1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected by pers_lock. */ 74 static LIST_HEAD(pers_list); 75 static DEFINE_SPINLOCK(pers_lock); 76 77 static const struct kobj_type md_ktype; 78 79 struct md_cluster_operations *md_cluster_ops; 80 EXPORT_SYMBOL(md_cluster_ops); 81 static struct module *md_cluster_mod; 82 83 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 84 static struct workqueue_struct *md_wq; 85 static struct workqueue_struct *md_misc_wq; 86 struct workqueue_struct *md_bitmap_wq; 87 88 static int remove_and_add_spares(struct mddev *mddev, 89 struct md_rdev *this); 90 static void mddev_detach(struct mddev *mddev); 91 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev); 92 static void md_wakeup_thread_directly(struct md_thread __rcu *thread); 93 94 /* 95 * Default number of read corrections we'll attempt on an rdev 96 * before ejecting it from the array. We divide the read error 97 * count by 2 for every hour elapsed between read errors. 98 */ 99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 100 /* Default safemode delay: 200 msec */ 101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 102 /* 103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 104 * is 1000 KB/sec, so the extra system load does not show up that much. 105 * Increase it if you want to have more _guaranteed_ speed. Note that 106 * the RAID driver will use the maximum available bandwidth if the IO 107 * subsystem is idle. There is also an 'absolute maximum' reconstruction 108 * speed limit - in case reconstruction slows down your system despite 109 * idle IO detection. 110 * 111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 112 * or /sys/block/mdX/md/sync_speed_{min,max} 113 */ 114 115 static int sysctl_speed_limit_min = 1000; 116 static int sysctl_speed_limit_max = 200000; 117 static inline int speed_min(struct mddev *mddev) 118 { 119 return mddev->sync_speed_min ? 120 mddev->sync_speed_min : sysctl_speed_limit_min; 121 } 122 123 static inline int speed_max(struct mddev *mddev) 124 { 125 return mddev->sync_speed_max ? 126 mddev->sync_speed_max : sysctl_speed_limit_max; 127 } 128 129 static void rdev_uninit_serial(struct md_rdev *rdev) 130 { 131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 132 return; 133 134 kvfree(rdev->serial); 135 rdev->serial = NULL; 136 } 137 138 static void rdevs_uninit_serial(struct mddev *mddev) 139 { 140 struct md_rdev *rdev; 141 142 rdev_for_each(rdev, mddev) 143 rdev_uninit_serial(rdev); 144 } 145 146 static int rdev_init_serial(struct md_rdev *rdev) 147 { 148 /* serial_nums equals with BARRIER_BUCKETS_NR */ 149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 150 struct serial_in_rdev *serial = NULL; 151 152 if (test_bit(CollisionCheck, &rdev->flags)) 153 return 0; 154 155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 156 GFP_KERNEL); 157 if (!serial) 158 return -ENOMEM; 159 160 for (i = 0; i < serial_nums; i++) { 161 struct serial_in_rdev *serial_tmp = &serial[i]; 162 163 spin_lock_init(&serial_tmp->serial_lock); 164 serial_tmp->serial_rb = RB_ROOT_CACHED; 165 init_waitqueue_head(&serial_tmp->serial_io_wait); 166 } 167 168 rdev->serial = serial; 169 set_bit(CollisionCheck, &rdev->flags); 170 171 return 0; 172 } 173 174 static int rdevs_init_serial(struct mddev *mddev) 175 { 176 struct md_rdev *rdev; 177 int ret = 0; 178 179 rdev_for_each(rdev, mddev) { 180 ret = rdev_init_serial(rdev); 181 if (ret) 182 break; 183 } 184 185 /* Free all resources if pool is not existed */ 186 if (ret && !mddev->serial_info_pool) 187 rdevs_uninit_serial(mddev); 188 189 return ret; 190 } 191 192 /* 193 * rdev needs to enable serial stuffs if it meets the conditions: 194 * 1. it is multi-queue device flaged with writemostly. 195 * 2. the write-behind mode is enabled. 196 */ 197 static int rdev_need_serial(struct md_rdev *rdev) 198 { 199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 201 test_bit(WriteMostly, &rdev->flags)); 202 } 203 204 /* 205 * Init resource for rdev(s), then create serial_info_pool if: 206 * 1. rdev is the first device which return true from rdev_enable_serial. 207 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 208 */ 209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 210 bool is_suspend) 211 { 212 int ret = 0; 213 214 if (rdev && !rdev_need_serial(rdev) && 215 !test_bit(CollisionCheck, &rdev->flags)) 216 return; 217 218 if (!is_suspend) 219 mddev_suspend(mddev); 220 221 if (!rdev) 222 ret = rdevs_init_serial(mddev); 223 else 224 ret = rdev_init_serial(rdev); 225 if (ret) 226 goto abort; 227 228 if (mddev->serial_info_pool == NULL) { 229 /* 230 * already in memalloc noio context by 231 * mddev_suspend() 232 */ 233 mddev->serial_info_pool = 234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 235 sizeof(struct serial_info)); 236 if (!mddev->serial_info_pool) { 237 rdevs_uninit_serial(mddev); 238 pr_err("can't alloc memory pool for serialization\n"); 239 } 240 } 241 242 abort: 243 if (!is_suspend) 244 mddev_resume(mddev); 245 } 246 247 /* 248 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 249 * 1. rdev is the last device flaged with CollisionCheck. 250 * 2. when bitmap is destroyed while policy is not enabled. 251 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 252 */ 253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 254 bool is_suspend) 255 { 256 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 257 return; 258 259 if (mddev->serial_info_pool) { 260 struct md_rdev *temp; 261 int num = 0; /* used to track if other rdevs need the pool */ 262 263 if (!is_suspend) 264 mddev_suspend(mddev); 265 rdev_for_each(temp, mddev) { 266 if (!rdev) { 267 if (!mddev->serialize_policy || 268 !rdev_need_serial(temp)) 269 rdev_uninit_serial(temp); 270 else 271 num++; 272 } else if (temp != rdev && 273 test_bit(CollisionCheck, &temp->flags)) 274 num++; 275 } 276 277 if (rdev) 278 rdev_uninit_serial(rdev); 279 280 if (num) 281 pr_info("The mempool could be used by other devices\n"); 282 else { 283 mempool_destroy(mddev->serial_info_pool); 284 mddev->serial_info_pool = NULL; 285 } 286 if (!is_suspend) 287 mddev_resume(mddev); 288 } 289 } 290 291 static struct ctl_table_header *raid_table_header; 292 293 static struct ctl_table raid_table[] = { 294 { 295 .procname = "speed_limit_min", 296 .data = &sysctl_speed_limit_min, 297 .maxlen = sizeof(int), 298 .mode = S_IRUGO|S_IWUSR, 299 .proc_handler = proc_dointvec, 300 }, 301 { 302 .procname = "speed_limit_max", 303 .data = &sysctl_speed_limit_max, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { } 309 }; 310 311 static int start_readonly; 312 313 /* 314 * The original mechanism for creating an md device is to create 315 * a device node in /dev and to open it. This causes races with device-close. 316 * The preferred method is to write to the "new_array" module parameter. 317 * This can avoid races. 318 * Setting create_on_open to false disables the original mechanism 319 * so all the races disappear. 320 */ 321 static bool create_on_open = true; 322 323 /* 324 * We have a system wide 'event count' that is incremented 325 * on any 'interesting' event, and readers of /proc/mdstat 326 * can use 'poll' or 'select' to find out when the event 327 * count increases. 328 * 329 * Events are: 330 * start array, stop array, error, add device, remove device, 331 * start build, activate spare 332 */ 333 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 334 static atomic_t md_event_count; 335 void md_new_event(void) 336 { 337 atomic_inc(&md_event_count); 338 wake_up(&md_event_waiters); 339 } 340 EXPORT_SYMBOL_GPL(md_new_event); 341 342 /* 343 * Enables to iterate over all existing md arrays 344 * all_mddevs_lock protects this list. 345 */ 346 static LIST_HEAD(all_mddevs); 347 static DEFINE_SPINLOCK(all_mddevs_lock); 348 349 /* Rather than calling directly into the personality make_request function, 350 * IO requests come here first so that we can check if the device is 351 * being suspended pending a reconfiguration. 352 * We hold a refcount over the call to ->make_request. By the time that 353 * call has finished, the bio has been linked into some internal structure 354 * and so is visible to ->quiesce(), so we don't need the refcount any more. 355 */ 356 static bool is_suspended(struct mddev *mddev, struct bio *bio) 357 { 358 if (is_md_suspended(mddev)) 359 return true; 360 if (bio_data_dir(bio) != WRITE) 361 return false; 362 if (mddev->suspend_lo >= mddev->suspend_hi) 363 return false; 364 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 365 return false; 366 if (bio_end_sector(bio) < mddev->suspend_lo) 367 return false; 368 return true; 369 } 370 371 void md_handle_request(struct mddev *mddev, struct bio *bio) 372 { 373 check_suspended: 374 if (is_suspended(mddev, bio)) { 375 DEFINE_WAIT(__wait); 376 /* Bail out if REQ_NOWAIT is set for the bio */ 377 if (bio->bi_opf & REQ_NOWAIT) { 378 bio_wouldblock_error(bio); 379 return; 380 } 381 for (;;) { 382 prepare_to_wait(&mddev->sb_wait, &__wait, 383 TASK_UNINTERRUPTIBLE); 384 if (!is_suspended(mddev, bio)) 385 break; 386 schedule(); 387 } 388 finish_wait(&mddev->sb_wait, &__wait); 389 } 390 if (!percpu_ref_tryget_live(&mddev->active_io)) 391 goto check_suspended; 392 393 if (!mddev->pers->make_request(mddev, bio)) { 394 percpu_ref_put(&mddev->active_io); 395 goto check_suspended; 396 } 397 398 percpu_ref_put(&mddev->active_io); 399 } 400 EXPORT_SYMBOL(md_handle_request); 401 402 static void md_submit_bio(struct bio *bio) 403 { 404 const int rw = bio_data_dir(bio); 405 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 406 407 if (mddev == NULL || mddev->pers == NULL) { 408 bio_io_error(bio); 409 return; 410 } 411 412 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 413 bio_io_error(bio); 414 return; 415 } 416 417 bio = bio_split_to_limits(bio); 418 if (!bio) 419 return; 420 421 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) { 422 if (bio_sectors(bio) != 0) 423 bio->bi_status = BLK_STS_IOERR; 424 bio_endio(bio); 425 return; 426 } 427 428 /* bio could be mergeable after passing to underlayer */ 429 bio->bi_opf &= ~REQ_NOMERGE; 430 431 md_handle_request(mddev, bio); 432 } 433 434 /* mddev_suspend makes sure no new requests are submitted 435 * to the device, and that any requests that have been submitted 436 * are completely handled. 437 * Once mddev_detach() is called and completes, the module will be 438 * completely unused. 439 */ 440 void mddev_suspend(struct mddev *mddev) 441 { 442 struct md_thread *thread = rcu_dereference_protected(mddev->thread, 443 lockdep_is_held(&mddev->reconfig_mutex)); 444 445 WARN_ON_ONCE(thread && current == thread->tsk); 446 if (mddev->suspended++) 447 return; 448 wake_up(&mddev->sb_wait); 449 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 450 percpu_ref_kill(&mddev->active_io); 451 452 if (mddev->pers->prepare_suspend) 453 mddev->pers->prepare_suspend(mddev); 454 455 wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io)); 456 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 457 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 458 459 del_timer_sync(&mddev->safemode_timer); 460 /* restrict memory reclaim I/O during raid array is suspend */ 461 mddev->noio_flag = memalloc_noio_save(); 462 } 463 EXPORT_SYMBOL_GPL(mddev_suspend); 464 465 void mddev_resume(struct mddev *mddev) 466 { 467 lockdep_assert_held(&mddev->reconfig_mutex); 468 if (--mddev->suspended) 469 return; 470 471 /* entred the memalloc scope from mddev_suspend() */ 472 memalloc_noio_restore(mddev->noio_flag); 473 474 percpu_ref_resurrect(&mddev->active_io); 475 wake_up(&mddev->sb_wait); 476 477 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 478 md_wakeup_thread(mddev->thread); 479 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 480 } 481 EXPORT_SYMBOL_GPL(mddev_resume); 482 483 /* 484 * Generic flush handling for md 485 */ 486 487 static void md_end_flush(struct bio *bio) 488 { 489 struct md_rdev *rdev = bio->bi_private; 490 struct mddev *mddev = rdev->mddev; 491 492 bio_put(bio); 493 494 rdev_dec_pending(rdev, mddev); 495 496 if (atomic_dec_and_test(&mddev->flush_pending)) { 497 /* The pre-request flush has finished */ 498 queue_work(md_wq, &mddev->flush_work); 499 } 500 } 501 502 static void md_submit_flush_data(struct work_struct *ws); 503 504 static void submit_flushes(struct work_struct *ws) 505 { 506 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 507 struct md_rdev *rdev; 508 509 mddev->start_flush = ktime_get_boottime(); 510 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 511 atomic_set(&mddev->flush_pending, 1); 512 rcu_read_lock(); 513 rdev_for_each_rcu(rdev, mddev) 514 if (rdev->raid_disk >= 0 && 515 !test_bit(Faulty, &rdev->flags)) { 516 /* Take two references, one is dropped 517 * when request finishes, one after 518 * we reclaim rcu_read_lock 519 */ 520 struct bio *bi; 521 atomic_inc(&rdev->nr_pending); 522 atomic_inc(&rdev->nr_pending); 523 rcu_read_unlock(); 524 bi = bio_alloc_bioset(rdev->bdev, 0, 525 REQ_OP_WRITE | REQ_PREFLUSH, 526 GFP_NOIO, &mddev->bio_set); 527 bi->bi_end_io = md_end_flush; 528 bi->bi_private = rdev; 529 atomic_inc(&mddev->flush_pending); 530 submit_bio(bi); 531 rcu_read_lock(); 532 rdev_dec_pending(rdev, mddev); 533 } 534 rcu_read_unlock(); 535 if (atomic_dec_and_test(&mddev->flush_pending)) 536 queue_work(md_wq, &mddev->flush_work); 537 } 538 539 static void md_submit_flush_data(struct work_struct *ws) 540 { 541 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 542 struct bio *bio = mddev->flush_bio; 543 544 /* 545 * must reset flush_bio before calling into md_handle_request to avoid a 546 * deadlock, because other bios passed md_handle_request suspend check 547 * could wait for this and below md_handle_request could wait for those 548 * bios because of suspend check 549 */ 550 spin_lock_irq(&mddev->lock); 551 mddev->prev_flush_start = mddev->start_flush; 552 mddev->flush_bio = NULL; 553 spin_unlock_irq(&mddev->lock); 554 wake_up(&mddev->sb_wait); 555 556 if (bio->bi_iter.bi_size == 0) { 557 /* an empty barrier - all done */ 558 bio_endio(bio); 559 } else { 560 bio->bi_opf &= ~REQ_PREFLUSH; 561 md_handle_request(mddev, bio); 562 } 563 } 564 565 /* 566 * Manages consolidation of flushes and submitting any flushes needed for 567 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 568 * being finished in another context. Returns false if the flushing is 569 * complete but still needs the I/O portion of the bio to be processed. 570 */ 571 bool md_flush_request(struct mddev *mddev, struct bio *bio) 572 { 573 ktime_t req_start = ktime_get_boottime(); 574 spin_lock_irq(&mddev->lock); 575 /* flush requests wait until ongoing flush completes, 576 * hence coalescing all the pending requests. 577 */ 578 wait_event_lock_irq(mddev->sb_wait, 579 !mddev->flush_bio || 580 ktime_before(req_start, mddev->prev_flush_start), 581 mddev->lock); 582 /* new request after previous flush is completed */ 583 if (ktime_after(req_start, mddev->prev_flush_start)) { 584 WARN_ON(mddev->flush_bio); 585 mddev->flush_bio = bio; 586 bio = NULL; 587 } 588 spin_unlock_irq(&mddev->lock); 589 590 if (!bio) { 591 INIT_WORK(&mddev->flush_work, submit_flushes); 592 queue_work(md_wq, &mddev->flush_work); 593 } else { 594 /* flush was performed for some other bio while we waited. */ 595 if (bio->bi_iter.bi_size == 0) 596 /* an empty barrier - all done */ 597 bio_endio(bio); 598 else { 599 bio->bi_opf &= ~REQ_PREFLUSH; 600 return false; 601 } 602 } 603 return true; 604 } 605 EXPORT_SYMBOL(md_flush_request); 606 607 static inline struct mddev *mddev_get(struct mddev *mddev) 608 { 609 lockdep_assert_held(&all_mddevs_lock); 610 611 if (test_bit(MD_DELETED, &mddev->flags)) 612 return NULL; 613 atomic_inc(&mddev->active); 614 return mddev; 615 } 616 617 static void mddev_delayed_delete(struct work_struct *ws); 618 619 void mddev_put(struct mddev *mddev) 620 { 621 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 622 return; 623 if (!mddev->raid_disks && list_empty(&mddev->disks) && 624 mddev->ctime == 0 && !mddev->hold_active) { 625 /* Array is not configured at all, and not held active, 626 * so destroy it */ 627 set_bit(MD_DELETED, &mddev->flags); 628 629 /* 630 * Call queue_work inside the spinlock so that 631 * flush_workqueue() after mddev_find will succeed in waiting 632 * for the work to be done. 633 */ 634 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 635 queue_work(md_misc_wq, &mddev->del_work); 636 } 637 spin_unlock(&all_mddevs_lock); 638 } 639 640 static void md_safemode_timeout(struct timer_list *t); 641 642 void mddev_init(struct mddev *mddev) 643 { 644 mutex_init(&mddev->open_mutex); 645 mutex_init(&mddev->reconfig_mutex); 646 mutex_init(&mddev->sync_mutex); 647 mutex_init(&mddev->bitmap_info.mutex); 648 INIT_LIST_HEAD(&mddev->disks); 649 INIT_LIST_HEAD(&mddev->all_mddevs); 650 INIT_LIST_HEAD(&mddev->deleting); 651 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 652 atomic_set(&mddev->active, 1); 653 atomic_set(&mddev->openers, 0); 654 atomic_set(&mddev->sync_seq, 0); 655 spin_lock_init(&mddev->lock); 656 atomic_set(&mddev->flush_pending, 0); 657 init_waitqueue_head(&mddev->sb_wait); 658 init_waitqueue_head(&mddev->recovery_wait); 659 mddev->reshape_position = MaxSector; 660 mddev->reshape_backwards = 0; 661 mddev->last_sync_action = "none"; 662 mddev->resync_min = 0; 663 mddev->resync_max = MaxSector; 664 mddev->level = LEVEL_NONE; 665 } 666 EXPORT_SYMBOL_GPL(mddev_init); 667 668 static struct mddev *mddev_find_locked(dev_t unit) 669 { 670 struct mddev *mddev; 671 672 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 673 if (mddev->unit == unit) 674 return mddev; 675 676 return NULL; 677 } 678 679 /* find an unused unit number */ 680 static dev_t mddev_alloc_unit(void) 681 { 682 static int next_minor = 512; 683 int start = next_minor; 684 bool is_free = 0; 685 dev_t dev = 0; 686 687 while (!is_free) { 688 dev = MKDEV(MD_MAJOR, next_minor); 689 next_minor++; 690 if (next_minor > MINORMASK) 691 next_minor = 0; 692 if (next_minor == start) 693 return 0; /* Oh dear, all in use. */ 694 is_free = !mddev_find_locked(dev); 695 } 696 697 return dev; 698 } 699 700 static struct mddev *mddev_alloc(dev_t unit) 701 { 702 struct mddev *new; 703 int error; 704 705 if (unit && MAJOR(unit) != MD_MAJOR) 706 unit &= ~((1 << MdpMinorShift) - 1); 707 708 new = kzalloc(sizeof(*new), GFP_KERNEL); 709 if (!new) 710 return ERR_PTR(-ENOMEM); 711 mddev_init(new); 712 713 spin_lock(&all_mddevs_lock); 714 if (unit) { 715 error = -EEXIST; 716 if (mddev_find_locked(unit)) 717 goto out_free_new; 718 new->unit = unit; 719 if (MAJOR(unit) == MD_MAJOR) 720 new->md_minor = MINOR(unit); 721 else 722 new->md_minor = MINOR(unit) >> MdpMinorShift; 723 new->hold_active = UNTIL_IOCTL; 724 } else { 725 error = -ENODEV; 726 new->unit = mddev_alloc_unit(); 727 if (!new->unit) 728 goto out_free_new; 729 new->md_minor = MINOR(new->unit); 730 new->hold_active = UNTIL_STOP; 731 } 732 733 list_add(&new->all_mddevs, &all_mddevs); 734 spin_unlock(&all_mddevs_lock); 735 return new; 736 out_free_new: 737 spin_unlock(&all_mddevs_lock); 738 kfree(new); 739 return ERR_PTR(error); 740 } 741 742 static void mddev_free(struct mddev *mddev) 743 { 744 spin_lock(&all_mddevs_lock); 745 list_del(&mddev->all_mddevs); 746 spin_unlock(&all_mddevs_lock); 747 748 kfree(mddev); 749 } 750 751 static const struct attribute_group md_redundancy_group; 752 753 void mddev_unlock(struct mddev *mddev) 754 { 755 struct md_rdev *rdev; 756 struct md_rdev *tmp; 757 LIST_HEAD(delete); 758 759 if (!list_empty(&mddev->deleting)) 760 list_splice_init(&mddev->deleting, &delete); 761 762 if (mddev->to_remove) { 763 /* These cannot be removed under reconfig_mutex as 764 * an access to the files will try to take reconfig_mutex 765 * while holding the file unremovable, which leads to 766 * a deadlock. 767 * So hold set sysfs_active while the remove in happeing, 768 * and anything else which might set ->to_remove or my 769 * otherwise change the sysfs namespace will fail with 770 * -EBUSY if sysfs_active is still set. 771 * We set sysfs_active under reconfig_mutex and elsewhere 772 * test it under the same mutex to ensure its correct value 773 * is seen. 774 */ 775 const struct attribute_group *to_remove = mddev->to_remove; 776 mddev->to_remove = NULL; 777 mddev->sysfs_active = 1; 778 mutex_unlock(&mddev->reconfig_mutex); 779 780 if (mddev->kobj.sd) { 781 if (to_remove != &md_redundancy_group) 782 sysfs_remove_group(&mddev->kobj, to_remove); 783 if (mddev->pers == NULL || 784 mddev->pers->sync_request == NULL) { 785 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 786 if (mddev->sysfs_action) 787 sysfs_put(mddev->sysfs_action); 788 if (mddev->sysfs_completed) 789 sysfs_put(mddev->sysfs_completed); 790 if (mddev->sysfs_degraded) 791 sysfs_put(mddev->sysfs_degraded); 792 mddev->sysfs_action = NULL; 793 mddev->sysfs_completed = NULL; 794 mddev->sysfs_degraded = NULL; 795 } 796 } 797 mddev->sysfs_active = 0; 798 } else 799 mutex_unlock(&mddev->reconfig_mutex); 800 801 md_wakeup_thread(mddev->thread); 802 wake_up(&mddev->sb_wait); 803 804 list_for_each_entry_safe(rdev, tmp, &delete, same_set) { 805 list_del_init(&rdev->same_set); 806 kobject_del(&rdev->kobj); 807 export_rdev(rdev, mddev); 808 } 809 } 810 EXPORT_SYMBOL_GPL(mddev_unlock); 811 812 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 813 { 814 struct md_rdev *rdev; 815 816 rdev_for_each_rcu(rdev, mddev) 817 if (rdev->desc_nr == nr) 818 return rdev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 823 824 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 825 { 826 struct md_rdev *rdev; 827 828 rdev_for_each(rdev, mddev) 829 if (rdev->bdev->bd_dev == dev) 830 return rdev; 831 832 return NULL; 833 } 834 835 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 836 { 837 struct md_rdev *rdev; 838 839 rdev_for_each_rcu(rdev, mddev) 840 if (rdev->bdev->bd_dev == dev) 841 return rdev; 842 843 return NULL; 844 } 845 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 846 847 static struct md_personality *find_pers(int level, char *clevel) 848 { 849 struct md_personality *pers; 850 list_for_each_entry(pers, &pers_list, list) { 851 if (level != LEVEL_NONE && pers->level == level) 852 return pers; 853 if (strcmp(pers->name, clevel)==0) 854 return pers; 855 } 856 return NULL; 857 } 858 859 /* return the offset of the super block in 512byte sectors */ 860 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 861 { 862 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 863 } 864 865 static int alloc_disk_sb(struct md_rdev *rdev) 866 { 867 rdev->sb_page = alloc_page(GFP_KERNEL); 868 if (!rdev->sb_page) 869 return -ENOMEM; 870 return 0; 871 } 872 873 void md_rdev_clear(struct md_rdev *rdev) 874 { 875 if (rdev->sb_page) { 876 put_page(rdev->sb_page); 877 rdev->sb_loaded = 0; 878 rdev->sb_page = NULL; 879 rdev->sb_start = 0; 880 rdev->sectors = 0; 881 } 882 if (rdev->bb_page) { 883 put_page(rdev->bb_page); 884 rdev->bb_page = NULL; 885 } 886 badblocks_exit(&rdev->badblocks); 887 } 888 EXPORT_SYMBOL_GPL(md_rdev_clear); 889 890 static void super_written(struct bio *bio) 891 { 892 struct md_rdev *rdev = bio->bi_private; 893 struct mddev *mddev = rdev->mddev; 894 895 if (bio->bi_status) { 896 pr_err("md: %s gets error=%d\n", __func__, 897 blk_status_to_errno(bio->bi_status)); 898 md_error(mddev, rdev); 899 if (!test_bit(Faulty, &rdev->flags) 900 && (bio->bi_opf & MD_FAILFAST)) { 901 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 902 set_bit(LastDev, &rdev->flags); 903 } 904 } else 905 clear_bit(LastDev, &rdev->flags); 906 907 bio_put(bio); 908 909 rdev_dec_pending(rdev, mddev); 910 911 if (atomic_dec_and_test(&mddev->pending_writes)) 912 wake_up(&mddev->sb_wait); 913 } 914 915 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 916 sector_t sector, int size, struct page *page) 917 { 918 /* write first size bytes of page to sector of rdev 919 * Increment mddev->pending_writes before returning 920 * and decrement it on completion, waking up sb_wait 921 * if zero is reached. 922 * If an error occurred, call md_error 923 */ 924 struct bio *bio; 925 926 if (!page) 927 return; 928 929 if (test_bit(Faulty, &rdev->flags)) 930 return; 931 932 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 933 1, 934 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA, 935 GFP_NOIO, &mddev->sync_set); 936 937 atomic_inc(&rdev->nr_pending); 938 939 bio->bi_iter.bi_sector = sector; 940 __bio_add_page(bio, page, size, 0); 941 bio->bi_private = rdev; 942 bio->bi_end_io = super_written; 943 944 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 945 test_bit(FailFast, &rdev->flags) && 946 !test_bit(LastDev, &rdev->flags)) 947 bio->bi_opf |= MD_FAILFAST; 948 949 atomic_inc(&mddev->pending_writes); 950 submit_bio(bio); 951 } 952 953 int md_super_wait(struct mddev *mddev) 954 { 955 /* wait for all superblock writes that were scheduled to complete */ 956 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 957 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 958 return -EAGAIN; 959 return 0; 960 } 961 962 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 963 struct page *page, blk_opf_t opf, bool metadata_op) 964 { 965 struct bio bio; 966 struct bio_vec bvec; 967 968 if (metadata_op && rdev->meta_bdev) 969 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 970 else 971 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 972 973 if (metadata_op) 974 bio.bi_iter.bi_sector = sector + rdev->sb_start; 975 else if (rdev->mddev->reshape_position != MaxSector && 976 (rdev->mddev->reshape_backwards == 977 (sector >= rdev->mddev->reshape_position))) 978 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 979 else 980 bio.bi_iter.bi_sector = sector + rdev->data_offset; 981 __bio_add_page(&bio, page, size, 0); 982 983 submit_bio_wait(&bio); 984 985 return !bio.bi_status; 986 } 987 EXPORT_SYMBOL_GPL(sync_page_io); 988 989 static int read_disk_sb(struct md_rdev *rdev, int size) 990 { 991 if (rdev->sb_loaded) 992 return 0; 993 994 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 995 goto fail; 996 rdev->sb_loaded = 1; 997 return 0; 998 999 fail: 1000 pr_err("md: disabled device %pg, could not read superblock.\n", 1001 rdev->bdev); 1002 return -EINVAL; 1003 } 1004 1005 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1006 { 1007 return sb1->set_uuid0 == sb2->set_uuid0 && 1008 sb1->set_uuid1 == sb2->set_uuid1 && 1009 sb1->set_uuid2 == sb2->set_uuid2 && 1010 sb1->set_uuid3 == sb2->set_uuid3; 1011 } 1012 1013 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1014 { 1015 int ret; 1016 mdp_super_t *tmp1, *tmp2; 1017 1018 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1019 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1020 1021 if (!tmp1 || !tmp2) { 1022 ret = 0; 1023 goto abort; 1024 } 1025 1026 *tmp1 = *sb1; 1027 *tmp2 = *sb2; 1028 1029 /* 1030 * nr_disks is not constant 1031 */ 1032 tmp1->nr_disks = 0; 1033 tmp2->nr_disks = 0; 1034 1035 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1036 abort: 1037 kfree(tmp1); 1038 kfree(tmp2); 1039 return ret; 1040 } 1041 1042 static u32 md_csum_fold(u32 csum) 1043 { 1044 csum = (csum & 0xffff) + (csum >> 16); 1045 return (csum & 0xffff) + (csum >> 16); 1046 } 1047 1048 static unsigned int calc_sb_csum(mdp_super_t *sb) 1049 { 1050 u64 newcsum = 0; 1051 u32 *sb32 = (u32*)sb; 1052 int i; 1053 unsigned int disk_csum, csum; 1054 1055 disk_csum = sb->sb_csum; 1056 sb->sb_csum = 0; 1057 1058 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1059 newcsum += sb32[i]; 1060 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1061 1062 #ifdef CONFIG_ALPHA 1063 /* This used to use csum_partial, which was wrong for several 1064 * reasons including that different results are returned on 1065 * different architectures. It isn't critical that we get exactly 1066 * the same return value as before (we always csum_fold before 1067 * testing, and that removes any differences). However as we 1068 * know that csum_partial always returned a 16bit value on 1069 * alphas, do a fold to maximise conformity to previous behaviour. 1070 */ 1071 sb->sb_csum = md_csum_fold(disk_csum); 1072 #else 1073 sb->sb_csum = disk_csum; 1074 #endif 1075 return csum; 1076 } 1077 1078 /* 1079 * Handle superblock details. 1080 * We want to be able to handle multiple superblock formats 1081 * so we have a common interface to them all, and an array of 1082 * different handlers. 1083 * We rely on user-space to write the initial superblock, and support 1084 * reading and updating of superblocks. 1085 * Interface methods are: 1086 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1087 * loads and validates a superblock on dev. 1088 * if refdev != NULL, compare superblocks on both devices 1089 * Return: 1090 * 0 - dev has a superblock that is compatible with refdev 1091 * 1 - dev has a superblock that is compatible and newer than refdev 1092 * so dev should be used as the refdev in future 1093 * -EINVAL superblock incompatible or invalid 1094 * -othererror e.g. -EIO 1095 * 1096 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1097 * Verify that dev is acceptable into mddev. 1098 * The first time, mddev->raid_disks will be 0, and data from 1099 * dev should be merged in. Subsequent calls check that dev 1100 * is new enough. Return 0 or -EINVAL 1101 * 1102 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1103 * Update the superblock for rdev with data in mddev 1104 * This does not write to disc. 1105 * 1106 */ 1107 1108 struct super_type { 1109 char *name; 1110 struct module *owner; 1111 int (*load_super)(struct md_rdev *rdev, 1112 struct md_rdev *refdev, 1113 int minor_version); 1114 int (*validate_super)(struct mddev *mddev, 1115 struct md_rdev *rdev); 1116 void (*sync_super)(struct mddev *mddev, 1117 struct md_rdev *rdev); 1118 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1119 sector_t num_sectors); 1120 int (*allow_new_offset)(struct md_rdev *rdev, 1121 unsigned long long new_offset); 1122 }; 1123 1124 /* 1125 * Check that the given mddev has no bitmap. 1126 * 1127 * This function is called from the run method of all personalities that do not 1128 * support bitmaps. It prints an error message and returns non-zero if mddev 1129 * has a bitmap. Otherwise, it returns 0. 1130 * 1131 */ 1132 int md_check_no_bitmap(struct mddev *mddev) 1133 { 1134 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1135 return 0; 1136 pr_warn("%s: bitmaps are not supported for %s\n", 1137 mdname(mddev), mddev->pers->name); 1138 return 1; 1139 } 1140 EXPORT_SYMBOL(md_check_no_bitmap); 1141 1142 /* 1143 * load_super for 0.90.0 1144 */ 1145 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1146 { 1147 mdp_super_t *sb; 1148 int ret; 1149 bool spare_disk = true; 1150 1151 /* 1152 * Calculate the position of the superblock (512byte sectors), 1153 * it's at the end of the disk. 1154 * 1155 * It also happens to be a multiple of 4Kb. 1156 */ 1157 rdev->sb_start = calc_dev_sboffset(rdev); 1158 1159 ret = read_disk_sb(rdev, MD_SB_BYTES); 1160 if (ret) 1161 return ret; 1162 1163 ret = -EINVAL; 1164 1165 sb = page_address(rdev->sb_page); 1166 1167 if (sb->md_magic != MD_SB_MAGIC) { 1168 pr_warn("md: invalid raid superblock magic on %pg\n", 1169 rdev->bdev); 1170 goto abort; 1171 } 1172 1173 if (sb->major_version != 0 || 1174 sb->minor_version < 90 || 1175 sb->minor_version > 91) { 1176 pr_warn("Bad version number %d.%d on %pg\n", 1177 sb->major_version, sb->minor_version, rdev->bdev); 1178 goto abort; 1179 } 1180 1181 if (sb->raid_disks <= 0) 1182 goto abort; 1183 1184 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1185 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1186 goto abort; 1187 } 1188 1189 rdev->preferred_minor = sb->md_minor; 1190 rdev->data_offset = 0; 1191 rdev->new_data_offset = 0; 1192 rdev->sb_size = MD_SB_BYTES; 1193 rdev->badblocks.shift = -1; 1194 1195 if (sb->level == LEVEL_MULTIPATH) 1196 rdev->desc_nr = -1; 1197 else 1198 rdev->desc_nr = sb->this_disk.number; 1199 1200 /* not spare disk, or LEVEL_MULTIPATH */ 1201 if (sb->level == LEVEL_MULTIPATH || 1202 (rdev->desc_nr >= 0 && 1203 rdev->desc_nr < MD_SB_DISKS && 1204 sb->disks[rdev->desc_nr].state & 1205 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1206 spare_disk = false; 1207 1208 if (!refdev) { 1209 if (!spare_disk) 1210 ret = 1; 1211 else 1212 ret = 0; 1213 } else { 1214 __u64 ev1, ev2; 1215 mdp_super_t *refsb = page_address(refdev->sb_page); 1216 if (!md_uuid_equal(refsb, sb)) { 1217 pr_warn("md: %pg has different UUID to %pg\n", 1218 rdev->bdev, refdev->bdev); 1219 goto abort; 1220 } 1221 if (!md_sb_equal(refsb, sb)) { 1222 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1223 rdev->bdev, refdev->bdev); 1224 goto abort; 1225 } 1226 ev1 = md_event(sb); 1227 ev2 = md_event(refsb); 1228 1229 if (!spare_disk && ev1 > ev2) 1230 ret = 1; 1231 else 1232 ret = 0; 1233 } 1234 rdev->sectors = rdev->sb_start; 1235 /* Limit to 4TB as metadata cannot record more than that. 1236 * (not needed for Linear and RAID0 as metadata doesn't 1237 * record this size) 1238 */ 1239 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1240 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1241 1242 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1243 /* "this cannot possibly happen" ... */ 1244 ret = -EINVAL; 1245 1246 abort: 1247 return ret; 1248 } 1249 1250 /* 1251 * validate_super for 0.90.0 1252 */ 1253 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1254 { 1255 mdp_disk_t *desc; 1256 mdp_super_t *sb = page_address(rdev->sb_page); 1257 __u64 ev1 = md_event(sb); 1258 1259 rdev->raid_disk = -1; 1260 clear_bit(Faulty, &rdev->flags); 1261 clear_bit(In_sync, &rdev->flags); 1262 clear_bit(Bitmap_sync, &rdev->flags); 1263 clear_bit(WriteMostly, &rdev->flags); 1264 1265 if (mddev->raid_disks == 0) { 1266 mddev->major_version = 0; 1267 mddev->minor_version = sb->minor_version; 1268 mddev->patch_version = sb->patch_version; 1269 mddev->external = 0; 1270 mddev->chunk_sectors = sb->chunk_size >> 9; 1271 mddev->ctime = sb->ctime; 1272 mddev->utime = sb->utime; 1273 mddev->level = sb->level; 1274 mddev->clevel[0] = 0; 1275 mddev->layout = sb->layout; 1276 mddev->raid_disks = sb->raid_disks; 1277 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1278 mddev->events = ev1; 1279 mddev->bitmap_info.offset = 0; 1280 mddev->bitmap_info.space = 0; 1281 /* bitmap can use 60 K after the 4K superblocks */ 1282 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1283 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1284 mddev->reshape_backwards = 0; 1285 1286 if (mddev->minor_version >= 91) { 1287 mddev->reshape_position = sb->reshape_position; 1288 mddev->delta_disks = sb->delta_disks; 1289 mddev->new_level = sb->new_level; 1290 mddev->new_layout = sb->new_layout; 1291 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1292 if (mddev->delta_disks < 0) 1293 mddev->reshape_backwards = 1; 1294 } else { 1295 mddev->reshape_position = MaxSector; 1296 mddev->delta_disks = 0; 1297 mddev->new_level = mddev->level; 1298 mddev->new_layout = mddev->layout; 1299 mddev->new_chunk_sectors = mddev->chunk_sectors; 1300 } 1301 if (mddev->level == 0) 1302 mddev->layout = -1; 1303 1304 if (sb->state & (1<<MD_SB_CLEAN)) 1305 mddev->recovery_cp = MaxSector; 1306 else { 1307 if (sb->events_hi == sb->cp_events_hi && 1308 sb->events_lo == sb->cp_events_lo) { 1309 mddev->recovery_cp = sb->recovery_cp; 1310 } else 1311 mddev->recovery_cp = 0; 1312 } 1313 1314 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1315 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1316 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1317 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1318 1319 mddev->max_disks = MD_SB_DISKS; 1320 1321 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1322 mddev->bitmap_info.file == NULL) { 1323 mddev->bitmap_info.offset = 1324 mddev->bitmap_info.default_offset; 1325 mddev->bitmap_info.space = 1326 mddev->bitmap_info.default_space; 1327 } 1328 1329 } else if (mddev->pers == NULL) { 1330 /* Insist on good event counter while assembling, except 1331 * for spares (which don't need an event count) */ 1332 ++ev1; 1333 if (sb->disks[rdev->desc_nr].state & ( 1334 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1335 if (ev1 < mddev->events) 1336 return -EINVAL; 1337 } else if (mddev->bitmap) { 1338 /* if adding to array with a bitmap, then we can accept an 1339 * older device ... but not too old. 1340 */ 1341 if (ev1 < mddev->bitmap->events_cleared) 1342 return 0; 1343 if (ev1 < mddev->events) 1344 set_bit(Bitmap_sync, &rdev->flags); 1345 } else { 1346 if (ev1 < mddev->events) 1347 /* just a hot-add of a new device, leave raid_disk at -1 */ 1348 return 0; 1349 } 1350 1351 if (mddev->level != LEVEL_MULTIPATH) { 1352 desc = sb->disks + rdev->desc_nr; 1353 1354 if (desc->state & (1<<MD_DISK_FAULTY)) 1355 set_bit(Faulty, &rdev->flags); 1356 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1357 desc->raid_disk < mddev->raid_disks */) { 1358 set_bit(In_sync, &rdev->flags); 1359 rdev->raid_disk = desc->raid_disk; 1360 rdev->saved_raid_disk = desc->raid_disk; 1361 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1362 /* active but not in sync implies recovery up to 1363 * reshape position. We don't know exactly where 1364 * that is, so set to zero for now */ 1365 if (mddev->minor_version >= 91) { 1366 rdev->recovery_offset = 0; 1367 rdev->raid_disk = desc->raid_disk; 1368 } 1369 } 1370 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1371 set_bit(WriteMostly, &rdev->flags); 1372 if (desc->state & (1<<MD_DISK_FAILFAST)) 1373 set_bit(FailFast, &rdev->flags); 1374 } else /* MULTIPATH are always insync */ 1375 set_bit(In_sync, &rdev->flags); 1376 return 0; 1377 } 1378 1379 /* 1380 * sync_super for 0.90.0 1381 */ 1382 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1383 { 1384 mdp_super_t *sb; 1385 struct md_rdev *rdev2; 1386 int next_spare = mddev->raid_disks; 1387 1388 /* make rdev->sb match mddev data.. 1389 * 1390 * 1/ zero out disks 1391 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1392 * 3/ any empty disks < next_spare become removed 1393 * 1394 * disks[0] gets initialised to REMOVED because 1395 * we cannot be sure from other fields if it has 1396 * been initialised or not. 1397 */ 1398 int i; 1399 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1400 1401 rdev->sb_size = MD_SB_BYTES; 1402 1403 sb = page_address(rdev->sb_page); 1404 1405 memset(sb, 0, sizeof(*sb)); 1406 1407 sb->md_magic = MD_SB_MAGIC; 1408 sb->major_version = mddev->major_version; 1409 sb->patch_version = mddev->patch_version; 1410 sb->gvalid_words = 0; /* ignored */ 1411 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1412 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1413 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1414 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1415 1416 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1417 sb->level = mddev->level; 1418 sb->size = mddev->dev_sectors / 2; 1419 sb->raid_disks = mddev->raid_disks; 1420 sb->md_minor = mddev->md_minor; 1421 sb->not_persistent = 0; 1422 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1423 sb->state = 0; 1424 sb->events_hi = (mddev->events>>32); 1425 sb->events_lo = (u32)mddev->events; 1426 1427 if (mddev->reshape_position == MaxSector) 1428 sb->minor_version = 90; 1429 else { 1430 sb->minor_version = 91; 1431 sb->reshape_position = mddev->reshape_position; 1432 sb->new_level = mddev->new_level; 1433 sb->delta_disks = mddev->delta_disks; 1434 sb->new_layout = mddev->new_layout; 1435 sb->new_chunk = mddev->new_chunk_sectors << 9; 1436 } 1437 mddev->minor_version = sb->minor_version; 1438 if (mddev->in_sync) 1439 { 1440 sb->recovery_cp = mddev->recovery_cp; 1441 sb->cp_events_hi = (mddev->events>>32); 1442 sb->cp_events_lo = (u32)mddev->events; 1443 if (mddev->recovery_cp == MaxSector) 1444 sb->state = (1<< MD_SB_CLEAN); 1445 } else 1446 sb->recovery_cp = 0; 1447 1448 sb->layout = mddev->layout; 1449 sb->chunk_size = mddev->chunk_sectors << 9; 1450 1451 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1452 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1453 1454 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1455 rdev_for_each(rdev2, mddev) { 1456 mdp_disk_t *d; 1457 int desc_nr; 1458 int is_active = test_bit(In_sync, &rdev2->flags); 1459 1460 if (rdev2->raid_disk >= 0 && 1461 sb->minor_version >= 91) 1462 /* we have nowhere to store the recovery_offset, 1463 * but if it is not below the reshape_position, 1464 * we can piggy-back on that. 1465 */ 1466 is_active = 1; 1467 if (rdev2->raid_disk < 0 || 1468 test_bit(Faulty, &rdev2->flags)) 1469 is_active = 0; 1470 if (is_active) 1471 desc_nr = rdev2->raid_disk; 1472 else 1473 desc_nr = next_spare++; 1474 rdev2->desc_nr = desc_nr; 1475 d = &sb->disks[rdev2->desc_nr]; 1476 nr_disks++; 1477 d->number = rdev2->desc_nr; 1478 d->major = MAJOR(rdev2->bdev->bd_dev); 1479 d->minor = MINOR(rdev2->bdev->bd_dev); 1480 if (is_active) 1481 d->raid_disk = rdev2->raid_disk; 1482 else 1483 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1484 if (test_bit(Faulty, &rdev2->flags)) 1485 d->state = (1<<MD_DISK_FAULTY); 1486 else if (is_active) { 1487 d->state = (1<<MD_DISK_ACTIVE); 1488 if (test_bit(In_sync, &rdev2->flags)) 1489 d->state |= (1<<MD_DISK_SYNC); 1490 active++; 1491 working++; 1492 } else { 1493 d->state = 0; 1494 spare++; 1495 working++; 1496 } 1497 if (test_bit(WriteMostly, &rdev2->flags)) 1498 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1499 if (test_bit(FailFast, &rdev2->flags)) 1500 d->state |= (1<<MD_DISK_FAILFAST); 1501 } 1502 /* now set the "removed" and "faulty" bits on any missing devices */ 1503 for (i=0 ; i < mddev->raid_disks ; i++) { 1504 mdp_disk_t *d = &sb->disks[i]; 1505 if (d->state == 0 && d->number == 0) { 1506 d->number = i; 1507 d->raid_disk = i; 1508 d->state = (1<<MD_DISK_REMOVED); 1509 d->state |= (1<<MD_DISK_FAULTY); 1510 failed++; 1511 } 1512 } 1513 sb->nr_disks = nr_disks; 1514 sb->active_disks = active; 1515 sb->working_disks = working; 1516 sb->failed_disks = failed; 1517 sb->spare_disks = spare; 1518 1519 sb->this_disk = sb->disks[rdev->desc_nr]; 1520 sb->sb_csum = calc_sb_csum(sb); 1521 } 1522 1523 /* 1524 * rdev_size_change for 0.90.0 1525 */ 1526 static unsigned long long 1527 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1528 { 1529 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1530 return 0; /* component must fit device */ 1531 if (rdev->mddev->bitmap_info.offset) 1532 return 0; /* can't move bitmap */ 1533 rdev->sb_start = calc_dev_sboffset(rdev); 1534 if (!num_sectors || num_sectors > rdev->sb_start) 1535 num_sectors = rdev->sb_start; 1536 /* Limit to 4TB as metadata cannot record more than that. 1537 * 4TB == 2^32 KB, or 2*2^32 sectors. 1538 */ 1539 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1540 num_sectors = (sector_t)(2ULL << 32) - 2; 1541 do { 1542 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1543 rdev->sb_page); 1544 } while (md_super_wait(rdev->mddev) < 0); 1545 return num_sectors; 1546 } 1547 1548 static int 1549 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1550 { 1551 /* non-zero offset changes not possible with v0.90 */ 1552 return new_offset == 0; 1553 } 1554 1555 /* 1556 * version 1 superblock 1557 */ 1558 1559 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1560 { 1561 __le32 disk_csum; 1562 u32 csum; 1563 unsigned long long newcsum; 1564 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1565 __le32 *isuper = (__le32*)sb; 1566 1567 disk_csum = sb->sb_csum; 1568 sb->sb_csum = 0; 1569 newcsum = 0; 1570 for (; size >= 4; size -= 4) 1571 newcsum += le32_to_cpu(*isuper++); 1572 1573 if (size == 2) 1574 newcsum += le16_to_cpu(*(__le16*) isuper); 1575 1576 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1577 sb->sb_csum = disk_csum; 1578 return cpu_to_le32(csum); 1579 } 1580 1581 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1582 { 1583 struct mdp_superblock_1 *sb; 1584 int ret; 1585 sector_t sb_start; 1586 sector_t sectors; 1587 int bmask; 1588 bool spare_disk = true; 1589 1590 /* 1591 * Calculate the position of the superblock in 512byte sectors. 1592 * It is always aligned to a 4K boundary and 1593 * depeding on minor_version, it can be: 1594 * 0: At least 8K, but less than 12K, from end of device 1595 * 1: At start of device 1596 * 2: 4K from start of device. 1597 */ 1598 switch(minor_version) { 1599 case 0: 1600 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1601 sb_start &= ~(sector_t)(4*2-1); 1602 break; 1603 case 1: 1604 sb_start = 0; 1605 break; 1606 case 2: 1607 sb_start = 8; 1608 break; 1609 default: 1610 return -EINVAL; 1611 } 1612 rdev->sb_start = sb_start; 1613 1614 /* superblock is rarely larger than 1K, but it can be larger, 1615 * and it is safe to read 4k, so we do that 1616 */ 1617 ret = read_disk_sb(rdev, 4096); 1618 if (ret) return ret; 1619 1620 sb = page_address(rdev->sb_page); 1621 1622 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1623 sb->major_version != cpu_to_le32(1) || 1624 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1625 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1626 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1627 return -EINVAL; 1628 1629 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1630 pr_warn("md: invalid superblock checksum on %pg\n", 1631 rdev->bdev); 1632 return -EINVAL; 1633 } 1634 if (le64_to_cpu(sb->data_size) < 10) { 1635 pr_warn("md: data_size too small on %pg\n", 1636 rdev->bdev); 1637 return -EINVAL; 1638 } 1639 if (sb->pad0 || 1640 sb->pad3[0] || 1641 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1642 /* Some padding is non-zero, might be a new feature */ 1643 return -EINVAL; 1644 1645 rdev->preferred_minor = 0xffff; 1646 rdev->data_offset = le64_to_cpu(sb->data_offset); 1647 rdev->new_data_offset = rdev->data_offset; 1648 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1649 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1650 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1651 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1652 1653 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1654 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1655 if (rdev->sb_size & bmask) 1656 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1657 1658 if (minor_version 1659 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1660 return -EINVAL; 1661 if (minor_version 1662 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1663 return -EINVAL; 1664 1665 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1666 rdev->desc_nr = -1; 1667 else 1668 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1669 1670 if (!rdev->bb_page) { 1671 rdev->bb_page = alloc_page(GFP_KERNEL); 1672 if (!rdev->bb_page) 1673 return -ENOMEM; 1674 } 1675 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1676 rdev->badblocks.count == 0) { 1677 /* need to load the bad block list. 1678 * Currently we limit it to one page. 1679 */ 1680 s32 offset; 1681 sector_t bb_sector; 1682 __le64 *bbp; 1683 int i; 1684 int sectors = le16_to_cpu(sb->bblog_size); 1685 if (sectors > (PAGE_SIZE / 512)) 1686 return -EINVAL; 1687 offset = le32_to_cpu(sb->bblog_offset); 1688 if (offset == 0) 1689 return -EINVAL; 1690 bb_sector = (long long)offset; 1691 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1692 rdev->bb_page, REQ_OP_READ, true)) 1693 return -EIO; 1694 bbp = (__le64 *)page_address(rdev->bb_page); 1695 rdev->badblocks.shift = sb->bblog_shift; 1696 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1697 u64 bb = le64_to_cpu(*bbp); 1698 int count = bb & (0x3ff); 1699 u64 sector = bb >> 10; 1700 sector <<= sb->bblog_shift; 1701 count <<= sb->bblog_shift; 1702 if (bb + 1 == 0) 1703 break; 1704 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1705 return -EINVAL; 1706 } 1707 } else if (sb->bblog_offset != 0) 1708 rdev->badblocks.shift = 0; 1709 1710 if ((le32_to_cpu(sb->feature_map) & 1711 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1712 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1713 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1714 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1715 } 1716 1717 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1718 sb->level != 0) 1719 return -EINVAL; 1720 1721 /* not spare disk, or LEVEL_MULTIPATH */ 1722 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1723 (rdev->desc_nr >= 0 && 1724 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1725 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1726 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1727 spare_disk = false; 1728 1729 if (!refdev) { 1730 if (!spare_disk) 1731 ret = 1; 1732 else 1733 ret = 0; 1734 } else { 1735 __u64 ev1, ev2; 1736 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1737 1738 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1739 sb->level != refsb->level || 1740 sb->layout != refsb->layout || 1741 sb->chunksize != refsb->chunksize) { 1742 pr_warn("md: %pg has strangely different superblock to %pg\n", 1743 rdev->bdev, 1744 refdev->bdev); 1745 return -EINVAL; 1746 } 1747 ev1 = le64_to_cpu(sb->events); 1748 ev2 = le64_to_cpu(refsb->events); 1749 1750 if (!spare_disk && ev1 > ev2) 1751 ret = 1; 1752 else 1753 ret = 0; 1754 } 1755 if (minor_version) 1756 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1757 else 1758 sectors = rdev->sb_start; 1759 if (sectors < le64_to_cpu(sb->data_size)) 1760 return -EINVAL; 1761 rdev->sectors = le64_to_cpu(sb->data_size); 1762 return ret; 1763 } 1764 1765 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1766 { 1767 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1768 __u64 ev1 = le64_to_cpu(sb->events); 1769 1770 rdev->raid_disk = -1; 1771 clear_bit(Faulty, &rdev->flags); 1772 clear_bit(In_sync, &rdev->flags); 1773 clear_bit(Bitmap_sync, &rdev->flags); 1774 clear_bit(WriteMostly, &rdev->flags); 1775 1776 if (mddev->raid_disks == 0) { 1777 mddev->major_version = 1; 1778 mddev->patch_version = 0; 1779 mddev->external = 0; 1780 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1781 mddev->ctime = le64_to_cpu(sb->ctime); 1782 mddev->utime = le64_to_cpu(sb->utime); 1783 mddev->level = le32_to_cpu(sb->level); 1784 mddev->clevel[0] = 0; 1785 mddev->layout = le32_to_cpu(sb->layout); 1786 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1787 mddev->dev_sectors = le64_to_cpu(sb->size); 1788 mddev->events = ev1; 1789 mddev->bitmap_info.offset = 0; 1790 mddev->bitmap_info.space = 0; 1791 /* Default location for bitmap is 1K after superblock 1792 * using 3K - total of 4K 1793 */ 1794 mddev->bitmap_info.default_offset = 1024 >> 9; 1795 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1796 mddev->reshape_backwards = 0; 1797 1798 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1799 memcpy(mddev->uuid, sb->set_uuid, 16); 1800 1801 mddev->max_disks = (4096-256)/2; 1802 1803 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1804 mddev->bitmap_info.file == NULL) { 1805 mddev->bitmap_info.offset = 1806 (__s32)le32_to_cpu(sb->bitmap_offset); 1807 /* Metadata doesn't record how much space is available. 1808 * For 1.0, we assume we can use up to the superblock 1809 * if before, else to 4K beyond superblock. 1810 * For others, assume no change is possible. 1811 */ 1812 if (mddev->minor_version > 0) 1813 mddev->bitmap_info.space = 0; 1814 else if (mddev->bitmap_info.offset > 0) 1815 mddev->bitmap_info.space = 1816 8 - mddev->bitmap_info.offset; 1817 else 1818 mddev->bitmap_info.space = 1819 -mddev->bitmap_info.offset; 1820 } 1821 1822 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1823 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1824 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1825 mddev->new_level = le32_to_cpu(sb->new_level); 1826 mddev->new_layout = le32_to_cpu(sb->new_layout); 1827 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1828 if (mddev->delta_disks < 0 || 1829 (mddev->delta_disks == 0 && 1830 (le32_to_cpu(sb->feature_map) 1831 & MD_FEATURE_RESHAPE_BACKWARDS))) 1832 mddev->reshape_backwards = 1; 1833 } else { 1834 mddev->reshape_position = MaxSector; 1835 mddev->delta_disks = 0; 1836 mddev->new_level = mddev->level; 1837 mddev->new_layout = mddev->layout; 1838 mddev->new_chunk_sectors = mddev->chunk_sectors; 1839 } 1840 1841 if (mddev->level == 0 && 1842 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1843 mddev->layout = -1; 1844 1845 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1846 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1847 1848 if (le32_to_cpu(sb->feature_map) & 1849 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1850 if (le32_to_cpu(sb->feature_map) & 1851 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1852 return -EINVAL; 1853 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1854 (le32_to_cpu(sb->feature_map) & 1855 MD_FEATURE_MULTIPLE_PPLS)) 1856 return -EINVAL; 1857 set_bit(MD_HAS_PPL, &mddev->flags); 1858 } 1859 } else if (mddev->pers == NULL) { 1860 /* Insist of good event counter while assembling, except for 1861 * spares (which don't need an event count) */ 1862 ++ev1; 1863 if (rdev->desc_nr >= 0 && 1864 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1865 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1866 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1867 if (ev1 < mddev->events) 1868 return -EINVAL; 1869 } else if (mddev->bitmap) { 1870 /* If adding to array with a bitmap, then we can accept an 1871 * older device, but not too old. 1872 */ 1873 if (ev1 < mddev->bitmap->events_cleared) 1874 return 0; 1875 if (ev1 < mddev->events) 1876 set_bit(Bitmap_sync, &rdev->flags); 1877 } else { 1878 if (ev1 < mddev->events) 1879 /* just a hot-add of a new device, leave raid_disk at -1 */ 1880 return 0; 1881 } 1882 if (mddev->level != LEVEL_MULTIPATH) { 1883 int role; 1884 if (rdev->desc_nr < 0 || 1885 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1886 role = MD_DISK_ROLE_SPARE; 1887 rdev->desc_nr = -1; 1888 } else 1889 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1890 switch(role) { 1891 case MD_DISK_ROLE_SPARE: /* spare */ 1892 break; 1893 case MD_DISK_ROLE_FAULTY: /* faulty */ 1894 set_bit(Faulty, &rdev->flags); 1895 break; 1896 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1897 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1898 /* journal device without journal feature */ 1899 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1900 return -EINVAL; 1901 } 1902 set_bit(Journal, &rdev->flags); 1903 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1904 rdev->raid_disk = 0; 1905 break; 1906 default: 1907 rdev->saved_raid_disk = role; 1908 if ((le32_to_cpu(sb->feature_map) & 1909 MD_FEATURE_RECOVERY_OFFSET)) { 1910 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1911 if (!(le32_to_cpu(sb->feature_map) & 1912 MD_FEATURE_RECOVERY_BITMAP)) 1913 rdev->saved_raid_disk = -1; 1914 } else { 1915 /* 1916 * If the array is FROZEN, then the device can't 1917 * be in_sync with rest of array. 1918 */ 1919 if (!test_bit(MD_RECOVERY_FROZEN, 1920 &mddev->recovery)) 1921 set_bit(In_sync, &rdev->flags); 1922 } 1923 rdev->raid_disk = role; 1924 break; 1925 } 1926 if (sb->devflags & WriteMostly1) 1927 set_bit(WriteMostly, &rdev->flags); 1928 if (sb->devflags & FailFast1) 1929 set_bit(FailFast, &rdev->flags); 1930 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1931 set_bit(Replacement, &rdev->flags); 1932 } else /* MULTIPATH are always insync */ 1933 set_bit(In_sync, &rdev->flags); 1934 1935 return 0; 1936 } 1937 1938 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1939 { 1940 struct mdp_superblock_1 *sb; 1941 struct md_rdev *rdev2; 1942 int max_dev, i; 1943 /* make rdev->sb match mddev and rdev data. */ 1944 1945 sb = page_address(rdev->sb_page); 1946 1947 sb->feature_map = 0; 1948 sb->pad0 = 0; 1949 sb->recovery_offset = cpu_to_le64(0); 1950 memset(sb->pad3, 0, sizeof(sb->pad3)); 1951 1952 sb->utime = cpu_to_le64((__u64)mddev->utime); 1953 sb->events = cpu_to_le64(mddev->events); 1954 if (mddev->in_sync) 1955 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1956 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1957 sb->resync_offset = cpu_to_le64(MaxSector); 1958 else 1959 sb->resync_offset = cpu_to_le64(0); 1960 1961 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1962 1963 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1964 sb->size = cpu_to_le64(mddev->dev_sectors); 1965 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1966 sb->level = cpu_to_le32(mddev->level); 1967 sb->layout = cpu_to_le32(mddev->layout); 1968 if (test_bit(FailFast, &rdev->flags)) 1969 sb->devflags |= FailFast1; 1970 else 1971 sb->devflags &= ~FailFast1; 1972 1973 if (test_bit(WriteMostly, &rdev->flags)) 1974 sb->devflags |= WriteMostly1; 1975 else 1976 sb->devflags &= ~WriteMostly1; 1977 sb->data_offset = cpu_to_le64(rdev->data_offset); 1978 sb->data_size = cpu_to_le64(rdev->sectors); 1979 1980 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1981 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1982 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1983 } 1984 1985 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1986 !test_bit(In_sync, &rdev->flags)) { 1987 sb->feature_map |= 1988 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1989 sb->recovery_offset = 1990 cpu_to_le64(rdev->recovery_offset); 1991 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1992 sb->feature_map |= 1993 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1994 } 1995 /* Note: recovery_offset and journal_tail share space */ 1996 if (test_bit(Journal, &rdev->flags)) 1997 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1998 if (test_bit(Replacement, &rdev->flags)) 1999 sb->feature_map |= 2000 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2001 2002 if (mddev->reshape_position != MaxSector) { 2003 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2004 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2005 sb->new_layout = cpu_to_le32(mddev->new_layout); 2006 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2007 sb->new_level = cpu_to_le32(mddev->new_level); 2008 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2009 if (mddev->delta_disks == 0 && 2010 mddev->reshape_backwards) 2011 sb->feature_map 2012 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2013 if (rdev->new_data_offset != rdev->data_offset) { 2014 sb->feature_map 2015 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2016 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2017 - rdev->data_offset)); 2018 } 2019 } 2020 2021 if (mddev_is_clustered(mddev)) 2022 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2023 2024 if (rdev->badblocks.count == 0) 2025 /* Nothing to do for bad blocks*/ ; 2026 else if (sb->bblog_offset == 0) 2027 /* Cannot record bad blocks on this device */ 2028 md_error(mddev, rdev); 2029 else { 2030 struct badblocks *bb = &rdev->badblocks; 2031 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2032 u64 *p = bb->page; 2033 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2034 if (bb->changed) { 2035 unsigned seq; 2036 2037 retry: 2038 seq = read_seqbegin(&bb->lock); 2039 2040 memset(bbp, 0xff, PAGE_SIZE); 2041 2042 for (i = 0 ; i < bb->count ; i++) { 2043 u64 internal_bb = p[i]; 2044 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2045 | BB_LEN(internal_bb)); 2046 bbp[i] = cpu_to_le64(store_bb); 2047 } 2048 bb->changed = 0; 2049 if (read_seqretry(&bb->lock, seq)) 2050 goto retry; 2051 2052 bb->sector = (rdev->sb_start + 2053 (int)le32_to_cpu(sb->bblog_offset)); 2054 bb->size = le16_to_cpu(sb->bblog_size); 2055 } 2056 } 2057 2058 max_dev = 0; 2059 rdev_for_each(rdev2, mddev) 2060 if (rdev2->desc_nr+1 > max_dev) 2061 max_dev = rdev2->desc_nr+1; 2062 2063 if (max_dev > le32_to_cpu(sb->max_dev)) { 2064 int bmask; 2065 sb->max_dev = cpu_to_le32(max_dev); 2066 rdev->sb_size = max_dev * 2 + 256; 2067 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2068 if (rdev->sb_size & bmask) 2069 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2070 } else 2071 max_dev = le32_to_cpu(sb->max_dev); 2072 2073 for (i=0; i<max_dev;i++) 2074 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2075 2076 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2077 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2078 2079 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2080 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2081 sb->feature_map |= 2082 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2083 else 2084 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2085 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2086 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2087 } 2088 2089 rdev_for_each(rdev2, mddev) { 2090 i = rdev2->desc_nr; 2091 if (test_bit(Faulty, &rdev2->flags)) 2092 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2093 else if (test_bit(In_sync, &rdev2->flags)) 2094 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2095 else if (test_bit(Journal, &rdev2->flags)) 2096 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2097 else if (rdev2->raid_disk >= 0) 2098 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2099 else 2100 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2101 } 2102 2103 sb->sb_csum = calc_sb_1_csum(sb); 2104 } 2105 2106 static sector_t super_1_choose_bm_space(sector_t dev_size) 2107 { 2108 sector_t bm_space; 2109 2110 /* if the device is bigger than 8Gig, save 64k for bitmap 2111 * usage, if bigger than 200Gig, save 128k 2112 */ 2113 if (dev_size < 64*2) 2114 bm_space = 0; 2115 else if (dev_size - 64*2 >= 200*1024*1024*2) 2116 bm_space = 128*2; 2117 else if (dev_size - 4*2 > 8*1024*1024*2) 2118 bm_space = 64*2; 2119 else 2120 bm_space = 4*2; 2121 return bm_space; 2122 } 2123 2124 static unsigned long long 2125 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2126 { 2127 struct mdp_superblock_1 *sb; 2128 sector_t max_sectors; 2129 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2130 return 0; /* component must fit device */ 2131 if (rdev->data_offset != rdev->new_data_offset) 2132 return 0; /* too confusing */ 2133 if (rdev->sb_start < rdev->data_offset) { 2134 /* minor versions 1 and 2; superblock before data */ 2135 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2136 if (!num_sectors || num_sectors > max_sectors) 2137 num_sectors = max_sectors; 2138 } else if (rdev->mddev->bitmap_info.offset) { 2139 /* minor version 0 with bitmap we can't move */ 2140 return 0; 2141 } else { 2142 /* minor version 0; superblock after data */ 2143 sector_t sb_start, bm_space; 2144 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2145 2146 /* 8K is for superblock */ 2147 sb_start = dev_size - 8*2; 2148 sb_start &= ~(sector_t)(4*2 - 1); 2149 2150 bm_space = super_1_choose_bm_space(dev_size); 2151 2152 /* Space that can be used to store date needs to decrease 2153 * superblock bitmap space and bad block space(4K) 2154 */ 2155 max_sectors = sb_start - bm_space - 4*2; 2156 2157 if (!num_sectors || num_sectors > max_sectors) 2158 num_sectors = max_sectors; 2159 rdev->sb_start = sb_start; 2160 } 2161 sb = page_address(rdev->sb_page); 2162 sb->data_size = cpu_to_le64(num_sectors); 2163 sb->super_offset = cpu_to_le64(rdev->sb_start); 2164 sb->sb_csum = calc_sb_1_csum(sb); 2165 do { 2166 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2167 rdev->sb_page); 2168 } while (md_super_wait(rdev->mddev) < 0); 2169 return num_sectors; 2170 2171 } 2172 2173 static int 2174 super_1_allow_new_offset(struct md_rdev *rdev, 2175 unsigned long long new_offset) 2176 { 2177 /* All necessary checks on new >= old have been done */ 2178 struct bitmap *bitmap; 2179 if (new_offset >= rdev->data_offset) 2180 return 1; 2181 2182 /* with 1.0 metadata, there is no metadata to tread on 2183 * so we can always move back */ 2184 if (rdev->mddev->minor_version == 0) 2185 return 1; 2186 2187 /* otherwise we must be sure not to step on 2188 * any metadata, so stay: 2189 * 36K beyond start of superblock 2190 * beyond end of badblocks 2191 * beyond write-intent bitmap 2192 */ 2193 if (rdev->sb_start + (32+4)*2 > new_offset) 2194 return 0; 2195 bitmap = rdev->mddev->bitmap; 2196 if (bitmap && !rdev->mddev->bitmap_info.file && 2197 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2198 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2199 return 0; 2200 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2201 return 0; 2202 2203 return 1; 2204 } 2205 2206 static struct super_type super_types[] = { 2207 [0] = { 2208 .name = "0.90.0", 2209 .owner = THIS_MODULE, 2210 .load_super = super_90_load, 2211 .validate_super = super_90_validate, 2212 .sync_super = super_90_sync, 2213 .rdev_size_change = super_90_rdev_size_change, 2214 .allow_new_offset = super_90_allow_new_offset, 2215 }, 2216 [1] = { 2217 .name = "md-1", 2218 .owner = THIS_MODULE, 2219 .load_super = super_1_load, 2220 .validate_super = super_1_validate, 2221 .sync_super = super_1_sync, 2222 .rdev_size_change = super_1_rdev_size_change, 2223 .allow_new_offset = super_1_allow_new_offset, 2224 }, 2225 }; 2226 2227 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2228 { 2229 if (mddev->sync_super) { 2230 mddev->sync_super(mddev, rdev); 2231 return; 2232 } 2233 2234 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2235 2236 super_types[mddev->major_version].sync_super(mddev, rdev); 2237 } 2238 2239 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2240 { 2241 struct md_rdev *rdev, *rdev2; 2242 2243 rcu_read_lock(); 2244 rdev_for_each_rcu(rdev, mddev1) { 2245 if (test_bit(Faulty, &rdev->flags) || 2246 test_bit(Journal, &rdev->flags) || 2247 rdev->raid_disk == -1) 2248 continue; 2249 rdev_for_each_rcu(rdev2, mddev2) { 2250 if (test_bit(Faulty, &rdev2->flags) || 2251 test_bit(Journal, &rdev2->flags) || 2252 rdev2->raid_disk == -1) 2253 continue; 2254 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2255 rcu_read_unlock(); 2256 return 1; 2257 } 2258 } 2259 } 2260 rcu_read_unlock(); 2261 return 0; 2262 } 2263 2264 static LIST_HEAD(pending_raid_disks); 2265 2266 /* 2267 * Try to register data integrity profile for an mddev 2268 * 2269 * This is called when an array is started and after a disk has been kicked 2270 * from the array. It only succeeds if all working and active component devices 2271 * are integrity capable with matching profiles. 2272 */ 2273 int md_integrity_register(struct mddev *mddev) 2274 { 2275 struct md_rdev *rdev, *reference = NULL; 2276 2277 if (list_empty(&mddev->disks)) 2278 return 0; /* nothing to do */ 2279 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2280 return 0; /* shouldn't register, or already is */ 2281 rdev_for_each(rdev, mddev) { 2282 /* skip spares and non-functional disks */ 2283 if (test_bit(Faulty, &rdev->flags)) 2284 continue; 2285 if (rdev->raid_disk < 0) 2286 continue; 2287 if (!reference) { 2288 /* Use the first rdev as the reference */ 2289 reference = rdev; 2290 continue; 2291 } 2292 /* does this rdev's profile match the reference profile? */ 2293 if (blk_integrity_compare(reference->bdev->bd_disk, 2294 rdev->bdev->bd_disk) < 0) 2295 return -EINVAL; 2296 } 2297 if (!reference || !bdev_get_integrity(reference->bdev)) 2298 return 0; 2299 /* 2300 * All component devices are integrity capable and have matching 2301 * profiles, register the common profile for the md device. 2302 */ 2303 blk_integrity_register(mddev->gendisk, 2304 bdev_get_integrity(reference->bdev)); 2305 2306 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2307 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2308 (mddev->level != 1 && mddev->level != 10 && 2309 bioset_integrity_create(&mddev->io_clone_set, BIO_POOL_SIZE))) { 2310 /* 2311 * No need to handle the failure of bioset_integrity_create, 2312 * because the function is called by md_run() -> pers->run(), 2313 * md_run calls bioset_exit -> bioset_integrity_free in case 2314 * of failure case. 2315 */ 2316 pr_err("md: failed to create integrity pool for %s\n", 2317 mdname(mddev)); 2318 return -EINVAL; 2319 } 2320 return 0; 2321 } 2322 EXPORT_SYMBOL(md_integrity_register); 2323 2324 /* 2325 * Attempt to add an rdev, but only if it is consistent with the current 2326 * integrity profile 2327 */ 2328 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2329 { 2330 struct blk_integrity *bi_mddev; 2331 2332 if (!mddev->gendisk) 2333 return 0; 2334 2335 bi_mddev = blk_get_integrity(mddev->gendisk); 2336 2337 if (!bi_mddev) /* nothing to do */ 2338 return 0; 2339 2340 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2341 pr_err("%s: incompatible integrity profile for %pg\n", 2342 mdname(mddev), rdev->bdev); 2343 return -ENXIO; 2344 } 2345 2346 return 0; 2347 } 2348 EXPORT_SYMBOL(md_integrity_add_rdev); 2349 2350 static bool rdev_read_only(struct md_rdev *rdev) 2351 { 2352 return bdev_read_only(rdev->bdev) || 2353 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2354 } 2355 2356 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2357 { 2358 char b[BDEVNAME_SIZE]; 2359 int err; 2360 2361 /* prevent duplicates */ 2362 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2363 return -EEXIST; 2364 2365 if (rdev_read_only(rdev) && mddev->pers) 2366 return -EROFS; 2367 2368 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2369 if (!test_bit(Journal, &rdev->flags) && 2370 rdev->sectors && 2371 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2372 if (mddev->pers) { 2373 /* Cannot change size, so fail 2374 * If mddev->level <= 0, then we don't care 2375 * about aligning sizes (e.g. linear) 2376 */ 2377 if (mddev->level > 0) 2378 return -ENOSPC; 2379 } else 2380 mddev->dev_sectors = rdev->sectors; 2381 } 2382 2383 /* Verify rdev->desc_nr is unique. 2384 * If it is -1, assign a free number, else 2385 * check number is not in use 2386 */ 2387 rcu_read_lock(); 2388 if (rdev->desc_nr < 0) { 2389 int choice = 0; 2390 if (mddev->pers) 2391 choice = mddev->raid_disks; 2392 while (md_find_rdev_nr_rcu(mddev, choice)) 2393 choice++; 2394 rdev->desc_nr = choice; 2395 } else { 2396 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2397 rcu_read_unlock(); 2398 return -EBUSY; 2399 } 2400 } 2401 rcu_read_unlock(); 2402 if (!test_bit(Journal, &rdev->flags) && 2403 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2404 pr_warn("md: %s: array is limited to %d devices\n", 2405 mdname(mddev), mddev->max_disks); 2406 return -EBUSY; 2407 } 2408 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2409 strreplace(b, '/', '!'); 2410 2411 rdev->mddev = mddev; 2412 pr_debug("md: bind<%s>\n", b); 2413 2414 if (mddev->raid_disks) 2415 mddev_create_serial_pool(mddev, rdev, false); 2416 2417 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2418 goto fail; 2419 2420 /* failure here is OK */ 2421 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2422 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2423 rdev->sysfs_unack_badblocks = 2424 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2425 rdev->sysfs_badblocks = 2426 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2427 2428 list_add_rcu(&rdev->same_set, &mddev->disks); 2429 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2430 2431 /* May as well allow recovery to be retried once */ 2432 mddev->recovery_disabled++; 2433 2434 return 0; 2435 2436 fail: 2437 pr_warn("md: failed to register dev-%s for %s\n", 2438 b, mdname(mddev)); 2439 return err; 2440 } 2441 2442 void md_autodetect_dev(dev_t dev); 2443 2444 /* just for claiming the bdev */ 2445 static struct md_rdev claim_rdev; 2446 2447 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev) 2448 { 2449 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2450 md_rdev_clear(rdev); 2451 #ifndef MODULE 2452 if (test_bit(AutoDetected, &rdev->flags)) 2453 md_autodetect_dev(rdev->bdev->bd_dev); 2454 #endif 2455 bdev_release(rdev->bdev_handle); 2456 rdev->bdev = NULL; 2457 kobject_put(&rdev->kobj); 2458 } 2459 2460 static void md_kick_rdev_from_array(struct md_rdev *rdev) 2461 { 2462 struct mddev *mddev = rdev->mddev; 2463 2464 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2465 list_del_rcu(&rdev->same_set); 2466 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2467 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2468 rdev->mddev = NULL; 2469 sysfs_remove_link(&rdev->kobj, "block"); 2470 sysfs_put(rdev->sysfs_state); 2471 sysfs_put(rdev->sysfs_unack_badblocks); 2472 sysfs_put(rdev->sysfs_badblocks); 2473 rdev->sysfs_state = NULL; 2474 rdev->sysfs_unack_badblocks = NULL; 2475 rdev->sysfs_badblocks = NULL; 2476 rdev->badblocks.count = 0; 2477 2478 synchronize_rcu(); 2479 2480 /* 2481 * kobject_del() will wait for all in progress writers to be done, where 2482 * reconfig_mutex is held, hence it can't be called under 2483 * reconfig_mutex and it's delayed to mddev_unlock(). 2484 */ 2485 list_add(&rdev->same_set, &mddev->deleting); 2486 } 2487 2488 static void export_array(struct mddev *mddev) 2489 { 2490 struct md_rdev *rdev; 2491 2492 while (!list_empty(&mddev->disks)) { 2493 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2494 same_set); 2495 md_kick_rdev_from_array(rdev); 2496 } 2497 mddev->raid_disks = 0; 2498 mddev->major_version = 0; 2499 } 2500 2501 static bool set_in_sync(struct mddev *mddev) 2502 { 2503 lockdep_assert_held(&mddev->lock); 2504 if (!mddev->in_sync) { 2505 mddev->sync_checkers++; 2506 spin_unlock(&mddev->lock); 2507 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2508 spin_lock(&mddev->lock); 2509 if (!mddev->in_sync && 2510 percpu_ref_is_zero(&mddev->writes_pending)) { 2511 mddev->in_sync = 1; 2512 /* 2513 * Ensure ->in_sync is visible before we clear 2514 * ->sync_checkers. 2515 */ 2516 smp_mb(); 2517 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2518 sysfs_notify_dirent_safe(mddev->sysfs_state); 2519 } 2520 if (--mddev->sync_checkers == 0) 2521 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2522 } 2523 if (mddev->safemode == 1) 2524 mddev->safemode = 0; 2525 return mddev->in_sync; 2526 } 2527 2528 static void sync_sbs(struct mddev *mddev, int nospares) 2529 { 2530 /* Update each superblock (in-memory image), but 2531 * if we are allowed to, skip spares which already 2532 * have the right event counter, or have one earlier 2533 * (which would mean they aren't being marked as dirty 2534 * with the rest of the array) 2535 */ 2536 struct md_rdev *rdev; 2537 rdev_for_each(rdev, mddev) { 2538 if (rdev->sb_events == mddev->events || 2539 (nospares && 2540 rdev->raid_disk < 0 && 2541 rdev->sb_events+1 == mddev->events)) { 2542 /* Don't update this superblock */ 2543 rdev->sb_loaded = 2; 2544 } else { 2545 sync_super(mddev, rdev); 2546 rdev->sb_loaded = 1; 2547 } 2548 } 2549 } 2550 2551 static bool does_sb_need_changing(struct mddev *mddev) 2552 { 2553 struct md_rdev *rdev = NULL, *iter; 2554 struct mdp_superblock_1 *sb; 2555 int role; 2556 2557 /* Find a good rdev */ 2558 rdev_for_each(iter, mddev) 2559 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2560 rdev = iter; 2561 break; 2562 } 2563 2564 /* No good device found. */ 2565 if (!rdev) 2566 return false; 2567 2568 sb = page_address(rdev->sb_page); 2569 /* Check if a device has become faulty or a spare become active */ 2570 rdev_for_each(rdev, mddev) { 2571 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2572 /* Device activated? */ 2573 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2574 !test_bit(Faulty, &rdev->flags)) 2575 return true; 2576 /* Device turned faulty? */ 2577 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2578 return true; 2579 } 2580 2581 /* Check if any mddev parameters have changed */ 2582 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2583 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2584 (mddev->layout != le32_to_cpu(sb->layout)) || 2585 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2586 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2587 return true; 2588 2589 return false; 2590 } 2591 2592 void md_update_sb(struct mddev *mddev, int force_change) 2593 { 2594 struct md_rdev *rdev; 2595 int sync_req; 2596 int nospares = 0; 2597 int any_badblocks_changed = 0; 2598 int ret = -1; 2599 2600 if (!md_is_rdwr(mddev)) { 2601 if (force_change) 2602 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2603 return; 2604 } 2605 2606 repeat: 2607 if (mddev_is_clustered(mddev)) { 2608 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2609 force_change = 1; 2610 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2611 nospares = 1; 2612 ret = md_cluster_ops->metadata_update_start(mddev); 2613 /* Has someone else has updated the sb */ 2614 if (!does_sb_need_changing(mddev)) { 2615 if (ret == 0) 2616 md_cluster_ops->metadata_update_cancel(mddev); 2617 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2618 BIT(MD_SB_CHANGE_DEVS) | 2619 BIT(MD_SB_CHANGE_CLEAN)); 2620 return; 2621 } 2622 } 2623 2624 /* 2625 * First make sure individual recovery_offsets are correct 2626 * curr_resync_completed can only be used during recovery. 2627 * During reshape/resync it might use array-addresses rather 2628 * that device addresses. 2629 */ 2630 rdev_for_each(rdev, mddev) { 2631 if (rdev->raid_disk >= 0 && 2632 mddev->delta_disks >= 0 && 2633 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2634 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2635 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2636 !test_bit(Journal, &rdev->flags) && 2637 !test_bit(In_sync, &rdev->flags) && 2638 mddev->curr_resync_completed > rdev->recovery_offset) 2639 rdev->recovery_offset = mddev->curr_resync_completed; 2640 2641 } 2642 if (!mddev->persistent) { 2643 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2644 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2645 if (!mddev->external) { 2646 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2647 rdev_for_each(rdev, mddev) { 2648 if (rdev->badblocks.changed) { 2649 rdev->badblocks.changed = 0; 2650 ack_all_badblocks(&rdev->badblocks); 2651 md_error(mddev, rdev); 2652 } 2653 clear_bit(Blocked, &rdev->flags); 2654 clear_bit(BlockedBadBlocks, &rdev->flags); 2655 wake_up(&rdev->blocked_wait); 2656 } 2657 } 2658 wake_up(&mddev->sb_wait); 2659 return; 2660 } 2661 2662 spin_lock(&mddev->lock); 2663 2664 mddev->utime = ktime_get_real_seconds(); 2665 2666 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2667 force_change = 1; 2668 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2669 /* just a clean<-> dirty transition, possibly leave spares alone, 2670 * though if events isn't the right even/odd, we will have to do 2671 * spares after all 2672 */ 2673 nospares = 1; 2674 if (force_change) 2675 nospares = 0; 2676 if (mddev->degraded) 2677 /* If the array is degraded, then skipping spares is both 2678 * dangerous and fairly pointless. 2679 * Dangerous because a device that was removed from the array 2680 * might have a event_count that still looks up-to-date, 2681 * so it can be re-added without a resync. 2682 * Pointless because if there are any spares to skip, 2683 * then a recovery will happen and soon that array won't 2684 * be degraded any more and the spare can go back to sleep then. 2685 */ 2686 nospares = 0; 2687 2688 sync_req = mddev->in_sync; 2689 2690 /* If this is just a dirty<->clean transition, and the array is clean 2691 * and 'events' is odd, we can roll back to the previous clean state */ 2692 if (nospares 2693 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2694 && mddev->can_decrease_events 2695 && mddev->events != 1) { 2696 mddev->events--; 2697 mddev->can_decrease_events = 0; 2698 } else { 2699 /* otherwise we have to go forward and ... */ 2700 mddev->events ++; 2701 mddev->can_decrease_events = nospares; 2702 } 2703 2704 /* 2705 * This 64-bit counter should never wrap. 2706 * Either we are in around ~1 trillion A.C., assuming 2707 * 1 reboot per second, or we have a bug... 2708 */ 2709 WARN_ON(mddev->events == 0); 2710 2711 rdev_for_each(rdev, mddev) { 2712 if (rdev->badblocks.changed) 2713 any_badblocks_changed++; 2714 if (test_bit(Faulty, &rdev->flags)) 2715 set_bit(FaultRecorded, &rdev->flags); 2716 } 2717 2718 sync_sbs(mddev, nospares); 2719 spin_unlock(&mddev->lock); 2720 2721 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2722 mdname(mddev), mddev->in_sync); 2723 2724 if (mddev->queue) 2725 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2726 rewrite: 2727 md_bitmap_update_sb(mddev->bitmap); 2728 rdev_for_each(rdev, mddev) { 2729 if (rdev->sb_loaded != 1) 2730 continue; /* no noise on spare devices */ 2731 2732 if (!test_bit(Faulty, &rdev->flags)) { 2733 md_super_write(mddev,rdev, 2734 rdev->sb_start, rdev->sb_size, 2735 rdev->sb_page); 2736 pr_debug("md: (write) %pg's sb offset: %llu\n", 2737 rdev->bdev, 2738 (unsigned long long)rdev->sb_start); 2739 rdev->sb_events = mddev->events; 2740 if (rdev->badblocks.size) { 2741 md_super_write(mddev, rdev, 2742 rdev->badblocks.sector, 2743 rdev->badblocks.size << 9, 2744 rdev->bb_page); 2745 rdev->badblocks.size = 0; 2746 } 2747 2748 } else 2749 pr_debug("md: %pg (skipping faulty)\n", 2750 rdev->bdev); 2751 2752 if (mddev->level == LEVEL_MULTIPATH) 2753 /* only need to write one superblock... */ 2754 break; 2755 } 2756 if (md_super_wait(mddev) < 0) 2757 goto rewrite; 2758 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2759 2760 if (mddev_is_clustered(mddev) && ret == 0) 2761 md_cluster_ops->metadata_update_finish(mddev); 2762 2763 if (mddev->in_sync != sync_req || 2764 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2765 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2766 /* have to write it out again */ 2767 goto repeat; 2768 wake_up(&mddev->sb_wait); 2769 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2770 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2771 2772 rdev_for_each(rdev, mddev) { 2773 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2774 clear_bit(Blocked, &rdev->flags); 2775 2776 if (any_badblocks_changed) 2777 ack_all_badblocks(&rdev->badblocks); 2778 clear_bit(BlockedBadBlocks, &rdev->flags); 2779 wake_up(&rdev->blocked_wait); 2780 } 2781 } 2782 EXPORT_SYMBOL(md_update_sb); 2783 2784 static int add_bound_rdev(struct md_rdev *rdev) 2785 { 2786 struct mddev *mddev = rdev->mddev; 2787 int err = 0; 2788 bool add_journal = test_bit(Journal, &rdev->flags); 2789 2790 if (!mddev->pers->hot_remove_disk || add_journal) { 2791 /* If there is hot_add_disk but no hot_remove_disk 2792 * then added disks for geometry changes, 2793 * and should be added immediately. 2794 */ 2795 super_types[mddev->major_version]. 2796 validate_super(mddev, rdev); 2797 if (add_journal) 2798 mddev_suspend(mddev); 2799 err = mddev->pers->hot_add_disk(mddev, rdev); 2800 if (add_journal) 2801 mddev_resume(mddev); 2802 if (err) { 2803 md_kick_rdev_from_array(rdev); 2804 return err; 2805 } 2806 } 2807 sysfs_notify_dirent_safe(rdev->sysfs_state); 2808 2809 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2810 if (mddev->degraded) 2811 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2812 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2813 md_new_event(); 2814 md_wakeup_thread(mddev->thread); 2815 return 0; 2816 } 2817 2818 /* words written to sysfs files may, or may not, be \n terminated. 2819 * We want to accept with case. For this we use cmd_match. 2820 */ 2821 static int cmd_match(const char *cmd, const char *str) 2822 { 2823 /* See if cmd, written into a sysfs file, matches 2824 * str. They must either be the same, or cmd can 2825 * have a trailing newline 2826 */ 2827 while (*cmd && *str && *cmd == *str) { 2828 cmd++; 2829 str++; 2830 } 2831 if (*cmd == '\n') 2832 cmd++; 2833 if (*str || *cmd) 2834 return 0; 2835 return 1; 2836 } 2837 2838 struct rdev_sysfs_entry { 2839 struct attribute attr; 2840 ssize_t (*show)(struct md_rdev *, char *); 2841 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2842 }; 2843 2844 static ssize_t 2845 state_show(struct md_rdev *rdev, char *page) 2846 { 2847 char *sep = ","; 2848 size_t len = 0; 2849 unsigned long flags = READ_ONCE(rdev->flags); 2850 2851 if (test_bit(Faulty, &flags) || 2852 (!test_bit(ExternalBbl, &flags) && 2853 rdev->badblocks.unacked_exist)) 2854 len += sprintf(page+len, "faulty%s", sep); 2855 if (test_bit(In_sync, &flags)) 2856 len += sprintf(page+len, "in_sync%s", sep); 2857 if (test_bit(Journal, &flags)) 2858 len += sprintf(page+len, "journal%s", sep); 2859 if (test_bit(WriteMostly, &flags)) 2860 len += sprintf(page+len, "write_mostly%s", sep); 2861 if (test_bit(Blocked, &flags) || 2862 (rdev->badblocks.unacked_exist 2863 && !test_bit(Faulty, &flags))) 2864 len += sprintf(page+len, "blocked%s", sep); 2865 if (!test_bit(Faulty, &flags) && 2866 !test_bit(Journal, &flags) && 2867 !test_bit(In_sync, &flags)) 2868 len += sprintf(page+len, "spare%s", sep); 2869 if (test_bit(WriteErrorSeen, &flags)) 2870 len += sprintf(page+len, "write_error%s", sep); 2871 if (test_bit(WantReplacement, &flags)) 2872 len += sprintf(page+len, "want_replacement%s", sep); 2873 if (test_bit(Replacement, &flags)) 2874 len += sprintf(page+len, "replacement%s", sep); 2875 if (test_bit(ExternalBbl, &flags)) 2876 len += sprintf(page+len, "external_bbl%s", sep); 2877 if (test_bit(FailFast, &flags)) 2878 len += sprintf(page+len, "failfast%s", sep); 2879 2880 if (len) 2881 len -= strlen(sep); 2882 2883 return len+sprintf(page+len, "\n"); 2884 } 2885 2886 static ssize_t 2887 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2888 { 2889 /* can write 2890 * faulty - simulates an error 2891 * remove - disconnects the device 2892 * writemostly - sets write_mostly 2893 * -writemostly - clears write_mostly 2894 * blocked - sets the Blocked flags 2895 * -blocked - clears the Blocked and possibly simulates an error 2896 * insync - sets Insync providing device isn't active 2897 * -insync - clear Insync for a device with a slot assigned, 2898 * so that it gets rebuilt based on bitmap 2899 * write_error - sets WriteErrorSeen 2900 * -write_error - clears WriteErrorSeen 2901 * {,-}failfast - set/clear FailFast 2902 */ 2903 2904 struct mddev *mddev = rdev->mddev; 2905 int err = -EINVAL; 2906 bool need_update_sb = false; 2907 2908 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2909 md_error(rdev->mddev, rdev); 2910 2911 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2912 err = -EBUSY; 2913 else 2914 err = 0; 2915 } else if (cmd_match(buf, "remove")) { 2916 if (rdev->mddev->pers) { 2917 clear_bit(Blocked, &rdev->flags); 2918 remove_and_add_spares(rdev->mddev, rdev); 2919 } 2920 if (rdev->raid_disk >= 0) 2921 err = -EBUSY; 2922 else { 2923 err = 0; 2924 if (mddev_is_clustered(mddev)) 2925 err = md_cluster_ops->remove_disk(mddev, rdev); 2926 2927 if (err == 0) { 2928 md_kick_rdev_from_array(rdev); 2929 if (mddev->pers) { 2930 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2931 md_wakeup_thread(mddev->thread); 2932 } 2933 md_new_event(); 2934 } 2935 } 2936 } else if (cmd_match(buf, "writemostly")) { 2937 set_bit(WriteMostly, &rdev->flags); 2938 mddev_create_serial_pool(rdev->mddev, rdev, false); 2939 need_update_sb = true; 2940 err = 0; 2941 } else if (cmd_match(buf, "-writemostly")) { 2942 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2943 clear_bit(WriteMostly, &rdev->flags); 2944 need_update_sb = true; 2945 err = 0; 2946 } else if (cmd_match(buf, "blocked")) { 2947 set_bit(Blocked, &rdev->flags); 2948 err = 0; 2949 } else if (cmd_match(buf, "-blocked")) { 2950 if (!test_bit(Faulty, &rdev->flags) && 2951 !test_bit(ExternalBbl, &rdev->flags) && 2952 rdev->badblocks.unacked_exist) { 2953 /* metadata handler doesn't understand badblocks, 2954 * so we need to fail the device 2955 */ 2956 md_error(rdev->mddev, rdev); 2957 } 2958 clear_bit(Blocked, &rdev->flags); 2959 clear_bit(BlockedBadBlocks, &rdev->flags); 2960 wake_up(&rdev->blocked_wait); 2961 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2962 md_wakeup_thread(rdev->mddev->thread); 2963 2964 err = 0; 2965 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2966 set_bit(In_sync, &rdev->flags); 2967 err = 0; 2968 } else if (cmd_match(buf, "failfast")) { 2969 set_bit(FailFast, &rdev->flags); 2970 need_update_sb = true; 2971 err = 0; 2972 } else if (cmd_match(buf, "-failfast")) { 2973 clear_bit(FailFast, &rdev->flags); 2974 need_update_sb = true; 2975 err = 0; 2976 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2977 !test_bit(Journal, &rdev->flags)) { 2978 if (rdev->mddev->pers == NULL) { 2979 clear_bit(In_sync, &rdev->flags); 2980 rdev->saved_raid_disk = rdev->raid_disk; 2981 rdev->raid_disk = -1; 2982 err = 0; 2983 } 2984 } else if (cmd_match(buf, "write_error")) { 2985 set_bit(WriteErrorSeen, &rdev->flags); 2986 err = 0; 2987 } else if (cmd_match(buf, "-write_error")) { 2988 clear_bit(WriteErrorSeen, &rdev->flags); 2989 err = 0; 2990 } else if (cmd_match(buf, "want_replacement")) { 2991 /* Any non-spare device that is not a replacement can 2992 * become want_replacement at any time, but we then need to 2993 * check if recovery is needed. 2994 */ 2995 if (rdev->raid_disk >= 0 && 2996 !test_bit(Journal, &rdev->flags) && 2997 !test_bit(Replacement, &rdev->flags)) 2998 set_bit(WantReplacement, &rdev->flags); 2999 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3000 md_wakeup_thread(rdev->mddev->thread); 3001 err = 0; 3002 } else if (cmd_match(buf, "-want_replacement")) { 3003 /* Clearing 'want_replacement' is always allowed. 3004 * Once replacements starts it is too late though. 3005 */ 3006 err = 0; 3007 clear_bit(WantReplacement, &rdev->flags); 3008 } else if (cmd_match(buf, "replacement")) { 3009 /* Can only set a device as a replacement when array has not 3010 * yet been started. Once running, replacement is automatic 3011 * from spares, or by assigning 'slot'. 3012 */ 3013 if (rdev->mddev->pers) 3014 err = -EBUSY; 3015 else { 3016 set_bit(Replacement, &rdev->flags); 3017 err = 0; 3018 } 3019 } else if (cmd_match(buf, "-replacement")) { 3020 /* Similarly, can only clear Replacement before start */ 3021 if (rdev->mddev->pers) 3022 err = -EBUSY; 3023 else { 3024 clear_bit(Replacement, &rdev->flags); 3025 err = 0; 3026 } 3027 } else if (cmd_match(buf, "re-add")) { 3028 if (!rdev->mddev->pers) 3029 err = -EINVAL; 3030 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3031 rdev->saved_raid_disk >= 0) { 3032 /* clear_bit is performed _after_ all the devices 3033 * have their local Faulty bit cleared. If any writes 3034 * happen in the meantime in the local node, they 3035 * will land in the local bitmap, which will be synced 3036 * by this node eventually 3037 */ 3038 if (!mddev_is_clustered(rdev->mddev) || 3039 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3040 clear_bit(Faulty, &rdev->flags); 3041 err = add_bound_rdev(rdev); 3042 } 3043 } else 3044 err = -EBUSY; 3045 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3046 set_bit(ExternalBbl, &rdev->flags); 3047 rdev->badblocks.shift = 0; 3048 err = 0; 3049 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3050 clear_bit(ExternalBbl, &rdev->flags); 3051 err = 0; 3052 } 3053 if (need_update_sb) 3054 md_update_sb(mddev, 1); 3055 if (!err) 3056 sysfs_notify_dirent_safe(rdev->sysfs_state); 3057 return err ? err : len; 3058 } 3059 static struct rdev_sysfs_entry rdev_state = 3060 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3061 3062 static ssize_t 3063 errors_show(struct md_rdev *rdev, char *page) 3064 { 3065 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3066 } 3067 3068 static ssize_t 3069 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3070 { 3071 unsigned int n; 3072 int rv; 3073 3074 rv = kstrtouint(buf, 10, &n); 3075 if (rv < 0) 3076 return rv; 3077 atomic_set(&rdev->corrected_errors, n); 3078 return len; 3079 } 3080 static struct rdev_sysfs_entry rdev_errors = 3081 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3082 3083 static ssize_t 3084 slot_show(struct md_rdev *rdev, char *page) 3085 { 3086 if (test_bit(Journal, &rdev->flags)) 3087 return sprintf(page, "journal\n"); 3088 else if (rdev->raid_disk < 0) 3089 return sprintf(page, "none\n"); 3090 else 3091 return sprintf(page, "%d\n", rdev->raid_disk); 3092 } 3093 3094 static ssize_t 3095 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3096 { 3097 int slot; 3098 int err; 3099 3100 if (test_bit(Journal, &rdev->flags)) 3101 return -EBUSY; 3102 if (strncmp(buf, "none", 4)==0) 3103 slot = -1; 3104 else { 3105 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3106 if (err < 0) 3107 return err; 3108 if (slot < 0) 3109 /* overflow */ 3110 return -ENOSPC; 3111 } 3112 if (rdev->mddev->pers && slot == -1) { 3113 /* Setting 'slot' on an active array requires also 3114 * updating the 'rd%d' link, and communicating 3115 * with the personality with ->hot_*_disk. 3116 * For now we only support removing 3117 * failed/spare devices. This normally happens automatically, 3118 * but not when the metadata is externally managed. 3119 */ 3120 if (rdev->raid_disk == -1) 3121 return -EEXIST; 3122 /* personality does all needed checks */ 3123 if (rdev->mddev->pers->hot_remove_disk == NULL) 3124 return -EINVAL; 3125 clear_bit(Blocked, &rdev->flags); 3126 remove_and_add_spares(rdev->mddev, rdev); 3127 if (rdev->raid_disk >= 0) 3128 return -EBUSY; 3129 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3130 md_wakeup_thread(rdev->mddev->thread); 3131 } else if (rdev->mddev->pers) { 3132 /* Activating a spare .. or possibly reactivating 3133 * if we ever get bitmaps working here. 3134 */ 3135 int err; 3136 3137 if (rdev->raid_disk != -1) 3138 return -EBUSY; 3139 3140 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3141 return -EBUSY; 3142 3143 if (rdev->mddev->pers->hot_add_disk == NULL) 3144 return -EINVAL; 3145 3146 if (slot >= rdev->mddev->raid_disks && 3147 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3148 return -ENOSPC; 3149 3150 rdev->raid_disk = slot; 3151 if (test_bit(In_sync, &rdev->flags)) 3152 rdev->saved_raid_disk = slot; 3153 else 3154 rdev->saved_raid_disk = -1; 3155 clear_bit(In_sync, &rdev->flags); 3156 clear_bit(Bitmap_sync, &rdev->flags); 3157 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3158 if (err) { 3159 rdev->raid_disk = -1; 3160 return err; 3161 } else 3162 sysfs_notify_dirent_safe(rdev->sysfs_state); 3163 /* failure here is OK */; 3164 sysfs_link_rdev(rdev->mddev, rdev); 3165 /* don't wakeup anyone, leave that to userspace. */ 3166 } else { 3167 if (slot >= rdev->mddev->raid_disks && 3168 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3169 return -ENOSPC; 3170 rdev->raid_disk = slot; 3171 /* assume it is working */ 3172 clear_bit(Faulty, &rdev->flags); 3173 clear_bit(WriteMostly, &rdev->flags); 3174 set_bit(In_sync, &rdev->flags); 3175 sysfs_notify_dirent_safe(rdev->sysfs_state); 3176 } 3177 return len; 3178 } 3179 3180 static struct rdev_sysfs_entry rdev_slot = 3181 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3182 3183 static ssize_t 3184 offset_show(struct md_rdev *rdev, char *page) 3185 { 3186 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3187 } 3188 3189 static ssize_t 3190 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3191 { 3192 unsigned long long offset; 3193 if (kstrtoull(buf, 10, &offset) < 0) 3194 return -EINVAL; 3195 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3196 return -EBUSY; 3197 if (rdev->sectors && rdev->mddev->external) 3198 /* Must set offset before size, so overlap checks 3199 * can be sane */ 3200 return -EBUSY; 3201 rdev->data_offset = offset; 3202 rdev->new_data_offset = offset; 3203 return len; 3204 } 3205 3206 static struct rdev_sysfs_entry rdev_offset = 3207 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3208 3209 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3210 { 3211 return sprintf(page, "%llu\n", 3212 (unsigned long long)rdev->new_data_offset); 3213 } 3214 3215 static ssize_t new_offset_store(struct md_rdev *rdev, 3216 const char *buf, size_t len) 3217 { 3218 unsigned long long new_offset; 3219 struct mddev *mddev = rdev->mddev; 3220 3221 if (kstrtoull(buf, 10, &new_offset) < 0) 3222 return -EINVAL; 3223 3224 if (mddev->sync_thread || 3225 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3226 return -EBUSY; 3227 if (new_offset == rdev->data_offset) 3228 /* reset is always permitted */ 3229 ; 3230 else if (new_offset > rdev->data_offset) { 3231 /* must not push array size beyond rdev_sectors */ 3232 if (new_offset - rdev->data_offset 3233 + mddev->dev_sectors > rdev->sectors) 3234 return -E2BIG; 3235 } 3236 /* Metadata worries about other space details. */ 3237 3238 /* decreasing the offset is inconsistent with a backwards 3239 * reshape. 3240 */ 3241 if (new_offset < rdev->data_offset && 3242 mddev->reshape_backwards) 3243 return -EINVAL; 3244 /* Increasing offset is inconsistent with forwards 3245 * reshape. reshape_direction should be set to 3246 * 'backwards' first. 3247 */ 3248 if (new_offset > rdev->data_offset && 3249 !mddev->reshape_backwards) 3250 return -EINVAL; 3251 3252 if (mddev->pers && mddev->persistent && 3253 !super_types[mddev->major_version] 3254 .allow_new_offset(rdev, new_offset)) 3255 return -E2BIG; 3256 rdev->new_data_offset = new_offset; 3257 if (new_offset > rdev->data_offset) 3258 mddev->reshape_backwards = 1; 3259 else if (new_offset < rdev->data_offset) 3260 mddev->reshape_backwards = 0; 3261 3262 return len; 3263 } 3264 static struct rdev_sysfs_entry rdev_new_offset = 3265 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3266 3267 static ssize_t 3268 rdev_size_show(struct md_rdev *rdev, char *page) 3269 { 3270 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3271 } 3272 3273 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3274 { 3275 /* check if two start/length pairs overlap */ 3276 if (a->data_offset + a->sectors <= b->data_offset) 3277 return false; 3278 if (b->data_offset + b->sectors <= a->data_offset) 3279 return false; 3280 return true; 3281 } 3282 3283 static bool md_rdev_overlaps(struct md_rdev *rdev) 3284 { 3285 struct mddev *mddev; 3286 struct md_rdev *rdev2; 3287 3288 spin_lock(&all_mddevs_lock); 3289 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3290 if (test_bit(MD_DELETED, &mddev->flags)) 3291 continue; 3292 rdev_for_each(rdev2, mddev) { 3293 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3294 md_rdevs_overlap(rdev, rdev2)) { 3295 spin_unlock(&all_mddevs_lock); 3296 return true; 3297 } 3298 } 3299 } 3300 spin_unlock(&all_mddevs_lock); 3301 return false; 3302 } 3303 3304 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3305 { 3306 unsigned long long blocks; 3307 sector_t new; 3308 3309 if (kstrtoull(buf, 10, &blocks) < 0) 3310 return -EINVAL; 3311 3312 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3313 return -EINVAL; /* sector conversion overflow */ 3314 3315 new = blocks * 2; 3316 if (new != blocks * 2) 3317 return -EINVAL; /* unsigned long long to sector_t overflow */ 3318 3319 *sectors = new; 3320 return 0; 3321 } 3322 3323 static ssize_t 3324 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3325 { 3326 struct mddev *my_mddev = rdev->mddev; 3327 sector_t oldsectors = rdev->sectors; 3328 sector_t sectors; 3329 3330 if (test_bit(Journal, &rdev->flags)) 3331 return -EBUSY; 3332 if (strict_blocks_to_sectors(buf, §ors) < 0) 3333 return -EINVAL; 3334 if (rdev->data_offset != rdev->new_data_offset) 3335 return -EINVAL; /* too confusing */ 3336 if (my_mddev->pers && rdev->raid_disk >= 0) { 3337 if (my_mddev->persistent) { 3338 sectors = super_types[my_mddev->major_version]. 3339 rdev_size_change(rdev, sectors); 3340 if (!sectors) 3341 return -EBUSY; 3342 } else if (!sectors) 3343 sectors = bdev_nr_sectors(rdev->bdev) - 3344 rdev->data_offset; 3345 if (!my_mddev->pers->resize) 3346 /* Cannot change size for RAID0 or Linear etc */ 3347 return -EINVAL; 3348 } 3349 if (sectors < my_mddev->dev_sectors) 3350 return -EINVAL; /* component must fit device */ 3351 3352 rdev->sectors = sectors; 3353 3354 /* 3355 * Check that all other rdevs with the same bdev do not overlap. This 3356 * check does not provide a hard guarantee, it just helps avoid 3357 * dangerous mistakes. 3358 */ 3359 if (sectors > oldsectors && my_mddev->external && 3360 md_rdev_overlaps(rdev)) { 3361 /* 3362 * Someone else could have slipped in a size change here, but 3363 * doing so is just silly. We put oldsectors back because we 3364 * know it is safe, and trust userspace not to race with itself. 3365 */ 3366 rdev->sectors = oldsectors; 3367 return -EBUSY; 3368 } 3369 return len; 3370 } 3371 3372 static struct rdev_sysfs_entry rdev_size = 3373 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3374 3375 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3376 { 3377 unsigned long long recovery_start = rdev->recovery_offset; 3378 3379 if (test_bit(In_sync, &rdev->flags) || 3380 recovery_start == MaxSector) 3381 return sprintf(page, "none\n"); 3382 3383 return sprintf(page, "%llu\n", recovery_start); 3384 } 3385 3386 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3387 { 3388 unsigned long long recovery_start; 3389 3390 if (cmd_match(buf, "none")) 3391 recovery_start = MaxSector; 3392 else if (kstrtoull(buf, 10, &recovery_start)) 3393 return -EINVAL; 3394 3395 if (rdev->mddev->pers && 3396 rdev->raid_disk >= 0) 3397 return -EBUSY; 3398 3399 rdev->recovery_offset = recovery_start; 3400 if (recovery_start == MaxSector) 3401 set_bit(In_sync, &rdev->flags); 3402 else 3403 clear_bit(In_sync, &rdev->flags); 3404 return len; 3405 } 3406 3407 static struct rdev_sysfs_entry rdev_recovery_start = 3408 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3409 3410 /* sysfs access to bad-blocks list. 3411 * We present two files. 3412 * 'bad-blocks' lists sector numbers and lengths of ranges that 3413 * are recorded as bad. The list is truncated to fit within 3414 * the one-page limit of sysfs. 3415 * Writing "sector length" to this file adds an acknowledged 3416 * bad block list. 3417 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3418 * been acknowledged. Writing to this file adds bad blocks 3419 * without acknowledging them. This is largely for testing. 3420 */ 3421 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3422 { 3423 return badblocks_show(&rdev->badblocks, page, 0); 3424 } 3425 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3426 { 3427 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3428 /* Maybe that ack was all we needed */ 3429 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3430 wake_up(&rdev->blocked_wait); 3431 return rv; 3432 } 3433 static struct rdev_sysfs_entry rdev_bad_blocks = 3434 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3435 3436 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3437 { 3438 return badblocks_show(&rdev->badblocks, page, 1); 3439 } 3440 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3441 { 3442 return badblocks_store(&rdev->badblocks, page, len, 1); 3443 } 3444 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3445 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3446 3447 static ssize_t 3448 ppl_sector_show(struct md_rdev *rdev, char *page) 3449 { 3450 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3451 } 3452 3453 static ssize_t 3454 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3455 { 3456 unsigned long long sector; 3457 3458 if (kstrtoull(buf, 10, §or) < 0) 3459 return -EINVAL; 3460 if (sector != (sector_t)sector) 3461 return -EINVAL; 3462 3463 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3464 rdev->raid_disk >= 0) 3465 return -EBUSY; 3466 3467 if (rdev->mddev->persistent) { 3468 if (rdev->mddev->major_version == 0) 3469 return -EINVAL; 3470 if ((sector > rdev->sb_start && 3471 sector - rdev->sb_start > S16_MAX) || 3472 (sector < rdev->sb_start && 3473 rdev->sb_start - sector > -S16_MIN)) 3474 return -EINVAL; 3475 rdev->ppl.offset = sector - rdev->sb_start; 3476 } else if (!rdev->mddev->external) { 3477 return -EBUSY; 3478 } 3479 rdev->ppl.sector = sector; 3480 return len; 3481 } 3482 3483 static struct rdev_sysfs_entry rdev_ppl_sector = 3484 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3485 3486 static ssize_t 3487 ppl_size_show(struct md_rdev *rdev, char *page) 3488 { 3489 return sprintf(page, "%u\n", rdev->ppl.size); 3490 } 3491 3492 static ssize_t 3493 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3494 { 3495 unsigned int size; 3496 3497 if (kstrtouint(buf, 10, &size) < 0) 3498 return -EINVAL; 3499 3500 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3501 rdev->raid_disk >= 0) 3502 return -EBUSY; 3503 3504 if (rdev->mddev->persistent) { 3505 if (rdev->mddev->major_version == 0) 3506 return -EINVAL; 3507 if (size > U16_MAX) 3508 return -EINVAL; 3509 } else if (!rdev->mddev->external) { 3510 return -EBUSY; 3511 } 3512 rdev->ppl.size = size; 3513 return len; 3514 } 3515 3516 static struct rdev_sysfs_entry rdev_ppl_size = 3517 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3518 3519 static struct attribute *rdev_default_attrs[] = { 3520 &rdev_state.attr, 3521 &rdev_errors.attr, 3522 &rdev_slot.attr, 3523 &rdev_offset.attr, 3524 &rdev_new_offset.attr, 3525 &rdev_size.attr, 3526 &rdev_recovery_start.attr, 3527 &rdev_bad_blocks.attr, 3528 &rdev_unack_bad_blocks.attr, 3529 &rdev_ppl_sector.attr, 3530 &rdev_ppl_size.attr, 3531 NULL, 3532 }; 3533 ATTRIBUTE_GROUPS(rdev_default); 3534 static ssize_t 3535 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3536 { 3537 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3538 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3539 3540 if (!entry->show) 3541 return -EIO; 3542 if (!rdev->mddev) 3543 return -ENODEV; 3544 return entry->show(rdev, page); 3545 } 3546 3547 static ssize_t 3548 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3549 const char *page, size_t length) 3550 { 3551 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3552 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3553 struct kernfs_node *kn = NULL; 3554 ssize_t rv; 3555 struct mddev *mddev = rdev->mddev; 3556 3557 if (!entry->store) 3558 return -EIO; 3559 if (!capable(CAP_SYS_ADMIN)) 3560 return -EACCES; 3561 3562 if (entry->store == state_store && cmd_match(page, "remove")) 3563 kn = sysfs_break_active_protection(kobj, attr); 3564 3565 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3566 if (!rv) { 3567 if (rdev->mddev == NULL) 3568 rv = -ENODEV; 3569 else 3570 rv = entry->store(rdev, page, length); 3571 mddev_unlock(mddev); 3572 } 3573 3574 if (kn) 3575 sysfs_unbreak_active_protection(kn); 3576 3577 return rv; 3578 } 3579 3580 static void rdev_free(struct kobject *ko) 3581 { 3582 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3583 kfree(rdev); 3584 } 3585 static const struct sysfs_ops rdev_sysfs_ops = { 3586 .show = rdev_attr_show, 3587 .store = rdev_attr_store, 3588 }; 3589 static const struct kobj_type rdev_ktype = { 3590 .release = rdev_free, 3591 .sysfs_ops = &rdev_sysfs_ops, 3592 .default_groups = rdev_default_groups, 3593 }; 3594 3595 int md_rdev_init(struct md_rdev *rdev) 3596 { 3597 rdev->desc_nr = -1; 3598 rdev->saved_raid_disk = -1; 3599 rdev->raid_disk = -1; 3600 rdev->flags = 0; 3601 rdev->data_offset = 0; 3602 rdev->new_data_offset = 0; 3603 rdev->sb_events = 0; 3604 rdev->last_read_error = 0; 3605 rdev->sb_loaded = 0; 3606 rdev->bb_page = NULL; 3607 atomic_set(&rdev->nr_pending, 0); 3608 atomic_set(&rdev->read_errors, 0); 3609 atomic_set(&rdev->corrected_errors, 0); 3610 3611 INIT_LIST_HEAD(&rdev->same_set); 3612 init_waitqueue_head(&rdev->blocked_wait); 3613 3614 /* Add space to store bad block list. 3615 * This reserves the space even on arrays where it cannot 3616 * be used - I wonder if that matters 3617 */ 3618 return badblocks_init(&rdev->badblocks, 0); 3619 } 3620 EXPORT_SYMBOL_GPL(md_rdev_init); 3621 3622 /* 3623 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3624 * 3625 * mark the device faulty if: 3626 * 3627 * - the device is nonexistent (zero size) 3628 * - the device has no valid superblock 3629 * 3630 * a faulty rdev _never_ has rdev->sb set. 3631 */ 3632 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3633 { 3634 struct md_rdev *rdev; 3635 sector_t size; 3636 int err; 3637 3638 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3639 if (!rdev) 3640 return ERR_PTR(-ENOMEM); 3641 3642 err = md_rdev_init(rdev); 3643 if (err) 3644 goto out_free_rdev; 3645 err = alloc_disk_sb(rdev); 3646 if (err) 3647 goto out_clear_rdev; 3648 3649 rdev->bdev_handle = bdev_open_by_dev(newdev, 3650 BLK_OPEN_READ | BLK_OPEN_WRITE, 3651 super_format == -2 ? &claim_rdev : rdev, NULL); 3652 if (IS_ERR(rdev->bdev_handle)) { 3653 pr_warn("md: could not open device unknown-block(%u,%u).\n", 3654 MAJOR(newdev), MINOR(newdev)); 3655 err = PTR_ERR(rdev->bdev_handle); 3656 goto out_clear_rdev; 3657 } 3658 rdev->bdev = rdev->bdev_handle->bdev; 3659 3660 kobject_init(&rdev->kobj, &rdev_ktype); 3661 3662 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3663 if (!size) { 3664 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3665 rdev->bdev); 3666 err = -EINVAL; 3667 goto out_blkdev_put; 3668 } 3669 3670 if (super_format >= 0) { 3671 err = super_types[super_format]. 3672 load_super(rdev, NULL, super_minor); 3673 if (err == -EINVAL) { 3674 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3675 rdev->bdev, 3676 super_format, super_minor); 3677 goto out_blkdev_put; 3678 } 3679 if (err < 0) { 3680 pr_warn("md: could not read %pg's sb, not importing!\n", 3681 rdev->bdev); 3682 goto out_blkdev_put; 3683 } 3684 } 3685 3686 return rdev; 3687 3688 out_blkdev_put: 3689 bdev_release(rdev->bdev_handle); 3690 out_clear_rdev: 3691 md_rdev_clear(rdev); 3692 out_free_rdev: 3693 kfree(rdev); 3694 return ERR_PTR(err); 3695 } 3696 3697 /* 3698 * Check a full RAID array for plausibility 3699 */ 3700 3701 static int analyze_sbs(struct mddev *mddev) 3702 { 3703 int i; 3704 struct md_rdev *rdev, *freshest, *tmp; 3705 3706 freshest = NULL; 3707 rdev_for_each_safe(rdev, tmp, mddev) 3708 switch (super_types[mddev->major_version]. 3709 load_super(rdev, freshest, mddev->minor_version)) { 3710 case 1: 3711 freshest = rdev; 3712 break; 3713 case 0: 3714 break; 3715 default: 3716 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3717 rdev->bdev); 3718 md_kick_rdev_from_array(rdev); 3719 } 3720 3721 /* Cannot find a valid fresh disk */ 3722 if (!freshest) { 3723 pr_warn("md: cannot find a valid disk\n"); 3724 return -EINVAL; 3725 } 3726 3727 super_types[mddev->major_version]. 3728 validate_super(mddev, freshest); 3729 3730 i = 0; 3731 rdev_for_each_safe(rdev, tmp, mddev) { 3732 if (mddev->max_disks && 3733 (rdev->desc_nr >= mddev->max_disks || 3734 i > mddev->max_disks)) { 3735 pr_warn("md: %s: %pg: only %d devices permitted\n", 3736 mdname(mddev), rdev->bdev, 3737 mddev->max_disks); 3738 md_kick_rdev_from_array(rdev); 3739 continue; 3740 } 3741 if (rdev != freshest) { 3742 if (super_types[mddev->major_version]. 3743 validate_super(mddev, rdev)) { 3744 pr_warn("md: kicking non-fresh %pg from array!\n", 3745 rdev->bdev); 3746 md_kick_rdev_from_array(rdev); 3747 continue; 3748 } 3749 } 3750 if (mddev->level == LEVEL_MULTIPATH) { 3751 rdev->desc_nr = i++; 3752 rdev->raid_disk = rdev->desc_nr; 3753 set_bit(In_sync, &rdev->flags); 3754 } else if (rdev->raid_disk >= 3755 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3756 !test_bit(Journal, &rdev->flags)) { 3757 rdev->raid_disk = -1; 3758 clear_bit(In_sync, &rdev->flags); 3759 } 3760 } 3761 3762 return 0; 3763 } 3764 3765 /* Read a fixed-point number. 3766 * Numbers in sysfs attributes should be in "standard" units where 3767 * possible, so time should be in seconds. 3768 * However we internally use a a much smaller unit such as 3769 * milliseconds or jiffies. 3770 * This function takes a decimal number with a possible fractional 3771 * component, and produces an integer which is the result of 3772 * multiplying that number by 10^'scale'. 3773 * all without any floating-point arithmetic. 3774 */ 3775 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3776 { 3777 unsigned long result = 0; 3778 long decimals = -1; 3779 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3780 if (*cp == '.') 3781 decimals = 0; 3782 else if (decimals < scale) { 3783 unsigned int value; 3784 value = *cp - '0'; 3785 result = result * 10 + value; 3786 if (decimals >= 0) 3787 decimals++; 3788 } 3789 cp++; 3790 } 3791 if (*cp == '\n') 3792 cp++; 3793 if (*cp) 3794 return -EINVAL; 3795 if (decimals < 0) 3796 decimals = 0; 3797 *res = result * int_pow(10, scale - decimals); 3798 return 0; 3799 } 3800 3801 static ssize_t 3802 safe_delay_show(struct mddev *mddev, char *page) 3803 { 3804 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ; 3805 3806 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000); 3807 } 3808 static ssize_t 3809 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3810 { 3811 unsigned long msec; 3812 3813 if (mddev_is_clustered(mddev)) { 3814 pr_warn("md: Safemode is disabled for clustered mode\n"); 3815 return -EINVAL; 3816 } 3817 3818 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ) 3819 return -EINVAL; 3820 if (msec == 0) 3821 mddev->safemode_delay = 0; 3822 else { 3823 unsigned long old_delay = mddev->safemode_delay; 3824 unsigned long new_delay = (msec*HZ)/1000; 3825 3826 if (new_delay == 0) 3827 new_delay = 1; 3828 mddev->safemode_delay = new_delay; 3829 if (new_delay < old_delay || old_delay == 0) 3830 mod_timer(&mddev->safemode_timer, jiffies+1); 3831 } 3832 return len; 3833 } 3834 static struct md_sysfs_entry md_safe_delay = 3835 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3836 3837 static ssize_t 3838 level_show(struct mddev *mddev, char *page) 3839 { 3840 struct md_personality *p; 3841 int ret; 3842 spin_lock(&mddev->lock); 3843 p = mddev->pers; 3844 if (p) 3845 ret = sprintf(page, "%s\n", p->name); 3846 else if (mddev->clevel[0]) 3847 ret = sprintf(page, "%s\n", mddev->clevel); 3848 else if (mddev->level != LEVEL_NONE) 3849 ret = sprintf(page, "%d\n", mddev->level); 3850 else 3851 ret = 0; 3852 spin_unlock(&mddev->lock); 3853 return ret; 3854 } 3855 3856 static ssize_t 3857 level_store(struct mddev *mddev, const char *buf, size_t len) 3858 { 3859 char clevel[16]; 3860 ssize_t rv; 3861 size_t slen = len; 3862 struct md_personality *pers, *oldpers; 3863 long level; 3864 void *priv, *oldpriv; 3865 struct md_rdev *rdev; 3866 3867 if (slen == 0 || slen >= sizeof(clevel)) 3868 return -EINVAL; 3869 3870 rv = mddev_lock(mddev); 3871 if (rv) 3872 return rv; 3873 3874 if (mddev->pers == NULL) { 3875 strncpy(mddev->clevel, buf, slen); 3876 if (mddev->clevel[slen-1] == '\n') 3877 slen--; 3878 mddev->clevel[slen] = 0; 3879 mddev->level = LEVEL_NONE; 3880 rv = len; 3881 goto out_unlock; 3882 } 3883 rv = -EROFS; 3884 if (!md_is_rdwr(mddev)) 3885 goto out_unlock; 3886 3887 /* request to change the personality. Need to ensure: 3888 * - array is not engaged in resync/recovery/reshape 3889 * - old personality can be suspended 3890 * - new personality will access other array. 3891 */ 3892 3893 rv = -EBUSY; 3894 if (mddev->sync_thread || 3895 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3896 mddev->reshape_position != MaxSector || 3897 mddev->sysfs_active) 3898 goto out_unlock; 3899 3900 rv = -EINVAL; 3901 if (!mddev->pers->quiesce) { 3902 pr_warn("md: %s: %s does not support online personality change\n", 3903 mdname(mddev), mddev->pers->name); 3904 goto out_unlock; 3905 } 3906 3907 /* Now find the new personality */ 3908 strncpy(clevel, buf, slen); 3909 if (clevel[slen-1] == '\n') 3910 slen--; 3911 clevel[slen] = 0; 3912 if (kstrtol(clevel, 10, &level)) 3913 level = LEVEL_NONE; 3914 3915 if (request_module("md-%s", clevel) != 0) 3916 request_module("md-level-%s", clevel); 3917 spin_lock(&pers_lock); 3918 pers = find_pers(level, clevel); 3919 if (!pers || !try_module_get(pers->owner)) { 3920 spin_unlock(&pers_lock); 3921 pr_warn("md: personality %s not loaded\n", clevel); 3922 rv = -EINVAL; 3923 goto out_unlock; 3924 } 3925 spin_unlock(&pers_lock); 3926 3927 if (pers == mddev->pers) { 3928 /* Nothing to do! */ 3929 module_put(pers->owner); 3930 rv = len; 3931 goto out_unlock; 3932 } 3933 if (!pers->takeover) { 3934 module_put(pers->owner); 3935 pr_warn("md: %s: %s does not support personality takeover\n", 3936 mdname(mddev), clevel); 3937 rv = -EINVAL; 3938 goto out_unlock; 3939 } 3940 3941 rdev_for_each(rdev, mddev) 3942 rdev->new_raid_disk = rdev->raid_disk; 3943 3944 /* ->takeover must set new_* and/or delta_disks 3945 * if it succeeds, and may set them when it fails. 3946 */ 3947 priv = pers->takeover(mddev); 3948 if (IS_ERR(priv)) { 3949 mddev->new_level = mddev->level; 3950 mddev->new_layout = mddev->layout; 3951 mddev->new_chunk_sectors = mddev->chunk_sectors; 3952 mddev->raid_disks -= mddev->delta_disks; 3953 mddev->delta_disks = 0; 3954 mddev->reshape_backwards = 0; 3955 module_put(pers->owner); 3956 pr_warn("md: %s: %s would not accept array\n", 3957 mdname(mddev), clevel); 3958 rv = PTR_ERR(priv); 3959 goto out_unlock; 3960 } 3961 3962 /* Looks like we have a winner */ 3963 mddev_suspend(mddev); 3964 mddev_detach(mddev); 3965 3966 spin_lock(&mddev->lock); 3967 oldpers = mddev->pers; 3968 oldpriv = mddev->private; 3969 mddev->pers = pers; 3970 mddev->private = priv; 3971 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3972 mddev->level = mddev->new_level; 3973 mddev->layout = mddev->new_layout; 3974 mddev->chunk_sectors = mddev->new_chunk_sectors; 3975 mddev->delta_disks = 0; 3976 mddev->reshape_backwards = 0; 3977 mddev->degraded = 0; 3978 spin_unlock(&mddev->lock); 3979 3980 if (oldpers->sync_request == NULL && 3981 mddev->external) { 3982 /* We are converting from a no-redundancy array 3983 * to a redundancy array and metadata is managed 3984 * externally so we need to be sure that writes 3985 * won't block due to a need to transition 3986 * clean->dirty 3987 * until external management is started. 3988 */ 3989 mddev->in_sync = 0; 3990 mddev->safemode_delay = 0; 3991 mddev->safemode = 0; 3992 } 3993 3994 oldpers->free(mddev, oldpriv); 3995 3996 if (oldpers->sync_request == NULL && 3997 pers->sync_request != NULL) { 3998 /* need to add the md_redundancy_group */ 3999 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4000 pr_warn("md: cannot register extra attributes for %s\n", 4001 mdname(mddev)); 4002 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4003 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4004 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4005 } 4006 if (oldpers->sync_request != NULL && 4007 pers->sync_request == NULL) { 4008 /* need to remove the md_redundancy_group */ 4009 if (mddev->to_remove == NULL) 4010 mddev->to_remove = &md_redundancy_group; 4011 } 4012 4013 module_put(oldpers->owner); 4014 4015 rdev_for_each(rdev, mddev) { 4016 if (rdev->raid_disk < 0) 4017 continue; 4018 if (rdev->new_raid_disk >= mddev->raid_disks) 4019 rdev->new_raid_disk = -1; 4020 if (rdev->new_raid_disk == rdev->raid_disk) 4021 continue; 4022 sysfs_unlink_rdev(mddev, rdev); 4023 } 4024 rdev_for_each(rdev, mddev) { 4025 if (rdev->raid_disk < 0) 4026 continue; 4027 if (rdev->new_raid_disk == rdev->raid_disk) 4028 continue; 4029 rdev->raid_disk = rdev->new_raid_disk; 4030 if (rdev->raid_disk < 0) 4031 clear_bit(In_sync, &rdev->flags); 4032 else { 4033 if (sysfs_link_rdev(mddev, rdev)) 4034 pr_warn("md: cannot register rd%d for %s after level change\n", 4035 rdev->raid_disk, mdname(mddev)); 4036 } 4037 } 4038 4039 if (pers->sync_request == NULL) { 4040 /* this is now an array without redundancy, so 4041 * it must always be in_sync 4042 */ 4043 mddev->in_sync = 1; 4044 del_timer_sync(&mddev->safemode_timer); 4045 } 4046 blk_set_stacking_limits(&mddev->queue->limits); 4047 pers->run(mddev); 4048 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4049 mddev_resume(mddev); 4050 if (!mddev->thread) 4051 md_update_sb(mddev, 1); 4052 sysfs_notify_dirent_safe(mddev->sysfs_level); 4053 md_new_event(); 4054 rv = len; 4055 out_unlock: 4056 mddev_unlock(mddev); 4057 return rv; 4058 } 4059 4060 static struct md_sysfs_entry md_level = 4061 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4062 4063 static ssize_t 4064 layout_show(struct mddev *mddev, char *page) 4065 { 4066 /* just a number, not meaningful for all levels */ 4067 if (mddev->reshape_position != MaxSector && 4068 mddev->layout != mddev->new_layout) 4069 return sprintf(page, "%d (%d)\n", 4070 mddev->new_layout, mddev->layout); 4071 return sprintf(page, "%d\n", mddev->layout); 4072 } 4073 4074 static ssize_t 4075 layout_store(struct mddev *mddev, const char *buf, size_t len) 4076 { 4077 unsigned int n; 4078 int err; 4079 4080 err = kstrtouint(buf, 10, &n); 4081 if (err < 0) 4082 return err; 4083 err = mddev_lock(mddev); 4084 if (err) 4085 return err; 4086 4087 if (mddev->pers) { 4088 if (mddev->pers->check_reshape == NULL) 4089 err = -EBUSY; 4090 else if (!md_is_rdwr(mddev)) 4091 err = -EROFS; 4092 else { 4093 mddev->new_layout = n; 4094 err = mddev->pers->check_reshape(mddev); 4095 if (err) 4096 mddev->new_layout = mddev->layout; 4097 } 4098 } else { 4099 mddev->new_layout = n; 4100 if (mddev->reshape_position == MaxSector) 4101 mddev->layout = n; 4102 } 4103 mddev_unlock(mddev); 4104 return err ?: len; 4105 } 4106 static struct md_sysfs_entry md_layout = 4107 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4108 4109 static ssize_t 4110 raid_disks_show(struct mddev *mddev, char *page) 4111 { 4112 if (mddev->raid_disks == 0) 4113 return 0; 4114 if (mddev->reshape_position != MaxSector && 4115 mddev->delta_disks != 0) 4116 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4117 mddev->raid_disks - mddev->delta_disks); 4118 return sprintf(page, "%d\n", mddev->raid_disks); 4119 } 4120 4121 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4122 4123 static ssize_t 4124 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4125 { 4126 unsigned int n; 4127 int err; 4128 4129 err = kstrtouint(buf, 10, &n); 4130 if (err < 0) 4131 return err; 4132 4133 err = mddev_lock(mddev); 4134 if (err) 4135 return err; 4136 if (mddev->pers) 4137 err = update_raid_disks(mddev, n); 4138 else if (mddev->reshape_position != MaxSector) { 4139 struct md_rdev *rdev; 4140 int olddisks = mddev->raid_disks - mddev->delta_disks; 4141 4142 err = -EINVAL; 4143 rdev_for_each(rdev, mddev) { 4144 if (olddisks < n && 4145 rdev->data_offset < rdev->new_data_offset) 4146 goto out_unlock; 4147 if (olddisks > n && 4148 rdev->data_offset > rdev->new_data_offset) 4149 goto out_unlock; 4150 } 4151 err = 0; 4152 mddev->delta_disks = n - olddisks; 4153 mddev->raid_disks = n; 4154 mddev->reshape_backwards = (mddev->delta_disks < 0); 4155 } else 4156 mddev->raid_disks = n; 4157 out_unlock: 4158 mddev_unlock(mddev); 4159 return err ? err : len; 4160 } 4161 static struct md_sysfs_entry md_raid_disks = 4162 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4163 4164 static ssize_t 4165 uuid_show(struct mddev *mddev, char *page) 4166 { 4167 return sprintf(page, "%pU\n", mddev->uuid); 4168 } 4169 static struct md_sysfs_entry md_uuid = 4170 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4171 4172 static ssize_t 4173 chunk_size_show(struct mddev *mddev, char *page) 4174 { 4175 if (mddev->reshape_position != MaxSector && 4176 mddev->chunk_sectors != mddev->new_chunk_sectors) 4177 return sprintf(page, "%d (%d)\n", 4178 mddev->new_chunk_sectors << 9, 4179 mddev->chunk_sectors << 9); 4180 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4181 } 4182 4183 static ssize_t 4184 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4185 { 4186 unsigned long n; 4187 int err; 4188 4189 err = kstrtoul(buf, 10, &n); 4190 if (err < 0) 4191 return err; 4192 4193 err = mddev_lock(mddev); 4194 if (err) 4195 return err; 4196 if (mddev->pers) { 4197 if (mddev->pers->check_reshape == NULL) 4198 err = -EBUSY; 4199 else if (!md_is_rdwr(mddev)) 4200 err = -EROFS; 4201 else { 4202 mddev->new_chunk_sectors = n >> 9; 4203 err = mddev->pers->check_reshape(mddev); 4204 if (err) 4205 mddev->new_chunk_sectors = mddev->chunk_sectors; 4206 } 4207 } else { 4208 mddev->new_chunk_sectors = n >> 9; 4209 if (mddev->reshape_position == MaxSector) 4210 mddev->chunk_sectors = n >> 9; 4211 } 4212 mddev_unlock(mddev); 4213 return err ?: len; 4214 } 4215 static struct md_sysfs_entry md_chunk_size = 4216 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4217 4218 static ssize_t 4219 resync_start_show(struct mddev *mddev, char *page) 4220 { 4221 if (mddev->recovery_cp == MaxSector) 4222 return sprintf(page, "none\n"); 4223 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4224 } 4225 4226 static ssize_t 4227 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4228 { 4229 unsigned long long n; 4230 int err; 4231 4232 if (cmd_match(buf, "none")) 4233 n = MaxSector; 4234 else { 4235 err = kstrtoull(buf, 10, &n); 4236 if (err < 0) 4237 return err; 4238 if (n != (sector_t)n) 4239 return -EINVAL; 4240 } 4241 4242 err = mddev_lock(mddev); 4243 if (err) 4244 return err; 4245 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4246 err = -EBUSY; 4247 4248 if (!err) { 4249 mddev->recovery_cp = n; 4250 if (mddev->pers) 4251 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4252 } 4253 mddev_unlock(mddev); 4254 return err ?: len; 4255 } 4256 static struct md_sysfs_entry md_resync_start = 4257 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4258 resync_start_show, resync_start_store); 4259 4260 /* 4261 * The array state can be: 4262 * 4263 * clear 4264 * No devices, no size, no level 4265 * Equivalent to STOP_ARRAY ioctl 4266 * inactive 4267 * May have some settings, but array is not active 4268 * all IO results in error 4269 * When written, doesn't tear down array, but just stops it 4270 * suspended (not supported yet) 4271 * All IO requests will block. The array can be reconfigured. 4272 * Writing this, if accepted, will block until array is quiescent 4273 * readonly 4274 * no resync can happen. no superblocks get written. 4275 * write requests fail 4276 * read-auto 4277 * like readonly, but behaves like 'clean' on a write request. 4278 * 4279 * clean - no pending writes, but otherwise active. 4280 * When written to inactive array, starts without resync 4281 * If a write request arrives then 4282 * if metadata is known, mark 'dirty' and switch to 'active'. 4283 * if not known, block and switch to write-pending 4284 * If written to an active array that has pending writes, then fails. 4285 * active 4286 * fully active: IO and resync can be happening. 4287 * When written to inactive array, starts with resync 4288 * 4289 * write-pending 4290 * clean, but writes are blocked waiting for 'active' to be written. 4291 * 4292 * active-idle 4293 * like active, but no writes have been seen for a while (100msec). 4294 * 4295 * broken 4296 * Array is failed. It's useful because mounted-arrays aren't stopped 4297 * when array is failed, so this state will at least alert the user that 4298 * something is wrong. 4299 */ 4300 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4301 write_pending, active_idle, broken, bad_word}; 4302 static char *array_states[] = { 4303 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4304 "write-pending", "active-idle", "broken", NULL }; 4305 4306 static int match_word(const char *word, char **list) 4307 { 4308 int n; 4309 for (n=0; list[n]; n++) 4310 if (cmd_match(word, list[n])) 4311 break; 4312 return n; 4313 } 4314 4315 static ssize_t 4316 array_state_show(struct mddev *mddev, char *page) 4317 { 4318 enum array_state st = inactive; 4319 4320 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4321 switch(mddev->ro) { 4322 case MD_RDONLY: 4323 st = readonly; 4324 break; 4325 case MD_AUTO_READ: 4326 st = read_auto; 4327 break; 4328 case MD_RDWR: 4329 spin_lock(&mddev->lock); 4330 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4331 st = write_pending; 4332 else if (mddev->in_sync) 4333 st = clean; 4334 else if (mddev->safemode) 4335 st = active_idle; 4336 else 4337 st = active; 4338 spin_unlock(&mddev->lock); 4339 } 4340 4341 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4342 st = broken; 4343 } else { 4344 if (list_empty(&mddev->disks) && 4345 mddev->raid_disks == 0 && 4346 mddev->dev_sectors == 0) 4347 st = clear; 4348 else 4349 st = inactive; 4350 } 4351 return sprintf(page, "%s\n", array_states[st]); 4352 } 4353 4354 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4355 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4356 static int restart_array(struct mddev *mddev); 4357 4358 static ssize_t 4359 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4360 { 4361 int err = 0; 4362 enum array_state st = match_word(buf, array_states); 4363 4364 if (mddev->pers && (st == active || st == clean) && 4365 mddev->ro != MD_RDONLY) { 4366 /* don't take reconfig_mutex when toggling between 4367 * clean and active 4368 */ 4369 spin_lock(&mddev->lock); 4370 if (st == active) { 4371 restart_array(mddev); 4372 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4373 md_wakeup_thread(mddev->thread); 4374 wake_up(&mddev->sb_wait); 4375 } else /* st == clean */ { 4376 restart_array(mddev); 4377 if (!set_in_sync(mddev)) 4378 err = -EBUSY; 4379 } 4380 if (!err) 4381 sysfs_notify_dirent_safe(mddev->sysfs_state); 4382 spin_unlock(&mddev->lock); 4383 return err ?: len; 4384 } 4385 err = mddev_lock(mddev); 4386 if (err) 4387 return err; 4388 err = -EINVAL; 4389 switch(st) { 4390 case bad_word: 4391 break; 4392 case clear: 4393 /* stopping an active array */ 4394 err = do_md_stop(mddev, 0, NULL); 4395 break; 4396 case inactive: 4397 /* stopping an active array */ 4398 if (mddev->pers) 4399 err = do_md_stop(mddev, 2, NULL); 4400 else 4401 err = 0; /* already inactive */ 4402 break; 4403 case suspended: 4404 break; /* not supported yet */ 4405 case readonly: 4406 if (mddev->pers) 4407 err = md_set_readonly(mddev, NULL); 4408 else { 4409 mddev->ro = MD_RDONLY; 4410 set_disk_ro(mddev->gendisk, 1); 4411 err = do_md_run(mddev); 4412 } 4413 break; 4414 case read_auto: 4415 if (mddev->pers) { 4416 if (md_is_rdwr(mddev)) 4417 err = md_set_readonly(mddev, NULL); 4418 else if (mddev->ro == MD_RDONLY) 4419 err = restart_array(mddev); 4420 if (err == 0) { 4421 mddev->ro = MD_AUTO_READ; 4422 set_disk_ro(mddev->gendisk, 0); 4423 } 4424 } else { 4425 mddev->ro = MD_AUTO_READ; 4426 err = do_md_run(mddev); 4427 } 4428 break; 4429 case clean: 4430 if (mddev->pers) { 4431 err = restart_array(mddev); 4432 if (err) 4433 break; 4434 spin_lock(&mddev->lock); 4435 if (!set_in_sync(mddev)) 4436 err = -EBUSY; 4437 spin_unlock(&mddev->lock); 4438 } else 4439 err = -EINVAL; 4440 break; 4441 case active: 4442 if (mddev->pers) { 4443 err = restart_array(mddev); 4444 if (err) 4445 break; 4446 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4447 wake_up(&mddev->sb_wait); 4448 err = 0; 4449 } else { 4450 mddev->ro = MD_RDWR; 4451 set_disk_ro(mddev->gendisk, 0); 4452 err = do_md_run(mddev); 4453 } 4454 break; 4455 case write_pending: 4456 case active_idle: 4457 case broken: 4458 /* these cannot be set */ 4459 break; 4460 } 4461 4462 if (!err) { 4463 if (mddev->hold_active == UNTIL_IOCTL) 4464 mddev->hold_active = 0; 4465 sysfs_notify_dirent_safe(mddev->sysfs_state); 4466 } 4467 mddev_unlock(mddev); 4468 return err ?: len; 4469 } 4470 static struct md_sysfs_entry md_array_state = 4471 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4472 4473 static ssize_t 4474 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4475 return sprintf(page, "%d\n", 4476 atomic_read(&mddev->max_corr_read_errors)); 4477 } 4478 4479 static ssize_t 4480 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4481 { 4482 unsigned int n; 4483 int rv; 4484 4485 rv = kstrtouint(buf, 10, &n); 4486 if (rv < 0) 4487 return rv; 4488 if (n > INT_MAX) 4489 return -EINVAL; 4490 atomic_set(&mddev->max_corr_read_errors, n); 4491 return len; 4492 } 4493 4494 static struct md_sysfs_entry max_corr_read_errors = 4495 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4496 max_corrected_read_errors_store); 4497 4498 static ssize_t 4499 null_show(struct mddev *mddev, char *page) 4500 { 4501 return -EINVAL; 4502 } 4503 4504 static ssize_t 4505 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4506 { 4507 /* buf must be %d:%d\n? giving major and minor numbers */ 4508 /* The new device is added to the array. 4509 * If the array has a persistent superblock, we read the 4510 * superblock to initialise info and check validity. 4511 * Otherwise, only checking done is that in bind_rdev_to_array, 4512 * which mainly checks size. 4513 */ 4514 char *e; 4515 int major = simple_strtoul(buf, &e, 10); 4516 int minor; 4517 dev_t dev; 4518 struct md_rdev *rdev; 4519 int err; 4520 4521 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4522 return -EINVAL; 4523 minor = simple_strtoul(e+1, &e, 10); 4524 if (*e && *e != '\n') 4525 return -EINVAL; 4526 dev = MKDEV(major, minor); 4527 if (major != MAJOR(dev) || 4528 minor != MINOR(dev)) 4529 return -EOVERFLOW; 4530 4531 err = mddev_lock(mddev); 4532 if (err) 4533 return err; 4534 if (mddev->persistent) { 4535 rdev = md_import_device(dev, mddev->major_version, 4536 mddev->minor_version); 4537 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4538 struct md_rdev *rdev0 4539 = list_entry(mddev->disks.next, 4540 struct md_rdev, same_set); 4541 err = super_types[mddev->major_version] 4542 .load_super(rdev, rdev0, mddev->minor_version); 4543 if (err < 0) 4544 goto out; 4545 } 4546 } else if (mddev->external) 4547 rdev = md_import_device(dev, -2, -1); 4548 else 4549 rdev = md_import_device(dev, -1, -1); 4550 4551 if (IS_ERR(rdev)) { 4552 mddev_unlock(mddev); 4553 return PTR_ERR(rdev); 4554 } 4555 err = bind_rdev_to_array(rdev, mddev); 4556 out: 4557 if (err) 4558 export_rdev(rdev, mddev); 4559 mddev_unlock(mddev); 4560 if (!err) 4561 md_new_event(); 4562 return err ? err : len; 4563 } 4564 4565 static struct md_sysfs_entry md_new_device = 4566 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4567 4568 static ssize_t 4569 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4570 { 4571 char *end; 4572 unsigned long chunk, end_chunk; 4573 int err; 4574 4575 err = mddev_lock(mddev); 4576 if (err) 4577 return err; 4578 if (!mddev->bitmap) 4579 goto out; 4580 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4581 while (*buf) { 4582 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4583 if (buf == end) break; 4584 if (*end == '-') { /* range */ 4585 buf = end + 1; 4586 end_chunk = simple_strtoul(buf, &end, 0); 4587 if (buf == end) break; 4588 } 4589 if (*end && !isspace(*end)) break; 4590 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4591 buf = skip_spaces(end); 4592 } 4593 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4594 out: 4595 mddev_unlock(mddev); 4596 return len; 4597 } 4598 4599 static struct md_sysfs_entry md_bitmap = 4600 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4601 4602 static ssize_t 4603 size_show(struct mddev *mddev, char *page) 4604 { 4605 return sprintf(page, "%llu\n", 4606 (unsigned long long)mddev->dev_sectors / 2); 4607 } 4608 4609 static int update_size(struct mddev *mddev, sector_t num_sectors); 4610 4611 static ssize_t 4612 size_store(struct mddev *mddev, const char *buf, size_t len) 4613 { 4614 /* If array is inactive, we can reduce the component size, but 4615 * not increase it (except from 0). 4616 * If array is active, we can try an on-line resize 4617 */ 4618 sector_t sectors; 4619 int err = strict_blocks_to_sectors(buf, §ors); 4620 4621 if (err < 0) 4622 return err; 4623 err = mddev_lock(mddev); 4624 if (err) 4625 return err; 4626 if (mddev->pers) { 4627 err = update_size(mddev, sectors); 4628 if (err == 0) 4629 md_update_sb(mddev, 1); 4630 } else { 4631 if (mddev->dev_sectors == 0 || 4632 mddev->dev_sectors > sectors) 4633 mddev->dev_sectors = sectors; 4634 else 4635 err = -ENOSPC; 4636 } 4637 mddev_unlock(mddev); 4638 return err ? err : len; 4639 } 4640 4641 static struct md_sysfs_entry md_size = 4642 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4643 4644 /* Metadata version. 4645 * This is one of 4646 * 'none' for arrays with no metadata (good luck...) 4647 * 'external' for arrays with externally managed metadata, 4648 * or N.M for internally known formats 4649 */ 4650 static ssize_t 4651 metadata_show(struct mddev *mddev, char *page) 4652 { 4653 if (mddev->persistent) 4654 return sprintf(page, "%d.%d\n", 4655 mddev->major_version, mddev->minor_version); 4656 else if (mddev->external) 4657 return sprintf(page, "external:%s\n", mddev->metadata_type); 4658 else 4659 return sprintf(page, "none\n"); 4660 } 4661 4662 static ssize_t 4663 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4664 { 4665 int major, minor; 4666 char *e; 4667 int err; 4668 /* Changing the details of 'external' metadata is 4669 * always permitted. Otherwise there must be 4670 * no devices attached to the array. 4671 */ 4672 4673 err = mddev_lock(mddev); 4674 if (err) 4675 return err; 4676 err = -EBUSY; 4677 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4678 ; 4679 else if (!list_empty(&mddev->disks)) 4680 goto out_unlock; 4681 4682 err = 0; 4683 if (cmd_match(buf, "none")) { 4684 mddev->persistent = 0; 4685 mddev->external = 0; 4686 mddev->major_version = 0; 4687 mddev->minor_version = 90; 4688 goto out_unlock; 4689 } 4690 if (strncmp(buf, "external:", 9) == 0) { 4691 size_t namelen = len-9; 4692 if (namelen >= sizeof(mddev->metadata_type)) 4693 namelen = sizeof(mddev->metadata_type)-1; 4694 strncpy(mddev->metadata_type, buf+9, namelen); 4695 mddev->metadata_type[namelen] = 0; 4696 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4697 mddev->metadata_type[--namelen] = 0; 4698 mddev->persistent = 0; 4699 mddev->external = 1; 4700 mddev->major_version = 0; 4701 mddev->minor_version = 90; 4702 goto out_unlock; 4703 } 4704 major = simple_strtoul(buf, &e, 10); 4705 err = -EINVAL; 4706 if (e==buf || *e != '.') 4707 goto out_unlock; 4708 buf = e+1; 4709 minor = simple_strtoul(buf, &e, 10); 4710 if (e==buf || (*e && *e != '\n') ) 4711 goto out_unlock; 4712 err = -ENOENT; 4713 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4714 goto out_unlock; 4715 mddev->major_version = major; 4716 mddev->minor_version = minor; 4717 mddev->persistent = 1; 4718 mddev->external = 0; 4719 err = 0; 4720 out_unlock: 4721 mddev_unlock(mddev); 4722 return err ?: len; 4723 } 4724 4725 static struct md_sysfs_entry md_metadata = 4726 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4727 4728 static ssize_t 4729 action_show(struct mddev *mddev, char *page) 4730 { 4731 char *type = "idle"; 4732 unsigned long recovery = mddev->recovery; 4733 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4734 type = "frozen"; 4735 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4736 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4737 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4738 type = "reshape"; 4739 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4740 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4741 type = "resync"; 4742 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4743 type = "check"; 4744 else 4745 type = "repair"; 4746 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4747 type = "recover"; 4748 else if (mddev->reshape_position != MaxSector) 4749 type = "reshape"; 4750 } 4751 return sprintf(page, "%s\n", type); 4752 } 4753 4754 static void stop_sync_thread(struct mddev *mddev) 4755 { 4756 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4757 return; 4758 4759 if (mddev_lock(mddev)) 4760 return; 4761 4762 /* 4763 * Check again in case MD_RECOVERY_RUNNING is cleared before lock is 4764 * held. 4765 */ 4766 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4767 mddev_unlock(mddev); 4768 return; 4769 } 4770 4771 if (work_pending(&mddev->del_work)) 4772 flush_workqueue(md_misc_wq); 4773 4774 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4775 /* 4776 * Thread might be blocked waiting for metadata update which will now 4777 * never happen 4778 */ 4779 md_wakeup_thread_directly(mddev->sync_thread); 4780 4781 mddev_unlock(mddev); 4782 } 4783 4784 static void idle_sync_thread(struct mddev *mddev) 4785 { 4786 int sync_seq = atomic_read(&mddev->sync_seq); 4787 4788 mutex_lock(&mddev->sync_mutex); 4789 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4790 stop_sync_thread(mddev); 4791 4792 wait_event(resync_wait, sync_seq != atomic_read(&mddev->sync_seq) || 4793 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)); 4794 4795 mutex_unlock(&mddev->sync_mutex); 4796 } 4797 4798 static void frozen_sync_thread(struct mddev *mddev) 4799 { 4800 mutex_lock(&mddev->sync_mutex); 4801 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4802 stop_sync_thread(mddev); 4803 4804 wait_event(resync_wait, mddev->sync_thread == NULL && 4805 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)); 4806 4807 mutex_unlock(&mddev->sync_mutex); 4808 } 4809 4810 static ssize_t 4811 action_store(struct mddev *mddev, const char *page, size_t len) 4812 { 4813 if (!mddev->pers || !mddev->pers->sync_request) 4814 return -EINVAL; 4815 4816 4817 if (cmd_match(page, "idle")) 4818 idle_sync_thread(mddev); 4819 else if (cmd_match(page, "frozen")) 4820 frozen_sync_thread(mddev); 4821 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4822 return -EBUSY; 4823 else if (cmd_match(page, "resync")) 4824 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4825 else if (cmd_match(page, "recover")) { 4826 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4827 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4828 } else if (cmd_match(page, "reshape")) { 4829 int err; 4830 if (mddev->pers->start_reshape == NULL) 4831 return -EINVAL; 4832 err = mddev_lock(mddev); 4833 if (!err) { 4834 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4835 err = -EBUSY; 4836 } else if (mddev->reshape_position == MaxSector || 4837 mddev->pers->check_reshape == NULL || 4838 mddev->pers->check_reshape(mddev)) { 4839 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4840 err = mddev->pers->start_reshape(mddev); 4841 } else { 4842 /* 4843 * If reshape is still in progress, and 4844 * md_check_recovery() can continue to reshape, 4845 * don't restart reshape because data can be 4846 * corrupted for raid456. 4847 */ 4848 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4849 } 4850 mddev_unlock(mddev); 4851 } 4852 if (err) 4853 return err; 4854 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4855 } else { 4856 if (cmd_match(page, "check")) 4857 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4858 else if (!cmd_match(page, "repair")) 4859 return -EINVAL; 4860 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4861 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4862 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4863 } 4864 if (mddev->ro == MD_AUTO_READ) { 4865 /* A write to sync_action is enough to justify 4866 * canceling read-auto mode 4867 */ 4868 mddev->ro = MD_RDWR; 4869 md_wakeup_thread(mddev->sync_thread); 4870 } 4871 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4872 md_wakeup_thread(mddev->thread); 4873 sysfs_notify_dirent_safe(mddev->sysfs_action); 4874 return len; 4875 } 4876 4877 static struct md_sysfs_entry md_scan_mode = 4878 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4879 4880 static ssize_t 4881 last_sync_action_show(struct mddev *mddev, char *page) 4882 { 4883 return sprintf(page, "%s\n", mddev->last_sync_action); 4884 } 4885 4886 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4887 4888 static ssize_t 4889 mismatch_cnt_show(struct mddev *mddev, char *page) 4890 { 4891 return sprintf(page, "%llu\n", 4892 (unsigned long long) 4893 atomic64_read(&mddev->resync_mismatches)); 4894 } 4895 4896 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4897 4898 static ssize_t 4899 sync_min_show(struct mddev *mddev, char *page) 4900 { 4901 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4902 mddev->sync_speed_min ? "local": "system"); 4903 } 4904 4905 static ssize_t 4906 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4907 { 4908 unsigned int min; 4909 int rv; 4910 4911 if (strncmp(buf, "system", 6)==0) { 4912 min = 0; 4913 } else { 4914 rv = kstrtouint(buf, 10, &min); 4915 if (rv < 0) 4916 return rv; 4917 if (min == 0) 4918 return -EINVAL; 4919 } 4920 mddev->sync_speed_min = min; 4921 return len; 4922 } 4923 4924 static struct md_sysfs_entry md_sync_min = 4925 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4926 4927 static ssize_t 4928 sync_max_show(struct mddev *mddev, char *page) 4929 { 4930 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4931 mddev->sync_speed_max ? "local": "system"); 4932 } 4933 4934 static ssize_t 4935 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4936 { 4937 unsigned int max; 4938 int rv; 4939 4940 if (strncmp(buf, "system", 6)==0) { 4941 max = 0; 4942 } else { 4943 rv = kstrtouint(buf, 10, &max); 4944 if (rv < 0) 4945 return rv; 4946 if (max == 0) 4947 return -EINVAL; 4948 } 4949 mddev->sync_speed_max = max; 4950 return len; 4951 } 4952 4953 static struct md_sysfs_entry md_sync_max = 4954 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4955 4956 static ssize_t 4957 degraded_show(struct mddev *mddev, char *page) 4958 { 4959 return sprintf(page, "%d\n", mddev->degraded); 4960 } 4961 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4962 4963 static ssize_t 4964 sync_force_parallel_show(struct mddev *mddev, char *page) 4965 { 4966 return sprintf(page, "%d\n", mddev->parallel_resync); 4967 } 4968 4969 static ssize_t 4970 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4971 { 4972 long n; 4973 4974 if (kstrtol(buf, 10, &n)) 4975 return -EINVAL; 4976 4977 if (n != 0 && n != 1) 4978 return -EINVAL; 4979 4980 mddev->parallel_resync = n; 4981 4982 if (mddev->sync_thread) 4983 wake_up(&resync_wait); 4984 4985 return len; 4986 } 4987 4988 /* force parallel resync, even with shared block devices */ 4989 static struct md_sysfs_entry md_sync_force_parallel = 4990 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4991 sync_force_parallel_show, sync_force_parallel_store); 4992 4993 static ssize_t 4994 sync_speed_show(struct mddev *mddev, char *page) 4995 { 4996 unsigned long resync, dt, db; 4997 if (mddev->curr_resync == MD_RESYNC_NONE) 4998 return sprintf(page, "none\n"); 4999 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5000 dt = (jiffies - mddev->resync_mark) / HZ; 5001 if (!dt) dt++; 5002 db = resync - mddev->resync_mark_cnt; 5003 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5004 } 5005 5006 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5007 5008 static ssize_t 5009 sync_completed_show(struct mddev *mddev, char *page) 5010 { 5011 unsigned long long max_sectors, resync; 5012 5013 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5014 return sprintf(page, "none\n"); 5015 5016 if (mddev->curr_resync == MD_RESYNC_YIELDED || 5017 mddev->curr_resync == MD_RESYNC_DELAYED) 5018 return sprintf(page, "delayed\n"); 5019 5020 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5021 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5022 max_sectors = mddev->resync_max_sectors; 5023 else 5024 max_sectors = mddev->dev_sectors; 5025 5026 resync = mddev->curr_resync_completed; 5027 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5028 } 5029 5030 static struct md_sysfs_entry md_sync_completed = 5031 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5032 5033 static ssize_t 5034 min_sync_show(struct mddev *mddev, char *page) 5035 { 5036 return sprintf(page, "%llu\n", 5037 (unsigned long long)mddev->resync_min); 5038 } 5039 static ssize_t 5040 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5041 { 5042 unsigned long long min; 5043 int err; 5044 5045 if (kstrtoull(buf, 10, &min)) 5046 return -EINVAL; 5047 5048 spin_lock(&mddev->lock); 5049 err = -EINVAL; 5050 if (min > mddev->resync_max) 5051 goto out_unlock; 5052 5053 err = -EBUSY; 5054 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5055 goto out_unlock; 5056 5057 /* Round down to multiple of 4K for safety */ 5058 mddev->resync_min = round_down(min, 8); 5059 err = 0; 5060 5061 out_unlock: 5062 spin_unlock(&mddev->lock); 5063 return err ?: len; 5064 } 5065 5066 static struct md_sysfs_entry md_min_sync = 5067 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5068 5069 static ssize_t 5070 max_sync_show(struct mddev *mddev, char *page) 5071 { 5072 if (mddev->resync_max == MaxSector) 5073 return sprintf(page, "max\n"); 5074 else 5075 return sprintf(page, "%llu\n", 5076 (unsigned long long)mddev->resync_max); 5077 } 5078 static ssize_t 5079 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5080 { 5081 int err; 5082 spin_lock(&mddev->lock); 5083 if (strncmp(buf, "max", 3) == 0) 5084 mddev->resync_max = MaxSector; 5085 else { 5086 unsigned long long max; 5087 int chunk; 5088 5089 err = -EINVAL; 5090 if (kstrtoull(buf, 10, &max)) 5091 goto out_unlock; 5092 if (max < mddev->resync_min) 5093 goto out_unlock; 5094 5095 err = -EBUSY; 5096 if (max < mddev->resync_max && md_is_rdwr(mddev) && 5097 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5098 goto out_unlock; 5099 5100 /* Must be a multiple of chunk_size */ 5101 chunk = mddev->chunk_sectors; 5102 if (chunk) { 5103 sector_t temp = max; 5104 5105 err = -EINVAL; 5106 if (sector_div(temp, chunk)) 5107 goto out_unlock; 5108 } 5109 mddev->resync_max = max; 5110 } 5111 wake_up(&mddev->recovery_wait); 5112 err = 0; 5113 out_unlock: 5114 spin_unlock(&mddev->lock); 5115 return err ?: len; 5116 } 5117 5118 static struct md_sysfs_entry md_max_sync = 5119 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5120 5121 static ssize_t 5122 suspend_lo_show(struct mddev *mddev, char *page) 5123 { 5124 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5125 } 5126 5127 static ssize_t 5128 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5129 { 5130 unsigned long long new; 5131 int err; 5132 5133 err = kstrtoull(buf, 10, &new); 5134 if (err < 0) 5135 return err; 5136 if (new != (sector_t)new) 5137 return -EINVAL; 5138 5139 err = mddev_lock(mddev); 5140 if (err) 5141 return err; 5142 err = -EINVAL; 5143 if (mddev->pers == NULL || 5144 mddev->pers->quiesce == NULL) 5145 goto unlock; 5146 mddev_suspend(mddev); 5147 mddev->suspend_lo = new; 5148 mddev_resume(mddev); 5149 5150 err = 0; 5151 unlock: 5152 mddev_unlock(mddev); 5153 return err ?: len; 5154 } 5155 static struct md_sysfs_entry md_suspend_lo = 5156 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5157 5158 static ssize_t 5159 suspend_hi_show(struct mddev *mddev, char *page) 5160 { 5161 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5162 } 5163 5164 static ssize_t 5165 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5166 { 5167 unsigned long long new; 5168 int err; 5169 5170 err = kstrtoull(buf, 10, &new); 5171 if (err < 0) 5172 return err; 5173 if (new != (sector_t)new) 5174 return -EINVAL; 5175 5176 err = mddev_lock(mddev); 5177 if (err) 5178 return err; 5179 err = -EINVAL; 5180 if (mddev->pers == NULL) 5181 goto unlock; 5182 5183 mddev_suspend(mddev); 5184 mddev->suspend_hi = new; 5185 mddev_resume(mddev); 5186 5187 err = 0; 5188 unlock: 5189 mddev_unlock(mddev); 5190 return err ?: len; 5191 } 5192 static struct md_sysfs_entry md_suspend_hi = 5193 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5194 5195 static ssize_t 5196 reshape_position_show(struct mddev *mddev, char *page) 5197 { 5198 if (mddev->reshape_position != MaxSector) 5199 return sprintf(page, "%llu\n", 5200 (unsigned long long)mddev->reshape_position); 5201 strcpy(page, "none\n"); 5202 return 5; 5203 } 5204 5205 static ssize_t 5206 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5207 { 5208 struct md_rdev *rdev; 5209 unsigned long long new; 5210 int err; 5211 5212 err = kstrtoull(buf, 10, &new); 5213 if (err < 0) 5214 return err; 5215 if (new != (sector_t)new) 5216 return -EINVAL; 5217 err = mddev_lock(mddev); 5218 if (err) 5219 return err; 5220 err = -EBUSY; 5221 if (mddev->pers) 5222 goto unlock; 5223 mddev->reshape_position = new; 5224 mddev->delta_disks = 0; 5225 mddev->reshape_backwards = 0; 5226 mddev->new_level = mddev->level; 5227 mddev->new_layout = mddev->layout; 5228 mddev->new_chunk_sectors = mddev->chunk_sectors; 5229 rdev_for_each(rdev, mddev) 5230 rdev->new_data_offset = rdev->data_offset; 5231 err = 0; 5232 unlock: 5233 mddev_unlock(mddev); 5234 return err ?: len; 5235 } 5236 5237 static struct md_sysfs_entry md_reshape_position = 5238 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5239 reshape_position_store); 5240 5241 static ssize_t 5242 reshape_direction_show(struct mddev *mddev, char *page) 5243 { 5244 return sprintf(page, "%s\n", 5245 mddev->reshape_backwards ? "backwards" : "forwards"); 5246 } 5247 5248 static ssize_t 5249 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5250 { 5251 int backwards = 0; 5252 int err; 5253 5254 if (cmd_match(buf, "forwards")) 5255 backwards = 0; 5256 else if (cmd_match(buf, "backwards")) 5257 backwards = 1; 5258 else 5259 return -EINVAL; 5260 if (mddev->reshape_backwards == backwards) 5261 return len; 5262 5263 err = mddev_lock(mddev); 5264 if (err) 5265 return err; 5266 /* check if we are allowed to change */ 5267 if (mddev->delta_disks) 5268 err = -EBUSY; 5269 else if (mddev->persistent && 5270 mddev->major_version == 0) 5271 err = -EINVAL; 5272 else 5273 mddev->reshape_backwards = backwards; 5274 mddev_unlock(mddev); 5275 return err ?: len; 5276 } 5277 5278 static struct md_sysfs_entry md_reshape_direction = 5279 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5280 reshape_direction_store); 5281 5282 static ssize_t 5283 array_size_show(struct mddev *mddev, char *page) 5284 { 5285 if (mddev->external_size) 5286 return sprintf(page, "%llu\n", 5287 (unsigned long long)mddev->array_sectors/2); 5288 else 5289 return sprintf(page, "default\n"); 5290 } 5291 5292 static ssize_t 5293 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5294 { 5295 sector_t sectors; 5296 int err; 5297 5298 err = mddev_lock(mddev); 5299 if (err) 5300 return err; 5301 5302 /* cluster raid doesn't support change array_sectors */ 5303 if (mddev_is_clustered(mddev)) { 5304 mddev_unlock(mddev); 5305 return -EINVAL; 5306 } 5307 5308 if (strncmp(buf, "default", 7) == 0) { 5309 if (mddev->pers) 5310 sectors = mddev->pers->size(mddev, 0, 0); 5311 else 5312 sectors = mddev->array_sectors; 5313 5314 mddev->external_size = 0; 5315 } else { 5316 if (strict_blocks_to_sectors(buf, §ors) < 0) 5317 err = -EINVAL; 5318 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5319 err = -E2BIG; 5320 else 5321 mddev->external_size = 1; 5322 } 5323 5324 if (!err) { 5325 mddev->array_sectors = sectors; 5326 if (mddev->pers) 5327 set_capacity_and_notify(mddev->gendisk, 5328 mddev->array_sectors); 5329 } 5330 mddev_unlock(mddev); 5331 return err ?: len; 5332 } 5333 5334 static struct md_sysfs_entry md_array_size = 5335 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5336 array_size_store); 5337 5338 static ssize_t 5339 consistency_policy_show(struct mddev *mddev, char *page) 5340 { 5341 int ret; 5342 5343 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5344 ret = sprintf(page, "journal\n"); 5345 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5346 ret = sprintf(page, "ppl\n"); 5347 } else if (mddev->bitmap) { 5348 ret = sprintf(page, "bitmap\n"); 5349 } else if (mddev->pers) { 5350 if (mddev->pers->sync_request) 5351 ret = sprintf(page, "resync\n"); 5352 else 5353 ret = sprintf(page, "none\n"); 5354 } else { 5355 ret = sprintf(page, "unknown\n"); 5356 } 5357 5358 return ret; 5359 } 5360 5361 static ssize_t 5362 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5363 { 5364 int err = 0; 5365 5366 if (mddev->pers) { 5367 if (mddev->pers->change_consistency_policy) 5368 err = mddev->pers->change_consistency_policy(mddev, buf); 5369 else 5370 err = -EBUSY; 5371 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5372 set_bit(MD_HAS_PPL, &mddev->flags); 5373 } else { 5374 err = -EINVAL; 5375 } 5376 5377 return err ? err : len; 5378 } 5379 5380 static struct md_sysfs_entry md_consistency_policy = 5381 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5382 consistency_policy_store); 5383 5384 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5385 { 5386 return sprintf(page, "%d\n", mddev->fail_last_dev); 5387 } 5388 5389 /* 5390 * Setting fail_last_dev to true to allow last device to be forcibly removed 5391 * from RAID1/RAID10. 5392 */ 5393 static ssize_t 5394 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5395 { 5396 int ret; 5397 bool value; 5398 5399 ret = kstrtobool(buf, &value); 5400 if (ret) 5401 return ret; 5402 5403 if (value != mddev->fail_last_dev) 5404 mddev->fail_last_dev = value; 5405 5406 return len; 5407 } 5408 static struct md_sysfs_entry md_fail_last_dev = 5409 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5410 fail_last_dev_store); 5411 5412 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5413 { 5414 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5415 return sprintf(page, "n/a\n"); 5416 else 5417 return sprintf(page, "%d\n", mddev->serialize_policy); 5418 } 5419 5420 /* 5421 * Setting serialize_policy to true to enforce write IO is not reordered 5422 * for raid1. 5423 */ 5424 static ssize_t 5425 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5426 { 5427 int err; 5428 bool value; 5429 5430 err = kstrtobool(buf, &value); 5431 if (err) 5432 return err; 5433 5434 if (value == mddev->serialize_policy) 5435 return len; 5436 5437 err = mddev_lock(mddev); 5438 if (err) 5439 return err; 5440 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5441 pr_err("md: serialize_policy is only effective for raid1\n"); 5442 err = -EINVAL; 5443 goto unlock; 5444 } 5445 5446 mddev_suspend(mddev); 5447 if (value) 5448 mddev_create_serial_pool(mddev, NULL, true); 5449 else 5450 mddev_destroy_serial_pool(mddev, NULL, true); 5451 mddev->serialize_policy = value; 5452 mddev_resume(mddev); 5453 unlock: 5454 mddev_unlock(mddev); 5455 return err ?: len; 5456 } 5457 5458 static struct md_sysfs_entry md_serialize_policy = 5459 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5460 serialize_policy_store); 5461 5462 5463 static struct attribute *md_default_attrs[] = { 5464 &md_level.attr, 5465 &md_layout.attr, 5466 &md_raid_disks.attr, 5467 &md_uuid.attr, 5468 &md_chunk_size.attr, 5469 &md_size.attr, 5470 &md_resync_start.attr, 5471 &md_metadata.attr, 5472 &md_new_device.attr, 5473 &md_safe_delay.attr, 5474 &md_array_state.attr, 5475 &md_reshape_position.attr, 5476 &md_reshape_direction.attr, 5477 &md_array_size.attr, 5478 &max_corr_read_errors.attr, 5479 &md_consistency_policy.attr, 5480 &md_fail_last_dev.attr, 5481 &md_serialize_policy.attr, 5482 NULL, 5483 }; 5484 5485 static const struct attribute_group md_default_group = { 5486 .attrs = md_default_attrs, 5487 }; 5488 5489 static struct attribute *md_redundancy_attrs[] = { 5490 &md_scan_mode.attr, 5491 &md_last_scan_mode.attr, 5492 &md_mismatches.attr, 5493 &md_sync_min.attr, 5494 &md_sync_max.attr, 5495 &md_sync_speed.attr, 5496 &md_sync_force_parallel.attr, 5497 &md_sync_completed.attr, 5498 &md_min_sync.attr, 5499 &md_max_sync.attr, 5500 &md_suspend_lo.attr, 5501 &md_suspend_hi.attr, 5502 &md_bitmap.attr, 5503 &md_degraded.attr, 5504 NULL, 5505 }; 5506 static const struct attribute_group md_redundancy_group = { 5507 .name = NULL, 5508 .attrs = md_redundancy_attrs, 5509 }; 5510 5511 static const struct attribute_group *md_attr_groups[] = { 5512 &md_default_group, 5513 &md_bitmap_group, 5514 NULL, 5515 }; 5516 5517 static ssize_t 5518 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5519 { 5520 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5521 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5522 ssize_t rv; 5523 5524 if (!entry->show) 5525 return -EIO; 5526 spin_lock(&all_mddevs_lock); 5527 if (!mddev_get(mddev)) { 5528 spin_unlock(&all_mddevs_lock); 5529 return -EBUSY; 5530 } 5531 spin_unlock(&all_mddevs_lock); 5532 5533 rv = entry->show(mddev, page); 5534 mddev_put(mddev); 5535 return rv; 5536 } 5537 5538 static ssize_t 5539 md_attr_store(struct kobject *kobj, struct attribute *attr, 5540 const char *page, size_t length) 5541 { 5542 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5543 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5544 ssize_t rv; 5545 5546 if (!entry->store) 5547 return -EIO; 5548 if (!capable(CAP_SYS_ADMIN)) 5549 return -EACCES; 5550 spin_lock(&all_mddevs_lock); 5551 if (!mddev_get(mddev)) { 5552 spin_unlock(&all_mddevs_lock); 5553 return -EBUSY; 5554 } 5555 spin_unlock(&all_mddevs_lock); 5556 rv = entry->store(mddev, page, length); 5557 mddev_put(mddev); 5558 return rv; 5559 } 5560 5561 static void md_kobj_release(struct kobject *ko) 5562 { 5563 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5564 5565 if (mddev->sysfs_state) 5566 sysfs_put(mddev->sysfs_state); 5567 if (mddev->sysfs_level) 5568 sysfs_put(mddev->sysfs_level); 5569 5570 del_gendisk(mddev->gendisk); 5571 put_disk(mddev->gendisk); 5572 } 5573 5574 static const struct sysfs_ops md_sysfs_ops = { 5575 .show = md_attr_show, 5576 .store = md_attr_store, 5577 }; 5578 static const struct kobj_type md_ktype = { 5579 .release = md_kobj_release, 5580 .sysfs_ops = &md_sysfs_ops, 5581 .default_groups = md_attr_groups, 5582 }; 5583 5584 int mdp_major = 0; 5585 5586 static void mddev_delayed_delete(struct work_struct *ws) 5587 { 5588 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5589 5590 kobject_put(&mddev->kobj); 5591 } 5592 5593 static void no_op(struct percpu_ref *r) {} 5594 5595 int mddev_init_writes_pending(struct mddev *mddev) 5596 { 5597 if (mddev->writes_pending.percpu_count_ptr) 5598 return 0; 5599 if (percpu_ref_init(&mddev->writes_pending, no_op, 5600 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5601 return -ENOMEM; 5602 /* We want to start with the refcount at zero */ 5603 percpu_ref_put(&mddev->writes_pending); 5604 return 0; 5605 } 5606 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5607 5608 struct mddev *md_alloc(dev_t dev, char *name) 5609 { 5610 /* 5611 * If dev is zero, name is the name of a device to allocate with 5612 * an arbitrary minor number. It will be "md_???" 5613 * If dev is non-zero it must be a device number with a MAJOR of 5614 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5615 * the device is being created by opening a node in /dev. 5616 * If "name" is not NULL, the device is being created by 5617 * writing to /sys/module/md_mod/parameters/new_array. 5618 */ 5619 static DEFINE_MUTEX(disks_mutex); 5620 struct mddev *mddev; 5621 struct gendisk *disk; 5622 int partitioned; 5623 int shift; 5624 int unit; 5625 int error ; 5626 5627 /* 5628 * Wait for any previous instance of this device to be completely 5629 * removed (mddev_delayed_delete). 5630 */ 5631 flush_workqueue(md_misc_wq); 5632 5633 mutex_lock(&disks_mutex); 5634 mddev = mddev_alloc(dev); 5635 if (IS_ERR(mddev)) { 5636 error = PTR_ERR(mddev); 5637 goto out_unlock; 5638 } 5639 5640 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5641 shift = partitioned ? MdpMinorShift : 0; 5642 unit = MINOR(mddev->unit) >> shift; 5643 5644 if (name && !dev) { 5645 /* Need to ensure that 'name' is not a duplicate. 5646 */ 5647 struct mddev *mddev2; 5648 spin_lock(&all_mddevs_lock); 5649 5650 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5651 if (mddev2->gendisk && 5652 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5653 spin_unlock(&all_mddevs_lock); 5654 error = -EEXIST; 5655 goto out_free_mddev; 5656 } 5657 spin_unlock(&all_mddevs_lock); 5658 } 5659 if (name && dev) 5660 /* 5661 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5662 */ 5663 mddev->hold_active = UNTIL_STOP; 5664 5665 error = -ENOMEM; 5666 disk = blk_alloc_disk(NUMA_NO_NODE); 5667 if (!disk) 5668 goto out_free_mddev; 5669 5670 disk->major = MAJOR(mddev->unit); 5671 disk->first_minor = unit << shift; 5672 disk->minors = 1 << shift; 5673 if (name) 5674 strcpy(disk->disk_name, name); 5675 else if (partitioned) 5676 sprintf(disk->disk_name, "md_d%d", unit); 5677 else 5678 sprintf(disk->disk_name, "md%d", unit); 5679 disk->fops = &md_fops; 5680 disk->private_data = mddev; 5681 5682 mddev->queue = disk->queue; 5683 blk_set_stacking_limits(&mddev->queue->limits); 5684 blk_queue_write_cache(mddev->queue, true, true); 5685 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5686 mddev->gendisk = disk; 5687 error = add_disk(disk); 5688 if (error) 5689 goto out_put_disk; 5690 5691 kobject_init(&mddev->kobj, &md_ktype); 5692 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5693 if (error) { 5694 /* 5695 * The disk is already live at this point. Clear the hold flag 5696 * and let mddev_put take care of the deletion, as it isn't any 5697 * different from a normal close on last release now. 5698 */ 5699 mddev->hold_active = 0; 5700 mutex_unlock(&disks_mutex); 5701 mddev_put(mddev); 5702 return ERR_PTR(error); 5703 } 5704 5705 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5706 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5707 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5708 mutex_unlock(&disks_mutex); 5709 return mddev; 5710 5711 out_put_disk: 5712 put_disk(disk); 5713 out_free_mddev: 5714 mddev_free(mddev); 5715 out_unlock: 5716 mutex_unlock(&disks_mutex); 5717 return ERR_PTR(error); 5718 } 5719 5720 static int md_alloc_and_put(dev_t dev, char *name) 5721 { 5722 struct mddev *mddev = md_alloc(dev, name); 5723 5724 if (IS_ERR(mddev)) 5725 return PTR_ERR(mddev); 5726 mddev_put(mddev); 5727 return 0; 5728 } 5729 5730 static void md_probe(dev_t dev) 5731 { 5732 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5733 return; 5734 if (create_on_open) 5735 md_alloc_and_put(dev, NULL); 5736 } 5737 5738 static int add_named_array(const char *val, const struct kernel_param *kp) 5739 { 5740 /* 5741 * val must be "md_*" or "mdNNN". 5742 * For "md_*" we allocate an array with a large free minor number, and 5743 * set the name to val. val must not already be an active name. 5744 * For "mdNNN" we allocate an array with the minor number NNN 5745 * which must not already be in use. 5746 */ 5747 int len = strlen(val); 5748 char buf[DISK_NAME_LEN]; 5749 unsigned long devnum; 5750 5751 while (len && val[len-1] == '\n') 5752 len--; 5753 if (len >= DISK_NAME_LEN) 5754 return -E2BIG; 5755 strscpy(buf, val, len+1); 5756 if (strncmp(buf, "md_", 3) == 0) 5757 return md_alloc_and_put(0, buf); 5758 if (strncmp(buf, "md", 2) == 0 && 5759 isdigit(buf[2]) && 5760 kstrtoul(buf+2, 10, &devnum) == 0 && 5761 devnum <= MINORMASK) 5762 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5763 5764 return -EINVAL; 5765 } 5766 5767 static void md_safemode_timeout(struct timer_list *t) 5768 { 5769 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5770 5771 mddev->safemode = 1; 5772 if (mddev->external) 5773 sysfs_notify_dirent_safe(mddev->sysfs_state); 5774 5775 md_wakeup_thread(mddev->thread); 5776 } 5777 5778 static int start_dirty_degraded; 5779 static void active_io_release(struct percpu_ref *ref) 5780 { 5781 struct mddev *mddev = container_of(ref, struct mddev, active_io); 5782 5783 wake_up(&mddev->sb_wait); 5784 } 5785 5786 int md_run(struct mddev *mddev) 5787 { 5788 int err; 5789 struct md_rdev *rdev; 5790 struct md_personality *pers; 5791 bool nowait = true; 5792 5793 if (list_empty(&mddev->disks)) 5794 /* cannot run an array with no devices.. */ 5795 return -EINVAL; 5796 5797 if (mddev->pers) 5798 return -EBUSY; 5799 /* Cannot run until previous stop completes properly */ 5800 if (mddev->sysfs_active) 5801 return -EBUSY; 5802 5803 /* 5804 * Analyze all RAID superblock(s) 5805 */ 5806 if (!mddev->raid_disks) { 5807 if (!mddev->persistent) 5808 return -EINVAL; 5809 err = analyze_sbs(mddev); 5810 if (err) 5811 return -EINVAL; 5812 } 5813 5814 if (mddev->level != LEVEL_NONE) 5815 request_module("md-level-%d", mddev->level); 5816 else if (mddev->clevel[0]) 5817 request_module("md-%s", mddev->clevel); 5818 5819 /* 5820 * Drop all container device buffers, from now on 5821 * the only valid external interface is through the md 5822 * device. 5823 */ 5824 mddev->has_superblocks = false; 5825 rdev_for_each(rdev, mddev) { 5826 if (test_bit(Faulty, &rdev->flags)) 5827 continue; 5828 sync_blockdev(rdev->bdev); 5829 invalidate_bdev(rdev->bdev); 5830 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) { 5831 mddev->ro = MD_RDONLY; 5832 if (mddev->gendisk) 5833 set_disk_ro(mddev->gendisk, 1); 5834 } 5835 5836 if (rdev->sb_page) 5837 mddev->has_superblocks = true; 5838 5839 /* perform some consistency tests on the device. 5840 * We don't want the data to overlap the metadata, 5841 * Internal Bitmap issues have been handled elsewhere. 5842 */ 5843 if (rdev->meta_bdev) { 5844 /* Nothing to check */; 5845 } else if (rdev->data_offset < rdev->sb_start) { 5846 if (mddev->dev_sectors && 5847 rdev->data_offset + mddev->dev_sectors 5848 > rdev->sb_start) { 5849 pr_warn("md: %s: data overlaps metadata\n", 5850 mdname(mddev)); 5851 return -EINVAL; 5852 } 5853 } else { 5854 if (rdev->sb_start + rdev->sb_size/512 5855 > rdev->data_offset) { 5856 pr_warn("md: %s: metadata overlaps data\n", 5857 mdname(mddev)); 5858 return -EINVAL; 5859 } 5860 } 5861 sysfs_notify_dirent_safe(rdev->sysfs_state); 5862 nowait = nowait && bdev_nowait(rdev->bdev); 5863 } 5864 5865 err = percpu_ref_init(&mddev->active_io, active_io_release, 5866 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); 5867 if (err) 5868 return err; 5869 5870 if (!bioset_initialized(&mddev->bio_set)) { 5871 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5872 if (err) 5873 goto exit_active_io; 5874 } 5875 if (!bioset_initialized(&mddev->sync_set)) { 5876 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5877 if (err) 5878 goto exit_bio_set; 5879 } 5880 5881 if (!bioset_initialized(&mddev->io_clone_set)) { 5882 err = bioset_init(&mddev->io_clone_set, BIO_POOL_SIZE, 5883 offsetof(struct md_io_clone, bio_clone), 0); 5884 if (err) 5885 goto exit_sync_set; 5886 } 5887 5888 spin_lock(&pers_lock); 5889 pers = find_pers(mddev->level, mddev->clevel); 5890 if (!pers || !try_module_get(pers->owner)) { 5891 spin_unlock(&pers_lock); 5892 if (mddev->level != LEVEL_NONE) 5893 pr_warn("md: personality for level %d is not loaded!\n", 5894 mddev->level); 5895 else 5896 pr_warn("md: personality for level %s is not loaded!\n", 5897 mddev->clevel); 5898 err = -EINVAL; 5899 goto abort; 5900 } 5901 spin_unlock(&pers_lock); 5902 if (mddev->level != pers->level) { 5903 mddev->level = pers->level; 5904 mddev->new_level = pers->level; 5905 } 5906 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5907 5908 if (mddev->reshape_position != MaxSector && 5909 pers->start_reshape == NULL) { 5910 /* This personality cannot handle reshaping... */ 5911 module_put(pers->owner); 5912 err = -EINVAL; 5913 goto abort; 5914 } 5915 5916 if (pers->sync_request) { 5917 /* Warn if this is a potentially silly 5918 * configuration. 5919 */ 5920 struct md_rdev *rdev2; 5921 int warned = 0; 5922 5923 rdev_for_each(rdev, mddev) 5924 rdev_for_each(rdev2, mddev) { 5925 if (rdev < rdev2 && 5926 rdev->bdev->bd_disk == 5927 rdev2->bdev->bd_disk) { 5928 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 5929 mdname(mddev), 5930 rdev->bdev, 5931 rdev2->bdev); 5932 warned = 1; 5933 } 5934 } 5935 5936 if (warned) 5937 pr_warn("True protection against single-disk failure might be compromised.\n"); 5938 } 5939 5940 mddev->recovery = 0; 5941 /* may be over-ridden by personality */ 5942 mddev->resync_max_sectors = mddev->dev_sectors; 5943 5944 mddev->ok_start_degraded = start_dirty_degraded; 5945 5946 if (start_readonly && md_is_rdwr(mddev)) 5947 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */ 5948 5949 err = pers->run(mddev); 5950 if (err) 5951 pr_warn("md: pers->run() failed ...\n"); 5952 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5953 WARN_ONCE(!mddev->external_size, 5954 "%s: default size too small, but 'external_size' not in effect?\n", 5955 __func__); 5956 pr_warn("md: invalid array_size %llu > default size %llu\n", 5957 (unsigned long long)mddev->array_sectors / 2, 5958 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5959 err = -EINVAL; 5960 } 5961 if (err == 0 && pers->sync_request && 5962 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5963 struct bitmap *bitmap; 5964 5965 bitmap = md_bitmap_create(mddev, -1); 5966 if (IS_ERR(bitmap)) { 5967 err = PTR_ERR(bitmap); 5968 pr_warn("%s: failed to create bitmap (%d)\n", 5969 mdname(mddev), err); 5970 } else 5971 mddev->bitmap = bitmap; 5972 5973 } 5974 if (err) 5975 goto bitmap_abort; 5976 5977 if (mddev->bitmap_info.max_write_behind > 0) { 5978 bool create_pool = false; 5979 5980 rdev_for_each(rdev, mddev) { 5981 if (test_bit(WriteMostly, &rdev->flags) && 5982 rdev_init_serial(rdev)) 5983 create_pool = true; 5984 } 5985 if (create_pool && mddev->serial_info_pool == NULL) { 5986 mddev->serial_info_pool = 5987 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5988 sizeof(struct serial_info)); 5989 if (!mddev->serial_info_pool) { 5990 err = -ENOMEM; 5991 goto bitmap_abort; 5992 } 5993 } 5994 } 5995 5996 if (mddev->queue) { 5997 bool nonrot = true; 5998 5999 rdev_for_each(rdev, mddev) { 6000 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 6001 nonrot = false; 6002 break; 6003 } 6004 } 6005 if (mddev->degraded) 6006 nonrot = false; 6007 if (nonrot) 6008 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6009 else 6010 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6011 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 6012 6013 /* Set the NOWAIT flags if all underlying devices support it */ 6014 if (nowait) 6015 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 6016 } 6017 if (pers->sync_request) { 6018 if (mddev->kobj.sd && 6019 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6020 pr_warn("md: cannot register extra attributes for %s\n", 6021 mdname(mddev)); 6022 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6023 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6024 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6025 } else if (mddev->ro == MD_AUTO_READ) 6026 mddev->ro = MD_RDWR; 6027 6028 atomic_set(&mddev->max_corr_read_errors, 6029 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6030 mddev->safemode = 0; 6031 if (mddev_is_clustered(mddev)) 6032 mddev->safemode_delay = 0; 6033 else 6034 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6035 mddev->in_sync = 1; 6036 smp_wmb(); 6037 spin_lock(&mddev->lock); 6038 mddev->pers = pers; 6039 spin_unlock(&mddev->lock); 6040 rdev_for_each(rdev, mddev) 6041 if (rdev->raid_disk >= 0) 6042 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6043 6044 if (mddev->degraded && md_is_rdwr(mddev)) 6045 /* This ensures that recovering status is reported immediately 6046 * via sysfs - until a lack of spares is confirmed. 6047 */ 6048 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6049 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6050 6051 if (mddev->sb_flags) 6052 md_update_sb(mddev, 0); 6053 6054 md_new_event(); 6055 return 0; 6056 6057 bitmap_abort: 6058 mddev_detach(mddev); 6059 if (mddev->private) 6060 pers->free(mddev, mddev->private); 6061 mddev->private = NULL; 6062 module_put(pers->owner); 6063 md_bitmap_destroy(mddev); 6064 abort: 6065 bioset_exit(&mddev->io_clone_set); 6066 exit_sync_set: 6067 bioset_exit(&mddev->sync_set); 6068 exit_bio_set: 6069 bioset_exit(&mddev->bio_set); 6070 exit_active_io: 6071 percpu_ref_exit(&mddev->active_io); 6072 return err; 6073 } 6074 EXPORT_SYMBOL_GPL(md_run); 6075 6076 int do_md_run(struct mddev *mddev) 6077 { 6078 int err; 6079 6080 set_bit(MD_NOT_READY, &mddev->flags); 6081 err = md_run(mddev); 6082 if (err) 6083 goto out; 6084 err = md_bitmap_load(mddev); 6085 if (err) { 6086 md_bitmap_destroy(mddev); 6087 goto out; 6088 } 6089 6090 if (mddev_is_clustered(mddev)) 6091 md_allow_write(mddev); 6092 6093 /* run start up tasks that require md_thread */ 6094 md_start(mddev); 6095 6096 md_wakeup_thread(mddev->thread); 6097 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6098 6099 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6100 clear_bit(MD_NOT_READY, &mddev->flags); 6101 mddev->changed = 1; 6102 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6103 sysfs_notify_dirent_safe(mddev->sysfs_state); 6104 sysfs_notify_dirent_safe(mddev->sysfs_action); 6105 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6106 out: 6107 clear_bit(MD_NOT_READY, &mddev->flags); 6108 return err; 6109 } 6110 6111 int md_start(struct mddev *mddev) 6112 { 6113 int ret = 0; 6114 6115 if (mddev->pers->start) { 6116 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6117 md_wakeup_thread(mddev->thread); 6118 ret = mddev->pers->start(mddev); 6119 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6120 md_wakeup_thread(mddev->sync_thread); 6121 } 6122 return ret; 6123 } 6124 EXPORT_SYMBOL_GPL(md_start); 6125 6126 static int restart_array(struct mddev *mddev) 6127 { 6128 struct gendisk *disk = mddev->gendisk; 6129 struct md_rdev *rdev; 6130 bool has_journal = false; 6131 bool has_readonly = false; 6132 6133 /* Complain if it has no devices */ 6134 if (list_empty(&mddev->disks)) 6135 return -ENXIO; 6136 if (!mddev->pers) 6137 return -EINVAL; 6138 if (md_is_rdwr(mddev)) 6139 return -EBUSY; 6140 6141 rcu_read_lock(); 6142 rdev_for_each_rcu(rdev, mddev) { 6143 if (test_bit(Journal, &rdev->flags) && 6144 !test_bit(Faulty, &rdev->flags)) 6145 has_journal = true; 6146 if (rdev_read_only(rdev)) 6147 has_readonly = true; 6148 } 6149 rcu_read_unlock(); 6150 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6151 /* Don't restart rw with journal missing/faulty */ 6152 return -EINVAL; 6153 if (has_readonly) 6154 return -EROFS; 6155 6156 mddev->safemode = 0; 6157 mddev->ro = MD_RDWR; 6158 set_disk_ro(disk, 0); 6159 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6160 /* Kick recovery or resync if necessary */ 6161 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6162 md_wakeup_thread(mddev->thread); 6163 md_wakeup_thread(mddev->sync_thread); 6164 sysfs_notify_dirent_safe(mddev->sysfs_state); 6165 return 0; 6166 } 6167 6168 static void md_clean(struct mddev *mddev) 6169 { 6170 mddev->array_sectors = 0; 6171 mddev->external_size = 0; 6172 mddev->dev_sectors = 0; 6173 mddev->raid_disks = 0; 6174 mddev->recovery_cp = 0; 6175 mddev->resync_min = 0; 6176 mddev->resync_max = MaxSector; 6177 mddev->reshape_position = MaxSector; 6178 /* we still need mddev->external in export_rdev, do not clear it yet */ 6179 mddev->persistent = 0; 6180 mddev->level = LEVEL_NONE; 6181 mddev->clevel[0] = 0; 6182 mddev->flags = 0; 6183 mddev->sb_flags = 0; 6184 mddev->ro = MD_RDWR; 6185 mddev->metadata_type[0] = 0; 6186 mddev->chunk_sectors = 0; 6187 mddev->ctime = mddev->utime = 0; 6188 mddev->layout = 0; 6189 mddev->max_disks = 0; 6190 mddev->events = 0; 6191 mddev->can_decrease_events = 0; 6192 mddev->delta_disks = 0; 6193 mddev->reshape_backwards = 0; 6194 mddev->new_level = LEVEL_NONE; 6195 mddev->new_layout = 0; 6196 mddev->new_chunk_sectors = 0; 6197 mddev->curr_resync = MD_RESYNC_NONE; 6198 atomic64_set(&mddev->resync_mismatches, 0); 6199 mddev->suspend_lo = mddev->suspend_hi = 0; 6200 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6201 mddev->recovery = 0; 6202 mddev->in_sync = 0; 6203 mddev->changed = 0; 6204 mddev->degraded = 0; 6205 mddev->safemode = 0; 6206 mddev->private = NULL; 6207 mddev->cluster_info = NULL; 6208 mddev->bitmap_info.offset = 0; 6209 mddev->bitmap_info.default_offset = 0; 6210 mddev->bitmap_info.default_space = 0; 6211 mddev->bitmap_info.chunksize = 0; 6212 mddev->bitmap_info.daemon_sleep = 0; 6213 mddev->bitmap_info.max_write_behind = 0; 6214 mddev->bitmap_info.nodes = 0; 6215 } 6216 6217 static void __md_stop_writes(struct mddev *mddev) 6218 { 6219 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6220 if (work_pending(&mddev->del_work)) 6221 flush_workqueue(md_misc_wq); 6222 if (mddev->sync_thread) { 6223 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6224 md_reap_sync_thread(mddev); 6225 } 6226 6227 del_timer_sync(&mddev->safemode_timer); 6228 6229 if (mddev->pers && mddev->pers->quiesce) { 6230 mddev->pers->quiesce(mddev, 1); 6231 mddev->pers->quiesce(mddev, 0); 6232 } 6233 md_bitmap_flush(mddev); 6234 6235 if (md_is_rdwr(mddev) && 6236 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6237 mddev->sb_flags)) { 6238 /* mark array as shutdown cleanly */ 6239 if (!mddev_is_clustered(mddev)) 6240 mddev->in_sync = 1; 6241 md_update_sb(mddev, 1); 6242 } 6243 /* disable policy to guarantee rdevs free resources for serialization */ 6244 mddev->serialize_policy = 0; 6245 mddev_destroy_serial_pool(mddev, NULL, true); 6246 } 6247 6248 void md_stop_writes(struct mddev *mddev) 6249 { 6250 mddev_lock_nointr(mddev); 6251 __md_stop_writes(mddev); 6252 mddev_unlock(mddev); 6253 } 6254 EXPORT_SYMBOL_GPL(md_stop_writes); 6255 6256 static void mddev_detach(struct mddev *mddev) 6257 { 6258 md_bitmap_wait_behind_writes(mddev); 6259 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) { 6260 mddev->pers->quiesce(mddev, 1); 6261 mddev->pers->quiesce(mddev, 0); 6262 } 6263 md_unregister_thread(mddev, &mddev->thread); 6264 if (mddev->queue) 6265 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6266 } 6267 6268 static void __md_stop(struct mddev *mddev) 6269 { 6270 struct md_personality *pers = mddev->pers; 6271 md_bitmap_destroy(mddev); 6272 mddev_detach(mddev); 6273 /* Ensure ->event_work is done */ 6274 if (mddev->event_work.func) 6275 flush_workqueue(md_misc_wq); 6276 spin_lock(&mddev->lock); 6277 mddev->pers = NULL; 6278 spin_unlock(&mddev->lock); 6279 if (mddev->private) 6280 pers->free(mddev, mddev->private); 6281 mddev->private = NULL; 6282 if (pers->sync_request && mddev->to_remove == NULL) 6283 mddev->to_remove = &md_redundancy_group; 6284 module_put(pers->owner); 6285 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6286 6287 percpu_ref_exit(&mddev->active_io); 6288 bioset_exit(&mddev->bio_set); 6289 bioset_exit(&mddev->sync_set); 6290 bioset_exit(&mddev->io_clone_set); 6291 } 6292 6293 void md_stop(struct mddev *mddev) 6294 { 6295 lockdep_assert_held(&mddev->reconfig_mutex); 6296 6297 /* stop the array and free an attached data structures. 6298 * This is called from dm-raid 6299 */ 6300 __md_stop_writes(mddev); 6301 __md_stop(mddev); 6302 percpu_ref_exit(&mddev->writes_pending); 6303 } 6304 6305 EXPORT_SYMBOL_GPL(md_stop); 6306 6307 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6308 { 6309 int err = 0; 6310 int did_freeze = 0; 6311 6312 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6313 did_freeze = 1; 6314 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6315 md_wakeup_thread(mddev->thread); 6316 } 6317 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6318 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6319 6320 /* 6321 * Thread might be blocked waiting for metadata update which will now 6322 * never happen 6323 */ 6324 md_wakeup_thread_directly(mddev->sync_thread); 6325 6326 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6327 return -EBUSY; 6328 mddev_unlock(mddev); 6329 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6330 &mddev->recovery)); 6331 wait_event(mddev->sb_wait, 6332 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6333 mddev_lock_nointr(mddev); 6334 6335 mutex_lock(&mddev->open_mutex); 6336 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6337 mddev->sync_thread || 6338 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6339 pr_warn("md: %s still in use.\n",mdname(mddev)); 6340 if (did_freeze) { 6341 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6342 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6343 md_wakeup_thread(mddev->thread); 6344 } 6345 err = -EBUSY; 6346 goto out; 6347 } 6348 if (mddev->pers) { 6349 __md_stop_writes(mddev); 6350 6351 err = -ENXIO; 6352 if (mddev->ro == MD_RDONLY) 6353 goto out; 6354 mddev->ro = MD_RDONLY; 6355 set_disk_ro(mddev->gendisk, 1); 6356 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6357 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6358 md_wakeup_thread(mddev->thread); 6359 sysfs_notify_dirent_safe(mddev->sysfs_state); 6360 err = 0; 6361 } 6362 out: 6363 mutex_unlock(&mddev->open_mutex); 6364 return err; 6365 } 6366 6367 /* mode: 6368 * 0 - completely stop and dis-assemble array 6369 * 2 - stop but do not disassemble array 6370 */ 6371 static int do_md_stop(struct mddev *mddev, int mode, 6372 struct block_device *bdev) 6373 { 6374 struct gendisk *disk = mddev->gendisk; 6375 struct md_rdev *rdev; 6376 int did_freeze = 0; 6377 6378 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6379 did_freeze = 1; 6380 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6381 md_wakeup_thread(mddev->thread); 6382 } 6383 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6384 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6385 6386 /* 6387 * Thread might be blocked waiting for metadata update which will now 6388 * never happen 6389 */ 6390 md_wakeup_thread_directly(mddev->sync_thread); 6391 6392 mddev_unlock(mddev); 6393 wait_event(resync_wait, (mddev->sync_thread == NULL && 6394 !test_bit(MD_RECOVERY_RUNNING, 6395 &mddev->recovery))); 6396 mddev_lock_nointr(mddev); 6397 6398 mutex_lock(&mddev->open_mutex); 6399 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6400 mddev->sysfs_active || 6401 mddev->sync_thread || 6402 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6403 pr_warn("md: %s still in use.\n",mdname(mddev)); 6404 mutex_unlock(&mddev->open_mutex); 6405 if (did_freeze) { 6406 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6407 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6408 md_wakeup_thread(mddev->thread); 6409 } 6410 return -EBUSY; 6411 } 6412 if (mddev->pers) { 6413 if (!md_is_rdwr(mddev)) 6414 set_disk_ro(disk, 0); 6415 6416 __md_stop_writes(mddev); 6417 __md_stop(mddev); 6418 6419 /* tell userspace to handle 'inactive' */ 6420 sysfs_notify_dirent_safe(mddev->sysfs_state); 6421 6422 rdev_for_each(rdev, mddev) 6423 if (rdev->raid_disk >= 0) 6424 sysfs_unlink_rdev(mddev, rdev); 6425 6426 set_capacity_and_notify(disk, 0); 6427 mutex_unlock(&mddev->open_mutex); 6428 mddev->changed = 1; 6429 6430 if (!md_is_rdwr(mddev)) 6431 mddev->ro = MD_RDWR; 6432 } else 6433 mutex_unlock(&mddev->open_mutex); 6434 /* 6435 * Free resources if final stop 6436 */ 6437 if (mode == 0) { 6438 pr_info("md: %s stopped.\n", mdname(mddev)); 6439 6440 if (mddev->bitmap_info.file) { 6441 struct file *f = mddev->bitmap_info.file; 6442 spin_lock(&mddev->lock); 6443 mddev->bitmap_info.file = NULL; 6444 spin_unlock(&mddev->lock); 6445 fput(f); 6446 } 6447 mddev->bitmap_info.offset = 0; 6448 6449 export_array(mddev); 6450 6451 md_clean(mddev); 6452 if (mddev->hold_active == UNTIL_STOP) 6453 mddev->hold_active = 0; 6454 } 6455 md_new_event(); 6456 sysfs_notify_dirent_safe(mddev->sysfs_state); 6457 return 0; 6458 } 6459 6460 #ifndef MODULE 6461 static void autorun_array(struct mddev *mddev) 6462 { 6463 struct md_rdev *rdev; 6464 int err; 6465 6466 if (list_empty(&mddev->disks)) 6467 return; 6468 6469 pr_info("md: running: "); 6470 6471 rdev_for_each(rdev, mddev) { 6472 pr_cont("<%pg>", rdev->bdev); 6473 } 6474 pr_cont("\n"); 6475 6476 err = do_md_run(mddev); 6477 if (err) { 6478 pr_warn("md: do_md_run() returned %d\n", err); 6479 do_md_stop(mddev, 0, NULL); 6480 } 6481 } 6482 6483 /* 6484 * lets try to run arrays based on all disks that have arrived 6485 * until now. (those are in pending_raid_disks) 6486 * 6487 * the method: pick the first pending disk, collect all disks with 6488 * the same UUID, remove all from the pending list and put them into 6489 * the 'same_array' list. Then order this list based on superblock 6490 * update time (freshest comes first), kick out 'old' disks and 6491 * compare superblocks. If everything's fine then run it. 6492 * 6493 * If "unit" is allocated, then bump its reference count 6494 */ 6495 static void autorun_devices(int part) 6496 { 6497 struct md_rdev *rdev0, *rdev, *tmp; 6498 struct mddev *mddev; 6499 6500 pr_info("md: autorun ...\n"); 6501 while (!list_empty(&pending_raid_disks)) { 6502 int unit; 6503 dev_t dev; 6504 LIST_HEAD(candidates); 6505 rdev0 = list_entry(pending_raid_disks.next, 6506 struct md_rdev, same_set); 6507 6508 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6509 INIT_LIST_HEAD(&candidates); 6510 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6511 if (super_90_load(rdev, rdev0, 0) >= 0) { 6512 pr_debug("md: adding %pg ...\n", 6513 rdev->bdev); 6514 list_move(&rdev->same_set, &candidates); 6515 } 6516 /* 6517 * now we have a set of devices, with all of them having 6518 * mostly sane superblocks. It's time to allocate the 6519 * mddev. 6520 */ 6521 if (part) { 6522 dev = MKDEV(mdp_major, 6523 rdev0->preferred_minor << MdpMinorShift); 6524 unit = MINOR(dev) >> MdpMinorShift; 6525 } else { 6526 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6527 unit = MINOR(dev); 6528 } 6529 if (rdev0->preferred_minor != unit) { 6530 pr_warn("md: unit number in %pg is bad: %d\n", 6531 rdev0->bdev, rdev0->preferred_minor); 6532 break; 6533 } 6534 6535 mddev = md_alloc(dev, NULL); 6536 if (IS_ERR(mddev)) 6537 break; 6538 6539 if (mddev_lock(mddev)) 6540 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6541 else if (mddev->raid_disks || mddev->major_version 6542 || !list_empty(&mddev->disks)) { 6543 pr_warn("md: %s already running, cannot run %pg\n", 6544 mdname(mddev), rdev0->bdev); 6545 mddev_unlock(mddev); 6546 } else { 6547 pr_debug("md: created %s\n", mdname(mddev)); 6548 mddev->persistent = 1; 6549 rdev_for_each_list(rdev, tmp, &candidates) { 6550 list_del_init(&rdev->same_set); 6551 if (bind_rdev_to_array(rdev, mddev)) 6552 export_rdev(rdev, mddev); 6553 } 6554 autorun_array(mddev); 6555 mddev_unlock(mddev); 6556 } 6557 /* on success, candidates will be empty, on error 6558 * it won't... 6559 */ 6560 rdev_for_each_list(rdev, tmp, &candidates) { 6561 list_del_init(&rdev->same_set); 6562 export_rdev(rdev, mddev); 6563 } 6564 mddev_put(mddev); 6565 } 6566 pr_info("md: ... autorun DONE.\n"); 6567 } 6568 #endif /* !MODULE */ 6569 6570 static int get_version(void __user *arg) 6571 { 6572 mdu_version_t ver; 6573 6574 ver.major = MD_MAJOR_VERSION; 6575 ver.minor = MD_MINOR_VERSION; 6576 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6577 6578 if (copy_to_user(arg, &ver, sizeof(ver))) 6579 return -EFAULT; 6580 6581 return 0; 6582 } 6583 6584 static int get_array_info(struct mddev *mddev, void __user *arg) 6585 { 6586 mdu_array_info_t info; 6587 int nr,working,insync,failed,spare; 6588 struct md_rdev *rdev; 6589 6590 nr = working = insync = failed = spare = 0; 6591 rcu_read_lock(); 6592 rdev_for_each_rcu(rdev, mddev) { 6593 nr++; 6594 if (test_bit(Faulty, &rdev->flags)) 6595 failed++; 6596 else { 6597 working++; 6598 if (test_bit(In_sync, &rdev->flags)) 6599 insync++; 6600 else if (test_bit(Journal, &rdev->flags)) 6601 /* TODO: add journal count to md_u.h */ 6602 ; 6603 else 6604 spare++; 6605 } 6606 } 6607 rcu_read_unlock(); 6608 6609 info.major_version = mddev->major_version; 6610 info.minor_version = mddev->minor_version; 6611 info.patch_version = MD_PATCHLEVEL_VERSION; 6612 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6613 info.level = mddev->level; 6614 info.size = mddev->dev_sectors / 2; 6615 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6616 info.size = -1; 6617 info.nr_disks = nr; 6618 info.raid_disks = mddev->raid_disks; 6619 info.md_minor = mddev->md_minor; 6620 info.not_persistent= !mddev->persistent; 6621 6622 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6623 info.state = 0; 6624 if (mddev->in_sync) 6625 info.state = (1<<MD_SB_CLEAN); 6626 if (mddev->bitmap && mddev->bitmap_info.offset) 6627 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6628 if (mddev_is_clustered(mddev)) 6629 info.state |= (1<<MD_SB_CLUSTERED); 6630 info.active_disks = insync; 6631 info.working_disks = working; 6632 info.failed_disks = failed; 6633 info.spare_disks = spare; 6634 6635 info.layout = mddev->layout; 6636 info.chunk_size = mddev->chunk_sectors << 9; 6637 6638 if (copy_to_user(arg, &info, sizeof(info))) 6639 return -EFAULT; 6640 6641 return 0; 6642 } 6643 6644 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6645 { 6646 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6647 char *ptr; 6648 int err; 6649 6650 file = kzalloc(sizeof(*file), GFP_NOIO); 6651 if (!file) 6652 return -ENOMEM; 6653 6654 err = 0; 6655 spin_lock(&mddev->lock); 6656 /* bitmap enabled */ 6657 if (mddev->bitmap_info.file) { 6658 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6659 sizeof(file->pathname)); 6660 if (IS_ERR(ptr)) 6661 err = PTR_ERR(ptr); 6662 else 6663 memmove(file->pathname, ptr, 6664 sizeof(file->pathname)-(ptr-file->pathname)); 6665 } 6666 spin_unlock(&mddev->lock); 6667 6668 if (err == 0 && 6669 copy_to_user(arg, file, sizeof(*file))) 6670 err = -EFAULT; 6671 6672 kfree(file); 6673 return err; 6674 } 6675 6676 static int get_disk_info(struct mddev *mddev, void __user * arg) 6677 { 6678 mdu_disk_info_t info; 6679 struct md_rdev *rdev; 6680 6681 if (copy_from_user(&info, arg, sizeof(info))) 6682 return -EFAULT; 6683 6684 rcu_read_lock(); 6685 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6686 if (rdev) { 6687 info.major = MAJOR(rdev->bdev->bd_dev); 6688 info.minor = MINOR(rdev->bdev->bd_dev); 6689 info.raid_disk = rdev->raid_disk; 6690 info.state = 0; 6691 if (test_bit(Faulty, &rdev->flags)) 6692 info.state |= (1<<MD_DISK_FAULTY); 6693 else if (test_bit(In_sync, &rdev->flags)) { 6694 info.state |= (1<<MD_DISK_ACTIVE); 6695 info.state |= (1<<MD_DISK_SYNC); 6696 } 6697 if (test_bit(Journal, &rdev->flags)) 6698 info.state |= (1<<MD_DISK_JOURNAL); 6699 if (test_bit(WriteMostly, &rdev->flags)) 6700 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6701 if (test_bit(FailFast, &rdev->flags)) 6702 info.state |= (1<<MD_DISK_FAILFAST); 6703 } else { 6704 info.major = info.minor = 0; 6705 info.raid_disk = -1; 6706 info.state = (1<<MD_DISK_REMOVED); 6707 } 6708 rcu_read_unlock(); 6709 6710 if (copy_to_user(arg, &info, sizeof(info))) 6711 return -EFAULT; 6712 6713 return 0; 6714 } 6715 6716 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6717 { 6718 struct md_rdev *rdev; 6719 dev_t dev = MKDEV(info->major,info->minor); 6720 6721 if (mddev_is_clustered(mddev) && 6722 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6723 pr_warn("%s: Cannot add to clustered mddev.\n", 6724 mdname(mddev)); 6725 return -EINVAL; 6726 } 6727 6728 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6729 return -EOVERFLOW; 6730 6731 if (!mddev->raid_disks) { 6732 int err; 6733 /* expecting a device which has a superblock */ 6734 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6735 if (IS_ERR(rdev)) { 6736 pr_warn("md: md_import_device returned %ld\n", 6737 PTR_ERR(rdev)); 6738 return PTR_ERR(rdev); 6739 } 6740 if (!list_empty(&mddev->disks)) { 6741 struct md_rdev *rdev0 6742 = list_entry(mddev->disks.next, 6743 struct md_rdev, same_set); 6744 err = super_types[mddev->major_version] 6745 .load_super(rdev, rdev0, mddev->minor_version); 6746 if (err < 0) { 6747 pr_warn("md: %pg has different UUID to %pg\n", 6748 rdev->bdev, 6749 rdev0->bdev); 6750 export_rdev(rdev, mddev); 6751 return -EINVAL; 6752 } 6753 } 6754 err = bind_rdev_to_array(rdev, mddev); 6755 if (err) 6756 export_rdev(rdev, mddev); 6757 return err; 6758 } 6759 6760 /* 6761 * md_add_new_disk can be used once the array is assembled 6762 * to add "hot spares". They must already have a superblock 6763 * written 6764 */ 6765 if (mddev->pers) { 6766 int err; 6767 if (!mddev->pers->hot_add_disk) { 6768 pr_warn("%s: personality does not support diskops!\n", 6769 mdname(mddev)); 6770 return -EINVAL; 6771 } 6772 if (mddev->persistent) 6773 rdev = md_import_device(dev, mddev->major_version, 6774 mddev->minor_version); 6775 else 6776 rdev = md_import_device(dev, -1, -1); 6777 if (IS_ERR(rdev)) { 6778 pr_warn("md: md_import_device returned %ld\n", 6779 PTR_ERR(rdev)); 6780 return PTR_ERR(rdev); 6781 } 6782 /* set saved_raid_disk if appropriate */ 6783 if (!mddev->persistent) { 6784 if (info->state & (1<<MD_DISK_SYNC) && 6785 info->raid_disk < mddev->raid_disks) { 6786 rdev->raid_disk = info->raid_disk; 6787 clear_bit(Bitmap_sync, &rdev->flags); 6788 } else 6789 rdev->raid_disk = -1; 6790 rdev->saved_raid_disk = rdev->raid_disk; 6791 } else 6792 super_types[mddev->major_version]. 6793 validate_super(mddev, rdev); 6794 if ((info->state & (1<<MD_DISK_SYNC)) && 6795 rdev->raid_disk != info->raid_disk) { 6796 /* This was a hot-add request, but events doesn't 6797 * match, so reject it. 6798 */ 6799 export_rdev(rdev, mddev); 6800 return -EINVAL; 6801 } 6802 6803 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6804 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6805 set_bit(WriteMostly, &rdev->flags); 6806 else 6807 clear_bit(WriteMostly, &rdev->flags); 6808 if (info->state & (1<<MD_DISK_FAILFAST)) 6809 set_bit(FailFast, &rdev->flags); 6810 else 6811 clear_bit(FailFast, &rdev->flags); 6812 6813 if (info->state & (1<<MD_DISK_JOURNAL)) { 6814 struct md_rdev *rdev2; 6815 bool has_journal = false; 6816 6817 /* make sure no existing journal disk */ 6818 rdev_for_each(rdev2, mddev) { 6819 if (test_bit(Journal, &rdev2->flags)) { 6820 has_journal = true; 6821 break; 6822 } 6823 } 6824 if (has_journal || mddev->bitmap) { 6825 export_rdev(rdev, mddev); 6826 return -EBUSY; 6827 } 6828 set_bit(Journal, &rdev->flags); 6829 } 6830 /* 6831 * check whether the device shows up in other nodes 6832 */ 6833 if (mddev_is_clustered(mddev)) { 6834 if (info->state & (1 << MD_DISK_CANDIDATE)) 6835 set_bit(Candidate, &rdev->flags); 6836 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6837 /* --add initiated by this node */ 6838 err = md_cluster_ops->add_new_disk(mddev, rdev); 6839 if (err) { 6840 export_rdev(rdev, mddev); 6841 return err; 6842 } 6843 } 6844 } 6845 6846 rdev->raid_disk = -1; 6847 err = bind_rdev_to_array(rdev, mddev); 6848 6849 if (err) 6850 export_rdev(rdev, mddev); 6851 6852 if (mddev_is_clustered(mddev)) { 6853 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6854 if (!err) { 6855 err = md_cluster_ops->new_disk_ack(mddev, 6856 err == 0); 6857 if (err) 6858 md_kick_rdev_from_array(rdev); 6859 } 6860 } else { 6861 if (err) 6862 md_cluster_ops->add_new_disk_cancel(mddev); 6863 else 6864 err = add_bound_rdev(rdev); 6865 } 6866 6867 } else if (!err) 6868 err = add_bound_rdev(rdev); 6869 6870 return err; 6871 } 6872 6873 /* otherwise, md_add_new_disk is only allowed 6874 * for major_version==0 superblocks 6875 */ 6876 if (mddev->major_version != 0) { 6877 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6878 return -EINVAL; 6879 } 6880 6881 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6882 int err; 6883 rdev = md_import_device(dev, -1, 0); 6884 if (IS_ERR(rdev)) { 6885 pr_warn("md: error, md_import_device() returned %ld\n", 6886 PTR_ERR(rdev)); 6887 return PTR_ERR(rdev); 6888 } 6889 rdev->desc_nr = info->number; 6890 if (info->raid_disk < mddev->raid_disks) 6891 rdev->raid_disk = info->raid_disk; 6892 else 6893 rdev->raid_disk = -1; 6894 6895 if (rdev->raid_disk < mddev->raid_disks) 6896 if (info->state & (1<<MD_DISK_SYNC)) 6897 set_bit(In_sync, &rdev->flags); 6898 6899 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6900 set_bit(WriteMostly, &rdev->flags); 6901 if (info->state & (1<<MD_DISK_FAILFAST)) 6902 set_bit(FailFast, &rdev->flags); 6903 6904 if (!mddev->persistent) { 6905 pr_debug("md: nonpersistent superblock ...\n"); 6906 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6907 } else 6908 rdev->sb_start = calc_dev_sboffset(rdev); 6909 rdev->sectors = rdev->sb_start; 6910 6911 err = bind_rdev_to_array(rdev, mddev); 6912 if (err) { 6913 export_rdev(rdev, mddev); 6914 return err; 6915 } 6916 } 6917 6918 return 0; 6919 } 6920 6921 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6922 { 6923 struct md_rdev *rdev; 6924 6925 if (!mddev->pers) 6926 return -ENODEV; 6927 6928 rdev = find_rdev(mddev, dev); 6929 if (!rdev) 6930 return -ENXIO; 6931 6932 if (rdev->raid_disk < 0) 6933 goto kick_rdev; 6934 6935 clear_bit(Blocked, &rdev->flags); 6936 remove_and_add_spares(mddev, rdev); 6937 6938 if (rdev->raid_disk >= 0) 6939 goto busy; 6940 6941 kick_rdev: 6942 if (mddev_is_clustered(mddev)) { 6943 if (md_cluster_ops->remove_disk(mddev, rdev)) 6944 goto busy; 6945 } 6946 6947 md_kick_rdev_from_array(rdev); 6948 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6949 if (mddev->thread) 6950 md_wakeup_thread(mddev->thread); 6951 else 6952 md_update_sb(mddev, 1); 6953 md_new_event(); 6954 6955 return 0; 6956 busy: 6957 pr_debug("md: cannot remove active disk %pg from %s ...\n", 6958 rdev->bdev, mdname(mddev)); 6959 return -EBUSY; 6960 } 6961 6962 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6963 { 6964 int err; 6965 struct md_rdev *rdev; 6966 6967 if (!mddev->pers) 6968 return -ENODEV; 6969 6970 if (mddev->major_version != 0) { 6971 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6972 mdname(mddev)); 6973 return -EINVAL; 6974 } 6975 if (!mddev->pers->hot_add_disk) { 6976 pr_warn("%s: personality does not support diskops!\n", 6977 mdname(mddev)); 6978 return -EINVAL; 6979 } 6980 6981 rdev = md_import_device(dev, -1, 0); 6982 if (IS_ERR(rdev)) { 6983 pr_warn("md: error, md_import_device() returned %ld\n", 6984 PTR_ERR(rdev)); 6985 return -EINVAL; 6986 } 6987 6988 if (mddev->persistent) 6989 rdev->sb_start = calc_dev_sboffset(rdev); 6990 else 6991 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6992 6993 rdev->sectors = rdev->sb_start; 6994 6995 if (test_bit(Faulty, &rdev->flags)) { 6996 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 6997 rdev->bdev, mdname(mddev)); 6998 err = -EINVAL; 6999 goto abort_export; 7000 } 7001 7002 clear_bit(In_sync, &rdev->flags); 7003 rdev->desc_nr = -1; 7004 rdev->saved_raid_disk = -1; 7005 err = bind_rdev_to_array(rdev, mddev); 7006 if (err) 7007 goto abort_export; 7008 7009 /* 7010 * The rest should better be atomic, we can have disk failures 7011 * noticed in interrupt contexts ... 7012 */ 7013 7014 rdev->raid_disk = -1; 7015 7016 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7017 if (!mddev->thread) 7018 md_update_sb(mddev, 1); 7019 /* 7020 * If the new disk does not support REQ_NOWAIT, 7021 * disable on the whole MD. 7022 */ 7023 if (!bdev_nowait(rdev->bdev)) { 7024 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 7025 mdname(mddev), rdev->bdev); 7026 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 7027 } 7028 /* 7029 * Kick recovery, maybe this spare has to be added to the 7030 * array immediately. 7031 */ 7032 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7033 md_wakeup_thread(mddev->thread); 7034 md_new_event(); 7035 return 0; 7036 7037 abort_export: 7038 export_rdev(rdev, mddev); 7039 return err; 7040 } 7041 7042 static int set_bitmap_file(struct mddev *mddev, int fd) 7043 { 7044 int err = 0; 7045 7046 if (mddev->pers) { 7047 if (!mddev->pers->quiesce || !mddev->thread) 7048 return -EBUSY; 7049 if (mddev->recovery || mddev->sync_thread) 7050 return -EBUSY; 7051 /* we should be able to change the bitmap.. */ 7052 } 7053 7054 if (fd >= 0) { 7055 struct inode *inode; 7056 struct file *f; 7057 7058 if (mddev->bitmap || mddev->bitmap_info.file) 7059 return -EEXIST; /* cannot add when bitmap is present */ 7060 7061 if (!IS_ENABLED(CONFIG_MD_BITMAP_FILE)) { 7062 pr_warn("%s: bitmap files not supported by this kernel\n", 7063 mdname(mddev)); 7064 return -EINVAL; 7065 } 7066 pr_warn("%s: using deprecated bitmap file support\n", 7067 mdname(mddev)); 7068 7069 f = fget(fd); 7070 7071 if (f == NULL) { 7072 pr_warn("%s: error: failed to get bitmap file\n", 7073 mdname(mddev)); 7074 return -EBADF; 7075 } 7076 7077 inode = f->f_mapping->host; 7078 if (!S_ISREG(inode->i_mode)) { 7079 pr_warn("%s: error: bitmap file must be a regular file\n", 7080 mdname(mddev)); 7081 err = -EBADF; 7082 } else if (!(f->f_mode & FMODE_WRITE)) { 7083 pr_warn("%s: error: bitmap file must open for write\n", 7084 mdname(mddev)); 7085 err = -EBADF; 7086 } else if (atomic_read(&inode->i_writecount) != 1) { 7087 pr_warn("%s: error: bitmap file is already in use\n", 7088 mdname(mddev)); 7089 err = -EBUSY; 7090 } 7091 if (err) { 7092 fput(f); 7093 return err; 7094 } 7095 mddev->bitmap_info.file = f; 7096 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7097 } else if (mddev->bitmap == NULL) 7098 return -ENOENT; /* cannot remove what isn't there */ 7099 err = 0; 7100 if (mddev->pers) { 7101 if (fd >= 0) { 7102 struct bitmap *bitmap; 7103 7104 bitmap = md_bitmap_create(mddev, -1); 7105 mddev_suspend(mddev); 7106 if (!IS_ERR(bitmap)) { 7107 mddev->bitmap = bitmap; 7108 err = md_bitmap_load(mddev); 7109 } else 7110 err = PTR_ERR(bitmap); 7111 if (err) { 7112 md_bitmap_destroy(mddev); 7113 fd = -1; 7114 } 7115 mddev_resume(mddev); 7116 } else if (fd < 0) { 7117 mddev_suspend(mddev); 7118 md_bitmap_destroy(mddev); 7119 mddev_resume(mddev); 7120 } 7121 } 7122 if (fd < 0) { 7123 struct file *f = mddev->bitmap_info.file; 7124 if (f) { 7125 spin_lock(&mddev->lock); 7126 mddev->bitmap_info.file = NULL; 7127 spin_unlock(&mddev->lock); 7128 fput(f); 7129 } 7130 } 7131 7132 return err; 7133 } 7134 7135 /* 7136 * md_set_array_info is used two different ways 7137 * The original usage is when creating a new array. 7138 * In this usage, raid_disks is > 0 and it together with 7139 * level, size, not_persistent,layout,chunksize determine the 7140 * shape of the array. 7141 * This will always create an array with a type-0.90.0 superblock. 7142 * The newer usage is when assembling an array. 7143 * In this case raid_disks will be 0, and the major_version field is 7144 * use to determine which style super-blocks are to be found on the devices. 7145 * The minor and patch _version numbers are also kept incase the 7146 * super_block handler wishes to interpret them. 7147 */ 7148 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7149 { 7150 if (info->raid_disks == 0) { 7151 /* just setting version number for superblock loading */ 7152 if (info->major_version < 0 || 7153 info->major_version >= ARRAY_SIZE(super_types) || 7154 super_types[info->major_version].name == NULL) { 7155 /* maybe try to auto-load a module? */ 7156 pr_warn("md: superblock version %d not known\n", 7157 info->major_version); 7158 return -EINVAL; 7159 } 7160 mddev->major_version = info->major_version; 7161 mddev->minor_version = info->minor_version; 7162 mddev->patch_version = info->patch_version; 7163 mddev->persistent = !info->not_persistent; 7164 /* ensure mddev_put doesn't delete this now that there 7165 * is some minimal configuration. 7166 */ 7167 mddev->ctime = ktime_get_real_seconds(); 7168 return 0; 7169 } 7170 mddev->major_version = MD_MAJOR_VERSION; 7171 mddev->minor_version = MD_MINOR_VERSION; 7172 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7173 mddev->ctime = ktime_get_real_seconds(); 7174 7175 mddev->level = info->level; 7176 mddev->clevel[0] = 0; 7177 mddev->dev_sectors = 2 * (sector_t)info->size; 7178 mddev->raid_disks = info->raid_disks; 7179 /* don't set md_minor, it is determined by which /dev/md* was 7180 * openned 7181 */ 7182 if (info->state & (1<<MD_SB_CLEAN)) 7183 mddev->recovery_cp = MaxSector; 7184 else 7185 mddev->recovery_cp = 0; 7186 mddev->persistent = ! info->not_persistent; 7187 mddev->external = 0; 7188 7189 mddev->layout = info->layout; 7190 if (mddev->level == 0) 7191 /* Cannot trust RAID0 layout info here */ 7192 mddev->layout = -1; 7193 mddev->chunk_sectors = info->chunk_size >> 9; 7194 7195 if (mddev->persistent) { 7196 mddev->max_disks = MD_SB_DISKS; 7197 mddev->flags = 0; 7198 mddev->sb_flags = 0; 7199 } 7200 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7201 7202 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7203 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7204 mddev->bitmap_info.offset = 0; 7205 7206 mddev->reshape_position = MaxSector; 7207 7208 /* 7209 * Generate a 128 bit UUID 7210 */ 7211 get_random_bytes(mddev->uuid, 16); 7212 7213 mddev->new_level = mddev->level; 7214 mddev->new_chunk_sectors = mddev->chunk_sectors; 7215 mddev->new_layout = mddev->layout; 7216 mddev->delta_disks = 0; 7217 mddev->reshape_backwards = 0; 7218 7219 return 0; 7220 } 7221 7222 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7223 { 7224 lockdep_assert_held(&mddev->reconfig_mutex); 7225 7226 if (mddev->external_size) 7227 return; 7228 7229 mddev->array_sectors = array_sectors; 7230 } 7231 EXPORT_SYMBOL(md_set_array_sectors); 7232 7233 static int update_size(struct mddev *mddev, sector_t num_sectors) 7234 { 7235 struct md_rdev *rdev; 7236 int rv; 7237 int fit = (num_sectors == 0); 7238 sector_t old_dev_sectors = mddev->dev_sectors; 7239 7240 if (mddev->pers->resize == NULL) 7241 return -EINVAL; 7242 /* The "num_sectors" is the number of sectors of each device that 7243 * is used. This can only make sense for arrays with redundancy. 7244 * linear and raid0 always use whatever space is available. We can only 7245 * consider changing this number if no resync or reconstruction is 7246 * happening, and if the new size is acceptable. It must fit before the 7247 * sb_start or, if that is <data_offset, it must fit before the size 7248 * of each device. If num_sectors is zero, we find the largest size 7249 * that fits. 7250 */ 7251 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7252 mddev->sync_thread) 7253 return -EBUSY; 7254 if (!md_is_rdwr(mddev)) 7255 return -EROFS; 7256 7257 rdev_for_each(rdev, mddev) { 7258 sector_t avail = rdev->sectors; 7259 7260 if (fit && (num_sectors == 0 || num_sectors > avail)) 7261 num_sectors = avail; 7262 if (avail < num_sectors) 7263 return -ENOSPC; 7264 } 7265 rv = mddev->pers->resize(mddev, num_sectors); 7266 if (!rv) { 7267 if (mddev_is_clustered(mddev)) 7268 md_cluster_ops->update_size(mddev, old_dev_sectors); 7269 else if (mddev->queue) { 7270 set_capacity_and_notify(mddev->gendisk, 7271 mddev->array_sectors); 7272 } 7273 } 7274 return rv; 7275 } 7276 7277 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7278 { 7279 int rv; 7280 struct md_rdev *rdev; 7281 /* change the number of raid disks */ 7282 if (mddev->pers->check_reshape == NULL) 7283 return -EINVAL; 7284 if (!md_is_rdwr(mddev)) 7285 return -EROFS; 7286 if (raid_disks <= 0 || 7287 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7288 return -EINVAL; 7289 if (mddev->sync_thread || 7290 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7291 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7292 mddev->reshape_position != MaxSector) 7293 return -EBUSY; 7294 7295 rdev_for_each(rdev, mddev) { 7296 if (mddev->raid_disks < raid_disks && 7297 rdev->data_offset < rdev->new_data_offset) 7298 return -EINVAL; 7299 if (mddev->raid_disks > raid_disks && 7300 rdev->data_offset > rdev->new_data_offset) 7301 return -EINVAL; 7302 } 7303 7304 mddev->delta_disks = raid_disks - mddev->raid_disks; 7305 if (mddev->delta_disks < 0) 7306 mddev->reshape_backwards = 1; 7307 else if (mddev->delta_disks > 0) 7308 mddev->reshape_backwards = 0; 7309 7310 rv = mddev->pers->check_reshape(mddev); 7311 if (rv < 0) { 7312 mddev->delta_disks = 0; 7313 mddev->reshape_backwards = 0; 7314 } 7315 return rv; 7316 } 7317 7318 /* 7319 * update_array_info is used to change the configuration of an 7320 * on-line array. 7321 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7322 * fields in the info are checked against the array. 7323 * Any differences that cannot be handled will cause an error. 7324 * Normally, only one change can be managed at a time. 7325 */ 7326 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7327 { 7328 int rv = 0; 7329 int cnt = 0; 7330 int state = 0; 7331 7332 /* calculate expected state,ignoring low bits */ 7333 if (mddev->bitmap && mddev->bitmap_info.offset) 7334 state |= (1 << MD_SB_BITMAP_PRESENT); 7335 7336 if (mddev->major_version != info->major_version || 7337 mddev->minor_version != info->minor_version || 7338 /* mddev->patch_version != info->patch_version || */ 7339 mddev->ctime != info->ctime || 7340 mddev->level != info->level || 7341 /* mddev->layout != info->layout || */ 7342 mddev->persistent != !info->not_persistent || 7343 mddev->chunk_sectors != info->chunk_size >> 9 || 7344 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7345 ((state^info->state) & 0xfffffe00) 7346 ) 7347 return -EINVAL; 7348 /* Check there is only one change */ 7349 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7350 cnt++; 7351 if (mddev->raid_disks != info->raid_disks) 7352 cnt++; 7353 if (mddev->layout != info->layout) 7354 cnt++; 7355 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7356 cnt++; 7357 if (cnt == 0) 7358 return 0; 7359 if (cnt > 1) 7360 return -EINVAL; 7361 7362 if (mddev->layout != info->layout) { 7363 /* Change layout 7364 * we don't need to do anything at the md level, the 7365 * personality will take care of it all. 7366 */ 7367 if (mddev->pers->check_reshape == NULL) 7368 return -EINVAL; 7369 else { 7370 mddev->new_layout = info->layout; 7371 rv = mddev->pers->check_reshape(mddev); 7372 if (rv) 7373 mddev->new_layout = mddev->layout; 7374 return rv; 7375 } 7376 } 7377 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7378 rv = update_size(mddev, (sector_t)info->size * 2); 7379 7380 if (mddev->raid_disks != info->raid_disks) 7381 rv = update_raid_disks(mddev, info->raid_disks); 7382 7383 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7384 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7385 rv = -EINVAL; 7386 goto err; 7387 } 7388 if (mddev->recovery || mddev->sync_thread) { 7389 rv = -EBUSY; 7390 goto err; 7391 } 7392 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7393 struct bitmap *bitmap; 7394 /* add the bitmap */ 7395 if (mddev->bitmap) { 7396 rv = -EEXIST; 7397 goto err; 7398 } 7399 if (mddev->bitmap_info.default_offset == 0) { 7400 rv = -EINVAL; 7401 goto err; 7402 } 7403 mddev->bitmap_info.offset = 7404 mddev->bitmap_info.default_offset; 7405 mddev->bitmap_info.space = 7406 mddev->bitmap_info.default_space; 7407 bitmap = md_bitmap_create(mddev, -1); 7408 mddev_suspend(mddev); 7409 if (!IS_ERR(bitmap)) { 7410 mddev->bitmap = bitmap; 7411 rv = md_bitmap_load(mddev); 7412 } else 7413 rv = PTR_ERR(bitmap); 7414 if (rv) 7415 md_bitmap_destroy(mddev); 7416 mddev_resume(mddev); 7417 } else { 7418 /* remove the bitmap */ 7419 if (!mddev->bitmap) { 7420 rv = -ENOENT; 7421 goto err; 7422 } 7423 if (mddev->bitmap->storage.file) { 7424 rv = -EINVAL; 7425 goto err; 7426 } 7427 if (mddev->bitmap_info.nodes) { 7428 /* hold PW on all the bitmap lock */ 7429 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7430 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7431 rv = -EPERM; 7432 md_cluster_ops->unlock_all_bitmaps(mddev); 7433 goto err; 7434 } 7435 7436 mddev->bitmap_info.nodes = 0; 7437 md_cluster_ops->leave(mddev); 7438 module_put(md_cluster_mod); 7439 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7440 } 7441 mddev_suspend(mddev); 7442 md_bitmap_destroy(mddev); 7443 mddev_resume(mddev); 7444 mddev->bitmap_info.offset = 0; 7445 } 7446 } 7447 md_update_sb(mddev, 1); 7448 return rv; 7449 err: 7450 return rv; 7451 } 7452 7453 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7454 { 7455 struct md_rdev *rdev; 7456 int err = 0; 7457 7458 if (mddev->pers == NULL) 7459 return -ENODEV; 7460 7461 rcu_read_lock(); 7462 rdev = md_find_rdev_rcu(mddev, dev); 7463 if (!rdev) 7464 err = -ENODEV; 7465 else { 7466 md_error(mddev, rdev); 7467 if (test_bit(MD_BROKEN, &mddev->flags)) 7468 err = -EBUSY; 7469 } 7470 rcu_read_unlock(); 7471 return err; 7472 } 7473 7474 /* 7475 * We have a problem here : there is no easy way to give a CHS 7476 * virtual geometry. We currently pretend that we have a 2 heads 7477 * 4 sectors (with a BIG number of cylinders...). This drives 7478 * dosfs just mad... ;-) 7479 */ 7480 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7481 { 7482 struct mddev *mddev = bdev->bd_disk->private_data; 7483 7484 geo->heads = 2; 7485 geo->sectors = 4; 7486 geo->cylinders = mddev->array_sectors / 8; 7487 return 0; 7488 } 7489 7490 static inline bool md_ioctl_valid(unsigned int cmd) 7491 { 7492 switch (cmd) { 7493 case ADD_NEW_DISK: 7494 case GET_ARRAY_INFO: 7495 case GET_BITMAP_FILE: 7496 case GET_DISK_INFO: 7497 case HOT_ADD_DISK: 7498 case HOT_REMOVE_DISK: 7499 case RAID_VERSION: 7500 case RESTART_ARRAY_RW: 7501 case RUN_ARRAY: 7502 case SET_ARRAY_INFO: 7503 case SET_BITMAP_FILE: 7504 case SET_DISK_FAULTY: 7505 case STOP_ARRAY: 7506 case STOP_ARRAY_RO: 7507 case CLUSTERED_DISK_NACK: 7508 return true; 7509 default: 7510 return false; 7511 } 7512 } 7513 7514 static int __md_set_array_info(struct mddev *mddev, void __user *argp) 7515 { 7516 mdu_array_info_t info; 7517 int err; 7518 7519 if (!argp) 7520 memset(&info, 0, sizeof(info)); 7521 else if (copy_from_user(&info, argp, sizeof(info))) 7522 return -EFAULT; 7523 7524 if (mddev->pers) { 7525 err = update_array_info(mddev, &info); 7526 if (err) 7527 pr_warn("md: couldn't update array info. %d\n", err); 7528 return err; 7529 } 7530 7531 if (!list_empty(&mddev->disks)) { 7532 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7533 return -EBUSY; 7534 } 7535 7536 if (mddev->raid_disks) { 7537 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7538 return -EBUSY; 7539 } 7540 7541 err = md_set_array_info(mddev, &info); 7542 if (err) 7543 pr_warn("md: couldn't set array info. %d\n", err); 7544 7545 return err; 7546 } 7547 7548 static int md_ioctl(struct block_device *bdev, blk_mode_t mode, 7549 unsigned int cmd, unsigned long arg) 7550 { 7551 int err = 0; 7552 void __user *argp = (void __user *)arg; 7553 struct mddev *mddev = NULL; 7554 bool did_set_md_closing = false; 7555 7556 if (!md_ioctl_valid(cmd)) 7557 return -ENOTTY; 7558 7559 switch (cmd) { 7560 case RAID_VERSION: 7561 case GET_ARRAY_INFO: 7562 case GET_DISK_INFO: 7563 break; 7564 default: 7565 if (!capable(CAP_SYS_ADMIN)) 7566 return -EACCES; 7567 } 7568 7569 /* 7570 * Commands dealing with the RAID driver but not any 7571 * particular array: 7572 */ 7573 switch (cmd) { 7574 case RAID_VERSION: 7575 err = get_version(argp); 7576 goto out; 7577 default:; 7578 } 7579 7580 /* 7581 * Commands creating/starting a new array: 7582 */ 7583 7584 mddev = bdev->bd_disk->private_data; 7585 7586 if (!mddev) { 7587 BUG(); 7588 goto out; 7589 } 7590 7591 /* Some actions do not requires the mutex */ 7592 switch (cmd) { 7593 case GET_ARRAY_INFO: 7594 if (!mddev->raid_disks && !mddev->external) 7595 err = -ENODEV; 7596 else 7597 err = get_array_info(mddev, argp); 7598 goto out; 7599 7600 case GET_DISK_INFO: 7601 if (!mddev->raid_disks && !mddev->external) 7602 err = -ENODEV; 7603 else 7604 err = get_disk_info(mddev, argp); 7605 goto out; 7606 7607 case SET_DISK_FAULTY: 7608 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7609 goto out; 7610 7611 case GET_BITMAP_FILE: 7612 err = get_bitmap_file(mddev, argp); 7613 goto out; 7614 7615 } 7616 7617 if (cmd == HOT_REMOVE_DISK) 7618 /* need to ensure recovery thread has run */ 7619 wait_event_interruptible_timeout(mddev->sb_wait, 7620 !test_bit(MD_RECOVERY_NEEDED, 7621 &mddev->recovery), 7622 msecs_to_jiffies(5000)); 7623 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7624 /* Need to flush page cache, and ensure no-one else opens 7625 * and writes 7626 */ 7627 mutex_lock(&mddev->open_mutex); 7628 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7629 mutex_unlock(&mddev->open_mutex); 7630 err = -EBUSY; 7631 goto out; 7632 } 7633 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7634 mutex_unlock(&mddev->open_mutex); 7635 err = -EBUSY; 7636 goto out; 7637 } 7638 did_set_md_closing = true; 7639 mutex_unlock(&mddev->open_mutex); 7640 sync_blockdev(bdev); 7641 } 7642 err = mddev_lock(mddev); 7643 if (err) { 7644 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7645 err, cmd); 7646 goto out; 7647 } 7648 7649 if (cmd == SET_ARRAY_INFO) { 7650 err = __md_set_array_info(mddev, argp); 7651 goto unlock; 7652 } 7653 7654 /* 7655 * Commands querying/configuring an existing array: 7656 */ 7657 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7658 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7659 if ((!mddev->raid_disks && !mddev->external) 7660 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7661 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7662 && cmd != GET_BITMAP_FILE) { 7663 err = -ENODEV; 7664 goto unlock; 7665 } 7666 7667 /* 7668 * Commands even a read-only array can execute: 7669 */ 7670 switch (cmd) { 7671 case RESTART_ARRAY_RW: 7672 err = restart_array(mddev); 7673 goto unlock; 7674 7675 case STOP_ARRAY: 7676 err = do_md_stop(mddev, 0, bdev); 7677 goto unlock; 7678 7679 case STOP_ARRAY_RO: 7680 err = md_set_readonly(mddev, bdev); 7681 goto unlock; 7682 7683 case HOT_REMOVE_DISK: 7684 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7685 goto unlock; 7686 7687 case ADD_NEW_DISK: 7688 /* We can support ADD_NEW_DISK on read-only arrays 7689 * only if we are re-adding a preexisting device. 7690 * So require mddev->pers and MD_DISK_SYNC. 7691 */ 7692 if (mddev->pers) { 7693 mdu_disk_info_t info; 7694 if (copy_from_user(&info, argp, sizeof(info))) 7695 err = -EFAULT; 7696 else if (!(info.state & (1<<MD_DISK_SYNC))) 7697 /* Need to clear read-only for this */ 7698 break; 7699 else 7700 err = md_add_new_disk(mddev, &info); 7701 goto unlock; 7702 } 7703 break; 7704 } 7705 7706 /* 7707 * The remaining ioctls are changing the state of the 7708 * superblock, so we do not allow them on read-only arrays. 7709 */ 7710 if (!md_is_rdwr(mddev) && mddev->pers) { 7711 if (mddev->ro != MD_AUTO_READ) { 7712 err = -EROFS; 7713 goto unlock; 7714 } 7715 mddev->ro = MD_RDWR; 7716 sysfs_notify_dirent_safe(mddev->sysfs_state); 7717 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7718 /* mddev_unlock will wake thread */ 7719 /* If a device failed while we were read-only, we 7720 * need to make sure the metadata is updated now. 7721 */ 7722 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7723 mddev_unlock(mddev); 7724 wait_event(mddev->sb_wait, 7725 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7726 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7727 mddev_lock_nointr(mddev); 7728 } 7729 } 7730 7731 switch (cmd) { 7732 case ADD_NEW_DISK: 7733 { 7734 mdu_disk_info_t info; 7735 if (copy_from_user(&info, argp, sizeof(info))) 7736 err = -EFAULT; 7737 else 7738 err = md_add_new_disk(mddev, &info); 7739 goto unlock; 7740 } 7741 7742 case CLUSTERED_DISK_NACK: 7743 if (mddev_is_clustered(mddev)) 7744 md_cluster_ops->new_disk_ack(mddev, false); 7745 else 7746 err = -EINVAL; 7747 goto unlock; 7748 7749 case HOT_ADD_DISK: 7750 err = hot_add_disk(mddev, new_decode_dev(arg)); 7751 goto unlock; 7752 7753 case RUN_ARRAY: 7754 err = do_md_run(mddev); 7755 goto unlock; 7756 7757 case SET_BITMAP_FILE: 7758 err = set_bitmap_file(mddev, (int)arg); 7759 goto unlock; 7760 7761 default: 7762 err = -EINVAL; 7763 goto unlock; 7764 } 7765 7766 unlock: 7767 if (mddev->hold_active == UNTIL_IOCTL && 7768 err != -EINVAL) 7769 mddev->hold_active = 0; 7770 mddev_unlock(mddev); 7771 out: 7772 if(did_set_md_closing) 7773 clear_bit(MD_CLOSING, &mddev->flags); 7774 return err; 7775 } 7776 #ifdef CONFIG_COMPAT 7777 static int md_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 7778 unsigned int cmd, unsigned long arg) 7779 { 7780 switch (cmd) { 7781 case HOT_REMOVE_DISK: 7782 case HOT_ADD_DISK: 7783 case SET_DISK_FAULTY: 7784 case SET_BITMAP_FILE: 7785 /* These take in integer arg, do not convert */ 7786 break; 7787 default: 7788 arg = (unsigned long)compat_ptr(arg); 7789 break; 7790 } 7791 7792 return md_ioctl(bdev, mode, cmd, arg); 7793 } 7794 #endif /* CONFIG_COMPAT */ 7795 7796 static int md_set_read_only(struct block_device *bdev, bool ro) 7797 { 7798 struct mddev *mddev = bdev->bd_disk->private_data; 7799 int err; 7800 7801 err = mddev_lock(mddev); 7802 if (err) 7803 return err; 7804 7805 if (!mddev->raid_disks && !mddev->external) { 7806 err = -ENODEV; 7807 goto out_unlock; 7808 } 7809 7810 /* 7811 * Transitioning to read-auto need only happen for arrays that call 7812 * md_write_start and which are not ready for writes yet. 7813 */ 7814 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) { 7815 err = restart_array(mddev); 7816 if (err) 7817 goto out_unlock; 7818 mddev->ro = MD_AUTO_READ; 7819 } 7820 7821 out_unlock: 7822 mddev_unlock(mddev); 7823 return err; 7824 } 7825 7826 static int md_open(struct gendisk *disk, blk_mode_t mode) 7827 { 7828 struct mddev *mddev; 7829 int err; 7830 7831 spin_lock(&all_mddevs_lock); 7832 mddev = mddev_get(disk->private_data); 7833 spin_unlock(&all_mddevs_lock); 7834 if (!mddev) 7835 return -ENODEV; 7836 7837 err = mutex_lock_interruptible(&mddev->open_mutex); 7838 if (err) 7839 goto out; 7840 7841 err = -ENODEV; 7842 if (test_bit(MD_CLOSING, &mddev->flags)) 7843 goto out_unlock; 7844 7845 atomic_inc(&mddev->openers); 7846 mutex_unlock(&mddev->open_mutex); 7847 7848 disk_check_media_change(disk); 7849 return 0; 7850 7851 out_unlock: 7852 mutex_unlock(&mddev->open_mutex); 7853 out: 7854 mddev_put(mddev); 7855 return err; 7856 } 7857 7858 static void md_release(struct gendisk *disk) 7859 { 7860 struct mddev *mddev = disk->private_data; 7861 7862 BUG_ON(!mddev); 7863 atomic_dec(&mddev->openers); 7864 mddev_put(mddev); 7865 } 7866 7867 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7868 { 7869 struct mddev *mddev = disk->private_data; 7870 unsigned int ret = 0; 7871 7872 if (mddev->changed) 7873 ret = DISK_EVENT_MEDIA_CHANGE; 7874 mddev->changed = 0; 7875 return ret; 7876 } 7877 7878 static void md_free_disk(struct gendisk *disk) 7879 { 7880 struct mddev *mddev = disk->private_data; 7881 7882 percpu_ref_exit(&mddev->writes_pending); 7883 mddev_free(mddev); 7884 } 7885 7886 const struct block_device_operations md_fops = 7887 { 7888 .owner = THIS_MODULE, 7889 .submit_bio = md_submit_bio, 7890 .open = md_open, 7891 .release = md_release, 7892 .ioctl = md_ioctl, 7893 #ifdef CONFIG_COMPAT 7894 .compat_ioctl = md_compat_ioctl, 7895 #endif 7896 .getgeo = md_getgeo, 7897 .check_events = md_check_events, 7898 .set_read_only = md_set_read_only, 7899 .free_disk = md_free_disk, 7900 }; 7901 7902 static int md_thread(void *arg) 7903 { 7904 struct md_thread *thread = arg; 7905 7906 /* 7907 * md_thread is a 'system-thread', it's priority should be very 7908 * high. We avoid resource deadlocks individually in each 7909 * raid personality. (RAID5 does preallocation) We also use RR and 7910 * the very same RT priority as kswapd, thus we will never get 7911 * into a priority inversion deadlock. 7912 * 7913 * we definitely have to have equal or higher priority than 7914 * bdflush, otherwise bdflush will deadlock if there are too 7915 * many dirty RAID5 blocks. 7916 */ 7917 7918 allow_signal(SIGKILL); 7919 while (!kthread_should_stop()) { 7920 7921 /* We need to wait INTERRUPTIBLE so that 7922 * we don't add to the load-average. 7923 * That means we need to be sure no signals are 7924 * pending 7925 */ 7926 if (signal_pending(current)) 7927 flush_signals(current); 7928 7929 wait_event_interruptible_timeout 7930 (thread->wqueue, 7931 test_bit(THREAD_WAKEUP, &thread->flags) 7932 || kthread_should_stop() || kthread_should_park(), 7933 thread->timeout); 7934 7935 clear_bit(THREAD_WAKEUP, &thread->flags); 7936 if (kthread_should_park()) 7937 kthread_parkme(); 7938 if (!kthread_should_stop()) 7939 thread->run(thread); 7940 } 7941 7942 return 0; 7943 } 7944 7945 static void md_wakeup_thread_directly(struct md_thread __rcu *thread) 7946 { 7947 struct md_thread *t; 7948 7949 rcu_read_lock(); 7950 t = rcu_dereference(thread); 7951 if (t) 7952 wake_up_process(t->tsk); 7953 rcu_read_unlock(); 7954 } 7955 7956 void md_wakeup_thread(struct md_thread __rcu *thread) 7957 { 7958 struct md_thread *t; 7959 7960 rcu_read_lock(); 7961 t = rcu_dereference(thread); 7962 if (t) { 7963 pr_debug("md: waking up MD thread %s.\n", t->tsk->comm); 7964 set_bit(THREAD_WAKEUP, &t->flags); 7965 wake_up(&t->wqueue); 7966 } 7967 rcu_read_unlock(); 7968 } 7969 EXPORT_SYMBOL(md_wakeup_thread); 7970 7971 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7972 struct mddev *mddev, const char *name) 7973 { 7974 struct md_thread *thread; 7975 7976 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7977 if (!thread) 7978 return NULL; 7979 7980 init_waitqueue_head(&thread->wqueue); 7981 7982 thread->run = run; 7983 thread->mddev = mddev; 7984 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7985 thread->tsk = kthread_run(md_thread, thread, 7986 "%s_%s", 7987 mdname(thread->mddev), 7988 name); 7989 if (IS_ERR(thread->tsk)) { 7990 kfree(thread); 7991 return NULL; 7992 } 7993 return thread; 7994 } 7995 EXPORT_SYMBOL(md_register_thread); 7996 7997 void md_unregister_thread(struct mddev *mddev, struct md_thread __rcu **threadp) 7998 { 7999 struct md_thread *thread = rcu_dereference_protected(*threadp, 8000 lockdep_is_held(&mddev->reconfig_mutex)); 8001 8002 if (!thread) 8003 return; 8004 8005 rcu_assign_pointer(*threadp, NULL); 8006 synchronize_rcu(); 8007 8008 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 8009 kthread_stop(thread->tsk); 8010 kfree(thread); 8011 } 8012 EXPORT_SYMBOL(md_unregister_thread); 8013 8014 void md_error(struct mddev *mddev, struct md_rdev *rdev) 8015 { 8016 if (!rdev || test_bit(Faulty, &rdev->flags)) 8017 return; 8018 8019 if (!mddev->pers || !mddev->pers->error_handler) 8020 return; 8021 mddev->pers->error_handler(mddev, rdev); 8022 8023 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR) 8024 return; 8025 8026 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 8027 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8028 sysfs_notify_dirent_safe(rdev->sysfs_state); 8029 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8030 if (!test_bit(MD_BROKEN, &mddev->flags)) { 8031 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8032 md_wakeup_thread(mddev->thread); 8033 } 8034 if (mddev->event_work.func) 8035 queue_work(md_misc_wq, &mddev->event_work); 8036 md_new_event(); 8037 } 8038 EXPORT_SYMBOL(md_error); 8039 8040 /* seq_file implementation /proc/mdstat */ 8041 8042 static void status_unused(struct seq_file *seq) 8043 { 8044 int i = 0; 8045 struct md_rdev *rdev; 8046 8047 seq_printf(seq, "unused devices: "); 8048 8049 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8050 i++; 8051 seq_printf(seq, "%pg ", rdev->bdev); 8052 } 8053 if (!i) 8054 seq_printf(seq, "<none>"); 8055 8056 seq_printf(seq, "\n"); 8057 } 8058 8059 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8060 { 8061 sector_t max_sectors, resync, res; 8062 unsigned long dt, db = 0; 8063 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8064 int scale, recovery_active; 8065 unsigned int per_milli; 8066 8067 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8068 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8069 max_sectors = mddev->resync_max_sectors; 8070 else 8071 max_sectors = mddev->dev_sectors; 8072 8073 resync = mddev->curr_resync; 8074 if (resync < MD_RESYNC_ACTIVE) { 8075 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8076 /* Still cleaning up */ 8077 resync = max_sectors; 8078 } else if (resync > max_sectors) { 8079 resync = max_sectors; 8080 } else { 8081 res = atomic_read(&mddev->recovery_active); 8082 /* 8083 * Resync has started, but the subtraction has overflowed or 8084 * yielded one of the special values. Force it to active to 8085 * ensure the status reports an active resync. 8086 */ 8087 if (resync < res || resync - res < MD_RESYNC_ACTIVE) 8088 resync = MD_RESYNC_ACTIVE; 8089 else 8090 resync -= res; 8091 } 8092 8093 if (resync == MD_RESYNC_NONE) { 8094 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8095 struct md_rdev *rdev; 8096 8097 rdev_for_each(rdev, mddev) 8098 if (rdev->raid_disk >= 0 && 8099 !test_bit(Faulty, &rdev->flags) && 8100 rdev->recovery_offset != MaxSector && 8101 rdev->recovery_offset) { 8102 seq_printf(seq, "\trecover=REMOTE"); 8103 return 1; 8104 } 8105 if (mddev->reshape_position != MaxSector) 8106 seq_printf(seq, "\treshape=REMOTE"); 8107 else 8108 seq_printf(seq, "\tresync=REMOTE"); 8109 return 1; 8110 } 8111 if (mddev->recovery_cp < MaxSector) { 8112 seq_printf(seq, "\tresync=PENDING"); 8113 return 1; 8114 } 8115 return 0; 8116 } 8117 if (resync < MD_RESYNC_ACTIVE) { 8118 seq_printf(seq, "\tresync=DELAYED"); 8119 return 1; 8120 } 8121 8122 WARN_ON(max_sectors == 0); 8123 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8124 * in a sector_t, and (max_sectors>>scale) will fit in a 8125 * u32, as those are the requirements for sector_div. 8126 * Thus 'scale' must be at least 10 8127 */ 8128 scale = 10; 8129 if (sizeof(sector_t) > sizeof(unsigned long)) { 8130 while ( max_sectors/2 > (1ULL<<(scale+32))) 8131 scale++; 8132 } 8133 res = (resync>>scale)*1000; 8134 sector_div(res, (u32)((max_sectors>>scale)+1)); 8135 8136 per_milli = res; 8137 { 8138 int i, x = per_milli/50, y = 20-x; 8139 seq_printf(seq, "["); 8140 for (i = 0; i < x; i++) 8141 seq_printf(seq, "="); 8142 seq_printf(seq, ">"); 8143 for (i = 0; i < y; i++) 8144 seq_printf(seq, "."); 8145 seq_printf(seq, "] "); 8146 } 8147 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8148 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8149 "reshape" : 8150 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8151 "check" : 8152 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8153 "resync" : "recovery"))), 8154 per_milli/10, per_milli % 10, 8155 (unsigned long long) resync/2, 8156 (unsigned long long) max_sectors/2); 8157 8158 /* 8159 * dt: time from mark until now 8160 * db: blocks written from mark until now 8161 * rt: remaining time 8162 * 8163 * rt is a sector_t, which is always 64bit now. We are keeping 8164 * the original algorithm, but it is not really necessary. 8165 * 8166 * Original algorithm: 8167 * So we divide before multiply in case it is 32bit and close 8168 * to the limit. 8169 * We scale the divisor (db) by 32 to avoid losing precision 8170 * near the end of resync when the number of remaining sectors 8171 * is close to 'db'. 8172 * We then divide rt by 32 after multiplying by db to compensate. 8173 * The '+1' avoids division by zero if db is very small. 8174 */ 8175 dt = ((jiffies - mddev->resync_mark) / HZ); 8176 if (!dt) dt++; 8177 8178 curr_mark_cnt = mddev->curr_mark_cnt; 8179 recovery_active = atomic_read(&mddev->recovery_active); 8180 resync_mark_cnt = mddev->resync_mark_cnt; 8181 8182 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8183 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8184 8185 rt = max_sectors - resync; /* number of remaining sectors */ 8186 rt = div64_u64(rt, db/32+1); 8187 rt *= dt; 8188 rt >>= 5; 8189 8190 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8191 ((unsigned long)rt % 60)/6); 8192 8193 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8194 return 1; 8195 } 8196 8197 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8198 { 8199 struct list_head *tmp; 8200 loff_t l = *pos; 8201 struct mddev *mddev; 8202 8203 if (l == 0x10000) { 8204 ++*pos; 8205 return (void *)2; 8206 } 8207 if (l > 0x10000) 8208 return NULL; 8209 if (!l--) 8210 /* header */ 8211 return (void*)1; 8212 8213 spin_lock(&all_mddevs_lock); 8214 list_for_each(tmp,&all_mddevs) 8215 if (!l--) { 8216 mddev = list_entry(tmp, struct mddev, all_mddevs); 8217 if (!mddev_get(mddev)) 8218 continue; 8219 spin_unlock(&all_mddevs_lock); 8220 return mddev; 8221 } 8222 spin_unlock(&all_mddevs_lock); 8223 if (!l--) 8224 return (void*)2;/* tail */ 8225 return NULL; 8226 } 8227 8228 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8229 { 8230 struct list_head *tmp; 8231 struct mddev *next_mddev, *mddev = v; 8232 struct mddev *to_put = NULL; 8233 8234 ++*pos; 8235 if (v == (void*)2) 8236 return NULL; 8237 8238 spin_lock(&all_mddevs_lock); 8239 if (v == (void*)1) { 8240 tmp = all_mddevs.next; 8241 } else { 8242 to_put = mddev; 8243 tmp = mddev->all_mddevs.next; 8244 } 8245 8246 for (;;) { 8247 if (tmp == &all_mddevs) { 8248 next_mddev = (void*)2; 8249 *pos = 0x10000; 8250 break; 8251 } 8252 next_mddev = list_entry(tmp, struct mddev, all_mddevs); 8253 if (mddev_get(next_mddev)) 8254 break; 8255 mddev = next_mddev; 8256 tmp = mddev->all_mddevs.next; 8257 } 8258 spin_unlock(&all_mddevs_lock); 8259 8260 if (to_put) 8261 mddev_put(to_put); 8262 return next_mddev; 8263 8264 } 8265 8266 static void md_seq_stop(struct seq_file *seq, void *v) 8267 { 8268 struct mddev *mddev = v; 8269 8270 if (mddev && v != (void*)1 && v != (void*)2) 8271 mddev_put(mddev); 8272 } 8273 8274 static int md_seq_show(struct seq_file *seq, void *v) 8275 { 8276 struct mddev *mddev = v; 8277 sector_t sectors; 8278 struct md_rdev *rdev; 8279 8280 if (v == (void*)1) { 8281 struct md_personality *pers; 8282 seq_printf(seq, "Personalities : "); 8283 spin_lock(&pers_lock); 8284 list_for_each_entry(pers, &pers_list, list) 8285 seq_printf(seq, "[%s] ", pers->name); 8286 8287 spin_unlock(&pers_lock); 8288 seq_printf(seq, "\n"); 8289 seq->poll_event = atomic_read(&md_event_count); 8290 return 0; 8291 } 8292 if (v == (void*)2) { 8293 status_unused(seq); 8294 return 0; 8295 } 8296 8297 spin_lock(&mddev->lock); 8298 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8299 seq_printf(seq, "%s : %sactive", mdname(mddev), 8300 mddev->pers ? "" : "in"); 8301 if (mddev->pers) { 8302 if (mddev->ro == MD_RDONLY) 8303 seq_printf(seq, " (read-only)"); 8304 if (mddev->ro == MD_AUTO_READ) 8305 seq_printf(seq, " (auto-read-only)"); 8306 seq_printf(seq, " %s", mddev->pers->name); 8307 } 8308 8309 sectors = 0; 8310 rcu_read_lock(); 8311 rdev_for_each_rcu(rdev, mddev) { 8312 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8313 8314 if (test_bit(WriteMostly, &rdev->flags)) 8315 seq_printf(seq, "(W)"); 8316 if (test_bit(Journal, &rdev->flags)) 8317 seq_printf(seq, "(J)"); 8318 if (test_bit(Faulty, &rdev->flags)) { 8319 seq_printf(seq, "(F)"); 8320 continue; 8321 } 8322 if (rdev->raid_disk < 0) 8323 seq_printf(seq, "(S)"); /* spare */ 8324 if (test_bit(Replacement, &rdev->flags)) 8325 seq_printf(seq, "(R)"); 8326 sectors += rdev->sectors; 8327 } 8328 rcu_read_unlock(); 8329 8330 if (!list_empty(&mddev->disks)) { 8331 if (mddev->pers) 8332 seq_printf(seq, "\n %llu blocks", 8333 (unsigned long long) 8334 mddev->array_sectors / 2); 8335 else 8336 seq_printf(seq, "\n %llu blocks", 8337 (unsigned long long)sectors / 2); 8338 } 8339 if (mddev->persistent) { 8340 if (mddev->major_version != 0 || 8341 mddev->minor_version != 90) { 8342 seq_printf(seq," super %d.%d", 8343 mddev->major_version, 8344 mddev->minor_version); 8345 } 8346 } else if (mddev->external) 8347 seq_printf(seq, " super external:%s", 8348 mddev->metadata_type); 8349 else 8350 seq_printf(seq, " super non-persistent"); 8351 8352 if (mddev->pers) { 8353 mddev->pers->status(seq, mddev); 8354 seq_printf(seq, "\n "); 8355 if (mddev->pers->sync_request) { 8356 if (status_resync(seq, mddev)) 8357 seq_printf(seq, "\n "); 8358 } 8359 } else 8360 seq_printf(seq, "\n "); 8361 8362 md_bitmap_status(seq, mddev->bitmap); 8363 8364 seq_printf(seq, "\n"); 8365 } 8366 spin_unlock(&mddev->lock); 8367 8368 return 0; 8369 } 8370 8371 static const struct seq_operations md_seq_ops = { 8372 .start = md_seq_start, 8373 .next = md_seq_next, 8374 .stop = md_seq_stop, 8375 .show = md_seq_show, 8376 }; 8377 8378 static int md_seq_open(struct inode *inode, struct file *file) 8379 { 8380 struct seq_file *seq; 8381 int error; 8382 8383 error = seq_open(file, &md_seq_ops); 8384 if (error) 8385 return error; 8386 8387 seq = file->private_data; 8388 seq->poll_event = atomic_read(&md_event_count); 8389 return error; 8390 } 8391 8392 static int md_unloading; 8393 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8394 { 8395 struct seq_file *seq = filp->private_data; 8396 __poll_t mask; 8397 8398 if (md_unloading) 8399 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8400 poll_wait(filp, &md_event_waiters, wait); 8401 8402 /* always allow read */ 8403 mask = EPOLLIN | EPOLLRDNORM; 8404 8405 if (seq->poll_event != atomic_read(&md_event_count)) 8406 mask |= EPOLLERR | EPOLLPRI; 8407 return mask; 8408 } 8409 8410 static const struct proc_ops mdstat_proc_ops = { 8411 .proc_open = md_seq_open, 8412 .proc_read = seq_read, 8413 .proc_lseek = seq_lseek, 8414 .proc_release = seq_release, 8415 .proc_poll = mdstat_poll, 8416 }; 8417 8418 int register_md_personality(struct md_personality *p) 8419 { 8420 pr_debug("md: %s personality registered for level %d\n", 8421 p->name, p->level); 8422 spin_lock(&pers_lock); 8423 list_add_tail(&p->list, &pers_list); 8424 spin_unlock(&pers_lock); 8425 return 0; 8426 } 8427 EXPORT_SYMBOL(register_md_personality); 8428 8429 int unregister_md_personality(struct md_personality *p) 8430 { 8431 pr_debug("md: %s personality unregistered\n", p->name); 8432 spin_lock(&pers_lock); 8433 list_del_init(&p->list); 8434 spin_unlock(&pers_lock); 8435 return 0; 8436 } 8437 EXPORT_SYMBOL(unregister_md_personality); 8438 8439 int register_md_cluster_operations(struct md_cluster_operations *ops, 8440 struct module *module) 8441 { 8442 int ret = 0; 8443 spin_lock(&pers_lock); 8444 if (md_cluster_ops != NULL) 8445 ret = -EALREADY; 8446 else { 8447 md_cluster_ops = ops; 8448 md_cluster_mod = module; 8449 } 8450 spin_unlock(&pers_lock); 8451 return ret; 8452 } 8453 EXPORT_SYMBOL(register_md_cluster_operations); 8454 8455 int unregister_md_cluster_operations(void) 8456 { 8457 spin_lock(&pers_lock); 8458 md_cluster_ops = NULL; 8459 spin_unlock(&pers_lock); 8460 return 0; 8461 } 8462 EXPORT_SYMBOL(unregister_md_cluster_operations); 8463 8464 int md_setup_cluster(struct mddev *mddev, int nodes) 8465 { 8466 int ret; 8467 if (!md_cluster_ops) 8468 request_module("md-cluster"); 8469 spin_lock(&pers_lock); 8470 /* ensure module won't be unloaded */ 8471 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8472 pr_warn("can't find md-cluster module or get its reference.\n"); 8473 spin_unlock(&pers_lock); 8474 return -ENOENT; 8475 } 8476 spin_unlock(&pers_lock); 8477 8478 ret = md_cluster_ops->join(mddev, nodes); 8479 if (!ret) 8480 mddev->safemode_delay = 0; 8481 return ret; 8482 } 8483 8484 void md_cluster_stop(struct mddev *mddev) 8485 { 8486 if (!md_cluster_ops) 8487 return; 8488 md_cluster_ops->leave(mddev); 8489 module_put(md_cluster_mod); 8490 } 8491 8492 static int is_mddev_idle(struct mddev *mddev, int init) 8493 { 8494 struct md_rdev *rdev; 8495 int idle; 8496 int curr_events; 8497 8498 idle = 1; 8499 rcu_read_lock(); 8500 rdev_for_each_rcu(rdev, mddev) { 8501 struct gendisk *disk = rdev->bdev->bd_disk; 8502 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8503 atomic_read(&disk->sync_io); 8504 /* sync IO will cause sync_io to increase before the disk_stats 8505 * as sync_io is counted when a request starts, and 8506 * disk_stats is counted when it completes. 8507 * So resync activity will cause curr_events to be smaller than 8508 * when there was no such activity. 8509 * non-sync IO will cause disk_stat to increase without 8510 * increasing sync_io so curr_events will (eventually) 8511 * be larger than it was before. Once it becomes 8512 * substantially larger, the test below will cause 8513 * the array to appear non-idle, and resync will slow 8514 * down. 8515 * If there is a lot of outstanding resync activity when 8516 * we set last_event to curr_events, then all that activity 8517 * completing might cause the array to appear non-idle 8518 * and resync will be slowed down even though there might 8519 * not have been non-resync activity. This will only 8520 * happen once though. 'last_events' will soon reflect 8521 * the state where there is little or no outstanding 8522 * resync requests, and further resync activity will 8523 * always make curr_events less than last_events. 8524 * 8525 */ 8526 if (init || curr_events - rdev->last_events > 64) { 8527 rdev->last_events = curr_events; 8528 idle = 0; 8529 } 8530 } 8531 rcu_read_unlock(); 8532 return idle; 8533 } 8534 8535 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8536 { 8537 /* another "blocks" (512byte) blocks have been synced */ 8538 atomic_sub(blocks, &mddev->recovery_active); 8539 wake_up(&mddev->recovery_wait); 8540 if (!ok) { 8541 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8542 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8543 md_wakeup_thread(mddev->thread); 8544 // stop recovery, signal do_sync .... 8545 } 8546 } 8547 EXPORT_SYMBOL(md_done_sync); 8548 8549 /* md_write_start(mddev, bi) 8550 * If we need to update some array metadata (e.g. 'active' flag 8551 * in superblock) before writing, schedule a superblock update 8552 * and wait for it to complete. 8553 * A return value of 'false' means that the write wasn't recorded 8554 * and cannot proceed as the array is being suspend. 8555 */ 8556 bool md_write_start(struct mddev *mddev, struct bio *bi) 8557 { 8558 int did_change = 0; 8559 8560 if (bio_data_dir(bi) != WRITE) 8561 return true; 8562 8563 BUG_ON(mddev->ro == MD_RDONLY); 8564 if (mddev->ro == MD_AUTO_READ) { 8565 /* need to switch to read/write */ 8566 mddev->ro = MD_RDWR; 8567 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8568 md_wakeup_thread(mddev->thread); 8569 md_wakeup_thread(mddev->sync_thread); 8570 did_change = 1; 8571 } 8572 rcu_read_lock(); 8573 percpu_ref_get(&mddev->writes_pending); 8574 smp_mb(); /* Match smp_mb in set_in_sync() */ 8575 if (mddev->safemode == 1) 8576 mddev->safemode = 0; 8577 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8578 if (mddev->in_sync || mddev->sync_checkers) { 8579 spin_lock(&mddev->lock); 8580 if (mddev->in_sync) { 8581 mddev->in_sync = 0; 8582 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8583 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8584 md_wakeup_thread(mddev->thread); 8585 did_change = 1; 8586 } 8587 spin_unlock(&mddev->lock); 8588 } 8589 rcu_read_unlock(); 8590 if (did_change) 8591 sysfs_notify_dirent_safe(mddev->sysfs_state); 8592 if (!mddev->has_superblocks) 8593 return true; 8594 wait_event(mddev->sb_wait, 8595 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8596 is_md_suspended(mddev)); 8597 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8598 percpu_ref_put(&mddev->writes_pending); 8599 return false; 8600 } 8601 return true; 8602 } 8603 EXPORT_SYMBOL(md_write_start); 8604 8605 /* md_write_inc can only be called when md_write_start() has 8606 * already been called at least once of the current request. 8607 * It increments the counter and is useful when a single request 8608 * is split into several parts. Each part causes an increment and 8609 * so needs a matching md_write_end(). 8610 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8611 * a spinlocked region. 8612 */ 8613 void md_write_inc(struct mddev *mddev, struct bio *bi) 8614 { 8615 if (bio_data_dir(bi) != WRITE) 8616 return; 8617 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev)); 8618 percpu_ref_get(&mddev->writes_pending); 8619 } 8620 EXPORT_SYMBOL(md_write_inc); 8621 8622 void md_write_end(struct mddev *mddev) 8623 { 8624 percpu_ref_put(&mddev->writes_pending); 8625 8626 if (mddev->safemode == 2) 8627 md_wakeup_thread(mddev->thread); 8628 else if (mddev->safemode_delay) 8629 /* The roundup() ensures this only performs locking once 8630 * every ->safemode_delay jiffies 8631 */ 8632 mod_timer(&mddev->safemode_timer, 8633 roundup(jiffies, mddev->safemode_delay) + 8634 mddev->safemode_delay); 8635 } 8636 8637 EXPORT_SYMBOL(md_write_end); 8638 8639 /* This is used by raid0 and raid10 */ 8640 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8641 struct bio *bio, sector_t start, sector_t size) 8642 { 8643 struct bio *discard_bio = NULL; 8644 8645 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8646 &discard_bio) || !discard_bio) 8647 return; 8648 8649 bio_chain(discard_bio, bio); 8650 bio_clone_blkg_association(discard_bio, bio); 8651 if (mddev->gendisk) 8652 trace_block_bio_remap(discard_bio, 8653 disk_devt(mddev->gendisk), 8654 bio->bi_iter.bi_sector); 8655 submit_bio_noacct(discard_bio); 8656 } 8657 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8658 8659 static void md_end_clone_io(struct bio *bio) 8660 { 8661 struct md_io_clone *md_io_clone = bio->bi_private; 8662 struct bio *orig_bio = md_io_clone->orig_bio; 8663 struct mddev *mddev = md_io_clone->mddev; 8664 8665 orig_bio->bi_status = bio->bi_status; 8666 8667 if (md_io_clone->start_time) 8668 bio_end_io_acct(orig_bio, md_io_clone->start_time); 8669 8670 bio_put(bio); 8671 bio_endio(orig_bio); 8672 percpu_ref_put(&mddev->active_io); 8673 } 8674 8675 static void md_clone_bio(struct mddev *mddev, struct bio **bio) 8676 { 8677 struct block_device *bdev = (*bio)->bi_bdev; 8678 struct md_io_clone *md_io_clone; 8679 struct bio *clone = 8680 bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_clone_set); 8681 8682 md_io_clone = container_of(clone, struct md_io_clone, bio_clone); 8683 md_io_clone->orig_bio = *bio; 8684 md_io_clone->mddev = mddev; 8685 if (blk_queue_io_stat(bdev->bd_disk->queue)) 8686 md_io_clone->start_time = bio_start_io_acct(*bio); 8687 8688 clone->bi_end_io = md_end_clone_io; 8689 clone->bi_private = md_io_clone; 8690 *bio = clone; 8691 } 8692 8693 void md_account_bio(struct mddev *mddev, struct bio **bio) 8694 { 8695 percpu_ref_get(&mddev->active_io); 8696 md_clone_bio(mddev, bio); 8697 } 8698 EXPORT_SYMBOL_GPL(md_account_bio); 8699 8700 /* md_allow_write(mddev) 8701 * Calling this ensures that the array is marked 'active' so that writes 8702 * may proceed without blocking. It is important to call this before 8703 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8704 * Must be called with mddev_lock held. 8705 */ 8706 void md_allow_write(struct mddev *mddev) 8707 { 8708 if (!mddev->pers) 8709 return; 8710 if (!md_is_rdwr(mddev)) 8711 return; 8712 if (!mddev->pers->sync_request) 8713 return; 8714 8715 spin_lock(&mddev->lock); 8716 if (mddev->in_sync) { 8717 mddev->in_sync = 0; 8718 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8719 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8720 if (mddev->safemode_delay && 8721 mddev->safemode == 0) 8722 mddev->safemode = 1; 8723 spin_unlock(&mddev->lock); 8724 md_update_sb(mddev, 0); 8725 sysfs_notify_dirent_safe(mddev->sysfs_state); 8726 /* wait for the dirty state to be recorded in the metadata */ 8727 wait_event(mddev->sb_wait, 8728 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8729 } else 8730 spin_unlock(&mddev->lock); 8731 } 8732 EXPORT_SYMBOL_GPL(md_allow_write); 8733 8734 #define SYNC_MARKS 10 8735 #define SYNC_MARK_STEP (3*HZ) 8736 #define UPDATE_FREQUENCY (5*60*HZ) 8737 void md_do_sync(struct md_thread *thread) 8738 { 8739 struct mddev *mddev = thread->mddev; 8740 struct mddev *mddev2; 8741 unsigned int currspeed = 0, window; 8742 sector_t max_sectors,j, io_sectors, recovery_done; 8743 unsigned long mark[SYNC_MARKS]; 8744 unsigned long update_time; 8745 sector_t mark_cnt[SYNC_MARKS]; 8746 int last_mark,m; 8747 sector_t last_check; 8748 int skipped = 0; 8749 struct md_rdev *rdev; 8750 char *desc, *action = NULL; 8751 struct blk_plug plug; 8752 int ret; 8753 8754 /* just incase thread restarts... */ 8755 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8756 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8757 return; 8758 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */ 8759 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8760 return; 8761 } 8762 8763 if (mddev_is_clustered(mddev)) { 8764 ret = md_cluster_ops->resync_start(mddev); 8765 if (ret) 8766 goto skip; 8767 8768 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8769 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8770 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8771 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8772 && ((unsigned long long)mddev->curr_resync_completed 8773 < (unsigned long long)mddev->resync_max_sectors)) 8774 goto skip; 8775 } 8776 8777 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8778 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8779 desc = "data-check"; 8780 action = "check"; 8781 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8782 desc = "requested-resync"; 8783 action = "repair"; 8784 } else 8785 desc = "resync"; 8786 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8787 desc = "reshape"; 8788 else 8789 desc = "recovery"; 8790 8791 mddev->last_sync_action = action ?: desc; 8792 8793 /* 8794 * Before starting a resync we must have set curr_resync to 8795 * 2, and then checked that every "conflicting" array has curr_resync 8796 * less than ours. When we find one that is the same or higher 8797 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8798 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8799 * This will mean we have to start checking from the beginning again. 8800 * 8801 */ 8802 8803 do { 8804 int mddev2_minor = -1; 8805 mddev->curr_resync = MD_RESYNC_DELAYED; 8806 8807 try_again: 8808 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8809 goto skip; 8810 spin_lock(&all_mddevs_lock); 8811 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8812 if (test_bit(MD_DELETED, &mddev2->flags)) 8813 continue; 8814 if (mddev2 == mddev) 8815 continue; 8816 if (!mddev->parallel_resync 8817 && mddev2->curr_resync 8818 && match_mddev_units(mddev, mddev2)) { 8819 DEFINE_WAIT(wq); 8820 if (mddev < mddev2 && 8821 mddev->curr_resync == MD_RESYNC_DELAYED) { 8822 /* arbitrarily yield */ 8823 mddev->curr_resync = MD_RESYNC_YIELDED; 8824 wake_up(&resync_wait); 8825 } 8826 if (mddev > mddev2 && 8827 mddev->curr_resync == MD_RESYNC_YIELDED) 8828 /* no need to wait here, we can wait the next 8829 * time 'round when curr_resync == 2 8830 */ 8831 continue; 8832 /* We need to wait 'interruptible' so as not to 8833 * contribute to the load average, and not to 8834 * be caught by 'softlockup' 8835 */ 8836 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8837 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8838 mddev2->curr_resync >= mddev->curr_resync) { 8839 if (mddev2_minor != mddev2->md_minor) { 8840 mddev2_minor = mddev2->md_minor; 8841 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8842 desc, mdname(mddev), 8843 mdname(mddev2)); 8844 } 8845 spin_unlock(&all_mddevs_lock); 8846 8847 if (signal_pending(current)) 8848 flush_signals(current); 8849 schedule(); 8850 finish_wait(&resync_wait, &wq); 8851 goto try_again; 8852 } 8853 finish_wait(&resync_wait, &wq); 8854 } 8855 } 8856 spin_unlock(&all_mddevs_lock); 8857 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8858 8859 j = 0; 8860 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8861 /* resync follows the size requested by the personality, 8862 * which defaults to physical size, but can be virtual size 8863 */ 8864 max_sectors = mddev->resync_max_sectors; 8865 atomic64_set(&mddev->resync_mismatches, 0); 8866 /* we don't use the checkpoint if there's a bitmap */ 8867 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8868 j = mddev->resync_min; 8869 else if (!mddev->bitmap) 8870 j = mddev->recovery_cp; 8871 8872 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8873 max_sectors = mddev->resync_max_sectors; 8874 /* 8875 * If the original node aborts reshaping then we continue the 8876 * reshaping, so set j again to avoid restart reshape from the 8877 * first beginning 8878 */ 8879 if (mddev_is_clustered(mddev) && 8880 mddev->reshape_position != MaxSector) 8881 j = mddev->reshape_position; 8882 } else { 8883 /* recovery follows the physical size of devices */ 8884 max_sectors = mddev->dev_sectors; 8885 j = MaxSector; 8886 rcu_read_lock(); 8887 rdev_for_each_rcu(rdev, mddev) 8888 if (rdev->raid_disk >= 0 && 8889 !test_bit(Journal, &rdev->flags) && 8890 !test_bit(Faulty, &rdev->flags) && 8891 !test_bit(In_sync, &rdev->flags) && 8892 rdev->recovery_offset < j) 8893 j = rdev->recovery_offset; 8894 rcu_read_unlock(); 8895 8896 /* If there is a bitmap, we need to make sure all 8897 * writes that started before we added a spare 8898 * complete before we start doing a recovery. 8899 * Otherwise the write might complete and (via 8900 * bitmap_endwrite) set a bit in the bitmap after the 8901 * recovery has checked that bit and skipped that 8902 * region. 8903 */ 8904 if (mddev->bitmap) { 8905 mddev->pers->quiesce(mddev, 1); 8906 mddev->pers->quiesce(mddev, 0); 8907 } 8908 } 8909 8910 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8911 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8912 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8913 speed_max(mddev), desc); 8914 8915 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8916 8917 io_sectors = 0; 8918 for (m = 0; m < SYNC_MARKS; m++) { 8919 mark[m] = jiffies; 8920 mark_cnt[m] = io_sectors; 8921 } 8922 last_mark = 0; 8923 mddev->resync_mark = mark[last_mark]; 8924 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8925 8926 /* 8927 * Tune reconstruction: 8928 */ 8929 window = 32 * (PAGE_SIZE / 512); 8930 pr_debug("md: using %dk window, over a total of %lluk.\n", 8931 window/2, (unsigned long long)max_sectors/2); 8932 8933 atomic_set(&mddev->recovery_active, 0); 8934 last_check = 0; 8935 8936 if (j >= MD_RESYNC_ACTIVE) { 8937 pr_debug("md: resuming %s of %s from checkpoint.\n", 8938 desc, mdname(mddev)); 8939 mddev->curr_resync = j; 8940 } else 8941 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 8942 mddev->curr_resync_completed = j; 8943 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8944 md_new_event(); 8945 update_time = jiffies; 8946 8947 blk_start_plug(&plug); 8948 while (j < max_sectors) { 8949 sector_t sectors; 8950 8951 skipped = 0; 8952 8953 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8954 ((mddev->curr_resync > mddev->curr_resync_completed && 8955 (mddev->curr_resync - mddev->curr_resync_completed) 8956 > (max_sectors >> 4)) || 8957 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8958 (j - mddev->curr_resync_completed)*2 8959 >= mddev->resync_max - mddev->curr_resync_completed || 8960 mddev->curr_resync_completed > mddev->resync_max 8961 )) { 8962 /* time to update curr_resync_completed */ 8963 wait_event(mddev->recovery_wait, 8964 atomic_read(&mddev->recovery_active) == 0); 8965 mddev->curr_resync_completed = j; 8966 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8967 j > mddev->recovery_cp) 8968 mddev->recovery_cp = j; 8969 update_time = jiffies; 8970 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8971 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8972 } 8973 8974 while (j >= mddev->resync_max && 8975 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8976 /* As this condition is controlled by user-space, 8977 * we can block indefinitely, so use '_interruptible' 8978 * to avoid triggering warnings. 8979 */ 8980 flush_signals(current); /* just in case */ 8981 wait_event_interruptible(mddev->recovery_wait, 8982 mddev->resync_max > j 8983 || test_bit(MD_RECOVERY_INTR, 8984 &mddev->recovery)); 8985 } 8986 8987 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8988 break; 8989 8990 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8991 if (sectors == 0) { 8992 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8993 break; 8994 } 8995 8996 if (!skipped) { /* actual IO requested */ 8997 io_sectors += sectors; 8998 atomic_add(sectors, &mddev->recovery_active); 8999 } 9000 9001 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9002 break; 9003 9004 j += sectors; 9005 if (j > max_sectors) 9006 /* when skipping, extra large numbers can be returned. */ 9007 j = max_sectors; 9008 if (j >= MD_RESYNC_ACTIVE) 9009 mddev->curr_resync = j; 9010 mddev->curr_mark_cnt = io_sectors; 9011 if (last_check == 0) 9012 /* this is the earliest that rebuild will be 9013 * visible in /proc/mdstat 9014 */ 9015 md_new_event(); 9016 9017 if (last_check + window > io_sectors || j == max_sectors) 9018 continue; 9019 9020 last_check = io_sectors; 9021 repeat: 9022 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 9023 /* step marks */ 9024 int next = (last_mark+1) % SYNC_MARKS; 9025 9026 mddev->resync_mark = mark[next]; 9027 mddev->resync_mark_cnt = mark_cnt[next]; 9028 mark[next] = jiffies; 9029 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 9030 last_mark = next; 9031 } 9032 9033 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9034 break; 9035 9036 /* 9037 * this loop exits only if either when we are slower than 9038 * the 'hard' speed limit, or the system was IO-idle for 9039 * a jiffy. 9040 * the system might be non-idle CPU-wise, but we only care 9041 * about not overloading the IO subsystem. (things like an 9042 * e2fsck being done on the RAID array should execute fast) 9043 */ 9044 cond_resched(); 9045 9046 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9047 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9048 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9049 9050 if (currspeed > speed_min(mddev)) { 9051 if (currspeed > speed_max(mddev)) { 9052 msleep(500); 9053 goto repeat; 9054 } 9055 if (!is_mddev_idle(mddev, 0)) { 9056 /* 9057 * Give other IO more of a chance. 9058 * The faster the devices, the less we wait. 9059 */ 9060 wait_event(mddev->recovery_wait, 9061 !atomic_read(&mddev->recovery_active)); 9062 } 9063 } 9064 } 9065 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9066 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9067 ? "interrupted" : "done"); 9068 /* 9069 * this also signals 'finished resyncing' to md_stop 9070 */ 9071 blk_finish_plug(&plug); 9072 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9073 9074 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9075 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9076 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9077 mddev->curr_resync_completed = mddev->curr_resync; 9078 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9079 } 9080 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9081 9082 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9083 mddev->curr_resync > MD_RESYNC_ACTIVE) { 9084 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9085 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9086 if (mddev->curr_resync >= mddev->recovery_cp) { 9087 pr_debug("md: checkpointing %s of %s.\n", 9088 desc, mdname(mddev)); 9089 if (test_bit(MD_RECOVERY_ERROR, 9090 &mddev->recovery)) 9091 mddev->recovery_cp = 9092 mddev->curr_resync_completed; 9093 else 9094 mddev->recovery_cp = 9095 mddev->curr_resync; 9096 } 9097 } else 9098 mddev->recovery_cp = MaxSector; 9099 } else { 9100 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9101 mddev->curr_resync = MaxSector; 9102 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9103 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9104 rcu_read_lock(); 9105 rdev_for_each_rcu(rdev, mddev) 9106 if (rdev->raid_disk >= 0 && 9107 mddev->delta_disks >= 0 && 9108 !test_bit(Journal, &rdev->flags) && 9109 !test_bit(Faulty, &rdev->flags) && 9110 !test_bit(In_sync, &rdev->flags) && 9111 rdev->recovery_offset < mddev->curr_resync) 9112 rdev->recovery_offset = mddev->curr_resync; 9113 rcu_read_unlock(); 9114 } 9115 } 9116 } 9117 skip: 9118 /* set CHANGE_PENDING here since maybe another update is needed, 9119 * so other nodes are informed. It should be harmless for normal 9120 * raid */ 9121 set_mask_bits(&mddev->sb_flags, 0, 9122 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9123 9124 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9125 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9126 mddev->delta_disks > 0 && 9127 mddev->pers->finish_reshape && 9128 mddev->pers->size && 9129 mddev->queue) { 9130 mddev_lock_nointr(mddev); 9131 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9132 mddev_unlock(mddev); 9133 if (!mddev_is_clustered(mddev)) 9134 set_capacity_and_notify(mddev->gendisk, 9135 mddev->array_sectors); 9136 } 9137 9138 spin_lock(&mddev->lock); 9139 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9140 /* We completed so min/max setting can be forgotten if used. */ 9141 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9142 mddev->resync_min = 0; 9143 mddev->resync_max = MaxSector; 9144 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9145 mddev->resync_min = mddev->curr_resync_completed; 9146 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9147 mddev->curr_resync = MD_RESYNC_NONE; 9148 spin_unlock(&mddev->lock); 9149 9150 wake_up(&resync_wait); 9151 wake_up(&mddev->sb_wait); 9152 md_wakeup_thread(mddev->thread); 9153 return; 9154 } 9155 EXPORT_SYMBOL_GPL(md_do_sync); 9156 9157 static int remove_and_add_spares(struct mddev *mddev, 9158 struct md_rdev *this) 9159 { 9160 struct md_rdev *rdev; 9161 int spares = 0; 9162 int removed = 0; 9163 bool remove_some = false; 9164 9165 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9166 /* Mustn't remove devices when resync thread is running */ 9167 return 0; 9168 9169 rdev_for_each(rdev, mddev) { 9170 if ((this == NULL || rdev == this) && 9171 rdev->raid_disk >= 0 && 9172 !test_bit(Blocked, &rdev->flags) && 9173 test_bit(Faulty, &rdev->flags) && 9174 atomic_read(&rdev->nr_pending)==0) { 9175 /* Faulty non-Blocked devices with nr_pending == 0 9176 * never get nr_pending incremented, 9177 * never get Faulty cleared, and never get Blocked set. 9178 * So we can synchronize_rcu now rather than once per device 9179 */ 9180 remove_some = true; 9181 set_bit(RemoveSynchronized, &rdev->flags); 9182 } 9183 } 9184 9185 if (remove_some) 9186 synchronize_rcu(); 9187 rdev_for_each(rdev, mddev) { 9188 if ((this == NULL || rdev == this) && 9189 rdev->raid_disk >= 0 && 9190 !test_bit(Blocked, &rdev->flags) && 9191 ((test_bit(RemoveSynchronized, &rdev->flags) || 9192 (!test_bit(In_sync, &rdev->flags) && 9193 !test_bit(Journal, &rdev->flags))) && 9194 atomic_read(&rdev->nr_pending)==0)) { 9195 if (mddev->pers->hot_remove_disk( 9196 mddev, rdev) == 0) { 9197 sysfs_unlink_rdev(mddev, rdev); 9198 rdev->saved_raid_disk = rdev->raid_disk; 9199 rdev->raid_disk = -1; 9200 removed++; 9201 } 9202 } 9203 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9204 clear_bit(RemoveSynchronized, &rdev->flags); 9205 } 9206 9207 if (removed && mddev->kobj.sd) 9208 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9209 9210 if (this && removed) 9211 goto no_add; 9212 9213 rdev_for_each(rdev, mddev) { 9214 if (this && this != rdev) 9215 continue; 9216 if (test_bit(Candidate, &rdev->flags)) 9217 continue; 9218 if (rdev->raid_disk >= 0 && 9219 !test_bit(In_sync, &rdev->flags) && 9220 !test_bit(Journal, &rdev->flags) && 9221 !test_bit(Faulty, &rdev->flags)) 9222 spares++; 9223 if (rdev->raid_disk >= 0) 9224 continue; 9225 if (test_bit(Faulty, &rdev->flags)) 9226 continue; 9227 if (!test_bit(Journal, &rdev->flags)) { 9228 if (!md_is_rdwr(mddev) && 9229 !(rdev->saved_raid_disk >= 0 && 9230 !test_bit(Bitmap_sync, &rdev->flags))) 9231 continue; 9232 9233 rdev->recovery_offset = 0; 9234 } 9235 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9236 /* failure here is OK */ 9237 sysfs_link_rdev(mddev, rdev); 9238 if (!test_bit(Journal, &rdev->flags)) 9239 spares++; 9240 md_new_event(); 9241 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9242 } 9243 } 9244 no_add: 9245 if (removed) 9246 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9247 return spares; 9248 } 9249 9250 static void md_start_sync(struct work_struct *ws) 9251 { 9252 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9253 9254 rcu_assign_pointer(mddev->sync_thread, 9255 md_register_thread(md_do_sync, mddev, "resync")); 9256 if (!mddev->sync_thread) { 9257 pr_warn("%s: could not start resync thread...\n", 9258 mdname(mddev)); 9259 /* leave the spares where they are, it shouldn't hurt */ 9260 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9261 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9262 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9263 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9264 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9265 wake_up(&resync_wait); 9266 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9267 &mddev->recovery)) 9268 if (mddev->sysfs_action) 9269 sysfs_notify_dirent_safe(mddev->sysfs_action); 9270 } else 9271 md_wakeup_thread(mddev->sync_thread); 9272 sysfs_notify_dirent_safe(mddev->sysfs_action); 9273 md_new_event(); 9274 } 9275 9276 /* 9277 * This routine is regularly called by all per-raid-array threads to 9278 * deal with generic issues like resync and super-block update. 9279 * Raid personalities that don't have a thread (linear/raid0) do not 9280 * need this as they never do any recovery or update the superblock. 9281 * 9282 * It does not do any resync itself, but rather "forks" off other threads 9283 * to do that as needed. 9284 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9285 * "->recovery" and create a thread at ->sync_thread. 9286 * When the thread finishes it sets MD_RECOVERY_DONE 9287 * and wakeups up this thread which will reap the thread and finish up. 9288 * This thread also removes any faulty devices (with nr_pending == 0). 9289 * 9290 * The overall approach is: 9291 * 1/ if the superblock needs updating, update it. 9292 * 2/ If a recovery thread is running, don't do anything else. 9293 * 3/ If recovery has finished, clean up, possibly marking spares active. 9294 * 4/ If there are any faulty devices, remove them. 9295 * 5/ If array is degraded, try to add spares devices 9296 * 6/ If array has spares or is not in-sync, start a resync thread. 9297 */ 9298 void md_check_recovery(struct mddev *mddev) 9299 { 9300 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9301 /* Write superblock - thread that called mddev_suspend() 9302 * holds reconfig_mutex for us. 9303 */ 9304 set_bit(MD_UPDATING_SB, &mddev->flags); 9305 smp_mb__after_atomic(); 9306 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9307 md_update_sb(mddev, 0); 9308 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9309 wake_up(&mddev->sb_wait); 9310 } 9311 9312 if (is_md_suspended(mddev)) 9313 return; 9314 9315 if (mddev->bitmap) 9316 md_bitmap_daemon_work(mddev); 9317 9318 if (signal_pending(current)) { 9319 if (mddev->pers->sync_request && !mddev->external) { 9320 pr_debug("md: %s in immediate safe mode\n", 9321 mdname(mddev)); 9322 mddev->safemode = 2; 9323 } 9324 flush_signals(current); 9325 } 9326 9327 if (!md_is_rdwr(mddev) && 9328 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9329 return; 9330 if ( ! ( 9331 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9332 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9333 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9334 (mddev->external == 0 && mddev->safemode == 1) || 9335 (mddev->safemode == 2 9336 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9337 )) 9338 return; 9339 9340 if (mddev_trylock(mddev)) { 9341 int spares = 0; 9342 bool try_set_sync = mddev->safemode != 0; 9343 9344 if (!mddev->external && mddev->safemode == 1) 9345 mddev->safemode = 0; 9346 9347 if (!md_is_rdwr(mddev)) { 9348 struct md_rdev *rdev; 9349 if (!mddev->external && mddev->in_sync) 9350 /* 'Blocked' flag not needed as failed devices 9351 * will be recorded if array switched to read/write. 9352 * Leaving it set will prevent the device 9353 * from being removed. 9354 */ 9355 rdev_for_each(rdev, mddev) 9356 clear_bit(Blocked, &rdev->flags); 9357 /* On a read-only array we can: 9358 * - remove failed devices 9359 * - add already-in_sync devices if the array itself 9360 * is in-sync. 9361 * As we only add devices that are already in-sync, 9362 * we can activate the spares immediately. 9363 */ 9364 remove_and_add_spares(mddev, NULL); 9365 /* There is no thread, but we need to call 9366 * ->spare_active and clear saved_raid_disk 9367 */ 9368 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9369 md_reap_sync_thread(mddev); 9370 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9371 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9372 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9373 goto unlock; 9374 } 9375 9376 if (mddev_is_clustered(mddev)) { 9377 struct md_rdev *rdev, *tmp; 9378 /* kick the device if another node issued a 9379 * remove disk. 9380 */ 9381 rdev_for_each_safe(rdev, tmp, mddev) { 9382 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9383 rdev->raid_disk < 0) 9384 md_kick_rdev_from_array(rdev); 9385 } 9386 } 9387 9388 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9389 spin_lock(&mddev->lock); 9390 set_in_sync(mddev); 9391 spin_unlock(&mddev->lock); 9392 } 9393 9394 if (mddev->sb_flags) 9395 md_update_sb(mddev, 0); 9396 9397 /* 9398 * Never start a new sync thread if MD_RECOVERY_RUNNING is 9399 * still set. 9400 */ 9401 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 9402 if (!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9403 /* resync/recovery still happening */ 9404 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9405 goto unlock; 9406 } 9407 9408 if (WARN_ON_ONCE(!mddev->sync_thread)) 9409 goto unlock; 9410 9411 md_reap_sync_thread(mddev); 9412 goto unlock; 9413 } 9414 9415 /* Set RUNNING before clearing NEEDED to avoid 9416 * any transients in the value of "sync_action". 9417 */ 9418 mddev->curr_resync_completed = 0; 9419 spin_lock(&mddev->lock); 9420 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9421 spin_unlock(&mddev->lock); 9422 /* Clear some bits that don't mean anything, but 9423 * might be left set 9424 */ 9425 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9426 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9427 9428 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9429 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9430 goto not_running; 9431 /* no recovery is running. 9432 * remove any failed drives, then 9433 * add spares if possible. 9434 * Spares are also removed and re-added, to allow 9435 * the personality to fail the re-add. 9436 */ 9437 9438 if (mddev->reshape_position != MaxSector) { 9439 if (mddev->pers->check_reshape == NULL || 9440 mddev->pers->check_reshape(mddev) != 0) 9441 /* Cannot proceed */ 9442 goto not_running; 9443 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9444 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9445 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9446 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9447 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9448 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9449 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9450 } else if (mddev->recovery_cp < MaxSector) { 9451 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9452 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9453 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9454 /* nothing to be done ... */ 9455 goto not_running; 9456 9457 if (mddev->pers->sync_request) { 9458 if (spares) { 9459 /* We are adding a device or devices to an array 9460 * which has the bitmap stored on all devices. 9461 * So make sure all bitmap pages get written 9462 */ 9463 md_bitmap_write_all(mddev->bitmap); 9464 } 9465 INIT_WORK(&mddev->del_work, md_start_sync); 9466 queue_work(md_misc_wq, &mddev->del_work); 9467 goto unlock; 9468 } 9469 not_running: 9470 if (!mddev->sync_thread) { 9471 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9472 wake_up(&resync_wait); 9473 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9474 &mddev->recovery)) 9475 if (mddev->sysfs_action) 9476 sysfs_notify_dirent_safe(mddev->sysfs_action); 9477 } 9478 unlock: 9479 wake_up(&mddev->sb_wait); 9480 mddev_unlock(mddev); 9481 } 9482 } 9483 EXPORT_SYMBOL(md_check_recovery); 9484 9485 void md_reap_sync_thread(struct mddev *mddev) 9486 { 9487 struct md_rdev *rdev; 9488 sector_t old_dev_sectors = mddev->dev_sectors; 9489 bool is_reshaped = false; 9490 9491 /* resync has finished, collect result */ 9492 md_unregister_thread(mddev, &mddev->sync_thread); 9493 atomic_inc(&mddev->sync_seq); 9494 9495 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9496 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9497 mddev->degraded != mddev->raid_disks) { 9498 /* success...*/ 9499 /* activate any spares */ 9500 if (mddev->pers->spare_active(mddev)) { 9501 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9502 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9503 } 9504 } 9505 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9506 mddev->pers->finish_reshape) { 9507 mddev->pers->finish_reshape(mddev); 9508 if (mddev_is_clustered(mddev)) 9509 is_reshaped = true; 9510 } 9511 9512 /* If array is no-longer degraded, then any saved_raid_disk 9513 * information must be scrapped. 9514 */ 9515 if (!mddev->degraded) 9516 rdev_for_each(rdev, mddev) 9517 rdev->saved_raid_disk = -1; 9518 9519 md_update_sb(mddev, 1); 9520 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9521 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9522 * clustered raid */ 9523 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9524 md_cluster_ops->resync_finish(mddev); 9525 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9526 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9527 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9528 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9529 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9530 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9531 /* 9532 * We call md_cluster_ops->update_size here because sync_size could 9533 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9534 * so it is time to update size across cluster. 9535 */ 9536 if (mddev_is_clustered(mddev) && is_reshaped 9537 && !test_bit(MD_CLOSING, &mddev->flags)) 9538 md_cluster_ops->update_size(mddev, old_dev_sectors); 9539 /* flag recovery needed just to double check */ 9540 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9541 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9542 sysfs_notify_dirent_safe(mddev->sysfs_action); 9543 md_new_event(); 9544 if (mddev->event_work.func) 9545 queue_work(md_misc_wq, &mddev->event_work); 9546 wake_up(&resync_wait); 9547 } 9548 EXPORT_SYMBOL(md_reap_sync_thread); 9549 9550 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9551 { 9552 sysfs_notify_dirent_safe(rdev->sysfs_state); 9553 wait_event_timeout(rdev->blocked_wait, 9554 !test_bit(Blocked, &rdev->flags) && 9555 !test_bit(BlockedBadBlocks, &rdev->flags), 9556 msecs_to_jiffies(5000)); 9557 rdev_dec_pending(rdev, mddev); 9558 } 9559 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9560 9561 void md_finish_reshape(struct mddev *mddev) 9562 { 9563 /* called be personality module when reshape completes. */ 9564 struct md_rdev *rdev; 9565 9566 rdev_for_each(rdev, mddev) { 9567 if (rdev->data_offset > rdev->new_data_offset) 9568 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9569 else 9570 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9571 rdev->data_offset = rdev->new_data_offset; 9572 } 9573 } 9574 EXPORT_SYMBOL(md_finish_reshape); 9575 9576 /* Bad block management */ 9577 9578 /* Returns 1 on success, 0 on failure */ 9579 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9580 int is_new) 9581 { 9582 struct mddev *mddev = rdev->mddev; 9583 int rv; 9584 if (is_new) 9585 s += rdev->new_data_offset; 9586 else 9587 s += rdev->data_offset; 9588 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9589 if (rv == 0) { 9590 /* Make sure they get written out promptly */ 9591 if (test_bit(ExternalBbl, &rdev->flags)) 9592 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9593 sysfs_notify_dirent_safe(rdev->sysfs_state); 9594 set_mask_bits(&mddev->sb_flags, 0, 9595 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9596 md_wakeup_thread(rdev->mddev->thread); 9597 return 1; 9598 } else 9599 return 0; 9600 } 9601 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9602 9603 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9604 int is_new) 9605 { 9606 int rv; 9607 if (is_new) 9608 s += rdev->new_data_offset; 9609 else 9610 s += rdev->data_offset; 9611 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9612 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9613 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9614 return rv; 9615 } 9616 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9617 9618 static int md_notify_reboot(struct notifier_block *this, 9619 unsigned long code, void *x) 9620 { 9621 struct mddev *mddev, *n; 9622 int need_delay = 0; 9623 9624 spin_lock(&all_mddevs_lock); 9625 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9626 if (!mddev_get(mddev)) 9627 continue; 9628 spin_unlock(&all_mddevs_lock); 9629 if (mddev_trylock(mddev)) { 9630 if (mddev->pers) 9631 __md_stop_writes(mddev); 9632 if (mddev->persistent) 9633 mddev->safemode = 2; 9634 mddev_unlock(mddev); 9635 } 9636 need_delay = 1; 9637 mddev_put(mddev); 9638 spin_lock(&all_mddevs_lock); 9639 } 9640 spin_unlock(&all_mddevs_lock); 9641 9642 /* 9643 * certain more exotic SCSI devices are known to be 9644 * volatile wrt too early system reboots. While the 9645 * right place to handle this issue is the given 9646 * driver, we do want to have a safe RAID driver ... 9647 */ 9648 if (need_delay) 9649 msleep(1000); 9650 9651 return NOTIFY_DONE; 9652 } 9653 9654 static struct notifier_block md_notifier = { 9655 .notifier_call = md_notify_reboot, 9656 .next = NULL, 9657 .priority = INT_MAX, /* before any real devices */ 9658 }; 9659 9660 static void md_geninit(void) 9661 { 9662 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9663 9664 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9665 } 9666 9667 static int __init md_init(void) 9668 { 9669 int ret = -ENOMEM; 9670 9671 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9672 if (!md_wq) 9673 goto err_wq; 9674 9675 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9676 if (!md_misc_wq) 9677 goto err_misc_wq; 9678 9679 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND, 9680 0); 9681 if (!md_bitmap_wq) 9682 goto err_bitmap_wq; 9683 9684 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9685 if (ret < 0) 9686 goto err_md; 9687 9688 ret = __register_blkdev(0, "mdp", md_probe); 9689 if (ret < 0) 9690 goto err_mdp; 9691 mdp_major = ret; 9692 9693 register_reboot_notifier(&md_notifier); 9694 raid_table_header = register_sysctl("dev/raid", raid_table); 9695 9696 md_geninit(); 9697 return 0; 9698 9699 err_mdp: 9700 unregister_blkdev(MD_MAJOR, "md"); 9701 err_md: 9702 destroy_workqueue(md_bitmap_wq); 9703 err_bitmap_wq: 9704 destroy_workqueue(md_misc_wq); 9705 err_misc_wq: 9706 destroy_workqueue(md_wq); 9707 err_wq: 9708 return ret; 9709 } 9710 9711 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9712 { 9713 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9714 struct md_rdev *rdev2, *tmp; 9715 int role, ret; 9716 9717 /* 9718 * If size is changed in another node then we need to 9719 * do resize as well. 9720 */ 9721 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9722 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9723 if (ret) 9724 pr_info("md-cluster: resize failed\n"); 9725 else 9726 md_bitmap_update_sb(mddev->bitmap); 9727 } 9728 9729 /* Check for change of roles in the active devices */ 9730 rdev_for_each_safe(rdev2, tmp, mddev) { 9731 if (test_bit(Faulty, &rdev2->flags)) 9732 continue; 9733 9734 /* Check if the roles changed */ 9735 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9736 9737 if (test_bit(Candidate, &rdev2->flags)) { 9738 if (role == MD_DISK_ROLE_FAULTY) { 9739 pr_info("md: Removing Candidate device %pg because add failed\n", 9740 rdev2->bdev); 9741 md_kick_rdev_from_array(rdev2); 9742 continue; 9743 } 9744 else 9745 clear_bit(Candidate, &rdev2->flags); 9746 } 9747 9748 if (role != rdev2->raid_disk) { 9749 /* 9750 * got activated except reshape is happening. 9751 */ 9752 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9753 !(le32_to_cpu(sb->feature_map) & 9754 MD_FEATURE_RESHAPE_ACTIVE)) { 9755 rdev2->saved_raid_disk = role; 9756 ret = remove_and_add_spares(mddev, rdev2); 9757 pr_info("Activated spare: %pg\n", 9758 rdev2->bdev); 9759 /* wakeup mddev->thread here, so array could 9760 * perform resync with the new activated disk */ 9761 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9762 md_wakeup_thread(mddev->thread); 9763 } 9764 /* device faulty 9765 * We just want to do the minimum to mark the disk 9766 * as faulty. The recovery is performed by the 9767 * one who initiated the error. 9768 */ 9769 if (role == MD_DISK_ROLE_FAULTY || 9770 role == MD_DISK_ROLE_JOURNAL) { 9771 md_error(mddev, rdev2); 9772 clear_bit(Blocked, &rdev2->flags); 9773 } 9774 } 9775 } 9776 9777 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9778 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9779 if (ret) 9780 pr_warn("md: updating array disks failed. %d\n", ret); 9781 } 9782 9783 /* 9784 * Since mddev->delta_disks has already updated in update_raid_disks, 9785 * so it is time to check reshape. 9786 */ 9787 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9788 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9789 /* 9790 * reshape is happening in the remote node, we need to 9791 * update reshape_position and call start_reshape. 9792 */ 9793 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9794 if (mddev->pers->update_reshape_pos) 9795 mddev->pers->update_reshape_pos(mddev); 9796 if (mddev->pers->start_reshape) 9797 mddev->pers->start_reshape(mddev); 9798 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9799 mddev->reshape_position != MaxSector && 9800 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9801 /* reshape is just done in another node. */ 9802 mddev->reshape_position = MaxSector; 9803 if (mddev->pers->update_reshape_pos) 9804 mddev->pers->update_reshape_pos(mddev); 9805 } 9806 9807 /* Finally set the event to be up to date */ 9808 mddev->events = le64_to_cpu(sb->events); 9809 } 9810 9811 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9812 { 9813 int err; 9814 struct page *swapout = rdev->sb_page; 9815 struct mdp_superblock_1 *sb; 9816 9817 /* Store the sb page of the rdev in the swapout temporary 9818 * variable in case we err in the future 9819 */ 9820 rdev->sb_page = NULL; 9821 err = alloc_disk_sb(rdev); 9822 if (err == 0) { 9823 ClearPageUptodate(rdev->sb_page); 9824 rdev->sb_loaded = 0; 9825 err = super_types[mddev->major_version]. 9826 load_super(rdev, NULL, mddev->minor_version); 9827 } 9828 if (err < 0) { 9829 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9830 __func__, __LINE__, rdev->desc_nr, err); 9831 if (rdev->sb_page) 9832 put_page(rdev->sb_page); 9833 rdev->sb_page = swapout; 9834 rdev->sb_loaded = 1; 9835 return err; 9836 } 9837 9838 sb = page_address(rdev->sb_page); 9839 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9840 * is not set 9841 */ 9842 9843 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9844 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9845 9846 /* The other node finished recovery, call spare_active to set 9847 * device In_sync and mddev->degraded 9848 */ 9849 if (rdev->recovery_offset == MaxSector && 9850 !test_bit(In_sync, &rdev->flags) && 9851 mddev->pers->spare_active(mddev)) 9852 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9853 9854 put_page(swapout); 9855 return 0; 9856 } 9857 9858 void md_reload_sb(struct mddev *mddev, int nr) 9859 { 9860 struct md_rdev *rdev = NULL, *iter; 9861 int err; 9862 9863 /* Find the rdev */ 9864 rdev_for_each_rcu(iter, mddev) { 9865 if (iter->desc_nr == nr) { 9866 rdev = iter; 9867 break; 9868 } 9869 } 9870 9871 if (!rdev) { 9872 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9873 return; 9874 } 9875 9876 err = read_rdev(mddev, rdev); 9877 if (err < 0) 9878 return; 9879 9880 check_sb_changes(mddev, rdev); 9881 9882 /* Read all rdev's to update recovery_offset */ 9883 rdev_for_each_rcu(rdev, mddev) { 9884 if (!test_bit(Faulty, &rdev->flags)) 9885 read_rdev(mddev, rdev); 9886 } 9887 } 9888 EXPORT_SYMBOL(md_reload_sb); 9889 9890 #ifndef MODULE 9891 9892 /* 9893 * Searches all registered partitions for autorun RAID arrays 9894 * at boot time. 9895 */ 9896 9897 static DEFINE_MUTEX(detected_devices_mutex); 9898 static LIST_HEAD(all_detected_devices); 9899 struct detected_devices_node { 9900 struct list_head list; 9901 dev_t dev; 9902 }; 9903 9904 void md_autodetect_dev(dev_t dev) 9905 { 9906 struct detected_devices_node *node_detected_dev; 9907 9908 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9909 if (node_detected_dev) { 9910 node_detected_dev->dev = dev; 9911 mutex_lock(&detected_devices_mutex); 9912 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9913 mutex_unlock(&detected_devices_mutex); 9914 } 9915 } 9916 9917 void md_autostart_arrays(int part) 9918 { 9919 struct md_rdev *rdev; 9920 struct detected_devices_node *node_detected_dev; 9921 dev_t dev; 9922 int i_scanned, i_passed; 9923 9924 i_scanned = 0; 9925 i_passed = 0; 9926 9927 pr_info("md: Autodetecting RAID arrays.\n"); 9928 9929 mutex_lock(&detected_devices_mutex); 9930 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9931 i_scanned++; 9932 node_detected_dev = list_entry(all_detected_devices.next, 9933 struct detected_devices_node, list); 9934 list_del(&node_detected_dev->list); 9935 dev = node_detected_dev->dev; 9936 kfree(node_detected_dev); 9937 mutex_unlock(&detected_devices_mutex); 9938 rdev = md_import_device(dev,0, 90); 9939 mutex_lock(&detected_devices_mutex); 9940 if (IS_ERR(rdev)) 9941 continue; 9942 9943 if (test_bit(Faulty, &rdev->flags)) 9944 continue; 9945 9946 set_bit(AutoDetected, &rdev->flags); 9947 list_add(&rdev->same_set, &pending_raid_disks); 9948 i_passed++; 9949 } 9950 mutex_unlock(&detected_devices_mutex); 9951 9952 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9953 9954 autorun_devices(part); 9955 } 9956 9957 #endif /* !MODULE */ 9958 9959 static __exit void md_exit(void) 9960 { 9961 struct mddev *mddev, *n; 9962 int delay = 1; 9963 9964 unregister_blkdev(MD_MAJOR,"md"); 9965 unregister_blkdev(mdp_major, "mdp"); 9966 unregister_reboot_notifier(&md_notifier); 9967 unregister_sysctl_table(raid_table_header); 9968 9969 /* We cannot unload the modules while some process is 9970 * waiting for us in select() or poll() - wake them up 9971 */ 9972 md_unloading = 1; 9973 while (waitqueue_active(&md_event_waiters)) { 9974 /* not safe to leave yet */ 9975 wake_up(&md_event_waiters); 9976 msleep(delay); 9977 delay += delay; 9978 } 9979 remove_proc_entry("mdstat", NULL); 9980 9981 spin_lock(&all_mddevs_lock); 9982 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9983 if (!mddev_get(mddev)) 9984 continue; 9985 spin_unlock(&all_mddevs_lock); 9986 export_array(mddev); 9987 mddev->ctime = 0; 9988 mddev->hold_active = 0; 9989 /* 9990 * As the mddev is now fully clear, mddev_put will schedule 9991 * the mddev for destruction by a workqueue, and the 9992 * destroy_workqueue() below will wait for that to complete. 9993 */ 9994 mddev_put(mddev); 9995 spin_lock(&all_mddevs_lock); 9996 } 9997 spin_unlock(&all_mddevs_lock); 9998 9999 destroy_workqueue(md_misc_wq); 10000 destroy_workqueue(md_bitmap_wq); 10001 destroy_workqueue(md_wq); 10002 } 10003 10004 subsys_initcall(md_init); 10005 module_exit(md_exit) 10006 10007 static int get_ro(char *buffer, const struct kernel_param *kp) 10008 { 10009 return sprintf(buffer, "%d\n", start_readonly); 10010 } 10011 static int set_ro(const char *val, const struct kernel_param *kp) 10012 { 10013 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 10014 } 10015 10016 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 10017 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 10018 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 10019 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 10020 10021 MODULE_LICENSE("GPL"); 10022 MODULE_DESCRIPTION("MD RAID framework"); 10023 MODULE_ALIAS("md"); 10024 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 10025