddev); 9753 if (mddev->persistent) 9754 mddev->safemode = 2; 9755 mddev_unlock(mddev); 9756 } 9757 need_delay = 1; 9758 mddev_put(mddev); 9759 spin_lock(&all_mddevs_lock); 9760 } 9761 spin_unlock(&all_mddevs_lock); 9762 9763 /* 9764 * certain more exotic SCSI devices are known to be 9765 * volatile wrt too early system reboots. While the 9766 * right place to handle this issue is the given 9767 * driver, we do want to have a safe RAID driver ... 9768 */ 9769 if (need_delay) 9770 msleep(1000); 9771 9772 return NOTIFY_DONE; 9773 } 9774 9775 static struct notifier_block md_notifier = { 9776 .notifier_call = md_notify_reboot, 9777 .next = NULL, 9778 .priority = INT_MAX, /* before any real devices */ 9779 }; 9780 9781 static void md_geninit(void) 9782 { 9783 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9784 9785 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9786 } 9787 9788 static int __init md_init(void) 9789 { 9790 int ret = -ENOMEM; 9791 9792 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9793 if (!md_wq) 9794 goto err_wq; 9795 9796 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9797 if (!md_misc_wq) 9798 goto err_misc_wq; 9799 9800 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND, 9801 0); 9802 if (!md_bitmap_wq) 9803 goto err_bitmap_wq; 9804 9805 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9806 if (ret < 0) 9807 goto err_md; 9808 9809 ret = __register_blkdev(0, "mdp", md_probe); 9810 if (ret < 0) 9811 goto err_mdp; 9812 mdp_major = ret; 9813 9814 register_reboot_notifier(&md_notifier); 9815 raid_table_header = register_sysctl("dev/raid", raid_table); 9816 9817 md_geninit(); 9818 return 0; 9819 9820 err_mdp: 9821 unregister_blkdev(MD_MAJOR, "md"); 9822 err_md: 9823 destroy_workqueue(md_bitmap_wq); 9824 err_bitmap_wq: 9825 destroy_workqueue(md_misc_wq); 9826 err_misc_wq: 9827 destroy_workqueue(md_wq); 9828 err_wq: 9829 return ret; 9830 } 9831 9832 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9833 { 9834 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9835 struct md_rdev *rdev2, *tmp; 9836 int role, ret; 9837 9838 /* 9839 * If size is changed in another node then we need to 9840 * do resize as well. 9841 */ 9842 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9843 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9844 if (ret) 9845 pr_info("md-cluster: resize failed\n"); 9846 else 9847 md_bitmap_update_sb(mddev->bitmap); 9848 } 9849 9850 /* Check for change of roles in the active devices */ 9851 rdev_for_each_safe(rdev2, tmp, mddev) { 9852 if (test_bit(Faulty, &rdev2->flags)) 9853 continue; 9854 9855 /* Check if the roles changed */ 9856 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9857 9858 if (test_bit(Candidate, &rdev2->flags)) { 9859 if (role == MD_DISK_ROLE_FAULTY) { 9860 pr_info("md: Removing Candidate device %pg because add failed\n", 9861 rdev2->bdev); 9862 md_kick_rdev_from_array(rdev2); 9863 continue; 9864 } 9865 else 9866 clear_bit(Candidate, &rdev2->flags); 9867 } 9868 9869 if (role != rdev2->raid_disk) { 9870 /* 9871 * got activated except reshape is happening. 9872 */ 9873 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9874 !(le32_to_cpu(sb->feature_map) & 9875 MD_FEATURE_RESHAPE_ACTIVE)) { 9876 rdev2->saved_raid_disk = role; 9877 ret = remove_and_add_spares(mddev, rdev2); 9878 pr_info("Activated spare: %pg\n", 9879 rdev2->bdev); 9880 /* wakeup mddev->thread here, so array could 9881 * perform resync with the new activated disk */ 9882 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9883 md_wakeup_thread(mddev->thread); 9884 } 9885 /* device faulty 9886 * We just want to do the minimum to mark the disk 9887 * as faulty. The recovery is performed by the 9888 * one who initiated the error. 9889 */ 9890 if (role == MD_DISK_ROLE_FAULTY || 9891 role == MD_DISK_ROLE_JOURNAL) { 9892 md_error(mddev, rdev2); 9893 clear_bit(Blocked, &rdev2->flags); 9894 } 9895 } 9896 } 9897 9898 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9899 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9900 if (ret) 9901 pr_warn("md: updating array disks failed. %d\n", ret); 9902 } 9903 9904 /* 9905 * Since mddev->delta_disks has already updated in update_raid_disks, 9906 * so it is time to check reshape. 9907 */ 9908 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9909 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9910 /* 9911 * reshape is happening in the remote node, we need to 9912 * update reshape_position and call start_reshape. 9913 */ 9914 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9915 if (mddev->pers->update_reshape_pos) 9916 mddev->pers->update_reshape_pos(mddev); 9917 if (mddev->pers->start_reshape) 9918 mddev->pers->start_reshape(mddev); 9919 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9920 mddev->reshape_position != MaxSector && 9921 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9922 /* reshape is just done in another node. */ 9923 mddev->reshape_position = MaxSector; 9924 if (mddev->pers->update_reshape_pos) 9925 mddev->pers->update_reshape_pos(mddev); 9926 } 9927 9928 /* Finally set the event to be up to date */ 9929 mddev->events = le64_to_cpu(sb->events); 9930 } 9931 9932 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9933 { 9934 int err; 9935 struct page *swapout = rdev->sb_page; 9936 struct mdp_superblock_1 *sb; 9937 9938 /* Store the sb page of the rdev in the swapout temporary 9939 * variable in case we err in the future 9940 */ 9941 rdev->sb_page = NULL; 9942 err = alloc_disk_sb(rdev); 9943 if (err == 0) { 9944 ClearPageUptodate(rdev->sb_page); 9945 rdev->sb_loaded = 0; 9946 err = super_types[mddev->major_version]. 9947 load_super(rdev, NULL, mddev->minor_version); 9948 } 9949 if (err < 0) { 9950 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9951 __func__, __LINE__, rdev->desc_nr, err); 9952 if (rdev->sb_page) 9953 put_page(rdev->sb_page); 9954 rdev->sb_page = swapout; 9955 rdev->sb_loaded = 1; 9956 return err; 9957 } 9958 9959 sb = page_address(rdev->sb_page); 9960 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9961 * is not set 9962 */ 9963 9964 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9965 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9966 9967 /* The other node finished recovery, call spare_active to set 9968 * device In_sync and mddev->degraded 9969 */ 9970 if (rdev->recovery_offset == MaxSector && 9971 !test_bit(In_sync, &rdev->flags) && 9972 mddev->pers->spare_active(mddev)) 9973 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9974 9975 put_page(swapout); 9976 return 0; 9977 } 9978 9979 void md_reload_sb(struct mddev *mddev, int nr) 9980 { 9981 struct md_rdev *rdev = NULL, *iter; 9982 int err; 9983 9984 /* Find the rdev */ 9985 rdev_for_each_rcu(iter, mddev) { 9986 if (iter->desc_nr == nr) { 9987 rdev = iter; 9988 break; 9989 } 9990 } 9991 9992 if (!rdev) { 9993 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9994 return; 9995 } 9996 9997 err = read_rdev(mddev, rdev); 9998 if (err < 0) 9999 return; 10000 10001 check_sb_changes(mddev, rdev); 10002 10003 /* Read all rdev's to update recovery_offset */ 10004 rdev_for_each_rcu(rdev, mddev) { 10005 if (!test_bit(Faulty, &rdev->flags)) 10006 read_rdev(mddev, rdev); 10007 } 10008 } 10009 EXPORT_SYMBOL(md_reload_sb); 10010 10011 #ifndef MODULE 10012 10013 /* 10014 * Searches all registered partitions for autorun RAID arrays 10015 * at boot time. 10016 */ 10017 10018 static DEFINE_MUTEX(detected_devices_mutex); 10019 static LIST_HEAD(all_detected_devices); 10020 struct detected_devices_node { 10021 struct list_head list; 10022 dev_t dev; 10023 }; 10024 10025 void md_autodetect_dev(dev_t dev) 10026 { 10027 struct detected_devices_node *node_detected_dev; 10028 10029 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 10030 if (node_detected_dev) { 10031 node_detected_dev->dev = dev; 10032 mutex_lock(&detected_devices_mutex); 10033 list_add_tail(&node_detected_dev->list, &all_detected_devices); 10034 mutex_unlock(&detected_devices_mutex); 10035 } 10036 } 10037 10038 void md_autostart_arrays(int part) 10039 { 10040 struct md_rdev *rdev; 10041 struct detected_devices_node *node_detected_dev; 10042 dev_t dev; 10043 int i_scanned, i_passed; 10044 10045 i_scanned = 0; 10046 i_passed = 0; 10047 10048 pr_info("md: Autodetecting RAID arrays.\n"); 10049 10050 mutex_lock(&detected_devices_mutex); 10051 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 10052 i_scanned++; 10053 node_detected_dev = list_entry(all_detected_devices.next, 10054 struct detected_devices_node, list); 10055 list_del(&node_detected_dev->list); 10056 dev = node_detected_dev->dev; 10057 kfree(node_detected_dev); 10058 mutex_unlock(&detected_devices_mutex); 10059 rdev = md_import_device(dev,0, 90); 10060 mutex_lock(&detected_devices_mutex); 10061 if (IS_ERR(rdev)) 10062 continue; 10063 10064 if (test_bit(Faulty, &rdev->flags)) 10065 continue; 10066 10067 set_bit(AutoDetected, &rdev->flags); 10068 list_add(&rdev->same_set, &pending_raid_disks); 10069 i_passed++; 10070 } 10071 mutex_unlock(&detected_devices_mutex); 10072 10073 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 10074 10075 autorun_devices(part); 10076 } 10077 10078 #endif /* !MODULE */ 10079 10080 static __exit void md_exit(void) 10081 { 10082 struct mddev *mddev, *n; 10083 int delay = 1; 10084 10085 unregister_blkdev(MD_MAJOR,"md"); 10086 unregister_blkdev(mdp_major, "mdp"); 10087 unregister_reboot_notifier(&md_notifier); 10088 unregister_sysctl_table(raid_table_header); 10089 10090 /* We cannot unload the modules while some process is 10091 * waiting for us in select() or poll() - wake them up 10092 */ 10093 md_unloading = 1; 10094 while (waitqueue_active(&md_event_waiters)) { 10095 /* not safe to leave yet */ 10096 wake_up(&md_event_waiters); 10097 msleep(delay); 10098 delay += delay; 10099 } 10100 remove_proc_entry("mdstat", NULL); 10101 10102 spin_lock(&all_mddevs_lock); 10103 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 10104 if (!mddev_get(mddev)) 10105 continue; 10106 spin_unlock(&all_mddevs_lock); 10107 export_array(mddev); 10108 mddev->ctime = 0; 10109 mddev->hold_active = 0; 10110 /* 10111 * As the mddev is now fully clear, mddev_put will schedule 10112 * the mddev for destruction by a workqueue, and the 10113 * destroy_workqueue() below will wait for that to complete. 10114 */ 10115 mddev_put(mddev); 10116 spin_lock(&all_mddevs_lock); 10117 } 10118 spin_unlock(&all_mddevs_lock); 10119 10120 destroy_workqueue(md_misc_wq); 10121 destroy_workqueue(md_bitmap_wq); 10122 destroy_workqueue(md_wq); 10123 } 10124 10125 subsys_initcall(md_init); 10126 module_exit(md_exit) 10127 10128 static int get_ro(char *buffer, const struct kernel_param *kp) 10129 { 10130 return sprintf(buffer, "%d\n", start_readonly); 10131 } 10132 static int set_ro(const char *val, const struct kernel_param *kp) 10133 { 10134 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 10135 } 10136 10137 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 10138 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 10139 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 10140 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 10141 10142 MODULE_LICENSE("GPL"); 10143 MODULE_DESCRIPTION("MD RAID framework"); 10144 MODULE_ALIAS("md"); 10145 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 10146