1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/mutex.h> 40 #include <linux/buffer_head.h> /* for invalidate_bdev */ 41 #include <linux/poll.h> 42 #include <linux/ctype.h> 43 #include <linux/string.h> 44 #include <linux/hdreg.h> 45 #include <linux/proc_fs.h> 46 #include <linux/random.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #define DEBUG 0 58 #define dprintk(x...) ((void)(DEBUG && printk(x))) 59 60 #ifndef MODULE 61 static void autostart_arrays(int part); 62 #endif 63 64 static LIST_HEAD(pers_list); 65 static DEFINE_SPINLOCK(pers_lock); 66 67 static void md_print_devices(void); 68 69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 70 static struct workqueue_struct *md_wq; 71 static struct workqueue_struct *md_misc_wq; 72 73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 74 75 /* 76 * Default number of read corrections we'll attempt on an rdev 77 * before ejecting it from the array. We divide the read error 78 * count by 2 for every hour elapsed between read errors. 79 */ 80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 81 /* 82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 83 * is 1000 KB/sec, so the extra system load does not show up that much. 84 * Increase it if you want to have more _guaranteed_ speed. Note that 85 * the RAID driver will use the maximum available bandwidth if the IO 86 * subsystem is idle. There is also an 'absolute maximum' reconstruction 87 * speed limit - in case reconstruction slows down your system despite 88 * idle IO detection. 89 * 90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 91 * or /sys/block/mdX/md/sync_speed_{min,max} 92 */ 93 94 static int sysctl_speed_limit_min = 1000; 95 static int sysctl_speed_limit_max = 200000; 96 static inline int speed_min(mddev_t *mddev) 97 { 98 return mddev->sync_speed_min ? 99 mddev->sync_speed_min : sysctl_speed_limit_min; 100 } 101 102 static inline int speed_max(mddev_t *mddev) 103 { 104 return mddev->sync_speed_max ? 105 mddev->sync_speed_max : sysctl_speed_limit_max; 106 } 107 108 static struct ctl_table_header *raid_table_header; 109 110 static ctl_table raid_table[] = { 111 { 112 .procname = "speed_limit_min", 113 .data = &sysctl_speed_limit_min, 114 .maxlen = sizeof(int), 115 .mode = S_IRUGO|S_IWUSR, 116 .proc_handler = proc_dointvec, 117 }, 118 { 119 .procname = "speed_limit_max", 120 .data = &sysctl_speed_limit_max, 121 .maxlen = sizeof(int), 122 .mode = S_IRUGO|S_IWUSR, 123 .proc_handler = proc_dointvec, 124 }, 125 { } 126 }; 127 128 static ctl_table raid_dir_table[] = { 129 { 130 .procname = "raid", 131 .maxlen = 0, 132 .mode = S_IRUGO|S_IXUGO, 133 .child = raid_table, 134 }, 135 { } 136 }; 137 138 static ctl_table raid_root_table[] = { 139 { 140 .procname = "dev", 141 .maxlen = 0, 142 .mode = 0555, 143 .child = raid_dir_table, 144 }, 145 { } 146 }; 147 148 static const struct block_device_operations md_fops; 149 150 static int start_readonly; 151 152 /* bio_clone_mddev 153 * like bio_clone, but with a local bio set 154 */ 155 156 static void mddev_bio_destructor(struct bio *bio) 157 { 158 mddev_t *mddev, **mddevp; 159 160 mddevp = (void*)bio; 161 mddev = mddevp[-1]; 162 163 bio_free(bio, mddev->bio_set); 164 } 165 166 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 167 mddev_t *mddev) 168 { 169 struct bio *b; 170 mddev_t **mddevp; 171 172 if (!mddev || !mddev->bio_set) 173 return bio_alloc(gfp_mask, nr_iovecs); 174 175 b = bio_alloc_bioset(gfp_mask, nr_iovecs, 176 mddev->bio_set); 177 if (!b) 178 return NULL; 179 mddevp = (void*)b; 180 mddevp[-1] = mddev; 181 b->bi_destructor = mddev_bio_destructor; 182 return b; 183 } 184 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 185 186 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 187 mddev_t *mddev) 188 { 189 struct bio *b; 190 mddev_t **mddevp; 191 192 if (!mddev || !mddev->bio_set) 193 return bio_clone(bio, gfp_mask); 194 195 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, 196 mddev->bio_set); 197 if (!b) 198 return NULL; 199 mddevp = (void*)b; 200 mddevp[-1] = mddev; 201 b->bi_destructor = mddev_bio_destructor; 202 __bio_clone(b, bio); 203 if (bio_integrity(bio)) { 204 int ret; 205 206 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set); 207 208 if (ret < 0) { 209 bio_put(b); 210 return NULL; 211 } 212 } 213 214 return b; 215 } 216 EXPORT_SYMBOL_GPL(bio_clone_mddev); 217 218 void md_trim_bio(struct bio *bio, int offset, int size) 219 { 220 /* 'bio' is a cloned bio which we need to trim to match 221 * the given offset and size. 222 * This requires adjusting bi_sector, bi_size, and bi_io_vec 223 */ 224 int i; 225 struct bio_vec *bvec; 226 int sofar = 0; 227 228 size <<= 9; 229 if (offset == 0 && size == bio->bi_size) 230 return; 231 232 bio->bi_sector += offset; 233 bio->bi_size = size; 234 offset <<= 9; 235 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 236 237 while (bio->bi_idx < bio->bi_vcnt && 238 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) { 239 /* remove this whole bio_vec */ 240 offset -= bio->bi_io_vec[bio->bi_idx].bv_len; 241 bio->bi_idx++; 242 } 243 if (bio->bi_idx < bio->bi_vcnt) { 244 bio->bi_io_vec[bio->bi_idx].bv_offset += offset; 245 bio->bi_io_vec[bio->bi_idx].bv_len -= offset; 246 } 247 /* avoid any complications with bi_idx being non-zero*/ 248 if (bio->bi_idx) { 249 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx, 250 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec)); 251 bio->bi_vcnt -= bio->bi_idx; 252 bio->bi_idx = 0; 253 } 254 /* Make sure vcnt and last bv are not too big */ 255 bio_for_each_segment(bvec, bio, i) { 256 if (sofar + bvec->bv_len > size) 257 bvec->bv_len = size - sofar; 258 if (bvec->bv_len == 0) { 259 bio->bi_vcnt = i; 260 break; 261 } 262 sofar += bvec->bv_len; 263 } 264 } 265 EXPORT_SYMBOL_GPL(md_trim_bio); 266 267 /* 268 * We have a system wide 'event count' that is incremented 269 * on any 'interesting' event, and readers of /proc/mdstat 270 * can use 'poll' or 'select' to find out when the event 271 * count increases. 272 * 273 * Events are: 274 * start array, stop array, error, add device, remove device, 275 * start build, activate spare 276 */ 277 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 278 static atomic_t md_event_count; 279 void md_new_event(mddev_t *mddev) 280 { 281 atomic_inc(&md_event_count); 282 wake_up(&md_event_waiters); 283 } 284 EXPORT_SYMBOL_GPL(md_new_event); 285 286 /* Alternate version that can be called from interrupts 287 * when calling sysfs_notify isn't needed. 288 */ 289 static void md_new_event_inintr(mddev_t *mddev) 290 { 291 atomic_inc(&md_event_count); 292 wake_up(&md_event_waiters); 293 } 294 295 /* 296 * Enables to iterate over all existing md arrays 297 * all_mddevs_lock protects this list. 298 */ 299 static LIST_HEAD(all_mddevs); 300 static DEFINE_SPINLOCK(all_mddevs_lock); 301 302 303 /* 304 * iterates through all used mddevs in the system. 305 * We take care to grab the all_mddevs_lock whenever navigating 306 * the list, and to always hold a refcount when unlocked. 307 * Any code which breaks out of this loop while own 308 * a reference to the current mddev and must mddev_put it. 309 */ 310 #define for_each_mddev(mddev,tmp) \ 311 \ 312 for (({ spin_lock(&all_mddevs_lock); \ 313 tmp = all_mddevs.next; \ 314 mddev = NULL;}); \ 315 ({ if (tmp != &all_mddevs) \ 316 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 317 spin_unlock(&all_mddevs_lock); \ 318 if (mddev) mddev_put(mddev); \ 319 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 320 tmp != &all_mddevs;}); \ 321 ({ spin_lock(&all_mddevs_lock); \ 322 tmp = tmp->next;}) \ 323 ) 324 325 326 /* Rather than calling directly into the personality make_request function, 327 * IO requests come here first so that we can check if the device is 328 * being suspended pending a reconfiguration. 329 * We hold a refcount over the call to ->make_request. By the time that 330 * call has finished, the bio has been linked into some internal structure 331 * and so is visible to ->quiesce(), so we don't need the refcount any more. 332 */ 333 static int md_make_request(struct request_queue *q, struct bio *bio) 334 { 335 const int rw = bio_data_dir(bio); 336 mddev_t *mddev = q->queuedata; 337 int rv; 338 int cpu; 339 unsigned int sectors; 340 341 if (mddev == NULL || mddev->pers == NULL 342 || !mddev->ready) { 343 bio_io_error(bio); 344 return 0; 345 } 346 smp_rmb(); /* Ensure implications of 'active' are visible */ 347 rcu_read_lock(); 348 if (mddev->suspended) { 349 DEFINE_WAIT(__wait); 350 for (;;) { 351 prepare_to_wait(&mddev->sb_wait, &__wait, 352 TASK_UNINTERRUPTIBLE); 353 if (!mddev->suspended) 354 break; 355 rcu_read_unlock(); 356 schedule(); 357 rcu_read_lock(); 358 } 359 finish_wait(&mddev->sb_wait, &__wait); 360 } 361 atomic_inc(&mddev->active_io); 362 rcu_read_unlock(); 363 364 /* 365 * save the sectors now since our bio can 366 * go away inside make_request 367 */ 368 sectors = bio_sectors(bio); 369 rv = mddev->pers->make_request(mddev, bio); 370 371 cpu = part_stat_lock(); 372 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 373 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 374 part_stat_unlock(); 375 376 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 377 wake_up(&mddev->sb_wait); 378 379 return rv; 380 } 381 382 /* mddev_suspend makes sure no new requests are submitted 383 * to the device, and that any requests that have been submitted 384 * are completely handled. 385 * Once ->stop is called and completes, the module will be completely 386 * unused. 387 */ 388 void mddev_suspend(mddev_t *mddev) 389 { 390 BUG_ON(mddev->suspended); 391 mddev->suspended = 1; 392 synchronize_rcu(); 393 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 394 mddev->pers->quiesce(mddev, 1); 395 } 396 EXPORT_SYMBOL_GPL(mddev_suspend); 397 398 void mddev_resume(mddev_t *mddev) 399 { 400 mddev->suspended = 0; 401 wake_up(&mddev->sb_wait); 402 mddev->pers->quiesce(mddev, 0); 403 404 md_wakeup_thread(mddev->thread); 405 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 406 } 407 EXPORT_SYMBOL_GPL(mddev_resume); 408 409 int mddev_congested(mddev_t *mddev, int bits) 410 { 411 return mddev->suspended; 412 } 413 EXPORT_SYMBOL(mddev_congested); 414 415 /* 416 * Generic flush handling for md 417 */ 418 419 static void md_end_flush(struct bio *bio, int err) 420 { 421 mdk_rdev_t *rdev = bio->bi_private; 422 mddev_t *mddev = rdev->mddev; 423 424 rdev_dec_pending(rdev, mddev); 425 426 if (atomic_dec_and_test(&mddev->flush_pending)) { 427 /* The pre-request flush has finished */ 428 queue_work(md_wq, &mddev->flush_work); 429 } 430 bio_put(bio); 431 } 432 433 static void md_submit_flush_data(struct work_struct *ws); 434 435 static void submit_flushes(struct work_struct *ws) 436 { 437 mddev_t *mddev = container_of(ws, mddev_t, flush_work); 438 mdk_rdev_t *rdev; 439 440 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 441 atomic_set(&mddev->flush_pending, 1); 442 rcu_read_lock(); 443 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 444 if (rdev->raid_disk >= 0 && 445 !test_bit(Faulty, &rdev->flags)) { 446 /* Take two references, one is dropped 447 * when request finishes, one after 448 * we reclaim rcu_read_lock 449 */ 450 struct bio *bi; 451 atomic_inc(&rdev->nr_pending); 452 atomic_inc(&rdev->nr_pending); 453 rcu_read_unlock(); 454 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev); 455 bi->bi_end_io = md_end_flush; 456 bi->bi_private = rdev; 457 bi->bi_bdev = rdev->bdev; 458 atomic_inc(&mddev->flush_pending); 459 submit_bio(WRITE_FLUSH, bi); 460 rcu_read_lock(); 461 rdev_dec_pending(rdev, mddev); 462 } 463 rcu_read_unlock(); 464 if (atomic_dec_and_test(&mddev->flush_pending)) 465 queue_work(md_wq, &mddev->flush_work); 466 } 467 468 static void md_submit_flush_data(struct work_struct *ws) 469 { 470 mddev_t *mddev = container_of(ws, mddev_t, flush_work); 471 struct bio *bio = mddev->flush_bio; 472 473 if (bio->bi_size == 0) 474 /* an empty barrier - all done */ 475 bio_endio(bio, 0); 476 else { 477 bio->bi_rw &= ~REQ_FLUSH; 478 if (mddev->pers->make_request(mddev, bio)) 479 generic_make_request(bio); 480 } 481 482 mddev->flush_bio = NULL; 483 wake_up(&mddev->sb_wait); 484 } 485 486 void md_flush_request(mddev_t *mddev, struct bio *bio) 487 { 488 spin_lock_irq(&mddev->write_lock); 489 wait_event_lock_irq(mddev->sb_wait, 490 !mddev->flush_bio, 491 mddev->write_lock, /*nothing*/); 492 mddev->flush_bio = bio; 493 spin_unlock_irq(&mddev->write_lock); 494 495 INIT_WORK(&mddev->flush_work, submit_flushes); 496 queue_work(md_wq, &mddev->flush_work); 497 } 498 EXPORT_SYMBOL(md_flush_request); 499 500 /* Support for plugging. 501 * This mirrors the plugging support in request_queue, but does not 502 * require having a whole queue or request structures. 503 * We allocate an md_plug_cb for each md device and each thread it gets 504 * plugged on. This links tot the private plug_handle structure in the 505 * personality data where we keep a count of the number of outstanding 506 * plugs so other code can see if a plug is active. 507 */ 508 struct md_plug_cb { 509 struct blk_plug_cb cb; 510 mddev_t *mddev; 511 }; 512 513 static void plugger_unplug(struct blk_plug_cb *cb) 514 { 515 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb); 516 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt)) 517 md_wakeup_thread(mdcb->mddev->thread); 518 kfree(mdcb); 519 } 520 521 /* Check that an unplug wakeup will come shortly. 522 * If not, wakeup the md thread immediately 523 */ 524 int mddev_check_plugged(mddev_t *mddev) 525 { 526 struct blk_plug *plug = current->plug; 527 struct md_plug_cb *mdcb; 528 529 if (!plug) 530 return 0; 531 532 list_for_each_entry(mdcb, &plug->cb_list, cb.list) { 533 if (mdcb->cb.callback == plugger_unplug && 534 mdcb->mddev == mddev) { 535 /* Already on the list, move to top */ 536 if (mdcb != list_first_entry(&plug->cb_list, 537 struct md_plug_cb, 538 cb.list)) 539 list_move(&mdcb->cb.list, &plug->cb_list); 540 return 1; 541 } 542 } 543 /* Not currently on the callback list */ 544 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC); 545 if (!mdcb) 546 return 0; 547 548 mdcb->mddev = mddev; 549 mdcb->cb.callback = plugger_unplug; 550 atomic_inc(&mddev->plug_cnt); 551 list_add(&mdcb->cb.list, &plug->cb_list); 552 return 1; 553 } 554 EXPORT_SYMBOL_GPL(mddev_check_plugged); 555 556 static inline mddev_t *mddev_get(mddev_t *mddev) 557 { 558 atomic_inc(&mddev->active); 559 return mddev; 560 } 561 562 static void mddev_delayed_delete(struct work_struct *ws); 563 564 static void mddev_put(mddev_t *mddev) 565 { 566 struct bio_set *bs = NULL; 567 568 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 569 return; 570 if (!mddev->raid_disks && list_empty(&mddev->disks) && 571 mddev->ctime == 0 && !mddev->hold_active) { 572 /* Array is not configured at all, and not held active, 573 * so destroy it */ 574 list_del(&mddev->all_mddevs); 575 bs = mddev->bio_set; 576 mddev->bio_set = NULL; 577 if (mddev->gendisk) { 578 /* We did a probe so need to clean up. Call 579 * queue_work inside the spinlock so that 580 * flush_workqueue() after mddev_find will 581 * succeed in waiting for the work to be done. 582 */ 583 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 584 queue_work(md_misc_wq, &mddev->del_work); 585 } else 586 kfree(mddev); 587 } 588 spin_unlock(&all_mddevs_lock); 589 if (bs) 590 bioset_free(bs); 591 } 592 593 void mddev_init(mddev_t *mddev) 594 { 595 mutex_init(&mddev->open_mutex); 596 mutex_init(&mddev->reconfig_mutex); 597 mutex_init(&mddev->bitmap_info.mutex); 598 INIT_LIST_HEAD(&mddev->disks); 599 INIT_LIST_HEAD(&mddev->all_mddevs); 600 init_timer(&mddev->safemode_timer); 601 atomic_set(&mddev->active, 1); 602 atomic_set(&mddev->openers, 0); 603 atomic_set(&mddev->active_io, 0); 604 atomic_set(&mddev->plug_cnt, 0); 605 spin_lock_init(&mddev->write_lock); 606 atomic_set(&mddev->flush_pending, 0); 607 init_waitqueue_head(&mddev->sb_wait); 608 init_waitqueue_head(&mddev->recovery_wait); 609 mddev->reshape_position = MaxSector; 610 mddev->resync_min = 0; 611 mddev->resync_max = MaxSector; 612 mddev->level = LEVEL_NONE; 613 } 614 EXPORT_SYMBOL_GPL(mddev_init); 615 616 static mddev_t * mddev_find(dev_t unit) 617 { 618 mddev_t *mddev, *new = NULL; 619 620 if (unit && MAJOR(unit) != MD_MAJOR) 621 unit &= ~((1<<MdpMinorShift)-1); 622 623 retry: 624 spin_lock(&all_mddevs_lock); 625 626 if (unit) { 627 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 628 if (mddev->unit == unit) { 629 mddev_get(mddev); 630 spin_unlock(&all_mddevs_lock); 631 kfree(new); 632 return mddev; 633 } 634 635 if (new) { 636 list_add(&new->all_mddevs, &all_mddevs); 637 spin_unlock(&all_mddevs_lock); 638 new->hold_active = UNTIL_IOCTL; 639 return new; 640 } 641 } else if (new) { 642 /* find an unused unit number */ 643 static int next_minor = 512; 644 int start = next_minor; 645 int is_free = 0; 646 int dev = 0; 647 while (!is_free) { 648 dev = MKDEV(MD_MAJOR, next_minor); 649 next_minor++; 650 if (next_minor > MINORMASK) 651 next_minor = 0; 652 if (next_minor == start) { 653 /* Oh dear, all in use. */ 654 spin_unlock(&all_mddevs_lock); 655 kfree(new); 656 return NULL; 657 } 658 659 is_free = 1; 660 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 661 if (mddev->unit == dev) { 662 is_free = 0; 663 break; 664 } 665 } 666 new->unit = dev; 667 new->md_minor = MINOR(dev); 668 new->hold_active = UNTIL_STOP; 669 list_add(&new->all_mddevs, &all_mddevs); 670 spin_unlock(&all_mddevs_lock); 671 return new; 672 } 673 spin_unlock(&all_mddevs_lock); 674 675 new = kzalloc(sizeof(*new), GFP_KERNEL); 676 if (!new) 677 return NULL; 678 679 new->unit = unit; 680 if (MAJOR(unit) == MD_MAJOR) 681 new->md_minor = MINOR(unit); 682 else 683 new->md_minor = MINOR(unit) >> MdpMinorShift; 684 685 mddev_init(new); 686 687 goto retry; 688 } 689 690 static inline int mddev_lock(mddev_t * mddev) 691 { 692 return mutex_lock_interruptible(&mddev->reconfig_mutex); 693 } 694 695 static inline int mddev_is_locked(mddev_t *mddev) 696 { 697 return mutex_is_locked(&mddev->reconfig_mutex); 698 } 699 700 static inline int mddev_trylock(mddev_t * mddev) 701 { 702 return mutex_trylock(&mddev->reconfig_mutex); 703 } 704 705 static struct attribute_group md_redundancy_group; 706 707 static void mddev_unlock(mddev_t * mddev) 708 { 709 if (mddev->to_remove) { 710 /* These cannot be removed under reconfig_mutex as 711 * an access to the files will try to take reconfig_mutex 712 * while holding the file unremovable, which leads to 713 * a deadlock. 714 * So hold set sysfs_active while the remove in happeing, 715 * and anything else which might set ->to_remove or my 716 * otherwise change the sysfs namespace will fail with 717 * -EBUSY if sysfs_active is still set. 718 * We set sysfs_active under reconfig_mutex and elsewhere 719 * test it under the same mutex to ensure its correct value 720 * is seen. 721 */ 722 struct attribute_group *to_remove = mddev->to_remove; 723 mddev->to_remove = NULL; 724 mddev->sysfs_active = 1; 725 mutex_unlock(&mddev->reconfig_mutex); 726 727 if (mddev->kobj.sd) { 728 if (to_remove != &md_redundancy_group) 729 sysfs_remove_group(&mddev->kobj, to_remove); 730 if (mddev->pers == NULL || 731 mddev->pers->sync_request == NULL) { 732 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 733 if (mddev->sysfs_action) 734 sysfs_put(mddev->sysfs_action); 735 mddev->sysfs_action = NULL; 736 } 737 } 738 mddev->sysfs_active = 0; 739 } else 740 mutex_unlock(&mddev->reconfig_mutex); 741 742 md_wakeup_thread(mddev->thread); 743 } 744 745 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 746 { 747 mdk_rdev_t *rdev; 748 749 list_for_each_entry(rdev, &mddev->disks, same_set) 750 if (rdev->desc_nr == nr) 751 return rdev; 752 753 return NULL; 754 } 755 756 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 757 { 758 mdk_rdev_t *rdev; 759 760 list_for_each_entry(rdev, &mddev->disks, same_set) 761 if (rdev->bdev->bd_dev == dev) 762 return rdev; 763 764 return NULL; 765 } 766 767 static struct mdk_personality *find_pers(int level, char *clevel) 768 { 769 struct mdk_personality *pers; 770 list_for_each_entry(pers, &pers_list, list) { 771 if (level != LEVEL_NONE && pers->level == level) 772 return pers; 773 if (strcmp(pers->name, clevel)==0) 774 return pers; 775 } 776 return NULL; 777 } 778 779 /* return the offset of the super block in 512byte sectors */ 780 static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev) 781 { 782 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 783 return MD_NEW_SIZE_SECTORS(num_sectors); 784 } 785 786 static int alloc_disk_sb(mdk_rdev_t * rdev) 787 { 788 if (rdev->sb_page) 789 MD_BUG(); 790 791 rdev->sb_page = alloc_page(GFP_KERNEL); 792 if (!rdev->sb_page) { 793 printk(KERN_ALERT "md: out of memory.\n"); 794 return -ENOMEM; 795 } 796 797 return 0; 798 } 799 800 static void free_disk_sb(mdk_rdev_t * rdev) 801 { 802 if (rdev->sb_page) { 803 put_page(rdev->sb_page); 804 rdev->sb_loaded = 0; 805 rdev->sb_page = NULL; 806 rdev->sb_start = 0; 807 rdev->sectors = 0; 808 } 809 if (rdev->bb_page) { 810 put_page(rdev->bb_page); 811 rdev->bb_page = NULL; 812 } 813 } 814 815 816 static void super_written(struct bio *bio, int error) 817 { 818 mdk_rdev_t *rdev = bio->bi_private; 819 mddev_t *mddev = rdev->mddev; 820 821 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 822 printk("md: super_written gets error=%d, uptodate=%d\n", 823 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 824 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 825 md_error(mddev, rdev); 826 } 827 828 if (atomic_dec_and_test(&mddev->pending_writes)) 829 wake_up(&mddev->sb_wait); 830 bio_put(bio); 831 } 832 833 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 834 sector_t sector, int size, struct page *page) 835 { 836 /* write first size bytes of page to sector of rdev 837 * Increment mddev->pending_writes before returning 838 * and decrement it on completion, waking up sb_wait 839 * if zero is reached. 840 * If an error occurred, call md_error 841 */ 842 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 843 844 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 845 bio->bi_sector = sector; 846 bio_add_page(bio, page, size, 0); 847 bio->bi_private = rdev; 848 bio->bi_end_io = super_written; 849 850 atomic_inc(&mddev->pending_writes); 851 submit_bio(REQ_WRITE | REQ_SYNC | REQ_FLUSH | REQ_FUA, bio); 852 } 853 854 void md_super_wait(mddev_t *mddev) 855 { 856 /* wait for all superblock writes that were scheduled to complete */ 857 DEFINE_WAIT(wq); 858 for(;;) { 859 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 860 if (atomic_read(&mddev->pending_writes)==0) 861 break; 862 schedule(); 863 } 864 finish_wait(&mddev->sb_wait, &wq); 865 } 866 867 static void bi_complete(struct bio *bio, int error) 868 { 869 complete((struct completion*)bio->bi_private); 870 } 871 872 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size, 873 struct page *page, int rw, bool metadata_op) 874 { 875 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 876 struct completion event; 877 int ret; 878 879 rw |= REQ_SYNC; 880 881 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 882 rdev->meta_bdev : rdev->bdev; 883 if (metadata_op) 884 bio->bi_sector = sector + rdev->sb_start; 885 else 886 bio->bi_sector = sector + rdev->data_offset; 887 bio_add_page(bio, page, size, 0); 888 init_completion(&event); 889 bio->bi_private = &event; 890 bio->bi_end_io = bi_complete; 891 submit_bio(rw, bio); 892 wait_for_completion(&event); 893 894 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 895 bio_put(bio); 896 return ret; 897 } 898 EXPORT_SYMBOL_GPL(sync_page_io); 899 900 static int read_disk_sb(mdk_rdev_t * rdev, int size) 901 { 902 char b[BDEVNAME_SIZE]; 903 if (!rdev->sb_page) { 904 MD_BUG(); 905 return -EINVAL; 906 } 907 if (rdev->sb_loaded) 908 return 0; 909 910 911 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 912 goto fail; 913 rdev->sb_loaded = 1; 914 return 0; 915 916 fail: 917 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 918 bdevname(rdev->bdev,b)); 919 return -EINVAL; 920 } 921 922 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 923 { 924 return sb1->set_uuid0 == sb2->set_uuid0 && 925 sb1->set_uuid1 == sb2->set_uuid1 && 926 sb1->set_uuid2 == sb2->set_uuid2 && 927 sb1->set_uuid3 == sb2->set_uuid3; 928 } 929 930 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 931 { 932 int ret; 933 mdp_super_t *tmp1, *tmp2; 934 935 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 936 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 937 938 if (!tmp1 || !tmp2) { 939 ret = 0; 940 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 941 goto abort; 942 } 943 944 *tmp1 = *sb1; 945 *tmp2 = *sb2; 946 947 /* 948 * nr_disks is not constant 949 */ 950 tmp1->nr_disks = 0; 951 tmp2->nr_disks = 0; 952 953 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 954 abort: 955 kfree(tmp1); 956 kfree(tmp2); 957 return ret; 958 } 959 960 961 static u32 md_csum_fold(u32 csum) 962 { 963 csum = (csum & 0xffff) + (csum >> 16); 964 return (csum & 0xffff) + (csum >> 16); 965 } 966 967 static unsigned int calc_sb_csum(mdp_super_t * sb) 968 { 969 u64 newcsum = 0; 970 u32 *sb32 = (u32*)sb; 971 int i; 972 unsigned int disk_csum, csum; 973 974 disk_csum = sb->sb_csum; 975 sb->sb_csum = 0; 976 977 for (i = 0; i < MD_SB_BYTES/4 ; i++) 978 newcsum += sb32[i]; 979 csum = (newcsum & 0xffffffff) + (newcsum>>32); 980 981 982 #ifdef CONFIG_ALPHA 983 /* This used to use csum_partial, which was wrong for several 984 * reasons including that different results are returned on 985 * different architectures. It isn't critical that we get exactly 986 * the same return value as before (we always csum_fold before 987 * testing, and that removes any differences). However as we 988 * know that csum_partial always returned a 16bit value on 989 * alphas, do a fold to maximise conformity to previous behaviour. 990 */ 991 sb->sb_csum = md_csum_fold(disk_csum); 992 #else 993 sb->sb_csum = disk_csum; 994 #endif 995 return csum; 996 } 997 998 999 /* 1000 * Handle superblock details. 1001 * We want to be able to handle multiple superblock formats 1002 * so we have a common interface to them all, and an array of 1003 * different handlers. 1004 * We rely on user-space to write the initial superblock, and support 1005 * reading and updating of superblocks. 1006 * Interface methods are: 1007 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 1008 * loads and validates a superblock on dev. 1009 * if refdev != NULL, compare superblocks on both devices 1010 * Return: 1011 * 0 - dev has a superblock that is compatible with refdev 1012 * 1 - dev has a superblock that is compatible and newer than refdev 1013 * so dev should be used as the refdev in future 1014 * -EINVAL superblock incompatible or invalid 1015 * -othererror e.g. -EIO 1016 * 1017 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 1018 * Verify that dev is acceptable into mddev. 1019 * The first time, mddev->raid_disks will be 0, and data from 1020 * dev should be merged in. Subsequent calls check that dev 1021 * is new enough. Return 0 or -EINVAL 1022 * 1023 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 1024 * Update the superblock for rdev with data in mddev 1025 * This does not write to disc. 1026 * 1027 */ 1028 1029 struct super_type { 1030 char *name; 1031 struct module *owner; 1032 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, 1033 int minor_version); 1034 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 1035 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 1036 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev, 1037 sector_t num_sectors); 1038 }; 1039 1040 /* 1041 * Check that the given mddev has no bitmap. 1042 * 1043 * This function is called from the run method of all personalities that do not 1044 * support bitmaps. It prints an error message and returns non-zero if mddev 1045 * has a bitmap. Otherwise, it returns 0. 1046 * 1047 */ 1048 int md_check_no_bitmap(mddev_t *mddev) 1049 { 1050 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1051 return 0; 1052 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 1053 mdname(mddev), mddev->pers->name); 1054 return 1; 1055 } 1056 EXPORT_SYMBOL(md_check_no_bitmap); 1057 1058 /* 1059 * load_super for 0.90.0 1060 */ 1061 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1062 { 1063 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1064 mdp_super_t *sb; 1065 int ret; 1066 1067 /* 1068 * Calculate the position of the superblock (512byte sectors), 1069 * it's at the end of the disk. 1070 * 1071 * It also happens to be a multiple of 4Kb. 1072 */ 1073 rdev->sb_start = calc_dev_sboffset(rdev); 1074 1075 ret = read_disk_sb(rdev, MD_SB_BYTES); 1076 if (ret) return ret; 1077 1078 ret = -EINVAL; 1079 1080 bdevname(rdev->bdev, b); 1081 sb = page_address(rdev->sb_page); 1082 1083 if (sb->md_magic != MD_SB_MAGIC) { 1084 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 1085 b); 1086 goto abort; 1087 } 1088 1089 if (sb->major_version != 0 || 1090 sb->minor_version < 90 || 1091 sb->minor_version > 91) { 1092 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1093 sb->major_version, sb->minor_version, 1094 b); 1095 goto abort; 1096 } 1097 1098 if (sb->raid_disks <= 0) 1099 goto abort; 1100 1101 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1102 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1103 b); 1104 goto abort; 1105 } 1106 1107 rdev->preferred_minor = sb->md_minor; 1108 rdev->data_offset = 0; 1109 rdev->sb_size = MD_SB_BYTES; 1110 rdev->badblocks.shift = -1; 1111 1112 if (sb->level == LEVEL_MULTIPATH) 1113 rdev->desc_nr = -1; 1114 else 1115 rdev->desc_nr = sb->this_disk.number; 1116 1117 if (!refdev) { 1118 ret = 1; 1119 } else { 1120 __u64 ev1, ev2; 1121 mdp_super_t *refsb = page_address(refdev->sb_page); 1122 if (!uuid_equal(refsb, sb)) { 1123 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1124 b, bdevname(refdev->bdev,b2)); 1125 goto abort; 1126 } 1127 if (!sb_equal(refsb, sb)) { 1128 printk(KERN_WARNING "md: %s has same UUID" 1129 " but different superblock to %s\n", 1130 b, bdevname(refdev->bdev, b2)); 1131 goto abort; 1132 } 1133 ev1 = md_event(sb); 1134 ev2 = md_event(refsb); 1135 if (ev1 > ev2) 1136 ret = 1; 1137 else 1138 ret = 0; 1139 } 1140 rdev->sectors = rdev->sb_start; 1141 1142 if (rdev->sectors < sb->size * 2 && sb->level > 1) 1143 /* "this cannot possibly happen" ... */ 1144 ret = -EINVAL; 1145 1146 abort: 1147 return ret; 1148 } 1149 1150 /* 1151 * validate_super for 0.90.0 1152 */ 1153 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1154 { 1155 mdp_disk_t *desc; 1156 mdp_super_t *sb = page_address(rdev->sb_page); 1157 __u64 ev1 = md_event(sb); 1158 1159 rdev->raid_disk = -1; 1160 clear_bit(Faulty, &rdev->flags); 1161 clear_bit(In_sync, &rdev->flags); 1162 clear_bit(WriteMostly, &rdev->flags); 1163 1164 if (mddev->raid_disks == 0) { 1165 mddev->major_version = 0; 1166 mddev->minor_version = sb->minor_version; 1167 mddev->patch_version = sb->patch_version; 1168 mddev->external = 0; 1169 mddev->chunk_sectors = sb->chunk_size >> 9; 1170 mddev->ctime = sb->ctime; 1171 mddev->utime = sb->utime; 1172 mddev->level = sb->level; 1173 mddev->clevel[0] = 0; 1174 mddev->layout = sb->layout; 1175 mddev->raid_disks = sb->raid_disks; 1176 mddev->dev_sectors = sb->size * 2; 1177 mddev->events = ev1; 1178 mddev->bitmap_info.offset = 0; 1179 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1180 1181 if (mddev->minor_version >= 91) { 1182 mddev->reshape_position = sb->reshape_position; 1183 mddev->delta_disks = sb->delta_disks; 1184 mddev->new_level = sb->new_level; 1185 mddev->new_layout = sb->new_layout; 1186 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1187 } else { 1188 mddev->reshape_position = MaxSector; 1189 mddev->delta_disks = 0; 1190 mddev->new_level = mddev->level; 1191 mddev->new_layout = mddev->layout; 1192 mddev->new_chunk_sectors = mddev->chunk_sectors; 1193 } 1194 1195 if (sb->state & (1<<MD_SB_CLEAN)) 1196 mddev->recovery_cp = MaxSector; 1197 else { 1198 if (sb->events_hi == sb->cp_events_hi && 1199 sb->events_lo == sb->cp_events_lo) { 1200 mddev->recovery_cp = sb->recovery_cp; 1201 } else 1202 mddev->recovery_cp = 0; 1203 } 1204 1205 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1206 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1207 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1208 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1209 1210 mddev->max_disks = MD_SB_DISKS; 1211 1212 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1213 mddev->bitmap_info.file == NULL) 1214 mddev->bitmap_info.offset = 1215 mddev->bitmap_info.default_offset; 1216 1217 } else if (mddev->pers == NULL) { 1218 /* Insist on good event counter while assembling, except 1219 * for spares (which don't need an event count) */ 1220 ++ev1; 1221 if (sb->disks[rdev->desc_nr].state & ( 1222 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1223 if (ev1 < mddev->events) 1224 return -EINVAL; 1225 } else if (mddev->bitmap) { 1226 /* if adding to array with a bitmap, then we can accept an 1227 * older device ... but not too old. 1228 */ 1229 if (ev1 < mddev->bitmap->events_cleared) 1230 return 0; 1231 } else { 1232 if (ev1 < mddev->events) 1233 /* just a hot-add of a new device, leave raid_disk at -1 */ 1234 return 0; 1235 } 1236 1237 if (mddev->level != LEVEL_MULTIPATH) { 1238 desc = sb->disks + rdev->desc_nr; 1239 1240 if (desc->state & (1<<MD_DISK_FAULTY)) 1241 set_bit(Faulty, &rdev->flags); 1242 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1243 desc->raid_disk < mddev->raid_disks */) { 1244 set_bit(In_sync, &rdev->flags); 1245 rdev->raid_disk = desc->raid_disk; 1246 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1247 /* active but not in sync implies recovery up to 1248 * reshape position. We don't know exactly where 1249 * that is, so set to zero for now */ 1250 if (mddev->minor_version >= 91) { 1251 rdev->recovery_offset = 0; 1252 rdev->raid_disk = desc->raid_disk; 1253 } 1254 } 1255 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1256 set_bit(WriteMostly, &rdev->flags); 1257 } else /* MULTIPATH are always insync */ 1258 set_bit(In_sync, &rdev->flags); 1259 return 0; 1260 } 1261 1262 /* 1263 * sync_super for 0.90.0 1264 */ 1265 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1266 { 1267 mdp_super_t *sb; 1268 mdk_rdev_t *rdev2; 1269 int next_spare = mddev->raid_disks; 1270 1271 1272 /* make rdev->sb match mddev data.. 1273 * 1274 * 1/ zero out disks 1275 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1276 * 3/ any empty disks < next_spare become removed 1277 * 1278 * disks[0] gets initialised to REMOVED because 1279 * we cannot be sure from other fields if it has 1280 * been initialised or not. 1281 */ 1282 int i; 1283 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1284 1285 rdev->sb_size = MD_SB_BYTES; 1286 1287 sb = page_address(rdev->sb_page); 1288 1289 memset(sb, 0, sizeof(*sb)); 1290 1291 sb->md_magic = MD_SB_MAGIC; 1292 sb->major_version = mddev->major_version; 1293 sb->patch_version = mddev->patch_version; 1294 sb->gvalid_words = 0; /* ignored */ 1295 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1296 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1297 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1298 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1299 1300 sb->ctime = mddev->ctime; 1301 sb->level = mddev->level; 1302 sb->size = mddev->dev_sectors / 2; 1303 sb->raid_disks = mddev->raid_disks; 1304 sb->md_minor = mddev->md_minor; 1305 sb->not_persistent = 0; 1306 sb->utime = mddev->utime; 1307 sb->state = 0; 1308 sb->events_hi = (mddev->events>>32); 1309 sb->events_lo = (u32)mddev->events; 1310 1311 if (mddev->reshape_position == MaxSector) 1312 sb->minor_version = 90; 1313 else { 1314 sb->minor_version = 91; 1315 sb->reshape_position = mddev->reshape_position; 1316 sb->new_level = mddev->new_level; 1317 sb->delta_disks = mddev->delta_disks; 1318 sb->new_layout = mddev->new_layout; 1319 sb->new_chunk = mddev->new_chunk_sectors << 9; 1320 } 1321 mddev->minor_version = sb->minor_version; 1322 if (mddev->in_sync) 1323 { 1324 sb->recovery_cp = mddev->recovery_cp; 1325 sb->cp_events_hi = (mddev->events>>32); 1326 sb->cp_events_lo = (u32)mddev->events; 1327 if (mddev->recovery_cp == MaxSector) 1328 sb->state = (1<< MD_SB_CLEAN); 1329 } else 1330 sb->recovery_cp = 0; 1331 1332 sb->layout = mddev->layout; 1333 sb->chunk_size = mddev->chunk_sectors << 9; 1334 1335 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1336 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1337 1338 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1339 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1340 mdp_disk_t *d; 1341 int desc_nr; 1342 int is_active = test_bit(In_sync, &rdev2->flags); 1343 1344 if (rdev2->raid_disk >= 0 && 1345 sb->minor_version >= 91) 1346 /* we have nowhere to store the recovery_offset, 1347 * but if it is not below the reshape_position, 1348 * we can piggy-back on that. 1349 */ 1350 is_active = 1; 1351 if (rdev2->raid_disk < 0 || 1352 test_bit(Faulty, &rdev2->flags)) 1353 is_active = 0; 1354 if (is_active) 1355 desc_nr = rdev2->raid_disk; 1356 else 1357 desc_nr = next_spare++; 1358 rdev2->desc_nr = desc_nr; 1359 d = &sb->disks[rdev2->desc_nr]; 1360 nr_disks++; 1361 d->number = rdev2->desc_nr; 1362 d->major = MAJOR(rdev2->bdev->bd_dev); 1363 d->minor = MINOR(rdev2->bdev->bd_dev); 1364 if (is_active) 1365 d->raid_disk = rdev2->raid_disk; 1366 else 1367 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1368 if (test_bit(Faulty, &rdev2->flags)) 1369 d->state = (1<<MD_DISK_FAULTY); 1370 else if (is_active) { 1371 d->state = (1<<MD_DISK_ACTIVE); 1372 if (test_bit(In_sync, &rdev2->flags)) 1373 d->state |= (1<<MD_DISK_SYNC); 1374 active++; 1375 working++; 1376 } else { 1377 d->state = 0; 1378 spare++; 1379 working++; 1380 } 1381 if (test_bit(WriteMostly, &rdev2->flags)) 1382 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1383 } 1384 /* now set the "removed" and "faulty" bits on any missing devices */ 1385 for (i=0 ; i < mddev->raid_disks ; i++) { 1386 mdp_disk_t *d = &sb->disks[i]; 1387 if (d->state == 0 && d->number == 0) { 1388 d->number = i; 1389 d->raid_disk = i; 1390 d->state = (1<<MD_DISK_REMOVED); 1391 d->state |= (1<<MD_DISK_FAULTY); 1392 failed++; 1393 } 1394 } 1395 sb->nr_disks = nr_disks; 1396 sb->active_disks = active; 1397 sb->working_disks = working; 1398 sb->failed_disks = failed; 1399 sb->spare_disks = spare; 1400 1401 sb->this_disk = sb->disks[rdev->desc_nr]; 1402 sb->sb_csum = calc_sb_csum(sb); 1403 } 1404 1405 /* 1406 * rdev_size_change for 0.90.0 1407 */ 1408 static unsigned long long 1409 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1410 { 1411 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1412 return 0; /* component must fit device */ 1413 if (rdev->mddev->bitmap_info.offset) 1414 return 0; /* can't move bitmap */ 1415 rdev->sb_start = calc_dev_sboffset(rdev); 1416 if (!num_sectors || num_sectors > rdev->sb_start) 1417 num_sectors = rdev->sb_start; 1418 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1419 rdev->sb_page); 1420 md_super_wait(rdev->mddev); 1421 return num_sectors; 1422 } 1423 1424 1425 /* 1426 * version 1 superblock 1427 */ 1428 1429 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1430 { 1431 __le32 disk_csum; 1432 u32 csum; 1433 unsigned long long newcsum; 1434 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1435 __le32 *isuper = (__le32*)sb; 1436 int i; 1437 1438 disk_csum = sb->sb_csum; 1439 sb->sb_csum = 0; 1440 newcsum = 0; 1441 for (i=0; size>=4; size -= 4 ) 1442 newcsum += le32_to_cpu(*isuper++); 1443 1444 if (size == 2) 1445 newcsum += le16_to_cpu(*(__le16*) isuper); 1446 1447 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1448 sb->sb_csum = disk_csum; 1449 return cpu_to_le32(csum); 1450 } 1451 1452 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1453 int acknowledged); 1454 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1455 { 1456 struct mdp_superblock_1 *sb; 1457 int ret; 1458 sector_t sb_start; 1459 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1460 int bmask; 1461 1462 /* 1463 * Calculate the position of the superblock in 512byte sectors. 1464 * It is always aligned to a 4K boundary and 1465 * depeding on minor_version, it can be: 1466 * 0: At least 8K, but less than 12K, from end of device 1467 * 1: At start of device 1468 * 2: 4K from start of device. 1469 */ 1470 switch(minor_version) { 1471 case 0: 1472 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1473 sb_start -= 8*2; 1474 sb_start &= ~(sector_t)(4*2-1); 1475 break; 1476 case 1: 1477 sb_start = 0; 1478 break; 1479 case 2: 1480 sb_start = 8; 1481 break; 1482 default: 1483 return -EINVAL; 1484 } 1485 rdev->sb_start = sb_start; 1486 1487 /* superblock is rarely larger than 1K, but it can be larger, 1488 * and it is safe to read 4k, so we do that 1489 */ 1490 ret = read_disk_sb(rdev, 4096); 1491 if (ret) return ret; 1492 1493 1494 sb = page_address(rdev->sb_page); 1495 1496 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1497 sb->major_version != cpu_to_le32(1) || 1498 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1499 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1500 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1501 return -EINVAL; 1502 1503 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1504 printk("md: invalid superblock checksum on %s\n", 1505 bdevname(rdev->bdev,b)); 1506 return -EINVAL; 1507 } 1508 if (le64_to_cpu(sb->data_size) < 10) { 1509 printk("md: data_size too small on %s\n", 1510 bdevname(rdev->bdev,b)); 1511 return -EINVAL; 1512 } 1513 1514 rdev->preferred_minor = 0xffff; 1515 rdev->data_offset = le64_to_cpu(sb->data_offset); 1516 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1517 1518 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1519 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1520 if (rdev->sb_size & bmask) 1521 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1522 1523 if (minor_version 1524 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1525 return -EINVAL; 1526 1527 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1528 rdev->desc_nr = -1; 1529 else 1530 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1531 1532 if (!rdev->bb_page) { 1533 rdev->bb_page = alloc_page(GFP_KERNEL); 1534 if (!rdev->bb_page) 1535 return -ENOMEM; 1536 } 1537 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1538 rdev->badblocks.count == 0) { 1539 /* need to load the bad block list. 1540 * Currently we limit it to one page. 1541 */ 1542 s32 offset; 1543 sector_t bb_sector; 1544 u64 *bbp; 1545 int i; 1546 int sectors = le16_to_cpu(sb->bblog_size); 1547 if (sectors > (PAGE_SIZE / 512)) 1548 return -EINVAL; 1549 offset = le32_to_cpu(sb->bblog_offset); 1550 if (offset == 0) 1551 return -EINVAL; 1552 bb_sector = (long long)offset; 1553 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1554 rdev->bb_page, READ, true)) 1555 return -EIO; 1556 bbp = (u64 *)page_address(rdev->bb_page); 1557 rdev->badblocks.shift = sb->bblog_shift; 1558 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1559 u64 bb = le64_to_cpu(*bbp); 1560 int count = bb & (0x3ff); 1561 u64 sector = bb >> 10; 1562 sector <<= sb->bblog_shift; 1563 count <<= sb->bblog_shift; 1564 if (bb + 1 == 0) 1565 break; 1566 if (md_set_badblocks(&rdev->badblocks, 1567 sector, count, 1) == 0) 1568 return -EINVAL; 1569 } 1570 } else if (sb->bblog_offset == 0) 1571 rdev->badblocks.shift = -1; 1572 1573 if (!refdev) { 1574 ret = 1; 1575 } else { 1576 __u64 ev1, ev2; 1577 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1578 1579 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1580 sb->level != refsb->level || 1581 sb->layout != refsb->layout || 1582 sb->chunksize != refsb->chunksize) { 1583 printk(KERN_WARNING "md: %s has strangely different" 1584 " superblock to %s\n", 1585 bdevname(rdev->bdev,b), 1586 bdevname(refdev->bdev,b2)); 1587 return -EINVAL; 1588 } 1589 ev1 = le64_to_cpu(sb->events); 1590 ev2 = le64_to_cpu(refsb->events); 1591 1592 if (ev1 > ev2) 1593 ret = 1; 1594 else 1595 ret = 0; 1596 } 1597 if (minor_version) 1598 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 1599 le64_to_cpu(sb->data_offset); 1600 else 1601 rdev->sectors = rdev->sb_start; 1602 if (rdev->sectors < le64_to_cpu(sb->data_size)) 1603 return -EINVAL; 1604 rdev->sectors = le64_to_cpu(sb->data_size); 1605 if (le64_to_cpu(sb->size) > rdev->sectors) 1606 return -EINVAL; 1607 return ret; 1608 } 1609 1610 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1611 { 1612 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1613 __u64 ev1 = le64_to_cpu(sb->events); 1614 1615 rdev->raid_disk = -1; 1616 clear_bit(Faulty, &rdev->flags); 1617 clear_bit(In_sync, &rdev->flags); 1618 clear_bit(WriteMostly, &rdev->flags); 1619 1620 if (mddev->raid_disks == 0) { 1621 mddev->major_version = 1; 1622 mddev->patch_version = 0; 1623 mddev->external = 0; 1624 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1625 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1626 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1627 mddev->level = le32_to_cpu(sb->level); 1628 mddev->clevel[0] = 0; 1629 mddev->layout = le32_to_cpu(sb->layout); 1630 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1631 mddev->dev_sectors = le64_to_cpu(sb->size); 1632 mddev->events = ev1; 1633 mddev->bitmap_info.offset = 0; 1634 mddev->bitmap_info.default_offset = 1024 >> 9; 1635 1636 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1637 memcpy(mddev->uuid, sb->set_uuid, 16); 1638 1639 mddev->max_disks = (4096-256)/2; 1640 1641 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1642 mddev->bitmap_info.file == NULL ) 1643 mddev->bitmap_info.offset = 1644 (__s32)le32_to_cpu(sb->bitmap_offset); 1645 1646 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1647 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1648 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1649 mddev->new_level = le32_to_cpu(sb->new_level); 1650 mddev->new_layout = le32_to_cpu(sb->new_layout); 1651 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1652 } else { 1653 mddev->reshape_position = MaxSector; 1654 mddev->delta_disks = 0; 1655 mddev->new_level = mddev->level; 1656 mddev->new_layout = mddev->layout; 1657 mddev->new_chunk_sectors = mddev->chunk_sectors; 1658 } 1659 1660 } else if (mddev->pers == NULL) { 1661 /* Insist of good event counter while assembling, except for 1662 * spares (which don't need an event count) */ 1663 ++ev1; 1664 if (rdev->desc_nr >= 0 && 1665 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1666 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1667 if (ev1 < mddev->events) 1668 return -EINVAL; 1669 } else if (mddev->bitmap) { 1670 /* If adding to array with a bitmap, then we can accept an 1671 * older device, but not too old. 1672 */ 1673 if (ev1 < mddev->bitmap->events_cleared) 1674 return 0; 1675 } else { 1676 if (ev1 < mddev->events) 1677 /* just a hot-add of a new device, leave raid_disk at -1 */ 1678 return 0; 1679 } 1680 if (mddev->level != LEVEL_MULTIPATH) { 1681 int role; 1682 if (rdev->desc_nr < 0 || 1683 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1684 role = 0xffff; 1685 rdev->desc_nr = -1; 1686 } else 1687 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1688 switch(role) { 1689 case 0xffff: /* spare */ 1690 break; 1691 case 0xfffe: /* faulty */ 1692 set_bit(Faulty, &rdev->flags); 1693 break; 1694 default: 1695 if ((le32_to_cpu(sb->feature_map) & 1696 MD_FEATURE_RECOVERY_OFFSET)) 1697 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1698 else 1699 set_bit(In_sync, &rdev->flags); 1700 rdev->raid_disk = role; 1701 break; 1702 } 1703 if (sb->devflags & WriteMostly1) 1704 set_bit(WriteMostly, &rdev->flags); 1705 } else /* MULTIPATH are always insync */ 1706 set_bit(In_sync, &rdev->flags); 1707 1708 return 0; 1709 } 1710 1711 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1712 { 1713 struct mdp_superblock_1 *sb; 1714 mdk_rdev_t *rdev2; 1715 int max_dev, i; 1716 /* make rdev->sb match mddev and rdev data. */ 1717 1718 sb = page_address(rdev->sb_page); 1719 1720 sb->feature_map = 0; 1721 sb->pad0 = 0; 1722 sb->recovery_offset = cpu_to_le64(0); 1723 memset(sb->pad1, 0, sizeof(sb->pad1)); 1724 memset(sb->pad3, 0, sizeof(sb->pad3)); 1725 1726 sb->utime = cpu_to_le64((__u64)mddev->utime); 1727 sb->events = cpu_to_le64(mddev->events); 1728 if (mddev->in_sync) 1729 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1730 else 1731 sb->resync_offset = cpu_to_le64(0); 1732 1733 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1734 1735 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1736 sb->size = cpu_to_le64(mddev->dev_sectors); 1737 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1738 sb->level = cpu_to_le32(mddev->level); 1739 sb->layout = cpu_to_le32(mddev->layout); 1740 1741 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1742 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1743 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1744 } 1745 1746 if (rdev->raid_disk >= 0 && 1747 !test_bit(In_sync, &rdev->flags)) { 1748 sb->feature_map |= 1749 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1750 sb->recovery_offset = 1751 cpu_to_le64(rdev->recovery_offset); 1752 } 1753 1754 if (mddev->reshape_position != MaxSector) { 1755 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1756 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1757 sb->new_layout = cpu_to_le32(mddev->new_layout); 1758 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1759 sb->new_level = cpu_to_le32(mddev->new_level); 1760 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1761 } 1762 1763 if (rdev->badblocks.count == 0) 1764 /* Nothing to do for bad blocks*/ ; 1765 else if (sb->bblog_offset == 0) 1766 /* Cannot record bad blocks on this device */ 1767 md_error(mddev, rdev); 1768 else { 1769 struct badblocks *bb = &rdev->badblocks; 1770 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1771 u64 *p = bb->page; 1772 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1773 if (bb->changed) { 1774 unsigned seq; 1775 1776 retry: 1777 seq = read_seqbegin(&bb->lock); 1778 1779 memset(bbp, 0xff, PAGE_SIZE); 1780 1781 for (i = 0 ; i < bb->count ; i++) { 1782 u64 internal_bb = *p++; 1783 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1784 | BB_LEN(internal_bb)); 1785 *bbp++ = cpu_to_le64(store_bb); 1786 } 1787 if (read_seqretry(&bb->lock, seq)) 1788 goto retry; 1789 1790 bb->sector = (rdev->sb_start + 1791 (int)le32_to_cpu(sb->bblog_offset)); 1792 bb->size = le16_to_cpu(sb->bblog_size); 1793 bb->changed = 0; 1794 } 1795 } 1796 1797 max_dev = 0; 1798 list_for_each_entry(rdev2, &mddev->disks, same_set) 1799 if (rdev2->desc_nr+1 > max_dev) 1800 max_dev = rdev2->desc_nr+1; 1801 1802 if (max_dev > le32_to_cpu(sb->max_dev)) { 1803 int bmask; 1804 sb->max_dev = cpu_to_le32(max_dev); 1805 rdev->sb_size = max_dev * 2 + 256; 1806 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1807 if (rdev->sb_size & bmask) 1808 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1809 } else 1810 max_dev = le32_to_cpu(sb->max_dev); 1811 1812 for (i=0; i<max_dev;i++) 1813 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1814 1815 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1816 i = rdev2->desc_nr; 1817 if (test_bit(Faulty, &rdev2->flags)) 1818 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1819 else if (test_bit(In_sync, &rdev2->flags)) 1820 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1821 else if (rdev2->raid_disk >= 0) 1822 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1823 else 1824 sb->dev_roles[i] = cpu_to_le16(0xffff); 1825 } 1826 1827 sb->sb_csum = calc_sb_1_csum(sb); 1828 } 1829 1830 static unsigned long long 1831 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1832 { 1833 struct mdp_superblock_1 *sb; 1834 sector_t max_sectors; 1835 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1836 return 0; /* component must fit device */ 1837 if (rdev->sb_start < rdev->data_offset) { 1838 /* minor versions 1 and 2; superblock before data */ 1839 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1840 max_sectors -= rdev->data_offset; 1841 if (!num_sectors || num_sectors > max_sectors) 1842 num_sectors = max_sectors; 1843 } else if (rdev->mddev->bitmap_info.offset) { 1844 /* minor version 0 with bitmap we can't move */ 1845 return 0; 1846 } else { 1847 /* minor version 0; superblock after data */ 1848 sector_t sb_start; 1849 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1850 sb_start &= ~(sector_t)(4*2 - 1); 1851 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1852 if (!num_sectors || num_sectors > max_sectors) 1853 num_sectors = max_sectors; 1854 rdev->sb_start = sb_start; 1855 } 1856 sb = page_address(rdev->sb_page); 1857 sb->data_size = cpu_to_le64(num_sectors); 1858 sb->super_offset = rdev->sb_start; 1859 sb->sb_csum = calc_sb_1_csum(sb); 1860 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1861 rdev->sb_page); 1862 md_super_wait(rdev->mddev); 1863 return num_sectors; 1864 } 1865 1866 static struct super_type super_types[] = { 1867 [0] = { 1868 .name = "0.90.0", 1869 .owner = THIS_MODULE, 1870 .load_super = super_90_load, 1871 .validate_super = super_90_validate, 1872 .sync_super = super_90_sync, 1873 .rdev_size_change = super_90_rdev_size_change, 1874 }, 1875 [1] = { 1876 .name = "md-1", 1877 .owner = THIS_MODULE, 1878 .load_super = super_1_load, 1879 .validate_super = super_1_validate, 1880 .sync_super = super_1_sync, 1881 .rdev_size_change = super_1_rdev_size_change, 1882 }, 1883 }; 1884 1885 static void sync_super(mddev_t *mddev, mdk_rdev_t *rdev) 1886 { 1887 if (mddev->sync_super) { 1888 mddev->sync_super(mddev, rdev); 1889 return; 1890 } 1891 1892 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1893 1894 super_types[mddev->major_version].sync_super(mddev, rdev); 1895 } 1896 1897 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1898 { 1899 mdk_rdev_t *rdev, *rdev2; 1900 1901 rcu_read_lock(); 1902 rdev_for_each_rcu(rdev, mddev1) 1903 rdev_for_each_rcu(rdev2, mddev2) 1904 if (rdev->bdev->bd_contains == 1905 rdev2->bdev->bd_contains) { 1906 rcu_read_unlock(); 1907 return 1; 1908 } 1909 rcu_read_unlock(); 1910 return 0; 1911 } 1912 1913 static LIST_HEAD(pending_raid_disks); 1914 1915 /* 1916 * Try to register data integrity profile for an mddev 1917 * 1918 * This is called when an array is started and after a disk has been kicked 1919 * from the array. It only succeeds if all working and active component devices 1920 * are integrity capable with matching profiles. 1921 */ 1922 int md_integrity_register(mddev_t *mddev) 1923 { 1924 mdk_rdev_t *rdev, *reference = NULL; 1925 1926 if (list_empty(&mddev->disks)) 1927 return 0; /* nothing to do */ 1928 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 1929 return 0; /* shouldn't register, or already is */ 1930 list_for_each_entry(rdev, &mddev->disks, same_set) { 1931 /* skip spares and non-functional disks */ 1932 if (test_bit(Faulty, &rdev->flags)) 1933 continue; 1934 if (rdev->raid_disk < 0) 1935 continue; 1936 if (!reference) { 1937 /* Use the first rdev as the reference */ 1938 reference = rdev; 1939 continue; 1940 } 1941 /* does this rdev's profile match the reference profile? */ 1942 if (blk_integrity_compare(reference->bdev->bd_disk, 1943 rdev->bdev->bd_disk) < 0) 1944 return -EINVAL; 1945 } 1946 if (!reference || !bdev_get_integrity(reference->bdev)) 1947 return 0; 1948 /* 1949 * All component devices are integrity capable and have matching 1950 * profiles, register the common profile for the md device. 1951 */ 1952 if (blk_integrity_register(mddev->gendisk, 1953 bdev_get_integrity(reference->bdev)) != 0) { 1954 printk(KERN_ERR "md: failed to register integrity for %s\n", 1955 mdname(mddev)); 1956 return -EINVAL; 1957 } 1958 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 1959 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 1960 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 1961 mdname(mddev)); 1962 return -EINVAL; 1963 } 1964 return 0; 1965 } 1966 EXPORT_SYMBOL(md_integrity_register); 1967 1968 /* Disable data integrity if non-capable/non-matching disk is being added */ 1969 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 1970 { 1971 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); 1972 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk); 1973 1974 if (!bi_mddev) /* nothing to do */ 1975 return; 1976 if (rdev->raid_disk < 0) /* skip spares */ 1977 return; 1978 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 1979 rdev->bdev->bd_disk) >= 0) 1980 return; 1981 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 1982 blk_integrity_unregister(mddev->gendisk); 1983 } 1984 EXPORT_SYMBOL(md_integrity_add_rdev); 1985 1986 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1987 { 1988 char b[BDEVNAME_SIZE]; 1989 struct kobject *ko; 1990 char *s; 1991 int err; 1992 1993 if (rdev->mddev) { 1994 MD_BUG(); 1995 return -EINVAL; 1996 } 1997 1998 /* prevent duplicates */ 1999 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2000 return -EEXIST; 2001 2002 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2003 if (rdev->sectors && (mddev->dev_sectors == 0 || 2004 rdev->sectors < mddev->dev_sectors)) { 2005 if (mddev->pers) { 2006 /* Cannot change size, so fail 2007 * If mddev->level <= 0, then we don't care 2008 * about aligning sizes (e.g. linear) 2009 */ 2010 if (mddev->level > 0) 2011 return -ENOSPC; 2012 } else 2013 mddev->dev_sectors = rdev->sectors; 2014 } 2015 2016 /* Verify rdev->desc_nr is unique. 2017 * If it is -1, assign a free number, else 2018 * check number is not in use 2019 */ 2020 if (rdev->desc_nr < 0) { 2021 int choice = 0; 2022 if (mddev->pers) choice = mddev->raid_disks; 2023 while (find_rdev_nr(mddev, choice)) 2024 choice++; 2025 rdev->desc_nr = choice; 2026 } else { 2027 if (find_rdev_nr(mddev, rdev->desc_nr)) 2028 return -EBUSY; 2029 } 2030 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2031 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2032 mdname(mddev), mddev->max_disks); 2033 return -EBUSY; 2034 } 2035 bdevname(rdev->bdev,b); 2036 while ( (s=strchr(b, '/')) != NULL) 2037 *s = '!'; 2038 2039 rdev->mddev = mddev; 2040 printk(KERN_INFO "md: bind<%s>\n", b); 2041 2042 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2043 goto fail; 2044 2045 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2046 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2047 /* failure here is OK */; 2048 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2049 2050 list_add_rcu(&rdev->same_set, &mddev->disks); 2051 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2052 2053 /* May as well allow recovery to be retried once */ 2054 mddev->recovery_disabled++; 2055 2056 return 0; 2057 2058 fail: 2059 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2060 b, mdname(mddev)); 2061 return err; 2062 } 2063 2064 static void md_delayed_delete(struct work_struct *ws) 2065 { 2066 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 2067 kobject_del(&rdev->kobj); 2068 kobject_put(&rdev->kobj); 2069 } 2070 2071 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 2072 { 2073 char b[BDEVNAME_SIZE]; 2074 if (!rdev->mddev) { 2075 MD_BUG(); 2076 return; 2077 } 2078 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2079 list_del_rcu(&rdev->same_set); 2080 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2081 rdev->mddev = NULL; 2082 sysfs_remove_link(&rdev->kobj, "block"); 2083 sysfs_put(rdev->sysfs_state); 2084 rdev->sysfs_state = NULL; 2085 kfree(rdev->badblocks.page); 2086 rdev->badblocks.count = 0; 2087 rdev->badblocks.page = NULL; 2088 /* We need to delay this, otherwise we can deadlock when 2089 * writing to 'remove' to "dev/state". We also need 2090 * to delay it due to rcu usage. 2091 */ 2092 synchronize_rcu(); 2093 INIT_WORK(&rdev->del_work, md_delayed_delete); 2094 kobject_get(&rdev->kobj); 2095 queue_work(md_misc_wq, &rdev->del_work); 2096 } 2097 2098 /* 2099 * prevent the device from being mounted, repartitioned or 2100 * otherwise reused by a RAID array (or any other kernel 2101 * subsystem), by bd_claiming the device. 2102 */ 2103 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) 2104 { 2105 int err = 0; 2106 struct block_device *bdev; 2107 char b[BDEVNAME_SIZE]; 2108 2109 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2110 shared ? (mdk_rdev_t *)lock_rdev : rdev); 2111 if (IS_ERR(bdev)) { 2112 printk(KERN_ERR "md: could not open %s.\n", 2113 __bdevname(dev, b)); 2114 return PTR_ERR(bdev); 2115 } 2116 rdev->bdev = bdev; 2117 return err; 2118 } 2119 2120 static void unlock_rdev(mdk_rdev_t *rdev) 2121 { 2122 struct block_device *bdev = rdev->bdev; 2123 rdev->bdev = NULL; 2124 if (!bdev) 2125 MD_BUG(); 2126 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2127 } 2128 2129 void md_autodetect_dev(dev_t dev); 2130 2131 static void export_rdev(mdk_rdev_t * rdev) 2132 { 2133 char b[BDEVNAME_SIZE]; 2134 printk(KERN_INFO "md: export_rdev(%s)\n", 2135 bdevname(rdev->bdev,b)); 2136 if (rdev->mddev) 2137 MD_BUG(); 2138 free_disk_sb(rdev); 2139 #ifndef MODULE 2140 if (test_bit(AutoDetected, &rdev->flags)) 2141 md_autodetect_dev(rdev->bdev->bd_dev); 2142 #endif 2143 unlock_rdev(rdev); 2144 kobject_put(&rdev->kobj); 2145 } 2146 2147 static void kick_rdev_from_array(mdk_rdev_t * rdev) 2148 { 2149 unbind_rdev_from_array(rdev); 2150 export_rdev(rdev); 2151 } 2152 2153 static void export_array(mddev_t *mddev) 2154 { 2155 mdk_rdev_t *rdev, *tmp; 2156 2157 rdev_for_each(rdev, tmp, mddev) { 2158 if (!rdev->mddev) { 2159 MD_BUG(); 2160 continue; 2161 } 2162 kick_rdev_from_array(rdev); 2163 } 2164 if (!list_empty(&mddev->disks)) 2165 MD_BUG(); 2166 mddev->raid_disks = 0; 2167 mddev->major_version = 0; 2168 } 2169 2170 static void print_desc(mdp_disk_t *desc) 2171 { 2172 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2173 desc->major,desc->minor,desc->raid_disk,desc->state); 2174 } 2175 2176 static void print_sb_90(mdp_super_t *sb) 2177 { 2178 int i; 2179 2180 printk(KERN_INFO 2181 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2182 sb->major_version, sb->minor_version, sb->patch_version, 2183 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2184 sb->ctime); 2185 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2186 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2187 sb->md_minor, sb->layout, sb->chunk_size); 2188 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2189 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2190 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2191 sb->failed_disks, sb->spare_disks, 2192 sb->sb_csum, (unsigned long)sb->events_lo); 2193 2194 printk(KERN_INFO); 2195 for (i = 0; i < MD_SB_DISKS; i++) { 2196 mdp_disk_t *desc; 2197 2198 desc = sb->disks + i; 2199 if (desc->number || desc->major || desc->minor || 2200 desc->raid_disk || (desc->state && (desc->state != 4))) { 2201 printk(" D %2d: ", i); 2202 print_desc(desc); 2203 } 2204 } 2205 printk(KERN_INFO "md: THIS: "); 2206 print_desc(&sb->this_disk); 2207 } 2208 2209 static void print_sb_1(struct mdp_superblock_1 *sb) 2210 { 2211 __u8 *uuid; 2212 2213 uuid = sb->set_uuid; 2214 printk(KERN_INFO 2215 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2216 "md: Name: \"%s\" CT:%llu\n", 2217 le32_to_cpu(sb->major_version), 2218 le32_to_cpu(sb->feature_map), 2219 uuid, 2220 sb->set_name, 2221 (unsigned long long)le64_to_cpu(sb->ctime) 2222 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2223 2224 uuid = sb->device_uuid; 2225 printk(KERN_INFO 2226 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2227 " RO:%llu\n" 2228 "md: Dev:%08x UUID: %pU\n" 2229 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2230 "md: (MaxDev:%u) \n", 2231 le32_to_cpu(sb->level), 2232 (unsigned long long)le64_to_cpu(sb->size), 2233 le32_to_cpu(sb->raid_disks), 2234 le32_to_cpu(sb->layout), 2235 le32_to_cpu(sb->chunksize), 2236 (unsigned long long)le64_to_cpu(sb->data_offset), 2237 (unsigned long long)le64_to_cpu(sb->data_size), 2238 (unsigned long long)le64_to_cpu(sb->super_offset), 2239 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2240 le32_to_cpu(sb->dev_number), 2241 uuid, 2242 sb->devflags, 2243 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2244 (unsigned long long)le64_to_cpu(sb->events), 2245 (unsigned long long)le64_to_cpu(sb->resync_offset), 2246 le32_to_cpu(sb->sb_csum), 2247 le32_to_cpu(sb->max_dev) 2248 ); 2249 } 2250 2251 static void print_rdev(mdk_rdev_t *rdev, int major_version) 2252 { 2253 char b[BDEVNAME_SIZE]; 2254 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2255 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2256 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2257 rdev->desc_nr); 2258 if (rdev->sb_loaded) { 2259 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2260 switch (major_version) { 2261 case 0: 2262 print_sb_90(page_address(rdev->sb_page)); 2263 break; 2264 case 1: 2265 print_sb_1(page_address(rdev->sb_page)); 2266 break; 2267 } 2268 } else 2269 printk(KERN_INFO "md: no rdev superblock!\n"); 2270 } 2271 2272 static void md_print_devices(void) 2273 { 2274 struct list_head *tmp; 2275 mdk_rdev_t *rdev; 2276 mddev_t *mddev; 2277 char b[BDEVNAME_SIZE]; 2278 2279 printk("\n"); 2280 printk("md: **********************************\n"); 2281 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2282 printk("md: **********************************\n"); 2283 for_each_mddev(mddev, tmp) { 2284 2285 if (mddev->bitmap) 2286 bitmap_print_sb(mddev->bitmap); 2287 else 2288 printk("%s: ", mdname(mddev)); 2289 list_for_each_entry(rdev, &mddev->disks, same_set) 2290 printk("<%s>", bdevname(rdev->bdev,b)); 2291 printk("\n"); 2292 2293 list_for_each_entry(rdev, &mddev->disks, same_set) 2294 print_rdev(rdev, mddev->major_version); 2295 } 2296 printk("md: **********************************\n"); 2297 printk("\n"); 2298 } 2299 2300 2301 static void sync_sbs(mddev_t * mddev, int nospares) 2302 { 2303 /* Update each superblock (in-memory image), but 2304 * if we are allowed to, skip spares which already 2305 * have the right event counter, or have one earlier 2306 * (which would mean they aren't being marked as dirty 2307 * with the rest of the array) 2308 */ 2309 mdk_rdev_t *rdev; 2310 list_for_each_entry(rdev, &mddev->disks, same_set) { 2311 if (rdev->sb_events == mddev->events || 2312 (nospares && 2313 rdev->raid_disk < 0 && 2314 rdev->sb_events+1 == mddev->events)) { 2315 /* Don't update this superblock */ 2316 rdev->sb_loaded = 2; 2317 } else { 2318 sync_super(mddev, rdev); 2319 rdev->sb_loaded = 1; 2320 } 2321 } 2322 } 2323 2324 static void md_update_sb(mddev_t * mddev, int force_change) 2325 { 2326 mdk_rdev_t *rdev; 2327 int sync_req; 2328 int nospares = 0; 2329 int any_badblocks_changed = 0; 2330 2331 repeat: 2332 /* First make sure individual recovery_offsets are correct */ 2333 list_for_each_entry(rdev, &mddev->disks, same_set) { 2334 if (rdev->raid_disk >= 0 && 2335 mddev->delta_disks >= 0 && 2336 !test_bit(In_sync, &rdev->flags) && 2337 mddev->curr_resync_completed > rdev->recovery_offset) 2338 rdev->recovery_offset = mddev->curr_resync_completed; 2339 2340 } 2341 if (!mddev->persistent) { 2342 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2343 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2344 if (!mddev->external) { 2345 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2346 list_for_each_entry(rdev, &mddev->disks, same_set) { 2347 if (rdev->badblocks.changed) { 2348 md_ack_all_badblocks(&rdev->badblocks); 2349 md_error(mddev, rdev); 2350 } 2351 clear_bit(Blocked, &rdev->flags); 2352 clear_bit(BlockedBadBlocks, &rdev->flags); 2353 wake_up(&rdev->blocked_wait); 2354 } 2355 } 2356 wake_up(&mddev->sb_wait); 2357 return; 2358 } 2359 2360 spin_lock_irq(&mddev->write_lock); 2361 2362 mddev->utime = get_seconds(); 2363 2364 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2365 force_change = 1; 2366 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2367 /* just a clean<-> dirty transition, possibly leave spares alone, 2368 * though if events isn't the right even/odd, we will have to do 2369 * spares after all 2370 */ 2371 nospares = 1; 2372 if (force_change) 2373 nospares = 0; 2374 if (mddev->degraded) 2375 /* If the array is degraded, then skipping spares is both 2376 * dangerous and fairly pointless. 2377 * Dangerous because a device that was removed from the array 2378 * might have a event_count that still looks up-to-date, 2379 * so it can be re-added without a resync. 2380 * Pointless because if there are any spares to skip, 2381 * then a recovery will happen and soon that array won't 2382 * be degraded any more and the spare can go back to sleep then. 2383 */ 2384 nospares = 0; 2385 2386 sync_req = mddev->in_sync; 2387 2388 /* If this is just a dirty<->clean transition, and the array is clean 2389 * and 'events' is odd, we can roll back to the previous clean state */ 2390 if (nospares 2391 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2392 && mddev->can_decrease_events 2393 && mddev->events != 1) { 2394 mddev->events--; 2395 mddev->can_decrease_events = 0; 2396 } else { 2397 /* otherwise we have to go forward and ... */ 2398 mddev->events ++; 2399 mddev->can_decrease_events = nospares; 2400 } 2401 2402 if (!mddev->events) { 2403 /* 2404 * oops, this 64-bit counter should never wrap. 2405 * Either we are in around ~1 trillion A.C., assuming 2406 * 1 reboot per second, or we have a bug: 2407 */ 2408 MD_BUG(); 2409 mddev->events --; 2410 } 2411 2412 list_for_each_entry(rdev, &mddev->disks, same_set) { 2413 if (rdev->badblocks.changed) 2414 any_badblocks_changed++; 2415 if (test_bit(Faulty, &rdev->flags)) 2416 set_bit(FaultRecorded, &rdev->flags); 2417 } 2418 2419 sync_sbs(mddev, nospares); 2420 spin_unlock_irq(&mddev->write_lock); 2421 2422 dprintk(KERN_INFO 2423 "md: updating %s RAID superblock on device (in sync %d)\n", 2424 mdname(mddev),mddev->in_sync); 2425 2426 bitmap_update_sb(mddev->bitmap); 2427 list_for_each_entry(rdev, &mddev->disks, same_set) { 2428 char b[BDEVNAME_SIZE]; 2429 dprintk(KERN_INFO "md: "); 2430 if (rdev->sb_loaded != 1) 2431 continue; /* no noise on spare devices */ 2432 if (test_bit(Faulty, &rdev->flags)) 2433 dprintk("(skipping faulty "); 2434 2435 dprintk("%s ", bdevname(rdev->bdev,b)); 2436 if (!test_bit(Faulty, &rdev->flags)) { 2437 md_super_write(mddev,rdev, 2438 rdev->sb_start, rdev->sb_size, 2439 rdev->sb_page); 2440 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 2441 bdevname(rdev->bdev,b), 2442 (unsigned long long)rdev->sb_start); 2443 rdev->sb_events = mddev->events; 2444 if (rdev->badblocks.size) { 2445 md_super_write(mddev, rdev, 2446 rdev->badblocks.sector, 2447 rdev->badblocks.size << 9, 2448 rdev->bb_page); 2449 rdev->badblocks.size = 0; 2450 } 2451 2452 } else 2453 dprintk(")\n"); 2454 if (mddev->level == LEVEL_MULTIPATH) 2455 /* only need to write one superblock... */ 2456 break; 2457 } 2458 md_super_wait(mddev); 2459 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2460 2461 spin_lock_irq(&mddev->write_lock); 2462 if (mddev->in_sync != sync_req || 2463 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2464 /* have to write it out again */ 2465 spin_unlock_irq(&mddev->write_lock); 2466 goto repeat; 2467 } 2468 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2469 spin_unlock_irq(&mddev->write_lock); 2470 wake_up(&mddev->sb_wait); 2471 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2472 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2473 2474 list_for_each_entry(rdev, &mddev->disks, same_set) { 2475 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2476 clear_bit(Blocked, &rdev->flags); 2477 2478 if (any_badblocks_changed) 2479 md_ack_all_badblocks(&rdev->badblocks); 2480 clear_bit(BlockedBadBlocks, &rdev->flags); 2481 wake_up(&rdev->blocked_wait); 2482 } 2483 } 2484 2485 /* words written to sysfs files may, or may not, be \n terminated. 2486 * We want to accept with case. For this we use cmd_match. 2487 */ 2488 static int cmd_match(const char *cmd, const char *str) 2489 { 2490 /* See if cmd, written into a sysfs file, matches 2491 * str. They must either be the same, or cmd can 2492 * have a trailing newline 2493 */ 2494 while (*cmd && *str && *cmd == *str) { 2495 cmd++; 2496 str++; 2497 } 2498 if (*cmd == '\n') 2499 cmd++; 2500 if (*str || *cmd) 2501 return 0; 2502 return 1; 2503 } 2504 2505 struct rdev_sysfs_entry { 2506 struct attribute attr; 2507 ssize_t (*show)(mdk_rdev_t *, char *); 2508 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 2509 }; 2510 2511 static ssize_t 2512 state_show(mdk_rdev_t *rdev, char *page) 2513 { 2514 char *sep = ""; 2515 size_t len = 0; 2516 2517 if (test_bit(Faulty, &rdev->flags) || 2518 rdev->badblocks.unacked_exist) { 2519 len+= sprintf(page+len, "%sfaulty",sep); 2520 sep = ","; 2521 } 2522 if (test_bit(In_sync, &rdev->flags)) { 2523 len += sprintf(page+len, "%sin_sync",sep); 2524 sep = ","; 2525 } 2526 if (test_bit(WriteMostly, &rdev->flags)) { 2527 len += sprintf(page+len, "%swrite_mostly",sep); 2528 sep = ","; 2529 } 2530 if (test_bit(Blocked, &rdev->flags) || 2531 rdev->badblocks.unacked_exist) { 2532 len += sprintf(page+len, "%sblocked", sep); 2533 sep = ","; 2534 } 2535 if (!test_bit(Faulty, &rdev->flags) && 2536 !test_bit(In_sync, &rdev->flags)) { 2537 len += sprintf(page+len, "%sspare", sep); 2538 sep = ","; 2539 } 2540 if (test_bit(WriteErrorSeen, &rdev->flags)) { 2541 len += sprintf(page+len, "%swrite_error", sep); 2542 sep = ","; 2543 } 2544 return len+sprintf(page+len, "\n"); 2545 } 2546 2547 static ssize_t 2548 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2549 { 2550 /* can write 2551 * faulty - simulates an error 2552 * remove - disconnects the device 2553 * writemostly - sets write_mostly 2554 * -writemostly - clears write_mostly 2555 * blocked - sets the Blocked flags 2556 * -blocked - clears the Blocked and possibly simulates an error 2557 * insync - sets Insync providing device isn't active 2558 * write_error - sets WriteErrorSeen 2559 * -write_error - clears WriteErrorSeen 2560 */ 2561 int err = -EINVAL; 2562 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2563 md_error(rdev->mddev, rdev); 2564 err = 0; 2565 } else if (cmd_match(buf, "remove")) { 2566 if (rdev->raid_disk >= 0) 2567 err = -EBUSY; 2568 else { 2569 mddev_t *mddev = rdev->mddev; 2570 kick_rdev_from_array(rdev); 2571 if (mddev->pers) 2572 md_update_sb(mddev, 1); 2573 md_new_event(mddev); 2574 err = 0; 2575 } 2576 } else if (cmd_match(buf, "writemostly")) { 2577 set_bit(WriteMostly, &rdev->flags); 2578 err = 0; 2579 } else if (cmd_match(buf, "-writemostly")) { 2580 clear_bit(WriteMostly, &rdev->flags); 2581 err = 0; 2582 } else if (cmd_match(buf, "blocked")) { 2583 set_bit(Blocked, &rdev->flags); 2584 err = 0; 2585 } else if (cmd_match(buf, "-blocked")) { 2586 if (!test_bit(Faulty, &rdev->flags) && 2587 test_bit(BlockedBadBlocks, &rdev->flags)) { 2588 /* metadata handler doesn't understand badblocks, 2589 * so we need to fail the device 2590 */ 2591 md_error(rdev->mddev, rdev); 2592 } 2593 clear_bit(Blocked, &rdev->flags); 2594 clear_bit(BlockedBadBlocks, &rdev->flags); 2595 wake_up(&rdev->blocked_wait); 2596 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2597 md_wakeup_thread(rdev->mddev->thread); 2598 2599 err = 0; 2600 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2601 set_bit(In_sync, &rdev->flags); 2602 err = 0; 2603 } else if (cmd_match(buf, "write_error")) { 2604 set_bit(WriteErrorSeen, &rdev->flags); 2605 err = 0; 2606 } else if (cmd_match(buf, "-write_error")) { 2607 clear_bit(WriteErrorSeen, &rdev->flags); 2608 err = 0; 2609 } 2610 if (!err) 2611 sysfs_notify_dirent_safe(rdev->sysfs_state); 2612 return err ? err : len; 2613 } 2614 static struct rdev_sysfs_entry rdev_state = 2615 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2616 2617 static ssize_t 2618 errors_show(mdk_rdev_t *rdev, char *page) 2619 { 2620 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2621 } 2622 2623 static ssize_t 2624 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2625 { 2626 char *e; 2627 unsigned long n = simple_strtoul(buf, &e, 10); 2628 if (*buf && (*e == 0 || *e == '\n')) { 2629 atomic_set(&rdev->corrected_errors, n); 2630 return len; 2631 } 2632 return -EINVAL; 2633 } 2634 static struct rdev_sysfs_entry rdev_errors = 2635 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2636 2637 static ssize_t 2638 slot_show(mdk_rdev_t *rdev, char *page) 2639 { 2640 if (rdev->raid_disk < 0) 2641 return sprintf(page, "none\n"); 2642 else 2643 return sprintf(page, "%d\n", rdev->raid_disk); 2644 } 2645 2646 static ssize_t 2647 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2648 { 2649 char *e; 2650 int err; 2651 int slot = simple_strtoul(buf, &e, 10); 2652 if (strncmp(buf, "none", 4)==0) 2653 slot = -1; 2654 else if (e==buf || (*e && *e!= '\n')) 2655 return -EINVAL; 2656 if (rdev->mddev->pers && slot == -1) { 2657 /* Setting 'slot' on an active array requires also 2658 * updating the 'rd%d' link, and communicating 2659 * with the personality with ->hot_*_disk. 2660 * For now we only support removing 2661 * failed/spare devices. This normally happens automatically, 2662 * but not when the metadata is externally managed. 2663 */ 2664 if (rdev->raid_disk == -1) 2665 return -EEXIST; 2666 /* personality does all needed checks */ 2667 if (rdev->mddev->pers->hot_remove_disk == NULL) 2668 return -EINVAL; 2669 err = rdev->mddev->pers-> 2670 hot_remove_disk(rdev->mddev, rdev->raid_disk); 2671 if (err) 2672 return err; 2673 sysfs_unlink_rdev(rdev->mddev, rdev); 2674 rdev->raid_disk = -1; 2675 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2676 md_wakeup_thread(rdev->mddev->thread); 2677 } else if (rdev->mddev->pers) { 2678 mdk_rdev_t *rdev2; 2679 /* Activating a spare .. or possibly reactivating 2680 * if we ever get bitmaps working here. 2681 */ 2682 2683 if (rdev->raid_disk != -1) 2684 return -EBUSY; 2685 2686 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2687 return -EBUSY; 2688 2689 if (rdev->mddev->pers->hot_add_disk == NULL) 2690 return -EINVAL; 2691 2692 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set) 2693 if (rdev2->raid_disk == slot) 2694 return -EEXIST; 2695 2696 if (slot >= rdev->mddev->raid_disks && 2697 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2698 return -ENOSPC; 2699 2700 rdev->raid_disk = slot; 2701 if (test_bit(In_sync, &rdev->flags)) 2702 rdev->saved_raid_disk = slot; 2703 else 2704 rdev->saved_raid_disk = -1; 2705 err = rdev->mddev->pers-> 2706 hot_add_disk(rdev->mddev, rdev); 2707 if (err) { 2708 rdev->raid_disk = -1; 2709 return err; 2710 } else 2711 sysfs_notify_dirent_safe(rdev->sysfs_state); 2712 if (sysfs_link_rdev(rdev->mddev, rdev)) 2713 /* failure here is OK */; 2714 /* don't wakeup anyone, leave that to userspace. */ 2715 } else { 2716 if (slot >= rdev->mddev->raid_disks && 2717 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2718 return -ENOSPC; 2719 rdev->raid_disk = slot; 2720 /* assume it is working */ 2721 clear_bit(Faulty, &rdev->flags); 2722 clear_bit(WriteMostly, &rdev->flags); 2723 set_bit(In_sync, &rdev->flags); 2724 sysfs_notify_dirent_safe(rdev->sysfs_state); 2725 } 2726 return len; 2727 } 2728 2729 2730 static struct rdev_sysfs_entry rdev_slot = 2731 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2732 2733 static ssize_t 2734 offset_show(mdk_rdev_t *rdev, char *page) 2735 { 2736 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2737 } 2738 2739 static ssize_t 2740 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2741 { 2742 char *e; 2743 unsigned long long offset = simple_strtoull(buf, &e, 10); 2744 if (e==buf || (*e && *e != '\n')) 2745 return -EINVAL; 2746 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2747 return -EBUSY; 2748 if (rdev->sectors && rdev->mddev->external) 2749 /* Must set offset before size, so overlap checks 2750 * can be sane */ 2751 return -EBUSY; 2752 rdev->data_offset = offset; 2753 return len; 2754 } 2755 2756 static struct rdev_sysfs_entry rdev_offset = 2757 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2758 2759 static ssize_t 2760 rdev_size_show(mdk_rdev_t *rdev, char *page) 2761 { 2762 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2763 } 2764 2765 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2766 { 2767 /* check if two start/length pairs overlap */ 2768 if (s1+l1 <= s2) 2769 return 0; 2770 if (s2+l2 <= s1) 2771 return 0; 2772 return 1; 2773 } 2774 2775 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2776 { 2777 unsigned long long blocks; 2778 sector_t new; 2779 2780 if (strict_strtoull(buf, 10, &blocks) < 0) 2781 return -EINVAL; 2782 2783 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2784 return -EINVAL; /* sector conversion overflow */ 2785 2786 new = blocks * 2; 2787 if (new != blocks * 2) 2788 return -EINVAL; /* unsigned long long to sector_t overflow */ 2789 2790 *sectors = new; 2791 return 0; 2792 } 2793 2794 static ssize_t 2795 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2796 { 2797 mddev_t *my_mddev = rdev->mddev; 2798 sector_t oldsectors = rdev->sectors; 2799 sector_t sectors; 2800 2801 if (strict_blocks_to_sectors(buf, §ors) < 0) 2802 return -EINVAL; 2803 if (my_mddev->pers && rdev->raid_disk >= 0) { 2804 if (my_mddev->persistent) { 2805 sectors = super_types[my_mddev->major_version]. 2806 rdev_size_change(rdev, sectors); 2807 if (!sectors) 2808 return -EBUSY; 2809 } else if (!sectors) 2810 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2811 rdev->data_offset; 2812 } 2813 if (sectors < my_mddev->dev_sectors) 2814 return -EINVAL; /* component must fit device */ 2815 2816 rdev->sectors = sectors; 2817 if (sectors > oldsectors && my_mddev->external) { 2818 /* need to check that all other rdevs with the same ->bdev 2819 * do not overlap. We need to unlock the mddev to avoid 2820 * a deadlock. We have already changed rdev->sectors, and if 2821 * we have to change it back, we will have the lock again. 2822 */ 2823 mddev_t *mddev; 2824 int overlap = 0; 2825 struct list_head *tmp; 2826 2827 mddev_unlock(my_mddev); 2828 for_each_mddev(mddev, tmp) { 2829 mdk_rdev_t *rdev2; 2830 2831 mddev_lock(mddev); 2832 list_for_each_entry(rdev2, &mddev->disks, same_set) 2833 if (rdev->bdev == rdev2->bdev && 2834 rdev != rdev2 && 2835 overlaps(rdev->data_offset, rdev->sectors, 2836 rdev2->data_offset, 2837 rdev2->sectors)) { 2838 overlap = 1; 2839 break; 2840 } 2841 mddev_unlock(mddev); 2842 if (overlap) { 2843 mddev_put(mddev); 2844 break; 2845 } 2846 } 2847 mddev_lock(my_mddev); 2848 if (overlap) { 2849 /* Someone else could have slipped in a size 2850 * change here, but doing so is just silly. 2851 * We put oldsectors back because we *know* it is 2852 * safe, and trust userspace not to race with 2853 * itself 2854 */ 2855 rdev->sectors = oldsectors; 2856 return -EBUSY; 2857 } 2858 } 2859 return len; 2860 } 2861 2862 static struct rdev_sysfs_entry rdev_size = 2863 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2864 2865 2866 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page) 2867 { 2868 unsigned long long recovery_start = rdev->recovery_offset; 2869 2870 if (test_bit(In_sync, &rdev->flags) || 2871 recovery_start == MaxSector) 2872 return sprintf(page, "none\n"); 2873 2874 return sprintf(page, "%llu\n", recovery_start); 2875 } 2876 2877 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2878 { 2879 unsigned long long recovery_start; 2880 2881 if (cmd_match(buf, "none")) 2882 recovery_start = MaxSector; 2883 else if (strict_strtoull(buf, 10, &recovery_start)) 2884 return -EINVAL; 2885 2886 if (rdev->mddev->pers && 2887 rdev->raid_disk >= 0) 2888 return -EBUSY; 2889 2890 rdev->recovery_offset = recovery_start; 2891 if (recovery_start == MaxSector) 2892 set_bit(In_sync, &rdev->flags); 2893 else 2894 clear_bit(In_sync, &rdev->flags); 2895 return len; 2896 } 2897 2898 static struct rdev_sysfs_entry rdev_recovery_start = 2899 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 2900 2901 2902 static ssize_t 2903 badblocks_show(struct badblocks *bb, char *page, int unack); 2904 static ssize_t 2905 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 2906 2907 static ssize_t bb_show(mdk_rdev_t *rdev, char *page) 2908 { 2909 return badblocks_show(&rdev->badblocks, page, 0); 2910 } 2911 static ssize_t bb_store(mdk_rdev_t *rdev, const char *page, size_t len) 2912 { 2913 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 2914 /* Maybe that ack was all we needed */ 2915 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 2916 wake_up(&rdev->blocked_wait); 2917 return rv; 2918 } 2919 static struct rdev_sysfs_entry rdev_bad_blocks = 2920 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 2921 2922 2923 static ssize_t ubb_show(mdk_rdev_t *rdev, char *page) 2924 { 2925 return badblocks_show(&rdev->badblocks, page, 1); 2926 } 2927 static ssize_t ubb_store(mdk_rdev_t *rdev, const char *page, size_t len) 2928 { 2929 return badblocks_store(&rdev->badblocks, page, len, 1); 2930 } 2931 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 2932 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 2933 2934 static struct attribute *rdev_default_attrs[] = { 2935 &rdev_state.attr, 2936 &rdev_errors.attr, 2937 &rdev_slot.attr, 2938 &rdev_offset.attr, 2939 &rdev_size.attr, 2940 &rdev_recovery_start.attr, 2941 &rdev_bad_blocks.attr, 2942 &rdev_unack_bad_blocks.attr, 2943 NULL, 2944 }; 2945 static ssize_t 2946 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2947 { 2948 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2949 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2950 mddev_t *mddev = rdev->mddev; 2951 ssize_t rv; 2952 2953 if (!entry->show) 2954 return -EIO; 2955 2956 rv = mddev ? mddev_lock(mddev) : -EBUSY; 2957 if (!rv) { 2958 if (rdev->mddev == NULL) 2959 rv = -EBUSY; 2960 else 2961 rv = entry->show(rdev, page); 2962 mddev_unlock(mddev); 2963 } 2964 return rv; 2965 } 2966 2967 static ssize_t 2968 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2969 const char *page, size_t length) 2970 { 2971 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2972 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2973 ssize_t rv; 2974 mddev_t *mddev = rdev->mddev; 2975 2976 if (!entry->store) 2977 return -EIO; 2978 if (!capable(CAP_SYS_ADMIN)) 2979 return -EACCES; 2980 rv = mddev ? mddev_lock(mddev): -EBUSY; 2981 if (!rv) { 2982 if (rdev->mddev == NULL) 2983 rv = -EBUSY; 2984 else 2985 rv = entry->store(rdev, page, length); 2986 mddev_unlock(mddev); 2987 } 2988 return rv; 2989 } 2990 2991 static void rdev_free(struct kobject *ko) 2992 { 2993 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 2994 kfree(rdev); 2995 } 2996 static const struct sysfs_ops rdev_sysfs_ops = { 2997 .show = rdev_attr_show, 2998 .store = rdev_attr_store, 2999 }; 3000 static struct kobj_type rdev_ktype = { 3001 .release = rdev_free, 3002 .sysfs_ops = &rdev_sysfs_ops, 3003 .default_attrs = rdev_default_attrs, 3004 }; 3005 3006 int md_rdev_init(mdk_rdev_t *rdev) 3007 { 3008 rdev->desc_nr = -1; 3009 rdev->saved_raid_disk = -1; 3010 rdev->raid_disk = -1; 3011 rdev->flags = 0; 3012 rdev->data_offset = 0; 3013 rdev->sb_events = 0; 3014 rdev->last_read_error.tv_sec = 0; 3015 rdev->last_read_error.tv_nsec = 0; 3016 rdev->sb_loaded = 0; 3017 rdev->bb_page = NULL; 3018 atomic_set(&rdev->nr_pending, 0); 3019 atomic_set(&rdev->read_errors, 0); 3020 atomic_set(&rdev->corrected_errors, 0); 3021 3022 INIT_LIST_HEAD(&rdev->same_set); 3023 init_waitqueue_head(&rdev->blocked_wait); 3024 3025 /* Add space to store bad block list. 3026 * This reserves the space even on arrays where it cannot 3027 * be used - I wonder if that matters 3028 */ 3029 rdev->badblocks.count = 0; 3030 rdev->badblocks.shift = 0; 3031 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3032 seqlock_init(&rdev->badblocks.lock); 3033 if (rdev->badblocks.page == NULL) 3034 return -ENOMEM; 3035 3036 return 0; 3037 } 3038 EXPORT_SYMBOL_GPL(md_rdev_init); 3039 /* 3040 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3041 * 3042 * mark the device faulty if: 3043 * 3044 * - the device is nonexistent (zero size) 3045 * - the device has no valid superblock 3046 * 3047 * a faulty rdev _never_ has rdev->sb set. 3048 */ 3049 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 3050 { 3051 char b[BDEVNAME_SIZE]; 3052 int err; 3053 mdk_rdev_t *rdev; 3054 sector_t size; 3055 3056 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3057 if (!rdev) { 3058 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3059 return ERR_PTR(-ENOMEM); 3060 } 3061 3062 err = md_rdev_init(rdev); 3063 if (err) 3064 goto abort_free; 3065 err = alloc_disk_sb(rdev); 3066 if (err) 3067 goto abort_free; 3068 3069 err = lock_rdev(rdev, newdev, super_format == -2); 3070 if (err) 3071 goto abort_free; 3072 3073 kobject_init(&rdev->kobj, &rdev_ktype); 3074 3075 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3076 if (!size) { 3077 printk(KERN_WARNING 3078 "md: %s has zero or unknown size, marking faulty!\n", 3079 bdevname(rdev->bdev,b)); 3080 err = -EINVAL; 3081 goto abort_free; 3082 } 3083 3084 if (super_format >= 0) { 3085 err = super_types[super_format]. 3086 load_super(rdev, NULL, super_minor); 3087 if (err == -EINVAL) { 3088 printk(KERN_WARNING 3089 "md: %s does not have a valid v%d.%d " 3090 "superblock, not importing!\n", 3091 bdevname(rdev->bdev,b), 3092 super_format, super_minor); 3093 goto abort_free; 3094 } 3095 if (err < 0) { 3096 printk(KERN_WARNING 3097 "md: could not read %s's sb, not importing!\n", 3098 bdevname(rdev->bdev,b)); 3099 goto abort_free; 3100 } 3101 } 3102 if (super_format == -1) 3103 /* hot-add for 0.90, or non-persistent: so no badblocks */ 3104 rdev->badblocks.shift = -1; 3105 3106 return rdev; 3107 3108 abort_free: 3109 if (rdev->bdev) 3110 unlock_rdev(rdev); 3111 free_disk_sb(rdev); 3112 kfree(rdev->badblocks.page); 3113 kfree(rdev); 3114 return ERR_PTR(err); 3115 } 3116 3117 /* 3118 * Check a full RAID array for plausibility 3119 */ 3120 3121 3122 static void analyze_sbs(mddev_t * mddev) 3123 { 3124 int i; 3125 mdk_rdev_t *rdev, *freshest, *tmp; 3126 char b[BDEVNAME_SIZE]; 3127 3128 freshest = NULL; 3129 rdev_for_each(rdev, tmp, mddev) 3130 switch (super_types[mddev->major_version]. 3131 load_super(rdev, freshest, mddev->minor_version)) { 3132 case 1: 3133 freshest = rdev; 3134 break; 3135 case 0: 3136 break; 3137 default: 3138 printk( KERN_ERR \ 3139 "md: fatal superblock inconsistency in %s" 3140 " -- removing from array\n", 3141 bdevname(rdev->bdev,b)); 3142 kick_rdev_from_array(rdev); 3143 } 3144 3145 3146 super_types[mddev->major_version]. 3147 validate_super(mddev, freshest); 3148 3149 i = 0; 3150 rdev_for_each(rdev, tmp, mddev) { 3151 if (mddev->max_disks && 3152 (rdev->desc_nr >= mddev->max_disks || 3153 i > mddev->max_disks)) { 3154 printk(KERN_WARNING 3155 "md: %s: %s: only %d devices permitted\n", 3156 mdname(mddev), bdevname(rdev->bdev, b), 3157 mddev->max_disks); 3158 kick_rdev_from_array(rdev); 3159 continue; 3160 } 3161 if (rdev != freshest) 3162 if (super_types[mddev->major_version]. 3163 validate_super(mddev, rdev)) { 3164 printk(KERN_WARNING "md: kicking non-fresh %s" 3165 " from array!\n", 3166 bdevname(rdev->bdev,b)); 3167 kick_rdev_from_array(rdev); 3168 continue; 3169 } 3170 if (mddev->level == LEVEL_MULTIPATH) { 3171 rdev->desc_nr = i++; 3172 rdev->raid_disk = rdev->desc_nr; 3173 set_bit(In_sync, &rdev->flags); 3174 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3175 rdev->raid_disk = -1; 3176 clear_bit(In_sync, &rdev->flags); 3177 } 3178 } 3179 } 3180 3181 /* Read a fixed-point number. 3182 * Numbers in sysfs attributes should be in "standard" units where 3183 * possible, so time should be in seconds. 3184 * However we internally use a a much smaller unit such as 3185 * milliseconds or jiffies. 3186 * This function takes a decimal number with a possible fractional 3187 * component, and produces an integer which is the result of 3188 * multiplying that number by 10^'scale'. 3189 * all without any floating-point arithmetic. 3190 */ 3191 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3192 { 3193 unsigned long result = 0; 3194 long decimals = -1; 3195 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3196 if (*cp == '.') 3197 decimals = 0; 3198 else if (decimals < scale) { 3199 unsigned int value; 3200 value = *cp - '0'; 3201 result = result * 10 + value; 3202 if (decimals >= 0) 3203 decimals++; 3204 } 3205 cp++; 3206 } 3207 if (*cp == '\n') 3208 cp++; 3209 if (*cp) 3210 return -EINVAL; 3211 if (decimals < 0) 3212 decimals = 0; 3213 while (decimals < scale) { 3214 result *= 10; 3215 decimals ++; 3216 } 3217 *res = result; 3218 return 0; 3219 } 3220 3221 3222 static void md_safemode_timeout(unsigned long data); 3223 3224 static ssize_t 3225 safe_delay_show(mddev_t *mddev, char *page) 3226 { 3227 int msec = (mddev->safemode_delay*1000)/HZ; 3228 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3229 } 3230 static ssize_t 3231 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 3232 { 3233 unsigned long msec; 3234 3235 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3236 return -EINVAL; 3237 if (msec == 0) 3238 mddev->safemode_delay = 0; 3239 else { 3240 unsigned long old_delay = mddev->safemode_delay; 3241 mddev->safemode_delay = (msec*HZ)/1000; 3242 if (mddev->safemode_delay == 0) 3243 mddev->safemode_delay = 1; 3244 if (mddev->safemode_delay < old_delay) 3245 md_safemode_timeout((unsigned long)mddev); 3246 } 3247 return len; 3248 } 3249 static struct md_sysfs_entry md_safe_delay = 3250 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3251 3252 static ssize_t 3253 level_show(mddev_t *mddev, char *page) 3254 { 3255 struct mdk_personality *p = mddev->pers; 3256 if (p) 3257 return sprintf(page, "%s\n", p->name); 3258 else if (mddev->clevel[0]) 3259 return sprintf(page, "%s\n", mddev->clevel); 3260 else if (mddev->level != LEVEL_NONE) 3261 return sprintf(page, "%d\n", mddev->level); 3262 else 3263 return 0; 3264 } 3265 3266 static ssize_t 3267 level_store(mddev_t *mddev, const char *buf, size_t len) 3268 { 3269 char clevel[16]; 3270 ssize_t rv = len; 3271 struct mdk_personality *pers; 3272 long level; 3273 void *priv; 3274 mdk_rdev_t *rdev; 3275 3276 if (mddev->pers == NULL) { 3277 if (len == 0) 3278 return 0; 3279 if (len >= sizeof(mddev->clevel)) 3280 return -ENOSPC; 3281 strncpy(mddev->clevel, buf, len); 3282 if (mddev->clevel[len-1] == '\n') 3283 len--; 3284 mddev->clevel[len] = 0; 3285 mddev->level = LEVEL_NONE; 3286 return rv; 3287 } 3288 3289 /* request to change the personality. Need to ensure: 3290 * - array is not engaged in resync/recovery/reshape 3291 * - old personality can be suspended 3292 * - new personality will access other array. 3293 */ 3294 3295 if (mddev->sync_thread || 3296 mddev->reshape_position != MaxSector || 3297 mddev->sysfs_active) 3298 return -EBUSY; 3299 3300 if (!mddev->pers->quiesce) { 3301 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3302 mdname(mddev), mddev->pers->name); 3303 return -EINVAL; 3304 } 3305 3306 /* Now find the new personality */ 3307 if (len == 0 || len >= sizeof(clevel)) 3308 return -EINVAL; 3309 strncpy(clevel, buf, len); 3310 if (clevel[len-1] == '\n') 3311 len--; 3312 clevel[len] = 0; 3313 if (strict_strtol(clevel, 10, &level)) 3314 level = LEVEL_NONE; 3315 3316 if (request_module("md-%s", clevel) != 0) 3317 request_module("md-level-%s", clevel); 3318 spin_lock(&pers_lock); 3319 pers = find_pers(level, clevel); 3320 if (!pers || !try_module_get(pers->owner)) { 3321 spin_unlock(&pers_lock); 3322 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3323 return -EINVAL; 3324 } 3325 spin_unlock(&pers_lock); 3326 3327 if (pers == mddev->pers) { 3328 /* Nothing to do! */ 3329 module_put(pers->owner); 3330 return rv; 3331 } 3332 if (!pers->takeover) { 3333 module_put(pers->owner); 3334 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3335 mdname(mddev), clevel); 3336 return -EINVAL; 3337 } 3338 3339 list_for_each_entry(rdev, &mddev->disks, same_set) 3340 rdev->new_raid_disk = rdev->raid_disk; 3341 3342 /* ->takeover must set new_* and/or delta_disks 3343 * if it succeeds, and may set them when it fails. 3344 */ 3345 priv = pers->takeover(mddev); 3346 if (IS_ERR(priv)) { 3347 mddev->new_level = mddev->level; 3348 mddev->new_layout = mddev->layout; 3349 mddev->new_chunk_sectors = mddev->chunk_sectors; 3350 mddev->raid_disks -= mddev->delta_disks; 3351 mddev->delta_disks = 0; 3352 module_put(pers->owner); 3353 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3354 mdname(mddev), clevel); 3355 return PTR_ERR(priv); 3356 } 3357 3358 /* Looks like we have a winner */ 3359 mddev_suspend(mddev); 3360 mddev->pers->stop(mddev); 3361 3362 if (mddev->pers->sync_request == NULL && 3363 pers->sync_request != NULL) { 3364 /* need to add the md_redundancy_group */ 3365 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3366 printk(KERN_WARNING 3367 "md: cannot register extra attributes for %s\n", 3368 mdname(mddev)); 3369 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3370 } 3371 if (mddev->pers->sync_request != NULL && 3372 pers->sync_request == NULL) { 3373 /* need to remove the md_redundancy_group */ 3374 if (mddev->to_remove == NULL) 3375 mddev->to_remove = &md_redundancy_group; 3376 } 3377 3378 if (mddev->pers->sync_request == NULL && 3379 mddev->external) { 3380 /* We are converting from a no-redundancy array 3381 * to a redundancy array and metadata is managed 3382 * externally so we need to be sure that writes 3383 * won't block due to a need to transition 3384 * clean->dirty 3385 * until external management is started. 3386 */ 3387 mddev->in_sync = 0; 3388 mddev->safemode_delay = 0; 3389 mddev->safemode = 0; 3390 } 3391 3392 list_for_each_entry(rdev, &mddev->disks, same_set) { 3393 if (rdev->raid_disk < 0) 3394 continue; 3395 if (rdev->new_raid_disk >= mddev->raid_disks) 3396 rdev->new_raid_disk = -1; 3397 if (rdev->new_raid_disk == rdev->raid_disk) 3398 continue; 3399 sysfs_unlink_rdev(mddev, rdev); 3400 } 3401 list_for_each_entry(rdev, &mddev->disks, same_set) { 3402 if (rdev->raid_disk < 0) 3403 continue; 3404 if (rdev->new_raid_disk == rdev->raid_disk) 3405 continue; 3406 rdev->raid_disk = rdev->new_raid_disk; 3407 if (rdev->raid_disk < 0) 3408 clear_bit(In_sync, &rdev->flags); 3409 else { 3410 if (sysfs_link_rdev(mddev, rdev)) 3411 printk(KERN_WARNING "md: cannot register rd%d" 3412 " for %s after level change\n", 3413 rdev->raid_disk, mdname(mddev)); 3414 } 3415 } 3416 3417 module_put(mddev->pers->owner); 3418 mddev->pers = pers; 3419 mddev->private = priv; 3420 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3421 mddev->level = mddev->new_level; 3422 mddev->layout = mddev->new_layout; 3423 mddev->chunk_sectors = mddev->new_chunk_sectors; 3424 mddev->delta_disks = 0; 3425 mddev->degraded = 0; 3426 if (mddev->pers->sync_request == NULL) { 3427 /* this is now an array without redundancy, so 3428 * it must always be in_sync 3429 */ 3430 mddev->in_sync = 1; 3431 del_timer_sync(&mddev->safemode_timer); 3432 } 3433 pers->run(mddev); 3434 mddev_resume(mddev); 3435 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3436 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3437 md_wakeup_thread(mddev->thread); 3438 sysfs_notify(&mddev->kobj, NULL, "level"); 3439 md_new_event(mddev); 3440 return rv; 3441 } 3442 3443 static struct md_sysfs_entry md_level = 3444 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3445 3446 3447 static ssize_t 3448 layout_show(mddev_t *mddev, char *page) 3449 { 3450 /* just a number, not meaningful for all levels */ 3451 if (mddev->reshape_position != MaxSector && 3452 mddev->layout != mddev->new_layout) 3453 return sprintf(page, "%d (%d)\n", 3454 mddev->new_layout, mddev->layout); 3455 return sprintf(page, "%d\n", mddev->layout); 3456 } 3457 3458 static ssize_t 3459 layout_store(mddev_t *mddev, const char *buf, size_t len) 3460 { 3461 char *e; 3462 unsigned long n = simple_strtoul(buf, &e, 10); 3463 3464 if (!*buf || (*e && *e != '\n')) 3465 return -EINVAL; 3466 3467 if (mddev->pers) { 3468 int err; 3469 if (mddev->pers->check_reshape == NULL) 3470 return -EBUSY; 3471 mddev->new_layout = n; 3472 err = mddev->pers->check_reshape(mddev); 3473 if (err) { 3474 mddev->new_layout = mddev->layout; 3475 return err; 3476 } 3477 } else { 3478 mddev->new_layout = n; 3479 if (mddev->reshape_position == MaxSector) 3480 mddev->layout = n; 3481 } 3482 return len; 3483 } 3484 static struct md_sysfs_entry md_layout = 3485 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3486 3487 3488 static ssize_t 3489 raid_disks_show(mddev_t *mddev, char *page) 3490 { 3491 if (mddev->raid_disks == 0) 3492 return 0; 3493 if (mddev->reshape_position != MaxSector && 3494 mddev->delta_disks != 0) 3495 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3496 mddev->raid_disks - mddev->delta_disks); 3497 return sprintf(page, "%d\n", mddev->raid_disks); 3498 } 3499 3500 static int update_raid_disks(mddev_t *mddev, int raid_disks); 3501 3502 static ssize_t 3503 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 3504 { 3505 char *e; 3506 int rv = 0; 3507 unsigned long n = simple_strtoul(buf, &e, 10); 3508 3509 if (!*buf || (*e && *e != '\n')) 3510 return -EINVAL; 3511 3512 if (mddev->pers) 3513 rv = update_raid_disks(mddev, n); 3514 else if (mddev->reshape_position != MaxSector) { 3515 int olddisks = mddev->raid_disks - mddev->delta_disks; 3516 mddev->delta_disks = n - olddisks; 3517 mddev->raid_disks = n; 3518 } else 3519 mddev->raid_disks = n; 3520 return rv ? rv : len; 3521 } 3522 static struct md_sysfs_entry md_raid_disks = 3523 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3524 3525 static ssize_t 3526 chunk_size_show(mddev_t *mddev, char *page) 3527 { 3528 if (mddev->reshape_position != MaxSector && 3529 mddev->chunk_sectors != mddev->new_chunk_sectors) 3530 return sprintf(page, "%d (%d)\n", 3531 mddev->new_chunk_sectors << 9, 3532 mddev->chunk_sectors << 9); 3533 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3534 } 3535 3536 static ssize_t 3537 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 3538 { 3539 char *e; 3540 unsigned long n = simple_strtoul(buf, &e, 10); 3541 3542 if (!*buf || (*e && *e != '\n')) 3543 return -EINVAL; 3544 3545 if (mddev->pers) { 3546 int err; 3547 if (mddev->pers->check_reshape == NULL) 3548 return -EBUSY; 3549 mddev->new_chunk_sectors = n >> 9; 3550 err = mddev->pers->check_reshape(mddev); 3551 if (err) { 3552 mddev->new_chunk_sectors = mddev->chunk_sectors; 3553 return err; 3554 } 3555 } else { 3556 mddev->new_chunk_sectors = n >> 9; 3557 if (mddev->reshape_position == MaxSector) 3558 mddev->chunk_sectors = n >> 9; 3559 } 3560 return len; 3561 } 3562 static struct md_sysfs_entry md_chunk_size = 3563 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3564 3565 static ssize_t 3566 resync_start_show(mddev_t *mddev, char *page) 3567 { 3568 if (mddev->recovery_cp == MaxSector) 3569 return sprintf(page, "none\n"); 3570 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3571 } 3572 3573 static ssize_t 3574 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 3575 { 3576 char *e; 3577 unsigned long long n = simple_strtoull(buf, &e, 10); 3578 3579 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3580 return -EBUSY; 3581 if (cmd_match(buf, "none")) 3582 n = MaxSector; 3583 else if (!*buf || (*e && *e != '\n')) 3584 return -EINVAL; 3585 3586 mddev->recovery_cp = n; 3587 return len; 3588 } 3589 static struct md_sysfs_entry md_resync_start = 3590 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3591 3592 /* 3593 * The array state can be: 3594 * 3595 * clear 3596 * No devices, no size, no level 3597 * Equivalent to STOP_ARRAY ioctl 3598 * inactive 3599 * May have some settings, but array is not active 3600 * all IO results in error 3601 * When written, doesn't tear down array, but just stops it 3602 * suspended (not supported yet) 3603 * All IO requests will block. The array can be reconfigured. 3604 * Writing this, if accepted, will block until array is quiescent 3605 * readonly 3606 * no resync can happen. no superblocks get written. 3607 * write requests fail 3608 * read-auto 3609 * like readonly, but behaves like 'clean' on a write request. 3610 * 3611 * clean - no pending writes, but otherwise active. 3612 * When written to inactive array, starts without resync 3613 * If a write request arrives then 3614 * if metadata is known, mark 'dirty' and switch to 'active'. 3615 * if not known, block and switch to write-pending 3616 * If written to an active array that has pending writes, then fails. 3617 * active 3618 * fully active: IO and resync can be happening. 3619 * When written to inactive array, starts with resync 3620 * 3621 * write-pending 3622 * clean, but writes are blocked waiting for 'active' to be written. 3623 * 3624 * active-idle 3625 * like active, but no writes have been seen for a while (100msec). 3626 * 3627 */ 3628 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3629 write_pending, active_idle, bad_word}; 3630 static char *array_states[] = { 3631 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3632 "write-pending", "active-idle", NULL }; 3633 3634 static int match_word(const char *word, char **list) 3635 { 3636 int n; 3637 for (n=0; list[n]; n++) 3638 if (cmd_match(word, list[n])) 3639 break; 3640 return n; 3641 } 3642 3643 static ssize_t 3644 array_state_show(mddev_t *mddev, char *page) 3645 { 3646 enum array_state st = inactive; 3647 3648 if (mddev->pers) 3649 switch(mddev->ro) { 3650 case 1: 3651 st = readonly; 3652 break; 3653 case 2: 3654 st = read_auto; 3655 break; 3656 case 0: 3657 if (mddev->in_sync) 3658 st = clean; 3659 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3660 st = write_pending; 3661 else if (mddev->safemode) 3662 st = active_idle; 3663 else 3664 st = active; 3665 } 3666 else { 3667 if (list_empty(&mddev->disks) && 3668 mddev->raid_disks == 0 && 3669 mddev->dev_sectors == 0) 3670 st = clear; 3671 else 3672 st = inactive; 3673 } 3674 return sprintf(page, "%s\n", array_states[st]); 3675 } 3676 3677 static int do_md_stop(mddev_t * mddev, int ro, int is_open); 3678 static int md_set_readonly(mddev_t * mddev, int is_open); 3679 static int do_md_run(mddev_t * mddev); 3680 static int restart_array(mddev_t *mddev); 3681 3682 static ssize_t 3683 array_state_store(mddev_t *mddev, const char *buf, size_t len) 3684 { 3685 int err = -EINVAL; 3686 enum array_state st = match_word(buf, array_states); 3687 switch(st) { 3688 case bad_word: 3689 break; 3690 case clear: 3691 /* stopping an active array */ 3692 if (atomic_read(&mddev->openers) > 0) 3693 return -EBUSY; 3694 err = do_md_stop(mddev, 0, 0); 3695 break; 3696 case inactive: 3697 /* stopping an active array */ 3698 if (mddev->pers) { 3699 if (atomic_read(&mddev->openers) > 0) 3700 return -EBUSY; 3701 err = do_md_stop(mddev, 2, 0); 3702 } else 3703 err = 0; /* already inactive */ 3704 break; 3705 case suspended: 3706 break; /* not supported yet */ 3707 case readonly: 3708 if (mddev->pers) 3709 err = md_set_readonly(mddev, 0); 3710 else { 3711 mddev->ro = 1; 3712 set_disk_ro(mddev->gendisk, 1); 3713 err = do_md_run(mddev); 3714 } 3715 break; 3716 case read_auto: 3717 if (mddev->pers) { 3718 if (mddev->ro == 0) 3719 err = md_set_readonly(mddev, 0); 3720 else if (mddev->ro == 1) 3721 err = restart_array(mddev); 3722 if (err == 0) { 3723 mddev->ro = 2; 3724 set_disk_ro(mddev->gendisk, 0); 3725 } 3726 } else { 3727 mddev->ro = 2; 3728 err = do_md_run(mddev); 3729 } 3730 break; 3731 case clean: 3732 if (mddev->pers) { 3733 restart_array(mddev); 3734 spin_lock_irq(&mddev->write_lock); 3735 if (atomic_read(&mddev->writes_pending) == 0) { 3736 if (mddev->in_sync == 0) { 3737 mddev->in_sync = 1; 3738 if (mddev->safemode == 1) 3739 mddev->safemode = 0; 3740 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3741 } 3742 err = 0; 3743 } else 3744 err = -EBUSY; 3745 spin_unlock_irq(&mddev->write_lock); 3746 } else 3747 err = -EINVAL; 3748 break; 3749 case active: 3750 if (mddev->pers) { 3751 restart_array(mddev); 3752 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3753 wake_up(&mddev->sb_wait); 3754 err = 0; 3755 } else { 3756 mddev->ro = 0; 3757 set_disk_ro(mddev->gendisk, 0); 3758 err = do_md_run(mddev); 3759 } 3760 break; 3761 case write_pending: 3762 case active_idle: 3763 /* these cannot be set */ 3764 break; 3765 } 3766 if (err) 3767 return err; 3768 else { 3769 sysfs_notify_dirent_safe(mddev->sysfs_state); 3770 return len; 3771 } 3772 } 3773 static struct md_sysfs_entry md_array_state = 3774 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3775 3776 static ssize_t 3777 max_corrected_read_errors_show(mddev_t *mddev, char *page) { 3778 return sprintf(page, "%d\n", 3779 atomic_read(&mddev->max_corr_read_errors)); 3780 } 3781 3782 static ssize_t 3783 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len) 3784 { 3785 char *e; 3786 unsigned long n = simple_strtoul(buf, &e, 10); 3787 3788 if (*buf && (*e == 0 || *e == '\n')) { 3789 atomic_set(&mddev->max_corr_read_errors, n); 3790 return len; 3791 } 3792 return -EINVAL; 3793 } 3794 3795 static struct md_sysfs_entry max_corr_read_errors = 3796 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3797 max_corrected_read_errors_store); 3798 3799 static ssize_t 3800 null_show(mddev_t *mddev, char *page) 3801 { 3802 return -EINVAL; 3803 } 3804 3805 static ssize_t 3806 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 3807 { 3808 /* buf must be %d:%d\n? giving major and minor numbers */ 3809 /* The new device is added to the array. 3810 * If the array has a persistent superblock, we read the 3811 * superblock to initialise info and check validity. 3812 * Otherwise, only checking done is that in bind_rdev_to_array, 3813 * which mainly checks size. 3814 */ 3815 char *e; 3816 int major = simple_strtoul(buf, &e, 10); 3817 int minor; 3818 dev_t dev; 3819 mdk_rdev_t *rdev; 3820 int err; 3821 3822 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3823 return -EINVAL; 3824 minor = simple_strtoul(e+1, &e, 10); 3825 if (*e && *e != '\n') 3826 return -EINVAL; 3827 dev = MKDEV(major, minor); 3828 if (major != MAJOR(dev) || 3829 minor != MINOR(dev)) 3830 return -EOVERFLOW; 3831 3832 3833 if (mddev->persistent) { 3834 rdev = md_import_device(dev, mddev->major_version, 3835 mddev->minor_version); 3836 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3837 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3838 mdk_rdev_t, same_set); 3839 err = super_types[mddev->major_version] 3840 .load_super(rdev, rdev0, mddev->minor_version); 3841 if (err < 0) 3842 goto out; 3843 } 3844 } else if (mddev->external) 3845 rdev = md_import_device(dev, -2, -1); 3846 else 3847 rdev = md_import_device(dev, -1, -1); 3848 3849 if (IS_ERR(rdev)) 3850 return PTR_ERR(rdev); 3851 err = bind_rdev_to_array(rdev, mddev); 3852 out: 3853 if (err) 3854 export_rdev(rdev); 3855 return err ? err : len; 3856 } 3857 3858 static struct md_sysfs_entry md_new_device = 3859 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 3860 3861 static ssize_t 3862 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 3863 { 3864 char *end; 3865 unsigned long chunk, end_chunk; 3866 3867 if (!mddev->bitmap) 3868 goto out; 3869 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 3870 while (*buf) { 3871 chunk = end_chunk = simple_strtoul(buf, &end, 0); 3872 if (buf == end) break; 3873 if (*end == '-') { /* range */ 3874 buf = end + 1; 3875 end_chunk = simple_strtoul(buf, &end, 0); 3876 if (buf == end) break; 3877 } 3878 if (*end && !isspace(*end)) break; 3879 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 3880 buf = skip_spaces(end); 3881 } 3882 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 3883 out: 3884 return len; 3885 } 3886 3887 static struct md_sysfs_entry md_bitmap = 3888 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 3889 3890 static ssize_t 3891 size_show(mddev_t *mddev, char *page) 3892 { 3893 return sprintf(page, "%llu\n", 3894 (unsigned long long)mddev->dev_sectors / 2); 3895 } 3896 3897 static int update_size(mddev_t *mddev, sector_t num_sectors); 3898 3899 static ssize_t 3900 size_store(mddev_t *mddev, const char *buf, size_t len) 3901 { 3902 /* If array is inactive, we can reduce the component size, but 3903 * not increase it (except from 0). 3904 * If array is active, we can try an on-line resize 3905 */ 3906 sector_t sectors; 3907 int err = strict_blocks_to_sectors(buf, §ors); 3908 3909 if (err < 0) 3910 return err; 3911 if (mddev->pers) { 3912 err = update_size(mddev, sectors); 3913 md_update_sb(mddev, 1); 3914 } else { 3915 if (mddev->dev_sectors == 0 || 3916 mddev->dev_sectors > sectors) 3917 mddev->dev_sectors = sectors; 3918 else 3919 err = -ENOSPC; 3920 } 3921 return err ? err : len; 3922 } 3923 3924 static struct md_sysfs_entry md_size = 3925 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 3926 3927 3928 /* Metdata version. 3929 * This is one of 3930 * 'none' for arrays with no metadata (good luck...) 3931 * 'external' for arrays with externally managed metadata, 3932 * or N.M for internally known formats 3933 */ 3934 static ssize_t 3935 metadata_show(mddev_t *mddev, char *page) 3936 { 3937 if (mddev->persistent) 3938 return sprintf(page, "%d.%d\n", 3939 mddev->major_version, mddev->minor_version); 3940 else if (mddev->external) 3941 return sprintf(page, "external:%s\n", mddev->metadata_type); 3942 else 3943 return sprintf(page, "none\n"); 3944 } 3945 3946 static ssize_t 3947 metadata_store(mddev_t *mddev, const char *buf, size_t len) 3948 { 3949 int major, minor; 3950 char *e; 3951 /* Changing the details of 'external' metadata is 3952 * always permitted. Otherwise there must be 3953 * no devices attached to the array. 3954 */ 3955 if (mddev->external && strncmp(buf, "external:", 9) == 0) 3956 ; 3957 else if (!list_empty(&mddev->disks)) 3958 return -EBUSY; 3959 3960 if (cmd_match(buf, "none")) { 3961 mddev->persistent = 0; 3962 mddev->external = 0; 3963 mddev->major_version = 0; 3964 mddev->minor_version = 90; 3965 return len; 3966 } 3967 if (strncmp(buf, "external:", 9) == 0) { 3968 size_t namelen = len-9; 3969 if (namelen >= sizeof(mddev->metadata_type)) 3970 namelen = sizeof(mddev->metadata_type)-1; 3971 strncpy(mddev->metadata_type, buf+9, namelen); 3972 mddev->metadata_type[namelen] = 0; 3973 if (namelen && mddev->metadata_type[namelen-1] == '\n') 3974 mddev->metadata_type[--namelen] = 0; 3975 mddev->persistent = 0; 3976 mddev->external = 1; 3977 mddev->major_version = 0; 3978 mddev->minor_version = 90; 3979 return len; 3980 } 3981 major = simple_strtoul(buf, &e, 10); 3982 if (e==buf || *e != '.') 3983 return -EINVAL; 3984 buf = e+1; 3985 minor = simple_strtoul(buf, &e, 10); 3986 if (e==buf || (*e && *e != '\n') ) 3987 return -EINVAL; 3988 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 3989 return -ENOENT; 3990 mddev->major_version = major; 3991 mddev->minor_version = minor; 3992 mddev->persistent = 1; 3993 mddev->external = 0; 3994 return len; 3995 } 3996 3997 static struct md_sysfs_entry md_metadata = 3998 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 3999 4000 static ssize_t 4001 action_show(mddev_t *mddev, char *page) 4002 { 4003 char *type = "idle"; 4004 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4005 type = "frozen"; 4006 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4007 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 4008 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4009 type = "reshape"; 4010 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4011 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 4012 type = "resync"; 4013 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 4014 type = "check"; 4015 else 4016 type = "repair"; 4017 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 4018 type = "recover"; 4019 } 4020 return sprintf(page, "%s\n", type); 4021 } 4022 4023 static void reap_sync_thread(mddev_t *mddev); 4024 4025 static ssize_t 4026 action_store(mddev_t *mddev, const char *page, size_t len) 4027 { 4028 if (!mddev->pers || !mddev->pers->sync_request) 4029 return -EINVAL; 4030 4031 if (cmd_match(page, "frozen")) 4032 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4033 else 4034 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4035 4036 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4037 if (mddev->sync_thread) { 4038 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4039 reap_sync_thread(mddev); 4040 } 4041 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4042 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4043 return -EBUSY; 4044 else if (cmd_match(page, "resync")) 4045 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4046 else if (cmd_match(page, "recover")) { 4047 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4048 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4049 } else if (cmd_match(page, "reshape")) { 4050 int err; 4051 if (mddev->pers->start_reshape == NULL) 4052 return -EINVAL; 4053 err = mddev->pers->start_reshape(mddev); 4054 if (err) 4055 return err; 4056 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4057 } else { 4058 if (cmd_match(page, "check")) 4059 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4060 else if (!cmd_match(page, "repair")) 4061 return -EINVAL; 4062 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4063 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4064 } 4065 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4066 md_wakeup_thread(mddev->thread); 4067 sysfs_notify_dirent_safe(mddev->sysfs_action); 4068 return len; 4069 } 4070 4071 static ssize_t 4072 mismatch_cnt_show(mddev_t *mddev, char *page) 4073 { 4074 return sprintf(page, "%llu\n", 4075 (unsigned long long) mddev->resync_mismatches); 4076 } 4077 4078 static struct md_sysfs_entry md_scan_mode = 4079 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4080 4081 4082 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4083 4084 static ssize_t 4085 sync_min_show(mddev_t *mddev, char *page) 4086 { 4087 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4088 mddev->sync_speed_min ? "local": "system"); 4089 } 4090 4091 static ssize_t 4092 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 4093 { 4094 int min; 4095 char *e; 4096 if (strncmp(buf, "system", 6)==0) { 4097 mddev->sync_speed_min = 0; 4098 return len; 4099 } 4100 min = simple_strtoul(buf, &e, 10); 4101 if (buf == e || (*e && *e != '\n') || min <= 0) 4102 return -EINVAL; 4103 mddev->sync_speed_min = min; 4104 return len; 4105 } 4106 4107 static struct md_sysfs_entry md_sync_min = 4108 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4109 4110 static ssize_t 4111 sync_max_show(mddev_t *mddev, char *page) 4112 { 4113 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4114 mddev->sync_speed_max ? "local": "system"); 4115 } 4116 4117 static ssize_t 4118 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 4119 { 4120 int max; 4121 char *e; 4122 if (strncmp(buf, "system", 6)==0) { 4123 mddev->sync_speed_max = 0; 4124 return len; 4125 } 4126 max = simple_strtoul(buf, &e, 10); 4127 if (buf == e || (*e && *e != '\n') || max <= 0) 4128 return -EINVAL; 4129 mddev->sync_speed_max = max; 4130 return len; 4131 } 4132 4133 static struct md_sysfs_entry md_sync_max = 4134 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4135 4136 static ssize_t 4137 degraded_show(mddev_t *mddev, char *page) 4138 { 4139 return sprintf(page, "%d\n", mddev->degraded); 4140 } 4141 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4142 4143 static ssize_t 4144 sync_force_parallel_show(mddev_t *mddev, char *page) 4145 { 4146 return sprintf(page, "%d\n", mddev->parallel_resync); 4147 } 4148 4149 static ssize_t 4150 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len) 4151 { 4152 long n; 4153 4154 if (strict_strtol(buf, 10, &n)) 4155 return -EINVAL; 4156 4157 if (n != 0 && n != 1) 4158 return -EINVAL; 4159 4160 mddev->parallel_resync = n; 4161 4162 if (mddev->sync_thread) 4163 wake_up(&resync_wait); 4164 4165 return len; 4166 } 4167 4168 /* force parallel resync, even with shared block devices */ 4169 static struct md_sysfs_entry md_sync_force_parallel = 4170 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4171 sync_force_parallel_show, sync_force_parallel_store); 4172 4173 static ssize_t 4174 sync_speed_show(mddev_t *mddev, char *page) 4175 { 4176 unsigned long resync, dt, db; 4177 if (mddev->curr_resync == 0) 4178 return sprintf(page, "none\n"); 4179 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4180 dt = (jiffies - mddev->resync_mark) / HZ; 4181 if (!dt) dt++; 4182 db = resync - mddev->resync_mark_cnt; 4183 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4184 } 4185 4186 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4187 4188 static ssize_t 4189 sync_completed_show(mddev_t *mddev, char *page) 4190 { 4191 unsigned long long max_sectors, resync; 4192 4193 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4194 return sprintf(page, "none\n"); 4195 4196 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 4197 max_sectors = mddev->resync_max_sectors; 4198 else 4199 max_sectors = mddev->dev_sectors; 4200 4201 resync = mddev->curr_resync_completed; 4202 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4203 } 4204 4205 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 4206 4207 static ssize_t 4208 min_sync_show(mddev_t *mddev, char *page) 4209 { 4210 return sprintf(page, "%llu\n", 4211 (unsigned long long)mddev->resync_min); 4212 } 4213 static ssize_t 4214 min_sync_store(mddev_t *mddev, const char *buf, size_t len) 4215 { 4216 unsigned long long min; 4217 if (strict_strtoull(buf, 10, &min)) 4218 return -EINVAL; 4219 if (min > mddev->resync_max) 4220 return -EINVAL; 4221 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4222 return -EBUSY; 4223 4224 /* Must be a multiple of chunk_size */ 4225 if (mddev->chunk_sectors) { 4226 sector_t temp = min; 4227 if (sector_div(temp, mddev->chunk_sectors)) 4228 return -EINVAL; 4229 } 4230 mddev->resync_min = min; 4231 4232 return len; 4233 } 4234 4235 static struct md_sysfs_entry md_min_sync = 4236 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4237 4238 static ssize_t 4239 max_sync_show(mddev_t *mddev, char *page) 4240 { 4241 if (mddev->resync_max == MaxSector) 4242 return sprintf(page, "max\n"); 4243 else 4244 return sprintf(page, "%llu\n", 4245 (unsigned long long)mddev->resync_max); 4246 } 4247 static ssize_t 4248 max_sync_store(mddev_t *mddev, const char *buf, size_t len) 4249 { 4250 if (strncmp(buf, "max", 3) == 0) 4251 mddev->resync_max = MaxSector; 4252 else { 4253 unsigned long long max; 4254 if (strict_strtoull(buf, 10, &max)) 4255 return -EINVAL; 4256 if (max < mddev->resync_min) 4257 return -EINVAL; 4258 if (max < mddev->resync_max && 4259 mddev->ro == 0 && 4260 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4261 return -EBUSY; 4262 4263 /* Must be a multiple of chunk_size */ 4264 if (mddev->chunk_sectors) { 4265 sector_t temp = max; 4266 if (sector_div(temp, mddev->chunk_sectors)) 4267 return -EINVAL; 4268 } 4269 mddev->resync_max = max; 4270 } 4271 wake_up(&mddev->recovery_wait); 4272 return len; 4273 } 4274 4275 static struct md_sysfs_entry md_max_sync = 4276 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4277 4278 static ssize_t 4279 suspend_lo_show(mddev_t *mddev, char *page) 4280 { 4281 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4282 } 4283 4284 static ssize_t 4285 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 4286 { 4287 char *e; 4288 unsigned long long new = simple_strtoull(buf, &e, 10); 4289 unsigned long long old = mddev->suspend_lo; 4290 4291 if (mddev->pers == NULL || 4292 mddev->pers->quiesce == NULL) 4293 return -EINVAL; 4294 if (buf == e || (*e && *e != '\n')) 4295 return -EINVAL; 4296 4297 mddev->suspend_lo = new; 4298 if (new >= old) 4299 /* Shrinking suspended region */ 4300 mddev->pers->quiesce(mddev, 2); 4301 else { 4302 /* Expanding suspended region - need to wait */ 4303 mddev->pers->quiesce(mddev, 1); 4304 mddev->pers->quiesce(mddev, 0); 4305 } 4306 return len; 4307 } 4308 static struct md_sysfs_entry md_suspend_lo = 4309 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4310 4311 4312 static ssize_t 4313 suspend_hi_show(mddev_t *mddev, char *page) 4314 { 4315 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4316 } 4317 4318 static ssize_t 4319 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 4320 { 4321 char *e; 4322 unsigned long long new = simple_strtoull(buf, &e, 10); 4323 unsigned long long old = mddev->suspend_hi; 4324 4325 if (mddev->pers == NULL || 4326 mddev->pers->quiesce == NULL) 4327 return -EINVAL; 4328 if (buf == e || (*e && *e != '\n')) 4329 return -EINVAL; 4330 4331 mddev->suspend_hi = new; 4332 if (new <= old) 4333 /* Shrinking suspended region */ 4334 mddev->pers->quiesce(mddev, 2); 4335 else { 4336 /* Expanding suspended region - need to wait */ 4337 mddev->pers->quiesce(mddev, 1); 4338 mddev->pers->quiesce(mddev, 0); 4339 } 4340 return len; 4341 } 4342 static struct md_sysfs_entry md_suspend_hi = 4343 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4344 4345 static ssize_t 4346 reshape_position_show(mddev_t *mddev, char *page) 4347 { 4348 if (mddev->reshape_position != MaxSector) 4349 return sprintf(page, "%llu\n", 4350 (unsigned long long)mddev->reshape_position); 4351 strcpy(page, "none\n"); 4352 return 5; 4353 } 4354 4355 static ssize_t 4356 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 4357 { 4358 char *e; 4359 unsigned long long new = simple_strtoull(buf, &e, 10); 4360 if (mddev->pers) 4361 return -EBUSY; 4362 if (buf == e || (*e && *e != '\n')) 4363 return -EINVAL; 4364 mddev->reshape_position = new; 4365 mddev->delta_disks = 0; 4366 mddev->new_level = mddev->level; 4367 mddev->new_layout = mddev->layout; 4368 mddev->new_chunk_sectors = mddev->chunk_sectors; 4369 return len; 4370 } 4371 4372 static struct md_sysfs_entry md_reshape_position = 4373 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4374 reshape_position_store); 4375 4376 static ssize_t 4377 array_size_show(mddev_t *mddev, char *page) 4378 { 4379 if (mddev->external_size) 4380 return sprintf(page, "%llu\n", 4381 (unsigned long long)mddev->array_sectors/2); 4382 else 4383 return sprintf(page, "default\n"); 4384 } 4385 4386 static ssize_t 4387 array_size_store(mddev_t *mddev, const char *buf, size_t len) 4388 { 4389 sector_t sectors; 4390 4391 if (strncmp(buf, "default", 7) == 0) { 4392 if (mddev->pers) 4393 sectors = mddev->pers->size(mddev, 0, 0); 4394 else 4395 sectors = mddev->array_sectors; 4396 4397 mddev->external_size = 0; 4398 } else { 4399 if (strict_blocks_to_sectors(buf, §ors) < 0) 4400 return -EINVAL; 4401 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4402 return -E2BIG; 4403 4404 mddev->external_size = 1; 4405 } 4406 4407 mddev->array_sectors = sectors; 4408 if (mddev->pers) { 4409 set_capacity(mddev->gendisk, mddev->array_sectors); 4410 revalidate_disk(mddev->gendisk); 4411 } 4412 return len; 4413 } 4414 4415 static struct md_sysfs_entry md_array_size = 4416 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4417 array_size_store); 4418 4419 static struct attribute *md_default_attrs[] = { 4420 &md_level.attr, 4421 &md_layout.attr, 4422 &md_raid_disks.attr, 4423 &md_chunk_size.attr, 4424 &md_size.attr, 4425 &md_resync_start.attr, 4426 &md_metadata.attr, 4427 &md_new_device.attr, 4428 &md_safe_delay.attr, 4429 &md_array_state.attr, 4430 &md_reshape_position.attr, 4431 &md_array_size.attr, 4432 &max_corr_read_errors.attr, 4433 NULL, 4434 }; 4435 4436 static struct attribute *md_redundancy_attrs[] = { 4437 &md_scan_mode.attr, 4438 &md_mismatches.attr, 4439 &md_sync_min.attr, 4440 &md_sync_max.attr, 4441 &md_sync_speed.attr, 4442 &md_sync_force_parallel.attr, 4443 &md_sync_completed.attr, 4444 &md_min_sync.attr, 4445 &md_max_sync.attr, 4446 &md_suspend_lo.attr, 4447 &md_suspend_hi.attr, 4448 &md_bitmap.attr, 4449 &md_degraded.attr, 4450 NULL, 4451 }; 4452 static struct attribute_group md_redundancy_group = { 4453 .name = NULL, 4454 .attrs = md_redundancy_attrs, 4455 }; 4456 4457 4458 static ssize_t 4459 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4460 { 4461 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4462 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4463 ssize_t rv; 4464 4465 if (!entry->show) 4466 return -EIO; 4467 rv = mddev_lock(mddev); 4468 if (!rv) { 4469 rv = entry->show(mddev, page); 4470 mddev_unlock(mddev); 4471 } 4472 return rv; 4473 } 4474 4475 static ssize_t 4476 md_attr_store(struct kobject *kobj, struct attribute *attr, 4477 const char *page, size_t length) 4478 { 4479 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4480 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4481 ssize_t rv; 4482 4483 if (!entry->store) 4484 return -EIO; 4485 if (!capable(CAP_SYS_ADMIN)) 4486 return -EACCES; 4487 rv = mddev_lock(mddev); 4488 if (mddev->hold_active == UNTIL_IOCTL) 4489 mddev->hold_active = 0; 4490 if (!rv) { 4491 rv = entry->store(mddev, page, length); 4492 mddev_unlock(mddev); 4493 } 4494 return rv; 4495 } 4496 4497 static void md_free(struct kobject *ko) 4498 { 4499 mddev_t *mddev = container_of(ko, mddev_t, kobj); 4500 4501 if (mddev->sysfs_state) 4502 sysfs_put(mddev->sysfs_state); 4503 4504 if (mddev->gendisk) { 4505 del_gendisk(mddev->gendisk); 4506 put_disk(mddev->gendisk); 4507 } 4508 if (mddev->queue) 4509 blk_cleanup_queue(mddev->queue); 4510 4511 kfree(mddev); 4512 } 4513 4514 static const struct sysfs_ops md_sysfs_ops = { 4515 .show = md_attr_show, 4516 .store = md_attr_store, 4517 }; 4518 static struct kobj_type md_ktype = { 4519 .release = md_free, 4520 .sysfs_ops = &md_sysfs_ops, 4521 .default_attrs = md_default_attrs, 4522 }; 4523 4524 int mdp_major = 0; 4525 4526 static void mddev_delayed_delete(struct work_struct *ws) 4527 { 4528 mddev_t *mddev = container_of(ws, mddev_t, del_work); 4529 4530 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4531 kobject_del(&mddev->kobj); 4532 kobject_put(&mddev->kobj); 4533 } 4534 4535 static int md_alloc(dev_t dev, char *name) 4536 { 4537 static DEFINE_MUTEX(disks_mutex); 4538 mddev_t *mddev = mddev_find(dev); 4539 struct gendisk *disk; 4540 int partitioned; 4541 int shift; 4542 int unit; 4543 int error; 4544 4545 if (!mddev) 4546 return -ENODEV; 4547 4548 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4549 shift = partitioned ? MdpMinorShift : 0; 4550 unit = MINOR(mddev->unit) >> shift; 4551 4552 /* wait for any previous instance of this device to be 4553 * completely removed (mddev_delayed_delete). 4554 */ 4555 flush_workqueue(md_misc_wq); 4556 4557 mutex_lock(&disks_mutex); 4558 error = -EEXIST; 4559 if (mddev->gendisk) 4560 goto abort; 4561 4562 if (name) { 4563 /* Need to ensure that 'name' is not a duplicate. 4564 */ 4565 mddev_t *mddev2; 4566 spin_lock(&all_mddevs_lock); 4567 4568 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4569 if (mddev2->gendisk && 4570 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4571 spin_unlock(&all_mddevs_lock); 4572 goto abort; 4573 } 4574 spin_unlock(&all_mddevs_lock); 4575 } 4576 4577 error = -ENOMEM; 4578 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4579 if (!mddev->queue) 4580 goto abort; 4581 mddev->queue->queuedata = mddev; 4582 4583 blk_queue_make_request(mddev->queue, md_make_request); 4584 4585 disk = alloc_disk(1 << shift); 4586 if (!disk) { 4587 blk_cleanup_queue(mddev->queue); 4588 mddev->queue = NULL; 4589 goto abort; 4590 } 4591 disk->major = MAJOR(mddev->unit); 4592 disk->first_minor = unit << shift; 4593 if (name) 4594 strcpy(disk->disk_name, name); 4595 else if (partitioned) 4596 sprintf(disk->disk_name, "md_d%d", unit); 4597 else 4598 sprintf(disk->disk_name, "md%d", unit); 4599 disk->fops = &md_fops; 4600 disk->private_data = mddev; 4601 disk->queue = mddev->queue; 4602 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4603 /* Allow extended partitions. This makes the 4604 * 'mdp' device redundant, but we can't really 4605 * remove it now. 4606 */ 4607 disk->flags |= GENHD_FL_EXT_DEVT; 4608 mddev->gendisk = disk; 4609 /* As soon as we call add_disk(), another thread could get 4610 * through to md_open, so make sure it doesn't get too far 4611 */ 4612 mutex_lock(&mddev->open_mutex); 4613 add_disk(disk); 4614 4615 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4616 &disk_to_dev(disk)->kobj, "%s", "md"); 4617 if (error) { 4618 /* This isn't possible, but as kobject_init_and_add is marked 4619 * __must_check, we must do something with the result 4620 */ 4621 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4622 disk->disk_name); 4623 error = 0; 4624 } 4625 if (mddev->kobj.sd && 4626 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4627 printk(KERN_DEBUG "pointless warning\n"); 4628 mutex_unlock(&mddev->open_mutex); 4629 abort: 4630 mutex_unlock(&disks_mutex); 4631 if (!error && mddev->kobj.sd) { 4632 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4633 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4634 } 4635 mddev_put(mddev); 4636 return error; 4637 } 4638 4639 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4640 { 4641 md_alloc(dev, NULL); 4642 return NULL; 4643 } 4644 4645 static int add_named_array(const char *val, struct kernel_param *kp) 4646 { 4647 /* val must be "md_*" where * is not all digits. 4648 * We allocate an array with a large free minor number, and 4649 * set the name to val. val must not already be an active name. 4650 */ 4651 int len = strlen(val); 4652 char buf[DISK_NAME_LEN]; 4653 4654 while (len && val[len-1] == '\n') 4655 len--; 4656 if (len >= DISK_NAME_LEN) 4657 return -E2BIG; 4658 strlcpy(buf, val, len+1); 4659 if (strncmp(buf, "md_", 3) != 0) 4660 return -EINVAL; 4661 return md_alloc(0, buf); 4662 } 4663 4664 static void md_safemode_timeout(unsigned long data) 4665 { 4666 mddev_t *mddev = (mddev_t *) data; 4667 4668 if (!atomic_read(&mddev->writes_pending)) { 4669 mddev->safemode = 1; 4670 if (mddev->external) 4671 sysfs_notify_dirent_safe(mddev->sysfs_state); 4672 } 4673 md_wakeup_thread(mddev->thread); 4674 } 4675 4676 static int start_dirty_degraded; 4677 4678 int md_run(mddev_t *mddev) 4679 { 4680 int err; 4681 mdk_rdev_t *rdev; 4682 struct mdk_personality *pers; 4683 4684 if (list_empty(&mddev->disks)) 4685 /* cannot run an array with no devices.. */ 4686 return -EINVAL; 4687 4688 if (mddev->pers) 4689 return -EBUSY; 4690 /* Cannot run until previous stop completes properly */ 4691 if (mddev->sysfs_active) 4692 return -EBUSY; 4693 4694 /* 4695 * Analyze all RAID superblock(s) 4696 */ 4697 if (!mddev->raid_disks) { 4698 if (!mddev->persistent) 4699 return -EINVAL; 4700 analyze_sbs(mddev); 4701 } 4702 4703 if (mddev->level != LEVEL_NONE) 4704 request_module("md-level-%d", mddev->level); 4705 else if (mddev->clevel[0]) 4706 request_module("md-%s", mddev->clevel); 4707 4708 /* 4709 * Drop all container device buffers, from now on 4710 * the only valid external interface is through the md 4711 * device. 4712 */ 4713 list_for_each_entry(rdev, &mddev->disks, same_set) { 4714 if (test_bit(Faulty, &rdev->flags)) 4715 continue; 4716 sync_blockdev(rdev->bdev); 4717 invalidate_bdev(rdev->bdev); 4718 4719 /* perform some consistency tests on the device. 4720 * We don't want the data to overlap the metadata, 4721 * Internal Bitmap issues have been handled elsewhere. 4722 */ 4723 if (rdev->meta_bdev) { 4724 /* Nothing to check */; 4725 } else if (rdev->data_offset < rdev->sb_start) { 4726 if (mddev->dev_sectors && 4727 rdev->data_offset + mddev->dev_sectors 4728 > rdev->sb_start) { 4729 printk("md: %s: data overlaps metadata\n", 4730 mdname(mddev)); 4731 return -EINVAL; 4732 } 4733 } else { 4734 if (rdev->sb_start + rdev->sb_size/512 4735 > rdev->data_offset) { 4736 printk("md: %s: metadata overlaps data\n", 4737 mdname(mddev)); 4738 return -EINVAL; 4739 } 4740 } 4741 sysfs_notify_dirent_safe(rdev->sysfs_state); 4742 } 4743 4744 if (mddev->bio_set == NULL) 4745 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 4746 sizeof(mddev_t *)); 4747 4748 spin_lock(&pers_lock); 4749 pers = find_pers(mddev->level, mddev->clevel); 4750 if (!pers || !try_module_get(pers->owner)) { 4751 spin_unlock(&pers_lock); 4752 if (mddev->level != LEVEL_NONE) 4753 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 4754 mddev->level); 4755 else 4756 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 4757 mddev->clevel); 4758 return -EINVAL; 4759 } 4760 mddev->pers = pers; 4761 spin_unlock(&pers_lock); 4762 if (mddev->level != pers->level) { 4763 mddev->level = pers->level; 4764 mddev->new_level = pers->level; 4765 } 4766 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4767 4768 if (mddev->reshape_position != MaxSector && 4769 pers->start_reshape == NULL) { 4770 /* This personality cannot handle reshaping... */ 4771 mddev->pers = NULL; 4772 module_put(pers->owner); 4773 return -EINVAL; 4774 } 4775 4776 if (pers->sync_request) { 4777 /* Warn if this is a potentially silly 4778 * configuration. 4779 */ 4780 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4781 mdk_rdev_t *rdev2; 4782 int warned = 0; 4783 4784 list_for_each_entry(rdev, &mddev->disks, same_set) 4785 list_for_each_entry(rdev2, &mddev->disks, same_set) { 4786 if (rdev < rdev2 && 4787 rdev->bdev->bd_contains == 4788 rdev2->bdev->bd_contains) { 4789 printk(KERN_WARNING 4790 "%s: WARNING: %s appears to be" 4791 " on the same physical disk as" 4792 " %s.\n", 4793 mdname(mddev), 4794 bdevname(rdev->bdev,b), 4795 bdevname(rdev2->bdev,b2)); 4796 warned = 1; 4797 } 4798 } 4799 4800 if (warned) 4801 printk(KERN_WARNING 4802 "True protection against single-disk" 4803 " failure might be compromised.\n"); 4804 } 4805 4806 mddev->recovery = 0; 4807 /* may be over-ridden by personality */ 4808 mddev->resync_max_sectors = mddev->dev_sectors; 4809 4810 mddev->ok_start_degraded = start_dirty_degraded; 4811 4812 if (start_readonly && mddev->ro == 0) 4813 mddev->ro = 2; /* read-only, but switch on first write */ 4814 4815 err = mddev->pers->run(mddev); 4816 if (err) 4817 printk(KERN_ERR "md: pers->run() failed ...\n"); 4818 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 4819 WARN_ONCE(!mddev->external_size, "%s: default size too small," 4820 " but 'external_size' not in effect?\n", __func__); 4821 printk(KERN_ERR 4822 "md: invalid array_size %llu > default size %llu\n", 4823 (unsigned long long)mddev->array_sectors / 2, 4824 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 4825 err = -EINVAL; 4826 mddev->pers->stop(mddev); 4827 } 4828 if (err == 0 && mddev->pers->sync_request) { 4829 err = bitmap_create(mddev); 4830 if (err) { 4831 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 4832 mdname(mddev), err); 4833 mddev->pers->stop(mddev); 4834 } 4835 } 4836 if (err) { 4837 module_put(mddev->pers->owner); 4838 mddev->pers = NULL; 4839 bitmap_destroy(mddev); 4840 return err; 4841 } 4842 if (mddev->pers->sync_request) { 4843 if (mddev->kobj.sd && 4844 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4845 printk(KERN_WARNING 4846 "md: cannot register extra attributes for %s\n", 4847 mdname(mddev)); 4848 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 4849 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 4850 mddev->ro = 0; 4851 4852 atomic_set(&mddev->writes_pending,0); 4853 atomic_set(&mddev->max_corr_read_errors, 4854 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 4855 mddev->safemode = 0; 4856 mddev->safemode_timer.function = md_safemode_timeout; 4857 mddev->safemode_timer.data = (unsigned long) mddev; 4858 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 4859 mddev->in_sync = 1; 4860 smp_wmb(); 4861 mddev->ready = 1; 4862 list_for_each_entry(rdev, &mddev->disks, same_set) 4863 if (rdev->raid_disk >= 0) 4864 if (sysfs_link_rdev(mddev, rdev)) 4865 /* failure here is OK */; 4866 4867 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4868 4869 if (mddev->flags) 4870 md_update_sb(mddev, 0); 4871 4872 md_new_event(mddev); 4873 sysfs_notify_dirent_safe(mddev->sysfs_state); 4874 sysfs_notify_dirent_safe(mddev->sysfs_action); 4875 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4876 return 0; 4877 } 4878 EXPORT_SYMBOL_GPL(md_run); 4879 4880 static int do_md_run(mddev_t *mddev) 4881 { 4882 int err; 4883 4884 err = md_run(mddev); 4885 if (err) 4886 goto out; 4887 err = bitmap_load(mddev); 4888 if (err) { 4889 bitmap_destroy(mddev); 4890 goto out; 4891 } 4892 4893 md_wakeup_thread(mddev->thread); 4894 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 4895 4896 set_capacity(mddev->gendisk, mddev->array_sectors); 4897 revalidate_disk(mddev->gendisk); 4898 mddev->changed = 1; 4899 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4900 out: 4901 return err; 4902 } 4903 4904 static int restart_array(mddev_t *mddev) 4905 { 4906 struct gendisk *disk = mddev->gendisk; 4907 4908 /* Complain if it has no devices */ 4909 if (list_empty(&mddev->disks)) 4910 return -ENXIO; 4911 if (!mddev->pers) 4912 return -EINVAL; 4913 if (!mddev->ro) 4914 return -EBUSY; 4915 mddev->safemode = 0; 4916 mddev->ro = 0; 4917 set_disk_ro(disk, 0); 4918 printk(KERN_INFO "md: %s switched to read-write mode.\n", 4919 mdname(mddev)); 4920 /* Kick recovery or resync if necessary */ 4921 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4922 md_wakeup_thread(mddev->thread); 4923 md_wakeup_thread(mddev->sync_thread); 4924 sysfs_notify_dirent_safe(mddev->sysfs_state); 4925 return 0; 4926 } 4927 4928 /* similar to deny_write_access, but accounts for our holding a reference 4929 * to the file ourselves */ 4930 static int deny_bitmap_write_access(struct file * file) 4931 { 4932 struct inode *inode = file->f_mapping->host; 4933 4934 spin_lock(&inode->i_lock); 4935 if (atomic_read(&inode->i_writecount) > 1) { 4936 spin_unlock(&inode->i_lock); 4937 return -ETXTBSY; 4938 } 4939 atomic_set(&inode->i_writecount, -1); 4940 spin_unlock(&inode->i_lock); 4941 4942 return 0; 4943 } 4944 4945 void restore_bitmap_write_access(struct file *file) 4946 { 4947 struct inode *inode = file->f_mapping->host; 4948 4949 spin_lock(&inode->i_lock); 4950 atomic_set(&inode->i_writecount, 1); 4951 spin_unlock(&inode->i_lock); 4952 } 4953 4954 static void md_clean(mddev_t *mddev) 4955 { 4956 mddev->array_sectors = 0; 4957 mddev->external_size = 0; 4958 mddev->dev_sectors = 0; 4959 mddev->raid_disks = 0; 4960 mddev->recovery_cp = 0; 4961 mddev->resync_min = 0; 4962 mddev->resync_max = MaxSector; 4963 mddev->reshape_position = MaxSector; 4964 mddev->external = 0; 4965 mddev->persistent = 0; 4966 mddev->level = LEVEL_NONE; 4967 mddev->clevel[0] = 0; 4968 mddev->flags = 0; 4969 mddev->ro = 0; 4970 mddev->metadata_type[0] = 0; 4971 mddev->chunk_sectors = 0; 4972 mddev->ctime = mddev->utime = 0; 4973 mddev->layout = 0; 4974 mddev->max_disks = 0; 4975 mddev->events = 0; 4976 mddev->can_decrease_events = 0; 4977 mddev->delta_disks = 0; 4978 mddev->new_level = LEVEL_NONE; 4979 mddev->new_layout = 0; 4980 mddev->new_chunk_sectors = 0; 4981 mddev->curr_resync = 0; 4982 mddev->resync_mismatches = 0; 4983 mddev->suspend_lo = mddev->suspend_hi = 0; 4984 mddev->sync_speed_min = mddev->sync_speed_max = 0; 4985 mddev->recovery = 0; 4986 mddev->in_sync = 0; 4987 mddev->changed = 0; 4988 mddev->degraded = 0; 4989 mddev->safemode = 0; 4990 mddev->bitmap_info.offset = 0; 4991 mddev->bitmap_info.default_offset = 0; 4992 mddev->bitmap_info.chunksize = 0; 4993 mddev->bitmap_info.daemon_sleep = 0; 4994 mddev->bitmap_info.max_write_behind = 0; 4995 } 4996 4997 static void __md_stop_writes(mddev_t *mddev) 4998 { 4999 if (mddev->sync_thread) { 5000 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5001 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5002 reap_sync_thread(mddev); 5003 } 5004 5005 del_timer_sync(&mddev->safemode_timer); 5006 5007 bitmap_flush(mddev); 5008 md_super_wait(mddev); 5009 5010 if (!mddev->in_sync || mddev->flags) { 5011 /* mark array as shutdown cleanly */ 5012 mddev->in_sync = 1; 5013 md_update_sb(mddev, 1); 5014 } 5015 } 5016 5017 void md_stop_writes(mddev_t *mddev) 5018 { 5019 mddev_lock(mddev); 5020 __md_stop_writes(mddev); 5021 mddev_unlock(mddev); 5022 } 5023 EXPORT_SYMBOL_GPL(md_stop_writes); 5024 5025 void md_stop(mddev_t *mddev) 5026 { 5027 mddev->ready = 0; 5028 mddev->pers->stop(mddev); 5029 if (mddev->pers->sync_request && mddev->to_remove == NULL) 5030 mddev->to_remove = &md_redundancy_group; 5031 module_put(mddev->pers->owner); 5032 mddev->pers = NULL; 5033 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5034 } 5035 EXPORT_SYMBOL_GPL(md_stop); 5036 5037 static int md_set_readonly(mddev_t *mddev, int is_open) 5038 { 5039 int err = 0; 5040 mutex_lock(&mddev->open_mutex); 5041 if (atomic_read(&mddev->openers) > is_open) { 5042 printk("md: %s still in use.\n",mdname(mddev)); 5043 err = -EBUSY; 5044 goto out; 5045 } 5046 if (mddev->pers) { 5047 __md_stop_writes(mddev); 5048 5049 err = -ENXIO; 5050 if (mddev->ro==1) 5051 goto out; 5052 mddev->ro = 1; 5053 set_disk_ro(mddev->gendisk, 1); 5054 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5055 sysfs_notify_dirent_safe(mddev->sysfs_state); 5056 err = 0; 5057 } 5058 out: 5059 mutex_unlock(&mddev->open_mutex); 5060 return err; 5061 } 5062 5063 /* mode: 5064 * 0 - completely stop and dis-assemble array 5065 * 2 - stop but do not disassemble array 5066 */ 5067 static int do_md_stop(mddev_t * mddev, int mode, int is_open) 5068 { 5069 struct gendisk *disk = mddev->gendisk; 5070 mdk_rdev_t *rdev; 5071 5072 mutex_lock(&mddev->open_mutex); 5073 if (atomic_read(&mddev->openers) > is_open || 5074 mddev->sysfs_active) { 5075 printk("md: %s still in use.\n",mdname(mddev)); 5076 mutex_unlock(&mddev->open_mutex); 5077 return -EBUSY; 5078 } 5079 5080 if (mddev->pers) { 5081 if (mddev->ro) 5082 set_disk_ro(disk, 0); 5083 5084 __md_stop_writes(mddev); 5085 md_stop(mddev); 5086 mddev->queue->merge_bvec_fn = NULL; 5087 mddev->queue->backing_dev_info.congested_fn = NULL; 5088 5089 /* tell userspace to handle 'inactive' */ 5090 sysfs_notify_dirent_safe(mddev->sysfs_state); 5091 5092 list_for_each_entry(rdev, &mddev->disks, same_set) 5093 if (rdev->raid_disk >= 0) 5094 sysfs_unlink_rdev(mddev, rdev); 5095 5096 set_capacity(disk, 0); 5097 mutex_unlock(&mddev->open_mutex); 5098 mddev->changed = 1; 5099 revalidate_disk(disk); 5100 5101 if (mddev->ro) 5102 mddev->ro = 0; 5103 } else 5104 mutex_unlock(&mddev->open_mutex); 5105 /* 5106 * Free resources if final stop 5107 */ 5108 if (mode == 0) { 5109 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5110 5111 bitmap_destroy(mddev); 5112 if (mddev->bitmap_info.file) { 5113 restore_bitmap_write_access(mddev->bitmap_info.file); 5114 fput(mddev->bitmap_info.file); 5115 mddev->bitmap_info.file = NULL; 5116 } 5117 mddev->bitmap_info.offset = 0; 5118 5119 export_array(mddev); 5120 5121 md_clean(mddev); 5122 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5123 if (mddev->hold_active == UNTIL_STOP) 5124 mddev->hold_active = 0; 5125 } 5126 blk_integrity_unregister(disk); 5127 md_new_event(mddev); 5128 sysfs_notify_dirent_safe(mddev->sysfs_state); 5129 return 0; 5130 } 5131 5132 #ifndef MODULE 5133 static void autorun_array(mddev_t *mddev) 5134 { 5135 mdk_rdev_t *rdev; 5136 int err; 5137 5138 if (list_empty(&mddev->disks)) 5139 return; 5140 5141 printk(KERN_INFO "md: running: "); 5142 5143 list_for_each_entry(rdev, &mddev->disks, same_set) { 5144 char b[BDEVNAME_SIZE]; 5145 printk("<%s>", bdevname(rdev->bdev,b)); 5146 } 5147 printk("\n"); 5148 5149 err = do_md_run(mddev); 5150 if (err) { 5151 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5152 do_md_stop(mddev, 0, 0); 5153 } 5154 } 5155 5156 /* 5157 * lets try to run arrays based on all disks that have arrived 5158 * until now. (those are in pending_raid_disks) 5159 * 5160 * the method: pick the first pending disk, collect all disks with 5161 * the same UUID, remove all from the pending list and put them into 5162 * the 'same_array' list. Then order this list based on superblock 5163 * update time (freshest comes first), kick out 'old' disks and 5164 * compare superblocks. If everything's fine then run it. 5165 * 5166 * If "unit" is allocated, then bump its reference count 5167 */ 5168 static void autorun_devices(int part) 5169 { 5170 mdk_rdev_t *rdev0, *rdev, *tmp; 5171 mddev_t *mddev; 5172 char b[BDEVNAME_SIZE]; 5173 5174 printk(KERN_INFO "md: autorun ...\n"); 5175 while (!list_empty(&pending_raid_disks)) { 5176 int unit; 5177 dev_t dev; 5178 LIST_HEAD(candidates); 5179 rdev0 = list_entry(pending_raid_disks.next, 5180 mdk_rdev_t, same_set); 5181 5182 printk(KERN_INFO "md: considering %s ...\n", 5183 bdevname(rdev0->bdev,b)); 5184 INIT_LIST_HEAD(&candidates); 5185 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5186 if (super_90_load(rdev, rdev0, 0) >= 0) { 5187 printk(KERN_INFO "md: adding %s ...\n", 5188 bdevname(rdev->bdev,b)); 5189 list_move(&rdev->same_set, &candidates); 5190 } 5191 /* 5192 * now we have a set of devices, with all of them having 5193 * mostly sane superblocks. It's time to allocate the 5194 * mddev. 5195 */ 5196 if (part) { 5197 dev = MKDEV(mdp_major, 5198 rdev0->preferred_minor << MdpMinorShift); 5199 unit = MINOR(dev) >> MdpMinorShift; 5200 } else { 5201 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5202 unit = MINOR(dev); 5203 } 5204 if (rdev0->preferred_minor != unit) { 5205 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5206 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5207 break; 5208 } 5209 5210 md_probe(dev, NULL, NULL); 5211 mddev = mddev_find(dev); 5212 if (!mddev || !mddev->gendisk) { 5213 if (mddev) 5214 mddev_put(mddev); 5215 printk(KERN_ERR 5216 "md: cannot allocate memory for md drive.\n"); 5217 break; 5218 } 5219 if (mddev_lock(mddev)) 5220 printk(KERN_WARNING "md: %s locked, cannot run\n", 5221 mdname(mddev)); 5222 else if (mddev->raid_disks || mddev->major_version 5223 || !list_empty(&mddev->disks)) { 5224 printk(KERN_WARNING 5225 "md: %s already running, cannot run %s\n", 5226 mdname(mddev), bdevname(rdev0->bdev,b)); 5227 mddev_unlock(mddev); 5228 } else { 5229 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5230 mddev->persistent = 1; 5231 rdev_for_each_list(rdev, tmp, &candidates) { 5232 list_del_init(&rdev->same_set); 5233 if (bind_rdev_to_array(rdev, mddev)) 5234 export_rdev(rdev); 5235 } 5236 autorun_array(mddev); 5237 mddev_unlock(mddev); 5238 } 5239 /* on success, candidates will be empty, on error 5240 * it won't... 5241 */ 5242 rdev_for_each_list(rdev, tmp, &candidates) { 5243 list_del_init(&rdev->same_set); 5244 export_rdev(rdev); 5245 } 5246 mddev_put(mddev); 5247 } 5248 printk(KERN_INFO "md: ... autorun DONE.\n"); 5249 } 5250 #endif /* !MODULE */ 5251 5252 static int get_version(void __user * arg) 5253 { 5254 mdu_version_t ver; 5255 5256 ver.major = MD_MAJOR_VERSION; 5257 ver.minor = MD_MINOR_VERSION; 5258 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5259 5260 if (copy_to_user(arg, &ver, sizeof(ver))) 5261 return -EFAULT; 5262 5263 return 0; 5264 } 5265 5266 static int get_array_info(mddev_t * mddev, void __user * arg) 5267 { 5268 mdu_array_info_t info; 5269 int nr,working,insync,failed,spare; 5270 mdk_rdev_t *rdev; 5271 5272 nr=working=insync=failed=spare=0; 5273 list_for_each_entry(rdev, &mddev->disks, same_set) { 5274 nr++; 5275 if (test_bit(Faulty, &rdev->flags)) 5276 failed++; 5277 else { 5278 working++; 5279 if (test_bit(In_sync, &rdev->flags)) 5280 insync++; 5281 else 5282 spare++; 5283 } 5284 } 5285 5286 info.major_version = mddev->major_version; 5287 info.minor_version = mddev->minor_version; 5288 info.patch_version = MD_PATCHLEVEL_VERSION; 5289 info.ctime = mddev->ctime; 5290 info.level = mddev->level; 5291 info.size = mddev->dev_sectors / 2; 5292 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5293 info.size = -1; 5294 info.nr_disks = nr; 5295 info.raid_disks = mddev->raid_disks; 5296 info.md_minor = mddev->md_minor; 5297 info.not_persistent= !mddev->persistent; 5298 5299 info.utime = mddev->utime; 5300 info.state = 0; 5301 if (mddev->in_sync) 5302 info.state = (1<<MD_SB_CLEAN); 5303 if (mddev->bitmap && mddev->bitmap_info.offset) 5304 info.state = (1<<MD_SB_BITMAP_PRESENT); 5305 info.active_disks = insync; 5306 info.working_disks = working; 5307 info.failed_disks = failed; 5308 info.spare_disks = spare; 5309 5310 info.layout = mddev->layout; 5311 info.chunk_size = mddev->chunk_sectors << 9; 5312 5313 if (copy_to_user(arg, &info, sizeof(info))) 5314 return -EFAULT; 5315 5316 return 0; 5317 } 5318 5319 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 5320 { 5321 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5322 char *ptr, *buf = NULL; 5323 int err = -ENOMEM; 5324 5325 if (md_allow_write(mddev)) 5326 file = kmalloc(sizeof(*file), GFP_NOIO); 5327 else 5328 file = kmalloc(sizeof(*file), GFP_KERNEL); 5329 5330 if (!file) 5331 goto out; 5332 5333 /* bitmap disabled, zero the first byte and copy out */ 5334 if (!mddev->bitmap || !mddev->bitmap->file) { 5335 file->pathname[0] = '\0'; 5336 goto copy_out; 5337 } 5338 5339 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5340 if (!buf) 5341 goto out; 5342 5343 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); 5344 if (IS_ERR(ptr)) 5345 goto out; 5346 5347 strcpy(file->pathname, ptr); 5348 5349 copy_out: 5350 err = 0; 5351 if (copy_to_user(arg, file, sizeof(*file))) 5352 err = -EFAULT; 5353 out: 5354 kfree(buf); 5355 kfree(file); 5356 return err; 5357 } 5358 5359 static int get_disk_info(mddev_t * mddev, void __user * arg) 5360 { 5361 mdu_disk_info_t info; 5362 mdk_rdev_t *rdev; 5363 5364 if (copy_from_user(&info, arg, sizeof(info))) 5365 return -EFAULT; 5366 5367 rdev = find_rdev_nr(mddev, info.number); 5368 if (rdev) { 5369 info.major = MAJOR(rdev->bdev->bd_dev); 5370 info.minor = MINOR(rdev->bdev->bd_dev); 5371 info.raid_disk = rdev->raid_disk; 5372 info.state = 0; 5373 if (test_bit(Faulty, &rdev->flags)) 5374 info.state |= (1<<MD_DISK_FAULTY); 5375 else if (test_bit(In_sync, &rdev->flags)) { 5376 info.state |= (1<<MD_DISK_ACTIVE); 5377 info.state |= (1<<MD_DISK_SYNC); 5378 } 5379 if (test_bit(WriteMostly, &rdev->flags)) 5380 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5381 } else { 5382 info.major = info.minor = 0; 5383 info.raid_disk = -1; 5384 info.state = (1<<MD_DISK_REMOVED); 5385 } 5386 5387 if (copy_to_user(arg, &info, sizeof(info))) 5388 return -EFAULT; 5389 5390 return 0; 5391 } 5392 5393 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 5394 { 5395 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5396 mdk_rdev_t *rdev; 5397 dev_t dev = MKDEV(info->major,info->minor); 5398 5399 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5400 return -EOVERFLOW; 5401 5402 if (!mddev->raid_disks) { 5403 int err; 5404 /* expecting a device which has a superblock */ 5405 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5406 if (IS_ERR(rdev)) { 5407 printk(KERN_WARNING 5408 "md: md_import_device returned %ld\n", 5409 PTR_ERR(rdev)); 5410 return PTR_ERR(rdev); 5411 } 5412 if (!list_empty(&mddev->disks)) { 5413 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 5414 mdk_rdev_t, same_set); 5415 err = super_types[mddev->major_version] 5416 .load_super(rdev, rdev0, mddev->minor_version); 5417 if (err < 0) { 5418 printk(KERN_WARNING 5419 "md: %s has different UUID to %s\n", 5420 bdevname(rdev->bdev,b), 5421 bdevname(rdev0->bdev,b2)); 5422 export_rdev(rdev); 5423 return -EINVAL; 5424 } 5425 } 5426 err = bind_rdev_to_array(rdev, mddev); 5427 if (err) 5428 export_rdev(rdev); 5429 return err; 5430 } 5431 5432 /* 5433 * add_new_disk can be used once the array is assembled 5434 * to add "hot spares". They must already have a superblock 5435 * written 5436 */ 5437 if (mddev->pers) { 5438 int err; 5439 if (!mddev->pers->hot_add_disk) { 5440 printk(KERN_WARNING 5441 "%s: personality does not support diskops!\n", 5442 mdname(mddev)); 5443 return -EINVAL; 5444 } 5445 if (mddev->persistent) 5446 rdev = md_import_device(dev, mddev->major_version, 5447 mddev->minor_version); 5448 else 5449 rdev = md_import_device(dev, -1, -1); 5450 if (IS_ERR(rdev)) { 5451 printk(KERN_WARNING 5452 "md: md_import_device returned %ld\n", 5453 PTR_ERR(rdev)); 5454 return PTR_ERR(rdev); 5455 } 5456 /* set saved_raid_disk if appropriate */ 5457 if (!mddev->persistent) { 5458 if (info->state & (1<<MD_DISK_SYNC) && 5459 info->raid_disk < mddev->raid_disks) { 5460 rdev->raid_disk = info->raid_disk; 5461 set_bit(In_sync, &rdev->flags); 5462 } else 5463 rdev->raid_disk = -1; 5464 } else 5465 super_types[mddev->major_version]. 5466 validate_super(mddev, rdev); 5467 if ((info->state & (1<<MD_DISK_SYNC)) && 5468 (!test_bit(In_sync, &rdev->flags) || 5469 rdev->raid_disk != info->raid_disk)) { 5470 /* This was a hot-add request, but events doesn't 5471 * match, so reject it. 5472 */ 5473 export_rdev(rdev); 5474 return -EINVAL; 5475 } 5476 5477 if (test_bit(In_sync, &rdev->flags)) 5478 rdev->saved_raid_disk = rdev->raid_disk; 5479 else 5480 rdev->saved_raid_disk = -1; 5481 5482 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5483 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5484 set_bit(WriteMostly, &rdev->flags); 5485 else 5486 clear_bit(WriteMostly, &rdev->flags); 5487 5488 rdev->raid_disk = -1; 5489 err = bind_rdev_to_array(rdev, mddev); 5490 if (!err && !mddev->pers->hot_remove_disk) { 5491 /* If there is hot_add_disk but no hot_remove_disk 5492 * then added disks for geometry changes, 5493 * and should be added immediately. 5494 */ 5495 super_types[mddev->major_version]. 5496 validate_super(mddev, rdev); 5497 err = mddev->pers->hot_add_disk(mddev, rdev); 5498 if (err) 5499 unbind_rdev_from_array(rdev); 5500 } 5501 if (err) 5502 export_rdev(rdev); 5503 else 5504 sysfs_notify_dirent_safe(rdev->sysfs_state); 5505 5506 md_update_sb(mddev, 1); 5507 if (mddev->degraded) 5508 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5509 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5510 if (!err) 5511 md_new_event(mddev); 5512 md_wakeup_thread(mddev->thread); 5513 return err; 5514 } 5515 5516 /* otherwise, add_new_disk is only allowed 5517 * for major_version==0 superblocks 5518 */ 5519 if (mddev->major_version != 0) { 5520 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5521 mdname(mddev)); 5522 return -EINVAL; 5523 } 5524 5525 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5526 int err; 5527 rdev = md_import_device(dev, -1, 0); 5528 if (IS_ERR(rdev)) { 5529 printk(KERN_WARNING 5530 "md: error, md_import_device() returned %ld\n", 5531 PTR_ERR(rdev)); 5532 return PTR_ERR(rdev); 5533 } 5534 rdev->desc_nr = info->number; 5535 if (info->raid_disk < mddev->raid_disks) 5536 rdev->raid_disk = info->raid_disk; 5537 else 5538 rdev->raid_disk = -1; 5539 5540 if (rdev->raid_disk < mddev->raid_disks) 5541 if (info->state & (1<<MD_DISK_SYNC)) 5542 set_bit(In_sync, &rdev->flags); 5543 5544 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5545 set_bit(WriteMostly, &rdev->flags); 5546 5547 if (!mddev->persistent) { 5548 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5549 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5550 } else 5551 rdev->sb_start = calc_dev_sboffset(rdev); 5552 rdev->sectors = rdev->sb_start; 5553 5554 err = bind_rdev_to_array(rdev, mddev); 5555 if (err) { 5556 export_rdev(rdev); 5557 return err; 5558 } 5559 } 5560 5561 return 0; 5562 } 5563 5564 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 5565 { 5566 char b[BDEVNAME_SIZE]; 5567 mdk_rdev_t *rdev; 5568 5569 rdev = find_rdev(mddev, dev); 5570 if (!rdev) 5571 return -ENXIO; 5572 5573 if (rdev->raid_disk >= 0) 5574 goto busy; 5575 5576 kick_rdev_from_array(rdev); 5577 md_update_sb(mddev, 1); 5578 md_new_event(mddev); 5579 5580 return 0; 5581 busy: 5582 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5583 bdevname(rdev->bdev,b), mdname(mddev)); 5584 return -EBUSY; 5585 } 5586 5587 static int hot_add_disk(mddev_t * mddev, dev_t dev) 5588 { 5589 char b[BDEVNAME_SIZE]; 5590 int err; 5591 mdk_rdev_t *rdev; 5592 5593 if (!mddev->pers) 5594 return -ENODEV; 5595 5596 if (mddev->major_version != 0) { 5597 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5598 " version-0 superblocks.\n", 5599 mdname(mddev)); 5600 return -EINVAL; 5601 } 5602 if (!mddev->pers->hot_add_disk) { 5603 printk(KERN_WARNING 5604 "%s: personality does not support diskops!\n", 5605 mdname(mddev)); 5606 return -EINVAL; 5607 } 5608 5609 rdev = md_import_device(dev, -1, 0); 5610 if (IS_ERR(rdev)) { 5611 printk(KERN_WARNING 5612 "md: error, md_import_device() returned %ld\n", 5613 PTR_ERR(rdev)); 5614 return -EINVAL; 5615 } 5616 5617 if (mddev->persistent) 5618 rdev->sb_start = calc_dev_sboffset(rdev); 5619 else 5620 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5621 5622 rdev->sectors = rdev->sb_start; 5623 5624 if (test_bit(Faulty, &rdev->flags)) { 5625 printk(KERN_WARNING 5626 "md: can not hot-add faulty %s disk to %s!\n", 5627 bdevname(rdev->bdev,b), mdname(mddev)); 5628 err = -EINVAL; 5629 goto abort_export; 5630 } 5631 clear_bit(In_sync, &rdev->flags); 5632 rdev->desc_nr = -1; 5633 rdev->saved_raid_disk = -1; 5634 err = bind_rdev_to_array(rdev, mddev); 5635 if (err) 5636 goto abort_export; 5637 5638 /* 5639 * The rest should better be atomic, we can have disk failures 5640 * noticed in interrupt contexts ... 5641 */ 5642 5643 rdev->raid_disk = -1; 5644 5645 md_update_sb(mddev, 1); 5646 5647 /* 5648 * Kick recovery, maybe this spare has to be added to the 5649 * array immediately. 5650 */ 5651 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5652 md_wakeup_thread(mddev->thread); 5653 md_new_event(mddev); 5654 return 0; 5655 5656 abort_export: 5657 export_rdev(rdev); 5658 return err; 5659 } 5660 5661 static int set_bitmap_file(mddev_t *mddev, int fd) 5662 { 5663 int err; 5664 5665 if (mddev->pers) { 5666 if (!mddev->pers->quiesce) 5667 return -EBUSY; 5668 if (mddev->recovery || mddev->sync_thread) 5669 return -EBUSY; 5670 /* we should be able to change the bitmap.. */ 5671 } 5672 5673 5674 if (fd >= 0) { 5675 if (mddev->bitmap) 5676 return -EEXIST; /* cannot add when bitmap is present */ 5677 mddev->bitmap_info.file = fget(fd); 5678 5679 if (mddev->bitmap_info.file == NULL) { 5680 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5681 mdname(mddev)); 5682 return -EBADF; 5683 } 5684 5685 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5686 if (err) { 5687 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5688 mdname(mddev)); 5689 fput(mddev->bitmap_info.file); 5690 mddev->bitmap_info.file = NULL; 5691 return err; 5692 } 5693 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5694 } else if (mddev->bitmap == NULL) 5695 return -ENOENT; /* cannot remove what isn't there */ 5696 err = 0; 5697 if (mddev->pers) { 5698 mddev->pers->quiesce(mddev, 1); 5699 if (fd >= 0) { 5700 err = bitmap_create(mddev); 5701 if (!err) 5702 err = bitmap_load(mddev); 5703 } 5704 if (fd < 0 || err) { 5705 bitmap_destroy(mddev); 5706 fd = -1; /* make sure to put the file */ 5707 } 5708 mddev->pers->quiesce(mddev, 0); 5709 } 5710 if (fd < 0) { 5711 if (mddev->bitmap_info.file) { 5712 restore_bitmap_write_access(mddev->bitmap_info.file); 5713 fput(mddev->bitmap_info.file); 5714 } 5715 mddev->bitmap_info.file = NULL; 5716 } 5717 5718 return err; 5719 } 5720 5721 /* 5722 * set_array_info is used two different ways 5723 * The original usage is when creating a new array. 5724 * In this usage, raid_disks is > 0 and it together with 5725 * level, size, not_persistent,layout,chunksize determine the 5726 * shape of the array. 5727 * This will always create an array with a type-0.90.0 superblock. 5728 * The newer usage is when assembling an array. 5729 * In this case raid_disks will be 0, and the major_version field is 5730 * use to determine which style super-blocks are to be found on the devices. 5731 * The minor and patch _version numbers are also kept incase the 5732 * super_block handler wishes to interpret them. 5733 */ 5734 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 5735 { 5736 5737 if (info->raid_disks == 0) { 5738 /* just setting version number for superblock loading */ 5739 if (info->major_version < 0 || 5740 info->major_version >= ARRAY_SIZE(super_types) || 5741 super_types[info->major_version].name == NULL) { 5742 /* maybe try to auto-load a module? */ 5743 printk(KERN_INFO 5744 "md: superblock version %d not known\n", 5745 info->major_version); 5746 return -EINVAL; 5747 } 5748 mddev->major_version = info->major_version; 5749 mddev->minor_version = info->minor_version; 5750 mddev->patch_version = info->patch_version; 5751 mddev->persistent = !info->not_persistent; 5752 /* ensure mddev_put doesn't delete this now that there 5753 * is some minimal configuration. 5754 */ 5755 mddev->ctime = get_seconds(); 5756 return 0; 5757 } 5758 mddev->major_version = MD_MAJOR_VERSION; 5759 mddev->minor_version = MD_MINOR_VERSION; 5760 mddev->patch_version = MD_PATCHLEVEL_VERSION; 5761 mddev->ctime = get_seconds(); 5762 5763 mddev->level = info->level; 5764 mddev->clevel[0] = 0; 5765 mddev->dev_sectors = 2 * (sector_t)info->size; 5766 mddev->raid_disks = info->raid_disks; 5767 /* don't set md_minor, it is determined by which /dev/md* was 5768 * openned 5769 */ 5770 if (info->state & (1<<MD_SB_CLEAN)) 5771 mddev->recovery_cp = MaxSector; 5772 else 5773 mddev->recovery_cp = 0; 5774 mddev->persistent = ! info->not_persistent; 5775 mddev->external = 0; 5776 5777 mddev->layout = info->layout; 5778 mddev->chunk_sectors = info->chunk_size >> 9; 5779 5780 mddev->max_disks = MD_SB_DISKS; 5781 5782 if (mddev->persistent) 5783 mddev->flags = 0; 5784 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5785 5786 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 5787 mddev->bitmap_info.offset = 0; 5788 5789 mddev->reshape_position = MaxSector; 5790 5791 /* 5792 * Generate a 128 bit UUID 5793 */ 5794 get_random_bytes(mddev->uuid, 16); 5795 5796 mddev->new_level = mddev->level; 5797 mddev->new_chunk_sectors = mddev->chunk_sectors; 5798 mddev->new_layout = mddev->layout; 5799 mddev->delta_disks = 0; 5800 5801 return 0; 5802 } 5803 5804 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors) 5805 { 5806 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 5807 5808 if (mddev->external_size) 5809 return; 5810 5811 mddev->array_sectors = array_sectors; 5812 } 5813 EXPORT_SYMBOL(md_set_array_sectors); 5814 5815 static int update_size(mddev_t *mddev, sector_t num_sectors) 5816 { 5817 mdk_rdev_t *rdev; 5818 int rv; 5819 int fit = (num_sectors == 0); 5820 5821 if (mddev->pers->resize == NULL) 5822 return -EINVAL; 5823 /* The "num_sectors" is the number of sectors of each device that 5824 * is used. This can only make sense for arrays with redundancy. 5825 * linear and raid0 always use whatever space is available. We can only 5826 * consider changing this number if no resync or reconstruction is 5827 * happening, and if the new size is acceptable. It must fit before the 5828 * sb_start or, if that is <data_offset, it must fit before the size 5829 * of each device. If num_sectors is zero, we find the largest size 5830 * that fits. 5831 */ 5832 if (mddev->sync_thread) 5833 return -EBUSY; 5834 if (mddev->bitmap) 5835 /* Sorry, cannot grow a bitmap yet, just remove it, 5836 * grow, and re-add. 5837 */ 5838 return -EBUSY; 5839 list_for_each_entry(rdev, &mddev->disks, same_set) { 5840 sector_t avail = rdev->sectors; 5841 5842 if (fit && (num_sectors == 0 || num_sectors > avail)) 5843 num_sectors = avail; 5844 if (avail < num_sectors) 5845 return -ENOSPC; 5846 } 5847 rv = mddev->pers->resize(mddev, num_sectors); 5848 if (!rv) 5849 revalidate_disk(mddev->gendisk); 5850 return rv; 5851 } 5852 5853 static int update_raid_disks(mddev_t *mddev, int raid_disks) 5854 { 5855 int rv; 5856 /* change the number of raid disks */ 5857 if (mddev->pers->check_reshape == NULL) 5858 return -EINVAL; 5859 if (raid_disks <= 0 || 5860 (mddev->max_disks && raid_disks >= mddev->max_disks)) 5861 return -EINVAL; 5862 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 5863 return -EBUSY; 5864 mddev->delta_disks = raid_disks - mddev->raid_disks; 5865 5866 rv = mddev->pers->check_reshape(mddev); 5867 if (rv < 0) 5868 mddev->delta_disks = 0; 5869 return rv; 5870 } 5871 5872 5873 /* 5874 * update_array_info is used to change the configuration of an 5875 * on-line array. 5876 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 5877 * fields in the info are checked against the array. 5878 * Any differences that cannot be handled will cause an error. 5879 * Normally, only one change can be managed at a time. 5880 */ 5881 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 5882 { 5883 int rv = 0; 5884 int cnt = 0; 5885 int state = 0; 5886 5887 /* calculate expected state,ignoring low bits */ 5888 if (mddev->bitmap && mddev->bitmap_info.offset) 5889 state |= (1 << MD_SB_BITMAP_PRESENT); 5890 5891 if (mddev->major_version != info->major_version || 5892 mddev->minor_version != info->minor_version || 5893 /* mddev->patch_version != info->patch_version || */ 5894 mddev->ctime != info->ctime || 5895 mddev->level != info->level || 5896 /* mddev->layout != info->layout || */ 5897 !mddev->persistent != info->not_persistent|| 5898 mddev->chunk_sectors != info->chunk_size >> 9 || 5899 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 5900 ((state^info->state) & 0xfffffe00) 5901 ) 5902 return -EINVAL; 5903 /* Check there is only one change */ 5904 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5905 cnt++; 5906 if (mddev->raid_disks != info->raid_disks) 5907 cnt++; 5908 if (mddev->layout != info->layout) 5909 cnt++; 5910 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 5911 cnt++; 5912 if (cnt == 0) 5913 return 0; 5914 if (cnt > 1) 5915 return -EINVAL; 5916 5917 if (mddev->layout != info->layout) { 5918 /* Change layout 5919 * we don't need to do anything at the md level, the 5920 * personality will take care of it all. 5921 */ 5922 if (mddev->pers->check_reshape == NULL) 5923 return -EINVAL; 5924 else { 5925 mddev->new_layout = info->layout; 5926 rv = mddev->pers->check_reshape(mddev); 5927 if (rv) 5928 mddev->new_layout = mddev->layout; 5929 return rv; 5930 } 5931 } 5932 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5933 rv = update_size(mddev, (sector_t)info->size * 2); 5934 5935 if (mddev->raid_disks != info->raid_disks) 5936 rv = update_raid_disks(mddev, info->raid_disks); 5937 5938 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 5939 if (mddev->pers->quiesce == NULL) 5940 return -EINVAL; 5941 if (mddev->recovery || mddev->sync_thread) 5942 return -EBUSY; 5943 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 5944 /* add the bitmap */ 5945 if (mddev->bitmap) 5946 return -EEXIST; 5947 if (mddev->bitmap_info.default_offset == 0) 5948 return -EINVAL; 5949 mddev->bitmap_info.offset = 5950 mddev->bitmap_info.default_offset; 5951 mddev->pers->quiesce(mddev, 1); 5952 rv = bitmap_create(mddev); 5953 if (!rv) 5954 rv = bitmap_load(mddev); 5955 if (rv) 5956 bitmap_destroy(mddev); 5957 mddev->pers->quiesce(mddev, 0); 5958 } else { 5959 /* remove the bitmap */ 5960 if (!mddev->bitmap) 5961 return -ENOENT; 5962 if (mddev->bitmap->file) 5963 return -EINVAL; 5964 mddev->pers->quiesce(mddev, 1); 5965 bitmap_destroy(mddev); 5966 mddev->pers->quiesce(mddev, 0); 5967 mddev->bitmap_info.offset = 0; 5968 } 5969 } 5970 md_update_sb(mddev, 1); 5971 return rv; 5972 } 5973 5974 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 5975 { 5976 mdk_rdev_t *rdev; 5977 5978 if (mddev->pers == NULL) 5979 return -ENODEV; 5980 5981 rdev = find_rdev(mddev, dev); 5982 if (!rdev) 5983 return -ENODEV; 5984 5985 md_error(mddev, rdev); 5986 return 0; 5987 } 5988 5989 /* 5990 * We have a problem here : there is no easy way to give a CHS 5991 * virtual geometry. We currently pretend that we have a 2 heads 5992 * 4 sectors (with a BIG number of cylinders...). This drives 5993 * dosfs just mad... ;-) 5994 */ 5995 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 5996 { 5997 mddev_t *mddev = bdev->bd_disk->private_data; 5998 5999 geo->heads = 2; 6000 geo->sectors = 4; 6001 geo->cylinders = mddev->array_sectors / 8; 6002 return 0; 6003 } 6004 6005 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6006 unsigned int cmd, unsigned long arg) 6007 { 6008 int err = 0; 6009 void __user *argp = (void __user *)arg; 6010 mddev_t *mddev = NULL; 6011 int ro; 6012 6013 if (!capable(CAP_SYS_ADMIN)) 6014 return -EACCES; 6015 6016 /* 6017 * Commands dealing with the RAID driver but not any 6018 * particular array: 6019 */ 6020 switch (cmd) 6021 { 6022 case RAID_VERSION: 6023 err = get_version(argp); 6024 goto done; 6025 6026 case PRINT_RAID_DEBUG: 6027 err = 0; 6028 md_print_devices(); 6029 goto done; 6030 6031 #ifndef MODULE 6032 case RAID_AUTORUN: 6033 err = 0; 6034 autostart_arrays(arg); 6035 goto done; 6036 #endif 6037 default:; 6038 } 6039 6040 /* 6041 * Commands creating/starting a new array: 6042 */ 6043 6044 mddev = bdev->bd_disk->private_data; 6045 6046 if (!mddev) { 6047 BUG(); 6048 goto abort; 6049 } 6050 6051 err = mddev_lock(mddev); 6052 if (err) { 6053 printk(KERN_INFO 6054 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6055 err, cmd); 6056 goto abort; 6057 } 6058 6059 switch (cmd) 6060 { 6061 case SET_ARRAY_INFO: 6062 { 6063 mdu_array_info_t info; 6064 if (!arg) 6065 memset(&info, 0, sizeof(info)); 6066 else if (copy_from_user(&info, argp, sizeof(info))) { 6067 err = -EFAULT; 6068 goto abort_unlock; 6069 } 6070 if (mddev->pers) { 6071 err = update_array_info(mddev, &info); 6072 if (err) { 6073 printk(KERN_WARNING "md: couldn't update" 6074 " array info. %d\n", err); 6075 goto abort_unlock; 6076 } 6077 goto done_unlock; 6078 } 6079 if (!list_empty(&mddev->disks)) { 6080 printk(KERN_WARNING 6081 "md: array %s already has disks!\n", 6082 mdname(mddev)); 6083 err = -EBUSY; 6084 goto abort_unlock; 6085 } 6086 if (mddev->raid_disks) { 6087 printk(KERN_WARNING 6088 "md: array %s already initialised!\n", 6089 mdname(mddev)); 6090 err = -EBUSY; 6091 goto abort_unlock; 6092 } 6093 err = set_array_info(mddev, &info); 6094 if (err) { 6095 printk(KERN_WARNING "md: couldn't set" 6096 " array info. %d\n", err); 6097 goto abort_unlock; 6098 } 6099 } 6100 goto done_unlock; 6101 6102 default:; 6103 } 6104 6105 /* 6106 * Commands querying/configuring an existing array: 6107 */ 6108 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6109 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6110 if ((!mddev->raid_disks && !mddev->external) 6111 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6112 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6113 && cmd != GET_BITMAP_FILE) { 6114 err = -ENODEV; 6115 goto abort_unlock; 6116 } 6117 6118 /* 6119 * Commands even a read-only array can execute: 6120 */ 6121 switch (cmd) 6122 { 6123 case GET_ARRAY_INFO: 6124 err = get_array_info(mddev, argp); 6125 goto done_unlock; 6126 6127 case GET_BITMAP_FILE: 6128 err = get_bitmap_file(mddev, argp); 6129 goto done_unlock; 6130 6131 case GET_DISK_INFO: 6132 err = get_disk_info(mddev, argp); 6133 goto done_unlock; 6134 6135 case RESTART_ARRAY_RW: 6136 err = restart_array(mddev); 6137 goto done_unlock; 6138 6139 case STOP_ARRAY: 6140 err = do_md_stop(mddev, 0, 1); 6141 goto done_unlock; 6142 6143 case STOP_ARRAY_RO: 6144 err = md_set_readonly(mddev, 1); 6145 goto done_unlock; 6146 6147 case BLKROSET: 6148 if (get_user(ro, (int __user *)(arg))) { 6149 err = -EFAULT; 6150 goto done_unlock; 6151 } 6152 err = -EINVAL; 6153 6154 /* if the bdev is going readonly the value of mddev->ro 6155 * does not matter, no writes are coming 6156 */ 6157 if (ro) 6158 goto done_unlock; 6159 6160 /* are we are already prepared for writes? */ 6161 if (mddev->ro != 1) 6162 goto done_unlock; 6163 6164 /* transitioning to readauto need only happen for 6165 * arrays that call md_write_start 6166 */ 6167 if (mddev->pers) { 6168 err = restart_array(mddev); 6169 if (err == 0) { 6170 mddev->ro = 2; 6171 set_disk_ro(mddev->gendisk, 0); 6172 } 6173 } 6174 goto done_unlock; 6175 } 6176 6177 /* 6178 * The remaining ioctls are changing the state of the 6179 * superblock, so we do not allow them on read-only arrays. 6180 * However non-MD ioctls (e.g. get-size) will still come through 6181 * here and hit the 'default' below, so only disallow 6182 * 'md' ioctls, and switch to rw mode if started auto-readonly. 6183 */ 6184 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 6185 if (mddev->ro == 2) { 6186 mddev->ro = 0; 6187 sysfs_notify_dirent_safe(mddev->sysfs_state); 6188 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6189 md_wakeup_thread(mddev->thread); 6190 } else { 6191 err = -EROFS; 6192 goto abort_unlock; 6193 } 6194 } 6195 6196 switch (cmd) 6197 { 6198 case ADD_NEW_DISK: 6199 { 6200 mdu_disk_info_t info; 6201 if (copy_from_user(&info, argp, sizeof(info))) 6202 err = -EFAULT; 6203 else 6204 err = add_new_disk(mddev, &info); 6205 goto done_unlock; 6206 } 6207 6208 case HOT_REMOVE_DISK: 6209 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6210 goto done_unlock; 6211 6212 case HOT_ADD_DISK: 6213 err = hot_add_disk(mddev, new_decode_dev(arg)); 6214 goto done_unlock; 6215 6216 case SET_DISK_FAULTY: 6217 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6218 goto done_unlock; 6219 6220 case RUN_ARRAY: 6221 err = do_md_run(mddev); 6222 goto done_unlock; 6223 6224 case SET_BITMAP_FILE: 6225 err = set_bitmap_file(mddev, (int)arg); 6226 goto done_unlock; 6227 6228 default: 6229 err = -EINVAL; 6230 goto abort_unlock; 6231 } 6232 6233 done_unlock: 6234 abort_unlock: 6235 if (mddev->hold_active == UNTIL_IOCTL && 6236 err != -EINVAL) 6237 mddev->hold_active = 0; 6238 mddev_unlock(mddev); 6239 6240 return err; 6241 done: 6242 if (err) 6243 MD_BUG(); 6244 abort: 6245 return err; 6246 } 6247 #ifdef CONFIG_COMPAT 6248 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6249 unsigned int cmd, unsigned long arg) 6250 { 6251 switch (cmd) { 6252 case HOT_REMOVE_DISK: 6253 case HOT_ADD_DISK: 6254 case SET_DISK_FAULTY: 6255 case SET_BITMAP_FILE: 6256 /* These take in integer arg, do not convert */ 6257 break; 6258 default: 6259 arg = (unsigned long)compat_ptr(arg); 6260 break; 6261 } 6262 6263 return md_ioctl(bdev, mode, cmd, arg); 6264 } 6265 #endif /* CONFIG_COMPAT */ 6266 6267 static int md_open(struct block_device *bdev, fmode_t mode) 6268 { 6269 /* 6270 * Succeed if we can lock the mddev, which confirms that 6271 * it isn't being stopped right now. 6272 */ 6273 mddev_t *mddev = mddev_find(bdev->bd_dev); 6274 int err; 6275 6276 if (mddev->gendisk != bdev->bd_disk) { 6277 /* we are racing with mddev_put which is discarding this 6278 * bd_disk. 6279 */ 6280 mddev_put(mddev); 6281 /* Wait until bdev->bd_disk is definitely gone */ 6282 flush_workqueue(md_misc_wq); 6283 /* Then retry the open from the top */ 6284 return -ERESTARTSYS; 6285 } 6286 BUG_ON(mddev != bdev->bd_disk->private_data); 6287 6288 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6289 goto out; 6290 6291 err = 0; 6292 atomic_inc(&mddev->openers); 6293 mutex_unlock(&mddev->open_mutex); 6294 6295 check_disk_change(bdev); 6296 out: 6297 return err; 6298 } 6299 6300 static int md_release(struct gendisk *disk, fmode_t mode) 6301 { 6302 mddev_t *mddev = disk->private_data; 6303 6304 BUG_ON(!mddev); 6305 atomic_dec(&mddev->openers); 6306 mddev_put(mddev); 6307 6308 return 0; 6309 } 6310 6311 static int md_media_changed(struct gendisk *disk) 6312 { 6313 mddev_t *mddev = disk->private_data; 6314 6315 return mddev->changed; 6316 } 6317 6318 static int md_revalidate(struct gendisk *disk) 6319 { 6320 mddev_t *mddev = disk->private_data; 6321 6322 mddev->changed = 0; 6323 return 0; 6324 } 6325 static const struct block_device_operations md_fops = 6326 { 6327 .owner = THIS_MODULE, 6328 .open = md_open, 6329 .release = md_release, 6330 .ioctl = md_ioctl, 6331 #ifdef CONFIG_COMPAT 6332 .compat_ioctl = md_compat_ioctl, 6333 #endif 6334 .getgeo = md_getgeo, 6335 .media_changed = md_media_changed, 6336 .revalidate_disk= md_revalidate, 6337 }; 6338 6339 static int md_thread(void * arg) 6340 { 6341 mdk_thread_t *thread = arg; 6342 6343 /* 6344 * md_thread is a 'system-thread', it's priority should be very 6345 * high. We avoid resource deadlocks individually in each 6346 * raid personality. (RAID5 does preallocation) We also use RR and 6347 * the very same RT priority as kswapd, thus we will never get 6348 * into a priority inversion deadlock. 6349 * 6350 * we definitely have to have equal or higher priority than 6351 * bdflush, otherwise bdflush will deadlock if there are too 6352 * many dirty RAID5 blocks. 6353 */ 6354 6355 allow_signal(SIGKILL); 6356 while (!kthread_should_stop()) { 6357 6358 /* We need to wait INTERRUPTIBLE so that 6359 * we don't add to the load-average. 6360 * That means we need to be sure no signals are 6361 * pending 6362 */ 6363 if (signal_pending(current)) 6364 flush_signals(current); 6365 6366 wait_event_interruptible_timeout 6367 (thread->wqueue, 6368 test_bit(THREAD_WAKEUP, &thread->flags) 6369 || kthread_should_stop(), 6370 thread->timeout); 6371 6372 clear_bit(THREAD_WAKEUP, &thread->flags); 6373 if (!kthread_should_stop()) 6374 thread->run(thread->mddev); 6375 } 6376 6377 return 0; 6378 } 6379 6380 void md_wakeup_thread(mdk_thread_t *thread) 6381 { 6382 if (thread) { 6383 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 6384 set_bit(THREAD_WAKEUP, &thread->flags); 6385 wake_up(&thread->wqueue); 6386 } 6387 } 6388 6389 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 6390 const char *name) 6391 { 6392 mdk_thread_t *thread; 6393 6394 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 6395 if (!thread) 6396 return NULL; 6397 6398 init_waitqueue_head(&thread->wqueue); 6399 6400 thread->run = run; 6401 thread->mddev = mddev; 6402 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6403 thread->tsk = kthread_run(md_thread, thread, 6404 "%s_%s", 6405 mdname(thread->mddev), 6406 name ?: mddev->pers->name); 6407 if (IS_ERR(thread->tsk)) { 6408 kfree(thread); 6409 return NULL; 6410 } 6411 return thread; 6412 } 6413 6414 void md_unregister_thread(mdk_thread_t *thread) 6415 { 6416 if (!thread) 6417 return; 6418 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6419 6420 kthread_stop(thread->tsk); 6421 kfree(thread); 6422 } 6423 6424 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 6425 { 6426 if (!mddev) { 6427 MD_BUG(); 6428 return; 6429 } 6430 6431 if (!rdev || test_bit(Faulty, &rdev->flags)) 6432 return; 6433 6434 if (!mddev->pers || !mddev->pers->error_handler) 6435 return; 6436 mddev->pers->error_handler(mddev,rdev); 6437 if (mddev->degraded) 6438 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6439 sysfs_notify_dirent_safe(rdev->sysfs_state); 6440 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6441 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6442 md_wakeup_thread(mddev->thread); 6443 if (mddev->event_work.func) 6444 queue_work(md_misc_wq, &mddev->event_work); 6445 md_new_event_inintr(mddev); 6446 } 6447 6448 /* seq_file implementation /proc/mdstat */ 6449 6450 static void status_unused(struct seq_file *seq) 6451 { 6452 int i = 0; 6453 mdk_rdev_t *rdev; 6454 6455 seq_printf(seq, "unused devices: "); 6456 6457 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6458 char b[BDEVNAME_SIZE]; 6459 i++; 6460 seq_printf(seq, "%s ", 6461 bdevname(rdev->bdev,b)); 6462 } 6463 if (!i) 6464 seq_printf(seq, "<none>"); 6465 6466 seq_printf(seq, "\n"); 6467 } 6468 6469 6470 static void status_resync(struct seq_file *seq, mddev_t * mddev) 6471 { 6472 sector_t max_sectors, resync, res; 6473 unsigned long dt, db; 6474 sector_t rt; 6475 int scale; 6476 unsigned int per_milli; 6477 6478 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); 6479 6480 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 6481 max_sectors = mddev->resync_max_sectors; 6482 else 6483 max_sectors = mddev->dev_sectors; 6484 6485 /* 6486 * Should not happen. 6487 */ 6488 if (!max_sectors) { 6489 MD_BUG(); 6490 return; 6491 } 6492 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6493 * in a sector_t, and (max_sectors>>scale) will fit in a 6494 * u32, as those are the requirements for sector_div. 6495 * Thus 'scale' must be at least 10 6496 */ 6497 scale = 10; 6498 if (sizeof(sector_t) > sizeof(unsigned long)) { 6499 while ( max_sectors/2 > (1ULL<<(scale+32))) 6500 scale++; 6501 } 6502 res = (resync>>scale)*1000; 6503 sector_div(res, (u32)((max_sectors>>scale)+1)); 6504 6505 per_milli = res; 6506 { 6507 int i, x = per_milli/50, y = 20-x; 6508 seq_printf(seq, "["); 6509 for (i = 0; i < x; i++) 6510 seq_printf(seq, "="); 6511 seq_printf(seq, ">"); 6512 for (i = 0; i < y; i++) 6513 seq_printf(seq, "."); 6514 seq_printf(seq, "] "); 6515 } 6516 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6517 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6518 "reshape" : 6519 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6520 "check" : 6521 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6522 "resync" : "recovery"))), 6523 per_milli/10, per_milli % 10, 6524 (unsigned long long) resync/2, 6525 (unsigned long long) max_sectors/2); 6526 6527 /* 6528 * dt: time from mark until now 6529 * db: blocks written from mark until now 6530 * rt: remaining time 6531 * 6532 * rt is a sector_t, so could be 32bit or 64bit. 6533 * So we divide before multiply in case it is 32bit and close 6534 * to the limit. 6535 * We scale the divisor (db) by 32 to avoid losing precision 6536 * near the end of resync when the number of remaining sectors 6537 * is close to 'db'. 6538 * We then divide rt by 32 after multiplying by db to compensate. 6539 * The '+1' avoids division by zero if db is very small. 6540 */ 6541 dt = ((jiffies - mddev->resync_mark) / HZ); 6542 if (!dt) dt++; 6543 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6544 - mddev->resync_mark_cnt; 6545 6546 rt = max_sectors - resync; /* number of remaining sectors */ 6547 sector_div(rt, db/32+1); 6548 rt *= dt; 6549 rt >>= 5; 6550 6551 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6552 ((unsigned long)rt % 60)/6); 6553 6554 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6555 } 6556 6557 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6558 { 6559 struct list_head *tmp; 6560 loff_t l = *pos; 6561 mddev_t *mddev; 6562 6563 if (l >= 0x10000) 6564 return NULL; 6565 if (!l--) 6566 /* header */ 6567 return (void*)1; 6568 6569 spin_lock(&all_mddevs_lock); 6570 list_for_each(tmp,&all_mddevs) 6571 if (!l--) { 6572 mddev = list_entry(tmp, mddev_t, all_mddevs); 6573 mddev_get(mddev); 6574 spin_unlock(&all_mddevs_lock); 6575 return mddev; 6576 } 6577 spin_unlock(&all_mddevs_lock); 6578 if (!l--) 6579 return (void*)2;/* tail */ 6580 return NULL; 6581 } 6582 6583 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6584 { 6585 struct list_head *tmp; 6586 mddev_t *next_mddev, *mddev = v; 6587 6588 ++*pos; 6589 if (v == (void*)2) 6590 return NULL; 6591 6592 spin_lock(&all_mddevs_lock); 6593 if (v == (void*)1) 6594 tmp = all_mddevs.next; 6595 else 6596 tmp = mddev->all_mddevs.next; 6597 if (tmp != &all_mddevs) 6598 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 6599 else { 6600 next_mddev = (void*)2; 6601 *pos = 0x10000; 6602 } 6603 spin_unlock(&all_mddevs_lock); 6604 6605 if (v != (void*)1) 6606 mddev_put(mddev); 6607 return next_mddev; 6608 6609 } 6610 6611 static void md_seq_stop(struct seq_file *seq, void *v) 6612 { 6613 mddev_t *mddev = v; 6614 6615 if (mddev && v != (void*)1 && v != (void*)2) 6616 mddev_put(mddev); 6617 } 6618 6619 static int md_seq_show(struct seq_file *seq, void *v) 6620 { 6621 mddev_t *mddev = v; 6622 sector_t sectors; 6623 mdk_rdev_t *rdev; 6624 struct bitmap *bitmap; 6625 6626 if (v == (void*)1) { 6627 struct mdk_personality *pers; 6628 seq_printf(seq, "Personalities : "); 6629 spin_lock(&pers_lock); 6630 list_for_each_entry(pers, &pers_list, list) 6631 seq_printf(seq, "[%s] ", pers->name); 6632 6633 spin_unlock(&pers_lock); 6634 seq_printf(seq, "\n"); 6635 seq->poll_event = atomic_read(&md_event_count); 6636 return 0; 6637 } 6638 if (v == (void*)2) { 6639 status_unused(seq); 6640 return 0; 6641 } 6642 6643 if (mddev_lock(mddev) < 0) 6644 return -EINTR; 6645 6646 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 6647 seq_printf(seq, "%s : %sactive", mdname(mddev), 6648 mddev->pers ? "" : "in"); 6649 if (mddev->pers) { 6650 if (mddev->ro==1) 6651 seq_printf(seq, " (read-only)"); 6652 if (mddev->ro==2) 6653 seq_printf(seq, " (auto-read-only)"); 6654 seq_printf(seq, " %s", mddev->pers->name); 6655 } 6656 6657 sectors = 0; 6658 list_for_each_entry(rdev, &mddev->disks, same_set) { 6659 char b[BDEVNAME_SIZE]; 6660 seq_printf(seq, " %s[%d]", 6661 bdevname(rdev->bdev,b), rdev->desc_nr); 6662 if (test_bit(WriteMostly, &rdev->flags)) 6663 seq_printf(seq, "(W)"); 6664 if (test_bit(Faulty, &rdev->flags)) { 6665 seq_printf(seq, "(F)"); 6666 continue; 6667 } else if (rdev->raid_disk < 0) 6668 seq_printf(seq, "(S)"); /* spare */ 6669 sectors += rdev->sectors; 6670 } 6671 6672 if (!list_empty(&mddev->disks)) { 6673 if (mddev->pers) 6674 seq_printf(seq, "\n %llu blocks", 6675 (unsigned long long) 6676 mddev->array_sectors / 2); 6677 else 6678 seq_printf(seq, "\n %llu blocks", 6679 (unsigned long long)sectors / 2); 6680 } 6681 if (mddev->persistent) { 6682 if (mddev->major_version != 0 || 6683 mddev->minor_version != 90) { 6684 seq_printf(seq," super %d.%d", 6685 mddev->major_version, 6686 mddev->minor_version); 6687 } 6688 } else if (mddev->external) 6689 seq_printf(seq, " super external:%s", 6690 mddev->metadata_type); 6691 else 6692 seq_printf(seq, " super non-persistent"); 6693 6694 if (mddev->pers) { 6695 mddev->pers->status(seq, mddev); 6696 seq_printf(seq, "\n "); 6697 if (mddev->pers->sync_request) { 6698 if (mddev->curr_resync > 2) { 6699 status_resync(seq, mddev); 6700 seq_printf(seq, "\n "); 6701 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 6702 seq_printf(seq, "\tresync=DELAYED\n "); 6703 else if (mddev->recovery_cp < MaxSector) 6704 seq_printf(seq, "\tresync=PENDING\n "); 6705 } 6706 } else 6707 seq_printf(seq, "\n "); 6708 6709 if ((bitmap = mddev->bitmap)) { 6710 unsigned long chunk_kb; 6711 unsigned long flags; 6712 spin_lock_irqsave(&bitmap->lock, flags); 6713 chunk_kb = mddev->bitmap_info.chunksize >> 10; 6714 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 6715 "%lu%s chunk", 6716 bitmap->pages - bitmap->missing_pages, 6717 bitmap->pages, 6718 (bitmap->pages - bitmap->missing_pages) 6719 << (PAGE_SHIFT - 10), 6720 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize, 6721 chunk_kb ? "KB" : "B"); 6722 if (bitmap->file) { 6723 seq_printf(seq, ", file: "); 6724 seq_path(seq, &bitmap->file->f_path, " \t\n"); 6725 } 6726 6727 seq_printf(seq, "\n"); 6728 spin_unlock_irqrestore(&bitmap->lock, flags); 6729 } 6730 6731 seq_printf(seq, "\n"); 6732 } 6733 mddev_unlock(mddev); 6734 6735 return 0; 6736 } 6737 6738 static const struct seq_operations md_seq_ops = { 6739 .start = md_seq_start, 6740 .next = md_seq_next, 6741 .stop = md_seq_stop, 6742 .show = md_seq_show, 6743 }; 6744 6745 static int md_seq_open(struct inode *inode, struct file *file) 6746 { 6747 struct seq_file *seq; 6748 int error; 6749 6750 error = seq_open(file, &md_seq_ops); 6751 if (error) 6752 return error; 6753 6754 seq = file->private_data; 6755 seq->poll_event = atomic_read(&md_event_count); 6756 return error; 6757 } 6758 6759 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 6760 { 6761 struct seq_file *seq = filp->private_data; 6762 int mask; 6763 6764 poll_wait(filp, &md_event_waiters, wait); 6765 6766 /* always allow read */ 6767 mask = POLLIN | POLLRDNORM; 6768 6769 if (seq->poll_event != atomic_read(&md_event_count)) 6770 mask |= POLLERR | POLLPRI; 6771 return mask; 6772 } 6773 6774 static const struct file_operations md_seq_fops = { 6775 .owner = THIS_MODULE, 6776 .open = md_seq_open, 6777 .read = seq_read, 6778 .llseek = seq_lseek, 6779 .release = seq_release_private, 6780 .poll = mdstat_poll, 6781 }; 6782 6783 int register_md_personality(struct mdk_personality *p) 6784 { 6785 spin_lock(&pers_lock); 6786 list_add_tail(&p->list, &pers_list); 6787 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 6788 spin_unlock(&pers_lock); 6789 return 0; 6790 } 6791 6792 int unregister_md_personality(struct mdk_personality *p) 6793 { 6794 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 6795 spin_lock(&pers_lock); 6796 list_del_init(&p->list); 6797 spin_unlock(&pers_lock); 6798 return 0; 6799 } 6800 6801 static int is_mddev_idle(mddev_t *mddev, int init) 6802 { 6803 mdk_rdev_t * rdev; 6804 int idle; 6805 int curr_events; 6806 6807 idle = 1; 6808 rcu_read_lock(); 6809 rdev_for_each_rcu(rdev, mddev) { 6810 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 6811 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 6812 (int)part_stat_read(&disk->part0, sectors[1]) - 6813 atomic_read(&disk->sync_io); 6814 /* sync IO will cause sync_io to increase before the disk_stats 6815 * as sync_io is counted when a request starts, and 6816 * disk_stats is counted when it completes. 6817 * So resync activity will cause curr_events to be smaller than 6818 * when there was no such activity. 6819 * non-sync IO will cause disk_stat to increase without 6820 * increasing sync_io so curr_events will (eventually) 6821 * be larger than it was before. Once it becomes 6822 * substantially larger, the test below will cause 6823 * the array to appear non-idle, and resync will slow 6824 * down. 6825 * If there is a lot of outstanding resync activity when 6826 * we set last_event to curr_events, then all that activity 6827 * completing might cause the array to appear non-idle 6828 * and resync will be slowed down even though there might 6829 * not have been non-resync activity. This will only 6830 * happen once though. 'last_events' will soon reflect 6831 * the state where there is little or no outstanding 6832 * resync requests, and further resync activity will 6833 * always make curr_events less than last_events. 6834 * 6835 */ 6836 if (init || curr_events - rdev->last_events > 64) { 6837 rdev->last_events = curr_events; 6838 idle = 0; 6839 } 6840 } 6841 rcu_read_unlock(); 6842 return idle; 6843 } 6844 6845 void md_done_sync(mddev_t *mddev, int blocks, int ok) 6846 { 6847 /* another "blocks" (512byte) blocks have been synced */ 6848 atomic_sub(blocks, &mddev->recovery_active); 6849 wake_up(&mddev->recovery_wait); 6850 if (!ok) { 6851 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6852 md_wakeup_thread(mddev->thread); 6853 // stop recovery, signal do_sync .... 6854 } 6855 } 6856 6857 6858 /* md_write_start(mddev, bi) 6859 * If we need to update some array metadata (e.g. 'active' flag 6860 * in superblock) before writing, schedule a superblock update 6861 * and wait for it to complete. 6862 */ 6863 void md_write_start(mddev_t *mddev, struct bio *bi) 6864 { 6865 int did_change = 0; 6866 if (bio_data_dir(bi) != WRITE) 6867 return; 6868 6869 BUG_ON(mddev->ro == 1); 6870 if (mddev->ro == 2) { 6871 /* need to switch to read/write */ 6872 mddev->ro = 0; 6873 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6874 md_wakeup_thread(mddev->thread); 6875 md_wakeup_thread(mddev->sync_thread); 6876 did_change = 1; 6877 } 6878 atomic_inc(&mddev->writes_pending); 6879 if (mddev->safemode == 1) 6880 mddev->safemode = 0; 6881 if (mddev->in_sync) { 6882 spin_lock_irq(&mddev->write_lock); 6883 if (mddev->in_sync) { 6884 mddev->in_sync = 0; 6885 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6886 set_bit(MD_CHANGE_PENDING, &mddev->flags); 6887 md_wakeup_thread(mddev->thread); 6888 did_change = 1; 6889 } 6890 spin_unlock_irq(&mddev->write_lock); 6891 } 6892 if (did_change) 6893 sysfs_notify_dirent_safe(mddev->sysfs_state); 6894 wait_event(mddev->sb_wait, 6895 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6896 } 6897 6898 void md_write_end(mddev_t *mddev) 6899 { 6900 if (atomic_dec_and_test(&mddev->writes_pending)) { 6901 if (mddev->safemode == 2) 6902 md_wakeup_thread(mddev->thread); 6903 else if (mddev->safemode_delay) 6904 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 6905 } 6906 } 6907 6908 /* md_allow_write(mddev) 6909 * Calling this ensures that the array is marked 'active' so that writes 6910 * may proceed without blocking. It is important to call this before 6911 * attempting a GFP_KERNEL allocation while holding the mddev lock. 6912 * Must be called with mddev_lock held. 6913 * 6914 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 6915 * is dropped, so return -EAGAIN after notifying userspace. 6916 */ 6917 int md_allow_write(mddev_t *mddev) 6918 { 6919 if (!mddev->pers) 6920 return 0; 6921 if (mddev->ro) 6922 return 0; 6923 if (!mddev->pers->sync_request) 6924 return 0; 6925 6926 spin_lock_irq(&mddev->write_lock); 6927 if (mddev->in_sync) { 6928 mddev->in_sync = 0; 6929 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6930 set_bit(MD_CHANGE_PENDING, &mddev->flags); 6931 if (mddev->safemode_delay && 6932 mddev->safemode == 0) 6933 mddev->safemode = 1; 6934 spin_unlock_irq(&mddev->write_lock); 6935 md_update_sb(mddev, 0); 6936 sysfs_notify_dirent_safe(mddev->sysfs_state); 6937 } else 6938 spin_unlock_irq(&mddev->write_lock); 6939 6940 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 6941 return -EAGAIN; 6942 else 6943 return 0; 6944 } 6945 EXPORT_SYMBOL_GPL(md_allow_write); 6946 6947 #define SYNC_MARKS 10 6948 #define SYNC_MARK_STEP (3*HZ) 6949 void md_do_sync(mddev_t *mddev) 6950 { 6951 mddev_t *mddev2; 6952 unsigned int currspeed = 0, 6953 window; 6954 sector_t max_sectors,j, io_sectors; 6955 unsigned long mark[SYNC_MARKS]; 6956 sector_t mark_cnt[SYNC_MARKS]; 6957 int last_mark,m; 6958 struct list_head *tmp; 6959 sector_t last_check; 6960 int skipped = 0; 6961 mdk_rdev_t *rdev; 6962 char *desc; 6963 6964 /* just incase thread restarts... */ 6965 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 6966 return; 6967 if (mddev->ro) /* never try to sync a read-only array */ 6968 return; 6969 6970 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6971 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 6972 desc = "data-check"; 6973 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6974 desc = "requested-resync"; 6975 else 6976 desc = "resync"; 6977 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6978 desc = "reshape"; 6979 else 6980 desc = "recovery"; 6981 6982 /* we overload curr_resync somewhat here. 6983 * 0 == not engaged in resync at all 6984 * 2 == checking that there is no conflict with another sync 6985 * 1 == like 2, but have yielded to allow conflicting resync to 6986 * commense 6987 * other == active in resync - this many blocks 6988 * 6989 * Before starting a resync we must have set curr_resync to 6990 * 2, and then checked that every "conflicting" array has curr_resync 6991 * less than ours. When we find one that is the same or higher 6992 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 6993 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 6994 * This will mean we have to start checking from the beginning again. 6995 * 6996 */ 6997 6998 do { 6999 mddev->curr_resync = 2; 7000 7001 try_again: 7002 if (kthread_should_stop()) 7003 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7004 7005 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7006 goto skip; 7007 for_each_mddev(mddev2, tmp) { 7008 if (mddev2 == mddev) 7009 continue; 7010 if (!mddev->parallel_resync 7011 && mddev2->curr_resync 7012 && match_mddev_units(mddev, mddev2)) { 7013 DEFINE_WAIT(wq); 7014 if (mddev < mddev2 && mddev->curr_resync == 2) { 7015 /* arbitrarily yield */ 7016 mddev->curr_resync = 1; 7017 wake_up(&resync_wait); 7018 } 7019 if (mddev > mddev2 && mddev->curr_resync == 1) 7020 /* no need to wait here, we can wait the next 7021 * time 'round when curr_resync == 2 7022 */ 7023 continue; 7024 /* We need to wait 'interruptible' so as not to 7025 * contribute to the load average, and not to 7026 * be caught by 'softlockup' 7027 */ 7028 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7029 if (!kthread_should_stop() && 7030 mddev2->curr_resync >= mddev->curr_resync) { 7031 printk(KERN_INFO "md: delaying %s of %s" 7032 " until %s has finished (they" 7033 " share one or more physical units)\n", 7034 desc, mdname(mddev), mdname(mddev2)); 7035 mddev_put(mddev2); 7036 if (signal_pending(current)) 7037 flush_signals(current); 7038 schedule(); 7039 finish_wait(&resync_wait, &wq); 7040 goto try_again; 7041 } 7042 finish_wait(&resync_wait, &wq); 7043 } 7044 } 7045 } while (mddev->curr_resync < 2); 7046 7047 j = 0; 7048 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7049 /* resync follows the size requested by the personality, 7050 * which defaults to physical size, but can be virtual size 7051 */ 7052 max_sectors = mddev->resync_max_sectors; 7053 mddev->resync_mismatches = 0; 7054 /* we don't use the checkpoint if there's a bitmap */ 7055 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7056 j = mddev->resync_min; 7057 else if (!mddev->bitmap) 7058 j = mddev->recovery_cp; 7059 7060 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7061 max_sectors = mddev->dev_sectors; 7062 else { 7063 /* recovery follows the physical size of devices */ 7064 max_sectors = mddev->dev_sectors; 7065 j = MaxSector; 7066 rcu_read_lock(); 7067 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 7068 if (rdev->raid_disk >= 0 && 7069 !test_bit(Faulty, &rdev->flags) && 7070 !test_bit(In_sync, &rdev->flags) && 7071 rdev->recovery_offset < j) 7072 j = rdev->recovery_offset; 7073 rcu_read_unlock(); 7074 } 7075 7076 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7077 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7078 " %d KB/sec/disk.\n", speed_min(mddev)); 7079 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7080 "(but not more than %d KB/sec) for %s.\n", 7081 speed_max(mddev), desc); 7082 7083 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7084 7085 io_sectors = 0; 7086 for (m = 0; m < SYNC_MARKS; m++) { 7087 mark[m] = jiffies; 7088 mark_cnt[m] = io_sectors; 7089 } 7090 last_mark = 0; 7091 mddev->resync_mark = mark[last_mark]; 7092 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7093 7094 /* 7095 * Tune reconstruction: 7096 */ 7097 window = 32*(PAGE_SIZE/512); 7098 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7099 window/2, (unsigned long long)max_sectors/2); 7100 7101 atomic_set(&mddev->recovery_active, 0); 7102 last_check = 0; 7103 7104 if (j>2) { 7105 printk(KERN_INFO 7106 "md: resuming %s of %s from checkpoint.\n", 7107 desc, mdname(mddev)); 7108 mddev->curr_resync = j; 7109 } 7110 mddev->curr_resync_completed = j; 7111 7112 while (j < max_sectors) { 7113 sector_t sectors; 7114 7115 skipped = 0; 7116 7117 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7118 ((mddev->curr_resync > mddev->curr_resync_completed && 7119 (mddev->curr_resync - mddev->curr_resync_completed) 7120 > (max_sectors >> 4)) || 7121 (j - mddev->curr_resync_completed)*2 7122 >= mddev->resync_max - mddev->curr_resync_completed 7123 )) { 7124 /* time to update curr_resync_completed */ 7125 wait_event(mddev->recovery_wait, 7126 atomic_read(&mddev->recovery_active) == 0); 7127 mddev->curr_resync_completed = j; 7128 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7129 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7130 } 7131 7132 while (j >= mddev->resync_max && !kthread_should_stop()) { 7133 /* As this condition is controlled by user-space, 7134 * we can block indefinitely, so use '_interruptible' 7135 * to avoid triggering warnings. 7136 */ 7137 flush_signals(current); /* just in case */ 7138 wait_event_interruptible(mddev->recovery_wait, 7139 mddev->resync_max > j 7140 || kthread_should_stop()); 7141 } 7142 7143 if (kthread_should_stop()) 7144 goto interrupted; 7145 7146 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7147 currspeed < speed_min(mddev)); 7148 if (sectors == 0) { 7149 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7150 goto out; 7151 } 7152 7153 if (!skipped) { /* actual IO requested */ 7154 io_sectors += sectors; 7155 atomic_add(sectors, &mddev->recovery_active); 7156 } 7157 7158 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7159 break; 7160 7161 j += sectors; 7162 if (j>1) mddev->curr_resync = j; 7163 mddev->curr_mark_cnt = io_sectors; 7164 if (last_check == 0) 7165 /* this is the earliest that rebuild will be 7166 * visible in /proc/mdstat 7167 */ 7168 md_new_event(mddev); 7169 7170 if (last_check + window > io_sectors || j == max_sectors) 7171 continue; 7172 7173 last_check = io_sectors; 7174 repeat: 7175 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7176 /* step marks */ 7177 int next = (last_mark+1) % SYNC_MARKS; 7178 7179 mddev->resync_mark = mark[next]; 7180 mddev->resync_mark_cnt = mark_cnt[next]; 7181 mark[next] = jiffies; 7182 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7183 last_mark = next; 7184 } 7185 7186 7187 if (kthread_should_stop()) 7188 goto interrupted; 7189 7190 7191 /* 7192 * this loop exits only if either when we are slower than 7193 * the 'hard' speed limit, or the system was IO-idle for 7194 * a jiffy. 7195 * the system might be non-idle CPU-wise, but we only care 7196 * about not overloading the IO subsystem. (things like an 7197 * e2fsck being done on the RAID array should execute fast) 7198 */ 7199 cond_resched(); 7200 7201 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 7202 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7203 7204 if (currspeed > speed_min(mddev)) { 7205 if ((currspeed > speed_max(mddev)) || 7206 !is_mddev_idle(mddev, 0)) { 7207 msleep(500); 7208 goto repeat; 7209 } 7210 } 7211 } 7212 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 7213 /* 7214 * this also signals 'finished resyncing' to md_stop 7215 */ 7216 out: 7217 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7218 7219 /* tell personality that we are finished */ 7220 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7221 7222 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7223 mddev->curr_resync > 2) { 7224 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7225 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7226 if (mddev->curr_resync >= mddev->recovery_cp) { 7227 printk(KERN_INFO 7228 "md: checkpointing %s of %s.\n", 7229 desc, mdname(mddev)); 7230 mddev->recovery_cp = mddev->curr_resync; 7231 } 7232 } else 7233 mddev->recovery_cp = MaxSector; 7234 } else { 7235 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7236 mddev->curr_resync = MaxSector; 7237 rcu_read_lock(); 7238 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 7239 if (rdev->raid_disk >= 0 && 7240 mddev->delta_disks >= 0 && 7241 !test_bit(Faulty, &rdev->flags) && 7242 !test_bit(In_sync, &rdev->flags) && 7243 rdev->recovery_offset < mddev->curr_resync) 7244 rdev->recovery_offset = mddev->curr_resync; 7245 rcu_read_unlock(); 7246 } 7247 } 7248 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7249 7250 skip: 7251 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7252 /* We completed so min/max setting can be forgotten if used. */ 7253 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7254 mddev->resync_min = 0; 7255 mddev->resync_max = MaxSector; 7256 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7257 mddev->resync_min = mddev->curr_resync_completed; 7258 mddev->curr_resync = 0; 7259 wake_up(&resync_wait); 7260 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7261 md_wakeup_thread(mddev->thread); 7262 return; 7263 7264 interrupted: 7265 /* 7266 * got a signal, exit. 7267 */ 7268 printk(KERN_INFO 7269 "md: md_do_sync() got signal ... exiting\n"); 7270 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7271 goto out; 7272 7273 } 7274 EXPORT_SYMBOL_GPL(md_do_sync); 7275 7276 static int remove_and_add_spares(mddev_t *mddev) 7277 { 7278 mdk_rdev_t *rdev; 7279 int spares = 0; 7280 7281 mddev->curr_resync_completed = 0; 7282 7283 list_for_each_entry(rdev, &mddev->disks, same_set) 7284 if (rdev->raid_disk >= 0 && 7285 !test_bit(Blocked, &rdev->flags) && 7286 (test_bit(Faulty, &rdev->flags) || 7287 ! test_bit(In_sync, &rdev->flags)) && 7288 atomic_read(&rdev->nr_pending)==0) { 7289 if (mddev->pers->hot_remove_disk( 7290 mddev, rdev->raid_disk)==0) { 7291 sysfs_unlink_rdev(mddev, rdev); 7292 rdev->raid_disk = -1; 7293 } 7294 } 7295 7296 if (mddev->degraded) { 7297 list_for_each_entry(rdev, &mddev->disks, same_set) { 7298 if (rdev->raid_disk >= 0 && 7299 !test_bit(In_sync, &rdev->flags) && 7300 !test_bit(Faulty, &rdev->flags)) 7301 spares++; 7302 if (rdev->raid_disk < 0 7303 && !test_bit(Faulty, &rdev->flags)) { 7304 rdev->recovery_offset = 0; 7305 if (mddev->pers-> 7306 hot_add_disk(mddev, rdev) == 0) { 7307 if (sysfs_link_rdev(mddev, rdev)) 7308 /* failure here is OK */; 7309 spares++; 7310 md_new_event(mddev); 7311 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7312 } else 7313 break; 7314 } 7315 } 7316 } 7317 return spares; 7318 } 7319 7320 static void reap_sync_thread(mddev_t *mddev) 7321 { 7322 mdk_rdev_t *rdev; 7323 7324 /* resync has finished, collect result */ 7325 md_unregister_thread(mddev->sync_thread); 7326 mddev->sync_thread = NULL; 7327 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7328 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7329 /* success...*/ 7330 /* activate any spares */ 7331 if (mddev->pers->spare_active(mddev)) 7332 sysfs_notify(&mddev->kobj, NULL, 7333 "degraded"); 7334 } 7335 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7336 mddev->pers->finish_reshape) 7337 mddev->pers->finish_reshape(mddev); 7338 md_update_sb(mddev, 1); 7339 7340 /* if array is no-longer degraded, then any saved_raid_disk 7341 * information must be scrapped 7342 */ 7343 if (!mddev->degraded) 7344 list_for_each_entry(rdev, &mddev->disks, same_set) 7345 rdev->saved_raid_disk = -1; 7346 7347 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7348 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7349 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7350 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7351 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7352 /* flag recovery needed just to double check */ 7353 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7354 sysfs_notify_dirent_safe(mddev->sysfs_action); 7355 md_new_event(mddev); 7356 if (mddev->event_work.func) 7357 queue_work(md_misc_wq, &mddev->event_work); 7358 } 7359 7360 /* 7361 * This routine is regularly called by all per-raid-array threads to 7362 * deal with generic issues like resync and super-block update. 7363 * Raid personalities that don't have a thread (linear/raid0) do not 7364 * need this as they never do any recovery or update the superblock. 7365 * 7366 * It does not do any resync itself, but rather "forks" off other threads 7367 * to do that as needed. 7368 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7369 * "->recovery" and create a thread at ->sync_thread. 7370 * When the thread finishes it sets MD_RECOVERY_DONE 7371 * and wakeups up this thread which will reap the thread and finish up. 7372 * This thread also removes any faulty devices (with nr_pending == 0). 7373 * 7374 * The overall approach is: 7375 * 1/ if the superblock needs updating, update it. 7376 * 2/ If a recovery thread is running, don't do anything else. 7377 * 3/ If recovery has finished, clean up, possibly marking spares active. 7378 * 4/ If there are any faulty devices, remove them. 7379 * 5/ If array is degraded, try to add spares devices 7380 * 6/ If array has spares or is not in-sync, start a resync thread. 7381 */ 7382 void md_check_recovery(mddev_t *mddev) 7383 { 7384 if (mddev->suspended) 7385 return; 7386 7387 if (mddev->bitmap) 7388 bitmap_daemon_work(mddev); 7389 7390 if (signal_pending(current)) { 7391 if (mddev->pers->sync_request && !mddev->external) { 7392 printk(KERN_INFO "md: %s in immediate safe mode\n", 7393 mdname(mddev)); 7394 mddev->safemode = 2; 7395 } 7396 flush_signals(current); 7397 } 7398 7399 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7400 return; 7401 if ( ! ( 7402 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) || 7403 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7404 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7405 (mddev->external == 0 && mddev->safemode == 1) || 7406 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7407 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7408 )) 7409 return; 7410 7411 if (mddev_trylock(mddev)) { 7412 int spares = 0; 7413 7414 if (mddev->ro) { 7415 /* Only thing we do on a ro array is remove 7416 * failed devices. 7417 */ 7418 mdk_rdev_t *rdev; 7419 list_for_each_entry(rdev, &mddev->disks, same_set) 7420 if (rdev->raid_disk >= 0 && 7421 !test_bit(Blocked, &rdev->flags) && 7422 test_bit(Faulty, &rdev->flags) && 7423 atomic_read(&rdev->nr_pending)==0) { 7424 if (mddev->pers->hot_remove_disk( 7425 mddev, rdev->raid_disk)==0) { 7426 sysfs_unlink_rdev(mddev, rdev); 7427 rdev->raid_disk = -1; 7428 } 7429 } 7430 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7431 goto unlock; 7432 } 7433 7434 if (!mddev->external) { 7435 int did_change = 0; 7436 spin_lock_irq(&mddev->write_lock); 7437 if (mddev->safemode && 7438 !atomic_read(&mddev->writes_pending) && 7439 !mddev->in_sync && 7440 mddev->recovery_cp == MaxSector) { 7441 mddev->in_sync = 1; 7442 did_change = 1; 7443 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7444 } 7445 if (mddev->safemode == 1) 7446 mddev->safemode = 0; 7447 spin_unlock_irq(&mddev->write_lock); 7448 if (did_change) 7449 sysfs_notify_dirent_safe(mddev->sysfs_state); 7450 } 7451 7452 if (mddev->flags) 7453 md_update_sb(mddev, 0); 7454 7455 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7456 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7457 /* resync/recovery still happening */ 7458 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7459 goto unlock; 7460 } 7461 if (mddev->sync_thread) { 7462 reap_sync_thread(mddev); 7463 goto unlock; 7464 } 7465 /* Set RUNNING before clearing NEEDED to avoid 7466 * any transients in the value of "sync_action". 7467 */ 7468 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7469 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7470 /* Clear some bits that don't mean anything, but 7471 * might be left set 7472 */ 7473 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7474 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7475 7476 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7477 goto unlock; 7478 /* no recovery is running. 7479 * remove any failed drives, then 7480 * add spares if possible. 7481 * Spare are also removed and re-added, to allow 7482 * the personality to fail the re-add. 7483 */ 7484 7485 if (mddev->reshape_position != MaxSector) { 7486 if (mddev->pers->check_reshape == NULL || 7487 mddev->pers->check_reshape(mddev) != 0) 7488 /* Cannot proceed */ 7489 goto unlock; 7490 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7491 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7492 } else if ((spares = remove_and_add_spares(mddev))) { 7493 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7494 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7495 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7496 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7497 } else if (mddev->recovery_cp < MaxSector) { 7498 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7499 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7500 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7501 /* nothing to be done ... */ 7502 goto unlock; 7503 7504 if (mddev->pers->sync_request) { 7505 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 7506 /* We are adding a device or devices to an array 7507 * which has the bitmap stored on all devices. 7508 * So make sure all bitmap pages get written 7509 */ 7510 bitmap_write_all(mddev->bitmap); 7511 } 7512 mddev->sync_thread = md_register_thread(md_do_sync, 7513 mddev, 7514 "resync"); 7515 if (!mddev->sync_thread) { 7516 printk(KERN_ERR "%s: could not start resync" 7517 " thread...\n", 7518 mdname(mddev)); 7519 /* leave the spares where they are, it shouldn't hurt */ 7520 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7521 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7522 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7523 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7524 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7525 } else 7526 md_wakeup_thread(mddev->sync_thread); 7527 sysfs_notify_dirent_safe(mddev->sysfs_action); 7528 md_new_event(mddev); 7529 } 7530 unlock: 7531 if (!mddev->sync_thread) { 7532 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7533 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7534 &mddev->recovery)) 7535 if (mddev->sysfs_action) 7536 sysfs_notify_dirent_safe(mddev->sysfs_action); 7537 } 7538 mddev_unlock(mddev); 7539 } 7540 } 7541 7542 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 7543 { 7544 sysfs_notify_dirent_safe(rdev->sysfs_state); 7545 wait_event_timeout(rdev->blocked_wait, 7546 !test_bit(Blocked, &rdev->flags) && 7547 !test_bit(BlockedBadBlocks, &rdev->flags), 7548 msecs_to_jiffies(5000)); 7549 rdev_dec_pending(rdev, mddev); 7550 } 7551 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7552 7553 7554 /* Bad block management. 7555 * We can record which blocks on each device are 'bad' and so just 7556 * fail those blocks, or that stripe, rather than the whole device. 7557 * Entries in the bad-block table are 64bits wide. This comprises: 7558 * Length of bad-range, in sectors: 0-511 for lengths 1-512 7559 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 7560 * A 'shift' can be set so that larger blocks are tracked and 7561 * consequently larger devices can be covered. 7562 * 'Acknowledged' flag - 1 bit. - the most significant bit. 7563 * 7564 * Locking of the bad-block table uses a seqlock so md_is_badblock 7565 * might need to retry if it is very unlucky. 7566 * We will sometimes want to check for bad blocks in a bi_end_io function, 7567 * so we use the write_seqlock_irq variant. 7568 * 7569 * When looking for a bad block we specify a range and want to 7570 * know if any block in the range is bad. So we binary-search 7571 * to the last range that starts at-or-before the given endpoint, 7572 * (or "before the sector after the target range") 7573 * then see if it ends after the given start. 7574 * We return 7575 * 0 if there are no known bad blocks in the range 7576 * 1 if there are known bad block which are all acknowledged 7577 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 7578 * plus the start/length of the first bad section we overlap. 7579 */ 7580 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 7581 sector_t *first_bad, int *bad_sectors) 7582 { 7583 int hi; 7584 int lo = 0; 7585 u64 *p = bb->page; 7586 int rv = 0; 7587 sector_t target = s + sectors; 7588 unsigned seq; 7589 7590 if (bb->shift > 0) { 7591 /* round the start down, and the end up */ 7592 s >>= bb->shift; 7593 target += (1<<bb->shift) - 1; 7594 target >>= bb->shift; 7595 sectors = target - s; 7596 } 7597 /* 'target' is now the first block after the bad range */ 7598 7599 retry: 7600 seq = read_seqbegin(&bb->lock); 7601 7602 hi = bb->count; 7603 7604 /* Binary search between lo and hi for 'target' 7605 * i.e. for the last range that starts before 'target' 7606 */ 7607 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 7608 * are known not to be the last range before target. 7609 * VARIANT: hi-lo is the number of possible 7610 * ranges, and decreases until it reaches 1 7611 */ 7612 while (hi - lo > 1) { 7613 int mid = (lo + hi) / 2; 7614 sector_t a = BB_OFFSET(p[mid]); 7615 if (a < target) 7616 /* This could still be the one, earlier ranges 7617 * could not. */ 7618 lo = mid; 7619 else 7620 /* This and later ranges are definitely out. */ 7621 hi = mid; 7622 } 7623 /* 'lo' might be the last that started before target, but 'hi' isn't */ 7624 if (hi > lo) { 7625 /* need to check all range that end after 's' to see if 7626 * any are unacknowledged. 7627 */ 7628 while (lo >= 0 && 7629 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 7630 if (BB_OFFSET(p[lo]) < target) { 7631 /* starts before the end, and finishes after 7632 * the start, so they must overlap 7633 */ 7634 if (rv != -1 && BB_ACK(p[lo])) 7635 rv = 1; 7636 else 7637 rv = -1; 7638 *first_bad = BB_OFFSET(p[lo]); 7639 *bad_sectors = BB_LEN(p[lo]); 7640 } 7641 lo--; 7642 } 7643 } 7644 7645 if (read_seqretry(&bb->lock, seq)) 7646 goto retry; 7647 7648 return rv; 7649 } 7650 EXPORT_SYMBOL_GPL(md_is_badblock); 7651 7652 /* 7653 * Add a range of bad blocks to the table. 7654 * This might extend the table, or might contract it 7655 * if two adjacent ranges can be merged. 7656 * We binary-search to find the 'insertion' point, then 7657 * decide how best to handle it. 7658 */ 7659 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 7660 int acknowledged) 7661 { 7662 u64 *p; 7663 int lo, hi; 7664 int rv = 1; 7665 7666 if (bb->shift < 0) 7667 /* badblocks are disabled */ 7668 return 0; 7669 7670 if (bb->shift) { 7671 /* round the start down, and the end up */ 7672 sector_t next = s + sectors; 7673 s >>= bb->shift; 7674 next += (1<<bb->shift) - 1; 7675 next >>= bb->shift; 7676 sectors = next - s; 7677 } 7678 7679 write_seqlock_irq(&bb->lock); 7680 7681 p = bb->page; 7682 lo = 0; 7683 hi = bb->count; 7684 /* Find the last range that starts at-or-before 's' */ 7685 while (hi - lo > 1) { 7686 int mid = (lo + hi) / 2; 7687 sector_t a = BB_OFFSET(p[mid]); 7688 if (a <= s) 7689 lo = mid; 7690 else 7691 hi = mid; 7692 } 7693 if (hi > lo && BB_OFFSET(p[lo]) > s) 7694 hi = lo; 7695 7696 if (hi > lo) { 7697 /* we found a range that might merge with the start 7698 * of our new range 7699 */ 7700 sector_t a = BB_OFFSET(p[lo]); 7701 sector_t e = a + BB_LEN(p[lo]); 7702 int ack = BB_ACK(p[lo]); 7703 if (e >= s) { 7704 /* Yes, we can merge with a previous range */ 7705 if (s == a && s + sectors >= e) 7706 /* new range covers old */ 7707 ack = acknowledged; 7708 else 7709 ack = ack && acknowledged; 7710 7711 if (e < s + sectors) 7712 e = s + sectors; 7713 if (e - a <= BB_MAX_LEN) { 7714 p[lo] = BB_MAKE(a, e-a, ack); 7715 s = e; 7716 } else { 7717 /* does not all fit in one range, 7718 * make p[lo] maximal 7719 */ 7720 if (BB_LEN(p[lo]) != BB_MAX_LEN) 7721 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 7722 s = a + BB_MAX_LEN; 7723 } 7724 sectors = e - s; 7725 } 7726 } 7727 if (sectors && hi < bb->count) { 7728 /* 'hi' points to the first range that starts after 's'. 7729 * Maybe we can merge with the start of that range */ 7730 sector_t a = BB_OFFSET(p[hi]); 7731 sector_t e = a + BB_LEN(p[hi]); 7732 int ack = BB_ACK(p[hi]); 7733 if (a <= s + sectors) { 7734 /* merging is possible */ 7735 if (e <= s + sectors) { 7736 /* full overlap */ 7737 e = s + sectors; 7738 ack = acknowledged; 7739 } else 7740 ack = ack && acknowledged; 7741 7742 a = s; 7743 if (e - a <= BB_MAX_LEN) { 7744 p[hi] = BB_MAKE(a, e-a, ack); 7745 s = e; 7746 } else { 7747 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 7748 s = a + BB_MAX_LEN; 7749 } 7750 sectors = e - s; 7751 lo = hi; 7752 hi++; 7753 } 7754 } 7755 if (sectors == 0 && hi < bb->count) { 7756 /* we might be able to combine lo and hi */ 7757 /* Note: 's' is at the end of 'lo' */ 7758 sector_t a = BB_OFFSET(p[hi]); 7759 int lolen = BB_LEN(p[lo]); 7760 int hilen = BB_LEN(p[hi]); 7761 int newlen = lolen + hilen - (s - a); 7762 if (s >= a && newlen < BB_MAX_LEN) { 7763 /* yes, we can combine them */ 7764 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 7765 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 7766 memmove(p + hi, p + hi + 1, 7767 (bb->count - hi - 1) * 8); 7768 bb->count--; 7769 } 7770 } 7771 while (sectors) { 7772 /* didn't merge (it all). 7773 * Need to add a range just before 'hi' */ 7774 if (bb->count >= MD_MAX_BADBLOCKS) { 7775 /* No room for more */ 7776 rv = 0; 7777 break; 7778 } else { 7779 int this_sectors = sectors; 7780 memmove(p + hi + 1, p + hi, 7781 (bb->count - hi) * 8); 7782 bb->count++; 7783 7784 if (this_sectors > BB_MAX_LEN) 7785 this_sectors = BB_MAX_LEN; 7786 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 7787 sectors -= this_sectors; 7788 s += this_sectors; 7789 } 7790 } 7791 7792 bb->changed = 1; 7793 if (!acknowledged) 7794 bb->unacked_exist = 1; 7795 write_sequnlock_irq(&bb->lock); 7796 7797 return rv; 7798 } 7799 7800 int rdev_set_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors, 7801 int acknowledged) 7802 { 7803 int rv = md_set_badblocks(&rdev->badblocks, 7804 s + rdev->data_offset, sectors, acknowledged); 7805 if (rv) { 7806 /* Make sure they get written out promptly */ 7807 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 7808 md_wakeup_thread(rdev->mddev->thread); 7809 } 7810 return rv; 7811 } 7812 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 7813 7814 /* 7815 * Remove a range of bad blocks from the table. 7816 * This may involve extending the table if we spilt a region, 7817 * but it must not fail. So if the table becomes full, we just 7818 * drop the remove request. 7819 */ 7820 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 7821 { 7822 u64 *p; 7823 int lo, hi; 7824 sector_t target = s + sectors; 7825 int rv = 0; 7826 7827 if (bb->shift > 0) { 7828 /* When clearing we round the start up and the end down. 7829 * This should not matter as the shift should align with 7830 * the block size and no rounding should ever be needed. 7831 * However it is better the think a block is bad when it 7832 * isn't than to think a block is not bad when it is. 7833 */ 7834 s += (1<<bb->shift) - 1; 7835 s >>= bb->shift; 7836 target >>= bb->shift; 7837 sectors = target - s; 7838 } 7839 7840 write_seqlock_irq(&bb->lock); 7841 7842 p = bb->page; 7843 lo = 0; 7844 hi = bb->count; 7845 /* Find the last range that starts before 'target' */ 7846 while (hi - lo > 1) { 7847 int mid = (lo + hi) / 2; 7848 sector_t a = BB_OFFSET(p[mid]); 7849 if (a < target) 7850 lo = mid; 7851 else 7852 hi = mid; 7853 } 7854 if (hi > lo) { 7855 /* p[lo] is the last range that could overlap the 7856 * current range. Earlier ranges could also overlap, 7857 * but only this one can overlap the end of the range. 7858 */ 7859 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 7860 /* Partial overlap, leave the tail of this range */ 7861 int ack = BB_ACK(p[lo]); 7862 sector_t a = BB_OFFSET(p[lo]); 7863 sector_t end = a + BB_LEN(p[lo]); 7864 7865 if (a < s) { 7866 /* we need to split this range */ 7867 if (bb->count >= MD_MAX_BADBLOCKS) { 7868 rv = 0; 7869 goto out; 7870 } 7871 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 7872 bb->count++; 7873 p[lo] = BB_MAKE(a, s-a, ack); 7874 lo++; 7875 } 7876 p[lo] = BB_MAKE(target, end - target, ack); 7877 /* there is no longer an overlap */ 7878 hi = lo; 7879 lo--; 7880 } 7881 while (lo >= 0 && 7882 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 7883 /* This range does overlap */ 7884 if (BB_OFFSET(p[lo]) < s) { 7885 /* Keep the early parts of this range. */ 7886 int ack = BB_ACK(p[lo]); 7887 sector_t start = BB_OFFSET(p[lo]); 7888 p[lo] = BB_MAKE(start, s - start, ack); 7889 /* now low doesn't overlap, so.. */ 7890 break; 7891 } 7892 lo--; 7893 } 7894 /* 'lo' is strictly before, 'hi' is strictly after, 7895 * anything between needs to be discarded 7896 */ 7897 if (hi - lo > 1) { 7898 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 7899 bb->count -= (hi - lo - 1); 7900 } 7901 } 7902 7903 bb->changed = 1; 7904 out: 7905 write_sequnlock_irq(&bb->lock); 7906 return rv; 7907 } 7908 7909 int rdev_clear_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors) 7910 { 7911 return md_clear_badblocks(&rdev->badblocks, 7912 s + rdev->data_offset, 7913 sectors); 7914 } 7915 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 7916 7917 /* 7918 * Acknowledge all bad blocks in a list. 7919 * This only succeeds if ->changed is clear. It is used by 7920 * in-kernel metadata updates 7921 */ 7922 void md_ack_all_badblocks(struct badblocks *bb) 7923 { 7924 if (bb->page == NULL || bb->changed) 7925 /* no point even trying */ 7926 return; 7927 write_seqlock_irq(&bb->lock); 7928 7929 if (bb->changed == 0) { 7930 u64 *p = bb->page; 7931 int i; 7932 for (i = 0; i < bb->count ; i++) { 7933 if (!BB_ACK(p[i])) { 7934 sector_t start = BB_OFFSET(p[i]); 7935 int len = BB_LEN(p[i]); 7936 p[i] = BB_MAKE(start, len, 1); 7937 } 7938 } 7939 bb->unacked_exist = 0; 7940 } 7941 write_sequnlock_irq(&bb->lock); 7942 } 7943 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 7944 7945 /* sysfs access to bad-blocks list. 7946 * We present two files. 7947 * 'bad-blocks' lists sector numbers and lengths of ranges that 7948 * are recorded as bad. The list is truncated to fit within 7949 * the one-page limit of sysfs. 7950 * Writing "sector length" to this file adds an acknowledged 7951 * bad block list. 7952 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 7953 * been acknowledged. Writing to this file adds bad blocks 7954 * without acknowledging them. This is largely for testing. 7955 */ 7956 7957 static ssize_t 7958 badblocks_show(struct badblocks *bb, char *page, int unack) 7959 { 7960 size_t len; 7961 int i; 7962 u64 *p = bb->page; 7963 unsigned seq; 7964 7965 if (bb->shift < 0) 7966 return 0; 7967 7968 retry: 7969 seq = read_seqbegin(&bb->lock); 7970 7971 len = 0; 7972 i = 0; 7973 7974 while (len < PAGE_SIZE && i < bb->count) { 7975 sector_t s = BB_OFFSET(p[i]); 7976 unsigned int length = BB_LEN(p[i]); 7977 int ack = BB_ACK(p[i]); 7978 i++; 7979 7980 if (unack && ack) 7981 continue; 7982 7983 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 7984 (unsigned long long)s << bb->shift, 7985 length << bb->shift); 7986 } 7987 if (unack && len == 0) 7988 bb->unacked_exist = 0; 7989 7990 if (read_seqretry(&bb->lock, seq)) 7991 goto retry; 7992 7993 return len; 7994 } 7995 7996 #define DO_DEBUG 1 7997 7998 static ssize_t 7999 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8000 { 8001 unsigned long long sector; 8002 int length; 8003 char newline; 8004 #ifdef DO_DEBUG 8005 /* Allow clearing via sysfs *only* for testing/debugging. 8006 * Normally only a successful write may clear a badblock 8007 */ 8008 int clear = 0; 8009 if (page[0] == '-') { 8010 clear = 1; 8011 page++; 8012 } 8013 #endif /* DO_DEBUG */ 8014 8015 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8016 case 3: 8017 if (newline != '\n') 8018 return -EINVAL; 8019 case 2: 8020 if (length <= 0) 8021 return -EINVAL; 8022 break; 8023 default: 8024 return -EINVAL; 8025 } 8026 8027 #ifdef DO_DEBUG 8028 if (clear) { 8029 md_clear_badblocks(bb, sector, length); 8030 return len; 8031 } 8032 #endif /* DO_DEBUG */ 8033 if (md_set_badblocks(bb, sector, length, !unack)) 8034 return len; 8035 else 8036 return -ENOSPC; 8037 } 8038 8039 static int md_notify_reboot(struct notifier_block *this, 8040 unsigned long code, void *x) 8041 { 8042 struct list_head *tmp; 8043 mddev_t *mddev; 8044 8045 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 8046 8047 printk(KERN_INFO "md: stopping all md devices.\n"); 8048 8049 for_each_mddev(mddev, tmp) 8050 if (mddev_trylock(mddev)) { 8051 /* Force a switch to readonly even array 8052 * appears to still be in use. Hence 8053 * the '100'. 8054 */ 8055 md_set_readonly(mddev, 100); 8056 mddev_unlock(mddev); 8057 } 8058 /* 8059 * certain more exotic SCSI devices are known to be 8060 * volatile wrt too early system reboots. While the 8061 * right place to handle this issue is the given 8062 * driver, we do want to have a safe RAID driver ... 8063 */ 8064 mdelay(1000*1); 8065 } 8066 return NOTIFY_DONE; 8067 } 8068 8069 static struct notifier_block md_notifier = { 8070 .notifier_call = md_notify_reboot, 8071 .next = NULL, 8072 .priority = INT_MAX, /* before any real devices */ 8073 }; 8074 8075 static void md_geninit(void) 8076 { 8077 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8078 8079 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8080 } 8081 8082 static int __init md_init(void) 8083 { 8084 int ret = -ENOMEM; 8085 8086 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8087 if (!md_wq) 8088 goto err_wq; 8089 8090 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8091 if (!md_misc_wq) 8092 goto err_misc_wq; 8093 8094 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8095 goto err_md; 8096 8097 if ((ret = register_blkdev(0, "mdp")) < 0) 8098 goto err_mdp; 8099 mdp_major = ret; 8100 8101 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 8102 md_probe, NULL, NULL); 8103 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8104 md_probe, NULL, NULL); 8105 8106 register_reboot_notifier(&md_notifier); 8107 raid_table_header = register_sysctl_table(raid_root_table); 8108 8109 md_geninit(); 8110 return 0; 8111 8112 err_mdp: 8113 unregister_blkdev(MD_MAJOR, "md"); 8114 err_md: 8115 destroy_workqueue(md_misc_wq); 8116 err_misc_wq: 8117 destroy_workqueue(md_wq); 8118 err_wq: 8119 return ret; 8120 } 8121 8122 #ifndef MODULE 8123 8124 /* 8125 * Searches all registered partitions for autorun RAID arrays 8126 * at boot time. 8127 */ 8128 8129 static LIST_HEAD(all_detected_devices); 8130 struct detected_devices_node { 8131 struct list_head list; 8132 dev_t dev; 8133 }; 8134 8135 void md_autodetect_dev(dev_t dev) 8136 { 8137 struct detected_devices_node *node_detected_dev; 8138 8139 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8140 if (node_detected_dev) { 8141 node_detected_dev->dev = dev; 8142 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8143 } else { 8144 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8145 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8146 } 8147 } 8148 8149 8150 static void autostart_arrays(int part) 8151 { 8152 mdk_rdev_t *rdev; 8153 struct detected_devices_node *node_detected_dev; 8154 dev_t dev; 8155 int i_scanned, i_passed; 8156 8157 i_scanned = 0; 8158 i_passed = 0; 8159 8160 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8161 8162 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8163 i_scanned++; 8164 node_detected_dev = list_entry(all_detected_devices.next, 8165 struct detected_devices_node, list); 8166 list_del(&node_detected_dev->list); 8167 dev = node_detected_dev->dev; 8168 kfree(node_detected_dev); 8169 rdev = md_import_device(dev,0, 90); 8170 if (IS_ERR(rdev)) 8171 continue; 8172 8173 if (test_bit(Faulty, &rdev->flags)) { 8174 MD_BUG(); 8175 continue; 8176 } 8177 set_bit(AutoDetected, &rdev->flags); 8178 list_add(&rdev->same_set, &pending_raid_disks); 8179 i_passed++; 8180 } 8181 8182 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8183 i_scanned, i_passed); 8184 8185 autorun_devices(part); 8186 } 8187 8188 #endif /* !MODULE */ 8189 8190 static __exit void md_exit(void) 8191 { 8192 mddev_t *mddev; 8193 struct list_head *tmp; 8194 8195 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 8196 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8197 8198 unregister_blkdev(MD_MAJOR,"md"); 8199 unregister_blkdev(mdp_major, "mdp"); 8200 unregister_reboot_notifier(&md_notifier); 8201 unregister_sysctl_table(raid_table_header); 8202 remove_proc_entry("mdstat", NULL); 8203 for_each_mddev(mddev, tmp) { 8204 export_array(mddev); 8205 mddev->hold_active = 0; 8206 } 8207 destroy_workqueue(md_misc_wq); 8208 destroy_workqueue(md_wq); 8209 } 8210 8211 subsys_initcall(md_init); 8212 module_exit(md_exit) 8213 8214 static int get_ro(char *buffer, struct kernel_param *kp) 8215 { 8216 return sprintf(buffer, "%d", start_readonly); 8217 } 8218 static int set_ro(const char *val, struct kernel_param *kp) 8219 { 8220 char *e; 8221 int num = simple_strtoul(val, &e, 10); 8222 if (*val && (*e == '\0' || *e == '\n')) { 8223 start_readonly = num; 8224 return 0; 8225 } 8226 return -EINVAL; 8227 } 8228 8229 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8230 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8231 8232 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8233 8234 EXPORT_SYMBOL(register_md_personality); 8235 EXPORT_SYMBOL(unregister_md_personality); 8236 EXPORT_SYMBOL(md_error); 8237 EXPORT_SYMBOL(md_done_sync); 8238 EXPORT_SYMBOL(md_write_start); 8239 EXPORT_SYMBOL(md_write_end); 8240 EXPORT_SYMBOL(md_register_thread); 8241 EXPORT_SYMBOL(md_unregister_thread); 8242 EXPORT_SYMBOL(md_wakeup_thread); 8243 EXPORT_SYMBOL(md_check_recovery); 8244 MODULE_LICENSE("GPL"); 8245 MODULE_DESCRIPTION("MD RAID framework"); 8246 MODULE_ALIAS("md"); 8247 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8248