xref: /linux/drivers/md/md.c (revision 7b12b9137930eb821b68e1bfa11e9de692208620)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 #include <linux/poll.h>
46 #include <linux/mutex.h>
47 
48 #include <linux/init.h>
49 
50 #include <linux/file.h>
51 
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
55 
56 #include <asm/unaligned.h>
57 
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
60 
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
63 
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66 
67 
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
71 
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
74 
75 /*
76  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
77  * is 1000 KB/sec, so the extra system load does not show up that much.
78  * Increase it if you want to have more _guaranteed_ speed. Note that
79  * the RAID driver will use the maximum available bandwidth if the IO
80  * subsystem is idle. There is also an 'absolute maximum' reconstruction
81  * speed limit - in case reconstruction slows down your system despite
82  * idle IO detection.
83  *
84  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
85  * or /sys/block/mdX/md/sync_speed_{min,max}
86  */
87 
88 static int sysctl_speed_limit_min = 1000;
89 static int sysctl_speed_limit_max = 200000;
90 static inline int speed_min(mddev_t *mddev)
91 {
92 	return mddev->sync_speed_min ?
93 		mddev->sync_speed_min : sysctl_speed_limit_min;
94 }
95 
96 static inline int speed_max(mddev_t *mddev)
97 {
98 	return mddev->sync_speed_max ?
99 		mddev->sync_speed_max : sysctl_speed_limit_max;
100 }
101 
102 static struct ctl_table_header *raid_table_header;
103 
104 static ctl_table raid_table[] = {
105 	{
106 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
107 		.procname	= "speed_limit_min",
108 		.data		= &sysctl_speed_limit_min,
109 		.maxlen		= sizeof(int),
110 		.mode		= 0644,
111 		.proc_handler	= &proc_dointvec,
112 	},
113 	{
114 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
115 		.procname	= "speed_limit_max",
116 		.data		= &sysctl_speed_limit_max,
117 		.maxlen		= sizeof(int),
118 		.mode		= 0644,
119 		.proc_handler	= &proc_dointvec,
120 	},
121 	{ .ctl_name = 0 }
122 };
123 
124 static ctl_table raid_dir_table[] = {
125 	{
126 		.ctl_name	= DEV_RAID,
127 		.procname	= "raid",
128 		.maxlen		= 0,
129 		.mode		= 0555,
130 		.child		= raid_table,
131 	},
132 	{ .ctl_name = 0 }
133 };
134 
135 static ctl_table raid_root_table[] = {
136 	{
137 		.ctl_name	= CTL_DEV,
138 		.procname	= "dev",
139 		.maxlen		= 0,
140 		.mode		= 0555,
141 		.child		= raid_dir_table,
142 	},
143 	{ .ctl_name = 0 }
144 };
145 
146 static struct block_device_operations md_fops;
147 
148 static int start_readonly;
149 
150 /*
151  * We have a system wide 'event count' that is incremented
152  * on any 'interesting' event, and readers of /proc/mdstat
153  * can use 'poll' or 'select' to find out when the event
154  * count increases.
155  *
156  * Events are:
157  *  start array, stop array, error, add device, remove device,
158  *  start build, activate spare
159  */
160 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
161 static atomic_t md_event_count;
162 void md_new_event(mddev_t *mddev)
163 {
164 	atomic_inc(&md_event_count);
165 	wake_up(&md_event_waiters);
166 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
167 }
168 EXPORT_SYMBOL_GPL(md_new_event);
169 
170 /*
171  * Enables to iterate over all existing md arrays
172  * all_mddevs_lock protects this list.
173  */
174 static LIST_HEAD(all_mddevs);
175 static DEFINE_SPINLOCK(all_mddevs_lock);
176 
177 
178 /*
179  * iterates through all used mddevs in the system.
180  * We take care to grab the all_mddevs_lock whenever navigating
181  * the list, and to always hold a refcount when unlocked.
182  * Any code which breaks out of this loop while own
183  * a reference to the current mddev and must mddev_put it.
184  */
185 #define ITERATE_MDDEV(mddev,tmp)					\
186 									\
187 	for (({ spin_lock(&all_mddevs_lock); 				\
188 		tmp = all_mddevs.next;					\
189 		mddev = NULL;});					\
190 	     ({ if (tmp != &all_mddevs)					\
191 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
192 		spin_unlock(&all_mddevs_lock);				\
193 		if (mddev) mddev_put(mddev);				\
194 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
195 		tmp != &all_mddevs;});					\
196 	     ({ spin_lock(&all_mddevs_lock);				\
197 		tmp = tmp->next;})					\
198 		)
199 
200 
201 static int md_fail_request (request_queue_t *q, struct bio *bio)
202 {
203 	bio_io_error(bio, bio->bi_size);
204 	return 0;
205 }
206 
207 static inline mddev_t *mddev_get(mddev_t *mddev)
208 {
209 	atomic_inc(&mddev->active);
210 	return mddev;
211 }
212 
213 static void mddev_put(mddev_t *mddev)
214 {
215 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
216 		return;
217 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
218 		list_del(&mddev->all_mddevs);
219 		spin_unlock(&all_mddevs_lock);
220 		blk_cleanup_queue(mddev->queue);
221 		kobject_unregister(&mddev->kobj);
222 	} else
223 		spin_unlock(&all_mddevs_lock);
224 }
225 
226 static mddev_t * mddev_find(dev_t unit)
227 {
228 	mddev_t *mddev, *new = NULL;
229 
230  retry:
231 	spin_lock(&all_mddevs_lock);
232 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
233 		if (mddev->unit == unit) {
234 			mddev_get(mddev);
235 			spin_unlock(&all_mddevs_lock);
236 			kfree(new);
237 			return mddev;
238 		}
239 
240 	if (new) {
241 		list_add(&new->all_mddevs, &all_mddevs);
242 		spin_unlock(&all_mddevs_lock);
243 		return new;
244 	}
245 	spin_unlock(&all_mddevs_lock);
246 
247 	new = kzalloc(sizeof(*new), GFP_KERNEL);
248 	if (!new)
249 		return NULL;
250 
251 	new->unit = unit;
252 	if (MAJOR(unit) == MD_MAJOR)
253 		new->md_minor = MINOR(unit);
254 	else
255 		new->md_minor = MINOR(unit) >> MdpMinorShift;
256 
257 	mutex_init(&new->reconfig_mutex);
258 	INIT_LIST_HEAD(&new->disks);
259 	INIT_LIST_HEAD(&new->all_mddevs);
260 	init_timer(&new->safemode_timer);
261 	atomic_set(&new->active, 1);
262 	spin_lock_init(&new->write_lock);
263 	init_waitqueue_head(&new->sb_wait);
264 
265 	new->queue = blk_alloc_queue(GFP_KERNEL);
266 	if (!new->queue) {
267 		kfree(new);
268 		return NULL;
269 	}
270 	set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
271 
272 	blk_queue_make_request(new->queue, md_fail_request);
273 
274 	goto retry;
275 }
276 
277 static inline int mddev_lock(mddev_t * mddev)
278 {
279 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
280 }
281 
282 static inline int mddev_trylock(mddev_t * mddev)
283 {
284 	return mutex_trylock(&mddev->reconfig_mutex);
285 }
286 
287 static inline void mddev_unlock(mddev_t * mddev)
288 {
289 	mutex_unlock(&mddev->reconfig_mutex);
290 
291 	md_wakeup_thread(mddev->thread);
292 }
293 
294 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
295 {
296 	mdk_rdev_t * rdev;
297 	struct list_head *tmp;
298 
299 	ITERATE_RDEV(mddev,rdev,tmp) {
300 		if (rdev->desc_nr == nr)
301 			return rdev;
302 	}
303 	return NULL;
304 }
305 
306 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
307 {
308 	struct list_head *tmp;
309 	mdk_rdev_t *rdev;
310 
311 	ITERATE_RDEV(mddev,rdev,tmp) {
312 		if (rdev->bdev->bd_dev == dev)
313 			return rdev;
314 	}
315 	return NULL;
316 }
317 
318 static struct mdk_personality *find_pers(int level, char *clevel)
319 {
320 	struct mdk_personality *pers;
321 	list_for_each_entry(pers, &pers_list, list) {
322 		if (level != LEVEL_NONE && pers->level == level)
323 			return pers;
324 		if (strcmp(pers->name, clevel)==0)
325 			return pers;
326 	}
327 	return NULL;
328 }
329 
330 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
331 {
332 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
333 	return MD_NEW_SIZE_BLOCKS(size);
334 }
335 
336 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
337 {
338 	sector_t size;
339 
340 	size = rdev->sb_offset;
341 
342 	if (chunk_size)
343 		size &= ~((sector_t)chunk_size/1024 - 1);
344 	return size;
345 }
346 
347 static int alloc_disk_sb(mdk_rdev_t * rdev)
348 {
349 	if (rdev->sb_page)
350 		MD_BUG();
351 
352 	rdev->sb_page = alloc_page(GFP_KERNEL);
353 	if (!rdev->sb_page) {
354 		printk(KERN_ALERT "md: out of memory.\n");
355 		return -EINVAL;
356 	}
357 
358 	return 0;
359 }
360 
361 static void free_disk_sb(mdk_rdev_t * rdev)
362 {
363 	if (rdev->sb_page) {
364 		put_page(rdev->sb_page);
365 		rdev->sb_loaded = 0;
366 		rdev->sb_page = NULL;
367 		rdev->sb_offset = 0;
368 		rdev->size = 0;
369 	}
370 }
371 
372 
373 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
374 {
375 	mdk_rdev_t *rdev = bio->bi_private;
376 	mddev_t *mddev = rdev->mddev;
377 	if (bio->bi_size)
378 		return 1;
379 
380 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
381 		md_error(mddev, rdev);
382 
383 	if (atomic_dec_and_test(&mddev->pending_writes))
384 		wake_up(&mddev->sb_wait);
385 	bio_put(bio);
386 	return 0;
387 }
388 
389 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
390 {
391 	struct bio *bio2 = bio->bi_private;
392 	mdk_rdev_t *rdev = bio2->bi_private;
393 	mddev_t *mddev = rdev->mddev;
394 	if (bio->bi_size)
395 		return 1;
396 
397 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
398 	    error == -EOPNOTSUPP) {
399 		unsigned long flags;
400 		/* barriers don't appear to be supported :-( */
401 		set_bit(BarriersNotsupp, &rdev->flags);
402 		mddev->barriers_work = 0;
403 		spin_lock_irqsave(&mddev->write_lock, flags);
404 		bio2->bi_next = mddev->biolist;
405 		mddev->biolist = bio2;
406 		spin_unlock_irqrestore(&mddev->write_lock, flags);
407 		wake_up(&mddev->sb_wait);
408 		bio_put(bio);
409 		return 0;
410 	}
411 	bio_put(bio2);
412 	bio->bi_private = rdev;
413 	return super_written(bio, bytes_done, error);
414 }
415 
416 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
417 		   sector_t sector, int size, struct page *page)
418 {
419 	/* write first size bytes of page to sector of rdev
420 	 * Increment mddev->pending_writes before returning
421 	 * and decrement it on completion, waking up sb_wait
422 	 * if zero is reached.
423 	 * If an error occurred, call md_error
424 	 *
425 	 * As we might need to resubmit the request if BIO_RW_BARRIER
426 	 * causes ENOTSUPP, we allocate a spare bio...
427 	 */
428 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
429 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
430 
431 	bio->bi_bdev = rdev->bdev;
432 	bio->bi_sector = sector;
433 	bio_add_page(bio, page, size, 0);
434 	bio->bi_private = rdev;
435 	bio->bi_end_io = super_written;
436 	bio->bi_rw = rw;
437 
438 	atomic_inc(&mddev->pending_writes);
439 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
440 		struct bio *rbio;
441 		rw |= (1<<BIO_RW_BARRIER);
442 		rbio = bio_clone(bio, GFP_NOIO);
443 		rbio->bi_private = bio;
444 		rbio->bi_end_io = super_written_barrier;
445 		submit_bio(rw, rbio);
446 	} else
447 		submit_bio(rw, bio);
448 }
449 
450 void md_super_wait(mddev_t *mddev)
451 {
452 	/* wait for all superblock writes that were scheduled to complete.
453 	 * if any had to be retried (due to BARRIER problems), retry them
454 	 */
455 	DEFINE_WAIT(wq);
456 	for(;;) {
457 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
458 		if (atomic_read(&mddev->pending_writes)==0)
459 			break;
460 		while (mddev->biolist) {
461 			struct bio *bio;
462 			spin_lock_irq(&mddev->write_lock);
463 			bio = mddev->biolist;
464 			mddev->biolist = bio->bi_next ;
465 			bio->bi_next = NULL;
466 			spin_unlock_irq(&mddev->write_lock);
467 			submit_bio(bio->bi_rw, bio);
468 		}
469 		schedule();
470 	}
471 	finish_wait(&mddev->sb_wait, &wq);
472 }
473 
474 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
475 {
476 	if (bio->bi_size)
477 		return 1;
478 
479 	complete((struct completion*)bio->bi_private);
480 	return 0;
481 }
482 
483 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
484 		   struct page *page, int rw)
485 {
486 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
487 	struct completion event;
488 	int ret;
489 
490 	rw |= (1 << BIO_RW_SYNC);
491 
492 	bio->bi_bdev = bdev;
493 	bio->bi_sector = sector;
494 	bio_add_page(bio, page, size, 0);
495 	init_completion(&event);
496 	bio->bi_private = &event;
497 	bio->bi_end_io = bi_complete;
498 	submit_bio(rw, bio);
499 	wait_for_completion(&event);
500 
501 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
502 	bio_put(bio);
503 	return ret;
504 }
505 EXPORT_SYMBOL_GPL(sync_page_io);
506 
507 static int read_disk_sb(mdk_rdev_t * rdev, int size)
508 {
509 	char b[BDEVNAME_SIZE];
510 	if (!rdev->sb_page) {
511 		MD_BUG();
512 		return -EINVAL;
513 	}
514 	if (rdev->sb_loaded)
515 		return 0;
516 
517 
518 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
519 		goto fail;
520 	rdev->sb_loaded = 1;
521 	return 0;
522 
523 fail:
524 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
525 		bdevname(rdev->bdev,b));
526 	return -EINVAL;
527 }
528 
529 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
530 {
531 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
532 		(sb1->set_uuid1 == sb2->set_uuid1) &&
533 		(sb1->set_uuid2 == sb2->set_uuid2) &&
534 		(sb1->set_uuid3 == sb2->set_uuid3))
535 
536 		return 1;
537 
538 	return 0;
539 }
540 
541 
542 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
543 {
544 	int ret;
545 	mdp_super_t *tmp1, *tmp2;
546 
547 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
548 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
549 
550 	if (!tmp1 || !tmp2) {
551 		ret = 0;
552 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
553 		goto abort;
554 	}
555 
556 	*tmp1 = *sb1;
557 	*tmp2 = *sb2;
558 
559 	/*
560 	 * nr_disks is not constant
561 	 */
562 	tmp1->nr_disks = 0;
563 	tmp2->nr_disks = 0;
564 
565 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
566 		ret = 0;
567 	else
568 		ret = 1;
569 
570 abort:
571 	kfree(tmp1);
572 	kfree(tmp2);
573 	return ret;
574 }
575 
576 static unsigned int calc_sb_csum(mdp_super_t * sb)
577 {
578 	unsigned int disk_csum, csum;
579 
580 	disk_csum = sb->sb_csum;
581 	sb->sb_csum = 0;
582 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
583 	sb->sb_csum = disk_csum;
584 	return csum;
585 }
586 
587 
588 /*
589  * Handle superblock details.
590  * We want to be able to handle multiple superblock formats
591  * so we have a common interface to them all, and an array of
592  * different handlers.
593  * We rely on user-space to write the initial superblock, and support
594  * reading and updating of superblocks.
595  * Interface methods are:
596  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
597  *      loads and validates a superblock on dev.
598  *      if refdev != NULL, compare superblocks on both devices
599  *    Return:
600  *      0 - dev has a superblock that is compatible with refdev
601  *      1 - dev has a superblock that is compatible and newer than refdev
602  *          so dev should be used as the refdev in future
603  *     -EINVAL superblock incompatible or invalid
604  *     -othererror e.g. -EIO
605  *
606  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
607  *      Verify that dev is acceptable into mddev.
608  *       The first time, mddev->raid_disks will be 0, and data from
609  *       dev should be merged in.  Subsequent calls check that dev
610  *       is new enough.  Return 0 or -EINVAL
611  *
612  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
613  *     Update the superblock for rdev with data in mddev
614  *     This does not write to disc.
615  *
616  */
617 
618 struct super_type  {
619 	char 		*name;
620 	struct module	*owner;
621 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
622 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
623 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
624 };
625 
626 /*
627  * load_super for 0.90.0
628  */
629 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
630 {
631 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
632 	mdp_super_t *sb;
633 	int ret;
634 	sector_t sb_offset;
635 
636 	/*
637 	 * Calculate the position of the superblock,
638 	 * it's at the end of the disk.
639 	 *
640 	 * It also happens to be a multiple of 4Kb.
641 	 */
642 	sb_offset = calc_dev_sboffset(rdev->bdev);
643 	rdev->sb_offset = sb_offset;
644 
645 	ret = read_disk_sb(rdev, MD_SB_BYTES);
646 	if (ret) return ret;
647 
648 	ret = -EINVAL;
649 
650 	bdevname(rdev->bdev, b);
651 	sb = (mdp_super_t*)page_address(rdev->sb_page);
652 
653 	if (sb->md_magic != MD_SB_MAGIC) {
654 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
655 		       b);
656 		goto abort;
657 	}
658 
659 	if (sb->major_version != 0 ||
660 	    sb->minor_version < 90 ||
661 	    sb->minor_version > 91) {
662 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
663 			sb->major_version, sb->minor_version,
664 			b);
665 		goto abort;
666 	}
667 
668 	if (sb->raid_disks <= 0)
669 		goto abort;
670 
671 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
672 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
673 			b);
674 		goto abort;
675 	}
676 
677 	rdev->preferred_minor = sb->md_minor;
678 	rdev->data_offset = 0;
679 	rdev->sb_size = MD_SB_BYTES;
680 
681 	if (sb->level == LEVEL_MULTIPATH)
682 		rdev->desc_nr = -1;
683 	else
684 		rdev->desc_nr = sb->this_disk.number;
685 
686 	if (refdev == 0)
687 		ret = 1;
688 	else {
689 		__u64 ev1, ev2;
690 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
691 		if (!uuid_equal(refsb, sb)) {
692 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
693 				b, bdevname(refdev->bdev,b2));
694 			goto abort;
695 		}
696 		if (!sb_equal(refsb, sb)) {
697 			printk(KERN_WARNING "md: %s has same UUID"
698 			       " but different superblock to %s\n",
699 			       b, bdevname(refdev->bdev, b2));
700 			goto abort;
701 		}
702 		ev1 = md_event(sb);
703 		ev2 = md_event(refsb);
704 		if (ev1 > ev2)
705 			ret = 1;
706 		else
707 			ret = 0;
708 	}
709 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
710 
711 	if (rdev->size < sb->size && sb->level > 1)
712 		/* "this cannot possibly happen" ... */
713 		ret = -EINVAL;
714 
715  abort:
716 	return ret;
717 }
718 
719 /*
720  * validate_super for 0.90.0
721  */
722 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
723 {
724 	mdp_disk_t *desc;
725 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
726 
727 	rdev->raid_disk = -1;
728 	rdev->flags = 0;
729 	if (mddev->raid_disks == 0) {
730 		mddev->major_version = 0;
731 		mddev->minor_version = sb->minor_version;
732 		mddev->patch_version = sb->patch_version;
733 		mddev->persistent = ! sb->not_persistent;
734 		mddev->chunk_size = sb->chunk_size;
735 		mddev->ctime = sb->ctime;
736 		mddev->utime = sb->utime;
737 		mddev->level = sb->level;
738 		mddev->clevel[0] = 0;
739 		mddev->layout = sb->layout;
740 		mddev->raid_disks = sb->raid_disks;
741 		mddev->size = sb->size;
742 		mddev->events = md_event(sb);
743 		mddev->bitmap_offset = 0;
744 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
745 
746 		if (mddev->minor_version >= 91) {
747 			mddev->reshape_position = sb->reshape_position;
748 			mddev->delta_disks = sb->delta_disks;
749 			mddev->new_level = sb->new_level;
750 			mddev->new_layout = sb->new_layout;
751 			mddev->new_chunk = sb->new_chunk;
752 		} else {
753 			mddev->reshape_position = MaxSector;
754 			mddev->delta_disks = 0;
755 			mddev->new_level = mddev->level;
756 			mddev->new_layout = mddev->layout;
757 			mddev->new_chunk = mddev->chunk_size;
758 		}
759 
760 		if (sb->state & (1<<MD_SB_CLEAN))
761 			mddev->recovery_cp = MaxSector;
762 		else {
763 			if (sb->events_hi == sb->cp_events_hi &&
764 				sb->events_lo == sb->cp_events_lo) {
765 				mddev->recovery_cp = sb->recovery_cp;
766 			} else
767 				mddev->recovery_cp = 0;
768 		}
769 
770 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
771 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
772 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
773 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
774 
775 		mddev->max_disks = MD_SB_DISKS;
776 
777 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
778 		    mddev->bitmap_file == NULL) {
779 			if (mddev->level != 1 && mddev->level != 4
780 			    && mddev->level != 5 && mddev->level != 6
781 			    && mddev->level != 10) {
782 				/* FIXME use a better test */
783 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
784 				return -EINVAL;
785 			}
786 			mddev->bitmap_offset = mddev->default_bitmap_offset;
787 		}
788 
789 	} else if (mddev->pers == NULL) {
790 		/* Insist on good event counter while assembling */
791 		__u64 ev1 = md_event(sb);
792 		++ev1;
793 		if (ev1 < mddev->events)
794 			return -EINVAL;
795 	} else if (mddev->bitmap) {
796 		/* if adding to array with a bitmap, then we can accept an
797 		 * older device ... but not too old.
798 		 */
799 		__u64 ev1 = md_event(sb);
800 		if (ev1 < mddev->bitmap->events_cleared)
801 			return 0;
802 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
803 		return 0;
804 
805 	if (mddev->level != LEVEL_MULTIPATH) {
806 		desc = sb->disks + rdev->desc_nr;
807 
808 		if (desc->state & (1<<MD_DISK_FAULTY))
809 			set_bit(Faulty, &rdev->flags);
810 		else if (desc->state & (1<<MD_DISK_SYNC) &&
811 			 desc->raid_disk < mddev->raid_disks) {
812 			set_bit(In_sync, &rdev->flags);
813 			rdev->raid_disk = desc->raid_disk;
814 		}
815 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
816 			set_bit(WriteMostly, &rdev->flags);
817 	} else /* MULTIPATH are always insync */
818 		set_bit(In_sync, &rdev->flags);
819 	return 0;
820 }
821 
822 /*
823  * sync_super for 0.90.0
824  */
825 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
826 {
827 	mdp_super_t *sb;
828 	struct list_head *tmp;
829 	mdk_rdev_t *rdev2;
830 	int next_spare = mddev->raid_disks;
831 
832 
833 	/* make rdev->sb match mddev data..
834 	 *
835 	 * 1/ zero out disks
836 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
837 	 * 3/ any empty disks < next_spare become removed
838 	 *
839 	 * disks[0] gets initialised to REMOVED because
840 	 * we cannot be sure from other fields if it has
841 	 * been initialised or not.
842 	 */
843 	int i;
844 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
845 
846 	rdev->sb_size = MD_SB_BYTES;
847 
848 	sb = (mdp_super_t*)page_address(rdev->sb_page);
849 
850 	memset(sb, 0, sizeof(*sb));
851 
852 	sb->md_magic = MD_SB_MAGIC;
853 	sb->major_version = mddev->major_version;
854 	sb->patch_version = mddev->patch_version;
855 	sb->gvalid_words  = 0; /* ignored */
856 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
857 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
858 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
859 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
860 
861 	sb->ctime = mddev->ctime;
862 	sb->level = mddev->level;
863 	sb->size  = mddev->size;
864 	sb->raid_disks = mddev->raid_disks;
865 	sb->md_minor = mddev->md_minor;
866 	sb->not_persistent = !mddev->persistent;
867 	sb->utime = mddev->utime;
868 	sb->state = 0;
869 	sb->events_hi = (mddev->events>>32);
870 	sb->events_lo = (u32)mddev->events;
871 
872 	if (mddev->reshape_position == MaxSector)
873 		sb->minor_version = 90;
874 	else {
875 		sb->minor_version = 91;
876 		sb->reshape_position = mddev->reshape_position;
877 		sb->new_level = mddev->new_level;
878 		sb->delta_disks = mddev->delta_disks;
879 		sb->new_layout = mddev->new_layout;
880 		sb->new_chunk = mddev->new_chunk;
881 	}
882 	mddev->minor_version = sb->minor_version;
883 	if (mddev->in_sync)
884 	{
885 		sb->recovery_cp = mddev->recovery_cp;
886 		sb->cp_events_hi = (mddev->events>>32);
887 		sb->cp_events_lo = (u32)mddev->events;
888 		if (mddev->recovery_cp == MaxSector)
889 			sb->state = (1<< MD_SB_CLEAN);
890 	} else
891 		sb->recovery_cp = 0;
892 
893 	sb->layout = mddev->layout;
894 	sb->chunk_size = mddev->chunk_size;
895 
896 	if (mddev->bitmap && mddev->bitmap_file == NULL)
897 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
898 
899 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
900 	ITERATE_RDEV(mddev,rdev2,tmp) {
901 		mdp_disk_t *d;
902 		int desc_nr;
903 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
904 		    && !test_bit(Faulty, &rdev2->flags))
905 			desc_nr = rdev2->raid_disk;
906 		else
907 			desc_nr = next_spare++;
908 		rdev2->desc_nr = desc_nr;
909 		d = &sb->disks[rdev2->desc_nr];
910 		nr_disks++;
911 		d->number = rdev2->desc_nr;
912 		d->major = MAJOR(rdev2->bdev->bd_dev);
913 		d->minor = MINOR(rdev2->bdev->bd_dev);
914 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
915 		    && !test_bit(Faulty, &rdev2->flags))
916 			d->raid_disk = rdev2->raid_disk;
917 		else
918 			d->raid_disk = rdev2->desc_nr; /* compatibility */
919 		if (test_bit(Faulty, &rdev2->flags))
920 			d->state = (1<<MD_DISK_FAULTY);
921 		else if (test_bit(In_sync, &rdev2->flags)) {
922 			d->state = (1<<MD_DISK_ACTIVE);
923 			d->state |= (1<<MD_DISK_SYNC);
924 			active++;
925 			working++;
926 		} else {
927 			d->state = 0;
928 			spare++;
929 			working++;
930 		}
931 		if (test_bit(WriteMostly, &rdev2->flags))
932 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
933 	}
934 	/* now set the "removed" and "faulty" bits on any missing devices */
935 	for (i=0 ; i < mddev->raid_disks ; i++) {
936 		mdp_disk_t *d = &sb->disks[i];
937 		if (d->state == 0 && d->number == 0) {
938 			d->number = i;
939 			d->raid_disk = i;
940 			d->state = (1<<MD_DISK_REMOVED);
941 			d->state |= (1<<MD_DISK_FAULTY);
942 			failed++;
943 		}
944 	}
945 	sb->nr_disks = nr_disks;
946 	sb->active_disks = active;
947 	sb->working_disks = working;
948 	sb->failed_disks = failed;
949 	sb->spare_disks = spare;
950 
951 	sb->this_disk = sb->disks[rdev->desc_nr];
952 	sb->sb_csum = calc_sb_csum(sb);
953 }
954 
955 /*
956  * version 1 superblock
957  */
958 
959 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
960 {
961 	unsigned int disk_csum, csum;
962 	unsigned long long newcsum;
963 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
964 	unsigned int *isuper = (unsigned int*)sb;
965 	int i;
966 
967 	disk_csum = sb->sb_csum;
968 	sb->sb_csum = 0;
969 	newcsum = 0;
970 	for (i=0; size>=4; size -= 4 )
971 		newcsum += le32_to_cpu(*isuper++);
972 
973 	if (size == 2)
974 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
975 
976 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
977 	sb->sb_csum = disk_csum;
978 	return cpu_to_le32(csum);
979 }
980 
981 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
982 {
983 	struct mdp_superblock_1 *sb;
984 	int ret;
985 	sector_t sb_offset;
986 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
987 	int bmask;
988 
989 	/*
990 	 * Calculate the position of the superblock.
991 	 * It is always aligned to a 4K boundary and
992 	 * depeding on minor_version, it can be:
993 	 * 0: At least 8K, but less than 12K, from end of device
994 	 * 1: At start of device
995 	 * 2: 4K from start of device.
996 	 */
997 	switch(minor_version) {
998 	case 0:
999 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1000 		sb_offset -= 8*2;
1001 		sb_offset &= ~(sector_t)(4*2-1);
1002 		/* convert from sectors to K */
1003 		sb_offset /= 2;
1004 		break;
1005 	case 1:
1006 		sb_offset = 0;
1007 		break;
1008 	case 2:
1009 		sb_offset = 4;
1010 		break;
1011 	default:
1012 		return -EINVAL;
1013 	}
1014 	rdev->sb_offset = sb_offset;
1015 
1016 	/* superblock is rarely larger than 1K, but it can be larger,
1017 	 * and it is safe to read 4k, so we do that
1018 	 */
1019 	ret = read_disk_sb(rdev, 4096);
1020 	if (ret) return ret;
1021 
1022 
1023 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1024 
1025 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1026 	    sb->major_version != cpu_to_le32(1) ||
1027 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1028 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1029 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1030 		return -EINVAL;
1031 
1032 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1033 		printk("md: invalid superblock checksum on %s\n",
1034 			bdevname(rdev->bdev,b));
1035 		return -EINVAL;
1036 	}
1037 	if (le64_to_cpu(sb->data_size) < 10) {
1038 		printk("md: data_size too small on %s\n",
1039 		       bdevname(rdev->bdev,b));
1040 		return -EINVAL;
1041 	}
1042 	rdev->preferred_minor = 0xffff;
1043 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1044 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1045 
1046 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1047 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1048 	if (rdev->sb_size & bmask)
1049 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1050 
1051 	if (refdev == 0)
1052 		ret = 1;
1053 	else {
1054 		__u64 ev1, ev2;
1055 		struct mdp_superblock_1 *refsb =
1056 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1057 
1058 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1059 		    sb->level != refsb->level ||
1060 		    sb->layout != refsb->layout ||
1061 		    sb->chunksize != refsb->chunksize) {
1062 			printk(KERN_WARNING "md: %s has strangely different"
1063 				" superblock to %s\n",
1064 				bdevname(rdev->bdev,b),
1065 				bdevname(refdev->bdev,b2));
1066 			return -EINVAL;
1067 		}
1068 		ev1 = le64_to_cpu(sb->events);
1069 		ev2 = le64_to_cpu(refsb->events);
1070 
1071 		if (ev1 > ev2)
1072 			ret = 1;
1073 		else
1074 			ret = 0;
1075 	}
1076 	if (minor_version)
1077 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1078 	else
1079 		rdev->size = rdev->sb_offset;
1080 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1081 		return -EINVAL;
1082 	rdev->size = le64_to_cpu(sb->data_size)/2;
1083 	if (le32_to_cpu(sb->chunksize))
1084 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1085 
1086 	if (le32_to_cpu(sb->size) > rdev->size*2)
1087 		return -EINVAL;
1088 	return ret;
1089 }
1090 
1091 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1092 {
1093 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1094 
1095 	rdev->raid_disk = -1;
1096 	rdev->flags = 0;
1097 	if (mddev->raid_disks == 0) {
1098 		mddev->major_version = 1;
1099 		mddev->patch_version = 0;
1100 		mddev->persistent = 1;
1101 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1102 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1103 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1104 		mddev->level = le32_to_cpu(sb->level);
1105 		mddev->clevel[0] = 0;
1106 		mddev->layout = le32_to_cpu(sb->layout);
1107 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1108 		mddev->size = le64_to_cpu(sb->size)/2;
1109 		mddev->events = le64_to_cpu(sb->events);
1110 		mddev->bitmap_offset = 0;
1111 		mddev->default_bitmap_offset = 1024 >> 9;
1112 
1113 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1114 		memcpy(mddev->uuid, sb->set_uuid, 16);
1115 
1116 		mddev->max_disks =  (4096-256)/2;
1117 
1118 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1119 		    mddev->bitmap_file == NULL ) {
1120 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1121 			    && mddev->level != 10) {
1122 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1123 				return -EINVAL;
1124 			}
1125 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1126 		}
1127 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1128 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1129 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1130 			mddev->new_level = le32_to_cpu(sb->new_level);
1131 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1132 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1133 		} else {
1134 			mddev->reshape_position = MaxSector;
1135 			mddev->delta_disks = 0;
1136 			mddev->new_level = mddev->level;
1137 			mddev->new_layout = mddev->layout;
1138 			mddev->new_chunk = mddev->chunk_size;
1139 		}
1140 
1141 	} else if (mddev->pers == NULL) {
1142 		/* Insist of good event counter while assembling */
1143 		__u64 ev1 = le64_to_cpu(sb->events);
1144 		++ev1;
1145 		if (ev1 < mddev->events)
1146 			return -EINVAL;
1147 	} else if (mddev->bitmap) {
1148 		/* If adding to array with a bitmap, then we can accept an
1149 		 * older device, but not too old.
1150 		 */
1151 		__u64 ev1 = le64_to_cpu(sb->events);
1152 		if (ev1 < mddev->bitmap->events_cleared)
1153 			return 0;
1154 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1155 		return 0;
1156 
1157 	if (mddev->level != LEVEL_MULTIPATH) {
1158 		int role;
1159 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1160 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1161 		switch(role) {
1162 		case 0xffff: /* spare */
1163 			break;
1164 		case 0xfffe: /* faulty */
1165 			set_bit(Faulty, &rdev->flags);
1166 			break;
1167 		default:
1168 			set_bit(In_sync, &rdev->flags);
1169 			rdev->raid_disk = role;
1170 			break;
1171 		}
1172 		if (sb->devflags & WriteMostly1)
1173 			set_bit(WriteMostly, &rdev->flags);
1174 	} else /* MULTIPATH are always insync */
1175 		set_bit(In_sync, &rdev->flags);
1176 
1177 	return 0;
1178 }
1179 
1180 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1181 {
1182 	struct mdp_superblock_1 *sb;
1183 	struct list_head *tmp;
1184 	mdk_rdev_t *rdev2;
1185 	int max_dev, i;
1186 	/* make rdev->sb match mddev and rdev data. */
1187 
1188 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1189 
1190 	sb->feature_map = 0;
1191 	sb->pad0 = 0;
1192 	memset(sb->pad1, 0, sizeof(sb->pad1));
1193 	memset(sb->pad2, 0, sizeof(sb->pad2));
1194 	memset(sb->pad3, 0, sizeof(sb->pad3));
1195 
1196 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1197 	sb->events = cpu_to_le64(mddev->events);
1198 	if (mddev->in_sync)
1199 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1200 	else
1201 		sb->resync_offset = cpu_to_le64(0);
1202 
1203 	sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
1204 
1205 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1206 	sb->size = cpu_to_le64(mddev->size<<1);
1207 
1208 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1209 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1210 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1211 	}
1212 	if (mddev->reshape_position != MaxSector) {
1213 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1214 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1215 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1216 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1217 		sb->new_level = cpu_to_le32(mddev->new_level);
1218 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1219 	}
1220 
1221 	max_dev = 0;
1222 	ITERATE_RDEV(mddev,rdev2,tmp)
1223 		if (rdev2->desc_nr+1 > max_dev)
1224 			max_dev = rdev2->desc_nr+1;
1225 
1226 	sb->max_dev = cpu_to_le32(max_dev);
1227 	for (i=0; i<max_dev;i++)
1228 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1229 
1230 	ITERATE_RDEV(mddev,rdev2,tmp) {
1231 		i = rdev2->desc_nr;
1232 		if (test_bit(Faulty, &rdev2->flags))
1233 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1234 		else if (test_bit(In_sync, &rdev2->flags))
1235 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1236 		else
1237 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1238 	}
1239 
1240 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1241 	sb->sb_csum = calc_sb_1_csum(sb);
1242 }
1243 
1244 
1245 static struct super_type super_types[] = {
1246 	[0] = {
1247 		.name	= "0.90.0",
1248 		.owner	= THIS_MODULE,
1249 		.load_super	= super_90_load,
1250 		.validate_super	= super_90_validate,
1251 		.sync_super	= super_90_sync,
1252 	},
1253 	[1] = {
1254 		.name	= "md-1",
1255 		.owner	= THIS_MODULE,
1256 		.load_super	= super_1_load,
1257 		.validate_super	= super_1_validate,
1258 		.sync_super	= super_1_sync,
1259 	},
1260 };
1261 
1262 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1263 {
1264 	struct list_head *tmp;
1265 	mdk_rdev_t *rdev;
1266 
1267 	ITERATE_RDEV(mddev,rdev,tmp)
1268 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1269 			return rdev;
1270 
1271 	return NULL;
1272 }
1273 
1274 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1275 {
1276 	struct list_head *tmp;
1277 	mdk_rdev_t *rdev;
1278 
1279 	ITERATE_RDEV(mddev1,rdev,tmp)
1280 		if (match_dev_unit(mddev2, rdev))
1281 			return 1;
1282 
1283 	return 0;
1284 }
1285 
1286 static LIST_HEAD(pending_raid_disks);
1287 
1288 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1289 {
1290 	mdk_rdev_t *same_pdev;
1291 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1292 	struct kobject *ko;
1293 	char *s;
1294 
1295 	if (rdev->mddev) {
1296 		MD_BUG();
1297 		return -EINVAL;
1298 	}
1299 	/* make sure rdev->size exceeds mddev->size */
1300 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1301 		if (mddev->pers)
1302 			/* Cannot change size, so fail */
1303 			return -ENOSPC;
1304 		else
1305 			mddev->size = rdev->size;
1306 	}
1307 	same_pdev = match_dev_unit(mddev, rdev);
1308 	if (same_pdev)
1309 		printk(KERN_WARNING
1310 			"%s: WARNING: %s appears to be on the same physical"
1311 	 		" disk as %s. True\n     protection against single-disk"
1312 			" failure might be compromised.\n",
1313 			mdname(mddev), bdevname(rdev->bdev,b),
1314 			bdevname(same_pdev->bdev,b2));
1315 
1316 	/* Verify rdev->desc_nr is unique.
1317 	 * If it is -1, assign a free number, else
1318 	 * check number is not in use
1319 	 */
1320 	if (rdev->desc_nr < 0) {
1321 		int choice = 0;
1322 		if (mddev->pers) choice = mddev->raid_disks;
1323 		while (find_rdev_nr(mddev, choice))
1324 			choice++;
1325 		rdev->desc_nr = choice;
1326 	} else {
1327 		if (find_rdev_nr(mddev, rdev->desc_nr))
1328 			return -EBUSY;
1329 	}
1330 	bdevname(rdev->bdev,b);
1331 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1332 		return -ENOMEM;
1333 	while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1334 		*s = '!';
1335 
1336 	list_add(&rdev->same_set, &mddev->disks);
1337 	rdev->mddev = mddev;
1338 	printk(KERN_INFO "md: bind<%s>\n", b);
1339 
1340 	rdev->kobj.parent = &mddev->kobj;
1341 	kobject_add(&rdev->kobj);
1342 
1343 	if (rdev->bdev->bd_part)
1344 		ko = &rdev->bdev->bd_part->kobj;
1345 	else
1346 		ko = &rdev->bdev->bd_disk->kobj;
1347 	sysfs_create_link(&rdev->kobj, ko, "block");
1348 	bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1349 	return 0;
1350 }
1351 
1352 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1353 {
1354 	char b[BDEVNAME_SIZE];
1355 	if (!rdev->mddev) {
1356 		MD_BUG();
1357 		return;
1358 	}
1359 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1360 	list_del_init(&rdev->same_set);
1361 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1362 	rdev->mddev = NULL;
1363 	sysfs_remove_link(&rdev->kobj, "block");
1364 	kobject_del(&rdev->kobj);
1365 }
1366 
1367 /*
1368  * prevent the device from being mounted, repartitioned or
1369  * otherwise reused by a RAID array (or any other kernel
1370  * subsystem), by bd_claiming the device.
1371  */
1372 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1373 {
1374 	int err = 0;
1375 	struct block_device *bdev;
1376 	char b[BDEVNAME_SIZE];
1377 
1378 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1379 	if (IS_ERR(bdev)) {
1380 		printk(KERN_ERR "md: could not open %s.\n",
1381 			__bdevname(dev, b));
1382 		return PTR_ERR(bdev);
1383 	}
1384 	err = bd_claim(bdev, rdev);
1385 	if (err) {
1386 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1387 			bdevname(bdev, b));
1388 		blkdev_put(bdev);
1389 		return err;
1390 	}
1391 	rdev->bdev = bdev;
1392 	return err;
1393 }
1394 
1395 static void unlock_rdev(mdk_rdev_t *rdev)
1396 {
1397 	struct block_device *bdev = rdev->bdev;
1398 	rdev->bdev = NULL;
1399 	if (!bdev)
1400 		MD_BUG();
1401 	bd_release(bdev);
1402 	blkdev_put(bdev);
1403 }
1404 
1405 void md_autodetect_dev(dev_t dev);
1406 
1407 static void export_rdev(mdk_rdev_t * rdev)
1408 {
1409 	char b[BDEVNAME_SIZE];
1410 	printk(KERN_INFO "md: export_rdev(%s)\n",
1411 		bdevname(rdev->bdev,b));
1412 	if (rdev->mddev)
1413 		MD_BUG();
1414 	free_disk_sb(rdev);
1415 	list_del_init(&rdev->same_set);
1416 #ifndef MODULE
1417 	md_autodetect_dev(rdev->bdev->bd_dev);
1418 #endif
1419 	unlock_rdev(rdev);
1420 	kobject_put(&rdev->kobj);
1421 }
1422 
1423 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1424 {
1425 	unbind_rdev_from_array(rdev);
1426 	export_rdev(rdev);
1427 }
1428 
1429 static void export_array(mddev_t *mddev)
1430 {
1431 	struct list_head *tmp;
1432 	mdk_rdev_t *rdev;
1433 
1434 	ITERATE_RDEV(mddev,rdev,tmp) {
1435 		if (!rdev->mddev) {
1436 			MD_BUG();
1437 			continue;
1438 		}
1439 		kick_rdev_from_array(rdev);
1440 	}
1441 	if (!list_empty(&mddev->disks))
1442 		MD_BUG();
1443 	mddev->raid_disks = 0;
1444 	mddev->major_version = 0;
1445 }
1446 
1447 static void print_desc(mdp_disk_t *desc)
1448 {
1449 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1450 		desc->major,desc->minor,desc->raid_disk,desc->state);
1451 }
1452 
1453 static void print_sb(mdp_super_t *sb)
1454 {
1455 	int i;
1456 
1457 	printk(KERN_INFO
1458 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1459 		sb->major_version, sb->minor_version, sb->patch_version,
1460 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1461 		sb->ctime);
1462 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1463 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1464 		sb->md_minor, sb->layout, sb->chunk_size);
1465 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1466 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1467 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1468 		sb->failed_disks, sb->spare_disks,
1469 		sb->sb_csum, (unsigned long)sb->events_lo);
1470 
1471 	printk(KERN_INFO);
1472 	for (i = 0; i < MD_SB_DISKS; i++) {
1473 		mdp_disk_t *desc;
1474 
1475 		desc = sb->disks + i;
1476 		if (desc->number || desc->major || desc->minor ||
1477 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1478 			printk("     D %2d: ", i);
1479 			print_desc(desc);
1480 		}
1481 	}
1482 	printk(KERN_INFO "md:     THIS: ");
1483 	print_desc(&sb->this_disk);
1484 
1485 }
1486 
1487 static void print_rdev(mdk_rdev_t *rdev)
1488 {
1489 	char b[BDEVNAME_SIZE];
1490 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1491 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1492 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1493 	        rdev->desc_nr);
1494 	if (rdev->sb_loaded) {
1495 		printk(KERN_INFO "md: rdev superblock:\n");
1496 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1497 	} else
1498 		printk(KERN_INFO "md: no rdev superblock!\n");
1499 }
1500 
1501 void md_print_devices(void)
1502 {
1503 	struct list_head *tmp, *tmp2;
1504 	mdk_rdev_t *rdev;
1505 	mddev_t *mddev;
1506 	char b[BDEVNAME_SIZE];
1507 
1508 	printk("\n");
1509 	printk("md:	**********************************\n");
1510 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1511 	printk("md:	**********************************\n");
1512 	ITERATE_MDDEV(mddev,tmp) {
1513 
1514 		if (mddev->bitmap)
1515 			bitmap_print_sb(mddev->bitmap);
1516 		else
1517 			printk("%s: ", mdname(mddev));
1518 		ITERATE_RDEV(mddev,rdev,tmp2)
1519 			printk("<%s>", bdevname(rdev->bdev,b));
1520 		printk("\n");
1521 
1522 		ITERATE_RDEV(mddev,rdev,tmp2)
1523 			print_rdev(rdev);
1524 	}
1525 	printk("md:	**********************************\n");
1526 	printk("\n");
1527 }
1528 
1529 
1530 static void sync_sbs(mddev_t * mddev)
1531 {
1532 	mdk_rdev_t *rdev;
1533 	struct list_head *tmp;
1534 
1535 	ITERATE_RDEV(mddev,rdev,tmp) {
1536 		super_types[mddev->major_version].
1537 			sync_super(mddev, rdev);
1538 		rdev->sb_loaded = 1;
1539 	}
1540 }
1541 
1542 void md_update_sb(mddev_t * mddev)
1543 {
1544 	int err;
1545 	struct list_head *tmp;
1546 	mdk_rdev_t *rdev;
1547 	int sync_req;
1548 
1549 repeat:
1550 	spin_lock_irq(&mddev->write_lock);
1551 	sync_req = mddev->in_sync;
1552 	mddev->utime = get_seconds();
1553 	mddev->events ++;
1554 
1555 	if (!mddev->events) {
1556 		/*
1557 		 * oops, this 64-bit counter should never wrap.
1558 		 * Either we are in around ~1 trillion A.C., assuming
1559 		 * 1 reboot per second, or we have a bug:
1560 		 */
1561 		MD_BUG();
1562 		mddev->events --;
1563 	}
1564 	mddev->sb_dirty = 2;
1565 	sync_sbs(mddev);
1566 
1567 	/*
1568 	 * do not write anything to disk if using
1569 	 * nonpersistent superblocks
1570 	 */
1571 	if (!mddev->persistent) {
1572 		mddev->sb_dirty = 0;
1573 		spin_unlock_irq(&mddev->write_lock);
1574 		wake_up(&mddev->sb_wait);
1575 		return;
1576 	}
1577 	spin_unlock_irq(&mddev->write_lock);
1578 
1579 	dprintk(KERN_INFO
1580 		"md: updating %s RAID superblock on device (in sync %d)\n",
1581 		mdname(mddev),mddev->in_sync);
1582 
1583 	err = bitmap_update_sb(mddev->bitmap);
1584 	ITERATE_RDEV(mddev,rdev,tmp) {
1585 		char b[BDEVNAME_SIZE];
1586 		dprintk(KERN_INFO "md: ");
1587 		if (test_bit(Faulty, &rdev->flags))
1588 			dprintk("(skipping faulty ");
1589 
1590 		dprintk("%s ", bdevname(rdev->bdev,b));
1591 		if (!test_bit(Faulty, &rdev->flags)) {
1592 			md_super_write(mddev,rdev,
1593 				       rdev->sb_offset<<1, rdev->sb_size,
1594 				       rdev->sb_page);
1595 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1596 				bdevname(rdev->bdev,b),
1597 				(unsigned long long)rdev->sb_offset);
1598 
1599 		} else
1600 			dprintk(")\n");
1601 		if (mddev->level == LEVEL_MULTIPATH)
1602 			/* only need to write one superblock... */
1603 			break;
1604 	}
1605 	md_super_wait(mddev);
1606 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1607 
1608 	spin_lock_irq(&mddev->write_lock);
1609 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1610 		/* have to write it out again */
1611 		spin_unlock_irq(&mddev->write_lock);
1612 		goto repeat;
1613 	}
1614 	mddev->sb_dirty = 0;
1615 	spin_unlock_irq(&mddev->write_lock);
1616 	wake_up(&mddev->sb_wait);
1617 
1618 }
1619 EXPORT_SYMBOL_GPL(md_update_sb);
1620 
1621 /* words written to sysfs files may, or my not, be \n terminated.
1622  * We want to accept with case. For this we use cmd_match.
1623  */
1624 static int cmd_match(const char *cmd, const char *str)
1625 {
1626 	/* See if cmd, written into a sysfs file, matches
1627 	 * str.  They must either be the same, or cmd can
1628 	 * have a trailing newline
1629 	 */
1630 	while (*cmd && *str && *cmd == *str) {
1631 		cmd++;
1632 		str++;
1633 	}
1634 	if (*cmd == '\n')
1635 		cmd++;
1636 	if (*str || *cmd)
1637 		return 0;
1638 	return 1;
1639 }
1640 
1641 struct rdev_sysfs_entry {
1642 	struct attribute attr;
1643 	ssize_t (*show)(mdk_rdev_t *, char *);
1644 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1645 };
1646 
1647 static ssize_t
1648 state_show(mdk_rdev_t *rdev, char *page)
1649 {
1650 	char *sep = "";
1651 	int len=0;
1652 
1653 	if (test_bit(Faulty, &rdev->flags)) {
1654 		len+= sprintf(page+len, "%sfaulty",sep);
1655 		sep = ",";
1656 	}
1657 	if (test_bit(In_sync, &rdev->flags)) {
1658 		len += sprintf(page+len, "%sin_sync",sep);
1659 		sep = ",";
1660 	}
1661 	if (!test_bit(Faulty, &rdev->flags) &&
1662 	    !test_bit(In_sync, &rdev->flags)) {
1663 		len += sprintf(page+len, "%sspare", sep);
1664 		sep = ",";
1665 	}
1666 	return len+sprintf(page+len, "\n");
1667 }
1668 
1669 static struct rdev_sysfs_entry
1670 rdev_state = __ATTR_RO(state);
1671 
1672 static ssize_t
1673 super_show(mdk_rdev_t *rdev, char *page)
1674 {
1675 	if (rdev->sb_loaded && rdev->sb_size) {
1676 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1677 		return rdev->sb_size;
1678 	} else
1679 		return 0;
1680 }
1681 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1682 
1683 static ssize_t
1684 errors_show(mdk_rdev_t *rdev, char *page)
1685 {
1686 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1687 }
1688 
1689 static ssize_t
1690 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1691 {
1692 	char *e;
1693 	unsigned long n = simple_strtoul(buf, &e, 10);
1694 	if (*buf && (*e == 0 || *e == '\n')) {
1695 		atomic_set(&rdev->corrected_errors, n);
1696 		return len;
1697 	}
1698 	return -EINVAL;
1699 }
1700 static struct rdev_sysfs_entry rdev_errors =
1701 __ATTR(errors, 0644, errors_show, errors_store);
1702 
1703 static ssize_t
1704 slot_show(mdk_rdev_t *rdev, char *page)
1705 {
1706 	if (rdev->raid_disk < 0)
1707 		return sprintf(page, "none\n");
1708 	else
1709 		return sprintf(page, "%d\n", rdev->raid_disk);
1710 }
1711 
1712 static ssize_t
1713 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1714 {
1715 	char *e;
1716 	int slot = simple_strtoul(buf, &e, 10);
1717 	if (strncmp(buf, "none", 4)==0)
1718 		slot = -1;
1719 	else if (e==buf || (*e && *e!= '\n'))
1720 		return -EINVAL;
1721 	if (rdev->mddev->pers)
1722 		/* Cannot set slot in active array (yet) */
1723 		return -EBUSY;
1724 	if (slot >= rdev->mddev->raid_disks)
1725 		return -ENOSPC;
1726 	rdev->raid_disk = slot;
1727 	/* assume it is working */
1728 	rdev->flags = 0;
1729 	set_bit(In_sync, &rdev->flags);
1730 	return len;
1731 }
1732 
1733 
1734 static struct rdev_sysfs_entry rdev_slot =
1735 __ATTR(slot, 0644, slot_show, slot_store);
1736 
1737 static ssize_t
1738 offset_show(mdk_rdev_t *rdev, char *page)
1739 {
1740 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1741 }
1742 
1743 static ssize_t
1744 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1745 {
1746 	char *e;
1747 	unsigned long long offset = simple_strtoull(buf, &e, 10);
1748 	if (e==buf || (*e && *e != '\n'))
1749 		return -EINVAL;
1750 	if (rdev->mddev->pers)
1751 		return -EBUSY;
1752 	rdev->data_offset = offset;
1753 	return len;
1754 }
1755 
1756 static struct rdev_sysfs_entry rdev_offset =
1757 __ATTR(offset, 0644, offset_show, offset_store);
1758 
1759 static ssize_t
1760 rdev_size_show(mdk_rdev_t *rdev, char *page)
1761 {
1762 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1763 }
1764 
1765 static ssize_t
1766 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1767 {
1768 	char *e;
1769 	unsigned long long size = simple_strtoull(buf, &e, 10);
1770 	if (e==buf || (*e && *e != '\n'))
1771 		return -EINVAL;
1772 	if (rdev->mddev->pers)
1773 		return -EBUSY;
1774 	rdev->size = size;
1775 	if (size < rdev->mddev->size || rdev->mddev->size == 0)
1776 		rdev->mddev->size = size;
1777 	return len;
1778 }
1779 
1780 static struct rdev_sysfs_entry rdev_size =
1781 __ATTR(size, 0644, rdev_size_show, rdev_size_store);
1782 
1783 static struct attribute *rdev_default_attrs[] = {
1784 	&rdev_state.attr,
1785 	&rdev_super.attr,
1786 	&rdev_errors.attr,
1787 	&rdev_slot.attr,
1788 	&rdev_offset.attr,
1789 	&rdev_size.attr,
1790 	NULL,
1791 };
1792 static ssize_t
1793 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1794 {
1795 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1796 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1797 
1798 	if (!entry->show)
1799 		return -EIO;
1800 	return entry->show(rdev, page);
1801 }
1802 
1803 static ssize_t
1804 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1805 	      const char *page, size_t length)
1806 {
1807 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1808 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1809 
1810 	if (!entry->store)
1811 		return -EIO;
1812 	return entry->store(rdev, page, length);
1813 }
1814 
1815 static void rdev_free(struct kobject *ko)
1816 {
1817 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1818 	kfree(rdev);
1819 }
1820 static struct sysfs_ops rdev_sysfs_ops = {
1821 	.show		= rdev_attr_show,
1822 	.store		= rdev_attr_store,
1823 };
1824 static struct kobj_type rdev_ktype = {
1825 	.release	= rdev_free,
1826 	.sysfs_ops	= &rdev_sysfs_ops,
1827 	.default_attrs	= rdev_default_attrs,
1828 };
1829 
1830 /*
1831  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1832  *
1833  * mark the device faulty if:
1834  *
1835  *   - the device is nonexistent (zero size)
1836  *   - the device has no valid superblock
1837  *
1838  * a faulty rdev _never_ has rdev->sb set.
1839  */
1840 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1841 {
1842 	char b[BDEVNAME_SIZE];
1843 	int err;
1844 	mdk_rdev_t *rdev;
1845 	sector_t size;
1846 
1847 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1848 	if (!rdev) {
1849 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1850 		return ERR_PTR(-ENOMEM);
1851 	}
1852 
1853 	if ((err = alloc_disk_sb(rdev)))
1854 		goto abort_free;
1855 
1856 	err = lock_rdev(rdev, newdev);
1857 	if (err)
1858 		goto abort_free;
1859 
1860 	rdev->kobj.parent = NULL;
1861 	rdev->kobj.ktype = &rdev_ktype;
1862 	kobject_init(&rdev->kobj);
1863 
1864 	rdev->desc_nr = -1;
1865 	rdev->flags = 0;
1866 	rdev->data_offset = 0;
1867 	atomic_set(&rdev->nr_pending, 0);
1868 	atomic_set(&rdev->read_errors, 0);
1869 	atomic_set(&rdev->corrected_errors, 0);
1870 
1871 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1872 	if (!size) {
1873 		printk(KERN_WARNING
1874 			"md: %s has zero or unknown size, marking faulty!\n",
1875 			bdevname(rdev->bdev,b));
1876 		err = -EINVAL;
1877 		goto abort_free;
1878 	}
1879 
1880 	if (super_format >= 0) {
1881 		err = super_types[super_format].
1882 			load_super(rdev, NULL, super_minor);
1883 		if (err == -EINVAL) {
1884 			printk(KERN_WARNING
1885 				"md: %s has invalid sb, not importing!\n",
1886 				bdevname(rdev->bdev,b));
1887 			goto abort_free;
1888 		}
1889 		if (err < 0) {
1890 			printk(KERN_WARNING
1891 				"md: could not read %s's sb, not importing!\n",
1892 				bdevname(rdev->bdev,b));
1893 			goto abort_free;
1894 		}
1895 	}
1896 	INIT_LIST_HEAD(&rdev->same_set);
1897 
1898 	return rdev;
1899 
1900 abort_free:
1901 	if (rdev->sb_page) {
1902 		if (rdev->bdev)
1903 			unlock_rdev(rdev);
1904 		free_disk_sb(rdev);
1905 	}
1906 	kfree(rdev);
1907 	return ERR_PTR(err);
1908 }
1909 
1910 /*
1911  * Check a full RAID array for plausibility
1912  */
1913 
1914 
1915 static void analyze_sbs(mddev_t * mddev)
1916 {
1917 	int i;
1918 	struct list_head *tmp;
1919 	mdk_rdev_t *rdev, *freshest;
1920 	char b[BDEVNAME_SIZE];
1921 
1922 	freshest = NULL;
1923 	ITERATE_RDEV(mddev,rdev,tmp)
1924 		switch (super_types[mddev->major_version].
1925 			load_super(rdev, freshest, mddev->minor_version)) {
1926 		case 1:
1927 			freshest = rdev;
1928 			break;
1929 		case 0:
1930 			break;
1931 		default:
1932 			printk( KERN_ERR \
1933 				"md: fatal superblock inconsistency in %s"
1934 				" -- removing from array\n",
1935 				bdevname(rdev->bdev,b));
1936 			kick_rdev_from_array(rdev);
1937 		}
1938 
1939 
1940 	super_types[mddev->major_version].
1941 		validate_super(mddev, freshest);
1942 
1943 	i = 0;
1944 	ITERATE_RDEV(mddev,rdev,tmp) {
1945 		if (rdev != freshest)
1946 			if (super_types[mddev->major_version].
1947 			    validate_super(mddev, rdev)) {
1948 				printk(KERN_WARNING "md: kicking non-fresh %s"
1949 					" from array!\n",
1950 					bdevname(rdev->bdev,b));
1951 				kick_rdev_from_array(rdev);
1952 				continue;
1953 			}
1954 		if (mddev->level == LEVEL_MULTIPATH) {
1955 			rdev->desc_nr = i++;
1956 			rdev->raid_disk = rdev->desc_nr;
1957 			set_bit(In_sync, &rdev->flags);
1958 		}
1959 	}
1960 
1961 
1962 
1963 	if (mddev->recovery_cp != MaxSector &&
1964 	    mddev->level >= 1)
1965 		printk(KERN_ERR "md: %s: raid array is not clean"
1966 		       " -- starting background reconstruction\n",
1967 		       mdname(mddev));
1968 
1969 }
1970 
1971 static ssize_t
1972 level_show(mddev_t *mddev, char *page)
1973 {
1974 	struct mdk_personality *p = mddev->pers;
1975 	if (p)
1976 		return sprintf(page, "%s\n", p->name);
1977 	else if (mddev->clevel[0])
1978 		return sprintf(page, "%s\n", mddev->clevel);
1979 	else if (mddev->level != LEVEL_NONE)
1980 		return sprintf(page, "%d\n", mddev->level);
1981 	else
1982 		return 0;
1983 }
1984 
1985 static ssize_t
1986 level_store(mddev_t *mddev, const char *buf, size_t len)
1987 {
1988 	int rv = len;
1989 	if (mddev->pers)
1990 		return -EBUSY;
1991 	if (len == 0)
1992 		return 0;
1993 	if (len >= sizeof(mddev->clevel))
1994 		return -ENOSPC;
1995 	strncpy(mddev->clevel, buf, len);
1996 	if (mddev->clevel[len-1] == '\n')
1997 		len--;
1998 	mddev->clevel[len] = 0;
1999 	mddev->level = LEVEL_NONE;
2000 	return rv;
2001 }
2002 
2003 static struct md_sysfs_entry md_level =
2004 __ATTR(level, 0644, level_show, level_store);
2005 
2006 static ssize_t
2007 raid_disks_show(mddev_t *mddev, char *page)
2008 {
2009 	if (mddev->raid_disks == 0)
2010 		return 0;
2011 	return sprintf(page, "%d\n", mddev->raid_disks);
2012 }
2013 
2014 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2015 
2016 static ssize_t
2017 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2018 {
2019 	/* can only set raid_disks if array is not yet active */
2020 	char *e;
2021 	int rv = 0;
2022 	unsigned long n = simple_strtoul(buf, &e, 10);
2023 
2024 	if (!*buf || (*e && *e != '\n'))
2025 		return -EINVAL;
2026 
2027 	if (mddev->pers)
2028 		rv = update_raid_disks(mddev, n);
2029 	else
2030 		mddev->raid_disks = n;
2031 	return rv ? rv : len;
2032 }
2033 static struct md_sysfs_entry md_raid_disks =
2034 __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store);
2035 
2036 static ssize_t
2037 chunk_size_show(mddev_t *mddev, char *page)
2038 {
2039 	return sprintf(page, "%d\n", mddev->chunk_size);
2040 }
2041 
2042 static ssize_t
2043 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2044 {
2045 	/* can only set chunk_size if array is not yet active */
2046 	char *e;
2047 	unsigned long n = simple_strtoul(buf, &e, 10);
2048 
2049 	if (mddev->pers)
2050 		return -EBUSY;
2051 	if (!*buf || (*e && *e != '\n'))
2052 		return -EINVAL;
2053 
2054 	mddev->chunk_size = n;
2055 	return len;
2056 }
2057 static struct md_sysfs_entry md_chunk_size =
2058 __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
2059 
2060 static ssize_t
2061 null_show(mddev_t *mddev, char *page)
2062 {
2063 	return -EINVAL;
2064 }
2065 
2066 static ssize_t
2067 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2068 {
2069 	/* buf must be %d:%d\n? giving major and minor numbers */
2070 	/* The new device is added to the array.
2071 	 * If the array has a persistent superblock, we read the
2072 	 * superblock to initialise info and check validity.
2073 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2074 	 * which mainly checks size.
2075 	 */
2076 	char *e;
2077 	int major = simple_strtoul(buf, &e, 10);
2078 	int minor;
2079 	dev_t dev;
2080 	mdk_rdev_t *rdev;
2081 	int err;
2082 
2083 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2084 		return -EINVAL;
2085 	minor = simple_strtoul(e+1, &e, 10);
2086 	if (*e && *e != '\n')
2087 		return -EINVAL;
2088 	dev = MKDEV(major, minor);
2089 	if (major != MAJOR(dev) ||
2090 	    minor != MINOR(dev))
2091 		return -EOVERFLOW;
2092 
2093 
2094 	if (mddev->persistent) {
2095 		rdev = md_import_device(dev, mddev->major_version,
2096 					mddev->minor_version);
2097 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2098 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2099 						       mdk_rdev_t, same_set);
2100 			err = super_types[mddev->major_version]
2101 				.load_super(rdev, rdev0, mddev->minor_version);
2102 			if (err < 0)
2103 				goto out;
2104 		}
2105 	} else
2106 		rdev = md_import_device(dev, -1, -1);
2107 
2108 	if (IS_ERR(rdev))
2109 		return PTR_ERR(rdev);
2110 	err = bind_rdev_to_array(rdev, mddev);
2111  out:
2112 	if (err)
2113 		export_rdev(rdev);
2114 	return err ? err : len;
2115 }
2116 
2117 static struct md_sysfs_entry md_new_device =
2118 __ATTR(new_dev, 0200, null_show, new_dev_store);
2119 
2120 static ssize_t
2121 size_show(mddev_t *mddev, char *page)
2122 {
2123 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2124 }
2125 
2126 static int update_size(mddev_t *mddev, unsigned long size);
2127 
2128 static ssize_t
2129 size_store(mddev_t *mddev, const char *buf, size_t len)
2130 {
2131 	/* If array is inactive, we can reduce the component size, but
2132 	 * not increase it (except from 0).
2133 	 * If array is active, we can try an on-line resize
2134 	 */
2135 	char *e;
2136 	int err = 0;
2137 	unsigned long long size = simple_strtoull(buf, &e, 10);
2138 	if (!*buf || *buf == '\n' ||
2139 	    (*e && *e != '\n'))
2140 		return -EINVAL;
2141 
2142 	if (mddev->pers) {
2143 		err = update_size(mddev, size);
2144 		md_update_sb(mddev);
2145 	} else {
2146 		if (mddev->size == 0 ||
2147 		    mddev->size > size)
2148 			mddev->size = size;
2149 		else
2150 			err = -ENOSPC;
2151 	}
2152 	return err ? err : len;
2153 }
2154 
2155 static struct md_sysfs_entry md_size =
2156 __ATTR(component_size, 0644, size_show, size_store);
2157 
2158 
2159 /* Metdata version.
2160  * This is either 'none' for arrays with externally managed metadata,
2161  * or N.M for internally known formats
2162  */
2163 static ssize_t
2164 metadata_show(mddev_t *mddev, char *page)
2165 {
2166 	if (mddev->persistent)
2167 		return sprintf(page, "%d.%d\n",
2168 			       mddev->major_version, mddev->minor_version);
2169 	else
2170 		return sprintf(page, "none\n");
2171 }
2172 
2173 static ssize_t
2174 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2175 {
2176 	int major, minor;
2177 	char *e;
2178 	if (!list_empty(&mddev->disks))
2179 		return -EBUSY;
2180 
2181 	if (cmd_match(buf, "none")) {
2182 		mddev->persistent = 0;
2183 		mddev->major_version = 0;
2184 		mddev->minor_version = 90;
2185 		return len;
2186 	}
2187 	major = simple_strtoul(buf, &e, 10);
2188 	if (e==buf || *e != '.')
2189 		return -EINVAL;
2190 	buf = e+1;
2191 	minor = simple_strtoul(buf, &e, 10);
2192 	if (e==buf || *e != '\n')
2193 		return -EINVAL;
2194 	if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2195 	    super_types[major].name == NULL)
2196 		return -ENOENT;
2197 	mddev->major_version = major;
2198 	mddev->minor_version = minor;
2199 	mddev->persistent = 1;
2200 	return len;
2201 }
2202 
2203 static struct md_sysfs_entry md_metadata =
2204 __ATTR(metadata_version, 0644, metadata_show, metadata_store);
2205 
2206 static ssize_t
2207 action_show(mddev_t *mddev, char *page)
2208 {
2209 	char *type = "idle";
2210 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2211 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2212 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2213 			type = "reshape";
2214 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2215 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2216 				type = "resync";
2217 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2218 				type = "check";
2219 			else
2220 				type = "repair";
2221 		} else
2222 			type = "recover";
2223 	}
2224 	return sprintf(page, "%s\n", type);
2225 }
2226 
2227 static ssize_t
2228 action_store(mddev_t *mddev, const char *page, size_t len)
2229 {
2230 	if (!mddev->pers || !mddev->pers->sync_request)
2231 		return -EINVAL;
2232 
2233 	if (cmd_match(page, "idle")) {
2234 		if (mddev->sync_thread) {
2235 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2236 			md_unregister_thread(mddev->sync_thread);
2237 			mddev->sync_thread = NULL;
2238 			mddev->recovery = 0;
2239 		}
2240 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2241 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2242 		return -EBUSY;
2243 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2244 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2245 	else if (cmd_match(page, "reshape")) {
2246 		int err;
2247 		if (mddev->pers->start_reshape == NULL)
2248 			return -EINVAL;
2249 		err = mddev->pers->start_reshape(mddev);
2250 		if (err)
2251 			return err;
2252 	} else {
2253 		if (cmd_match(page, "check"))
2254 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2255 		else if (cmd_match(page, "repair"))
2256 			return -EINVAL;
2257 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2258 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2259 	}
2260 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2261 	md_wakeup_thread(mddev->thread);
2262 	return len;
2263 }
2264 
2265 static ssize_t
2266 mismatch_cnt_show(mddev_t *mddev, char *page)
2267 {
2268 	return sprintf(page, "%llu\n",
2269 		       (unsigned long long) mddev->resync_mismatches);
2270 }
2271 
2272 static struct md_sysfs_entry
2273 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2274 
2275 
2276 static struct md_sysfs_entry
2277 md_mismatches = __ATTR_RO(mismatch_cnt);
2278 
2279 static ssize_t
2280 sync_min_show(mddev_t *mddev, char *page)
2281 {
2282 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
2283 		       mddev->sync_speed_min ? "local": "system");
2284 }
2285 
2286 static ssize_t
2287 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2288 {
2289 	int min;
2290 	char *e;
2291 	if (strncmp(buf, "system", 6)==0) {
2292 		mddev->sync_speed_min = 0;
2293 		return len;
2294 	}
2295 	min = simple_strtoul(buf, &e, 10);
2296 	if (buf == e || (*e && *e != '\n') || min <= 0)
2297 		return -EINVAL;
2298 	mddev->sync_speed_min = min;
2299 	return len;
2300 }
2301 
2302 static struct md_sysfs_entry md_sync_min =
2303 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2304 
2305 static ssize_t
2306 sync_max_show(mddev_t *mddev, char *page)
2307 {
2308 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
2309 		       mddev->sync_speed_max ? "local": "system");
2310 }
2311 
2312 static ssize_t
2313 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2314 {
2315 	int max;
2316 	char *e;
2317 	if (strncmp(buf, "system", 6)==0) {
2318 		mddev->sync_speed_max = 0;
2319 		return len;
2320 	}
2321 	max = simple_strtoul(buf, &e, 10);
2322 	if (buf == e || (*e && *e != '\n') || max <= 0)
2323 		return -EINVAL;
2324 	mddev->sync_speed_max = max;
2325 	return len;
2326 }
2327 
2328 static struct md_sysfs_entry md_sync_max =
2329 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2330 
2331 
2332 static ssize_t
2333 sync_speed_show(mddev_t *mddev, char *page)
2334 {
2335 	unsigned long resync, dt, db;
2336 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2337 	dt = ((jiffies - mddev->resync_mark) / HZ);
2338 	if (!dt) dt++;
2339 	db = resync - (mddev->resync_mark_cnt);
2340 	return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2341 }
2342 
2343 static struct md_sysfs_entry
2344 md_sync_speed = __ATTR_RO(sync_speed);
2345 
2346 static ssize_t
2347 sync_completed_show(mddev_t *mddev, char *page)
2348 {
2349 	unsigned long max_blocks, resync;
2350 
2351 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2352 		max_blocks = mddev->resync_max_sectors;
2353 	else
2354 		max_blocks = mddev->size << 1;
2355 
2356 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2357 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2358 }
2359 
2360 static struct md_sysfs_entry
2361 md_sync_completed = __ATTR_RO(sync_completed);
2362 
2363 static ssize_t
2364 suspend_lo_show(mddev_t *mddev, char *page)
2365 {
2366 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2367 }
2368 
2369 static ssize_t
2370 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2371 {
2372 	char *e;
2373 	unsigned long long new = simple_strtoull(buf, &e, 10);
2374 
2375 	if (mddev->pers->quiesce == NULL)
2376 		return -EINVAL;
2377 	if (buf == e || (*e && *e != '\n'))
2378 		return -EINVAL;
2379 	if (new >= mddev->suspend_hi ||
2380 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2381 		mddev->suspend_lo = new;
2382 		mddev->pers->quiesce(mddev, 2);
2383 		return len;
2384 	} else
2385 		return -EINVAL;
2386 }
2387 static struct md_sysfs_entry md_suspend_lo =
2388 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2389 
2390 
2391 static ssize_t
2392 suspend_hi_show(mddev_t *mddev, char *page)
2393 {
2394 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2395 }
2396 
2397 static ssize_t
2398 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2399 {
2400 	char *e;
2401 	unsigned long long new = simple_strtoull(buf, &e, 10);
2402 
2403 	if (mddev->pers->quiesce == NULL)
2404 		return -EINVAL;
2405 	if (buf == e || (*e && *e != '\n'))
2406 		return -EINVAL;
2407 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2408 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2409 		mddev->suspend_hi = new;
2410 		mddev->pers->quiesce(mddev, 1);
2411 		mddev->pers->quiesce(mddev, 0);
2412 		return len;
2413 	} else
2414 		return -EINVAL;
2415 }
2416 static struct md_sysfs_entry md_suspend_hi =
2417 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2418 
2419 
2420 static struct attribute *md_default_attrs[] = {
2421 	&md_level.attr,
2422 	&md_raid_disks.attr,
2423 	&md_chunk_size.attr,
2424 	&md_size.attr,
2425 	&md_metadata.attr,
2426 	&md_new_device.attr,
2427 	NULL,
2428 };
2429 
2430 static struct attribute *md_redundancy_attrs[] = {
2431 	&md_scan_mode.attr,
2432 	&md_mismatches.attr,
2433 	&md_sync_min.attr,
2434 	&md_sync_max.attr,
2435 	&md_sync_speed.attr,
2436 	&md_sync_completed.attr,
2437 	&md_suspend_lo.attr,
2438 	&md_suspend_hi.attr,
2439 	NULL,
2440 };
2441 static struct attribute_group md_redundancy_group = {
2442 	.name = NULL,
2443 	.attrs = md_redundancy_attrs,
2444 };
2445 
2446 
2447 static ssize_t
2448 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2449 {
2450 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2451 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2452 	ssize_t rv;
2453 
2454 	if (!entry->show)
2455 		return -EIO;
2456 	rv = mddev_lock(mddev);
2457 	if (!rv) {
2458 		rv = entry->show(mddev, page);
2459 		mddev_unlock(mddev);
2460 	}
2461 	return rv;
2462 }
2463 
2464 static ssize_t
2465 md_attr_store(struct kobject *kobj, struct attribute *attr,
2466 	      const char *page, size_t length)
2467 {
2468 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2469 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2470 	ssize_t rv;
2471 
2472 	if (!entry->store)
2473 		return -EIO;
2474 	rv = mddev_lock(mddev);
2475 	if (!rv) {
2476 		rv = entry->store(mddev, page, length);
2477 		mddev_unlock(mddev);
2478 	}
2479 	return rv;
2480 }
2481 
2482 static void md_free(struct kobject *ko)
2483 {
2484 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
2485 	kfree(mddev);
2486 }
2487 
2488 static struct sysfs_ops md_sysfs_ops = {
2489 	.show	= md_attr_show,
2490 	.store	= md_attr_store,
2491 };
2492 static struct kobj_type md_ktype = {
2493 	.release	= md_free,
2494 	.sysfs_ops	= &md_sysfs_ops,
2495 	.default_attrs	= md_default_attrs,
2496 };
2497 
2498 int mdp_major = 0;
2499 
2500 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2501 {
2502 	static DEFINE_MUTEX(disks_mutex);
2503 	mddev_t *mddev = mddev_find(dev);
2504 	struct gendisk *disk;
2505 	int partitioned = (MAJOR(dev) != MD_MAJOR);
2506 	int shift = partitioned ? MdpMinorShift : 0;
2507 	int unit = MINOR(dev) >> shift;
2508 
2509 	if (!mddev)
2510 		return NULL;
2511 
2512 	mutex_lock(&disks_mutex);
2513 	if (mddev->gendisk) {
2514 		mutex_unlock(&disks_mutex);
2515 		mddev_put(mddev);
2516 		return NULL;
2517 	}
2518 	disk = alloc_disk(1 << shift);
2519 	if (!disk) {
2520 		mutex_unlock(&disks_mutex);
2521 		mddev_put(mddev);
2522 		return NULL;
2523 	}
2524 	disk->major = MAJOR(dev);
2525 	disk->first_minor = unit << shift;
2526 	if (partitioned) {
2527 		sprintf(disk->disk_name, "md_d%d", unit);
2528 		sprintf(disk->devfs_name, "md/d%d", unit);
2529 	} else {
2530 		sprintf(disk->disk_name, "md%d", unit);
2531 		sprintf(disk->devfs_name, "md/%d", unit);
2532 	}
2533 	disk->fops = &md_fops;
2534 	disk->private_data = mddev;
2535 	disk->queue = mddev->queue;
2536 	add_disk(disk);
2537 	mddev->gendisk = disk;
2538 	mutex_unlock(&disks_mutex);
2539 	mddev->kobj.parent = &disk->kobj;
2540 	mddev->kobj.k_name = NULL;
2541 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2542 	mddev->kobj.ktype = &md_ktype;
2543 	kobject_register(&mddev->kobj);
2544 	return NULL;
2545 }
2546 
2547 void md_wakeup_thread(mdk_thread_t *thread);
2548 
2549 static void md_safemode_timeout(unsigned long data)
2550 {
2551 	mddev_t *mddev = (mddev_t *) data;
2552 
2553 	mddev->safemode = 1;
2554 	md_wakeup_thread(mddev->thread);
2555 }
2556 
2557 static int start_dirty_degraded;
2558 
2559 static int do_md_run(mddev_t * mddev)
2560 {
2561 	int err;
2562 	int chunk_size;
2563 	struct list_head *tmp;
2564 	mdk_rdev_t *rdev;
2565 	struct gendisk *disk;
2566 	struct mdk_personality *pers;
2567 	char b[BDEVNAME_SIZE];
2568 
2569 	if (list_empty(&mddev->disks))
2570 		/* cannot run an array with no devices.. */
2571 		return -EINVAL;
2572 
2573 	if (mddev->pers)
2574 		return -EBUSY;
2575 
2576 	/*
2577 	 * Analyze all RAID superblock(s)
2578 	 */
2579 	if (!mddev->raid_disks)
2580 		analyze_sbs(mddev);
2581 
2582 	chunk_size = mddev->chunk_size;
2583 
2584 	if (chunk_size) {
2585 		if (chunk_size > MAX_CHUNK_SIZE) {
2586 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
2587 				chunk_size, MAX_CHUNK_SIZE);
2588 			return -EINVAL;
2589 		}
2590 		/*
2591 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2592 		 */
2593 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
2594 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2595 			return -EINVAL;
2596 		}
2597 		if (chunk_size < PAGE_SIZE) {
2598 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2599 				chunk_size, PAGE_SIZE);
2600 			return -EINVAL;
2601 		}
2602 
2603 		/* devices must have minimum size of one chunk */
2604 		ITERATE_RDEV(mddev,rdev,tmp) {
2605 			if (test_bit(Faulty, &rdev->flags))
2606 				continue;
2607 			if (rdev->size < chunk_size / 1024) {
2608 				printk(KERN_WARNING
2609 					"md: Dev %s smaller than chunk_size:"
2610 					" %lluk < %dk\n",
2611 					bdevname(rdev->bdev,b),
2612 					(unsigned long long)rdev->size,
2613 					chunk_size / 1024);
2614 				return -EINVAL;
2615 			}
2616 		}
2617 	}
2618 
2619 #ifdef CONFIG_KMOD
2620 	if (mddev->level != LEVEL_NONE)
2621 		request_module("md-level-%d", mddev->level);
2622 	else if (mddev->clevel[0])
2623 		request_module("md-%s", mddev->clevel);
2624 #endif
2625 
2626 	/*
2627 	 * Drop all container device buffers, from now on
2628 	 * the only valid external interface is through the md
2629 	 * device.
2630 	 * Also find largest hardsector size
2631 	 */
2632 	ITERATE_RDEV(mddev,rdev,tmp) {
2633 		if (test_bit(Faulty, &rdev->flags))
2634 			continue;
2635 		sync_blockdev(rdev->bdev);
2636 		invalidate_bdev(rdev->bdev, 0);
2637 	}
2638 
2639 	md_probe(mddev->unit, NULL, NULL);
2640 	disk = mddev->gendisk;
2641 	if (!disk)
2642 		return -ENOMEM;
2643 
2644 	spin_lock(&pers_lock);
2645 	pers = find_pers(mddev->level, mddev->clevel);
2646 	if (!pers || !try_module_get(pers->owner)) {
2647 		spin_unlock(&pers_lock);
2648 		if (mddev->level != LEVEL_NONE)
2649 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
2650 			       mddev->level);
2651 		else
2652 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
2653 			       mddev->clevel);
2654 		return -EINVAL;
2655 	}
2656 	mddev->pers = pers;
2657 	spin_unlock(&pers_lock);
2658 	mddev->level = pers->level;
2659 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2660 
2661 	if (mddev->reshape_position != MaxSector &&
2662 	    pers->start_reshape == NULL) {
2663 		/* This personality cannot handle reshaping... */
2664 		mddev->pers = NULL;
2665 		module_put(pers->owner);
2666 		return -EINVAL;
2667 	}
2668 
2669 	mddev->recovery = 0;
2670 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2671 	mddev->barriers_work = 1;
2672 	mddev->ok_start_degraded = start_dirty_degraded;
2673 
2674 	if (start_readonly)
2675 		mddev->ro = 2; /* read-only, but switch on first write */
2676 
2677 	err = mddev->pers->run(mddev);
2678 	if (!err && mddev->pers->sync_request) {
2679 		err = bitmap_create(mddev);
2680 		if (err) {
2681 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2682 			       mdname(mddev), err);
2683 			mddev->pers->stop(mddev);
2684 		}
2685 	}
2686 	if (err) {
2687 		printk(KERN_ERR "md: pers->run() failed ...\n");
2688 		module_put(mddev->pers->owner);
2689 		mddev->pers = NULL;
2690 		bitmap_destroy(mddev);
2691 		return err;
2692 	}
2693 	if (mddev->pers->sync_request)
2694 		sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2695 	else if (mddev->ro == 2) /* auto-readonly not meaningful */
2696 		mddev->ro = 0;
2697 
2698  	atomic_set(&mddev->writes_pending,0);
2699 	mddev->safemode = 0;
2700 	mddev->safemode_timer.function = md_safemode_timeout;
2701 	mddev->safemode_timer.data = (unsigned long) mddev;
2702 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2703 	mddev->in_sync = 1;
2704 
2705 	ITERATE_RDEV(mddev,rdev,tmp)
2706 		if (rdev->raid_disk >= 0) {
2707 			char nm[20];
2708 			sprintf(nm, "rd%d", rdev->raid_disk);
2709 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2710 		}
2711 
2712 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2713 	md_wakeup_thread(mddev->thread);
2714 
2715 	if (mddev->sb_dirty)
2716 		md_update_sb(mddev);
2717 
2718 	set_capacity(disk, mddev->array_size<<1);
2719 
2720 	/* If we call blk_queue_make_request here, it will
2721 	 * re-initialise max_sectors etc which may have been
2722 	 * refined inside -> run.  So just set the bits we need to set.
2723 	 * Most initialisation happended when we called
2724 	 * blk_queue_make_request(..., md_fail_request)
2725 	 * earlier.
2726 	 */
2727 	mddev->queue->queuedata = mddev;
2728 	mddev->queue->make_request_fn = mddev->pers->make_request;
2729 
2730 	mddev->changed = 1;
2731 	md_new_event(mddev);
2732 	return 0;
2733 }
2734 
2735 static int restart_array(mddev_t *mddev)
2736 {
2737 	struct gendisk *disk = mddev->gendisk;
2738 	int err;
2739 
2740 	/*
2741 	 * Complain if it has no devices
2742 	 */
2743 	err = -ENXIO;
2744 	if (list_empty(&mddev->disks))
2745 		goto out;
2746 
2747 	if (mddev->pers) {
2748 		err = -EBUSY;
2749 		if (!mddev->ro)
2750 			goto out;
2751 
2752 		mddev->safemode = 0;
2753 		mddev->ro = 0;
2754 		set_disk_ro(disk, 0);
2755 
2756 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2757 			mdname(mddev));
2758 		/*
2759 		 * Kick recovery or resync if necessary
2760 		 */
2761 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2762 		md_wakeup_thread(mddev->thread);
2763 		err = 0;
2764 	} else {
2765 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2766 			mdname(mddev));
2767 		err = -EINVAL;
2768 	}
2769 
2770 out:
2771 	return err;
2772 }
2773 
2774 static int do_md_stop(mddev_t * mddev, int ro)
2775 {
2776 	int err = 0;
2777 	struct gendisk *disk = mddev->gendisk;
2778 
2779 	if (mddev->pers) {
2780 		if (atomic_read(&mddev->active)>2) {
2781 			printk("md: %s still in use.\n",mdname(mddev));
2782 			return -EBUSY;
2783 		}
2784 
2785 		if (mddev->sync_thread) {
2786 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2787 			md_unregister_thread(mddev->sync_thread);
2788 			mddev->sync_thread = NULL;
2789 		}
2790 
2791 		del_timer_sync(&mddev->safemode_timer);
2792 
2793 		invalidate_partition(disk, 0);
2794 
2795 		if (ro) {
2796 			err  = -ENXIO;
2797 			if (mddev->ro==1)
2798 				goto out;
2799 			mddev->ro = 1;
2800 		} else {
2801 			bitmap_flush(mddev);
2802 			md_super_wait(mddev);
2803 			if (mddev->ro)
2804 				set_disk_ro(disk, 0);
2805 			blk_queue_make_request(mddev->queue, md_fail_request);
2806 			mddev->pers->stop(mddev);
2807 			if (mddev->pers->sync_request)
2808 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2809 
2810 			module_put(mddev->pers->owner);
2811 			mddev->pers = NULL;
2812 			if (mddev->ro)
2813 				mddev->ro = 0;
2814 		}
2815 		if (!mddev->in_sync) {
2816 			/* mark array as shutdown cleanly */
2817 			mddev->in_sync = 1;
2818 			md_update_sb(mddev);
2819 		}
2820 		if (ro)
2821 			set_disk_ro(disk, 1);
2822 	}
2823 
2824 	/*
2825 	 * Free resources if final stop
2826 	 */
2827 	if (!ro) {
2828 		mdk_rdev_t *rdev;
2829 		struct list_head *tmp;
2830 		struct gendisk *disk;
2831 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2832 
2833 		bitmap_destroy(mddev);
2834 		if (mddev->bitmap_file) {
2835 			atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2836 			fput(mddev->bitmap_file);
2837 			mddev->bitmap_file = NULL;
2838 		}
2839 		mddev->bitmap_offset = 0;
2840 
2841 		ITERATE_RDEV(mddev,rdev,tmp)
2842 			if (rdev->raid_disk >= 0) {
2843 				char nm[20];
2844 				sprintf(nm, "rd%d", rdev->raid_disk);
2845 				sysfs_remove_link(&mddev->kobj, nm);
2846 			}
2847 
2848 		export_array(mddev);
2849 
2850 		mddev->array_size = 0;
2851 		disk = mddev->gendisk;
2852 		if (disk)
2853 			set_capacity(disk, 0);
2854 		mddev->changed = 1;
2855 	} else
2856 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2857 			mdname(mddev));
2858 	err = 0;
2859 	md_new_event(mddev);
2860 out:
2861 	return err;
2862 }
2863 
2864 static void autorun_array(mddev_t *mddev)
2865 {
2866 	mdk_rdev_t *rdev;
2867 	struct list_head *tmp;
2868 	int err;
2869 
2870 	if (list_empty(&mddev->disks))
2871 		return;
2872 
2873 	printk(KERN_INFO "md: running: ");
2874 
2875 	ITERATE_RDEV(mddev,rdev,tmp) {
2876 		char b[BDEVNAME_SIZE];
2877 		printk("<%s>", bdevname(rdev->bdev,b));
2878 	}
2879 	printk("\n");
2880 
2881 	err = do_md_run (mddev);
2882 	if (err) {
2883 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2884 		do_md_stop (mddev, 0);
2885 	}
2886 }
2887 
2888 /*
2889  * lets try to run arrays based on all disks that have arrived
2890  * until now. (those are in pending_raid_disks)
2891  *
2892  * the method: pick the first pending disk, collect all disks with
2893  * the same UUID, remove all from the pending list and put them into
2894  * the 'same_array' list. Then order this list based on superblock
2895  * update time (freshest comes first), kick out 'old' disks and
2896  * compare superblocks. If everything's fine then run it.
2897  *
2898  * If "unit" is allocated, then bump its reference count
2899  */
2900 static void autorun_devices(int part)
2901 {
2902 	struct list_head *tmp;
2903 	mdk_rdev_t *rdev0, *rdev;
2904 	mddev_t *mddev;
2905 	char b[BDEVNAME_SIZE];
2906 
2907 	printk(KERN_INFO "md: autorun ...\n");
2908 	while (!list_empty(&pending_raid_disks)) {
2909 		dev_t dev;
2910 		LIST_HEAD(candidates);
2911 		rdev0 = list_entry(pending_raid_disks.next,
2912 					 mdk_rdev_t, same_set);
2913 
2914 		printk(KERN_INFO "md: considering %s ...\n",
2915 			bdevname(rdev0->bdev,b));
2916 		INIT_LIST_HEAD(&candidates);
2917 		ITERATE_RDEV_PENDING(rdev,tmp)
2918 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2919 				printk(KERN_INFO "md:  adding %s ...\n",
2920 					bdevname(rdev->bdev,b));
2921 				list_move(&rdev->same_set, &candidates);
2922 			}
2923 		/*
2924 		 * now we have a set of devices, with all of them having
2925 		 * mostly sane superblocks. It's time to allocate the
2926 		 * mddev.
2927 		 */
2928 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2929 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2930 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2931 			break;
2932 		}
2933 		if (part)
2934 			dev = MKDEV(mdp_major,
2935 				    rdev0->preferred_minor << MdpMinorShift);
2936 		else
2937 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2938 
2939 		md_probe(dev, NULL, NULL);
2940 		mddev = mddev_find(dev);
2941 		if (!mddev) {
2942 			printk(KERN_ERR
2943 				"md: cannot allocate memory for md drive.\n");
2944 			break;
2945 		}
2946 		if (mddev_lock(mddev))
2947 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2948 			       mdname(mddev));
2949 		else if (mddev->raid_disks || mddev->major_version
2950 			 || !list_empty(&mddev->disks)) {
2951 			printk(KERN_WARNING
2952 				"md: %s already running, cannot run %s\n",
2953 				mdname(mddev), bdevname(rdev0->bdev,b));
2954 			mddev_unlock(mddev);
2955 		} else {
2956 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2957 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2958 				list_del_init(&rdev->same_set);
2959 				if (bind_rdev_to_array(rdev, mddev))
2960 					export_rdev(rdev);
2961 			}
2962 			autorun_array(mddev);
2963 			mddev_unlock(mddev);
2964 		}
2965 		/* on success, candidates will be empty, on error
2966 		 * it won't...
2967 		 */
2968 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2969 			export_rdev(rdev);
2970 		mddev_put(mddev);
2971 	}
2972 	printk(KERN_INFO "md: ... autorun DONE.\n");
2973 }
2974 
2975 /*
2976  * import RAID devices based on one partition
2977  * if possible, the array gets run as well.
2978  */
2979 
2980 static int autostart_array(dev_t startdev)
2981 {
2982 	char b[BDEVNAME_SIZE];
2983 	int err = -EINVAL, i;
2984 	mdp_super_t *sb = NULL;
2985 	mdk_rdev_t *start_rdev = NULL, *rdev;
2986 
2987 	start_rdev = md_import_device(startdev, 0, 0);
2988 	if (IS_ERR(start_rdev))
2989 		return err;
2990 
2991 
2992 	/* NOTE: this can only work for 0.90.0 superblocks */
2993 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2994 	if (sb->major_version != 0 ||
2995 	    sb->minor_version != 90 ) {
2996 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2997 		export_rdev(start_rdev);
2998 		return err;
2999 	}
3000 
3001 	if (test_bit(Faulty, &start_rdev->flags)) {
3002 		printk(KERN_WARNING
3003 			"md: can not autostart based on faulty %s!\n",
3004 			bdevname(start_rdev->bdev,b));
3005 		export_rdev(start_rdev);
3006 		return err;
3007 	}
3008 	list_add(&start_rdev->same_set, &pending_raid_disks);
3009 
3010 	for (i = 0; i < MD_SB_DISKS; i++) {
3011 		mdp_disk_t *desc = sb->disks + i;
3012 		dev_t dev = MKDEV(desc->major, desc->minor);
3013 
3014 		if (!dev)
3015 			continue;
3016 		if (dev == startdev)
3017 			continue;
3018 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
3019 			continue;
3020 		rdev = md_import_device(dev, 0, 0);
3021 		if (IS_ERR(rdev))
3022 			continue;
3023 
3024 		list_add(&rdev->same_set, &pending_raid_disks);
3025 	}
3026 
3027 	/*
3028 	 * possibly return codes
3029 	 */
3030 	autorun_devices(0);
3031 	return 0;
3032 
3033 }
3034 
3035 
3036 static int get_version(void __user * arg)
3037 {
3038 	mdu_version_t ver;
3039 
3040 	ver.major = MD_MAJOR_VERSION;
3041 	ver.minor = MD_MINOR_VERSION;
3042 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
3043 
3044 	if (copy_to_user(arg, &ver, sizeof(ver)))
3045 		return -EFAULT;
3046 
3047 	return 0;
3048 }
3049 
3050 static int get_array_info(mddev_t * mddev, void __user * arg)
3051 {
3052 	mdu_array_info_t info;
3053 	int nr,working,active,failed,spare;
3054 	mdk_rdev_t *rdev;
3055 	struct list_head *tmp;
3056 
3057 	nr=working=active=failed=spare=0;
3058 	ITERATE_RDEV(mddev,rdev,tmp) {
3059 		nr++;
3060 		if (test_bit(Faulty, &rdev->flags))
3061 			failed++;
3062 		else {
3063 			working++;
3064 			if (test_bit(In_sync, &rdev->flags))
3065 				active++;
3066 			else
3067 				spare++;
3068 		}
3069 	}
3070 
3071 	info.major_version = mddev->major_version;
3072 	info.minor_version = mddev->minor_version;
3073 	info.patch_version = MD_PATCHLEVEL_VERSION;
3074 	info.ctime         = mddev->ctime;
3075 	info.level         = mddev->level;
3076 	info.size          = mddev->size;
3077 	if (info.size != mddev->size) /* overflow */
3078 		info.size = -1;
3079 	info.nr_disks      = nr;
3080 	info.raid_disks    = mddev->raid_disks;
3081 	info.md_minor      = mddev->md_minor;
3082 	info.not_persistent= !mddev->persistent;
3083 
3084 	info.utime         = mddev->utime;
3085 	info.state         = 0;
3086 	if (mddev->in_sync)
3087 		info.state = (1<<MD_SB_CLEAN);
3088 	if (mddev->bitmap && mddev->bitmap_offset)
3089 		info.state = (1<<MD_SB_BITMAP_PRESENT);
3090 	info.active_disks  = active;
3091 	info.working_disks = working;
3092 	info.failed_disks  = failed;
3093 	info.spare_disks   = spare;
3094 
3095 	info.layout        = mddev->layout;
3096 	info.chunk_size    = mddev->chunk_size;
3097 
3098 	if (copy_to_user(arg, &info, sizeof(info)))
3099 		return -EFAULT;
3100 
3101 	return 0;
3102 }
3103 
3104 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3105 {
3106 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3107 	char *ptr, *buf = NULL;
3108 	int err = -ENOMEM;
3109 
3110 	file = kmalloc(sizeof(*file), GFP_KERNEL);
3111 	if (!file)
3112 		goto out;
3113 
3114 	/* bitmap disabled, zero the first byte and copy out */
3115 	if (!mddev->bitmap || !mddev->bitmap->file) {
3116 		file->pathname[0] = '\0';
3117 		goto copy_out;
3118 	}
3119 
3120 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3121 	if (!buf)
3122 		goto out;
3123 
3124 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3125 	if (!ptr)
3126 		goto out;
3127 
3128 	strcpy(file->pathname, ptr);
3129 
3130 copy_out:
3131 	err = 0;
3132 	if (copy_to_user(arg, file, sizeof(*file)))
3133 		err = -EFAULT;
3134 out:
3135 	kfree(buf);
3136 	kfree(file);
3137 	return err;
3138 }
3139 
3140 static int get_disk_info(mddev_t * mddev, void __user * arg)
3141 {
3142 	mdu_disk_info_t info;
3143 	unsigned int nr;
3144 	mdk_rdev_t *rdev;
3145 
3146 	if (copy_from_user(&info, arg, sizeof(info)))
3147 		return -EFAULT;
3148 
3149 	nr = info.number;
3150 
3151 	rdev = find_rdev_nr(mddev, nr);
3152 	if (rdev) {
3153 		info.major = MAJOR(rdev->bdev->bd_dev);
3154 		info.minor = MINOR(rdev->bdev->bd_dev);
3155 		info.raid_disk = rdev->raid_disk;
3156 		info.state = 0;
3157 		if (test_bit(Faulty, &rdev->flags))
3158 			info.state |= (1<<MD_DISK_FAULTY);
3159 		else if (test_bit(In_sync, &rdev->flags)) {
3160 			info.state |= (1<<MD_DISK_ACTIVE);
3161 			info.state |= (1<<MD_DISK_SYNC);
3162 		}
3163 		if (test_bit(WriteMostly, &rdev->flags))
3164 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
3165 	} else {
3166 		info.major = info.minor = 0;
3167 		info.raid_disk = -1;
3168 		info.state = (1<<MD_DISK_REMOVED);
3169 	}
3170 
3171 	if (copy_to_user(arg, &info, sizeof(info)))
3172 		return -EFAULT;
3173 
3174 	return 0;
3175 }
3176 
3177 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3178 {
3179 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3180 	mdk_rdev_t *rdev;
3181 	dev_t dev = MKDEV(info->major,info->minor);
3182 
3183 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3184 		return -EOVERFLOW;
3185 
3186 	if (!mddev->raid_disks) {
3187 		int err;
3188 		/* expecting a device which has a superblock */
3189 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3190 		if (IS_ERR(rdev)) {
3191 			printk(KERN_WARNING
3192 				"md: md_import_device returned %ld\n",
3193 				PTR_ERR(rdev));
3194 			return PTR_ERR(rdev);
3195 		}
3196 		if (!list_empty(&mddev->disks)) {
3197 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3198 							mdk_rdev_t, same_set);
3199 			int err = super_types[mddev->major_version]
3200 				.load_super(rdev, rdev0, mddev->minor_version);
3201 			if (err < 0) {
3202 				printk(KERN_WARNING
3203 					"md: %s has different UUID to %s\n",
3204 					bdevname(rdev->bdev,b),
3205 					bdevname(rdev0->bdev,b2));
3206 				export_rdev(rdev);
3207 				return -EINVAL;
3208 			}
3209 		}
3210 		err = bind_rdev_to_array(rdev, mddev);
3211 		if (err)
3212 			export_rdev(rdev);
3213 		return err;
3214 	}
3215 
3216 	/*
3217 	 * add_new_disk can be used once the array is assembled
3218 	 * to add "hot spares".  They must already have a superblock
3219 	 * written
3220 	 */
3221 	if (mddev->pers) {
3222 		int err;
3223 		if (!mddev->pers->hot_add_disk) {
3224 			printk(KERN_WARNING
3225 				"%s: personality does not support diskops!\n",
3226 			       mdname(mddev));
3227 			return -EINVAL;
3228 		}
3229 		if (mddev->persistent)
3230 			rdev = md_import_device(dev, mddev->major_version,
3231 						mddev->minor_version);
3232 		else
3233 			rdev = md_import_device(dev, -1, -1);
3234 		if (IS_ERR(rdev)) {
3235 			printk(KERN_WARNING
3236 				"md: md_import_device returned %ld\n",
3237 				PTR_ERR(rdev));
3238 			return PTR_ERR(rdev);
3239 		}
3240 		/* set save_raid_disk if appropriate */
3241 		if (!mddev->persistent) {
3242 			if (info->state & (1<<MD_DISK_SYNC)  &&
3243 			    info->raid_disk < mddev->raid_disks)
3244 				rdev->raid_disk = info->raid_disk;
3245 			else
3246 				rdev->raid_disk = -1;
3247 		} else
3248 			super_types[mddev->major_version].
3249 				validate_super(mddev, rdev);
3250 		rdev->saved_raid_disk = rdev->raid_disk;
3251 
3252 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
3253 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3254 			set_bit(WriteMostly, &rdev->flags);
3255 
3256 		rdev->raid_disk = -1;
3257 		err = bind_rdev_to_array(rdev, mddev);
3258 		if (err)
3259 			export_rdev(rdev);
3260 
3261 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3262 		md_wakeup_thread(mddev->thread);
3263 		return err;
3264 	}
3265 
3266 	/* otherwise, add_new_disk is only allowed
3267 	 * for major_version==0 superblocks
3268 	 */
3269 	if (mddev->major_version != 0) {
3270 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3271 		       mdname(mddev));
3272 		return -EINVAL;
3273 	}
3274 
3275 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
3276 		int err;
3277 		rdev = md_import_device (dev, -1, 0);
3278 		if (IS_ERR(rdev)) {
3279 			printk(KERN_WARNING
3280 				"md: error, md_import_device() returned %ld\n",
3281 				PTR_ERR(rdev));
3282 			return PTR_ERR(rdev);
3283 		}
3284 		rdev->desc_nr = info->number;
3285 		if (info->raid_disk < mddev->raid_disks)
3286 			rdev->raid_disk = info->raid_disk;
3287 		else
3288 			rdev->raid_disk = -1;
3289 
3290 		rdev->flags = 0;
3291 
3292 		if (rdev->raid_disk < mddev->raid_disks)
3293 			if (info->state & (1<<MD_DISK_SYNC))
3294 				set_bit(In_sync, &rdev->flags);
3295 
3296 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3297 			set_bit(WriteMostly, &rdev->flags);
3298 
3299 		if (!mddev->persistent) {
3300 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
3301 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3302 		} else
3303 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3304 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3305 
3306 		err = bind_rdev_to_array(rdev, mddev);
3307 		if (err) {
3308 			export_rdev(rdev);
3309 			return err;
3310 		}
3311 	}
3312 
3313 	return 0;
3314 }
3315 
3316 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3317 {
3318 	char b[BDEVNAME_SIZE];
3319 	mdk_rdev_t *rdev;
3320 
3321 	if (!mddev->pers)
3322 		return -ENODEV;
3323 
3324 	rdev = find_rdev(mddev, dev);
3325 	if (!rdev)
3326 		return -ENXIO;
3327 
3328 	if (rdev->raid_disk >= 0)
3329 		goto busy;
3330 
3331 	kick_rdev_from_array(rdev);
3332 	md_update_sb(mddev);
3333 	md_new_event(mddev);
3334 
3335 	return 0;
3336 busy:
3337 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3338 		bdevname(rdev->bdev,b), mdname(mddev));
3339 	return -EBUSY;
3340 }
3341 
3342 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3343 {
3344 	char b[BDEVNAME_SIZE];
3345 	int err;
3346 	unsigned int size;
3347 	mdk_rdev_t *rdev;
3348 
3349 	if (!mddev->pers)
3350 		return -ENODEV;
3351 
3352 	if (mddev->major_version != 0) {
3353 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3354 			" version-0 superblocks.\n",
3355 			mdname(mddev));
3356 		return -EINVAL;
3357 	}
3358 	if (!mddev->pers->hot_add_disk) {
3359 		printk(KERN_WARNING
3360 			"%s: personality does not support diskops!\n",
3361 			mdname(mddev));
3362 		return -EINVAL;
3363 	}
3364 
3365 	rdev = md_import_device (dev, -1, 0);
3366 	if (IS_ERR(rdev)) {
3367 		printk(KERN_WARNING
3368 			"md: error, md_import_device() returned %ld\n",
3369 			PTR_ERR(rdev));
3370 		return -EINVAL;
3371 	}
3372 
3373 	if (mddev->persistent)
3374 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3375 	else
3376 		rdev->sb_offset =
3377 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3378 
3379 	size = calc_dev_size(rdev, mddev->chunk_size);
3380 	rdev->size = size;
3381 
3382 	if (test_bit(Faulty, &rdev->flags)) {
3383 		printk(KERN_WARNING
3384 			"md: can not hot-add faulty %s disk to %s!\n",
3385 			bdevname(rdev->bdev,b), mdname(mddev));
3386 		err = -EINVAL;
3387 		goto abort_export;
3388 	}
3389 	clear_bit(In_sync, &rdev->flags);
3390 	rdev->desc_nr = -1;
3391 	err = bind_rdev_to_array(rdev, mddev);
3392 	if (err)
3393 		goto abort_export;
3394 
3395 	/*
3396 	 * The rest should better be atomic, we can have disk failures
3397 	 * noticed in interrupt contexts ...
3398 	 */
3399 
3400 	if (rdev->desc_nr == mddev->max_disks) {
3401 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3402 			mdname(mddev));
3403 		err = -EBUSY;
3404 		goto abort_unbind_export;
3405 	}
3406 
3407 	rdev->raid_disk = -1;
3408 
3409 	md_update_sb(mddev);
3410 
3411 	/*
3412 	 * Kick recovery, maybe this spare has to be added to the
3413 	 * array immediately.
3414 	 */
3415 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3416 	md_wakeup_thread(mddev->thread);
3417 	md_new_event(mddev);
3418 	return 0;
3419 
3420 abort_unbind_export:
3421 	unbind_rdev_from_array(rdev);
3422 
3423 abort_export:
3424 	export_rdev(rdev);
3425 	return err;
3426 }
3427 
3428 /* similar to deny_write_access, but accounts for our holding a reference
3429  * to the file ourselves */
3430 static int deny_bitmap_write_access(struct file * file)
3431 {
3432 	struct inode *inode = file->f_mapping->host;
3433 
3434 	spin_lock(&inode->i_lock);
3435 	if (atomic_read(&inode->i_writecount) > 1) {
3436 		spin_unlock(&inode->i_lock);
3437 		return -ETXTBSY;
3438 	}
3439 	atomic_set(&inode->i_writecount, -1);
3440 	spin_unlock(&inode->i_lock);
3441 
3442 	return 0;
3443 }
3444 
3445 static int set_bitmap_file(mddev_t *mddev, int fd)
3446 {
3447 	int err;
3448 
3449 	if (mddev->pers) {
3450 		if (!mddev->pers->quiesce)
3451 			return -EBUSY;
3452 		if (mddev->recovery || mddev->sync_thread)
3453 			return -EBUSY;
3454 		/* we should be able to change the bitmap.. */
3455 	}
3456 
3457 
3458 	if (fd >= 0) {
3459 		if (mddev->bitmap)
3460 			return -EEXIST; /* cannot add when bitmap is present */
3461 		mddev->bitmap_file = fget(fd);
3462 
3463 		if (mddev->bitmap_file == NULL) {
3464 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3465 			       mdname(mddev));
3466 			return -EBADF;
3467 		}
3468 
3469 		err = deny_bitmap_write_access(mddev->bitmap_file);
3470 		if (err) {
3471 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3472 			       mdname(mddev));
3473 			fput(mddev->bitmap_file);
3474 			mddev->bitmap_file = NULL;
3475 			return err;
3476 		}
3477 		mddev->bitmap_offset = 0; /* file overrides offset */
3478 	} else if (mddev->bitmap == NULL)
3479 		return -ENOENT; /* cannot remove what isn't there */
3480 	err = 0;
3481 	if (mddev->pers) {
3482 		mddev->pers->quiesce(mddev, 1);
3483 		if (fd >= 0)
3484 			err = bitmap_create(mddev);
3485 		if (fd < 0 || err)
3486 			bitmap_destroy(mddev);
3487 		mddev->pers->quiesce(mddev, 0);
3488 	} else if (fd < 0) {
3489 		if (mddev->bitmap_file)
3490 			fput(mddev->bitmap_file);
3491 		mddev->bitmap_file = NULL;
3492 	}
3493 
3494 	return err;
3495 }
3496 
3497 /*
3498  * set_array_info is used two different ways
3499  * The original usage is when creating a new array.
3500  * In this usage, raid_disks is > 0 and it together with
3501  *  level, size, not_persistent,layout,chunksize determine the
3502  *  shape of the array.
3503  *  This will always create an array with a type-0.90.0 superblock.
3504  * The newer usage is when assembling an array.
3505  *  In this case raid_disks will be 0, and the major_version field is
3506  *  use to determine which style super-blocks are to be found on the devices.
3507  *  The minor and patch _version numbers are also kept incase the
3508  *  super_block handler wishes to interpret them.
3509  */
3510 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3511 {
3512 
3513 	if (info->raid_disks == 0) {
3514 		/* just setting version number for superblock loading */
3515 		if (info->major_version < 0 ||
3516 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3517 		    super_types[info->major_version].name == NULL) {
3518 			/* maybe try to auto-load a module? */
3519 			printk(KERN_INFO
3520 				"md: superblock version %d not known\n",
3521 				info->major_version);
3522 			return -EINVAL;
3523 		}
3524 		mddev->major_version = info->major_version;
3525 		mddev->minor_version = info->minor_version;
3526 		mddev->patch_version = info->patch_version;
3527 		return 0;
3528 	}
3529 	mddev->major_version = MD_MAJOR_VERSION;
3530 	mddev->minor_version = MD_MINOR_VERSION;
3531 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
3532 	mddev->ctime         = get_seconds();
3533 
3534 	mddev->level         = info->level;
3535 	mddev->clevel[0]     = 0;
3536 	mddev->size          = info->size;
3537 	mddev->raid_disks    = info->raid_disks;
3538 	/* don't set md_minor, it is determined by which /dev/md* was
3539 	 * openned
3540 	 */
3541 	if (info->state & (1<<MD_SB_CLEAN))
3542 		mddev->recovery_cp = MaxSector;
3543 	else
3544 		mddev->recovery_cp = 0;
3545 	mddev->persistent    = ! info->not_persistent;
3546 
3547 	mddev->layout        = info->layout;
3548 	mddev->chunk_size    = info->chunk_size;
3549 
3550 	mddev->max_disks     = MD_SB_DISKS;
3551 
3552 	mddev->sb_dirty      = 1;
3553 
3554 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
3555 	mddev->bitmap_offset = 0;
3556 
3557 	mddev->reshape_position = MaxSector;
3558 
3559 	/*
3560 	 * Generate a 128 bit UUID
3561 	 */
3562 	get_random_bytes(mddev->uuid, 16);
3563 
3564 	mddev->new_level = mddev->level;
3565 	mddev->new_chunk = mddev->chunk_size;
3566 	mddev->new_layout = mddev->layout;
3567 	mddev->delta_disks = 0;
3568 
3569 	return 0;
3570 }
3571 
3572 static int update_size(mddev_t *mddev, unsigned long size)
3573 {
3574 	mdk_rdev_t * rdev;
3575 	int rv;
3576 	struct list_head *tmp;
3577 	int fit = (size == 0);
3578 
3579 	if (mddev->pers->resize == NULL)
3580 		return -EINVAL;
3581 	/* The "size" is the amount of each device that is used.
3582 	 * This can only make sense for arrays with redundancy.
3583 	 * linear and raid0 always use whatever space is available
3584 	 * We can only consider changing the size if no resync
3585 	 * or reconstruction is happening, and if the new size
3586 	 * is acceptable. It must fit before the sb_offset or,
3587 	 * if that is <data_offset, it must fit before the
3588 	 * size of each device.
3589 	 * If size is zero, we find the largest size that fits.
3590 	 */
3591 	if (mddev->sync_thread)
3592 		return -EBUSY;
3593 	ITERATE_RDEV(mddev,rdev,tmp) {
3594 		sector_t avail;
3595 		if (rdev->sb_offset > rdev->data_offset)
3596 			avail = (rdev->sb_offset*2) - rdev->data_offset;
3597 		else
3598 			avail = get_capacity(rdev->bdev->bd_disk)
3599 				- rdev->data_offset;
3600 		if (fit && (size == 0 || size > avail/2))
3601 			size = avail/2;
3602 		if (avail < ((sector_t)size << 1))
3603 			return -ENOSPC;
3604 	}
3605 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
3606 	if (!rv) {
3607 		struct block_device *bdev;
3608 
3609 		bdev = bdget_disk(mddev->gendisk, 0);
3610 		if (bdev) {
3611 			mutex_lock(&bdev->bd_inode->i_mutex);
3612 			i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
3613 			mutex_unlock(&bdev->bd_inode->i_mutex);
3614 			bdput(bdev);
3615 		}
3616 	}
3617 	return rv;
3618 }
3619 
3620 static int update_raid_disks(mddev_t *mddev, int raid_disks)
3621 {
3622 	int rv;
3623 	/* change the number of raid disks */
3624 	if (mddev->pers->check_reshape == NULL)
3625 		return -EINVAL;
3626 	if (raid_disks <= 0 ||
3627 	    raid_disks >= mddev->max_disks)
3628 		return -EINVAL;
3629 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
3630 		return -EBUSY;
3631 	mddev->delta_disks = raid_disks - mddev->raid_disks;
3632 
3633 	rv = mddev->pers->check_reshape(mddev);
3634 	return rv;
3635 }
3636 
3637 
3638 /*
3639  * update_array_info is used to change the configuration of an
3640  * on-line array.
3641  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
3642  * fields in the info are checked against the array.
3643  * Any differences that cannot be handled will cause an error.
3644  * Normally, only one change can be managed at a time.
3645  */
3646 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
3647 {
3648 	int rv = 0;
3649 	int cnt = 0;
3650 	int state = 0;
3651 
3652 	/* calculate expected state,ignoring low bits */
3653 	if (mddev->bitmap && mddev->bitmap_offset)
3654 		state |= (1 << MD_SB_BITMAP_PRESENT);
3655 
3656 	if (mddev->major_version != info->major_version ||
3657 	    mddev->minor_version != info->minor_version ||
3658 /*	    mddev->patch_version != info->patch_version || */
3659 	    mddev->ctime         != info->ctime         ||
3660 	    mddev->level         != info->level         ||
3661 /*	    mddev->layout        != info->layout        || */
3662 	    !mddev->persistent	 != info->not_persistent||
3663 	    mddev->chunk_size    != info->chunk_size    ||
3664 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
3665 	    ((state^info->state) & 0xfffffe00)
3666 		)
3667 		return -EINVAL;
3668 	/* Check there is only one change */
3669 	if (info->size >= 0 && mddev->size != info->size) cnt++;
3670 	if (mddev->raid_disks != info->raid_disks) cnt++;
3671 	if (mddev->layout != info->layout) cnt++;
3672 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
3673 	if (cnt == 0) return 0;
3674 	if (cnt > 1) return -EINVAL;
3675 
3676 	if (mddev->layout != info->layout) {
3677 		/* Change layout
3678 		 * we don't need to do anything at the md level, the
3679 		 * personality will take care of it all.
3680 		 */
3681 		if (mddev->pers->reconfig == NULL)
3682 			return -EINVAL;
3683 		else
3684 			return mddev->pers->reconfig(mddev, info->layout, -1);
3685 	}
3686 	if (info->size >= 0 && mddev->size != info->size)
3687 		rv = update_size(mddev, info->size);
3688 
3689 	if (mddev->raid_disks    != info->raid_disks)
3690 		rv = update_raid_disks(mddev, info->raid_disks);
3691 
3692 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3693 		if (mddev->pers->quiesce == NULL)
3694 			return -EINVAL;
3695 		if (mddev->recovery || mddev->sync_thread)
3696 			return -EBUSY;
3697 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3698 			/* add the bitmap */
3699 			if (mddev->bitmap)
3700 				return -EEXIST;
3701 			if (mddev->default_bitmap_offset == 0)
3702 				return -EINVAL;
3703 			mddev->bitmap_offset = mddev->default_bitmap_offset;
3704 			mddev->pers->quiesce(mddev, 1);
3705 			rv = bitmap_create(mddev);
3706 			if (rv)
3707 				bitmap_destroy(mddev);
3708 			mddev->pers->quiesce(mddev, 0);
3709 		} else {
3710 			/* remove the bitmap */
3711 			if (!mddev->bitmap)
3712 				return -ENOENT;
3713 			if (mddev->bitmap->file)
3714 				return -EINVAL;
3715 			mddev->pers->quiesce(mddev, 1);
3716 			bitmap_destroy(mddev);
3717 			mddev->pers->quiesce(mddev, 0);
3718 			mddev->bitmap_offset = 0;
3719 		}
3720 	}
3721 	md_update_sb(mddev);
3722 	return rv;
3723 }
3724 
3725 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3726 {
3727 	mdk_rdev_t *rdev;
3728 
3729 	if (mddev->pers == NULL)
3730 		return -ENODEV;
3731 
3732 	rdev = find_rdev(mddev, dev);
3733 	if (!rdev)
3734 		return -ENODEV;
3735 
3736 	md_error(mddev, rdev);
3737 	return 0;
3738 }
3739 
3740 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3741 {
3742 	mddev_t *mddev = bdev->bd_disk->private_data;
3743 
3744 	geo->heads = 2;
3745 	geo->sectors = 4;
3746 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
3747 	return 0;
3748 }
3749 
3750 static int md_ioctl(struct inode *inode, struct file *file,
3751 			unsigned int cmd, unsigned long arg)
3752 {
3753 	int err = 0;
3754 	void __user *argp = (void __user *)arg;
3755 	mddev_t *mddev = NULL;
3756 
3757 	if (!capable(CAP_SYS_ADMIN))
3758 		return -EACCES;
3759 
3760 	/*
3761 	 * Commands dealing with the RAID driver but not any
3762 	 * particular array:
3763 	 */
3764 	switch (cmd)
3765 	{
3766 		case RAID_VERSION:
3767 			err = get_version(argp);
3768 			goto done;
3769 
3770 		case PRINT_RAID_DEBUG:
3771 			err = 0;
3772 			md_print_devices();
3773 			goto done;
3774 
3775 #ifndef MODULE
3776 		case RAID_AUTORUN:
3777 			err = 0;
3778 			autostart_arrays(arg);
3779 			goto done;
3780 #endif
3781 		default:;
3782 	}
3783 
3784 	/*
3785 	 * Commands creating/starting a new array:
3786 	 */
3787 
3788 	mddev = inode->i_bdev->bd_disk->private_data;
3789 
3790 	if (!mddev) {
3791 		BUG();
3792 		goto abort;
3793 	}
3794 
3795 
3796 	if (cmd == START_ARRAY) {
3797 		/* START_ARRAY doesn't need to lock the array as autostart_array
3798 		 * does the locking, and it could even be a different array
3799 		 */
3800 		static int cnt = 3;
3801 		if (cnt > 0 ) {
3802 			printk(KERN_WARNING
3803 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3804 			       "This will not be supported beyond July 2006\n",
3805 			       current->comm, current->pid);
3806 			cnt--;
3807 		}
3808 		err = autostart_array(new_decode_dev(arg));
3809 		if (err) {
3810 			printk(KERN_WARNING "md: autostart failed!\n");
3811 			goto abort;
3812 		}
3813 		goto done;
3814 	}
3815 
3816 	err = mddev_lock(mddev);
3817 	if (err) {
3818 		printk(KERN_INFO
3819 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3820 			err, cmd);
3821 		goto abort;
3822 	}
3823 
3824 	switch (cmd)
3825 	{
3826 		case SET_ARRAY_INFO:
3827 			{
3828 				mdu_array_info_t info;
3829 				if (!arg)
3830 					memset(&info, 0, sizeof(info));
3831 				else if (copy_from_user(&info, argp, sizeof(info))) {
3832 					err = -EFAULT;
3833 					goto abort_unlock;
3834 				}
3835 				if (mddev->pers) {
3836 					err = update_array_info(mddev, &info);
3837 					if (err) {
3838 						printk(KERN_WARNING "md: couldn't update"
3839 						       " array info. %d\n", err);
3840 						goto abort_unlock;
3841 					}
3842 					goto done_unlock;
3843 				}
3844 				if (!list_empty(&mddev->disks)) {
3845 					printk(KERN_WARNING
3846 					       "md: array %s already has disks!\n",
3847 					       mdname(mddev));
3848 					err = -EBUSY;
3849 					goto abort_unlock;
3850 				}
3851 				if (mddev->raid_disks) {
3852 					printk(KERN_WARNING
3853 					       "md: array %s already initialised!\n",
3854 					       mdname(mddev));
3855 					err = -EBUSY;
3856 					goto abort_unlock;
3857 				}
3858 				err = set_array_info(mddev, &info);
3859 				if (err) {
3860 					printk(KERN_WARNING "md: couldn't set"
3861 					       " array info. %d\n", err);
3862 					goto abort_unlock;
3863 				}
3864 			}
3865 			goto done_unlock;
3866 
3867 		default:;
3868 	}
3869 
3870 	/*
3871 	 * Commands querying/configuring an existing array:
3872 	 */
3873 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3874 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3875 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3876 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3877 		err = -ENODEV;
3878 		goto abort_unlock;
3879 	}
3880 
3881 	/*
3882 	 * Commands even a read-only array can execute:
3883 	 */
3884 	switch (cmd)
3885 	{
3886 		case GET_ARRAY_INFO:
3887 			err = get_array_info(mddev, argp);
3888 			goto done_unlock;
3889 
3890 		case GET_BITMAP_FILE:
3891 			err = get_bitmap_file(mddev, argp);
3892 			goto done_unlock;
3893 
3894 		case GET_DISK_INFO:
3895 			err = get_disk_info(mddev, argp);
3896 			goto done_unlock;
3897 
3898 		case RESTART_ARRAY_RW:
3899 			err = restart_array(mddev);
3900 			goto done_unlock;
3901 
3902 		case STOP_ARRAY:
3903 			err = do_md_stop (mddev, 0);
3904 			goto done_unlock;
3905 
3906 		case STOP_ARRAY_RO:
3907 			err = do_md_stop (mddev, 1);
3908 			goto done_unlock;
3909 
3910 	/*
3911 	 * We have a problem here : there is no easy way to give a CHS
3912 	 * virtual geometry. We currently pretend that we have a 2 heads
3913 	 * 4 sectors (with a BIG number of cylinders...). This drives
3914 	 * dosfs just mad... ;-)
3915 	 */
3916 	}
3917 
3918 	/*
3919 	 * The remaining ioctls are changing the state of the
3920 	 * superblock, so we do not allow them on read-only arrays.
3921 	 * However non-MD ioctls (e.g. get-size) will still come through
3922 	 * here and hit the 'default' below, so only disallow
3923 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
3924 	 */
3925 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
3926 	    mddev->ro && mddev->pers) {
3927 		if (mddev->ro == 2) {
3928 			mddev->ro = 0;
3929 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3930 		md_wakeup_thread(mddev->thread);
3931 
3932 		} else {
3933 			err = -EROFS;
3934 			goto abort_unlock;
3935 		}
3936 	}
3937 
3938 	switch (cmd)
3939 	{
3940 		case ADD_NEW_DISK:
3941 		{
3942 			mdu_disk_info_t info;
3943 			if (copy_from_user(&info, argp, sizeof(info)))
3944 				err = -EFAULT;
3945 			else
3946 				err = add_new_disk(mddev, &info);
3947 			goto done_unlock;
3948 		}
3949 
3950 		case HOT_REMOVE_DISK:
3951 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3952 			goto done_unlock;
3953 
3954 		case HOT_ADD_DISK:
3955 			err = hot_add_disk(mddev, new_decode_dev(arg));
3956 			goto done_unlock;
3957 
3958 		case SET_DISK_FAULTY:
3959 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3960 			goto done_unlock;
3961 
3962 		case RUN_ARRAY:
3963 			err = do_md_run (mddev);
3964 			goto done_unlock;
3965 
3966 		case SET_BITMAP_FILE:
3967 			err = set_bitmap_file(mddev, (int)arg);
3968 			goto done_unlock;
3969 
3970 		default:
3971 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3972 				printk(KERN_WARNING "md: %s(pid %d) used"
3973 					" obsolete MD ioctl, upgrade your"
3974 					" software to use new ictls.\n",
3975 					current->comm, current->pid);
3976 			err = -EINVAL;
3977 			goto abort_unlock;
3978 	}
3979 
3980 done_unlock:
3981 abort_unlock:
3982 	mddev_unlock(mddev);
3983 
3984 	return err;
3985 done:
3986 	if (err)
3987 		MD_BUG();
3988 abort:
3989 	return err;
3990 }
3991 
3992 static int md_open(struct inode *inode, struct file *file)
3993 {
3994 	/*
3995 	 * Succeed if we can lock the mddev, which confirms that
3996 	 * it isn't being stopped right now.
3997 	 */
3998 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3999 	int err;
4000 
4001 	if ((err = mddev_lock(mddev)))
4002 		goto out;
4003 
4004 	err = 0;
4005 	mddev_get(mddev);
4006 	mddev_unlock(mddev);
4007 
4008 	check_disk_change(inode->i_bdev);
4009  out:
4010 	return err;
4011 }
4012 
4013 static int md_release(struct inode *inode, struct file * file)
4014 {
4015  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4016 
4017 	if (!mddev)
4018 		BUG();
4019 	mddev_put(mddev);
4020 
4021 	return 0;
4022 }
4023 
4024 static int md_media_changed(struct gendisk *disk)
4025 {
4026 	mddev_t *mddev = disk->private_data;
4027 
4028 	return mddev->changed;
4029 }
4030 
4031 static int md_revalidate(struct gendisk *disk)
4032 {
4033 	mddev_t *mddev = disk->private_data;
4034 
4035 	mddev->changed = 0;
4036 	return 0;
4037 }
4038 static struct block_device_operations md_fops =
4039 {
4040 	.owner		= THIS_MODULE,
4041 	.open		= md_open,
4042 	.release	= md_release,
4043 	.ioctl		= md_ioctl,
4044 	.getgeo		= md_getgeo,
4045 	.media_changed	= md_media_changed,
4046 	.revalidate_disk= md_revalidate,
4047 };
4048 
4049 static int md_thread(void * arg)
4050 {
4051 	mdk_thread_t *thread = arg;
4052 
4053 	/*
4054 	 * md_thread is a 'system-thread', it's priority should be very
4055 	 * high. We avoid resource deadlocks individually in each
4056 	 * raid personality. (RAID5 does preallocation) We also use RR and
4057 	 * the very same RT priority as kswapd, thus we will never get
4058 	 * into a priority inversion deadlock.
4059 	 *
4060 	 * we definitely have to have equal or higher priority than
4061 	 * bdflush, otherwise bdflush will deadlock if there are too
4062 	 * many dirty RAID5 blocks.
4063 	 */
4064 
4065 	allow_signal(SIGKILL);
4066 	while (!kthread_should_stop()) {
4067 
4068 		/* We need to wait INTERRUPTIBLE so that
4069 		 * we don't add to the load-average.
4070 		 * That means we need to be sure no signals are
4071 		 * pending
4072 		 */
4073 		if (signal_pending(current))
4074 			flush_signals(current);
4075 
4076 		wait_event_interruptible_timeout
4077 			(thread->wqueue,
4078 			 test_bit(THREAD_WAKEUP, &thread->flags)
4079 			 || kthread_should_stop(),
4080 			 thread->timeout);
4081 		try_to_freeze();
4082 
4083 		clear_bit(THREAD_WAKEUP, &thread->flags);
4084 
4085 		thread->run(thread->mddev);
4086 	}
4087 
4088 	return 0;
4089 }
4090 
4091 void md_wakeup_thread(mdk_thread_t *thread)
4092 {
4093 	if (thread) {
4094 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4095 		set_bit(THREAD_WAKEUP, &thread->flags);
4096 		wake_up(&thread->wqueue);
4097 	}
4098 }
4099 
4100 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4101 				 const char *name)
4102 {
4103 	mdk_thread_t *thread;
4104 
4105 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4106 	if (!thread)
4107 		return NULL;
4108 
4109 	init_waitqueue_head(&thread->wqueue);
4110 
4111 	thread->run = run;
4112 	thread->mddev = mddev;
4113 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
4114 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4115 	if (IS_ERR(thread->tsk)) {
4116 		kfree(thread);
4117 		return NULL;
4118 	}
4119 	return thread;
4120 }
4121 
4122 void md_unregister_thread(mdk_thread_t *thread)
4123 {
4124 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4125 
4126 	kthread_stop(thread->tsk);
4127 	kfree(thread);
4128 }
4129 
4130 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4131 {
4132 	if (!mddev) {
4133 		MD_BUG();
4134 		return;
4135 	}
4136 
4137 	if (!rdev || test_bit(Faulty, &rdev->flags))
4138 		return;
4139 /*
4140 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4141 		mdname(mddev),
4142 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4143 		__builtin_return_address(0),__builtin_return_address(1),
4144 		__builtin_return_address(2),__builtin_return_address(3));
4145 */
4146 	if (!mddev->pers->error_handler)
4147 		return;
4148 	mddev->pers->error_handler(mddev,rdev);
4149 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4150 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4151 	md_wakeup_thread(mddev->thread);
4152 	md_new_event(mddev);
4153 }
4154 
4155 /* seq_file implementation /proc/mdstat */
4156 
4157 static void status_unused(struct seq_file *seq)
4158 {
4159 	int i = 0;
4160 	mdk_rdev_t *rdev;
4161 	struct list_head *tmp;
4162 
4163 	seq_printf(seq, "unused devices: ");
4164 
4165 	ITERATE_RDEV_PENDING(rdev,tmp) {
4166 		char b[BDEVNAME_SIZE];
4167 		i++;
4168 		seq_printf(seq, "%s ",
4169 			      bdevname(rdev->bdev,b));
4170 	}
4171 	if (!i)
4172 		seq_printf(seq, "<none>");
4173 
4174 	seq_printf(seq, "\n");
4175 }
4176 
4177 
4178 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4179 {
4180 	sector_t max_blocks, resync, res;
4181 	unsigned long dt, db, rt;
4182 	int scale;
4183 	unsigned int per_milli;
4184 
4185 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4186 
4187 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4188 		max_blocks = mddev->resync_max_sectors >> 1;
4189 	else
4190 		max_blocks = mddev->size;
4191 
4192 	/*
4193 	 * Should not happen.
4194 	 */
4195 	if (!max_blocks) {
4196 		MD_BUG();
4197 		return;
4198 	}
4199 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
4200 	 * in a sector_t, and (max_blocks>>scale) will fit in a
4201 	 * u32, as those are the requirements for sector_div.
4202 	 * Thus 'scale' must be at least 10
4203 	 */
4204 	scale = 10;
4205 	if (sizeof(sector_t) > sizeof(unsigned long)) {
4206 		while ( max_blocks/2 > (1ULL<<(scale+32)))
4207 			scale++;
4208 	}
4209 	res = (resync>>scale)*1000;
4210 	sector_div(res, (u32)((max_blocks>>scale)+1));
4211 
4212 	per_milli = res;
4213 	{
4214 		int i, x = per_milli/50, y = 20-x;
4215 		seq_printf(seq, "[");
4216 		for (i = 0; i < x; i++)
4217 			seq_printf(seq, "=");
4218 		seq_printf(seq, ">");
4219 		for (i = 0; i < y; i++)
4220 			seq_printf(seq, ".");
4221 		seq_printf(seq, "] ");
4222 	}
4223 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4224 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4225 		    "reshape" :
4226 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4227 		       "resync" : "recovery")),
4228 		      per_milli/10, per_milli % 10,
4229 		   (unsigned long long) resync,
4230 		   (unsigned long long) max_blocks);
4231 
4232 	/*
4233 	 * We do not want to overflow, so the order of operands and
4234 	 * the * 100 / 100 trick are important. We do a +1 to be
4235 	 * safe against division by zero. We only estimate anyway.
4236 	 *
4237 	 * dt: time from mark until now
4238 	 * db: blocks written from mark until now
4239 	 * rt: remaining time
4240 	 */
4241 	dt = ((jiffies - mddev->resync_mark) / HZ);
4242 	if (!dt) dt++;
4243 	db = resync - (mddev->resync_mark_cnt/2);
4244 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/100+1)))/100;
4245 
4246 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4247 
4248 	seq_printf(seq, " speed=%ldK/sec", db/dt);
4249 }
4250 
4251 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4252 {
4253 	struct list_head *tmp;
4254 	loff_t l = *pos;
4255 	mddev_t *mddev;
4256 
4257 	if (l >= 0x10000)
4258 		return NULL;
4259 	if (!l--)
4260 		/* header */
4261 		return (void*)1;
4262 
4263 	spin_lock(&all_mddevs_lock);
4264 	list_for_each(tmp,&all_mddevs)
4265 		if (!l--) {
4266 			mddev = list_entry(tmp, mddev_t, all_mddevs);
4267 			mddev_get(mddev);
4268 			spin_unlock(&all_mddevs_lock);
4269 			return mddev;
4270 		}
4271 	spin_unlock(&all_mddevs_lock);
4272 	if (!l--)
4273 		return (void*)2;/* tail */
4274 	return NULL;
4275 }
4276 
4277 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4278 {
4279 	struct list_head *tmp;
4280 	mddev_t *next_mddev, *mddev = v;
4281 
4282 	++*pos;
4283 	if (v == (void*)2)
4284 		return NULL;
4285 
4286 	spin_lock(&all_mddevs_lock);
4287 	if (v == (void*)1)
4288 		tmp = all_mddevs.next;
4289 	else
4290 		tmp = mddev->all_mddevs.next;
4291 	if (tmp != &all_mddevs)
4292 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4293 	else {
4294 		next_mddev = (void*)2;
4295 		*pos = 0x10000;
4296 	}
4297 	spin_unlock(&all_mddevs_lock);
4298 
4299 	if (v != (void*)1)
4300 		mddev_put(mddev);
4301 	return next_mddev;
4302 
4303 }
4304 
4305 static void md_seq_stop(struct seq_file *seq, void *v)
4306 {
4307 	mddev_t *mddev = v;
4308 
4309 	if (mddev && v != (void*)1 && v != (void*)2)
4310 		mddev_put(mddev);
4311 }
4312 
4313 struct mdstat_info {
4314 	int event;
4315 };
4316 
4317 static int md_seq_show(struct seq_file *seq, void *v)
4318 {
4319 	mddev_t *mddev = v;
4320 	sector_t size;
4321 	struct list_head *tmp2;
4322 	mdk_rdev_t *rdev;
4323 	struct mdstat_info *mi = seq->private;
4324 	struct bitmap *bitmap;
4325 
4326 	if (v == (void*)1) {
4327 		struct mdk_personality *pers;
4328 		seq_printf(seq, "Personalities : ");
4329 		spin_lock(&pers_lock);
4330 		list_for_each_entry(pers, &pers_list, list)
4331 			seq_printf(seq, "[%s] ", pers->name);
4332 
4333 		spin_unlock(&pers_lock);
4334 		seq_printf(seq, "\n");
4335 		mi->event = atomic_read(&md_event_count);
4336 		return 0;
4337 	}
4338 	if (v == (void*)2) {
4339 		status_unused(seq);
4340 		return 0;
4341 	}
4342 
4343 	if (mddev_lock(mddev) < 0)
4344 		return -EINTR;
4345 
4346 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4347 		seq_printf(seq, "%s : %sactive", mdname(mddev),
4348 						mddev->pers ? "" : "in");
4349 		if (mddev->pers) {
4350 			if (mddev->ro==1)
4351 				seq_printf(seq, " (read-only)");
4352 			if (mddev->ro==2)
4353 				seq_printf(seq, "(auto-read-only)");
4354 			seq_printf(seq, " %s", mddev->pers->name);
4355 		}
4356 
4357 		size = 0;
4358 		ITERATE_RDEV(mddev,rdev,tmp2) {
4359 			char b[BDEVNAME_SIZE];
4360 			seq_printf(seq, " %s[%d]",
4361 				bdevname(rdev->bdev,b), rdev->desc_nr);
4362 			if (test_bit(WriteMostly, &rdev->flags))
4363 				seq_printf(seq, "(W)");
4364 			if (test_bit(Faulty, &rdev->flags)) {
4365 				seq_printf(seq, "(F)");
4366 				continue;
4367 			} else if (rdev->raid_disk < 0)
4368 				seq_printf(seq, "(S)"); /* spare */
4369 			size += rdev->size;
4370 		}
4371 
4372 		if (!list_empty(&mddev->disks)) {
4373 			if (mddev->pers)
4374 				seq_printf(seq, "\n      %llu blocks",
4375 					(unsigned long long)mddev->array_size);
4376 			else
4377 				seq_printf(seq, "\n      %llu blocks",
4378 					(unsigned long long)size);
4379 		}
4380 		if (mddev->persistent) {
4381 			if (mddev->major_version != 0 ||
4382 			    mddev->minor_version != 90) {
4383 				seq_printf(seq," super %d.%d",
4384 					   mddev->major_version,
4385 					   mddev->minor_version);
4386 			}
4387 		} else
4388 			seq_printf(seq, " super non-persistent");
4389 
4390 		if (mddev->pers) {
4391 			mddev->pers->status (seq, mddev);
4392 	 		seq_printf(seq, "\n      ");
4393 			if (mddev->pers->sync_request) {
4394 				if (mddev->curr_resync > 2) {
4395 					status_resync (seq, mddev);
4396 					seq_printf(seq, "\n      ");
4397 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4398 					seq_printf(seq, "\tresync=DELAYED\n      ");
4399 				else if (mddev->recovery_cp < MaxSector)
4400 					seq_printf(seq, "\tresync=PENDING\n      ");
4401 			}
4402 		} else
4403 			seq_printf(seq, "\n       ");
4404 
4405 		if ((bitmap = mddev->bitmap)) {
4406 			unsigned long chunk_kb;
4407 			unsigned long flags;
4408 			spin_lock_irqsave(&bitmap->lock, flags);
4409 			chunk_kb = bitmap->chunksize >> 10;
4410 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4411 				"%lu%s chunk",
4412 				bitmap->pages - bitmap->missing_pages,
4413 				bitmap->pages,
4414 				(bitmap->pages - bitmap->missing_pages)
4415 					<< (PAGE_SHIFT - 10),
4416 				chunk_kb ? chunk_kb : bitmap->chunksize,
4417 				chunk_kb ? "KB" : "B");
4418 			if (bitmap->file) {
4419 				seq_printf(seq, ", file: ");
4420 				seq_path(seq, bitmap->file->f_vfsmnt,
4421 					 bitmap->file->f_dentry," \t\n");
4422 			}
4423 
4424 			seq_printf(seq, "\n");
4425 			spin_unlock_irqrestore(&bitmap->lock, flags);
4426 		}
4427 
4428 		seq_printf(seq, "\n");
4429 	}
4430 	mddev_unlock(mddev);
4431 
4432 	return 0;
4433 }
4434 
4435 static struct seq_operations md_seq_ops = {
4436 	.start  = md_seq_start,
4437 	.next   = md_seq_next,
4438 	.stop   = md_seq_stop,
4439 	.show   = md_seq_show,
4440 };
4441 
4442 static int md_seq_open(struct inode *inode, struct file *file)
4443 {
4444 	int error;
4445 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4446 	if (mi == NULL)
4447 		return -ENOMEM;
4448 
4449 	error = seq_open(file, &md_seq_ops);
4450 	if (error)
4451 		kfree(mi);
4452 	else {
4453 		struct seq_file *p = file->private_data;
4454 		p->private = mi;
4455 		mi->event = atomic_read(&md_event_count);
4456 	}
4457 	return error;
4458 }
4459 
4460 static int md_seq_release(struct inode *inode, struct file *file)
4461 {
4462 	struct seq_file *m = file->private_data;
4463 	struct mdstat_info *mi = m->private;
4464 	m->private = NULL;
4465 	kfree(mi);
4466 	return seq_release(inode, file);
4467 }
4468 
4469 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4470 {
4471 	struct seq_file *m = filp->private_data;
4472 	struct mdstat_info *mi = m->private;
4473 	int mask;
4474 
4475 	poll_wait(filp, &md_event_waiters, wait);
4476 
4477 	/* always allow read */
4478 	mask = POLLIN | POLLRDNORM;
4479 
4480 	if (mi->event != atomic_read(&md_event_count))
4481 		mask |= POLLERR | POLLPRI;
4482 	return mask;
4483 }
4484 
4485 static struct file_operations md_seq_fops = {
4486 	.open           = md_seq_open,
4487 	.read           = seq_read,
4488 	.llseek         = seq_lseek,
4489 	.release	= md_seq_release,
4490 	.poll		= mdstat_poll,
4491 };
4492 
4493 int register_md_personality(struct mdk_personality *p)
4494 {
4495 	spin_lock(&pers_lock);
4496 	list_add_tail(&p->list, &pers_list);
4497 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4498 	spin_unlock(&pers_lock);
4499 	return 0;
4500 }
4501 
4502 int unregister_md_personality(struct mdk_personality *p)
4503 {
4504 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4505 	spin_lock(&pers_lock);
4506 	list_del_init(&p->list);
4507 	spin_unlock(&pers_lock);
4508 	return 0;
4509 }
4510 
4511 static int is_mddev_idle(mddev_t *mddev)
4512 {
4513 	mdk_rdev_t * rdev;
4514 	struct list_head *tmp;
4515 	int idle;
4516 	unsigned long curr_events;
4517 
4518 	idle = 1;
4519 	ITERATE_RDEV(mddev,rdev,tmp) {
4520 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4521 		curr_events = disk_stat_read(disk, sectors[0]) +
4522 				disk_stat_read(disk, sectors[1]) -
4523 				atomic_read(&disk->sync_io);
4524 		/* The difference between curr_events and last_events
4525 		 * will be affected by any new non-sync IO (making
4526 		 * curr_events bigger) and any difference in the amount of
4527 		 * in-flight syncio (making current_events bigger or smaller)
4528 		 * The amount in-flight is currently limited to
4529 		 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4530 		 * which is at most 4096 sectors.
4531 		 * These numbers are fairly fragile and should be made
4532 		 * more robust, probably by enforcing the
4533 		 * 'window size' that md_do_sync sort-of uses.
4534 		 *
4535 		 * Note: the following is an unsigned comparison.
4536 		 */
4537 		if ((curr_events - rdev->last_events + 4096) > 8192) {
4538 			rdev->last_events = curr_events;
4539 			idle = 0;
4540 		}
4541 	}
4542 	return idle;
4543 }
4544 
4545 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4546 {
4547 	/* another "blocks" (512byte) blocks have been synced */
4548 	atomic_sub(blocks, &mddev->recovery_active);
4549 	wake_up(&mddev->recovery_wait);
4550 	if (!ok) {
4551 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4552 		md_wakeup_thread(mddev->thread);
4553 		// stop recovery, signal do_sync ....
4554 	}
4555 }
4556 
4557 
4558 /* md_write_start(mddev, bi)
4559  * If we need to update some array metadata (e.g. 'active' flag
4560  * in superblock) before writing, schedule a superblock update
4561  * and wait for it to complete.
4562  */
4563 void md_write_start(mddev_t *mddev, struct bio *bi)
4564 {
4565 	if (bio_data_dir(bi) != WRITE)
4566 		return;
4567 
4568 	BUG_ON(mddev->ro == 1);
4569 	if (mddev->ro == 2) {
4570 		/* need to switch to read/write */
4571 		mddev->ro = 0;
4572 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4573 		md_wakeup_thread(mddev->thread);
4574 	}
4575 	atomic_inc(&mddev->writes_pending);
4576 	if (mddev->in_sync) {
4577 		spin_lock_irq(&mddev->write_lock);
4578 		if (mddev->in_sync) {
4579 			mddev->in_sync = 0;
4580 			mddev->sb_dirty = 1;
4581 			md_wakeup_thread(mddev->thread);
4582 		}
4583 		spin_unlock_irq(&mddev->write_lock);
4584 	}
4585 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
4586 }
4587 
4588 void md_write_end(mddev_t *mddev)
4589 {
4590 	if (atomic_dec_and_test(&mddev->writes_pending)) {
4591 		if (mddev->safemode == 2)
4592 			md_wakeup_thread(mddev->thread);
4593 		else
4594 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
4595 	}
4596 }
4597 
4598 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
4599 
4600 #define SYNC_MARKS	10
4601 #define	SYNC_MARK_STEP	(3*HZ)
4602 void md_do_sync(mddev_t *mddev)
4603 {
4604 	mddev_t *mddev2;
4605 	unsigned int currspeed = 0,
4606 		 window;
4607 	sector_t max_sectors,j, io_sectors;
4608 	unsigned long mark[SYNC_MARKS];
4609 	sector_t mark_cnt[SYNC_MARKS];
4610 	int last_mark,m;
4611 	struct list_head *tmp;
4612 	sector_t last_check;
4613 	int skipped = 0;
4614 
4615 	/* just incase thread restarts... */
4616 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
4617 		return;
4618 
4619 	/* we overload curr_resync somewhat here.
4620 	 * 0 == not engaged in resync at all
4621 	 * 2 == checking that there is no conflict with another sync
4622 	 * 1 == like 2, but have yielded to allow conflicting resync to
4623 	 *		commense
4624 	 * other == active in resync - this many blocks
4625 	 *
4626 	 * Before starting a resync we must have set curr_resync to
4627 	 * 2, and then checked that every "conflicting" array has curr_resync
4628 	 * less than ours.  When we find one that is the same or higher
4629 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
4630 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
4631 	 * This will mean we have to start checking from the beginning again.
4632 	 *
4633 	 */
4634 
4635 	do {
4636 		mddev->curr_resync = 2;
4637 
4638 	try_again:
4639 		if (kthread_should_stop()) {
4640 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4641 			goto skip;
4642 		}
4643 		ITERATE_MDDEV(mddev2,tmp) {
4644 			if (mddev2 == mddev)
4645 				continue;
4646 			if (mddev2->curr_resync &&
4647 			    match_mddev_units(mddev,mddev2)) {
4648 				DEFINE_WAIT(wq);
4649 				if (mddev < mddev2 && mddev->curr_resync == 2) {
4650 					/* arbitrarily yield */
4651 					mddev->curr_resync = 1;
4652 					wake_up(&resync_wait);
4653 				}
4654 				if (mddev > mddev2 && mddev->curr_resync == 1)
4655 					/* no need to wait here, we can wait the next
4656 					 * time 'round when curr_resync == 2
4657 					 */
4658 					continue;
4659 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
4660 				if (!kthread_should_stop() &&
4661 				    mddev2->curr_resync >= mddev->curr_resync) {
4662 					printk(KERN_INFO "md: delaying resync of %s"
4663 					       " until %s has finished resync (they"
4664 					       " share one or more physical units)\n",
4665 					       mdname(mddev), mdname(mddev2));
4666 					mddev_put(mddev2);
4667 					schedule();
4668 					finish_wait(&resync_wait, &wq);
4669 					goto try_again;
4670 				}
4671 				finish_wait(&resync_wait, &wq);
4672 			}
4673 		}
4674 	} while (mddev->curr_resync < 2);
4675 
4676 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4677 		/* resync follows the size requested by the personality,
4678 		 * which defaults to physical size, but can be virtual size
4679 		 */
4680 		max_sectors = mddev->resync_max_sectors;
4681 		mddev->resync_mismatches = 0;
4682 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4683 		max_sectors = mddev->size << 1;
4684 	else
4685 		/* recovery follows the physical size of devices */
4686 		max_sectors = mddev->size << 1;
4687 
4688 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4689 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4690 		" %d KB/sec/disc.\n", speed_min(mddev));
4691 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4692 	       "(but not more than %d KB/sec) for reconstruction.\n",
4693 	       speed_max(mddev));
4694 
4695 	is_mddev_idle(mddev); /* this also initializes IO event counters */
4696 	/* we don't use the checkpoint if there's a bitmap */
4697 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4698 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4699 		j = mddev->recovery_cp;
4700 	else
4701 		j = 0;
4702 	io_sectors = 0;
4703 	for (m = 0; m < SYNC_MARKS; m++) {
4704 		mark[m] = jiffies;
4705 		mark_cnt[m] = io_sectors;
4706 	}
4707 	last_mark = 0;
4708 	mddev->resync_mark = mark[last_mark];
4709 	mddev->resync_mark_cnt = mark_cnt[last_mark];
4710 
4711 	/*
4712 	 * Tune reconstruction:
4713 	 */
4714 	window = 32*(PAGE_SIZE/512);
4715 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4716 		window/2,(unsigned long long) max_sectors/2);
4717 
4718 	atomic_set(&mddev->recovery_active, 0);
4719 	init_waitqueue_head(&mddev->recovery_wait);
4720 	last_check = 0;
4721 
4722 	if (j>2) {
4723 		printk(KERN_INFO
4724 			"md: resuming recovery of %s from checkpoint.\n",
4725 			mdname(mddev));
4726 		mddev->curr_resync = j;
4727 	}
4728 
4729 	while (j < max_sectors) {
4730 		sector_t sectors;
4731 
4732 		skipped = 0;
4733 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
4734 					    currspeed < speed_min(mddev));
4735 		if (sectors == 0) {
4736 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4737 			goto out;
4738 		}
4739 
4740 		if (!skipped) { /* actual IO requested */
4741 			io_sectors += sectors;
4742 			atomic_add(sectors, &mddev->recovery_active);
4743 		}
4744 
4745 		j += sectors;
4746 		if (j>1) mddev->curr_resync = j;
4747 		if (last_check == 0)
4748 			/* this is the earliers that rebuilt will be
4749 			 * visible in /proc/mdstat
4750 			 */
4751 			md_new_event(mddev);
4752 
4753 		if (last_check + window > io_sectors || j == max_sectors)
4754 			continue;
4755 
4756 		last_check = io_sectors;
4757 
4758 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4759 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4760 			break;
4761 
4762 	repeat:
4763 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4764 			/* step marks */
4765 			int next = (last_mark+1) % SYNC_MARKS;
4766 
4767 			mddev->resync_mark = mark[next];
4768 			mddev->resync_mark_cnt = mark_cnt[next];
4769 			mark[next] = jiffies;
4770 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4771 			last_mark = next;
4772 		}
4773 
4774 
4775 		if (kthread_should_stop()) {
4776 			/*
4777 			 * got a signal, exit.
4778 			 */
4779 			printk(KERN_INFO
4780 				"md: md_do_sync() got signal ... exiting\n");
4781 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4782 			goto out;
4783 		}
4784 
4785 		/*
4786 		 * this loop exits only if either when we are slower than
4787 		 * the 'hard' speed limit, or the system was IO-idle for
4788 		 * a jiffy.
4789 		 * the system might be non-idle CPU-wise, but we only care
4790 		 * about not overloading the IO subsystem. (things like an
4791 		 * e2fsck being done on the RAID array should execute fast)
4792 		 */
4793 		mddev->queue->unplug_fn(mddev->queue);
4794 		cond_resched();
4795 
4796 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4797 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4798 
4799 		if (currspeed > speed_min(mddev)) {
4800 			if ((currspeed > speed_max(mddev)) ||
4801 					!is_mddev_idle(mddev)) {
4802 				msleep(500);
4803 				goto repeat;
4804 			}
4805 		}
4806 	}
4807 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4808 	/*
4809 	 * this also signals 'finished resyncing' to md_stop
4810 	 */
4811  out:
4812 	mddev->queue->unplug_fn(mddev->queue);
4813 
4814 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4815 
4816 	/* tell personality that we are finished */
4817 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4818 
4819 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4820 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
4821 	    !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
4822 	    mddev->curr_resync > 2 &&
4823 	    mddev->curr_resync >= mddev->recovery_cp) {
4824 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4825 			printk(KERN_INFO
4826 				"md: checkpointing recovery of %s.\n",
4827 				mdname(mddev));
4828 			mddev->recovery_cp = mddev->curr_resync;
4829 		} else
4830 			mddev->recovery_cp = MaxSector;
4831 	}
4832 
4833  skip:
4834 	mddev->curr_resync = 0;
4835 	wake_up(&resync_wait);
4836 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4837 	md_wakeup_thread(mddev->thread);
4838 }
4839 EXPORT_SYMBOL_GPL(md_do_sync);
4840 
4841 
4842 /*
4843  * This routine is regularly called by all per-raid-array threads to
4844  * deal with generic issues like resync and super-block update.
4845  * Raid personalities that don't have a thread (linear/raid0) do not
4846  * need this as they never do any recovery or update the superblock.
4847  *
4848  * It does not do any resync itself, but rather "forks" off other threads
4849  * to do that as needed.
4850  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4851  * "->recovery" and create a thread at ->sync_thread.
4852  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4853  * and wakeups up this thread which will reap the thread and finish up.
4854  * This thread also removes any faulty devices (with nr_pending == 0).
4855  *
4856  * The overall approach is:
4857  *  1/ if the superblock needs updating, update it.
4858  *  2/ If a recovery thread is running, don't do anything else.
4859  *  3/ If recovery has finished, clean up, possibly marking spares active.
4860  *  4/ If there are any faulty devices, remove them.
4861  *  5/ If array is degraded, try to add spares devices
4862  *  6/ If array has spares or is not in-sync, start a resync thread.
4863  */
4864 void md_check_recovery(mddev_t *mddev)
4865 {
4866 	mdk_rdev_t *rdev;
4867 	struct list_head *rtmp;
4868 
4869 
4870 	if (mddev->bitmap)
4871 		bitmap_daemon_work(mddev->bitmap);
4872 
4873 	if (mddev->ro)
4874 		return;
4875 
4876 	if (signal_pending(current)) {
4877 		if (mddev->pers->sync_request) {
4878 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4879 			       mdname(mddev));
4880 			mddev->safemode = 2;
4881 		}
4882 		flush_signals(current);
4883 	}
4884 
4885 	if ( ! (
4886 		mddev->sb_dirty ||
4887 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4888 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4889 		(mddev->safemode == 1) ||
4890 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4891 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4892 		))
4893 		return;
4894 
4895 	if (mddev_trylock(mddev)) {
4896 		int spares =0;
4897 
4898 		spin_lock_irq(&mddev->write_lock);
4899 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4900 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4901 			mddev->in_sync = 1;
4902 			mddev->sb_dirty = 1;
4903 		}
4904 		if (mddev->safemode == 1)
4905 			mddev->safemode = 0;
4906 		spin_unlock_irq(&mddev->write_lock);
4907 
4908 		if (mddev->sb_dirty)
4909 			md_update_sb(mddev);
4910 
4911 
4912 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4913 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4914 			/* resync/recovery still happening */
4915 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4916 			goto unlock;
4917 		}
4918 		if (mddev->sync_thread) {
4919 			/* resync has finished, collect result */
4920 			md_unregister_thread(mddev->sync_thread);
4921 			mddev->sync_thread = NULL;
4922 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4923 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4924 				/* success...*/
4925 				/* activate any spares */
4926 				mddev->pers->spare_active(mddev);
4927 			}
4928 			md_update_sb(mddev);
4929 
4930 			/* if array is no-longer degraded, then any saved_raid_disk
4931 			 * information must be scrapped
4932 			 */
4933 			if (!mddev->degraded)
4934 				ITERATE_RDEV(mddev,rdev,rtmp)
4935 					rdev->saved_raid_disk = -1;
4936 
4937 			mddev->recovery = 0;
4938 			/* flag recovery needed just to double check */
4939 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4940 			md_new_event(mddev);
4941 			goto unlock;
4942 		}
4943 		/* Clear some bits that don't mean anything, but
4944 		 * might be left set
4945 		 */
4946 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4947 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4948 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4949 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4950 
4951 		/* no recovery is running.
4952 		 * remove any failed drives, then
4953 		 * add spares if possible.
4954 		 * Spare are also removed and re-added, to allow
4955 		 * the personality to fail the re-add.
4956 		 */
4957 		ITERATE_RDEV(mddev,rdev,rtmp)
4958 			if (rdev->raid_disk >= 0 &&
4959 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4960 			    atomic_read(&rdev->nr_pending)==0) {
4961 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4962 					char nm[20];
4963 					sprintf(nm,"rd%d", rdev->raid_disk);
4964 					sysfs_remove_link(&mddev->kobj, nm);
4965 					rdev->raid_disk = -1;
4966 				}
4967 			}
4968 
4969 		if (mddev->degraded) {
4970 			ITERATE_RDEV(mddev,rdev,rtmp)
4971 				if (rdev->raid_disk < 0
4972 				    && !test_bit(Faulty, &rdev->flags)) {
4973 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4974 						char nm[20];
4975 						sprintf(nm, "rd%d", rdev->raid_disk);
4976 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4977 						spares++;
4978 						md_new_event(mddev);
4979 					} else
4980 						break;
4981 				}
4982 		}
4983 
4984 		if (spares) {
4985 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4986 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4987 		} else if (mddev->recovery_cp < MaxSector) {
4988 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4989 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4990 			/* nothing to be done ... */
4991 			goto unlock;
4992 
4993 		if (mddev->pers->sync_request) {
4994 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4995 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4996 				/* We are adding a device or devices to an array
4997 				 * which has the bitmap stored on all devices.
4998 				 * So make sure all bitmap pages get written
4999 				 */
5000 				bitmap_write_all(mddev->bitmap);
5001 			}
5002 			mddev->sync_thread = md_register_thread(md_do_sync,
5003 								mddev,
5004 								"%s_resync");
5005 			if (!mddev->sync_thread) {
5006 				printk(KERN_ERR "%s: could not start resync"
5007 					" thread...\n",
5008 					mdname(mddev));
5009 				/* leave the spares where they are, it shouldn't hurt */
5010 				mddev->recovery = 0;
5011 			} else
5012 				md_wakeup_thread(mddev->sync_thread);
5013 			md_new_event(mddev);
5014 		}
5015 	unlock:
5016 		mddev_unlock(mddev);
5017 	}
5018 }
5019 
5020 static int md_notify_reboot(struct notifier_block *this,
5021 			    unsigned long code, void *x)
5022 {
5023 	struct list_head *tmp;
5024 	mddev_t *mddev;
5025 
5026 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5027 
5028 		printk(KERN_INFO "md: stopping all md devices.\n");
5029 
5030 		ITERATE_MDDEV(mddev,tmp)
5031 			if (mddev_trylock(mddev))
5032 				do_md_stop (mddev, 1);
5033 		/*
5034 		 * certain more exotic SCSI devices are known to be
5035 		 * volatile wrt too early system reboots. While the
5036 		 * right place to handle this issue is the given
5037 		 * driver, we do want to have a safe RAID driver ...
5038 		 */
5039 		mdelay(1000*1);
5040 	}
5041 	return NOTIFY_DONE;
5042 }
5043 
5044 static struct notifier_block md_notifier = {
5045 	.notifier_call	= md_notify_reboot,
5046 	.next		= NULL,
5047 	.priority	= INT_MAX, /* before any real devices */
5048 };
5049 
5050 static void md_geninit(void)
5051 {
5052 	struct proc_dir_entry *p;
5053 
5054 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5055 
5056 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
5057 	if (p)
5058 		p->proc_fops = &md_seq_fops;
5059 }
5060 
5061 static int __init md_init(void)
5062 {
5063 	int minor;
5064 
5065 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
5066 			" MD_SB_DISKS=%d\n",
5067 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
5068 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
5069 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
5070 			BITMAP_MINOR);
5071 
5072 	if (register_blkdev(MAJOR_NR, "md"))
5073 		return -1;
5074 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5075 		unregister_blkdev(MAJOR_NR, "md");
5076 		return -1;
5077 	}
5078 	devfs_mk_dir("md");
5079 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
5080 				md_probe, NULL, NULL);
5081 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
5082 			    md_probe, NULL, NULL);
5083 
5084 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
5085 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
5086 				S_IFBLK|S_IRUSR|S_IWUSR,
5087 				"md/%d", minor);
5088 
5089 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
5090 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
5091 			      S_IFBLK|S_IRUSR|S_IWUSR,
5092 			      "md/mdp%d", minor);
5093 
5094 
5095 	register_reboot_notifier(&md_notifier);
5096 	raid_table_header = register_sysctl_table(raid_root_table, 1);
5097 
5098 	md_geninit();
5099 	return (0);
5100 }
5101 
5102 
5103 #ifndef MODULE
5104 
5105 /*
5106  * Searches all registered partitions for autorun RAID arrays
5107  * at boot time.
5108  */
5109 static dev_t detected_devices[128];
5110 static int dev_cnt;
5111 
5112 void md_autodetect_dev(dev_t dev)
5113 {
5114 	if (dev_cnt >= 0 && dev_cnt < 127)
5115 		detected_devices[dev_cnt++] = dev;
5116 }
5117 
5118 
5119 static void autostart_arrays(int part)
5120 {
5121 	mdk_rdev_t *rdev;
5122 	int i;
5123 
5124 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5125 
5126 	for (i = 0; i < dev_cnt; i++) {
5127 		dev_t dev = detected_devices[i];
5128 
5129 		rdev = md_import_device(dev,0, 0);
5130 		if (IS_ERR(rdev))
5131 			continue;
5132 
5133 		if (test_bit(Faulty, &rdev->flags)) {
5134 			MD_BUG();
5135 			continue;
5136 		}
5137 		list_add(&rdev->same_set, &pending_raid_disks);
5138 	}
5139 	dev_cnt = 0;
5140 
5141 	autorun_devices(part);
5142 }
5143 
5144 #endif
5145 
5146 static __exit void md_exit(void)
5147 {
5148 	mddev_t *mddev;
5149 	struct list_head *tmp;
5150 	int i;
5151 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
5152 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
5153 	for (i=0; i < MAX_MD_DEVS; i++)
5154 		devfs_remove("md/%d", i);
5155 	for (i=0; i < MAX_MD_DEVS; i++)
5156 		devfs_remove("md/d%d", i);
5157 
5158 	devfs_remove("md");
5159 
5160 	unregister_blkdev(MAJOR_NR,"md");
5161 	unregister_blkdev(mdp_major, "mdp");
5162 	unregister_reboot_notifier(&md_notifier);
5163 	unregister_sysctl_table(raid_table_header);
5164 	remove_proc_entry("mdstat", NULL);
5165 	ITERATE_MDDEV(mddev,tmp) {
5166 		struct gendisk *disk = mddev->gendisk;
5167 		if (!disk)
5168 			continue;
5169 		export_array(mddev);
5170 		del_gendisk(disk);
5171 		put_disk(disk);
5172 		mddev->gendisk = NULL;
5173 		mddev_put(mddev);
5174 	}
5175 }
5176 
5177 module_init(md_init)
5178 module_exit(md_exit)
5179 
5180 static int get_ro(char *buffer, struct kernel_param *kp)
5181 {
5182 	return sprintf(buffer, "%d", start_readonly);
5183 }
5184 static int set_ro(const char *val, struct kernel_param *kp)
5185 {
5186 	char *e;
5187 	int num = simple_strtoul(val, &e, 10);
5188 	if (*val && (*e == '\0' || *e == '\n')) {
5189 		start_readonly = num;
5190 		return 0;
5191 	}
5192 	return -EINVAL;
5193 }
5194 
5195 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
5196 module_param(start_dirty_degraded, int, 0644);
5197 
5198 
5199 EXPORT_SYMBOL(register_md_personality);
5200 EXPORT_SYMBOL(unregister_md_personality);
5201 EXPORT_SYMBOL(md_error);
5202 EXPORT_SYMBOL(md_done_sync);
5203 EXPORT_SYMBOL(md_write_start);
5204 EXPORT_SYMBOL(md_write_end);
5205 EXPORT_SYMBOL(md_register_thread);
5206 EXPORT_SYMBOL(md_unregister_thread);
5207 EXPORT_SYMBOL(md_wakeup_thread);
5208 EXPORT_SYMBOL(md_print_devices);
5209 EXPORT_SYMBOL(md_check_recovery);
5210 MODULE_LICENSE("GPL");
5211 MODULE_ALIAS("md");
5212 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
5213