1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected by pers_lock. */ 74 static LIST_HEAD(pers_list); 75 static DEFINE_SPINLOCK(pers_lock); 76 77 static const struct kobj_type md_ktype; 78 79 struct md_cluster_operations *md_cluster_ops; 80 EXPORT_SYMBOL(md_cluster_ops); 81 static struct module *md_cluster_mod; 82 83 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 84 static struct workqueue_struct *md_wq; 85 86 /* 87 * This workqueue is used for sync_work to register new sync_thread, and for 88 * del_work to remove rdev, and for event_work that is only set by dm-raid. 89 * 90 * Noted that sync_work will grab reconfig_mutex, hence never flush this 91 * workqueue whith reconfig_mutex grabbed. 92 */ 93 static struct workqueue_struct *md_misc_wq; 94 struct workqueue_struct *md_bitmap_wq; 95 96 static int remove_and_add_spares(struct mddev *mddev, 97 struct md_rdev *this); 98 static void mddev_detach(struct mddev *mddev); 99 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev); 100 static void md_wakeup_thread_directly(struct md_thread __rcu *thread); 101 102 enum md_ro_state { 103 MD_RDWR, 104 MD_RDONLY, 105 MD_AUTO_READ, 106 MD_MAX_STATE 107 }; 108 109 static bool md_is_rdwr(struct mddev *mddev) 110 { 111 return (mddev->ro == MD_RDWR); 112 } 113 114 /* 115 * Default number of read corrections we'll attempt on an rdev 116 * before ejecting it from the array. We divide the read error 117 * count by 2 for every hour elapsed between read errors. 118 */ 119 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 120 /* Default safemode delay: 200 msec */ 121 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 122 /* 123 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 124 * is 1000 KB/sec, so the extra system load does not show up that much. 125 * Increase it if you want to have more _guaranteed_ speed. Note that 126 * the RAID driver will use the maximum available bandwidth if the IO 127 * subsystem is idle. There is also an 'absolute maximum' reconstruction 128 * speed limit - in case reconstruction slows down your system despite 129 * idle IO detection. 130 * 131 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 132 * or /sys/block/mdX/md/sync_speed_{min,max} 133 */ 134 135 static int sysctl_speed_limit_min = 1000; 136 static int sysctl_speed_limit_max = 200000; 137 static inline int speed_min(struct mddev *mddev) 138 { 139 return mddev->sync_speed_min ? 140 mddev->sync_speed_min : sysctl_speed_limit_min; 141 } 142 143 static inline int speed_max(struct mddev *mddev) 144 { 145 return mddev->sync_speed_max ? 146 mddev->sync_speed_max : sysctl_speed_limit_max; 147 } 148 149 static void rdev_uninit_serial(struct md_rdev *rdev) 150 { 151 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 152 return; 153 154 kvfree(rdev->serial); 155 rdev->serial = NULL; 156 } 157 158 static void rdevs_uninit_serial(struct mddev *mddev) 159 { 160 struct md_rdev *rdev; 161 162 rdev_for_each(rdev, mddev) 163 rdev_uninit_serial(rdev); 164 } 165 166 static int rdev_init_serial(struct md_rdev *rdev) 167 { 168 /* serial_nums equals with BARRIER_BUCKETS_NR */ 169 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 170 struct serial_in_rdev *serial = NULL; 171 172 if (test_bit(CollisionCheck, &rdev->flags)) 173 return 0; 174 175 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 176 GFP_KERNEL); 177 if (!serial) 178 return -ENOMEM; 179 180 for (i = 0; i < serial_nums; i++) { 181 struct serial_in_rdev *serial_tmp = &serial[i]; 182 183 spin_lock_init(&serial_tmp->serial_lock); 184 serial_tmp->serial_rb = RB_ROOT_CACHED; 185 init_waitqueue_head(&serial_tmp->serial_io_wait); 186 } 187 188 rdev->serial = serial; 189 set_bit(CollisionCheck, &rdev->flags); 190 191 return 0; 192 } 193 194 static int rdevs_init_serial(struct mddev *mddev) 195 { 196 struct md_rdev *rdev; 197 int ret = 0; 198 199 rdev_for_each(rdev, mddev) { 200 ret = rdev_init_serial(rdev); 201 if (ret) 202 break; 203 } 204 205 /* Free all resources if pool is not existed */ 206 if (ret && !mddev->serial_info_pool) 207 rdevs_uninit_serial(mddev); 208 209 return ret; 210 } 211 212 /* 213 * rdev needs to enable serial stuffs if it meets the conditions: 214 * 1. it is multi-queue device flaged with writemostly. 215 * 2. the write-behind mode is enabled. 216 */ 217 static int rdev_need_serial(struct md_rdev *rdev) 218 { 219 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 220 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 221 test_bit(WriteMostly, &rdev->flags)); 222 } 223 224 /* 225 * Init resource for rdev(s), then create serial_info_pool if: 226 * 1. rdev is the first device which return true from rdev_enable_serial. 227 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 228 */ 229 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev) 230 { 231 int ret = 0; 232 233 if (rdev && !rdev_need_serial(rdev) && 234 !test_bit(CollisionCheck, &rdev->flags)) 235 return; 236 237 if (!rdev) 238 ret = rdevs_init_serial(mddev); 239 else 240 ret = rdev_init_serial(rdev); 241 if (ret) 242 return; 243 244 if (mddev->serial_info_pool == NULL) { 245 /* 246 * already in memalloc noio context by 247 * mddev_suspend() 248 */ 249 mddev->serial_info_pool = 250 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 251 sizeof(struct serial_info)); 252 if (!mddev->serial_info_pool) { 253 rdevs_uninit_serial(mddev); 254 pr_err("can't alloc memory pool for serialization\n"); 255 } 256 } 257 } 258 259 /* 260 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 261 * 1. rdev is the last device flaged with CollisionCheck. 262 * 2. when bitmap is destroyed while policy is not enabled. 263 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 264 */ 265 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev) 266 { 267 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 268 return; 269 270 if (mddev->serial_info_pool) { 271 struct md_rdev *temp; 272 int num = 0; /* used to track if other rdevs need the pool */ 273 274 rdev_for_each(temp, mddev) { 275 if (!rdev) { 276 if (!mddev->serialize_policy || 277 !rdev_need_serial(temp)) 278 rdev_uninit_serial(temp); 279 else 280 num++; 281 } else if (temp != rdev && 282 test_bit(CollisionCheck, &temp->flags)) 283 num++; 284 } 285 286 if (rdev) 287 rdev_uninit_serial(rdev); 288 289 if (num) 290 pr_info("The mempool could be used by other devices\n"); 291 else { 292 mempool_destroy(mddev->serial_info_pool); 293 mddev->serial_info_pool = NULL; 294 } 295 } 296 } 297 298 static struct ctl_table_header *raid_table_header; 299 300 static struct ctl_table raid_table[] = { 301 { 302 .procname = "speed_limit_min", 303 .data = &sysctl_speed_limit_min, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { 309 .procname = "speed_limit_max", 310 .data = &sysctl_speed_limit_max, 311 .maxlen = sizeof(int), 312 .mode = S_IRUGO|S_IWUSR, 313 .proc_handler = proc_dointvec, 314 }, 315 }; 316 317 static int start_readonly; 318 319 /* 320 * The original mechanism for creating an md device is to create 321 * a device node in /dev and to open it. This causes races with device-close. 322 * The preferred method is to write to the "new_array" module parameter. 323 * This can avoid races. 324 * Setting create_on_open to false disables the original mechanism 325 * so all the races disappear. 326 */ 327 static bool create_on_open = true; 328 329 /* 330 * We have a system wide 'event count' that is incremented 331 * on any 'interesting' event, and readers of /proc/mdstat 332 * can use 'poll' or 'select' to find out when the event 333 * count increases. 334 * 335 * Events are: 336 * start array, stop array, error, add device, remove device, 337 * start build, activate spare 338 */ 339 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 340 static atomic_t md_event_count; 341 void md_new_event(void) 342 { 343 atomic_inc(&md_event_count); 344 wake_up(&md_event_waiters); 345 } 346 EXPORT_SYMBOL_GPL(md_new_event); 347 348 /* 349 * Enables to iterate over all existing md arrays 350 * all_mddevs_lock protects this list. 351 */ 352 static LIST_HEAD(all_mddevs); 353 static DEFINE_SPINLOCK(all_mddevs_lock); 354 355 static bool is_md_suspended(struct mddev *mddev) 356 { 357 return percpu_ref_is_dying(&mddev->active_io); 358 } 359 /* Rather than calling directly into the personality make_request function, 360 * IO requests come here first so that we can check if the device is 361 * being suspended pending a reconfiguration. 362 * We hold a refcount over the call to ->make_request. By the time that 363 * call has finished, the bio has been linked into some internal structure 364 * and so is visible to ->quiesce(), so we don't need the refcount any more. 365 */ 366 static bool is_suspended(struct mddev *mddev, struct bio *bio) 367 { 368 if (is_md_suspended(mddev)) 369 return true; 370 if (bio_data_dir(bio) != WRITE) 371 return false; 372 if (READ_ONCE(mddev->suspend_lo) >= READ_ONCE(mddev->suspend_hi)) 373 return false; 374 if (bio->bi_iter.bi_sector >= READ_ONCE(mddev->suspend_hi)) 375 return false; 376 if (bio_end_sector(bio) < READ_ONCE(mddev->suspend_lo)) 377 return false; 378 return true; 379 } 380 381 void md_handle_request(struct mddev *mddev, struct bio *bio) 382 { 383 check_suspended: 384 if (is_suspended(mddev, bio)) { 385 DEFINE_WAIT(__wait); 386 /* Bail out if REQ_NOWAIT is set for the bio */ 387 if (bio->bi_opf & REQ_NOWAIT) { 388 bio_wouldblock_error(bio); 389 return; 390 } 391 for (;;) { 392 prepare_to_wait(&mddev->sb_wait, &__wait, 393 TASK_UNINTERRUPTIBLE); 394 if (!is_suspended(mddev, bio)) 395 break; 396 schedule(); 397 } 398 finish_wait(&mddev->sb_wait, &__wait); 399 } 400 if (!percpu_ref_tryget_live(&mddev->active_io)) 401 goto check_suspended; 402 403 if (!mddev->pers->make_request(mddev, bio)) { 404 percpu_ref_put(&mddev->active_io); 405 goto check_suspended; 406 } 407 408 percpu_ref_put(&mddev->active_io); 409 } 410 EXPORT_SYMBOL(md_handle_request); 411 412 static void md_submit_bio(struct bio *bio) 413 { 414 const int rw = bio_data_dir(bio); 415 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 416 417 if (mddev == NULL || mddev->pers == NULL) { 418 bio_io_error(bio); 419 return; 420 } 421 422 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 423 bio_io_error(bio); 424 return; 425 } 426 427 bio = bio_split_to_limits(bio); 428 if (!bio) 429 return; 430 431 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) { 432 if (bio_sectors(bio) != 0) 433 bio->bi_status = BLK_STS_IOERR; 434 bio_endio(bio); 435 return; 436 } 437 438 /* bio could be mergeable after passing to underlayer */ 439 bio->bi_opf &= ~REQ_NOMERGE; 440 441 md_handle_request(mddev, bio); 442 } 443 444 /* 445 * Make sure no new requests are submitted to the device, and any requests that 446 * have been submitted are completely handled. 447 */ 448 int mddev_suspend(struct mddev *mddev, bool interruptible) 449 { 450 int err = 0; 451 452 /* 453 * hold reconfig_mutex to wait for normal io will deadlock, because 454 * other context can't update super_block, and normal io can rely on 455 * updating super_block. 456 */ 457 lockdep_assert_not_held(&mddev->reconfig_mutex); 458 459 if (interruptible) 460 err = mutex_lock_interruptible(&mddev->suspend_mutex); 461 else 462 mutex_lock(&mddev->suspend_mutex); 463 if (err) 464 return err; 465 466 if (mddev->suspended) { 467 WRITE_ONCE(mddev->suspended, mddev->suspended + 1); 468 mutex_unlock(&mddev->suspend_mutex); 469 return 0; 470 } 471 472 percpu_ref_kill(&mddev->active_io); 473 if (interruptible) 474 err = wait_event_interruptible(mddev->sb_wait, 475 percpu_ref_is_zero(&mddev->active_io)); 476 else 477 wait_event(mddev->sb_wait, 478 percpu_ref_is_zero(&mddev->active_io)); 479 if (err) { 480 percpu_ref_resurrect(&mddev->active_io); 481 mutex_unlock(&mddev->suspend_mutex); 482 return err; 483 } 484 485 /* 486 * For raid456, io might be waiting for reshape to make progress, 487 * allow new reshape to start while waiting for io to be done to 488 * prevent deadlock. 489 */ 490 WRITE_ONCE(mddev->suspended, mddev->suspended + 1); 491 492 del_timer_sync(&mddev->safemode_timer); 493 /* restrict memory reclaim I/O during raid array is suspend */ 494 mddev->noio_flag = memalloc_noio_save(); 495 496 mutex_unlock(&mddev->suspend_mutex); 497 return 0; 498 } 499 EXPORT_SYMBOL_GPL(mddev_suspend); 500 501 static void __mddev_resume(struct mddev *mddev, bool recovery_needed) 502 { 503 lockdep_assert_not_held(&mddev->reconfig_mutex); 504 505 mutex_lock(&mddev->suspend_mutex); 506 WRITE_ONCE(mddev->suspended, mddev->suspended - 1); 507 if (mddev->suspended) { 508 mutex_unlock(&mddev->suspend_mutex); 509 return; 510 } 511 512 /* entred the memalloc scope from mddev_suspend() */ 513 memalloc_noio_restore(mddev->noio_flag); 514 515 percpu_ref_resurrect(&mddev->active_io); 516 wake_up(&mddev->sb_wait); 517 518 if (recovery_needed) 519 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 520 md_wakeup_thread(mddev->thread); 521 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 522 523 mutex_unlock(&mddev->suspend_mutex); 524 } 525 526 void mddev_resume(struct mddev *mddev) 527 { 528 return __mddev_resume(mddev, true); 529 } 530 EXPORT_SYMBOL_GPL(mddev_resume); 531 532 /* 533 * Generic flush handling for md 534 */ 535 536 static void md_end_flush(struct bio *bio) 537 { 538 struct md_rdev *rdev = bio->bi_private; 539 struct mddev *mddev = rdev->mddev; 540 541 bio_put(bio); 542 543 rdev_dec_pending(rdev, mddev); 544 545 if (atomic_dec_and_test(&mddev->flush_pending)) { 546 /* The pair is percpu_ref_get() from md_flush_request() */ 547 percpu_ref_put(&mddev->active_io); 548 549 /* The pre-request flush has finished */ 550 queue_work(md_wq, &mddev->flush_work); 551 } 552 } 553 554 static void md_submit_flush_data(struct work_struct *ws); 555 556 static void submit_flushes(struct work_struct *ws) 557 { 558 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 559 struct md_rdev *rdev; 560 561 mddev->start_flush = ktime_get_boottime(); 562 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 563 atomic_set(&mddev->flush_pending, 1); 564 rcu_read_lock(); 565 rdev_for_each_rcu(rdev, mddev) 566 if (rdev->raid_disk >= 0 && 567 !test_bit(Faulty, &rdev->flags)) { 568 struct bio *bi; 569 570 atomic_inc(&rdev->nr_pending); 571 rcu_read_unlock(); 572 bi = bio_alloc_bioset(rdev->bdev, 0, 573 REQ_OP_WRITE | REQ_PREFLUSH, 574 GFP_NOIO, &mddev->bio_set); 575 bi->bi_end_io = md_end_flush; 576 bi->bi_private = rdev; 577 atomic_inc(&mddev->flush_pending); 578 submit_bio(bi); 579 rcu_read_lock(); 580 } 581 rcu_read_unlock(); 582 if (atomic_dec_and_test(&mddev->flush_pending)) 583 queue_work(md_wq, &mddev->flush_work); 584 } 585 586 static void md_submit_flush_data(struct work_struct *ws) 587 { 588 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 589 struct bio *bio = mddev->flush_bio; 590 591 /* 592 * must reset flush_bio before calling into md_handle_request to avoid a 593 * deadlock, because other bios passed md_handle_request suspend check 594 * could wait for this and below md_handle_request could wait for those 595 * bios because of suspend check 596 */ 597 spin_lock_irq(&mddev->lock); 598 mddev->prev_flush_start = mddev->start_flush; 599 mddev->flush_bio = NULL; 600 spin_unlock_irq(&mddev->lock); 601 wake_up(&mddev->sb_wait); 602 603 if (bio->bi_iter.bi_size == 0) { 604 /* an empty barrier - all done */ 605 bio_endio(bio); 606 } else { 607 bio->bi_opf &= ~REQ_PREFLUSH; 608 md_handle_request(mddev, bio); 609 } 610 } 611 612 /* 613 * Manages consolidation of flushes and submitting any flushes needed for 614 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 615 * being finished in another context. Returns false if the flushing is 616 * complete but still needs the I/O portion of the bio to be processed. 617 */ 618 bool md_flush_request(struct mddev *mddev, struct bio *bio) 619 { 620 ktime_t req_start = ktime_get_boottime(); 621 spin_lock_irq(&mddev->lock); 622 /* flush requests wait until ongoing flush completes, 623 * hence coalescing all the pending requests. 624 */ 625 wait_event_lock_irq(mddev->sb_wait, 626 !mddev->flush_bio || 627 ktime_before(req_start, mddev->prev_flush_start), 628 mddev->lock); 629 /* new request after previous flush is completed */ 630 if (ktime_after(req_start, mddev->prev_flush_start)) { 631 WARN_ON(mddev->flush_bio); 632 /* 633 * Grab a reference to make sure mddev_suspend() will wait for 634 * this flush to be done. 635 * 636 * md_flush_reqeust() is called under md_handle_request() and 637 * 'active_io' is already grabbed, hence percpu_ref_is_zero() 638 * won't pass, percpu_ref_tryget_live() can't be used because 639 * percpu_ref_kill() can be called by mddev_suspend() 640 * concurrently. 641 */ 642 WARN_ON(percpu_ref_is_zero(&mddev->active_io)); 643 percpu_ref_get(&mddev->active_io); 644 mddev->flush_bio = bio; 645 bio = NULL; 646 } 647 spin_unlock_irq(&mddev->lock); 648 649 if (!bio) { 650 INIT_WORK(&mddev->flush_work, submit_flushes); 651 queue_work(md_wq, &mddev->flush_work); 652 } else { 653 /* flush was performed for some other bio while we waited. */ 654 if (bio->bi_iter.bi_size == 0) 655 /* an empty barrier - all done */ 656 bio_endio(bio); 657 else { 658 bio->bi_opf &= ~REQ_PREFLUSH; 659 return false; 660 } 661 } 662 return true; 663 } 664 EXPORT_SYMBOL(md_flush_request); 665 666 static inline struct mddev *mddev_get(struct mddev *mddev) 667 { 668 lockdep_assert_held(&all_mddevs_lock); 669 670 if (test_bit(MD_DELETED, &mddev->flags)) 671 return NULL; 672 atomic_inc(&mddev->active); 673 return mddev; 674 } 675 676 static void mddev_delayed_delete(struct work_struct *ws); 677 678 static void __mddev_put(struct mddev *mddev) 679 { 680 if (mddev->raid_disks || !list_empty(&mddev->disks) || 681 mddev->ctime || mddev->hold_active) 682 return; 683 684 /* Array is not configured at all, and not held active, so destroy it */ 685 set_bit(MD_DELETED, &mddev->flags); 686 687 /* 688 * Call queue_work inside the spinlock so that flush_workqueue() after 689 * mddev_find will succeed in waiting for the work to be done. 690 */ 691 queue_work(md_misc_wq, &mddev->del_work); 692 } 693 694 void mddev_put(struct mddev *mddev) 695 { 696 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 697 return; 698 699 __mddev_put(mddev); 700 spin_unlock(&all_mddevs_lock); 701 } 702 703 static void md_safemode_timeout(struct timer_list *t); 704 static void md_start_sync(struct work_struct *ws); 705 706 static void active_io_release(struct percpu_ref *ref) 707 { 708 struct mddev *mddev = container_of(ref, struct mddev, active_io); 709 710 wake_up(&mddev->sb_wait); 711 } 712 713 static void no_op(struct percpu_ref *r) {} 714 715 int mddev_init(struct mddev *mddev) 716 { 717 718 if (percpu_ref_init(&mddev->active_io, active_io_release, 719 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) 720 return -ENOMEM; 721 722 if (percpu_ref_init(&mddev->writes_pending, no_op, 723 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) { 724 percpu_ref_exit(&mddev->active_io); 725 return -ENOMEM; 726 } 727 728 /* We want to start with the refcount at zero */ 729 percpu_ref_put(&mddev->writes_pending); 730 731 mutex_init(&mddev->open_mutex); 732 mutex_init(&mddev->reconfig_mutex); 733 mutex_init(&mddev->sync_mutex); 734 mutex_init(&mddev->suspend_mutex); 735 mutex_init(&mddev->bitmap_info.mutex); 736 INIT_LIST_HEAD(&mddev->disks); 737 INIT_LIST_HEAD(&mddev->all_mddevs); 738 INIT_LIST_HEAD(&mddev->deleting); 739 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 740 atomic_set(&mddev->active, 1); 741 atomic_set(&mddev->openers, 0); 742 atomic_set(&mddev->sync_seq, 0); 743 spin_lock_init(&mddev->lock); 744 atomic_set(&mddev->flush_pending, 0); 745 init_waitqueue_head(&mddev->sb_wait); 746 init_waitqueue_head(&mddev->recovery_wait); 747 mddev->reshape_position = MaxSector; 748 mddev->reshape_backwards = 0; 749 mddev->last_sync_action = "none"; 750 mddev->resync_min = 0; 751 mddev->resync_max = MaxSector; 752 mddev->level = LEVEL_NONE; 753 754 INIT_WORK(&mddev->sync_work, md_start_sync); 755 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 756 757 return 0; 758 } 759 EXPORT_SYMBOL_GPL(mddev_init); 760 761 void mddev_destroy(struct mddev *mddev) 762 { 763 percpu_ref_exit(&mddev->active_io); 764 percpu_ref_exit(&mddev->writes_pending); 765 } 766 EXPORT_SYMBOL_GPL(mddev_destroy); 767 768 static struct mddev *mddev_find_locked(dev_t unit) 769 { 770 struct mddev *mddev; 771 772 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 773 if (mddev->unit == unit) 774 return mddev; 775 776 return NULL; 777 } 778 779 /* find an unused unit number */ 780 static dev_t mddev_alloc_unit(void) 781 { 782 static int next_minor = 512; 783 int start = next_minor; 784 bool is_free = 0; 785 dev_t dev = 0; 786 787 while (!is_free) { 788 dev = MKDEV(MD_MAJOR, next_minor); 789 next_minor++; 790 if (next_minor > MINORMASK) 791 next_minor = 0; 792 if (next_minor == start) 793 return 0; /* Oh dear, all in use. */ 794 is_free = !mddev_find_locked(dev); 795 } 796 797 return dev; 798 } 799 800 static struct mddev *mddev_alloc(dev_t unit) 801 { 802 struct mddev *new; 803 int error; 804 805 if (unit && MAJOR(unit) != MD_MAJOR) 806 unit &= ~((1 << MdpMinorShift) - 1); 807 808 new = kzalloc(sizeof(*new), GFP_KERNEL); 809 if (!new) 810 return ERR_PTR(-ENOMEM); 811 812 error = mddev_init(new); 813 if (error) 814 goto out_free_new; 815 816 spin_lock(&all_mddevs_lock); 817 if (unit) { 818 error = -EEXIST; 819 if (mddev_find_locked(unit)) 820 goto out_destroy_new; 821 new->unit = unit; 822 if (MAJOR(unit) == MD_MAJOR) 823 new->md_minor = MINOR(unit); 824 else 825 new->md_minor = MINOR(unit) >> MdpMinorShift; 826 new->hold_active = UNTIL_IOCTL; 827 } else { 828 error = -ENODEV; 829 new->unit = mddev_alloc_unit(); 830 if (!new->unit) 831 goto out_destroy_new; 832 new->md_minor = MINOR(new->unit); 833 new->hold_active = UNTIL_STOP; 834 } 835 836 list_add(&new->all_mddevs, &all_mddevs); 837 spin_unlock(&all_mddevs_lock); 838 return new; 839 840 out_destroy_new: 841 spin_unlock(&all_mddevs_lock); 842 mddev_destroy(new); 843 out_free_new: 844 kfree(new); 845 return ERR_PTR(error); 846 } 847 848 static void mddev_free(struct mddev *mddev) 849 { 850 spin_lock(&all_mddevs_lock); 851 list_del(&mddev->all_mddevs); 852 spin_unlock(&all_mddevs_lock); 853 854 mddev_destroy(mddev); 855 kfree(mddev); 856 } 857 858 static const struct attribute_group md_redundancy_group; 859 860 void mddev_unlock(struct mddev *mddev) 861 { 862 struct md_rdev *rdev; 863 struct md_rdev *tmp; 864 LIST_HEAD(delete); 865 866 if (!list_empty(&mddev->deleting)) 867 list_splice_init(&mddev->deleting, &delete); 868 869 if (mddev->to_remove) { 870 /* These cannot be removed under reconfig_mutex as 871 * an access to the files will try to take reconfig_mutex 872 * while holding the file unremovable, which leads to 873 * a deadlock. 874 * So hold set sysfs_active while the remove in happeing, 875 * and anything else which might set ->to_remove or my 876 * otherwise change the sysfs namespace will fail with 877 * -EBUSY if sysfs_active is still set. 878 * We set sysfs_active under reconfig_mutex and elsewhere 879 * test it under the same mutex to ensure its correct value 880 * is seen. 881 */ 882 const struct attribute_group *to_remove = mddev->to_remove; 883 mddev->to_remove = NULL; 884 mddev->sysfs_active = 1; 885 mutex_unlock(&mddev->reconfig_mutex); 886 887 if (mddev->kobj.sd) { 888 if (to_remove != &md_redundancy_group) 889 sysfs_remove_group(&mddev->kobj, to_remove); 890 if (mddev->pers == NULL || 891 mddev->pers->sync_request == NULL) { 892 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 893 if (mddev->sysfs_action) 894 sysfs_put(mddev->sysfs_action); 895 if (mddev->sysfs_completed) 896 sysfs_put(mddev->sysfs_completed); 897 if (mddev->sysfs_degraded) 898 sysfs_put(mddev->sysfs_degraded); 899 mddev->sysfs_action = NULL; 900 mddev->sysfs_completed = NULL; 901 mddev->sysfs_degraded = NULL; 902 } 903 } 904 mddev->sysfs_active = 0; 905 } else 906 mutex_unlock(&mddev->reconfig_mutex); 907 908 md_wakeup_thread(mddev->thread); 909 wake_up(&mddev->sb_wait); 910 911 list_for_each_entry_safe(rdev, tmp, &delete, same_set) { 912 list_del_init(&rdev->same_set); 913 kobject_del(&rdev->kobj); 914 export_rdev(rdev, mddev); 915 } 916 } 917 EXPORT_SYMBOL_GPL(mddev_unlock); 918 919 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 920 { 921 struct md_rdev *rdev; 922 923 rdev_for_each_rcu(rdev, mddev) 924 if (rdev->desc_nr == nr) 925 return rdev; 926 927 return NULL; 928 } 929 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 930 931 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 932 { 933 struct md_rdev *rdev; 934 935 rdev_for_each(rdev, mddev) 936 if (rdev->bdev->bd_dev == dev) 937 return rdev; 938 939 return NULL; 940 } 941 942 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 943 { 944 struct md_rdev *rdev; 945 946 rdev_for_each_rcu(rdev, mddev) 947 if (rdev->bdev->bd_dev == dev) 948 return rdev; 949 950 return NULL; 951 } 952 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 953 954 static struct md_personality *find_pers(int level, char *clevel) 955 { 956 struct md_personality *pers; 957 list_for_each_entry(pers, &pers_list, list) { 958 if (level != LEVEL_NONE && pers->level == level) 959 return pers; 960 if (strcmp(pers->name, clevel)==0) 961 return pers; 962 } 963 return NULL; 964 } 965 966 /* return the offset of the super block in 512byte sectors */ 967 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 968 { 969 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 970 } 971 972 static int alloc_disk_sb(struct md_rdev *rdev) 973 { 974 rdev->sb_page = alloc_page(GFP_KERNEL); 975 if (!rdev->sb_page) 976 return -ENOMEM; 977 return 0; 978 } 979 980 void md_rdev_clear(struct md_rdev *rdev) 981 { 982 if (rdev->sb_page) { 983 put_page(rdev->sb_page); 984 rdev->sb_loaded = 0; 985 rdev->sb_page = NULL; 986 rdev->sb_start = 0; 987 rdev->sectors = 0; 988 } 989 if (rdev->bb_page) { 990 put_page(rdev->bb_page); 991 rdev->bb_page = NULL; 992 } 993 badblocks_exit(&rdev->badblocks); 994 } 995 EXPORT_SYMBOL_GPL(md_rdev_clear); 996 997 static void super_written(struct bio *bio) 998 { 999 struct md_rdev *rdev = bio->bi_private; 1000 struct mddev *mddev = rdev->mddev; 1001 1002 if (bio->bi_status) { 1003 pr_err("md: %s gets error=%d\n", __func__, 1004 blk_status_to_errno(bio->bi_status)); 1005 md_error(mddev, rdev); 1006 if (!test_bit(Faulty, &rdev->flags) 1007 && (bio->bi_opf & MD_FAILFAST)) { 1008 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 1009 set_bit(LastDev, &rdev->flags); 1010 } 1011 } else 1012 clear_bit(LastDev, &rdev->flags); 1013 1014 bio_put(bio); 1015 1016 rdev_dec_pending(rdev, mddev); 1017 1018 if (atomic_dec_and_test(&mddev->pending_writes)) 1019 wake_up(&mddev->sb_wait); 1020 } 1021 1022 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 1023 sector_t sector, int size, struct page *page) 1024 { 1025 /* write first size bytes of page to sector of rdev 1026 * Increment mddev->pending_writes before returning 1027 * and decrement it on completion, waking up sb_wait 1028 * if zero is reached. 1029 * If an error occurred, call md_error 1030 */ 1031 struct bio *bio; 1032 1033 if (!page) 1034 return; 1035 1036 if (test_bit(Faulty, &rdev->flags)) 1037 return; 1038 1039 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 1040 1, 1041 REQ_OP_WRITE | REQ_SYNC | REQ_IDLE | REQ_META 1042 | REQ_PREFLUSH | REQ_FUA, 1043 GFP_NOIO, &mddev->sync_set); 1044 1045 atomic_inc(&rdev->nr_pending); 1046 1047 bio->bi_iter.bi_sector = sector; 1048 __bio_add_page(bio, page, size, 0); 1049 bio->bi_private = rdev; 1050 bio->bi_end_io = super_written; 1051 1052 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 1053 test_bit(FailFast, &rdev->flags) && 1054 !test_bit(LastDev, &rdev->flags)) 1055 bio->bi_opf |= MD_FAILFAST; 1056 1057 atomic_inc(&mddev->pending_writes); 1058 submit_bio(bio); 1059 } 1060 1061 int md_super_wait(struct mddev *mddev) 1062 { 1063 /* wait for all superblock writes that were scheduled to complete */ 1064 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 1065 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 1066 return -EAGAIN; 1067 return 0; 1068 } 1069 1070 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 1071 struct page *page, blk_opf_t opf, bool metadata_op) 1072 { 1073 struct bio bio; 1074 struct bio_vec bvec; 1075 1076 if (metadata_op && rdev->meta_bdev) 1077 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 1078 else 1079 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 1080 1081 if (metadata_op) 1082 bio.bi_iter.bi_sector = sector + rdev->sb_start; 1083 else if (rdev->mddev->reshape_position != MaxSector && 1084 (rdev->mddev->reshape_backwards == 1085 (sector >= rdev->mddev->reshape_position))) 1086 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 1087 else 1088 bio.bi_iter.bi_sector = sector + rdev->data_offset; 1089 __bio_add_page(&bio, page, size, 0); 1090 1091 submit_bio_wait(&bio); 1092 1093 return !bio.bi_status; 1094 } 1095 EXPORT_SYMBOL_GPL(sync_page_io); 1096 1097 static int read_disk_sb(struct md_rdev *rdev, int size) 1098 { 1099 if (rdev->sb_loaded) 1100 return 0; 1101 1102 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 1103 goto fail; 1104 rdev->sb_loaded = 1; 1105 return 0; 1106 1107 fail: 1108 pr_err("md: disabled device %pg, could not read superblock.\n", 1109 rdev->bdev); 1110 return -EINVAL; 1111 } 1112 1113 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1114 { 1115 return sb1->set_uuid0 == sb2->set_uuid0 && 1116 sb1->set_uuid1 == sb2->set_uuid1 && 1117 sb1->set_uuid2 == sb2->set_uuid2 && 1118 sb1->set_uuid3 == sb2->set_uuid3; 1119 } 1120 1121 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1122 { 1123 int ret; 1124 mdp_super_t *tmp1, *tmp2; 1125 1126 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1127 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1128 1129 if (!tmp1 || !tmp2) { 1130 ret = 0; 1131 goto abort; 1132 } 1133 1134 *tmp1 = *sb1; 1135 *tmp2 = *sb2; 1136 1137 /* 1138 * nr_disks is not constant 1139 */ 1140 tmp1->nr_disks = 0; 1141 tmp2->nr_disks = 0; 1142 1143 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1144 abort: 1145 kfree(tmp1); 1146 kfree(tmp2); 1147 return ret; 1148 } 1149 1150 static u32 md_csum_fold(u32 csum) 1151 { 1152 csum = (csum & 0xffff) + (csum >> 16); 1153 return (csum & 0xffff) + (csum >> 16); 1154 } 1155 1156 static unsigned int calc_sb_csum(mdp_super_t *sb) 1157 { 1158 u64 newcsum = 0; 1159 u32 *sb32 = (u32*)sb; 1160 int i; 1161 unsigned int disk_csum, csum; 1162 1163 disk_csum = sb->sb_csum; 1164 sb->sb_csum = 0; 1165 1166 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1167 newcsum += sb32[i]; 1168 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1169 1170 #ifdef CONFIG_ALPHA 1171 /* This used to use csum_partial, which was wrong for several 1172 * reasons including that different results are returned on 1173 * different architectures. It isn't critical that we get exactly 1174 * the same return value as before (we always csum_fold before 1175 * testing, and that removes any differences). However as we 1176 * know that csum_partial always returned a 16bit value on 1177 * alphas, do a fold to maximise conformity to previous behaviour. 1178 */ 1179 sb->sb_csum = md_csum_fold(disk_csum); 1180 #else 1181 sb->sb_csum = disk_csum; 1182 #endif 1183 return csum; 1184 } 1185 1186 /* 1187 * Handle superblock details. 1188 * We want to be able to handle multiple superblock formats 1189 * so we have a common interface to them all, and an array of 1190 * different handlers. 1191 * We rely on user-space to write the initial superblock, and support 1192 * reading and updating of superblocks. 1193 * Interface methods are: 1194 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1195 * loads and validates a superblock on dev. 1196 * if refdev != NULL, compare superblocks on both devices 1197 * Return: 1198 * 0 - dev has a superblock that is compatible with refdev 1199 * 1 - dev has a superblock that is compatible and newer than refdev 1200 * so dev should be used as the refdev in future 1201 * -EINVAL superblock incompatible or invalid 1202 * -othererror e.g. -EIO 1203 * 1204 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1205 * Verify that dev is acceptable into mddev. 1206 * The first time, mddev->raid_disks will be 0, and data from 1207 * dev should be merged in. Subsequent calls check that dev 1208 * is new enough. Return 0 or -EINVAL 1209 * 1210 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1211 * Update the superblock for rdev with data in mddev 1212 * This does not write to disc. 1213 * 1214 */ 1215 1216 struct super_type { 1217 char *name; 1218 struct module *owner; 1219 int (*load_super)(struct md_rdev *rdev, 1220 struct md_rdev *refdev, 1221 int minor_version); 1222 int (*validate_super)(struct mddev *mddev, 1223 struct md_rdev *freshest, 1224 struct md_rdev *rdev); 1225 void (*sync_super)(struct mddev *mddev, 1226 struct md_rdev *rdev); 1227 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1228 sector_t num_sectors); 1229 int (*allow_new_offset)(struct md_rdev *rdev, 1230 unsigned long long new_offset); 1231 }; 1232 1233 /* 1234 * Check that the given mddev has no bitmap. 1235 * 1236 * This function is called from the run method of all personalities that do not 1237 * support bitmaps. It prints an error message and returns non-zero if mddev 1238 * has a bitmap. Otherwise, it returns 0. 1239 * 1240 */ 1241 int md_check_no_bitmap(struct mddev *mddev) 1242 { 1243 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1244 return 0; 1245 pr_warn("%s: bitmaps are not supported for %s\n", 1246 mdname(mddev), mddev->pers->name); 1247 return 1; 1248 } 1249 EXPORT_SYMBOL(md_check_no_bitmap); 1250 1251 /* 1252 * load_super for 0.90.0 1253 */ 1254 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1255 { 1256 mdp_super_t *sb; 1257 int ret; 1258 bool spare_disk = true; 1259 1260 /* 1261 * Calculate the position of the superblock (512byte sectors), 1262 * it's at the end of the disk. 1263 * 1264 * It also happens to be a multiple of 4Kb. 1265 */ 1266 rdev->sb_start = calc_dev_sboffset(rdev); 1267 1268 ret = read_disk_sb(rdev, MD_SB_BYTES); 1269 if (ret) 1270 return ret; 1271 1272 ret = -EINVAL; 1273 1274 sb = page_address(rdev->sb_page); 1275 1276 if (sb->md_magic != MD_SB_MAGIC) { 1277 pr_warn("md: invalid raid superblock magic on %pg\n", 1278 rdev->bdev); 1279 goto abort; 1280 } 1281 1282 if (sb->major_version != 0 || 1283 sb->minor_version < 90 || 1284 sb->minor_version > 91) { 1285 pr_warn("Bad version number %d.%d on %pg\n", 1286 sb->major_version, sb->minor_version, rdev->bdev); 1287 goto abort; 1288 } 1289 1290 if (sb->raid_disks <= 0) 1291 goto abort; 1292 1293 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1294 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1295 goto abort; 1296 } 1297 1298 rdev->preferred_minor = sb->md_minor; 1299 rdev->data_offset = 0; 1300 rdev->new_data_offset = 0; 1301 rdev->sb_size = MD_SB_BYTES; 1302 rdev->badblocks.shift = -1; 1303 1304 rdev->desc_nr = sb->this_disk.number; 1305 1306 /* not spare disk */ 1307 if (rdev->desc_nr >= 0 && rdev->desc_nr < MD_SB_DISKS && 1308 sb->disks[rdev->desc_nr].state & ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1309 spare_disk = false; 1310 1311 if (!refdev) { 1312 if (!spare_disk) 1313 ret = 1; 1314 else 1315 ret = 0; 1316 } else { 1317 __u64 ev1, ev2; 1318 mdp_super_t *refsb = page_address(refdev->sb_page); 1319 if (!md_uuid_equal(refsb, sb)) { 1320 pr_warn("md: %pg has different UUID to %pg\n", 1321 rdev->bdev, refdev->bdev); 1322 goto abort; 1323 } 1324 if (!md_sb_equal(refsb, sb)) { 1325 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1326 rdev->bdev, refdev->bdev); 1327 goto abort; 1328 } 1329 ev1 = md_event(sb); 1330 ev2 = md_event(refsb); 1331 1332 if (!spare_disk && ev1 > ev2) 1333 ret = 1; 1334 else 1335 ret = 0; 1336 } 1337 rdev->sectors = rdev->sb_start; 1338 /* Limit to 4TB as metadata cannot record more than that. 1339 * (not needed for Linear and RAID0 as metadata doesn't 1340 * record this size) 1341 */ 1342 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1343 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1344 1345 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1346 /* "this cannot possibly happen" ... */ 1347 ret = -EINVAL; 1348 1349 abort: 1350 return ret; 1351 } 1352 1353 /* 1354 * validate_super for 0.90.0 1355 * note: we are not using "freshest" for 0.9 superblock 1356 */ 1357 static int super_90_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev) 1358 { 1359 mdp_disk_t *desc; 1360 mdp_super_t *sb = page_address(rdev->sb_page); 1361 __u64 ev1 = md_event(sb); 1362 1363 rdev->raid_disk = -1; 1364 clear_bit(Faulty, &rdev->flags); 1365 clear_bit(In_sync, &rdev->flags); 1366 clear_bit(Bitmap_sync, &rdev->flags); 1367 clear_bit(WriteMostly, &rdev->flags); 1368 1369 if (mddev->raid_disks == 0) { 1370 mddev->major_version = 0; 1371 mddev->minor_version = sb->minor_version; 1372 mddev->patch_version = sb->patch_version; 1373 mddev->external = 0; 1374 mddev->chunk_sectors = sb->chunk_size >> 9; 1375 mddev->ctime = sb->ctime; 1376 mddev->utime = sb->utime; 1377 mddev->level = sb->level; 1378 mddev->clevel[0] = 0; 1379 mddev->layout = sb->layout; 1380 mddev->raid_disks = sb->raid_disks; 1381 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1382 mddev->events = ev1; 1383 mddev->bitmap_info.offset = 0; 1384 mddev->bitmap_info.space = 0; 1385 /* bitmap can use 60 K after the 4K superblocks */ 1386 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1387 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1388 mddev->reshape_backwards = 0; 1389 1390 if (mddev->minor_version >= 91) { 1391 mddev->reshape_position = sb->reshape_position; 1392 mddev->delta_disks = sb->delta_disks; 1393 mddev->new_level = sb->new_level; 1394 mddev->new_layout = sb->new_layout; 1395 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1396 if (mddev->delta_disks < 0) 1397 mddev->reshape_backwards = 1; 1398 } else { 1399 mddev->reshape_position = MaxSector; 1400 mddev->delta_disks = 0; 1401 mddev->new_level = mddev->level; 1402 mddev->new_layout = mddev->layout; 1403 mddev->new_chunk_sectors = mddev->chunk_sectors; 1404 } 1405 if (mddev->level == 0) 1406 mddev->layout = -1; 1407 1408 if (sb->state & (1<<MD_SB_CLEAN)) 1409 mddev->recovery_cp = MaxSector; 1410 else { 1411 if (sb->events_hi == sb->cp_events_hi && 1412 sb->events_lo == sb->cp_events_lo) { 1413 mddev->recovery_cp = sb->recovery_cp; 1414 } else 1415 mddev->recovery_cp = 0; 1416 } 1417 1418 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1419 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1420 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1421 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1422 1423 mddev->max_disks = MD_SB_DISKS; 1424 1425 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1426 mddev->bitmap_info.file == NULL) { 1427 mddev->bitmap_info.offset = 1428 mddev->bitmap_info.default_offset; 1429 mddev->bitmap_info.space = 1430 mddev->bitmap_info.default_space; 1431 } 1432 1433 } else if (mddev->pers == NULL) { 1434 /* Insist on good event counter while assembling, except 1435 * for spares (which don't need an event count) */ 1436 ++ev1; 1437 if (sb->disks[rdev->desc_nr].state & ( 1438 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1439 if (ev1 < mddev->events) 1440 return -EINVAL; 1441 } else if (mddev->bitmap) { 1442 /* if adding to array with a bitmap, then we can accept an 1443 * older device ... but not too old. 1444 */ 1445 if (ev1 < mddev->bitmap->events_cleared) 1446 return 0; 1447 if (ev1 < mddev->events) 1448 set_bit(Bitmap_sync, &rdev->flags); 1449 } else { 1450 if (ev1 < mddev->events) 1451 /* just a hot-add of a new device, leave raid_disk at -1 */ 1452 return 0; 1453 } 1454 1455 desc = sb->disks + rdev->desc_nr; 1456 1457 if (desc->state & (1<<MD_DISK_FAULTY)) 1458 set_bit(Faulty, &rdev->flags); 1459 else if (desc->state & (1<<MD_DISK_SYNC)) { 1460 set_bit(In_sync, &rdev->flags); 1461 rdev->raid_disk = desc->raid_disk; 1462 rdev->saved_raid_disk = desc->raid_disk; 1463 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1464 /* active but not in sync implies recovery up to 1465 * reshape position. We don't know exactly where 1466 * that is, so set to zero for now 1467 */ 1468 if (mddev->minor_version >= 91) { 1469 rdev->recovery_offset = 0; 1470 rdev->raid_disk = desc->raid_disk; 1471 } 1472 } 1473 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1474 set_bit(WriteMostly, &rdev->flags); 1475 if (desc->state & (1<<MD_DISK_FAILFAST)) 1476 set_bit(FailFast, &rdev->flags); 1477 return 0; 1478 } 1479 1480 /* 1481 * sync_super for 0.90.0 1482 */ 1483 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1484 { 1485 mdp_super_t *sb; 1486 struct md_rdev *rdev2; 1487 int next_spare = mddev->raid_disks; 1488 1489 /* make rdev->sb match mddev data.. 1490 * 1491 * 1/ zero out disks 1492 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1493 * 3/ any empty disks < next_spare become removed 1494 * 1495 * disks[0] gets initialised to REMOVED because 1496 * we cannot be sure from other fields if it has 1497 * been initialised or not. 1498 */ 1499 int i; 1500 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1501 1502 rdev->sb_size = MD_SB_BYTES; 1503 1504 sb = page_address(rdev->sb_page); 1505 1506 memset(sb, 0, sizeof(*sb)); 1507 1508 sb->md_magic = MD_SB_MAGIC; 1509 sb->major_version = mddev->major_version; 1510 sb->patch_version = mddev->patch_version; 1511 sb->gvalid_words = 0; /* ignored */ 1512 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1513 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1514 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1515 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1516 1517 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1518 sb->level = mddev->level; 1519 sb->size = mddev->dev_sectors / 2; 1520 sb->raid_disks = mddev->raid_disks; 1521 sb->md_minor = mddev->md_minor; 1522 sb->not_persistent = 0; 1523 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1524 sb->state = 0; 1525 sb->events_hi = (mddev->events>>32); 1526 sb->events_lo = (u32)mddev->events; 1527 1528 if (mddev->reshape_position == MaxSector) 1529 sb->minor_version = 90; 1530 else { 1531 sb->minor_version = 91; 1532 sb->reshape_position = mddev->reshape_position; 1533 sb->new_level = mddev->new_level; 1534 sb->delta_disks = mddev->delta_disks; 1535 sb->new_layout = mddev->new_layout; 1536 sb->new_chunk = mddev->new_chunk_sectors << 9; 1537 } 1538 mddev->minor_version = sb->minor_version; 1539 if (mddev->in_sync) 1540 { 1541 sb->recovery_cp = mddev->recovery_cp; 1542 sb->cp_events_hi = (mddev->events>>32); 1543 sb->cp_events_lo = (u32)mddev->events; 1544 if (mddev->recovery_cp == MaxSector) 1545 sb->state = (1<< MD_SB_CLEAN); 1546 } else 1547 sb->recovery_cp = 0; 1548 1549 sb->layout = mddev->layout; 1550 sb->chunk_size = mddev->chunk_sectors << 9; 1551 1552 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1553 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1554 1555 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1556 rdev_for_each(rdev2, mddev) { 1557 mdp_disk_t *d; 1558 int desc_nr; 1559 int is_active = test_bit(In_sync, &rdev2->flags); 1560 1561 if (rdev2->raid_disk >= 0 && 1562 sb->minor_version >= 91) 1563 /* we have nowhere to store the recovery_offset, 1564 * but if it is not below the reshape_position, 1565 * we can piggy-back on that. 1566 */ 1567 is_active = 1; 1568 if (rdev2->raid_disk < 0 || 1569 test_bit(Faulty, &rdev2->flags)) 1570 is_active = 0; 1571 if (is_active) 1572 desc_nr = rdev2->raid_disk; 1573 else 1574 desc_nr = next_spare++; 1575 rdev2->desc_nr = desc_nr; 1576 d = &sb->disks[rdev2->desc_nr]; 1577 nr_disks++; 1578 d->number = rdev2->desc_nr; 1579 d->major = MAJOR(rdev2->bdev->bd_dev); 1580 d->minor = MINOR(rdev2->bdev->bd_dev); 1581 if (is_active) 1582 d->raid_disk = rdev2->raid_disk; 1583 else 1584 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1585 if (test_bit(Faulty, &rdev2->flags)) 1586 d->state = (1<<MD_DISK_FAULTY); 1587 else if (is_active) { 1588 d->state = (1<<MD_DISK_ACTIVE); 1589 if (test_bit(In_sync, &rdev2->flags)) 1590 d->state |= (1<<MD_DISK_SYNC); 1591 active++; 1592 working++; 1593 } else { 1594 d->state = 0; 1595 spare++; 1596 working++; 1597 } 1598 if (test_bit(WriteMostly, &rdev2->flags)) 1599 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1600 if (test_bit(FailFast, &rdev2->flags)) 1601 d->state |= (1<<MD_DISK_FAILFAST); 1602 } 1603 /* now set the "removed" and "faulty" bits on any missing devices */ 1604 for (i=0 ; i < mddev->raid_disks ; i++) { 1605 mdp_disk_t *d = &sb->disks[i]; 1606 if (d->state == 0 && d->number == 0) { 1607 d->number = i; 1608 d->raid_disk = i; 1609 d->state = (1<<MD_DISK_REMOVED); 1610 d->state |= (1<<MD_DISK_FAULTY); 1611 failed++; 1612 } 1613 } 1614 sb->nr_disks = nr_disks; 1615 sb->active_disks = active; 1616 sb->working_disks = working; 1617 sb->failed_disks = failed; 1618 sb->spare_disks = spare; 1619 1620 sb->this_disk = sb->disks[rdev->desc_nr]; 1621 sb->sb_csum = calc_sb_csum(sb); 1622 } 1623 1624 /* 1625 * rdev_size_change for 0.90.0 1626 */ 1627 static unsigned long long 1628 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1629 { 1630 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1631 return 0; /* component must fit device */ 1632 if (rdev->mddev->bitmap_info.offset) 1633 return 0; /* can't move bitmap */ 1634 rdev->sb_start = calc_dev_sboffset(rdev); 1635 if (!num_sectors || num_sectors > rdev->sb_start) 1636 num_sectors = rdev->sb_start; 1637 /* Limit to 4TB as metadata cannot record more than that. 1638 * 4TB == 2^32 KB, or 2*2^32 sectors. 1639 */ 1640 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1641 num_sectors = (sector_t)(2ULL << 32) - 2; 1642 do { 1643 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1644 rdev->sb_page); 1645 } while (md_super_wait(rdev->mddev) < 0); 1646 return num_sectors; 1647 } 1648 1649 static int 1650 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1651 { 1652 /* non-zero offset changes not possible with v0.90 */ 1653 return new_offset == 0; 1654 } 1655 1656 /* 1657 * version 1 superblock 1658 */ 1659 1660 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1661 { 1662 __le32 disk_csum; 1663 u32 csum; 1664 unsigned long long newcsum; 1665 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1666 __le32 *isuper = (__le32*)sb; 1667 1668 disk_csum = sb->sb_csum; 1669 sb->sb_csum = 0; 1670 newcsum = 0; 1671 for (; size >= 4; size -= 4) 1672 newcsum += le32_to_cpu(*isuper++); 1673 1674 if (size == 2) 1675 newcsum += le16_to_cpu(*(__le16*) isuper); 1676 1677 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1678 sb->sb_csum = disk_csum; 1679 return cpu_to_le32(csum); 1680 } 1681 1682 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1683 { 1684 struct mdp_superblock_1 *sb; 1685 int ret; 1686 sector_t sb_start; 1687 sector_t sectors; 1688 int bmask; 1689 bool spare_disk = true; 1690 1691 /* 1692 * Calculate the position of the superblock in 512byte sectors. 1693 * It is always aligned to a 4K boundary and 1694 * depeding on minor_version, it can be: 1695 * 0: At least 8K, but less than 12K, from end of device 1696 * 1: At start of device 1697 * 2: 4K from start of device. 1698 */ 1699 switch(minor_version) { 1700 case 0: 1701 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1702 sb_start &= ~(sector_t)(4*2-1); 1703 break; 1704 case 1: 1705 sb_start = 0; 1706 break; 1707 case 2: 1708 sb_start = 8; 1709 break; 1710 default: 1711 return -EINVAL; 1712 } 1713 rdev->sb_start = sb_start; 1714 1715 /* superblock is rarely larger than 1K, but it can be larger, 1716 * and it is safe to read 4k, so we do that 1717 */ 1718 ret = read_disk_sb(rdev, 4096); 1719 if (ret) return ret; 1720 1721 sb = page_address(rdev->sb_page); 1722 1723 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1724 sb->major_version != cpu_to_le32(1) || 1725 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1726 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1727 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1728 return -EINVAL; 1729 1730 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1731 pr_warn("md: invalid superblock checksum on %pg\n", 1732 rdev->bdev); 1733 return -EINVAL; 1734 } 1735 if (le64_to_cpu(sb->data_size) < 10) { 1736 pr_warn("md: data_size too small on %pg\n", 1737 rdev->bdev); 1738 return -EINVAL; 1739 } 1740 if (sb->pad0 || 1741 sb->pad3[0] || 1742 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1743 /* Some padding is non-zero, might be a new feature */ 1744 return -EINVAL; 1745 1746 rdev->preferred_minor = 0xffff; 1747 rdev->data_offset = le64_to_cpu(sb->data_offset); 1748 rdev->new_data_offset = rdev->data_offset; 1749 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1750 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1751 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1752 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1753 1754 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1755 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1756 if (rdev->sb_size & bmask) 1757 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1758 1759 if (minor_version 1760 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1761 return -EINVAL; 1762 if (minor_version 1763 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1764 return -EINVAL; 1765 1766 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1767 1768 if (!rdev->bb_page) { 1769 rdev->bb_page = alloc_page(GFP_KERNEL); 1770 if (!rdev->bb_page) 1771 return -ENOMEM; 1772 } 1773 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1774 rdev->badblocks.count == 0) { 1775 /* need to load the bad block list. 1776 * Currently we limit it to one page. 1777 */ 1778 s32 offset; 1779 sector_t bb_sector; 1780 __le64 *bbp; 1781 int i; 1782 int sectors = le16_to_cpu(sb->bblog_size); 1783 if (sectors > (PAGE_SIZE / 512)) 1784 return -EINVAL; 1785 offset = le32_to_cpu(sb->bblog_offset); 1786 if (offset == 0) 1787 return -EINVAL; 1788 bb_sector = (long long)offset; 1789 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1790 rdev->bb_page, REQ_OP_READ, true)) 1791 return -EIO; 1792 bbp = (__le64 *)page_address(rdev->bb_page); 1793 rdev->badblocks.shift = sb->bblog_shift; 1794 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1795 u64 bb = le64_to_cpu(*bbp); 1796 int count = bb & (0x3ff); 1797 u64 sector = bb >> 10; 1798 sector <<= sb->bblog_shift; 1799 count <<= sb->bblog_shift; 1800 if (bb + 1 == 0) 1801 break; 1802 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1803 return -EINVAL; 1804 } 1805 } else if (sb->bblog_offset != 0) 1806 rdev->badblocks.shift = 0; 1807 1808 if ((le32_to_cpu(sb->feature_map) & 1809 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1810 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1811 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1812 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1813 } 1814 1815 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1816 sb->level != 0) 1817 return -EINVAL; 1818 1819 /* not spare disk */ 1820 if (rdev->desc_nr >= 0 && rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1821 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1822 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1823 spare_disk = false; 1824 1825 if (!refdev) { 1826 if (!spare_disk) 1827 ret = 1; 1828 else 1829 ret = 0; 1830 } else { 1831 __u64 ev1, ev2; 1832 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1833 1834 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1835 sb->level != refsb->level || 1836 sb->layout != refsb->layout || 1837 sb->chunksize != refsb->chunksize) { 1838 pr_warn("md: %pg has strangely different superblock to %pg\n", 1839 rdev->bdev, 1840 refdev->bdev); 1841 return -EINVAL; 1842 } 1843 ev1 = le64_to_cpu(sb->events); 1844 ev2 = le64_to_cpu(refsb->events); 1845 1846 if (!spare_disk && ev1 > ev2) 1847 ret = 1; 1848 else 1849 ret = 0; 1850 } 1851 if (minor_version) 1852 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1853 else 1854 sectors = rdev->sb_start; 1855 if (sectors < le64_to_cpu(sb->data_size)) 1856 return -EINVAL; 1857 rdev->sectors = le64_to_cpu(sb->data_size); 1858 return ret; 1859 } 1860 1861 static int super_1_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev) 1862 { 1863 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1864 __u64 ev1 = le64_to_cpu(sb->events); 1865 int role; 1866 1867 rdev->raid_disk = -1; 1868 clear_bit(Faulty, &rdev->flags); 1869 clear_bit(In_sync, &rdev->flags); 1870 clear_bit(Bitmap_sync, &rdev->flags); 1871 clear_bit(WriteMostly, &rdev->flags); 1872 1873 if (mddev->raid_disks == 0) { 1874 mddev->major_version = 1; 1875 mddev->patch_version = 0; 1876 mddev->external = 0; 1877 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1878 mddev->ctime = le64_to_cpu(sb->ctime); 1879 mddev->utime = le64_to_cpu(sb->utime); 1880 mddev->level = le32_to_cpu(sb->level); 1881 mddev->clevel[0] = 0; 1882 mddev->layout = le32_to_cpu(sb->layout); 1883 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1884 mddev->dev_sectors = le64_to_cpu(sb->size); 1885 mddev->events = ev1; 1886 mddev->bitmap_info.offset = 0; 1887 mddev->bitmap_info.space = 0; 1888 /* Default location for bitmap is 1K after superblock 1889 * using 3K - total of 4K 1890 */ 1891 mddev->bitmap_info.default_offset = 1024 >> 9; 1892 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1893 mddev->reshape_backwards = 0; 1894 1895 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1896 memcpy(mddev->uuid, sb->set_uuid, 16); 1897 1898 mddev->max_disks = (4096-256)/2; 1899 1900 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1901 mddev->bitmap_info.file == NULL) { 1902 mddev->bitmap_info.offset = 1903 (__s32)le32_to_cpu(sb->bitmap_offset); 1904 /* Metadata doesn't record how much space is available. 1905 * For 1.0, we assume we can use up to the superblock 1906 * if before, else to 4K beyond superblock. 1907 * For others, assume no change is possible. 1908 */ 1909 if (mddev->minor_version > 0) 1910 mddev->bitmap_info.space = 0; 1911 else if (mddev->bitmap_info.offset > 0) 1912 mddev->bitmap_info.space = 1913 8 - mddev->bitmap_info.offset; 1914 else 1915 mddev->bitmap_info.space = 1916 -mddev->bitmap_info.offset; 1917 } 1918 1919 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1920 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1921 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1922 mddev->new_level = le32_to_cpu(sb->new_level); 1923 mddev->new_layout = le32_to_cpu(sb->new_layout); 1924 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1925 if (mddev->delta_disks < 0 || 1926 (mddev->delta_disks == 0 && 1927 (le32_to_cpu(sb->feature_map) 1928 & MD_FEATURE_RESHAPE_BACKWARDS))) 1929 mddev->reshape_backwards = 1; 1930 } else { 1931 mddev->reshape_position = MaxSector; 1932 mddev->delta_disks = 0; 1933 mddev->new_level = mddev->level; 1934 mddev->new_layout = mddev->layout; 1935 mddev->new_chunk_sectors = mddev->chunk_sectors; 1936 } 1937 1938 if (mddev->level == 0 && 1939 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1940 mddev->layout = -1; 1941 1942 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1943 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1944 1945 if (le32_to_cpu(sb->feature_map) & 1946 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1947 if (le32_to_cpu(sb->feature_map) & 1948 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1949 return -EINVAL; 1950 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1951 (le32_to_cpu(sb->feature_map) & 1952 MD_FEATURE_MULTIPLE_PPLS)) 1953 return -EINVAL; 1954 set_bit(MD_HAS_PPL, &mddev->flags); 1955 } 1956 } else if (mddev->pers == NULL) { 1957 /* Insist of good event counter while assembling, except for 1958 * spares (which don't need an event count). 1959 * Similar to mdadm, we allow event counter difference of 1 1960 * from the freshest device. 1961 */ 1962 if (rdev->desc_nr >= 0 && 1963 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1964 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1965 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1966 if (ev1 + 1 < mddev->events) 1967 return -EINVAL; 1968 } else if (mddev->bitmap) { 1969 /* If adding to array with a bitmap, then we can accept an 1970 * older device, but not too old. 1971 */ 1972 if (ev1 < mddev->bitmap->events_cleared) 1973 return 0; 1974 if (ev1 < mddev->events) 1975 set_bit(Bitmap_sync, &rdev->flags); 1976 } else { 1977 if (ev1 < mddev->events) 1978 /* just a hot-add of a new device, leave raid_disk at -1 */ 1979 return 0; 1980 } 1981 1982 if (rdev->desc_nr < 0 || 1983 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1984 role = MD_DISK_ROLE_SPARE; 1985 rdev->desc_nr = -1; 1986 } else if (mddev->pers == NULL && freshest && ev1 < mddev->events) { 1987 /* 1988 * If we are assembling, and our event counter is smaller than the 1989 * highest event counter, we cannot trust our superblock about the role. 1990 * It could happen that our rdev was marked as Faulty, and all other 1991 * superblocks were updated with +1 event counter. 1992 * Then, before the next superblock update, which typically happens when 1993 * remove_and_add_spares() removes the device from the array, there was 1994 * a crash or reboot. 1995 * If we allow current rdev without consulting the freshest superblock, 1996 * we could cause data corruption. 1997 * Note that in this case our event counter is smaller by 1 than the 1998 * highest, otherwise, this rdev would not be allowed into array; 1999 * both kernel and mdadm allow event counter difference of 1. 2000 */ 2001 struct mdp_superblock_1 *freshest_sb = page_address(freshest->sb_page); 2002 u32 freshest_max_dev = le32_to_cpu(freshest_sb->max_dev); 2003 2004 if (rdev->desc_nr >= freshest_max_dev) { 2005 /* this is unexpected, better not proceed */ 2006 pr_warn("md: %s: rdev[%pg]: desc_nr(%d) >= freshest(%pg)->sb->max_dev(%u)\n", 2007 mdname(mddev), rdev->bdev, rdev->desc_nr, 2008 freshest->bdev, freshest_max_dev); 2009 return -EUCLEAN; 2010 } 2011 2012 role = le16_to_cpu(freshest_sb->dev_roles[rdev->desc_nr]); 2013 pr_debug("md: %s: rdev[%pg]: role=%d(0x%x) according to freshest %pg\n", 2014 mdname(mddev), rdev->bdev, role, role, freshest->bdev); 2015 } else { 2016 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2017 } 2018 switch (role) { 2019 case MD_DISK_ROLE_SPARE: /* spare */ 2020 break; 2021 case MD_DISK_ROLE_FAULTY: /* faulty */ 2022 set_bit(Faulty, &rdev->flags); 2023 break; 2024 case MD_DISK_ROLE_JOURNAL: /* journal device */ 2025 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 2026 /* journal device without journal feature */ 2027 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 2028 return -EINVAL; 2029 } 2030 set_bit(Journal, &rdev->flags); 2031 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 2032 rdev->raid_disk = 0; 2033 break; 2034 default: 2035 rdev->saved_raid_disk = role; 2036 if ((le32_to_cpu(sb->feature_map) & 2037 MD_FEATURE_RECOVERY_OFFSET)) { 2038 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 2039 if (!(le32_to_cpu(sb->feature_map) & 2040 MD_FEATURE_RECOVERY_BITMAP)) 2041 rdev->saved_raid_disk = -1; 2042 } else { 2043 /* 2044 * If the array is FROZEN, then the device can't 2045 * be in_sync with rest of array. 2046 */ 2047 if (!test_bit(MD_RECOVERY_FROZEN, 2048 &mddev->recovery)) 2049 set_bit(In_sync, &rdev->flags); 2050 } 2051 rdev->raid_disk = role; 2052 break; 2053 } 2054 if (sb->devflags & WriteMostly1) 2055 set_bit(WriteMostly, &rdev->flags); 2056 if (sb->devflags & FailFast1) 2057 set_bit(FailFast, &rdev->flags); 2058 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 2059 set_bit(Replacement, &rdev->flags); 2060 2061 return 0; 2062 } 2063 2064 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 2065 { 2066 struct mdp_superblock_1 *sb; 2067 struct md_rdev *rdev2; 2068 int max_dev, i; 2069 /* make rdev->sb match mddev and rdev data. */ 2070 2071 sb = page_address(rdev->sb_page); 2072 2073 sb->feature_map = 0; 2074 sb->pad0 = 0; 2075 sb->recovery_offset = cpu_to_le64(0); 2076 memset(sb->pad3, 0, sizeof(sb->pad3)); 2077 2078 sb->utime = cpu_to_le64((__u64)mddev->utime); 2079 sb->events = cpu_to_le64(mddev->events); 2080 if (mddev->in_sync) 2081 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2082 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2083 sb->resync_offset = cpu_to_le64(MaxSector); 2084 else 2085 sb->resync_offset = cpu_to_le64(0); 2086 2087 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2088 2089 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2090 sb->size = cpu_to_le64(mddev->dev_sectors); 2091 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2092 sb->level = cpu_to_le32(mddev->level); 2093 sb->layout = cpu_to_le32(mddev->layout); 2094 if (test_bit(FailFast, &rdev->flags)) 2095 sb->devflags |= FailFast1; 2096 else 2097 sb->devflags &= ~FailFast1; 2098 2099 if (test_bit(WriteMostly, &rdev->flags)) 2100 sb->devflags |= WriteMostly1; 2101 else 2102 sb->devflags &= ~WriteMostly1; 2103 sb->data_offset = cpu_to_le64(rdev->data_offset); 2104 sb->data_size = cpu_to_le64(rdev->sectors); 2105 2106 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2107 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2108 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2109 } 2110 2111 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2112 !test_bit(In_sync, &rdev->flags)) { 2113 sb->feature_map |= 2114 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2115 sb->recovery_offset = 2116 cpu_to_le64(rdev->recovery_offset); 2117 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2118 sb->feature_map |= 2119 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2120 } 2121 /* Note: recovery_offset and journal_tail share space */ 2122 if (test_bit(Journal, &rdev->flags)) 2123 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2124 if (test_bit(Replacement, &rdev->flags)) 2125 sb->feature_map |= 2126 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2127 2128 if (mddev->reshape_position != MaxSector) { 2129 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2130 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2131 sb->new_layout = cpu_to_le32(mddev->new_layout); 2132 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2133 sb->new_level = cpu_to_le32(mddev->new_level); 2134 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2135 if (mddev->delta_disks == 0 && 2136 mddev->reshape_backwards) 2137 sb->feature_map 2138 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2139 if (rdev->new_data_offset != rdev->data_offset) { 2140 sb->feature_map 2141 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2142 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2143 - rdev->data_offset)); 2144 } 2145 } 2146 2147 if (mddev_is_clustered(mddev)) 2148 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2149 2150 if (rdev->badblocks.count == 0) 2151 /* Nothing to do for bad blocks*/ ; 2152 else if (sb->bblog_offset == 0) 2153 /* Cannot record bad blocks on this device */ 2154 md_error(mddev, rdev); 2155 else { 2156 struct badblocks *bb = &rdev->badblocks; 2157 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2158 u64 *p = bb->page; 2159 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2160 if (bb->changed) { 2161 unsigned seq; 2162 2163 retry: 2164 seq = read_seqbegin(&bb->lock); 2165 2166 memset(bbp, 0xff, PAGE_SIZE); 2167 2168 for (i = 0 ; i < bb->count ; i++) { 2169 u64 internal_bb = p[i]; 2170 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2171 | BB_LEN(internal_bb)); 2172 bbp[i] = cpu_to_le64(store_bb); 2173 } 2174 bb->changed = 0; 2175 if (read_seqretry(&bb->lock, seq)) 2176 goto retry; 2177 2178 bb->sector = (rdev->sb_start + 2179 (int)le32_to_cpu(sb->bblog_offset)); 2180 bb->size = le16_to_cpu(sb->bblog_size); 2181 } 2182 } 2183 2184 max_dev = 0; 2185 rdev_for_each(rdev2, mddev) 2186 if (rdev2->desc_nr+1 > max_dev) 2187 max_dev = rdev2->desc_nr+1; 2188 2189 if (max_dev > le32_to_cpu(sb->max_dev)) { 2190 int bmask; 2191 sb->max_dev = cpu_to_le32(max_dev); 2192 rdev->sb_size = max_dev * 2 + 256; 2193 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2194 if (rdev->sb_size & bmask) 2195 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2196 } else 2197 max_dev = le32_to_cpu(sb->max_dev); 2198 2199 for (i=0; i<max_dev;i++) 2200 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2201 2202 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2203 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2204 2205 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2206 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2207 sb->feature_map |= 2208 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2209 else 2210 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2211 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2212 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2213 } 2214 2215 rdev_for_each(rdev2, mddev) { 2216 i = rdev2->desc_nr; 2217 if (test_bit(Faulty, &rdev2->flags)) 2218 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2219 else if (test_bit(In_sync, &rdev2->flags)) 2220 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2221 else if (test_bit(Journal, &rdev2->flags)) 2222 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2223 else if (rdev2->raid_disk >= 0) 2224 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2225 else 2226 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2227 } 2228 2229 sb->sb_csum = calc_sb_1_csum(sb); 2230 } 2231 2232 static sector_t super_1_choose_bm_space(sector_t dev_size) 2233 { 2234 sector_t bm_space; 2235 2236 /* if the device is bigger than 8Gig, save 64k for bitmap 2237 * usage, if bigger than 200Gig, save 128k 2238 */ 2239 if (dev_size < 64*2) 2240 bm_space = 0; 2241 else if (dev_size - 64*2 >= 200*1024*1024*2) 2242 bm_space = 128*2; 2243 else if (dev_size - 4*2 > 8*1024*1024*2) 2244 bm_space = 64*2; 2245 else 2246 bm_space = 4*2; 2247 return bm_space; 2248 } 2249 2250 static unsigned long long 2251 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2252 { 2253 struct mdp_superblock_1 *sb; 2254 sector_t max_sectors; 2255 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2256 return 0; /* component must fit device */ 2257 if (rdev->data_offset != rdev->new_data_offset) 2258 return 0; /* too confusing */ 2259 if (rdev->sb_start < rdev->data_offset) { 2260 /* minor versions 1 and 2; superblock before data */ 2261 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2262 if (!num_sectors || num_sectors > max_sectors) 2263 num_sectors = max_sectors; 2264 } else if (rdev->mddev->bitmap_info.offset) { 2265 /* minor version 0 with bitmap we can't move */ 2266 return 0; 2267 } else { 2268 /* minor version 0; superblock after data */ 2269 sector_t sb_start, bm_space; 2270 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2271 2272 /* 8K is for superblock */ 2273 sb_start = dev_size - 8*2; 2274 sb_start &= ~(sector_t)(4*2 - 1); 2275 2276 bm_space = super_1_choose_bm_space(dev_size); 2277 2278 /* Space that can be used to store date needs to decrease 2279 * superblock bitmap space and bad block space(4K) 2280 */ 2281 max_sectors = sb_start - bm_space - 4*2; 2282 2283 if (!num_sectors || num_sectors > max_sectors) 2284 num_sectors = max_sectors; 2285 rdev->sb_start = sb_start; 2286 } 2287 sb = page_address(rdev->sb_page); 2288 sb->data_size = cpu_to_le64(num_sectors); 2289 sb->super_offset = cpu_to_le64(rdev->sb_start); 2290 sb->sb_csum = calc_sb_1_csum(sb); 2291 do { 2292 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2293 rdev->sb_page); 2294 } while (md_super_wait(rdev->mddev) < 0); 2295 return num_sectors; 2296 2297 } 2298 2299 static int 2300 super_1_allow_new_offset(struct md_rdev *rdev, 2301 unsigned long long new_offset) 2302 { 2303 /* All necessary checks on new >= old have been done */ 2304 struct bitmap *bitmap; 2305 if (new_offset >= rdev->data_offset) 2306 return 1; 2307 2308 /* with 1.0 metadata, there is no metadata to tread on 2309 * so we can always move back */ 2310 if (rdev->mddev->minor_version == 0) 2311 return 1; 2312 2313 /* otherwise we must be sure not to step on 2314 * any metadata, so stay: 2315 * 36K beyond start of superblock 2316 * beyond end of badblocks 2317 * beyond write-intent bitmap 2318 */ 2319 if (rdev->sb_start + (32+4)*2 > new_offset) 2320 return 0; 2321 bitmap = rdev->mddev->bitmap; 2322 if (bitmap && !rdev->mddev->bitmap_info.file && 2323 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2324 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2325 return 0; 2326 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2327 return 0; 2328 2329 return 1; 2330 } 2331 2332 static struct super_type super_types[] = { 2333 [0] = { 2334 .name = "0.90.0", 2335 .owner = THIS_MODULE, 2336 .load_super = super_90_load, 2337 .validate_super = super_90_validate, 2338 .sync_super = super_90_sync, 2339 .rdev_size_change = super_90_rdev_size_change, 2340 .allow_new_offset = super_90_allow_new_offset, 2341 }, 2342 [1] = { 2343 .name = "md-1", 2344 .owner = THIS_MODULE, 2345 .load_super = super_1_load, 2346 .validate_super = super_1_validate, 2347 .sync_super = super_1_sync, 2348 .rdev_size_change = super_1_rdev_size_change, 2349 .allow_new_offset = super_1_allow_new_offset, 2350 }, 2351 }; 2352 2353 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2354 { 2355 if (mddev->sync_super) { 2356 mddev->sync_super(mddev, rdev); 2357 return; 2358 } 2359 2360 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2361 2362 super_types[mddev->major_version].sync_super(mddev, rdev); 2363 } 2364 2365 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2366 { 2367 struct md_rdev *rdev, *rdev2; 2368 2369 rcu_read_lock(); 2370 rdev_for_each_rcu(rdev, mddev1) { 2371 if (test_bit(Faulty, &rdev->flags) || 2372 test_bit(Journal, &rdev->flags) || 2373 rdev->raid_disk == -1) 2374 continue; 2375 rdev_for_each_rcu(rdev2, mddev2) { 2376 if (test_bit(Faulty, &rdev2->flags) || 2377 test_bit(Journal, &rdev2->flags) || 2378 rdev2->raid_disk == -1) 2379 continue; 2380 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2381 rcu_read_unlock(); 2382 return 1; 2383 } 2384 } 2385 } 2386 rcu_read_unlock(); 2387 return 0; 2388 } 2389 2390 static LIST_HEAD(pending_raid_disks); 2391 2392 /* 2393 * Try to register data integrity profile for an mddev 2394 * 2395 * This is called when an array is started and after a disk has been kicked 2396 * from the array. It only succeeds if all working and active component devices 2397 * are integrity capable with matching profiles. 2398 */ 2399 int md_integrity_register(struct mddev *mddev) 2400 { 2401 struct md_rdev *rdev, *reference = NULL; 2402 2403 if (list_empty(&mddev->disks)) 2404 return 0; /* nothing to do */ 2405 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2406 return 0; /* shouldn't register, or already is */ 2407 rdev_for_each(rdev, mddev) { 2408 /* skip spares and non-functional disks */ 2409 if (test_bit(Faulty, &rdev->flags)) 2410 continue; 2411 if (rdev->raid_disk < 0) 2412 continue; 2413 if (!reference) { 2414 /* Use the first rdev as the reference */ 2415 reference = rdev; 2416 continue; 2417 } 2418 /* does this rdev's profile match the reference profile? */ 2419 if (blk_integrity_compare(reference->bdev->bd_disk, 2420 rdev->bdev->bd_disk) < 0) 2421 return -EINVAL; 2422 } 2423 if (!reference || !bdev_get_integrity(reference->bdev)) 2424 return 0; 2425 /* 2426 * All component devices are integrity capable and have matching 2427 * profiles, register the common profile for the md device. 2428 */ 2429 blk_integrity_register(mddev->gendisk, 2430 bdev_get_integrity(reference->bdev)); 2431 2432 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2433 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2434 (mddev->level != 1 && mddev->level != 10 && 2435 bioset_integrity_create(&mddev->io_clone_set, BIO_POOL_SIZE))) { 2436 /* 2437 * No need to handle the failure of bioset_integrity_create, 2438 * because the function is called by md_run() -> pers->run(), 2439 * md_run calls bioset_exit -> bioset_integrity_free in case 2440 * of failure case. 2441 */ 2442 pr_err("md: failed to create integrity pool for %s\n", 2443 mdname(mddev)); 2444 return -EINVAL; 2445 } 2446 return 0; 2447 } 2448 EXPORT_SYMBOL(md_integrity_register); 2449 2450 /* 2451 * Attempt to add an rdev, but only if it is consistent with the current 2452 * integrity profile 2453 */ 2454 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2455 { 2456 struct blk_integrity *bi_mddev; 2457 2458 if (!mddev->gendisk) 2459 return 0; 2460 2461 bi_mddev = blk_get_integrity(mddev->gendisk); 2462 2463 if (!bi_mddev) /* nothing to do */ 2464 return 0; 2465 2466 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2467 pr_err("%s: incompatible integrity profile for %pg\n", 2468 mdname(mddev), rdev->bdev); 2469 return -ENXIO; 2470 } 2471 2472 return 0; 2473 } 2474 EXPORT_SYMBOL(md_integrity_add_rdev); 2475 2476 static bool rdev_read_only(struct md_rdev *rdev) 2477 { 2478 return bdev_read_only(rdev->bdev) || 2479 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2480 } 2481 2482 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2483 { 2484 char b[BDEVNAME_SIZE]; 2485 int err; 2486 2487 /* prevent duplicates */ 2488 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2489 return -EEXIST; 2490 2491 if (rdev_read_only(rdev) && mddev->pers) 2492 return -EROFS; 2493 2494 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2495 if (!test_bit(Journal, &rdev->flags) && 2496 rdev->sectors && 2497 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2498 if (mddev->pers) { 2499 /* Cannot change size, so fail 2500 * If mddev->level <= 0, then we don't care 2501 * about aligning sizes (e.g. linear) 2502 */ 2503 if (mddev->level > 0) 2504 return -ENOSPC; 2505 } else 2506 mddev->dev_sectors = rdev->sectors; 2507 } 2508 2509 /* Verify rdev->desc_nr is unique. 2510 * If it is -1, assign a free number, else 2511 * check number is not in use 2512 */ 2513 rcu_read_lock(); 2514 if (rdev->desc_nr < 0) { 2515 int choice = 0; 2516 if (mddev->pers) 2517 choice = mddev->raid_disks; 2518 while (md_find_rdev_nr_rcu(mddev, choice)) 2519 choice++; 2520 rdev->desc_nr = choice; 2521 } else { 2522 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2523 rcu_read_unlock(); 2524 return -EBUSY; 2525 } 2526 } 2527 rcu_read_unlock(); 2528 if (!test_bit(Journal, &rdev->flags) && 2529 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2530 pr_warn("md: %s: array is limited to %d devices\n", 2531 mdname(mddev), mddev->max_disks); 2532 return -EBUSY; 2533 } 2534 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2535 strreplace(b, '/', '!'); 2536 2537 rdev->mddev = mddev; 2538 pr_debug("md: bind<%s>\n", b); 2539 2540 if (mddev->raid_disks) 2541 mddev_create_serial_pool(mddev, rdev); 2542 2543 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2544 goto fail; 2545 2546 /* failure here is OK */ 2547 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2548 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2549 rdev->sysfs_unack_badblocks = 2550 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2551 rdev->sysfs_badblocks = 2552 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2553 2554 list_add_rcu(&rdev->same_set, &mddev->disks); 2555 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2556 2557 /* May as well allow recovery to be retried once */ 2558 mddev->recovery_disabled++; 2559 2560 return 0; 2561 2562 fail: 2563 pr_warn("md: failed to register dev-%s for %s\n", 2564 b, mdname(mddev)); 2565 return err; 2566 } 2567 2568 void md_autodetect_dev(dev_t dev); 2569 2570 /* just for claiming the bdev */ 2571 static struct md_rdev claim_rdev; 2572 2573 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev) 2574 { 2575 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2576 md_rdev_clear(rdev); 2577 #ifndef MODULE 2578 if (test_bit(AutoDetected, &rdev->flags)) 2579 md_autodetect_dev(rdev->bdev->bd_dev); 2580 #endif 2581 bdev_release(rdev->bdev_handle); 2582 rdev->bdev = NULL; 2583 kobject_put(&rdev->kobj); 2584 } 2585 2586 static void md_kick_rdev_from_array(struct md_rdev *rdev) 2587 { 2588 struct mddev *mddev = rdev->mddev; 2589 2590 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2591 list_del_rcu(&rdev->same_set); 2592 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2593 mddev_destroy_serial_pool(rdev->mddev, rdev); 2594 rdev->mddev = NULL; 2595 sysfs_remove_link(&rdev->kobj, "block"); 2596 sysfs_put(rdev->sysfs_state); 2597 sysfs_put(rdev->sysfs_unack_badblocks); 2598 sysfs_put(rdev->sysfs_badblocks); 2599 rdev->sysfs_state = NULL; 2600 rdev->sysfs_unack_badblocks = NULL; 2601 rdev->sysfs_badblocks = NULL; 2602 rdev->badblocks.count = 0; 2603 2604 synchronize_rcu(); 2605 2606 /* 2607 * kobject_del() will wait for all in progress writers to be done, where 2608 * reconfig_mutex is held, hence it can't be called under 2609 * reconfig_mutex and it's delayed to mddev_unlock(). 2610 */ 2611 list_add(&rdev->same_set, &mddev->deleting); 2612 } 2613 2614 static void export_array(struct mddev *mddev) 2615 { 2616 struct md_rdev *rdev; 2617 2618 while (!list_empty(&mddev->disks)) { 2619 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2620 same_set); 2621 md_kick_rdev_from_array(rdev); 2622 } 2623 mddev->raid_disks = 0; 2624 mddev->major_version = 0; 2625 } 2626 2627 static bool set_in_sync(struct mddev *mddev) 2628 { 2629 lockdep_assert_held(&mddev->lock); 2630 if (!mddev->in_sync) { 2631 mddev->sync_checkers++; 2632 spin_unlock(&mddev->lock); 2633 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2634 spin_lock(&mddev->lock); 2635 if (!mddev->in_sync && 2636 percpu_ref_is_zero(&mddev->writes_pending)) { 2637 mddev->in_sync = 1; 2638 /* 2639 * Ensure ->in_sync is visible before we clear 2640 * ->sync_checkers. 2641 */ 2642 smp_mb(); 2643 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2644 sysfs_notify_dirent_safe(mddev->sysfs_state); 2645 } 2646 if (--mddev->sync_checkers == 0) 2647 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2648 } 2649 if (mddev->safemode == 1) 2650 mddev->safemode = 0; 2651 return mddev->in_sync; 2652 } 2653 2654 static void sync_sbs(struct mddev *mddev, int nospares) 2655 { 2656 /* Update each superblock (in-memory image), but 2657 * if we are allowed to, skip spares which already 2658 * have the right event counter, or have one earlier 2659 * (which would mean they aren't being marked as dirty 2660 * with the rest of the array) 2661 */ 2662 struct md_rdev *rdev; 2663 rdev_for_each(rdev, mddev) { 2664 if (rdev->sb_events == mddev->events || 2665 (nospares && 2666 rdev->raid_disk < 0 && 2667 rdev->sb_events+1 == mddev->events)) { 2668 /* Don't update this superblock */ 2669 rdev->sb_loaded = 2; 2670 } else { 2671 sync_super(mddev, rdev); 2672 rdev->sb_loaded = 1; 2673 } 2674 } 2675 } 2676 2677 static bool does_sb_need_changing(struct mddev *mddev) 2678 { 2679 struct md_rdev *rdev = NULL, *iter; 2680 struct mdp_superblock_1 *sb; 2681 int role; 2682 2683 /* Find a good rdev */ 2684 rdev_for_each(iter, mddev) 2685 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2686 rdev = iter; 2687 break; 2688 } 2689 2690 /* No good device found. */ 2691 if (!rdev) 2692 return false; 2693 2694 sb = page_address(rdev->sb_page); 2695 /* Check if a device has become faulty or a spare become active */ 2696 rdev_for_each(rdev, mddev) { 2697 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2698 /* Device activated? */ 2699 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2700 !test_bit(Faulty, &rdev->flags)) 2701 return true; 2702 /* Device turned faulty? */ 2703 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2704 return true; 2705 } 2706 2707 /* Check if any mddev parameters have changed */ 2708 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2709 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2710 (mddev->layout != le32_to_cpu(sb->layout)) || 2711 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2712 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2713 return true; 2714 2715 return false; 2716 } 2717 2718 void md_update_sb(struct mddev *mddev, int force_change) 2719 { 2720 struct md_rdev *rdev; 2721 int sync_req; 2722 int nospares = 0; 2723 int any_badblocks_changed = 0; 2724 int ret = -1; 2725 2726 if (!md_is_rdwr(mddev)) { 2727 if (force_change) 2728 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2729 return; 2730 } 2731 2732 repeat: 2733 if (mddev_is_clustered(mddev)) { 2734 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2735 force_change = 1; 2736 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2737 nospares = 1; 2738 ret = md_cluster_ops->metadata_update_start(mddev); 2739 /* Has someone else has updated the sb */ 2740 if (!does_sb_need_changing(mddev)) { 2741 if (ret == 0) 2742 md_cluster_ops->metadata_update_cancel(mddev); 2743 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2744 BIT(MD_SB_CHANGE_DEVS) | 2745 BIT(MD_SB_CHANGE_CLEAN)); 2746 return; 2747 } 2748 } 2749 2750 /* 2751 * First make sure individual recovery_offsets are correct 2752 * curr_resync_completed can only be used during recovery. 2753 * During reshape/resync it might use array-addresses rather 2754 * that device addresses. 2755 */ 2756 rdev_for_each(rdev, mddev) { 2757 if (rdev->raid_disk >= 0 && 2758 mddev->delta_disks >= 0 && 2759 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2760 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2761 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2762 !test_bit(Journal, &rdev->flags) && 2763 !test_bit(In_sync, &rdev->flags) && 2764 mddev->curr_resync_completed > rdev->recovery_offset) 2765 rdev->recovery_offset = mddev->curr_resync_completed; 2766 2767 } 2768 if (!mddev->persistent) { 2769 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2770 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2771 if (!mddev->external) { 2772 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2773 rdev_for_each(rdev, mddev) { 2774 if (rdev->badblocks.changed) { 2775 rdev->badblocks.changed = 0; 2776 ack_all_badblocks(&rdev->badblocks); 2777 md_error(mddev, rdev); 2778 } 2779 clear_bit(Blocked, &rdev->flags); 2780 clear_bit(BlockedBadBlocks, &rdev->flags); 2781 wake_up(&rdev->blocked_wait); 2782 } 2783 } 2784 wake_up(&mddev->sb_wait); 2785 return; 2786 } 2787 2788 spin_lock(&mddev->lock); 2789 2790 mddev->utime = ktime_get_real_seconds(); 2791 2792 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2793 force_change = 1; 2794 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2795 /* just a clean<-> dirty transition, possibly leave spares alone, 2796 * though if events isn't the right even/odd, we will have to do 2797 * spares after all 2798 */ 2799 nospares = 1; 2800 if (force_change) 2801 nospares = 0; 2802 if (mddev->degraded) 2803 /* If the array is degraded, then skipping spares is both 2804 * dangerous and fairly pointless. 2805 * Dangerous because a device that was removed from the array 2806 * might have a event_count that still looks up-to-date, 2807 * so it can be re-added without a resync. 2808 * Pointless because if there are any spares to skip, 2809 * then a recovery will happen and soon that array won't 2810 * be degraded any more and the spare can go back to sleep then. 2811 */ 2812 nospares = 0; 2813 2814 sync_req = mddev->in_sync; 2815 2816 /* If this is just a dirty<->clean transition, and the array is clean 2817 * and 'events' is odd, we can roll back to the previous clean state */ 2818 if (nospares 2819 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2820 && mddev->can_decrease_events 2821 && mddev->events != 1) { 2822 mddev->events--; 2823 mddev->can_decrease_events = 0; 2824 } else { 2825 /* otherwise we have to go forward and ... */ 2826 mddev->events ++; 2827 mddev->can_decrease_events = nospares; 2828 } 2829 2830 /* 2831 * This 64-bit counter should never wrap. 2832 * Either we are in around ~1 trillion A.C., assuming 2833 * 1 reboot per second, or we have a bug... 2834 */ 2835 WARN_ON(mddev->events == 0); 2836 2837 rdev_for_each(rdev, mddev) { 2838 if (rdev->badblocks.changed) 2839 any_badblocks_changed++; 2840 if (test_bit(Faulty, &rdev->flags)) 2841 set_bit(FaultRecorded, &rdev->flags); 2842 } 2843 2844 sync_sbs(mddev, nospares); 2845 spin_unlock(&mddev->lock); 2846 2847 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2848 mdname(mddev), mddev->in_sync); 2849 2850 if (mddev->queue) 2851 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2852 rewrite: 2853 md_bitmap_update_sb(mddev->bitmap); 2854 rdev_for_each(rdev, mddev) { 2855 if (rdev->sb_loaded != 1) 2856 continue; /* no noise on spare devices */ 2857 2858 if (!test_bit(Faulty, &rdev->flags)) { 2859 md_super_write(mddev,rdev, 2860 rdev->sb_start, rdev->sb_size, 2861 rdev->sb_page); 2862 pr_debug("md: (write) %pg's sb offset: %llu\n", 2863 rdev->bdev, 2864 (unsigned long long)rdev->sb_start); 2865 rdev->sb_events = mddev->events; 2866 if (rdev->badblocks.size) { 2867 md_super_write(mddev, rdev, 2868 rdev->badblocks.sector, 2869 rdev->badblocks.size << 9, 2870 rdev->bb_page); 2871 rdev->badblocks.size = 0; 2872 } 2873 2874 } else 2875 pr_debug("md: %pg (skipping faulty)\n", 2876 rdev->bdev); 2877 } 2878 if (md_super_wait(mddev) < 0) 2879 goto rewrite; 2880 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2881 2882 if (mddev_is_clustered(mddev) && ret == 0) 2883 md_cluster_ops->metadata_update_finish(mddev); 2884 2885 if (mddev->in_sync != sync_req || 2886 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2887 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2888 /* have to write it out again */ 2889 goto repeat; 2890 wake_up(&mddev->sb_wait); 2891 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2892 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2893 2894 rdev_for_each(rdev, mddev) { 2895 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2896 clear_bit(Blocked, &rdev->flags); 2897 2898 if (any_badblocks_changed) 2899 ack_all_badblocks(&rdev->badblocks); 2900 clear_bit(BlockedBadBlocks, &rdev->flags); 2901 wake_up(&rdev->blocked_wait); 2902 } 2903 } 2904 EXPORT_SYMBOL(md_update_sb); 2905 2906 static int add_bound_rdev(struct md_rdev *rdev) 2907 { 2908 struct mddev *mddev = rdev->mddev; 2909 int err = 0; 2910 bool add_journal = test_bit(Journal, &rdev->flags); 2911 2912 if (!mddev->pers->hot_remove_disk || add_journal) { 2913 /* If there is hot_add_disk but no hot_remove_disk 2914 * then added disks for geometry changes, 2915 * and should be added immediately. 2916 */ 2917 super_types[mddev->major_version]. 2918 validate_super(mddev, NULL/*freshest*/, rdev); 2919 err = mddev->pers->hot_add_disk(mddev, rdev); 2920 if (err) { 2921 md_kick_rdev_from_array(rdev); 2922 return err; 2923 } 2924 } 2925 sysfs_notify_dirent_safe(rdev->sysfs_state); 2926 2927 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2928 if (mddev->degraded) 2929 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2930 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2931 md_new_event(); 2932 md_wakeup_thread(mddev->thread); 2933 return 0; 2934 } 2935 2936 /* words written to sysfs files may, or may not, be \n terminated. 2937 * We want to accept with case. For this we use cmd_match. 2938 */ 2939 static int cmd_match(const char *cmd, const char *str) 2940 { 2941 /* See if cmd, written into a sysfs file, matches 2942 * str. They must either be the same, or cmd can 2943 * have a trailing newline 2944 */ 2945 while (*cmd && *str && *cmd == *str) { 2946 cmd++; 2947 str++; 2948 } 2949 if (*cmd == '\n') 2950 cmd++; 2951 if (*str || *cmd) 2952 return 0; 2953 return 1; 2954 } 2955 2956 struct rdev_sysfs_entry { 2957 struct attribute attr; 2958 ssize_t (*show)(struct md_rdev *, char *); 2959 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2960 }; 2961 2962 static ssize_t 2963 state_show(struct md_rdev *rdev, char *page) 2964 { 2965 char *sep = ","; 2966 size_t len = 0; 2967 unsigned long flags = READ_ONCE(rdev->flags); 2968 2969 if (test_bit(Faulty, &flags) || 2970 (!test_bit(ExternalBbl, &flags) && 2971 rdev->badblocks.unacked_exist)) 2972 len += sprintf(page+len, "faulty%s", sep); 2973 if (test_bit(In_sync, &flags)) 2974 len += sprintf(page+len, "in_sync%s", sep); 2975 if (test_bit(Journal, &flags)) 2976 len += sprintf(page+len, "journal%s", sep); 2977 if (test_bit(WriteMostly, &flags)) 2978 len += sprintf(page+len, "write_mostly%s", sep); 2979 if (test_bit(Blocked, &flags) || 2980 (rdev->badblocks.unacked_exist 2981 && !test_bit(Faulty, &flags))) 2982 len += sprintf(page+len, "blocked%s", sep); 2983 if (!test_bit(Faulty, &flags) && 2984 !test_bit(Journal, &flags) && 2985 !test_bit(In_sync, &flags)) 2986 len += sprintf(page+len, "spare%s", sep); 2987 if (test_bit(WriteErrorSeen, &flags)) 2988 len += sprintf(page+len, "write_error%s", sep); 2989 if (test_bit(WantReplacement, &flags)) 2990 len += sprintf(page+len, "want_replacement%s", sep); 2991 if (test_bit(Replacement, &flags)) 2992 len += sprintf(page+len, "replacement%s", sep); 2993 if (test_bit(ExternalBbl, &flags)) 2994 len += sprintf(page+len, "external_bbl%s", sep); 2995 if (test_bit(FailFast, &flags)) 2996 len += sprintf(page+len, "failfast%s", sep); 2997 2998 if (len) 2999 len -= strlen(sep); 3000 3001 return len+sprintf(page+len, "\n"); 3002 } 3003 3004 static ssize_t 3005 state_store(struct md_rdev *rdev, const char *buf, size_t len) 3006 { 3007 /* can write 3008 * faulty - simulates an error 3009 * remove - disconnects the device 3010 * writemostly - sets write_mostly 3011 * -writemostly - clears write_mostly 3012 * blocked - sets the Blocked flags 3013 * -blocked - clears the Blocked and possibly simulates an error 3014 * insync - sets Insync providing device isn't active 3015 * -insync - clear Insync for a device with a slot assigned, 3016 * so that it gets rebuilt based on bitmap 3017 * write_error - sets WriteErrorSeen 3018 * -write_error - clears WriteErrorSeen 3019 * {,-}failfast - set/clear FailFast 3020 */ 3021 3022 struct mddev *mddev = rdev->mddev; 3023 int err = -EINVAL; 3024 bool need_update_sb = false; 3025 3026 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 3027 md_error(rdev->mddev, rdev); 3028 3029 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 3030 err = -EBUSY; 3031 else 3032 err = 0; 3033 } else if (cmd_match(buf, "remove")) { 3034 if (rdev->mddev->pers) { 3035 clear_bit(Blocked, &rdev->flags); 3036 remove_and_add_spares(rdev->mddev, rdev); 3037 } 3038 if (rdev->raid_disk >= 0) 3039 err = -EBUSY; 3040 else { 3041 err = 0; 3042 if (mddev_is_clustered(mddev)) 3043 err = md_cluster_ops->remove_disk(mddev, rdev); 3044 3045 if (err == 0) { 3046 md_kick_rdev_from_array(rdev); 3047 if (mddev->pers) { 3048 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3049 md_wakeup_thread(mddev->thread); 3050 } 3051 md_new_event(); 3052 } 3053 } 3054 } else if (cmd_match(buf, "writemostly")) { 3055 set_bit(WriteMostly, &rdev->flags); 3056 mddev_create_serial_pool(rdev->mddev, rdev); 3057 need_update_sb = true; 3058 err = 0; 3059 } else if (cmd_match(buf, "-writemostly")) { 3060 mddev_destroy_serial_pool(rdev->mddev, rdev); 3061 clear_bit(WriteMostly, &rdev->flags); 3062 need_update_sb = true; 3063 err = 0; 3064 } else if (cmd_match(buf, "blocked")) { 3065 set_bit(Blocked, &rdev->flags); 3066 err = 0; 3067 } else if (cmd_match(buf, "-blocked")) { 3068 if (!test_bit(Faulty, &rdev->flags) && 3069 !test_bit(ExternalBbl, &rdev->flags) && 3070 rdev->badblocks.unacked_exist) { 3071 /* metadata handler doesn't understand badblocks, 3072 * so we need to fail the device 3073 */ 3074 md_error(rdev->mddev, rdev); 3075 } 3076 clear_bit(Blocked, &rdev->flags); 3077 clear_bit(BlockedBadBlocks, &rdev->flags); 3078 wake_up(&rdev->blocked_wait); 3079 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3080 md_wakeup_thread(rdev->mddev->thread); 3081 3082 err = 0; 3083 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3084 set_bit(In_sync, &rdev->flags); 3085 err = 0; 3086 } else if (cmd_match(buf, "failfast")) { 3087 set_bit(FailFast, &rdev->flags); 3088 need_update_sb = true; 3089 err = 0; 3090 } else if (cmd_match(buf, "-failfast")) { 3091 clear_bit(FailFast, &rdev->flags); 3092 need_update_sb = true; 3093 err = 0; 3094 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3095 !test_bit(Journal, &rdev->flags)) { 3096 if (rdev->mddev->pers == NULL) { 3097 clear_bit(In_sync, &rdev->flags); 3098 rdev->saved_raid_disk = rdev->raid_disk; 3099 rdev->raid_disk = -1; 3100 err = 0; 3101 } 3102 } else if (cmd_match(buf, "write_error")) { 3103 set_bit(WriteErrorSeen, &rdev->flags); 3104 err = 0; 3105 } else if (cmd_match(buf, "-write_error")) { 3106 clear_bit(WriteErrorSeen, &rdev->flags); 3107 err = 0; 3108 } else if (cmd_match(buf, "want_replacement")) { 3109 /* Any non-spare device that is not a replacement can 3110 * become want_replacement at any time, but we then need to 3111 * check if recovery is needed. 3112 */ 3113 if (rdev->raid_disk >= 0 && 3114 !test_bit(Journal, &rdev->flags) && 3115 !test_bit(Replacement, &rdev->flags)) 3116 set_bit(WantReplacement, &rdev->flags); 3117 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3118 md_wakeup_thread(rdev->mddev->thread); 3119 err = 0; 3120 } else if (cmd_match(buf, "-want_replacement")) { 3121 /* Clearing 'want_replacement' is always allowed. 3122 * Once replacements starts it is too late though. 3123 */ 3124 err = 0; 3125 clear_bit(WantReplacement, &rdev->flags); 3126 } else if (cmd_match(buf, "replacement")) { 3127 /* Can only set a device as a replacement when array has not 3128 * yet been started. Once running, replacement is automatic 3129 * from spares, or by assigning 'slot'. 3130 */ 3131 if (rdev->mddev->pers) 3132 err = -EBUSY; 3133 else { 3134 set_bit(Replacement, &rdev->flags); 3135 err = 0; 3136 } 3137 } else if (cmd_match(buf, "-replacement")) { 3138 /* Similarly, can only clear Replacement before start */ 3139 if (rdev->mddev->pers) 3140 err = -EBUSY; 3141 else { 3142 clear_bit(Replacement, &rdev->flags); 3143 err = 0; 3144 } 3145 } else if (cmd_match(buf, "re-add")) { 3146 if (!rdev->mddev->pers) 3147 err = -EINVAL; 3148 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3149 rdev->saved_raid_disk >= 0) { 3150 /* clear_bit is performed _after_ all the devices 3151 * have their local Faulty bit cleared. If any writes 3152 * happen in the meantime in the local node, they 3153 * will land in the local bitmap, which will be synced 3154 * by this node eventually 3155 */ 3156 if (!mddev_is_clustered(rdev->mddev) || 3157 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3158 clear_bit(Faulty, &rdev->flags); 3159 err = add_bound_rdev(rdev); 3160 } 3161 } else 3162 err = -EBUSY; 3163 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3164 set_bit(ExternalBbl, &rdev->flags); 3165 rdev->badblocks.shift = 0; 3166 err = 0; 3167 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3168 clear_bit(ExternalBbl, &rdev->flags); 3169 err = 0; 3170 } 3171 if (need_update_sb) 3172 md_update_sb(mddev, 1); 3173 if (!err) 3174 sysfs_notify_dirent_safe(rdev->sysfs_state); 3175 return err ? err : len; 3176 } 3177 static struct rdev_sysfs_entry rdev_state = 3178 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3179 3180 static ssize_t 3181 errors_show(struct md_rdev *rdev, char *page) 3182 { 3183 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3184 } 3185 3186 static ssize_t 3187 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3188 { 3189 unsigned int n; 3190 int rv; 3191 3192 rv = kstrtouint(buf, 10, &n); 3193 if (rv < 0) 3194 return rv; 3195 atomic_set(&rdev->corrected_errors, n); 3196 return len; 3197 } 3198 static struct rdev_sysfs_entry rdev_errors = 3199 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3200 3201 static ssize_t 3202 slot_show(struct md_rdev *rdev, char *page) 3203 { 3204 if (test_bit(Journal, &rdev->flags)) 3205 return sprintf(page, "journal\n"); 3206 else if (rdev->raid_disk < 0) 3207 return sprintf(page, "none\n"); 3208 else 3209 return sprintf(page, "%d\n", rdev->raid_disk); 3210 } 3211 3212 static ssize_t 3213 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3214 { 3215 int slot; 3216 int err; 3217 3218 if (test_bit(Journal, &rdev->flags)) 3219 return -EBUSY; 3220 if (strncmp(buf, "none", 4)==0) 3221 slot = -1; 3222 else { 3223 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3224 if (err < 0) 3225 return err; 3226 if (slot < 0) 3227 /* overflow */ 3228 return -ENOSPC; 3229 } 3230 if (rdev->mddev->pers && slot == -1) { 3231 /* Setting 'slot' on an active array requires also 3232 * updating the 'rd%d' link, and communicating 3233 * with the personality with ->hot_*_disk. 3234 * For now we only support removing 3235 * failed/spare devices. This normally happens automatically, 3236 * but not when the metadata is externally managed. 3237 */ 3238 if (rdev->raid_disk == -1) 3239 return -EEXIST; 3240 /* personality does all needed checks */ 3241 if (rdev->mddev->pers->hot_remove_disk == NULL) 3242 return -EINVAL; 3243 clear_bit(Blocked, &rdev->flags); 3244 remove_and_add_spares(rdev->mddev, rdev); 3245 if (rdev->raid_disk >= 0) 3246 return -EBUSY; 3247 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3248 md_wakeup_thread(rdev->mddev->thread); 3249 } else if (rdev->mddev->pers) { 3250 /* Activating a spare .. or possibly reactivating 3251 * if we ever get bitmaps working here. 3252 */ 3253 int err; 3254 3255 if (rdev->raid_disk != -1) 3256 return -EBUSY; 3257 3258 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3259 return -EBUSY; 3260 3261 if (rdev->mddev->pers->hot_add_disk == NULL) 3262 return -EINVAL; 3263 3264 if (slot >= rdev->mddev->raid_disks && 3265 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3266 return -ENOSPC; 3267 3268 rdev->raid_disk = slot; 3269 if (test_bit(In_sync, &rdev->flags)) 3270 rdev->saved_raid_disk = slot; 3271 else 3272 rdev->saved_raid_disk = -1; 3273 clear_bit(In_sync, &rdev->flags); 3274 clear_bit(Bitmap_sync, &rdev->flags); 3275 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3276 if (err) { 3277 rdev->raid_disk = -1; 3278 return err; 3279 } else 3280 sysfs_notify_dirent_safe(rdev->sysfs_state); 3281 /* failure here is OK */; 3282 sysfs_link_rdev(rdev->mddev, rdev); 3283 /* don't wakeup anyone, leave that to userspace. */ 3284 } else { 3285 if (slot >= rdev->mddev->raid_disks && 3286 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3287 return -ENOSPC; 3288 rdev->raid_disk = slot; 3289 /* assume it is working */ 3290 clear_bit(Faulty, &rdev->flags); 3291 clear_bit(WriteMostly, &rdev->flags); 3292 set_bit(In_sync, &rdev->flags); 3293 sysfs_notify_dirent_safe(rdev->sysfs_state); 3294 } 3295 return len; 3296 } 3297 3298 static struct rdev_sysfs_entry rdev_slot = 3299 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3300 3301 static ssize_t 3302 offset_show(struct md_rdev *rdev, char *page) 3303 { 3304 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3305 } 3306 3307 static ssize_t 3308 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3309 { 3310 unsigned long long offset; 3311 if (kstrtoull(buf, 10, &offset) < 0) 3312 return -EINVAL; 3313 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3314 return -EBUSY; 3315 if (rdev->sectors && rdev->mddev->external) 3316 /* Must set offset before size, so overlap checks 3317 * can be sane */ 3318 return -EBUSY; 3319 rdev->data_offset = offset; 3320 rdev->new_data_offset = offset; 3321 return len; 3322 } 3323 3324 static struct rdev_sysfs_entry rdev_offset = 3325 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3326 3327 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3328 { 3329 return sprintf(page, "%llu\n", 3330 (unsigned long long)rdev->new_data_offset); 3331 } 3332 3333 static ssize_t new_offset_store(struct md_rdev *rdev, 3334 const char *buf, size_t len) 3335 { 3336 unsigned long long new_offset; 3337 struct mddev *mddev = rdev->mddev; 3338 3339 if (kstrtoull(buf, 10, &new_offset) < 0) 3340 return -EINVAL; 3341 3342 if (mddev->sync_thread || 3343 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3344 return -EBUSY; 3345 if (new_offset == rdev->data_offset) 3346 /* reset is always permitted */ 3347 ; 3348 else if (new_offset > rdev->data_offset) { 3349 /* must not push array size beyond rdev_sectors */ 3350 if (new_offset - rdev->data_offset 3351 + mddev->dev_sectors > rdev->sectors) 3352 return -E2BIG; 3353 } 3354 /* Metadata worries about other space details. */ 3355 3356 /* decreasing the offset is inconsistent with a backwards 3357 * reshape. 3358 */ 3359 if (new_offset < rdev->data_offset && 3360 mddev->reshape_backwards) 3361 return -EINVAL; 3362 /* Increasing offset is inconsistent with forwards 3363 * reshape. reshape_direction should be set to 3364 * 'backwards' first. 3365 */ 3366 if (new_offset > rdev->data_offset && 3367 !mddev->reshape_backwards) 3368 return -EINVAL; 3369 3370 if (mddev->pers && mddev->persistent && 3371 !super_types[mddev->major_version] 3372 .allow_new_offset(rdev, new_offset)) 3373 return -E2BIG; 3374 rdev->new_data_offset = new_offset; 3375 if (new_offset > rdev->data_offset) 3376 mddev->reshape_backwards = 1; 3377 else if (new_offset < rdev->data_offset) 3378 mddev->reshape_backwards = 0; 3379 3380 return len; 3381 } 3382 static struct rdev_sysfs_entry rdev_new_offset = 3383 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3384 3385 static ssize_t 3386 rdev_size_show(struct md_rdev *rdev, char *page) 3387 { 3388 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3389 } 3390 3391 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3392 { 3393 /* check if two start/length pairs overlap */ 3394 if (a->data_offset + a->sectors <= b->data_offset) 3395 return false; 3396 if (b->data_offset + b->sectors <= a->data_offset) 3397 return false; 3398 return true; 3399 } 3400 3401 static bool md_rdev_overlaps(struct md_rdev *rdev) 3402 { 3403 struct mddev *mddev; 3404 struct md_rdev *rdev2; 3405 3406 spin_lock(&all_mddevs_lock); 3407 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3408 if (test_bit(MD_DELETED, &mddev->flags)) 3409 continue; 3410 rdev_for_each(rdev2, mddev) { 3411 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3412 md_rdevs_overlap(rdev, rdev2)) { 3413 spin_unlock(&all_mddevs_lock); 3414 return true; 3415 } 3416 } 3417 } 3418 spin_unlock(&all_mddevs_lock); 3419 return false; 3420 } 3421 3422 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3423 { 3424 unsigned long long blocks; 3425 sector_t new; 3426 3427 if (kstrtoull(buf, 10, &blocks) < 0) 3428 return -EINVAL; 3429 3430 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3431 return -EINVAL; /* sector conversion overflow */ 3432 3433 new = blocks * 2; 3434 if (new != blocks * 2) 3435 return -EINVAL; /* unsigned long long to sector_t overflow */ 3436 3437 *sectors = new; 3438 return 0; 3439 } 3440 3441 static ssize_t 3442 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3443 { 3444 struct mddev *my_mddev = rdev->mddev; 3445 sector_t oldsectors = rdev->sectors; 3446 sector_t sectors; 3447 3448 if (test_bit(Journal, &rdev->flags)) 3449 return -EBUSY; 3450 if (strict_blocks_to_sectors(buf, §ors) < 0) 3451 return -EINVAL; 3452 if (rdev->data_offset != rdev->new_data_offset) 3453 return -EINVAL; /* too confusing */ 3454 if (my_mddev->pers && rdev->raid_disk >= 0) { 3455 if (my_mddev->persistent) { 3456 sectors = super_types[my_mddev->major_version]. 3457 rdev_size_change(rdev, sectors); 3458 if (!sectors) 3459 return -EBUSY; 3460 } else if (!sectors) 3461 sectors = bdev_nr_sectors(rdev->bdev) - 3462 rdev->data_offset; 3463 if (!my_mddev->pers->resize) 3464 /* Cannot change size for RAID0 or Linear etc */ 3465 return -EINVAL; 3466 } 3467 if (sectors < my_mddev->dev_sectors) 3468 return -EINVAL; /* component must fit device */ 3469 3470 rdev->sectors = sectors; 3471 3472 /* 3473 * Check that all other rdevs with the same bdev do not overlap. This 3474 * check does not provide a hard guarantee, it just helps avoid 3475 * dangerous mistakes. 3476 */ 3477 if (sectors > oldsectors && my_mddev->external && 3478 md_rdev_overlaps(rdev)) { 3479 /* 3480 * Someone else could have slipped in a size change here, but 3481 * doing so is just silly. We put oldsectors back because we 3482 * know it is safe, and trust userspace not to race with itself. 3483 */ 3484 rdev->sectors = oldsectors; 3485 return -EBUSY; 3486 } 3487 return len; 3488 } 3489 3490 static struct rdev_sysfs_entry rdev_size = 3491 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3492 3493 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3494 { 3495 unsigned long long recovery_start = rdev->recovery_offset; 3496 3497 if (test_bit(In_sync, &rdev->flags) || 3498 recovery_start == MaxSector) 3499 return sprintf(page, "none\n"); 3500 3501 return sprintf(page, "%llu\n", recovery_start); 3502 } 3503 3504 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3505 { 3506 unsigned long long recovery_start; 3507 3508 if (cmd_match(buf, "none")) 3509 recovery_start = MaxSector; 3510 else if (kstrtoull(buf, 10, &recovery_start)) 3511 return -EINVAL; 3512 3513 if (rdev->mddev->pers && 3514 rdev->raid_disk >= 0) 3515 return -EBUSY; 3516 3517 rdev->recovery_offset = recovery_start; 3518 if (recovery_start == MaxSector) 3519 set_bit(In_sync, &rdev->flags); 3520 else 3521 clear_bit(In_sync, &rdev->flags); 3522 return len; 3523 } 3524 3525 static struct rdev_sysfs_entry rdev_recovery_start = 3526 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3527 3528 /* sysfs access to bad-blocks list. 3529 * We present two files. 3530 * 'bad-blocks' lists sector numbers and lengths of ranges that 3531 * are recorded as bad. The list is truncated to fit within 3532 * the one-page limit of sysfs. 3533 * Writing "sector length" to this file adds an acknowledged 3534 * bad block list. 3535 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3536 * been acknowledged. Writing to this file adds bad blocks 3537 * without acknowledging them. This is largely for testing. 3538 */ 3539 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3540 { 3541 return badblocks_show(&rdev->badblocks, page, 0); 3542 } 3543 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3544 { 3545 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3546 /* Maybe that ack was all we needed */ 3547 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3548 wake_up(&rdev->blocked_wait); 3549 return rv; 3550 } 3551 static struct rdev_sysfs_entry rdev_bad_blocks = 3552 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3553 3554 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3555 { 3556 return badblocks_show(&rdev->badblocks, page, 1); 3557 } 3558 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3559 { 3560 return badblocks_store(&rdev->badblocks, page, len, 1); 3561 } 3562 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3563 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3564 3565 static ssize_t 3566 ppl_sector_show(struct md_rdev *rdev, char *page) 3567 { 3568 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3569 } 3570 3571 static ssize_t 3572 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3573 { 3574 unsigned long long sector; 3575 3576 if (kstrtoull(buf, 10, §or) < 0) 3577 return -EINVAL; 3578 if (sector != (sector_t)sector) 3579 return -EINVAL; 3580 3581 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3582 rdev->raid_disk >= 0) 3583 return -EBUSY; 3584 3585 if (rdev->mddev->persistent) { 3586 if (rdev->mddev->major_version == 0) 3587 return -EINVAL; 3588 if ((sector > rdev->sb_start && 3589 sector - rdev->sb_start > S16_MAX) || 3590 (sector < rdev->sb_start && 3591 rdev->sb_start - sector > -S16_MIN)) 3592 return -EINVAL; 3593 rdev->ppl.offset = sector - rdev->sb_start; 3594 } else if (!rdev->mddev->external) { 3595 return -EBUSY; 3596 } 3597 rdev->ppl.sector = sector; 3598 return len; 3599 } 3600 3601 static struct rdev_sysfs_entry rdev_ppl_sector = 3602 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3603 3604 static ssize_t 3605 ppl_size_show(struct md_rdev *rdev, char *page) 3606 { 3607 return sprintf(page, "%u\n", rdev->ppl.size); 3608 } 3609 3610 static ssize_t 3611 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3612 { 3613 unsigned int size; 3614 3615 if (kstrtouint(buf, 10, &size) < 0) 3616 return -EINVAL; 3617 3618 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3619 rdev->raid_disk >= 0) 3620 return -EBUSY; 3621 3622 if (rdev->mddev->persistent) { 3623 if (rdev->mddev->major_version == 0) 3624 return -EINVAL; 3625 if (size > U16_MAX) 3626 return -EINVAL; 3627 } else if (!rdev->mddev->external) { 3628 return -EBUSY; 3629 } 3630 rdev->ppl.size = size; 3631 return len; 3632 } 3633 3634 static struct rdev_sysfs_entry rdev_ppl_size = 3635 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3636 3637 static struct attribute *rdev_default_attrs[] = { 3638 &rdev_state.attr, 3639 &rdev_errors.attr, 3640 &rdev_slot.attr, 3641 &rdev_offset.attr, 3642 &rdev_new_offset.attr, 3643 &rdev_size.attr, 3644 &rdev_recovery_start.attr, 3645 &rdev_bad_blocks.attr, 3646 &rdev_unack_bad_blocks.attr, 3647 &rdev_ppl_sector.attr, 3648 &rdev_ppl_size.attr, 3649 NULL, 3650 }; 3651 ATTRIBUTE_GROUPS(rdev_default); 3652 static ssize_t 3653 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3654 { 3655 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3656 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3657 3658 if (!entry->show) 3659 return -EIO; 3660 if (!rdev->mddev) 3661 return -ENODEV; 3662 return entry->show(rdev, page); 3663 } 3664 3665 static ssize_t 3666 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3667 const char *page, size_t length) 3668 { 3669 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3670 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3671 struct kernfs_node *kn = NULL; 3672 bool suspend = false; 3673 ssize_t rv; 3674 struct mddev *mddev = rdev->mddev; 3675 3676 if (!entry->store) 3677 return -EIO; 3678 if (!capable(CAP_SYS_ADMIN)) 3679 return -EACCES; 3680 if (!mddev) 3681 return -ENODEV; 3682 3683 if (entry->store == state_store) { 3684 if (cmd_match(page, "remove")) 3685 kn = sysfs_break_active_protection(kobj, attr); 3686 if (cmd_match(page, "remove") || cmd_match(page, "re-add") || 3687 cmd_match(page, "writemostly") || 3688 cmd_match(page, "-writemostly")) 3689 suspend = true; 3690 } 3691 3692 rv = suspend ? mddev_suspend_and_lock(mddev) : mddev_lock(mddev); 3693 if (!rv) { 3694 if (rdev->mddev == NULL) 3695 rv = -ENODEV; 3696 else 3697 rv = entry->store(rdev, page, length); 3698 suspend ? mddev_unlock_and_resume(mddev) : mddev_unlock(mddev); 3699 } 3700 3701 if (kn) 3702 sysfs_unbreak_active_protection(kn); 3703 3704 return rv; 3705 } 3706 3707 static void rdev_free(struct kobject *ko) 3708 { 3709 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3710 kfree(rdev); 3711 } 3712 static const struct sysfs_ops rdev_sysfs_ops = { 3713 .show = rdev_attr_show, 3714 .store = rdev_attr_store, 3715 }; 3716 static const struct kobj_type rdev_ktype = { 3717 .release = rdev_free, 3718 .sysfs_ops = &rdev_sysfs_ops, 3719 .default_groups = rdev_default_groups, 3720 }; 3721 3722 int md_rdev_init(struct md_rdev *rdev) 3723 { 3724 rdev->desc_nr = -1; 3725 rdev->saved_raid_disk = -1; 3726 rdev->raid_disk = -1; 3727 rdev->flags = 0; 3728 rdev->data_offset = 0; 3729 rdev->new_data_offset = 0; 3730 rdev->sb_events = 0; 3731 rdev->last_read_error = 0; 3732 rdev->sb_loaded = 0; 3733 rdev->bb_page = NULL; 3734 atomic_set(&rdev->nr_pending, 0); 3735 atomic_set(&rdev->read_errors, 0); 3736 atomic_set(&rdev->corrected_errors, 0); 3737 3738 INIT_LIST_HEAD(&rdev->same_set); 3739 init_waitqueue_head(&rdev->blocked_wait); 3740 3741 /* Add space to store bad block list. 3742 * This reserves the space even on arrays where it cannot 3743 * be used - I wonder if that matters 3744 */ 3745 return badblocks_init(&rdev->badblocks, 0); 3746 } 3747 EXPORT_SYMBOL_GPL(md_rdev_init); 3748 3749 /* 3750 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3751 * 3752 * mark the device faulty if: 3753 * 3754 * - the device is nonexistent (zero size) 3755 * - the device has no valid superblock 3756 * 3757 * a faulty rdev _never_ has rdev->sb set. 3758 */ 3759 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3760 { 3761 struct md_rdev *rdev; 3762 sector_t size; 3763 int err; 3764 3765 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3766 if (!rdev) 3767 return ERR_PTR(-ENOMEM); 3768 3769 err = md_rdev_init(rdev); 3770 if (err) 3771 goto out_free_rdev; 3772 err = alloc_disk_sb(rdev); 3773 if (err) 3774 goto out_clear_rdev; 3775 3776 rdev->bdev_handle = bdev_open_by_dev(newdev, 3777 BLK_OPEN_READ | BLK_OPEN_WRITE, 3778 super_format == -2 ? &claim_rdev : rdev, NULL); 3779 if (IS_ERR(rdev->bdev_handle)) { 3780 pr_warn("md: could not open device unknown-block(%u,%u).\n", 3781 MAJOR(newdev), MINOR(newdev)); 3782 err = PTR_ERR(rdev->bdev_handle); 3783 goto out_clear_rdev; 3784 } 3785 rdev->bdev = rdev->bdev_handle->bdev; 3786 3787 kobject_init(&rdev->kobj, &rdev_ktype); 3788 3789 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3790 if (!size) { 3791 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3792 rdev->bdev); 3793 err = -EINVAL; 3794 goto out_blkdev_put; 3795 } 3796 3797 if (super_format >= 0) { 3798 err = super_types[super_format]. 3799 load_super(rdev, NULL, super_minor); 3800 if (err == -EINVAL) { 3801 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3802 rdev->bdev, 3803 super_format, super_minor); 3804 goto out_blkdev_put; 3805 } 3806 if (err < 0) { 3807 pr_warn("md: could not read %pg's sb, not importing!\n", 3808 rdev->bdev); 3809 goto out_blkdev_put; 3810 } 3811 } 3812 3813 return rdev; 3814 3815 out_blkdev_put: 3816 bdev_release(rdev->bdev_handle); 3817 out_clear_rdev: 3818 md_rdev_clear(rdev); 3819 out_free_rdev: 3820 kfree(rdev); 3821 return ERR_PTR(err); 3822 } 3823 3824 /* 3825 * Check a full RAID array for plausibility 3826 */ 3827 3828 static int analyze_sbs(struct mddev *mddev) 3829 { 3830 int i; 3831 struct md_rdev *rdev, *freshest, *tmp; 3832 3833 freshest = NULL; 3834 rdev_for_each_safe(rdev, tmp, mddev) 3835 switch (super_types[mddev->major_version]. 3836 load_super(rdev, freshest, mddev->minor_version)) { 3837 case 1: 3838 freshest = rdev; 3839 break; 3840 case 0: 3841 break; 3842 default: 3843 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3844 rdev->bdev); 3845 md_kick_rdev_from_array(rdev); 3846 } 3847 3848 /* Cannot find a valid fresh disk */ 3849 if (!freshest) { 3850 pr_warn("md: cannot find a valid disk\n"); 3851 return -EINVAL; 3852 } 3853 3854 super_types[mddev->major_version]. 3855 validate_super(mddev, NULL/*freshest*/, freshest); 3856 3857 i = 0; 3858 rdev_for_each_safe(rdev, tmp, mddev) { 3859 if (mddev->max_disks && 3860 (rdev->desc_nr >= mddev->max_disks || 3861 i > mddev->max_disks)) { 3862 pr_warn("md: %s: %pg: only %d devices permitted\n", 3863 mdname(mddev), rdev->bdev, 3864 mddev->max_disks); 3865 md_kick_rdev_from_array(rdev); 3866 continue; 3867 } 3868 if (rdev != freshest) { 3869 if (super_types[mddev->major_version]. 3870 validate_super(mddev, freshest, rdev)) { 3871 pr_warn("md: kicking non-fresh %pg from array!\n", 3872 rdev->bdev); 3873 md_kick_rdev_from_array(rdev); 3874 continue; 3875 } 3876 } 3877 if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks)) && 3878 !test_bit(Journal, &rdev->flags)) { 3879 rdev->raid_disk = -1; 3880 clear_bit(In_sync, &rdev->flags); 3881 } 3882 } 3883 3884 return 0; 3885 } 3886 3887 /* Read a fixed-point number. 3888 * Numbers in sysfs attributes should be in "standard" units where 3889 * possible, so time should be in seconds. 3890 * However we internally use a a much smaller unit such as 3891 * milliseconds or jiffies. 3892 * This function takes a decimal number with a possible fractional 3893 * component, and produces an integer which is the result of 3894 * multiplying that number by 10^'scale'. 3895 * all without any floating-point arithmetic. 3896 */ 3897 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3898 { 3899 unsigned long result = 0; 3900 long decimals = -1; 3901 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3902 if (*cp == '.') 3903 decimals = 0; 3904 else if (decimals < scale) { 3905 unsigned int value; 3906 value = *cp - '0'; 3907 result = result * 10 + value; 3908 if (decimals >= 0) 3909 decimals++; 3910 } 3911 cp++; 3912 } 3913 if (*cp == '\n') 3914 cp++; 3915 if (*cp) 3916 return -EINVAL; 3917 if (decimals < 0) 3918 decimals = 0; 3919 *res = result * int_pow(10, scale - decimals); 3920 return 0; 3921 } 3922 3923 static ssize_t 3924 safe_delay_show(struct mddev *mddev, char *page) 3925 { 3926 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ; 3927 3928 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000); 3929 } 3930 static ssize_t 3931 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3932 { 3933 unsigned long msec; 3934 3935 if (mddev_is_clustered(mddev)) { 3936 pr_warn("md: Safemode is disabled for clustered mode\n"); 3937 return -EINVAL; 3938 } 3939 3940 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ) 3941 return -EINVAL; 3942 if (msec == 0) 3943 mddev->safemode_delay = 0; 3944 else { 3945 unsigned long old_delay = mddev->safemode_delay; 3946 unsigned long new_delay = (msec*HZ)/1000; 3947 3948 if (new_delay == 0) 3949 new_delay = 1; 3950 mddev->safemode_delay = new_delay; 3951 if (new_delay < old_delay || old_delay == 0) 3952 mod_timer(&mddev->safemode_timer, jiffies+1); 3953 } 3954 return len; 3955 } 3956 static struct md_sysfs_entry md_safe_delay = 3957 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3958 3959 static ssize_t 3960 level_show(struct mddev *mddev, char *page) 3961 { 3962 struct md_personality *p; 3963 int ret; 3964 spin_lock(&mddev->lock); 3965 p = mddev->pers; 3966 if (p) 3967 ret = sprintf(page, "%s\n", p->name); 3968 else if (mddev->clevel[0]) 3969 ret = sprintf(page, "%s\n", mddev->clevel); 3970 else if (mddev->level != LEVEL_NONE) 3971 ret = sprintf(page, "%d\n", mddev->level); 3972 else 3973 ret = 0; 3974 spin_unlock(&mddev->lock); 3975 return ret; 3976 } 3977 3978 static ssize_t 3979 level_store(struct mddev *mddev, const char *buf, size_t len) 3980 { 3981 char clevel[16]; 3982 ssize_t rv; 3983 size_t slen = len; 3984 struct md_personality *pers, *oldpers; 3985 long level; 3986 void *priv, *oldpriv; 3987 struct md_rdev *rdev; 3988 3989 if (slen == 0 || slen >= sizeof(clevel)) 3990 return -EINVAL; 3991 3992 rv = mddev_suspend_and_lock(mddev); 3993 if (rv) 3994 return rv; 3995 3996 if (mddev->pers == NULL) { 3997 memcpy(mddev->clevel, buf, slen); 3998 if (mddev->clevel[slen-1] == '\n') 3999 slen--; 4000 mddev->clevel[slen] = 0; 4001 mddev->level = LEVEL_NONE; 4002 rv = len; 4003 goto out_unlock; 4004 } 4005 rv = -EROFS; 4006 if (!md_is_rdwr(mddev)) 4007 goto out_unlock; 4008 4009 /* request to change the personality. Need to ensure: 4010 * - array is not engaged in resync/recovery/reshape 4011 * - old personality can be suspended 4012 * - new personality will access other array. 4013 */ 4014 4015 rv = -EBUSY; 4016 if (mddev->sync_thread || 4017 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4018 mddev->reshape_position != MaxSector || 4019 mddev->sysfs_active) 4020 goto out_unlock; 4021 4022 rv = -EINVAL; 4023 if (!mddev->pers->quiesce) { 4024 pr_warn("md: %s: %s does not support online personality change\n", 4025 mdname(mddev), mddev->pers->name); 4026 goto out_unlock; 4027 } 4028 4029 /* Now find the new personality */ 4030 memcpy(clevel, buf, slen); 4031 if (clevel[slen-1] == '\n') 4032 slen--; 4033 clevel[slen] = 0; 4034 if (kstrtol(clevel, 10, &level)) 4035 level = LEVEL_NONE; 4036 4037 if (request_module("md-%s", clevel) != 0) 4038 request_module("md-level-%s", clevel); 4039 spin_lock(&pers_lock); 4040 pers = find_pers(level, clevel); 4041 if (!pers || !try_module_get(pers->owner)) { 4042 spin_unlock(&pers_lock); 4043 pr_warn("md: personality %s not loaded\n", clevel); 4044 rv = -EINVAL; 4045 goto out_unlock; 4046 } 4047 spin_unlock(&pers_lock); 4048 4049 if (pers == mddev->pers) { 4050 /* Nothing to do! */ 4051 module_put(pers->owner); 4052 rv = len; 4053 goto out_unlock; 4054 } 4055 if (!pers->takeover) { 4056 module_put(pers->owner); 4057 pr_warn("md: %s: %s does not support personality takeover\n", 4058 mdname(mddev), clevel); 4059 rv = -EINVAL; 4060 goto out_unlock; 4061 } 4062 4063 rdev_for_each(rdev, mddev) 4064 rdev->new_raid_disk = rdev->raid_disk; 4065 4066 /* ->takeover must set new_* and/or delta_disks 4067 * if it succeeds, and may set them when it fails. 4068 */ 4069 priv = pers->takeover(mddev); 4070 if (IS_ERR(priv)) { 4071 mddev->new_level = mddev->level; 4072 mddev->new_layout = mddev->layout; 4073 mddev->new_chunk_sectors = mddev->chunk_sectors; 4074 mddev->raid_disks -= mddev->delta_disks; 4075 mddev->delta_disks = 0; 4076 mddev->reshape_backwards = 0; 4077 module_put(pers->owner); 4078 pr_warn("md: %s: %s would not accept array\n", 4079 mdname(mddev), clevel); 4080 rv = PTR_ERR(priv); 4081 goto out_unlock; 4082 } 4083 4084 /* Looks like we have a winner */ 4085 mddev_detach(mddev); 4086 4087 spin_lock(&mddev->lock); 4088 oldpers = mddev->pers; 4089 oldpriv = mddev->private; 4090 mddev->pers = pers; 4091 mddev->private = priv; 4092 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4093 mddev->level = mddev->new_level; 4094 mddev->layout = mddev->new_layout; 4095 mddev->chunk_sectors = mddev->new_chunk_sectors; 4096 mddev->delta_disks = 0; 4097 mddev->reshape_backwards = 0; 4098 mddev->degraded = 0; 4099 spin_unlock(&mddev->lock); 4100 4101 if (oldpers->sync_request == NULL && 4102 mddev->external) { 4103 /* We are converting from a no-redundancy array 4104 * to a redundancy array and metadata is managed 4105 * externally so we need to be sure that writes 4106 * won't block due to a need to transition 4107 * clean->dirty 4108 * until external management is started. 4109 */ 4110 mddev->in_sync = 0; 4111 mddev->safemode_delay = 0; 4112 mddev->safemode = 0; 4113 } 4114 4115 oldpers->free(mddev, oldpriv); 4116 4117 if (oldpers->sync_request == NULL && 4118 pers->sync_request != NULL) { 4119 /* need to add the md_redundancy_group */ 4120 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4121 pr_warn("md: cannot register extra attributes for %s\n", 4122 mdname(mddev)); 4123 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4124 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4125 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4126 } 4127 if (oldpers->sync_request != NULL && 4128 pers->sync_request == NULL) { 4129 /* need to remove the md_redundancy_group */ 4130 if (mddev->to_remove == NULL) 4131 mddev->to_remove = &md_redundancy_group; 4132 } 4133 4134 module_put(oldpers->owner); 4135 4136 rdev_for_each(rdev, mddev) { 4137 if (rdev->raid_disk < 0) 4138 continue; 4139 if (rdev->new_raid_disk >= mddev->raid_disks) 4140 rdev->new_raid_disk = -1; 4141 if (rdev->new_raid_disk == rdev->raid_disk) 4142 continue; 4143 sysfs_unlink_rdev(mddev, rdev); 4144 } 4145 rdev_for_each(rdev, mddev) { 4146 if (rdev->raid_disk < 0) 4147 continue; 4148 if (rdev->new_raid_disk == rdev->raid_disk) 4149 continue; 4150 rdev->raid_disk = rdev->new_raid_disk; 4151 if (rdev->raid_disk < 0) 4152 clear_bit(In_sync, &rdev->flags); 4153 else { 4154 if (sysfs_link_rdev(mddev, rdev)) 4155 pr_warn("md: cannot register rd%d for %s after level change\n", 4156 rdev->raid_disk, mdname(mddev)); 4157 } 4158 } 4159 4160 if (pers->sync_request == NULL) { 4161 /* this is now an array without redundancy, so 4162 * it must always be in_sync 4163 */ 4164 mddev->in_sync = 1; 4165 del_timer_sync(&mddev->safemode_timer); 4166 } 4167 blk_set_stacking_limits(&mddev->queue->limits); 4168 pers->run(mddev); 4169 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4170 if (!mddev->thread) 4171 md_update_sb(mddev, 1); 4172 sysfs_notify_dirent_safe(mddev->sysfs_level); 4173 md_new_event(); 4174 rv = len; 4175 out_unlock: 4176 mddev_unlock_and_resume(mddev); 4177 return rv; 4178 } 4179 4180 static struct md_sysfs_entry md_level = 4181 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4182 4183 static ssize_t 4184 layout_show(struct mddev *mddev, char *page) 4185 { 4186 /* just a number, not meaningful for all levels */ 4187 if (mddev->reshape_position != MaxSector && 4188 mddev->layout != mddev->new_layout) 4189 return sprintf(page, "%d (%d)\n", 4190 mddev->new_layout, mddev->layout); 4191 return sprintf(page, "%d\n", mddev->layout); 4192 } 4193 4194 static ssize_t 4195 layout_store(struct mddev *mddev, const char *buf, size_t len) 4196 { 4197 unsigned int n; 4198 int err; 4199 4200 err = kstrtouint(buf, 10, &n); 4201 if (err < 0) 4202 return err; 4203 err = mddev_lock(mddev); 4204 if (err) 4205 return err; 4206 4207 if (mddev->pers) { 4208 if (mddev->pers->check_reshape == NULL) 4209 err = -EBUSY; 4210 else if (!md_is_rdwr(mddev)) 4211 err = -EROFS; 4212 else { 4213 mddev->new_layout = n; 4214 err = mddev->pers->check_reshape(mddev); 4215 if (err) 4216 mddev->new_layout = mddev->layout; 4217 } 4218 } else { 4219 mddev->new_layout = n; 4220 if (mddev->reshape_position == MaxSector) 4221 mddev->layout = n; 4222 } 4223 mddev_unlock(mddev); 4224 return err ?: len; 4225 } 4226 static struct md_sysfs_entry md_layout = 4227 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4228 4229 static ssize_t 4230 raid_disks_show(struct mddev *mddev, char *page) 4231 { 4232 if (mddev->raid_disks == 0) 4233 return 0; 4234 if (mddev->reshape_position != MaxSector && 4235 mddev->delta_disks != 0) 4236 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4237 mddev->raid_disks - mddev->delta_disks); 4238 return sprintf(page, "%d\n", mddev->raid_disks); 4239 } 4240 4241 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4242 4243 static ssize_t 4244 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4245 { 4246 unsigned int n; 4247 int err; 4248 4249 err = kstrtouint(buf, 10, &n); 4250 if (err < 0) 4251 return err; 4252 4253 err = mddev_lock(mddev); 4254 if (err) 4255 return err; 4256 if (mddev->pers) 4257 err = update_raid_disks(mddev, n); 4258 else if (mddev->reshape_position != MaxSector) { 4259 struct md_rdev *rdev; 4260 int olddisks = mddev->raid_disks - mddev->delta_disks; 4261 4262 err = -EINVAL; 4263 rdev_for_each(rdev, mddev) { 4264 if (olddisks < n && 4265 rdev->data_offset < rdev->new_data_offset) 4266 goto out_unlock; 4267 if (olddisks > n && 4268 rdev->data_offset > rdev->new_data_offset) 4269 goto out_unlock; 4270 } 4271 err = 0; 4272 mddev->delta_disks = n - olddisks; 4273 mddev->raid_disks = n; 4274 mddev->reshape_backwards = (mddev->delta_disks < 0); 4275 } else 4276 mddev->raid_disks = n; 4277 out_unlock: 4278 mddev_unlock(mddev); 4279 return err ? err : len; 4280 } 4281 static struct md_sysfs_entry md_raid_disks = 4282 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4283 4284 static ssize_t 4285 uuid_show(struct mddev *mddev, char *page) 4286 { 4287 return sprintf(page, "%pU\n", mddev->uuid); 4288 } 4289 static struct md_sysfs_entry md_uuid = 4290 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4291 4292 static ssize_t 4293 chunk_size_show(struct mddev *mddev, char *page) 4294 { 4295 if (mddev->reshape_position != MaxSector && 4296 mddev->chunk_sectors != mddev->new_chunk_sectors) 4297 return sprintf(page, "%d (%d)\n", 4298 mddev->new_chunk_sectors << 9, 4299 mddev->chunk_sectors << 9); 4300 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4301 } 4302 4303 static ssize_t 4304 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4305 { 4306 unsigned long n; 4307 int err; 4308 4309 err = kstrtoul(buf, 10, &n); 4310 if (err < 0) 4311 return err; 4312 4313 err = mddev_lock(mddev); 4314 if (err) 4315 return err; 4316 if (mddev->pers) { 4317 if (mddev->pers->check_reshape == NULL) 4318 err = -EBUSY; 4319 else if (!md_is_rdwr(mddev)) 4320 err = -EROFS; 4321 else { 4322 mddev->new_chunk_sectors = n >> 9; 4323 err = mddev->pers->check_reshape(mddev); 4324 if (err) 4325 mddev->new_chunk_sectors = mddev->chunk_sectors; 4326 } 4327 } else { 4328 mddev->new_chunk_sectors = n >> 9; 4329 if (mddev->reshape_position == MaxSector) 4330 mddev->chunk_sectors = n >> 9; 4331 } 4332 mddev_unlock(mddev); 4333 return err ?: len; 4334 } 4335 static struct md_sysfs_entry md_chunk_size = 4336 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4337 4338 static ssize_t 4339 resync_start_show(struct mddev *mddev, char *page) 4340 { 4341 if (mddev->recovery_cp == MaxSector) 4342 return sprintf(page, "none\n"); 4343 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4344 } 4345 4346 static ssize_t 4347 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4348 { 4349 unsigned long long n; 4350 int err; 4351 4352 if (cmd_match(buf, "none")) 4353 n = MaxSector; 4354 else { 4355 err = kstrtoull(buf, 10, &n); 4356 if (err < 0) 4357 return err; 4358 if (n != (sector_t)n) 4359 return -EINVAL; 4360 } 4361 4362 err = mddev_lock(mddev); 4363 if (err) 4364 return err; 4365 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4366 err = -EBUSY; 4367 4368 if (!err) { 4369 mddev->recovery_cp = n; 4370 if (mddev->pers) 4371 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4372 } 4373 mddev_unlock(mddev); 4374 return err ?: len; 4375 } 4376 static struct md_sysfs_entry md_resync_start = 4377 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4378 resync_start_show, resync_start_store); 4379 4380 /* 4381 * The array state can be: 4382 * 4383 * clear 4384 * No devices, no size, no level 4385 * Equivalent to STOP_ARRAY ioctl 4386 * inactive 4387 * May have some settings, but array is not active 4388 * all IO results in error 4389 * When written, doesn't tear down array, but just stops it 4390 * suspended (not supported yet) 4391 * All IO requests will block. The array can be reconfigured. 4392 * Writing this, if accepted, will block until array is quiescent 4393 * readonly 4394 * no resync can happen. no superblocks get written. 4395 * write requests fail 4396 * read-auto 4397 * like readonly, but behaves like 'clean' on a write request. 4398 * 4399 * clean - no pending writes, but otherwise active. 4400 * When written to inactive array, starts without resync 4401 * If a write request arrives then 4402 * if metadata is known, mark 'dirty' and switch to 'active'. 4403 * if not known, block and switch to write-pending 4404 * If written to an active array that has pending writes, then fails. 4405 * active 4406 * fully active: IO and resync can be happening. 4407 * When written to inactive array, starts with resync 4408 * 4409 * write-pending 4410 * clean, but writes are blocked waiting for 'active' to be written. 4411 * 4412 * active-idle 4413 * like active, but no writes have been seen for a while (100msec). 4414 * 4415 * broken 4416 * Array is failed. It's useful because mounted-arrays aren't stopped 4417 * when array is failed, so this state will at least alert the user that 4418 * something is wrong. 4419 */ 4420 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4421 write_pending, active_idle, broken, bad_word}; 4422 static char *array_states[] = { 4423 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4424 "write-pending", "active-idle", "broken", NULL }; 4425 4426 static int match_word(const char *word, char **list) 4427 { 4428 int n; 4429 for (n=0; list[n]; n++) 4430 if (cmd_match(word, list[n])) 4431 break; 4432 return n; 4433 } 4434 4435 static ssize_t 4436 array_state_show(struct mddev *mddev, char *page) 4437 { 4438 enum array_state st = inactive; 4439 4440 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4441 switch(mddev->ro) { 4442 case MD_RDONLY: 4443 st = readonly; 4444 break; 4445 case MD_AUTO_READ: 4446 st = read_auto; 4447 break; 4448 case MD_RDWR: 4449 spin_lock(&mddev->lock); 4450 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4451 st = write_pending; 4452 else if (mddev->in_sync) 4453 st = clean; 4454 else if (mddev->safemode) 4455 st = active_idle; 4456 else 4457 st = active; 4458 spin_unlock(&mddev->lock); 4459 } 4460 4461 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4462 st = broken; 4463 } else { 4464 if (list_empty(&mddev->disks) && 4465 mddev->raid_disks == 0 && 4466 mddev->dev_sectors == 0) 4467 st = clear; 4468 else 4469 st = inactive; 4470 } 4471 return sprintf(page, "%s\n", array_states[st]); 4472 } 4473 4474 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4475 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4476 static int restart_array(struct mddev *mddev); 4477 4478 static ssize_t 4479 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4480 { 4481 int err = 0; 4482 enum array_state st = match_word(buf, array_states); 4483 4484 /* No lock dependent actions */ 4485 switch (st) { 4486 case suspended: /* not supported yet */ 4487 case write_pending: /* cannot be set */ 4488 case active_idle: /* cannot be set */ 4489 case broken: /* cannot be set */ 4490 case bad_word: 4491 return -EINVAL; 4492 default: 4493 break; 4494 } 4495 4496 if (mddev->pers && (st == active || st == clean) && 4497 mddev->ro != MD_RDONLY) { 4498 /* don't take reconfig_mutex when toggling between 4499 * clean and active 4500 */ 4501 spin_lock(&mddev->lock); 4502 if (st == active) { 4503 restart_array(mddev); 4504 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4505 md_wakeup_thread(mddev->thread); 4506 wake_up(&mddev->sb_wait); 4507 } else /* st == clean */ { 4508 restart_array(mddev); 4509 if (!set_in_sync(mddev)) 4510 err = -EBUSY; 4511 } 4512 if (!err) 4513 sysfs_notify_dirent_safe(mddev->sysfs_state); 4514 spin_unlock(&mddev->lock); 4515 return err ?: len; 4516 } 4517 err = mddev_lock(mddev); 4518 if (err) 4519 return err; 4520 4521 switch (st) { 4522 case inactive: 4523 /* stop an active array, return 0 otherwise */ 4524 if (mddev->pers) 4525 err = do_md_stop(mddev, 2, NULL); 4526 break; 4527 case clear: 4528 err = do_md_stop(mddev, 0, NULL); 4529 break; 4530 case readonly: 4531 if (mddev->pers) 4532 err = md_set_readonly(mddev, NULL); 4533 else { 4534 mddev->ro = MD_RDONLY; 4535 set_disk_ro(mddev->gendisk, 1); 4536 err = do_md_run(mddev); 4537 } 4538 break; 4539 case read_auto: 4540 if (mddev->pers) { 4541 if (md_is_rdwr(mddev)) 4542 err = md_set_readonly(mddev, NULL); 4543 else if (mddev->ro == MD_RDONLY) 4544 err = restart_array(mddev); 4545 if (err == 0) { 4546 mddev->ro = MD_AUTO_READ; 4547 set_disk_ro(mddev->gendisk, 0); 4548 } 4549 } else { 4550 mddev->ro = MD_AUTO_READ; 4551 err = do_md_run(mddev); 4552 } 4553 break; 4554 case clean: 4555 if (mddev->pers) { 4556 err = restart_array(mddev); 4557 if (err) 4558 break; 4559 spin_lock(&mddev->lock); 4560 if (!set_in_sync(mddev)) 4561 err = -EBUSY; 4562 spin_unlock(&mddev->lock); 4563 } else 4564 err = -EINVAL; 4565 break; 4566 case active: 4567 if (mddev->pers) { 4568 err = restart_array(mddev); 4569 if (err) 4570 break; 4571 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4572 wake_up(&mddev->sb_wait); 4573 err = 0; 4574 } else { 4575 mddev->ro = MD_RDWR; 4576 set_disk_ro(mddev->gendisk, 0); 4577 err = do_md_run(mddev); 4578 } 4579 break; 4580 default: 4581 err = -EINVAL; 4582 break; 4583 } 4584 4585 if (!err) { 4586 if (mddev->hold_active == UNTIL_IOCTL) 4587 mddev->hold_active = 0; 4588 sysfs_notify_dirent_safe(mddev->sysfs_state); 4589 } 4590 mddev_unlock(mddev); 4591 return err ?: len; 4592 } 4593 static struct md_sysfs_entry md_array_state = 4594 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4595 4596 static ssize_t 4597 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4598 return sprintf(page, "%d\n", 4599 atomic_read(&mddev->max_corr_read_errors)); 4600 } 4601 4602 static ssize_t 4603 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4604 { 4605 unsigned int n; 4606 int rv; 4607 4608 rv = kstrtouint(buf, 10, &n); 4609 if (rv < 0) 4610 return rv; 4611 if (n > INT_MAX) 4612 return -EINVAL; 4613 atomic_set(&mddev->max_corr_read_errors, n); 4614 return len; 4615 } 4616 4617 static struct md_sysfs_entry max_corr_read_errors = 4618 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4619 max_corrected_read_errors_store); 4620 4621 static ssize_t 4622 null_show(struct mddev *mddev, char *page) 4623 { 4624 return -EINVAL; 4625 } 4626 4627 static ssize_t 4628 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4629 { 4630 /* buf must be %d:%d\n? giving major and minor numbers */ 4631 /* The new device is added to the array. 4632 * If the array has a persistent superblock, we read the 4633 * superblock to initialise info and check validity. 4634 * Otherwise, only checking done is that in bind_rdev_to_array, 4635 * which mainly checks size. 4636 */ 4637 char *e; 4638 int major = simple_strtoul(buf, &e, 10); 4639 int minor; 4640 dev_t dev; 4641 struct md_rdev *rdev; 4642 int err; 4643 4644 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4645 return -EINVAL; 4646 minor = simple_strtoul(e+1, &e, 10); 4647 if (*e && *e != '\n') 4648 return -EINVAL; 4649 dev = MKDEV(major, minor); 4650 if (major != MAJOR(dev) || 4651 minor != MINOR(dev)) 4652 return -EOVERFLOW; 4653 4654 err = mddev_suspend_and_lock(mddev); 4655 if (err) 4656 return err; 4657 if (mddev->persistent) { 4658 rdev = md_import_device(dev, mddev->major_version, 4659 mddev->minor_version); 4660 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4661 struct md_rdev *rdev0 4662 = list_entry(mddev->disks.next, 4663 struct md_rdev, same_set); 4664 err = super_types[mddev->major_version] 4665 .load_super(rdev, rdev0, mddev->minor_version); 4666 if (err < 0) 4667 goto out; 4668 } 4669 } else if (mddev->external) 4670 rdev = md_import_device(dev, -2, -1); 4671 else 4672 rdev = md_import_device(dev, -1, -1); 4673 4674 if (IS_ERR(rdev)) { 4675 mddev_unlock_and_resume(mddev); 4676 return PTR_ERR(rdev); 4677 } 4678 err = bind_rdev_to_array(rdev, mddev); 4679 out: 4680 if (err) 4681 export_rdev(rdev, mddev); 4682 mddev_unlock_and_resume(mddev); 4683 if (!err) 4684 md_new_event(); 4685 return err ? err : len; 4686 } 4687 4688 static struct md_sysfs_entry md_new_device = 4689 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4690 4691 static ssize_t 4692 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4693 { 4694 char *end; 4695 unsigned long chunk, end_chunk; 4696 int err; 4697 4698 err = mddev_lock(mddev); 4699 if (err) 4700 return err; 4701 if (!mddev->bitmap) 4702 goto out; 4703 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4704 while (*buf) { 4705 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4706 if (buf == end) break; 4707 if (*end == '-') { /* range */ 4708 buf = end + 1; 4709 end_chunk = simple_strtoul(buf, &end, 0); 4710 if (buf == end) break; 4711 } 4712 if (*end && !isspace(*end)) break; 4713 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4714 buf = skip_spaces(end); 4715 } 4716 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4717 out: 4718 mddev_unlock(mddev); 4719 return len; 4720 } 4721 4722 static struct md_sysfs_entry md_bitmap = 4723 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4724 4725 static ssize_t 4726 size_show(struct mddev *mddev, char *page) 4727 { 4728 return sprintf(page, "%llu\n", 4729 (unsigned long long)mddev->dev_sectors / 2); 4730 } 4731 4732 static int update_size(struct mddev *mddev, sector_t num_sectors); 4733 4734 static ssize_t 4735 size_store(struct mddev *mddev, const char *buf, size_t len) 4736 { 4737 /* If array is inactive, we can reduce the component size, but 4738 * not increase it (except from 0). 4739 * If array is active, we can try an on-line resize 4740 */ 4741 sector_t sectors; 4742 int err = strict_blocks_to_sectors(buf, §ors); 4743 4744 if (err < 0) 4745 return err; 4746 err = mddev_lock(mddev); 4747 if (err) 4748 return err; 4749 if (mddev->pers) { 4750 err = update_size(mddev, sectors); 4751 if (err == 0) 4752 md_update_sb(mddev, 1); 4753 } else { 4754 if (mddev->dev_sectors == 0 || 4755 mddev->dev_sectors > sectors) 4756 mddev->dev_sectors = sectors; 4757 else 4758 err = -ENOSPC; 4759 } 4760 mddev_unlock(mddev); 4761 return err ? err : len; 4762 } 4763 4764 static struct md_sysfs_entry md_size = 4765 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4766 4767 /* Metadata version. 4768 * This is one of 4769 * 'none' for arrays with no metadata (good luck...) 4770 * 'external' for arrays with externally managed metadata, 4771 * or N.M for internally known formats 4772 */ 4773 static ssize_t 4774 metadata_show(struct mddev *mddev, char *page) 4775 { 4776 if (mddev->persistent) 4777 return sprintf(page, "%d.%d\n", 4778 mddev->major_version, mddev->minor_version); 4779 else if (mddev->external) 4780 return sprintf(page, "external:%s\n", mddev->metadata_type); 4781 else 4782 return sprintf(page, "none\n"); 4783 } 4784 4785 static ssize_t 4786 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4787 { 4788 int major, minor; 4789 char *e; 4790 int err; 4791 /* Changing the details of 'external' metadata is 4792 * always permitted. Otherwise there must be 4793 * no devices attached to the array. 4794 */ 4795 4796 err = mddev_lock(mddev); 4797 if (err) 4798 return err; 4799 err = -EBUSY; 4800 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4801 ; 4802 else if (!list_empty(&mddev->disks)) 4803 goto out_unlock; 4804 4805 err = 0; 4806 if (cmd_match(buf, "none")) { 4807 mddev->persistent = 0; 4808 mddev->external = 0; 4809 mddev->major_version = 0; 4810 mddev->minor_version = 90; 4811 goto out_unlock; 4812 } 4813 if (strncmp(buf, "external:", 9) == 0) { 4814 size_t namelen = len-9; 4815 if (namelen >= sizeof(mddev->metadata_type)) 4816 namelen = sizeof(mddev->metadata_type)-1; 4817 memcpy(mddev->metadata_type, buf+9, namelen); 4818 mddev->metadata_type[namelen] = 0; 4819 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4820 mddev->metadata_type[--namelen] = 0; 4821 mddev->persistent = 0; 4822 mddev->external = 1; 4823 mddev->major_version = 0; 4824 mddev->minor_version = 90; 4825 goto out_unlock; 4826 } 4827 major = simple_strtoul(buf, &e, 10); 4828 err = -EINVAL; 4829 if (e==buf || *e != '.') 4830 goto out_unlock; 4831 buf = e+1; 4832 minor = simple_strtoul(buf, &e, 10); 4833 if (e==buf || (*e && *e != '\n') ) 4834 goto out_unlock; 4835 err = -ENOENT; 4836 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4837 goto out_unlock; 4838 mddev->major_version = major; 4839 mddev->minor_version = minor; 4840 mddev->persistent = 1; 4841 mddev->external = 0; 4842 err = 0; 4843 out_unlock: 4844 mddev_unlock(mddev); 4845 return err ?: len; 4846 } 4847 4848 static struct md_sysfs_entry md_metadata = 4849 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4850 4851 static ssize_t 4852 action_show(struct mddev *mddev, char *page) 4853 { 4854 char *type = "idle"; 4855 unsigned long recovery = mddev->recovery; 4856 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4857 type = "frozen"; 4858 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4859 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4860 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4861 type = "reshape"; 4862 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4863 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4864 type = "resync"; 4865 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4866 type = "check"; 4867 else 4868 type = "repair"; 4869 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4870 type = "recover"; 4871 else if (mddev->reshape_position != MaxSector) 4872 type = "reshape"; 4873 } 4874 return sprintf(page, "%s\n", type); 4875 } 4876 4877 /** 4878 * stop_sync_thread() - wait for sync_thread to stop if it's running. 4879 * @mddev: the array. 4880 * @locked: if set, reconfig_mutex will still be held after this function 4881 * return; if not set, reconfig_mutex will be released after this 4882 * function return. 4883 * @check_seq: if set, only wait for curent running sync_thread to stop, noted 4884 * that new sync_thread can still start. 4885 */ 4886 static void stop_sync_thread(struct mddev *mddev, bool locked, bool check_seq) 4887 { 4888 int sync_seq; 4889 4890 if (check_seq) 4891 sync_seq = atomic_read(&mddev->sync_seq); 4892 4893 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4894 if (!locked) 4895 mddev_unlock(mddev); 4896 return; 4897 } 4898 4899 mddev_unlock(mddev); 4900 4901 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4902 /* 4903 * Thread might be blocked waiting for metadata update which will now 4904 * never happen 4905 */ 4906 md_wakeup_thread_directly(mddev->sync_thread); 4907 if (work_pending(&mddev->sync_work)) 4908 flush_work(&mddev->sync_work); 4909 4910 wait_event(resync_wait, 4911 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4912 (check_seq && sync_seq != atomic_read(&mddev->sync_seq))); 4913 4914 if (locked) 4915 mddev_lock_nointr(mddev); 4916 } 4917 4918 static void idle_sync_thread(struct mddev *mddev) 4919 { 4920 mutex_lock(&mddev->sync_mutex); 4921 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4922 4923 if (mddev_lock(mddev)) { 4924 mutex_unlock(&mddev->sync_mutex); 4925 return; 4926 } 4927 4928 stop_sync_thread(mddev, false, true); 4929 mutex_unlock(&mddev->sync_mutex); 4930 } 4931 4932 static void frozen_sync_thread(struct mddev *mddev) 4933 { 4934 mutex_lock(&mddev->sync_mutex); 4935 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4936 4937 if (mddev_lock(mddev)) { 4938 mutex_unlock(&mddev->sync_mutex); 4939 return; 4940 } 4941 4942 stop_sync_thread(mddev, false, false); 4943 mutex_unlock(&mddev->sync_mutex); 4944 } 4945 4946 static ssize_t 4947 action_store(struct mddev *mddev, const char *page, size_t len) 4948 { 4949 if (!mddev->pers || !mddev->pers->sync_request) 4950 return -EINVAL; 4951 4952 4953 if (cmd_match(page, "idle")) 4954 idle_sync_thread(mddev); 4955 else if (cmd_match(page, "frozen")) 4956 frozen_sync_thread(mddev); 4957 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4958 return -EBUSY; 4959 else if (cmd_match(page, "resync")) 4960 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4961 else if (cmd_match(page, "recover")) { 4962 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4963 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4964 } else if (cmd_match(page, "reshape")) { 4965 int err; 4966 if (mddev->pers->start_reshape == NULL) 4967 return -EINVAL; 4968 err = mddev_lock(mddev); 4969 if (!err) { 4970 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4971 err = -EBUSY; 4972 } else if (mddev->reshape_position == MaxSector || 4973 mddev->pers->check_reshape == NULL || 4974 mddev->pers->check_reshape(mddev)) { 4975 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4976 err = mddev->pers->start_reshape(mddev); 4977 } else { 4978 /* 4979 * If reshape is still in progress, and 4980 * md_check_recovery() can continue to reshape, 4981 * don't restart reshape because data can be 4982 * corrupted for raid456. 4983 */ 4984 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4985 } 4986 mddev_unlock(mddev); 4987 } 4988 if (err) 4989 return err; 4990 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4991 } else { 4992 if (cmd_match(page, "check")) 4993 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4994 else if (!cmd_match(page, "repair")) 4995 return -EINVAL; 4996 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4997 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4998 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4999 } 5000 if (mddev->ro == MD_AUTO_READ) { 5001 /* A write to sync_action is enough to justify 5002 * canceling read-auto mode 5003 */ 5004 flush_work(&mddev->sync_work); 5005 mddev->ro = MD_RDWR; 5006 md_wakeup_thread(mddev->sync_thread); 5007 } 5008 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5009 md_wakeup_thread(mddev->thread); 5010 sysfs_notify_dirent_safe(mddev->sysfs_action); 5011 return len; 5012 } 5013 5014 static struct md_sysfs_entry md_scan_mode = 5015 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 5016 5017 static ssize_t 5018 last_sync_action_show(struct mddev *mddev, char *page) 5019 { 5020 return sprintf(page, "%s\n", mddev->last_sync_action); 5021 } 5022 5023 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 5024 5025 static ssize_t 5026 mismatch_cnt_show(struct mddev *mddev, char *page) 5027 { 5028 return sprintf(page, "%llu\n", 5029 (unsigned long long) 5030 atomic64_read(&mddev->resync_mismatches)); 5031 } 5032 5033 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 5034 5035 static ssize_t 5036 sync_min_show(struct mddev *mddev, char *page) 5037 { 5038 return sprintf(page, "%d (%s)\n", speed_min(mddev), 5039 mddev->sync_speed_min ? "local": "system"); 5040 } 5041 5042 static ssize_t 5043 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 5044 { 5045 unsigned int min; 5046 int rv; 5047 5048 if (strncmp(buf, "system", 6)==0) { 5049 min = 0; 5050 } else { 5051 rv = kstrtouint(buf, 10, &min); 5052 if (rv < 0) 5053 return rv; 5054 if (min == 0) 5055 return -EINVAL; 5056 } 5057 mddev->sync_speed_min = min; 5058 return len; 5059 } 5060 5061 static struct md_sysfs_entry md_sync_min = 5062 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 5063 5064 static ssize_t 5065 sync_max_show(struct mddev *mddev, char *page) 5066 { 5067 return sprintf(page, "%d (%s)\n", speed_max(mddev), 5068 mddev->sync_speed_max ? "local": "system"); 5069 } 5070 5071 static ssize_t 5072 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 5073 { 5074 unsigned int max; 5075 int rv; 5076 5077 if (strncmp(buf, "system", 6)==0) { 5078 max = 0; 5079 } else { 5080 rv = kstrtouint(buf, 10, &max); 5081 if (rv < 0) 5082 return rv; 5083 if (max == 0) 5084 return -EINVAL; 5085 } 5086 mddev->sync_speed_max = max; 5087 return len; 5088 } 5089 5090 static struct md_sysfs_entry md_sync_max = 5091 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 5092 5093 static ssize_t 5094 degraded_show(struct mddev *mddev, char *page) 5095 { 5096 return sprintf(page, "%d\n", mddev->degraded); 5097 } 5098 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 5099 5100 static ssize_t 5101 sync_force_parallel_show(struct mddev *mddev, char *page) 5102 { 5103 return sprintf(page, "%d\n", mddev->parallel_resync); 5104 } 5105 5106 static ssize_t 5107 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 5108 { 5109 long n; 5110 5111 if (kstrtol(buf, 10, &n)) 5112 return -EINVAL; 5113 5114 if (n != 0 && n != 1) 5115 return -EINVAL; 5116 5117 mddev->parallel_resync = n; 5118 5119 if (mddev->sync_thread) 5120 wake_up(&resync_wait); 5121 5122 return len; 5123 } 5124 5125 /* force parallel resync, even with shared block devices */ 5126 static struct md_sysfs_entry md_sync_force_parallel = 5127 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5128 sync_force_parallel_show, sync_force_parallel_store); 5129 5130 static ssize_t 5131 sync_speed_show(struct mddev *mddev, char *page) 5132 { 5133 unsigned long resync, dt, db; 5134 if (mddev->curr_resync == MD_RESYNC_NONE) 5135 return sprintf(page, "none\n"); 5136 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5137 dt = (jiffies - mddev->resync_mark) / HZ; 5138 if (!dt) dt++; 5139 db = resync - mddev->resync_mark_cnt; 5140 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5141 } 5142 5143 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5144 5145 static ssize_t 5146 sync_completed_show(struct mddev *mddev, char *page) 5147 { 5148 unsigned long long max_sectors, resync; 5149 5150 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5151 return sprintf(page, "none\n"); 5152 5153 if (mddev->curr_resync == MD_RESYNC_YIELDED || 5154 mddev->curr_resync == MD_RESYNC_DELAYED) 5155 return sprintf(page, "delayed\n"); 5156 5157 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5158 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5159 max_sectors = mddev->resync_max_sectors; 5160 else 5161 max_sectors = mddev->dev_sectors; 5162 5163 resync = mddev->curr_resync_completed; 5164 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5165 } 5166 5167 static struct md_sysfs_entry md_sync_completed = 5168 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5169 5170 static ssize_t 5171 min_sync_show(struct mddev *mddev, char *page) 5172 { 5173 return sprintf(page, "%llu\n", 5174 (unsigned long long)mddev->resync_min); 5175 } 5176 static ssize_t 5177 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5178 { 5179 unsigned long long min; 5180 int err; 5181 5182 if (kstrtoull(buf, 10, &min)) 5183 return -EINVAL; 5184 5185 spin_lock(&mddev->lock); 5186 err = -EINVAL; 5187 if (min > mddev->resync_max) 5188 goto out_unlock; 5189 5190 err = -EBUSY; 5191 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5192 goto out_unlock; 5193 5194 /* Round down to multiple of 4K for safety */ 5195 mddev->resync_min = round_down(min, 8); 5196 err = 0; 5197 5198 out_unlock: 5199 spin_unlock(&mddev->lock); 5200 return err ?: len; 5201 } 5202 5203 static struct md_sysfs_entry md_min_sync = 5204 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5205 5206 static ssize_t 5207 max_sync_show(struct mddev *mddev, char *page) 5208 { 5209 if (mddev->resync_max == MaxSector) 5210 return sprintf(page, "max\n"); 5211 else 5212 return sprintf(page, "%llu\n", 5213 (unsigned long long)mddev->resync_max); 5214 } 5215 static ssize_t 5216 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5217 { 5218 int err; 5219 spin_lock(&mddev->lock); 5220 if (strncmp(buf, "max", 3) == 0) 5221 mddev->resync_max = MaxSector; 5222 else { 5223 unsigned long long max; 5224 int chunk; 5225 5226 err = -EINVAL; 5227 if (kstrtoull(buf, 10, &max)) 5228 goto out_unlock; 5229 if (max < mddev->resync_min) 5230 goto out_unlock; 5231 5232 err = -EBUSY; 5233 if (max < mddev->resync_max && md_is_rdwr(mddev) && 5234 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5235 goto out_unlock; 5236 5237 /* Must be a multiple of chunk_size */ 5238 chunk = mddev->chunk_sectors; 5239 if (chunk) { 5240 sector_t temp = max; 5241 5242 err = -EINVAL; 5243 if (sector_div(temp, chunk)) 5244 goto out_unlock; 5245 } 5246 mddev->resync_max = max; 5247 } 5248 wake_up(&mddev->recovery_wait); 5249 err = 0; 5250 out_unlock: 5251 spin_unlock(&mddev->lock); 5252 return err ?: len; 5253 } 5254 5255 static struct md_sysfs_entry md_max_sync = 5256 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5257 5258 static ssize_t 5259 suspend_lo_show(struct mddev *mddev, char *page) 5260 { 5261 return sprintf(page, "%llu\n", 5262 (unsigned long long)READ_ONCE(mddev->suspend_lo)); 5263 } 5264 5265 static ssize_t 5266 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5267 { 5268 unsigned long long new; 5269 int err; 5270 5271 err = kstrtoull(buf, 10, &new); 5272 if (err < 0) 5273 return err; 5274 if (new != (sector_t)new) 5275 return -EINVAL; 5276 5277 err = mddev_suspend(mddev, true); 5278 if (err) 5279 return err; 5280 5281 WRITE_ONCE(mddev->suspend_lo, new); 5282 mddev_resume(mddev); 5283 5284 return len; 5285 } 5286 static struct md_sysfs_entry md_suspend_lo = 5287 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5288 5289 static ssize_t 5290 suspend_hi_show(struct mddev *mddev, char *page) 5291 { 5292 return sprintf(page, "%llu\n", 5293 (unsigned long long)READ_ONCE(mddev->suspend_hi)); 5294 } 5295 5296 static ssize_t 5297 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5298 { 5299 unsigned long long new; 5300 int err; 5301 5302 err = kstrtoull(buf, 10, &new); 5303 if (err < 0) 5304 return err; 5305 if (new != (sector_t)new) 5306 return -EINVAL; 5307 5308 err = mddev_suspend(mddev, true); 5309 if (err) 5310 return err; 5311 5312 WRITE_ONCE(mddev->suspend_hi, new); 5313 mddev_resume(mddev); 5314 5315 return len; 5316 } 5317 static struct md_sysfs_entry md_suspend_hi = 5318 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5319 5320 static ssize_t 5321 reshape_position_show(struct mddev *mddev, char *page) 5322 { 5323 if (mddev->reshape_position != MaxSector) 5324 return sprintf(page, "%llu\n", 5325 (unsigned long long)mddev->reshape_position); 5326 strcpy(page, "none\n"); 5327 return 5; 5328 } 5329 5330 static ssize_t 5331 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5332 { 5333 struct md_rdev *rdev; 5334 unsigned long long new; 5335 int err; 5336 5337 err = kstrtoull(buf, 10, &new); 5338 if (err < 0) 5339 return err; 5340 if (new != (sector_t)new) 5341 return -EINVAL; 5342 err = mddev_lock(mddev); 5343 if (err) 5344 return err; 5345 err = -EBUSY; 5346 if (mddev->pers) 5347 goto unlock; 5348 mddev->reshape_position = new; 5349 mddev->delta_disks = 0; 5350 mddev->reshape_backwards = 0; 5351 mddev->new_level = mddev->level; 5352 mddev->new_layout = mddev->layout; 5353 mddev->new_chunk_sectors = mddev->chunk_sectors; 5354 rdev_for_each(rdev, mddev) 5355 rdev->new_data_offset = rdev->data_offset; 5356 err = 0; 5357 unlock: 5358 mddev_unlock(mddev); 5359 return err ?: len; 5360 } 5361 5362 static struct md_sysfs_entry md_reshape_position = 5363 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5364 reshape_position_store); 5365 5366 static ssize_t 5367 reshape_direction_show(struct mddev *mddev, char *page) 5368 { 5369 return sprintf(page, "%s\n", 5370 mddev->reshape_backwards ? "backwards" : "forwards"); 5371 } 5372 5373 static ssize_t 5374 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5375 { 5376 int backwards = 0; 5377 int err; 5378 5379 if (cmd_match(buf, "forwards")) 5380 backwards = 0; 5381 else if (cmd_match(buf, "backwards")) 5382 backwards = 1; 5383 else 5384 return -EINVAL; 5385 if (mddev->reshape_backwards == backwards) 5386 return len; 5387 5388 err = mddev_lock(mddev); 5389 if (err) 5390 return err; 5391 /* check if we are allowed to change */ 5392 if (mddev->delta_disks) 5393 err = -EBUSY; 5394 else if (mddev->persistent && 5395 mddev->major_version == 0) 5396 err = -EINVAL; 5397 else 5398 mddev->reshape_backwards = backwards; 5399 mddev_unlock(mddev); 5400 return err ?: len; 5401 } 5402 5403 static struct md_sysfs_entry md_reshape_direction = 5404 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5405 reshape_direction_store); 5406 5407 static ssize_t 5408 array_size_show(struct mddev *mddev, char *page) 5409 { 5410 if (mddev->external_size) 5411 return sprintf(page, "%llu\n", 5412 (unsigned long long)mddev->array_sectors/2); 5413 else 5414 return sprintf(page, "default\n"); 5415 } 5416 5417 static ssize_t 5418 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5419 { 5420 sector_t sectors; 5421 int err; 5422 5423 err = mddev_lock(mddev); 5424 if (err) 5425 return err; 5426 5427 /* cluster raid doesn't support change array_sectors */ 5428 if (mddev_is_clustered(mddev)) { 5429 mddev_unlock(mddev); 5430 return -EINVAL; 5431 } 5432 5433 if (strncmp(buf, "default", 7) == 0) { 5434 if (mddev->pers) 5435 sectors = mddev->pers->size(mddev, 0, 0); 5436 else 5437 sectors = mddev->array_sectors; 5438 5439 mddev->external_size = 0; 5440 } else { 5441 if (strict_blocks_to_sectors(buf, §ors) < 0) 5442 err = -EINVAL; 5443 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5444 err = -E2BIG; 5445 else 5446 mddev->external_size = 1; 5447 } 5448 5449 if (!err) { 5450 mddev->array_sectors = sectors; 5451 if (mddev->pers) 5452 set_capacity_and_notify(mddev->gendisk, 5453 mddev->array_sectors); 5454 } 5455 mddev_unlock(mddev); 5456 return err ?: len; 5457 } 5458 5459 static struct md_sysfs_entry md_array_size = 5460 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5461 array_size_store); 5462 5463 static ssize_t 5464 consistency_policy_show(struct mddev *mddev, char *page) 5465 { 5466 int ret; 5467 5468 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5469 ret = sprintf(page, "journal\n"); 5470 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5471 ret = sprintf(page, "ppl\n"); 5472 } else if (mddev->bitmap) { 5473 ret = sprintf(page, "bitmap\n"); 5474 } else if (mddev->pers) { 5475 if (mddev->pers->sync_request) 5476 ret = sprintf(page, "resync\n"); 5477 else 5478 ret = sprintf(page, "none\n"); 5479 } else { 5480 ret = sprintf(page, "unknown\n"); 5481 } 5482 5483 return ret; 5484 } 5485 5486 static ssize_t 5487 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5488 { 5489 int err = 0; 5490 5491 if (mddev->pers) { 5492 if (mddev->pers->change_consistency_policy) 5493 err = mddev->pers->change_consistency_policy(mddev, buf); 5494 else 5495 err = -EBUSY; 5496 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5497 set_bit(MD_HAS_PPL, &mddev->flags); 5498 } else { 5499 err = -EINVAL; 5500 } 5501 5502 return err ? err : len; 5503 } 5504 5505 static struct md_sysfs_entry md_consistency_policy = 5506 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5507 consistency_policy_store); 5508 5509 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5510 { 5511 return sprintf(page, "%d\n", mddev->fail_last_dev); 5512 } 5513 5514 /* 5515 * Setting fail_last_dev to true to allow last device to be forcibly removed 5516 * from RAID1/RAID10. 5517 */ 5518 static ssize_t 5519 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5520 { 5521 int ret; 5522 bool value; 5523 5524 ret = kstrtobool(buf, &value); 5525 if (ret) 5526 return ret; 5527 5528 if (value != mddev->fail_last_dev) 5529 mddev->fail_last_dev = value; 5530 5531 return len; 5532 } 5533 static struct md_sysfs_entry md_fail_last_dev = 5534 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5535 fail_last_dev_store); 5536 5537 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5538 { 5539 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5540 return sprintf(page, "n/a\n"); 5541 else 5542 return sprintf(page, "%d\n", mddev->serialize_policy); 5543 } 5544 5545 /* 5546 * Setting serialize_policy to true to enforce write IO is not reordered 5547 * for raid1. 5548 */ 5549 static ssize_t 5550 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5551 { 5552 int err; 5553 bool value; 5554 5555 err = kstrtobool(buf, &value); 5556 if (err) 5557 return err; 5558 5559 if (value == mddev->serialize_policy) 5560 return len; 5561 5562 err = mddev_suspend_and_lock(mddev); 5563 if (err) 5564 return err; 5565 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5566 pr_err("md: serialize_policy is only effective for raid1\n"); 5567 err = -EINVAL; 5568 goto unlock; 5569 } 5570 5571 if (value) 5572 mddev_create_serial_pool(mddev, NULL); 5573 else 5574 mddev_destroy_serial_pool(mddev, NULL); 5575 mddev->serialize_policy = value; 5576 unlock: 5577 mddev_unlock_and_resume(mddev); 5578 return err ?: len; 5579 } 5580 5581 static struct md_sysfs_entry md_serialize_policy = 5582 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5583 serialize_policy_store); 5584 5585 5586 static struct attribute *md_default_attrs[] = { 5587 &md_level.attr, 5588 &md_layout.attr, 5589 &md_raid_disks.attr, 5590 &md_uuid.attr, 5591 &md_chunk_size.attr, 5592 &md_size.attr, 5593 &md_resync_start.attr, 5594 &md_metadata.attr, 5595 &md_new_device.attr, 5596 &md_safe_delay.attr, 5597 &md_array_state.attr, 5598 &md_reshape_position.attr, 5599 &md_reshape_direction.attr, 5600 &md_array_size.attr, 5601 &max_corr_read_errors.attr, 5602 &md_consistency_policy.attr, 5603 &md_fail_last_dev.attr, 5604 &md_serialize_policy.attr, 5605 NULL, 5606 }; 5607 5608 static const struct attribute_group md_default_group = { 5609 .attrs = md_default_attrs, 5610 }; 5611 5612 static struct attribute *md_redundancy_attrs[] = { 5613 &md_scan_mode.attr, 5614 &md_last_scan_mode.attr, 5615 &md_mismatches.attr, 5616 &md_sync_min.attr, 5617 &md_sync_max.attr, 5618 &md_sync_speed.attr, 5619 &md_sync_force_parallel.attr, 5620 &md_sync_completed.attr, 5621 &md_min_sync.attr, 5622 &md_max_sync.attr, 5623 &md_suspend_lo.attr, 5624 &md_suspend_hi.attr, 5625 &md_bitmap.attr, 5626 &md_degraded.attr, 5627 NULL, 5628 }; 5629 static const struct attribute_group md_redundancy_group = { 5630 .name = NULL, 5631 .attrs = md_redundancy_attrs, 5632 }; 5633 5634 static const struct attribute_group *md_attr_groups[] = { 5635 &md_default_group, 5636 &md_bitmap_group, 5637 NULL, 5638 }; 5639 5640 static ssize_t 5641 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5642 { 5643 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5644 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5645 ssize_t rv; 5646 5647 if (!entry->show) 5648 return -EIO; 5649 spin_lock(&all_mddevs_lock); 5650 if (!mddev_get(mddev)) { 5651 spin_unlock(&all_mddevs_lock); 5652 return -EBUSY; 5653 } 5654 spin_unlock(&all_mddevs_lock); 5655 5656 rv = entry->show(mddev, page); 5657 mddev_put(mddev); 5658 return rv; 5659 } 5660 5661 static ssize_t 5662 md_attr_store(struct kobject *kobj, struct attribute *attr, 5663 const char *page, size_t length) 5664 { 5665 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5666 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5667 ssize_t rv; 5668 5669 if (!entry->store) 5670 return -EIO; 5671 if (!capable(CAP_SYS_ADMIN)) 5672 return -EACCES; 5673 spin_lock(&all_mddevs_lock); 5674 if (!mddev_get(mddev)) { 5675 spin_unlock(&all_mddevs_lock); 5676 return -EBUSY; 5677 } 5678 spin_unlock(&all_mddevs_lock); 5679 rv = entry->store(mddev, page, length); 5680 mddev_put(mddev); 5681 return rv; 5682 } 5683 5684 static void md_kobj_release(struct kobject *ko) 5685 { 5686 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5687 5688 if (mddev->sysfs_state) 5689 sysfs_put(mddev->sysfs_state); 5690 if (mddev->sysfs_level) 5691 sysfs_put(mddev->sysfs_level); 5692 5693 del_gendisk(mddev->gendisk); 5694 put_disk(mddev->gendisk); 5695 } 5696 5697 static const struct sysfs_ops md_sysfs_ops = { 5698 .show = md_attr_show, 5699 .store = md_attr_store, 5700 }; 5701 static const struct kobj_type md_ktype = { 5702 .release = md_kobj_release, 5703 .sysfs_ops = &md_sysfs_ops, 5704 .default_groups = md_attr_groups, 5705 }; 5706 5707 int mdp_major = 0; 5708 5709 static void mddev_delayed_delete(struct work_struct *ws) 5710 { 5711 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5712 5713 kobject_put(&mddev->kobj); 5714 } 5715 5716 struct mddev *md_alloc(dev_t dev, char *name) 5717 { 5718 /* 5719 * If dev is zero, name is the name of a device to allocate with 5720 * an arbitrary minor number. It will be "md_???" 5721 * If dev is non-zero it must be a device number with a MAJOR of 5722 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5723 * the device is being created by opening a node in /dev. 5724 * If "name" is not NULL, the device is being created by 5725 * writing to /sys/module/md_mod/parameters/new_array. 5726 */ 5727 static DEFINE_MUTEX(disks_mutex); 5728 struct mddev *mddev; 5729 struct gendisk *disk; 5730 int partitioned; 5731 int shift; 5732 int unit; 5733 int error ; 5734 5735 /* 5736 * Wait for any previous instance of this device to be completely 5737 * removed (mddev_delayed_delete). 5738 */ 5739 flush_workqueue(md_misc_wq); 5740 5741 mutex_lock(&disks_mutex); 5742 mddev = mddev_alloc(dev); 5743 if (IS_ERR(mddev)) { 5744 error = PTR_ERR(mddev); 5745 goto out_unlock; 5746 } 5747 5748 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5749 shift = partitioned ? MdpMinorShift : 0; 5750 unit = MINOR(mddev->unit) >> shift; 5751 5752 if (name && !dev) { 5753 /* Need to ensure that 'name' is not a duplicate. 5754 */ 5755 struct mddev *mddev2; 5756 spin_lock(&all_mddevs_lock); 5757 5758 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5759 if (mddev2->gendisk && 5760 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5761 spin_unlock(&all_mddevs_lock); 5762 error = -EEXIST; 5763 goto out_free_mddev; 5764 } 5765 spin_unlock(&all_mddevs_lock); 5766 } 5767 if (name && dev) 5768 /* 5769 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5770 */ 5771 mddev->hold_active = UNTIL_STOP; 5772 5773 error = -ENOMEM; 5774 disk = blk_alloc_disk(NUMA_NO_NODE); 5775 if (!disk) 5776 goto out_free_mddev; 5777 5778 disk->major = MAJOR(mddev->unit); 5779 disk->first_minor = unit << shift; 5780 disk->minors = 1 << shift; 5781 if (name) 5782 strcpy(disk->disk_name, name); 5783 else if (partitioned) 5784 sprintf(disk->disk_name, "md_d%d", unit); 5785 else 5786 sprintf(disk->disk_name, "md%d", unit); 5787 disk->fops = &md_fops; 5788 disk->private_data = mddev; 5789 5790 mddev->queue = disk->queue; 5791 blk_set_stacking_limits(&mddev->queue->limits); 5792 blk_queue_write_cache(mddev->queue, true, true); 5793 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5794 mddev->gendisk = disk; 5795 error = add_disk(disk); 5796 if (error) 5797 goto out_put_disk; 5798 5799 kobject_init(&mddev->kobj, &md_ktype); 5800 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5801 if (error) { 5802 /* 5803 * The disk is already live at this point. Clear the hold flag 5804 * and let mddev_put take care of the deletion, as it isn't any 5805 * different from a normal close on last release now. 5806 */ 5807 mddev->hold_active = 0; 5808 mutex_unlock(&disks_mutex); 5809 mddev_put(mddev); 5810 return ERR_PTR(error); 5811 } 5812 5813 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5814 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5815 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5816 mutex_unlock(&disks_mutex); 5817 return mddev; 5818 5819 out_put_disk: 5820 put_disk(disk); 5821 out_free_mddev: 5822 mddev_free(mddev); 5823 out_unlock: 5824 mutex_unlock(&disks_mutex); 5825 return ERR_PTR(error); 5826 } 5827 5828 static int md_alloc_and_put(dev_t dev, char *name) 5829 { 5830 struct mddev *mddev = md_alloc(dev, name); 5831 5832 if (IS_ERR(mddev)) 5833 return PTR_ERR(mddev); 5834 mddev_put(mddev); 5835 return 0; 5836 } 5837 5838 static void md_probe(dev_t dev) 5839 { 5840 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5841 return; 5842 if (create_on_open) 5843 md_alloc_and_put(dev, NULL); 5844 } 5845 5846 static int add_named_array(const char *val, const struct kernel_param *kp) 5847 { 5848 /* 5849 * val must be "md_*" or "mdNNN". 5850 * For "md_*" we allocate an array with a large free minor number, and 5851 * set the name to val. val must not already be an active name. 5852 * For "mdNNN" we allocate an array with the minor number NNN 5853 * which must not already be in use. 5854 */ 5855 int len = strlen(val); 5856 char buf[DISK_NAME_LEN]; 5857 unsigned long devnum; 5858 5859 while (len && val[len-1] == '\n') 5860 len--; 5861 if (len >= DISK_NAME_LEN) 5862 return -E2BIG; 5863 strscpy(buf, val, len+1); 5864 if (strncmp(buf, "md_", 3) == 0) 5865 return md_alloc_and_put(0, buf); 5866 if (strncmp(buf, "md", 2) == 0 && 5867 isdigit(buf[2]) && 5868 kstrtoul(buf+2, 10, &devnum) == 0 && 5869 devnum <= MINORMASK) 5870 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5871 5872 return -EINVAL; 5873 } 5874 5875 static void md_safemode_timeout(struct timer_list *t) 5876 { 5877 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5878 5879 mddev->safemode = 1; 5880 if (mddev->external) 5881 sysfs_notify_dirent_safe(mddev->sysfs_state); 5882 5883 md_wakeup_thread(mddev->thread); 5884 } 5885 5886 static int start_dirty_degraded; 5887 5888 int md_run(struct mddev *mddev) 5889 { 5890 int err; 5891 struct md_rdev *rdev; 5892 struct md_personality *pers; 5893 bool nowait = true; 5894 5895 if (list_empty(&mddev->disks)) 5896 /* cannot run an array with no devices.. */ 5897 return -EINVAL; 5898 5899 if (mddev->pers) 5900 return -EBUSY; 5901 /* Cannot run until previous stop completes properly */ 5902 if (mddev->sysfs_active) 5903 return -EBUSY; 5904 5905 /* 5906 * Analyze all RAID superblock(s) 5907 */ 5908 if (!mddev->raid_disks) { 5909 if (!mddev->persistent) 5910 return -EINVAL; 5911 err = analyze_sbs(mddev); 5912 if (err) 5913 return -EINVAL; 5914 } 5915 5916 if (mddev->level != LEVEL_NONE) 5917 request_module("md-level-%d", mddev->level); 5918 else if (mddev->clevel[0]) 5919 request_module("md-%s", mddev->clevel); 5920 5921 /* 5922 * Drop all container device buffers, from now on 5923 * the only valid external interface is through the md 5924 * device. 5925 */ 5926 mddev->has_superblocks = false; 5927 rdev_for_each(rdev, mddev) { 5928 if (test_bit(Faulty, &rdev->flags)) 5929 continue; 5930 sync_blockdev(rdev->bdev); 5931 invalidate_bdev(rdev->bdev); 5932 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) { 5933 mddev->ro = MD_RDONLY; 5934 if (mddev->gendisk) 5935 set_disk_ro(mddev->gendisk, 1); 5936 } 5937 5938 if (rdev->sb_page) 5939 mddev->has_superblocks = true; 5940 5941 /* perform some consistency tests on the device. 5942 * We don't want the data to overlap the metadata, 5943 * Internal Bitmap issues have been handled elsewhere. 5944 */ 5945 if (rdev->meta_bdev) { 5946 /* Nothing to check */; 5947 } else if (rdev->data_offset < rdev->sb_start) { 5948 if (mddev->dev_sectors && 5949 rdev->data_offset + mddev->dev_sectors 5950 > rdev->sb_start) { 5951 pr_warn("md: %s: data overlaps metadata\n", 5952 mdname(mddev)); 5953 return -EINVAL; 5954 } 5955 } else { 5956 if (rdev->sb_start + rdev->sb_size/512 5957 > rdev->data_offset) { 5958 pr_warn("md: %s: metadata overlaps data\n", 5959 mdname(mddev)); 5960 return -EINVAL; 5961 } 5962 } 5963 sysfs_notify_dirent_safe(rdev->sysfs_state); 5964 nowait = nowait && bdev_nowait(rdev->bdev); 5965 } 5966 5967 if (!bioset_initialized(&mddev->bio_set)) { 5968 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5969 if (err) 5970 return err; 5971 } 5972 if (!bioset_initialized(&mddev->sync_set)) { 5973 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5974 if (err) 5975 goto exit_bio_set; 5976 } 5977 5978 if (!bioset_initialized(&mddev->io_clone_set)) { 5979 err = bioset_init(&mddev->io_clone_set, BIO_POOL_SIZE, 5980 offsetof(struct md_io_clone, bio_clone), 0); 5981 if (err) 5982 goto exit_sync_set; 5983 } 5984 5985 spin_lock(&pers_lock); 5986 pers = find_pers(mddev->level, mddev->clevel); 5987 if (!pers || !try_module_get(pers->owner)) { 5988 spin_unlock(&pers_lock); 5989 if (mddev->level != LEVEL_NONE) 5990 pr_warn("md: personality for level %d is not loaded!\n", 5991 mddev->level); 5992 else 5993 pr_warn("md: personality for level %s is not loaded!\n", 5994 mddev->clevel); 5995 err = -EINVAL; 5996 goto abort; 5997 } 5998 spin_unlock(&pers_lock); 5999 if (mddev->level != pers->level) { 6000 mddev->level = pers->level; 6001 mddev->new_level = pers->level; 6002 } 6003 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 6004 6005 if (mddev->reshape_position != MaxSector && 6006 pers->start_reshape == NULL) { 6007 /* This personality cannot handle reshaping... */ 6008 module_put(pers->owner); 6009 err = -EINVAL; 6010 goto abort; 6011 } 6012 6013 if (pers->sync_request) { 6014 /* Warn if this is a potentially silly 6015 * configuration. 6016 */ 6017 struct md_rdev *rdev2; 6018 int warned = 0; 6019 6020 rdev_for_each(rdev, mddev) 6021 rdev_for_each(rdev2, mddev) { 6022 if (rdev < rdev2 && 6023 rdev->bdev->bd_disk == 6024 rdev2->bdev->bd_disk) { 6025 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 6026 mdname(mddev), 6027 rdev->bdev, 6028 rdev2->bdev); 6029 warned = 1; 6030 } 6031 } 6032 6033 if (warned) 6034 pr_warn("True protection against single-disk failure might be compromised.\n"); 6035 } 6036 6037 mddev->recovery = 0; 6038 /* may be over-ridden by personality */ 6039 mddev->resync_max_sectors = mddev->dev_sectors; 6040 6041 mddev->ok_start_degraded = start_dirty_degraded; 6042 6043 if (start_readonly && md_is_rdwr(mddev)) 6044 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */ 6045 6046 err = pers->run(mddev); 6047 if (err) 6048 pr_warn("md: pers->run() failed ...\n"); 6049 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 6050 WARN_ONCE(!mddev->external_size, 6051 "%s: default size too small, but 'external_size' not in effect?\n", 6052 __func__); 6053 pr_warn("md: invalid array_size %llu > default size %llu\n", 6054 (unsigned long long)mddev->array_sectors / 2, 6055 (unsigned long long)pers->size(mddev, 0, 0) / 2); 6056 err = -EINVAL; 6057 } 6058 if (err == 0 && pers->sync_request && 6059 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 6060 struct bitmap *bitmap; 6061 6062 bitmap = md_bitmap_create(mddev, -1); 6063 if (IS_ERR(bitmap)) { 6064 err = PTR_ERR(bitmap); 6065 pr_warn("%s: failed to create bitmap (%d)\n", 6066 mdname(mddev), err); 6067 } else 6068 mddev->bitmap = bitmap; 6069 6070 } 6071 if (err) 6072 goto bitmap_abort; 6073 6074 if (mddev->bitmap_info.max_write_behind > 0) { 6075 bool create_pool = false; 6076 6077 rdev_for_each(rdev, mddev) { 6078 if (test_bit(WriteMostly, &rdev->flags) && 6079 rdev_init_serial(rdev)) 6080 create_pool = true; 6081 } 6082 if (create_pool && mddev->serial_info_pool == NULL) { 6083 mddev->serial_info_pool = 6084 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 6085 sizeof(struct serial_info)); 6086 if (!mddev->serial_info_pool) { 6087 err = -ENOMEM; 6088 goto bitmap_abort; 6089 } 6090 } 6091 } 6092 6093 if (mddev->queue) { 6094 bool nonrot = true; 6095 6096 rdev_for_each(rdev, mddev) { 6097 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 6098 nonrot = false; 6099 break; 6100 } 6101 } 6102 if (mddev->degraded) 6103 nonrot = false; 6104 if (nonrot) 6105 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6106 else 6107 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6108 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 6109 6110 /* Set the NOWAIT flags if all underlying devices support it */ 6111 if (nowait) 6112 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 6113 } 6114 if (pers->sync_request) { 6115 if (mddev->kobj.sd && 6116 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6117 pr_warn("md: cannot register extra attributes for %s\n", 6118 mdname(mddev)); 6119 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6120 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6121 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6122 } else if (mddev->ro == MD_AUTO_READ) 6123 mddev->ro = MD_RDWR; 6124 6125 atomic_set(&mddev->max_corr_read_errors, 6126 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6127 mddev->safemode = 0; 6128 if (mddev_is_clustered(mddev)) 6129 mddev->safemode_delay = 0; 6130 else 6131 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6132 mddev->in_sync = 1; 6133 smp_wmb(); 6134 spin_lock(&mddev->lock); 6135 mddev->pers = pers; 6136 spin_unlock(&mddev->lock); 6137 rdev_for_each(rdev, mddev) 6138 if (rdev->raid_disk >= 0) 6139 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6140 6141 if (mddev->degraded && md_is_rdwr(mddev)) 6142 /* This ensures that recovering status is reported immediately 6143 * via sysfs - until a lack of spares is confirmed. 6144 */ 6145 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6146 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6147 6148 if (mddev->sb_flags) 6149 md_update_sb(mddev, 0); 6150 6151 md_new_event(); 6152 return 0; 6153 6154 bitmap_abort: 6155 mddev_detach(mddev); 6156 if (mddev->private) 6157 pers->free(mddev, mddev->private); 6158 mddev->private = NULL; 6159 module_put(pers->owner); 6160 md_bitmap_destroy(mddev); 6161 abort: 6162 bioset_exit(&mddev->io_clone_set); 6163 exit_sync_set: 6164 bioset_exit(&mddev->sync_set); 6165 exit_bio_set: 6166 bioset_exit(&mddev->bio_set); 6167 return err; 6168 } 6169 EXPORT_SYMBOL_GPL(md_run); 6170 6171 int do_md_run(struct mddev *mddev) 6172 { 6173 int err; 6174 6175 set_bit(MD_NOT_READY, &mddev->flags); 6176 err = md_run(mddev); 6177 if (err) 6178 goto out; 6179 err = md_bitmap_load(mddev); 6180 if (err) { 6181 md_bitmap_destroy(mddev); 6182 goto out; 6183 } 6184 6185 if (mddev_is_clustered(mddev)) 6186 md_allow_write(mddev); 6187 6188 /* run start up tasks that require md_thread */ 6189 md_start(mddev); 6190 6191 md_wakeup_thread(mddev->thread); 6192 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6193 6194 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6195 clear_bit(MD_NOT_READY, &mddev->flags); 6196 mddev->changed = 1; 6197 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6198 sysfs_notify_dirent_safe(mddev->sysfs_state); 6199 sysfs_notify_dirent_safe(mddev->sysfs_action); 6200 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6201 out: 6202 clear_bit(MD_NOT_READY, &mddev->flags); 6203 return err; 6204 } 6205 6206 int md_start(struct mddev *mddev) 6207 { 6208 int ret = 0; 6209 6210 if (mddev->pers->start) { 6211 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6212 md_wakeup_thread(mddev->thread); 6213 ret = mddev->pers->start(mddev); 6214 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6215 md_wakeup_thread(mddev->sync_thread); 6216 } 6217 return ret; 6218 } 6219 EXPORT_SYMBOL_GPL(md_start); 6220 6221 static int restart_array(struct mddev *mddev) 6222 { 6223 struct gendisk *disk = mddev->gendisk; 6224 struct md_rdev *rdev; 6225 bool has_journal = false; 6226 bool has_readonly = false; 6227 6228 /* Complain if it has no devices */ 6229 if (list_empty(&mddev->disks)) 6230 return -ENXIO; 6231 if (!mddev->pers) 6232 return -EINVAL; 6233 if (md_is_rdwr(mddev)) 6234 return -EBUSY; 6235 6236 rcu_read_lock(); 6237 rdev_for_each_rcu(rdev, mddev) { 6238 if (test_bit(Journal, &rdev->flags) && 6239 !test_bit(Faulty, &rdev->flags)) 6240 has_journal = true; 6241 if (rdev_read_only(rdev)) 6242 has_readonly = true; 6243 } 6244 rcu_read_unlock(); 6245 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6246 /* Don't restart rw with journal missing/faulty */ 6247 return -EINVAL; 6248 if (has_readonly) 6249 return -EROFS; 6250 6251 mddev->safemode = 0; 6252 mddev->ro = MD_RDWR; 6253 set_disk_ro(disk, 0); 6254 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6255 /* Kick recovery or resync if necessary */ 6256 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6257 md_wakeup_thread(mddev->thread); 6258 md_wakeup_thread(mddev->sync_thread); 6259 sysfs_notify_dirent_safe(mddev->sysfs_state); 6260 return 0; 6261 } 6262 6263 static void md_clean(struct mddev *mddev) 6264 { 6265 mddev->array_sectors = 0; 6266 mddev->external_size = 0; 6267 mddev->dev_sectors = 0; 6268 mddev->raid_disks = 0; 6269 mddev->recovery_cp = 0; 6270 mddev->resync_min = 0; 6271 mddev->resync_max = MaxSector; 6272 mddev->reshape_position = MaxSector; 6273 /* we still need mddev->external in export_rdev, do not clear it yet */ 6274 mddev->persistent = 0; 6275 mddev->level = LEVEL_NONE; 6276 mddev->clevel[0] = 0; 6277 mddev->flags = 0; 6278 mddev->sb_flags = 0; 6279 mddev->ro = MD_RDWR; 6280 mddev->metadata_type[0] = 0; 6281 mddev->chunk_sectors = 0; 6282 mddev->ctime = mddev->utime = 0; 6283 mddev->layout = 0; 6284 mddev->max_disks = 0; 6285 mddev->events = 0; 6286 mddev->can_decrease_events = 0; 6287 mddev->delta_disks = 0; 6288 mddev->reshape_backwards = 0; 6289 mddev->new_level = LEVEL_NONE; 6290 mddev->new_layout = 0; 6291 mddev->new_chunk_sectors = 0; 6292 mddev->curr_resync = MD_RESYNC_NONE; 6293 atomic64_set(&mddev->resync_mismatches, 0); 6294 mddev->suspend_lo = mddev->suspend_hi = 0; 6295 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6296 mddev->recovery = 0; 6297 mddev->in_sync = 0; 6298 mddev->changed = 0; 6299 mddev->degraded = 0; 6300 mddev->safemode = 0; 6301 mddev->private = NULL; 6302 mddev->cluster_info = NULL; 6303 mddev->bitmap_info.offset = 0; 6304 mddev->bitmap_info.default_offset = 0; 6305 mddev->bitmap_info.default_space = 0; 6306 mddev->bitmap_info.chunksize = 0; 6307 mddev->bitmap_info.daemon_sleep = 0; 6308 mddev->bitmap_info.max_write_behind = 0; 6309 mddev->bitmap_info.nodes = 0; 6310 } 6311 6312 static void __md_stop_writes(struct mddev *mddev) 6313 { 6314 stop_sync_thread(mddev, true, false); 6315 del_timer_sync(&mddev->safemode_timer); 6316 6317 if (mddev->pers && mddev->pers->quiesce) { 6318 mddev->pers->quiesce(mddev, 1); 6319 mddev->pers->quiesce(mddev, 0); 6320 } 6321 md_bitmap_flush(mddev); 6322 6323 if (md_is_rdwr(mddev) && 6324 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6325 mddev->sb_flags)) { 6326 /* mark array as shutdown cleanly */ 6327 if (!mddev_is_clustered(mddev)) 6328 mddev->in_sync = 1; 6329 md_update_sb(mddev, 1); 6330 } 6331 /* disable policy to guarantee rdevs free resources for serialization */ 6332 mddev->serialize_policy = 0; 6333 mddev_destroy_serial_pool(mddev, NULL); 6334 } 6335 6336 void md_stop_writes(struct mddev *mddev) 6337 { 6338 mddev_lock_nointr(mddev); 6339 __md_stop_writes(mddev); 6340 mddev_unlock(mddev); 6341 } 6342 EXPORT_SYMBOL_GPL(md_stop_writes); 6343 6344 static void mddev_detach(struct mddev *mddev) 6345 { 6346 md_bitmap_wait_behind_writes(mddev); 6347 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) { 6348 mddev->pers->quiesce(mddev, 1); 6349 mddev->pers->quiesce(mddev, 0); 6350 } 6351 md_unregister_thread(mddev, &mddev->thread); 6352 if (mddev->queue) 6353 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6354 } 6355 6356 static void __md_stop(struct mddev *mddev) 6357 { 6358 struct md_personality *pers = mddev->pers; 6359 md_bitmap_destroy(mddev); 6360 mddev_detach(mddev); 6361 spin_lock(&mddev->lock); 6362 mddev->pers = NULL; 6363 spin_unlock(&mddev->lock); 6364 if (mddev->private) 6365 pers->free(mddev, mddev->private); 6366 mddev->private = NULL; 6367 if (pers->sync_request && mddev->to_remove == NULL) 6368 mddev->to_remove = &md_redundancy_group; 6369 module_put(pers->owner); 6370 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6371 6372 bioset_exit(&mddev->bio_set); 6373 bioset_exit(&mddev->sync_set); 6374 bioset_exit(&mddev->io_clone_set); 6375 } 6376 6377 void md_stop(struct mddev *mddev) 6378 { 6379 lockdep_assert_held(&mddev->reconfig_mutex); 6380 6381 /* stop the array and free an attached data structures. 6382 * This is called from dm-raid 6383 */ 6384 __md_stop_writes(mddev); 6385 __md_stop(mddev); 6386 } 6387 6388 EXPORT_SYMBOL_GPL(md_stop); 6389 6390 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6391 { 6392 int err = 0; 6393 int did_freeze = 0; 6394 6395 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6396 return -EBUSY; 6397 6398 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6399 did_freeze = 1; 6400 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6401 md_wakeup_thread(mddev->thread); 6402 } 6403 6404 stop_sync_thread(mddev, false, false); 6405 wait_event(mddev->sb_wait, 6406 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6407 mddev_lock_nointr(mddev); 6408 6409 mutex_lock(&mddev->open_mutex); 6410 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6411 mddev->sync_thread || 6412 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6413 pr_warn("md: %s still in use.\n",mdname(mddev)); 6414 err = -EBUSY; 6415 goto out; 6416 } 6417 6418 if (mddev->pers) { 6419 __md_stop_writes(mddev); 6420 6421 if (mddev->ro == MD_RDONLY) { 6422 err = -ENXIO; 6423 goto out; 6424 } 6425 6426 mddev->ro = MD_RDONLY; 6427 set_disk_ro(mddev->gendisk, 1); 6428 } 6429 6430 out: 6431 if ((mddev->pers && !err) || did_freeze) { 6432 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6433 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6434 md_wakeup_thread(mddev->thread); 6435 sysfs_notify_dirent_safe(mddev->sysfs_state); 6436 } 6437 6438 mutex_unlock(&mddev->open_mutex); 6439 return err; 6440 } 6441 6442 /* mode: 6443 * 0 - completely stop and dis-assemble array 6444 * 2 - stop but do not disassemble array 6445 */ 6446 static int do_md_stop(struct mddev *mddev, int mode, 6447 struct block_device *bdev) 6448 { 6449 struct gendisk *disk = mddev->gendisk; 6450 struct md_rdev *rdev; 6451 int did_freeze = 0; 6452 6453 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6454 did_freeze = 1; 6455 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6456 md_wakeup_thread(mddev->thread); 6457 } 6458 6459 stop_sync_thread(mddev, true, false); 6460 6461 mutex_lock(&mddev->open_mutex); 6462 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6463 mddev->sysfs_active || 6464 mddev->sync_thread || 6465 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6466 pr_warn("md: %s still in use.\n",mdname(mddev)); 6467 mutex_unlock(&mddev->open_mutex); 6468 if (did_freeze) { 6469 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6470 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6471 md_wakeup_thread(mddev->thread); 6472 } 6473 return -EBUSY; 6474 } 6475 if (mddev->pers) { 6476 if (!md_is_rdwr(mddev)) 6477 set_disk_ro(disk, 0); 6478 6479 __md_stop_writes(mddev); 6480 __md_stop(mddev); 6481 6482 /* tell userspace to handle 'inactive' */ 6483 sysfs_notify_dirent_safe(mddev->sysfs_state); 6484 6485 rdev_for_each(rdev, mddev) 6486 if (rdev->raid_disk >= 0) 6487 sysfs_unlink_rdev(mddev, rdev); 6488 6489 set_capacity_and_notify(disk, 0); 6490 mutex_unlock(&mddev->open_mutex); 6491 mddev->changed = 1; 6492 6493 if (!md_is_rdwr(mddev)) 6494 mddev->ro = MD_RDWR; 6495 } else 6496 mutex_unlock(&mddev->open_mutex); 6497 /* 6498 * Free resources if final stop 6499 */ 6500 if (mode == 0) { 6501 pr_info("md: %s stopped.\n", mdname(mddev)); 6502 6503 if (mddev->bitmap_info.file) { 6504 struct file *f = mddev->bitmap_info.file; 6505 spin_lock(&mddev->lock); 6506 mddev->bitmap_info.file = NULL; 6507 spin_unlock(&mddev->lock); 6508 fput(f); 6509 } 6510 mddev->bitmap_info.offset = 0; 6511 6512 export_array(mddev); 6513 6514 md_clean(mddev); 6515 if (mddev->hold_active == UNTIL_STOP) 6516 mddev->hold_active = 0; 6517 } 6518 md_new_event(); 6519 sysfs_notify_dirent_safe(mddev->sysfs_state); 6520 return 0; 6521 } 6522 6523 #ifndef MODULE 6524 static void autorun_array(struct mddev *mddev) 6525 { 6526 struct md_rdev *rdev; 6527 int err; 6528 6529 if (list_empty(&mddev->disks)) 6530 return; 6531 6532 pr_info("md: running: "); 6533 6534 rdev_for_each(rdev, mddev) { 6535 pr_cont("<%pg>", rdev->bdev); 6536 } 6537 pr_cont("\n"); 6538 6539 err = do_md_run(mddev); 6540 if (err) { 6541 pr_warn("md: do_md_run() returned %d\n", err); 6542 do_md_stop(mddev, 0, NULL); 6543 } 6544 } 6545 6546 /* 6547 * lets try to run arrays based on all disks that have arrived 6548 * until now. (those are in pending_raid_disks) 6549 * 6550 * the method: pick the first pending disk, collect all disks with 6551 * the same UUID, remove all from the pending list and put them into 6552 * the 'same_array' list. Then order this list based on superblock 6553 * update time (freshest comes first), kick out 'old' disks and 6554 * compare superblocks. If everything's fine then run it. 6555 * 6556 * If "unit" is allocated, then bump its reference count 6557 */ 6558 static void autorun_devices(int part) 6559 { 6560 struct md_rdev *rdev0, *rdev, *tmp; 6561 struct mddev *mddev; 6562 6563 pr_info("md: autorun ...\n"); 6564 while (!list_empty(&pending_raid_disks)) { 6565 int unit; 6566 dev_t dev; 6567 LIST_HEAD(candidates); 6568 rdev0 = list_entry(pending_raid_disks.next, 6569 struct md_rdev, same_set); 6570 6571 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6572 INIT_LIST_HEAD(&candidates); 6573 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6574 if (super_90_load(rdev, rdev0, 0) >= 0) { 6575 pr_debug("md: adding %pg ...\n", 6576 rdev->bdev); 6577 list_move(&rdev->same_set, &candidates); 6578 } 6579 /* 6580 * now we have a set of devices, with all of them having 6581 * mostly sane superblocks. It's time to allocate the 6582 * mddev. 6583 */ 6584 if (part) { 6585 dev = MKDEV(mdp_major, 6586 rdev0->preferred_minor << MdpMinorShift); 6587 unit = MINOR(dev) >> MdpMinorShift; 6588 } else { 6589 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6590 unit = MINOR(dev); 6591 } 6592 if (rdev0->preferred_minor != unit) { 6593 pr_warn("md: unit number in %pg is bad: %d\n", 6594 rdev0->bdev, rdev0->preferred_minor); 6595 break; 6596 } 6597 6598 mddev = md_alloc(dev, NULL); 6599 if (IS_ERR(mddev)) 6600 break; 6601 6602 if (mddev_suspend_and_lock(mddev)) 6603 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6604 else if (mddev->raid_disks || mddev->major_version 6605 || !list_empty(&mddev->disks)) { 6606 pr_warn("md: %s already running, cannot run %pg\n", 6607 mdname(mddev), rdev0->bdev); 6608 mddev_unlock_and_resume(mddev); 6609 } else { 6610 pr_debug("md: created %s\n", mdname(mddev)); 6611 mddev->persistent = 1; 6612 rdev_for_each_list(rdev, tmp, &candidates) { 6613 list_del_init(&rdev->same_set); 6614 if (bind_rdev_to_array(rdev, mddev)) 6615 export_rdev(rdev, mddev); 6616 } 6617 autorun_array(mddev); 6618 mddev_unlock_and_resume(mddev); 6619 } 6620 /* on success, candidates will be empty, on error 6621 * it won't... 6622 */ 6623 rdev_for_each_list(rdev, tmp, &candidates) { 6624 list_del_init(&rdev->same_set); 6625 export_rdev(rdev, mddev); 6626 } 6627 mddev_put(mddev); 6628 } 6629 pr_info("md: ... autorun DONE.\n"); 6630 } 6631 #endif /* !MODULE */ 6632 6633 static int get_version(void __user *arg) 6634 { 6635 mdu_version_t ver; 6636 6637 ver.major = MD_MAJOR_VERSION; 6638 ver.minor = MD_MINOR_VERSION; 6639 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6640 6641 if (copy_to_user(arg, &ver, sizeof(ver))) 6642 return -EFAULT; 6643 6644 return 0; 6645 } 6646 6647 static int get_array_info(struct mddev *mddev, void __user *arg) 6648 { 6649 mdu_array_info_t info; 6650 int nr,working,insync,failed,spare; 6651 struct md_rdev *rdev; 6652 6653 nr = working = insync = failed = spare = 0; 6654 rcu_read_lock(); 6655 rdev_for_each_rcu(rdev, mddev) { 6656 nr++; 6657 if (test_bit(Faulty, &rdev->flags)) 6658 failed++; 6659 else { 6660 working++; 6661 if (test_bit(In_sync, &rdev->flags)) 6662 insync++; 6663 else if (test_bit(Journal, &rdev->flags)) 6664 /* TODO: add journal count to md_u.h */ 6665 ; 6666 else 6667 spare++; 6668 } 6669 } 6670 rcu_read_unlock(); 6671 6672 info.major_version = mddev->major_version; 6673 info.minor_version = mddev->minor_version; 6674 info.patch_version = MD_PATCHLEVEL_VERSION; 6675 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6676 info.level = mddev->level; 6677 info.size = mddev->dev_sectors / 2; 6678 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6679 info.size = -1; 6680 info.nr_disks = nr; 6681 info.raid_disks = mddev->raid_disks; 6682 info.md_minor = mddev->md_minor; 6683 info.not_persistent= !mddev->persistent; 6684 6685 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6686 info.state = 0; 6687 if (mddev->in_sync) 6688 info.state = (1<<MD_SB_CLEAN); 6689 if (mddev->bitmap && mddev->bitmap_info.offset) 6690 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6691 if (mddev_is_clustered(mddev)) 6692 info.state |= (1<<MD_SB_CLUSTERED); 6693 info.active_disks = insync; 6694 info.working_disks = working; 6695 info.failed_disks = failed; 6696 info.spare_disks = spare; 6697 6698 info.layout = mddev->layout; 6699 info.chunk_size = mddev->chunk_sectors << 9; 6700 6701 if (copy_to_user(arg, &info, sizeof(info))) 6702 return -EFAULT; 6703 6704 return 0; 6705 } 6706 6707 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6708 { 6709 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6710 char *ptr; 6711 int err; 6712 6713 file = kzalloc(sizeof(*file), GFP_NOIO); 6714 if (!file) 6715 return -ENOMEM; 6716 6717 err = 0; 6718 spin_lock(&mddev->lock); 6719 /* bitmap enabled */ 6720 if (mddev->bitmap_info.file) { 6721 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6722 sizeof(file->pathname)); 6723 if (IS_ERR(ptr)) 6724 err = PTR_ERR(ptr); 6725 else 6726 memmove(file->pathname, ptr, 6727 sizeof(file->pathname)-(ptr-file->pathname)); 6728 } 6729 spin_unlock(&mddev->lock); 6730 6731 if (err == 0 && 6732 copy_to_user(arg, file, sizeof(*file))) 6733 err = -EFAULT; 6734 6735 kfree(file); 6736 return err; 6737 } 6738 6739 static int get_disk_info(struct mddev *mddev, void __user * arg) 6740 { 6741 mdu_disk_info_t info; 6742 struct md_rdev *rdev; 6743 6744 if (copy_from_user(&info, arg, sizeof(info))) 6745 return -EFAULT; 6746 6747 rcu_read_lock(); 6748 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6749 if (rdev) { 6750 info.major = MAJOR(rdev->bdev->bd_dev); 6751 info.minor = MINOR(rdev->bdev->bd_dev); 6752 info.raid_disk = rdev->raid_disk; 6753 info.state = 0; 6754 if (test_bit(Faulty, &rdev->flags)) 6755 info.state |= (1<<MD_DISK_FAULTY); 6756 else if (test_bit(In_sync, &rdev->flags)) { 6757 info.state |= (1<<MD_DISK_ACTIVE); 6758 info.state |= (1<<MD_DISK_SYNC); 6759 } 6760 if (test_bit(Journal, &rdev->flags)) 6761 info.state |= (1<<MD_DISK_JOURNAL); 6762 if (test_bit(WriteMostly, &rdev->flags)) 6763 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6764 if (test_bit(FailFast, &rdev->flags)) 6765 info.state |= (1<<MD_DISK_FAILFAST); 6766 } else { 6767 info.major = info.minor = 0; 6768 info.raid_disk = -1; 6769 info.state = (1<<MD_DISK_REMOVED); 6770 } 6771 rcu_read_unlock(); 6772 6773 if (copy_to_user(arg, &info, sizeof(info))) 6774 return -EFAULT; 6775 6776 return 0; 6777 } 6778 6779 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6780 { 6781 struct md_rdev *rdev; 6782 dev_t dev = MKDEV(info->major,info->minor); 6783 6784 if (mddev_is_clustered(mddev) && 6785 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6786 pr_warn("%s: Cannot add to clustered mddev.\n", 6787 mdname(mddev)); 6788 return -EINVAL; 6789 } 6790 6791 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6792 return -EOVERFLOW; 6793 6794 if (!mddev->raid_disks) { 6795 int err; 6796 /* expecting a device which has a superblock */ 6797 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6798 if (IS_ERR(rdev)) { 6799 pr_warn("md: md_import_device returned %ld\n", 6800 PTR_ERR(rdev)); 6801 return PTR_ERR(rdev); 6802 } 6803 if (!list_empty(&mddev->disks)) { 6804 struct md_rdev *rdev0 6805 = list_entry(mddev->disks.next, 6806 struct md_rdev, same_set); 6807 err = super_types[mddev->major_version] 6808 .load_super(rdev, rdev0, mddev->minor_version); 6809 if (err < 0) { 6810 pr_warn("md: %pg has different UUID to %pg\n", 6811 rdev->bdev, 6812 rdev0->bdev); 6813 export_rdev(rdev, mddev); 6814 return -EINVAL; 6815 } 6816 } 6817 err = bind_rdev_to_array(rdev, mddev); 6818 if (err) 6819 export_rdev(rdev, mddev); 6820 return err; 6821 } 6822 6823 /* 6824 * md_add_new_disk can be used once the array is assembled 6825 * to add "hot spares". They must already have a superblock 6826 * written 6827 */ 6828 if (mddev->pers) { 6829 int err; 6830 if (!mddev->pers->hot_add_disk) { 6831 pr_warn("%s: personality does not support diskops!\n", 6832 mdname(mddev)); 6833 return -EINVAL; 6834 } 6835 if (mddev->persistent) 6836 rdev = md_import_device(dev, mddev->major_version, 6837 mddev->minor_version); 6838 else 6839 rdev = md_import_device(dev, -1, -1); 6840 if (IS_ERR(rdev)) { 6841 pr_warn("md: md_import_device returned %ld\n", 6842 PTR_ERR(rdev)); 6843 return PTR_ERR(rdev); 6844 } 6845 /* set saved_raid_disk if appropriate */ 6846 if (!mddev->persistent) { 6847 if (info->state & (1<<MD_DISK_SYNC) && 6848 info->raid_disk < mddev->raid_disks) { 6849 rdev->raid_disk = info->raid_disk; 6850 clear_bit(Bitmap_sync, &rdev->flags); 6851 } else 6852 rdev->raid_disk = -1; 6853 rdev->saved_raid_disk = rdev->raid_disk; 6854 } else 6855 super_types[mddev->major_version]. 6856 validate_super(mddev, NULL/*freshest*/, rdev); 6857 if ((info->state & (1<<MD_DISK_SYNC)) && 6858 rdev->raid_disk != info->raid_disk) { 6859 /* This was a hot-add request, but events doesn't 6860 * match, so reject it. 6861 */ 6862 export_rdev(rdev, mddev); 6863 return -EINVAL; 6864 } 6865 6866 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6867 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6868 set_bit(WriteMostly, &rdev->flags); 6869 else 6870 clear_bit(WriteMostly, &rdev->flags); 6871 if (info->state & (1<<MD_DISK_FAILFAST)) 6872 set_bit(FailFast, &rdev->flags); 6873 else 6874 clear_bit(FailFast, &rdev->flags); 6875 6876 if (info->state & (1<<MD_DISK_JOURNAL)) { 6877 struct md_rdev *rdev2; 6878 bool has_journal = false; 6879 6880 /* make sure no existing journal disk */ 6881 rdev_for_each(rdev2, mddev) { 6882 if (test_bit(Journal, &rdev2->flags)) { 6883 has_journal = true; 6884 break; 6885 } 6886 } 6887 if (has_journal || mddev->bitmap) { 6888 export_rdev(rdev, mddev); 6889 return -EBUSY; 6890 } 6891 set_bit(Journal, &rdev->flags); 6892 } 6893 /* 6894 * check whether the device shows up in other nodes 6895 */ 6896 if (mddev_is_clustered(mddev)) { 6897 if (info->state & (1 << MD_DISK_CANDIDATE)) 6898 set_bit(Candidate, &rdev->flags); 6899 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6900 /* --add initiated by this node */ 6901 err = md_cluster_ops->add_new_disk(mddev, rdev); 6902 if (err) { 6903 export_rdev(rdev, mddev); 6904 return err; 6905 } 6906 } 6907 } 6908 6909 rdev->raid_disk = -1; 6910 err = bind_rdev_to_array(rdev, mddev); 6911 6912 if (err) 6913 export_rdev(rdev, mddev); 6914 6915 if (mddev_is_clustered(mddev)) { 6916 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6917 if (!err) { 6918 err = md_cluster_ops->new_disk_ack(mddev, 6919 err == 0); 6920 if (err) 6921 md_kick_rdev_from_array(rdev); 6922 } 6923 } else { 6924 if (err) 6925 md_cluster_ops->add_new_disk_cancel(mddev); 6926 else 6927 err = add_bound_rdev(rdev); 6928 } 6929 6930 } else if (!err) 6931 err = add_bound_rdev(rdev); 6932 6933 return err; 6934 } 6935 6936 /* otherwise, md_add_new_disk is only allowed 6937 * for major_version==0 superblocks 6938 */ 6939 if (mddev->major_version != 0) { 6940 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6941 return -EINVAL; 6942 } 6943 6944 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6945 int err; 6946 rdev = md_import_device(dev, -1, 0); 6947 if (IS_ERR(rdev)) { 6948 pr_warn("md: error, md_import_device() returned %ld\n", 6949 PTR_ERR(rdev)); 6950 return PTR_ERR(rdev); 6951 } 6952 rdev->desc_nr = info->number; 6953 if (info->raid_disk < mddev->raid_disks) 6954 rdev->raid_disk = info->raid_disk; 6955 else 6956 rdev->raid_disk = -1; 6957 6958 if (rdev->raid_disk < mddev->raid_disks) 6959 if (info->state & (1<<MD_DISK_SYNC)) 6960 set_bit(In_sync, &rdev->flags); 6961 6962 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6963 set_bit(WriteMostly, &rdev->flags); 6964 if (info->state & (1<<MD_DISK_FAILFAST)) 6965 set_bit(FailFast, &rdev->flags); 6966 6967 if (!mddev->persistent) { 6968 pr_debug("md: nonpersistent superblock ...\n"); 6969 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6970 } else 6971 rdev->sb_start = calc_dev_sboffset(rdev); 6972 rdev->sectors = rdev->sb_start; 6973 6974 err = bind_rdev_to_array(rdev, mddev); 6975 if (err) { 6976 export_rdev(rdev, mddev); 6977 return err; 6978 } 6979 } 6980 6981 return 0; 6982 } 6983 6984 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6985 { 6986 struct md_rdev *rdev; 6987 6988 if (!mddev->pers) 6989 return -ENODEV; 6990 6991 rdev = find_rdev(mddev, dev); 6992 if (!rdev) 6993 return -ENXIO; 6994 6995 if (rdev->raid_disk < 0) 6996 goto kick_rdev; 6997 6998 clear_bit(Blocked, &rdev->flags); 6999 remove_and_add_spares(mddev, rdev); 7000 7001 if (rdev->raid_disk >= 0) 7002 goto busy; 7003 7004 kick_rdev: 7005 if (mddev_is_clustered(mddev)) { 7006 if (md_cluster_ops->remove_disk(mddev, rdev)) 7007 goto busy; 7008 } 7009 7010 md_kick_rdev_from_array(rdev); 7011 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7012 if (mddev->thread) 7013 md_wakeup_thread(mddev->thread); 7014 else 7015 md_update_sb(mddev, 1); 7016 md_new_event(); 7017 7018 return 0; 7019 busy: 7020 pr_debug("md: cannot remove active disk %pg from %s ...\n", 7021 rdev->bdev, mdname(mddev)); 7022 return -EBUSY; 7023 } 7024 7025 static int hot_add_disk(struct mddev *mddev, dev_t dev) 7026 { 7027 int err; 7028 struct md_rdev *rdev; 7029 7030 if (!mddev->pers) 7031 return -ENODEV; 7032 7033 if (mddev->major_version != 0) { 7034 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 7035 mdname(mddev)); 7036 return -EINVAL; 7037 } 7038 if (!mddev->pers->hot_add_disk) { 7039 pr_warn("%s: personality does not support diskops!\n", 7040 mdname(mddev)); 7041 return -EINVAL; 7042 } 7043 7044 rdev = md_import_device(dev, -1, 0); 7045 if (IS_ERR(rdev)) { 7046 pr_warn("md: error, md_import_device() returned %ld\n", 7047 PTR_ERR(rdev)); 7048 return -EINVAL; 7049 } 7050 7051 if (mddev->persistent) 7052 rdev->sb_start = calc_dev_sboffset(rdev); 7053 else 7054 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 7055 7056 rdev->sectors = rdev->sb_start; 7057 7058 if (test_bit(Faulty, &rdev->flags)) { 7059 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 7060 rdev->bdev, mdname(mddev)); 7061 err = -EINVAL; 7062 goto abort_export; 7063 } 7064 7065 clear_bit(In_sync, &rdev->flags); 7066 rdev->desc_nr = -1; 7067 rdev->saved_raid_disk = -1; 7068 err = bind_rdev_to_array(rdev, mddev); 7069 if (err) 7070 goto abort_export; 7071 7072 /* 7073 * The rest should better be atomic, we can have disk failures 7074 * noticed in interrupt contexts ... 7075 */ 7076 7077 rdev->raid_disk = -1; 7078 7079 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7080 if (!mddev->thread) 7081 md_update_sb(mddev, 1); 7082 /* 7083 * If the new disk does not support REQ_NOWAIT, 7084 * disable on the whole MD. 7085 */ 7086 if (!bdev_nowait(rdev->bdev)) { 7087 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 7088 mdname(mddev), rdev->bdev); 7089 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 7090 } 7091 /* 7092 * Kick recovery, maybe this spare has to be added to the 7093 * array immediately. 7094 */ 7095 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7096 md_wakeup_thread(mddev->thread); 7097 md_new_event(); 7098 return 0; 7099 7100 abort_export: 7101 export_rdev(rdev, mddev); 7102 return err; 7103 } 7104 7105 static int set_bitmap_file(struct mddev *mddev, int fd) 7106 { 7107 int err = 0; 7108 7109 if (mddev->pers) { 7110 if (!mddev->pers->quiesce || !mddev->thread) 7111 return -EBUSY; 7112 if (mddev->recovery || mddev->sync_thread) 7113 return -EBUSY; 7114 /* we should be able to change the bitmap.. */ 7115 } 7116 7117 if (fd >= 0) { 7118 struct inode *inode; 7119 struct file *f; 7120 7121 if (mddev->bitmap || mddev->bitmap_info.file) 7122 return -EEXIST; /* cannot add when bitmap is present */ 7123 7124 if (!IS_ENABLED(CONFIG_MD_BITMAP_FILE)) { 7125 pr_warn("%s: bitmap files not supported by this kernel\n", 7126 mdname(mddev)); 7127 return -EINVAL; 7128 } 7129 pr_warn("%s: using deprecated bitmap file support\n", 7130 mdname(mddev)); 7131 7132 f = fget(fd); 7133 7134 if (f == NULL) { 7135 pr_warn("%s: error: failed to get bitmap file\n", 7136 mdname(mddev)); 7137 return -EBADF; 7138 } 7139 7140 inode = f->f_mapping->host; 7141 if (!S_ISREG(inode->i_mode)) { 7142 pr_warn("%s: error: bitmap file must be a regular file\n", 7143 mdname(mddev)); 7144 err = -EBADF; 7145 } else if (!(f->f_mode & FMODE_WRITE)) { 7146 pr_warn("%s: error: bitmap file must open for write\n", 7147 mdname(mddev)); 7148 err = -EBADF; 7149 } else if (atomic_read(&inode->i_writecount) != 1) { 7150 pr_warn("%s: error: bitmap file is already in use\n", 7151 mdname(mddev)); 7152 err = -EBUSY; 7153 } 7154 if (err) { 7155 fput(f); 7156 return err; 7157 } 7158 mddev->bitmap_info.file = f; 7159 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7160 } else if (mddev->bitmap == NULL) 7161 return -ENOENT; /* cannot remove what isn't there */ 7162 err = 0; 7163 if (mddev->pers) { 7164 if (fd >= 0) { 7165 struct bitmap *bitmap; 7166 7167 bitmap = md_bitmap_create(mddev, -1); 7168 if (!IS_ERR(bitmap)) { 7169 mddev->bitmap = bitmap; 7170 err = md_bitmap_load(mddev); 7171 } else 7172 err = PTR_ERR(bitmap); 7173 if (err) { 7174 md_bitmap_destroy(mddev); 7175 fd = -1; 7176 } 7177 } else if (fd < 0) { 7178 md_bitmap_destroy(mddev); 7179 } 7180 } 7181 if (fd < 0) { 7182 struct file *f = mddev->bitmap_info.file; 7183 if (f) { 7184 spin_lock(&mddev->lock); 7185 mddev->bitmap_info.file = NULL; 7186 spin_unlock(&mddev->lock); 7187 fput(f); 7188 } 7189 } 7190 7191 return err; 7192 } 7193 7194 /* 7195 * md_set_array_info is used two different ways 7196 * The original usage is when creating a new array. 7197 * In this usage, raid_disks is > 0 and it together with 7198 * level, size, not_persistent,layout,chunksize determine the 7199 * shape of the array. 7200 * This will always create an array with a type-0.90.0 superblock. 7201 * The newer usage is when assembling an array. 7202 * In this case raid_disks will be 0, and the major_version field is 7203 * use to determine which style super-blocks are to be found on the devices. 7204 * The minor and patch _version numbers are also kept incase the 7205 * super_block handler wishes to interpret them. 7206 */ 7207 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7208 { 7209 if (info->raid_disks == 0) { 7210 /* just setting version number for superblock loading */ 7211 if (info->major_version < 0 || 7212 info->major_version >= ARRAY_SIZE(super_types) || 7213 super_types[info->major_version].name == NULL) { 7214 /* maybe try to auto-load a module? */ 7215 pr_warn("md: superblock version %d not known\n", 7216 info->major_version); 7217 return -EINVAL; 7218 } 7219 mddev->major_version = info->major_version; 7220 mddev->minor_version = info->minor_version; 7221 mddev->patch_version = info->patch_version; 7222 mddev->persistent = !info->not_persistent; 7223 /* ensure mddev_put doesn't delete this now that there 7224 * is some minimal configuration. 7225 */ 7226 mddev->ctime = ktime_get_real_seconds(); 7227 return 0; 7228 } 7229 mddev->major_version = MD_MAJOR_VERSION; 7230 mddev->minor_version = MD_MINOR_VERSION; 7231 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7232 mddev->ctime = ktime_get_real_seconds(); 7233 7234 mddev->level = info->level; 7235 mddev->clevel[0] = 0; 7236 mddev->dev_sectors = 2 * (sector_t)info->size; 7237 mddev->raid_disks = info->raid_disks; 7238 /* don't set md_minor, it is determined by which /dev/md* was 7239 * openned 7240 */ 7241 if (info->state & (1<<MD_SB_CLEAN)) 7242 mddev->recovery_cp = MaxSector; 7243 else 7244 mddev->recovery_cp = 0; 7245 mddev->persistent = ! info->not_persistent; 7246 mddev->external = 0; 7247 7248 mddev->layout = info->layout; 7249 if (mddev->level == 0) 7250 /* Cannot trust RAID0 layout info here */ 7251 mddev->layout = -1; 7252 mddev->chunk_sectors = info->chunk_size >> 9; 7253 7254 if (mddev->persistent) { 7255 mddev->max_disks = MD_SB_DISKS; 7256 mddev->flags = 0; 7257 mddev->sb_flags = 0; 7258 } 7259 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7260 7261 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7262 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7263 mddev->bitmap_info.offset = 0; 7264 7265 mddev->reshape_position = MaxSector; 7266 7267 /* 7268 * Generate a 128 bit UUID 7269 */ 7270 get_random_bytes(mddev->uuid, 16); 7271 7272 mddev->new_level = mddev->level; 7273 mddev->new_chunk_sectors = mddev->chunk_sectors; 7274 mddev->new_layout = mddev->layout; 7275 mddev->delta_disks = 0; 7276 mddev->reshape_backwards = 0; 7277 7278 return 0; 7279 } 7280 7281 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7282 { 7283 lockdep_assert_held(&mddev->reconfig_mutex); 7284 7285 if (mddev->external_size) 7286 return; 7287 7288 mddev->array_sectors = array_sectors; 7289 } 7290 EXPORT_SYMBOL(md_set_array_sectors); 7291 7292 static int update_size(struct mddev *mddev, sector_t num_sectors) 7293 { 7294 struct md_rdev *rdev; 7295 int rv; 7296 int fit = (num_sectors == 0); 7297 sector_t old_dev_sectors = mddev->dev_sectors; 7298 7299 if (mddev->pers->resize == NULL) 7300 return -EINVAL; 7301 /* The "num_sectors" is the number of sectors of each device that 7302 * is used. This can only make sense for arrays with redundancy. 7303 * linear and raid0 always use whatever space is available. We can only 7304 * consider changing this number if no resync or reconstruction is 7305 * happening, and if the new size is acceptable. It must fit before the 7306 * sb_start or, if that is <data_offset, it must fit before the size 7307 * of each device. If num_sectors is zero, we find the largest size 7308 * that fits. 7309 */ 7310 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7311 mddev->sync_thread) 7312 return -EBUSY; 7313 if (!md_is_rdwr(mddev)) 7314 return -EROFS; 7315 7316 rdev_for_each(rdev, mddev) { 7317 sector_t avail = rdev->sectors; 7318 7319 if (fit && (num_sectors == 0 || num_sectors > avail)) 7320 num_sectors = avail; 7321 if (avail < num_sectors) 7322 return -ENOSPC; 7323 } 7324 rv = mddev->pers->resize(mddev, num_sectors); 7325 if (!rv) { 7326 if (mddev_is_clustered(mddev)) 7327 md_cluster_ops->update_size(mddev, old_dev_sectors); 7328 else if (mddev->queue) { 7329 set_capacity_and_notify(mddev->gendisk, 7330 mddev->array_sectors); 7331 } 7332 } 7333 return rv; 7334 } 7335 7336 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7337 { 7338 int rv; 7339 struct md_rdev *rdev; 7340 /* change the number of raid disks */ 7341 if (mddev->pers->check_reshape == NULL) 7342 return -EINVAL; 7343 if (!md_is_rdwr(mddev)) 7344 return -EROFS; 7345 if (raid_disks <= 0 || 7346 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7347 return -EINVAL; 7348 if (mddev->sync_thread || 7349 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7350 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7351 mddev->reshape_position != MaxSector) 7352 return -EBUSY; 7353 7354 rdev_for_each(rdev, mddev) { 7355 if (mddev->raid_disks < raid_disks && 7356 rdev->data_offset < rdev->new_data_offset) 7357 return -EINVAL; 7358 if (mddev->raid_disks > raid_disks && 7359 rdev->data_offset > rdev->new_data_offset) 7360 return -EINVAL; 7361 } 7362 7363 mddev->delta_disks = raid_disks - mddev->raid_disks; 7364 if (mddev->delta_disks < 0) 7365 mddev->reshape_backwards = 1; 7366 else if (mddev->delta_disks > 0) 7367 mddev->reshape_backwards = 0; 7368 7369 rv = mddev->pers->check_reshape(mddev); 7370 if (rv < 0) { 7371 mddev->delta_disks = 0; 7372 mddev->reshape_backwards = 0; 7373 } 7374 return rv; 7375 } 7376 7377 /* 7378 * update_array_info is used to change the configuration of an 7379 * on-line array. 7380 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7381 * fields in the info are checked against the array. 7382 * Any differences that cannot be handled will cause an error. 7383 * Normally, only one change can be managed at a time. 7384 */ 7385 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7386 { 7387 int rv = 0; 7388 int cnt = 0; 7389 int state = 0; 7390 7391 /* calculate expected state,ignoring low bits */ 7392 if (mddev->bitmap && mddev->bitmap_info.offset) 7393 state |= (1 << MD_SB_BITMAP_PRESENT); 7394 7395 if (mddev->major_version != info->major_version || 7396 mddev->minor_version != info->minor_version || 7397 /* mddev->patch_version != info->patch_version || */ 7398 mddev->ctime != info->ctime || 7399 mddev->level != info->level || 7400 /* mddev->layout != info->layout || */ 7401 mddev->persistent != !info->not_persistent || 7402 mddev->chunk_sectors != info->chunk_size >> 9 || 7403 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7404 ((state^info->state) & 0xfffffe00) 7405 ) 7406 return -EINVAL; 7407 /* Check there is only one change */ 7408 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7409 cnt++; 7410 if (mddev->raid_disks != info->raid_disks) 7411 cnt++; 7412 if (mddev->layout != info->layout) 7413 cnt++; 7414 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7415 cnt++; 7416 if (cnt == 0) 7417 return 0; 7418 if (cnt > 1) 7419 return -EINVAL; 7420 7421 if (mddev->layout != info->layout) { 7422 /* Change layout 7423 * we don't need to do anything at the md level, the 7424 * personality will take care of it all. 7425 */ 7426 if (mddev->pers->check_reshape == NULL) 7427 return -EINVAL; 7428 else { 7429 mddev->new_layout = info->layout; 7430 rv = mddev->pers->check_reshape(mddev); 7431 if (rv) 7432 mddev->new_layout = mddev->layout; 7433 return rv; 7434 } 7435 } 7436 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7437 rv = update_size(mddev, (sector_t)info->size * 2); 7438 7439 if (mddev->raid_disks != info->raid_disks) 7440 rv = update_raid_disks(mddev, info->raid_disks); 7441 7442 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7443 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7444 rv = -EINVAL; 7445 goto err; 7446 } 7447 if (mddev->recovery || mddev->sync_thread) { 7448 rv = -EBUSY; 7449 goto err; 7450 } 7451 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7452 struct bitmap *bitmap; 7453 /* add the bitmap */ 7454 if (mddev->bitmap) { 7455 rv = -EEXIST; 7456 goto err; 7457 } 7458 if (mddev->bitmap_info.default_offset == 0) { 7459 rv = -EINVAL; 7460 goto err; 7461 } 7462 mddev->bitmap_info.offset = 7463 mddev->bitmap_info.default_offset; 7464 mddev->bitmap_info.space = 7465 mddev->bitmap_info.default_space; 7466 bitmap = md_bitmap_create(mddev, -1); 7467 if (!IS_ERR(bitmap)) { 7468 mddev->bitmap = bitmap; 7469 rv = md_bitmap_load(mddev); 7470 } else 7471 rv = PTR_ERR(bitmap); 7472 if (rv) 7473 md_bitmap_destroy(mddev); 7474 } else { 7475 /* remove the bitmap */ 7476 if (!mddev->bitmap) { 7477 rv = -ENOENT; 7478 goto err; 7479 } 7480 if (mddev->bitmap->storage.file) { 7481 rv = -EINVAL; 7482 goto err; 7483 } 7484 if (mddev->bitmap_info.nodes) { 7485 /* hold PW on all the bitmap lock */ 7486 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7487 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7488 rv = -EPERM; 7489 md_cluster_ops->unlock_all_bitmaps(mddev); 7490 goto err; 7491 } 7492 7493 mddev->bitmap_info.nodes = 0; 7494 md_cluster_ops->leave(mddev); 7495 module_put(md_cluster_mod); 7496 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7497 } 7498 md_bitmap_destroy(mddev); 7499 mddev->bitmap_info.offset = 0; 7500 } 7501 } 7502 md_update_sb(mddev, 1); 7503 return rv; 7504 err: 7505 return rv; 7506 } 7507 7508 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7509 { 7510 struct md_rdev *rdev; 7511 int err = 0; 7512 7513 if (mddev->pers == NULL) 7514 return -ENODEV; 7515 7516 rcu_read_lock(); 7517 rdev = md_find_rdev_rcu(mddev, dev); 7518 if (!rdev) 7519 err = -ENODEV; 7520 else { 7521 md_error(mddev, rdev); 7522 if (test_bit(MD_BROKEN, &mddev->flags)) 7523 err = -EBUSY; 7524 } 7525 rcu_read_unlock(); 7526 return err; 7527 } 7528 7529 /* 7530 * We have a problem here : there is no easy way to give a CHS 7531 * virtual geometry. We currently pretend that we have a 2 heads 7532 * 4 sectors (with a BIG number of cylinders...). This drives 7533 * dosfs just mad... ;-) 7534 */ 7535 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7536 { 7537 struct mddev *mddev = bdev->bd_disk->private_data; 7538 7539 geo->heads = 2; 7540 geo->sectors = 4; 7541 geo->cylinders = mddev->array_sectors / 8; 7542 return 0; 7543 } 7544 7545 static inline bool md_ioctl_valid(unsigned int cmd) 7546 { 7547 switch (cmd) { 7548 case ADD_NEW_DISK: 7549 case GET_ARRAY_INFO: 7550 case GET_BITMAP_FILE: 7551 case GET_DISK_INFO: 7552 case HOT_ADD_DISK: 7553 case HOT_REMOVE_DISK: 7554 case RAID_VERSION: 7555 case RESTART_ARRAY_RW: 7556 case RUN_ARRAY: 7557 case SET_ARRAY_INFO: 7558 case SET_BITMAP_FILE: 7559 case SET_DISK_FAULTY: 7560 case STOP_ARRAY: 7561 case STOP_ARRAY_RO: 7562 case CLUSTERED_DISK_NACK: 7563 return true; 7564 default: 7565 return false; 7566 } 7567 } 7568 7569 static bool md_ioctl_need_suspend(unsigned int cmd) 7570 { 7571 switch (cmd) { 7572 case ADD_NEW_DISK: 7573 case HOT_ADD_DISK: 7574 case HOT_REMOVE_DISK: 7575 case SET_BITMAP_FILE: 7576 case SET_ARRAY_INFO: 7577 return true; 7578 default: 7579 return false; 7580 } 7581 } 7582 7583 static int __md_set_array_info(struct mddev *mddev, void __user *argp) 7584 { 7585 mdu_array_info_t info; 7586 int err; 7587 7588 if (!argp) 7589 memset(&info, 0, sizeof(info)); 7590 else if (copy_from_user(&info, argp, sizeof(info))) 7591 return -EFAULT; 7592 7593 if (mddev->pers) { 7594 err = update_array_info(mddev, &info); 7595 if (err) 7596 pr_warn("md: couldn't update array info. %d\n", err); 7597 return err; 7598 } 7599 7600 if (!list_empty(&mddev->disks)) { 7601 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7602 return -EBUSY; 7603 } 7604 7605 if (mddev->raid_disks) { 7606 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7607 return -EBUSY; 7608 } 7609 7610 err = md_set_array_info(mddev, &info); 7611 if (err) 7612 pr_warn("md: couldn't set array info. %d\n", err); 7613 7614 return err; 7615 } 7616 7617 static int md_ioctl(struct block_device *bdev, blk_mode_t mode, 7618 unsigned int cmd, unsigned long arg) 7619 { 7620 int err = 0; 7621 void __user *argp = (void __user *)arg; 7622 struct mddev *mddev = NULL; 7623 bool did_set_md_closing = false; 7624 7625 if (!md_ioctl_valid(cmd)) 7626 return -ENOTTY; 7627 7628 switch (cmd) { 7629 case RAID_VERSION: 7630 case GET_ARRAY_INFO: 7631 case GET_DISK_INFO: 7632 break; 7633 default: 7634 if (!capable(CAP_SYS_ADMIN)) 7635 return -EACCES; 7636 } 7637 7638 /* 7639 * Commands dealing with the RAID driver but not any 7640 * particular array: 7641 */ 7642 switch (cmd) { 7643 case RAID_VERSION: 7644 err = get_version(argp); 7645 goto out; 7646 default:; 7647 } 7648 7649 /* 7650 * Commands creating/starting a new array: 7651 */ 7652 7653 mddev = bdev->bd_disk->private_data; 7654 7655 if (!mddev) { 7656 BUG(); 7657 goto out; 7658 } 7659 7660 /* Some actions do not requires the mutex */ 7661 switch (cmd) { 7662 case GET_ARRAY_INFO: 7663 if (!mddev->raid_disks && !mddev->external) 7664 err = -ENODEV; 7665 else 7666 err = get_array_info(mddev, argp); 7667 goto out; 7668 7669 case GET_DISK_INFO: 7670 if (!mddev->raid_disks && !mddev->external) 7671 err = -ENODEV; 7672 else 7673 err = get_disk_info(mddev, argp); 7674 goto out; 7675 7676 case SET_DISK_FAULTY: 7677 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7678 goto out; 7679 7680 case GET_BITMAP_FILE: 7681 err = get_bitmap_file(mddev, argp); 7682 goto out; 7683 7684 } 7685 7686 if (cmd == HOT_REMOVE_DISK) 7687 /* need to ensure recovery thread has run */ 7688 wait_event_interruptible_timeout(mddev->sb_wait, 7689 !test_bit(MD_RECOVERY_NEEDED, 7690 &mddev->recovery), 7691 msecs_to_jiffies(5000)); 7692 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7693 /* Need to flush page cache, and ensure no-one else opens 7694 * and writes 7695 */ 7696 mutex_lock(&mddev->open_mutex); 7697 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7698 mutex_unlock(&mddev->open_mutex); 7699 err = -EBUSY; 7700 goto out; 7701 } 7702 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7703 mutex_unlock(&mddev->open_mutex); 7704 err = -EBUSY; 7705 goto out; 7706 } 7707 did_set_md_closing = true; 7708 mutex_unlock(&mddev->open_mutex); 7709 sync_blockdev(bdev); 7710 } 7711 7712 if (!md_is_rdwr(mddev)) 7713 flush_work(&mddev->sync_work); 7714 7715 err = md_ioctl_need_suspend(cmd) ? mddev_suspend_and_lock(mddev) : 7716 mddev_lock(mddev); 7717 if (err) { 7718 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7719 err, cmd); 7720 goto out; 7721 } 7722 7723 if (cmd == SET_ARRAY_INFO) { 7724 err = __md_set_array_info(mddev, argp); 7725 goto unlock; 7726 } 7727 7728 /* 7729 * Commands querying/configuring an existing array: 7730 */ 7731 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7732 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7733 if ((!mddev->raid_disks && !mddev->external) 7734 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7735 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7736 && cmd != GET_BITMAP_FILE) { 7737 err = -ENODEV; 7738 goto unlock; 7739 } 7740 7741 /* 7742 * Commands even a read-only array can execute: 7743 */ 7744 switch (cmd) { 7745 case RESTART_ARRAY_RW: 7746 err = restart_array(mddev); 7747 goto unlock; 7748 7749 case STOP_ARRAY: 7750 err = do_md_stop(mddev, 0, bdev); 7751 goto unlock; 7752 7753 case STOP_ARRAY_RO: 7754 err = md_set_readonly(mddev, bdev); 7755 goto unlock; 7756 7757 case HOT_REMOVE_DISK: 7758 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7759 goto unlock; 7760 7761 case ADD_NEW_DISK: 7762 /* We can support ADD_NEW_DISK on read-only arrays 7763 * only if we are re-adding a preexisting device. 7764 * So require mddev->pers and MD_DISK_SYNC. 7765 */ 7766 if (mddev->pers) { 7767 mdu_disk_info_t info; 7768 if (copy_from_user(&info, argp, sizeof(info))) 7769 err = -EFAULT; 7770 else if (!(info.state & (1<<MD_DISK_SYNC))) 7771 /* Need to clear read-only for this */ 7772 break; 7773 else 7774 err = md_add_new_disk(mddev, &info); 7775 goto unlock; 7776 } 7777 break; 7778 } 7779 7780 /* 7781 * The remaining ioctls are changing the state of the 7782 * superblock, so we do not allow them on read-only arrays. 7783 */ 7784 if (!md_is_rdwr(mddev) && mddev->pers) { 7785 if (mddev->ro != MD_AUTO_READ) { 7786 err = -EROFS; 7787 goto unlock; 7788 } 7789 mddev->ro = MD_RDWR; 7790 sysfs_notify_dirent_safe(mddev->sysfs_state); 7791 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7792 /* mddev_unlock will wake thread */ 7793 /* If a device failed while we were read-only, we 7794 * need to make sure the metadata is updated now. 7795 */ 7796 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7797 mddev_unlock(mddev); 7798 wait_event(mddev->sb_wait, 7799 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7800 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7801 mddev_lock_nointr(mddev); 7802 } 7803 } 7804 7805 switch (cmd) { 7806 case ADD_NEW_DISK: 7807 { 7808 mdu_disk_info_t info; 7809 if (copy_from_user(&info, argp, sizeof(info))) 7810 err = -EFAULT; 7811 else 7812 err = md_add_new_disk(mddev, &info); 7813 goto unlock; 7814 } 7815 7816 case CLUSTERED_DISK_NACK: 7817 if (mddev_is_clustered(mddev)) 7818 md_cluster_ops->new_disk_ack(mddev, false); 7819 else 7820 err = -EINVAL; 7821 goto unlock; 7822 7823 case HOT_ADD_DISK: 7824 err = hot_add_disk(mddev, new_decode_dev(arg)); 7825 goto unlock; 7826 7827 case RUN_ARRAY: 7828 err = do_md_run(mddev); 7829 goto unlock; 7830 7831 case SET_BITMAP_FILE: 7832 err = set_bitmap_file(mddev, (int)arg); 7833 goto unlock; 7834 7835 default: 7836 err = -EINVAL; 7837 goto unlock; 7838 } 7839 7840 unlock: 7841 if (mddev->hold_active == UNTIL_IOCTL && 7842 err != -EINVAL) 7843 mddev->hold_active = 0; 7844 7845 md_ioctl_need_suspend(cmd) ? mddev_unlock_and_resume(mddev) : 7846 mddev_unlock(mddev); 7847 7848 out: 7849 if(did_set_md_closing) 7850 clear_bit(MD_CLOSING, &mddev->flags); 7851 return err; 7852 } 7853 #ifdef CONFIG_COMPAT 7854 static int md_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 7855 unsigned int cmd, unsigned long arg) 7856 { 7857 switch (cmd) { 7858 case HOT_REMOVE_DISK: 7859 case HOT_ADD_DISK: 7860 case SET_DISK_FAULTY: 7861 case SET_BITMAP_FILE: 7862 /* These take in integer arg, do not convert */ 7863 break; 7864 default: 7865 arg = (unsigned long)compat_ptr(arg); 7866 break; 7867 } 7868 7869 return md_ioctl(bdev, mode, cmd, arg); 7870 } 7871 #endif /* CONFIG_COMPAT */ 7872 7873 static int md_set_read_only(struct block_device *bdev, bool ro) 7874 { 7875 struct mddev *mddev = bdev->bd_disk->private_data; 7876 int err; 7877 7878 err = mddev_lock(mddev); 7879 if (err) 7880 return err; 7881 7882 if (!mddev->raid_disks && !mddev->external) { 7883 err = -ENODEV; 7884 goto out_unlock; 7885 } 7886 7887 /* 7888 * Transitioning to read-auto need only happen for arrays that call 7889 * md_write_start and which are not ready for writes yet. 7890 */ 7891 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) { 7892 err = restart_array(mddev); 7893 if (err) 7894 goto out_unlock; 7895 mddev->ro = MD_AUTO_READ; 7896 } 7897 7898 out_unlock: 7899 mddev_unlock(mddev); 7900 return err; 7901 } 7902 7903 static int md_open(struct gendisk *disk, blk_mode_t mode) 7904 { 7905 struct mddev *mddev; 7906 int err; 7907 7908 spin_lock(&all_mddevs_lock); 7909 mddev = mddev_get(disk->private_data); 7910 spin_unlock(&all_mddevs_lock); 7911 if (!mddev) 7912 return -ENODEV; 7913 7914 err = mutex_lock_interruptible(&mddev->open_mutex); 7915 if (err) 7916 goto out; 7917 7918 err = -ENODEV; 7919 if (test_bit(MD_CLOSING, &mddev->flags)) 7920 goto out_unlock; 7921 7922 atomic_inc(&mddev->openers); 7923 mutex_unlock(&mddev->open_mutex); 7924 7925 disk_check_media_change(disk); 7926 return 0; 7927 7928 out_unlock: 7929 mutex_unlock(&mddev->open_mutex); 7930 out: 7931 mddev_put(mddev); 7932 return err; 7933 } 7934 7935 static void md_release(struct gendisk *disk) 7936 { 7937 struct mddev *mddev = disk->private_data; 7938 7939 BUG_ON(!mddev); 7940 atomic_dec(&mddev->openers); 7941 mddev_put(mddev); 7942 } 7943 7944 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7945 { 7946 struct mddev *mddev = disk->private_data; 7947 unsigned int ret = 0; 7948 7949 if (mddev->changed) 7950 ret = DISK_EVENT_MEDIA_CHANGE; 7951 mddev->changed = 0; 7952 return ret; 7953 } 7954 7955 static void md_free_disk(struct gendisk *disk) 7956 { 7957 struct mddev *mddev = disk->private_data; 7958 7959 mddev_free(mddev); 7960 } 7961 7962 const struct block_device_operations md_fops = 7963 { 7964 .owner = THIS_MODULE, 7965 .submit_bio = md_submit_bio, 7966 .open = md_open, 7967 .release = md_release, 7968 .ioctl = md_ioctl, 7969 #ifdef CONFIG_COMPAT 7970 .compat_ioctl = md_compat_ioctl, 7971 #endif 7972 .getgeo = md_getgeo, 7973 .check_events = md_check_events, 7974 .set_read_only = md_set_read_only, 7975 .free_disk = md_free_disk, 7976 }; 7977 7978 static int md_thread(void *arg) 7979 { 7980 struct md_thread *thread = arg; 7981 7982 /* 7983 * md_thread is a 'system-thread', it's priority should be very 7984 * high. We avoid resource deadlocks individually in each 7985 * raid personality. (RAID5 does preallocation) We also use RR and 7986 * the very same RT priority as kswapd, thus we will never get 7987 * into a priority inversion deadlock. 7988 * 7989 * we definitely have to have equal or higher priority than 7990 * bdflush, otherwise bdflush will deadlock if there are too 7991 * many dirty RAID5 blocks. 7992 */ 7993 7994 allow_signal(SIGKILL); 7995 while (!kthread_should_stop()) { 7996 7997 /* We need to wait INTERRUPTIBLE so that 7998 * we don't add to the load-average. 7999 * That means we need to be sure no signals are 8000 * pending 8001 */ 8002 if (signal_pending(current)) 8003 flush_signals(current); 8004 8005 wait_event_interruptible_timeout 8006 (thread->wqueue, 8007 test_bit(THREAD_WAKEUP, &thread->flags) 8008 || kthread_should_stop() || kthread_should_park(), 8009 thread->timeout); 8010 8011 clear_bit(THREAD_WAKEUP, &thread->flags); 8012 if (kthread_should_park()) 8013 kthread_parkme(); 8014 if (!kthread_should_stop()) 8015 thread->run(thread); 8016 } 8017 8018 return 0; 8019 } 8020 8021 static void md_wakeup_thread_directly(struct md_thread __rcu *thread) 8022 { 8023 struct md_thread *t; 8024 8025 rcu_read_lock(); 8026 t = rcu_dereference(thread); 8027 if (t) 8028 wake_up_process(t->tsk); 8029 rcu_read_unlock(); 8030 } 8031 8032 void md_wakeup_thread(struct md_thread __rcu *thread) 8033 { 8034 struct md_thread *t; 8035 8036 rcu_read_lock(); 8037 t = rcu_dereference(thread); 8038 if (t) { 8039 pr_debug("md: waking up MD thread %s.\n", t->tsk->comm); 8040 set_bit(THREAD_WAKEUP, &t->flags); 8041 wake_up(&t->wqueue); 8042 } 8043 rcu_read_unlock(); 8044 } 8045 EXPORT_SYMBOL(md_wakeup_thread); 8046 8047 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 8048 struct mddev *mddev, const char *name) 8049 { 8050 struct md_thread *thread; 8051 8052 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 8053 if (!thread) 8054 return NULL; 8055 8056 init_waitqueue_head(&thread->wqueue); 8057 8058 thread->run = run; 8059 thread->mddev = mddev; 8060 thread->timeout = MAX_SCHEDULE_TIMEOUT; 8061 thread->tsk = kthread_run(md_thread, thread, 8062 "%s_%s", 8063 mdname(thread->mddev), 8064 name); 8065 if (IS_ERR(thread->tsk)) { 8066 kfree(thread); 8067 return NULL; 8068 } 8069 return thread; 8070 } 8071 EXPORT_SYMBOL(md_register_thread); 8072 8073 void md_unregister_thread(struct mddev *mddev, struct md_thread __rcu **threadp) 8074 { 8075 struct md_thread *thread = rcu_dereference_protected(*threadp, 8076 lockdep_is_held(&mddev->reconfig_mutex)); 8077 8078 if (!thread) 8079 return; 8080 8081 rcu_assign_pointer(*threadp, NULL); 8082 synchronize_rcu(); 8083 8084 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 8085 kthread_stop(thread->tsk); 8086 kfree(thread); 8087 } 8088 EXPORT_SYMBOL(md_unregister_thread); 8089 8090 void md_error(struct mddev *mddev, struct md_rdev *rdev) 8091 { 8092 if (!rdev || test_bit(Faulty, &rdev->flags)) 8093 return; 8094 8095 if (!mddev->pers || !mddev->pers->error_handler) 8096 return; 8097 mddev->pers->error_handler(mddev, rdev); 8098 8099 if (mddev->pers->level == 0) 8100 return; 8101 8102 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 8103 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8104 sysfs_notify_dirent_safe(rdev->sysfs_state); 8105 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8106 if (!test_bit(MD_BROKEN, &mddev->flags)) { 8107 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8108 md_wakeup_thread(mddev->thread); 8109 } 8110 if (mddev->event_work.func) 8111 queue_work(md_misc_wq, &mddev->event_work); 8112 md_new_event(); 8113 } 8114 EXPORT_SYMBOL(md_error); 8115 8116 /* seq_file implementation /proc/mdstat */ 8117 8118 static void status_unused(struct seq_file *seq) 8119 { 8120 int i = 0; 8121 struct md_rdev *rdev; 8122 8123 seq_printf(seq, "unused devices: "); 8124 8125 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8126 i++; 8127 seq_printf(seq, "%pg ", rdev->bdev); 8128 } 8129 if (!i) 8130 seq_printf(seq, "<none>"); 8131 8132 seq_printf(seq, "\n"); 8133 } 8134 8135 static void status_personalities(struct seq_file *seq) 8136 { 8137 struct md_personality *pers; 8138 8139 seq_puts(seq, "Personalities : "); 8140 spin_lock(&pers_lock); 8141 list_for_each_entry(pers, &pers_list, list) 8142 seq_printf(seq, "[%s] ", pers->name); 8143 8144 spin_unlock(&pers_lock); 8145 seq_puts(seq, "\n"); 8146 } 8147 8148 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8149 { 8150 sector_t max_sectors, resync, res; 8151 unsigned long dt, db = 0; 8152 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8153 int scale, recovery_active; 8154 unsigned int per_milli; 8155 8156 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8157 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8158 max_sectors = mddev->resync_max_sectors; 8159 else 8160 max_sectors = mddev->dev_sectors; 8161 8162 resync = mddev->curr_resync; 8163 if (resync < MD_RESYNC_ACTIVE) { 8164 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8165 /* Still cleaning up */ 8166 resync = max_sectors; 8167 } else if (resync > max_sectors) { 8168 resync = max_sectors; 8169 } else { 8170 res = atomic_read(&mddev->recovery_active); 8171 /* 8172 * Resync has started, but the subtraction has overflowed or 8173 * yielded one of the special values. Force it to active to 8174 * ensure the status reports an active resync. 8175 */ 8176 if (resync < res || resync - res < MD_RESYNC_ACTIVE) 8177 resync = MD_RESYNC_ACTIVE; 8178 else 8179 resync -= res; 8180 } 8181 8182 if (resync == MD_RESYNC_NONE) { 8183 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8184 struct md_rdev *rdev; 8185 8186 rdev_for_each(rdev, mddev) 8187 if (rdev->raid_disk >= 0 && 8188 !test_bit(Faulty, &rdev->flags) && 8189 rdev->recovery_offset != MaxSector && 8190 rdev->recovery_offset) { 8191 seq_printf(seq, "\trecover=REMOTE"); 8192 return 1; 8193 } 8194 if (mddev->reshape_position != MaxSector) 8195 seq_printf(seq, "\treshape=REMOTE"); 8196 else 8197 seq_printf(seq, "\tresync=REMOTE"); 8198 return 1; 8199 } 8200 if (mddev->recovery_cp < MaxSector) { 8201 seq_printf(seq, "\tresync=PENDING"); 8202 return 1; 8203 } 8204 return 0; 8205 } 8206 if (resync < MD_RESYNC_ACTIVE) { 8207 seq_printf(seq, "\tresync=DELAYED"); 8208 return 1; 8209 } 8210 8211 WARN_ON(max_sectors == 0); 8212 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8213 * in a sector_t, and (max_sectors>>scale) will fit in a 8214 * u32, as those are the requirements for sector_div. 8215 * Thus 'scale' must be at least 10 8216 */ 8217 scale = 10; 8218 if (sizeof(sector_t) > sizeof(unsigned long)) { 8219 while ( max_sectors/2 > (1ULL<<(scale+32))) 8220 scale++; 8221 } 8222 res = (resync>>scale)*1000; 8223 sector_div(res, (u32)((max_sectors>>scale)+1)); 8224 8225 per_milli = res; 8226 { 8227 int i, x = per_milli/50, y = 20-x; 8228 seq_printf(seq, "["); 8229 for (i = 0; i < x; i++) 8230 seq_printf(seq, "="); 8231 seq_printf(seq, ">"); 8232 for (i = 0; i < y; i++) 8233 seq_printf(seq, "."); 8234 seq_printf(seq, "] "); 8235 } 8236 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8237 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8238 "reshape" : 8239 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8240 "check" : 8241 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8242 "resync" : "recovery"))), 8243 per_milli/10, per_milli % 10, 8244 (unsigned long long) resync/2, 8245 (unsigned long long) max_sectors/2); 8246 8247 /* 8248 * dt: time from mark until now 8249 * db: blocks written from mark until now 8250 * rt: remaining time 8251 * 8252 * rt is a sector_t, which is always 64bit now. We are keeping 8253 * the original algorithm, but it is not really necessary. 8254 * 8255 * Original algorithm: 8256 * So we divide before multiply in case it is 32bit and close 8257 * to the limit. 8258 * We scale the divisor (db) by 32 to avoid losing precision 8259 * near the end of resync when the number of remaining sectors 8260 * is close to 'db'. 8261 * We then divide rt by 32 after multiplying by db to compensate. 8262 * The '+1' avoids division by zero if db is very small. 8263 */ 8264 dt = ((jiffies - mddev->resync_mark) / HZ); 8265 if (!dt) dt++; 8266 8267 curr_mark_cnt = mddev->curr_mark_cnt; 8268 recovery_active = atomic_read(&mddev->recovery_active); 8269 resync_mark_cnt = mddev->resync_mark_cnt; 8270 8271 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8272 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8273 8274 rt = max_sectors - resync; /* number of remaining sectors */ 8275 rt = div64_u64(rt, db/32+1); 8276 rt *= dt; 8277 rt >>= 5; 8278 8279 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8280 ((unsigned long)rt % 60)/6); 8281 8282 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8283 return 1; 8284 } 8285 8286 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8287 __acquires(&all_mddevs_lock) 8288 { 8289 seq->poll_event = atomic_read(&md_event_count); 8290 spin_lock(&all_mddevs_lock); 8291 8292 return seq_list_start_head(&all_mddevs, *pos); 8293 } 8294 8295 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8296 { 8297 return seq_list_next(v, &all_mddevs, pos); 8298 } 8299 8300 static void md_seq_stop(struct seq_file *seq, void *v) 8301 __releases(&all_mddevs_lock) 8302 { 8303 spin_unlock(&all_mddevs_lock); 8304 } 8305 8306 static int md_seq_show(struct seq_file *seq, void *v) 8307 { 8308 struct mddev *mddev; 8309 sector_t sectors; 8310 struct md_rdev *rdev; 8311 8312 if (v == &all_mddevs) { 8313 status_personalities(seq); 8314 if (list_empty(&all_mddevs)) 8315 status_unused(seq); 8316 return 0; 8317 } 8318 8319 mddev = list_entry(v, struct mddev, all_mddevs); 8320 if (!mddev_get(mddev)) 8321 return 0; 8322 8323 spin_unlock(&all_mddevs_lock); 8324 spin_lock(&mddev->lock); 8325 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8326 seq_printf(seq, "%s : %sactive", mdname(mddev), 8327 mddev->pers ? "" : "in"); 8328 if (mddev->pers) { 8329 if (mddev->ro == MD_RDONLY) 8330 seq_printf(seq, " (read-only)"); 8331 if (mddev->ro == MD_AUTO_READ) 8332 seq_printf(seq, " (auto-read-only)"); 8333 seq_printf(seq, " %s", mddev->pers->name); 8334 } 8335 8336 sectors = 0; 8337 rcu_read_lock(); 8338 rdev_for_each_rcu(rdev, mddev) { 8339 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8340 8341 if (test_bit(WriteMostly, &rdev->flags)) 8342 seq_printf(seq, "(W)"); 8343 if (test_bit(Journal, &rdev->flags)) 8344 seq_printf(seq, "(J)"); 8345 if (test_bit(Faulty, &rdev->flags)) { 8346 seq_printf(seq, "(F)"); 8347 continue; 8348 } 8349 if (rdev->raid_disk < 0) 8350 seq_printf(seq, "(S)"); /* spare */ 8351 if (test_bit(Replacement, &rdev->flags)) 8352 seq_printf(seq, "(R)"); 8353 sectors += rdev->sectors; 8354 } 8355 rcu_read_unlock(); 8356 8357 if (!list_empty(&mddev->disks)) { 8358 if (mddev->pers) 8359 seq_printf(seq, "\n %llu blocks", 8360 (unsigned long long) 8361 mddev->array_sectors / 2); 8362 else 8363 seq_printf(seq, "\n %llu blocks", 8364 (unsigned long long)sectors / 2); 8365 } 8366 if (mddev->persistent) { 8367 if (mddev->major_version != 0 || 8368 mddev->minor_version != 90) { 8369 seq_printf(seq," super %d.%d", 8370 mddev->major_version, 8371 mddev->minor_version); 8372 } 8373 } else if (mddev->external) 8374 seq_printf(seq, " super external:%s", 8375 mddev->metadata_type); 8376 else 8377 seq_printf(seq, " super non-persistent"); 8378 8379 if (mddev->pers) { 8380 mddev->pers->status(seq, mddev); 8381 seq_printf(seq, "\n "); 8382 if (mddev->pers->sync_request) { 8383 if (status_resync(seq, mddev)) 8384 seq_printf(seq, "\n "); 8385 } 8386 } else 8387 seq_printf(seq, "\n "); 8388 8389 md_bitmap_status(seq, mddev->bitmap); 8390 8391 seq_printf(seq, "\n"); 8392 } 8393 spin_unlock(&mddev->lock); 8394 spin_lock(&all_mddevs_lock); 8395 8396 if (mddev == list_last_entry(&all_mddevs, struct mddev, all_mddevs)) 8397 status_unused(seq); 8398 8399 if (atomic_dec_and_test(&mddev->active)) 8400 __mddev_put(mddev); 8401 8402 return 0; 8403 } 8404 8405 static const struct seq_operations md_seq_ops = { 8406 .start = md_seq_start, 8407 .next = md_seq_next, 8408 .stop = md_seq_stop, 8409 .show = md_seq_show, 8410 }; 8411 8412 static int md_seq_open(struct inode *inode, struct file *file) 8413 { 8414 struct seq_file *seq; 8415 int error; 8416 8417 error = seq_open(file, &md_seq_ops); 8418 if (error) 8419 return error; 8420 8421 seq = file->private_data; 8422 seq->poll_event = atomic_read(&md_event_count); 8423 return error; 8424 } 8425 8426 static int md_unloading; 8427 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8428 { 8429 struct seq_file *seq = filp->private_data; 8430 __poll_t mask; 8431 8432 if (md_unloading) 8433 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8434 poll_wait(filp, &md_event_waiters, wait); 8435 8436 /* always allow read */ 8437 mask = EPOLLIN | EPOLLRDNORM; 8438 8439 if (seq->poll_event != atomic_read(&md_event_count)) 8440 mask |= EPOLLERR | EPOLLPRI; 8441 return mask; 8442 } 8443 8444 static const struct proc_ops mdstat_proc_ops = { 8445 .proc_open = md_seq_open, 8446 .proc_read = seq_read, 8447 .proc_lseek = seq_lseek, 8448 .proc_release = seq_release, 8449 .proc_poll = mdstat_poll, 8450 }; 8451 8452 int register_md_personality(struct md_personality *p) 8453 { 8454 pr_debug("md: %s personality registered for level %d\n", 8455 p->name, p->level); 8456 spin_lock(&pers_lock); 8457 list_add_tail(&p->list, &pers_list); 8458 spin_unlock(&pers_lock); 8459 return 0; 8460 } 8461 EXPORT_SYMBOL(register_md_personality); 8462 8463 int unregister_md_personality(struct md_personality *p) 8464 { 8465 pr_debug("md: %s personality unregistered\n", p->name); 8466 spin_lock(&pers_lock); 8467 list_del_init(&p->list); 8468 spin_unlock(&pers_lock); 8469 return 0; 8470 } 8471 EXPORT_SYMBOL(unregister_md_personality); 8472 8473 int register_md_cluster_operations(struct md_cluster_operations *ops, 8474 struct module *module) 8475 { 8476 int ret = 0; 8477 spin_lock(&pers_lock); 8478 if (md_cluster_ops != NULL) 8479 ret = -EALREADY; 8480 else { 8481 md_cluster_ops = ops; 8482 md_cluster_mod = module; 8483 } 8484 spin_unlock(&pers_lock); 8485 return ret; 8486 } 8487 EXPORT_SYMBOL(register_md_cluster_operations); 8488 8489 int unregister_md_cluster_operations(void) 8490 { 8491 spin_lock(&pers_lock); 8492 md_cluster_ops = NULL; 8493 spin_unlock(&pers_lock); 8494 return 0; 8495 } 8496 EXPORT_SYMBOL(unregister_md_cluster_operations); 8497 8498 int md_setup_cluster(struct mddev *mddev, int nodes) 8499 { 8500 int ret; 8501 if (!md_cluster_ops) 8502 request_module("md-cluster"); 8503 spin_lock(&pers_lock); 8504 /* ensure module won't be unloaded */ 8505 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8506 pr_warn("can't find md-cluster module or get its reference.\n"); 8507 spin_unlock(&pers_lock); 8508 return -ENOENT; 8509 } 8510 spin_unlock(&pers_lock); 8511 8512 ret = md_cluster_ops->join(mddev, nodes); 8513 if (!ret) 8514 mddev->safemode_delay = 0; 8515 return ret; 8516 } 8517 8518 void md_cluster_stop(struct mddev *mddev) 8519 { 8520 if (!md_cluster_ops) 8521 return; 8522 md_cluster_ops->leave(mddev); 8523 module_put(md_cluster_mod); 8524 } 8525 8526 static int is_mddev_idle(struct mddev *mddev, int init) 8527 { 8528 struct md_rdev *rdev; 8529 int idle; 8530 int curr_events; 8531 8532 idle = 1; 8533 rcu_read_lock(); 8534 rdev_for_each_rcu(rdev, mddev) { 8535 struct gendisk *disk = rdev->bdev->bd_disk; 8536 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8537 atomic_read(&disk->sync_io); 8538 /* sync IO will cause sync_io to increase before the disk_stats 8539 * as sync_io is counted when a request starts, and 8540 * disk_stats is counted when it completes. 8541 * So resync activity will cause curr_events to be smaller than 8542 * when there was no such activity. 8543 * non-sync IO will cause disk_stat to increase without 8544 * increasing sync_io so curr_events will (eventually) 8545 * be larger than it was before. Once it becomes 8546 * substantially larger, the test below will cause 8547 * the array to appear non-idle, and resync will slow 8548 * down. 8549 * If there is a lot of outstanding resync activity when 8550 * we set last_event to curr_events, then all that activity 8551 * completing might cause the array to appear non-idle 8552 * and resync will be slowed down even though there might 8553 * not have been non-resync activity. This will only 8554 * happen once though. 'last_events' will soon reflect 8555 * the state where there is little or no outstanding 8556 * resync requests, and further resync activity will 8557 * always make curr_events less than last_events. 8558 * 8559 */ 8560 if (init || curr_events - rdev->last_events > 64) { 8561 rdev->last_events = curr_events; 8562 idle = 0; 8563 } 8564 } 8565 rcu_read_unlock(); 8566 return idle; 8567 } 8568 8569 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8570 { 8571 /* another "blocks" (512byte) blocks have been synced */ 8572 atomic_sub(blocks, &mddev->recovery_active); 8573 wake_up(&mddev->recovery_wait); 8574 if (!ok) { 8575 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8576 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8577 md_wakeup_thread(mddev->thread); 8578 // stop recovery, signal do_sync .... 8579 } 8580 } 8581 EXPORT_SYMBOL(md_done_sync); 8582 8583 /* md_write_start(mddev, bi) 8584 * If we need to update some array metadata (e.g. 'active' flag 8585 * in superblock) before writing, schedule a superblock update 8586 * and wait for it to complete. 8587 * A return value of 'false' means that the write wasn't recorded 8588 * and cannot proceed as the array is being suspend. 8589 */ 8590 bool md_write_start(struct mddev *mddev, struct bio *bi) 8591 { 8592 int did_change = 0; 8593 8594 if (bio_data_dir(bi) != WRITE) 8595 return true; 8596 8597 BUG_ON(mddev->ro == MD_RDONLY); 8598 if (mddev->ro == MD_AUTO_READ) { 8599 /* need to switch to read/write */ 8600 flush_work(&mddev->sync_work); 8601 mddev->ro = MD_RDWR; 8602 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8603 md_wakeup_thread(mddev->thread); 8604 md_wakeup_thread(mddev->sync_thread); 8605 did_change = 1; 8606 } 8607 rcu_read_lock(); 8608 percpu_ref_get(&mddev->writes_pending); 8609 smp_mb(); /* Match smp_mb in set_in_sync() */ 8610 if (mddev->safemode == 1) 8611 mddev->safemode = 0; 8612 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8613 if (mddev->in_sync || mddev->sync_checkers) { 8614 spin_lock(&mddev->lock); 8615 if (mddev->in_sync) { 8616 mddev->in_sync = 0; 8617 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8618 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8619 md_wakeup_thread(mddev->thread); 8620 did_change = 1; 8621 } 8622 spin_unlock(&mddev->lock); 8623 } 8624 rcu_read_unlock(); 8625 if (did_change) 8626 sysfs_notify_dirent_safe(mddev->sysfs_state); 8627 if (!mddev->has_superblocks) 8628 return true; 8629 wait_event(mddev->sb_wait, 8630 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8631 is_md_suspended(mddev)); 8632 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8633 percpu_ref_put(&mddev->writes_pending); 8634 return false; 8635 } 8636 return true; 8637 } 8638 EXPORT_SYMBOL(md_write_start); 8639 8640 /* md_write_inc can only be called when md_write_start() has 8641 * already been called at least once of the current request. 8642 * It increments the counter and is useful when a single request 8643 * is split into several parts. Each part causes an increment and 8644 * so needs a matching md_write_end(). 8645 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8646 * a spinlocked region. 8647 */ 8648 void md_write_inc(struct mddev *mddev, struct bio *bi) 8649 { 8650 if (bio_data_dir(bi) != WRITE) 8651 return; 8652 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev)); 8653 percpu_ref_get(&mddev->writes_pending); 8654 } 8655 EXPORT_SYMBOL(md_write_inc); 8656 8657 void md_write_end(struct mddev *mddev) 8658 { 8659 percpu_ref_put(&mddev->writes_pending); 8660 8661 if (mddev->safemode == 2) 8662 md_wakeup_thread(mddev->thread); 8663 else if (mddev->safemode_delay) 8664 /* The roundup() ensures this only performs locking once 8665 * every ->safemode_delay jiffies 8666 */ 8667 mod_timer(&mddev->safemode_timer, 8668 roundup(jiffies, mddev->safemode_delay) + 8669 mddev->safemode_delay); 8670 } 8671 8672 EXPORT_SYMBOL(md_write_end); 8673 8674 /* This is used by raid0 and raid10 */ 8675 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8676 struct bio *bio, sector_t start, sector_t size) 8677 { 8678 struct bio *discard_bio = NULL; 8679 8680 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8681 &discard_bio) || !discard_bio) 8682 return; 8683 8684 bio_chain(discard_bio, bio); 8685 bio_clone_blkg_association(discard_bio, bio); 8686 if (mddev->gendisk) 8687 trace_block_bio_remap(discard_bio, 8688 disk_devt(mddev->gendisk), 8689 bio->bi_iter.bi_sector); 8690 submit_bio_noacct(discard_bio); 8691 } 8692 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8693 8694 static void md_end_clone_io(struct bio *bio) 8695 { 8696 struct md_io_clone *md_io_clone = bio->bi_private; 8697 struct bio *orig_bio = md_io_clone->orig_bio; 8698 struct mddev *mddev = md_io_clone->mddev; 8699 8700 if (bio->bi_status && !orig_bio->bi_status) 8701 orig_bio->bi_status = bio->bi_status; 8702 8703 if (md_io_clone->start_time) 8704 bio_end_io_acct(orig_bio, md_io_clone->start_time); 8705 8706 bio_put(bio); 8707 bio_endio(orig_bio); 8708 percpu_ref_put(&mddev->active_io); 8709 } 8710 8711 static void md_clone_bio(struct mddev *mddev, struct bio **bio) 8712 { 8713 struct block_device *bdev = (*bio)->bi_bdev; 8714 struct md_io_clone *md_io_clone; 8715 struct bio *clone = 8716 bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_clone_set); 8717 8718 md_io_clone = container_of(clone, struct md_io_clone, bio_clone); 8719 md_io_clone->orig_bio = *bio; 8720 md_io_clone->mddev = mddev; 8721 if (blk_queue_io_stat(bdev->bd_disk->queue)) 8722 md_io_clone->start_time = bio_start_io_acct(*bio); 8723 8724 clone->bi_end_io = md_end_clone_io; 8725 clone->bi_private = md_io_clone; 8726 *bio = clone; 8727 } 8728 8729 void md_account_bio(struct mddev *mddev, struct bio **bio) 8730 { 8731 percpu_ref_get(&mddev->active_io); 8732 md_clone_bio(mddev, bio); 8733 } 8734 EXPORT_SYMBOL_GPL(md_account_bio); 8735 8736 /* md_allow_write(mddev) 8737 * Calling this ensures that the array is marked 'active' so that writes 8738 * may proceed without blocking. It is important to call this before 8739 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8740 * Must be called with mddev_lock held. 8741 */ 8742 void md_allow_write(struct mddev *mddev) 8743 { 8744 if (!mddev->pers) 8745 return; 8746 if (!md_is_rdwr(mddev)) 8747 return; 8748 if (!mddev->pers->sync_request) 8749 return; 8750 8751 spin_lock(&mddev->lock); 8752 if (mddev->in_sync) { 8753 mddev->in_sync = 0; 8754 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8755 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8756 if (mddev->safemode_delay && 8757 mddev->safemode == 0) 8758 mddev->safemode = 1; 8759 spin_unlock(&mddev->lock); 8760 md_update_sb(mddev, 0); 8761 sysfs_notify_dirent_safe(mddev->sysfs_state); 8762 /* wait for the dirty state to be recorded in the metadata */ 8763 wait_event(mddev->sb_wait, 8764 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8765 } else 8766 spin_unlock(&mddev->lock); 8767 } 8768 EXPORT_SYMBOL_GPL(md_allow_write); 8769 8770 #define SYNC_MARKS 10 8771 #define SYNC_MARK_STEP (3*HZ) 8772 #define UPDATE_FREQUENCY (5*60*HZ) 8773 void md_do_sync(struct md_thread *thread) 8774 { 8775 struct mddev *mddev = thread->mddev; 8776 struct mddev *mddev2; 8777 unsigned int currspeed = 0, window; 8778 sector_t max_sectors,j, io_sectors, recovery_done; 8779 unsigned long mark[SYNC_MARKS]; 8780 unsigned long update_time; 8781 sector_t mark_cnt[SYNC_MARKS]; 8782 int last_mark,m; 8783 sector_t last_check; 8784 int skipped = 0; 8785 struct md_rdev *rdev; 8786 char *desc, *action = NULL; 8787 struct blk_plug plug; 8788 int ret; 8789 8790 /* just incase thread restarts... */ 8791 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8792 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8793 return; 8794 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */ 8795 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8796 return; 8797 } 8798 8799 if (mddev_is_clustered(mddev)) { 8800 ret = md_cluster_ops->resync_start(mddev); 8801 if (ret) 8802 goto skip; 8803 8804 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8805 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8806 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8807 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8808 && ((unsigned long long)mddev->curr_resync_completed 8809 < (unsigned long long)mddev->resync_max_sectors)) 8810 goto skip; 8811 } 8812 8813 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8814 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8815 desc = "data-check"; 8816 action = "check"; 8817 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8818 desc = "requested-resync"; 8819 action = "repair"; 8820 } else 8821 desc = "resync"; 8822 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8823 desc = "reshape"; 8824 else 8825 desc = "recovery"; 8826 8827 mddev->last_sync_action = action ?: desc; 8828 8829 /* 8830 * Before starting a resync we must have set curr_resync to 8831 * 2, and then checked that every "conflicting" array has curr_resync 8832 * less than ours. When we find one that is the same or higher 8833 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8834 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8835 * This will mean we have to start checking from the beginning again. 8836 * 8837 */ 8838 8839 do { 8840 int mddev2_minor = -1; 8841 mddev->curr_resync = MD_RESYNC_DELAYED; 8842 8843 try_again: 8844 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8845 goto skip; 8846 spin_lock(&all_mddevs_lock); 8847 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8848 if (test_bit(MD_DELETED, &mddev2->flags)) 8849 continue; 8850 if (mddev2 == mddev) 8851 continue; 8852 if (!mddev->parallel_resync 8853 && mddev2->curr_resync 8854 && match_mddev_units(mddev, mddev2)) { 8855 DEFINE_WAIT(wq); 8856 if (mddev < mddev2 && 8857 mddev->curr_resync == MD_RESYNC_DELAYED) { 8858 /* arbitrarily yield */ 8859 mddev->curr_resync = MD_RESYNC_YIELDED; 8860 wake_up(&resync_wait); 8861 } 8862 if (mddev > mddev2 && 8863 mddev->curr_resync == MD_RESYNC_YIELDED) 8864 /* no need to wait here, we can wait the next 8865 * time 'round when curr_resync == 2 8866 */ 8867 continue; 8868 /* We need to wait 'interruptible' so as not to 8869 * contribute to the load average, and not to 8870 * be caught by 'softlockup' 8871 */ 8872 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8873 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8874 mddev2->curr_resync >= mddev->curr_resync) { 8875 if (mddev2_minor != mddev2->md_minor) { 8876 mddev2_minor = mddev2->md_minor; 8877 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8878 desc, mdname(mddev), 8879 mdname(mddev2)); 8880 } 8881 spin_unlock(&all_mddevs_lock); 8882 8883 if (signal_pending(current)) 8884 flush_signals(current); 8885 schedule(); 8886 finish_wait(&resync_wait, &wq); 8887 goto try_again; 8888 } 8889 finish_wait(&resync_wait, &wq); 8890 } 8891 } 8892 spin_unlock(&all_mddevs_lock); 8893 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8894 8895 j = 0; 8896 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8897 /* resync follows the size requested by the personality, 8898 * which defaults to physical size, but can be virtual size 8899 */ 8900 max_sectors = mddev->resync_max_sectors; 8901 atomic64_set(&mddev->resync_mismatches, 0); 8902 /* we don't use the checkpoint if there's a bitmap */ 8903 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8904 j = mddev->resync_min; 8905 else if (!mddev->bitmap) 8906 j = mddev->recovery_cp; 8907 8908 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8909 max_sectors = mddev->resync_max_sectors; 8910 /* 8911 * If the original node aborts reshaping then we continue the 8912 * reshaping, so set j again to avoid restart reshape from the 8913 * first beginning 8914 */ 8915 if (mddev_is_clustered(mddev) && 8916 mddev->reshape_position != MaxSector) 8917 j = mddev->reshape_position; 8918 } else { 8919 /* recovery follows the physical size of devices */ 8920 max_sectors = mddev->dev_sectors; 8921 j = MaxSector; 8922 rcu_read_lock(); 8923 rdev_for_each_rcu(rdev, mddev) 8924 if (rdev->raid_disk >= 0 && 8925 !test_bit(Journal, &rdev->flags) && 8926 !test_bit(Faulty, &rdev->flags) && 8927 !test_bit(In_sync, &rdev->flags) && 8928 rdev->recovery_offset < j) 8929 j = rdev->recovery_offset; 8930 rcu_read_unlock(); 8931 8932 /* If there is a bitmap, we need to make sure all 8933 * writes that started before we added a spare 8934 * complete before we start doing a recovery. 8935 * Otherwise the write might complete and (via 8936 * bitmap_endwrite) set a bit in the bitmap after the 8937 * recovery has checked that bit and skipped that 8938 * region. 8939 */ 8940 if (mddev->bitmap) { 8941 mddev->pers->quiesce(mddev, 1); 8942 mddev->pers->quiesce(mddev, 0); 8943 } 8944 } 8945 8946 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8947 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8948 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8949 speed_max(mddev), desc); 8950 8951 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8952 8953 io_sectors = 0; 8954 for (m = 0; m < SYNC_MARKS; m++) { 8955 mark[m] = jiffies; 8956 mark_cnt[m] = io_sectors; 8957 } 8958 last_mark = 0; 8959 mddev->resync_mark = mark[last_mark]; 8960 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8961 8962 /* 8963 * Tune reconstruction: 8964 */ 8965 window = 32 * (PAGE_SIZE / 512); 8966 pr_debug("md: using %dk window, over a total of %lluk.\n", 8967 window/2, (unsigned long long)max_sectors/2); 8968 8969 atomic_set(&mddev->recovery_active, 0); 8970 last_check = 0; 8971 8972 if (j >= MD_RESYNC_ACTIVE) { 8973 pr_debug("md: resuming %s of %s from checkpoint.\n", 8974 desc, mdname(mddev)); 8975 mddev->curr_resync = j; 8976 } else 8977 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 8978 mddev->curr_resync_completed = j; 8979 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8980 md_new_event(); 8981 update_time = jiffies; 8982 8983 blk_start_plug(&plug); 8984 while (j < max_sectors) { 8985 sector_t sectors; 8986 8987 skipped = 0; 8988 8989 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8990 ((mddev->curr_resync > mddev->curr_resync_completed && 8991 (mddev->curr_resync - mddev->curr_resync_completed) 8992 > (max_sectors >> 4)) || 8993 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8994 (j - mddev->curr_resync_completed)*2 8995 >= mddev->resync_max - mddev->curr_resync_completed || 8996 mddev->curr_resync_completed > mddev->resync_max 8997 )) { 8998 /* time to update curr_resync_completed */ 8999 wait_event(mddev->recovery_wait, 9000 atomic_read(&mddev->recovery_active) == 0); 9001 mddev->curr_resync_completed = j; 9002 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 9003 j > mddev->recovery_cp) 9004 mddev->recovery_cp = j; 9005 update_time = jiffies; 9006 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 9007 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9008 } 9009 9010 while (j >= mddev->resync_max && 9011 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9012 /* As this condition is controlled by user-space, 9013 * we can block indefinitely, so use '_interruptible' 9014 * to avoid triggering warnings. 9015 */ 9016 flush_signals(current); /* just in case */ 9017 wait_event_interruptible(mddev->recovery_wait, 9018 mddev->resync_max > j 9019 || test_bit(MD_RECOVERY_INTR, 9020 &mddev->recovery)); 9021 } 9022 9023 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9024 break; 9025 9026 sectors = mddev->pers->sync_request(mddev, j, &skipped); 9027 if (sectors == 0) { 9028 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9029 break; 9030 } 9031 9032 if (!skipped) { /* actual IO requested */ 9033 io_sectors += sectors; 9034 atomic_add(sectors, &mddev->recovery_active); 9035 } 9036 9037 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9038 break; 9039 9040 j += sectors; 9041 if (j > max_sectors) 9042 /* when skipping, extra large numbers can be returned. */ 9043 j = max_sectors; 9044 if (j >= MD_RESYNC_ACTIVE) 9045 mddev->curr_resync = j; 9046 mddev->curr_mark_cnt = io_sectors; 9047 if (last_check == 0) 9048 /* this is the earliest that rebuild will be 9049 * visible in /proc/mdstat 9050 */ 9051 md_new_event(); 9052 9053 if (last_check + window > io_sectors || j == max_sectors) 9054 continue; 9055 9056 last_check = io_sectors; 9057 repeat: 9058 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 9059 /* step marks */ 9060 int next = (last_mark+1) % SYNC_MARKS; 9061 9062 mddev->resync_mark = mark[next]; 9063 mddev->resync_mark_cnt = mark_cnt[next]; 9064 mark[next] = jiffies; 9065 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 9066 last_mark = next; 9067 } 9068 9069 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9070 break; 9071 9072 /* 9073 * this loop exits only if either when we are slower than 9074 * the 'hard' speed limit, or the system was IO-idle for 9075 * a jiffy. 9076 * the system might be non-idle CPU-wise, but we only care 9077 * about not overloading the IO subsystem. (things like an 9078 * e2fsck being done on the RAID array should execute fast) 9079 */ 9080 cond_resched(); 9081 9082 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9083 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9084 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9085 9086 if (currspeed > speed_min(mddev)) { 9087 if (currspeed > speed_max(mddev)) { 9088 msleep(500); 9089 goto repeat; 9090 } 9091 if (!is_mddev_idle(mddev, 0)) { 9092 /* 9093 * Give other IO more of a chance. 9094 * The faster the devices, the less we wait. 9095 */ 9096 wait_event(mddev->recovery_wait, 9097 !atomic_read(&mddev->recovery_active)); 9098 } 9099 } 9100 } 9101 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9102 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9103 ? "interrupted" : "done"); 9104 /* 9105 * this also signals 'finished resyncing' to md_stop 9106 */ 9107 blk_finish_plug(&plug); 9108 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9109 9110 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9111 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9112 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9113 mddev->curr_resync_completed = mddev->curr_resync; 9114 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9115 } 9116 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9117 9118 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9119 mddev->curr_resync > MD_RESYNC_ACTIVE) { 9120 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9121 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9122 if (mddev->curr_resync >= mddev->recovery_cp) { 9123 pr_debug("md: checkpointing %s of %s.\n", 9124 desc, mdname(mddev)); 9125 if (test_bit(MD_RECOVERY_ERROR, 9126 &mddev->recovery)) 9127 mddev->recovery_cp = 9128 mddev->curr_resync_completed; 9129 else 9130 mddev->recovery_cp = 9131 mddev->curr_resync; 9132 } 9133 } else 9134 mddev->recovery_cp = MaxSector; 9135 } else { 9136 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9137 mddev->curr_resync = MaxSector; 9138 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9139 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9140 rcu_read_lock(); 9141 rdev_for_each_rcu(rdev, mddev) 9142 if (rdev->raid_disk >= 0 && 9143 mddev->delta_disks >= 0 && 9144 !test_bit(Journal, &rdev->flags) && 9145 !test_bit(Faulty, &rdev->flags) && 9146 !test_bit(In_sync, &rdev->flags) && 9147 rdev->recovery_offset < mddev->curr_resync) 9148 rdev->recovery_offset = mddev->curr_resync; 9149 rcu_read_unlock(); 9150 } 9151 } 9152 } 9153 skip: 9154 /* set CHANGE_PENDING here since maybe another update is needed, 9155 * so other nodes are informed. It should be harmless for normal 9156 * raid */ 9157 set_mask_bits(&mddev->sb_flags, 0, 9158 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9159 9160 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9161 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9162 mddev->delta_disks > 0 && 9163 mddev->pers->finish_reshape && 9164 mddev->pers->size && 9165 mddev->queue) { 9166 mddev_lock_nointr(mddev); 9167 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9168 mddev_unlock(mddev); 9169 if (!mddev_is_clustered(mddev)) 9170 set_capacity_and_notify(mddev->gendisk, 9171 mddev->array_sectors); 9172 } 9173 9174 spin_lock(&mddev->lock); 9175 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9176 /* We completed so min/max setting can be forgotten if used. */ 9177 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9178 mddev->resync_min = 0; 9179 mddev->resync_max = MaxSector; 9180 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9181 mddev->resync_min = mddev->curr_resync_completed; 9182 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9183 mddev->curr_resync = MD_RESYNC_NONE; 9184 spin_unlock(&mddev->lock); 9185 9186 wake_up(&resync_wait); 9187 md_wakeup_thread(mddev->thread); 9188 return; 9189 } 9190 EXPORT_SYMBOL_GPL(md_do_sync); 9191 9192 static bool rdev_removeable(struct md_rdev *rdev) 9193 { 9194 /* rdev is not used. */ 9195 if (rdev->raid_disk < 0) 9196 return false; 9197 9198 /* There are still inflight io, don't remove this rdev. */ 9199 if (atomic_read(&rdev->nr_pending)) 9200 return false; 9201 9202 /* 9203 * An error occurred but has not yet been acknowledged by the metadata 9204 * handler, don't remove this rdev. 9205 */ 9206 if (test_bit(Blocked, &rdev->flags)) 9207 return false; 9208 9209 /* Fautly rdev is not used, it's safe to remove it. */ 9210 if (test_bit(Faulty, &rdev->flags)) 9211 return true; 9212 9213 /* Journal disk can only be removed if it's faulty. */ 9214 if (test_bit(Journal, &rdev->flags)) 9215 return false; 9216 9217 /* 9218 * 'In_sync' is cleared while 'raid_disk' is valid, which means 9219 * replacement has just become active from pers->spare_active(), and 9220 * then pers->hot_remove_disk() will replace this rdev with replacement. 9221 */ 9222 if (!test_bit(In_sync, &rdev->flags)) 9223 return true; 9224 9225 return false; 9226 } 9227 9228 static bool rdev_is_spare(struct md_rdev *rdev) 9229 { 9230 return !test_bit(Candidate, &rdev->flags) && rdev->raid_disk >= 0 && 9231 !test_bit(In_sync, &rdev->flags) && 9232 !test_bit(Journal, &rdev->flags) && 9233 !test_bit(Faulty, &rdev->flags); 9234 } 9235 9236 static bool rdev_addable(struct md_rdev *rdev) 9237 { 9238 /* rdev is already used, don't add it again. */ 9239 if (test_bit(Candidate, &rdev->flags) || rdev->raid_disk >= 0 || 9240 test_bit(Faulty, &rdev->flags)) 9241 return false; 9242 9243 /* Allow to add journal disk. */ 9244 if (test_bit(Journal, &rdev->flags)) 9245 return true; 9246 9247 /* Allow to add if array is read-write. */ 9248 if (md_is_rdwr(rdev->mddev)) 9249 return true; 9250 9251 /* 9252 * For read-only array, only allow to readd a rdev. And if bitmap is 9253 * used, don't allow to readd a rdev that is too old. 9254 */ 9255 if (rdev->saved_raid_disk >= 0 && !test_bit(Bitmap_sync, &rdev->flags)) 9256 return true; 9257 9258 return false; 9259 } 9260 9261 static bool md_spares_need_change(struct mddev *mddev) 9262 { 9263 struct md_rdev *rdev; 9264 9265 rdev_for_each(rdev, mddev) 9266 if (rdev_removeable(rdev) || rdev_addable(rdev)) 9267 return true; 9268 return false; 9269 } 9270 9271 static int remove_and_add_spares(struct mddev *mddev, 9272 struct md_rdev *this) 9273 { 9274 struct md_rdev *rdev; 9275 int spares = 0; 9276 int removed = 0; 9277 9278 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9279 /* Mustn't remove devices when resync thread is running */ 9280 return 0; 9281 9282 rdev_for_each(rdev, mddev) { 9283 if ((this == NULL || rdev == this) && rdev_removeable(rdev) && 9284 !mddev->pers->hot_remove_disk(mddev, rdev)) { 9285 sysfs_unlink_rdev(mddev, rdev); 9286 rdev->saved_raid_disk = rdev->raid_disk; 9287 rdev->raid_disk = -1; 9288 removed++; 9289 } 9290 } 9291 9292 if (removed && mddev->kobj.sd) 9293 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9294 9295 if (this && removed) 9296 goto no_add; 9297 9298 rdev_for_each(rdev, mddev) { 9299 if (this && this != rdev) 9300 continue; 9301 if (rdev_is_spare(rdev)) 9302 spares++; 9303 if (!rdev_addable(rdev)) 9304 continue; 9305 if (!test_bit(Journal, &rdev->flags)) 9306 rdev->recovery_offset = 0; 9307 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9308 /* failure here is OK */ 9309 sysfs_link_rdev(mddev, rdev); 9310 if (!test_bit(Journal, &rdev->flags)) 9311 spares++; 9312 md_new_event(); 9313 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9314 } 9315 } 9316 no_add: 9317 if (removed) 9318 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9319 return spares; 9320 } 9321 9322 static bool md_choose_sync_action(struct mddev *mddev, int *spares) 9323 { 9324 /* Check if reshape is in progress first. */ 9325 if (mddev->reshape_position != MaxSector) { 9326 if (mddev->pers->check_reshape == NULL || 9327 mddev->pers->check_reshape(mddev) != 0) 9328 return false; 9329 9330 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9331 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9332 return true; 9333 } 9334 9335 /* 9336 * Remove any failed drives, then add spares if possible. Spares are 9337 * also removed and re-added, to allow the personality to fail the 9338 * re-add. 9339 */ 9340 *spares = remove_and_add_spares(mddev, NULL); 9341 if (*spares) { 9342 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9343 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9344 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9345 9346 /* Start new recovery. */ 9347 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9348 return true; 9349 } 9350 9351 /* Check if recovery is in progress. */ 9352 if (mddev->recovery_cp < MaxSector) { 9353 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9354 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9355 return true; 9356 } 9357 9358 /* Delay to choose resync/check/repair in md_do_sync(). */ 9359 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9360 return true; 9361 9362 /* Nothing to be done */ 9363 return false; 9364 } 9365 9366 static void md_start_sync(struct work_struct *ws) 9367 { 9368 struct mddev *mddev = container_of(ws, struct mddev, sync_work); 9369 int spares = 0; 9370 bool suspend = false; 9371 9372 if (md_spares_need_change(mddev)) 9373 suspend = true; 9374 9375 suspend ? mddev_suspend_and_lock_nointr(mddev) : 9376 mddev_lock_nointr(mddev); 9377 9378 if (!md_is_rdwr(mddev)) { 9379 /* 9380 * On a read-only array we can: 9381 * - remove failed devices 9382 * - add already-in_sync devices if the array itself is in-sync. 9383 * As we only add devices that are already in-sync, we can 9384 * activate the spares immediately. 9385 */ 9386 remove_and_add_spares(mddev, NULL); 9387 goto not_running; 9388 } 9389 9390 if (!md_choose_sync_action(mddev, &spares)) 9391 goto not_running; 9392 9393 if (!mddev->pers->sync_request) 9394 goto not_running; 9395 9396 /* 9397 * We are adding a device or devices to an array which has the bitmap 9398 * stored on all devices. So make sure all bitmap pages get written. 9399 */ 9400 if (spares) 9401 md_bitmap_write_all(mddev->bitmap); 9402 9403 rcu_assign_pointer(mddev->sync_thread, 9404 md_register_thread(md_do_sync, mddev, "resync")); 9405 if (!mddev->sync_thread) { 9406 pr_warn("%s: could not start resync thread...\n", 9407 mdname(mddev)); 9408 /* leave the spares where they are, it shouldn't hurt */ 9409 goto not_running; 9410 } 9411 9412 mddev_unlock(mddev); 9413 /* 9414 * md_start_sync was triggered by MD_RECOVERY_NEEDED, so we should 9415 * not set it again. Otherwise, we may cause issue like this one: 9416 * https://bugzilla.kernel.org/show_bug.cgi?id=218200 9417 * Therefore, use __mddev_resume(mddev, false). 9418 */ 9419 if (suspend) 9420 __mddev_resume(mddev, false); 9421 md_wakeup_thread(mddev->sync_thread); 9422 sysfs_notify_dirent_safe(mddev->sysfs_action); 9423 md_new_event(); 9424 return; 9425 9426 not_running: 9427 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9428 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9429 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9430 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9431 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9432 mddev_unlock(mddev); 9433 /* 9434 * md_start_sync was triggered by MD_RECOVERY_NEEDED, so we should 9435 * not set it again. Otherwise, we may cause issue like this one: 9436 * https://bugzilla.kernel.org/show_bug.cgi?id=218200 9437 * Therefore, use __mddev_resume(mddev, false). 9438 */ 9439 if (suspend) 9440 __mddev_resume(mddev, false); 9441 9442 wake_up(&resync_wait); 9443 if (test_and_clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 9444 mddev->sysfs_action) 9445 sysfs_notify_dirent_safe(mddev->sysfs_action); 9446 } 9447 9448 /* 9449 * This routine is regularly called by all per-raid-array threads to 9450 * deal with generic issues like resync and super-block update. 9451 * Raid personalities that don't have a thread (linear/raid0) do not 9452 * need this as they never do any recovery or update the superblock. 9453 * 9454 * It does not do any resync itself, but rather "forks" off other threads 9455 * to do that as needed. 9456 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9457 * "->recovery" and create a thread at ->sync_thread. 9458 * When the thread finishes it sets MD_RECOVERY_DONE 9459 * and wakeups up this thread which will reap the thread and finish up. 9460 * This thread also removes any faulty devices (with nr_pending == 0). 9461 * 9462 * The overall approach is: 9463 * 1/ if the superblock needs updating, update it. 9464 * 2/ If a recovery thread is running, don't do anything else. 9465 * 3/ If recovery has finished, clean up, possibly marking spares active. 9466 * 4/ If there are any faulty devices, remove them. 9467 * 5/ If array is degraded, try to add spares devices 9468 * 6/ If array has spares or is not in-sync, start a resync thread. 9469 */ 9470 void md_check_recovery(struct mddev *mddev) 9471 { 9472 if (READ_ONCE(mddev->suspended)) 9473 return; 9474 9475 if (mddev->bitmap) 9476 md_bitmap_daemon_work(mddev); 9477 9478 if (signal_pending(current)) { 9479 if (mddev->pers->sync_request && !mddev->external) { 9480 pr_debug("md: %s in immediate safe mode\n", 9481 mdname(mddev)); 9482 mddev->safemode = 2; 9483 } 9484 flush_signals(current); 9485 } 9486 9487 if (!md_is_rdwr(mddev) && 9488 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9489 return; 9490 if ( ! ( 9491 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9492 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9493 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9494 (mddev->external == 0 && mddev->safemode == 1) || 9495 (mddev->safemode == 2 9496 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9497 )) 9498 return; 9499 9500 if (mddev_trylock(mddev)) { 9501 bool try_set_sync = mddev->safemode != 0; 9502 9503 if (!mddev->external && mddev->safemode == 1) 9504 mddev->safemode = 0; 9505 9506 if (!md_is_rdwr(mddev)) { 9507 struct md_rdev *rdev; 9508 9509 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 9510 /* sync_work already queued. */ 9511 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9512 goto unlock; 9513 } 9514 9515 if (!mddev->external && mddev->in_sync) 9516 /* 9517 * 'Blocked' flag not needed as failed devices 9518 * will be recorded if array switched to read/write. 9519 * Leaving it set will prevent the device 9520 * from being removed. 9521 */ 9522 rdev_for_each(rdev, mddev) 9523 clear_bit(Blocked, &rdev->flags); 9524 9525 /* 9526 * There is no thread, but we need to call 9527 * ->spare_active and clear saved_raid_disk 9528 */ 9529 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9530 md_reap_sync_thread(mddev); 9531 9532 /* 9533 * Let md_start_sync() to remove and add rdevs to the 9534 * array. 9535 */ 9536 if (md_spares_need_change(mddev)) { 9537 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9538 queue_work(md_misc_wq, &mddev->sync_work); 9539 } 9540 9541 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9542 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9543 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9544 9545 goto unlock; 9546 } 9547 9548 if (mddev_is_clustered(mddev)) { 9549 struct md_rdev *rdev, *tmp; 9550 /* kick the device if another node issued a 9551 * remove disk. 9552 */ 9553 rdev_for_each_safe(rdev, tmp, mddev) { 9554 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9555 rdev->raid_disk < 0) 9556 md_kick_rdev_from_array(rdev); 9557 } 9558 } 9559 9560 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9561 spin_lock(&mddev->lock); 9562 set_in_sync(mddev); 9563 spin_unlock(&mddev->lock); 9564 } 9565 9566 if (mddev->sb_flags) 9567 md_update_sb(mddev, 0); 9568 9569 /* 9570 * Never start a new sync thread if MD_RECOVERY_RUNNING is 9571 * still set. 9572 */ 9573 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 9574 if (!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9575 /* resync/recovery still happening */ 9576 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9577 goto unlock; 9578 } 9579 9580 if (WARN_ON_ONCE(!mddev->sync_thread)) 9581 goto unlock; 9582 9583 md_reap_sync_thread(mddev); 9584 goto unlock; 9585 } 9586 9587 /* Set RUNNING before clearing NEEDED to avoid 9588 * any transients in the value of "sync_action". 9589 */ 9590 mddev->curr_resync_completed = 0; 9591 spin_lock(&mddev->lock); 9592 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9593 spin_unlock(&mddev->lock); 9594 /* Clear some bits that don't mean anything, but 9595 * might be left set 9596 */ 9597 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9598 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9599 9600 if (test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) && 9601 !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 9602 queue_work(md_misc_wq, &mddev->sync_work); 9603 } else { 9604 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9605 wake_up(&resync_wait); 9606 } 9607 9608 unlock: 9609 wake_up(&mddev->sb_wait); 9610 mddev_unlock(mddev); 9611 } 9612 } 9613 EXPORT_SYMBOL(md_check_recovery); 9614 9615 void md_reap_sync_thread(struct mddev *mddev) 9616 { 9617 struct md_rdev *rdev; 9618 sector_t old_dev_sectors = mddev->dev_sectors; 9619 bool is_reshaped = false; 9620 9621 /* resync has finished, collect result */ 9622 md_unregister_thread(mddev, &mddev->sync_thread); 9623 atomic_inc(&mddev->sync_seq); 9624 9625 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9626 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9627 mddev->degraded != mddev->raid_disks) { 9628 /* success...*/ 9629 /* activate any spares */ 9630 if (mddev->pers->spare_active(mddev)) { 9631 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9632 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9633 } 9634 } 9635 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9636 mddev->pers->finish_reshape) { 9637 mddev->pers->finish_reshape(mddev); 9638 if (mddev_is_clustered(mddev)) 9639 is_reshaped = true; 9640 } 9641 9642 /* If array is no-longer degraded, then any saved_raid_disk 9643 * information must be scrapped. 9644 */ 9645 if (!mddev->degraded) 9646 rdev_for_each(rdev, mddev) 9647 rdev->saved_raid_disk = -1; 9648 9649 md_update_sb(mddev, 1); 9650 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9651 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9652 * clustered raid */ 9653 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9654 md_cluster_ops->resync_finish(mddev); 9655 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9656 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9657 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9658 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9659 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9660 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9661 /* 9662 * We call md_cluster_ops->update_size here because sync_size could 9663 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9664 * so it is time to update size across cluster. 9665 */ 9666 if (mddev_is_clustered(mddev) && is_reshaped 9667 && !test_bit(MD_CLOSING, &mddev->flags)) 9668 md_cluster_ops->update_size(mddev, old_dev_sectors); 9669 /* flag recovery needed just to double check */ 9670 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9671 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9672 sysfs_notify_dirent_safe(mddev->sysfs_action); 9673 md_new_event(); 9674 if (mddev->event_work.func) 9675 queue_work(md_misc_wq, &mddev->event_work); 9676 wake_up(&resync_wait); 9677 } 9678 EXPORT_SYMBOL(md_reap_sync_thread); 9679 9680 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9681 { 9682 sysfs_notify_dirent_safe(rdev->sysfs_state); 9683 wait_event_timeout(rdev->blocked_wait, 9684 !test_bit(Blocked, &rdev->flags) && 9685 !test_bit(BlockedBadBlocks, &rdev->flags), 9686 msecs_to_jiffies(5000)); 9687 rdev_dec_pending(rdev, mddev); 9688 } 9689 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9690 9691 void md_finish_reshape(struct mddev *mddev) 9692 { 9693 /* called be personality module when reshape completes. */ 9694 struct md_rdev *rdev; 9695 9696 rdev_for_each(rdev, mddev) { 9697 if (rdev->data_offset > rdev->new_data_offset) 9698 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9699 else 9700 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9701 rdev->data_offset = rdev->new_data_offset; 9702 } 9703 } 9704 EXPORT_SYMBOL(md_finish_reshape); 9705 9706 /* Bad block management */ 9707 9708 /* Returns 1 on success, 0 on failure */ 9709 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9710 int is_new) 9711 { 9712 struct mddev *mddev = rdev->mddev; 9713 int rv; 9714 if (is_new) 9715 s += rdev->new_data_offset; 9716 else 9717 s += rdev->data_offset; 9718 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9719 if (rv == 0) { 9720 /* Make sure they get written out promptly */ 9721 if (test_bit(ExternalBbl, &rdev->flags)) 9722 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9723 sysfs_notify_dirent_safe(rdev->sysfs_state); 9724 set_mask_bits(&mddev->sb_flags, 0, 9725 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9726 md_wakeup_thread(rdev->mddev->thread); 9727 return 1; 9728 } else 9729 return 0; 9730 } 9731 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9732 9733 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9734 int is_new) 9735 { 9736 int rv; 9737 if (is_new) 9738 s += rdev->new_data_offset; 9739 else 9740 s += rdev->data_offset; 9741 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9742 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9743 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9744 return rv; 9745 } 9746 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9747 9748 static int md_notify_reboot(struct notifier_block *this, 9749 unsigned long code, void *x) 9750 { 9751 struct mddev *mddev, *n; 9752 int need_delay = 0; 9753 9754 spin_lock(&all_mddevs_lock); 9755 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9756 if (!mddev_get(mddev)) 9757 continue; 9758 spin_unlock(&all_mddevs_lock); 9759 if (mddev_trylock(mddev)) { 9760 if (mddev->pers) 9761 __md_stop_writes(mddev); 9762 if (mddev->persistent) 9763 mddev->safemode = 2; 9764 mddev_unlock(mddev); 9765 } 9766 need_delay = 1; 9767 mddev_put(mddev); 9768 spin_lock(&all_mddevs_lock); 9769 } 9770 spin_unlock(&all_mddevs_lock); 9771 9772 /* 9773 * certain more exotic SCSI devices are known to be 9774 * volatile wrt too early system reboots. While the 9775 * right place to handle this issue is the given 9776 * driver, we do want to have a safe RAID driver ... 9777 */ 9778 if (need_delay) 9779 msleep(1000); 9780 9781 return NOTIFY_DONE; 9782 } 9783 9784 static struct notifier_block md_notifier = { 9785 .notifier_call = md_notify_reboot, 9786 .next = NULL, 9787 .priority = INT_MAX, /* before any real devices */ 9788 }; 9789 9790 static void md_geninit(void) 9791 { 9792 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9793 9794 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9795 } 9796 9797 static int __init md_init(void) 9798 { 9799 int ret = -ENOMEM; 9800 9801 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9802 if (!md_wq) 9803 goto err_wq; 9804 9805 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9806 if (!md_misc_wq) 9807 goto err_misc_wq; 9808 9809 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND, 9810 0); 9811 if (!md_bitmap_wq) 9812 goto err_bitmap_wq; 9813 9814 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9815 if (ret < 0) 9816 goto err_md; 9817 9818 ret = __register_blkdev(0, "mdp", md_probe); 9819 if (ret < 0) 9820 goto err_mdp; 9821 mdp_major = ret; 9822 9823 register_reboot_notifier(&md_notifier); 9824 raid_table_header = register_sysctl("dev/raid", raid_table); 9825 9826 md_geninit(); 9827 return 0; 9828 9829 err_mdp: 9830 unregister_blkdev(MD_MAJOR, "md"); 9831 err_md: 9832 destroy_workqueue(md_bitmap_wq); 9833 err_bitmap_wq: 9834 destroy_workqueue(md_misc_wq); 9835 err_misc_wq: 9836 destroy_workqueue(md_wq); 9837 err_wq: 9838 return ret; 9839 } 9840 9841 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9842 { 9843 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9844 struct md_rdev *rdev2, *tmp; 9845 int role, ret; 9846 9847 /* 9848 * If size is changed in another node then we need to 9849 * do resize as well. 9850 */ 9851 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9852 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9853 if (ret) 9854 pr_info("md-cluster: resize failed\n"); 9855 else 9856 md_bitmap_update_sb(mddev->bitmap); 9857 } 9858 9859 /* Check for change of roles in the active devices */ 9860 rdev_for_each_safe(rdev2, tmp, mddev) { 9861 if (test_bit(Faulty, &rdev2->flags)) 9862 continue; 9863 9864 /* Check if the roles changed */ 9865 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9866 9867 if (test_bit(Candidate, &rdev2->flags)) { 9868 if (role == MD_DISK_ROLE_FAULTY) { 9869 pr_info("md: Removing Candidate device %pg because add failed\n", 9870 rdev2->bdev); 9871 md_kick_rdev_from_array(rdev2); 9872 continue; 9873 } 9874 else 9875 clear_bit(Candidate, &rdev2->flags); 9876 } 9877 9878 if (role != rdev2->raid_disk) { 9879 /* 9880 * got activated except reshape is happening. 9881 */ 9882 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9883 !(le32_to_cpu(sb->feature_map) & 9884 MD_FEATURE_RESHAPE_ACTIVE)) { 9885 rdev2->saved_raid_disk = role; 9886 ret = remove_and_add_spares(mddev, rdev2); 9887 pr_info("Activated spare: %pg\n", 9888 rdev2->bdev); 9889 /* wakeup mddev->thread here, so array could 9890 * perform resync with the new activated disk */ 9891 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9892 md_wakeup_thread(mddev->thread); 9893 } 9894 /* device faulty 9895 * We just want to do the minimum to mark the disk 9896 * as faulty. The recovery is performed by the 9897 * one who initiated the error. 9898 */ 9899 if (role == MD_DISK_ROLE_FAULTY || 9900 role == MD_DISK_ROLE_JOURNAL) { 9901 md_error(mddev, rdev2); 9902 clear_bit(Blocked, &rdev2->flags); 9903 } 9904 } 9905 } 9906 9907 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9908 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9909 if (ret) 9910 pr_warn("md: updating array disks failed. %d\n", ret); 9911 } 9912 9913 /* 9914 * Since mddev->delta_disks has already updated in update_raid_disks, 9915 * so it is time to check reshape. 9916 */ 9917 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9918 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9919 /* 9920 * reshape is happening in the remote node, we need to 9921 * update reshape_position and call start_reshape. 9922 */ 9923 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9924 if (mddev->pers->update_reshape_pos) 9925 mddev->pers->update_reshape_pos(mddev); 9926 if (mddev->pers->start_reshape) 9927 mddev->pers->start_reshape(mddev); 9928 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9929 mddev->reshape_position != MaxSector && 9930 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9931 /* reshape is just done in another node. */ 9932 mddev->reshape_position = MaxSector; 9933 if (mddev->pers->update_reshape_pos) 9934 mddev->pers->update_reshape_pos(mddev); 9935 } 9936 9937 /* Finally set the event to be up to date */ 9938 mddev->events = le64_to_cpu(sb->events); 9939 } 9940 9941 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9942 { 9943 int err; 9944 struct page *swapout = rdev->sb_page; 9945 struct mdp_superblock_1 *sb; 9946 9947 /* Store the sb page of the rdev in the swapout temporary 9948 * variable in case we err in the future 9949 */ 9950 rdev->sb_page = NULL; 9951 err = alloc_disk_sb(rdev); 9952 if (err == 0) { 9953 ClearPageUptodate(rdev->sb_page); 9954 rdev->sb_loaded = 0; 9955 err = super_types[mddev->major_version]. 9956 load_super(rdev, NULL, mddev->minor_version); 9957 } 9958 if (err < 0) { 9959 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9960 __func__, __LINE__, rdev->desc_nr, err); 9961 if (rdev->sb_page) 9962 put_page(rdev->sb_page); 9963 rdev->sb_page = swapout; 9964 rdev->sb_loaded = 1; 9965 return err; 9966 } 9967 9968 sb = page_address(rdev->sb_page); 9969 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9970 * is not set 9971 */ 9972 9973 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9974 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9975 9976 /* The other node finished recovery, call spare_active to set 9977 * device In_sync and mddev->degraded 9978 */ 9979 if (rdev->recovery_offset == MaxSector && 9980 !test_bit(In_sync, &rdev->flags) && 9981 mddev->pers->spare_active(mddev)) 9982 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9983 9984 put_page(swapout); 9985 return 0; 9986 } 9987 9988 void md_reload_sb(struct mddev *mddev, int nr) 9989 { 9990 struct md_rdev *rdev = NULL, *iter; 9991 int err; 9992 9993 /* Find the rdev */ 9994 rdev_for_each_rcu(iter, mddev) { 9995 if (iter->desc_nr == nr) { 9996 rdev = iter; 9997 break; 9998 } 9999 } 10000 10001 if (!rdev) { 10002 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 10003 return; 10004 } 10005 10006 err = read_rdev(mddev, rdev); 10007 if (err < 0) 10008 return; 10009 10010 check_sb_changes(mddev, rdev); 10011 10012 /* Read all rdev's to update recovery_offset */ 10013 rdev_for_each_rcu(rdev, mddev) { 10014 if (!test_bit(Faulty, &rdev->flags)) 10015 read_rdev(mddev, rdev); 10016 } 10017 } 10018 EXPORT_SYMBOL(md_reload_sb); 10019 10020 #ifndef MODULE 10021 10022 /* 10023 * Searches all registered partitions for autorun RAID arrays 10024 * at boot time. 10025 */ 10026 10027 static DEFINE_MUTEX(detected_devices_mutex); 10028 static LIST_HEAD(all_detected_devices); 10029 struct detected_devices_node { 10030 struct list_head list; 10031 dev_t dev; 10032 }; 10033 10034 void md_autodetect_dev(dev_t dev) 10035 { 10036 struct detected_devices_node *node_detected_dev; 10037 10038 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 10039 if (node_detected_dev) { 10040 node_detected_dev->dev = dev; 10041 mutex_lock(&detected_devices_mutex); 10042 list_add_tail(&node_detected_dev->list, &all_detected_devices); 10043 mutex_unlock(&detected_devices_mutex); 10044 } 10045 } 10046 10047 void md_autostart_arrays(int part) 10048 { 10049 struct md_rdev *rdev; 10050 struct detected_devices_node *node_detected_dev; 10051 dev_t dev; 10052 int i_scanned, i_passed; 10053 10054 i_scanned = 0; 10055 i_passed = 0; 10056 10057 pr_info("md: Autodetecting RAID arrays.\n"); 10058 10059 mutex_lock(&detected_devices_mutex); 10060 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 10061 i_scanned++; 10062 node_detected_dev = list_entry(all_detected_devices.next, 10063 struct detected_devices_node, list); 10064 list_del(&node_detected_dev->list); 10065 dev = node_detected_dev->dev; 10066 kfree(node_detected_dev); 10067 mutex_unlock(&detected_devices_mutex); 10068 rdev = md_import_device(dev,0, 90); 10069 mutex_lock(&detected_devices_mutex); 10070 if (IS_ERR(rdev)) 10071 continue; 10072 10073 if (test_bit(Faulty, &rdev->flags)) 10074 continue; 10075 10076 set_bit(AutoDetected, &rdev->flags); 10077 list_add(&rdev->same_set, &pending_raid_disks); 10078 i_passed++; 10079 } 10080 mutex_unlock(&detected_devices_mutex); 10081 10082 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 10083 10084 autorun_devices(part); 10085 } 10086 10087 #endif /* !MODULE */ 10088 10089 static __exit void md_exit(void) 10090 { 10091 struct mddev *mddev, *n; 10092 int delay = 1; 10093 10094 unregister_blkdev(MD_MAJOR,"md"); 10095 unregister_blkdev(mdp_major, "mdp"); 10096 unregister_reboot_notifier(&md_notifier); 10097 unregister_sysctl_table(raid_table_header); 10098 10099 /* We cannot unload the modules while some process is 10100 * waiting for us in select() or poll() - wake them up 10101 */ 10102 md_unloading = 1; 10103 while (waitqueue_active(&md_event_waiters)) { 10104 /* not safe to leave yet */ 10105 wake_up(&md_event_waiters); 10106 msleep(delay); 10107 delay += delay; 10108 } 10109 remove_proc_entry("mdstat", NULL); 10110 10111 spin_lock(&all_mddevs_lock); 10112 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 10113 if (!mddev_get(mddev)) 10114 continue; 10115 spin_unlock(&all_mddevs_lock); 10116 export_array(mddev); 10117 mddev->ctime = 0; 10118 mddev->hold_active = 0; 10119 /* 10120 * As the mddev is now fully clear, mddev_put will schedule 10121 * the mddev for destruction by a workqueue, and the 10122 * destroy_workqueue() below will wait for that to complete. 10123 */ 10124 mddev_put(mddev); 10125 spin_lock(&all_mddevs_lock); 10126 } 10127 spin_unlock(&all_mddevs_lock); 10128 10129 destroy_workqueue(md_misc_wq); 10130 destroy_workqueue(md_bitmap_wq); 10131 destroy_workqueue(md_wq); 10132 } 10133 10134 subsys_initcall(md_init); 10135 module_exit(md_exit) 10136 10137 static int get_ro(char *buffer, const struct kernel_param *kp) 10138 { 10139 return sprintf(buffer, "%d\n", start_readonly); 10140 } 10141 static int set_ro(const char *val, const struct kernel_param *kp) 10142 { 10143 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 10144 } 10145 10146 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 10147 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 10148 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 10149 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 10150 10151 MODULE_LICENSE("GPL"); 10152 MODULE_DESCRIPTION("MD RAID framework"); 10153 MODULE_ALIAS("md"); 10154 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 10155