1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 /* pers_list is a list of registered personalities protected 62 * by pers_lock. 63 * pers_lock does extra service to protect accesses to 64 * mddev->thread when the mutex cannot be held. 65 */ 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 70 static struct workqueue_struct *md_wq; 71 static struct workqueue_struct *md_misc_wq; 72 73 static int remove_and_add_spares(struct mddev *mddev, 74 struct md_rdev *this); 75 static void mddev_detach(struct mddev *mddev); 76 77 /* 78 * Default number of read corrections we'll attempt on an rdev 79 * before ejecting it from the array. We divide the read error 80 * count by 2 for every hour elapsed between read errors. 81 */ 82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 83 /* 84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 85 * is 1000 KB/sec, so the extra system load does not show up that much. 86 * Increase it if you want to have more _guaranteed_ speed. Note that 87 * the RAID driver will use the maximum available bandwidth if the IO 88 * subsystem is idle. There is also an 'absolute maximum' reconstruction 89 * speed limit - in case reconstruction slows down your system despite 90 * idle IO detection. 91 * 92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 93 * or /sys/block/mdX/md/sync_speed_{min,max} 94 */ 95 96 static int sysctl_speed_limit_min = 1000; 97 static int sysctl_speed_limit_max = 200000; 98 static inline int speed_min(struct mddev *mddev) 99 { 100 return mddev->sync_speed_min ? 101 mddev->sync_speed_min : sysctl_speed_limit_min; 102 } 103 104 static inline int speed_max(struct mddev *mddev) 105 { 106 return mddev->sync_speed_max ? 107 mddev->sync_speed_max : sysctl_speed_limit_max; 108 } 109 110 static struct ctl_table_header *raid_table_header; 111 112 static struct ctl_table raid_table[] = { 113 { 114 .procname = "speed_limit_min", 115 .data = &sysctl_speed_limit_min, 116 .maxlen = sizeof(int), 117 .mode = S_IRUGO|S_IWUSR, 118 .proc_handler = proc_dointvec, 119 }, 120 { 121 .procname = "speed_limit_max", 122 .data = &sysctl_speed_limit_max, 123 .maxlen = sizeof(int), 124 .mode = S_IRUGO|S_IWUSR, 125 .proc_handler = proc_dointvec, 126 }, 127 { } 128 }; 129 130 static struct ctl_table raid_dir_table[] = { 131 { 132 .procname = "raid", 133 .maxlen = 0, 134 .mode = S_IRUGO|S_IXUGO, 135 .child = raid_table, 136 }, 137 { } 138 }; 139 140 static struct ctl_table raid_root_table[] = { 141 { 142 .procname = "dev", 143 .maxlen = 0, 144 .mode = 0555, 145 .child = raid_dir_table, 146 }, 147 { } 148 }; 149 150 static const struct block_device_operations md_fops; 151 152 static int start_readonly; 153 154 /* bio_clone_mddev 155 * like bio_clone, but with a local bio set 156 */ 157 158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 159 struct mddev *mddev) 160 { 161 struct bio *b; 162 163 if (!mddev || !mddev->bio_set) 164 return bio_alloc(gfp_mask, nr_iovecs); 165 166 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 167 if (!b) 168 return NULL; 169 return b; 170 } 171 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 172 173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 174 struct mddev *mddev) 175 { 176 if (!mddev || !mddev->bio_set) 177 return bio_clone(bio, gfp_mask); 178 179 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 180 } 181 EXPORT_SYMBOL_GPL(bio_clone_mddev); 182 183 /* 184 * We have a system wide 'event count' that is incremented 185 * on any 'interesting' event, and readers of /proc/mdstat 186 * can use 'poll' or 'select' to find out when the event 187 * count increases. 188 * 189 * Events are: 190 * start array, stop array, error, add device, remove device, 191 * start build, activate spare 192 */ 193 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 194 static atomic_t md_event_count; 195 void md_new_event(struct mddev *mddev) 196 { 197 atomic_inc(&md_event_count); 198 wake_up(&md_event_waiters); 199 } 200 EXPORT_SYMBOL_GPL(md_new_event); 201 202 /* Alternate version that can be called from interrupts 203 * when calling sysfs_notify isn't needed. 204 */ 205 static void md_new_event_inintr(struct mddev *mddev) 206 { 207 atomic_inc(&md_event_count); 208 wake_up(&md_event_waiters); 209 } 210 211 /* 212 * Enables to iterate over all existing md arrays 213 * all_mddevs_lock protects this list. 214 */ 215 static LIST_HEAD(all_mddevs); 216 static DEFINE_SPINLOCK(all_mddevs_lock); 217 218 /* 219 * iterates through all used mddevs in the system. 220 * We take care to grab the all_mddevs_lock whenever navigating 221 * the list, and to always hold a refcount when unlocked. 222 * Any code which breaks out of this loop while own 223 * a reference to the current mddev and must mddev_put it. 224 */ 225 #define for_each_mddev(_mddev,_tmp) \ 226 \ 227 for (({ spin_lock(&all_mddevs_lock); \ 228 _tmp = all_mddevs.next; \ 229 _mddev = NULL;}); \ 230 ({ if (_tmp != &all_mddevs) \ 231 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 232 spin_unlock(&all_mddevs_lock); \ 233 if (_mddev) mddev_put(_mddev); \ 234 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 235 _tmp != &all_mddevs;}); \ 236 ({ spin_lock(&all_mddevs_lock); \ 237 _tmp = _tmp->next;}) \ 238 ) 239 240 /* Rather than calling directly into the personality make_request function, 241 * IO requests come here first so that we can check if the device is 242 * being suspended pending a reconfiguration. 243 * We hold a refcount over the call to ->make_request. By the time that 244 * call has finished, the bio has been linked into some internal structure 245 * and so is visible to ->quiesce(), so we don't need the refcount any more. 246 */ 247 static void md_make_request(struct request_queue *q, struct bio *bio) 248 { 249 const int rw = bio_data_dir(bio); 250 struct mddev *mddev = q->queuedata; 251 unsigned int sectors; 252 253 if (mddev == NULL || mddev->pers == NULL 254 || !mddev->ready) { 255 bio_io_error(bio); 256 return; 257 } 258 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 259 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS); 260 return; 261 } 262 smp_rmb(); /* Ensure implications of 'active' are visible */ 263 rcu_read_lock(); 264 if (mddev->suspended) { 265 DEFINE_WAIT(__wait); 266 for (;;) { 267 prepare_to_wait(&mddev->sb_wait, &__wait, 268 TASK_UNINTERRUPTIBLE); 269 if (!mddev->suspended) 270 break; 271 rcu_read_unlock(); 272 schedule(); 273 rcu_read_lock(); 274 } 275 finish_wait(&mddev->sb_wait, &__wait); 276 } 277 atomic_inc(&mddev->active_io); 278 rcu_read_unlock(); 279 280 /* 281 * save the sectors now since our bio can 282 * go away inside make_request 283 */ 284 sectors = bio_sectors(bio); 285 mddev->pers->make_request(mddev, bio); 286 287 generic_start_io_acct(rw, sectors, &mddev->gendisk->part0); 288 289 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 290 wake_up(&mddev->sb_wait); 291 } 292 293 /* mddev_suspend makes sure no new requests are submitted 294 * to the device, and that any requests that have been submitted 295 * are completely handled. 296 * Once mddev_detach() is called and completes, the module will be 297 * completely unused. 298 */ 299 void mddev_suspend(struct mddev *mddev) 300 { 301 BUG_ON(mddev->suspended); 302 mddev->suspended = 1; 303 synchronize_rcu(); 304 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 305 mddev->pers->quiesce(mddev, 1); 306 307 del_timer_sync(&mddev->safemode_timer); 308 } 309 EXPORT_SYMBOL_GPL(mddev_suspend); 310 311 void mddev_resume(struct mddev *mddev) 312 { 313 mddev->suspended = 0; 314 wake_up(&mddev->sb_wait); 315 mddev->pers->quiesce(mddev, 0); 316 317 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 318 md_wakeup_thread(mddev->thread); 319 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 320 } 321 EXPORT_SYMBOL_GPL(mddev_resume); 322 323 int mddev_congested(struct mddev *mddev, int bits) 324 { 325 struct md_personality *pers = mddev->pers; 326 int ret = 0; 327 328 rcu_read_lock(); 329 if (mddev->suspended) 330 ret = 1; 331 else if (pers && pers->congested) 332 ret = pers->congested(mddev, bits); 333 rcu_read_unlock(); 334 return ret; 335 } 336 EXPORT_SYMBOL_GPL(mddev_congested); 337 static int md_congested(void *data, int bits) 338 { 339 struct mddev *mddev = data; 340 return mddev_congested(mddev, bits); 341 } 342 343 static int md_mergeable_bvec(struct request_queue *q, 344 struct bvec_merge_data *bvm, 345 struct bio_vec *biovec) 346 { 347 struct mddev *mddev = q->queuedata; 348 int ret; 349 rcu_read_lock(); 350 if (mddev->suspended) { 351 /* Must always allow one vec */ 352 if (bvm->bi_size == 0) 353 ret = biovec->bv_len; 354 else 355 ret = 0; 356 } else { 357 struct md_personality *pers = mddev->pers; 358 if (pers && pers->mergeable_bvec) 359 ret = pers->mergeable_bvec(mddev, bvm, biovec); 360 else 361 ret = biovec->bv_len; 362 } 363 rcu_read_unlock(); 364 return ret; 365 } 366 /* 367 * Generic flush handling for md 368 */ 369 370 static void md_end_flush(struct bio *bio, int err) 371 { 372 struct md_rdev *rdev = bio->bi_private; 373 struct mddev *mddev = rdev->mddev; 374 375 rdev_dec_pending(rdev, mddev); 376 377 if (atomic_dec_and_test(&mddev->flush_pending)) { 378 /* The pre-request flush has finished */ 379 queue_work(md_wq, &mddev->flush_work); 380 } 381 bio_put(bio); 382 } 383 384 static void md_submit_flush_data(struct work_struct *ws); 385 386 static void submit_flushes(struct work_struct *ws) 387 { 388 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 389 struct md_rdev *rdev; 390 391 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 392 atomic_set(&mddev->flush_pending, 1); 393 rcu_read_lock(); 394 rdev_for_each_rcu(rdev, mddev) 395 if (rdev->raid_disk >= 0 && 396 !test_bit(Faulty, &rdev->flags)) { 397 /* Take two references, one is dropped 398 * when request finishes, one after 399 * we reclaim rcu_read_lock 400 */ 401 struct bio *bi; 402 atomic_inc(&rdev->nr_pending); 403 atomic_inc(&rdev->nr_pending); 404 rcu_read_unlock(); 405 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 406 bi->bi_end_io = md_end_flush; 407 bi->bi_private = rdev; 408 bi->bi_bdev = rdev->bdev; 409 atomic_inc(&mddev->flush_pending); 410 submit_bio(WRITE_FLUSH, bi); 411 rcu_read_lock(); 412 rdev_dec_pending(rdev, mddev); 413 } 414 rcu_read_unlock(); 415 if (atomic_dec_and_test(&mddev->flush_pending)) 416 queue_work(md_wq, &mddev->flush_work); 417 } 418 419 static void md_submit_flush_data(struct work_struct *ws) 420 { 421 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 422 struct bio *bio = mddev->flush_bio; 423 424 if (bio->bi_iter.bi_size == 0) 425 /* an empty barrier - all done */ 426 bio_endio(bio, 0); 427 else { 428 bio->bi_rw &= ~REQ_FLUSH; 429 mddev->pers->make_request(mddev, bio); 430 } 431 432 mddev->flush_bio = NULL; 433 wake_up(&mddev->sb_wait); 434 } 435 436 void md_flush_request(struct mddev *mddev, struct bio *bio) 437 { 438 spin_lock_irq(&mddev->lock); 439 wait_event_lock_irq(mddev->sb_wait, 440 !mddev->flush_bio, 441 mddev->lock); 442 mddev->flush_bio = bio; 443 spin_unlock_irq(&mddev->lock); 444 445 INIT_WORK(&mddev->flush_work, submit_flushes); 446 queue_work(md_wq, &mddev->flush_work); 447 } 448 EXPORT_SYMBOL(md_flush_request); 449 450 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 451 { 452 struct mddev *mddev = cb->data; 453 md_wakeup_thread(mddev->thread); 454 kfree(cb); 455 } 456 EXPORT_SYMBOL(md_unplug); 457 458 static inline struct mddev *mddev_get(struct mddev *mddev) 459 { 460 atomic_inc(&mddev->active); 461 return mddev; 462 } 463 464 static void mddev_delayed_delete(struct work_struct *ws); 465 466 static void mddev_put(struct mddev *mddev) 467 { 468 struct bio_set *bs = NULL; 469 470 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 471 return; 472 if (!mddev->raid_disks && list_empty(&mddev->disks) && 473 mddev->ctime == 0 && !mddev->hold_active) { 474 /* Array is not configured at all, and not held active, 475 * so destroy it */ 476 list_del_init(&mddev->all_mddevs); 477 bs = mddev->bio_set; 478 mddev->bio_set = NULL; 479 if (mddev->gendisk) { 480 /* We did a probe so need to clean up. Call 481 * queue_work inside the spinlock so that 482 * flush_workqueue() after mddev_find will 483 * succeed in waiting for the work to be done. 484 */ 485 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 486 queue_work(md_misc_wq, &mddev->del_work); 487 } else 488 kfree(mddev); 489 } 490 spin_unlock(&all_mddevs_lock); 491 if (bs) 492 bioset_free(bs); 493 } 494 495 void mddev_init(struct mddev *mddev) 496 { 497 mutex_init(&mddev->open_mutex); 498 mutex_init(&mddev->reconfig_mutex); 499 mutex_init(&mddev->bitmap_info.mutex); 500 INIT_LIST_HEAD(&mddev->disks); 501 INIT_LIST_HEAD(&mddev->all_mddevs); 502 init_timer(&mddev->safemode_timer); 503 atomic_set(&mddev->active, 1); 504 atomic_set(&mddev->openers, 0); 505 atomic_set(&mddev->active_io, 0); 506 spin_lock_init(&mddev->lock); 507 atomic_set(&mddev->flush_pending, 0); 508 init_waitqueue_head(&mddev->sb_wait); 509 init_waitqueue_head(&mddev->recovery_wait); 510 mddev->reshape_position = MaxSector; 511 mddev->reshape_backwards = 0; 512 mddev->last_sync_action = "none"; 513 mddev->resync_min = 0; 514 mddev->resync_max = MaxSector; 515 mddev->level = LEVEL_NONE; 516 } 517 EXPORT_SYMBOL_GPL(mddev_init); 518 519 static struct mddev *mddev_find(dev_t unit) 520 { 521 struct mddev *mddev, *new = NULL; 522 523 if (unit && MAJOR(unit) != MD_MAJOR) 524 unit &= ~((1<<MdpMinorShift)-1); 525 526 retry: 527 spin_lock(&all_mddevs_lock); 528 529 if (unit) { 530 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 531 if (mddev->unit == unit) { 532 mddev_get(mddev); 533 spin_unlock(&all_mddevs_lock); 534 kfree(new); 535 return mddev; 536 } 537 538 if (new) { 539 list_add(&new->all_mddevs, &all_mddevs); 540 spin_unlock(&all_mddevs_lock); 541 new->hold_active = UNTIL_IOCTL; 542 return new; 543 } 544 } else if (new) { 545 /* find an unused unit number */ 546 static int next_minor = 512; 547 int start = next_minor; 548 int is_free = 0; 549 int dev = 0; 550 while (!is_free) { 551 dev = MKDEV(MD_MAJOR, next_minor); 552 next_minor++; 553 if (next_minor > MINORMASK) 554 next_minor = 0; 555 if (next_minor == start) { 556 /* Oh dear, all in use. */ 557 spin_unlock(&all_mddevs_lock); 558 kfree(new); 559 return NULL; 560 } 561 562 is_free = 1; 563 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 564 if (mddev->unit == dev) { 565 is_free = 0; 566 break; 567 } 568 } 569 new->unit = dev; 570 new->md_minor = MINOR(dev); 571 new->hold_active = UNTIL_STOP; 572 list_add(&new->all_mddevs, &all_mddevs); 573 spin_unlock(&all_mddevs_lock); 574 return new; 575 } 576 spin_unlock(&all_mddevs_lock); 577 578 new = kzalloc(sizeof(*new), GFP_KERNEL); 579 if (!new) 580 return NULL; 581 582 new->unit = unit; 583 if (MAJOR(unit) == MD_MAJOR) 584 new->md_minor = MINOR(unit); 585 else 586 new->md_minor = MINOR(unit) >> MdpMinorShift; 587 588 mddev_init(new); 589 590 goto retry; 591 } 592 593 static struct attribute_group md_redundancy_group; 594 595 void mddev_unlock(struct mddev *mddev) 596 { 597 if (mddev->to_remove) { 598 /* These cannot be removed under reconfig_mutex as 599 * an access to the files will try to take reconfig_mutex 600 * while holding the file unremovable, which leads to 601 * a deadlock. 602 * So hold set sysfs_active while the remove in happeing, 603 * and anything else which might set ->to_remove or my 604 * otherwise change the sysfs namespace will fail with 605 * -EBUSY if sysfs_active is still set. 606 * We set sysfs_active under reconfig_mutex and elsewhere 607 * test it under the same mutex to ensure its correct value 608 * is seen. 609 */ 610 struct attribute_group *to_remove = mddev->to_remove; 611 mddev->to_remove = NULL; 612 mddev->sysfs_active = 1; 613 mutex_unlock(&mddev->reconfig_mutex); 614 615 if (mddev->kobj.sd) { 616 if (to_remove != &md_redundancy_group) 617 sysfs_remove_group(&mddev->kobj, to_remove); 618 if (mddev->pers == NULL || 619 mddev->pers->sync_request == NULL) { 620 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 621 if (mddev->sysfs_action) 622 sysfs_put(mddev->sysfs_action); 623 mddev->sysfs_action = NULL; 624 } 625 } 626 mddev->sysfs_active = 0; 627 } else 628 mutex_unlock(&mddev->reconfig_mutex); 629 630 /* As we've dropped the mutex we need a spinlock to 631 * make sure the thread doesn't disappear 632 */ 633 spin_lock(&pers_lock); 634 md_wakeup_thread(mddev->thread); 635 spin_unlock(&pers_lock); 636 } 637 EXPORT_SYMBOL_GPL(mddev_unlock); 638 639 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr) 640 { 641 struct md_rdev *rdev; 642 643 rdev_for_each_rcu(rdev, mddev) 644 if (rdev->desc_nr == nr) 645 return rdev; 646 647 return NULL; 648 } 649 650 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 651 { 652 struct md_rdev *rdev; 653 654 rdev_for_each(rdev, mddev) 655 if (rdev->bdev->bd_dev == dev) 656 return rdev; 657 658 return NULL; 659 } 660 661 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 662 { 663 struct md_rdev *rdev; 664 665 rdev_for_each_rcu(rdev, mddev) 666 if (rdev->bdev->bd_dev == dev) 667 return rdev; 668 669 return NULL; 670 } 671 672 static struct md_personality *find_pers(int level, char *clevel) 673 { 674 struct md_personality *pers; 675 list_for_each_entry(pers, &pers_list, list) { 676 if (level != LEVEL_NONE && pers->level == level) 677 return pers; 678 if (strcmp(pers->name, clevel)==0) 679 return pers; 680 } 681 return NULL; 682 } 683 684 /* return the offset of the super block in 512byte sectors */ 685 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 686 { 687 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 688 return MD_NEW_SIZE_SECTORS(num_sectors); 689 } 690 691 static int alloc_disk_sb(struct md_rdev *rdev) 692 { 693 rdev->sb_page = alloc_page(GFP_KERNEL); 694 if (!rdev->sb_page) { 695 printk(KERN_ALERT "md: out of memory.\n"); 696 return -ENOMEM; 697 } 698 699 return 0; 700 } 701 702 void md_rdev_clear(struct md_rdev *rdev) 703 { 704 if (rdev->sb_page) { 705 put_page(rdev->sb_page); 706 rdev->sb_loaded = 0; 707 rdev->sb_page = NULL; 708 rdev->sb_start = 0; 709 rdev->sectors = 0; 710 } 711 if (rdev->bb_page) { 712 put_page(rdev->bb_page); 713 rdev->bb_page = NULL; 714 } 715 kfree(rdev->badblocks.page); 716 rdev->badblocks.page = NULL; 717 } 718 EXPORT_SYMBOL_GPL(md_rdev_clear); 719 720 static void super_written(struct bio *bio, int error) 721 { 722 struct md_rdev *rdev = bio->bi_private; 723 struct mddev *mddev = rdev->mddev; 724 725 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 726 printk("md: super_written gets error=%d, uptodate=%d\n", 727 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 728 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 729 md_error(mddev, rdev); 730 } 731 732 if (atomic_dec_and_test(&mddev->pending_writes)) 733 wake_up(&mddev->sb_wait); 734 bio_put(bio); 735 } 736 737 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 738 sector_t sector, int size, struct page *page) 739 { 740 /* write first size bytes of page to sector of rdev 741 * Increment mddev->pending_writes before returning 742 * and decrement it on completion, waking up sb_wait 743 * if zero is reached. 744 * If an error occurred, call md_error 745 */ 746 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 747 748 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 749 bio->bi_iter.bi_sector = sector; 750 bio_add_page(bio, page, size, 0); 751 bio->bi_private = rdev; 752 bio->bi_end_io = super_written; 753 754 atomic_inc(&mddev->pending_writes); 755 submit_bio(WRITE_FLUSH_FUA, bio); 756 } 757 758 void md_super_wait(struct mddev *mddev) 759 { 760 /* wait for all superblock writes that were scheduled to complete */ 761 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 762 } 763 764 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 765 struct page *page, int rw, bool metadata_op) 766 { 767 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 768 int ret; 769 770 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 771 rdev->meta_bdev : rdev->bdev; 772 if (metadata_op) 773 bio->bi_iter.bi_sector = sector + rdev->sb_start; 774 else if (rdev->mddev->reshape_position != MaxSector && 775 (rdev->mddev->reshape_backwards == 776 (sector >= rdev->mddev->reshape_position))) 777 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 778 else 779 bio->bi_iter.bi_sector = sector + rdev->data_offset; 780 bio_add_page(bio, page, size, 0); 781 submit_bio_wait(rw, bio); 782 783 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 784 bio_put(bio); 785 return ret; 786 } 787 EXPORT_SYMBOL_GPL(sync_page_io); 788 789 static int read_disk_sb(struct md_rdev *rdev, int size) 790 { 791 char b[BDEVNAME_SIZE]; 792 793 if (rdev->sb_loaded) 794 return 0; 795 796 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 797 goto fail; 798 rdev->sb_loaded = 1; 799 return 0; 800 801 fail: 802 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 803 bdevname(rdev->bdev,b)); 804 return -EINVAL; 805 } 806 807 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 808 { 809 return sb1->set_uuid0 == sb2->set_uuid0 && 810 sb1->set_uuid1 == sb2->set_uuid1 && 811 sb1->set_uuid2 == sb2->set_uuid2 && 812 sb1->set_uuid3 == sb2->set_uuid3; 813 } 814 815 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 816 { 817 int ret; 818 mdp_super_t *tmp1, *tmp2; 819 820 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 821 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 822 823 if (!tmp1 || !tmp2) { 824 ret = 0; 825 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 826 goto abort; 827 } 828 829 *tmp1 = *sb1; 830 *tmp2 = *sb2; 831 832 /* 833 * nr_disks is not constant 834 */ 835 tmp1->nr_disks = 0; 836 tmp2->nr_disks = 0; 837 838 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 839 abort: 840 kfree(tmp1); 841 kfree(tmp2); 842 return ret; 843 } 844 845 static u32 md_csum_fold(u32 csum) 846 { 847 csum = (csum & 0xffff) + (csum >> 16); 848 return (csum & 0xffff) + (csum >> 16); 849 } 850 851 static unsigned int calc_sb_csum(mdp_super_t *sb) 852 { 853 u64 newcsum = 0; 854 u32 *sb32 = (u32*)sb; 855 int i; 856 unsigned int disk_csum, csum; 857 858 disk_csum = sb->sb_csum; 859 sb->sb_csum = 0; 860 861 for (i = 0; i < MD_SB_BYTES/4 ; i++) 862 newcsum += sb32[i]; 863 csum = (newcsum & 0xffffffff) + (newcsum>>32); 864 865 #ifdef CONFIG_ALPHA 866 /* This used to use csum_partial, which was wrong for several 867 * reasons including that different results are returned on 868 * different architectures. It isn't critical that we get exactly 869 * the same return value as before (we always csum_fold before 870 * testing, and that removes any differences). However as we 871 * know that csum_partial always returned a 16bit value on 872 * alphas, do a fold to maximise conformity to previous behaviour. 873 */ 874 sb->sb_csum = md_csum_fold(disk_csum); 875 #else 876 sb->sb_csum = disk_csum; 877 #endif 878 return csum; 879 } 880 881 /* 882 * Handle superblock details. 883 * We want to be able to handle multiple superblock formats 884 * so we have a common interface to them all, and an array of 885 * different handlers. 886 * We rely on user-space to write the initial superblock, and support 887 * reading and updating of superblocks. 888 * Interface methods are: 889 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 890 * loads and validates a superblock on dev. 891 * if refdev != NULL, compare superblocks on both devices 892 * Return: 893 * 0 - dev has a superblock that is compatible with refdev 894 * 1 - dev has a superblock that is compatible and newer than refdev 895 * so dev should be used as the refdev in future 896 * -EINVAL superblock incompatible or invalid 897 * -othererror e.g. -EIO 898 * 899 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 900 * Verify that dev is acceptable into mddev. 901 * The first time, mddev->raid_disks will be 0, and data from 902 * dev should be merged in. Subsequent calls check that dev 903 * is new enough. Return 0 or -EINVAL 904 * 905 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 906 * Update the superblock for rdev with data in mddev 907 * This does not write to disc. 908 * 909 */ 910 911 struct super_type { 912 char *name; 913 struct module *owner; 914 int (*load_super)(struct md_rdev *rdev, 915 struct md_rdev *refdev, 916 int minor_version); 917 int (*validate_super)(struct mddev *mddev, 918 struct md_rdev *rdev); 919 void (*sync_super)(struct mddev *mddev, 920 struct md_rdev *rdev); 921 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 922 sector_t num_sectors); 923 int (*allow_new_offset)(struct md_rdev *rdev, 924 unsigned long long new_offset); 925 }; 926 927 /* 928 * Check that the given mddev has no bitmap. 929 * 930 * This function is called from the run method of all personalities that do not 931 * support bitmaps. It prints an error message and returns non-zero if mddev 932 * has a bitmap. Otherwise, it returns 0. 933 * 934 */ 935 int md_check_no_bitmap(struct mddev *mddev) 936 { 937 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 938 return 0; 939 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 940 mdname(mddev), mddev->pers->name); 941 return 1; 942 } 943 EXPORT_SYMBOL(md_check_no_bitmap); 944 945 /* 946 * load_super for 0.90.0 947 */ 948 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 949 { 950 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 951 mdp_super_t *sb; 952 int ret; 953 954 /* 955 * Calculate the position of the superblock (512byte sectors), 956 * it's at the end of the disk. 957 * 958 * It also happens to be a multiple of 4Kb. 959 */ 960 rdev->sb_start = calc_dev_sboffset(rdev); 961 962 ret = read_disk_sb(rdev, MD_SB_BYTES); 963 if (ret) return ret; 964 965 ret = -EINVAL; 966 967 bdevname(rdev->bdev, b); 968 sb = page_address(rdev->sb_page); 969 970 if (sb->md_magic != MD_SB_MAGIC) { 971 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 972 b); 973 goto abort; 974 } 975 976 if (sb->major_version != 0 || 977 sb->minor_version < 90 || 978 sb->minor_version > 91) { 979 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 980 sb->major_version, sb->minor_version, 981 b); 982 goto abort; 983 } 984 985 if (sb->raid_disks <= 0) 986 goto abort; 987 988 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 989 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 990 b); 991 goto abort; 992 } 993 994 rdev->preferred_minor = sb->md_minor; 995 rdev->data_offset = 0; 996 rdev->new_data_offset = 0; 997 rdev->sb_size = MD_SB_BYTES; 998 rdev->badblocks.shift = -1; 999 1000 if (sb->level == LEVEL_MULTIPATH) 1001 rdev->desc_nr = -1; 1002 else 1003 rdev->desc_nr = sb->this_disk.number; 1004 1005 if (!refdev) { 1006 ret = 1; 1007 } else { 1008 __u64 ev1, ev2; 1009 mdp_super_t *refsb = page_address(refdev->sb_page); 1010 if (!uuid_equal(refsb, sb)) { 1011 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1012 b, bdevname(refdev->bdev,b2)); 1013 goto abort; 1014 } 1015 if (!sb_equal(refsb, sb)) { 1016 printk(KERN_WARNING "md: %s has same UUID" 1017 " but different superblock to %s\n", 1018 b, bdevname(refdev->bdev, b2)); 1019 goto abort; 1020 } 1021 ev1 = md_event(sb); 1022 ev2 = md_event(refsb); 1023 if (ev1 > ev2) 1024 ret = 1; 1025 else 1026 ret = 0; 1027 } 1028 rdev->sectors = rdev->sb_start; 1029 /* Limit to 4TB as metadata cannot record more than that. 1030 * (not needed for Linear and RAID0 as metadata doesn't 1031 * record this size) 1032 */ 1033 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1034 rdev->sectors = (2ULL << 32) - 2; 1035 1036 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1037 /* "this cannot possibly happen" ... */ 1038 ret = -EINVAL; 1039 1040 abort: 1041 return ret; 1042 } 1043 1044 /* 1045 * validate_super for 0.90.0 1046 */ 1047 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1048 { 1049 mdp_disk_t *desc; 1050 mdp_super_t *sb = page_address(rdev->sb_page); 1051 __u64 ev1 = md_event(sb); 1052 1053 rdev->raid_disk = -1; 1054 clear_bit(Faulty, &rdev->flags); 1055 clear_bit(In_sync, &rdev->flags); 1056 clear_bit(Bitmap_sync, &rdev->flags); 1057 clear_bit(WriteMostly, &rdev->flags); 1058 1059 if (mddev->raid_disks == 0) { 1060 mddev->major_version = 0; 1061 mddev->minor_version = sb->minor_version; 1062 mddev->patch_version = sb->patch_version; 1063 mddev->external = 0; 1064 mddev->chunk_sectors = sb->chunk_size >> 9; 1065 mddev->ctime = sb->ctime; 1066 mddev->utime = sb->utime; 1067 mddev->level = sb->level; 1068 mddev->clevel[0] = 0; 1069 mddev->layout = sb->layout; 1070 mddev->raid_disks = sb->raid_disks; 1071 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1072 mddev->events = ev1; 1073 mddev->bitmap_info.offset = 0; 1074 mddev->bitmap_info.space = 0; 1075 /* bitmap can use 60 K after the 4K superblocks */ 1076 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1077 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1078 mddev->reshape_backwards = 0; 1079 1080 if (mddev->minor_version >= 91) { 1081 mddev->reshape_position = sb->reshape_position; 1082 mddev->delta_disks = sb->delta_disks; 1083 mddev->new_level = sb->new_level; 1084 mddev->new_layout = sb->new_layout; 1085 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1086 if (mddev->delta_disks < 0) 1087 mddev->reshape_backwards = 1; 1088 } else { 1089 mddev->reshape_position = MaxSector; 1090 mddev->delta_disks = 0; 1091 mddev->new_level = mddev->level; 1092 mddev->new_layout = mddev->layout; 1093 mddev->new_chunk_sectors = mddev->chunk_sectors; 1094 } 1095 1096 if (sb->state & (1<<MD_SB_CLEAN)) 1097 mddev->recovery_cp = MaxSector; 1098 else { 1099 if (sb->events_hi == sb->cp_events_hi && 1100 sb->events_lo == sb->cp_events_lo) { 1101 mddev->recovery_cp = sb->recovery_cp; 1102 } else 1103 mddev->recovery_cp = 0; 1104 } 1105 1106 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1107 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1108 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1109 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1110 1111 mddev->max_disks = MD_SB_DISKS; 1112 1113 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1114 mddev->bitmap_info.file == NULL) { 1115 mddev->bitmap_info.offset = 1116 mddev->bitmap_info.default_offset; 1117 mddev->bitmap_info.space = 1118 mddev->bitmap_info.default_space; 1119 } 1120 1121 } else if (mddev->pers == NULL) { 1122 /* Insist on good event counter while assembling, except 1123 * for spares (which don't need an event count) */ 1124 ++ev1; 1125 if (sb->disks[rdev->desc_nr].state & ( 1126 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1127 if (ev1 < mddev->events) 1128 return -EINVAL; 1129 } else if (mddev->bitmap) { 1130 /* if adding to array with a bitmap, then we can accept an 1131 * older device ... but not too old. 1132 */ 1133 if (ev1 < mddev->bitmap->events_cleared) 1134 return 0; 1135 if (ev1 < mddev->events) 1136 set_bit(Bitmap_sync, &rdev->flags); 1137 } else { 1138 if (ev1 < mddev->events) 1139 /* just a hot-add of a new device, leave raid_disk at -1 */ 1140 return 0; 1141 } 1142 1143 if (mddev->level != LEVEL_MULTIPATH) { 1144 desc = sb->disks + rdev->desc_nr; 1145 1146 if (desc->state & (1<<MD_DISK_FAULTY)) 1147 set_bit(Faulty, &rdev->flags); 1148 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1149 desc->raid_disk < mddev->raid_disks */) { 1150 set_bit(In_sync, &rdev->flags); 1151 rdev->raid_disk = desc->raid_disk; 1152 rdev->saved_raid_disk = desc->raid_disk; 1153 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1154 /* active but not in sync implies recovery up to 1155 * reshape position. We don't know exactly where 1156 * that is, so set to zero for now */ 1157 if (mddev->minor_version >= 91) { 1158 rdev->recovery_offset = 0; 1159 rdev->raid_disk = desc->raid_disk; 1160 } 1161 } 1162 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1163 set_bit(WriteMostly, &rdev->flags); 1164 } else /* MULTIPATH are always insync */ 1165 set_bit(In_sync, &rdev->flags); 1166 return 0; 1167 } 1168 1169 /* 1170 * sync_super for 0.90.0 1171 */ 1172 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1173 { 1174 mdp_super_t *sb; 1175 struct md_rdev *rdev2; 1176 int next_spare = mddev->raid_disks; 1177 1178 /* make rdev->sb match mddev data.. 1179 * 1180 * 1/ zero out disks 1181 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1182 * 3/ any empty disks < next_spare become removed 1183 * 1184 * disks[0] gets initialised to REMOVED because 1185 * we cannot be sure from other fields if it has 1186 * been initialised or not. 1187 */ 1188 int i; 1189 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1190 1191 rdev->sb_size = MD_SB_BYTES; 1192 1193 sb = page_address(rdev->sb_page); 1194 1195 memset(sb, 0, sizeof(*sb)); 1196 1197 sb->md_magic = MD_SB_MAGIC; 1198 sb->major_version = mddev->major_version; 1199 sb->patch_version = mddev->patch_version; 1200 sb->gvalid_words = 0; /* ignored */ 1201 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1202 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1203 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1204 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1205 1206 sb->ctime = mddev->ctime; 1207 sb->level = mddev->level; 1208 sb->size = mddev->dev_sectors / 2; 1209 sb->raid_disks = mddev->raid_disks; 1210 sb->md_minor = mddev->md_minor; 1211 sb->not_persistent = 0; 1212 sb->utime = mddev->utime; 1213 sb->state = 0; 1214 sb->events_hi = (mddev->events>>32); 1215 sb->events_lo = (u32)mddev->events; 1216 1217 if (mddev->reshape_position == MaxSector) 1218 sb->minor_version = 90; 1219 else { 1220 sb->minor_version = 91; 1221 sb->reshape_position = mddev->reshape_position; 1222 sb->new_level = mddev->new_level; 1223 sb->delta_disks = mddev->delta_disks; 1224 sb->new_layout = mddev->new_layout; 1225 sb->new_chunk = mddev->new_chunk_sectors << 9; 1226 } 1227 mddev->minor_version = sb->minor_version; 1228 if (mddev->in_sync) 1229 { 1230 sb->recovery_cp = mddev->recovery_cp; 1231 sb->cp_events_hi = (mddev->events>>32); 1232 sb->cp_events_lo = (u32)mddev->events; 1233 if (mddev->recovery_cp == MaxSector) 1234 sb->state = (1<< MD_SB_CLEAN); 1235 } else 1236 sb->recovery_cp = 0; 1237 1238 sb->layout = mddev->layout; 1239 sb->chunk_size = mddev->chunk_sectors << 9; 1240 1241 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1242 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1243 1244 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1245 rdev_for_each(rdev2, mddev) { 1246 mdp_disk_t *d; 1247 int desc_nr; 1248 int is_active = test_bit(In_sync, &rdev2->flags); 1249 1250 if (rdev2->raid_disk >= 0 && 1251 sb->minor_version >= 91) 1252 /* we have nowhere to store the recovery_offset, 1253 * but if it is not below the reshape_position, 1254 * we can piggy-back on that. 1255 */ 1256 is_active = 1; 1257 if (rdev2->raid_disk < 0 || 1258 test_bit(Faulty, &rdev2->flags)) 1259 is_active = 0; 1260 if (is_active) 1261 desc_nr = rdev2->raid_disk; 1262 else 1263 desc_nr = next_spare++; 1264 rdev2->desc_nr = desc_nr; 1265 d = &sb->disks[rdev2->desc_nr]; 1266 nr_disks++; 1267 d->number = rdev2->desc_nr; 1268 d->major = MAJOR(rdev2->bdev->bd_dev); 1269 d->minor = MINOR(rdev2->bdev->bd_dev); 1270 if (is_active) 1271 d->raid_disk = rdev2->raid_disk; 1272 else 1273 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1274 if (test_bit(Faulty, &rdev2->flags)) 1275 d->state = (1<<MD_DISK_FAULTY); 1276 else if (is_active) { 1277 d->state = (1<<MD_DISK_ACTIVE); 1278 if (test_bit(In_sync, &rdev2->flags)) 1279 d->state |= (1<<MD_DISK_SYNC); 1280 active++; 1281 working++; 1282 } else { 1283 d->state = 0; 1284 spare++; 1285 working++; 1286 } 1287 if (test_bit(WriteMostly, &rdev2->flags)) 1288 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1289 } 1290 /* now set the "removed" and "faulty" bits on any missing devices */ 1291 for (i=0 ; i < mddev->raid_disks ; i++) { 1292 mdp_disk_t *d = &sb->disks[i]; 1293 if (d->state == 0 && d->number == 0) { 1294 d->number = i; 1295 d->raid_disk = i; 1296 d->state = (1<<MD_DISK_REMOVED); 1297 d->state |= (1<<MD_DISK_FAULTY); 1298 failed++; 1299 } 1300 } 1301 sb->nr_disks = nr_disks; 1302 sb->active_disks = active; 1303 sb->working_disks = working; 1304 sb->failed_disks = failed; 1305 sb->spare_disks = spare; 1306 1307 sb->this_disk = sb->disks[rdev->desc_nr]; 1308 sb->sb_csum = calc_sb_csum(sb); 1309 } 1310 1311 /* 1312 * rdev_size_change for 0.90.0 1313 */ 1314 static unsigned long long 1315 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1316 { 1317 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1318 return 0; /* component must fit device */ 1319 if (rdev->mddev->bitmap_info.offset) 1320 return 0; /* can't move bitmap */ 1321 rdev->sb_start = calc_dev_sboffset(rdev); 1322 if (!num_sectors || num_sectors > rdev->sb_start) 1323 num_sectors = rdev->sb_start; 1324 /* Limit to 4TB as metadata cannot record more than that. 1325 * 4TB == 2^32 KB, or 2*2^32 sectors. 1326 */ 1327 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1328 num_sectors = (2ULL << 32) - 2; 1329 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1330 rdev->sb_page); 1331 md_super_wait(rdev->mddev); 1332 return num_sectors; 1333 } 1334 1335 static int 1336 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1337 { 1338 /* non-zero offset changes not possible with v0.90 */ 1339 return new_offset == 0; 1340 } 1341 1342 /* 1343 * version 1 superblock 1344 */ 1345 1346 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1347 { 1348 __le32 disk_csum; 1349 u32 csum; 1350 unsigned long long newcsum; 1351 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1352 __le32 *isuper = (__le32*)sb; 1353 1354 disk_csum = sb->sb_csum; 1355 sb->sb_csum = 0; 1356 newcsum = 0; 1357 for (; size >= 4; size -= 4) 1358 newcsum += le32_to_cpu(*isuper++); 1359 1360 if (size == 2) 1361 newcsum += le16_to_cpu(*(__le16*) isuper); 1362 1363 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1364 sb->sb_csum = disk_csum; 1365 return cpu_to_le32(csum); 1366 } 1367 1368 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1369 int acknowledged); 1370 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1371 { 1372 struct mdp_superblock_1 *sb; 1373 int ret; 1374 sector_t sb_start; 1375 sector_t sectors; 1376 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1377 int bmask; 1378 1379 /* 1380 * Calculate the position of the superblock in 512byte sectors. 1381 * It is always aligned to a 4K boundary and 1382 * depeding on minor_version, it can be: 1383 * 0: At least 8K, but less than 12K, from end of device 1384 * 1: At start of device 1385 * 2: 4K from start of device. 1386 */ 1387 switch(minor_version) { 1388 case 0: 1389 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1390 sb_start -= 8*2; 1391 sb_start &= ~(sector_t)(4*2-1); 1392 break; 1393 case 1: 1394 sb_start = 0; 1395 break; 1396 case 2: 1397 sb_start = 8; 1398 break; 1399 default: 1400 return -EINVAL; 1401 } 1402 rdev->sb_start = sb_start; 1403 1404 /* superblock is rarely larger than 1K, but it can be larger, 1405 * and it is safe to read 4k, so we do that 1406 */ 1407 ret = read_disk_sb(rdev, 4096); 1408 if (ret) return ret; 1409 1410 sb = page_address(rdev->sb_page); 1411 1412 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1413 sb->major_version != cpu_to_le32(1) || 1414 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1415 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1416 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1417 return -EINVAL; 1418 1419 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1420 printk("md: invalid superblock checksum on %s\n", 1421 bdevname(rdev->bdev,b)); 1422 return -EINVAL; 1423 } 1424 if (le64_to_cpu(sb->data_size) < 10) { 1425 printk("md: data_size too small on %s\n", 1426 bdevname(rdev->bdev,b)); 1427 return -EINVAL; 1428 } 1429 if (sb->pad0 || 1430 sb->pad3[0] || 1431 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1432 /* Some padding is non-zero, might be a new feature */ 1433 return -EINVAL; 1434 1435 rdev->preferred_minor = 0xffff; 1436 rdev->data_offset = le64_to_cpu(sb->data_offset); 1437 rdev->new_data_offset = rdev->data_offset; 1438 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1439 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1440 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1441 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1442 1443 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1444 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1445 if (rdev->sb_size & bmask) 1446 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1447 1448 if (minor_version 1449 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1450 return -EINVAL; 1451 if (minor_version 1452 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1453 return -EINVAL; 1454 1455 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1456 rdev->desc_nr = -1; 1457 else 1458 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1459 1460 if (!rdev->bb_page) { 1461 rdev->bb_page = alloc_page(GFP_KERNEL); 1462 if (!rdev->bb_page) 1463 return -ENOMEM; 1464 } 1465 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1466 rdev->badblocks.count == 0) { 1467 /* need to load the bad block list. 1468 * Currently we limit it to one page. 1469 */ 1470 s32 offset; 1471 sector_t bb_sector; 1472 u64 *bbp; 1473 int i; 1474 int sectors = le16_to_cpu(sb->bblog_size); 1475 if (sectors > (PAGE_SIZE / 512)) 1476 return -EINVAL; 1477 offset = le32_to_cpu(sb->bblog_offset); 1478 if (offset == 0) 1479 return -EINVAL; 1480 bb_sector = (long long)offset; 1481 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1482 rdev->bb_page, READ, true)) 1483 return -EIO; 1484 bbp = (u64 *)page_address(rdev->bb_page); 1485 rdev->badblocks.shift = sb->bblog_shift; 1486 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1487 u64 bb = le64_to_cpu(*bbp); 1488 int count = bb & (0x3ff); 1489 u64 sector = bb >> 10; 1490 sector <<= sb->bblog_shift; 1491 count <<= sb->bblog_shift; 1492 if (bb + 1 == 0) 1493 break; 1494 if (md_set_badblocks(&rdev->badblocks, 1495 sector, count, 1) == 0) 1496 return -EINVAL; 1497 } 1498 } else if (sb->bblog_offset != 0) 1499 rdev->badblocks.shift = 0; 1500 1501 if (!refdev) { 1502 ret = 1; 1503 } else { 1504 __u64 ev1, ev2; 1505 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1506 1507 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1508 sb->level != refsb->level || 1509 sb->layout != refsb->layout || 1510 sb->chunksize != refsb->chunksize) { 1511 printk(KERN_WARNING "md: %s has strangely different" 1512 " superblock to %s\n", 1513 bdevname(rdev->bdev,b), 1514 bdevname(refdev->bdev,b2)); 1515 return -EINVAL; 1516 } 1517 ev1 = le64_to_cpu(sb->events); 1518 ev2 = le64_to_cpu(refsb->events); 1519 1520 if (ev1 > ev2) 1521 ret = 1; 1522 else 1523 ret = 0; 1524 } 1525 if (minor_version) { 1526 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1527 sectors -= rdev->data_offset; 1528 } else 1529 sectors = rdev->sb_start; 1530 if (sectors < le64_to_cpu(sb->data_size)) 1531 return -EINVAL; 1532 rdev->sectors = le64_to_cpu(sb->data_size); 1533 return ret; 1534 } 1535 1536 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1537 { 1538 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1539 __u64 ev1 = le64_to_cpu(sb->events); 1540 1541 rdev->raid_disk = -1; 1542 clear_bit(Faulty, &rdev->flags); 1543 clear_bit(In_sync, &rdev->flags); 1544 clear_bit(Bitmap_sync, &rdev->flags); 1545 clear_bit(WriteMostly, &rdev->flags); 1546 1547 if (mddev->raid_disks == 0) { 1548 mddev->major_version = 1; 1549 mddev->patch_version = 0; 1550 mddev->external = 0; 1551 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1552 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1553 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1554 mddev->level = le32_to_cpu(sb->level); 1555 mddev->clevel[0] = 0; 1556 mddev->layout = le32_to_cpu(sb->layout); 1557 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1558 mddev->dev_sectors = le64_to_cpu(sb->size); 1559 mddev->events = ev1; 1560 mddev->bitmap_info.offset = 0; 1561 mddev->bitmap_info.space = 0; 1562 /* Default location for bitmap is 1K after superblock 1563 * using 3K - total of 4K 1564 */ 1565 mddev->bitmap_info.default_offset = 1024 >> 9; 1566 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1567 mddev->reshape_backwards = 0; 1568 1569 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1570 memcpy(mddev->uuid, sb->set_uuid, 16); 1571 1572 mddev->max_disks = (4096-256)/2; 1573 1574 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1575 mddev->bitmap_info.file == NULL) { 1576 mddev->bitmap_info.offset = 1577 (__s32)le32_to_cpu(sb->bitmap_offset); 1578 /* Metadata doesn't record how much space is available. 1579 * For 1.0, we assume we can use up to the superblock 1580 * if before, else to 4K beyond superblock. 1581 * For others, assume no change is possible. 1582 */ 1583 if (mddev->minor_version > 0) 1584 mddev->bitmap_info.space = 0; 1585 else if (mddev->bitmap_info.offset > 0) 1586 mddev->bitmap_info.space = 1587 8 - mddev->bitmap_info.offset; 1588 else 1589 mddev->bitmap_info.space = 1590 -mddev->bitmap_info.offset; 1591 } 1592 1593 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1594 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1595 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1596 mddev->new_level = le32_to_cpu(sb->new_level); 1597 mddev->new_layout = le32_to_cpu(sb->new_layout); 1598 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1599 if (mddev->delta_disks < 0 || 1600 (mddev->delta_disks == 0 && 1601 (le32_to_cpu(sb->feature_map) 1602 & MD_FEATURE_RESHAPE_BACKWARDS))) 1603 mddev->reshape_backwards = 1; 1604 } else { 1605 mddev->reshape_position = MaxSector; 1606 mddev->delta_disks = 0; 1607 mddev->new_level = mddev->level; 1608 mddev->new_layout = mddev->layout; 1609 mddev->new_chunk_sectors = mddev->chunk_sectors; 1610 } 1611 1612 } else if (mddev->pers == NULL) { 1613 /* Insist of good event counter while assembling, except for 1614 * spares (which don't need an event count) */ 1615 ++ev1; 1616 if (rdev->desc_nr >= 0 && 1617 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1618 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1619 if (ev1 < mddev->events) 1620 return -EINVAL; 1621 } else if (mddev->bitmap) { 1622 /* If adding to array with a bitmap, then we can accept an 1623 * older device, but not too old. 1624 */ 1625 if (ev1 < mddev->bitmap->events_cleared) 1626 return 0; 1627 if (ev1 < mddev->events) 1628 set_bit(Bitmap_sync, &rdev->flags); 1629 } else { 1630 if (ev1 < mddev->events) 1631 /* just a hot-add of a new device, leave raid_disk at -1 */ 1632 return 0; 1633 } 1634 if (mddev->level != LEVEL_MULTIPATH) { 1635 int role; 1636 if (rdev->desc_nr < 0 || 1637 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1638 role = 0xffff; 1639 rdev->desc_nr = -1; 1640 } else 1641 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1642 switch(role) { 1643 case 0xffff: /* spare */ 1644 break; 1645 case 0xfffe: /* faulty */ 1646 set_bit(Faulty, &rdev->flags); 1647 break; 1648 default: 1649 rdev->saved_raid_disk = role; 1650 if ((le32_to_cpu(sb->feature_map) & 1651 MD_FEATURE_RECOVERY_OFFSET)) { 1652 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1653 if (!(le32_to_cpu(sb->feature_map) & 1654 MD_FEATURE_RECOVERY_BITMAP)) 1655 rdev->saved_raid_disk = -1; 1656 } else 1657 set_bit(In_sync, &rdev->flags); 1658 rdev->raid_disk = role; 1659 break; 1660 } 1661 if (sb->devflags & WriteMostly1) 1662 set_bit(WriteMostly, &rdev->flags); 1663 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1664 set_bit(Replacement, &rdev->flags); 1665 } else /* MULTIPATH are always insync */ 1666 set_bit(In_sync, &rdev->flags); 1667 1668 return 0; 1669 } 1670 1671 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1672 { 1673 struct mdp_superblock_1 *sb; 1674 struct md_rdev *rdev2; 1675 int max_dev, i; 1676 /* make rdev->sb match mddev and rdev data. */ 1677 1678 sb = page_address(rdev->sb_page); 1679 1680 sb->feature_map = 0; 1681 sb->pad0 = 0; 1682 sb->recovery_offset = cpu_to_le64(0); 1683 memset(sb->pad3, 0, sizeof(sb->pad3)); 1684 1685 sb->utime = cpu_to_le64((__u64)mddev->utime); 1686 sb->events = cpu_to_le64(mddev->events); 1687 if (mddev->in_sync) 1688 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1689 else 1690 sb->resync_offset = cpu_to_le64(0); 1691 1692 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1693 1694 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1695 sb->size = cpu_to_le64(mddev->dev_sectors); 1696 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1697 sb->level = cpu_to_le32(mddev->level); 1698 sb->layout = cpu_to_le32(mddev->layout); 1699 1700 if (test_bit(WriteMostly, &rdev->flags)) 1701 sb->devflags |= WriteMostly1; 1702 else 1703 sb->devflags &= ~WriteMostly1; 1704 sb->data_offset = cpu_to_le64(rdev->data_offset); 1705 sb->data_size = cpu_to_le64(rdev->sectors); 1706 1707 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1708 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1709 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1710 } 1711 1712 if (rdev->raid_disk >= 0 && 1713 !test_bit(In_sync, &rdev->flags)) { 1714 sb->feature_map |= 1715 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1716 sb->recovery_offset = 1717 cpu_to_le64(rdev->recovery_offset); 1718 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1719 sb->feature_map |= 1720 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1721 } 1722 if (test_bit(Replacement, &rdev->flags)) 1723 sb->feature_map |= 1724 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1725 1726 if (mddev->reshape_position != MaxSector) { 1727 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1728 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1729 sb->new_layout = cpu_to_le32(mddev->new_layout); 1730 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1731 sb->new_level = cpu_to_le32(mddev->new_level); 1732 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1733 if (mddev->delta_disks == 0 && 1734 mddev->reshape_backwards) 1735 sb->feature_map 1736 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1737 if (rdev->new_data_offset != rdev->data_offset) { 1738 sb->feature_map 1739 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1740 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1741 - rdev->data_offset)); 1742 } 1743 } 1744 1745 if (rdev->badblocks.count == 0) 1746 /* Nothing to do for bad blocks*/ ; 1747 else if (sb->bblog_offset == 0) 1748 /* Cannot record bad blocks on this device */ 1749 md_error(mddev, rdev); 1750 else { 1751 struct badblocks *bb = &rdev->badblocks; 1752 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1753 u64 *p = bb->page; 1754 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1755 if (bb->changed) { 1756 unsigned seq; 1757 1758 retry: 1759 seq = read_seqbegin(&bb->lock); 1760 1761 memset(bbp, 0xff, PAGE_SIZE); 1762 1763 for (i = 0 ; i < bb->count ; i++) { 1764 u64 internal_bb = p[i]; 1765 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1766 | BB_LEN(internal_bb)); 1767 bbp[i] = cpu_to_le64(store_bb); 1768 } 1769 bb->changed = 0; 1770 if (read_seqretry(&bb->lock, seq)) 1771 goto retry; 1772 1773 bb->sector = (rdev->sb_start + 1774 (int)le32_to_cpu(sb->bblog_offset)); 1775 bb->size = le16_to_cpu(sb->bblog_size); 1776 } 1777 } 1778 1779 max_dev = 0; 1780 rdev_for_each(rdev2, mddev) 1781 if (rdev2->desc_nr+1 > max_dev) 1782 max_dev = rdev2->desc_nr+1; 1783 1784 if (max_dev > le32_to_cpu(sb->max_dev)) { 1785 int bmask; 1786 sb->max_dev = cpu_to_le32(max_dev); 1787 rdev->sb_size = max_dev * 2 + 256; 1788 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1789 if (rdev->sb_size & bmask) 1790 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1791 } else 1792 max_dev = le32_to_cpu(sb->max_dev); 1793 1794 for (i=0; i<max_dev;i++) 1795 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1796 1797 rdev_for_each(rdev2, mddev) { 1798 i = rdev2->desc_nr; 1799 if (test_bit(Faulty, &rdev2->flags)) 1800 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1801 else if (test_bit(In_sync, &rdev2->flags)) 1802 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1803 else if (rdev2->raid_disk >= 0) 1804 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1805 else 1806 sb->dev_roles[i] = cpu_to_le16(0xffff); 1807 } 1808 1809 sb->sb_csum = calc_sb_1_csum(sb); 1810 } 1811 1812 static unsigned long long 1813 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1814 { 1815 struct mdp_superblock_1 *sb; 1816 sector_t max_sectors; 1817 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1818 return 0; /* component must fit device */ 1819 if (rdev->data_offset != rdev->new_data_offset) 1820 return 0; /* too confusing */ 1821 if (rdev->sb_start < rdev->data_offset) { 1822 /* minor versions 1 and 2; superblock before data */ 1823 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1824 max_sectors -= rdev->data_offset; 1825 if (!num_sectors || num_sectors > max_sectors) 1826 num_sectors = max_sectors; 1827 } else if (rdev->mddev->bitmap_info.offset) { 1828 /* minor version 0 with bitmap we can't move */ 1829 return 0; 1830 } else { 1831 /* minor version 0; superblock after data */ 1832 sector_t sb_start; 1833 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1834 sb_start &= ~(sector_t)(4*2 - 1); 1835 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1836 if (!num_sectors || num_sectors > max_sectors) 1837 num_sectors = max_sectors; 1838 rdev->sb_start = sb_start; 1839 } 1840 sb = page_address(rdev->sb_page); 1841 sb->data_size = cpu_to_le64(num_sectors); 1842 sb->super_offset = rdev->sb_start; 1843 sb->sb_csum = calc_sb_1_csum(sb); 1844 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1845 rdev->sb_page); 1846 md_super_wait(rdev->mddev); 1847 return num_sectors; 1848 1849 } 1850 1851 static int 1852 super_1_allow_new_offset(struct md_rdev *rdev, 1853 unsigned long long new_offset) 1854 { 1855 /* All necessary checks on new >= old have been done */ 1856 struct bitmap *bitmap; 1857 if (new_offset >= rdev->data_offset) 1858 return 1; 1859 1860 /* with 1.0 metadata, there is no metadata to tread on 1861 * so we can always move back */ 1862 if (rdev->mddev->minor_version == 0) 1863 return 1; 1864 1865 /* otherwise we must be sure not to step on 1866 * any metadata, so stay: 1867 * 36K beyond start of superblock 1868 * beyond end of badblocks 1869 * beyond write-intent bitmap 1870 */ 1871 if (rdev->sb_start + (32+4)*2 > new_offset) 1872 return 0; 1873 bitmap = rdev->mddev->bitmap; 1874 if (bitmap && !rdev->mddev->bitmap_info.file && 1875 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1876 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1877 return 0; 1878 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1879 return 0; 1880 1881 return 1; 1882 } 1883 1884 static struct super_type super_types[] = { 1885 [0] = { 1886 .name = "0.90.0", 1887 .owner = THIS_MODULE, 1888 .load_super = super_90_load, 1889 .validate_super = super_90_validate, 1890 .sync_super = super_90_sync, 1891 .rdev_size_change = super_90_rdev_size_change, 1892 .allow_new_offset = super_90_allow_new_offset, 1893 }, 1894 [1] = { 1895 .name = "md-1", 1896 .owner = THIS_MODULE, 1897 .load_super = super_1_load, 1898 .validate_super = super_1_validate, 1899 .sync_super = super_1_sync, 1900 .rdev_size_change = super_1_rdev_size_change, 1901 .allow_new_offset = super_1_allow_new_offset, 1902 }, 1903 }; 1904 1905 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1906 { 1907 if (mddev->sync_super) { 1908 mddev->sync_super(mddev, rdev); 1909 return; 1910 } 1911 1912 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1913 1914 super_types[mddev->major_version].sync_super(mddev, rdev); 1915 } 1916 1917 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1918 { 1919 struct md_rdev *rdev, *rdev2; 1920 1921 rcu_read_lock(); 1922 rdev_for_each_rcu(rdev, mddev1) 1923 rdev_for_each_rcu(rdev2, mddev2) 1924 if (rdev->bdev->bd_contains == 1925 rdev2->bdev->bd_contains) { 1926 rcu_read_unlock(); 1927 return 1; 1928 } 1929 rcu_read_unlock(); 1930 return 0; 1931 } 1932 1933 static LIST_HEAD(pending_raid_disks); 1934 1935 /* 1936 * Try to register data integrity profile for an mddev 1937 * 1938 * This is called when an array is started and after a disk has been kicked 1939 * from the array. It only succeeds if all working and active component devices 1940 * are integrity capable with matching profiles. 1941 */ 1942 int md_integrity_register(struct mddev *mddev) 1943 { 1944 struct md_rdev *rdev, *reference = NULL; 1945 1946 if (list_empty(&mddev->disks)) 1947 return 0; /* nothing to do */ 1948 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 1949 return 0; /* shouldn't register, or already is */ 1950 rdev_for_each(rdev, mddev) { 1951 /* skip spares and non-functional disks */ 1952 if (test_bit(Faulty, &rdev->flags)) 1953 continue; 1954 if (rdev->raid_disk < 0) 1955 continue; 1956 if (!reference) { 1957 /* Use the first rdev as the reference */ 1958 reference = rdev; 1959 continue; 1960 } 1961 /* does this rdev's profile match the reference profile? */ 1962 if (blk_integrity_compare(reference->bdev->bd_disk, 1963 rdev->bdev->bd_disk) < 0) 1964 return -EINVAL; 1965 } 1966 if (!reference || !bdev_get_integrity(reference->bdev)) 1967 return 0; 1968 /* 1969 * All component devices are integrity capable and have matching 1970 * profiles, register the common profile for the md device. 1971 */ 1972 if (blk_integrity_register(mddev->gendisk, 1973 bdev_get_integrity(reference->bdev)) != 0) { 1974 printk(KERN_ERR "md: failed to register integrity for %s\n", 1975 mdname(mddev)); 1976 return -EINVAL; 1977 } 1978 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 1979 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 1980 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 1981 mdname(mddev)); 1982 return -EINVAL; 1983 } 1984 return 0; 1985 } 1986 EXPORT_SYMBOL(md_integrity_register); 1987 1988 /* Disable data integrity if non-capable/non-matching disk is being added */ 1989 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 1990 { 1991 struct blk_integrity *bi_rdev; 1992 struct blk_integrity *bi_mddev; 1993 1994 if (!mddev->gendisk) 1995 return; 1996 1997 bi_rdev = bdev_get_integrity(rdev->bdev); 1998 bi_mddev = blk_get_integrity(mddev->gendisk); 1999 2000 if (!bi_mddev) /* nothing to do */ 2001 return; 2002 if (rdev->raid_disk < 0) /* skip spares */ 2003 return; 2004 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2005 rdev->bdev->bd_disk) >= 0) 2006 return; 2007 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2008 blk_integrity_unregister(mddev->gendisk); 2009 } 2010 EXPORT_SYMBOL(md_integrity_add_rdev); 2011 2012 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2013 { 2014 char b[BDEVNAME_SIZE]; 2015 struct kobject *ko; 2016 char *s; 2017 int err; 2018 2019 /* prevent duplicates */ 2020 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2021 return -EEXIST; 2022 2023 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2024 if (rdev->sectors && (mddev->dev_sectors == 0 || 2025 rdev->sectors < mddev->dev_sectors)) { 2026 if (mddev->pers) { 2027 /* Cannot change size, so fail 2028 * If mddev->level <= 0, then we don't care 2029 * about aligning sizes (e.g. linear) 2030 */ 2031 if (mddev->level > 0) 2032 return -ENOSPC; 2033 } else 2034 mddev->dev_sectors = rdev->sectors; 2035 } 2036 2037 /* Verify rdev->desc_nr is unique. 2038 * If it is -1, assign a free number, else 2039 * check number is not in use 2040 */ 2041 rcu_read_lock(); 2042 if (rdev->desc_nr < 0) { 2043 int choice = 0; 2044 if (mddev->pers) 2045 choice = mddev->raid_disks; 2046 while (find_rdev_nr_rcu(mddev, choice)) 2047 choice++; 2048 rdev->desc_nr = choice; 2049 } else { 2050 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2051 rcu_read_unlock(); 2052 return -EBUSY; 2053 } 2054 } 2055 rcu_read_unlock(); 2056 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2057 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2058 mdname(mddev), mddev->max_disks); 2059 return -EBUSY; 2060 } 2061 bdevname(rdev->bdev,b); 2062 while ( (s=strchr(b, '/')) != NULL) 2063 *s = '!'; 2064 2065 rdev->mddev = mddev; 2066 printk(KERN_INFO "md: bind<%s>\n", b); 2067 2068 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2069 goto fail; 2070 2071 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2072 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2073 /* failure here is OK */; 2074 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2075 2076 list_add_rcu(&rdev->same_set, &mddev->disks); 2077 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2078 2079 /* May as well allow recovery to be retried once */ 2080 mddev->recovery_disabled++; 2081 2082 return 0; 2083 2084 fail: 2085 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2086 b, mdname(mddev)); 2087 return err; 2088 } 2089 2090 static void md_delayed_delete(struct work_struct *ws) 2091 { 2092 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2093 kobject_del(&rdev->kobj); 2094 kobject_put(&rdev->kobj); 2095 } 2096 2097 static void unbind_rdev_from_array(struct md_rdev *rdev) 2098 { 2099 char b[BDEVNAME_SIZE]; 2100 2101 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2102 list_del_rcu(&rdev->same_set); 2103 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2104 rdev->mddev = NULL; 2105 sysfs_remove_link(&rdev->kobj, "block"); 2106 sysfs_put(rdev->sysfs_state); 2107 rdev->sysfs_state = NULL; 2108 rdev->badblocks.count = 0; 2109 /* We need to delay this, otherwise we can deadlock when 2110 * writing to 'remove' to "dev/state". We also need 2111 * to delay it due to rcu usage. 2112 */ 2113 synchronize_rcu(); 2114 INIT_WORK(&rdev->del_work, md_delayed_delete); 2115 kobject_get(&rdev->kobj); 2116 queue_work(md_misc_wq, &rdev->del_work); 2117 } 2118 2119 /* 2120 * prevent the device from being mounted, repartitioned or 2121 * otherwise reused by a RAID array (or any other kernel 2122 * subsystem), by bd_claiming the device. 2123 */ 2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2125 { 2126 int err = 0; 2127 struct block_device *bdev; 2128 char b[BDEVNAME_SIZE]; 2129 2130 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2131 shared ? (struct md_rdev *)lock_rdev : rdev); 2132 if (IS_ERR(bdev)) { 2133 printk(KERN_ERR "md: could not open %s.\n", 2134 __bdevname(dev, b)); 2135 return PTR_ERR(bdev); 2136 } 2137 rdev->bdev = bdev; 2138 return err; 2139 } 2140 2141 static void unlock_rdev(struct md_rdev *rdev) 2142 { 2143 struct block_device *bdev = rdev->bdev; 2144 rdev->bdev = NULL; 2145 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2146 } 2147 2148 void md_autodetect_dev(dev_t dev); 2149 2150 static void export_rdev(struct md_rdev *rdev) 2151 { 2152 char b[BDEVNAME_SIZE]; 2153 2154 printk(KERN_INFO "md: export_rdev(%s)\n", 2155 bdevname(rdev->bdev,b)); 2156 md_rdev_clear(rdev); 2157 #ifndef MODULE 2158 if (test_bit(AutoDetected, &rdev->flags)) 2159 md_autodetect_dev(rdev->bdev->bd_dev); 2160 #endif 2161 unlock_rdev(rdev); 2162 kobject_put(&rdev->kobj); 2163 } 2164 2165 static void kick_rdev_from_array(struct md_rdev *rdev) 2166 { 2167 unbind_rdev_from_array(rdev); 2168 export_rdev(rdev); 2169 } 2170 2171 static void export_array(struct mddev *mddev) 2172 { 2173 struct md_rdev *rdev; 2174 2175 while (!list_empty(&mddev->disks)) { 2176 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2177 same_set); 2178 kick_rdev_from_array(rdev); 2179 } 2180 mddev->raid_disks = 0; 2181 mddev->major_version = 0; 2182 } 2183 2184 static void sync_sbs(struct mddev *mddev, int nospares) 2185 { 2186 /* Update each superblock (in-memory image), but 2187 * if we are allowed to, skip spares which already 2188 * have the right event counter, or have one earlier 2189 * (which would mean they aren't being marked as dirty 2190 * with the rest of the array) 2191 */ 2192 struct md_rdev *rdev; 2193 rdev_for_each(rdev, mddev) { 2194 if (rdev->sb_events == mddev->events || 2195 (nospares && 2196 rdev->raid_disk < 0 && 2197 rdev->sb_events+1 == mddev->events)) { 2198 /* Don't update this superblock */ 2199 rdev->sb_loaded = 2; 2200 } else { 2201 sync_super(mddev, rdev); 2202 rdev->sb_loaded = 1; 2203 } 2204 } 2205 } 2206 2207 static void md_update_sb(struct mddev *mddev, int force_change) 2208 { 2209 struct md_rdev *rdev; 2210 int sync_req; 2211 int nospares = 0; 2212 int any_badblocks_changed = 0; 2213 2214 if (mddev->ro) { 2215 if (force_change) 2216 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2217 return; 2218 } 2219 repeat: 2220 /* First make sure individual recovery_offsets are correct */ 2221 rdev_for_each(rdev, mddev) { 2222 if (rdev->raid_disk >= 0 && 2223 mddev->delta_disks >= 0 && 2224 !test_bit(In_sync, &rdev->flags) && 2225 mddev->curr_resync_completed > rdev->recovery_offset) 2226 rdev->recovery_offset = mddev->curr_resync_completed; 2227 2228 } 2229 if (!mddev->persistent) { 2230 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2231 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2232 if (!mddev->external) { 2233 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2234 rdev_for_each(rdev, mddev) { 2235 if (rdev->badblocks.changed) { 2236 rdev->badblocks.changed = 0; 2237 md_ack_all_badblocks(&rdev->badblocks); 2238 md_error(mddev, rdev); 2239 } 2240 clear_bit(Blocked, &rdev->flags); 2241 clear_bit(BlockedBadBlocks, &rdev->flags); 2242 wake_up(&rdev->blocked_wait); 2243 } 2244 } 2245 wake_up(&mddev->sb_wait); 2246 return; 2247 } 2248 2249 spin_lock(&mddev->lock); 2250 2251 mddev->utime = get_seconds(); 2252 2253 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2254 force_change = 1; 2255 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2256 /* just a clean<-> dirty transition, possibly leave spares alone, 2257 * though if events isn't the right even/odd, we will have to do 2258 * spares after all 2259 */ 2260 nospares = 1; 2261 if (force_change) 2262 nospares = 0; 2263 if (mddev->degraded) 2264 /* If the array is degraded, then skipping spares is both 2265 * dangerous and fairly pointless. 2266 * Dangerous because a device that was removed from the array 2267 * might have a event_count that still looks up-to-date, 2268 * so it can be re-added without a resync. 2269 * Pointless because if there are any spares to skip, 2270 * then a recovery will happen and soon that array won't 2271 * be degraded any more and the spare can go back to sleep then. 2272 */ 2273 nospares = 0; 2274 2275 sync_req = mddev->in_sync; 2276 2277 /* If this is just a dirty<->clean transition, and the array is clean 2278 * and 'events' is odd, we can roll back to the previous clean state */ 2279 if (nospares 2280 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2281 && mddev->can_decrease_events 2282 && mddev->events != 1) { 2283 mddev->events--; 2284 mddev->can_decrease_events = 0; 2285 } else { 2286 /* otherwise we have to go forward and ... */ 2287 mddev->events ++; 2288 mddev->can_decrease_events = nospares; 2289 } 2290 2291 /* 2292 * This 64-bit counter should never wrap. 2293 * Either we are in around ~1 trillion A.C., assuming 2294 * 1 reboot per second, or we have a bug... 2295 */ 2296 WARN_ON(mddev->events == 0); 2297 2298 rdev_for_each(rdev, mddev) { 2299 if (rdev->badblocks.changed) 2300 any_badblocks_changed++; 2301 if (test_bit(Faulty, &rdev->flags)) 2302 set_bit(FaultRecorded, &rdev->flags); 2303 } 2304 2305 sync_sbs(mddev, nospares); 2306 spin_unlock(&mddev->lock); 2307 2308 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2309 mdname(mddev), mddev->in_sync); 2310 2311 bitmap_update_sb(mddev->bitmap); 2312 rdev_for_each(rdev, mddev) { 2313 char b[BDEVNAME_SIZE]; 2314 2315 if (rdev->sb_loaded != 1) 2316 continue; /* no noise on spare devices */ 2317 2318 if (!test_bit(Faulty, &rdev->flags)) { 2319 md_super_write(mddev,rdev, 2320 rdev->sb_start, rdev->sb_size, 2321 rdev->sb_page); 2322 pr_debug("md: (write) %s's sb offset: %llu\n", 2323 bdevname(rdev->bdev, b), 2324 (unsigned long long)rdev->sb_start); 2325 rdev->sb_events = mddev->events; 2326 if (rdev->badblocks.size) { 2327 md_super_write(mddev, rdev, 2328 rdev->badblocks.sector, 2329 rdev->badblocks.size << 9, 2330 rdev->bb_page); 2331 rdev->badblocks.size = 0; 2332 } 2333 2334 } else 2335 pr_debug("md: %s (skipping faulty)\n", 2336 bdevname(rdev->bdev, b)); 2337 2338 if (mddev->level == LEVEL_MULTIPATH) 2339 /* only need to write one superblock... */ 2340 break; 2341 } 2342 md_super_wait(mddev); 2343 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2344 2345 spin_lock(&mddev->lock); 2346 if (mddev->in_sync != sync_req || 2347 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2348 /* have to write it out again */ 2349 spin_unlock(&mddev->lock); 2350 goto repeat; 2351 } 2352 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2353 spin_unlock(&mddev->lock); 2354 wake_up(&mddev->sb_wait); 2355 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2356 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2357 2358 rdev_for_each(rdev, mddev) { 2359 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2360 clear_bit(Blocked, &rdev->flags); 2361 2362 if (any_badblocks_changed) 2363 md_ack_all_badblocks(&rdev->badblocks); 2364 clear_bit(BlockedBadBlocks, &rdev->flags); 2365 wake_up(&rdev->blocked_wait); 2366 } 2367 } 2368 2369 /* words written to sysfs files may, or may not, be \n terminated. 2370 * We want to accept with case. For this we use cmd_match. 2371 */ 2372 static int cmd_match(const char *cmd, const char *str) 2373 { 2374 /* See if cmd, written into a sysfs file, matches 2375 * str. They must either be the same, or cmd can 2376 * have a trailing newline 2377 */ 2378 while (*cmd && *str && *cmd == *str) { 2379 cmd++; 2380 str++; 2381 } 2382 if (*cmd == '\n') 2383 cmd++; 2384 if (*str || *cmd) 2385 return 0; 2386 return 1; 2387 } 2388 2389 struct rdev_sysfs_entry { 2390 struct attribute attr; 2391 ssize_t (*show)(struct md_rdev *, char *); 2392 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2393 }; 2394 2395 static ssize_t 2396 state_show(struct md_rdev *rdev, char *page) 2397 { 2398 char *sep = ""; 2399 size_t len = 0; 2400 unsigned long flags = ACCESS_ONCE(rdev->flags); 2401 2402 if (test_bit(Faulty, &flags) || 2403 rdev->badblocks.unacked_exist) { 2404 len+= sprintf(page+len, "%sfaulty",sep); 2405 sep = ","; 2406 } 2407 if (test_bit(In_sync, &flags)) { 2408 len += sprintf(page+len, "%sin_sync",sep); 2409 sep = ","; 2410 } 2411 if (test_bit(WriteMostly, &flags)) { 2412 len += sprintf(page+len, "%swrite_mostly",sep); 2413 sep = ","; 2414 } 2415 if (test_bit(Blocked, &flags) || 2416 (rdev->badblocks.unacked_exist 2417 && !test_bit(Faulty, &flags))) { 2418 len += sprintf(page+len, "%sblocked", sep); 2419 sep = ","; 2420 } 2421 if (!test_bit(Faulty, &flags) && 2422 !test_bit(In_sync, &flags)) { 2423 len += sprintf(page+len, "%sspare", sep); 2424 sep = ","; 2425 } 2426 if (test_bit(WriteErrorSeen, &flags)) { 2427 len += sprintf(page+len, "%swrite_error", sep); 2428 sep = ","; 2429 } 2430 if (test_bit(WantReplacement, &flags)) { 2431 len += sprintf(page+len, "%swant_replacement", sep); 2432 sep = ","; 2433 } 2434 if (test_bit(Replacement, &flags)) { 2435 len += sprintf(page+len, "%sreplacement", sep); 2436 sep = ","; 2437 } 2438 2439 return len+sprintf(page+len, "\n"); 2440 } 2441 2442 static ssize_t 2443 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2444 { 2445 /* can write 2446 * faulty - simulates an error 2447 * remove - disconnects the device 2448 * writemostly - sets write_mostly 2449 * -writemostly - clears write_mostly 2450 * blocked - sets the Blocked flags 2451 * -blocked - clears the Blocked and possibly simulates an error 2452 * insync - sets Insync providing device isn't active 2453 * -insync - clear Insync for a device with a slot assigned, 2454 * so that it gets rebuilt based on bitmap 2455 * write_error - sets WriteErrorSeen 2456 * -write_error - clears WriteErrorSeen 2457 */ 2458 int err = -EINVAL; 2459 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2460 md_error(rdev->mddev, rdev); 2461 if (test_bit(Faulty, &rdev->flags)) 2462 err = 0; 2463 else 2464 err = -EBUSY; 2465 } else if (cmd_match(buf, "remove")) { 2466 if (rdev->raid_disk >= 0) 2467 err = -EBUSY; 2468 else { 2469 struct mddev *mddev = rdev->mddev; 2470 kick_rdev_from_array(rdev); 2471 if (mddev->pers) 2472 md_update_sb(mddev, 1); 2473 md_new_event(mddev); 2474 err = 0; 2475 } 2476 } else if (cmd_match(buf, "writemostly")) { 2477 set_bit(WriteMostly, &rdev->flags); 2478 err = 0; 2479 } else if (cmd_match(buf, "-writemostly")) { 2480 clear_bit(WriteMostly, &rdev->flags); 2481 err = 0; 2482 } else if (cmd_match(buf, "blocked")) { 2483 set_bit(Blocked, &rdev->flags); 2484 err = 0; 2485 } else if (cmd_match(buf, "-blocked")) { 2486 if (!test_bit(Faulty, &rdev->flags) && 2487 rdev->badblocks.unacked_exist) { 2488 /* metadata handler doesn't understand badblocks, 2489 * so we need to fail the device 2490 */ 2491 md_error(rdev->mddev, rdev); 2492 } 2493 clear_bit(Blocked, &rdev->flags); 2494 clear_bit(BlockedBadBlocks, &rdev->flags); 2495 wake_up(&rdev->blocked_wait); 2496 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2497 md_wakeup_thread(rdev->mddev->thread); 2498 2499 err = 0; 2500 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2501 set_bit(In_sync, &rdev->flags); 2502 err = 0; 2503 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) { 2504 if (rdev->mddev->pers == NULL) { 2505 clear_bit(In_sync, &rdev->flags); 2506 rdev->saved_raid_disk = rdev->raid_disk; 2507 rdev->raid_disk = -1; 2508 err = 0; 2509 } 2510 } else if (cmd_match(buf, "write_error")) { 2511 set_bit(WriteErrorSeen, &rdev->flags); 2512 err = 0; 2513 } else if (cmd_match(buf, "-write_error")) { 2514 clear_bit(WriteErrorSeen, &rdev->flags); 2515 err = 0; 2516 } else if (cmd_match(buf, "want_replacement")) { 2517 /* Any non-spare device that is not a replacement can 2518 * become want_replacement at any time, but we then need to 2519 * check if recovery is needed. 2520 */ 2521 if (rdev->raid_disk >= 0 && 2522 !test_bit(Replacement, &rdev->flags)) 2523 set_bit(WantReplacement, &rdev->flags); 2524 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2525 md_wakeup_thread(rdev->mddev->thread); 2526 err = 0; 2527 } else if (cmd_match(buf, "-want_replacement")) { 2528 /* Clearing 'want_replacement' is always allowed. 2529 * Once replacements starts it is too late though. 2530 */ 2531 err = 0; 2532 clear_bit(WantReplacement, &rdev->flags); 2533 } else if (cmd_match(buf, "replacement")) { 2534 /* Can only set a device as a replacement when array has not 2535 * yet been started. Once running, replacement is automatic 2536 * from spares, or by assigning 'slot'. 2537 */ 2538 if (rdev->mddev->pers) 2539 err = -EBUSY; 2540 else { 2541 set_bit(Replacement, &rdev->flags); 2542 err = 0; 2543 } 2544 } else if (cmd_match(buf, "-replacement")) { 2545 /* Similarly, can only clear Replacement before start */ 2546 if (rdev->mddev->pers) 2547 err = -EBUSY; 2548 else { 2549 clear_bit(Replacement, &rdev->flags); 2550 err = 0; 2551 } 2552 } 2553 if (!err) 2554 sysfs_notify_dirent_safe(rdev->sysfs_state); 2555 return err ? err : len; 2556 } 2557 static struct rdev_sysfs_entry rdev_state = 2558 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2559 2560 static ssize_t 2561 errors_show(struct md_rdev *rdev, char *page) 2562 { 2563 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2564 } 2565 2566 static ssize_t 2567 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2568 { 2569 char *e; 2570 unsigned long n = simple_strtoul(buf, &e, 10); 2571 if (*buf && (*e == 0 || *e == '\n')) { 2572 atomic_set(&rdev->corrected_errors, n); 2573 return len; 2574 } 2575 return -EINVAL; 2576 } 2577 static struct rdev_sysfs_entry rdev_errors = 2578 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2579 2580 static ssize_t 2581 slot_show(struct md_rdev *rdev, char *page) 2582 { 2583 if (rdev->raid_disk < 0) 2584 return sprintf(page, "none\n"); 2585 else 2586 return sprintf(page, "%d\n", rdev->raid_disk); 2587 } 2588 2589 static ssize_t 2590 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2591 { 2592 char *e; 2593 int err; 2594 int slot = simple_strtoul(buf, &e, 10); 2595 if (strncmp(buf, "none", 4)==0) 2596 slot = -1; 2597 else if (e==buf || (*e && *e!= '\n')) 2598 return -EINVAL; 2599 if (rdev->mddev->pers && slot == -1) { 2600 /* Setting 'slot' on an active array requires also 2601 * updating the 'rd%d' link, and communicating 2602 * with the personality with ->hot_*_disk. 2603 * For now we only support removing 2604 * failed/spare devices. This normally happens automatically, 2605 * but not when the metadata is externally managed. 2606 */ 2607 if (rdev->raid_disk == -1) 2608 return -EEXIST; 2609 /* personality does all needed checks */ 2610 if (rdev->mddev->pers->hot_remove_disk == NULL) 2611 return -EINVAL; 2612 clear_bit(Blocked, &rdev->flags); 2613 remove_and_add_spares(rdev->mddev, rdev); 2614 if (rdev->raid_disk >= 0) 2615 return -EBUSY; 2616 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2617 md_wakeup_thread(rdev->mddev->thread); 2618 } else if (rdev->mddev->pers) { 2619 /* Activating a spare .. or possibly reactivating 2620 * if we ever get bitmaps working here. 2621 */ 2622 2623 if (rdev->raid_disk != -1) 2624 return -EBUSY; 2625 2626 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2627 return -EBUSY; 2628 2629 if (rdev->mddev->pers->hot_add_disk == NULL) 2630 return -EINVAL; 2631 2632 if (slot >= rdev->mddev->raid_disks && 2633 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2634 return -ENOSPC; 2635 2636 rdev->raid_disk = slot; 2637 if (test_bit(In_sync, &rdev->flags)) 2638 rdev->saved_raid_disk = slot; 2639 else 2640 rdev->saved_raid_disk = -1; 2641 clear_bit(In_sync, &rdev->flags); 2642 clear_bit(Bitmap_sync, &rdev->flags); 2643 err = rdev->mddev->pers-> 2644 hot_add_disk(rdev->mddev, rdev); 2645 if (err) { 2646 rdev->raid_disk = -1; 2647 return err; 2648 } else 2649 sysfs_notify_dirent_safe(rdev->sysfs_state); 2650 if (sysfs_link_rdev(rdev->mddev, rdev)) 2651 /* failure here is OK */; 2652 /* don't wakeup anyone, leave that to userspace. */ 2653 } else { 2654 if (slot >= rdev->mddev->raid_disks && 2655 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2656 return -ENOSPC; 2657 rdev->raid_disk = slot; 2658 /* assume it is working */ 2659 clear_bit(Faulty, &rdev->flags); 2660 clear_bit(WriteMostly, &rdev->flags); 2661 set_bit(In_sync, &rdev->flags); 2662 sysfs_notify_dirent_safe(rdev->sysfs_state); 2663 } 2664 return len; 2665 } 2666 2667 static struct rdev_sysfs_entry rdev_slot = 2668 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2669 2670 static ssize_t 2671 offset_show(struct md_rdev *rdev, char *page) 2672 { 2673 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2674 } 2675 2676 static ssize_t 2677 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2678 { 2679 unsigned long long offset; 2680 if (kstrtoull(buf, 10, &offset) < 0) 2681 return -EINVAL; 2682 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2683 return -EBUSY; 2684 if (rdev->sectors && rdev->mddev->external) 2685 /* Must set offset before size, so overlap checks 2686 * can be sane */ 2687 return -EBUSY; 2688 rdev->data_offset = offset; 2689 rdev->new_data_offset = offset; 2690 return len; 2691 } 2692 2693 static struct rdev_sysfs_entry rdev_offset = 2694 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2695 2696 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2697 { 2698 return sprintf(page, "%llu\n", 2699 (unsigned long long)rdev->new_data_offset); 2700 } 2701 2702 static ssize_t new_offset_store(struct md_rdev *rdev, 2703 const char *buf, size_t len) 2704 { 2705 unsigned long long new_offset; 2706 struct mddev *mddev = rdev->mddev; 2707 2708 if (kstrtoull(buf, 10, &new_offset) < 0) 2709 return -EINVAL; 2710 2711 if (mddev->sync_thread || 2712 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 2713 return -EBUSY; 2714 if (new_offset == rdev->data_offset) 2715 /* reset is always permitted */ 2716 ; 2717 else if (new_offset > rdev->data_offset) { 2718 /* must not push array size beyond rdev_sectors */ 2719 if (new_offset - rdev->data_offset 2720 + mddev->dev_sectors > rdev->sectors) 2721 return -E2BIG; 2722 } 2723 /* Metadata worries about other space details. */ 2724 2725 /* decreasing the offset is inconsistent with a backwards 2726 * reshape. 2727 */ 2728 if (new_offset < rdev->data_offset && 2729 mddev->reshape_backwards) 2730 return -EINVAL; 2731 /* Increasing offset is inconsistent with forwards 2732 * reshape. reshape_direction should be set to 2733 * 'backwards' first. 2734 */ 2735 if (new_offset > rdev->data_offset && 2736 !mddev->reshape_backwards) 2737 return -EINVAL; 2738 2739 if (mddev->pers && mddev->persistent && 2740 !super_types[mddev->major_version] 2741 .allow_new_offset(rdev, new_offset)) 2742 return -E2BIG; 2743 rdev->new_data_offset = new_offset; 2744 if (new_offset > rdev->data_offset) 2745 mddev->reshape_backwards = 1; 2746 else if (new_offset < rdev->data_offset) 2747 mddev->reshape_backwards = 0; 2748 2749 return len; 2750 } 2751 static struct rdev_sysfs_entry rdev_new_offset = 2752 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2753 2754 static ssize_t 2755 rdev_size_show(struct md_rdev *rdev, char *page) 2756 { 2757 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2758 } 2759 2760 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2761 { 2762 /* check if two start/length pairs overlap */ 2763 if (s1+l1 <= s2) 2764 return 0; 2765 if (s2+l2 <= s1) 2766 return 0; 2767 return 1; 2768 } 2769 2770 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2771 { 2772 unsigned long long blocks; 2773 sector_t new; 2774 2775 if (kstrtoull(buf, 10, &blocks) < 0) 2776 return -EINVAL; 2777 2778 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2779 return -EINVAL; /* sector conversion overflow */ 2780 2781 new = blocks * 2; 2782 if (new != blocks * 2) 2783 return -EINVAL; /* unsigned long long to sector_t overflow */ 2784 2785 *sectors = new; 2786 return 0; 2787 } 2788 2789 static ssize_t 2790 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2791 { 2792 struct mddev *my_mddev = rdev->mddev; 2793 sector_t oldsectors = rdev->sectors; 2794 sector_t sectors; 2795 2796 if (strict_blocks_to_sectors(buf, §ors) < 0) 2797 return -EINVAL; 2798 if (rdev->data_offset != rdev->new_data_offset) 2799 return -EINVAL; /* too confusing */ 2800 if (my_mddev->pers && rdev->raid_disk >= 0) { 2801 if (my_mddev->persistent) { 2802 sectors = super_types[my_mddev->major_version]. 2803 rdev_size_change(rdev, sectors); 2804 if (!sectors) 2805 return -EBUSY; 2806 } else if (!sectors) 2807 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2808 rdev->data_offset; 2809 if (!my_mddev->pers->resize) 2810 /* Cannot change size for RAID0 or Linear etc */ 2811 return -EINVAL; 2812 } 2813 if (sectors < my_mddev->dev_sectors) 2814 return -EINVAL; /* component must fit device */ 2815 2816 rdev->sectors = sectors; 2817 if (sectors > oldsectors && my_mddev->external) { 2818 /* Need to check that all other rdevs with the same 2819 * ->bdev do not overlap. 'rcu' is sufficient to walk 2820 * the rdev lists safely. 2821 * This check does not provide a hard guarantee, it 2822 * just helps avoid dangerous mistakes. 2823 */ 2824 struct mddev *mddev; 2825 int overlap = 0; 2826 struct list_head *tmp; 2827 2828 rcu_read_lock(); 2829 for_each_mddev(mddev, tmp) { 2830 struct md_rdev *rdev2; 2831 2832 rdev_for_each(rdev2, mddev) 2833 if (rdev->bdev == rdev2->bdev && 2834 rdev != rdev2 && 2835 overlaps(rdev->data_offset, rdev->sectors, 2836 rdev2->data_offset, 2837 rdev2->sectors)) { 2838 overlap = 1; 2839 break; 2840 } 2841 if (overlap) { 2842 mddev_put(mddev); 2843 break; 2844 } 2845 } 2846 rcu_read_unlock(); 2847 if (overlap) { 2848 /* Someone else could have slipped in a size 2849 * change here, but doing so is just silly. 2850 * We put oldsectors back because we *know* it is 2851 * safe, and trust userspace not to race with 2852 * itself 2853 */ 2854 rdev->sectors = oldsectors; 2855 return -EBUSY; 2856 } 2857 } 2858 return len; 2859 } 2860 2861 static struct rdev_sysfs_entry rdev_size = 2862 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2863 2864 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 2865 { 2866 unsigned long long recovery_start = rdev->recovery_offset; 2867 2868 if (test_bit(In_sync, &rdev->flags) || 2869 recovery_start == MaxSector) 2870 return sprintf(page, "none\n"); 2871 2872 return sprintf(page, "%llu\n", recovery_start); 2873 } 2874 2875 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 2876 { 2877 unsigned long long recovery_start; 2878 2879 if (cmd_match(buf, "none")) 2880 recovery_start = MaxSector; 2881 else if (kstrtoull(buf, 10, &recovery_start)) 2882 return -EINVAL; 2883 2884 if (rdev->mddev->pers && 2885 rdev->raid_disk >= 0) 2886 return -EBUSY; 2887 2888 rdev->recovery_offset = recovery_start; 2889 if (recovery_start == MaxSector) 2890 set_bit(In_sync, &rdev->flags); 2891 else 2892 clear_bit(In_sync, &rdev->flags); 2893 return len; 2894 } 2895 2896 static struct rdev_sysfs_entry rdev_recovery_start = 2897 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 2898 2899 static ssize_t 2900 badblocks_show(struct badblocks *bb, char *page, int unack); 2901 static ssize_t 2902 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 2903 2904 static ssize_t bb_show(struct md_rdev *rdev, char *page) 2905 { 2906 return badblocks_show(&rdev->badblocks, page, 0); 2907 } 2908 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 2909 { 2910 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 2911 /* Maybe that ack was all we needed */ 2912 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 2913 wake_up(&rdev->blocked_wait); 2914 return rv; 2915 } 2916 static struct rdev_sysfs_entry rdev_bad_blocks = 2917 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 2918 2919 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 2920 { 2921 return badblocks_show(&rdev->badblocks, page, 1); 2922 } 2923 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 2924 { 2925 return badblocks_store(&rdev->badblocks, page, len, 1); 2926 } 2927 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 2928 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 2929 2930 static struct attribute *rdev_default_attrs[] = { 2931 &rdev_state.attr, 2932 &rdev_errors.attr, 2933 &rdev_slot.attr, 2934 &rdev_offset.attr, 2935 &rdev_new_offset.attr, 2936 &rdev_size.attr, 2937 &rdev_recovery_start.attr, 2938 &rdev_bad_blocks.attr, 2939 &rdev_unack_bad_blocks.attr, 2940 NULL, 2941 }; 2942 static ssize_t 2943 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2944 { 2945 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2946 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 2947 2948 if (!entry->show) 2949 return -EIO; 2950 if (!rdev->mddev) 2951 return -EBUSY; 2952 return entry->show(rdev, page); 2953 } 2954 2955 static ssize_t 2956 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2957 const char *page, size_t length) 2958 { 2959 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2960 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 2961 ssize_t rv; 2962 struct mddev *mddev = rdev->mddev; 2963 2964 if (!entry->store) 2965 return -EIO; 2966 if (!capable(CAP_SYS_ADMIN)) 2967 return -EACCES; 2968 rv = mddev ? mddev_lock(mddev): -EBUSY; 2969 if (!rv) { 2970 if (rdev->mddev == NULL) 2971 rv = -EBUSY; 2972 else 2973 rv = entry->store(rdev, page, length); 2974 mddev_unlock(mddev); 2975 } 2976 return rv; 2977 } 2978 2979 static void rdev_free(struct kobject *ko) 2980 { 2981 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 2982 kfree(rdev); 2983 } 2984 static const struct sysfs_ops rdev_sysfs_ops = { 2985 .show = rdev_attr_show, 2986 .store = rdev_attr_store, 2987 }; 2988 static struct kobj_type rdev_ktype = { 2989 .release = rdev_free, 2990 .sysfs_ops = &rdev_sysfs_ops, 2991 .default_attrs = rdev_default_attrs, 2992 }; 2993 2994 int md_rdev_init(struct md_rdev *rdev) 2995 { 2996 rdev->desc_nr = -1; 2997 rdev->saved_raid_disk = -1; 2998 rdev->raid_disk = -1; 2999 rdev->flags = 0; 3000 rdev->data_offset = 0; 3001 rdev->new_data_offset = 0; 3002 rdev->sb_events = 0; 3003 rdev->last_read_error.tv_sec = 0; 3004 rdev->last_read_error.tv_nsec = 0; 3005 rdev->sb_loaded = 0; 3006 rdev->bb_page = NULL; 3007 atomic_set(&rdev->nr_pending, 0); 3008 atomic_set(&rdev->read_errors, 0); 3009 atomic_set(&rdev->corrected_errors, 0); 3010 3011 INIT_LIST_HEAD(&rdev->same_set); 3012 init_waitqueue_head(&rdev->blocked_wait); 3013 3014 /* Add space to store bad block list. 3015 * This reserves the space even on arrays where it cannot 3016 * be used - I wonder if that matters 3017 */ 3018 rdev->badblocks.count = 0; 3019 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */ 3020 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3021 seqlock_init(&rdev->badblocks.lock); 3022 if (rdev->badblocks.page == NULL) 3023 return -ENOMEM; 3024 3025 return 0; 3026 } 3027 EXPORT_SYMBOL_GPL(md_rdev_init); 3028 /* 3029 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3030 * 3031 * mark the device faulty if: 3032 * 3033 * - the device is nonexistent (zero size) 3034 * - the device has no valid superblock 3035 * 3036 * a faulty rdev _never_ has rdev->sb set. 3037 */ 3038 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3039 { 3040 char b[BDEVNAME_SIZE]; 3041 int err; 3042 struct md_rdev *rdev; 3043 sector_t size; 3044 3045 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3046 if (!rdev) { 3047 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3048 return ERR_PTR(-ENOMEM); 3049 } 3050 3051 err = md_rdev_init(rdev); 3052 if (err) 3053 goto abort_free; 3054 err = alloc_disk_sb(rdev); 3055 if (err) 3056 goto abort_free; 3057 3058 err = lock_rdev(rdev, newdev, super_format == -2); 3059 if (err) 3060 goto abort_free; 3061 3062 kobject_init(&rdev->kobj, &rdev_ktype); 3063 3064 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3065 if (!size) { 3066 printk(KERN_WARNING 3067 "md: %s has zero or unknown size, marking faulty!\n", 3068 bdevname(rdev->bdev,b)); 3069 err = -EINVAL; 3070 goto abort_free; 3071 } 3072 3073 if (super_format >= 0) { 3074 err = super_types[super_format]. 3075 load_super(rdev, NULL, super_minor); 3076 if (err == -EINVAL) { 3077 printk(KERN_WARNING 3078 "md: %s does not have a valid v%d.%d " 3079 "superblock, not importing!\n", 3080 bdevname(rdev->bdev,b), 3081 super_format, super_minor); 3082 goto abort_free; 3083 } 3084 if (err < 0) { 3085 printk(KERN_WARNING 3086 "md: could not read %s's sb, not importing!\n", 3087 bdevname(rdev->bdev,b)); 3088 goto abort_free; 3089 } 3090 } 3091 3092 return rdev; 3093 3094 abort_free: 3095 if (rdev->bdev) 3096 unlock_rdev(rdev); 3097 md_rdev_clear(rdev); 3098 kfree(rdev); 3099 return ERR_PTR(err); 3100 } 3101 3102 /* 3103 * Check a full RAID array for plausibility 3104 */ 3105 3106 static void analyze_sbs(struct mddev *mddev) 3107 { 3108 int i; 3109 struct md_rdev *rdev, *freshest, *tmp; 3110 char b[BDEVNAME_SIZE]; 3111 3112 freshest = NULL; 3113 rdev_for_each_safe(rdev, tmp, mddev) 3114 switch (super_types[mddev->major_version]. 3115 load_super(rdev, freshest, mddev->minor_version)) { 3116 case 1: 3117 freshest = rdev; 3118 break; 3119 case 0: 3120 break; 3121 default: 3122 printk( KERN_ERR \ 3123 "md: fatal superblock inconsistency in %s" 3124 " -- removing from array\n", 3125 bdevname(rdev->bdev,b)); 3126 kick_rdev_from_array(rdev); 3127 } 3128 3129 super_types[mddev->major_version]. 3130 validate_super(mddev, freshest); 3131 3132 i = 0; 3133 rdev_for_each_safe(rdev, tmp, mddev) { 3134 if (mddev->max_disks && 3135 (rdev->desc_nr >= mddev->max_disks || 3136 i > mddev->max_disks)) { 3137 printk(KERN_WARNING 3138 "md: %s: %s: only %d devices permitted\n", 3139 mdname(mddev), bdevname(rdev->bdev, b), 3140 mddev->max_disks); 3141 kick_rdev_from_array(rdev); 3142 continue; 3143 } 3144 if (rdev != freshest) 3145 if (super_types[mddev->major_version]. 3146 validate_super(mddev, rdev)) { 3147 printk(KERN_WARNING "md: kicking non-fresh %s" 3148 " from array!\n", 3149 bdevname(rdev->bdev,b)); 3150 kick_rdev_from_array(rdev); 3151 continue; 3152 } 3153 if (mddev->level == LEVEL_MULTIPATH) { 3154 rdev->desc_nr = i++; 3155 rdev->raid_disk = rdev->desc_nr; 3156 set_bit(In_sync, &rdev->flags); 3157 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3158 rdev->raid_disk = -1; 3159 clear_bit(In_sync, &rdev->flags); 3160 } 3161 } 3162 } 3163 3164 /* Read a fixed-point number. 3165 * Numbers in sysfs attributes should be in "standard" units where 3166 * possible, so time should be in seconds. 3167 * However we internally use a a much smaller unit such as 3168 * milliseconds or jiffies. 3169 * This function takes a decimal number with a possible fractional 3170 * component, and produces an integer which is the result of 3171 * multiplying that number by 10^'scale'. 3172 * all without any floating-point arithmetic. 3173 */ 3174 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3175 { 3176 unsigned long result = 0; 3177 long decimals = -1; 3178 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3179 if (*cp == '.') 3180 decimals = 0; 3181 else if (decimals < scale) { 3182 unsigned int value; 3183 value = *cp - '0'; 3184 result = result * 10 + value; 3185 if (decimals >= 0) 3186 decimals++; 3187 } 3188 cp++; 3189 } 3190 if (*cp == '\n') 3191 cp++; 3192 if (*cp) 3193 return -EINVAL; 3194 if (decimals < 0) 3195 decimals = 0; 3196 while (decimals < scale) { 3197 result *= 10; 3198 decimals ++; 3199 } 3200 *res = result; 3201 return 0; 3202 } 3203 3204 static void md_safemode_timeout(unsigned long data); 3205 3206 static ssize_t 3207 safe_delay_show(struct mddev *mddev, char *page) 3208 { 3209 int msec = (mddev->safemode_delay*1000)/HZ; 3210 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3211 } 3212 static ssize_t 3213 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3214 { 3215 unsigned long msec; 3216 3217 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3218 return -EINVAL; 3219 if (msec == 0) 3220 mddev->safemode_delay = 0; 3221 else { 3222 unsigned long old_delay = mddev->safemode_delay; 3223 unsigned long new_delay = (msec*HZ)/1000; 3224 3225 if (new_delay == 0) 3226 new_delay = 1; 3227 mddev->safemode_delay = new_delay; 3228 if (new_delay < old_delay || old_delay == 0) 3229 mod_timer(&mddev->safemode_timer, jiffies+1); 3230 } 3231 return len; 3232 } 3233 static struct md_sysfs_entry md_safe_delay = 3234 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3235 3236 static ssize_t 3237 level_show(struct mddev *mddev, char *page) 3238 { 3239 struct md_personality *p; 3240 int ret; 3241 spin_lock(&mddev->lock); 3242 p = mddev->pers; 3243 if (p) 3244 ret = sprintf(page, "%s\n", p->name); 3245 else if (mddev->clevel[0]) 3246 ret = sprintf(page, "%s\n", mddev->clevel); 3247 else if (mddev->level != LEVEL_NONE) 3248 ret = sprintf(page, "%d\n", mddev->level); 3249 else 3250 ret = 0; 3251 spin_unlock(&mddev->lock); 3252 return ret; 3253 } 3254 3255 static ssize_t 3256 level_store(struct mddev *mddev, const char *buf, size_t len) 3257 { 3258 char clevel[16]; 3259 ssize_t rv; 3260 size_t slen = len; 3261 struct md_personality *pers, *oldpers; 3262 long level; 3263 void *priv, *oldpriv; 3264 struct md_rdev *rdev; 3265 3266 if (slen == 0 || slen >= sizeof(clevel)) 3267 return -EINVAL; 3268 3269 rv = mddev_lock(mddev); 3270 if (rv) 3271 return rv; 3272 3273 if (mddev->pers == NULL) { 3274 strncpy(mddev->clevel, buf, slen); 3275 if (mddev->clevel[slen-1] == '\n') 3276 slen--; 3277 mddev->clevel[slen] = 0; 3278 mddev->level = LEVEL_NONE; 3279 rv = len; 3280 goto out_unlock; 3281 } 3282 rv = -EROFS; 3283 if (mddev->ro) 3284 goto out_unlock; 3285 3286 /* request to change the personality. Need to ensure: 3287 * - array is not engaged in resync/recovery/reshape 3288 * - old personality can be suspended 3289 * - new personality will access other array. 3290 */ 3291 3292 rv = -EBUSY; 3293 if (mddev->sync_thread || 3294 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3295 mddev->reshape_position != MaxSector || 3296 mddev->sysfs_active) 3297 goto out_unlock; 3298 3299 rv = -EINVAL; 3300 if (!mddev->pers->quiesce) { 3301 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3302 mdname(mddev), mddev->pers->name); 3303 goto out_unlock; 3304 } 3305 3306 /* Now find the new personality */ 3307 strncpy(clevel, buf, slen); 3308 if (clevel[slen-1] == '\n') 3309 slen--; 3310 clevel[slen] = 0; 3311 if (kstrtol(clevel, 10, &level)) 3312 level = LEVEL_NONE; 3313 3314 if (request_module("md-%s", clevel) != 0) 3315 request_module("md-level-%s", clevel); 3316 spin_lock(&pers_lock); 3317 pers = find_pers(level, clevel); 3318 if (!pers || !try_module_get(pers->owner)) { 3319 spin_unlock(&pers_lock); 3320 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3321 rv = -EINVAL; 3322 goto out_unlock; 3323 } 3324 spin_unlock(&pers_lock); 3325 3326 if (pers == mddev->pers) { 3327 /* Nothing to do! */ 3328 module_put(pers->owner); 3329 rv = len; 3330 goto out_unlock; 3331 } 3332 if (!pers->takeover) { 3333 module_put(pers->owner); 3334 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3335 mdname(mddev), clevel); 3336 rv = -EINVAL; 3337 goto out_unlock; 3338 } 3339 3340 rdev_for_each(rdev, mddev) 3341 rdev->new_raid_disk = rdev->raid_disk; 3342 3343 /* ->takeover must set new_* and/or delta_disks 3344 * if it succeeds, and may set them when it fails. 3345 */ 3346 priv = pers->takeover(mddev); 3347 if (IS_ERR(priv)) { 3348 mddev->new_level = mddev->level; 3349 mddev->new_layout = mddev->layout; 3350 mddev->new_chunk_sectors = mddev->chunk_sectors; 3351 mddev->raid_disks -= mddev->delta_disks; 3352 mddev->delta_disks = 0; 3353 mddev->reshape_backwards = 0; 3354 module_put(pers->owner); 3355 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3356 mdname(mddev), clevel); 3357 rv = PTR_ERR(priv); 3358 goto out_unlock; 3359 } 3360 3361 /* Looks like we have a winner */ 3362 mddev_suspend(mddev); 3363 mddev_detach(mddev); 3364 3365 spin_lock(&mddev->lock); 3366 oldpers = mddev->pers; 3367 oldpriv = mddev->private; 3368 mddev->pers = pers; 3369 mddev->private = priv; 3370 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3371 mddev->level = mddev->new_level; 3372 mddev->layout = mddev->new_layout; 3373 mddev->chunk_sectors = mddev->new_chunk_sectors; 3374 mddev->delta_disks = 0; 3375 mddev->reshape_backwards = 0; 3376 mddev->degraded = 0; 3377 spin_unlock(&mddev->lock); 3378 3379 if (oldpers->sync_request == NULL && 3380 mddev->external) { 3381 /* We are converting from a no-redundancy array 3382 * to a redundancy array and metadata is managed 3383 * externally so we need to be sure that writes 3384 * won't block due to a need to transition 3385 * clean->dirty 3386 * until external management is started. 3387 */ 3388 mddev->in_sync = 0; 3389 mddev->safemode_delay = 0; 3390 mddev->safemode = 0; 3391 } 3392 3393 oldpers->free(mddev, oldpriv); 3394 3395 if (oldpers->sync_request == NULL && 3396 pers->sync_request != NULL) { 3397 /* need to add the md_redundancy_group */ 3398 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3399 printk(KERN_WARNING 3400 "md: cannot register extra attributes for %s\n", 3401 mdname(mddev)); 3402 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3403 } 3404 if (oldpers->sync_request != NULL && 3405 pers->sync_request == NULL) { 3406 /* need to remove the md_redundancy_group */ 3407 if (mddev->to_remove == NULL) 3408 mddev->to_remove = &md_redundancy_group; 3409 } 3410 3411 rdev_for_each(rdev, mddev) { 3412 if (rdev->raid_disk < 0) 3413 continue; 3414 if (rdev->new_raid_disk >= mddev->raid_disks) 3415 rdev->new_raid_disk = -1; 3416 if (rdev->new_raid_disk == rdev->raid_disk) 3417 continue; 3418 sysfs_unlink_rdev(mddev, rdev); 3419 } 3420 rdev_for_each(rdev, mddev) { 3421 if (rdev->raid_disk < 0) 3422 continue; 3423 if (rdev->new_raid_disk == rdev->raid_disk) 3424 continue; 3425 rdev->raid_disk = rdev->new_raid_disk; 3426 if (rdev->raid_disk < 0) 3427 clear_bit(In_sync, &rdev->flags); 3428 else { 3429 if (sysfs_link_rdev(mddev, rdev)) 3430 printk(KERN_WARNING "md: cannot register rd%d" 3431 " for %s after level change\n", 3432 rdev->raid_disk, mdname(mddev)); 3433 } 3434 } 3435 3436 if (pers->sync_request == NULL) { 3437 /* this is now an array without redundancy, so 3438 * it must always be in_sync 3439 */ 3440 mddev->in_sync = 1; 3441 del_timer_sync(&mddev->safemode_timer); 3442 } 3443 blk_set_stacking_limits(&mddev->queue->limits); 3444 pers->run(mddev); 3445 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3446 mddev_resume(mddev); 3447 if (!mddev->thread) 3448 md_update_sb(mddev, 1); 3449 sysfs_notify(&mddev->kobj, NULL, "level"); 3450 md_new_event(mddev); 3451 rv = len; 3452 out_unlock: 3453 mddev_unlock(mddev); 3454 return rv; 3455 } 3456 3457 static struct md_sysfs_entry md_level = 3458 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3459 3460 static ssize_t 3461 layout_show(struct mddev *mddev, char *page) 3462 { 3463 /* just a number, not meaningful for all levels */ 3464 if (mddev->reshape_position != MaxSector && 3465 mddev->layout != mddev->new_layout) 3466 return sprintf(page, "%d (%d)\n", 3467 mddev->new_layout, mddev->layout); 3468 return sprintf(page, "%d\n", mddev->layout); 3469 } 3470 3471 static ssize_t 3472 layout_store(struct mddev *mddev, const char *buf, size_t len) 3473 { 3474 char *e; 3475 unsigned long n = simple_strtoul(buf, &e, 10); 3476 int err; 3477 3478 if (!*buf || (*e && *e != '\n')) 3479 return -EINVAL; 3480 err = mddev_lock(mddev); 3481 if (err) 3482 return err; 3483 3484 if (mddev->pers) { 3485 if (mddev->pers->check_reshape == NULL) 3486 err = -EBUSY; 3487 else if (mddev->ro) 3488 err = -EROFS; 3489 else { 3490 mddev->new_layout = n; 3491 err = mddev->pers->check_reshape(mddev); 3492 if (err) 3493 mddev->new_layout = mddev->layout; 3494 } 3495 } else { 3496 mddev->new_layout = n; 3497 if (mddev->reshape_position == MaxSector) 3498 mddev->layout = n; 3499 } 3500 mddev_unlock(mddev); 3501 return err ?: len; 3502 } 3503 static struct md_sysfs_entry md_layout = 3504 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3505 3506 static ssize_t 3507 raid_disks_show(struct mddev *mddev, char *page) 3508 { 3509 if (mddev->raid_disks == 0) 3510 return 0; 3511 if (mddev->reshape_position != MaxSector && 3512 mddev->delta_disks != 0) 3513 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3514 mddev->raid_disks - mddev->delta_disks); 3515 return sprintf(page, "%d\n", mddev->raid_disks); 3516 } 3517 3518 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3519 3520 static ssize_t 3521 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3522 { 3523 char *e; 3524 int err; 3525 unsigned long n = simple_strtoul(buf, &e, 10); 3526 3527 if (!*buf || (*e && *e != '\n')) 3528 return -EINVAL; 3529 3530 err = mddev_lock(mddev); 3531 if (err) 3532 return err; 3533 if (mddev->pers) 3534 err = update_raid_disks(mddev, n); 3535 else if (mddev->reshape_position != MaxSector) { 3536 struct md_rdev *rdev; 3537 int olddisks = mddev->raid_disks - mddev->delta_disks; 3538 3539 err = -EINVAL; 3540 rdev_for_each(rdev, mddev) { 3541 if (olddisks < n && 3542 rdev->data_offset < rdev->new_data_offset) 3543 goto out_unlock; 3544 if (olddisks > n && 3545 rdev->data_offset > rdev->new_data_offset) 3546 goto out_unlock; 3547 } 3548 err = 0; 3549 mddev->delta_disks = n - olddisks; 3550 mddev->raid_disks = n; 3551 mddev->reshape_backwards = (mddev->delta_disks < 0); 3552 } else 3553 mddev->raid_disks = n; 3554 out_unlock: 3555 mddev_unlock(mddev); 3556 return err ? err : len; 3557 } 3558 static struct md_sysfs_entry md_raid_disks = 3559 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3560 3561 static ssize_t 3562 chunk_size_show(struct mddev *mddev, char *page) 3563 { 3564 if (mddev->reshape_position != MaxSector && 3565 mddev->chunk_sectors != mddev->new_chunk_sectors) 3566 return sprintf(page, "%d (%d)\n", 3567 mddev->new_chunk_sectors << 9, 3568 mddev->chunk_sectors << 9); 3569 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3570 } 3571 3572 static ssize_t 3573 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3574 { 3575 int err; 3576 char *e; 3577 unsigned long n = simple_strtoul(buf, &e, 10); 3578 3579 if (!*buf || (*e && *e != '\n')) 3580 return -EINVAL; 3581 3582 err = mddev_lock(mddev); 3583 if (err) 3584 return err; 3585 if (mddev->pers) { 3586 if (mddev->pers->check_reshape == NULL) 3587 err = -EBUSY; 3588 else if (mddev->ro) 3589 err = -EROFS; 3590 else { 3591 mddev->new_chunk_sectors = n >> 9; 3592 err = mddev->pers->check_reshape(mddev); 3593 if (err) 3594 mddev->new_chunk_sectors = mddev->chunk_sectors; 3595 } 3596 } else { 3597 mddev->new_chunk_sectors = n >> 9; 3598 if (mddev->reshape_position == MaxSector) 3599 mddev->chunk_sectors = n >> 9; 3600 } 3601 mddev_unlock(mddev); 3602 return err ?: len; 3603 } 3604 static struct md_sysfs_entry md_chunk_size = 3605 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3606 3607 static ssize_t 3608 resync_start_show(struct mddev *mddev, char *page) 3609 { 3610 if (mddev->recovery_cp == MaxSector) 3611 return sprintf(page, "none\n"); 3612 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3613 } 3614 3615 static ssize_t 3616 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3617 { 3618 int err; 3619 char *e; 3620 unsigned long long n = simple_strtoull(buf, &e, 10); 3621 3622 err = mddev_lock(mddev); 3623 if (err) 3624 return err; 3625 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3626 err = -EBUSY; 3627 else if (cmd_match(buf, "none")) 3628 n = MaxSector; 3629 else if (!*buf || (*e && *e != '\n')) 3630 err = -EINVAL; 3631 3632 if (!err) { 3633 mddev->recovery_cp = n; 3634 if (mddev->pers) 3635 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3636 } 3637 mddev_unlock(mddev); 3638 return err ?: len; 3639 } 3640 static struct md_sysfs_entry md_resync_start = 3641 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3642 3643 /* 3644 * The array state can be: 3645 * 3646 * clear 3647 * No devices, no size, no level 3648 * Equivalent to STOP_ARRAY ioctl 3649 * inactive 3650 * May have some settings, but array is not active 3651 * all IO results in error 3652 * When written, doesn't tear down array, but just stops it 3653 * suspended (not supported yet) 3654 * All IO requests will block. The array can be reconfigured. 3655 * Writing this, if accepted, will block until array is quiescent 3656 * readonly 3657 * no resync can happen. no superblocks get written. 3658 * write requests fail 3659 * read-auto 3660 * like readonly, but behaves like 'clean' on a write request. 3661 * 3662 * clean - no pending writes, but otherwise active. 3663 * When written to inactive array, starts without resync 3664 * If a write request arrives then 3665 * if metadata is known, mark 'dirty' and switch to 'active'. 3666 * if not known, block and switch to write-pending 3667 * If written to an active array that has pending writes, then fails. 3668 * active 3669 * fully active: IO and resync can be happening. 3670 * When written to inactive array, starts with resync 3671 * 3672 * write-pending 3673 * clean, but writes are blocked waiting for 'active' to be written. 3674 * 3675 * active-idle 3676 * like active, but no writes have been seen for a while (100msec). 3677 * 3678 */ 3679 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3680 write_pending, active_idle, bad_word}; 3681 static char *array_states[] = { 3682 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3683 "write-pending", "active-idle", NULL }; 3684 3685 static int match_word(const char *word, char **list) 3686 { 3687 int n; 3688 for (n=0; list[n]; n++) 3689 if (cmd_match(word, list[n])) 3690 break; 3691 return n; 3692 } 3693 3694 static ssize_t 3695 array_state_show(struct mddev *mddev, char *page) 3696 { 3697 enum array_state st = inactive; 3698 3699 if (mddev->pers) 3700 switch(mddev->ro) { 3701 case 1: 3702 st = readonly; 3703 break; 3704 case 2: 3705 st = read_auto; 3706 break; 3707 case 0: 3708 if (mddev->in_sync) 3709 st = clean; 3710 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3711 st = write_pending; 3712 else if (mddev->safemode) 3713 st = active_idle; 3714 else 3715 st = active; 3716 } 3717 else { 3718 if (list_empty(&mddev->disks) && 3719 mddev->raid_disks == 0 && 3720 mddev->dev_sectors == 0) 3721 st = clear; 3722 else 3723 st = inactive; 3724 } 3725 return sprintf(page, "%s\n", array_states[st]); 3726 } 3727 3728 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 3729 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 3730 static int do_md_run(struct mddev *mddev); 3731 static int restart_array(struct mddev *mddev); 3732 3733 static ssize_t 3734 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3735 { 3736 int err; 3737 enum array_state st = match_word(buf, array_states); 3738 3739 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 3740 /* don't take reconfig_mutex when toggling between 3741 * clean and active 3742 */ 3743 spin_lock(&mddev->lock); 3744 if (st == active) { 3745 restart_array(mddev); 3746 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3747 wake_up(&mddev->sb_wait); 3748 err = 0; 3749 } else /* st == clean */ { 3750 restart_array(mddev); 3751 if (atomic_read(&mddev->writes_pending) == 0) { 3752 if (mddev->in_sync == 0) { 3753 mddev->in_sync = 1; 3754 if (mddev->safemode == 1) 3755 mddev->safemode = 0; 3756 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3757 } 3758 err = 0; 3759 } else 3760 err = -EBUSY; 3761 } 3762 spin_unlock(&mddev->lock); 3763 return err; 3764 } 3765 err = mddev_lock(mddev); 3766 if (err) 3767 return err; 3768 err = -EINVAL; 3769 switch(st) { 3770 case bad_word: 3771 break; 3772 case clear: 3773 /* stopping an active array */ 3774 err = do_md_stop(mddev, 0, NULL); 3775 break; 3776 case inactive: 3777 /* stopping an active array */ 3778 if (mddev->pers) 3779 err = do_md_stop(mddev, 2, NULL); 3780 else 3781 err = 0; /* already inactive */ 3782 break; 3783 case suspended: 3784 break; /* not supported yet */ 3785 case readonly: 3786 if (mddev->pers) 3787 err = md_set_readonly(mddev, NULL); 3788 else { 3789 mddev->ro = 1; 3790 set_disk_ro(mddev->gendisk, 1); 3791 err = do_md_run(mddev); 3792 } 3793 break; 3794 case read_auto: 3795 if (mddev->pers) { 3796 if (mddev->ro == 0) 3797 err = md_set_readonly(mddev, NULL); 3798 else if (mddev->ro == 1) 3799 err = restart_array(mddev); 3800 if (err == 0) { 3801 mddev->ro = 2; 3802 set_disk_ro(mddev->gendisk, 0); 3803 } 3804 } else { 3805 mddev->ro = 2; 3806 err = do_md_run(mddev); 3807 } 3808 break; 3809 case clean: 3810 if (mddev->pers) { 3811 restart_array(mddev); 3812 spin_lock(&mddev->lock); 3813 if (atomic_read(&mddev->writes_pending) == 0) { 3814 if (mddev->in_sync == 0) { 3815 mddev->in_sync = 1; 3816 if (mddev->safemode == 1) 3817 mddev->safemode = 0; 3818 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3819 } 3820 err = 0; 3821 } else 3822 err = -EBUSY; 3823 spin_unlock(&mddev->lock); 3824 } else 3825 err = -EINVAL; 3826 break; 3827 case active: 3828 if (mddev->pers) { 3829 restart_array(mddev); 3830 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3831 wake_up(&mddev->sb_wait); 3832 err = 0; 3833 } else { 3834 mddev->ro = 0; 3835 set_disk_ro(mddev->gendisk, 0); 3836 err = do_md_run(mddev); 3837 } 3838 break; 3839 case write_pending: 3840 case active_idle: 3841 /* these cannot be set */ 3842 break; 3843 } 3844 3845 if (!err) { 3846 if (mddev->hold_active == UNTIL_IOCTL) 3847 mddev->hold_active = 0; 3848 sysfs_notify_dirent_safe(mddev->sysfs_state); 3849 } 3850 mddev_unlock(mddev); 3851 return err ?: len; 3852 } 3853 static struct md_sysfs_entry md_array_state = 3854 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3855 3856 static ssize_t 3857 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 3858 return sprintf(page, "%d\n", 3859 atomic_read(&mddev->max_corr_read_errors)); 3860 } 3861 3862 static ssize_t 3863 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 3864 { 3865 char *e; 3866 unsigned long n = simple_strtoul(buf, &e, 10); 3867 3868 if (*buf && (*e == 0 || *e == '\n')) { 3869 atomic_set(&mddev->max_corr_read_errors, n); 3870 return len; 3871 } 3872 return -EINVAL; 3873 } 3874 3875 static struct md_sysfs_entry max_corr_read_errors = 3876 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3877 max_corrected_read_errors_store); 3878 3879 static ssize_t 3880 null_show(struct mddev *mddev, char *page) 3881 { 3882 return -EINVAL; 3883 } 3884 3885 static ssize_t 3886 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 3887 { 3888 /* buf must be %d:%d\n? giving major and minor numbers */ 3889 /* The new device is added to the array. 3890 * If the array has a persistent superblock, we read the 3891 * superblock to initialise info and check validity. 3892 * Otherwise, only checking done is that in bind_rdev_to_array, 3893 * which mainly checks size. 3894 */ 3895 char *e; 3896 int major = simple_strtoul(buf, &e, 10); 3897 int minor; 3898 dev_t dev; 3899 struct md_rdev *rdev; 3900 int err; 3901 3902 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3903 return -EINVAL; 3904 minor = simple_strtoul(e+1, &e, 10); 3905 if (*e && *e != '\n') 3906 return -EINVAL; 3907 dev = MKDEV(major, minor); 3908 if (major != MAJOR(dev) || 3909 minor != MINOR(dev)) 3910 return -EOVERFLOW; 3911 3912 flush_workqueue(md_misc_wq); 3913 3914 err = mddev_lock(mddev); 3915 if (err) 3916 return err; 3917 if (mddev->persistent) { 3918 rdev = md_import_device(dev, mddev->major_version, 3919 mddev->minor_version); 3920 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3921 struct md_rdev *rdev0 3922 = list_entry(mddev->disks.next, 3923 struct md_rdev, same_set); 3924 err = super_types[mddev->major_version] 3925 .load_super(rdev, rdev0, mddev->minor_version); 3926 if (err < 0) 3927 goto out; 3928 } 3929 } else if (mddev->external) 3930 rdev = md_import_device(dev, -2, -1); 3931 else 3932 rdev = md_import_device(dev, -1, -1); 3933 3934 if (IS_ERR(rdev)) 3935 return PTR_ERR(rdev); 3936 err = bind_rdev_to_array(rdev, mddev); 3937 out: 3938 if (err) 3939 export_rdev(rdev); 3940 mddev_unlock(mddev); 3941 return err ? err : len; 3942 } 3943 3944 static struct md_sysfs_entry md_new_device = 3945 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 3946 3947 static ssize_t 3948 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 3949 { 3950 char *end; 3951 unsigned long chunk, end_chunk; 3952 int err; 3953 3954 err = mddev_lock(mddev); 3955 if (err) 3956 return err; 3957 if (!mddev->bitmap) 3958 goto out; 3959 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 3960 while (*buf) { 3961 chunk = end_chunk = simple_strtoul(buf, &end, 0); 3962 if (buf == end) break; 3963 if (*end == '-') { /* range */ 3964 buf = end + 1; 3965 end_chunk = simple_strtoul(buf, &end, 0); 3966 if (buf == end) break; 3967 } 3968 if (*end && !isspace(*end)) break; 3969 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 3970 buf = skip_spaces(end); 3971 } 3972 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 3973 out: 3974 mddev_unlock(mddev); 3975 return len; 3976 } 3977 3978 static struct md_sysfs_entry md_bitmap = 3979 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 3980 3981 static ssize_t 3982 size_show(struct mddev *mddev, char *page) 3983 { 3984 return sprintf(page, "%llu\n", 3985 (unsigned long long)mddev->dev_sectors / 2); 3986 } 3987 3988 static int update_size(struct mddev *mddev, sector_t num_sectors); 3989 3990 static ssize_t 3991 size_store(struct mddev *mddev, const char *buf, size_t len) 3992 { 3993 /* If array is inactive, we can reduce the component size, but 3994 * not increase it (except from 0). 3995 * If array is active, we can try an on-line resize 3996 */ 3997 sector_t sectors; 3998 int err = strict_blocks_to_sectors(buf, §ors); 3999 4000 if (err < 0) 4001 return err; 4002 err = mddev_lock(mddev); 4003 if (err) 4004 return err; 4005 if (mddev->pers) { 4006 err = update_size(mddev, sectors); 4007 md_update_sb(mddev, 1); 4008 } else { 4009 if (mddev->dev_sectors == 0 || 4010 mddev->dev_sectors > sectors) 4011 mddev->dev_sectors = sectors; 4012 else 4013 err = -ENOSPC; 4014 } 4015 mddev_unlock(mddev); 4016 return err ? err : len; 4017 } 4018 4019 static struct md_sysfs_entry md_size = 4020 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4021 4022 /* Metadata version. 4023 * This is one of 4024 * 'none' for arrays with no metadata (good luck...) 4025 * 'external' for arrays with externally managed metadata, 4026 * or N.M for internally known formats 4027 */ 4028 static ssize_t 4029 metadata_show(struct mddev *mddev, char *page) 4030 { 4031 if (mddev->persistent) 4032 return sprintf(page, "%d.%d\n", 4033 mddev->major_version, mddev->minor_version); 4034 else if (mddev->external) 4035 return sprintf(page, "external:%s\n", mddev->metadata_type); 4036 else 4037 return sprintf(page, "none\n"); 4038 } 4039 4040 static ssize_t 4041 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4042 { 4043 int major, minor; 4044 char *e; 4045 int err; 4046 /* Changing the details of 'external' metadata is 4047 * always permitted. Otherwise there must be 4048 * no devices attached to the array. 4049 */ 4050 4051 err = mddev_lock(mddev); 4052 if (err) 4053 return err; 4054 err = -EBUSY; 4055 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4056 ; 4057 else if (!list_empty(&mddev->disks)) 4058 goto out_unlock; 4059 4060 err = 0; 4061 if (cmd_match(buf, "none")) { 4062 mddev->persistent = 0; 4063 mddev->external = 0; 4064 mddev->major_version = 0; 4065 mddev->minor_version = 90; 4066 goto out_unlock; 4067 } 4068 if (strncmp(buf, "external:", 9) == 0) { 4069 size_t namelen = len-9; 4070 if (namelen >= sizeof(mddev->metadata_type)) 4071 namelen = sizeof(mddev->metadata_type)-1; 4072 strncpy(mddev->metadata_type, buf+9, namelen); 4073 mddev->metadata_type[namelen] = 0; 4074 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4075 mddev->metadata_type[--namelen] = 0; 4076 mddev->persistent = 0; 4077 mddev->external = 1; 4078 mddev->major_version = 0; 4079 mddev->minor_version = 90; 4080 goto out_unlock; 4081 } 4082 major = simple_strtoul(buf, &e, 10); 4083 err = -EINVAL; 4084 if (e==buf || *e != '.') 4085 goto out_unlock; 4086 buf = e+1; 4087 minor = simple_strtoul(buf, &e, 10); 4088 if (e==buf || (*e && *e != '\n') ) 4089 goto out_unlock; 4090 err = -ENOENT; 4091 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4092 goto out_unlock; 4093 mddev->major_version = major; 4094 mddev->minor_version = minor; 4095 mddev->persistent = 1; 4096 mddev->external = 0; 4097 err = 0; 4098 out_unlock: 4099 mddev_unlock(mddev); 4100 return err ?: len; 4101 } 4102 4103 static struct md_sysfs_entry md_metadata = 4104 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4105 4106 static ssize_t 4107 action_show(struct mddev *mddev, char *page) 4108 { 4109 char *type = "idle"; 4110 unsigned long recovery = mddev->recovery; 4111 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4112 type = "frozen"; 4113 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4114 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4115 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4116 type = "reshape"; 4117 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4118 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4119 type = "resync"; 4120 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4121 type = "check"; 4122 else 4123 type = "repair"; 4124 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4125 type = "recover"; 4126 } 4127 return sprintf(page, "%s\n", type); 4128 } 4129 4130 static ssize_t 4131 action_store(struct mddev *mddev, const char *page, size_t len) 4132 { 4133 if (!mddev->pers || !mddev->pers->sync_request) 4134 return -EINVAL; 4135 4136 if (cmd_match(page, "frozen")) 4137 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4138 else 4139 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4140 4141 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4142 flush_workqueue(md_misc_wq); 4143 if (mddev->sync_thread) { 4144 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4145 if (mddev_lock(mddev) == 0) { 4146 md_reap_sync_thread(mddev); 4147 mddev_unlock(mddev); 4148 } 4149 } 4150 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4151 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4152 return -EBUSY; 4153 else if (cmd_match(page, "resync")) 4154 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4155 else if (cmd_match(page, "recover")) { 4156 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4157 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4158 } else if (cmd_match(page, "reshape")) { 4159 int err; 4160 if (mddev->pers->start_reshape == NULL) 4161 return -EINVAL; 4162 err = mddev_lock(mddev); 4163 if (!err) { 4164 err = mddev->pers->start_reshape(mddev); 4165 mddev_unlock(mddev); 4166 } 4167 if (err) 4168 return err; 4169 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4170 } else { 4171 if (cmd_match(page, "check")) 4172 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4173 else if (!cmd_match(page, "repair")) 4174 return -EINVAL; 4175 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4176 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4177 } 4178 if (mddev->ro == 2) { 4179 /* A write to sync_action is enough to justify 4180 * canceling read-auto mode 4181 */ 4182 mddev->ro = 0; 4183 md_wakeup_thread(mddev->sync_thread); 4184 } 4185 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4186 md_wakeup_thread(mddev->thread); 4187 sysfs_notify_dirent_safe(mddev->sysfs_action); 4188 return len; 4189 } 4190 4191 static struct md_sysfs_entry md_scan_mode = 4192 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4193 4194 static ssize_t 4195 last_sync_action_show(struct mddev *mddev, char *page) 4196 { 4197 return sprintf(page, "%s\n", mddev->last_sync_action); 4198 } 4199 4200 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4201 4202 static ssize_t 4203 mismatch_cnt_show(struct mddev *mddev, char *page) 4204 { 4205 return sprintf(page, "%llu\n", 4206 (unsigned long long) 4207 atomic64_read(&mddev->resync_mismatches)); 4208 } 4209 4210 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4211 4212 static ssize_t 4213 sync_min_show(struct mddev *mddev, char *page) 4214 { 4215 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4216 mddev->sync_speed_min ? "local": "system"); 4217 } 4218 4219 static ssize_t 4220 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4221 { 4222 int min; 4223 char *e; 4224 if (strncmp(buf, "system", 6)==0) { 4225 mddev->sync_speed_min = 0; 4226 return len; 4227 } 4228 min = simple_strtoul(buf, &e, 10); 4229 if (buf == e || (*e && *e != '\n') || min <= 0) 4230 return -EINVAL; 4231 mddev->sync_speed_min = min; 4232 return len; 4233 } 4234 4235 static struct md_sysfs_entry md_sync_min = 4236 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4237 4238 static ssize_t 4239 sync_max_show(struct mddev *mddev, char *page) 4240 { 4241 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4242 mddev->sync_speed_max ? "local": "system"); 4243 } 4244 4245 static ssize_t 4246 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4247 { 4248 int max; 4249 char *e; 4250 if (strncmp(buf, "system", 6)==0) { 4251 mddev->sync_speed_max = 0; 4252 return len; 4253 } 4254 max = simple_strtoul(buf, &e, 10); 4255 if (buf == e || (*e && *e != '\n') || max <= 0) 4256 return -EINVAL; 4257 mddev->sync_speed_max = max; 4258 return len; 4259 } 4260 4261 static struct md_sysfs_entry md_sync_max = 4262 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4263 4264 static ssize_t 4265 degraded_show(struct mddev *mddev, char *page) 4266 { 4267 return sprintf(page, "%d\n", mddev->degraded); 4268 } 4269 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4270 4271 static ssize_t 4272 sync_force_parallel_show(struct mddev *mddev, char *page) 4273 { 4274 return sprintf(page, "%d\n", mddev->parallel_resync); 4275 } 4276 4277 static ssize_t 4278 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4279 { 4280 long n; 4281 4282 if (kstrtol(buf, 10, &n)) 4283 return -EINVAL; 4284 4285 if (n != 0 && n != 1) 4286 return -EINVAL; 4287 4288 mddev->parallel_resync = n; 4289 4290 if (mddev->sync_thread) 4291 wake_up(&resync_wait); 4292 4293 return len; 4294 } 4295 4296 /* force parallel resync, even with shared block devices */ 4297 static struct md_sysfs_entry md_sync_force_parallel = 4298 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4299 sync_force_parallel_show, sync_force_parallel_store); 4300 4301 static ssize_t 4302 sync_speed_show(struct mddev *mddev, char *page) 4303 { 4304 unsigned long resync, dt, db; 4305 if (mddev->curr_resync == 0) 4306 return sprintf(page, "none\n"); 4307 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4308 dt = (jiffies - mddev->resync_mark) / HZ; 4309 if (!dt) dt++; 4310 db = resync - mddev->resync_mark_cnt; 4311 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4312 } 4313 4314 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4315 4316 static ssize_t 4317 sync_completed_show(struct mddev *mddev, char *page) 4318 { 4319 unsigned long long max_sectors, resync; 4320 4321 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4322 return sprintf(page, "none\n"); 4323 4324 if (mddev->curr_resync == 1 || 4325 mddev->curr_resync == 2) 4326 return sprintf(page, "delayed\n"); 4327 4328 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4329 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4330 max_sectors = mddev->resync_max_sectors; 4331 else 4332 max_sectors = mddev->dev_sectors; 4333 4334 resync = mddev->curr_resync_completed; 4335 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4336 } 4337 4338 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 4339 4340 static ssize_t 4341 min_sync_show(struct mddev *mddev, char *page) 4342 { 4343 return sprintf(page, "%llu\n", 4344 (unsigned long long)mddev->resync_min); 4345 } 4346 static ssize_t 4347 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4348 { 4349 unsigned long long min; 4350 int err; 4351 int chunk; 4352 4353 if (kstrtoull(buf, 10, &min)) 4354 return -EINVAL; 4355 4356 spin_lock(&mddev->lock); 4357 err = -EINVAL; 4358 if (min > mddev->resync_max) 4359 goto out_unlock; 4360 4361 err = -EBUSY; 4362 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4363 goto out_unlock; 4364 4365 /* Must be a multiple of chunk_size */ 4366 chunk = mddev->chunk_sectors; 4367 if (chunk) { 4368 sector_t temp = min; 4369 4370 err = -EINVAL; 4371 if (sector_div(temp, chunk)) 4372 goto out_unlock; 4373 } 4374 mddev->resync_min = min; 4375 err = 0; 4376 4377 out_unlock: 4378 spin_unlock(&mddev->lock); 4379 return err ?: len; 4380 } 4381 4382 static struct md_sysfs_entry md_min_sync = 4383 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4384 4385 static ssize_t 4386 max_sync_show(struct mddev *mddev, char *page) 4387 { 4388 if (mddev->resync_max == MaxSector) 4389 return sprintf(page, "max\n"); 4390 else 4391 return sprintf(page, "%llu\n", 4392 (unsigned long long)mddev->resync_max); 4393 } 4394 static ssize_t 4395 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4396 { 4397 int err; 4398 spin_lock(&mddev->lock); 4399 if (strncmp(buf, "max", 3) == 0) 4400 mddev->resync_max = MaxSector; 4401 else { 4402 unsigned long long max; 4403 int chunk; 4404 4405 err = -EINVAL; 4406 if (kstrtoull(buf, 10, &max)) 4407 goto out_unlock; 4408 if (max < mddev->resync_min) 4409 goto out_unlock; 4410 4411 err = -EBUSY; 4412 if (max < mddev->resync_max && 4413 mddev->ro == 0 && 4414 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4415 goto out_unlock; 4416 4417 /* Must be a multiple of chunk_size */ 4418 chunk = mddev->chunk_sectors; 4419 if (chunk) { 4420 sector_t temp = max; 4421 4422 err = -EINVAL; 4423 if (sector_div(temp, chunk)) 4424 goto out_unlock; 4425 } 4426 mddev->resync_max = max; 4427 } 4428 wake_up(&mddev->recovery_wait); 4429 err = 0; 4430 out_unlock: 4431 spin_unlock(&mddev->lock); 4432 return err ?: len; 4433 } 4434 4435 static struct md_sysfs_entry md_max_sync = 4436 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4437 4438 static ssize_t 4439 suspend_lo_show(struct mddev *mddev, char *page) 4440 { 4441 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4442 } 4443 4444 static ssize_t 4445 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4446 { 4447 char *e; 4448 unsigned long long new = simple_strtoull(buf, &e, 10); 4449 unsigned long long old; 4450 int err; 4451 4452 if (buf == e || (*e && *e != '\n')) 4453 return -EINVAL; 4454 4455 err = mddev_lock(mddev); 4456 if (err) 4457 return err; 4458 err = -EINVAL; 4459 if (mddev->pers == NULL || 4460 mddev->pers->quiesce == NULL) 4461 goto unlock; 4462 old = mddev->suspend_lo; 4463 mddev->suspend_lo = new; 4464 if (new >= old) 4465 /* Shrinking suspended region */ 4466 mddev->pers->quiesce(mddev, 2); 4467 else { 4468 /* Expanding suspended region - need to wait */ 4469 mddev->pers->quiesce(mddev, 1); 4470 mddev->pers->quiesce(mddev, 0); 4471 } 4472 err = 0; 4473 unlock: 4474 mddev_unlock(mddev); 4475 return err ?: len; 4476 } 4477 static struct md_sysfs_entry md_suspend_lo = 4478 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4479 4480 static ssize_t 4481 suspend_hi_show(struct mddev *mddev, char *page) 4482 { 4483 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4484 } 4485 4486 static ssize_t 4487 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4488 { 4489 char *e; 4490 unsigned long long new = simple_strtoull(buf, &e, 10); 4491 unsigned long long old; 4492 int err; 4493 4494 if (buf == e || (*e && *e != '\n')) 4495 return -EINVAL; 4496 4497 err = mddev_lock(mddev); 4498 if (err) 4499 return err; 4500 err = -EINVAL; 4501 if (mddev->pers == NULL || 4502 mddev->pers->quiesce == NULL) 4503 goto unlock; 4504 old = mddev->suspend_hi; 4505 mddev->suspend_hi = new; 4506 if (new <= old) 4507 /* Shrinking suspended region */ 4508 mddev->pers->quiesce(mddev, 2); 4509 else { 4510 /* Expanding suspended region - need to wait */ 4511 mddev->pers->quiesce(mddev, 1); 4512 mddev->pers->quiesce(mddev, 0); 4513 } 4514 err = 0; 4515 unlock: 4516 mddev_unlock(mddev); 4517 return err ?: len; 4518 } 4519 static struct md_sysfs_entry md_suspend_hi = 4520 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4521 4522 static ssize_t 4523 reshape_position_show(struct mddev *mddev, char *page) 4524 { 4525 if (mddev->reshape_position != MaxSector) 4526 return sprintf(page, "%llu\n", 4527 (unsigned long long)mddev->reshape_position); 4528 strcpy(page, "none\n"); 4529 return 5; 4530 } 4531 4532 static ssize_t 4533 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4534 { 4535 struct md_rdev *rdev; 4536 char *e; 4537 int err; 4538 unsigned long long new = simple_strtoull(buf, &e, 10); 4539 4540 if (buf == e || (*e && *e != '\n')) 4541 return -EINVAL; 4542 err = mddev_lock(mddev); 4543 if (err) 4544 return err; 4545 err = -EBUSY; 4546 if (mddev->pers) 4547 goto unlock; 4548 mddev->reshape_position = new; 4549 mddev->delta_disks = 0; 4550 mddev->reshape_backwards = 0; 4551 mddev->new_level = mddev->level; 4552 mddev->new_layout = mddev->layout; 4553 mddev->new_chunk_sectors = mddev->chunk_sectors; 4554 rdev_for_each(rdev, mddev) 4555 rdev->new_data_offset = rdev->data_offset; 4556 err = 0; 4557 unlock: 4558 mddev_unlock(mddev); 4559 return err ?: len; 4560 } 4561 4562 static struct md_sysfs_entry md_reshape_position = 4563 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4564 reshape_position_store); 4565 4566 static ssize_t 4567 reshape_direction_show(struct mddev *mddev, char *page) 4568 { 4569 return sprintf(page, "%s\n", 4570 mddev->reshape_backwards ? "backwards" : "forwards"); 4571 } 4572 4573 static ssize_t 4574 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4575 { 4576 int backwards = 0; 4577 int err; 4578 4579 if (cmd_match(buf, "forwards")) 4580 backwards = 0; 4581 else if (cmd_match(buf, "backwards")) 4582 backwards = 1; 4583 else 4584 return -EINVAL; 4585 if (mddev->reshape_backwards == backwards) 4586 return len; 4587 4588 err = mddev_lock(mddev); 4589 if (err) 4590 return err; 4591 /* check if we are allowed to change */ 4592 if (mddev->delta_disks) 4593 err = -EBUSY; 4594 else if (mddev->persistent && 4595 mddev->major_version == 0) 4596 err = -EINVAL; 4597 else 4598 mddev->reshape_backwards = backwards; 4599 mddev_unlock(mddev); 4600 return err ?: len; 4601 } 4602 4603 static struct md_sysfs_entry md_reshape_direction = 4604 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4605 reshape_direction_store); 4606 4607 static ssize_t 4608 array_size_show(struct mddev *mddev, char *page) 4609 { 4610 if (mddev->external_size) 4611 return sprintf(page, "%llu\n", 4612 (unsigned long long)mddev->array_sectors/2); 4613 else 4614 return sprintf(page, "default\n"); 4615 } 4616 4617 static ssize_t 4618 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4619 { 4620 sector_t sectors; 4621 int err; 4622 4623 err = mddev_lock(mddev); 4624 if (err) 4625 return err; 4626 4627 if (strncmp(buf, "default", 7) == 0) { 4628 if (mddev->pers) 4629 sectors = mddev->pers->size(mddev, 0, 0); 4630 else 4631 sectors = mddev->array_sectors; 4632 4633 mddev->external_size = 0; 4634 } else { 4635 if (strict_blocks_to_sectors(buf, §ors) < 0) 4636 err = -EINVAL; 4637 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4638 err = -E2BIG; 4639 else 4640 mddev->external_size = 1; 4641 } 4642 4643 if (!err) { 4644 mddev->array_sectors = sectors; 4645 if (mddev->pers) { 4646 set_capacity(mddev->gendisk, mddev->array_sectors); 4647 revalidate_disk(mddev->gendisk); 4648 } 4649 } 4650 mddev_unlock(mddev); 4651 return err ?: len; 4652 } 4653 4654 static struct md_sysfs_entry md_array_size = 4655 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4656 array_size_store); 4657 4658 static struct attribute *md_default_attrs[] = { 4659 &md_level.attr, 4660 &md_layout.attr, 4661 &md_raid_disks.attr, 4662 &md_chunk_size.attr, 4663 &md_size.attr, 4664 &md_resync_start.attr, 4665 &md_metadata.attr, 4666 &md_new_device.attr, 4667 &md_safe_delay.attr, 4668 &md_array_state.attr, 4669 &md_reshape_position.attr, 4670 &md_reshape_direction.attr, 4671 &md_array_size.attr, 4672 &max_corr_read_errors.attr, 4673 NULL, 4674 }; 4675 4676 static struct attribute *md_redundancy_attrs[] = { 4677 &md_scan_mode.attr, 4678 &md_last_scan_mode.attr, 4679 &md_mismatches.attr, 4680 &md_sync_min.attr, 4681 &md_sync_max.attr, 4682 &md_sync_speed.attr, 4683 &md_sync_force_parallel.attr, 4684 &md_sync_completed.attr, 4685 &md_min_sync.attr, 4686 &md_max_sync.attr, 4687 &md_suspend_lo.attr, 4688 &md_suspend_hi.attr, 4689 &md_bitmap.attr, 4690 &md_degraded.attr, 4691 NULL, 4692 }; 4693 static struct attribute_group md_redundancy_group = { 4694 .name = NULL, 4695 .attrs = md_redundancy_attrs, 4696 }; 4697 4698 static ssize_t 4699 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4700 { 4701 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4702 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4703 ssize_t rv; 4704 4705 if (!entry->show) 4706 return -EIO; 4707 spin_lock(&all_mddevs_lock); 4708 if (list_empty(&mddev->all_mddevs)) { 4709 spin_unlock(&all_mddevs_lock); 4710 return -EBUSY; 4711 } 4712 mddev_get(mddev); 4713 spin_unlock(&all_mddevs_lock); 4714 4715 rv = entry->show(mddev, page); 4716 mddev_put(mddev); 4717 return rv; 4718 } 4719 4720 static ssize_t 4721 md_attr_store(struct kobject *kobj, struct attribute *attr, 4722 const char *page, size_t length) 4723 { 4724 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4725 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4726 ssize_t rv; 4727 4728 if (!entry->store) 4729 return -EIO; 4730 if (!capable(CAP_SYS_ADMIN)) 4731 return -EACCES; 4732 spin_lock(&all_mddevs_lock); 4733 if (list_empty(&mddev->all_mddevs)) { 4734 spin_unlock(&all_mddevs_lock); 4735 return -EBUSY; 4736 } 4737 mddev_get(mddev); 4738 spin_unlock(&all_mddevs_lock); 4739 rv = entry->store(mddev, page, length); 4740 mddev_put(mddev); 4741 return rv; 4742 } 4743 4744 static void md_free(struct kobject *ko) 4745 { 4746 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4747 4748 if (mddev->sysfs_state) 4749 sysfs_put(mddev->sysfs_state); 4750 4751 if (mddev->gendisk) { 4752 del_gendisk(mddev->gendisk); 4753 put_disk(mddev->gendisk); 4754 } 4755 if (mddev->queue) 4756 blk_cleanup_queue(mddev->queue); 4757 4758 kfree(mddev); 4759 } 4760 4761 static const struct sysfs_ops md_sysfs_ops = { 4762 .show = md_attr_show, 4763 .store = md_attr_store, 4764 }; 4765 static struct kobj_type md_ktype = { 4766 .release = md_free, 4767 .sysfs_ops = &md_sysfs_ops, 4768 .default_attrs = md_default_attrs, 4769 }; 4770 4771 int mdp_major = 0; 4772 4773 static void mddev_delayed_delete(struct work_struct *ws) 4774 { 4775 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4776 4777 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4778 kobject_del(&mddev->kobj); 4779 kobject_put(&mddev->kobj); 4780 } 4781 4782 static int md_alloc(dev_t dev, char *name) 4783 { 4784 static DEFINE_MUTEX(disks_mutex); 4785 struct mddev *mddev = mddev_find(dev); 4786 struct gendisk *disk; 4787 int partitioned; 4788 int shift; 4789 int unit; 4790 int error; 4791 4792 if (!mddev) 4793 return -ENODEV; 4794 4795 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4796 shift = partitioned ? MdpMinorShift : 0; 4797 unit = MINOR(mddev->unit) >> shift; 4798 4799 /* wait for any previous instance of this device to be 4800 * completely removed (mddev_delayed_delete). 4801 */ 4802 flush_workqueue(md_misc_wq); 4803 4804 mutex_lock(&disks_mutex); 4805 error = -EEXIST; 4806 if (mddev->gendisk) 4807 goto abort; 4808 4809 if (name) { 4810 /* Need to ensure that 'name' is not a duplicate. 4811 */ 4812 struct mddev *mddev2; 4813 spin_lock(&all_mddevs_lock); 4814 4815 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4816 if (mddev2->gendisk && 4817 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4818 spin_unlock(&all_mddevs_lock); 4819 goto abort; 4820 } 4821 spin_unlock(&all_mddevs_lock); 4822 } 4823 4824 error = -ENOMEM; 4825 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4826 if (!mddev->queue) 4827 goto abort; 4828 mddev->queue->queuedata = mddev; 4829 4830 blk_queue_make_request(mddev->queue, md_make_request); 4831 blk_set_stacking_limits(&mddev->queue->limits); 4832 4833 disk = alloc_disk(1 << shift); 4834 if (!disk) { 4835 blk_cleanup_queue(mddev->queue); 4836 mddev->queue = NULL; 4837 goto abort; 4838 } 4839 disk->major = MAJOR(mddev->unit); 4840 disk->first_minor = unit << shift; 4841 if (name) 4842 strcpy(disk->disk_name, name); 4843 else if (partitioned) 4844 sprintf(disk->disk_name, "md_d%d", unit); 4845 else 4846 sprintf(disk->disk_name, "md%d", unit); 4847 disk->fops = &md_fops; 4848 disk->private_data = mddev; 4849 disk->queue = mddev->queue; 4850 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4851 /* Allow extended partitions. This makes the 4852 * 'mdp' device redundant, but we can't really 4853 * remove it now. 4854 */ 4855 disk->flags |= GENHD_FL_EXT_DEVT; 4856 mddev->gendisk = disk; 4857 /* As soon as we call add_disk(), another thread could get 4858 * through to md_open, so make sure it doesn't get too far 4859 */ 4860 mutex_lock(&mddev->open_mutex); 4861 add_disk(disk); 4862 4863 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4864 &disk_to_dev(disk)->kobj, "%s", "md"); 4865 if (error) { 4866 /* This isn't possible, but as kobject_init_and_add is marked 4867 * __must_check, we must do something with the result 4868 */ 4869 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4870 disk->disk_name); 4871 error = 0; 4872 } 4873 if (mddev->kobj.sd && 4874 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4875 printk(KERN_DEBUG "pointless warning\n"); 4876 mutex_unlock(&mddev->open_mutex); 4877 abort: 4878 mutex_unlock(&disks_mutex); 4879 if (!error && mddev->kobj.sd) { 4880 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4881 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4882 } 4883 mddev_put(mddev); 4884 return error; 4885 } 4886 4887 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4888 { 4889 md_alloc(dev, NULL); 4890 return NULL; 4891 } 4892 4893 static int add_named_array(const char *val, struct kernel_param *kp) 4894 { 4895 /* val must be "md_*" where * is not all digits. 4896 * We allocate an array with a large free minor number, and 4897 * set the name to val. val must not already be an active name. 4898 */ 4899 int len = strlen(val); 4900 char buf[DISK_NAME_LEN]; 4901 4902 while (len && val[len-1] == '\n') 4903 len--; 4904 if (len >= DISK_NAME_LEN) 4905 return -E2BIG; 4906 strlcpy(buf, val, len+1); 4907 if (strncmp(buf, "md_", 3) != 0) 4908 return -EINVAL; 4909 return md_alloc(0, buf); 4910 } 4911 4912 static void md_safemode_timeout(unsigned long data) 4913 { 4914 struct mddev *mddev = (struct mddev *) data; 4915 4916 if (!atomic_read(&mddev->writes_pending)) { 4917 mddev->safemode = 1; 4918 if (mddev->external) 4919 sysfs_notify_dirent_safe(mddev->sysfs_state); 4920 } 4921 md_wakeup_thread(mddev->thread); 4922 } 4923 4924 static int start_dirty_degraded; 4925 4926 int md_run(struct mddev *mddev) 4927 { 4928 int err; 4929 struct md_rdev *rdev; 4930 struct md_personality *pers; 4931 4932 if (list_empty(&mddev->disks)) 4933 /* cannot run an array with no devices.. */ 4934 return -EINVAL; 4935 4936 if (mddev->pers) 4937 return -EBUSY; 4938 /* Cannot run until previous stop completes properly */ 4939 if (mddev->sysfs_active) 4940 return -EBUSY; 4941 4942 /* 4943 * Analyze all RAID superblock(s) 4944 */ 4945 if (!mddev->raid_disks) { 4946 if (!mddev->persistent) 4947 return -EINVAL; 4948 analyze_sbs(mddev); 4949 } 4950 4951 if (mddev->level != LEVEL_NONE) 4952 request_module("md-level-%d", mddev->level); 4953 else if (mddev->clevel[0]) 4954 request_module("md-%s", mddev->clevel); 4955 4956 /* 4957 * Drop all container device buffers, from now on 4958 * the only valid external interface is through the md 4959 * device. 4960 */ 4961 rdev_for_each(rdev, mddev) { 4962 if (test_bit(Faulty, &rdev->flags)) 4963 continue; 4964 sync_blockdev(rdev->bdev); 4965 invalidate_bdev(rdev->bdev); 4966 4967 /* perform some consistency tests on the device. 4968 * We don't want the data to overlap the metadata, 4969 * Internal Bitmap issues have been handled elsewhere. 4970 */ 4971 if (rdev->meta_bdev) { 4972 /* Nothing to check */; 4973 } else if (rdev->data_offset < rdev->sb_start) { 4974 if (mddev->dev_sectors && 4975 rdev->data_offset + mddev->dev_sectors 4976 > rdev->sb_start) { 4977 printk("md: %s: data overlaps metadata\n", 4978 mdname(mddev)); 4979 return -EINVAL; 4980 } 4981 } else { 4982 if (rdev->sb_start + rdev->sb_size/512 4983 > rdev->data_offset) { 4984 printk("md: %s: metadata overlaps data\n", 4985 mdname(mddev)); 4986 return -EINVAL; 4987 } 4988 } 4989 sysfs_notify_dirent_safe(rdev->sysfs_state); 4990 } 4991 4992 if (mddev->bio_set == NULL) 4993 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 4994 4995 spin_lock(&pers_lock); 4996 pers = find_pers(mddev->level, mddev->clevel); 4997 if (!pers || !try_module_get(pers->owner)) { 4998 spin_unlock(&pers_lock); 4999 if (mddev->level != LEVEL_NONE) 5000 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5001 mddev->level); 5002 else 5003 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5004 mddev->clevel); 5005 return -EINVAL; 5006 } 5007 spin_unlock(&pers_lock); 5008 if (mddev->level != pers->level) { 5009 mddev->level = pers->level; 5010 mddev->new_level = pers->level; 5011 } 5012 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5013 5014 if (mddev->reshape_position != MaxSector && 5015 pers->start_reshape == NULL) { 5016 /* This personality cannot handle reshaping... */ 5017 module_put(pers->owner); 5018 return -EINVAL; 5019 } 5020 5021 if (pers->sync_request) { 5022 /* Warn if this is a potentially silly 5023 * configuration. 5024 */ 5025 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5026 struct md_rdev *rdev2; 5027 int warned = 0; 5028 5029 rdev_for_each(rdev, mddev) 5030 rdev_for_each(rdev2, mddev) { 5031 if (rdev < rdev2 && 5032 rdev->bdev->bd_contains == 5033 rdev2->bdev->bd_contains) { 5034 printk(KERN_WARNING 5035 "%s: WARNING: %s appears to be" 5036 " on the same physical disk as" 5037 " %s.\n", 5038 mdname(mddev), 5039 bdevname(rdev->bdev,b), 5040 bdevname(rdev2->bdev,b2)); 5041 warned = 1; 5042 } 5043 } 5044 5045 if (warned) 5046 printk(KERN_WARNING 5047 "True protection against single-disk" 5048 " failure might be compromised.\n"); 5049 } 5050 5051 mddev->recovery = 0; 5052 /* may be over-ridden by personality */ 5053 mddev->resync_max_sectors = mddev->dev_sectors; 5054 5055 mddev->ok_start_degraded = start_dirty_degraded; 5056 5057 if (start_readonly && mddev->ro == 0) 5058 mddev->ro = 2; /* read-only, but switch on first write */ 5059 5060 err = pers->run(mddev); 5061 if (err) 5062 printk(KERN_ERR "md: pers->run() failed ...\n"); 5063 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5064 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5065 " but 'external_size' not in effect?\n", __func__); 5066 printk(KERN_ERR 5067 "md: invalid array_size %llu > default size %llu\n", 5068 (unsigned long long)mddev->array_sectors / 2, 5069 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5070 err = -EINVAL; 5071 } 5072 if (err == 0 && pers->sync_request && 5073 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5074 err = bitmap_create(mddev); 5075 if (err) 5076 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5077 mdname(mddev), err); 5078 } 5079 if (err) { 5080 mddev_detach(mddev); 5081 pers->free(mddev, mddev->private); 5082 module_put(pers->owner); 5083 bitmap_destroy(mddev); 5084 return err; 5085 } 5086 if (mddev->queue) { 5087 mddev->queue->backing_dev_info.congested_data = mddev; 5088 mddev->queue->backing_dev_info.congested_fn = md_congested; 5089 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec); 5090 } 5091 if (pers->sync_request) { 5092 if (mddev->kobj.sd && 5093 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5094 printk(KERN_WARNING 5095 "md: cannot register extra attributes for %s\n", 5096 mdname(mddev)); 5097 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5098 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5099 mddev->ro = 0; 5100 5101 atomic_set(&mddev->writes_pending,0); 5102 atomic_set(&mddev->max_corr_read_errors, 5103 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5104 mddev->safemode = 0; 5105 mddev->safemode_timer.function = md_safemode_timeout; 5106 mddev->safemode_timer.data = (unsigned long) mddev; 5107 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5108 mddev->in_sync = 1; 5109 smp_wmb(); 5110 spin_lock(&mddev->lock); 5111 mddev->pers = pers; 5112 mddev->ready = 1; 5113 spin_unlock(&mddev->lock); 5114 rdev_for_each(rdev, mddev) 5115 if (rdev->raid_disk >= 0) 5116 if (sysfs_link_rdev(mddev, rdev)) 5117 /* failure here is OK */; 5118 5119 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5120 5121 if (mddev->flags & MD_UPDATE_SB_FLAGS) 5122 md_update_sb(mddev, 0); 5123 5124 md_new_event(mddev); 5125 sysfs_notify_dirent_safe(mddev->sysfs_state); 5126 sysfs_notify_dirent_safe(mddev->sysfs_action); 5127 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5128 return 0; 5129 } 5130 EXPORT_SYMBOL_GPL(md_run); 5131 5132 static int do_md_run(struct mddev *mddev) 5133 { 5134 int err; 5135 5136 err = md_run(mddev); 5137 if (err) 5138 goto out; 5139 err = bitmap_load(mddev); 5140 if (err) { 5141 bitmap_destroy(mddev); 5142 goto out; 5143 } 5144 5145 md_wakeup_thread(mddev->thread); 5146 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5147 5148 set_capacity(mddev->gendisk, mddev->array_sectors); 5149 revalidate_disk(mddev->gendisk); 5150 mddev->changed = 1; 5151 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5152 out: 5153 return err; 5154 } 5155 5156 static int restart_array(struct mddev *mddev) 5157 { 5158 struct gendisk *disk = mddev->gendisk; 5159 5160 /* Complain if it has no devices */ 5161 if (list_empty(&mddev->disks)) 5162 return -ENXIO; 5163 if (!mddev->pers) 5164 return -EINVAL; 5165 if (!mddev->ro) 5166 return -EBUSY; 5167 mddev->safemode = 0; 5168 mddev->ro = 0; 5169 set_disk_ro(disk, 0); 5170 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5171 mdname(mddev)); 5172 /* Kick recovery or resync if necessary */ 5173 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5174 md_wakeup_thread(mddev->thread); 5175 md_wakeup_thread(mddev->sync_thread); 5176 sysfs_notify_dirent_safe(mddev->sysfs_state); 5177 return 0; 5178 } 5179 5180 static void md_clean(struct mddev *mddev) 5181 { 5182 mddev->array_sectors = 0; 5183 mddev->external_size = 0; 5184 mddev->dev_sectors = 0; 5185 mddev->raid_disks = 0; 5186 mddev->recovery_cp = 0; 5187 mddev->resync_min = 0; 5188 mddev->resync_max = MaxSector; 5189 mddev->reshape_position = MaxSector; 5190 mddev->external = 0; 5191 mddev->persistent = 0; 5192 mddev->level = LEVEL_NONE; 5193 mddev->clevel[0] = 0; 5194 mddev->flags = 0; 5195 mddev->ro = 0; 5196 mddev->metadata_type[0] = 0; 5197 mddev->chunk_sectors = 0; 5198 mddev->ctime = mddev->utime = 0; 5199 mddev->layout = 0; 5200 mddev->max_disks = 0; 5201 mddev->events = 0; 5202 mddev->can_decrease_events = 0; 5203 mddev->delta_disks = 0; 5204 mddev->reshape_backwards = 0; 5205 mddev->new_level = LEVEL_NONE; 5206 mddev->new_layout = 0; 5207 mddev->new_chunk_sectors = 0; 5208 mddev->curr_resync = 0; 5209 atomic64_set(&mddev->resync_mismatches, 0); 5210 mddev->suspend_lo = mddev->suspend_hi = 0; 5211 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5212 mddev->recovery = 0; 5213 mddev->in_sync = 0; 5214 mddev->changed = 0; 5215 mddev->degraded = 0; 5216 mddev->safemode = 0; 5217 mddev->merge_check_needed = 0; 5218 mddev->bitmap_info.offset = 0; 5219 mddev->bitmap_info.default_offset = 0; 5220 mddev->bitmap_info.default_space = 0; 5221 mddev->bitmap_info.chunksize = 0; 5222 mddev->bitmap_info.daemon_sleep = 0; 5223 mddev->bitmap_info.max_write_behind = 0; 5224 } 5225 5226 static void __md_stop_writes(struct mddev *mddev) 5227 { 5228 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5229 flush_workqueue(md_misc_wq); 5230 if (mddev->sync_thread) { 5231 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5232 md_reap_sync_thread(mddev); 5233 } 5234 5235 del_timer_sync(&mddev->safemode_timer); 5236 5237 bitmap_flush(mddev); 5238 md_super_wait(mddev); 5239 5240 if (mddev->ro == 0 && 5241 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) { 5242 /* mark array as shutdown cleanly */ 5243 mddev->in_sync = 1; 5244 md_update_sb(mddev, 1); 5245 } 5246 } 5247 5248 void md_stop_writes(struct mddev *mddev) 5249 { 5250 mddev_lock_nointr(mddev); 5251 __md_stop_writes(mddev); 5252 mddev_unlock(mddev); 5253 } 5254 EXPORT_SYMBOL_GPL(md_stop_writes); 5255 5256 static void mddev_detach(struct mddev *mddev) 5257 { 5258 struct bitmap *bitmap = mddev->bitmap; 5259 /* wait for behind writes to complete */ 5260 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 5261 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n", 5262 mdname(mddev)); 5263 /* need to kick something here to make sure I/O goes? */ 5264 wait_event(bitmap->behind_wait, 5265 atomic_read(&bitmap->behind_writes) == 0); 5266 } 5267 if (mddev->pers && mddev->pers->quiesce) { 5268 mddev->pers->quiesce(mddev, 1); 5269 mddev->pers->quiesce(mddev, 0); 5270 } 5271 md_unregister_thread(&mddev->thread); 5272 if (mddev->queue) 5273 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5274 } 5275 5276 static void __md_stop(struct mddev *mddev) 5277 { 5278 struct md_personality *pers = mddev->pers; 5279 mddev_detach(mddev); 5280 spin_lock(&mddev->lock); 5281 mddev->ready = 0; 5282 mddev->pers = NULL; 5283 spin_unlock(&mddev->lock); 5284 pers->free(mddev, mddev->private); 5285 if (pers->sync_request && mddev->to_remove == NULL) 5286 mddev->to_remove = &md_redundancy_group; 5287 module_put(pers->owner); 5288 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5289 } 5290 5291 void md_stop(struct mddev *mddev) 5292 { 5293 /* stop the array and free an attached data structures. 5294 * This is called from dm-raid 5295 */ 5296 __md_stop(mddev); 5297 bitmap_destroy(mddev); 5298 if (mddev->bio_set) 5299 bioset_free(mddev->bio_set); 5300 } 5301 5302 EXPORT_SYMBOL_GPL(md_stop); 5303 5304 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5305 { 5306 int err = 0; 5307 int did_freeze = 0; 5308 5309 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5310 did_freeze = 1; 5311 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5312 md_wakeup_thread(mddev->thread); 5313 } 5314 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5315 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5316 if (mddev->sync_thread) 5317 /* Thread might be blocked waiting for metadata update 5318 * which will now never happen */ 5319 wake_up_process(mddev->sync_thread->tsk); 5320 5321 mddev_unlock(mddev); 5322 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5323 &mddev->recovery)); 5324 mddev_lock_nointr(mddev); 5325 5326 mutex_lock(&mddev->open_mutex); 5327 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5328 mddev->sync_thread || 5329 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 5330 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5331 printk("md: %s still in use.\n",mdname(mddev)); 5332 if (did_freeze) { 5333 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5334 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5335 md_wakeup_thread(mddev->thread); 5336 } 5337 err = -EBUSY; 5338 goto out; 5339 } 5340 if (mddev->pers) { 5341 __md_stop_writes(mddev); 5342 5343 err = -ENXIO; 5344 if (mddev->ro==1) 5345 goto out; 5346 mddev->ro = 1; 5347 set_disk_ro(mddev->gendisk, 1); 5348 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5349 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5350 md_wakeup_thread(mddev->thread); 5351 sysfs_notify_dirent_safe(mddev->sysfs_state); 5352 err = 0; 5353 } 5354 out: 5355 mutex_unlock(&mddev->open_mutex); 5356 return err; 5357 } 5358 5359 /* mode: 5360 * 0 - completely stop and dis-assemble array 5361 * 2 - stop but do not disassemble array 5362 */ 5363 static int do_md_stop(struct mddev *mddev, int mode, 5364 struct block_device *bdev) 5365 { 5366 struct gendisk *disk = mddev->gendisk; 5367 struct md_rdev *rdev; 5368 int did_freeze = 0; 5369 5370 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5371 did_freeze = 1; 5372 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5373 md_wakeup_thread(mddev->thread); 5374 } 5375 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5376 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5377 if (mddev->sync_thread) 5378 /* Thread might be blocked waiting for metadata update 5379 * which will now never happen */ 5380 wake_up_process(mddev->sync_thread->tsk); 5381 5382 mddev_unlock(mddev); 5383 wait_event(resync_wait, (mddev->sync_thread == NULL && 5384 !test_bit(MD_RECOVERY_RUNNING, 5385 &mddev->recovery))); 5386 mddev_lock_nointr(mddev); 5387 5388 mutex_lock(&mddev->open_mutex); 5389 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5390 mddev->sysfs_active || 5391 mddev->sync_thread || 5392 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 5393 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5394 printk("md: %s still in use.\n",mdname(mddev)); 5395 mutex_unlock(&mddev->open_mutex); 5396 if (did_freeze) { 5397 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5398 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5399 md_wakeup_thread(mddev->thread); 5400 } 5401 return -EBUSY; 5402 } 5403 if (mddev->pers) { 5404 if (mddev->ro) 5405 set_disk_ro(disk, 0); 5406 5407 __md_stop_writes(mddev); 5408 __md_stop(mddev); 5409 mddev->queue->merge_bvec_fn = NULL; 5410 mddev->queue->backing_dev_info.congested_fn = NULL; 5411 5412 /* tell userspace to handle 'inactive' */ 5413 sysfs_notify_dirent_safe(mddev->sysfs_state); 5414 5415 rdev_for_each(rdev, mddev) 5416 if (rdev->raid_disk >= 0) 5417 sysfs_unlink_rdev(mddev, rdev); 5418 5419 set_capacity(disk, 0); 5420 mutex_unlock(&mddev->open_mutex); 5421 mddev->changed = 1; 5422 revalidate_disk(disk); 5423 5424 if (mddev->ro) 5425 mddev->ro = 0; 5426 } else 5427 mutex_unlock(&mddev->open_mutex); 5428 /* 5429 * Free resources if final stop 5430 */ 5431 if (mode == 0) { 5432 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5433 5434 bitmap_destroy(mddev); 5435 if (mddev->bitmap_info.file) { 5436 struct file *f = mddev->bitmap_info.file; 5437 spin_lock(&mddev->lock); 5438 mddev->bitmap_info.file = NULL; 5439 spin_unlock(&mddev->lock); 5440 fput(f); 5441 } 5442 mddev->bitmap_info.offset = 0; 5443 5444 export_array(mddev); 5445 5446 md_clean(mddev); 5447 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5448 if (mddev->hold_active == UNTIL_STOP) 5449 mddev->hold_active = 0; 5450 } 5451 blk_integrity_unregister(disk); 5452 md_new_event(mddev); 5453 sysfs_notify_dirent_safe(mddev->sysfs_state); 5454 return 0; 5455 } 5456 5457 #ifndef MODULE 5458 static void autorun_array(struct mddev *mddev) 5459 { 5460 struct md_rdev *rdev; 5461 int err; 5462 5463 if (list_empty(&mddev->disks)) 5464 return; 5465 5466 printk(KERN_INFO "md: running: "); 5467 5468 rdev_for_each(rdev, mddev) { 5469 char b[BDEVNAME_SIZE]; 5470 printk("<%s>", bdevname(rdev->bdev,b)); 5471 } 5472 printk("\n"); 5473 5474 err = do_md_run(mddev); 5475 if (err) { 5476 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5477 do_md_stop(mddev, 0, NULL); 5478 } 5479 } 5480 5481 /* 5482 * lets try to run arrays based on all disks that have arrived 5483 * until now. (those are in pending_raid_disks) 5484 * 5485 * the method: pick the first pending disk, collect all disks with 5486 * the same UUID, remove all from the pending list and put them into 5487 * the 'same_array' list. Then order this list based on superblock 5488 * update time (freshest comes first), kick out 'old' disks and 5489 * compare superblocks. If everything's fine then run it. 5490 * 5491 * If "unit" is allocated, then bump its reference count 5492 */ 5493 static void autorun_devices(int part) 5494 { 5495 struct md_rdev *rdev0, *rdev, *tmp; 5496 struct mddev *mddev; 5497 char b[BDEVNAME_SIZE]; 5498 5499 printk(KERN_INFO "md: autorun ...\n"); 5500 while (!list_empty(&pending_raid_disks)) { 5501 int unit; 5502 dev_t dev; 5503 LIST_HEAD(candidates); 5504 rdev0 = list_entry(pending_raid_disks.next, 5505 struct md_rdev, same_set); 5506 5507 printk(KERN_INFO "md: considering %s ...\n", 5508 bdevname(rdev0->bdev,b)); 5509 INIT_LIST_HEAD(&candidates); 5510 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5511 if (super_90_load(rdev, rdev0, 0) >= 0) { 5512 printk(KERN_INFO "md: adding %s ...\n", 5513 bdevname(rdev->bdev,b)); 5514 list_move(&rdev->same_set, &candidates); 5515 } 5516 /* 5517 * now we have a set of devices, with all of them having 5518 * mostly sane superblocks. It's time to allocate the 5519 * mddev. 5520 */ 5521 if (part) { 5522 dev = MKDEV(mdp_major, 5523 rdev0->preferred_minor << MdpMinorShift); 5524 unit = MINOR(dev) >> MdpMinorShift; 5525 } else { 5526 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5527 unit = MINOR(dev); 5528 } 5529 if (rdev0->preferred_minor != unit) { 5530 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5531 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5532 break; 5533 } 5534 5535 md_probe(dev, NULL, NULL); 5536 mddev = mddev_find(dev); 5537 if (!mddev || !mddev->gendisk) { 5538 if (mddev) 5539 mddev_put(mddev); 5540 printk(KERN_ERR 5541 "md: cannot allocate memory for md drive.\n"); 5542 break; 5543 } 5544 if (mddev_lock(mddev)) 5545 printk(KERN_WARNING "md: %s locked, cannot run\n", 5546 mdname(mddev)); 5547 else if (mddev->raid_disks || mddev->major_version 5548 || !list_empty(&mddev->disks)) { 5549 printk(KERN_WARNING 5550 "md: %s already running, cannot run %s\n", 5551 mdname(mddev), bdevname(rdev0->bdev,b)); 5552 mddev_unlock(mddev); 5553 } else { 5554 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5555 mddev->persistent = 1; 5556 rdev_for_each_list(rdev, tmp, &candidates) { 5557 list_del_init(&rdev->same_set); 5558 if (bind_rdev_to_array(rdev, mddev)) 5559 export_rdev(rdev); 5560 } 5561 autorun_array(mddev); 5562 mddev_unlock(mddev); 5563 } 5564 /* on success, candidates will be empty, on error 5565 * it won't... 5566 */ 5567 rdev_for_each_list(rdev, tmp, &candidates) { 5568 list_del_init(&rdev->same_set); 5569 export_rdev(rdev); 5570 } 5571 mddev_put(mddev); 5572 } 5573 printk(KERN_INFO "md: ... autorun DONE.\n"); 5574 } 5575 #endif /* !MODULE */ 5576 5577 static int get_version(void __user *arg) 5578 { 5579 mdu_version_t ver; 5580 5581 ver.major = MD_MAJOR_VERSION; 5582 ver.minor = MD_MINOR_VERSION; 5583 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5584 5585 if (copy_to_user(arg, &ver, sizeof(ver))) 5586 return -EFAULT; 5587 5588 return 0; 5589 } 5590 5591 static int get_array_info(struct mddev *mddev, void __user *arg) 5592 { 5593 mdu_array_info_t info; 5594 int nr,working,insync,failed,spare; 5595 struct md_rdev *rdev; 5596 5597 nr = working = insync = failed = spare = 0; 5598 rcu_read_lock(); 5599 rdev_for_each_rcu(rdev, mddev) { 5600 nr++; 5601 if (test_bit(Faulty, &rdev->flags)) 5602 failed++; 5603 else { 5604 working++; 5605 if (test_bit(In_sync, &rdev->flags)) 5606 insync++; 5607 else 5608 spare++; 5609 } 5610 } 5611 rcu_read_unlock(); 5612 5613 info.major_version = mddev->major_version; 5614 info.minor_version = mddev->minor_version; 5615 info.patch_version = MD_PATCHLEVEL_VERSION; 5616 info.ctime = mddev->ctime; 5617 info.level = mddev->level; 5618 info.size = mddev->dev_sectors / 2; 5619 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5620 info.size = -1; 5621 info.nr_disks = nr; 5622 info.raid_disks = mddev->raid_disks; 5623 info.md_minor = mddev->md_minor; 5624 info.not_persistent= !mddev->persistent; 5625 5626 info.utime = mddev->utime; 5627 info.state = 0; 5628 if (mddev->in_sync) 5629 info.state = (1<<MD_SB_CLEAN); 5630 if (mddev->bitmap && mddev->bitmap_info.offset) 5631 info.state |= (1<<MD_SB_BITMAP_PRESENT); 5632 info.active_disks = insync; 5633 info.working_disks = working; 5634 info.failed_disks = failed; 5635 info.spare_disks = spare; 5636 5637 info.layout = mddev->layout; 5638 info.chunk_size = mddev->chunk_sectors << 9; 5639 5640 if (copy_to_user(arg, &info, sizeof(info))) 5641 return -EFAULT; 5642 5643 return 0; 5644 } 5645 5646 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 5647 { 5648 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5649 char *ptr; 5650 int err; 5651 5652 file = kmalloc(sizeof(*file), GFP_NOIO); 5653 if (!file) 5654 return -ENOMEM; 5655 5656 err = 0; 5657 spin_lock(&mddev->lock); 5658 /* bitmap disabled, zero the first byte and copy out */ 5659 if (!mddev->bitmap_info.file) 5660 file->pathname[0] = '\0'; 5661 else if ((ptr = d_path(&mddev->bitmap_info.file->f_path, 5662 file->pathname, sizeof(file->pathname))), 5663 IS_ERR(ptr)) 5664 err = PTR_ERR(ptr); 5665 else 5666 memmove(file->pathname, ptr, 5667 sizeof(file->pathname)-(ptr-file->pathname)); 5668 spin_unlock(&mddev->lock); 5669 5670 if (err == 0 && 5671 copy_to_user(arg, file, sizeof(*file))) 5672 err = -EFAULT; 5673 5674 kfree(file); 5675 return err; 5676 } 5677 5678 static int get_disk_info(struct mddev *mddev, void __user * arg) 5679 { 5680 mdu_disk_info_t info; 5681 struct md_rdev *rdev; 5682 5683 if (copy_from_user(&info, arg, sizeof(info))) 5684 return -EFAULT; 5685 5686 rcu_read_lock(); 5687 rdev = find_rdev_nr_rcu(mddev, info.number); 5688 if (rdev) { 5689 info.major = MAJOR(rdev->bdev->bd_dev); 5690 info.minor = MINOR(rdev->bdev->bd_dev); 5691 info.raid_disk = rdev->raid_disk; 5692 info.state = 0; 5693 if (test_bit(Faulty, &rdev->flags)) 5694 info.state |= (1<<MD_DISK_FAULTY); 5695 else if (test_bit(In_sync, &rdev->flags)) { 5696 info.state |= (1<<MD_DISK_ACTIVE); 5697 info.state |= (1<<MD_DISK_SYNC); 5698 } 5699 if (test_bit(WriteMostly, &rdev->flags)) 5700 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5701 } else { 5702 info.major = info.minor = 0; 5703 info.raid_disk = -1; 5704 info.state = (1<<MD_DISK_REMOVED); 5705 } 5706 rcu_read_unlock(); 5707 5708 if (copy_to_user(arg, &info, sizeof(info))) 5709 return -EFAULT; 5710 5711 return 0; 5712 } 5713 5714 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 5715 { 5716 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5717 struct md_rdev *rdev; 5718 dev_t dev = MKDEV(info->major,info->minor); 5719 5720 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5721 return -EOVERFLOW; 5722 5723 if (!mddev->raid_disks) { 5724 int err; 5725 /* expecting a device which has a superblock */ 5726 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5727 if (IS_ERR(rdev)) { 5728 printk(KERN_WARNING 5729 "md: md_import_device returned %ld\n", 5730 PTR_ERR(rdev)); 5731 return PTR_ERR(rdev); 5732 } 5733 if (!list_empty(&mddev->disks)) { 5734 struct md_rdev *rdev0 5735 = list_entry(mddev->disks.next, 5736 struct md_rdev, same_set); 5737 err = super_types[mddev->major_version] 5738 .load_super(rdev, rdev0, mddev->minor_version); 5739 if (err < 0) { 5740 printk(KERN_WARNING 5741 "md: %s has different UUID to %s\n", 5742 bdevname(rdev->bdev,b), 5743 bdevname(rdev0->bdev,b2)); 5744 export_rdev(rdev); 5745 return -EINVAL; 5746 } 5747 } 5748 err = bind_rdev_to_array(rdev, mddev); 5749 if (err) 5750 export_rdev(rdev); 5751 return err; 5752 } 5753 5754 /* 5755 * add_new_disk can be used once the array is assembled 5756 * to add "hot spares". They must already have a superblock 5757 * written 5758 */ 5759 if (mddev->pers) { 5760 int err; 5761 if (!mddev->pers->hot_add_disk) { 5762 printk(KERN_WARNING 5763 "%s: personality does not support diskops!\n", 5764 mdname(mddev)); 5765 return -EINVAL; 5766 } 5767 if (mddev->persistent) 5768 rdev = md_import_device(dev, mddev->major_version, 5769 mddev->minor_version); 5770 else 5771 rdev = md_import_device(dev, -1, -1); 5772 if (IS_ERR(rdev)) { 5773 printk(KERN_WARNING 5774 "md: md_import_device returned %ld\n", 5775 PTR_ERR(rdev)); 5776 return PTR_ERR(rdev); 5777 } 5778 /* set saved_raid_disk if appropriate */ 5779 if (!mddev->persistent) { 5780 if (info->state & (1<<MD_DISK_SYNC) && 5781 info->raid_disk < mddev->raid_disks) { 5782 rdev->raid_disk = info->raid_disk; 5783 set_bit(In_sync, &rdev->flags); 5784 clear_bit(Bitmap_sync, &rdev->flags); 5785 } else 5786 rdev->raid_disk = -1; 5787 rdev->saved_raid_disk = rdev->raid_disk; 5788 } else 5789 super_types[mddev->major_version]. 5790 validate_super(mddev, rdev); 5791 if ((info->state & (1<<MD_DISK_SYNC)) && 5792 rdev->raid_disk != info->raid_disk) { 5793 /* This was a hot-add request, but events doesn't 5794 * match, so reject it. 5795 */ 5796 export_rdev(rdev); 5797 return -EINVAL; 5798 } 5799 5800 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5801 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5802 set_bit(WriteMostly, &rdev->flags); 5803 else 5804 clear_bit(WriteMostly, &rdev->flags); 5805 5806 rdev->raid_disk = -1; 5807 err = bind_rdev_to_array(rdev, mddev); 5808 if (!err && !mddev->pers->hot_remove_disk) { 5809 /* If there is hot_add_disk but no hot_remove_disk 5810 * then added disks for geometry changes, 5811 * and should be added immediately. 5812 */ 5813 super_types[mddev->major_version]. 5814 validate_super(mddev, rdev); 5815 err = mddev->pers->hot_add_disk(mddev, rdev); 5816 if (err) 5817 unbind_rdev_from_array(rdev); 5818 } 5819 if (err) 5820 export_rdev(rdev); 5821 else 5822 sysfs_notify_dirent_safe(rdev->sysfs_state); 5823 5824 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5825 if (mddev->degraded) 5826 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5827 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5828 if (!err) 5829 md_new_event(mddev); 5830 md_wakeup_thread(mddev->thread); 5831 return err; 5832 } 5833 5834 /* otherwise, add_new_disk is only allowed 5835 * for major_version==0 superblocks 5836 */ 5837 if (mddev->major_version != 0) { 5838 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5839 mdname(mddev)); 5840 return -EINVAL; 5841 } 5842 5843 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5844 int err; 5845 rdev = md_import_device(dev, -1, 0); 5846 if (IS_ERR(rdev)) { 5847 printk(KERN_WARNING 5848 "md: error, md_import_device() returned %ld\n", 5849 PTR_ERR(rdev)); 5850 return PTR_ERR(rdev); 5851 } 5852 rdev->desc_nr = info->number; 5853 if (info->raid_disk < mddev->raid_disks) 5854 rdev->raid_disk = info->raid_disk; 5855 else 5856 rdev->raid_disk = -1; 5857 5858 if (rdev->raid_disk < mddev->raid_disks) 5859 if (info->state & (1<<MD_DISK_SYNC)) 5860 set_bit(In_sync, &rdev->flags); 5861 5862 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5863 set_bit(WriteMostly, &rdev->flags); 5864 5865 if (!mddev->persistent) { 5866 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5867 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5868 } else 5869 rdev->sb_start = calc_dev_sboffset(rdev); 5870 rdev->sectors = rdev->sb_start; 5871 5872 err = bind_rdev_to_array(rdev, mddev); 5873 if (err) { 5874 export_rdev(rdev); 5875 return err; 5876 } 5877 } 5878 5879 return 0; 5880 } 5881 5882 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 5883 { 5884 char b[BDEVNAME_SIZE]; 5885 struct md_rdev *rdev; 5886 5887 rdev = find_rdev(mddev, dev); 5888 if (!rdev) 5889 return -ENXIO; 5890 5891 clear_bit(Blocked, &rdev->flags); 5892 remove_and_add_spares(mddev, rdev); 5893 5894 if (rdev->raid_disk >= 0) 5895 goto busy; 5896 5897 kick_rdev_from_array(rdev); 5898 md_update_sb(mddev, 1); 5899 md_new_event(mddev); 5900 5901 return 0; 5902 busy: 5903 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5904 bdevname(rdev->bdev,b), mdname(mddev)); 5905 return -EBUSY; 5906 } 5907 5908 static int hot_add_disk(struct mddev *mddev, dev_t dev) 5909 { 5910 char b[BDEVNAME_SIZE]; 5911 int err; 5912 struct md_rdev *rdev; 5913 5914 if (!mddev->pers) 5915 return -ENODEV; 5916 5917 if (mddev->major_version != 0) { 5918 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5919 " version-0 superblocks.\n", 5920 mdname(mddev)); 5921 return -EINVAL; 5922 } 5923 if (!mddev->pers->hot_add_disk) { 5924 printk(KERN_WARNING 5925 "%s: personality does not support diskops!\n", 5926 mdname(mddev)); 5927 return -EINVAL; 5928 } 5929 5930 rdev = md_import_device(dev, -1, 0); 5931 if (IS_ERR(rdev)) { 5932 printk(KERN_WARNING 5933 "md: error, md_import_device() returned %ld\n", 5934 PTR_ERR(rdev)); 5935 return -EINVAL; 5936 } 5937 5938 if (mddev->persistent) 5939 rdev->sb_start = calc_dev_sboffset(rdev); 5940 else 5941 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5942 5943 rdev->sectors = rdev->sb_start; 5944 5945 if (test_bit(Faulty, &rdev->flags)) { 5946 printk(KERN_WARNING 5947 "md: can not hot-add faulty %s disk to %s!\n", 5948 bdevname(rdev->bdev,b), mdname(mddev)); 5949 err = -EINVAL; 5950 goto abort_export; 5951 } 5952 clear_bit(In_sync, &rdev->flags); 5953 rdev->desc_nr = -1; 5954 rdev->saved_raid_disk = -1; 5955 err = bind_rdev_to_array(rdev, mddev); 5956 if (err) 5957 goto abort_export; 5958 5959 /* 5960 * The rest should better be atomic, we can have disk failures 5961 * noticed in interrupt contexts ... 5962 */ 5963 5964 rdev->raid_disk = -1; 5965 5966 md_update_sb(mddev, 1); 5967 5968 /* 5969 * Kick recovery, maybe this spare has to be added to the 5970 * array immediately. 5971 */ 5972 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5973 md_wakeup_thread(mddev->thread); 5974 md_new_event(mddev); 5975 return 0; 5976 5977 abort_export: 5978 export_rdev(rdev); 5979 return err; 5980 } 5981 5982 static int set_bitmap_file(struct mddev *mddev, int fd) 5983 { 5984 int err = 0; 5985 5986 if (mddev->pers) { 5987 if (!mddev->pers->quiesce || !mddev->thread) 5988 return -EBUSY; 5989 if (mddev->recovery || mddev->sync_thread) 5990 return -EBUSY; 5991 /* we should be able to change the bitmap.. */ 5992 } 5993 5994 if (fd >= 0) { 5995 struct inode *inode; 5996 struct file *f; 5997 5998 if (mddev->bitmap || mddev->bitmap_info.file) 5999 return -EEXIST; /* cannot add when bitmap is present */ 6000 f = fget(fd); 6001 6002 if (f == NULL) { 6003 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 6004 mdname(mddev)); 6005 return -EBADF; 6006 } 6007 6008 inode = f->f_mapping->host; 6009 if (!S_ISREG(inode->i_mode)) { 6010 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n", 6011 mdname(mddev)); 6012 err = -EBADF; 6013 } else if (!(f->f_mode & FMODE_WRITE)) { 6014 printk(KERN_ERR "%s: error: bitmap file must open for write\n", 6015 mdname(mddev)); 6016 err = -EBADF; 6017 } else if (atomic_read(&inode->i_writecount) != 1) { 6018 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 6019 mdname(mddev)); 6020 err = -EBUSY; 6021 } 6022 if (err) { 6023 fput(f); 6024 return err; 6025 } 6026 mddev->bitmap_info.file = f; 6027 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6028 } else if (mddev->bitmap == NULL) 6029 return -ENOENT; /* cannot remove what isn't there */ 6030 err = 0; 6031 if (mddev->pers) { 6032 mddev->pers->quiesce(mddev, 1); 6033 if (fd >= 0) { 6034 err = bitmap_create(mddev); 6035 if (!err) 6036 err = bitmap_load(mddev); 6037 } 6038 if (fd < 0 || err) { 6039 bitmap_destroy(mddev); 6040 fd = -1; /* make sure to put the file */ 6041 } 6042 mddev->pers->quiesce(mddev, 0); 6043 } 6044 if (fd < 0) { 6045 struct file *f = mddev->bitmap_info.file; 6046 if (f) { 6047 spin_lock(&mddev->lock); 6048 mddev->bitmap_info.file = NULL; 6049 spin_unlock(&mddev->lock); 6050 fput(f); 6051 } 6052 } 6053 6054 return err; 6055 } 6056 6057 /* 6058 * set_array_info is used two different ways 6059 * The original usage is when creating a new array. 6060 * In this usage, raid_disks is > 0 and it together with 6061 * level, size, not_persistent,layout,chunksize determine the 6062 * shape of the array. 6063 * This will always create an array with a type-0.90.0 superblock. 6064 * The newer usage is when assembling an array. 6065 * In this case raid_disks will be 0, and the major_version field is 6066 * use to determine which style super-blocks are to be found on the devices. 6067 * The minor and patch _version numbers are also kept incase the 6068 * super_block handler wishes to interpret them. 6069 */ 6070 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6071 { 6072 6073 if (info->raid_disks == 0) { 6074 /* just setting version number for superblock loading */ 6075 if (info->major_version < 0 || 6076 info->major_version >= ARRAY_SIZE(super_types) || 6077 super_types[info->major_version].name == NULL) { 6078 /* maybe try to auto-load a module? */ 6079 printk(KERN_INFO 6080 "md: superblock version %d not known\n", 6081 info->major_version); 6082 return -EINVAL; 6083 } 6084 mddev->major_version = info->major_version; 6085 mddev->minor_version = info->minor_version; 6086 mddev->patch_version = info->patch_version; 6087 mddev->persistent = !info->not_persistent; 6088 /* ensure mddev_put doesn't delete this now that there 6089 * is some minimal configuration. 6090 */ 6091 mddev->ctime = get_seconds(); 6092 return 0; 6093 } 6094 mddev->major_version = MD_MAJOR_VERSION; 6095 mddev->minor_version = MD_MINOR_VERSION; 6096 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6097 mddev->ctime = get_seconds(); 6098 6099 mddev->level = info->level; 6100 mddev->clevel[0] = 0; 6101 mddev->dev_sectors = 2 * (sector_t)info->size; 6102 mddev->raid_disks = info->raid_disks; 6103 /* don't set md_minor, it is determined by which /dev/md* was 6104 * openned 6105 */ 6106 if (info->state & (1<<MD_SB_CLEAN)) 6107 mddev->recovery_cp = MaxSector; 6108 else 6109 mddev->recovery_cp = 0; 6110 mddev->persistent = ! info->not_persistent; 6111 mddev->external = 0; 6112 6113 mddev->layout = info->layout; 6114 mddev->chunk_sectors = info->chunk_size >> 9; 6115 6116 mddev->max_disks = MD_SB_DISKS; 6117 6118 if (mddev->persistent) 6119 mddev->flags = 0; 6120 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6121 6122 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6123 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6124 mddev->bitmap_info.offset = 0; 6125 6126 mddev->reshape_position = MaxSector; 6127 6128 /* 6129 * Generate a 128 bit UUID 6130 */ 6131 get_random_bytes(mddev->uuid, 16); 6132 6133 mddev->new_level = mddev->level; 6134 mddev->new_chunk_sectors = mddev->chunk_sectors; 6135 mddev->new_layout = mddev->layout; 6136 mddev->delta_disks = 0; 6137 mddev->reshape_backwards = 0; 6138 6139 return 0; 6140 } 6141 6142 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6143 { 6144 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6145 6146 if (mddev->external_size) 6147 return; 6148 6149 mddev->array_sectors = array_sectors; 6150 } 6151 EXPORT_SYMBOL(md_set_array_sectors); 6152 6153 static int update_size(struct mddev *mddev, sector_t num_sectors) 6154 { 6155 struct md_rdev *rdev; 6156 int rv; 6157 int fit = (num_sectors == 0); 6158 6159 if (mddev->pers->resize == NULL) 6160 return -EINVAL; 6161 /* The "num_sectors" is the number of sectors of each device that 6162 * is used. This can only make sense for arrays with redundancy. 6163 * linear and raid0 always use whatever space is available. We can only 6164 * consider changing this number if no resync or reconstruction is 6165 * happening, and if the new size is acceptable. It must fit before the 6166 * sb_start or, if that is <data_offset, it must fit before the size 6167 * of each device. If num_sectors is zero, we find the largest size 6168 * that fits. 6169 */ 6170 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6171 mddev->sync_thread) 6172 return -EBUSY; 6173 if (mddev->ro) 6174 return -EROFS; 6175 6176 rdev_for_each(rdev, mddev) { 6177 sector_t avail = rdev->sectors; 6178 6179 if (fit && (num_sectors == 0 || num_sectors > avail)) 6180 num_sectors = avail; 6181 if (avail < num_sectors) 6182 return -ENOSPC; 6183 } 6184 rv = mddev->pers->resize(mddev, num_sectors); 6185 if (!rv) 6186 revalidate_disk(mddev->gendisk); 6187 return rv; 6188 } 6189 6190 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6191 { 6192 int rv; 6193 struct md_rdev *rdev; 6194 /* change the number of raid disks */ 6195 if (mddev->pers->check_reshape == NULL) 6196 return -EINVAL; 6197 if (mddev->ro) 6198 return -EROFS; 6199 if (raid_disks <= 0 || 6200 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6201 return -EINVAL; 6202 if (mddev->sync_thread || 6203 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6204 mddev->reshape_position != MaxSector) 6205 return -EBUSY; 6206 6207 rdev_for_each(rdev, mddev) { 6208 if (mddev->raid_disks < raid_disks && 6209 rdev->data_offset < rdev->new_data_offset) 6210 return -EINVAL; 6211 if (mddev->raid_disks > raid_disks && 6212 rdev->data_offset > rdev->new_data_offset) 6213 return -EINVAL; 6214 } 6215 6216 mddev->delta_disks = raid_disks - mddev->raid_disks; 6217 if (mddev->delta_disks < 0) 6218 mddev->reshape_backwards = 1; 6219 else if (mddev->delta_disks > 0) 6220 mddev->reshape_backwards = 0; 6221 6222 rv = mddev->pers->check_reshape(mddev); 6223 if (rv < 0) { 6224 mddev->delta_disks = 0; 6225 mddev->reshape_backwards = 0; 6226 } 6227 return rv; 6228 } 6229 6230 /* 6231 * update_array_info is used to change the configuration of an 6232 * on-line array. 6233 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6234 * fields in the info are checked against the array. 6235 * Any differences that cannot be handled will cause an error. 6236 * Normally, only one change can be managed at a time. 6237 */ 6238 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6239 { 6240 int rv = 0; 6241 int cnt = 0; 6242 int state = 0; 6243 6244 /* calculate expected state,ignoring low bits */ 6245 if (mddev->bitmap && mddev->bitmap_info.offset) 6246 state |= (1 << MD_SB_BITMAP_PRESENT); 6247 6248 if (mddev->major_version != info->major_version || 6249 mddev->minor_version != info->minor_version || 6250 /* mddev->patch_version != info->patch_version || */ 6251 mddev->ctime != info->ctime || 6252 mddev->level != info->level || 6253 /* mddev->layout != info->layout || */ 6254 !mddev->persistent != info->not_persistent|| 6255 mddev->chunk_sectors != info->chunk_size >> 9 || 6256 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6257 ((state^info->state) & 0xfffffe00) 6258 ) 6259 return -EINVAL; 6260 /* Check there is only one change */ 6261 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6262 cnt++; 6263 if (mddev->raid_disks != info->raid_disks) 6264 cnt++; 6265 if (mddev->layout != info->layout) 6266 cnt++; 6267 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6268 cnt++; 6269 if (cnt == 0) 6270 return 0; 6271 if (cnt > 1) 6272 return -EINVAL; 6273 6274 if (mddev->layout != info->layout) { 6275 /* Change layout 6276 * we don't need to do anything at the md level, the 6277 * personality will take care of it all. 6278 */ 6279 if (mddev->pers->check_reshape == NULL) 6280 return -EINVAL; 6281 else { 6282 mddev->new_layout = info->layout; 6283 rv = mddev->pers->check_reshape(mddev); 6284 if (rv) 6285 mddev->new_layout = mddev->layout; 6286 return rv; 6287 } 6288 } 6289 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6290 rv = update_size(mddev, (sector_t)info->size * 2); 6291 6292 if (mddev->raid_disks != info->raid_disks) 6293 rv = update_raid_disks(mddev, info->raid_disks); 6294 6295 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6296 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) 6297 return -EINVAL; 6298 if (mddev->recovery || mddev->sync_thread) 6299 return -EBUSY; 6300 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6301 /* add the bitmap */ 6302 if (mddev->bitmap) 6303 return -EEXIST; 6304 if (mddev->bitmap_info.default_offset == 0) 6305 return -EINVAL; 6306 mddev->bitmap_info.offset = 6307 mddev->bitmap_info.default_offset; 6308 mddev->bitmap_info.space = 6309 mddev->bitmap_info.default_space; 6310 mddev->pers->quiesce(mddev, 1); 6311 rv = bitmap_create(mddev); 6312 if (!rv) 6313 rv = bitmap_load(mddev); 6314 if (rv) 6315 bitmap_destroy(mddev); 6316 mddev->pers->quiesce(mddev, 0); 6317 } else { 6318 /* remove the bitmap */ 6319 if (!mddev->bitmap) 6320 return -ENOENT; 6321 if (mddev->bitmap->storage.file) 6322 return -EINVAL; 6323 mddev->pers->quiesce(mddev, 1); 6324 bitmap_destroy(mddev); 6325 mddev->pers->quiesce(mddev, 0); 6326 mddev->bitmap_info.offset = 0; 6327 } 6328 } 6329 md_update_sb(mddev, 1); 6330 return rv; 6331 } 6332 6333 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6334 { 6335 struct md_rdev *rdev; 6336 int err = 0; 6337 6338 if (mddev->pers == NULL) 6339 return -ENODEV; 6340 6341 rcu_read_lock(); 6342 rdev = find_rdev_rcu(mddev, dev); 6343 if (!rdev) 6344 err = -ENODEV; 6345 else { 6346 md_error(mddev, rdev); 6347 if (!test_bit(Faulty, &rdev->flags)) 6348 err = -EBUSY; 6349 } 6350 rcu_read_unlock(); 6351 return err; 6352 } 6353 6354 /* 6355 * We have a problem here : there is no easy way to give a CHS 6356 * virtual geometry. We currently pretend that we have a 2 heads 6357 * 4 sectors (with a BIG number of cylinders...). This drives 6358 * dosfs just mad... ;-) 6359 */ 6360 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6361 { 6362 struct mddev *mddev = bdev->bd_disk->private_data; 6363 6364 geo->heads = 2; 6365 geo->sectors = 4; 6366 geo->cylinders = mddev->array_sectors / 8; 6367 return 0; 6368 } 6369 6370 static inline bool md_ioctl_valid(unsigned int cmd) 6371 { 6372 switch (cmd) { 6373 case ADD_NEW_DISK: 6374 case BLKROSET: 6375 case GET_ARRAY_INFO: 6376 case GET_BITMAP_FILE: 6377 case GET_DISK_INFO: 6378 case HOT_ADD_DISK: 6379 case HOT_REMOVE_DISK: 6380 case RAID_AUTORUN: 6381 case RAID_VERSION: 6382 case RESTART_ARRAY_RW: 6383 case RUN_ARRAY: 6384 case SET_ARRAY_INFO: 6385 case SET_BITMAP_FILE: 6386 case SET_DISK_FAULTY: 6387 case STOP_ARRAY: 6388 case STOP_ARRAY_RO: 6389 return true; 6390 default: 6391 return false; 6392 } 6393 } 6394 6395 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6396 unsigned int cmd, unsigned long arg) 6397 { 6398 int err = 0; 6399 void __user *argp = (void __user *)arg; 6400 struct mddev *mddev = NULL; 6401 int ro; 6402 6403 if (!md_ioctl_valid(cmd)) 6404 return -ENOTTY; 6405 6406 switch (cmd) { 6407 case RAID_VERSION: 6408 case GET_ARRAY_INFO: 6409 case GET_DISK_INFO: 6410 break; 6411 default: 6412 if (!capable(CAP_SYS_ADMIN)) 6413 return -EACCES; 6414 } 6415 6416 /* 6417 * Commands dealing with the RAID driver but not any 6418 * particular array: 6419 */ 6420 switch (cmd) { 6421 case RAID_VERSION: 6422 err = get_version(argp); 6423 goto out; 6424 6425 #ifndef MODULE 6426 case RAID_AUTORUN: 6427 err = 0; 6428 autostart_arrays(arg); 6429 goto out; 6430 #endif 6431 default:; 6432 } 6433 6434 /* 6435 * Commands creating/starting a new array: 6436 */ 6437 6438 mddev = bdev->bd_disk->private_data; 6439 6440 if (!mddev) { 6441 BUG(); 6442 goto out; 6443 } 6444 6445 /* Some actions do not requires the mutex */ 6446 switch (cmd) { 6447 case GET_ARRAY_INFO: 6448 if (!mddev->raid_disks && !mddev->external) 6449 err = -ENODEV; 6450 else 6451 err = get_array_info(mddev, argp); 6452 goto out; 6453 6454 case GET_DISK_INFO: 6455 if (!mddev->raid_disks && !mddev->external) 6456 err = -ENODEV; 6457 else 6458 err = get_disk_info(mddev, argp); 6459 goto out; 6460 6461 case SET_DISK_FAULTY: 6462 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6463 goto out; 6464 6465 case GET_BITMAP_FILE: 6466 err = get_bitmap_file(mddev, argp); 6467 goto out; 6468 6469 } 6470 6471 if (cmd == ADD_NEW_DISK) 6472 /* need to ensure md_delayed_delete() has completed */ 6473 flush_workqueue(md_misc_wq); 6474 6475 if (cmd == HOT_REMOVE_DISK) 6476 /* need to ensure recovery thread has run */ 6477 wait_event_interruptible_timeout(mddev->sb_wait, 6478 !test_bit(MD_RECOVERY_NEEDED, 6479 &mddev->flags), 6480 msecs_to_jiffies(5000)); 6481 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 6482 /* Need to flush page cache, and ensure no-one else opens 6483 * and writes 6484 */ 6485 mutex_lock(&mddev->open_mutex); 6486 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 6487 mutex_unlock(&mddev->open_mutex); 6488 err = -EBUSY; 6489 goto out; 6490 } 6491 set_bit(MD_STILL_CLOSED, &mddev->flags); 6492 mutex_unlock(&mddev->open_mutex); 6493 sync_blockdev(bdev); 6494 } 6495 err = mddev_lock(mddev); 6496 if (err) { 6497 printk(KERN_INFO 6498 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6499 err, cmd); 6500 goto out; 6501 } 6502 6503 if (cmd == SET_ARRAY_INFO) { 6504 mdu_array_info_t info; 6505 if (!arg) 6506 memset(&info, 0, sizeof(info)); 6507 else if (copy_from_user(&info, argp, sizeof(info))) { 6508 err = -EFAULT; 6509 goto unlock; 6510 } 6511 if (mddev->pers) { 6512 err = update_array_info(mddev, &info); 6513 if (err) { 6514 printk(KERN_WARNING "md: couldn't update" 6515 " array info. %d\n", err); 6516 goto unlock; 6517 } 6518 goto unlock; 6519 } 6520 if (!list_empty(&mddev->disks)) { 6521 printk(KERN_WARNING 6522 "md: array %s already has disks!\n", 6523 mdname(mddev)); 6524 err = -EBUSY; 6525 goto unlock; 6526 } 6527 if (mddev->raid_disks) { 6528 printk(KERN_WARNING 6529 "md: array %s already initialised!\n", 6530 mdname(mddev)); 6531 err = -EBUSY; 6532 goto unlock; 6533 } 6534 err = set_array_info(mddev, &info); 6535 if (err) { 6536 printk(KERN_WARNING "md: couldn't set" 6537 " array info. %d\n", err); 6538 goto unlock; 6539 } 6540 goto unlock; 6541 } 6542 6543 /* 6544 * Commands querying/configuring an existing array: 6545 */ 6546 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6547 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6548 if ((!mddev->raid_disks && !mddev->external) 6549 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6550 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6551 && cmd != GET_BITMAP_FILE) { 6552 err = -ENODEV; 6553 goto unlock; 6554 } 6555 6556 /* 6557 * Commands even a read-only array can execute: 6558 */ 6559 switch (cmd) { 6560 case RESTART_ARRAY_RW: 6561 err = restart_array(mddev); 6562 goto unlock; 6563 6564 case STOP_ARRAY: 6565 err = do_md_stop(mddev, 0, bdev); 6566 goto unlock; 6567 6568 case STOP_ARRAY_RO: 6569 err = md_set_readonly(mddev, bdev); 6570 goto unlock; 6571 6572 case HOT_REMOVE_DISK: 6573 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6574 goto unlock; 6575 6576 case ADD_NEW_DISK: 6577 /* We can support ADD_NEW_DISK on read-only arrays 6578 * on if we are re-adding a preexisting device. 6579 * So require mddev->pers and MD_DISK_SYNC. 6580 */ 6581 if (mddev->pers) { 6582 mdu_disk_info_t info; 6583 if (copy_from_user(&info, argp, sizeof(info))) 6584 err = -EFAULT; 6585 else if (!(info.state & (1<<MD_DISK_SYNC))) 6586 /* Need to clear read-only for this */ 6587 break; 6588 else 6589 err = add_new_disk(mddev, &info); 6590 goto unlock; 6591 } 6592 break; 6593 6594 case BLKROSET: 6595 if (get_user(ro, (int __user *)(arg))) { 6596 err = -EFAULT; 6597 goto unlock; 6598 } 6599 err = -EINVAL; 6600 6601 /* if the bdev is going readonly the value of mddev->ro 6602 * does not matter, no writes are coming 6603 */ 6604 if (ro) 6605 goto unlock; 6606 6607 /* are we are already prepared for writes? */ 6608 if (mddev->ro != 1) 6609 goto unlock; 6610 6611 /* transitioning to readauto need only happen for 6612 * arrays that call md_write_start 6613 */ 6614 if (mddev->pers) { 6615 err = restart_array(mddev); 6616 if (err == 0) { 6617 mddev->ro = 2; 6618 set_disk_ro(mddev->gendisk, 0); 6619 } 6620 } 6621 goto unlock; 6622 } 6623 6624 /* 6625 * The remaining ioctls are changing the state of the 6626 * superblock, so we do not allow them on read-only arrays. 6627 */ 6628 if (mddev->ro && mddev->pers) { 6629 if (mddev->ro == 2) { 6630 mddev->ro = 0; 6631 sysfs_notify_dirent_safe(mddev->sysfs_state); 6632 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6633 /* mddev_unlock will wake thread */ 6634 /* If a device failed while we were read-only, we 6635 * need to make sure the metadata is updated now. 6636 */ 6637 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 6638 mddev_unlock(mddev); 6639 wait_event(mddev->sb_wait, 6640 !test_bit(MD_CHANGE_DEVS, &mddev->flags) && 6641 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6642 mddev_lock_nointr(mddev); 6643 } 6644 } else { 6645 err = -EROFS; 6646 goto unlock; 6647 } 6648 } 6649 6650 switch (cmd) { 6651 case ADD_NEW_DISK: 6652 { 6653 mdu_disk_info_t info; 6654 if (copy_from_user(&info, argp, sizeof(info))) 6655 err = -EFAULT; 6656 else 6657 err = add_new_disk(mddev, &info); 6658 goto unlock; 6659 } 6660 6661 case HOT_ADD_DISK: 6662 err = hot_add_disk(mddev, new_decode_dev(arg)); 6663 goto unlock; 6664 6665 case RUN_ARRAY: 6666 err = do_md_run(mddev); 6667 goto unlock; 6668 6669 case SET_BITMAP_FILE: 6670 err = set_bitmap_file(mddev, (int)arg); 6671 goto unlock; 6672 6673 default: 6674 err = -EINVAL; 6675 goto unlock; 6676 } 6677 6678 unlock: 6679 if (mddev->hold_active == UNTIL_IOCTL && 6680 err != -EINVAL) 6681 mddev->hold_active = 0; 6682 mddev_unlock(mddev); 6683 out: 6684 return err; 6685 } 6686 #ifdef CONFIG_COMPAT 6687 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6688 unsigned int cmd, unsigned long arg) 6689 { 6690 switch (cmd) { 6691 case HOT_REMOVE_DISK: 6692 case HOT_ADD_DISK: 6693 case SET_DISK_FAULTY: 6694 case SET_BITMAP_FILE: 6695 /* These take in integer arg, do not convert */ 6696 break; 6697 default: 6698 arg = (unsigned long)compat_ptr(arg); 6699 break; 6700 } 6701 6702 return md_ioctl(bdev, mode, cmd, arg); 6703 } 6704 #endif /* CONFIG_COMPAT */ 6705 6706 static int md_open(struct block_device *bdev, fmode_t mode) 6707 { 6708 /* 6709 * Succeed if we can lock the mddev, which confirms that 6710 * it isn't being stopped right now. 6711 */ 6712 struct mddev *mddev = mddev_find(bdev->bd_dev); 6713 int err; 6714 6715 if (!mddev) 6716 return -ENODEV; 6717 6718 if (mddev->gendisk != bdev->bd_disk) { 6719 /* we are racing with mddev_put which is discarding this 6720 * bd_disk. 6721 */ 6722 mddev_put(mddev); 6723 /* Wait until bdev->bd_disk is definitely gone */ 6724 flush_workqueue(md_misc_wq); 6725 /* Then retry the open from the top */ 6726 return -ERESTARTSYS; 6727 } 6728 BUG_ON(mddev != bdev->bd_disk->private_data); 6729 6730 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6731 goto out; 6732 6733 err = 0; 6734 atomic_inc(&mddev->openers); 6735 clear_bit(MD_STILL_CLOSED, &mddev->flags); 6736 mutex_unlock(&mddev->open_mutex); 6737 6738 check_disk_change(bdev); 6739 out: 6740 return err; 6741 } 6742 6743 static void md_release(struct gendisk *disk, fmode_t mode) 6744 { 6745 struct mddev *mddev = disk->private_data; 6746 6747 BUG_ON(!mddev); 6748 atomic_dec(&mddev->openers); 6749 mddev_put(mddev); 6750 } 6751 6752 static int md_media_changed(struct gendisk *disk) 6753 { 6754 struct mddev *mddev = disk->private_data; 6755 6756 return mddev->changed; 6757 } 6758 6759 static int md_revalidate(struct gendisk *disk) 6760 { 6761 struct mddev *mddev = disk->private_data; 6762 6763 mddev->changed = 0; 6764 return 0; 6765 } 6766 static const struct block_device_operations md_fops = 6767 { 6768 .owner = THIS_MODULE, 6769 .open = md_open, 6770 .release = md_release, 6771 .ioctl = md_ioctl, 6772 #ifdef CONFIG_COMPAT 6773 .compat_ioctl = md_compat_ioctl, 6774 #endif 6775 .getgeo = md_getgeo, 6776 .media_changed = md_media_changed, 6777 .revalidate_disk= md_revalidate, 6778 }; 6779 6780 static int md_thread(void *arg) 6781 { 6782 struct md_thread *thread = arg; 6783 6784 /* 6785 * md_thread is a 'system-thread', it's priority should be very 6786 * high. We avoid resource deadlocks individually in each 6787 * raid personality. (RAID5 does preallocation) We also use RR and 6788 * the very same RT priority as kswapd, thus we will never get 6789 * into a priority inversion deadlock. 6790 * 6791 * we definitely have to have equal or higher priority than 6792 * bdflush, otherwise bdflush will deadlock if there are too 6793 * many dirty RAID5 blocks. 6794 */ 6795 6796 allow_signal(SIGKILL); 6797 while (!kthread_should_stop()) { 6798 6799 /* We need to wait INTERRUPTIBLE so that 6800 * we don't add to the load-average. 6801 * That means we need to be sure no signals are 6802 * pending 6803 */ 6804 if (signal_pending(current)) 6805 flush_signals(current); 6806 6807 wait_event_interruptible_timeout 6808 (thread->wqueue, 6809 test_bit(THREAD_WAKEUP, &thread->flags) 6810 || kthread_should_stop(), 6811 thread->timeout); 6812 6813 clear_bit(THREAD_WAKEUP, &thread->flags); 6814 if (!kthread_should_stop()) 6815 thread->run(thread); 6816 } 6817 6818 return 0; 6819 } 6820 6821 void md_wakeup_thread(struct md_thread *thread) 6822 { 6823 if (thread) { 6824 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6825 set_bit(THREAD_WAKEUP, &thread->flags); 6826 wake_up(&thread->wqueue); 6827 } 6828 } 6829 EXPORT_SYMBOL(md_wakeup_thread); 6830 6831 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 6832 struct mddev *mddev, const char *name) 6833 { 6834 struct md_thread *thread; 6835 6836 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6837 if (!thread) 6838 return NULL; 6839 6840 init_waitqueue_head(&thread->wqueue); 6841 6842 thread->run = run; 6843 thread->mddev = mddev; 6844 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6845 thread->tsk = kthread_run(md_thread, thread, 6846 "%s_%s", 6847 mdname(thread->mddev), 6848 name); 6849 if (IS_ERR(thread->tsk)) { 6850 kfree(thread); 6851 return NULL; 6852 } 6853 return thread; 6854 } 6855 EXPORT_SYMBOL(md_register_thread); 6856 6857 void md_unregister_thread(struct md_thread **threadp) 6858 { 6859 struct md_thread *thread = *threadp; 6860 if (!thread) 6861 return; 6862 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6863 /* Locking ensures that mddev_unlock does not wake_up a 6864 * non-existent thread 6865 */ 6866 spin_lock(&pers_lock); 6867 *threadp = NULL; 6868 spin_unlock(&pers_lock); 6869 6870 kthread_stop(thread->tsk); 6871 kfree(thread); 6872 } 6873 EXPORT_SYMBOL(md_unregister_thread); 6874 6875 void md_error(struct mddev *mddev, struct md_rdev *rdev) 6876 { 6877 if (!rdev || test_bit(Faulty, &rdev->flags)) 6878 return; 6879 6880 if (!mddev->pers || !mddev->pers->error_handler) 6881 return; 6882 mddev->pers->error_handler(mddev,rdev); 6883 if (mddev->degraded) 6884 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6885 sysfs_notify_dirent_safe(rdev->sysfs_state); 6886 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6887 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6888 md_wakeup_thread(mddev->thread); 6889 if (mddev->event_work.func) 6890 queue_work(md_misc_wq, &mddev->event_work); 6891 md_new_event_inintr(mddev); 6892 } 6893 EXPORT_SYMBOL(md_error); 6894 6895 /* seq_file implementation /proc/mdstat */ 6896 6897 static void status_unused(struct seq_file *seq) 6898 { 6899 int i = 0; 6900 struct md_rdev *rdev; 6901 6902 seq_printf(seq, "unused devices: "); 6903 6904 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6905 char b[BDEVNAME_SIZE]; 6906 i++; 6907 seq_printf(seq, "%s ", 6908 bdevname(rdev->bdev,b)); 6909 } 6910 if (!i) 6911 seq_printf(seq, "<none>"); 6912 6913 seq_printf(seq, "\n"); 6914 } 6915 6916 static void status_resync(struct seq_file *seq, struct mddev *mddev) 6917 { 6918 sector_t max_sectors, resync, res; 6919 unsigned long dt, db; 6920 sector_t rt; 6921 int scale; 6922 unsigned int per_milli; 6923 6924 if (mddev->curr_resync <= 3) 6925 resync = 0; 6926 else 6927 resync = mddev->curr_resync 6928 - atomic_read(&mddev->recovery_active); 6929 6930 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 6931 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6932 max_sectors = mddev->resync_max_sectors; 6933 else 6934 max_sectors = mddev->dev_sectors; 6935 6936 WARN_ON(max_sectors == 0); 6937 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6938 * in a sector_t, and (max_sectors>>scale) will fit in a 6939 * u32, as those are the requirements for sector_div. 6940 * Thus 'scale' must be at least 10 6941 */ 6942 scale = 10; 6943 if (sizeof(sector_t) > sizeof(unsigned long)) { 6944 while ( max_sectors/2 > (1ULL<<(scale+32))) 6945 scale++; 6946 } 6947 res = (resync>>scale)*1000; 6948 sector_div(res, (u32)((max_sectors>>scale)+1)); 6949 6950 per_milli = res; 6951 { 6952 int i, x = per_milli/50, y = 20-x; 6953 seq_printf(seq, "["); 6954 for (i = 0; i < x; i++) 6955 seq_printf(seq, "="); 6956 seq_printf(seq, ">"); 6957 for (i = 0; i < y; i++) 6958 seq_printf(seq, "."); 6959 seq_printf(seq, "] "); 6960 } 6961 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6962 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6963 "reshape" : 6964 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6965 "check" : 6966 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6967 "resync" : "recovery"))), 6968 per_milli/10, per_milli % 10, 6969 (unsigned long long) resync/2, 6970 (unsigned long long) max_sectors/2); 6971 6972 /* 6973 * dt: time from mark until now 6974 * db: blocks written from mark until now 6975 * rt: remaining time 6976 * 6977 * rt is a sector_t, so could be 32bit or 64bit. 6978 * So we divide before multiply in case it is 32bit and close 6979 * to the limit. 6980 * We scale the divisor (db) by 32 to avoid losing precision 6981 * near the end of resync when the number of remaining sectors 6982 * is close to 'db'. 6983 * We then divide rt by 32 after multiplying by db to compensate. 6984 * The '+1' avoids division by zero if db is very small. 6985 */ 6986 dt = ((jiffies - mddev->resync_mark) / HZ); 6987 if (!dt) dt++; 6988 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6989 - mddev->resync_mark_cnt; 6990 6991 rt = max_sectors - resync; /* number of remaining sectors */ 6992 sector_div(rt, db/32+1); 6993 rt *= dt; 6994 rt >>= 5; 6995 6996 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6997 ((unsigned long)rt % 60)/6); 6998 6999 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7000 } 7001 7002 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7003 { 7004 struct list_head *tmp; 7005 loff_t l = *pos; 7006 struct mddev *mddev; 7007 7008 if (l >= 0x10000) 7009 return NULL; 7010 if (!l--) 7011 /* header */ 7012 return (void*)1; 7013 7014 spin_lock(&all_mddevs_lock); 7015 list_for_each(tmp,&all_mddevs) 7016 if (!l--) { 7017 mddev = list_entry(tmp, struct mddev, all_mddevs); 7018 mddev_get(mddev); 7019 spin_unlock(&all_mddevs_lock); 7020 return mddev; 7021 } 7022 spin_unlock(&all_mddevs_lock); 7023 if (!l--) 7024 return (void*)2;/* tail */ 7025 return NULL; 7026 } 7027 7028 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7029 { 7030 struct list_head *tmp; 7031 struct mddev *next_mddev, *mddev = v; 7032 7033 ++*pos; 7034 if (v == (void*)2) 7035 return NULL; 7036 7037 spin_lock(&all_mddevs_lock); 7038 if (v == (void*)1) 7039 tmp = all_mddevs.next; 7040 else 7041 tmp = mddev->all_mddevs.next; 7042 if (tmp != &all_mddevs) 7043 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7044 else { 7045 next_mddev = (void*)2; 7046 *pos = 0x10000; 7047 } 7048 spin_unlock(&all_mddevs_lock); 7049 7050 if (v != (void*)1) 7051 mddev_put(mddev); 7052 return next_mddev; 7053 7054 } 7055 7056 static void md_seq_stop(struct seq_file *seq, void *v) 7057 { 7058 struct mddev *mddev = v; 7059 7060 if (mddev && v != (void*)1 && v != (void*)2) 7061 mddev_put(mddev); 7062 } 7063 7064 static int md_seq_show(struct seq_file *seq, void *v) 7065 { 7066 struct mddev *mddev = v; 7067 sector_t sectors; 7068 struct md_rdev *rdev; 7069 7070 if (v == (void*)1) { 7071 struct md_personality *pers; 7072 seq_printf(seq, "Personalities : "); 7073 spin_lock(&pers_lock); 7074 list_for_each_entry(pers, &pers_list, list) 7075 seq_printf(seq, "[%s] ", pers->name); 7076 7077 spin_unlock(&pers_lock); 7078 seq_printf(seq, "\n"); 7079 seq->poll_event = atomic_read(&md_event_count); 7080 return 0; 7081 } 7082 if (v == (void*)2) { 7083 status_unused(seq); 7084 return 0; 7085 } 7086 7087 spin_lock(&mddev->lock); 7088 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7089 seq_printf(seq, "%s : %sactive", mdname(mddev), 7090 mddev->pers ? "" : "in"); 7091 if (mddev->pers) { 7092 if (mddev->ro==1) 7093 seq_printf(seq, " (read-only)"); 7094 if (mddev->ro==2) 7095 seq_printf(seq, " (auto-read-only)"); 7096 seq_printf(seq, " %s", mddev->pers->name); 7097 } 7098 7099 sectors = 0; 7100 rcu_read_lock(); 7101 rdev_for_each_rcu(rdev, mddev) { 7102 char b[BDEVNAME_SIZE]; 7103 seq_printf(seq, " %s[%d]", 7104 bdevname(rdev->bdev,b), rdev->desc_nr); 7105 if (test_bit(WriteMostly, &rdev->flags)) 7106 seq_printf(seq, "(W)"); 7107 if (test_bit(Faulty, &rdev->flags)) { 7108 seq_printf(seq, "(F)"); 7109 continue; 7110 } 7111 if (rdev->raid_disk < 0) 7112 seq_printf(seq, "(S)"); /* spare */ 7113 if (test_bit(Replacement, &rdev->flags)) 7114 seq_printf(seq, "(R)"); 7115 sectors += rdev->sectors; 7116 } 7117 rcu_read_unlock(); 7118 7119 if (!list_empty(&mddev->disks)) { 7120 if (mddev->pers) 7121 seq_printf(seq, "\n %llu blocks", 7122 (unsigned long long) 7123 mddev->array_sectors / 2); 7124 else 7125 seq_printf(seq, "\n %llu blocks", 7126 (unsigned long long)sectors / 2); 7127 } 7128 if (mddev->persistent) { 7129 if (mddev->major_version != 0 || 7130 mddev->minor_version != 90) { 7131 seq_printf(seq," super %d.%d", 7132 mddev->major_version, 7133 mddev->minor_version); 7134 } 7135 } else if (mddev->external) 7136 seq_printf(seq, " super external:%s", 7137 mddev->metadata_type); 7138 else 7139 seq_printf(seq, " super non-persistent"); 7140 7141 if (mddev->pers) { 7142 mddev->pers->status(seq, mddev); 7143 seq_printf(seq, "\n "); 7144 if (mddev->pers->sync_request) { 7145 if (mddev->curr_resync > 2) { 7146 status_resync(seq, mddev); 7147 seq_printf(seq, "\n "); 7148 } else if (mddev->curr_resync >= 1) 7149 seq_printf(seq, "\tresync=DELAYED\n "); 7150 else if (mddev->recovery_cp < MaxSector) 7151 seq_printf(seq, "\tresync=PENDING\n "); 7152 } 7153 } else 7154 seq_printf(seq, "\n "); 7155 7156 bitmap_status(seq, mddev->bitmap); 7157 7158 seq_printf(seq, "\n"); 7159 } 7160 spin_unlock(&mddev->lock); 7161 7162 return 0; 7163 } 7164 7165 static const struct seq_operations md_seq_ops = { 7166 .start = md_seq_start, 7167 .next = md_seq_next, 7168 .stop = md_seq_stop, 7169 .show = md_seq_show, 7170 }; 7171 7172 static int md_seq_open(struct inode *inode, struct file *file) 7173 { 7174 struct seq_file *seq; 7175 int error; 7176 7177 error = seq_open(file, &md_seq_ops); 7178 if (error) 7179 return error; 7180 7181 seq = file->private_data; 7182 seq->poll_event = atomic_read(&md_event_count); 7183 return error; 7184 } 7185 7186 static int md_unloading; 7187 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7188 { 7189 struct seq_file *seq = filp->private_data; 7190 int mask; 7191 7192 if (md_unloading) 7193 return POLLIN|POLLRDNORM|POLLERR|POLLPRI; 7194 poll_wait(filp, &md_event_waiters, wait); 7195 7196 /* always allow read */ 7197 mask = POLLIN | POLLRDNORM; 7198 7199 if (seq->poll_event != atomic_read(&md_event_count)) 7200 mask |= POLLERR | POLLPRI; 7201 return mask; 7202 } 7203 7204 static const struct file_operations md_seq_fops = { 7205 .owner = THIS_MODULE, 7206 .open = md_seq_open, 7207 .read = seq_read, 7208 .llseek = seq_lseek, 7209 .release = seq_release_private, 7210 .poll = mdstat_poll, 7211 }; 7212 7213 int register_md_personality(struct md_personality *p) 7214 { 7215 printk(KERN_INFO "md: %s personality registered for level %d\n", 7216 p->name, p->level); 7217 spin_lock(&pers_lock); 7218 list_add_tail(&p->list, &pers_list); 7219 spin_unlock(&pers_lock); 7220 return 0; 7221 } 7222 EXPORT_SYMBOL(register_md_personality); 7223 7224 int unregister_md_personality(struct md_personality *p) 7225 { 7226 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7227 spin_lock(&pers_lock); 7228 list_del_init(&p->list); 7229 spin_unlock(&pers_lock); 7230 return 0; 7231 } 7232 EXPORT_SYMBOL(unregister_md_personality); 7233 7234 static int is_mddev_idle(struct mddev *mddev, int init) 7235 { 7236 struct md_rdev *rdev; 7237 int idle; 7238 int curr_events; 7239 7240 idle = 1; 7241 rcu_read_lock(); 7242 rdev_for_each_rcu(rdev, mddev) { 7243 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7244 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7245 (int)part_stat_read(&disk->part0, sectors[1]) - 7246 atomic_read(&disk->sync_io); 7247 /* sync IO will cause sync_io to increase before the disk_stats 7248 * as sync_io is counted when a request starts, and 7249 * disk_stats is counted when it completes. 7250 * So resync activity will cause curr_events to be smaller than 7251 * when there was no such activity. 7252 * non-sync IO will cause disk_stat to increase without 7253 * increasing sync_io so curr_events will (eventually) 7254 * be larger than it was before. Once it becomes 7255 * substantially larger, the test below will cause 7256 * the array to appear non-idle, and resync will slow 7257 * down. 7258 * If there is a lot of outstanding resync activity when 7259 * we set last_event to curr_events, then all that activity 7260 * completing might cause the array to appear non-idle 7261 * and resync will be slowed down even though there might 7262 * not have been non-resync activity. This will only 7263 * happen once though. 'last_events' will soon reflect 7264 * the state where there is little or no outstanding 7265 * resync requests, and further resync activity will 7266 * always make curr_events less than last_events. 7267 * 7268 */ 7269 if (init || curr_events - rdev->last_events > 64) { 7270 rdev->last_events = curr_events; 7271 idle = 0; 7272 } 7273 } 7274 rcu_read_unlock(); 7275 return idle; 7276 } 7277 7278 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7279 { 7280 /* another "blocks" (512byte) blocks have been synced */ 7281 atomic_sub(blocks, &mddev->recovery_active); 7282 wake_up(&mddev->recovery_wait); 7283 if (!ok) { 7284 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7285 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 7286 md_wakeup_thread(mddev->thread); 7287 // stop recovery, signal do_sync .... 7288 } 7289 } 7290 EXPORT_SYMBOL(md_done_sync); 7291 7292 /* md_write_start(mddev, bi) 7293 * If we need to update some array metadata (e.g. 'active' flag 7294 * in superblock) before writing, schedule a superblock update 7295 * and wait for it to complete. 7296 */ 7297 void md_write_start(struct mddev *mddev, struct bio *bi) 7298 { 7299 int did_change = 0; 7300 if (bio_data_dir(bi) != WRITE) 7301 return; 7302 7303 BUG_ON(mddev->ro == 1); 7304 if (mddev->ro == 2) { 7305 /* need to switch to read/write */ 7306 mddev->ro = 0; 7307 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7308 md_wakeup_thread(mddev->thread); 7309 md_wakeup_thread(mddev->sync_thread); 7310 did_change = 1; 7311 } 7312 atomic_inc(&mddev->writes_pending); 7313 if (mddev->safemode == 1) 7314 mddev->safemode = 0; 7315 if (mddev->in_sync) { 7316 spin_lock(&mddev->lock); 7317 if (mddev->in_sync) { 7318 mddev->in_sync = 0; 7319 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7320 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7321 md_wakeup_thread(mddev->thread); 7322 did_change = 1; 7323 } 7324 spin_unlock(&mddev->lock); 7325 } 7326 if (did_change) 7327 sysfs_notify_dirent_safe(mddev->sysfs_state); 7328 wait_event(mddev->sb_wait, 7329 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7330 } 7331 EXPORT_SYMBOL(md_write_start); 7332 7333 void md_write_end(struct mddev *mddev) 7334 { 7335 if (atomic_dec_and_test(&mddev->writes_pending)) { 7336 if (mddev->safemode == 2) 7337 md_wakeup_thread(mddev->thread); 7338 else if (mddev->safemode_delay) 7339 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7340 } 7341 } 7342 EXPORT_SYMBOL(md_write_end); 7343 7344 /* md_allow_write(mddev) 7345 * Calling this ensures that the array is marked 'active' so that writes 7346 * may proceed without blocking. It is important to call this before 7347 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7348 * Must be called with mddev_lock held. 7349 * 7350 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7351 * is dropped, so return -EAGAIN after notifying userspace. 7352 */ 7353 int md_allow_write(struct mddev *mddev) 7354 { 7355 if (!mddev->pers) 7356 return 0; 7357 if (mddev->ro) 7358 return 0; 7359 if (!mddev->pers->sync_request) 7360 return 0; 7361 7362 spin_lock(&mddev->lock); 7363 if (mddev->in_sync) { 7364 mddev->in_sync = 0; 7365 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7366 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7367 if (mddev->safemode_delay && 7368 mddev->safemode == 0) 7369 mddev->safemode = 1; 7370 spin_unlock(&mddev->lock); 7371 md_update_sb(mddev, 0); 7372 sysfs_notify_dirent_safe(mddev->sysfs_state); 7373 } else 7374 spin_unlock(&mddev->lock); 7375 7376 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7377 return -EAGAIN; 7378 else 7379 return 0; 7380 } 7381 EXPORT_SYMBOL_GPL(md_allow_write); 7382 7383 #define SYNC_MARKS 10 7384 #define SYNC_MARK_STEP (3*HZ) 7385 #define UPDATE_FREQUENCY (5*60*HZ) 7386 void md_do_sync(struct md_thread *thread) 7387 { 7388 struct mddev *mddev = thread->mddev; 7389 struct mddev *mddev2; 7390 unsigned int currspeed = 0, 7391 window; 7392 sector_t max_sectors,j, io_sectors, recovery_done; 7393 unsigned long mark[SYNC_MARKS]; 7394 unsigned long update_time; 7395 sector_t mark_cnt[SYNC_MARKS]; 7396 int last_mark,m; 7397 struct list_head *tmp; 7398 sector_t last_check; 7399 int skipped = 0; 7400 struct md_rdev *rdev; 7401 char *desc, *action = NULL; 7402 struct blk_plug plug; 7403 7404 /* just incase thread restarts... */ 7405 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7406 return; 7407 if (mddev->ro) {/* never try to sync a read-only array */ 7408 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7409 return; 7410 } 7411 7412 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7413 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 7414 desc = "data-check"; 7415 action = "check"; 7416 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7417 desc = "requested-resync"; 7418 action = "repair"; 7419 } else 7420 desc = "resync"; 7421 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7422 desc = "reshape"; 7423 else 7424 desc = "recovery"; 7425 7426 mddev->last_sync_action = action ?: desc; 7427 7428 /* we overload curr_resync somewhat here. 7429 * 0 == not engaged in resync at all 7430 * 2 == checking that there is no conflict with another sync 7431 * 1 == like 2, but have yielded to allow conflicting resync to 7432 * commense 7433 * other == active in resync - this many blocks 7434 * 7435 * Before starting a resync we must have set curr_resync to 7436 * 2, and then checked that every "conflicting" array has curr_resync 7437 * less than ours. When we find one that is the same or higher 7438 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7439 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7440 * This will mean we have to start checking from the beginning again. 7441 * 7442 */ 7443 7444 do { 7445 mddev->curr_resync = 2; 7446 7447 try_again: 7448 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7449 goto skip; 7450 for_each_mddev(mddev2, tmp) { 7451 if (mddev2 == mddev) 7452 continue; 7453 if (!mddev->parallel_resync 7454 && mddev2->curr_resync 7455 && match_mddev_units(mddev, mddev2)) { 7456 DEFINE_WAIT(wq); 7457 if (mddev < mddev2 && mddev->curr_resync == 2) { 7458 /* arbitrarily yield */ 7459 mddev->curr_resync = 1; 7460 wake_up(&resync_wait); 7461 } 7462 if (mddev > mddev2 && mddev->curr_resync == 1) 7463 /* no need to wait here, we can wait the next 7464 * time 'round when curr_resync == 2 7465 */ 7466 continue; 7467 /* We need to wait 'interruptible' so as not to 7468 * contribute to the load average, and not to 7469 * be caught by 'softlockup' 7470 */ 7471 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7472 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7473 mddev2->curr_resync >= mddev->curr_resync) { 7474 printk(KERN_INFO "md: delaying %s of %s" 7475 " until %s has finished (they" 7476 " share one or more physical units)\n", 7477 desc, mdname(mddev), mdname(mddev2)); 7478 mddev_put(mddev2); 7479 if (signal_pending(current)) 7480 flush_signals(current); 7481 schedule(); 7482 finish_wait(&resync_wait, &wq); 7483 goto try_again; 7484 } 7485 finish_wait(&resync_wait, &wq); 7486 } 7487 } 7488 } while (mddev->curr_resync < 2); 7489 7490 j = 0; 7491 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7492 /* resync follows the size requested by the personality, 7493 * which defaults to physical size, but can be virtual size 7494 */ 7495 max_sectors = mddev->resync_max_sectors; 7496 atomic64_set(&mddev->resync_mismatches, 0); 7497 /* we don't use the checkpoint if there's a bitmap */ 7498 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7499 j = mddev->resync_min; 7500 else if (!mddev->bitmap) 7501 j = mddev->recovery_cp; 7502 7503 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7504 max_sectors = mddev->resync_max_sectors; 7505 else { 7506 /* recovery follows the physical size of devices */ 7507 max_sectors = mddev->dev_sectors; 7508 j = MaxSector; 7509 rcu_read_lock(); 7510 rdev_for_each_rcu(rdev, mddev) 7511 if (rdev->raid_disk >= 0 && 7512 !test_bit(Faulty, &rdev->flags) && 7513 !test_bit(In_sync, &rdev->flags) && 7514 rdev->recovery_offset < j) 7515 j = rdev->recovery_offset; 7516 rcu_read_unlock(); 7517 7518 /* If there is a bitmap, we need to make sure all 7519 * writes that started before we added a spare 7520 * complete before we start doing a recovery. 7521 * Otherwise the write might complete and (via 7522 * bitmap_endwrite) set a bit in the bitmap after the 7523 * recovery has checked that bit and skipped that 7524 * region. 7525 */ 7526 if (mddev->bitmap) { 7527 mddev->pers->quiesce(mddev, 1); 7528 mddev->pers->quiesce(mddev, 0); 7529 } 7530 } 7531 7532 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7533 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7534 " %d KB/sec/disk.\n", speed_min(mddev)); 7535 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7536 "(but not more than %d KB/sec) for %s.\n", 7537 speed_max(mddev), desc); 7538 7539 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7540 7541 io_sectors = 0; 7542 for (m = 0; m < SYNC_MARKS; m++) { 7543 mark[m] = jiffies; 7544 mark_cnt[m] = io_sectors; 7545 } 7546 last_mark = 0; 7547 mddev->resync_mark = mark[last_mark]; 7548 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7549 7550 /* 7551 * Tune reconstruction: 7552 */ 7553 window = 32*(PAGE_SIZE/512); 7554 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7555 window/2, (unsigned long long)max_sectors/2); 7556 7557 atomic_set(&mddev->recovery_active, 0); 7558 last_check = 0; 7559 7560 if (j>2) { 7561 printk(KERN_INFO 7562 "md: resuming %s of %s from checkpoint.\n", 7563 desc, mdname(mddev)); 7564 mddev->curr_resync = j; 7565 } else 7566 mddev->curr_resync = 3; /* no longer delayed */ 7567 mddev->curr_resync_completed = j; 7568 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7569 md_new_event(mddev); 7570 update_time = jiffies; 7571 7572 blk_start_plug(&plug); 7573 while (j < max_sectors) { 7574 sector_t sectors; 7575 7576 skipped = 0; 7577 7578 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7579 ((mddev->curr_resync > mddev->curr_resync_completed && 7580 (mddev->curr_resync - mddev->curr_resync_completed) 7581 > (max_sectors >> 4)) || 7582 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 7583 (j - mddev->curr_resync_completed)*2 7584 >= mddev->resync_max - mddev->curr_resync_completed 7585 )) { 7586 /* time to update curr_resync_completed */ 7587 wait_event(mddev->recovery_wait, 7588 atomic_read(&mddev->recovery_active) == 0); 7589 mddev->curr_resync_completed = j; 7590 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 7591 j > mddev->recovery_cp) 7592 mddev->recovery_cp = j; 7593 update_time = jiffies; 7594 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7595 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7596 } 7597 7598 while (j >= mddev->resync_max && 7599 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7600 /* As this condition is controlled by user-space, 7601 * we can block indefinitely, so use '_interruptible' 7602 * to avoid triggering warnings. 7603 */ 7604 flush_signals(current); /* just in case */ 7605 wait_event_interruptible(mddev->recovery_wait, 7606 mddev->resync_max > j 7607 || test_bit(MD_RECOVERY_INTR, 7608 &mddev->recovery)); 7609 } 7610 7611 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7612 break; 7613 7614 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7615 currspeed < speed_min(mddev)); 7616 if (sectors == 0) { 7617 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7618 break; 7619 } 7620 7621 if (!skipped) { /* actual IO requested */ 7622 io_sectors += sectors; 7623 atomic_add(sectors, &mddev->recovery_active); 7624 } 7625 7626 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7627 break; 7628 7629 j += sectors; 7630 if (j > 2) 7631 mddev->curr_resync = j; 7632 mddev->curr_mark_cnt = io_sectors; 7633 if (last_check == 0) 7634 /* this is the earliest that rebuild will be 7635 * visible in /proc/mdstat 7636 */ 7637 md_new_event(mddev); 7638 7639 if (last_check + window > io_sectors || j == max_sectors) 7640 continue; 7641 7642 last_check = io_sectors; 7643 repeat: 7644 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7645 /* step marks */ 7646 int next = (last_mark+1) % SYNC_MARKS; 7647 7648 mddev->resync_mark = mark[next]; 7649 mddev->resync_mark_cnt = mark_cnt[next]; 7650 mark[next] = jiffies; 7651 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7652 last_mark = next; 7653 } 7654 7655 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7656 break; 7657 7658 /* 7659 * this loop exits only if either when we are slower than 7660 * the 'hard' speed limit, or the system was IO-idle for 7661 * a jiffy. 7662 * the system might be non-idle CPU-wise, but we only care 7663 * about not overloading the IO subsystem. (things like an 7664 * e2fsck being done on the RAID array should execute fast) 7665 */ 7666 cond_resched(); 7667 7668 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 7669 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 7670 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7671 7672 if (currspeed > speed_min(mddev)) { 7673 if ((currspeed > speed_max(mddev)) || 7674 !is_mddev_idle(mddev, 0)) { 7675 msleep(500); 7676 goto repeat; 7677 } 7678 } 7679 } 7680 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc, 7681 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 7682 ? "interrupted" : "done"); 7683 /* 7684 * this also signals 'finished resyncing' to md_stop 7685 */ 7686 blk_finish_plug(&plug); 7687 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7688 7689 /* tell personality that we are finished */ 7690 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7691 7692 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7693 mddev->curr_resync > 2) { 7694 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7695 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7696 if (mddev->curr_resync >= mddev->recovery_cp) { 7697 printk(KERN_INFO 7698 "md: checkpointing %s of %s.\n", 7699 desc, mdname(mddev)); 7700 if (test_bit(MD_RECOVERY_ERROR, 7701 &mddev->recovery)) 7702 mddev->recovery_cp = 7703 mddev->curr_resync_completed; 7704 else 7705 mddev->recovery_cp = 7706 mddev->curr_resync; 7707 } 7708 } else 7709 mddev->recovery_cp = MaxSector; 7710 } else { 7711 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7712 mddev->curr_resync = MaxSector; 7713 rcu_read_lock(); 7714 rdev_for_each_rcu(rdev, mddev) 7715 if (rdev->raid_disk >= 0 && 7716 mddev->delta_disks >= 0 && 7717 !test_bit(Faulty, &rdev->flags) && 7718 !test_bit(In_sync, &rdev->flags) && 7719 rdev->recovery_offset < mddev->curr_resync) 7720 rdev->recovery_offset = mddev->curr_resync; 7721 rcu_read_unlock(); 7722 } 7723 } 7724 skip: 7725 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7726 7727 spin_lock(&mddev->lock); 7728 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7729 /* We completed so min/max setting can be forgotten if used. */ 7730 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7731 mddev->resync_min = 0; 7732 mddev->resync_max = MaxSector; 7733 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7734 mddev->resync_min = mddev->curr_resync_completed; 7735 mddev->curr_resync = 0; 7736 spin_unlock(&mddev->lock); 7737 7738 wake_up(&resync_wait); 7739 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7740 md_wakeup_thread(mddev->thread); 7741 return; 7742 } 7743 EXPORT_SYMBOL_GPL(md_do_sync); 7744 7745 static int remove_and_add_spares(struct mddev *mddev, 7746 struct md_rdev *this) 7747 { 7748 struct md_rdev *rdev; 7749 int spares = 0; 7750 int removed = 0; 7751 7752 rdev_for_each(rdev, mddev) 7753 if ((this == NULL || rdev == this) && 7754 rdev->raid_disk >= 0 && 7755 !test_bit(Blocked, &rdev->flags) && 7756 (test_bit(Faulty, &rdev->flags) || 7757 ! test_bit(In_sync, &rdev->flags)) && 7758 atomic_read(&rdev->nr_pending)==0) { 7759 if (mddev->pers->hot_remove_disk( 7760 mddev, rdev) == 0) { 7761 sysfs_unlink_rdev(mddev, rdev); 7762 rdev->raid_disk = -1; 7763 removed++; 7764 } 7765 } 7766 if (removed && mddev->kobj.sd) 7767 sysfs_notify(&mddev->kobj, NULL, "degraded"); 7768 7769 if (this) 7770 goto no_add; 7771 7772 rdev_for_each(rdev, mddev) { 7773 if (rdev->raid_disk >= 0 && 7774 !test_bit(In_sync, &rdev->flags) && 7775 !test_bit(Faulty, &rdev->flags)) 7776 spares++; 7777 if (rdev->raid_disk >= 0) 7778 continue; 7779 if (test_bit(Faulty, &rdev->flags)) 7780 continue; 7781 if (mddev->ro && 7782 ! (rdev->saved_raid_disk >= 0 && 7783 !test_bit(Bitmap_sync, &rdev->flags))) 7784 continue; 7785 7786 if (rdev->saved_raid_disk < 0) 7787 rdev->recovery_offset = 0; 7788 if (mddev->pers-> 7789 hot_add_disk(mddev, rdev) == 0) { 7790 if (sysfs_link_rdev(mddev, rdev)) 7791 /* failure here is OK */; 7792 spares++; 7793 md_new_event(mddev); 7794 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7795 } 7796 } 7797 no_add: 7798 if (removed) 7799 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7800 return spares; 7801 } 7802 7803 static void md_start_sync(struct work_struct *ws) 7804 { 7805 struct mddev *mddev = container_of(ws, struct mddev, del_work); 7806 7807 mddev->sync_thread = md_register_thread(md_do_sync, 7808 mddev, 7809 "resync"); 7810 if (!mddev->sync_thread) { 7811 printk(KERN_ERR "%s: could not start resync" 7812 " thread...\n", 7813 mdname(mddev)); 7814 /* leave the spares where they are, it shouldn't hurt */ 7815 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7816 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7817 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7818 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7819 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7820 wake_up(&resync_wait); 7821 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7822 &mddev->recovery)) 7823 if (mddev->sysfs_action) 7824 sysfs_notify_dirent_safe(mddev->sysfs_action); 7825 } else 7826 md_wakeup_thread(mddev->sync_thread); 7827 sysfs_notify_dirent_safe(mddev->sysfs_action); 7828 md_new_event(mddev); 7829 } 7830 7831 /* 7832 * This routine is regularly called by all per-raid-array threads to 7833 * deal with generic issues like resync and super-block update. 7834 * Raid personalities that don't have a thread (linear/raid0) do not 7835 * need this as they never do any recovery or update the superblock. 7836 * 7837 * It does not do any resync itself, but rather "forks" off other threads 7838 * to do that as needed. 7839 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7840 * "->recovery" and create a thread at ->sync_thread. 7841 * When the thread finishes it sets MD_RECOVERY_DONE 7842 * and wakeups up this thread which will reap the thread and finish up. 7843 * This thread also removes any faulty devices (with nr_pending == 0). 7844 * 7845 * The overall approach is: 7846 * 1/ if the superblock needs updating, update it. 7847 * 2/ If a recovery thread is running, don't do anything else. 7848 * 3/ If recovery has finished, clean up, possibly marking spares active. 7849 * 4/ If there are any faulty devices, remove them. 7850 * 5/ If array is degraded, try to add spares devices 7851 * 6/ If array has spares or is not in-sync, start a resync thread. 7852 */ 7853 void md_check_recovery(struct mddev *mddev) 7854 { 7855 if (mddev->suspended) 7856 return; 7857 7858 if (mddev->bitmap) 7859 bitmap_daemon_work(mddev); 7860 7861 if (signal_pending(current)) { 7862 if (mddev->pers->sync_request && !mddev->external) { 7863 printk(KERN_INFO "md: %s in immediate safe mode\n", 7864 mdname(mddev)); 7865 mddev->safemode = 2; 7866 } 7867 flush_signals(current); 7868 } 7869 7870 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7871 return; 7872 if ( ! ( 7873 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) || 7874 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7875 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7876 (mddev->external == 0 && mddev->safemode == 1) || 7877 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7878 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7879 )) 7880 return; 7881 7882 if (mddev_trylock(mddev)) { 7883 int spares = 0; 7884 7885 if (mddev->ro) { 7886 /* On a read-only array we can: 7887 * - remove failed devices 7888 * - add already-in_sync devices if the array itself 7889 * is in-sync. 7890 * As we only add devices that are already in-sync, 7891 * we can activate the spares immediately. 7892 */ 7893 remove_and_add_spares(mddev, NULL); 7894 /* There is no thread, but we need to call 7895 * ->spare_active and clear saved_raid_disk 7896 */ 7897 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7898 md_reap_sync_thread(mddev); 7899 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7900 goto unlock; 7901 } 7902 7903 if (!mddev->external) { 7904 int did_change = 0; 7905 spin_lock(&mddev->lock); 7906 if (mddev->safemode && 7907 !atomic_read(&mddev->writes_pending) && 7908 !mddev->in_sync && 7909 mddev->recovery_cp == MaxSector) { 7910 mddev->in_sync = 1; 7911 did_change = 1; 7912 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7913 } 7914 if (mddev->safemode == 1) 7915 mddev->safemode = 0; 7916 spin_unlock(&mddev->lock); 7917 if (did_change) 7918 sysfs_notify_dirent_safe(mddev->sysfs_state); 7919 } 7920 7921 if (mddev->flags & MD_UPDATE_SB_FLAGS) 7922 md_update_sb(mddev, 0); 7923 7924 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7925 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7926 /* resync/recovery still happening */ 7927 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7928 goto unlock; 7929 } 7930 if (mddev->sync_thread) { 7931 md_reap_sync_thread(mddev); 7932 goto unlock; 7933 } 7934 /* Set RUNNING before clearing NEEDED to avoid 7935 * any transients in the value of "sync_action". 7936 */ 7937 mddev->curr_resync_completed = 0; 7938 spin_lock(&mddev->lock); 7939 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7940 spin_unlock(&mddev->lock); 7941 /* Clear some bits that don't mean anything, but 7942 * might be left set 7943 */ 7944 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7945 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7946 7947 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7948 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7949 goto not_running; 7950 /* no recovery is running. 7951 * remove any failed drives, then 7952 * add spares if possible. 7953 * Spares are also removed and re-added, to allow 7954 * the personality to fail the re-add. 7955 */ 7956 7957 if (mddev->reshape_position != MaxSector) { 7958 if (mddev->pers->check_reshape == NULL || 7959 mddev->pers->check_reshape(mddev) != 0) 7960 /* Cannot proceed */ 7961 goto not_running; 7962 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7963 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7964 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 7965 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7966 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7967 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7968 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7969 } else if (mddev->recovery_cp < MaxSector) { 7970 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7971 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7972 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7973 /* nothing to be done ... */ 7974 goto not_running; 7975 7976 if (mddev->pers->sync_request) { 7977 if (spares) { 7978 /* We are adding a device or devices to an array 7979 * which has the bitmap stored on all devices. 7980 * So make sure all bitmap pages get written 7981 */ 7982 bitmap_write_all(mddev->bitmap); 7983 } 7984 INIT_WORK(&mddev->del_work, md_start_sync); 7985 queue_work(md_misc_wq, &mddev->del_work); 7986 goto unlock; 7987 } 7988 not_running: 7989 if (!mddev->sync_thread) { 7990 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7991 wake_up(&resync_wait); 7992 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7993 &mddev->recovery)) 7994 if (mddev->sysfs_action) 7995 sysfs_notify_dirent_safe(mddev->sysfs_action); 7996 } 7997 unlock: 7998 wake_up(&mddev->sb_wait); 7999 mddev_unlock(mddev); 8000 } 8001 } 8002 EXPORT_SYMBOL(md_check_recovery); 8003 8004 void md_reap_sync_thread(struct mddev *mddev) 8005 { 8006 struct md_rdev *rdev; 8007 8008 /* resync has finished, collect result */ 8009 md_unregister_thread(&mddev->sync_thread); 8010 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8011 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8012 /* success...*/ 8013 /* activate any spares */ 8014 if (mddev->pers->spare_active(mddev)) { 8015 sysfs_notify(&mddev->kobj, NULL, 8016 "degraded"); 8017 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8018 } 8019 } 8020 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8021 mddev->pers->finish_reshape) 8022 mddev->pers->finish_reshape(mddev); 8023 8024 /* If array is no-longer degraded, then any saved_raid_disk 8025 * information must be scrapped. 8026 */ 8027 if (!mddev->degraded) 8028 rdev_for_each(rdev, mddev) 8029 rdev->saved_raid_disk = -1; 8030 8031 md_update_sb(mddev, 1); 8032 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8033 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8034 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8035 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8036 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8037 wake_up(&resync_wait); 8038 /* flag recovery needed just to double check */ 8039 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8040 sysfs_notify_dirent_safe(mddev->sysfs_action); 8041 md_new_event(mddev); 8042 if (mddev->event_work.func) 8043 queue_work(md_misc_wq, &mddev->event_work); 8044 } 8045 EXPORT_SYMBOL(md_reap_sync_thread); 8046 8047 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 8048 { 8049 sysfs_notify_dirent_safe(rdev->sysfs_state); 8050 wait_event_timeout(rdev->blocked_wait, 8051 !test_bit(Blocked, &rdev->flags) && 8052 !test_bit(BlockedBadBlocks, &rdev->flags), 8053 msecs_to_jiffies(5000)); 8054 rdev_dec_pending(rdev, mddev); 8055 } 8056 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 8057 8058 void md_finish_reshape(struct mddev *mddev) 8059 { 8060 /* called be personality module when reshape completes. */ 8061 struct md_rdev *rdev; 8062 8063 rdev_for_each(rdev, mddev) { 8064 if (rdev->data_offset > rdev->new_data_offset) 8065 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 8066 else 8067 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 8068 rdev->data_offset = rdev->new_data_offset; 8069 } 8070 } 8071 EXPORT_SYMBOL(md_finish_reshape); 8072 8073 /* Bad block management. 8074 * We can record which blocks on each device are 'bad' and so just 8075 * fail those blocks, or that stripe, rather than the whole device. 8076 * Entries in the bad-block table are 64bits wide. This comprises: 8077 * Length of bad-range, in sectors: 0-511 for lengths 1-512 8078 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 8079 * A 'shift' can be set so that larger blocks are tracked and 8080 * consequently larger devices can be covered. 8081 * 'Acknowledged' flag - 1 bit. - the most significant bit. 8082 * 8083 * Locking of the bad-block table uses a seqlock so md_is_badblock 8084 * might need to retry if it is very unlucky. 8085 * We will sometimes want to check for bad blocks in a bi_end_io function, 8086 * so we use the write_seqlock_irq variant. 8087 * 8088 * When looking for a bad block we specify a range and want to 8089 * know if any block in the range is bad. So we binary-search 8090 * to the last range that starts at-or-before the given endpoint, 8091 * (or "before the sector after the target range") 8092 * then see if it ends after the given start. 8093 * We return 8094 * 0 if there are no known bad blocks in the range 8095 * 1 if there are known bad block which are all acknowledged 8096 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 8097 * plus the start/length of the first bad section we overlap. 8098 */ 8099 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 8100 sector_t *first_bad, int *bad_sectors) 8101 { 8102 int hi; 8103 int lo; 8104 u64 *p = bb->page; 8105 int rv; 8106 sector_t target = s + sectors; 8107 unsigned seq; 8108 8109 if (bb->shift > 0) { 8110 /* round the start down, and the end up */ 8111 s >>= bb->shift; 8112 target += (1<<bb->shift) - 1; 8113 target >>= bb->shift; 8114 sectors = target - s; 8115 } 8116 /* 'target' is now the first block after the bad range */ 8117 8118 retry: 8119 seq = read_seqbegin(&bb->lock); 8120 lo = 0; 8121 rv = 0; 8122 hi = bb->count; 8123 8124 /* Binary search between lo and hi for 'target' 8125 * i.e. for the last range that starts before 'target' 8126 */ 8127 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 8128 * are known not to be the last range before target. 8129 * VARIANT: hi-lo is the number of possible 8130 * ranges, and decreases until it reaches 1 8131 */ 8132 while (hi - lo > 1) { 8133 int mid = (lo + hi) / 2; 8134 sector_t a = BB_OFFSET(p[mid]); 8135 if (a < target) 8136 /* This could still be the one, earlier ranges 8137 * could not. */ 8138 lo = mid; 8139 else 8140 /* This and later ranges are definitely out. */ 8141 hi = mid; 8142 } 8143 /* 'lo' might be the last that started before target, but 'hi' isn't */ 8144 if (hi > lo) { 8145 /* need to check all range that end after 's' to see if 8146 * any are unacknowledged. 8147 */ 8148 while (lo >= 0 && 8149 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8150 if (BB_OFFSET(p[lo]) < target) { 8151 /* starts before the end, and finishes after 8152 * the start, so they must overlap 8153 */ 8154 if (rv != -1 && BB_ACK(p[lo])) 8155 rv = 1; 8156 else 8157 rv = -1; 8158 *first_bad = BB_OFFSET(p[lo]); 8159 *bad_sectors = BB_LEN(p[lo]); 8160 } 8161 lo--; 8162 } 8163 } 8164 8165 if (read_seqretry(&bb->lock, seq)) 8166 goto retry; 8167 8168 return rv; 8169 } 8170 EXPORT_SYMBOL_GPL(md_is_badblock); 8171 8172 /* 8173 * Add a range of bad blocks to the table. 8174 * This might extend the table, or might contract it 8175 * if two adjacent ranges can be merged. 8176 * We binary-search to find the 'insertion' point, then 8177 * decide how best to handle it. 8178 */ 8179 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 8180 int acknowledged) 8181 { 8182 u64 *p; 8183 int lo, hi; 8184 int rv = 1; 8185 unsigned long flags; 8186 8187 if (bb->shift < 0) 8188 /* badblocks are disabled */ 8189 return 0; 8190 8191 if (bb->shift) { 8192 /* round the start down, and the end up */ 8193 sector_t next = s + sectors; 8194 s >>= bb->shift; 8195 next += (1<<bb->shift) - 1; 8196 next >>= bb->shift; 8197 sectors = next - s; 8198 } 8199 8200 write_seqlock_irqsave(&bb->lock, flags); 8201 8202 p = bb->page; 8203 lo = 0; 8204 hi = bb->count; 8205 /* Find the last range that starts at-or-before 's' */ 8206 while (hi - lo > 1) { 8207 int mid = (lo + hi) / 2; 8208 sector_t a = BB_OFFSET(p[mid]); 8209 if (a <= s) 8210 lo = mid; 8211 else 8212 hi = mid; 8213 } 8214 if (hi > lo && BB_OFFSET(p[lo]) > s) 8215 hi = lo; 8216 8217 if (hi > lo) { 8218 /* we found a range that might merge with the start 8219 * of our new range 8220 */ 8221 sector_t a = BB_OFFSET(p[lo]); 8222 sector_t e = a + BB_LEN(p[lo]); 8223 int ack = BB_ACK(p[lo]); 8224 if (e >= s) { 8225 /* Yes, we can merge with a previous range */ 8226 if (s == a && s + sectors >= e) 8227 /* new range covers old */ 8228 ack = acknowledged; 8229 else 8230 ack = ack && acknowledged; 8231 8232 if (e < s + sectors) 8233 e = s + sectors; 8234 if (e - a <= BB_MAX_LEN) { 8235 p[lo] = BB_MAKE(a, e-a, ack); 8236 s = e; 8237 } else { 8238 /* does not all fit in one range, 8239 * make p[lo] maximal 8240 */ 8241 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8242 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8243 s = a + BB_MAX_LEN; 8244 } 8245 sectors = e - s; 8246 } 8247 } 8248 if (sectors && hi < bb->count) { 8249 /* 'hi' points to the first range that starts after 's'. 8250 * Maybe we can merge with the start of that range */ 8251 sector_t a = BB_OFFSET(p[hi]); 8252 sector_t e = a + BB_LEN(p[hi]); 8253 int ack = BB_ACK(p[hi]); 8254 if (a <= s + sectors) { 8255 /* merging is possible */ 8256 if (e <= s + sectors) { 8257 /* full overlap */ 8258 e = s + sectors; 8259 ack = acknowledged; 8260 } else 8261 ack = ack && acknowledged; 8262 8263 a = s; 8264 if (e - a <= BB_MAX_LEN) { 8265 p[hi] = BB_MAKE(a, e-a, ack); 8266 s = e; 8267 } else { 8268 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8269 s = a + BB_MAX_LEN; 8270 } 8271 sectors = e - s; 8272 lo = hi; 8273 hi++; 8274 } 8275 } 8276 if (sectors == 0 && hi < bb->count) { 8277 /* we might be able to combine lo and hi */ 8278 /* Note: 's' is at the end of 'lo' */ 8279 sector_t a = BB_OFFSET(p[hi]); 8280 int lolen = BB_LEN(p[lo]); 8281 int hilen = BB_LEN(p[hi]); 8282 int newlen = lolen + hilen - (s - a); 8283 if (s >= a && newlen < BB_MAX_LEN) { 8284 /* yes, we can combine them */ 8285 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8286 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8287 memmove(p + hi, p + hi + 1, 8288 (bb->count - hi - 1) * 8); 8289 bb->count--; 8290 } 8291 } 8292 while (sectors) { 8293 /* didn't merge (it all). 8294 * Need to add a range just before 'hi' */ 8295 if (bb->count >= MD_MAX_BADBLOCKS) { 8296 /* No room for more */ 8297 rv = 0; 8298 break; 8299 } else { 8300 int this_sectors = sectors; 8301 memmove(p + hi + 1, p + hi, 8302 (bb->count - hi) * 8); 8303 bb->count++; 8304 8305 if (this_sectors > BB_MAX_LEN) 8306 this_sectors = BB_MAX_LEN; 8307 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8308 sectors -= this_sectors; 8309 s += this_sectors; 8310 } 8311 } 8312 8313 bb->changed = 1; 8314 if (!acknowledged) 8315 bb->unacked_exist = 1; 8316 write_sequnlock_irqrestore(&bb->lock, flags); 8317 8318 return rv; 8319 } 8320 8321 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8322 int is_new) 8323 { 8324 int rv; 8325 if (is_new) 8326 s += rdev->new_data_offset; 8327 else 8328 s += rdev->data_offset; 8329 rv = md_set_badblocks(&rdev->badblocks, 8330 s, sectors, 0); 8331 if (rv) { 8332 /* Make sure they get written out promptly */ 8333 sysfs_notify_dirent_safe(rdev->sysfs_state); 8334 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8335 md_wakeup_thread(rdev->mddev->thread); 8336 } 8337 return rv; 8338 } 8339 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8340 8341 /* 8342 * Remove a range of bad blocks from the table. 8343 * This may involve extending the table if we spilt a region, 8344 * but it must not fail. So if the table becomes full, we just 8345 * drop the remove request. 8346 */ 8347 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8348 { 8349 u64 *p; 8350 int lo, hi; 8351 sector_t target = s + sectors; 8352 int rv = 0; 8353 8354 if (bb->shift > 0) { 8355 /* When clearing we round the start up and the end down. 8356 * This should not matter as the shift should align with 8357 * the block size and no rounding should ever be needed. 8358 * However it is better the think a block is bad when it 8359 * isn't than to think a block is not bad when it is. 8360 */ 8361 s += (1<<bb->shift) - 1; 8362 s >>= bb->shift; 8363 target >>= bb->shift; 8364 sectors = target - s; 8365 } 8366 8367 write_seqlock_irq(&bb->lock); 8368 8369 p = bb->page; 8370 lo = 0; 8371 hi = bb->count; 8372 /* Find the last range that starts before 'target' */ 8373 while (hi - lo > 1) { 8374 int mid = (lo + hi) / 2; 8375 sector_t a = BB_OFFSET(p[mid]); 8376 if (a < target) 8377 lo = mid; 8378 else 8379 hi = mid; 8380 } 8381 if (hi > lo) { 8382 /* p[lo] is the last range that could overlap the 8383 * current range. Earlier ranges could also overlap, 8384 * but only this one can overlap the end of the range. 8385 */ 8386 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8387 /* Partial overlap, leave the tail of this range */ 8388 int ack = BB_ACK(p[lo]); 8389 sector_t a = BB_OFFSET(p[lo]); 8390 sector_t end = a + BB_LEN(p[lo]); 8391 8392 if (a < s) { 8393 /* we need to split this range */ 8394 if (bb->count >= MD_MAX_BADBLOCKS) { 8395 rv = -ENOSPC; 8396 goto out; 8397 } 8398 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8399 bb->count++; 8400 p[lo] = BB_MAKE(a, s-a, ack); 8401 lo++; 8402 } 8403 p[lo] = BB_MAKE(target, end - target, ack); 8404 /* there is no longer an overlap */ 8405 hi = lo; 8406 lo--; 8407 } 8408 while (lo >= 0 && 8409 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8410 /* This range does overlap */ 8411 if (BB_OFFSET(p[lo]) < s) { 8412 /* Keep the early parts of this range. */ 8413 int ack = BB_ACK(p[lo]); 8414 sector_t start = BB_OFFSET(p[lo]); 8415 p[lo] = BB_MAKE(start, s - start, ack); 8416 /* now low doesn't overlap, so.. */ 8417 break; 8418 } 8419 lo--; 8420 } 8421 /* 'lo' is strictly before, 'hi' is strictly after, 8422 * anything between needs to be discarded 8423 */ 8424 if (hi - lo > 1) { 8425 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8426 bb->count -= (hi - lo - 1); 8427 } 8428 } 8429 8430 bb->changed = 1; 8431 out: 8432 write_sequnlock_irq(&bb->lock); 8433 return rv; 8434 } 8435 8436 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8437 int is_new) 8438 { 8439 if (is_new) 8440 s += rdev->new_data_offset; 8441 else 8442 s += rdev->data_offset; 8443 return md_clear_badblocks(&rdev->badblocks, 8444 s, sectors); 8445 } 8446 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8447 8448 /* 8449 * Acknowledge all bad blocks in a list. 8450 * This only succeeds if ->changed is clear. It is used by 8451 * in-kernel metadata updates 8452 */ 8453 void md_ack_all_badblocks(struct badblocks *bb) 8454 { 8455 if (bb->page == NULL || bb->changed) 8456 /* no point even trying */ 8457 return; 8458 write_seqlock_irq(&bb->lock); 8459 8460 if (bb->changed == 0 && bb->unacked_exist) { 8461 u64 *p = bb->page; 8462 int i; 8463 for (i = 0; i < bb->count ; i++) { 8464 if (!BB_ACK(p[i])) { 8465 sector_t start = BB_OFFSET(p[i]); 8466 int len = BB_LEN(p[i]); 8467 p[i] = BB_MAKE(start, len, 1); 8468 } 8469 } 8470 bb->unacked_exist = 0; 8471 } 8472 write_sequnlock_irq(&bb->lock); 8473 } 8474 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8475 8476 /* sysfs access to bad-blocks list. 8477 * We present two files. 8478 * 'bad-blocks' lists sector numbers and lengths of ranges that 8479 * are recorded as bad. The list is truncated to fit within 8480 * the one-page limit of sysfs. 8481 * Writing "sector length" to this file adds an acknowledged 8482 * bad block list. 8483 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8484 * been acknowledged. Writing to this file adds bad blocks 8485 * without acknowledging them. This is largely for testing. 8486 */ 8487 8488 static ssize_t 8489 badblocks_show(struct badblocks *bb, char *page, int unack) 8490 { 8491 size_t len; 8492 int i; 8493 u64 *p = bb->page; 8494 unsigned seq; 8495 8496 if (bb->shift < 0) 8497 return 0; 8498 8499 retry: 8500 seq = read_seqbegin(&bb->lock); 8501 8502 len = 0; 8503 i = 0; 8504 8505 while (len < PAGE_SIZE && i < bb->count) { 8506 sector_t s = BB_OFFSET(p[i]); 8507 unsigned int length = BB_LEN(p[i]); 8508 int ack = BB_ACK(p[i]); 8509 i++; 8510 8511 if (unack && ack) 8512 continue; 8513 8514 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8515 (unsigned long long)s << bb->shift, 8516 length << bb->shift); 8517 } 8518 if (unack && len == 0) 8519 bb->unacked_exist = 0; 8520 8521 if (read_seqretry(&bb->lock, seq)) 8522 goto retry; 8523 8524 return len; 8525 } 8526 8527 #define DO_DEBUG 1 8528 8529 static ssize_t 8530 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8531 { 8532 unsigned long long sector; 8533 int length; 8534 char newline; 8535 #ifdef DO_DEBUG 8536 /* Allow clearing via sysfs *only* for testing/debugging. 8537 * Normally only a successful write may clear a badblock 8538 */ 8539 int clear = 0; 8540 if (page[0] == '-') { 8541 clear = 1; 8542 page++; 8543 } 8544 #endif /* DO_DEBUG */ 8545 8546 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8547 case 3: 8548 if (newline != '\n') 8549 return -EINVAL; 8550 case 2: 8551 if (length <= 0) 8552 return -EINVAL; 8553 break; 8554 default: 8555 return -EINVAL; 8556 } 8557 8558 #ifdef DO_DEBUG 8559 if (clear) { 8560 md_clear_badblocks(bb, sector, length); 8561 return len; 8562 } 8563 #endif /* DO_DEBUG */ 8564 if (md_set_badblocks(bb, sector, length, !unack)) 8565 return len; 8566 else 8567 return -ENOSPC; 8568 } 8569 8570 static int md_notify_reboot(struct notifier_block *this, 8571 unsigned long code, void *x) 8572 { 8573 struct list_head *tmp; 8574 struct mddev *mddev; 8575 int need_delay = 0; 8576 8577 for_each_mddev(mddev, tmp) { 8578 if (mddev_trylock(mddev)) { 8579 if (mddev->pers) 8580 __md_stop_writes(mddev); 8581 if (mddev->persistent) 8582 mddev->safemode = 2; 8583 mddev_unlock(mddev); 8584 } 8585 need_delay = 1; 8586 } 8587 /* 8588 * certain more exotic SCSI devices are known to be 8589 * volatile wrt too early system reboots. While the 8590 * right place to handle this issue is the given 8591 * driver, we do want to have a safe RAID driver ... 8592 */ 8593 if (need_delay) 8594 mdelay(1000*1); 8595 8596 return NOTIFY_DONE; 8597 } 8598 8599 static struct notifier_block md_notifier = { 8600 .notifier_call = md_notify_reboot, 8601 .next = NULL, 8602 .priority = INT_MAX, /* before any real devices */ 8603 }; 8604 8605 static void md_geninit(void) 8606 { 8607 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8608 8609 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8610 } 8611 8612 static int __init md_init(void) 8613 { 8614 int ret = -ENOMEM; 8615 8616 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8617 if (!md_wq) 8618 goto err_wq; 8619 8620 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8621 if (!md_misc_wq) 8622 goto err_misc_wq; 8623 8624 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8625 goto err_md; 8626 8627 if ((ret = register_blkdev(0, "mdp")) < 0) 8628 goto err_mdp; 8629 mdp_major = ret; 8630 8631 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 8632 md_probe, NULL, NULL); 8633 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8634 md_probe, NULL, NULL); 8635 8636 register_reboot_notifier(&md_notifier); 8637 raid_table_header = register_sysctl_table(raid_root_table); 8638 8639 md_geninit(); 8640 return 0; 8641 8642 err_mdp: 8643 unregister_blkdev(MD_MAJOR, "md"); 8644 err_md: 8645 destroy_workqueue(md_misc_wq); 8646 err_misc_wq: 8647 destroy_workqueue(md_wq); 8648 err_wq: 8649 return ret; 8650 } 8651 8652 #ifndef MODULE 8653 8654 /* 8655 * Searches all registered partitions for autorun RAID arrays 8656 * at boot time. 8657 */ 8658 8659 static LIST_HEAD(all_detected_devices); 8660 struct detected_devices_node { 8661 struct list_head list; 8662 dev_t dev; 8663 }; 8664 8665 void md_autodetect_dev(dev_t dev) 8666 { 8667 struct detected_devices_node *node_detected_dev; 8668 8669 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8670 if (node_detected_dev) { 8671 node_detected_dev->dev = dev; 8672 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8673 } else { 8674 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8675 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8676 } 8677 } 8678 8679 static void autostart_arrays(int part) 8680 { 8681 struct md_rdev *rdev; 8682 struct detected_devices_node *node_detected_dev; 8683 dev_t dev; 8684 int i_scanned, i_passed; 8685 8686 i_scanned = 0; 8687 i_passed = 0; 8688 8689 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8690 8691 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8692 i_scanned++; 8693 node_detected_dev = list_entry(all_detected_devices.next, 8694 struct detected_devices_node, list); 8695 list_del(&node_detected_dev->list); 8696 dev = node_detected_dev->dev; 8697 kfree(node_detected_dev); 8698 rdev = md_import_device(dev,0, 90); 8699 if (IS_ERR(rdev)) 8700 continue; 8701 8702 if (test_bit(Faulty, &rdev->flags)) 8703 continue; 8704 8705 set_bit(AutoDetected, &rdev->flags); 8706 list_add(&rdev->same_set, &pending_raid_disks); 8707 i_passed++; 8708 } 8709 8710 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8711 i_scanned, i_passed); 8712 8713 autorun_devices(part); 8714 } 8715 8716 #endif /* !MODULE */ 8717 8718 static __exit void md_exit(void) 8719 { 8720 struct mddev *mddev; 8721 struct list_head *tmp; 8722 int delay = 1; 8723 8724 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 8725 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8726 8727 unregister_blkdev(MD_MAJOR,"md"); 8728 unregister_blkdev(mdp_major, "mdp"); 8729 unregister_reboot_notifier(&md_notifier); 8730 unregister_sysctl_table(raid_table_header); 8731 8732 /* We cannot unload the modules while some process is 8733 * waiting for us in select() or poll() - wake them up 8734 */ 8735 md_unloading = 1; 8736 while (waitqueue_active(&md_event_waiters)) { 8737 /* not safe to leave yet */ 8738 wake_up(&md_event_waiters); 8739 msleep(delay); 8740 delay += delay; 8741 } 8742 remove_proc_entry("mdstat", NULL); 8743 8744 for_each_mddev(mddev, tmp) { 8745 export_array(mddev); 8746 mddev->hold_active = 0; 8747 } 8748 destroy_workqueue(md_misc_wq); 8749 destroy_workqueue(md_wq); 8750 } 8751 8752 subsys_initcall(md_init); 8753 module_exit(md_exit) 8754 8755 static int get_ro(char *buffer, struct kernel_param *kp) 8756 { 8757 return sprintf(buffer, "%d", start_readonly); 8758 } 8759 static int set_ro(const char *val, struct kernel_param *kp) 8760 { 8761 char *e; 8762 int num = simple_strtoul(val, &e, 10); 8763 if (*val && (*e == '\0' || *e == '\n')) { 8764 start_readonly = num; 8765 return 0; 8766 } 8767 return -EINVAL; 8768 } 8769 8770 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8771 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8772 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8773 8774 MODULE_LICENSE("GPL"); 8775 MODULE_DESCRIPTION("MD RAID framework"); 8776 MODULE_ALIAS("md"); 8777 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8778