1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/buffer_head.h> /* for invalidate_bdev */ 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/reboot.h> 47 #include <linux/file.h> 48 #include <linux/compat.h> 49 #include <linux/delay.h> 50 #include <linux/raid/md_p.h> 51 #include <linux/raid/md_u.h> 52 #include "md.h" 53 #include "bitmap.h" 54 55 #define DEBUG 0 56 #define dprintk(x...) ((void)(DEBUG && printk(x))) 57 58 59 #ifndef MODULE 60 static void autostart_arrays(int part); 61 #endif 62 63 static LIST_HEAD(pers_list); 64 static DEFINE_SPINLOCK(pers_lock); 65 66 static void md_print_devices(void); 67 68 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 69 70 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 71 72 /* 73 * Default number of read corrections we'll attempt on an rdev 74 * before ejecting it from the array. We divide the read error 75 * count by 2 for every hour elapsed between read errors. 76 */ 77 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 78 /* 79 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 80 * is 1000 KB/sec, so the extra system load does not show up that much. 81 * Increase it if you want to have more _guaranteed_ speed. Note that 82 * the RAID driver will use the maximum available bandwidth if the IO 83 * subsystem is idle. There is also an 'absolute maximum' reconstruction 84 * speed limit - in case reconstruction slows down your system despite 85 * idle IO detection. 86 * 87 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 88 * or /sys/block/mdX/md/sync_speed_{min,max} 89 */ 90 91 static int sysctl_speed_limit_min = 1000; 92 static int sysctl_speed_limit_max = 200000; 93 static inline int speed_min(mddev_t *mddev) 94 { 95 return mddev->sync_speed_min ? 96 mddev->sync_speed_min : sysctl_speed_limit_min; 97 } 98 99 static inline int speed_max(mddev_t *mddev) 100 { 101 return mddev->sync_speed_max ? 102 mddev->sync_speed_max : sysctl_speed_limit_max; 103 } 104 105 static struct ctl_table_header *raid_table_header; 106 107 static ctl_table raid_table[] = { 108 { 109 .procname = "speed_limit_min", 110 .data = &sysctl_speed_limit_min, 111 .maxlen = sizeof(int), 112 .mode = S_IRUGO|S_IWUSR, 113 .proc_handler = proc_dointvec, 114 }, 115 { 116 .procname = "speed_limit_max", 117 .data = &sysctl_speed_limit_max, 118 .maxlen = sizeof(int), 119 .mode = S_IRUGO|S_IWUSR, 120 .proc_handler = proc_dointvec, 121 }, 122 { } 123 }; 124 125 static ctl_table raid_dir_table[] = { 126 { 127 .procname = "raid", 128 .maxlen = 0, 129 .mode = S_IRUGO|S_IXUGO, 130 .child = raid_table, 131 }, 132 { } 133 }; 134 135 static ctl_table raid_root_table[] = { 136 { 137 .procname = "dev", 138 .maxlen = 0, 139 .mode = 0555, 140 .child = raid_dir_table, 141 }, 142 { } 143 }; 144 145 static const struct block_device_operations md_fops; 146 147 static int start_readonly; 148 149 /* 150 * We have a system wide 'event count' that is incremented 151 * on any 'interesting' event, and readers of /proc/mdstat 152 * can use 'poll' or 'select' to find out when the event 153 * count increases. 154 * 155 * Events are: 156 * start array, stop array, error, add device, remove device, 157 * start build, activate spare 158 */ 159 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 160 static atomic_t md_event_count; 161 void md_new_event(mddev_t *mddev) 162 { 163 atomic_inc(&md_event_count); 164 wake_up(&md_event_waiters); 165 } 166 EXPORT_SYMBOL_GPL(md_new_event); 167 168 /* Alternate version that can be called from interrupts 169 * when calling sysfs_notify isn't needed. 170 */ 171 static void md_new_event_inintr(mddev_t *mddev) 172 { 173 atomic_inc(&md_event_count); 174 wake_up(&md_event_waiters); 175 } 176 177 /* 178 * Enables to iterate over all existing md arrays 179 * all_mddevs_lock protects this list. 180 */ 181 static LIST_HEAD(all_mddevs); 182 static DEFINE_SPINLOCK(all_mddevs_lock); 183 184 185 /* 186 * iterates through all used mddevs in the system. 187 * We take care to grab the all_mddevs_lock whenever navigating 188 * the list, and to always hold a refcount when unlocked. 189 * Any code which breaks out of this loop while own 190 * a reference to the current mddev and must mddev_put it. 191 */ 192 #define for_each_mddev(mddev,tmp) \ 193 \ 194 for (({ spin_lock(&all_mddevs_lock); \ 195 tmp = all_mddevs.next; \ 196 mddev = NULL;}); \ 197 ({ if (tmp != &all_mddevs) \ 198 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 199 spin_unlock(&all_mddevs_lock); \ 200 if (mddev) mddev_put(mddev); \ 201 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 202 tmp != &all_mddevs;}); \ 203 ({ spin_lock(&all_mddevs_lock); \ 204 tmp = tmp->next;}) \ 205 ) 206 207 208 /* Rather than calling directly into the personality make_request function, 209 * IO requests come here first so that we can check if the device is 210 * being suspended pending a reconfiguration. 211 * We hold a refcount over the call to ->make_request. By the time that 212 * call has finished, the bio has been linked into some internal structure 213 * and so is visible to ->quiesce(), so we don't need the refcount any more. 214 */ 215 static int md_make_request(struct request_queue *q, struct bio *bio) 216 { 217 mddev_t *mddev = q->queuedata; 218 int rv; 219 if (mddev == NULL || mddev->pers == NULL) { 220 bio_io_error(bio); 221 return 0; 222 } 223 rcu_read_lock(); 224 if (mddev->suspended || mddev->barrier) { 225 DEFINE_WAIT(__wait); 226 for (;;) { 227 prepare_to_wait(&mddev->sb_wait, &__wait, 228 TASK_UNINTERRUPTIBLE); 229 if (!mddev->suspended && !mddev->barrier) 230 break; 231 rcu_read_unlock(); 232 schedule(); 233 rcu_read_lock(); 234 } 235 finish_wait(&mddev->sb_wait, &__wait); 236 } 237 atomic_inc(&mddev->active_io); 238 rcu_read_unlock(); 239 rv = mddev->pers->make_request(q, bio); 240 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 241 wake_up(&mddev->sb_wait); 242 243 return rv; 244 } 245 246 static void mddev_suspend(mddev_t *mddev) 247 { 248 BUG_ON(mddev->suspended); 249 mddev->suspended = 1; 250 synchronize_rcu(); 251 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 252 mddev->pers->quiesce(mddev, 1); 253 md_unregister_thread(mddev->thread); 254 mddev->thread = NULL; 255 /* we now know that no code is executing in the personality module, 256 * except possibly the tail end of a ->bi_end_io function, but that 257 * is certain to complete before the module has a chance to get 258 * unloaded 259 */ 260 } 261 262 static void mddev_resume(mddev_t *mddev) 263 { 264 mddev->suspended = 0; 265 wake_up(&mddev->sb_wait); 266 mddev->pers->quiesce(mddev, 0); 267 } 268 269 int mddev_congested(mddev_t *mddev, int bits) 270 { 271 if (mddev->barrier) 272 return 1; 273 return mddev->suspended; 274 } 275 EXPORT_SYMBOL(mddev_congested); 276 277 /* 278 * Generic barrier handling for md 279 */ 280 281 #define POST_REQUEST_BARRIER ((void*)1) 282 283 static void md_end_barrier(struct bio *bio, int err) 284 { 285 mdk_rdev_t *rdev = bio->bi_private; 286 mddev_t *mddev = rdev->mddev; 287 if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER) 288 set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags); 289 290 rdev_dec_pending(rdev, mddev); 291 292 if (atomic_dec_and_test(&mddev->flush_pending)) { 293 if (mddev->barrier == POST_REQUEST_BARRIER) { 294 /* This was a post-request barrier */ 295 mddev->barrier = NULL; 296 wake_up(&mddev->sb_wait); 297 } else 298 /* The pre-request barrier has finished */ 299 schedule_work(&mddev->barrier_work); 300 } 301 bio_put(bio); 302 } 303 304 static void submit_barriers(mddev_t *mddev) 305 { 306 mdk_rdev_t *rdev; 307 308 rcu_read_lock(); 309 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 310 if (rdev->raid_disk >= 0 && 311 !test_bit(Faulty, &rdev->flags)) { 312 /* Take two references, one is dropped 313 * when request finishes, one after 314 * we reclaim rcu_read_lock 315 */ 316 struct bio *bi; 317 atomic_inc(&rdev->nr_pending); 318 atomic_inc(&rdev->nr_pending); 319 rcu_read_unlock(); 320 bi = bio_alloc(GFP_KERNEL, 0); 321 bi->bi_end_io = md_end_barrier; 322 bi->bi_private = rdev; 323 bi->bi_bdev = rdev->bdev; 324 atomic_inc(&mddev->flush_pending); 325 submit_bio(WRITE_BARRIER, bi); 326 rcu_read_lock(); 327 rdev_dec_pending(rdev, mddev); 328 } 329 rcu_read_unlock(); 330 } 331 332 static void md_submit_barrier(struct work_struct *ws) 333 { 334 mddev_t *mddev = container_of(ws, mddev_t, barrier_work); 335 struct bio *bio = mddev->barrier; 336 337 atomic_set(&mddev->flush_pending, 1); 338 339 if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags)) 340 bio_endio(bio, -EOPNOTSUPP); 341 else if (bio->bi_size == 0) 342 /* an empty barrier - all done */ 343 bio_endio(bio, 0); 344 else { 345 bio->bi_rw &= ~(1<<BIO_RW_BARRIER); 346 if (mddev->pers->make_request(mddev->queue, bio)) 347 generic_make_request(bio); 348 mddev->barrier = POST_REQUEST_BARRIER; 349 submit_barriers(mddev); 350 } 351 if (atomic_dec_and_test(&mddev->flush_pending)) { 352 mddev->barrier = NULL; 353 wake_up(&mddev->sb_wait); 354 } 355 } 356 357 void md_barrier_request(mddev_t *mddev, struct bio *bio) 358 { 359 spin_lock_irq(&mddev->write_lock); 360 wait_event_lock_irq(mddev->sb_wait, 361 !mddev->barrier, 362 mddev->write_lock, /*nothing*/); 363 mddev->barrier = bio; 364 spin_unlock_irq(&mddev->write_lock); 365 366 atomic_set(&mddev->flush_pending, 1); 367 INIT_WORK(&mddev->barrier_work, md_submit_barrier); 368 369 submit_barriers(mddev); 370 371 if (atomic_dec_and_test(&mddev->flush_pending)) 372 schedule_work(&mddev->barrier_work); 373 } 374 EXPORT_SYMBOL(md_barrier_request); 375 376 static inline mddev_t *mddev_get(mddev_t *mddev) 377 { 378 atomic_inc(&mddev->active); 379 return mddev; 380 } 381 382 static void mddev_delayed_delete(struct work_struct *ws); 383 384 static void mddev_put(mddev_t *mddev) 385 { 386 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 387 return; 388 if (!mddev->raid_disks && list_empty(&mddev->disks) && 389 !mddev->hold_active) { 390 list_del(&mddev->all_mddevs); 391 if (mddev->gendisk) { 392 /* we did a probe so need to clean up. 393 * Call schedule_work inside the spinlock 394 * so that flush_scheduled_work() after 395 * mddev_find will succeed in waiting for the 396 * work to be done. 397 */ 398 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 399 schedule_work(&mddev->del_work); 400 } else 401 kfree(mddev); 402 } 403 spin_unlock(&all_mddevs_lock); 404 } 405 406 static mddev_t * mddev_find(dev_t unit) 407 { 408 mddev_t *mddev, *new = NULL; 409 410 retry: 411 spin_lock(&all_mddevs_lock); 412 413 if (unit) { 414 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 415 if (mddev->unit == unit) { 416 mddev_get(mddev); 417 spin_unlock(&all_mddevs_lock); 418 kfree(new); 419 return mddev; 420 } 421 422 if (new) { 423 list_add(&new->all_mddevs, &all_mddevs); 424 spin_unlock(&all_mddevs_lock); 425 new->hold_active = UNTIL_IOCTL; 426 return new; 427 } 428 } else if (new) { 429 /* find an unused unit number */ 430 static int next_minor = 512; 431 int start = next_minor; 432 int is_free = 0; 433 int dev = 0; 434 while (!is_free) { 435 dev = MKDEV(MD_MAJOR, next_minor); 436 next_minor++; 437 if (next_minor > MINORMASK) 438 next_minor = 0; 439 if (next_minor == start) { 440 /* Oh dear, all in use. */ 441 spin_unlock(&all_mddevs_lock); 442 kfree(new); 443 return NULL; 444 } 445 446 is_free = 1; 447 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 448 if (mddev->unit == dev) { 449 is_free = 0; 450 break; 451 } 452 } 453 new->unit = dev; 454 new->md_minor = MINOR(dev); 455 new->hold_active = UNTIL_STOP; 456 list_add(&new->all_mddevs, &all_mddevs); 457 spin_unlock(&all_mddevs_lock); 458 return new; 459 } 460 spin_unlock(&all_mddevs_lock); 461 462 new = kzalloc(sizeof(*new), GFP_KERNEL); 463 if (!new) 464 return NULL; 465 466 new->unit = unit; 467 if (MAJOR(unit) == MD_MAJOR) 468 new->md_minor = MINOR(unit); 469 else 470 new->md_minor = MINOR(unit) >> MdpMinorShift; 471 472 mutex_init(&new->open_mutex); 473 mutex_init(&new->reconfig_mutex); 474 mutex_init(&new->bitmap_info.mutex); 475 INIT_LIST_HEAD(&new->disks); 476 INIT_LIST_HEAD(&new->all_mddevs); 477 init_timer(&new->safemode_timer); 478 atomic_set(&new->active, 1); 479 atomic_set(&new->openers, 0); 480 atomic_set(&new->active_io, 0); 481 spin_lock_init(&new->write_lock); 482 atomic_set(&new->flush_pending, 0); 483 init_waitqueue_head(&new->sb_wait); 484 init_waitqueue_head(&new->recovery_wait); 485 new->reshape_position = MaxSector; 486 new->resync_min = 0; 487 new->resync_max = MaxSector; 488 new->level = LEVEL_NONE; 489 490 goto retry; 491 } 492 493 static inline int mddev_lock(mddev_t * mddev) 494 { 495 return mutex_lock_interruptible(&mddev->reconfig_mutex); 496 } 497 498 static inline int mddev_is_locked(mddev_t *mddev) 499 { 500 return mutex_is_locked(&mddev->reconfig_mutex); 501 } 502 503 static inline int mddev_trylock(mddev_t * mddev) 504 { 505 return mutex_trylock(&mddev->reconfig_mutex); 506 } 507 508 static inline void mddev_unlock(mddev_t * mddev) 509 { 510 mutex_unlock(&mddev->reconfig_mutex); 511 512 md_wakeup_thread(mddev->thread); 513 } 514 515 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 516 { 517 mdk_rdev_t *rdev; 518 519 list_for_each_entry(rdev, &mddev->disks, same_set) 520 if (rdev->desc_nr == nr) 521 return rdev; 522 523 return NULL; 524 } 525 526 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 527 { 528 mdk_rdev_t *rdev; 529 530 list_for_each_entry(rdev, &mddev->disks, same_set) 531 if (rdev->bdev->bd_dev == dev) 532 return rdev; 533 534 return NULL; 535 } 536 537 static struct mdk_personality *find_pers(int level, char *clevel) 538 { 539 struct mdk_personality *pers; 540 list_for_each_entry(pers, &pers_list, list) { 541 if (level != LEVEL_NONE && pers->level == level) 542 return pers; 543 if (strcmp(pers->name, clevel)==0) 544 return pers; 545 } 546 return NULL; 547 } 548 549 /* return the offset of the super block in 512byte sectors */ 550 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 551 { 552 sector_t num_sectors = bdev->bd_inode->i_size / 512; 553 return MD_NEW_SIZE_SECTORS(num_sectors); 554 } 555 556 static int alloc_disk_sb(mdk_rdev_t * rdev) 557 { 558 if (rdev->sb_page) 559 MD_BUG(); 560 561 rdev->sb_page = alloc_page(GFP_KERNEL); 562 if (!rdev->sb_page) { 563 printk(KERN_ALERT "md: out of memory.\n"); 564 return -ENOMEM; 565 } 566 567 return 0; 568 } 569 570 static void free_disk_sb(mdk_rdev_t * rdev) 571 { 572 if (rdev->sb_page) { 573 put_page(rdev->sb_page); 574 rdev->sb_loaded = 0; 575 rdev->sb_page = NULL; 576 rdev->sb_start = 0; 577 rdev->sectors = 0; 578 } 579 } 580 581 582 static void super_written(struct bio *bio, int error) 583 { 584 mdk_rdev_t *rdev = bio->bi_private; 585 mddev_t *mddev = rdev->mddev; 586 587 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 588 printk("md: super_written gets error=%d, uptodate=%d\n", 589 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 590 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 591 md_error(mddev, rdev); 592 } 593 594 if (atomic_dec_and_test(&mddev->pending_writes)) 595 wake_up(&mddev->sb_wait); 596 bio_put(bio); 597 } 598 599 static void super_written_barrier(struct bio *bio, int error) 600 { 601 struct bio *bio2 = bio->bi_private; 602 mdk_rdev_t *rdev = bio2->bi_private; 603 mddev_t *mddev = rdev->mddev; 604 605 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 606 error == -EOPNOTSUPP) { 607 unsigned long flags; 608 /* barriers don't appear to be supported :-( */ 609 set_bit(BarriersNotsupp, &rdev->flags); 610 mddev->barriers_work = 0; 611 spin_lock_irqsave(&mddev->write_lock, flags); 612 bio2->bi_next = mddev->biolist; 613 mddev->biolist = bio2; 614 spin_unlock_irqrestore(&mddev->write_lock, flags); 615 wake_up(&mddev->sb_wait); 616 bio_put(bio); 617 } else { 618 bio_put(bio2); 619 bio->bi_private = rdev; 620 super_written(bio, error); 621 } 622 } 623 624 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 625 sector_t sector, int size, struct page *page) 626 { 627 /* write first size bytes of page to sector of rdev 628 * Increment mddev->pending_writes before returning 629 * and decrement it on completion, waking up sb_wait 630 * if zero is reached. 631 * If an error occurred, call md_error 632 * 633 * As we might need to resubmit the request if BIO_RW_BARRIER 634 * causes ENOTSUPP, we allocate a spare bio... 635 */ 636 struct bio *bio = bio_alloc(GFP_NOIO, 1); 637 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG); 638 639 bio->bi_bdev = rdev->bdev; 640 bio->bi_sector = sector; 641 bio_add_page(bio, page, size, 0); 642 bio->bi_private = rdev; 643 bio->bi_end_io = super_written; 644 bio->bi_rw = rw; 645 646 atomic_inc(&mddev->pending_writes); 647 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 648 struct bio *rbio; 649 rw |= (1<<BIO_RW_BARRIER); 650 rbio = bio_clone(bio, GFP_NOIO); 651 rbio->bi_private = bio; 652 rbio->bi_end_io = super_written_barrier; 653 submit_bio(rw, rbio); 654 } else 655 submit_bio(rw, bio); 656 } 657 658 void md_super_wait(mddev_t *mddev) 659 { 660 /* wait for all superblock writes that were scheduled to complete. 661 * if any had to be retried (due to BARRIER problems), retry them 662 */ 663 DEFINE_WAIT(wq); 664 for(;;) { 665 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 666 if (atomic_read(&mddev->pending_writes)==0) 667 break; 668 while (mddev->biolist) { 669 struct bio *bio; 670 spin_lock_irq(&mddev->write_lock); 671 bio = mddev->biolist; 672 mddev->biolist = bio->bi_next ; 673 bio->bi_next = NULL; 674 spin_unlock_irq(&mddev->write_lock); 675 submit_bio(bio->bi_rw, bio); 676 } 677 schedule(); 678 } 679 finish_wait(&mddev->sb_wait, &wq); 680 } 681 682 static void bi_complete(struct bio *bio, int error) 683 { 684 complete((struct completion*)bio->bi_private); 685 } 686 687 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 688 struct page *page, int rw) 689 { 690 struct bio *bio = bio_alloc(GFP_NOIO, 1); 691 struct completion event; 692 int ret; 693 694 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG); 695 696 bio->bi_bdev = bdev; 697 bio->bi_sector = sector; 698 bio_add_page(bio, page, size, 0); 699 init_completion(&event); 700 bio->bi_private = &event; 701 bio->bi_end_io = bi_complete; 702 submit_bio(rw, bio); 703 wait_for_completion(&event); 704 705 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 706 bio_put(bio); 707 return ret; 708 } 709 EXPORT_SYMBOL_GPL(sync_page_io); 710 711 static int read_disk_sb(mdk_rdev_t * rdev, int size) 712 { 713 char b[BDEVNAME_SIZE]; 714 if (!rdev->sb_page) { 715 MD_BUG(); 716 return -EINVAL; 717 } 718 if (rdev->sb_loaded) 719 return 0; 720 721 722 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ)) 723 goto fail; 724 rdev->sb_loaded = 1; 725 return 0; 726 727 fail: 728 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 729 bdevname(rdev->bdev,b)); 730 return -EINVAL; 731 } 732 733 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 734 { 735 return sb1->set_uuid0 == sb2->set_uuid0 && 736 sb1->set_uuid1 == sb2->set_uuid1 && 737 sb1->set_uuid2 == sb2->set_uuid2 && 738 sb1->set_uuid3 == sb2->set_uuid3; 739 } 740 741 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 742 { 743 int ret; 744 mdp_super_t *tmp1, *tmp2; 745 746 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 747 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 748 749 if (!tmp1 || !tmp2) { 750 ret = 0; 751 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 752 goto abort; 753 } 754 755 *tmp1 = *sb1; 756 *tmp2 = *sb2; 757 758 /* 759 * nr_disks is not constant 760 */ 761 tmp1->nr_disks = 0; 762 tmp2->nr_disks = 0; 763 764 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 765 abort: 766 kfree(tmp1); 767 kfree(tmp2); 768 return ret; 769 } 770 771 772 static u32 md_csum_fold(u32 csum) 773 { 774 csum = (csum & 0xffff) + (csum >> 16); 775 return (csum & 0xffff) + (csum >> 16); 776 } 777 778 static unsigned int calc_sb_csum(mdp_super_t * sb) 779 { 780 u64 newcsum = 0; 781 u32 *sb32 = (u32*)sb; 782 int i; 783 unsigned int disk_csum, csum; 784 785 disk_csum = sb->sb_csum; 786 sb->sb_csum = 0; 787 788 for (i = 0; i < MD_SB_BYTES/4 ; i++) 789 newcsum += sb32[i]; 790 csum = (newcsum & 0xffffffff) + (newcsum>>32); 791 792 793 #ifdef CONFIG_ALPHA 794 /* This used to use csum_partial, which was wrong for several 795 * reasons including that different results are returned on 796 * different architectures. It isn't critical that we get exactly 797 * the same return value as before (we always csum_fold before 798 * testing, and that removes any differences). However as we 799 * know that csum_partial always returned a 16bit value on 800 * alphas, do a fold to maximise conformity to previous behaviour. 801 */ 802 sb->sb_csum = md_csum_fold(disk_csum); 803 #else 804 sb->sb_csum = disk_csum; 805 #endif 806 return csum; 807 } 808 809 810 /* 811 * Handle superblock details. 812 * We want to be able to handle multiple superblock formats 813 * so we have a common interface to them all, and an array of 814 * different handlers. 815 * We rely on user-space to write the initial superblock, and support 816 * reading and updating of superblocks. 817 * Interface methods are: 818 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 819 * loads and validates a superblock on dev. 820 * if refdev != NULL, compare superblocks on both devices 821 * Return: 822 * 0 - dev has a superblock that is compatible with refdev 823 * 1 - dev has a superblock that is compatible and newer than refdev 824 * so dev should be used as the refdev in future 825 * -EINVAL superblock incompatible or invalid 826 * -othererror e.g. -EIO 827 * 828 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 829 * Verify that dev is acceptable into mddev. 830 * The first time, mddev->raid_disks will be 0, and data from 831 * dev should be merged in. Subsequent calls check that dev 832 * is new enough. Return 0 or -EINVAL 833 * 834 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 835 * Update the superblock for rdev with data in mddev 836 * This does not write to disc. 837 * 838 */ 839 840 struct super_type { 841 char *name; 842 struct module *owner; 843 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, 844 int minor_version); 845 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 846 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 847 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev, 848 sector_t num_sectors); 849 }; 850 851 /* 852 * Check that the given mddev has no bitmap. 853 * 854 * This function is called from the run method of all personalities that do not 855 * support bitmaps. It prints an error message and returns non-zero if mddev 856 * has a bitmap. Otherwise, it returns 0. 857 * 858 */ 859 int md_check_no_bitmap(mddev_t *mddev) 860 { 861 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 862 return 0; 863 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 864 mdname(mddev), mddev->pers->name); 865 return 1; 866 } 867 EXPORT_SYMBOL(md_check_no_bitmap); 868 869 /* 870 * load_super for 0.90.0 871 */ 872 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 873 { 874 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 875 mdp_super_t *sb; 876 int ret; 877 878 /* 879 * Calculate the position of the superblock (512byte sectors), 880 * it's at the end of the disk. 881 * 882 * It also happens to be a multiple of 4Kb. 883 */ 884 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 885 886 ret = read_disk_sb(rdev, MD_SB_BYTES); 887 if (ret) return ret; 888 889 ret = -EINVAL; 890 891 bdevname(rdev->bdev, b); 892 sb = (mdp_super_t*)page_address(rdev->sb_page); 893 894 if (sb->md_magic != MD_SB_MAGIC) { 895 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 896 b); 897 goto abort; 898 } 899 900 if (sb->major_version != 0 || 901 sb->minor_version < 90 || 902 sb->minor_version > 91) { 903 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 904 sb->major_version, sb->minor_version, 905 b); 906 goto abort; 907 } 908 909 if (sb->raid_disks <= 0) 910 goto abort; 911 912 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 913 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 914 b); 915 goto abort; 916 } 917 918 rdev->preferred_minor = sb->md_minor; 919 rdev->data_offset = 0; 920 rdev->sb_size = MD_SB_BYTES; 921 922 if (sb->level == LEVEL_MULTIPATH) 923 rdev->desc_nr = -1; 924 else 925 rdev->desc_nr = sb->this_disk.number; 926 927 if (!refdev) { 928 ret = 1; 929 } else { 930 __u64 ev1, ev2; 931 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 932 if (!uuid_equal(refsb, sb)) { 933 printk(KERN_WARNING "md: %s has different UUID to %s\n", 934 b, bdevname(refdev->bdev,b2)); 935 goto abort; 936 } 937 if (!sb_equal(refsb, sb)) { 938 printk(KERN_WARNING "md: %s has same UUID" 939 " but different superblock to %s\n", 940 b, bdevname(refdev->bdev, b2)); 941 goto abort; 942 } 943 ev1 = md_event(sb); 944 ev2 = md_event(refsb); 945 if (ev1 > ev2) 946 ret = 1; 947 else 948 ret = 0; 949 } 950 rdev->sectors = rdev->sb_start; 951 952 if (rdev->sectors < sb->size * 2 && sb->level > 1) 953 /* "this cannot possibly happen" ... */ 954 ret = -EINVAL; 955 956 abort: 957 return ret; 958 } 959 960 /* 961 * validate_super for 0.90.0 962 */ 963 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 964 { 965 mdp_disk_t *desc; 966 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 967 __u64 ev1 = md_event(sb); 968 969 rdev->raid_disk = -1; 970 clear_bit(Faulty, &rdev->flags); 971 clear_bit(In_sync, &rdev->flags); 972 clear_bit(WriteMostly, &rdev->flags); 973 clear_bit(BarriersNotsupp, &rdev->flags); 974 975 if (mddev->raid_disks == 0) { 976 mddev->major_version = 0; 977 mddev->minor_version = sb->minor_version; 978 mddev->patch_version = sb->patch_version; 979 mddev->external = 0; 980 mddev->chunk_sectors = sb->chunk_size >> 9; 981 mddev->ctime = sb->ctime; 982 mddev->utime = sb->utime; 983 mddev->level = sb->level; 984 mddev->clevel[0] = 0; 985 mddev->layout = sb->layout; 986 mddev->raid_disks = sb->raid_disks; 987 mddev->dev_sectors = sb->size * 2; 988 mddev->events = ev1; 989 mddev->bitmap_info.offset = 0; 990 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 991 992 if (mddev->minor_version >= 91) { 993 mddev->reshape_position = sb->reshape_position; 994 mddev->delta_disks = sb->delta_disks; 995 mddev->new_level = sb->new_level; 996 mddev->new_layout = sb->new_layout; 997 mddev->new_chunk_sectors = sb->new_chunk >> 9; 998 } else { 999 mddev->reshape_position = MaxSector; 1000 mddev->delta_disks = 0; 1001 mddev->new_level = mddev->level; 1002 mddev->new_layout = mddev->layout; 1003 mddev->new_chunk_sectors = mddev->chunk_sectors; 1004 } 1005 1006 if (sb->state & (1<<MD_SB_CLEAN)) 1007 mddev->recovery_cp = MaxSector; 1008 else { 1009 if (sb->events_hi == sb->cp_events_hi && 1010 sb->events_lo == sb->cp_events_lo) { 1011 mddev->recovery_cp = sb->recovery_cp; 1012 } else 1013 mddev->recovery_cp = 0; 1014 } 1015 1016 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1017 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1018 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1019 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1020 1021 mddev->max_disks = MD_SB_DISKS; 1022 1023 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1024 mddev->bitmap_info.file == NULL) 1025 mddev->bitmap_info.offset = 1026 mddev->bitmap_info.default_offset; 1027 1028 } else if (mddev->pers == NULL) { 1029 /* Insist on good event counter while assembling */ 1030 ++ev1; 1031 if (ev1 < mddev->events) 1032 return -EINVAL; 1033 } else if (mddev->bitmap) { 1034 /* if adding to array with a bitmap, then we can accept an 1035 * older device ... but not too old. 1036 */ 1037 if (ev1 < mddev->bitmap->events_cleared) 1038 return 0; 1039 } else { 1040 if (ev1 < mddev->events) 1041 /* just a hot-add of a new device, leave raid_disk at -1 */ 1042 return 0; 1043 } 1044 1045 if (mddev->level != LEVEL_MULTIPATH) { 1046 desc = sb->disks + rdev->desc_nr; 1047 1048 if (desc->state & (1<<MD_DISK_FAULTY)) 1049 set_bit(Faulty, &rdev->flags); 1050 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1051 desc->raid_disk < mddev->raid_disks */) { 1052 set_bit(In_sync, &rdev->flags); 1053 rdev->raid_disk = desc->raid_disk; 1054 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1055 /* active but not in sync implies recovery up to 1056 * reshape position. We don't know exactly where 1057 * that is, so set to zero for now */ 1058 if (mddev->minor_version >= 91) { 1059 rdev->recovery_offset = 0; 1060 rdev->raid_disk = desc->raid_disk; 1061 } 1062 } 1063 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1064 set_bit(WriteMostly, &rdev->flags); 1065 } else /* MULTIPATH are always insync */ 1066 set_bit(In_sync, &rdev->flags); 1067 return 0; 1068 } 1069 1070 /* 1071 * sync_super for 0.90.0 1072 */ 1073 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1074 { 1075 mdp_super_t *sb; 1076 mdk_rdev_t *rdev2; 1077 int next_spare = mddev->raid_disks; 1078 1079 1080 /* make rdev->sb match mddev data.. 1081 * 1082 * 1/ zero out disks 1083 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1084 * 3/ any empty disks < next_spare become removed 1085 * 1086 * disks[0] gets initialised to REMOVED because 1087 * we cannot be sure from other fields if it has 1088 * been initialised or not. 1089 */ 1090 int i; 1091 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1092 1093 rdev->sb_size = MD_SB_BYTES; 1094 1095 sb = (mdp_super_t*)page_address(rdev->sb_page); 1096 1097 memset(sb, 0, sizeof(*sb)); 1098 1099 sb->md_magic = MD_SB_MAGIC; 1100 sb->major_version = mddev->major_version; 1101 sb->patch_version = mddev->patch_version; 1102 sb->gvalid_words = 0; /* ignored */ 1103 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1104 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1105 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1106 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1107 1108 sb->ctime = mddev->ctime; 1109 sb->level = mddev->level; 1110 sb->size = mddev->dev_sectors / 2; 1111 sb->raid_disks = mddev->raid_disks; 1112 sb->md_minor = mddev->md_minor; 1113 sb->not_persistent = 0; 1114 sb->utime = mddev->utime; 1115 sb->state = 0; 1116 sb->events_hi = (mddev->events>>32); 1117 sb->events_lo = (u32)mddev->events; 1118 1119 if (mddev->reshape_position == MaxSector) 1120 sb->minor_version = 90; 1121 else { 1122 sb->minor_version = 91; 1123 sb->reshape_position = mddev->reshape_position; 1124 sb->new_level = mddev->new_level; 1125 sb->delta_disks = mddev->delta_disks; 1126 sb->new_layout = mddev->new_layout; 1127 sb->new_chunk = mddev->new_chunk_sectors << 9; 1128 } 1129 mddev->minor_version = sb->minor_version; 1130 if (mddev->in_sync) 1131 { 1132 sb->recovery_cp = mddev->recovery_cp; 1133 sb->cp_events_hi = (mddev->events>>32); 1134 sb->cp_events_lo = (u32)mddev->events; 1135 if (mddev->recovery_cp == MaxSector) 1136 sb->state = (1<< MD_SB_CLEAN); 1137 } else 1138 sb->recovery_cp = 0; 1139 1140 sb->layout = mddev->layout; 1141 sb->chunk_size = mddev->chunk_sectors << 9; 1142 1143 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1144 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1145 1146 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1147 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1148 mdp_disk_t *d; 1149 int desc_nr; 1150 int is_active = test_bit(In_sync, &rdev2->flags); 1151 1152 if (rdev2->raid_disk >= 0 && 1153 sb->minor_version >= 91) 1154 /* we have nowhere to store the recovery_offset, 1155 * but if it is not below the reshape_position, 1156 * we can piggy-back on that. 1157 */ 1158 is_active = 1; 1159 if (rdev2->raid_disk < 0 || 1160 test_bit(Faulty, &rdev2->flags)) 1161 is_active = 0; 1162 if (is_active) 1163 desc_nr = rdev2->raid_disk; 1164 else 1165 desc_nr = next_spare++; 1166 rdev2->desc_nr = desc_nr; 1167 d = &sb->disks[rdev2->desc_nr]; 1168 nr_disks++; 1169 d->number = rdev2->desc_nr; 1170 d->major = MAJOR(rdev2->bdev->bd_dev); 1171 d->minor = MINOR(rdev2->bdev->bd_dev); 1172 if (is_active) 1173 d->raid_disk = rdev2->raid_disk; 1174 else 1175 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1176 if (test_bit(Faulty, &rdev2->flags)) 1177 d->state = (1<<MD_DISK_FAULTY); 1178 else if (is_active) { 1179 d->state = (1<<MD_DISK_ACTIVE); 1180 if (test_bit(In_sync, &rdev2->flags)) 1181 d->state |= (1<<MD_DISK_SYNC); 1182 active++; 1183 working++; 1184 } else { 1185 d->state = 0; 1186 spare++; 1187 working++; 1188 } 1189 if (test_bit(WriteMostly, &rdev2->flags)) 1190 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1191 } 1192 /* now set the "removed" and "faulty" bits on any missing devices */ 1193 for (i=0 ; i < mddev->raid_disks ; i++) { 1194 mdp_disk_t *d = &sb->disks[i]; 1195 if (d->state == 0 && d->number == 0) { 1196 d->number = i; 1197 d->raid_disk = i; 1198 d->state = (1<<MD_DISK_REMOVED); 1199 d->state |= (1<<MD_DISK_FAULTY); 1200 failed++; 1201 } 1202 } 1203 sb->nr_disks = nr_disks; 1204 sb->active_disks = active; 1205 sb->working_disks = working; 1206 sb->failed_disks = failed; 1207 sb->spare_disks = spare; 1208 1209 sb->this_disk = sb->disks[rdev->desc_nr]; 1210 sb->sb_csum = calc_sb_csum(sb); 1211 } 1212 1213 /* 1214 * rdev_size_change for 0.90.0 1215 */ 1216 static unsigned long long 1217 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1218 { 1219 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1220 return 0; /* component must fit device */ 1221 if (rdev->mddev->bitmap_info.offset) 1222 return 0; /* can't move bitmap */ 1223 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 1224 if (!num_sectors || num_sectors > rdev->sb_start) 1225 num_sectors = rdev->sb_start; 1226 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1227 rdev->sb_page); 1228 md_super_wait(rdev->mddev); 1229 return num_sectors / 2; /* kB for sysfs */ 1230 } 1231 1232 1233 /* 1234 * version 1 superblock 1235 */ 1236 1237 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1238 { 1239 __le32 disk_csum; 1240 u32 csum; 1241 unsigned long long newcsum; 1242 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1243 __le32 *isuper = (__le32*)sb; 1244 int i; 1245 1246 disk_csum = sb->sb_csum; 1247 sb->sb_csum = 0; 1248 newcsum = 0; 1249 for (i=0; size>=4; size -= 4 ) 1250 newcsum += le32_to_cpu(*isuper++); 1251 1252 if (size == 2) 1253 newcsum += le16_to_cpu(*(__le16*) isuper); 1254 1255 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1256 sb->sb_csum = disk_csum; 1257 return cpu_to_le32(csum); 1258 } 1259 1260 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1261 { 1262 struct mdp_superblock_1 *sb; 1263 int ret; 1264 sector_t sb_start; 1265 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1266 int bmask; 1267 1268 /* 1269 * Calculate the position of the superblock in 512byte sectors. 1270 * It is always aligned to a 4K boundary and 1271 * depeding on minor_version, it can be: 1272 * 0: At least 8K, but less than 12K, from end of device 1273 * 1: At start of device 1274 * 2: 4K from start of device. 1275 */ 1276 switch(minor_version) { 1277 case 0: 1278 sb_start = rdev->bdev->bd_inode->i_size >> 9; 1279 sb_start -= 8*2; 1280 sb_start &= ~(sector_t)(4*2-1); 1281 break; 1282 case 1: 1283 sb_start = 0; 1284 break; 1285 case 2: 1286 sb_start = 8; 1287 break; 1288 default: 1289 return -EINVAL; 1290 } 1291 rdev->sb_start = sb_start; 1292 1293 /* superblock is rarely larger than 1K, but it can be larger, 1294 * and it is safe to read 4k, so we do that 1295 */ 1296 ret = read_disk_sb(rdev, 4096); 1297 if (ret) return ret; 1298 1299 1300 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1301 1302 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1303 sb->major_version != cpu_to_le32(1) || 1304 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1305 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1306 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1307 return -EINVAL; 1308 1309 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1310 printk("md: invalid superblock checksum on %s\n", 1311 bdevname(rdev->bdev,b)); 1312 return -EINVAL; 1313 } 1314 if (le64_to_cpu(sb->data_size) < 10) { 1315 printk("md: data_size too small on %s\n", 1316 bdevname(rdev->bdev,b)); 1317 return -EINVAL; 1318 } 1319 1320 rdev->preferred_minor = 0xffff; 1321 rdev->data_offset = le64_to_cpu(sb->data_offset); 1322 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1323 1324 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1325 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1326 if (rdev->sb_size & bmask) 1327 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1328 1329 if (minor_version 1330 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1331 return -EINVAL; 1332 1333 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1334 rdev->desc_nr = -1; 1335 else 1336 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1337 1338 if (!refdev) { 1339 ret = 1; 1340 } else { 1341 __u64 ev1, ev2; 1342 struct mdp_superblock_1 *refsb = 1343 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1344 1345 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1346 sb->level != refsb->level || 1347 sb->layout != refsb->layout || 1348 sb->chunksize != refsb->chunksize) { 1349 printk(KERN_WARNING "md: %s has strangely different" 1350 " superblock to %s\n", 1351 bdevname(rdev->bdev,b), 1352 bdevname(refdev->bdev,b2)); 1353 return -EINVAL; 1354 } 1355 ev1 = le64_to_cpu(sb->events); 1356 ev2 = le64_to_cpu(refsb->events); 1357 1358 if (ev1 > ev2) 1359 ret = 1; 1360 else 1361 ret = 0; 1362 } 1363 if (minor_version) 1364 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) - 1365 le64_to_cpu(sb->data_offset); 1366 else 1367 rdev->sectors = rdev->sb_start; 1368 if (rdev->sectors < le64_to_cpu(sb->data_size)) 1369 return -EINVAL; 1370 rdev->sectors = le64_to_cpu(sb->data_size); 1371 if (le64_to_cpu(sb->size) > rdev->sectors) 1372 return -EINVAL; 1373 return ret; 1374 } 1375 1376 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1377 { 1378 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1379 __u64 ev1 = le64_to_cpu(sb->events); 1380 1381 rdev->raid_disk = -1; 1382 clear_bit(Faulty, &rdev->flags); 1383 clear_bit(In_sync, &rdev->flags); 1384 clear_bit(WriteMostly, &rdev->flags); 1385 clear_bit(BarriersNotsupp, &rdev->flags); 1386 1387 if (mddev->raid_disks == 0) { 1388 mddev->major_version = 1; 1389 mddev->patch_version = 0; 1390 mddev->external = 0; 1391 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1392 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1393 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1394 mddev->level = le32_to_cpu(sb->level); 1395 mddev->clevel[0] = 0; 1396 mddev->layout = le32_to_cpu(sb->layout); 1397 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1398 mddev->dev_sectors = le64_to_cpu(sb->size); 1399 mddev->events = ev1; 1400 mddev->bitmap_info.offset = 0; 1401 mddev->bitmap_info.default_offset = 1024 >> 9; 1402 1403 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1404 memcpy(mddev->uuid, sb->set_uuid, 16); 1405 1406 mddev->max_disks = (4096-256)/2; 1407 1408 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1409 mddev->bitmap_info.file == NULL ) 1410 mddev->bitmap_info.offset = 1411 (__s32)le32_to_cpu(sb->bitmap_offset); 1412 1413 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1414 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1415 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1416 mddev->new_level = le32_to_cpu(sb->new_level); 1417 mddev->new_layout = le32_to_cpu(sb->new_layout); 1418 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1419 } else { 1420 mddev->reshape_position = MaxSector; 1421 mddev->delta_disks = 0; 1422 mddev->new_level = mddev->level; 1423 mddev->new_layout = mddev->layout; 1424 mddev->new_chunk_sectors = mddev->chunk_sectors; 1425 } 1426 1427 } else if (mddev->pers == NULL) { 1428 /* Insist of good event counter while assembling */ 1429 ++ev1; 1430 if (ev1 < mddev->events) 1431 return -EINVAL; 1432 } else if (mddev->bitmap) { 1433 /* If adding to array with a bitmap, then we can accept an 1434 * older device, but not too old. 1435 */ 1436 if (ev1 < mddev->bitmap->events_cleared) 1437 return 0; 1438 } else { 1439 if (ev1 < mddev->events) 1440 /* just a hot-add of a new device, leave raid_disk at -1 */ 1441 return 0; 1442 } 1443 if (mddev->level != LEVEL_MULTIPATH) { 1444 int role; 1445 if (rdev->desc_nr < 0 || 1446 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1447 role = 0xffff; 1448 rdev->desc_nr = -1; 1449 } else 1450 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1451 switch(role) { 1452 case 0xffff: /* spare */ 1453 break; 1454 case 0xfffe: /* faulty */ 1455 set_bit(Faulty, &rdev->flags); 1456 break; 1457 default: 1458 if ((le32_to_cpu(sb->feature_map) & 1459 MD_FEATURE_RECOVERY_OFFSET)) 1460 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1461 else 1462 set_bit(In_sync, &rdev->flags); 1463 rdev->raid_disk = role; 1464 break; 1465 } 1466 if (sb->devflags & WriteMostly1) 1467 set_bit(WriteMostly, &rdev->flags); 1468 } else /* MULTIPATH are always insync */ 1469 set_bit(In_sync, &rdev->flags); 1470 1471 return 0; 1472 } 1473 1474 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1475 { 1476 struct mdp_superblock_1 *sb; 1477 mdk_rdev_t *rdev2; 1478 int max_dev, i; 1479 /* make rdev->sb match mddev and rdev data. */ 1480 1481 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1482 1483 sb->feature_map = 0; 1484 sb->pad0 = 0; 1485 sb->recovery_offset = cpu_to_le64(0); 1486 memset(sb->pad1, 0, sizeof(sb->pad1)); 1487 memset(sb->pad2, 0, sizeof(sb->pad2)); 1488 memset(sb->pad3, 0, sizeof(sb->pad3)); 1489 1490 sb->utime = cpu_to_le64((__u64)mddev->utime); 1491 sb->events = cpu_to_le64(mddev->events); 1492 if (mddev->in_sync) 1493 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1494 else 1495 sb->resync_offset = cpu_to_le64(0); 1496 1497 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1498 1499 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1500 sb->size = cpu_to_le64(mddev->dev_sectors); 1501 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1502 sb->level = cpu_to_le32(mddev->level); 1503 sb->layout = cpu_to_le32(mddev->layout); 1504 1505 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1506 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1507 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1508 } 1509 1510 if (rdev->raid_disk >= 0 && 1511 !test_bit(In_sync, &rdev->flags)) { 1512 sb->feature_map |= 1513 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1514 sb->recovery_offset = 1515 cpu_to_le64(rdev->recovery_offset); 1516 } 1517 1518 if (mddev->reshape_position != MaxSector) { 1519 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1520 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1521 sb->new_layout = cpu_to_le32(mddev->new_layout); 1522 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1523 sb->new_level = cpu_to_le32(mddev->new_level); 1524 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1525 } 1526 1527 max_dev = 0; 1528 list_for_each_entry(rdev2, &mddev->disks, same_set) 1529 if (rdev2->desc_nr+1 > max_dev) 1530 max_dev = rdev2->desc_nr+1; 1531 1532 if (max_dev > le32_to_cpu(sb->max_dev)) { 1533 int bmask; 1534 sb->max_dev = cpu_to_le32(max_dev); 1535 rdev->sb_size = max_dev * 2 + 256; 1536 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1537 if (rdev->sb_size & bmask) 1538 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1539 } 1540 for (i=0; i<max_dev;i++) 1541 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1542 1543 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1544 i = rdev2->desc_nr; 1545 if (test_bit(Faulty, &rdev2->flags)) 1546 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1547 else if (test_bit(In_sync, &rdev2->flags)) 1548 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1549 else if (rdev2->raid_disk >= 0) 1550 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1551 else 1552 sb->dev_roles[i] = cpu_to_le16(0xffff); 1553 } 1554 1555 sb->sb_csum = calc_sb_1_csum(sb); 1556 } 1557 1558 static unsigned long long 1559 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1560 { 1561 struct mdp_superblock_1 *sb; 1562 sector_t max_sectors; 1563 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1564 return 0; /* component must fit device */ 1565 if (rdev->sb_start < rdev->data_offset) { 1566 /* minor versions 1 and 2; superblock before data */ 1567 max_sectors = rdev->bdev->bd_inode->i_size >> 9; 1568 max_sectors -= rdev->data_offset; 1569 if (!num_sectors || num_sectors > max_sectors) 1570 num_sectors = max_sectors; 1571 } else if (rdev->mddev->bitmap_info.offset) { 1572 /* minor version 0 with bitmap we can't move */ 1573 return 0; 1574 } else { 1575 /* minor version 0; superblock after data */ 1576 sector_t sb_start; 1577 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2; 1578 sb_start &= ~(sector_t)(4*2 - 1); 1579 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1580 if (!num_sectors || num_sectors > max_sectors) 1581 num_sectors = max_sectors; 1582 rdev->sb_start = sb_start; 1583 } 1584 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page); 1585 sb->data_size = cpu_to_le64(num_sectors); 1586 sb->super_offset = rdev->sb_start; 1587 sb->sb_csum = calc_sb_1_csum(sb); 1588 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1589 rdev->sb_page); 1590 md_super_wait(rdev->mddev); 1591 return num_sectors / 2; /* kB for sysfs */ 1592 } 1593 1594 static struct super_type super_types[] = { 1595 [0] = { 1596 .name = "0.90.0", 1597 .owner = THIS_MODULE, 1598 .load_super = super_90_load, 1599 .validate_super = super_90_validate, 1600 .sync_super = super_90_sync, 1601 .rdev_size_change = super_90_rdev_size_change, 1602 }, 1603 [1] = { 1604 .name = "md-1", 1605 .owner = THIS_MODULE, 1606 .load_super = super_1_load, 1607 .validate_super = super_1_validate, 1608 .sync_super = super_1_sync, 1609 .rdev_size_change = super_1_rdev_size_change, 1610 }, 1611 }; 1612 1613 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1614 { 1615 mdk_rdev_t *rdev, *rdev2; 1616 1617 rcu_read_lock(); 1618 rdev_for_each_rcu(rdev, mddev1) 1619 rdev_for_each_rcu(rdev2, mddev2) 1620 if (rdev->bdev->bd_contains == 1621 rdev2->bdev->bd_contains) { 1622 rcu_read_unlock(); 1623 return 1; 1624 } 1625 rcu_read_unlock(); 1626 return 0; 1627 } 1628 1629 static LIST_HEAD(pending_raid_disks); 1630 1631 /* 1632 * Try to register data integrity profile for an mddev 1633 * 1634 * This is called when an array is started and after a disk has been kicked 1635 * from the array. It only succeeds if all working and active component devices 1636 * are integrity capable with matching profiles. 1637 */ 1638 int md_integrity_register(mddev_t *mddev) 1639 { 1640 mdk_rdev_t *rdev, *reference = NULL; 1641 1642 if (list_empty(&mddev->disks)) 1643 return 0; /* nothing to do */ 1644 if (blk_get_integrity(mddev->gendisk)) 1645 return 0; /* already registered */ 1646 list_for_each_entry(rdev, &mddev->disks, same_set) { 1647 /* skip spares and non-functional disks */ 1648 if (test_bit(Faulty, &rdev->flags)) 1649 continue; 1650 if (rdev->raid_disk < 0) 1651 continue; 1652 /* 1653 * If at least one rdev is not integrity capable, we can not 1654 * enable data integrity for the md device. 1655 */ 1656 if (!bdev_get_integrity(rdev->bdev)) 1657 return -EINVAL; 1658 if (!reference) { 1659 /* Use the first rdev as the reference */ 1660 reference = rdev; 1661 continue; 1662 } 1663 /* does this rdev's profile match the reference profile? */ 1664 if (blk_integrity_compare(reference->bdev->bd_disk, 1665 rdev->bdev->bd_disk) < 0) 1666 return -EINVAL; 1667 } 1668 /* 1669 * All component devices are integrity capable and have matching 1670 * profiles, register the common profile for the md device. 1671 */ 1672 if (blk_integrity_register(mddev->gendisk, 1673 bdev_get_integrity(reference->bdev)) != 0) { 1674 printk(KERN_ERR "md: failed to register integrity for %s\n", 1675 mdname(mddev)); 1676 return -EINVAL; 1677 } 1678 printk(KERN_NOTICE "md: data integrity on %s enabled\n", 1679 mdname(mddev)); 1680 return 0; 1681 } 1682 EXPORT_SYMBOL(md_integrity_register); 1683 1684 /* Disable data integrity if non-capable/non-matching disk is being added */ 1685 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 1686 { 1687 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); 1688 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk); 1689 1690 if (!bi_mddev) /* nothing to do */ 1691 return; 1692 if (rdev->raid_disk < 0) /* skip spares */ 1693 return; 1694 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 1695 rdev->bdev->bd_disk) >= 0) 1696 return; 1697 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 1698 blk_integrity_unregister(mddev->gendisk); 1699 } 1700 EXPORT_SYMBOL(md_integrity_add_rdev); 1701 1702 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1703 { 1704 char b[BDEVNAME_SIZE]; 1705 struct kobject *ko; 1706 char *s; 1707 int err; 1708 1709 if (rdev->mddev) { 1710 MD_BUG(); 1711 return -EINVAL; 1712 } 1713 1714 /* prevent duplicates */ 1715 if (find_rdev(mddev, rdev->bdev->bd_dev)) 1716 return -EEXIST; 1717 1718 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 1719 if (rdev->sectors && (mddev->dev_sectors == 0 || 1720 rdev->sectors < mddev->dev_sectors)) { 1721 if (mddev->pers) { 1722 /* Cannot change size, so fail 1723 * If mddev->level <= 0, then we don't care 1724 * about aligning sizes (e.g. linear) 1725 */ 1726 if (mddev->level > 0) 1727 return -ENOSPC; 1728 } else 1729 mddev->dev_sectors = rdev->sectors; 1730 } 1731 1732 /* Verify rdev->desc_nr is unique. 1733 * If it is -1, assign a free number, else 1734 * check number is not in use 1735 */ 1736 if (rdev->desc_nr < 0) { 1737 int choice = 0; 1738 if (mddev->pers) choice = mddev->raid_disks; 1739 while (find_rdev_nr(mddev, choice)) 1740 choice++; 1741 rdev->desc_nr = choice; 1742 } else { 1743 if (find_rdev_nr(mddev, rdev->desc_nr)) 1744 return -EBUSY; 1745 } 1746 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 1747 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 1748 mdname(mddev), mddev->max_disks); 1749 return -EBUSY; 1750 } 1751 bdevname(rdev->bdev,b); 1752 while ( (s=strchr(b, '/')) != NULL) 1753 *s = '!'; 1754 1755 rdev->mddev = mddev; 1756 printk(KERN_INFO "md: bind<%s>\n", b); 1757 1758 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 1759 goto fail; 1760 1761 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 1762 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) { 1763 kobject_del(&rdev->kobj); 1764 goto fail; 1765 } 1766 rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state"); 1767 1768 list_add_rcu(&rdev->same_set, &mddev->disks); 1769 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk); 1770 1771 /* May as well allow recovery to be retried once */ 1772 mddev->recovery_disabled = 0; 1773 1774 return 0; 1775 1776 fail: 1777 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1778 b, mdname(mddev)); 1779 return err; 1780 } 1781 1782 static void md_delayed_delete(struct work_struct *ws) 1783 { 1784 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1785 kobject_del(&rdev->kobj); 1786 kobject_put(&rdev->kobj); 1787 } 1788 1789 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1790 { 1791 char b[BDEVNAME_SIZE]; 1792 if (!rdev->mddev) { 1793 MD_BUG(); 1794 return; 1795 } 1796 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1797 list_del_rcu(&rdev->same_set); 1798 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1799 rdev->mddev = NULL; 1800 sysfs_remove_link(&rdev->kobj, "block"); 1801 sysfs_put(rdev->sysfs_state); 1802 rdev->sysfs_state = NULL; 1803 /* We need to delay this, otherwise we can deadlock when 1804 * writing to 'remove' to "dev/state". We also need 1805 * to delay it due to rcu usage. 1806 */ 1807 synchronize_rcu(); 1808 INIT_WORK(&rdev->del_work, md_delayed_delete); 1809 kobject_get(&rdev->kobj); 1810 schedule_work(&rdev->del_work); 1811 } 1812 1813 /* 1814 * prevent the device from being mounted, repartitioned or 1815 * otherwise reused by a RAID array (or any other kernel 1816 * subsystem), by bd_claiming the device. 1817 */ 1818 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) 1819 { 1820 int err = 0; 1821 struct block_device *bdev; 1822 char b[BDEVNAME_SIZE]; 1823 1824 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1825 if (IS_ERR(bdev)) { 1826 printk(KERN_ERR "md: could not open %s.\n", 1827 __bdevname(dev, b)); 1828 return PTR_ERR(bdev); 1829 } 1830 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev); 1831 if (err) { 1832 printk(KERN_ERR "md: could not bd_claim %s.\n", 1833 bdevname(bdev, b)); 1834 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1835 return err; 1836 } 1837 if (!shared) 1838 set_bit(AllReserved, &rdev->flags); 1839 rdev->bdev = bdev; 1840 return err; 1841 } 1842 1843 static void unlock_rdev(mdk_rdev_t *rdev) 1844 { 1845 struct block_device *bdev = rdev->bdev; 1846 rdev->bdev = NULL; 1847 if (!bdev) 1848 MD_BUG(); 1849 bd_release(bdev); 1850 blkdev_put(bdev, FMODE_READ|FMODE_WRITE); 1851 } 1852 1853 void md_autodetect_dev(dev_t dev); 1854 1855 static void export_rdev(mdk_rdev_t * rdev) 1856 { 1857 char b[BDEVNAME_SIZE]; 1858 printk(KERN_INFO "md: export_rdev(%s)\n", 1859 bdevname(rdev->bdev,b)); 1860 if (rdev->mddev) 1861 MD_BUG(); 1862 free_disk_sb(rdev); 1863 #ifndef MODULE 1864 if (test_bit(AutoDetected, &rdev->flags)) 1865 md_autodetect_dev(rdev->bdev->bd_dev); 1866 #endif 1867 unlock_rdev(rdev); 1868 kobject_put(&rdev->kobj); 1869 } 1870 1871 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1872 { 1873 unbind_rdev_from_array(rdev); 1874 export_rdev(rdev); 1875 } 1876 1877 static void export_array(mddev_t *mddev) 1878 { 1879 mdk_rdev_t *rdev, *tmp; 1880 1881 rdev_for_each(rdev, tmp, mddev) { 1882 if (!rdev->mddev) { 1883 MD_BUG(); 1884 continue; 1885 } 1886 kick_rdev_from_array(rdev); 1887 } 1888 if (!list_empty(&mddev->disks)) 1889 MD_BUG(); 1890 mddev->raid_disks = 0; 1891 mddev->major_version = 0; 1892 } 1893 1894 static void print_desc(mdp_disk_t *desc) 1895 { 1896 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 1897 desc->major,desc->minor,desc->raid_disk,desc->state); 1898 } 1899 1900 static void print_sb_90(mdp_super_t *sb) 1901 { 1902 int i; 1903 1904 printk(KERN_INFO 1905 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 1906 sb->major_version, sb->minor_version, sb->patch_version, 1907 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 1908 sb->ctime); 1909 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 1910 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 1911 sb->md_minor, sb->layout, sb->chunk_size); 1912 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 1913 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 1914 sb->utime, sb->state, sb->active_disks, sb->working_disks, 1915 sb->failed_disks, sb->spare_disks, 1916 sb->sb_csum, (unsigned long)sb->events_lo); 1917 1918 printk(KERN_INFO); 1919 for (i = 0; i < MD_SB_DISKS; i++) { 1920 mdp_disk_t *desc; 1921 1922 desc = sb->disks + i; 1923 if (desc->number || desc->major || desc->minor || 1924 desc->raid_disk || (desc->state && (desc->state != 4))) { 1925 printk(" D %2d: ", i); 1926 print_desc(desc); 1927 } 1928 } 1929 printk(KERN_INFO "md: THIS: "); 1930 print_desc(&sb->this_disk); 1931 } 1932 1933 static void print_sb_1(struct mdp_superblock_1 *sb) 1934 { 1935 __u8 *uuid; 1936 1937 uuid = sb->set_uuid; 1938 printk(KERN_INFO 1939 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 1940 "md: Name: \"%s\" CT:%llu\n", 1941 le32_to_cpu(sb->major_version), 1942 le32_to_cpu(sb->feature_map), 1943 uuid, 1944 sb->set_name, 1945 (unsigned long long)le64_to_cpu(sb->ctime) 1946 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 1947 1948 uuid = sb->device_uuid; 1949 printk(KERN_INFO 1950 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 1951 " RO:%llu\n" 1952 "md: Dev:%08x UUID: %pU\n" 1953 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 1954 "md: (MaxDev:%u) \n", 1955 le32_to_cpu(sb->level), 1956 (unsigned long long)le64_to_cpu(sb->size), 1957 le32_to_cpu(sb->raid_disks), 1958 le32_to_cpu(sb->layout), 1959 le32_to_cpu(sb->chunksize), 1960 (unsigned long long)le64_to_cpu(sb->data_offset), 1961 (unsigned long long)le64_to_cpu(sb->data_size), 1962 (unsigned long long)le64_to_cpu(sb->super_offset), 1963 (unsigned long long)le64_to_cpu(sb->recovery_offset), 1964 le32_to_cpu(sb->dev_number), 1965 uuid, 1966 sb->devflags, 1967 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 1968 (unsigned long long)le64_to_cpu(sb->events), 1969 (unsigned long long)le64_to_cpu(sb->resync_offset), 1970 le32_to_cpu(sb->sb_csum), 1971 le32_to_cpu(sb->max_dev) 1972 ); 1973 } 1974 1975 static void print_rdev(mdk_rdev_t *rdev, int major_version) 1976 { 1977 char b[BDEVNAME_SIZE]; 1978 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 1979 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 1980 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 1981 rdev->desc_nr); 1982 if (rdev->sb_loaded) { 1983 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 1984 switch (major_version) { 1985 case 0: 1986 print_sb_90((mdp_super_t*)page_address(rdev->sb_page)); 1987 break; 1988 case 1: 1989 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page)); 1990 break; 1991 } 1992 } else 1993 printk(KERN_INFO "md: no rdev superblock!\n"); 1994 } 1995 1996 static void md_print_devices(void) 1997 { 1998 struct list_head *tmp; 1999 mdk_rdev_t *rdev; 2000 mddev_t *mddev; 2001 char b[BDEVNAME_SIZE]; 2002 2003 printk("\n"); 2004 printk("md: **********************************\n"); 2005 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2006 printk("md: **********************************\n"); 2007 for_each_mddev(mddev, tmp) { 2008 2009 if (mddev->bitmap) 2010 bitmap_print_sb(mddev->bitmap); 2011 else 2012 printk("%s: ", mdname(mddev)); 2013 list_for_each_entry(rdev, &mddev->disks, same_set) 2014 printk("<%s>", bdevname(rdev->bdev,b)); 2015 printk("\n"); 2016 2017 list_for_each_entry(rdev, &mddev->disks, same_set) 2018 print_rdev(rdev, mddev->major_version); 2019 } 2020 printk("md: **********************************\n"); 2021 printk("\n"); 2022 } 2023 2024 2025 static void sync_sbs(mddev_t * mddev, int nospares) 2026 { 2027 /* Update each superblock (in-memory image), but 2028 * if we are allowed to, skip spares which already 2029 * have the right event counter, or have one earlier 2030 * (which would mean they aren't being marked as dirty 2031 * with the rest of the array) 2032 */ 2033 mdk_rdev_t *rdev; 2034 2035 /* First make sure individual recovery_offsets are correct */ 2036 list_for_each_entry(rdev, &mddev->disks, same_set) { 2037 if (rdev->raid_disk >= 0 && 2038 !test_bit(In_sync, &rdev->flags) && 2039 mddev->curr_resync_completed > rdev->recovery_offset) 2040 rdev->recovery_offset = mddev->curr_resync_completed; 2041 2042 } 2043 list_for_each_entry(rdev, &mddev->disks, same_set) { 2044 if (rdev->sb_events == mddev->events || 2045 (nospares && 2046 rdev->raid_disk < 0 && 2047 (rdev->sb_events&1)==0 && 2048 rdev->sb_events+1 == mddev->events)) { 2049 /* Don't update this superblock */ 2050 rdev->sb_loaded = 2; 2051 } else { 2052 super_types[mddev->major_version]. 2053 sync_super(mddev, rdev); 2054 rdev->sb_loaded = 1; 2055 } 2056 } 2057 } 2058 2059 static void md_update_sb(mddev_t * mddev, int force_change) 2060 { 2061 mdk_rdev_t *rdev; 2062 int sync_req; 2063 int nospares = 0; 2064 2065 mddev->utime = get_seconds(); 2066 if (mddev->external) 2067 return; 2068 repeat: 2069 spin_lock_irq(&mddev->write_lock); 2070 2071 set_bit(MD_CHANGE_PENDING, &mddev->flags); 2072 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2073 force_change = 1; 2074 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2075 /* just a clean<-> dirty transition, possibly leave spares alone, 2076 * though if events isn't the right even/odd, we will have to do 2077 * spares after all 2078 */ 2079 nospares = 1; 2080 if (force_change) 2081 nospares = 0; 2082 if (mddev->degraded) 2083 /* If the array is degraded, then skipping spares is both 2084 * dangerous and fairly pointless. 2085 * Dangerous because a device that was removed from the array 2086 * might have a event_count that still looks up-to-date, 2087 * so it can be re-added without a resync. 2088 * Pointless because if there are any spares to skip, 2089 * then a recovery will happen and soon that array won't 2090 * be degraded any more and the spare can go back to sleep then. 2091 */ 2092 nospares = 0; 2093 2094 sync_req = mddev->in_sync; 2095 2096 /* If this is just a dirty<->clean transition, and the array is clean 2097 * and 'events' is odd, we can roll back to the previous clean state */ 2098 if (nospares 2099 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2100 && (mddev->events & 1) 2101 && mddev->events != 1) 2102 mddev->events--; 2103 else { 2104 /* otherwise we have to go forward and ... */ 2105 mddev->events ++; 2106 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */ 2107 /* .. if the array isn't clean, an 'even' event must also go 2108 * to spares. */ 2109 if ((mddev->events&1)==0) 2110 nospares = 0; 2111 } else { 2112 /* otherwise an 'odd' event must go to spares */ 2113 if ((mddev->events&1)) 2114 nospares = 0; 2115 } 2116 } 2117 2118 if (!mddev->events) { 2119 /* 2120 * oops, this 64-bit counter should never wrap. 2121 * Either we are in around ~1 trillion A.C., assuming 2122 * 1 reboot per second, or we have a bug: 2123 */ 2124 MD_BUG(); 2125 mddev->events --; 2126 } 2127 2128 /* 2129 * do not write anything to disk if using 2130 * nonpersistent superblocks 2131 */ 2132 if (!mddev->persistent) { 2133 if (!mddev->external) 2134 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2135 2136 spin_unlock_irq(&mddev->write_lock); 2137 wake_up(&mddev->sb_wait); 2138 return; 2139 } 2140 sync_sbs(mddev, nospares); 2141 spin_unlock_irq(&mddev->write_lock); 2142 2143 dprintk(KERN_INFO 2144 "md: updating %s RAID superblock on device (in sync %d)\n", 2145 mdname(mddev),mddev->in_sync); 2146 2147 bitmap_update_sb(mddev->bitmap); 2148 list_for_each_entry(rdev, &mddev->disks, same_set) { 2149 char b[BDEVNAME_SIZE]; 2150 dprintk(KERN_INFO "md: "); 2151 if (rdev->sb_loaded != 1) 2152 continue; /* no noise on spare devices */ 2153 if (test_bit(Faulty, &rdev->flags)) 2154 dprintk("(skipping faulty "); 2155 2156 dprintk("%s ", bdevname(rdev->bdev,b)); 2157 if (!test_bit(Faulty, &rdev->flags)) { 2158 md_super_write(mddev,rdev, 2159 rdev->sb_start, rdev->sb_size, 2160 rdev->sb_page); 2161 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 2162 bdevname(rdev->bdev,b), 2163 (unsigned long long)rdev->sb_start); 2164 rdev->sb_events = mddev->events; 2165 2166 } else 2167 dprintk(")\n"); 2168 if (mddev->level == LEVEL_MULTIPATH) 2169 /* only need to write one superblock... */ 2170 break; 2171 } 2172 md_super_wait(mddev); 2173 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2174 2175 spin_lock_irq(&mddev->write_lock); 2176 if (mddev->in_sync != sync_req || 2177 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2178 /* have to write it out again */ 2179 spin_unlock_irq(&mddev->write_lock); 2180 goto repeat; 2181 } 2182 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2183 spin_unlock_irq(&mddev->write_lock); 2184 wake_up(&mddev->sb_wait); 2185 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2186 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2187 2188 } 2189 2190 /* words written to sysfs files may, or may not, be \n terminated. 2191 * We want to accept with case. For this we use cmd_match. 2192 */ 2193 static int cmd_match(const char *cmd, const char *str) 2194 { 2195 /* See if cmd, written into a sysfs file, matches 2196 * str. They must either be the same, or cmd can 2197 * have a trailing newline 2198 */ 2199 while (*cmd && *str && *cmd == *str) { 2200 cmd++; 2201 str++; 2202 } 2203 if (*cmd == '\n') 2204 cmd++; 2205 if (*str || *cmd) 2206 return 0; 2207 return 1; 2208 } 2209 2210 struct rdev_sysfs_entry { 2211 struct attribute attr; 2212 ssize_t (*show)(mdk_rdev_t *, char *); 2213 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 2214 }; 2215 2216 static ssize_t 2217 state_show(mdk_rdev_t *rdev, char *page) 2218 { 2219 char *sep = ""; 2220 size_t len = 0; 2221 2222 if (test_bit(Faulty, &rdev->flags)) { 2223 len+= sprintf(page+len, "%sfaulty",sep); 2224 sep = ","; 2225 } 2226 if (test_bit(In_sync, &rdev->flags)) { 2227 len += sprintf(page+len, "%sin_sync",sep); 2228 sep = ","; 2229 } 2230 if (test_bit(WriteMostly, &rdev->flags)) { 2231 len += sprintf(page+len, "%swrite_mostly",sep); 2232 sep = ","; 2233 } 2234 if (test_bit(Blocked, &rdev->flags)) { 2235 len += sprintf(page+len, "%sblocked", sep); 2236 sep = ","; 2237 } 2238 if (!test_bit(Faulty, &rdev->flags) && 2239 !test_bit(In_sync, &rdev->flags)) { 2240 len += sprintf(page+len, "%sspare", sep); 2241 sep = ","; 2242 } 2243 return len+sprintf(page+len, "\n"); 2244 } 2245 2246 static ssize_t 2247 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2248 { 2249 /* can write 2250 * faulty - simulates and error 2251 * remove - disconnects the device 2252 * writemostly - sets write_mostly 2253 * -writemostly - clears write_mostly 2254 * blocked - sets the Blocked flag 2255 * -blocked - clears the Blocked flag 2256 * insync - sets Insync providing device isn't active 2257 */ 2258 int err = -EINVAL; 2259 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2260 md_error(rdev->mddev, rdev); 2261 err = 0; 2262 } else if (cmd_match(buf, "remove")) { 2263 if (rdev->raid_disk >= 0) 2264 err = -EBUSY; 2265 else { 2266 mddev_t *mddev = rdev->mddev; 2267 kick_rdev_from_array(rdev); 2268 if (mddev->pers) 2269 md_update_sb(mddev, 1); 2270 md_new_event(mddev); 2271 err = 0; 2272 } 2273 } else if (cmd_match(buf, "writemostly")) { 2274 set_bit(WriteMostly, &rdev->flags); 2275 err = 0; 2276 } else if (cmd_match(buf, "-writemostly")) { 2277 clear_bit(WriteMostly, &rdev->flags); 2278 err = 0; 2279 } else if (cmd_match(buf, "blocked")) { 2280 set_bit(Blocked, &rdev->flags); 2281 err = 0; 2282 } else if (cmd_match(buf, "-blocked")) { 2283 clear_bit(Blocked, &rdev->flags); 2284 wake_up(&rdev->blocked_wait); 2285 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2286 md_wakeup_thread(rdev->mddev->thread); 2287 2288 err = 0; 2289 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2290 set_bit(In_sync, &rdev->flags); 2291 err = 0; 2292 } 2293 if (!err && rdev->sysfs_state) 2294 sysfs_notify_dirent(rdev->sysfs_state); 2295 return err ? err : len; 2296 } 2297 static struct rdev_sysfs_entry rdev_state = 2298 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2299 2300 static ssize_t 2301 errors_show(mdk_rdev_t *rdev, char *page) 2302 { 2303 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2304 } 2305 2306 static ssize_t 2307 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2308 { 2309 char *e; 2310 unsigned long n = simple_strtoul(buf, &e, 10); 2311 if (*buf && (*e == 0 || *e == '\n')) { 2312 atomic_set(&rdev->corrected_errors, n); 2313 return len; 2314 } 2315 return -EINVAL; 2316 } 2317 static struct rdev_sysfs_entry rdev_errors = 2318 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2319 2320 static ssize_t 2321 slot_show(mdk_rdev_t *rdev, char *page) 2322 { 2323 if (rdev->raid_disk < 0) 2324 return sprintf(page, "none\n"); 2325 else 2326 return sprintf(page, "%d\n", rdev->raid_disk); 2327 } 2328 2329 static ssize_t 2330 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2331 { 2332 char *e; 2333 int err; 2334 char nm[20]; 2335 int slot = simple_strtoul(buf, &e, 10); 2336 if (strncmp(buf, "none", 4)==0) 2337 slot = -1; 2338 else if (e==buf || (*e && *e!= '\n')) 2339 return -EINVAL; 2340 if (rdev->mddev->pers && slot == -1) { 2341 /* Setting 'slot' on an active array requires also 2342 * updating the 'rd%d' link, and communicating 2343 * with the personality with ->hot_*_disk. 2344 * For now we only support removing 2345 * failed/spare devices. This normally happens automatically, 2346 * but not when the metadata is externally managed. 2347 */ 2348 if (rdev->raid_disk == -1) 2349 return -EEXIST; 2350 /* personality does all needed checks */ 2351 if (rdev->mddev->pers->hot_add_disk == NULL) 2352 return -EINVAL; 2353 err = rdev->mddev->pers-> 2354 hot_remove_disk(rdev->mddev, rdev->raid_disk); 2355 if (err) 2356 return err; 2357 sprintf(nm, "rd%d", rdev->raid_disk); 2358 sysfs_remove_link(&rdev->mddev->kobj, nm); 2359 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2360 md_wakeup_thread(rdev->mddev->thread); 2361 } else if (rdev->mddev->pers) { 2362 mdk_rdev_t *rdev2; 2363 /* Activating a spare .. or possibly reactivating 2364 * if we ever get bitmaps working here. 2365 */ 2366 2367 if (rdev->raid_disk != -1) 2368 return -EBUSY; 2369 2370 if (rdev->mddev->pers->hot_add_disk == NULL) 2371 return -EINVAL; 2372 2373 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set) 2374 if (rdev2->raid_disk == slot) 2375 return -EEXIST; 2376 2377 rdev->raid_disk = slot; 2378 if (test_bit(In_sync, &rdev->flags)) 2379 rdev->saved_raid_disk = slot; 2380 else 2381 rdev->saved_raid_disk = -1; 2382 err = rdev->mddev->pers-> 2383 hot_add_disk(rdev->mddev, rdev); 2384 if (err) { 2385 rdev->raid_disk = -1; 2386 return err; 2387 } else 2388 sysfs_notify_dirent(rdev->sysfs_state); 2389 sprintf(nm, "rd%d", rdev->raid_disk); 2390 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm)) 2391 printk(KERN_WARNING 2392 "md: cannot register " 2393 "%s for %s\n", 2394 nm, mdname(rdev->mddev)); 2395 2396 /* don't wakeup anyone, leave that to userspace. */ 2397 } else { 2398 if (slot >= rdev->mddev->raid_disks) 2399 return -ENOSPC; 2400 rdev->raid_disk = slot; 2401 /* assume it is working */ 2402 clear_bit(Faulty, &rdev->flags); 2403 clear_bit(WriteMostly, &rdev->flags); 2404 set_bit(In_sync, &rdev->flags); 2405 sysfs_notify_dirent(rdev->sysfs_state); 2406 } 2407 return len; 2408 } 2409 2410 2411 static struct rdev_sysfs_entry rdev_slot = 2412 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2413 2414 static ssize_t 2415 offset_show(mdk_rdev_t *rdev, char *page) 2416 { 2417 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2418 } 2419 2420 static ssize_t 2421 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2422 { 2423 char *e; 2424 unsigned long long offset = simple_strtoull(buf, &e, 10); 2425 if (e==buf || (*e && *e != '\n')) 2426 return -EINVAL; 2427 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2428 return -EBUSY; 2429 if (rdev->sectors && rdev->mddev->external) 2430 /* Must set offset before size, so overlap checks 2431 * can be sane */ 2432 return -EBUSY; 2433 rdev->data_offset = offset; 2434 return len; 2435 } 2436 2437 static struct rdev_sysfs_entry rdev_offset = 2438 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2439 2440 static ssize_t 2441 rdev_size_show(mdk_rdev_t *rdev, char *page) 2442 { 2443 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2444 } 2445 2446 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2447 { 2448 /* check if two start/length pairs overlap */ 2449 if (s1+l1 <= s2) 2450 return 0; 2451 if (s2+l2 <= s1) 2452 return 0; 2453 return 1; 2454 } 2455 2456 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2457 { 2458 unsigned long long blocks; 2459 sector_t new; 2460 2461 if (strict_strtoull(buf, 10, &blocks) < 0) 2462 return -EINVAL; 2463 2464 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2465 return -EINVAL; /* sector conversion overflow */ 2466 2467 new = blocks * 2; 2468 if (new != blocks * 2) 2469 return -EINVAL; /* unsigned long long to sector_t overflow */ 2470 2471 *sectors = new; 2472 return 0; 2473 } 2474 2475 static ssize_t 2476 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2477 { 2478 mddev_t *my_mddev = rdev->mddev; 2479 sector_t oldsectors = rdev->sectors; 2480 sector_t sectors; 2481 2482 if (strict_blocks_to_sectors(buf, §ors) < 0) 2483 return -EINVAL; 2484 if (my_mddev->pers && rdev->raid_disk >= 0) { 2485 if (my_mddev->persistent) { 2486 sectors = super_types[my_mddev->major_version]. 2487 rdev_size_change(rdev, sectors); 2488 if (!sectors) 2489 return -EBUSY; 2490 } else if (!sectors) 2491 sectors = (rdev->bdev->bd_inode->i_size >> 9) - 2492 rdev->data_offset; 2493 } 2494 if (sectors < my_mddev->dev_sectors) 2495 return -EINVAL; /* component must fit device */ 2496 2497 rdev->sectors = sectors; 2498 if (sectors > oldsectors && my_mddev->external) { 2499 /* need to check that all other rdevs with the same ->bdev 2500 * do not overlap. We need to unlock the mddev to avoid 2501 * a deadlock. We have already changed rdev->sectors, and if 2502 * we have to change it back, we will have the lock again. 2503 */ 2504 mddev_t *mddev; 2505 int overlap = 0; 2506 struct list_head *tmp; 2507 2508 mddev_unlock(my_mddev); 2509 for_each_mddev(mddev, tmp) { 2510 mdk_rdev_t *rdev2; 2511 2512 mddev_lock(mddev); 2513 list_for_each_entry(rdev2, &mddev->disks, same_set) 2514 if (test_bit(AllReserved, &rdev2->flags) || 2515 (rdev->bdev == rdev2->bdev && 2516 rdev != rdev2 && 2517 overlaps(rdev->data_offset, rdev->sectors, 2518 rdev2->data_offset, 2519 rdev2->sectors))) { 2520 overlap = 1; 2521 break; 2522 } 2523 mddev_unlock(mddev); 2524 if (overlap) { 2525 mddev_put(mddev); 2526 break; 2527 } 2528 } 2529 mddev_lock(my_mddev); 2530 if (overlap) { 2531 /* Someone else could have slipped in a size 2532 * change here, but doing so is just silly. 2533 * We put oldsectors back because we *know* it is 2534 * safe, and trust userspace not to race with 2535 * itself 2536 */ 2537 rdev->sectors = oldsectors; 2538 return -EBUSY; 2539 } 2540 } 2541 return len; 2542 } 2543 2544 static struct rdev_sysfs_entry rdev_size = 2545 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2546 2547 2548 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page) 2549 { 2550 unsigned long long recovery_start = rdev->recovery_offset; 2551 2552 if (test_bit(In_sync, &rdev->flags) || 2553 recovery_start == MaxSector) 2554 return sprintf(page, "none\n"); 2555 2556 return sprintf(page, "%llu\n", recovery_start); 2557 } 2558 2559 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2560 { 2561 unsigned long long recovery_start; 2562 2563 if (cmd_match(buf, "none")) 2564 recovery_start = MaxSector; 2565 else if (strict_strtoull(buf, 10, &recovery_start)) 2566 return -EINVAL; 2567 2568 if (rdev->mddev->pers && 2569 rdev->raid_disk >= 0) 2570 return -EBUSY; 2571 2572 rdev->recovery_offset = recovery_start; 2573 if (recovery_start == MaxSector) 2574 set_bit(In_sync, &rdev->flags); 2575 else 2576 clear_bit(In_sync, &rdev->flags); 2577 return len; 2578 } 2579 2580 static struct rdev_sysfs_entry rdev_recovery_start = 2581 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 2582 2583 static struct attribute *rdev_default_attrs[] = { 2584 &rdev_state.attr, 2585 &rdev_errors.attr, 2586 &rdev_slot.attr, 2587 &rdev_offset.attr, 2588 &rdev_size.attr, 2589 &rdev_recovery_start.attr, 2590 NULL, 2591 }; 2592 static ssize_t 2593 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2594 { 2595 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2596 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2597 mddev_t *mddev = rdev->mddev; 2598 ssize_t rv; 2599 2600 if (!entry->show) 2601 return -EIO; 2602 2603 rv = mddev ? mddev_lock(mddev) : -EBUSY; 2604 if (!rv) { 2605 if (rdev->mddev == NULL) 2606 rv = -EBUSY; 2607 else 2608 rv = entry->show(rdev, page); 2609 mddev_unlock(mddev); 2610 } 2611 return rv; 2612 } 2613 2614 static ssize_t 2615 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2616 const char *page, size_t length) 2617 { 2618 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2619 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2620 ssize_t rv; 2621 mddev_t *mddev = rdev->mddev; 2622 2623 if (!entry->store) 2624 return -EIO; 2625 if (!capable(CAP_SYS_ADMIN)) 2626 return -EACCES; 2627 rv = mddev ? mddev_lock(mddev): -EBUSY; 2628 if (!rv) { 2629 if (rdev->mddev == NULL) 2630 rv = -EBUSY; 2631 else 2632 rv = entry->store(rdev, page, length); 2633 mddev_unlock(mddev); 2634 } 2635 return rv; 2636 } 2637 2638 static void rdev_free(struct kobject *ko) 2639 { 2640 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 2641 kfree(rdev); 2642 } 2643 static struct sysfs_ops rdev_sysfs_ops = { 2644 .show = rdev_attr_show, 2645 .store = rdev_attr_store, 2646 }; 2647 static struct kobj_type rdev_ktype = { 2648 .release = rdev_free, 2649 .sysfs_ops = &rdev_sysfs_ops, 2650 .default_attrs = rdev_default_attrs, 2651 }; 2652 2653 /* 2654 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2655 * 2656 * mark the device faulty if: 2657 * 2658 * - the device is nonexistent (zero size) 2659 * - the device has no valid superblock 2660 * 2661 * a faulty rdev _never_ has rdev->sb set. 2662 */ 2663 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2664 { 2665 char b[BDEVNAME_SIZE]; 2666 int err; 2667 mdk_rdev_t *rdev; 2668 sector_t size; 2669 2670 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2671 if (!rdev) { 2672 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2673 return ERR_PTR(-ENOMEM); 2674 } 2675 2676 if ((err = alloc_disk_sb(rdev))) 2677 goto abort_free; 2678 2679 err = lock_rdev(rdev, newdev, super_format == -2); 2680 if (err) 2681 goto abort_free; 2682 2683 kobject_init(&rdev->kobj, &rdev_ktype); 2684 2685 rdev->desc_nr = -1; 2686 rdev->saved_raid_disk = -1; 2687 rdev->raid_disk = -1; 2688 rdev->flags = 0; 2689 rdev->data_offset = 0; 2690 rdev->sb_events = 0; 2691 rdev->last_read_error.tv_sec = 0; 2692 rdev->last_read_error.tv_nsec = 0; 2693 atomic_set(&rdev->nr_pending, 0); 2694 atomic_set(&rdev->read_errors, 0); 2695 atomic_set(&rdev->corrected_errors, 0); 2696 2697 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2698 if (!size) { 2699 printk(KERN_WARNING 2700 "md: %s has zero or unknown size, marking faulty!\n", 2701 bdevname(rdev->bdev,b)); 2702 err = -EINVAL; 2703 goto abort_free; 2704 } 2705 2706 if (super_format >= 0) { 2707 err = super_types[super_format]. 2708 load_super(rdev, NULL, super_minor); 2709 if (err == -EINVAL) { 2710 printk(KERN_WARNING 2711 "md: %s does not have a valid v%d.%d " 2712 "superblock, not importing!\n", 2713 bdevname(rdev->bdev,b), 2714 super_format, super_minor); 2715 goto abort_free; 2716 } 2717 if (err < 0) { 2718 printk(KERN_WARNING 2719 "md: could not read %s's sb, not importing!\n", 2720 bdevname(rdev->bdev,b)); 2721 goto abort_free; 2722 } 2723 } 2724 2725 INIT_LIST_HEAD(&rdev->same_set); 2726 init_waitqueue_head(&rdev->blocked_wait); 2727 2728 return rdev; 2729 2730 abort_free: 2731 if (rdev->sb_page) { 2732 if (rdev->bdev) 2733 unlock_rdev(rdev); 2734 free_disk_sb(rdev); 2735 } 2736 kfree(rdev); 2737 return ERR_PTR(err); 2738 } 2739 2740 /* 2741 * Check a full RAID array for plausibility 2742 */ 2743 2744 2745 static void analyze_sbs(mddev_t * mddev) 2746 { 2747 int i; 2748 mdk_rdev_t *rdev, *freshest, *tmp; 2749 char b[BDEVNAME_SIZE]; 2750 2751 freshest = NULL; 2752 rdev_for_each(rdev, tmp, mddev) 2753 switch (super_types[mddev->major_version]. 2754 load_super(rdev, freshest, mddev->minor_version)) { 2755 case 1: 2756 freshest = rdev; 2757 break; 2758 case 0: 2759 break; 2760 default: 2761 printk( KERN_ERR \ 2762 "md: fatal superblock inconsistency in %s" 2763 " -- removing from array\n", 2764 bdevname(rdev->bdev,b)); 2765 kick_rdev_from_array(rdev); 2766 } 2767 2768 2769 super_types[mddev->major_version]. 2770 validate_super(mddev, freshest); 2771 2772 i = 0; 2773 rdev_for_each(rdev, tmp, mddev) { 2774 if (rdev->desc_nr >= mddev->max_disks || 2775 i > mddev->max_disks) { 2776 printk(KERN_WARNING 2777 "md: %s: %s: only %d devices permitted\n", 2778 mdname(mddev), bdevname(rdev->bdev, b), 2779 mddev->max_disks); 2780 kick_rdev_from_array(rdev); 2781 continue; 2782 } 2783 if (rdev != freshest) 2784 if (super_types[mddev->major_version]. 2785 validate_super(mddev, rdev)) { 2786 printk(KERN_WARNING "md: kicking non-fresh %s" 2787 " from array!\n", 2788 bdevname(rdev->bdev,b)); 2789 kick_rdev_from_array(rdev); 2790 continue; 2791 } 2792 if (mddev->level == LEVEL_MULTIPATH) { 2793 rdev->desc_nr = i++; 2794 rdev->raid_disk = rdev->desc_nr; 2795 set_bit(In_sync, &rdev->flags); 2796 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 2797 rdev->raid_disk = -1; 2798 clear_bit(In_sync, &rdev->flags); 2799 } 2800 } 2801 } 2802 2803 /* Read a fixed-point number. 2804 * Numbers in sysfs attributes should be in "standard" units where 2805 * possible, so time should be in seconds. 2806 * However we internally use a a much smaller unit such as 2807 * milliseconds or jiffies. 2808 * This function takes a decimal number with a possible fractional 2809 * component, and produces an integer which is the result of 2810 * multiplying that number by 10^'scale'. 2811 * all without any floating-point arithmetic. 2812 */ 2813 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 2814 { 2815 unsigned long result = 0; 2816 long decimals = -1; 2817 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 2818 if (*cp == '.') 2819 decimals = 0; 2820 else if (decimals < scale) { 2821 unsigned int value; 2822 value = *cp - '0'; 2823 result = result * 10 + value; 2824 if (decimals >= 0) 2825 decimals++; 2826 } 2827 cp++; 2828 } 2829 if (*cp == '\n') 2830 cp++; 2831 if (*cp) 2832 return -EINVAL; 2833 if (decimals < 0) 2834 decimals = 0; 2835 while (decimals < scale) { 2836 result *= 10; 2837 decimals ++; 2838 } 2839 *res = result; 2840 return 0; 2841 } 2842 2843 2844 static void md_safemode_timeout(unsigned long data); 2845 2846 static ssize_t 2847 safe_delay_show(mddev_t *mddev, char *page) 2848 { 2849 int msec = (mddev->safemode_delay*1000)/HZ; 2850 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2851 } 2852 static ssize_t 2853 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2854 { 2855 unsigned long msec; 2856 2857 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 2858 return -EINVAL; 2859 if (msec == 0) 2860 mddev->safemode_delay = 0; 2861 else { 2862 unsigned long old_delay = mddev->safemode_delay; 2863 mddev->safemode_delay = (msec*HZ)/1000; 2864 if (mddev->safemode_delay == 0) 2865 mddev->safemode_delay = 1; 2866 if (mddev->safemode_delay < old_delay) 2867 md_safemode_timeout((unsigned long)mddev); 2868 } 2869 return len; 2870 } 2871 static struct md_sysfs_entry md_safe_delay = 2872 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2873 2874 static ssize_t 2875 level_show(mddev_t *mddev, char *page) 2876 { 2877 struct mdk_personality *p = mddev->pers; 2878 if (p) 2879 return sprintf(page, "%s\n", p->name); 2880 else if (mddev->clevel[0]) 2881 return sprintf(page, "%s\n", mddev->clevel); 2882 else if (mddev->level != LEVEL_NONE) 2883 return sprintf(page, "%d\n", mddev->level); 2884 else 2885 return 0; 2886 } 2887 2888 static ssize_t 2889 level_store(mddev_t *mddev, const char *buf, size_t len) 2890 { 2891 char level[16]; 2892 ssize_t rv = len; 2893 struct mdk_personality *pers; 2894 void *priv; 2895 mdk_rdev_t *rdev; 2896 2897 if (mddev->pers == NULL) { 2898 if (len == 0) 2899 return 0; 2900 if (len >= sizeof(mddev->clevel)) 2901 return -ENOSPC; 2902 strncpy(mddev->clevel, buf, len); 2903 if (mddev->clevel[len-1] == '\n') 2904 len--; 2905 mddev->clevel[len] = 0; 2906 mddev->level = LEVEL_NONE; 2907 return rv; 2908 } 2909 2910 /* request to change the personality. Need to ensure: 2911 * - array is not engaged in resync/recovery/reshape 2912 * - old personality can be suspended 2913 * - new personality will access other array. 2914 */ 2915 2916 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 2917 return -EBUSY; 2918 2919 if (!mddev->pers->quiesce) { 2920 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 2921 mdname(mddev), mddev->pers->name); 2922 return -EINVAL; 2923 } 2924 2925 /* Now find the new personality */ 2926 if (len == 0 || len >= sizeof(level)) 2927 return -EINVAL; 2928 strncpy(level, buf, len); 2929 if (level[len-1] == '\n') 2930 len--; 2931 level[len] = 0; 2932 2933 request_module("md-%s", level); 2934 spin_lock(&pers_lock); 2935 pers = find_pers(LEVEL_NONE, level); 2936 if (!pers || !try_module_get(pers->owner)) { 2937 spin_unlock(&pers_lock); 2938 printk(KERN_WARNING "md: personality %s not loaded\n", level); 2939 return -EINVAL; 2940 } 2941 spin_unlock(&pers_lock); 2942 2943 if (pers == mddev->pers) { 2944 /* Nothing to do! */ 2945 module_put(pers->owner); 2946 return rv; 2947 } 2948 if (!pers->takeover) { 2949 module_put(pers->owner); 2950 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 2951 mdname(mddev), level); 2952 return -EINVAL; 2953 } 2954 2955 /* ->takeover must set new_* and/or delta_disks 2956 * if it succeeds, and may set them when it fails. 2957 */ 2958 priv = pers->takeover(mddev); 2959 if (IS_ERR(priv)) { 2960 mddev->new_level = mddev->level; 2961 mddev->new_layout = mddev->layout; 2962 mddev->new_chunk_sectors = mddev->chunk_sectors; 2963 mddev->raid_disks -= mddev->delta_disks; 2964 mddev->delta_disks = 0; 2965 module_put(pers->owner); 2966 printk(KERN_WARNING "md: %s: %s would not accept array\n", 2967 mdname(mddev), level); 2968 return PTR_ERR(priv); 2969 } 2970 2971 /* Looks like we have a winner */ 2972 mddev_suspend(mddev); 2973 mddev->pers->stop(mddev); 2974 module_put(mddev->pers->owner); 2975 /* Invalidate devices that are now superfluous */ 2976 list_for_each_entry(rdev, &mddev->disks, same_set) 2977 if (rdev->raid_disk >= mddev->raid_disks) { 2978 rdev->raid_disk = -1; 2979 clear_bit(In_sync, &rdev->flags); 2980 } 2981 mddev->pers = pers; 2982 mddev->private = priv; 2983 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 2984 mddev->level = mddev->new_level; 2985 mddev->layout = mddev->new_layout; 2986 mddev->chunk_sectors = mddev->new_chunk_sectors; 2987 mddev->delta_disks = 0; 2988 pers->run(mddev); 2989 mddev_resume(mddev); 2990 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2991 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2992 md_wakeup_thread(mddev->thread); 2993 return rv; 2994 } 2995 2996 static struct md_sysfs_entry md_level = 2997 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 2998 2999 3000 static ssize_t 3001 layout_show(mddev_t *mddev, char *page) 3002 { 3003 /* just a number, not meaningful for all levels */ 3004 if (mddev->reshape_position != MaxSector && 3005 mddev->layout != mddev->new_layout) 3006 return sprintf(page, "%d (%d)\n", 3007 mddev->new_layout, mddev->layout); 3008 return sprintf(page, "%d\n", mddev->layout); 3009 } 3010 3011 static ssize_t 3012 layout_store(mddev_t *mddev, const char *buf, size_t len) 3013 { 3014 char *e; 3015 unsigned long n = simple_strtoul(buf, &e, 10); 3016 3017 if (!*buf || (*e && *e != '\n')) 3018 return -EINVAL; 3019 3020 if (mddev->pers) { 3021 int err; 3022 if (mddev->pers->check_reshape == NULL) 3023 return -EBUSY; 3024 mddev->new_layout = n; 3025 err = mddev->pers->check_reshape(mddev); 3026 if (err) { 3027 mddev->new_layout = mddev->layout; 3028 return err; 3029 } 3030 } else { 3031 mddev->new_layout = n; 3032 if (mddev->reshape_position == MaxSector) 3033 mddev->layout = n; 3034 } 3035 return len; 3036 } 3037 static struct md_sysfs_entry md_layout = 3038 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3039 3040 3041 static ssize_t 3042 raid_disks_show(mddev_t *mddev, char *page) 3043 { 3044 if (mddev->raid_disks == 0) 3045 return 0; 3046 if (mddev->reshape_position != MaxSector && 3047 mddev->delta_disks != 0) 3048 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3049 mddev->raid_disks - mddev->delta_disks); 3050 return sprintf(page, "%d\n", mddev->raid_disks); 3051 } 3052 3053 static int update_raid_disks(mddev_t *mddev, int raid_disks); 3054 3055 static ssize_t 3056 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 3057 { 3058 char *e; 3059 int rv = 0; 3060 unsigned long n = simple_strtoul(buf, &e, 10); 3061 3062 if (!*buf || (*e && *e != '\n')) 3063 return -EINVAL; 3064 3065 if (mddev->pers) 3066 rv = update_raid_disks(mddev, n); 3067 else if (mddev->reshape_position != MaxSector) { 3068 int olddisks = mddev->raid_disks - mddev->delta_disks; 3069 mddev->delta_disks = n - olddisks; 3070 mddev->raid_disks = n; 3071 } else 3072 mddev->raid_disks = n; 3073 return rv ? rv : len; 3074 } 3075 static struct md_sysfs_entry md_raid_disks = 3076 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3077 3078 static ssize_t 3079 chunk_size_show(mddev_t *mddev, char *page) 3080 { 3081 if (mddev->reshape_position != MaxSector && 3082 mddev->chunk_sectors != mddev->new_chunk_sectors) 3083 return sprintf(page, "%d (%d)\n", 3084 mddev->new_chunk_sectors << 9, 3085 mddev->chunk_sectors << 9); 3086 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3087 } 3088 3089 static ssize_t 3090 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 3091 { 3092 char *e; 3093 unsigned long n = simple_strtoul(buf, &e, 10); 3094 3095 if (!*buf || (*e && *e != '\n')) 3096 return -EINVAL; 3097 3098 if (mddev->pers) { 3099 int err; 3100 if (mddev->pers->check_reshape == NULL) 3101 return -EBUSY; 3102 mddev->new_chunk_sectors = n >> 9; 3103 err = mddev->pers->check_reshape(mddev); 3104 if (err) { 3105 mddev->new_chunk_sectors = mddev->chunk_sectors; 3106 return err; 3107 } 3108 } else { 3109 mddev->new_chunk_sectors = n >> 9; 3110 if (mddev->reshape_position == MaxSector) 3111 mddev->chunk_sectors = n >> 9; 3112 } 3113 return len; 3114 } 3115 static struct md_sysfs_entry md_chunk_size = 3116 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3117 3118 static ssize_t 3119 resync_start_show(mddev_t *mddev, char *page) 3120 { 3121 if (mddev->recovery_cp == MaxSector) 3122 return sprintf(page, "none\n"); 3123 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3124 } 3125 3126 static ssize_t 3127 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 3128 { 3129 char *e; 3130 unsigned long long n = simple_strtoull(buf, &e, 10); 3131 3132 if (mddev->pers) 3133 return -EBUSY; 3134 if (cmd_match(buf, "none")) 3135 n = MaxSector; 3136 else if (!*buf || (*e && *e != '\n')) 3137 return -EINVAL; 3138 3139 mddev->recovery_cp = n; 3140 return len; 3141 } 3142 static struct md_sysfs_entry md_resync_start = 3143 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3144 3145 /* 3146 * The array state can be: 3147 * 3148 * clear 3149 * No devices, no size, no level 3150 * Equivalent to STOP_ARRAY ioctl 3151 * inactive 3152 * May have some settings, but array is not active 3153 * all IO results in error 3154 * When written, doesn't tear down array, but just stops it 3155 * suspended (not supported yet) 3156 * All IO requests will block. The array can be reconfigured. 3157 * Writing this, if accepted, will block until array is quiescent 3158 * readonly 3159 * no resync can happen. no superblocks get written. 3160 * write requests fail 3161 * read-auto 3162 * like readonly, but behaves like 'clean' on a write request. 3163 * 3164 * clean - no pending writes, but otherwise active. 3165 * When written to inactive array, starts without resync 3166 * If a write request arrives then 3167 * if metadata is known, mark 'dirty' and switch to 'active'. 3168 * if not known, block and switch to write-pending 3169 * If written to an active array that has pending writes, then fails. 3170 * active 3171 * fully active: IO and resync can be happening. 3172 * When written to inactive array, starts with resync 3173 * 3174 * write-pending 3175 * clean, but writes are blocked waiting for 'active' to be written. 3176 * 3177 * active-idle 3178 * like active, but no writes have been seen for a while (100msec). 3179 * 3180 */ 3181 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3182 write_pending, active_idle, bad_word}; 3183 static char *array_states[] = { 3184 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3185 "write-pending", "active-idle", NULL }; 3186 3187 static int match_word(const char *word, char **list) 3188 { 3189 int n; 3190 for (n=0; list[n]; n++) 3191 if (cmd_match(word, list[n])) 3192 break; 3193 return n; 3194 } 3195 3196 static ssize_t 3197 array_state_show(mddev_t *mddev, char *page) 3198 { 3199 enum array_state st = inactive; 3200 3201 if (mddev->pers) 3202 switch(mddev->ro) { 3203 case 1: 3204 st = readonly; 3205 break; 3206 case 2: 3207 st = read_auto; 3208 break; 3209 case 0: 3210 if (mddev->in_sync) 3211 st = clean; 3212 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 3213 st = write_pending; 3214 else if (mddev->safemode) 3215 st = active_idle; 3216 else 3217 st = active; 3218 } 3219 else { 3220 if (list_empty(&mddev->disks) && 3221 mddev->raid_disks == 0 && 3222 mddev->dev_sectors == 0) 3223 st = clear; 3224 else 3225 st = inactive; 3226 } 3227 return sprintf(page, "%s\n", array_states[st]); 3228 } 3229 3230 static int do_md_stop(mddev_t * mddev, int ro, int is_open); 3231 static int do_md_run(mddev_t * mddev); 3232 static int restart_array(mddev_t *mddev); 3233 3234 static ssize_t 3235 array_state_store(mddev_t *mddev, const char *buf, size_t len) 3236 { 3237 int err = -EINVAL; 3238 enum array_state st = match_word(buf, array_states); 3239 switch(st) { 3240 case bad_word: 3241 break; 3242 case clear: 3243 /* stopping an active array */ 3244 if (atomic_read(&mddev->openers) > 0) 3245 return -EBUSY; 3246 err = do_md_stop(mddev, 0, 0); 3247 break; 3248 case inactive: 3249 /* stopping an active array */ 3250 if (mddev->pers) { 3251 if (atomic_read(&mddev->openers) > 0) 3252 return -EBUSY; 3253 err = do_md_stop(mddev, 2, 0); 3254 } else 3255 err = 0; /* already inactive */ 3256 break; 3257 case suspended: 3258 break; /* not supported yet */ 3259 case readonly: 3260 if (mddev->pers) 3261 err = do_md_stop(mddev, 1, 0); 3262 else { 3263 mddev->ro = 1; 3264 set_disk_ro(mddev->gendisk, 1); 3265 err = do_md_run(mddev); 3266 } 3267 break; 3268 case read_auto: 3269 if (mddev->pers) { 3270 if (mddev->ro == 0) 3271 err = do_md_stop(mddev, 1, 0); 3272 else if (mddev->ro == 1) 3273 err = restart_array(mddev); 3274 if (err == 0) { 3275 mddev->ro = 2; 3276 set_disk_ro(mddev->gendisk, 0); 3277 } 3278 } else { 3279 mddev->ro = 2; 3280 err = do_md_run(mddev); 3281 } 3282 break; 3283 case clean: 3284 if (mddev->pers) { 3285 restart_array(mddev); 3286 spin_lock_irq(&mddev->write_lock); 3287 if (atomic_read(&mddev->writes_pending) == 0) { 3288 if (mddev->in_sync == 0) { 3289 mddev->in_sync = 1; 3290 if (mddev->safemode == 1) 3291 mddev->safemode = 0; 3292 if (mddev->persistent) 3293 set_bit(MD_CHANGE_CLEAN, 3294 &mddev->flags); 3295 } 3296 err = 0; 3297 } else 3298 err = -EBUSY; 3299 spin_unlock_irq(&mddev->write_lock); 3300 } else 3301 err = -EINVAL; 3302 break; 3303 case active: 3304 if (mddev->pers) { 3305 restart_array(mddev); 3306 if (mddev->external) 3307 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 3308 wake_up(&mddev->sb_wait); 3309 err = 0; 3310 } else { 3311 mddev->ro = 0; 3312 set_disk_ro(mddev->gendisk, 0); 3313 err = do_md_run(mddev); 3314 } 3315 break; 3316 case write_pending: 3317 case active_idle: 3318 /* these cannot be set */ 3319 break; 3320 } 3321 if (err) 3322 return err; 3323 else { 3324 sysfs_notify_dirent(mddev->sysfs_state); 3325 return len; 3326 } 3327 } 3328 static struct md_sysfs_entry md_array_state = 3329 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3330 3331 static ssize_t 3332 max_corrected_read_errors_show(mddev_t *mddev, char *page) { 3333 return sprintf(page, "%d\n", 3334 atomic_read(&mddev->max_corr_read_errors)); 3335 } 3336 3337 static ssize_t 3338 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len) 3339 { 3340 char *e; 3341 unsigned long n = simple_strtoul(buf, &e, 10); 3342 3343 if (*buf && (*e == 0 || *e == '\n')) { 3344 atomic_set(&mddev->max_corr_read_errors, n); 3345 return len; 3346 } 3347 return -EINVAL; 3348 } 3349 3350 static struct md_sysfs_entry max_corr_read_errors = 3351 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3352 max_corrected_read_errors_store); 3353 3354 static ssize_t 3355 null_show(mddev_t *mddev, char *page) 3356 { 3357 return -EINVAL; 3358 } 3359 3360 static ssize_t 3361 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 3362 { 3363 /* buf must be %d:%d\n? giving major and minor numbers */ 3364 /* The new device is added to the array. 3365 * If the array has a persistent superblock, we read the 3366 * superblock to initialise info and check validity. 3367 * Otherwise, only checking done is that in bind_rdev_to_array, 3368 * which mainly checks size. 3369 */ 3370 char *e; 3371 int major = simple_strtoul(buf, &e, 10); 3372 int minor; 3373 dev_t dev; 3374 mdk_rdev_t *rdev; 3375 int err; 3376 3377 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3378 return -EINVAL; 3379 minor = simple_strtoul(e+1, &e, 10); 3380 if (*e && *e != '\n') 3381 return -EINVAL; 3382 dev = MKDEV(major, minor); 3383 if (major != MAJOR(dev) || 3384 minor != MINOR(dev)) 3385 return -EOVERFLOW; 3386 3387 3388 if (mddev->persistent) { 3389 rdev = md_import_device(dev, mddev->major_version, 3390 mddev->minor_version); 3391 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3392 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3393 mdk_rdev_t, same_set); 3394 err = super_types[mddev->major_version] 3395 .load_super(rdev, rdev0, mddev->minor_version); 3396 if (err < 0) 3397 goto out; 3398 } 3399 } else if (mddev->external) 3400 rdev = md_import_device(dev, -2, -1); 3401 else 3402 rdev = md_import_device(dev, -1, -1); 3403 3404 if (IS_ERR(rdev)) 3405 return PTR_ERR(rdev); 3406 err = bind_rdev_to_array(rdev, mddev); 3407 out: 3408 if (err) 3409 export_rdev(rdev); 3410 return err ? err : len; 3411 } 3412 3413 static struct md_sysfs_entry md_new_device = 3414 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 3415 3416 static ssize_t 3417 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 3418 { 3419 char *end; 3420 unsigned long chunk, end_chunk; 3421 3422 if (!mddev->bitmap) 3423 goto out; 3424 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 3425 while (*buf) { 3426 chunk = end_chunk = simple_strtoul(buf, &end, 0); 3427 if (buf == end) break; 3428 if (*end == '-') { /* range */ 3429 buf = end + 1; 3430 end_chunk = simple_strtoul(buf, &end, 0); 3431 if (buf == end) break; 3432 } 3433 if (*end && !isspace(*end)) break; 3434 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 3435 buf = skip_spaces(end); 3436 } 3437 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 3438 out: 3439 return len; 3440 } 3441 3442 static struct md_sysfs_entry md_bitmap = 3443 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 3444 3445 static ssize_t 3446 size_show(mddev_t *mddev, char *page) 3447 { 3448 return sprintf(page, "%llu\n", 3449 (unsigned long long)mddev->dev_sectors / 2); 3450 } 3451 3452 static int update_size(mddev_t *mddev, sector_t num_sectors); 3453 3454 static ssize_t 3455 size_store(mddev_t *mddev, const char *buf, size_t len) 3456 { 3457 /* If array is inactive, we can reduce the component size, but 3458 * not increase it (except from 0). 3459 * If array is active, we can try an on-line resize 3460 */ 3461 sector_t sectors; 3462 int err = strict_blocks_to_sectors(buf, §ors); 3463 3464 if (err < 0) 3465 return err; 3466 if (mddev->pers) { 3467 err = update_size(mddev, sectors); 3468 md_update_sb(mddev, 1); 3469 } else { 3470 if (mddev->dev_sectors == 0 || 3471 mddev->dev_sectors > sectors) 3472 mddev->dev_sectors = sectors; 3473 else 3474 err = -ENOSPC; 3475 } 3476 return err ? err : len; 3477 } 3478 3479 static struct md_sysfs_entry md_size = 3480 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 3481 3482 3483 /* Metdata version. 3484 * This is one of 3485 * 'none' for arrays with no metadata (good luck...) 3486 * 'external' for arrays with externally managed metadata, 3487 * or N.M for internally known formats 3488 */ 3489 static ssize_t 3490 metadata_show(mddev_t *mddev, char *page) 3491 { 3492 if (mddev->persistent) 3493 return sprintf(page, "%d.%d\n", 3494 mddev->major_version, mddev->minor_version); 3495 else if (mddev->external) 3496 return sprintf(page, "external:%s\n", mddev->metadata_type); 3497 else 3498 return sprintf(page, "none\n"); 3499 } 3500 3501 static ssize_t 3502 metadata_store(mddev_t *mddev, const char *buf, size_t len) 3503 { 3504 int major, minor; 3505 char *e; 3506 /* Changing the details of 'external' metadata is 3507 * always permitted. Otherwise there must be 3508 * no devices attached to the array. 3509 */ 3510 if (mddev->external && strncmp(buf, "external:", 9) == 0) 3511 ; 3512 else if (!list_empty(&mddev->disks)) 3513 return -EBUSY; 3514 3515 if (cmd_match(buf, "none")) { 3516 mddev->persistent = 0; 3517 mddev->external = 0; 3518 mddev->major_version = 0; 3519 mddev->minor_version = 90; 3520 return len; 3521 } 3522 if (strncmp(buf, "external:", 9) == 0) { 3523 size_t namelen = len-9; 3524 if (namelen >= sizeof(mddev->metadata_type)) 3525 namelen = sizeof(mddev->metadata_type)-1; 3526 strncpy(mddev->metadata_type, buf+9, namelen); 3527 mddev->metadata_type[namelen] = 0; 3528 if (namelen && mddev->metadata_type[namelen-1] == '\n') 3529 mddev->metadata_type[--namelen] = 0; 3530 mddev->persistent = 0; 3531 mddev->external = 1; 3532 mddev->major_version = 0; 3533 mddev->minor_version = 90; 3534 return len; 3535 } 3536 major = simple_strtoul(buf, &e, 10); 3537 if (e==buf || *e != '.') 3538 return -EINVAL; 3539 buf = e+1; 3540 minor = simple_strtoul(buf, &e, 10); 3541 if (e==buf || (*e && *e != '\n') ) 3542 return -EINVAL; 3543 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 3544 return -ENOENT; 3545 mddev->major_version = major; 3546 mddev->minor_version = minor; 3547 mddev->persistent = 1; 3548 mddev->external = 0; 3549 return len; 3550 } 3551 3552 static struct md_sysfs_entry md_metadata = 3553 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 3554 3555 static ssize_t 3556 action_show(mddev_t *mddev, char *page) 3557 { 3558 char *type = "idle"; 3559 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3560 type = "frozen"; 3561 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3562 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 3563 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3564 type = "reshape"; 3565 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3566 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3567 type = "resync"; 3568 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 3569 type = "check"; 3570 else 3571 type = "repair"; 3572 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 3573 type = "recover"; 3574 } 3575 return sprintf(page, "%s\n", type); 3576 } 3577 3578 static ssize_t 3579 action_store(mddev_t *mddev, const char *page, size_t len) 3580 { 3581 if (!mddev->pers || !mddev->pers->sync_request) 3582 return -EINVAL; 3583 3584 if (cmd_match(page, "frozen")) 3585 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3586 else 3587 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3588 3589 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 3590 if (mddev->sync_thread) { 3591 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3592 md_unregister_thread(mddev->sync_thread); 3593 mddev->sync_thread = NULL; 3594 mddev->recovery = 0; 3595 } 3596 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3597 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 3598 return -EBUSY; 3599 else if (cmd_match(page, "resync")) 3600 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3601 else if (cmd_match(page, "recover")) { 3602 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3603 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3604 } else if (cmd_match(page, "reshape")) { 3605 int err; 3606 if (mddev->pers->start_reshape == NULL) 3607 return -EINVAL; 3608 err = mddev->pers->start_reshape(mddev); 3609 if (err) 3610 return err; 3611 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3612 } else { 3613 if (cmd_match(page, "check")) 3614 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3615 else if (!cmd_match(page, "repair")) 3616 return -EINVAL; 3617 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3618 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3619 } 3620 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3621 md_wakeup_thread(mddev->thread); 3622 sysfs_notify_dirent(mddev->sysfs_action); 3623 return len; 3624 } 3625 3626 static ssize_t 3627 mismatch_cnt_show(mddev_t *mddev, char *page) 3628 { 3629 return sprintf(page, "%llu\n", 3630 (unsigned long long) mddev->resync_mismatches); 3631 } 3632 3633 static struct md_sysfs_entry md_scan_mode = 3634 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 3635 3636 3637 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 3638 3639 static ssize_t 3640 sync_min_show(mddev_t *mddev, char *page) 3641 { 3642 return sprintf(page, "%d (%s)\n", speed_min(mddev), 3643 mddev->sync_speed_min ? "local": "system"); 3644 } 3645 3646 static ssize_t 3647 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 3648 { 3649 int min; 3650 char *e; 3651 if (strncmp(buf, "system", 6)==0) { 3652 mddev->sync_speed_min = 0; 3653 return len; 3654 } 3655 min = simple_strtoul(buf, &e, 10); 3656 if (buf == e || (*e && *e != '\n') || min <= 0) 3657 return -EINVAL; 3658 mddev->sync_speed_min = min; 3659 return len; 3660 } 3661 3662 static struct md_sysfs_entry md_sync_min = 3663 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 3664 3665 static ssize_t 3666 sync_max_show(mddev_t *mddev, char *page) 3667 { 3668 return sprintf(page, "%d (%s)\n", speed_max(mddev), 3669 mddev->sync_speed_max ? "local": "system"); 3670 } 3671 3672 static ssize_t 3673 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 3674 { 3675 int max; 3676 char *e; 3677 if (strncmp(buf, "system", 6)==0) { 3678 mddev->sync_speed_max = 0; 3679 return len; 3680 } 3681 max = simple_strtoul(buf, &e, 10); 3682 if (buf == e || (*e && *e != '\n') || max <= 0) 3683 return -EINVAL; 3684 mddev->sync_speed_max = max; 3685 return len; 3686 } 3687 3688 static struct md_sysfs_entry md_sync_max = 3689 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 3690 3691 static ssize_t 3692 degraded_show(mddev_t *mddev, char *page) 3693 { 3694 return sprintf(page, "%d\n", mddev->degraded); 3695 } 3696 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 3697 3698 static ssize_t 3699 sync_force_parallel_show(mddev_t *mddev, char *page) 3700 { 3701 return sprintf(page, "%d\n", mddev->parallel_resync); 3702 } 3703 3704 static ssize_t 3705 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len) 3706 { 3707 long n; 3708 3709 if (strict_strtol(buf, 10, &n)) 3710 return -EINVAL; 3711 3712 if (n != 0 && n != 1) 3713 return -EINVAL; 3714 3715 mddev->parallel_resync = n; 3716 3717 if (mddev->sync_thread) 3718 wake_up(&resync_wait); 3719 3720 return len; 3721 } 3722 3723 /* force parallel resync, even with shared block devices */ 3724 static struct md_sysfs_entry md_sync_force_parallel = 3725 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 3726 sync_force_parallel_show, sync_force_parallel_store); 3727 3728 static ssize_t 3729 sync_speed_show(mddev_t *mddev, char *page) 3730 { 3731 unsigned long resync, dt, db; 3732 if (mddev->curr_resync == 0) 3733 return sprintf(page, "none\n"); 3734 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 3735 dt = (jiffies - mddev->resync_mark) / HZ; 3736 if (!dt) dt++; 3737 db = resync - mddev->resync_mark_cnt; 3738 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 3739 } 3740 3741 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 3742 3743 static ssize_t 3744 sync_completed_show(mddev_t *mddev, char *page) 3745 { 3746 unsigned long max_sectors, resync; 3747 3748 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3749 return sprintf(page, "none\n"); 3750 3751 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3752 max_sectors = mddev->resync_max_sectors; 3753 else 3754 max_sectors = mddev->dev_sectors; 3755 3756 resync = mddev->curr_resync_completed; 3757 return sprintf(page, "%lu / %lu\n", resync, max_sectors); 3758 } 3759 3760 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 3761 3762 static ssize_t 3763 min_sync_show(mddev_t *mddev, char *page) 3764 { 3765 return sprintf(page, "%llu\n", 3766 (unsigned long long)mddev->resync_min); 3767 } 3768 static ssize_t 3769 min_sync_store(mddev_t *mddev, const char *buf, size_t len) 3770 { 3771 unsigned long long min; 3772 if (strict_strtoull(buf, 10, &min)) 3773 return -EINVAL; 3774 if (min > mddev->resync_max) 3775 return -EINVAL; 3776 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3777 return -EBUSY; 3778 3779 /* Must be a multiple of chunk_size */ 3780 if (mddev->chunk_sectors) { 3781 sector_t temp = min; 3782 if (sector_div(temp, mddev->chunk_sectors)) 3783 return -EINVAL; 3784 } 3785 mddev->resync_min = min; 3786 3787 return len; 3788 } 3789 3790 static struct md_sysfs_entry md_min_sync = 3791 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 3792 3793 static ssize_t 3794 max_sync_show(mddev_t *mddev, char *page) 3795 { 3796 if (mddev->resync_max == MaxSector) 3797 return sprintf(page, "max\n"); 3798 else 3799 return sprintf(page, "%llu\n", 3800 (unsigned long long)mddev->resync_max); 3801 } 3802 static ssize_t 3803 max_sync_store(mddev_t *mddev, const char *buf, size_t len) 3804 { 3805 if (strncmp(buf, "max", 3) == 0) 3806 mddev->resync_max = MaxSector; 3807 else { 3808 unsigned long long max; 3809 if (strict_strtoull(buf, 10, &max)) 3810 return -EINVAL; 3811 if (max < mddev->resync_min) 3812 return -EINVAL; 3813 if (max < mddev->resync_max && 3814 mddev->ro == 0 && 3815 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3816 return -EBUSY; 3817 3818 /* Must be a multiple of chunk_size */ 3819 if (mddev->chunk_sectors) { 3820 sector_t temp = max; 3821 if (sector_div(temp, mddev->chunk_sectors)) 3822 return -EINVAL; 3823 } 3824 mddev->resync_max = max; 3825 } 3826 wake_up(&mddev->recovery_wait); 3827 return len; 3828 } 3829 3830 static struct md_sysfs_entry md_max_sync = 3831 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 3832 3833 static ssize_t 3834 suspend_lo_show(mddev_t *mddev, char *page) 3835 { 3836 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 3837 } 3838 3839 static ssize_t 3840 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 3841 { 3842 char *e; 3843 unsigned long long new = simple_strtoull(buf, &e, 10); 3844 3845 if (mddev->pers == NULL || 3846 mddev->pers->quiesce == NULL) 3847 return -EINVAL; 3848 if (buf == e || (*e && *e != '\n')) 3849 return -EINVAL; 3850 if (new >= mddev->suspend_hi || 3851 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 3852 mddev->suspend_lo = new; 3853 mddev->pers->quiesce(mddev, 2); 3854 return len; 3855 } else 3856 return -EINVAL; 3857 } 3858 static struct md_sysfs_entry md_suspend_lo = 3859 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 3860 3861 3862 static ssize_t 3863 suspend_hi_show(mddev_t *mddev, char *page) 3864 { 3865 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 3866 } 3867 3868 static ssize_t 3869 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 3870 { 3871 char *e; 3872 unsigned long long new = simple_strtoull(buf, &e, 10); 3873 3874 if (mddev->pers == NULL || 3875 mddev->pers->quiesce == NULL) 3876 return -EINVAL; 3877 if (buf == e || (*e && *e != '\n')) 3878 return -EINVAL; 3879 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 3880 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 3881 mddev->suspend_hi = new; 3882 mddev->pers->quiesce(mddev, 1); 3883 mddev->pers->quiesce(mddev, 0); 3884 return len; 3885 } else 3886 return -EINVAL; 3887 } 3888 static struct md_sysfs_entry md_suspend_hi = 3889 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 3890 3891 static ssize_t 3892 reshape_position_show(mddev_t *mddev, char *page) 3893 { 3894 if (mddev->reshape_position != MaxSector) 3895 return sprintf(page, "%llu\n", 3896 (unsigned long long)mddev->reshape_position); 3897 strcpy(page, "none\n"); 3898 return 5; 3899 } 3900 3901 static ssize_t 3902 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 3903 { 3904 char *e; 3905 unsigned long long new = simple_strtoull(buf, &e, 10); 3906 if (mddev->pers) 3907 return -EBUSY; 3908 if (buf == e || (*e && *e != '\n')) 3909 return -EINVAL; 3910 mddev->reshape_position = new; 3911 mddev->delta_disks = 0; 3912 mddev->new_level = mddev->level; 3913 mddev->new_layout = mddev->layout; 3914 mddev->new_chunk_sectors = mddev->chunk_sectors; 3915 return len; 3916 } 3917 3918 static struct md_sysfs_entry md_reshape_position = 3919 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 3920 reshape_position_store); 3921 3922 static ssize_t 3923 array_size_show(mddev_t *mddev, char *page) 3924 { 3925 if (mddev->external_size) 3926 return sprintf(page, "%llu\n", 3927 (unsigned long long)mddev->array_sectors/2); 3928 else 3929 return sprintf(page, "default\n"); 3930 } 3931 3932 static ssize_t 3933 array_size_store(mddev_t *mddev, const char *buf, size_t len) 3934 { 3935 sector_t sectors; 3936 3937 if (strncmp(buf, "default", 7) == 0) { 3938 if (mddev->pers) 3939 sectors = mddev->pers->size(mddev, 0, 0); 3940 else 3941 sectors = mddev->array_sectors; 3942 3943 mddev->external_size = 0; 3944 } else { 3945 if (strict_blocks_to_sectors(buf, §ors) < 0) 3946 return -EINVAL; 3947 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 3948 return -E2BIG; 3949 3950 mddev->external_size = 1; 3951 } 3952 3953 mddev->array_sectors = sectors; 3954 set_capacity(mddev->gendisk, mddev->array_sectors); 3955 if (mddev->pers) 3956 revalidate_disk(mddev->gendisk); 3957 3958 return len; 3959 } 3960 3961 static struct md_sysfs_entry md_array_size = 3962 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 3963 array_size_store); 3964 3965 static struct attribute *md_default_attrs[] = { 3966 &md_level.attr, 3967 &md_layout.attr, 3968 &md_raid_disks.attr, 3969 &md_chunk_size.attr, 3970 &md_size.attr, 3971 &md_resync_start.attr, 3972 &md_metadata.attr, 3973 &md_new_device.attr, 3974 &md_safe_delay.attr, 3975 &md_array_state.attr, 3976 &md_reshape_position.attr, 3977 &md_array_size.attr, 3978 &max_corr_read_errors.attr, 3979 NULL, 3980 }; 3981 3982 static struct attribute *md_redundancy_attrs[] = { 3983 &md_scan_mode.attr, 3984 &md_mismatches.attr, 3985 &md_sync_min.attr, 3986 &md_sync_max.attr, 3987 &md_sync_speed.attr, 3988 &md_sync_force_parallel.attr, 3989 &md_sync_completed.attr, 3990 &md_min_sync.attr, 3991 &md_max_sync.attr, 3992 &md_suspend_lo.attr, 3993 &md_suspend_hi.attr, 3994 &md_bitmap.attr, 3995 &md_degraded.attr, 3996 NULL, 3997 }; 3998 static struct attribute_group md_redundancy_group = { 3999 .name = NULL, 4000 .attrs = md_redundancy_attrs, 4001 }; 4002 4003 4004 static ssize_t 4005 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4006 { 4007 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4008 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4009 ssize_t rv; 4010 4011 if (!entry->show) 4012 return -EIO; 4013 rv = mddev_lock(mddev); 4014 if (!rv) { 4015 rv = entry->show(mddev, page); 4016 mddev_unlock(mddev); 4017 } 4018 return rv; 4019 } 4020 4021 static ssize_t 4022 md_attr_store(struct kobject *kobj, struct attribute *attr, 4023 const char *page, size_t length) 4024 { 4025 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4026 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4027 ssize_t rv; 4028 4029 if (!entry->store) 4030 return -EIO; 4031 if (!capable(CAP_SYS_ADMIN)) 4032 return -EACCES; 4033 rv = mddev_lock(mddev); 4034 if (mddev->hold_active == UNTIL_IOCTL) 4035 mddev->hold_active = 0; 4036 if (!rv) { 4037 rv = entry->store(mddev, page, length); 4038 mddev_unlock(mddev); 4039 } 4040 return rv; 4041 } 4042 4043 static void md_free(struct kobject *ko) 4044 { 4045 mddev_t *mddev = container_of(ko, mddev_t, kobj); 4046 4047 if (mddev->sysfs_state) 4048 sysfs_put(mddev->sysfs_state); 4049 4050 if (mddev->gendisk) { 4051 del_gendisk(mddev->gendisk); 4052 put_disk(mddev->gendisk); 4053 } 4054 if (mddev->queue) 4055 blk_cleanup_queue(mddev->queue); 4056 4057 kfree(mddev); 4058 } 4059 4060 static struct sysfs_ops md_sysfs_ops = { 4061 .show = md_attr_show, 4062 .store = md_attr_store, 4063 }; 4064 static struct kobj_type md_ktype = { 4065 .release = md_free, 4066 .sysfs_ops = &md_sysfs_ops, 4067 .default_attrs = md_default_attrs, 4068 }; 4069 4070 int mdp_major = 0; 4071 4072 static void mddev_delayed_delete(struct work_struct *ws) 4073 { 4074 mddev_t *mddev = container_of(ws, mddev_t, del_work); 4075 4076 if (mddev->private == &md_redundancy_group) { 4077 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 4078 if (mddev->sysfs_action) 4079 sysfs_put(mddev->sysfs_action); 4080 mddev->sysfs_action = NULL; 4081 mddev->private = NULL; 4082 } 4083 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4084 kobject_del(&mddev->kobj); 4085 kobject_put(&mddev->kobj); 4086 } 4087 4088 static int md_alloc(dev_t dev, char *name) 4089 { 4090 static DEFINE_MUTEX(disks_mutex); 4091 mddev_t *mddev = mddev_find(dev); 4092 struct gendisk *disk; 4093 int partitioned; 4094 int shift; 4095 int unit; 4096 int error; 4097 4098 if (!mddev) 4099 return -ENODEV; 4100 4101 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4102 shift = partitioned ? MdpMinorShift : 0; 4103 unit = MINOR(mddev->unit) >> shift; 4104 4105 /* wait for any previous instance if this device 4106 * to be completed removed (mddev_delayed_delete). 4107 */ 4108 flush_scheduled_work(); 4109 4110 mutex_lock(&disks_mutex); 4111 error = -EEXIST; 4112 if (mddev->gendisk) 4113 goto abort; 4114 4115 if (name) { 4116 /* Need to ensure that 'name' is not a duplicate. 4117 */ 4118 mddev_t *mddev2; 4119 spin_lock(&all_mddevs_lock); 4120 4121 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4122 if (mddev2->gendisk && 4123 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4124 spin_unlock(&all_mddevs_lock); 4125 goto abort; 4126 } 4127 spin_unlock(&all_mddevs_lock); 4128 } 4129 4130 error = -ENOMEM; 4131 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4132 if (!mddev->queue) 4133 goto abort; 4134 mddev->queue->queuedata = mddev; 4135 4136 /* Can be unlocked because the queue is new: no concurrency */ 4137 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue); 4138 4139 blk_queue_make_request(mddev->queue, md_make_request); 4140 4141 disk = alloc_disk(1 << shift); 4142 if (!disk) { 4143 blk_cleanup_queue(mddev->queue); 4144 mddev->queue = NULL; 4145 goto abort; 4146 } 4147 disk->major = MAJOR(mddev->unit); 4148 disk->first_minor = unit << shift; 4149 if (name) 4150 strcpy(disk->disk_name, name); 4151 else if (partitioned) 4152 sprintf(disk->disk_name, "md_d%d", unit); 4153 else 4154 sprintf(disk->disk_name, "md%d", unit); 4155 disk->fops = &md_fops; 4156 disk->private_data = mddev; 4157 disk->queue = mddev->queue; 4158 /* Allow extended partitions. This makes the 4159 * 'mdp' device redundant, but we can't really 4160 * remove it now. 4161 */ 4162 disk->flags |= GENHD_FL_EXT_DEVT; 4163 add_disk(disk); 4164 mddev->gendisk = disk; 4165 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4166 &disk_to_dev(disk)->kobj, "%s", "md"); 4167 if (error) { 4168 /* This isn't possible, but as kobject_init_and_add is marked 4169 * __must_check, we must do something with the result 4170 */ 4171 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4172 disk->disk_name); 4173 error = 0; 4174 } 4175 if (sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4176 printk(KERN_DEBUG "pointless warning\n"); 4177 abort: 4178 mutex_unlock(&disks_mutex); 4179 if (!error) { 4180 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4181 mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state"); 4182 } 4183 mddev_put(mddev); 4184 return error; 4185 } 4186 4187 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4188 { 4189 md_alloc(dev, NULL); 4190 return NULL; 4191 } 4192 4193 static int add_named_array(const char *val, struct kernel_param *kp) 4194 { 4195 /* val must be "md_*" where * is not all digits. 4196 * We allocate an array with a large free minor number, and 4197 * set the name to val. val must not already be an active name. 4198 */ 4199 int len = strlen(val); 4200 char buf[DISK_NAME_LEN]; 4201 4202 while (len && val[len-1] == '\n') 4203 len--; 4204 if (len >= DISK_NAME_LEN) 4205 return -E2BIG; 4206 strlcpy(buf, val, len+1); 4207 if (strncmp(buf, "md_", 3) != 0) 4208 return -EINVAL; 4209 return md_alloc(0, buf); 4210 } 4211 4212 static void md_safemode_timeout(unsigned long data) 4213 { 4214 mddev_t *mddev = (mddev_t *) data; 4215 4216 if (!atomic_read(&mddev->writes_pending)) { 4217 mddev->safemode = 1; 4218 if (mddev->external) 4219 sysfs_notify_dirent(mddev->sysfs_state); 4220 } 4221 md_wakeup_thread(mddev->thread); 4222 } 4223 4224 static int start_dirty_degraded; 4225 4226 static int do_md_run(mddev_t * mddev) 4227 { 4228 int err; 4229 mdk_rdev_t *rdev; 4230 struct gendisk *disk; 4231 struct mdk_personality *pers; 4232 4233 if (list_empty(&mddev->disks)) 4234 /* cannot run an array with no devices.. */ 4235 return -EINVAL; 4236 4237 if (mddev->pers) 4238 return -EBUSY; 4239 4240 /* 4241 * Analyze all RAID superblock(s) 4242 */ 4243 if (!mddev->raid_disks) { 4244 if (!mddev->persistent) 4245 return -EINVAL; 4246 analyze_sbs(mddev); 4247 } 4248 4249 if (mddev->level != LEVEL_NONE) 4250 request_module("md-level-%d", mddev->level); 4251 else if (mddev->clevel[0]) 4252 request_module("md-%s", mddev->clevel); 4253 4254 /* 4255 * Drop all container device buffers, from now on 4256 * the only valid external interface is through the md 4257 * device. 4258 */ 4259 list_for_each_entry(rdev, &mddev->disks, same_set) { 4260 if (test_bit(Faulty, &rdev->flags)) 4261 continue; 4262 sync_blockdev(rdev->bdev); 4263 invalidate_bdev(rdev->bdev); 4264 4265 /* perform some consistency tests on the device. 4266 * We don't want the data to overlap the metadata, 4267 * Internal Bitmap issues have been handled elsewhere. 4268 */ 4269 if (rdev->data_offset < rdev->sb_start) { 4270 if (mddev->dev_sectors && 4271 rdev->data_offset + mddev->dev_sectors 4272 > rdev->sb_start) { 4273 printk("md: %s: data overlaps metadata\n", 4274 mdname(mddev)); 4275 return -EINVAL; 4276 } 4277 } else { 4278 if (rdev->sb_start + rdev->sb_size/512 4279 > rdev->data_offset) { 4280 printk("md: %s: metadata overlaps data\n", 4281 mdname(mddev)); 4282 return -EINVAL; 4283 } 4284 } 4285 sysfs_notify_dirent(rdev->sysfs_state); 4286 } 4287 4288 md_probe(mddev->unit, NULL, NULL); 4289 disk = mddev->gendisk; 4290 if (!disk) 4291 return -ENOMEM; 4292 4293 spin_lock(&pers_lock); 4294 pers = find_pers(mddev->level, mddev->clevel); 4295 if (!pers || !try_module_get(pers->owner)) { 4296 spin_unlock(&pers_lock); 4297 if (mddev->level != LEVEL_NONE) 4298 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 4299 mddev->level); 4300 else 4301 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 4302 mddev->clevel); 4303 return -EINVAL; 4304 } 4305 mddev->pers = pers; 4306 spin_unlock(&pers_lock); 4307 if (mddev->level != pers->level) { 4308 mddev->level = pers->level; 4309 mddev->new_level = pers->level; 4310 } 4311 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4312 4313 if (mddev->reshape_position != MaxSector && 4314 pers->start_reshape == NULL) { 4315 /* This personality cannot handle reshaping... */ 4316 mddev->pers = NULL; 4317 module_put(pers->owner); 4318 return -EINVAL; 4319 } 4320 4321 if (pers->sync_request) { 4322 /* Warn if this is a potentially silly 4323 * configuration. 4324 */ 4325 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4326 mdk_rdev_t *rdev2; 4327 int warned = 0; 4328 4329 list_for_each_entry(rdev, &mddev->disks, same_set) 4330 list_for_each_entry(rdev2, &mddev->disks, same_set) { 4331 if (rdev < rdev2 && 4332 rdev->bdev->bd_contains == 4333 rdev2->bdev->bd_contains) { 4334 printk(KERN_WARNING 4335 "%s: WARNING: %s appears to be" 4336 " on the same physical disk as" 4337 " %s.\n", 4338 mdname(mddev), 4339 bdevname(rdev->bdev,b), 4340 bdevname(rdev2->bdev,b2)); 4341 warned = 1; 4342 } 4343 } 4344 4345 if (warned) 4346 printk(KERN_WARNING 4347 "True protection against single-disk" 4348 " failure might be compromised.\n"); 4349 } 4350 4351 mddev->recovery = 0; 4352 /* may be over-ridden by personality */ 4353 mddev->resync_max_sectors = mddev->dev_sectors; 4354 4355 mddev->barriers_work = 1; 4356 mddev->ok_start_degraded = start_dirty_degraded; 4357 4358 if (start_readonly) 4359 mddev->ro = 2; /* read-only, but switch on first write */ 4360 4361 err = mddev->pers->run(mddev); 4362 if (err) 4363 printk(KERN_ERR "md: pers->run() failed ...\n"); 4364 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 4365 WARN_ONCE(!mddev->external_size, "%s: default size too small," 4366 " but 'external_size' not in effect?\n", __func__); 4367 printk(KERN_ERR 4368 "md: invalid array_size %llu > default size %llu\n", 4369 (unsigned long long)mddev->array_sectors / 2, 4370 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 4371 err = -EINVAL; 4372 mddev->pers->stop(mddev); 4373 } 4374 if (err == 0 && mddev->pers->sync_request) { 4375 err = bitmap_create(mddev); 4376 if (err) { 4377 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 4378 mdname(mddev), err); 4379 mddev->pers->stop(mddev); 4380 } 4381 } 4382 if (err) { 4383 module_put(mddev->pers->owner); 4384 mddev->pers = NULL; 4385 bitmap_destroy(mddev); 4386 return err; 4387 } 4388 if (mddev->pers->sync_request) { 4389 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4390 printk(KERN_WARNING 4391 "md: cannot register extra attributes for %s\n", 4392 mdname(mddev)); 4393 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4394 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 4395 mddev->ro = 0; 4396 4397 atomic_set(&mddev->writes_pending,0); 4398 atomic_set(&mddev->max_corr_read_errors, 4399 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 4400 mddev->safemode = 0; 4401 mddev->safemode_timer.function = md_safemode_timeout; 4402 mddev->safemode_timer.data = (unsigned long) mddev; 4403 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 4404 mddev->in_sync = 1; 4405 4406 list_for_each_entry(rdev, &mddev->disks, same_set) 4407 if (rdev->raid_disk >= 0) { 4408 char nm[20]; 4409 sprintf(nm, "rd%d", rdev->raid_disk); 4410 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 4411 printk("md: cannot register %s for %s\n", 4412 nm, mdname(mddev)); 4413 } 4414 4415 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4416 4417 if (mddev->flags) 4418 md_update_sb(mddev, 0); 4419 4420 set_capacity(disk, mddev->array_sectors); 4421 4422 /* If there is a partially-recovered drive we need to 4423 * start recovery here. If we leave it to md_check_recovery, 4424 * it will remove the drives and not do the right thing 4425 */ 4426 if (mddev->degraded && !mddev->sync_thread) { 4427 int spares = 0; 4428 list_for_each_entry(rdev, &mddev->disks, same_set) 4429 if (rdev->raid_disk >= 0 && 4430 !test_bit(In_sync, &rdev->flags) && 4431 !test_bit(Faulty, &rdev->flags)) 4432 /* complete an interrupted recovery */ 4433 spares++; 4434 if (spares && mddev->pers->sync_request) { 4435 mddev->recovery = 0; 4436 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 4437 mddev->sync_thread = md_register_thread(md_do_sync, 4438 mddev, 4439 "resync"); 4440 if (!mddev->sync_thread) { 4441 printk(KERN_ERR "%s: could not start resync" 4442 " thread...\n", 4443 mdname(mddev)); 4444 /* leave the spares where they are, it shouldn't hurt */ 4445 mddev->recovery = 0; 4446 } 4447 } 4448 } 4449 md_wakeup_thread(mddev->thread); 4450 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 4451 4452 revalidate_disk(mddev->gendisk); 4453 mddev->changed = 1; 4454 md_new_event(mddev); 4455 sysfs_notify_dirent(mddev->sysfs_state); 4456 if (mddev->sysfs_action) 4457 sysfs_notify_dirent(mddev->sysfs_action); 4458 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4459 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4460 return 0; 4461 } 4462 4463 static int restart_array(mddev_t *mddev) 4464 { 4465 struct gendisk *disk = mddev->gendisk; 4466 4467 /* Complain if it has no devices */ 4468 if (list_empty(&mddev->disks)) 4469 return -ENXIO; 4470 if (!mddev->pers) 4471 return -EINVAL; 4472 if (!mddev->ro) 4473 return -EBUSY; 4474 mddev->safemode = 0; 4475 mddev->ro = 0; 4476 set_disk_ro(disk, 0); 4477 printk(KERN_INFO "md: %s switched to read-write mode.\n", 4478 mdname(mddev)); 4479 /* Kick recovery or resync if necessary */ 4480 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4481 md_wakeup_thread(mddev->thread); 4482 md_wakeup_thread(mddev->sync_thread); 4483 sysfs_notify_dirent(mddev->sysfs_state); 4484 return 0; 4485 } 4486 4487 /* similar to deny_write_access, but accounts for our holding a reference 4488 * to the file ourselves */ 4489 static int deny_bitmap_write_access(struct file * file) 4490 { 4491 struct inode *inode = file->f_mapping->host; 4492 4493 spin_lock(&inode->i_lock); 4494 if (atomic_read(&inode->i_writecount) > 1) { 4495 spin_unlock(&inode->i_lock); 4496 return -ETXTBSY; 4497 } 4498 atomic_set(&inode->i_writecount, -1); 4499 spin_unlock(&inode->i_lock); 4500 4501 return 0; 4502 } 4503 4504 void restore_bitmap_write_access(struct file *file) 4505 { 4506 struct inode *inode = file->f_mapping->host; 4507 4508 spin_lock(&inode->i_lock); 4509 atomic_set(&inode->i_writecount, 1); 4510 spin_unlock(&inode->i_lock); 4511 } 4512 4513 /* mode: 4514 * 0 - completely stop and dis-assemble array 4515 * 1 - switch to readonly 4516 * 2 - stop but do not disassemble array 4517 */ 4518 static int do_md_stop(mddev_t * mddev, int mode, int is_open) 4519 { 4520 int err = 0; 4521 struct gendisk *disk = mddev->gendisk; 4522 mdk_rdev_t *rdev; 4523 4524 mutex_lock(&mddev->open_mutex); 4525 if (atomic_read(&mddev->openers) > is_open) { 4526 printk("md: %s still in use.\n",mdname(mddev)); 4527 err = -EBUSY; 4528 } else if (mddev->pers) { 4529 4530 if (mddev->sync_thread) { 4531 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4532 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4533 md_unregister_thread(mddev->sync_thread); 4534 mddev->sync_thread = NULL; 4535 } 4536 4537 del_timer_sync(&mddev->safemode_timer); 4538 4539 switch(mode) { 4540 case 1: /* readonly */ 4541 err = -ENXIO; 4542 if (mddev->ro==1) 4543 goto out; 4544 mddev->ro = 1; 4545 break; 4546 case 0: /* disassemble */ 4547 case 2: /* stop */ 4548 bitmap_flush(mddev); 4549 md_super_wait(mddev); 4550 if (mddev->ro) 4551 set_disk_ro(disk, 0); 4552 4553 mddev->pers->stop(mddev); 4554 mddev->queue->merge_bvec_fn = NULL; 4555 mddev->queue->unplug_fn = NULL; 4556 mddev->queue->backing_dev_info.congested_fn = NULL; 4557 module_put(mddev->pers->owner); 4558 if (mddev->pers->sync_request) 4559 mddev->private = &md_redundancy_group; 4560 mddev->pers = NULL; 4561 /* tell userspace to handle 'inactive' */ 4562 sysfs_notify_dirent(mddev->sysfs_state); 4563 4564 list_for_each_entry(rdev, &mddev->disks, same_set) 4565 if (rdev->raid_disk >= 0) { 4566 char nm[20]; 4567 sprintf(nm, "rd%d", rdev->raid_disk); 4568 sysfs_remove_link(&mddev->kobj, nm); 4569 } 4570 4571 set_capacity(disk, 0); 4572 mddev->changed = 1; 4573 4574 if (mddev->ro) 4575 mddev->ro = 0; 4576 } 4577 if (!mddev->in_sync || mddev->flags) { 4578 /* mark array as shutdown cleanly */ 4579 mddev->in_sync = 1; 4580 md_update_sb(mddev, 1); 4581 } 4582 if (mode == 1) 4583 set_disk_ro(disk, 1); 4584 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4585 err = 0; 4586 } 4587 out: 4588 mutex_unlock(&mddev->open_mutex); 4589 if (err) 4590 return err; 4591 /* 4592 * Free resources if final stop 4593 */ 4594 if (mode == 0) { 4595 4596 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 4597 4598 bitmap_destroy(mddev); 4599 if (mddev->bitmap_info.file) { 4600 restore_bitmap_write_access(mddev->bitmap_info.file); 4601 fput(mddev->bitmap_info.file); 4602 mddev->bitmap_info.file = NULL; 4603 } 4604 mddev->bitmap_info.offset = 0; 4605 4606 /* make sure all md_delayed_delete calls have finished */ 4607 flush_scheduled_work(); 4608 4609 export_array(mddev); 4610 4611 mddev->array_sectors = 0; 4612 mddev->external_size = 0; 4613 mddev->dev_sectors = 0; 4614 mddev->raid_disks = 0; 4615 mddev->recovery_cp = 0; 4616 mddev->resync_min = 0; 4617 mddev->resync_max = MaxSector; 4618 mddev->reshape_position = MaxSector; 4619 mddev->external = 0; 4620 mddev->persistent = 0; 4621 mddev->level = LEVEL_NONE; 4622 mddev->clevel[0] = 0; 4623 mddev->flags = 0; 4624 mddev->ro = 0; 4625 mddev->metadata_type[0] = 0; 4626 mddev->chunk_sectors = 0; 4627 mddev->ctime = mddev->utime = 0; 4628 mddev->layout = 0; 4629 mddev->max_disks = 0; 4630 mddev->events = 0; 4631 mddev->delta_disks = 0; 4632 mddev->new_level = LEVEL_NONE; 4633 mddev->new_layout = 0; 4634 mddev->new_chunk_sectors = 0; 4635 mddev->curr_resync = 0; 4636 mddev->resync_mismatches = 0; 4637 mddev->suspend_lo = mddev->suspend_hi = 0; 4638 mddev->sync_speed_min = mddev->sync_speed_max = 0; 4639 mddev->recovery = 0; 4640 mddev->in_sync = 0; 4641 mddev->changed = 0; 4642 mddev->degraded = 0; 4643 mddev->barriers_work = 0; 4644 mddev->safemode = 0; 4645 mddev->bitmap_info.offset = 0; 4646 mddev->bitmap_info.default_offset = 0; 4647 mddev->bitmap_info.chunksize = 0; 4648 mddev->bitmap_info.daemon_sleep = 0; 4649 mddev->bitmap_info.max_write_behind = 0; 4650 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4651 if (mddev->hold_active == UNTIL_STOP) 4652 mddev->hold_active = 0; 4653 4654 } else if (mddev->pers) 4655 printk(KERN_INFO "md: %s switched to read-only mode.\n", 4656 mdname(mddev)); 4657 err = 0; 4658 blk_integrity_unregister(disk); 4659 md_new_event(mddev); 4660 sysfs_notify_dirent(mddev->sysfs_state); 4661 return err; 4662 } 4663 4664 #ifndef MODULE 4665 static void autorun_array(mddev_t *mddev) 4666 { 4667 mdk_rdev_t *rdev; 4668 int err; 4669 4670 if (list_empty(&mddev->disks)) 4671 return; 4672 4673 printk(KERN_INFO "md: running: "); 4674 4675 list_for_each_entry(rdev, &mddev->disks, same_set) { 4676 char b[BDEVNAME_SIZE]; 4677 printk("<%s>", bdevname(rdev->bdev,b)); 4678 } 4679 printk("\n"); 4680 4681 err = do_md_run(mddev); 4682 if (err) { 4683 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 4684 do_md_stop(mddev, 0, 0); 4685 } 4686 } 4687 4688 /* 4689 * lets try to run arrays based on all disks that have arrived 4690 * until now. (those are in pending_raid_disks) 4691 * 4692 * the method: pick the first pending disk, collect all disks with 4693 * the same UUID, remove all from the pending list and put them into 4694 * the 'same_array' list. Then order this list based on superblock 4695 * update time (freshest comes first), kick out 'old' disks and 4696 * compare superblocks. If everything's fine then run it. 4697 * 4698 * If "unit" is allocated, then bump its reference count 4699 */ 4700 static void autorun_devices(int part) 4701 { 4702 mdk_rdev_t *rdev0, *rdev, *tmp; 4703 mddev_t *mddev; 4704 char b[BDEVNAME_SIZE]; 4705 4706 printk(KERN_INFO "md: autorun ...\n"); 4707 while (!list_empty(&pending_raid_disks)) { 4708 int unit; 4709 dev_t dev; 4710 LIST_HEAD(candidates); 4711 rdev0 = list_entry(pending_raid_disks.next, 4712 mdk_rdev_t, same_set); 4713 4714 printk(KERN_INFO "md: considering %s ...\n", 4715 bdevname(rdev0->bdev,b)); 4716 INIT_LIST_HEAD(&candidates); 4717 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 4718 if (super_90_load(rdev, rdev0, 0) >= 0) { 4719 printk(KERN_INFO "md: adding %s ...\n", 4720 bdevname(rdev->bdev,b)); 4721 list_move(&rdev->same_set, &candidates); 4722 } 4723 /* 4724 * now we have a set of devices, with all of them having 4725 * mostly sane superblocks. It's time to allocate the 4726 * mddev. 4727 */ 4728 if (part) { 4729 dev = MKDEV(mdp_major, 4730 rdev0->preferred_minor << MdpMinorShift); 4731 unit = MINOR(dev) >> MdpMinorShift; 4732 } else { 4733 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 4734 unit = MINOR(dev); 4735 } 4736 if (rdev0->preferred_minor != unit) { 4737 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 4738 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 4739 break; 4740 } 4741 4742 md_probe(dev, NULL, NULL); 4743 mddev = mddev_find(dev); 4744 if (!mddev || !mddev->gendisk) { 4745 if (mddev) 4746 mddev_put(mddev); 4747 printk(KERN_ERR 4748 "md: cannot allocate memory for md drive.\n"); 4749 break; 4750 } 4751 if (mddev_lock(mddev)) 4752 printk(KERN_WARNING "md: %s locked, cannot run\n", 4753 mdname(mddev)); 4754 else if (mddev->raid_disks || mddev->major_version 4755 || !list_empty(&mddev->disks)) { 4756 printk(KERN_WARNING 4757 "md: %s already running, cannot run %s\n", 4758 mdname(mddev), bdevname(rdev0->bdev,b)); 4759 mddev_unlock(mddev); 4760 } else { 4761 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 4762 mddev->persistent = 1; 4763 rdev_for_each_list(rdev, tmp, &candidates) { 4764 list_del_init(&rdev->same_set); 4765 if (bind_rdev_to_array(rdev, mddev)) 4766 export_rdev(rdev); 4767 } 4768 autorun_array(mddev); 4769 mddev_unlock(mddev); 4770 } 4771 /* on success, candidates will be empty, on error 4772 * it won't... 4773 */ 4774 rdev_for_each_list(rdev, tmp, &candidates) { 4775 list_del_init(&rdev->same_set); 4776 export_rdev(rdev); 4777 } 4778 mddev_put(mddev); 4779 } 4780 printk(KERN_INFO "md: ... autorun DONE.\n"); 4781 } 4782 #endif /* !MODULE */ 4783 4784 static int get_version(void __user * arg) 4785 { 4786 mdu_version_t ver; 4787 4788 ver.major = MD_MAJOR_VERSION; 4789 ver.minor = MD_MINOR_VERSION; 4790 ver.patchlevel = MD_PATCHLEVEL_VERSION; 4791 4792 if (copy_to_user(arg, &ver, sizeof(ver))) 4793 return -EFAULT; 4794 4795 return 0; 4796 } 4797 4798 static int get_array_info(mddev_t * mddev, void __user * arg) 4799 { 4800 mdu_array_info_t info; 4801 int nr,working,insync,failed,spare; 4802 mdk_rdev_t *rdev; 4803 4804 nr=working=insync=failed=spare=0; 4805 list_for_each_entry(rdev, &mddev->disks, same_set) { 4806 nr++; 4807 if (test_bit(Faulty, &rdev->flags)) 4808 failed++; 4809 else { 4810 working++; 4811 if (test_bit(In_sync, &rdev->flags)) 4812 insync++; 4813 else 4814 spare++; 4815 } 4816 } 4817 4818 info.major_version = mddev->major_version; 4819 info.minor_version = mddev->minor_version; 4820 info.patch_version = MD_PATCHLEVEL_VERSION; 4821 info.ctime = mddev->ctime; 4822 info.level = mddev->level; 4823 info.size = mddev->dev_sectors / 2; 4824 if (info.size != mddev->dev_sectors / 2) /* overflow */ 4825 info.size = -1; 4826 info.nr_disks = nr; 4827 info.raid_disks = mddev->raid_disks; 4828 info.md_minor = mddev->md_minor; 4829 info.not_persistent= !mddev->persistent; 4830 4831 info.utime = mddev->utime; 4832 info.state = 0; 4833 if (mddev->in_sync) 4834 info.state = (1<<MD_SB_CLEAN); 4835 if (mddev->bitmap && mddev->bitmap_info.offset) 4836 info.state = (1<<MD_SB_BITMAP_PRESENT); 4837 info.active_disks = insync; 4838 info.working_disks = working; 4839 info.failed_disks = failed; 4840 info.spare_disks = spare; 4841 4842 info.layout = mddev->layout; 4843 info.chunk_size = mddev->chunk_sectors << 9; 4844 4845 if (copy_to_user(arg, &info, sizeof(info))) 4846 return -EFAULT; 4847 4848 return 0; 4849 } 4850 4851 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 4852 { 4853 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 4854 char *ptr, *buf = NULL; 4855 int err = -ENOMEM; 4856 4857 if (md_allow_write(mddev)) 4858 file = kmalloc(sizeof(*file), GFP_NOIO); 4859 else 4860 file = kmalloc(sizeof(*file), GFP_KERNEL); 4861 4862 if (!file) 4863 goto out; 4864 4865 /* bitmap disabled, zero the first byte and copy out */ 4866 if (!mddev->bitmap || !mddev->bitmap->file) { 4867 file->pathname[0] = '\0'; 4868 goto copy_out; 4869 } 4870 4871 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 4872 if (!buf) 4873 goto out; 4874 4875 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); 4876 if (IS_ERR(ptr)) 4877 goto out; 4878 4879 strcpy(file->pathname, ptr); 4880 4881 copy_out: 4882 err = 0; 4883 if (copy_to_user(arg, file, sizeof(*file))) 4884 err = -EFAULT; 4885 out: 4886 kfree(buf); 4887 kfree(file); 4888 return err; 4889 } 4890 4891 static int get_disk_info(mddev_t * mddev, void __user * arg) 4892 { 4893 mdu_disk_info_t info; 4894 mdk_rdev_t *rdev; 4895 4896 if (copy_from_user(&info, arg, sizeof(info))) 4897 return -EFAULT; 4898 4899 rdev = find_rdev_nr(mddev, info.number); 4900 if (rdev) { 4901 info.major = MAJOR(rdev->bdev->bd_dev); 4902 info.minor = MINOR(rdev->bdev->bd_dev); 4903 info.raid_disk = rdev->raid_disk; 4904 info.state = 0; 4905 if (test_bit(Faulty, &rdev->flags)) 4906 info.state |= (1<<MD_DISK_FAULTY); 4907 else if (test_bit(In_sync, &rdev->flags)) { 4908 info.state |= (1<<MD_DISK_ACTIVE); 4909 info.state |= (1<<MD_DISK_SYNC); 4910 } 4911 if (test_bit(WriteMostly, &rdev->flags)) 4912 info.state |= (1<<MD_DISK_WRITEMOSTLY); 4913 } else { 4914 info.major = info.minor = 0; 4915 info.raid_disk = -1; 4916 info.state = (1<<MD_DISK_REMOVED); 4917 } 4918 4919 if (copy_to_user(arg, &info, sizeof(info))) 4920 return -EFAULT; 4921 4922 return 0; 4923 } 4924 4925 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 4926 { 4927 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4928 mdk_rdev_t *rdev; 4929 dev_t dev = MKDEV(info->major,info->minor); 4930 4931 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 4932 return -EOVERFLOW; 4933 4934 if (!mddev->raid_disks) { 4935 int err; 4936 /* expecting a device which has a superblock */ 4937 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 4938 if (IS_ERR(rdev)) { 4939 printk(KERN_WARNING 4940 "md: md_import_device returned %ld\n", 4941 PTR_ERR(rdev)); 4942 return PTR_ERR(rdev); 4943 } 4944 if (!list_empty(&mddev->disks)) { 4945 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 4946 mdk_rdev_t, same_set); 4947 err = super_types[mddev->major_version] 4948 .load_super(rdev, rdev0, mddev->minor_version); 4949 if (err < 0) { 4950 printk(KERN_WARNING 4951 "md: %s has different UUID to %s\n", 4952 bdevname(rdev->bdev,b), 4953 bdevname(rdev0->bdev,b2)); 4954 export_rdev(rdev); 4955 return -EINVAL; 4956 } 4957 } 4958 err = bind_rdev_to_array(rdev, mddev); 4959 if (err) 4960 export_rdev(rdev); 4961 return err; 4962 } 4963 4964 /* 4965 * add_new_disk can be used once the array is assembled 4966 * to add "hot spares". They must already have a superblock 4967 * written 4968 */ 4969 if (mddev->pers) { 4970 int err; 4971 if (!mddev->pers->hot_add_disk) { 4972 printk(KERN_WARNING 4973 "%s: personality does not support diskops!\n", 4974 mdname(mddev)); 4975 return -EINVAL; 4976 } 4977 if (mddev->persistent) 4978 rdev = md_import_device(dev, mddev->major_version, 4979 mddev->minor_version); 4980 else 4981 rdev = md_import_device(dev, -1, -1); 4982 if (IS_ERR(rdev)) { 4983 printk(KERN_WARNING 4984 "md: md_import_device returned %ld\n", 4985 PTR_ERR(rdev)); 4986 return PTR_ERR(rdev); 4987 } 4988 /* set save_raid_disk if appropriate */ 4989 if (!mddev->persistent) { 4990 if (info->state & (1<<MD_DISK_SYNC) && 4991 info->raid_disk < mddev->raid_disks) 4992 rdev->raid_disk = info->raid_disk; 4993 else 4994 rdev->raid_disk = -1; 4995 } else 4996 super_types[mddev->major_version]. 4997 validate_super(mddev, rdev); 4998 rdev->saved_raid_disk = rdev->raid_disk; 4999 5000 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5001 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5002 set_bit(WriteMostly, &rdev->flags); 5003 else 5004 clear_bit(WriteMostly, &rdev->flags); 5005 5006 rdev->raid_disk = -1; 5007 err = bind_rdev_to_array(rdev, mddev); 5008 if (!err && !mddev->pers->hot_remove_disk) { 5009 /* If there is hot_add_disk but no hot_remove_disk 5010 * then added disks for geometry changes, 5011 * and should be added immediately. 5012 */ 5013 super_types[mddev->major_version]. 5014 validate_super(mddev, rdev); 5015 err = mddev->pers->hot_add_disk(mddev, rdev); 5016 if (err) 5017 unbind_rdev_from_array(rdev); 5018 } 5019 if (err) 5020 export_rdev(rdev); 5021 else 5022 sysfs_notify_dirent(rdev->sysfs_state); 5023 5024 md_update_sb(mddev, 1); 5025 if (mddev->degraded) 5026 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5027 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5028 md_wakeup_thread(mddev->thread); 5029 return err; 5030 } 5031 5032 /* otherwise, add_new_disk is only allowed 5033 * for major_version==0 superblocks 5034 */ 5035 if (mddev->major_version != 0) { 5036 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5037 mdname(mddev)); 5038 return -EINVAL; 5039 } 5040 5041 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5042 int err; 5043 rdev = md_import_device(dev, -1, 0); 5044 if (IS_ERR(rdev)) { 5045 printk(KERN_WARNING 5046 "md: error, md_import_device() returned %ld\n", 5047 PTR_ERR(rdev)); 5048 return PTR_ERR(rdev); 5049 } 5050 rdev->desc_nr = info->number; 5051 if (info->raid_disk < mddev->raid_disks) 5052 rdev->raid_disk = info->raid_disk; 5053 else 5054 rdev->raid_disk = -1; 5055 5056 if (rdev->raid_disk < mddev->raid_disks) 5057 if (info->state & (1<<MD_DISK_SYNC)) 5058 set_bit(In_sync, &rdev->flags); 5059 5060 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5061 set_bit(WriteMostly, &rdev->flags); 5062 5063 if (!mddev->persistent) { 5064 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5065 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 5066 } else 5067 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 5068 rdev->sectors = rdev->sb_start; 5069 5070 err = bind_rdev_to_array(rdev, mddev); 5071 if (err) { 5072 export_rdev(rdev); 5073 return err; 5074 } 5075 } 5076 5077 return 0; 5078 } 5079 5080 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 5081 { 5082 char b[BDEVNAME_SIZE]; 5083 mdk_rdev_t *rdev; 5084 5085 rdev = find_rdev(mddev, dev); 5086 if (!rdev) 5087 return -ENXIO; 5088 5089 if (rdev->raid_disk >= 0) 5090 goto busy; 5091 5092 kick_rdev_from_array(rdev); 5093 md_update_sb(mddev, 1); 5094 md_new_event(mddev); 5095 5096 return 0; 5097 busy: 5098 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5099 bdevname(rdev->bdev,b), mdname(mddev)); 5100 return -EBUSY; 5101 } 5102 5103 static int hot_add_disk(mddev_t * mddev, dev_t dev) 5104 { 5105 char b[BDEVNAME_SIZE]; 5106 int err; 5107 mdk_rdev_t *rdev; 5108 5109 if (!mddev->pers) 5110 return -ENODEV; 5111 5112 if (mddev->major_version != 0) { 5113 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5114 " version-0 superblocks.\n", 5115 mdname(mddev)); 5116 return -EINVAL; 5117 } 5118 if (!mddev->pers->hot_add_disk) { 5119 printk(KERN_WARNING 5120 "%s: personality does not support diskops!\n", 5121 mdname(mddev)); 5122 return -EINVAL; 5123 } 5124 5125 rdev = md_import_device(dev, -1, 0); 5126 if (IS_ERR(rdev)) { 5127 printk(KERN_WARNING 5128 "md: error, md_import_device() returned %ld\n", 5129 PTR_ERR(rdev)); 5130 return -EINVAL; 5131 } 5132 5133 if (mddev->persistent) 5134 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 5135 else 5136 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 5137 5138 rdev->sectors = rdev->sb_start; 5139 5140 if (test_bit(Faulty, &rdev->flags)) { 5141 printk(KERN_WARNING 5142 "md: can not hot-add faulty %s disk to %s!\n", 5143 bdevname(rdev->bdev,b), mdname(mddev)); 5144 err = -EINVAL; 5145 goto abort_export; 5146 } 5147 clear_bit(In_sync, &rdev->flags); 5148 rdev->desc_nr = -1; 5149 rdev->saved_raid_disk = -1; 5150 err = bind_rdev_to_array(rdev, mddev); 5151 if (err) 5152 goto abort_export; 5153 5154 /* 5155 * The rest should better be atomic, we can have disk failures 5156 * noticed in interrupt contexts ... 5157 */ 5158 5159 rdev->raid_disk = -1; 5160 5161 md_update_sb(mddev, 1); 5162 5163 /* 5164 * Kick recovery, maybe this spare has to be added to the 5165 * array immediately. 5166 */ 5167 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5168 md_wakeup_thread(mddev->thread); 5169 md_new_event(mddev); 5170 return 0; 5171 5172 abort_export: 5173 export_rdev(rdev); 5174 return err; 5175 } 5176 5177 static int set_bitmap_file(mddev_t *mddev, int fd) 5178 { 5179 int err; 5180 5181 if (mddev->pers) { 5182 if (!mddev->pers->quiesce) 5183 return -EBUSY; 5184 if (mddev->recovery || mddev->sync_thread) 5185 return -EBUSY; 5186 /* we should be able to change the bitmap.. */ 5187 } 5188 5189 5190 if (fd >= 0) { 5191 if (mddev->bitmap) 5192 return -EEXIST; /* cannot add when bitmap is present */ 5193 mddev->bitmap_info.file = fget(fd); 5194 5195 if (mddev->bitmap_info.file == NULL) { 5196 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5197 mdname(mddev)); 5198 return -EBADF; 5199 } 5200 5201 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5202 if (err) { 5203 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5204 mdname(mddev)); 5205 fput(mddev->bitmap_info.file); 5206 mddev->bitmap_info.file = NULL; 5207 return err; 5208 } 5209 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5210 } else if (mddev->bitmap == NULL) 5211 return -ENOENT; /* cannot remove what isn't there */ 5212 err = 0; 5213 if (mddev->pers) { 5214 mddev->pers->quiesce(mddev, 1); 5215 if (fd >= 0) 5216 err = bitmap_create(mddev); 5217 if (fd < 0 || err) { 5218 bitmap_destroy(mddev); 5219 fd = -1; /* make sure to put the file */ 5220 } 5221 mddev->pers->quiesce(mddev, 0); 5222 } 5223 if (fd < 0) { 5224 if (mddev->bitmap_info.file) { 5225 restore_bitmap_write_access(mddev->bitmap_info.file); 5226 fput(mddev->bitmap_info.file); 5227 } 5228 mddev->bitmap_info.file = NULL; 5229 } 5230 5231 return err; 5232 } 5233 5234 /* 5235 * set_array_info is used two different ways 5236 * The original usage is when creating a new array. 5237 * In this usage, raid_disks is > 0 and it together with 5238 * level, size, not_persistent,layout,chunksize determine the 5239 * shape of the array. 5240 * This will always create an array with a type-0.90.0 superblock. 5241 * The newer usage is when assembling an array. 5242 * In this case raid_disks will be 0, and the major_version field is 5243 * use to determine which style super-blocks are to be found on the devices. 5244 * The minor and patch _version numbers are also kept incase the 5245 * super_block handler wishes to interpret them. 5246 */ 5247 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 5248 { 5249 5250 if (info->raid_disks == 0) { 5251 /* just setting version number for superblock loading */ 5252 if (info->major_version < 0 || 5253 info->major_version >= ARRAY_SIZE(super_types) || 5254 super_types[info->major_version].name == NULL) { 5255 /* maybe try to auto-load a module? */ 5256 printk(KERN_INFO 5257 "md: superblock version %d not known\n", 5258 info->major_version); 5259 return -EINVAL; 5260 } 5261 mddev->major_version = info->major_version; 5262 mddev->minor_version = info->minor_version; 5263 mddev->patch_version = info->patch_version; 5264 mddev->persistent = !info->not_persistent; 5265 return 0; 5266 } 5267 mddev->major_version = MD_MAJOR_VERSION; 5268 mddev->minor_version = MD_MINOR_VERSION; 5269 mddev->patch_version = MD_PATCHLEVEL_VERSION; 5270 mddev->ctime = get_seconds(); 5271 5272 mddev->level = info->level; 5273 mddev->clevel[0] = 0; 5274 mddev->dev_sectors = 2 * (sector_t)info->size; 5275 mddev->raid_disks = info->raid_disks; 5276 /* don't set md_minor, it is determined by which /dev/md* was 5277 * openned 5278 */ 5279 if (info->state & (1<<MD_SB_CLEAN)) 5280 mddev->recovery_cp = MaxSector; 5281 else 5282 mddev->recovery_cp = 0; 5283 mddev->persistent = ! info->not_persistent; 5284 mddev->external = 0; 5285 5286 mddev->layout = info->layout; 5287 mddev->chunk_sectors = info->chunk_size >> 9; 5288 5289 mddev->max_disks = MD_SB_DISKS; 5290 5291 if (mddev->persistent) 5292 mddev->flags = 0; 5293 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5294 5295 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 5296 mddev->bitmap_info.offset = 0; 5297 5298 mddev->reshape_position = MaxSector; 5299 5300 /* 5301 * Generate a 128 bit UUID 5302 */ 5303 get_random_bytes(mddev->uuid, 16); 5304 5305 mddev->new_level = mddev->level; 5306 mddev->new_chunk_sectors = mddev->chunk_sectors; 5307 mddev->new_layout = mddev->layout; 5308 mddev->delta_disks = 0; 5309 5310 return 0; 5311 } 5312 5313 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors) 5314 { 5315 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 5316 5317 if (mddev->external_size) 5318 return; 5319 5320 mddev->array_sectors = array_sectors; 5321 } 5322 EXPORT_SYMBOL(md_set_array_sectors); 5323 5324 static int update_size(mddev_t *mddev, sector_t num_sectors) 5325 { 5326 mdk_rdev_t *rdev; 5327 int rv; 5328 int fit = (num_sectors == 0); 5329 5330 if (mddev->pers->resize == NULL) 5331 return -EINVAL; 5332 /* The "num_sectors" is the number of sectors of each device that 5333 * is used. This can only make sense for arrays with redundancy. 5334 * linear and raid0 always use whatever space is available. We can only 5335 * consider changing this number if no resync or reconstruction is 5336 * happening, and if the new size is acceptable. It must fit before the 5337 * sb_start or, if that is <data_offset, it must fit before the size 5338 * of each device. If num_sectors is zero, we find the largest size 5339 * that fits. 5340 5341 */ 5342 if (mddev->sync_thread) 5343 return -EBUSY; 5344 if (mddev->bitmap) 5345 /* Sorry, cannot grow a bitmap yet, just remove it, 5346 * grow, and re-add. 5347 */ 5348 return -EBUSY; 5349 list_for_each_entry(rdev, &mddev->disks, same_set) { 5350 sector_t avail = rdev->sectors; 5351 5352 if (fit && (num_sectors == 0 || num_sectors > avail)) 5353 num_sectors = avail; 5354 if (avail < num_sectors) 5355 return -ENOSPC; 5356 } 5357 rv = mddev->pers->resize(mddev, num_sectors); 5358 if (!rv) 5359 revalidate_disk(mddev->gendisk); 5360 return rv; 5361 } 5362 5363 static int update_raid_disks(mddev_t *mddev, int raid_disks) 5364 { 5365 int rv; 5366 /* change the number of raid disks */ 5367 if (mddev->pers->check_reshape == NULL) 5368 return -EINVAL; 5369 if (raid_disks <= 0 || 5370 raid_disks >= mddev->max_disks) 5371 return -EINVAL; 5372 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 5373 return -EBUSY; 5374 mddev->delta_disks = raid_disks - mddev->raid_disks; 5375 5376 rv = mddev->pers->check_reshape(mddev); 5377 return rv; 5378 } 5379 5380 5381 /* 5382 * update_array_info is used to change the configuration of an 5383 * on-line array. 5384 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 5385 * fields in the info are checked against the array. 5386 * Any differences that cannot be handled will cause an error. 5387 * Normally, only one change can be managed at a time. 5388 */ 5389 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 5390 { 5391 int rv = 0; 5392 int cnt = 0; 5393 int state = 0; 5394 5395 /* calculate expected state,ignoring low bits */ 5396 if (mddev->bitmap && mddev->bitmap_info.offset) 5397 state |= (1 << MD_SB_BITMAP_PRESENT); 5398 5399 if (mddev->major_version != info->major_version || 5400 mddev->minor_version != info->minor_version || 5401 /* mddev->patch_version != info->patch_version || */ 5402 mddev->ctime != info->ctime || 5403 mddev->level != info->level || 5404 /* mddev->layout != info->layout || */ 5405 !mddev->persistent != info->not_persistent|| 5406 mddev->chunk_sectors != info->chunk_size >> 9 || 5407 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 5408 ((state^info->state) & 0xfffffe00) 5409 ) 5410 return -EINVAL; 5411 /* Check there is only one change */ 5412 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5413 cnt++; 5414 if (mddev->raid_disks != info->raid_disks) 5415 cnt++; 5416 if (mddev->layout != info->layout) 5417 cnt++; 5418 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 5419 cnt++; 5420 if (cnt == 0) 5421 return 0; 5422 if (cnt > 1) 5423 return -EINVAL; 5424 5425 if (mddev->layout != info->layout) { 5426 /* Change layout 5427 * we don't need to do anything at the md level, the 5428 * personality will take care of it all. 5429 */ 5430 if (mddev->pers->check_reshape == NULL) 5431 return -EINVAL; 5432 else { 5433 mddev->new_layout = info->layout; 5434 rv = mddev->pers->check_reshape(mddev); 5435 if (rv) 5436 mddev->new_layout = mddev->layout; 5437 return rv; 5438 } 5439 } 5440 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5441 rv = update_size(mddev, (sector_t)info->size * 2); 5442 5443 if (mddev->raid_disks != info->raid_disks) 5444 rv = update_raid_disks(mddev, info->raid_disks); 5445 5446 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 5447 if (mddev->pers->quiesce == NULL) 5448 return -EINVAL; 5449 if (mddev->recovery || mddev->sync_thread) 5450 return -EBUSY; 5451 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 5452 /* add the bitmap */ 5453 if (mddev->bitmap) 5454 return -EEXIST; 5455 if (mddev->bitmap_info.default_offset == 0) 5456 return -EINVAL; 5457 mddev->bitmap_info.offset = 5458 mddev->bitmap_info.default_offset; 5459 mddev->pers->quiesce(mddev, 1); 5460 rv = bitmap_create(mddev); 5461 if (rv) 5462 bitmap_destroy(mddev); 5463 mddev->pers->quiesce(mddev, 0); 5464 } else { 5465 /* remove the bitmap */ 5466 if (!mddev->bitmap) 5467 return -ENOENT; 5468 if (mddev->bitmap->file) 5469 return -EINVAL; 5470 mddev->pers->quiesce(mddev, 1); 5471 bitmap_destroy(mddev); 5472 mddev->pers->quiesce(mddev, 0); 5473 mddev->bitmap_info.offset = 0; 5474 } 5475 } 5476 md_update_sb(mddev, 1); 5477 return rv; 5478 } 5479 5480 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 5481 { 5482 mdk_rdev_t *rdev; 5483 5484 if (mddev->pers == NULL) 5485 return -ENODEV; 5486 5487 rdev = find_rdev(mddev, dev); 5488 if (!rdev) 5489 return -ENODEV; 5490 5491 md_error(mddev, rdev); 5492 return 0; 5493 } 5494 5495 /* 5496 * We have a problem here : there is no easy way to give a CHS 5497 * virtual geometry. We currently pretend that we have a 2 heads 5498 * 4 sectors (with a BIG number of cylinders...). This drives 5499 * dosfs just mad... ;-) 5500 */ 5501 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 5502 { 5503 mddev_t *mddev = bdev->bd_disk->private_data; 5504 5505 geo->heads = 2; 5506 geo->sectors = 4; 5507 geo->cylinders = get_capacity(mddev->gendisk) / 8; 5508 return 0; 5509 } 5510 5511 static int md_ioctl(struct block_device *bdev, fmode_t mode, 5512 unsigned int cmd, unsigned long arg) 5513 { 5514 int err = 0; 5515 void __user *argp = (void __user *)arg; 5516 mddev_t *mddev = NULL; 5517 5518 if (!capable(CAP_SYS_ADMIN)) 5519 return -EACCES; 5520 5521 /* 5522 * Commands dealing with the RAID driver but not any 5523 * particular array: 5524 */ 5525 switch (cmd) 5526 { 5527 case RAID_VERSION: 5528 err = get_version(argp); 5529 goto done; 5530 5531 case PRINT_RAID_DEBUG: 5532 err = 0; 5533 md_print_devices(); 5534 goto done; 5535 5536 #ifndef MODULE 5537 case RAID_AUTORUN: 5538 err = 0; 5539 autostart_arrays(arg); 5540 goto done; 5541 #endif 5542 default:; 5543 } 5544 5545 /* 5546 * Commands creating/starting a new array: 5547 */ 5548 5549 mddev = bdev->bd_disk->private_data; 5550 5551 if (!mddev) { 5552 BUG(); 5553 goto abort; 5554 } 5555 5556 err = mddev_lock(mddev); 5557 if (err) { 5558 printk(KERN_INFO 5559 "md: ioctl lock interrupted, reason %d, cmd %d\n", 5560 err, cmd); 5561 goto abort; 5562 } 5563 5564 switch (cmd) 5565 { 5566 case SET_ARRAY_INFO: 5567 { 5568 mdu_array_info_t info; 5569 if (!arg) 5570 memset(&info, 0, sizeof(info)); 5571 else if (copy_from_user(&info, argp, sizeof(info))) { 5572 err = -EFAULT; 5573 goto abort_unlock; 5574 } 5575 if (mddev->pers) { 5576 err = update_array_info(mddev, &info); 5577 if (err) { 5578 printk(KERN_WARNING "md: couldn't update" 5579 " array info. %d\n", err); 5580 goto abort_unlock; 5581 } 5582 goto done_unlock; 5583 } 5584 if (!list_empty(&mddev->disks)) { 5585 printk(KERN_WARNING 5586 "md: array %s already has disks!\n", 5587 mdname(mddev)); 5588 err = -EBUSY; 5589 goto abort_unlock; 5590 } 5591 if (mddev->raid_disks) { 5592 printk(KERN_WARNING 5593 "md: array %s already initialised!\n", 5594 mdname(mddev)); 5595 err = -EBUSY; 5596 goto abort_unlock; 5597 } 5598 err = set_array_info(mddev, &info); 5599 if (err) { 5600 printk(KERN_WARNING "md: couldn't set" 5601 " array info. %d\n", err); 5602 goto abort_unlock; 5603 } 5604 } 5605 goto done_unlock; 5606 5607 default:; 5608 } 5609 5610 /* 5611 * Commands querying/configuring an existing array: 5612 */ 5613 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 5614 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 5615 if ((!mddev->raid_disks && !mddev->external) 5616 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 5617 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 5618 && cmd != GET_BITMAP_FILE) { 5619 err = -ENODEV; 5620 goto abort_unlock; 5621 } 5622 5623 /* 5624 * Commands even a read-only array can execute: 5625 */ 5626 switch (cmd) 5627 { 5628 case GET_ARRAY_INFO: 5629 err = get_array_info(mddev, argp); 5630 goto done_unlock; 5631 5632 case GET_BITMAP_FILE: 5633 err = get_bitmap_file(mddev, argp); 5634 goto done_unlock; 5635 5636 case GET_DISK_INFO: 5637 err = get_disk_info(mddev, argp); 5638 goto done_unlock; 5639 5640 case RESTART_ARRAY_RW: 5641 err = restart_array(mddev); 5642 goto done_unlock; 5643 5644 case STOP_ARRAY: 5645 err = do_md_stop(mddev, 0, 1); 5646 goto done_unlock; 5647 5648 case STOP_ARRAY_RO: 5649 err = do_md_stop(mddev, 1, 1); 5650 goto done_unlock; 5651 5652 } 5653 5654 /* 5655 * The remaining ioctls are changing the state of the 5656 * superblock, so we do not allow them on read-only arrays. 5657 * However non-MD ioctls (e.g. get-size) will still come through 5658 * here and hit the 'default' below, so only disallow 5659 * 'md' ioctls, and switch to rw mode if started auto-readonly. 5660 */ 5661 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 5662 if (mddev->ro == 2) { 5663 mddev->ro = 0; 5664 sysfs_notify_dirent(mddev->sysfs_state); 5665 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5666 md_wakeup_thread(mddev->thread); 5667 } else { 5668 err = -EROFS; 5669 goto abort_unlock; 5670 } 5671 } 5672 5673 switch (cmd) 5674 { 5675 case ADD_NEW_DISK: 5676 { 5677 mdu_disk_info_t info; 5678 if (copy_from_user(&info, argp, sizeof(info))) 5679 err = -EFAULT; 5680 else 5681 err = add_new_disk(mddev, &info); 5682 goto done_unlock; 5683 } 5684 5685 case HOT_REMOVE_DISK: 5686 err = hot_remove_disk(mddev, new_decode_dev(arg)); 5687 goto done_unlock; 5688 5689 case HOT_ADD_DISK: 5690 err = hot_add_disk(mddev, new_decode_dev(arg)); 5691 goto done_unlock; 5692 5693 case SET_DISK_FAULTY: 5694 err = set_disk_faulty(mddev, new_decode_dev(arg)); 5695 goto done_unlock; 5696 5697 case RUN_ARRAY: 5698 err = do_md_run(mddev); 5699 goto done_unlock; 5700 5701 case SET_BITMAP_FILE: 5702 err = set_bitmap_file(mddev, (int)arg); 5703 goto done_unlock; 5704 5705 default: 5706 err = -EINVAL; 5707 goto abort_unlock; 5708 } 5709 5710 done_unlock: 5711 abort_unlock: 5712 if (mddev->hold_active == UNTIL_IOCTL && 5713 err != -EINVAL) 5714 mddev->hold_active = 0; 5715 mddev_unlock(mddev); 5716 5717 return err; 5718 done: 5719 if (err) 5720 MD_BUG(); 5721 abort: 5722 return err; 5723 } 5724 #ifdef CONFIG_COMPAT 5725 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 5726 unsigned int cmd, unsigned long arg) 5727 { 5728 switch (cmd) { 5729 case HOT_REMOVE_DISK: 5730 case HOT_ADD_DISK: 5731 case SET_DISK_FAULTY: 5732 case SET_BITMAP_FILE: 5733 /* These take in integer arg, do not convert */ 5734 break; 5735 default: 5736 arg = (unsigned long)compat_ptr(arg); 5737 break; 5738 } 5739 5740 return md_ioctl(bdev, mode, cmd, arg); 5741 } 5742 #endif /* CONFIG_COMPAT */ 5743 5744 static int md_open(struct block_device *bdev, fmode_t mode) 5745 { 5746 /* 5747 * Succeed if we can lock the mddev, which confirms that 5748 * it isn't being stopped right now. 5749 */ 5750 mddev_t *mddev = mddev_find(bdev->bd_dev); 5751 int err; 5752 5753 if (mddev->gendisk != bdev->bd_disk) { 5754 /* we are racing with mddev_put which is discarding this 5755 * bd_disk. 5756 */ 5757 mddev_put(mddev); 5758 /* Wait until bdev->bd_disk is definitely gone */ 5759 flush_scheduled_work(); 5760 /* Then retry the open from the top */ 5761 return -ERESTARTSYS; 5762 } 5763 BUG_ON(mddev != bdev->bd_disk->private_data); 5764 5765 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 5766 goto out; 5767 5768 err = 0; 5769 atomic_inc(&mddev->openers); 5770 mutex_unlock(&mddev->open_mutex); 5771 5772 check_disk_change(bdev); 5773 out: 5774 return err; 5775 } 5776 5777 static int md_release(struct gendisk *disk, fmode_t mode) 5778 { 5779 mddev_t *mddev = disk->private_data; 5780 5781 BUG_ON(!mddev); 5782 atomic_dec(&mddev->openers); 5783 mddev_put(mddev); 5784 5785 return 0; 5786 } 5787 5788 static int md_media_changed(struct gendisk *disk) 5789 { 5790 mddev_t *mddev = disk->private_data; 5791 5792 return mddev->changed; 5793 } 5794 5795 static int md_revalidate(struct gendisk *disk) 5796 { 5797 mddev_t *mddev = disk->private_data; 5798 5799 mddev->changed = 0; 5800 return 0; 5801 } 5802 static const struct block_device_operations md_fops = 5803 { 5804 .owner = THIS_MODULE, 5805 .open = md_open, 5806 .release = md_release, 5807 .ioctl = md_ioctl, 5808 #ifdef CONFIG_COMPAT 5809 .compat_ioctl = md_compat_ioctl, 5810 #endif 5811 .getgeo = md_getgeo, 5812 .media_changed = md_media_changed, 5813 .revalidate_disk= md_revalidate, 5814 }; 5815 5816 static int md_thread(void * arg) 5817 { 5818 mdk_thread_t *thread = arg; 5819 5820 /* 5821 * md_thread is a 'system-thread', it's priority should be very 5822 * high. We avoid resource deadlocks individually in each 5823 * raid personality. (RAID5 does preallocation) We also use RR and 5824 * the very same RT priority as kswapd, thus we will never get 5825 * into a priority inversion deadlock. 5826 * 5827 * we definitely have to have equal or higher priority than 5828 * bdflush, otherwise bdflush will deadlock if there are too 5829 * many dirty RAID5 blocks. 5830 */ 5831 5832 allow_signal(SIGKILL); 5833 while (!kthread_should_stop()) { 5834 5835 /* We need to wait INTERRUPTIBLE so that 5836 * we don't add to the load-average. 5837 * That means we need to be sure no signals are 5838 * pending 5839 */ 5840 if (signal_pending(current)) 5841 flush_signals(current); 5842 5843 wait_event_interruptible_timeout 5844 (thread->wqueue, 5845 test_bit(THREAD_WAKEUP, &thread->flags) 5846 || kthread_should_stop(), 5847 thread->timeout); 5848 5849 clear_bit(THREAD_WAKEUP, &thread->flags); 5850 5851 thread->run(thread->mddev); 5852 } 5853 5854 return 0; 5855 } 5856 5857 void md_wakeup_thread(mdk_thread_t *thread) 5858 { 5859 if (thread) { 5860 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 5861 set_bit(THREAD_WAKEUP, &thread->flags); 5862 wake_up(&thread->wqueue); 5863 } 5864 } 5865 5866 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 5867 const char *name) 5868 { 5869 mdk_thread_t *thread; 5870 5871 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 5872 if (!thread) 5873 return NULL; 5874 5875 init_waitqueue_head(&thread->wqueue); 5876 5877 thread->run = run; 5878 thread->mddev = mddev; 5879 thread->timeout = MAX_SCHEDULE_TIMEOUT; 5880 thread->tsk = kthread_run(md_thread, thread, 5881 "%s_%s", 5882 mdname(thread->mddev), 5883 name ?: mddev->pers->name); 5884 if (IS_ERR(thread->tsk)) { 5885 kfree(thread); 5886 return NULL; 5887 } 5888 return thread; 5889 } 5890 5891 void md_unregister_thread(mdk_thread_t *thread) 5892 { 5893 if (!thread) 5894 return; 5895 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 5896 5897 kthread_stop(thread->tsk); 5898 kfree(thread); 5899 } 5900 5901 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 5902 { 5903 if (!mddev) { 5904 MD_BUG(); 5905 return; 5906 } 5907 5908 if (!rdev || test_bit(Faulty, &rdev->flags)) 5909 return; 5910 5911 if (mddev->external) 5912 set_bit(Blocked, &rdev->flags); 5913 /* 5914 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 5915 mdname(mddev), 5916 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 5917 __builtin_return_address(0),__builtin_return_address(1), 5918 __builtin_return_address(2),__builtin_return_address(3)); 5919 */ 5920 if (!mddev->pers) 5921 return; 5922 if (!mddev->pers->error_handler) 5923 return; 5924 mddev->pers->error_handler(mddev,rdev); 5925 if (mddev->degraded) 5926 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5927 set_bit(StateChanged, &rdev->flags); 5928 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5929 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5930 md_wakeup_thread(mddev->thread); 5931 md_new_event_inintr(mddev); 5932 } 5933 5934 /* seq_file implementation /proc/mdstat */ 5935 5936 static void status_unused(struct seq_file *seq) 5937 { 5938 int i = 0; 5939 mdk_rdev_t *rdev; 5940 5941 seq_printf(seq, "unused devices: "); 5942 5943 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 5944 char b[BDEVNAME_SIZE]; 5945 i++; 5946 seq_printf(seq, "%s ", 5947 bdevname(rdev->bdev,b)); 5948 } 5949 if (!i) 5950 seq_printf(seq, "<none>"); 5951 5952 seq_printf(seq, "\n"); 5953 } 5954 5955 5956 static void status_resync(struct seq_file *seq, mddev_t * mddev) 5957 { 5958 sector_t max_sectors, resync, res; 5959 unsigned long dt, db; 5960 sector_t rt; 5961 int scale; 5962 unsigned int per_milli; 5963 5964 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); 5965 5966 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 5967 max_sectors = mddev->resync_max_sectors; 5968 else 5969 max_sectors = mddev->dev_sectors; 5970 5971 /* 5972 * Should not happen. 5973 */ 5974 if (!max_sectors) { 5975 MD_BUG(); 5976 return; 5977 } 5978 /* Pick 'scale' such that (resync>>scale)*1000 will fit 5979 * in a sector_t, and (max_sectors>>scale) will fit in a 5980 * u32, as those are the requirements for sector_div. 5981 * Thus 'scale' must be at least 10 5982 */ 5983 scale = 10; 5984 if (sizeof(sector_t) > sizeof(unsigned long)) { 5985 while ( max_sectors/2 > (1ULL<<(scale+32))) 5986 scale++; 5987 } 5988 res = (resync>>scale)*1000; 5989 sector_div(res, (u32)((max_sectors>>scale)+1)); 5990 5991 per_milli = res; 5992 { 5993 int i, x = per_milli/50, y = 20-x; 5994 seq_printf(seq, "["); 5995 for (i = 0; i < x; i++) 5996 seq_printf(seq, "="); 5997 seq_printf(seq, ">"); 5998 for (i = 0; i < y; i++) 5999 seq_printf(seq, "."); 6000 seq_printf(seq, "] "); 6001 } 6002 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6003 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6004 "reshape" : 6005 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6006 "check" : 6007 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6008 "resync" : "recovery"))), 6009 per_milli/10, per_milli % 10, 6010 (unsigned long long) resync/2, 6011 (unsigned long long) max_sectors/2); 6012 6013 /* 6014 * dt: time from mark until now 6015 * db: blocks written from mark until now 6016 * rt: remaining time 6017 * 6018 * rt is a sector_t, so could be 32bit or 64bit. 6019 * So we divide before multiply in case it is 32bit and close 6020 * to the limit. 6021 * We scale the divisor (db) by 32 to avoid loosing precision 6022 * near the end of resync when the number of remaining sectors 6023 * is close to 'db'. 6024 * We then divide rt by 32 after multiplying by db to compensate. 6025 * The '+1' avoids division by zero if db is very small. 6026 */ 6027 dt = ((jiffies - mddev->resync_mark) / HZ); 6028 if (!dt) dt++; 6029 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6030 - mddev->resync_mark_cnt; 6031 6032 rt = max_sectors - resync; /* number of remaining sectors */ 6033 sector_div(rt, db/32+1); 6034 rt *= dt; 6035 rt >>= 5; 6036 6037 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6038 ((unsigned long)rt % 60)/6); 6039 6040 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6041 } 6042 6043 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6044 { 6045 struct list_head *tmp; 6046 loff_t l = *pos; 6047 mddev_t *mddev; 6048 6049 if (l >= 0x10000) 6050 return NULL; 6051 if (!l--) 6052 /* header */ 6053 return (void*)1; 6054 6055 spin_lock(&all_mddevs_lock); 6056 list_for_each(tmp,&all_mddevs) 6057 if (!l--) { 6058 mddev = list_entry(tmp, mddev_t, all_mddevs); 6059 mddev_get(mddev); 6060 spin_unlock(&all_mddevs_lock); 6061 return mddev; 6062 } 6063 spin_unlock(&all_mddevs_lock); 6064 if (!l--) 6065 return (void*)2;/* tail */ 6066 return NULL; 6067 } 6068 6069 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6070 { 6071 struct list_head *tmp; 6072 mddev_t *next_mddev, *mddev = v; 6073 6074 ++*pos; 6075 if (v == (void*)2) 6076 return NULL; 6077 6078 spin_lock(&all_mddevs_lock); 6079 if (v == (void*)1) 6080 tmp = all_mddevs.next; 6081 else 6082 tmp = mddev->all_mddevs.next; 6083 if (tmp != &all_mddevs) 6084 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 6085 else { 6086 next_mddev = (void*)2; 6087 *pos = 0x10000; 6088 } 6089 spin_unlock(&all_mddevs_lock); 6090 6091 if (v != (void*)1) 6092 mddev_put(mddev); 6093 return next_mddev; 6094 6095 } 6096 6097 static void md_seq_stop(struct seq_file *seq, void *v) 6098 { 6099 mddev_t *mddev = v; 6100 6101 if (mddev && v != (void*)1 && v != (void*)2) 6102 mddev_put(mddev); 6103 } 6104 6105 struct mdstat_info { 6106 int event; 6107 }; 6108 6109 static int md_seq_show(struct seq_file *seq, void *v) 6110 { 6111 mddev_t *mddev = v; 6112 sector_t sectors; 6113 mdk_rdev_t *rdev; 6114 struct mdstat_info *mi = seq->private; 6115 struct bitmap *bitmap; 6116 6117 if (v == (void*)1) { 6118 struct mdk_personality *pers; 6119 seq_printf(seq, "Personalities : "); 6120 spin_lock(&pers_lock); 6121 list_for_each_entry(pers, &pers_list, list) 6122 seq_printf(seq, "[%s] ", pers->name); 6123 6124 spin_unlock(&pers_lock); 6125 seq_printf(seq, "\n"); 6126 mi->event = atomic_read(&md_event_count); 6127 return 0; 6128 } 6129 if (v == (void*)2) { 6130 status_unused(seq); 6131 return 0; 6132 } 6133 6134 if (mddev_lock(mddev) < 0) 6135 return -EINTR; 6136 6137 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 6138 seq_printf(seq, "%s : %sactive", mdname(mddev), 6139 mddev->pers ? "" : "in"); 6140 if (mddev->pers) { 6141 if (mddev->ro==1) 6142 seq_printf(seq, " (read-only)"); 6143 if (mddev->ro==2) 6144 seq_printf(seq, " (auto-read-only)"); 6145 seq_printf(seq, " %s", mddev->pers->name); 6146 } 6147 6148 sectors = 0; 6149 list_for_each_entry(rdev, &mddev->disks, same_set) { 6150 char b[BDEVNAME_SIZE]; 6151 seq_printf(seq, " %s[%d]", 6152 bdevname(rdev->bdev,b), rdev->desc_nr); 6153 if (test_bit(WriteMostly, &rdev->flags)) 6154 seq_printf(seq, "(W)"); 6155 if (test_bit(Faulty, &rdev->flags)) { 6156 seq_printf(seq, "(F)"); 6157 continue; 6158 } else if (rdev->raid_disk < 0) 6159 seq_printf(seq, "(S)"); /* spare */ 6160 sectors += rdev->sectors; 6161 } 6162 6163 if (!list_empty(&mddev->disks)) { 6164 if (mddev->pers) 6165 seq_printf(seq, "\n %llu blocks", 6166 (unsigned long long) 6167 mddev->array_sectors / 2); 6168 else 6169 seq_printf(seq, "\n %llu blocks", 6170 (unsigned long long)sectors / 2); 6171 } 6172 if (mddev->persistent) { 6173 if (mddev->major_version != 0 || 6174 mddev->minor_version != 90) { 6175 seq_printf(seq," super %d.%d", 6176 mddev->major_version, 6177 mddev->minor_version); 6178 } 6179 } else if (mddev->external) 6180 seq_printf(seq, " super external:%s", 6181 mddev->metadata_type); 6182 else 6183 seq_printf(seq, " super non-persistent"); 6184 6185 if (mddev->pers) { 6186 mddev->pers->status(seq, mddev); 6187 seq_printf(seq, "\n "); 6188 if (mddev->pers->sync_request) { 6189 if (mddev->curr_resync > 2) { 6190 status_resync(seq, mddev); 6191 seq_printf(seq, "\n "); 6192 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 6193 seq_printf(seq, "\tresync=DELAYED\n "); 6194 else if (mddev->recovery_cp < MaxSector) 6195 seq_printf(seq, "\tresync=PENDING\n "); 6196 } 6197 } else 6198 seq_printf(seq, "\n "); 6199 6200 if ((bitmap = mddev->bitmap)) { 6201 unsigned long chunk_kb; 6202 unsigned long flags; 6203 spin_lock_irqsave(&bitmap->lock, flags); 6204 chunk_kb = mddev->bitmap_info.chunksize >> 10; 6205 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 6206 "%lu%s chunk", 6207 bitmap->pages - bitmap->missing_pages, 6208 bitmap->pages, 6209 (bitmap->pages - bitmap->missing_pages) 6210 << (PAGE_SHIFT - 10), 6211 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize, 6212 chunk_kb ? "KB" : "B"); 6213 if (bitmap->file) { 6214 seq_printf(seq, ", file: "); 6215 seq_path(seq, &bitmap->file->f_path, " \t\n"); 6216 } 6217 6218 seq_printf(seq, "\n"); 6219 spin_unlock_irqrestore(&bitmap->lock, flags); 6220 } 6221 6222 seq_printf(seq, "\n"); 6223 } 6224 mddev_unlock(mddev); 6225 6226 return 0; 6227 } 6228 6229 static const struct seq_operations md_seq_ops = { 6230 .start = md_seq_start, 6231 .next = md_seq_next, 6232 .stop = md_seq_stop, 6233 .show = md_seq_show, 6234 }; 6235 6236 static int md_seq_open(struct inode *inode, struct file *file) 6237 { 6238 int error; 6239 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 6240 if (mi == NULL) 6241 return -ENOMEM; 6242 6243 error = seq_open(file, &md_seq_ops); 6244 if (error) 6245 kfree(mi); 6246 else { 6247 struct seq_file *p = file->private_data; 6248 p->private = mi; 6249 mi->event = atomic_read(&md_event_count); 6250 } 6251 return error; 6252 } 6253 6254 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 6255 { 6256 struct seq_file *m = filp->private_data; 6257 struct mdstat_info *mi = m->private; 6258 int mask; 6259 6260 poll_wait(filp, &md_event_waiters, wait); 6261 6262 /* always allow read */ 6263 mask = POLLIN | POLLRDNORM; 6264 6265 if (mi->event != atomic_read(&md_event_count)) 6266 mask |= POLLERR | POLLPRI; 6267 return mask; 6268 } 6269 6270 static const struct file_operations md_seq_fops = { 6271 .owner = THIS_MODULE, 6272 .open = md_seq_open, 6273 .read = seq_read, 6274 .llseek = seq_lseek, 6275 .release = seq_release_private, 6276 .poll = mdstat_poll, 6277 }; 6278 6279 int register_md_personality(struct mdk_personality *p) 6280 { 6281 spin_lock(&pers_lock); 6282 list_add_tail(&p->list, &pers_list); 6283 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 6284 spin_unlock(&pers_lock); 6285 return 0; 6286 } 6287 6288 int unregister_md_personality(struct mdk_personality *p) 6289 { 6290 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 6291 spin_lock(&pers_lock); 6292 list_del_init(&p->list); 6293 spin_unlock(&pers_lock); 6294 return 0; 6295 } 6296 6297 static int is_mddev_idle(mddev_t *mddev, int init) 6298 { 6299 mdk_rdev_t * rdev; 6300 int idle; 6301 int curr_events; 6302 6303 idle = 1; 6304 rcu_read_lock(); 6305 rdev_for_each_rcu(rdev, mddev) { 6306 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 6307 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 6308 (int)part_stat_read(&disk->part0, sectors[1]) - 6309 atomic_read(&disk->sync_io); 6310 /* sync IO will cause sync_io to increase before the disk_stats 6311 * as sync_io is counted when a request starts, and 6312 * disk_stats is counted when it completes. 6313 * So resync activity will cause curr_events to be smaller than 6314 * when there was no such activity. 6315 * non-sync IO will cause disk_stat to increase without 6316 * increasing sync_io so curr_events will (eventually) 6317 * be larger than it was before. Once it becomes 6318 * substantially larger, the test below will cause 6319 * the array to appear non-idle, and resync will slow 6320 * down. 6321 * If there is a lot of outstanding resync activity when 6322 * we set last_event to curr_events, then all that activity 6323 * completing might cause the array to appear non-idle 6324 * and resync will be slowed down even though there might 6325 * not have been non-resync activity. This will only 6326 * happen once though. 'last_events' will soon reflect 6327 * the state where there is little or no outstanding 6328 * resync requests, and further resync activity will 6329 * always make curr_events less than last_events. 6330 * 6331 */ 6332 if (init || curr_events - rdev->last_events > 64) { 6333 rdev->last_events = curr_events; 6334 idle = 0; 6335 } 6336 } 6337 rcu_read_unlock(); 6338 return idle; 6339 } 6340 6341 void md_done_sync(mddev_t *mddev, int blocks, int ok) 6342 { 6343 /* another "blocks" (512byte) blocks have been synced */ 6344 atomic_sub(blocks, &mddev->recovery_active); 6345 wake_up(&mddev->recovery_wait); 6346 if (!ok) { 6347 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6348 md_wakeup_thread(mddev->thread); 6349 // stop recovery, signal do_sync .... 6350 } 6351 } 6352 6353 6354 /* md_write_start(mddev, bi) 6355 * If we need to update some array metadata (e.g. 'active' flag 6356 * in superblock) before writing, schedule a superblock update 6357 * and wait for it to complete. 6358 */ 6359 void md_write_start(mddev_t *mddev, struct bio *bi) 6360 { 6361 int did_change = 0; 6362 if (bio_data_dir(bi) != WRITE) 6363 return; 6364 6365 BUG_ON(mddev->ro == 1); 6366 if (mddev->ro == 2) { 6367 /* need to switch to read/write */ 6368 mddev->ro = 0; 6369 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6370 md_wakeup_thread(mddev->thread); 6371 md_wakeup_thread(mddev->sync_thread); 6372 did_change = 1; 6373 } 6374 atomic_inc(&mddev->writes_pending); 6375 if (mddev->safemode == 1) 6376 mddev->safemode = 0; 6377 if (mddev->in_sync) { 6378 spin_lock_irq(&mddev->write_lock); 6379 if (mddev->in_sync) { 6380 mddev->in_sync = 0; 6381 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6382 md_wakeup_thread(mddev->thread); 6383 did_change = 1; 6384 } 6385 spin_unlock_irq(&mddev->write_lock); 6386 } 6387 if (did_change) 6388 sysfs_notify_dirent(mddev->sysfs_state); 6389 wait_event(mddev->sb_wait, 6390 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) && 6391 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6392 } 6393 6394 void md_write_end(mddev_t *mddev) 6395 { 6396 if (atomic_dec_and_test(&mddev->writes_pending)) { 6397 if (mddev->safemode == 2) 6398 md_wakeup_thread(mddev->thread); 6399 else if (mddev->safemode_delay) 6400 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 6401 } 6402 } 6403 6404 /* md_allow_write(mddev) 6405 * Calling this ensures that the array is marked 'active' so that writes 6406 * may proceed without blocking. It is important to call this before 6407 * attempting a GFP_KERNEL allocation while holding the mddev lock. 6408 * Must be called with mddev_lock held. 6409 * 6410 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 6411 * is dropped, so return -EAGAIN after notifying userspace. 6412 */ 6413 int md_allow_write(mddev_t *mddev) 6414 { 6415 if (!mddev->pers) 6416 return 0; 6417 if (mddev->ro) 6418 return 0; 6419 if (!mddev->pers->sync_request) 6420 return 0; 6421 6422 spin_lock_irq(&mddev->write_lock); 6423 if (mddev->in_sync) { 6424 mddev->in_sync = 0; 6425 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6426 if (mddev->safemode_delay && 6427 mddev->safemode == 0) 6428 mddev->safemode = 1; 6429 spin_unlock_irq(&mddev->write_lock); 6430 md_update_sb(mddev, 0); 6431 sysfs_notify_dirent(mddev->sysfs_state); 6432 } else 6433 spin_unlock_irq(&mddev->write_lock); 6434 6435 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 6436 return -EAGAIN; 6437 else 6438 return 0; 6439 } 6440 EXPORT_SYMBOL_GPL(md_allow_write); 6441 6442 #define SYNC_MARKS 10 6443 #define SYNC_MARK_STEP (3*HZ) 6444 void md_do_sync(mddev_t *mddev) 6445 { 6446 mddev_t *mddev2; 6447 unsigned int currspeed = 0, 6448 window; 6449 sector_t max_sectors,j, io_sectors; 6450 unsigned long mark[SYNC_MARKS]; 6451 sector_t mark_cnt[SYNC_MARKS]; 6452 int last_mark,m; 6453 struct list_head *tmp; 6454 sector_t last_check; 6455 int skipped = 0; 6456 mdk_rdev_t *rdev; 6457 char *desc; 6458 6459 /* just incase thread restarts... */ 6460 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 6461 return; 6462 if (mddev->ro) /* never try to sync a read-only array */ 6463 return; 6464 6465 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6466 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 6467 desc = "data-check"; 6468 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6469 desc = "requested-resync"; 6470 else 6471 desc = "resync"; 6472 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6473 desc = "reshape"; 6474 else 6475 desc = "recovery"; 6476 6477 /* we overload curr_resync somewhat here. 6478 * 0 == not engaged in resync at all 6479 * 2 == checking that there is no conflict with another sync 6480 * 1 == like 2, but have yielded to allow conflicting resync to 6481 * commense 6482 * other == active in resync - this many blocks 6483 * 6484 * Before starting a resync we must have set curr_resync to 6485 * 2, and then checked that every "conflicting" array has curr_resync 6486 * less than ours. When we find one that is the same or higher 6487 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 6488 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 6489 * This will mean we have to start checking from the beginning again. 6490 * 6491 */ 6492 6493 do { 6494 mddev->curr_resync = 2; 6495 6496 try_again: 6497 if (kthread_should_stop()) { 6498 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6499 goto skip; 6500 } 6501 for_each_mddev(mddev2, tmp) { 6502 if (mddev2 == mddev) 6503 continue; 6504 if (!mddev->parallel_resync 6505 && mddev2->curr_resync 6506 && match_mddev_units(mddev, mddev2)) { 6507 DEFINE_WAIT(wq); 6508 if (mddev < mddev2 && mddev->curr_resync == 2) { 6509 /* arbitrarily yield */ 6510 mddev->curr_resync = 1; 6511 wake_up(&resync_wait); 6512 } 6513 if (mddev > mddev2 && mddev->curr_resync == 1) 6514 /* no need to wait here, we can wait the next 6515 * time 'round when curr_resync == 2 6516 */ 6517 continue; 6518 /* We need to wait 'interruptible' so as not to 6519 * contribute to the load average, and not to 6520 * be caught by 'softlockup' 6521 */ 6522 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 6523 if (!kthread_should_stop() && 6524 mddev2->curr_resync >= mddev->curr_resync) { 6525 printk(KERN_INFO "md: delaying %s of %s" 6526 " until %s has finished (they" 6527 " share one or more physical units)\n", 6528 desc, mdname(mddev), mdname(mddev2)); 6529 mddev_put(mddev2); 6530 if (signal_pending(current)) 6531 flush_signals(current); 6532 schedule(); 6533 finish_wait(&resync_wait, &wq); 6534 goto try_again; 6535 } 6536 finish_wait(&resync_wait, &wq); 6537 } 6538 } 6539 } while (mddev->curr_resync < 2); 6540 6541 j = 0; 6542 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6543 /* resync follows the size requested by the personality, 6544 * which defaults to physical size, but can be virtual size 6545 */ 6546 max_sectors = mddev->resync_max_sectors; 6547 mddev->resync_mismatches = 0; 6548 /* we don't use the checkpoint if there's a bitmap */ 6549 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6550 j = mddev->resync_min; 6551 else if (!mddev->bitmap) 6552 j = mddev->recovery_cp; 6553 6554 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6555 max_sectors = mddev->dev_sectors; 6556 else { 6557 /* recovery follows the physical size of devices */ 6558 max_sectors = mddev->dev_sectors; 6559 j = MaxSector; 6560 rcu_read_lock(); 6561 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 6562 if (rdev->raid_disk >= 0 && 6563 !test_bit(Faulty, &rdev->flags) && 6564 !test_bit(In_sync, &rdev->flags) && 6565 rdev->recovery_offset < j) 6566 j = rdev->recovery_offset; 6567 rcu_read_unlock(); 6568 } 6569 6570 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 6571 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 6572 " %d KB/sec/disk.\n", speed_min(mddev)); 6573 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 6574 "(but not more than %d KB/sec) for %s.\n", 6575 speed_max(mddev), desc); 6576 6577 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 6578 6579 io_sectors = 0; 6580 for (m = 0; m < SYNC_MARKS; m++) { 6581 mark[m] = jiffies; 6582 mark_cnt[m] = io_sectors; 6583 } 6584 last_mark = 0; 6585 mddev->resync_mark = mark[last_mark]; 6586 mddev->resync_mark_cnt = mark_cnt[last_mark]; 6587 6588 /* 6589 * Tune reconstruction: 6590 */ 6591 window = 32*(PAGE_SIZE/512); 6592 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 6593 window/2,(unsigned long long) max_sectors/2); 6594 6595 atomic_set(&mddev->recovery_active, 0); 6596 last_check = 0; 6597 6598 if (j>2) { 6599 printk(KERN_INFO 6600 "md: resuming %s of %s from checkpoint.\n", 6601 desc, mdname(mddev)); 6602 mddev->curr_resync = j; 6603 } 6604 mddev->curr_resync_completed = mddev->curr_resync; 6605 6606 while (j < max_sectors) { 6607 sector_t sectors; 6608 6609 skipped = 0; 6610 6611 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 6612 ((mddev->curr_resync > mddev->curr_resync_completed && 6613 (mddev->curr_resync - mddev->curr_resync_completed) 6614 > (max_sectors >> 4)) || 6615 (j - mddev->curr_resync_completed)*2 6616 >= mddev->resync_max - mddev->curr_resync_completed 6617 )) { 6618 /* time to update curr_resync_completed */ 6619 blk_unplug(mddev->queue); 6620 wait_event(mddev->recovery_wait, 6621 atomic_read(&mddev->recovery_active) == 0); 6622 mddev->curr_resync_completed = 6623 mddev->curr_resync; 6624 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6625 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6626 } 6627 6628 while (j >= mddev->resync_max && !kthread_should_stop()) { 6629 /* As this condition is controlled by user-space, 6630 * we can block indefinitely, so use '_interruptible' 6631 * to avoid triggering warnings. 6632 */ 6633 flush_signals(current); /* just in case */ 6634 wait_event_interruptible(mddev->recovery_wait, 6635 mddev->resync_max > j 6636 || kthread_should_stop()); 6637 } 6638 6639 if (kthread_should_stop()) 6640 goto interrupted; 6641 6642 sectors = mddev->pers->sync_request(mddev, j, &skipped, 6643 currspeed < speed_min(mddev)); 6644 if (sectors == 0) { 6645 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6646 goto out; 6647 } 6648 6649 if (!skipped) { /* actual IO requested */ 6650 io_sectors += sectors; 6651 atomic_add(sectors, &mddev->recovery_active); 6652 } 6653 6654 j += sectors; 6655 if (j>1) mddev->curr_resync = j; 6656 mddev->curr_mark_cnt = io_sectors; 6657 if (last_check == 0) 6658 /* this is the earliers that rebuilt will be 6659 * visible in /proc/mdstat 6660 */ 6661 md_new_event(mddev); 6662 6663 if (last_check + window > io_sectors || j == max_sectors) 6664 continue; 6665 6666 last_check = io_sectors; 6667 6668 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6669 break; 6670 6671 repeat: 6672 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 6673 /* step marks */ 6674 int next = (last_mark+1) % SYNC_MARKS; 6675 6676 mddev->resync_mark = mark[next]; 6677 mddev->resync_mark_cnt = mark_cnt[next]; 6678 mark[next] = jiffies; 6679 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 6680 last_mark = next; 6681 } 6682 6683 6684 if (kthread_should_stop()) 6685 goto interrupted; 6686 6687 6688 /* 6689 * this loop exits only if either when we are slower than 6690 * the 'hard' speed limit, or the system was IO-idle for 6691 * a jiffy. 6692 * the system might be non-idle CPU-wise, but we only care 6693 * about not overloading the IO subsystem. (things like an 6694 * e2fsck being done on the RAID array should execute fast) 6695 */ 6696 blk_unplug(mddev->queue); 6697 cond_resched(); 6698 6699 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 6700 /((jiffies-mddev->resync_mark)/HZ +1) +1; 6701 6702 if (currspeed > speed_min(mddev)) { 6703 if ((currspeed > speed_max(mddev)) || 6704 !is_mddev_idle(mddev, 0)) { 6705 msleep(500); 6706 goto repeat; 6707 } 6708 } 6709 } 6710 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 6711 /* 6712 * this also signals 'finished resyncing' to md_stop 6713 */ 6714 out: 6715 blk_unplug(mddev->queue); 6716 6717 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 6718 6719 /* tell personality that we are finished */ 6720 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 6721 6722 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 6723 mddev->curr_resync > 2) { 6724 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6725 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6726 if (mddev->curr_resync >= mddev->recovery_cp) { 6727 printk(KERN_INFO 6728 "md: checkpointing %s of %s.\n", 6729 desc, mdname(mddev)); 6730 mddev->recovery_cp = mddev->curr_resync; 6731 } 6732 } else 6733 mddev->recovery_cp = MaxSector; 6734 } else { 6735 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6736 mddev->curr_resync = MaxSector; 6737 rcu_read_lock(); 6738 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 6739 if (rdev->raid_disk >= 0 && 6740 !test_bit(Faulty, &rdev->flags) && 6741 !test_bit(In_sync, &rdev->flags) && 6742 rdev->recovery_offset < mddev->curr_resync) 6743 rdev->recovery_offset = mddev->curr_resync; 6744 rcu_read_unlock(); 6745 } 6746 } 6747 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6748 6749 skip: 6750 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6751 /* We completed so min/max setting can be forgotten if used. */ 6752 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6753 mddev->resync_min = 0; 6754 mddev->resync_max = MaxSector; 6755 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6756 mddev->resync_min = mddev->curr_resync_completed; 6757 mddev->curr_resync = 0; 6758 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6759 mddev->curr_resync_completed = 0; 6760 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6761 wake_up(&resync_wait); 6762 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 6763 md_wakeup_thread(mddev->thread); 6764 return; 6765 6766 interrupted: 6767 /* 6768 * got a signal, exit. 6769 */ 6770 printk(KERN_INFO 6771 "md: md_do_sync() got signal ... exiting\n"); 6772 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6773 goto out; 6774 6775 } 6776 EXPORT_SYMBOL_GPL(md_do_sync); 6777 6778 6779 static int remove_and_add_spares(mddev_t *mddev) 6780 { 6781 mdk_rdev_t *rdev; 6782 int spares = 0; 6783 6784 mddev->curr_resync_completed = 0; 6785 6786 list_for_each_entry(rdev, &mddev->disks, same_set) 6787 if (rdev->raid_disk >= 0 && 6788 !test_bit(Blocked, &rdev->flags) && 6789 (test_bit(Faulty, &rdev->flags) || 6790 ! test_bit(In_sync, &rdev->flags)) && 6791 atomic_read(&rdev->nr_pending)==0) { 6792 if (mddev->pers->hot_remove_disk( 6793 mddev, rdev->raid_disk)==0) { 6794 char nm[20]; 6795 sprintf(nm,"rd%d", rdev->raid_disk); 6796 sysfs_remove_link(&mddev->kobj, nm); 6797 rdev->raid_disk = -1; 6798 } 6799 } 6800 6801 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) { 6802 list_for_each_entry(rdev, &mddev->disks, same_set) { 6803 if (rdev->raid_disk >= 0 && 6804 !test_bit(In_sync, &rdev->flags) && 6805 !test_bit(Blocked, &rdev->flags)) 6806 spares++; 6807 if (rdev->raid_disk < 0 6808 && !test_bit(Faulty, &rdev->flags)) { 6809 rdev->recovery_offset = 0; 6810 if (mddev->pers-> 6811 hot_add_disk(mddev, rdev) == 0) { 6812 char nm[20]; 6813 sprintf(nm, "rd%d", rdev->raid_disk); 6814 if (sysfs_create_link(&mddev->kobj, 6815 &rdev->kobj, nm)) 6816 printk(KERN_WARNING 6817 "md: cannot register " 6818 "%s for %s\n", 6819 nm, mdname(mddev)); 6820 spares++; 6821 md_new_event(mddev); 6822 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6823 } else 6824 break; 6825 } 6826 } 6827 } 6828 return spares; 6829 } 6830 /* 6831 * This routine is regularly called by all per-raid-array threads to 6832 * deal with generic issues like resync and super-block update. 6833 * Raid personalities that don't have a thread (linear/raid0) do not 6834 * need this as they never do any recovery or update the superblock. 6835 * 6836 * It does not do any resync itself, but rather "forks" off other threads 6837 * to do that as needed. 6838 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 6839 * "->recovery" and create a thread at ->sync_thread. 6840 * When the thread finishes it sets MD_RECOVERY_DONE 6841 * and wakeups up this thread which will reap the thread and finish up. 6842 * This thread also removes any faulty devices (with nr_pending == 0). 6843 * 6844 * The overall approach is: 6845 * 1/ if the superblock needs updating, update it. 6846 * 2/ If a recovery thread is running, don't do anything else. 6847 * 3/ If recovery has finished, clean up, possibly marking spares active. 6848 * 4/ If there are any faulty devices, remove them. 6849 * 5/ If array is degraded, try to add spares devices 6850 * 6/ If array has spares or is not in-sync, start a resync thread. 6851 */ 6852 void md_check_recovery(mddev_t *mddev) 6853 { 6854 mdk_rdev_t *rdev; 6855 6856 6857 if (mddev->bitmap) 6858 bitmap_daemon_work(mddev); 6859 6860 if (mddev->ro) 6861 return; 6862 6863 if (signal_pending(current)) { 6864 if (mddev->pers->sync_request && !mddev->external) { 6865 printk(KERN_INFO "md: %s in immediate safe mode\n", 6866 mdname(mddev)); 6867 mddev->safemode = 2; 6868 } 6869 flush_signals(current); 6870 } 6871 6872 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 6873 return; 6874 if ( ! ( 6875 (mddev->flags && !mddev->external) || 6876 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 6877 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 6878 (mddev->external == 0 && mddev->safemode == 1) || 6879 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 6880 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 6881 )) 6882 return; 6883 6884 if (mddev_trylock(mddev)) { 6885 int spares = 0; 6886 6887 if (mddev->ro) { 6888 /* Only thing we do on a ro array is remove 6889 * failed devices. 6890 */ 6891 remove_and_add_spares(mddev); 6892 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6893 goto unlock; 6894 } 6895 6896 if (!mddev->external) { 6897 int did_change = 0; 6898 spin_lock_irq(&mddev->write_lock); 6899 if (mddev->safemode && 6900 !atomic_read(&mddev->writes_pending) && 6901 !mddev->in_sync && 6902 mddev->recovery_cp == MaxSector) { 6903 mddev->in_sync = 1; 6904 did_change = 1; 6905 if (mddev->persistent) 6906 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6907 } 6908 if (mddev->safemode == 1) 6909 mddev->safemode = 0; 6910 spin_unlock_irq(&mddev->write_lock); 6911 if (did_change) 6912 sysfs_notify_dirent(mddev->sysfs_state); 6913 } 6914 6915 if (mddev->flags) 6916 md_update_sb(mddev, 0); 6917 6918 list_for_each_entry(rdev, &mddev->disks, same_set) 6919 if (test_and_clear_bit(StateChanged, &rdev->flags)) 6920 sysfs_notify_dirent(rdev->sysfs_state); 6921 6922 6923 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 6924 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 6925 /* resync/recovery still happening */ 6926 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6927 goto unlock; 6928 } 6929 if (mddev->sync_thread) { 6930 /* resync has finished, collect result */ 6931 md_unregister_thread(mddev->sync_thread); 6932 mddev->sync_thread = NULL; 6933 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 6934 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 6935 /* success...*/ 6936 /* activate any spares */ 6937 if (mddev->pers->spare_active(mddev)) 6938 sysfs_notify(&mddev->kobj, NULL, 6939 "degraded"); 6940 } 6941 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 6942 mddev->pers->finish_reshape) 6943 mddev->pers->finish_reshape(mddev); 6944 md_update_sb(mddev, 1); 6945 6946 /* if array is no-longer degraded, then any saved_raid_disk 6947 * information must be scrapped 6948 */ 6949 if (!mddev->degraded) 6950 list_for_each_entry(rdev, &mddev->disks, same_set) 6951 rdev->saved_raid_disk = -1; 6952 6953 mddev->recovery = 0; 6954 /* flag recovery needed just to double check */ 6955 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6956 sysfs_notify_dirent(mddev->sysfs_action); 6957 md_new_event(mddev); 6958 goto unlock; 6959 } 6960 /* Set RUNNING before clearing NEEDED to avoid 6961 * any transients in the value of "sync_action". 6962 */ 6963 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6964 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6965 /* Clear some bits that don't mean anything, but 6966 * might be left set 6967 */ 6968 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 6969 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 6970 6971 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 6972 goto unlock; 6973 /* no recovery is running. 6974 * remove any failed drives, then 6975 * add spares if possible. 6976 * Spare are also removed and re-added, to allow 6977 * the personality to fail the re-add. 6978 */ 6979 6980 if (mddev->reshape_position != MaxSector) { 6981 if (mddev->pers->check_reshape == NULL || 6982 mddev->pers->check_reshape(mddev) != 0) 6983 /* Cannot proceed */ 6984 goto unlock; 6985 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6986 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6987 } else if ((spares = remove_and_add_spares(mddev))) { 6988 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6989 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6990 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 6991 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6992 } else if (mddev->recovery_cp < MaxSector) { 6993 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6994 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6995 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 6996 /* nothing to be done ... */ 6997 goto unlock; 6998 6999 if (mddev->pers->sync_request) { 7000 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 7001 /* We are adding a device or devices to an array 7002 * which has the bitmap stored on all devices. 7003 * So make sure all bitmap pages get written 7004 */ 7005 bitmap_write_all(mddev->bitmap); 7006 } 7007 mddev->sync_thread = md_register_thread(md_do_sync, 7008 mddev, 7009 "resync"); 7010 if (!mddev->sync_thread) { 7011 printk(KERN_ERR "%s: could not start resync" 7012 " thread...\n", 7013 mdname(mddev)); 7014 /* leave the spares where they are, it shouldn't hurt */ 7015 mddev->recovery = 0; 7016 } else 7017 md_wakeup_thread(mddev->sync_thread); 7018 sysfs_notify_dirent(mddev->sysfs_action); 7019 md_new_event(mddev); 7020 } 7021 unlock: 7022 if (!mddev->sync_thread) { 7023 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7024 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7025 &mddev->recovery)) 7026 if (mddev->sysfs_action) 7027 sysfs_notify_dirent(mddev->sysfs_action); 7028 } 7029 mddev_unlock(mddev); 7030 } 7031 } 7032 7033 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 7034 { 7035 sysfs_notify_dirent(rdev->sysfs_state); 7036 wait_event_timeout(rdev->blocked_wait, 7037 !test_bit(Blocked, &rdev->flags), 7038 msecs_to_jiffies(5000)); 7039 rdev_dec_pending(rdev, mddev); 7040 } 7041 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7042 7043 static int md_notify_reboot(struct notifier_block *this, 7044 unsigned long code, void *x) 7045 { 7046 struct list_head *tmp; 7047 mddev_t *mddev; 7048 7049 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 7050 7051 printk(KERN_INFO "md: stopping all md devices.\n"); 7052 7053 for_each_mddev(mddev, tmp) 7054 if (mddev_trylock(mddev)) { 7055 /* Force a switch to readonly even array 7056 * appears to still be in use. Hence 7057 * the '100'. 7058 */ 7059 do_md_stop(mddev, 1, 100); 7060 mddev_unlock(mddev); 7061 } 7062 /* 7063 * certain more exotic SCSI devices are known to be 7064 * volatile wrt too early system reboots. While the 7065 * right place to handle this issue is the given 7066 * driver, we do want to have a safe RAID driver ... 7067 */ 7068 mdelay(1000*1); 7069 } 7070 return NOTIFY_DONE; 7071 } 7072 7073 static struct notifier_block md_notifier = { 7074 .notifier_call = md_notify_reboot, 7075 .next = NULL, 7076 .priority = INT_MAX, /* before any real devices */ 7077 }; 7078 7079 static void md_geninit(void) 7080 { 7081 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 7082 7083 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 7084 } 7085 7086 static int __init md_init(void) 7087 { 7088 if (register_blkdev(MD_MAJOR, "md")) 7089 return -1; 7090 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 7091 unregister_blkdev(MD_MAJOR, "md"); 7092 return -1; 7093 } 7094 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 7095 md_probe, NULL, NULL); 7096 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 7097 md_probe, NULL, NULL); 7098 7099 register_reboot_notifier(&md_notifier); 7100 raid_table_header = register_sysctl_table(raid_root_table); 7101 7102 md_geninit(); 7103 return 0; 7104 } 7105 7106 7107 #ifndef MODULE 7108 7109 /* 7110 * Searches all registered partitions for autorun RAID arrays 7111 * at boot time. 7112 */ 7113 7114 static LIST_HEAD(all_detected_devices); 7115 struct detected_devices_node { 7116 struct list_head list; 7117 dev_t dev; 7118 }; 7119 7120 void md_autodetect_dev(dev_t dev) 7121 { 7122 struct detected_devices_node *node_detected_dev; 7123 7124 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 7125 if (node_detected_dev) { 7126 node_detected_dev->dev = dev; 7127 list_add_tail(&node_detected_dev->list, &all_detected_devices); 7128 } else { 7129 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 7130 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 7131 } 7132 } 7133 7134 7135 static void autostart_arrays(int part) 7136 { 7137 mdk_rdev_t *rdev; 7138 struct detected_devices_node *node_detected_dev; 7139 dev_t dev; 7140 int i_scanned, i_passed; 7141 7142 i_scanned = 0; 7143 i_passed = 0; 7144 7145 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 7146 7147 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 7148 i_scanned++; 7149 node_detected_dev = list_entry(all_detected_devices.next, 7150 struct detected_devices_node, list); 7151 list_del(&node_detected_dev->list); 7152 dev = node_detected_dev->dev; 7153 kfree(node_detected_dev); 7154 rdev = md_import_device(dev,0, 90); 7155 if (IS_ERR(rdev)) 7156 continue; 7157 7158 if (test_bit(Faulty, &rdev->flags)) { 7159 MD_BUG(); 7160 continue; 7161 } 7162 set_bit(AutoDetected, &rdev->flags); 7163 list_add(&rdev->same_set, &pending_raid_disks); 7164 i_passed++; 7165 } 7166 7167 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 7168 i_scanned, i_passed); 7169 7170 autorun_devices(part); 7171 } 7172 7173 #endif /* !MODULE */ 7174 7175 static __exit void md_exit(void) 7176 { 7177 mddev_t *mddev; 7178 struct list_head *tmp; 7179 7180 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 7181 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 7182 7183 unregister_blkdev(MD_MAJOR,"md"); 7184 unregister_blkdev(mdp_major, "mdp"); 7185 unregister_reboot_notifier(&md_notifier); 7186 unregister_sysctl_table(raid_table_header); 7187 remove_proc_entry("mdstat", NULL); 7188 for_each_mddev(mddev, tmp) { 7189 export_array(mddev); 7190 mddev->hold_active = 0; 7191 } 7192 } 7193 7194 subsys_initcall(md_init); 7195 module_exit(md_exit) 7196 7197 static int get_ro(char *buffer, struct kernel_param *kp) 7198 { 7199 return sprintf(buffer, "%d", start_readonly); 7200 } 7201 static int set_ro(const char *val, struct kernel_param *kp) 7202 { 7203 char *e; 7204 int num = simple_strtoul(val, &e, 10); 7205 if (*val && (*e == '\0' || *e == '\n')) { 7206 start_readonly = num; 7207 return 0; 7208 } 7209 return -EINVAL; 7210 } 7211 7212 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 7213 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 7214 7215 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 7216 7217 EXPORT_SYMBOL(register_md_personality); 7218 EXPORT_SYMBOL(unregister_md_personality); 7219 EXPORT_SYMBOL(md_error); 7220 EXPORT_SYMBOL(md_done_sync); 7221 EXPORT_SYMBOL(md_write_start); 7222 EXPORT_SYMBOL(md_write_end); 7223 EXPORT_SYMBOL(md_register_thread); 7224 EXPORT_SYMBOL(md_unregister_thread); 7225 EXPORT_SYMBOL(md_wakeup_thread); 7226 EXPORT_SYMBOL(md_check_recovery); 7227 MODULE_LICENSE("GPL"); 7228 MODULE_DESCRIPTION("MD RAID framework"); 7229 MODULE_ALIAS("md"); 7230 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 7231