xref: /linux/drivers/md/md.c (revision 4bedea94545165364618d403d03b61d797acba0b)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/devfs_fs_kernel.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/suspend.h>
44 
45 #include <linux/init.h>
46 
47 #include <linux/file.h>
48 
49 #ifdef CONFIG_KMOD
50 #include <linux/kmod.h>
51 #endif
52 
53 #include <asm/unaligned.h>
54 
55 #define MAJOR_NR MD_MAJOR
56 #define MD_DRIVER
57 
58 /* 63 partitions with the alternate major number (mdp) */
59 #define MdpMinorShift 6
60 
61 #define DEBUG 0
62 #define dprintk(x...) ((void)(DEBUG && printk(x)))
63 
64 
65 #ifndef MODULE
66 static void autostart_arrays (int part);
67 #endif
68 
69 static mdk_personality_t *pers[MAX_PERSONALITY];
70 static DEFINE_SPINLOCK(pers_lock);
71 
72 /*
73  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
74  * is 1000 KB/sec, so the extra system load does not show up that much.
75  * Increase it if you want to have more _guaranteed_ speed. Note that
76  * the RAID driver will use the maximum available bandwith if the IO
77  * subsystem is idle. There is also an 'absolute maximum' reconstruction
78  * speed limit - in case reconstruction slows down your system despite
79  * idle IO detection.
80  *
81  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
82  */
83 
84 static int sysctl_speed_limit_min = 1000;
85 static int sysctl_speed_limit_max = 200000;
86 
87 static struct ctl_table_header *raid_table_header;
88 
89 static ctl_table raid_table[] = {
90 	{
91 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
92 		.procname	= "speed_limit_min",
93 		.data		= &sysctl_speed_limit_min,
94 		.maxlen		= sizeof(int),
95 		.mode		= 0644,
96 		.proc_handler	= &proc_dointvec,
97 	},
98 	{
99 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
100 		.procname	= "speed_limit_max",
101 		.data		= &sysctl_speed_limit_max,
102 		.maxlen		= sizeof(int),
103 		.mode		= 0644,
104 		.proc_handler	= &proc_dointvec,
105 	},
106 	{ .ctl_name = 0 }
107 };
108 
109 static ctl_table raid_dir_table[] = {
110 	{
111 		.ctl_name	= DEV_RAID,
112 		.procname	= "raid",
113 		.maxlen		= 0,
114 		.mode		= 0555,
115 		.child		= raid_table,
116 	},
117 	{ .ctl_name = 0 }
118 };
119 
120 static ctl_table raid_root_table[] = {
121 	{
122 		.ctl_name	= CTL_DEV,
123 		.procname	= "dev",
124 		.maxlen		= 0,
125 		.mode		= 0555,
126 		.child		= raid_dir_table,
127 	},
128 	{ .ctl_name = 0 }
129 };
130 
131 static struct block_device_operations md_fops;
132 
133 /*
134  * Enables to iterate over all existing md arrays
135  * all_mddevs_lock protects this list.
136  */
137 static LIST_HEAD(all_mddevs);
138 static DEFINE_SPINLOCK(all_mddevs_lock);
139 
140 
141 /*
142  * iterates through all used mddevs in the system.
143  * We take care to grab the all_mddevs_lock whenever navigating
144  * the list, and to always hold a refcount when unlocked.
145  * Any code which breaks out of this loop while own
146  * a reference to the current mddev and must mddev_put it.
147  */
148 #define ITERATE_MDDEV(mddev,tmp)					\
149 									\
150 	for (({ spin_lock(&all_mddevs_lock); 				\
151 		tmp = all_mddevs.next;					\
152 		mddev = NULL;});					\
153 	     ({ if (tmp != &all_mddevs)					\
154 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
155 		spin_unlock(&all_mddevs_lock);				\
156 		if (mddev) mddev_put(mddev);				\
157 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
158 		tmp != &all_mddevs;});					\
159 	     ({ spin_lock(&all_mddevs_lock);				\
160 		tmp = tmp->next;})					\
161 		)
162 
163 
164 static int md_fail_request (request_queue_t *q, struct bio *bio)
165 {
166 	bio_io_error(bio, bio->bi_size);
167 	return 0;
168 }
169 
170 static inline mddev_t *mddev_get(mddev_t *mddev)
171 {
172 	atomic_inc(&mddev->active);
173 	return mddev;
174 }
175 
176 static void mddev_put(mddev_t *mddev)
177 {
178 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
179 		return;
180 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
181 		list_del(&mddev->all_mddevs);
182 		blk_put_queue(mddev->queue);
183 		kfree(mddev);
184 	}
185 	spin_unlock(&all_mddevs_lock);
186 }
187 
188 static mddev_t * mddev_find(dev_t unit)
189 {
190 	mddev_t *mddev, *new = NULL;
191 
192  retry:
193 	spin_lock(&all_mddevs_lock);
194 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
195 		if (mddev->unit == unit) {
196 			mddev_get(mddev);
197 			spin_unlock(&all_mddevs_lock);
198 			kfree(new);
199 			return mddev;
200 		}
201 
202 	if (new) {
203 		list_add(&new->all_mddevs, &all_mddevs);
204 		spin_unlock(&all_mddevs_lock);
205 		return new;
206 	}
207 	spin_unlock(&all_mddevs_lock);
208 
209 	new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
210 	if (!new)
211 		return NULL;
212 
213 	memset(new, 0, sizeof(*new));
214 
215 	new->unit = unit;
216 	if (MAJOR(unit) == MD_MAJOR)
217 		new->md_minor = MINOR(unit);
218 	else
219 		new->md_minor = MINOR(unit) >> MdpMinorShift;
220 
221 	init_MUTEX(&new->reconfig_sem);
222 	INIT_LIST_HEAD(&new->disks);
223 	INIT_LIST_HEAD(&new->all_mddevs);
224 	init_timer(&new->safemode_timer);
225 	atomic_set(&new->active, 1);
226 	spin_lock_init(&new->write_lock);
227 	init_waitqueue_head(&new->sb_wait);
228 
229 	new->queue = blk_alloc_queue(GFP_KERNEL);
230 	if (!new->queue) {
231 		kfree(new);
232 		return NULL;
233 	}
234 
235 	blk_queue_make_request(new->queue, md_fail_request);
236 
237 	goto retry;
238 }
239 
240 static inline int mddev_lock(mddev_t * mddev)
241 {
242 	return down_interruptible(&mddev->reconfig_sem);
243 }
244 
245 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
246 {
247 	down(&mddev->reconfig_sem);
248 }
249 
250 static inline int mddev_trylock(mddev_t * mddev)
251 {
252 	return down_trylock(&mddev->reconfig_sem);
253 }
254 
255 static inline void mddev_unlock(mddev_t * mddev)
256 {
257 	up(&mddev->reconfig_sem);
258 
259 	if (mddev->thread)
260 		md_wakeup_thread(mddev->thread);
261 }
262 
263 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
264 {
265 	mdk_rdev_t * rdev;
266 	struct list_head *tmp;
267 
268 	ITERATE_RDEV(mddev,rdev,tmp) {
269 		if (rdev->desc_nr == nr)
270 			return rdev;
271 	}
272 	return NULL;
273 }
274 
275 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
276 {
277 	struct list_head *tmp;
278 	mdk_rdev_t *rdev;
279 
280 	ITERATE_RDEV(mddev,rdev,tmp) {
281 		if (rdev->bdev->bd_dev == dev)
282 			return rdev;
283 	}
284 	return NULL;
285 }
286 
287 inline static sector_t calc_dev_sboffset(struct block_device *bdev)
288 {
289 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
290 	return MD_NEW_SIZE_BLOCKS(size);
291 }
292 
293 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
294 {
295 	sector_t size;
296 
297 	size = rdev->sb_offset;
298 
299 	if (chunk_size)
300 		size &= ~((sector_t)chunk_size/1024 - 1);
301 	return size;
302 }
303 
304 static int alloc_disk_sb(mdk_rdev_t * rdev)
305 {
306 	if (rdev->sb_page)
307 		MD_BUG();
308 
309 	rdev->sb_page = alloc_page(GFP_KERNEL);
310 	if (!rdev->sb_page) {
311 		printk(KERN_ALERT "md: out of memory.\n");
312 		return -EINVAL;
313 	}
314 
315 	return 0;
316 }
317 
318 static void free_disk_sb(mdk_rdev_t * rdev)
319 {
320 	if (rdev->sb_page) {
321 		page_cache_release(rdev->sb_page);
322 		rdev->sb_loaded = 0;
323 		rdev->sb_page = NULL;
324 		rdev->sb_offset = 0;
325 		rdev->size = 0;
326 	}
327 }
328 
329 
330 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
331 {
332 	mdk_rdev_t *rdev = bio->bi_private;
333 	if (bio->bi_size)
334 		return 1;
335 
336 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
337 		md_error(rdev->mddev, rdev);
338 
339 	if (atomic_dec_and_test(&rdev->mddev->pending_writes))
340 		wake_up(&rdev->mddev->sb_wait);
341 	return 0;
342 }
343 
344 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
345 		   sector_t sector, int size, struct page *page)
346 {
347 	/* write first size bytes of page to sector of rdev
348 	 * Increment mddev->pending_writes before returning
349 	 * and decrement it on completion, waking up sb_wait
350 	 * if zero is reached.
351 	 * If an error occurred, call md_error
352 	 */
353 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
354 
355 	bio->bi_bdev = rdev->bdev;
356 	bio->bi_sector = sector;
357 	bio_add_page(bio, page, size, 0);
358 	bio->bi_private = rdev;
359 	bio->bi_end_io = super_written;
360 	atomic_inc(&mddev->pending_writes);
361 	submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
362 }
363 
364 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
365 {
366 	if (bio->bi_size)
367 		return 1;
368 
369 	complete((struct completion*)bio->bi_private);
370 	return 0;
371 }
372 
373 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
374 		   struct page *page, int rw)
375 {
376 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
377 	struct completion event;
378 	int ret;
379 
380 	rw |= (1 << BIO_RW_SYNC);
381 
382 	bio->bi_bdev = bdev;
383 	bio->bi_sector = sector;
384 	bio_add_page(bio, page, size, 0);
385 	init_completion(&event);
386 	bio->bi_private = &event;
387 	bio->bi_end_io = bi_complete;
388 	submit_bio(rw, bio);
389 	wait_for_completion(&event);
390 
391 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
392 	bio_put(bio);
393 	return ret;
394 }
395 
396 static int read_disk_sb(mdk_rdev_t * rdev)
397 {
398 	char b[BDEVNAME_SIZE];
399 	if (!rdev->sb_page) {
400 		MD_BUG();
401 		return -EINVAL;
402 	}
403 	if (rdev->sb_loaded)
404 		return 0;
405 
406 
407 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
408 		goto fail;
409 	rdev->sb_loaded = 1;
410 	return 0;
411 
412 fail:
413 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
414 		bdevname(rdev->bdev,b));
415 	return -EINVAL;
416 }
417 
418 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
419 {
420 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
421 		(sb1->set_uuid1 == sb2->set_uuid1) &&
422 		(sb1->set_uuid2 == sb2->set_uuid2) &&
423 		(sb1->set_uuid3 == sb2->set_uuid3))
424 
425 		return 1;
426 
427 	return 0;
428 }
429 
430 
431 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
432 {
433 	int ret;
434 	mdp_super_t *tmp1, *tmp2;
435 
436 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
437 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
438 
439 	if (!tmp1 || !tmp2) {
440 		ret = 0;
441 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
442 		goto abort;
443 	}
444 
445 	*tmp1 = *sb1;
446 	*tmp2 = *sb2;
447 
448 	/*
449 	 * nr_disks is not constant
450 	 */
451 	tmp1->nr_disks = 0;
452 	tmp2->nr_disks = 0;
453 
454 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
455 		ret = 0;
456 	else
457 		ret = 1;
458 
459 abort:
460 	kfree(tmp1);
461 	kfree(tmp2);
462 	return ret;
463 }
464 
465 static unsigned int calc_sb_csum(mdp_super_t * sb)
466 {
467 	unsigned int disk_csum, csum;
468 
469 	disk_csum = sb->sb_csum;
470 	sb->sb_csum = 0;
471 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
472 	sb->sb_csum = disk_csum;
473 	return csum;
474 }
475 
476 
477 /*
478  * Handle superblock details.
479  * We want to be able to handle multiple superblock formats
480  * so we have a common interface to them all, and an array of
481  * different handlers.
482  * We rely on user-space to write the initial superblock, and support
483  * reading and updating of superblocks.
484  * Interface methods are:
485  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
486  *      loads and validates a superblock on dev.
487  *      if refdev != NULL, compare superblocks on both devices
488  *    Return:
489  *      0 - dev has a superblock that is compatible with refdev
490  *      1 - dev has a superblock that is compatible and newer than refdev
491  *          so dev should be used as the refdev in future
492  *     -EINVAL superblock incompatible or invalid
493  *     -othererror e.g. -EIO
494  *
495  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
496  *      Verify that dev is acceptable into mddev.
497  *       The first time, mddev->raid_disks will be 0, and data from
498  *       dev should be merged in.  Subsequent calls check that dev
499  *       is new enough.  Return 0 or -EINVAL
500  *
501  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
502  *     Update the superblock for rdev with data in mddev
503  *     This does not write to disc.
504  *
505  */
506 
507 struct super_type  {
508 	char 		*name;
509 	struct module	*owner;
510 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
511 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
512 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
513 };
514 
515 /*
516  * load_super for 0.90.0
517  */
518 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
519 {
520 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
521 	mdp_super_t *sb;
522 	int ret;
523 	sector_t sb_offset;
524 
525 	/*
526 	 * Calculate the position of the superblock,
527 	 * it's at the end of the disk.
528 	 *
529 	 * It also happens to be a multiple of 4Kb.
530 	 */
531 	sb_offset = calc_dev_sboffset(rdev->bdev);
532 	rdev->sb_offset = sb_offset;
533 
534 	ret = read_disk_sb(rdev);
535 	if (ret) return ret;
536 
537 	ret = -EINVAL;
538 
539 	bdevname(rdev->bdev, b);
540 	sb = (mdp_super_t*)page_address(rdev->sb_page);
541 
542 	if (sb->md_magic != MD_SB_MAGIC) {
543 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
544 		       b);
545 		goto abort;
546 	}
547 
548 	if (sb->major_version != 0 ||
549 	    sb->minor_version != 90) {
550 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
551 			sb->major_version, sb->minor_version,
552 			b);
553 		goto abort;
554 	}
555 
556 	if (sb->raid_disks <= 0)
557 		goto abort;
558 
559 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
560 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
561 			b);
562 		goto abort;
563 	}
564 
565 	rdev->preferred_minor = sb->md_minor;
566 	rdev->data_offset = 0;
567 
568 	if (sb->level == LEVEL_MULTIPATH)
569 		rdev->desc_nr = -1;
570 	else
571 		rdev->desc_nr = sb->this_disk.number;
572 
573 	if (refdev == 0)
574 		ret = 1;
575 	else {
576 		__u64 ev1, ev2;
577 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
578 		if (!uuid_equal(refsb, sb)) {
579 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
580 				b, bdevname(refdev->bdev,b2));
581 			goto abort;
582 		}
583 		if (!sb_equal(refsb, sb)) {
584 			printk(KERN_WARNING "md: %s has same UUID"
585 			       " but different superblock to %s\n",
586 			       b, bdevname(refdev->bdev, b2));
587 			goto abort;
588 		}
589 		ev1 = md_event(sb);
590 		ev2 = md_event(refsb);
591 		if (ev1 > ev2)
592 			ret = 1;
593 		else
594 			ret = 0;
595 	}
596 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
597 
598  abort:
599 	return ret;
600 }
601 
602 /*
603  * validate_super for 0.90.0
604  */
605 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
606 {
607 	mdp_disk_t *desc;
608 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
609 
610 	rdev->raid_disk = -1;
611 	rdev->in_sync = 0;
612 	if (mddev->raid_disks == 0) {
613 		mddev->major_version = 0;
614 		mddev->minor_version = sb->minor_version;
615 		mddev->patch_version = sb->patch_version;
616 		mddev->persistent = ! sb->not_persistent;
617 		mddev->chunk_size = sb->chunk_size;
618 		mddev->ctime = sb->ctime;
619 		mddev->utime = sb->utime;
620 		mddev->level = sb->level;
621 		mddev->layout = sb->layout;
622 		mddev->raid_disks = sb->raid_disks;
623 		mddev->size = sb->size;
624 		mddev->events = md_event(sb);
625 
626 		if (sb->state & (1<<MD_SB_CLEAN))
627 			mddev->recovery_cp = MaxSector;
628 		else {
629 			if (sb->events_hi == sb->cp_events_hi &&
630 				sb->events_lo == sb->cp_events_lo) {
631 				mddev->recovery_cp = sb->recovery_cp;
632 			} else
633 				mddev->recovery_cp = 0;
634 		}
635 
636 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
637 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
638 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
639 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
640 
641 		mddev->max_disks = MD_SB_DISKS;
642 
643 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
644 		    mddev->bitmap_file == NULL) {
645 			if (mddev->level != 1) {
646 				/* FIXME use a better test */
647 				printk(KERN_WARNING "md: bitmaps only support for raid1\n");
648 				return -EINVAL;
649 			}
650 			mddev->bitmap_offset = (MD_SB_BYTES >> 9);
651 		}
652 
653 	} else if (mddev->pers == NULL) {
654 		/* Insist on good event counter while assembling */
655 		__u64 ev1 = md_event(sb);
656 		++ev1;
657 		if (ev1 < mddev->events)
658 			return -EINVAL;
659 	} else if (mddev->bitmap) {
660 		/* if adding to array with a bitmap, then we can accept an
661 		 * older device ... but not too old.
662 		 */
663 		__u64 ev1 = md_event(sb);
664 		if (ev1 < mddev->bitmap->events_cleared)
665 			return 0;
666 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
667 		return 0;
668 
669 	if (mddev->level != LEVEL_MULTIPATH) {
670 		rdev->faulty = 0;
671 		desc = sb->disks + rdev->desc_nr;
672 
673 		if (desc->state & (1<<MD_DISK_FAULTY))
674 			rdev->faulty = 1;
675 		else if (desc->state & (1<<MD_DISK_SYNC) &&
676 			 desc->raid_disk < mddev->raid_disks) {
677 			rdev->in_sync = 1;
678 			rdev->raid_disk = desc->raid_disk;
679 		}
680 	} else /* MULTIPATH are always insync */
681 		rdev->in_sync = 1;
682 	return 0;
683 }
684 
685 /*
686  * sync_super for 0.90.0
687  */
688 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
689 {
690 	mdp_super_t *sb;
691 	struct list_head *tmp;
692 	mdk_rdev_t *rdev2;
693 	int next_spare = mddev->raid_disks;
694 
695 	/* make rdev->sb match mddev data..
696 	 *
697 	 * 1/ zero out disks
698 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
699 	 * 3/ any empty disks < next_spare become removed
700 	 *
701 	 * disks[0] gets initialised to REMOVED because
702 	 * we cannot be sure from other fields if it has
703 	 * been initialised or not.
704 	 */
705 	int i;
706 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
707 
708 	sb = (mdp_super_t*)page_address(rdev->sb_page);
709 
710 	memset(sb, 0, sizeof(*sb));
711 
712 	sb->md_magic = MD_SB_MAGIC;
713 	sb->major_version = mddev->major_version;
714 	sb->minor_version = mddev->minor_version;
715 	sb->patch_version = mddev->patch_version;
716 	sb->gvalid_words  = 0; /* ignored */
717 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
718 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
719 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
720 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
721 
722 	sb->ctime = mddev->ctime;
723 	sb->level = mddev->level;
724 	sb->size  = mddev->size;
725 	sb->raid_disks = mddev->raid_disks;
726 	sb->md_minor = mddev->md_minor;
727 	sb->not_persistent = !mddev->persistent;
728 	sb->utime = mddev->utime;
729 	sb->state = 0;
730 	sb->events_hi = (mddev->events>>32);
731 	sb->events_lo = (u32)mddev->events;
732 
733 	if (mddev->in_sync)
734 	{
735 		sb->recovery_cp = mddev->recovery_cp;
736 		sb->cp_events_hi = (mddev->events>>32);
737 		sb->cp_events_lo = (u32)mddev->events;
738 		if (mddev->recovery_cp == MaxSector)
739 			sb->state = (1<< MD_SB_CLEAN);
740 	} else
741 		sb->recovery_cp = 0;
742 
743 	sb->layout = mddev->layout;
744 	sb->chunk_size = mddev->chunk_size;
745 
746 	if (mddev->bitmap && mddev->bitmap_file == NULL)
747 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
748 
749 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
750 	ITERATE_RDEV(mddev,rdev2,tmp) {
751 		mdp_disk_t *d;
752 		if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
753 			rdev2->desc_nr = rdev2->raid_disk;
754 		else
755 			rdev2->desc_nr = next_spare++;
756 		d = &sb->disks[rdev2->desc_nr];
757 		nr_disks++;
758 		d->number = rdev2->desc_nr;
759 		d->major = MAJOR(rdev2->bdev->bd_dev);
760 		d->minor = MINOR(rdev2->bdev->bd_dev);
761 		if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
762 			d->raid_disk = rdev2->raid_disk;
763 		else
764 			d->raid_disk = rdev2->desc_nr; /* compatibility */
765 		if (rdev2->faulty) {
766 			d->state = (1<<MD_DISK_FAULTY);
767 			failed++;
768 		} else if (rdev2->in_sync) {
769 			d->state = (1<<MD_DISK_ACTIVE);
770 			d->state |= (1<<MD_DISK_SYNC);
771 			active++;
772 			working++;
773 		} else {
774 			d->state = 0;
775 			spare++;
776 			working++;
777 		}
778 	}
779 
780 	/* now set the "removed" and "faulty" bits on any missing devices */
781 	for (i=0 ; i < mddev->raid_disks ; i++) {
782 		mdp_disk_t *d = &sb->disks[i];
783 		if (d->state == 0 && d->number == 0) {
784 			d->number = i;
785 			d->raid_disk = i;
786 			d->state = (1<<MD_DISK_REMOVED);
787 			d->state |= (1<<MD_DISK_FAULTY);
788 			failed++;
789 		}
790 	}
791 	sb->nr_disks = nr_disks;
792 	sb->active_disks = active;
793 	sb->working_disks = working;
794 	sb->failed_disks = failed;
795 	sb->spare_disks = spare;
796 
797 	sb->this_disk = sb->disks[rdev->desc_nr];
798 	sb->sb_csum = calc_sb_csum(sb);
799 }
800 
801 /*
802  * version 1 superblock
803  */
804 
805 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
806 {
807 	unsigned int disk_csum, csum;
808 	unsigned long long newcsum;
809 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
810 	unsigned int *isuper = (unsigned int*)sb;
811 	int i;
812 
813 	disk_csum = sb->sb_csum;
814 	sb->sb_csum = 0;
815 	newcsum = 0;
816 	for (i=0; size>=4; size -= 4 )
817 		newcsum += le32_to_cpu(*isuper++);
818 
819 	if (size == 2)
820 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
821 
822 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
823 	sb->sb_csum = disk_csum;
824 	return cpu_to_le32(csum);
825 }
826 
827 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
828 {
829 	struct mdp_superblock_1 *sb;
830 	int ret;
831 	sector_t sb_offset;
832 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
833 
834 	/*
835 	 * Calculate the position of the superblock.
836 	 * It is always aligned to a 4K boundary and
837 	 * depeding on minor_version, it can be:
838 	 * 0: At least 8K, but less than 12K, from end of device
839 	 * 1: At start of device
840 	 * 2: 4K from start of device.
841 	 */
842 	switch(minor_version) {
843 	case 0:
844 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
845 		sb_offset -= 8*2;
846 		sb_offset &= ~(sector_t)(4*2-1);
847 		/* convert from sectors to K */
848 		sb_offset /= 2;
849 		break;
850 	case 1:
851 		sb_offset = 0;
852 		break;
853 	case 2:
854 		sb_offset = 4;
855 		break;
856 	default:
857 		return -EINVAL;
858 	}
859 	rdev->sb_offset = sb_offset;
860 
861 	ret = read_disk_sb(rdev);
862 	if (ret) return ret;
863 
864 
865 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
866 
867 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
868 	    sb->major_version != cpu_to_le32(1) ||
869 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
870 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
871 	    sb->feature_map != 0)
872 		return -EINVAL;
873 
874 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
875 		printk("md: invalid superblock checksum on %s\n",
876 			bdevname(rdev->bdev,b));
877 		return -EINVAL;
878 	}
879 	if (le64_to_cpu(sb->data_size) < 10) {
880 		printk("md: data_size too small on %s\n",
881 		       bdevname(rdev->bdev,b));
882 		return -EINVAL;
883 	}
884 	rdev->preferred_minor = 0xffff;
885 	rdev->data_offset = le64_to_cpu(sb->data_offset);
886 
887 	if (refdev == 0)
888 		return 1;
889 	else {
890 		__u64 ev1, ev2;
891 		struct mdp_superblock_1 *refsb =
892 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
893 
894 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
895 		    sb->level != refsb->level ||
896 		    sb->layout != refsb->layout ||
897 		    sb->chunksize != refsb->chunksize) {
898 			printk(KERN_WARNING "md: %s has strangely different"
899 				" superblock to %s\n",
900 				bdevname(rdev->bdev,b),
901 				bdevname(refdev->bdev,b2));
902 			return -EINVAL;
903 		}
904 		ev1 = le64_to_cpu(sb->events);
905 		ev2 = le64_to_cpu(refsb->events);
906 
907 		if (ev1 > ev2)
908 			return 1;
909 	}
910 	if (minor_version)
911 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
912 	else
913 		rdev->size = rdev->sb_offset;
914 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
915 		return -EINVAL;
916 	rdev->size = le64_to_cpu(sb->data_size)/2;
917 	if (le32_to_cpu(sb->chunksize))
918 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
919 	return 0;
920 }
921 
922 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
923 {
924 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
925 
926 	rdev->raid_disk = -1;
927 	rdev->in_sync = 0;
928 	if (mddev->raid_disks == 0) {
929 		mddev->major_version = 1;
930 		mddev->patch_version = 0;
931 		mddev->persistent = 1;
932 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
933 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
934 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
935 		mddev->level = le32_to_cpu(sb->level);
936 		mddev->layout = le32_to_cpu(sb->layout);
937 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
938 		mddev->size = le64_to_cpu(sb->size)/2;
939 		mddev->events = le64_to_cpu(sb->events);
940 
941 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
942 		memcpy(mddev->uuid, sb->set_uuid, 16);
943 
944 		mddev->max_disks =  (4096-256)/2;
945 
946 		if ((le32_to_cpu(sb->feature_map) & 1) &&
947 		    mddev->bitmap_file == NULL ) {
948 			if (mddev->level != 1) {
949 				printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
950 				return -EINVAL;
951 			}
952 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
953 		}
954 	} else if (mddev->pers == NULL) {
955 		/* Insist of good event counter while assembling */
956 		__u64 ev1 = le64_to_cpu(sb->events);
957 		++ev1;
958 		if (ev1 < mddev->events)
959 			return -EINVAL;
960 	} else if (mddev->bitmap) {
961 		/* If adding to array with a bitmap, then we can accept an
962 		 * older device, but not too old.
963 		 */
964 		__u64 ev1 = le64_to_cpu(sb->events);
965 		if (ev1 < mddev->bitmap->events_cleared)
966 			return 0;
967 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
968 		return 0;
969 
970 	if (mddev->level != LEVEL_MULTIPATH) {
971 		int role;
972 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
973 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
974 		switch(role) {
975 		case 0xffff: /* spare */
976 			rdev->faulty = 0;
977 			break;
978 		case 0xfffe: /* faulty */
979 			rdev->faulty = 1;
980 			break;
981 		default:
982 			rdev->in_sync = 1;
983 			rdev->faulty = 0;
984 			rdev->raid_disk = role;
985 			break;
986 		}
987 	} else /* MULTIPATH are always insync */
988 		rdev->in_sync = 1;
989 
990 	return 0;
991 }
992 
993 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
994 {
995 	struct mdp_superblock_1 *sb;
996 	struct list_head *tmp;
997 	mdk_rdev_t *rdev2;
998 	int max_dev, i;
999 	/* make rdev->sb match mddev and rdev data. */
1000 
1001 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1002 
1003 	sb->feature_map = 0;
1004 	sb->pad0 = 0;
1005 	memset(sb->pad1, 0, sizeof(sb->pad1));
1006 	memset(sb->pad2, 0, sizeof(sb->pad2));
1007 	memset(sb->pad3, 0, sizeof(sb->pad3));
1008 
1009 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1010 	sb->events = cpu_to_le64(mddev->events);
1011 	if (mddev->in_sync)
1012 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1013 	else
1014 		sb->resync_offset = cpu_to_le64(0);
1015 
1016 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1017 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1018 		sb->feature_map = cpu_to_le32(1);
1019 	}
1020 
1021 	max_dev = 0;
1022 	ITERATE_RDEV(mddev,rdev2,tmp)
1023 		if (rdev2->desc_nr+1 > max_dev)
1024 			max_dev = rdev2->desc_nr+1;
1025 
1026 	sb->max_dev = cpu_to_le32(max_dev);
1027 	for (i=0; i<max_dev;i++)
1028 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1029 
1030 	ITERATE_RDEV(mddev,rdev2,tmp) {
1031 		i = rdev2->desc_nr;
1032 		if (rdev2->faulty)
1033 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1034 		else if (rdev2->in_sync)
1035 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1036 		else
1037 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1038 	}
1039 
1040 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1041 	sb->sb_csum = calc_sb_1_csum(sb);
1042 }
1043 
1044 
1045 static struct super_type super_types[] = {
1046 	[0] = {
1047 		.name	= "0.90.0",
1048 		.owner	= THIS_MODULE,
1049 		.load_super	= super_90_load,
1050 		.validate_super	= super_90_validate,
1051 		.sync_super	= super_90_sync,
1052 	},
1053 	[1] = {
1054 		.name	= "md-1",
1055 		.owner	= THIS_MODULE,
1056 		.load_super	= super_1_load,
1057 		.validate_super	= super_1_validate,
1058 		.sync_super	= super_1_sync,
1059 	},
1060 };
1061 
1062 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1063 {
1064 	struct list_head *tmp;
1065 	mdk_rdev_t *rdev;
1066 
1067 	ITERATE_RDEV(mddev,rdev,tmp)
1068 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1069 			return rdev;
1070 
1071 	return NULL;
1072 }
1073 
1074 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1075 {
1076 	struct list_head *tmp;
1077 	mdk_rdev_t *rdev;
1078 
1079 	ITERATE_RDEV(mddev1,rdev,tmp)
1080 		if (match_dev_unit(mddev2, rdev))
1081 			return 1;
1082 
1083 	return 0;
1084 }
1085 
1086 static LIST_HEAD(pending_raid_disks);
1087 
1088 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1089 {
1090 	mdk_rdev_t *same_pdev;
1091 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1092 
1093 	if (rdev->mddev) {
1094 		MD_BUG();
1095 		return -EINVAL;
1096 	}
1097 	same_pdev = match_dev_unit(mddev, rdev);
1098 	if (same_pdev)
1099 		printk(KERN_WARNING
1100 			"%s: WARNING: %s appears to be on the same physical"
1101 	 		" disk as %s. True\n     protection against single-disk"
1102 			" failure might be compromised.\n",
1103 			mdname(mddev), bdevname(rdev->bdev,b),
1104 			bdevname(same_pdev->bdev,b2));
1105 
1106 	/* Verify rdev->desc_nr is unique.
1107 	 * If it is -1, assign a free number, else
1108 	 * check number is not in use
1109 	 */
1110 	if (rdev->desc_nr < 0) {
1111 		int choice = 0;
1112 		if (mddev->pers) choice = mddev->raid_disks;
1113 		while (find_rdev_nr(mddev, choice))
1114 			choice++;
1115 		rdev->desc_nr = choice;
1116 	} else {
1117 		if (find_rdev_nr(mddev, rdev->desc_nr))
1118 			return -EBUSY;
1119 	}
1120 
1121 	list_add(&rdev->same_set, &mddev->disks);
1122 	rdev->mddev = mddev;
1123 	printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1124 	return 0;
1125 }
1126 
1127 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1128 {
1129 	char b[BDEVNAME_SIZE];
1130 	if (!rdev->mddev) {
1131 		MD_BUG();
1132 		return;
1133 	}
1134 	list_del_init(&rdev->same_set);
1135 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1136 	rdev->mddev = NULL;
1137 }
1138 
1139 /*
1140  * prevent the device from being mounted, repartitioned or
1141  * otherwise reused by a RAID array (or any other kernel
1142  * subsystem), by bd_claiming the device.
1143  */
1144 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1145 {
1146 	int err = 0;
1147 	struct block_device *bdev;
1148 	char b[BDEVNAME_SIZE];
1149 
1150 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1151 	if (IS_ERR(bdev)) {
1152 		printk(KERN_ERR "md: could not open %s.\n",
1153 			__bdevname(dev, b));
1154 		return PTR_ERR(bdev);
1155 	}
1156 	err = bd_claim(bdev, rdev);
1157 	if (err) {
1158 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1159 			bdevname(bdev, b));
1160 		blkdev_put(bdev);
1161 		return err;
1162 	}
1163 	rdev->bdev = bdev;
1164 	return err;
1165 }
1166 
1167 static void unlock_rdev(mdk_rdev_t *rdev)
1168 {
1169 	struct block_device *bdev = rdev->bdev;
1170 	rdev->bdev = NULL;
1171 	if (!bdev)
1172 		MD_BUG();
1173 	bd_release(bdev);
1174 	blkdev_put(bdev);
1175 }
1176 
1177 void md_autodetect_dev(dev_t dev);
1178 
1179 static void export_rdev(mdk_rdev_t * rdev)
1180 {
1181 	char b[BDEVNAME_SIZE];
1182 	printk(KERN_INFO "md: export_rdev(%s)\n",
1183 		bdevname(rdev->bdev,b));
1184 	if (rdev->mddev)
1185 		MD_BUG();
1186 	free_disk_sb(rdev);
1187 	list_del_init(&rdev->same_set);
1188 #ifndef MODULE
1189 	md_autodetect_dev(rdev->bdev->bd_dev);
1190 #endif
1191 	unlock_rdev(rdev);
1192 	kfree(rdev);
1193 }
1194 
1195 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1196 {
1197 	unbind_rdev_from_array(rdev);
1198 	export_rdev(rdev);
1199 }
1200 
1201 static void export_array(mddev_t *mddev)
1202 {
1203 	struct list_head *tmp;
1204 	mdk_rdev_t *rdev;
1205 
1206 	ITERATE_RDEV(mddev,rdev,tmp) {
1207 		if (!rdev->mddev) {
1208 			MD_BUG();
1209 			continue;
1210 		}
1211 		kick_rdev_from_array(rdev);
1212 	}
1213 	if (!list_empty(&mddev->disks))
1214 		MD_BUG();
1215 	mddev->raid_disks = 0;
1216 	mddev->major_version = 0;
1217 }
1218 
1219 static void print_desc(mdp_disk_t *desc)
1220 {
1221 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1222 		desc->major,desc->minor,desc->raid_disk,desc->state);
1223 }
1224 
1225 static void print_sb(mdp_super_t *sb)
1226 {
1227 	int i;
1228 
1229 	printk(KERN_INFO
1230 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1231 		sb->major_version, sb->minor_version, sb->patch_version,
1232 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1233 		sb->ctime);
1234 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1235 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1236 		sb->md_minor, sb->layout, sb->chunk_size);
1237 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1238 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1239 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1240 		sb->failed_disks, sb->spare_disks,
1241 		sb->sb_csum, (unsigned long)sb->events_lo);
1242 
1243 	printk(KERN_INFO);
1244 	for (i = 0; i < MD_SB_DISKS; i++) {
1245 		mdp_disk_t *desc;
1246 
1247 		desc = sb->disks + i;
1248 		if (desc->number || desc->major || desc->minor ||
1249 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1250 			printk("     D %2d: ", i);
1251 			print_desc(desc);
1252 		}
1253 	}
1254 	printk(KERN_INFO "md:     THIS: ");
1255 	print_desc(&sb->this_disk);
1256 
1257 }
1258 
1259 static void print_rdev(mdk_rdev_t *rdev)
1260 {
1261 	char b[BDEVNAME_SIZE];
1262 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1263 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1264 	       	rdev->faulty, rdev->in_sync, rdev->desc_nr);
1265 	if (rdev->sb_loaded) {
1266 		printk(KERN_INFO "md: rdev superblock:\n");
1267 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1268 	} else
1269 		printk(KERN_INFO "md: no rdev superblock!\n");
1270 }
1271 
1272 void md_print_devices(void)
1273 {
1274 	struct list_head *tmp, *tmp2;
1275 	mdk_rdev_t *rdev;
1276 	mddev_t *mddev;
1277 	char b[BDEVNAME_SIZE];
1278 
1279 	printk("\n");
1280 	printk("md:	**********************************\n");
1281 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1282 	printk("md:	**********************************\n");
1283 	ITERATE_MDDEV(mddev,tmp) {
1284 
1285 		if (mddev->bitmap)
1286 			bitmap_print_sb(mddev->bitmap);
1287 		else
1288 			printk("%s: ", mdname(mddev));
1289 		ITERATE_RDEV(mddev,rdev,tmp2)
1290 			printk("<%s>", bdevname(rdev->bdev,b));
1291 		printk("\n");
1292 
1293 		ITERATE_RDEV(mddev,rdev,tmp2)
1294 			print_rdev(rdev);
1295 	}
1296 	printk("md:	**********************************\n");
1297 	printk("\n");
1298 }
1299 
1300 
1301 static void sync_sbs(mddev_t * mddev)
1302 {
1303 	mdk_rdev_t *rdev;
1304 	struct list_head *tmp;
1305 
1306 	ITERATE_RDEV(mddev,rdev,tmp) {
1307 		super_types[mddev->major_version].
1308 			sync_super(mddev, rdev);
1309 		rdev->sb_loaded = 1;
1310 	}
1311 }
1312 
1313 static void md_update_sb(mddev_t * mddev)
1314 {
1315 	int err;
1316 	struct list_head *tmp;
1317 	mdk_rdev_t *rdev;
1318 	int sync_req;
1319 
1320 repeat:
1321 	spin_lock(&mddev->write_lock);
1322 	sync_req = mddev->in_sync;
1323 	mddev->utime = get_seconds();
1324 	mddev->events ++;
1325 
1326 	if (!mddev->events) {
1327 		/*
1328 		 * oops, this 64-bit counter should never wrap.
1329 		 * Either we are in around ~1 trillion A.C., assuming
1330 		 * 1 reboot per second, or we have a bug:
1331 		 */
1332 		MD_BUG();
1333 		mddev->events --;
1334 	}
1335 	mddev->sb_dirty = 2;
1336 	sync_sbs(mddev);
1337 
1338 	/*
1339 	 * do not write anything to disk if using
1340 	 * nonpersistent superblocks
1341 	 */
1342 	if (!mddev->persistent) {
1343 		mddev->sb_dirty = 0;
1344 		spin_unlock(&mddev->write_lock);
1345 		wake_up(&mddev->sb_wait);
1346 		return;
1347 	}
1348 	spin_unlock(&mddev->write_lock);
1349 
1350 	dprintk(KERN_INFO
1351 		"md: updating %s RAID superblock on device (in sync %d)\n",
1352 		mdname(mddev),mddev->in_sync);
1353 
1354 	err = bitmap_update_sb(mddev->bitmap);
1355 	ITERATE_RDEV(mddev,rdev,tmp) {
1356 		char b[BDEVNAME_SIZE];
1357 		dprintk(KERN_INFO "md: ");
1358 		if (rdev->faulty)
1359 			dprintk("(skipping faulty ");
1360 
1361 		dprintk("%s ", bdevname(rdev->bdev,b));
1362 		if (!rdev->faulty) {
1363 			md_super_write(mddev,rdev,
1364 				       rdev->sb_offset<<1, MD_SB_BYTES,
1365 				       rdev->sb_page);
1366 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1367 				bdevname(rdev->bdev,b),
1368 				(unsigned long long)rdev->sb_offset);
1369 
1370 		} else
1371 			dprintk(")\n");
1372 		if (mddev->level == LEVEL_MULTIPATH)
1373 			/* only need to write one superblock... */
1374 			break;
1375 	}
1376 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1377 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1378 
1379 	spin_lock(&mddev->write_lock);
1380 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1381 		/* have to write it out again */
1382 		spin_unlock(&mddev->write_lock);
1383 		goto repeat;
1384 	}
1385 	mddev->sb_dirty = 0;
1386 	spin_unlock(&mddev->write_lock);
1387 	wake_up(&mddev->sb_wait);
1388 
1389 }
1390 
1391 /*
1392  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1393  *
1394  * mark the device faulty if:
1395  *
1396  *   - the device is nonexistent (zero size)
1397  *   - the device has no valid superblock
1398  *
1399  * a faulty rdev _never_ has rdev->sb set.
1400  */
1401 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1402 {
1403 	char b[BDEVNAME_SIZE];
1404 	int err;
1405 	mdk_rdev_t *rdev;
1406 	sector_t size;
1407 
1408 	rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1409 	if (!rdev) {
1410 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1411 		return ERR_PTR(-ENOMEM);
1412 	}
1413 	memset(rdev, 0, sizeof(*rdev));
1414 
1415 	if ((err = alloc_disk_sb(rdev)))
1416 		goto abort_free;
1417 
1418 	err = lock_rdev(rdev, newdev);
1419 	if (err)
1420 		goto abort_free;
1421 
1422 	rdev->desc_nr = -1;
1423 	rdev->faulty = 0;
1424 	rdev->in_sync = 0;
1425 	rdev->data_offset = 0;
1426 	atomic_set(&rdev->nr_pending, 0);
1427 
1428 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1429 	if (!size) {
1430 		printk(KERN_WARNING
1431 			"md: %s has zero or unknown size, marking faulty!\n",
1432 			bdevname(rdev->bdev,b));
1433 		err = -EINVAL;
1434 		goto abort_free;
1435 	}
1436 
1437 	if (super_format >= 0) {
1438 		err = super_types[super_format].
1439 			load_super(rdev, NULL, super_minor);
1440 		if (err == -EINVAL) {
1441 			printk(KERN_WARNING
1442 				"md: %s has invalid sb, not importing!\n",
1443 				bdevname(rdev->bdev,b));
1444 			goto abort_free;
1445 		}
1446 		if (err < 0) {
1447 			printk(KERN_WARNING
1448 				"md: could not read %s's sb, not importing!\n",
1449 				bdevname(rdev->bdev,b));
1450 			goto abort_free;
1451 		}
1452 	}
1453 	INIT_LIST_HEAD(&rdev->same_set);
1454 
1455 	return rdev;
1456 
1457 abort_free:
1458 	if (rdev->sb_page) {
1459 		if (rdev->bdev)
1460 			unlock_rdev(rdev);
1461 		free_disk_sb(rdev);
1462 	}
1463 	kfree(rdev);
1464 	return ERR_PTR(err);
1465 }
1466 
1467 /*
1468  * Check a full RAID array for plausibility
1469  */
1470 
1471 
1472 static void analyze_sbs(mddev_t * mddev)
1473 {
1474 	int i;
1475 	struct list_head *tmp;
1476 	mdk_rdev_t *rdev, *freshest;
1477 	char b[BDEVNAME_SIZE];
1478 
1479 	freshest = NULL;
1480 	ITERATE_RDEV(mddev,rdev,tmp)
1481 		switch (super_types[mddev->major_version].
1482 			load_super(rdev, freshest, mddev->minor_version)) {
1483 		case 1:
1484 			freshest = rdev;
1485 			break;
1486 		case 0:
1487 			break;
1488 		default:
1489 			printk( KERN_ERR \
1490 				"md: fatal superblock inconsistency in %s"
1491 				" -- removing from array\n",
1492 				bdevname(rdev->bdev,b));
1493 			kick_rdev_from_array(rdev);
1494 		}
1495 
1496 
1497 	super_types[mddev->major_version].
1498 		validate_super(mddev, freshest);
1499 
1500 	i = 0;
1501 	ITERATE_RDEV(mddev,rdev,tmp) {
1502 		if (rdev != freshest)
1503 			if (super_types[mddev->major_version].
1504 			    validate_super(mddev, rdev)) {
1505 				printk(KERN_WARNING "md: kicking non-fresh %s"
1506 					" from array!\n",
1507 					bdevname(rdev->bdev,b));
1508 				kick_rdev_from_array(rdev);
1509 				continue;
1510 			}
1511 		if (mddev->level == LEVEL_MULTIPATH) {
1512 			rdev->desc_nr = i++;
1513 			rdev->raid_disk = rdev->desc_nr;
1514 			rdev->in_sync = 1;
1515 		}
1516 	}
1517 
1518 
1519 
1520 	if (mddev->recovery_cp != MaxSector &&
1521 	    mddev->level >= 1)
1522 		printk(KERN_ERR "md: %s: raid array is not clean"
1523 		       " -- starting background reconstruction\n",
1524 		       mdname(mddev));
1525 
1526 }
1527 
1528 int mdp_major = 0;
1529 
1530 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1531 {
1532 	static DECLARE_MUTEX(disks_sem);
1533 	mddev_t *mddev = mddev_find(dev);
1534 	struct gendisk *disk;
1535 	int partitioned = (MAJOR(dev) != MD_MAJOR);
1536 	int shift = partitioned ? MdpMinorShift : 0;
1537 	int unit = MINOR(dev) >> shift;
1538 
1539 	if (!mddev)
1540 		return NULL;
1541 
1542 	down(&disks_sem);
1543 	if (mddev->gendisk) {
1544 		up(&disks_sem);
1545 		mddev_put(mddev);
1546 		return NULL;
1547 	}
1548 	disk = alloc_disk(1 << shift);
1549 	if (!disk) {
1550 		up(&disks_sem);
1551 		mddev_put(mddev);
1552 		return NULL;
1553 	}
1554 	disk->major = MAJOR(dev);
1555 	disk->first_minor = unit << shift;
1556 	if (partitioned) {
1557 		sprintf(disk->disk_name, "md_d%d", unit);
1558 		sprintf(disk->devfs_name, "md/d%d", unit);
1559 	} else {
1560 		sprintf(disk->disk_name, "md%d", unit);
1561 		sprintf(disk->devfs_name, "md/%d", unit);
1562 	}
1563 	disk->fops = &md_fops;
1564 	disk->private_data = mddev;
1565 	disk->queue = mddev->queue;
1566 	add_disk(disk);
1567 	mddev->gendisk = disk;
1568 	up(&disks_sem);
1569 	return NULL;
1570 }
1571 
1572 void md_wakeup_thread(mdk_thread_t *thread);
1573 
1574 static void md_safemode_timeout(unsigned long data)
1575 {
1576 	mddev_t *mddev = (mddev_t *) data;
1577 
1578 	mddev->safemode = 1;
1579 	md_wakeup_thread(mddev->thread);
1580 }
1581 
1582 
1583 static int do_md_run(mddev_t * mddev)
1584 {
1585 	int pnum, err;
1586 	int chunk_size;
1587 	struct list_head *tmp;
1588 	mdk_rdev_t *rdev;
1589 	struct gendisk *disk;
1590 	char b[BDEVNAME_SIZE];
1591 
1592 	if (list_empty(&mddev->disks))
1593 		/* cannot run an array with no devices.. */
1594 		return -EINVAL;
1595 
1596 	if (mddev->pers)
1597 		return -EBUSY;
1598 
1599 	/*
1600 	 * Analyze all RAID superblock(s)
1601 	 */
1602 	if (!mddev->raid_disks)
1603 		analyze_sbs(mddev);
1604 
1605 	chunk_size = mddev->chunk_size;
1606 	pnum = level_to_pers(mddev->level);
1607 
1608 	if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1609 		if (!chunk_size) {
1610 			/*
1611 			 * 'default chunksize' in the old md code used to
1612 			 * be PAGE_SIZE, baaad.
1613 			 * we abort here to be on the safe side. We don't
1614 			 * want to continue the bad practice.
1615 			 */
1616 			printk(KERN_ERR
1617 				"no chunksize specified, see 'man raidtab'\n");
1618 			return -EINVAL;
1619 		}
1620 		if (chunk_size > MAX_CHUNK_SIZE) {
1621 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
1622 				chunk_size, MAX_CHUNK_SIZE);
1623 			return -EINVAL;
1624 		}
1625 		/*
1626 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1627 		 */
1628 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
1629 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1630 			return -EINVAL;
1631 		}
1632 		if (chunk_size < PAGE_SIZE) {
1633 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1634 				chunk_size, PAGE_SIZE);
1635 			return -EINVAL;
1636 		}
1637 
1638 		/* devices must have minimum size of one chunk */
1639 		ITERATE_RDEV(mddev,rdev,tmp) {
1640 			if (rdev->faulty)
1641 				continue;
1642 			if (rdev->size < chunk_size / 1024) {
1643 				printk(KERN_WARNING
1644 					"md: Dev %s smaller than chunk_size:"
1645 					" %lluk < %dk\n",
1646 					bdevname(rdev->bdev,b),
1647 					(unsigned long long)rdev->size,
1648 					chunk_size / 1024);
1649 				return -EINVAL;
1650 			}
1651 		}
1652 	}
1653 
1654 #ifdef CONFIG_KMOD
1655 	if (!pers[pnum])
1656 	{
1657 		request_module("md-personality-%d", pnum);
1658 	}
1659 #endif
1660 
1661 	/*
1662 	 * Drop all container device buffers, from now on
1663 	 * the only valid external interface is through the md
1664 	 * device.
1665 	 * Also find largest hardsector size
1666 	 */
1667 	ITERATE_RDEV(mddev,rdev,tmp) {
1668 		if (rdev->faulty)
1669 			continue;
1670 		sync_blockdev(rdev->bdev);
1671 		invalidate_bdev(rdev->bdev, 0);
1672 	}
1673 
1674 	md_probe(mddev->unit, NULL, NULL);
1675 	disk = mddev->gendisk;
1676 	if (!disk)
1677 		return -ENOMEM;
1678 
1679 	spin_lock(&pers_lock);
1680 	if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1681 		spin_unlock(&pers_lock);
1682 		printk(KERN_WARNING "md: personality %d is not loaded!\n",
1683 		       pnum);
1684 		return -EINVAL;
1685 	}
1686 
1687 	mddev->pers = pers[pnum];
1688 	spin_unlock(&pers_lock);
1689 
1690 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1691 
1692 	/* before we start the array running, initialise the bitmap */
1693 	err = bitmap_create(mddev);
1694 	if (err)
1695 		printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1696 			mdname(mddev), err);
1697 	else
1698 		err = mddev->pers->run(mddev);
1699 	if (err) {
1700 		printk(KERN_ERR "md: pers->run() failed ...\n");
1701 		module_put(mddev->pers->owner);
1702 		mddev->pers = NULL;
1703 		bitmap_destroy(mddev);
1704 		return err;
1705 	}
1706  	atomic_set(&mddev->writes_pending,0);
1707 	mddev->safemode = 0;
1708 	mddev->safemode_timer.function = md_safemode_timeout;
1709 	mddev->safemode_timer.data = (unsigned long) mddev;
1710 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1711 	mddev->in_sync = 1;
1712 
1713 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1714 
1715 	if (mddev->sb_dirty)
1716 		md_update_sb(mddev);
1717 
1718 	set_capacity(disk, mddev->array_size<<1);
1719 
1720 	/* If we call blk_queue_make_request here, it will
1721 	 * re-initialise max_sectors etc which may have been
1722 	 * refined inside -> run.  So just set the bits we need to set.
1723 	 * Most initialisation happended when we called
1724 	 * blk_queue_make_request(..., md_fail_request)
1725 	 * earlier.
1726 	 */
1727 	mddev->queue->queuedata = mddev;
1728 	mddev->queue->make_request_fn = mddev->pers->make_request;
1729 
1730 	mddev->changed = 1;
1731 	return 0;
1732 }
1733 
1734 static int restart_array(mddev_t *mddev)
1735 {
1736 	struct gendisk *disk = mddev->gendisk;
1737 	int err;
1738 
1739 	/*
1740 	 * Complain if it has no devices
1741 	 */
1742 	err = -ENXIO;
1743 	if (list_empty(&mddev->disks))
1744 		goto out;
1745 
1746 	if (mddev->pers) {
1747 		err = -EBUSY;
1748 		if (!mddev->ro)
1749 			goto out;
1750 
1751 		mddev->safemode = 0;
1752 		mddev->ro = 0;
1753 		set_disk_ro(disk, 0);
1754 
1755 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
1756 			mdname(mddev));
1757 		/*
1758 		 * Kick recovery or resync if necessary
1759 		 */
1760 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1761 		md_wakeup_thread(mddev->thread);
1762 		err = 0;
1763 	} else {
1764 		printk(KERN_ERR "md: %s has no personality assigned.\n",
1765 			mdname(mddev));
1766 		err = -EINVAL;
1767 	}
1768 
1769 out:
1770 	return err;
1771 }
1772 
1773 static int do_md_stop(mddev_t * mddev, int ro)
1774 {
1775 	int err = 0;
1776 	struct gendisk *disk = mddev->gendisk;
1777 
1778 	if (mddev->pers) {
1779 		if (atomic_read(&mddev->active)>2) {
1780 			printk("md: %s still in use.\n",mdname(mddev));
1781 			return -EBUSY;
1782 		}
1783 
1784 		if (mddev->sync_thread) {
1785 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1786 			md_unregister_thread(mddev->sync_thread);
1787 			mddev->sync_thread = NULL;
1788 		}
1789 
1790 		del_timer_sync(&mddev->safemode_timer);
1791 
1792 		invalidate_partition(disk, 0);
1793 
1794 		if (ro) {
1795 			err  = -ENXIO;
1796 			if (mddev->ro)
1797 				goto out;
1798 			mddev->ro = 1;
1799 		} else {
1800 			if (mddev->ro)
1801 				set_disk_ro(disk, 0);
1802 			blk_queue_make_request(mddev->queue, md_fail_request);
1803 			mddev->pers->stop(mddev);
1804 			module_put(mddev->pers->owner);
1805 			mddev->pers = NULL;
1806 			if (mddev->ro)
1807 				mddev->ro = 0;
1808 		}
1809 		if (!mddev->in_sync) {
1810 			/* mark array as shutdown cleanly */
1811 			mddev->in_sync = 1;
1812 			md_update_sb(mddev);
1813 		}
1814 		if (ro)
1815 			set_disk_ro(disk, 1);
1816 	}
1817 
1818 	bitmap_destroy(mddev);
1819 	if (mddev->bitmap_file) {
1820 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
1821 		fput(mddev->bitmap_file);
1822 		mddev->bitmap_file = NULL;
1823 	}
1824 
1825 	/*
1826 	 * Free resources if final stop
1827 	 */
1828 	if (!ro) {
1829 		struct gendisk *disk;
1830 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1831 
1832 		export_array(mddev);
1833 
1834 		mddev->array_size = 0;
1835 		disk = mddev->gendisk;
1836 		if (disk)
1837 			set_capacity(disk, 0);
1838 		mddev->changed = 1;
1839 	} else
1840 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
1841 			mdname(mddev));
1842 	err = 0;
1843 out:
1844 	return err;
1845 }
1846 
1847 static void autorun_array(mddev_t *mddev)
1848 {
1849 	mdk_rdev_t *rdev;
1850 	struct list_head *tmp;
1851 	int err;
1852 
1853 	if (list_empty(&mddev->disks))
1854 		return;
1855 
1856 	printk(KERN_INFO "md: running: ");
1857 
1858 	ITERATE_RDEV(mddev,rdev,tmp) {
1859 		char b[BDEVNAME_SIZE];
1860 		printk("<%s>", bdevname(rdev->bdev,b));
1861 	}
1862 	printk("\n");
1863 
1864 	err = do_md_run (mddev);
1865 	if (err) {
1866 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1867 		do_md_stop (mddev, 0);
1868 	}
1869 }
1870 
1871 /*
1872  * lets try to run arrays based on all disks that have arrived
1873  * until now. (those are in pending_raid_disks)
1874  *
1875  * the method: pick the first pending disk, collect all disks with
1876  * the same UUID, remove all from the pending list and put them into
1877  * the 'same_array' list. Then order this list based on superblock
1878  * update time (freshest comes first), kick out 'old' disks and
1879  * compare superblocks. If everything's fine then run it.
1880  *
1881  * If "unit" is allocated, then bump its reference count
1882  */
1883 static void autorun_devices(int part)
1884 {
1885 	struct list_head candidates;
1886 	struct list_head *tmp;
1887 	mdk_rdev_t *rdev0, *rdev;
1888 	mddev_t *mddev;
1889 	char b[BDEVNAME_SIZE];
1890 
1891 	printk(KERN_INFO "md: autorun ...\n");
1892 	while (!list_empty(&pending_raid_disks)) {
1893 		dev_t dev;
1894 		rdev0 = list_entry(pending_raid_disks.next,
1895 					 mdk_rdev_t, same_set);
1896 
1897 		printk(KERN_INFO "md: considering %s ...\n",
1898 			bdevname(rdev0->bdev,b));
1899 		INIT_LIST_HEAD(&candidates);
1900 		ITERATE_RDEV_PENDING(rdev,tmp)
1901 			if (super_90_load(rdev, rdev0, 0) >= 0) {
1902 				printk(KERN_INFO "md:  adding %s ...\n",
1903 					bdevname(rdev->bdev,b));
1904 				list_move(&rdev->same_set, &candidates);
1905 			}
1906 		/*
1907 		 * now we have a set of devices, with all of them having
1908 		 * mostly sane superblocks. It's time to allocate the
1909 		 * mddev.
1910 		 */
1911 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1912 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1913 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1914 			break;
1915 		}
1916 		if (part)
1917 			dev = MKDEV(mdp_major,
1918 				    rdev0->preferred_minor << MdpMinorShift);
1919 		else
1920 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1921 
1922 		md_probe(dev, NULL, NULL);
1923 		mddev = mddev_find(dev);
1924 		if (!mddev) {
1925 			printk(KERN_ERR
1926 				"md: cannot allocate memory for md drive.\n");
1927 			break;
1928 		}
1929 		if (mddev_lock(mddev))
1930 			printk(KERN_WARNING "md: %s locked, cannot run\n",
1931 			       mdname(mddev));
1932 		else if (mddev->raid_disks || mddev->major_version
1933 			 || !list_empty(&mddev->disks)) {
1934 			printk(KERN_WARNING
1935 				"md: %s already running, cannot run %s\n",
1936 				mdname(mddev), bdevname(rdev0->bdev,b));
1937 			mddev_unlock(mddev);
1938 		} else {
1939 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
1940 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1941 				list_del_init(&rdev->same_set);
1942 				if (bind_rdev_to_array(rdev, mddev))
1943 					export_rdev(rdev);
1944 			}
1945 			autorun_array(mddev);
1946 			mddev_unlock(mddev);
1947 		}
1948 		/* on success, candidates will be empty, on error
1949 		 * it won't...
1950 		 */
1951 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1952 			export_rdev(rdev);
1953 		mddev_put(mddev);
1954 	}
1955 	printk(KERN_INFO "md: ... autorun DONE.\n");
1956 }
1957 
1958 /*
1959  * import RAID devices based on one partition
1960  * if possible, the array gets run as well.
1961  */
1962 
1963 static int autostart_array(dev_t startdev)
1964 {
1965 	char b[BDEVNAME_SIZE];
1966 	int err = -EINVAL, i;
1967 	mdp_super_t *sb = NULL;
1968 	mdk_rdev_t *start_rdev = NULL, *rdev;
1969 
1970 	start_rdev = md_import_device(startdev, 0, 0);
1971 	if (IS_ERR(start_rdev))
1972 		return err;
1973 
1974 
1975 	/* NOTE: this can only work for 0.90.0 superblocks */
1976 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
1977 	if (sb->major_version != 0 ||
1978 	    sb->minor_version != 90 ) {
1979 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
1980 		export_rdev(start_rdev);
1981 		return err;
1982 	}
1983 
1984 	if (start_rdev->faulty) {
1985 		printk(KERN_WARNING
1986 			"md: can not autostart based on faulty %s!\n",
1987 			bdevname(start_rdev->bdev,b));
1988 		export_rdev(start_rdev);
1989 		return err;
1990 	}
1991 	list_add(&start_rdev->same_set, &pending_raid_disks);
1992 
1993 	for (i = 0; i < MD_SB_DISKS; i++) {
1994 		mdp_disk_t *desc = sb->disks + i;
1995 		dev_t dev = MKDEV(desc->major, desc->minor);
1996 
1997 		if (!dev)
1998 			continue;
1999 		if (dev == startdev)
2000 			continue;
2001 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2002 			continue;
2003 		rdev = md_import_device(dev, 0, 0);
2004 		if (IS_ERR(rdev))
2005 			continue;
2006 
2007 		list_add(&rdev->same_set, &pending_raid_disks);
2008 	}
2009 
2010 	/*
2011 	 * possibly return codes
2012 	 */
2013 	autorun_devices(0);
2014 	return 0;
2015 
2016 }
2017 
2018 
2019 static int get_version(void __user * arg)
2020 {
2021 	mdu_version_t ver;
2022 
2023 	ver.major = MD_MAJOR_VERSION;
2024 	ver.minor = MD_MINOR_VERSION;
2025 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2026 
2027 	if (copy_to_user(arg, &ver, sizeof(ver)))
2028 		return -EFAULT;
2029 
2030 	return 0;
2031 }
2032 
2033 static int get_array_info(mddev_t * mddev, void __user * arg)
2034 {
2035 	mdu_array_info_t info;
2036 	int nr,working,active,failed,spare;
2037 	mdk_rdev_t *rdev;
2038 	struct list_head *tmp;
2039 
2040 	nr=working=active=failed=spare=0;
2041 	ITERATE_RDEV(mddev,rdev,tmp) {
2042 		nr++;
2043 		if (rdev->faulty)
2044 			failed++;
2045 		else {
2046 			working++;
2047 			if (rdev->in_sync)
2048 				active++;
2049 			else
2050 				spare++;
2051 		}
2052 	}
2053 
2054 	info.major_version = mddev->major_version;
2055 	info.minor_version = mddev->minor_version;
2056 	info.patch_version = MD_PATCHLEVEL_VERSION;
2057 	info.ctime         = mddev->ctime;
2058 	info.level         = mddev->level;
2059 	info.size          = mddev->size;
2060 	info.nr_disks      = nr;
2061 	info.raid_disks    = mddev->raid_disks;
2062 	info.md_minor      = mddev->md_minor;
2063 	info.not_persistent= !mddev->persistent;
2064 
2065 	info.utime         = mddev->utime;
2066 	info.state         = 0;
2067 	if (mddev->in_sync)
2068 		info.state = (1<<MD_SB_CLEAN);
2069 	info.active_disks  = active;
2070 	info.working_disks = working;
2071 	info.failed_disks  = failed;
2072 	info.spare_disks   = spare;
2073 
2074 	info.layout        = mddev->layout;
2075 	info.chunk_size    = mddev->chunk_size;
2076 
2077 	if (copy_to_user(arg, &info, sizeof(info)))
2078 		return -EFAULT;
2079 
2080 	return 0;
2081 }
2082 
2083 static int get_bitmap_file(mddev_t * mddev, void * arg)
2084 {
2085 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2086 	char *ptr, *buf = NULL;
2087 	int err = -ENOMEM;
2088 
2089 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2090 	if (!file)
2091 		goto out;
2092 
2093 	/* bitmap disabled, zero the first byte and copy out */
2094 	if (!mddev->bitmap || !mddev->bitmap->file) {
2095 		file->pathname[0] = '\0';
2096 		goto copy_out;
2097 	}
2098 
2099 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2100 	if (!buf)
2101 		goto out;
2102 
2103 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2104 	if (!ptr)
2105 		goto out;
2106 
2107 	strcpy(file->pathname, ptr);
2108 
2109 copy_out:
2110 	err = 0;
2111 	if (copy_to_user(arg, file, sizeof(*file)))
2112 		err = -EFAULT;
2113 out:
2114 	kfree(buf);
2115 	kfree(file);
2116 	return err;
2117 }
2118 
2119 static int get_disk_info(mddev_t * mddev, void __user * arg)
2120 {
2121 	mdu_disk_info_t info;
2122 	unsigned int nr;
2123 	mdk_rdev_t *rdev;
2124 
2125 	if (copy_from_user(&info, arg, sizeof(info)))
2126 		return -EFAULT;
2127 
2128 	nr = info.number;
2129 
2130 	rdev = find_rdev_nr(mddev, nr);
2131 	if (rdev) {
2132 		info.major = MAJOR(rdev->bdev->bd_dev);
2133 		info.minor = MINOR(rdev->bdev->bd_dev);
2134 		info.raid_disk = rdev->raid_disk;
2135 		info.state = 0;
2136 		if (rdev->faulty)
2137 			info.state |= (1<<MD_DISK_FAULTY);
2138 		else if (rdev->in_sync) {
2139 			info.state |= (1<<MD_DISK_ACTIVE);
2140 			info.state |= (1<<MD_DISK_SYNC);
2141 		}
2142 	} else {
2143 		info.major = info.minor = 0;
2144 		info.raid_disk = -1;
2145 		info.state = (1<<MD_DISK_REMOVED);
2146 	}
2147 
2148 	if (copy_to_user(arg, &info, sizeof(info)))
2149 		return -EFAULT;
2150 
2151 	return 0;
2152 }
2153 
2154 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2155 {
2156 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2157 	mdk_rdev_t *rdev;
2158 	dev_t dev = MKDEV(info->major,info->minor);
2159 
2160 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2161 		return -EOVERFLOW;
2162 
2163 	if (!mddev->raid_disks) {
2164 		int err;
2165 		/* expecting a device which has a superblock */
2166 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2167 		if (IS_ERR(rdev)) {
2168 			printk(KERN_WARNING
2169 				"md: md_import_device returned %ld\n",
2170 				PTR_ERR(rdev));
2171 			return PTR_ERR(rdev);
2172 		}
2173 		if (!list_empty(&mddev->disks)) {
2174 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2175 							mdk_rdev_t, same_set);
2176 			int err = super_types[mddev->major_version]
2177 				.load_super(rdev, rdev0, mddev->minor_version);
2178 			if (err < 0) {
2179 				printk(KERN_WARNING
2180 					"md: %s has different UUID to %s\n",
2181 					bdevname(rdev->bdev,b),
2182 					bdevname(rdev0->bdev,b2));
2183 				export_rdev(rdev);
2184 				return -EINVAL;
2185 			}
2186 		}
2187 		err = bind_rdev_to_array(rdev, mddev);
2188 		if (err)
2189 			export_rdev(rdev);
2190 		return err;
2191 	}
2192 
2193 	/*
2194 	 * add_new_disk can be used once the array is assembled
2195 	 * to add "hot spares".  They must already have a superblock
2196 	 * written
2197 	 */
2198 	if (mddev->pers) {
2199 		int err;
2200 		if (!mddev->pers->hot_add_disk) {
2201 			printk(KERN_WARNING
2202 				"%s: personality does not support diskops!\n",
2203 			       mdname(mddev));
2204 			return -EINVAL;
2205 		}
2206 		rdev = md_import_device(dev, mddev->major_version,
2207 					mddev->minor_version);
2208 		if (IS_ERR(rdev)) {
2209 			printk(KERN_WARNING
2210 				"md: md_import_device returned %ld\n",
2211 				PTR_ERR(rdev));
2212 			return PTR_ERR(rdev);
2213 		}
2214 		/* set save_raid_disk if appropriate */
2215 		if (!mddev->persistent) {
2216 			if (info->state & (1<<MD_DISK_SYNC)  &&
2217 			    info->raid_disk < mddev->raid_disks)
2218 				rdev->raid_disk = info->raid_disk;
2219 			else
2220 				rdev->raid_disk = -1;
2221 		} else
2222 			super_types[mddev->major_version].
2223 				validate_super(mddev, rdev);
2224 		rdev->saved_raid_disk = rdev->raid_disk;
2225 
2226 		rdev->in_sync = 0; /* just to be sure */
2227 		rdev->raid_disk = -1;
2228 		err = bind_rdev_to_array(rdev, mddev);
2229 		if (err)
2230 			export_rdev(rdev);
2231 
2232 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2233 		if (mddev->thread)
2234 			md_wakeup_thread(mddev->thread);
2235 		return err;
2236 	}
2237 
2238 	/* otherwise, add_new_disk is only allowed
2239 	 * for major_version==0 superblocks
2240 	 */
2241 	if (mddev->major_version != 0) {
2242 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2243 		       mdname(mddev));
2244 		return -EINVAL;
2245 	}
2246 
2247 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2248 		int err;
2249 		rdev = md_import_device (dev, -1, 0);
2250 		if (IS_ERR(rdev)) {
2251 			printk(KERN_WARNING
2252 				"md: error, md_import_device() returned %ld\n",
2253 				PTR_ERR(rdev));
2254 			return PTR_ERR(rdev);
2255 		}
2256 		rdev->desc_nr = info->number;
2257 		if (info->raid_disk < mddev->raid_disks)
2258 			rdev->raid_disk = info->raid_disk;
2259 		else
2260 			rdev->raid_disk = -1;
2261 
2262 		rdev->faulty = 0;
2263 		if (rdev->raid_disk < mddev->raid_disks)
2264 			rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2265 		else
2266 			rdev->in_sync = 0;
2267 
2268 		err = bind_rdev_to_array(rdev, mddev);
2269 		if (err) {
2270 			export_rdev(rdev);
2271 			return err;
2272 		}
2273 
2274 		if (!mddev->persistent) {
2275 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2276 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2277 		} else
2278 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2279 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2280 
2281 		if (!mddev->size || (mddev->size > rdev->size))
2282 			mddev->size = rdev->size;
2283 	}
2284 
2285 	return 0;
2286 }
2287 
2288 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2289 {
2290 	char b[BDEVNAME_SIZE];
2291 	mdk_rdev_t *rdev;
2292 
2293 	if (!mddev->pers)
2294 		return -ENODEV;
2295 
2296 	rdev = find_rdev(mddev, dev);
2297 	if (!rdev)
2298 		return -ENXIO;
2299 
2300 	if (rdev->raid_disk >= 0)
2301 		goto busy;
2302 
2303 	kick_rdev_from_array(rdev);
2304 	md_update_sb(mddev);
2305 
2306 	return 0;
2307 busy:
2308 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2309 		bdevname(rdev->bdev,b), mdname(mddev));
2310 	return -EBUSY;
2311 }
2312 
2313 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2314 {
2315 	char b[BDEVNAME_SIZE];
2316 	int err;
2317 	unsigned int size;
2318 	mdk_rdev_t *rdev;
2319 
2320 	if (!mddev->pers)
2321 		return -ENODEV;
2322 
2323 	if (mddev->major_version != 0) {
2324 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2325 			" version-0 superblocks.\n",
2326 			mdname(mddev));
2327 		return -EINVAL;
2328 	}
2329 	if (!mddev->pers->hot_add_disk) {
2330 		printk(KERN_WARNING
2331 			"%s: personality does not support diskops!\n",
2332 			mdname(mddev));
2333 		return -EINVAL;
2334 	}
2335 
2336 	rdev = md_import_device (dev, -1, 0);
2337 	if (IS_ERR(rdev)) {
2338 		printk(KERN_WARNING
2339 			"md: error, md_import_device() returned %ld\n",
2340 			PTR_ERR(rdev));
2341 		return -EINVAL;
2342 	}
2343 
2344 	if (mddev->persistent)
2345 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2346 	else
2347 		rdev->sb_offset =
2348 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2349 
2350 	size = calc_dev_size(rdev, mddev->chunk_size);
2351 	rdev->size = size;
2352 
2353 	if (size < mddev->size) {
2354 		printk(KERN_WARNING
2355 			"%s: disk size %llu blocks < array size %llu\n",
2356 			mdname(mddev), (unsigned long long)size,
2357 			(unsigned long long)mddev->size);
2358 		err = -ENOSPC;
2359 		goto abort_export;
2360 	}
2361 
2362 	if (rdev->faulty) {
2363 		printk(KERN_WARNING
2364 			"md: can not hot-add faulty %s disk to %s!\n",
2365 			bdevname(rdev->bdev,b), mdname(mddev));
2366 		err = -EINVAL;
2367 		goto abort_export;
2368 	}
2369 	rdev->in_sync = 0;
2370 	rdev->desc_nr = -1;
2371 	bind_rdev_to_array(rdev, mddev);
2372 
2373 	/*
2374 	 * The rest should better be atomic, we can have disk failures
2375 	 * noticed in interrupt contexts ...
2376 	 */
2377 
2378 	if (rdev->desc_nr == mddev->max_disks) {
2379 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2380 			mdname(mddev));
2381 		err = -EBUSY;
2382 		goto abort_unbind_export;
2383 	}
2384 
2385 	rdev->raid_disk = -1;
2386 
2387 	md_update_sb(mddev);
2388 
2389 	/*
2390 	 * Kick recovery, maybe this spare has to be added to the
2391 	 * array immediately.
2392 	 */
2393 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2394 	md_wakeup_thread(mddev->thread);
2395 
2396 	return 0;
2397 
2398 abort_unbind_export:
2399 	unbind_rdev_from_array(rdev);
2400 
2401 abort_export:
2402 	export_rdev(rdev);
2403 	return err;
2404 }
2405 
2406 /* similar to deny_write_access, but accounts for our holding a reference
2407  * to the file ourselves */
2408 static int deny_bitmap_write_access(struct file * file)
2409 {
2410 	struct inode *inode = file->f_mapping->host;
2411 
2412 	spin_lock(&inode->i_lock);
2413 	if (atomic_read(&inode->i_writecount) > 1) {
2414 		spin_unlock(&inode->i_lock);
2415 		return -ETXTBSY;
2416 	}
2417 	atomic_set(&inode->i_writecount, -1);
2418 	spin_unlock(&inode->i_lock);
2419 
2420 	return 0;
2421 }
2422 
2423 static int set_bitmap_file(mddev_t *mddev, int fd)
2424 {
2425 	int err;
2426 
2427 	if (mddev->pers)
2428 		return -EBUSY;
2429 
2430 	mddev->bitmap_file = fget(fd);
2431 
2432 	if (mddev->bitmap_file == NULL) {
2433 		printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2434 			mdname(mddev));
2435 		return -EBADF;
2436 	}
2437 
2438 	err = deny_bitmap_write_access(mddev->bitmap_file);
2439 	if (err) {
2440 		printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2441 			mdname(mddev));
2442 		fput(mddev->bitmap_file);
2443 		mddev->bitmap_file = NULL;
2444 	} else
2445 		mddev->bitmap_offset = 0; /* file overrides offset */
2446 	return err;
2447 }
2448 
2449 /*
2450  * set_array_info is used two different ways
2451  * The original usage is when creating a new array.
2452  * In this usage, raid_disks is > 0 and it together with
2453  *  level, size, not_persistent,layout,chunksize determine the
2454  *  shape of the array.
2455  *  This will always create an array with a type-0.90.0 superblock.
2456  * The newer usage is when assembling an array.
2457  *  In this case raid_disks will be 0, and the major_version field is
2458  *  use to determine which style super-blocks are to be found on the devices.
2459  *  The minor and patch _version numbers are also kept incase the
2460  *  super_block handler wishes to interpret them.
2461  */
2462 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2463 {
2464 
2465 	if (info->raid_disks == 0) {
2466 		/* just setting version number for superblock loading */
2467 		if (info->major_version < 0 ||
2468 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2469 		    super_types[info->major_version].name == NULL) {
2470 			/* maybe try to auto-load a module? */
2471 			printk(KERN_INFO
2472 				"md: superblock version %d not known\n",
2473 				info->major_version);
2474 			return -EINVAL;
2475 		}
2476 		mddev->major_version = info->major_version;
2477 		mddev->minor_version = info->minor_version;
2478 		mddev->patch_version = info->patch_version;
2479 		return 0;
2480 	}
2481 	mddev->major_version = MD_MAJOR_VERSION;
2482 	mddev->minor_version = MD_MINOR_VERSION;
2483 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
2484 	mddev->ctime         = get_seconds();
2485 
2486 	mddev->level         = info->level;
2487 	mddev->size          = info->size;
2488 	mddev->raid_disks    = info->raid_disks;
2489 	/* don't set md_minor, it is determined by which /dev/md* was
2490 	 * openned
2491 	 */
2492 	if (info->state & (1<<MD_SB_CLEAN))
2493 		mddev->recovery_cp = MaxSector;
2494 	else
2495 		mddev->recovery_cp = 0;
2496 	mddev->persistent    = ! info->not_persistent;
2497 
2498 	mddev->layout        = info->layout;
2499 	mddev->chunk_size    = info->chunk_size;
2500 
2501 	mddev->max_disks     = MD_SB_DISKS;
2502 
2503 	mddev->sb_dirty      = 1;
2504 
2505 	/*
2506 	 * Generate a 128 bit UUID
2507 	 */
2508 	get_random_bytes(mddev->uuid, 16);
2509 
2510 	return 0;
2511 }
2512 
2513 /*
2514  * update_array_info is used to change the configuration of an
2515  * on-line array.
2516  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2517  * fields in the info are checked against the array.
2518  * Any differences that cannot be handled will cause an error.
2519  * Normally, only one change can be managed at a time.
2520  */
2521 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2522 {
2523 	int rv = 0;
2524 	int cnt = 0;
2525 
2526 	if (mddev->major_version != info->major_version ||
2527 	    mddev->minor_version != info->minor_version ||
2528 /*	    mddev->patch_version != info->patch_version || */
2529 	    mddev->ctime         != info->ctime         ||
2530 	    mddev->level         != info->level         ||
2531 /*	    mddev->layout        != info->layout        || */
2532 	    !mddev->persistent	 != info->not_persistent||
2533 	    mddev->chunk_size    != info->chunk_size    )
2534 		return -EINVAL;
2535 	/* Check there is only one change */
2536 	if (mddev->size != info->size) cnt++;
2537 	if (mddev->raid_disks != info->raid_disks) cnt++;
2538 	if (mddev->layout != info->layout) cnt++;
2539 	if (cnt == 0) return 0;
2540 	if (cnt > 1) return -EINVAL;
2541 
2542 	if (mddev->layout != info->layout) {
2543 		/* Change layout
2544 		 * we don't need to do anything at the md level, the
2545 		 * personality will take care of it all.
2546 		 */
2547 		if (mddev->pers->reconfig == NULL)
2548 			return -EINVAL;
2549 		else
2550 			return mddev->pers->reconfig(mddev, info->layout, -1);
2551 	}
2552 	if (mddev->size != info->size) {
2553 		mdk_rdev_t * rdev;
2554 		struct list_head *tmp;
2555 		if (mddev->pers->resize == NULL)
2556 			return -EINVAL;
2557 		/* The "size" is the amount of each device that is used.
2558 		 * This can only make sense for arrays with redundancy.
2559 		 * linear and raid0 always use whatever space is available
2560 		 * We can only consider changing the size if no resync
2561 		 * or reconstruction is happening, and if the new size
2562 		 * is acceptable. It must fit before the sb_offset or,
2563 		 * if that is <data_offset, it must fit before the
2564 		 * size of each device.
2565 		 * If size is zero, we find the largest size that fits.
2566 		 */
2567 		if (mddev->sync_thread)
2568 			return -EBUSY;
2569 		ITERATE_RDEV(mddev,rdev,tmp) {
2570 			sector_t avail;
2571 			int fit = (info->size == 0);
2572 			if (rdev->sb_offset > rdev->data_offset)
2573 				avail = (rdev->sb_offset*2) - rdev->data_offset;
2574 			else
2575 				avail = get_capacity(rdev->bdev->bd_disk)
2576 					- rdev->data_offset;
2577 			if (fit && (info->size == 0 || info->size > avail/2))
2578 				info->size = avail/2;
2579 			if (avail < ((sector_t)info->size << 1))
2580 				return -ENOSPC;
2581 		}
2582 		rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2583 		if (!rv) {
2584 			struct block_device *bdev;
2585 
2586 			bdev = bdget_disk(mddev->gendisk, 0);
2587 			if (bdev) {
2588 				down(&bdev->bd_inode->i_sem);
2589 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
2590 				up(&bdev->bd_inode->i_sem);
2591 				bdput(bdev);
2592 			}
2593 		}
2594 	}
2595 	if (mddev->raid_disks    != info->raid_disks) {
2596 		/* change the number of raid disks */
2597 		if (mddev->pers->reshape == NULL)
2598 			return -EINVAL;
2599 		if (info->raid_disks <= 0 ||
2600 		    info->raid_disks >= mddev->max_disks)
2601 			return -EINVAL;
2602 		if (mddev->sync_thread)
2603 			return -EBUSY;
2604 		rv = mddev->pers->reshape(mddev, info->raid_disks);
2605 		if (!rv) {
2606 			struct block_device *bdev;
2607 
2608 			bdev = bdget_disk(mddev->gendisk, 0);
2609 			if (bdev) {
2610 				down(&bdev->bd_inode->i_sem);
2611 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
2612 				up(&bdev->bd_inode->i_sem);
2613 				bdput(bdev);
2614 			}
2615 		}
2616 	}
2617 	md_update_sb(mddev);
2618 	return rv;
2619 }
2620 
2621 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2622 {
2623 	mdk_rdev_t *rdev;
2624 
2625 	if (mddev->pers == NULL)
2626 		return -ENODEV;
2627 
2628 	rdev = find_rdev(mddev, dev);
2629 	if (!rdev)
2630 		return -ENODEV;
2631 
2632 	md_error(mddev, rdev);
2633 	return 0;
2634 }
2635 
2636 static int md_ioctl(struct inode *inode, struct file *file,
2637 			unsigned int cmd, unsigned long arg)
2638 {
2639 	int err = 0;
2640 	void __user *argp = (void __user *)arg;
2641 	struct hd_geometry __user *loc = argp;
2642 	mddev_t *mddev = NULL;
2643 
2644 	if (!capable(CAP_SYS_ADMIN))
2645 		return -EACCES;
2646 
2647 	/*
2648 	 * Commands dealing with the RAID driver but not any
2649 	 * particular array:
2650 	 */
2651 	switch (cmd)
2652 	{
2653 		case RAID_VERSION:
2654 			err = get_version(argp);
2655 			goto done;
2656 
2657 		case PRINT_RAID_DEBUG:
2658 			err = 0;
2659 			md_print_devices();
2660 			goto done;
2661 
2662 #ifndef MODULE
2663 		case RAID_AUTORUN:
2664 			err = 0;
2665 			autostart_arrays(arg);
2666 			goto done;
2667 #endif
2668 		default:;
2669 	}
2670 
2671 	/*
2672 	 * Commands creating/starting a new array:
2673 	 */
2674 
2675 	mddev = inode->i_bdev->bd_disk->private_data;
2676 
2677 	if (!mddev) {
2678 		BUG();
2679 		goto abort;
2680 	}
2681 
2682 
2683 	if (cmd == START_ARRAY) {
2684 		/* START_ARRAY doesn't need to lock the array as autostart_array
2685 		 * does the locking, and it could even be a different array
2686 		 */
2687 		static int cnt = 3;
2688 		if (cnt > 0 ) {
2689 			printk(KERN_WARNING
2690 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2691 			       "This will not be supported beyond 2.6\n",
2692 			       current->comm, current->pid);
2693 			cnt--;
2694 		}
2695 		err = autostart_array(new_decode_dev(arg));
2696 		if (err) {
2697 			printk(KERN_WARNING "md: autostart failed!\n");
2698 			goto abort;
2699 		}
2700 		goto done;
2701 	}
2702 
2703 	err = mddev_lock(mddev);
2704 	if (err) {
2705 		printk(KERN_INFO
2706 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
2707 			err, cmd);
2708 		goto abort;
2709 	}
2710 
2711 	switch (cmd)
2712 	{
2713 		case SET_ARRAY_INFO:
2714 			{
2715 				mdu_array_info_t info;
2716 				if (!arg)
2717 					memset(&info, 0, sizeof(info));
2718 				else if (copy_from_user(&info, argp, sizeof(info))) {
2719 					err = -EFAULT;
2720 					goto abort_unlock;
2721 				}
2722 				if (mddev->pers) {
2723 					err = update_array_info(mddev, &info);
2724 					if (err) {
2725 						printk(KERN_WARNING "md: couldn't update"
2726 						       " array info. %d\n", err);
2727 						goto abort_unlock;
2728 					}
2729 					goto done_unlock;
2730 				}
2731 				if (!list_empty(&mddev->disks)) {
2732 					printk(KERN_WARNING
2733 					       "md: array %s already has disks!\n",
2734 					       mdname(mddev));
2735 					err = -EBUSY;
2736 					goto abort_unlock;
2737 				}
2738 				if (mddev->raid_disks) {
2739 					printk(KERN_WARNING
2740 					       "md: array %s already initialised!\n",
2741 					       mdname(mddev));
2742 					err = -EBUSY;
2743 					goto abort_unlock;
2744 				}
2745 				err = set_array_info(mddev, &info);
2746 				if (err) {
2747 					printk(KERN_WARNING "md: couldn't set"
2748 					       " array info. %d\n", err);
2749 					goto abort_unlock;
2750 				}
2751 			}
2752 			goto done_unlock;
2753 
2754 		default:;
2755 	}
2756 
2757 	/*
2758 	 * Commands querying/configuring an existing array:
2759 	 */
2760 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
2761 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
2762 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
2763 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
2764 		err = -ENODEV;
2765 		goto abort_unlock;
2766 	}
2767 
2768 	/*
2769 	 * Commands even a read-only array can execute:
2770 	 */
2771 	switch (cmd)
2772 	{
2773 		case GET_ARRAY_INFO:
2774 			err = get_array_info(mddev, argp);
2775 			goto done_unlock;
2776 
2777 		case GET_BITMAP_FILE:
2778 			err = get_bitmap_file(mddev, (void *)arg);
2779 			goto done_unlock;
2780 
2781 		case GET_DISK_INFO:
2782 			err = get_disk_info(mddev, argp);
2783 			goto done_unlock;
2784 
2785 		case RESTART_ARRAY_RW:
2786 			err = restart_array(mddev);
2787 			goto done_unlock;
2788 
2789 		case STOP_ARRAY:
2790 			err = do_md_stop (mddev, 0);
2791 			goto done_unlock;
2792 
2793 		case STOP_ARRAY_RO:
2794 			err = do_md_stop (mddev, 1);
2795 			goto done_unlock;
2796 
2797 	/*
2798 	 * We have a problem here : there is no easy way to give a CHS
2799 	 * virtual geometry. We currently pretend that we have a 2 heads
2800 	 * 4 sectors (with a BIG number of cylinders...). This drives
2801 	 * dosfs just mad... ;-)
2802 	 */
2803 		case HDIO_GETGEO:
2804 			if (!loc) {
2805 				err = -EINVAL;
2806 				goto abort_unlock;
2807 			}
2808 			err = put_user (2, (char __user *) &loc->heads);
2809 			if (err)
2810 				goto abort_unlock;
2811 			err = put_user (4, (char __user *) &loc->sectors);
2812 			if (err)
2813 				goto abort_unlock;
2814 			err = put_user(get_capacity(mddev->gendisk)/8,
2815 					(short __user *) &loc->cylinders);
2816 			if (err)
2817 				goto abort_unlock;
2818 			err = put_user (get_start_sect(inode->i_bdev),
2819 						(long __user *) &loc->start);
2820 			goto done_unlock;
2821 	}
2822 
2823 	/*
2824 	 * The remaining ioctls are changing the state of the
2825 	 * superblock, so we do not allow read-only arrays
2826 	 * here:
2827 	 */
2828 	if (mddev->ro) {
2829 		err = -EROFS;
2830 		goto abort_unlock;
2831 	}
2832 
2833 	switch (cmd)
2834 	{
2835 		case ADD_NEW_DISK:
2836 		{
2837 			mdu_disk_info_t info;
2838 			if (copy_from_user(&info, argp, sizeof(info)))
2839 				err = -EFAULT;
2840 			else
2841 				err = add_new_disk(mddev, &info);
2842 			goto done_unlock;
2843 		}
2844 
2845 		case HOT_REMOVE_DISK:
2846 			err = hot_remove_disk(mddev, new_decode_dev(arg));
2847 			goto done_unlock;
2848 
2849 		case HOT_ADD_DISK:
2850 			err = hot_add_disk(mddev, new_decode_dev(arg));
2851 			goto done_unlock;
2852 
2853 		case SET_DISK_FAULTY:
2854 			err = set_disk_faulty(mddev, new_decode_dev(arg));
2855 			goto done_unlock;
2856 
2857 		case RUN_ARRAY:
2858 			err = do_md_run (mddev);
2859 			goto done_unlock;
2860 
2861 		case SET_BITMAP_FILE:
2862 			err = set_bitmap_file(mddev, (int)arg);
2863 			goto done_unlock;
2864 
2865 		default:
2866 			if (_IOC_TYPE(cmd) == MD_MAJOR)
2867 				printk(KERN_WARNING "md: %s(pid %d) used"
2868 					" obsolete MD ioctl, upgrade your"
2869 					" software to use new ictls.\n",
2870 					current->comm, current->pid);
2871 			err = -EINVAL;
2872 			goto abort_unlock;
2873 	}
2874 
2875 done_unlock:
2876 abort_unlock:
2877 	mddev_unlock(mddev);
2878 
2879 	return err;
2880 done:
2881 	if (err)
2882 		MD_BUG();
2883 abort:
2884 	return err;
2885 }
2886 
2887 static int md_open(struct inode *inode, struct file *file)
2888 {
2889 	/*
2890 	 * Succeed if we can lock the mddev, which confirms that
2891 	 * it isn't being stopped right now.
2892 	 */
2893 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2894 	int err;
2895 
2896 	if ((err = mddev_lock(mddev)))
2897 		goto out;
2898 
2899 	err = 0;
2900 	mddev_get(mddev);
2901 	mddev_unlock(mddev);
2902 
2903 	check_disk_change(inode->i_bdev);
2904  out:
2905 	return err;
2906 }
2907 
2908 static int md_release(struct inode *inode, struct file * file)
2909 {
2910  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2911 
2912 	if (!mddev)
2913 		BUG();
2914 	mddev_put(mddev);
2915 
2916 	return 0;
2917 }
2918 
2919 static int md_media_changed(struct gendisk *disk)
2920 {
2921 	mddev_t *mddev = disk->private_data;
2922 
2923 	return mddev->changed;
2924 }
2925 
2926 static int md_revalidate(struct gendisk *disk)
2927 {
2928 	mddev_t *mddev = disk->private_data;
2929 
2930 	mddev->changed = 0;
2931 	return 0;
2932 }
2933 static struct block_device_operations md_fops =
2934 {
2935 	.owner		= THIS_MODULE,
2936 	.open		= md_open,
2937 	.release	= md_release,
2938 	.ioctl		= md_ioctl,
2939 	.media_changed	= md_media_changed,
2940 	.revalidate_disk= md_revalidate,
2941 };
2942 
2943 static int md_thread(void * arg)
2944 {
2945 	mdk_thread_t *thread = arg;
2946 
2947 	lock_kernel();
2948 
2949 	/*
2950 	 * Detach thread
2951 	 */
2952 
2953 	daemonize(thread->name, mdname(thread->mddev));
2954 
2955 	current->exit_signal = SIGCHLD;
2956 	allow_signal(SIGKILL);
2957 	thread->tsk = current;
2958 
2959 	/*
2960 	 * md_thread is a 'system-thread', it's priority should be very
2961 	 * high. We avoid resource deadlocks individually in each
2962 	 * raid personality. (RAID5 does preallocation) We also use RR and
2963 	 * the very same RT priority as kswapd, thus we will never get
2964 	 * into a priority inversion deadlock.
2965 	 *
2966 	 * we definitely have to have equal or higher priority than
2967 	 * bdflush, otherwise bdflush will deadlock if there are too
2968 	 * many dirty RAID5 blocks.
2969 	 */
2970 	unlock_kernel();
2971 
2972 	complete(thread->event);
2973 	while (thread->run) {
2974 		void (*run)(mddev_t *);
2975 
2976 		wait_event_interruptible_timeout(thread->wqueue,
2977 						 test_bit(THREAD_WAKEUP, &thread->flags),
2978 						 thread->timeout);
2979 		if (current->flags & PF_FREEZE)
2980 			refrigerator(PF_FREEZE);
2981 
2982 		clear_bit(THREAD_WAKEUP, &thread->flags);
2983 
2984 		run = thread->run;
2985 		if (run)
2986 			run(thread->mddev);
2987 
2988 		if (signal_pending(current))
2989 			flush_signals(current);
2990 	}
2991 	complete(thread->event);
2992 	return 0;
2993 }
2994 
2995 void md_wakeup_thread(mdk_thread_t *thread)
2996 {
2997 	if (thread) {
2998 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
2999 		set_bit(THREAD_WAKEUP, &thread->flags);
3000 		wake_up(&thread->wqueue);
3001 	}
3002 }
3003 
3004 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3005 				 const char *name)
3006 {
3007 	mdk_thread_t *thread;
3008 	int ret;
3009 	struct completion event;
3010 
3011 	thread = (mdk_thread_t *) kmalloc
3012 				(sizeof(mdk_thread_t), GFP_KERNEL);
3013 	if (!thread)
3014 		return NULL;
3015 
3016 	memset(thread, 0, sizeof(mdk_thread_t));
3017 	init_waitqueue_head(&thread->wqueue);
3018 
3019 	init_completion(&event);
3020 	thread->event = &event;
3021 	thread->run = run;
3022 	thread->mddev = mddev;
3023 	thread->name = name;
3024 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3025 	ret = kernel_thread(md_thread, thread, 0);
3026 	if (ret < 0) {
3027 		kfree(thread);
3028 		return NULL;
3029 	}
3030 	wait_for_completion(&event);
3031 	return thread;
3032 }
3033 
3034 void md_unregister_thread(mdk_thread_t *thread)
3035 {
3036 	struct completion event;
3037 
3038 	init_completion(&event);
3039 
3040 	thread->event = &event;
3041 
3042 	/* As soon as ->run is set to NULL, the task could disappear,
3043 	 * so we need to hold tasklist_lock until we have sent the signal
3044 	 */
3045 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3046 	read_lock(&tasklist_lock);
3047 	thread->run = NULL;
3048 	send_sig(SIGKILL, thread->tsk, 1);
3049 	read_unlock(&tasklist_lock);
3050 	wait_for_completion(&event);
3051 	kfree(thread);
3052 }
3053 
3054 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3055 {
3056 	if (!mddev) {
3057 		MD_BUG();
3058 		return;
3059 	}
3060 
3061 	if (!rdev || rdev->faulty)
3062 		return;
3063 /*
3064 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3065 		mdname(mddev),
3066 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3067 		__builtin_return_address(0),__builtin_return_address(1),
3068 		__builtin_return_address(2),__builtin_return_address(3));
3069 */
3070 	if (!mddev->pers->error_handler)
3071 		return;
3072 	mddev->pers->error_handler(mddev,rdev);
3073 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3074 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3075 	md_wakeup_thread(mddev->thread);
3076 }
3077 
3078 /* seq_file implementation /proc/mdstat */
3079 
3080 static void status_unused(struct seq_file *seq)
3081 {
3082 	int i = 0;
3083 	mdk_rdev_t *rdev;
3084 	struct list_head *tmp;
3085 
3086 	seq_printf(seq, "unused devices: ");
3087 
3088 	ITERATE_RDEV_PENDING(rdev,tmp) {
3089 		char b[BDEVNAME_SIZE];
3090 		i++;
3091 		seq_printf(seq, "%s ",
3092 			      bdevname(rdev->bdev,b));
3093 	}
3094 	if (!i)
3095 		seq_printf(seq, "<none>");
3096 
3097 	seq_printf(seq, "\n");
3098 }
3099 
3100 
3101 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3102 {
3103 	unsigned long max_blocks, resync, res, dt, db, rt;
3104 
3105 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3106 
3107 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3108 		max_blocks = mddev->resync_max_sectors >> 1;
3109 	else
3110 		max_blocks = mddev->size;
3111 
3112 	/*
3113 	 * Should not happen.
3114 	 */
3115 	if (!max_blocks) {
3116 		MD_BUG();
3117 		return;
3118 	}
3119 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3120 	{
3121 		int i, x = res/50, y = 20-x;
3122 		seq_printf(seq, "[");
3123 		for (i = 0; i < x; i++)
3124 			seq_printf(seq, "=");
3125 		seq_printf(seq, ">");
3126 		for (i = 0; i < y; i++)
3127 			seq_printf(seq, ".");
3128 		seq_printf(seq, "] ");
3129 	}
3130 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3131 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3132 		       "resync" : "recovery"),
3133 		      res/10, res % 10, resync, max_blocks);
3134 
3135 	/*
3136 	 * We do not want to overflow, so the order of operands and
3137 	 * the * 100 / 100 trick are important. We do a +1 to be
3138 	 * safe against division by zero. We only estimate anyway.
3139 	 *
3140 	 * dt: time from mark until now
3141 	 * db: blocks written from mark until now
3142 	 * rt: remaining time
3143 	 */
3144 	dt = ((jiffies - mddev->resync_mark) / HZ);
3145 	if (!dt) dt++;
3146 	db = resync - (mddev->resync_mark_cnt/2);
3147 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3148 
3149 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3150 
3151 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3152 }
3153 
3154 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3155 {
3156 	struct list_head *tmp;
3157 	loff_t l = *pos;
3158 	mddev_t *mddev;
3159 
3160 	if (l >= 0x10000)
3161 		return NULL;
3162 	if (!l--)
3163 		/* header */
3164 		return (void*)1;
3165 
3166 	spin_lock(&all_mddevs_lock);
3167 	list_for_each(tmp,&all_mddevs)
3168 		if (!l--) {
3169 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3170 			mddev_get(mddev);
3171 			spin_unlock(&all_mddevs_lock);
3172 			return mddev;
3173 		}
3174 	spin_unlock(&all_mddevs_lock);
3175 	if (!l--)
3176 		return (void*)2;/* tail */
3177 	return NULL;
3178 }
3179 
3180 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3181 {
3182 	struct list_head *tmp;
3183 	mddev_t *next_mddev, *mddev = v;
3184 
3185 	++*pos;
3186 	if (v == (void*)2)
3187 		return NULL;
3188 
3189 	spin_lock(&all_mddevs_lock);
3190 	if (v == (void*)1)
3191 		tmp = all_mddevs.next;
3192 	else
3193 		tmp = mddev->all_mddevs.next;
3194 	if (tmp != &all_mddevs)
3195 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3196 	else {
3197 		next_mddev = (void*)2;
3198 		*pos = 0x10000;
3199 	}
3200 	spin_unlock(&all_mddevs_lock);
3201 
3202 	if (v != (void*)1)
3203 		mddev_put(mddev);
3204 	return next_mddev;
3205 
3206 }
3207 
3208 static void md_seq_stop(struct seq_file *seq, void *v)
3209 {
3210 	mddev_t *mddev = v;
3211 
3212 	if (mddev && v != (void*)1 && v != (void*)2)
3213 		mddev_put(mddev);
3214 }
3215 
3216 static int md_seq_show(struct seq_file *seq, void *v)
3217 {
3218 	mddev_t *mddev = v;
3219 	sector_t size;
3220 	struct list_head *tmp2;
3221 	mdk_rdev_t *rdev;
3222 	int i;
3223 	struct bitmap *bitmap;
3224 
3225 	if (v == (void*)1) {
3226 		seq_printf(seq, "Personalities : ");
3227 		spin_lock(&pers_lock);
3228 		for (i = 0; i < MAX_PERSONALITY; i++)
3229 			if (pers[i])
3230 				seq_printf(seq, "[%s] ", pers[i]->name);
3231 
3232 		spin_unlock(&pers_lock);
3233 		seq_printf(seq, "\n");
3234 		return 0;
3235 	}
3236 	if (v == (void*)2) {
3237 		status_unused(seq);
3238 		return 0;
3239 	}
3240 
3241 	if (mddev_lock(mddev)!=0)
3242 		return -EINTR;
3243 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3244 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3245 						mddev->pers ? "" : "in");
3246 		if (mddev->pers) {
3247 			if (mddev->ro)
3248 				seq_printf(seq, " (read-only)");
3249 			seq_printf(seq, " %s", mddev->pers->name);
3250 		}
3251 
3252 		size = 0;
3253 		ITERATE_RDEV(mddev,rdev,tmp2) {
3254 			char b[BDEVNAME_SIZE];
3255 			seq_printf(seq, " %s[%d]",
3256 				bdevname(rdev->bdev,b), rdev->desc_nr);
3257 			if (rdev->faulty) {
3258 				seq_printf(seq, "(F)");
3259 				continue;
3260 			}
3261 			size += rdev->size;
3262 		}
3263 
3264 		if (!list_empty(&mddev->disks)) {
3265 			if (mddev->pers)
3266 				seq_printf(seq, "\n      %llu blocks",
3267 					(unsigned long long)mddev->array_size);
3268 			else
3269 				seq_printf(seq, "\n      %llu blocks",
3270 					(unsigned long long)size);
3271 		}
3272 
3273 		if (mddev->pers) {
3274 			mddev->pers->status (seq, mddev);
3275 	 		seq_printf(seq, "\n      ");
3276 			if (mddev->curr_resync > 2) {
3277 				status_resync (seq, mddev);
3278 				seq_printf(seq, "\n      ");
3279 			} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3280 				seq_printf(seq, "	resync=DELAYED\n      ");
3281 		} else
3282 			seq_printf(seq, "\n       ");
3283 
3284 		if ((bitmap = mddev->bitmap)) {
3285 			unsigned long chunk_kb;
3286 			unsigned long flags;
3287 			spin_lock_irqsave(&bitmap->lock, flags);
3288 			chunk_kb = bitmap->chunksize >> 10;
3289 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3290 				"%lu%s chunk",
3291 				bitmap->pages - bitmap->missing_pages,
3292 				bitmap->pages,
3293 				(bitmap->pages - bitmap->missing_pages)
3294 					<< (PAGE_SHIFT - 10),
3295 				chunk_kb ? chunk_kb : bitmap->chunksize,
3296 				chunk_kb ? "KB" : "B");
3297 			if (bitmap->file) {
3298 				seq_printf(seq, ", file: ");
3299 				seq_path(seq, bitmap->file->f_vfsmnt,
3300 					 bitmap->file->f_dentry," \t\n");
3301 			}
3302 
3303 			seq_printf(seq, "\n");
3304 			spin_unlock_irqrestore(&bitmap->lock, flags);
3305 		}
3306 
3307 		seq_printf(seq, "\n");
3308 	}
3309 	mddev_unlock(mddev);
3310 
3311 	return 0;
3312 }
3313 
3314 static struct seq_operations md_seq_ops = {
3315 	.start  = md_seq_start,
3316 	.next   = md_seq_next,
3317 	.stop   = md_seq_stop,
3318 	.show   = md_seq_show,
3319 };
3320 
3321 static int md_seq_open(struct inode *inode, struct file *file)
3322 {
3323 	int error;
3324 
3325 	error = seq_open(file, &md_seq_ops);
3326 	return error;
3327 }
3328 
3329 static struct file_operations md_seq_fops = {
3330 	.open           = md_seq_open,
3331 	.read           = seq_read,
3332 	.llseek         = seq_lseek,
3333 	.release	= seq_release,
3334 };
3335 
3336 int register_md_personality(int pnum, mdk_personality_t *p)
3337 {
3338 	if (pnum >= MAX_PERSONALITY) {
3339 		printk(KERN_ERR
3340 		       "md: tried to install personality %s as nr %d, but max is %lu\n",
3341 		       p->name, pnum, MAX_PERSONALITY-1);
3342 		return -EINVAL;
3343 	}
3344 
3345 	spin_lock(&pers_lock);
3346 	if (pers[pnum]) {
3347 		spin_unlock(&pers_lock);
3348 		return -EBUSY;
3349 	}
3350 
3351 	pers[pnum] = p;
3352 	printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3353 	spin_unlock(&pers_lock);
3354 	return 0;
3355 }
3356 
3357 int unregister_md_personality(int pnum)
3358 {
3359 	if (pnum >= MAX_PERSONALITY)
3360 		return -EINVAL;
3361 
3362 	printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3363 	spin_lock(&pers_lock);
3364 	pers[pnum] = NULL;
3365 	spin_unlock(&pers_lock);
3366 	return 0;
3367 }
3368 
3369 static int is_mddev_idle(mddev_t *mddev)
3370 {
3371 	mdk_rdev_t * rdev;
3372 	struct list_head *tmp;
3373 	int idle;
3374 	unsigned long curr_events;
3375 
3376 	idle = 1;
3377 	ITERATE_RDEV(mddev,rdev,tmp) {
3378 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3379 		curr_events = disk_stat_read(disk, read_sectors) +
3380 				disk_stat_read(disk, write_sectors) -
3381 				atomic_read(&disk->sync_io);
3382 		/* Allow some slack between valud of curr_events and last_events,
3383 		 * as there are some uninteresting races.
3384 		 * Note: the following is an unsigned comparison.
3385 		 */
3386 		if ((curr_events - rdev->last_events + 32) > 64) {
3387 			rdev->last_events = curr_events;
3388 			idle = 0;
3389 		}
3390 	}
3391 	return idle;
3392 }
3393 
3394 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3395 {
3396 	/* another "blocks" (512byte) blocks have been synced */
3397 	atomic_sub(blocks, &mddev->recovery_active);
3398 	wake_up(&mddev->recovery_wait);
3399 	if (!ok) {
3400 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3401 		md_wakeup_thread(mddev->thread);
3402 		// stop recovery, signal do_sync ....
3403 	}
3404 }
3405 
3406 
3407 /* md_write_start(mddev, bi)
3408  * If we need to update some array metadata (e.g. 'active' flag
3409  * in superblock) before writing, schedule a superblock update
3410  * and wait for it to complete.
3411  */
3412 void md_write_start(mddev_t *mddev, struct bio *bi)
3413 {
3414 	DEFINE_WAIT(w);
3415 	if (bio_data_dir(bi) != WRITE)
3416 		return;
3417 
3418 	atomic_inc(&mddev->writes_pending);
3419 	if (mddev->in_sync) {
3420 		spin_lock(&mddev->write_lock);
3421 		if (mddev->in_sync) {
3422 			mddev->in_sync = 0;
3423 			mddev->sb_dirty = 1;
3424 			md_wakeup_thread(mddev->thread);
3425 		}
3426 		spin_unlock(&mddev->write_lock);
3427 	}
3428 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3429 }
3430 
3431 void md_write_end(mddev_t *mddev)
3432 {
3433 	if (atomic_dec_and_test(&mddev->writes_pending)) {
3434 		if (mddev->safemode == 2)
3435 			md_wakeup_thread(mddev->thread);
3436 		else
3437 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3438 	}
3439 }
3440 
3441 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3442 
3443 #define SYNC_MARKS	10
3444 #define	SYNC_MARK_STEP	(3*HZ)
3445 static void md_do_sync(mddev_t *mddev)
3446 {
3447 	mddev_t *mddev2;
3448 	unsigned int currspeed = 0,
3449 		 window;
3450 	sector_t max_sectors,j, io_sectors;
3451 	unsigned long mark[SYNC_MARKS];
3452 	sector_t mark_cnt[SYNC_MARKS];
3453 	int last_mark,m;
3454 	struct list_head *tmp;
3455 	sector_t last_check;
3456 	int skipped = 0;
3457 
3458 	/* just incase thread restarts... */
3459 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3460 		return;
3461 
3462 	/* we overload curr_resync somewhat here.
3463 	 * 0 == not engaged in resync at all
3464 	 * 2 == checking that there is no conflict with another sync
3465 	 * 1 == like 2, but have yielded to allow conflicting resync to
3466 	 *		commense
3467 	 * other == active in resync - this many blocks
3468 	 *
3469 	 * Before starting a resync we must have set curr_resync to
3470 	 * 2, and then checked that every "conflicting" array has curr_resync
3471 	 * less than ours.  When we find one that is the same or higher
3472 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
3473 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3474 	 * This will mean we have to start checking from the beginning again.
3475 	 *
3476 	 */
3477 
3478 	do {
3479 		mddev->curr_resync = 2;
3480 
3481 	try_again:
3482 		if (signal_pending(current)) {
3483 			flush_signals(current);
3484 			goto skip;
3485 		}
3486 		ITERATE_MDDEV(mddev2,tmp) {
3487 			printk(".");
3488 			if (mddev2 == mddev)
3489 				continue;
3490 			if (mddev2->curr_resync &&
3491 			    match_mddev_units(mddev,mddev2)) {
3492 				DEFINE_WAIT(wq);
3493 				if (mddev < mddev2 && mddev->curr_resync == 2) {
3494 					/* arbitrarily yield */
3495 					mddev->curr_resync = 1;
3496 					wake_up(&resync_wait);
3497 				}
3498 				if (mddev > mddev2 && mddev->curr_resync == 1)
3499 					/* no need to wait here, we can wait the next
3500 					 * time 'round when curr_resync == 2
3501 					 */
3502 					continue;
3503 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3504 				if (!signal_pending(current)
3505 				    && mddev2->curr_resync >= mddev->curr_resync) {
3506 					printk(KERN_INFO "md: delaying resync of %s"
3507 					       " until %s has finished resync (they"
3508 					       " share one or more physical units)\n",
3509 					       mdname(mddev), mdname(mddev2));
3510 					mddev_put(mddev2);
3511 					schedule();
3512 					finish_wait(&resync_wait, &wq);
3513 					goto try_again;
3514 				}
3515 				finish_wait(&resync_wait, &wq);
3516 			}
3517 		}
3518 	} while (mddev->curr_resync < 2);
3519 
3520 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3521 		/* resync follows the size requested by the personality,
3522 		 * which defaults to physical size, but can be virtual size
3523 		 */
3524 		max_sectors = mddev->resync_max_sectors;
3525 	else
3526 		/* recovery follows the physical size of devices */
3527 		max_sectors = mddev->size << 1;
3528 
3529 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3530 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3531 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
3532 	printk(KERN_INFO "md: using maximum available idle IO bandwith "
3533 	       "(but not more than %d KB/sec) for reconstruction.\n",
3534 	       sysctl_speed_limit_max);
3535 
3536 	is_mddev_idle(mddev); /* this also initializes IO event counters */
3537 	/* we don't use the checkpoint if there's a bitmap */
3538 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
3539 		j = mddev->recovery_cp;
3540 	else
3541 		j = 0;
3542 	io_sectors = 0;
3543 	for (m = 0; m < SYNC_MARKS; m++) {
3544 		mark[m] = jiffies;
3545 		mark_cnt[m] = io_sectors;
3546 	}
3547 	last_mark = 0;
3548 	mddev->resync_mark = mark[last_mark];
3549 	mddev->resync_mark_cnt = mark_cnt[last_mark];
3550 
3551 	/*
3552 	 * Tune reconstruction:
3553 	 */
3554 	window = 32*(PAGE_SIZE/512);
3555 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3556 		window/2,(unsigned long long) max_sectors/2);
3557 
3558 	atomic_set(&mddev->recovery_active, 0);
3559 	init_waitqueue_head(&mddev->recovery_wait);
3560 	last_check = 0;
3561 
3562 	if (j>2) {
3563 		printk(KERN_INFO
3564 			"md: resuming recovery of %s from checkpoint.\n",
3565 			mdname(mddev));
3566 		mddev->curr_resync = j;
3567 	}
3568 
3569 	while (j < max_sectors) {
3570 		sector_t sectors;
3571 
3572 		skipped = 0;
3573 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
3574 					    currspeed < sysctl_speed_limit_min);
3575 		if (sectors == 0) {
3576 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3577 			goto out;
3578 		}
3579 
3580 		if (!skipped) { /* actual IO requested */
3581 			io_sectors += sectors;
3582 			atomic_add(sectors, &mddev->recovery_active);
3583 		}
3584 
3585 		j += sectors;
3586 		if (j>1) mddev->curr_resync = j;
3587 
3588 
3589 		if (last_check + window > io_sectors || j == max_sectors)
3590 			continue;
3591 
3592 		last_check = io_sectors;
3593 
3594 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3595 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3596 			break;
3597 
3598 	repeat:
3599 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3600 			/* step marks */
3601 			int next = (last_mark+1) % SYNC_MARKS;
3602 
3603 			mddev->resync_mark = mark[next];
3604 			mddev->resync_mark_cnt = mark_cnt[next];
3605 			mark[next] = jiffies;
3606 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
3607 			last_mark = next;
3608 		}
3609 
3610 
3611 		if (signal_pending(current)) {
3612 			/*
3613 			 * got a signal, exit.
3614 			 */
3615 			printk(KERN_INFO
3616 				"md: md_do_sync() got signal ... exiting\n");
3617 			flush_signals(current);
3618 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3619 			goto out;
3620 		}
3621 
3622 		/*
3623 		 * this loop exits only if either when we are slower than
3624 		 * the 'hard' speed limit, or the system was IO-idle for
3625 		 * a jiffy.
3626 		 * the system might be non-idle CPU-wise, but we only care
3627 		 * about not overloading the IO subsystem. (things like an
3628 		 * e2fsck being done on the RAID array should execute fast)
3629 		 */
3630 		mddev->queue->unplug_fn(mddev->queue);
3631 		cond_resched();
3632 
3633 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
3634 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
3635 
3636 		if (currspeed > sysctl_speed_limit_min) {
3637 			if ((currspeed > sysctl_speed_limit_max) ||
3638 					!is_mddev_idle(mddev)) {
3639 				msleep_interruptible(250);
3640 				goto repeat;
3641 			}
3642 		}
3643 	}
3644 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3645 	/*
3646 	 * this also signals 'finished resyncing' to md_stop
3647 	 */
3648  out:
3649 	mddev->queue->unplug_fn(mddev->queue);
3650 
3651 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3652 
3653 	/* tell personality that we are finished */
3654 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
3655 
3656 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3657 	    mddev->curr_resync > 2 &&
3658 	    mddev->curr_resync >= mddev->recovery_cp) {
3659 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3660 			printk(KERN_INFO
3661 				"md: checkpointing recovery of %s.\n",
3662 				mdname(mddev));
3663 			mddev->recovery_cp = mddev->curr_resync;
3664 		} else
3665 			mddev->recovery_cp = MaxSector;
3666 	}
3667 
3668  skip:
3669 	mddev->curr_resync = 0;
3670 	wake_up(&resync_wait);
3671 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3672 	md_wakeup_thread(mddev->thread);
3673 }
3674 
3675 
3676 /*
3677  * This routine is regularly called by all per-raid-array threads to
3678  * deal with generic issues like resync and super-block update.
3679  * Raid personalities that don't have a thread (linear/raid0) do not
3680  * need this as they never do any recovery or update the superblock.
3681  *
3682  * It does not do any resync itself, but rather "forks" off other threads
3683  * to do that as needed.
3684  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3685  * "->recovery" and create a thread at ->sync_thread.
3686  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3687  * and wakeups up this thread which will reap the thread and finish up.
3688  * This thread also removes any faulty devices (with nr_pending == 0).
3689  *
3690  * The overall approach is:
3691  *  1/ if the superblock needs updating, update it.
3692  *  2/ If a recovery thread is running, don't do anything else.
3693  *  3/ If recovery has finished, clean up, possibly marking spares active.
3694  *  4/ If there are any faulty devices, remove them.
3695  *  5/ If array is degraded, try to add spares devices
3696  *  6/ If array has spares or is not in-sync, start a resync thread.
3697  */
3698 void md_check_recovery(mddev_t *mddev)
3699 {
3700 	mdk_rdev_t *rdev;
3701 	struct list_head *rtmp;
3702 
3703 
3704 	if (mddev->bitmap)
3705 		bitmap_daemon_work(mddev->bitmap);
3706 
3707 	if (mddev->ro)
3708 		return;
3709 
3710 	if (signal_pending(current)) {
3711 		if (mddev->pers->sync_request) {
3712 			printk(KERN_INFO "md: %s in immediate safe mode\n",
3713 			       mdname(mddev));
3714 			mddev->safemode = 2;
3715 		}
3716 		flush_signals(current);
3717 	}
3718 
3719 	if ( ! (
3720 		mddev->sb_dirty ||
3721 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
3722 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
3723 		(mddev->safemode == 1) ||
3724 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
3725 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
3726 		))
3727 		return;
3728 
3729 	if (mddev_trylock(mddev)==0) {
3730 		int spares =0;
3731 
3732 		spin_lock(&mddev->write_lock);
3733 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3734 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3735 			mddev->in_sync = 1;
3736 			mddev->sb_dirty = 1;
3737 		}
3738 		if (mddev->safemode == 1)
3739 			mddev->safemode = 0;
3740 		spin_unlock(&mddev->write_lock);
3741 
3742 		if (mddev->sb_dirty)
3743 			md_update_sb(mddev);
3744 
3745 
3746 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3747 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3748 			/* resync/recovery still happening */
3749 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3750 			goto unlock;
3751 		}
3752 		if (mddev->sync_thread) {
3753 			/* resync has finished, collect result */
3754 			md_unregister_thread(mddev->sync_thread);
3755 			mddev->sync_thread = NULL;
3756 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3757 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3758 				/* success...*/
3759 				/* activate any spares */
3760 				mddev->pers->spare_active(mddev);
3761 			}
3762 			md_update_sb(mddev);
3763 
3764 			/* if array is no-longer degraded, then any saved_raid_disk
3765 			 * information must be scrapped
3766 			 */
3767 			if (!mddev->degraded)
3768 				ITERATE_RDEV(mddev,rdev,rtmp)
3769 					rdev->saved_raid_disk = -1;
3770 
3771 			mddev->recovery = 0;
3772 			/* flag recovery needed just to double check */
3773 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3774 			goto unlock;
3775 		}
3776 		if (mddev->recovery)
3777 			/* probably just the RECOVERY_NEEDED flag */
3778 			mddev->recovery = 0;
3779 
3780 		/* no recovery is running.
3781 		 * remove any failed drives, then
3782 		 * add spares if possible.
3783 		 * Spare are also removed and re-added, to allow
3784 		 * the personality to fail the re-add.
3785 		 */
3786 		ITERATE_RDEV(mddev,rdev,rtmp)
3787 			if (rdev->raid_disk >= 0 &&
3788 			    (rdev->faulty || ! rdev->in_sync) &&
3789 			    atomic_read(&rdev->nr_pending)==0) {
3790 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3791 					rdev->raid_disk = -1;
3792 			}
3793 
3794 		if (mddev->degraded) {
3795 			ITERATE_RDEV(mddev,rdev,rtmp)
3796 				if (rdev->raid_disk < 0
3797 				    && !rdev->faulty) {
3798 					if (mddev->pers->hot_add_disk(mddev,rdev))
3799 						spares++;
3800 					else
3801 						break;
3802 				}
3803 		}
3804 
3805 		if (!spares && (mddev->recovery_cp == MaxSector )) {
3806 			/* nothing we can do ... */
3807 			goto unlock;
3808 		}
3809 		if (mddev->pers->sync_request) {
3810 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3811 			if (!spares)
3812 				set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3813 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
3814 				/* We are adding a device or devices to an array
3815 				 * which has the bitmap stored on all devices.
3816 				 * So make sure all bitmap pages get written
3817 				 */
3818 				bitmap_write_all(mddev->bitmap);
3819 			}
3820 			mddev->sync_thread = md_register_thread(md_do_sync,
3821 								mddev,
3822 								"%s_resync");
3823 			if (!mddev->sync_thread) {
3824 				printk(KERN_ERR "%s: could not start resync"
3825 					" thread...\n",
3826 					mdname(mddev));
3827 				/* leave the spares where they are, it shouldn't hurt */
3828 				mddev->recovery = 0;
3829 			} else {
3830 				md_wakeup_thread(mddev->sync_thread);
3831 			}
3832 		}
3833 	unlock:
3834 		mddev_unlock(mddev);
3835 	}
3836 }
3837 
3838 static int md_notify_reboot(struct notifier_block *this,
3839 			    unsigned long code, void *x)
3840 {
3841 	struct list_head *tmp;
3842 	mddev_t *mddev;
3843 
3844 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3845 
3846 		printk(KERN_INFO "md: stopping all md devices.\n");
3847 
3848 		ITERATE_MDDEV(mddev,tmp)
3849 			if (mddev_trylock(mddev)==0)
3850 				do_md_stop (mddev, 1);
3851 		/*
3852 		 * certain more exotic SCSI devices are known to be
3853 		 * volatile wrt too early system reboots. While the
3854 		 * right place to handle this issue is the given
3855 		 * driver, we do want to have a safe RAID driver ...
3856 		 */
3857 		mdelay(1000*1);
3858 	}
3859 	return NOTIFY_DONE;
3860 }
3861 
3862 static struct notifier_block md_notifier = {
3863 	.notifier_call	= md_notify_reboot,
3864 	.next		= NULL,
3865 	.priority	= INT_MAX, /* before any real devices */
3866 };
3867 
3868 static void md_geninit(void)
3869 {
3870 	struct proc_dir_entry *p;
3871 
3872 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3873 
3874 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
3875 	if (p)
3876 		p->proc_fops = &md_seq_fops;
3877 }
3878 
3879 static int __init md_init(void)
3880 {
3881 	int minor;
3882 
3883 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3884 			" MD_SB_DISKS=%d\n",
3885 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
3886 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
3887 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
3888 			BITMAP_MINOR);
3889 
3890 	if (register_blkdev(MAJOR_NR, "md"))
3891 		return -1;
3892 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3893 		unregister_blkdev(MAJOR_NR, "md");
3894 		return -1;
3895 	}
3896 	devfs_mk_dir("md");
3897 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3898 				md_probe, NULL, NULL);
3899 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
3900 			    md_probe, NULL, NULL);
3901 
3902 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
3903 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
3904 				S_IFBLK|S_IRUSR|S_IWUSR,
3905 				"md/%d", minor);
3906 
3907 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
3908 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
3909 			      S_IFBLK|S_IRUSR|S_IWUSR,
3910 			      "md/mdp%d", minor);
3911 
3912 
3913 	register_reboot_notifier(&md_notifier);
3914 	raid_table_header = register_sysctl_table(raid_root_table, 1);
3915 
3916 	md_geninit();
3917 	return (0);
3918 }
3919 
3920 
3921 #ifndef MODULE
3922 
3923 /*
3924  * Searches all registered partitions for autorun RAID arrays
3925  * at boot time.
3926  */
3927 static dev_t detected_devices[128];
3928 static int dev_cnt;
3929 
3930 void md_autodetect_dev(dev_t dev)
3931 {
3932 	if (dev_cnt >= 0 && dev_cnt < 127)
3933 		detected_devices[dev_cnt++] = dev;
3934 }
3935 
3936 
3937 static void autostart_arrays(int part)
3938 {
3939 	mdk_rdev_t *rdev;
3940 	int i;
3941 
3942 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
3943 
3944 	for (i = 0; i < dev_cnt; i++) {
3945 		dev_t dev = detected_devices[i];
3946 
3947 		rdev = md_import_device(dev,0, 0);
3948 		if (IS_ERR(rdev))
3949 			continue;
3950 
3951 		if (rdev->faulty) {
3952 			MD_BUG();
3953 			continue;
3954 		}
3955 		list_add(&rdev->same_set, &pending_raid_disks);
3956 	}
3957 	dev_cnt = 0;
3958 
3959 	autorun_devices(part);
3960 }
3961 
3962 #endif
3963 
3964 static __exit void md_exit(void)
3965 {
3966 	mddev_t *mddev;
3967 	struct list_head *tmp;
3968 	int i;
3969 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
3970 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
3971 	for (i=0; i < MAX_MD_DEVS; i++)
3972 		devfs_remove("md/%d", i);
3973 	for (i=0; i < MAX_MD_DEVS; i++)
3974 		devfs_remove("md/d%d", i);
3975 
3976 	devfs_remove("md");
3977 
3978 	unregister_blkdev(MAJOR_NR,"md");
3979 	unregister_blkdev(mdp_major, "mdp");
3980 	unregister_reboot_notifier(&md_notifier);
3981 	unregister_sysctl_table(raid_table_header);
3982 	remove_proc_entry("mdstat", NULL);
3983 	ITERATE_MDDEV(mddev,tmp) {
3984 		struct gendisk *disk = mddev->gendisk;
3985 		if (!disk)
3986 			continue;
3987 		export_array(mddev);
3988 		del_gendisk(disk);
3989 		put_disk(disk);
3990 		mddev->gendisk = NULL;
3991 		mddev_put(mddev);
3992 	}
3993 }
3994 
3995 module_init(md_init)
3996 module_exit(md_exit)
3997 
3998 EXPORT_SYMBOL(register_md_personality);
3999 EXPORT_SYMBOL(unregister_md_personality);
4000 EXPORT_SYMBOL(md_error);
4001 EXPORT_SYMBOL(md_done_sync);
4002 EXPORT_SYMBOL(md_write_start);
4003 EXPORT_SYMBOL(md_write_end);
4004 EXPORT_SYMBOL(md_register_thread);
4005 EXPORT_SYMBOL(md_unregister_thread);
4006 EXPORT_SYMBOL(md_wakeup_thread);
4007 EXPORT_SYMBOL(md_print_devices);
4008 EXPORT_SYMBOL(md_check_recovery);
4009 MODULE_LICENSE("GPL");
4010