xref: /linux/drivers/md/md.c (revision 5f4123be3cdb1dbd77fa9d6d2bb96bb9689a0a19)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
47 #include <linux/init.h>
48 #include <linux/file.h>
49 #include <linux/kmod.h>
50 
51 #include <asm/unaligned.h>
52 
53 #define MAJOR_NR MD_MAJOR
54 #define MD_DRIVER
55 
56 /* 63 partitions with the alternate major number (mdp) */
57 #define MdpMinorShift 6
58 
59 #define DEBUG 0
60 #define dprintk(x...) ((void)(DEBUG && printk(x)))
61 
62 
63 #ifndef MODULE
64 static void autostart_arrays (int part);
65 #endif
66 
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69 
70 static void md_print_devices(void);
71 
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 
74 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
75 
76 /*
77  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
78  * is 1000 KB/sec, so the extra system load does not show up that much.
79  * Increase it if you want to have more _guaranteed_ speed. Note that
80  * the RAID driver will use the maximum available bandwidth if the IO
81  * subsystem is idle. There is also an 'absolute maximum' reconstruction
82  * speed limit - in case reconstruction slows down your system despite
83  * idle IO detection.
84  *
85  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
86  * or /sys/block/mdX/md/sync_speed_{min,max}
87  */
88 
89 static int sysctl_speed_limit_min = 1000;
90 static int sysctl_speed_limit_max = 200000;
91 static inline int speed_min(mddev_t *mddev)
92 {
93 	return mddev->sync_speed_min ?
94 		mddev->sync_speed_min : sysctl_speed_limit_min;
95 }
96 
97 static inline int speed_max(mddev_t *mddev)
98 {
99 	return mddev->sync_speed_max ?
100 		mddev->sync_speed_max : sysctl_speed_limit_max;
101 }
102 
103 static struct ctl_table_header *raid_table_header;
104 
105 static ctl_table raid_table[] = {
106 	{
107 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
108 		.procname	= "speed_limit_min",
109 		.data		= &sysctl_speed_limit_min,
110 		.maxlen		= sizeof(int),
111 		.mode		= S_IRUGO|S_IWUSR,
112 		.proc_handler	= &proc_dointvec,
113 	},
114 	{
115 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
116 		.procname	= "speed_limit_max",
117 		.data		= &sysctl_speed_limit_max,
118 		.maxlen		= sizeof(int),
119 		.mode		= S_IRUGO|S_IWUSR,
120 		.proc_handler	= &proc_dointvec,
121 	},
122 	{ .ctl_name = 0 }
123 };
124 
125 static ctl_table raid_dir_table[] = {
126 	{
127 		.ctl_name	= DEV_RAID,
128 		.procname	= "raid",
129 		.maxlen		= 0,
130 		.mode		= S_IRUGO|S_IXUGO,
131 		.child		= raid_table,
132 	},
133 	{ .ctl_name = 0 }
134 };
135 
136 static ctl_table raid_root_table[] = {
137 	{
138 		.ctl_name	= CTL_DEV,
139 		.procname	= "dev",
140 		.maxlen		= 0,
141 		.mode		= 0555,
142 		.child		= raid_dir_table,
143 	},
144 	{ .ctl_name = 0 }
145 };
146 
147 static struct block_device_operations md_fops;
148 
149 static int start_readonly;
150 
151 /*
152  * We have a system wide 'event count' that is incremented
153  * on any 'interesting' event, and readers of /proc/mdstat
154  * can use 'poll' or 'select' to find out when the event
155  * count increases.
156  *
157  * Events are:
158  *  start array, stop array, error, add device, remove device,
159  *  start build, activate spare
160  */
161 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
162 static atomic_t md_event_count;
163 void md_new_event(mddev_t *mddev)
164 {
165 	atomic_inc(&md_event_count);
166 	wake_up(&md_event_waiters);
167 }
168 EXPORT_SYMBOL_GPL(md_new_event);
169 
170 /* Alternate version that can be called from interrupts
171  * when calling sysfs_notify isn't needed.
172  */
173 static void md_new_event_inintr(mddev_t *mddev)
174 {
175 	atomic_inc(&md_event_count);
176 	wake_up(&md_event_waiters);
177 }
178 
179 /*
180  * Enables to iterate over all existing md arrays
181  * all_mddevs_lock protects this list.
182  */
183 static LIST_HEAD(all_mddevs);
184 static DEFINE_SPINLOCK(all_mddevs_lock);
185 
186 
187 /*
188  * iterates through all used mddevs in the system.
189  * We take care to grab the all_mddevs_lock whenever navigating
190  * the list, and to always hold a refcount when unlocked.
191  * Any code which breaks out of this loop while own
192  * a reference to the current mddev and must mddev_put it.
193  */
194 #define for_each_mddev(mddev,tmp)					\
195 									\
196 	for (({ spin_lock(&all_mddevs_lock); 				\
197 		tmp = all_mddevs.next;					\
198 		mddev = NULL;});					\
199 	     ({ if (tmp != &all_mddevs)					\
200 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
201 		spin_unlock(&all_mddevs_lock);				\
202 		if (mddev) mddev_put(mddev);				\
203 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
204 		tmp != &all_mddevs;});					\
205 	     ({ spin_lock(&all_mddevs_lock);				\
206 		tmp = tmp->next;})					\
207 		)
208 
209 
210 static int md_fail_request (struct request_queue *q, struct bio *bio)
211 {
212 	bio_io_error(bio);
213 	return 0;
214 }
215 
216 static inline mddev_t *mddev_get(mddev_t *mddev)
217 {
218 	atomic_inc(&mddev->active);
219 	return mddev;
220 }
221 
222 static void mddev_put(mddev_t *mddev)
223 {
224 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
225 		return;
226 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
227 		list_del(&mddev->all_mddevs);
228 		spin_unlock(&all_mddevs_lock);
229 		blk_cleanup_queue(mddev->queue);
230 		kobject_put(&mddev->kobj);
231 	} else
232 		spin_unlock(&all_mddevs_lock);
233 }
234 
235 static mddev_t * mddev_find(dev_t unit)
236 {
237 	mddev_t *mddev, *new = NULL;
238 
239  retry:
240 	spin_lock(&all_mddevs_lock);
241 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
242 		if (mddev->unit == unit) {
243 			mddev_get(mddev);
244 			spin_unlock(&all_mddevs_lock);
245 			kfree(new);
246 			return mddev;
247 		}
248 
249 	if (new) {
250 		list_add(&new->all_mddevs, &all_mddevs);
251 		spin_unlock(&all_mddevs_lock);
252 		return new;
253 	}
254 	spin_unlock(&all_mddevs_lock);
255 
256 	new = kzalloc(sizeof(*new), GFP_KERNEL);
257 	if (!new)
258 		return NULL;
259 
260 	new->unit = unit;
261 	if (MAJOR(unit) == MD_MAJOR)
262 		new->md_minor = MINOR(unit);
263 	else
264 		new->md_minor = MINOR(unit) >> MdpMinorShift;
265 
266 	mutex_init(&new->reconfig_mutex);
267 	INIT_LIST_HEAD(&new->disks);
268 	INIT_LIST_HEAD(&new->all_mddevs);
269 	init_timer(&new->safemode_timer);
270 	atomic_set(&new->active, 1);
271 	atomic_set(&new->openers, 0);
272 	spin_lock_init(&new->write_lock);
273 	init_waitqueue_head(&new->sb_wait);
274 	init_waitqueue_head(&new->recovery_wait);
275 	new->reshape_position = MaxSector;
276 	new->resync_min = 0;
277 	new->resync_max = MaxSector;
278 	new->level = LEVEL_NONE;
279 
280 	new->queue = blk_alloc_queue(GFP_KERNEL);
281 	if (!new->queue) {
282 		kfree(new);
283 		return NULL;
284 	}
285 	/* Can be unlocked because the queue is new: no concurrency */
286 	queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, new->queue);
287 
288 	blk_queue_make_request(new->queue, md_fail_request);
289 
290 	goto retry;
291 }
292 
293 static inline int mddev_lock(mddev_t * mddev)
294 {
295 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
296 }
297 
298 static inline int mddev_trylock(mddev_t * mddev)
299 {
300 	return mutex_trylock(&mddev->reconfig_mutex);
301 }
302 
303 static inline void mddev_unlock(mddev_t * mddev)
304 {
305 	mutex_unlock(&mddev->reconfig_mutex);
306 
307 	md_wakeup_thread(mddev->thread);
308 }
309 
310 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
311 {
312 	mdk_rdev_t * rdev;
313 	struct list_head *tmp;
314 
315 	rdev_for_each(rdev, tmp, mddev) {
316 		if (rdev->desc_nr == nr)
317 			return rdev;
318 	}
319 	return NULL;
320 }
321 
322 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
323 {
324 	struct list_head *tmp;
325 	mdk_rdev_t *rdev;
326 
327 	rdev_for_each(rdev, tmp, mddev) {
328 		if (rdev->bdev->bd_dev == dev)
329 			return rdev;
330 	}
331 	return NULL;
332 }
333 
334 static struct mdk_personality *find_pers(int level, char *clevel)
335 {
336 	struct mdk_personality *pers;
337 	list_for_each_entry(pers, &pers_list, list) {
338 		if (level != LEVEL_NONE && pers->level == level)
339 			return pers;
340 		if (strcmp(pers->name, clevel)==0)
341 			return pers;
342 	}
343 	return NULL;
344 }
345 
346 /* return the offset of the super block in 512byte sectors */
347 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
348 {
349 	sector_t num_sectors = bdev->bd_inode->i_size / 512;
350 	return MD_NEW_SIZE_SECTORS(num_sectors);
351 }
352 
353 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
354 {
355 	sector_t num_sectors = rdev->sb_start;
356 
357 	if (chunk_size)
358 		num_sectors &= ~((sector_t)chunk_size/512 - 1);
359 	return num_sectors;
360 }
361 
362 static int alloc_disk_sb(mdk_rdev_t * rdev)
363 {
364 	if (rdev->sb_page)
365 		MD_BUG();
366 
367 	rdev->sb_page = alloc_page(GFP_KERNEL);
368 	if (!rdev->sb_page) {
369 		printk(KERN_ALERT "md: out of memory.\n");
370 		return -ENOMEM;
371 	}
372 
373 	return 0;
374 }
375 
376 static void free_disk_sb(mdk_rdev_t * rdev)
377 {
378 	if (rdev->sb_page) {
379 		put_page(rdev->sb_page);
380 		rdev->sb_loaded = 0;
381 		rdev->sb_page = NULL;
382 		rdev->sb_start = 0;
383 		rdev->size = 0;
384 	}
385 }
386 
387 
388 static void super_written(struct bio *bio, int error)
389 {
390 	mdk_rdev_t *rdev = bio->bi_private;
391 	mddev_t *mddev = rdev->mddev;
392 
393 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
394 		printk("md: super_written gets error=%d, uptodate=%d\n",
395 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
396 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
397 		md_error(mddev, rdev);
398 	}
399 
400 	if (atomic_dec_and_test(&mddev->pending_writes))
401 		wake_up(&mddev->sb_wait);
402 	bio_put(bio);
403 }
404 
405 static void super_written_barrier(struct bio *bio, int error)
406 {
407 	struct bio *bio2 = bio->bi_private;
408 	mdk_rdev_t *rdev = bio2->bi_private;
409 	mddev_t *mddev = rdev->mddev;
410 
411 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
412 	    error == -EOPNOTSUPP) {
413 		unsigned long flags;
414 		/* barriers don't appear to be supported :-( */
415 		set_bit(BarriersNotsupp, &rdev->flags);
416 		mddev->barriers_work = 0;
417 		spin_lock_irqsave(&mddev->write_lock, flags);
418 		bio2->bi_next = mddev->biolist;
419 		mddev->biolist = bio2;
420 		spin_unlock_irqrestore(&mddev->write_lock, flags);
421 		wake_up(&mddev->sb_wait);
422 		bio_put(bio);
423 	} else {
424 		bio_put(bio2);
425 		bio->bi_private = rdev;
426 		super_written(bio, error);
427 	}
428 }
429 
430 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
431 		   sector_t sector, int size, struct page *page)
432 {
433 	/* write first size bytes of page to sector of rdev
434 	 * Increment mddev->pending_writes before returning
435 	 * and decrement it on completion, waking up sb_wait
436 	 * if zero is reached.
437 	 * If an error occurred, call md_error
438 	 *
439 	 * As we might need to resubmit the request if BIO_RW_BARRIER
440 	 * causes ENOTSUPP, we allocate a spare bio...
441 	 */
442 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
443 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
444 
445 	bio->bi_bdev = rdev->bdev;
446 	bio->bi_sector = sector;
447 	bio_add_page(bio, page, size, 0);
448 	bio->bi_private = rdev;
449 	bio->bi_end_io = super_written;
450 	bio->bi_rw = rw;
451 
452 	atomic_inc(&mddev->pending_writes);
453 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
454 		struct bio *rbio;
455 		rw |= (1<<BIO_RW_BARRIER);
456 		rbio = bio_clone(bio, GFP_NOIO);
457 		rbio->bi_private = bio;
458 		rbio->bi_end_io = super_written_barrier;
459 		submit_bio(rw, rbio);
460 	} else
461 		submit_bio(rw, bio);
462 }
463 
464 void md_super_wait(mddev_t *mddev)
465 {
466 	/* wait for all superblock writes that were scheduled to complete.
467 	 * if any had to be retried (due to BARRIER problems), retry them
468 	 */
469 	DEFINE_WAIT(wq);
470 	for(;;) {
471 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
472 		if (atomic_read(&mddev->pending_writes)==0)
473 			break;
474 		while (mddev->biolist) {
475 			struct bio *bio;
476 			spin_lock_irq(&mddev->write_lock);
477 			bio = mddev->biolist;
478 			mddev->biolist = bio->bi_next ;
479 			bio->bi_next = NULL;
480 			spin_unlock_irq(&mddev->write_lock);
481 			submit_bio(bio->bi_rw, bio);
482 		}
483 		schedule();
484 	}
485 	finish_wait(&mddev->sb_wait, &wq);
486 }
487 
488 static void bi_complete(struct bio *bio, int error)
489 {
490 	complete((struct completion*)bio->bi_private);
491 }
492 
493 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
494 		   struct page *page, int rw)
495 {
496 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
497 	struct completion event;
498 	int ret;
499 
500 	rw |= (1 << BIO_RW_SYNC);
501 
502 	bio->bi_bdev = bdev;
503 	bio->bi_sector = sector;
504 	bio_add_page(bio, page, size, 0);
505 	init_completion(&event);
506 	bio->bi_private = &event;
507 	bio->bi_end_io = bi_complete;
508 	submit_bio(rw, bio);
509 	wait_for_completion(&event);
510 
511 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
512 	bio_put(bio);
513 	return ret;
514 }
515 EXPORT_SYMBOL_GPL(sync_page_io);
516 
517 static int read_disk_sb(mdk_rdev_t * rdev, int size)
518 {
519 	char b[BDEVNAME_SIZE];
520 	if (!rdev->sb_page) {
521 		MD_BUG();
522 		return -EINVAL;
523 	}
524 	if (rdev->sb_loaded)
525 		return 0;
526 
527 
528 	if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
529 		goto fail;
530 	rdev->sb_loaded = 1;
531 	return 0;
532 
533 fail:
534 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
535 		bdevname(rdev->bdev,b));
536 	return -EINVAL;
537 }
538 
539 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
540 {
541 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
542 		sb1->set_uuid1 == sb2->set_uuid1 &&
543 		sb1->set_uuid2 == sb2->set_uuid2 &&
544 		sb1->set_uuid3 == sb2->set_uuid3;
545 }
546 
547 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
548 {
549 	int ret;
550 	mdp_super_t *tmp1, *tmp2;
551 
552 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
553 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
554 
555 	if (!tmp1 || !tmp2) {
556 		ret = 0;
557 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
558 		goto abort;
559 	}
560 
561 	*tmp1 = *sb1;
562 	*tmp2 = *sb2;
563 
564 	/*
565 	 * nr_disks is not constant
566 	 */
567 	tmp1->nr_disks = 0;
568 	tmp2->nr_disks = 0;
569 
570 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
571 abort:
572 	kfree(tmp1);
573 	kfree(tmp2);
574 	return ret;
575 }
576 
577 
578 static u32 md_csum_fold(u32 csum)
579 {
580 	csum = (csum & 0xffff) + (csum >> 16);
581 	return (csum & 0xffff) + (csum >> 16);
582 }
583 
584 static unsigned int calc_sb_csum(mdp_super_t * sb)
585 {
586 	u64 newcsum = 0;
587 	u32 *sb32 = (u32*)sb;
588 	int i;
589 	unsigned int disk_csum, csum;
590 
591 	disk_csum = sb->sb_csum;
592 	sb->sb_csum = 0;
593 
594 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
595 		newcsum += sb32[i];
596 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
597 
598 
599 #ifdef CONFIG_ALPHA
600 	/* This used to use csum_partial, which was wrong for several
601 	 * reasons including that different results are returned on
602 	 * different architectures.  It isn't critical that we get exactly
603 	 * the same return value as before (we always csum_fold before
604 	 * testing, and that removes any differences).  However as we
605 	 * know that csum_partial always returned a 16bit value on
606 	 * alphas, do a fold to maximise conformity to previous behaviour.
607 	 */
608 	sb->sb_csum = md_csum_fold(disk_csum);
609 #else
610 	sb->sb_csum = disk_csum;
611 #endif
612 	return csum;
613 }
614 
615 
616 /*
617  * Handle superblock details.
618  * We want to be able to handle multiple superblock formats
619  * so we have a common interface to them all, and an array of
620  * different handlers.
621  * We rely on user-space to write the initial superblock, and support
622  * reading and updating of superblocks.
623  * Interface methods are:
624  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
625  *      loads and validates a superblock on dev.
626  *      if refdev != NULL, compare superblocks on both devices
627  *    Return:
628  *      0 - dev has a superblock that is compatible with refdev
629  *      1 - dev has a superblock that is compatible and newer than refdev
630  *          so dev should be used as the refdev in future
631  *     -EINVAL superblock incompatible or invalid
632  *     -othererror e.g. -EIO
633  *
634  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
635  *      Verify that dev is acceptable into mddev.
636  *       The first time, mddev->raid_disks will be 0, and data from
637  *       dev should be merged in.  Subsequent calls check that dev
638  *       is new enough.  Return 0 or -EINVAL
639  *
640  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
641  *     Update the superblock for rdev with data in mddev
642  *     This does not write to disc.
643  *
644  */
645 
646 struct super_type  {
647 	char		    *name;
648 	struct module	    *owner;
649 	int		    (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
650 					  int minor_version);
651 	int		    (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
652 	void		    (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
653 	unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
654 						sector_t num_sectors);
655 };
656 
657 /*
658  * load_super for 0.90.0
659  */
660 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
661 {
662 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
663 	mdp_super_t *sb;
664 	int ret;
665 
666 	/*
667 	 * Calculate the position of the superblock (512byte sectors),
668 	 * it's at the end of the disk.
669 	 *
670 	 * It also happens to be a multiple of 4Kb.
671 	 */
672 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
673 
674 	ret = read_disk_sb(rdev, MD_SB_BYTES);
675 	if (ret) return ret;
676 
677 	ret = -EINVAL;
678 
679 	bdevname(rdev->bdev, b);
680 	sb = (mdp_super_t*)page_address(rdev->sb_page);
681 
682 	if (sb->md_magic != MD_SB_MAGIC) {
683 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
684 		       b);
685 		goto abort;
686 	}
687 
688 	if (sb->major_version != 0 ||
689 	    sb->minor_version < 90 ||
690 	    sb->minor_version > 91) {
691 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
692 			sb->major_version, sb->minor_version,
693 			b);
694 		goto abort;
695 	}
696 
697 	if (sb->raid_disks <= 0)
698 		goto abort;
699 
700 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
701 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
702 			b);
703 		goto abort;
704 	}
705 
706 	rdev->preferred_minor = sb->md_minor;
707 	rdev->data_offset = 0;
708 	rdev->sb_size = MD_SB_BYTES;
709 
710 	if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
711 		if (sb->level != 1 && sb->level != 4
712 		    && sb->level != 5 && sb->level != 6
713 		    && sb->level != 10) {
714 			/* FIXME use a better test */
715 			printk(KERN_WARNING
716 			       "md: bitmaps not supported for this level.\n");
717 			goto abort;
718 		}
719 	}
720 
721 	if (sb->level == LEVEL_MULTIPATH)
722 		rdev->desc_nr = -1;
723 	else
724 		rdev->desc_nr = sb->this_disk.number;
725 
726 	if (!refdev) {
727 		ret = 1;
728 	} else {
729 		__u64 ev1, ev2;
730 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
731 		if (!uuid_equal(refsb, sb)) {
732 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
733 				b, bdevname(refdev->bdev,b2));
734 			goto abort;
735 		}
736 		if (!sb_equal(refsb, sb)) {
737 			printk(KERN_WARNING "md: %s has same UUID"
738 			       " but different superblock to %s\n",
739 			       b, bdevname(refdev->bdev, b2));
740 			goto abort;
741 		}
742 		ev1 = md_event(sb);
743 		ev2 = md_event(refsb);
744 		if (ev1 > ev2)
745 			ret = 1;
746 		else
747 			ret = 0;
748 	}
749 	rdev->size = calc_num_sectors(rdev, sb->chunk_size) / 2;
750 
751 	if (rdev->size < sb->size && sb->level > 1)
752 		/* "this cannot possibly happen" ... */
753 		ret = -EINVAL;
754 
755  abort:
756 	return ret;
757 }
758 
759 /*
760  * validate_super for 0.90.0
761  */
762 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
763 {
764 	mdp_disk_t *desc;
765 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
766 	__u64 ev1 = md_event(sb);
767 
768 	rdev->raid_disk = -1;
769 	clear_bit(Faulty, &rdev->flags);
770 	clear_bit(In_sync, &rdev->flags);
771 	clear_bit(WriteMostly, &rdev->flags);
772 	clear_bit(BarriersNotsupp, &rdev->flags);
773 
774 	if (mddev->raid_disks == 0) {
775 		mddev->major_version = 0;
776 		mddev->minor_version = sb->minor_version;
777 		mddev->patch_version = sb->patch_version;
778 		mddev->external = 0;
779 		mddev->chunk_size = sb->chunk_size;
780 		mddev->ctime = sb->ctime;
781 		mddev->utime = sb->utime;
782 		mddev->level = sb->level;
783 		mddev->clevel[0] = 0;
784 		mddev->layout = sb->layout;
785 		mddev->raid_disks = sb->raid_disks;
786 		mddev->size = sb->size;
787 		mddev->events = ev1;
788 		mddev->bitmap_offset = 0;
789 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
790 
791 		if (mddev->minor_version >= 91) {
792 			mddev->reshape_position = sb->reshape_position;
793 			mddev->delta_disks = sb->delta_disks;
794 			mddev->new_level = sb->new_level;
795 			mddev->new_layout = sb->new_layout;
796 			mddev->new_chunk = sb->new_chunk;
797 		} else {
798 			mddev->reshape_position = MaxSector;
799 			mddev->delta_disks = 0;
800 			mddev->new_level = mddev->level;
801 			mddev->new_layout = mddev->layout;
802 			mddev->new_chunk = mddev->chunk_size;
803 		}
804 
805 		if (sb->state & (1<<MD_SB_CLEAN))
806 			mddev->recovery_cp = MaxSector;
807 		else {
808 			if (sb->events_hi == sb->cp_events_hi &&
809 				sb->events_lo == sb->cp_events_lo) {
810 				mddev->recovery_cp = sb->recovery_cp;
811 			} else
812 				mddev->recovery_cp = 0;
813 		}
814 
815 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
816 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
817 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
818 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
819 
820 		mddev->max_disks = MD_SB_DISKS;
821 
822 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
823 		    mddev->bitmap_file == NULL)
824 			mddev->bitmap_offset = mddev->default_bitmap_offset;
825 
826 	} else if (mddev->pers == NULL) {
827 		/* Insist on good event counter while assembling */
828 		++ev1;
829 		if (ev1 < mddev->events)
830 			return -EINVAL;
831 	} else if (mddev->bitmap) {
832 		/* if adding to array with a bitmap, then we can accept an
833 		 * older device ... but not too old.
834 		 */
835 		if (ev1 < mddev->bitmap->events_cleared)
836 			return 0;
837 	} else {
838 		if (ev1 < mddev->events)
839 			/* just a hot-add of a new device, leave raid_disk at -1 */
840 			return 0;
841 	}
842 
843 	if (mddev->level != LEVEL_MULTIPATH) {
844 		desc = sb->disks + rdev->desc_nr;
845 
846 		if (desc->state & (1<<MD_DISK_FAULTY))
847 			set_bit(Faulty, &rdev->flags);
848 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
849 			    desc->raid_disk < mddev->raid_disks */) {
850 			set_bit(In_sync, &rdev->flags);
851 			rdev->raid_disk = desc->raid_disk;
852 		}
853 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
854 			set_bit(WriteMostly, &rdev->flags);
855 	} else /* MULTIPATH are always insync */
856 		set_bit(In_sync, &rdev->flags);
857 	return 0;
858 }
859 
860 /*
861  * sync_super for 0.90.0
862  */
863 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
864 {
865 	mdp_super_t *sb;
866 	struct list_head *tmp;
867 	mdk_rdev_t *rdev2;
868 	int next_spare = mddev->raid_disks;
869 
870 
871 	/* make rdev->sb match mddev data..
872 	 *
873 	 * 1/ zero out disks
874 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
875 	 * 3/ any empty disks < next_spare become removed
876 	 *
877 	 * disks[0] gets initialised to REMOVED because
878 	 * we cannot be sure from other fields if it has
879 	 * been initialised or not.
880 	 */
881 	int i;
882 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
883 
884 	rdev->sb_size = MD_SB_BYTES;
885 
886 	sb = (mdp_super_t*)page_address(rdev->sb_page);
887 
888 	memset(sb, 0, sizeof(*sb));
889 
890 	sb->md_magic = MD_SB_MAGIC;
891 	sb->major_version = mddev->major_version;
892 	sb->patch_version = mddev->patch_version;
893 	sb->gvalid_words  = 0; /* ignored */
894 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
895 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
896 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
897 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
898 
899 	sb->ctime = mddev->ctime;
900 	sb->level = mddev->level;
901 	sb->size  = mddev->size;
902 	sb->raid_disks = mddev->raid_disks;
903 	sb->md_minor = mddev->md_minor;
904 	sb->not_persistent = 0;
905 	sb->utime = mddev->utime;
906 	sb->state = 0;
907 	sb->events_hi = (mddev->events>>32);
908 	sb->events_lo = (u32)mddev->events;
909 
910 	if (mddev->reshape_position == MaxSector)
911 		sb->minor_version = 90;
912 	else {
913 		sb->minor_version = 91;
914 		sb->reshape_position = mddev->reshape_position;
915 		sb->new_level = mddev->new_level;
916 		sb->delta_disks = mddev->delta_disks;
917 		sb->new_layout = mddev->new_layout;
918 		sb->new_chunk = mddev->new_chunk;
919 	}
920 	mddev->minor_version = sb->minor_version;
921 	if (mddev->in_sync)
922 	{
923 		sb->recovery_cp = mddev->recovery_cp;
924 		sb->cp_events_hi = (mddev->events>>32);
925 		sb->cp_events_lo = (u32)mddev->events;
926 		if (mddev->recovery_cp == MaxSector)
927 			sb->state = (1<< MD_SB_CLEAN);
928 	} else
929 		sb->recovery_cp = 0;
930 
931 	sb->layout = mddev->layout;
932 	sb->chunk_size = mddev->chunk_size;
933 
934 	if (mddev->bitmap && mddev->bitmap_file == NULL)
935 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
936 
937 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
938 	rdev_for_each(rdev2, tmp, mddev) {
939 		mdp_disk_t *d;
940 		int desc_nr;
941 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
942 		    && !test_bit(Faulty, &rdev2->flags))
943 			desc_nr = rdev2->raid_disk;
944 		else
945 			desc_nr = next_spare++;
946 		rdev2->desc_nr = desc_nr;
947 		d = &sb->disks[rdev2->desc_nr];
948 		nr_disks++;
949 		d->number = rdev2->desc_nr;
950 		d->major = MAJOR(rdev2->bdev->bd_dev);
951 		d->minor = MINOR(rdev2->bdev->bd_dev);
952 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
953 		    && !test_bit(Faulty, &rdev2->flags))
954 			d->raid_disk = rdev2->raid_disk;
955 		else
956 			d->raid_disk = rdev2->desc_nr; /* compatibility */
957 		if (test_bit(Faulty, &rdev2->flags))
958 			d->state = (1<<MD_DISK_FAULTY);
959 		else if (test_bit(In_sync, &rdev2->flags)) {
960 			d->state = (1<<MD_DISK_ACTIVE);
961 			d->state |= (1<<MD_DISK_SYNC);
962 			active++;
963 			working++;
964 		} else {
965 			d->state = 0;
966 			spare++;
967 			working++;
968 		}
969 		if (test_bit(WriteMostly, &rdev2->flags))
970 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
971 	}
972 	/* now set the "removed" and "faulty" bits on any missing devices */
973 	for (i=0 ; i < mddev->raid_disks ; i++) {
974 		mdp_disk_t *d = &sb->disks[i];
975 		if (d->state == 0 && d->number == 0) {
976 			d->number = i;
977 			d->raid_disk = i;
978 			d->state = (1<<MD_DISK_REMOVED);
979 			d->state |= (1<<MD_DISK_FAULTY);
980 			failed++;
981 		}
982 	}
983 	sb->nr_disks = nr_disks;
984 	sb->active_disks = active;
985 	sb->working_disks = working;
986 	sb->failed_disks = failed;
987 	sb->spare_disks = spare;
988 
989 	sb->this_disk = sb->disks[rdev->desc_nr];
990 	sb->sb_csum = calc_sb_csum(sb);
991 }
992 
993 /*
994  * rdev_size_change for 0.90.0
995  */
996 static unsigned long long
997 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
998 {
999 	if (num_sectors && num_sectors < rdev->mddev->size * 2)
1000 		return 0; /* component must fit device */
1001 	if (rdev->mddev->bitmap_offset)
1002 		return 0; /* can't move bitmap */
1003 	rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1004 	if (!num_sectors || num_sectors > rdev->sb_start)
1005 		num_sectors = rdev->sb_start;
1006 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1007 		       rdev->sb_page);
1008 	md_super_wait(rdev->mddev);
1009 	return num_sectors / 2; /* kB for sysfs */
1010 }
1011 
1012 
1013 /*
1014  * version 1 superblock
1015  */
1016 
1017 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1018 {
1019 	__le32 disk_csum;
1020 	u32 csum;
1021 	unsigned long long newcsum;
1022 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1023 	__le32 *isuper = (__le32*)sb;
1024 	int i;
1025 
1026 	disk_csum = sb->sb_csum;
1027 	sb->sb_csum = 0;
1028 	newcsum = 0;
1029 	for (i=0; size>=4; size -= 4 )
1030 		newcsum += le32_to_cpu(*isuper++);
1031 
1032 	if (size == 2)
1033 		newcsum += le16_to_cpu(*(__le16*) isuper);
1034 
1035 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1036 	sb->sb_csum = disk_csum;
1037 	return cpu_to_le32(csum);
1038 }
1039 
1040 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1041 {
1042 	struct mdp_superblock_1 *sb;
1043 	int ret;
1044 	sector_t sb_start;
1045 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1046 	int bmask;
1047 
1048 	/*
1049 	 * Calculate the position of the superblock in 512byte sectors.
1050 	 * It is always aligned to a 4K boundary and
1051 	 * depeding on minor_version, it can be:
1052 	 * 0: At least 8K, but less than 12K, from end of device
1053 	 * 1: At start of device
1054 	 * 2: 4K from start of device.
1055 	 */
1056 	switch(minor_version) {
1057 	case 0:
1058 		sb_start = rdev->bdev->bd_inode->i_size >> 9;
1059 		sb_start -= 8*2;
1060 		sb_start &= ~(sector_t)(4*2-1);
1061 		break;
1062 	case 1:
1063 		sb_start = 0;
1064 		break;
1065 	case 2:
1066 		sb_start = 8;
1067 		break;
1068 	default:
1069 		return -EINVAL;
1070 	}
1071 	rdev->sb_start = sb_start;
1072 
1073 	/* superblock is rarely larger than 1K, but it can be larger,
1074 	 * and it is safe to read 4k, so we do that
1075 	 */
1076 	ret = read_disk_sb(rdev, 4096);
1077 	if (ret) return ret;
1078 
1079 
1080 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1081 
1082 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1083 	    sb->major_version != cpu_to_le32(1) ||
1084 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1085 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1086 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1087 		return -EINVAL;
1088 
1089 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1090 		printk("md: invalid superblock checksum on %s\n",
1091 			bdevname(rdev->bdev,b));
1092 		return -EINVAL;
1093 	}
1094 	if (le64_to_cpu(sb->data_size) < 10) {
1095 		printk("md: data_size too small on %s\n",
1096 		       bdevname(rdev->bdev,b));
1097 		return -EINVAL;
1098 	}
1099 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1100 		if (sb->level != cpu_to_le32(1) &&
1101 		    sb->level != cpu_to_le32(4) &&
1102 		    sb->level != cpu_to_le32(5) &&
1103 		    sb->level != cpu_to_le32(6) &&
1104 		    sb->level != cpu_to_le32(10)) {
1105 			printk(KERN_WARNING
1106 			       "md: bitmaps not supported for this level.\n");
1107 			return -EINVAL;
1108 		}
1109 	}
1110 
1111 	rdev->preferred_minor = 0xffff;
1112 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1113 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1114 
1115 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1116 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1117 	if (rdev->sb_size & bmask)
1118 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1119 
1120 	if (minor_version
1121 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1122 		return -EINVAL;
1123 
1124 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1125 		rdev->desc_nr = -1;
1126 	else
1127 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1128 
1129 	if (!refdev) {
1130 		ret = 1;
1131 	} else {
1132 		__u64 ev1, ev2;
1133 		struct mdp_superblock_1 *refsb =
1134 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1135 
1136 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1137 		    sb->level != refsb->level ||
1138 		    sb->layout != refsb->layout ||
1139 		    sb->chunksize != refsb->chunksize) {
1140 			printk(KERN_WARNING "md: %s has strangely different"
1141 				" superblock to %s\n",
1142 				bdevname(rdev->bdev,b),
1143 				bdevname(refdev->bdev,b2));
1144 			return -EINVAL;
1145 		}
1146 		ev1 = le64_to_cpu(sb->events);
1147 		ev2 = le64_to_cpu(refsb->events);
1148 
1149 		if (ev1 > ev2)
1150 			ret = 1;
1151 		else
1152 			ret = 0;
1153 	}
1154 	if (minor_version)
1155 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1156 	else
1157 		rdev->size = rdev->sb_start / 2;
1158 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1159 		return -EINVAL;
1160 	rdev->size = le64_to_cpu(sb->data_size)/2;
1161 	if (le32_to_cpu(sb->chunksize))
1162 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1163 
1164 	if (le64_to_cpu(sb->size) > rdev->size*2)
1165 		return -EINVAL;
1166 	return ret;
1167 }
1168 
1169 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1170 {
1171 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1172 	__u64 ev1 = le64_to_cpu(sb->events);
1173 
1174 	rdev->raid_disk = -1;
1175 	clear_bit(Faulty, &rdev->flags);
1176 	clear_bit(In_sync, &rdev->flags);
1177 	clear_bit(WriteMostly, &rdev->flags);
1178 	clear_bit(BarriersNotsupp, &rdev->flags);
1179 
1180 	if (mddev->raid_disks == 0) {
1181 		mddev->major_version = 1;
1182 		mddev->patch_version = 0;
1183 		mddev->external = 0;
1184 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1185 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1186 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1187 		mddev->level = le32_to_cpu(sb->level);
1188 		mddev->clevel[0] = 0;
1189 		mddev->layout = le32_to_cpu(sb->layout);
1190 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1191 		mddev->size = le64_to_cpu(sb->size)/2;
1192 		mddev->events = ev1;
1193 		mddev->bitmap_offset = 0;
1194 		mddev->default_bitmap_offset = 1024 >> 9;
1195 
1196 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1197 		memcpy(mddev->uuid, sb->set_uuid, 16);
1198 
1199 		mddev->max_disks =  (4096-256)/2;
1200 
1201 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1202 		    mddev->bitmap_file == NULL )
1203 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1204 
1205 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1206 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1207 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1208 			mddev->new_level = le32_to_cpu(sb->new_level);
1209 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1210 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1211 		} else {
1212 			mddev->reshape_position = MaxSector;
1213 			mddev->delta_disks = 0;
1214 			mddev->new_level = mddev->level;
1215 			mddev->new_layout = mddev->layout;
1216 			mddev->new_chunk = mddev->chunk_size;
1217 		}
1218 
1219 	} else if (mddev->pers == NULL) {
1220 		/* Insist of good event counter while assembling */
1221 		++ev1;
1222 		if (ev1 < mddev->events)
1223 			return -EINVAL;
1224 	} else if (mddev->bitmap) {
1225 		/* If adding to array with a bitmap, then we can accept an
1226 		 * older device, but not too old.
1227 		 */
1228 		if (ev1 < mddev->bitmap->events_cleared)
1229 			return 0;
1230 	} else {
1231 		if (ev1 < mddev->events)
1232 			/* just a hot-add of a new device, leave raid_disk at -1 */
1233 			return 0;
1234 	}
1235 	if (mddev->level != LEVEL_MULTIPATH) {
1236 		int role;
1237 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1238 		switch(role) {
1239 		case 0xffff: /* spare */
1240 			break;
1241 		case 0xfffe: /* faulty */
1242 			set_bit(Faulty, &rdev->flags);
1243 			break;
1244 		default:
1245 			if ((le32_to_cpu(sb->feature_map) &
1246 			     MD_FEATURE_RECOVERY_OFFSET))
1247 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1248 			else
1249 				set_bit(In_sync, &rdev->flags);
1250 			rdev->raid_disk = role;
1251 			break;
1252 		}
1253 		if (sb->devflags & WriteMostly1)
1254 			set_bit(WriteMostly, &rdev->flags);
1255 	} else /* MULTIPATH are always insync */
1256 		set_bit(In_sync, &rdev->flags);
1257 
1258 	return 0;
1259 }
1260 
1261 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1262 {
1263 	struct mdp_superblock_1 *sb;
1264 	struct list_head *tmp;
1265 	mdk_rdev_t *rdev2;
1266 	int max_dev, i;
1267 	/* make rdev->sb match mddev and rdev data. */
1268 
1269 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1270 
1271 	sb->feature_map = 0;
1272 	sb->pad0 = 0;
1273 	sb->recovery_offset = cpu_to_le64(0);
1274 	memset(sb->pad1, 0, sizeof(sb->pad1));
1275 	memset(sb->pad2, 0, sizeof(sb->pad2));
1276 	memset(sb->pad3, 0, sizeof(sb->pad3));
1277 
1278 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1279 	sb->events = cpu_to_le64(mddev->events);
1280 	if (mddev->in_sync)
1281 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1282 	else
1283 		sb->resync_offset = cpu_to_le64(0);
1284 
1285 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1286 
1287 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1288 	sb->size = cpu_to_le64(mddev->size<<1);
1289 
1290 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1291 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1292 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1293 	}
1294 
1295 	if (rdev->raid_disk >= 0 &&
1296 	    !test_bit(In_sync, &rdev->flags) &&
1297 	    rdev->recovery_offset > 0) {
1298 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1299 		sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1300 	}
1301 
1302 	if (mddev->reshape_position != MaxSector) {
1303 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1304 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1305 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1306 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1307 		sb->new_level = cpu_to_le32(mddev->new_level);
1308 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1309 	}
1310 
1311 	max_dev = 0;
1312 	rdev_for_each(rdev2, tmp, mddev)
1313 		if (rdev2->desc_nr+1 > max_dev)
1314 			max_dev = rdev2->desc_nr+1;
1315 
1316 	if (max_dev > le32_to_cpu(sb->max_dev))
1317 		sb->max_dev = cpu_to_le32(max_dev);
1318 	for (i=0; i<max_dev;i++)
1319 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1320 
1321 	rdev_for_each(rdev2, tmp, mddev) {
1322 		i = rdev2->desc_nr;
1323 		if (test_bit(Faulty, &rdev2->flags))
1324 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1325 		else if (test_bit(In_sync, &rdev2->flags))
1326 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1327 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1328 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1329 		else
1330 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1331 	}
1332 
1333 	sb->sb_csum = calc_sb_1_csum(sb);
1334 }
1335 
1336 static unsigned long long
1337 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1338 {
1339 	struct mdp_superblock_1 *sb;
1340 	sector_t max_sectors;
1341 	if (num_sectors && num_sectors < rdev->mddev->size * 2)
1342 		return 0; /* component must fit device */
1343 	if (rdev->sb_start < rdev->data_offset) {
1344 		/* minor versions 1 and 2; superblock before data */
1345 		max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1346 		max_sectors -= rdev->data_offset;
1347 		if (!num_sectors || num_sectors > max_sectors)
1348 			num_sectors = max_sectors;
1349 	} else if (rdev->mddev->bitmap_offset) {
1350 		/* minor version 0 with bitmap we can't move */
1351 		return 0;
1352 	} else {
1353 		/* minor version 0; superblock after data */
1354 		sector_t sb_start;
1355 		sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1356 		sb_start &= ~(sector_t)(4*2 - 1);
1357 		max_sectors = rdev->size * 2 + sb_start - rdev->sb_start;
1358 		if (!num_sectors || num_sectors > max_sectors)
1359 			num_sectors = max_sectors;
1360 		rdev->sb_start = sb_start;
1361 	}
1362 	sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1363 	sb->data_size = cpu_to_le64(num_sectors);
1364 	sb->super_offset = rdev->sb_start;
1365 	sb->sb_csum = calc_sb_1_csum(sb);
1366 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1367 		       rdev->sb_page);
1368 	md_super_wait(rdev->mddev);
1369 	return num_sectors / 2; /* kB for sysfs */
1370 }
1371 
1372 static struct super_type super_types[] = {
1373 	[0] = {
1374 		.name	= "0.90.0",
1375 		.owner	= THIS_MODULE,
1376 		.load_super	    = super_90_load,
1377 		.validate_super	    = super_90_validate,
1378 		.sync_super	    = super_90_sync,
1379 		.rdev_size_change   = super_90_rdev_size_change,
1380 	},
1381 	[1] = {
1382 		.name	= "md-1",
1383 		.owner	= THIS_MODULE,
1384 		.load_super	    = super_1_load,
1385 		.validate_super	    = super_1_validate,
1386 		.sync_super	    = super_1_sync,
1387 		.rdev_size_change   = super_1_rdev_size_change,
1388 	},
1389 };
1390 
1391 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1392 {
1393 	mdk_rdev_t *rdev, *rdev2;
1394 
1395 	rcu_read_lock();
1396 	rdev_for_each_rcu(rdev, mddev1)
1397 		rdev_for_each_rcu(rdev2, mddev2)
1398 			if (rdev->bdev->bd_contains ==
1399 			    rdev2->bdev->bd_contains) {
1400 				rcu_read_unlock();
1401 				return 1;
1402 			}
1403 	rcu_read_unlock();
1404 	return 0;
1405 }
1406 
1407 static LIST_HEAD(pending_raid_disks);
1408 
1409 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1410 {
1411 	char b[BDEVNAME_SIZE];
1412 	struct kobject *ko;
1413 	char *s;
1414 	int err;
1415 
1416 	if (rdev->mddev) {
1417 		MD_BUG();
1418 		return -EINVAL;
1419 	}
1420 
1421 	/* prevent duplicates */
1422 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1423 		return -EEXIST;
1424 
1425 	/* make sure rdev->size exceeds mddev->size */
1426 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1427 		if (mddev->pers) {
1428 			/* Cannot change size, so fail
1429 			 * If mddev->level <= 0, then we don't care
1430 			 * about aligning sizes (e.g. linear)
1431 			 */
1432 			if (mddev->level > 0)
1433 				return -ENOSPC;
1434 		} else
1435 			mddev->size = rdev->size;
1436 	}
1437 
1438 	/* Verify rdev->desc_nr is unique.
1439 	 * If it is -1, assign a free number, else
1440 	 * check number is not in use
1441 	 */
1442 	if (rdev->desc_nr < 0) {
1443 		int choice = 0;
1444 		if (mddev->pers) choice = mddev->raid_disks;
1445 		while (find_rdev_nr(mddev, choice))
1446 			choice++;
1447 		rdev->desc_nr = choice;
1448 	} else {
1449 		if (find_rdev_nr(mddev, rdev->desc_nr))
1450 			return -EBUSY;
1451 	}
1452 	bdevname(rdev->bdev,b);
1453 	while ( (s=strchr(b, '/')) != NULL)
1454 		*s = '!';
1455 
1456 	rdev->mddev = mddev;
1457 	printk(KERN_INFO "md: bind<%s>\n", b);
1458 
1459 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1460 		goto fail;
1461 
1462 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1463 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1464 		kobject_del(&rdev->kobj);
1465 		goto fail;
1466 	}
1467 	list_add_rcu(&rdev->same_set, &mddev->disks);
1468 	bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1469 	return 0;
1470 
1471  fail:
1472 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1473 	       b, mdname(mddev));
1474 	return err;
1475 }
1476 
1477 static void md_delayed_delete(struct work_struct *ws)
1478 {
1479 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1480 	kobject_del(&rdev->kobj);
1481 	kobject_put(&rdev->kobj);
1482 }
1483 
1484 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1485 {
1486 	char b[BDEVNAME_SIZE];
1487 	if (!rdev->mddev) {
1488 		MD_BUG();
1489 		return;
1490 	}
1491 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1492 	list_del_rcu(&rdev->same_set);
1493 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1494 	rdev->mddev = NULL;
1495 	sysfs_remove_link(&rdev->kobj, "block");
1496 
1497 	/* We need to delay this, otherwise we can deadlock when
1498 	 * writing to 'remove' to "dev/state".  We also need
1499 	 * to delay it due to rcu usage.
1500 	 */
1501 	synchronize_rcu();
1502 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1503 	kobject_get(&rdev->kobj);
1504 	schedule_work(&rdev->del_work);
1505 }
1506 
1507 /*
1508  * prevent the device from being mounted, repartitioned or
1509  * otherwise reused by a RAID array (or any other kernel
1510  * subsystem), by bd_claiming the device.
1511  */
1512 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1513 {
1514 	int err = 0;
1515 	struct block_device *bdev;
1516 	char b[BDEVNAME_SIZE];
1517 
1518 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1519 	if (IS_ERR(bdev)) {
1520 		printk(KERN_ERR "md: could not open %s.\n",
1521 			__bdevname(dev, b));
1522 		return PTR_ERR(bdev);
1523 	}
1524 	err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1525 	if (err) {
1526 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1527 			bdevname(bdev, b));
1528 		blkdev_put(bdev);
1529 		return err;
1530 	}
1531 	if (!shared)
1532 		set_bit(AllReserved, &rdev->flags);
1533 	rdev->bdev = bdev;
1534 	return err;
1535 }
1536 
1537 static void unlock_rdev(mdk_rdev_t *rdev)
1538 {
1539 	struct block_device *bdev = rdev->bdev;
1540 	rdev->bdev = NULL;
1541 	if (!bdev)
1542 		MD_BUG();
1543 	bd_release(bdev);
1544 	blkdev_put(bdev);
1545 }
1546 
1547 void md_autodetect_dev(dev_t dev);
1548 
1549 static void export_rdev(mdk_rdev_t * rdev)
1550 {
1551 	char b[BDEVNAME_SIZE];
1552 	printk(KERN_INFO "md: export_rdev(%s)\n",
1553 		bdevname(rdev->bdev,b));
1554 	if (rdev->mddev)
1555 		MD_BUG();
1556 	free_disk_sb(rdev);
1557 #ifndef MODULE
1558 	if (test_bit(AutoDetected, &rdev->flags))
1559 		md_autodetect_dev(rdev->bdev->bd_dev);
1560 #endif
1561 	unlock_rdev(rdev);
1562 	kobject_put(&rdev->kobj);
1563 }
1564 
1565 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1566 {
1567 	unbind_rdev_from_array(rdev);
1568 	export_rdev(rdev);
1569 }
1570 
1571 static void export_array(mddev_t *mddev)
1572 {
1573 	struct list_head *tmp;
1574 	mdk_rdev_t *rdev;
1575 
1576 	rdev_for_each(rdev, tmp, mddev) {
1577 		if (!rdev->mddev) {
1578 			MD_BUG();
1579 			continue;
1580 		}
1581 		kick_rdev_from_array(rdev);
1582 	}
1583 	if (!list_empty(&mddev->disks))
1584 		MD_BUG();
1585 	mddev->raid_disks = 0;
1586 	mddev->major_version = 0;
1587 }
1588 
1589 static void print_desc(mdp_disk_t *desc)
1590 {
1591 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1592 		desc->major,desc->minor,desc->raid_disk,desc->state);
1593 }
1594 
1595 static void print_sb(mdp_super_t *sb)
1596 {
1597 	int i;
1598 
1599 	printk(KERN_INFO
1600 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1601 		sb->major_version, sb->minor_version, sb->patch_version,
1602 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1603 		sb->ctime);
1604 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1605 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1606 		sb->md_minor, sb->layout, sb->chunk_size);
1607 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1608 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1609 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1610 		sb->failed_disks, sb->spare_disks,
1611 		sb->sb_csum, (unsigned long)sb->events_lo);
1612 
1613 	printk(KERN_INFO);
1614 	for (i = 0; i < MD_SB_DISKS; i++) {
1615 		mdp_disk_t *desc;
1616 
1617 		desc = sb->disks + i;
1618 		if (desc->number || desc->major || desc->minor ||
1619 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1620 			printk("     D %2d: ", i);
1621 			print_desc(desc);
1622 		}
1623 	}
1624 	printk(KERN_INFO "md:     THIS: ");
1625 	print_desc(&sb->this_disk);
1626 
1627 }
1628 
1629 static void print_rdev(mdk_rdev_t *rdev)
1630 {
1631 	char b[BDEVNAME_SIZE];
1632 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1633 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1634 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1635 	        rdev->desc_nr);
1636 	if (rdev->sb_loaded) {
1637 		printk(KERN_INFO "md: rdev superblock:\n");
1638 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1639 	} else
1640 		printk(KERN_INFO "md: no rdev superblock!\n");
1641 }
1642 
1643 static void md_print_devices(void)
1644 {
1645 	struct list_head *tmp, *tmp2;
1646 	mdk_rdev_t *rdev;
1647 	mddev_t *mddev;
1648 	char b[BDEVNAME_SIZE];
1649 
1650 	printk("\n");
1651 	printk("md:	**********************************\n");
1652 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1653 	printk("md:	**********************************\n");
1654 	for_each_mddev(mddev, tmp) {
1655 
1656 		if (mddev->bitmap)
1657 			bitmap_print_sb(mddev->bitmap);
1658 		else
1659 			printk("%s: ", mdname(mddev));
1660 		rdev_for_each(rdev, tmp2, mddev)
1661 			printk("<%s>", bdevname(rdev->bdev,b));
1662 		printk("\n");
1663 
1664 		rdev_for_each(rdev, tmp2, mddev)
1665 			print_rdev(rdev);
1666 	}
1667 	printk("md:	**********************************\n");
1668 	printk("\n");
1669 }
1670 
1671 
1672 static void sync_sbs(mddev_t * mddev, int nospares)
1673 {
1674 	/* Update each superblock (in-memory image), but
1675 	 * if we are allowed to, skip spares which already
1676 	 * have the right event counter, or have one earlier
1677 	 * (which would mean they aren't being marked as dirty
1678 	 * with the rest of the array)
1679 	 */
1680 	mdk_rdev_t *rdev;
1681 	struct list_head *tmp;
1682 
1683 	rdev_for_each(rdev, tmp, mddev) {
1684 		if (rdev->sb_events == mddev->events ||
1685 		    (nospares &&
1686 		     rdev->raid_disk < 0 &&
1687 		     (rdev->sb_events&1)==0 &&
1688 		     rdev->sb_events+1 == mddev->events)) {
1689 			/* Don't update this superblock */
1690 			rdev->sb_loaded = 2;
1691 		} else {
1692 			super_types[mddev->major_version].
1693 				sync_super(mddev, rdev);
1694 			rdev->sb_loaded = 1;
1695 		}
1696 	}
1697 }
1698 
1699 static void md_update_sb(mddev_t * mddev, int force_change)
1700 {
1701 	struct list_head *tmp;
1702 	mdk_rdev_t *rdev;
1703 	int sync_req;
1704 	int nospares = 0;
1705 
1706 	if (mddev->external)
1707 		return;
1708 repeat:
1709 	spin_lock_irq(&mddev->write_lock);
1710 
1711 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1712 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1713 		force_change = 1;
1714 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1715 		/* just a clean<-> dirty transition, possibly leave spares alone,
1716 		 * though if events isn't the right even/odd, we will have to do
1717 		 * spares after all
1718 		 */
1719 		nospares = 1;
1720 	if (force_change)
1721 		nospares = 0;
1722 	if (mddev->degraded)
1723 		/* If the array is degraded, then skipping spares is both
1724 		 * dangerous and fairly pointless.
1725 		 * Dangerous because a device that was removed from the array
1726 		 * might have a event_count that still looks up-to-date,
1727 		 * so it can be re-added without a resync.
1728 		 * Pointless because if there are any spares to skip,
1729 		 * then a recovery will happen and soon that array won't
1730 		 * be degraded any more and the spare can go back to sleep then.
1731 		 */
1732 		nospares = 0;
1733 
1734 	sync_req = mddev->in_sync;
1735 	mddev->utime = get_seconds();
1736 
1737 	/* If this is just a dirty<->clean transition, and the array is clean
1738 	 * and 'events' is odd, we can roll back to the previous clean state */
1739 	if (nospares
1740 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1741 	    && (mddev->events & 1)
1742 	    && mddev->events != 1)
1743 		mddev->events--;
1744 	else {
1745 		/* otherwise we have to go forward and ... */
1746 		mddev->events ++;
1747 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1748 			/* .. if the array isn't clean, insist on an odd 'events' */
1749 			if ((mddev->events&1)==0) {
1750 				mddev->events++;
1751 				nospares = 0;
1752 			}
1753 		} else {
1754 			/* otherwise insist on an even 'events' (for clean states) */
1755 			if ((mddev->events&1)) {
1756 				mddev->events++;
1757 				nospares = 0;
1758 			}
1759 		}
1760 	}
1761 
1762 	if (!mddev->events) {
1763 		/*
1764 		 * oops, this 64-bit counter should never wrap.
1765 		 * Either we are in around ~1 trillion A.C., assuming
1766 		 * 1 reboot per second, or we have a bug:
1767 		 */
1768 		MD_BUG();
1769 		mddev->events --;
1770 	}
1771 
1772 	/*
1773 	 * do not write anything to disk if using
1774 	 * nonpersistent superblocks
1775 	 */
1776 	if (!mddev->persistent) {
1777 		if (!mddev->external)
1778 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1779 
1780 		spin_unlock_irq(&mddev->write_lock);
1781 		wake_up(&mddev->sb_wait);
1782 		return;
1783 	}
1784 	sync_sbs(mddev, nospares);
1785 	spin_unlock_irq(&mddev->write_lock);
1786 
1787 	dprintk(KERN_INFO
1788 		"md: updating %s RAID superblock on device (in sync %d)\n",
1789 		mdname(mddev),mddev->in_sync);
1790 
1791 	bitmap_update_sb(mddev->bitmap);
1792 	rdev_for_each(rdev, tmp, mddev) {
1793 		char b[BDEVNAME_SIZE];
1794 		dprintk(KERN_INFO "md: ");
1795 		if (rdev->sb_loaded != 1)
1796 			continue; /* no noise on spare devices */
1797 		if (test_bit(Faulty, &rdev->flags))
1798 			dprintk("(skipping faulty ");
1799 
1800 		dprintk("%s ", bdevname(rdev->bdev,b));
1801 		if (!test_bit(Faulty, &rdev->flags)) {
1802 			md_super_write(mddev,rdev,
1803 				       rdev->sb_start, rdev->sb_size,
1804 				       rdev->sb_page);
1805 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1806 				bdevname(rdev->bdev,b),
1807 				(unsigned long long)rdev->sb_start);
1808 			rdev->sb_events = mddev->events;
1809 
1810 		} else
1811 			dprintk(")\n");
1812 		if (mddev->level == LEVEL_MULTIPATH)
1813 			/* only need to write one superblock... */
1814 			break;
1815 	}
1816 	md_super_wait(mddev);
1817 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1818 
1819 	spin_lock_irq(&mddev->write_lock);
1820 	if (mddev->in_sync != sync_req ||
1821 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1822 		/* have to write it out again */
1823 		spin_unlock_irq(&mddev->write_lock);
1824 		goto repeat;
1825 	}
1826 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1827 	spin_unlock_irq(&mddev->write_lock);
1828 	wake_up(&mddev->sb_wait);
1829 
1830 }
1831 
1832 /* words written to sysfs files may, or may not, be \n terminated.
1833  * We want to accept with case. For this we use cmd_match.
1834  */
1835 static int cmd_match(const char *cmd, const char *str)
1836 {
1837 	/* See if cmd, written into a sysfs file, matches
1838 	 * str.  They must either be the same, or cmd can
1839 	 * have a trailing newline
1840 	 */
1841 	while (*cmd && *str && *cmd == *str) {
1842 		cmd++;
1843 		str++;
1844 	}
1845 	if (*cmd == '\n')
1846 		cmd++;
1847 	if (*str || *cmd)
1848 		return 0;
1849 	return 1;
1850 }
1851 
1852 struct rdev_sysfs_entry {
1853 	struct attribute attr;
1854 	ssize_t (*show)(mdk_rdev_t *, char *);
1855 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1856 };
1857 
1858 static ssize_t
1859 state_show(mdk_rdev_t *rdev, char *page)
1860 {
1861 	char *sep = "";
1862 	size_t len = 0;
1863 
1864 	if (test_bit(Faulty, &rdev->flags)) {
1865 		len+= sprintf(page+len, "%sfaulty",sep);
1866 		sep = ",";
1867 	}
1868 	if (test_bit(In_sync, &rdev->flags)) {
1869 		len += sprintf(page+len, "%sin_sync",sep);
1870 		sep = ",";
1871 	}
1872 	if (test_bit(WriteMostly, &rdev->flags)) {
1873 		len += sprintf(page+len, "%swrite_mostly",sep);
1874 		sep = ",";
1875 	}
1876 	if (test_bit(Blocked, &rdev->flags)) {
1877 		len += sprintf(page+len, "%sblocked", sep);
1878 		sep = ",";
1879 	}
1880 	if (!test_bit(Faulty, &rdev->flags) &&
1881 	    !test_bit(In_sync, &rdev->flags)) {
1882 		len += sprintf(page+len, "%sspare", sep);
1883 		sep = ",";
1884 	}
1885 	return len+sprintf(page+len, "\n");
1886 }
1887 
1888 static ssize_t
1889 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1890 {
1891 	/* can write
1892 	 *  faulty  - simulates and error
1893 	 *  remove  - disconnects the device
1894 	 *  writemostly - sets write_mostly
1895 	 *  -writemostly - clears write_mostly
1896 	 *  blocked - sets the Blocked flag
1897 	 *  -blocked - clears the Blocked flag
1898 	 */
1899 	int err = -EINVAL;
1900 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1901 		md_error(rdev->mddev, rdev);
1902 		err = 0;
1903 	} else if (cmd_match(buf, "remove")) {
1904 		if (rdev->raid_disk >= 0)
1905 			err = -EBUSY;
1906 		else {
1907 			mddev_t *mddev = rdev->mddev;
1908 			kick_rdev_from_array(rdev);
1909 			if (mddev->pers)
1910 				md_update_sb(mddev, 1);
1911 			md_new_event(mddev);
1912 			err = 0;
1913 		}
1914 	} else if (cmd_match(buf, "writemostly")) {
1915 		set_bit(WriteMostly, &rdev->flags);
1916 		err = 0;
1917 	} else if (cmd_match(buf, "-writemostly")) {
1918 		clear_bit(WriteMostly, &rdev->flags);
1919 		err = 0;
1920 	} else if (cmd_match(buf, "blocked")) {
1921 		set_bit(Blocked, &rdev->flags);
1922 		err = 0;
1923 	} else if (cmd_match(buf, "-blocked")) {
1924 		clear_bit(Blocked, &rdev->flags);
1925 		wake_up(&rdev->blocked_wait);
1926 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
1927 		md_wakeup_thread(rdev->mddev->thread);
1928 
1929 		err = 0;
1930 	}
1931 	if (!err)
1932 		sysfs_notify(&rdev->kobj, NULL, "state");
1933 	return err ? err : len;
1934 }
1935 static struct rdev_sysfs_entry rdev_state =
1936 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1937 
1938 static ssize_t
1939 errors_show(mdk_rdev_t *rdev, char *page)
1940 {
1941 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1942 }
1943 
1944 static ssize_t
1945 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1946 {
1947 	char *e;
1948 	unsigned long n = simple_strtoul(buf, &e, 10);
1949 	if (*buf && (*e == 0 || *e == '\n')) {
1950 		atomic_set(&rdev->corrected_errors, n);
1951 		return len;
1952 	}
1953 	return -EINVAL;
1954 }
1955 static struct rdev_sysfs_entry rdev_errors =
1956 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1957 
1958 static ssize_t
1959 slot_show(mdk_rdev_t *rdev, char *page)
1960 {
1961 	if (rdev->raid_disk < 0)
1962 		return sprintf(page, "none\n");
1963 	else
1964 		return sprintf(page, "%d\n", rdev->raid_disk);
1965 }
1966 
1967 static ssize_t
1968 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1969 {
1970 	char *e;
1971 	int err;
1972 	char nm[20];
1973 	int slot = simple_strtoul(buf, &e, 10);
1974 	if (strncmp(buf, "none", 4)==0)
1975 		slot = -1;
1976 	else if (e==buf || (*e && *e!= '\n'))
1977 		return -EINVAL;
1978 	if (rdev->mddev->pers && slot == -1) {
1979 		/* Setting 'slot' on an active array requires also
1980 		 * updating the 'rd%d' link, and communicating
1981 		 * with the personality with ->hot_*_disk.
1982 		 * For now we only support removing
1983 		 * failed/spare devices.  This normally happens automatically,
1984 		 * but not when the metadata is externally managed.
1985 		 */
1986 		if (rdev->raid_disk == -1)
1987 			return -EEXIST;
1988 		/* personality does all needed checks */
1989 		if (rdev->mddev->pers->hot_add_disk == NULL)
1990 			return -EINVAL;
1991 		err = rdev->mddev->pers->
1992 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
1993 		if (err)
1994 			return err;
1995 		sprintf(nm, "rd%d", rdev->raid_disk);
1996 		sysfs_remove_link(&rdev->mddev->kobj, nm);
1997 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
1998 		md_wakeup_thread(rdev->mddev->thread);
1999 	} else if (rdev->mddev->pers) {
2000 		mdk_rdev_t *rdev2;
2001 		struct list_head *tmp;
2002 		/* Activating a spare .. or possibly reactivating
2003 		 * if we every get bitmaps working here.
2004 		 */
2005 
2006 		if (rdev->raid_disk != -1)
2007 			return -EBUSY;
2008 
2009 		if (rdev->mddev->pers->hot_add_disk == NULL)
2010 			return -EINVAL;
2011 
2012 		rdev_for_each(rdev2, tmp, rdev->mddev)
2013 			if (rdev2->raid_disk == slot)
2014 				return -EEXIST;
2015 
2016 		rdev->raid_disk = slot;
2017 		if (test_bit(In_sync, &rdev->flags))
2018 			rdev->saved_raid_disk = slot;
2019 		else
2020 			rdev->saved_raid_disk = -1;
2021 		err = rdev->mddev->pers->
2022 			hot_add_disk(rdev->mddev, rdev);
2023 		if (err) {
2024 			rdev->raid_disk = -1;
2025 			return err;
2026 		} else
2027 			sysfs_notify(&rdev->kobj, NULL, "state");
2028 		sprintf(nm, "rd%d", rdev->raid_disk);
2029 		if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2030 			printk(KERN_WARNING
2031 			       "md: cannot register "
2032 			       "%s for %s\n",
2033 			       nm, mdname(rdev->mddev));
2034 
2035 		/* don't wakeup anyone, leave that to userspace. */
2036 	} else {
2037 		if (slot >= rdev->mddev->raid_disks)
2038 			return -ENOSPC;
2039 		rdev->raid_disk = slot;
2040 		/* assume it is working */
2041 		clear_bit(Faulty, &rdev->flags);
2042 		clear_bit(WriteMostly, &rdev->flags);
2043 		set_bit(In_sync, &rdev->flags);
2044 		sysfs_notify(&rdev->kobj, NULL, "state");
2045 	}
2046 	return len;
2047 }
2048 
2049 
2050 static struct rdev_sysfs_entry rdev_slot =
2051 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2052 
2053 static ssize_t
2054 offset_show(mdk_rdev_t *rdev, char *page)
2055 {
2056 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2057 }
2058 
2059 static ssize_t
2060 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2061 {
2062 	char *e;
2063 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2064 	if (e==buf || (*e && *e != '\n'))
2065 		return -EINVAL;
2066 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2067 		return -EBUSY;
2068 	if (rdev->size && rdev->mddev->external)
2069 		/* Must set offset before size, so overlap checks
2070 		 * can be sane */
2071 		return -EBUSY;
2072 	rdev->data_offset = offset;
2073 	return len;
2074 }
2075 
2076 static struct rdev_sysfs_entry rdev_offset =
2077 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2078 
2079 static ssize_t
2080 rdev_size_show(mdk_rdev_t *rdev, char *page)
2081 {
2082 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
2083 }
2084 
2085 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2086 {
2087 	/* check if two start/length pairs overlap */
2088 	if (s1+l1 <= s2)
2089 		return 0;
2090 	if (s2+l2 <= s1)
2091 		return 0;
2092 	return 1;
2093 }
2094 
2095 static ssize_t
2096 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2097 {
2098 	unsigned long long size;
2099 	unsigned long long oldsize = rdev->size;
2100 	mddev_t *my_mddev = rdev->mddev;
2101 
2102 	if (strict_strtoull(buf, 10, &size) < 0)
2103 		return -EINVAL;
2104 	if (size < my_mddev->size)
2105 		return -EINVAL;
2106 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2107 		if (my_mddev->persistent) {
2108 			size = super_types[my_mddev->major_version].
2109 				rdev_size_change(rdev, size * 2);
2110 			if (!size)
2111 				return -EBUSY;
2112 		} else if (!size) {
2113 			size = (rdev->bdev->bd_inode->i_size >> 10);
2114 			size -= rdev->data_offset/2;
2115 		}
2116 		if (size < my_mddev->size)
2117 			return -EINVAL; /* component must fit device */
2118 	}
2119 
2120 	rdev->size = size;
2121 	if (size > oldsize && my_mddev->external) {
2122 		/* need to check that all other rdevs with the same ->bdev
2123 		 * do not overlap.  We need to unlock the mddev to avoid
2124 		 * a deadlock.  We have already changed rdev->size, and if
2125 		 * we have to change it back, we will have the lock again.
2126 		 */
2127 		mddev_t *mddev;
2128 		int overlap = 0;
2129 		struct list_head *tmp, *tmp2;
2130 
2131 		mddev_unlock(my_mddev);
2132 		for_each_mddev(mddev, tmp) {
2133 			mdk_rdev_t *rdev2;
2134 
2135 			mddev_lock(mddev);
2136 			rdev_for_each(rdev2, tmp2, mddev)
2137 				if (test_bit(AllReserved, &rdev2->flags) ||
2138 				    (rdev->bdev == rdev2->bdev &&
2139 				     rdev != rdev2 &&
2140 				     overlaps(rdev->data_offset, rdev->size * 2,
2141 					      rdev2->data_offset,
2142 					      rdev2->size * 2))) {
2143 					overlap = 1;
2144 					break;
2145 				}
2146 			mddev_unlock(mddev);
2147 			if (overlap) {
2148 				mddev_put(mddev);
2149 				break;
2150 			}
2151 		}
2152 		mddev_lock(my_mddev);
2153 		if (overlap) {
2154 			/* Someone else could have slipped in a size
2155 			 * change here, but doing so is just silly.
2156 			 * We put oldsize back because we *know* it is
2157 			 * safe, and trust userspace not to race with
2158 			 * itself
2159 			 */
2160 			rdev->size = oldsize;
2161 			return -EBUSY;
2162 		}
2163 	}
2164 	return len;
2165 }
2166 
2167 static struct rdev_sysfs_entry rdev_size =
2168 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2169 
2170 static struct attribute *rdev_default_attrs[] = {
2171 	&rdev_state.attr,
2172 	&rdev_errors.attr,
2173 	&rdev_slot.attr,
2174 	&rdev_offset.attr,
2175 	&rdev_size.attr,
2176 	NULL,
2177 };
2178 static ssize_t
2179 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2180 {
2181 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2182 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2183 	mddev_t *mddev = rdev->mddev;
2184 	ssize_t rv;
2185 
2186 	if (!entry->show)
2187 		return -EIO;
2188 
2189 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2190 	if (!rv) {
2191 		if (rdev->mddev == NULL)
2192 			rv = -EBUSY;
2193 		else
2194 			rv = entry->show(rdev, page);
2195 		mddev_unlock(mddev);
2196 	}
2197 	return rv;
2198 }
2199 
2200 static ssize_t
2201 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2202 	      const char *page, size_t length)
2203 {
2204 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2205 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2206 	ssize_t rv;
2207 	mddev_t *mddev = rdev->mddev;
2208 
2209 	if (!entry->store)
2210 		return -EIO;
2211 	if (!capable(CAP_SYS_ADMIN))
2212 		return -EACCES;
2213 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2214 	if (!rv) {
2215 		if (rdev->mddev == NULL)
2216 			rv = -EBUSY;
2217 		else
2218 			rv = entry->store(rdev, page, length);
2219 		mddev_unlock(mddev);
2220 	}
2221 	return rv;
2222 }
2223 
2224 static void rdev_free(struct kobject *ko)
2225 {
2226 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2227 	kfree(rdev);
2228 }
2229 static struct sysfs_ops rdev_sysfs_ops = {
2230 	.show		= rdev_attr_show,
2231 	.store		= rdev_attr_store,
2232 };
2233 static struct kobj_type rdev_ktype = {
2234 	.release	= rdev_free,
2235 	.sysfs_ops	= &rdev_sysfs_ops,
2236 	.default_attrs	= rdev_default_attrs,
2237 };
2238 
2239 /*
2240  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2241  *
2242  * mark the device faulty if:
2243  *
2244  *   - the device is nonexistent (zero size)
2245  *   - the device has no valid superblock
2246  *
2247  * a faulty rdev _never_ has rdev->sb set.
2248  */
2249 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2250 {
2251 	char b[BDEVNAME_SIZE];
2252 	int err;
2253 	mdk_rdev_t *rdev;
2254 	sector_t size;
2255 
2256 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2257 	if (!rdev) {
2258 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2259 		return ERR_PTR(-ENOMEM);
2260 	}
2261 
2262 	if ((err = alloc_disk_sb(rdev)))
2263 		goto abort_free;
2264 
2265 	err = lock_rdev(rdev, newdev, super_format == -2);
2266 	if (err)
2267 		goto abort_free;
2268 
2269 	kobject_init(&rdev->kobj, &rdev_ktype);
2270 
2271 	rdev->desc_nr = -1;
2272 	rdev->saved_raid_disk = -1;
2273 	rdev->raid_disk = -1;
2274 	rdev->flags = 0;
2275 	rdev->data_offset = 0;
2276 	rdev->sb_events = 0;
2277 	atomic_set(&rdev->nr_pending, 0);
2278 	atomic_set(&rdev->read_errors, 0);
2279 	atomic_set(&rdev->corrected_errors, 0);
2280 
2281 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2282 	if (!size) {
2283 		printk(KERN_WARNING
2284 			"md: %s has zero or unknown size, marking faulty!\n",
2285 			bdevname(rdev->bdev,b));
2286 		err = -EINVAL;
2287 		goto abort_free;
2288 	}
2289 
2290 	if (super_format >= 0) {
2291 		err = super_types[super_format].
2292 			load_super(rdev, NULL, super_minor);
2293 		if (err == -EINVAL) {
2294 			printk(KERN_WARNING
2295 				"md: %s does not have a valid v%d.%d "
2296 			       "superblock, not importing!\n",
2297 				bdevname(rdev->bdev,b),
2298 			       super_format, super_minor);
2299 			goto abort_free;
2300 		}
2301 		if (err < 0) {
2302 			printk(KERN_WARNING
2303 				"md: could not read %s's sb, not importing!\n",
2304 				bdevname(rdev->bdev,b));
2305 			goto abort_free;
2306 		}
2307 	}
2308 
2309 	INIT_LIST_HEAD(&rdev->same_set);
2310 	init_waitqueue_head(&rdev->blocked_wait);
2311 
2312 	return rdev;
2313 
2314 abort_free:
2315 	if (rdev->sb_page) {
2316 		if (rdev->bdev)
2317 			unlock_rdev(rdev);
2318 		free_disk_sb(rdev);
2319 	}
2320 	kfree(rdev);
2321 	return ERR_PTR(err);
2322 }
2323 
2324 /*
2325  * Check a full RAID array for plausibility
2326  */
2327 
2328 
2329 static void analyze_sbs(mddev_t * mddev)
2330 {
2331 	int i;
2332 	struct list_head *tmp;
2333 	mdk_rdev_t *rdev, *freshest;
2334 	char b[BDEVNAME_SIZE];
2335 
2336 	freshest = NULL;
2337 	rdev_for_each(rdev, tmp, mddev)
2338 		switch (super_types[mddev->major_version].
2339 			load_super(rdev, freshest, mddev->minor_version)) {
2340 		case 1:
2341 			freshest = rdev;
2342 			break;
2343 		case 0:
2344 			break;
2345 		default:
2346 			printk( KERN_ERR \
2347 				"md: fatal superblock inconsistency in %s"
2348 				" -- removing from array\n",
2349 				bdevname(rdev->bdev,b));
2350 			kick_rdev_from_array(rdev);
2351 		}
2352 
2353 
2354 	super_types[mddev->major_version].
2355 		validate_super(mddev, freshest);
2356 
2357 	i = 0;
2358 	rdev_for_each(rdev, tmp, mddev) {
2359 		if (rdev != freshest)
2360 			if (super_types[mddev->major_version].
2361 			    validate_super(mddev, rdev)) {
2362 				printk(KERN_WARNING "md: kicking non-fresh %s"
2363 					" from array!\n",
2364 					bdevname(rdev->bdev,b));
2365 				kick_rdev_from_array(rdev);
2366 				continue;
2367 			}
2368 		if (mddev->level == LEVEL_MULTIPATH) {
2369 			rdev->desc_nr = i++;
2370 			rdev->raid_disk = rdev->desc_nr;
2371 			set_bit(In_sync, &rdev->flags);
2372 		} else if (rdev->raid_disk >= mddev->raid_disks) {
2373 			rdev->raid_disk = -1;
2374 			clear_bit(In_sync, &rdev->flags);
2375 		}
2376 	}
2377 
2378 
2379 
2380 	if (mddev->recovery_cp != MaxSector &&
2381 	    mddev->level >= 1)
2382 		printk(KERN_ERR "md: %s: raid array is not clean"
2383 		       " -- starting background reconstruction\n",
2384 		       mdname(mddev));
2385 
2386 }
2387 
2388 static void md_safemode_timeout(unsigned long data);
2389 
2390 static ssize_t
2391 safe_delay_show(mddev_t *mddev, char *page)
2392 {
2393 	int msec = (mddev->safemode_delay*1000)/HZ;
2394 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2395 }
2396 static ssize_t
2397 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2398 {
2399 	int scale=1;
2400 	int dot=0;
2401 	int i;
2402 	unsigned long msec;
2403 	char buf[30];
2404 	char *e;
2405 	/* remove a period, and count digits after it */
2406 	if (len >= sizeof(buf))
2407 		return -EINVAL;
2408 	strlcpy(buf, cbuf, len);
2409 	buf[len] = 0;
2410 	for (i=0; i<len; i++) {
2411 		if (dot) {
2412 			if (isdigit(buf[i])) {
2413 				buf[i-1] = buf[i];
2414 				scale *= 10;
2415 			}
2416 			buf[i] = 0;
2417 		} else if (buf[i] == '.') {
2418 			dot=1;
2419 			buf[i] = 0;
2420 		}
2421 	}
2422 	msec = simple_strtoul(buf, &e, 10);
2423 	if (e == buf || (*e && *e != '\n'))
2424 		return -EINVAL;
2425 	msec = (msec * 1000) / scale;
2426 	if (msec == 0)
2427 		mddev->safemode_delay = 0;
2428 	else {
2429 		unsigned long old_delay = mddev->safemode_delay;
2430 		mddev->safemode_delay = (msec*HZ)/1000;
2431 		if (mddev->safemode_delay == 0)
2432 			mddev->safemode_delay = 1;
2433 		if (mddev->safemode_delay < old_delay)
2434 			md_safemode_timeout((unsigned long)mddev);
2435 	}
2436 	return len;
2437 }
2438 static struct md_sysfs_entry md_safe_delay =
2439 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2440 
2441 static ssize_t
2442 level_show(mddev_t *mddev, char *page)
2443 {
2444 	struct mdk_personality *p = mddev->pers;
2445 	if (p)
2446 		return sprintf(page, "%s\n", p->name);
2447 	else if (mddev->clevel[0])
2448 		return sprintf(page, "%s\n", mddev->clevel);
2449 	else if (mddev->level != LEVEL_NONE)
2450 		return sprintf(page, "%d\n", mddev->level);
2451 	else
2452 		return 0;
2453 }
2454 
2455 static ssize_t
2456 level_store(mddev_t *mddev, const char *buf, size_t len)
2457 {
2458 	ssize_t rv = len;
2459 	if (mddev->pers)
2460 		return -EBUSY;
2461 	if (len == 0)
2462 		return 0;
2463 	if (len >= sizeof(mddev->clevel))
2464 		return -ENOSPC;
2465 	strncpy(mddev->clevel, buf, len);
2466 	if (mddev->clevel[len-1] == '\n')
2467 		len--;
2468 	mddev->clevel[len] = 0;
2469 	mddev->level = LEVEL_NONE;
2470 	return rv;
2471 }
2472 
2473 static struct md_sysfs_entry md_level =
2474 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2475 
2476 
2477 static ssize_t
2478 layout_show(mddev_t *mddev, char *page)
2479 {
2480 	/* just a number, not meaningful for all levels */
2481 	if (mddev->reshape_position != MaxSector &&
2482 	    mddev->layout != mddev->new_layout)
2483 		return sprintf(page, "%d (%d)\n",
2484 			       mddev->new_layout, mddev->layout);
2485 	return sprintf(page, "%d\n", mddev->layout);
2486 }
2487 
2488 static ssize_t
2489 layout_store(mddev_t *mddev, const char *buf, size_t len)
2490 {
2491 	char *e;
2492 	unsigned long n = simple_strtoul(buf, &e, 10);
2493 
2494 	if (!*buf || (*e && *e != '\n'))
2495 		return -EINVAL;
2496 
2497 	if (mddev->pers)
2498 		return -EBUSY;
2499 	if (mddev->reshape_position != MaxSector)
2500 		mddev->new_layout = n;
2501 	else
2502 		mddev->layout = n;
2503 	return len;
2504 }
2505 static struct md_sysfs_entry md_layout =
2506 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2507 
2508 
2509 static ssize_t
2510 raid_disks_show(mddev_t *mddev, char *page)
2511 {
2512 	if (mddev->raid_disks == 0)
2513 		return 0;
2514 	if (mddev->reshape_position != MaxSector &&
2515 	    mddev->delta_disks != 0)
2516 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2517 			       mddev->raid_disks - mddev->delta_disks);
2518 	return sprintf(page, "%d\n", mddev->raid_disks);
2519 }
2520 
2521 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2522 
2523 static ssize_t
2524 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2525 {
2526 	char *e;
2527 	int rv = 0;
2528 	unsigned long n = simple_strtoul(buf, &e, 10);
2529 
2530 	if (!*buf || (*e && *e != '\n'))
2531 		return -EINVAL;
2532 
2533 	if (mddev->pers)
2534 		rv = update_raid_disks(mddev, n);
2535 	else if (mddev->reshape_position != MaxSector) {
2536 		int olddisks = mddev->raid_disks - mddev->delta_disks;
2537 		mddev->delta_disks = n - olddisks;
2538 		mddev->raid_disks = n;
2539 	} else
2540 		mddev->raid_disks = n;
2541 	return rv ? rv : len;
2542 }
2543 static struct md_sysfs_entry md_raid_disks =
2544 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2545 
2546 static ssize_t
2547 chunk_size_show(mddev_t *mddev, char *page)
2548 {
2549 	if (mddev->reshape_position != MaxSector &&
2550 	    mddev->chunk_size != mddev->new_chunk)
2551 		return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2552 			       mddev->chunk_size);
2553 	return sprintf(page, "%d\n", mddev->chunk_size);
2554 }
2555 
2556 static ssize_t
2557 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2558 {
2559 	/* can only set chunk_size if array is not yet active */
2560 	char *e;
2561 	unsigned long n = simple_strtoul(buf, &e, 10);
2562 
2563 	if (!*buf || (*e && *e != '\n'))
2564 		return -EINVAL;
2565 
2566 	if (mddev->pers)
2567 		return -EBUSY;
2568 	else if (mddev->reshape_position != MaxSector)
2569 		mddev->new_chunk = n;
2570 	else
2571 		mddev->chunk_size = n;
2572 	return len;
2573 }
2574 static struct md_sysfs_entry md_chunk_size =
2575 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2576 
2577 static ssize_t
2578 resync_start_show(mddev_t *mddev, char *page)
2579 {
2580 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2581 }
2582 
2583 static ssize_t
2584 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2585 {
2586 	char *e;
2587 	unsigned long long n = simple_strtoull(buf, &e, 10);
2588 
2589 	if (mddev->pers)
2590 		return -EBUSY;
2591 	if (!*buf || (*e && *e != '\n'))
2592 		return -EINVAL;
2593 
2594 	mddev->recovery_cp = n;
2595 	return len;
2596 }
2597 static struct md_sysfs_entry md_resync_start =
2598 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2599 
2600 /*
2601  * The array state can be:
2602  *
2603  * clear
2604  *     No devices, no size, no level
2605  *     Equivalent to STOP_ARRAY ioctl
2606  * inactive
2607  *     May have some settings, but array is not active
2608  *        all IO results in error
2609  *     When written, doesn't tear down array, but just stops it
2610  * suspended (not supported yet)
2611  *     All IO requests will block. The array can be reconfigured.
2612  *     Writing this, if accepted, will block until array is quiescent
2613  * readonly
2614  *     no resync can happen.  no superblocks get written.
2615  *     write requests fail
2616  * read-auto
2617  *     like readonly, but behaves like 'clean' on a write request.
2618  *
2619  * clean - no pending writes, but otherwise active.
2620  *     When written to inactive array, starts without resync
2621  *     If a write request arrives then
2622  *       if metadata is known, mark 'dirty' and switch to 'active'.
2623  *       if not known, block and switch to write-pending
2624  *     If written to an active array that has pending writes, then fails.
2625  * active
2626  *     fully active: IO and resync can be happening.
2627  *     When written to inactive array, starts with resync
2628  *
2629  * write-pending
2630  *     clean, but writes are blocked waiting for 'active' to be written.
2631  *
2632  * active-idle
2633  *     like active, but no writes have been seen for a while (100msec).
2634  *
2635  */
2636 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2637 		   write_pending, active_idle, bad_word};
2638 static char *array_states[] = {
2639 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2640 	"write-pending", "active-idle", NULL };
2641 
2642 static int match_word(const char *word, char **list)
2643 {
2644 	int n;
2645 	for (n=0; list[n]; n++)
2646 		if (cmd_match(word, list[n]))
2647 			break;
2648 	return n;
2649 }
2650 
2651 static ssize_t
2652 array_state_show(mddev_t *mddev, char *page)
2653 {
2654 	enum array_state st = inactive;
2655 
2656 	if (mddev->pers)
2657 		switch(mddev->ro) {
2658 		case 1:
2659 			st = readonly;
2660 			break;
2661 		case 2:
2662 			st = read_auto;
2663 			break;
2664 		case 0:
2665 			if (mddev->in_sync)
2666 				st = clean;
2667 			else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2668 				st = write_pending;
2669 			else if (mddev->safemode)
2670 				st = active_idle;
2671 			else
2672 				st = active;
2673 		}
2674 	else {
2675 		if (list_empty(&mddev->disks) &&
2676 		    mddev->raid_disks == 0 &&
2677 		    mddev->size == 0)
2678 			st = clear;
2679 		else
2680 			st = inactive;
2681 	}
2682 	return sprintf(page, "%s\n", array_states[st]);
2683 }
2684 
2685 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
2686 static int do_md_run(mddev_t * mddev);
2687 static int restart_array(mddev_t *mddev);
2688 
2689 static ssize_t
2690 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2691 {
2692 	int err = -EINVAL;
2693 	enum array_state st = match_word(buf, array_states);
2694 	switch(st) {
2695 	case bad_word:
2696 		break;
2697 	case clear:
2698 		/* stopping an active array */
2699 		if (atomic_read(&mddev->openers) > 0)
2700 			return -EBUSY;
2701 		err = do_md_stop(mddev, 0, 0);
2702 		break;
2703 	case inactive:
2704 		/* stopping an active array */
2705 		if (mddev->pers) {
2706 			if (atomic_read(&mddev->openers) > 0)
2707 				return -EBUSY;
2708 			err = do_md_stop(mddev, 2, 0);
2709 		} else
2710 			err = 0; /* already inactive */
2711 		break;
2712 	case suspended:
2713 		break; /* not supported yet */
2714 	case readonly:
2715 		if (mddev->pers)
2716 			err = do_md_stop(mddev, 1, 0);
2717 		else {
2718 			mddev->ro = 1;
2719 			set_disk_ro(mddev->gendisk, 1);
2720 			err = do_md_run(mddev);
2721 		}
2722 		break;
2723 	case read_auto:
2724 		if (mddev->pers) {
2725 			if (mddev->ro != 1)
2726 				err = do_md_stop(mddev, 1, 0);
2727 			else
2728 				err = restart_array(mddev);
2729 			if (err == 0) {
2730 				mddev->ro = 2;
2731 				set_disk_ro(mddev->gendisk, 0);
2732 			}
2733 		} else {
2734 			mddev->ro = 2;
2735 			err = do_md_run(mddev);
2736 		}
2737 		break;
2738 	case clean:
2739 		if (mddev->pers) {
2740 			restart_array(mddev);
2741 			spin_lock_irq(&mddev->write_lock);
2742 			if (atomic_read(&mddev->writes_pending) == 0) {
2743 				if (mddev->in_sync == 0) {
2744 					mddev->in_sync = 1;
2745 					if (mddev->safemode == 1)
2746 						mddev->safemode = 0;
2747 					if (mddev->persistent)
2748 						set_bit(MD_CHANGE_CLEAN,
2749 							&mddev->flags);
2750 				}
2751 				err = 0;
2752 			} else
2753 				err = -EBUSY;
2754 			spin_unlock_irq(&mddev->write_lock);
2755 		} else {
2756 			mddev->ro = 0;
2757 			mddev->recovery_cp = MaxSector;
2758 			err = do_md_run(mddev);
2759 		}
2760 		break;
2761 	case active:
2762 		if (mddev->pers) {
2763 			restart_array(mddev);
2764 			if (mddev->external)
2765 				clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2766 			wake_up(&mddev->sb_wait);
2767 			err = 0;
2768 		} else {
2769 			mddev->ro = 0;
2770 			set_disk_ro(mddev->gendisk, 0);
2771 			err = do_md_run(mddev);
2772 		}
2773 		break;
2774 	case write_pending:
2775 	case active_idle:
2776 		/* these cannot be set */
2777 		break;
2778 	}
2779 	if (err)
2780 		return err;
2781 	else {
2782 		sysfs_notify(&mddev->kobj, NULL, "array_state");
2783 		return len;
2784 	}
2785 }
2786 static struct md_sysfs_entry md_array_state =
2787 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2788 
2789 static ssize_t
2790 null_show(mddev_t *mddev, char *page)
2791 {
2792 	return -EINVAL;
2793 }
2794 
2795 static ssize_t
2796 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2797 {
2798 	/* buf must be %d:%d\n? giving major and minor numbers */
2799 	/* The new device is added to the array.
2800 	 * If the array has a persistent superblock, we read the
2801 	 * superblock to initialise info and check validity.
2802 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2803 	 * which mainly checks size.
2804 	 */
2805 	char *e;
2806 	int major = simple_strtoul(buf, &e, 10);
2807 	int minor;
2808 	dev_t dev;
2809 	mdk_rdev_t *rdev;
2810 	int err;
2811 
2812 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2813 		return -EINVAL;
2814 	minor = simple_strtoul(e+1, &e, 10);
2815 	if (*e && *e != '\n')
2816 		return -EINVAL;
2817 	dev = MKDEV(major, minor);
2818 	if (major != MAJOR(dev) ||
2819 	    minor != MINOR(dev))
2820 		return -EOVERFLOW;
2821 
2822 
2823 	if (mddev->persistent) {
2824 		rdev = md_import_device(dev, mddev->major_version,
2825 					mddev->minor_version);
2826 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2827 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2828 						       mdk_rdev_t, same_set);
2829 			err = super_types[mddev->major_version]
2830 				.load_super(rdev, rdev0, mddev->minor_version);
2831 			if (err < 0)
2832 				goto out;
2833 		}
2834 	} else if (mddev->external)
2835 		rdev = md_import_device(dev, -2, -1);
2836 	else
2837 		rdev = md_import_device(dev, -1, -1);
2838 
2839 	if (IS_ERR(rdev))
2840 		return PTR_ERR(rdev);
2841 	err = bind_rdev_to_array(rdev, mddev);
2842  out:
2843 	if (err)
2844 		export_rdev(rdev);
2845 	return err ? err : len;
2846 }
2847 
2848 static struct md_sysfs_entry md_new_device =
2849 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2850 
2851 static ssize_t
2852 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2853 {
2854 	char *end;
2855 	unsigned long chunk, end_chunk;
2856 
2857 	if (!mddev->bitmap)
2858 		goto out;
2859 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2860 	while (*buf) {
2861 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
2862 		if (buf == end) break;
2863 		if (*end == '-') { /* range */
2864 			buf = end + 1;
2865 			end_chunk = simple_strtoul(buf, &end, 0);
2866 			if (buf == end) break;
2867 		}
2868 		if (*end && !isspace(*end)) break;
2869 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2870 		buf = end;
2871 		while (isspace(*buf)) buf++;
2872 	}
2873 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2874 out:
2875 	return len;
2876 }
2877 
2878 static struct md_sysfs_entry md_bitmap =
2879 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2880 
2881 static ssize_t
2882 size_show(mddev_t *mddev, char *page)
2883 {
2884 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2885 }
2886 
2887 static int update_size(mddev_t *mddev, sector_t num_sectors);
2888 
2889 static ssize_t
2890 size_store(mddev_t *mddev, const char *buf, size_t len)
2891 {
2892 	/* If array is inactive, we can reduce the component size, but
2893 	 * not increase it (except from 0).
2894 	 * If array is active, we can try an on-line resize
2895 	 */
2896 	char *e;
2897 	int err = 0;
2898 	unsigned long long size = simple_strtoull(buf, &e, 10);
2899 	if (!*buf || *buf == '\n' ||
2900 	    (*e && *e != '\n'))
2901 		return -EINVAL;
2902 
2903 	if (mddev->pers) {
2904 		err = update_size(mddev, size * 2);
2905 		md_update_sb(mddev, 1);
2906 	} else {
2907 		if (mddev->size == 0 ||
2908 		    mddev->size > size)
2909 			mddev->size = size;
2910 		else
2911 			err = -ENOSPC;
2912 	}
2913 	return err ? err : len;
2914 }
2915 
2916 static struct md_sysfs_entry md_size =
2917 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2918 
2919 
2920 /* Metdata version.
2921  * This is one of
2922  *   'none' for arrays with no metadata (good luck...)
2923  *   'external' for arrays with externally managed metadata,
2924  * or N.M for internally known formats
2925  */
2926 static ssize_t
2927 metadata_show(mddev_t *mddev, char *page)
2928 {
2929 	if (mddev->persistent)
2930 		return sprintf(page, "%d.%d\n",
2931 			       mddev->major_version, mddev->minor_version);
2932 	else if (mddev->external)
2933 		return sprintf(page, "external:%s\n", mddev->metadata_type);
2934 	else
2935 		return sprintf(page, "none\n");
2936 }
2937 
2938 static ssize_t
2939 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2940 {
2941 	int major, minor;
2942 	char *e;
2943 	if (!list_empty(&mddev->disks))
2944 		return -EBUSY;
2945 
2946 	if (cmd_match(buf, "none")) {
2947 		mddev->persistent = 0;
2948 		mddev->external = 0;
2949 		mddev->major_version = 0;
2950 		mddev->minor_version = 90;
2951 		return len;
2952 	}
2953 	if (strncmp(buf, "external:", 9) == 0) {
2954 		size_t namelen = len-9;
2955 		if (namelen >= sizeof(mddev->metadata_type))
2956 			namelen = sizeof(mddev->metadata_type)-1;
2957 		strncpy(mddev->metadata_type, buf+9, namelen);
2958 		mddev->metadata_type[namelen] = 0;
2959 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
2960 			mddev->metadata_type[--namelen] = 0;
2961 		mddev->persistent = 0;
2962 		mddev->external = 1;
2963 		mddev->major_version = 0;
2964 		mddev->minor_version = 90;
2965 		return len;
2966 	}
2967 	major = simple_strtoul(buf, &e, 10);
2968 	if (e==buf || *e != '.')
2969 		return -EINVAL;
2970 	buf = e+1;
2971 	minor = simple_strtoul(buf, &e, 10);
2972 	if (e==buf || (*e && *e != '\n') )
2973 		return -EINVAL;
2974 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2975 		return -ENOENT;
2976 	mddev->major_version = major;
2977 	mddev->minor_version = minor;
2978 	mddev->persistent = 1;
2979 	mddev->external = 0;
2980 	return len;
2981 }
2982 
2983 static struct md_sysfs_entry md_metadata =
2984 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2985 
2986 static ssize_t
2987 action_show(mddev_t *mddev, char *page)
2988 {
2989 	char *type = "idle";
2990 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2991 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2992 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2993 			type = "reshape";
2994 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2995 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2996 				type = "resync";
2997 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2998 				type = "check";
2999 			else
3000 				type = "repair";
3001 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3002 			type = "recover";
3003 	}
3004 	return sprintf(page, "%s\n", type);
3005 }
3006 
3007 static ssize_t
3008 action_store(mddev_t *mddev, const char *page, size_t len)
3009 {
3010 	if (!mddev->pers || !mddev->pers->sync_request)
3011 		return -EINVAL;
3012 
3013 	if (cmd_match(page, "idle")) {
3014 		if (mddev->sync_thread) {
3015 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3016 			md_unregister_thread(mddev->sync_thread);
3017 			mddev->sync_thread = NULL;
3018 			mddev->recovery = 0;
3019 		}
3020 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3021 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3022 		return -EBUSY;
3023 	else if (cmd_match(page, "resync"))
3024 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3025 	else if (cmd_match(page, "recover")) {
3026 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3027 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3028 	} else if (cmd_match(page, "reshape")) {
3029 		int err;
3030 		if (mddev->pers->start_reshape == NULL)
3031 			return -EINVAL;
3032 		err = mddev->pers->start_reshape(mddev);
3033 		if (err)
3034 			return err;
3035 		sysfs_notify(&mddev->kobj, NULL, "degraded");
3036 	} else {
3037 		if (cmd_match(page, "check"))
3038 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3039 		else if (!cmd_match(page, "repair"))
3040 			return -EINVAL;
3041 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3042 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3043 	}
3044 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3045 	md_wakeup_thread(mddev->thread);
3046 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
3047 	return len;
3048 }
3049 
3050 static ssize_t
3051 mismatch_cnt_show(mddev_t *mddev, char *page)
3052 {
3053 	return sprintf(page, "%llu\n",
3054 		       (unsigned long long) mddev->resync_mismatches);
3055 }
3056 
3057 static struct md_sysfs_entry md_scan_mode =
3058 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3059 
3060 
3061 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3062 
3063 static ssize_t
3064 sync_min_show(mddev_t *mddev, char *page)
3065 {
3066 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
3067 		       mddev->sync_speed_min ? "local": "system");
3068 }
3069 
3070 static ssize_t
3071 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3072 {
3073 	int min;
3074 	char *e;
3075 	if (strncmp(buf, "system", 6)==0) {
3076 		mddev->sync_speed_min = 0;
3077 		return len;
3078 	}
3079 	min = simple_strtoul(buf, &e, 10);
3080 	if (buf == e || (*e && *e != '\n') || min <= 0)
3081 		return -EINVAL;
3082 	mddev->sync_speed_min = min;
3083 	return len;
3084 }
3085 
3086 static struct md_sysfs_entry md_sync_min =
3087 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3088 
3089 static ssize_t
3090 sync_max_show(mddev_t *mddev, char *page)
3091 {
3092 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
3093 		       mddev->sync_speed_max ? "local": "system");
3094 }
3095 
3096 static ssize_t
3097 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3098 {
3099 	int max;
3100 	char *e;
3101 	if (strncmp(buf, "system", 6)==0) {
3102 		mddev->sync_speed_max = 0;
3103 		return len;
3104 	}
3105 	max = simple_strtoul(buf, &e, 10);
3106 	if (buf == e || (*e && *e != '\n') || max <= 0)
3107 		return -EINVAL;
3108 	mddev->sync_speed_max = max;
3109 	return len;
3110 }
3111 
3112 static struct md_sysfs_entry md_sync_max =
3113 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3114 
3115 static ssize_t
3116 degraded_show(mddev_t *mddev, char *page)
3117 {
3118 	return sprintf(page, "%d\n", mddev->degraded);
3119 }
3120 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3121 
3122 static ssize_t
3123 sync_force_parallel_show(mddev_t *mddev, char *page)
3124 {
3125 	return sprintf(page, "%d\n", mddev->parallel_resync);
3126 }
3127 
3128 static ssize_t
3129 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3130 {
3131 	long n;
3132 
3133 	if (strict_strtol(buf, 10, &n))
3134 		return -EINVAL;
3135 
3136 	if (n != 0 && n != 1)
3137 		return -EINVAL;
3138 
3139 	mddev->parallel_resync = n;
3140 
3141 	if (mddev->sync_thread)
3142 		wake_up(&resync_wait);
3143 
3144 	return len;
3145 }
3146 
3147 /* force parallel resync, even with shared block devices */
3148 static struct md_sysfs_entry md_sync_force_parallel =
3149 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3150        sync_force_parallel_show, sync_force_parallel_store);
3151 
3152 static ssize_t
3153 sync_speed_show(mddev_t *mddev, char *page)
3154 {
3155 	unsigned long resync, dt, db;
3156 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3157 	dt = (jiffies - mddev->resync_mark) / HZ;
3158 	if (!dt) dt++;
3159 	db = resync - mddev->resync_mark_cnt;
3160 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3161 }
3162 
3163 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3164 
3165 static ssize_t
3166 sync_completed_show(mddev_t *mddev, char *page)
3167 {
3168 	unsigned long max_blocks, resync;
3169 
3170 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3171 		max_blocks = mddev->resync_max_sectors;
3172 	else
3173 		max_blocks = mddev->size << 1;
3174 
3175 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3176 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
3177 }
3178 
3179 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3180 
3181 static ssize_t
3182 min_sync_show(mddev_t *mddev, char *page)
3183 {
3184 	return sprintf(page, "%llu\n",
3185 		       (unsigned long long)mddev->resync_min);
3186 }
3187 static ssize_t
3188 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3189 {
3190 	unsigned long long min;
3191 	if (strict_strtoull(buf, 10, &min))
3192 		return -EINVAL;
3193 	if (min > mddev->resync_max)
3194 		return -EINVAL;
3195 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3196 		return -EBUSY;
3197 
3198 	/* Must be a multiple of chunk_size */
3199 	if (mddev->chunk_size) {
3200 		if (min & (sector_t)((mddev->chunk_size>>9)-1))
3201 			return -EINVAL;
3202 	}
3203 	mddev->resync_min = min;
3204 
3205 	return len;
3206 }
3207 
3208 static struct md_sysfs_entry md_min_sync =
3209 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3210 
3211 static ssize_t
3212 max_sync_show(mddev_t *mddev, char *page)
3213 {
3214 	if (mddev->resync_max == MaxSector)
3215 		return sprintf(page, "max\n");
3216 	else
3217 		return sprintf(page, "%llu\n",
3218 			       (unsigned long long)mddev->resync_max);
3219 }
3220 static ssize_t
3221 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3222 {
3223 	if (strncmp(buf, "max", 3) == 0)
3224 		mddev->resync_max = MaxSector;
3225 	else {
3226 		unsigned long long max;
3227 		if (strict_strtoull(buf, 10, &max))
3228 			return -EINVAL;
3229 		if (max < mddev->resync_min)
3230 			return -EINVAL;
3231 		if (max < mddev->resync_max &&
3232 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3233 			return -EBUSY;
3234 
3235 		/* Must be a multiple of chunk_size */
3236 		if (mddev->chunk_size) {
3237 			if (max & (sector_t)((mddev->chunk_size>>9)-1))
3238 				return -EINVAL;
3239 		}
3240 		mddev->resync_max = max;
3241 	}
3242 	wake_up(&mddev->recovery_wait);
3243 	return len;
3244 }
3245 
3246 static struct md_sysfs_entry md_max_sync =
3247 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3248 
3249 static ssize_t
3250 suspend_lo_show(mddev_t *mddev, char *page)
3251 {
3252 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3253 }
3254 
3255 static ssize_t
3256 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3257 {
3258 	char *e;
3259 	unsigned long long new = simple_strtoull(buf, &e, 10);
3260 
3261 	if (mddev->pers->quiesce == NULL)
3262 		return -EINVAL;
3263 	if (buf == e || (*e && *e != '\n'))
3264 		return -EINVAL;
3265 	if (new >= mddev->suspend_hi ||
3266 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3267 		mddev->suspend_lo = new;
3268 		mddev->pers->quiesce(mddev, 2);
3269 		return len;
3270 	} else
3271 		return -EINVAL;
3272 }
3273 static struct md_sysfs_entry md_suspend_lo =
3274 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3275 
3276 
3277 static ssize_t
3278 suspend_hi_show(mddev_t *mddev, char *page)
3279 {
3280 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3281 }
3282 
3283 static ssize_t
3284 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3285 {
3286 	char *e;
3287 	unsigned long long new = simple_strtoull(buf, &e, 10);
3288 
3289 	if (mddev->pers->quiesce == NULL)
3290 		return -EINVAL;
3291 	if (buf == e || (*e && *e != '\n'))
3292 		return -EINVAL;
3293 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3294 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3295 		mddev->suspend_hi = new;
3296 		mddev->pers->quiesce(mddev, 1);
3297 		mddev->pers->quiesce(mddev, 0);
3298 		return len;
3299 	} else
3300 		return -EINVAL;
3301 }
3302 static struct md_sysfs_entry md_suspend_hi =
3303 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3304 
3305 static ssize_t
3306 reshape_position_show(mddev_t *mddev, char *page)
3307 {
3308 	if (mddev->reshape_position != MaxSector)
3309 		return sprintf(page, "%llu\n",
3310 			       (unsigned long long)mddev->reshape_position);
3311 	strcpy(page, "none\n");
3312 	return 5;
3313 }
3314 
3315 static ssize_t
3316 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3317 {
3318 	char *e;
3319 	unsigned long long new = simple_strtoull(buf, &e, 10);
3320 	if (mddev->pers)
3321 		return -EBUSY;
3322 	if (buf == e || (*e && *e != '\n'))
3323 		return -EINVAL;
3324 	mddev->reshape_position = new;
3325 	mddev->delta_disks = 0;
3326 	mddev->new_level = mddev->level;
3327 	mddev->new_layout = mddev->layout;
3328 	mddev->new_chunk = mddev->chunk_size;
3329 	return len;
3330 }
3331 
3332 static struct md_sysfs_entry md_reshape_position =
3333 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3334        reshape_position_store);
3335 
3336 
3337 static struct attribute *md_default_attrs[] = {
3338 	&md_level.attr,
3339 	&md_layout.attr,
3340 	&md_raid_disks.attr,
3341 	&md_chunk_size.attr,
3342 	&md_size.attr,
3343 	&md_resync_start.attr,
3344 	&md_metadata.attr,
3345 	&md_new_device.attr,
3346 	&md_safe_delay.attr,
3347 	&md_array_state.attr,
3348 	&md_reshape_position.attr,
3349 	NULL,
3350 };
3351 
3352 static struct attribute *md_redundancy_attrs[] = {
3353 	&md_scan_mode.attr,
3354 	&md_mismatches.attr,
3355 	&md_sync_min.attr,
3356 	&md_sync_max.attr,
3357 	&md_sync_speed.attr,
3358 	&md_sync_force_parallel.attr,
3359 	&md_sync_completed.attr,
3360 	&md_min_sync.attr,
3361 	&md_max_sync.attr,
3362 	&md_suspend_lo.attr,
3363 	&md_suspend_hi.attr,
3364 	&md_bitmap.attr,
3365 	&md_degraded.attr,
3366 	NULL,
3367 };
3368 static struct attribute_group md_redundancy_group = {
3369 	.name = NULL,
3370 	.attrs = md_redundancy_attrs,
3371 };
3372 
3373 
3374 static ssize_t
3375 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3376 {
3377 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3378 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3379 	ssize_t rv;
3380 
3381 	if (!entry->show)
3382 		return -EIO;
3383 	rv = mddev_lock(mddev);
3384 	if (!rv) {
3385 		rv = entry->show(mddev, page);
3386 		mddev_unlock(mddev);
3387 	}
3388 	return rv;
3389 }
3390 
3391 static ssize_t
3392 md_attr_store(struct kobject *kobj, struct attribute *attr,
3393 	      const char *page, size_t length)
3394 {
3395 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3396 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3397 	ssize_t rv;
3398 
3399 	if (!entry->store)
3400 		return -EIO;
3401 	if (!capable(CAP_SYS_ADMIN))
3402 		return -EACCES;
3403 	rv = mddev_lock(mddev);
3404 	if (!rv) {
3405 		rv = entry->store(mddev, page, length);
3406 		mddev_unlock(mddev);
3407 	}
3408 	return rv;
3409 }
3410 
3411 static void md_free(struct kobject *ko)
3412 {
3413 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
3414 	kfree(mddev);
3415 }
3416 
3417 static struct sysfs_ops md_sysfs_ops = {
3418 	.show	= md_attr_show,
3419 	.store	= md_attr_store,
3420 };
3421 static struct kobj_type md_ktype = {
3422 	.release	= md_free,
3423 	.sysfs_ops	= &md_sysfs_ops,
3424 	.default_attrs	= md_default_attrs,
3425 };
3426 
3427 int mdp_major = 0;
3428 
3429 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3430 {
3431 	static DEFINE_MUTEX(disks_mutex);
3432 	mddev_t *mddev = mddev_find(dev);
3433 	struct gendisk *disk;
3434 	int partitioned = (MAJOR(dev) != MD_MAJOR);
3435 	int shift = partitioned ? MdpMinorShift : 0;
3436 	int unit = MINOR(dev) >> shift;
3437 	int error;
3438 
3439 	if (!mddev)
3440 		return NULL;
3441 
3442 	mutex_lock(&disks_mutex);
3443 	if (mddev->gendisk) {
3444 		mutex_unlock(&disks_mutex);
3445 		mddev_put(mddev);
3446 		return NULL;
3447 	}
3448 	disk = alloc_disk(1 << shift);
3449 	if (!disk) {
3450 		mutex_unlock(&disks_mutex);
3451 		mddev_put(mddev);
3452 		return NULL;
3453 	}
3454 	disk->major = MAJOR(dev);
3455 	disk->first_minor = unit << shift;
3456 	if (partitioned)
3457 		sprintf(disk->disk_name, "md_d%d", unit);
3458 	else
3459 		sprintf(disk->disk_name, "md%d", unit);
3460 	disk->fops = &md_fops;
3461 	disk->private_data = mddev;
3462 	disk->queue = mddev->queue;
3463 	add_disk(disk);
3464 	mddev->gendisk = disk;
3465 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
3466 				     &disk_to_dev(disk)->kobj, "%s", "md");
3467 	mutex_unlock(&disks_mutex);
3468 	if (error)
3469 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3470 		       disk->disk_name);
3471 	else
3472 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
3473 	return NULL;
3474 }
3475 
3476 static void md_safemode_timeout(unsigned long data)
3477 {
3478 	mddev_t *mddev = (mddev_t *) data;
3479 
3480 	if (!atomic_read(&mddev->writes_pending)) {
3481 		mddev->safemode = 1;
3482 		if (mddev->external)
3483 			set_bit(MD_NOTIFY_ARRAY_STATE, &mddev->flags);
3484 	}
3485 	md_wakeup_thread(mddev->thread);
3486 }
3487 
3488 static int start_dirty_degraded;
3489 
3490 static int do_md_run(mddev_t * mddev)
3491 {
3492 	int err;
3493 	int chunk_size;
3494 	struct list_head *tmp;
3495 	mdk_rdev_t *rdev;
3496 	struct gendisk *disk;
3497 	struct mdk_personality *pers;
3498 	char b[BDEVNAME_SIZE];
3499 
3500 	if (list_empty(&mddev->disks))
3501 		/* cannot run an array with no devices.. */
3502 		return -EINVAL;
3503 
3504 	if (mddev->pers)
3505 		return -EBUSY;
3506 
3507 	/*
3508 	 * Analyze all RAID superblock(s)
3509 	 */
3510 	if (!mddev->raid_disks) {
3511 		if (!mddev->persistent)
3512 			return -EINVAL;
3513 		analyze_sbs(mddev);
3514 	}
3515 
3516 	chunk_size = mddev->chunk_size;
3517 
3518 	if (chunk_size) {
3519 		if (chunk_size > MAX_CHUNK_SIZE) {
3520 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
3521 				chunk_size, MAX_CHUNK_SIZE);
3522 			return -EINVAL;
3523 		}
3524 		/*
3525 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3526 		 */
3527 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
3528 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3529 			return -EINVAL;
3530 		}
3531 		if (chunk_size < PAGE_SIZE) {
3532 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3533 				chunk_size, PAGE_SIZE);
3534 			return -EINVAL;
3535 		}
3536 
3537 		/* devices must have minimum size of one chunk */
3538 		rdev_for_each(rdev, tmp, mddev) {
3539 			if (test_bit(Faulty, &rdev->flags))
3540 				continue;
3541 			if (rdev->size < chunk_size / 1024) {
3542 				printk(KERN_WARNING
3543 					"md: Dev %s smaller than chunk_size:"
3544 					" %lluk < %dk\n",
3545 					bdevname(rdev->bdev,b),
3546 					(unsigned long long)rdev->size,
3547 					chunk_size / 1024);
3548 				return -EINVAL;
3549 			}
3550 		}
3551 	}
3552 
3553 	if (mddev->level != LEVEL_NONE)
3554 		request_module("md-level-%d", mddev->level);
3555 	else if (mddev->clevel[0])
3556 		request_module("md-%s", mddev->clevel);
3557 
3558 	/*
3559 	 * Drop all container device buffers, from now on
3560 	 * the only valid external interface is through the md
3561 	 * device.
3562 	 */
3563 	rdev_for_each(rdev, tmp, mddev) {
3564 		if (test_bit(Faulty, &rdev->flags))
3565 			continue;
3566 		sync_blockdev(rdev->bdev);
3567 		invalidate_bdev(rdev->bdev);
3568 
3569 		/* perform some consistency tests on the device.
3570 		 * We don't want the data to overlap the metadata,
3571 		 * Internal Bitmap issues has handled elsewhere.
3572 		 */
3573 		if (rdev->data_offset < rdev->sb_start) {
3574 			if (mddev->size &&
3575 			    rdev->data_offset + mddev->size*2
3576 			    > rdev->sb_start) {
3577 				printk("md: %s: data overlaps metadata\n",
3578 				       mdname(mddev));
3579 				return -EINVAL;
3580 			}
3581 		} else {
3582 			if (rdev->sb_start + rdev->sb_size/512
3583 			    > rdev->data_offset) {
3584 				printk("md: %s: metadata overlaps data\n",
3585 				       mdname(mddev));
3586 				return -EINVAL;
3587 			}
3588 		}
3589 		sysfs_notify(&rdev->kobj, NULL, "state");
3590 	}
3591 
3592 	md_probe(mddev->unit, NULL, NULL);
3593 	disk = mddev->gendisk;
3594 	if (!disk)
3595 		return -ENOMEM;
3596 
3597 	spin_lock(&pers_lock);
3598 	pers = find_pers(mddev->level, mddev->clevel);
3599 	if (!pers || !try_module_get(pers->owner)) {
3600 		spin_unlock(&pers_lock);
3601 		if (mddev->level != LEVEL_NONE)
3602 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3603 			       mddev->level);
3604 		else
3605 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3606 			       mddev->clevel);
3607 		return -EINVAL;
3608 	}
3609 	mddev->pers = pers;
3610 	spin_unlock(&pers_lock);
3611 	mddev->level = pers->level;
3612 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3613 
3614 	if (mddev->reshape_position != MaxSector &&
3615 	    pers->start_reshape == NULL) {
3616 		/* This personality cannot handle reshaping... */
3617 		mddev->pers = NULL;
3618 		module_put(pers->owner);
3619 		return -EINVAL;
3620 	}
3621 
3622 	if (pers->sync_request) {
3623 		/* Warn if this is a potentially silly
3624 		 * configuration.
3625 		 */
3626 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3627 		mdk_rdev_t *rdev2;
3628 		struct list_head *tmp2;
3629 		int warned = 0;
3630 		rdev_for_each(rdev, tmp, mddev) {
3631 			rdev_for_each(rdev2, tmp2, mddev) {
3632 				if (rdev < rdev2 &&
3633 				    rdev->bdev->bd_contains ==
3634 				    rdev2->bdev->bd_contains) {
3635 					printk(KERN_WARNING
3636 					       "%s: WARNING: %s appears to be"
3637 					       " on the same physical disk as"
3638 					       " %s.\n",
3639 					       mdname(mddev),
3640 					       bdevname(rdev->bdev,b),
3641 					       bdevname(rdev2->bdev,b2));
3642 					warned = 1;
3643 				}
3644 			}
3645 		}
3646 		if (warned)
3647 			printk(KERN_WARNING
3648 			       "True protection against single-disk"
3649 			       " failure might be compromised.\n");
3650 	}
3651 
3652 	mddev->recovery = 0;
3653 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3654 	mddev->barriers_work = 1;
3655 	mddev->ok_start_degraded = start_dirty_degraded;
3656 
3657 	if (start_readonly)
3658 		mddev->ro = 2; /* read-only, but switch on first write */
3659 
3660 	err = mddev->pers->run(mddev);
3661 	if (err)
3662 		printk(KERN_ERR "md: pers->run() failed ...\n");
3663 	else if (mddev->pers->sync_request) {
3664 		err = bitmap_create(mddev);
3665 		if (err) {
3666 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3667 			       mdname(mddev), err);
3668 			mddev->pers->stop(mddev);
3669 		}
3670 	}
3671 	if (err) {
3672 		module_put(mddev->pers->owner);
3673 		mddev->pers = NULL;
3674 		bitmap_destroy(mddev);
3675 		return err;
3676 	}
3677 	if (mddev->pers->sync_request) {
3678 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3679 			printk(KERN_WARNING
3680 			       "md: cannot register extra attributes for %s\n",
3681 			       mdname(mddev));
3682 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
3683 		mddev->ro = 0;
3684 
3685  	atomic_set(&mddev->writes_pending,0);
3686 	mddev->safemode = 0;
3687 	mddev->safemode_timer.function = md_safemode_timeout;
3688 	mddev->safemode_timer.data = (unsigned long) mddev;
3689 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3690 	mddev->in_sync = 1;
3691 
3692 	rdev_for_each(rdev, tmp, mddev)
3693 		if (rdev->raid_disk >= 0) {
3694 			char nm[20];
3695 			sprintf(nm, "rd%d", rdev->raid_disk);
3696 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3697 				printk("md: cannot register %s for %s\n",
3698 				       nm, mdname(mddev));
3699 		}
3700 
3701 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3702 
3703 	if (mddev->flags)
3704 		md_update_sb(mddev, 0);
3705 
3706 	set_capacity(disk, mddev->array_sectors);
3707 
3708 	/* If we call blk_queue_make_request here, it will
3709 	 * re-initialise max_sectors etc which may have been
3710 	 * refined inside -> run.  So just set the bits we need to set.
3711 	 * Most initialisation happended when we called
3712 	 * blk_queue_make_request(..., md_fail_request)
3713 	 * earlier.
3714 	 */
3715 	mddev->queue->queuedata = mddev;
3716 	mddev->queue->make_request_fn = mddev->pers->make_request;
3717 
3718 	/* If there is a partially-recovered drive we need to
3719 	 * start recovery here.  If we leave it to md_check_recovery,
3720 	 * it will remove the drives and not do the right thing
3721 	 */
3722 	if (mddev->degraded && !mddev->sync_thread) {
3723 		struct list_head *rtmp;
3724 		int spares = 0;
3725 		rdev_for_each(rdev, rtmp, mddev)
3726 			if (rdev->raid_disk >= 0 &&
3727 			    !test_bit(In_sync, &rdev->flags) &&
3728 			    !test_bit(Faulty, &rdev->flags))
3729 				/* complete an interrupted recovery */
3730 				spares++;
3731 		if (spares && mddev->pers->sync_request) {
3732 			mddev->recovery = 0;
3733 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3734 			mddev->sync_thread = md_register_thread(md_do_sync,
3735 								mddev,
3736 								"%s_resync");
3737 			if (!mddev->sync_thread) {
3738 				printk(KERN_ERR "%s: could not start resync"
3739 				       " thread...\n",
3740 				       mdname(mddev));
3741 				/* leave the spares where they are, it shouldn't hurt */
3742 				mddev->recovery = 0;
3743 			}
3744 		}
3745 	}
3746 	md_wakeup_thread(mddev->thread);
3747 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3748 
3749 	mddev->changed = 1;
3750 	md_new_event(mddev);
3751 	sysfs_notify(&mddev->kobj, NULL, "array_state");
3752 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
3753 	sysfs_notify(&mddev->kobj, NULL, "degraded");
3754 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
3755 	return 0;
3756 }
3757 
3758 static int restart_array(mddev_t *mddev)
3759 {
3760 	struct gendisk *disk = mddev->gendisk;
3761 
3762 	/* Complain if it has no devices */
3763 	if (list_empty(&mddev->disks))
3764 		return -ENXIO;
3765 	if (!mddev->pers)
3766 		return -EINVAL;
3767 	if (!mddev->ro)
3768 		return -EBUSY;
3769 	mddev->safemode = 0;
3770 	mddev->ro = 0;
3771 	set_disk_ro(disk, 0);
3772 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
3773 		mdname(mddev));
3774 	/* Kick recovery or resync if necessary */
3775 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3776 	md_wakeup_thread(mddev->thread);
3777 	md_wakeup_thread(mddev->sync_thread);
3778 	sysfs_notify(&mddev->kobj, NULL, "array_state");
3779 	return 0;
3780 }
3781 
3782 /* similar to deny_write_access, but accounts for our holding a reference
3783  * to the file ourselves */
3784 static int deny_bitmap_write_access(struct file * file)
3785 {
3786 	struct inode *inode = file->f_mapping->host;
3787 
3788 	spin_lock(&inode->i_lock);
3789 	if (atomic_read(&inode->i_writecount) > 1) {
3790 		spin_unlock(&inode->i_lock);
3791 		return -ETXTBSY;
3792 	}
3793 	atomic_set(&inode->i_writecount, -1);
3794 	spin_unlock(&inode->i_lock);
3795 
3796 	return 0;
3797 }
3798 
3799 static void restore_bitmap_write_access(struct file *file)
3800 {
3801 	struct inode *inode = file->f_mapping->host;
3802 
3803 	spin_lock(&inode->i_lock);
3804 	atomic_set(&inode->i_writecount, 1);
3805 	spin_unlock(&inode->i_lock);
3806 }
3807 
3808 /* mode:
3809  *   0 - completely stop and dis-assemble array
3810  *   1 - switch to readonly
3811  *   2 - stop but do not disassemble array
3812  */
3813 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
3814 {
3815 	int err = 0;
3816 	struct gendisk *disk = mddev->gendisk;
3817 
3818 	if (atomic_read(&mddev->openers) > is_open) {
3819 		printk("md: %s still in use.\n",mdname(mddev));
3820 		return -EBUSY;
3821 	}
3822 
3823 	if (mddev->pers) {
3824 
3825 		if (mddev->sync_thread) {
3826 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3827 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3828 			md_unregister_thread(mddev->sync_thread);
3829 			mddev->sync_thread = NULL;
3830 		}
3831 
3832 		del_timer_sync(&mddev->safemode_timer);
3833 
3834 		switch(mode) {
3835 		case 1: /* readonly */
3836 			err  = -ENXIO;
3837 			if (mddev->ro==1)
3838 				goto out;
3839 			mddev->ro = 1;
3840 			break;
3841 		case 0: /* disassemble */
3842 		case 2: /* stop */
3843 			bitmap_flush(mddev);
3844 			md_super_wait(mddev);
3845 			if (mddev->ro)
3846 				set_disk_ro(disk, 0);
3847 			blk_queue_make_request(mddev->queue, md_fail_request);
3848 			mddev->pers->stop(mddev);
3849 			mddev->queue->merge_bvec_fn = NULL;
3850 			mddev->queue->unplug_fn = NULL;
3851 			mddev->queue->backing_dev_info.congested_fn = NULL;
3852 			if (mddev->pers->sync_request)
3853 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3854 
3855 			module_put(mddev->pers->owner);
3856 			mddev->pers = NULL;
3857 			/* tell userspace to handle 'inactive' */
3858 			sysfs_notify(&mddev->kobj, NULL, "array_state");
3859 
3860 			set_capacity(disk, 0);
3861 			mddev->changed = 1;
3862 
3863 			if (mddev->ro)
3864 				mddev->ro = 0;
3865 		}
3866 		if (!mddev->in_sync || mddev->flags) {
3867 			/* mark array as shutdown cleanly */
3868 			mddev->in_sync = 1;
3869 			md_update_sb(mddev, 1);
3870 		}
3871 		if (mode == 1)
3872 			set_disk_ro(disk, 1);
3873 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3874 	}
3875 
3876 	/*
3877 	 * Free resources if final stop
3878 	 */
3879 	if (mode == 0) {
3880 		mdk_rdev_t *rdev;
3881 		struct list_head *tmp;
3882 
3883 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3884 
3885 		bitmap_destroy(mddev);
3886 		if (mddev->bitmap_file) {
3887 			restore_bitmap_write_access(mddev->bitmap_file);
3888 			fput(mddev->bitmap_file);
3889 			mddev->bitmap_file = NULL;
3890 		}
3891 		mddev->bitmap_offset = 0;
3892 
3893 		rdev_for_each(rdev, tmp, mddev)
3894 			if (rdev->raid_disk >= 0) {
3895 				char nm[20];
3896 				sprintf(nm, "rd%d", rdev->raid_disk);
3897 				sysfs_remove_link(&mddev->kobj, nm);
3898 			}
3899 
3900 		/* make sure all md_delayed_delete calls have finished */
3901 		flush_scheduled_work();
3902 
3903 		export_array(mddev);
3904 
3905 		mddev->array_sectors = 0;
3906 		mddev->size = 0;
3907 		mddev->raid_disks = 0;
3908 		mddev->recovery_cp = 0;
3909 		mddev->resync_min = 0;
3910 		mddev->resync_max = MaxSector;
3911 		mddev->reshape_position = MaxSector;
3912 		mddev->external = 0;
3913 		mddev->persistent = 0;
3914 		mddev->level = LEVEL_NONE;
3915 		mddev->clevel[0] = 0;
3916 		mddev->flags = 0;
3917 		mddev->ro = 0;
3918 		mddev->metadata_type[0] = 0;
3919 		mddev->chunk_size = 0;
3920 		mddev->ctime = mddev->utime = 0;
3921 		mddev->layout = 0;
3922 		mddev->max_disks = 0;
3923 		mddev->events = 0;
3924 		mddev->delta_disks = 0;
3925 		mddev->new_level = LEVEL_NONE;
3926 		mddev->new_layout = 0;
3927 		mddev->new_chunk = 0;
3928 		mddev->curr_resync = 0;
3929 		mddev->resync_mismatches = 0;
3930 		mddev->suspend_lo = mddev->suspend_hi = 0;
3931 		mddev->sync_speed_min = mddev->sync_speed_max = 0;
3932 		mddev->recovery = 0;
3933 		mddev->in_sync = 0;
3934 		mddev->changed = 0;
3935 		mddev->degraded = 0;
3936 		mddev->barriers_work = 0;
3937 		mddev->safemode = 0;
3938 
3939 	} else if (mddev->pers)
3940 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
3941 			mdname(mddev));
3942 	err = 0;
3943 	md_new_event(mddev);
3944 	sysfs_notify(&mddev->kobj, NULL, "array_state");
3945 out:
3946 	return err;
3947 }
3948 
3949 #ifndef MODULE
3950 static void autorun_array(mddev_t *mddev)
3951 {
3952 	mdk_rdev_t *rdev;
3953 	struct list_head *tmp;
3954 	int err;
3955 
3956 	if (list_empty(&mddev->disks))
3957 		return;
3958 
3959 	printk(KERN_INFO "md: running: ");
3960 
3961 	rdev_for_each(rdev, tmp, mddev) {
3962 		char b[BDEVNAME_SIZE];
3963 		printk("<%s>", bdevname(rdev->bdev,b));
3964 	}
3965 	printk("\n");
3966 
3967 	err = do_md_run (mddev);
3968 	if (err) {
3969 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3970 		do_md_stop (mddev, 0, 0);
3971 	}
3972 }
3973 
3974 /*
3975  * lets try to run arrays based on all disks that have arrived
3976  * until now. (those are in pending_raid_disks)
3977  *
3978  * the method: pick the first pending disk, collect all disks with
3979  * the same UUID, remove all from the pending list and put them into
3980  * the 'same_array' list. Then order this list based on superblock
3981  * update time (freshest comes first), kick out 'old' disks and
3982  * compare superblocks. If everything's fine then run it.
3983  *
3984  * If "unit" is allocated, then bump its reference count
3985  */
3986 static void autorun_devices(int part)
3987 {
3988 	struct list_head *tmp;
3989 	mdk_rdev_t *rdev0, *rdev;
3990 	mddev_t *mddev;
3991 	char b[BDEVNAME_SIZE];
3992 
3993 	printk(KERN_INFO "md: autorun ...\n");
3994 	while (!list_empty(&pending_raid_disks)) {
3995 		int unit;
3996 		dev_t dev;
3997 		LIST_HEAD(candidates);
3998 		rdev0 = list_entry(pending_raid_disks.next,
3999 					 mdk_rdev_t, same_set);
4000 
4001 		printk(KERN_INFO "md: considering %s ...\n",
4002 			bdevname(rdev0->bdev,b));
4003 		INIT_LIST_HEAD(&candidates);
4004 		rdev_for_each_list(rdev, tmp, pending_raid_disks)
4005 			if (super_90_load(rdev, rdev0, 0) >= 0) {
4006 				printk(KERN_INFO "md:  adding %s ...\n",
4007 					bdevname(rdev->bdev,b));
4008 				list_move(&rdev->same_set, &candidates);
4009 			}
4010 		/*
4011 		 * now we have a set of devices, with all of them having
4012 		 * mostly sane superblocks. It's time to allocate the
4013 		 * mddev.
4014 		 */
4015 		if (part) {
4016 			dev = MKDEV(mdp_major,
4017 				    rdev0->preferred_minor << MdpMinorShift);
4018 			unit = MINOR(dev) >> MdpMinorShift;
4019 		} else {
4020 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4021 			unit = MINOR(dev);
4022 		}
4023 		if (rdev0->preferred_minor != unit) {
4024 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4025 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4026 			break;
4027 		}
4028 
4029 		md_probe(dev, NULL, NULL);
4030 		mddev = mddev_find(dev);
4031 		if (!mddev || !mddev->gendisk) {
4032 			if (mddev)
4033 				mddev_put(mddev);
4034 			printk(KERN_ERR
4035 				"md: cannot allocate memory for md drive.\n");
4036 			break;
4037 		}
4038 		if (mddev_lock(mddev))
4039 			printk(KERN_WARNING "md: %s locked, cannot run\n",
4040 			       mdname(mddev));
4041 		else if (mddev->raid_disks || mddev->major_version
4042 			 || !list_empty(&mddev->disks)) {
4043 			printk(KERN_WARNING
4044 				"md: %s already running, cannot run %s\n",
4045 				mdname(mddev), bdevname(rdev0->bdev,b));
4046 			mddev_unlock(mddev);
4047 		} else {
4048 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
4049 			mddev->persistent = 1;
4050 			rdev_for_each_list(rdev, tmp, candidates) {
4051 				list_del_init(&rdev->same_set);
4052 				if (bind_rdev_to_array(rdev, mddev))
4053 					export_rdev(rdev);
4054 			}
4055 			autorun_array(mddev);
4056 			mddev_unlock(mddev);
4057 		}
4058 		/* on success, candidates will be empty, on error
4059 		 * it won't...
4060 		 */
4061 		rdev_for_each_list(rdev, tmp, candidates) {
4062 			list_del_init(&rdev->same_set);
4063 			export_rdev(rdev);
4064 		}
4065 		mddev_put(mddev);
4066 	}
4067 	printk(KERN_INFO "md: ... autorun DONE.\n");
4068 }
4069 #endif /* !MODULE */
4070 
4071 static int get_version(void __user * arg)
4072 {
4073 	mdu_version_t ver;
4074 
4075 	ver.major = MD_MAJOR_VERSION;
4076 	ver.minor = MD_MINOR_VERSION;
4077 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
4078 
4079 	if (copy_to_user(arg, &ver, sizeof(ver)))
4080 		return -EFAULT;
4081 
4082 	return 0;
4083 }
4084 
4085 static int get_array_info(mddev_t * mddev, void __user * arg)
4086 {
4087 	mdu_array_info_t info;
4088 	int nr,working,active,failed,spare;
4089 	mdk_rdev_t *rdev;
4090 	struct list_head *tmp;
4091 
4092 	nr=working=active=failed=spare=0;
4093 	rdev_for_each(rdev, tmp, mddev) {
4094 		nr++;
4095 		if (test_bit(Faulty, &rdev->flags))
4096 			failed++;
4097 		else {
4098 			working++;
4099 			if (test_bit(In_sync, &rdev->flags))
4100 				active++;
4101 			else
4102 				spare++;
4103 		}
4104 	}
4105 
4106 	info.major_version = mddev->major_version;
4107 	info.minor_version = mddev->minor_version;
4108 	info.patch_version = MD_PATCHLEVEL_VERSION;
4109 	info.ctime         = mddev->ctime;
4110 	info.level         = mddev->level;
4111 	info.size          = mddev->size;
4112 	if (info.size != mddev->size) /* overflow */
4113 		info.size = -1;
4114 	info.nr_disks      = nr;
4115 	info.raid_disks    = mddev->raid_disks;
4116 	info.md_minor      = mddev->md_minor;
4117 	info.not_persistent= !mddev->persistent;
4118 
4119 	info.utime         = mddev->utime;
4120 	info.state         = 0;
4121 	if (mddev->in_sync)
4122 		info.state = (1<<MD_SB_CLEAN);
4123 	if (mddev->bitmap && mddev->bitmap_offset)
4124 		info.state = (1<<MD_SB_BITMAP_PRESENT);
4125 	info.active_disks  = active;
4126 	info.working_disks = working;
4127 	info.failed_disks  = failed;
4128 	info.spare_disks   = spare;
4129 
4130 	info.layout        = mddev->layout;
4131 	info.chunk_size    = mddev->chunk_size;
4132 
4133 	if (copy_to_user(arg, &info, sizeof(info)))
4134 		return -EFAULT;
4135 
4136 	return 0;
4137 }
4138 
4139 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4140 {
4141 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4142 	char *ptr, *buf = NULL;
4143 	int err = -ENOMEM;
4144 
4145 	if (md_allow_write(mddev))
4146 		file = kmalloc(sizeof(*file), GFP_NOIO);
4147 	else
4148 		file = kmalloc(sizeof(*file), GFP_KERNEL);
4149 
4150 	if (!file)
4151 		goto out;
4152 
4153 	/* bitmap disabled, zero the first byte and copy out */
4154 	if (!mddev->bitmap || !mddev->bitmap->file) {
4155 		file->pathname[0] = '\0';
4156 		goto copy_out;
4157 	}
4158 
4159 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4160 	if (!buf)
4161 		goto out;
4162 
4163 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4164 	if (IS_ERR(ptr))
4165 		goto out;
4166 
4167 	strcpy(file->pathname, ptr);
4168 
4169 copy_out:
4170 	err = 0;
4171 	if (copy_to_user(arg, file, sizeof(*file)))
4172 		err = -EFAULT;
4173 out:
4174 	kfree(buf);
4175 	kfree(file);
4176 	return err;
4177 }
4178 
4179 static int get_disk_info(mddev_t * mddev, void __user * arg)
4180 {
4181 	mdu_disk_info_t info;
4182 	mdk_rdev_t *rdev;
4183 
4184 	if (copy_from_user(&info, arg, sizeof(info)))
4185 		return -EFAULT;
4186 
4187 	rdev = find_rdev_nr(mddev, info.number);
4188 	if (rdev) {
4189 		info.major = MAJOR(rdev->bdev->bd_dev);
4190 		info.minor = MINOR(rdev->bdev->bd_dev);
4191 		info.raid_disk = rdev->raid_disk;
4192 		info.state = 0;
4193 		if (test_bit(Faulty, &rdev->flags))
4194 			info.state |= (1<<MD_DISK_FAULTY);
4195 		else if (test_bit(In_sync, &rdev->flags)) {
4196 			info.state |= (1<<MD_DISK_ACTIVE);
4197 			info.state |= (1<<MD_DISK_SYNC);
4198 		}
4199 		if (test_bit(WriteMostly, &rdev->flags))
4200 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
4201 	} else {
4202 		info.major = info.minor = 0;
4203 		info.raid_disk = -1;
4204 		info.state = (1<<MD_DISK_REMOVED);
4205 	}
4206 
4207 	if (copy_to_user(arg, &info, sizeof(info)))
4208 		return -EFAULT;
4209 
4210 	return 0;
4211 }
4212 
4213 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4214 {
4215 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4216 	mdk_rdev_t *rdev;
4217 	dev_t dev = MKDEV(info->major,info->minor);
4218 
4219 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4220 		return -EOVERFLOW;
4221 
4222 	if (!mddev->raid_disks) {
4223 		int err;
4224 		/* expecting a device which has a superblock */
4225 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4226 		if (IS_ERR(rdev)) {
4227 			printk(KERN_WARNING
4228 				"md: md_import_device returned %ld\n",
4229 				PTR_ERR(rdev));
4230 			return PTR_ERR(rdev);
4231 		}
4232 		if (!list_empty(&mddev->disks)) {
4233 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4234 							mdk_rdev_t, same_set);
4235 			int err = super_types[mddev->major_version]
4236 				.load_super(rdev, rdev0, mddev->minor_version);
4237 			if (err < 0) {
4238 				printk(KERN_WARNING
4239 					"md: %s has different UUID to %s\n",
4240 					bdevname(rdev->bdev,b),
4241 					bdevname(rdev0->bdev,b2));
4242 				export_rdev(rdev);
4243 				return -EINVAL;
4244 			}
4245 		}
4246 		err = bind_rdev_to_array(rdev, mddev);
4247 		if (err)
4248 			export_rdev(rdev);
4249 		return err;
4250 	}
4251 
4252 	/*
4253 	 * add_new_disk can be used once the array is assembled
4254 	 * to add "hot spares".  They must already have a superblock
4255 	 * written
4256 	 */
4257 	if (mddev->pers) {
4258 		int err;
4259 		if (!mddev->pers->hot_add_disk) {
4260 			printk(KERN_WARNING
4261 				"%s: personality does not support diskops!\n",
4262 			       mdname(mddev));
4263 			return -EINVAL;
4264 		}
4265 		if (mddev->persistent)
4266 			rdev = md_import_device(dev, mddev->major_version,
4267 						mddev->minor_version);
4268 		else
4269 			rdev = md_import_device(dev, -1, -1);
4270 		if (IS_ERR(rdev)) {
4271 			printk(KERN_WARNING
4272 				"md: md_import_device returned %ld\n",
4273 				PTR_ERR(rdev));
4274 			return PTR_ERR(rdev);
4275 		}
4276 		/* set save_raid_disk if appropriate */
4277 		if (!mddev->persistent) {
4278 			if (info->state & (1<<MD_DISK_SYNC)  &&
4279 			    info->raid_disk < mddev->raid_disks)
4280 				rdev->raid_disk = info->raid_disk;
4281 			else
4282 				rdev->raid_disk = -1;
4283 		} else
4284 			super_types[mddev->major_version].
4285 				validate_super(mddev, rdev);
4286 		rdev->saved_raid_disk = rdev->raid_disk;
4287 
4288 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
4289 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4290 			set_bit(WriteMostly, &rdev->flags);
4291 
4292 		rdev->raid_disk = -1;
4293 		err = bind_rdev_to_array(rdev, mddev);
4294 		if (!err && !mddev->pers->hot_remove_disk) {
4295 			/* If there is hot_add_disk but no hot_remove_disk
4296 			 * then added disks for geometry changes,
4297 			 * and should be added immediately.
4298 			 */
4299 			super_types[mddev->major_version].
4300 				validate_super(mddev, rdev);
4301 			err = mddev->pers->hot_add_disk(mddev, rdev);
4302 			if (err)
4303 				unbind_rdev_from_array(rdev);
4304 		}
4305 		if (err)
4306 			export_rdev(rdev);
4307 		else
4308 			sysfs_notify(&rdev->kobj, NULL, "state");
4309 
4310 		md_update_sb(mddev, 1);
4311 		if (mddev->degraded)
4312 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4313 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4314 		md_wakeup_thread(mddev->thread);
4315 		return err;
4316 	}
4317 
4318 	/* otherwise, add_new_disk is only allowed
4319 	 * for major_version==0 superblocks
4320 	 */
4321 	if (mddev->major_version != 0) {
4322 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4323 		       mdname(mddev));
4324 		return -EINVAL;
4325 	}
4326 
4327 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
4328 		int err;
4329 		rdev = md_import_device (dev, -1, 0);
4330 		if (IS_ERR(rdev)) {
4331 			printk(KERN_WARNING
4332 				"md: error, md_import_device() returned %ld\n",
4333 				PTR_ERR(rdev));
4334 			return PTR_ERR(rdev);
4335 		}
4336 		rdev->desc_nr = info->number;
4337 		if (info->raid_disk < mddev->raid_disks)
4338 			rdev->raid_disk = info->raid_disk;
4339 		else
4340 			rdev->raid_disk = -1;
4341 
4342 		if (rdev->raid_disk < mddev->raid_disks)
4343 			if (info->state & (1<<MD_DISK_SYNC))
4344 				set_bit(In_sync, &rdev->flags);
4345 
4346 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4347 			set_bit(WriteMostly, &rdev->flags);
4348 
4349 		if (!mddev->persistent) {
4350 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
4351 			rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4352 		} else
4353 			rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4354 		rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2;
4355 
4356 		err = bind_rdev_to_array(rdev, mddev);
4357 		if (err) {
4358 			export_rdev(rdev);
4359 			return err;
4360 		}
4361 	}
4362 
4363 	return 0;
4364 }
4365 
4366 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4367 {
4368 	char b[BDEVNAME_SIZE];
4369 	mdk_rdev_t *rdev;
4370 
4371 	rdev = find_rdev(mddev, dev);
4372 	if (!rdev)
4373 		return -ENXIO;
4374 
4375 	if (rdev->raid_disk >= 0)
4376 		goto busy;
4377 
4378 	kick_rdev_from_array(rdev);
4379 	md_update_sb(mddev, 1);
4380 	md_new_event(mddev);
4381 
4382 	return 0;
4383 busy:
4384 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4385 		bdevname(rdev->bdev,b), mdname(mddev));
4386 	return -EBUSY;
4387 }
4388 
4389 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4390 {
4391 	char b[BDEVNAME_SIZE];
4392 	int err;
4393 	mdk_rdev_t *rdev;
4394 
4395 	if (!mddev->pers)
4396 		return -ENODEV;
4397 
4398 	if (mddev->major_version != 0) {
4399 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4400 			" version-0 superblocks.\n",
4401 			mdname(mddev));
4402 		return -EINVAL;
4403 	}
4404 	if (!mddev->pers->hot_add_disk) {
4405 		printk(KERN_WARNING
4406 			"%s: personality does not support diskops!\n",
4407 			mdname(mddev));
4408 		return -EINVAL;
4409 	}
4410 
4411 	rdev = md_import_device (dev, -1, 0);
4412 	if (IS_ERR(rdev)) {
4413 		printk(KERN_WARNING
4414 			"md: error, md_import_device() returned %ld\n",
4415 			PTR_ERR(rdev));
4416 		return -EINVAL;
4417 	}
4418 
4419 	if (mddev->persistent)
4420 		rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4421 	else
4422 		rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4423 
4424 	rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2;
4425 
4426 	if (test_bit(Faulty, &rdev->flags)) {
4427 		printk(KERN_WARNING
4428 			"md: can not hot-add faulty %s disk to %s!\n",
4429 			bdevname(rdev->bdev,b), mdname(mddev));
4430 		err = -EINVAL;
4431 		goto abort_export;
4432 	}
4433 	clear_bit(In_sync, &rdev->flags);
4434 	rdev->desc_nr = -1;
4435 	rdev->saved_raid_disk = -1;
4436 	err = bind_rdev_to_array(rdev, mddev);
4437 	if (err)
4438 		goto abort_export;
4439 
4440 	/*
4441 	 * The rest should better be atomic, we can have disk failures
4442 	 * noticed in interrupt contexts ...
4443 	 */
4444 
4445 	if (rdev->desc_nr == mddev->max_disks) {
4446 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4447 			mdname(mddev));
4448 		err = -EBUSY;
4449 		goto abort_unbind_export;
4450 	}
4451 
4452 	rdev->raid_disk = -1;
4453 
4454 	md_update_sb(mddev, 1);
4455 
4456 	/*
4457 	 * Kick recovery, maybe this spare has to be added to the
4458 	 * array immediately.
4459 	 */
4460 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4461 	md_wakeup_thread(mddev->thread);
4462 	md_new_event(mddev);
4463 	return 0;
4464 
4465 abort_unbind_export:
4466 	unbind_rdev_from_array(rdev);
4467 
4468 abort_export:
4469 	export_rdev(rdev);
4470 	return err;
4471 }
4472 
4473 static int set_bitmap_file(mddev_t *mddev, int fd)
4474 {
4475 	int err;
4476 
4477 	if (mddev->pers) {
4478 		if (!mddev->pers->quiesce)
4479 			return -EBUSY;
4480 		if (mddev->recovery || mddev->sync_thread)
4481 			return -EBUSY;
4482 		/* we should be able to change the bitmap.. */
4483 	}
4484 
4485 
4486 	if (fd >= 0) {
4487 		if (mddev->bitmap)
4488 			return -EEXIST; /* cannot add when bitmap is present */
4489 		mddev->bitmap_file = fget(fd);
4490 
4491 		if (mddev->bitmap_file == NULL) {
4492 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4493 			       mdname(mddev));
4494 			return -EBADF;
4495 		}
4496 
4497 		err = deny_bitmap_write_access(mddev->bitmap_file);
4498 		if (err) {
4499 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4500 			       mdname(mddev));
4501 			fput(mddev->bitmap_file);
4502 			mddev->bitmap_file = NULL;
4503 			return err;
4504 		}
4505 		mddev->bitmap_offset = 0; /* file overrides offset */
4506 	} else if (mddev->bitmap == NULL)
4507 		return -ENOENT; /* cannot remove what isn't there */
4508 	err = 0;
4509 	if (mddev->pers) {
4510 		mddev->pers->quiesce(mddev, 1);
4511 		if (fd >= 0)
4512 			err = bitmap_create(mddev);
4513 		if (fd < 0 || err) {
4514 			bitmap_destroy(mddev);
4515 			fd = -1; /* make sure to put the file */
4516 		}
4517 		mddev->pers->quiesce(mddev, 0);
4518 	}
4519 	if (fd < 0) {
4520 		if (mddev->bitmap_file) {
4521 			restore_bitmap_write_access(mddev->bitmap_file);
4522 			fput(mddev->bitmap_file);
4523 		}
4524 		mddev->bitmap_file = NULL;
4525 	}
4526 
4527 	return err;
4528 }
4529 
4530 /*
4531  * set_array_info is used two different ways
4532  * The original usage is when creating a new array.
4533  * In this usage, raid_disks is > 0 and it together with
4534  *  level, size, not_persistent,layout,chunksize determine the
4535  *  shape of the array.
4536  *  This will always create an array with a type-0.90.0 superblock.
4537  * The newer usage is when assembling an array.
4538  *  In this case raid_disks will be 0, and the major_version field is
4539  *  use to determine which style super-blocks are to be found on the devices.
4540  *  The minor and patch _version numbers are also kept incase the
4541  *  super_block handler wishes to interpret them.
4542  */
4543 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4544 {
4545 
4546 	if (info->raid_disks == 0) {
4547 		/* just setting version number for superblock loading */
4548 		if (info->major_version < 0 ||
4549 		    info->major_version >= ARRAY_SIZE(super_types) ||
4550 		    super_types[info->major_version].name == NULL) {
4551 			/* maybe try to auto-load a module? */
4552 			printk(KERN_INFO
4553 				"md: superblock version %d not known\n",
4554 				info->major_version);
4555 			return -EINVAL;
4556 		}
4557 		mddev->major_version = info->major_version;
4558 		mddev->minor_version = info->minor_version;
4559 		mddev->patch_version = info->patch_version;
4560 		mddev->persistent = !info->not_persistent;
4561 		return 0;
4562 	}
4563 	mddev->major_version = MD_MAJOR_VERSION;
4564 	mddev->minor_version = MD_MINOR_VERSION;
4565 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
4566 	mddev->ctime         = get_seconds();
4567 
4568 	mddev->level         = info->level;
4569 	mddev->clevel[0]     = 0;
4570 	mddev->size          = info->size;
4571 	mddev->raid_disks    = info->raid_disks;
4572 	/* don't set md_minor, it is determined by which /dev/md* was
4573 	 * openned
4574 	 */
4575 	if (info->state & (1<<MD_SB_CLEAN))
4576 		mddev->recovery_cp = MaxSector;
4577 	else
4578 		mddev->recovery_cp = 0;
4579 	mddev->persistent    = ! info->not_persistent;
4580 	mddev->external	     = 0;
4581 
4582 	mddev->layout        = info->layout;
4583 	mddev->chunk_size    = info->chunk_size;
4584 
4585 	mddev->max_disks     = MD_SB_DISKS;
4586 
4587 	if (mddev->persistent)
4588 		mddev->flags         = 0;
4589 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4590 
4591 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4592 	mddev->bitmap_offset = 0;
4593 
4594 	mddev->reshape_position = MaxSector;
4595 
4596 	/*
4597 	 * Generate a 128 bit UUID
4598 	 */
4599 	get_random_bytes(mddev->uuid, 16);
4600 
4601 	mddev->new_level = mddev->level;
4602 	mddev->new_chunk = mddev->chunk_size;
4603 	mddev->new_layout = mddev->layout;
4604 	mddev->delta_disks = 0;
4605 
4606 	return 0;
4607 }
4608 
4609 static int update_size(mddev_t *mddev, sector_t num_sectors)
4610 {
4611 	mdk_rdev_t * rdev;
4612 	int rv;
4613 	struct list_head *tmp;
4614 	int fit = (num_sectors == 0);
4615 
4616 	if (mddev->pers->resize == NULL)
4617 		return -EINVAL;
4618 	/* The "num_sectors" is the number of sectors of each device that
4619 	 * is used.  This can only make sense for arrays with redundancy.
4620 	 * linear and raid0 always use whatever space is available. We can only
4621 	 * consider changing this number if no resync or reconstruction is
4622 	 * happening, and if the new size is acceptable. It must fit before the
4623 	 * sb_start or, if that is <data_offset, it must fit before the size
4624 	 * of each device.  If num_sectors is zero, we find the largest size
4625 	 * that fits.
4626 
4627 	 */
4628 	if (mddev->sync_thread)
4629 		return -EBUSY;
4630 	if (mddev->bitmap)
4631 		/* Sorry, cannot grow a bitmap yet, just remove it,
4632 		 * grow, and re-add.
4633 		 */
4634 		return -EBUSY;
4635 	rdev_for_each(rdev, tmp, mddev) {
4636 		sector_t avail;
4637 		avail = rdev->size * 2;
4638 
4639 		if (fit && (num_sectors == 0 || num_sectors > avail))
4640 			num_sectors = avail;
4641 		if (avail < num_sectors)
4642 			return -ENOSPC;
4643 	}
4644 	rv = mddev->pers->resize(mddev, num_sectors);
4645 	if (!rv) {
4646 		struct block_device *bdev;
4647 
4648 		bdev = bdget_disk(mddev->gendisk, 0);
4649 		if (bdev) {
4650 			mutex_lock(&bdev->bd_inode->i_mutex);
4651 			i_size_write(bdev->bd_inode,
4652 				     (loff_t)mddev->array_sectors << 9);
4653 			mutex_unlock(&bdev->bd_inode->i_mutex);
4654 			bdput(bdev);
4655 		}
4656 	}
4657 	return rv;
4658 }
4659 
4660 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4661 {
4662 	int rv;
4663 	/* change the number of raid disks */
4664 	if (mddev->pers->check_reshape == NULL)
4665 		return -EINVAL;
4666 	if (raid_disks <= 0 ||
4667 	    raid_disks >= mddev->max_disks)
4668 		return -EINVAL;
4669 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4670 		return -EBUSY;
4671 	mddev->delta_disks = raid_disks - mddev->raid_disks;
4672 
4673 	rv = mddev->pers->check_reshape(mddev);
4674 	return rv;
4675 }
4676 
4677 
4678 /*
4679  * update_array_info is used to change the configuration of an
4680  * on-line array.
4681  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4682  * fields in the info are checked against the array.
4683  * Any differences that cannot be handled will cause an error.
4684  * Normally, only one change can be managed at a time.
4685  */
4686 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4687 {
4688 	int rv = 0;
4689 	int cnt = 0;
4690 	int state = 0;
4691 
4692 	/* calculate expected state,ignoring low bits */
4693 	if (mddev->bitmap && mddev->bitmap_offset)
4694 		state |= (1 << MD_SB_BITMAP_PRESENT);
4695 
4696 	if (mddev->major_version != info->major_version ||
4697 	    mddev->minor_version != info->minor_version ||
4698 /*	    mddev->patch_version != info->patch_version || */
4699 	    mddev->ctime         != info->ctime         ||
4700 	    mddev->level         != info->level         ||
4701 /*	    mddev->layout        != info->layout        || */
4702 	    !mddev->persistent	 != info->not_persistent||
4703 	    mddev->chunk_size    != info->chunk_size    ||
4704 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4705 	    ((state^info->state) & 0xfffffe00)
4706 		)
4707 		return -EINVAL;
4708 	/* Check there is only one change */
4709 	if (info->size >= 0 && mddev->size != info->size) cnt++;
4710 	if (mddev->raid_disks != info->raid_disks) cnt++;
4711 	if (mddev->layout != info->layout) cnt++;
4712 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4713 	if (cnt == 0) return 0;
4714 	if (cnt > 1) return -EINVAL;
4715 
4716 	if (mddev->layout != info->layout) {
4717 		/* Change layout
4718 		 * we don't need to do anything at the md level, the
4719 		 * personality will take care of it all.
4720 		 */
4721 		if (mddev->pers->reconfig == NULL)
4722 			return -EINVAL;
4723 		else
4724 			return mddev->pers->reconfig(mddev, info->layout, -1);
4725 	}
4726 	if (info->size >= 0 && mddev->size != info->size)
4727 		rv = update_size(mddev, (sector_t)info->size * 2);
4728 
4729 	if (mddev->raid_disks    != info->raid_disks)
4730 		rv = update_raid_disks(mddev, info->raid_disks);
4731 
4732 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4733 		if (mddev->pers->quiesce == NULL)
4734 			return -EINVAL;
4735 		if (mddev->recovery || mddev->sync_thread)
4736 			return -EBUSY;
4737 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4738 			/* add the bitmap */
4739 			if (mddev->bitmap)
4740 				return -EEXIST;
4741 			if (mddev->default_bitmap_offset == 0)
4742 				return -EINVAL;
4743 			mddev->bitmap_offset = mddev->default_bitmap_offset;
4744 			mddev->pers->quiesce(mddev, 1);
4745 			rv = bitmap_create(mddev);
4746 			if (rv)
4747 				bitmap_destroy(mddev);
4748 			mddev->pers->quiesce(mddev, 0);
4749 		} else {
4750 			/* remove the bitmap */
4751 			if (!mddev->bitmap)
4752 				return -ENOENT;
4753 			if (mddev->bitmap->file)
4754 				return -EINVAL;
4755 			mddev->pers->quiesce(mddev, 1);
4756 			bitmap_destroy(mddev);
4757 			mddev->pers->quiesce(mddev, 0);
4758 			mddev->bitmap_offset = 0;
4759 		}
4760 	}
4761 	md_update_sb(mddev, 1);
4762 	return rv;
4763 }
4764 
4765 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4766 {
4767 	mdk_rdev_t *rdev;
4768 
4769 	if (mddev->pers == NULL)
4770 		return -ENODEV;
4771 
4772 	rdev = find_rdev(mddev, dev);
4773 	if (!rdev)
4774 		return -ENODEV;
4775 
4776 	md_error(mddev, rdev);
4777 	return 0;
4778 }
4779 
4780 /*
4781  * We have a problem here : there is no easy way to give a CHS
4782  * virtual geometry. We currently pretend that we have a 2 heads
4783  * 4 sectors (with a BIG number of cylinders...). This drives
4784  * dosfs just mad... ;-)
4785  */
4786 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4787 {
4788 	mddev_t *mddev = bdev->bd_disk->private_data;
4789 
4790 	geo->heads = 2;
4791 	geo->sectors = 4;
4792 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
4793 	return 0;
4794 }
4795 
4796 static int md_ioctl(struct inode *inode, struct file *file,
4797 			unsigned int cmd, unsigned long arg)
4798 {
4799 	int err = 0;
4800 	void __user *argp = (void __user *)arg;
4801 	mddev_t *mddev = NULL;
4802 
4803 	if (!capable(CAP_SYS_ADMIN))
4804 		return -EACCES;
4805 
4806 	/*
4807 	 * Commands dealing with the RAID driver but not any
4808 	 * particular array:
4809 	 */
4810 	switch (cmd)
4811 	{
4812 		case RAID_VERSION:
4813 			err = get_version(argp);
4814 			goto done;
4815 
4816 		case PRINT_RAID_DEBUG:
4817 			err = 0;
4818 			md_print_devices();
4819 			goto done;
4820 
4821 #ifndef MODULE
4822 		case RAID_AUTORUN:
4823 			err = 0;
4824 			autostart_arrays(arg);
4825 			goto done;
4826 #endif
4827 		default:;
4828 	}
4829 
4830 	/*
4831 	 * Commands creating/starting a new array:
4832 	 */
4833 
4834 	mddev = inode->i_bdev->bd_disk->private_data;
4835 
4836 	if (!mddev) {
4837 		BUG();
4838 		goto abort;
4839 	}
4840 
4841 	err = mddev_lock(mddev);
4842 	if (err) {
4843 		printk(KERN_INFO
4844 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
4845 			err, cmd);
4846 		goto abort;
4847 	}
4848 
4849 	switch (cmd)
4850 	{
4851 		case SET_ARRAY_INFO:
4852 			{
4853 				mdu_array_info_t info;
4854 				if (!arg)
4855 					memset(&info, 0, sizeof(info));
4856 				else if (copy_from_user(&info, argp, sizeof(info))) {
4857 					err = -EFAULT;
4858 					goto abort_unlock;
4859 				}
4860 				if (mddev->pers) {
4861 					err = update_array_info(mddev, &info);
4862 					if (err) {
4863 						printk(KERN_WARNING "md: couldn't update"
4864 						       " array info. %d\n", err);
4865 						goto abort_unlock;
4866 					}
4867 					goto done_unlock;
4868 				}
4869 				if (!list_empty(&mddev->disks)) {
4870 					printk(KERN_WARNING
4871 					       "md: array %s already has disks!\n",
4872 					       mdname(mddev));
4873 					err = -EBUSY;
4874 					goto abort_unlock;
4875 				}
4876 				if (mddev->raid_disks) {
4877 					printk(KERN_WARNING
4878 					       "md: array %s already initialised!\n",
4879 					       mdname(mddev));
4880 					err = -EBUSY;
4881 					goto abort_unlock;
4882 				}
4883 				err = set_array_info(mddev, &info);
4884 				if (err) {
4885 					printk(KERN_WARNING "md: couldn't set"
4886 					       " array info. %d\n", err);
4887 					goto abort_unlock;
4888 				}
4889 			}
4890 			goto done_unlock;
4891 
4892 		default:;
4893 	}
4894 
4895 	/*
4896 	 * Commands querying/configuring an existing array:
4897 	 */
4898 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4899 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4900 	if ((!mddev->raid_disks && !mddev->external)
4901 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4902 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4903 	    && cmd != GET_BITMAP_FILE) {
4904 		err = -ENODEV;
4905 		goto abort_unlock;
4906 	}
4907 
4908 	/*
4909 	 * Commands even a read-only array can execute:
4910 	 */
4911 	switch (cmd)
4912 	{
4913 		case GET_ARRAY_INFO:
4914 			err = get_array_info(mddev, argp);
4915 			goto done_unlock;
4916 
4917 		case GET_BITMAP_FILE:
4918 			err = get_bitmap_file(mddev, argp);
4919 			goto done_unlock;
4920 
4921 		case GET_DISK_INFO:
4922 			err = get_disk_info(mddev, argp);
4923 			goto done_unlock;
4924 
4925 		case RESTART_ARRAY_RW:
4926 			err = restart_array(mddev);
4927 			goto done_unlock;
4928 
4929 		case STOP_ARRAY:
4930 			err = do_md_stop (mddev, 0, 1);
4931 			goto done_unlock;
4932 
4933 		case STOP_ARRAY_RO:
4934 			err = do_md_stop (mddev, 1, 1);
4935 			goto done_unlock;
4936 
4937 	}
4938 
4939 	/*
4940 	 * The remaining ioctls are changing the state of the
4941 	 * superblock, so we do not allow them on read-only arrays.
4942 	 * However non-MD ioctls (e.g. get-size) will still come through
4943 	 * here and hit the 'default' below, so only disallow
4944 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4945 	 */
4946 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
4947 		if (mddev->ro == 2) {
4948 			mddev->ro = 0;
4949 			sysfs_notify(&mddev->kobj, NULL, "array_state");
4950 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4951 			md_wakeup_thread(mddev->thread);
4952 		} else {
4953 			err = -EROFS;
4954 			goto abort_unlock;
4955 		}
4956 	}
4957 
4958 	switch (cmd)
4959 	{
4960 		case ADD_NEW_DISK:
4961 		{
4962 			mdu_disk_info_t info;
4963 			if (copy_from_user(&info, argp, sizeof(info)))
4964 				err = -EFAULT;
4965 			else
4966 				err = add_new_disk(mddev, &info);
4967 			goto done_unlock;
4968 		}
4969 
4970 		case HOT_REMOVE_DISK:
4971 			err = hot_remove_disk(mddev, new_decode_dev(arg));
4972 			goto done_unlock;
4973 
4974 		case HOT_ADD_DISK:
4975 			err = hot_add_disk(mddev, new_decode_dev(arg));
4976 			goto done_unlock;
4977 
4978 		case SET_DISK_FAULTY:
4979 			err = set_disk_faulty(mddev, new_decode_dev(arg));
4980 			goto done_unlock;
4981 
4982 		case RUN_ARRAY:
4983 			err = do_md_run (mddev);
4984 			goto done_unlock;
4985 
4986 		case SET_BITMAP_FILE:
4987 			err = set_bitmap_file(mddev, (int)arg);
4988 			goto done_unlock;
4989 
4990 		default:
4991 			err = -EINVAL;
4992 			goto abort_unlock;
4993 	}
4994 
4995 done_unlock:
4996 abort_unlock:
4997 	mddev_unlock(mddev);
4998 
4999 	return err;
5000 done:
5001 	if (err)
5002 		MD_BUG();
5003 abort:
5004 	return err;
5005 }
5006 
5007 static int md_open(struct inode *inode, struct file *file)
5008 {
5009 	/*
5010 	 * Succeed if we can lock the mddev, which confirms that
5011 	 * it isn't being stopped right now.
5012 	 */
5013 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
5014 	int err;
5015 
5016 	if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
5017 		goto out;
5018 
5019 	err = 0;
5020 	mddev_get(mddev);
5021 	atomic_inc(&mddev->openers);
5022 	mddev_unlock(mddev);
5023 
5024 	check_disk_change(inode->i_bdev);
5025  out:
5026 	return err;
5027 }
5028 
5029 static int md_release(struct inode *inode, struct file * file)
5030 {
5031  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
5032 
5033 	BUG_ON(!mddev);
5034 	atomic_dec(&mddev->openers);
5035 	mddev_put(mddev);
5036 
5037 	return 0;
5038 }
5039 
5040 static int md_media_changed(struct gendisk *disk)
5041 {
5042 	mddev_t *mddev = disk->private_data;
5043 
5044 	return mddev->changed;
5045 }
5046 
5047 static int md_revalidate(struct gendisk *disk)
5048 {
5049 	mddev_t *mddev = disk->private_data;
5050 
5051 	mddev->changed = 0;
5052 	return 0;
5053 }
5054 static struct block_device_operations md_fops =
5055 {
5056 	.owner		= THIS_MODULE,
5057 	.open		= md_open,
5058 	.release	= md_release,
5059 	.ioctl		= md_ioctl,
5060 	.getgeo		= md_getgeo,
5061 	.media_changed	= md_media_changed,
5062 	.revalidate_disk= md_revalidate,
5063 };
5064 
5065 static int md_thread(void * arg)
5066 {
5067 	mdk_thread_t *thread = arg;
5068 
5069 	/*
5070 	 * md_thread is a 'system-thread', it's priority should be very
5071 	 * high. We avoid resource deadlocks individually in each
5072 	 * raid personality. (RAID5 does preallocation) We also use RR and
5073 	 * the very same RT priority as kswapd, thus we will never get
5074 	 * into a priority inversion deadlock.
5075 	 *
5076 	 * we definitely have to have equal or higher priority than
5077 	 * bdflush, otherwise bdflush will deadlock if there are too
5078 	 * many dirty RAID5 blocks.
5079 	 */
5080 
5081 	allow_signal(SIGKILL);
5082 	while (!kthread_should_stop()) {
5083 
5084 		/* We need to wait INTERRUPTIBLE so that
5085 		 * we don't add to the load-average.
5086 		 * That means we need to be sure no signals are
5087 		 * pending
5088 		 */
5089 		if (signal_pending(current))
5090 			flush_signals(current);
5091 
5092 		wait_event_interruptible_timeout
5093 			(thread->wqueue,
5094 			 test_bit(THREAD_WAKEUP, &thread->flags)
5095 			 || kthread_should_stop(),
5096 			 thread->timeout);
5097 
5098 		clear_bit(THREAD_WAKEUP, &thread->flags);
5099 
5100 		thread->run(thread->mddev);
5101 	}
5102 
5103 	return 0;
5104 }
5105 
5106 void md_wakeup_thread(mdk_thread_t *thread)
5107 {
5108 	if (thread) {
5109 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5110 		set_bit(THREAD_WAKEUP, &thread->flags);
5111 		wake_up(&thread->wqueue);
5112 	}
5113 }
5114 
5115 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5116 				 const char *name)
5117 {
5118 	mdk_thread_t *thread;
5119 
5120 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5121 	if (!thread)
5122 		return NULL;
5123 
5124 	init_waitqueue_head(&thread->wqueue);
5125 
5126 	thread->run = run;
5127 	thread->mddev = mddev;
5128 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
5129 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5130 	if (IS_ERR(thread->tsk)) {
5131 		kfree(thread);
5132 		return NULL;
5133 	}
5134 	return thread;
5135 }
5136 
5137 void md_unregister_thread(mdk_thread_t *thread)
5138 {
5139 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5140 
5141 	kthread_stop(thread->tsk);
5142 	kfree(thread);
5143 }
5144 
5145 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5146 {
5147 	if (!mddev) {
5148 		MD_BUG();
5149 		return;
5150 	}
5151 
5152 	if (!rdev || test_bit(Faulty, &rdev->flags))
5153 		return;
5154 
5155 	if (mddev->external)
5156 		set_bit(Blocked, &rdev->flags);
5157 /*
5158 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5159 		mdname(mddev),
5160 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5161 		__builtin_return_address(0),__builtin_return_address(1),
5162 		__builtin_return_address(2),__builtin_return_address(3));
5163 */
5164 	if (!mddev->pers)
5165 		return;
5166 	if (!mddev->pers->error_handler)
5167 		return;
5168 	mddev->pers->error_handler(mddev,rdev);
5169 	if (mddev->degraded)
5170 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5171 	set_bit(StateChanged, &rdev->flags);
5172 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5173 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5174 	md_wakeup_thread(mddev->thread);
5175 	md_new_event_inintr(mddev);
5176 }
5177 
5178 /* seq_file implementation /proc/mdstat */
5179 
5180 static void status_unused(struct seq_file *seq)
5181 {
5182 	int i = 0;
5183 	mdk_rdev_t *rdev;
5184 	struct list_head *tmp;
5185 
5186 	seq_printf(seq, "unused devices: ");
5187 
5188 	rdev_for_each_list(rdev, tmp, pending_raid_disks) {
5189 		char b[BDEVNAME_SIZE];
5190 		i++;
5191 		seq_printf(seq, "%s ",
5192 			      bdevname(rdev->bdev,b));
5193 	}
5194 	if (!i)
5195 		seq_printf(seq, "<none>");
5196 
5197 	seq_printf(seq, "\n");
5198 }
5199 
5200 
5201 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5202 {
5203 	sector_t max_blocks, resync, res;
5204 	unsigned long dt, db, rt;
5205 	int scale;
5206 	unsigned int per_milli;
5207 
5208 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
5209 
5210 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5211 		max_blocks = mddev->resync_max_sectors >> 1;
5212 	else
5213 		max_blocks = mddev->size;
5214 
5215 	/*
5216 	 * Should not happen.
5217 	 */
5218 	if (!max_blocks) {
5219 		MD_BUG();
5220 		return;
5221 	}
5222 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
5223 	 * in a sector_t, and (max_blocks>>scale) will fit in a
5224 	 * u32, as those are the requirements for sector_div.
5225 	 * Thus 'scale' must be at least 10
5226 	 */
5227 	scale = 10;
5228 	if (sizeof(sector_t) > sizeof(unsigned long)) {
5229 		while ( max_blocks/2 > (1ULL<<(scale+32)))
5230 			scale++;
5231 	}
5232 	res = (resync>>scale)*1000;
5233 	sector_div(res, (u32)((max_blocks>>scale)+1));
5234 
5235 	per_milli = res;
5236 	{
5237 		int i, x = per_milli/50, y = 20-x;
5238 		seq_printf(seq, "[");
5239 		for (i = 0; i < x; i++)
5240 			seq_printf(seq, "=");
5241 		seq_printf(seq, ">");
5242 		for (i = 0; i < y; i++)
5243 			seq_printf(seq, ".");
5244 		seq_printf(seq, "] ");
5245 	}
5246 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5247 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5248 		    "reshape" :
5249 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5250 		     "check" :
5251 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5252 		      "resync" : "recovery"))),
5253 		   per_milli/10, per_milli % 10,
5254 		   (unsigned long long) resync,
5255 		   (unsigned long long) max_blocks);
5256 
5257 	/*
5258 	 * We do not want to overflow, so the order of operands and
5259 	 * the * 100 / 100 trick are important. We do a +1 to be
5260 	 * safe against division by zero. We only estimate anyway.
5261 	 *
5262 	 * dt: time from mark until now
5263 	 * db: blocks written from mark until now
5264 	 * rt: remaining time
5265 	 */
5266 	dt = ((jiffies - mddev->resync_mark) / HZ);
5267 	if (!dt) dt++;
5268 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5269 		- mddev->resync_mark_cnt;
5270 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5271 
5272 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5273 
5274 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5275 }
5276 
5277 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5278 {
5279 	struct list_head *tmp;
5280 	loff_t l = *pos;
5281 	mddev_t *mddev;
5282 
5283 	if (l >= 0x10000)
5284 		return NULL;
5285 	if (!l--)
5286 		/* header */
5287 		return (void*)1;
5288 
5289 	spin_lock(&all_mddevs_lock);
5290 	list_for_each(tmp,&all_mddevs)
5291 		if (!l--) {
5292 			mddev = list_entry(tmp, mddev_t, all_mddevs);
5293 			mddev_get(mddev);
5294 			spin_unlock(&all_mddevs_lock);
5295 			return mddev;
5296 		}
5297 	spin_unlock(&all_mddevs_lock);
5298 	if (!l--)
5299 		return (void*)2;/* tail */
5300 	return NULL;
5301 }
5302 
5303 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5304 {
5305 	struct list_head *tmp;
5306 	mddev_t *next_mddev, *mddev = v;
5307 
5308 	++*pos;
5309 	if (v == (void*)2)
5310 		return NULL;
5311 
5312 	spin_lock(&all_mddevs_lock);
5313 	if (v == (void*)1)
5314 		tmp = all_mddevs.next;
5315 	else
5316 		tmp = mddev->all_mddevs.next;
5317 	if (tmp != &all_mddevs)
5318 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5319 	else {
5320 		next_mddev = (void*)2;
5321 		*pos = 0x10000;
5322 	}
5323 	spin_unlock(&all_mddevs_lock);
5324 
5325 	if (v != (void*)1)
5326 		mddev_put(mddev);
5327 	return next_mddev;
5328 
5329 }
5330 
5331 static void md_seq_stop(struct seq_file *seq, void *v)
5332 {
5333 	mddev_t *mddev = v;
5334 
5335 	if (mddev && v != (void*)1 && v != (void*)2)
5336 		mddev_put(mddev);
5337 }
5338 
5339 struct mdstat_info {
5340 	int event;
5341 };
5342 
5343 static int md_seq_show(struct seq_file *seq, void *v)
5344 {
5345 	mddev_t *mddev = v;
5346 	sector_t size;
5347 	struct list_head *tmp2;
5348 	mdk_rdev_t *rdev;
5349 	struct mdstat_info *mi = seq->private;
5350 	struct bitmap *bitmap;
5351 
5352 	if (v == (void*)1) {
5353 		struct mdk_personality *pers;
5354 		seq_printf(seq, "Personalities : ");
5355 		spin_lock(&pers_lock);
5356 		list_for_each_entry(pers, &pers_list, list)
5357 			seq_printf(seq, "[%s] ", pers->name);
5358 
5359 		spin_unlock(&pers_lock);
5360 		seq_printf(seq, "\n");
5361 		mi->event = atomic_read(&md_event_count);
5362 		return 0;
5363 	}
5364 	if (v == (void*)2) {
5365 		status_unused(seq);
5366 		return 0;
5367 	}
5368 
5369 	if (mddev_lock(mddev) < 0)
5370 		return -EINTR;
5371 
5372 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5373 		seq_printf(seq, "%s : %sactive", mdname(mddev),
5374 						mddev->pers ? "" : "in");
5375 		if (mddev->pers) {
5376 			if (mddev->ro==1)
5377 				seq_printf(seq, " (read-only)");
5378 			if (mddev->ro==2)
5379 				seq_printf(seq, " (auto-read-only)");
5380 			seq_printf(seq, " %s", mddev->pers->name);
5381 		}
5382 
5383 		size = 0;
5384 		rdev_for_each(rdev, tmp2, mddev) {
5385 			char b[BDEVNAME_SIZE];
5386 			seq_printf(seq, " %s[%d]",
5387 				bdevname(rdev->bdev,b), rdev->desc_nr);
5388 			if (test_bit(WriteMostly, &rdev->flags))
5389 				seq_printf(seq, "(W)");
5390 			if (test_bit(Faulty, &rdev->flags)) {
5391 				seq_printf(seq, "(F)");
5392 				continue;
5393 			} else if (rdev->raid_disk < 0)
5394 				seq_printf(seq, "(S)"); /* spare */
5395 			size += rdev->size;
5396 		}
5397 
5398 		if (!list_empty(&mddev->disks)) {
5399 			if (mddev->pers)
5400 				seq_printf(seq, "\n      %llu blocks",
5401 					   (unsigned long long)
5402 					   mddev->array_sectors / 2);
5403 			else
5404 				seq_printf(seq, "\n      %llu blocks",
5405 					   (unsigned long long)size);
5406 		}
5407 		if (mddev->persistent) {
5408 			if (mddev->major_version != 0 ||
5409 			    mddev->minor_version != 90) {
5410 				seq_printf(seq," super %d.%d",
5411 					   mddev->major_version,
5412 					   mddev->minor_version);
5413 			}
5414 		} else if (mddev->external)
5415 			seq_printf(seq, " super external:%s",
5416 				   mddev->metadata_type);
5417 		else
5418 			seq_printf(seq, " super non-persistent");
5419 
5420 		if (mddev->pers) {
5421 			mddev->pers->status (seq, mddev);
5422 	 		seq_printf(seq, "\n      ");
5423 			if (mddev->pers->sync_request) {
5424 				if (mddev->curr_resync > 2) {
5425 					status_resync (seq, mddev);
5426 					seq_printf(seq, "\n      ");
5427 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5428 					seq_printf(seq, "\tresync=DELAYED\n      ");
5429 				else if (mddev->recovery_cp < MaxSector)
5430 					seq_printf(seq, "\tresync=PENDING\n      ");
5431 			}
5432 		} else
5433 			seq_printf(seq, "\n       ");
5434 
5435 		if ((bitmap = mddev->bitmap)) {
5436 			unsigned long chunk_kb;
5437 			unsigned long flags;
5438 			spin_lock_irqsave(&bitmap->lock, flags);
5439 			chunk_kb = bitmap->chunksize >> 10;
5440 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5441 				"%lu%s chunk",
5442 				bitmap->pages - bitmap->missing_pages,
5443 				bitmap->pages,
5444 				(bitmap->pages - bitmap->missing_pages)
5445 					<< (PAGE_SHIFT - 10),
5446 				chunk_kb ? chunk_kb : bitmap->chunksize,
5447 				chunk_kb ? "KB" : "B");
5448 			if (bitmap->file) {
5449 				seq_printf(seq, ", file: ");
5450 				seq_path(seq, &bitmap->file->f_path, " \t\n");
5451 			}
5452 
5453 			seq_printf(seq, "\n");
5454 			spin_unlock_irqrestore(&bitmap->lock, flags);
5455 		}
5456 
5457 		seq_printf(seq, "\n");
5458 	}
5459 	mddev_unlock(mddev);
5460 
5461 	return 0;
5462 }
5463 
5464 static struct seq_operations md_seq_ops = {
5465 	.start  = md_seq_start,
5466 	.next   = md_seq_next,
5467 	.stop   = md_seq_stop,
5468 	.show   = md_seq_show,
5469 };
5470 
5471 static int md_seq_open(struct inode *inode, struct file *file)
5472 {
5473 	int error;
5474 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5475 	if (mi == NULL)
5476 		return -ENOMEM;
5477 
5478 	error = seq_open(file, &md_seq_ops);
5479 	if (error)
5480 		kfree(mi);
5481 	else {
5482 		struct seq_file *p = file->private_data;
5483 		p->private = mi;
5484 		mi->event = atomic_read(&md_event_count);
5485 	}
5486 	return error;
5487 }
5488 
5489 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5490 {
5491 	struct seq_file *m = filp->private_data;
5492 	struct mdstat_info *mi = m->private;
5493 	int mask;
5494 
5495 	poll_wait(filp, &md_event_waiters, wait);
5496 
5497 	/* always allow read */
5498 	mask = POLLIN | POLLRDNORM;
5499 
5500 	if (mi->event != atomic_read(&md_event_count))
5501 		mask |= POLLERR | POLLPRI;
5502 	return mask;
5503 }
5504 
5505 static const struct file_operations md_seq_fops = {
5506 	.owner		= THIS_MODULE,
5507 	.open           = md_seq_open,
5508 	.read           = seq_read,
5509 	.llseek         = seq_lseek,
5510 	.release	= seq_release_private,
5511 	.poll		= mdstat_poll,
5512 };
5513 
5514 int register_md_personality(struct mdk_personality *p)
5515 {
5516 	spin_lock(&pers_lock);
5517 	list_add_tail(&p->list, &pers_list);
5518 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5519 	spin_unlock(&pers_lock);
5520 	return 0;
5521 }
5522 
5523 int unregister_md_personality(struct mdk_personality *p)
5524 {
5525 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5526 	spin_lock(&pers_lock);
5527 	list_del_init(&p->list);
5528 	spin_unlock(&pers_lock);
5529 	return 0;
5530 }
5531 
5532 static int is_mddev_idle(mddev_t *mddev)
5533 {
5534 	mdk_rdev_t * rdev;
5535 	int idle;
5536 	long curr_events;
5537 
5538 	idle = 1;
5539 	rcu_read_lock();
5540 	rdev_for_each_rcu(rdev, mddev) {
5541 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5542 		curr_events = part_stat_read(&disk->part0, sectors[0]) +
5543 				part_stat_read(&disk->part0, sectors[1]) -
5544 				atomic_read(&disk->sync_io);
5545 		/* sync IO will cause sync_io to increase before the disk_stats
5546 		 * as sync_io is counted when a request starts, and
5547 		 * disk_stats is counted when it completes.
5548 		 * So resync activity will cause curr_events to be smaller than
5549 		 * when there was no such activity.
5550 		 * non-sync IO will cause disk_stat to increase without
5551 		 * increasing sync_io so curr_events will (eventually)
5552 		 * be larger than it was before.  Once it becomes
5553 		 * substantially larger, the test below will cause
5554 		 * the array to appear non-idle, and resync will slow
5555 		 * down.
5556 		 * If there is a lot of outstanding resync activity when
5557 		 * we set last_event to curr_events, then all that activity
5558 		 * completing might cause the array to appear non-idle
5559 		 * and resync will be slowed down even though there might
5560 		 * not have been non-resync activity.  This will only
5561 		 * happen once though.  'last_events' will soon reflect
5562 		 * the state where there is little or no outstanding
5563 		 * resync requests, and further resync activity will
5564 		 * always make curr_events less than last_events.
5565 		 *
5566 		 */
5567 		if (curr_events - rdev->last_events > 4096) {
5568 			rdev->last_events = curr_events;
5569 			idle = 0;
5570 		}
5571 	}
5572 	rcu_read_unlock();
5573 	return idle;
5574 }
5575 
5576 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5577 {
5578 	/* another "blocks" (512byte) blocks have been synced */
5579 	atomic_sub(blocks, &mddev->recovery_active);
5580 	wake_up(&mddev->recovery_wait);
5581 	if (!ok) {
5582 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5583 		md_wakeup_thread(mddev->thread);
5584 		// stop recovery, signal do_sync ....
5585 	}
5586 }
5587 
5588 
5589 /* md_write_start(mddev, bi)
5590  * If we need to update some array metadata (e.g. 'active' flag
5591  * in superblock) before writing, schedule a superblock update
5592  * and wait for it to complete.
5593  */
5594 void md_write_start(mddev_t *mddev, struct bio *bi)
5595 {
5596 	int did_change = 0;
5597 	if (bio_data_dir(bi) != WRITE)
5598 		return;
5599 
5600 	BUG_ON(mddev->ro == 1);
5601 	if (mddev->ro == 2) {
5602 		/* need to switch to read/write */
5603 		mddev->ro = 0;
5604 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5605 		md_wakeup_thread(mddev->thread);
5606 		md_wakeup_thread(mddev->sync_thread);
5607 		did_change = 1;
5608 	}
5609 	atomic_inc(&mddev->writes_pending);
5610 	if (mddev->safemode == 1)
5611 		mddev->safemode = 0;
5612 	if (mddev->in_sync) {
5613 		spin_lock_irq(&mddev->write_lock);
5614 		if (mddev->in_sync) {
5615 			mddev->in_sync = 0;
5616 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5617 			md_wakeup_thread(mddev->thread);
5618 			did_change = 1;
5619 		}
5620 		spin_unlock_irq(&mddev->write_lock);
5621 	}
5622 	if (did_change)
5623 		sysfs_notify(&mddev->kobj, NULL, "array_state");
5624 	wait_event(mddev->sb_wait,
5625 		   !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
5626 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5627 }
5628 
5629 void md_write_end(mddev_t *mddev)
5630 {
5631 	if (atomic_dec_and_test(&mddev->writes_pending)) {
5632 		if (mddev->safemode == 2)
5633 			md_wakeup_thread(mddev->thread);
5634 		else if (mddev->safemode_delay)
5635 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5636 	}
5637 }
5638 
5639 /* md_allow_write(mddev)
5640  * Calling this ensures that the array is marked 'active' so that writes
5641  * may proceed without blocking.  It is important to call this before
5642  * attempting a GFP_KERNEL allocation while holding the mddev lock.
5643  * Must be called with mddev_lock held.
5644  *
5645  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
5646  * is dropped, so return -EAGAIN after notifying userspace.
5647  */
5648 int md_allow_write(mddev_t *mddev)
5649 {
5650 	if (!mddev->pers)
5651 		return 0;
5652 	if (mddev->ro)
5653 		return 0;
5654 	if (!mddev->pers->sync_request)
5655 		return 0;
5656 
5657 	spin_lock_irq(&mddev->write_lock);
5658 	if (mddev->in_sync) {
5659 		mddev->in_sync = 0;
5660 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5661 		if (mddev->safemode_delay &&
5662 		    mddev->safemode == 0)
5663 			mddev->safemode = 1;
5664 		spin_unlock_irq(&mddev->write_lock);
5665 		md_update_sb(mddev, 0);
5666 		sysfs_notify(&mddev->kobj, NULL, "array_state");
5667 	} else
5668 		spin_unlock_irq(&mddev->write_lock);
5669 
5670 	if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
5671 		return -EAGAIN;
5672 	else
5673 		return 0;
5674 }
5675 EXPORT_SYMBOL_GPL(md_allow_write);
5676 
5677 #define SYNC_MARKS	10
5678 #define	SYNC_MARK_STEP	(3*HZ)
5679 void md_do_sync(mddev_t *mddev)
5680 {
5681 	mddev_t *mddev2;
5682 	unsigned int currspeed = 0,
5683 		 window;
5684 	sector_t max_sectors,j, io_sectors;
5685 	unsigned long mark[SYNC_MARKS];
5686 	sector_t mark_cnt[SYNC_MARKS];
5687 	int last_mark,m;
5688 	struct list_head *tmp;
5689 	sector_t last_check;
5690 	int skipped = 0;
5691 	struct list_head *rtmp;
5692 	mdk_rdev_t *rdev;
5693 	char *desc;
5694 
5695 	/* just incase thread restarts... */
5696 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5697 		return;
5698 	if (mddev->ro) /* never try to sync a read-only array */
5699 		return;
5700 
5701 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5702 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5703 			desc = "data-check";
5704 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5705 			desc = "requested-resync";
5706 		else
5707 			desc = "resync";
5708 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5709 		desc = "reshape";
5710 	else
5711 		desc = "recovery";
5712 
5713 	/* we overload curr_resync somewhat here.
5714 	 * 0 == not engaged in resync at all
5715 	 * 2 == checking that there is no conflict with another sync
5716 	 * 1 == like 2, but have yielded to allow conflicting resync to
5717 	 *		commense
5718 	 * other == active in resync - this many blocks
5719 	 *
5720 	 * Before starting a resync we must have set curr_resync to
5721 	 * 2, and then checked that every "conflicting" array has curr_resync
5722 	 * less than ours.  When we find one that is the same or higher
5723 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
5724 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5725 	 * This will mean we have to start checking from the beginning again.
5726 	 *
5727 	 */
5728 
5729 	do {
5730 		mddev->curr_resync = 2;
5731 
5732 	try_again:
5733 		if (kthread_should_stop()) {
5734 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5735 			goto skip;
5736 		}
5737 		for_each_mddev(mddev2, tmp) {
5738 			if (mddev2 == mddev)
5739 				continue;
5740 			if (!mddev->parallel_resync
5741 			&&  mddev2->curr_resync
5742 			&&  match_mddev_units(mddev, mddev2)) {
5743 				DEFINE_WAIT(wq);
5744 				if (mddev < mddev2 && mddev->curr_resync == 2) {
5745 					/* arbitrarily yield */
5746 					mddev->curr_resync = 1;
5747 					wake_up(&resync_wait);
5748 				}
5749 				if (mddev > mddev2 && mddev->curr_resync == 1)
5750 					/* no need to wait here, we can wait the next
5751 					 * time 'round when curr_resync == 2
5752 					 */
5753 					continue;
5754 				/* We need to wait 'interruptible' so as not to
5755 				 * contribute to the load average, and not to
5756 				 * be caught by 'softlockup'
5757 				 */
5758 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
5759 				if (!kthread_should_stop() &&
5760 				    mddev2->curr_resync >= mddev->curr_resync) {
5761 					printk(KERN_INFO "md: delaying %s of %s"
5762 					       " until %s has finished (they"
5763 					       " share one or more physical units)\n",
5764 					       desc, mdname(mddev), mdname(mddev2));
5765 					mddev_put(mddev2);
5766 					if (signal_pending(current))
5767 						flush_signals(current);
5768 					schedule();
5769 					finish_wait(&resync_wait, &wq);
5770 					goto try_again;
5771 				}
5772 				finish_wait(&resync_wait, &wq);
5773 			}
5774 		}
5775 	} while (mddev->curr_resync < 2);
5776 
5777 	j = 0;
5778 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5779 		/* resync follows the size requested by the personality,
5780 		 * which defaults to physical size, but can be virtual size
5781 		 */
5782 		max_sectors = mddev->resync_max_sectors;
5783 		mddev->resync_mismatches = 0;
5784 		/* we don't use the checkpoint if there's a bitmap */
5785 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5786 			j = mddev->resync_min;
5787 		else if (!mddev->bitmap)
5788 			j = mddev->recovery_cp;
5789 
5790 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5791 		max_sectors = mddev->size << 1;
5792 	else {
5793 		/* recovery follows the physical size of devices */
5794 		max_sectors = mddev->size << 1;
5795 		j = MaxSector;
5796 		rdev_for_each(rdev, rtmp, mddev)
5797 			if (rdev->raid_disk >= 0 &&
5798 			    !test_bit(Faulty, &rdev->flags) &&
5799 			    !test_bit(In_sync, &rdev->flags) &&
5800 			    rdev->recovery_offset < j)
5801 				j = rdev->recovery_offset;
5802 	}
5803 
5804 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5805 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
5806 		" %d KB/sec/disk.\n", speed_min(mddev));
5807 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5808 	       "(but not more than %d KB/sec) for %s.\n",
5809 	       speed_max(mddev), desc);
5810 
5811 	is_mddev_idle(mddev); /* this also initializes IO event counters */
5812 
5813 	io_sectors = 0;
5814 	for (m = 0; m < SYNC_MARKS; m++) {
5815 		mark[m] = jiffies;
5816 		mark_cnt[m] = io_sectors;
5817 	}
5818 	last_mark = 0;
5819 	mddev->resync_mark = mark[last_mark];
5820 	mddev->resync_mark_cnt = mark_cnt[last_mark];
5821 
5822 	/*
5823 	 * Tune reconstruction:
5824 	 */
5825 	window = 32*(PAGE_SIZE/512);
5826 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5827 		window/2,(unsigned long long) max_sectors/2);
5828 
5829 	atomic_set(&mddev->recovery_active, 0);
5830 	last_check = 0;
5831 
5832 	if (j>2) {
5833 		printk(KERN_INFO
5834 		       "md: resuming %s of %s from checkpoint.\n",
5835 		       desc, mdname(mddev));
5836 		mddev->curr_resync = j;
5837 	}
5838 
5839 	while (j < max_sectors) {
5840 		sector_t sectors;
5841 
5842 		skipped = 0;
5843 		if (j >= mddev->resync_max) {
5844 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5845 			wait_event(mddev->recovery_wait,
5846 				   mddev->resync_max > j
5847 				   || kthread_should_stop());
5848 		}
5849 		if (kthread_should_stop())
5850 			goto interrupted;
5851 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
5852 						  currspeed < speed_min(mddev));
5853 		if (sectors == 0) {
5854 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5855 			goto out;
5856 		}
5857 
5858 		if (!skipped) { /* actual IO requested */
5859 			io_sectors += sectors;
5860 			atomic_add(sectors, &mddev->recovery_active);
5861 		}
5862 
5863 		j += sectors;
5864 		if (j>1) mddev->curr_resync = j;
5865 		mddev->curr_mark_cnt = io_sectors;
5866 		if (last_check == 0)
5867 			/* this is the earliers that rebuilt will be
5868 			 * visible in /proc/mdstat
5869 			 */
5870 			md_new_event(mddev);
5871 
5872 		if (last_check + window > io_sectors || j == max_sectors)
5873 			continue;
5874 
5875 		last_check = io_sectors;
5876 
5877 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5878 			break;
5879 
5880 	repeat:
5881 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5882 			/* step marks */
5883 			int next = (last_mark+1) % SYNC_MARKS;
5884 
5885 			mddev->resync_mark = mark[next];
5886 			mddev->resync_mark_cnt = mark_cnt[next];
5887 			mark[next] = jiffies;
5888 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5889 			last_mark = next;
5890 		}
5891 
5892 
5893 		if (kthread_should_stop())
5894 			goto interrupted;
5895 
5896 
5897 		/*
5898 		 * this loop exits only if either when we are slower than
5899 		 * the 'hard' speed limit, or the system was IO-idle for
5900 		 * a jiffy.
5901 		 * the system might be non-idle CPU-wise, but we only care
5902 		 * about not overloading the IO subsystem. (things like an
5903 		 * e2fsck being done on the RAID array should execute fast)
5904 		 */
5905 		blk_unplug(mddev->queue);
5906 		cond_resched();
5907 
5908 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5909 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
5910 
5911 		if (currspeed > speed_min(mddev)) {
5912 			if ((currspeed > speed_max(mddev)) ||
5913 					!is_mddev_idle(mddev)) {
5914 				msleep(500);
5915 				goto repeat;
5916 			}
5917 		}
5918 	}
5919 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5920 	/*
5921 	 * this also signals 'finished resyncing' to md_stop
5922 	 */
5923  out:
5924 	blk_unplug(mddev->queue);
5925 
5926 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5927 
5928 	/* tell personality that we are finished */
5929 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5930 
5931 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5932 	    mddev->curr_resync > 2) {
5933 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5934 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5935 				if (mddev->curr_resync >= mddev->recovery_cp) {
5936 					printk(KERN_INFO
5937 					       "md: checkpointing %s of %s.\n",
5938 					       desc, mdname(mddev));
5939 					mddev->recovery_cp = mddev->curr_resync;
5940 				}
5941 			} else
5942 				mddev->recovery_cp = MaxSector;
5943 		} else {
5944 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5945 				mddev->curr_resync = MaxSector;
5946 			rdev_for_each(rdev, rtmp, mddev)
5947 				if (rdev->raid_disk >= 0 &&
5948 				    !test_bit(Faulty, &rdev->flags) &&
5949 				    !test_bit(In_sync, &rdev->flags) &&
5950 				    rdev->recovery_offset < mddev->curr_resync)
5951 					rdev->recovery_offset = mddev->curr_resync;
5952 		}
5953 	}
5954 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5955 
5956  skip:
5957 	mddev->curr_resync = 0;
5958 	mddev->resync_min = 0;
5959 	mddev->resync_max = MaxSector;
5960 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5961 	wake_up(&resync_wait);
5962 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5963 	md_wakeup_thread(mddev->thread);
5964 	return;
5965 
5966  interrupted:
5967 	/*
5968 	 * got a signal, exit.
5969 	 */
5970 	printk(KERN_INFO
5971 	       "md: md_do_sync() got signal ... exiting\n");
5972 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5973 	goto out;
5974 
5975 }
5976 EXPORT_SYMBOL_GPL(md_do_sync);
5977 
5978 
5979 static int remove_and_add_spares(mddev_t *mddev)
5980 {
5981 	mdk_rdev_t *rdev;
5982 	struct list_head *rtmp;
5983 	int spares = 0;
5984 
5985 	rdev_for_each(rdev, rtmp, mddev)
5986 		if (rdev->raid_disk >= 0 &&
5987 		    !test_bit(Blocked, &rdev->flags) &&
5988 		    (test_bit(Faulty, &rdev->flags) ||
5989 		     ! test_bit(In_sync, &rdev->flags)) &&
5990 		    atomic_read(&rdev->nr_pending)==0) {
5991 			if (mddev->pers->hot_remove_disk(
5992 				    mddev, rdev->raid_disk)==0) {
5993 				char nm[20];
5994 				sprintf(nm,"rd%d", rdev->raid_disk);
5995 				sysfs_remove_link(&mddev->kobj, nm);
5996 				rdev->raid_disk = -1;
5997 			}
5998 		}
5999 
6000 	if (mddev->degraded && ! mddev->ro) {
6001 		rdev_for_each(rdev, rtmp, mddev) {
6002 			if (rdev->raid_disk >= 0 &&
6003 			    !test_bit(In_sync, &rdev->flags) &&
6004 			    !test_bit(Blocked, &rdev->flags))
6005 				spares++;
6006 			if (rdev->raid_disk < 0
6007 			    && !test_bit(Faulty, &rdev->flags)) {
6008 				rdev->recovery_offset = 0;
6009 				if (mddev->pers->
6010 				    hot_add_disk(mddev, rdev) == 0) {
6011 					char nm[20];
6012 					sprintf(nm, "rd%d", rdev->raid_disk);
6013 					if (sysfs_create_link(&mddev->kobj,
6014 							      &rdev->kobj, nm))
6015 						printk(KERN_WARNING
6016 						       "md: cannot register "
6017 						       "%s for %s\n",
6018 						       nm, mdname(mddev));
6019 					spares++;
6020 					md_new_event(mddev);
6021 				} else
6022 					break;
6023 			}
6024 		}
6025 	}
6026 	return spares;
6027 }
6028 /*
6029  * This routine is regularly called by all per-raid-array threads to
6030  * deal with generic issues like resync and super-block update.
6031  * Raid personalities that don't have a thread (linear/raid0) do not
6032  * need this as they never do any recovery or update the superblock.
6033  *
6034  * It does not do any resync itself, but rather "forks" off other threads
6035  * to do that as needed.
6036  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6037  * "->recovery" and create a thread at ->sync_thread.
6038  * When the thread finishes it sets MD_RECOVERY_DONE
6039  * and wakeups up this thread which will reap the thread and finish up.
6040  * This thread also removes any faulty devices (with nr_pending == 0).
6041  *
6042  * The overall approach is:
6043  *  1/ if the superblock needs updating, update it.
6044  *  2/ If a recovery thread is running, don't do anything else.
6045  *  3/ If recovery has finished, clean up, possibly marking spares active.
6046  *  4/ If there are any faulty devices, remove them.
6047  *  5/ If array is degraded, try to add spares devices
6048  *  6/ If array has spares or is not in-sync, start a resync thread.
6049  */
6050 void md_check_recovery(mddev_t *mddev)
6051 {
6052 	mdk_rdev_t *rdev;
6053 	struct list_head *rtmp;
6054 
6055 
6056 	if (mddev->bitmap)
6057 		bitmap_daemon_work(mddev->bitmap);
6058 
6059 	if (test_and_clear_bit(MD_NOTIFY_ARRAY_STATE, &mddev->flags))
6060 		sysfs_notify(&mddev->kobj, NULL, "array_state");
6061 
6062 	if (mddev->ro)
6063 		return;
6064 
6065 	if (signal_pending(current)) {
6066 		if (mddev->pers->sync_request && !mddev->external) {
6067 			printk(KERN_INFO "md: %s in immediate safe mode\n",
6068 			       mdname(mddev));
6069 			mddev->safemode = 2;
6070 		}
6071 		flush_signals(current);
6072 	}
6073 
6074 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6075 		return;
6076 	if ( ! (
6077 		(mddev->flags && !mddev->external) ||
6078 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6079 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6080 		(mddev->external == 0 && mddev->safemode == 1) ||
6081 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6082 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6083 		))
6084 		return;
6085 
6086 	if (mddev_trylock(mddev)) {
6087 		int spares = 0;
6088 
6089 		if (mddev->ro) {
6090 			/* Only thing we do on a ro array is remove
6091 			 * failed devices.
6092 			 */
6093 			remove_and_add_spares(mddev);
6094 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6095 			goto unlock;
6096 		}
6097 
6098 		if (!mddev->external) {
6099 			int did_change = 0;
6100 			spin_lock_irq(&mddev->write_lock);
6101 			if (mddev->safemode &&
6102 			    !atomic_read(&mddev->writes_pending) &&
6103 			    !mddev->in_sync &&
6104 			    mddev->recovery_cp == MaxSector) {
6105 				mddev->in_sync = 1;
6106 				did_change = 1;
6107 				if (mddev->persistent)
6108 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6109 			}
6110 			if (mddev->safemode == 1)
6111 				mddev->safemode = 0;
6112 			spin_unlock_irq(&mddev->write_lock);
6113 			if (did_change)
6114 				sysfs_notify(&mddev->kobj, NULL, "array_state");
6115 		}
6116 
6117 		if (mddev->flags)
6118 			md_update_sb(mddev, 0);
6119 
6120 		rdev_for_each(rdev, rtmp, mddev)
6121 			if (test_and_clear_bit(StateChanged, &rdev->flags))
6122 				sysfs_notify(&rdev->kobj, NULL, "state");
6123 
6124 
6125 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6126 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6127 			/* resync/recovery still happening */
6128 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6129 			goto unlock;
6130 		}
6131 		if (mddev->sync_thread) {
6132 			/* resync has finished, collect result */
6133 			md_unregister_thread(mddev->sync_thread);
6134 			mddev->sync_thread = NULL;
6135 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6136 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6137 				/* success...*/
6138 				/* activate any spares */
6139 				if (mddev->pers->spare_active(mddev))
6140 					sysfs_notify(&mddev->kobj, NULL,
6141 						     "degraded");
6142 			}
6143 			md_update_sb(mddev, 1);
6144 
6145 			/* if array is no-longer degraded, then any saved_raid_disk
6146 			 * information must be scrapped
6147 			 */
6148 			if (!mddev->degraded)
6149 				rdev_for_each(rdev, rtmp, mddev)
6150 					rdev->saved_raid_disk = -1;
6151 
6152 			mddev->recovery = 0;
6153 			/* flag recovery needed just to double check */
6154 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6155 			sysfs_notify(&mddev->kobj, NULL, "sync_action");
6156 			md_new_event(mddev);
6157 			goto unlock;
6158 		}
6159 		/* Set RUNNING before clearing NEEDED to avoid
6160 		 * any transients in the value of "sync_action".
6161 		 */
6162 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6163 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6164 		/* Clear some bits that don't mean anything, but
6165 		 * might be left set
6166 		 */
6167 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6168 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6169 
6170 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6171 			goto unlock;
6172 		/* no recovery is running.
6173 		 * remove any failed drives, then
6174 		 * add spares if possible.
6175 		 * Spare are also removed and re-added, to allow
6176 		 * the personality to fail the re-add.
6177 		 */
6178 
6179 		if (mddev->reshape_position != MaxSector) {
6180 			if (mddev->pers->check_reshape(mddev) != 0)
6181 				/* Cannot proceed */
6182 				goto unlock;
6183 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6184 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6185 		} else if ((spares = remove_and_add_spares(mddev))) {
6186 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6187 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6188 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6189 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6190 		} else if (mddev->recovery_cp < MaxSector) {
6191 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6192 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6193 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6194 			/* nothing to be done ... */
6195 			goto unlock;
6196 
6197 		if (mddev->pers->sync_request) {
6198 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6199 				/* We are adding a device or devices to an array
6200 				 * which has the bitmap stored on all devices.
6201 				 * So make sure all bitmap pages get written
6202 				 */
6203 				bitmap_write_all(mddev->bitmap);
6204 			}
6205 			mddev->sync_thread = md_register_thread(md_do_sync,
6206 								mddev,
6207 								"%s_resync");
6208 			if (!mddev->sync_thread) {
6209 				printk(KERN_ERR "%s: could not start resync"
6210 					" thread...\n",
6211 					mdname(mddev));
6212 				/* leave the spares where they are, it shouldn't hurt */
6213 				mddev->recovery = 0;
6214 			} else
6215 				md_wakeup_thread(mddev->sync_thread);
6216 			sysfs_notify(&mddev->kobj, NULL, "sync_action");
6217 			md_new_event(mddev);
6218 		}
6219 	unlock:
6220 		if (!mddev->sync_thread) {
6221 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6222 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6223 					       &mddev->recovery))
6224 				sysfs_notify(&mddev->kobj, NULL, "sync_action");
6225 		}
6226 		mddev_unlock(mddev);
6227 	}
6228 }
6229 
6230 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6231 {
6232 	sysfs_notify(&rdev->kobj, NULL, "state");
6233 	wait_event_timeout(rdev->blocked_wait,
6234 			   !test_bit(Blocked, &rdev->flags),
6235 			   msecs_to_jiffies(5000));
6236 	rdev_dec_pending(rdev, mddev);
6237 }
6238 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6239 
6240 static int md_notify_reboot(struct notifier_block *this,
6241 			    unsigned long code, void *x)
6242 {
6243 	struct list_head *tmp;
6244 	mddev_t *mddev;
6245 
6246 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6247 
6248 		printk(KERN_INFO "md: stopping all md devices.\n");
6249 
6250 		for_each_mddev(mddev, tmp)
6251 			if (mddev_trylock(mddev)) {
6252 				/* Force a switch to readonly even array
6253 				 * appears to still be in use.  Hence
6254 				 * the '100'.
6255 				 */
6256 				do_md_stop (mddev, 1, 100);
6257 				mddev_unlock(mddev);
6258 			}
6259 		/*
6260 		 * certain more exotic SCSI devices are known to be
6261 		 * volatile wrt too early system reboots. While the
6262 		 * right place to handle this issue is the given
6263 		 * driver, we do want to have a safe RAID driver ...
6264 		 */
6265 		mdelay(1000*1);
6266 	}
6267 	return NOTIFY_DONE;
6268 }
6269 
6270 static struct notifier_block md_notifier = {
6271 	.notifier_call	= md_notify_reboot,
6272 	.next		= NULL,
6273 	.priority	= INT_MAX, /* before any real devices */
6274 };
6275 
6276 static void md_geninit(void)
6277 {
6278 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6279 
6280 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6281 }
6282 
6283 static int __init md_init(void)
6284 {
6285 	if (register_blkdev(MAJOR_NR, "md"))
6286 		return -1;
6287 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6288 		unregister_blkdev(MAJOR_NR, "md");
6289 		return -1;
6290 	}
6291 	blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
6292 			    md_probe, NULL, NULL);
6293 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6294 			    md_probe, NULL, NULL);
6295 
6296 	register_reboot_notifier(&md_notifier);
6297 	raid_table_header = register_sysctl_table(raid_root_table);
6298 
6299 	md_geninit();
6300 	return (0);
6301 }
6302 
6303 
6304 #ifndef MODULE
6305 
6306 /*
6307  * Searches all registered partitions for autorun RAID arrays
6308  * at boot time.
6309  */
6310 
6311 static LIST_HEAD(all_detected_devices);
6312 struct detected_devices_node {
6313 	struct list_head list;
6314 	dev_t dev;
6315 };
6316 
6317 void md_autodetect_dev(dev_t dev)
6318 {
6319 	struct detected_devices_node *node_detected_dev;
6320 
6321 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6322 	if (node_detected_dev) {
6323 		node_detected_dev->dev = dev;
6324 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
6325 	} else {
6326 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6327 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6328 	}
6329 }
6330 
6331 
6332 static void autostart_arrays(int part)
6333 {
6334 	mdk_rdev_t *rdev;
6335 	struct detected_devices_node *node_detected_dev;
6336 	dev_t dev;
6337 	int i_scanned, i_passed;
6338 
6339 	i_scanned = 0;
6340 	i_passed = 0;
6341 
6342 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6343 
6344 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6345 		i_scanned++;
6346 		node_detected_dev = list_entry(all_detected_devices.next,
6347 					struct detected_devices_node, list);
6348 		list_del(&node_detected_dev->list);
6349 		dev = node_detected_dev->dev;
6350 		kfree(node_detected_dev);
6351 		rdev = md_import_device(dev,0, 90);
6352 		if (IS_ERR(rdev))
6353 			continue;
6354 
6355 		if (test_bit(Faulty, &rdev->flags)) {
6356 			MD_BUG();
6357 			continue;
6358 		}
6359 		set_bit(AutoDetected, &rdev->flags);
6360 		list_add(&rdev->same_set, &pending_raid_disks);
6361 		i_passed++;
6362 	}
6363 
6364 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6365 						i_scanned, i_passed);
6366 
6367 	autorun_devices(part);
6368 }
6369 
6370 #endif /* !MODULE */
6371 
6372 static __exit void md_exit(void)
6373 {
6374 	mddev_t *mddev;
6375 	struct list_head *tmp;
6376 
6377 	blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
6378 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6379 
6380 	unregister_blkdev(MAJOR_NR,"md");
6381 	unregister_blkdev(mdp_major, "mdp");
6382 	unregister_reboot_notifier(&md_notifier);
6383 	unregister_sysctl_table(raid_table_header);
6384 	remove_proc_entry("mdstat", NULL);
6385 	for_each_mddev(mddev, tmp) {
6386 		struct gendisk *disk = mddev->gendisk;
6387 		if (!disk)
6388 			continue;
6389 		export_array(mddev);
6390 		del_gendisk(disk);
6391 		put_disk(disk);
6392 		mddev->gendisk = NULL;
6393 		mddev_put(mddev);
6394 	}
6395 }
6396 
6397 subsys_initcall(md_init);
6398 module_exit(md_exit)
6399 
6400 static int get_ro(char *buffer, struct kernel_param *kp)
6401 {
6402 	return sprintf(buffer, "%d", start_readonly);
6403 }
6404 static int set_ro(const char *val, struct kernel_param *kp)
6405 {
6406 	char *e;
6407 	int num = simple_strtoul(val, &e, 10);
6408 	if (*val && (*e == '\0' || *e == '\n')) {
6409 		start_readonly = num;
6410 		return 0;
6411 	}
6412 	return -EINVAL;
6413 }
6414 
6415 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6416 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6417 
6418 
6419 EXPORT_SYMBOL(register_md_personality);
6420 EXPORT_SYMBOL(unregister_md_personality);
6421 EXPORT_SYMBOL(md_error);
6422 EXPORT_SYMBOL(md_done_sync);
6423 EXPORT_SYMBOL(md_write_start);
6424 EXPORT_SYMBOL(md_write_end);
6425 EXPORT_SYMBOL(md_register_thread);
6426 EXPORT_SYMBOL(md_unregister_thread);
6427 EXPORT_SYMBOL(md_wakeup_thread);
6428 EXPORT_SYMBOL(md_check_recovery);
6429 MODULE_LICENSE("GPL");
6430 MODULE_ALIAS("md");
6431 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
6432