1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 /* pers_list is a list of registered personalities protected 62 * by pers_lock. 63 * pers_lock does extra service to protect accesses to 64 * mddev->thread when the mutex cannot be held. 65 */ 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static void md_print_devices(void); 70 71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 72 static struct workqueue_struct *md_wq; 73 static struct workqueue_struct *md_misc_wq; 74 75 static int remove_and_add_spares(struct mddev *mddev, 76 struct md_rdev *this); 77 78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 79 80 /* 81 * Default number of read corrections we'll attempt on an rdev 82 * before ejecting it from the array. We divide the read error 83 * count by 2 for every hour elapsed between read errors. 84 */ 85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 86 /* 87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 88 * is 1000 KB/sec, so the extra system load does not show up that much. 89 * Increase it if you want to have more _guaranteed_ speed. Note that 90 * the RAID driver will use the maximum available bandwidth if the IO 91 * subsystem is idle. There is also an 'absolute maximum' reconstruction 92 * speed limit - in case reconstruction slows down your system despite 93 * idle IO detection. 94 * 95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 96 * or /sys/block/mdX/md/sync_speed_{min,max} 97 */ 98 99 static int sysctl_speed_limit_min = 1000; 100 static int sysctl_speed_limit_max = 200000; 101 static inline int speed_min(struct mddev *mddev) 102 { 103 return mddev->sync_speed_min ? 104 mddev->sync_speed_min : sysctl_speed_limit_min; 105 } 106 107 static inline int speed_max(struct mddev *mddev) 108 { 109 return mddev->sync_speed_max ? 110 mddev->sync_speed_max : sysctl_speed_limit_max; 111 } 112 113 static struct ctl_table_header *raid_table_header; 114 115 static ctl_table raid_table[] = { 116 { 117 .procname = "speed_limit_min", 118 .data = &sysctl_speed_limit_min, 119 .maxlen = sizeof(int), 120 .mode = S_IRUGO|S_IWUSR, 121 .proc_handler = proc_dointvec, 122 }, 123 { 124 .procname = "speed_limit_max", 125 .data = &sysctl_speed_limit_max, 126 .maxlen = sizeof(int), 127 .mode = S_IRUGO|S_IWUSR, 128 .proc_handler = proc_dointvec, 129 }, 130 { } 131 }; 132 133 static ctl_table raid_dir_table[] = { 134 { 135 .procname = "raid", 136 .maxlen = 0, 137 .mode = S_IRUGO|S_IXUGO, 138 .child = raid_table, 139 }, 140 { } 141 }; 142 143 static ctl_table raid_root_table[] = { 144 { 145 .procname = "dev", 146 .maxlen = 0, 147 .mode = 0555, 148 .child = raid_dir_table, 149 }, 150 { } 151 }; 152 153 static const struct block_device_operations md_fops; 154 155 static int start_readonly; 156 157 /* bio_clone_mddev 158 * like bio_clone, but with a local bio set 159 */ 160 161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 162 struct mddev *mddev) 163 { 164 struct bio *b; 165 166 if (!mddev || !mddev->bio_set) 167 return bio_alloc(gfp_mask, nr_iovecs); 168 169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 170 if (!b) 171 return NULL; 172 return b; 173 } 174 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 175 176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 177 struct mddev *mddev) 178 { 179 if (!mddev || !mddev->bio_set) 180 return bio_clone(bio, gfp_mask); 181 182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 183 } 184 EXPORT_SYMBOL_GPL(bio_clone_mddev); 185 186 /* 187 * We have a system wide 'event count' that is incremented 188 * on any 'interesting' event, and readers of /proc/mdstat 189 * can use 'poll' or 'select' to find out when the event 190 * count increases. 191 * 192 * Events are: 193 * start array, stop array, error, add device, remove device, 194 * start build, activate spare 195 */ 196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 197 static atomic_t md_event_count; 198 void md_new_event(struct mddev *mddev) 199 { 200 atomic_inc(&md_event_count); 201 wake_up(&md_event_waiters); 202 } 203 EXPORT_SYMBOL_GPL(md_new_event); 204 205 /* Alternate version that can be called from interrupts 206 * when calling sysfs_notify isn't needed. 207 */ 208 static void md_new_event_inintr(struct mddev *mddev) 209 { 210 atomic_inc(&md_event_count); 211 wake_up(&md_event_waiters); 212 } 213 214 /* 215 * Enables to iterate over all existing md arrays 216 * all_mddevs_lock protects this list. 217 */ 218 static LIST_HEAD(all_mddevs); 219 static DEFINE_SPINLOCK(all_mddevs_lock); 220 221 222 /* 223 * iterates through all used mddevs in the system. 224 * We take care to grab the all_mddevs_lock whenever navigating 225 * the list, and to always hold a refcount when unlocked. 226 * Any code which breaks out of this loop while own 227 * a reference to the current mddev and must mddev_put it. 228 */ 229 #define for_each_mddev(_mddev,_tmp) \ 230 \ 231 for (({ spin_lock(&all_mddevs_lock); \ 232 _tmp = all_mddevs.next; \ 233 _mddev = NULL;}); \ 234 ({ if (_tmp != &all_mddevs) \ 235 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 236 spin_unlock(&all_mddevs_lock); \ 237 if (_mddev) mddev_put(_mddev); \ 238 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 239 _tmp != &all_mddevs;}); \ 240 ({ spin_lock(&all_mddevs_lock); \ 241 _tmp = _tmp->next;}) \ 242 ) 243 244 245 /* Rather than calling directly into the personality make_request function, 246 * IO requests come here first so that we can check if the device is 247 * being suspended pending a reconfiguration. 248 * We hold a refcount over the call to ->make_request. By the time that 249 * call has finished, the bio has been linked into some internal structure 250 * and so is visible to ->quiesce(), so we don't need the refcount any more. 251 */ 252 static void md_make_request(struct request_queue *q, struct bio *bio) 253 { 254 const int rw = bio_data_dir(bio); 255 struct mddev *mddev = q->queuedata; 256 int cpu; 257 unsigned int sectors; 258 259 if (mddev == NULL || mddev->pers == NULL 260 || !mddev->ready) { 261 bio_io_error(bio); 262 return; 263 } 264 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 265 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS); 266 return; 267 } 268 smp_rmb(); /* Ensure implications of 'active' are visible */ 269 rcu_read_lock(); 270 if (mddev->suspended) { 271 DEFINE_WAIT(__wait); 272 for (;;) { 273 prepare_to_wait(&mddev->sb_wait, &__wait, 274 TASK_UNINTERRUPTIBLE); 275 if (!mddev->suspended) 276 break; 277 rcu_read_unlock(); 278 schedule(); 279 rcu_read_lock(); 280 } 281 finish_wait(&mddev->sb_wait, &__wait); 282 } 283 atomic_inc(&mddev->active_io); 284 rcu_read_unlock(); 285 286 /* 287 * save the sectors now since our bio can 288 * go away inside make_request 289 */ 290 sectors = bio_sectors(bio); 291 mddev->pers->make_request(mddev, bio); 292 293 cpu = part_stat_lock(); 294 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 295 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 296 part_stat_unlock(); 297 298 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 299 wake_up(&mddev->sb_wait); 300 } 301 302 /* mddev_suspend makes sure no new requests are submitted 303 * to the device, and that any requests that have been submitted 304 * are completely handled. 305 * Once ->stop is called and completes, the module will be completely 306 * unused. 307 */ 308 void mddev_suspend(struct mddev *mddev) 309 { 310 BUG_ON(mddev->suspended); 311 mddev->suspended = 1; 312 synchronize_rcu(); 313 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 314 mddev->pers->quiesce(mddev, 1); 315 316 del_timer_sync(&mddev->safemode_timer); 317 } 318 EXPORT_SYMBOL_GPL(mddev_suspend); 319 320 void mddev_resume(struct mddev *mddev) 321 { 322 mddev->suspended = 0; 323 wake_up(&mddev->sb_wait); 324 mddev->pers->quiesce(mddev, 0); 325 326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 327 md_wakeup_thread(mddev->thread); 328 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 329 } 330 EXPORT_SYMBOL_GPL(mddev_resume); 331 332 int mddev_congested(struct mddev *mddev, int bits) 333 { 334 return mddev->suspended; 335 } 336 EXPORT_SYMBOL(mddev_congested); 337 338 /* 339 * Generic flush handling for md 340 */ 341 342 static void md_end_flush(struct bio *bio, int err) 343 { 344 struct md_rdev *rdev = bio->bi_private; 345 struct mddev *mddev = rdev->mddev; 346 347 rdev_dec_pending(rdev, mddev); 348 349 if (atomic_dec_and_test(&mddev->flush_pending)) { 350 /* The pre-request flush has finished */ 351 queue_work(md_wq, &mddev->flush_work); 352 } 353 bio_put(bio); 354 } 355 356 static void md_submit_flush_data(struct work_struct *ws); 357 358 static void submit_flushes(struct work_struct *ws) 359 { 360 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 361 struct md_rdev *rdev; 362 363 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 364 atomic_set(&mddev->flush_pending, 1); 365 rcu_read_lock(); 366 rdev_for_each_rcu(rdev, mddev) 367 if (rdev->raid_disk >= 0 && 368 !test_bit(Faulty, &rdev->flags)) { 369 /* Take two references, one is dropped 370 * when request finishes, one after 371 * we reclaim rcu_read_lock 372 */ 373 struct bio *bi; 374 atomic_inc(&rdev->nr_pending); 375 atomic_inc(&rdev->nr_pending); 376 rcu_read_unlock(); 377 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 378 bi->bi_end_io = md_end_flush; 379 bi->bi_private = rdev; 380 bi->bi_bdev = rdev->bdev; 381 atomic_inc(&mddev->flush_pending); 382 submit_bio(WRITE_FLUSH, bi); 383 rcu_read_lock(); 384 rdev_dec_pending(rdev, mddev); 385 } 386 rcu_read_unlock(); 387 if (atomic_dec_and_test(&mddev->flush_pending)) 388 queue_work(md_wq, &mddev->flush_work); 389 } 390 391 static void md_submit_flush_data(struct work_struct *ws) 392 { 393 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 394 struct bio *bio = mddev->flush_bio; 395 396 if (bio->bi_size == 0) 397 /* an empty barrier - all done */ 398 bio_endio(bio, 0); 399 else { 400 bio->bi_rw &= ~REQ_FLUSH; 401 mddev->pers->make_request(mddev, bio); 402 } 403 404 mddev->flush_bio = NULL; 405 wake_up(&mddev->sb_wait); 406 } 407 408 void md_flush_request(struct mddev *mddev, struct bio *bio) 409 { 410 spin_lock_irq(&mddev->write_lock); 411 wait_event_lock_irq(mddev->sb_wait, 412 !mddev->flush_bio, 413 mddev->write_lock); 414 mddev->flush_bio = bio; 415 spin_unlock_irq(&mddev->write_lock); 416 417 INIT_WORK(&mddev->flush_work, submit_flushes); 418 queue_work(md_wq, &mddev->flush_work); 419 } 420 EXPORT_SYMBOL(md_flush_request); 421 422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 423 { 424 struct mddev *mddev = cb->data; 425 md_wakeup_thread(mddev->thread); 426 kfree(cb); 427 } 428 EXPORT_SYMBOL(md_unplug); 429 430 static inline struct mddev *mddev_get(struct mddev *mddev) 431 { 432 atomic_inc(&mddev->active); 433 return mddev; 434 } 435 436 static void mddev_delayed_delete(struct work_struct *ws); 437 438 static void mddev_put(struct mddev *mddev) 439 { 440 struct bio_set *bs = NULL; 441 442 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 443 return; 444 if (!mddev->raid_disks && list_empty(&mddev->disks) && 445 mddev->ctime == 0 && !mddev->hold_active) { 446 /* Array is not configured at all, and not held active, 447 * so destroy it */ 448 list_del_init(&mddev->all_mddevs); 449 bs = mddev->bio_set; 450 mddev->bio_set = NULL; 451 if (mddev->gendisk) { 452 /* We did a probe so need to clean up. Call 453 * queue_work inside the spinlock so that 454 * flush_workqueue() after mddev_find will 455 * succeed in waiting for the work to be done. 456 */ 457 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 458 queue_work(md_misc_wq, &mddev->del_work); 459 } else 460 kfree(mddev); 461 } 462 spin_unlock(&all_mddevs_lock); 463 if (bs) 464 bioset_free(bs); 465 } 466 467 void mddev_init(struct mddev *mddev) 468 { 469 mutex_init(&mddev->open_mutex); 470 mutex_init(&mddev->reconfig_mutex); 471 mutex_init(&mddev->bitmap_info.mutex); 472 INIT_LIST_HEAD(&mddev->disks); 473 INIT_LIST_HEAD(&mddev->all_mddevs); 474 init_timer(&mddev->safemode_timer); 475 atomic_set(&mddev->active, 1); 476 atomic_set(&mddev->openers, 0); 477 atomic_set(&mddev->active_io, 0); 478 spin_lock_init(&mddev->write_lock); 479 atomic_set(&mddev->flush_pending, 0); 480 init_waitqueue_head(&mddev->sb_wait); 481 init_waitqueue_head(&mddev->recovery_wait); 482 mddev->reshape_position = MaxSector; 483 mddev->reshape_backwards = 0; 484 mddev->last_sync_action = "none"; 485 mddev->resync_min = 0; 486 mddev->resync_max = MaxSector; 487 mddev->level = LEVEL_NONE; 488 } 489 EXPORT_SYMBOL_GPL(mddev_init); 490 491 static struct mddev * mddev_find(dev_t unit) 492 { 493 struct mddev *mddev, *new = NULL; 494 495 if (unit && MAJOR(unit) != MD_MAJOR) 496 unit &= ~((1<<MdpMinorShift)-1); 497 498 retry: 499 spin_lock(&all_mddevs_lock); 500 501 if (unit) { 502 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 503 if (mddev->unit == unit) { 504 mddev_get(mddev); 505 spin_unlock(&all_mddevs_lock); 506 kfree(new); 507 return mddev; 508 } 509 510 if (new) { 511 list_add(&new->all_mddevs, &all_mddevs); 512 spin_unlock(&all_mddevs_lock); 513 new->hold_active = UNTIL_IOCTL; 514 return new; 515 } 516 } else if (new) { 517 /* find an unused unit number */ 518 static int next_minor = 512; 519 int start = next_minor; 520 int is_free = 0; 521 int dev = 0; 522 while (!is_free) { 523 dev = MKDEV(MD_MAJOR, next_minor); 524 next_minor++; 525 if (next_minor > MINORMASK) 526 next_minor = 0; 527 if (next_minor == start) { 528 /* Oh dear, all in use. */ 529 spin_unlock(&all_mddevs_lock); 530 kfree(new); 531 return NULL; 532 } 533 534 is_free = 1; 535 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 536 if (mddev->unit == dev) { 537 is_free = 0; 538 break; 539 } 540 } 541 new->unit = dev; 542 new->md_minor = MINOR(dev); 543 new->hold_active = UNTIL_STOP; 544 list_add(&new->all_mddevs, &all_mddevs); 545 spin_unlock(&all_mddevs_lock); 546 return new; 547 } 548 spin_unlock(&all_mddevs_lock); 549 550 new = kzalloc(sizeof(*new), GFP_KERNEL); 551 if (!new) 552 return NULL; 553 554 new->unit = unit; 555 if (MAJOR(unit) == MD_MAJOR) 556 new->md_minor = MINOR(unit); 557 else 558 new->md_minor = MINOR(unit) >> MdpMinorShift; 559 560 mddev_init(new); 561 562 goto retry; 563 } 564 565 static inline int mddev_lock(struct mddev * mddev) 566 { 567 return mutex_lock_interruptible(&mddev->reconfig_mutex); 568 } 569 570 static inline int mddev_is_locked(struct mddev *mddev) 571 { 572 return mutex_is_locked(&mddev->reconfig_mutex); 573 } 574 575 static inline int mddev_trylock(struct mddev * mddev) 576 { 577 return mutex_trylock(&mddev->reconfig_mutex); 578 } 579 580 static struct attribute_group md_redundancy_group; 581 582 static void mddev_unlock(struct mddev * mddev) 583 { 584 if (mddev->to_remove) { 585 /* These cannot be removed under reconfig_mutex as 586 * an access to the files will try to take reconfig_mutex 587 * while holding the file unremovable, which leads to 588 * a deadlock. 589 * So hold set sysfs_active while the remove in happeing, 590 * and anything else which might set ->to_remove or my 591 * otherwise change the sysfs namespace will fail with 592 * -EBUSY if sysfs_active is still set. 593 * We set sysfs_active under reconfig_mutex and elsewhere 594 * test it under the same mutex to ensure its correct value 595 * is seen. 596 */ 597 struct attribute_group *to_remove = mddev->to_remove; 598 mddev->to_remove = NULL; 599 mddev->sysfs_active = 1; 600 mutex_unlock(&mddev->reconfig_mutex); 601 602 if (mddev->kobj.sd) { 603 if (to_remove != &md_redundancy_group) 604 sysfs_remove_group(&mddev->kobj, to_remove); 605 if (mddev->pers == NULL || 606 mddev->pers->sync_request == NULL) { 607 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 608 if (mddev->sysfs_action) 609 sysfs_put(mddev->sysfs_action); 610 mddev->sysfs_action = NULL; 611 } 612 } 613 mddev->sysfs_active = 0; 614 } else 615 mutex_unlock(&mddev->reconfig_mutex); 616 617 /* As we've dropped the mutex we need a spinlock to 618 * make sure the thread doesn't disappear 619 */ 620 spin_lock(&pers_lock); 621 md_wakeup_thread(mddev->thread); 622 spin_unlock(&pers_lock); 623 } 624 625 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr) 626 { 627 struct md_rdev *rdev; 628 629 rdev_for_each(rdev, mddev) 630 if (rdev->desc_nr == nr) 631 return rdev; 632 633 return NULL; 634 } 635 636 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr) 637 { 638 struct md_rdev *rdev; 639 640 rdev_for_each_rcu(rdev, mddev) 641 if (rdev->desc_nr == nr) 642 return rdev; 643 644 return NULL; 645 } 646 647 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 648 { 649 struct md_rdev *rdev; 650 651 rdev_for_each(rdev, mddev) 652 if (rdev->bdev->bd_dev == dev) 653 return rdev; 654 655 return NULL; 656 } 657 658 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 659 { 660 struct md_rdev *rdev; 661 662 rdev_for_each_rcu(rdev, mddev) 663 if (rdev->bdev->bd_dev == dev) 664 return rdev; 665 666 return NULL; 667 } 668 669 static struct md_personality *find_pers(int level, char *clevel) 670 { 671 struct md_personality *pers; 672 list_for_each_entry(pers, &pers_list, list) { 673 if (level != LEVEL_NONE && pers->level == level) 674 return pers; 675 if (strcmp(pers->name, clevel)==0) 676 return pers; 677 } 678 return NULL; 679 } 680 681 /* return the offset of the super block in 512byte sectors */ 682 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 683 { 684 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 685 return MD_NEW_SIZE_SECTORS(num_sectors); 686 } 687 688 static int alloc_disk_sb(struct md_rdev * rdev) 689 { 690 if (rdev->sb_page) 691 MD_BUG(); 692 693 rdev->sb_page = alloc_page(GFP_KERNEL); 694 if (!rdev->sb_page) { 695 printk(KERN_ALERT "md: out of memory.\n"); 696 return -ENOMEM; 697 } 698 699 return 0; 700 } 701 702 void md_rdev_clear(struct md_rdev *rdev) 703 { 704 if (rdev->sb_page) { 705 put_page(rdev->sb_page); 706 rdev->sb_loaded = 0; 707 rdev->sb_page = NULL; 708 rdev->sb_start = 0; 709 rdev->sectors = 0; 710 } 711 if (rdev->bb_page) { 712 put_page(rdev->bb_page); 713 rdev->bb_page = NULL; 714 } 715 kfree(rdev->badblocks.page); 716 rdev->badblocks.page = NULL; 717 } 718 EXPORT_SYMBOL_GPL(md_rdev_clear); 719 720 static void super_written(struct bio *bio, int error) 721 { 722 struct md_rdev *rdev = bio->bi_private; 723 struct mddev *mddev = rdev->mddev; 724 725 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 726 printk("md: super_written gets error=%d, uptodate=%d\n", 727 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 728 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 729 md_error(mddev, rdev); 730 } 731 732 if (atomic_dec_and_test(&mddev->pending_writes)) 733 wake_up(&mddev->sb_wait); 734 bio_put(bio); 735 } 736 737 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 738 sector_t sector, int size, struct page *page) 739 { 740 /* write first size bytes of page to sector of rdev 741 * Increment mddev->pending_writes before returning 742 * and decrement it on completion, waking up sb_wait 743 * if zero is reached. 744 * If an error occurred, call md_error 745 */ 746 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 747 748 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 749 bio->bi_sector = sector; 750 bio_add_page(bio, page, size, 0); 751 bio->bi_private = rdev; 752 bio->bi_end_io = super_written; 753 754 atomic_inc(&mddev->pending_writes); 755 submit_bio(WRITE_FLUSH_FUA, bio); 756 } 757 758 void md_super_wait(struct mddev *mddev) 759 { 760 /* wait for all superblock writes that were scheduled to complete */ 761 DEFINE_WAIT(wq); 762 for(;;) { 763 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 764 if (atomic_read(&mddev->pending_writes)==0) 765 break; 766 schedule(); 767 } 768 finish_wait(&mddev->sb_wait, &wq); 769 } 770 771 static void bi_complete(struct bio *bio, int error) 772 { 773 complete((struct completion*)bio->bi_private); 774 } 775 776 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 777 struct page *page, int rw, bool metadata_op) 778 { 779 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 780 struct completion event; 781 int ret; 782 783 rw |= REQ_SYNC; 784 785 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 786 rdev->meta_bdev : rdev->bdev; 787 if (metadata_op) 788 bio->bi_sector = sector + rdev->sb_start; 789 else if (rdev->mddev->reshape_position != MaxSector && 790 (rdev->mddev->reshape_backwards == 791 (sector >= rdev->mddev->reshape_position))) 792 bio->bi_sector = sector + rdev->new_data_offset; 793 else 794 bio->bi_sector = sector + rdev->data_offset; 795 bio_add_page(bio, page, size, 0); 796 init_completion(&event); 797 bio->bi_private = &event; 798 bio->bi_end_io = bi_complete; 799 submit_bio(rw, bio); 800 wait_for_completion(&event); 801 802 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 803 bio_put(bio); 804 return ret; 805 } 806 EXPORT_SYMBOL_GPL(sync_page_io); 807 808 static int read_disk_sb(struct md_rdev * rdev, int size) 809 { 810 char b[BDEVNAME_SIZE]; 811 if (!rdev->sb_page) { 812 MD_BUG(); 813 return -EINVAL; 814 } 815 if (rdev->sb_loaded) 816 return 0; 817 818 819 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 820 goto fail; 821 rdev->sb_loaded = 1; 822 return 0; 823 824 fail: 825 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 826 bdevname(rdev->bdev,b)); 827 return -EINVAL; 828 } 829 830 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 831 { 832 return sb1->set_uuid0 == sb2->set_uuid0 && 833 sb1->set_uuid1 == sb2->set_uuid1 && 834 sb1->set_uuid2 == sb2->set_uuid2 && 835 sb1->set_uuid3 == sb2->set_uuid3; 836 } 837 838 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 839 { 840 int ret; 841 mdp_super_t *tmp1, *tmp2; 842 843 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 844 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 845 846 if (!tmp1 || !tmp2) { 847 ret = 0; 848 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 849 goto abort; 850 } 851 852 *tmp1 = *sb1; 853 *tmp2 = *sb2; 854 855 /* 856 * nr_disks is not constant 857 */ 858 tmp1->nr_disks = 0; 859 tmp2->nr_disks = 0; 860 861 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 862 abort: 863 kfree(tmp1); 864 kfree(tmp2); 865 return ret; 866 } 867 868 869 static u32 md_csum_fold(u32 csum) 870 { 871 csum = (csum & 0xffff) + (csum >> 16); 872 return (csum & 0xffff) + (csum >> 16); 873 } 874 875 static unsigned int calc_sb_csum(mdp_super_t * sb) 876 { 877 u64 newcsum = 0; 878 u32 *sb32 = (u32*)sb; 879 int i; 880 unsigned int disk_csum, csum; 881 882 disk_csum = sb->sb_csum; 883 sb->sb_csum = 0; 884 885 for (i = 0; i < MD_SB_BYTES/4 ; i++) 886 newcsum += sb32[i]; 887 csum = (newcsum & 0xffffffff) + (newcsum>>32); 888 889 890 #ifdef CONFIG_ALPHA 891 /* This used to use csum_partial, which was wrong for several 892 * reasons including that different results are returned on 893 * different architectures. It isn't critical that we get exactly 894 * the same return value as before (we always csum_fold before 895 * testing, and that removes any differences). However as we 896 * know that csum_partial always returned a 16bit value on 897 * alphas, do a fold to maximise conformity to previous behaviour. 898 */ 899 sb->sb_csum = md_csum_fold(disk_csum); 900 #else 901 sb->sb_csum = disk_csum; 902 #endif 903 return csum; 904 } 905 906 907 /* 908 * Handle superblock details. 909 * We want to be able to handle multiple superblock formats 910 * so we have a common interface to them all, and an array of 911 * different handlers. 912 * We rely on user-space to write the initial superblock, and support 913 * reading and updating of superblocks. 914 * Interface methods are: 915 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 916 * loads and validates a superblock on dev. 917 * if refdev != NULL, compare superblocks on both devices 918 * Return: 919 * 0 - dev has a superblock that is compatible with refdev 920 * 1 - dev has a superblock that is compatible and newer than refdev 921 * so dev should be used as the refdev in future 922 * -EINVAL superblock incompatible or invalid 923 * -othererror e.g. -EIO 924 * 925 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 926 * Verify that dev is acceptable into mddev. 927 * The first time, mddev->raid_disks will be 0, and data from 928 * dev should be merged in. Subsequent calls check that dev 929 * is new enough. Return 0 or -EINVAL 930 * 931 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 932 * Update the superblock for rdev with data in mddev 933 * This does not write to disc. 934 * 935 */ 936 937 struct super_type { 938 char *name; 939 struct module *owner; 940 int (*load_super)(struct md_rdev *rdev, 941 struct md_rdev *refdev, 942 int minor_version); 943 int (*validate_super)(struct mddev *mddev, 944 struct md_rdev *rdev); 945 void (*sync_super)(struct mddev *mddev, 946 struct md_rdev *rdev); 947 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 948 sector_t num_sectors); 949 int (*allow_new_offset)(struct md_rdev *rdev, 950 unsigned long long new_offset); 951 }; 952 953 /* 954 * Check that the given mddev has no bitmap. 955 * 956 * This function is called from the run method of all personalities that do not 957 * support bitmaps. It prints an error message and returns non-zero if mddev 958 * has a bitmap. Otherwise, it returns 0. 959 * 960 */ 961 int md_check_no_bitmap(struct mddev *mddev) 962 { 963 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 964 return 0; 965 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 966 mdname(mddev), mddev->pers->name); 967 return 1; 968 } 969 EXPORT_SYMBOL(md_check_no_bitmap); 970 971 /* 972 * load_super for 0.90.0 973 */ 974 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 975 { 976 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 977 mdp_super_t *sb; 978 int ret; 979 980 /* 981 * Calculate the position of the superblock (512byte sectors), 982 * it's at the end of the disk. 983 * 984 * It also happens to be a multiple of 4Kb. 985 */ 986 rdev->sb_start = calc_dev_sboffset(rdev); 987 988 ret = read_disk_sb(rdev, MD_SB_BYTES); 989 if (ret) return ret; 990 991 ret = -EINVAL; 992 993 bdevname(rdev->bdev, b); 994 sb = page_address(rdev->sb_page); 995 996 if (sb->md_magic != MD_SB_MAGIC) { 997 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 998 b); 999 goto abort; 1000 } 1001 1002 if (sb->major_version != 0 || 1003 sb->minor_version < 90 || 1004 sb->minor_version > 91) { 1005 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1006 sb->major_version, sb->minor_version, 1007 b); 1008 goto abort; 1009 } 1010 1011 if (sb->raid_disks <= 0) 1012 goto abort; 1013 1014 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1015 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1016 b); 1017 goto abort; 1018 } 1019 1020 rdev->preferred_minor = sb->md_minor; 1021 rdev->data_offset = 0; 1022 rdev->new_data_offset = 0; 1023 rdev->sb_size = MD_SB_BYTES; 1024 rdev->badblocks.shift = -1; 1025 1026 if (sb->level == LEVEL_MULTIPATH) 1027 rdev->desc_nr = -1; 1028 else 1029 rdev->desc_nr = sb->this_disk.number; 1030 1031 if (!refdev) { 1032 ret = 1; 1033 } else { 1034 __u64 ev1, ev2; 1035 mdp_super_t *refsb = page_address(refdev->sb_page); 1036 if (!uuid_equal(refsb, sb)) { 1037 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1038 b, bdevname(refdev->bdev,b2)); 1039 goto abort; 1040 } 1041 if (!sb_equal(refsb, sb)) { 1042 printk(KERN_WARNING "md: %s has same UUID" 1043 " but different superblock to %s\n", 1044 b, bdevname(refdev->bdev, b2)); 1045 goto abort; 1046 } 1047 ev1 = md_event(sb); 1048 ev2 = md_event(refsb); 1049 if (ev1 > ev2) 1050 ret = 1; 1051 else 1052 ret = 0; 1053 } 1054 rdev->sectors = rdev->sb_start; 1055 /* Limit to 4TB as metadata cannot record more than that. 1056 * (not needed for Linear and RAID0 as metadata doesn't 1057 * record this size) 1058 */ 1059 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1060 rdev->sectors = (2ULL << 32) - 2; 1061 1062 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1063 /* "this cannot possibly happen" ... */ 1064 ret = -EINVAL; 1065 1066 abort: 1067 return ret; 1068 } 1069 1070 /* 1071 * validate_super for 0.90.0 1072 */ 1073 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1074 { 1075 mdp_disk_t *desc; 1076 mdp_super_t *sb = page_address(rdev->sb_page); 1077 __u64 ev1 = md_event(sb); 1078 1079 rdev->raid_disk = -1; 1080 clear_bit(Faulty, &rdev->flags); 1081 clear_bit(In_sync, &rdev->flags); 1082 clear_bit(WriteMostly, &rdev->flags); 1083 1084 if (mddev->raid_disks == 0) { 1085 mddev->major_version = 0; 1086 mddev->minor_version = sb->minor_version; 1087 mddev->patch_version = sb->patch_version; 1088 mddev->external = 0; 1089 mddev->chunk_sectors = sb->chunk_size >> 9; 1090 mddev->ctime = sb->ctime; 1091 mddev->utime = sb->utime; 1092 mddev->level = sb->level; 1093 mddev->clevel[0] = 0; 1094 mddev->layout = sb->layout; 1095 mddev->raid_disks = sb->raid_disks; 1096 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1097 mddev->events = ev1; 1098 mddev->bitmap_info.offset = 0; 1099 mddev->bitmap_info.space = 0; 1100 /* bitmap can use 60 K after the 4K superblocks */ 1101 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1102 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1103 mddev->reshape_backwards = 0; 1104 1105 if (mddev->minor_version >= 91) { 1106 mddev->reshape_position = sb->reshape_position; 1107 mddev->delta_disks = sb->delta_disks; 1108 mddev->new_level = sb->new_level; 1109 mddev->new_layout = sb->new_layout; 1110 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1111 if (mddev->delta_disks < 0) 1112 mddev->reshape_backwards = 1; 1113 } else { 1114 mddev->reshape_position = MaxSector; 1115 mddev->delta_disks = 0; 1116 mddev->new_level = mddev->level; 1117 mddev->new_layout = mddev->layout; 1118 mddev->new_chunk_sectors = mddev->chunk_sectors; 1119 } 1120 1121 if (sb->state & (1<<MD_SB_CLEAN)) 1122 mddev->recovery_cp = MaxSector; 1123 else { 1124 if (sb->events_hi == sb->cp_events_hi && 1125 sb->events_lo == sb->cp_events_lo) { 1126 mddev->recovery_cp = sb->recovery_cp; 1127 } else 1128 mddev->recovery_cp = 0; 1129 } 1130 1131 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1132 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1133 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1134 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1135 1136 mddev->max_disks = MD_SB_DISKS; 1137 1138 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1139 mddev->bitmap_info.file == NULL) { 1140 mddev->bitmap_info.offset = 1141 mddev->bitmap_info.default_offset; 1142 mddev->bitmap_info.space = 1143 mddev->bitmap_info.default_space; 1144 } 1145 1146 } else if (mddev->pers == NULL) { 1147 /* Insist on good event counter while assembling, except 1148 * for spares (which don't need an event count) */ 1149 ++ev1; 1150 if (sb->disks[rdev->desc_nr].state & ( 1151 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1152 if (ev1 < mddev->events) 1153 return -EINVAL; 1154 } else if (mddev->bitmap) { 1155 /* if adding to array with a bitmap, then we can accept an 1156 * older device ... but not too old. 1157 */ 1158 if (ev1 < mddev->bitmap->events_cleared) 1159 return 0; 1160 } else { 1161 if (ev1 < mddev->events) 1162 /* just a hot-add of a new device, leave raid_disk at -1 */ 1163 return 0; 1164 } 1165 1166 if (mddev->level != LEVEL_MULTIPATH) { 1167 desc = sb->disks + rdev->desc_nr; 1168 1169 if (desc->state & (1<<MD_DISK_FAULTY)) 1170 set_bit(Faulty, &rdev->flags); 1171 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1172 desc->raid_disk < mddev->raid_disks */) { 1173 set_bit(In_sync, &rdev->flags); 1174 rdev->raid_disk = desc->raid_disk; 1175 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1176 /* active but not in sync implies recovery up to 1177 * reshape position. We don't know exactly where 1178 * that is, so set to zero for now */ 1179 if (mddev->minor_version >= 91) { 1180 rdev->recovery_offset = 0; 1181 rdev->raid_disk = desc->raid_disk; 1182 } 1183 } 1184 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1185 set_bit(WriteMostly, &rdev->flags); 1186 } else /* MULTIPATH are always insync */ 1187 set_bit(In_sync, &rdev->flags); 1188 return 0; 1189 } 1190 1191 /* 1192 * sync_super for 0.90.0 1193 */ 1194 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1195 { 1196 mdp_super_t *sb; 1197 struct md_rdev *rdev2; 1198 int next_spare = mddev->raid_disks; 1199 1200 1201 /* make rdev->sb match mddev data.. 1202 * 1203 * 1/ zero out disks 1204 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1205 * 3/ any empty disks < next_spare become removed 1206 * 1207 * disks[0] gets initialised to REMOVED because 1208 * we cannot be sure from other fields if it has 1209 * been initialised or not. 1210 */ 1211 int i; 1212 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1213 1214 rdev->sb_size = MD_SB_BYTES; 1215 1216 sb = page_address(rdev->sb_page); 1217 1218 memset(sb, 0, sizeof(*sb)); 1219 1220 sb->md_magic = MD_SB_MAGIC; 1221 sb->major_version = mddev->major_version; 1222 sb->patch_version = mddev->patch_version; 1223 sb->gvalid_words = 0; /* ignored */ 1224 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1225 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1226 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1227 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1228 1229 sb->ctime = mddev->ctime; 1230 sb->level = mddev->level; 1231 sb->size = mddev->dev_sectors / 2; 1232 sb->raid_disks = mddev->raid_disks; 1233 sb->md_minor = mddev->md_minor; 1234 sb->not_persistent = 0; 1235 sb->utime = mddev->utime; 1236 sb->state = 0; 1237 sb->events_hi = (mddev->events>>32); 1238 sb->events_lo = (u32)mddev->events; 1239 1240 if (mddev->reshape_position == MaxSector) 1241 sb->minor_version = 90; 1242 else { 1243 sb->minor_version = 91; 1244 sb->reshape_position = mddev->reshape_position; 1245 sb->new_level = mddev->new_level; 1246 sb->delta_disks = mddev->delta_disks; 1247 sb->new_layout = mddev->new_layout; 1248 sb->new_chunk = mddev->new_chunk_sectors << 9; 1249 } 1250 mddev->minor_version = sb->minor_version; 1251 if (mddev->in_sync) 1252 { 1253 sb->recovery_cp = mddev->recovery_cp; 1254 sb->cp_events_hi = (mddev->events>>32); 1255 sb->cp_events_lo = (u32)mddev->events; 1256 if (mddev->recovery_cp == MaxSector) 1257 sb->state = (1<< MD_SB_CLEAN); 1258 } else 1259 sb->recovery_cp = 0; 1260 1261 sb->layout = mddev->layout; 1262 sb->chunk_size = mddev->chunk_sectors << 9; 1263 1264 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1265 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1266 1267 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1268 rdev_for_each(rdev2, mddev) { 1269 mdp_disk_t *d; 1270 int desc_nr; 1271 int is_active = test_bit(In_sync, &rdev2->flags); 1272 1273 if (rdev2->raid_disk >= 0 && 1274 sb->minor_version >= 91) 1275 /* we have nowhere to store the recovery_offset, 1276 * but if it is not below the reshape_position, 1277 * we can piggy-back on that. 1278 */ 1279 is_active = 1; 1280 if (rdev2->raid_disk < 0 || 1281 test_bit(Faulty, &rdev2->flags)) 1282 is_active = 0; 1283 if (is_active) 1284 desc_nr = rdev2->raid_disk; 1285 else 1286 desc_nr = next_spare++; 1287 rdev2->desc_nr = desc_nr; 1288 d = &sb->disks[rdev2->desc_nr]; 1289 nr_disks++; 1290 d->number = rdev2->desc_nr; 1291 d->major = MAJOR(rdev2->bdev->bd_dev); 1292 d->minor = MINOR(rdev2->bdev->bd_dev); 1293 if (is_active) 1294 d->raid_disk = rdev2->raid_disk; 1295 else 1296 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1297 if (test_bit(Faulty, &rdev2->flags)) 1298 d->state = (1<<MD_DISK_FAULTY); 1299 else if (is_active) { 1300 d->state = (1<<MD_DISK_ACTIVE); 1301 if (test_bit(In_sync, &rdev2->flags)) 1302 d->state |= (1<<MD_DISK_SYNC); 1303 active++; 1304 working++; 1305 } else { 1306 d->state = 0; 1307 spare++; 1308 working++; 1309 } 1310 if (test_bit(WriteMostly, &rdev2->flags)) 1311 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1312 } 1313 /* now set the "removed" and "faulty" bits on any missing devices */ 1314 for (i=0 ; i < mddev->raid_disks ; i++) { 1315 mdp_disk_t *d = &sb->disks[i]; 1316 if (d->state == 0 && d->number == 0) { 1317 d->number = i; 1318 d->raid_disk = i; 1319 d->state = (1<<MD_DISK_REMOVED); 1320 d->state |= (1<<MD_DISK_FAULTY); 1321 failed++; 1322 } 1323 } 1324 sb->nr_disks = nr_disks; 1325 sb->active_disks = active; 1326 sb->working_disks = working; 1327 sb->failed_disks = failed; 1328 sb->spare_disks = spare; 1329 1330 sb->this_disk = sb->disks[rdev->desc_nr]; 1331 sb->sb_csum = calc_sb_csum(sb); 1332 } 1333 1334 /* 1335 * rdev_size_change for 0.90.0 1336 */ 1337 static unsigned long long 1338 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1339 { 1340 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1341 return 0; /* component must fit device */ 1342 if (rdev->mddev->bitmap_info.offset) 1343 return 0; /* can't move bitmap */ 1344 rdev->sb_start = calc_dev_sboffset(rdev); 1345 if (!num_sectors || num_sectors > rdev->sb_start) 1346 num_sectors = rdev->sb_start; 1347 /* Limit to 4TB as metadata cannot record more than that. 1348 * 4TB == 2^32 KB, or 2*2^32 sectors. 1349 */ 1350 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1351 num_sectors = (2ULL << 32) - 2; 1352 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1353 rdev->sb_page); 1354 md_super_wait(rdev->mddev); 1355 return num_sectors; 1356 } 1357 1358 static int 1359 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1360 { 1361 /* non-zero offset changes not possible with v0.90 */ 1362 return new_offset == 0; 1363 } 1364 1365 /* 1366 * version 1 superblock 1367 */ 1368 1369 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1370 { 1371 __le32 disk_csum; 1372 u32 csum; 1373 unsigned long long newcsum; 1374 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1375 __le32 *isuper = (__le32*)sb; 1376 1377 disk_csum = sb->sb_csum; 1378 sb->sb_csum = 0; 1379 newcsum = 0; 1380 for (; size >= 4; size -= 4) 1381 newcsum += le32_to_cpu(*isuper++); 1382 1383 if (size == 2) 1384 newcsum += le16_to_cpu(*(__le16*) isuper); 1385 1386 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1387 sb->sb_csum = disk_csum; 1388 return cpu_to_le32(csum); 1389 } 1390 1391 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1392 int acknowledged); 1393 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1394 { 1395 struct mdp_superblock_1 *sb; 1396 int ret; 1397 sector_t sb_start; 1398 sector_t sectors; 1399 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1400 int bmask; 1401 1402 /* 1403 * Calculate the position of the superblock in 512byte sectors. 1404 * It is always aligned to a 4K boundary and 1405 * depeding on minor_version, it can be: 1406 * 0: At least 8K, but less than 12K, from end of device 1407 * 1: At start of device 1408 * 2: 4K from start of device. 1409 */ 1410 switch(minor_version) { 1411 case 0: 1412 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1413 sb_start -= 8*2; 1414 sb_start &= ~(sector_t)(4*2-1); 1415 break; 1416 case 1: 1417 sb_start = 0; 1418 break; 1419 case 2: 1420 sb_start = 8; 1421 break; 1422 default: 1423 return -EINVAL; 1424 } 1425 rdev->sb_start = sb_start; 1426 1427 /* superblock is rarely larger than 1K, but it can be larger, 1428 * and it is safe to read 4k, so we do that 1429 */ 1430 ret = read_disk_sb(rdev, 4096); 1431 if (ret) return ret; 1432 1433 1434 sb = page_address(rdev->sb_page); 1435 1436 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1437 sb->major_version != cpu_to_le32(1) || 1438 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1439 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1440 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1441 return -EINVAL; 1442 1443 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1444 printk("md: invalid superblock checksum on %s\n", 1445 bdevname(rdev->bdev,b)); 1446 return -EINVAL; 1447 } 1448 if (le64_to_cpu(sb->data_size) < 10) { 1449 printk("md: data_size too small on %s\n", 1450 bdevname(rdev->bdev,b)); 1451 return -EINVAL; 1452 } 1453 if (sb->pad0 || 1454 sb->pad3[0] || 1455 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1456 /* Some padding is non-zero, might be a new feature */ 1457 return -EINVAL; 1458 1459 rdev->preferred_minor = 0xffff; 1460 rdev->data_offset = le64_to_cpu(sb->data_offset); 1461 rdev->new_data_offset = rdev->data_offset; 1462 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1463 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1464 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1465 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1466 1467 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1468 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1469 if (rdev->sb_size & bmask) 1470 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1471 1472 if (minor_version 1473 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1474 return -EINVAL; 1475 if (minor_version 1476 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1477 return -EINVAL; 1478 1479 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1480 rdev->desc_nr = -1; 1481 else 1482 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1483 1484 if (!rdev->bb_page) { 1485 rdev->bb_page = alloc_page(GFP_KERNEL); 1486 if (!rdev->bb_page) 1487 return -ENOMEM; 1488 } 1489 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1490 rdev->badblocks.count == 0) { 1491 /* need to load the bad block list. 1492 * Currently we limit it to one page. 1493 */ 1494 s32 offset; 1495 sector_t bb_sector; 1496 u64 *bbp; 1497 int i; 1498 int sectors = le16_to_cpu(sb->bblog_size); 1499 if (sectors > (PAGE_SIZE / 512)) 1500 return -EINVAL; 1501 offset = le32_to_cpu(sb->bblog_offset); 1502 if (offset == 0) 1503 return -EINVAL; 1504 bb_sector = (long long)offset; 1505 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1506 rdev->bb_page, READ, true)) 1507 return -EIO; 1508 bbp = (u64 *)page_address(rdev->bb_page); 1509 rdev->badblocks.shift = sb->bblog_shift; 1510 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1511 u64 bb = le64_to_cpu(*bbp); 1512 int count = bb & (0x3ff); 1513 u64 sector = bb >> 10; 1514 sector <<= sb->bblog_shift; 1515 count <<= sb->bblog_shift; 1516 if (bb + 1 == 0) 1517 break; 1518 if (md_set_badblocks(&rdev->badblocks, 1519 sector, count, 1) == 0) 1520 return -EINVAL; 1521 } 1522 } else if (sb->bblog_offset != 0) 1523 rdev->badblocks.shift = 0; 1524 1525 if (!refdev) { 1526 ret = 1; 1527 } else { 1528 __u64 ev1, ev2; 1529 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1530 1531 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1532 sb->level != refsb->level || 1533 sb->layout != refsb->layout || 1534 sb->chunksize != refsb->chunksize) { 1535 printk(KERN_WARNING "md: %s has strangely different" 1536 " superblock to %s\n", 1537 bdevname(rdev->bdev,b), 1538 bdevname(refdev->bdev,b2)); 1539 return -EINVAL; 1540 } 1541 ev1 = le64_to_cpu(sb->events); 1542 ev2 = le64_to_cpu(refsb->events); 1543 1544 if (ev1 > ev2) 1545 ret = 1; 1546 else 1547 ret = 0; 1548 } 1549 if (minor_version) { 1550 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1551 sectors -= rdev->data_offset; 1552 } else 1553 sectors = rdev->sb_start; 1554 if (sectors < le64_to_cpu(sb->data_size)) 1555 return -EINVAL; 1556 rdev->sectors = le64_to_cpu(sb->data_size); 1557 return ret; 1558 } 1559 1560 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1561 { 1562 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1563 __u64 ev1 = le64_to_cpu(sb->events); 1564 1565 rdev->raid_disk = -1; 1566 clear_bit(Faulty, &rdev->flags); 1567 clear_bit(In_sync, &rdev->flags); 1568 clear_bit(WriteMostly, &rdev->flags); 1569 1570 if (mddev->raid_disks == 0) { 1571 mddev->major_version = 1; 1572 mddev->patch_version = 0; 1573 mddev->external = 0; 1574 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1575 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1576 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1577 mddev->level = le32_to_cpu(sb->level); 1578 mddev->clevel[0] = 0; 1579 mddev->layout = le32_to_cpu(sb->layout); 1580 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1581 mddev->dev_sectors = le64_to_cpu(sb->size); 1582 mddev->events = ev1; 1583 mddev->bitmap_info.offset = 0; 1584 mddev->bitmap_info.space = 0; 1585 /* Default location for bitmap is 1K after superblock 1586 * using 3K - total of 4K 1587 */ 1588 mddev->bitmap_info.default_offset = 1024 >> 9; 1589 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1590 mddev->reshape_backwards = 0; 1591 1592 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1593 memcpy(mddev->uuid, sb->set_uuid, 16); 1594 1595 mddev->max_disks = (4096-256)/2; 1596 1597 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1598 mddev->bitmap_info.file == NULL) { 1599 mddev->bitmap_info.offset = 1600 (__s32)le32_to_cpu(sb->bitmap_offset); 1601 /* Metadata doesn't record how much space is available. 1602 * For 1.0, we assume we can use up to the superblock 1603 * if before, else to 4K beyond superblock. 1604 * For others, assume no change is possible. 1605 */ 1606 if (mddev->minor_version > 0) 1607 mddev->bitmap_info.space = 0; 1608 else if (mddev->bitmap_info.offset > 0) 1609 mddev->bitmap_info.space = 1610 8 - mddev->bitmap_info.offset; 1611 else 1612 mddev->bitmap_info.space = 1613 -mddev->bitmap_info.offset; 1614 } 1615 1616 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1617 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1618 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1619 mddev->new_level = le32_to_cpu(sb->new_level); 1620 mddev->new_layout = le32_to_cpu(sb->new_layout); 1621 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1622 if (mddev->delta_disks < 0 || 1623 (mddev->delta_disks == 0 && 1624 (le32_to_cpu(sb->feature_map) 1625 & MD_FEATURE_RESHAPE_BACKWARDS))) 1626 mddev->reshape_backwards = 1; 1627 } else { 1628 mddev->reshape_position = MaxSector; 1629 mddev->delta_disks = 0; 1630 mddev->new_level = mddev->level; 1631 mddev->new_layout = mddev->layout; 1632 mddev->new_chunk_sectors = mddev->chunk_sectors; 1633 } 1634 1635 } else if (mddev->pers == NULL) { 1636 /* Insist of good event counter while assembling, except for 1637 * spares (which don't need an event count) */ 1638 ++ev1; 1639 if (rdev->desc_nr >= 0 && 1640 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1641 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1642 if (ev1 < mddev->events) 1643 return -EINVAL; 1644 } else if (mddev->bitmap) { 1645 /* If adding to array with a bitmap, then we can accept an 1646 * older device, but not too old. 1647 */ 1648 if (ev1 < mddev->bitmap->events_cleared) 1649 return 0; 1650 } else { 1651 if (ev1 < mddev->events) 1652 /* just a hot-add of a new device, leave raid_disk at -1 */ 1653 return 0; 1654 } 1655 if (mddev->level != LEVEL_MULTIPATH) { 1656 int role; 1657 if (rdev->desc_nr < 0 || 1658 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1659 role = 0xffff; 1660 rdev->desc_nr = -1; 1661 } else 1662 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1663 switch(role) { 1664 case 0xffff: /* spare */ 1665 break; 1666 case 0xfffe: /* faulty */ 1667 set_bit(Faulty, &rdev->flags); 1668 break; 1669 default: 1670 if ((le32_to_cpu(sb->feature_map) & 1671 MD_FEATURE_RECOVERY_OFFSET)) 1672 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1673 else 1674 set_bit(In_sync, &rdev->flags); 1675 rdev->raid_disk = role; 1676 break; 1677 } 1678 if (sb->devflags & WriteMostly1) 1679 set_bit(WriteMostly, &rdev->flags); 1680 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1681 set_bit(Replacement, &rdev->flags); 1682 } else /* MULTIPATH are always insync */ 1683 set_bit(In_sync, &rdev->flags); 1684 1685 return 0; 1686 } 1687 1688 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1689 { 1690 struct mdp_superblock_1 *sb; 1691 struct md_rdev *rdev2; 1692 int max_dev, i; 1693 /* make rdev->sb match mddev and rdev data. */ 1694 1695 sb = page_address(rdev->sb_page); 1696 1697 sb->feature_map = 0; 1698 sb->pad0 = 0; 1699 sb->recovery_offset = cpu_to_le64(0); 1700 memset(sb->pad3, 0, sizeof(sb->pad3)); 1701 1702 sb->utime = cpu_to_le64((__u64)mddev->utime); 1703 sb->events = cpu_to_le64(mddev->events); 1704 if (mddev->in_sync) 1705 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1706 else 1707 sb->resync_offset = cpu_to_le64(0); 1708 1709 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1710 1711 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1712 sb->size = cpu_to_le64(mddev->dev_sectors); 1713 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1714 sb->level = cpu_to_le32(mddev->level); 1715 sb->layout = cpu_to_le32(mddev->layout); 1716 1717 if (test_bit(WriteMostly, &rdev->flags)) 1718 sb->devflags |= WriteMostly1; 1719 else 1720 sb->devflags &= ~WriteMostly1; 1721 sb->data_offset = cpu_to_le64(rdev->data_offset); 1722 sb->data_size = cpu_to_le64(rdev->sectors); 1723 1724 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1725 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1726 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1727 } 1728 1729 if (rdev->raid_disk >= 0 && 1730 !test_bit(In_sync, &rdev->flags)) { 1731 sb->feature_map |= 1732 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1733 sb->recovery_offset = 1734 cpu_to_le64(rdev->recovery_offset); 1735 } 1736 if (test_bit(Replacement, &rdev->flags)) 1737 sb->feature_map |= 1738 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1739 1740 if (mddev->reshape_position != MaxSector) { 1741 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1742 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1743 sb->new_layout = cpu_to_le32(mddev->new_layout); 1744 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1745 sb->new_level = cpu_to_le32(mddev->new_level); 1746 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1747 if (mddev->delta_disks == 0 && 1748 mddev->reshape_backwards) 1749 sb->feature_map 1750 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1751 if (rdev->new_data_offset != rdev->data_offset) { 1752 sb->feature_map 1753 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1754 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1755 - rdev->data_offset)); 1756 } 1757 } 1758 1759 if (rdev->badblocks.count == 0) 1760 /* Nothing to do for bad blocks*/ ; 1761 else if (sb->bblog_offset == 0) 1762 /* Cannot record bad blocks on this device */ 1763 md_error(mddev, rdev); 1764 else { 1765 struct badblocks *bb = &rdev->badblocks; 1766 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1767 u64 *p = bb->page; 1768 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1769 if (bb->changed) { 1770 unsigned seq; 1771 1772 retry: 1773 seq = read_seqbegin(&bb->lock); 1774 1775 memset(bbp, 0xff, PAGE_SIZE); 1776 1777 for (i = 0 ; i < bb->count ; i++) { 1778 u64 internal_bb = p[i]; 1779 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1780 | BB_LEN(internal_bb)); 1781 bbp[i] = cpu_to_le64(store_bb); 1782 } 1783 bb->changed = 0; 1784 if (read_seqretry(&bb->lock, seq)) 1785 goto retry; 1786 1787 bb->sector = (rdev->sb_start + 1788 (int)le32_to_cpu(sb->bblog_offset)); 1789 bb->size = le16_to_cpu(sb->bblog_size); 1790 } 1791 } 1792 1793 max_dev = 0; 1794 rdev_for_each(rdev2, mddev) 1795 if (rdev2->desc_nr+1 > max_dev) 1796 max_dev = rdev2->desc_nr+1; 1797 1798 if (max_dev > le32_to_cpu(sb->max_dev)) { 1799 int bmask; 1800 sb->max_dev = cpu_to_le32(max_dev); 1801 rdev->sb_size = max_dev * 2 + 256; 1802 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1803 if (rdev->sb_size & bmask) 1804 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1805 } else 1806 max_dev = le32_to_cpu(sb->max_dev); 1807 1808 for (i=0; i<max_dev;i++) 1809 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1810 1811 rdev_for_each(rdev2, mddev) { 1812 i = rdev2->desc_nr; 1813 if (test_bit(Faulty, &rdev2->flags)) 1814 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1815 else if (test_bit(In_sync, &rdev2->flags)) 1816 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1817 else if (rdev2->raid_disk >= 0) 1818 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1819 else 1820 sb->dev_roles[i] = cpu_to_le16(0xffff); 1821 } 1822 1823 sb->sb_csum = calc_sb_1_csum(sb); 1824 } 1825 1826 static unsigned long long 1827 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1828 { 1829 struct mdp_superblock_1 *sb; 1830 sector_t max_sectors; 1831 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1832 return 0; /* component must fit device */ 1833 if (rdev->data_offset != rdev->new_data_offset) 1834 return 0; /* too confusing */ 1835 if (rdev->sb_start < rdev->data_offset) { 1836 /* minor versions 1 and 2; superblock before data */ 1837 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1838 max_sectors -= rdev->data_offset; 1839 if (!num_sectors || num_sectors > max_sectors) 1840 num_sectors = max_sectors; 1841 } else if (rdev->mddev->bitmap_info.offset) { 1842 /* minor version 0 with bitmap we can't move */ 1843 return 0; 1844 } else { 1845 /* minor version 0; superblock after data */ 1846 sector_t sb_start; 1847 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1848 sb_start &= ~(sector_t)(4*2 - 1); 1849 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1850 if (!num_sectors || num_sectors > max_sectors) 1851 num_sectors = max_sectors; 1852 rdev->sb_start = sb_start; 1853 } 1854 sb = page_address(rdev->sb_page); 1855 sb->data_size = cpu_to_le64(num_sectors); 1856 sb->super_offset = rdev->sb_start; 1857 sb->sb_csum = calc_sb_1_csum(sb); 1858 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1859 rdev->sb_page); 1860 md_super_wait(rdev->mddev); 1861 return num_sectors; 1862 1863 } 1864 1865 static int 1866 super_1_allow_new_offset(struct md_rdev *rdev, 1867 unsigned long long new_offset) 1868 { 1869 /* All necessary checks on new >= old have been done */ 1870 struct bitmap *bitmap; 1871 if (new_offset >= rdev->data_offset) 1872 return 1; 1873 1874 /* with 1.0 metadata, there is no metadata to tread on 1875 * so we can always move back */ 1876 if (rdev->mddev->minor_version == 0) 1877 return 1; 1878 1879 /* otherwise we must be sure not to step on 1880 * any metadata, so stay: 1881 * 36K beyond start of superblock 1882 * beyond end of badblocks 1883 * beyond write-intent bitmap 1884 */ 1885 if (rdev->sb_start + (32+4)*2 > new_offset) 1886 return 0; 1887 bitmap = rdev->mddev->bitmap; 1888 if (bitmap && !rdev->mddev->bitmap_info.file && 1889 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1890 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1891 return 0; 1892 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1893 return 0; 1894 1895 return 1; 1896 } 1897 1898 static struct super_type super_types[] = { 1899 [0] = { 1900 .name = "0.90.0", 1901 .owner = THIS_MODULE, 1902 .load_super = super_90_load, 1903 .validate_super = super_90_validate, 1904 .sync_super = super_90_sync, 1905 .rdev_size_change = super_90_rdev_size_change, 1906 .allow_new_offset = super_90_allow_new_offset, 1907 }, 1908 [1] = { 1909 .name = "md-1", 1910 .owner = THIS_MODULE, 1911 .load_super = super_1_load, 1912 .validate_super = super_1_validate, 1913 .sync_super = super_1_sync, 1914 .rdev_size_change = super_1_rdev_size_change, 1915 .allow_new_offset = super_1_allow_new_offset, 1916 }, 1917 }; 1918 1919 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1920 { 1921 if (mddev->sync_super) { 1922 mddev->sync_super(mddev, rdev); 1923 return; 1924 } 1925 1926 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1927 1928 super_types[mddev->major_version].sync_super(mddev, rdev); 1929 } 1930 1931 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1932 { 1933 struct md_rdev *rdev, *rdev2; 1934 1935 rcu_read_lock(); 1936 rdev_for_each_rcu(rdev, mddev1) 1937 rdev_for_each_rcu(rdev2, mddev2) 1938 if (rdev->bdev->bd_contains == 1939 rdev2->bdev->bd_contains) { 1940 rcu_read_unlock(); 1941 return 1; 1942 } 1943 rcu_read_unlock(); 1944 return 0; 1945 } 1946 1947 static LIST_HEAD(pending_raid_disks); 1948 1949 /* 1950 * Try to register data integrity profile for an mddev 1951 * 1952 * This is called when an array is started and after a disk has been kicked 1953 * from the array. It only succeeds if all working and active component devices 1954 * are integrity capable with matching profiles. 1955 */ 1956 int md_integrity_register(struct mddev *mddev) 1957 { 1958 struct md_rdev *rdev, *reference = NULL; 1959 1960 if (list_empty(&mddev->disks)) 1961 return 0; /* nothing to do */ 1962 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 1963 return 0; /* shouldn't register, or already is */ 1964 rdev_for_each(rdev, mddev) { 1965 /* skip spares and non-functional disks */ 1966 if (test_bit(Faulty, &rdev->flags)) 1967 continue; 1968 if (rdev->raid_disk < 0) 1969 continue; 1970 if (!reference) { 1971 /* Use the first rdev as the reference */ 1972 reference = rdev; 1973 continue; 1974 } 1975 /* does this rdev's profile match the reference profile? */ 1976 if (blk_integrity_compare(reference->bdev->bd_disk, 1977 rdev->bdev->bd_disk) < 0) 1978 return -EINVAL; 1979 } 1980 if (!reference || !bdev_get_integrity(reference->bdev)) 1981 return 0; 1982 /* 1983 * All component devices are integrity capable and have matching 1984 * profiles, register the common profile for the md device. 1985 */ 1986 if (blk_integrity_register(mddev->gendisk, 1987 bdev_get_integrity(reference->bdev)) != 0) { 1988 printk(KERN_ERR "md: failed to register integrity for %s\n", 1989 mdname(mddev)); 1990 return -EINVAL; 1991 } 1992 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 1993 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 1994 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 1995 mdname(mddev)); 1996 return -EINVAL; 1997 } 1998 return 0; 1999 } 2000 EXPORT_SYMBOL(md_integrity_register); 2001 2002 /* Disable data integrity if non-capable/non-matching disk is being added */ 2003 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2004 { 2005 struct blk_integrity *bi_rdev; 2006 struct blk_integrity *bi_mddev; 2007 2008 if (!mddev->gendisk) 2009 return; 2010 2011 bi_rdev = bdev_get_integrity(rdev->bdev); 2012 bi_mddev = blk_get_integrity(mddev->gendisk); 2013 2014 if (!bi_mddev) /* nothing to do */ 2015 return; 2016 if (rdev->raid_disk < 0) /* skip spares */ 2017 return; 2018 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2019 rdev->bdev->bd_disk) >= 0) 2020 return; 2021 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2022 blk_integrity_unregister(mddev->gendisk); 2023 } 2024 EXPORT_SYMBOL(md_integrity_add_rdev); 2025 2026 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev) 2027 { 2028 char b[BDEVNAME_SIZE]; 2029 struct kobject *ko; 2030 char *s; 2031 int err; 2032 2033 if (rdev->mddev) { 2034 MD_BUG(); 2035 return -EINVAL; 2036 } 2037 2038 /* prevent duplicates */ 2039 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2040 return -EEXIST; 2041 2042 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2043 if (rdev->sectors && (mddev->dev_sectors == 0 || 2044 rdev->sectors < mddev->dev_sectors)) { 2045 if (mddev->pers) { 2046 /* Cannot change size, so fail 2047 * If mddev->level <= 0, then we don't care 2048 * about aligning sizes (e.g. linear) 2049 */ 2050 if (mddev->level > 0) 2051 return -ENOSPC; 2052 } else 2053 mddev->dev_sectors = rdev->sectors; 2054 } 2055 2056 /* Verify rdev->desc_nr is unique. 2057 * If it is -1, assign a free number, else 2058 * check number is not in use 2059 */ 2060 if (rdev->desc_nr < 0) { 2061 int choice = 0; 2062 if (mddev->pers) choice = mddev->raid_disks; 2063 while (find_rdev_nr(mddev, choice)) 2064 choice++; 2065 rdev->desc_nr = choice; 2066 } else { 2067 if (find_rdev_nr(mddev, rdev->desc_nr)) 2068 return -EBUSY; 2069 } 2070 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2071 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2072 mdname(mddev), mddev->max_disks); 2073 return -EBUSY; 2074 } 2075 bdevname(rdev->bdev,b); 2076 while ( (s=strchr(b, '/')) != NULL) 2077 *s = '!'; 2078 2079 rdev->mddev = mddev; 2080 printk(KERN_INFO "md: bind<%s>\n", b); 2081 2082 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2083 goto fail; 2084 2085 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2086 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2087 /* failure here is OK */; 2088 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2089 2090 list_add_rcu(&rdev->same_set, &mddev->disks); 2091 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2092 2093 /* May as well allow recovery to be retried once */ 2094 mddev->recovery_disabled++; 2095 2096 return 0; 2097 2098 fail: 2099 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2100 b, mdname(mddev)); 2101 return err; 2102 } 2103 2104 static void md_delayed_delete(struct work_struct *ws) 2105 { 2106 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2107 kobject_del(&rdev->kobj); 2108 kobject_put(&rdev->kobj); 2109 } 2110 2111 static void unbind_rdev_from_array(struct md_rdev * rdev) 2112 { 2113 char b[BDEVNAME_SIZE]; 2114 if (!rdev->mddev) { 2115 MD_BUG(); 2116 return; 2117 } 2118 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2119 list_del_rcu(&rdev->same_set); 2120 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2121 rdev->mddev = NULL; 2122 sysfs_remove_link(&rdev->kobj, "block"); 2123 sysfs_put(rdev->sysfs_state); 2124 rdev->sysfs_state = NULL; 2125 rdev->badblocks.count = 0; 2126 /* We need to delay this, otherwise we can deadlock when 2127 * writing to 'remove' to "dev/state". We also need 2128 * to delay it due to rcu usage. 2129 */ 2130 synchronize_rcu(); 2131 INIT_WORK(&rdev->del_work, md_delayed_delete); 2132 kobject_get(&rdev->kobj); 2133 queue_work(md_misc_wq, &rdev->del_work); 2134 } 2135 2136 /* 2137 * prevent the device from being mounted, repartitioned or 2138 * otherwise reused by a RAID array (or any other kernel 2139 * subsystem), by bd_claiming the device. 2140 */ 2141 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2142 { 2143 int err = 0; 2144 struct block_device *bdev; 2145 char b[BDEVNAME_SIZE]; 2146 2147 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2148 shared ? (struct md_rdev *)lock_rdev : rdev); 2149 if (IS_ERR(bdev)) { 2150 printk(KERN_ERR "md: could not open %s.\n", 2151 __bdevname(dev, b)); 2152 return PTR_ERR(bdev); 2153 } 2154 rdev->bdev = bdev; 2155 return err; 2156 } 2157 2158 static void unlock_rdev(struct md_rdev *rdev) 2159 { 2160 struct block_device *bdev = rdev->bdev; 2161 rdev->bdev = NULL; 2162 if (!bdev) 2163 MD_BUG(); 2164 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2165 } 2166 2167 void md_autodetect_dev(dev_t dev); 2168 2169 static void export_rdev(struct md_rdev * rdev) 2170 { 2171 char b[BDEVNAME_SIZE]; 2172 printk(KERN_INFO "md: export_rdev(%s)\n", 2173 bdevname(rdev->bdev,b)); 2174 if (rdev->mddev) 2175 MD_BUG(); 2176 md_rdev_clear(rdev); 2177 #ifndef MODULE 2178 if (test_bit(AutoDetected, &rdev->flags)) 2179 md_autodetect_dev(rdev->bdev->bd_dev); 2180 #endif 2181 unlock_rdev(rdev); 2182 kobject_put(&rdev->kobj); 2183 } 2184 2185 static void kick_rdev_from_array(struct md_rdev * rdev) 2186 { 2187 unbind_rdev_from_array(rdev); 2188 export_rdev(rdev); 2189 } 2190 2191 static void export_array(struct mddev *mddev) 2192 { 2193 struct md_rdev *rdev, *tmp; 2194 2195 rdev_for_each_safe(rdev, tmp, mddev) { 2196 if (!rdev->mddev) { 2197 MD_BUG(); 2198 continue; 2199 } 2200 kick_rdev_from_array(rdev); 2201 } 2202 if (!list_empty(&mddev->disks)) 2203 MD_BUG(); 2204 mddev->raid_disks = 0; 2205 mddev->major_version = 0; 2206 } 2207 2208 static void print_desc(mdp_disk_t *desc) 2209 { 2210 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2211 desc->major,desc->minor,desc->raid_disk,desc->state); 2212 } 2213 2214 static void print_sb_90(mdp_super_t *sb) 2215 { 2216 int i; 2217 2218 printk(KERN_INFO 2219 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2220 sb->major_version, sb->minor_version, sb->patch_version, 2221 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2222 sb->ctime); 2223 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2224 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2225 sb->md_minor, sb->layout, sb->chunk_size); 2226 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2227 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2228 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2229 sb->failed_disks, sb->spare_disks, 2230 sb->sb_csum, (unsigned long)sb->events_lo); 2231 2232 printk(KERN_INFO); 2233 for (i = 0; i < MD_SB_DISKS; i++) { 2234 mdp_disk_t *desc; 2235 2236 desc = sb->disks + i; 2237 if (desc->number || desc->major || desc->minor || 2238 desc->raid_disk || (desc->state && (desc->state != 4))) { 2239 printk(" D %2d: ", i); 2240 print_desc(desc); 2241 } 2242 } 2243 printk(KERN_INFO "md: THIS: "); 2244 print_desc(&sb->this_disk); 2245 } 2246 2247 static void print_sb_1(struct mdp_superblock_1 *sb) 2248 { 2249 __u8 *uuid; 2250 2251 uuid = sb->set_uuid; 2252 printk(KERN_INFO 2253 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2254 "md: Name: \"%s\" CT:%llu\n", 2255 le32_to_cpu(sb->major_version), 2256 le32_to_cpu(sb->feature_map), 2257 uuid, 2258 sb->set_name, 2259 (unsigned long long)le64_to_cpu(sb->ctime) 2260 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2261 2262 uuid = sb->device_uuid; 2263 printk(KERN_INFO 2264 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2265 " RO:%llu\n" 2266 "md: Dev:%08x UUID: %pU\n" 2267 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2268 "md: (MaxDev:%u) \n", 2269 le32_to_cpu(sb->level), 2270 (unsigned long long)le64_to_cpu(sb->size), 2271 le32_to_cpu(sb->raid_disks), 2272 le32_to_cpu(sb->layout), 2273 le32_to_cpu(sb->chunksize), 2274 (unsigned long long)le64_to_cpu(sb->data_offset), 2275 (unsigned long long)le64_to_cpu(sb->data_size), 2276 (unsigned long long)le64_to_cpu(sb->super_offset), 2277 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2278 le32_to_cpu(sb->dev_number), 2279 uuid, 2280 sb->devflags, 2281 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2282 (unsigned long long)le64_to_cpu(sb->events), 2283 (unsigned long long)le64_to_cpu(sb->resync_offset), 2284 le32_to_cpu(sb->sb_csum), 2285 le32_to_cpu(sb->max_dev) 2286 ); 2287 } 2288 2289 static void print_rdev(struct md_rdev *rdev, int major_version) 2290 { 2291 char b[BDEVNAME_SIZE]; 2292 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2293 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2294 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2295 rdev->desc_nr); 2296 if (rdev->sb_loaded) { 2297 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2298 switch (major_version) { 2299 case 0: 2300 print_sb_90(page_address(rdev->sb_page)); 2301 break; 2302 case 1: 2303 print_sb_1(page_address(rdev->sb_page)); 2304 break; 2305 } 2306 } else 2307 printk(KERN_INFO "md: no rdev superblock!\n"); 2308 } 2309 2310 static void md_print_devices(void) 2311 { 2312 struct list_head *tmp; 2313 struct md_rdev *rdev; 2314 struct mddev *mddev; 2315 char b[BDEVNAME_SIZE]; 2316 2317 printk("\n"); 2318 printk("md: **********************************\n"); 2319 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2320 printk("md: **********************************\n"); 2321 for_each_mddev(mddev, tmp) { 2322 2323 if (mddev->bitmap) 2324 bitmap_print_sb(mddev->bitmap); 2325 else 2326 printk("%s: ", mdname(mddev)); 2327 rdev_for_each(rdev, mddev) 2328 printk("<%s>", bdevname(rdev->bdev,b)); 2329 printk("\n"); 2330 2331 rdev_for_each(rdev, mddev) 2332 print_rdev(rdev, mddev->major_version); 2333 } 2334 printk("md: **********************************\n"); 2335 printk("\n"); 2336 } 2337 2338 2339 static void sync_sbs(struct mddev * mddev, int nospares) 2340 { 2341 /* Update each superblock (in-memory image), but 2342 * if we are allowed to, skip spares which already 2343 * have the right event counter, or have one earlier 2344 * (which would mean they aren't being marked as dirty 2345 * with the rest of the array) 2346 */ 2347 struct md_rdev *rdev; 2348 rdev_for_each(rdev, mddev) { 2349 if (rdev->sb_events == mddev->events || 2350 (nospares && 2351 rdev->raid_disk < 0 && 2352 rdev->sb_events+1 == mddev->events)) { 2353 /* Don't update this superblock */ 2354 rdev->sb_loaded = 2; 2355 } else { 2356 sync_super(mddev, rdev); 2357 rdev->sb_loaded = 1; 2358 } 2359 } 2360 } 2361 2362 static void md_update_sb(struct mddev * mddev, int force_change) 2363 { 2364 struct md_rdev *rdev; 2365 int sync_req; 2366 int nospares = 0; 2367 int any_badblocks_changed = 0; 2368 2369 if (mddev->ro) { 2370 if (force_change) 2371 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2372 return; 2373 } 2374 repeat: 2375 /* First make sure individual recovery_offsets are correct */ 2376 rdev_for_each(rdev, mddev) { 2377 if (rdev->raid_disk >= 0 && 2378 mddev->delta_disks >= 0 && 2379 !test_bit(In_sync, &rdev->flags) && 2380 mddev->curr_resync_completed > rdev->recovery_offset) 2381 rdev->recovery_offset = mddev->curr_resync_completed; 2382 2383 } 2384 if (!mddev->persistent) { 2385 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2386 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2387 if (!mddev->external) { 2388 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2389 rdev_for_each(rdev, mddev) { 2390 if (rdev->badblocks.changed) { 2391 rdev->badblocks.changed = 0; 2392 md_ack_all_badblocks(&rdev->badblocks); 2393 md_error(mddev, rdev); 2394 } 2395 clear_bit(Blocked, &rdev->flags); 2396 clear_bit(BlockedBadBlocks, &rdev->flags); 2397 wake_up(&rdev->blocked_wait); 2398 } 2399 } 2400 wake_up(&mddev->sb_wait); 2401 return; 2402 } 2403 2404 spin_lock_irq(&mddev->write_lock); 2405 2406 mddev->utime = get_seconds(); 2407 2408 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2409 force_change = 1; 2410 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2411 /* just a clean<-> dirty transition, possibly leave spares alone, 2412 * though if events isn't the right even/odd, we will have to do 2413 * spares after all 2414 */ 2415 nospares = 1; 2416 if (force_change) 2417 nospares = 0; 2418 if (mddev->degraded) 2419 /* If the array is degraded, then skipping spares is both 2420 * dangerous and fairly pointless. 2421 * Dangerous because a device that was removed from the array 2422 * might have a event_count that still looks up-to-date, 2423 * so it can be re-added without a resync. 2424 * Pointless because if there are any spares to skip, 2425 * then a recovery will happen and soon that array won't 2426 * be degraded any more and the spare can go back to sleep then. 2427 */ 2428 nospares = 0; 2429 2430 sync_req = mddev->in_sync; 2431 2432 /* If this is just a dirty<->clean transition, and the array is clean 2433 * and 'events' is odd, we can roll back to the previous clean state */ 2434 if (nospares 2435 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2436 && mddev->can_decrease_events 2437 && mddev->events != 1) { 2438 mddev->events--; 2439 mddev->can_decrease_events = 0; 2440 } else { 2441 /* otherwise we have to go forward and ... */ 2442 mddev->events ++; 2443 mddev->can_decrease_events = nospares; 2444 } 2445 2446 if (!mddev->events) { 2447 /* 2448 * oops, this 64-bit counter should never wrap. 2449 * Either we are in around ~1 trillion A.C., assuming 2450 * 1 reboot per second, or we have a bug: 2451 */ 2452 MD_BUG(); 2453 mddev->events --; 2454 } 2455 2456 rdev_for_each(rdev, mddev) { 2457 if (rdev->badblocks.changed) 2458 any_badblocks_changed++; 2459 if (test_bit(Faulty, &rdev->flags)) 2460 set_bit(FaultRecorded, &rdev->flags); 2461 } 2462 2463 sync_sbs(mddev, nospares); 2464 spin_unlock_irq(&mddev->write_lock); 2465 2466 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2467 mdname(mddev), mddev->in_sync); 2468 2469 bitmap_update_sb(mddev->bitmap); 2470 rdev_for_each(rdev, mddev) { 2471 char b[BDEVNAME_SIZE]; 2472 2473 if (rdev->sb_loaded != 1) 2474 continue; /* no noise on spare devices */ 2475 2476 if (!test_bit(Faulty, &rdev->flags) && 2477 rdev->saved_raid_disk == -1) { 2478 md_super_write(mddev,rdev, 2479 rdev->sb_start, rdev->sb_size, 2480 rdev->sb_page); 2481 pr_debug("md: (write) %s's sb offset: %llu\n", 2482 bdevname(rdev->bdev, b), 2483 (unsigned long long)rdev->sb_start); 2484 rdev->sb_events = mddev->events; 2485 if (rdev->badblocks.size) { 2486 md_super_write(mddev, rdev, 2487 rdev->badblocks.sector, 2488 rdev->badblocks.size << 9, 2489 rdev->bb_page); 2490 rdev->badblocks.size = 0; 2491 } 2492 2493 } else if (test_bit(Faulty, &rdev->flags)) 2494 pr_debug("md: %s (skipping faulty)\n", 2495 bdevname(rdev->bdev, b)); 2496 else 2497 pr_debug("(skipping incremental s/r "); 2498 2499 if (mddev->level == LEVEL_MULTIPATH) 2500 /* only need to write one superblock... */ 2501 break; 2502 } 2503 md_super_wait(mddev); 2504 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2505 2506 spin_lock_irq(&mddev->write_lock); 2507 if (mddev->in_sync != sync_req || 2508 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2509 /* have to write it out again */ 2510 spin_unlock_irq(&mddev->write_lock); 2511 goto repeat; 2512 } 2513 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2514 spin_unlock_irq(&mddev->write_lock); 2515 wake_up(&mddev->sb_wait); 2516 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2517 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2518 2519 rdev_for_each(rdev, mddev) { 2520 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2521 clear_bit(Blocked, &rdev->flags); 2522 2523 if (any_badblocks_changed) 2524 md_ack_all_badblocks(&rdev->badblocks); 2525 clear_bit(BlockedBadBlocks, &rdev->flags); 2526 wake_up(&rdev->blocked_wait); 2527 } 2528 } 2529 2530 /* words written to sysfs files may, or may not, be \n terminated. 2531 * We want to accept with case. For this we use cmd_match. 2532 */ 2533 static int cmd_match(const char *cmd, const char *str) 2534 { 2535 /* See if cmd, written into a sysfs file, matches 2536 * str. They must either be the same, or cmd can 2537 * have a trailing newline 2538 */ 2539 while (*cmd && *str && *cmd == *str) { 2540 cmd++; 2541 str++; 2542 } 2543 if (*cmd == '\n') 2544 cmd++; 2545 if (*str || *cmd) 2546 return 0; 2547 return 1; 2548 } 2549 2550 struct rdev_sysfs_entry { 2551 struct attribute attr; 2552 ssize_t (*show)(struct md_rdev *, char *); 2553 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2554 }; 2555 2556 static ssize_t 2557 state_show(struct md_rdev *rdev, char *page) 2558 { 2559 char *sep = ""; 2560 size_t len = 0; 2561 2562 if (test_bit(Faulty, &rdev->flags) || 2563 rdev->badblocks.unacked_exist) { 2564 len+= sprintf(page+len, "%sfaulty",sep); 2565 sep = ","; 2566 } 2567 if (test_bit(In_sync, &rdev->flags)) { 2568 len += sprintf(page+len, "%sin_sync",sep); 2569 sep = ","; 2570 } 2571 if (test_bit(WriteMostly, &rdev->flags)) { 2572 len += sprintf(page+len, "%swrite_mostly",sep); 2573 sep = ","; 2574 } 2575 if (test_bit(Blocked, &rdev->flags) || 2576 (rdev->badblocks.unacked_exist 2577 && !test_bit(Faulty, &rdev->flags))) { 2578 len += sprintf(page+len, "%sblocked", sep); 2579 sep = ","; 2580 } 2581 if (!test_bit(Faulty, &rdev->flags) && 2582 !test_bit(In_sync, &rdev->flags)) { 2583 len += sprintf(page+len, "%sspare", sep); 2584 sep = ","; 2585 } 2586 if (test_bit(WriteErrorSeen, &rdev->flags)) { 2587 len += sprintf(page+len, "%swrite_error", sep); 2588 sep = ","; 2589 } 2590 if (test_bit(WantReplacement, &rdev->flags)) { 2591 len += sprintf(page+len, "%swant_replacement", sep); 2592 sep = ","; 2593 } 2594 if (test_bit(Replacement, &rdev->flags)) { 2595 len += sprintf(page+len, "%sreplacement", sep); 2596 sep = ","; 2597 } 2598 2599 return len+sprintf(page+len, "\n"); 2600 } 2601 2602 static ssize_t 2603 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2604 { 2605 /* can write 2606 * faulty - simulates an error 2607 * remove - disconnects the device 2608 * writemostly - sets write_mostly 2609 * -writemostly - clears write_mostly 2610 * blocked - sets the Blocked flags 2611 * -blocked - clears the Blocked and possibly simulates an error 2612 * insync - sets Insync providing device isn't active 2613 * write_error - sets WriteErrorSeen 2614 * -write_error - clears WriteErrorSeen 2615 */ 2616 int err = -EINVAL; 2617 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2618 md_error(rdev->mddev, rdev); 2619 if (test_bit(Faulty, &rdev->flags)) 2620 err = 0; 2621 else 2622 err = -EBUSY; 2623 } else if (cmd_match(buf, "remove")) { 2624 if (rdev->raid_disk >= 0) 2625 err = -EBUSY; 2626 else { 2627 struct mddev *mddev = rdev->mddev; 2628 kick_rdev_from_array(rdev); 2629 if (mddev->pers) 2630 md_update_sb(mddev, 1); 2631 md_new_event(mddev); 2632 err = 0; 2633 } 2634 } else if (cmd_match(buf, "writemostly")) { 2635 set_bit(WriteMostly, &rdev->flags); 2636 err = 0; 2637 } else if (cmd_match(buf, "-writemostly")) { 2638 clear_bit(WriteMostly, &rdev->flags); 2639 err = 0; 2640 } else if (cmd_match(buf, "blocked")) { 2641 set_bit(Blocked, &rdev->flags); 2642 err = 0; 2643 } else if (cmd_match(buf, "-blocked")) { 2644 if (!test_bit(Faulty, &rdev->flags) && 2645 rdev->badblocks.unacked_exist) { 2646 /* metadata handler doesn't understand badblocks, 2647 * so we need to fail the device 2648 */ 2649 md_error(rdev->mddev, rdev); 2650 } 2651 clear_bit(Blocked, &rdev->flags); 2652 clear_bit(BlockedBadBlocks, &rdev->flags); 2653 wake_up(&rdev->blocked_wait); 2654 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2655 md_wakeup_thread(rdev->mddev->thread); 2656 2657 err = 0; 2658 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2659 set_bit(In_sync, &rdev->flags); 2660 err = 0; 2661 } else if (cmd_match(buf, "write_error")) { 2662 set_bit(WriteErrorSeen, &rdev->flags); 2663 err = 0; 2664 } else if (cmd_match(buf, "-write_error")) { 2665 clear_bit(WriteErrorSeen, &rdev->flags); 2666 err = 0; 2667 } else if (cmd_match(buf, "want_replacement")) { 2668 /* Any non-spare device that is not a replacement can 2669 * become want_replacement at any time, but we then need to 2670 * check if recovery is needed. 2671 */ 2672 if (rdev->raid_disk >= 0 && 2673 !test_bit(Replacement, &rdev->flags)) 2674 set_bit(WantReplacement, &rdev->flags); 2675 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2676 md_wakeup_thread(rdev->mddev->thread); 2677 err = 0; 2678 } else if (cmd_match(buf, "-want_replacement")) { 2679 /* Clearing 'want_replacement' is always allowed. 2680 * Once replacements starts it is too late though. 2681 */ 2682 err = 0; 2683 clear_bit(WantReplacement, &rdev->flags); 2684 } else if (cmd_match(buf, "replacement")) { 2685 /* Can only set a device as a replacement when array has not 2686 * yet been started. Once running, replacement is automatic 2687 * from spares, or by assigning 'slot'. 2688 */ 2689 if (rdev->mddev->pers) 2690 err = -EBUSY; 2691 else { 2692 set_bit(Replacement, &rdev->flags); 2693 err = 0; 2694 } 2695 } else if (cmd_match(buf, "-replacement")) { 2696 /* Similarly, can only clear Replacement before start */ 2697 if (rdev->mddev->pers) 2698 err = -EBUSY; 2699 else { 2700 clear_bit(Replacement, &rdev->flags); 2701 err = 0; 2702 } 2703 } 2704 if (!err) 2705 sysfs_notify_dirent_safe(rdev->sysfs_state); 2706 return err ? err : len; 2707 } 2708 static struct rdev_sysfs_entry rdev_state = 2709 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2710 2711 static ssize_t 2712 errors_show(struct md_rdev *rdev, char *page) 2713 { 2714 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2715 } 2716 2717 static ssize_t 2718 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2719 { 2720 char *e; 2721 unsigned long n = simple_strtoul(buf, &e, 10); 2722 if (*buf && (*e == 0 || *e == '\n')) { 2723 atomic_set(&rdev->corrected_errors, n); 2724 return len; 2725 } 2726 return -EINVAL; 2727 } 2728 static struct rdev_sysfs_entry rdev_errors = 2729 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2730 2731 static ssize_t 2732 slot_show(struct md_rdev *rdev, char *page) 2733 { 2734 if (rdev->raid_disk < 0) 2735 return sprintf(page, "none\n"); 2736 else 2737 return sprintf(page, "%d\n", rdev->raid_disk); 2738 } 2739 2740 static ssize_t 2741 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2742 { 2743 char *e; 2744 int err; 2745 int slot = simple_strtoul(buf, &e, 10); 2746 if (strncmp(buf, "none", 4)==0) 2747 slot = -1; 2748 else if (e==buf || (*e && *e!= '\n')) 2749 return -EINVAL; 2750 if (rdev->mddev->pers && slot == -1) { 2751 /* Setting 'slot' on an active array requires also 2752 * updating the 'rd%d' link, and communicating 2753 * with the personality with ->hot_*_disk. 2754 * For now we only support removing 2755 * failed/spare devices. This normally happens automatically, 2756 * but not when the metadata is externally managed. 2757 */ 2758 if (rdev->raid_disk == -1) 2759 return -EEXIST; 2760 /* personality does all needed checks */ 2761 if (rdev->mddev->pers->hot_remove_disk == NULL) 2762 return -EINVAL; 2763 clear_bit(Blocked, &rdev->flags); 2764 remove_and_add_spares(rdev->mddev, rdev); 2765 if (rdev->raid_disk >= 0) 2766 return -EBUSY; 2767 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2768 md_wakeup_thread(rdev->mddev->thread); 2769 } else if (rdev->mddev->pers) { 2770 /* Activating a spare .. or possibly reactivating 2771 * if we ever get bitmaps working here. 2772 */ 2773 2774 if (rdev->raid_disk != -1) 2775 return -EBUSY; 2776 2777 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2778 return -EBUSY; 2779 2780 if (rdev->mddev->pers->hot_add_disk == NULL) 2781 return -EINVAL; 2782 2783 if (slot >= rdev->mddev->raid_disks && 2784 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2785 return -ENOSPC; 2786 2787 rdev->raid_disk = slot; 2788 if (test_bit(In_sync, &rdev->flags)) 2789 rdev->saved_raid_disk = slot; 2790 else 2791 rdev->saved_raid_disk = -1; 2792 clear_bit(In_sync, &rdev->flags); 2793 err = rdev->mddev->pers-> 2794 hot_add_disk(rdev->mddev, rdev); 2795 if (err) { 2796 rdev->raid_disk = -1; 2797 return err; 2798 } else 2799 sysfs_notify_dirent_safe(rdev->sysfs_state); 2800 if (sysfs_link_rdev(rdev->mddev, rdev)) 2801 /* failure here is OK */; 2802 /* don't wakeup anyone, leave that to userspace. */ 2803 } else { 2804 if (slot >= rdev->mddev->raid_disks && 2805 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2806 return -ENOSPC; 2807 rdev->raid_disk = slot; 2808 /* assume it is working */ 2809 clear_bit(Faulty, &rdev->flags); 2810 clear_bit(WriteMostly, &rdev->flags); 2811 set_bit(In_sync, &rdev->flags); 2812 sysfs_notify_dirent_safe(rdev->sysfs_state); 2813 } 2814 return len; 2815 } 2816 2817 2818 static struct rdev_sysfs_entry rdev_slot = 2819 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2820 2821 static ssize_t 2822 offset_show(struct md_rdev *rdev, char *page) 2823 { 2824 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2825 } 2826 2827 static ssize_t 2828 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2829 { 2830 unsigned long long offset; 2831 if (kstrtoull(buf, 10, &offset) < 0) 2832 return -EINVAL; 2833 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2834 return -EBUSY; 2835 if (rdev->sectors && rdev->mddev->external) 2836 /* Must set offset before size, so overlap checks 2837 * can be sane */ 2838 return -EBUSY; 2839 rdev->data_offset = offset; 2840 rdev->new_data_offset = offset; 2841 return len; 2842 } 2843 2844 static struct rdev_sysfs_entry rdev_offset = 2845 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2846 2847 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2848 { 2849 return sprintf(page, "%llu\n", 2850 (unsigned long long)rdev->new_data_offset); 2851 } 2852 2853 static ssize_t new_offset_store(struct md_rdev *rdev, 2854 const char *buf, size_t len) 2855 { 2856 unsigned long long new_offset; 2857 struct mddev *mddev = rdev->mddev; 2858 2859 if (kstrtoull(buf, 10, &new_offset) < 0) 2860 return -EINVAL; 2861 2862 if (mddev->sync_thread) 2863 return -EBUSY; 2864 if (new_offset == rdev->data_offset) 2865 /* reset is always permitted */ 2866 ; 2867 else if (new_offset > rdev->data_offset) { 2868 /* must not push array size beyond rdev_sectors */ 2869 if (new_offset - rdev->data_offset 2870 + mddev->dev_sectors > rdev->sectors) 2871 return -E2BIG; 2872 } 2873 /* Metadata worries about other space details. */ 2874 2875 /* decreasing the offset is inconsistent with a backwards 2876 * reshape. 2877 */ 2878 if (new_offset < rdev->data_offset && 2879 mddev->reshape_backwards) 2880 return -EINVAL; 2881 /* Increasing offset is inconsistent with forwards 2882 * reshape. reshape_direction should be set to 2883 * 'backwards' first. 2884 */ 2885 if (new_offset > rdev->data_offset && 2886 !mddev->reshape_backwards) 2887 return -EINVAL; 2888 2889 if (mddev->pers && mddev->persistent && 2890 !super_types[mddev->major_version] 2891 .allow_new_offset(rdev, new_offset)) 2892 return -E2BIG; 2893 rdev->new_data_offset = new_offset; 2894 if (new_offset > rdev->data_offset) 2895 mddev->reshape_backwards = 1; 2896 else if (new_offset < rdev->data_offset) 2897 mddev->reshape_backwards = 0; 2898 2899 return len; 2900 } 2901 static struct rdev_sysfs_entry rdev_new_offset = 2902 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2903 2904 static ssize_t 2905 rdev_size_show(struct md_rdev *rdev, char *page) 2906 { 2907 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2908 } 2909 2910 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2911 { 2912 /* check if two start/length pairs overlap */ 2913 if (s1+l1 <= s2) 2914 return 0; 2915 if (s2+l2 <= s1) 2916 return 0; 2917 return 1; 2918 } 2919 2920 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2921 { 2922 unsigned long long blocks; 2923 sector_t new; 2924 2925 if (kstrtoull(buf, 10, &blocks) < 0) 2926 return -EINVAL; 2927 2928 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2929 return -EINVAL; /* sector conversion overflow */ 2930 2931 new = blocks * 2; 2932 if (new != blocks * 2) 2933 return -EINVAL; /* unsigned long long to sector_t overflow */ 2934 2935 *sectors = new; 2936 return 0; 2937 } 2938 2939 static ssize_t 2940 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2941 { 2942 struct mddev *my_mddev = rdev->mddev; 2943 sector_t oldsectors = rdev->sectors; 2944 sector_t sectors; 2945 2946 if (strict_blocks_to_sectors(buf, §ors) < 0) 2947 return -EINVAL; 2948 if (rdev->data_offset != rdev->new_data_offset) 2949 return -EINVAL; /* too confusing */ 2950 if (my_mddev->pers && rdev->raid_disk >= 0) { 2951 if (my_mddev->persistent) { 2952 sectors = super_types[my_mddev->major_version]. 2953 rdev_size_change(rdev, sectors); 2954 if (!sectors) 2955 return -EBUSY; 2956 } else if (!sectors) 2957 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2958 rdev->data_offset; 2959 if (!my_mddev->pers->resize) 2960 /* Cannot change size for RAID0 or Linear etc */ 2961 return -EINVAL; 2962 } 2963 if (sectors < my_mddev->dev_sectors) 2964 return -EINVAL; /* component must fit device */ 2965 2966 rdev->sectors = sectors; 2967 if (sectors > oldsectors && my_mddev->external) { 2968 /* need to check that all other rdevs with the same ->bdev 2969 * do not overlap. We need to unlock the mddev to avoid 2970 * a deadlock. We have already changed rdev->sectors, and if 2971 * we have to change it back, we will have the lock again. 2972 */ 2973 struct mddev *mddev; 2974 int overlap = 0; 2975 struct list_head *tmp; 2976 2977 mddev_unlock(my_mddev); 2978 for_each_mddev(mddev, tmp) { 2979 struct md_rdev *rdev2; 2980 2981 mddev_lock(mddev); 2982 rdev_for_each(rdev2, mddev) 2983 if (rdev->bdev == rdev2->bdev && 2984 rdev != rdev2 && 2985 overlaps(rdev->data_offset, rdev->sectors, 2986 rdev2->data_offset, 2987 rdev2->sectors)) { 2988 overlap = 1; 2989 break; 2990 } 2991 mddev_unlock(mddev); 2992 if (overlap) { 2993 mddev_put(mddev); 2994 break; 2995 } 2996 } 2997 mddev_lock(my_mddev); 2998 if (overlap) { 2999 /* Someone else could have slipped in a size 3000 * change here, but doing so is just silly. 3001 * We put oldsectors back because we *know* it is 3002 * safe, and trust userspace not to race with 3003 * itself 3004 */ 3005 rdev->sectors = oldsectors; 3006 return -EBUSY; 3007 } 3008 } 3009 return len; 3010 } 3011 3012 static struct rdev_sysfs_entry rdev_size = 3013 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3014 3015 3016 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3017 { 3018 unsigned long long recovery_start = rdev->recovery_offset; 3019 3020 if (test_bit(In_sync, &rdev->flags) || 3021 recovery_start == MaxSector) 3022 return sprintf(page, "none\n"); 3023 3024 return sprintf(page, "%llu\n", recovery_start); 3025 } 3026 3027 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3028 { 3029 unsigned long long recovery_start; 3030 3031 if (cmd_match(buf, "none")) 3032 recovery_start = MaxSector; 3033 else if (kstrtoull(buf, 10, &recovery_start)) 3034 return -EINVAL; 3035 3036 if (rdev->mddev->pers && 3037 rdev->raid_disk >= 0) 3038 return -EBUSY; 3039 3040 rdev->recovery_offset = recovery_start; 3041 if (recovery_start == MaxSector) 3042 set_bit(In_sync, &rdev->flags); 3043 else 3044 clear_bit(In_sync, &rdev->flags); 3045 return len; 3046 } 3047 3048 static struct rdev_sysfs_entry rdev_recovery_start = 3049 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3050 3051 3052 static ssize_t 3053 badblocks_show(struct badblocks *bb, char *page, int unack); 3054 static ssize_t 3055 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 3056 3057 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3058 { 3059 return badblocks_show(&rdev->badblocks, page, 0); 3060 } 3061 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3062 { 3063 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3064 /* Maybe that ack was all we needed */ 3065 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3066 wake_up(&rdev->blocked_wait); 3067 return rv; 3068 } 3069 static struct rdev_sysfs_entry rdev_bad_blocks = 3070 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3071 3072 3073 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3074 { 3075 return badblocks_show(&rdev->badblocks, page, 1); 3076 } 3077 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3078 { 3079 return badblocks_store(&rdev->badblocks, page, len, 1); 3080 } 3081 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3082 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3083 3084 static struct attribute *rdev_default_attrs[] = { 3085 &rdev_state.attr, 3086 &rdev_errors.attr, 3087 &rdev_slot.attr, 3088 &rdev_offset.attr, 3089 &rdev_new_offset.attr, 3090 &rdev_size.attr, 3091 &rdev_recovery_start.attr, 3092 &rdev_bad_blocks.attr, 3093 &rdev_unack_bad_blocks.attr, 3094 NULL, 3095 }; 3096 static ssize_t 3097 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3098 { 3099 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3100 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3101 struct mddev *mddev = rdev->mddev; 3102 ssize_t rv; 3103 3104 if (!entry->show) 3105 return -EIO; 3106 3107 rv = mddev ? mddev_lock(mddev) : -EBUSY; 3108 if (!rv) { 3109 if (rdev->mddev == NULL) 3110 rv = -EBUSY; 3111 else 3112 rv = entry->show(rdev, page); 3113 mddev_unlock(mddev); 3114 } 3115 return rv; 3116 } 3117 3118 static ssize_t 3119 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3120 const char *page, size_t length) 3121 { 3122 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3123 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3124 ssize_t rv; 3125 struct mddev *mddev = rdev->mddev; 3126 3127 if (!entry->store) 3128 return -EIO; 3129 if (!capable(CAP_SYS_ADMIN)) 3130 return -EACCES; 3131 rv = mddev ? mddev_lock(mddev): -EBUSY; 3132 if (!rv) { 3133 if (rdev->mddev == NULL) 3134 rv = -EBUSY; 3135 else 3136 rv = entry->store(rdev, page, length); 3137 mddev_unlock(mddev); 3138 } 3139 return rv; 3140 } 3141 3142 static void rdev_free(struct kobject *ko) 3143 { 3144 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3145 kfree(rdev); 3146 } 3147 static const struct sysfs_ops rdev_sysfs_ops = { 3148 .show = rdev_attr_show, 3149 .store = rdev_attr_store, 3150 }; 3151 static struct kobj_type rdev_ktype = { 3152 .release = rdev_free, 3153 .sysfs_ops = &rdev_sysfs_ops, 3154 .default_attrs = rdev_default_attrs, 3155 }; 3156 3157 int md_rdev_init(struct md_rdev *rdev) 3158 { 3159 rdev->desc_nr = -1; 3160 rdev->saved_raid_disk = -1; 3161 rdev->raid_disk = -1; 3162 rdev->flags = 0; 3163 rdev->data_offset = 0; 3164 rdev->new_data_offset = 0; 3165 rdev->sb_events = 0; 3166 rdev->last_read_error.tv_sec = 0; 3167 rdev->last_read_error.tv_nsec = 0; 3168 rdev->sb_loaded = 0; 3169 rdev->bb_page = NULL; 3170 atomic_set(&rdev->nr_pending, 0); 3171 atomic_set(&rdev->read_errors, 0); 3172 atomic_set(&rdev->corrected_errors, 0); 3173 3174 INIT_LIST_HEAD(&rdev->same_set); 3175 init_waitqueue_head(&rdev->blocked_wait); 3176 3177 /* Add space to store bad block list. 3178 * This reserves the space even on arrays where it cannot 3179 * be used - I wonder if that matters 3180 */ 3181 rdev->badblocks.count = 0; 3182 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */ 3183 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3184 seqlock_init(&rdev->badblocks.lock); 3185 if (rdev->badblocks.page == NULL) 3186 return -ENOMEM; 3187 3188 return 0; 3189 } 3190 EXPORT_SYMBOL_GPL(md_rdev_init); 3191 /* 3192 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3193 * 3194 * mark the device faulty if: 3195 * 3196 * - the device is nonexistent (zero size) 3197 * - the device has no valid superblock 3198 * 3199 * a faulty rdev _never_ has rdev->sb set. 3200 */ 3201 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3202 { 3203 char b[BDEVNAME_SIZE]; 3204 int err; 3205 struct md_rdev *rdev; 3206 sector_t size; 3207 3208 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3209 if (!rdev) { 3210 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3211 return ERR_PTR(-ENOMEM); 3212 } 3213 3214 err = md_rdev_init(rdev); 3215 if (err) 3216 goto abort_free; 3217 err = alloc_disk_sb(rdev); 3218 if (err) 3219 goto abort_free; 3220 3221 err = lock_rdev(rdev, newdev, super_format == -2); 3222 if (err) 3223 goto abort_free; 3224 3225 kobject_init(&rdev->kobj, &rdev_ktype); 3226 3227 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3228 if (!size) { 3229 printk(KERN_WARNING 3230 "md: %s has zero or unknown size, marking faulty!\n", 3231 bdevname(rdev->bdev,b)); 3232 err = -EINVAL; 3233 goto abort_free; 3234 } 3235 3236 if (super_format >= 0) { 3237 err = super_types[super_format]. 3238 load_super(rdev, NULL, super_minor); 3239 if (err == -EINVAL) { 3240 printk(KERN_WARNING 3241 "md: %s does not have a valid v%d.%d " 3242 "superblock, not importing!\n", 3243 bdevname(rdev->bdev,b), 3244 super_format, super_minor); 3245 goto abort_free; 3246 } 3247 if (err < 0) { 3248 printk(KERN_WARNING 3249 "md: could not read %s's sb, not importing!\n", 3250 bdevname(rdev->bdev,b)); 3251 goto abort_free; 3252 } 3253 } 3254 3255 return rdev; 3256 3257 abort_free: 3258 if (rdev->bdev) 3259 unlock_rdev(rdev); 3260 md_rdev_clear(rdev); 3261 kfree(rdev); 3262 return ERR_PTR(err); 3263 } 3264 3265 /* 3266 * Check a full RAID array for plausibility 3267 */ 3268 3269 3270 static void analyze_sbs(struct mddev * mddev) 3271 { 3272 int i; 3273 struct md_rdev *rdev, *freshest, *tmp; 3274 char b[BDEVNAME_SIZE]; 3275 3276 freshest = NULL; 3277 rdev_for_each_safe(rdev, tmp, mddev) 3278 switch (super_types[mddev->major_version]. 3279 load_super(rdev, freshest, mddev->minor_version)) { 3280 case 1: 3281 freshest = rdev; 3282 break; 3283 case 0: 3284 break; 3285 default: 3286 printk( KERN_ERR \ 3287 "md: fatal superblock inconsistency in %s" 3288 " -- removing from array\n", 3289 bdevname(rdev->bdev,b)); 3290 kick_rdev_from_array(rdev); 3291 } 3292 3293 3294 super_types[mddev->major_version]. 3295 validate_super(mddev, freshest); 3296 3297 i = 0; 3298 rdev_for_each_safe(rdev, tmp, mddev) { 3299 if (mddev->max_disks && 3300 (rdev->desc_nr >= mddev->max_disks || 3301 i > mddev->max_disks)) { 3302 printk(KERN_WARNING 3303 "md: %s: %s: only %d devices permitted\n", 3304 mdname(mddev), bdevname(rdev->bdev, b), 3305 mddev->max_disks); 3306 kick_rdev_from_array(rdev); 3307 continue; 3308 } 3309 if (rdev != freshest) 3310 if (super_types[mddev->major_version]. 3311 validate_super(mddev, rdev)) { 3312 printk(KERN_WARNING "md: kicking non-fresh %s" 3313 " from array!\n", 3314 bdevname(rdev->bdev,b)); 3315 kick_rdev_from_array(rdev); 3316 continue; 3317 } 3318 if (mddev->level == LEVEL_MULTIPATH) { 3319 rdev->desc_nr = i++; 3320 rdev->raid_disk = rdev->desc_nr; 3321 set_bit(In_sync, &rdev->flags); 3322 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3323 rdev->raid_disk = -1; 3324 clear_bit(In_sync, &rdev->flags); 3325 } 3326 } 3327 } 3328 3329 /* Read a fixed-point number. 3330 * Numbers in sysfs attributes should be in "standard" units where 3331 * possible, so time should be in seconds. 3332 * However we internally use a a much smaller unit such as 3333 * milliseconds or jiffies. 3334 * This function takes a decimal number with a possible fractional 3335 * component, and produces an integer which is the result of 3336 * multiplying that number by 10^'scale'. 3337 * all without any floating-point arithmetic. 3338 */ 3339 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3340 { 3341 unsigned long result = 0; 3342 long decimals = -1; 3343 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3344 if (*cp == '.') 3345 decimals = 0; 3346 else if (decimals < scale) { 3347 unsigned int value; 3348 value = *cp - '0'; 3349 result = result * 10 + value; 3350 if (decimals >= 0) 3351 decimals++; 3352 } 3353 cp++; 3354 } 3355 if (*cp == '\n') 3356 cp++; 3357 if (*cp) 3358 return -EINVAL; 3359 if (decimals < 0) 3360 decimals = 0; 3361 while (decimals < scale) { 3362 result *= 10; 3363 decimals ++; 3364 } 3365 *res = result; 3366 return 0; 3367 } 3368 3369 3370 static void md_safemode_timeout(unsigned long data); 3371 3372 static ssize_t 3373 safe_delay_show(struct mddev *mddev, char *page) 3374 { 3375 int msec = (mddev->safemode_delay*1000)/HZ; 3376 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3377 } 3378 static ssize_t 3379 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3380 { 3381 unsigned long msec; 3382 3383 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3384 return -EINVAL; 3385 if (msec == 0) 3386 mddev->safemode_delay = 0; 3387 else { 3388 unsigned long old_delay = mddev->safemode_delay; 3389 mddev->safemode_delay = (msec*HZ)/1000; 3390 if (mddev->safemode_delay == 0) 3391 mddev->safemode_delay = 1; 3392 if (mddev->safemode_delay < old_delay || old_delay == 0) 3393 md_safemode_timeout((unsigned long)mddev); 3394 } 3395 return len; 3396 } 3397 static struct md_sysfs_entry md_safe_delay = 3398 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3399 3400 static ssize_t 3401 level_show(struct mddev *mddev, char *page) 3402 { 3403 struct md_personality *p = mddev->pers; 3404 if (p) 3405 return sprintf(page, "%s\n", p->name); 3406 else if (mddev->clevel[0]) 3407 return sprintf(page, "%s\n", mddev->clevel); 3408 else if (mddev->level != LEVEL_NONE) 3409 return sprintf(page, "%d\n", mddev->level); 3410 else 3411 return 0; 3412 } 3413 3414 static ssize_t 3415 level_store(struct mddev *mddev, const char *buf, size_t len) 3416 { 3417 char clevel[16]; 3418 ssize_t rv = len; 3419 struct md_personality *pers; 3420 long level; 3421 void *priv; 3422 struct md_rdev *rdev; 3423 3424 if (mddev->pers == NULL) { 3425 if (len == 0) 3426 return 0; 3427 if (len >= sizeof(mddev->clevel)) 3428 return -ENOSPC; 3429 strncpy(mddev->clevel, buf, len); 3430 if (mddev->clevel[len-1] == '\n') 3431 len--; 3432 mddev->clevel[len] = 0; 3433 mddev->level = LEVEL_NONE; 3434 return rv; 3435 } 3436 3437 /* request to change the personality. Need to ensure: 3438 * - array is not engaged in resync/recovery/reshape 3439 * - old personality can be suspended 3440 * - new personality will access other array. 3441 */ 3442 3443 if (mddev->sync_thread || 3444 mddev->reshape_position != MaxSector || 3445 mddev->sysfs_active) 3446 return -EBUSY; 3447 3448 if (!mddev->pers->quiesce) { 3449 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3450 mdname(mddev), mddev->pers->name); 3451 return -EINVAL; 3452 } 3453 3454 /* Now find the new personality */ 3455 if (len == 0 || len >= sizeof(clevel)) 3456 return -EINVAL; 3457 strncpy(clevel, buf, len); 3458 if (clevel[len-1] == '\n') 3459 len--; 3460 clevel[len] = 0; 3461 if (kstrtol(clevel, 10, &level)) 3462 level = LEVEL_NONE; 3463 3464 if (request_module("md-%s", clevel) != 0) 3465 request_module("md-level-%s", clevel); 3466 spin_lock(&pers_lock); 3467 pers = find_pers(level, clevel); 3468 if (!pers || !try_module_get(pers->owner)) { 3469 spin_unlock(&pers_lock); 3470 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3471 return -EINVAL; 3472 } 3473 spin_unlock(&pers_lock); 3474 3475 if (pers == mddev->pers) { 3476 /* Nothing to do! */ 3477 module_put(pers->owner); 3478 return rv; 3479 } 3480 if (!pers->takeover) { 3481 module_put(pers->owner); 3482 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3483 mdname(mddev), clevel); 3484 return -EINVAL; 3485 } 3486 3487 rdev_for_each(rdev, mddev) 3488 rdev->new_raid_disk = rdev->raid_disk; 3489 3490 /* ->takeover must set new_* and/or delta_disks 3491 * if it succeeds, and may set them when it fails. 3492 */ 3493 priv = pers->takeover(mddev); 3494 if (IS_ERR(priv)) { 3495 mddev->new_level = mddev->level; 3496 mddev->new_layout = mddev->layout; 3497 mddev->new_chunk_sectors = mddev->chunk_sectors; 3498 mddev->raid_disks -= mddev->delta_disks; 3499 mddev->delta_disks = 0; 3500 mddev->reshape_backwards = 0; 3501 module_put(pers->owner); 3502 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3503 mdname(mddev), clevel); 3504 return PTR_ERR(priv); 3505 } 3506 3507 /* Looks like we have a winner */ 3508 mddev_suspend(mddev); 3509 mddev->pers->stop(mddev); 3510 3511 if (mddev->pers->sync_request == NULL && 3512 pers->sync_request != NULL) { 3513 /* need to add the md_redundancy_group */ 3514 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3515 printk(KERN_WARNING 3516 "md: cannot register extra attributes for %s\n", 3517 mdname(mddev)); 3518 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3519 } 3520 if (mddev->pers->sync_request != NULL && 3521 pers->sync_request == NULL) { 3522 /* need to remove the md_redundancy_group */ 3523 if (mddev->to_remove == NULL) 3524 mddev->to_remove = &md_redundancy_group; 3525 } 3526 3527 if (mddev->pers->sync_request == NULL && 3528 mddev->external) { 3529 /* We are converting from a no-redundancy array 3530 * to a redundancy array and metadata is managed 3531 * externally so we need to be sure that writes 3532 * won't block due to a need to transition 3533 * clean->dirty 3534 * until external management is started. 3535 */ 3536 mddev->in_sync = 0; 3537 mddev->safemode_delay = 0; 3538 mddev->safemode = 0; 3539 } 3540 3541 rdev_for_each(rdev, mddev) { 3542 if (rdev->raid_disk < 0) 3543 continue; 3544 if (rdev->new_raid_disk >= mddev->raid_disks) 3545 rdev->new_raid_disk = -1; 3546 if (rdev->new_raid_disk == rdev->raid_disk) 3547 continue; 3548 sysfs_unlink_rdev(mddev, rdev); 3549 } 3550 rdev_for_each(rdev, mddev) { 3551 if (rdev->raid_disk < 0) 3552 continue; 3553 if (rdev->new_raid_disk == rdev->raid_disk) 3554 continue; 3555 rdev->raid_disk = rdev->new_raid_disk; 3556 if (rdev->raid_disk < 0) 3557 clear_bit(In_sync, &rdev->flags); 3558 else { 3559 if (sysfs_link_rdev(mddev, rdev)) 3560 printk(KERN_WARNING "md: cannot register rd%d" 3561 " for %s after level change\n", 3562 rdev->raid_disk, mdname(mddev)); 3563 } 3564 } 3565 3566 module_put(mddev->pers->owner); 3567 mddev->pers = pers; 3568 mddev->private = priv; 3569 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3570 mddev->level = mddev->new_level; 3571 mddev->layout = mddev->new_layout; 3572 mddev->chunk_sectors = mddev->new_chunk_sectors; 3573 mddev->delta_disks = 0; 3574 mddev->reshape_backwards = 0; 3575 mddev->degraded = 0; 3576 if (mddev->pers->sync_request == NULL) { 3577 /* this is now an array without redundancy, so 3578 * it must always be in_sync 3579 */ 3580 mddev->in_sync = 1; 3581 del_timer_sync(&mddev->safemode_timer); 3582 } 3583 pers->run(mddev); 3584 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3585 mddev_resume(mddev); 3586 sysfs_notify(&mddev->kobj, NULL, "level"); 3587 md_new_event(mddev); 3588 return rv; 3589 } 3590 3591 static struct md_sysfs_entry md_level = 3592 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3593 3594 3595 static ssize_t 3596 layout_show(struct mddev *mddev, char *page) 3597 { 3598 /* just a number, not meaningful for all levels */ 3599 if (mddev->reshape_position != MaxSector && 3600 mddev->layout != mddev->new_layout) 3601 return sprintf(page, "%d (%d)\n", 3602 mddev->new_layout, mddev->layout); 3603 return sprintf(page, "%d\n", mddev->layout); 3604 } 3605 3606 static ssize_t 3607 layout_store(struct mddev *mddev, const char *buf, size_t len) 3608 { 3609 char *e; 3610 unsigned long n = simple_strtoul(buf, &e, 10); 3611 3612 if (!*buf || (*e && *e != '\n')) 3613 return -EINVAL; 3614 3615 if (mddev->pers) { 3616 int err; 3617 if (mddev->pers->check_reshape == NULL) 3618 return -EBUSY; 3619 mddev->new_layout = n; 3620 err = mddev->pers->check_reshape(mddev); 3621 if (err) { 3622 mddev->new_layout = mddev->layout; 3623 return err; 3624 } 3625 } else { 3626 mddev->new_layout = n; 3627 if (mddev->reshape_position == MaxSector) 3628 mddev->layout = n; 3629 } 3630 return len; 3631 } 3632 static struct md_sysfs_entry md_layout = 3633 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3634 3635 3636 static ssize_t 3637 raid_disks_show(struct mddev *mddev, char *page) 3638 { 3639 if (mddev->raid_disks == 0) 3640 return 0; 3641 if (mddev->reshape_position != MaxSector && 3642 mddev->delta_disks != 0) 3643 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3644 mddev->raid_disks - mddev->delta_disks); 3645 return sprintf(page, "%d\n", mddev->raid_disks); 3646 } 3647 3648 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3649 3650 static ssize_t 3651 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3652 { 3653 char *e; 3654 int rv = 0; 3655 unsigned long n = simple_strtoul(buf, &e, 10); 3656 3657 if (!*buf || (*e && *e != '\n')) 3658 return -EINVAL; 3659 3660 if (mddev->pers) 3661 rv = update_raid_disks(mddev, n); 3662 else if (mddev->reshape_position != MaxSector) { 3663 struct md_rdev *rdev; 3664 int olddisks = mddev->raid_disks - mddev->delta_disks; 3665 3666 rdev_for_each(rdev, mddev) { 3667 if (olddisks < n && 3668 rdev->data_offset < rdev->new_data_offset) 3669 return -EINVAL; 3670 if (olddisks > n && 3671 rdev->data_offset > rdev->new_data_offset) 3672 return -EINVAL; 3673 } 3674 mddev->delta_disks = n - olddisks; 3675 mddev->raid_disks = n; 3676 mddev->reshape_backwards = (mddev->delta_disks < 0); 3677 } else 3678 mddev->raid_disks = n; 3679 return rv ? rv : len; 3680 } 3681 static struct md_sysfs_entry md_raid_disks = 3682 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3683 3684 static ssize_t 3685 chunk_size_show(struct mddev *mddev, char *page) 3686 { 3687 if (mddev->reshape_position != MaxSector && 3688 mddev->chunk_sectors != mddev->new_chunk_sectors) 3689 return sprintf(page, "%d (%d)\n", 3690 mddev->new_chunk_sectors << 9, 3691 mddev->chunk_sectors << 9); 3692 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3693 } 3694 3695 static ssize_t 3696 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3697 { 3698 char *e; 3699 unsigned long n = simple_strtoul(buf, &e, 10); 3700 3701 if (!*buf || (*e && *e != '\n')) 3702 return -EINVAL; 3703 3704 if (mddev->pers) { 3705 int err; 3706 if (mddev->pers->check_reshape == NULL) 3707 return -EBUSY; 3708 mddev->new_chunk_sectors = n >> 9; 3709 err = mddev->pers->check_reshape(mddev); 3710 if (err) { 3711 mddev->new_chunk_sectors = mddev->chunk_sectors; 3712 return err; 3713 } 3714 } else { 3715 mddev->new_chunk_sectors = n >> 9; 3716 if (mddev->reshape_position == MaxSector) 3717 mddev->chunk_sectors = n >> 9; 3718 } 3719 return len; 3720 } 3721 static struct md_sysfs_entry md_chunk_size = 3722 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3723 3724 static ssize_t 3725 resync_start_show(struct mddev *mddev, char *page) 3726 { 3727 if (mddev->recovery_cp == MaxSector) 3728 return sprintf(page, "none\n"); 3729 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3730 } 3731 3732 static ssize_t 3733 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3734 { 3735 char *e; 3736 unsigned long long n = simple_strtoull(buf, &e, 10); 3737 3738 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3739 return -EBUSY; 3740 if (cmd_match(buf, "none")) 3741 n = MaxSector; 3742 else if (!*buf || (*e && *e != '\n')) 3743 return -EINVAL; 3744 3745 mddev->recovery_cp = n; 3746 if (mddev->pers) 3747 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3748 return len; 3749 } 3750 static struct md_sysfs_entry md_resync_start = 3751 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3752 3753 /* 3754 * The array state can be: 3755 * 3756 * clear 3757 * No devices, no size, no level 3758 * Equivalent to STOP_ARRAY ioctl 3759 * inactive 3760 * May have some settings, but array is not active 3761 * all IO results in error 3762 * When written, doesn't tear down array, but just stops it 3763 * suspended (not supported yet) 3764 * All IO requests will block. The array can be reconfigured. 3765 * Writing this, if accepted, will block until array is quiescent 3766 * readonly 3767 * no resync can happen. no superblocks get written. 3768 * write requests fail 3769 * read-auto 3770 * like readonly, but behaves like 'clean' on a write request. 3771 * 3772 * clean - no pending writes, but otherwise active. 3773 * When written to inactive array, starts without resync 3774 * If a write request arrives then 3775 * if metadata is known, mark 'dirty' and switch to 'active'. 3776 * if not known, block and switch to write-pending 3777 * If written to an active array that has pending writes, then fails. 3778 * active 3779 * fully active: IO and resync can be happening. 3780 * When written to inactive array, starts with resync 3781 * 3782 * write-pending 3783 * clean, but writes are blocked waiting for 'active' to be written. 3784 * 3785 * active-idle 3786 * like active, but no writes have been seen for a while (100msec). 3787 * 3788 */ 3789 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3790 write_pending, active_idle, bad_word}; 3791 static char *array_states[] = { 3792 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3793 "write-pending", "active-idle", NULL }; 3794 3795 static int match_word(const char *word, char **list) 3796 { 3797 int n; 3798 for (n=0; list[n]; n++) 3799 if (cmd_match(word, list[n])) 3800 break; 3801 return n; 3802 } 3803 3804 static ssize_t 3805 array_state_show(struct mddev *mddev, char *page) 3806 { 3807 enum array_state st = inactive; 3808 3809 if (mddev->pers) 3810 switch(mddev->ro) { 3811 case 1: 3812 st = readonly; 3813 break; 3814 case 2: 3815 st = read_auto; 3816 break; 3817 case 0: 3818 if (mddev->in_sync) 3819 st = clean; 3820 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3821 st = write_pending; 3822 else if (mddev->safemode) 3823 st = active_idle; 3824 else 3825 st = active; 3826 } 3827 else { 3828 if (list_empty(&mddev->disks) && 3829 mddev->raid_disks == 0 && 3830 mddev->dev_sectors == 0) 3831 st = clear; 3832 else 3833 st = inactive; 3834 } 3835 return sprintf(page, "%s\n", array_states[st]); 3836 } 3837 3838 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev); 3839 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev); 3840 static int do_md_run(struct mddev * mddev); 3841 static int restart_array(struct mddev *mddev); 3842 3843 static ssize_t 3844 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3845 { 3846 int err = -EINVAL; 3847 enum array_state st = match_word(buf, array_states); 3848 switch(st) { 3849 case bad_word: 3850 break; 3851 case clear: 3852 /* stopping an active array */ 3853 err = do_md_stop(mddev, 0, NULL); 3854 break; 3855 case inactive: 3856 /* stopping an active array */ 3857 if (mddev->pers) 3858 err = do_md_stop(mddev, 2, NULL); 3859 else 3860 err = 0; /* already inactive */ 3861 break; 3862 case suspended: 3863 break; /* not supported yet */ 3864 case readonly: 3865 if (mddev->pers) 3866 err = md_set_readonly(mddev, NULL); 3867 else { 3868 mddev->ro = 1; 3869 set_disk_ro(mddev->gendisk, 1); 3870 err = do_md_run(mddev); 3871 } 3872 break; 3873 case read_auto: 3874 if (mddev->pers) { 3875 if (mddev->ro == 0) 3876 err = md_set_readonly(mddev, NULL); 3877 else if (mddev->ro == 1) 3878 err = restart_array(mddev); 3879 if (err == 0) { 3880 mddev->ro = 2; 3881 set_disk_ro(mddev->gendisk, 0); 3882 } 3883 } else { 3884 mddev->ro = 2; 3885 err = do_md_run(mddev); 3886 } 3887 break; 3888 case clean: 3889 if (mddev->pers) { 3890 restart_array(mddev); 3891 spin_lock_irq(&mddev->write_lock); 3892 if (atomic_read(&mddev->writes_pending) == 0) { 3893 if (mddev->in_sync == 0) { 3894 mddev->in_sync = 1; 3895 if (mddev->safemode == 1) 3896 mddev->safemode = 0; 3897 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3898 } 3899 err = 0; 3900 } else 3901 err = -EBUSY; 3902 spin_unlock_irq(&mddev->write_lock); 3903 } else 3904 err = -EINVAL; 3905 break; 3906 case active: 3907 if (mddev->pers) { 3908 restart_array(mddev); 3909 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3910 wake_up(&mddev->sb_wait); 3911 err = 0; 3912 } else { 3913 mddev->ro = 0; 3914 set_disk_ro(mddev->gendisk, 0); 3915 err = do_md_run(mddev); 3916 } 3917 break; 3918 case write_pending: 3919 case active_idle: 3920 /* these cannot be set */ 3921 break; 3922 } 3923 if (err) 3924 return err; 3925 else { 3926 if (mddev->hold_active == UNTIL_IOCTL) 3927 mddev->hold_active = 0; 3928 sysfs_notify_dirent_safe(mddev->sysfs_state); 3929 return len; 3930 } 3931 } 3932 static struct md_sysfs_entry md_array_state = 3933 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3934 3935 static ssize_t 3936 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 3937 return sprintf(page, "%d\n", 3938 atomic_read(&mddev->max_corr_read_errors)); 3939 } 3940 3941 static ssize_t 3942 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 3943 { 3944 char *e; 3945 unsigned long n = simple_strtoul(buf, &e, 10); 3946 3947 if (*buf && (*e == 0 || *e == '\n')) { 3948 atomic_set(&mddev->max_corr_read_errors, n); 3949 return len; 3950 } 3951 return -EINVAL; 3952 } 3953 3954 static struct md_sysfs_entry max_corr_read_errors = 3955 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3956 max_corrected_read_errors_store); 3957 3958 static ssize_t 3959 null_show(struct mddev *mddev, char *page) 3960 { 3961 return -EINVAL; 3962 } 3963 3964 static ssize_t 3965 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 3966 { 3967 /* buf must be %d:%d\n? giving major and minor numbers */ 3968 /* The new device is added to the array. 3969 * If the array has a persistent superblock, we read the 3970 * superblock to initialise info and check validity. 3971 * Otherwise, only checking done is that in bind_rdev_to_array, 3972 * which mainly checks size. 3973 */ 3974 char *e; 3975 int major = simple_strtoul(buf, &e, 10); 3976 int minor; 3977 dev_t dev; 3978 struct md_rdev *rdev; 3979 int err; 3980 3981 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3982 return -EINVAL; 3983 minor = simple_strtoul(e+1, &e, 10); 3984 if (*e && *e != '\n') 3985 return -EINVAL; 3986 dev = MKDEV(major, minor); 3987 if (major != MAJOR(dev) || 3988 minor != MINOR(dev)) 3989 return -EOVERFLOW; 3990 3991 3992 if (mddev->persistent) { 3993 rdev = md_import_device(dev, mddev->major_version, 3994 mddev->minor_version); 3995 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3996 struct md_rdev *rdev0 3997 = list_entry(mddev->disks.next, 3998 struct md_rdev, same_set); 3999 err = super_types[mddev->major_version] 4000 .load_super(rdev, rdev0, mddev->minor_version); 4001 if (err < 0) 4002 goto out; 4003 } 4004 } else if (mddev->external) 4005 rdev = md_import_device(dev, -2, -1); 4006 else 4007 rdev = md_import_device(dev, -1, -1); 4008 4009 if (IS_ERR(rdev)) 4010 return PTR_ERR(rdev); 4011 err = bind_rdev_to_array(rdev, mddev); 4012 out: 4013 if (err) 4014 export_rdev(rdev); 4015 return err ? err : len; 4016 } 4017 4018 static struct md_sysfs_entry md_new_device = 4019 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4020 4021 static ssize_t 4022 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4023 { 4024 char *end; 4025 unsigned long chunk, end_chunk; 4026 4027 if (!mddev->bitmap) 4028 goto out; 4029 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4030 while (*buf) { 4031 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4032 if (buf == end) break; 4033 if (*end == '-') { /* range */ 4034 buf = end + 1; 4035 end_chunk = simple_strtoul(buf, &end, 0); 4036 if (buf == end) break; 4037 } 4038 if (*end && !isspace(*end)) break; 4039 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4040 buf = skip_spaces(end); 4041 } 4042 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4043 out: 4044 return len; 4045 } 4046 4047 static struct md_sysfs_entry md_bitmap = 4048 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4049 4050 static ssize_t 4051 size_show(struct mddev *mddev, char *page) 4052 { 4053 return sprintf(page, "%llu\n", 4054 (unsigned long long)mddev->dev_sectors / 2); 4055 } 4056 4057 static int update_size(struct mddev *mddev, sector_t num_sectors); 4058 4059 static ssize_t 4060 size_store(struct mddev *mddev, const char *buf, size_t len) 4061 { 4062 /* If array is inactive, we can reduce the component size, but 4063 * not increase it (except from 0). 4064 * If array is active, we can try an on-line resize 4065 */ 4066 sector_t sectors; 4067 int err = strict_blocks_to_sectors(buf, §ors); 4068 4069 if (err < 0) 4070 return err; 4071 if (mddev->pers) { 4072 err = update_size(mddev, sectors); 4073 md_update_sb(mddev, 1); 4074 } else { 4075 if (mddev->dev_sectors == 0 || 4076 mddev->dev_sectors > sectors) 4077 mddev->dev_sectors = sectors; 4078 else 4079 err = -ENOSPC; 4080 } 4081 return err ? err : len; 4082 } 4083 4084 static struct md_sysfs_entry md_size = 4085 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4086 4087 4088 /* Metadata version. 4089 * This is one of 4090 * 'none' for arrays with no metadata (good luck...) 4091 * 'external' for arrays with externally managed metadata, 4092 * or N.M for internally known formats 4093 */ 4094 static ssize_t 4095 metadata_show(struct mddev *mddev, char *page) 4096 { 4097 if (mddev->persistent) 4098 return sprintf(page, "%d.%d\n", 4099 mddev->major_version, mddev->minor_version); 4100 else if (mddev->external) 4101 return sprintf(page, "external:%s\n", mddev->metadata_type); 4102 else 4103 return sprintf(page, "none\n"); 4104 } 4105 4106 static ssize_t 4107 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4108 { 4109 int major, minor; 4110 char *e; 4111 /* Changing the details of 'external' metadata is 4112 * always permitted. Otherwise there must be 4113 * no devices attached to the array. 4114 */ 4115 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4116 ; 4117 else if (!list_empty(&mddev->disks)) 4118 return -EBUSY; 4119 4120 if (cmd_match(buf, "none")) { 4121 mddev->persistent = 0; 4122 mddev->external = 0; 4123 mddev->major_version = 0; 4124 mddev->minor_version = 90; 4125 return len; 4126 } 4127 if (strncmp(buf, "external:", 9) == 0) { 4128 size_t namelen = len-9; 4129 if (namelen >= sizeof(mddev->metadata_type)) 4130 namelen = sizeof(mddev->metadata_type)-1; 4131 strncpy(mddev->metadata_type, buf+9, namelen); 4132 mddev->metadata_type[namelen] = 0; 4133 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4134 mddev->metadata_type[--namelen] = 0; 4135 mddev->persistent = 0; 4136 mddev->external = 1; 4137 mddev->major_version = 0; 4138 mddev->minor_version = 90; 4139 return len; 4140 } 4141 major = simple_strtoul(buf, &e, 10); 4142 if (e==buf || *e != '.') 4143 return -EINVAL; 4144 buf = e+1; 4145 minor = simple_strtoul(buf, &e, 10); 4146 if (e==buf || (*e && *e != '\n') ) 4147 return -EINVAL; 4148 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4149 return -ENOENT; 4150 mddev->major_version = major; 4151 mddev->minor_version = minor; 4152 mddev->persistent = 1; 4153 mddev->external = 0; 4154 return len; 4155 } 4156 4157 static struct md_sysfs_entry md_metadata = 4158 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4159 4160 static ssize_t 4161 action_show(struct mddev *mddev, char *page) 4162 { 4163 char *type = "idle"; 4164 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4165 type = "frozen"; 4166 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4167 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 4168 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4169 type = "reshape"; 4170 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4171 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 4172 type = "resync"; 4173 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 4174 type = "check"; 4175 else 4176 type = "repair"; 4177 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 4178 type = "recover"; 4179 } 4180 return sprintf(page, "%s\n", type); 4181 } 4182 4183 static ssize_t 4184 action_store(struct mddev *mddev, const char *page, size_t len) 4185 { 4186 if (!mddev->pers || !mddev->pers->sync_request) 4187 return -EINVAL; 4188 4189 if (cmd_match(page, "frozen")) 4190 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4191 else 4192 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4193 4194 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4195 if (mddev->sync_thread) { 4196 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4197 md_reap_sync_thread(mddev); 4198 } 4199 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4200 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4201 return -EBUSY; 4202 else if (cmd_match(page, "resync")) 4203 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4204 else if (cmd_match(page, "recover")) { 4205 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4206 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4207 } else if (cmd_match(page, "reshape")) { 4208 int err; 4209 if (mddev->pers->start_reshape == NULL) 4210 return -EINVAL; 4211 err = mddev->pers->start_reshape(mddev); 4212 if (err) 4213 return err; 4214 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4215 } else { 4216 if (cmd_match(page, "check")) 4217 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4218 else if (!cmd_match(page, "repair")) 4219 return -EINVAL; 4220 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4221 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4222 } 4223 if (mddev->ro == 2) { 4224 /* A write to sync_action is enough to justify 4225 * canceling read-auto mode 4226 */ 4227 mddev->ro = 0; 4228 md_wakeup_thread(mddev->sync_thread); 4229 } 4230 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4231 md_wakeup_thread(mddev->thread); 4232 sysfs_notify_dirent_safe(mddev->sysfs_action); 4233 return len; 4234 } 4235 4236 static struct md_sysfs_entry md_scan_mode = 4237 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4238 4239 static ssize_t 4240 last_sync_action_show(struct mddev *mddev, char *page) 4241 { 4242 return sprintf(page, "%s\n", mddev->last_sync_action); 4243 } 4244 4245 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4246 4247 static ssize_t 4248 mismatch_cnt_show(struct mddev *mddev, char *page) 4249 { 4250 return sprintf(page, "%llu\n", 4251 (unsigned long long) 4252 atomic64_read(&mddev->resync_mismatches)); 4253 } 4254 4255 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4256 4257 static ssize_t 4258 sync_min_show(struct mddev *mddev, char *page) 4259 { 4260 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4261 mddev->sync_speed_min ? "local": "system"); 4262 } 4263 4264 static ssize_t 4265 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4266 { 4267 int min; 4268 char *e; 4269 if (strncmp(buf, "system", 6)==0) { 4270 mddev->sync_speed_min = 0; 4271 return len; 4272 } 4273 min = simple_strtoul(buf, &e, 10); 4274 if (buf == e || (*e && *e != '\n') || min <= 0) 4275 return -EINVAL; 4276 mddev->sync_speed_min = min; 4277 return len; 4278 } 4279 4280 static struct md_sysfs_entry md_sync_min = 4281 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4282 4283 static ssize_t 4284 sync_max_show(struct mddev *mddev, char *page) 4285 { 4286 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4287 mddev->sync_speed_max ? "local": "system"); 4288 } 4289 4290 static ssize_t 4291 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4292 { 4293 int max; 4294 char *e; 4295 if (strncmp(buf, "system", 6)==0) { 4296 mddev->sync_speed_max = 0; 4297 return len; 4298 } 4299 max = simple_strtoul(buf, &e, 10); 4300 if (buf == e || (*e && *e != '\n') || max <= 0) 4301 return -EINVAL; 4302 mddev->sync_speed_max = max; 4303 return len; 4304 } 4305 4306 static struct md_sysfs_entry md_sync_max = 4307 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4308 4309 static ssize_t 4310 degraded_show(struct mddev *mddev, char *page) 4311 { 4312 return sprintf(page, "%d\n", mddev->degraded); 4313 } 4314 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4315 4316 static ssize_t 4317 sync_force_parallel_show(struct mddev *mddev, char *page) 4318 { 4319 return sprintf(page, "%d\n", mddev->parallel_resync); 4320 } 4321 4322 static ssize_t 4323 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4324 { 4325 long n; 4326 4327 if (kstrtol(buf, 10, &n)) 4328 return -EINVAL; 4329 4330 if (n != 0 && n != 1) 4331 return -EINVAL; 4332 4333 mddev->parallel_resync = n; 4334 4335 if (mddev->sync_thread) 4336 wake_up(&resync_wait); 4337 4338 return len; 4339 } 4340 4341 /* force parallel resync, even with shared block devices */ 4342 static struct md_sysfs_entry md_sync_force_parallel = 4343 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4344 sync_force_parallel_show, sync_force_parallel_store); 4345 4346 static ssize_t 4347 sync_speed_show(struct mddev *mddev, char *page) 4348 { 4349 unsigned long resync, dt, db; 4350 if (mddev->curr_resync == 0) 4351 return sprintf(page, "none\n"); 4352 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4353 dt = (jiffies - mddev->resync_mark) / HZ; 4354 if (!dt) dt++; 4355 db = resync - mddev->resync_mark_cnt; 4356 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4357 } 4358 4359 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4360 4361 static ssize_t 4362 sync_completed_show(struct mddev *mddev, char *page) 4363 { 4364 unsigned long long max_sectors, resync; 4365 4366 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4367 return sprintf(page, "none\n"); 4368 4369 if (mddev->curr_resync == 1 || 4370 mddev->curr_resync == 2) 4371 return sprintf(page, "delayed\n"); 4372 4373 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4374 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4375 max_sectors = mddev->resync_max_sectors; 4376 else 4377 max_sectors = mddev->dev_sectors; 4378 4379 resync = mddev->curr_resync_completed; 4380 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4381 } 4382 4383 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 4384 4385 static ssize_t 4386 min_sync_show(struct mddev *mddev, char *page) 4387 { 4388 return sprintf(page, "%llu\n", 4389 (unsigned long long)mddev->resync_min); 4390 } 4391 static ssize_t 4392 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4393 { 4394 unsigned long long min; 4395 if (kstrtoull(buf, 10, &min)) 4396 return -EINVAL; 4397 if (min > mddev->resync_max) 4398 return -EINVAL; 4399 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4400 return -EBUSY; 4401 4402 /* Must be a multiple of chunk_size */ 4403 if (mddev->chunk_sectors) { 4404 sector_t temp = min; 4405 if (sector_div(temp, mddev->chunk_sectors)) 4406 return -EINVAL; 4407 } 4408 mddev->resync_min = min; 4409 4410 return len; 4411 } 4412 4413 static struct md_sysfs_entry md_min_sync = 4414 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4415 4416 static ssize_t 4417 max_sync_show(struct mddev *mddev, char *page) 4418 { 4419 if (mddev->resync_max == MaxSector) 4420 return sprintf(page, "max\n"); 4421 else 4422 return sprintf(page, "%llu\n", 4423 (unsigned long long)mddev->resync_max); 4424 } 4425 static ssize_t 4426 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4427 { 4428 if (strncmp(buf, "max", 3) == 0) 4429 mddev->resync_max = MaxSector; 4430 else { 4431 unsigned long long max; 4432 if (kstrtoull(buf, 10, &max)) 4433 return -EINVAL; 4434 if (max < mddev->resync_min) 4435 return -EINVAL; 4436 if (max < mddev->resync_max && 4437 mddev->ro == 0 && 4438 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4439 return -EBUSY; 4440 4441 /* Must be a multiple of chunk_size */ 4442 if (mddev->chunk_sectors) { 4443 sector_t temp = max; 4444 if (sector_div(temp, mddev->chunk_sectors)) 4445 return -EINVAL; 4446 } 4447 mddev->resync_max = max; 4448 } 4449 wake_up(&mddev->recovery_wait); 4450 return len; 4451 } 4452 4453 static struct md_sysfs_entry md_max_sync = 4454 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4455 4456 static ssize_t 4457 suspend_lo_show(struct mddev *mddev, char *page) 4458 { 4459 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4460 } 4461 4462 static ssize_t 4463 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4464 { 4465 char *e; 4466 unsigned long long new = simple_strtoull(buf, &e, 10); 4467 unsigned long long old = mddev->suspend_lo; 4468 4469 if (mddev->pers == NULL || 4470 mddev->pers->quiesce == NULL) 4471 return -EINVAL; 4472 if (buf == e || (*e && *e != '\n')) 4473 return -EINVAL; 4474 4475 mddev->suspend_lo = new; 4476 if (new >= old) 4477 /* Shrinking suspended region */ 4478 mddev->pers->quiesce(mddev, 2); 4479 else { 4480 /* Expanding suspended region - need to wait */ 4481 mddev->pers->quiesce(mddev, 1); 4482 mddev->pers->quiesce(mddev, 0); 4483 } 4484 return len; 4485 } 4486 static struct md_sysfs_entry md_suspend_lo = 4487 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4488 4489 4490 static ssize_t 4491 suspend_hi_show(struct mddev *mddev, char *page) 4492 { 4493 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4494 } 4495 4496 static ssize_t 4497 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4498 { 4499 char *e; 4500 unsigned long long new = simple_strtoull(buf, &e, 10); 4501 unsigned long long old = mddev->suspend_hi; 4502 4503 if (mddev->pers == NULL || 4504 mddev->pers->quiesce == NULL) 4505 return -EINVAL; 4506 if (buf == e || (*e && *e != '\n')) 4507 return -EINVAL; 4508 4509 mddev->suspend_hi = new; 4510 if (new <= old) 4511 /* Shrinking suspended region */ 4512 mddev->pers->quiesce(mddev, 2); 4513 else { 4514 /* Expanding suspended region - need to wait */ 4515 mddev->pers->quiesce(mddev, 1); 4516 mddev->pers->quiesce(mddev, 0); 4517 } 4518 return len; 4519 } 4520 static struct md_sysfs_entry md_suspend_hi = 4521 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4522 4523 static ssize_t 4524 reshape_position_show(struct mddev *mddev, char *page) 4525 { 4526 if (mddev->reshape_position != MaxSector) 4527 return sprintf(page, "%llu\n", 4528 (unsigned long long)mddev->reshape_position); 4529 strcpy(page, "none\n"); 4530 return 5; 4531 } 4532 4533 static ssize_t 4534 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4535 { 4536 struct md_rdev *rdev; 4537 char *e; 4538 unsigned long long new = simple_strtoull(buf, &e, 10); 4539 if (mddev->pers) 4540 return -EBUSY; 4541 if (buf == e || (*e && *e != '\n')) 4542 return -EINVAL; 4543 mddev->reshape_position = new; 4544 mddev->delta_disks = 0; 4545 mddev->reshape_backwards = 0; 4546 mddev->new_level = mddev->level; 4547 mddev->new_layout = mddev->layout; 4548 mddev->new_chunk_sectors = mddev->chunk_sectors; 4549 rdev_for_each(rdev, mddev) 4550 rdev->new_data_offset = rdev->data_offset; 4551 return len; 4552 } 4553 4554 static struct md_sysfs_entry md_reshape_position = 4555 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4556 reshape_position_store); 4557 4558 static ssize_t 4559 reshape_direction_show(struct mddev *mddev, char *page) 4560 { 4561 return sprintf(page, "%s\n", 4562 mddev->reshape_backwards ? "backwards" : "forwards"); 4563 } 4564 4565 static ssize_t 4566 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4567 { 4568 int backwards = 0; 4569 if (cmd_match(buf, "forwards")) 4570 backwards = 0; 4571 else if (cmd_match(buf, "backwards")) 4572 backwards = 1; 4573 else 4574 return -EINVAL; 4575 if (mddev->reshape_backwards == backwards) 4576 return len; 4577 4578 /* check if we are allowed to change */ 4579 if (mddev->delta_disks) 4580 return -EBUSY; 4581 4582 if (mddev->persistent && 4583 mddev->major_version == 0) 4584 return -EINVAL; 4585 4586 mddev->reshape_backwards = backwards; 4587 return len; 4588 } 4589 4590 static struct md_sysfs_entry md_reshape_direction = 4591 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4592 reshape_direction_store); 4593 4594 static ssize_t 4595 array_size_show(struct mddev *mddev, char *page) 4596 { 4597 if (mddev->external_size) 4598 return sprintf(page, "%llu\n", 4599 (unsigned long long)mddev->array_sectors/2); 4600 else 4601 return sprintf(page, "default\n"); 4602 } 4603 4604 static ssize_t 4605 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4606 { 4607 sector_t sectors; 4608 4609 if (strncmp(buf, "default", 7) == 0) { 4610 if (mddev->pers) 4611 sectors = mddev->pers->size(mddev, 0, 0); 4612 else 4613 sectors = mddev->array_sectors; 4614 4615 mddev->external_size = 0; 4616 } else { 4617 if (strict_blocks_to_sectors(buf, §ors) < 0) 4618 return -EINVAL; 4619 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4620 return -E2BIG; 4621 4622 mddev->external_size = 1; 4623 } 4624 4625 mddev->array_sectors = sectors; 4626 if (mddev->pers) { 4627 set_capacity(mddev->gendisk, mddev->array_sectors); 4628 revalidate_disk(mddev->gendisk); 4629 } 4630 return len; 4631 } 4632 4633 static struct md_sysfs_entry md_array_size = 4634 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4635 array_size_store); 4636 4637 static struct attribute *md_default_attrs[] = { 4638 &md_level.attr, 4639 &md_layout.attr, 4640 &md_raid_disks.attr, 4641 &md_chunk_size.attr, 4642 &md_size.attr, 4643 &md_resync_start.attr, 4644 &md_metadata.attr, 4645 &md_new_device.attr, 4646 &md_safe_delay.attr, 4647 &md_array_state.attr, 4648 &md_reshape_position.attr, 4649 &md_reshape_direction.attr, 4650 &md_array_size.attr, 4651 &max_corr_read_errors.attr, 4652 NULL, 4653 }; 4654 4655 static struct attribute *md_redundancy_attrs[] = { 4656 &md_scan_mode.attr, 4657 &md_last_scan_mode.attr, 4658 &md_mismatches.attr, 4659 &md_sync_min.attr, 4660 &md_sync_max.attr, 4661 &md_sync_speed.attr, 4662 &md_sync_force_parallel.attr, 4663 &md_sync_completed.attr, 4664 &md_min_sync.attr, 4665 &md_max_sync.attr, 4666 &md_suspend_lo.attr, 4667 &md_suspend_hi.attr, 4668 &md_bitmap.attr, 4669 &md_degraded.attr, 4670 NULL, 4671 }; 4672 static struct attribute_group md_redundancy_group = { 4673 .name = NULL, 4674 .attrs = md_redundancy_attrs, 4675 }; 4676 4677 4678 static ssize_t 4679 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4680 { 4681 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4682 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4683 ssize_t rv; 4684 4685 if (!entry->show) 4686 return -EIO; 4687 spin_lock(&all_mddevs_lock); 4688 if (list_empty(&mddev->all_mddevs)) { 4689 spin_unlock(&all_mddevs_lock); 4690 return -EBUSY; 4691 } 4692 mddev_get(mddev); 4693 spin_unlock(&all_mddevs_lock); 4694 4695 rv = mddev_lock(mddev); 4696 if (!rv) { 4697 rv = entry->show(mddev, page); 4698 mddev_unlock(mddev); 4699 } 4700 mddev_put(mddev); 4701 return rv; 4702 } 4703 4704 static ssize_t 4705 md_attr_store(struct kobject *kobj, struct attribute *attr, 4706 const char *page, size_t length) 4707 { 4708 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4709 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4710 ssize_t rv; 4711 4712 if (!entry->store) 4713 return -EIO; 4714 if (!capable(CAP_SYS_ADMIN)) 4715 return -EACCES; 4716 spin_lock(&all_mddevs_lock); 4717 if (list_empty(&mddev->all_mddevs)) { 4718 spin_unlock(&all_mddevs_lock); 4719 return -EBUSY; 4720 } 4721 mddev_get(mddev); 4722 spin_unlock(&all_mddevs_lock); 4723 if (entry->store == new_dev_store) 4724 flush_workqueue(md_misc_wq); 4725 rv = mddev_lock(mddev); 4726 if (!rv) { 4727 rv = entry->store(mddev, page, length); 4728 mddev_unlock(mddev); 4729 } 4730 mddev_put(mddev); 4731 return rv; 4732 } 4733 4734 static void md_free(struct kobject *ko) 4735 { 4736 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4737 4738 if (mddev->sysfs_state) 4739 sysfs_put(mddev->sysfs_state); 4740 4741 if (mddev->gendisk) { 4742 del_gendisk(mddev->gendisk); 4743 put_disk(mddev->gendisk); 4744 } 4745 if (mddev->queue) 4746 blk_cleanup_queue(mddev->queue); 4747 4748 kfree(mddev); 4749 } 4750 4751 static const struct sysfs_ops md_sysfs_ops = { 4752 .show = md_attr_show, 4753 .store = md_attr_store, 4754 }; 4755 static struct kobj_type md_ktype = { 4756 .release = md_free, 4757 .sysfs_ops = &md_sysfs_ops, 4758 .default_attrs = md_default_attrs, 4759 }; 4760 4761 int mdp_major = 0; 4762 4763 static void mddev_delayed_delete(struct work_struct *ws) 4764 { 4765 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4766 4767 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4768 kobject_del(&mddev->kobj); 4769 kobject_put(&mddev->kobj); 4770 } 4771 4772 static int md_alloc(dev_t dev, char *name) 4773 { 4774 static DEFINE_MUTEX(disks_mutex); 4775 struct mddev *mddev = mddev_find(dev); 4776 struct gendisk *disk; 4777 int partitioned; 4778 int shift; 4779 int unit; 4780 int error; 4781 4782 if (!mddev) 4783 return -ENODEV; 4784 4785 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4786 shift = partitioned ? MdpMinorShift : 0; 4787 unit = MINOR(mddev->unit) >> shift; 4788 4789 /* wait for any previous instance of this device to be 4790 * completely removed (mddev_delayed_delete). 4791 */ 4792 flush_workqueue(md_misc_wq); 4793 4794 mutex_lock(&disks_mutex); 4795 error = -EEXIST; 4796 if (mddev->gendisk) 4797 goto abort; 4798 4799 if (name) { 4800 /* Need to ensure that 'name' is not a duplicate. 4801 */ 4802 struct mddev *mddev2; 4803 spin_lock(&all_mddevs_lock); 4804 4805 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4806 if (mddev2->gendisk && 4807 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4808 spin_unlock(&all_mddevs_lock); 4809 goto abort; 4810 } 4811 spin_unlock(&all_mddevs_lock); 4812 } 4813 4814 error = -ENOMEM; 4815 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4816 if (!mddev->queue) 4817 goto abort; 4818 mddev->queue->queuedata = mddev; 4819 4820 blk_queue_make_request(mddev->queue, md_make_request); 4821 blk_set_stacking_limits(&mddev->queue->limits); 4822 4823 disk = alloc_disk(1 << shift); 4824 if (!disk) { 4825 blk_cleanup_queue(mddev->queue); 4826 mddev->queue = NULL; 4827 goto abort; 4828 } 4829 disk->major = MAJOR(mddev->unit); 4830 disk->first_minor = unit << shift; 4831 if (name) 4832 strcpy(disk->disk_name, name); 4833 else if (partitioned) 4834 sprintf(disk->disk_name, "md_d%d", unit); 4835 else 4836 sprintf(disk->disk_name, "md%d", unit); 4837 disk->fops = &md_fops; 4838 disk->private_data = mddev; 4839 disk->queue = mddev->queue; 4840 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4841 /* Allow extended partitions. This makes the 4842 * 'mdp' device redundant, but we can't really 4843 * remove it now. 4844 */ 4845 disk->flags |= GENHD_FL_EXT_DEVT; 4846 mddev->gendisk = disk; 4847 /* As soon as we call add_disk(), another thread could get 4848 * through to md_open, so make sure it doesn't get too far 4849 */ 4850 mutex_lock(&mddev->open_mutex); 4851 add_disk(disk); 4852 4853 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4854 &disk_to_dev(disk)->kobj, "%s", "md"); 4855 if (error) { 4856 /* This isn't possible, but as kobject_init_and_add is marked 4857 * __must_check, we must do something with the result 4858 */ 4859 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4860 disk->disk_name); 4861 error = 0; 4862 } 4863 if (mddev->kobj.sd && 4864 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4865 printk(KERN_DEBUG "pointless warning\n"); 4866 mutex_unlock(&mddev->open_mutex); 4867 abort: 4868 mutex_unlock(&disks_mutex); 4869 if (!error && mddev->kobj.sd) { 4870 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4871 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4872 } 4873 mddev_put(mddev); 4874 return error; 4875 } 4876 4877 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4878 { 4879 md_alloc(dev, NULL); 4880 return NULL; 4881 } 4882 4883 static int add_named_array(const char *val, struct kernel_param *kp) 4884 { 4885 /* val must be "md_*" where * is not all digits. 4886 * We allocate an array with a large free minor number, and 4887 * set the name to val. val must not already be an active name. 4888 */ 4889 int len = strlen(val); 4890 char buf[DISK_NAME_LEN]; 4891 4892 while (len && val[len-1] == '\n') 4893 len--; 4894 if (len >= DISK_NAME_LEN) 4895 return -E2BIG; 4896 strlcpy(buf, val, len+1); 4897 if (strncmp(buf, "md_", 3) != 0) 4898 return -EINVAL; 4899 return md_alloc(0, buf); 4900 } 4901 4902 static void md_safemode_timeout(unsigned long data) 4903 { 4904 struct mddev *mddev = (struct mddev *) data; 4905 4906 if (!atomic_read(&mddev->writes_pending)) { 4907 mddev->safemode = 1; 4908 if (mddev->external) 4909 sysfs_notify_dirent_safe(mddev->sysfs_state); 4910 } 4911 md_wakeup_thread(mddev->thread); 4912 } 4913 4914 static int start_dirty_degraded; 4915 4916 int md_run(struct mddev *mddev) 4917 { 4918 int err; 4919 struct md_rdev *rdev; 4920 struct md_personality *pers; 4921 4922 if (list_empty(&mddev->disks)) 4923 /* cannot run an array with no devices.. */ 4924 return -EINVAL; 4925 4926 if (mddev->pers) 4927 return -EBUSY; 4928 /* Cannot run until previous stop completes properly */ 4929 if (mddev->sysfs_active) 4930 return -EBUSY; 4931 4932 /* 4933 * Analyze all RAID superblock(s) 4934 */ 4935 if (!mddev->raid_disks) { 4936 if (!mddev->persistent) 4937 return -EINVAL; 4938 analyze_sbs(mddev); 4939 } 4940 4941 if (mddev->level != LEVEL_NONE) 4942 request_module("md-level-%d", mddev->level); 4943 else if (mddev->clevel[0]) 4944 request_module("md-%s", mddev->clevel); 4945 4946 /* 4947 * Drop all container device buffers, from now on 4948 * the only valid external interface is through the md 4949 * device. 4950 */ 4951 rdev_for_each(rdev, mddev) { 4952 if (test_bit(Faulty, &rdev->flags)) 4953 continue; 4954 sync_blockdev(rdev->bdev); 4955 invalidate_bdev(rdev->bdev); 4956 4957 /* perform some consistency tests on the device. 4958 * We don't want the data to overlap the metadata, 4959 * Internal Bitmap issues have been handled elsewhere. 4960 */ 4961 if (rdev->meta_bdev) { 4962 /* Nothing to check */; 4963 } else if (rdev->data_offset < rdev->sb_start) { 4964 if (mddev->dev_sectors && 4965 rdev->data_offset + mddev->dev_sectors 4966 > rdev->sb_start) { 4967 printk("md: %s: data overlaps metadata\n", 4968 mdname(mddev)); 4969 return -EINVAL; 4970 } 4971 } else { 4972 if (rdev->sb_start + rdev->sb_size/512 4973 > rdev->data_offset) { 4974 printk("md: %s: metadata overlaps data\n", 4975 mdname(mddev)); 4976 return -EINVAL; 4977 } 4978 } 4979 sysfs_notify_dirent_safe(rdev->sysfs_state); 4980 } 4981 4982 if (mddev->bio_set == NULL) 4983 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 4984 4985 spin_lock(&pers_lock); 4986 pers = find_pers(mddev->level, mddev->clevel); 4987 if (!pers || !try_module_get(pers->owner)) { 4988 spin_unlock(&pers_lock); 4989 if (mddev->level != LEVEL_NONE) 4990 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 4991 mddev->level); 4992 else 4993 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 4994 mddev->clevel); 4995 return -EINVAL; 4996 } 4997 mddev->pers = pers; 4998 spin_unlock(&pers_lock); 4999 if (mddev->level != pers->level) { 5000 mddev->level = pers->level; 5001 mddev->new_level = pers->level; 5002 } 5003 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5004 5005 if (mddev->reshape_position != MaxSector && 5006 pers->start_reshape == NULL) { 5007 /* This personality cannot handle reshaping... */ 5008 mddev->pers = NULL; 5009 module_put(pers->owner); 5010 return -EINVAL; 5011 } 5012 5013 if (pers->sync_request) { 5014 /* Warn if this is a potentially silly 5015 * configuration. 5016 */ 5017 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5018 struct md_rdev *rdev2; 5019 int warned = 0; 5020 5021 rdev_for_each(rdev, mddev) 5022 rdev_for_each(rdev2, mddev) { 5023 if (rdev < rdev2 && 5024 rdev->bdev->bd_contains == 5025 rdev2->bdev->bd_contains) { 5026 printk(KERN_WARNING 5027 "%s: WARNING: %s appears to be" 5028 " on the same physical disk as" 5029 " %s.\n", 5030 mdname(mddev), 5031 bdevname(rdev->bdev,b), 5032 bdevname(rdev2->bdev,b2)); 5033 warned = 1; 5034 } 5035 } 5036 5037 if (warned) 5038 printk(KERN_WARNING 5039 "True protection against single-disk" 5040 " failure might be compromised.\n"); 5041 } 5042 5043 mddev->recovery = 0; 5044 /* may be over-ridden by personality */ 5045 mddev->resync_max_sectors = mddev->dev_sectors; 5046 5047 mddev->ok_start_degraded = start_dirty_degraded; 5048 5049 if (start_readonly && mddev->ro == 0) 5050 mddev->ro = 2; /* read-only, but switch on first write */ 5051 5052 err = mddev->pers->run(mddev); 5053 if (err) 5054 printk(KERN_ERR "md: pers->run() failed ...\n"); 5055 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 5056 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5057 " but 'external_size' not in effect?\n", __func__); 5058 printk(KERN_ERR 5059 "md: invalid array_size %llu > default size %llu\n", 5060 (unsigned long long)mddev->array_sectors / 2, 5061 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 5062 err = -EINVAL; 5063 mddev->pers->stop(mddev); 5064 } 5065 if (err == 0 && mddev->pers->sync_request && 5066 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5067 err = bitmap_create(mddev); 5068 if (err) { 5069 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5070 mdname(mddev), err); 5071 mddev->pers->stop(mddev); 5072 } 5073 } 5074 if (err) { 5075 module_put(mddev->pers->owner); 5076 mddev->pers = NULL; 5077 bitmap_destroy(mddev); 5078 return err; 5079 } 5080 if (mddev->pers->sync_request) { 5081 if (mddev->kobj.sd && 5082 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5083 printk(KERN_WARNING 5084 "md: cannot register extra attributes for %s\n", 5085 mdname(mddev)); 5086 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5087 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5088 mddev->ro = 0; 5089 5090 atomic_set(&mddev->writes_pending,0); 5091 atomic_set(&mddev->max_corr_read_errors, 5092 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5093 mddev->safemode = 0; 5094 mddev->safemode_timer.function = md_safemode_timeout; 5095 mddev->safemode_timer.data = (unsigned long) mddev; 5096 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5097 mddev->in_sync = 1; 5098 smp_wmb(); 5099 mddev->ready = 1; 5100 rdev_for_each(rdev, mddev) 5101 if (rdev->raid_disk >= 0) 5102 if (sysfs_link_rdev(mddev, rdev)) 5103 /* failure here is OK */; 5104 5105 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5106 5107 if (mddev->flags & MD_UPDATE_SB_FLAGS) 5108 md_update_sb(mddev, 0); 5109 5110 md_new_event(mddev); 5111 sysfs_notify_dirent_safe(mddev->sysfs_state); 5112 sysfs_notify_dirent_safe(mddev->sysfs_action); 5113 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5114 return 0; 5115 } 5116 EXPORT_SYMBOL_GPL(md_run); 5117 5118 static int do_md_run(struct mddev *mddev) 5119 { 5120 int err; 5121 5122 err = md_run(mddev); 5123 if (err) 5124 goto out; 5125 err = bitmap_load(mddev); 5126 if (err) { 5127 bitmap_destroy(mddev); 5128 goto out; 5129 } 5130 5131 md_wakeup_thread(mddev->thread); 5132 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5133 5134 set_capacity(mddev->gendisk, mddev->array_sectors); 5135 revalidate_disk(mddev->gendisk); 5136 mddev->changed = 1; 5137 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5138 out: 5139 return err; 5140 } 5141 5142 static int restart_array(struct mddev *mddev) 5143 { 5144 struct gendisk *disk = mddev->gendisk; 5145 5146 /* Complain if it has no devices */ 5147 if (list_empty(&mddev->disks)) 5148 return -ENXIO; 5149 if (!mddev->pers) 5150 return -EINVAL; 5151 if (!mddev->ro) 5152 return -EBUSY; 5153 mddev->safemode = 0; 5154 mddev->ro = 0; 5155 set_disk_ro(disk, 0); 5156 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5157 mdname(mddev)); 5158 /* Kick recovery or resync if necessary */ 5159 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5160 md_wakeup_thread(mddev->thread); 5161 md_wakeup_thread(mddev->sync_thread); 5162 sysfs_notify_dirent_safe(mddev->sysfs_state); 5163 return 0; 5164 } 5165 5166 /* similar to deny_write_access, but accounts for our holding a reference 5167 * to the file ourselves */ 5168 static int deny_bitmap_write_access(struct file * file) 5169 { 5170 struct inode *inode = file->f_mapping->host; 5171 5172 spin_lock(&inode->i_lock); 5173 if (atomic_read(&inode->i_writecount) > 1) { 5174 spin_unlock(&inode->i_lock); 5175 return -ETXTBSY; 5176 } 5177 atomic_set(&inode->i_writecount, -1); 5178 spin_unlock(&inode->i_lock); 5179 5180 return 0; 5181 } 5182 5183 void restore_bitmap_write_access(struct file *file) 5184 { 5185 struct inode *inode = file->f_mapping->host; 5186 5187 spin_lock(&inode->i_lock); 5188 atomic_set(&inode->i_writecount, 1); 5189 spin_unlock(&inode->i_lock); 5190 } 5191 5192 static void md_clean(struct mddev *mddev) 5193 { 5194 mddev->array_sectors = 0; 5195 mddev->external_size = 0; 5196 mddev->dev_sectors = 0; 5197 mddev->raid_disks = 0; 5198 mddev->recovery_cp = 0; 5199 mddev->resync_min = 0; 5200 mddev->resync_max = MaxSector; 5201 mddev->reshape_position = MaxSector; 5202 mddev->external = 0; 5203 mddev->persistent = 0; 5204 mddev->level = LEVEL_NONE; 5205 mddev->clevel[0] = 0; 5206 mddev->flags = 0; 5207 mddev->ro = 0; 5208 mddev->metadata_type[0] = 0; 5209 mddev->chunk_sectors = 0; 5210 mddev->ctime = mddev->utime = 0; 5211 mddev->layout = 0; 5212 mddev->max_disks = 0; 5213 mddev->events = 0; 5214 mddev->can_decrease_events = 0; 5215 mddev->delta_disks = 0; 5216 mddev->reshape_backwards = 0; 5217 mddev->new_level = LEVEL_NONE; 5218 mddev->new_layout = 0; 5219 mddev->new_chunk_sectors = 0; 5220 mddev->curr_resync = 0; 5221 atomic64_set(&mddev->resync_mismatches, 0); 5222 mddev->suspend_lo = mddev->suspend_hi = 0; 5223 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5224 mddev->recovery = 0; 5225 mddev->in_sync = 0; 5226 mddev->changed = 0; 5227 mddev->degraded = 0; 5228 mddev->safemode = 0; 5229 mddev->merge_check_needed = 0; 5230 mddev->bitmap_info.offset = 0; 5231 mddev->bitmap_info.default_offset = 0; 5232 mddev->bitmap_info.default_space = 0; 5233 mddev->bitmap_info.chunksize = 0; 5234 mddev->bitmap_info.daemon_sleep = 0; 5235 mddev->bitmap_info.max_write_behind = 0; 5236 } 5237 5238 static void __md_stop_writes(struct mddev *mddev) 5239 { 5240 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5241 if (mddev->sync_thread) { 5242 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5243 md_reap_sync_thread(mddev); 5244 } 5245 5246 del_timer_sync(&mddev->safemode_timer); 5247 5248 bitmap_flush(mddev); 5249 md_super_wait(mddev); 5250 5251 if (mddev->ro == 0 && 5252 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) { 5253 /* mark array as shutdown cleanly */ 5254 mddev->in_sync = 1; 5255 md_update_sb(mddev, 1); 5256 } 5257 } 5258 5259 void md_stop_writes(struct mddev *mddev) 5260 { 5261 mddev_lock(mddev); 5262 __md_stop_writes(mddev); 5263 mddev_unlock(mddev); 5264 } 5265 EXPORT_SYMBOL_GPL(md_stop_writes); 5266 5267 static void __md_stop(struct mddev *mddev) 5268 { 5269 mddev->ready = 0; 5270 mddev->pers->stop(mddev); 5271 if (mddev->pers->sync_request && mddev->to_remove == NULL) 5272 mddev->to_remove = &md_redundancy_group; 5273 module_put(mddev->pers->owner); 5274 mddev->pers = NULL; 5275 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5276 } 5277 5278 void md_stop(struct mddev *mddev) 5279 { 5280 /* stop the array and free an attached data structures. 5281 * This is called from dm-raid 5282 */ 5283 __md_stop(mddev); 5284 bitmap_destroy(mddev); 5285 if (mddev->bio_set) 5286 bioset_free(mddev->bio_set); 5287 } 5288 5289 EXPORT_SYMBOL_GPL(md_stop); 5290 5291 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5292 { 5293 int err = 0; 5294 mutex_lock(&mddev->open_mutex); 5295 if (atomic_read(&mddev->openers) > !!bdev) { 5296 printk("md: %s still in use.\n",mdname(mddev)); 5297 err = -EBUSY; 5298 goto out; 5299 } 5300 if (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags)) { 5301 /* Someone opened the device since we flushed it 5302 * so page cache could be dirty and it is too late 5303 * to flush. So abort 5304 */ 5305 mutex_unlock(&mddev->open_mutex); 5306 return -EBUSY; 5307 } 5308 if (mddev->pers) { 5309 __md_stop_writes(mddev); 5310 5311 err = -ENXIO; 5312 if (mddev->ro==1) 5313 goto out; 5314 mddev->ro = 1; 5315 set_disk_ro(mddev->gendisk, 1); 5316 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5317 sysfs_notify_dirent_safe(mddev->sysfs_state); 5318 err = 0; 5319 } 5320 out: 5321 mutex_unlock(&mddev->open_mutex); 5322 return err; 5323 } 5324 5325 /* mode: 5326 * 0 - completely stop and dis-assemble array 5327 * 2 - stop but do not disassemble array 5328 */ 5329 static int do_md_stop(struct mddev * mddev, int mode, 5330 struct block_device *bdev) 5331 { 5332 struct gendisk *disk = mddev->gendisk; 5333 struct md_rdev *rdev; 5334 5335 mutex_lock(&mddev->open_mutex); 5336 if (atomic_read(&mddev->openers) > !!bdev || 5337 mddev->sysfs_active) { 5338 printk("md: %s still in use.\n",mdname(mddev)); 5339 mutex_unlock(&mddev->open_mutex); 5340 return -EBUSY; 5341 } 5342 if (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags)) { 5343 /* Someone opened the device since we flushed it 5344 * so page cache could be dirty and it is too late 5345 * to flush. So abort 5346 */ 5347 mutex_unlock(&mddev->open_mutex); 5348 return -EBUSY; 5349 } 5350 if (mddev->pers) { 5351 if (mddev->ro) 5352 set_disk_ro(disk, 0); 5353 5354 __md_stop_writes(mddev); 5355 __md_stop(mddev); 5356 mddev->queue->merge_bvec_fn = NULL; 5357 mddev->queue->backing_dev_info.congested_fn = NULL; 5358 5359 /* tell userspace to handle 'inactive' */ 5360 sysfs_notify_dirent_safe(mddev->sysfs_state); 5361 5362 rdev_for_each(rdev, mddev) 5363 if (rdev->raid_disk >= 0) 5364 sysfs_unlink_rdev(mddev, rdev); 5365 5366 set_capacity(disk, 0); 5367 mutex_unlock(&mddev->open_mutex); 5368 mddev->changed = 1; 5369 revalidate_disk(disk); 5370 5371 if (mddev->ro) 5372 mddev->ro = 0; 5373 } else 5374 mutex_unlock(&mddev->open_mutex); 5375 /* 5376 * Free resources if final stop 5377 */ 5378 if (mode == 0) { 5379 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5380 5381 bitmap_destroy(mddev); 5382 if (mddev->bitmap_info.file) { 5383 restore_bitmap_write_access(mddev->bitmap_info.file); 5384 fput(mddev->bitmap_info.file); 5385 mddev->bitmap_info.file = NULL; 5386 } 5387 mddev->bitmap_info.offset = 0; 5388 5389 export_array(mddev); 5390 5391 md_clean(mddev); 5392 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5393 if (mddev->hold_active == UNTIL_STOP) 5394 mddev->hold_active = 0; 5395 } 5396 blk_integrity_unregister(disk); 5397 md_new_event(mddev); 5398 sysfs_notify_dirent_safe(mddev->sysfs_state); 5399 return 0; 5400 } 5401 5402 #ifndef MODULE 5403 static void autorun_array(struct mddev *mddev) 5404 { 5405 struct md_rdev *rdev; 5406 int err; 5407 5408 if (list_empty(&mddev->disks)) 5409 return; 5410 5411 printk(KERN_INFO "md: running: "); 5412 5413 rdev_for_each(rdev, mddev) { 5414 char b[BDEVNAME_SIZE]; 5415 printk("<%s>", bdevname(rdev->bdev,b)); 5416 } 5417 printk("\n"); 5418 5419 err = do_md_run(mddev); 5420 if (err) { 5421 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5422 do_md_stop(mddev, 0, NULL); 5423 } 5424 } 5425 5426 /* 5427 * lets try to run arrays based on all disks that have arrived 5428 * until now. (those are in pending_raid_disks) 5429 * 5430 * the method: pick the first pending disk, collect all disks with 5431 * the same UUID, remove all from the pending list and put them into 5432 * the 'same_array' list. Then order this list based on superblock 5433 * update time (freshest comes first), kick out 'old' disks and 5434 * compare superblocks. If everything's fine then run it. 5435 * 5436 * If "unit" is allocated, then bump its reference count 5437 */ 5438 static void autorun_devices(int part) 5439 { 5440 struct md_rdev *rdev0, *rdev, *tmp; 5441 struct mddev *mddev; 5442 char b[BDEVNAME_SIZE]; 5443 5444 printk(KERN_INFO "md: autorun ...\n"); 5445 while (!list_empty(&pending_raid_disks)) { 5446 int unit; 5447 dev_t dev; 5448 LIST_HEAD(candidates); 5449 rdev0 = list_entry(pending_raid_disks.next, 5450 struct md_rdev, same_set); 5451 5452 printk(KERN_INFO "md: considering %s ...\n", 5453 bdevname(rdev0->bdev,b)); 5454 INIT_LIST_HEAD(&candidates); 5455 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5456 if (super_90_load(rdev, rdev0, 0) >= 0) { 5457 printk(KERN_INFO "md: adding %s ...\n", 5458 bdevname(rdev->bdev,b)); 5459 list_move(&rdev->same_set, &candidates); 5460 } 5461 /* 5462 * now we have a set of devices, with all of them having 5463 * mostly sane superblocks. It's time to allocate the 5464 * mddev. 5465 */ 5466 if (part) { 5467 dev = MKDEV(mdp_major, 5468 rdev0->preferred_minor << MdpMinorShift); 5469 unit = MINOR(dev) >> MdpMinorShift; 5470 } else { 5471 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5472 unit = MINOR(dev); 5473 } 5474 if (rdev0->preferred_minor != unit) { 5475 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5476 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5477 break; 5478 } 5479 5480 md_probe(dev, NULL, NULL); 5481 mddev = mddev_find(dev); 5482 if (!mddev || !mddev->gendisk) { 5483 if (mddev) 5484 mddev_put(mddev); 5485 printk(KERN_ERR 5486 "md: cannot allocate memory for md drive.\n"); 5487 break; 5488 } 5489 if (mddev_lock(mddev)) 5490 printk(KERN_WARNING "md: %s locked, cannot run\n", 5491 mdname(mddev)); 5492 else if (mddev->raid_disks || mddev->major_version 5493 || !list_empty(&mddev->disks)) { 5494 printk(KERN_WARNING 5495 "md: %s already running, cannot run %s\n", 5496 mdname(mddev), bdevname(rdev0->bdev,b)); 5497 mddev_unlock(mddev); 5498 } else { 5499 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5500 mddev->persistent = 1; 5501 rdev_for_each_list(rdev, tmp, &candidates) { 5502 list_del_init(&rdev->same_set); 5503 if (bind_rdev_to_array(rdev, mddev)) 5504 export_rdev(rdev); 5505 } 5506 autorun_array(mddev); 5507 mddev_unlock(mddev); 5508 } 5509 /* on success, candidates will be empty, on error 5510 * it won't... 5511 */ 5512 rdev_for_each_list(rdev, tmp, &candidates) { 5513 list_del_init(&rdev->same_set); 5514 export_rdev(rdev); 5515 } 5516 mddev_put(mddev); 5517 } 5518 printk(KERN_INFO "md: ... autorun DONE.\n"); 5519 } 5520 #endif /* !MODULE */ 5521 5522 static int get_version(void __user * arg) 5523 { 5524 mdu_version_t ver; 5525 5526 ver.major = MD_MAJOR_VERSION; 5527 ver.minor = MD_MINOR_VERSION; 5528 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5529 5530 if (copy_to_user(arg, &ver, sizeof(ver))) 5531 return -EFAULT; 5532 5533 return 0; 5534 } 5535 5536 static int get_array_info(struct mddev * mddev, void __user * arg) 5537 { 5538 mdu_array_info_t info; 5539 int nr,working,insync,failed,spare; 5540 struct md_rdev *rdev; 5541 5542 nr = working = insync = failed = spare = 0; 5543 rcu_read_lock(); 5544 rdev_for_each_rcu(rdev, mddev) { 5545 nr++; 5546 if (test_bit(Faulty, &rdev->flags)) 5547 failed++; 5548 else { 5549 working++; 5550 if (test_bit(In_sync, &rdev->flags)) 5551 insync++; 5552 else 5553 spare++; 5554 } 5555 } 5556 rcu_read_unlock(); 5557 5558 info.major_version = mddev->major_version; 5559 info.minor_version = mddev->minor_version; 5560 info.patch_version = MD_PATCHLEVEL_VERSION; 5561 info.ctime = mddev->ctime; 5562 info.level = mddev->level; 5563 info.size = mddev->dev_sectors / 2; 5564 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5565 info.size = -1; 5566 info.nr_disks = nr; 5567 info.raid_disks = mddev->raid_disks; 5568 info.md_minor = mddev->md_minor; 5569 info.not_persistent= !mddev->persistent; 5570 5571 info.utime = mddev->utime; 5572 info.state = 0; 5573 if (mddev->in_sync) 5574 info.state = (1<<MD_SB_CLEAN); 5575 if (mddev->bitmap && mddev->bitmap_info.offset) 5576 info.state = (1<<MD_SB_BITMAP_PRESENT); 5577 info.active_disks = insync; 5578 info.working_disks = working; 5579 info.failed_disks = failed; 5580 info.spare_disks = spare; 5581 5582 info.layout = mddev->layout; 5583 info.chunk_size = mddev->chunk_sectors << 9; 5584 5585 if (copy_to_user(arg, &info, sizeof(info))) 5586 return -EFAULT; 5587 5588 return 0; 5589 } 5590 5591 static int get_bitmap_file(struct mddev * mddev, void __user * arg) 5592 { 5593 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5594 char *ptr, *buf = NULL; 5595 int err = -ENOMEM; 5596 5597 file = kmalloc(sizeof(*file), GFP_NOIO); 5598 5599 if (!file) 5600 goto out; 5601 5602 /* bitmap disabled, zero the first byte and copy out */ 5603 if (!mddev->bitmap || !mddev->bitmap->storage.file) { 5604 file->pathname[0] = '\0'; 5605 goto copy_out; 5606 } 5607 5608 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5609 if (!buf) 5610 goto out; 5611 5612 ptr = d_path(&mddev->bitmap->storage.file->f_path, 5613 buf, sizeof(file->pathname)); 5614 if (IS_ERR(ptr)) 5615 goto out; 5616 5617 strcpy(file->pathname, ptr); 5618 5619 copy_out: 5620 err = 0; 5621 if (copy_to_user(arg, file, sizeof(*file))) 5622 err = -EFAULT; 5623 out: 5624 kfree(buf); 5625 kfree(file); 5626 return err; 5627 } 5628 5629 static int get_disk_info(struct mddev * mddev, void __user * arg) 5630 { 5631 mdu_disk_info_t info; 5632 struct md_rdev *rdev; 5633 5634 if (copy_from_user(&info, arg, sizeof(info))) 5635 return -EFAULT; 5636 5637 rcu_read_lock(); 5638 rdev = find_rdev_nr_rcu(mddev, info.number); 5639 if (rdev) { 5640 info.major = MAJOR(rdev->bdev->bd_dev); 5641 info.minor = MINOR(rdev->bdev->bd_dev); 5642 info.raid_disk = rdev->raid_disk; 5643 info.state = 0; 5644 if (test_bit(Faulty, &rdev->flags)) 5645 info.state |= (1<<MD_DISK_FAULTY); 5646 else if (test_bit(In_sync, &rdev->flags)) { 5647 info.state |= (1<<MD_DISK_ACTIVE); 5648 info.state |= (1<<MD_DISK_SYNC); 5649 } 5650 if (test_bit(WriteMostly, &rdev->flags)) 5651 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5652 } else { 5653 info.major = info.minor = 0; 5654 info.raid_disk = -1; 5655 info.state = (1<<MD_DISK_REMOVED); 5656 } 5657 rcu_read_unlock(); 5658 5659 if (copy_to_user(arg, &info, sizeof(info))) 5660 return -EFAULT; 5661 5662 return 0; 5663 } 5664 5665 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) 5666 { 5667 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5668 struct md_rdev *rdev; 5669 dev_t dev = MKDEV(info->major,info->minor); 5670 5671 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5672 return -EOVERFLOW; 5673 5674 if (!mddev->raid_disks) { 5675 int err; 5676 /* expecting a device which has a superblock */ 5677 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5678 if (IS_ERR(rdev)) { 5679 printk(KERN_WARNING 5680 "md: md_import_device returned %ld\n", 5681 PTR_ERR(rdev)); 5682 return PTR_ERR(rdev); 5683 } 5684 if (!list_empty(&mddev->disks)) { 5685 struct md_rdev *rdev0 5686 = list_entry(mddev->disks.next, 5687 struct md_rdev, same_set); 5688 err = super_types[mddev->major_version] 5689 .load_super(rdev, rdev0, mddev->minor_version); 5690 if (err < 0) { 5691 printk(KERN_WARNING 5692 "md: %s has different UUID to %s\n", 5693 bdevname(rdev->bdev,b), 5694 bdevname(rdev0->bdev,b2)); 5695 export_rdev(rdev); 5696 return -EINVAL; 5697 } 5698 } 5699 err = bind_rdev_to_array(rdev, mddev); 5700 if (err) 5701 export_rdev(rdev); 5702 return err; 5703 } 5704 5705 /* 5706 * add_new_disk can be used once the array is assembled 5707 * to add "hot spares". They must already have a superblock 5708 * written 5709 */ 5710 if (mddev->pers) { 5711 int err; 5712 if (!mddev->pers->hot_add_disk) { 5713 printk(KERN_WARNING 5714 "%s: personality does not support diskops!\n", 5715 mdname(mddev)); 5716 return -EINVAL; 5717 } 5718 if (mddev->persistent) 5719 rdev = md_import_device(dev, mddev->major_version, 5720 mddev->minor_version); 5721 else 5722 rdev = md_import_device(dev, -1, -1); 5723 if (IS_ERR(rdev)) { 5724 printk(KERN_WARNING 5725 "md: md_import_device returned %ld\n", 5726 PTR_ERR(rdev)); 5727 return PTR_ERR(rdev); 5728 } 5729 /* set saved_raid_disk if appropriate */ 5730 if (!mddev->persistent) { 5731 if (info->state & (1<<MD_DISK_SYNC) && 5732 info->raid_disk < mddev->raid_disks) { 5733 rdev->raid_disk = info->raid_disk; 5734 set_bit(In_sync, &rdev->flags); 5735 } else 5736 rdev->raid_disk = -1; 5737 } else 5738 super_types[mddev->major_version]. 5739 validate_super(mddev, rdev); 5740 if ((info->state & (1<<MD_DISK_SYNC)) && 5741 rdev->raid_disk != info->raid_disk) { 5742 /* This was a hot-add request, but events doesn't 5743 * match, so reject it. 5744 */ 5745 export_rdev(rdev); 5746 return -EINVAL; 5747 } 5748 5749 if (test_bit(In_sync, &rdev->flags)) 5750 rdev->saved_raid_disk = rdev->raid_disk; 5751 else 5752 rdev->saved_raid_disk = -1; 5753 5754 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5755 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5756 set_bit(WriteMostly, &rdev->flags); 5757 else 5758 clear_bit(WriteMostly, &rdev->flags); 5759 5760 rdev->raid_disk = -1; 5761 err = bind_rdev_to_array(rdev, mddev); 5762 if (!err && !mddev->pers->hot_remove_disk) { 5763 /* If there is hot_add_disk but no hot_remove_disk 5764 * then added disks for geometry changes, 5765 * and should be added immediately. 5766 */ 5767 super_types[mddev->major_version]. 5768 validate_super(mddev, rdev); 5769 err = mddev->pers->hot_add_disk(mddev, rdev); 5770 if (err) 5771 unbind_rdev_from_array(rdev); 5772 } 5773 if (err) 5774 export_rdev(rdev); 5775 else 5776 sysfs_notify_dirent_safe(rdev->sysfs_state); 5777 5778 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5779 if (mddev->degraded) 5780 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5781 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5782 if (!err) 5783 md_new_event(mddev); 5784 md_wakeup_thread(mddev->thread); 5785 return err; 5786 } 5787 5788 /* otherwise, add_new_disk is only allowed 5789 * for major_version==0 superblocks 5790 */ 5791 if (mddev->major_version != 0) { 5792 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5793 mdname(mddev)); 5794 return -EINVAL; 5795 } 5796 5797 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5798 int err; 5799 rdev = md_import_device(dev, -1, 0); 5800 if (IS_ERR(rdev)) { 5801 printk(KERN_WARNING 5802 "md: error, md_import_device() returned %ld\n", 5803 PTR_ERR(rdev)); 5804 return PTR_ERR(rdev); 5805 } 5806 rdev->desc_nr = info->number; 5807 if (info->raid_disk < mddev->raid_disks) 5808 rdev->raid_disk = info->raid_disk; 5809 else 5810 rdev->raid_disk = -1; 5811 5812 if (rdev->raid_disk < mddev->raid_disks) 5813 if (info->state & (1<<MD_DISK_SYNC)) 5814 set_bit(In_sync, &rdev->flags); 5815 5816 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5817 set_bit(WriteMostly, &rdev->flags); 5818 5819 if (!mddev->persistent) { 5820 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5821 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5822 } else 5823 rdev->sb_start = calc_dev_sboffset(rdev); 5824 rdev->sectors = rdev->sb_start; 5825 5826 err = bind_rdev_to_array(rdev, mddev); 5827 if (err) { 5828 export_rdev(rdev); 5829 return err; 5830 } 5831 } 5832 5833 return 0; 5834 } 5835 5836 static int hot_remove_disk(struct mddev * mddev, dev_t dev) 5837 { 5838 char b[BDEVNAME_SIZE]; 5839 struct md_rdev *rdev; 5840 5841 rdev = find_rdev(mddev, dev); 5842 if (!rdev) 5843 return -ENXIO; 5844 5845 clear_bit(Blocked, &rdev->flags); 5846 remove_and_add_spares(mddev, rdev); 5847 5848 if (rdev->raid_disk >= 0) 5849 goto busy; 5850 5851 kick_rdev_from_array(rdev); 5852 md_update_sb(mddev, 1); 5853 md_new_event(mddev); 5854 5855 return 0; 5856 busy: 5857 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5858 bdevname(rdev->bdev,b), mdname(mddev)); 5859 return -EBUSY; 5860 } 5861 5862 static int hot_add_disk(struct mddev * mddev, dev_t dev) 5863 { 5864 char b[BDEVNAME_SIZE]; 5865 int err; 5866 struct md_rdev *rdev; 5867 5868 if (!mddev->pers) 5869 return -ENODEV; 5870 5871 if (mddev->major_version != 0) { 5872 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5873 " version-0 superblocks.\n", 5874 mdname(mddev)); 5875 return -EINVAL; 5876 } 5877 if (!mddev->pers->hot_add_disk) { 5878 printk(KERN_WARNING 5879 "%s: personality does not support diskops!\n", 5880 mdname(mddev)); 5881 return -EINVAL; 5882 } 5883 5884 rdev = md_import_device(dev, -1, 0); 5885 if (IS_ERR(rdev)) { 5886 printk(KERN_WARNING 5887 "md: error, md_import_device() returned %ld\n", 5888 PTR_ERR(rdev)); 5889 return -EINVAL; 5890 } 5891 5892 if (mddev->persistent) 5893 rdev->sb_start = calc_dev_sboffset(rdev); 5894 else 5895 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5896 5897 rdev->sectors = rdev->sb_start; 5898 5899 if (test_bit(Faulty, &rdev->flags)) { 5900 printk(KERN_WARNING 5901 "md: can not hot-add faulty %s disk to %s!\n", 5902 bdevname(rdev->bdev,b), mdname(mddev)); 5903 err = -EINVAL; 5904 goto abort_export; 5905 } 5906 clear_bit(In_sync, &rdev->flags); 5907 rdev->desc_nr = -1; 5908 rdev->saved_raid_disk = -1; 5909 err = bind_rdev_to_array(rdev, mddev); 5910 if (err) 5911 goto abort_export; 5912 5913 /* 5914 * The rest should better be atomic, we can have disk failures 5915 * noticed in interrupt contexts ... 5916 */ 5917 5918 rdev->raid_disk = -1; 5919 5920 md_update_sb(mddev, 1); 5921 5922 /* 5923 * Kick recovery, maybe this spare has to be added to the 5924 * array immediately. 5925 */ 5926 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5927 md_wakeup_thread(mddev->thread); 5928 md_new_event(mddev); 5929 return 0; 5930 5931 abort_export: 5932 export_rdev(rdev); 5933 return err; 5934 } 5935 5936 static int set_bitmap_file(struct mddev *mddev, int fd) 5937 { 5938 int err; 5939 5940 if (mddev->pers) { 5941 if (!mddev->pers->quiesce) 5942 return -EBUSY; 5943 if (mddev->recovery || mddev->sync_thread) 5944 return -EBUSY; 5945 /* we should be able to change the bitmap.. */ 5946 } 5947 5948 5949 if (fd >= 0) { 5950 if (mddev->bitmap) 5951 return -EEXIST; /* cannot add when bitmap is present */ 5952 mddev->bitmap_info.file = fget(fd); 5953 5954 if (mddev->bitmap_info.file == NULL) { 5955 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5956 mdname(mddev)); 5957 return -EBADF; 5958 } 5959 5960 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5961 if (err) { 5962 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5963 mdname(mddev)); 5964 fput(mddev->bitmap_info.file); 5965 mddev->bitmap_info.file = NULL; 5966 return err; 5967 } 5968 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5969 } else if (mddev->bitmap == NULL) 5970 return -ENOENT; /* cannot remove what isn't there */ 5971 err = 0; 5972 if (mddev->pers) { 5973 mddev->pers->quiesce(mddev, 1); 5974 if (fd >= 0) { 5975 err = bitmap_create(mddev); 5976 if (!err) 5977 err = bitmap_load(mddev); 5978 } 5979 if (fd < 0 || err) { 5980 bitmap_destroy(mddev); 5981 fd = -1; /* make sure to put the file */ 5982 } 5983 mddev->pers->quiesce(mddev, 0); 5984 } 5985 if (fd < 0) { 5986 if (mddev->bitmap_info.file) { 5987 restore_bitmap_write_access(mddev->bitmap_info.file); 5988 fput(mddev->bitmap_info.file); 5989 } 5990 mddev->bitmap_info.file = NULL; 5991 } 5992 5993 return err; 5994 } 5995 5996 /* 5997 * set_array_info is used two different ways 5998 * The original usage is when creating a new array. 5999 * In this usage, raid_disks is > 0 and it together with 6000 * level, size, not_persistent,layout,chunksize determine the 6001 * shape of the array. 6002 * This will always create an array with a type-0.90.0 superblock. 6003 * The newer usage is when assembling an array. 6004 * In this case raid_disks will be 0, and the major_version field is 6005 * use to determine which style super-blocks are to be found on the devices. 6006 * The minor and patch _version numbers are also kept incase the 6007 * super_block handler wishes to interpret them. 6008 */ 6009 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info) 6010 { 6011 6012 if (info->raid_disks == 0) { 6013 /* just setting version number for superblock loading */ 6014 if (info->major_version < 0 || 6015 info->major_version >= ARRAY_SIZE(super_types) || 6016 super_types[info->major_version].name == NULL) { 6017 /* maybe try to auto-load a module? */ 6018 printk(KERN_INFO 6019 "md: superblock version %d not known\n", 6020 info->major_version); 6021 return -EINVAL; 6022 } 6023 mddev->major_version = info->major_version; 6024 mddev->minor_version = info->minor_version; 6025 mddev->patch_version = info->patch_version; 6026 mddev->persistent = !info->not_persistent; 6027 /* ensure mddev_put doesn't delete this now that there 6028 * is some minimal configuration. 6029 */ 6030 mddev->ctime = get_seconds(); 6031 return 0; 6032 } 6033 mddev->major_version = MD_MAJOR_VERSION; 6034 mddev->minor_version = MD_MINOR_VERSION; 6035 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6036 mddev->ctime = get_seconds(); 6037 6038 mddev->level = info->level; 6039 mddev->clevel[0] = 0; 6040 mddev->dev_sectors = 2 * (sector_t)info->size; 6041 mddev->raid_disks = info->raid_disks; 6042 /* don't set md_minor, it is determined by which /dev/md* was 6043 * openned 6044 */ 6045 if (info->state & (1<<MD_SB_CLEAN)) 6046 mddev->recovery_cp = MaxSector; 6047 else 6048 mddev->recovery_cp = 0; 6049 mddev->persistent = ! info->not_persistent; 6050 mddev->external = 0; 6051 6052 mddev->layout = info->layout; 6053 mddev->chunk_sectors = info->chunk_size >> 9; 6054 6055 mddev->max_disks = MD_SB_DISKS; 6056 6057 if (mddev->persistent) 6058 mddev->flags = 0; 6059 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6060 6061 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6062 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6063 mddev->bitmap_info.offset = 0; 6064 6065 mddev->reshape_position = MaxSector; 6066 6067 /* 6068 * Generate a 128 bit UUID 6069 */ 6070 get_random_bytes(mddev->uuid, 16); 6071 6072 mddev->new_level = mddev->level; 6073 mddev->new_chunk_sectors = mddev->chunk_sectors; 6074 mddev->new_layout = mddev->layout; 6075 mddev->delta_disks = 0; 6076 mddev->reshape_backwards = 0; 6077 6078 return 0; 6079 } 6080 6081 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6082 { 6083 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6084 6085 if (mddev->external_size) 6086 return; 6087 6088 mddev->array_sectors = array_sectors; 6089 } 6090 EXPORT_SYMBOL(md_set_array_sectors); 6091 6092 static int update_size(struct mddev *mddev, sector_t num_sectors) 6093 { 6094 struct md_rdev *rdev; 6095 int rv; 6096 int fit = (num_sectors == 0); 6097 6098 if (mddev->pers->resize == NULL) 6099 return -EINVAL; 6100 /* The "num_sectors" is the number of sectors of each device that 6101 * is used. This can only make sense for arrays with redundancy. 6102 * linear and raid0 always use whatever space is available. We can only 6103 * consider changing this number if no resync or reconstruction is 6104 * happening, and if the new size is acceptable. It must fit before the 6105 * sb_start or, if that is <data_offset, it must fit before the size 6106 * of each device. If num_sectors is zero, we find the largest size 6107 * that fits. 6108 */ 6109 if (mddev->sync_thread) 6110 return -EBUSY; 6111 6112 rdev_for_each(rdev, mddev) { 6113 sector_t avail = rdev->sectors; 6114 6115 if (fit && (num_sectors == 0 || num_sectors > avail)) 6116 num_sectors = avail; 6117 if (avail < num_sectors) 6118 return -ENOSPC; 6119 } 6120 rv = mddev->pers->resize(mddev, num_sectors); 6121 if (!rv) 6122 revalidate_disk(mddev->gendisk); 6123 return rv; 6124 } 6125 6126 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6127 { 6128 int rv; 6129 struct md_rdev *rdev; 6130 /* change the number of raid disks */ 6131 if (mddev->pers->check_reshape == NULL) 6132 return -EINVAL; 6133 if (raid_disks <= 0 || 6134 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6135 return -EINVAL; 6136 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 6137 return -EBUSY; 6138 6139 rdev_for_each(rdev, mddev) { 6140 if (mddev->raid_disks < raid_disks && 6141 rdev->data_offset < rdev->new_data_offset) 6142 return -EINVAL; 6143 if (mddev->raid_disks > raid_disks && 6144 rdev->data_offset > rdev->new_data_offset) 6145 return -EINVAL; 6146 } 6147 6148 mddev->delta_disks = raid_disks - mddev->raid_disks; 6149 if (mddev->delta_disks < 0) 6150 mddev->reshape_backwards = 1; 6151 else if (mddev->delta_disks > 0) 6152 mddev->reshape_backwards = 0; 6153 6154 rv = mddev->pers->check_reshape(mddev); 6155 if (rv < 0) { 6156 mddev->delta_disks = 0; 6157 mddev->reshape_backwards = 0; 6158 } 6159 return rv; 6160 } 6161 6162 6163 /* 6164 * update_array_info is used to change the configuration of an 6165 * on-line array. 6166 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6167 * fields in the info are checked against the array. 6168 * Any differences that cannot be handled will cause an error. 6169 * Normally, only one change can be managed at a time. 6170 */ 6171 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6172 { 6173 int rv = 0; 6174 int cnt = 0; 6175 int state = 0; 6176 6177 /* calculate expected state,ignoring low bits */ 6178 if (mddev->bitmap && mddev->bitmap_info.offset) 6179 state |= (1 << MD_SB_BITMAP_PRESENT); 6180 6181 if (mddev->major_version != info->major_version || 6182 mddev->minor_version != info->minor_version || 6183 /* mddev->patch_version != info->patch_version || */ 6184 mddev->ctime != info->ctime || 6185 mddev->level != info->level || 6186 /* mddev->layout != info->layout || */ 6187 !mddev->persistent != info->not_persistent|| 6188 mddev->chunk_sectors != info->chunk_size >> 9 || 6189 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6190 ((state^info->state) & 0xfffffe00) 6191 ) 6192 return -EINVAL; 6193 /* Check there is only one change */ 6194 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6195 cnt++; 6196 if (mddev->raid_disks != info->raid_disks) 6197 cnt++; 6198 if (mddev->layout != info->layout) 6199 cnt++; 6200 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6201 cnt++; 6202 if (cnt == 0) 6203 return 0; 6204 if (cnt > 1) 6205 return -EINVAL; 6206 6207 if (mddev->layout != info->layout) { 6208 /* Change layout 6209 * we don't need to do anything at the md level, the 6210 * personality will take care of it all. 6211 */ 6212 if (mddev->pers->check_reshape == NULL) 6213 return -EINVAL; 6214 else { 6215 mddev->new_layout = info->layout; 6216 rv = mddev->pers->check_reshape(mddev); 6217 if (rv) 6218 mddev->new_layout = mddev->layout; 6219 return rv; 6220 } 6221 } 6222 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6223 rv = update_size(mddev, (sector_t)info->size * 2); 6224 6225 if (mddev->raid_disks != info->raid_disks) 6226 rv = update_raid_disks(mddev, info->raid_disks); 6227 6228 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6229 if (mddev->pers->quiesce == NULL) 6230 return -EINVAL; 6231 if (mddev->recovery || mddev->sync_thread) 6232 return -EBUSY; 6233 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6234 /* add the bitmap */ 6235 if (mddev->bitmap) 6236 return -EEXIST; 6237 if (mddev->bitmap_info.default_offset == 0) 6238 return -EINVAL; 6239 mddev->bitmap_info.offset = 6240 mddev->bitmap_info.default_offset; 6241 mddev->bitmap_info.space = 6242 mddev->bitmap_info.default_space; 6243 mddev->pers->quiesce(mddev, 1); 6244 rv = bitmap_create(mddev); 6245 if (!rv) 6246 rv = bitmap_load(mddev); 6247 if (rv) 6248 bitmap_destroy(mddev); 6249 mddev->pers->quiesce(mddev, 0); 6250 } else { 6251 /* remove the bitmap */ 6252 if (!mddev->bitmap) 6253 return -ENOENT; 6254 if (mddev->bitmap->storage.file) 6255 return -EINVAL; 6256 mddev->pers->quiesce(mddev, 1); 6257 bitmap_destroy(mddev); 6258 mddev->pers->quiesce(mddev, 0); 6259 mddev->bitmap_info.offset = 0; 6260 } 6261 } 6262 md_update_sb(mddev, 1); 6263 return rv; 6264 } 6265 6266 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6267 { 6268 struct md_rdev *rdev; 6269 int err = 0; 6270 6271 if (mddev->pers == NULL) 6272 return -ENODEV; 6273 6274 rcu_read_lock(); 6275 rdev = find_rdev_rcu(mddev, dev); 6276 if (!rdev) 6277 err = -ENODEV; 6278 else { 6279 md_error(mddev, rdev); 6280 if (!test_bit(Faulty, &rdev->flags)) 6281 err = -EBUSY; 6282 } 6283 rcu_read_unlock(); 6284 return err; 6285 } 6286 6287 /* 6288 * We have a problem here : there is no easy way to give a CHS 6289 * virtual geometry. We currently pretend that we have a 2 heads 6290 * 4 sectors (with a BIG number of cylinders...). This drives 6291 * dosfs just mad... ;-) 6292 */ 6293 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6294 { 6295 struct mddev *mddev = bdev->bd_disk->private_data; 6296 6297 geo->heads = 2; 6298 geo->sectors = 4; 6299 geo->cylinders = mddev->array_sectors / 8; 6300 return 0; 6301 } 6302 6303 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6304 unsigned int cmd, unsigned long arg) 6305 { 6306 int err = 0; 6307 void __user *argp = (void __user *)arg; 6308 struct mddev *mddev = NULL; 6309 int ro; 6310 6311 switch (cmd) { 6312 case RAID_VERSION: 6313 case GET_ARRAY_INFO: 6314 case GET_DISK_INFO: 6315 break; 6316 default: 6317 if (!capable(CAP_SYS_ADMIN)) 6318 return -EACCES; 6319 } 6320 6321 /* 6322 * Commands dealing with the RAID driver but not any 6323 * particular array: 6324 */ 6325 switch (cmd) { 6326 case RAID_VERSION: 6327 err = get_version(argp); 6328 goto done; 6329 6330 case PRINT_RAID_DEBUG: 6331 err = 0; 6332 md_print_devices(); 6333 goto done; 6334 6335 #ifndef MODULE 6336 case RAID_AUTORUN: 6337 err = 0; 6338 autostart_arrays(arg); 6339 goto done; 6340 #endif 6341 default:; 6342 } 6343 6344 /* 6345 * Commands creating/starting a new array: 6346 */ 6347 6348 mddev = bdev->bd_disk->private_data; 6349 6350 if (!mddev) { 6351 BUG(); 6352 goto abort; 6353 } 6354 6355 /* Some actions do not requires the mutex */ 6356 switch (cmd) { 6357 case GET_ARRAY_INFO: 6358 if (!mddev->raid_disks && !mddev->external) 6359 err = -ENODEV; 6360 else 6361 err = get_array_info(mddev, argp); 6362 goto abort; 6363 6364 case GET_DISK_INFO: 6365 if (!mddev->raid_disks && !mddev->external) 6366 err = -ENODEV; 6367 else 6368 err = get_disk_info(mddev, argp); 6369 goto abort; 6370 6371 case SET_DISK_FAULTY: 6372 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6373 goto abort; 6374 } 6375 6376 if (cmd == ADD_NEW_DISK) 6377 /* need to ensure md_delayed_delete() has completed */ 6378 flush_workqueue(md_misc_wq); 6379 6380 if (cmd == HOT_REMOVE_DISK) 6381 /* need to ensure recovery thread has run */ 6382 wait_event_interruptible_timeout(mddev->sb_wait, 6383 !test_bit(MD_RECOVERY_NEEDED, 6384 &mddev->flags), 6385 msecs_to_jiffies(5000)); 6386 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 6387 /* Need to flush page cache, and ensure no-one else opens 6388 * and writes 6389 */ 6390 mutex_lock(&mddev->open_mutex); 6391 if (atomic_read(&mddev->openers) > 1) { 6392 mutex_unlock(&mddev->open_mutex); 6393 err = -EBUSY; 6394 goto abort; 6395 } 6396 set_bit(MD_STILL_CLOSED, &mddev->flags); 6397 mutex_unlock(&mddev->open_mutex); 6398 sync_blockdev(bdev); 6399 } 6400 err = mddev_lock(mddev); 6401 if (err) { 6402 printk(KERN_INFO 6403 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6404 err, cmd); 6405 goto abort; 6406 } 6407 6408 if (cmd == SET_ARRAY_INFO) { 6409 mdu_array_info_t info; 6410 if (!arg) 6411 memset(&info, 0, sizeof(info)); 6412 else if (copy_from_user(&info, argp, sizeof(info))) { 6413 err = -EFAULT; 6414 goto abort_unlock; 6415 } 6416 if (mddev->pers) { 6417 err = update_array_info(mddev, &info); 6418 if (err) { 6419 printk(KERN_WARNING "md: couldn't update" 6420 " array info. %d\n", err); 6421 goto abort_unlock; 6422 } 6423 goto done_unlock; 6424 } 6425 if (!list_empty(&mddev->disks)) { 6426 printk(KERN_WARNING 6427 "md: array %s already has disks!\n", 6428 mdname(mddev)); 6429 err = -EBUSY; 6430 goto abort_unlock; 6431 } 6432 if (mddev->raid_disks) { 6433 printk(KERN_WARNING 6434 "md: array %s already initialised!\n", 6435 mdname(mddev)); 6436 err = -EBUSY; 6437 goto abort_unlock; 6438 } 6439 err = set_array_info(mddev, &info); 6440 if (err) { 6441 printk(KERN_WARNING "md: couldn't set" 6442 " array info. %d\n", err); 6443 goto abort_unlock; 6444 } 6445 goto done_unlock; 6446 } 6447 6448 /* 6449 * Commands querying/configuring an existing array: 6450 */ 6451 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6452 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6453 if ((!mddev->raid_disks && !mddev->external) 6454 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6455 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6456 && cmd != GET_BITMAP_FILE) { 6457 err = -ENODEV; 6458 goto abort_unlock; 6459 } 6460 6461 /* 6462 * Commands even a read-only array can execute: 6463 */ 6464 switch (cmd) { 6465 case GET_BITMAP_FILE: 6466 err = get_bitmap_file(mddev, argp); 6467 goto done_unlock; 6468 6469 case RESTART_ARRAY_RW: 6470 err = restart_array(mddev); 6471 goto done_unlock; 6472 6473 case STOP_ARRAY: 6474 err = do_md_stop(mddev, 0, bdev); 6475 goto done_unlock; 6476 6477 case STOP_ARRAY_RO: 6478 err = md_set_readonly(mddev, bdev); 6479 goto done_unlock; 6480 6481 case HOT_REMOVE_DISK: 6482 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6483 goto done_unlock; 6484 6485 case ADD_NEW_DISK: 6486 /* We can support ADD_NEW_DISK on read-only arrays 6487 * on if we are re-adding a preexisting device. 6488 * So require mddev->pers and MD_DISK_SYNC. 6489 */ 6490 if (mddev->pers) { 6491 mdu_disk_info_t info; 6492 if (copy_from_user(&info, argp, sizeof(info))) 6493 err = -EFAULT; 6494 else if (!(info.state & (1<<MD_DISK_SYNC))) 6495 /* Need to clear read-only for this */ 6496 break; 6497 else 6498 err = add_new_disk(mddev, &info); 6499 goto done_unlock; 6500 } 6501 break; 6502 6503 case BLKROSET: 6504 if (get_user(ro, (int __user *)(arg))) { 6505 err = -EFAULT; 6506 goto done_unlock; 6507 } 6508 err = -EINVAL; 6509 6510 /* if the bdev is going readonly the value of mddev->ro 6511 * does not matter, no writes are coming 6512 */ 6513 if (ro) 6514 goto done_unlock; 6515 6516 /* are we are already prepared for writes? */ 6517 if (mddev->ro != 1) 6518 goto done_unlock; 6519 6520 /* transitioning to readauto need only happen for 6521 * arrays that call md_write_start 6522 */ 6523 if (mddev->pers) { 6524 err = restart_array(mddev); 6525 if (err == 0) { 6526 mddev->ro = 2; 6527 set_disk_ro(mddev->gendisk, 0); 6528 } 6529 } 6530 goto done_unlock; 6531 } 6532 6533 /* 6534 * The remaining ioctls are changing the state of the 6535 * superblock, so we do not allow them on read-only arrays. 6536 * However non-MD ioctls (e.g. get-size) will still come through 6537 * here and hit the 'default' below, so only disallow 6538 * 'md' ioctls, and switch to rw mode if started auto-readonly. 6539 */ 6540 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 6541 if (mddev->ro == 2) { 6542 mddev->ro = 0; 6543 sysfs_notify_dirent_safe(mddev->sysfs_state); 6544 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6545 /* mddev_unlock will wake thread */ 6546 /* If a device failed while we were read-only, we 6547 * need to make sure the metadata is updated now. 6548 */ 6549 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 6550 mddev_unlock(mddev); 6551 wait_event(mddev->sb_wait, 6552 !test_bit(MD_CHANGE_DEVS, &mddev->flags) && 6553 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6554 mddev_lock(mddev); 6555 } 6556 } else { 6557 err = -EROFS; 6558 goto abort_unlock; 6559 } 6560 } 6561 6562 switch (cmd) { 6563 case ADD_NEW_DISK: 6564 { 6565 mdu_disk_info_t info; 6566 if (copy_from_user(&info, argp, sizeof(info))) 6567 err = -EFAULT; 6568 else 6569 err = add_new_disk(mddev, &info); 6570 goto done_unlock; 6571 } 6572 6573 case HOT_ADD_DISK: 6574 err = hot_add_disk(mddev, new_decode_dev(arg)); 6575 goto done_unlock; 6576 6577 case RUN_ARRAY: 6578 err = do_md_run(mddev); 6579 goto done_unlock; 6580 6581 case SET_BITMAP_FILE: 6582 err = set_bitmap_file(mddev, (int)arg); 6583 goto done_unlock; 6584 6585 default: 6586 err = -EINVAL; 6587 goto abort_unlock; 6588 } 6589 6590 done_unlock: 6591 abort_unlock: 6592 if (mddev->hold_active == UNTIL_IOCTL && 6593 err != -EINVAL) 6594 mddev->hold_active = 0; 6595 mddev_unlock(mddev); 6596 6597 return err; 6598 done: 6599 if (err) 6600 MD_BUG(); 6601 abort: 6602 return err; 6603 } 6604 #ifdef CONFIG_COMPAT 6605 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6606 unsigned int cmd, unsigned long arg) 6607 { 6608 switch (cmd) { 6609 case HOT_REMOVE_DISK: 6610 case HOT_ADD_DISK: 6611 case SET_DISK_FAULTY: 6612 case SET_BITMAP_FILE: 6613 /* These take in integer arg, do not convert */ 6614 break; 6615 default: 6616 arg = (unsigned long)compat_ptr(arg); 6617 break; 6618 } 6619 6620 return md_ioctl(bdev, mode, cmd, arg); 6621 } 6622 #endif /* CONFIG_COMPAT */ 6623 6624 static int md_open(struct block_device *bdev, fmode_t mode) 6625 { 6626 /* 6627 * Succeed if we can lock the mddev, which confirms that 6628 * it isn't being stopped right now. 6629 */ 6630 struct mddev *mddev = mddev_find(bdev->bd_dev); 6631 int err; 6632 6633 if (!mddev) 6634 return -ENODEV; 6635 6636 if (mddev->gendisk != bdev->bd_disk) { 6637 /* we are racing with mddev_put which is discarding this 6638 * bd_disk. 6639 */ 6640 mddev_put(mddev); 6641 /* Wait until bdev->bd_disk is definitely gone */ 6642 flush_workqueue(md_misc_wq); 6643 /* Then retry the open from the top */ 6644 return -ERESTARTSYS; 6645 } 6646 BUG_ON(mddev != bdev->bd_disk->private_data); 6647 6648 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6649 goto out; 6650 6651 err = 0; 6652 atomic_inc(&mddev->openers); 6653 clear_bit(MD_STILL_CLOSED, &mddev->flags); 6654 mutex_unlock(&mddev->open_mutex); 6655 6656 check_disk_change(bdev); 6657 out: 6658 return err; 6659 } 6660 6661 static void md_release(struct gendisk *disk, fmode_t mode) 6662 { 6663 struct mddev *mddev = disk->private_data; 6664 6665 BUG_ON(!mddev); 6666 atomic_dec(&mddev->openers); 6667 mddev_put(mddev); 6668 } 6669 6670 static int md_media_changed(struct gendisk *disk) 6671 { 6672 struct mddev *mddev = disk->private_data; 6673 6674 return mddev->changed; 6675 } 6676 6677 static int md_revalidate(struct gendisk *disk) 6678 { 6679 struct mddev *mddev = disk->private_data; 6680 6681 mddev->changed = 0; 6682 return 0; 6683 } 6684 static const struct block_device_operations md_fops = 6685 { 6686 .owner = THIS_MODULE, 6687 .open = md_open, 6688 .release = md_release, 6689 .ioctl = md_ioctl, 6690 #ifdef CONFIG_COMPAT 6691 .compat_ioctl = md_compat_ioctl, 6692 #endif 6693 .getgeo = md_getgeo, 6694 .media_changed = md_media_changed, 6695 .revalidate_disk= md_revalidate, 6696 }; 6697 6698 static int md_thread(void * arg) 6699 { 6700 struct md_thread *thread = arg; 6701 6702 /* 6703 * md_thread is a 'system-thread', it's priority should be very 6704 * high. We avoid resource deadlocks individually in each 6705 * raid personality. (RAID5 does preallocation) We also use RR and 6706 * the very same RT priority as kswapd, thus we will never get 6707 * into a priority inversion deadlock. 6708 * 6709 * we definitely have to have equal or higher priority than 6710 * bdflush, otherwise bdflush will deadlock if there are too 6711 * many dirty RAID5 blocks. 6712 */ 6713 6714 allow_signal(SIGKILL); 6715 while (!kthread_should_stop()) { 6716 6717 /* We need to wait INTERRUPTIBLE so that 6718 * we don't add to the load-average. 6719 * That means we need to be sure no signals are 6720 * pending 6721 */ 6722 if (signal_pending(current)) 6723 flush_signals(current); 6724 6725 wait_event_interruptible_timeout 6726 (thread->wqueue, 6727 test_bit(THREAD_WAKEUP, &thread->flags) 6728 || kthread_should_stop(), 6729 thread->timeout); 6730 6731 clear_bit(THREAD_WAKEUP, &thread->flags); 6732 if (!kthread_should_stop()) 6733 thread->run(thread); 6734 } 6735 6736 return 0; 6737 } 6738 6739 void md_wakeup_thread(struct md_thread *thread) 6740 { 6741 if (thread) { 6742 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6743 set_bit(THREAD_WAKEUP, &thread->flags); 6744 wake_up(&thread->wqueue); 6745 } 6746 } 6747 6748 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 6749 struct mddev *mddev, const char *name) 6750 { 6751 struct md_thread *thread; 6752 6753 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6754 if (!thread) 6755 return NULL; 6756 6757 init_waitqueue_head(&thread->wqueue); 6758 6759 thread->run = run; 6760 thread->mddev = mddev; 6761 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6762 thread->tsk = kthread_run(md_thread, thread, 6763 "%s_%s", 6764 mdname(thread->mddev), 6765 name); 6766 if (IS_ERR(thread->tsk)) { 6767 kfree(thread); 6768 return NULL; 6769 } 6770 return thread; 6771 } 6772 6773 void md_unregister_thread(struct md_thread **threadp) 6774 { 6775 struct md_thread *thread = *threadp; 6776 if (!thread) 6777 return; 6778 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6779 /* Locking ensures that mddev_unlock does not wake_up a 6780 * non-existent thread 6781 */ 6782 spin_lock(&pers_lock); 6783 *threadp = NULL; 6784 spin_unlock(&pers_lock); 6785 6786 kthread_stop(thread->tsk); 6787 kfree(thread); 6788 } 6789 6790 void md_error(struct mddev *mddev, struct md_rdev *rdev) 6791 { 6792 if (!mddev) { 6793 MD_BUG(); 6794 return; 6795 } 6796 6797 if (!rdev || test_bit(Faulty, &rdev->flags)) 6798 return; 6799 6800 if (!mddev->pers || !mddev->pers->error_handler) 6801 return; 6802 mddev->pers->error_handler(mddev,rdev); 6803 if (mddev->degraded) 6804 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6805 sysfs_notify_dirent_safe(rdev->sysfs_state); 6806 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6807 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6808 md_wakeup_thread(mddev->thread); 6809 if (mddev->event_work.func) 6810 queue_work(md_misc_wq, &mddev->event_work); 6811 md_new_event_inintr(mddev); 6812 } 6813 6814 /* seq_file implementation /proc/mdstat */ 6815 6816 static void status_unused(struct seq_file *seq) 6817 { 6818 int i = 0; 6819 struct md_rdev *rdev; 6820 6821 seq_printf(seq, "unused devices: "); 6822 6823 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6824 char b[BDEVNAME_SIZE]; 6825 i++; 6826 seq_printf(seq, "%s ", 6827 bdevname(rdev->bdev,b)); 6828 } 6829 if (!i) 6830 seq_printf(seq, "<none>"); 6831 6832 seq_printf(seq, "\n"); 6833 } 6834 6835 6836 static void status_resync(struct seq_file *seq, struct mddev * mddev) 6837 { 6838 sector_t max_sectors, resync, res; 6839 unsigned long dt, db; 6840 sector_t rt; 6841 int scale; 6842 unsigned int per_milli; 6843 6844 if (mddev->curr_resync <= 3) 6845 resync = 0; 6846 else 6847 resync = mddev->curr_resync 6848 - atomic_read(&mddev->recovery_active); 6849 6850 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 6851 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6852 max_sectors = mddev->resync_max_sectors; 6853 else 6854 max_sectors = mddev->dev_sectors; 6855 6856 /* 6857 * Should not happen. 6858 */ 6859 if (!max_sectors) { 6860 MD_BUG(); 6861 return; 6862 } 6863 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6864 * in a sector_t, and (max_sectors>>scale) will fit in a 6865 * u32, as those are the requirements for sector_div. 6866 * Thus 'scale' must be at least 10 6867 */ 6868 scale = 10; 6869 if (sizeof(sector_t) > sizeof(unsigned long)) { 6870 while ( max_sectors/2 > (1ULL<<(scale+32))) 6871 scale++; 6872 } 6873 res = (resync>>scale)*1000; 6874 sector_div(res, (u32)((max_sectors>>scale)+1)); 6875 6876 per_milli = res; 6877 { 6878 int i, x = per_milli/50, y = 20-x; 6879 seq_printf(seq, "["); 6880 for (i = 0; i < x; i++) 6881 seq_printf(seq, "="); 6882 seq_printf(seq, ">"); 6883 for (i = 0; i < y; i++) 6884 seq_printf(seq, "."); 6885 seq_printf(seq, "] "); 6886 } 6887 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6888 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6889 "reshape" : 6890 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6891 "check" : 6892 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6893 "resync" : "recovery"))), 6894 per_milli/10, per_milli % 10, 6895 (unsigned long long) resync/2, 6896 (unsigned long long) max_sectors/2); 6897 6898 /* 6899 * dt: time from mark until now 6900 * db: blocks written from mark until now 6901 * rt: remaining time 6902 * 6903 * rt is a sector_t, so could be 32bit or 64bit. 6904 * So we divide before multiply in case it is 32bit and close 6905 * to the limit. 6906 * We scale the divisor (db) by 32 to avoid losing precision 6907 * near the end of resync when the number of remaining sectors 6908 * is close to 'db'. 6909 * We then divide rt by 32 after multiplying by db to compensate. 6910 * The '+1' avoids division by zero if db is very small. 6911 */ 6912 dt = ((jiffies - mddev->resync_mark) / HZ); 6913 if (!dt) dt++; 6914 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6915 - mddev->resync_mark_cnt; 6916 6917 rt = max_sectors - resync; /* number of remaining sectors */ 6918 sector_div(rt, db/32+1); 6919 rt *= dt; 6920 rt >>= 5; 6921 6922 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6923 ((unsigned long)rt % 60)/6); 6924 6925 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6926 } 6927 6928 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6929 { 6930 struct list_head *tmp; 6931 loff_t l = *pos; 6932 struct mddev *mddev; 6933 6934 if (l >= 0x10000) 6935 return NULL; 6936 if (!l--) 6937 /* header */ 6938 return (void*)1; 6939 6940 spin_lock(&all_mddevs_lock); 6941 list_for_each(tmp,&all_mddevs) 6942 if (!l--) { 6943 mddev = list_entry(tmp, struct mddev, all_mddevs); 6944 mddev_get(mddev); 6945 spin_unlock(&all_mddevs_lock); 6946 return mddev; 6947 } 6948 spin_unlock(&all_mddevs_lock); 6949 if (!l--) 6950 return (void*)2;/* tail */ 6951 return NULL; 6952 } 6953 6954 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6955 { 6956 struct list_head *tmp; 6957 struct mddev *next_mddev, *mddev = v; 6958 6959 ++*pos; 6960 if (v == (void*)2) 6961 return NULL; 6962 6963 spin_lock(&all_mddevs_lock); 6964 if (v == (void*)1) 6965 tmp = all_mddevs.next; 6966 else 6967 tmp = mddev->all_mddevs.next; 6968 if (tmp != &all_mddevs) 6969 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 6970 else { 6971 next_mddev = (void*)2; 6972 *pos = 0x10000; 6973 } 6974 spin_unlock(&all_mddevs_lock); 6975 6976 if (v != (void*)1) 6977 mddev_put(mddev); 6978 return next_mddev; 6979 6980 } 6981 6982 static void md_seq_stop(struct seq_file *seq, void *v) 6983 { 6984 struct mddev *mddev = v; 6985 6986 if (mddev && v != (void*)1 && v != (void*)2) 6987 mddev_put(mddev); 6988 } 6989 6990 static int md_seq_show(struct seq_file *seq, void *v) 6991 { 6992 struct mddev *mddev = v; 6993 sector_t sectors; 6994 struct md_rdev *rdev; 6995 6996 if (v == (void*)1) { 6997 struct md_personality *pers; 6998 seq_printf(seq, "Personalities : "); 6999 spin_lock(&pers_lock); 7000 list_for_each_entry(pers, &pers_list, list) 7001 seq_printf(seq, "[%s] ", pers->name); 7002 7003 spin_unlock(&pers_lock); 7004 seq_printf(seq, "\n"); 7005 seq->poll_event = atomic_read(&md_event_count); 7006 return 0; 7007 } 7008 if (v == (void*)2) { 7009 status_unused(seq); 7010 return 0; 7011 } 7012 7013 if (mddev_lock(mddev) < 0) 7014 return -EINTR; 7015 7016 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7017 seq_printf(seq, "%s : %sactive", mdname(mddev), 7018 mddev->pers ? "" : "in"); 7019 if (mddev->pers) { 7020 if (mddev->ro==1) 7021 seq_printf(seq, " (read-only)"); 7022 if (mddev->ro==2) 7023 seq_printf(seq, " (auto-read-only)"); 7024 seq_printf(seq, " %s", mddev->pers->name); 7025 } 7026 7027 sectors = 0; 7028 rdev_for_each(rdev, mddev) { 7029 char b[BDEVNAME_SIZE]; 7030 seq_printf(seq, " %s[%d]", 7031 bdevname(rdev->bdev,b), rdev->desc_nr); 7032 if (test_bit(WriteMostly, &rdev->flags)) 7033 seq_printf(seq, "(W)"); 7034 if (test_bit(Faulty, &rdev->flags)) { 7035 seq_printf(seq, "(F)"); 7036 continue; 7037 } 7038 if (rdev->raid_disk < 0) 7039 seq_printf(seq, "(S)"); /* spare */ 7040 if (test_bit(Replacement, &rdev->flags)) 7041 seq_printf(seq, "(R)"); 7042 sectors += rdev->sectors; 7043 } 7044 7045 if (!list_empty(&mddev->disks)) { 7046 if (mddev->pers) 7047 seq_printf(seq, "\n %llu blocks", 7048 (unsigned long long) 7049 mddev->array_sectors / 2); 7050 else 7051 seq_printf(seq, "\n %llu blocks", 7052 (unsigned long long)sectors / 2); 7053 } 7054 if (mddev->persistent) { 7055 if (mddev->major_version != 0 || 7056 mddev->minor_version != 90) { 7057 seq_printf(seq," super %d.%d", 7058 mddev->major_version, 7059 mddev->minor_version); 7060 } 7061 } else if (mddev->external) 7062 seq_printf(seq, " super external:%s", 7063 mddev->metadata_type); 7064 else 7065 seq_printf(seq, " super non-persistent"); 7066 7067 if (mddev->pers) { 7068 mddev->pers->status(seq, mddev); 7069 seq_printf(seq, "\n "); 7070 if (mddev->pers->sync_request) { 7071 if (mddev->curr_resync > 2) { 7072 status_resync(seq, mddev); 7073 seq_printf(seq, "\n "); 7074 } else if (mddev->curr_resync >= 1) 7075 seq_printf(seq, "\tresync=DELAYED\n "); 7076 else if (mddev->recovery_cp < MaxSector) 7077 seq_printf(seq, "\tresync=PENDING\n "); 7078 } 7079 } else 7080 seq_printf(seq, "\n "); 7081 7082 bitmap_status(seq, mddev->bitmap); 7083 7084 seq_printf(seq, "\n"); 7085 } 7086 mddev_unlock(mddev); 7087 7088 return 0; 7089 } 7090 7091 static const struct seq_operations md_seq_ops = { 7092 .start = md_seq_start, 7093 .next = md_seq_next, 7094 .stop = md_seq_stop, 7095 .show = md_seq_show, 7096 }; 7097 7098 static int md_seq_open(struct inode *inode, struct file *file) 7099 { 7100 struct seq_file *seq; 7101 int error; 7102 7103 error = seq_open(file, &md_seq_ops); 7104 if (error) 7105 return error; 7106 7107 seq = file->private_data; 7108 seq->poll_event = atomic_read(&md_event_count); 7109 return error; 7110 } 7111 7112 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7113 { 7114 struct seq_file *seq = filp->private_data; 7115 int mask; 7116 7117 poll_wait(filp, &md_event_waiters, wait); 7118 7119 /* always allow read */ 7120 mask = POLLIN | POLLRDNORM; 7121 7122 if (seq->poll_event != atomic_read(&md_event_count)) 7123 mask |= POLLERR | POLLPRI; 7124 return mask; 7125 } 7126 7127 static const struct file_operations md_seq_fops = { 7128 .owner = THIS_MODULE, 7129 .open = md_seq_open, 7130 .read = seq_read, 7131 .llseek = seq_lseek, 7132 .release = seq_release_private, 7133 .poll = mdstat_poll, 7134 }; 7135 7136 int register_md_personality(struct md_personality *p) 7137 { 7138 spin_lock(&pers_lock); 7139 list_add_tail(&p->list, &pers_list); 7140 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 7141 spin_unlock(&pers_lock); 7142 return 0; 7143 } 7144 7145 int unregister_md_personality(struct md_personality *p) 7146 { 7147 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7148 spin_lock(&pers_lock); 7149 list_del_init(&p->list); 7150 spin_unlock(&pers_lock); 7151 return 0; 7152 } 7153 7154 static int is_mddev_idle(struct mddev *mddev, int init) 7155 { 7156 struct md_rdev * rdev; 7157 int idle; 7158 int curr_events; 7159 7160 idle = 1; 7161 rcu_read_lock(); 7162 rdev_for_each_rcu(rdev, mddev) { 7163 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7164 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7165 (int)part_stat_read(&disk->part0, sectors[1]) - 7166 atomic_read(&disk->sync_io); 7167 /* sync IO will cause sync_io to increase before the disk_stats 7168 * as sync_io is counted when a request starts, and 7169 * disk_stats is counted when it completes. 7170 * So resync activity will cause curr_events to be smaller than 7171 * when there was no such activity. 7172 * non-sync IO will cause disk_stat to increase without 7173 * increasing sync_io so curr_events will (eventually) 7174 * be larger than it was before. Once it becomes 7175 * substantially larger, the test below will cause 7176 * the array to appear non-idle, and resync will slow 7177 * down. 7178 * If there is a lot of outstanding resync activity when 7179 * we set last_event to curr_events, then all that activity 7180 * completing might cause the array to appear non-idle 7181 * and resync will be slowed down even though there might 7182 * not have been non-resync activity. This will only 7183 * happen once though. 'last_events' will soon reflect 7184 * the state where there is little or no outstanding 7185 * resync requests, and further resync activity will 7186 * always make curr_events less than last_events. 7187 * 7188 */ 7189 if (init || curr_events - rdev->last_events > 64) { 7190 rdev->last_events = curr_events; 7191 idle = 0; 7192 } 7193 } 7194 rcu_read_unlock(); 7195 return idle; 7196 } 7197 7198 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7199 { 7200 /* another "blocks" (512byte) blocks have been synced */ 7201 atomic_sub(blocks, &mddev->recovery_active); 7202 wake_up(&mddev->recovery_wait); 7203 if (!ok) { 7204 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7205 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 7206 md_wakeup_thread(mddev->thread); 7207 // stop recovery, signal do_sync .... 7208 } 7209 } 7210 7211 7212 /* md_write_start(mddev, bi) 7213 * If we need to update some array metadata (e.g. 'active' flag 7214 * in superblock) before writing, schedule a superblock update 7215 * and wait for it to complete. 7216 */ 7217 void md_write_start(struct mddev *mddev, struct bio *bi) 7218 { 7219 int did_change = 0; 7220 if (bio_data_dir(bi) != WRITE) 7221 return; 7222 7223 BUG_ON(mddev->ro == 1); 7224 if (mddev->ro == 2) { 7225 /* need to switch to read/write */ 7226 mddev->ro = 0; 7227 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7228 md_wakeup_thread(mddev->thread); 7229 md_wakeup_thread(mddev->sync_thread); 7230 did_change = 1; 7231 } 7232 atomic_inc(&mddev->writes_pending); 7233 if (mddev->safemode == 1) 7234 mddev->safemode = 0; 7235 if (mddev->in_sync) { 7236 spin_lock_irq(&mddev->write_lock); 7237 if (mddev->in_sync) { 7238 mddev->in_sync = 0; 7239 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7240 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7241 md_wakeup_thread(mddev->thread); 7242 did_change = 1; 7243 } 7244 spin_unlock_irq(&mddev->write_lock); 7245 } 7246 if (did_change) 7247 sysfs_notify_dirent_safe(mddev->sysfs_state); 7248 wait_event(mddev->sb_wait, 7249 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7250 } 7251 7252 void md_write_end(struct mddev *mddev) 7253 { 7254 if (atomic_dec_and_test(&mddev->writes_pending)) { 7255 if (mddev->safemode == 2) 7256 md_wakeup_thread(mddev->thread); 7257 else if (mddev->safemode_delay) 7258 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7259 } 7260 } 7261 7262 /* md_allow_write(mddev) 7263 * Calling this ensures that the array is marked 'active' so that writes 7264 * may proceed without blocking. It is important to call this before 7265 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7266 * Must be called with mddev_lock held. 7267 * 7268 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7269 * is dropped, so return -EAGAIN after notifying userspace. 7270 */ 7271 int md_allow_write(struct mddev *mddev) 7272 { 7273 if (!mddev->pers) 7274 return 0; 7275 if (mddev->ro) 7276 return 0; 7277 if (!mddev->pers->sync_request) 7278 return 0; 7279 7280 spin_lock_irq(&mddev->write_lock); 7281 if (mddev->in_sync) { 7282 mddev->in_sync = 0; 7283 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7284 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7285 if (mddev->safemode_delay && 7286 mddev->safemode == 0) 7287 mddev->safemode = 1; 7288 spin_unlock_irq(&mddev->write_lock); 7289 md_update_sb(mddev, 0); 7290 sysfs_notify_dirent_safe(mddev->sysfs_state); 7291 } else 7292 spin_unlock_irq(&mddev->write_lock); 7293 7294 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7295 return -EAGAIN; 7296 else 7297 return 0; 7298 } 7299 EXPORT_SYMBOL_GPL(md_allow_write); 7300 7301 #define SYNC_MARKS 10 7302 #define SYNC_MARK_STEP (3*HZ) 7303 #define UPDATE_FREQUENCY (5*60*HZ) 7304 void md_do_sync(struct md_thread *thread) 7305 { 7306 struct mddev *mddev = thread->mddev; 7307 struct mddev *mddev2; 7308 unsigned int currspeed = 0, 7309 window; 7310 sector_t max_sectors,j, io_sectors; 7311 unsigned long mark[SYNC_MARKS]; 7312 unsigned long update_time; 7313 sector_t mark_cnt[SYNC_MARKS]; 7314 int last_mark,m; 7315 struct list_head *tmp; 7316 sector_t last_check; 7317 int skipped = 0; 7318 struct md_rdev *rdev; 7319 char *desc, *action = NULL; 7320 struct blk_plug plug; 7321 7322 /* just incase thread restarts... */ 7323 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7324 return; 7325 if (mddev->ro) /* never try to sync a read-only array */ 7326 return; 7327 7328 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7329 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 7330 desc = "data-check"; 7331 action = "check"; 7332 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7333 desc = "requested-resync"; 7334 action = "repair"; 7335 } else 7336 desc = "resync"; 7337 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7338 desc = "reshape"; 7339 else 7340 desc = "recovery"; 7341 7342 mddev->last_sync_action = action ?: desc; 7343 7344 /* we overload curr_resync somewhat here. 7345 * 0 == not engaged in resync at all 7346 * 2 == checking that there is no conflict with another sync 7347 * 1 == like 2, but have yielded to allow conflicting resync to 7348 * commense 7349 * other == active in resync - this many blocks 7350 * 7351 * Before starting a resync we must have set curr_resync to 7352 * 2, and then checked that every "conflicting" array has curr_resync 7353 * less than ours. When we find one that is the same or higher 7354 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7355 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7356 * This will mean we have to start checking from the beginning again. 7357 * 7358 */ 7359 7360 do { 7361 mddev->curr_resync = 2; 7362 7363 try_again: 7364 if (kthread_should_stop()) 7365 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7366 7367 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7368 goto skip; 7369 for_each_mddev(mddev2, tmp) { 7370 if (mddev2 == mddev) 7371 continue; 7372 if (!mddev->parallel_resync 7373 && mddev2->curr_resync 7374 && match_mddev_units(mddev, mddev2)) { 7375 DEFINE_WAIT(wq); 7376 if (mddev < mddev2 && mddev->curr_resync == 2) { 7377 /* arbitrarily yield */ 7378 mddev->curr_resync = 1; 7379 wake_up(&resync_wait); 7380 } 7381 if (mddev > mddev2 && mddev->curr_resync == 1) 7382 /* no need to wait here, we can wait the next 7383 * time 'round when curr_resync == 2 7384 */ 7385 continue; 7386 /* We need to wait 'interruptible' so as not to 7387 * contribute to the load average, and not to 7388 * be caught by 'softlockup' 7389 */ 7390 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7391 if (!kthread_should_stop() && 7392 mddev2->curr_resync >= mddev->curr_resync) { 7393 printk(KERN_INFO "md: delaying %s of %s" 7394 " until %s has finished (they" 7395 " share one or more physical units)\n", 7396 desc, mdname(mddev), mdname(mddev2)); 7397 mddev_put(mddev2); 7398 if (signal_pending(current)) 7399 flush_signals(current); 7400 schedule(); 7401 finish_wait(&resync_wait, &wq); 7402 goto try_again; 7403 } 7404 finish_wait(&resync_wait, &wq); 7405 } 7406 } 7407 } while (mddev->curr_resync < 2); 7408 7409 j = 0; 7410 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7411 /* resync follows the size requested by the personality, 7412 * which defaults to physical size, but can be virtual size 7413 */ 7414 max_sectors = mddev->resync_max_sectors; 7415 atomic64_set(&mddev->resync_mismatches, 0); 7416 /* we don't use the checkpoint if there's a bitmap */ 7417 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7418 j = mddev->resync_min; 7419 else if (!mddev->bitmap) 7420 j = mddev->recovery_cp; 7421 7422 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7423 max_sectors = mddev->resync_max_sectors; 7424 else { 7425 /* recovery follows the physical size of devices */ 7426 max_sectors = mddev->dev_sectors; 7427 j = MaxSector; 7428 rcu_read_lock(); 7429 rdev_for_each_rcu(rdev, mddev) 7430 if (rdev->raid_disk >= 0 && 7431 !test_bit(Faulty, &rdev->flags) && 7432 !test_bit(In_sync, &rdev->flags) && 7433 rdev->recovery_offset < j) 7434 j = rdev->recovery_offset; 7435 rcu_read_unlock(); 7436 } 7437 7438 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7439 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7440 " %d KB/sec/disk.\n", speed_min(mddev)); 7441 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7442 "(but not more than %d KB/sec) for %s.\n", 7443 speed_max(mddev), desc); 7444 7445 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7446 7447 io_sectors = 0; 7448 for (m = 0; m < SYNC_MARKS; m++) { 7449 mark[m] = jiffies; 7450 mark_cnt[m] = io_sectors; 7451 } 7452 last_mark = 0; 7453 mddev->resync_mark = mark[last_mark]; 7454 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7455 7456 /* 7457 * Tune reconstruction: 7458 */ 7459 window = 32*(PAGE_SIZE/512); 7460 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7461 window/2, (unsigned long long)max_sectors/2); 7462 7463 atomic_set(&mddev->recovery_active, 0); 7464 last_check = 0; 7465 7466 if (j>2) { 7467 printk(KERN_INFO 7468 "md: resuming %s of %s from checkpoint.\n", 7469 desc, mdname(mddev)); 7470 mddev->curr_resync = j; 7471 } else 7472 mddev->curr_resync = 3; /* no longer delayed */ 7473 mddev->curr_resync_completed = j; 7474 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7475 md_new_event(mddev); 7476 update_time = jiffies; 7477 7478 blk_start_plug(&plug); 7479 while (j < max_sectors) { 7480 sector_t sectors; 7481 7482 skipped = 0; 7483 7484 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7485 ((mddev->curr_resync > mddev->curr_resync_completed && 7486 (mddev->curr_resync - mddev->curr_resync_completed) 7487 > (max_sectors >> 4)) || 7488 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 7489 (j - mddev->curr_resync_completed)*2 7490 >= mddev->resync_max - mddev->curr_resync_completed 7491 )) { 7492 /* time to update curr_resync_completed */ 7493 wait_event(mddev->recovery_wait, 7494 atomic_read(&mddev->recovery_active) == 0); 7495 mddev->curr_resync_completed = j; 7496 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 7497 j > mddev->recovery_cp) 7498 mddev->recovery_cp = j; 7499 update_time = jiffies; 7500 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7501 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7502 } 7503 7504 while (j >= mddev->resync_max && !kthread_should_stop()) { 7505 /* As this condition is controlled by user-space, 7506 * we can block indefinitely, so use '_interruptible' 7507 * to avoid triggering warnings. 7508 */ 7509 flush_signals(current); /* just in case */ 7510 wait_event_interruptible(mddev->recovery_wait, 7511 mddev->resync_max > j 7512 || kthread_should_stop()); 7513 } 7514 7515 if (kthread_should_stop()) 7516 goto interrupted; 7517 7518 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7519 currspeed < speed_min(mddev)); 7520 if (sectors == 0) { 7521 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7522 goto out; 7523 } 7524 7525 if (!skipped) { /* actual IO requested */ 7526 io_sectors += sectors; 7527 atomic_add(sectors, &mddev->recovery_active); 7528 } 7529 7530 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7531 break; 7532 7533 j += sectors; 7534 if (j > 2) 7535 mddev->curr_resync = j; 7536 mddev->curr_mark_cnt = io_sectors; 7537 if (last_check == 0) 7538 /* this is the earliest that rebuild will be 7539 * visible in /proc/mdstat 7540 */ 7541 md_new_event(mddev); 7542 7543 if (last_check + window > io_sectors || j == max_sectors) 7544 continue; 7545 7546 last_check = io_sectors; 7547 repeat: 7548 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7549 /* step marks */ 7550 int next = (last_mark+1) % SYNC_MARKS; 7551 7552 mddev->resync_mark = mark[next]; 7553 mddev->resync_mark_cnt = mark_cnt[next]; 7554 mark[next] = jiffies; 7555 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7556 last_mark = next; 7557 } 7558 7559 7560 if (kthread_should_stop()) 7561 goto interrupted; 7562 7563 7564 /* 7565 * this loop exits only if either when we are slower than 7566 * the 'hard' speed limit, or the system was IO-idle for 7567 * a jiffy. 7568 * the system might be non-idle CPU-wise, but we only care 7569 * about not overloading the IO subsystem. (things like an 7570 * e2fsck being done on the RAID array should execute fast) 7571 */ 7572 cond_resched(); 7573 7574 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 7575 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7576 7577 if (currspeed > speed_min(mddev)) { 7578 if ((currspeed > speed_max(mddev)) || 7579 !is_mddev_idle(mddev, 0)) { 7580 msleep(500); 7581 goto repeat; 7582 } 7583 } 7584 } 7585 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 7586 /* 7587 * this also signals 'finished resyncing' to md_stop 7588 */ 7589 out: 7590 blk_finish_plug(&plug); 7591 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7592 7593 /* tell personality that we are finished */ 7594 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7595 7596 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7597 mddev->curr_resync > 2) { 7598 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7599 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7600 if (mddev->curr_resync >= mddev->recovery_cp) { 7601 printk(KERN_INFO 7602 "md: checkpointing %s of %s.\n", 7603 desc, mdname(mddev)); 7604 if (test_bit(MD_RECOVERY_ERROR, 7605 &mddev->recovery)) 7606 mddev->recovery_cp = 7607 mddev->curr_resync_completed; 7608 else 7609 mddev->recovery_cp = 7610 mddev->curr_resync; 7611 } 7612 } else 7613 mddev->recovery_cp = MaxSector; 7614 } else { 7615 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7616 mddev->curr_resync = MaxSector; 7617 rcu_read_lock(); 7618 rdev_for_each_rcu(rdev, mddev) 7619 if (rdev->raid_disk >= 0 && 7620 mddev->delta_disks >= 0 && 7621 !test_bit(Faulty, &rdev->flags) && 7622 !test_bit(In_sync, &rdev->flags) && 7623 rdev->recovery_offset < mddev->curr_resync) 7624 rdev->recovery_offset = mddev->curr_resync; 7625 rcu_read_unlock(); 7626 } 7627 } 7628 skip: 7629 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7630 7631 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7632 /* We completed so min/max setting can be forgotten if used. */ 7633 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7634 mddev->resync_min = 0; 7635 mddev->resync_max = MaxSector; 7636 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7637 mddev->resync_min = mddev->curr_resync_completed; 7638 mddev->curr_resync = 0; 7639 wake_up(&resync_wait); 7640 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7641 md_wakeup_thread(mddev->thread); 7642 return; 7643 7644 interrupted: 7645 /* 7646 * got a signal, exit. 7647 */ 7648 printk(KERN_INFO 7649 "md: md_do_sync() got signal ... exiting\n"); 7650 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7651 goto out; 7652 7653 } 7654 EXPORT_SYMBOL_GPL(md_do_sync); 7655 7656 static int remove_and_add_spares(struct mddev *mddev, 7657 struct md_rdev *this) 7658 { 7659 struct md_rdev *rdev; 7660 int spares = 0; 7661 int removed = 0; 7662 7663 rdev_for_each(rdev, mddev) 7664 if ((this == NULL || rdev == this) && 7665 rdev->raid_disk >= 0 && 7666 !test_bit(Blocked, &rdev->flags) && 7667 (test_bit(Faulty, &rdev->flags) || 7668 ! test_bit(In_sync, &rdev->flags)) && 7669 atomic_read(&rdev->nr_pending)==0) { 7670 if (mddev->pers->hot_remove_disk( 7671 mddev, rdev) == 0) { 7672 sysfs_unlink_rdev(mddev, rdev); 7673 rdev->raid_disk = -1; 7674 removed++; 7675 } 7676 } 7677 if (removed && mddev->kobj.sd) 7678 sysfs_notify(&mddev->kobj, NULL, "degraded"); 7679 7680 if (this) 7681 goto no_add; 7682 7683 rdev_for_each(rdev, mddev) { 7684 if (rdev->raid_disk >= 0 && 7685 !test_bit(In_sync, &rdev->flags) && 7686 !test_bit(Faulty, &rdev->flags)) 7687 spares++; 7688 if (rdev->raid_disk >= 0) 7689 continue; 7690 if (test_bit(Faulty, &rdev->flags)) 7691 continue; 7692 if (mddev->ro && 7693 rdev->saved_raid_disk < 0) 7694 continue; 7695 7696 rdev->recovery_offset = 0; 7697 if (mddev->pers-> 7698 hot_add_disk(mddev, rdev) == 0) { 7699 if (sysfs_link_rdev(mddev, rdev)) 7700 /* failure here is OK */; 7701 spares++; 7702 md_new_event(mddev); 7703 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7704 } 7705 } 7706 no_add: 7707 if (removed) 7708 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7709 return spares; 7710 } 7711 7712 /* 7713 * This routine is regularly called by all per-raid-array threads to 7714 * deal with generic issues like resync and super-block update. 7715 * Raid personalities that don't have a thread (linear/raid0) do not 7716 * need this as they never do any recovery or update the superblock. 7717 * 7718 * It does not do any resync itself, but rather "forks" off other threads 7719 * to do that as needed. 7720 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7721 * "->recovery" and create a thread at ->sync_thread. 7722 * When the thread finishes it sets MD_RECOVERY_DONE 7723 * and wakeups up this thread which will reap the thread and finish up. 7724 * This thread also removes any faulty devices (with nr_pending == 0). 7725 * 7726 * The overall approach is: 7727 * 1/ if the superblock needs updating, update it. 7728 * 2/ If a recovery thread is running, don't do anything else. 7729 * 3/ If recovery has finished, clean up, possibly marking spares active. 7730 * 4/ If there are any faulty devices, remove them. 7731 * 5/ If array is degraded, try to add spares devices 7732 * 6/ If array has spares or is not in-sync, start a resync thread. 7733 */ 7734 void md_check_recovery(struct mddev *mddev) 7735 { 7736 if (mddev->suspended) 7737 return; 7738 7739 if (mddev->bitmap) 7740 bitmap_daemon_work(mddev); 7741 7742 if (signal_pending(current)) { 7743 if (mddev->pers->sync_request && !mddev->external) { 7744 printk(KERN_INFO "md: %s in immediate safe mode\n", 7745 mdname(mddev)); 7746 mddev->safemode = 2; 7747 } 7748 flush_signals(current); 7749 } 7750 7751 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7752 return; 7753 if ( ! ( 7754 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) || 7755 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7756 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7757 (mddev->external == 0 && mddev->safemode == 1) || 7758 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7759 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7760 )) 7761 return; 7762 7763 if (mddev_trylock(mddev)) { 7764 int spares = 0; 7765 7766 if (mddev->ro) { 7767 /* On a read-only array we can: 7768 * - remove failed devices 7769 * - add already-in_sync devices if the array itself 7770 * is in-sync. 7771 * As we only add devices that are already in-sync, 7772 * we can activate the spares immediately. 7773 */ 7774 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7775 remove_and_add_spares(mddev, NULL); 7776 mddev->pers->spare_active(mddev); 7777 goto unlock; 7778 } 7779 7780 if (!mddev->external) { 7781 int did_change = 0; 7782 spin_lock_irq(&mddev->write_lock); 7783 if (mddev->safemode && 7784 !atomic_read(&mddev->writes_pending) && 7785 !mddev->in_sync && 7786 mddev->recovery_cp == MaxSector) { 7787 mddev->in_sync = 1; 7788 did_change = 1; 7789 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7790 } 7791 if (mddev->safemode == 1) 7792 mddev->safemode = 0; 7793 spin_unlock_irq(&mddev->write_lock); 7794 if (did_change) 7795 sysfs_notify_dirent_safe(mddev->sysfs_state); 7796 } 7797 7798 if (mddev->flags & MD_UPDATE_SB_FLAGS) 7799 md_update_sb(mddev, 0); 7800 7801 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7802 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7803 /* resync/recovery still happening */ 7804 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7805 goto unlock; 7806 } 7807 if (mddev->sync_thread) { 7808 md_reap_sync_thread(mddev); 7809 goto unlock; 7810 } 7811 /* Set RUNNING before clearing NEEDED to avoid 7812 * any transients in the value of "sync_action". 7813 */ 7814 mddev->curr_resync_completed = 0; 7815 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7816 /* Clear some bits that don't mean anything, but 7817 * might be left set 7818 */ 7819 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7820 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7821 7822 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7823 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7824 goto unlock; 7825 /* no recovery is running. 7826 * remove any failed drives, then 7827 * add spares if possible. 7828 * Spares are also removed and re-added, to allow 7829 * the personality to fail the re-add. 7830 */ 7831 7832 if (mddev->reshape_position != MaxSector) { 7833 if (mddev->pers->check_reshape == NULL || 7834 mddev->pers->check_reshape(mddev) != 0) 7835 /* Cannot proceed */ 7836 goto unlock; 7837 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7838 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7839 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 7840 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7841 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7842 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7843 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7844 } else if (mddev->recovery_cp < MaxSector) { 7845 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7846 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7847 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7848 /* nothing to be done ... */ 7849 goto unlock; 7850 7851 if (mddev->pers->sync_request) { 7852 if (spares) { 7853 /* We are adding a device or devices to an array 7854 * which has the bitmap stored on all devices. 7855 * So make sure all bitmap pages get written 7856 */ 7857 bitmap_write_all(mddev->bitmap); 7858 } 7859 mddev->sync_thread = md_register_thread(md_do_sync, 7860 mddev, 7861 "resync"); 7862 if (!mddev->sync_thread) { 7863 printk(KERN_ERR "%s: could not start resync" 7864 " thread...\n", 7865 mdname(mddev)); 7866 /* leave the spares where they are, it shouldn't hurt */ 7867 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7868 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7869 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7870 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7871 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7872 } else 7873 md_wakeup_thread(mddev->sync_thread); 7874 sysfs_notify_dirent_safe(mddev->sysfs_action); 7875 md_new_event(mddev); 7876 } 7877 unlock: 7878 wake_up(&mddev->sb_wait); 7879 7880 if (!mddev->sync_thread) { 7881 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7882 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7883 &mddev->recovery)) 7884 if (mddev->sysfs_action) 7885 sysfs_notify_dirent_safe(mddev->sysfs_action); 7886 } 7887 mddev_unlock(mddev); 7888 } 7889 } 7890 7891 void md_reap_sync_thread(struct mddev *mddev) 7892 { 7893 struct md_rdev *rdev; 7894 7895 /* resync has finished, collect result */ 7896 md_unregister_thread(&mddev->sync_thread); 7897 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7898 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7899 /* success...*/ 7900 /* activate any spares */ 7901 if (mddev->pers->spare_active(mddev)) { 7902 sysfs_notify(&mddev->kobj, NULL, 7903 "degraded"); 7904 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7905 } 7906 } 7907 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7908 mddev->pers->finish_reshape) 7909 mddev->pers->finish_reshape(mddev); 7910 7911 /* If array is no-longer degraded, then any saved_raid_disk 7912 * information must be scrapped. Also if any device is now 7913 * In_sync we must scrape the saved_raid_disk for that device 7914 * do the superblock for an incrementally recovered device 7915 * written out. 7916 */ 7917 rdev_for_each(rdev, mddev) 7918 if (!mddev->degraded || 7919 test_bit(In_sync, &rdev->flags)) 7920 rdev->saved_raid_disk = -1; 7921 7922 md_update_sb(mddev, 1); 7923 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7924 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7925 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7926 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7927 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7928 /* flag recovery needed just to double check */ 7929 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7930 sysfs_notify_dirent_safe(mddev->sysfs_action); 7931 md_new_event(mddev); 7932 if (mddev->event_work.func) 7933 queue_work(md_misc_wq, &mddev->event_work); 7934 } 7935 7936 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 7937 { 7938 sysfs_notify_dirent_safe(rdev->sysfs_state); 7939 wait_event_timeout(rdev->blocked_wait, 7940 !test_bit(Blocked, &rdev->flags) && 7941 !test_bit(BlockedBadBlocks, &rdev->flags), 7942 msecs_to_jiffies(5000)); 7943 rdev_dec_pending(rdev, mddev); 7944 } 7945 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7946 7947 void md_finish_reshape(struct mddev *mddev) 7948 { 7949 /* called be personality module when reshape completes. */ 7950 struct md_rdev *rdev; 7951 7952 rdev_for_each(rdev, mddev) { 7953 if (rdev->data_offset > rdev->new_data_offset) 7954 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 7955 else 7956 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 7957 rdev->data_offset = rdev->new_data_offset; 7958 } 7959 } 7960 EXPORT_SYMBOL(md_finish_reshape); 7961 7962 /* Bad block management. 7963 * We can record which blocks on each device are 'bad' and so just 7964 * fail those blocks, or that stripe, rather than the whole device. 7965 * Entries in the bad-block table are 64bits wide. This comprises: 7966 * Length of bad-range, in sectors: 0-511 for lengths 1-512 7967 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 7968 * A 'shift' can be set so that larger blocks are tracked and 7969 * consequently larger devices can be covered. 7970 * 'Acknowledged' flag - 1 bit. - the most significant bit. 7971 * 7972 * Locking of the bad-block table uses a seqlock so md_is_badblock 7973 * might need to retry if it is very unlucky. 7974 * We will sometimes want to check for bad blocks in a bi_end_io function, 7975 * so we use the write_seqlock_irq variant. 7976 * 7977 * When looking for a bad block we specify a range and want to 7978 * know if any block in the range is bad. So we binary-search 7979 * to the last range that starts at-or-before the given endpoint, 7980 * (or "before the sector after the target range") 7981 * then see if it ends after the given start. 7982 * We return 7983 * 0 if there are no known bad blocks in the range 7984 * 1 if there are known bad block which are all acknowledged 7985 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 7986 * plus the start/length of the first bad section we overlap. 7987 */ 7988 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 7989 sector_t *first_bad, int *bad_sectors) 7990 { 7991 int hi; 7992 int lo; 7993 u64 *p = bb->page; 7994 int rv; 7995 sector_t target = s + sectors; 7996 unsigned seq; 7997 7998 if (bb->shift > 0) { 7999 /* round the start down, and the end up */ 8000 s >>= bb->shift; 8001 target += (1<<bb->shift) - 1; 8002 target >>= bb->shift; 8003 sectors = target - s; 8004 } 8005 /* 'target' is now the first block after the bad range */ 8006 8007 retry: 8008 seq = read_seqbegin(&bb->lock); 8009 lo = 0; 8010 rv = 0; 8011 hi = bb->count; 8012 8013 /* Binary search between lo and hi for 'target' 8014 * i.e. for the last range that starts before 'target' 8015 */ 8016 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 8017 * are known not to be the last range before target. 8018 * VARIANT: hi-lo is the number of possible 8019 * ranges, and decreases until it reaches 1 8020 */ 8021 while (hi - lo > 1) { 8022 int mid = (lo + hi) / 2; 8023 sector_t a = BB_OFFSET(p[mid]); 8024 if (a < target) 8025 /* This could still be the one, earlier ranges 8026 * could not. */ 8027 lo = mid; 8028 else 8029 /* This and later ranges are definitely out. */ 8030 hi = mid; 8031 } 8032 /* 'lo' might be the last that started before target, but 'hi' isn't */ 8033 if (hi > lo) { 8034 /* need to check all range that end after 's' to see if 8035 * any are unacknowledged. 8036 */ 8037 while (lo >= 0 && 8038 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8039 if (BB_OFFSET(p[lo]) < target) { 8040 /* starts before the end, and finishes after 8041 * the start, so they must overlap 8042 */ 8043 if (rv != -1 && BB_ACK(p[lo])) 8044 rv = 1; 8045 else 8046 rv = -1; 8047 *first_bad = BB_OFFSET(p[lo]); 8048 *bad_sectors = BB_LEN(p[lo]); 8049 } 8050 lo--; 8051 } 8052 } 8053 8054 if (read_seqretry(&bb->lock, seq)) 8055 goto retry; 8056 8057 return rv; 8058 } 8059 EXPORT_SYMBOL_GPL(md_is_badblock); 8060 8061 /* 8062 * Add a range of bad blocks to the table. 8063 * This might extend the table, or might contract it 8064 * if two adjacent ranges can be merged. 8065 * We binary-search to find the 'insertion' point, then 8066 * decide how best to handle it. 8067 */ 8068 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 8069 int acknowledged) 8070 { 8071 u64 *p; 8072 int lo, hi; 8073 int rv = 1; 8074 unsigned long flags; 8075 8076 if (bb->shift < 0) 8077 /* badblocks are disabled */ 8078 return 0; 8079 8080 if (bb->shift) { 8081 /* round the start down, and the end up */ 8082 sector_t next = s + sectors; 8083 s >>= bb->shift; 8084 next += (1<<bb->shift) - 1; 8085 next >>= bb->shift; 8086 sectors = next - s; 8087 } 8088 8089 write_seqlock_irqsave(&bb->lock, flags); 8090 8091 p = bb->page; 8092 lo = 0; 8093 hi = bb->count; 8094 /* Find the last range that starts at-or-before 's' */ 8095 while (hi - lo > 1) { 8096 int mid = (lo + hi) / 2; 8097 sector_t a = BB_OFFSET(p[mid]); 8098 if (a <= s) 8099 lo = mid; 8100 else 8101 hi = mid; 8102 } 8103 if (hi > lo && BB_OFFSET(p[lo]) > s) 8104 hi = lo; 8105 8106 if (hi > lo) { 8107 /* we found a range that might merge with the start 8108 * of our new range 8109 */ 8110 sector_t a = BB_OFFSET(p[lo]); 8111 sector_t e = a + BB_LEN(p[lo]); 8112 int ack = BB_ACK(p[lo]); 8113 if (e >= s) { 8114 /* Yes, we can merge with a previous range */ 8115 if (s == a && s + sectors >= e) 8116 /* new range covers old */ 8117 ack = acknowledged; 8118 else 8119 ack = ack && acknowledged; 8120 8121 if (e < s + sectors) 8122 e = s + sectors; 8123 if (e - a <= BB_MAX_LEN) { 8124 p[lo] = BB_MAKE(a, e-a, ack); 8125 s = e; 8126 } else { 8127 /* does not all fit in one range, 8128 * make p[lo] maximal 8129 */ 8130 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8131 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8132 s = a + BB_MAX_LEN; 8133 } 8134 sectors = e - s; 8135 } 8136 } 8137 if (sectors && hi < bb->count) { 8138 /* 'hi' points to the first range that starts after 's'. 8139 * Maybe we can merge with the start of that range */ 8140 sector_t a = BB_OFFSET(p[hi]); 8141 sector_t e = a + BB_LEN(p[hi]); 8142 int ack = BB_ACK(p[hi]); 8143 if (a <= s + sectors) { 8144 /* merging is possible */ 8145 if (e <= s + sectors) { 8146 /* full overlap */ 8147 e = s + sectors; 8148 ack = acknowledged; 8149 } else 8150 ack = ack && acknowledged; 8151 8152 a = s; 8153 if (e - a <= BB_MAX_LEN) { 8154 p[hi] = BB_MAKE(a, e-a, ack); 8155 s = e; 8156 } else { 8157 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8158 s = a + BB_MAX_LEN; 8159 } 8160 sectors = e - s; 8161 lo = hi; 8162 hi++; 8163 } 8164 } 8165 if (sectors == 0 && hi < bb->count) { 8166 /* we might be able to combine lo and hi */ 8167 /* Note: 's' is at the end of 'lo' */ 8168 sector_t a = BB_OFFSET(p[hi]); 8169 int lolen = BB_LEN(p[lo]); 8170 int hilen = BB_LEN(p[hi]); 8171 int newlen = lolen + hilen - (s - a); 8172 if (s >= a && newlen < BB_MAX_LEN) { 8173 /* yes, we can combine them */ 8174 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8175 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8176 memmove(p + hi, p + hi + 1, 8177 (bb->count - hi - 1) * 8); 8178 bb->count--; 8179 } 8180 } 8181 while (sectors) { 8182 /* didn't merge (it all). 8183 * Need to add a range just before 'hi' */ 8184 if (bb->count >= MD_MAX_BADBLOCKS) { 8185 /* No room for more */ 8186 rv = 0; 8187 break; 8188 } else { 8189 int this_sectors = sectors; 8190 memmove(p + hi + 1, p + hi, 8191 (bb->count - hi) * 8); 8192 bb->count++; 8193 8194 if (this_sectors > BB_MAX_LEN) 8195 this_sectors = BB_MAX_LEN; 8196 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8197 sectors -= this_sectors; 8198 s += this_sectors; 8199 } 8200 } 8201 8202 bb->changed = 1; 8203 if (!acknowledged) 8204 bb->unacked_exist = 1; 8205 write_sequnlock_irqrestore(&bb->lock, flags); 8206 8207 return rv; 8208 } 8209 8210 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8211 int is_new) 8212 { 8213 int rv; 8214 if (is_new) 8215 s += rdev->new_data_offset; 8216 else 8217 s += rdev->data_offset; 8218 rv = md_set_badblocks(&rdev->badblocks, 8219 s, sectors, 0); 8220 if (rv) { 8221 /* Make sure they get written out promptly */ 8222 sysfs_notify_dirent_safe(rdev->sysfs_state); 8223 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8224 md_wakeup_thread(rdev->mddev->thread); 8225 } 8226 return rv; 8227 } 8228 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8229 8230 /* 8231 * Remove a range of bad blocks from the table. 8232 * This may involve extending the table if we spilt a region, 8233 * but it must not fail. So if the table becomes full, we just 8234 * drop the remove request. 8235 */ 8236 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8237 { 8238 u64 *p; 8239 int lo, hi; 8240 sector_t target = s + sectors; 8241 int rv = 0; 8242 8243 if (bb->shift > 0) { 8244 /* When clearing we round the start up and the end down. 8245 * This should not matter as the shift should align with 8246 * the block size and no rounding should ever be needed. 8247 * However it is better the think a block is bad when it 8248 * isn't than to think a block is not bad when it is. 8249 */ 8250 s += (1<<bb->shift) - 1; 8251 s >>= bb->shift; 8252 target >>= bb->shift; 8253 sectors = target - s; 8254 } 8255 8256 write_seqlock_irq(&bb->lock); 8257 8258 p = bb->page; 8259 lo = 0; 8260 hi = bb->count; 8261 /* Find the last range that starts before 'target' */ 8262 while (hi - lo > 1) { 8263 int mid = (lo + hi) / 2; 8264 sector_t a = BB_OFFSET(p[mid]); 8265 if (a < target) 8266 lo = mid; 8267 else 8268 hi = mid; 8269 } 8270 if (hi > lo) { 8271 /* p[lo] is the last range that could overlap the 8272 * current range. Earlier ranges could also overlap, 8273 * but only this one can overlap the end of the range. 8274 */ 8275 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8276 /* Partial overlap, leave the tail of this range */ 8277 int ack = BB_ACK(p[lo]); 8278 sector_t a = BB_OFFSET(p[lo]); 8279 sector_t end = a + BB_LEN(p[lo]); 8280 8281 if (a < s) { 8282 /* we need to split this range */ 8283 if (bb->count >= MD_MAX_BADBLOCKS) { 8284 rv = 0; 8285 goto out; 8286 } 8287 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8288 bb->count++; 8289 p[lo] = BB_MAKE(a, s-a, ack); 8290 lo++; 8291 } 8292 p[lo] = BB_MAKE(target, end - target, ack); 8293 /* there is no longer an overlap */ 8294 hi = lo; 8295 lo--; 8296 } 8297 while (lo >= 0 && 8298 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8299 /* This range does overlap */ 8300 if (BB_OFFSET(p[lo]) < s) { 8301 /* Keep the early parts of this range. */ 8302 int ack = BB_ACK(p[lo]); 8303 sector_t start = BB_OFFSET(p[lo]); 8304 p[lo] = BB_MAKE(start, s - start, ack); 8305 /* now low doesn't overlap, so.. */ 8306 break; 8307 } 8308 lo--; 8309 } 8310 /* 'lo' is strictly before, 'hi' is strictly after, 8311 * anything between needs to be discarded 8312 */ 8313 if (hi - lo > 1) { 8314 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8315 bb->count -= (hi - lo - 1); 8316 } 8317 } 8318 8319 bb->changed = 1; 8320 out: 8321 write_sequnlock_irq(&bb->lock); 8322 return rv; 8323 } 8324 8325 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8326 int is_new) 8327 { 8328 if (is_new) 8329 s += rdev->new_data_offset; 8330 else 8331 s += rdev->data_offset; 8332 return md_clear_badblocks(&rdev->badblocks, 8333 s, sectors); 8334 } 8335 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8336 8337 /* 8338 * Acknowledge all bad blocks in a list. 8339 * This only succeeds if ->changed is clear. It is used by 8340 * in-kernel metadata updates 8341 */ 8342 void md_ack_all_badblocks(struct badblocks *bb) 8343 { 8344 if (bb->page == NULL || bb->changed) 8345 /* no point even trying */ 8346 return; 8347 write_seqlock_irq(&bb->lock); 8348 8349 if (bb->changed == 0 && bb->unacked_exist) { 8350 u64 *p = bb->page; 8351 int i; 8352 for (i = 0; i < bb->count ; i++) { 8353 if (!BB_ACK(p[i])) { 8354 sector_t start = BB_OFFSET(p[i]); 8355 int len = BB_LEN(p[i]); 8356 p[i] = BB_MAKE(start, len, 1); 8357 } 8358 } 8359 bb->unacked_exist = 0; 8360 } 8361 write_sequnlock_irq(&bb->lock); 8362 } 8363 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8364 8365 /* sysfs access to bad-blocks list. 8366 * We present two files. 8367 * 'bad-blocks' lists sector numbers and lengths of ranges that 8368 * are recorded as bad. The list is truncated to fit within 8369 * the one-page limit of sysfs. 8370 * Writing "sector length" to this file adds an acknowledged 8371 * bad block list. 8372 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8373 * been acknowledged. Writing to this file adds bad blocks 8374 * without acknowledging them. This is largely for testing. 8375 */ 8376 8377 static ssize_t 8378 badblocks_show(struct badblocks *bb, char *page, int unack) 8379 { 8380 size_t len; 8381 int i; 8382 u64 *p = bb->page; 8383 unsigned seq; 8384 8385 if (bb->shift < 0) 8386 return 0; 8387 8388 retry: 8389 seq = read_seqbegin(&bb->lock); 8390 8391 len = 0; 8392 i = 0; 8393 8394 while (len < PAGE_SIZE && i < bb->count) { 8395 sector_t s = BB_OFFSET(p[i]); 8396 unsigned int length = BB_LEN(p[i]); 8397 int ack = BB_ACK(p[i]); 8398 i++; 8399 8400 if (unack && ack) 8401 continue; 8402 8403 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8404 (unsigned long long)s << bb->shift, 8405 length << bb->shift); 8406 } 8407 if (unack && len == 0) 8408 bb->unacked_exist = 0; 8409 8410 if (read_seqretry(&bb->lock, seq)) 8411 goto retry; 8412 8413 return len; 8414 } 8415 8416 #define DO_DEBUG 1 8417 8418 static ssize_t 8419 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8420 { 8421 unsigned long long sector; 8422 int length; 8423 char newline; 8424 #ifdef DO_DEBUG 8425 /* Allow clearing via sysfs *only* for testing/debugging. 8426 * Normally only a successful write may clear a badblock 8427 */ 8428 int clear = 0; 8429 if (page[0] == '-') { 8430 clear = 1; 8431 page++; 8432 } 8433 #endif /* DO_DEBUG */ 8434 8435 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8436 case 3: 8437 if (newline != '\n') 8438 return -EINVAL; 8439 case 2: 8440 if (length <= 0) 8441 return -EINVAL; 8442 break; 8443 default: 8444 return -EINVAL; 8445 } 8446 8447 #ifdef DO_DEBUG 8448 if (clear) { 8449 md_clear_badblocks(bb, sector, length); 8450 return len; 8451 } 8452 #endif /* DO_DEBUG */ 8453 if (md_set_badblocks(bb, sector, length, !unack)) 8454 return len; 8455 else 8456 return -ENOSPC; 8457 } 8458 8459 static int md_notify_reboot(struct notifier_block *this, 8460 unsigned long code, void *x) 8461 { 8462 struct list_head *tmp; 8463 struct mddev *mddev; 8464 int need_delay = 0; 8465 8466 for_each_mddev(mddev, tmp) { 8467 if (mddev_trylock(mddev)) { 8468 if (mddev->pers) 8469 __md_stop_writes(mddev); 8470 mddev->safemode = 2; 8471 mddev_unlock(mddev); 8472 } 8473 need_delay = 1; 8474 } 8475 /* 8476 * certain more exotic SCSI devices are known to be 8477 * volatile wrt too early system reboots. While the 8478 * right place to handle this issue is the given 8479 * driver, we do want to have a safe RAID driver ... 8480 */ 8481 if (need_delay) 8482 mdelay(1000*1); 8483 8484 return NOTIFY_DONE; 8485 } 8486 8487 static struct notifier_block md_notifier = { 8488 .notifier_call = md_notify_reboot, 8489 .next = NULL, 8490 .priority = INT_MAX, /* before any real devices */ 8491 }; 8492 8493 static void md_geninit(void) 8494 { 8495 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8496 8497 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8498 } 8499 8500 static int __init md_init(void) 8501 { 8502 int ret = -ENOMEM; 8503 8504 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8505 if (!md_wq) 8506 goto err_wq; 8507 8508 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8509 if (!md_misc_wq) 8510 goto err_misc_wq; 8511 8512 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8513 goto err_md; 8514 8515 if ((ret = register_blkdev(0, "mdp")) < 0) 8516 goto err_mdp; 8517 mdp_major = ret; 8518 8519 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 8520 md_probe, NULL, NULL); 8521 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8522 md_probe, NULL, NULL); 8523 8524 register_reboot_notifier(&md_notifier); 8525 raid_table_header = register_sysctl_table(raid_root_table); 8526 8527 md_geninit(); 8528 return 0; 8529 8530 err_mdp: 8531 unregister_blkdev(MD_MAJOR, "md"); 8532 err_md: 8533 destroy_workqueue(md_misc_wq); 8534 err_misc_wq: 8535 destroy_workqueue(md_wq); 8536 err_wq: 8537 return ret; 8538 } 8539 8540 #ifndef MODULE 8541 8542 /* 8543 * Searches all registered partitions for autorun RAID arrays 8544 * at boot time. 8545 */ 8546 8547 static LIST_HEAD(all_detected_devices); 8548 struct detected_devices_node { 8549 struct list_head list; 8550 dev_t dev; 8551 }; 8552 8553 void md_autodetect_dev(dev_t dev) 8554 { 8555 struct detected_devices_node *node_detected_dev; 8556 8557 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8558 if (node_detected_dev) { 8559 node_detected_dev->dev = dev; 8560 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8561 } else { 8562 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8563 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8564 } 8565 } 8566 8567 8568 static void autostart_arrays(int part) 8569 { 8570 struct md_rdev *rdev; 8571 struct detected_devices_node *node_detected_dev; 8572 dev_t dev; 8573 int i_scanned, i_passed; 8574 8575 i_scanned = 0; 8576 i_passed = 0; 8577 8578 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8579 8580 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8581 i_scanned++; 8582 node_detected_dev = list_entry(all_detected_devices.next, 8583 struct detected_devices_node, list); 8584 list_del(&node_detected_dev->list); 8585 dev = node_detected_dev->dev; 8586 kfree(node_detected_dev); 8587 rdev = md_import_device(dev,0, 90); 8588 if (IS_ERR(rdev)) 8589 continue; 8590 8591 if (test_bit(Faulty, &rdev->flags)) { 8592 MD_BUG(); 8593 continue; 8594 } 8595 set_bit(AutoDetected, &rdev->flags); 8596 list_add(&rdev->same_set, &pending_raid_disks); 8597 i_passed++; 8598 } 8599 8600 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8601 i_scanned, i_passed); 8602 8603 autorun_devices(part); 8604 } 8605 8606 #endif /* !MODULE */ 8607 8608 static __exit void md_exit(void) 8609 { 8610 struct mddev *mddev; 8611 struct list_head *tmp; 8612 8613 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 8614 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8615 8616 unregister_blkdev(MD_MAJOR,"md"); 8617 unregister_blkdev(mdp_major, "mdp"); 8618 unregister_reboot_notifier(&md_notifier); 8619 unregister_sysctl_table(raid_table_header); 8620 remove_proc_entry("mdstat", NULL); 8621 for_each_mddev(mddev, tmp) { 8622 export_array(mddev); 8623 mddev->hold_active = 0; 8624 } 8625 destroy_workqueue(md_misc_wq); 8626 destroy_workqueue(md_wq); 8627 } 8628 8629 subsys_initcall(md_init); 8630 module_exit(md_exit) 8631 8632 static int get_ro(char *buffer, struct kernel_param *kp) 8633 { 8634 return sprintf(buffer, "%d", start_readonly); 8635 } 8636 static int set_ro(const char *val, struct kernel_param *kp) 8637 { 8638 char *e; 8639 int num = simple_strtoul(val, &e, 10); 8640 if (*val && (*e == '\0' || *e == '\n')) { 8641 start_readonly = num; 8642 return 0; 8643 } 8644 return -EINVAL; 8645 } 8646 8647 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8648 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8649 8650 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8651 8652 EXPORT_SYMBOL(register_md_personality); 8653 EXPORT_SYMBOL(unregister_md_personality); 8654 EXPORT_SYMBOL(md_error); 8655 EXPORT_SYMBOL(md_done_sync); 8656 EXPORT_SYMBOL(md_write_start); 8657 EXPORT_SYMBOL(md_write_end); 8658 EXPORT_SYMBOL(md_register_thread); 8659 EXPORT_SYMBOL(md_unregister_thread); 8660 EXPORT_SYMBOL(md_wakeup_thread); 8661 EXPORT_SYMBOL(md_check_recovery); 8662 EXPORT_SYMBOL(md_reap_sync_thread); 8663 MODULE_LICENSE("GPL"); 8664 MODULE_DESCRIPTION("MD RAID framework"); 8665 MODULE_ALIAS("md"); 8666 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8667