xref: /linux/drivers/md/md.c (revision 90ab5ee94171b3e28de6bb42ee30b527014e0be7)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74 
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76 
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95 
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 	return mddev->sync_speed_min ?
101 		mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103 
104 static inline int speed_max(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_max ?
107 		mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109 
110 static struct ctl_table_header *raid_table_header;
111 
112 static ctl_table raid_table[] = {
113 	{
114 		.procname	= "speed_limit_min",
115 		.data		= &sysctl_speed_limit_min,
116 		.maxlen		= sizeof(int),
117 		.mode		= S_IRUGO|S_IWUSR,
118 		.proc_handler	= proc_dointvec,
119 	},
120 	{
121 		.procname	= "speed_limit_max",
122 		.data		= &sysctl_speed_limit_max,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{ }
128 };
129 
130 static ctl_table raid_dir_table[] = {
131 	{
132 		.procname	= "raid",
133 		.maxlen		= 0,
134 		.mode		= S_IRUGO|S_IXUGO,
135 		.child		= raid_table,
136 	},
137 	{ }
138 };
139 
140 static ctl_table raid_root_table[] = {
141 	{
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{  }
148 };
149 
150 static const struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157 
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160 	struct mddev *mddev, **mddevp;
161 
162 	mddevp = (void*)bio;
163 	mddev = mddevp[-1];
164 
165 	bio_free(bio, mddev->bio_set);
166 }
167 
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 			    struct mddev *mddev)
170 {
171 	struct bio *b;
172 	struct mddev **mddevp;
173 
174 	if (!mddev || !mddev->bio_set)
175 		return bio_alloc(gfp_mask, nr_iovecs);
176 
177 	b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 			     mddev->bio_set);
179 	if (!b)
180 		return NULL;
181 	mddevp = (void*)b;
182 	mddevp[-1] = mddev;
183 	b->bi_destructor = mddev_bio_destructor;
184 	return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187 
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 			    struct mddev *mddev)
190 {
191 	struct bio *b;
192 	struct mddev **mddevp;
193 
194 	if (!mddev || !mddev->bio_set)
195 		return bio_clone(bio, gfp_mask);
196 
197 	b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 			     mddev->bio_set);
199 	if (!b)
200 		return NULL;
201 	mddevp = (void*)b;
202 	mddevp[-1] = mddev;
203 	b->bi_destructor = mddev_bio_destructor;
204 	__bio_clone(b, bio);
205 	if (bio_integrity(bio)) {
206 		int ret;
207 
208 		ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209 
210 		if (ret < 0) {
211 			bio_put(b);
212 			return NULL;
213 		}
214 	}
215 
216 	return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219 
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222 	/* 'bio' is a cloned bio which we need to trim to match
223 	 * the given offset and size.
224 	 * This requires adjusting bi_sector, bi_size, and bi_io_vec
225 	 */
226 	int i;
227 	struct bio_vec *bvec;
228 	int sofar = 0;
229 
230 	size <<= 9;
231 	if (offset == 0 && size == bio->bi_size)
232 		return;
233 
234 	bio->bi_sector += offset;
235 	bio->bi_size = size;
236 	offset <<= 9;
237 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238 
239 	while (bio->bi_idx < bio->bi_vcnt &&
240 	       bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 		/* remove this whole bio_vec */
242 		offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 		bio->bi_idx++;
244 	}
245 	if (bio->bi_idx < bio->bi_vcnt) {
246 		bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 		bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248 	}
249 	/* avoid any complications with bi_idx being non-zero*/
250 	if (bio->bi_idx) {
251 		memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 			(bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 		bio->bi_vcnt -= bio->bi_idx;
254 		bio->bi_idx = 0;
255 	}
256 	/* Make sure vcnt and last bv are not too big */
257 	bio_for_each_segment(bvec, bio, i) {
258 		if (sofar + bvec->bv_len > size)
259 			bvec->bv_len = size - sofar;
260 		if (bvec->bv_len == 0) {
261 			bio->bi_vcnt = i;
262 			break;
263 		}
264 		sofar += bvec->bv_len;
265 	}
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268 
269 /*
270  * We have a system wide 'event count' that is incremented
271  * on any 'interesting' event, and readers of /proc/mdstat
272  * can use 'poll' or 'select' to find out when the event
273  * count increases.
274  *
275  * Events are:
276  *  start array, stop array, error, add device, remove device,
277  *  start build, activate spare
278  */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283 	atomic_inc(&md_event_count);
284 	wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287 
288 /* Alternate version that can be called from interrupts
289  * when calling sysfs_notify isn't needed.
290  */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293 	atomic_inc(&md_event_count);
294 	wake_up(&md_event_waiters);
295 }
296 
297 /*
298  * Enables to iterate over all existing md arrays
299  * all_mddevs_lock protects this list.
300  */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303 
304 
305 /*
306  * iterates through all used mddevs in the system.
307  * We take care to grab the all_mddevs_lock whenever navigating
308  * the list, and to always hold a refcount when unlocked.
309  * Any code which breaks out of this loop while own
310  * a reference to the current mddev and must mddev_put it.
311  */
312 #define for_each_mddev(_mddev,_tmp)					\
313 									\
314 	for (({ spin_lock(&all_mddevs_lock); 				\
315 		_tmp = all_mddevs.next;					\
316 		_mddev = NULL;});					\
317 	     ({ if (_tmp != &all_mddevs)				\
318 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 		spin_unlock(&all_mddevs_lock);				\
320 		if (_mddev) mddev_put(_mddev);				\
321 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
322 		_tmp != &all_mddevs;});					\
323 	     ({ spin_lock(&all_mddevs_lock);				\
324 		_tmp = _tmp->next;})					\
325 		)
326 
327 
328 /* Rather than calling directly into the personality make_request function,
329  * IO requests come here first so that we can check if the device is
330  * being suspended pending a reconfiguration.
331  * We hold a refcount over the call to ->make_request.  By the time that
332  * call has finished, the bio has been linked into some internal structure
333  * and so is visible to ->quiesce(), so we don't need the refcount any more.
334  */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337 	const int rw = bio_data_dir(bio);
338 	struct mddev *mddev = q->queuedata;
339 	int cpu;
340 	unsigned int sectors;
341 
342 	if (mddev == NULL || mddev->pers == NULL
343 	    || !mddev->ready) {
344 		bio_io_error(bio);
345 		return;
346 	}
347 	smp_rmb(); /* Ensure implications of  'active' are visible */
348 	rcu_read_lock();
349 	if (mddev->suspended) {
350 		DEFINE_WAIT(__wait);
351 		for (;;) {
352 			prepare_to_wait(&mddev->sb_wait, &__wait,
353 					TASK_UNINTERRUPTIBLE);
354 			if (!mddev->suspended)
355 				break;
356 			rcu_read_unlock();
357 			schedule();
358 			rcu_read_lock();
359 		}
360 		finish_wait(&mddev->sb_wait, &__wait);
361 	}
362 	atomic_inc(&mddev->active_io);
363 	rcu_read_unlock();
364 
365 	/*
366 	 * save the sectors now since our bio can
367 	 * go away inside make_request
368 	 */
369 	sectors = bio_sectors(bio);
370 	mddev->pers->make_request(mddev, bio);
371 
372 	cpu = part_stat_lock();
373 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375 	part_stat_unlock();
376 
377 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378 		wake_up(&mddev->sb_wait);
379 }
380 
381 /* mddev_suspend makes sure no new requests are submitted
382  * to the device, and that any requests that have been submitted
383  * are completely handled.
384  * Once ->stop is called and completes, the module will be completely
385  * unused.
386  */
387 void mddev_suspend(struct mddev *mddev)
388 {
389 	BUG_ON(mddev->suspended);
390 	mddev->suspended = 1;
391 	synchronize_rcu();
392 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393 	mddev->pers->quiesce(mddev, 1);
394 }
395 EXPORT_SYMBOL_GPL(mddev_suspend);
396 
397 void mddev_resume(struct mddev *mddev)
398 {
399 	mddev->suspended = 0;
400 	wake_up(&mddev->sb_wait);
401 	mddev->pers->quiesce(mddev, 0);
402 
403 	md_wakeup_thread(mddev->thread);
404 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
405 }
406 EXPORT_SYMBOL_GPL(mddev_resume);
407 
408 int mddev_congested(struct mddev *mddev, int bits)
409 {
410 	return mddev->suspended;
411 }
412 EXPORT_SYMBOL(mddev_congested);
413 
414 /*
415  * Generic flush handling for md
416  */
417 
418 static void md_end_flush(struct bio *bio, int err)
419 {
420 	struct md_rdev *rdev = bio->bi_private;
421 	struct mddev *mddev = rdev->mddev;
422 
423 	rdev_dec_pending(rdev, mddev);
424 
425 	if (atomic_dec_and_test(&mddev->flush_pending)) {
426 		/* The pre-request flush has finished */
427 		queue_work(md_wq, &mddev->flush_work);
428 	}
429 	bio_put(bio);
430 }
431 
432 static void md_submit_flush_data(struct work_struct *ws);
433 
434 static void submit_flushes(struct work_struct *ws)
435 {
436 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
437 	struct md_rdev *rdev;
438 
439 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
440 	atomic_set(&mddev->flush_pending, 1);
441 	rcu_read_lock();
442 	list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
443 		if (rdev->raid_disk >= 0 &&
444 		    !test_bit(Faulty, &rdev->flags)) {
445 			/* Take two references, one is dropped
446 			 * when request finishes, one after
447 			 * we reclaim rcu_read_lock
448 			 */
449 			struct bio *bi;
450 			atomic_inc(&rdev->nr_pending);
451 			atomic_inc(&rdev->nr_pending);
452 			rcu_read_unlock();
453 			bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
454 			bi->bi_end_io = md_end_flush;
455 			bi->bi_private = rdev;
456 			bi->bi_bdev = rdev->bdev;
457 			atomic_inc(&mddev->flush_pending);
458 			submit_bio(WRITE_FLUSH, bi);
459 			rcu_read_lock();
460 			rdev_dec_pending(rdev, mddev);
461 		}
462 	rcu_read_unlock();
463 	if (atomic_dec_and_test(&mddev->flush_pending))
464 		queue_work(md_wq, &mddev->flush_work);
465 }
466 
467 static void md_submit_flush_data(struct work_struct *ws)
468 {
469 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
470 	struct bio *bio = mddev->flush_bio;
471 
472 	if (bio->bi_size == 0)
473 		/* an empty barrier - all done */
474 		bio_endio(bio, 0);
475 	else {
476 		bio->bi_rw &= ~REQ_FLUSH;
477 		mddev->pers->make_request(mddev, bio);
478 	}
479 
480 	mddev->flush_bio = NULL;
481 	wake_up(&mddev->sb_wait);
482 }
483 
484 void md_flush_request(struct mddev *mddev, struct bio *bio)
485 {
486 	spin_lock_irq(&mddev->write_lock);
487 	wait_event_lock_irq(mddev->sb_wait,
488 			    !mddev->flush_bio,
489 			    mddev->write_lock, /*nothing*/);
490 	mddev->flush_bio = bio;
491 	spin_unlock_irq(&mddev->write_lock);
492 
493 	INIT_WORK(&mddev->flush_work, submit_flushes);
494 	queue_work(md_wq, &mddev->flush_work);
495 }
496 EXPORT_SYMBOL(md_flush_request);
497 
498 /* Support for plugging.
499  * This mirrors the plugging support in request_queue, but does not
500  * require having a whole queue or request structures.
501  * We allocate an md_plug_cb for each md device and each thread it gets
502  * plugged on.  This links tot the private plug_handle structure in the
503  * personality data where we keep a count of the number of outstanding
504  * plugs so other code can see if a plug is active.
505  */
506 struct md_plug_cb {
507 	struct blk_plug_cb cb;
508 	struct mddev *mddev;
509 };
510 
511 static void plugger_unplug(struct blk_plug_cb *cb)
512 {
513 	struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
514 	if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
515 		md_wakeup_thread(mdcb->mddev->thread);
516 	kfree(mdcb);
517 }
518 
519 /* Check that an unplug wakeup will come shortly.
520  * If not, wakeup the md thread immediately
521  */
522 int mddev_check_plugged(struct mddev *mddev)
523 {
524 	struct blk_plug *plug = current->plug;
525 	struct md_plug_cb *mdcb;
526 
527 	if (!plug)
528 		return 0;
529 
530 	list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
531 		if (mdcb->cb.callback == plugger_unplug &&
532 		    mdcb->mddev == mddev) {
533 			/* Already on the list, move to top */
534 			if (mdcb != list_first_entry(&plug->cb_list,
535 						    struct md_plug_cb,
536 						    cb.list))
537 				list_move(&mdcb->cb.list, &plug->cb_list);
538 			return 1;
539 		}
540 	}
541 	/* Not currently on the callback list */
542 	mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
543 	if (!mdcb)
544 		return 0;
545 
546 	mdcb->mddev = mddev;
547 	mdcb->cb.callback = plugger_unplug;
548 	atomic_inc(&mddev->plug_cnt);
549 	list_add(&mdcb->cb.list, &plug->cb_list);
550 	return 1;
551 }
552 EXPORT_SYMBOL_GPL(mddev_check_plugged);
553 
554 static inline struct mddev *mddev_get(struct mddev *mddev)
555 {
556 	atomic_inc(&mddev->active);
557 	return mddev;
558 }
559 
560 static void mddev_delayed_delete(struct work_struct *ws);
561 
562 static void mddev_put(struct mddev *mddev)
563 {
564 	struct bio_set *bs = NULL;
565 
566 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
567 		return;
568 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
569 	    mddev->ctime == 0 && !mddev->hold_active) {
570 		/* Array is not configured at all, and not held active,
571 		 * so destroy it */
572 		list_del_init(&mddev->all_mddevs);
573 		bs = mddev->bio_set;
574 		mddev->bio_set = NULL;
575 		if (mddev->gendisk) {
576 			/* We did a probe so need to clean up.  Call
577 			 * queue_work inside the spinlock so that
578 			 * flush_workqueue() after mddev_find will
579 			 * succeed in waiting for the work to be done.
580 			 */
581 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
582 			queue_work(md_misc_wq, &mddev->del_work);
583 		} else
584 			kfree(mddev);
585 	}
586 	spin_unlock(&all_mddevs_lock);
587 	if (bs)
588 		bioset_free(bs);
589 }
590 
591 void mddev_init(struct mddev *mddev)
592 {
593 	mutex_init(&mddev->open_mutex);
594 	mutex_init(&mddev->reconfig_mutex);
595 	mutex_init(&mddev->bitmap_info.mutex);
596 	INIT_LIST_HEAD(&mddev->disks);
597 	INIT_LIST_HEAD(&mddev->all_mddevs);
598 	init_timer(&mddev->safemode_timer);
599 	atomic_set(&mddev->active, 1);
600 	atomic_set(&mddev->openers, 0);
601 	atomic_set(&mddev->active_io, 0);
602 	atomic_set(&mddev->plug_cnt, 0);
603 	spin_lock_init(&mddev->write_lock);
604 	atomic_set(&mddev->flush_pending, 0);
605 	init_waitqueue_head(&mddev->sb_wait);
606 	init_waitqueue_head(&mddev->recovery_wait);
607 	mddev->reshape_position = MaxSector;
608 	mddev->resync_min = 0;
609 	mddev->resync_max = MaxSector;
610 	mddev->level = LEVEL_NONE;
611 }
612 EXPORT_SYMBOL_GPL(mddev_init);
613 
614 static struct mddev * mddev_find(dev_t unit)
615 {
616 	struct mddev *mddev, *new = NULL;
617 
618 	if (unit && MAJOR(unit) != MD_MAJOR)
619 		unit &= ~((1<<MdpMinorShift)-1);
620 
621  retry:
622 	spin_lock(&all_mddevs_lock);
623 
624 	if (unit) {
625 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
626 			if (mddev->unit == unit) {
627 				mddev_get(mddev);
628 				spin_unlock(&all_mddevs_lock);
629 				kfree(new);
630 				return mddev;
631 			}
632 
633 		if (new) {
634 			list_add(&new->all_mddevs, &all_mddevs);
635 			spin_unlock(&all_mddevs_lock);
636 			new->hold_active = UNTIL_IOCTL;
637 			return new;
638 		}
639 	} else if (new) {
640 		/* find an unused unit number */
641 		static int next_minor = 512;
642 		int start = next_minor;
643 		int is_free = 0;
644 		int dev = 0;
645 		while (!is_free) {
646 			dev = MKDEV(MD_MAJOR, next_minor);
647 			next_minor++;
648 			if (next_minor > MINORMASK)
649 				next_minor = 0;
650 			if (next_minor == start) {
651 				/* Oh dear, all in use. */
652 				spin_unlock(&all_mddevs_lock);
653 				kfree(new);
654 				return NULL;
655 			}
656 
657 			is_free = 1;
658 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
659 				if (mddev->unit == dev) {
660 					is_free = 0;
661 					break;
662 				}
663 		}
664 		new->unit = dev;
665 		new->md_minor = MINOR(dev);
666 		new->hold_active = UNTIL_STOP;
667 		list_add(&new->all_mddevs, &all_mddevs);
668 		spin_unlock(&all_mddevs_lock);
669 		return new;
670 	}
671 	spin_unlock(&all_mddevs_lock);
672 
673 	new = kzalloc(sizeof(*new), GFP_KERNEL);
674 	if (!new)
675 		return NULL;
676 
677 	new->unit = unit;
678 	if (MAJOR(unit) == MD_MAJOR)
679 		new->md_minor = MINOR(unit);
680 	else
681 		new->md_minor = MINOR(unit) >> MdpMinorShift;
682 
683 	mddev_init(new);
684 
685 	goto retry;
686 }
687 
688 static inline int mddev_lock(struct mddev * mddev)
689 {
690 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
691 }
692 
693 static inline int mddev_is_locked(struct mddev *mddev)
694 {
695 	return mutex_is_locked(&mddev->reconfig_mutex);
696 }
697 
698 static inline int mddev_trylock(struct mddev * mddev)
699 {
700 	return mutex_trylock(&mddev->reconfig_mutex);
701 }
702 
703 static struct attribute_group md_redundancy_group;
704 
705 static void mddev_unlock(struct mddev * mddev)
706 {
707 	if (mddev->to_remove) {
708 		/* These cannot be removed under reconfig_mutex as
709 		 * an access to the files will try to take reconfig_mutex
710 		 * while holding the file unremovable, which leads to
711 		 * a deadlock.
712 		 * So hold set sysfs_active while the remove in happeing,
713 		 * and anything else which might set ->to_remove or my
714 		 * otherwise change the sysfs namespace will fail with
715 		 * -EBUSY if sysfs_active is still set.
716 		 * We set sysfs_active under reconfig_mutex and elsewhere
717 		 * test it under the same mutex to ensure its correct value
718 		 * is seen.
719 		 */
720 		struct attribute_group *to_remove = mddev->to_remove;
721 		mddev->to_remove = NULL;
722 		mddev->sysfs_active = 1;
723 		mutex_unlock(&mddev->reconfig_mutex);
724 
725 		if (mddev->kobj.sd) {
726 			if (to_remove != &md_redundancy_group)
727 				sysfs_remove_group(&mddev->kobj, to_remove);
728 			if (mddev->pers == NULL ||
729 			    mddev->pers->sync_request == NULL) {
730 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
731 				if (mddev->sysfs_action)
732 					sysfs_put(mddev->sysfs_action);
733 				mddev->sysfs_action = NULL;
734 			}
735 		}
736 		mddev->sysfs_active = 0;
737 	} else
738 		mutex_unlock(&mddev->reconfig_mutex);
739 
740 	/* As we've dropped the mutex we need a spinlock to
741 	 * make sure the thread doesn't disappear
742 	 */
743 	spin_lock(&pers_lock);
744 	md_wakeup_thread(mddev->thread);
745 	spin_unlock(&pers_lock);
746 }
747 
748 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
749 {
750 	struct md_rdev *rdev;
751 
752 	list_for_each_entry(rdev, &mddev->disks, same_set)
753 		if (rdev->desc_nr == nr)
754 			return rdev;
755 
756 	return NULL;
757 }
758 
759 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
760 {
761 	struct md_rdev *rdev;
762 
763 	list_for_each_entry(rdev, &mddev->disks, same_set)
764 		if (rdev->bdev->bd_dev == dev)
765 			return rdev;
766 
767 	return NULL;
768 }
769 
770 static struct md_personality *find_pers(int level, char *clevel)
771 {
772 	struct md_personality *pers;
773 	list_for_each_entry(pers, &pers_list, list) {
774 		if (level != LEVEL_NONE && pers->level == level)
775 			return pers;
776 		if (strcmp(pers->name, clevel)==0)
777 			return pers;
778 	}
779 	return NULL;
780 }
781 
782 /* return the offset of the super block in 512byte sectors */
783 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
784 {
785 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
786 	return MD_NEW_SIZE_SECTORS(num_sectors);
787 }
788 
789 static int alloc_disk_sb(struct md_rdev * rdev)
790 {
791 	if (rdev->sb_page)
792 		MD_BUG();
793 
794 	rdev->sb_page = alloc_page(GFP_KERNEL);
795 	if (!rdev->sb_page) {
796 		printk(KERN_ALERT "md: out of memory.\n");
797 		return -ENOMEM;
798 	}
799 
800 	return 0;
801 }
802 
803 static void free_disk_sb(struct md_rdev * rdev)
804 {
805 	if (rdev->sb_page) {
806 		put_page(rdev->sb_page);
807 		rdev->sb_loaded = 0;
808 		rdev->sb_page = NULL;
809 		rdev->sb_start = 0;
810 		rdev->sectors = 0;
811 	}
812 	if (rdev->bb_page) {
813 		put_page(rdev->bb_page);
814 		rdev->bb_page = NULL;
815 	}
816 }
817 
818 
819 static void super_written(struct bio *bio, int error)
820 {
821 	struct md_rdev *rdev = bio->bi_private;
822 	struct mddev *mddev = rdev->mddev;
823 
824 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
825 		printk("md: super_written gets error=%d, uptodate=%d\n",
826 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
827 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
828 		md_error(mddev, rdev);
829 	}
830 
831 	if (atomic_dec_and_test(&mddev->pending_writes))
832 		wake_up(&mddev->sb_wait);
833 	bio_put(bio);
834 }
835 
836 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
837 		   sector_t sector, int size, struct page *page)
838 {
839 	/* write first size bytes of page to sector of rdev
840 	 * Increment mddev->pending_writes before returning
841 	 * and decrement it on completion, waking up sb_wait
842 	 * if zero is reached.
843 	 * If an error occurred, call md_error
844 	 */
845 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
846 
847 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
848 	bio->bi_sector = sector;
849 	bio_add_page(bio, page, size, 0);
850 	bio->bi_private = rdev;
851 	bio->bi_end_io = super_written;
852 
853 	atomic_inc(&mddev->pending_writes);
854 	submit_bio(WRITE_FLUSH_FUA, bio);
855 }
856 
857 void md_super_wait(struct mddev *mddev)
858 {
859 	/* wait for all superblock writes that were scheduled to complete */
860 	DEFINE_WAIT(wq);
861 	for(;;) {
862 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
863 		if (atomic_read(&mddev->pending_writes)==0)
864 			break;
865 		schedule();
866 	}
867 	finish_wait(&mddev->sb_wait, &wq);
868 }
869 
870 static void bi_complete(struct bio *bio, int error)
871 {
872 	complete((struct completion*)bio->bi_private);
873 }
874 
875 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
876 		 struct page *page, int rw, bool metadata_op)
877 {
878 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
879 	struct completion event;
880 	int ret;
881 
882 	rw |= REQ_SYNC;
883 
884 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
885 		rdev->meta_bdev : rdev->bdev;
886 	if (metadata_op)
887 		bio->bi_sector = sector + rdev->sb_start;
888 	else
889 		bio->bi_sector = sector + rdev->data_offset;
890 	bio_add_page(bio, page, size, 0);
891 	init_completion(&event);
892 	bio->bi_private = &event;
893 	bio->bi_end_io = bi_complete;
894 	submit_bio(rw, bio);
895 	wait_for_completion(&event);
896 
897 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
898 	bio_put(bio);
899 	return ret;
900 }
901 EXPORT_SYMBOL_GPL(sync_page_io);
902 
903 static int read_disk_sb(struct md_rdev * rdev, int size)
904 {
905 	char b[BDEVNAME_SIZE];
906 	if (!rdev->sb_page) {
907 		MD_BUG();
908 		return -EINVAL;
909 	}
910 	if (rdev->sb_loaded)
911 		return 0;
912 
913 
914 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
915 		goto fail;
916 	rdev->sb_loaded = 1;
917 	return 0;
918 
919 fail:
920 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
921 		bdevname(rdev->bdev,b));
922 	return -EINVAL;
923 }
924 
925 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
926 {
927 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
928 		sb1->set_uuid1 == sb2->set_uuid1 &&
929 		sb1->set_uuid2 == sb2->set_uuid2 &&
930 		sb1->set_uuid3 == sb2->set_uuid3;
931 }
932 
933 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
934 {
935 	int ret;
936 	mdp_super_t *tmp1, *tmp2;
937 
938 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
939 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
940 
941 	if (!tmp1 || !tmp2) {
942 		ret = 0;
943 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
944 		goto abort;
945 	}
946 
947 	*tmp1 = *sb1;
948 	*tmp2 = *sb2;
949 
950 	/*
951 	 * nr_disks is not constant
952 	 */
953 	tmp1->nr_disks = 0;
954 	tmp2->nr_disks = 0;
955 
956 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
957 abort:
958 	kfree(tmp1);
959 	kfree(tmp2);
960 	return ret;
961 }
962 
963 
964 static u32 md_csum_fold(u32 csum)
965 {
966 	csum = (csum & 0xffff) + (csum >> 16);
967 	return (csum & 0xffff) + (csum >> 16);
968 }
969 
970 static unsigned int calc_sb_csum(mdp_super_t * sb)
971 {
972 	u64 newcsum = 0;
973 	u32 *sb32 = (u32*)sb;
974 	int i;
975 	unsigned int disk_csum, csum;
976 
977 	disk_csum = sb->sb_csum;
978 	sb->sb_csum = 0;
979 
980 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
981 		newcsum += sb32[i];
982 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
983 
984 
985 #ifdef CONFIG_ALPHA
986 	/* This used to use csum_partial, which was wrong for several
987 	 * reasons including that different results are returned on
988 	 * different architectures.  It isn't critical that we get exactly
989 	 * the same return value as before (we always csum_fold before
990 	 * testing, and that removes any differences).  However as we
991 	 * know that csum_partial always returned a 16bit value on
992 	 * alphas, do a fold to maximise conformity to previous behaviour.
993 	 */
994 	sb->sb_csum = md_csum_fold(disk_csum);
995 #else
996 	sb->sb_csum = disk_csum;
997 #endif
998 	return csum;
999 }
1000 
1001 
1002 /*
1003  * Handle superblock details.
1004  * We want to be able to handle multiple superblock formats
1005  * so we have a common interface to them all, and an array of
1006  * different handlers.
1007  * We rely on user-space to write the initial superblock, and support
1008  * reading and updating of superblocks.
1009  * Interface methods are:
1010  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1011  *      loads and validates a superblock on dev.
1012  *      if refdev != NULL, compare superblocks on both devices
1013  *    Return:
1014  *      0 - dev has a superblock that is compatible with refdev
1015  *      1 - dev has a superblock that is compatible and newer than refdev
1016  *          so dev should be used as the refdev in future
1017  *     -EINVAL superblock incompatible or invalid
1018  *     -othererror e.g. -EIO
1019  *
1020  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1021  *      Verify that dev is acceptable into mddev.
1022  *       The first time, mddev->raid_disks will be 0, and data from
1023  *       dev should be merged in.  Subsequent calls check that dev
1024  *       is new enough.  Return 0 or -EINVAL
1025  *
1026  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1027  *     Update the superblock for rdev with data in mddev
1028  *     This does not write to disc.
1029  *
1030  */
1031 
1032 struct super_type  {
1033 	char		    *name;
1034 	struct module	    *owner;
1035 	int		    (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1036 					  int minor_version);
1037 	int		    (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1038 	void		    (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1039 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1040 						sector_t num_sectors);
1041 };
1042 
1043 /*
1044  * Check that the given mddev has no bitmap.
1045  *
1046  * This function is called from the run method of all personalities that do not
1047  * support bitmaps. It prints an error message and returns non-zero if mddev
1048  * has a bitmap. Otherwise, it returns 0.
1049  *
1050  */
1051 int md_check_no_bitmap(struct mddev *mddev)
1052 {
1053 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1054 		return 0;
1055 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1056 		mdname(mddev), mddev->pers->name);
1057 	return 1;
1058 }
1059 EXPORT_SYMBOL(md_check_no_bitmap);
1060 
1061 /*
1062  * load_super for 0.90.0
1063  */
1064 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1065 {
1066 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1067 	mdp_super_t *sb;
1068 	int ret;
1069 
1070 	/*
1071 	 * Calculate the position of the superblock (512byte sectors),
1072 	 * it's at the end of the disk.
1073 	 *
1074 	 * It also happens to be a multiple of 4Kb.
1075 	 */
1076 	rdev->sb_start = calc_dev_sboffset(rdev);
1077 
1078 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1079 	if (ret) return ret;
1080 
1081 	ret = -EINVAL;
1082 
1083 	bdevname(rdev->bdev, b);
1084 	sb = page_address(rdev->sb_page);
1085 
1086 	if (sb->md_magic != MD_SB_MAGIC) {
1087 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1088 		       b);
1089 		goto abort;
1090 	}
1091 
1092 	if (sb->major_version != 0 ||
1093 	    sb->minor_version < 90 ||
1094 	    sb->minor_version > 91) {
1095 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1096 			sb->major_version, sb->minor_version,
1097 			b);
1098 		goto abort;
1099 	}
1100 
1101 	if (sb->raid_disks <= 0)
1102 		goto abort;
1103 
1104 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1105 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1106 			b);
1107 		goto abort;
1108 	}
1109 
1110 	rdev->preferred_minor = sb->md_minor;
1111 	rdev->data_offset = 0;
1112 	rdev->sb_size = MD_SB_BYTES;
1113 	rdev->badblocks.shift = -1;
1114 
1115 	if (sb->level == LEVEL_MULTIPATH)
1116 		rdev->desc_nr = -1;
1117 	else
1118 		rdev->desc_nr = sb->this_disk.number;
1119 
1120 	if (!refdev) {
1121 		ret = 1;
1122 	} else {
1123 		__u64 ev1, ev2;
1124 		mdp_super_t *refsb = page_address(refdev->sb_page);
1125 		if (!uuid_equal(refsb, sb)) {
1126 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1127 				b, bdevname(refdev->bdev,b2));
1128 			goto abort;
1129 		}
1130 		if (!sb_equal(refsb, sb)) {
1131 			printk(KERN_WARNING "md: %s has same UUID"
1132 			       " but different superblock to %s\n",
1133 			       b, bdevname(refdev->bdev, b2));
1134 			goto abort;
1135 		}
1136 		ev1 = md_event(sb);
1137 		ev2 = md_event(refsb);
1138 		if (ev1 > ev2)
1139 			ret = 1;
1140 		else
1141 			ret = 0;
1142 	}
1143 	rdev->sectors = rdev->sb_start;
1144 	/* Limit to 4TB as metadata cannot record more than that */
1145 	if (rdev->sectors >= (2ULL << 32))
1146 		rdev->sectors = (2ULL << 32) - 2;
1147 
1148 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1149 		/* "this cannot possibly happen" ... */
1150 		ret = -EINVAL;
1151 
1152  abort:
1153 	return ret;
1154 }
1155 
1156 /*
1157  * validate_super for 0.90.0
1158  */
1159 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1160 {
1161 	mdp_disk_t *desc;
1162 	mdp_super_t *sb = page_address(rdev->sb_page);
1163 	__u64 ev1 = md_event(sb);
1164 
1165 	rdev->raid_disk = -1;
1166 	clear_bit(Faulty, &rdev->flags);
1167 	clear_bit(In_sync, &rdev->flags);
1168 	clear_bit(WriteMostly, &rdev->flags);
1169 
1170 	if (mddev->raid_disks == 0) {
1171 		mddev->major_version = 0;
1172 		mddev->minor_version = sb->minor_version;
1173 		mddev->patch_version = sb->patch_version;
1174 		mddev->external = 0;
1175 		mddev->chunk_sectors = sb->chunk_size >> 9;
1176 		mddev->ctime = sb->ctime;
1177 		mddev->utime = sb->utime;
1178 		mddev->level = sb->level;
1179 		mddev->clevel[0] = 0;
1180 		mddev->layout = sb->layout;
1181 		mddev->raid_disks = sb->raid_disks;
1182 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1183 		mddev->events = ev1;
1184 		mddev->bitmap_info.offset = 0;
1185 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1186 
1187 		if (mddev->minor_version >= 91) {
1188 			mddev->reshape_position = sb->reshape_position;
1189 			mddev->delta_disks = sb->delta_disks;
1190 			mddev->new_level = sb->new_level;
1191 			mddev->new_layout = sb->new_layout;
1192 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1193 		} else {
1194 			mddev->reshape_position = MaxSector;
1195 			mddev->delta_disks = 0;
1196 			mddev->new_level = mddev->level;
1197 			mddev->new_layout = mddev->layout;
1198 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1199 		}
1200 
1201 		if (sb->state & (1<<MD_SB_CLEAN))
1202 			mddev->recovery_cp = MaxSector;
1203 		else {
1204 			if (sb->events_hi == sb->cp_events_hi &&
1205 				sb->events_lo == sb->cp_events_lo) {
1206 				mddev->recovery_cp = sb->recovery_cp;
1207 			} else
1208 				mddev->recovery_cp = 0;
1209 		}
1210 
1211 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1212 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1213 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1214 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1215 
1216 		mddev->max_disks = MD_SB_DISKS;
1217 
1218 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1219 		    mddev->bitmap_info.file == NULL)
1220 			mddev->bitmap_info.offset =
1221 				mddev->bitmap_info.default_offset;
1222 
1223 	} else if (mddev->pers == NULL) {
1224 		/* Insist on good event counter while assembling, except
1225 		 * for spares (which don't need an event count) */
1226 		++ev1;
1227 		if (sb->disks[rdev->desc_nr].state & (
1228 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1229 			if (ev1 < mddev->events)
1230 				return -EINVAL;
1231 	} else if (mddev->bitmap) {
1232 		/* if adding to array with a bitmap, then we can accept an
1233 		 * older device ... but not too old.
1234 		 */
1235 		if (ev1 < mddev->bitmap->events_cleared)
1236 			return 0;
1237 	} else {
1238 		if (ev1 < mddev->events)
1239 			/* just a hot-add of a new device, leave raid_disk at -1 */
1240 			return 0;
1241 	}
1242 
1243 	if (mddev->level != LEVEL_MULTIPATH) {
1244 		desc = sb->disks + rdev->desc_nr;
1245 
1246 		if (desc->state & (1<<MD_DISK_FAULTY))
1247 			set_bit(Faulty, &rdev->flags);
1248 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1249 			    desc->raid_disk < mddev->raid_disks */) {
1250 			set_bit(In_sync, &rdev->flags);
1251 			rdev->raid_disk = desc->raid_disk;
1252 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1253 			/* active but not in sync implies recovery up to
1254 			 * reshape position.  We don't know exactly where
1255 			 * that is, so set to zero for now */
1256 			if (mddev->minor_version >= 91) {
1257 				rdev->recovery_offset = 0;
1258 				rdev->raid_disk = desc->raid_disk;
1259 			}
1260 		}
1261 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1262 			set_bit(WriteMostly, &rdev->flags);
1263 	} else /* MULTIPATH are always insync */
1264 		set_bit(In_sync, &rdev->flags);
1265 	return 0;
1266 }
1267 
1268 /*
1269  * sync_super for 0.90.0
1270  */
1271 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1272 {
1273 	mdp_super_t *sb;
1274 	struct md_rdev *rdev2;
1275 	int next_spare = mddev->raid_disks;
1276 
1277 
1278 	/* make rdev->sb match mddev data..
1279 	 *
1280 	 * 1/ zero out disks
1281 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1282 	 * 3/ any empty disks < next_spare become removed
1283 	 *
1284 	 * disks[0] gets initialised to REMOVED because
1285 	 * we cannot be sure from other fields if it has
1286 	 * been initialised or not.
1287 	 */
1288 	int i;
1289 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1290 
1291 	rdev->sb_size = MD_SB_BYTES;
1292 
1293 	sb = page_address(rdev->sb_page);
1294 
1295 	memset(sb, 0, sizeof(*sb));
1296 
1297 	sb->md_magic = MD_SB_MAGIC;
1298 	sb->major_version = mddev->major_version;
1299 	sb->patch_version = mddev->patch_version;
1300 	sb->gvalid_words  = 0; /* ignored */
1301 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1302 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1303 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1304 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1305 
1306 	sb->ctime = mddev->ctime;
1307 	sb->level = mddev->level;
1308 	sb->size = mddev->dev_sectors / 2;
1309 	sb->raid_disks = mddev->raid_disks;
1310 	sb->md_minor = mddev->md_minor;
1311 	sb->not_persistent = 0;
1312 	sb->utime = mddev->utime;
1313 	sb->state = 0;
1314 	sb->events_hi = (mddev->events>>32);
1315 	sb->events_lo = (u32)mddev->events;
1316 
1317 	if (mddev->reshape_position == MaxSector)
1318 		sb->minor_version = 90;
1319 	else {
1320 		sb->minor_version = 91;
1321 		sb->reshape_position = mddev->reshape_position;
1322 		sb->new_level = mddev->new_level;
1323 		sb->delta_disks = mddev->delta_disks;
1324 		sb->new_layout = mddev->new_layout;
1325 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1326 	}
1327 	mddev->minor_version = sb->minor_version;
1328 	if (mddev->in_sync)
1329 	{
1330 		sb->recovery_cp = mddev->recovery_cp;
1331 		sb->cp_events_hi = (mddev->events>>32);
1332 		sb->cp_events_lo = (u32)mddev->events;
1333 		if (mddev->recovery_cp == MaxSector)
1334 			sb->state = (1<< MD_SB_CLEAN);
1335 	} else
1336 		sb->recovery_cp = 0;
1337 
1338 	sb->layout = mddev->layout;
1339 	sb->chunk_size = mddev->chunk_sectors << 9;
1340 
1341 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1342 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1343 
1344 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1345 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1346 		mdp_disk_t *d;
1347 		int desc_nr;
1348 		int is_active = test_bit(In_sync, &rdev2->flags);
1349 
1350 		if (rdev2->raid_disk >= 0 &&
1351 		    sb->minor_version >= 91)
1352 			/* we have nowhere to store the recovery_offset,
1353 			 * but if it is not below the reshape_position,
1354 			 * we can piggy-back on that.
1355 			 */
1356 			is_active = 1;
1357 		if (rdev2->raid_disk < 0 ||
1358 		    test_bit(Faulty, &rdev2->flags))
1359 			is_active = 0;
1360 		if (is_active)
1361 			desc_nr = rdev2->raid_disk;
1362 		else
1363 			desc_nr = next_spare++;
1364 		rdev2->desc_nr = desc_nr;
1365 		d = &sb->disks[rdev2->desc_nr];
1366 		nr_disks++;
1367 		d->number = rdev2->desc_nr;
1368 		d->major = MAJOR(rdev2->bdev->bd_dev);
1369 		d->minor = MINOR(rdev2->bdev->bd_dev);
1370 		if (is_active)
1371 			d->raid_disk = rdev2->raid_disk;
1372 		else
1373 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1374 		if (test_bit(Faulty, &rdev2->flags))
1375 			d->state = (1<<MD_DISK_FAULTY);
1376 		else if (is_active) {
1377 			d->state = (1<<MD_DISK_ACTIVE);
1378 			if (test_bit(In_sync, &rdev2->flags))
1379 				d->state |= (1<<MD_DISK_SYNC);
1380 			active++;
1381 			working++;
1382 		} else {
1383 			d->state = 0;
1384 			spare++;
1385 			working++;
1386 		}
1387 		if (test_bit(WriteMostly, &rdev2->flags))
1388 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1389 	}
1390 	/* now set the "removed" and "faulty" bits on any missing devices */
1391 	for (i=0 ; i < mddev->raid_disks ; i++) {
1392 		mdp_disk_t *d = &sb->disks[i];
1393 		if (d->state == 0 && d->number == 0) {
1394 			d->number = i;
1395 			d->raid_disk = i;
1396 			d->state = (1<<MD_DISK_REMOVED);
1397 			d->state |= (1<<MD_DISK_FAULTY);
1398 			failed++;
1399 		}
1400 	}
1401 	sb->nr_disks = nr_disks;
1402 	sb->active_disks = active;
1403 	sb->working_disks = working;
1404 	sb->failed_disks = failed;
1405 	sb->spare_disks = spare;
1406 
1407 	sb->this_disk = sb->disks[rdev->desc_nr];
1408 	sb->sb_csum = calc_sb_csum(sb);
1409 }
1410 
1411 /*
1412  * rdev_size_change for 0.90.0
1413  */
1414 static unsigned long long
1415 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1416 {
1417 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1418 		return 0; /* component must fit device */
1419 	if (rdev->mddev->bitmap_info.offset)
1420 		return 0; /* can't move bitmap */
1421 	rdev->sb_start = calc_dev_sboffset(rdev);
1422 	if (!num_sectors || num_sectors > rdev->sb_start)
1423 		num_sectors = rdev->sb_start;
1424 	/* Limit to 4TB as metadata cannot record more than that.
1425 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1426 	 */
1427 	if (num_sectors >= (2ULL << 32))
1428 		num_sectors = (2ULL << 32) - 2;
1429 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1430 		       rdev->sb_page);
1431 	md_super_wait(rdev->mddev);
1432 	return num_sectors;
1433 }
1434 
1435 
1436 /*
1437  * version 1 superblock
1438  */
1439 
1440 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1441 {
1442 	__le32 disk_csum;
1443 	u32 csum;
1444 	unsigned long long newcsum;
1445 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1446 	__le32 *isuper = (__le32*)sb;
1447 	int i;
1448 
1449 	disk_csum = sb->sb_csum;
1450 	sb->sb_csum = 0;
1451 	newcsum = 0;
1452 	for (i=0; size>=4; size -= 4 )
1453 		newcsum += le32_to_cpu(*isuper++);
1454 
1455 	if (size == 2)
1456 		newcsum += le16_to_cpu(*(__le16*) isuper);
1457 
1458 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1459 	sb->sb_csum = disk_csum;
1460 	return cpu_to_le32(csum);
1461 }
1462 
1463 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1464 			    int acknowledged);
1465 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1466 {
1467 	struct mdp_superblock_1 *sb;
1468 	int ret;
1469 	sector_t sb_start;
1470 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1471 	int bmask;
1472 
1473 	/*
1474 	 * Calculate the position of the superblock in 512byte sectors.
1475 	 * It is always aligned to a 4K boundary and
1476 	 * depeding on minor_version, it can be:
1477 	 * 0: At least 8K, but less than 12K, from end of device
1478 	 * 1: At start of device
1479 	 * 2: 4K from start of device.
1480 	 */
1481 	switch(minor_version) {
1482 	case 0:
1483 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1484 		sb_start -= 8*2;
1485 		sb_start &= ~(sector_t)(4*2-1);
1486 		break;
1487 	case 1:
1488 		sb_start = 0;
1489 		break;
1490 	case 2:
1491 		sb_start = 8;
1492 		break;
1493 	default:
1494 		return -EINVAL;
1495 	}
1496 	rdev->sb_start = sb_start;
1497 
1498 	/* superblock is rarely larger than 1K, but it can be larger,
1499 	 * and it is safe to read 4k, so we do that
1500 	 */
1501 	ret = read_disk_sb(rdev, 4096);
1502 	if (ret) return ret;
1503 
1504 
1505 	sb = page_address(rdev->sb_page);
1506 
1507 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1508 	    sb->major_version != cpu_to_le32(1) ||
1509 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1510 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1511 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1512 		return -EINVAL;
1513 
1514 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1515 		printk("md: invalid superblock checksum on %s\n",
1516 			bdevname(rdev->bdev,b));
1517 		return -EINVAL;
1518 	}
1519 	if (le64_to_cpu(sb->data_size) < 10) {
1520 		printk("md: data_size too small on %s\n",
1521 		       bdevname(rdev->bdev,b));
1522 		return -EINVAL;
1523 	}
1524 
1525 	rdev->preferred_minor = 0xffff;
1526 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1527 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1528 
1529 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1530 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1531 	if (rdev->sb_size & bmask)
1532 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1533 
1534 	if (minor_version
1535 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1536 		return -EINVAL;
1537 
1538 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1539 		rdev->desc_nr = -1;
1540 	else
1541 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1542 
1543 	if (!rdev->bb_page) {
1544 		rdev->bb_page = alloc_page(GFP_KERNEL);
1545 		if (!rdev->bb_page)
1546 			return -ENOMEM;
1547 	}
1548 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1549 	    rdev->badblocks.count == 0) {
1550 		/* need to load the bad block list.
1551 		 * Currently we limit it to one page.
1552 		 */
1553 		s32 offset;
1554 		sector_t bb_sector;
1555 		u64 *bbp;
1556 		int i;
1557 		int sectors = le16_to_cpu(sb->bblog_size);
1558 		if (sectors > (PAGE_SIZE / 512))
1559 			return -EINVAL;
1560 		offset = le32_to_cpu(sb->bblog_offset);
1561 		if (offset == 0)
1562 			return -EINVAL;
1563 		bb_sector = (long long)offset;
1564 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1565 				  rdev->bb_page, READ, true))
1566 			return -EIO;
1567 		bbp = (u64 *)page_address(rdev->bb_page);
1568 		rdev->badblocks.shift = sb->bblog_shift;
1569 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1570 			u64 bb = le64_to_cpu(*bbp);
1571 			int count = bb & (0x3ff);
1572 			u64 sector = bb >> 10;
1573 			sector <<= sb->bblog_shift;
1574 			count <<= sb->bblog_shift;
1575 			if (bb + 1 == 0)
1576 				break;
1577 			if (md_set_badblocks(&rdev->badblocks,
1578 					     sector, count, 1) == 0)
1579 				return -EINVAL;
1580 		}
1581 	} else if (sb->bblog_offset == 0)
1582 		rdev->badblocks.shift = -1;
1583 
1584 	if (!refdev) {
1585 		ret = 1;
1586 	} else {
1587 		__u64 ev1, ev2;
1588 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1589 
1590 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1591 		    sb->level != refsb->level ||
1592 		    sb->layout != refsb->layout ||
1593 		    sb->chunksize != refsb->chunksize) {
1594 			printk(KERN_WARNING "md: %s has strangely different"
1595 				" superblock to %s\n",
1596 				bdevname(rdev->bdev,b),
1597 				bdevname(refdev->bdev,b2));
1598 			return -EINVAL;
1599 		}
1600 		ev1 = le64_to_cpu(sb->events);
1601 		ev2 = le64_to_cpu(refsb->events);
1602 
1603 		if (ev1 > ev2)
1604 			ret = 1;
1605 		else
1606 			ret = 0;
1607 	}
1608 	if (minor_version)
1609 		rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1610 			le64_to_cpu(sb->data_offset);
1611 	else
1612 		rdev->sectors = rdev->sb_start;
1613 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1614 		return -EINVAL;
1615 	rdev->sectors = le64_to_cpu(sb->data_size);
1616 	if (le64_to_cpu(sb->size) > rdev->sectors)
1617 		return -EINVAL;
1618 	return ret;
1619 }
1620 
1621 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1622 {
1623 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1624 	__u64 ev1 = le64_to_cpu(sb->events);
1625 
1626 	rdev->raid_disk = -1;
1627 	clear_bit(Faulty, &rdev->flags);
1628 	clear_bit(In_sync, &rdev->flags);
1629 	clear_bit(WriteMostly, &rdev->flags);
1630 
1631 	if (mddev->raid_disks == 0) {
1632 		mddev->major_version = 1;
1633 		mddev->patch_version = 0;
1634 		mddev->external = 0;
1635 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1636 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1637 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1638 		mddev->level = le32_to_cpu(sb->level);
1639 		mddev->clevel[0] = 0;
1640 		mddev->layout = le32_to_cpu(sb->layout);
1641 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1642 		mddev->dev_sectors = le64_to_cpu(sb->size);
1643 		mddev->events = ev1;
1644 		mddev->bitmap_info.offset = 0;
1645 		mddev->bitmap_info.default_offset = 1024 >> 9;
1646 
1647 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1648 		memcpy(mddev->uuid, sb->set_uuid, 16);
1649 
1650 		mddev->max_disks =  (4096-256)/2;
1651 
1652 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1653 		    mddev->bitmap_info.file == NULL )
1654 			mddev->bitmap_info.offset =
1655 				(__s32)le32_to_cpu(sb->bitmap_offset);
1656 
1657 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1658 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1659 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1660 			mddev->new_level = le32_to_cpu(sb->new_level);
1661 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1662 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1663 		} else {
1664 			mddev->reshape_position = MaxSector;
1665 			mddev->delta_disks = 0;
1666 			mddev->new_level = mddev->level;
1667 			mddev->new_layout = mddev->layout;
1668 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1669 		}
1670 
1671 	} else if (mddev->pers == NULL) {
1672 		/* Insist of good event counter while assembling, except for
1673 		 * spares (which don't need an event count) */
1674 		++ev1;
1675 		if (rdev->desc_nr >= 0 &&
1676 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1677 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1678 			if (ev1 < mddev->events)
1679 				return -EINVAL;
1680 	} else if (mddev->bitmap) {
1681 		/* If adding to array with a bitmap, then we can accept an
1682 		 * older device, but not too old.
1683 		 */
1684 		if (ev1 < mddev->bitmap->events_cleared)
1685 			return 0;
1686 	} else {
1687 		if (ev1 < mddev->events)
1688 			/* just a hot-add of a new device, leave raid_disk at -1 */
1689 			return 0;
1690 	}
1691 	if (mddev->level != LEVEL_MULTIPATH) {
1692 		int role;
1693 		if (rdev->desc_nr < 0 ||
1694 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1695 			role = 0xffff;
1696 			rdev->desc_nr = -1;
1697 		} else
1698 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1699 		switch(role) {
1700 		case 0xffff: /* spare */
1701 			break;
1702 		case 0xfffe: /* faulty */
1703 			set_bit(Faulty, &rdev->flags);
1704 			break;
1705 		default:
1706 			if ((le32_to_cpu(sb->feature_map) &
1707 			     MD_FEATURE_RECOVERY_OFFSET))
1708 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1709 			else
1710 				set_bit(In_sync, &rdev->flags);
1711 			rdev->raid_disk = role;
1712 			break;
1713 		}
1714 		if (sb->devflags & WriteMostly1)
1715 			set_bit(WriteMostly, &rdev->flags);
1716 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1717 			set_bit(Replacement, &rdev->flags);
1718 	} else /* MULTIPATH are always insync */
1719 		set_bit(In_sync, &rdev->flags);
1720 
1721 	return 0;
1722 }
1723 
1724 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1725 {
1726 	struct mdp_superblock_1 *sb;
1727 	struct md_rdev *rdev2;
1728 	int max_dev, i;
1729 	/* make rdev->sb match mddev and rdev data. */
1730 
1731 	sb = page_address(rdev->sb_page);
1732 
1733 	sb->feature_map = 0;
1734 	sb->pad0 = 0;
1735 	sb->recovery_offset = cpu_to_le64(0);
1736 	memset(sb->pad1, 0, sizeof(sb->pad1));
1737 	memset(sb->pad3, 0, sizeof(sb->pad3));
1738 
1739 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1740 	sb->events = cpu_to_le64(mddev->events);
1741 	if (mddev->in_sync)
1742 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1743 	else
1744 		sb->resync_offset = cpu_to_le64(0);
1745 
1746 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1747 
1748 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1749 	sb->size = cpu_to_le64(mddev->dev_sectors);
1750 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1751 	sb->level = cpu_to_le32(mddev->level);
1752 	sb->layout = cpu_to_le32(mddev->layout);
1753 
1754 	if (test_bit(WriteMostly, &rdev->flags))
1755 		sb->devflags |= WriteMostly1;
1756 	else
1757 		sb->devflags &= ~WriteMostly1;
1758 
1759 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1760 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1761 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1762 	}
1763 
1764 	if (rdev->raid_disk >= 0 &&
1765 	    !test_bit(In_sync, &rdev->flags)) {
1766 		sb->feature_map |=
1767 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1768 		sb->recovery_offset =
1769 			cpu_to_le64(rdev->recovery_offset);
1770 	}
1771 	if (test_bit(Replacement, &rdev->flags))
1772 		sb->feature_map |=
1773 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1774 
1775 	if (mddev->reshape_position != MaxSector) {
1776 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1777 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1778 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1779 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1780 		sb->new_level = cpu_to_le32(mddev->new_level);
1781 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1782 	}
1783 
1784 	if (rdev->badblocks.count == 0)
1785 		/* Nothing to do for bad blocks*/ ;
1786 	else if (sb->bblog_offset == 0)
1787 		/* Cannot record bad blocks on this device */
1788 		md_error(mddev, rdev);
1789 	else {
1790 		struct badblocks *bb = &rdev->badblocks;
1791 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1792 		u64 *p = bb->page;
1793 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1794 		if (bb->changed) {
1795 			unsigned seq;
1796 
1797 retry:
1798 			seq = read_seqbegin(&bb->lock);
1799 
1800 			memset(bbp, 0xff, PAGE_SIZE);
1801 
1802 			for (i = 0 ; i < bb->count ; i++) {
1803 				u64 internal_bb = *p++;
1804 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1805 						| BB_LEN(internal_bb));
1806 				*bbp++ = cpu_to_le64(store_bb);
1807 			}
1808 			if (read_seqretry(&bb->lock, seq))
1809 				goto retry;
1810 
1811 			bb->sector = (rdev->sb_start +
1812 				      (int)le32_to_cpu(sb->bblog_offset));
1813 			bb->size = le16_to_cpu(sb->bblog_size);
1814 			bb->changed = 0;
1815 		}
1816 	}
1817 
1818 	max_dev = 0;
1819 	list_for_each_entry(rdev2, &mddev->disks, same_set)
1820 		if (rdev2->desc_nr+1 > max_dev)
1821 			max_dev = rdev2->desc_nr+1;
1822 
1823 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1824 		int bmask;
1825 		sb->max_dev = cpu_to_le32(max_dev);
1826 		rdev->sb_size = max_dev * 2 + 256;
1827 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1828 		if (rdev->sb_size & bmask)
1829 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1830 	} else
1831 		max_dev = le32_to_cpu(sb->max_dev);
1832 
1833 	for (i=0; i<max_dev;i++)
1834 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1835 
1836 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1837 		i = rdev2->desc_nr;
1838 		if (test_bit(Faulty, &rdev2->flags))
1839 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1840 		else if (test_bit(In_sync, &rdev2->flags))
1841 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1842 		else if (rdev2->raid_disk >= 0)
1843 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1844 		else
1845 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1846 	}
1847 
1848 	sb->sb_csum = calc_sb_1_csum(sb);
1849 }
1850 
1851 static unsigned long long
1852 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1853 {
1854 	struct mdp_superblock_1 *sb;
1855 	sector_t max_sectors;
1856 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1857 		return 0; /* component must fit device */
1858 	if (rdev->sb_start < rdev->data_offset) {
1859 		/* minor versions 1 and 2; superblock before data */
1860 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1861 		max_sectors -= rdev->data_offset;
1862 		if (!num_sectors || num_sectors > max_sectors)
1863 			num_sectors = max_sectors;
1864 	} else if (rdev->mddev->bitmap_info.offset) {
1865 		/* minor version 0 with bitmap we can't move */
1866 		return 0;
1867 	} else {
1868 		/* minor version 0; superblock after data */
1869 		sector_t sb_start;
1870 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1871 		sb_start &= ~(sector_t)(4*2 - 1);
1872 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1873 		if (!num_sectors || num_sectors > max_sectors)
1874 			num_sectors = max_sectors;
1875 		rdev->sb_start = sb_start;
1876 	}
1877 	sb = page_address(rdev->sb_page);
1878 	sb->data_size = cpu_to_le64(num_sectors);
1879 	sb->super_offset = rdev->sb_start;
1880 	sb->sb_csum = calc_sb_1_csum(sb);
1881 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1882 		       rdev->sb_page);
1883 	md_super_wait(rdev->mddev);
1884 	return num_sectors;
1885 }
1886 
1887 static struct super_type super_types[] = {
1888 	[0] = {
1889 		.name	= "0.90.0",
1890 		.owner	= THIS_MODULE,
1891 		.load_super	    = super_90_load,
1892 		.validate_super	    = super_90_validate,
1893 		.sync_super	    = super_90_sync,
1894 		.rdev_size_change   = super_90_rdev_size_change,
1895 	},
1896 	[1] = {
1897 		.name	= "md-1",
1898 		.owner	= THIS_MODULE,
1899 		.load_super	    = super_1_load,
1900 		.validate_super	    = super_1_validate,
1901 		.sync_super	    = super_1_sync,
1902 		.rdev_size_change   = super_1_rdev_size_change,
1903 	},
1904 };
1905 
1906 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1907 {
1908 	if (mddev->sync_super) {
1909 		mddev->sync_super(mddev, rdev);
1910 		return;
1911 	}
1912 
1913 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1914 
1915 	super_types[mddev->major_version].sync_super(mddev, rdev);
1916 }
1917 
1918 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1919 {
1920 	struct md_rdev *rdev, *rdev2;
1921 
1922 	rcu_read_lock();
1923 	rdev_for_each_rcu(rdev, mddev1)
1924 		rdev_for_each_rcu(rdev2, mddev2)
1925 			if (rdev->bdev->bd_contains ==
1926 			    rdev2->bdev->bd_contains) {
1927 				rcu_read_unlock();
1928 				return 1;
1929 			}
1930 	rcu_read_unlock();
1931 	return 0;
1932 }
1933 
1934 static LIST_HEAD(pending_raid_disks);
1935 
1936 /*
1937  * Try to register data integrity profile for an mddev
1938  *
1939  * This is called when an array is started and after a disk has been kicked
1940  * from the array. It only succeeds if all working and active component devices
1941  * are integrity capable with matching profiles.
1942  */
1943 int md_integrity_register(struct mddev *mddev)
1944 {
1945 	struct md_rdev *rdev, *reference = NULL;
1946 
1947 	if (list_empty(&mddev->disks))
1948 		return 0; /* nothing to do */
1949 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1950 		return 0; /* shouldn't register, or already is */
1951 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1952 		/* skip spares and non-functional disks */
1953 		if (test_bit(Faulty, &rdev->flags))
1954 			continue;
1955 		if (rdev->raid_disk < 0)
1956 			continue;
1957 		if (!reference) {
1958 			/* Use the first rdev as the reference */
1959 			reference = rdev;
1960 			continue;
1961 		}
1962 		/* does this rdev's profile match the reference profile? */
1963 		if (blk_integrity_compare(reference->bdev->bd_disk,
1964 				rdev->bdev->bd_disk) < 0)
1965 			return -EINVAL;
1966 	}
1967 	if (!reference || !bdev_get_integrity(reference->bdev))
1968 		return 0;
1969 	/*
1970 	 * All component devices are integrity capable and have matching
1971 	 * profiles, register the common profile for the md device.
1972 	 */
1973 	if (blk_integrity_register(mddev->gendisk,
1974 			bdev_get_integrity(reference->bdev)) != 0) {
1975 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1976 			mdname(mddev));
1977 		return -EINVAL;
1978 	}
1979 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1980 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1981 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1982 		       mdname(mddev));
1983 		return -EINVAL;
1984 	}
1985 	return 0;
1986 }
1987 EXPORT_SYMBOL(md_integrity_register);
1988 
1989 /* Disable data integrity if non-capable/non-matching disk is being added */
1990 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1991 {
1992 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1993 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1994 
1995 	if (!bi_mddev) /* nothing to do */
1996 		return;
1997 	if (rdev->raid_disk < 0) /* skip spares */
1998 		return;
1999 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2000 					     rdev->bdev->bd_disk) >= 0)
2001 		return;
2002 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2003 	blk_integrity_unregister(mddev->gendisk);
2004 }
2005 EXPORT_SYMBOL(md_integrity_add_rdev);
2006 
2007 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2008 {
2009 	char b[BDEVNAME_SIZE];
2010 	struct kobject *ko;
2011 	char *s;
2012 	int err;
2013 
2014 	if (rdev->mddev) {
2015 		MD_BUG();
2016 		return -EINVAL;
2017 	}
2018 
2019 	/* prevent duplicates */
2020 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2021 		return -EEXIST;
2022 
2023 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2024 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2025 			rdev->sectors < mddev->dev_sectors)) {
2026 		if (mddev->pers) {
2027 			/* Cannot change size, so fail
2028 			 * If mddev->level <= 0, then we don't care
2029 			 * about aligning sizes (e.g. linear)
2030 			 */
2031 			if (mddev->level > 0)
2032 				return -ENOSPC;
2033 		} else
2034 			mddev->dev_sectors = rdev->sectors;
2035 	}
2036 
2037 	/* Verify rdev->desc_nr is unique.
2038 	 * If it is -1, assign a free number, else
2039 	 * check number is not in use
2040 	 */
2041 	if (rdev->desc_nr < 0) {
2042 		int choice = 0;
2043 		if (mddev->pers) choice = mddev->raid_disks;
2044 		while (find_rdev_nr(mddev, choice))
2045 			choice++;
2046 		rdev->desc_nr = choice;
2047 	} else {
2048 		if (find_rdev_nr(mddev, rdev->desc_nr))
2049 			return -EBUSY;
2050 	}
2051 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2052 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2053 		       mdname(mddev), mddev->max_disks);
2054 		return -EBUSY;
2055 	}
2056 	bdevname(rdev->bdev,b);
2057 	while ( (s=strchr(b, '/')) != NULL)
2058 		*s = '!';
2059 
2060 	rdev->mddev = mddev;
2061 	printk(KERN_INFO "md: bind<%s>\n", b);
2062 
2063 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2064 		goto fail;
2065 
2066 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2067 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2068 		/* failure here is OK */;
2069 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2070 
2071 	list_add_rcu(&rdev->same_set, &mddev->disks);
2072 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2073 
2074 	/* May as well allow recovery to be retried once */
2075 	mddev->recovery_disabled++;
2076 
2077 	return 0;
2078 
2079  fail:
2080 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2081 	       b, mdname(mddev));
2082 	return err;
2083 }
2084 
2085 static void md_delayed_delete(struct work_struct *ws)
2086 {
2087 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2088 	kobject_del(&rdev->kobj);
2089 	kobject_put(&rdev->kobj);
2090 }
2091 
2092 static void unbind_rdev_from_array(struct md_rdev * rdev)
2093 {
2094 	char b[BDEVNAME_SIZE];
2095 	if (!rdev->mddev) {
2096 		MD_BUG();
2097 		return;
2098 	}
2099 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2100 	list_del_rcu(&rdev->same_set);
2101 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2102 	rdev->mddev = NULL;
2103 	sysfs_remove_link(&rdev->kobj, "block");
2104 	sysfs_put(rdev->sysfs_state);
2105 	rdev->sysfs_state = NULL;
2106 	kfree(rdev->badblocks.page);
2107 	rdev->badblocks.count = 0;
2108 	rdev->badblocks.page = NULL;
2109 	/* We need to delay this, otherwise we can deadlock when
2110 	 * writing to 'remove' to "dev/state".  We also need
2111 	 * to delay it due to rcu usage.
2112 	 */
2113 	synchronize_rcu();
2114 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2115 	kobject_get(&rdev->kobj);
2116 	queue_work(md_misc_wq, &rdev->del_work);
2117 }
2118 
2119 /*
2120  * prevent the device from being mounted, repartitioned or
2121  * otherwise reused by a RAID array (or any other kernel
2122  * subsystem), by bd_claiming the device.
2123  */
2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2125 {
2126 	int err = 0;
2127 	struct block_device *bdev;
2128 	char b[BDEVNAME_SIZE];
2129 
2130 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2131 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2132 	if (IS_ERR(bdev)) {
2133 		printk(KERN_ERR "md: could not open %s.\n",
2134 			__bdevname(dev, b));
2135 		return PTR_ERR(bdev);
2136 	}
2137 	rdev->bdev = bdev;
2138 	return err;
2139 }
2140 
2141 static void unlock_rdev(struct md_rdev *rdev)
2142 {
2143 	struct block_device *bdev = rdev->bdev;
2144 	rdev->bdev = NULL;
2145 	if (!bdev)
2146 		MD_BUG();
2147 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2148 }
2149 
2150 void md_autodetect_dev(dev_t dev);
2151 
2152 static void export_rdev(struct md_rdev * rdev)
2153 {
2154 	char b[BDEVNAME_SIZE];
2155 	printk(KERN_INFO "md: export_rdev(%s)\n",
2156 		bdevname(rdev->bdev,b));
2157 	if (rdev->mddev)
2158 		MD_BUG();
2159 	free_disk_sb(rdev);
2160 #ifndef MODULE
2161 	if (test_bit(AutoDetected, &rdev->flags))
2162 		md_autodetect_dev(rdev->bdev->bd_dev);
2163 #endif
2164 	unlock_rdev(rdev);
2165 	kobject_put(&rdev->kobj);
2166 }
2167 
2168 static void kick_rdev_from_array(struct md_rdev * rdev)
2169 {
2170 	unbind_rdev_from_array(rdev);
2171 	export_rdev(rdev);
2172 }
2173 
2174 static void export_array(struct mddev *mddev)
2175 {
2176 	struct md_rdev *rdev, *tmp;
2177 
2178 	rdev_for_each(rdev, tmp, mddev) {
2179 		if (!rdev->mddev) {
2180 			MD_BUG();
2181 			continue;
2182 		}
2183 		kick_rdev_from_array(rdev);
2184 	}
2185 	if (!list_empty(&mddev->disks))
2186 		MD_BUG();
2187 	mddev->raid_disks = 0;
2188 	mddev->major_version = 0;
2189 }
2190 
2191 static void print_desc(mdp_disk_t *desc)
2192 {
2193 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2194 		desc->major,desc->minor,desc->raid_disk,desc->state);
2195 }
2196 
2197 static void print_sb_90(mdp_super_t *sb)
2198 {
2199 	int i;
2200 
2201 	printk(KERN_INFO
2202 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2203 		sb->major_version, sb->minor_version, sb->patch_version,
2204 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2205 		sb->ctime);
2206 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2207 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2208 		sb->md_minor, sb->layout, sb->chunk_size);
2209 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2210 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2211 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2212 		sb->failed_disks, sb->spare_disks,
2213 		sb->sb_csum, (unsigned long)sb->events_lo);
2214 
2215 	printk(KERN_INFO);
2216 	for (i = 0; i < MD_SB_DISKS; i++) {
2217 		mdp_disk_t *desc;
2218 
2219 		desc = sb->disks + i;
2220 		if (desc->number || desc->major || desc->minor ||
2221 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2222 			printk("     D %2d: ", i);
2223 			print_desc(desc);
2224 		}
2225 	}
2226 	printk(KERN_INFO "md:     THIS: ");
2227 	print_desc(&sb->this_disk);
2228 }
2229 
2230 static void print_sb_1(struct mdp_superblock_1 *sb)
2231 {
2232 	__u8 *uuid;
2233 
2234 	uuid = sb->set_uuid;
2235 	printk(KERN_INFO
2236 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2237 	       "md:    Name: \"%s\" CT:%llu\n",
2238 		le32_to_cpu(sb->major_version),
2239 		le32_to_cpu(sb->feature_map),
2240 		uuid,
2241 		sb->set_name,
2242 		(unsigned long long)le64_to_cpu(sb->ctime)
2243 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2244 
2245 	uuid = sb->device_uuid;
2246 	printk(KERN_INFO
2247 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2248 			" RO:%llu\n"
2249 	       "md:     Dev:%08x UUID: %pU\n"
2250 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2251 	       "md:         (MaxDev:%u) \n",
2252 		le32_to_cpu(sb->level),
2253 		(unsigned long long)le64_to_cpu(sb->size),
2254 		le32_to_cpu(sb->raid_disks),
2255 		le32_to_cpu(sb->layout),
2256 		le32_to_cpu(sb->chunksize),
2257 		(unsigned long long)le64_to_cpu(sb->data_offset),
2258 		(unsigned long long)le64_to_cpu(sb->data_size),
2259 		(unsigned long long)le64_to_cpu(sb->super_offset),
2260 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2261 		le32_to_cpu(sb->dev_number),
2262 		uuid,
2263 		sb->devflags,
2264 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2265 		(unsigned long long)le64_to_cpu(sb->events),
2266 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2267 		le32_to_cpu(sb->sb_csum),
2268 		le32_to_cpu(sb->max_dev)
2269 		);
2270 }
2271 
2272 static void print_rdev(struct md_rdev *rdev, int major_version)
2273 {
2274 	char b[BDEVNAME_SIZE];
2275 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2276 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2277 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2278 	        rdev->desc_nr);
2279 	if (rdev->sb_loaded) {
2280 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2281 		switch (major_version) {
2282 		case 0:
2283 			print_sb_90(page_address(rdev->sb_page));
2284 			break;
2285 		case 1:
2286 			print_sb_1(page_address(rdev->sb_page));
2287 			break;
2288 		}
2289 	} else
2290 		printk(KERN_INFO "md: no rdev superblock!\n");
2291 }
2292 
2293 static void md_print_devices(void)
2294 {
2295 	struct list_head *tmp;
2296 	struct md_rdev *rdev;
2297 	struct mddev *mddev;
2298 	char b[BDEVNAME_SIZE];
2299 
2300 	printk("\n");
2301 	printk("md:	**********************************\n");
2302 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2303 	printk("md:	**********************************\n");
2304 	for_each_mddev(mddev, tmp) {
2305 
2306 		if (mddev->bitmap)
2307 			bitmap_print_sb(mddev->bitmap);
2308 		else
2309 			printk("%s: ", mdname(mddev));
2310 		list_for_each_entry(rdev, &mddev->disks, same_set)
2311 			printk("<%s>", bdevname(rdev->bdev,b));
2312 		printk("\n");
2313 
2314 		list_for_each_entry(rdev, &mddev->disks, same_set)
2315 			print_rdev(rdev, mddev->major_version);
2316 	}
2317 	printk("md:	**********************************\n");
2318 	printk("\n");
2319 }
2320 
2321 
2322 static void sync_sbs(struct mddev * mddev, int nospares)
2323 {
2324 	/* Update each superblock (in-memory image), but
2325 	 * if we are allowed to, skip spares which already
2326 	 * have the right event counter, or have one earlier
2327 	 * (which would mean they aren't being marked as dirty
2328 	 * with the rest of the array)
2329 	 */
2330 	struct md_rdev *rdev;
2331 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2332 		if (rdev->sb_events == mddev->events ||
2333 		    (nospares &&
2334 		     rdev->raid_disk < 0 &&
2335 		     rdev->sb_events+1 == mddev->events)) {
2336 			/* Don't update this superblock */
2337 			rdev->sb_loaded = 2;
2338 		} else {
2339 			sync_super(mddev, rdev);
2340 			rdev->sb_loaded = 1;
2341 		}
2342 	}
2343 }
2344 
2345 static void md_update_sb(struct mddev * mddev, int force_change)
2346 {
2347 	struct md_rdev *rdev;
2348 	int sync_req;
2349 	int nospares = 0;
2350 	int any_badblocks_changed = 0;
2351 
2352 repeat:
2353 	/* First make sure individual recovery_offsets are correct */
2354 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2355 		if (rdev->raid_disk >= 0 &&
2356 		    mddev->delta_disks >= 0 &&
2357 		    !test_bit(In_sync, &rdev->flags) &&
2358 		    mddev->curr_resync_completed > rdev->recovery_offset)
2359 				rdev->recovery_offset = mddev->curr_resync_completed;
2360 
2361 	}
2362 	if (!mddev->persistent) {
2363 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2364 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2365 		if (!mddev->external) {
2366 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2367 			list_for_each_entry(rdev, &mddev->disks, same_set) {
2368 				if (rdev->badblocks.changed) {
2369 					md_ack_all_badblocks(&rdev->badblocks);
2370 					md_error(mddev, rdev);
2371 				}
2372 				clear_bit(Blocked, &rdev->flags);
2373 				clear_bit(BlockedBadBlocks, &rdev->flags);
2374 				wake_up(&rdev->blocked_wait);
2375 			}
2376 		}
2377 		wake_up(&mddev->sb_wait);
2378 		return;
2379 	}
2380 
2381 	spin_lock_irq(&mddev->write_lock);
2382 
2383 	mddev->utime = get_seconds();
2384 
2385 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2386 		force_change = 1;
2387 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2388 		/* just a clean<-> dirty transition, possibly leave spares alone,
2389 		 * though if events isn't the right even/odd, we will have to do
2390 		 * spares after all
2391 		 */
2392 		nospares = 1;
2393 	if (force_change)
2394 		nospares = 0;
2395 	if (mddev->degraded)
2396 		/* If the array is degraded, then skipping spares is both
2397 		 * dangerous and fairly pointless.
2398 		 * Dangerous because a device that was removed from the array
2399 		 * might have a event_count that still looks up-to-date,
2400 		 * so it can be re-added without a resync.
2401 		 * Pointless because if there are any spares to skip,
2402 		 * then a recovery will happen and soon that array won't
2403 		 * be degraded any more and the spare can go back to sleep then.
2404 		 */
2405 		nospares = 0;
2406 
2407 	sync_req = mddev->in_sync;
2408 
2409 	/* If this is just a dirty<->clean transition, and the array is clean
2410 	 * and 'events' is odd, we can roll back to the previous clean state */
2411 	if (nospares
2412 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2413 	    && mddev->can_decrease_events
2414 	    && mddev->events != 1) {
2415 		mddev->events--;
2416 		mddev->can_decrease_events = 0;
2417 	} else {
2418 		/* otherwise we have to go forward and ... */
2419 		mddev->events ++;
2420 		mddev->can_decrease_events = nospares;
2421 	}
2422 
2423 	if (!mddev->events) {
2424 		/*
2425 		 * oops, this 64-bit counter should never wrap.
2426 		 * Either we are in around ~1 trillion A.C., assuming
2427 		 * 1 reboot per second, or we have a bug:
2428 		 */
2429 		MD_BUG();
2430 		mddev->events --;
2431 	}
2432 
2433 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2434 		if (rdev->badblocks.changed)
2435 			any_badblocks_changed++;
2436 		if (test_bit(Faulty, &rdev->flags))
2437 			set_bit(FaultRecorded, &rdev->flags);
2438 	}
2439 
2440 	sync_sbs(mddev, nospares);
2441 	spin_unlock_irq(&mddev->write_lock);
2442 
2443 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2444 		 mdname(mddev), mddev->in_sync);
2445 
2446 	bitmap_update_sb(mddev->bitmap);
2447 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2448 		char b[BDEVNAME_SIZE];
2449 
2450 		if (rdev->sb_loaded != 1)
2451 			continue; /* no noise on spare devices */
2452 
2453 		if (!test_bit(Faulty, &rdev->flags) &&
2454 		    rdev->saved_raid_disk == -1) {
2455 			md_super_write(mddev,rdev,
2456 				       rdev->sb_start, rdev->sb_size,
2457 				       rdev->sb_page);
2458 			pr_debug("md: (write) %s's sb offset: %llu\n",
2459 				 bdevname(rdev->bdev, b),
2460 				 (unsigned long long)rdev->sb_start);
2461 			rdev->sb_events = mddev->events;
2462 			if (rdev->badblocks.size) {
2463 				md_super_write(mddev, rdev,
2464 					       rdev->badblocks.sector,
2465 					       rdev->badblocks.size << 9,
2466 					       rdev->bb_page);
2467 				rdev->badblocks.size = 0;
2468 			}
2469 
2470 		} else if (test_bit(Faulty, &rdev->flags))
2471 			pr_debug("md: %s (skipping faulty)\n",
2472 				 bdevname(rdev->bdev, b));
2473 		else
2474 			pr_debug("(skipping incremental s/r ");
2475 
2476 		if (mddev->level == LEVEL_MULTIPATH)
2477 			/* only need to write one superblock... */
2478 			break;
2479 	}
2480 	md_super_wait(mddev);
2481 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2482 
2483 	spin_lock_irq(&mddev->write_lock);
2484 	if (mddev->in_sync != sync_req ||
2485 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2486 		/* have to write it out again */
2487 		spin_unlock_irq(&mddev->write_lock);
2488 		goto repeat;
2489 	}
2490 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2491 	spin_unlock_irq(&mddev->write_lock);
2492 	wake_up(&mddev->sb_wait);
2493 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2494 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2495 
2496 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2497 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2498 			clear_bit(Blocked, &rdev->flags);
2499 
2500 		if (any_badblocks_changed)
2501 			md_ack_all_badblocks(&rdev->badblocks);
2502 		clear_bit(BlockedBadBlocks, &rdev->flags);
2503 		wake_up(&rdev->blocked_wait);
2504 	}
2505 }
2506 
2507 /* words written to sysfs files may, or may not, be \n terminated.
2508  * We want to accept with case. For this we use cmd_match.
2509  */
2510 static int cmd_match(const char *cmd, const char *str)
2511 {
2512 	/* See if cmd, written into a sysfs file, matches
2513 	 * str.  They must either be the same, or cmd can
2514 	 * have a trailing newline
2515 	 */
2516 	while (*cmd && *str && *cmd == *str) {
2517 		cmd++;
2518 		str++;
2519 	}
2520 	if (*cmd == '\n')
2521 		cmd++;
2522 	if (*str || *cmd)
2523 		return 0;
2524 	return 1;
2525 }
2526 
2527 struct rdev_sysfs_entry {
2528 	struct attribute attr;
2529 	ssize_t (*show)(struct md_rdev *, char *);
2530 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2531 };
2532 
2533 static ssize_t
2534 state_show(struct md_rdev *rdev, char *page)
2535 {
2536 	char *sep = "";
2537 	size_t len = 0;
2538 
2539 	if (test_bit(Faulty, &rdev->flags) ||
2540 	    rdev->badblocks.unacked_exist) {
2541 		len+= sprintf(page+len, "%sfaulty",sep);
2542 		sep = ",";
2543 	}
2544 	if (test_bit(In_sync, &rdev->flags)) {
2545 		len += sprintf(page+len, "%sin_sync",sep);
2546 		sep = ",";
2547 	}
2548 	if (test_bit(WriteMostly, &rdev->flags)) {
2549 		len += sprintf(page+len, "%swrite_mostly",sep);
2550 		sep = ",";
2551 	}
2552 	if (test_bit(Blocked, &rdev->flags) ||
2553 	    (rdev->badblocks.unacked_exist
2554 	     && !test_bit(Faulty, &rdev->flags))) {
2555 		len += sprintf(page+len, "%sblocked", sep);
2556 		sep = ",";
2557 	}
2558 	if (!test_bit(Faulty, &rdev->flags) &&
2559 	    !test_bit(In_sync, &rdev->flags)) {
2560 		len += sprintf(page+len, "%sspare", sep);
2561 		sep = ",";
2562 	}
2563 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2564 		len += sprintf(page+len, "%swrite_error", sep);
2565 		sep = ",";
2566 	}
2567 	if (test_bit(WantReplacement, &rdev->flags)) {
2568 		len += sprintf(page+len, "%swant_replacement", sep);
2569 		sep = ",";
2570 	}
2571 	if (test_bit(Replacement, &rdev->flags)) {
2572 		len += sprintf(page+len, "%sreplacement", sep);
2573 		sep = ",";
2574 	}
2575 
2576 	return len+sprintf(page+len, "\n");
2577 }
2578 
2579 static ssize_t
2580 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2581 {
2582 	/* can write
2583 	 *  faulty  - simulates an error
2584 	 *  remove  - disconnects the device
2585 	 *  writemostly - sets write_mostly
2586 	 *  -writemostly - clears write_mostly
2587 	 *  blocked - sets the Blocked flags
2588 	 *  -blocked - clears the Blocked and possibly simulates an error
2589 	 *  insync - sets Insync providing device isn't active
2590 	 *  write_error - sets WriteErrorSeen
2591 	 *  -write_error - clears WriteErrorSeen
2592 	 */
2593 	int err = -EINVAL;
2594 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2595 		md_error(rdev->mddev, rdev);
2596 		if (test_bit(Faulty, &rdev->flags))
2597 			err = 0;
2598 		else
2599 			err = -EBUSY;
2600 	} else if (cmd_match(buf, "remove")) {
2601 		if (rdev->raid_disk >= 0)
2602 			err = -EBUSY;
2603 		else {
2604 			struct mddev *mddev = rdev->mddev;
2605 			kick_rdev_from_array(rdev);
2606 			if (mddev->pers)
2607 				md_update_sb(mddev, 1);
2608 			md_new_event(mddev);
2609 			err = 0;
2610 		}
2611 	} else if (cmd_match(buf, "writemostly")) {
2612 		set_bit(WriteMostly, &rdev->flags);
2613 		err = 0;
2614 	} else if (cmd_match(buf, "-writemostly")) {
2615 		clear_bit(WriteMostly, &rdev->flags);
2616 		err = 0;
2617 	} else if (cmd_match(buf, "blocked")) {
2618 		set_bit(Blocked, &rdev->flags);
2619 		err = 0;
2620 	} else if (cmd_match(buf, "-blocked")) {
2621 		if (!test_bit(Faulty, &rdev->flags) &&
2622 		    rdev->badblocks.unacked_exist) {
2623 			/* metadata handler doesn't understand badblocks,
2624 			 * so we need to fail the device
2625 			 */
2626 			md_error(rdev->mddev, rdev);
2627 		}
2628 		clear_bit(Blocked, &rdev->flags);
2629 		clear_bit(BlockedBadBlocks, &rdev->flags);
2630 		wake_up(&rdev->blocked_wait);
2631 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2632 		md_wakeup_thread(rdev->mddev->thread);
2633 
2634 		err = 0;
2635 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2636 		set_bit(In_sync, &rdev->flags);
2637 		err = 0;
2638 	} else if (cmd_match(buf, "write_error")) {
2639 		set_bit(WriteErrorSeen, &rdev->flags);
2640 		err = 0;
2641 	} else if (cmd_match(buf, "-write_error")) {
2642 		clear_bit(WriteErrorSeen, &rdev->flags);
2643 		err = 0;
2644 	} else if (cmd_match(buf, "want_replacement")) {
2645 		/* Any non-spare device that is not a replacement can
2646 		 * become want_replacement at any time, but we then need to
2647 		 * check if recovery is needed.
2648 		 */
2649 		if (rdev->raid_disk >= 0 &&
2650 		    !test_bit(Replacement, &rdev->flags))
2651 			set_bit(WantReplacement, &rdev->flags);
2652 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2653 		md_wakeup_thread(rdev->mddev->thread);
2654 		err = 0;
2655 	} else if (cmd_match(buf, "-want_replacement")) {
2656 		/* Clearing 'want_replacement' is always allowed.
2657 		 * Once replacements starts it is too late though.
2658 		 */
2659 		err = 0;
2660 		clear_bit(WantReplacement, &rdev->flags);
2661 	} else if (cmd_match(buf, "replacement")) {
2662 		/* Can only set a device as a replacement when array has not
2663 		 * yet been started.  Once running, replacement is automatic
2664 		 * from spares, or by assigning 'slot'.
2665 		 */
2666 		if (rdev->mddev->pers)
2667 			err = -EBUSY;
2668 		else {
2669 			set_bit(Replacement, &rdev->flags);
2670 			err = 0;
2671 		}
2672 	} else if (cmd_match(buf, "-replacement")) {
2673 		/* Similarly, can only clear Replacement before start */
2674 		if (rdev->mddev->pers)
2675 			err = -EBUSY;
2676 		else {
2677 			clear_bit(Replacement, &rdev->flags);
2678 			err = 0;
2679 		}
2680 	}
2681 	if (!err)
2682 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2683 	return err ? err : len;
2684 }
2685 static struct rdev_sysfs_entry rdev_state =
2686 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2687 
2688 static ssize_t
2689 errors_show(struct md_rdev *rdev, char *page)
2690 {
2691 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2692 }
2693 
2694 static ssize_t
2695 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2696 {
2697 	char *e;
2698 	unsigned long n = simple_strtoul(buf, &e, 10);
2699 	if (*buf && (*e == 0 || *e == '\n')) {
2700 		atomic_set(&rdev->corrected_errors, n);
2701 		return len;
2702 	}
2703 	return -EINVAL;
2704 }
2705 static struct rdev_sysfs_entry rdev_errors =
2706 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2707 
2708 static ssize_t
2709 slot_show(struct md_rdev *rdev, char *page)
2710 {
2711 	if (rdev->raid_disk < 0)
2712 		return sprintf(page, "none\n");
2713 	else
2714 		return sprintf(page, "%d\n", rdev->raid_disk);
2715 }
2716 
2717 static ssize_t
2718 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2719 {
2720 	char *e;
2721 	int err;
2722 	int slot = simple_strtoul(buf, &e, 10);
2723 	if (strncmp(buf, "none", 4)==0)
2724 		slot = -1;
2725 	else if (e==buf || (*e && *e!= '\n'))
2726 		return -EINVAL;
2727 	if (rdev->mddev->pers && slot == -1) {
2728 		/* Setting 'slot' on an active array requires also
2729 		 * updating the 'rd%d' link, and communicating
2730 		 * with the personality with ->hot_*_disk.
2731 		 * For now we only support removing
2732 		 * failed/spare devices.  This normally happens automatically,
2733 		 * but not when the metadata is externally managed.
2734 		 */
2735 		if (rdev->raid_disk == -1)
2736 			return -EEXIST;
2737 		/* personality does all needed checks */
2738 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2739 			return -EINVAL;
2740 		err = rdev->mddev->pers->
2741 			hot_remove_disk(rdev->mddev, rdev);
2742 		if (err)
2743 			return err;
2744 		sysfs_unlink_rdev(rdev->mddev, rdev);
2745 		rdev->raid_disk = -1;
2746 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2747 		md_wakeup_thread(rdev->mddev->thread);
2748 	} else if (rdev->mddev->pers) {
2749 		/* Activating a spare .. or possibly reactivating
2750 		 * if we ever get bitmaps working here.
2751 		 */
2752 
2753 		if (rdev->raid_disk != -1)
2754 			return -EBUSY;
2755 
2756 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2757 			return -EBUSY;
2758 
2759 		if (rdev->mddev->pers->hot_add_disk == NULL)
2760 			return -EINVAL;
2761 
2762 		if (slot >= rdev->mddev->raid_disks &&
2763 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2764 			return -ENOSPC;
2765 
2766 		rdev->raid_disk = slot;
2767 		if (test_bit(In_sync, &rdev->flags))
2768 			rdev->saved_raid_disk = slot;
2769 		else
2770 			rdev->saved_raid_disk = -1;
2771 		clear_bit(In_sync, &rdev->flags);
2772 		err = rdev->mddev->pers->
2773 			hot_add_disk(rdev->mddev, rdev);
2774 		if (err) {
2775 			rdev->raid_disk = -1;
2776 			return err;
2777 		} else
2778 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2779 		if (sysfs_link_rdev(rdev->mddev, rdev))
2780 			/* failure here is OK */;
2781 		/* don't wakeup anyone, leave that to userspace. */
2782 	} else {
2783 		if (slot >= rdev->mddev->raid_disks &&
2784 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2785 			return -ENOSPC;
2786 		rdev->raid_disk = slot;
2787 		/* assume it is working */
2788 		clear_bit(Faulty, &rdev->flags);
2789 		clear_bit(WriteMostly, &rdev->flags);
2790 		set_bit(In_sync, &rdev->flags);
2791 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2792 	}
2793 	return len;
2794 }
2795 
2796 
2797 static struct rdev_sysfs_entry rdev_slot =
2798 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2799 
2800 static ssize_t
2801 offset_show(struct md_rdev *rdev, char *page)
2802 {
2803 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2804 }
2805 
2806 static ssize_t
2807 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2808 {
2809 	char *e;
2810 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2811 	if (e==buf || (*e && *e != '\n'))
2812 		return -EINVAL;
2813 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2814 		return -EBUSY;
2815 	if (rdev->sectors && rdev->mddev->external)
2816 		/* Must set offset before size, so overlap checks
2817 		 * can be sane */
2818 		return -EBUSY;
2819 	rdev->data_offset = offset;
2820 	return len;
2821 }
2822 
2823 static struct rdev_sysfs_entry rdev_offset =
2824 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2825 
2826 static ssize_t
2827 rdev_size_show(struct md_rdev *rdev, char *page)
2828 {
2829 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2830 }
2831 
2832 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2833 {
2834 	/* check if two start/length pairs overlap */
2835 	if (s1+l1 <= s2)
2836 		return 0;
2837 	if (s2+l2 <= s1)
2838 		return 0;
2839 	return 1;
2840 }
2841 
2842 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2843 {
2844 	unsigned long long blocks;
2845 	sector_t new;
2846 
2847 	if (strict_strtoull(buf, 10, &blocks) < 0)
2848 		return -EINVAL;
2849 
2850 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2851 		return -EINVAL; /* sector conversion overflow */
2852 
2853 	new = blocks * 2;
2854 	if (new != blocks * 2)
2855 		return -EINVAL; /* unsigned long long to sector_t overflow */
2856 
2857 	*sectors = new;
2858 	return 0;
2859 }
2860 
2861 static ssize_t
2862 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2863 {
2864 	struct mddev *my_mddev = rdev->mddev;
2865 	sector_t oldsectors = rdev->sectors;
2866 	sector_t sectors;
2867 
2868 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2869 		return -EINVAL;
2870 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2871 		if (my_mddev->persistent) {
2872 			sectors = super_types[my_mddev->major_version].
2873 				rdev_size_change(rdev, sectors);
2874 			if (!sectors)
2875 				return -EBUSY;
2876 		} else if (!sectors)
2877 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2878 				rdev->data_offset;
2879 	}
2880 	if (sectors < my_mddev->dev_sectors)
2881 		return -EINVAL; /* component must fit device */
2882 
2883 	rdev->sectors = sectors;
2884 	if (sectors > oldsectors && my_mddev->external) {
2885 		/* need to check that all other rdevs with the same ->bdev
2886 		 * do not overlap.  We need to unlock the mddev to avoid
2887 		 * a deadlock.  We have already changed rdev->sectors, and if
2888 		 * we have to change it back, we will have the lock again.
2889 		 */
2890 		struct mddev *mddev;
2891 		int overlap = 0;
2892 		struct list_head *tmp;
2893 
2894 		mddev_unlock(my_mddev);
2895 		for_each_mddev(mddev, tmp) {
2896 			struct md_rdev *rdev2;
2897 
2898 			mddev_lock(mddev);
2899 			list_for_each_entry(rdev2, &mddev->disks, same_set)
2900 				if (rdev->bdev == rdev2->bdev &&
2901 				    rdev != rdev2 &&
2902 				    overlaps(rdev->data_offset, rdev->sectors,
2903 					     rdev2->data_offset,
2904 					     rdev2->sectors)) {
2905 					overlap = 1;
2906 					break;
2907 				}
2908 			mddev_unlock(mddev);
2909 			if (overlap) {
2910 				mddev_put(mddev);
2911 				break;
2912 			}
2913 		}
2914 		mddev_lock(my_mddev);
2915 		if (overlap) {
2916 			/* Someone else could have slipped in a size
2917 			 * change here, but doing so is just silly.
2918 			 * We put oldsectors back because we *know* it is
2919 			 * safe, and trust userspace not to race with
2920 			 * itself
2921 			 */
2922 			rdev->sectors = oldsectors;
2923 			return -EBUSY;
2924 		}
2925 	}
2926 	return len;
2927 }
2928 
2929 static struct rdev_sysfs_entry rdev_size =
2930 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2931 
2932 
2933 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2934 {
2935 	unsigned long long recovery_start = rdev->recovery_offset;
2936 
2937 	if (test_bit(In_sync, &rdev->flags) ||
2938 	    recovery_start == MaxSector)
2939 		return sprintf(page, "none\n");
2940 
2941 	return sprintf(page, "%llu\n", recovery_start);
2942 }
2943 
2944 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2945 {
2946 	unsigned long long recovery_start;
2947 
2948 	if (cmd_match(buf, "none"))
2949 		recovery_start = MaxSector;
2950 	else if (strict_strtoull(buf, 10, &recovery_start))
2951 		return -EINVAL;
2952 
2953 	if (rdev->mddev->pers &&
2954 	    rdev->raid_disk >= 0)
2955 		return -EBUSY;
2956 
2957 	rdev->recovery_offset = recovery_start;
2958 	if (recovery_start == MaxSector)
2959 		set_bit(In_sync, &rdev->flags);
2960 	else
2961 		clear_bit(In_sync, &rdev->flags);
2962 	return len;
2963 }
2964 
2965 static struct rdev_sysfs_entry rdev_recovery_start =
2966 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2967 
2968 
2969 static ssize_t
2970 badblocks_show(struct badblocks *bb, char *page, int unack);
2971 static ssize_t
2972 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2973 
2974 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2975 {
2976 	return badblocks_show(&rdev->badblocks, page, 0);
2977 }
2978 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2979 {
2980 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2981 	/* Maybe that ack was all we needed */
2982 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2983 		wake_up(&rdev->blocked_wait);
2984 	return rv;
2985 }
2986 static struct rdev_sysfs_entry rdev_bad_blocks =
2987 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2988 
2989 
2990 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2991 {
2992 	return badblocks_show(&rdev->badblocks, page, 1);
2993 }
2994 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2995 {
2996 	return badblocks_store(&rdev->badblocks, page, len, 1);
2997 }
2998 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2999 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3000 
3001 static struct attribute *rdev_default_attrs[] = {
3002 	&rdev_state.attr,
3003 	&rdev_errors.attr,
3004 	&rdev_slot.attr,
3005 	&rdev_offset.attr,
3006 	&rdev_size.attr,
3007 	&rdev_recovery_start.attr,
3008 	&rdev_bad_blocks.attr,
3009 	&rdev_unack_bad_blocks.attr,
3010 	NULL,
3011 };
3012 static ssize_t
3013 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3014 {
3015 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3016 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3017 	struct mddev *mddev = rdev->mddev;
3018 	ssize_t rv;
3019 
3020 	if (!entry->show)
3021 		return -EIO;
3022 
3023 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
3024 	if (!rv) {
3025 		if (rdev->mddev == NULL)
3026 			rv = -EBUSY;
3027 		else
3028 			rv = entry->show(rdev, page);
3029 		mddev_unlock(mddev);
3030 	}
3031 	return rv;
3032 }
3033 
3034 static ssize_t
3035 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3036 	      const char *page, size_t length)
3037 {
3038 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3039 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3040 	ssize_t rv;
3041 	struct mddev *mddev = rdev->mddev;
3042 
3043 	if (!entry->store)
3044 		return -EIO;
3045 	if (!capable(CAP_SYS_ADMIN))
3046 		return -EACCES;
3047 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3048 	if (!rv) {
3049 		if (rdev->mddev == NULL)
3050 			rv = -EBUSY;
3051 		else
3052 			rv = entry->store(rdev, page, length);
3053 		mddev_unlock(mddev);
3054 	}
3055 	return rv;
3056 }
3057 
3058 static void rdev_free(struct kobject *ko)
3059 {
3060 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3061 	kfree(rdev);
3062 }
3063 static const struct sysfs_ops rdev_sysfs_ops = {
3064 	.show		= rdev_attr_show,
3065 	.store		= rdev_attr_store,
3066 };
3067 static struct kobj_type rdev_ktype = {
3068 	.release	= rdev_free,
3069 	.sysfs_ops	= &rdev_sysfs_ops,
3070 	.default_attrs	= rdev_default_attrs,
3071 };
3072 
3073 int md_rdev_init(struct md_rdev *rdev)
3074 {
3075 	rdev->desc_nr = -1;
3076 	rdev->saved_raid_disk = -1;
3077 	rdev->raid_disk = -1;
3078 	rdev->flags = 0;
3079 	rdev->data_offset = 0;
3080 	rdev->sb_events = 0;
3081 	rdev->last_read_error.tv_sec  = 0;
3082 	rdev->last_read_error.tv_nsec = 0;
3083 	rdev->sb_loaded = 0;
3084 	rdev->bb_page = NULL;
3085 	atomic_set(&rdev->nr_pending, 0);
3086 	atomic_set(&rdev->read_errors, 0);
3087 	atomic_set(&rdev->corrected_errors, 0);
3088 
3089 	INIT_LIST_HEAD(&rdev->same_set);
3090 	init_waitqueue_head(&rdev->blocked_wait);
3091 
3092 	/* Add space to store bad block list.
3093 	 * This reserves the space even on arrays where it cannot
3094 	 * be used - I wonder if that matters
3095 	 */
3096 	rdev->badblocks.count = 0;
3097 	rdev->badblocks.shift = 0;
3098 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3099 	seqlock_init(&rdev->badblocks.lock);
3100 	if (rdev->badblocks.page == NULL)
3101 		return -ENOMEM;
3102 
3103 	return 0;
3104 }
3105 EXPORT_SYMBOL_GPL(md_rdev_init);
3106 /*
3107  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3108  *
3109  * mark the device faulty if:
3110  *
3111  *   - the device is nonexistent (zero size)
3112  *   - the device has no valid superblock
3113  *
3114  * a faulty rdev _never_ has rdev->sb set.
3115  */
3116 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3117 {
3118 	char b[BDEVNAME_SIZE];
3119 	int err;
3120 	struct md_rdev *rdev;
3121 	sector_t size;
3122 
3123 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3124 	if (!rdev) {
3125 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3126 		return ERR_PTR(-ENOMEM);
3127 	}
3128 
3129 	err = md_rdev_init(rdev);
3130 	if (err)
3131 		goto abort_free;
3132 	err = alloc_disk_sb(rdev);
3133 	if (err)
3134 		goto abort_free;
3135 
3136 	err = lock_rdev(rdev, newdev, super_format == -2);
3137 	if (err)
3138 		goto abort_free;
3139 
3140 	kobject_init(&rdev->kobj, &rdev_ktype);
3141 
3142 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3143 	if (!size) {
3144 		printk(KERN_WARNING
3145 			"md: %s has zero or unknown size, marking faulty!\n",
3146 			bdevname(rdev->bdev,b));
3147 		err = -EINVAL;
3148 		goto abort_free;
3149 	}
3150 
3151 	if (super_format >= 0) {
3152 		err = super_types[super_format].
3153 			load_super(rdev, NULL, super_minor);
3154 		if (err == -EINVAL) {
3155 			printk(KERN_WARNING
3156 				"md: %s does not have a valid v%d.%d "
3157 			       "superblock, not importing!\n",
3158 				bdevname(rdev->bdev,b),
3159 			       super_format, super_minor);
3160 			goto abort_free;
3161 		}
3162 		if (err < 0) {
3163 			printk(KERN_WARNING
3164 				"md: could not read %s's sb, not importing!\n",
3165 				bdevname(rdev->bdev,b));
3166 			goto abort_free;
3167 		}
3168 	}
3169 	if (super_format == -1)
3170 		/* hot-add for 0.90, or non-persistent: so no badblocks */
3171 		rdev->badblocks.shift = -1;
3172 
3173 	return rdev;
3174 
3175 abort_free:
3176 	if (rdev->bdev)
3177 		unlock_rdev(rdev);
3178 	free_disk_sb(rdev);
3179 	kfree(rdev->badblocks.page);
3180 	kfree(rdev);
3181 	return ERR_PTR(err);
3182 }
3183 
3184 /*
3185  * Check a full RAID array for plausibility
3186  */
3187 
3188 
3189 static void analyze_sbs(struct mddev * mddev)
3190 {
3191 	int i;
3192 	struct md_rdev *rdev, *freshest, *tmp;
3193 	char b[BDEVNAME_SIZE];
3194 
3195 	freshest = NULL;
3196 	rdev_for_each(rdev, tmp, mddev)
3197 		switch (super_types[mddev->major_version].
3198 			load_super(rdev, freshest, mddev->minor_version)) {
3199 		case 1:
3200 			freshest = rdev;
3201 			break;
3202 		case 0:
3203 			break;
3204 		default:
3205 			printk( KERN_ERR \
3206 				"md: fatal superblock inconsistency in %s"
3207 				" -- removing from array\n",
3208 				bdevname(rdev->bdev,b));
3209 			kick_rdev_from_array(rdev);
3210 		}
3211 
3212 
3213 	super_types[mddev->major_version].
3214 		validate_super(mddev, freshest);
3215 
3216 	i = 0;
3217 	rdev_for_each(rdev, tmp, mddev) {
3218 		if (mddev->max_disks &&
3219 		    (rdev->desc_nr >= mddev->max_disks ||
3220 		     i > mddev->max_disks)) {
3221 			printk(KERN_WARNING
3222 			       "md: %s: %s: only %d devices permitted\n",
3223 			       mdname(mddev), bdevname(rdev->bdev, b),
3224 			       mddev->max_disks);
3225 			kick_rdev_from_array(rdev);
3226 			continue;
3227 		}
3228 		if (rdev != freshest)
3229 			if (super_types[mddev->major_version].
3230 			    validate_super(mddev, rdev)) {
3231 				printk(KERN_WARNING "md: kicking non-fresh %s"
3232 					" from array!\n",
3233 					bdevname(rdev->bdev,b));
3234 				kick_rdev_from_array(rdev);
3235 				continue;
3236 			}
3237 		if (mddev->level == LEVEL_MULTIPATH) {
3238 			rdev->desc_nr = i++;
3239 			rdev->raid_disk = rdev->desc_nr;
3240 			set_bit(In_sync, &rdev->flags);
3241 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3242 			rdev->raid_disk = -1;
3243 			clear_bit(In_sync, &rdev->flags);
3244 		}
3245 	}
3246 }
3247 
3248 /* Read a fixed-point number.
3249  * Numbers in sysfs attributes should be in "standard" units where
3250  * possible, so time should be in seconds.
3251  * However we internally use a a much smaller unit such as
3252  * milliseconds or jiffies.
3253  * This function takes a decimal number with a possible fractional
3254  * component, and produces an integer which is the result of
3255  * multiplying that number by 10^'scale'.
3256  * all without any floating-point arithmetic.
3257  */
3258 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3259 {
3260 	unsigned long result = 0;
3261 	long decimals = -1;
3262 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3263 		if (*cp == '.')
3264 			decimals = 0;
3265 		else if (decimals < scale) {
3266 			unsigned int value;
3267 			value = *cp - '0';
3268 			result = result * 10 + value;
3269 			if (decimals >= 0)
3270 				decimals++;
3271 		}
3272 		cp++;
3273 	}
3274 	if (*cp == '\n')
3275 		cp++;
3276 	if (*cp)
3277 		return -EINVAL;
3278 	if (decimals < 0)
3279 		decimals = 0;
3280 	while (decimals < scale) {
3281 		result *= 10;
3282 		decimals ++;
3283 	}
3284 	*res = result;
3285 	return 0;
3286 }
3287 
3288 
3289 static void md_safemode_timeout(unsigned long data);
3290 
3291 static ssize_t
3292 safe_delay_show(struct mddev *mddev, char *page)
3293 {
3294 	int msec = (mddev->safemode_delay*1000)/HZ;
3295 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3296 }
3297 static ssize_t
3298 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3299 {
3300 	unsigned long msec;
3301 
3302 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3303 		return -EINVAL;
3304 	if (msec == 0)
3305 		mddev->safemode_delay = 0;
3306 	else {
3307 		unsigned long old_delay = mddev->safemode_delay;
3308 		mddev->safemode_delay = (msec*HZ)/1000;
3309 		if (mddev->safemode_delay == 0)
3310 			mddev->safemode_delay = 1;
3311 		if (mddev->safemode_delay < old_delay)
3312 			md_safemode_timeout((unsigned long)mddev);
3313 	}
3314 	return len;
3315 }
3316 static struct md_sysfs_entry md_safe_delay =
3317 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3318 
3319 static ssize_t
3320 level_show(struct mddev *mddev, char *page)
3321 {
3322 	struct md_personality *p = mddev->pers;
3323 	if (p)
3324 		return sprintf(page, "%s\n", p->name);
3325 	else if (mddev->clevel[0])
3326 		return sprintf(page, "%s\n", mddev->clevel);
3327 	else if (mddev->level != LEVEL_NONE)
3328 		return sprintf(page, "%d\n", mddev->level);
3329 	else
3330 		return 0;
3331 }
3332 
3333 static ssize_t
3334 level_store(struct mddev *mddev, const char *buf, size_t len)
3335 {
3336 	char clevel[16];
3337 	ssize_t rv = len;
3338 	struct md_personality *pers;
3339 	long level;
3340 	void *priv;
3341 	struct md_rdev *rdev;
3342 
3343 	if (mddev->pers == NULL) {
3344 		if (len == 0)
3345 			return 0;
3346 		if (len >= sizeof(mddev->clevel))
3347 			return -ENOSPC;
3348 		strncpy(mddev->clevel, buf, len);
3349 		if (mddev->clevel[len-1] == '\n')
3350 			len--;
3351 		mddev->clevel[len] = 0;
3352 		mddev->level = LEVEL_NONE;
3353 		return rv;
3354 	}
3355 
3356 	/* request to change the personality.  Need to ensure:
3357 	 *  - array is not engaged in resync/recovery/reshape
3358 	 *  - old personality can be suspended
3359 	 *  - new personality will access other array.
3360 	 */
3361 
3362 	if (mddev->sync_thread ||
3363 	    mddev->reshape_position != MaxSector ||
3364 	    mddev->sysfs_active)
3365 		return -EBUSY;
3366 
3367 	if (!mddev->pers->quiesce) {
3368 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3369 		       mdname(mddev), mddev->pers->name);
3370 		return -EINVAL;
3371 	}
3372 
3373 	/* Now find the new personality */
3374 	if (len == 0 || len >= sizeof(clevel))
3375 		return -EINVAL;
3376 	strncpy(clevel, buf, len);
3377 	if (clevel[len-1] == '\n')
3378 		len--;
3379 	clevel[len] = 0;
3380 	if (strict_strtol(clevel, 10, &level))
3381 		level = LEVEL_NONE;
3382 
3383 	if (request_module("md-%s", clevel) != 0)
3384 		request_module("md-level-%s", clevel);
3385 	spin_lock(&pers_lock);
3386 	pers = find_pers(level, clevel);
3387 	if (!pers || !try_module_get(pers->owner)) {
3388 		spin_unlock(&pers_lock);
3389 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3390 		return -EINVAL;
3391 	}
3392 	spin_unlock(&pers_lock);
3393 
3394 	if (pers == mddev->pers) {
3395 		/* Nothing to do! */
3396 		module_put(pers->owner);
3397 		return rv;
3398 	}
3399 	if (!pers->takeover) {
3400 		module_put(pers->owner);
3401 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3402 		       mdname(mddev), clevel);
3403 		return -EINVAL;
3404 	}
3405 
3406 	list_for_each_entry(rdev, &mddev->disks, same_set)
3407 		rdev->new_raid_disk = rdev->raid_disk;
3408 
3409 	/* ->takeover must set new_* and/or delta_disks
3410 	 * if it succeeds, and may set them when it fails.
3411 	 */
3412 	priv = pers->takeover(mddev);
3413 	if (IS_ERR(priv)) {
3414 		mddev->new_level = mddev->level;
3415 		mddev->new_layout = mddev->layout;
3416 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3417 		mddev->raid_disks -= mddev->delta_disks;
3418 		mddev->delta_disks = 0;
3419 		module_put(pers->owner);
3420 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3421 		       mdname(mddev), clevel);
3422 		return PTR_ERR(priv);
3423 	}
3424 
3425 	/* Looks like we have a winner */
3426 	mddev_suspend(mddev);
3427 	mddev->pers->stop(mddev);
3428 
3429 	if (mddev->pers->sync_request == NULL &&
3430 	    pers->sync_request != NULL) {
3431 		/* need to add the md_redundancy_group */
3432 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3433 			printk(KERN_WARNING
3434 			       "md: cannot register extra attributes for %s\n",
3435 			       mdname(mddev));
3436 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3437 	}
3438 	if (mddev->pers->sync_request != NULL &&
3439 	    pers->sync_request == NULL) {
3440 		/* need to remove the md_redundancy_group */
3441 		if (mddev->to_remove == NULL)
3442 			mddev->to_remove = &md_redundancy_group;
3443 	}
3444 
3445 	if (mddev->pers->sync_request == NULL &&
3446 	    mddev->external) {
3447 		/* We are converting from a no-redundancy array
3448 		 * to a redundancy array and metadata is managed
3449 		 * externally so we need to be sure that writes
3450 		 * won't block due to a need to transition
3451 		 *      clean->dirty
3452 		 * until external management is started.
3453 		 */
3454 		mddev->in_sync = 0;
3455 		mddev->safemode_delay = 0;
3456 		mddev->safemode = 0;
3457 	}
3458 
3459 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3460 		if (rdev->raid_disk < 0)
3461 			continue;
3462 		if (rdev->new_raid_disk >= mddev->raid_disks)
3463 			rdev->new_raid_disk = -1;
3464 		if (rdev->new_raid_disk == rdev->raid_disk)
3465 			continue;
3466 		sysfs_unlink_rdev(mddev, rdev);
3467 	}
3468 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3469 		if (rdev->raid_disk < 0)
3470 			continue;
3471 		if (rdev->new_raid_disk == rdev->raid_disk)
3472 			continue;
3473 		rdev->raid_disk = rdev->new_raid_disk;
3474 		if (rdev->raid_disk < 0)
3475 			clear_bit(In_sync, &rdev->flags);
3476 		else {
3477 			if (sysfs_link_rdev(mddev, rdev))
3478 				printk(KERN_WARNING "md: cannot register rd%d"
3479 				       " for %s after level change\n",
3480 				       rdev->raid_disk, mdname(mddev));
3481 		}
3482 	}
3483 
3484 	module_put(mddev->pers->owner);
3485 	mddev->pers = pers;
3486 	mddev->private = priv;
3487 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3488 	mddev->level = mddev->new_level;
3489 	mddev->layout = mddev->new_layout;
3490 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3491 	mddev->delta_disks = 0;
3492 	mddev->degraded = 0;
3493 	if (mddev->pers->sync_request == NULL) {
3494 		/* this is now an array without redundancy, so
3495 		 * it must always be in_sync
3496 		 */
3497 		mddev->in_sync = 1;
3498 		del_timer_sync(&mddev->safemode_timer);
3499 	}
3500 	pers->run(mddev);
3501 	mddev_resume(mddev);
3502 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3503 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3504 	md_wakeup_thread(mddev->thread);
3505 	sysfs_notify(&mddev->kobj, NULL, "level");
3506 	md_new_event(mddev);
3507 	return rv;
3508 }
3509 
3510 static struct md_sysfs_entry md_level =
3511 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3512 
3513 
3514 static ssize_t
3515 layout_show(struct mddev *mddev, char *page)
3516 {
3517 	/* just a number, not meaningful for all levels */
3518 	if (mddev->reshape_position != MaxSector &&
3519 	    mddev->layout != mddev->new_layout)
3520 		return sprintf(page, "%d (%d)\n",
3521 			       mddev->new_layout, mddev->layout);
3522 	return sprintf(page, "%d\n", mddev->layout);
3523 }
3524 
3525 static ssize_t
3526 layout_store(struct mddev *mddev, const char *buf, size_t len)
3527 {
3528 	char *e;
3529 	unsigned long n = simple_strtoul(buf, &e, 10);
3530 
3531 	if (!*buf || (*e && *e != '\n'))
3532 		return -EINVAL;
3533 
3534 	if (mddev->pers) {
3535 		int err;
3536 		if (mddev->pers->check_reshape == NULL)
3537 			return -EBUSY;
3538 		mddev->new_layout = n;
3539 		err = mddev->pers->check_reshape(mddev);
3540 		if (err) {
3541 			mddev->new_layout = mddev->layout;
3542 			return err;
3543 		}
3544 	} else {
3545 		mddev->new_layout = n;
3546 		if (mddev->reshape_position == MaxSector)
3547 			mddev->layout = n;
3548 	}
3549 	return len;
3550 }
3551 static struct md_sysfs_entry md_layout =
3552 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3553 
3554 
3555 static ssize_t
3556 raid_disks_show(struct mddev *mddev, char *page)
3557 {
3558 	if (mddev->raid_disks == 0)
3559 		return 0;
3560 	if (mddev->reshape_position != MaxSector &&
3561 	    mddev->delta_disks != 0)
3562 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3563 			       mddev->raid_disks - mddev->delta_disks);
3564 	return sprintf(page, "%d\n", mddev->raid_disks);
3565 }
3566 
3567 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3568 
3569 static ssize_t
3570 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3571 {
3572 	char *e;
3573 	int rv = 0;
3574 	unsigned long n = simple_strtoul(buf, &e, 10);
3575 
3576 	if (!*buf || (*e && *e != '\n'))
3577 		return -EINVAL;
3578 
3579 	if (mddev->pers)
3580 		rv = update_raid_disks(mddev, n);
3581 	else if (mddev->reshape_position != MaxSector) {
3582 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3583 		mddev->delta_disks = n - olddisks;
3584 		mddev->raid_disks = n;
3585 	} else
3586 		mddev->raid_disks = n;
3587 	return rv ? rv : len;
3588 }
3589 static struct md_sysfs_entry md_raid_disks =
3590 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3591 
3592 static ssize_t
3593 chunk_size_show(struct mddev *mddev, char *page)
3594 {
3595 	if (mddev->reshape_position != MaxSector &&
3596 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3597 		return sprintf(page, "%d (%d)\n",
3598 			       mddev->new_chunk_sectors << 9,
3599 			       mddev->chunk_sectors << 9);
3600 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3601 }
3602 
3603 static ssize_t
3604 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3605 {
3606 	char *e;
3607 	unsigned long n = simple_strtoul(buf, &e, 10);
3608 
3609 	if (!*buf || (*e && *e != '\n'))
3610 		return -EINVAL;
3611 
3612 	if (mddev->pers) {
3613 		int err;
3614 		if (mddev->pers->check_reshape == NULL)
3615 			return -EBUSY;
3616 		mddev->new_chunk_sectors = n >> 9;
3617 		err = mddev->pers->check_reshape(mddev);
3618 		if (err) {
3619 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3620 			return err;
3621 		}
3622 	} else {
3623 		mddev->new_chunk_sectors = n >> 9;
3624 		if (mddev->reshape_position == MaxSector)
3625 			mddev->chunk_sectors = n >> 9;
3626 	}
3627 	return len;
3628 }
3629 static struct md_sysfs_entry md_chunk_size =
3630 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3631 
3632 static ssize_t
3633 resync_start_show(struct mddev *mddev, char *page)
3634 {
3635 	if (mddev->recovery_cp == MaxSector)
3636 		return sprintf(page, "none\n");
3637 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3638 }
3639 
3640 static ssize_t
3641 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3642 {
3643 	char *e;
3644 	unsigned long long n = simple_strtoull(buf, &e, 10);
3645 
3646 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3647 		return -EBUSY;
3648 	if (cmd_match(buf, "none"))
3649 		n = MaxSector;
3650 	else if (!*buf || (*e && *e != '\n'))
3651 		return -EINVAL;
3652 
3653 	mddev->recovery_cp = n;
3654 	return len;
3655 }
3656 static struct md_sysfs_entry md_resync_start =
3657 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3658 
3659 /*
3660  * The array state can be:
3661  *
3662  * clear
3663  *     No devices, no size, no level
3664  *     Equivalent to STOP_ARRAY ioctl
3665  * inactive
3666  *     May have some settings, but array is not active
3667  *        all IO results in error
3668  *     When written, doesn't tear down array, but just stops it
3669  * suspended (not supported yet)
3670  *     All IO requests will block. The array can be reconfigured.
3671  *     Writing this, if accepted, will block until array is quiescent
3672  * readonly
3673  *     no resync can happen.  no superblocks get written.
3674  *     write requests fail
3675  * read-auto
3676  *     like readonly, but behaves like 'clean' on a write request.
3677  *
3678  * clean - no pending writes, but otherwise active.
3679  *     When written to inactive array, starts without resync
3680  *     If a write request arrives then
3681  *       if metadata is known, mark 'dirty' and switch to 'active'.
3682  *       if not known, block and switch to write-pending
3683  *     If written to an active array that has pending writes, then fails.
3684  * active
3685  *     fully active: IO and resync can be happening.
3686  *     When written to inactive array, starts with resync
3687  *
3688  * write-pending
3689  *     clean, but writes are blocked waiting for 'active' to be written.
3690  *
3691  * active-idle
3692  *     like active, but no writes have been seen for a while (100msec).
3693  *
3694  */
3695 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3696 		   write_pending, active_idle, bad_word};
3697 static char *array_states[] = {
3698 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3699 	"write-pending", "active-idle", NULL };
3700 
3701 static int match_word(const char *word, char **list)
3702 {
3703 	int n;
3704 	for (n=0; list[n]; n++)
3705 		if (cmd_match(word, list[n]))
3706 			break;
3707 	return n;
3708 }
3709 
3710 static ssize_t
3711 array_state_show(struct mddev *mddev, char *page)
3712 {
3713 	enum array_state st = inactive;
3714 
3715 	if (mddev->pers)
3716 		switch(mddev->ro) {
3717 		case 1:
3718 			st = readonly;
3719 			break;
3720 		case 2:
3721 			st = read_auto;
3722 			break;
3723 		case 0:
3724 			if (mddev->in_sync)
3725 				st = clean;
3726 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3727 				st = write_pending;
3728 			else if (mddev->safemode)
3729 				st = active_idle;
3730 			else
3731 				st = active;
3732 		}
3733 	else {
3734 		if (list_empty(&mddev->disks) &&
3735 		    mddev->raid_disks == 0 &&
3736 		    mddev->dev_sectors == 0)
3737 			st = clear;
3738 		else
3739 			st = inactive;
3740 	}
3741 	return sprintf(page, "%s\n", array_states[st]);
3742 }
3743 
3744 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3745 static int md_set_readonly(struct mddev * mddev, int is_open);
3746 static int do_md_run(struct mddev * mddev);
3747 static int restart_array(struct mddev *mddev);
3748 
3749 static ssize_t
3750 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3751 {
3752 	int err = -EINVAL;
3753 	enum array_state st = match_word(buf, array_states);
3754 	switch(st) {
3755 	case bad_word:
3756 		break;
3757 	case clear:
3758 		/* stopping an active array */
3759 		if (atomic_read(&mddev->openers) > 0)
3760 			return -EBUSY;
3761 		err = do_md_stop(mddev, 0, 0);
3762 		break;
3763 	case inactive:
3764 		/* stopping an active array */
3765 		if (mddev->pers) {
3766 			if (atomic_read(&mddev->openers) > 0)
3767 				return -EBUSY;
3768 			err = do_md_stop(mddev, 2, 0);
3769 		} else
3770 			err = 0; /* already inactive */
3771 		break;
3772 	case suspended:
3773 		break; /* not supported yet */
3774 	case readonly:
3775 		if (mddev->pers)
3776 			err = md_set_readonly(mddev, 0);
3777 		else {
3778 			mddev->ro = 1;
3779 			set_disk_ro(mddev->gendisk, 1);
3780 			err = do_md_run(mddev);
3781 		}
3782 		break;
3783 	case read_auto:
3784 		if (mddev->pers) {
3785 			if (mddev->ro == 0)
3786 				err = md_set_readonly(mddev, 0);
3787 			else if (mddev->ro == 1)
3788 				err = restart_array(mddev);
3789 			if (err == 0) {
3790 				mddev->ro = 2;
3791 				set_disk_ro(mddev->gendisk, 0);
3792 			}
3793 		} else {
3794 			mddev->ro = 2;
3795 			err = do_md_run(mddev);
3796 		}
3797 		break;
3798 	case clean:
3799 		if (mddev->pers) {
3800 			restart_array(mddev);
3801 			spin_lock_irq(&mddev->write_lock);
3802 			if (atomic_read(&mddev->writes_pending) == 0) {
3803 				if (mddev->in_sync == 0) {
3804 					mddev->in_sync = 1;
3805 					if (mddev->safemode == 1)
3806 						mddev->safemode = 0;
3807 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3808 				}
3809 				err = 0;
3810 			} else
3811 				err = -EBUSY;
3812 			spin_unlock_irq(&mddev->write_lock);
3813 		} else
3814 			err = -EINVAL;
3815 		break;
3816 	case active:
3817 		if (mddev->pers) {
3818 			restart_array(mddev);
3819 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3820 			wake_up(&mddev->sb_wait);
3821 			err = 0;
3822 		} else {
3823 			mddev->ro = 0;
3824 			set_disk_ro(mddev->gendisk, 0);
3825 			err = do_md_run(mddev);
3826 		}
3827 		break;
3828 	case write_pending:
3829 	case active_idle:
3830 		/* these cannot be set */
3831 		break;
3832 	}
3833 	if (err)
3834 		return err;
3835 	else {
3836 		if (mddev->hold_active == UNTIL_IOCTL)
3837 			mddev->hold_active = 0;
3838 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3839 		return len;
3840 	}
3841 }
3842 static struct md_sysfs_entry md_array_state =
3843 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3844 
3845 static ssize_t
3846 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3847 	return sprintf(page, "%d\n",
3848 		       atomic_read(&mddev->max_corr_read_errors));
3849 }
3850 
3851 static ssize_t
3852 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3853 {
3854 	char *e;
3855 	unsigned long n = simple_strtoul(buf, &e, 10);
3856 
3857 	if (*buf && (*e == 0 || *e == '\n')) {
3858 		atomic_set(&mddev->max_corr_read_errors, n);
3859 		return len;
3860 	}
3861 	return -EINVAL;
3862 }
3863 
3864 static struct md_sysfs_entry max_corr_read_errors =
3865 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3866 	max_corrected_read_errors_store);
3867 
3868 static ssize_t
3869 null_show(struct mddev *mddev, char *page)
3870 {
3871 	return -EINVAL;
3872 }
3873 
3874 static ssize_t
3875 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3876 {
3877 	/* buf must be %d:%d\n? giving major and minor numbers */
3878 	/* The new device is added to the array.
3879 	 * If the array has a persistent superblock, we read the
3880 	 * superblock to initialise info and check validity.
3881 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3882 	 * which mainly checks size.
3883 	 */
3884 	char *e;
3885 	int major = simple_strtoul(buf, &e, 10);
3886 	int minor;
3887 	dev_t dev;
3888 	struct md_rdev *rdev;
3889 	int err;
3890 
3891 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3892 		return -EINVAL;
3893 	minor = simple_strtoul(e+1, &e, 10);
3894 	if (*e && *e != '\n')
3895 		return -EINVAL;
3896 	dev = MKDEV(major, minor);
3897 	if (major != MAJOR(dev) ||
3898 	    minor != MINOR(dev))
3899 		return -EOVERFLOW;
3900 
3901 
3902 	if (mddev->persistent) {
3903 		rdev = md_import_device(dev, mddev->major_version,
3904 					mddev->minor_version);
3905 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3906 			struct md_rdev *rdev0
3907 				= list_entry(mddev->disks.next,
3908 					     struct md_rdev, same_set);
3909 			err = super_types[mddev->major_version]
3910 				.load_super(rdev, rdev0, mddev->minor_version);
3911 			if (err < 0)
3912 				goto out;
3913 		}
3914 	} else if (mddev->external)
3915 		rdev = md_import_device(dev, -2, -1);
3916 	else
3917 		rdev = md_import_device(dev, -1, -1);
3918 
3919 	if (IS_ERR(rdev))
3920 		return PTR_ERR(rdev);
3921 	err = bind_rdev_to_array(rdev, mddev);
3922  out:
3923 	if (err)
3924 		export_rdev(rdev);
3925 	return err ? err : len;
3926 }
3927 
3928 static struct md_sysfs_entry md_new_device =
3929 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3930 
3931 static ssize_t
3932 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3933 {
3934 	char *end;
3935 	unsigned long chunk, end_chunk;
3936 
3937 	if (!mddev->bitmap)
3938 		goto out;
3939 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3940 	while (*buf) {
3941 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3942 		if (buf == end) break;
3943 		if (*end == '-') { /* range */
3944 			buf = end + 1;
3945 			end_chunk = simple_strtoul(buf, &end, 0);
3946 			if (buf == end) break;
3947 		}
3948 		if (*end && !isspace(*end)) break;
3949 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3950 		buf = skip_spaces(end);
3951 	}
3952 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3953 out:
3954 	return len;
3955 }
3956 
3957 static struct md_sysfs_entry md_bitmap =
3958 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3959 
3960 static ssize_t
3961 size_show(struct mddev *mddev, char *page)
3962 {
3963 	return sprintf(page, "%llu\n",
3964 		(unsigned long long)mddev->dev_sectors / 2);
3965 }
3966 
3967 static int update_size(struct mddev *mddev, sector_t num_sectors);
3968 
3969 static ssize_t
3970 size_store(struct mddev *mddev, const char *buf, size_t len)
3971 {
3972 	/* If array is inactive, we can reduce the component size, but
3973 	 * not increase it (except from 0).
3974 	 * If array is active, we can try an on-line resize
3975 	 */
3976 	sector_t sectors;
3977 	int err = strict_blocks_to_sectors(buf, &sectors);
3978 
3979 	if (err < 0)
3980 		return err;
3981 	if (mddev->pers) {
3982 		err = update_size(mddev, sectors);
3983 		md_update_sb(mddev, 1);
3984 	} else {
3985 		if (mddev->dev_sectors == 0 ||
3986 		    mddev->dev_sectors > sectors)
3987 			mddev->dev_sectors = sectors;
3988 		else
3989 			err = -ENOSPC;
3990 	}
3991 	return err ? err : len;
3992 }
3993 
3994 static struct md_sysfs_entry md_size =
3995 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3996 
3997 
3998 /* Metdata version.
3999  * This is one of
4000  *   'none' for arrays with no metadata (good luck...)
4001  *   'external' for arrays with externally managed metadata,
4002  * or N.M for internally known formats
4003  */
4004 static ssize_t
4005 metadata_show(struct mddev *mddev, char *page)
4006 {
4007 	if (mddev->persistent)
4008 		return sprintf(page, "%d.%d\n",
4009 			       mddev->major_version, mddev->minor_version);
4010 	else if (mddev->external)
4011 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4012 	else
4013 		return sprintf(page, "none\n");
4014 }
4015 
4016 static ssize_t
4017 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4018 {
4019 	int major, minor;
4020 	char *e;
4021 	/* Changing the details of 'external' metadata is
4022 	 * always permitted.  Otherwise there must be
4023 	 * no devices attached to the array.
4024 	 */
4025 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4026 		;
4027 	else if (!list_empty(&mddev->disks))
4028 		return -EBUSY;
4029 
4030 	if (cmd_match(buf, "none")) {
4031 		mddev->persistent = 0;
4032 		mddev->external = 0;
4033 		mddev->major_version = 0;
4034 		mddev->minor_version = 90;
4035 		return len;
4036 	}
4037 	if (strncmp(buf, "external:", 9) == 0) {
4038 		size_t namelen = len-9;
4039 		if (namelen >= sizeof(mddev->metadata_type))
4040 			namelen = sizeof(mddev->metadata_type)-1;
4041 		strncpy(mddev->metadata_type, buf+9, namelen);
4042 		mddev->metadata_type[namelen] = 0;
4043 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4044 			mddev->metadata_type[--namelen] = 0;
4045 		mddev->persistent = 0;
4046 		mddev->external = 1;
4047 		mddev->major_version = 0;
4048 		mddev->minor_version = 90;
4049 		return len;
4050 	}
4051 	major = simple_strtoul(buf, &e, 10);
4052 	if (e==buf || *e != '.')
4053 		return -EINVAL;
4054 	buf = e+1;
4055 	minor = simple_strtoul(buf, &e, 10);
4056 	if (e==buf || (*e && *e != '\n') )
4057 		return -EINVAL;
4058 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4059 		return -ENOENT;
4060 	mddev->major_version = major;
4061 	mddev->minor_version = minor;
4062 	mddev->persistent = 1;
4063 	mddev->external = 0;
4064 	return len;
4065 }
4066 
4067 static struct md_sysfs_entry md_metadata =
4068 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4069 
4070 static ssize_t
4071 action_show(struct mddev *mddev, char *page)
4072 {
4073 	char *type = "idle";
4074 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4075 		type = "frozen";
4076 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4077 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4078 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4079 			type = "reshape";
4080 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4081 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4082 				type = "resync";
4083 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4084 				type = "check";
4085 			else
4086 				type = "repair";
4087 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4088 			type = "recover";
4089 	}
4090 	return sprintf(page, "%s\n", type);
4091 }
4092 
4093 static void reap_sync_thread(struct mddev *mddev);
4094 
4095 static ssize_t
4096 action_store(struct mddev *mddev, const char *page, size_t len)
4097 {
4098 	if (!mddev->pers || !mddev->pers->sync_request)
4099 		return -EINVAL;
4100 
4101 	if (cmd_match(page, "frozen"))
4102 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4103 	else
4104 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4105 
4106 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4107 		if (mddev->sync_thread) {
4108 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4109 			reap_sync_thread(mddev);
4110 		}
4111 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4112 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4113 		return -EBUSY;
4114 	else if (cmd_match(page, "resync"))
4115 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4116 	else if (cmd_match(page, "recover")) {
4117 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4118 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4119 	} else if (cmd_match(page, "reshape")) {
4120 		int err;
4121 		if (mddev->pers->start_reshape == NULL)
4122 			return -EINVAL;
4123 		err = mddev->pers->start_reshape(mddev);
4124 		if (err)
4125 			return err;
4126 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4127 	} else {
4128 		if (cmd_match(page, "check"))
4129 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4130 		else if (!cmd_match(page, "repair"))
4131 			return -EINVAL;
4132 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4133 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4134 	}
4135 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4136 	md_wakeup_thread(mddev->thread);
4137 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4138 	return len;
4139 }
4140 
4141 static ssize_t
4142 mismatch_cnt_show(struct mddev *mddev, char *page)
4143 {
4144 	return sprintf(page, "%llu\n",
4145 		       (unsigned long long) mddev->resync_mismatches);
4146 }
4147 
4148 static struct md_sysfs_entry md_scan_mode =
4149 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4150 
4151 
4152 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4153 
4154 static ssize_t
4155 sync_min_show(struct mddev *mddev, char *page)
4156 {
4157 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4158 		       mddev->sync_speed_min ? "local": "system");
4159 }
4160 
4161 static ssize_t
4162 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4163 {
4164 	int min;
4165 	char *e;
4166 	if (strncmp(buf, "system", 6)==0) {
4167 		mddev->sync_speed_min = 0;
4168 		return len;
4169 	}
4170 	min = simple_strtoul(buf, &e, 10);
4171 	if (buf == e || (*e && *e != '\n') || min <= 0)
4172 		return -EINVAL;
4173 	mddev->sync_speed_min = min;
4174 	return len;
4175 }
4176 
4177 static struct md_sysfs_entry md_sync_min =
4178 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4179 
4180 static ssize_t
4181 sync_max_show(struct mddev *mddev, char *page)
4182 {
4183 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4184 		       mddev->sync_speed_max ? "local": "system");
4185 }
4186 
4187 static ssize_t
4188 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4189 {
4190 	int max;
4191 	char *e;
4192 	if (strncmp(buf, "system", 6)==0) {
4193 		mddev->sync_speed_max = 0;
4194 		return len;
4195 	}
4196 	max = simple_strtoul(buf, &e, 10);
4197 	if (buf == e || (*e && *e != '\n') || max <= 0)
4198 		return -EINVAL;
4199 	mddev->sync_speed_max = max;
4200 	return len;
4201 }
4202 
4203 static struct md_sysfs_entry md_sync_max =
4204 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4205 
4206 static ssize_t
4207 degraded_show(struct mddev *mddev, char *page)
4208 {
4209 	return sprintf(page, "%d\n", mddev->degraded);
4210 }
4211 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4212 
4213 static ssize_t
4214 sync_force_parallel_show(struct mddev *mddev, char *page)
4215 {
4216 	return sprintf(page, "%d\n", mddev->parallel_resync);
4217 }
4218 
4219 static ssize_t
4220 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4221 {
4222 	long n;
4223 
4224 	if (strict_strtol(buf, 10, &n))
4225 		return -EINVAL;
4226 
4227 	if (n != 0 && n != 1)
4228 		return -EINVAL;
4229 
4230 	mddev->parallel_resync = n;
4231 
4232 	if (mddev->sync_thread)
4233 		wake_up(&resync_wait);
4234 
4235 	return len;
4236 }
4237 
4238 /* force parallel resync, even with shared block devices */
4239 static struct md_sysfs_entry md_sync_force_parallel =
4240 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4241        sync_force_parallel_show, sync_force_parallel_store);
4242 
4243 static ssize_t
4244 sync_speed_show(struct mddev *mddev, char *page)
4245 {
4246 	unsigned long resync, dt, db;
4247 	if (mddev->curr_resync == 0)
4248 		return sprintf(page, "none\n");
4249 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4250 	dt = (jiffies - mddev->resync_mark) / HZ;
4251 	if (!dt) dt++;
4252 	db = resync - mddev->resync_mark_cnt;
4253 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4254 }
4255 
4256 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4257 
4258 static ssize_t
4259 sync_completed_show(struct mddev *mddev, char *page)
4260 {
4261 	unsigned long long max_sectors, resync;
4262 
4263 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4264 		return sprintf(page, "none\n");
4265 
4266 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4267 		max_sectors = mddev->resync_max_sectors;
4268 	else
4269 		max_sectors = mddev->dev_sectors;
4270 
4271 	resync = mddev->curr_resync_completed;
4272 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4273 }
4274 
4275 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4276 
4277 static ssize_t
4278 min_sync_show(struct mddev *mddev, char *page)
4279 {
4280 	return sprintf(page, "%llu\n",
4281 		       (unsigned long long)mddev->resync_min);
4282 }
4283 static ssize_t
4284 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4285 {
4286 	unsigned long long min;
4287 	if (strict_strtoull(buf, 10, &min))
4288 		return -EINVAL;
4289 	if (min > mddev->resync_max)
4290 		return -EINVAL;
4291 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4292 		return -EBUSY;
4293 
4294 	/* Must be a multiple of chunk_size */
4295 	if (mddev->chunk_sectors) {
4296 		sector_t temp = min;
4297 		if (sector_div(temp, mddev->chunk_sectors))
4298 			return -EINVAL;
4299 	}
4300 	mddev->resync_min = min;
4301 
4302 	return len;
4303 }
4304 
4305 static struct md_sysfs_entry md_min_sync =
4306 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4307 
4308 static ssize_t
4309 max_sync_show(struct mddev *mddev, char *page)
4310 {
4311 	if (mddev->resync_max == MaxSector)
4312 		return sprintf(page, "max\n");
4313 	else
4314 		return sprintf(page, "%llu\n",
4315 			       (unsigned long long)mddev->resync_max);
4316 }
4317 static ssize_t
4318 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4319 {
4320 	if (strncmp(buf, "max", 3) == 0)
4321 		mddev->resync_max = MaxSector;
4322 	else {
4323 		unsigned long long max;
4324 		if (strict_strtoull(buf, 10, &max))
4325 			return -EINVAL;
4326 		if (max < mddev->resync_min)
4327 			return -EINVAL;
4328 		if (max < mddev->resync_max &&
4329 		    mddev->ro == 0 &&
4330 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4331 			return -EBUSY;
4332 
4333 		/* Must be a multiple of chunk_size */
4334 		if (mddev->chunk_sectors) {
4335 			sector_t temp = max;
4336 			if (sector_div(temp, mddev->chunk_sectors))
4337 				return -EINVAL;
4338 		}
4339 		mddev->resync_max = max;
4340 	}
4341 	wake_up(&mddev->recovery_wait);
4342 	return len;
4343 }
4344 
4345 static struct md_sysfs_entry md_max_sync =
4346 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4347 
4348 static ssize_t
4349 suspend_lo_show(struct mddev *mddev, char *page)
4350 {
4351 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4352 }
4353 
4354 static ssize_t
4355 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4356 {
4357 	char *e;
4358 	unsigned long long new = simple_strtoull(buf, &e, 10);
4359 	unsigned long long old = mddev->suspend_lo;
4360 
4361 	if (mddev->pers == NULL ||
4362 	    mddev->pers->quiesce == NULL)
4363 		return -EINVAL;
4364 	if (buf == e || (*e && *e != '\n'))
4365 		return -EINVAL;
4366 
4367 	mddev->suspend_lo = new;
4368 	if (new >= old)
4369 		/* Shrinking suspended region */
4370 		mddev->pers->quiesce(mddev, 2);
4371 	else {
4372 		/* Expanding suspended region - need to wait */
4373 		mddev->pers->quiesce(mddev, 1);
4374 		mddev->pers->quiesce(mddev, 0);
4375 	}
4376 	return len;
4377 }
4378 static struct md_sysfs_entry md_suspend_lo =
4379 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4380 
4381 
4382 static ssize_t
4383 suspend_hi_show(struct mddev *mddev, char *page)
4384 {
4385 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4386 }
4387 
4388 static ssize_t
4389 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4390 {
4391 	char *e;
4392 	unsigned long long new = simple_strtoull(buf, &e, 10);
4393 	unsigned long long old = mddev->suspend_hi;
4394 
4395 	if (mddev->pers == NULL ||
4396 	    mddev->pers->quiesce == NULL)
4397 		return -EINVAL;
4398 	if (buf == e || (*e && *e != '\n'))
4399 		return -EINVAL;
4400 
4401 	mddev->suspend_hi = new;
4402 	if (new <= old)
4403 		/* Shrinking suspended region */
4404 		mddev->pers->quiesce(mddev, 2);
4405 	else {
4406 		/* Expanding suspended region - need to wait */
4407 		mddev->pers->quiesce(mddev, 1);
4408 		mddev->pers->quiesce(mddev, 0);
4409 	}
4410 	return len;
4411 }
4412 static struct md_sysfs_entry md_suspend_hi =
4413 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4414 
4415 static ssize_t
4416 reshape_position_show(struct mddev *mddev, char *page)
4417 {
4418 	if (mddev->reshape_position != MaxSector)
4419 		return sprintf(page, "%llu\n",
4420 			       (unsigned long long)mddev->reshape_position);
4421 	strcpy(page, "none\n");
4422 	return 5;
4423 }
4424 
4425 static ssize_t
4426 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4427 {
4428 	char *e;
4429 	unsigned long long new = simple_strtoull(buf, &e, 10);
4430 	if (mddev->pers)
4431 		return -EBUSY;
4432 	if (buf == e || (*e && *e != '\n'))
4433 		return -EINVAL;
4434 	mddev->reshape_position = new;
4435 	mddev->delta_disks = 0;
4436 	mddev->new_level = mddev->level;
4437 	mddev->new_layout = mddev->layout;
4438 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4439 	return len;
4440 }
4441 
4442 static struct md_sysfs_entry md_reshape_position =
4443 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4444        reshape_position_store);
4445 
4446 static ssize_t
4447 array_size_show(struct mddev *mddev, char *page)
4448 {
4449 	if (mddev->external_size)
4450 		return sprintf(page, "%llu\n",
4451 			       (unsigned long long)mddev->array_sectors/2);
4452 	else
4453 		return sprintf(page, "default\n");
4454 }
4455 
4456 static ssize_t
4457 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4458 {
4459 	sector_t sectors;
4460 
4461 	if (strncmp(buf, "default", 7) == 0) {
4462 		if (mddev->pers)
4463 			sectors = mddev->pers->size(mddev, 0, 0);
4464 		else
4465 			sectors = mddev->array_sectors;
4466 
4467 		mddev->external_size = 0;
4468 	} else {
4469 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4470 			return -EINVAL;
4471 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4472 			return -E2BIG;
4473 
4474 		mddev->external_size = 1;
4475 	}
4476 
4477 	mddev->array_sectors = sectors;
4478 	if (mddev->pers) {
4479 		set_capacity(mddev->gendisk, mddev->array_sectors);
4480 		revalidate_disk(mddev->gendisk);
4481 	}
4482 	return len;
4483 }
4484 
4485 static struct md_sysfs_entry md_array_size =
4486 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4487        array_size_store);
4488 
4489 static struct attribute *md_default_attrs[] = {
4490 	&md_level.attr,
4491 	&md_layout.attr,
4492 	&md_raid_disks.attr,
4493 	&md_chunk_size.attr,
4494 	&md_size.attr,
4495 	&md_resync_start.attr,
4496 	&md_metadata.attr,
4497 	&md_new_device.attr,
4498 	&md_safe_delay.attr,
4499 	&md_array_state.attr,
4500 	&md_reshape_position.attr,
4501 	&md_array_size.attr,
4502 	&max_corr_read_errors.attr,
4503 	NULL,
4504 };
4505 
4506 static struct attribute *md_redundancy_attrs[] = {
4507 	&md_scan_mode.attr,
4508 	&md_mismatches.attr,
4509 	&md_sync_min.attr,
4510 	&md_sync_max.attr,
4511 	&md_sync_speed.attr,
4512 	&md_sync_force_parallel.attr,
4513 	&md_sync_completed.attr,
4514 	&md_min_sync.attr,
4515 	&md_max_sync.attr,
4516 	&md_suspend_lo.attr,
4517 	&md_suspend_hi.attr,
4518 	&md_bitmap.attr,
4519 	&md_degraded.attr,
4520 	NULL,
4521 };
4522 static struct attribute_group md_redundancy_group = {
4523 	.name = NULL,
4524 	.attrs = md_redundancy_attrs,
4525 };
4526 
4527 
4528 static ssize_t
4529 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4530 {
4531 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4532 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4533 	ssize_t rv;
4534 
4535 	if (!entry->show)
4536 		return -EIO;
4537 	spin_lock(&all_mddevs_lock);
4538 	if (list_empty(&mddev->all_mddevs)) {
4539 		spin_unlock(&all_mddevs_lock);
4540 		return -EBUSY;
4541 	}
4542 	mddev_get(mddev);
4543 	spin_unlock(&all_mddevs_lock);
4544 
4545 	rv = mddev_lock(mddev);
4546 	if (!rv) {
4547 		rv = entry->show(mddev, page);
4548 		mddev_unlock(mddev);
4549 	}
4550 	mddev_put(mddev);
4551 	return rv;
4552 }
4553 
4554 static ssize_t
4555 md_attr_store(struct kobject *kobj, struct attribute *attr,
4556 	      const char *page, size_t length)
4557 {
4558 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4559 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4560 	ssize_t rv;
4561 
4562 	if (!entry->store)
4563 		return -EIO;
4564 	if (!capable(CAP_SYS_ADMIN))
4565 		return -EACCES;
4566 	spin_lock(&all_mddevs_lock);
4567 	if (list_empty(&mddev->all_mddevs)) {
4568 		spin_unlock(&all_mddevs_lock);
4569 		return -EBUSY;
4570 	}
4571 	mddev_get(mddev);
4572 	spin_unlock(&all_mddevs_lock);
4573 	rv = mddev_lock(mddev);
4574 	if (!rv) {
4575 		rv = entry->store(mddev, page, length);
4576 		mddev_unlock(mddev);
4577 	}
4578 	mddev_put(mddev);
4579 	return rv;
4580 }
4581 
4582 static void md_free(struct kobject *ko)
4583 {
4584 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4585 
4586 	if (mddev->sysfs_state)
4587 		sysfs_put(mddev->sysfs_state);
4588 
4589 	if (mddev->gendisk) {
4590 		del_gendisk(mddev->gendisk);
4591 		put_disk(mddev->gendisk);
4592 	}
4593 	if (mddev->queue)
4594 		blk_cleanup_queue(mddev->queue);
4595 
4596 	kfree(mddev);
4597 }
4598 
4599 static const struct sysfs_ops md_sysfs_ops = {
4600 	.show	= md_attr_show,
4601 	.store	= md_attr_store,
4602 };
4603 static struct kobj_type md_ktype = {
4604 	.release	= md_free,
4605 	.sysfs_ops	= &md_sysfs_ops,
4606 	.default_attrs	= md_default_attrs,
4607 };
4608 
4609 int mdp_major = 0;
4610 
4611 static void mddev_delayed_delete(struct work_struct *ws)
4612 {
4613 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4614 
4615 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4616 	kobject_del(&mddev->kobj);
4617 	kobject_put(&mddev->kobj);
4618 }
4619 
4620 static int md_alloc(dev_t dev, char *name)
4621 {
4622 	static DEFINE_MUTEX(disks_mutex);
4623 	struct mddev *mddev = mddev_find(dev);
4624 	struct gendisk *disk;
4625 	int partitioned;
4626 	int shift;
4627 	int unit;
4628 	int error;
4629 
4630 	if (!mddev)
4631 		return -ENODEV;
4632 
4633 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4634 	shift = partitioned ? MdpMinorShift : 0;
4635 	unit = MINOR(mddev->unit) >> shift;
4636 
4637 	/* wait for any previous instance of this device to be
4638 	 * completely removed (mddev_delayed_delete).
4639 	 */
4640 	flush_workqueue(md_misc_wq);
4641 
4642 	mutex_lock(&disks_mutex);
4643 	error = -EEXIST;
4644 	if (mddev->gendisk)
4645 		goto abort;
4646 
4647 	if (name) {
4648 		/* Need to ensure that 'name' is not a duplicate.
4649 		 */
4650 		struct mddev *mddev2;
4651 		spin_lock(&all_mddevs_lock);
4652 
4653 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4654 			if (mddev2->gendisk &&
4655 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4656 				spin_unlock(&all_mddevs_lock);
4657 				goto abort;
4658 			}
4659 		spin_unlock(&all_mddevs_lock);
4660 	}
4661 
4662 	error = -ENOMEM;
4663 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4664 	if (!mddev->queue)
4665 		goto abort;
4666 	mddev->queue->queuedata = mddev;
4667 
4668 	blk_queue_make_request(mddev->queue, md_make_request);
4669 
4670 	disk = alloc_disk(1 << shift);
4671 	if (!disk) {
4672 		blk_cleanup_queue(mddev->queue);
4673 		mddev->queue = NULL;
4674 		goto abort;
4675 	}
4676 	disk->major = MAJOR(mddev->unit);
4677 	disk->first_minor = unit << shift;
4678 	if (name)
4679 		strcpy(disk->disk_name, name);
4680 	else if (partitioned)
4681 		sprintf(disk->disk_name, "md_d%d", unit);
4682 	else
4683 		sprintf(disk->disk_name, "md%d", unit);
4684 	disk->fops = &md_fops;
4685 	disk->private_data = mddev;
4686 	disk->queue = mddev->queue;
4687 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4688 	/* Allow extended partitions.  This makes the
4689 	 * 'mdp' device redundant, but we can't really
4690 	 * remove it now.
4691 	 */
4692 	disk->flags |= GENHD_FL_EXT_DEVT;
4693 	mddev->gendisk = disk;
4694 	/* As soon as we call add_disk(), another thread could get
4695 	 * through to md_open, so make sure it doesn't get too far
4696 	 */
4697 	mutex_lock(&mddev->open_mutex);
4698 	add_disk(disk);
4699 
4700 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4701 				     &disk_to_dev(disk)->kobj, "%s", "md");
4702 	if (error) {
4703 		/* This isn't possible, but as kobject_init_and_add is marked
4704 		 * __must_check, we must do something with the result
4705 		 */
4706 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4707 		       disk->disk_name);
4708 		error = 0;
4709 	}
4710 	if (mddev->kobj.sd &&
4711 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4712 		printk(KERN_DEBUG "pointless warning\n");
4713 	mutex_unlock(&mddev->open_mutex);
4714  abort:
4715 	mutex_unlock(&disks_mutex);
4716 	if (!error && mddev->kobj.sd) {
4717 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4718 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4719 	}
4720 	mddev_put(mddev);
4721 	return error;
4722 }
4723 
4724 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4725 {
4726 	md_alloc(dev, NULL);
4727 	return NULL;
4728 }
4729 
4730 static int add_named_array(const char *val, struct kernel_param *kp)
4731 {
4732 	/* val must be "md_*" where * is not all digits.
4733 	 * We allocate an array with a large free minor number, and
4734 	 * set the name to val.  val must not already be an active name.
4735 	 */
4736 	int len = strlen(val);
4737 	char buf[DISK_NAME_LEN];
4738 
4739 	while (len && val[len-1] == '\n')
4740 		len--;
4741 	if (len >= DISK_NAME_LEN)
4742 		return -E2BIG;
4743 	strlcpy(buf, val, len+1);
4744 	if (strncmp(buf, "md_", 3) != 0)
4745 		return -EINVAL;
4746 	return md_alloc(0, buf);
4747 }
4748 
4749 static void md_safemode_timeout(unsigned long data)
4750 {
4751 	struct mddev *mddev = (struct mddev *) data;
4752 
4753 	if (!atomic_read(&mddev->writes_pending)) {
4754 		mddev->safemode = 1;
4755 		if (mddev->external)
4756 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4757 	}
4758 	md_wakeup_thread(mddev->thread);
4759 }
4760 
4761 static int start_dirty_degraded;
4762 
4763 int md_run(struct mddev *mddev)
4764 {
4765 	int err;
4766 	struct md_rdev *rdev;
4767 	struct md_personality *pers;
4768 
4769 	if (list_empty(&mddev->disks))
4770 		/* cannot run an array with no devices.. */
4771 		return -EINVAL;
4772 
4773 	if (mddev->pers)
4774 		return -EBUSY;
4775 	/* Cannot run until previous stop completes properly */
4776 	if (mddev->sysfs_active)
4777 		return -EBUSY;
4778 
4779 	/*
4780 	 * Analyze all RAID superblock(s)
4781 	 */
4782 	if (!mddev->raid_disks) {
4783 		if (!mddev->persistent)
4784 			return -EINVAL;
4785 		analyze_sbs(mddev);
4786 	}
4787 
4788 	if (mddev->level != LEVEL_NONE)
4789 		request_module("md-level-%d", mddev->level);
4790 	else if (mddev->clevel[0])
4791 		request_module("md-%s", mddev->clevel);
4792 
4793 	/*
4794 	 * Drop all container device buffers, from now on
4795 	 * the only valid external interface is through the md
4796 	 * device.
4797 	 */
4798 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4799 		if (test_bit(Faulty, &rdev->flags))
4800 			continue;
4801 		sync_blockdev(rdev->bdev);
4802 		invalidate_bdev(rdev->bdev);
4803 
4804 		/* perform some consistency tests on the device.
4805 		 * We don't want the data to overlap the metadata,
4806 		 * Internal Bitmap issues have been handled elsewhere.
4807 		 */
4808 		if (rdev->meta_bdev) {
4809 			/* Nothing to check */;
4810 		} else if (rdev->data_offset < rdev->sb_start) {
4811 			if (mddev->dev_sectors &&
4812 			    rdev->data_offset + mddev->dev_sectors
4813 			    > rdev->sb_start) {
4814 				printk("md: %s: data overlaps metadata\n",
4815 				       mdname(mddev));
4816 				return -EINVAL;
4817 			}
4818 		} else {
4819 			if (rdev->sb_start + rdev->sb_size/512
4820 			    > rdev->data_offset) {
4821 				printk("md: %s: metadata overlaps data\n",
4822 				       mdname(mddev));
4823 				return -EINVAL;
4824 			}
4825 		}
4826 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4827 	}
4828 
4829 	if (mddev->bio_set == NULL)
4830 		mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4831 					       sizeof(struct mddev *));
4832 
4833 	spin_lock(&pers_lock);
4834 	pers = find_pers(mddev->level, mddev->clevel);
4835 	if (!pers || !try_module_get(pers->owner)) {
4836 		spin_unlock(&pers_lock);
4837 		if (mddev->level != LEVEL_NONE)
4838 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4839 			       mddev->level);
4840 		else
4841 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4842 			       mddev->clevel);
4843 		return -EINVAL;
4844 	}
4845 	mddev->pers = pers;
4846 	spin_unlock(&pers_lock);
4847 	if (mddev->level != pers->level) {
4848 		mddev->level = pers->level;
4849 		mddev->new_level = pers->level;
4850 	}
4851 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4852 
4853 	if (mddev->reshape_position != MaxSector &&
4854 	    pers->start_reshape == NULL) {
4855 		/* This personality cannot handle reshaping... */
4856 		mddev->pers = NULL;
4857 		module_put(pers->owner);
4858 		return -EINVAL;
4859 	}
4860 
4861 	if (pers->sync_request) {
4862 		/* Warn if this is a potentially silly
4863 		 * configuration.
4864 		 */
4865 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4866 		struct md_rdev *rdev2;
4867 		int warned = 0;
4868 
4869 		list_for_each_entry(rdev, &mddev->disks, same_set)
4870 			list_for_each_entry(rdev2, &mddev->disks, same_set) {
4871 				if (rdev < rdev2 &&
4872 				    rdev->bdev->bd_contains ==
4873 				    rdev2->bdev->bd_contains) {
4874 					printk(KERN_WARNING
4875 					       "%s: WARNING: %s appears to be"
4876 					       " on the same physical disk as"
4877 					       " %s.\n",
4878 					       mdname(mddev),
4879 					       bdevname(rdev->bdev,b),
4880 					       bdevname(rdev2->bdev,b2));
4881 					warned = 1;
4882 				}
4883 			}
4884 
4885 		if (warned)
4886 			printk(KERN_WARNING
4887 			       "True protection against single-disk"
4888 			       " failure might be compromised.\n");
4889 	}
4890 
4891 	mddev->recovery = 0;
4892 	/* may be over-ridden by personality */
4893 	mddev->resync_max_sectors = mddev->dev_sectors;
4894 
4895 	mddev->ok_start_degraded = start_dirty_degraded;
4896 
4897 	if (start_readonly && mddev->ro == 0)
4898 		mddev->ro = 2; /* read-only, but switch on first write */
4899 
4900 	err = mddev->pers->run(mddev);
4901 	if (err)
4902 		printk(KERN_ERR "md: pers->run() failed ...\n");
4903 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4904 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4905 			  " but 'external_size' not in effect?\n", __func__);
4906 		printk(KERN_ERR
4907 		       "md: invalid array_size %llu > default size %llu\n",
4908 		       (unsigned long long)mddev->array_sectors / 2,
4909 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4910 		err = -EINVAL;
4911 		mddev->pers->stop(mddev);
4912 	}
4913 	if (err == 0 && mddev->pers->sync_request) {
4914 		err = bitmap_create(mddev);
4915 		if (err) {
4916 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4917 			       mdname(mddev), err);
4918 			mddev->pers->stop(mddev);
4919 		}
4920 	}
4921 	if (err) {
4922 		module_put(mddev->pers->owner);
4923 		mddev->pers = NULL;
4924 		bitmap_destroy(mddev);
4925 		return err;
4926 	}
4927 	if (mddev->pers->sync_request) {
4928 		if (mddev->kobj.sd &&
4929 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4930 			printk(KERN_WARNING
4931 			       "md: cannot register extra attributes for %s\n",
4932 			       mdname(mddev));
4933 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4934 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4935 		mddev->ro = 0;
4936 
4937  	atomic_set(&mddev->writes_pending,0);
4938 	atomic_set(&mddev->max_corr_read_errors,
4939 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4940 	mddev->safemode = 0;
4941 	mddev->safemode_timer.function = md_safemode_timeout;
4942 	mddev->safemode_timer.data = (unsigned long) mddev;
4943 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4944 	mddev->in_sync = 1;
4945 	smp_wmb();
4946 	mddev->ready = 1;
4947 	list_for_each_entry(rdev, &mddev->disks, same_set)
4948 		if (rdev->raid_disk >= 0)
4949 			if (sysfs_link_rdev(mddev, rdev))
4950 				/* failure here is OK */;
4951 
4952 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4953 
4954 	if (mddev->flags)
4955 		md_update_sb(mddev, 0);
4956 
4957 	md_new_event(mddev);
4958 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4959 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4960 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4961 	return 0;
4962 }
4963 EXPORT_SYMBOL_GPL(md_run);
4964 
4965 static int do_md_run(struct mddev *mddev)
4966 {
4967 	int err;
4968 
4969 	err = md_run(mddev);
4970 	if (err)
4971 		goto out;
4972 	err = bitmap_load(mddev);
4973 	if (err) {
4974 		bitmap_destroy(mddev);
4975 		goto out;
4976 	}
4977 
4978 	md_wakeup_thread(mddev->thread);
4979 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4980 
4981 	set_capacity(mddev->gendisk, mddev->array_sectors);
4982 	revalidate_disk(mddev->gendisk);
4983 	mddev->changed = 1;
4984 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4985 out:
4986 	return err;
4987 }
4988 
4989 static int restart_array(struct mddev *mddev)
4990 {
4991 	struct gendisk *disk = mddev->gendisk;
4992 
4993 	/* Complain if it has no devices */
4994 	if (list_empty(&mddev->disks))
4995 		return -ENXIO;
4996 	if (!mddev->pers)
4997 		return -EINVAL;
4998 	if (!mddev->ro)
4999 		return -EBUSY;
5000 	mddev->safemode = 0;
5001 	mddev->ro = 0;
5002 	set_disk_ro(disk, 0);
5003 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5004 		mdname(mddev));
5005 	/* Kick recovery or resync if necessary */
5006 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5007 	md_wakeup_thread(mddev->thread);
5008 	md_wakeup_thread(mddev->sync_thread);
5009 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5010 	return 0;
5011 }
5012 
5013 /* similar to deny_write_access, but accounts for our holding a reference
5014  * to the file ourselves */
5015 static int deny_bitmap_write_access(struct file * file)
5016 {
5017 	struct inode *inode = file->f_mapping->host;
5018 
5019 	spin_lock(&inode->i_lock);
5020 	if (atomic_read(&inode->i_writecount) > 1) {
5021 		spin_unlock(&inode->i_lock);
5022 		return -ETXTBSY;
5023 	}
5024 	atomic_set(&inode->i_writecount, -1);
5025 	spin_unlock(&inode->i_lock);
5026 
5027 	return 0;
5028 }
5029 
5030 void restore_bitmap_write_access(struct file *file)
5031 {
5032 	struct inode *inode = file->f_mapping->host;
5033 
5034 	spin_lock(&inode->i_lock);
5035 	atomic_set(&inode->i_writecount, 1);
5036 	spin_unlock(&inode->i_lock);
5037 }
5038 
5039 static void md_clean(struct mddev *mddev)
5040 {
5041 	mddev->array_sectors = 0;
5042 	mddev->external_size = 0;
5043 	mddev->dev_sectors = 0;
5044 	mddev->raid_disks = 0;
5045 	mddev->recovery_cp = 0;
5046 	mddev->resync_min = 0;
5047 	mddev->resync_max = MaxSector;
5048 	mddev->reshape_position = MaxSector;
5049 	mddev->external = 0;
5050 	mddev->persistent = 0;
5051 	mddev->level = LEVEL_NONE;
5052 	mddev->clevel[0] = 0;
5053 	mddev->flags = 0;
5054 	mddev->ro = 0;
5055 	mddev->metadata_type[0] = 0;
5056 	mddev->chunk_sectors = 0;
5057 	mddev->ctime = mddev->utime = 0;
5058 	mddev->layout = 0;
5059 	mddev->max_disks = 0;
5060 	mddev->events = 0;
5061 	mddev->can_decrease_events = 0;
5062 	mddev->delta_disks = 0;
5063 	mddev->new_level = LEVEL_NONE;
5064 	mddev->new_layout = 0;
5065 	mddev->new_chunk_sectors = 0;
5066 	mddev->curr_resync = 0;
5067 	mddev->resync_mismatches = 0;
5068 	mddev->suspend_lo = mddev->suspend_hi = 0;
5069 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5070 	mddev->recovery = 0;
5071 	mddev->in_sync = 0;
5072 	mddev->changed = 0;
5073 	mddev->degraded = 0;
5074 	mddev->safemode = 0;
5075 	mddev->bitmap_info.offset = 0;
5076 	mddev->bitmap_info.default_offset = 0;
5077 	mddev->bitmap_info.chunksize = 0;
5078 	mddev->bitmap_info.daemon_sleep = 0;
5079 	mddev->bitmap_info.max_write_behind = 0;
5080 }
5081 
5082 static void __md_stop_writes(struct mddev *mddev)
5083 {
5084 	if (mddev->sync_thread) {
5085 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5086 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5087 		reap_sync_thread(mddev);
5088 	}
5089 
5090 	del_timer_sync(&mddev->safemode_timer);
5091 
5092 	bitmap_flush(mddev);
5093 	md_super_wait(mddev);
5094 
5095 	if (!mddev->in_sync || mddev->flags) {
5096 		/* mark array as shutdown cleanly */
5097 		mddev->in_sync = 1;
5098 		md_update_sb(mddev, 1);
5099 	}
5100 }
5101 
5102 void md_stop_writes(struct mddev *mddev)
5103 {
5104 	mddev_lock(mddev);
5105 	__md_stop_writes(mddev);
5106 	mddev_unlock(mddev);
5107 }
5108 EXPORT_SYMBOL_GPL(md_stop_writes);
5109 
5110 void md_stop(struct mddev *mddev)
5111 {
5112 	mddev->ready = 0;
5113 	mddev->pers->stop(mddev);
5114 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5115 		mddev->to_remove = &md_redundancy_group;
5116 	module_put(mddev->pers->owner);
5117 	mddev->pers = NULL;
5118 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5119 }
5120 EXPORT_SYMBOL_GPL(md_stop);
5121 
5122 static int md_set_readonly(struct mddev *mddev, int is_open)
5123 {
5124 	int err = 0;
5125 	mutex_lock(&mddev->open_mutex);
5126 	if (atomic_read(&mddev->openers) > is_open) {
5127 		printk("md: %s still in use.\n",mdname(mddev));
5128 		err = -EBUSY;
5129 		goto out;
5130 	}
5131 	if (mddev->pers) {
5132 		__md_stop_writes(mddev);
5133 
5134 		err  = -ENXIO;
5135 		if (mddev->ro==1)
5136 			goto out;
5137 		mddev->ro = 1;
5138 		set_disk_ro(mddev->gendisk, 1);
5139 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5140 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5141 		err = 0;
5142 	}
5143 out:
5144 	mutex_unlock(&mddev->open_mutex);
5145 	return err;
5146 }
5147 
5148 /* mode:
5149  *   0 - completely stop and dis-assemble array
5150  *   2 - stop but do not disassemble array
5151  */
5152 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5153 {
5154 	struct gendisk *disk = mddev->gendisk;
5155 	struct md_rdev *rdev;
5156 
5157 	mutex_lock(&mddev->open_mutex);
5158 	if (atomic_read(&mddev->openers) > is_open ||
5159 	    mddev->sysfs_active) {
5160 		printk("md: %s still in use.\n",mdname(mddev));
5161 		mutex_unlock(&mddev->open_mutex);
5162 		return -EBUSY;
5163 	}
5164 
5165 	if (mddev->pers) {
5166 		if (mddev->ro)
5167 			set_disk_ro(disk, 0);
5168 
5169 		__md_stop_writes(mddev);
5170 		md_stop(mddev);
5171 		mddev->queue->merge_bvec_fn = NULL;
5172 		mddev->queue->backing_dev_info.congested_fn = NULL;
5173 
5174 		/* tell userspace to handle 'inactive' */
5175 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5176 
5177 		list_for_each_entry(rdev, &mddev->disks, same_set)
5178 			if (rdev->raid_disk >= 0)
5179 				sysfs_unlink_rdev(mddev, rdev);
5180 
5181 		set_capacity(disk, 0);
5182 		mutex_unlock(&mddev->open_mutex);
5183 		mddev->changed = 1;
5184 		revalidate_disk(disk);
5185 
5186 		if (mddev->ro)
5187 			mddev->ro = 0;
5188 	} else
5189 		mutex_unlock(&mddev->open_mutex);
5190 	/*
5191 	 * Free resources if final stop
5192 	 */
5193 	if (mode == 0) {
5194 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5195 
5196 		bitmap_destroy(mddev);
5197 		if (mddev->bitmap_info.file) {
5198 			restore_bitmap_write_access(mddev->bitmap_info.file);
5199 			fput(mddev->bitmap_info.file);
5200 			mddev->bitmap_info.file = NULL;
5201 		}
5202 		mddev->bitmap_info.offset = 0;
5203 
5204 		export_array(mddev);
5205 
5206 		md_clean(mddev);
5207 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5208 		if (mddev->hold_active == UNTIL_STOP)
5209 			mddev->hold_active = 0;
5210 	}
5211 	blk_integrity_unregister(disk);
5212 	md_new_event(mddev);
5213 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5214 	return 0;
5215 }
5216 
5217 #ifndef MODULE
5218 static void autorun_array(struct mddev *mddev)
5219 {
5220 	struct md_rdev *rdev;
5221 	int err;
5222 
5223 	if (list_empty(&mddev->disks))
5224 		return;
5225 
5226 	printk(KERN_INFO "md: running: ");
5227 
5228 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5229 		char b[BDEVNAME_SIZE];
5230 		printk("<%s>", bdevname(rdev->bdev,b));
5231 	}
5232 	printk("\n");
5233 
5234 	err = do_md_run(mddev);
5235 	if (err) {
5236 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5237 		do_md_stop(mddev, 0, 0);
5238 	}
5239 }
5240 
5241 /*
5242  * lets try to run arrays based on all disks that have arrived
5243  * until now. (those are in pending_raid_disks)
5244  *
5245  * the method: pick the first pending disk, collect all disks with
5246  * the same UUID, remove all from the pending list and put them into
5247  * the 'same_array' list. Then order this list based on superblock
5248  * update time (freshest comes first), kick out 'old' disks and
5249  * compare superblocks. If everything's fine then run it.
5250  *
5251  * If "unit" is allocated, then bump its reference count
5252  */
5253 static void autorun_devices(int part)
5254 {
5255 	struct md_rdev *rdev0, *rdev, *tmp;
5256 	struct mddev *mddev;
5257 	char b[BDEVNAME_SIZE];
5258 
5259 	printk(KERN_INFO "md: autorun ...\n");
5260 	while (!list_empty(&pending_raid_disks)) {
5261 		int unit;
5262 		dev_t dev;
5263 		LIST_HEAD(candidates);
5264 		rdev0 = list_entry(pending_raid_disks.next,
5265 					 struct md_rdev, same_set);
5266 
5267 		printk(KERN_INFO "md: considering %s ...\n",
5268 			bdevname(rdev0->bdev,b));
5269 		INIT_LIST_HEAD(&candidates);
5270 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5271 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5272 				printk(KERN_INFO "md:  adding %s ...\n",
5273 					bdevname(rdev->bdev,b));
5274 				list_move(&rdev->same_set, &candidates);
5275 			}
5276 		/*
5277 		 * now we have a set of devices, with all of them having
5278 		 * mostly sane superblocks. It's time to allocate the
5279 		 * mddev.
5280 		 */
5281 		if (part) {
5282 			dev = MKDEV(mdp_major,
5283 				    rdev0->preferred_minor << MdpMinorShift);
5284 			unit = MINOR(dev) >> MdpMinorShift;
5285 		} else {
5286 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5287 			unit = MINOR(dev);
5288 		}
5289 		if (rdev0->preferred_minor != unit) {
5290 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5291 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5292 			break;
5293 		}
5294 
5295 		md_probe(dev, NULL, NULL);
5296 		mddev = mddev_find(dev);
5297 		if (!mddev || !mddev->gendisk) {
5298 			if (mddev)
5299 				mddev_put(mddev);
5300 			printk(KERN_ERR
5301 				"md: cannot allocate memory for md drive.\n");
5302 			break;
5303 		}
5304 		if (mddev_lock(mddev))
5305 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5306 			       mdname(mddev));
5307 		else if (mddev->raid_disks || mddev->major_version
5308 			 || !list_empty(&mddev->disks)) {
5309 			printk(KERN_WARNING
5310 				"md: %s already running, cannot run %s\n",
5311 				mdname(mddev), bdevname(rdev0->bdev,b));
5312 			mddev_unlock(mddev);
5313 		} else {
5314 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5315 			mddev->persistent = 1;
5316 			rdev_for_each_list(rdev, tmp, &candidates) {
5317 				list_del_init(&rdev->same_set);
5318 				if (bind_rdev_to_array(rdev, mddev))
5319 					export_rdev(rdev);
5320 			}
5321 			autorun_array(mddev);
5322 			mddev_unlock(mddev);
5323 		}
5324 		/* on success, candidates will be empty, on error
5325 		 * it won't...
5326 		 */
5327 		rdev_for_each_list(rdev, tmp, &candidates) {
5328 			list_del_init(&rdev->same_set);
5329 			export_rdev(rdev);
5330 		}
5331 		mddev_put(mddev);
5332 	}
5333 	printk(KERN_INFO "md: ... autorun DONE.\n");
5334 }
5335 #endif /* !MODULE */
5336 
5337 static int get_version(void __user * arg)
5338 {
5339 	mdu_version_t ver;
5340 
5341 	ver.major = MD_MAJOR_VERSION;
5342 	ver.minor = MD_MINOR_VERSION;
5343 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5344 
5345 	if (copy_to_user(arg, &ver, sizeof(ver)))
5346 		return -EFAULT;
5347 
5348 	return 0;
5349 }
5350 
5351 static int get_array_info(struct mddev * mddev, void __user * arg)
5352 {
5353 	mdu_array_info_t info;
5354 	int nr,working,insync,failed,spare;
5355 	struct md_rdev *rdev;
5356 
5357 	nr=working=insync=failed=spare=0;
5358 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5359 		nr++;
5360 		if (test_bit(Faulty, &rdev->flags))
5361 			failed++;
5362 		else {
5363 			working++;
5364 			if (test_bit(In_sync, &rdev->flags))
5365 				insync++;
5366 			else
5367 				spare++;
5368 		}
5369 	}
5370 
5371 	info.major_version = mddev->major_version;
5372 	info.minor_version = mddev->minor_version;
5373 	info.patch_version = MD_PATCHLEVEL_VERSION;
5374 	info.ctime         = mddev->ctime;
5375 	info.level         = mddev->level;
5376 	info.size          = mddev->dev_sectors / 2;
5377 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5378 		info.size = -1;
5379 	info.nr_disks      = nr;
5380 	info.raid_disks    = mddev->raid_disks;
5381 	info.md_minor      = mddev->md_minor;
5382 	info.not_persistent= !mddev->persistent;
5383 
5384 	info.utime         = mddev->utime;
5385 	info.state         = 0;
5386 	if (mddev->in_sync)
5387 		info.state = (1<<MD_SB_CLEAN);
5388 	if (mddev->bitmap && mddev->bitmap_info.offset)
5389 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5390 	info.active_disks  = insync;
5391 	info.working_disks = working;
5392 	info.failed_disks  = failed;
5393 	info.spare_disks   = spare;
5394 
5395 	info.layout        = mddev->layout;
5396 	info.chunk_size    = mddev->chunk_sectors << 9;
5397 
5398 	if (copy_to_user(arg, &info, sizeof(info)))
5399 		return -EFAULT;
5400 
5401 	return 0;
5402 }
5403 
5404 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5405 {
5406 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5407 	char *ptr, *buf = NULL;
5408 	int err = -ENOMEM;
5409 
5410 	if (md_allow_write(mddev))
5411 		file = kmalloc(sizeof(*file), GFP_NOIO);
5412 	else
5413 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5414 
5415 	if (!file)
5416 		goto out;
5417 
5418 	/* bitmap disabled, zero the first byte and copy out */
5419 	if (!mddev->bitmap || !mddev->bitmap->file) {
5420 		file->pathname[0] = '\0';
5421 		goto copy_out;
5422 	}
5423 
5424 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5425 	if (!buf)
5426 		goto out;
5427 
5428 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5429 	if (IS_ERR(ptr))
5430 		goto out;
5431 
5432 	strcpy(file->pathname, ptr);
5433 
5434 copy_out:
5435 	err = 0;
5436 	if (copy_to_user(arg, file, sizeof(*file)))
5437 		err = -EFAULT;
5438 out:
5439 	kfree(buf);
5440 	kfree(file);
5441 	return err;
5442 }
5443 
5444 static int get_disk_info(struct mddev * mddev, void __user * arg)
5445 {
5446 	mdu_disk_info_t info;
5447 	struct md_rdev *rdev;
5448 
5449 	if (copy_from_user(&info, arg, sizeof(info)))
5450 		return -EFAULT;
5451 
5452 	rdev = find_rdev_nr(mddev, info.number);
5453 	if (rdev) {
5454 		info.major = MAJOR(rdev->bdev->bd_dev);
5455 		info.minor = MINOR(rdev->bdev->bd_dev);
5456 		info.raid_disk = rdev->raid_disk;
5457 		info.state = 0;
5458 		if (test_bit(Faulty, &rdev->flags))
5459 			info.state |= (1<<MD_DISK_FAULTY);
5460 		else if (test_bit(In_sync, &rdev->flags)) {
5461 			info.state |= (1<<MD_DISK_ACTIVE);
5462 			info.state |= (1<<MD_DISK_SYNC);
5463 		}
5464 		if (test_bit(WriteMostly, &rdev->flags))
5465 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5466 	} else {
5467 		info.major = info.minor = 0;
5468 		info.raid_disk = -1;
5469 		info.state = (1<<MD_DISK_REMOVED);
5470 	}
5471 
5472 	if (copy_to_user(arg, &info, sizeof(info)))
5473 		return -EFAULT;
5474 
5475 	return 0;
5476 }
5477 
5478 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5479 {
5480 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5481 	struct md_rdev *rdev;
5482 	dev_t dev = MKDEV(info->major,info->minor);
5483 
5484 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5485 		return -EOVERFLOW;
5486 
5487 	if (!mddev->raid_disks) {
5488 		int err;
5489 		/* expecting a device which has a superblock */
5490 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5491 		if (IS_ERR(rdev)) {
5492 			printk(KERN_WARNING
5493 				"md: md_import_device returned %ld\n",
5494 				PTR_ERR(rdev));
5495 			return PTR_ERR(rdev);
5496 		}
5497 		if (!list_empty(&mddev->disks)) {
5498 			struct md_rdev *rdev0
5499 				= list_entry(mddev->disks.next,
5500 					     struct md_rdev, same_set);
5501 			err = super_types[mddev->major_version]
5502 				.load_super(rdev, rdev0, mddev->minor_version);
5503 			if (err < 0) {
5504 				printk(KERN_WARNING
5505 					"md: %s has different UUID to %s\n",
5506 					bdevname(rdev->bdev,b),
5507 					bdevname(rdev0->bdev,b2));
5508 				export_rdev(rdev);
5509 				return -EINVAL;
5510 			}
5511 		}
5512 		err = bind_rdev_to_array(rdev, mddev);
5513 		if (err)
5514 			export_rdev(rdev);
5515 		return err;
5516 	}
5517 
5518 	/*
5519 	 * add_new_disk can be used once the array is assembled
5520 	 * to add "hot spares".  They must already have a superblock
5521 	 * written
5522 	 */
5523 	if (mddev->pers) {
5524 		int err;
5525 		if (!mddev->pers->hot_add_disk) {
5526 			printk(KERN_WARNING
5527 				"%s: personality does not support diskops!\n",
5528 			       mdname(mddev));
5529 			return -EINVAL;
5530 		}
5531 		if (mddev->persistent)
5532 			rdev = md_import_device(dev, mddev->major_version,
5533 						mddev->minor_version);
5534 		else
5535 			rdev = md_import_device(dev, -1, -1);
5536 		if (IS_ERR(rdev)) {
5537 			printk(KERN_WARNING
5538 				"md: md_import_device returned %ld\n",
5539 				PTR_ERR(rdev));
5540 			return PTR_ERR(rdev);
5541 		}
5542 		/* set saved_raid_disk if appropriate */
5543 		if (!mddev->persistent) {
5544 			if (info->state & (1<<MD_DISK_SYNC)  &&
5545 			    info->raid_disk < mddev->raid_disks) {
5546 				rdev->raid_disk = info->raid_disk;
5547 				set_bit(In_sync, &rdev->flags);
5548 			} else
5549 				rdev->raid_disk = -1;
5550 		} else
5551 			super_types[mddev->major_version].
5552 				validate_super(mddev, rdev);
5553 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5554 		    (!test_bit(In_sync, &rdev->flags) ||
5555 		     rdev->raid_disk != info->raid_disk)) {
5556 			/* This was a hot-add request, but events doesn't
5557 			 * match, so reject it.
5558 			 */
5559 			export_rdev(rdev);
5560 			return -EINVAL;
5561 		}
5562 
5563 		if (test_bit(In_sync, &rdev->flags))
5564 			rdev->saved_raid_disk = rdev->raid_disk;
5565 		else
5566 			rdev->saved_raid_disk = -1;
5567 
5568 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5569 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5570 			set_bit(WriteMostly, &rdev->flags);
5571 		else
5572 			clear_bit(WriteMostly, &rdev->flags);
5573 
5574 		rdev->raid_disk = -1;
5575 		err = bind_rdev_to_array(rdev, mddev);
5576 		if (!err && !mddev->pers->hot_remove_disk) {
5577 			/* If there is hot_add_disk but no hot_remove_disk
5578 			 * then added disks for geometry changes,
5579 			 * and should be added immediately.
5580 			 */
5581 			super_types[mddev->major_version].
5582 				validate_super(mddev, rdev);
5583 			err = mddev->pers->hot_add_disk(mddev, rdev);
5584 			if (err)
5585 				unbind_rdev_from_array(rdev);
5586 		}
5587 		if (err)
5588 			export_rdev(rdev);
5589 		else
5590 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5591 
5592 		md_update_sb(mddev, 1);
5593 		if (mddev->degraded)
5594 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5595 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5596 		if (!err)
5597 			md_new_event(mddev);
5598 		md_wakeup_thread(mddev->thread);
5599 		return err;
5600 	}
5601 
5602 	/* otherwise, add_new_disk is only allowed
5603 	 * for major_version==0 superblocks
5604 	 */
5605 	if (mddev->major_version != 0) {
5606 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5607 		       mdname(mddev));
5608 		return -EINVAL;
5609 	}
5610 
5611 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5612 		int err;
5613 		rdev = md_import_device(dev, -1, 0);
5614 		if (IS_ERR(rdev)) {
5615 			printk(KERN_WARNING
5616 				"md: error, md_import_device() returned %ld\n",
5617 				PTR_ERR(rdev));
5618 			return PTR_ERR(rdev);
5619 		}
5620 		rdev->desc_nr = info->number;
5621 		if (info->raid_disk < mddev->raid_disks)
5622 			rdev->raid_disk = info->raid_disk;
5623 		else
5624 			rdev->raid_disk = -1;
5625 
5626 		if (rdev->raid_disk < mddev->raid_disks)
5627 			if (info->state & (1<<MD_DISK_SYNC))
5628 				set_bit(In_sync, &rdev->flags);
5629 
5630 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5631 			set_bit(WriteMostly, &rdev->flags);
5632 
5633 		if (!mddev->persistent) {
5634 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5635 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5636 		} else
5637 			rdev->sb_start = calc_dev_sboffset(rdev);
5638 		rdev->sectors = rdev->sb_start;
5639 
5640 		err = bind_rdev_to_array(rdev, mddev);
5641 		if (err) {
5642 			export_rdev(rdev);
5643 			return err;
5644 		}
5645 	}
5646 
5647 	return 0;
5648 }
5649 
5650 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5651 {
5652 	char b[BDEVNAME_SIZE];
5653 	struct md_rdev *rdev;
5654 
5655 	rdev = find_rdev(mddev, dev);
5656 	if (!rdev)
5657 		return -ENXIO;
5658 
5659 	if (rdev->raid_disk >= 0)
5660 		goto busy;
5661 
5662 	kick_rdev_from_array(rdev);
5663 	md_update_sb(mddev, 1);
5664 	md_new_event(mddev);
5665 
5666 	return 0;
5667 busy:
5668 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5669 		bdevname(rdev->bdev,b), mdname(mddev));
5670 	return -EBUSY;
5671 }
5672 
5673 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5674 {
5675 	char b[BDEVNAME_SIZE];
5676 	int err;
5677 	struct md_rdev *rdev;
5678 
5679 	if (!mddev->pers)
5680 		return -ENODEV;
5681 
5682 	if (mddev->major_version != 0) {
5683 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5684 			" version-0 superblocks.\n",
5685 			mdname(mddev));
5686 		return -EINVAL;
5687 	}
5688 	if (!mddev->pers->hot_add_disk) {
5689 		printk(KERN_WARNING
5690 			"%s: personality does not support diskops!\n",
5691 			mdname(mddev));
5692 		return -EINVAL;
5693 	}
5694 
5695 	rdev = md_import_device(dev, -1, 0);
5696 	if (IS_ERR(rdev)) {
5697 		printk(KERN_WARNING
5698 			"md: error, md_import_device() returned %ld\n",
5699 			PTR_ERR(rdev));
5700 		return -EINVAL;
5701 	}
5702 
5703 	if (mddev->persistent)
5704 		rdev->sb_start = calc_dev_sboffset(rdev);
5705 	else
5706 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5707 
5708 	rdev->sectors = rdev->sb_start;
5709 
5710 	if (test_bit(Faulty, &rdev->flags)) {
5711 		printk(KERN_WARNING
5712 			"md: can not hot-add faulty %s disk to %s!\n",
5713 			bdevname(rdev->bdev,b), mdname(mddev));
5714 		err = -EINVAL;
5715 		goto abort_export;
5716 	}
5717 	clear_bit(In_sync, &rdev->flags);
5718 	rdev->desc_nr = -1;
5719 	rdev->saved_raid_disk = -1;
5720 	err = bind_rdev_to_array(rdev, mddev);
5721 	if (err)
5722 		goto abort_export;
5723 
5724 	/*
5725 	 * The rest should better be atomic, we can have disk failures
5726 	 * noticed in interrupt contexts ...
5727 	 */
5728 
5729 	rdev->raid_disk = -1;
5730 
5731 	md_update_sb(mddev, 1);
5732 
5733 	/*
5734 	 * Kick recovery, maybe this spare has to be added to the
5735 	 * array immediately.
5736 	 */
5737 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5738 	md_wakeup_thread(mddev->thread);
5739 	md_new_event(mddev);
5740 	return 0;
5741 
5742 abort_export:
5743 	export_rdev(rdev);
5744 	return err;
5745 }
5746 
5747 static int set_bitmap_file(struct mddev *mddev, int fd)
5748 {
5749 	int err;
5750 
5751 	if (mddev->pers) {
5752 		if (!mddev->pers->quiesce)
5753 			return -EBUSY;
5754 		if (mddev->recovery || mddev->sync_thread)
5755 			return -EBUSY;
5756 		/* we should be able to change the bitmap.. */
5757 	}
5758 
5759 
5760 	if (fd >= 0) {
5761 		if (mddev->bitmap)
5762 			return -EEXIST; /* cannot add when bitmap is present */
5763 		mddev->bitmap_info.file = fget(fd);
5764 
5765 		if (mddev->bitmap_info.file == NULL) {
5766 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5767 			       mdname(mddev));
5768 			return -EBADF;
5769 		}
5770 
5771 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5772 		if (err) {
5773 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5774 			       mdname(mddev));
5775 			fput(mddev->bitmap_info.file);
5776 			mddev->bitmap_info.file = NULL;
5777 			return err;
5778 		}
5779 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5780 	} else if (mddev->bitmap == NULL)
5781 		return -ENOENT; /* cannot remove what isn't there */
5782 	err = 0;
5783 	if (mddev->pers) {
5784 		mddev->pers->quiesce(mddev, 1);
5785 		if (fd >= 0) {
5786 			err = bitmap_create(mddev);
5787 			if (!err)
5788 				err = bitmap_load(mddev);
5789 		}
5790 		if (fd < 0 || err) {
5791 			bitmap_destroy(mddev);
5792 			fd = -1; /* make sure to put the file */
5793 		}
5794 		mddev->pers->quiesce(mddev, 0);
5795 	}
5796 	if (fd < 0) {
5797 		if (mddev->bitmap_info.file) {
5798 			restore_bitmap_write_access(mddev->bitmap_info.file);
5799 			fput(mddev->bitmap_info.file);
5800 		}
5801 		mddev->bitmap_info.file = NULL;
5802 	}
5803 
5804 	return err;
5805 }
5806 
5807 /*
5808  * set_array_info is used two different ways
5809  * The original usage is when creating a new array.
5810  * In this usage, raid_disks is > 0 and it together with
5811  *  level, size, not_persistent,layout,chunksize determine the
5812  *  shape of the array.
5813  *  This will always create an array with a type-0.90.0 superblock.
5814  * The newer usage is when assembling an array.
5815  *  In this case raid_disks will be 0, and the major_version field is
5816  *  use to determine which style super-blocks are to be found on the devices.
5817  *  The minor and patch _version numbers are also kept incase the
5818  *  super_block handler wishes to interpret them.
5819  */
5820 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5821 {
5822 
5823 	if (info->raid_disks == 0) {
5824 		/* just setting version number for superblock loading */
5825 		if (info->major_version < 0 ||
5826 		    info->major_version >= ARRAY_SIZE(super_types) ||
5827 		    super_types[info->major_version].name == NULL) {
5828 			/* maybe try to auto-load a module? */
5829 			printk(KERN_INFO
5830 				"md: superblock version %d not known\n",
5831 				info->major_version);
5832 			return -EINVAL;
5833 		}
5834 		mddev->major_version = info->major_version;
5835 		mddev->minor_version = info->minor_version;
5836 		mddev->patch_version = info->patch_version;
5837 		mddev->persistent = !info->not_persistent;
5838 		/* ensure mddev_put doesn't delete this now that there
5839 		 * is some minimal configuration.
5840 		 */
5841 		mddev->ctime         = get_seconds();
5842 		return 0;
5843 	}
5844 	mddev->major_version = MD_MAJOR_VERSION;
5845 	mddev->minor_version = MD_MINOR_VERSION;
5846 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5847 	mddev->ctime         = get_seconds();
5848 
5849 	mddev->level         = info->level;
5850 	mddev->clevel[0]     = 0;
5851 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5852 	mddev->raid_disks    = info->raid_disks;
5853 	/* don't set md_minor, it is determined by which /dev/md* was
5854 	 * openned
5855 	 */
5856 	if (info->state & (1<<MD_SB_CLEAN))
5857 		mddev->recovery_cp = MaxSector;
5858 	else
5859 		mddev->recovery_cp = 0;
5860 	mddev->persistent    = ! info->not_persistent;
5861 	mddev->external	     = 0;
5862 
5863 	mddev->layout        = info->layout;
5864 	mddev->chunk_sectors = info->chunk_size >> 9;
5865 
5866 	mddev->max_disks     = MD_SB_DISKS;
5867 
5868 	if (mddev->persistent)
5869 		mddev->flags         = 0;
5870 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5871 
5872 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5873 	mddev->bitmap_info.offset = 0;
5874 
5875 	mddev->reshape_position = MaxSector;
5876 
5877 	/*
5878 	 * Generate a 128 bit UUID
5879 	 */
5880 	get_random_bytes(mddev->uuid, 16);
5881 
5882 	mddev->new_level = mddev->level;
5883 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5884 	mddev->new_layout = mddev->layout;
5885 	mddev->delta_disks = 0;
5886 
5887 	return 0;
5888 }
5889 
5890 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5891 {
5892 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5893 
5894 	if (mddev->external_size)
5895 		return;
5896 
5897 	mddev->array_sectors = array_sectors;
5898 }
5899 EXPORT_SYMBOL(md_set_array_sectors);
5900 
5901 static int update_size(struct mddev *mddev, sector_t num_sectors)
5902 {
5903 	struct md_rdev *rdev;
5904 	int rv;
5905 	int fit = (num_sectors == 0);
5906 
5907 	if (mddev->pers->resize == NULL)
5908 		return -EINVAL;
5909 	/* The "num_sectors" is the number of sectors of each device that
5910 	 * is used.  This can only make sense for arrays with redundancy.
5911 	 * linear and raid0 always use whatever space is available. We can only
5912 	 * consider changing this number if no resync or reconstruction is
5913 	 * happening, and if the new size is acceptable. It must fit before the
5914 	 * sb_start or, if that is <data_offset, it must fit before the size
5915 	 * of each device.  If num_sectors is zero, we find the largest size
5916 	 * that fits.
5917 	 */
5918 	if (mddev->sync_thread)
5919 		return -EBUSY;
5920 	if (mddev->bitmap)
5921 		/* Sorry, cannot grow a bitmap yet, just remove it,
5922 		 * grow, and re-add.
5923 		 */
5924 		return -EBUSY;
5925 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5926 		sector_t avail = rdev->sectors;
5927 
5928 		if (fit && (num_sectors == 0 || num_sectors > avail))
5929 			num_sectors = avail;
5930 		if (avail < num_sectors)
5931 			return -ENOSPC;
5932 	}
5933 	rv = mddev->pers->resize(mddev, num_sectors);
5934 	if (!rv)
5935 		revalidate_disk(mddev->gendisk);
5936 	return rv;
5937 }
5938 
5939 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5940 {
5941 	int rv;
5942 	/* change the number of raid disks */
5943 	if (mddev->pers->check_reshape == NULL)
5944 		return -EINVAL;
5945 	if (raid_disks <= 0 ||
5946 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
5947 		return -EINVAL;
5948 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5949 		return -EBUSY;
5950 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5951 
5952 	rv = mddev->pers->check_reshape(mddev);
5953 	if (rv < 0)
5954 		mddev->delta_disks = 0;
5955 	return rv;
5956 }
5957 
5958 
5959 /*
5960  * update_array_info is used to change the configuration of an
5961  * on-line array.
5962  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5963  * fields in the info are checked against the array.
5964  * Any differences that cannot be handled will cause an error.
5965  * Normally, only one change can be managed at a time.
5966  */
5967 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5968 {
5969 	int rv = 0;
5970 	int cnt = 0;
5971 	int state = 0;
5972 
5973 	/* calculate expected state,ignoring low bits */
5974 	if (mddev->bitmap && mddev->bitmap_info.offset)
5975 		state |= (1 << MD_SB_BITMAP_PRESENT);
5976 
5977 	if (mddev->major_version != info->major_version ||
5978 	    mddev->minor_version != info->minor_version ||
5979 /*	    mddev->patch_version != info->patch_version || */
5980 	    mddev->ctime         != info->ctime         ||
5981 	    mddev->level         != info->level         ||
5982 /*	    mddev->layout        != info->layout        || */
5983 	    !mddev->persistent	 != info->not_persistent||
5984 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
5985 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5986 	    ((state^info->state) & 0xfffffe00)
5987 		)
5988 		return -EINVAL;
5989 	/* Check there is only one change */
5990 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5991 		cnt++;
5992 	if (mddev->raid_disks != info->raid_disks)
5993 		cnt++;
5994 	if (mddev->layout != info->layout)
5995 		cnt++;
5996 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5997 		cnt++;
5998 	if (cnt == 0)
5999 		return 0;
6000 	if (cnt > 1)
6001 		return -EINVAL;
6002 
6003 	if (mddev->layout != info->layout) {
6004 		/* Change layout
6005 		 * we don't need to do anything at the md level, the
6006 		 * personality will take care of it all.
6007 		 */
6008 		if (mddev->pers->check_reshape == NULL)
6009 			return -EINVAL;
6010 		else {
6011 			mddev->new_layout = info->layout;
6012 			rv = mddev->pers->check_reshape(mddev);
6013 			if (rv)
6014 				mddev->new_layout = mddev->layout;
6015 			return rv;
6016 		}
6017 	}
6018 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6019 		rv = update_size(mddev, (sector_t)info->size * 2);
6020 
6021 	if (mddev->raid_disks    != info->raid_disks)
6022 		rv = update_raid_disks(mddev, info->raid_disks);
6023 
6024 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6025 		if (mddev->pers->quiesce == NULL)
6026 			return -EINVAL;
6027 		if (mddev->recovery || mddev->sync_thread)
6028 			return -EBUSY;
6029 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6030 			/* add the bitmap */
6031 			if (mddev->bitmap)
6032 				return -EEXIST;
6033 			if (mddev->bitmap_info.default_offset == 0)
6034 				return -EINVAL;
6035 			mddev->bitmap_info.offset =
6036 				mddev->bitmap_info.default_offset;
6037 			mddev->pers->quiesce(mddev, 1);
6038 			rv = bitmap_create(mddev);
6039 			if (!rv)
6040 				rv = bitmap_load(mddev);
6041 			if (rv)
6042 				bitmap_destroy(mddev);
6043 			mddev->pers->quiesce(mddev, 0);
6044 		} else {
6045 			/* remove the bitmap */
6046 			if (!mddev->bitmap)
6047 				return -ENOENT;
6048 			if (mddev->bitmap->file)
6049 				return -EINVAL;
6050 			mddev->pers->quiesce(mddev, 1);
6051 			bitmap_destroy(mddev);
6052 			mddev->pers->quiesce(mddev, 0);
6053 			mddev->bitmap_info.offset = 0;
6054 		}
6055 	}
6056 	md_update_sb(mddev, 1);
6057 	return rv;
6058 }
6059 
6060 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6061 {
6062 	struct md_rdev *rdev;
6063 
6064 	if (mddev->pers == NULL)
6065 		return -ENODEV;
6066 
6067 	rdev = find_rdev(mddev, dev);
6068 	if (!rdev)
6069 		return -ENODEV;
6070 
6071 	md_error(mddev, rdev);
6072 	if (!test_bit(Faulty, &rdev->flags))
6073 		return -EBUSY;
6074 	return 0;
6075 }
6076 
6077 /*
6078  * We have a problem here : there is no easy way to give a CHS
6079  * virtual geometry. We currently pretend that we have a 2 heads
6080  * 4 sectors (with a BIG number of cylinders...). This drives
6081  * dosfs just mad... ;-)
6082  */
6083 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6084 {
6085 	struct mddev *mddev = bdev->bd_disk->private_data;
6086 
6087 	geo->heads = 2;
6088 	geo->sectors = 4;
6089 	geo->cylinders = mddev->array_sectors / 8;
6090 	return 0;
6091 }
6092 
6093 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6094 			unsigned int cmd, unsigned long arg)
6095 {
6096 	int err = 0;
6097 	void __user *argp = (void __user *)arg;
6098 	struct mddev *mddev = NULL;
6099 	int ro;
6100 
6101 	switch (cmd) {
6102 	case RAID_VERSION:
6103 	case GET_ARRAY_INFO:
6104 	case GET_DISK_INFO:
6105 		break;
6106 	default:
6107 		if (!capable(CAP_SYS_ADMIN))
6108 			return -EACCES;
6109 	}
6110 
6111 	/*
6112 	 * Commands dealing with the RAID driver but not any
6113 	 * particular array:
6114 	 */
6115 	switch (cmd)
6116 	{
6117 		case RAID_VERSION:
6118 			err = get_version(argp);
6119 			goto done;
6120 
6121 		case PRINT_RAID_DEBUG:
6122 			err = 0;
6123 			md_print_devices();
6124 			goto done;
6125 
6126 #ifndef MODULE
6127 		case RAID_AUTORUN:
6128 			err = 0;
6129 			autostart_arrays(arg);
6130 			goto done;
6131 #endif
6132 		default:;
6133 	}
6134 
6135 	/*
6136 	 * Commands creating/starting a new array:
6137 	 */
6138 
6139 	mddev = bdev->bd_disk->private_data;
6140 
6141 	if (!mddev) {
6142 		BUG();
6143 		goto abort;
6144 	}
6145 
6146 	err = mddev_lock(mddev);
6147 	if (err) {
6148 		printk(KERN_INFO
6149 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6150 			err, cmd);
6151 		goto abort;
6152 	}
6153 
6154 	switch (cmd)
6155 	{
6156 		case SET_ARRAY_INFO:
6157 			{
6158 				mdu_array_info_t info;
6159 				if (!arg)
6160 					memset(&info, 0, sizeof(info));
6161 				else if (copy_from_user(&info, argp, sizeof(info))) {
6162 					err = -EFAULT;
6163 					goto abort_unlock;
6164 				}
6165 				if (mddev->pers) {
6166 					err = update_array_info(mddev, &info);
6167 					if (err) {
6168 						printk(KERN_WARNING "md: couldn't update"
6169 						       " array info. %d\n", err);
6170 						goto abort_unlock;
6171 					}
6172 					goto done_unlock;
6173 				}
6174 				if (!list_empty(&mddev->disks)) {
6175 					printk(KERN_WARNING
6176 					       "md: array %s already has disks!\n",
6177 					       mdname(mddev));
6178 					err = -EBUSY;
6179 					goto abort_unlock;
6180 				}
6181 				if (mddev->raid_disks) {
6182 					printk(KERN_WARNING
6183 					       "md: array %s already initialised!\n",
6184 					       mdname(mddev));
6185 					err = -EBUSY;
6186 					goto abort_unlock;
6187 				}
6188 				err = set_array_info(mddev, &info);
6189 				if (err) {
6190 					printk(KERN_WARNING "md: couldn't set"
6191 					       " array info. %d\n", err);
6192 					goto abort_unlock;
6193 				}
6194 			}
6195 			goto done_unlock;
6196 
6197 		default:;
6198 	}
6199 
6200 	/*
6201 	 * Commands querying/configuring an existing array:
6202 	 */
6203 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6204 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6205 	if ((!mddev->raid_disks && !mddev->external)
6206 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6207 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6208 	    && cmd != GET_BITMAP_FILE) {
6209 		err = -ENODEV;
6210 		goto abort_unlock;
6211 	}
6212 
6213 	/*
6214 	 * Commands even a read-only array can execute:
6215 	 */
6216 	switch (cmd)
6217 	{
6218 		case GET_ARRAY_INFO:
6219 			err = get_array_info(mddev, argp);
6220 			goto done_unlock;
6221 
6222 		case GET_BITMAP_FILE:
6223 			err = get_bitmap_file(mddev, argp);
6224 			goto done_unlock;
6225 
6226 		case GET_DISK_INFO:
6227 			err = get_disk_info(mddev, argp);
6228 			goto done_unlock;
6229 
6230 		case RESTART_ARRAY_RW:
6231 			err = restart_array(mddev);
6232 			goto done_unlock;
6233 
6234 		case STOP_ARRAY:
6235 			err = do_md_stop(mddev, 0, 1);
6236 			goto done_unlock;
6237 
6238 		case STOP_ARRAY_RO:
6239 			err = md_set_readonly(mddev, 1);
6240 			goto done_unlock;
6241 
6242 		case BLKROSET:
6243 			if (get_user(ro, (int __user *)(arg))) {
6244 				err = -EFAULT;
6245 				goto done_unlock;
6246 			}
6247 			err = -EINVAL;
6248 
6249 			/* if the bdev is going readonly the value of mddev->ro
6250 			 * does not matter, no writes are coming
6251 			 */
6252 			if (ro)
6253 				goto done_unlock;
6254 
6255 			/* are we are already prepared for writes? */
6256 			if (mddev->ro != 1)
6257 				goto done_unlock;
6258 
6259 			/* transitioning to readauto need only happen for
6260 			 * arrays that call md_write_start
6261 			 */
6262 			if (mddev->pers) {
6263 				err = restart_array(mddev);
6264 				if (err == 0) {
6265 					mddev->ro = 2;
6266 					set_disk_ro(mddev->gendisk, 0);
6267 				}
6268 			}
6269 			goto done_unlock;
6270 	}
6271 
6272 	/*
6273 	 * The remaining ioctls are changing the state of the
6274 	 * superblock, so we do not allow them on read-only arrays.
6275 	 * However non-MD ioctls (e.g. get-size) will still come through
6276 	 * here and hit the 'default' below, so only disallow
6277 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6278 	 */
6279 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6280 		if (mddev->ro == 2) {
6281 			mddev->ro = 0;
6282 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6283 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6284 			md_wakeup_thread(mddev->thread);
6285 		} else {
6286 			err = -EROFS;
6287 			goto abort_unlock;
6288 		}
6289 	}
6290 
6291 	switch (cmd)
6292 	{
6293 		case ADD_NEW_DISK:
6294 		{
6295 			mdu_disk_info_t info;
6296 			if (copy_from_user(&info, argp, sizeof(info)))
6297 				err = -EFAULT;
6298 			else
6299 				err = add_new_disk(mddev, &info);
6300 			goto done_unlock;
6301 		}
6302 
6303 		case HOT_REMOVE_DISK:
6304 			err = hot_remove_disk(mddev, new_decode_dev(arg));
6305 			goto done_unlock;
6306 
6307 		case HOT_ADD_DISK:
6308 			err = hot_add_disk(mddev, new_decode_dev(arg));
6309 			goto done_unlock;
6310 
6311 		case SET_DISK_FAULTY:
6312 			err = set_disk_faulty(mddev, new_decode_dev(arg));
6313 			goto done_unlock;
6314 
6315 		case RUN_ARRAY:
6316 			err = do_md_run(mddev);
6317 			goto done_unlock;
6318 
6319 		case SET_BITMAP_FILE:
6320 			err = set_bitmap_file(mddev, (int)arg);
6321 			goto done_unlock;
6322 
6323 		default:
6324 			err = -EINVAL;
6325 			goto abort_unlock;
6326 	}
6327 
6328 done_unlock:
6329 abort_unlock:
6330 	if (mddev->hold_active == UNTIL_IOCTL &&
6331 	    err != -EINVAL)
6332 		mddev->hold_active = 0;
6333 	mddev_unlock(mddev);
6334 
6335 	return err;
6336 done:
6337 	if (err)
6338 		MD_BUG();
6339 abort:
6340 	return err;
6341 }
6342 #ifdef CONFIG_COMPAT
6343 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6344 		    unsigned int cmd, unsigned long arg)
6345 {
6346 	switch (cmd) {
6347 	case HOT_REMOVE_DISK:
6348 	case HOT_ADD_DISK:
6349 	case SET_DISK_FAULTY:
6350 	case SET_BITMAP_FILE:
6351 		/* These take in integer arg, do not convert */
6352 		break;
6353 	default:
6354 		arg = (unsigned long)compat_ptr(arg);
6355 		break;
6356 	}
6357 
6358 	return md_ioctl(bdev, mode, cmd, arg);
6359 }
6360 #endif /* CONFIG_COMPAT */
6361 
6362 static int md_open(struct block_device *bdev, fmode_t mode)
6363 {
6364 	/*
6365 	 * Succeed if we can lock the mddev, which confirms that
6366 	 * it isn't being stopped right now.
6367 	 */
6368 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6369 	int err;
6370 
6371 	if (mddev->gendisk != bdev->bd_disk) {
6372 		/* we are racing with mddev_put which is discarding this
6373 		 * bd_disk.
6374 		 */
6375 		mddev_put(mddev);
6376 		/* Wait until bdev->bd_disk is definitely gone */
6377 		flush_workqueue(md_misc_wq);
6378 		/* Then retry the open from the top */
6379 		return -ERESTARTSYS;
6380 	}
6381 	BUG_ON(mddev != bdev->bd_disk->private_data);
6382 
6383 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6384 		goto out;
6385 
6386 	err = 0;
6387 	atomic_inc(&mddev->openers);
6388 	mutex_unlock(&mddev->open_mutex);
6389 
6390 	check_disk_change(bdev);
6391  out:
6392 	return err;
6393 }
6394 
6395 static int md_release(struct gendisk *disk, fmode_t mode)
6396 {
6397  	struct mddev *mddev = disk->private_data;
6398 
6399 	BUG_ON(!mddev);
6400 	atomic_dec(&mddev->openers);
6401 	mddev_put(mddev);
6402 
6403 	return 0;
6404 }
6405 
6406 static int md_media_changed(struct gendisk *disk)
6407 {
6408 	struct mddev *mddev = disk->private_data;
6409 
6410 	return mddev->changed;
6411 }
6412 
6413 static int md_revalidate(struct gendisk *disk)
6414 {
6415 	struct mddev *mddev = disk->private_data;
6416 
6417 	mddev->changed = 0;
6418 	return 0;
6419 }
6420 static const struct block_device_operations md_fops =
6421 {
6422 	.owner		= THIS_MODULE,
6423 	.open		= md_open,
6424 	.release	= md_release,
6425 	.ioctl		= md_ioctl,
6426 #ifdef CONFIG_COMPAT
6427 	.compat_ioctl	= md_compat_ioctl,
6428 #endif
6429 	.getgeo		= md_getgeo,
6430 	.media_changed  = md_media_changed,
6431 	.revalidate_disk= md_revalidate,
6432 };
6433 
6434 static int md_thread(void * arg)
6435 {
6436 	struct md_thread *thread = arg;
6437 
6438 	/*
6439 	 * md_thread is a 'system-thread', it's priority should be very
6440 	 * high. We avoid resource deadlocks individually in each
6441 	 * raid personality. (RAID5 does preallocation) We also use RR and
6442 	 * the very same RT priority as kswapd, thus we will never get
6443 	 * into a priority inversion deadlock.
6444 	 *
6445 	 * we definitely have to have equal or higher priority than
6446 	 * bdflush, otherwise bdflush will deadlock if there are too
6447 	 * many dirty RAID5 blocks.
6448 	 */
6449 
6450 	allow_signal(SIGKILL);
6451 	while (!kthread_should_stop()) {
6452 
6453 		/* We need to wait INTERRUPTIBLE so that
6454 		 * we don't add to the load-average.
6455 		 * That means we need to be sure no signals are
6456 		 * pending
6457 		 */
6458 		if (signal_pending(current))
6459 			flush_signals(current);
6460 
6461 		wait_event_interruptible_timeout
6462 			(thread->wqueue,
6463 			 test_bit(THREAD_WAKEUP, &thread->flags)
6464 			 || kthread_should_stop(),
6465 			 thread->timeout);
6466 
6467 		clear_bit(THREAD_WAKEUP, &thread->flags);
6468 		if (!kthread_should_stop())
6469 			thread->run(thread->mddev);
6470 	}
6471 
6472 	return 0;
6473 }
6474 
6475 void md_wakeup_thread(struct md_thread *thread)
6476 {
6477 	if (thread) {
6478 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6479 		set_bit(THREAD_WAKEUP, &thread->flags);
6480 		wake_up(&thread->wqueue);
6481 	}
6482 }
6483 
6484 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6485 				 const char *name)
6486 {
6487 	struct md_thread *thread;
6488 
6489 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6490 	if (!thread)
6491 		return NULL;
6492 
6493 	init_waitqueue_head(&thread->wqueue);
6494 
6495 	thread->run = run;
6496 	thread->mddev = mddev;
6497 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6498 	thread->tsk = kthread_run(md_thread, thread,
6499 				  "%s_%s",
6500 				  mdname(thread->mddev),
6501 				  name ?: mddev->pers->name);
6502 	if (IS_ERR(thread->tsk)) {
6503 		kfree(thread);
6504 		return NULL;
6505 	}
6506 	return thread;
6507 }
6508 
6509 void md_unregister_thread(struct md_thread **threadp)
6510 {
6511 	struct md_thread *thread = *threadp;
6512 	if (!thread)
6513 		return;
6514 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6515 	/* Locking ensures that mddev_unlock does not wake_up a
6516 	 * non-existent thread
6517 	 */
6518 	spin_lock(&pers_lock);
6519 	*threadp = NULL;
6520 	spin_unlock(&pers_lock);
6521 
6522 	kthread_stop(thread->tsk);
6523 	kfree(thread);
6524 }
6525 
6526 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6527 {
6528 	if (!mddev) {
6529 		MD_BUG();
6530 		return;
6531 	}
6532 
6533 	if (!rdev || test_bit(Faulty, &rdev->flags))
6534 		return;
6535 
6536 	if (!mddev->pers || !mddev->pers->error_handler)
6537 		return;
6538 	mddev->pers->error_handler(mddev,rdev);
6539 	if (mddev->degraded)
6540 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6541 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6542 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6543 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6544 	md_wakeup_thread(mddev->thread);
6545 	if (mddev->event_work.func)
6546 		queue_work(md_misc_wq, &mddev->event_work);
6547 	md_new_event_inintr(mddev);
6548 }
6549 
6550 /* seq_file implementation /proc/mdstat */
6551 
6552 static void status_unused(struct seq_file *seq)
6553 {
6554 	int i = 0;
6555 	struct md_rdev *rdev;
6556 
6557 	seq_printf(seq, "unused devices: ");
6558 
6559 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6560 		char b[BDEVNAME_SIZE];
6561 		i++;
6562 		seq_printf(seq, "%s ",
6563 			      bdevname(rdev->bdev,b));
6564 	}
6565 	if (!i)
6566 		seq_printf(seq, "<none>");
6567 
6568 	seq_printf(seq, "\n");
6569 }
6570 
6571 
6572 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6573 {
6574 	sector_t max_sectors, resync, res;
6575 	unsigned long dt, db;
6576 	sector_t rt;
6577 	int scale;
6578 	unsigned int per_milli;
6579 
6580 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6581 
6582 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6583 		max_sectors = mddev->resync_max_sectors;
6584 	else
6585 		max_sectors = mddev->dev_sectors;
6586 
6587 	/*
6588 	 * Should not happen.
6589 	 */
6590 	if (!max_sectors) {
6591 		MD_BUG();
6592 		return;
6593 	}
6594 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6595 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6596 	 * u32, as those are the requirements for sector_div.
6597 	 * Thus 'scale' must be at least 10
6598 	 */
6599 	scale = 10;
6600 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6601 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6602 			scale++;
6603 	}
6604 	res = (resync>>scale)*1000;
6605 	sector_div(res, (u32)((max_sectors>>scale)+1));
6606 
6607 	per_milli = res;
6608 	{
6609 		int i, x = per_milli/50, y = 20-x;
6610 		seq_printf(seq, "[");
6611 		for (i = 0; i < x; i++)
6612 			seq_printf(seq, "=");
6613 		seq_printf(seq, ">");
6614 		for (i = 0; i < y; i++)
6615 			seq_printf(seq, ".");
6616 		seq_printf(seq, "] ");
6617 	}
6618 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6619 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6620 		    "reshape" :
6621 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6622 		     "check" :
6623 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6624 		      "resync" : "recovery"))),
6625 		   per_milli/10, per_milli % 10,
6626 		   (unsigned long long) resync/2,
6627 		   (unsigned long long) max_sectors/2);
6628 
6629 	/*
6630 	 * dt: time from mark until now
6631 	 * db: blocks written from mark until now
6632 	 * rt: remaining time
6633 	 *
6634 	 * rt is a sector_t, so could be 32bit or 64bit.
6635 	 * So we divide before multiply in case it is 32bit and close
6636 	 * to the limit.
6637 	 * We scale the divisor (db) by 32 to avoid losing precision
6638 	 * near the end of resync when the number of remaining sectors
6639 	 * is close to 'db'.
6640 	 * We then divide rt by 32 after multiplying by db to compensate.
6641 	 * The '+1' avoids division by zero if db is very small.
6642 	 */
6643 	dt = ((jiffies - mddev->resync_mark) / HZ);
6644 	if (!dt) dt++;
6645 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6646 		- mddev->resync_mark_cnt;
6647 
6648 	rt = max_sectors - resync;    /* number of remaining sectors */
6649 	sector_div(rt, db/32+1);
6650 	rt *= dt;
6651 	rt >>= 5;
6652 
6653 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6654 		   ((unsigned long)rt % 60)/6);
6655 
6656 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6657 }
6658 
6659 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6660 {
6661 	struct list_head *tmp;
6662 	loff_t l = *pos;
6663 	struct mddev *mddev;
6664 
6665 	if (l >= 0x10000)
6666 		return NULL;
6667 	if (!l--)
6668 		/* header */
6669 		return (void*)1;
6670 
6671 	spin_lock(&all_mddevs_lock);
6672 	list_for_each(tmp,&all_mddevs)
6673 		if (!l--) {
6674 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6675 			mddev_get(mddev);
6676 			spin_unlock(&all_mddevs_lock);
6677 			return mddev;
6678 		}
6679 	spin_unlock(&all_mddevs_lock);
6680 	if (!l--)
6681 		return (void*)2;/* tail */
6682 	return NULL;
6683 }
6684 
6685 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6686 {
6687 	struct list_head *tmp;
6688 	struct mddev *next_mddev, *mddev = v;
6689 
6690 	++*pos;
6691 	if (v == (void*)2)
6692 		return NULL;
6693 
6694 	spin_lock(&all_mddevs_lock);
6695 	if (v == (void*)1)
6696 		tmp = all_mddevs.next;
6697 	else
6698 		tmp = mddev->all_mddevs.next;
6699 	if (tmp != &all_mddevs)
6700 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6701 	else {
6702 		next_mddev = (void*)2;
6703 		*pos = 0x10000;
6704 	}
6705 	spin_unlock(&all_mddevs_lock);
6706 
6707 	if (v != (void*)1)
6708 		mddev_put(mddev);
6709 	return next_mddev;
6710 
6711 }
6712 
6713 static void md_seq_stop(struct seq_file *seq, void *v)
6714 {
6715 	struct mddev *mddev = v;
6716 
6717 	if (mddev && v != (void*)1 && v != (void*)2)
6718 		mddev_put(mddev);
6719 }
6720 
6721 static int md_seq_show(struct seq_file *seq, void *v)
6722 {
6723 	struct mddev *mddev = v;
6724 	sector_t sectors;
6725 	struct md_rdev *rdev;
6726 	struct bitmap *bitmap;
6727 
6728 	if (v == (void*)1) {
6729 		struct md_personality *pers;
6730 		seq_printf(seq, "Personalities : ");
6731 		spin_lock(&pers_lock);
6732 		list_for_each_entry(pers, &pers_list, list)
6733 			seq_printf(seq, "[%s] ", pers->name);
6734 
6735 		spin_unlock(&pers_lock);
6736 		seq_printf(seq, "\n");
6737 		seq->poll_event = atomic_read(&md_event_count);
6738 		return 0;
6739 	}
6740 	if (v == (void*)2) {
6741 		status_unused(seq);
6742 		return 0;
6743 	}
6744 
6745 	if (mddev_lock(mddev) < 0)
6746 		return -EINTR;
6747 
6748 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6749 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6750 						mddev->pers ? "" : "in");
6751 		if (mddev->pers) {
6752 			if (mddev->ro==1)
6753 				seq_printf(seq, " (read-only)");
6754 			if (mddev->ro==2)
6755 				seq_printf(seq, " (auto-read-only)");
6756 			seq_printf(seq, " %s", mddev->pers->name);
6757 		}
6758 
6759 		sectors = 0;
6760 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6761 			char b[BDEVNAME_SIZE];
6762 			seq_printf(seq, " %s[%d]",
6763 				bdevname(rdev->bdev,b), rdev->desc_nr);
6764 			if (test_bit(WriteMostly, &rdev->flags))
6765 				seq_printf(seq, "(W)");
6766 			if (test_bit(Faulty, &rdev->flags)) {
6767 				seq_printf(seq, "(F)");
6768 				continue;
6769 			}
6770 			if (rdev->raid_disk < 0)
6771 				seq_printf(seq, "(S)"); /* spare */
6772 			if (test_bit(Replacement, &rdev->flags))
6773 				seq_printf(seq, "(R)");
6774 			sectors += rdev->sectors;
6775 		}
6776 
6777 		if (!list_empty(&mddev->disks)) {
6778 			if (mddev->pers)
6779 				seq_printf(seq, "\n      %llu blocks",
6780 					   (unsigned long long)
6781 					   mddev->array_sectors / 2);
6782 			else
6783 				seq_printf(seq, "\n      %llu blocks",
6784 					   (unsigned long long)sectors / 2);
6785 		}
6786 		if (mddev->persistent) {
6787 			if (mddev->major_version != 0 ||
6788 			    mddev->minor_version != 90) {
6789 				seq_printf(seq," super %d.%d",
6790 					   mddev->major_version,
6791 					   mddev->minor_version);
6792 			}
6793 		} else if (mddev->external)
6794 			seq_printf(seq, " super external:%s",
6795 				   mddev->metadata_type);
6796 		else
6797 			seq_printf(seq, " super non-persistent");
6798 
6799 		if (mddev->pers) {
6800 			mddev->pers->status(seq, mddev);
6801 	 		seq_printf(seq, "\n      ");
6802 			if (mddev->pers->sync_request) {
6803 				if (mddev->curr_resync > 2) {
6804 					status_resync(seq, mddev);
6805 					seq_printf(seq, "\n      ");
6806 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6807 					seq_printf(seq, "\tresync=DELAYED\n      ");
6808 				else if (mddev->recovery_cp < MaxSector)
6809 					seq_printf(seq, "\tresync=PENDING\n      ");
6810 			}
6811 		} else
6812 			seq_printf(seq, "\n       ");
6813 
6814 		if ((bitmap = mddev->bitmap)) {
6815 			unsigned long chunk_kb;
6816 			unsigned long flags;
6817 			spin_lock_irqsave(&bitmap->lock, flags);
6818 			chunk_kb = mddev->bitmap_info.chunksize >> 10;
6819 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6820 				"%lu%s chunk",
6821 				bitmap->pages - bitmap->missing_pages,
6822 				bitmap->pages,
6823 				(bitmap->pages - bitmap->missing_pages)
6824 					<< (PAGE_SHIFT - 10),
6825 				chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6826 				chunk_kb ? "KB" : "B");
6827 			if (bitmap->file) {
6828 				seq_printf(seq, ", file: ");
6829 				seq_path(seq, &bitmap->file->f_path, " \t\n");
6830 			}
6831 
6832 			seq_printf(seq, "\n");
6833 			spin_unlock_irqrestore(&bitmap->lock, flags);
6834 		}
6835 
6836 		seq_printf(seq, "\n");
6837 	}
6838 	mddev_unlock(mddev);
6839 
6840 	return 0;
6841 }
6842 
6843 static const struct seq_operations md_seq_ops = {
6844 	.start  = md_seq_start,
6845 	.next   = md_seq_next,
6846 	.stop   = md_seq_stop,
6847 	.show   = md_seq_show,
6848 };
6849 
6850 static int md_seq_open(struct inode *inode, struct file *file)
6851 {
6852 	struct seq_file *seq;
6853 	int error;
6854 
6855 	error = seq_open(file, &md_seq_ops);
6856 	if (error)
6857 		return error;
6858 
6859 	seq = file->private_data;
6860 	seq->poll_event = atomic_read(&md_event_count);
6861 	return error;
6862 }
6863 
6864 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6865 {
6866 	struct seq_file *seq = filp->private_data;
6867 	int mask;
6868 
6869 	poll_wait(filp, &md_event_waiters, wait);
6870 
6871 	/* always allow read */
6872 	mask = POLLIN | POLLRDNORM;
6873 
6874 	if (seq->poll_event != atomic_read(&md_event_count))
6875 		mask |= POLLERR | POLLPRI;
6876 	return mask;
6877 }
6878 
6879 static const struct file_operations md_seq_fops = {
6880 	.owner		= THIS_MODULE,
6881 	.open           = md_seq_open,
6882 	.read           = seq_read,
6883 	.llseek         = seq_lseek,
6884 	.release	= seq_release_private,
6885 	.poll		= mdstat_poll,
6886 };
6887 
6888 int register_md_personality(struct md_personality *p)
6889 {
6890 	spin_lock(&pers_lock);
6891 	list_add_tail(&p->list, &pers_list);
6892 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6893 	spin_unlock(&pers_lock);
6894 	return 0;
6895 }
6896 
6897 int unregister_md_personality(struct md_personality *p)
6898 {
6899 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6900 	spin_lock(&pers_lock);
6901 	list_del_init(&p->list);
6902 	spin_unlock(&pers_lock);
6903 	return 0;
6904 }
6905 
6906 static int is_mddev_idle(struct mddev *mddev, int init)
6907 {
6908 	struct md_rdev * rdev;
6909 	int idle;
6910 	int curr_events;
6911 
6912 	idle = 1;
6913 	rcu_read_lock();
6914 	rdev_for_each_rcu(rdev, mddev) {
6915 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6916 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6917 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6918 			      atomic_read(&disk->sync_io);
6919 		/* sync IO will cause sync_io to increase before the disk_stats
6920 		 * as sync_io is counted when a request starts, and
6921 		 * disk_stats is counted when it completes.
6922 		 * So resync activity will cause curr_events to be smaller than
6923 		 * when there was no such activity.
6924 		 * non-sync IO will cause disk_stat to increase without
6925 		 * increasing sync_io so curr_events will (eventually)
6926 		 * be larger than it was before.  Once it becomes
6927 		 * substantially larger, the test below will cause
6928 		 * the array to appear non-idle, and resync will slow
6929 		 * down.
6930 		 * If there is a lot of outstanding resync activity when
6931 		 * we set last_event to curr_events, then all that activity
6932 		 * completing might cause the array to appear non-idle
6933 		 * and resync will be slowed down even though there might
6934 		 * not have been non-resync activity.  This will only
6935 		 * happen once though.  'last_events' will soon reflect
6936 		 * the state where there is little or no outstanding
6937 		 * resync requests, and further resync activity will
6938 		 * always make curr_events less than last_events.
6939 		 *
6940 		 */
6941 		if (init || curr_events - rdev->last_events > 64) {
6942 			rdev->last_events = curr_events;
6943 			idle = 0;
6944 		}
6945 	}
6946 	rcu_read_unlock();
6947 	return idle;
6948 }
6949 
6950 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6951 {
6952 	/* another "blocks" (512byte) blocks have been synced */
6953 	atomic_sub(blocks, &mddev->recovery_active);
6954 	wake_up(&mddev->recovery_wait);
6955 	if (!ok) {
6956 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6957 		md_wakeup_thread(mddev->thread);
6958 		// stop recovery, signal do_sync ....
6959 	}
6960 }
6961 
6962 
6963 /* md_write_start(mddev, bi)
6964  * If we need to update some array metadata (e.g. 'active' flag
6965  * in superblock) before writing, schedule a superblock update
6966  * and wait for it to complete.
6967  */
6968 void md_write_start(struct mddev *mddev, struct bio *bi)
6969 {
6970 	int did_change = 0;
6971 	if (bio_data_dir(bi) != WRITE)
6972 		return;
6973 
6974 	BUG_ON(mddev->ro == 1);
6975 	if (mddev->ro == 2) {
6976 		/* need to switch to read/write */
6977 		mddev->ro = 0;
6978 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6979 		md_wakeup_thread(mddev->thread);
6980 		md_wakeup_thread(mddev->sync_thread);
6981 		did_change = 1;
6982 	}
6983 	atomic_inc(&mddev->writes_pending);
6984 	if (mddev->safemode == 1)
6985 		mddev->safemode = 0;
6986 	if (mddev->in_sync) {
6987 		spin_lock_irq(&mddev->write_lock);
6988 		if (mddev->in_sync) {
6989 			mddev->in_sync = 0;
6990 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6991 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
6992 			md_wakeup_thread(mddev->thread);
6993 			did_change = 1;
6994 		}
6995 		spin_unlock_irq(&mddev->write_lock);
6996 	}
6997 	if (did_change)
6998 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6999 	wait_event(mddev->sb_wait,
7000 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7001 }
7002 
7003 void md_write_end(struct mddev *mddev)
7004 {
7005 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7006 		if (mddev->safemode == 2)
7007 			md_wakeup_thread(mddev->thread);
7008 		else if (mddev->safemode_delay)
7009 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7010 	}
7011 }
7012 
7013 /* md_allow_write(mddev)
7014  * Calling this ensures that the array is marked 'active' so that writes
7015  * may proceed without blocking.  It is important to call this before
7016  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7017  * Must be called with mddev_lock held.
7018  *
7019  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7020  * is dropped, so return -EAGAIN after notifying userspace.
7021  */
7022 int md_allow_write(struct mddev *mddev)
7023 {
7024 	if (!mddev->pers)
7025 		return 0;
7026 	if (mddev->ro)
7027 		return 0;
7028 	if (!mddev->pers->sync_request)
7029 		return 0;
7030 
7031 	spin_lock_irq(&mddev->write_lock);
7032 	if (mddev->in_sync) {
7033 		mddev->in_sync = 0;
7034 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7035 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7036 		if (mddev->safemode_delay &&
7037 		    mddev->safemode == 0)
7038 			mddev->safemode = 1;
7039 		spin_unlock_irq(&mddev->write_lock);
7040 		md_update_sb(mddev, 0);
7041 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7042 	} else
7043 		spin_unlock_irq(&mddev->write_lock);
7044 
7045 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7046 		return -EAGAIN;
7047 	else
7048 		return 0;
7049 }
7050 EXPORT_SYMBOL_GPL(md_allow_write);
7051 
7052 #define SYNC_MARKS	10
7053 #define	SYNC_MARK_STEP	(3*HZ)
7054 void md_do_sync(struct mddev *mddev)
7055 {
7056 	struct mddev *mddev2;
7057 	unsigned int currspeed = 0,
7058 		 window;
7059 	sector_t max_sectors,j, io_sectors;
7060 	unsigned long mark[SYNC_MARKS];
7061 	sector_t mark_cnt[SYNC_MARKS];
7062 	int last_mark,m;
7063 	struct list_head *tmp;
7064 	sector_t last_check;
7065 	int skipped = 0;
7066 	struct md_rdev *rdev;
7067 	char *desc;
7068 
7069 	/* just incase thread restarts... */
7070 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7071 		return;
7072 	if (mddev->ro) /* never try to sync a read-only array */
7073 		return;
7074 
7075 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7076 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7077 			desc = "data-check";
7078 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7079 			desc = "requested-resync";
7080 		else
7081 			desc = "resync";
7082 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7083 		desc = "reshape";
7084 	else
7085 		desc = "recovery";
7086 
7087 	/* we overload curr_resync somewhat here.
7088 	 * 0 == not engaged in resync at all
7089 	 * 2 == checking that there is no conflict with another sync
7090 	 * 1 == like 2, but have yielded to allow conflicting resync to
7091 	 *		commense
7092 	 * other == active in resync - this many blocks
7093 	 *
7094 	 * Before starting a resync we must have set curr_resync to
7095 	 * 2, and then checked that every "conflicting" array has curr_resync
7096 	 * less than ours.  When we find one that is the same or higher
7097 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7098 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7099 	 * This will mean we have to start checking from the beginning again.
7100 	 *
7101 	 */
7102 
7103 	do {
7104 		mddev->curr_resync = 2;
7105 
7106 	try_again:
7107 		if (kthread_should_stop())
7108 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7109 
7110 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7111 			goto skip;
7112 		for_each_mddev(mddev2, tmp) {
7113 			if (mddev2 == mddev)
7114 				continue;
7115 			if (!mddev->parallel_resync
7116 			&&  mddev2->curr_resync
7117 			&&  match_mddev_units(mddev, mddev2)) {
7118 				DEFINE_WAIT(wq);
7119 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7120 					/* arbitrarily yield */
7121 					mddev->curr_resync = 1;
7122 					wake_up(&resync_wait);
7123 				}
7124 				if (mddev > mddev2 && mddev->curr_resync == 1)
7125 					/* no need to wait here, we can wait the next
7126 					 * time 'round when curr_resync == 2
7127 					 */
7128 					continue;
7129 				/* We need to wait 'interruptible' so as not to
7130 				 * contribute to the load average, and not to
7131 				 * be caught by 'softlockup'
7132 				 */
7133 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7134 				if (!kthread_should_stop() &&
7135 				    mddev2->curr_resync >= mddev->curr_resync) {
7136 					printk(KERN_INFO "md: delaying %s of %s"
7137 					       " until %s has finished (they"
7138 					       " share one or more physical units)\n",
7139 					       desc, mdname(mddev), mdname(mddev2));
7140 					mddev_put(mddev2);
7141 					if (signal_pending(current))
7142 						flush_signals(current);
7143 					schedule();
7144 					finish_wait(&resync_wait, &wq);
7145 					goto try_again;
7146 				}
7147 				finish_wait(&resync_wait, &wq);
7148 			}
7149 		}
7150 	} while (mddev->curr_resync < 2);
7151 
7152 	j = 0;
7153 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7154 		/* resync follows the size requested by the personality,
7155 		 * which defaults to physical size, but can be virtual size
7156 		 */
7157 		max_sectors = mddev->resync_max_sectors;
7158 		mddev->resync_mismatches = 0;
7159 		/* we don't use the checkpoint if there's a bitmap */
7160 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7161 			j = mddev->resync_min;
7162 		else if (!mddev->bitmap)
7163 			j = mddev->recovery_cp;
7164 
7165 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7166 		max_sectors = mddev->dev_sectors;
7167 	else {
7168 		/* recovery follows the physical size of devices */
7169 		max_sectors = mddev->dev_sectors;
7170 		j = MaxSector;
7171 		rcu_read_lock();
7172 		list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7173 			if (rdev->raid_disk >= 0 &&
7174 			    !test_bit(Faulty, &rdev->flags) &&
7175 			    !test_bit(In_sync, &rdev->flags) &&
7176 			    rdev->recovery_offset < j)
7177 				j = rdev->recovery_offset;
7178 		rcu_read_unlock();
7179 	}
7180 
7181 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7182 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7183 		" %d KB/sec/disk.\n", speed_min(mddev));
7184 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7185 	       "(but not more than %d KB/sec) for %s.\n",
7186 	       speed_max(mddev), desc);
7187 
7188 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7189 
7190 	io_sectors = 0;
7191 	for (m = 0; m < SYNC_MARKS; m++) {
7192 		mark[m] = jiffies;
7193 		mark_cnt[m] = io_sectors;
7194 	}
7195 	last_mark = 0;
7196 	mddev->resync_mark = mark[last_mark];
7197 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7198 
7199 	/*
7200 	 * Tune reconstruction:
7201 	 */
7202 	window = 32*(PAGE_SIZE/512);
7203 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7204 		window/2, (unsigned long long)max_sectors/2);
7205 
7206 	atomic_set(&mddev->recovery_active, 0);
7207 	last_check = 0;
7208 
7209 	if (j>2) {
7210 		printk(KERN_INFO
7211 		       "md: resuming %s of %s from checkpoint.\n",
7212 		       desc, mdname(mddev));
7213 		mddev->curr_resync = j;
7214 	}
7215 	mddev->curr_resync_completed = j;
7216 
7217 	while (j < max_sectors) {
7218 		sector_t sectors;
7219 
7220 		skipped = 0;
7221 
7222 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7223 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7224 		      (mddev->curr_resync - mddev->curr_resync_completed)
7225 		      > (max_sectors >> 4)) ||
7226 		     (j - mddev->curr_resync_completed)*2
7227 		     >= mddev->resync_max - mddev->curr_resync_completed
7228 			    )) {
7229 			/* time to update curr_resync_completed */
7230 			wait_event(mddev->recovery_wait,
7231 				   atomic_read(&mddev->recovery_active) == 0);
7232 			mddev->curr_resync_completed = j;
7233 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7234 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7235 		}
7236 
7237 		while (j >= mddev->resync_max && !kthread_should_stop()) {
7238 			/* As this condition is controlled by user-space,
7239 			 * we can block indefinitely, so use '_interruptible'
7240 			 * to avoid triggering warnings.
7241 			 */
7242 			flush_signals(current); /* just in case */
7243 			wait_event_interruptible(mddev->recovery_wait,
7244 						 mddev->resync_max > j
7245 						 || kthread_should_stop());
7246 		}
7247 
7248 		if (kthread_should_stop())
7249 			goto interrupted;
7250 
7251 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7252 						  currspeed < speed_min(mddev));
7253 		if (sectors == 0) {
7254 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7255 			goto out;
7256 		}
7257 
7258 		if (!skipped) { /* actual IO requested */
7259 			io_sectors += sectors;
7260 			atomic_add(sectors, &mddev->recovery_active);
7261 		}
7262 
7263 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7264 			break;
7265 
7266 		j += sectors;
7267 		if (j>1) mddev->curr_resync = j;
7268 		mddev->curr_mark_cnt = io_sectors;
7269 		if (last_check == 0)
7270 			/* this is the earliest that rebuild will be
7271 			 * visible in /proc/mdstat
7272 			 */
7273 			md_new_event(mddev);
7274 
7275 		if (last_check + window > io_sectors || j == max_sectors)
7276 			continue;
7277 
7278 		last_check = io_sectors;
7279 	repeat:
7280 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7281 			/* step marks */
7282 			int next = (last_mark+1) % SYNC_MARKS;
7283 
7284 			mddev->resync_mark = mark[next];
7285 			mddev->resync_mark_cnt = mark_cnt[next];
7286 			mark[next] = jiffies;
7287 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7288 			last_mark = next;
7289 		}
7290 
7291 
7292 		if (kthread_should_stop())
7293 			goto interrupted;
7294 
7295 
7296 		/*
7297 		 * this loop exits only if either when we are slower than
7298 		 * the 'hard' speed limit, or the system was IO-idle for
7299 		 * a jiffy.
7300 		 * the system might be non-idle CPU-wise, but we only care
7301 		 * about not overloading the IO subsystem. (things like an
7302 		 * e2fsck being done on the RAID array should execute fast)
7303 		 */
7304 		cond_resched();
7305 
7306 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7307 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7308 
7309 		if (currspeed > speed_min(mddev)) {
7310 			if ((currspeed > speed_max(mddev)) ||
7311 					!is_mddev_idle(mddev, 0)) {
7312 				msleep(500);
7313 				goto repeat;
7314 			}
7315 		}
7316 	}
7317 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7318 	/*
7319 	 * this also signals 'finished resyncing' to md_stop
7320 	 */
7321  out:
7322 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7323 
7324 	/* tell personality that we are finished */
7325 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7326 
7327 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7328 	    mddev->curr_resync > 2) {
7329 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7330 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7331 				if (mddev->curr_resync >= mddev->recovery_cp) {
7332 					printk(KERN_INFO
7333 					       "md: checkpointing %s of %s.\n",
7334 					       desc, mdname(mddev));
7335 					mddev->recovery_cp = mddev->curr_resync;
7336 				}
7337 			} else
7338 				mddev->recovery_cp = MaxSector;
7339 		} else {
7340 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7341 				mddev->curr_resync = MaxSector;
7342 			rcu_read_lock();
7343 			list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7344 				if (rdev->raid_disk >= 0 &&
7345 				    mddev->delta_disks >= 0 &&
7346 				    !test_bit(Faulty, &rdev->flags) &&
7347 				    !test_bit(In_sync, &rdev->flags) &&
7348 				    rdev->recovery_offset < mddev->curr_resync)
7349 					rdev->recovery_offset = mddev->curr_resync;
7350 			rcu_read_unlock();
7351 		}
7352 	}
7353 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7354 
7355  skip:
7356 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7357 		/* We completed so min/max setting can be forgotten if used. */
7358 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7359 			mddev->resync_min = 0;
7360 		mddev->resync_max = MaxSector;
7361 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7362 		mddev->resync_min = mddev->curr_resync_completed;
7363 	mddev->curr_resync = 0;
7364 	wake_up(&resync_wait);
7365 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7366 	md_wakeup_thread(mddev->thread);
7367 	return;
7368 
7369  interrupted:
7370 	/*
7371 	 * got a signal, exit.
7372 	 */
7373 	printk(KERN_INFO
7374 	       "md: md_do_sync() got signal ... exiting\n");
7375 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7376 	goto out;
7377 
7378 }
7379 EXPORT_SYMBOL_GPL(md_do_sync);
7380 
7381 static int remove_and_add_spares(struct mddev *mddev)
7382 {
7383 	struct md_rdev *rdev;
7384 	int spares = 0;
7385 	int removed = 0;
7386 
7387 	mddev->curr_resync_completed = 0;
7388 
7389 	list_for_each_entry(rdev, &mddev->disks, same_set)
7390 		if (rdev->raid_disk >= 0 &&
7391 		    !test_bit(Blocked, &rdev->flags) &&
7392 		    (test_bit(Faulty, &rdev->flags) ||
7393 		     ! test_bit(In_sync, &rdev->flags)) &&
7394 		    atomic_read(&rdev->nr_pending)==0) {
7395 			if (mddev->pers->hot_remove_disk(
7396 				    mddev, rdev) == 0) {
7397 				sysfs_unlink_rdev(mddev, rdev);
7398 				rdev->raid_disk = -1;
7399 				removed++;
7400 			}
7401 		}
7402 	if (removed)
7403 		sysfs_notify(&mddev->kobj, NULL,
7404 			     "degraded");
7405 
7406 
7407 	list_for_each_entry(rdev, &mddev->disks, same_set) {
7408 		if (rdev->raid_disk >= 0 &&
7409 		    !test_bit(In_sync, &rdev->flags) &&
7410 		    !test_bit(Faulty, &rdev->flags))
7411 			spares++;
7412 		if (rdev->raid_disk < 0
7413 		    && !test_bit(Faulty, &rdev->flags)) {
7414 			rdev->recovery_offset = 0;
7415 			if (mddev->pers->
7416 			    hot_add_disk(mddev, rdev) == 0) {
7417 				if (sysfs_link_rdev(mddev, rdev))
7418 					/* failure here is OK */;
7419 				spares++;
7420 				md_new_event(mddev);
7421 				set_bit(MD_CHANGE_DEVS, &mddev->flags);
7422 			}
7423 		}
7424 	}
7425 	return spares;
7426 }
7427 
7428 static void reap_sync_thread(struct mddev *mddev)
7429 {
7430 	struct md_rdev *rdev;
7431 
7432 	/* resync has finished, collect result */
7433 	md_unregister_thread(&mddev->sync_thread);
7434 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7435 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7436 		/* success...*/
7437 		/* activate any spares */
7438 		if (mddev->pers->spare_active(mddev))
7439 			sysfs_notify(&mddev->kobj, NULL,
7440 				     "degraded");
7441 	}
7442 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7443 	    mddev->pers->finish_reshape)
7444 		mddev->pers->finish_reshape(mddev);
7445 
7446 	/* If array is no-longer degraded, then any saved_raid_disk
7447 	 * information must be scrapped.  Also if any device is now
7448 	 * In_sync we must scrape the saved_raid_disk for that device
7449 	 * do the superblock for an incrementally recovered device
7450 	 * written out.
7451 	 */
7452 	list_for_each_entry(rdev, &mddev->disks, same_set)
7453 		if (!mddev->degraded ||
7454 		    test_bit(In_sync, &rdev->flags))
7455 			rdev->saved_raid_disk = -1;
7456 
7457 	md_update_sb(mddev, 1);
7458 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7459 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7460 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7461 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7462 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7463 	/* flag recovery needed just to double check */
7464 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7465 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7466 	md_new_event(mddev);
7467 	if (mddev->event_work.func)
7468 		queue_work(md_misc_wq, &mddev->event_work);
7469 }
7470 
7471 /*
7472  * This routine is regularly called by all per-raid-array threads to
7473  * deal with generic issues like resync and super-block update.
7474  * Raid personalities that don't have a thread (linear/raid0) do not
7475  * need this as they never do any recovery or update the superblock.
7476  *
7477  * It does not do any resync itself, but rather "forks" off other threads
7478  * to do that as needed.
7479  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7480  * "->recovery" and create a thread at ->sync_thread.
7481  * When the thread finishes it sets MD_RECOVERY_DONE
7482  * and wakeups up this thread which will reap the thread and finish up.
7483  * This thread also removes any faulty devices (with nr_pending == 0).
7484  *
7485  * The overall approach is:
7486  *  1/ if the superblock needs updating, update it.
7487  *  2/ If a recovery thread is running, don't do anything else.
7488  *  3/ If recovery has finished, clean up, possibly marking spares active.
7489  *  4/ If there are any faulty devices, remove them.
7490  *  5/ If array is degraded, try to add spares devices
7491  *  6/ If array has spares or is not in-sync, start a resync thread.
7492  */
7493 void md_check_recovery(struct mddev *mddev)
7494 {
7495 	if (mddev->suspended)
7496 		return;
7497 
7498 	if (mddev->bitmap)
7499 		bitmap_daemon_work(mddev);
7500 
7501 	if (signal_pending(current)) {
7502 		if (mddev->pers->sync_request && !mddev->external) {
7503 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7504 			       mdname(mddev));
7505 			mddev->safemode = 2;
7506 		}
7507 		flush_signals(current);
7508 	}
7509 
7510 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7511 		return;
7512 	if ( ! (
7513 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7514 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7515 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7516 		(mddev->external == 0 && mddev->safemode == 1) ||
7517 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7518 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7519 		))
7520 		return;
7521 
7522 	if (mddev_trylock(mddev)) {
7523 		int spares = 0;
7524 
7525 		if (mddev->ro) {
7526 			/* Only thing we do on a ro array is remove
7527 			 * failed devices.
7528 			 */
7529 			struct md_rdev *rdev;
7530 			list_for_each_entry(rdev, &mddev->disks, same_set)
7531 				if (rdev->raid_disk >= 0 &&
7532 				    !test_bit(Blocked, &rdev->flags) &&
7533 				    test_bit(Faulty, &rdev->flags) &&
7534 				    atomic_read(&rdev->nr_pending)==0) {
7535 					if (mddev->pers->hot_remove_disk(
7536 						    mddev, rdev) == 0) {
7537 						sysfs_unlink_rdev(mddev, rdev);
7538 						rdev->raid_disk = -1;
7539 					}
7540 				}
7541 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7542 			goto unlock;
7543 		}
7544 
7545 		if (!mddev->external) {
7546 			int did_change = 0;
7547 			spin_lock_irq(&mddev->write_lock);
7548 			if (mddev->safemode &&
7549 			    !atomic_read(&mddev->writes_pending) &&
7550 			    !mddev->in_sync &&
7551 			    mddev->recovery_cp == MaxSector) {
7552 				mddev->in_sync = 1;
7553 				did_change = 1;
7554 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7555 			}
7556 			if (mddev->safemode == 1)
7557 				mddev->safemode = 0;
7558 			spin_unlock_irq(&mddev->write_lock);
7559 			if (did_change)
7560 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7561 		}
7562 
7563 		if (mddev->flags)
7564 			md_update_sb(mddev, 0);
7565 
7566 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7567 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7568 			/* resync/recovery still happening */
7569 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7570 			goto unlock;
7571 		}
7572 		if (mddev->sync_thread) {
7573 			reap_sync_thread(mddev);
7574 			goto unlock;
7575 		}
7576 		/* Set RUNNING before clearing NEEDED to avoid
7577 		 * any transients in the value of "sync_action".
7578 		 */
7579 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7580 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7581 		/* Clear some bits that don't mean anything, but
7582 		 * might be left set
7583 		 */
7584 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7585 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7586 
7587 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7588 			goto unlock;
7589 		/* no recovery is running.
7590 		 * remove any failed drives, then
7591 		 * add spares if possible.
7592 		 * Spare are also removed and re-added, to allow
7593 		 * the personality to fail the re-add.
7594 		 */
7595 
7596 		if (mddev->reshape_position != MaxSector) {
7597 			if (mddev->pers->check_reshape == NULL ||
7598 			    mddev->pers->check_reshape(mddev) != 0)
7599 				/* Cannot proceed */
7600 				goto unlock;
7601 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7602 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7603 		} else if ((spares = remove_and_add_spares(mddev))) {
7604 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7605 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7606 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7607 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7608 		} else if (mddev->recovery_cp < MaxSector) {
7609 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7610 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7611 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7612 			/* nothing to be done ... */
7613 			goto unlock;
7614 
7615 		if (mddev->pers->sync_request) {
7616 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7617 				/* We are adding a device or devices to an array
7618 				 * which has the bitmap stored on all devices.
7619 				 * So make sure all bitmap pages get written
7620 				 */
7621 				bitmap_write_all(mddev->bitmap);
7622 			}
7623 			mddev->sync_thread = md_register_thread(md_do_sync,
7624 								mddev,
7625 								"resync");
7626 			if (!mddev->sync_thread) {
7627 				printk(KERN_ERR "%s: could not start resync"
7628 					" thread...\n",
7629 					mdname(mddev));
7630 				/* leave the spares where they are, it shouldn't hurt */
7631 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7632 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7633 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7634 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7635 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7636 			} else
7637 				md_wakeup_thread(mddev->sync_thread);
7638 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7639 			md_new_event(mddev);
7640 		}
7641 	unlock:
7642 		if (!mddev->sync_thread) {
7643 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7644 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7645 					       &mddev->recovery))
7646 				if (mddev->sysfs_action)
7647 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7648 		}
7649 		mddev_unlock(mddev);
7650 	}
7651 }
7652 
7653 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7654 {
7655 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7656 	wait_event_timeout(rdev->blocked_wait,
7657 			   !test_bit(Blocked, &rdev->flags) &&
7658 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7659 			   msecs_to_jiffies(5000));
7660 	rdev_dec_pending(rdev, mddev);
7661 }
7662 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7663 
7664 
7665 /* Bad block management.
7666  * We can record which blocks on each device are 'bad' and so just
7667  * fail those blocks, or that stripe, rather than the whole device.
7668  * Entries in the bad-block table are 64bits wide.  This comprises:
7669  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7670  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7671  *  A 'shift' can be set so that larger blocks are tracked and
7672  *  consequently larger devices can be covered.
7673  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7674  *
7675  * Locking of the bad-block table uses a seqlock so md_is_badblock
7676  * might need to retry if it is very unlucky.
7677  * We will sometimes want to check for bad blocks in a bi_end_io function,
7678  * so we use the write_seqlock_irq variant.
7679  *
7680  * When looking for a bad block we specify a range and want to
7681  * know if any block in the range is bad.  So we binary-search
7682  * to the last range that starts at-or-before the given endpoint,
7683  * (or "before the sector after the target range")
7684  * then see if it ends after the given start.
7685  * We return
7686  *  0 if there are no known bad blocks in the range
7687  *  1 if there are known bad block which are all acknowledged
7688  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7689  * plus the start/length of the first bad section we overlap.
7690  */
7691 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7692 		   sector_t *first_bad, int *bad_sectors)
7693 {
7694 	int hi;
7695 	int lo = 0;
7696 	u64 *p = bb->page;
7697 	int rv = 0;
7698 	sector_t target = s + sectors;
7699 	unsigned seq;
7700 
7701 	if (bb->shift > 0) {
7702 		/* round the start down, and the end up */
7703 		s >>= bb->shift;
7704 		target += (1<<bb->shift) - 1;
7705 		target >>= bb->shift;
7706 		sectors = target - s;
7707 	}
7708 	/* 'target' is now the first block after the bad range */
7709 
7710 retry:
7711 	seq = read_seqbegin(&bb->lock);
7712 
7713 	hi = bb->count;
7714 
7715 	/* Binary search between lo and hi for 'target'
7716 	 * i.e. for the last range that starts before 'target'
7717 	 */
7718 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7719 	 * are known not to be the last range before target.
7720 	 * VARIANT: hi-lo is the number of possible
7721 	 * ranges, and decreases until it reaches 1
7722 	 */
7723 	while (hi - lo > 1) {
7724 		int mid = (lo + hi) / 2;
7725 		sector_t a = BB_OFFSET(p[mid]);
7726 		if (a < target)
7727 			/* This could still be the one, earlier ranges
7728 			 * could not. */
7729 			lo = mid;
7730 		else
7731 			/* This and later ranges are definitely out. */
7732 			hi = mid;
7733 	}
7734 	/* 'lo' might be the last that started before target, but 'hi' isn't */
7735 	if (hi > lo) {
7736 		/* need to check all range that end after 's' to see if
7737 		 * any are unacknowledged.
7738 		 */
7739 		while (lo >= 0 &&
7740 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7741 			if (BB_OFFSET(p[lo]) < target) {
7742 				/* starts before the end, and finishes after
7743 				 * the start, so they must overlap
7744 				 */
7745 				if (rv != -1 && BB_ACK(p[lo]))
7746 					rv = 1;
7747 				else
7748 					rv = -1;
7749 				*first_bad = BB_OFFSET(p[lo]);
7750 				*bad_sectors = BB_LEN(p[lo]);
7751 			}
7752 			lo--;
7753 		}
7754 	}
7755 
7756 	if (read_seqretry(&bb->lock, seq))
7757 		goto retry;
7758 
7759 	return rv;
7760 }
7761 EXPORT_SYMBOL_GPL(md_is_badblock);
7762 
7763 /*
7764  * Add a range of bad blocks to the table.
7765  * This might extend the table, or might contract it
7766  * if two adjacent ranges can be merged.
7767  * We binary-search to find the 'insertion' point, then
7768  * decide how best to handle it.
7769  */
7770 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7771 			    int acknowledged)
7772 {
7773 	u64 *p;
7774 	int lo, hi;
7775 	int rv = 1;
7776 
7777 	if (bb->shift < 0)
7778 		/* badblocks are disabled */
7779 		return 0;
7780 
7781 	if (bb->shift) {
7782 		/* round the start down, and the end up */
7783 		sector_t next = s + sectors;
7784 		s >>= bb->shift;
7785 		next += (1<<bb->shift) - 1;
7786 		next >>= bb->shift;
7787 		sectors = next - s;
7788 	}
7789 
7790 	write_seqlock_irq(&bb->lock);
7791 
7792 	p = bb->page;
7793 	lo = 0;
7794 	hi = bb->count;
7795 	/* Find the last range that starts at-or-before 's' */
7796 	while (hi - lo > 1) {
7797 		int mid = (lo + hi) / 2;
7798 		sector_t a = BB_OFFSET(p[mid]);
7799 		if (a <= s)
7800 			lo = mid;
7801 		else
7802 			hi = mid;
7803 	}
7804 	if (hi > lo && BB_OFFSET(p[lo]) > s)
7805 		hi = lo;
7806 
7807 	if (hi > lo) {
7808 		/* we found a range that might merge with the start
7809 		 * of our new range
7810 		 */
7811 		sector_t a = BB_OFFSET(p[lo]);
7812 		sector_t e = a + BB_LEN(p[lo]);
7813 		int ack = BB_ACK(p[lo]);
7814 		if (e >= s) {
7815 			/* Yes, we can merge with a previous range */
7816 			if (s == a && s + sectors >= e)
7817 				/* new range covers old */
7818 				ack = acknowledged;
7819 			else
7820 				ack = ack && acknowledged;
7821 
7822 			if (e < s + sectors)
7823 				e = s + sectors;
7824 			if (e - a <= BB_MAX_LEN) {
7825 				p[lo] = BB_MAKE(a, e-a, ack);
7826 				s = e;
7827 			} else {
7828 				/* does not all fit in one range,
7829 				 * make p[lo] maximal
7830 				 */
7831 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
7832 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7833 				s = a + BB_MAX_LEN;
7834 			}
7835 			sectors = e - s;
7836 		}
7837 	}
7838 	if (sectors && hi < bb->count) {
7839 		/* 'hi' points to the first range that starts after 's'.
7840 		 * Maybe we can merge with the start of that range */
7841 		sector_t a = BB_OFFSET(p[hi]);
7842 		sector_t e = a + BB_LEN(p[hi]);
7843 		int ack = BB_ACK(p[hi]);
7844 		if (a <= s + sectors) {
7845 			/* merging is possible */
7846 			if (e <= s + sectors) {
7847 				/* full overlap */
7848 				e = s + sectors;
7849 				ack = acknowledged;
7850 			} else
7851 				ack = ack && acknowledged;
7852 
7853 			a = s;
7854 			if (e - a <= BB_MAX_LEN) {
7855 				p[hi] = BB_MAKE(a, e-a, ack);
7856 				s = e;
7857 			} else {
7858 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7859 				s = a + BB_MAX_LEN;
7860 			}
7861 			sectors = e - s;
7862 			lo = hi;
7863 			hi++;
7864 		}
7865 	}
7866 	if (sectors == 0 && hi < bb->count) {
7867 		/* we might be able to combine lo and hi */
7868 		/* Note: 's' is at the end of 'lo' */
7869 		sector_t a = BB_OFFSET(p[hi]);
7870 		int lolen = BB_LEN(p[lo]);
7871 		int hilen = BB_LEN(p[hi]);
7872 		int newlen = lolen + hilen - (s - a);
7873 		if (s >= a && newlen < BB_MAX_LEN) {
7874 			/* yes, we can combine them */
7875 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7876 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7877 			memmove(p + hi, p + hi + 1,
7878 				(bb->count - hi - 1) * 8);
7879 			bb->count--;
7880 		}
7881 	}
7882 	while (sectors) {
7883 		/* didn't merge (it all).
7884 		 * Need to add a range just before 'hi' */
7885 		if (bb->count >= MD_MAX_BADBLOCKS) {
7886 			/* No room for more */
7887 			rv = 0;
7888 			break;
7889 		} else {
7890 			int this_sectors = sectors;
7891 			memmove(p + hi + 1, p + hi,
7892 				(bb->count - hi) * 8);
7893 			bb->count++;
7894 
7895 			if (this_sectors > BB_MAX_LEN)
7896 				this_sectors = BB_MAX_LEN;
7897 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7898 			sectors -= this_sectors;
7899 			s += this_sectors;
7900 		}
7901 	}
7902 
7903 	bb->changed = 1;
7904 	if (!acknowledged)
7905 		bb->unacked_exist = 1;
7906 	write_sequnlock_irq(&bb->lock);
7907 
7908 	return rv;
7909 }
7910 
7911 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7912 		       int acknowledged)
7913 {
7914 	int rv = md_set_badblocks(&rdev->badblocks,
7915 				  s + rdev->data_offset, sectors, acknowledged);
7916 	if (rv) {
7917 		/* Make sure they get written out promptly */
7918 		sysfs_notify_dirent_safe(rdev->sysfs_state);
7919 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7920 		md_wakeup_thread(rdev->mddev->thread);
7921 	}
7922 	return rv;
7923 }
7924 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7925 
7926 /*
7927  * Remove a range of bad blocks from the table.
7928  * This may involve extending the table if we spilt a region,
7929  * but it must not fail.  So if the table becomes full, we just
7930  * drop the remove request.
7931  */
7932 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7933 {
7934 	u64 *p;
7935 	int lo, hi;
7936 	sector_t target = s + sectors;
7937 	int rv = 0;
7938 
7939 	if (bb->shift > 0) {
7940 		/* When clearing we round the start up and the end down.
7941 		 * This should not matter as the shift should align with
7942 		 * the block size and no rounding should ever be needed.
7943 		 * However it is better the think a block is bad when it
7944 		 * isn't than to think a block is not bad when it is.
7945 		 */
7946 		s += (1<<bb->shift) - 1;
7947 		s >>= bb->shift;
7948 		target >>= bb->shift;
7949 		sectors = target - s;
7950 	}
7951 
7952 	write_seqlock_irq(&bb->lock);
7953 
7954 	p = bb->page;
7955 	lo = 0;
7956 	hi = bb->count;
7957 	/* Find the last range that starts before 'target' */
7958 	while (hi - lo > 1) {
7959 		int mid = (lo + hi) / 2;
7960 		sector_t a = BB_OFFSET(p[mid]);
7961 		if (a < target)
7962 			lo = mid;
7963 		else
7964 			hi = mid;
7965 	}
7966 	if (hi > lo) {
7967 		/* p[lo] is the last range that could overlap the
7968 		 * current range.  Earlier ranges could also overlap,
7969 		 * but only this one can overlap the end of the range.
7970 		 */
7971 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7972 			/* Partial overlap, leave the tail of this range */
7973 			int ack = BB_ACK(p[lo]);
7974 			sector_t a = BB_OFFSET(p[lo]);
7975 			sector_t end = a + BB_LEN(p[lo]);
7976 
7977 			if (a < s) {
7978 				/* we need to split this range */
7979 				if (bb->count >= MD_MAX_BADBLOCKS) {
7980 					rv = 0;
7981 					goto out;
7982 				}
7983 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7984 				bb->count++;
7985 				p[lo] = BB_MAKE(a, s-a, ack);
7986 				lo++;
7987 			}
7988 			p[lo] = BB_MAKE(target, end - target, ack);
7989 			/* there is no longer an overlap */
7990 			hi = lo;
7991 			lo--;
7992 		}
7993 		while (lo >= 0 &&
7994 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7995 			/* This range does overlap */
7996 			if (BB_OFFSET(p[lo]) < s) {
7997 				/* Keep the early parts of this range. */
7998 				int ack = BB_ACK(p[lo]);
7999 				sector_t start = BB_OFFSET(p[lo]);
8000 				p[lo] = BB_MAKE(start, s - start, ack);
8001 				/* now low doesn't overlap, so.. */
8002 				break;
8003 			}
8004 			lo--;
8005 		}
8006 		/* 'lo' is strictly before, 'hi' is strictly after,
8007 		 * anything between needs to be discarded
8008 		 */
8009 		if (hi - lo > 1) {
8010 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8011 			bb->count -= (hi - lo - 1);
8012 		}
8013 	}
8014 
8015 	bb->changed = 1;
8016 out:
8017 	write_sequnlock_irq(&bb->lock);
8018 	return rv;
8019 }
8020 
8021 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8022 {
8023 	return md_clear_badblocks(&rdev->badblocks,
8024 				  s + rdev->data_offset,
8025 				  sectors);
8026 }
8027 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8028 
8029 /*
8030  * Acknowledge all bad blocks in a list.
8031  * This only succeeds if ->changed is clear.  It is used by
8032  * in-kernel metadata updates
8033  */
8034 void md_ack_all_badblocks(struct badblocks *bb)
8035 {
8036 	if (bb->page == NULL || bb->changed)
8037 		/* no point even trying */
8038 		return;
8039 	write_seqlock_irq(&bb->lock);
8040 
8041 	if (bb->changed == 0) {
8042 		u64 *p = bb->page;
8043 		int i;
8044 		for (i = 0; i < bb->count ; i++) {
8045 			if (!BB_ACK(p[i])) {
8046 				sector_t start = BB_OFFSET(p[i]);
8047 				int len = BB_LEN(p[i]);
8048 				p[i] = BB_MAKE(start, len, 1);
8049 			}
8050 		}
8051 		bb->unacked_exist = 0;
8052 	}
8053 	write_sequnlock_irq(&bb->lock);
8054 }
8055 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8056 
8057 /* sysfs access to bad-blocks list.
8058  * We present two files.
8059  * 'bad-blocks' lists sector numbers and lengths of ranges that
8060  *    are recorded as bad.  The list is truncated to fit within
8061  *    the one-page limit of sysfs.
8062  *    Writing "sector length" to this file adds an acknowledged
8063  *    bad block list.
8064  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8065  *    been acknowledged.  Writing to this file adds bad blocks
8066  *    without acknowledging them.  This is largely for testing.
8067  */
8068 
8069 static ssize_t
8070 badblocks_show(struct badblocks *bb, char *page, int unack)
8071 {
8072 	size_t len;
8073 	int i;
8074 	u64 *p = bb->page;
8075 	unsigned seq;
8076 
8077 	if (bb->shift < 0)
8078 		return 0;
8079 
8080 retry:
8081 	seq = read_seqbegin(&bb->lock);
8082 
8083 	len = 0;
8084 	i = 0;
8085 
8086 	while (len < PAGE_SIZE && i < bb->count) {
8087 		sector_t s = BB_OFFSET(p[i]);
8088 		unsigned int length = BB_LEN(p[i]);
8089 		int ack = BB_ACK(p[i]);
8090 		i++;
8091 
8092 		if (unack && ack)
8093 			continue;
8094 
8095 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8096 				(unsigned long long)s << bb->shift,
8097 				length << bb->shift);
8098 	}
8099 	if (unack && len == 0)
8100 		bb->unacked_exist = 0;
8101 
8102 	if (read_seqretry(&bb->lock, seq))
8103 		goto retry;
8104 
8105 	return len;
8106 }
8107 
8108 #define DO_DEBUG 1
8109 
8110 static ssize_t
8111 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8112 {
8113 	unsigned long long sector;
8114 	int length;
8115 	char newline;
8116 #ifdef DO_DEBUG
8117 	/* Allow clearing via sysfs *only* for testing/debugging.
8118 	 * Normally only a successful write may clear a badblock
8119 	 */
8120 	int clear = 0;
8121 	if (page[0] == '-') {
8122 		clear = 1;
8123 		page++;
8124 	}
8125 #endif /* DO_DEBUG */
8126 
8127 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8128 	case 3:
8129 		if (newline != '\n')
8130 			return -EINVAL;
8131 	case 2:
8132 		if (length <= 0)
8133 			return -EINVAL;
8134 		break;
8135 	default:
8136 		return -EINVAL;
8137 	}
8138 
8139 #ifdef DO_DEBUG
8140 	if (clear) {
8141 		md_clear_badblocks(bb, sector, length);
8142 		return len;
8143 	}
8144 #endif /* DO_DEBUG */
8145 	if (md_set_badblocks(bb, sector, length, !unack))
8146 		return len;
8147 	else
8148 		return -ENOSPC;
8149 }
8150 
8151 static int md_notify_reboot(struct notifier_block *this,
8152 			    unsigned long code, void *x)
8153 {
8154 	struct list_head *tmp;
8155 	struct mddev *mddev;
8156 	int need_delay = 0;
8157 
8158 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8159 
8160 		printk(KERN_INFO "md: stopping all md devices.\n");
8161 
8162 		for_each_mddev(mddev, tmp) {
8163 			if (mddev_trylock(mddev)) {
8164 				/* Force a switch to readonly even array
8165 				 * appears to still be in use.  Hence
8166 				 * the '100'.
8167 				 */
8168 				md_set_readonly(mddev, 100);
8169 				mddev_unlock(mddev);
8170 			}
8171 			need_delay = 1;
8172 		}
8173 		/*
8174 		 * certain more exotic SCSI devices are known to be
8175 		 * volatile wrt too early system reboots. While the
8176 		 * right place to handle this issue is the given
8177 		 * driver, we do want to have a safe RAID driver ...
8178 		 */
8179 		if (need_delay)
8180 			mdelay(1000*1);
8181 	}
8182 	return NOTIFY_DONE;
8183 }
8184 
8185 static struct notifier_block md_notifier = {
8186 	.notifier_call	= md_notify_reboot,
8187 	.next		= NULL,
8188 	.priority	= INT_MAX, /* before any real devices */
8189 };
8190 
8191 static void md_geninit(void)
8192 {
8193 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8194 
8195 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8196 }
8197 
8198 static int __init md_init(void)
8199 {
8200 	int ret = -ENOMEM;
8201 
8202 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8203 	if (!md_wq)
8204 		goto err_wq;
8205 
8206 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8207 	if (!md_misc_wq)
8208 		goto err_misc_wq;
8209 
8210 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8211 		goto err_md;
8212 
8213 	if ((ret = register_blkdev(0, "mdp")) < 0)
8214 		goto err_mdp;
8215 	mdp_major = ret;
8216 
8217 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8218 			    md_probe, NULL, NULL);
8219 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8220 			    md_probe, NULL, NULL);
8221 
8222 	register_reboot_notifier(&md_notifier);
8223 	raid_table_header = register_sysctl_table(raid_root_table);
8224 
8225 	md_geninit();
8226 	return 0;
8227 
8228 err_mdp:
8229 	unregister_blkdev(MD_MAJOR, "md");
8230 err_md:
8231 	destroy_workqueue(md_misc_wq);
8232 err_misc_wq:
8233 	destroy_workqueue(md_wq);
8234 err_wq:
8235 	return ret;
8236 }
8237 
8238 #ifndef MODULE
8239 
8240 /*
8241  * Searches all registered partitions for autorun RAID arrays
8242  * at boot time.
8243  */
8244 
8245 static LIST_HEAD(all_detected_devices);
8246 struct detected_devices_node {
8247 	struct list_head list;
8248 	dev_t dev;
8249 };
8250 
8251 void md_autodetect_dev(dev_t dev)
8252 {
8253 	struct detected_devices_node *node_detected_dev;
8254 
8255 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8256 	if (node_detected_dev) {
8257 		node_detected_dev->dev = dev;
8258 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8259 	} else {
8260 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8261 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8262 	}
8263 }
8264 
8265 
8266 static void autostart_arrays(int part)
8267 {
8268 	struct md_rdev *rdev;
8269 	struct detected_devices_node *node_detected_dev;
8270 	dev_t dev;
8271 	int i_scanned, i_passed;
8272 
8273 	i_scanned = 0;
8274 	i_passed = 0;
8275 
8276 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8277 
8278 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8279 		i_scanned++;
8280 		node_detected_dev = list_entry(all_detected_devices.next,
8281 					struct detected_devices_node, list);
8282 		list_del(&node_detected_dev->list);
8283 		dev = node_detected_dev->dev;
8284 		kfree(node_detected_dev);
8285 		rdev = md_import_device(dev,0, 90);
8286 		if (IS_ERR(rdev))
8287 			continue;
8288 
8289 		if (test_bit(Faulty, &rdev->flags)) {
8290 			MD_BUG();
8291 			continue;
8292 		}
8293 		set_bit(AutoDetected, &rdev->flags);
8294 		list_add(&rdev->same_set, &pending_raid_disks);
8295 		i_passed++;
8296 	}
8297 
8298 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8299 						i_scanned, i_passed);
8300 
8301 	autorun_devices(part);
8302 }
8303 
8304 #endif /* !MODULE */
8305 
8306 static __exit void md_exit(void)
8307 {
8308 	struct mddev *mddev;
8309 	struct list_head *tmp;
8310 
8311 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8312 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8313 
8314 	unregister_blkdev(MD_MAJOR,"md");
8315 	unregister_blkdev(mdp_major, "mdp");
8316 	unregister_reboot_notifier(&md_notifier);
8317 	unregister_sysctl_table(raid_table_header);
8318 	remove_proc_entry("mdstat", NULL);
8319 	for_each_mddev(mddev, tmp) {
8320 		export_array(mddev);
8321 		mddev->hold_active = 0;
8322 	}
8323 	destroy_workqueue(md_misc_wq);
8324 	destroy_workqueue(md_wq);
8325 }
8326 
8327 subsys_initcall(md_init);
8328 module_exit(md_exit)
8329 
8330 static int get_ro(char *buffer, struct kernel_param *kp)
8331 {
8332 	return sprintf(buffer, "%d", start_readonly);
8333 }
8334 static int set_ro(const char *val, struct kernel_param *kp)
8335 {
8336 	char *e;
8337 	int num = simple_strtoul(val, &e, 10);
8338 	if (*val && (*e == '\0' || *e == '\n')) {
8339 		start_readonly = num;
8340 		return 0;
8341 	}
8342 	return -EINVAL;
8343 }
8344 
8345 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8346 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8347 
8348 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8349 
8350 EXPORT_SYMBOL(register_md_personality);
8351 EXPORT_SYMBOL(unregister_md_personality);
8352 EXPORT_SYMBOL(md_error);
8353 EXPORT_SYMBOL(md_done_sync);
8354 EXPORT_SYMBOL(md_write_start);
8355 EXPORT_SYMBOL(md_write_end);
8356 EXPORT_SYMBOL(md_register_thread);
8357 EXPORT_SYMBOL(md_unregister_thread);
8358 EXPORT_SYMBOL(md_wakeup_thread);
8359 EXPORT_SYMBOL(md_check_recovery);
8360 MODULE_LICENSE("GPL");
8361 MODULE_DESCRIPTION("MD RAID framework");
8362 MODULE_ALIAS("md");
8363 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8364