xref: /linux/drivers/md/md.c (revision 84f11d5b1f2abc0e22895b7e12e037f0ec03caeb)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72 
73 static int remove_and_add_spares(struct mddev *mddev,
74 				 struct md_rdev *this);
75 static void mddev_detach(struct mddev *mddev);
76 
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95 
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 	return mddev->sync_speed_min ?
101 		mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103 
104 static inline int speed_max(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_max ?
107 		mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109 
110 static struct ctl_table_header *raid_table_header;
111 
112 static struct ctl_table raid_table[] = {
113 	{
114 		.procname	= "speed_limit_min",
115 		.data		= &sysctl_speed_limit_min,
116 		.maxlen		= sizeof(int),
117 		.mode		= S_IRUGO|S_IWUSR,
118 		.proc_handler	= proc_dointvec,
119 	},
120 	{
121 		.procname	= "speed_limit_max",
122 		.data		= &sysctl_speed_limit_max,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{ }
128 };
129 
130 static struct ctl_table raid_dir_table[] = {
131 	{
132 		.procname	= "raid",
133 		.maxlen		= 0,
134 		.mode		= S_IRUGO|S_IXUGO,
135 		.child		= raid_table,
136 	},
137 	{ }
138 };
139 
140 static struct ctl_table raid_root_table[] = {
141 	{
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{  }
148 };
149 
150 static const struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157 
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159 			    struct mddev *mddev)
160 {
161 	struct bio *b;
162 
163 	if (!mddev || !mddev->bio_set)
164 		return bio_alloc(gfp_mask, nr_iovecs);
165 
166 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167 	if (!b)
168 		return NULL;
169 	return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172 
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174 			    struct mddev *mddev)
175 {
176 	if (!mddev || !mddev->bio_set)
177 		return bio_clone(bio, gfp_mask);
178 
179 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182 
183 /*
184  * We have a system wide 'event count' that is incremented
185  * on any 'interesting' event, and readers of /proc/mdstat
186  * can use 'poll' or 'select' to find out when the event
187  * count increases.
188  *
189  * Events are:
190  *  start array, stop array, error, add device, remove device,
191  *  start build, activate spare
192  */
193 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
194 static atomic_t md_event_count;
195 void md_new_event(struct mddev *mddev)
196 {
197 	atomic_inc(&md_event_count);
198 	wake_up(&md_event_waiters);
199 }
200 EXPORT_SYMBOL_GPL(md_new_event);
201 
202 /* Alternate version that can be called from interrupts
203  * when calling sysfs_notify isn't needed.
204  */
205 static void md_new_event_inintr(struct mddev *mddev)
206 {
207 	atomic_inc(&md_event_count);
208 	wake_up(&md_event_waiters);
209 }
210 
211 /*
212  * Enables to iterate over all existing md arrays
213  * all_mddevs_lock protects this list.
214  */
215 static LIST_HEAD(all_mddevs);
216 static DEFINE_SPINLOCK(all_mddevs_lock);
217 
218 /*
219  * iterates through all used mddevs in the system.
220  * We take care to grab the all_mddevs_lock whenever navigating
221  * the list, and to always hold a refcount when unlocked.
222  * Any code which breaks out of this loop while own
223  * a reference to the current mddev and must mddev_put it.
224  */
225 #define for_each_mddev(_mddev,_tmp)					\
226 									\
227 	for (({ spin_lock(&all_mddevs_lock);				\
228 		_tmp = all_mddevs.next;					\
229 		_mddev = NULL;});					\
230 	     ({ if (_tmp != &all_mddevs)				\
231 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
232 		spin_unlock(&all_mddevs_lock);				\
233 		if (_mddev) mddev_put(_mddev);				\
234 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
235 		_tmp != &all_mddevs;});					\
236 	     ({ spin_lock(&all_mddevs_lock);				\
237 		_tmp = _tmp->next;})					\
238 		)
239 
240 /* Rather than calling directly into the personality make_request function,
241  * IO requests come here first so that we can check if the device is
242  * being suspended pending a reconfiguration.
243  * We hold a refcount over the call to ->make_request.  By the time that
244  * call has finished, the bio has been linked into some internal structure
245  * and so is visible to ->quiesce(), so we don't need the refcount any more.
246  */
247 static void md_make_request(struct request_queue *q, struct bio *bio)
248 {
249 	const int rw = bio_data_dir(bio);
250 	struct mddev *mddev = q->queuedata;
251 	unsigned int sectors;
252 
253 	if (mddev == NULL || mddev->pers == NULL
254 	    || !mddev->ready) {
255 		bio_io_error(bio);
256 		return;
257 	}
258 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
260 		return;
261 	}
262 	smp_rmb(); /* Ensure implications of  'active' are visible */
263 	rcu_read_lock();
264 	if (mddev->suspended) {
265 		DEFINE_WAIT(__wait);
266 		for (;;) {
267 			prepare_to_wait(&mddev->sb_wait, &__wait,
268 					TASK_UNINTERRUPTIBLE);
269 			if (!mddev->suspended)
270 				break;
271 			rcu_read_unlock();
272 			schedule();
273 			rcu_read_lock();
274 		}
275 		finish_wait(&mddev->sb_wait, &__wait);
276 	}
277 	atomic_inc(&mddev->active_io);
278 	rcu_read_unlock();
279 
280 	/*
281 	 * save the sectors now since our bio can
282 	 * go away inside make_request
283 	 */
284 	sectors = bio_sectors(bio);
285 	mddev->pers->make_request(mddev, bio);
286 
287 	generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
288 
289 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
290 		wake_up(&mddev->sb_wait);
291 }
292 
293 /* mddev_suspend makes sure no new requests are submitted
294  * to the device, and that any requests that have been submitted
295  * are completely handled.
296  * Once mddev_detach() is called and completes, the module will be
297  * completely unused.
298  */
299 void mddev_suspend(struct mddev *mddev)
300 {
301 	BUG_ON(mddev->suspended);
302 	mddev->suspended = 1;
303 	synchronize_rcu();
304 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
305 	mddev->pers->quiesce(mddev, 1);
306 
307 	del_timer_sync(&mddev->safemode_timer);
308 }
309 EXPORT_SYMBOL_GPL(mddev_suspend);
310 
311 void mddev_resume(struct mddev *mddev)
312 {
313 	mddev->suspended = 0;
314 	wake_up(&mddev->sb_wait);
315 	mddev->pers->quiesce(mddev, 0);
316 
317 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
318 	md_wakeup_thread(mddev->thread);
319 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
320 }
321 EXPORT_SYMBOL_GPL(mddev_resume);
322 
323 int mddev_congested(struct mddev *mddev, int bits)
324 {
325 	struct md_personality *pers = mddev->pers;
326 	int ret = 0;
327 
328 	rcu_read_lock();
329 	if (mddev->suspended)
330 		ret = 1;
331 	else if (pers && pers->congested)
332 		ret = pers->congested(mddev, bits);
333 	rcu_read_unlock();
334 	return ret;
335 }
336 EXPORT_SYMBOL_GPL(mddev_congested);
337 static int md_congested(void *data, int bits)
338 {
339 	struct mddev *mddev = data;
340 	return mddev_congested(mddev, bits);
341 }
342 
343 static int md_mergeable_bvec(struct request_queue *q,
344 			     struct bvec_merge_data *bvm,
345 			     struct bio_vec *biovec)
346 {
347 	struct mddev *mddev = q->queuedata;
348 	int ret;
349 	rcu_read_lock();
350 	if (mddev->suspended) {
351 		/* Must always allow one vec */
352 		if (bvm->bi_size == 0)
353 			ret = biovec->bv_len;
354 		else
355 			ret = 0;
356 	} else {
357 		struct md_personality *pers = mddev->pers;
358 		if (pers && pers->mergeable_bvec)
359 			ret = pers->mergeable_bvec(mddev, bvm, biovec);
360 		else
361 			ret = biovec->bv_len;
362 	}
363 	rcu_read_unlock();
364 	return ret;
365 }
366 /*
367  * Generic flush handling for md
368  */
369 
370 static void md_end_flush(struct bio *bio, int err)
371 {
372 	struct md_rdev *rdev = bio->bi_private;
373 	struct mddev *mddev = rdev->mddev;
374 
375 	rdev_dec_pending(rdev, mddev);
376 
377 	if (atomic_dec_and_test(&mddev->flush_pending)) {
378 		/* The pre-request flush has finished */
379 		queue_work(md_wq, &mddev->flush_work);
380 	}
381 	bio_put(bio);
382 }
383 
384 static void md_submit_flush_data(struct work_struct *ws);
385 
386 static void submit_flushes(struct work_struct *ws)
387 {
388 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
389 	struct md_rdev *rdev;
390 
391 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
392 	atomic_set(&mddev->flush_pending, 1);
393 	rcu_read_lock();
394 	rdev_for_each_rcu(rdev, mddev)
395 		if (rdev->raid_disk >= 0 &&
396 		    !test_bit(Faulty, &rdev->flags)) {
397 			/* Take two references, one is dropped
398 			 * when request finishes, one after
399 			 * we reclaim rcu_read_lock
400 			 */
401 			struct bio *bi;
402 			atomic_inc(&rdev->nr_pending);
403 			atomic_inc(&rdev->nr_pending);
404 			rcu_read_unlock();
405 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
406 			bi->bi_end_io = md_end_flush;
407 			bi->bi_private = rdev;
408 			bi->bi_bdev = rdev->bdev;
409 			atomic_inc(&mddev->flush_pending);
410 			submit_bio(WRITE_FLUSH, bi);
411 			rcu_read_lock();
412 			rdev_dec_pending(rdev, mddev);
413 		}
414 	rcu_read_unlock();
415 	if (atomic_dec_and_test(&mddev->flush_pending))
416 		queue_work(md_wq, &mddev->flush_work);
417 }
418 
419 static void md_submit_flush_data(struct work_struct *ws)
420 {
421 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
422 	struct bio *bio = mddev->flush_bio;
423 
424 	if (bio->bi_iter.bi_size == 0)
425 		/* an empty barrier - all done */
426 		bio_endio(bio, 0);
427 	else {
428 		bio->bi_rw &= ~REQ_FLUSH;
429 		mddev->pers->make_request(mddev, bio);
430 	}
431 
432 	mddev->flush_bio = NULL;
433 	wake_up(&mddev->sb_wait);
434 }
435 
436 void md_flush_request(struct mddev *mddev, struct bio *bio)
437 {
438 	spin_lock_irq(&mddev->lock);
439 	wait_event_lock_irq(mddev->sb_wait,
440 			    !mddev->flush_bio,
441 			    mddev->lock);
442 	mddev->flush_bio = bio;
443 	spin_unlock_irq(&mddev->lock);
444 
445 	INIT_WORK(&mddev->flush_work, submit_flushes);
446 	queue_work(md_wq, &mddev->flush_work);
447 }
448 EXPORT_SYMBOL(md_flush_request);
449 
450 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
451 {
452 	struct mddev *mddev = cb->data;
453 	md_wakeup_thread(mddev->thread);
454 	kfree(cb);
455 }
456 EXPORT_SYMBOL(md_unplug);
457 
458 static inline struct mddev *mddev_get(struct mddev *mddev)
459 {
460 	atomic_inc(&mddev->active);
461 	return mddev;
462 }
463 
464 static void mddev_delayed_delete(struct work_struct *ws);
465 
466 static void mddev_put(struct mddev *mddev)
467 {
468 	struct bio_set *bs = NULL;
469 
470 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
471 		return;
472 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
473 	    mddev->ctime == 0 && !mddev->hold_active) {
474 		/* Array is not configured at all, and not held active,
475 		 * so destroy it */
476 		list_del_init(&mddev->all_mddevs);
477 		bs = mddev->bio_set;
478 		mddev->bio_set = NULL;
479 		if (mddev->gendisk) {
480 			/* We did a probe so need to clean up.  Call
481 			 * queue_work inside the spinlock so that
482 			 * flush_workqueue() after mddev_find will
483 			 * succeed in waiting for the work to be done.
484 			 */
485 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
486 			queue_work(md_misc_wq, &mddev->del_work);
487 		} else
488 			kfree(mddev);
489 	}
490 	spin_unlock(&all_mddevs_lock);
491 	if (bs)
492 		bioset_free(bs);
493 }
494 
495 void mddev_init(struct mddev *mddev)
496 {
497 	mutex_init(&mddev->open_mutex);
498 	mutex_init(&mddev->reconfig_mutex);
499 	mutex_init(&mddev->bitmap_info.mutex);
500 	INIT_LIST_HEAD(&mddev->disks);
501 	INIT_LIST_HEAD(&mddev->all_mddevs);
502 	init_timer(&mddev->safemode_timer);
503 	atomic_set(&mddev->active, 1);
504 	atomic_set(&mddev->openers, 0);
505 	atomic_set(&mddev->active_io, 0);
506 	spin_lock_init(&mddev->lock);
507 	atomic_set(&mddev->flush_pending, 0);
508 	init_waitqueue_head(&mddev->sb_wait);
509 	init_waitqueue_head(&mddev->recovery_wait);
510 	mddev->reshape_position = MaxSector;
511 	mddev->reshape_backwards = 0;
512 	mddev->last_sync_action = "none";
513 	mddev->resync_min = 0;
514 	mddev->resync_max = MaxSector;
515 	mddev->level = LEVEL_NONE;
516 }
517 EXPORT_SYMBOL_GPL(mddev_init);
518 
519 static struct mddev *mddev_find(dev_t unit)
520 {
521 	struct mddev *mddev, *new = NULL;
522 
523 	if (unit && MAJOR(unit) != MD_MAJOR)
524 		unit &= ~((1<<MdpMinorShift)-1);
525 
526  retry:
527 	spin_lock(&all_mddevs_lock);
528 
529 	if (unit) {
530 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
531 			if (mddev->unit == unit) {
532 				mddev_get(mddev);
533 				spin_unlock(&all_mddevs_lock);
534 				kfree(new);
535 				return mddev;
536 			}
537 
538 		if (new) {
539 			list_add(&new->all_mddevs, &all_mddevs);
540 			spin_unlock(&all_mddevs_lock);
541 			new->hold_active = UNTIL_IOCTL;
542 			return new;
543 		}
544 	} else if (new) {
545 		/* find an unused unit number */
546 		static int next_minor = 512;
547 		int start = next_minor;
548 		int is_free = 0;
549 		int dev = 0;
550 		while (!is_free) {
551 			dev = MKDEV(MD_MAJOR, next_minor);
552 			next_minor++;
553 			if (next_minor > MINORMASK)
554 				next_minor = 0;
555 			if (next_minor == start) {
556 				/* Oh dear, all in use. */
557 				spin_unlock(&all_mddevs_lock);
558 				kfree(new);
559 				return NULL;
560 			}
561 
562 			is_free = 1;
563 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
564 				if (mddev->unit == dev) {
565 					is_free = 0;
566 					break;
567 				}
568 		}
569 		new->unit = dev;
570 		new->md_minor = MINOR(dev);
571 		new->hold_active = UNTIL_STOP;
572 		list_add(&new->all_mddevs, &all_mddevs);
573 		spin_unlock(&all_mddevs_lock);
574 		return new;
575 	}
576 	spin_unlock(&all_mddevs_lock);
577 
578 	new = kzalloc(sizeof(*new), GFP_KERNEL);
579 	if (!new)
580 		return NULL;
581 
582 	new->unit = unit;
583 	if (MAJOR(unit) == MD_MAJOR)
584 		new->md_minor = MINOR(unit);
585 	else
586 		new->md_minor = MINOR(unit) >> MdpMinorShift;
587 
588 	mddev_init(new);
589 
590 	goto retry;
591 }
592 
593 static struct attribute_group md_redundancy_group;
594 
595 void mddev_unlock(struct mddev *mddev)
596 {
597 	if (mddev->to_remove) {
598 		/* These cannot be removed under reconfig_mutex as
599 		 * an access to the files will try to take reconfig_mutex
600 		 * while holding the file unremovable, which leads to
601 		 * a deadlock.
602 		 * So hold set sysfs_active while the remove in happeing,
603 		 * and anything else which might set ->to_remove or my
604 		 * otherwise change the sysfs namespace will fail with
605 		 * -EBUSY if sysfs_active is still set.
606 		 * We set sysfs_active under reconfig_mutex and elsewhere
607 		 * test it under the same mutex to ensure its correct value
608 		 * is seen.
609 		 */
610 		struct attribute_group *to_remove = mddev->to_remove;
611 		mddev->to_remove = NULL;
612 		mddev->sysfs_active = 1;
613 		mutex_unlock(&mddev->reconfig_mutex);
614 
615 		if (mddev->kobj.sd) {
616 			if (to_remove != &md_redundancy_group)
617 				sysfs_remove_group(&mddev->kobj, to_remove);
618 			if (mddev->pers == NULL ||
619 			    mddev->pers->sync_request == NULL) {
620 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
621 				if (mddev->sysfs_action)
622 					sysfs_put(mddev->sysfs_action);
623 				mddev->sysfs_action = NULL;
624 			}
625 		}
626 		mddev->sysfs_active = 0;
627 	} else
628 		mutex_unlock(&mddev->reconfig_mutex);
629 
630 	/* As we've dropped the mutex we need a spinlock to
631 	 * make sure the thread doesn't disappear
632 	 */
633 	spin_lock(&pers_lock);
634 	md_wakeup_thread(mddev->thread);
635 	spin_unlock(&pers_lock);
636 }
637 EXPORT_SYMBOL_GPL(mddev_unlock);
638 
639 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
640 {
641 	struct md_rdev *rdev;
642 
643 	rdev_for_each_rcu(rdev, mddev)
644 		if (rdev->desc_nr == nr)
645 			return rdev;
646 
647 	return NULL;
648 }
649 
650 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
651 {
652 	struct md_rdev *rdev;
653 
654 	rdev_for_each(rdev, mddev)
655 		if (rdev->bdev->bd_dev == dev)
656 			return rdev;
657 
658 	return NULL;
659 }
660 
661 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
662 {
663 	struct md_rdev *rdev;
664 
665 	rdev_for_each_rcu(rdev, mddev)
666 		if (rdev->bdev->bd_dev == dev)
667 			return rdev;
668 
669 	return NULL;
670 }
671 
672 static struct md_personality *find_pers(int level, char *clevel)
673 {
674 	struct md_personality *pers;
675 	list_for_each_entry(pers, &pers_list, list) {
676 		if (level != LEVEL_NONE && pers->level == level)
677 			return pers;
678 		if (strcmp(pers->name, clevel)==0)
679 			return pers;
680 	}
681 	return NULL;
682 }
683 
684 /* return the offset of the super block in 512byte sectors */
685 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
686 {
687 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
688 	return MD_NEW_SIZE_SECTORS(num_sectors);
689 }
690 
691 static int alloc_disk_sb(struct md_rdev *rdev)
692 {
693 	rdev->sb_page = alloc_page(GFP_KERNEL);
694 	if (!rdev->sb_page) {
695 		printk(KERN_ALERT "md: out of memory.\n");
696 		return -ENOMEM;
697 	}
698 
699 	return 0;
700 }
701 
702 void md_rdev_clear(struct md_rdev *rdev)
703 {
704 	if (rdev->sb_page) {
705 		put_page(rdev->sb_page);
706 		rdev->sb_loaded = 0;
707 		rdev->sb_page = NULL;
708 		rdev->sb_start = 0;
709 		rdev->sectors = 0;
710 	}
711 	if (rdev->bb_page) {
712 		put_page(rdev->bb_page);
713 		rdev->bb_page = NULL;
714 	}
715 	kfree(rdev->badblocks.page);
716 	rdev->badblocks.page = NULL;
717 }
718 EXPORT_SYMBOL_GPL(md_rdev_clear);
719 
720 static void super_written(struct bio *bio, int error)
721 {
722 	struct md_rdev *rdev = bio->bi_private;
723 	struct mddev *mddev = rdev->mddev;
724 
725 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
726 		printk("md: super_written gets error=%d, uptodate=%d\n",
727 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
728 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
729 		md_error(mddev, rdev);
730 	}
731 
732 	if (atomic_dec_and_test(&mddev->pending_writes))
733 		wake_up(&mddev->sb_wait);
734 	bio_put(bio);
735 }
736 
737 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
738 		   sector_t sector, int size, struct page *page)
739 {
740 	/* write first size bytes of page to sector of rdev
741 	 * Increment mddev->pending_writes before returning
742 	 * and decrement it on completion, waking up sb_wait
743 	 * if zero is reached.
744 	 * If an error occurred, call md_error
745 	 */
746 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
747 
748 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
749 	bio->bi_iter.bi_sector = sector;
750 	bio_add_page(bio, page, size, 0);
751 	bio->bi_private = rdev;
752 	bio->bi_end_io = super_written;
753 
754 	atomic_inc(&mddev->pending_writes);
755 	submit_bio(WRITE_FLUSH_FUA, bio);
756 }
757 
758 void md_super_wait(struct mddev *mddev)
759 {
760 	/* wait for all superblock writes that were scheduled to complete */
761 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
762 }
763 
764 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
765 		 struct page *page, int rw, bool metadata_op)
766 {
767 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
768 	int ret;
769 
770 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
771 		rdev->meta_bdev : rdev->bdev;
772 	if (metadata_op)
773 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
774 	else if (rdev->mddev->reshape_position != MaxSector &&
775 		 (rdev->mddev->reshape_backwards ==
776 		  (sector >= rdev->mddev->reshape_position)))
777 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
778 	else
779 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
780 	bio_add_page(bio, page, size, 0);
781 	submit_bio_wait(rw, bio);
782 
783 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
784 	bio_put(bio);
785 	return ret;
786 }
787 EXPORT_SYMBOL_GPL(sync_page_io);
788 
789 static int read_disk_sb(struct md_rdev *rdev, int size)
790 {
791 	char b[BDEVNAME_SIZE];
792 
793 	if (rdev->sb_loaded)
794 		return 0;
795 
796 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
797 		goto fail;
798 	rdev->sb_loaded = 1;
799 	return 0;
800 
801 fail:
802 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
803 		bdevname(rdev->bdev,b));
804 	return -EINVAL;
805 }
806 
807 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
808 {
809 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
810 		sb1->set_uuid1 == sb2->set_uuid1 &&
811 		sb1->set_uuid2 == sb2->set_uuid2 &&
812 		sb1->set_uuid3 == sb2->set_uuid3;
813 }
814 
815 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
816 {
817 	int ret;
818 	mdp_super_t *tmp1, *tmp2;
819 
820 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
821 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
822 
823 	if (!tmp1 || !tmp2) {
824 		ret = 0;
825 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
826 		goto abort;
827 	}
828 
829 	*tmp1 = *sb1;
830 	*tmp2 = *sb2;
831 
832 	/*
833 	 * nr_disks is not constant
834 	 */
835 	tmp1->nr_disks = 0;
836 	tmp2->nr_disks = 0;
837 
838 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
839 abort:
840 	kfree(tmp1);
841 	kfree(tmp2);
842 	return ret;
843 }
844 
845 static u32 md_csum_fold(u32 csum)
846 {
847 	csum = (csum & 0xffff) + (csum >> 16);
848 	return (csum & 0xffff) + (csum >> 16);
849 }
850 
851 static unsigned int calc_sb_csum(mdp_super_t *sb)
852 {
853 	u64 newcsum = 0;
854 	u32 *sb32 = (u32*)sb;
855 	int i;
856 	unsigned int disk_csum, csum;
857 
858 	disk_csum = sb->sb_csum;
859 	sb->sb_csum = 0;
860 
861 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
862 		newcsum += sb32[i];
863 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
864 
865 #ifdef CONFIG_ALPHA
866 	/* This used to use csum_partial, which was wrong for several
867 	 * reasons including that different results are returned on
868 	 * different architectures.  It isn't critical that we get exactly
869 	 * the same return value as before (we always csum_fold before
870 	 * testing, and that removes any differences).  However as we
871 	 * know that csum_partial always returned a 16bit value on
872 	 * alphas, do a fold to maximise conformity to previous behaviour.
873 	 */
874 	sb->sb_csum = md_csum_fold(disk_csum);
875 #else
876 	sb->sb_csum = disk_csum;
877 #endif
878 	return csum;
879 }
880 
881 /*
882  * Handle superblock details.
883  * We want to be able to handle multiple superblock formats
884  * so we have a common interface to them all, and an array of
885  * different handlers.
886  * We rely on user-space to write the initial superblock, and support
887  * reading and updating of superblocks.
888  * Interface methods are:
889  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
890  *      loads and validates a superblock on dev.
891  *      if refdev != NULL, compare superblocks on both devices
892  *    Return:
893  *      0 - dev has a superblock that is compatible with refdev
894  *      1 - dev has a superblock that is compatible and newer than refdev
895  *          so dev should be used as the refdev in future
896  *     -EINVAL superblock incompatible or invalid
897  *     -othererror e.g. -EIO
898  *
899  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
900  *      Verify that dev is acceptable into mddev.
901  *       The first time, mddev->raid_disks will be 0, and data from
902  *       dev should be merged in.  Subsequent calls check that dev
903  *       is new enough.  Return 0 or -EINVAL
904  *
905  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
906  *     Update the superblock for rdev with data in mddev
907  *     This does not write to disc.
908  *
909  */
910 
911 struct super_type  {
912 	char		    *name;
913 	struct module	    *owner;
914 	int		    (*load_super)(struct md_rdev *rdev,
915 					  struct md_rdev *refdev,
916 					  int minor_version);
917 	int		    (*validate_super)(struct mddev *mddev,
918 					      struct md_rdev *rdev);
919 	void		    (*sync_super)(struct mddev *mddev,
920 					  struct md_rdev *rdev);
921 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
922 						sector_t num_sectors);
923 	int		    (*allow_new_offset)(struct md_rdev *rdev,
924 						unsigned long long new_offset);
925 };
926 
927 /*
928  * Check that the given mddev has no bitmap.
929  *
930  * This function is called from the run method of all personalities that do not
931  * support bitmaps. It prints an error message and returns non-zero if mddev
932  * has a bitmap. Otherwise, it returns 0.
933  *
934  */
935 int md_check_no_bitmap(struct mddev *mddev)
936 {
937 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
938 		return 0;
939 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
940 		mdname(mddev), mddev->pers->name);
941 	return 1;
942 }
943 EXPORT_SYMBOL(md_check_no_bitmap);
944 
945 /*
946  * load_super for 0.90.0
947  */
948 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
949 {
950 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
951 	mdp_super_t *sb;
952 	int ret;
953 
954 	/*
955 	 * Calculate the position of the superblock (512byte sectors),
956 	 * it's at the end of the disk.
957 	 *
958 	 * It also happens to be a multiple of 4Kb.
959 	 */
960 	rdev->sb_start = calc_dev_sboffset(rdev);
961 
962 	ret = read_disk_sb(rdev, MD_SB_BYTES);
963 	if (ret) return ret;
964 
965 	ret = -EINVAL;
966 
967 	bdevname(rdev->bdev, b);
968 	sb = page_address(rdev->sb_page);
969 
970 	if (sb->md_magic != MD_SB_MAGIC) {
971 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
972 		       b);
973 		goto abort;
974 	}
975 
976 	if (sb->major_version != 0 ||
977 	    sb->minor_version < 90 ||
978 	    sb->minor_version > 91) {
979 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
980 			sb->major_version, sb->minor_version,
981 			b);
982 		goto abort;
983 	}
984 
985 	if (sb->raid_disks <= 0)
986 		goto abort;
987 
988 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
989 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
990 			b);
991 		goto abort;
992 	}
993 
994 	rdev->preferred_minor = sb->md_minor;
995 	rdev->data_offset = 0;
996 	rdev->new_data_offset = 0;
997 	rdev->sb_size = MD_SB_BYTES;
998 	rdev->badblocks.shift = -1;
999 
1000 	if (sb->level == LEVEL_MULTIPATH)
1001 		rdev->desc_nr = -1;
1002 	else
1003 		rdev->desc_nr = sb->this_disk.number;
1004 
1005 	if (!refdev) {
1006 		ret = 1;
1007 	} else {
1008 		__u64 ev1, ev2;
1009 		mdp_super_t *refsb = page_address(refdev->sb_page);
1010 		if (!uuid_equal(refsb, sb)) {
1011 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1012 				b, bdevname(refdev->bdev,b2));
1013 			goto abort;
1014 		}
1015 		if (!sb_equal(refsb, sb)) {
1016 			printk(KERN_WARNING "md: %s has same UUID"
1017 			       " but different superblock to %s\n",
1018 			       b, bdevname(refdev->bdev, b2));
1019 			goto abort;
1020 		}
1021 		ev1 = md_event(sb);
1022 		ev2 = md_event(refsb);
1023 		if (ev1 > ev2)
1024 			ret = 1;
1025 		else
1026 			ret = 0;
1027 	}
1028 	rdev->sectors = rdev->sb_start;
1029 	/* Limit to 4TB as metadata cannot record more than that.
1030 	 * (not needed for Linear and RAID0 as metadata doesn't
1031 	 * record this size)
1032 	 */
1033 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1034 		rdev->sectors = (2ULL << 32) - 2;
1035 
1036 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1037 		/* "this cannot possibly happen" ... */
1038 		ret = -EINVAL;
1039 
1040  abort:
1041 	return ret;
1042 }
1043 
1044 /*
1045  * validate_super for 0.90.0
1046  */
1047 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1048 {
1049 	mdp_disk_t *desc;
1050 	mdp_super_t *sb = page_address(rdev->sb_page);
1051 	__u64 ev1 = md_event(sb);
1052 
1053 	rdev->raid_disk = -1;
1054 	clear_bit(Faulty, &rdev->flags);
1055 	clear_bit(In_sync, &rdev->flags);
1056 	clear_bit(Bitmap_sync, &rdev->flags);
1057 	clear_bit(WriteMostly, &rdev->flags);
1058 
1059 	if (mddev->raid_disks == 0) {
1060 		mddev->major_version = 0;
1061 		mddev->minor_version = sb->minor_version;
1062 		mddev->patch_version = sb->patch_version;
1063 		mddev->external = 0;
1064 		mddev->chunk_sectors = sb->chunk_size >> 9;
1065 		mddev->ctime = sb->ctime;
1066 		mddev->utime = sb->utime;
1067 		mddev->level = sb->level;
1068 		mddev->clevel[0] = 0;
1069 		mddev->layout = sb->layout;
1070 		mddev->raid_disks = sb->raid_disks;
1071 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1072 		mddev->events = ev1;
1073 		mddev->bitmap_info.offset = 0;
1074 		mddev->bitmap_info.space = 0;
1075 		/* bitmap can use 60 K after the 4K superblocks */
1076 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1077 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1078 		mddev->reshape_backwards = 0;
1079 
1080 		if (mddev->minor_version >= 91) {
1081 			mddev->reshape_position = sb->reshape_position;
1082 			mddev->delta_disks = sb->delta_disks;
1083 			mddev->new_level = sb->new_level;
1084 			mddev->new_layout = sb->new_layout;
1085 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1086 			if (mddev->delta_disks < 0)
1087 				mddev->reshape_backwards = 1;
1088 		} else {
1089 			mddev->reshape_position = MaxSector;
1090 			mddev->delta_disks = 0;
1091 			mddev->new_level = mddev->level;
1092 			mddev->new_layout = mddev->layout;
1093 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1094 		}
1095 
1096 		if (sb->state & (1<<MD_SB_CLEAN))
1097 			mddev->recovery_cp = MaxSector;
1098 		else {
1099 			if (sb->events_hi == sb->cp_events_hi &&
1100 				sb->events_lo == sb->cp_events_lo) {
1101 				mddev->recovery_cp = sb->recovery_cp;
1102 			} else
1103 				mddev->recovery_cp = 0;
1104 		}
1105 
1106 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1107 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1108 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1109 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1110 
1111 		mddev->max_disks = MD_SB_DISKS;
1112 
1113 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1114 		    mddev->bitmap_info.file == NULL) {
1115 			mddev->bitmap_info.offset =
1116 				mddev->bitmap_info.default_offset;
1117 			mddev->bitmap_info.space =
1118 				mddev->bitmap_info.default_space;
1119 		}
1120 
1121 	} else if (mddev->pers == NULL) {
1122 		/* Insist on good event counter while assembling, except
1123 		 * for spares (which don't need an event count) */
1124 		++ev1;
1125 		if (sb->disks[rdev->desc_nr].state & (
1126 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1127 			if (ev1 < mddev->events)
1128 				return -EINVAL;
1129 	} else if (mddev->bitmap) {
1130 		/* if adding to array with a bitmap, then we can accept an
1131 		 * older device ... but not too old.
1132 		 */
1133 		if (ev1 < mddev->bitmap->events_cleared)
1134 			return 0;
1135 		if (ev1 < mddev->events)
1136 			set_bit(Bitmap_sync, &rdev->flags);
1137 	} else {
1138 		if (ev1 < mddev->events)
1139 			/* just a hot-add of a new device, leave raid_disk at -1 */
1140 			return 0;
1141 	}
1142 
1143 	if (mddev->level != LEVEL_MULTIPATH) {
1144 		desc = sb->disks + rdev->desc_nr;
1145 
1146 		if (desc->state & (1<<MD_DISK_FAULTY))
1147 			set_bit(Faulty, &rdev->flags);
1148 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1149 			    desc->raid_disk < mddev->raid_disks */) {
1150 			set_bit(In_sync, &rdev->flags);
1151 			rdev->raid_disk = desc->raid_disk;
1152 			rdev->saved_raid_disk = desc->raid_disk;
1153 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1154 			/* active but not in sync implies recovery up to
1155 			 * reshape position.  We don't know exactly where
1156 			 * that is, so set to zero for now */
1157 			if (mddev->minor_version >= 91) {
1158 				rdev->recovery_offset = 0;
1159 				rdev->raid_disk = desc->raid_disk;
1160 			}
1161 		}
1162 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1163 			set_bit(WriteMostly, &rdev->flags);
1164 	} else /* MULTIPATH are always insync */
1165 		set_bit(In_sync, &rdev->flags);
1166 	return 0;
1167 }
1168 
1169 /*
1170  * sync_super for 0.90.0
1171  */
1172 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1173 {
1174 	mdp_super_t *sb;
1175 	struct md_rdev *rdev2;
1176 	int next_spare = mddev->raid_disks;
1177 
1178 	/* make rdev->sb match mddev data..
1179 	 *
1180 	 * 1/ zero out disks
1181 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1182 	 * 3/ any empty disks < next_spare become removed
1183 	 *
1184 	 * disks[0] gets initialised to REMOVED because
1185 	 * we cannot be sure from other fields if it has
1186 	 * been initialised or not.
1187 	 */
1188 	int i;
1189 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1190 
1191 	rdev->sb_size = MD_SB_BYTES;
1192 
1193 	sb = page_address(rdev->sb_page);
1194 
1195 	memset(sb, 0, sizeof(*sb));
1196 
1197 	sb->md_magic = MD_SB_MAGIC;
1198 	sb->major_version = mddev->major_version;
1199 	sb->patch_version = mddev->patch_version;
1200 	sb->gvalid_words  = 0; /* ignored */
1201 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1202 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1203 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1204 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1205 
1206 	sb->ctime = mddev->ctime;
1207 	sb->level = mddev->level;
1208 	sb->size = mddev->dev_sectors / 2;
1209 	sb->raid_disks = mddev->raid_disks;
1210 	sb->md_minor = mddev->md_minor;
1211 	sb->not_persistent = 0;
1212 	sb->utime = mddev->utime;
1213 	sb->state = 0;
1214 	sb->events_hi = (mddev->events>>32);
1215 	sb->events_lo = (u32)mddev->events;
1216 
1217 	if (mddev->reshape_position == MaxSector)
1218 		sb->minor_version = 90;
1219 	else {
1220 		sb->minor_version = 91;
1221 		sb->reshape_position = mddev->reshape_position;
1222 		sb->new_level = mddev->new_level;
1223 		sb->delta_disks = mddev->delta_disks;
1224 		sb->new_layout = mddev->new_layout;
1225 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1226 	}
1227 	mddev->minor_version = sb->minor_version;
1228 	if (mddev->in_sync)
1229 	{
1230 		sb->recovery_cp = mddev->recovery_cp;
1231 		sb->cp_events_hi = (mddev->events>>32);
1232 		sb->cp_events_lo = (u32)mddev->events;
1233 		if (mddev->recovery_cp == MaxSector)
1234 			sb->state = (1<< MD_SB_CLEAN);
1235 	} else
1236 		sb->recovery_cp = 0;
1237 
1238 	sb->layout = mddev->layout;
1239 	sb->chunk_size = mddev->chunk_sectors << 9;
1240 
1241 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1242 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1243 
1244 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1245 	rdev_for_each(rdev2, mddev) {
1246 		mdp_disk_t *d;
1247 		int desc_nr;
1248 		int is_active = test_bit(In_sync, &rdev2->flags);
1249 
1250 		if (rdev2->raid_disk >= 0 &&
1251 		    sb->minor_version >= 91)
1252 			/* we have nowhere to store the recovery_offset,
1253 			 * but if it is not below the reshape_position,
1254 			 * we can piggy-back on that.
1255 			 */
1256 			is_active = 1;
1257 		if (rdev2->raid_disk < 0 ||
1258 		    test_bit(Faulty, &rdev2->flags))
1259 			is_active = 0;
1260 		if (is_active)
1261 			desc_nr = rdev2->raid_disk;
1262 		else
1263 			desc_nr = next_spare++;
1264 		rdev2->desc_nr = desc_nr;
1265 		d = &sb->disks[rdev2->desc_nr];
1266 		nr_disks++;
1267 		d->number = rdev2->desc_nr;
1268 		d->major = MAJOR(rdev2->bdev->bd_dev);
1269 		d->minor = MINOR(rdev2->bdev->bd_dev);
1270 		if (is_active)
1271 			d->raid_disk = rdev2->raid_disk;
1272 		else
1273 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1274 		if (test_bit(Faulty, &rdev2->flags))
1275 			d->state = (1<<MD_DISK_FAULTY);
1276 		else if (is_active) {
1277 			d->state = (1<<MD_DISK_ACTIVE);
1278 			if (test_bit(In_sync, &rdev2->flags))
1279 				d->state |= (1<<MD_DISK_SYNC);
1280 			active++;
1281 			working++;
1282 		} else {
1283 			d->state = 0;
1284 			spare++;
1285 			working++;
1286 		}
1287 		if (test_bit(WriteMostly, &rdev2->flags))
1288 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1289 	}
1290 	/* now set the "removed" and "faulty" bits on any missing devices */
1291 	for (i=0 ; i < mddev->raid_disks ; i++) {
1292 		mdp_disk_t *d = &sb->disks[i];
1293 		if (d->state == 0 && d->number == 0) {
1294 			d->number = i;
1295 			d->raid_disk = i;
1296 			d->state = (1<<MD_DISK_REMOVED);
1297 			d->state |= (1<<MD_DISK_FAULTY);
1298 			failed++;
1299 		}
1300 	}
1301 	sb->nr_disks = nr_disks;
1302 	sb->active_disks = active;
1303 	sb->working_disks = working;
1304 	sb->failed_disks = failed;
1305 	sb->spare_disks = spare;
1306 
1307 	sb->this_disk = sb->disks[rdev->desc_nr];
1308 	sb->sb_csum = calc_sb_csum(sb);
1309 }
1310 
1311 /*
1312  * rdev_size_change for 0.90.0
1313  */
1314 static unsigned long long
1315 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1316 {
1317 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1318 		return 0; /* component must fit device */
1319 	if (rdev->mddev->bitmap_info.offset)
1320 		return 0; /* can't move bitmap */
1321 	rdev->sb_start = calc_dev_sboffset(rdev);
1322 	if (!num_sectors || num_sectors > rdev->sb_start)
1323 		num_sectors = rdev->sb_start;
1324 	/* Limit to 4TB as metadata cannot record more than that.
1325 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1326 	 */
1327 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1328 		num_sectors = (2ULL << 32) - 2;
1329 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1330 		       rdev->sb_page);
1331 	md_super_wait(rdev->mddev);
1332 	return num_sectors;
1333 }
1334 
1335 static int
1336 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1337 {
1338 	/* non-zero offset changes not possible with v0.90 */
1339 	return new_offset == 0;
1340 }
1341 
1342 /*
1343  * version 1 superblock
1344  */
1345 
1346 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1347 {
1348 	__le32 disk_csum;
1349 	u32 csum;
1350 	unsigned long long newcsum;
1351 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1352 	__le32 *isuper = (__le32*)sb;
1353 
1354 	disk_csum = sb->sb_csum;
1355 	sb->sb_csum = 0;
1356 	newcsum = 0;
1357 	for (; size >= 4; size -= 4)
1358 		newcsum += le32_to_cpu(*isuper++);
1359 
1360 	if (size == 2)
1361 		newcsum += le16_to_cpu(*(__le16*) isuper);
1362 
1363 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1364 	sb->sb_csum = disk_csum;
1365 	return cpu_to_le32(csum);
1366 }
1367 
1368 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1369 			    int acknowledged);
1370 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1371 {
1372 	struct mdp_superblock_1 *sb;
1373 	int ret;
1374 	sector_t sb_start;
1375 	sector_t sectors;
1376 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1377 	int bmask;
1378 
1379 	/*
1380 	 * Calculate the position of the superblock in 512byte sectors.
1381 	 * It is always aligned to a 4K boundary and
1382 	 * depeding on minor_version, it can be:
1383 	 * 0: At least 8K, but less than 12K, from end of device
1384 	 * 1: At start of device
1385 	 * 2: 4K from start of device.
1386 	 */
1387 	switch(minor_version) {
1388 	case 0:
1389 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1390 		sb_start -= 8*2;
1391 		sb_start &= ~(sector_t)(4*2-1);
1392 		break;
1393 	case 1:
1394 		sb_start = 0;
1395 		break;
1396 	case 2:
1397 		sb_start = 8;
1398 		break;
1399 	default:
1400 		return -EINVAL;
1401 	}
1402 	rdev->sb_start = sb_start;
1403 
1404 	/* superblock is rarely larger than 1K, but it can be larger,
1405 	 * and it is safe to read 4k, so we do that
1406 	 */
1407 	ret = read_disk_sb(rdev, 4096);
1408 	if (ret) return ret;
1409 
1410 	sb = page_address(rdev->sb_page);
1411 
1412 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1413 	    sb->major_version != cpu_to_le32(1) ||
1414 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1415 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1416 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1417 		return -EINVAL;
1418 
1419 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1420 		printk("md: invalid superblock checksum on %s\n",
1421 			bdevname(rdev->bdev,b));
1422 		return -EINVAL;
1423 	}
1424 	if (le64_to_cpu(sb->data_size) < 10) {
1425 		printk("md: data_size too small on %s\n",
1426 		       bdevname(rdev->bdev,b));
1427 		return -EINVAL;
1428 	}
1429 	if (sb->pad0 ||
1430 	    sb->pad3[0] ||
1431 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1432 		/* Some padding is non-zero, might be a new feature */
1433 		return -EINVAL;
1434 
1435 	rdev->preferred_minor = 0xffff;
1436 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1437 	rdev->new_data_offset = rdev->data_offset;
1438 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1439 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1440 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1441 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1442 
1443 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1444 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1445 	if (rdev->sb_size & bmask)
1446 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1447 
1448 	if (minor_version
1449 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1450 		return -EINVAL;
1451 	if (minor_version
1452 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1453 		return -EINVAL;
1454 
1455 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1456 		rdev->desc_nr = -1;
1457 	else
1458 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1459 
1460 	if (!rdev->bb_page) {
1461 		rdev->bb_page = alloc_page(GFP_KERNEL);
1462 		if (!rdev->bb_page)
1463 			return -ENOMEM;
1464 	}
1465 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1466 	    rdev->badblocks.count == 0) {
1467 		/* need to load the bad block list.
1468 		 * Currently we limit it to one page.
1469 		 */
1470 		s32 offset;
1471 		sector_t bb_sector;
1472 		u64 *bbp;
1473 		int i;
1474 		int sectors = le16_to_cpu(sb->bblog_size);
1475 		if (sectors > (PAGE_SIZE / 512))
1476 			return -EINVAL;
1477 		offset = le32_to_cpu(sb->bblog_offset);
1478 		if (offset == 0)
1479 			return -EINVAL;
1480 		bb_sector = (long long)offset;
1481 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1482 				  rdev->bb_page, READ, true))
1483 			return -EIO;
1484 		bbp = (u64 *)page_address(rdev->bb_page);
1485 		rdev->badblocks.shift = sb->bblog_shift;
1486 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1487 			u64 bb = le64_to_cpu(*bbp);
1488 			int count = bb & (0x3ff);
1489 			u64 sector = bb >> 10;
1490 			sector <<= sb->bblog_shift;
1491 			count <<= sb->bblog_shift;
1492 			if (bb + 1 == 0)
1493 				break;
1494 			if (md_set_badblocks(&rdev->badblocks,
1495 					     sector, count, 1) == 0)
1496 				return -EINVAL;
1497 		}
1498 	} else if (sb->bblog_offset != 0)
1499 		rdev->badblocks.shift = 0;
1500 
1501 	if (!refdev) {
1502 		ret = 1;
1503 	} else {
1504 		__u64 ev1, ev2;
1505 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1506 
1507 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1508 		    sb->level != refsb->level ||
1509 		    sb->layout != refsb->layout ||
1510 		    sb->chunksize != refsb->chunksize) {
1511 			printk(KERN_WARNING "md: %s has strangely different"
1512 				" superblock to %s\n",
1513 				bdevname(rdev->bdev,b),
1514 				bdevname(refdev->bdev,b2));
1515 			return -EINVAL;
1516 		}
1517 		ev1 = le64_to_cpu(sb->events);
1518 		ev2 = le64_to_cpu(refsb->events);
1519 
1520 		if (ev1 > ev2)
1521 			ret = 1;
1522 		else
1523 			ret = 0;
1524 	}
1525 	if (minor_version) {
1526 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1527 		sectors -= rdev->data_offset;
1528 	} else
1529 		sectors = rdev->sb_start;
1530 	if (sectors < le64_to_cpu(sb->data_size))
1531 		return -EINVAL;
1532 	rdev->sectors = le64_to_cpu(sb->data_size);
1533 	return ret;
1534 }
1535 
1536 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1537 {
1538 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1539 	__u64 ev1 = le64_to_cpu(sb->events);
1540 
1541 	rdev->raid_disk = -1;
1542 	clear_bit(Faulty, &rdev->flags);
1543 	clear_bit(In_sync, &rdev->flags);
1544 	clear_bit(Bitmap_sync, &rdev->flags);
1545 	clear_bit(WriteMostly, &rdev->flags);
1546 
1547 	if (mddev->raid_disks == 0) {
1548 		mddev->major_version = 1;
1549 		mddev->patch_version = 0;
1550 		mddev->external = 0;
1551 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1552 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1553 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1554 		mddev->level = le32_to_cpu(sb->level);
1555 		mddev->clevel[0] = 0;
1556 		mddev->layout = le32_to_cpu(sb->layout);
1557 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1558 		mddev->dev_sectors = le64_to_cpu(sb->size);
1559 		mddev->events = ev1;
1560 		mddev->bitmap_info.offset = 0;
1561 		mddev->bitmap_info.space = 0;
1562 		/* Default location for bitmap is 1K after superblock
1563 		 * using 3K - total of 4K
1564 		 */
1565 		mddev->bitmap_info.default_offset = 1024 >> 9;
1566 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1567 		mddev->reshape_backwards = 0;
1568 
1569 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1570 		memcpy(mddev->uuid, sb->set_uuid, 16);
1571 
1572 		mddev->max_disks =  (4096-256)/2;
1573 
1574 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1575 		    mddev->bitmap_info.file == NULL) {
1576 			mddev->bitmap_info.offset =
1577 				(__s32)le32_to_cpu(sb->bitmap_offset);
1578 			/* Metadata doesn't record how much space is available.
1579 			 * For 1.0, we assume we can use up to the superblock
1580 			 * if before, else to 4K beyond superblock.
1581 			 * For others, assume no change is possible.
1582 			 */
1583 			if (mddev->minor_version > 0)
1584 				mddev->bitmap_info.space = 0;
1585 			else if (mddev->bitmap_info.offset > 0)
1586 				mddev->bitmap_info.space =
1587 					8 - mddev->bitmap_info.offset;
1588 			else
1589 				mddev->bitmap_info.space =
1590 					-mddev->bitmap_info.offset;
1591 		}
1592 
1593 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1594 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1595 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1596 			mddev->new_level = le32_to_cpu(sb->new_level);
1597 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1598 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1599 			if (mddev->delta_disks < 0 ||
1600 			    (mddev->delta_disks == 0 &&
1601 			     (le32_to_cpu(sb->feature_map)
1602 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1603 				mddev->reshape_backwards = 1;
1604 		} else {
1605 			mddev->reshape_position = MaxSector;
1606 			mddev->delta_disks = 0;
1607 			mddev->new_level = mddev->level;
1608 			mddev->new_layout = mddev->layout;
1609 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1610 		}
1611 
1612 	} else if (mddev->pers == NULL) {
1613 		/* Insist of good event counter while assembling, except for
1614 		 * spares (which don't need an event count) */
1615 		++ev1;
1616 		if (rdev->desc_nr >= 0 &&
1617 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1618 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1619 			if (ev1 < mddev->events)
1620 				return -EINVAL;
1621 	} else if (mddev->bitmap) {
1622 		/* If adding to array with a bitmap, then we can accept an
1623 		 * older device, but not too old.
1624 		 */
1625 		if (ev1 < mddev->bitmap->events_cleared)
1626 			return 0;
1627 		if (ev1 < mddev->events)
1628 			set_bit(Bitmap_sync, &rdev->flags);
1629 	} else {
1630 		if (ev1 < mddev->events)
1631 			/* just a hot-add of a new device, leave raid_disk at -1 */
1632 			return 0;
1633 	}
1634 	if (mddev->level != LEVEL_MULTIPATH) {
1635 		int role;
1636 		if (rdev->desc_nr < 0 ||
1637 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1638 			role = 0xffff;
1639 			rdev->desc_nr = -1;
1640 		} else
1641 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1642 		switch(role) {
1643 		case 0xffff: /* spare */
1644 			break;
1645 		case 0xfffe: /* faulty */
1646 			set_bit(Faulty, &rdev->flags);
1647 			break;
1648 		default:
1649 			rdev->saved_raid_disk = role;
1650 			if ((le32_to_cpu(sb->feature_map) &
1651 			     MD_FEATURE_RECOVERY_OFFSET)) {
1652 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1653 				if (!(le32_to_cpu(sb->feature_map) &
1654 				      MD_FEATURE_RECOVERY_BITMAP))
1655 					rdev->saved_raid_disk = -1;
1656 			} else
1657 				set_bit(In_sync, &rdev->flags);
1658 			rdev->raid_disk = role;
1659 			break;
1660 		}
1661 		if (sb->devflags & WriteMostly1)
1662 			set_bit(WriteMostly, &rdev->flags);
1663 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1664 			set_bit(Replacement, &rdev->flags);
1665 	} else /* MULTIPATH are always insync */
1666 		set_bit(In_sync, &rdev->flags);
1667 
1668 	return 0;
1669 }
1670 
1671 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1672 {
1673 	struct mdp_superblock_1 *sb;
1674 	struct md_rdev *rdev2;
1675 	int max_dev, i;
1676 	/* make rdev->sb match mddev and rdev data. */
1677 
1678 	sb = page_address(rdev->sb_page);
1679 
1680 	sb->feature_map = 0;
1681 	sb->pad0 = 0;
1682 	sb->recovery_offset = cpu_to_le64(0);
1683 	memset(sb->pad3, 0, sizeof(sb->pad3));
1684 
1685 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1686 	sb->events = cpu_to_le64(mddev->events);
1687 	if (mddev->in_sync)
1688 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1689 	else
1690 		sb->resync_offset = cpu_to_le64(0);
1691 
1692 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1693 
1694 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1695 	sb->size = cpu_to_le64(mddev->dev_sectors);
1696 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1697 	sb->level = cpu_to_le32(mddev->level);
1698 	sb->layout = cpu_to_le32(mddev->layout);
1699 
1700 	if (test_bit(WriteMostly, &rdev->flags))
1701 		sb->devflags |= WriteMostly1;
1702 	else
1703 		sb->devflags &= ~WriteMostly1;
1704 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1705 	sb->data_size = cpu_to_le64(rdev->sectors);
1706 
1707 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1708 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1709 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1710 	}
1711 
1712 	if (rdev->raid_disk >= 0 &&
1713 	    !test_bit(In_sync, &rdev->flags)) {
1714 		sb->feature_map |=
1715 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1716 		sb->recovery_offset =
1717 			cpu_to_le64(rdev->recovery_offset);
1718 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1719 			sb->feature_map |=
1720 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1721 	}
1722 	if (test_bit(Replacement, &rdev->flags))
1723 		sb->feature_map |=
1724 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1725 
1726 	if (mddev->reshape_position != MaxSector) {
1727 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1728 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1729 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1730 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1731 		sb->new_level = cpu_to_le32(mddev->new_level);
1732 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1733 		if (mddev->delta_disks == 0 &&
1734 		    mddev->reshape_backwards)
1735 			sb->feature_map
1736 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1737 		if (rdev->new_data_offset != rdev->data_offset) {
1738 			sb->feature_map
1739 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1740 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1741 							     - rdev->data_offset));
1742 		}
1743 	}
1744 
1745 	if (rdev->badblocks.count == 0)
1746 		/* Nothing to do for bad blocks*/ ;
1747 	else if (sb->bblog_offset == 0)
1748 		/* Cannot record bad blocks on this device */
1749 		md_error(mddev, rdev);
1750 	else {
1751 		struct badblocks *bb = &rdev->badblocks;
1752 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1753 		u64 *p = bb->page;
1754 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1755 		if (bb->changed) {
1756 			unsigned seq;
1757 
1758 retry:
1759 			seq = read_seqbegin(&bb->lock);
1760 
1761 			memset(bbp, 0xff, PAGE_SIZE);
1762 
1763 			for (i = 0 ; i < bb->count ; i++) {
1764 				u64 internal_bb = p[i];
1765 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1766 						| BB_LEN(internal_bb));
1767 				bbp[i] = cpu_to_le64(store_bb);
1768 			}
1769 			bb->changed = 0;
1770 			if (read_seqretry(&bb->lock, seq))
1771 				goto retry;
1772 
1773 			bb->sector = (rdev->sb_start +
1774 				      (int)le32_to_cpu(sb->bblog_offset));
1775 			bb->size = le16_to_cpu(sb->bblog_size);
1776 		}
1777 	}
1778 
1779 	max_dev = 0;
1780 	rdev_for_each(rdev2, mddev)
1781 		if (rdev2->desc_nr+1 > max_dev)
1782 			max_dev = rdev2->desc_nr+1;
1783 
1784 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1785 		int bmask;
1786 		sb->max_dev = cpu_to_le32(max_dev);
1787 		rdev->sb_size = max_dev * 2 + 256;
1788 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1789 		if (rdev->sb_size & bmask)
1790 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1791 	} else
1792 		max_dev = le32_to_cpu(sb->max_dev);
1793 
1794 	for (i=0; i<max_dev;i++)
1795 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1796 
1797 	rdev_for_each(rdev2, mddev) {
1798 		i = rdev2->desc_nr;
1799 		if (test_bit(Faulty, &rdev2->flags))
1800 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1801 		else if (test_bit(In_sync, &rdev2->flags))
1802 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1803 		else if (rdev2->raid_disk >= 0)
1804 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1805 		else
1806 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1807 	}
1808 
1809 	sb->sb_csum = calc_sb_1_csum(sb);
1810 }
1811 
1812 static unsigned long long
1813 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1814 {
1815 	struct mdp_superblock_1 *sb;
1816 	sector_t max_sectors;
1817 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1818 		return 0; /* component must fit device */
1819 	if (rdev->data_offset != rdev->new_data_offset)
1820 		return 0; /* too confusing */
1821 	if (rdev->sb_start < rdev->data_offset) {
1822 		/* minor versions 1 and 2; superblock before data */
1823 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1824 		max_sectors -= rdev->data_offset;
1825 		if (!num_sectors || num_sectors > max_sectors)
1826 			num_sectors = max_sectors;
1827 	} else if (rdev->mddev->bitmap_info.offset) {
1828 		/* minor version 0 with bitmap we can't move */
1829 		return 0;
1830 	} else {
1831 		/* minor version 0; superblock after data */
1832 		sector_t sb_start;
1833 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1834 		sb_start &= ~(sector_t)(4*2 - 1);
1835 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1836 		if (!num_sectors || num_sectors > max_sectors)
1837 			num_sectors = max_sectors;
1838 		rdev->sb_start = sb_start;
1839 	}
1840 	sb = page_address(rdev->sb_page);
1841 	sb->data_size = cpu_to_le64(num_sectors);
1842 	sb->super_offset = rdev->sb_start;
1843 	sb->sb_csum = calc_sb_1_csum(sb);
1844 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1845 		       rdev->sb_page);
1846 	md_super_wait(rdev->mddev);
1847 	return num_sectors;
1848 
1849 }
1850 
1851 static int
1852 super_1_allow_new_offset(struct md_rdev *rdev,
1853 			 unsigned long long new_offset)
1854 {
1855 	/* All necessary checks on new >= old have been done */
1856 	struct bitmap *bitmap;
1857 	if (new_offset >= rdev->data_offset)
1858 		return 1;
1859 
1860 	/* with 1.0 metadata, there is no metadata to tread on
1861 	 * so we can always move back */
1862 	if (rdev->mddev->minor_version == 0)
1863 		return 1;
1864 
1865 	/* otherwise we must be sure not to step on
1866 	 * any metadata, so stay:
1867 	 * 36K beyond start of superblock
1868 	 * beyond end of badblocks
1869 	 * beyond write-intent bitmap
1870 	 */
1871 	if (rdev->sb_start + (32+4)*2 > new_offset)
1872 		return 0;
1873 	bitmap = rdev->mddev->bitmap;
1874 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1875 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1876 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1877 		return 0;
1878 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1879 		return 0;
1880 
1881 	return 1;
1882 }
1883 
1884 static struct super_type super_types[] = {
1885 	[0] = {
1886 		.name	= "0.90.0",
1887 		.owner	= THIS_MODULE,
1888 		.load_super	    = super_90_load,
1889 		.validate_super	    = super_90_validate,
1890 		.sync_super	    = super_90_sync,
1891 		.rdev_size_change   = super_90_rdev_size_change,
1892 		.allow_new_offset   = super_90_allow_new_offset,
1893 	},
1894 	[1] = {
1895 		.name	= "md-1",
1896 		.owner	= THIS_MODULE,
1897 		.load_super	    = super_1_load,
1898 		.validate_super	    = super_1_validate,
1899 		.sync_super	    = super_1_sync,
1900 		.rdev_size_change   = super_1_rdev_size_change,
1901 		.allow_new_offset   = super_1_allow_new_offset,
1902 	},
1903 };
1904 
1905 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1906 {
1907 	if (mddev->sync_super) {
1908 		mddev->sync_super(mddev, rdev);
1909 		return;
1910 	}
1911 
1912 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1913 
1914 	super_types[mddev->major_version].sync_super(mddev, rdev);
1915 }
1916 
1917 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1918 {
1919 	struct md_rdev *rdev, *rdev2;
1920 
1921 	rcu_read_lock();
1922 	rdev_for_each_rcu(rdev, mddev1)
1923 		rdev_for_each_rcu(rdev2, mddev2)
1924 			if (rdev->bdev->bd_contains ==
1925 			    rdev2->bdev->bd_contains) {
1926 				rcu_read_unlock();
1927 				return 1;
1928 			}
1929 	rcu_read_unlock();
1930 	return 0;
1931 }
1932 
1933 static LIST_HEAD(pending_raid_disks);
1934 
1935 /*
1936  * Try to register data integrity profile for an mddev
1937  *
1938  * This is called when an array is started and after a disk has been kicked
1939  * from the array. It only succeeds if all working and active component devices
1940  * are integrity capable with matching profiles.
1941  */
1942 int md_integrity_register(struct mddev *mddev)
1943 {
1944 	struct md_rdev *rdev, *reference = NULL;
1945 
1946 	if (list_empty(&mddev->disks))
1947 		return 0; /* nothing to do */
1948 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1949 		return 0; /* shouldn't register, or already is */
1950 	rdev_for_each(rdev, mddev) {
1951 		/* skip spares and non-functional disks */
1952 		if (test_bit(Faulty, &rdev->flags))
1953 			continue;
1954 		if (rdev->raid_disk < 0)
1955 			continue;
1956 		if (!reference) {
1957 			/* Use the first rdev as the reference */
1958 			reference = rdev;
1959 			continue;
1960 		}
1961 		/* does this rdev's profile match the reference profile? */
1962 		if (blk_integrity_compare(reference->bdev->bd_disk,
1963 				rdev->bdev->bd_disk) < 0)
1964 			return -EINVAL;
1965 	}
1966 	if (!reference || !bdev_get_integrity(reference->bdev))
1967 		return 0;
1968 	/*
1969 	 * All component devices are integrity capable and have matching
1970 	 * profiles, register the common profile for the md device.
1971 	 */
1972 	if (blk_integrity_register(mddev->gendisk,
1973 			bdev_get_integrity(reference->bdev)) != 0) {
1974 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1975 			mdname(mddev));
1976 		return -EINVAL;
1977 	}
1978 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1979 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1980 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1981 		       mdname(mddev));
1982 		return -EINVAL;
1983 	}
1984 	return 0;
1985 }
1986 EXPORT_SYMBOL(md_integrity_register);
1987 
1988 /* Disable data integrity if non-capable/non-matching disk is being added */
1989 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1990 {
1991 	struct blk_integrity *bi_rdev;
1992 	struct blk_integrity *bi_mddev;
1993 
1994 	if (!mddev->gendisk)
1995 		return;
1996 
1997 	bi_rdev = bdev_get_integrity(rdev->bdev);
1998 	bi_mddev = blk_get_integrity(mddev->gendisk);
1999 
2000 	if (!bi_mddev) /* nothing to do */
2001 		return;
2002 	if (rdev->raid_disk < 0) /* skip spares */
2003 		return;
2004 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2005 					     rdev->bdev->bd_disk) >= 0)
2006 		return;
2007 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2008 	blk_integrity_unregister(mddev->gendisk);
2009 }
2010 EXPORT_SYMBOL(md_integrity_add_rdev);
2011 
2012 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2013 {
2014 	char b[BDEVNAME_SIZE];
2015 	struct kobject *ko;
2016 	char *s;
2017 	int err;
2018 
2019 	/* prevent duplicates */
2020 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2021 		return -EEXIST;
2022 
2023 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2024 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2025 			rdev->sectors < mddev->dev_sectors)) {
2026 		if (mddev->pers) {
2027 			/* Cannot change size, so fail
2028 			 * If mddev->level <= 0, then we don't care
2029 			 * about aligning sizes (e.g. linear)
2030 			 */
2031 			if (mddev->level > 0)
2032 				return -ENOSPC;
2033 		} else
2034 			mddev->dev_sectors = rdev->sectors;
2035 	}
2036 
2037 	/* Verify rdev->desc_nr is unique.
2038 	 * If it is -1, assign a free number, else
2039 	 * check number is not in use
2040 	 */
2041 	rcu_read_lock();
2042 	if (rdev->desc_nr < 0) {
2043 		int choice = 0;
2044 		if (mddev->pers)
2045 			choice = mddev->raid_disks;
2046 		while (find_rdev_nr_rcu(mddev, choice))
2047 			choice++;
2048 		rdev->desc_nr = choice;
2049 	} else {
2050 		if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2051 			rcu_read_unlock();
2052 			return -EBUSY;
2053 		}
2054 	}
2055 	rcu_read_unlock();
2056 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2057 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2058 		       mdname(mddev), mddev->max_disks);
2059 		return -EBUSY;
2060 	}
2061 	bdevname(rdev->bdev,b);
2062 	while ( (s=strchr(b, '/')) != NULL)
2063 		*s = '!';
2064 
2065 	rdev->mddev = mddev;
2066 	printk(KERN_INFO "md: bind<%s>\n", b);
2067 
2068 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2069 		goto fail;
2070 
2071 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2072 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2073 		/* failure here is OK */;
2074 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2075 
2076 	list_add_rcu(&rdev->same_set, &mddev->disks);
2077 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2078 
2079 	/* May as well allow recovery to be retried once */
2080 	mddev->recovery_disabled++;
2081 
2082 	return 0;
2083 
2084  fail:
2085 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2086 	       b, mdname(mddev));
2087 	return err;
2088 }
2089 
2090 static void md_delayed_delete(struct work_struct *ws)
2091 {
2092 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2093 	kobject_del(&rdev->kobj);
2094 	kobject_put(&rdev->kobj);
2095 }
2096 
2097 static void unbind_rdev_from_array(struct md_rdev *rdev)
2098 {
2099 	char b[BDEVNAME_SIZE];
2100 
2101 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2102 	list_del_rcu(&rdev->same_set);
2103 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2104 	rdev->mddev = NULL;
2105 	sysfs_remove_link(&rdev->kobj, "block");
2106 	sysfs_put(rdev->sysfs_state);
2107 	rdev->sysfs_state = NULL;
2108 	rdev->badblocks.count = 0;
2109 	/* We need to delay this, otherwise we can deadlock when
2110 	 * writing to 'remove' to "dev/state".  We also need
2111 	 * to delay it due to rcu usage.
2112 	 */
2113 	synchronize_rcu();
2114 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2115 	kobject_get(&rdev->kobj);
2116 	queue_work(md_misc_wq, &rdev->del_work);
2117 }
2118 
2119 /*
2120  * prevent the device from being mounted, repartitioned or
2121  * otherwise reused by a RAID array (or any other kernel
2122  * subsystem), by bd_claiming the device.
2123  */
2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2125 {
2126 	int err = 0;
2127 	struct block_device *bdev;
2128 	char b[BDEVNAME_SIZE];
2129 
2130 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2131 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2132 	if (IS_ERR(bdev)) {
2133 		printk(KERN_ERR "md: could not open %s.\n",
2134 			__bdevname(dev, b));
2135 		return PTR_ERR(bdev);
2136 	}
2137 	rdev->bdev = bdev;
2138 	return err;
2139 }
2140 
2141 static void unlock_rdev(struct md_rdev *rdev)
2142 {
2143 	struct block_device *bdev = rdev->bdev;
2144 	rdev->bdev = NULL;
2145 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2146 }
2147 
2148 void md_autodetect_dev(dev_t dev);
2149 
2150 static void export_rdev(struct md_rdev *rdev)
2151 {
2152 	char b[BDEVNAME_SIZE];
2153 
2154 	printk(KERN_INFO "md: export_rdev(%s)\n",
2155 		bdevname(rdev->bdev,b));
2156 	md_rdev_clear(rdev);
2157 #ifndef MODULE
2158 	if (test_bit(AutoDetected, &rdev->flags))
2159 		md_autodetect_dev(rdev->bdev->bd_dev);
2160 #endif
2161 	unlock_rdev(rdev);
2162 	kobject_put(&rdev->kobj);
2163 }
2164 
2165 static void kick_rdev_from_array(struct md_rdev *rdev)
2166 {
2167 	unbind_rdev_from_array(rdev);
2168 	export_rdev(rdev);
2169 }
2170 
2171 static void export_array(struct mddev *mddev)
2172 {
2173 	struct md_rdev *rdev;
2174 
2175 	while (!list_empty(&mddev->disks)) {
2176 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2177 					same_set);
2178 		kick_rdev_from_array(rdev);
2179 	}
2180 	mddev->raid_disks = 0;
2181 	mddev->major_version = 0;
2182 }
2183 
2184 static void sync_sbs(struct mddev *mddev, int nospares)
2185 {
2186 	/* Update each superblock (in-memory image), but
2187 	 * if we are allowed to, skip spares which already
2188 	 * have the right event counter, or have one earlier
2189 	 * (which would mean they aren't being marked as dirty
2190 	 * with the rest of the array)
2191 	 */
2192 	struct md_rdev *rdev;
2193 	rdev_for_each(rdev, mddev) {
2194 		if (rdev->sb_events == mddev->events ||
2195 		    (nospares &&
2196 		     rdev->raid_disk < 0 &&
2197 		     rdev->sb_events+1 == mddev->events)) {
2198 			/* Don't update this superblock */
2199 			rdev->sb_loaded = 2;
2200 		} else {
2201 			sync_super(mddev, rdev);
2202 			rdev->sb_loaded = 1;
2203 		}
2204 	}
2205 }
2206 
2207 static void md_update_sb(struct mddev *mddev, int force_change)
2208 {
2209 	struct md_rdev *rdev;
2210 	int sync_req;
2211 	int nospares = 0;
2212 	int any_badblocks_changed = 0;
2213 
2214 	if (mddev->ro) {
2215 		if (force_change)
2216 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2217 		return;
2218 	}
2219 repeat:
2220 	/* First make sure individual recovery_offsets are correct */
2221 	rdev_for_each(rdev, mddev) {
2222 		if (rdev->raid_disk >= 0 &&
2223 		    mddev->delta_disks >= 0 &&
2224 		    !test_bit(In_sync, &rdev->flags) &&
2225 		    mddev->curr_resync_completed > rdev->recovery_offset)
2226 				rdev->recovery_offset = mddev->curr_resync_completed;
2227 
2228 	}
2229 	if (!mddev->persistent) {
2230 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2231 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2232 		if (!mddev->external) {
2233 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2234 			rdev_for_each(rdev, mddev) {
2235 				if (rdev->badblocks.changed) {
2236 					rdev->badblocks.changed = 0;
2237 					md_ack_all_badblocks(&rdev->badblocks);
2238 					md_error(mddev, rdev);
2239 				}
2240 				clear_bit(Blocked, &rdev->flags);
2241 				clear_bit(BlockedBadBlocks, &rdev->flags);
2242 				wake_up(&rdev->blocked_wait);
2243 			}
2244 		}
2245 		wake_up(&mddev->sb_wait);
2246 		return;
2247 	}
2248 
2249 	spin_lock(&mddev->lock);
2250 
2251 	mddev->utime = get_seconds();
2252 
2253 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2254 		force_change = 1;
2255 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2256 		/* just a clean<-> dirty transition, possibly leave spares alone,
2257 		 * though if events isn't the right even/odd, we will have to do
2258 		 * spares after all
2259 		 */
2260 		nospares = 1;
2261 	if (force_change)
2262 		nospares = 0;
2263 	if (mddev->degraded)
2264 		/* If the array is degraded, then skipping spares is both
2265 		 * dangerous and fairly pointless.
2266 		 * Dangerous because a device that was removed from the array
2267 		 * might have a event_count that still looks up-to-date,
2268 		 * so it can be re-added without a resync.
2269 		 * Pointless because if there are any spares to skip,
2270 		 * then a recovery will happen and soon that array won't
2271 		 * be degraded any more and the spare can go back to sleep then.
2272 		 */
2273 		nospares = 0;
2274 
2275 	sync_req = mddev->in_sync;
2276 
2277 	/* If this is just a dirty<->clean transition, and the array is clean
2278 	 * and 'events' is odd, we can roll back to the previous clean state */
2279 	if (nospares
2280 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2281 	    && mddev->can_decrease_events
2282 	    && mddev->events != 1) {
2283 		mddev->events--;
2284 		mddev->can_decrease_events = 0;
2285 	} else {
2286 		/* otherwise we have to go forward and ... */
2287 		mddev->events ++;
2288 		mddev->can_decrease_events = nospares;
2289 	}
2290 
2291 	/*
2292 	 * This 64-bit counter should never wrap.
2293 	 * Either we are in around ~1 trillion A.C., assuming
2294 	 * 1 reboot per second, or we have a bug...
2295 	 */
2296 	WARN_ON(mddev->events == 0);
2297 
2298 	rdev_for_each(rdev, mddev) {
2299 		if (rdev->badblocks.changed)
2300 			any_badblocks_changed++;
2301 		if (test_bit(Faulty, &rdev->flags))
2302 			set_bit(FaultRecorded, &rdev->flags);
2303 	}
2304 
2305 	sync_sbs(mddev, nospares);
2306 	spin_unlock(&mddev->lock);
2307 
2308 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2309 		 mdname(mddev), mddev->in_sync);
2310 
2311 	bitmap_update_sb(mddev->bitmap);
2312 	rdev_for_each(rdev, mddev) {
2313 		char b[BDEVNAME_SIZE];
2314 
2315 		if (rdev->sb_loaded != 1)
2316 			continue; /* no noise on spare devices */
2317 
2318 		if (!test_bit(Faulty, &rdev->flags)) {
2319 			md_super_write(mddev,rdev,
2320 				       rdev->sb_start, rdev->sb_size,
2321 				       rdev->sb_page);
2322 			pr_debug("md: (write) %s's sb offset: %llu\n",
2323 				 bdevname(rdev->bdev, b),
2324 				 (unsigned long long)rdev->sb_start);
2325 			rdev->sb_events = mddev->events;
2326 			if (rdev->badblocks.size) {
2327 				md_super_write(mddev, rdev,
2328 					       rdev->badblocks.sector,
2329 					       rdev->badblocks.size << 9,
2330 					       rdev->bb_page);
2331 				rdev->badblocks.size = 0;
2332 			}
2333 
2334 		} else
2335 			pr_debug("md: %s (skipping faulty)\n",
2336 				 bdevname(rdev->bdev, b));
2337 
2338 		if (mddev->level == LEVEL_MULTIPATH)
2339 			/* only need to write one superblock... */
2340 			break;
2341 	}
2342 	md_super_wait(mddev);
2343 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2344 
2345 	spin_lock(&mddev->lock);
2346 	if (mddev->in_sync != sync_req ||
2347 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2348 		/* have to write it out again */
2349 		spin_unlock(&mddev->lock);
2350 		goto repeat;
2351 	}
2352 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2353 	spin_unlock(&mddev->lock);
2354 	wake_up(&mddev->sb_wait);
2355 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2356 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2357 
2358 	rdev_for_each(rdev, mddev) {
2359 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2360 			clear_bit(Blocked, &rdev->flags);
2361 
2362 		if (any_badblocks_changed)
2363 			md_ack_all_badblocks(&rdev->badblocks);
2364 		clear_bit(BlockedBadBlocks, &rdev->flags);
2365 		wake_up(&rdev->blocked_wait);
2366 	}
2367 }
2368 
2369 /* words written to sysfs files may, or may not, be \n terminated.
2370  * We want to accept with case. For this we use cmd_match.
2371  */
2372 static int cmd_match(const char *cmd, const char *str)
2373 {
2374 	/* See if cmd, written into a sysfs file, matches
2375 	 * str.  They must either be the same, or cmd can
2376 	 * have a trailing newline
2377 	 */
2378 	while (*cmd && *str && *cmd == *str) {
2379 		cmd++;
2380 		str++;
2381 	}
2382 	if (*cmd == '\n')
2383 		cmd++;
2384 	if (*str || *cmd)
2385 		return 0;
2386 	return 1;
2387 }
2388 
2389 struct rdev_sysfs_entry {
2390 	struct attribute attr;
2391 	ssize_t (*show)(struct md_rdev *, char *);
2392 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2393 };
2394 
2395 static ssize_t
2396 state_show(struct md_rdev *rdev, char *page)
2397 {
2398 	char *sep = "";
2399 	size_t len = 0;
2400 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2401 
2402 	if (test_bit(Faulty, &flags) ||
2403 	    rdev->badblocks.unacked_exist) {
2404 		len+= sprintf(page+len, "%sfaulty",sep);
2405 		sep = ",";
2406 	}
2407 	if (test_bit(In_sync, &flags)) {
2408 		len += sprintf(page+len, "%sin_sync",sep);
2409 		sep = ",";
2410 	}
2411 	if (test_bit(WriteMostly, &flags)) {
2412 		len += sprintf(page+len, "%swrite_mostly",sep);
2413 		sep = ",";
2414 	}
2415 	if (test_bit(Blocked, &flags) ||
2416 	    (rdev->badblocks.unacked_exist
2417 	     && !test_bit(Faulty, &flags))) {
2418 		len += sprintf(page+len, "%sblocked", sep);
2419 		sep = ",";
2420 	}
2421 	if (!test_bit(Faulty, &flags) &&
2422 	    !test_bit(In_sync, &flags)) {
2423 		len += sprintf(page+len, "%sspare", sep);
2424 		sep = ",";
2425 	}
2426 	if (test_bit(WriteErrorSeen, &flags)) {
2427 		len += sprintf(page+len, "%swrite_error", sep);
2428 		sep = ",";
2429 	}
2430 	if (test_bit(WantReplacement, &flags)) {
2431 		len += sprintf(page+len, "%swant_replacement", sep);
2432 		sep = ",";
2433 	}
2434 	if (test_bit(Replacement, &flags)) {
2435 		len += sprintf(page+len, "%sreplacement", sep);
2436 		sep = ",";
2437 	}
2438 
2439 	return len+sprintf(page+len, "\n");
2440 }
2441 
2442 static ssize_t
2443 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2444 {
2445 	/* can write
2446 	 *  faulty  - simulates an error
2447 	 *  remove  - disconnects the device
2448 	 *  writemostly - sets write_mostly
2449 	 *  -writemostly - clears write_mostly
2450 	 *  blocked - sets the Blocked flags
2451 	 *  -blocked - clears the Blocked and possibly simulates an error
2452 	 *  insync - sets Insync providing device isn't active
2453 	 *  -insync - clear Insync for a device with a slot assigned,
2454 	 *            so that it gets rebuilt based on bitmap
2455 	 *  write_error - sets WriteErrorSeen
2456 	 *  -write_error - clears WriteErrorSeen
2457 	 */
2458 	int err = -EINVAL;
2459 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2460 		md_error(rdev->mddev, rdev);
2461 		if (test_bit(Faulty, &rdev->flags))
2462 			err = 0;
2463 		else
2464 			err = -EBUSY;
2465 	} else if (cmd_match(buf, "remove")) {
2466 		if (rdev->raid_disk >= 0)
2467 			err = -EBUSY;
2468 		else {
2469 			struct mddev *mddev = rdev->mddev;
2470 			kick_rdev_from_array(rdev);
2471 			if (mddev->pers)
2472 				md_update_sb(mddev, 1);
2473 			md_new_event(mddev);
2474 			err = 0;
2475 		}
2476 	} else if (cmd_match(buf, "writemostly")) {
2477 		set_bit(WriteMostly, &rdev->flags);
2478 		err = 0;
2479 	} else if (cmd_match(buf, "-writemostly")) {
2480 		clear_bit(WriteMostly, &rdev->flags);
2481 		err = 0;
2482 	} else if (cmd_match(buf, "blocked")) {
2483 		set_bit(Blocked, &rdev->flags);
2484 		err = 0;
2485 	} else if (cmd_match(buf, "-blocked")) {
2486 		if (!test_bit(Faulty, &rdev->flags) &&
2487 		    rdev->badblocks.unacked_exist) {
2488 			/* metadata handler doesn't understand badblocks,
2489 			 * so we need to fail the device
2490 			 */
2491 			md_error(rdev->mddev, rdev);
2492 		}
2493 		clear_bit(Blocked, &rdev->flags);
2494 		clear_bit(BlockedBadBlocks, &rdev->flags);
2495 		wake_up(&rdev->blocked_wait);
2496 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2497 		md_wakeup_thread(rdev->mddev->thread);
2498 
2499 		err = 0;
2500 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2501 		set_bit(In_sync, &rdev->flags);
2502 		err = 0;
2503 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2504 		if (rdev->mddev->pers == NULL) {
2505 			clear_bit(In_sync, &rdev->flags);
2506 			rdev->saved_raid_disk = rdev->raid_disk;
2507 			rdev->raid_disk = -1;
2508 			err = 0;
2509 		}
2510 	} else if (cmd_match(buf, "write_error")) {
2511 		set_bit(WriteErrorSeen, &rdev->flags);
2512 		err = 0;
2513 	} else if (cmd_match(buf, "-write_error")) {
2514 		clear_bit(WriteErrorSeen, &rdev->flags);
2515 		err = 0;
2516 	} else if (cmd_match(buf, "want_replacement")) {
2517 		/* Any non-spare device that is not a replacement can
2518 		 * become want_replacement at any time, but we then need to
2519 		 * check if recovery is needed.
2520 		 */
2521 		if (rdev->raid_disk >= 0 &&
2522 		    !test_bit(Replacement, &rdev->flags))
2523 			set_bit(WantReplacement, &rdev->flags);
2524 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2525 		md_wakeup_thread(rdev->mddev->thread);
2526 		err = 0;
2527 	} else if (cmd_match(buf, "-want_replacement")) {
2528 		/* Clearing 'want_replacement' is always allowed.
2529 		 * Once replacements starts it is too late though.
2530 		 */
2531 		err = 0;
2532 		clear_bit(WantReplacement, &rdev->flags);
2533 	} else if (cmd_match(buf, "replacement")) {
2534 		/* Can only set a device as a replacement when array has not
2535 		 * yet been started.  Once running, replacement is automatic
2536 		 * from spares, or by assigning 'slot'.
2537 		 */
2538 		if (rdev->mddev->pers)
2539 			err = -EBUSY;
2540 		else {
2541 			set_bit(Replacement, &rdev->flags);
2542 			err = 0;
2543 		}
2544 	} else if (cmd_match(buf, "-replacement")) {
2545 		/* Similarly, can only clear Replacement before start */
2546 		if (rdev->mddev->pers)
2547 			err = -EBUSY;
2548 		else {
2549 			clear_bit(Replacement, &rdev->flags);
2550 			err = 0;
2551 		}
2552 	}
2553 	if (!err)
2554 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2555 	return err ? err : len;
2556 }
2557 static struct rdev_sysfs_entry rdev_state =
2558 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2559 
2560 static ssize_t
2561 errors_show(struct md_rdev *rdev, char *page)
2562 {
2563 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2564 }
2565 
2566 static ssize_t
2567 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2568 {
2569 	char *e;
2570 	unsigned long n = simple_strtoul(buf, &e, 10);
2571 	if (*buf && (*e == 0 || *e == '\n')) {
2572 		atomic_set(&rdev->corrected_errors, n);
2573 		return len;
2574 	}
2575 	return -EINVAL;
2576 }
2577 static struct rdev_sysfs_entry rdev_errors =
2578 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2579 
2580 static ssize_t
2581 slot_show(struct md_rdev *rdev, char *page)
2582 {
2583 	if (rdev->raid_disk < 0)
2584 		return sprintf(page, "none\n");
2585 	else
2586 		return sprintf(page, "%d\n", rdev->raid_disk);
2587 }
2588 
2589 static ssize_t
2590 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2591 {
2592 	char *e;
2593 	int err;
2594 	int slot = simple_strtoul(buf, &e, 10);
2595 	if (strncmp(buf, "none", 4)==0)
2596 		slot = -1;
2597 	else if (e==buf || (*e && *e!= '\n'))
2598 		return -EINVAL;
2599 	if (rdev->mddev->pers && slot == -1) {
2600 		/* Setting 'slot' on an active array requires also
2601 		 * updating the 'rd%d' link, and communicating
2602 		 * with the personality with ->hot_*_disk.
2603 		 * For now we only support removing
2604 		 * failed/spare devices.  This normally happens automatically,
2605 		 * but not when the metadata is externally managed.
2606 		 */
2607 		if (rdev->raid_disk == -1)
2608 			return -EEXIST;
2609 		/* personality does all needed checks */
2610 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2611 			return -EINVAL;
2612 		clear_bit(Blocked, &rdev->flags);
2613 		remove_and_add_spares(rdev->mddev, rdev);
2614 		if (rdev->raid_disk >= 0)
2615 			return -EBUSY;
2616 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2617 		md_wakeup_thread(rdev->mddev->thread);
2618 	} else if (rdev->mddev->pers) {
2619 		/* Activating a spare .. or possibly reactivating
2620 		 * if we ever get bitmaps working here.
2621 		 */
2622 
2623 		if (rdev->raid_disk != -1)
2624 			return -EBUSY;
2625 
2626 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2627 			return -EBUSY;
2628 
2629 		if (rdev->mddev->pers->hot_add_disk == NULL)
2630 			return -EINVAL;
2631 
2632 		if (slot >= rdev->mddev->raid_disks &&
2633 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2634 			return -ENOSPC;
2635 
2636 		rdev->raid_disk = slot;
2637 		if (test_bit(In_sync, &rdev->flags))
2638 			rdev->saved_raid_disk = slot;
2639 		else
2640 			rdev->saved_raid_disk = -1;
2641 		clear_bit(In_sync, &rdev->flags);
2642 		clear_bit(Bitmap_sync, &rdev->flags);
2643 		err = rdev->mddev->pers->
2644 			hot_add_disk(rdev->mddev, rdev);
2645 		if (err) {
2646 			rdev->raid_disk = -1;
2647 			return err;
2648 		} else
2649 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2650 		if (sysfs_link_rdev(rdev->mddev, rdev))
2651 			/* failure here is OK */;
2652 		/* don't wakeup anyone, leave that to userspace. */
2653 	} else {
2654 		if (slot >= rdev->mddev->raid_disks &&
2655 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2656 			return -ENOSPC;
2657 		rdev->raid_disk = slot;
2658 		/* assume it is working */
2659 		clear_bit(Faulty, &rdev->flags);
2660 		clear_bit(WriteMostly, &rdev->flags);
2661 		set_bit(In_sync, &rdev->flags);
2662 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2663 	}
2664 	return len;
2665 }
2666 
2667 static struct rdev_sysfs_entry rdev_slot =
2668 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2669 
2670 static ssize_t
2671 offset_show(struct md_rdev *rdev, char *page)
2672 {
2673 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2674 }
2675 
2676 static ssize_t
2677 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2678 {
2679 	unsigned long long offset;
2680 	if (kstrtoull(buf, 10, &offset) < 0)
2681 		return -EINVAL;
2682 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2683 		return -EBUSY;
2684 	if (rdev->sectors && rdev->mddev->external)
2685 		/* Must set offset before size, so overlap checks
2686 		 * can be sane */
2687 		return -EBUSY;
2688 	rdev->data_offset = offset;
2689 	rdev->new_data_offset = offset;
2690 	return len;
2691 }
2692 
2693 static struct rdev_sysfs_entry rdev_offset =
2694 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2695 
2696 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2697 {
2698 	return sprintf(page, "%llu\n",
2699 		       (unsigned long long)rdev->new_data_offset);
2700 }
2701 
2702 static ssize_t new_offset_store(struct md_rdev *rdev,
2703 				const char *buf, size_t len)
2704 {
2705 	unsigned long long new_offset;
2706 	struct mddev *mddev = rdev->mddev;
2707 
2708 	if (kstrtoull(buf, 10, &new_offset) < 0)
2709 		return -EINVAL;
2710 
2711 	if (mddev->sync_thread ||
2712 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2713 		return -EBUSY;
2714 	if (new_offset == rdev->data_offset)
2715 		/* reset is always permitted */
2716 		;
2717 	else if (new_offset > rdev->data_offset) {
2718 		/* must not push array size beyond rdev_sectors */
2719 		if (new_offset - rdev->data_offset
2720 		    + mddev->dev_sectors > rdev->sectors)
2721 				return -E2BIG;
2722 	}
2723 	/* Metadata worries about other space details. */
2724 
2725 	/* decreasing the offset is inconsistent with a backwards
2726 	 * reshape.
2727 	 */
2728 	if (new_offset < rdev->data_offset &&
2729 	    mddev->reshape_backwards)
2730 		return -EINVAL;
2731 	/* Increasing offset is inconsistent with forwards
2732 	 * reshape.  reshape_direction should be set to
2733 	 * 'backwards' first.
2734 	 */
2735 	if (new_offset > rdev->data_offset &&
2736 	    !mddev->reshape_backwards)
2737 		return -EINVAL;
2738 
2739 	if (mddev->pers && mddev->persistent &&
2740 	    !super_types[mddev->major_version]
2741 	    .allow_new_offset(rdev, new_offset))
2742 		return -E2BIG;
2743 	rdev->new_data_offset = new_offset;
2744 	if (new_offset > rdev->data_offset)
2745 		mddev->reshape_backwards = 1;
2746 	else if (new_offset < rdev->data_offset)
2747 		mddev->reshape_backwards = 0;
2748 
2749 	return len;
2750 }
2751 static struct rdev_sysfs_entry rdev_new_offset =
2752 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2753 
2754 static ssize_t
2755 rdev_size_show(struct md_rdev *rdev, char *page)
2756 {
2757 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2758 }
2759 
2760 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2761 {
2762 	/* check if two start/length pairs overlap */
2763 	if (s1+l1 <= s2)
2764 		return 0;
2765 	if (s2+l2 <= s1)
2766 		return 0;
2767 	return 1;
2768 }
2769 
2770 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2771 {
2772 	unsigned long long blocks;
2773 	sector_t new;
2774 
2775 	if (kstrtoull(buf, 10, &blocks) < 0)
2776 		return -EINVAL;
2777 
2778 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2779 		return -EINVAL; /* sector conversion overflow */
2780 
2781 	new = blocks * 2;
2782 	if (new != blocks * 2)
2783 		return -EINVAL; /* unsigned long long to sector_t overflow */
2784 
2785 	*sectors = new;
2786 	return 0;
2787 }
2788 
2789 static ssize_t
2790 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2791 {
2792 	struct mddev *my_mddev = rdev->mddev;
2793 	sector_t oldsectors = rdev->sectors;
2794 	sector_t sectors;
2795 
2796 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2797 		return -EINVAL;
2798 	if (rdev->data_offset != rdev->new_data_offset)
2799 		return -EINVAL; /* too confusing */
2800 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2801 		if (my_mddev->persistent) {
2802 			sectors = super_types[my_mddev->major_version].
2803 				rdev_size_change(rdev, sectors);
2804 			if (!sectors)
2805 				return -EBUSY;
2806 		} else if (!sectors)
2807 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2808 				rdev->data_offset;
2809 		if (!my_mddev->pers->resize)
2810 			/* Cannot change size for RAID0 or Linear etc */
2811 			return -EINVAL;
2812 	}
2813 	if (sectors < my_mddev->dev_sectors)
2814 		return -EINVAL; /* component must fit device */
2815 
2816 	rdev->sectors = sectors;
2817 	if (sectors > oldsectors && my_mddev->external) {
2818 		/* Need to check that all other rdevs with the same
2819 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2820 		 * the rdev lists safely.
2821 		 * This check does not provide a hard guarantee, it
2822 		 * just helps avoid dangerous mistakes.
2823 		 */
2824 		struct mddev *mddev;
2825 		int overlap = 0;
2826 		struct list_head *tmp;
2827 
2828 		rcu_read_lock();
2829 		for_each_mddev(mddev, tmp) {
2830 			struct md_rdev *rdev2;
2831 
2832 			rdev_for_each(rdev2, mddev)
2833 				if (rdev->bdev == rdev2->bdev &&
2834 				    rdev != rdev2 &&
2835 				    overlaps(rdev->data_offset, rdev->sectors,
2836 					     rdev2->data_offset,
2837 					     rdev2->sectors)) {
2838 					overlap = 1;
2839 					break;
2840 				}
2841 			if (overlap) {
2842 				mddev_put(mddev);
2843 				break;
2844 			}
2845 		}
2846 		rcu_read_unlock();
2847 		if (overlap) {
2848 			/* Someone else could have slipped in a size
2849 			 * change here, but doing so is just silly.
2850 			 * We put oldsectors back because we *know* it is
2851 			 * safe, and trust userspace not to race with
2852 			 * itself
2853 			 */
2854 			rdev->sectors = oldsectors;
2855 			return -EBUSY;
2856 		}
2857 	}
2858 	return len;
2859 }
2860 
2861 static struct rdev_sysfs_entry rdev_size =
2862 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2863 
2864 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2865 {
2866 	unsigned long long recovery_start = rdev->recovery_offset;
2867 
2868 	if (test_bit(In_sync, &rdev->flags) ||
2869 	    recovery_start == MaxSector)
2870 		return sprintf(page, "none\n");
2871 
2872 	return sprintf(page, "%llu\n", recovery_start);
2873 }
2874 
2875 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2876 {
2877 	unsigned long long recovery_start;
2878 
2879 	if (cmd_match(buf, "none"))
2880 		recovery_start = MaxSector;
2881 	else if (kstrtoull(buf, 10, &recovery_start))
2882 		return -EINVAL;
2883 
2884 	if (rdev->mddev->pers &&
2885 	    rdev->raid_disk >= 0)
2886 		return -EBUSY;
2887 
2888 	rdev->recovery_offset = recovery_start;
2889 	if (recovery_start == MaxSector)
2890 		set_bit(In_sync, &rdev->flags);
2891 	else
2892 		clear_bit(In_sync, &rdev->flags);
2893 	return len;
2894 }
2895 
2896 static struct rdev_sysfs_entry rdev_recovery_start =
2897 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2898 
2899 static ssize_t
2900 badblocks_show(struct badblocks *bb, char *page, int unack);
2901 static ssize_t
2902 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2903 
2904 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2905 {
2906 	return badblocks_show(&rdev->badblocks, page, 0);
2907 }
2908 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2909 {
2910 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2911 	/* Maybe that ack was all we needed */
2912 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2913 		wake_up(&rdev->blocked_wait);
2914 	return rv;
2915 }
2916 static struct rdev_sysfs_entry rdev_bad_blocks =
2917 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2918 
2919 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2920 {
2921 	return badblocks_show(&rdev->badblocks, page, 1);
2922 }
2923 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2924 {
2925 	return badblocks_store(&rdev->badblocks, page, len, 1);
2926 }
2927 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2928 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2929 
2930 static struct attribute *rdev_default_attrs[] = {
2931 	&rdev_state.attr,
2932 	&rdev_errors.attr,
2933 	&rdev_slot.attr,
2934 	&rdev_offset.attr,
2935 	&rdev_new_offset.attr,
2936 	&rdev_size.attr,
2937 	&rdev_recovery_start.attr,
2938 	&rdev_bad_blocks.attr,
2939 	&rdev_unack_bad_blocks.attr,
2940 	NULL,
2941 };
2942 static ssize_t
2943 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2944 {
2945 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2946 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2947 
2948 	if (!entry->show)
2949 		return -EIO;
2950 	if (!rdev->mddev)
2951 		return -EBUSY;
2952 	return entry->show(rdev, page);
2953 }
2954 
2955 static ssize_t
2956 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2957 	      const char *page, size_t length)
2958 {
2959 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2960 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2961 	ssize_t rv;
2962 	struct mddev *mddev = rdev->mddev;
2963 
2964 	if (!entry->store)
2965 		return -EIO;
2966 	if (!capable(CAP_SYS_ADMIN))
2967 		return -EACCES;
2968 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2969 	if (!rv) {
2970 		if (rdev->mddev == NULL)
2971 			rv = -EBUSY;
2972 		else
2973 			rv = entry->store(rdev, page, length);
2974 		mddev_unlock(mddev);
2975 	}
2976 	return rv;
2977 }
2978 
2979 static void rdev_free(struct kobject *ko)
2980 {
2981 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2982 	kfree(rdev);
2983 }
2984 static const struct sysfs_ops rdev_sysfs_ops = {
2985 	.show		= rdev_attr_show,
2986 	.store		= rdev_attr_store,
2987 };
2988 static struct kobj_type rdev_ktype = {
2989 	.release	= rdev_free,
2990 	.sysfs_ops	= &rdev_sysfs_ops,
2991 	.default_attrs	= rdev_default_attrs,
2992 };
2993 
2994 int md_rdev_init(struct md_rdev *rdev)
2995 {
2996 	rdev->desc_nr = -1;
2997 	rdev->saved_raid_disk = -1;
2998 	rdev->raid_disk = -1;
2999 	rdev->flags = 0;
3000 	rdev->data_offset = 0;
3001 	rdev->new_data_offset = 0;
3002 	rdev->sb_events = 0;
3003 	rdev->last_read_error.tv_sec  = 0;
3004 	rdev->last_read_error.tv_nsec = 0;
3005 	rdev->sb_loaded = 0;
3006 	rdev->bb_page = NULL;
3007 	atomic_set(&rdev->nr_pending, 0);
3008 	atomic_set(&rdev->read_errors, 0);
3009 	atomic_set(&rdev->corrected_errors, 0);
3010 
3011 	INIT_LIST_HEAD(&rdev->same_set);
3012 	init_waitqueue_head(&rdev->blocked_wait);
3013 
3014 	/* Add space to store bad block list.
3015 	 * This reserves the space even on arrays where it cannot
3016 	 * be used - I wonder if that matters
3017 	 */
3018 	rdev->badblocks.count = 0;
3019 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3020 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3021 	seqlock_init(&rdev->badblocks.lock);
3022 	if (rdev->badblocks.page == NULL)
3023 		return -ENOMEM;
3024 
3025 	return 0;
3026 }
3027 EXPORT_SYMBOL_GPL(md_rdev_init);
3028 /*
3029  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3030  *
3031  * mark the device faulty if:
3032  *
3033  *   - the device is nonexistent (zero size)
3034  *   - the device has no valid superblock
3035  *
3036  * a faulty rdev _never_ has rdev->sb set.
3037  */
3038 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3039 {
3040 	char b[BDEVNAME_SIZE];
3041 	int err;
3042 	struct md_rdev *rdev;
3043 	sector_t size;
3044 
3045 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3046 	if (!rdev) {
3047 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3048 		return ERR_PTR(-ENOMEM);
3049 	}
3050 
3051 	err = md_rdev_init(rdev);
3052 	if (err)
3053 		goto abort_free;
3054 	err = alloc_disk_sb(rdev);
3055 	if (err)
3056 		goto abort_free;
3057 
3058 	err = lock_rdev(rdev, newdev, super_format == -2);
3059 	if (err)
3060 		goto abort_free;
3061 
3062 	kobject_init(&rdev->kobj, &rdev_ktype);
3063 
3064 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3065 	if (!size) {
3066 		printk(KERN_WARNING
3067 			"md: %s has zero or unknown size, marking faulty!\n",
3068 			bdevname(rdev->bdev,b));
3069 		err = -EINVAL;
3070 		goto abort_free;
3071 	}
3072 
3073 	if (super_format >= 0) {
3074 		err = super_types[super_format].
3075 			load_super(rdev, NULL, super_minor);
3076 		if (err == -EINVAL) {
3077 			printk(KERN_WARNING
3078 				"md: %s does not have a valid v%d.%d "
3079 			       "superblock, not importing!\n",
3080 				bdevname(rdev->bdev,b),
3081 			       super_format, super_minor);
3082 			goto abort_free;
3083 		}
3084 		if (err < 0) {
3085 			printk(KERN_WARNING
3086 				"md: could not read %s's sb, not importing!\n",
3087 				bdevname(rdev->bdev,b));
3088 			goto abort_free;
3089 		}
3090 	}
3091 
3092 	return rdev;
3093 
3094 abort_free:
3095 	if (rdev->bdev)
3096 		unlock_rdev(rdev);
3097 	md_rdev_clear(rdev);
3098 	kfree(rdev);
3099 	return ERR_PTR(err);
3100 }
3101 
3102 /*
3103  * Check a full RAID array for plausibility
3104  */
3105 
3106 static void analyze_sbs(struct mddev *mddev)
3107 {
3108 	int i;
3109 	struct md_rdev *rdev, *freshest, *tmp;
3110 	char b[BDEVNAME_SIZE];
3111 
3112 	freshest = NULL;
3113 	rdev_for_each_safe(rdev, tmp, mddev)
3114 		switch (super_types[mddev->major_version].
3115 			load_super(rdev, freshest, mddev->minor_version)) {
3116 		case 1:
3117 			freshest = rdev;
3118 			break;
3119 		case 0:
3120 			break;
3121 		default:
3122 			printk( KERN_ERR \
3123 				"md: fatal superblock inconsistency in %s"
3124 				" -- removing from array\n",
3125 				bdevname(rdev->bdev,b));
3126 			kick_rdev_from_array(rdev);
3127 		}
3128 
3129 	super_types[mddev->major_version].
3130 		validate_super(mddev, freshest);
3131 
3132 	i = 0;
3133 	rdev_for_each_safe(rdev, tmp, mddev) {
3134 		if (mddev->max_disks &&
3135 		    (rdev->desc_nr >= mddev->max_disks ||
3136 		     i > mddev->max_disks)) {
3137 			printk(KERN_WARNING
3138 			       "md: %s: %s: only %d devices permitted\n",
3139 			       mdname(mddev), bdevname(rdev->bdev, b),
3140 			       mddev->max_disks);
3141 			kick_rdev_from_array(rdev);
3142 			continue;
3143 		}
3144 		if (rdev != freshest)
3145 			if (super_types[mddev->major_version].
3146 			    validate_super(mddev, rdev)) {
3147 				printk(KERN_WARNING "md: kicking non-fresh %s"
3148 					" from array!\n",
3149 					bdevname(rdev->bdev,b));
3150 				kick_rdev_from_array(rdev);
3151 				continue;
3152 			}
3153 		if (mddev->level == LEVEL_MULTIPATH) {
3154 			rdev->desc_nr = i++;
3155 			rdev->raid_disk = rdev->desc_nr;
3156 			set_bit(In_sync, &rdev->flags);
3157 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3158 			rdev->raid_disk = -1;
3159 			clear_bit(In_sync, &rdev->flags);
3160 		}
3161 	}
3162 }
3163 
3164 /* Read a fixed-point number.
3165  * Numbers in sysfs attributes should be in "standard" units where
3166  * possible, so time should be in seconds.
3167  * However we internally use a a much smaller unit such as
3168  * milliseconds or jiffies.
3169  * This function takes a decimal number with a possible fractional
3170  * component, and produces an integer which is the result of
3171  * multiplying that number by 10^'scale'.
3172  * all without any floating-point arithmetic.
3173  */
3174 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3175 {
3176 	unsigned long result = 0;
3177 	long decimals = -1;
3178 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3179 		if (*cp == '.')
3180 			decimals = 0;
3181 		else if (decimals < scale) {
3182 			unsigned int value;
3183 			value = *cp - '0';
3184 			result = result * 10 + value;
3185 			if (decimals >= 0)
3186 				decimals++;
3187 		}
3188 		cp++;
3189 	}
3190 	if (*cp == '\n')
3191 		cp++;
3192 	if (*cp)
3193 		return -EINVAL;
3194 	if (decimals < 0)
3195 		decimals = 0;
3196 	while (decimals < scale) {
3197 		result *= 10;
3198 		decimals ++;
3199 	}
3200 	*res = result;
3201 	return 0;
3202 }
3203 
3204 static void md_safemode_timeout(unsigned long data);
3205 
3206 static ssize_t
3207 safe_delay_show(struct mddev *mddev, char *page)
3208 {
3209 	int msec = (mddev->safemode_delay*1000)/HZ;
3210 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3211 }
3212 static ssize_t
3213 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3214 {
3215 	unsigned long msec;
3216 
3217 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3218 		return -EINVAL;
3219 	if (msec == 0)
3220 		mddev->safemode_delay = 0;
3221 	else {
3222 		unsigned long old_delay = mddev->safemode_delay;
3223 		unsigned long new_delay = (msec*HZ)/1000;
3224 
3225 		if (new_delay == 0)
3226 			new_delay = 1;
3227 		mddev->safemode_delay = new_delay;
3228 		if (new_delay < old_delay || old_delay == 0)
3229 			mod_timer(&mddev->safemode_timer, jiffies+1);
3230 	}
3231 	return len;
3232 }
3233 static struct md_sysfs_entry md_safe_delay =
3234 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3235 
3236 static ssize_t
3237 level_show(struct mddev *mddev, char *page)
3238 {
3239 	struct md_personality *p;
3240 	int ret;
3241 	spin_lock(&mddev->lock);
3242 	p = mddev->pers;
3243 	if (p)
3244 		ret = sprintf(page, "%s\n", p->name);
3245 	else if (mddev->clevel[0])
3246 		ret = sprintf(page, "%s\n", mddev->clevel);
3247 	else if (mddev->level != LEVEL_NONE)
3248 		ret = sprintf(page, "%d\n", mddev->level);
3249 	else
3250 		ret = 0;
3251 	spin_unlock(&mddev->lock);
3252 	return ret;
3253 }
3254 
3255 static ssize_t
3256 level_store(struct mddev *mddev, const char *buf, size_t len)
3257 {
3258 	char clevel[16];
3259 	ssize_t rv;
3260 	size_t slen = len;
3261 	struct md_personality *pers, *oldpers;
3262 	long level;
3263 	void *priv, *oldpriv;
3264 	struct md_rdev *rdev;
3265 
3266 	if (slen == 0 || slen >= sizeof(clevel))
3267 		return -EINVAL;
3268 
3269 	rv = mddev_lock(mddev);
3270 	if (rv)
3271 		return rv;
3272 
3273 	if (mddev->pers == NULL) {
3274 		strncpy(mddev->clevel, buf, slen);
3275 		if (mddev->clevel[slen-1] == '\n')
3276 			slen--;
3277 		mddev->clevel[slen] = 0;
3278 		mddev->level = LEVEL_NONE;
3279 		rv = len;
3280 		goto out_unlock;
3281 	}
3282 	rv = -EROFS;
3283 	if (mddev->ro)
3284 		goto out_unlock;
3285 
3286 	/* request to change the personality.  Need to ensure:
3287 	 *  - array is not engaged in resync/recovery/reshape
3288 	 *  - old personality can be suspended
3289 	 *  - new personality will access other array.
3290 	 */
3291 
3292 	rv = -EBUSY;
3293 	if (mddev->sync_thread ||
3294 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3295 	    mddev->reshape_position != MaxSector ||
3296 	    mddev->sysfs_active)
3297 		goto out_unlock;
3298 
3299 	rv = -EINVAL;
3300 	if (!mddev->pers->quiesce) {
3301 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3302 		       mdname(mddev), mddev->pers->name);
3303 		goto out_unlock;
3304 	}
3305 
3306 	/* Now find the new personality */
3307 	strncpy(clevel, buf, slen);
3308 	if (clevel[slen-1] == '\n')
3309 		slen--;
3310 	clevel[slen] = 0;
3311 	if (kstrtol(clevel, 10, &level))
3312 		level = LEVEL_NONE;
3313 
3314 	if (request_module("md-%s", clevel) != 0)
3315 		request_module("md-level-%s", clevel);
3316 	spin_lock(&pers_lock);
3317 	pers = find_pers(level, clevel);
3318 	if (!pers || !try_module_get(pers->owner)) {
3319 		spin_unlock(&pers_lock);
3320 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3321 		rv = -EINVAL;
3322 		goto out_unlock;
3323 	}
3324 	spin_unlock(&pers_lock);
3325 
3326 	if (pers == mddev->pers) {
3327 		/* Nothing to do! */
3328 		module_put(pers->owner);
3329 		rv = len;
3330 		goto out_unlock;
3331 	}
3332 	if (!pers->takeover) {
3333 		module_put(pers->owner);
3334 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3335 		       mdname(mddev), clevel);
3336 		rv = -EINVAL;
3337 		goto out_unlock;
3338 	}
3339 
3340 	rdev_for_each(rdev, mddev)
3341 		rdev->new_raid_disk = rdev->raid_disk;
3342 
3343 	/* ->takeover must set new_* and/or delta_disks
3344 	 * if it succeeds, and may set them when it fails.
3345 	 */
3346 	priv = pers->takeover(mddev);
3347 	if (IS_ERR(priv)) {
3348 		mddev->new_level = mddev->level;
3349 		mddev->new_layout = mddev->layout;
3350 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3351 		mddev->raid_disks -= mddev->delta_disks;
3352 		mddev->delta_disks = 0;
3353 		mddev->reshape_backwards = 0;
3354 		module_put(pers->owner);
3355 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3356 		       mdname(mddev), clevel);
3357 		rv = PTR_ERR(priv);
3358 		goto out_unlock;
3359 	}
3360 
3361 	/* Looks like we have a winner */
3362 	mddev_suspend(mddev);
3363 	mddev_detach(mddev);
3364 
3365 	spin_lock(&mddev->lock);
3366 	oldpers = mddev->pers;
3367 	oldpriv = mddev->private;
3368 	mddev->pers = pers;
3369 	mddev->private = priv;
3370 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3371 	mddev->level = mddev->new_level;
3372 	mddev->layout = mddev->new_layout;
3373 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3374 	mddev->delta_disks = 0;
3375 	mddev->reshape_backwards = 0;
3376 	mddev->degraded = 0;
3377 	spin_unlock(&mddev->lock);
3378 
3379 	if (oldpers->sync_request == NULL &&
3380 	    mddev->external) {
3381 		/* We are converting from a no-redundancy array
3382 		 * to a redundancy array and metadata is managed
3383 		 * externally so we need to be sure that writes
3384 		 * won't block due to a need to transition
3385 		 *      clean->dirty
3386 		 * until external management is started.
3387 		 */
3388 		mddev->in_sync = 0;
3389 		mddev->safemode_delay = 0;
3390 		mddev->safemode = 0;
3391 	}
3392 
3393 	oldpers->free(mddev, oldpriv);
3394 
3395 	if (oldpers->sync_request == NULL &&
3396 	    pers->sync_request != NULL) {
3397 		/* need to add the md_redundancy_group */
3398 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3399 			printk(KERN_WARNING
3400 			       "md: cannot register extra attributes for %s\n",
3401 			       mdname(mddev));
3402 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3403 	}
3404 	if (oldpers->sync_request != NULL &&
3405 	    pers->sync_request == NULL) {
3406 		/* need to remove the md_redundancy_group */
3407 		if (mddev->to_remove == NULL)
3408 			mddev->to_remove = &md_redundancy_group;
3409 	}
3410 
3411 	rdev_for_each(rdev, mddev) {
3412 		if (rdev->raid_disk < 0)
3413 			continue;
3414 		if (rdev->new_raid_disk >= mddev->raid_disks)
3415 			rdev->new_raid_disk = -1;
3416 		if (rdev->new_raid_disk == rdev->raid_disk)
3417 			continue;
3418 		sysfs_unlink_rdev(mddev, rdev);
3419 	}
3420 	rdev_for_each(rdev, mddev) {
3421 		if (rdev->raid_disk < 0)
3422 			continue;
3423 		if (rdev->new_raid_disk == rdev->raid_disk)
3424 			continue;
3425 		rdev->raid_disk = rdev->new_raid_disk;
3426 		if (rdev->raid_disk < 0)
3427 			clear_bit(In_sync, &rdev->flags);
3428 		else {
3429 			if (sysfs_link_rdev(mddev, rdev))
3430 				printk(KERN_WARNING "md: cannot register rd%d"
3431 				       " for %s after level change\n",
3432 				       rdev->raid_disk, mdname(mddev));
3433 		}
3434 	}
3435 
3436 	if (pers->sync_request == NULL) {
3437 		/* this is now an array without redundancy, so
3438 		 * it must always be in_sync
3439 		 */
3440 		mddev->in_sync = 1;
3441 		del_timer_sync(&mddev->safemode_timer);
3442 	}
3443 	blk_set_stacking_limits(&mddev->queue->limits);
3444 	pers->run(mddev);
3445 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3446 	mddev_resume(mddev);
3447 	if (!mddev->thread)
3448 		md_update_sb(mddev, 1);
3449 	sysfs_notify(&mddev->kobj, NULL, "level");
3450 	md_new_event(mddev);
3451 	rv = len;
3452 out_unlock:
3453 	mddev_unlock(mddev);
3454 	return rv;
3455 }
3456 
3457 static struct md_sysfs_entry md_level =
3458 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3459 
3460 static ssize_t
3461 layout_show(struct mddev *mddev, char *page)
3462 {
3463 	/* just a number, not meaningful for all levels */
3464 	if (mddev->reshape_position != MaxSector &&
3465 	    mddev->layout != mddev->new_layout)
3466 		return sprintf(page, "%d (%d)\n",
3467 			       mddev->new_layout, mddev->layout);
3468 	return sprintf(page, "%d\n", mddev->layout);
3469 }
3470 
3471 static ssize_t
3472 layout_store(struct mddev *mddev, const char *buf, size_t len)
3473 {
3474 	char *e;
3475 	unsigned long n = simple_strtoul(buf, &e, 10);
3476 	int err;
3477 
3478 	if (!*buf || (*e && *e != '\n'))
3479 		return -EINVAL;
3480 	err = mddev_lock(mddev);
3481 	if (err)
3482 		return err;
3483 
3484 	if (mddev->pers) {
3485 		if (mddev->pers->check_reshape == NULL)
3486 			err = -EBUSY;
3487 		else if (mddev->ro)
3488 			err = -EROFS;
3489 		else {
3490 			mddev->new_layout = n;
3491 			err = mddev->pers->check_reshape(mddev);
3492 			if (err)
3493 				mddev->new_layout = mddev->layout;
3494 		}
3495 	} else {
3496 		mddev->new_layout = n;
3497 		if (mddev->reshape_position == MaxSector)
3498 			mddev->layout = n;
3499 	}
3500 	mddev_unlock(mddev);
3501 	return err ?: len;
3502 }
3503 static struct md_sysfs_entry md_layout =
3504 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3505 
3506 static ssize_t
3507 raid_disks_show(struct mddev *mddev, char *page)
3508 {
3509 	if (mddev->raid_disks == 0)
3510 		return 0;
3511 	if (mddev->reshape_position != MaxSector &&
3512 	    mddev->delta_disks != 0)
3513 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3514 			       mddev->raid_disks - mddev->delta_disks);
3515 	return sprintf(page, "%d\n", mddev->raid_disks);
3516 }
3517 
3518 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3519 
3520 static ssize_t
3521 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3522 {
3523 	char *e;
3524 	int err;
3525 	unsigned long n = simple_strtoul(buf, &e, 10);
3526 
3527 	if (!*buf || (*e && *e != '\n'))
3528 		return -EINVAL;
3529 
3530 	err = mddev_lock(mddev);
3531 	if (err)
3532 		return err;
3533 	if (mddev->pers)
3534 		err = update_raid_disks(mddev, n);
3535 	else if (mddev->reshape_position != MaxSector) {
3536 		struct md_rdev *rdev;
3537 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3538 
3539 		err = -EINVAL;
3540 		rdev_for_each(rdev, mddev) {
3541 			if (olddisks < n &&
3542 			    rdev->data_offset < rdev->new_data_offset)
3543 				goto out_unlock;
3544 			if (olddisks > n &&
3545 			    rdev->data_offset > rdev->new_data_offset)
3546 				goto out_unlock;
3547 		}
3548 		err = 0;
3549 		mddev->delta_disks = n - olddisks;
3550 		mddev->raid_disks = n;
3551 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3552 	} else
3553 		mddev->raid_disks = n;
3554 out_unlock:
3555 	mddev_unlock(mddev);
3556 	return err ? err : len;
3557 }
3558 static struct md_sysfs_entry md_raid_disks =
3559 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3560 
3561 static ssize_t
3562 chunk_size_show(struct mddev *mddev, char *page)
3563 {
3564 	if (mddev->reshape_position != MaxSector &&
3565 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3566 		return sprintf(page, "%d (%d)\n",
3567 			       mddev->new_chunk_sectors << 9,
3568 			       mddev->chunk_sectors << 9);
3569 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3570 }
3571 
3572 static ssize_t
3573 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3574 {
3575 	int err;
3576 	char *e;
3577 	unsigned long n = simple_strtoul(buf, &e, 10);
3578 
3579 	if (!*buf || (*e && *e != '\n'))
3580 		return -EINVAL;
3581 
3582 	err = mddev_lock(mddev);
3583 	if (err)
3584 		return err;
3585 	if (mddev->pers) {
3586 		if (mddev->pers->check_reshape == NULL)
3587 			err = -EBUSY;
3588 		else if (mddev->ro)
3589 			err = -EROFS;
3590 		else {
3591 			mddev->new_chunk_sectors = n >> 9;
3592 			err = mddev->pers->check_reshape(mddev);
3593 			if (err)
3594 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3595 		}
3596 	} else {
3597 		mddev->new_chunk_sectors = n >> 9;
3598 		if (mddev->reshape_position == MaxSector)
3599 			mddev->chunk_sectors = n >> 9;
3600 	}
3601 	mddev_unlock(mddev);
3602 	return err ?: len;
3603 }
3604 static struct md_sysfs_entry md_chunk_size =
3605 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3606 
3607 static ssize_t
3608 resync_start_show(struct mddev *mddev, char *page)
3609 {
3610 	if (mddev->recovery_cp == MaxSector)
3611 		return sprintf(page, "none\n");
3612 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3613 }
3614 
3615 static ssize_t
3616 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3617 {
3618 	int err;
3619 	char *e;
3620 	unsigned long long n = simple_strtoull(buf, &e, 10);
3621 
3622 	err = mddev_lock(mddev);
3623 	if (err)
3624 		return err;
3625 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3626 		err = -EBUSY;
3627 	else if (cmd_match(buf, "none"))
3628 		n = MaxSector;
3629 	else if (!*buf || (*e && *e != '\n'))
3630 		err = -EINVAL;
3631 
3632 	if (!err) {
3633 		mddev->recovery_cp = n;
3634 		if (mddev->pers)
3635 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3636 	}
3637 	mddev_unlock(mddev);
3638 	return err ?: len;
3639 }
3640 static struct md_sysfs_entry md_resync_start =
3641 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3642 
3643 /*
3644  * The array state can be:
3645  *
3646  * clear
3647  *     No devices, no size, no level
3648  *     Equivalent to STOP_ARRAY ioctl
3649  * inactive
3650  *     May have some settings, but array is not active
3651  *        all IO results in error
3652  *     When written, doesn't tear down array, but just stops it
3653  * suspended (not supported yet)
3654  *     All IO requests will block. The array can be reconfigured.
3655  *     Writing this, if accepted, will block until array is quiescent
3656  * readonly
3657  *     no resync can happen.  no superblocks get written.
3658  *     write requests fail
3659  * read-auto
3660  *     like readonly, but behaves like 'clean' on a write request.
3661  *
3662  * clean - no pending writes, but otherwise active.
3663  *     When written to inactive array, starts without resync
3664  *     If a write request arrives then
3665  *       if metadata is known, mark 'dirty' and switch to 'active'.
3666  *       if not known, block and switch to write-pending
3667  *     If written to an active array that has pending writes, then fails.
3668  * active
3669  *     fully active: IO and resync can be happening.
3670  *     When written to inactive array, starts with resync
3671  *
3672  * write-pending
3673  *     clean, but writes are blocked waiting for 'active' to be written.
3674  *
3675  * active-idle
3676  *     like active, but no writes have been seen for a while (100msec).
3677  *
3678  */
3679 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3680 		   write_pending, active_idle, bad_word};
3681 static char *array_states[] = {
3682 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3683 	"write-pending", "active-idle", NULL };
3684 
3685 static int match_word(const char *word, char **list)
3686 {
3687 	int n;
3688 	for (n=0; list[n]; n++)
3689 		if (cmd_match(word, list[n]))
3690 			break;
3691 	return n;
3692 }
3693 
3694 static ssize_t
3695 array_state_show(struct mddev *mddev, char *page)
3696 {
3697 	enum array_state st = inactive;
3698 
3699 	if (mddev->pers)
3700 		switch(mddev->ro) {
3701 		case 1:
3702 			st = readonly;
3703 			break;
3704 		case 2:
3705 			st = read_auto;
3706 			break;
3707 		case 0:
3708 			if (mddev->in_sync)
3709 				st = clean;
3710 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3711 				st = write_pending;
3712 			else if (mddev->safemode)
3713 				st = active_idle;
3714 			else
3715 				st = active;
3716 		}
3717 	else {
3718 		if (list_empty(&mddev->disks) &&
3719 		    mddev->raid_disks == 0 &&
3720 		    mddev->dev_sectors == 0)
3721 			st = clear;
3722 		else
3723 			st = inactive;
3724 	}
3725 	return sprintf(page, "%s\n", array_states[st]);
3726 }
3727 
3728 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3729 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3730 static int do_md_run(struct mddev *mddev);
3731 static int restart_array(struct mddev *mddev);
3732 
3733 static ssize_t
3734 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3735 {
3736 	int err;
3737 	enum array_state st = match_word(buf, array_states);
3738 
3739 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3740 		/* don't take reconfig_mutex when toggling between
3741 		 * clean and active
3742 		 */
3743 		spin_lock(&mddev->lock);
3744 		if (st == active) {
3745 			restart_array(mddev);
3746 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3747 			wake_up(&mddev->sb_wait);
3748 			err = 0;
3749 		} else /* st == clean */ {
3750 			restart_array(mddev);
3751 			if (atomic_read(&mddev->writes_pending) == 0) {
3752 				if (mddev->in_sync == 0) {
3753 					mddev->in_sync = 1;
3754 					if (mddev->safemode == 1)
3755 						mddev->safemode = 0;
3756 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3757 				}
3758 				err = 0;
3759 			} else
3760 				err = -EBUSY;
3761 		}
3762 		spin_unlock(&mddev->lock);
3763 		return err;
3764 	}
3765 	err = mddev_lock(mddev);
3766 	if (err)
3767 		return err;
3768 	err = -EINVAL;
3769 	switch(st) {
3770 	case bad_word:
3771 		break;
3772 	case clear:
3773 		/* stopping an active array */
3774 		err = do_md_stop(mddev, 0, NULL);
3775 		break;
3776 	case inactive:
3777 		/* stopping an active array */
3778 		if (mddev->pers)
3779 			err = do_md_stop(mddev, 2, NULL);
3780 		else
3781 			err = 0; /* already inactive */
3782 		break;
3783 	case suspended:
3784 		break; /* not supported yet */
3785 	case readonly:
3786 		if (mddev->pers)
3787 			err = md_set_readonly(mddev, NULL);
3788 		else {
3789 			mddev->ro = 1;
3790 			set_disk_ro(mddev->gendisk, 1);
3791 			err = do_md_run(mddev);
3792 		}
3793 		break;
3794 	case read_auto:
3795 		if (mddev->pers) {
3796 			if (mddev->ro == 0)
3797 				err = md_set_readonly(mddev, NULL);
3798 			else if (mddev->ro == 1)
3799 				err = restart_array(mddev);
3800 			if (err == 0) {
3801 				mddev->ro = 2;
3802 				set_disk_ro(mddev->gendisk, 0);
3803 			}
3804 		} else {
3805 			mddev->ro = 2;
3806 			err = do_md_run(mddev);
3807 		}
3808 		break;
3809 	case clean:
3810 		if (mddev->pers) {
3811 			restart_array(mddev);
3812 			spin_lock(&mddev->lock);
3813 			if (atomic_read(&mddev->writes_pending) == 0) {
3814 				if (mddev->in_sync == 0) {
3815 					mddev->in_sync = 1;
3816 					if (mddev->safemode == 1)
3817 						mddev->safemode = 0;
3818 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3819 				}
3820 				err = 0;
3821 			} else
3822 				err = -EBUSY;
3823 			spin_unlock(&mddev->lock);
3824 		} else
3825 			err = -EINVAL;
3826 		break;
3827 	case active:
3828 		if (mddev->pers) {
3829 			restart_array(mddev);
3830 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3831 			wake_up(&mddev->sb_wait);
3832 			err = 0;
3833 		} else {
3834 			mddev->ro = 0;
3835 			set_disk_ro(mddev->gendisk, 0);
3836 			err = do_md_run(mddev);
3837 		}
3838 		break;
3839 	case write_pending:
3840 	case active_idle:
3841 		/* these cannot be set */
3842 		break;
3843 	}
3844 
3845 	if (!err) {
3846 		if (mddev->hold_active == UNTIL_IOCTL)
3847 			mddev->hold_active = 0;
3848 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3849 	}
3850 	mddev_unlock(mddev);
3851 	return err ?: len;
3852 }
3853 static struct md_sysfs_entry md_array_state =
3854 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3855 
3856 static ssize_t
3857 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3858 	return sprintf(page, "%d\n",
3859 		       atomic_read(&mddev->max_corr_read_errors));
3860 }
3861 
3862 static ssize_t
3863 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3864 {
3865 	char *e;
3866 	unsigned long n = simple_strtoul(buf, &e, 10);
3867 
3868 	if (*buf && (*e == 0 || *e == '\n')) {
3869 		atomic_set(&mddev->max_corr_read_errors, n);
3870 		return len;
3871 	}
3872 	return -EINVAL;
3873 }
3874 
3875 static struct md_sysfs_entry max_corr_read_errors =
3876 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3877 	max_corrected_read_errors_store);
3878 
3879 static ssize_t
3880 null_show(struct mddev *mddev, char *page)
3881 {
3882 	return -EINVAL;
3883 }
3884 
3885 static ssize_t
3886 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3887 {
3888 	/* buf must be %d:%d\n? giving major and minor numbers */
3889 	/* The new device is added to the array.
3890 	 * If the array has a persistent superblock, we read the
3891 	 * superblock to initialise info and check validity.
3892 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3893 	 * which mainly checks size.
3894 	 */
3895 	char *e;
3896 	int major = simple_strtoul(buf, &e, 10);
3897 	int minor;
3898 	dev_t dev;
3899 	struct md_rdev *rdev;
3900 	int err;
3901 
3902 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3903 		return -EINVAL;
3904 	minor = simple_strtoul(e+1, &e, 10);
3905 	if (*e && *e != '\n')
3906 		return -EINVAL;
3907 	dev = MKDEV(major, minor);
3908 	if (major != MAJOR(dev) ||
3909 	    minor != MINOR(dev))
3910 		return -EOVERFLOW;
3911 
3912 	flush_workqueue(md_misc_wq);
3913 
3914 	err = mddev_lock(mddev);
3915 	if (err)
3916 		return err;
3917 	if (mddev->persistent) {
3918 		rdev = md_import_device(dev, mddev->major_version,
3919 					mddev->minor_version);
3920 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3921 			struct md_rdev *rdev0
3922 				= list_entry(mddev->disks.next,
3923 					     struct md_rdev, same_set);
3924 			err = super_types[mddev->major_version]
3925 				.load_super(rdev, rdev0, mddev->minor_version);
3926 			if (err < 0)
3927 				goto out;
3928 		}
3929 	} else if (mddev->external)
3930 		rdev = md_import_device(dev, -2, -1);
3931 	else
3932 		rdev = md_import_device(dev, -1, -1);
3933 
3934 	if (IS_ERR(rdev))
3935 		return PTR_ERR(rdev);
3936 	err = bind_rdev_to_array(rdev, mddev);
3937  out:
3938 	if (err)
3939 		export_rdev(rdev);
3940 	mddev_unlock(mddev);
3941 	return err ? err : len;
3942 }
3943 
3944 static struct md_sysfs_entry md_new_device =
3945 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3946 
3947 static ssize_t
3948 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3949 {
3950 	char *end;
3951 	unsigned long chunk, end_chunk;
3952 	int err;
3953 
3954 	err = mddev_lock(mddev);
3955 	if (err)
3956 		return err;
3957 	if (!mddev->bitmap)
3958 		goto out;
3959 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3960 	while (*buf) {
3961 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3962 		if (buf == end) break;
3963 		if (*end == '-') { /* range */
3964 			buf = end + 1;
3965 			end_chunk = simple_strtoul(buf, &end, 0);
3966 			if (buf == end) break;
3967 		}
3968 		if (*end && !isspace(*end)) break;
3969 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3970 		buf = skip_spaces(end);
3971 	}
3972 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3973 out:
3974 	mddev_unlock(mddev);
3975 	return len;
3976 }
3977 
3978 static struct md_sysfs_entry md_bitmap =
3979 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3980 
3981 static ssize_t
3982 size_show(struct mddev *mddev, char *page)
3983 {
3984 	return sprintf(page, "%llu\n",
3985 		(unsigned long long)mddev->dev_sectors / 2);
3986 }
3987 
3988 static int update_size(struct mddev *mddev, sector_t num_sectors);
3989 
3990 static ssize_t
3991 size_store(struct mddev *mddev, const char *buf, size_t len)
3992 {
3993 	/* If array is inactive, we can reduce the component size, but
3994 	 * not increase it (except from 0).
3995 	 * If array is active, we can try an on-line resize
3996 	 */
3997 	sector_t sectors;
3998 	int err = strict_blocks_to_sectors(buf, &sectors);
3999 
4000 	if (err < 0)
4001 		return err;
4002 	err = mddev_lock(mddev);
4003 	if (err)
4004 		return err;
4005 	if (mddev->pers) {
4006 		err = update_size(mddev, sectors);
4007 		md_update_sb(mddev, 1);
4008 	} else {
4009 		if (mddev->dev_sectors == 0 ||
4010 		    mddev->dev_sectors > sectors)
4011 			mddev->dev_sectors = sectors;
4012 		else
4013 			err = -ENOSPC;
4014 	}
4015 	mddev_unlock(mddev);
4016 	return err ? err : len;
4017 }
4018 
4019 static struct md_sysfs_entry md_size =
4020 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4021 
4022 /* Metadata version.
4023  * This is one of
4024  *   'none' for arrays with no metadata (good luck...)
4025  *   'external' for arrays with externally managed metadata,
4026  * or N.M for internally known formats
4027  */
4028 static ssize_t
4029 metadata_show(struct mddev *mddev, char *page)
4030 {
4031 	if (mddev->persistent)
4032 		return sprintf(page, "%d.%d\n",
4033 			       mddev->major_version, mddev->minor_version);
4034 	else if (mddev->external)
4035 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4036 	else
4037 		return sprintf(page, "none\n");
4038 }
4039 
4040 static ssize_t
4041 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4042 {
4043 	int major, minor;
4044 	char *e;
4045 	int err;
4046 	/* Changing the details of 'external' metadata is
4047 	 * always permitted.  Otherwise there must be
4048 	 * no devices attached to the array.
4049 	 */
4050 
4051 	err = mddev_lock(mddev);
4052 	if (err)
4053 		return err;
4054 	err = -EBUSY;
4055 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4056 		;
4057 	else if (!list_empty(&mddev->disks))
4058 		goto out_unlock;
4059 
4060 	err = 0;
4061 	if (cmd_match(buf, "none")) {
4062 		mddev->persistent = 0;
4063 		mddev->external = 0;
4064 		mddev->major_version = 0;
4065 		mddev->minor_version = 90;
4066 		goto out_unlock;
4067 	}
4068 	if (strncmp(buf, "external:", 9) == 0) {
4069 		size_t namelen = len-9;
4070 		if (namelen >= sizeof(mddev->metadata_type))
4071 			namelen = sizeof(mddev->metadata_type)-1;
4072 		strncpy(mddev->metadata_type, buf+9, namelen);
4073 		mddev->metadata_type[namelen] = 0;
4074 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4075 			mddev->metadata_type[--namelen] = 0;
4076 		mddev->persistent = 0;
4077 		mddev->external = 1;
4078 		mddev->major_version = 0;
4079 		mddev->minor_version = 90;
4080 		goto out_unlock;
4081 	}
4082 	major = simple_strtoul(buf, &e, 10);
4083 	err = -EINVAL;
4084 	if (e==buf || *e != '.')
4085 		goto out_unlock;
4086 	buf = e+1;
4087 	minor = simple_strtoul(buf, &e, 10);
4088 	if (e==buf || (*e && *e != '\n') )
4089 		goto out_unlock;
4090 	err = -ENOENT;
4091 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4092 		goto out_unlock;
4093 	mddev->major_version = major;
4094 	mddev->minor_version = minor;
4095 	mddev->persistent = 1;
4096 	mddev->external = 0;
4097 	err = 0;
4098 out_unlock:
4099 	mddev_unlock(mddev);
4100 	return err ?: len;
4101 }
4102 
4103 static struct md_sysfs_entry md_metadata =
4104 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4105 
4106 static ssize_t
4107 action_show(struct mddev *mddev, char *page)
4108 {
4109 	char *type = "idle";
4110 	unsigned long recovery = mddev->recovery;
4111 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4112 		type = "frozen";
4113 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4114 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4115 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4116 			type = "reshape";
4117 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4118 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4119 				type = "resync";
4120 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4121 				type = "check";
4122 			else
4123 				type = "repair";
4124 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4125 			type = "recover";
4126 	}
4127 	return sprintf(page, "%s\n", type);
4128 }
4129 
4130 static ssize_t
4131 action_store(struct mddev *mddev, const char *page, size_t len)
4132 {
4133 	if (!mddev->pers || !mddev->pers->sync_request)
4134 		return -EINVAL;
4135 
4136 	if (cmd_match(page, "frozen"))
4137 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4138 	else
4139 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4140 
4141 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4142 		flush_workqueue(md_misc_wq);
4143 		if (mddev->sync_thread) {
4144 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4145 			if (mddev_lock(mddev) == 0) {
4146 				md_reap_sync_thread(mddev);
4147 				mddev_unlock(mddev);
4148 			}
4149 		}
4150 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4151 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4152 		return -EBUSY;
4153 	else if (cmd_match(page, "resync"))
4154 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4155 	else if (cmd_match(page, "recover")) {
4156 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4157 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4158 	} else if (cmd_match(page, "reshape")) {
4159 		int err;
4160 		if (mddev->pers->start_reshape == NULL)
4161 			return -EINVAL;
4162 		err = mddev_lock(mddev);
4163 		if (!err) {
4164 			err = mddev->pers->start_reshape(mddev);
4165 			mddev_unlock(mddev);
4166 		}
4167 		if (err)
4168 			return err;
4169 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4170 	} else {
4171 		if (cmd_match(page, "check"))
4172 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4173 		else if (!cmd_match(page, "repair"))
4174 			return -EINVAL;
4175 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4176 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4177 	}
4178 	if (mddev->ro == 2) {
4179 		/* A write to sync_action is enough to justify
4180 		 * canceling read-auto mode
4181 		 */
4182 		mddev->ro = 0;
4183 		md_wakeup_thread(mddev->sync_thread);
4184 	}
4185 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4186 	md_wakeup_thread(mddev->thread);
4187 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4188 	return len;
4189 }
4190 
4191 static struct md_sysfs_entry md_scan_mode =
4192 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4193 
4194 static ssize_t
4195 last_sync_action_show(struct mddev *mddev, char *page)
4196 {
4197 	return sprintf(page, "%s\n", mddev->last_sync_action);
4198 }
4199 
4200 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4201 
4202 static ssize_t
4203 mismatch_cnt_show(struct mddev *mddev, char *page)
4204 {
4205 	return sprintf(page, "%llu\n",
4206 		       (unsigned long long)
4207 		       atomic64_read(&mddev->resync_mismatches));
4208 }
4209 
4210 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4211 
4212 static ssize_t
4213 sync_min_show(struct mddev *mddev, char *page)
4214 {
4215 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4216 		       mddev->sync_speed_min ? "local": "system");
4217 }
4218 
4219 static ssize_t
4220 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4221 {
4222 	int min;
4223 	char *e;
4224 	if (strncmp(buf, "system", 6)==0) {
4225 		mddev->sync_speed_min = 0;
4226 		return len;
4227 	}
4228 	min = simple_strtoul(buf, &e, 10);
4229 	if (buf == e || (*e && *e != '\n') || min <= 0)
4230 		return -EINVAL;
4231 	mddev->sync_speed_min = min;
4232 	return len;
4233 }
4234 
4235 static struct md_sysfs_entry md_sync_min =
4236 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4237 
4238 static ssize_t
4239 sync_max_show(struct mddev *mddev, char *page)
4240 {
4241 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4242 		       mddev->sync_speed_max ? "local": "system");
4243 }
4244 
4245 static ssize_t
4246 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4247 {
4248 	int max;
4249 	char *e;
4250 	if (strncmp(buf, "system", 6)==0) {
4251 		mddev->sync_speed_max = 0;
4252 		return len;
4253 	}
4254 	max = simple_strtoul(buf, &e, 10);
4255 	if (buf == e || (*e && *e != '\n') || max <= 0)
4256 		return -EINVAL;
4257 	mddev->sync_speed_max = max;
4258 	return len;
4259 }
4260 
4261 static struct md_sysfs_entry md_sync_max =
4262 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4263 
4264 static ssize_t
4265 degraded_show(struct mddev *mddev, char *page)
4266 {
4267 	return sprintf(page, "%d\n", mddev->degraded);
4268 }
4269 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4270 
4271 static ssize_t
4272 sync_force_parallel_show(struct mddev *mddev, char *page)
4273 {
4274 	return sprintf(page, "%d\n", mddev->parallel_resync);
4275 }
4276 
4277 static ssize_t
4278 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4279 {
4280 	long n;
4281 
4282 	if (kstrtol(buf, 10, &n))
4283 		return -EINVAL;
4284 
4285 	if (n != 0 && n != 1)
4286 		return -EINVAL;
4287 
4288 	mddev->parallel_resync = n;
4289 
4290 	if (mddev->sync_thread)
4291 		wake_up(&resync_wait);
4292 
4293 	return len;
4294 }
4295 
4296 /* force parallel resync, even with shared block devices */
4297 static struct md_sysfs_entry md_sync_force_parallel =
4298 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4299        sync_force_parallel_show, sync_force_parallel_store);
4300 
4301 static ssize_t
4302 sync_speed_show(struct mddev *mddev, char *page)
4303 {
4304 	unsigned long resync, dt, db;
4305 	if (mddev->curr_resync == 0)
4306 		return sprintf(page, "none\n");
4307 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4308 	dt = (jiffies - mddev->resync_mark) / HZ;
4309 	if (!dt) dt++;
4310 	db = resync - mddev->resync_mark_cnt;
4311 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4312 }
4313 
4314 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4315 
4316 static ssize_t
4317 sync_completed_show(struct mddev *mddev, char *page)
4318 {
4319 	unsigned long long max_sectors, resync;
4320 
4321 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4322 		return sprintf(page, "none\n");
4323 
4324 	if (mddev->curr_resync == 1 ||
4325 	    mddev->curr_resync == 2)
4326 		return sprintf(page, "delayed\n");
4327 
4328 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4329 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4330 		max_sectors = mddev->resync_max_sectors;
4331 	else
4332 		max_sectors = mddev->dev_sectors;
4333 
4334 	resync = mddev->curr_resync_completed;
4335 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4336 }
4337 
4338 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4339 
4340 static ssize_t
4341 min_sync_show(struct mddev *mddev, char *page)
4342 {
4343 	return sprintf(page, "%llu\n",
4344 		       (unsigned long long)mddev->resync_min);
4345 }
4346 static ssize_t
4347 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4348 {
4349 	unsigned long long min;
4350 	int err;
4351 	int chunk;
4352 
4353 	if (kstrtoull(buf, 10, &min))
4354 		return -EINVAL;
4355 
4356 	spin_lock(&mddev->lock);
4357 	err = -EINVAL;
4358 	if (min > mddev->resync_max)
4359 		goto out_unlock;
4360 
4361 	err = -EBUSY;
4362 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4363 		goto out_unlock;
4364 
4365 	/* Must be a multiple of chunk_size */
4366 	chunk = mddev->chunk_sectors;
4367 	if (chunk) {
4368 		sector_t temp = min;
4369 
4370 		err = -EINVAL;
4371 		if (sector_div(temp, chunk))
4372 			goto out_unlock;
4373 	}
4374 	mddev->resync_min = min;
4375 	err = 0;
4376 
4377 out_unlock:
4378 	spin_unlock(&mddev->lock);
4379 	return err ?: len;
4380 }
4381 
4382 static struct md_sysfs_entry md_min_sync =
4383 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4384 
4385 static ssize_t
4386 max_sync_show(struct mddev *mddev, char *page)
4387 {
4388 	if (mddev->resync_max == MaxSector)
4389 		return sprintf(page, "max\n");
4390 	else
4391 		return sprintf(page, "%llu\n",
4392 			       (unsigned long long)mddev->resync_max);
4393 }
4394 static ssize_t
4395 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4396 {
4397 	int err;
4398 	spin_lock(&mddev->lock);
4399 	if (strncmp(buf, "max", 3) == 0)
4400 		mddev->resync_max = MaxSector;
4401 	else {
4402 		unsigned long long max;
4403 		int chunk;
4404 
4405 		err = -EINVAL;
4406 		if (kstrtoull(buf, 10, &max))
4407 			goto out_unlock;
4408 		if (max < mddev->resync_min)
4409 			goto out_unlock;
4410 
4411 		err = -EBUSY;
4412 		if (max < mddev->resync_max &&
4413 		    mddev->ro == 0 &&
4414 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4415 			goto out_unlock;
4416 
4417 		/* Must be a multiple of chunk_size */
4418 		chunk = mddev->chunk_sectors;
4419 		if (chunk) {
4420 			sector_t temp = max;
4421 
4422 			err = -EINVAL;
4423 			if (sector_div(temp, chunk))
4424 				goto out_unlock;
4425 		}
4426 		mddev->resync_max = max;
4427 	}
4428 	wake_up(&mddev->recovery_wait);
4429 	err = 0;
4430 out_unlock:
4431 	spin_unlock(&mddev->lock);
4432 	return err ?: len;
4433 }
4434 
4435 static struct md_sysfs_entry md_max_sync =
4436 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4437 
4438 static ssize_t
4439 suspend_lo_show(struct mddev *mddev, char *page)
4440 {
4441 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4442 }
4443 
4444 static ssize_t
4445 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4446 {
4447 	char *e;
4448 	unsigned long long new = simple_strtoull(buf, &e, 10);
4449 	unsigned long long old;
4450 	int err;
4451 
4452 	if (buf == e || (*e && *e != '\n'))
4453 		return -EINVAL;
4454 
4455 	err = mddev_lock(mddev);
4456 	if (err)
4457 		return err;
4458 	err = -EINVAL;
4459 	if (mddev->pers == NULL ||
4460 	    mddev->pers->quiesce == NULL)
4461 		goto unlock;
4462 	old = mddev->suspend_lo;
4463 	mddev->suspend_lo = new;
4464 	if (new >= old)
4465 		/* Shrinking suspended region */
4466 		mddev->pers->quiesce(mddev, 2);
4467 	else {
4468 		/* Expanding suspended region - need to wait */
4469 		mddev->pers->quiesce(mddev, 1);
4470 		mddev->pers->quiesce(mddev, 0);
4471 	}
4472 	err = 0;
4473 unlock:
4474 	mddev_unlock(mddev);
4475 	return err ?: len;
4476 }
4477 static struct md_sysfs_entry md_suspend_lo =
4478 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4479 
4480 static ssize_t
4481 suspend_hi_show(struct mddev *mddev, char *page)
4482 {
4483 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4484 }
4485 
4486 static ssize_t
4487 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4488 {
4489 	char *e;
4490 	unsigned long long new = simple_strtoull(buf, &e, 10);
4491 	unsigned long long old;
4492 	int err;
4493 
4494 	if (buf == e || (*e && *e != '\n'))
4495 		return -EINVAL;
4496 
4497 	err = mddev_lock(mddev);
4498 	if (err)
4499 		return err;
4500 	err = -EINVAL;
4501 	if (mddev->pers == NULL ||
4502 	    mddev->pers->quiesce == NULL)
4503 		goto unlock;
4504 	old = mddev->suspend_hi;
4505 	mddev->suspend_hi = new;
4506 	if (new <= old)
4507 		/* Shrinking suspended region */
4508 		mddev->pers->quiesce(mddev, 2);
4509 	else {
4510 		/* Expanding suspended region - need to wait */
4511 		mddev->pers->quiesce(mddev, 1);
4512 		mddev->pers->quiesce(mddev, 0);
4513 	}
4514 	err = 0;
4515 unlock:
4516 	mddev_unlock(mddev);
4517 	return err ?: len;
4518 }
4519 static struct md_sysfs_entry md_suspend_hi =
4520 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4521 
4522 static ssize_t
4523 reshape_position_show(struct mddev *mddev, char *page)
4524 {
4525 	if (mddev->reshape_position != MaxSector)
4526 		return sprintf(page, "%llu\n",
4527 			       (unsigned long long)mddev->reshape_position);
4528 	strcpy(page, "none\n");
4529 	return 5;
4530 }
4531 
4532 static ssize_t
4533 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4534 {
4535 	struct md_rdev *rdev;
4536 	char *e;
4537 	int err;
4538 	unsigned long long new = simple_strtoull(buf, &e, 10);
4539 
4540 	if (buf == e || (*e && *e != '\n'))
4541 		return -EINVAL;
4542 	err = mddev_lock(mddev);
4543 	if (err)
4544 		return err;
4545 	err = -EBUSY;
4546 	if (mddev->pers)
4547 		goto unlock;
4548 	mddev->reshape_position = new;
4549 	mddev->delta_disks = 0;
4550 	mddev->reshape_backwards = 0;
4551 	mddev->new_level = mddev->level;
4552 	mddev->new_layout = mddev->layout;
4553 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4554 	rdev_for_each(rdev, mddev)
4555 		rdev->new_data_offset = rdev->data_offset;
4556 	err = 0;
4557 unlock:
4558 	mddev_unlock(mddev);
4559 	return err ?: len;
4560 }
4561 
4562 static struct md_sysfs_entry md_reshape_position =
4563 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4564        reshape_position_store);
4565 
4566 static ssize_t
4567 reshape_direction_show(struct mddev *mddev, char *page)
4568 {
4569 	return sprintf(page, "%s\n",
4570 		       mddev->reshape_backwards ? "backwards" : "forwards");
4571 }
4572 
4573 static ssize_t
4574 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4575 {
4576 	int backwards = 0;
4577 	int err;
4578 
4579 	if (cmd_match(buf, "forwards"))
4580 		backwards = 0;
4581 	else if (cmd_match(buf, "backwards"))
4582 		backwards = 1;
4583 	else
4584 		return -EINVAL;
4585 	if (mddev->reshape_backwards == backwards)
4586 		return len;
4587 
4588 	err = mddev_lock(mddev);
4589 	if (err)
4590 		return err;
4591 	/* check if we are allowed to change */
4592 	if (mddev->delta_disks)
4593 		err = -EBUSY;
4594 	else if (mddev->persistent &&
4595 	    mddev->major_version == 0)
4596 		err =  -EINVAL;
4597 	else
4598 		mddev->reshape_backwards = backwards;
4599 	mddev_unlock(mddev);
4600 	return err ?: len;
4601 }
4602 
4603 static struct md_sysfs_entry md_reshape_direction =
4604 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4605        reshape_direction_store);
4606 
4607 static ssize_t
4608 array_size_show(struct mddev *mddev, char *page)
4609 {
4610 	if (mddev->external_size)
4611 		return sprintf(page, "%llu\n",
4612 			       (unsigned long long)mddev->array_sectors/2);
4613 	else
4614 		return sprintf(page, "default\n");
4615 }
4616 
4617 static ssize_t
4618 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4619 {
4620 	sector_t sectors;
4621 	int err;
4622 
4623 	err = mddev_lock(mddev);
4624 	if (err)
4625 		return err;
4626 
4627 	if (strncmp(buf, "default", 7) == 0) {
4628 		if (mddev->pers)
4629 			sectors = mddev->pers->size(mddev, 0, 0);
4630 		else
4631 			sectors = mddev->array_sectors;
4632 
4633 		mddev->external_size = 0;
4634 	} else {
4635 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4636 			err = -EINVAL;
4637 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4638 			err = -E2BIG;
4639 		else
4640 			mddev->external_size = 1;
4641 	}
4642 
4643 	if (!err) {
4644 		mddev->array_sectors = sectors;
4645 		if (mddev->pers) {
4646 			set_capacity(mddev->gendisk, mddev->array_sectors);
4647 			revalidate_disk(mddev->gendisk);
4648 		}
4649 	}
4650 	mddev_unlock(mddev);
4651 	return err ?: len;
4652 }
4653 
4654 static struct md_sysfs_entry md_array_size =
4655 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4656        array_size_store);
4657 
4658 static struct attribute *md_default_attrs[] = {
4659 	&md_level.attr,
4660 	&md_layout.attr,
4661 	&md_raid_disks.attr,
4662 	&md_chunk_size.attr,
4663 	&md_size.attr,
4664 	&md_resync_start.attr,
4665 	&md_metadata.attr,
4666 	&md_new_device.attr,
4667 	&md_safe_delay.attr,
4668 	&md_array_state.attr,
4669 	&md_reshape_position.attr,
4670 	&md_reshape_direction.attr,
4671 	&md_array_size.attr,
4672 	&max_corr_read_errors.attr,
4673 	NULL,
4674 };
4675 
4676 static struct attribute *md_redundancy_attrs[] = {
4677 	&md_scan_mode.attr,
4678 	&md_last_scan_mode.attr,
4679 	&md_mismatches.attr,
4680 	&md_sync_min.attr,
4681 	&md_sync_max.attr,
4682 	&md_sync_speed.attr,
4683 	&md_sync_force_parallel.attr,
4684 	&md_sync_completed.attr,
4685 	&md_min_sync.attr,
4686 	&md_max_sync.attr,
4687 	&md_suspend_lo.attr,
4688 	&md_suspend_hi.attr,
4689 	&md_bitmap.attr,
4690 	&md_degraded.attr,
4691 	NULL,
4692 };
4693 static struct attribute_group md_redundancy_group = {
4694 	.name = NULL,
4695 	.attrs = md_redundancy_attrs,
4696 };
4697 
4698 static ssize_t
4699 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4700 {
4701 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4702 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4703 	ssize_t rv;
4704 
4705 	if (!entry->show)
4706 		return -EIO;
4707 	spin_lock(&all_mddevs_lock);
4708 	if (list_empty(&mddev->all_mddevs)) {
4709 		spin_unlock(&all_mddevs_lock);
4710 		return -EBUSY;
4711 	}
4712 	mddev_get(mddev);
4713 	spin_unlock(&all_mddevs_lock);
4714 
4715 	rv = entry->show(mddev, page);
4716 	mddev_put(mddev);
4717 	return rv;
4718 }
4719 
4720 static ssize_t
4721 md_attr_store(struct kobject *kobj, struct attribute *attr,
4722 	      const char *page, size_t length)
4723 {
4724 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4725 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4726 	ssize_t rv;
4727 
4728 	if (!entry->store)
4729 		return -EIO;
4730 	if (!capable(CAP_SYS_ADMIN))
4731 		return -EACCES;
4732 	spin_lock(&all_mddevs_lock);
4733 	if (list_empty(&mddev->all_mddevs)) {
4734 		spin_unlock(&all_mddevs_lock);
4735 		return -EBUSY;
4736 	}
4737 	mddev_get(mddev);
4738 	spin_unlock(&all_mddevs_lock);
4739 	rv = entry->store(mddev, page, length);
4740 	mddev_put(mddev);
4741 	return rv;
4742 }
4743 
4744 static void md_free(struct kobject *ko)
4745 {
4746 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4747 
4748 	if (mddev->sysfs_state)
4749 		sysfs_put(mddev->sysfs_state);
4750 
4751 	if (mddev->gendisk) {
4752 		del_gendisk(mddev->gendisk);
4753 		put_disk(mddev->gendisk);
4754 	}
4755 	if (mddev->queue)
4756 		blk_cleanup_queue(mddev->queue);
4757 
4758 	kfree(mddev);
4759 }
4760 
4761 static const struct sysfs_ops md_sysfs_ops = {
4762 	.show	= md_attr_show,
4763 	.store	= md_attr_store,
4764 };
4765 static struct kobj_type md_ktype = {
4766 	.release	= md_free,
4767 	.sysfs_ops	= &md_sysfs_ops,
4768 	.default_attrs	= md_default_attrs,
4769 };
4770 
4771 int mdp_major = 0;
4772 
4773 static void mddev_delayed_delete(struct work_struct *ws)
4774 {
4775 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4776 
4777 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4778 	kobject_del(&mddev->kobj);
4779 	kobject_put(&mddev->kobj);
4780 }
4781 
4782 static int md_alloc(dev_t dev, char *name)
4783 {
4784 	static DEFINE_MUTEX(disks_mutex);
4785 	struct mddev *mddev = mddev_find(dev);
4786 	struct gendisk *disk;
4787 	int partitioned;
4788 	int shift;
4789 	int unit;
4790 	int error;
4791 
4792 	if (!mddev)
4793 		return -ENODEV;
4794 
4795 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4796 	shift = partitioned ? MdpMinorShift : 0;
4797 	unit = MINOR(mddev->unit) >> shift;
4798 
4799 	/* wait for any previous instance of this device to be
4800 	 * completely removed (mddev_delayed_delete).
4801 	 */
4802 	flush_workqueue(md_misc_wq);
4803 
4804 	mutex_lock(&disks_mutex);
4805 	error = -EEXIST;
4806 	if (mddev->gendisk)
4807 		goto abort;
4808 
4809 	if (name) {
4810 		/* Need to ensure that 'name' is not a duplicate.
4811 		 */
4812 		struct mddev *mddev2;
4813 		spin_lock(&all_mddevs_lock);
4814 
4815 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4816 			if (mddev2->gendisk &&
4817 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4818 				spin_unlock(&all_mddevs_lock);
4819 				goto abort;
4820 			}
4821 		spin_unlock(&all_mddevs_lock);
4822 	}
4823 
4824 	error = -ENOMEM;
4825 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4826 	if (!mddev->queue)
4827 		goto abort;
4828 	mddev->queue->queuedata = mddev;
4829 
4830 	blk_queue_make_request(mddev->queue, md_make_request);
4831 	blk_set_stacking_limits(&mddev->queue->limits);
4832 
4833 	disk = alloc_disk(1 << shift);
4834 	if (!disk) {
4835 		blk_cleanup_queue(mddev->queue);
4836 		mddev->queue = NULL;
4837 		goto abort;
4838 	}
4839 	disk->major = MAJOR(mddev->unit);
4840 	disk->first_minor = unit << shift;
4841 	if (name)
4842 		strcpy(disk->disk_name, name);
4843 	else if (partitioned)
4844 		sprintf(disk->disk_name, "md_d%d", unit);
4845 	else
4846 		sprintf(disk->disk_name, "md%d", unit);
4847 	disk->fops = &md_fops;
4848 	disk->private_data = mddev;
4849 	disk->queue = mddev->queue;
4850 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4851 	/* Allow extended partitions.  This makes the
4852 	 * 'mdp' device redundant, but we can't really
4853 	 * remove it now.
4854 	 */
4855 	disk->flags |= GENHD_FL_EXT_DEVT;
4856 	mddev->gendisk = disk;
4857 	/* As soon as we call add_disk(), another thread could get
4858 	 * through to md_open, so make sure it doesn't get too far
4859 	 */
4860 	mutex_lock(&mddev->open_mutex);
4861 	add_disk(disk);
4862 
4863 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4864 				     &disk_to_dev(disk)->kobj, "%s", "md");
4865 	if (error) {
4866 		/* This isn't possible, but as kobject_init_and_add is marked
4867 		 * __must_check, we must do something with the result
4868 		 */
4869 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4870 		       disk->disk_name);
4871 		error = 0;
4872 	}
4873 	if (mddev->kobj.sd &&
4874 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4875 		printk(KERN_DEBUG "pointless warning\n");
4876 	mutex_unlock(&mddev->open_mutex);
4877  abort:
4878 	mutex_unlock(&disks_mutex);
4879 	if (!error && mddev->kobj.sd) {
4880 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4881 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4882 	}
4883 	mddev_put(mddev);
4884 	return error;
4885 }
4886 
4887 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4888 {
4889 	md_alloc(dev, NULL);
4890 	return NULL;
4891 }
4892 
4893 static int add_named_array(const char *val, struct kernel_param *kp)
4894 {
4895 	/* val must be "md_*" where * is not all digits.
4896 	 * We allocate an array with a large free minor number, and
4897 	 * set the name to val.  val must not already be an active name.
4898 	 */
4899 	int len = strlen(val);
4900 	char buf[DISK_NAME_LEN];
4901 
4902 	while (len && val[len-1] == '\n')
4903 		len--;
4904 	if (len >= DISK_NAME_LEN)
4905 		return -E2BIG;
4906 	strlcpy(buf, val, len+1);
4907 	if (strncmp(buf, "md_", 3) != 0)
4908 		return -EINVAL;
4909 	return md_alloc(0, buf);
4910 }
4911 
4912 static void md_safemode_timeout(unsigned long data)
4913 {
4914 	struct mddev *mddev = (struct mddev *) data;
4915 
4916 	if (!atomic_read(&mddev->writes_pending)) {
4917 		mddev->safemode = 1;
4918 		if (mddev->external)
4919 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4920 	}
4921 	md_wakeup_thread(mddev->thread);
4922 }
4923 
4924 static int start_dirty_degraded;
4925 
4926 int md_run(struct mddev *mddev)
4927 {
4928 	int err;
4929 	struct md_rdev *rdev;
4930 	struct md_personality *pers;
4931 
4932 	if (list_empty(&mddev->disks))
4933 		/* cannot run an array with no devices.. */
4934 		return -EINVAL;
4935 
4936 	if (mddev->pers)
4937 		return -EBUSY;
4938 	/* Cannot run until previous stop completes properly */
4939 	if (mddev->sysfs_active)
4940 		return -EBUSY;
4941 
4942 	/*
4943 	 * Analyze all RAID superblock(s)
4944 	 */
4945 	if (!mddev->raid_disks) {
4946 		if (!mddev->persistent)
4947 			return -EINVAL;
4948 		analyze_sbs(mddev);
4949 	}
4950 
4951 	if (mddev->level != LEVEL_NONE)
4952 		request_module("md-level-%d", mddev->level);
4953 	else if (mddev->clevel[0])
4954 		request_module("md-%s", mddev->clevel);
4955 
4956 	/*
4957 	 * Drop all container device buffers, from now on
4958 	 * the only valid external interface is through the md
4959 	 * device.
4960 	 */
4961 	rdev_for_each(rdev, mddev) {
4962 		if (test_bit(Faulty, &rdev->flags))
4963 			continue;
4964 		sync_blockdev(rdev->bdev);
4965 		invalidate_bdev(rdev->bdev);
4966 
4967 		/* perform some consistency tests on the device.
4968 		 * We don't want the data to overlap the metadata,
4969 		 * Internal Bitmap issues have been handled elsewhere.
4970 		 */
4971 		if (rdev->meta_bdev) {
4972 			/* Nothing to check */;
4973 		} else if (rdev->data_offset < rdev->sb_start) {
4974 			if (mddev->dev_sectors &&
4975 			    rdev->data_offset + mddev->dev_sectors
4976 			    > rdev->sb_start) {
4977 				printk("md: %s: data overlaps metadata\n",
4978 				       mdname(mddev));
4979 				return -EINVAL;
4980 			}
4981 		} else {
4982 			if (rdev->sb_start + rdev->sb_size/512
4983 			    > rdev->data_offset) {
4984 				printk("md: %s: metadata overlaps data\n",
4985 				       mdname(mddev));
4986 				return -EINVAL;
4987 			}
4988 		}
4989 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4990 	}
4991 
4992 	if (mddev->bio_set == NULL)
4993 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4994 
4995 	spin_lock(&pers_lock);
4996 	pers = find_pers(mddev->level, mddev->clevel);
4997 	if (!pers || !try_module_get(pers->owner)) {
4998 		spin_unlock(&pers_lock);
4999 		if (mddev->level != LEVEL_NONE)
5000 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5001 			       mddev->level);
5002 		else
5003 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5004 			       mddev->clevel);
5005 		return -EINVAL;
5006 	}
5007 	spin_unlock(&pers_lock);
5008 	if (mddev->level != pers->level) {
5009 		mddev->level = pers->level;
5010 		mddev->new_level = pers->level;
5011 	}
5012 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5013 
5014 	if (mddev->reshape_position != MaxSector &&
5015 	    pers->start_reshape == NULL) {
5016 		/* This personality cannot handle reshaping... */
5017 		module_put(pers->owner);
5018 		return -EINVAL;
5019 	}
5020 
5021 	if (pers->sync_request) {
5022 		/* Warn if this is a potentially silly
5023 		 * configuration.
5024 		 */
5025 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5026 		struct md_rdev *rdev2;
5027 		int warned = 0;
5028 
5029 		rdev_for_each(rdev, mddev)
5030 			rdev_for_each(rdev2, mddev) {
5031 				if (rdev < rdev2 &&
5032 				    rdev->bdev->bd_contains ==
5033 				    rdev2->bdev->bd_contains) {
5034 					printk(KERN_WARNING
5035 					       "%s: WARNING: %s appears to be"
5036 					       " on the same physical disk as"
5037 					       " %s.\n",
5038 					       mdname(mddev),
5039 					       bdevname(rdev->bdev,b),
5040 					       bdevname(rdev2->bdev,b2));
5041 					warned = 1;
5042 				}
5043 			}
5044 
5045 		if (warned)
5046 			printk(KERN_WARNING
5047 			       "True protection against single-disk"
5048 			       " failure might be compromised.\n");
5049 	}
5050 
5051 	mddev->recovery = 0;
5052 	/* may be over-ridden by personality */
5053 	mddev->resync_max_sectors = mddev->dev_sectors;
5054 
5055 	mddev->ok_start_degraded = start_dirty_degraded;
5056 
5057 	if (start_readonly && mddev->ro == 0)
5058 		mddev->ro = 2; /* read-only, but switch on first write */
5059 
5060 	err = pers->run(mddev);
5061 	if (err)
5062 		printk(KERN_ERR "md: pers->run() failed ...\n");
5063 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5064 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5065 			  " but 'external_size' not in effect?\n", __func__);
5066 		printk(KERN_ERR
5067 		       "md: invalid array_size %llu > default size %llu\n",
5068 		       (unsigned long long)mddev->array_sectors / 2,
5069 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5070 		err = -EINVAL;
5071 	}
5072 	if (err == 0 && pers->sync_request &&
5073 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5074 		err = bitmap_create(mddev);
5075 		if (err)
5076 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5077 			       mdname(mddev), err);
5078 	}
5079 	if (err) {
5080 		mddev_detach(mddev);
5081 		pers->free(mddev, mddev->private);
5082 		module_put(pers->owner);
5083 		bitmap_destroy(mddev);
5084 		return err;
5085 	}
5086 	if (mddev->queue) {
5087 		mddev->queue->backing_dev_info.congested_data = mddev;
5088 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5089 		blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5090 	}
5091 	if (pers->sync_request) {
5092 		if (mddev->kobj.sd &&
5093 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5094 			printk(KERN_WARNING
5095 			       "md: cannot register extra attributes for %s\n",
5096 			       mdname(mddev));
5097 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5098 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5099 		mddev->ro = 0;
5100 
5101 	atomic_set(&mddev->writes_pending,0);
5102 	atomic_set(&mddev->max_corr_read_errors,
5103 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5104 	mddev->safemode = 0;
5105 	mddev->safemode_timer.function = md_safemode_timeout;
5106 	mddev->safemode_timer.data = (unsigned long) mddev;
5107 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5108 	mddev->in_sync = 1;
5109 	smp_wmb();
5110 	spin_lock(&mddev->lock);
5111 	mddev->pers = pers;
5112 	mddev->ready = 1;
5113 	spin_unlock(&mddev->lock);
5114 	rdev_for_each(rdev, mddev)
5115 		if (rdev->raid_disk >= 0)
5116 			if (sysfs_link_rdev(mddev, rdev))
5117 				/* failure here is OK */;
5118 
5119 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5120 
5121 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5122 		md_update_sb(mddev, 0);
5123 
5124 	md_new_event(mddev);
5125 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5126 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5127 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5128 	return 0;
5129 }
5130 EXPORT_SYMBOL_GPL(md_run);
5131 
5132 static int do_md_run(struct mddev *mddev)
5133 {
5134 	int err;
5135 
5136 	err = md_run(mddev);
5137 	if (err)
5138 		goto out;
5139 	err = bitmap_load(mddev);
5140 	if (err) {
5141 		bitmap_destroy(mddev);
5142 		goto out;
5143 	}
5144 
5145 	md_wakeup_thread(mddev->thread);
5146 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5147 
5148 	set_capacity(mddev->gendisk, mddev->array_sectors);
5149 	revalidate_disk(mddev->gendisk);
5150 	mddev->changed = 1;
5151 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5152 out:
5153 	return err;
5154 }
5155 
5156 static int restart_array(struct mddev *mddev)
5157 {
5158 	struct gendisk *disk = mddev->gendisk;
5159 
5160 	/* Complain if it has no devices */
5161 	if (list_empty(&mddev->disks))
5162 		return -ENXIO;
5163 	if (!mddev->pers)
5164 		return -EINVAL;
5165 	if (!mddev->ro)
5166 		return -EBUSY;
5167 	mddev->safemode = 0;
5168 	mddev->ro = 0;
5169 	set_disk_ro(disk, 0);
5170 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5171 		mdname(mddev));
5172 	/* Kick recovery or resync if necessary */
5173 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5174 	md_wakeup_thread(mddev->thread);
5175 	md_wakeup_thread(mddev->sync_thread);
5176 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5177 	return 0;
5178 }
5179 
5180 static void md_clean(struct mddev *mddev)
5181 {
5182 	mddev->array_sectors = 0;
5183 	mddev->external_size = 0;
5184 	mddev->dev_sectors = 0;
5185 	mddev->raid_disks = 0;
5186 	mddev->recovery_cp = 0;
5187 	mddev->resync_min = 0;
5188 	mddev->resync_max = MaxSector;
5189 	mddev->reshape_position = MaxSector;
5190 	mddev->external = 0;
5191 	mddev->persistent = 0;
5192 	mddev->level = LEVEL_NONE;
5193 	mddev->clevel[0] = 0;
5194 	mddev->flags = 0;
5195 	mddev->ro = 0;
5196 	mddev->metadata_type[0] = 0;
5197 	mddev->chunk_sectors = 0;
5198 	mddev->ctime = mddev->utime = 0;
5199 	mddev->layout = 0;
5200 	mddev->max_disks = 0;
5201 	mddev->events = 0;
5202 	mddev->can_decrease_events = 0;
5203 	mddev->delta_disks = 0;
5204 	mddev->reshape_backwards = 0;
5205 	mddev->new_level = LEVEL_NONE;
5206 	mddev->new_layout = 0;
5207 	mddev->new_chunk_sectors = 0;
5208 	mddev->curr_resync = 0;
5209 	atomic64_set(&mddev->resync_mismatches, 0);
5210 	mddev->suspend_lo = mddev->suspend_hi = 0;
5211 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5212 	mddev->recovery = 0;
5213 	mddev->in_sync = 0;
5214 	mddev->changed = 0;
5215 	mddev->degraded = 0;
5216 	mddev->safemode = 0;
5217 	mddev->merge_check_needed = 0;
5218 	mddev->bitmap_info.offset = 0;
5219 	mddev->bitmap_info.default_offset = 0;
5220 	mddev->bitmap_info.default_space = 0;
5221 	mddev->bitmap_info.chunksize = 0;
5222 	mddev->bitmap_info.daemon_sleep = 0;
5223 	mddev->bitmap_info.max_write_behind = 0;
5224 }
5225 
5226 static void __md_stop_writes(struct mddev *mddev)
5227 {
5228 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5229 	flush_workqueue(md_misc_wq);
5230 	if (mddev->sync_thread) {
5231 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5232 		md_reap_sync_thread(mddev);
5233 	}
5234 
5235 	del_timer_sync(&mddev->safemode_timer);
5236 
5237 	bitmap_flush(mddev);
5238 	md_super_wait(mddev);
5239 
5240 	if (mddev->ro == 0 &&
5241 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5242 		/* mark array as shutdown cleanly */
5243 		mddev->in_sync = 1;
5244 		md_update_sb(mddev, 1);
5245 	}
5246 }
5247 
5248 void md_stop_writes(struct mddev *mddev)
5249 {
5250 	mddev_lock_nointr(mddev);
5251 	__md_stop_writes(mddev);
5252 	mddev_unlock(mddev);
5253 }
5254 EXPORT_SYMBOL_GPL(md_stop_writes);
5255 
5256 static void mddev_detach(struct mddev *mddev)
5257 {
5258 	struct bitmap *bitmap = mddev->bitmap;
5259 	/* wait for behind writes to complete */
5260 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5261 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5262 		       mdname(mddev));
5263 		/* need to kick something here to make sure I/O goes? */
5264 		wait_event(bitmap->behind_wait,
5265 			   atomic_read(&bitmap->behind_writes) == 0);
5266 	}
5267 	if (mddev->pers && mddev->pers->quiesce) {
5268 		mddev->pers->quiesce(mddev, 1);
5269 		mddev->pers->quiesce(mddev, 0);
5270 	}
5271 	md_unregister_thread(&mddev->thread);
5272 	if (mddev->queue)
5273 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5274 }
5275 
5276 static void __md_stop(struct mddev *mddev)
5277 {
5278 	struct md_personality *pers = mddev->pers;
5279 	mddev_detach(mddev);
5280 	spin_lock(&mddev->lock);
5281 	mddev->ready = 0;
5282 	mddev->pers = NULL;
5283 	spin_unlock(&mddev->lock);
5284 	pers->free(mddev, mddev->private);
5285 	if (pers->sync_request && mddev->to_remove == NULL)
5286 		mddev->to_remove = &md_redundancy_group;
5287 	module_put(pers->owner);
5288 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5289 }
5290 
5291 void md_stop(struct mddev *mddev)
5292 {
5293 	/* stop the array and free an attached data structures.
5294 	 * This is called from dm-raid
5295 	 */
5296 	__md_stop(mddev);
5297 	bitmap_destroy(mddev);
5298 	if (mddev->bio_set)
5299 		bioset_free(mddev->bio_set);
5300 }
5301 
5302 EXPORT_SYMBOL_GPL(md_stop);
5303 
5304 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5305 {
5306 	int err = 0;
5307 	int did_freeze = 0;
5308 
5309 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5310 		did_freeze = 1;
5311 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5312 		md_wakeup_thread(mddev->thread);
5313 	}
5314 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5315 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5316 	if (mddev->sync_thread)
5317 		/* Thread might be blocked waiting for metadata update
5318 		 * which will now never happen */
5319 		wake_up_process(mddev->sync_thread->tsk);
5320 
5321 	mddev_unlock(mddev);
5322 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5323 					  &mddev->recovery));
5324 	mddev_lock_nointr(mddev);
5325 
5326 	mutex_lock(&mddev->open_mutex);
5327 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5328 	    mddev->sync_thread ||
5329 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5330 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5331 		printk("md: %s still in use.\n",mdname(mddev));
5332 		if (did_freeze) {
5333 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5334 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5335 			md_wakeup_thread(mddev->thread);
5336 		}
5337 		err = -EBUSY;
5338 		goto out;
5339 	}
5340 	if (mddev->pers) {
5341 		__md_stop_writes(mddev);
5342 
5343 		err  = -ENXIO;
5344 		if (mddev->ro==1)
5345 			goto out;
5346 		mddev->ro = 1;
5347 		set_disk_ro(mddev->gendisk, 1);
5348 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5349 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5350 		md_wakeup_thread(mddev->thread);
5351 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5352 		err = 0;
5353 	}
5354 out:
5355 	mutex_unlock(&mddev->open_mutex);
5356 	return err;
5357 }
5358 
5359 /* mode:
5360  *   0 - completely stop and dis-assemble array
5361  *   2 - stop but do not disassemble array
5362  */
5363 static int do_md_stop(struct mddev *mddev, int mode,
5364 		      struct block_device *bdev)
5365 {
5366 	struct gendisk *disk = mddev->gendisk;
5367 	struct md_rdev *rdev;
5368 	int did_freeze = 0;
5369 
5370 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5371 		did_freeze = 1;
5372 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5373 		md_wakeup_thread(mddev->thread);
5374 	}
5375 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5376 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5377 	if (mddev->sync_thread)
5378 		/* Thread might be blocked waiting for metadata update
5379 		 * which will now never happen */
5380 		wake_up_process(mddev->sync_thread->tsk);
5381 
5382 	mddev_unlock(mddev);
5383 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5384 				 !test_bit(MD_RECOVERY_RUNNING,
5385 					   &mddev->recovery)));
5386 	mddev_lock_nointr(mddev);
5387 
5388 	mutex_lock(&mddev->open_mutex);
5389 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5390 	    mddev->sysfs_active ||
5391 	    mddev->sync_thread ||
5392 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5393 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5394 		printk("md: %s still in use.\n",mdname(mddev));
5395 		mutex_unlock(&mddev->open_mutex);
5396 		if (did_freeze) {
5397 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5398 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5399 			md_wakeup_thread(mddev->thread);
5400 		}
5401 		return -EBUSY;
5402 	}
5403 	if (mddev->pers) {
5404 		if (mddev->ro)
5405 			set_disk_ro(disk, 0);
5406 
5407 		__md_stop_writes(mddev);
5408 		__md_stop(mddev);
5409 		mddev->queue->merge_bvec_fn = NULL;
5410 		mddev->queue->backing_dev_info.congested_fn = NULL;
5411 
5412 		/* tell userspace to handle 'inactive' */
5413 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5414 
5415 		rdev_for_each(rdev, mddev)
5416 			if (rdev->raid_disk >= 0)
5417 				sysfs_unlink_rdev(mddev, rdev);
5418 
5419 		set_capacity(disk, 0);
5420 		mutex_unlock(&mddev->open_mutex);
5421 		mddev->changed = 1;
5422 		revalidate_disk(disk);
5423 
5424 		if (mddev->ro)
5425 			mddev->ro = 0;
5426 	} else
5427 		mutex_unlock(&mddev->open_mutex);
5428 	/*
5429 	 * Free resources if final stop
5430 	 */
5431 	if (mode == 0) {
5432 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5433 
5434 		bitmap_destroy(mddev);
5435 		if (mddev->bitmap_info.file) {
5436 			struct file *f = mddev->bitmap_info.file;
5437 			spin_lock(&mddev->lock);
5438 			mddev->bitmap_info.file = NULL;
5439 			spin_unlock(&mddev->lock);
5440 			fput(f);
5441 		}
5442 		mddev->bitmap_info.offset = 0;
5443 
5444 		export_array(mddev);
5445 
5446 		md_clean(mddev);
5447 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5448 		if (mddev->hold_active == UNTIL_STOP)
5449 			mddev->hold_active = 0;
5450 	}
5451 	blk_integrity_unregister(disk);
5452 	md_new_event(mddev);
5453 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5454 	return 0;
5455 }
5456 
5457 #ifndef MODULE
5458 static void autorun_array(struct mddev *mddev)
5459 {
5460 	struct md_rdev *rdev;
5461 	int err;
5462 
5463 	if (list_empty(&mddev->disks))
5464 		return;
5465 
5466 	printk(KERN_INFO "md: running: ");
5467 
5468 	rdev_for_each(rdev, mddev) {
5469 		char b[BDEVNAME_SIZE];
5470 		printk("<%s>", bdevname(rdev->bdev,b));
5471 	}
5472 	printk("\n");
5473 
5474 	err = do_md_run(mddev);
5475 	if (err) {
5476 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5477 		do_md_stop(mddev, 0, NULL);
5478 	}
5479 }
5480 
5481 /*
5482  * lets try to run arrays based on all disks that have arrived
5483  * until now. (those are in pending_raid_disks)
5484  *
5485  * the method: pick the first pending disk, collect all disks with
5486  * the same UUID, remove all from the pending list and put them into
5487  * the 'same_array' list. Then order this list based on superblock
5488  * update time (freshest comes first), kick out 'old' disks and
5489  * compare superblocks. If everything's fine then run it.
5490  *
5491  * If "unit" is allocated, then bump its reference count
5492  */
5493 static void autorun_devices(int part)
5494 {
5495 	struct md_rdev *rdev0, *rdev, *tmp;
5496 	struct mddev *mddev;
5497 	char b[BDEVNAME_SIZE];
5498 
5499 	printk(KERN_INFO "md: autorun ...\n");
5500 	while (!list_empty(&pending_raid_disks)) {
5501 		int unit;
5502 		dev_t dev;
5503 		LIST_HEAD(candidates);
5504 		rdev0 = list_entry(pending_raid_disks.next,
5505 					 struct md_rdev, same_set);
5506 
5507 		printk(KERN_INFO "md: considering %s ...\n",
5508 			bdevname(rdev0->bdev,b));
5509 		INIT_LIST_HEAD(&candidates);
5510 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5511 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5512 				printk(KERN_INFO "md:  adding %s ...\n",
5513 					bdevname(rdev->bdev,b));
5514 				list_move(&rdev->same_set, &candidates);
5515 			}
5516 		/*
5517 		 * now we have a set of devices, with all of them having
5518 		 * mostly sane superblocks. It's time to allocate the
5519 		 * mddev.
5520 		 */
5521 		if (part) {
5522 			dev = MKDEV(mdp_major,
5523 				    rdev0->preferred_minor << MdpMinorShift);
5524 			unit = MINOR(dev) >> MdpMinorShift;
5525 		} else {
5526 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5527 			unit = MINOR(dev);
5528 		}
5529 		if (rdev0->preferred_minor != unit) {
5530 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5531 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5532 			break;
5533 		}
5534 
5535 		md_probe(dev, NULL, NULL);
5536 		mddev = mddev_find(dev);
5537 		if (!mddev || !mddev->gendisk) {
5538 			if (mddev)
5539 				mddev_put(mddev);
5540 			printk(KERN_ERR
5541 				"md: cannot allocate memory for md drive.\n");
5542 			break;
5543 		}
5544 		if (mddev_lock(mddev))
5545 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5546 			       mdname(mddev));
5547 		else if (mddev->raid_disks || mddev->major_version
5548 			 || !list_empty(&mddev->disks)) {
5549 			printk(KERN_WARNING
5550 				"md: %s already running, cannot run %s\n",
5551 				mdname(mddev), bdevname(rdev0->bdev,b));
5552 			mddev_unlock(mddev);
5553 		} else {
5554 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5555 			mddev->persistent = 1;
5556 			rdev_for_each_list(rdev, tmp, &candidates) {
5557 				list_del_init(&rdev->same_set);
5558 				if (bind_rdev_to_array(rdev, mddev))
5559 					export_rdev(rdev);
5560 			}
5561 			autorun_array(mddev);
5562 			mddev_unlock(mddev);
5563 		}
5564 		/* on success, candidates will be empty, on error
5565 		 * it won't...
5566 		 */
5567 		rdev_for_each_list(rdev, tmp, &candidates) {
5568 			list_del_init(&rdev->same_set);
5569 			export_rdev(rdev);
5570 		}
5571 		mddev_put(mddev);
5572 	}
5573 	printk(KERN_INFO "md: ... autorun DONE.\n");
5574 }
5575 #endif /* !MODULE */
5576 
5577 static int get_version(void __user *arg)
5578 {
5579 	mdu_version_t ver;
5580 
5581 	ver.major = MD_MAJOR_VERSION;
5582 	ver.minor = MD_MINOR_VERSION;
5583 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5584 
5585 	if (copy_to_user(arg, &ver, sizeof(ver)))
5586 		return -EFAULT;
5587 
5588 	return 0;
5589 }
5590 
5591 static int get_array_info(struct mddev *mddev, void __user *arg)
5592 {
5593 	mdu_array_info_t info;
5594 	int nr,working,insync,failed,spare;
5595 	struct md_rdev *rdev;
5596 
5597 	nr = working = insync = failed = spare = 0;
5598 	rcu_read_lock();
5599 	rdev_for_each_rcu(rdev, mddev) {
5600 		nr++;
5601 		if (test_bit(Faulty, &rdev->flags))
5602 			failed++;
5603 		else {
5604 			working++;
5605 			if (test_bit(In_sync, &rdev->flags))
5606 				insync++;
5607 			else
5608 				spare++;
5609 		}
5610 	}
5611 	rcu_read_unlock();
5612 
5613 	info.major_version = mddev->major_version;
5614 	info.minor_version = mddev->minor_version;
5615 	info.patch_version = MD_PATCHLEVEL_VERSION;
5616 	info.ctime         = mddev->ctime;
5617 	info.level         = mddev->level;
5618 	info.size          = mddev->dev_sectors / 2;
5619 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5620 		info.size = -1;
5621 	info.nr_disks      = nr;
5622 	info.raid_disks    = mddev->raid_disks;
5623 	info.md_minor      = mddev->md_minor;
5624 	info.not_persistent= !mddev->persistent;
5625 
5626 	info.utime         = mddev->utime;
5627 	info.state         = 0;
5628 	if (mddev->in_sync)
5629 		info.state = (1<<MD_SB_CLEAN);
5630 	if (mddev->bitmap && mddev->bitmap_info.offset)
5631 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5632 	info.active_disks  = insync;
5633 	info.working_disks = working;
5634 	info.failed_disks  = failed;
5635 	info.spare_disks   = spare;
5636 
5637 	info.layout        = mddev->layout;
5638 	info.chunk_size    = mddev->chunk_sectors << 9;
5639 
5640 	if (copy_to_user(arg, &info, sizeof(info)))
5641 		return -EFAULT;
5642 
5643 	return 0;
5644 }
5645 
5646 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5647 {
5648 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5649 	char *ptr;
5650 	int err;
5651 
5652 	file = kmalloc(sizeof(*file), GFP_NOIO);
5653 	if (!file)
5654 		return -ENOMEM;
5655 
5656 	err = 0;
5657 	spin_lock(&mddev->lock);
5658 	/* bitmap disabled, zero the first byte and copy out */
5659 	if (!mddev->bitmap_info.file)
5660 		file->pathname[0] = '\0';
5661 	else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5662 			       file->pathname, sizeof(file->pathname))),
5663 		 IS_ERR(ptr))
5664 		err = PTR_ERR(ptr);
5665 	else
5666 		memmove(file->pathname, ptr,
5667 			sizeof(file->pathname)-(ptr-file->pathname));
5668 	spin_unlock(&mddev->lock);
5669 
5670 	if (err == 0 &&
5671 	    copy_to_user(arg, file, sizeof(*file)))
5672 		err = -EFAULT;
5673 
5674 	kfree(file);
5675 	return err;
5676 }
5677 
5678 static int get_disk_info(struct mddev *mddev, void __user * arg)
5679 {
5680 	mdu_disk_info_t info;
5681 	struct md_rdev *rdev;
5682 
5683 	if (copy_from_user(&info, arg, sizeof(info)))
5684 		return -EFAULT;
5685 
5686 	rcu_read_lock();
5687 	rdev = find_rdev_nr_rcu(mddev, info.number);
5688 	if (rdev) {
5689 		info.major = MAJOR(rdev->bdev->bd_dev);
5690 		info.minor = MINOR(rdev->bdev->bd_dev);
5691 		info.raid_disk = rdev->raid_disk;
5692 		info.state = 0;
5693 		if (test_bit(Faulty, &rdev->flags))
5694 			info.state |= (1<<MD_DISK_FAULTY);
5695 		else if (test_bit(In_sync, &rdev->flags)) {
5696 			info.state |= (1<<MD_DISK_ACTIVE);
5697 			info.state |= (1<<MD_DISK_SYNC);
5698 		}
5699 		if (test_bit(WriteMostly, &rdev->flags))
5700 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5701 	} else {
5702 		info.major = info.minor = 0;
5703 		info.raid_disk = -1;
5704 		info.state = (1<<MD_DISK_REMOVED);
5705 	}
5706 	rcu_read_unlock();
5707 
5708 	if (copy_to_user(arg, &info, sizeof(info)))
5709 		return -EFAULT;
5710 
5711 	return 0;
5712 }
5713 
5714 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5715 {
5716 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5717 	struct md_rdev *rdev;
5718 	dev_t dev = MKDEV(info->major,info->minor);
5719 
5720 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5721 		return -EOVERFLOW;
5722 
5723 	if (!mddev->raid_disks) {
5724 		int err;
5725 		/* expecting a device which has a superblock */
5726 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5727 		if (IS_ERR(rdev)) {
5728 			printk(KERN_WARNING
5729 				"md: md_import_device returned %ld\n",
5730 				PTR_ERR(rdev));
5731 			return PTR_ERR(rdev);
5732 		}
5733 		if (!list_empty(&mddev->disks)) {
5734 			struct md_rdev *rdev0
5735 				= list_entry(mddev->disks.next,
5736 					     struct md_rdev, same_set);
5737 			err = super_types[mddev->major_version]
5738 				.load_super(rdev, rdev0, mddev->minor_version);
5739 			if (err < 0) {
5740 				printk(KERN_WARNING
5741 					"md: %s has different UUID to %s\n",
5742 					bdevname(rdev->bdev,b),
5743 					bdevname(rdev0->bdev,b2));
5744 				export_rdev(rdev);
5745 				return -EINVAL;
5746 			}
5747 		}
5748 		err = bind_rdev_to_array(rdev, mddev);
5749 		if (err)
5750 			export_rdev(rdev);
5751 		return err;
5752 	}
5753 
5754 	/*
5755 	 * add_new_disk can be used once the array is assembled
5756 	 * to add "hot spares".  They must already have a superblock
5757 	 * written
5758 	 */
5759 	if (mddev->pers) {
5760 		int err;
5761 		if (!mddev->pers->hot_add_disk) {
5762 			printk(KERN_WARNING
5763 				"%s: personality does not support diskops!\n",
5764 			       mdname(mddev));
5765 			return -EINVAL;
5766 		}
5767 		if (mddev->persistent)
5768 			rdev = md_import_device(dev, mddev->major_version,
5769 						mddev->minor_version);
5770 		else
5771 			rdev = md_import_device(dev, -1, -1);
5772 		if (IS_ERR(rdev)) {
5773 			printk(KERN_WARNING
5774 				"md: md_import_device returned %ld\n",
5775 				PTR_ERR(rdev));
5776 			return PTR_ERR(rdev);
5777 		}
5778 		/* set saved_raid_disk if appropriate */
5779 		if (!mddev->persistent) {
5780 			if (info->state & (1<<MD_DISK_SYNC)  &&
5781 			    info->raid_disk < mddev->raid_disks) {
5782 				rdev->raid_disk = info->raid_disk;
5783 				set_bit(In_sync, &rdev->flags);
5784 				clear_bit(Bitmap_sync, &rdev->flags);
5785 			} else
5786 				rdev->raid_disk = -1;
5787 			rdev->saved_raid_disk = rdev->raid_disk;
5788 		} else
5789 			super_types[mddev->major_version].
5790 				validate_super(mddev, rdev);
5791 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5792 		     rdev->raid_disk != info->raid_disk) {
5793 			/* This was a hot-add request, but events doesn't
5794 			 * match, so reject it.
5795 			 */
5796 			export_rdev(rdev);
5797 			return -EINVAL;
5798 		}
5799 
5800 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5801 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5802 			set_bit(WriteMostly, &rdev->flags);
5803 		else
5804 			clear_bit(WriteMostly, &rdev->flags);
5805 
5806 		rdev->raid_disk = -1;
5807 		err = bind_rdev_to_array(rdev, mddev);
5808 		if (!err && !mddev->pers->hot_remove_disk) {
5809 			/* If there is hot_add_disk but no hot_remove_disk
5810 			 * then added disks for geometry changes,
5811 			 * and should be added immediately.
5812 			 */
5813 			super_types[mddev->major_version].
5814 				validate_super(mddev, rdev);
5815 			err = mddev->pers->hot_add_disk(mddev, rdev);
5816 			if (err)
5817 				unbind_rdev_from_array(rdev);
5818 		}
5819 		if (err)
5820 			export_rdev(rdev);
5821 		else
5822 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5823 
5824 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5825 		if (mddev->degraded)
5826 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5827 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5828 		if (!err)
5829 			md_new_event(mddev);
5830 		md_wakeup_thread(mddev->thread);
5831 		return err;
5832 	}
5833 
5834 	/* otherwise, add_new_disk is only allowed
5835 	 * for major_version==0 superblocks
5836 	 */
5837 	if (mddev->major_version != 0) {
5838 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5839 		       mdname(mddev));
5840 		return -EINVAL;
5841 	}
5842 
5843 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5844 		int err;
5845 		rdev = md_import_device(dev, -1, 0);
5846 		if (IS_ERR(rdev)) {
5847 			printk(KERN_WARNING
5848 				"md: error, md_import_device() returned %ld\n",
5849 				PTR_ERR(rdev));
5850 			return PTR_ERR(rdev);
5851 		}
5852 		rdev->desc_nr = info->number;
5853 		if (info->raid_disk < mddev->raid_disks)
5854 			rdev->raid_disk = info->raid_disk;
5855 		else
5856 			rdev->raid_disk = -1;
5857 
5858 		if (rdev->raid_disk < mddev->raid_disks)
5859 			if (info->state & (1<<MD_DISK_SYNC))
5860 				set_bit(In_sync, &rdev->flags);
5861 
5862 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5863 			set_bit(WriteMostly, &rdev->flags);
5864 
5865 		if (!mddev->persistent) {
5866 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5867 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5868 		} else
5869 			rdev->sb_start = calc_dev_sboffset(rdev);
5870 		rdev->sectors = rdev->sb_start;
5871 
5872 		err = bind_rdev_to_array(rdev, mddev);
5873 		if (err) {
5874 			export_rdev(rdev);
5875 			return err;
5876 		}
5877 	}
5878 
5879 	return 0;
5880 }
5881 
5882 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5883 {
5884 	char b[BDEVNAME_SIZE];
5885 	struct md_rdev *rdev;
5886 
5887 	rdev = find_rdev(mddev, dev);
5888 	if (!rdev)
5889 		return -ENXIO;
5890 
5891 	clear_bit(Blocked, &rdev->flags);
5892 	remove_and_add_spares(mddev, rdev);
5893 
5894 	if (rdev->raid_disk >= 0)
5895 		goto busy;
5896 
5897 	kick_rdev_from_array(rdev);
5898 	md_update_sb(mddev, 1);
5899 	md_new_event(mddev);
5900 
5901 	return 0;
5902 busy:
5903 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5904 		bdevname(rdev->bdev,b), mdname(mddev));
5905 	return -EBUSY;
5906 }
5907 
5908 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5909 {
5910 	char b[BDEVNAME_SIZE];
5911 	int err;
5912 	struct md_rdev *rdev;
5913 
5914 	if (!mddev->pers)
5915 		return -ENODEV;
5916 
5917 	if (mddev->major_version != 0) {
5918 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5919 			" version-0 superblocks.\n",
5920 			mdname(mddev));
5921 		return -EINVAL;
5922 	}
5923 	if (!mddev->pers->hot_add_disk) {
5924 		printk(KERN_WARNING
5925 			"%s: personality does not support diskops!\n",
5926 			mdname(mddev));
5927 		return -EINVAL;
5928 	}
5929 
5930 	rdev = md_import_device(dev, -1, 0);
5931 	if (IS_ERR(rdev)) {
5932 		printk(KERN_WARNING
5933 			"md: error, md_import_device() returned %ld\n",
5934 			PTR_ERR(rdev));
5935 		return -EINVAL;
5936 	}
5937 
5938 	if (mddev->persistent)
5939 		rdev->sb_start = calc_dev_sboffset(rdev);
5940 	else
5941 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5942 
5943 	rdev->sectors = rdev->sb_start;
5944 
5945 	if (test_bit(Faulty, &rdev->flags)) {
5946 		printk(KERN_WARNING
5947 			"md: can not hot-add faulty %s disk to %s!\n",
5948 			bdevname(rdev->bdev,b), mdname(mddev));
5949 		err = -EINVAL;
5950 		goto abort_export;
5951 	}
5952 	clear_bit(In_sync, &rdev->flags);
5953 	rdev->desc_nr = -1;
5954 	rdev->saved_raid_disk = -1;
5955 	err = bind_rdev_to_array(rdev, mddev);
5956 	if (err)
5957 		goto abort_export;
5958 
5959 	/*
5960 	 * The rest should better be atomic, we can have disk failures
5961 	 * noticed in interrupt contexts ...
5962 	 */
5963 
5964 	rdev->raid_disk = -1;
5965 
5966 	md_update_sb(mddev, 1);
5967 
5968 	/*
5969 	 * Kick recovery, maybe this spare has to be added to the
5970 	 * array immediately.
5971 	 */
5972 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5973 	md_wakeup_thread(mddev->thread);
5974 	md_new_event(mddev);
5975 	return 0;
5976 
5977 abort_export:
5978 	export_rdev(rdev);
5979 	return err;
5980 }
5981 
5982 static int set_bitmap_file(struct mddev *mddev, int fd)
5983 {
5984 	int err = 0;
5985 
5986 	if (mddev->pers) {
5987 		if (!mddev->pers->quiesce || !mddev->thread)
5988 			return -EBUSY;
5989 		if (mddev->recovery || mddev->sync_thread)
5990 			return -EBUSY;
5991 		/* we should be able to change the bitmap.. */
5992 	}
5993 
5994 	if (fd >= 0) {
5995 		struct inode *inode;
5996 		struct file *f;
5997 
5998 		if (mddev->bitmap || mddev->bitmap_info.file)
5999 			return -EEXIST; /* cannot add when bitmap is present */
6000 		f = fget(fd);
6001 
6002 		if (f == NULL) {
6003 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6004 			       mdname(mddev));
6005 			return -EBADF;
6006 		}
6007 
6008 		inode = f->f_mapping->host;
6009 		if (!S_ISREG(inode->i_mode)) {
6010 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6011 			       mdname(mddev));
6012 			err = -EBADF;
6013 		} else if (!(f->f_mode & FMODE_WRITE)) {
6014 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6015 			       mdname(mddev));
6016 			err = -EBADF;
6017 		} else if (atomic_read(&inode->i_writecount) != 1) {
6018 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6019 			       mdname(mddev));
6020 			err = -EBUSY;
6021 		}
6022 		if (err) {
6023 			fput(f);
6024 			return err;
6025 		}
6026 		mddev->bitmap_info.file = f;
6027 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6028 	} else if (mddev->bitmap == NULL)
6029 		return -ENOENT; /* cannot remove what isn't there */
6030 	err = 0;
6031 	if (mddev->pers) {
6032 		mddev->pers->quiesce(mddev, 1);
6033 		if (fd >= 0) {
6034 			err = bitmap_create(mddev);
6035 			if (!err)
6036 				err = bitmap_load(mddev);
6037 		}
6038 		if (fd < 0 || err) {
6039 			bitmap_destroy(mddev);
6040 			fd = -1; /* make sure to put the file */
6041 		}
6042 		mddev->pers->quiesce(mddev, 0);
6043 	}
6044 	if (fd < 0) {
6045 		struct file *f = mddev->bitmap_info.file;
6046 		if (f) {
6047 			spin_lock(&mddev->lock);
6048 			mddev->bitmap_info.file = NULL;
6049 			spin_unlock(&mddev->lock);
6050 			fput(f);
6051 		}
6052 	}
6053 
6054 	return err;
6055 }
6056 
6057 /*
6058  * set_array_info is used two different ways
6059  * The original usage is when creating a new array.
6060  * In this usage, raid_disks is > 0 and it together with
6061  *  level, size, not_persistent,layout,chunksize determine the
6062  *  shape of the array.
6063  *  This will always create an array with a type-0.90.0 superblock.
6064  * The newer usage is when assembling an array.
6065  *  In this case raid_disks will be 0, and the major_version field is
6066  *  use to determine which style super-blocks are to be found on the devices.
6067  *  The minor and patch _version numbers are also kept incase the
6068  *  super_block handler wishes to interpret them.
6069  */
6070 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6071 {
6072 
6073 	if (info->raid_disks == 0) {
6074 		/* just setting version number for superblock loading */
6075 		if (info->major_version < 0 ||
6076 		    info->major_version >= ARRAY_SIZE(super_types) ||
6077 		    super_types[info->major_version].name == NULL) {
6078 			/* maybe try to auto-load a module? */
6079 			printk(KERN_INFO
6080 				"md: superblock version %d not known\n",
6081 				info->major_version);
6082 			return -EINVAL;
6083 		}
6084 		mddev->major_version = info->major_version;
6085 		mddev->minor_version = info->minor_version;
6086 		mddev->patch_version = info->patch_version;
6087 		mddev->persistent = !info->not_persistent;
6088 		/* ensure mddev_put doesn't delete this now that there
6089 		 * is some minimal configuration.
6090 		 */
6091 		mddev->ctime         = get_seconds();
6092 		return 0;
6093 	}
6094 	mddev->major_version = MD_MAJOR_VERSION;
6095 	mddev->minor_version = MD_MINOR_VERSION;
6096 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6097 	mddev->ctime         = get_seconds();
6098 
6099 	mddev->level         = info->level;
6100 	mddev->clevel[0]     = 0;
6101 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6102 	mddev->raid_disks    = info->raid_disks;
6103 	/* don't set md_minor, it is determined by which /dev/md* was
6104 	 * openned
6105 	 */
6106 	if (info->state & (1<<MD_SB_CLEAN))
6107 		mddev->recovery_cp = MaxSector;
6108 	else
6109 		mddev->recovery_cp = 0;
6110 	mddev->persistent    = ! info->not_persistent;
6111 	mddev->external	     = 0;
6112 
6113 	mddev->layout        = info->layout;
6114 	mddev->chunk_sectors = info->chunk_size >> 9;
6115 
6116 	mddev->max_disks     = MD_SB_DISKS;
6117 
6118 	if (mddev->persistent)
6119 		mddev->flags         = 0;
6120 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6121 
6122 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6123 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6124 	mddev->bitmap_info.offset = 0;
6125 
6126 	mddev->reshape_position = MaxSector;
6127 
6128 	/*
6129 	 * Generate a 128 bit UUID
6130 	 */
6131 	get_random_bytes(mddev->uuid, 16);
6132 
6133 	mddev->new_level = mddev->level;
6134 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6135 	mddev->new_layout = mddev->layout;
6136 	mddev->delta_disks = 0;
6137 	mddev->reshape_backwards = 0;
6138 
6139 	return 0;
6140 }
6141 
6142 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6143 {
6144 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6145 
6146 	if (mddev->external_size)
6147 		return;
6148 
6149 	mddev->array_sectors = array_sectors;
6150 }
6151 EXPORT_SYMBOL(md_set_array_sectors);
6152 
6153 static int update_size(struct mddev *mddev, sector_t num_sectors)
6154 {
6155 	struct md_rdev *rdev;
6156 	int rv;
6157 	int fit = (num_sectors == 0);
6158 
6159 	if (mddev->pers->resize == NULL)
6160 		return -EINVAL;
6161 	/* The "num_sectors" is the number of sectors of each device that
6162 	 * is used.  This can only make sense for arrays with redundancy.
6163 	 * linear and raid0 always use whatever space is available. We can only
6164 	 * consider changing this number if no resync or reconstruction is
6165 	 * happening, and if the new size is acceptable. It must fit before the
6166 	 * sb_start or, if that is <data_offset, it must fit before the size
6167 	 * of each device.  If num_sectors is zero, we find the largest size
6168 	 * that fits.
6169 	 */
6170 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6171 	    mddev->sync_thread)
6172 		return -EBUSY;
6173 	if (mddev->ro)
6174 		return -EROFS;
6175 
6176 	rdev_for_each(rdev, mddev) {
6177 		sector_t avail = rdev->sectors;
6178 
6179 		if (fit && (num_sectors == 0 || num_sectors > avail))
6180 			num_sectors = avail;
6181 		if (avail < num_sectors)
6182 			return -ENOSPC;
6183 	}
6184 	rv = mddev->pers->resize(mddev, num_sectors);
6185 	if (!rv)
6186 		revalidate_disk(mddev->gendisk);
6187 	return rv;
6188 }
6189 
6190 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6191 {
6192 	int rv;
6193 	struct md_rdev *rdev;
6194 	/* change the number of raid disks */
6195 	if (mddev->pers->check_reshape == NULL)
6196 		return -EINVAL;
6197 	if (mddev->ro)
6198 		return -EROFS;
6199 	if (raid_disks <= 0 ||
6200 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6201 		return -EINVAL;
6202 	if (mddev->sync_thread ||
6203 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6204 	    mddev->reshape_position != MaxSector)
6205 		return -EBUSY;
6206 
6207 	rdev_for_each(rdev, mddev) {
6208 		if (mddev->raid_disks < raid_disks &&
6209 		    rdev->data_offset < rdev->new_data_offset)
6210 			return -EINVAL;
6211 		if (mddev->raid_disks > raid_disks &&
6212 		    rdev->data_offset > rdev->new_data_offset)
6213 			return -EINVAL;
6214 	}
6215 
6216 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6217 	if (mddev->delta_disks < 0)
6218 		mddev->reshape_backwards = 1;
6219 	else if (mddev->delta_disks > 0)
6220 		mddev->reshape_backwards = 0;
6221 
6222 	rv = mddev->pers->check_reshape(mddev);
6223 	if (rv < 0) {
6224 		mddev->delta_disks = 0;
6225 		mddev->reshape_backwards = 0;
6226 	}
6227 	return rv;
6228 }
6229 
6230 /*
6231  * update_array_info is used to change the configuration of an
6232  * on-line array.
6233  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6234  * fields in the info are checked against the array.
6235  * Any differences that cannot be handled will cause an error.
6236  * Normally, only one change can be managed at a time.
6237  */
6238 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6239 {
6240 	int rv = 0;
6241 	int cnt = 0;
6242 	int state = 0;
6243 
6244 	/* calculate expected state,ignoring low bits */
6245 	if (mddev->bitmap && mddev->bitmap_info.offset)
6246 		state |= (1 << MD_SB_BITMAP_PRESENT);
6247 
6248 	if (mddev->major_version != info->major_version ||
6249 	    mddev->minor_version != info->minor_version ||
6250 /*	    mddev->patch_version != info->patch_version || */
6251 	    mddev->ctime         != info->ctime         ||
6252 	    mddev->level         != info->level         ||
6253 /*	    mddev->layout        != info->layout        || */
6254 	    !mddev->persistent	 != info->not_persistent||
6255 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6256 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6257 	    ((state^info->state) & 0xfffffe00)
6258 		)
6259 		return -EINVAL;
6260 	/* Check there is only one change */
6261 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6262 		cnt++;
6263 	if (mddev->raid_disks != info->raid_disks)
6264 		cnt++;
6265 	if (mddev->layout != info->layout)
6266 		cnt++;
6267 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6268 		cnt++;
6269 	if (cnt == 0)
6270 		return 0;
6271 	if (cnt > 1)
6272 		return -EINVAL;
6273 
6274 	if (mddev->layout != info->layout) {
6275 		/* Change layout
6276 		 * we don't need to do anything at the md level, the
6277 		 * personality will take care of it all.
6278 		 */
6279 		if (mddev->pers->check_reshape == NULL)
6280 			return -EINVAL;
6281 		else {
6282 			mddev->new_layout = info->layout;
6283 			rv = mddev->pers->check_reshape(mddev);
6284 			if (rv)
6285 				mddev->new_layout = mddev->layout;
6286 			return rv;
6287 		}
6288 	}
6289 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6290 		rv = update_size(mddev, (sector_t)info->size * 2);
6291 
6292 	if (mddev->raid_disks    != info->raid_disks)
6293 		rv = update_raid_disks(mddev, info->raid_disks);
6294 
6295 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6296 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6297 			return -EINVAL;
6298 		if (mddev->recovery || mddev->sync_thread)
6299 			return -EBUSY;
6300 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6301 			/* add the bitmap */
6302 			if (mddev->bitmap)
6303 				return -EEXIST;
6304 			if (mddev->bitmap_info.default_offset == 0)
6305 				return -EINVAL;
6306 			mddev->bitmap_info.offset =
6307 				mddev->bitmap_info.default_offset;
6308 			mddev->bitmap_info.space =
6309 				mddev->bitmap_info.default_space;
6310 			mddev->pers->quiesce(mddev, 1);
6311 			rv = bitmap_create(mddev);
6312 			if (!rv)
6313 				rv = bitmap_load(mddev);
6314 			if (rv)
6315 				bitmap_destroy(mddev);
6316 			mddev->pers->quiesce(mddev, 0);
6317 		} else {
6318 			/* remove the bitmap */
6319 			if (!mddev->bitmap)
6320 				return -ENOENT;
6321 			if (mddev->bitmap->storage.file)
6322 				return -EINVAL;
6323 			mddev->pers->quiesce(mddev, 1);
6324 			bitmap_destroy(mddev);
6325 			mddev->pers->quiesce(mddev, 0);
6326 			mddev->bitmap_info.offset = 0;
6327 		}
6328 	}
6329 	md_update_sb(mddev, 1);
6330 	return rv;
6331 }
6332 
6333 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6334 {
6335 	struct md_rdev *rdev;
6336 	int err = 0;
6337 
6338 	if (mddev->pers == NULL)
6339 		return -ENODEV;
6340 
6341 	rcu_read_lock();
6342 	rdev = find_rdev_rcu(mddev, dev);
6343 	if (!rdev)
6344 		err =  -ENODEV;
6345 	else {
6346 		md_error(mddev, rdev);
6347 		if (!test_bit(Faulty, &rdev->flags))
6348 			err = -EBUSY;
6349 	}
6350 	rcu_read_unlock();
6351 	return err;
6352 }
6353 
6354 /*
6355  * We have a problem here : there is no easy way to give a CHS
6356  * virtual geometry. We currently pretend that we have a 2 heads
6357  * 4 sectors (with a BIG number of cylinders...). This drives
6358  * dosfs just mad... ;-)
6359  */
6360 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6361 {
6362 	struct mddev *mddev = bdev->bd_disk->private_data;
6363 
6364 	geo->heads = 2;
6365 	geo->sectors = 4;
6366 	geo->cylinders = mddev->array_sectors / 8;
6367 	return 0;
6368 }
6369 
6370 static inline bool md_ioctl_valid(unsigned int cmd)
6371 {
6372 	switch (cmd) {
6373 	case ADD_NEW_DISK:
6374 	case BLKROSET:
6375 	case GET_ARRAY_INFO:
6376 	case GET_BITMAP_FILE:
6377 	case GET_DISK_INFO:
6378 	case HOT_ADD_DISK:
6379 	case HOT_REMOVE_DISK:
6380 	case RAID_AUTORUN:
6381 	case RAID_VERSION:
6382 	case RESTART_ARRAY_RW:
6383 	case RUN_ARRAY:
6384 	case SET_ARRAY_INFO:
6385 	case SET_BITMAP_FILE:
6386 	case SET_DISK_FAULTY:
6387 	case STOP_ARRAY:
6388 	case STOP_ARRAY_RO:
6389 		return true;
6390 	default:
6391 		return false;
6392 	}
6393 }
6394 
6395 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6396 			unsigned int cmd, unsigned long arg)
6397 {
6398 	int err = 0;
6399 	void __user *argp = (void __user *)arg;
6400 	struct mddev *mddev = NULL;
6401 	int ro;
6402 
6403 	if (!md_ioctl_valid(cmd))
6404 		return -ENOTTY;
6405 
6406 	switch (cmd) {
6407 	case RAID_VERSION:
6408 	case GET_ARRAY_INFO:
6409 	case GET_DISK_INFO:
6410 		break;
6411 	default:
6412 		if (!capable(CAP_SYS_ADMIN))
6413 			return -EACCES;
6414 	}
6415 
6416 	/*
6417 	 * Commands dealing with the RAID driver but not any
6418 	 * particular array:
6419 	 */
6420 	switch (cmd) {
6421 	case RAID_VERSION:
6422 		err = get_version(argp);
6423 		goto out;
6424 
6425 #ifndef MODULE
6426 	case RAID_AUTORUN:
6427 		err = 0;
6428 		autostart_arrays(arg);
6429 		goto out;
6430 #endif
6431 	default:;
6432 	}
6433 
6434 	/*
6435 	 * Commands creating/starting a new array:
6436 	 */
6437 
6438 	mddev = bdev->bd_disk->private_data;
6439 
6440 	if (!mddev) {
6441 		BUG();
6442 		goto out;
6443 	}
6444 
6445 	/* Some actions do not requires the mutex */
6446 	switch (cmd) {
6447 	case GET_ARRAY_INFO:
6448 		if (!mddev->raid_disks && !mddev->external)
6449 			err = -ENODEV;
6450 		else
6451 			err = get_array_info(mddev, argp);
6452 		goto out;
6453 
6454 	case GET_DISK_INFO:
6455 		if (!mddev->raid_disks && !mddev->external)
6456 			err = -ENODEV;
6457 		else
6458 			err = get_disk_info(mddev, argp);
6459 		goto out;
6460 
6461 	case SET_DISK_FAULTY:
6462 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6463 		goto out;
6464 
6465 	case GET_BITMAP_FILE:
6466 		err = get_bitmap_file(mddev, argp);
6467 		goto out;
6468 
6469 	}
6470 
6471 	if (cmd == ADD_NEW_DISK)
6472 		/* need to ensure md_delayed_delete() has completed */
6473 		flush_workqueue(md_misc_wq);
6474 
6475 	if (cmd == HOT_REMOVE_DISK)
6476 		/* need to ensure recovery thread has run */
6477 		wait_event_interruptible_timeout(mddev->sb_wait,
6478 						 !test_bit(MD_RECOVERY_NEEDED,
6479 							   &mddev->flags),
6480 						 msecs_to_jiffies(5000));
6481 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6482 		/* Need to flush page cache, and ensure no-one else opens
6483 		 * and writes
6484 		 */
6485 		mutex_lock(&mddev->open_mutex);
6486 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6487 			mutex_unlock(&mddev->open_mutex);
6488 			err = -EBUSY;
6489 			goto out;
6490 		}
6491 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6492 		mutex_unlock(&mddev->open_mutex);
6493 		sync_blockdev(bdev);
6494 	}
6495 	err = mddev_lock(mddev);
6496 	if (err) {
6497 		printk(KERN_INFO
6498 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6499 			err, cmd);
6500 		goto out;
6501 	}
6502 
6503 	if (cmd == SET_ARRAY_INFO) {
6504 		mdu_array_info_t info;
6505 		if (!arg)
6506 			memset(&info, 0, sizeof(info));
6507 		else if (copy_from_user(&info, argp, sizeof(info))) {
6508 			err = -EFAULT;
6509 			goto unlock;
6510 		}
6511 		if (mddev->pers) {
6512 			err = update_array_info(mddev, &info);
6513 			if (err) {
6514 				printk(KERN_WARNING "md: couldn't update"
6515 				       " array info. %d\n", err);
6516 				goto unlock;
6517 			}
6518 			goto unlock;
6519 		}
6520 		if (!list_empty(&mddev->disks)) {
6521 			printk(KERN_WARNING
6522 			       "md: array %s already has disks!\n",
6523 			       mdname(mddev));
6524 			err = -EBUSY;
6525 			goto unlock;
6526 		}
6527 		if (mddev->raid_disks) {
6528 			printk(KERN_WARNING
6529 			       "md: array %s already initialised!\n",
6530 			       mdname(mddev));
6531 			err = -EBUSY;
6532 			goto unlock;
6533 		}
6534 		err = set_array_info(mddev, &info);
6535 		if (err) {
6536 			printk(KERN_WARNING "md: couldn't set"
6537 			       " array info. %d\n", err);
6538 			goto unlock;
6539 		}
6540 		goto unlock;
6541 	}
6542 
6543 	/*
6544 	 * Commands querying/configuring an existing array:
6545 	 */
6546 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6547 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6548 	if ((!mddev->raid_disks && !mddev->external)
6549 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6550 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6551 	    && cmd != GET_BITMAP_FILE) {
6552 		err = -ENODEV;
6553 		goto unlock;
6554 	}
6555 
6556 	/*
6557 	 * Commands even a read-only array can execute:
6558 	 */
6559 	switch (cmd) {
6560 	case RESTART_ARRAY_RW:
6561 		err = restart_array(mddev);
6562 		goto unlock;
6563 
6564 	case STOP_ARRAY:
6565 		err = do_md_stop(mddev, 0, bdev);
6566 		goto unlock;
6567 
6568 	case STOP_ARRAY_RO:
6569 		err = md_set_readonly(mddev, bdev);
6570 		goto unlock;
6571 
6572 	case HOT_REMOVE_DISK:
6573 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6574 		goto unlock;
6575 
6576 	case ADD_NEW_DISK:
6577 		/* We can support ADD_NEW_DISK on read-only arrays
6578 		 * on if we are re-adding a preexisting device.
6579 		 * So require mddev->pers and MD_DISK_SYNC.
6580 		 */
6581 		if (mddev->pers) {
6582 			mdu_disk_info_t info;
6583 			if (copy_from_user(&info, argp, sizeof(info)))
6584 				err = -EFAULT;
6585 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6586 				/* Need to clear read-only for this */
6587 				break;
6588 			else
6589 				err = add_new_disk(mddev, &info);
6590 			goto unlock;
6591 		}
6592 		break;
6593 
6594 	case BLKROSET:
6595 		if (get_user(ro, (int __user *)(arg))) {
6596 			err = -EFAULT;
6597 			goto unlock;
6598 		}
6599 		err = -EINVAL;
6600 
6601 		/* if the bdev is going readonly the value of mddev->ro
6602 		 * does not matter, no writes are coming
6603 		 */
6604 		if (ro)
6605 			goto unlock;
6606 
6607 		/* are we are already prepared for writes? */
6608 		if (mddev->ro != 1)
6609 			goto unlock;
6610 
6611 		/* transitioning to readauto need only happen for
6612 		 * arrays that call md_write_start
6613 		 */
6614 		if (mddev->pers) {
6615 			err = restart_array(mddev);
6616 			if (err == 0) {
6617 				mddev->ro = 2;
6618 				set_disk_ro(mddev->gendisk, 0);
6619 			}
6620 		}
6621 		goto unlock;
6622 	}
6623 
6624 	/*
6625 	 * The remaining ioctls are changing the state of the
6626 	 * superblock, so we do not allow them on read-only arrays.
6627 	 */
6628 	if (mddev->ro && mddev->pers) {
6629 		if (mddev->ro == 2) {
6630 			mddev->ro = 0;
6631 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6632 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6633 			/* mddev_unlock will wake thread */
6634 			/* If a device failed while we were read-only, we
6635 			 * need to make sure the metadata is updated now.
6636 			 */
6637 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6638 				mddev_unlock(mddev);
6639 				wait_event(mddev->sb_wait,
6640 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6641 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6642 				mddev_lock_nointr(mddev);
6643 			}
6644 		} else {
6645 			err = -EROFS;
6646 			goto unlock;
6647 		}
6648 	}
6649 
6650 	switch (cmd) {
6651 	case ADD_NEW_DISK:
6652 	{
6653 		mdu_disk_info_t info;
6654 		if (copy_from_user(&info, argp, sizeof(info)))
6655 			err = -EFAULT;
6656 		else
6657 			err = add_new_disk(mddev, &info);
6658 		goto unlock;
6659 	}
6660 
6661 	case HOT_ADD_DISK:
6662 		err = hot_add_disk(mddev, new_decode_dev(arg));
6663 		goto unlock;
6664 
6665 	case RUN_ARRAY:
6666 		err = do_md_run(mddev);
6667 		goto unlock;
6668 
6669 	case SET_BITMAP_FILE:
6670 		err = set_bitmap_file(mddev, (int)arg);
6671 		goto unlock;
6672 
6673 	default:
6674 		err = -EINVAL;
6675 		goto unlock;
6676 	}
6677 
6678 unlock:
6679 	if (mddev->hold_active == UNTIL_IOCTL &&
6680 	    err != -EINVAL)
6681 		mddev->hold_active = 0;
6682 	mddev_unlock(mddev);
6683 out:
6684 	return err;
6685 }
6686 #ifdef CONFIG_COMPAT
6687 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6688 		    unsigned int cmd, unsigned long arg)
6689 {
6690 	switch (cmd) {
6691 	case HOT_REMOVE_DISK:
6692 	case HOT_ADD_DISK:
6693 	case SET_DISK_FAULTY:
6694 	case SET_BITMAP_FILE:
6695 		/* These take in integer arg, do not convert */
6696 		break;
6697 	default:
6698 		arg = (unsigned long)compat_ptr(arg);
6699 		break;
6700 	}
6701 
6702 	return md_ioctl(bdev, mode, cmd, arg);
6703 }
6704 #endif /* CONFIG_COMPAT */
6705 
6706 static int md_open(struct block_device *bdev, fmode_t mode)
6707 {
6708 	/*
6709 	 * Succeed if we can lock the mddev, which confirms that
6710 	 * it isn't being stopped right now.
6711 	 */
6712 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6713 	int err;
6714 
6715 	if (!mddev)
6716 		return -ENODEV;
6717 
6718 	if (mddev->gendisk != bdev->bd_disk) {
6719 		/* we are racing with mddev_put which is discarding this
6720 		 * bd_disk.
6721 		 */
6722 		mddev_put(mddev);
6723 		/* Wait until bdev->bd_disk is definitely gone */
6724 		flush_workqueue(md_misc_wq);
6725 		/* Then retry the open from the top */
6726 		return -ERESTARTSYS;
6727 	}
6728 	BUG_ON(mddev != bdev->bd_disk->private_data);
6729 
6730 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6731 		goto out;
6732 
6733 	err = 0;
6734 	atomic_inc(&mddev->openers);
6735 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6736 	mutex_unlock(&mddev->open_mutex);
6737 
6738 	check_disk_change(bdev);
6739  out:
6740 	return err;
6741 }
6742 
6743 static void md_release(struct gendisk *disk, fmode_t mode)
6744 {
6745 	struct mddev *mddev = disk->private_data;
6746 
6747 	BUG_ON(!mddev);
6748 	atomic_dec(&mddev->openers);
6749 	mddev_put(mddev);
6750 }
6751 
6752 static int md_media_changed(struct gendisk *disk)
6753 {
6754 	struct mddev *mddev = disk->private_data;
6755 
6756 	return mddev->changed;
6757 }
6758 
6759 static int md_revalidate(struct gendisk *disk)
6760 {
6761 	struct mddev *mddev = disk->private_data;
6762 
6763 	mddev->changed = 0;
6764 	return 0;
6765 }
6766 static const struct block_device_operations md_fops =
6767 {
6768 	.owner		= THIS_MODULE,
6769 	.open		= md_open,
6770 	.release	= md_release,
6771 	.ioctl		= md_ioctl,
6772 #ifdef CONFIG_COMPAT
6773 	.compat_ioctl	= md_compat_ioctl,
6774 #endif
6775 	.getgeo		= md_getgeo,
6776 	.media_changed  = md_media_changed,
6777 	.revalidate_disk= md_revalidate,
6778 };
6779 
6780 static int md_thread(void *arg)
6781 {
6782 	struct md_thread *thread = arg;
6783 
6784 	/*
6785 	 * md_thread is a 'system-thread', it's priority should be very
6786 	 * high. We avoid resource deadlocks individually in each
6787 	 * raid personality. (RAID5 does preallocation) We also use RR and
6788 	 * the very same RT priority as kswapd, thus we will never get
6789 	 * into a priority inversion deadlock.
6790 	 *
6791 	 * we definitely have to have equal or higher priority than
6792 	 * bdflush, otherwise bdflush will deadlock if there are too
6793 	 * many dirty RAID5 blocks.
6794 	 */
6795 
6796 	allow_signal(SIGKILL);
6797 	while (!kthread_should_stop()) {
6798 
6799 		/* We need to wait INTERRUPTIBLE so that
6800 		 * we don't add to the load-average.
6801 		 * That means we need to be sure no signals are
6802 		 * pending
6803 		 */
6804 		if (signal_pending(current))
6805 			flush_signals(current);
6806 
6807 		wait_event_interruptible_timeout
6808 			(thread->wqueue,
6809 			 test_bit(THREAD_WAKEUP, &thread->flags)
6810 			 || kthread_should_stop(),
6811 			 thread->timeout);
6812 
6813 		clear_bit(THREAD_WAKEUP, &thread->flags);
6814 		if (!kthread_should_stop())
6815 			thread->run(thread);
6816 	}
6817 
6818 	return 0;
6819 }
6820 
6821 void md_wakeup_thread(struct md_thread *thread)
6822 {
6823 	if (thread) {
6824 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6825 		set_bit(THREAD_WAKEUP, &thread->flags);
6826 		wake_up(&thread->wqueue);
6827 	}
6828 }
6829 EXPORT_SYMBOL(md_wakeup_thread);
6830 
6831 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6832 		struct mddev *mddev, const char *name)
6833 {
6834 	struct md_thread *thread;
6835 
6836 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6837 	if (!thread)
6838 		return NULL;
6839 
6840 	init_waitqueue_head(&thread->wqueue);
6841 
6842 	thread->run = run;
6843 	thread->mddev = mddev;
6844 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6845 	thread->tsk = kthread_run(md_thread, thread,
6846 				  "%s_%s",
6847 				  mdname(thread->mddev),
6848 				  name);
6849 	if (IS_ERR(thread->tsk)) {
6850 		kfree(thread);
6851 		return NULL;
6852 	}
6853 	return thread;
6854 }
6855 EXPORT_SYMBOL(md_register_thread);
6856 
6857 void md_unregister_thread(struct md_thread **threadp)
6858 {
6859 	struct md_thread *thread = *threadp;
6860 	if (!thread)
6861 		return;
6862 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6863 	/* Locking ensures that mddev_unlock does not wake_up a
6864 	 * non-existent thread
6865 	 */
6866 	spin_lock(&pers_lock);
6867 	*threadp = NULL;
6868 	spin_unlock(&pers_lock);
6869 
6870 	kthread_stop(thread->tsk);
6871 	kfree(thread);
6872 }
6873 EXPORT_SYMBOL(md_unregister_thread);
6874 
6875 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6876 {
6877 	if (!rdev || test_bit(Faulty, &rdev->flags))
6878 		return;
6879 
6880 	if (!mddev->pers || !mddev->pers->error_handler)
6881 		return;
6882 	mddev->pers->error_handler(mddev,rdev);
6883 	if (mddev->degraded)
6884 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6885 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6886 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6887 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6888 	md_wakeup_thread(mddev->thread);
6889 	if (mddev->event_work.func)
6890 		queue_work(md_misc_wq, &mddev->event_work);
6891 	md_new_event_inintr(mddev);
6892 }
6893 EXPORT_SYMBOL(md_error);
6894 
6895 /* seq_file implementation /proc/mdstat */
6896 
6897 static void status_unused(struct seq_file *seq)
6898 {
6899 	int i = 0;
6900 	struct md_rdev *rdev;
6901 
6902 	seq_printf(seq, "unused devices: ");
6903 
6904 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6905 		char b[BDEVNAME_SIZE];
6906 		i++;
6907 		seq_printf(seq, "%s ",
6908 			      bdevname(rdev->bdev,b));
6909 	}
6910 	if (!i)
6911 		seq_printf(seq, "<none>");
6912 
6913 	seq_printf(seq, "\n");
6914 }
6915 
6916 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6917 {
6918 	sector_t max_sectors, resync, res;
6919 	unsigned long dt, db;
6920 	sector_t rt;
6921 	int scale;
6922 	unsigned int per_milli;
6923 
6924 	if (mddev->curr_resync <= 3)
6925 		resync = 0;
6926 	else
6927 		resync = mddev->curr_resync
6928 			- atomic_read(&mddev->recovery_active);
6929 
6930 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6931 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6932 		max_sectors = mddev->resync_max_sectors;
6933 	else
6934 		max_sectors = mddev->dev_sectors;
6935 
6936 	WARN_ON(max_sectors == 0);
6937 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6938 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6939 	 * u32, as those are the requirements for sector_div.
6940 	 * Thus 'scale' must be at least 10
6941 	 */
6942 	scale = 10;
6943 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6944 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6945 			scale++;
6946 	}
6947 	res = (resync>>scale)*1000;
6948 	sector_div(res, (u32)((max_sectors>>scale)+1));
6949 
6950 	per_milli = res;
6951 	{
6952 		int i, x = per_milli/50, y = 20-x;
6953 		seq_printf(seq, "[");
6954 		for (i = 0; i < x; i++)
6955 			seq_printf(seq, "=");
6956 		seq_printf(seq, ">");
6957 		for (i = 0; i < y; i++)
6958 			seq_printf(seq, ".");
6959 		seq_printf(seq, "] ");
6960 	}
6961 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6962 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6963 		    "reshape" :
6964 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6965 		     "check" :
6966 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6967 		      "resync" : "recovery"))),
6968 		   per_milli/10, per_milli % 10,
6969 		   (unsigned long long) resync/2,
6970 		   (unsigned long long) max_sectors/2);
6971 
6972 	/*
6973 	 * dt: time from mark until now
6974 	 * db: blocks written from mark until now
6975 	 * rt: remaining time
6976 	 *
6977 	 * rt is a sector_t, so could be 32bit or 64bit.
6978 	 * So we divide before multiply in case it is 32bit and close
6979 	 * to the limit.
6980 	 * We scale the divisor (db) by 32 to avoid losing precision
6981 	 * near the end of resync when the number of remaining sectors
6982 	 * is close to 'db'.
6983 	 * We then divide rt by 32 after multiplying by db to compensate.
6984 	 * The '+1' avoids division by zero if db is very small.
6985 	 */
6986 	dt = ((jiffies - mddev->resync_mark) / HZ);
6987 	if (!dt) dt++;
6988 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6989 		- mddev->resync_mark_cnt;
6990 
6991 	rt = max_sectors - resync;    /* number of remaining sectors */
6992 	sector_div(rt, db/32+1);
6993 	rt *= dt;
6994 	rt >>= 5;
6995 
6996 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6997 		   ((unsigned long)rt % 60)/6);
6998 
6999 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7000 }
7001 
7002 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7003 {
7004 	struct list_head *tmp;
7005 	loff_t l = *pos;
7006 	struct mddev *mddev;
7007 
7008 	if (l >= 0x10000)
7009 		return NULL;
7010 	if (!l--)
7011 		/* header */
7012 		return (void*)1;
7013 
7014 	spin_lock(&all_mddevs_lock);
7015 	list_for_each(tmp,&all_mddevs)
7016 		if (!l--) {
7017 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7018 			mddev_get(mddev);
7019 			spin_unlock(&all_mddevs_lock);
7020 			return mddev;
7021 		}
7022 	spin_unlock(&all_mddevs_lock);
7023 	if (!l--)
7024 		return (void*)2;/* tail */
7025 	return NULL;
7026 }
7027 
7028 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7029 {
7030 	struct list_head *tmp;
7031 	struct mddev *next_mddev, *mddev = v;
7032 
7033 	++*pos;
7034 	if (v == (void*)2)
7035 		return NULL;
7036 
7037 	spin_lock(&all_mddevs_lock);
7038 	if (v == (void*)1)
7039 		tmp = all_mddevs.next;
7040 	else
7041 		tmp = mddev->all_mddevs.next;
7042 	if (tmp != &all_mddevs)
7043 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7044 	else {
7045 		next_mddev = (void*)2;
7046 		*pos = 0x10000;
7047 	}
7048 	spin_unlock(&all_mddevs_lock);
7049 
7050 	if (v != (void*)1)
7051 		mddev_put(mddev);
7052 	return next_mddev;
7053 
7054 }
7055 
7056 static void md_seq_stop(struct seq_file *seq, void *v)
7057 {
7058 	struct mddev *mddev = v;
7059 
7060 	if (mddev && v != (void*)1 && v != (void*)2)
7061 		mddev_put(mddev);
7062 }
7063 
7064 static int md_seq_show(struct seq_file *seq, void *v)
7065 {
7066 	struct mddev *mddev = v;
7067 	sector_t sectors;
7068 	struct md_rdev *rdev;
7069 
7070 	if (v == (void*)1) {
7071 		struct md_personality *pers;
7072 		seq_printf(seq, "Personalities : ");
7073 		spin_lock(&pers_lock);
7074 		list_for_each_entry(pers, &pers_list, list)
7075 			seq_printf(seq, "[%s] ", pers->name);
7076 
7077 		spin_unlock(&pers_lock);
7078 		seq_printf(seq, "\n");
7079 		seq->poll_event = atomic_read(&md_event_count);
7080 		return 0;
7081 	}
7082 	if (v == (void*)2) {
7083 		status_unused(seq);
7084 		return 0;
7085 	}
7086 
7087 	spin_lock(&mddev->lock);
7088 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7089 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7090 						mddev->pers ? "" : "in");
7091 		if (mddev->pers) {
7092 			if (mddev->ro==1)
7093 				seq_printf(seq, " (read-only)");
7094 			if (mddev->ro==2)
7095 				seq_printf(seq, " (auto-read-only)");
7096 			seq_printf(seq, " %s", mddev->pers->name);
7097 		}
7098 
7099 		sectors = 0;
7100 		rcu_read_lock();
7101 		rdev_for_each_rcu(rdev, mddev) {
7102 			char b[BDEVNAME_SIZE];
7103 			seq_printf(seq, " %s[%d]",
7104 				bdevname(rdev->bdev,b), rdev->desc_nr);
7105 			if (test_bit(WriteMostly, &rdev->flags))
7106 				seq_printf(seq, "(W)");
7107 			if (test_bit(Faulty, &rdev->flags)) {
7108 				seq_printf(seq, "(F)");
7109 				continue;
7110 			}
7111 			if (rdev->raid_disk < 0)
7112 				seq_printf(seq, "(S)"); /* spare */
7113 			if (test_bit(Replacement, &rdev->flags))
7114 				seq_printf(seq, "(R)");
7115 			sectors += rdev->sectors;
7116 		}
7117 		rcu_read_unlock();
7118 
7119 		if (!list_empty(&mddev->disks)) {
7120 			if (mddev->pers)
7121 				seq_printf(seq, "\n      %llu blocks",
7122 					   (unsigned long long)
7123 					   mddev->array_sectors / 2);
7124 			else
7125 				seq_printf(seq, "\n      %llu blocks",
7126 					   (unsigned long long)sectors / 2);
7127 		}
7128 		if (mddev->persistent) {
7129 			if (mddev->major_version != 0 ||
7130 			    mddev->minor_version != 90) {
7131 				seq_printf(seq," super %d.%d",
7132 					   mddev->major_version,
7133 					   mddev->minor_version);
7134 			}
7135 		} else if (mddev->external)
7136 			seq_printf(seq, " super external:%s",
7137 				   mddev->metadata_type);
7138 		else
7139 			seq_printf(seq, " super non-persistent");
7140 
7141 		if (mddev->pers) {
7142 			mddev->pers->status(seq, mddev);
7143 			seq_printf(seq, "\n      ");
7144 			if (mddev->pers->sync_request) {
7145 				if (mddev->curr_resync > 2) {
7146 					status_resync(seq, mddev);
7147 					seq_printf(seq, "\n      ");
7148 				} else if (mddev->curr_resync >= 1)
7149 					seq_printf(seq, "\tresync=DELAYED\n      ");
7150 				else if (mddev->recovery_cp < MaxSector)
7151 					seq_printf(seq, "\tresync=PENDING\n      ");
7152 			}
7153 		} else
7154 			seq_printf(seq, "\n       ");
7155 
7156 		bitmap_status(seq, mddev->bitmap);
7157 
7158 		seq_printf(seq, "\n");
7159 	}
7160 	spin_unlock(&mddev->lock);
7161 
7162 	return 0;
7163 }
7164 
7165 static const struct seq_operations md_seq_ops = {
7166 	.start  = md_seq_start,
7167 	.next   = md_seq_next,
7168 	.stop   = md_seq_stop,
7169 	.show   = md_seq_show,
7170 };
7171 
7172 static int md_seq_open(struct inode *inode, struct file *file)
7173 {
7174 	struct seq_file *seq;
7175 	int error;
7176 
7177 	error = seq_open(file, &md_seq_ops);
7178 	if (error)
7179 		return error;
7180 
7181 	seq = file->private_data;
7182 	seq->poll_event = atomic_read(&md_event_count);
7183 	return error;
7184 }
7185 
7186 static int md_unloading;
7187 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7188 {
7189 	struct seq_file *seq = filp->private_data;
7190 	int mask;
7191 
7192 	if (md_unloading)
7193 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7194 	poll_wait(filp, &md_event_waiters, wait);
7195 
7196 	/* always allow read */
7197 	mask = POLLIN | POLLRDNORM;
7198 
7199 	if (seq->poll_event != atomic_read(&md_event_count))
7200 		mask |= POLLERR | POLLPRI;
7201 	return mask;
7202 }
7203 
7204 static const struct file_operations md_seq_fops = {
7205 	.owner		= THIS_MODULE,
7206 	.open           = md_seq_open,
7207 	.read           = seq_read,
7208 	.llseek         = seq_lseek,
7209 	.release	= seq_release_private,
7210 	.poll		= mdstat_poll,
7211 };
7212 
7213 int register_md_personality(struct md_personality *p)
7214 {
7215 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7216 						p->name, p->level);
7217 	spin_lock(&pers_lock);
7218 	list_add_tail(&p->list, &pers_list);
7219 	spin_unlock(&pers_lock);
7220 	return 0;
7221 }
7222 EXPORT_SYMBOL(register_md_personality);
7223 
7224 int unregister_md_personality(struct md_personality *p)
7225 {
7226 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7227 	spin_lock(&pers_lock);
7228 	list_del_init(&p->list);
7229 	spin_unlock(&pers_lock);
7230 	return 0;
7231 }
7232 EXPORT_SYMBOL(unregister_md_personality);
7233 
7234 static int is_mddev_idle(struct mddev *mddev, int init)
7235 {
7236 	struct md_rdev *rdev;
7237 	int idle;
7238 	int curr_events;
7239 
7240 	idle = 1;
7241 	rcu_read_lock();
7242 	rdev_for_each_rcu(rdev, mddev) {
7243 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7244 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7245 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7246 			      atomic_read(&disk->sync_io);
7247 		/* sync IO will cause sync_io to increase before the disk_stats
7248 		 * as sync_io is counted when a request starts, and
7249 		 * disk_stats is counted when it completes.
7250 		 * So resync activity will cause curr_events to be smaller than
7251 		 * when there was no such activity.
7252 		 * non-sync IO will cause disk_stat to increase without
7253 		 * increasing sync_io so curr_events will (eventually)
7254 		 * be larger than it was before.  Once it becomes
7255 		 * substantially larger, the test below will cause
7256 		 * the array to appear non-idle, and resync will slow
7257 		 * down.
7258 		 * If there is a lot of outstanding resync activity when
7259 		 * we set last_event to curr_events, then all that activity
7260 		 * completing might cause the array to appear non-idle
7261 		 * and resync will be slowed down even though there might
7262 		 * not have been non-resync activity.  This will only
7263 		 * happen once though.  'last_events' will soon reflect
7264 		 * the state where there is little or no outstanding
7265 		 * resync requests, and further resync activity will
7266 		 * always make curr_events less than last_events.
7267 		 *
7268 		 */
7269 		if (init || curr_events - rdev->last_events > 64) {
7270 			rdev->last_events = curr_events;
7271 			idle = 0;
7272 		}
7273 	}
7274 	rcu_read_unlock();
7275 	return idle;
7276 }
7277 
7278 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7279 {
7280 	/* another "blocks" (512byte) blocks have been synced */
7281 	atomic_sub(blocks, &mddev->recovery_active);
7282 	wake_up(&mddev->recovery_wait);
7283 	if (!ok) {
7284 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7285 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7286 		md_wakeup_thread(mddev->thread);
7287 		// stop recovery, signal do_sync ....
7288 	}
7289 }
7290 EXPORT_SYMBOL(md_done_sync);
7291 
7292 /* md_write_start(mddev, bi)
7293  * If we need to update some array metadata (e.g. 'active' flag
7294  * in superblock) before writing, schedule a superblock update
7295  * and wait for it to complete.
7296  */
7297 void md_write_start(struct mddev *mddev, struct bio *bi)
7298 {
7299 	int did_change = 0;
7300 	if (bio_data_dir(bi) != WRITE)
7301 		return;
7302 
7303 	BUG_ON(mddev->ro == 1);
7304 	if (mddev->ro == 2) {
7305 		/* need to switch to read/write */
7306 		mddev->ro = 0;
7307 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7308 		md_wakeup_thread(mddev->thread);
7309 		md_wakeup_thread(mddev->sync_thread);
7310 		did_change = 1;
7311 	}
7312 	atomic_inc(&mddev->writes_pending);
7313 	if (mddev->safemode == 1)
7314 		mddev->safemode = 0;
7315 	if (mddev->in_sync) {
7316 		spin_lock(&mddev->lock);
7317 		if (mddev->in_sync) {
7318 			mddev->in_sync = 0;
7319 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7320 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7321 			md_wakeup_thread(mddev->thread);
7322 			did_change = 1;
7323 		}
7324 		spin_unlock(&mddev->lock);
7325 	}
7326 	if (did_change)
7327 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7328 	wait_event(mddev->sb_wait,
7329 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7330 }
7331 EXPORT_SYMBOL(md_write_start);
7332 
7333 void md_write_end(struct mddev *mddev)
7334 {
7335 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7336 		if (mddev->safemode == 2)
7337 			md_wakeup_thread(mddev->thread);
7338 		else if (mddev->safemode_delay)
7339 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7340 	}
7341 }
7342 EXPORT_SYMBOL(md_write_end);
7343 
7344 /* md_allow_write(mddev)
7345  * Calling this ensures that the array is marked 'active' so that writes
7346  * may proceed without blocking.  It is important to call this before
7347  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7348  * Must be called with mddev_lock held.
7349  *
7350  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7351  * is dropped, so return -EAGAIN after notifying userspace.
7352  */
7353 int md_allow_write(struct mddev *mddev)
7354 {
7355 	if (!mddev->pers)
7356 		return 0;
7357 	if (mddev->ro)
7358 		return 0;
7359 	if (!mddev->pers->sync_request)
7360 		return 0;
7361 
7362 	spin_lock(&mddev->lock);
7363 	if (mddev->in_sync) {
7364 		mddev->in_sync = 0;
7365 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7366 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7367 		if (mddev->safemode_delay &&
7368 		    mddev->safemode == 0)
7369 			mddev->safemode = 1;
7370 		spin_unlock(&mddev->lock);
7371 		md_update_sb(mddev, 0);
7372 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7373 	} else
7374 		spin_unlock(&mddev->lock);
7375 
7376 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7377 		return -EAGAIN;
7378 	else
7379 		return 0;
7380 }
7381 EXPORT_SYMBOL_GPL(md_allow_write);
7382 
7383 #define SYNC_MARKS	10
7384 #define	SYNC_MARK_STEP	(3*HZ)
7385 #define UPDATE_FREQUENCY (5*60*HZ)
7386 void md_do_sync(struct md_thread *thread)
7387 {
7388 	struct mddev *mddev = thread->mddev;
7389 	struct mddev *mddev2;
7390 	unsigned int currspeed = 0,
7391 		 window;
7392 	sector_t max_sectors,j, io_sectors, recovery_done;
7393 	unsigned long mark[SYNC_MARKS];
7394 	unsigned long update_time;
7395 	sector_t mark_cnt[SYNC_MARKS];
7396 	int last_mark,m;
7397 	struct list_head *tmp;
7398 	sector_t last_check;
7399 	int skipped = 0;
7400 	struct md_rdev *rdev;
7401 	char *desc, *action = NULL;
7402 	struct blk_plug plug;
7403 
7404 	/* just incase thread restarts... */
7405 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7406 		return;
7407 	if (mddev->ro) {/* never try to sync a read-only array */
7408 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7409 		return;
7410 	}
7411 
7412 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7413 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7414 			desc = "data-check";
7415 			action = "check";
7416 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7417 			desc = "requested-resync";
7418 			action = "repair";
7419 		} else
7420 			desc = "resync";
7421 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7422 		desc = "reshape";
7423 	else
7424 		desc = "recovery";
7425 
7426 	mddev->last_sync_action = action ?: desc;
7427 
7428 	/* we overload curr_resync somewhat here.
7429 	 * 0 == not engaged in resync at all
7430 	 * 2 == checking that there is no conflict with another sync
7431 	 * 1 == like 2, but have yielded to allow conflicting resync to
7432 	 *		commense
7433 	 * other == active in resync - this many blocks
7434 	 *
7435 	 * Before starting a resync we must have set curr_resync to
7436 	 * 2, and then checked that every "conflicting" array has curr_resync
7437 	 * less than ours.  When we find one that is the same or higher
7438 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7439 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7440 	 * This will mean we have to start checking from the beginning again.
7441 	 *
7442 	 */
7443 
7444 	do {
7445 		mddev->curr_resync = 2;
7446 
7447 	try_again:
7448 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7449 			goto skip;
7450 		for_each_mddev(mddev2, tmp) {
7451 			if (mddev2 == mddev)
7452 				continue;
7453 			if (!mddev->parallel_resync
7454 			&&  mddev2->curr_resync
7455 			&&  match_mddev_units(mddev, mddev2)) {
7456 				DEFINE_WAIT(wq);
7457 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7458 					/* arbitrarily yield */
7459 					mddev->curr_resync = 1;
7460 					wake_up(&resync_wait);
7461 				}
7462 				if (mddev > mddev2 && mddev->curr_resync == 1)
7463 					/* no need to wait here, we can wait the next
7464 					 * time 'round when curr_resync == 2
7465 					 */
7466 					continue;
7467 				/* We need to wait 'interruptible' so as not to
7468 				 * contribute to the load average, and not to
7469 				 * be caught by 'softlockup'
7470 				 */
7471 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7472 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7473 				    mddev2->curr_resync >= mddev->curr_resync) {
7474 					printk(KERN_INFO "md: delaying %s of %s"
7475 					       " until %s has finished (they"
7476 					       " share one or more physical units)\n",
7477 					       desc, mdname(mddev), mdname(mddev2));
7478 					mddev_put(mddev2);
7479 					if (signal_pending(current))
7480 						flush_signals(current);
7481 					schedule();
7482 					finish_wait(&resync_wait, &wq);
7483 					goto try_again;
7484 				}
7485 				finish_wait(&resync_wait, &wq);
7486 			}
7487 		}
7488 	} while (mddev->curr_resync < 2);
7489 
7490 	j = 0;
7491 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7492 		/* resync follows the size requested by the personality,
7493 		 * which defaults to physical size, but can be virtual size
7494 		 */
7495 		max_sectors = mddev->resync_max_sectors;
7496 		atomic64_set(&mddev->resync_mismatches, 0);
7497 		/* we don't use the checkpoint if there's a bitmap */
7498 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7499 			j = mddev->resync_min;
7500 		else if (!mddev->bitmap)
7501 			j = mddev->recovery_cp;
7502 
7503 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7504 		max_sectors = mddev->resync_max_sectors;
7505 	else {
7506 		/* recovery follows the physical size of devices */
7507 		max_sectors = mddev->dev_sectors;
7508 		j = MaxSector;
7509 		rcu_read_lock();
7510 		rdev_for_each_rcu(rdev, mddev)
7511 			if (rdev->raid_disk >= 0 &&
7512 			    !test_bit(Faulty, &rdev->flags) &&
7513 			    !test_bit(In_sync, &rdev->flags) &&
7514 			    rdev->recovery_offset < j)
7515 				j = rdev->recovery_offset;
7516 		rcu_read_unlock();
7517 
7518 		/* If there is a bitmap, we need to make sure all
7519 		 * writes that started before we added a spare
7520 		 * complete before we start doing a recovery.
7521 		 * Otherwise the write might complete and (via
7522 		 * bitmap_endwrite) set a bit in the bitmap after the
7523 		 * recovery has checked that bit and skipped that
7524 		 * region.
7525 		 */
7526 		if (mddev->bitmap) {
7527 			mddev->pers->quiesce(mddev, 1);
7528 			mddev->pers->quiesce(mddev, 0);
7529 		}
7530 	}
7531 
7532 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7533 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7534 		" %d KB/sec/disk.\n", speed_min(mddev));
7535 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7536 	       "(but not more than %d KB/sec) for %s.\n",
7537 	       speed_max(mddev), desc);
7538 
7539 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7540 
7541 	io_sectors = 0;
7542 	for (m = 0; m < SYNC_MARKS; m++) {
7543 		mark[m] = jiffies;
7544 		mark_cnt[m] = io_sectors;
7545 	}
7546 	last_mark = 0;
7547 	mddev->resync_mark = mark[last_mark];
7548 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7549 
7550 	/*
7551 	 * Tune reconstruction:
7552 	 */
7553 	window = 32*(PAGE_SIZE/512);
7554 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7555 		window/2, (unsigned long long)max_sectors/2);
7556 
7557 	atomic_set(&mddev->recovery_active, 0);
7558 	last_check = 0;
7559 
7560 	if (j>2) {
7561 		printk(KERN_INFO
7562 		       "md: resuming %s of %s from checkpoint.\n",
7563 		       desc, mdname(mddev));
7564 		mddev->curr_resync = j;
7565 	} else
7566 		mddev->curr_resync = 3; /* no longer delayed */
7567 	mddev->curr_resync_completed = j;
7568 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7569 	md_new_event(mddev);
7570 	update_time = jiffies;
7571 
7572 	blk_start_plug(&plug);
7573 	while (j < max_sectors) {
7574 		sector_t sectors;
7575 
7576 		skipped = 0;
7577 
7578 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7579 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7580 		      (mddev->curr_resync - mddev->curr_resync_completed)
7581 		      > (max_sectors >> 4)) ||
7582 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7583 		     (j - mddev->curr_resync_completed)*2
7584 		     >= mddev->resync_max - mddev->curr_resync_completed
7585 			    )) {
7586 			/* time to update curr_resync_completed */
7587 			wait_event(mddev->recovery_wait,
7588 				   atomic_read(&mddev->recovery_active) == 0);
7589 			mddev->curr_resync_completed = j;
7590 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7591 			    j > mddev->recovery_cp)
7592 				mddev->recovery_cp = j;
7593 			update_time = jiffies;
7594 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7595 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7596 		}
7597 
7598 		while (j >= mddev->resync_max &&
7599 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7600 			/* As this condition is controlled by user-space,
7601 			 * we can block indefinitely, so use '_interruptible'
7602 			 * to avoid triggering warnings.
7603 			 */
7604 			flush_signals(current); /* just in case */
7605 			wait_event_interruptible(mddev->recovery_wait,
7606 						 mddev->resync_max > j
7607 						 || test_bit(MD_RECOVERY_INTR,
7608 							     &mddev->recovery));
7609 		}
7610 
7611 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7612 			break;
7613 
7614 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7615 						  currspeed < speed_min(mddev));
7616 		if (sectors == 0) {
7617 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7618 			break;
7619 		}
7620 
7621 		if (!skipped) { /* actual IO requested */
7622 			io_sectors += sectors;
7623 			atomic_add(sectors, &mddev->recovery_active);
7624 		}
7625 
7626 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7627 			break;
7628 
7629 		j += sectors;
7630 		if (j > 2)
7631 			mddev->curr_resync = j;
7632 		mddev->curr_mark_cnt = io_sectors;
7633 		if (last_check == 0)
7634 			/* this is the earliest that rebuild will be
7635 			 * visible in /proc/mdstat
7636 			 */
7637 			md_new_event(mddev);
7638 
7639 		if (last_check + window > io_sectors || j == max_sectors)
7640 			continue;
7641 
7642 		last_check = io_sectors;
7643 	repeat:
7644 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7645 			/* step marks */
7646 			int next = (last_mark+1) % SYNC_MARKS;
7647 
7648 			mddev->resync_mark = mark[next];
7649 			mddev->resync_mark_cnt = mark_cnt[next];
7650 			mark[next] = jiffies;
7651 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7652 			last_mark = next;
7653 		}
7654 
7655 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7656 			break;
7657 
7658 		/*
7659 		 * this loop exits only if either when we are slower than
7660 		 * the 'hard' speed limit, or the system was IO-idle for
7661 		 * a jiffy.
7662 		 * the system might be non-idle CPU-wise, but we only care
7663 		 * about not overloading the IO subsystem. (things like an
7664 		 * e2fsck being done on the RAID array should execute fast)
7665 		 */
7666 		cond_resched();
7667 
7668 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7669 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7670 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7671 
7672 		if (currspeed > speed_min(mddev)) {
7673 			if ((currspeed > speed_max(mddev)) ||
7674 					!is_mddev_idle(mddev, 0)) {
7675 				msleep(500);
7676 				goto repeat;
7677 			}
7678 		}
7679 	}
7680 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7681 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7682 	       ? "interrupted" : "done");
7683 	/*
7684 	 * this also signals 'finished resyncing' to md_stop
7685 	 */
7686 	blk_finish_plug(&plug);
7687 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7688 
7689 	/* tell personality that we are finished */
7690 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7691 
7692 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7693 	    mddev->curr_resync > 2) {
7694 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7695 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7696 				if (mddev->curr_resync >= mddev->recovery_cp) {
7697 					printk(KERN_INFO
7698 					       "md: checkpointing %s of %s.\n",
7699 					       desc, mdname(mddev));
7700 					if (test_bit(MD_RECOVERY_ERROR,
7701 						&mddev->recovery))
7702 						mddev->recovery_cp =
7703 							mddev->curr_resync_completed;
7704 					else
7705 						mddev->recovery_cp =
7706 							mddev->curr_resync;
7707 				}
7708 			} else
7709 				mddev->recovery_cp = MaxSector;
7710 		} else {
7711 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7712 				mddev->curr_resync = MaxSector;
7713 			rcu_read_lock();
7714 			rdev_for_each_rcu(rdev, mddev)
7715 				if (rdev->raid_disk >= 0 &&
7716 				    mddev->delta_disks >= 0 &&
7717 				    !test_bit(Faulty, &rdev->flags) &&
7718 				    !test_bit(In_sync, &rdev->flags) &&
7719 				    rdev->recovery_offset < mddev->curr_resync)
7720 					rdev->recovery_offset = mddev->curr_resync;
7721 			rcu_read_unlock();
7722 		}
7723 	}
7724  skip:
7725 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7726 
7727 	spin_lock(&mddev->lock);
7728 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7729 		/* We completed so min/max setting can be forgotten if used. */
7730 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7731 			mddev->resync_min = 0;
7732 		mddev->resync_max = MaxSector;
7733 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7734 		mddev->resync_min = mddev->curr_resync_completed;
7735 	mddev->curr_resync = 0;
7736 	spin_unlock(&mddev->lock);
7737 
7738 	wake_up(&resync_wait);
7739 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7740 	md_wakeup_thread(mddev->thread);
7741 	return;
7742 }
7743 EXPORT_SYMBOL_GPL(md_do_sync);
7744 
7745 static int remove_and_add_spares(struct mddev *mddev,
7746 				 struct md_rdev *this)
7747 {
7748 	struct md_rdev *rdev;
7749 	int spares = 0;
7750 	int removed = 0;
7751 
7752 	rdev_for_each(rdev, mddev)
7753 		if ((this == NULL || rdev == this) &&
7754 		    rdev->raid_disk >= 0 &&
7755 		    !test_bit(Blocked, &rdev->flags) &&
7756 		    (test_bit(Faulty, &rdev->flags) ||
7757 		     ! test_bit(In_sync, &rdev->flags)) &&
7758 		    atomic_read(&rdev->nr_pending)==0) {
7759 			if (mddev->pers->hot_remove_disk(
7760 				    mddev, rdev) == 0) {
7761 				sysfs_unlink_rdev(mddev, rdev);
7762 				rdev->raid_disk = -1;
7763 				removed++;
7764 			}
7765 		}
7766 	if (removed && mddev->kobj.sd)
7767 		sysfs_notify(&mddev->kobj, NULL, "degraded");
7768 
7769 	if (this)
7770 		goto no_add;
7771 
7772 	rdev_for_each(rdev, mddev) {
7773 		if (rdev->raid_disk >= 0 &&
7774 		    !test_bit(In_sync, &rdev->flags) &&
7775 		    !test_bit(Faulty, &rdev->flags))
7776 			spares++;
7777 		if (rdev->raid_disk >= 0)
7778 			continue;
7779 		if (test_bit(Faulty, &rdev->flags))
7780 			continue;
7781 		if (mddev->ro &&
7782 		    ! (rdev->saved_raid_disk >= 0 &&
7783 		       !test_bit(Bitmap_sync, &rdev->flags)))
7784 			continue;
7785 
7786 		if (rdev->saved_raid_disk < 0)
7787 			rdev->recovery_offset = 0;
7788 		if (mddev->pers->
7789 		    hot_add_disk(mddev, rdev) == 0) {
7790 			if (sysfs_link_rdev(mddev, rdev))
7791 				/* failure here is OK */;
7792 			spares++;
7793 			md_new_event(mddev);
7794 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7795 		}
7796 	}
7797 no_add:
7798 	if (removed)
7799 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7800 	return spares;
7801 }
7802 
7803 static void md_start_sync(struct work_struct *ws)
7804 {
7805 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
7806 
7807 	mddev->sync_thread = md_register_thread(md_do_sync,
7808 						mddev,
7809 						"resync");
7810 	if (!mddev->sync_thread) {
7811 		printk(KERN_ERR "%s: could not start resync"
7812 		       " thread...\n",
7813 		       mdname(mddev));
7814 		/* leave the spares where they are, it shouldn't hurt */
7815 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7816 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7817 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7818 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7819 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7820 		wake_up(&resync_wait);
7821 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7822 				       &mddev->recovery))
7823 			if (mddev->sysfs_action)
7824 				sysfs_notify_dirent_safe(mddev->sysfs_action);
7825 	} else
7826 		md_wakeup_thread(mddev->sync_thread);
7827 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7828 	md_new_event(mddev);
7829 }
7830 
7831 /*
7832  * This routine is regularly called by all per-raid-array threads to
7833  * deal with generic issues like resync and super-block update.
7834  * Raid personalities that don't have a thread (linear/raid0) do not
7835  * need this as they never do any recovery or update the superblock.
7836  *
7837  * It does not do any resync itself, but rather "forks" off other threads
7838  * to do that as needed.
7839  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7840  * "->recovery" and create a thread at ->sync_thread.
7841  * When the thread finishes it sets MD_RECOVERY_DONE
7842  * and wakeups up this thread which will reap the thread and finish up.
7843  * This thread also removes any faulty devices (with nr_pending == 0).
7844  *
7845  * The overall approach is:
7846  *  1/ if the superblock needs updating, update it.
7847  *  2/ If a recovery thread is running, don't do anything else.
7848  *  3/ If recovery has finished, clean up, possibly marking spares active.
7849  *  4/ If there are any faulty devices, remove them.
7850  *  5/ If array is degraded, try to add spares devices
7851  *  6/ If array has spares or is not in-sync, start a resync thread.
7852  */
7853 void md_check_recovery(struct mddev *mddev)
7854 {
7855 	if (mddev->suspended)
7856 		return;
7857 
7858 	if (mddev->bitmap)
7859 		bitmap_daemon_work(mddev);
7860 
7861 	if (signal_pending(current)) {
7862 		if (mddev->pers->sync_request && !mddev->external) {
7863 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7864 			       mdname(mddev));
7865 			mddev->safemode = 2;
7866 		}
7867 		flush_signals(current);
7868 	}
7869 
7870 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7871 		return;
7872 	if ( ! (
7873 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7874 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7875 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7876 		(mddev->external == 0 && mddev->safemode == 1) ||
7877 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7878 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7879 		))
7880 		return;
7881 
7882 	if (mddev_trylock(mddev)) {
7883 		int spares = 0;
7884 
7885 		if (mddev->ro) {
7886 			/* On a read-only array we can:
7887 			 * - remove failed devices
7888 			 * - add already-in_sync devices if the array itself
7889 			 *   is in-sync.
7890 			 * As we only add devices that are already in-sync,
7891 			 * we can activate the spares immediately.
7892 			 */
7893 			remove_and_add_spares(mddev, NULL);
7894 			/* There is no thread, but we need to call
7895 			 * ->spare_active and clear saved_raid_disk
7896 			 */
7897 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7898 			md_reap_sync_thread(mddev);
7899 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7900 			goto unlock;
7901 		}
7902 
7903 		if (!mddev->external) {
7904 			int did_change = 0;
7905 			spin_lock(&mddev->lock);
7906 			if (mddev->safemode &&
7907 			    !atomic_read(&mddev->writes_pending) &&
7908 			    !mddev->in_sync &&
7909 			    mddev->recovery_cp == MaxSector) {
7910 				mddev->in_sync = 1;
7911 				did_change = 1;
7912 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7913 			}
7914 			if (mddev->safemode == 1)
7915 				mddev->safemode = 0;
7916 			spin_unlock(&mddev->lock);
7917 			if (did_change)
7918 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7919 		}
7920 
7921 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
7922 			md_update_sb(mddev, 0);
7923 
7924 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7925 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7926 			/* resync/recovery still happening */
7927 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7928 			goto unlock;
7929 		}
7930 		if (mddev->sync_thread) {
7931 			md_reap_sync_thread(mddev);
7932 			goto unlock;
7933 		}
7934 		/* Set RUNNING before clearing NEEDED to avoid
7935 		 * any transients in the value of "sync_action".
7936 		 */
7937 		mddev->curr_resync_completed = 0;
7938 		spin_lock(&mddev->lock);
7939 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7940 		spin_unlock(&mddev->lock);
7941 		/* Clear some bits that don't mean anything, but
7942 		 * might be left set
7943 		 */
7944 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7945 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7946 
7947 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7948 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7949 			goto not_running;
7950 		/* no recovery is running.
7951 		 * remove any failed drives, then
7952 		 * add spares if possible.
7953 		 * Spares are also removed and re-added, to allow
7954 		 * the personality to fail the re-add.
7955 		 */
7956 
7957 		if (mddev->reshape_position != MaxSector) {
7958 			if (mddev->pers->check_reshape == NULL ||
7959 			    mddev->pers->check_reshape(mddev) != 0)
7960 				/* Cannot proceed */
7961 				goto not_running;
7962 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7963 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7964 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
7965 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7966 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7967 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7968 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7969 		} else if (mddev->recovery_cp < MaxSector) {
7970 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7971 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7972 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7973 			/* nothing to be done ... */
7974 			goto not_running;
7975 
7976 		if (mddev->pers->sync_request) {
7977 			if (spares) {
7978 				/* We are adding a device or devices to an array
7979 				 * which has the bitmap stored on all devices.
7980 				 * So make sure all bitmap pages get written
7981 				 */
7982 				bitmap_write_all(mddev->bitmap);
7983 			}
7984 			INIT_WORK(&mddev->del_work, md_start_sync);
7985 			queue_work(md_misc_wq, &mddev->del_work);
7986 			goto unlock;
7987 		}
7988 	not_running:
7989 		if (!mddev->sync_thread) {
7990 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7991 			wake_up(&resync_wait);
7992 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7993 					       &mddev->recovery))
7994 				if (mddev->sysfs_action)
7995 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7996 		}
7997 	unlock:
7998 		wake_up(&mddev->sb_wait);
7999 		mddev_unlock(mddev);
8000 	}
8001 }
8002 EXPORT_SYMBOL(md_check_recovery);
8003 
8004 void md_reap_sync_thread(struct mddev *mddev)
8005 {
8006 	struct md_rdev *rdev;
8007 
8008 	/* resync has finished, collect result */
8009 	md_unregister_thread(&mddev->sync_thread);
8010 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8011 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8012 		/* success...*/
8013 		/* activate any spares */
8014 		if (mddev->pers->spare_active(mddev)) {
8015 			sysfs_notify(&mddev->kobj, NULL,
8016 				     "degraded");
8017 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8018 		}
8019 	}
8020 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8021 	    mddev->pers->finish_reshape)
8022 		mddev->pers->finish_reshape(mddev);
8023 
8024 	/* If array is no-longer degraded, then any saved_raid_disk
8025 	 * information must be scrapped.
8026 	 */
8027 	if (!mddev->degraded)
8028 		rdev_for_each(rdev, mddev)
8029 			rdev->saved_raid_disk = -1;
8030 
8031 	md_update_sb(mddev, 1);
8032 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8033 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8034 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8035 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8036 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8037 	wake_up(&resync_wait);
8038 	/* flag recovery needed just to double check */
8039 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8040 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8041 	md_new_event(mddev);
8042 	if (mddev->event_work.func)
8043 		queue_work(md_misc_wq, &mddev->event_work);
8044 }
8045 EXPORT_SYMBOL(md_reap_sync_thread);
8046 
8047 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8048 {
8049 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8050 	wait_event_timeout(rdev->blocked_wait,
8051 			   !test_bit(Blocked, &rdev->flags) &&
8052 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8053 			   msecs_to_jiffies(5000));
8054 	rdev_dec_pending(rdev, mddev);
8055 }
8056 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8057 
8058 void md_finish_reshape(struct mddev *mddev)
8059 {
8060 	/* called be personality module when reshape completes. */
8061 	struct md_rdev *rdev;
8062 
8063 	rdev_for_each(rdev, mddev) {
8064 		if (rdev->data_offset > rdev->new_data_offset)
8065 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8066 		else
8067 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8068 		rdev->data_offset = rdev->new_data_offset;
8069 	}
8070 }
8071 EXPORT_SYMBOL(md_finish_reshape);
8072 
8073 /* Bad block management.
8074  * We can record which blocks on each device are 'bad' and so just
8075  * fail those blocks, or that stripe, rather than the whole device.
8076  * Entries in the bad-block table are 64bits wide.  This comprises:
8077  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8078  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8079  *  A 'shift' can be set so that larger blocks are tracked and
8080  *  consequently larger devices can be covered.
8081  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8082  *
8083  * Locking of the bad-block table uses a seqlock so md_is_badblock
8084  * might need to retry if it is very unlucky.
8085  * We will sometimes want to check for bad blocks in a bi_end_io function,
8086  * so we use the write_seqlock_irq variant.
8087  *
8088  * When looking for a bad block we specify a range and want to
8089  * know if any block in the range is bad.  So we binary-search
8090  * to the last range that starts at-or-before the given endpoint,
8091  * (or "before the sector after the target range")
8092  * then see if it ends after the given start.
8093  * We return
8094  *  0 if there are no known bad blocks in the range
8095  *  1 if there are known bad block which are all acknowledged
8096  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8097  * plus the start/length of the first bad section we overlap.
8098  */
8099 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8100 		   sector_t *first_bad, int *bad_sectors)
8101 {
8102 	int hi;
8103 	int lo;
8104 	u64 *p = bb->page;
8105 	int rv;
8106 	sector_t target = s + sectors;
8107 	unsigned seq;
8108 
8109 	if (bb->shift > 0) {
8110 		/* round the start down, and the end up */
8111 		s >>= bb->shift;
8112 		target += (1<<bb->shift) - 1;
8113 		target >>= bb->shift;
8114 		sectors = target - s;
8115 	}
8116 	/* 'target' is now the first block after the bad range */
8117 
8118 retry:
8119 	seq = read_seqbegin(&bb->lock);
8120 	lo = 0;
8121 	rv = 0;
8122 	hi = bb->count;
8123 
8124 	/* Binary search between lo and hi for 'target'
8125 	 * i.e. for the last range that starts before 'target'
8126 	 */
8127 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8128 	 * are known not to be the last range before target.
8129 	 * VARIANT: hi-lo is the number of possible
8130 	 * ranges, and decreases until it reaches 1
8131 	 */
8132 	while (hi - lo > 1) {
8133 		int mid = (lo + hi) / 2;
8134 		sector_t a = BB_OFFSET(p[mid]);
8135 		if (a < target)
8136 			/* This could still be the one, earlier ranges
8137 			 * could not. */
8138 			lo = mid;
8139 		else
8140 			/* This and later ranges are definitely out. */
8141 			hi = mid;
8142 	}
8143 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8144 	if (hi > lo) {
8145 		/* need to check all range that end after 's' to see if
8146 		 * any are unacknowledged.
8147 		 */
8148 		while (lo >= 0 &&
8149 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8150 			if (BB_OFFSET(p[lo]) < target) {
8151 				/* starts before the end, and finishes after
8152 				 * the start, so they must overlap
8153 				 */
8154 				if (rv != -1 && BB_ACK(p[lo]))
8155 					rv = 1;
8156 				else
8157 					rv = -1;
8158 				*first_bad = BB_OFFSET(p[lo]);
8159 				*bad_sectors = BB_LEN(p[lo]);
8160 			}
8161 			lo--;
8162 		}
8163 	}
8164 
8165 	if (read_seqretry(&bb->lock, seq))
8166 		goto retry;
8167 
8168 	return rv;
8169 }
8170 EXPORT_SYMBOL_GPL(md_is_badblock);
8171 
8172 /*
8173  * Add a range of bad blocks to the table.
8174  * This might extend the table, or might contract it
8175  * if two adjacent ranges can be merged.
8176  * We binary-search to find the 'insertion' point, then
8177  * decide how best to handle it.
8178  */
8179 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8180 			    int acknowledged)
8181 {
8182 	u64 *p;
8183 	int lo, hi;
8184 	int rv = 1;
8185 	unsigned long flags;
8186 
8187 	if (bb->shift < 0)
8188 		/* badblocks are disabled */
8189 		return 0;
8190 
8191 	if (bb->shift) {
8192 		/* round the start down, and the end up */
8193 		sector_t next = s + sectors;
8194 		s >>= bb->shift;
8195 		next += (1<<bb->shift) - 1;
8196 		next >>= bb->shift;
8197 		sectors = next - s;
8198 	}
8199 
8200 	write_seqlock_irqsave(&bb->lock, flags);
8201 
8202 	p = bb->page;
8203 	lo = 0;
8204 	hi = bb->count;
8205 	/* Find the last range that starts at-or-before 's' */
8206 	while (hi - lo > 1) {
8207 		int mid = (lo + hi) / 2;
8208 		sector_t a = BB_OFFSET(p[mid]);
8209 		if (a <= s)
8210 			lo = mid;
8211 		else
8212 			hi = mid;
8213 	}
8214 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8215 		hi = lo;
8216 
8217 	if (hi > lo) {
8218 		/* we found a range that might merge with the start
8219 		 * of our new range
8220 		 */
8221 		sector_t a = BB_OFFSET(p[lo]);
8222 		sector_t e = a + BB_LEN(p[lo]);
8223 		int ack = BB_ACK(p[lo]);
8224 		if (e >= s) {
8225 			/* Yes, we can merge with a previous range */
8226 			if (s == a && s + sectors >= e)
8227 				/* new range covers old */
8228 				ack = acknowledged;
8229 			else
8230 				ack = ack && acknowledged;
8231 
8232 			if (e < s + sectors)
8233 				e = s + sectors;
8234 			if (e - a <= BB_MAX_LEN) {
8235 				p[lo] = BB_MAKE(a, e-a, ack);
8236 				s = e;
8237 			} else {
8238 				/* does not all fit in one range,
8239 				 * make p[lo] maximal
8240 				 */
8241 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8242 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8243 				s = a + BB_MAX_LEN;
8244 			}
8245 			sectors = e - s;
8246 		}
8247 	}
8248 	if (sectors && hi < bb->count) {
8249 		/* 'hi' points to the first range that starts after 's'.
8250 		 * Maybe we can merge with the start of that range */
8251 		sector_t a = BB_OFFSET(p[hi]);
8252 		sector_t e = a + BB_LEN(p[hi]);
8253 		int ack = BB_ACK(p[hi]);
8254 		if (a <= s + sectors) {
8255 			/* merging is possible */
8256 			if (e <= s + sectors) {
8257 				/* full overlap */
8258 				e = s + sectors;
8259 				ack = acknowledged;
8260 			} else
8261 				ack = ack && acknowledged;
8262 
8263 			a = s;
8264 			if (e - a <= BB_MAX_LEN) {
8265 				p[hi] = BB_MAKE(a, e-a, ack);
8266 				s = e;
8267 			} else {
8268 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8269 				s = a + BB_MAX_LEN;
8270 			}
8271 			sectors = e - s;
8272 			lo = hi;
8273 			hi++;
8274 		}
8275 	}
8276 	if (sectors == 0 && hi < bb->count) {
8277 		/* we might be able to combine lo and hi */
8278 		/* Note: 's' is at the end of 'lo' */
8279 		sector_t a = BB_OFFSET(p[hi]);
8280 		int lolen = BB_LEN(p[lo]);
8281 		int hilen = BB_LEN(p[hi]);
8282 		int newlen = lolen + hilen - (s - a);
8283 		if (s >= a && newlen < BB_MAX_LEN) {
8284 			/* yes, we can combine them */
8285 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8286 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8287 			memmove(p + hi, p + hi + 1,
8288 				(bb->count - hi - 1) * 8);
8289 			bb->count--;
8290 		}
8291 	}
8292 	while (sectors) {
8293 		/* didn't merge (it all).
8294 		 * Need to add a range just before 'hi' */
8295 		if (bb->count >= MD_MAX_BADBLOCKS) {
8296 			/* No room for more */
8297 			rv = 0;
8298 			break;
8299 		} else {
8300 			int this_sectors = sectors;
8301 			memmove(p + hi + 1, p + hi,
8302 				(bb->count - hi) * 8);
8303 			bb->count++;
8304 
8305 			if (this_sectors > BB_MAX_LEN)
8306 				this_sectors = BB_MAX_LEN;
8307 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8308 			sectors -= this_sectors;
8309 			s += this_sectors;
8310 		}
8311 	}
8312 
8313 	bb->changed = 1;
8314 	if (!acknowledged)
8315 		bb->unacked_exist = 1;
8316 	write_sequnlock_irqrestore(&bb->lock, flags);
8317 
8318 	return rv;
8319 }
8320 
8321 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8322 		       int is_new)
8323 {
8324 	int rv;
8325 	if (is_new)
8326 		s += rdev->new_data_offset;
8327 	else
8328 		s += rdev->data_offset;
8329 	rv = md_set_badblocks(&rdev->badblocks,
8330 			      s, sectors, 0);
8331 	if (rv) {
8332 		/* Make sure they get written out promptly */
8333 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8334 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8335 		md_wakeup_thread(rdev->mddev->thread);
8336 	}
8337 	return rv;
8338 }
8339 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8340 
8341 /*
8342  * Remove a range of bad blocks from the table.
8343  * This may involve extending the table if we spilt a region,
8344  * but it must not fail.  So if the table becomes full, we just
8345  * drop the remove request.
8346  */
8347 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8348 {
8349 	u64 *p;
8350 	int lo, hi;
8351 	sector_t target = s + sectors;
8352 	int rv = 0;
8353 
8354 	if (bb->shift > 0) {
8355 		/* When clearing we round the start up and the end down.
8356 		 * This should not matter as the shift should align with
8357 		 * the block size and no rounding should ever be needed.
8358 		 * However it is better the think a block is bad when it
8359 		 * isn't than to think a block is not bad when it is.
8360 		 */
8361 		s += (1<<bb->shift) - 1;
8362 		s >>= bb->shift;
8363 		target >>= bb->shift;
8364 		sectors = target - s;
8365 	}
8366 
8367 	write_seqlock_irq(&bb->lock);
8368 
8369 	p = bb->page;
8370 	lo = 0;
8371 	hi = bb->count;
8372 	/* Find the last range that starts before 'target' */
8373 	while (hi - lo > 1) {
8374 		int mid = (lo + hi) / 2;
8375 		sector_t a = BB_OFFSET(p[mid]);
8376 		if (a < target)
8377 			lo = mid;
8378 		else
8379 			hi = mid;
8380 	}
8381 	if (hi > lo) {
8382 		/* p[lo] is the last range that could overlap the
8383 		 * current range.  Earlier ranges could also overlap,
8384 		 * but only this one can overlap the end of the range.
8385 		 */
8386 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8387 			/* Partial overlap, leave the tail of this range */
8388 			int ack = BB_ACK(p[lo]);
8389 			sector_t a = BB_OFFSET(p[lo]);
8390 			sector_t end = a + BB_LEN(p[lo]);
8391 
8392 			if (a < s) {
8393 				/* we need to split this range */
8394 				if (bb->count >= MD_MAX_BADBLOCKS) {
8395 					rv = -ENOSPC;
8396 					goto out;
8397 				}
8398 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8399 				bb->count++;
8400 				p[lo] = BB_MAKE(a, s-a, ack);
8401 				lo++;
8402 			}
8403 			p[lo] = BB_MAKE(target, end - target, ack);
8404 			/* there is no longer an overlap */
8405 			hi = lo;
8406 			lo--;
8407 		}
8408 		while (lo >= 0 &&
8409 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8410 			/* This range does overlap */
8411 			if (BB_OFFSET(p[lo]) < s) {
8412 				/* Keep the early parts of this range. */
8413 				int ack = BB_ACK(p[lo]);
8414 				sector_t start = BB_OFFSET(p[lo]);
8415 				p[lo] = BB_MAKE(start, s - start, ack);
8416 				/* now low doesn't overlap, so.. */
8417 				break;
8418 			}
8419 			lo--;
8420 		}
8421 		/* 'lo' is strictly before, 'hi' is strictly after,
8422 		 * anything between needs to be discarded
8423 		 */
8424 		if (hi - lo > 1) {
8425 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8426 			bb->count -= (hi - lo - 1);
8427 		}
8428 	}
8429 
8430 	bb->changed = 1;
8431 out:
8432 	write_sequnlock_irq(&bb->lock);
8433 	return rv;
8434 }
8435 
8436 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8437 			 int is_new)
8438 {
8439 	if (is_new)
8440 		s += rdev->new_data_offset;
8441 	else
8442 		s += rdev->data_offset;
8443 	return md_clear_badblocks(&rdev->badblocks,
8444 				  s, sectors);
8445 }
8446 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8447 
8448 /*
8449  * Acknowledge all bad blocks in a list.
8450  * This only succeeds if ->changed is clear.  It is used by
8451  * in-kernel metadata updates
8452  */
8453 void md_ack_all_badblocks(struct badblocks *bb)
8454 {
8455 	if (bb->page == NULL || bb->changed)
8456 		/* no point even trying */
8457 		return;
8458 	write_seqlock_irq(&bb->lock);
8459 
8460 	if (bb->changed == 0 && bb->unacked_exist) {
8461 		u64 *p = bb->page;
8462 		int i;
8463 		for (i = 0; i < bb->count ; i++) {
8464 			if (!BB_ACK(p[i])) {
8465 				sector_t start = BB_OFFSET(p[i]);
8466 				int len = BB_LEN(p[i]);
8467 				p[i] = BB_MAKE(start, len, 1);
8468 			}
8469 		}
8470 		bb->unacked_exist = 0;
8471 	}
8472 	write_sequnlock_irq(&bb->lock);
8473 }
8474 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8475 
8476 /* sysfs access to bad-blocks list.
8477  * We present two files.
8478  * 'bad-blocks' lists sector numbers and lengths of ranges that
8479  *    are recorded as bad.  The list is truncated to fit within
8480  *    the one-page limit of sysfs.
8481  *    Writing "sector length" to this file adds an acknowledged
8482  *    bad block list.
8483  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8484  *    been acknowledged.  Writing to this file adds bad blocks
8485  *    without acknowledging them.  This is largely for testing.
8486  */
8487 
8488 static ssize_t
8489 badblocks_show(struct badblocks *bb, char *page, int unack)
8490 {
8491 	size_t len;
8492 	int i;
8493 	u64 *p = bb->page;
8494 	unsigned seq;
8495 
8496 	if (bb->shift < 0)
8497 		return 0;
8498 
8499 retry:
8500 	seq = read_seqbegin(&bb->lock);
8501 
8502 	len = 0;
8503 	i = 0;
8504 
8505 	while (len < PAGE_SIZE && i < bb->count) {
8506 		sector_t s = BB_OFFSET(p[i]);
8507 		unsigned int length = BB_LEN(p[i]);
8508 		int ack = BB_ACK(p[i]);
8509 		i++;
8510 
8511 		if (unack && ack)
8512 			continue;
8513 
8514 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8515 				(unsigned long long)s << bb->shift,
8516 				length << bb->shift);
8517 	}
8518 	if (unack && len == 0)
8519 		bb->unacked_exist = 0;
8520 
8521 	if (read_seqretry(&bb->lock, seq))
8522 		goto retry;
8523 
8524 	return len;
8525 }
8526 
8527 #define DO_DEBUG 1
8528 
8529 static ssize_t
8530 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8531 {
8532 	unsigned long long sector;
8533 	int length;
8534 	char newline;
8535 #ifdef DO_DEBUG
8536 	/* Allow clearing via sysfs *only* for testing/debugging.
8537 	 * Normally only a successful write may clear a badblock
8538 	 */
8539 	int clear = 0;
8540 	if (page[0] == '-') {
8541 		clear = 1;
8542 		page++;
8543 	}
8544 #endif /* DO_DEBUG */
8545 
8546 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8547 	case 3:
8548 		if (newline != '\n')
8549 			return -EINVAL;
8550 	case 2:
8551 		if (length <= 0)
8552 			return -EINVAL;
8553 		break;
8554 	default:
8555 		return -EINVAL;
8556 	}
8557 
8558 #ifdef DO_DEBUG
8559 	if (clear) {
8560 		md_clear_badblocks(bb, sector, length);
8561 		return len;
8562 	}
8563 #endif /* DO_DEBUG */
8564 	if (md_set_badblocks(bb, sector, length, !unack))
8565 		return len;
8566 	else
8567 		return -ENOSPC;
8568 }
8569 
8570 static int md_notify_reboot(struct notifier_block *this,
8571 			    unsigned long code, void *x)
8572 {
8573 	struct list_head *tmp;
8574 	struct mddev *mddev;
8575 	int need_delay = 0;
8576 
8577 	for_each_mddev(mddev, tmp) {
8578 		if (mddev_trylock(mddev)) {
8579 			if (mddev->pers)
8580 				__md_stop_writes(mddev);
8581 			if (mddev->persistent)
8582 				mddev->safemode = 2;
8583 			mddev_unlock(mddev);
8584 		}
8585 		need_delay = 1;
8586 	}
8587 	/*
8588 	 * certain more exotic SCSI devices are known to be
8589 	 * volatile wrt too early system reboots. While the
8590 	 * right place to handle this issue is the given
8591 	 * driver, we do want to have a safe RAID driver ...
8592 	 */
8593 	if (need_delay)
8594 		mdelay(1000*1);
8595 
8596 	return NOTIFY_DONE;
8597 }
8598 
8599 static struct notifier_block md_notifier = {
8600 	.notifier_call	= md_notify_reboot,
8601 	.next		= NULL,
8602 	.priority	= INT_MAX, /* before any real devices */
8603 };
8604 
8605 static void md_geninit(void)
8606 {
8607 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8608 
8609 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8610 }
8611 
8612 static int __init md_init(void)
8613 {
8614 	int ret = -ENOMEM;
8615 
8616 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8617 	if (!md_wq)
8618 		goto err_wq;
8619 
8620 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8621 	if (!md_misc_wq)
8622 		goto err_misc_wq;
8623 
8624 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8625 		goto err_md;
8626 
8627 	if ((ret = register_blkdev(0, "mdp")) < 0)
8628 		goto err_mdp;
8629 	mdp_major = ret;
8630 
8631 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8632 			    md_probe, NULL, NULL);
8633 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8634 			    md_probe, NULL, NULL);
8635 
8636 	register_reboot_notifier(&md_notifier);
8637 	raid_table_header = register_sysctl_table(raid_root_table);
8638 
8639 	md_geninit();
8640 	return 0;
8641 
8642 err_mdp:
8643 	unregister_blkdev(MD_MAJOR, "md");
8644 err_md:
8645 	destroy_workqueue(md_misc_wq);
8646 err_misc_wq:
8647 	destroy_workqueue(md_wq);
8648 err_wq:
8649 	return ret;
8650 }
8651 
8652 #ifndef MODULE
8653 
8654 /*
8655  * Searches all registered partitions for autorun RAID arrays
8656  * at boot time.
8657  */
8658 
8659 static LIST_HEAD(all_detected_devices);
8660 struct detected_devices_node {
8661 	struct list_head list;
8662 	dev_t dev;
8663 };
8664 
8665 void md_autodetect_dev(dev_t dev)
8666 {
8667 	struct detected_devices_node *node_detected_dev;
8668 
8669 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8670 	if (node_detected_dev) {
8671 		node_detected_dev->dev = dev;
8672 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8673 	} else {
8674 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8675 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8676 	}
8677 }
8678 
8679 static void autostart_arrays(int part)
8680 {
8681 	struct md_rdev *rdev;
8682 	struct detected_devices_node *node_detected_dev;
8683 	dev_t dev;
8684 	int i_scanned, i_passed;
8685 
8686 	i_scanned = 0;
8687 	i_passed = 0;
8688 
8689 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8690 
8691 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8692 		i_scanned++;
8693 		node_detected_dev = list_entry(all_detected_devices.next,
8694 					struct detected_devices_node, list);
8695 		list_del(&node_detected_dev->list);
8696 		dev = node_detected_dev->dev;
8697 		kfree(node_detected_dev);
8698 		rdev = md_import_device(dev,0, 90);
8699 		if (IS_ERR(rdev))
8700 			continue;
8701 
8702 		if (test_bit(Faulty, &rdev->flags))
8703 			continue;
8704 
8705 		set_bit(AutoDetected, &rdev->flags);
8706 		list_add(&rdev->same_set, &pending_raid_disks);
8707 		i_passed++;
8708 	}
8709 
8710 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8711 						i_scanned, i_passed);
8712 
8713 	autorun_devices(part);
8714 }
8715 
8716 #endif /* !MODULE */
8717 
8718 static __exit void md_exit(void)
8719 {
8720 	struct mddev *mddev;
8721 	struct list_head *tmp;
8722 	int delay = 1;
8723 
8724 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8725 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8726 
8727 	unregister_blkdev(MD_MAJOR,"md");
8728 	unregister_blkdev(mdp_major, "mdp");
8729 	unregister_reboot_notifier(&md_notifier);
8730 	unregister_sysctl_table(raid_table_header);
8731 
8732 	/* We cannot unload the modules while some process is
8733 	 * waiting for us in select() or poll() - wake them up
8734 	 */
8735 	md_unloading = 1;
8736 	while (waitqueue_active(&md_event_waiters)) {
8737 		/* not safe to leave yet */
8738 		wake_up(&md_event_waiters);
8739 		msleep(delay);
8740 		delay += delay;
8741 	}
8742 	remove_proc_entry("mdstat", NULL);
8743 
8744 	for_each_mddev(mddev, tmp) {
8745 		export_array(mddev);
8746 		mddev->hold_active = 0;
8747 	}
8748 	destroy_workqueue(md_misc_wq);
8749 	destroy_workqueue(md_wq);
8750 }
8751 
8752 subsys_initcall(md_init);
8753 module_exit(md_exit)
8754 
8755 static int get_ro(char *buffer, struct kernel_param *kp)
8756 {
8757 	return sprintf(buffer, "%d", start_readonly);
8758 }
8759 static int set_ro(const char *val, struct kernel_param *kp)
8760 {
8761 	char *e;
8762 	int num = simple_strtoul(val, &e, 10);
8763 	if (*val && (*e == '\0' || *e == '\n')) {
8764 		start_readonly = num;
8765 		return 0;
8766 	}
8767 	return -EINVAL;
8768 }
8769 
8770 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8771 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8772 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8773 
8774 MODULE_LICENSE("GPL");
8775 MODULE_DESCRIPTION("MD RAID framework");
8776 MODULE_ALIAS("md");
8777 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8778