xref: /linux/drivers/md/md.c (revision 498d319bb512992ef0784c278fa03679f2f5649d)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74 
75 static int remove_and_add_spares(struct mddev *mddev,
76 				 struct md_rdev *this);
77 
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79 
80 /*
81  * Default number of read corrections we'll attempt on an rdev
82  * before ejecting it from the array. We divide the read error
83  * count by 2 for every hour elapsed between read errors.
84  */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88  * is 1000 KB/sec, so the extra system load does not show up that much.
89  * Increase it if you want to have more _guaranteed_ speed. Note that
90  * the RAID driver will use the maximum available bandwidth if the IO
91  * subsystem is idle. There is also an 'absolute maximum' reconstruction
92  * speed limit - in case reconstruction slows down your system despite
93  * idle IO detection.
94  *
95  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96  * or /sys/block/mdX/md/sync_speed_{min,max}
97  */
98 
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103 	return mddev->sync_speed_min ?
104 		mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106 
107 static inline int speed_max(struct mddev *mddev)
108 {
109 	return mddev->sync_speed_max ?
110 		mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112 
113 static struct ctl_table_header *raid_table_header;
114 
115 static ctl_table raid_table[] = {
116 	{
117 		.procname	= "speed_limit_min",
118 		.data		= &sysctl_speed_limit_min,
119 		.maxlen		= sizeof(int),
120 		.mode		= S_IRUGO|S_IWUSR,
121 		.proc_handler	= proc_dointvec,
122 	},
123 	{
124 		.procname	= "speed_limit_max",
125 		.data		= &sysctl_speed_limit_max,
126 		.maxlen		= sizeof(int),
127 		.mode		= S_IRUGO|S_IWUSR,
128 		.proc_handler	= proc_dointvec,
129 	},
130 	{ }
131 };
132 
133 static ctl_table raid_dir_table[] = {
134 	{
135 		.procname	= "raid",
136 		.maxlen		= 0,
137 		.mode		= S_IRUGO|S_IXUGO,
138 		.child		= raid_table,
139 	},
140 	{ }
141 };
142 
143 static ctl_table raid_root_table[] = {
144 	{
145 		.procname	= "dev",
146 		.maxlen		= 0,
147 		.mode		= 0555,
148 		.child		= raid_dir_table,
149 	},
150 	{  }
151 };
152 
153 static const struct block_device_operations md_fops;
154 
155 static int start_readonly;
156 
157 /* bio_clone_mddev
158  * like bio_clone, but with a local bio set
159  */
160 
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 			    struct mddev *mddev)
163 {
164 	struct bio *b;
165 
166 	if (!mddev || !mddev->bio_set)
167 		return bio_alloc(gfp_mask, nr_iovecs);
168 
169 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 	if (!b)
171 		return NULL;
172 	return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175 
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 			    struct mddev *mddev)
178 {
179 	if (!mddev || !mddev->bio_set)
180 		return bio_clone(bio, gfp_mask);
181 
182 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185 
186 /*
187  * We have a system wide 'event count' that is incremented
188  * on any 'interesting' event, and readers of /proc/mdstat
189  * can use 'poll' or 'select' to find out when the event
190  * count increases.
191  *
192  * Events are:
193  *  start array, stop array, error, add device, remove device,
194  *  start build, activate spare
195  */
196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
197 static atomic_t md_event_count;
198 void md_new_event(struct mddev *mddev)
199 {
200 	atomic_inc(&md_event_count);
201 	wake_up(&md_event_waiters);
202 }
203 EXPORT_SYMBOL_GPL(md_new_event);
204 
205 /* Alternate version that can be called from interrupts
206  * when calling sysfs_notify isn't needed.
207  */
208 static void md_new_event_inintr(struct mddev *mddev)
209 {
210 	atomic_inc(&md_event_count);
211 	wake_up(&md_event_waiters);
212 }
213 
214 /*
215  * Enables to iterate over all existing md arrays
216  * all_mddevs_lock protects this list.
217  */
218 static LIST_HEAD(all_mddevs);
219 static DEFINE_SPINLOCK(all_mddevs_lock);
220 
221 
222 /*
223  * iterates through all used mddevs in the system.
224  * We take care to grab the all_mddevs_lock whenever navigating
225  * the list, and to always hold a refcount when unlocked.
226  * Any code which breaks out of this loop while own
227  * a reference to the current mddev and must mddev_put it.
228  */
229 #define for_each_mddev(_mddev,_tmp)					\
230 									\
231 	for (({ spin_lock(&all_mddevs_lock); 				\
232 		_tmp = all_mddevs.next;					\
233 		_mddev = NULL;});					\
234 	     ({ if (_tmp != &all_mddevs)				\
235 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
236 		spin_unlock(&all_mddevs_lock);				\
237 		if (_mddev) mddev_put(_mddev);				\
238 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
239 		_tmp != &all_mddevs;});					\
240 	     ({ spin_lock(&all_mddevs_lock);				\
241 		_tmp = _tmp->next;})					\
242 		)
243 
244 
245 /* Rather than calling directly into the personality make_request function,
246  * IO requests come here first so that we can check if the device is
247  * being suspended pending a reconfiguration.
248  * We hold a refcount over the call to ->make_request.  By the time that
249  * call has finished, the bio has been linked into some internal structure
250  * and so is visible to ->quiesce(), so we don't need the refcount any more.
251  */
252 static void md_make_request(struct request_queue *q, struct bio *bio)
253 {
254 	const int rw = bio_data_dir(bio);
255 	struct mddev *mddev = q->queuedata;
256 	int cpu;
257 	unsigned int sectors;
258 
259 	if (mddev == NULL || mddev->pers == NULL
260 	    || !mddev->ready) {
261 		bio_io_error(bio);
262 		return;
263 	}
264 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
265 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
266 		return;
267 	}
268 	smp_rmb(); /* Ensure implications of  'active' are visible */
269 	rcu_read_lock();
270 	if (mddev->suspended) {
271 		DEFINE_WAIT(__wait);
272 		for (;;) {
273 			prepare_to_wait(&mddev->sb_wait, &__wait,
274 					TASK_UNINTERRUPTIBLE);
275 			if (!mddev->suspended)
276 				break;
277 			rcu_read_unlock();
278 			schedule();
279 			rcu_read_lock();
280 		}
281 		finish_wait(&mddev->sb_wait, &__wait);
282 	}
283 	atomic_inc(&mddev->active_io);
284 	rcu_read_unlock();
285 
286 	/*
287 	 * save the sectors now since our bio can
288 	 * go away inside make_request
289 	 */
290 	sectors = bio_sectors(bio);
291 	mddev->pers->make_request(mddev, bio);
292 
293 	cpu = part_stat_lock();
294 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
295 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
296 	part_stat_unlock();
297 
298 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
299 		wake_up(&mddev->sb_wait);
300 }
301 
302 /* mddev_suspend makes sure no new requests are submitted
303  * to the device, and that any requests that have been submitted
304  * are completely handled.
305  * Once ->stop is called and completes, the module will be completely
306  * unused.
307  */
308 void mddev_suspend(struct mddev *mddev)
309 {
310 	BUG_ON(mddev->suspended);
311 	mddev->suspended = 1;
312 	synchronize_rcu();
313 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
314 	mddev->pers->quiesce(mddev, 1);
315 
316 	del_timer_sync(&mddev->safemode_timer);
317 }
318 EXPORT_SYMBOL_GPL(mddev_suspend);
319 
320 void mddev_resume(struct mddev *mddev)
321 {
322 	mddev->suspended = 0;
323 	wake_up(&mddev->sb_wait);
324 	mddev->pers->quiesce(mddev, 0);
325 
326 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
327 	md_wakeup_thread(mddev->thread);
328 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
329 }
330 EXPORT_SYMBOL_GPL(mddev_resume);
331 
332 int mddev_congested(struct mddev *mddev, int bits)
333 {
334 	return mddev->suspended;
335 }
336 EXPORT_SYMBOL(mddev_congested);
337 
338 /*
339  * Generic flush handling for md
340  */
341 
342 static void md_end_flush(struct bio *bio, int err)
343 {
344 	struct md_rdev *rdev = bio->bi_private;
345 	struct mddev *mddev = rdev->mddev;
346 
347 	rdev_dec_pending(rdev, mddev);
348 
349 	if (atomic_dec_and_test(&mddev->flush_pending)) {
350 		/* The pre-request flush has finished */
351 		queue_work(md_wq, &mddev->flush_work);
352 	}
353 	bio_put(bio);
354 }
355 
356 static void md_submit_flush_data(struct work_struct *ws);
357 
358 static void submit_flushes(struct work_struct *ws)
359 {
360 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
361 	struct md_rdev *rdev;
362 
363 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
364 	atomic_set(&mddev->flush_pending, 1);
365 	rcu_read_lock();
366 	rdev_for_each_rcu(rdev, mddev)
367 		if (rdev->raid_disk >= 0 &&
368 		    !test_bit(Faulty, &rdev->flags)) {
369 			/* Take two references, one is dropped
370 			 * when request finishes, one after
371 			 * we reclaim rcu_read_lock
372 			 */
373 			struct bio *bi;
374 			atomic_inc(&rdev->nr_pending);
375 			atomic_inc(&rdev->nr_pending);
376 			rcu_read_unlock();
377 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
378 			bi->bi_end_io = md_end_flush;
379 			bi->bi_private = rdev;
380 			bi->bi_bdev = rdev->bdev;
381 			atomic_inc(&mddev->flush_pending);
382 			submit_bio(WRITE_FLUSH, bi);
383 			rcu_read_lock();
384 			rdev_dec_pending(rdev, mddev);
385 		}
386 	rcu_read_unlock();
387 	if (atomic_dec_and_test(&mddev->flush_pending))
388 		queue_work(md_wq, &mddev->flush_work);
389 }
390 
391 static void md_submit_flush_data(struct work_struct *ws)
392 {
393 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
394 	struct bio *bio = mddev->flush_bio;
395 
396 	if (bio->bi_size == 0)
397 		/* an empty barrier - all done */
398 		bio_endio(bio, 0);
399 	else {
400 		bio->bi_rw &= ~REQ_FLUSH;
401 		mddev->pers->make_request(mddev, bio);
402 	}
403 
404 	mddev->flush_bio = NULL;
405 	wake_up(&mddev->sb_wait);
406 }
407 
408 void md_flush_request(struct mddev *mddev, struct bio *bio)
409 {
410 	spin_lock_irq(&mddev->write_lock);
411 	wait_event_lock_irq(mddev->sb_wait,
412 			    !mddev->flush_bio,
413 			    mddev->write_lock);
414 	mddev->flush_bio = bio;
415 	spin_unlock_irq(&mddev->write_lock);
416 
417 	INIT_WORK(&mddev->flush_work, submit_flushes);
418 	queue_work(md_wq, &mddev->flush_work);
419 }
420 EXPORT_SYMBOL(md_flush_request);
421 
422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
423 {
424 	struct mddev *mddev = cb->data;
425 	md_wakeup_thread(mddev->thread);
426 	kfree(cb);
427 }
428 EXPORT_SYMBOL(md_unplug);
429 
430 static inline struct mddev *mddev_get(struct mddev *mddev)
431 {
432 	atomic_inc(&mddev->active);
433 	return mddev;
434 }
435 
436 static void mddev_delayed_delete(struct work_struct *ws);
437 
438 static void mddev_put(struct mddev *mddev)
439 {
440 	struct bio_set *bs = NULL;
441 
442 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
443 		return;
444 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
445 	    mddev->ctime == 0 && !mddev->hold_active) {
446 		/* Array is not configured at all, and not held active,
447 		 * so destroy it */
448 		list_del_init(&mddev->all_mddevs);
449 		bs = mddev->bio_set;
450 		mddev->bio_set = NULL;
451 		if (mddev->gendisk) {
452 			/* We did a probe so need to clean up.  Call
453 			 * queue_work inside the spinlock so that
454 			 * flush_workqueue() after mddev_find will
455 			 * succeed in waiting for the work to be done.
456 			 */
457 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
458 			queue_work(md_misc_wq, &mddev->del_work);
459 		} else
460 			kfree(mddev);
461 	}
462 	spin_unlock(&all_mddevs_lock);
463 	if (bs)
464 		bioset_free(bs);
465 }
466 
467 void mddev_init(struct mddev *mddev)
468 {
469 	mutex_init(&mddev->open_mutex);
470 	mutex_init(&mddev->reconfig_mutex);
471 	mutex_init(&mddev->bitmap_info.mutex);
472 	INIT_LIST_HEAD(&mddev->disks);
473 	INIT_LIST_HEAD(&mddev->all_mddevs);
474 	init_timer(&mddev->safemode_timer);
475 	atomic_set(&mddev->active, 1);
476 	atomic_set(&mddev->openers, 0);
477 	atomic_set(&mddev->active_io, 0);
478 	spin_lock_init(&mddev->write_lock);
479 	atomic_set(&mddev->flush_pending, 0);
480 	init_waitqueue_head(&mddev->sb_wait);
481 	init_waitqueue_head(&mddev->recovery_wait);
482 	mddev->reshape_position = MaxSector;
483 	mddev->reshape_backwards = 0;
484 	mddev->last_sync_action = "none";
485 	mddev->resync_min = 0;
486 	mddev->resync_max = MaxSector;
487 	mddev->level = LEVEL_NONE;
488 }
489 EXPORT_SYMBOL_GPL(mddev_init);
490 
491 static struct mddev * mddev_find(dev_t unit)
492 {
493 	struct mddev *mddev, *new = NULL;
494 
495 	if (unit && MAJOR(unit) != MD_MAJOR)
496 		unit &= ~((1<<MdpMinorShift)-1);
497 
498  retry:
499 	spin_lock(&all_mddevs_lock);
500 
501 	if (unit) {
502 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
503 			if (mddev->unit == unit) {
504 				mddev_get(mddev);
505 				spin_unlock(&all_mddevs_lock);
506 				kfree(new);
507 				return mddev;
508 			}
509 
510 		if (new) {
511 			list_add(&new->all_mddevs, &all_mddevs);
512 			spin_unlock(&all_mddevs_lock);
513 			new->hold_active = UNTIL_IOCTL;
514 			return new;
515 		}
516 	} else if (new) {
517 		/* find an unused unit number */
518 		static int next_minor = 512;
519 		int start = next_minor;
520 		int is_free = 0;
521 		int dev = 0;
522 		while (!is_free) {
523 			dev = MKDEV(MD_MAJOR, next_minor);
524 			next_minor++;
525 			if (next_minor > MINORMASK)
526 				next_minor = 0;
527 			if (next_minor == start) {
528 				/* Oh dear, all in use. */
529 				spin_unlock(&all_mddevs_lock);
530 				kfree(new);
531 				return NULL;
532 			}
533 
534 			is_free = 1;
535 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
536 				if (mddev->unit == dev) {
537 					is_free = 0;
538 					break;
539 				}
540 		}
541 		new->unit = dev;
542 		new->md_minor = MINOR(dev);
543 		new->hold_active = UNTIL_STOP;
544 		list_add(&new->all_mddevs, &all_mddevs);
545 		spin_unlock(&all_mddevs_lock);
546 		return new;
547 	}
548 	spin_unlock(&all_mddevs_lock);
549 
550 	new = kzalloc(sizeof(*new), GFP_KERNEL);
551 	if (!new)
552 		return NULL;
553 
554 	new->unit = unit;
555 	if (MAJOR(unit) == MD_MAJOR)
556 		new->md_minor = MINOR(unit);
557 	else
558 		new->md_minor = MINOR(unit) >> MdpMinorShift;
559 
560 	mddev_init(new);
561 
562 	goto retry;
563 }
564 
565 static inline int mddev_lock(struct mddev * mddev)
566 {
567 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
568 }
569 
570 static inline int mddev_is_locked(struct mddev *mddev)
571 {
572 	return mutex_is_locked(&mddev->reconfig_mutex);
573 }
574 
575 static inline int mddev_trylock(struct mddev * mddev)
576 {
577 	return mutex_trylock(&mddev->reconfig_mutex);
578 }
579 
580 static struct attribute_group md_redundancy_group;
581 
582 static void mddev_unlock(struct mddev * mddev)
583 {
584 	if (mddev->to_remove) {
585 		/* These cannot be removed under reconfig_mutex as
586 		 * an access to the files will try to take reconfig_mutex
587 		 * while holding the file unremovable, which leads to
588 		 * a deadlock.
589 		 * So hold set sysfs_active while the remove in happeing,
590 		 * and anything else which might set ->to_remove or my
591 		 * otherwise change the sysfs namespace will fail with
592 		 * -EBUSY if sysfs_active is still set.
593 		 * We set sysfs_active under reconfig_mutex and elsewhere
594 		 * test it under the same mutex to ensure its correct value
595 		 * is seen.
596 		 */
597 		struct attribute_group *to_remove = mddev->to_remove;
598 		mddev->to_remove = NULL;
599 		mddev->sysfs_active = 1;
600 		mutex_unlock(&mddev->reconfig_mutex);
601 
602 		if (mddev->kobj.sd) {
603 			if (to_remove != &md_redundancy_group)
604 				sysfs_remove_group(&mddev->kobj, to_remove);
605 			if (mddev->pers == NULL ||
606 			    mddev->pers->sync_request == NULL) {
607 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
608 				if (mddev->sysfs_action)
609 					sysfs_put(mddev->sysfs_action);
610 				mddev->sysfs_action = NULL;
611 			}
612 		}
613 		mddev->sysfs_active = 0;
614 	} else
615 		mutex_unlock(&mddev->reconfig_mutex);
616 
617 	/* As we've dropped the mutex we need a spinlock to
618 	 * make sure the thread doesn't disappear
619 	 */
620 	spin_lock(&pers_lock);
621 	md_wakeup_thread(mddev->thread);
622 	spin_unlock(&pers_lock);
623 }
624 
625 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
626 {
627 	struct md_rdev *rdev;
628 
629 	rdev_for_each(rdev, mddev)
630 		if (rdev->desc_nr == nr)
631 			return rdev;
632 
633 	return NULL;
634 }
635 
636 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
637 {
638 	struct md_rdev *rdev;
639 
640 	rdev_for_each_rcu(rdev, mddev)
641 		if (rdev->desc_nr == nr)
642 			return rdev;
643 
644 	return NULL;
645 }
646 
647 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
648 {
649 	struct md_rdev *rdev;
650 
651 	rdev_for_each(rdev, mddev)
652 		if (rdev->bdev->bd_dev == dev)
653 			return rdev;
654 
655 	return NULL;
656 }
657 
658 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
659 {
660 	struct md_rdev *rdev;
661 
662 	rdev_for_each_rcu(rdev, mddev)
663 		if (rdev->bdev->bd_dev == dev)
664 			return rdev;
665 
666 	return NULL;
667 }
668 
669 static struct md_personality *find_pers(int level, char *clevel)
670 {
671 	struct md_personality *pers;
672 	list_for_each_entry(pers, &pers_list, list) {
673 		if (level != LEVEL_NONE && pers->level == level)
674 			return pers;
675 		if (strcmp(pers->name, clevel)==0)
676 			return pers;
677 	}
678 	return NULL;
679 }
680 
681 /* return the offset of the super block in 512byte sectors */
682 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
683 {
684 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
685 	return MD_NEW_SIZE_SECTORS(num_sectors);
686 }
687 
688 static int alloc_disk_sb(struct md_rdev * rdev)
689 {
690 	if (rdev->sb_page)
691 		MD_BUG();
692 
693 	rdev->sb_page = alloc_page(GFP_KERNEL);
694 	if (!rdev->sb_page) {
695 		printk(KERN_ALERT "md: out of memory.\n");
696 		return -ENOMEM;
697 	}
698 
699 	return 0;
700 }
701 
702 void md_rdev_clear(struct md_rdev *rdev)
703 {
704 	if (rdev->sb_page) {
705 		put_page(rdev->sb_page);
706 		rdev->sb_loaded = 0;
707 		rdev->sb_page = NULL;
708 		rdev->sb_start = 0;
709 		rdev->sectors = 0;
710 	}
711 	if (rdev->bb_page) {
712 		put_page(rdev->bb_page);
713 		rdev->bb_page = NULL;
714 	}
715 	kfree(rdev->badblocks.page);
716 	rdev->badblocks.page = NULL;
717 }
718 EXPORT_SYMBOL_GPL(md_rdev_clear);
719 
720 static void super_written(struct bio *bio, int error)
721 {
722 	struct md_rdev *rdev = bio->bi_private;
723 	struct mddev *mddev = rdev->mddev;
724 
725 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
726 		printk("md: super_written gets error=%d, uptodate=%d\n",
727 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
728 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
729 		md_error(mddev, rdev);
730 	}
731 
732 	if (atomic_dec_and_test(&mddev->pending_writes))
733 		wake_up(&mddev->sb_wait);
734 	bio_put(bio);
735 }
736 
737 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
738 		   sector_t sector, int size, struct page *page)
739 {
740 	/* write first size bytes of page to sector of rdev
741 	 * Increment mddev->pending_writes before returning
742 	 * and decrement it on completion, waking up sb_wait
743 	 * if zero is reached.
744 	 * If an error occurred, call md_error
745 	 */
746 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
747 
748 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
749 	bio->bi_sector = sector;
750 	bio_add_page(bio, page, size, 0);
751 	bio->bi_private = rdev;
752 	bio->bi_end_io = super_written;
753 
754 	atomic_inc(&mddev->pending_writes);
755 	submit_bio(WRITE_FLUSH_FUA, bio);
756 }
757 
758 void md_super_wait(struct mddev *mddev)
759 {
760 	/* wait for all superblock writes that were scheduled to complete */
761 	DEFINE_WAIT(wq);
762 	for(;;) {
763 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
764 		if (atomic_read(&mddev->pending_writes)==0)
765 			break;
766 		schedule();
767 	}
768 	finish_wait(&mddev->sb_wait, &wq);
769 }
770 
771 static void bi_complete(struct bio *bio, int error)
772 {
773 	complete((struct completion*)bio->bi_private);
774 }
775 
776 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
777 		 struct page *page, int rw, bool metadata_op)
778 {
779 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
780 	struct completion event;
781 	int ret;
782 
783 	rw |= REQ_SYNC;
784 
785 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
786 		rdev->meta_bdev : rdev->bdev;
787 	if (metadata_op)
788 		bio->bi_sector = sector + rdev->sb_start;
789 	else if (rdev->mddev->reshape_position != MaxSector &&
790 		 (rdev->mddev->reshape_backwards ==
791 		  (sector >= rdev->mddev->reshape_position)))
792 		bio->bi_sector = sector + rdev->new_data_offset;
793 	else
794 		bio->bi_sector = sector + rdev->data_offset;
795 	bio_add_page(bio, page, size, 0);
796 	init_completion(&event);
797 	bio->bi_private = &event;
798 	bio->bi_end_io = bi_complete;
799 	submit_bio(rw, bio);
800 	wait_for_completion(&event);
801 
802 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
803 	bio_put(bio);
804 	return ret;
805 }
806 EXPORT_SYMBOL_GPL(sync_page_io);
807 
808 static int read_disk_sb(struct md_rdev * rdev, int size)
809 {
810 	char b[BDEVNAME_SIZE];
811 	if (!rdev->sb_page) {
812 		MD_BUG();
813 		return -EINVAL;
814 	}
815 	if (rdev->sb_loaded)
816 		return 0;
817 
818 
819 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
820 		goto fail;
821 	rdev->sb_loaded = 1;
822 	return 0;
823 
824 fail:
825 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
826 		bdevname(rdev->bdev,b));
827 	return -EINVAL;
828 }
829 
830 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
831 {
832 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
833 		sb1->set_uuid1 == sb2->set_uuid1 &&
834 		sb1->set_uuid2 == sb2->set_uuid2 &&
835 		sb1->set_uuid3 == sb2->set_uuid3;
836 }
837 
838 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
839 {
840 	int ret;
841 	mdp_super_t *tmp1, *tmp2;
842 
843 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
844 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
845 
846 	if (!tmp1 || !tmp2) {
847 		ret = 0;
848 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
849 		goto abort;
850 	}
851 
852 	*tmp1 = *sb1;
853 	*tmp2 = *sb2;
854 
855 	/*
856 	 * nr_disks is not constant
857 	 */
858 	tmp1->nr_disks = 0;
859 	tmp2->nr_disks = 0;
860 
861 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
862 abort:
863 	kfree(tmp1);
864 	kfree(tmp2);
865 	return ret;
866 }
867 
868 
869 static u32 md_csum_fold(u32 csum)
870 {
871 	csum = (csum & 0xffff) + (csum >> 16);
872 	return (csum & 0xffff) + (csum >> 16);
873 }
874 
875 static unsigned int calc_sb_csum(mdp_super_t * sb)
876 {
877 	u64 newcsum = 0;
878 	u32 *sb32 = (u32*)sb;
879 	int i;
880 	unsigned int disk_csum, csum;
881 
882 	disk_csum = sb->sb_csum;
883 	sb->sb_csum = 0;
884 
885 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
886 		newcsum += sb32[i];
887 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
888 
889 
890 #ifdef CONFIG_ALPHA
891 	/* This used to use csum_partial, which was wrong for several
892 	 * reasons including that different results are returned on
893 	 * different architectures.  It isn't critical that we get exactly
894 	 * the same return value as before (we always csum_fold before
895 	 * testing, and that removes any differences).  However as we
896 	 * know that csum_partial always returned a 16bit value on
897 	 * alphas, do a fold to maximise conformity to previous behaviour.
898 	 */
899 	sb->sb_csum = md_csum_fold(disk_csum);
900 #else
901 	sb->sb_csum = disk_csum;
902 #endif
903 	return csum;
904 }
905 
906 
907 /*
908  * Handle superblock details.
909  * We want to be able to handle multiple superblock formats
910  * so we have a common interface to them all, and an array of
911  * different handlers.
912  * We rely on user-space to write the initial superblock, and support
913  * reading and updating of superblocks.
914  * Interface methods are:
915  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
916  *      loads and validates a superblock on dev.
917  *      if refdev != NULL, compare superblocks on both devices
918  *    Return:
919  *      0 - dev has a superblock that is compatible with refdev
920  *      1 - dev has a superblock that is compatible and newer than refdev
921  *          so dev should be used as the refdev in future
922  *     -EINVAL superblock incompatible or invalid
923  *     -othererror e.g. -EIO
924  *
925  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
926  *      Verify that dev is acceptable into mddev.
927  *       The first time, mddev->raid_disks will be 0, and data from
928  *       dev should be merged in.  Subsequent calls check that dev
929  *       is new enough.  Return 0 or -EINVAL
930  *
931  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
932  *     Update the superblock for rdev with data in mddev
933  *     This does not write to disc.
934  *
935  */
936 
937 struct super_type  {
938 	char		    *name;
939 	struct module	    *owner;
940 	int		    (*load_super)(struct md_rdev *rdev,
941 					  struct md_rdev *refdev,
942 					  int minor_version);
943 	int		    (*validate_super)(struct mddev *mddev,
944 					      struct md_rdev *rdev);
945 	void		    (*sync_super)(struct mddev *mddev,
946 					  struct md_rdev *rdev);
947 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
948 						sector_t num_sectors);
949 	int		    (*allow_new_offset)(struct md_rdev *rdev,
950 						unsigned long long new_offset);
951 };
952 
953 /*
954  * Check that the given mddev has no bitmap.
955  *
956  * This function is called from the run method of all personalities that do not
957  * support bitmaps. It prints an error message and returns non-zero if mddev
958  * has a bitmap. Otherwise, it returns 0.
959  *
960  */
961 int md_check_no_bitmap(struct mddev *mddev)
962 {
963 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
964 		return 0;
965 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
966 		mdname(mddev), mddev->pers->name);
967 	return 1;
968 }
969 EXPORT_SYMBOL(md_check_no_bitmap);
970 
971 /*
972  * load_super for 0.90.0
973  */
974 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
975 {
976 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
977 	mdp_super_t *sb;
978 	int ret;
979 
980 	/*
981 	 * Calculate the position of the superblock (512byte sectors),
982 	 * it's at the end of the disk.
983 	 *
984 	 * It also happens to be a multiple of 4Kb.
985 	 */
986 	rdev->sb_start = calc_dev_sboffset(rdev);
987 
988 	ret = read_disk_sb(rdev, MD_SB_BYTES);
989 	if (ret) return ret;
990 
991 	ret = -EINVAL;
992 
993 	bdevname(rdev->bdev, b);
994 	sb = page_address(rdev->sb_page);
995 
996 	if (sb->md_magic != MD_SB_MAGIC) {
997 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
998 		       b);
999 		goto abort;
1000 	}
1001 
1002 	if (sb->major_version != 0 ||
1003 	    sb->minor_version < 90 ||
1004 	    sb->minor_version > 91) {
1005 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1006 			sb->major_version, sb->minor_version,
1007 			b);
1008 		goto abort;
1009 	}
1010 
1011 	if (sb->raid_disks <= 0)
1012 		goto abort;
1013 
1014 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1015 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1016 			b);
1017 		goto abort;
1018 	}
1019 
1020 	rdev->preferred_minor = sb->md_minor;
1021 	rdev->data_offset = 0;
1022 	rdev->new_data_offset = 0;
1023 	rdev->sb_size = MD_SB_BYTES;
1024 	rdev->badblocks.shift = -1;
1025 
1026 	if (sb->level == LEVEL_MULTIPATH)
1027 		rdev->desc_nr = -1;
1028 	else
1029 		rdev->desc_nr = sb->this_disk.number;
1030 
1031 	if (!refdev) {
1032 		ret = 1;
1033 	} else {
1034 		__u64 ev1, ev2;
1035 		mdp_super_t *refsb = page_address(refdev->sb_page);
1036 		if (!uuid_equal(refsb, sb)) {
1037 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1038 				b, bdevname(refdev->bdev,b2));
1039 			goto abort;
1040 		}
1041 		if (!sb_equal(refsb, sb)) {
1042 			printk(KERN_WARNING "md: %s has same UUID"
1043 			       " but different superblock to %s\n",
1044 			       b, bdevname(refdev->bdev, b2));
1045 			goto abort;
1046 		}
1047 		ev1 = md_event(sb);
1048 		ev2 = md_event(refsb);
1049 		if (ev1 > ev2)
1050 			ret = 1;
1051 		else
1052 			ret = 0;
1053 	}
1054 	rdev->sectors = rdev->sb_start;
1055 	/* Limit to 4TB as metadata cannot record more than that.
1056 	 * (not needed for Linear and RAID0 as metadata doesn't
1057 	 * record this size)
1058 	 */
1059 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1060 		rdev->sectors = (2ULL << 32) - 2;
1061 
1062 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1063 		/* "this cannot possibly happen" ... */
1064 		ret = -EINVAL;
1065 
1066  abort:
1067 	return ret;
1068 }
1069 
1070 /*
1071  * validate_super for 0.90.0
1072  */
1073 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1074 {
1075 	mdp_disk_t *desc;
1076 	mdp_super_t *sb = page_address(rdev->sb_page);
1077 	__u64 ev1 = md_event(sb);
1078 
1079 	rdev->raid_disk = -1;
1080 	clear_bit(Faulty, &rdev->flags);
1081 	clear_bit(In_sync, &rdev->flags);
1082 	clear_bit(WriteMostly, &rdev->flags);
1083 
1084 	if (mddev->raid_disks == 0) {
1085 		mddev->major_version = 0;
1086 		mddev->minor_version = sb->minor_version;
1087 		mddev->patch_version = sb->patch_version;
1088 		mddev->external = 0;
1089 		mddev->chunk_sectors = sb->chunk_size >> 9;
1090 		mddev->ctime = sb->ctime;
1091 		mddev->utime = sb->utime;
1092 		mddev->level = sb->level;
1093 		mddev->clevel[0] = 0;
1094 		mddev->layout = sb->layout;
1095 		mddev->raid_disks = sb->raid_disks;
1096 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1097 		mddev->events = ev1;
1098 		mddev->bitmap_info.offset = 0;
1099 		mddev->bitmap_info.space = 0;
1100 		/* bitmap can use 60 K after the 4K superblocks */
1101 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1102 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1103 		mddev->reshape_backwards = 0;
1104 
1105 		if (mddev->minor_version >= 91) {
1106 			mddev->reshape_position = sb->reshape_position;
1107 			mddev->delta_disks = sb->delta_disks;
1108 			mddev->new_level = sb->new_level;
1109 			mddev->new_layout = sb->new_layout;
1110 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1111 			if (mddev->delta_disks < 0)
1112 				mddev->reshape_backwards = 1;
1113 		} else {
1114 			mddev->reshape_position = MaxSector;
1115 			mddev->delta_disks = 0;
1116 			mddev->new_level = mddev->level;
1117 			mddev->new_layout = mddev->layout;
1118 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1119 		}
1120 
1121 		if (sb->state & (1<<MD_SB_CLEAN))
1122 			mddev->recovery_cp = MaxSector;
1123 		else {
1124 			if (sb->events_hi == sb->cp_events_hi &&
1125 				sb->events_lo == sb->cp_events_lo) {
1126 				mddev->recovery_cp = sb->recovery_cp;
1127 			} else
1128 				mddev->recovery_cp = 0;
1129 		}
1130 
1131 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1132 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1133 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1134 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1135 
1136 		mddev->max_disks = MD_SB_DISKS;
1137 
1138 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1139 		    mddev->bitmap_info.file == NULL) {
1140 			mddev->bitmap_info.offset =
1141 				mddev->bitmap_info.default_offset;
1142 			mddev->bitmap_info.space =
1143 				mddev->bitmap_info.default_space;
1144 		}
1145 
1146 	} else if (mddev->pers == NULL) {
1147 		/* Insist on good event counter while assembling, except
1148 		 * for spares (which don't need an event count) */
1149 		++ev1;
1150 		if (sb->disks[rdev->desc_nr].state & (
1151 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1152 			if (ev1 < mddev->events)
1153 				return -EINVAL;
1154 	} else if (mddev->bitmap) {
1155 		/* if adding to array with a bitmap, then we can accept an
1156 		 * older device ... but not too old.
1157 		 */
1158 		if (ev1 < mddev->bitmap->events_cleared)
1159 			return 0;
1160 	} else {
1161 		if (ev1 < mddev->events)
1162 			/* just a hot-add of a new device, leave raid_disk at -1 */
1163 			return 0;
1164 	}
1165 
1166 	if (mddev->level != LEVEL_MULTIPATH) {
1167 		desc = sb->disks + rdev->desc_nr;
1168 
1169 		if (desc->state & (1<<MD_DISK_FAULTY))
1170 			set_bit(Faulty, &rdev->flags);
1171 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1172 			    desc->raid_disk < mddev->raid_disks */) {
1173 			set_bit(In_sync, &rdev->flags);
1174 			rdev->raid_disk = desc->raid_disk;
1175 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1176 			/* active but not in sync implies recovery up to
1177 			 * reshape position.  We don't know exactly where
1178 			 * that is, so set to zero for now */
1179 			if (mddev->minor_version >= 91) {
1180 				rdev->recovery_offset = 0;
1181 				rdev->raid_disk = desc->raid_disk;
1182 			}
1183 		}
1184 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1185 			set_bit(WriteMostly, &rdev->flags);
1186 	} else /* MULTIPATH are always insync */
1187 		set_bit(In_sync, &rdev->flags);
1188 	return 0;
1189 }
1190 
1191 /*
1192  * sync_super for 0.90.0
1193  */
1194 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1195 {
1196 	mdp_super_t *sb;
1197 	struct md_rdev *rdev2;
1198 	int next_spare = mddev->raid_disks;
1199 
1200 
1201 	/* make rdev->sb match mddev data..
1202 	 *
1203 	 * 1/ zero out disks
1204 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1205 	 * 3/ any empty disks < next_spare become removed
1206 	 *
1207 	 * disks[0] gets initialised to REMOVED because
1208 	 * we cannot be sure from other fields if it has
1209 	 * been initialised or not.
1210 	 */
1211 	int i;
1212 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1213 
1214 	rdev->sb_size = MD_SB_BYTES;
1215 
1216 	sb = page_address(rdev->sb_page);
1217 
1218 	memset(sb, 0, sizeof(*sb));
1219 
1220 	sb->md_magic = MD_SB_MAGIC;
1221 	sb->major_version = mddev->major_version;
1222 	sb->patch_version = mddev->patch_version;
1223 	sb->gvalid_words  = 0; /* ignored */
1224 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1225 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1226 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1227 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1228 
1229 	sb->ctime = mddev->ctime;
1230 	sb->level = mddev->level;
1231 	sb->size = mddev->dev_sectors / 2;
1232 	sb->raid_disks = mddev->raid_disks;
1233 	sb->md_minor = mddev->md_minor;
1234 	sb->not_persistent = 0;
1235 	sb->utime = mddev->utime;
1236 	sb->state = 0;
1237 	sb->events_hi = (mddev->events>>32);
1238 	sb->events_lo = (u32)mddev->events;
1239 
1240 	if (mddev->reshape_position == MaxSector)
1241 		sb->minor_version = 90;
1242 	else {
1243 		sb->minor_version = 91;
1244 		sb->reshape_position = mddev->reshape_position;
1245 		sb->new_level = mddev->new_level;
1246 		sb->delta_disks = mddev->delta_disks;
1247 		sb->new_layout = mddev->new_layout;
1248 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1249 	}
1250 	mddev->minor_version = sb->minor_version;
1251 	if (mddev->in_sync)
1252 	{
1253 		sb->recovery_cp = mddev->recovery_cp;
1254 		sb->cp_events_hi = (mddev->events>>32);
1255 		sb->cp_events_lo = (u32)mddev->events;
1256 		if (mddev->recovery_cp == MaxSector)
1257 			sb->state = (1<< MD_SB_CLEAN);
1258 	} else
1259 		sb->recovery_cp = 0;
1260 
1261 	sb->layout = mddev->layout;
1262 	sb->chunk_size = mddev->chunk_sectors << 9;
1263 
1264 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1265 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1266 
1267 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1268 	rdev_for_each(rdev2, mddev) {
1269 		mdp_disk_t *d;
1270 		int desc_nr;
1271 		int is_active = test_bit(In_sync, &rdev2->flags);
1272 
1273 		if (rdev2->raid_disk >= 0 &&
1274 		    sb->minor_version >= 91)
1275 			/* we have nowhere to store the recovery_offset,
1276 			 * but if it is not below the reshape_position,
1277 			 * we can piggy-back on that.
1278 			 */
1279 			is_active = 1;
1280 		if (rdev2->raid_disk < 0 ||
1281 		    test_bit(Faulty, &rdev2->flags))
1282 			is_active = 0;
1283 		if (is_active)
1284 			desc_nr = rdev2->raid_disk;
1285 		else
1286 			desc_nr = next_spare++;
1287 		rdev2->desc_nr = desc_nr;
1288 		d = &sb->disks[rdev2->desc_nr];
1289 		nr_disks++;
1290 		d->number = rdev2->desc_nr;
1291 		d->major = MAJOR(rdev2->bdev->bd_dev);
1292 		d->minor = MINOR(rdev2->bdev->bd_dev);
1293 		if (is_active)
1294 			d->raid_disk = rdev2->raid_disk;
1295 		else
1296 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1297 		if (test_bit(Faulty, &rdev2->flags))
1298 			d->state = (1<<MD_DISK_FAULTY);
1299 		else if (is_active) {
1300 			d->state = (1<<MD_DISK_ACTIVE);
1301 			if (test_bit(In_sync, &rdev2->flags))
1302 				d->state |= (1<<MD_DISK_SYNC);
1303 			active++;
1304 			working++;
1305 		} else {
1306 			d->state = 0;
1307 			spare++;
1308 			working++;
1309 		}
1310 		if (test_bit(WriteMostly, &rdev2->flags))
1311 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1312 	}
1313 	/* now set the "removed" and "faulty" bits on any missing devices */
1314 	for (i=0 ; i < mddev->raid_disks ; i++) {
1315 		mdp_disk_t *d = &sb->disks[i];
1316 		if (d->state == 0 && d->number == 0) {
1317 			d->number = i;
1318 			d->raid_disk = i;
1319 			d->state = (1<<MD_DISK_REMOVED);
1320 			d->state |= (1<<MD_DISK_FAULTY);
1321 			failed++;
1322 		}
1323 	}
1324 	sb->nr_disks = nr_disks;
1325 	sb->active_disks = active;
1326 	sb->working_disks = working;
1327 	sb->failed_disks = failed;
1328 	sb->spare_disks = spare;
1329 
1330 	sb->this_disk = sb->disks[rdev->desc_nr];
1331 	sb->sb_csum = calc_sb_csum(sb);
1332 }
1333 
1334 /*
1335  * rdev_size_change for 0.90.0
1336  */
1337 static unsigned long long
1338 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1339 {
1340 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1341 		return 0; /* component must fit device */
1342 	if (rdev->mddev->bitmap_info.offset)
1343 		return 0; /* can't move bitmap */
1344 	rdev->sb_start = calc_dev_sboffset(rdev);
1345 	if (!num_sectors || num_sectors > rdev->sb_start)
1346 		num_sectors = rdev->sb_start;
1347 	/* Limit to 4TB as metadata cannot record more than that.
1348 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1349 	 */
1350 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1351 		num_sectors = (2ULL << 32) - 2;
1352 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1353 		       rdev->sb_page);
1354 	md_super_wait(rdev->mddev);
1355 	return num_sectors;
1356 }
1357 
1358 static int
1359 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1360 {
1361 	/* non-zero offset changes not possible with v0.90 */
1362 	return new_offset == 0;
1363 }
1364 
1365 /*
1366  * version 1 superblock
1367  */
1368 
1369 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1370 {
1371 	__le32 disk_csum;
1372 	u32 csum;
1373 	unsigned long long newcsum;
1374 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1375 	__le32 *isuper = (__le32*)sb;
1376 
1377 	disk_csum = sb->sb_csum;
1378 	sb->sb_csum = 0;
1379 	newcsum = 0;
1380 	for (; size >= 4; size -= 4)
1381 		newcsum += le32_to_cpu(*isuper++);
1382 
1383 	if (size == 2)
1384 		newcsum += le16_to_cpu(*(__le16*) isuper);
1385 
1386 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1387 	sb->sb_csum = disk_csum;
1388 	return cpu_to_le32(csum);
1389 }
1390 
1391 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1392 			    int acknowledged);
1393 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1394 {
1395 	struct mdp_superblock_1 *sb;
1396 	int ret;
1397 	sector_t sb_start;
1398 	sector_t sectors;
1399 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1400 	int bmask;
1401 
1402 	/*
1403 	 * Calculate the position of the superblock in 512byte sectors.
1404 	 * It is always aligned to a 4K boundary and
1405 	 * depeding on minor_version, it can be:
1406 	 * 0: At least 8K, but less than 12K, from end of device
1407 	 * 1: At start of device
1408 	 * 2: 4K from start of device.
1409 	 */
1410 	switch(minor_version) {
1411 	case 0:
1412 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1413 		sb_start -= 8*2;
1414 		sb_start &= ~(sector_t)(4*2-1);
1415 		break;
1416 	case 1:
1417 		sb_start = 0;
1418 		break;
1419 	case 2:
1420 		sb_start = 8;
1421 		break;
1422 	default:
1423 		return -EINVAL;
1424 	}
1425 	rdev->sb_start = sb_start;
1426 
1427 	/* superblock is rarely larger than 1K, but it can be larger,
1428 	 * and it is safe to read 4k, so we do that
1429 	 */
1430 	ret = read_disk_sb(rdev, 4096);
1431 	if (ret) return ret;
1432 
1433 
1434 	sb = page_address(rdev->sb_page);
1435 
1436 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1437 	    sb->major_version != cpu_to_le32(1) ||
1438 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1439 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1440 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1441 		return -EINVAL;
1442 
1443 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1444 		printk("md: invalid superblock checksum on %s\n",
1445 			bdevname(rdev->bdev,b));
1446 		return -EINVAL;
1447 	}
1448 	if (le64_to_cpu(sb->data_size) < 10) {
1449 		printk("md: data_size too small on %s\n",
1450 		       bdevname(rdev->bdev,b));
1451 		return -EINVAL;
1452 	}
1453 	if (sb->pad0 ||
1454 	    sb->pad3[0] ||
1455 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1456 		/* Some padding is non-zero, might be a new feature */
1457 		return -EINVAL;
1458 
1459 	rdev->preferred_minor = 0xffff;
1460 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1461 	rdev->new_data_offset = rdev->data_offset;
1462 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1463 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1464 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1465 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1466 
1467 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1468 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1469 	if (rdev->sb_size & bmask)
1470 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1471 
1472 	if (minor_version
1473 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1474 		return -EINVAL;
1475 	if (minor_version
1476 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1477 		return -EINVAL;
1478 
1479 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1480 		rdev->desc_nr = -1;
1481 	else
1482 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1483 
1484 	if (!rdev->bb_page) {
1485 		rdev->bb_page = alloc_page(GFP_KERNEL);
1486 		if (!rdev->bb_page)
1487 			return -ENOMEM;
1488 	}
1489 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1490 	    rdev->badblocks.count == 0) {
1491 		/* need to load the bad block list.
1492 		 * Currently we limit it to one page.
1493 		 */
1494 		s32 offset;
1495 		sector_t bb_sector;
1496 		u64 *bbp;
1497 		int i;
1498 		int sectors = le16_to_cpu(sb->bblog_size);
1499 		if (sectors > (PAGE_SIZE / 512))
1500 			return -EINVAL;
1501 		offset = le32_to_cpu(sb->bblog_offset);
1502 		if (offset == 0)
1503 			return -EINVAL;
1504 		bb_sector = (long long)offset;
1505 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1506 				  rdev->bb_page, READ, true))
1507 			return -EIO;
1508 		bbp = (u64 *)page_address(rdev->bb_page);
1509 		rdev->badblocks.shift = sb->bblog_shift;
1510 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1511 			u64 bb = le64_to_cpu(*bbp);
1512 			int count = bb & (0x3ff);
1513 			u64 sector = bb >> 10;
1514 			sector <<= sb->bblog_shift;
1515 			count <<= sb->bblog_shift;
1516 			if (bb + 1 == 0)
1517 				break;
1518 			if (md_set_badblocks(&rdev->badblocks,
1519 					     sector, count, 1) == 0)
1520 				return -EINVAL;
1521 		}
1522 	} else if (sb->bblog_offset != 0)
1523 		rdev->badblocks.shift = 0;
1524 
1525 	if (!refdev) {
1526 		ret = 1;
1527 	} else {
1528 		__u64 ev1, ev2;
1529 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1530 
1531 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1532 		    sb->level != refsb->level ||
1533 		    sb->layout != refsb->layout ||
1534 		    sb->chunksize != refsb->chunksize) {
1535 			printk(KERN_WARNING "md: %s has strangely different"
1536 				" superblock to %s\n",
1537 				bdevname(rdev->bdev,b),
1538 				bdevname(refdev->bdev,b2));
1539 			return -EINVAL;
1540 		}
1541 		ev1 = le64_to_cpu(sb->events);
1542 		ev2 = le64_to_cpu(refsb->events);
1543 
1544 		if (ev1 > ev2)
1545 			ret = 1;
1546 		else
1547 			ret = 0;
1548 	}
1549 	if (minor_version) {
1550 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1551 		sectors -= rdev->data_offset;
1552 	} else
1553 		sectors = rdev->sb_start;
1554 	if (sectors < le64_to_cpu(sb->data_size))
1555 		return -EINVAL;
1556 	rdev->sectors = le64_to_cpu(sb->data_size);
1557 	return ret;
1558 }
1559 
1560 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1561 {
1562 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1563 	__u64 ev1 = le64_to_cpu(sb->events);
1564 
1565 	rdev->raid_disk = -1;
1566 	clear_bit(Faulty, &rdev->flags);
1567 	clear_bit(In_sync, &rdev->flags);
1568 	clear_bit(WriteMostly, &rdev->flags);
1569 
1570 	if (mddev->raid_disks == 0) {
1571 		mddev->major_version = 1;
1572 		mddev->patch_version = 0;
1573 		mddev->external = 0;
1574 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1575 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1576 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1577 		mddev->level = le32_to_cpu(sb->level);
1578 		mddev->clevel[0] = 0;
1579 		mddev->layout = le32_to_cpu(sb->layout);
1580 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1581 		mddev->dev_sectors = le64_to_cpu(sb->size);
1582 		mddev->events = ev1;
1583 		mddev->bitmap_info.offset = 0;
1584 		mddev->bitmap_info.space = 0;
1585 		/* Default location for bitmap is 1K after superblock
1586 		 * using 3K - total of 4K
1587 		 */
1588 		mddev->bitmap_info.default_offset = 1024 >> 9;
1589 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1590 		mddev->reshape_backwards = 0;
1591 
1592 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1593 		memcpy(mddev->uuid, sb->set_uuid, 16);
1594 
1595 		mddev->max_disks =  (4096-256)/2;
1596 
1597 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1598 		    mddev->bitmap_info.file == NULL) {
1599 			mddev->bitmap_info.offset =
1600 				(__s32)le32_to_cpu(sb->bitmap_offset);
1601 			/* Metadata doesn't record how much space is available.
1602 			 * For 1.0, we assume we can use up to the superblock
1603 			 * if before, else to 4K beyond superblock.
1604 			 * For others, assume no change is possible.
1605 			 */
1606 			if (mddev->minor_version > 0)
1607 				mddev->bitmap_info.space = 0;
1608 			else if (mddev->bitmap_info.offset > 0)
1609 				mddev->bitmap_info.space =
1610 					8 - mddev->bitmap_info.offset;
1611 			else
1612 				mddev->bitmap_info.space =
1613 					-mddev->bitmap_info.offset;
1614 		}
1615 
1616 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1617 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1618 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1619 			mddev->new_level = le32_to_cpu(sb->new_level);
1620 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1621 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1622 			if (mddev->delta_disks < 0 ||
1623 			    (mddev->delta_disks == 0 &&
1624 			     (le32_to_cpu(sb->feature_map)
1625 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1626 				mddev->reshape_backwards = 1;
1627 		} else {
1628 			mddev->reshape_position = MaxSector;
1629 			mddev->delta_disks = 0;
1630 			mddev->new_level = mddev->level;
1631 			mddev->new_layout = mddev->layout;
1632 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1633 		}
1634 
1635 	} else if (mddev->pers == NULL) {
1636 		/* Insist of good event counter while assembling, except for
1637 		 * spares (which don't need an event count) */
1638 		++ev1;
1639 		if (rdev->desc_nr >= 0 &&
1640 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1641 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1642 			if (ev1 < mddev->events)
1643 				return -EINVAL;
1644 	} else if (mddev->bitmap) {
1645 		/* If adding to array with a bitmap, then we can accept an
1646 		 * older device, but not too old.
1647 		 */
1648 		if (ev1 < mddev->bitmap->events_cleared)
1649 			return 0;
1650 	} else {
1651 		if (ev1 < mddev->events)
1652 			/* just a hot-add of a new device, leave raid_disk at -1 */
1653 			return 0;
1654 	}
1655 	if (mddev->level != LEVEL_MULTIPATH) {
1656 		int role;
1657 		if (rdev->desc_nr < 0 ||
1658 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1659 			role = 0xffff;
1660 			rdev->desc_nr = -1;
1661 		} else
1662 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1663 		switch(role) {
1664 		case 0xffff: /* spare */
1665 			break;
1666 		case 0xfffe: /* faulty */
1667 			set_bit(Faulty, &rdev->flags);
1668 			break;
1669 		default:
1670 			if ((le32_to_cpu(sb->feature_map) &
1671 			     MD_FEATURE_RECOVERY_OFFSET))
1672 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1673 			else
1674 				set_bit(In_sync, &rdev->flags);
1675 			rdev->raid_disk = role;
1676 			break;
1677 		}
1678 		if (sb->devflags & WriteMostly1)
1679 			set_bit(WriteMostly, &rdev->flags);
1680 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1681 			set_bit(Replacement, &rdev->flags);
1682 	} else /* MULTIPATH are always insync */
1683 		set_bit(In_sync, &rdev->flags);
1684 
1685 	return 0;
1686 }
1687 
1688 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1689 {
1690 	struct mdp_superblock_1 *sb;
1691 	struct md_rdev *rdev2;
1692 	int max_dev, i;
1693 	/* make rdev->sb match mddev and rdev data. */
1694 
1695 	sb = page_address(rdev->sb_page);
1696 
1697 	sb->feature_map = 0;
1698 	sb->pad0 = 0;
1699 	sb->recovery_offset = cpu_to_le64(0);
1700 	memset(sb->pad3, 0, sizeof(sb->pad3));
1701 
1702 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1703 	sb->events = cpu_to_le64(mddev->events);
1704 	if (mddev->in_sync)
1705 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1706 	else
1707 		sb->resync_offset = cpu_to_le64(0);
1708 
1709 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1710 
1711 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1712 	sb->size = cpu_to_le64(mddev->dev_sectors);
1713 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1714 	sb->level = cpu_to_le32(mddev->level);
1715 	sb->layout = cpu_to_le32(mddev->layout);
1716 
1717 	if (test_bit(WriteMostly, &rdev->flags))
1718 		sb->devflags |= WriteMostly1;
1719 	else
1720 		sb->devflags &= ~WriteMostly1;
1721 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1722 	sb->data_size = cpu_to_le64(rdev->sectors);
1723 
1724 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1725 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1726 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1727 	}
1728 
1729 	if (rdev->raid_disk >= 0 &&
1730 	    !test_bit(In_sync, &rdev->flags)) {
1731 		sb->feature_map |=
1732 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1733 		sb->recovery_offset =
1734 			cpu_to_le64(rdev->recovery_offset);
1735 	}
1736 	if (test_bit(Replacement, &rdev->flags))
1737 		sb->feature_map |=
1738 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1739 
1740 	if (mddev->reshape_position != MaxSector) {
1741 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1742 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1743 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1744 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1745 		sb->new_level = cpu_to_le32(mddev->new_level);
1746 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1747 		if (mddev->delta_disks == 0 &&
1748 		    mddev->reshape_backwards)
1749 			sb->feature_map
1750 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1751 		if (rdev->new_data_offset != rdev->data_offset) {
1752 			sb->feature_map
1753 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1754 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1755 							     - rdev->data_offset));
1756 		}
1757 	}
1758 
1759 	if (rdev->badblocks.count == 0)
1760 		/* Nothing to do for bad blocks*/ ;
1761 	else if (sb->bblog_offset == 0)
1762 		/* Cannot record bad blocks on this device */
1763 		md_error(mddev, rdev);
1764 	else {
1765 		struct badblocks *bb = &rdev->badblocks;
1766 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1767 		u64 *p = bb->page;
1768 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1769 		if (bb->changed) {
1770 			unsigned seq;
1771 
1772 retry:
1773 			seq = read_seqbegin(&bb->lock);
1774 
1775 			memset(bbp, 0xff, PAGE_SIZE);
1776 
1777 			for (i = 0 ; i < bb->count ; i++) {
1778 				u64 internal_bb = p[i];
1779 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1780 						| BB_LEN(internal_bb));
1781 				bbp[i] = cpu_to_le64(store_bb);
1782 			}
1783 			bb->changed = 0;
1784 			if (read_seqretry(&bb->lock, seq))
1785 				goto retry;
1786 
1787 			bb->sector = (rdev->sb_start +
1788 				      (int)le32_to_cpu(sb->bblog_offset));
1789 			bb->size = le16_to_cpu(sb->bblog_size);
1790 		}
1791 	}
1792 
1793 	max_dev = 0;
1794 	rdev_for_each(rdev2, mddev)
1795 		if (rdev2->desc_nr+1 > max_dev)
1796 			max_dev = rdev2->desc_nr+1;
1797 
1798 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1799 		int bmask;
1800 		sb->max_dev = cpu_to_le32(max_dev);
1801 		rdev->sb_size = max_dev * 2 + 256;
1802 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1803 		if (rdev->sb_size & bmask)
1804 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1805 	} else
1806 		max_dev = le32_to_cpu(sb->max_dev);
1807 
1808 	for (i=0; i<max_dev;i++)
1809 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1810 
1811 	rdev_for_each(rdev2, mddev) {
1812 		i = rdev2->desc_nr;
1813 		if (test_bit(Faulty, &rdev2->flags))
1814 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1815 		else if (test_bit(In_sync, &rdev2->flags))
1816 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1817 		else if (rdev2->raid_disk >= 0)
1818 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1819 		else
1820 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1821 	}
1822 
1823 	sb->sb_csum = calc_sb_1_csum(sb);
1824 }
1825 
1826 static unsigned long long
1827 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1828 {
1829 	struct mdp_superblock_1 *sb;
1830 	sector_t max_sectors;
1831 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1832 		return 0; /* component must fit device */
1833 	if (rdev->data_offset != rdev->new_data_offset)
1834 		return 0; /* too confusing */
1835 	if (rdev->sb_start < rdev->data_offset) {
1836 		/* minor versions 1 and 2; superblock before data */
1837 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1838 		max_sectors -= rdev->data_offset;
1839 		if (!num_sectors || num_sectors > max_sectors)
1840 			num_sectors = max_sectors;
1841 	} else if (rdev->mddev->bitmap_info.offset) {
1842 		/* minor version 0 with bitmap we can't move */
1843 		return 0;
1844 	} else {
1845 		/* minor version 0; superblock after data */
1846 		sector_t sb_start;
1847 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1848 		sb_start &= ~(sector_t)(4*2 - 1);
1849 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1850 		if (!num_sectors || num_sectors > max_sectors)
1851 			num_sectors = max_sectors;
1852 		rdev->sb_start = sb_start;
1853 	}
1854 	sb = page_address(rdev->sb_page);
1855 	sb->data_size = cpu_to_le64(num_sectors);
1856 	sb->super_offset = rdev->sb_start;
1857 	sb->sb_csum = calc_sb_1_csum(sb);
1858 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1859 		       rdev->sb_page);
1860 	md_super_wait(rdev->mddev);
1861 	return num_sectors;
1862 
1863 }
1864 
1865 static int
1866 super_1_allow_new_offset(struct md_rdev *rdev,
1867 			 unsigned long long new_offset)
1868 {
1869 	/* All necessary checks on new >= old have been done */
1870 	struct bitmap *bitmap;
1871 	if (new_offset >= rdev->data_offset)
1872 		return 1;
1873 
1874 	/* with 1.0 metadata, there is no metadata to tread on
1875 	 * so we can always move back */
1876 	if (rdev->mddev->minor_version == 0)
1877 		return 1;
1878 
1879 	/* otherwise we must be sure not to step on
1880 	 * any metadata, so stay:
1881 	 * 36K beyond start of superblock
1882 	 * beyond end of badblocks
1883 	 * beyond write-intent bitmap
1884 	 */
1885 	if (rdev->sb_start + (32+4)*2 > new_offset)
1886 		return 0;
1887 	bitmap = rdev->mddev->bitmap;
1888 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1889 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1890 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1891 		return 0;
1892 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1893 		return 0;
1894 
1895 	return 1;
1896 }
1897 
1898 static struct super_type super_types[] = {
1899 	[0] = {
1900 		.name	= "0.90.0",
1901 		.owner	= THIS_MODULE,
1902 		.load_super	    = super_90_load,
1903 		.validate_super	    = super_90_validate,
1904 		.sync_super	    = super_90_sync,
1905 		.rdev_size_change   = super_90_rdev_size_change,
1906 		.allow_new_offset   = super_90_allow_new_offset,
1907 	},
1908 	[1] = {
1909 		.name	= "md-1",
1910 		.owner	= THIS_MODULE,
1911 		.load_super	    = super_1_load,
1912 		.validate_super	    = super_1_validate,
1913 		.sync_super	    = super_1_sync,
1914 		.rdev_size_change   = super_1_rdev_size_change,
1915 		.allow_new_offset   = super_1_allow_new_offset,
1916 	},
1917 };
1918 
1919 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1920 {
1921 	if (mddev->sync_super) {
1922 		mddev->sync_super(mddev, rdev);
1923 		return;
1924 	}
1925 
1926 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1927 
1928 	super_types[mddev->major_version].sync_super(mddev, rdev);
1929 }
1930 
1931 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1932 {
1933 	struct md_rdev *rdev, *rdev2;
1934 
1935 	rcu_read_lock();
1936 	rdev_for_each_rcu(rdev, mddev1)
1937 		rdev_for_each_rcu(rdev2, mddev2)
1938 			if (rdev->bdev->bd_contains ==
1939 			    rdev2->bdev->bd_contains) {
1940 				rcu_read_unlock();
1941 				return 1;
1942 			}
1943 	rcu_read_unlock();
1944 	return 0;
1945 }
1946 
1947 static LIST_HEAD(pending_raid_disks);
1948 
1949 /*
1950  * Try to register data integrity profile for an mddev
1951  *
1952  * This is called when an array is started and after a disk has been kicked
1953  * from the array. It only succeeds if all working and active component devices
1954  * are integrity capable with matching profiles.
1955  */
1956 int md_integrity_register(struct mddev *mddev)
1957 {
1958 	struct md_rdev *rdev, *reference = NULL;
1959 
1960 	if (list_empty(&mddev->disks))
1961 		return 0; /* nothing to do */
1962 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1963 		return 0; /* shouldn't register, or already is */
1964 	rdev_for_each(rdev, mddev) {
1965 		/* skip spares and non-functional disks */
1966 		if (test_bit(Faulty, &rdev->flags))
1967 			continue;
1968 		if (rdev->raid_disk < 0)
1969 			continue;
1970 		if (!reference) {
1971 			/* Use the first rdev as the reference */
1972 			reference = rdev;
1973 			continue;
1974 		}
1975 		/* does this rdev's profile match the reference profile? */
1976 		if (blk_integrity_compare(reference->bdev->bd_disk,
1977 				rdev->bdev->bd_disk) < 0)
1978 			return -EINVAL;
1979 	}
1980 	if (!reference || !bdev_get_integrity(reference->bdev))
1981 		return 0;
1982 	/*
1983 	 * All component devices are integrity capable and have matching
1984 	 * profiles, register the common profile for the md device.
1985 	 */
1986 	if (blk_integrity_register(mddev->gendisk,
1987 			bdev_get_integrity(reference->bdev)) != 0) {
1988 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1989 			mdname(mddev));
1990 		return -EINVAL;
1991 	}
1992 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1993 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1994 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1995 		       mdname(mddev));
1996 		return -EINVAL;
1997 	}
1998 	return 0;
1999 }
2000 EXPORT_SYMBOL(md_integrity_register);
2001 
2002 /* Disable data integrity if non-capable/non-matching disk is being added */
2003 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2004 {
2005 	struct blk_integrity *bi_rdev;
2006 	struct blk_integrity *bi_mddev;
2007 
2008 	if (!mddev->gendisk)
2009 		return;
2010 
2011 	bi_rdev = bdev_get_integrity(rdev->bdev);
2012 	bi_mddev = blk_get_integrity(mddev->gendisk);
2013 
2014 	if (!bi_mddev) /* nothing to do */
2015 		return;
2016 	if (rdev->raid_disk < 0) /* skip spares */
2017 		return;
2018 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2019 					     rdev->bdev->bd_disk) >= 0)
2020 		return;
2021 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2022 	blk_integrity_unregister(mddev->gendisk);
2023 }
2024 EXPORT_SYMBOL(md_integrity_add_rdev);
2025 
2026 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2027 {
2028 	char b[BDEVNAME_SIZE];
2029 	struct kobject *ko;
2030 	char *s;
2031 	int err;
2032 
2033 	if (rdev->mddev) {
2034 		MD_BUG();
2035 		return -EINVAL;
2036 	}
2037 
2038 	/* prevent duplicates */
2039 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2040 		return -EEXIST;
2041 
2042 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2043 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2044 			rdev->sectors < mddev->dev_sectors)) {
2045 		if (mddev->pers) {
2046 			/* Cannot change size, so fail
2047 			 * If mddev->level <= 0, then we don't care
2048 			 * about aligning sizes (e.g. linear)
2049 			 */
2050 			if (mddev->level > 0)
2051 				return -ENOSPC;
2052 		} else
2053 			mddev->dev_sectors = rdev->sectors;
2054 	}
2055 
2056 	/* Verify rdev->desc_nr is unique.
2057 	 * If it is -1, assign a free number, else
2058 	 * check number is not in use
2059 	 */
2060 	if (rdev->desc_nr < 0) {
2061 		int choice = 0;
2062 		if (mddev->pers) choice = mddev->raid_disks;
2063 		while (find_rdev_nr(mddev, choice))
2064 			choice++;
2065 		rdev->desc_nr = choice;
2066 	} else {
2067 		if (find_rdev_nr(mddev, rdev->desc_nr))
2068 			return -EBUSY;
2069 	}
2070 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2071 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2072 		       mdname(mddev), mddev->max_disks);
2073 		return -EBUSY;
2074 	}
2075 	bdevname(rdev->bdev,b);
2076 	while ( (s=strchr(b, '/')) != NULL)
2077 		*s = '!';
2078 
2079 	rdev->mddev = mddev;
2080 	printk(KERN_INFO "md: bind<%s>\n", b);
2081 
2082 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2083 		goto fail;
2084 
2085 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2086 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2087 		/* failure here is OK */;
2088 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2089 
2090 	list_add_rcu(&rdev->same_set, &mddev->disks);
2091 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2092 
2093 	/* May as well allow recovery to be retried once */
2094 	mddev->recovery_disabled++;
2095 
2096 	return 0;
2097 
2098  fail:
2099 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2100 	       b, mdname(mddev));
2101 	return err;
2102 }
2103 
2104 static void md_delayed_delete(struct work_struct *ws)
2105 {
2106 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2107 	kobject_del(&rdev->kobj);
2108 	kobject_put(&rdev->kobj);
2109 }
2110 
2111 static void unbind_rdev_from_array(struct md_rdev * rdev)
2112 {
2113 	char b[BDEVNAME_SIZE];
2114 	if (!rdev->mddev) {
2115 		MD_BUG();
2116 		return;
2117 	}
2118 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2119 	list_del_rcu(&rdev->same_set);
2120 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2121 	rdev->mddev = NULL;
2122 	sysfs_remove_link(&rdev->kobj, "block");
2123 	sysfs_put(rdev->sysfs_state);
2124 	rdev->sysfs_state = NULL;
2125 	rdev->badblocks.count = 0;
2126 	/* We need to delay this, otherwise we can deadlock when
2127 	 * writing to 'remove' to "dev/state".  We also need
2128 	 * to delay it due to rcu usage.
2129 	 */
2130 	synchronize_rcu();
2131 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2132 	kobject_get(&rdev->kobj);
2133 	queue_work(md_misc_wq, &rdev->del_work);
2134 }
2135 
2136 /*
2137  * prevent the device from being mounted, repartitioned or
2138  * otherwise reused by a RAID array (or any other kernel
2139  * subsystem), by bd_claiming the device.
2140  */
2141 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2142 {
2143 	int err = 0;
2144 	struct block_device *bdev;
2145 	char b[BDEVNAME_SIZE];
2146 
2147 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2148 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2149 	if (IS_ERR(bdev)) {
2150 		printk(KERN_ERR "md: could not open %s.\n",
2151 			__bdevname(dev, b));
2152 		return PTR_ERR(bdev);
2153 	}
2154 	rdev->bdev = bdev;
2155 	return err;
2156 }
2157 
2158 static void unlock_rdev(struct md_rdev *rdev)
2159 {
2160 	struct block_device *bdev = rdev->bdev;
2161 	rdev->bdev = NULL;
2162 	if (!bdev)
2163 		MD_BUG();
2164 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2165 }
2166 
2167 void md_autodetect_dev(dev_t dev);
2168 
2169 static void export_rdev(struct md_rdev * rdev)
2170 {
2171 	char b[BDEVNAME_SIZE];
2172 	printk(KERN_INFO "md: export_rdev(%s)\n",
2173 		bdevname(rdev->bdev,b));
2174 	if (rdev->mddev)
2175 		MD_BUG();
2176 	md_rdev_clear(rdev);
2177 #ifndef MODULE
2178 	if (test_bit(AutoDetected, &rdev->flags))
2179 		md_autodetect_dev(rdev->bdev->bd_dev);
2180 #endif
2181 	unlock_rdev(rdev);
2182 	kobject_put(&rdev->kobj);
2183 }
2184 
2185 static void kick_rdev_from_array(struct md_rdev * rdev)
2186 {
2187 	unbind_rdev_from_array(rdev);
2188 	export_rdev(rdev);
2189 }
2190 
2191 static void export_array(struct mddev *mddev)
2192 {
2193 	struct md_rdev *rdev, *tmp;
2194 
2195 	rdev_for_each_safe(rdev, tmp, mddev) {
2196 		if (!rdev->mddev) {
2197 			MD_BUG();
2198 			continue;
2199 		}
2200 		kick_rdev_from_array(rdev);
2201 	}
2202 	if (!list_empty(&mddev->disks))
2203 		MD_BUG();
2204 	mddev->raid_disks = 0;
2205 	mddev->major_version = 0;
2206 }
2207 
2208 static void print_desc(mdp_disk_t *desc)
2209 {
2210 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2211 		desc->major,desc->minor,desc->raid_disk,desc->state);
2212 }
2213 
2214 static void print_sb_90(mdp_super_t *sb)
2215 {
2216 	int i;
2217 
2218 	printk(KERN_INFO
2219 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2220 		sb->major_version, sb->minor_version, sb->patch_version,
2221 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2222 		sb->ctime);
2223 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2224 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2225 		sb->md_minor, sb->layout, sb->chunk_size);
2226 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2227 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2228 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2229 		sb->failed_disks, sb->spare_disks,
2230 		sb->sb_csum, (unsigned long)sb->events_lo);
2231 
2232 	printk(KERN_INFO);
2233 	for (i = 0; i < MD_SB_DISKS; i++) {
2234 		mdp_disk_t *desc;
2235 
2236 		desc = sb->disks + i;
2237 		if (desc->number || desc->major || desc->minor ||
2238 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2239 			printk("     D %2d: ", i);
2240 			print_desc(desc);
2241 		}
2242 	}
2243 	printk(KERN_INFO "md:     THIS: ");
2244 	print_desc(&sb->this_disk);
2245 }
2246 
2247 static void print_sb_1(struct mdp_superblock_1 *sb)
2248 {
2249 	__u8 *uuid;
2250 
2251 	uuid = sb->set_uuid;
2252 	printk(KERN_INFO
2253 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2254 	       "md:    Name: \"%s\" CT:%llu\n",
2255 		le32_to_cpu(sb->major_version),
2256 		le32_to_cpu(sb->feature_map),
2257 		uuid,
2258 		sb->set_name,
2259 		(unsigned long long)le64_to_cpu(sb->ctime)
2260 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2261 
2262 	uuid = sb->device_uuid;
2263 	printk(KERN_INFO
2264 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2265 			" RO:%llu\n"
2266 	       "md:     Dev:%08x UUID: %pU\n"
2267 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2268 	       "md:         (MaxDev:%u) \n",
2269 		le32_to_cpu(sb->level),
2270 		(unsigned long long)le64_to_cpu(sb->size),
2271 		le32_to_cpu(sb->raid_disks),
2272 		le32_to_cpu(sb->layout),
2273 		le32_to_cpu(sb->chunksize),
2274 		(unsigned long long)le64_to_cpu(sb->data_offset),
2275 		(unsigned long long)le64_to_cpu(sb->data_size),
2276 		(unsigned long long)le64_to_cpu(sb->super_offset),
2277 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2278 		le32_to_cpu(sb->dev_number),
2279 		uuid,
2280 		sb->devflags,
2281 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2282 		(unsigned long long)le64_to_cpu(sb->events),
2283 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2284 		le32_to_cpu(sb->sb_csum),
2285 		le32_to_cpu(sb->max_dev)
2286 		);
2287 }
2288 
2289 static void print_rdev(struct md_rdev *rdev, int major_version)
2290 {
2291 	char b[BDEVNAME_SIZE];
2292 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2293 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2294 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2295 	        rdev->desc_nr);
2296 	if (rdev->sb_loaded) {
2297 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2298 		switch (major_version) {
2299 		case 0:
2300 			print_sb_90(page_address(rdev->sb_page));
2301 			break;
2302 		case 1:
2303 			print_sb_1(page_address(rdev->sb_page));
2304 			break;
2305 		}
2306 	} else
2307 		printk(KERN_INFO "md: no rdev superblock!\n");
2308 }
2309 
2310 static void md_print_devices(void)
2311 {
2312 	struct list_head *tmp;
2313 	struct md_rdev *rdev;
2314 	struct mddev *mddev;
2315 	char b[BDEVNAME_SIZE];
2316 
2317 	printk("\n");
2318 	printk("md:	**********************************\n");
2319 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2320 	printk("md:	**********************************\n");
2321 	for_each_mddev(mddev, tmp) {
2322 
2323 		if (mddev->bitmap)
2324 			bitmap_print_sb(mddev->bitmap);
2325 		else
2326 			printk("%s: ", mdname(mddev));
2327 		rdev_for_each(rdev, mddev)
2328 			printk("<%s>", bdevname(rdev->bdev,b));
2329 		printk("\n");
2330 
2331 		rdev_for_each(rdev, mddev)
2332 			print_rdev(rdev, mddev->major_version);
2333 	}
2334 	printk("md:	**********************************\n");
2335 	printk("\n");
2336 }
2337 
2338 
2339 static void sync_sbs(struct mddev * mddev, int nospares)
2340 {
2341 	/* Update each superblock (in-memory image), but
2342 	 * if we are allowed to, skip spares which already
2343 	 * have the right event counter, or have one earlier
2344 	 * (which would mean they aren't being marked as dirty
2345 	 * with the rest of the array)
2346 	 */
2347 	struct md_rdev *rdev;
2348 	rdev_for_each(rdev, mddev) {
2349 		if (rdev->sb_events == mddev->events ||
2350 		    (nospares &&
2351 		     rdev->raid_disk < 0 &&
2352 		     rdev->sb_events+1 == mddev->events)) {
2353 			/* Don't update this superblock */
2354 			rdev->sb_loaded = 2;
2355 		} else {
2356 			sync_super(mddev, rdev);
2357 			rdev->sb_loaded = 1;
2358 		}
2359 	}
2360 }
2361 
2362 static void md_update_sb(struct mddev * mddev, int force_change)
2363 {
2364 	struct md_rdev *rdev;
2365 	int sync_req;
2366 	int nospares = 0;
2367 	int any_badblocks_changed = 0;
2368 
2369 	if (mddev->ro) {
2370 		if (force_change)
2371 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2372 		return;
2373 	}
2374 repeat:
2375 	/* First make sure individual recovery_offsets are correct */
2376 	rdev_for_each(rdev, mddev) {
2377 		if (rdev->raid_disk >= 0 &&
2378 		    mddev->delta_disks >= 0 &&
2379 		    !test_bit(In_sync, &rdev->flags) &&
2380 		    mddev->curr_resync_completed > rdev->recovery_offset)
2381 				rdev->recovery_offset = mddev->curr_resync_completed;
2382 
2383 	}
2384 	if (!mddev->persistent) {
2385 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2386 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2387 		if (!mddev->external) {
2388 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2389 			rdev_for_each(rdev, mddev) {
2390 				if (rdev->badblocks.changed) {
2391 					rdev->badblocks.changed = 0;
2392 					md_ack_all_badblocks(&rdev->badblocks);
2393 					md_error(mddev, rdev);
2394 				}
2395 				clear_bit(Blocked, &rdev->flags);
2396 				clear_bit(BlockedBadBlocks, &rdev->flags);
2397 				wake_up(&rdev->blocked_wait);
2398 			}
2399 		}
2400 		wake_up(&mddev->sb_wait);
2401 		return;
2402 	}
2403 
2404 	spin_lock_irq(&mddev->write_lock);
2405 
2406 	mddev->utime = get_seconds();
2407 
2408 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2409 		force_change = 1;
2410 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2411 		/* just a clean<-> dirty transition, possibly leave spares alone,
2412 		 * though if events isn't the right even/odd, we will have to do
2413 		 * spares after all
2414 		 */
2415 		nospares = 1;
2416 	if (force_change)
2417 		nospares = 0;
2418 	if (mddev->degraded)
2419 		/* If the array is degraded, then skipping spares is both
2420 		 * dangerous and fairly pointless.
2421 		 * Dangerous because a device that was removed from the array
2422 		 * might have a event_count that still looks up-to-date,
2423 		 * so it can be re-added without a resync.
2424 		 * Pointless because if there are any spares to skip,
2425 		 * then a recovery will happen and soon that array won't
2426 		 * be degraded any more and the spare can go back to sleep then.
2427 		 */
2428 		nospares = 0;
2429 
2430 	sync_req = mddev->in_sync;
2431 
2432 	/* If this is just a dirty<->clean transition, and the array is clean
2433 	 * and 'events' is odd, we can roll back to the previous clean state */
2434 	if (nospares
2435 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2436 	    && mddev->can_decrease_events
2437 	    && mddev->events != 1) {
2438 		mddev->events--;
2439 		mddev->can_decrease_events = 0;
2440 	} else {
2441 		/* otherwise we have to go forward and ... */
2442 		mddev->events ++;
2443 		mddev->can_decrease_events = nospares;
2444 	}
2445 
2446 	if (!mddev->events) {
2447 		/*
2448 		 * oops, this 64-bit counter should never wrap.
2449 		 * Either we are in around ~1 trillion A.C., assuming
2450 		 * 1 reboot per second, or we have a bug:
2451 		 */
2452 		MD_BUG();
2453 		mddev->events --;
2454 	}
2455 
2456 	rdev_for_each(rdev, mddev) {
2457 		if (rdev->badblocks.changed)
2458 			any_badblocks_changed++;
2459 		if (test_bit(Faulty, &rdev->flags))
2460 			set_bit(FaultRecorded, &rdev->flags);
2461 	}
2462 
2463 	sync_sbs(mddev, nospares);
2464 	spin_unlock_irq(&mddev->write_lock);
2465 
2466 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2467 		 mdname(mddev), mddev->in_sync);
2468 
2469 	bitmap_update_sb(mddev->bitmap);
2470 	rdev_for_each(rdev, mddev) {
2471 		char b[BDEVNAME_SIZE];
2472 
2473 		if (rdev->sb_loaded != 1)
2474 			continue; /* no noise on spare devices */
2475 
2476 		if (!test_bit(Faulty, &rdev->flags) &&
2477 		    rdev->saved_raid_disk == -1) {
2478 			md_super_write(mddev,rdev,
2479 				       rdev->sb_start, rdev->sb_size,
2480 				       rdev->sb_page);
2481 			pr_debug("md: (write) %s's sb offset: %llu\n",
2482 				 bdevname(rdev->bdev, b),
2483 				 (unsigned long long)rdev->sb_start);
2484 			rdev->sb_events = mddev->events;
2485 			if (rdev->badblocks.size) {
2486 				md_super_write(mddev, rdev,
2487 					       rdev->badblocks.sector,
2488 					       rdev->badblocks.size << 9,
2489 					       rdev->bb_page);
2490 				rdev->badblocks.size = 0;
2491 			}
2492 
2493 		} else if (test_bit(Faulty, &rdev->flags))
2494 			pr_debug("md: %s (skipping faulty)\n",
2495 				 bdevname(rdev->bdev, b));
2496 		else
2497 			pr_debug("(skipping incremental s/r ");
2498 
2499 		if (mddev->level == LEVEL_MULTIPATH)
2500 			/* only need to write one superblock... */
2501 			break;
2502 	}
2503 	md_super_wait(mddev);
2504 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2505 
2506 	spin_lock_irq(&mddev->write_lock);
2507 	if (mddev->in_sync != sync_req ||
2508 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2509 		/* have to write it out again */
2510 		spin_unlock_irq(&mddev->write_lock);
2511 		goto repeat;
2512 	}
2513 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2514 	spin_unlock_irq(&mddev->write_lock);
2515 	wake_up(&mddev->sb_wait);
2516 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2517 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2518 
2519 	rdev_for_each(rdev, mddev) {
2520 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2521 			clear_bit(Blocked, &rdev->flags);
2522 
2523 		if (any_badblocks_changed)
2524 			md_ack_all_badblocks(&rdev->badblocks);
2525 		clear_bit(BlockedBadBlocks, &rdev->flags);
2526 		wake_up(&rdev->blocked_wait);
2527 	}
2528 }
2529 
2530 /* words written to sysfs files may, or may not, be \n terminated.
2531  * We want to accept with case. For this we use cmd_match.
2532  */
2533 static int cmd_match(const char *cmd, const char *str)
2534 {
2535 	/* See if cmd, written into a sysfs file, matches
2536 	 * str.  They must either be the same, or cmd can
2537 	 * have a trailing newline
2538 	 */
2539 	while (*cmd && *str && *cmd == *str) {
2540 		cmd++;
2541 		str++;
2542 	}
2543 	if (*cmd == '\n')
2544 		cmd++;
2545 	if (*str || *cmd)
2546 		return 0;
2547 	return 1;
2548 }
2549 
2550 struct rdev_sysfs_entry {
2551 	struct attribute attr;
2552 	ssize_t (*show)(struct md_rdev *, char *);
2553 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2554 };
2555 
2556 static ssize_t
2557 state_show(struct md_rdev *rdev, char *page)
2558 {
2559 	char *sep = "";
2560 	size_t len = 0;
2561 
2562 	if (test_bit(Faulty, &rdev->flags) ||
2563 	    rdev->badblocks.unacked_exist) {
2564 		len+= sprintf(page+len, "%sfaulty",sep);
2565 		sep = ",";
2566 	}
2567 	if (test_bit(In_sync, &rdev->flags)) {
2568 		len += sprintf(page+len, "%sin_sync",sep);
2569 		sep = ",";
2570 	}
2571 	if (test_bit(WriteMostly, &rdev->flags)) {
2572 		len += sprintf(page+len, "%swrite_mostly",sep);
2573 		sep = ",";
2574 	}
2575 	if (test_bit(Blocked, &rdev->flags) ||
2576 	    (rdev->badblocks.unacked_exist
2577 	     && !test_bit(Faulty, &rdev->flags))) {
2578 		len += sprintf(page+len, "%sblocked", sep);
2579 		sep = ",";
2580 	}
2581 	if (!test_bit(Faulty, &rdev->flags) &&
2582 	    !test_bit(In_sync, &rdev->flags)) {
2583 		len += sprintf(page+len, "%sspare", sep);
2584 		sep = ",";
2585 	}
2586 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2587 		len += sprintf(page+len, "%swrite_error", sep);
2588 		sep = ",";
2589 	}
2590 	if (test_bit(WantReplacement, &rdev->flags)) {
2591 		len += sprintf(page+len, "%swant_replacement", sep);
2592 		sep = ",";
2593 	}
2594 	if (test_bit(Replacement, &rdev->flags)) {
2595 		len += sprintf(page+len, "%sreplacement", sep);
2596 		sep = ",";
2597 	}
2598 
2599 	return len+sprintf(page+len, "\n");
2600 }
2601 
2602 static ssize_t
2603 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2604 {
2605 	/* can write
2606 	 *  faulty  - simulates an error
2607 	 *  remove  - disconnects the device
2608 	 *  writemostly - sets write_mostly
2609 	 *  -writemostly - clears write_mostly
2610 	 *  blocked - sets the Blocked flags
2611 	 *  -blocked - clears the Blocked and possibly simulates an error
2612 	 *  insync - sets Insync providing device isn't active
2613 	 *  write_error - sets WriteErrorSeen
2614 	 *  -write_error - clears WriteErrorSeen
2615 	 */
2616 	int err = -EINVAL;
2617 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2618 		md_error(rdev->mddev, rdev);
2619 		if (test_bit(Faulty, &rdev->flags))
2620 			err = 0;
2621 		else
2622 			err = -EBUSY;
2623 	} else if (cmd_match(buf, "remove")) {
2624 		if (rdev->raid_disk >= 0)
2625 			err = -EBUSY;
2626 		else {
2627 			struct mddev *mddev = rdev->mddev;
2628 			kick_rdev_from_array(rdev);
2629 			if (mddev->pers)
2630 				md_update_sb(mddev, 1);
2631 			md_new_event(mddev);
2632 			err = 0;
2633 		}
2634 	} else if (cmd_match(buf, "writemostly")) {
2635 		set_bit(WriteMostly, &rdev->flags);
2636 		err = 0;
2637 	} else if (cmd_match(buf, "-writemostly")) {
2638 		clear_bit(WriteMostly, &rdev->flags);
2639 		err = 0;
2640 	} else if (cmd_match(buf, "blocked")) {
2641 		set_bit(Blocked, &rdev->flags);
2642 		err = 0;
2643 	} else if (cmd_match(buf, "-blocked")) {
2644 		if (!test_bit(Faulty, &rdev->flags) &&
2645 		    rdev->badblocks.unacked_exist) {
2646 			/* metadata handler doesn't understand badblocks,
2647 			 * so we need to fail the device
2648 			 */
2649 			md_error(rdev->mddev, rdev);
2650 		}
2651 		clear_bit(Blocked, &rdev->flags);
2652 		clear_bit(BlockedBadBlocks, &rdev->flags);
2653 		wake_up(&rdev->blocked_wait);
2654 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2655 		md_wakeup_thread(rdev->mddev->thread);
2656 
2657 		err = 0;
2658 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2659 		set_bit(In_sync, &rdev->flags);
2660 		err = 0;
2661 	} else if (cmd_match(buf, "write_error")) {
2662 		set_bit(WriteErrorSeen, &rdev->flags);
2663 		err = 0;
2664 	} else if (cmd_match(buf, "-write_error")) {
2665 		clear_bit(WriteErrorSeen, &rdev->flags);
2666 		err = 0;
2667 	} else if (cmd_match(buf, "want_replacement")) {
2668 		/* Any non-spare device that is not a replacement can
2669 		 * become want_replacement at any time, but we then need to
2670 		 * check if recovery is needed.
2671 		 */
2672 		if (rdev->raid_disk >= 0 &&
2673 		    !test_bit(Replacement, &rdev->flags))
2674 			set_bit(WantReplacement, &rdev->flags);
2675 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2676 		md_wakeup_thread(rdev->mddev->thread);
2677 		err = 0;
2678 	} else if (cmd_match(buf, "-want_replacement")) {
2679 		/* Clearing 'want_replacement' is always allowed.
2680 		 * Once replacements starts it is too late though.
2681 		 */
2682 		err = 0;
2683 		clear_bit(WantReplacement, &rdev->flags);
2684 	} else if (cmd_match(buf, "replacement")) {
2685 		/* Can only set a device as a replacement when array has not
2686 		 * yet been started.  Once running, replacement is automatic
2687 		 * from spares, or by assigning 'slot'.
2688 		 */
2689 		if (rdev->mddev->pers)
2690 			err = -EBUSY;
2691 		else {
2692 			set_bit(Replacement, &rdev->flags);
2693 			err = 0;
2694 		}
2695 	} else if (cmd_match(buf, "-replacement")) {
2696 		/* Similarly, can only clear Replacement before start */
2697 		if (rdev->mddev->pers)
2698 			err = -EBUSY;
2699 		else {
2700 			clear_bit(Replacement, &rdev->flags);
2701 			err = 0;
2702 		}
2703 	}
2704 	if (!err)
2705 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2706 	return err ? err : len;
2707 }
2708 static struct rdev_sysfs_entry rdev_state =
2709 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2710 
2711 static ssize_t
2712 errors_show(struct md_rdev *rdev, char *page)
2713 {
2714 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2715 }
2716 
2717 static ssize_t
2718 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2719 {
2720 	char *e;
2721 	unsigned long n = simple_strtoul(buf, &e, 10);
2722 	if (*buf && (*e == 0 || *e == '\n')) {
2723 		atomic_set(&rdev->corrected_errors, n);
2724 		return len;
2725 	}
2726 	return -EINVAL;
2727 }
2728 static struct rdev_sysfs_entry rdev_errors =
2729 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2730 
2731 static ssize_t
2732 slot_show(struct md_rdev *rdev, char *page)
2733 {
2734 	if (rdev->raid_disk < 0)
2735 		return sprintf(page, "none\n");
2736 	else
2737 		return sprintf(page, "%d\n", rdev->raid_disk);
2738 }
2739 
2740 static ssize_t
2741 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2742 {
2743 	char *e;
2744 	int err;
2745 	int slot = simple_strtoul(buf, &e, 10);
2746 	if (strncmp(buf, "none", 4)==0)
2747 		slot = -1;
2748 	else if (e==buf || (*e && *e!= '\n'))
2749 		return -EINVAL;
2750 	if (rdev->mddev->pers && slot == -1) {
2751 		/* Setting 'slot' on an active array requires also
2752 		 * updating the 'rd%d' link, and communicating
2753 		 * with the personality with ->hot_*_disk.
2754 		 * For now we only support removing
2755 		 * failed/spare devices.  This normally happens automatically,
2756 		 * but not when the metadata is externally managed.
2757 		 */
2758 		if (rdev->raid_disk == -1)
2759 			return -EEXIST;
2760 		/* personality does all needed checks */
2761 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2762 			return -EINVAL;
2763 		clear_bit(Blocked, &rdev->flags);
2764 		remove_and_add_spares(rdev->mddev, rdev);
2765 		if (rdev->raid_disk >= 0)
2766 			return -EBUSY;
2767 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2768 		md_wakeup_thread(rdev->mddev->thread);
2769 	} else if (rdev->mddev->pers) {
2770 		/* Activating a spare .. or possibly reactivating
2771 		 * if we ever get bitmaps working here.
2772 		 */
2773 
2774 		if (rdev->raid_disk != -1)
2775 			return -EBUSY;
2776 
2777 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2778 			return -EBUSY;
2779 
2780 		if (rdev->mddev->pers->hot_add_disk == NULL)
2781 			return -EINVAL;
2782 
2783 		if (slot >= rdev->mddev->raid_disks &&
2784 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2785 			return -ENOSPC;
2786 
2787 		rdev->raid_disk = slot;
2788 		if (test_bit(In_sync, &rdev->flags))
2789 			rdev->saved_raid_disk = slot;
2790 		else
2791 			rdev->saved_raid_disk = -1;
2792 		clear_bit(In_sync, &rdev->flags);
2793 		err = rdev->mddev->pers->
2794 			hot_add_disk(rdev->mddev, rdev);
2795 		if (err) {
2796 			rdev->raid_disk = -1;
2797 			return err;
2798 		} else
2799 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2800 		if (sysfs_link_rdev(rdev->mddev, rdev))
2801 			/* failure here is OK */;
2802 		/* don't wakeup anyone, leave that to userspace. */
2803 	} else {
2804 		if (slot >= rdev->mddev->raid_disks &&
2805 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2806 			return -ENOSPC;
2807 		rdev->raid_disk = slot;
2808 		/* assume it is working */
2809 		clear_bit(Faulty, &rdev->flags);
2810 		clear_bit(WriteMostly, &rdev->flags);
2811 		set_bit(In_sync, &rdev->flags);
2812 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2813 	}
2814 	return len;
2815 }
2816 
2817 
2818 static struct rdev_sysfs_entry rdev_slot =
2819 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2820 
2821 static ssize_t
2822 offset_show(struct md_rdev *rdev, char *page)
2823 {
2824 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2825 }
2826 
2827 static ssize_t
2828 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2829 {
2830 	unsigned long long offset;
2831 	if (kstrtoull(buf, 10, &offset) < 0)
2832 		return -EINVAL;
2833 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2834 		return -EBUSY;
2835 	if (rdev->sectors && rdev->mddev->external)
2836 		/* Must set offset before size, so overlap checks
2837 		 * can be sane */
2838 		return -EBUSY;
2839 	rdev->data_offset = offset;
2840 	rdev->new_data_offset = offset;
2841 	return len;
2842 }
2843 
2844 static struct rdev_sysfs_entry rdev_offset =
2845 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2846 
2847 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2848 {
2849 	return sprintf(page, "%llu\n",
2850 		       (unsigned long long)rdev->new_data_offset);
2851 }
2852 
2853 static ssize_t new_offset_store(struct md_rdev *rdev,
2854 				const char *buf, size_t len)
2855 {
2856 	unsigned long long new_offset;
2857 	struct mddev *mddev = rdev->mddev;
2858 
2859 	if (kstrtoull(buf, 10, &new_offset) < 0)
2860 		return -EINVAL;
2861 
2862 	if (mddev->sync_thread)
2863 		return -EBUSY;
2864 	if (new_offset == rdev->data_offset)
2865 		/* reset is always permitted */
2866 		;
2867 	else if (new_offset > rdev->data_offset) {
2868 		/* must not push array size beyond rdev_sectors */
2869 		if (new_offset - rdev->data_offset
2870 		    + mddev->dev_sectors > rdev->sectors)
2871 				return -E2BIG;
2872 	}
2873 	/* Metadata worries about other space details. */
2874 
2875 	/* decreasing the offset is inconsistent with a backwards
2876 	 * reshape.
2877 	 */
2878 	if (new_offset < rdev->data_offset &&
2879 	    mddev->reshape_backwards)
2880 		return -EINVAL;
2881 	/* Increasing offset is inconsistent with forwards
2882 	 * reshape.  reshape_direction should be set to
2883 	 * 'backwards' first.
2884 	 */
2885 	if (new_offset > rdev->data_offset &&
2886 	    !mddev->reshape_backwards)
2887 		return -EINVAL;
2888 
2889 	if (mddev->pers && mddev->persistent &&
2890 	    !super_types[mddev->major_version]
2891 	    .allow_new_offset(rdev, new_offset))
2892 		return -E2BIG;
2893 	rdev->new_data_offset = new_offset;
2894 	if (new_offset > rdev->data_offset)
2895 		mddev->reshape_backwards = 1;
2896 	else if (new_offset < rdev->data_offset)
2897 		mddev->reshape_backwards = 0;
2898 
2899 	return len;
2900 }
2901 static struct rdev_sysfs_entry rdev_new_offset =
2902 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2903 
2904 static ssize_t
2905 rdev_size_show(struct md_rdev *rdev, char *page)
2906 {
2907 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2908 }
2909 
2910 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2911 {
2912 	/* check if two start/length pairs overlap */
2913 	if (s1+l1 <= s2)
2914 		return 0;
2915 	if (s2+l2 <= s1)
2916 		return 0;
2917 	return 1;
2918 }
2919 
2920 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2921 {
2922 	unsigned long long blocks;
2923 	sector_t new;
2924 
2925 	if (kstrtoull(buf, 10, &blocks) < 0)
2926 		return -EINVAL;
2927 
2928 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2929 		return -EINVAL; /* sector conversion overflow */
2930 
2931 	new = blocks * 2;
2932 	if (new != blocks * 2)
2933 		return -EINVAL; /* unsigned long long to sector_t overflow */
2934 
2935 	*sectors = new;
2936 	return 0;
2937 }
2938 
2939 static ssize_t
2940 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2941 {
2942 	struct mddev *my_mddev = rdev->mddev;
2943 	sector_t oldsectors = rdev->sectors;
2944 	sector_t sectors;
2945 
2946 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2947 		return -EINVAL;
2948 	if (rdev->data_offset != rdev->new_data_offset)
2949 		return -EINVAL; /* too confusing */
2950 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2951 		if (my_mddev->persistent) {
2952 			sectors = super_types[my_mddev->major_version].
2953 				rdev_size_change(rdev, sectors);
2954 			if (!sectors)
2955 				return -EBUSY;
2956 		} else if (!sectors)
2957 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2958 				rdev->data_offset;
2959 		if (!my_mddev->pers->resize)
2960 			/* Cannot change size for RAID0 or Linear etc */
2961 			return -EINVAL;
2962 	}
2963 	if (sectors < my_mddev->dev_sectors)
2964 		return -EINVAL; /* component must fit device */
2965 
2966 	rdev->sectors = sectors;
2967 	if (sectors > oldsectors && my_mddev->external) {
2968 		/* need to check that all other rdevs with the same ->bdev
2969 		 * do not overlap.  We need to unlock the mddev to avoid
2970 		 * a deadlock.  We have already changed rdev->sectors, and if
2971 		 * we have to change it back, we will have the lock again.
2972 		 */
2973 		struct mddev *mddev;
2974 		int overlap = 0;
2975 		struct list_head *tmp;
2976 
2977 		mddev_unlock(my_mddev);
2978 		for_each_mddev(mddev, tmp) {
2979 			struct md_rdev *rdev2;
2980 
2981 			mddev_lock(mddev);
2982 			rdev_for_each(rdev2, mddev)
2983 				if (rdev->bdev == rdev2->bdev &&
2984 				    rdev != rdev2 &&
2985 				    overlaps(rdev->data_offset, rdev->sectors,
2986 					     rdev2->data_offset,
2987 					     rdev2->sectors)) {
2988 					overlap = 1;
2989 					break;
2990 				}
2991 			mddev_unlock(mddev);
2992 			if (overlap) {
2993 				mddev_put(mddev);
2994 				break;
2995 			}
2996 		}
2997 		mddev_lock(my_mddev);
2998 		if (overlap) {
2999 			/* Someone else could have slipped in a size
3000 			 * change here, but doing so is just silly.
3001 			 * We put oldsectors back because we *know* it is
3002 			 * safe, and trust userspace not to race with
3003 			 * itself
3004 			 */
3005 			rdev->sectors = oldsectors;
3006 			return -EBUSY;
3007 		}
3008 	}
3009 	return len;
3010 }
3011 
3012 static struct rdev_sysfs_entry rdev_size =
3013 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3014 
3015 
3016 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3017 {
3018 	unsigned long long recovery_start = rdev->recovery_offset;
3019 
3020 	if (test_bit(In_sync, &rdev->flags) ||
3021 	    recovery_start == MaxSector)
3022 		return sprintf(page, "none\n");
3023 
3024 	return sprintf(page, "%llu\n", recovery_start);
3025 }
3026 
3027 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3028 {
3029 	unsigned long long recovery_start;
3030 
3031 	if (cmd_match(buf, "none"))
3032 		recovery_start = MaxSector;
3033 	else if (kstrtoull(buf, 10, &recovery_start))
3034 		return -EINVAL;
3035 
3036 	if (rdev->mddev->pers &&
3037 	    rdev->raid_disk >= 0)
3038 		return -EBUSY;
3039 
3040 	rdev->recovery_offset = recovery_start;
3041 	if (recovery_start == MaxSector)
3042 		set_bit(In_sync, &rdev->flags);
3043 	else
3044 		clear_bit(In_sync, &rdev->flags);
3045 	return len;
3046 }
3047 
3048 static struct rdev_sysfs_entry rdev_recovery_start =
3049 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3050 
3051 
3052 static ssize_t
3053 badblocks_show(struct badblocks *bb, char *page, int unack);
3054 static ssize_t
3055 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3056 
3057 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3058 {
3059 	return badblocks_show(&rdev->badblocks, page, 0);
3060 }
3061 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3062 {
3063 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3064 	/* Maybe that ack was all we needed */
3065 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3066 		wake_up(&rdev->blocked_wait);
3067 	return rv;
3068 }
3069 static struct rdev_sysfs_entry rdev_bad_blocks =
3070 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3071 
3072 
3073 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3074 {
3075 	return badblocks_show(&rdev->badblocks, page, 1);
3076 }
3077 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3078 {
3079 	return badblocks_store(&rdev->badblocks, page, len, 1);
3080 }
3081 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3082 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3083 
3084 static struct attribute *rdev_default_attrs[] = {
3085 	&rdev_state.attr,
3086 	&rdev_errors.attr,
3087 	&rdev_slot.attr,
3088 	&rdev_offset.attr,
3089 	&rdev_new_offset.attr,
3090 	&rdev_size.attr,
3091 	&rdev_recovery_start.attr,
3092 	&rdev_bad_blocks.attr,
3093 	&rdev_unack_bad_blocks.attr,
3094 	NULL,
3095 };
3096 static ssize_t
3097 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3098 {
3099 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3100 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3101 	struct mddev *mddev = rdev->mddev;
3102 	ssize_t rv;
3103 
3104 	if (!entry->show)
3105 		return -EIO;
3106 
3107 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
3108 	if (!rv) {
3109 		if (rdev->mddev == NULL)
3110 			rv = -EBUSY;
3111 		else
3112 			rv = entry->show(rdev, page);
3113 		mddev_unlock(mddev);
3114 	}
3115 	return rv;
3116 }
3117 
3118 static ssize_t
3119 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3120 	      const char *page, size_t length)
3121 {
3122 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3123 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3124 	ssize_t rv;
3125 	struct mddev *mddev = rdev->mddev;
3126 
3127 	if (!entry->store)
3128 		return -EIO;
3129 	if (!capable(CAP_SYS_ADMIN))
3130 		return -EACCES;
3131 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3132 	if (!rv) {
3133 		if (rdev->mddev == NULL)
3134 			rv = -EBUSY;
3135 		else
3136 			rv = entry->store(rdev, page, length);
3137 		mddev_unlock(mddev);
3138 	}
3139 	return rv;
3140 }
3141 
3142 static void rdev_free(struct kobject *ko)
3143 {
3144 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3145 	kfree(rdev);
3146 }
3147 static const struct sysfs_ops rdev_sysfs_ops = {
3148 	.show		= rdev_attr_show,
3149 	.store		= rdev_attr_store,
3150 };
3151 static struct kobj_type rdev_ktype = {
3152 	.release	= rdev_free,
3153 	.sysfs_ops	= &rdev_sysfs_ops,
3154 	.default_attrs	= rdev_default_attrs,
3155 };
3156 
3157 int md_rdev_init(struct md_rdev *rdev)
3158 {
3159 	rdev->desc_nr = -1;
3160 	rdev->saved_raid_disk = -1;
3161 	rdev->raid_disk = -1;
3162 	rdev->flags = 0;
3163 	rdev->data_offset = 0;
3164 	rdev->new_data_offset = 0;
3165 	rdev->sb_events = 0;
3166 	rdev->last_read_error.tv_sec  = 0;
3167 	rdev->last_read_error.tv_nsec = 0;
3168 	rdev->sb_loaded = 0;
3169 	rdev->bb_page = NULL;
3170 	atomic_set(&rdev->nr_pending, 0);
3171 	atomic_set(&rdev->read_errors, 0);
3172 	atomic_set(&rdev->corrected_errors, 0);
3173 
3174 	INIT_LIST_HEAD(&rdev->same_set);
3175 	init_waitqueue_head(&rdev->blocked_wait);
3176 
3177 	/* Add space to store bad block list.
3178 	 * This reserves the space even on arrays where it cannot
3179 	 * be used - I wonder if that matters
3180 	 */
3181 	rdev->badblocks.count = 0;
3182 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3183 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3184 	seqlock_init(&rdev->badblocks.lock);
3185 	if (rdev->badblocks.page == NULL)
3186 		return -ENOMEM;
3187 
3188 	return 0;
3189 }
3190 EXPORT_SYMBOL_GPL(md_rdev_init);
3191 /*
3192  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3193  *
3194  * mark the device faulty if:
3195  *
3196  *   - the device is nonexistent (zero size)
3197  *   - the device has no valid superblock
3198  *
3199  * a faulty rdev _never_ has rdev->sb set.
3200  */
3201 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3202 {
3203 	char b[BDEVNAME_SIZE];
3204 	int err;
3205 	struct md_rdev *rdev;
3206 	sector_t size;
3207 
3208 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3209 	if (!rdev) {
3210 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3211 		return ERR_PTR(-ENOMEM);
3212 	}
3213 
3214 	err = md_rdev_init(rdev);
3215 	if (err)
3216 		goto abort_free;
3217 	err = alloc_disk_sb(rdev);
3218 	if (err)
3219 		goto abort_free;
3220 
3221 	err = lock_rdev(rdev, newdev, super_format == -2);
3222 	if (err)
3223 		goto abort_free;
3224 
3225 	kobject_init(&rdev->kobj, &rdev_ktype);
3226 
3227 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3228 	if (!size) {
3229 		printk(KERN_WARNING
3230 			"md: %s has zero or unknown size, marking faulty!\n",
3231 			bdevname(rdev->bdev,b));
3232 		err = -EINVAL;
3233 		goto abort_free;
3234 	}
3235 
3236 	if (super_format >= 0) {
3237 		err = super_types[super_format].
3238 			load_super(rdev, NULL, super_minor);
3239 		if (err == -EINVAL) {
3240 			printk(KERN_WARNING
3241 				"md: %s does not have a valid v%d.%d "
3242 			       "superblock, not importing!\n",
3243 				bdevname(rdev->bdev,b),
3244 			       super_format, super_minor);
3245 			goto abort_free;
3246 		}
3247 		if (err < 0) {
3248 			printk(KERN_WARNING
3249 				"md: could not read %s's sb, not importing!\n",
3250 				bdevname(rdev->bdev,b));
3251 			goto abort_free;
3252 		}
3253 	}
3254 
3255 	return rdev;
3256 
3257 abort_free:
3258 	if (rdev->bdev)
3259 		unlock_rdev(rdev);
3260 	md_rdev_clear(rdev);
3261 	kfree(rdev);
3262 	return ERR_PTR(err);
3263 }
3264 
3265 /*
3266  * Check a full RAID array for plausibility
3267  */
3268 
3269 
3270 static void analyze_sbs(struct mddev * mddev)
3271 {
3272 	int i;
3273 	struct md_rdev *rdev, *freshest, *tmp;
3274 	char b[BDEVNAME_SIZE];
3275 
3276 	freshest = NULL;
3277 	rdev_for_each_safe(rdev, tmp, mddev)
3278 		switch (super_types[mddev->major_version].
3279 			load_super(rdev, freshest, mddev->minor_version)) {
3280 		case 1:
3281 			freshest = rdev;
3282 			break;
3283 		case 0:
3284 			break;
3285 		default:
3286 			printk( KERN_ERR \
3287 				"md: fatal superblock inconsistency in %s"
3288 				" -- removing from array\n",
3289 				bdevname(rdev->bdev,b));
3290 			kick_rdev_from_array(rdev);
3291 		}
3292 
3293 
3294 	super_types[mddev->major_version].
3295 		validate_super(mddev, freshest);
3296 
3297 	i = 0;
3298 	rdev_for_each_safe(rdev, tmp, mddev) {
3299 		if (mddev->max_disks &&
3300 		    (rdev->desc_nr >= mddev->max_disks ||
3301 		     i > mddev->max_disks)) {
3302 			printk(KERN_WARNING
3303 			       "md: %s: %s: only %d devices permitted\n",
3304 			       mdname(mddev), bdevname(rdev->bdev, b),
3305 			       mddev->max_disks);
3306 			kick_rdev_from_array(rdev);
3307 			continue;
3308 		}
3309 		if (rdev != freshest)
3310 			if (super_types[mddev->major_version].
3311 			    validate_super(mddev, rdev)) {
3312 				printk(KERN_WARNING "md: kicking non-fresh %s"
3313 					" from array!\n",
3314 					bdevname(rdev->bdev,b));
3315 				kick_rdev_from_array(rdev);
3316 				continue;
3317 			}
3318 		if (mddev->level == LEVEL_MULTIPATH) {
3319 			rdev->desc_nr = i++;
3320 			rdev->raid_disk = rdev->desc_nr;
3321 			set_bit(In_sync, &rdev->flags);
3322 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3323 			rdev->raid_disk = -1;
3324 			clear_bit(In_sync, &rdev->flags);
3325 		}
3326 	}
3327 }
3328 
3329 /* Read a fixed-point number.
3330  * Numbers in sysfs attributes should be in "standard" units where
3331  * possible, so time should be in seconds.
3332  * However we internally use a a much smaller unit such as
3333  * milliseconds or jiffies.
3334  * This function takes a decimal number with a possible fractional
3335  * component, and produces an integer which is the result of
3336  * multiplying that number by 10^'scale'.
3337  * all without any floating-point arithmetic.
3338  */
3339 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3340 {
3341 	unsigned long result = 0;
3342 	long decimals = -1;
3343 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3344 		if (*cp == '.')
3345 			decimals = 0;
3346 		else if (decimals < scale) {
3347 			unsigned int value;
3348 			value = *cp - '0';
3349 			result = result * 10 + value;
3350 			if (decimals >= 0)
3351 				decimals++;
3352 		}
3353 		cp++;
3354 	}
3355 	if (*cp == '\n')
3356 		cp++;
3357 	if (*cp)
3358 		return -EINVAL;
3359 	if (decimals < 0)
3360 		decimals = 0;
3361 	while (decimals < scale) {
3362 		result *= 10;
3363 		decimals ++;
3364 	}
3365 	*res = result;
3366 	return 0;
3367 }
3368 
3369 
3370 static void md_safemode_timeout(unsigned long data);
3371 
3372 static ssize_t
3373 safe_delay_show(struct mddev *mddev, char *page)
3374 {
3375 	int msec = (mddev->safemode_delay*1000)/HZ;
3376 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3377 }
3378 static ssize_t
3379 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3380 {
3381 	unsigned long msec;
3382 
3383 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3384 		return -EINVAL;
3385 	if (msec == 0)
3386 		mddev->safemode_delay = 0;
3387 	else {
3388 		unsigned long old_delay = mddev->safemode_delay;
3389 		mddev->safemode_delay = (msec*HZ)/1000;
3390 		if (mddev->safemode_delay == 0)
3391 			mddev->safemode_delay = 1;
3392 		if (mddev->safemode_delay < old_delay || old_delay == 0)
3393 			md_safemode_timeout((unsigned long)mddev);
3394 	}
3395 	return len;
3396 }
3397 static struct md_sysfs_entry md_safe_delay =
3398 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3399 
3400 static ssize_t
3401 level_show(struct mddev *mddev, char *page)
3402 {
3403 	struct md_personality *p = mddev->pers;
3404 	if (p)
3405 		return sprintf(page, "%s\n", p->name);
3406 	else if (mddev->clevel[0])
3407 		return sprintf(page, "%s\n", mddev->clevel);
3408 	else if (mddev->level != LEVEL_NONE)
3409 		return sprintf(page, "%d\n", mddev->level);
3410 	else
3411 		return 0;
3412 }
3413 
3414 static ssize_t
3415 level_store(struct mddev *mddev, const char *buf, size_t len)
3416 {
3417 	char clevel[16];
3418 	ssize_t rv = len;
3419 	struct md_personality *pers;
3420 	long level;
3421 	void *priv;
3422 	struct md_rdev *rdev;
3423 
3424 	if (mddev->pers == NULL) {
3425 		if (len == 0)
3426 			return 0;
3427 		if (len >= sizeof(mddev->clevel))
3428 			return -ENOSPC;
3429 		strncpy(mddev->clevel, buf, len);
3430 		if (mddev->clevel[len-1] == '\n')
3431 			len--;
3432 		mddev->clevel[len] = 0;
3433 		mddev->level = LEVEL_NONE;
3434 		return rv;
3435 	}
3436 
3437 	/* request to change the personality.  Need to ensure:
3438 	 *  - array is not engaged in resync/recovery/reshape
3439 	 *  - old personality can be suspended
3440 	 *  - new personality will access other array.
3441 	 */
3442 
3443 	if (mddev->sync_thread ||
3444 	    mddev->reshape_position != MaxSector ||
3445 	    mddev->sysfs_active)
3446 		return -EBUSY;
3447 
3448 	if (!mddev->pers->quiesce) {
3449 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3450 		       mdname(mddev), mddev->pers->name);
3451 		return -EINVAL;
3452 	}
3453 
3454 	/* Now find the new personality */
3455 	if (len == 0 || len >= sizeof(clevel))
3456 		return -EINVAL;
3457 	strncpy(clevel, buf, len);
3458 	if (clevel[len-1] == '\n')
3459 		len--;
3460 	clevel[len] = 0;
3461 	if (kstrtol(clevel, 10, &level))
3462 		level = LEVEL_NONE;
3463 
3464 	if (request_module("md-%s", clevel) != 0)
3465 		request_module("md-level-%s", clevel);
3466 	spin_lock(&pers_lock);
3467 	pers = find_pers(level, clevel);
3468 	if (!pers || !try_module_get(pers->owner)) {
3469 		spin_unlock(&pers_lock);
3470 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3471 		return -EINVAL;
3472 	}
3473 	spin_unlock(&pers_lock);
3474 
3475 	if (pers == mddev->pers) {
3476 		/* Nothing to do! */
3477 		module_put(pers->owner);
3478 		return rv;
3479 	}
3480 	if (!pers->takeover) {
3481 		module_put(pers->owner);
3482 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3483 		       mdname(mddev), clevel);
3484 		return -EINVAL;
3485 	}
3486 
3487 	rdev_for_each(rdev, mddev)
3488 		rdev->new_raid_disk = rdev->raid_disk;
3489 
3490 	/* ->takeover must set new_* and/or delta_disks
3491 	 * if it succeeds, and may set them when it fails.
3492 	 */
3493 	priv = pers->takeover(mddev);
3494 	if (IS_ERR(priv)) {
3495 		mddev->new_level = mddev->level;
3496 		mddev->new_layout = mddev->layout;
3497 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3498 		mddev->raid_disks -= mddev->delta_disks;
3499 		mddev->delta_disks = 0;
3500 		mddev->reshape_backwards = 0;
3501 		module_put(pers->owner);
3502 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3503 		       mdname(mddev), clevel);
3504 		return PTR_ERR(priv);
3505 	}
3506 
3507 	/* Looks like we have a winner */
3508 	mddev_suspend(mddev);
3509 	mddev->pers->stop(mddev);
3510 
3511 	if (mddev->pers->sync_request == NULL &&
3512 	    pers->sync_request != NULL) {
3513 		/* need to add the md_redundancy_group */
3514 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3515 			printk(KERN_WARNING
3516 			       "md: cannot register extra attributes for %s\n",
3517 			       mdname(mddev));
3518 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3519 	}
3520 	if (mddev->pers->sync_request != NULL &&
3521 	    pers->sync_request == NULL) {
3522 		/* need to remove the md_redundancy_group */
3523 		if (mddev->to_remove == NULL)
3524 			mddev->to_remove = &md_redundancy_group;
3525 	}
3526 
3527 	if (mddev->pers->sync_request == NULL &&
3528 	    mddev->external) {
3529 		/* We are converting from a no-redundancy array
3530 		 * to a redundancy array and metadata is managed
3531 		 * externally so we need to be sure that writes
3532 		 * won't block due to a need to transition
3533 		 *      clean->dirty
3534 		 * until external management is started.
3535 		 */
3536 		mddev->in_sync = 0;
3537 		mddev->safemode_delay = 0;
3538 		mddev->safemode = 0;
3539 	}
3540 
3541 	rdev_for_each(rdev, mddev) {
3542 		if (rdev->raid_disk < 0)
3543 			continue;
3544 		if (rdev->new_raid_disk >= mddev->raid_disks)
3545 			rdev->new_raid_disk = -1;
3546 		if (rdev->new_raid_disk == rdev->raid_disk)
3547 			continue;
3548 		sysfs_unlink_rdev(mddev, rdev);
3549 	}
3550 	rdev_for_each(rdev, mddev) {
3551 		if (rdev->raid_disk < 0)
3552 			continue;
3553 		if (rdev->new_raid_disk == rdev->raid_disk)
3554 			continue;
3555 		rdev->raid_disk = rdev->new_raid_disk;
3556 		if (rdev->raid_disk < 0)
3557 			clear_bit(In_sync, &rdev->flags);
3558 		else {
3559 			if (sysfs_link_rdev(mddev, rdev))
3560 				printk(KERN_WARNING "md: cannot register rd%d"
3561 				       " for %s after level change\n",
3562 				       rdev->raid_disk, mdname(mddev));
3563 		}
3564 	}
3565 
3566 	module_put(mddev->pers->owner);
3567 	mddev->pers = pers;
3568 	mddev->private = priv;
3569 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3570 	mddev->level = mddev->new_level;
3571 	mddev->layout = mddev->new_layout;
3572 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3573 	mddev->delta_disks = 0;
3574 	mddev->reshape_backwards = 0;
3575 	mddev->degraded = 0;
3576 	if (mddev->pers->sync_request == NULL) {
3577 		/* this is now an array without redundancy, so
3578 		 * it must always be in_sync
3579 		 */
3580 		mddev->in_sync = 1;
3581 		del_timer_sync(&mddev->safemode_timer);
3582 	}
3583 	pers->run(mddev);
3584 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3585 	mddev_resume(mddev);
3586 	sysfs_notify(&mddev->kobj, NULL, "level");
3587 	md_new_event(mddev);
3588 	return rv;
3589 }
3590 
3591 static struct md_sysfs_entry md_level =
3592 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3593 
3594 
3595 static ssize_t
3596 layout_show(struct mddev *mddev, char *page)
3597 {
3598 	/* just a number, not meaningful for all levels */
3599 	if (mddev->reshape_position != MaxSector &&
3600 	    mddev->layout != mddev->new_layout)
3601 		return sprintf(page, "%d (%d)\n",
3602 			       mddev->new_layout, mddev->layout);
3603 	return sprintf(page, "%d\n", mddev->layout);
3604 }
3605 
3606 static ssize_t
3607 layout_store(struct mddev *mddev, const char *buf, size_t len)
3608 {
3609 	char *e;
3610 	unsigned long n = simple_strtoul(buf, &e, 10);
3611 
3612 	if (!*buf || (*e && *e != '\n'))
3613 		return -EINVAL;
3614 
3615 	if (mddev->pers) {
3616 		int err;
3617 		if (mddev->pers->check_reshape == NULL)
3618 			return -EBUSY;
3619 		mddev->new_layout = n;
3620 		err = mddev->pers->check_reshape(mddev);
3621 		if (err) {
3622 			mddev->new_layout = mddev->layout;
3623 			return err;
3624 		}
3625 	} else {
3626 		mddev->new_layout = n;
3627 		if (mddev->reshape_position == MaxSector)
3628 			mddev->layout = n;
3629 	}
3630 	return len;
3631 }
3632 static struct md_sysfs_entry md_layout =
3633 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3634 
3635 
3636 static ssize_t
3637 raid_disks_show(struct mddev *mddev, char *page)
3638 {
3639 	if (mddev->raid_disks == 0)
3640 		return 0;
3641 	if (mddev->reshape_position != MaxSector &&
3642 	    mddev->delta_disks != 0)
3643 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3644 			       mddev->raid_disks - mddev->delta_disks);
3645 	return sprintf(page, "%d\n", mddev->raid_disks);
3646 }
3647 
3648 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3649 
3650 static ssize_t
3651 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3652 {
3653 	char *e;
3654 	int rv = 0;
3655 	unsigned long n = simple_strtoul(buf, &e, 10);
3656 
3657 	if (!*buf || (*e && *e != '\n'))
3658 		return -EINVAL;
3659 
3660 	if (mddev->pers)
3661 		rv = update_raid_disks(mddev, n);
3662 	else if (mddev->reshape_position != MaxSector) {
3663 		struct md_rdev *rdev;
3664 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3665 
3666 		rdev_for_each(rdev, mddev) {
3667 			if (olddisks < n &&
3668 			    rdev->data_offset < rdev->new_data_offset)
3669 				return -EINVAL;
3670 			if (olddisks > n &&
3671 			    rdev->data_offset > rdev->new_data_offset)
3672 				return -EINVAL;
3673 		}
3674 		mddev->delta_disks = n - olddisks;
3675 		mddev->raid_disks = n;
3676 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3677 	} else
3678 		mddev->raid_disks = n;
3679 	return rv ? rv : len;
3680 }
3681 static struct md_sysfs_entry md_raid_disks =
3682 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3683 
3684 static ssize_t
3685 chunk_size_show(struct mddev *mddev, char *page)
3686 {
3687 	if (mddev->reshape_position != MaxSector &&
3688 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3689 		return sprintf(page, "%d (%d)\n",
3690 			       mddev->new_chunk_sectors << 9,
3691 			       mddev->chunk_sectors << 9);
3692 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3693 }
3694 
3695 static ssize_t
3696 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3697 {
3698 	char *e;
3699 	unsigned long n = simple_strtoul(buf, &e, 10);
3700 
3701 	if (!*buf || (*e && *e != '\n'))
3702 		return -EINVAL;
3703 
3704 	if (mddev->pers) {
3705 		int err;
3706 		if (mddev->pers->check_reshape == NULL)
3707 			return -EBUSY;
3708 		mddev->new_chunk_sectors = n >> 9;
3709 		err = mddev->pers->check_reshape(mddev);
3710 		if (err) {
3711 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3712 			return err;
3713 		}
3714 	} else {
3715 		mddev->new_chunk_sectors = n >> 9;
3716 		if (mddev->reshape_position == MaxSector)
3717 			mddev->chunk_sectors = n >> 9;
3718 	}
3719 	return len;
3720 }
3721 static struct md_sysfs_entry md_chunk_size =
3722 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3723 
3724 static ssize_t
3725 resync_start_show(struct mddev *mddev, char *page)
3726 {
3727 	if (mddev->recovery_cp == MaxSector)
3728 		return sprintf(page, "none\n");
3729 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3730 }
3731 
3732 static ssize_t
3733 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3734 {
3735 	char *e;
3736 	unsigned long long n = simple_strtoull(buf, &e, 10);
3737 
3738 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3739 		return -EBUSY;
3740 	if (cmd_match(buf, "none"))
3741 		n = MaxSector;
3742 	else if (!*buf || (*e && *e != '\n'))
3743 		return -EINVAL;
3744 
3745 	mddev->recovery_cp = n;
3746 	if (mddev->pers)
3747 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3748 	return len;
3749 }
3750 static struct md_sysfs_entry md_resync_start =
3751 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3752 
3753 /*
3754  * The array state can be:
3755  *
3756  * clear
3757  *     No devices, no size, no level
3758  *     Equivalent to STOP_ARRAY ioctl
3759  * inactive
3760  *     May have some settings, but array is not active
3761  *        all IO results in error
3762  *     When written, doesn't tear down array, but just stops it
3763  * suspended (not supported yet)
3764  *     All IO requests will block. The array can be reconfigured.
3765  *     Writing this, if accepted, will block until array is quiescent
3766  * readonly
3767  *     no resync can happen.  no superblocks get written.
3768  *     write requests fail
3769  * read-auto
3770  *     like readonly, but behaves like 'clean' on a write request.
3771  *
3772  * clean - no pending writes, but otherwise active.
3773  *     When written to inactive array, starts without resync
3774  *     If a write request arrives then
3775  *       if metadata is known, mark 'dirty' and switch to 'active'.
3776  *       if not known, block and switch to write-pending
3777  *     If written to an active array that has pending writes, then fails.
3778  * active
3779  *     fully active: IO and resync can be happening.
3780  *     When written to inactive array, starts with resync
3781  *
3782  * write-pending
3783  *     clean, but writes are blocked waiting for 'active' to be written.
3784  *
3785  * active-idle
3786  *     like active, but no writes have been seen for a while (100msec).
3787  *
3788  */
3789 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3790 		   write_pending, active_idle, bad_word};
3791 static char *array_states[] = {
3792 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3793 	"write-pending", "active-idle", NULL };
3794 
3795 static int match_word(const char *word, char **list)
3796 {
3797 	int n;
3798 	for (n=0; list[n]; n++)
3799 		if (cmd_match(word, list[n]))
3800 			break;
3801 	return n;
3802 }
3803 
3804 static ssize_t
3805 array_state_show(struct mddev *mddev, char *page)
3806 {
3807 	enum array_state st = inactive;
3808 
3809 	if (mddev->pers)
3810 		switch(mddev->ro) {
3811 		case 1:
3812 			st = readonly;
3813 			break;
3814 		case 2:
3815 			st = read_auto;
3816 			break;
3817 		case 0:
3818 			if (mddev->in_sync)
3819 				st = clean;
3820 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3821 				st = write_pending;
3822 			else if (mddev->safemode)
3823 				st = active_idle;
3824 			else
3825 				st = active;
3826 		}
3827 	else {
3828 		if (list_empty(&mddev->disks) &&
3829 		    mddev->raid_disks == 0 &&
3830 		    mddev->dev_sectors == 0)
3831 			st = clear;
3832 		else
3833 			st = inactive;
3834 	}
3835 	return sprintf(page, "%s\n", array_states[st]);
3836 }
3837 
3838 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3839 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3840 static int do_md_run(struct mddev * mddev);
3841 static int restart_array(struct mddev *mddev);
3842 
3843 static ssize_t
3844 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3845 {
3846 	int err = -EINVAL;
3847 	enum array_state st = match_word(buf, array_states);
3848 	switch(st) {
3849 	case bad_word:
3850 		break;
3851 	case clear:
3852 		/* stopping an active array */
3853 		err = do_md_stop(mddev, 0, NULL);
3854 		break;
3855 	case inactive:
3856 		/* stopping an active array */
3857 		if (mddev->pers)
3858 			err = do_md_stop(mddev, 2, NULL);
3859 		else
3860 			err = 0; /* already inactive */
3861 		break;
3862 	case suspended:
3863 		break; /* not supported yet */
3864 	case readonly:
3865 		if (mddev->pers)
3866 			err = md_set_readonly(mddev, NULL);
3867 		else {
3868 			mddev->ro = 1;
3869 			set_disk_ro(mddev->gendisk, 1);
3870 			err = do_md_run(mddev);
3871 		}
3872 		break;
3873 	case read_auto:
3874 		if (mddev->pers) {
3875 			if (mddev->ro == 0)
3876 				err = md_set_readonly(mddev, NULL);
3877 			else if (mddev->ro == 1)
3878 				err = restart_array(mddev);
3879 			if (err == 0) {
3880 				mddev->ro = 2;
3881 				set_disk_ro(mddev->gendisk, 0);
3882 			}
3883 		} else {
3884 			mddev->ro = 2;
3885 			err = do_md_run(mddev);
3886 		}
3887 		break;
3888 	case clean:
3889 		if (mddev->pers) {
3890 			restart_array(mddev);
3891 			spin_lock_irq(&mddev->write_lock);
3892 			if (atomic_read(&mddev->writes_pending) == 0) {
3893 				if (mddev->in_sync == 0) {
3894 					mddev->in_sync = 1;
3895 					if (mddev->safemode == 1)
3896 						mddev->safemode = 0;
3897 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3898 				}
3899 				err = 0;
3900 			} else
3901 				err = -EBUSY;
3902 			spin_unlock_irq(&mddev->write_lock);
3903 		} else
3904 			err = -EINVAL;
3905 		break;
3906 	case active:
3907 		if (mddev->pers) {
3908 			restart_array(mddev);
3909 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3910 			wake_up(&mddev->sb_wait);
3911 			err = 0;
3912 		} else {
3913 			mddev->ro = 0;
3914 			set_disk_ro(mddev->gendisk, 0);
3915 			err = do_md_run(mddev);
3916 		}
3917 		break;
3918 	case write_pending:
3919 	case active_idle:
3920 		/* these cannot be set */
3921 		break;
3922 	}
3923 	if (err)
3924 		return err;
3925 	else {
3926 		if (mddev->hold_active == UNTIL_IOCTL)
3927 			mddev->hold_active = 0;
3928 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3929 		return len;
3930 	}
3931 }
3932 static struct md_sysfs_entry md_array_state =
3933 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3934 
3935 static ssize_t
3936 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3937 	return sprintf(page, "%d\n",
3938 		       atomic_read(&mddev->max_corr_read_errors));
3939 }
3940 
3941 static ssize_t
3942 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3943 {
3944 	char *e;
3945 	unsigned long n = simple_strtoul(buf, &e, 10);
3946 
3947 	if (*buf && (*e == 0 || *e == '\n')) {
3948 		atomic_set(&mddev->max_corr_read_errors, n);
3949 		return len;
3950 	}
3951 	return -EINVAL;
3952 }
3953 
3954 static struct md_sysfs_entry max_corr_read_errors =
3955 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3956 	max_corrected_read_errors_store);
3957 
3958 static ssize_t
3959 null_show(struct mddev *mddev, char *page)
3960 {
3961 	return -EINVAL;
3962 }
3963 
3964 static ssize_t
3965 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3966 {
3967 	/* buf must be %d:%d\n? giving major and minor numbers */
3968 	/* The new device is added to the array.
3969 	 * If the array has a persistent superblock, we read the
3970 	 * superblock to initialise info and check validity.
3971 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3972 	 * which mainly checks size.
3973 	 */
3974 	char *e;
3975 	int major = simple_strtoul(buf, &e, 10);
3976 	int minor;
3977 	dev_t dev;
3978 	struct md_rdev *rdev;
3979 	int err;
3980 
3981 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3982 		return -EINVAL;
3983 	minor = simple_strtoul(e+1, &e, 10);
3984 	if (*e && *e != '\n')
3985 		return -EINVAL;
3986 	dev = MKDEV(major, minor);
3987 	if (major != MAJOR(dev) ||
3988 	    minor != MINOR(dev))
3989 		return -EOVERFLOW;
3990 
3991 
3992 	if (mddev->persistent) {
3993 		rdev = md_import_device(dev, mddev->major_version,
3994 					mddev->minor_version);
3995 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3996 			struct md_rdev *rdev0
3997 				= list_entry(mddev->disks.next,
3998 					     struct md_rdev, same_set);
3999 			err = super_types[mddev->major_version]
4000 				.load_super(rdev, rdev0, mddev->minor_version);
4001 			if (err < 0)
4002 				goto out;
4003 		}
4004 	} else if (mddev->external)
4005 		rdev = md_import_device(dev, -2, -1);
4006 	else
4007 		rdev = md_import_device(dev, -1, -1);
4008 
4009 	if (IS_ERR(rdev))
4010 		return PTR_ERR(rdev);
4011 	err = bind_rdev_to_array(rdev, mddev);
4012  out:
4013 	if (err)
4014 		export_rdev(rdev);
4015 	return err ? err : len;
4016 }
4017 
4018 static struct md_sysfs_entry md_new_device =
4019 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4020 
4021 static ssize_t
4022 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4023 {
4024 	char *end;
4025 	unsigned long chunk, end_chunk;
4026 
4027 	if (!mddev->bitmap)
4028 		goto out;
4029 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4030 	while (*buf) {
4031 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4032 		if (buf == end) break;
4033 		if (*end == '-') { /* range */
4034 			buf = end + 1;
4035 			end_chunk = simple_strtoul(buf, &end, 0);
4036 			if (buf == end) break;
4037 		}
4038 		if (*end && !isspace(*end)) break;
4039 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4040 		buf = skip_spaces(end);
4041 	}
4042 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4043 out:
4044 	return len;
4045 }
4046 
4047 static struct md_sysfs_entry md_bitmap =
4048 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4049 
4050 static ssize_t
4051 size_show(struct mddev *mddev, char *page)
4052 {
4053 	return sprintf(page, "%llu\n",
4054 		(unsigned long long)mddev->dev_sectors / 2);
4055 }
4056 
4057 static int update_size(struct mddev *mddev, sector_t num_sectors);
4058 
4059 static ssize_t
4060 size_store(struct mddev *mddev, const char *buf, size_t len)
4061 {
4062 	/* If array is inactive, we can reduce the component size, but
4063 	 * not increase it (except from 0).
4064 	 * If array is active, we can try an on-line resize
4065 	 */
4066 	sector_t sectors;
4067 	int err = strict_blocks_to_sectors(buf, &sectors);
4068 
4069 	if (err < 0)
4070 		return err;
4071 	if (mddev->pers) {
4072 		err = update_size(mddev, sectors);
4073 		md_update_sb(mddev, 1);
4074 	} else {
4075 		if (mddev->dev_sectors == 0 ||
4076 		    mddev->dev_sectors > sectors)
4077 			mddev->dev_sectors = sectors;
4078 		else
4079 			err = -ENOSPC;
4080 	}
4081 	return err ? err : len;
4082 }
4083 
4084 static struct md_sysfs_entry md_size =
4085 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4086 
4087 
4088 /* Metadata version.
4089  * This is one of
4090  *   'none' for arrays with no metadata (good luck...)
4091  *   'external' for arrays with externally managed metadata,
4092  * or N.M for internally known formats
4093  */
4094 static ssize_t
4095 metadata_show(struct mddev *mddev, char *page)
4096 {
4097 	if (mddev->persistent)
4098 		return sprintf(page, "%d.%d\n",
4099 			       mddev->major_version, mddev->minor_version);
4100 	else if (mddev->external)
4101 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4102 	else
4103 		return sprintf(page, "none\n");
4104 }
4105 
4106 static ssize_t
4107 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4108 {
4109 	int major, minor;
4110 	char *e;
4111 	/* Changing the details of 'external' metadata is
4112 	 * always permitted.  Otherwise there must be
4113 	 * no devices attached to the array.
4114 	 */
4115 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4116 		;
4117 	else if (!list_empty(&mddev->disks))
4118 		return -EBUSY;
4119 
4120 	if (cmd_match(buf, "none")) {
4121 		mddev->persistent = 0;
4122 		mddev->external = 0;
4123 		mddev->major_version = 0;
4124 		mddev->minor_version = 90;
4125 		return len;
4126 	}
4127 	if (strncmp(buf, "external:", 9) == 0) {
4128 		size_t namelen = len-9;
4129 		if (namelen >= sizeof(mddev->metadata_type))
4130 			namelen = sizeof(mddev->metadata_type)-1;
4131 		strncpy(mddev->metadata_type, buf+9, namelen);
4132 		mddev->metadata_type[namelen] = 0;
4133 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4134 			mddev->metadata_type[--namelen] = 0;
4135 		mddev->persistent = 0;
4136 		mddev->external = 1;
4137 		mddev->major_version = 0;
4138 		mddev->minor_version = 90;
4139 		return len;
4140 	}
4141 	major = simple_strtoul(buf, &e, 10);
4142 	if (e==buf || *e != '.')
4143 		return -EINVAL;
4144 	buf = e+1;
4145 	minor = simple_strtoul(buf, &e, 10);
4146 	if (e==buf || (*e && *e != '\n') )
4147 		return -EINVAL;
4148 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4149 		return -ENOENT;
4150 	mddev->major_version = major;
4151 	mddev->minor_version = minor;
4152 	mddev->persistent = 1;
4153 	mddev->external = 0;
4154 	return len;
4155 }
4156 
4157 static struct md_sysfs_entry md_metadata =
4158 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4159 
4160 static ssize_t
4161 action_show(struct mddev *mddev, char *page)
4162 {
4163 	char *type = "idle";
4164 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4165 		type = "frozen";
4166 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4167 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4168 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4169 			type = "reshape";
4170 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4171 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4172 				type = "resync";
4173 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4174 				type = "check";
4175 			else
4176 				type = "repair";
4177 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4178 			type = "recover";
4179 	}
4180 	return sprintf(page, "%s\n", type);
4181 }
4182 
4183 static ssize_t
4184 action_store(struct mddev *mddev, const char *page, size_t len)
4185 {
4186 	if (!mddev->pers || !mddev->pers->sync_request)
4187 		return -EINVAL;
4188 
4189 	if (cmd_match(page, "frozen"))
4190 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4191 	else
4192 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4193 
4194 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4195 		if (mddev->sync_thread) {
4196 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4197 			md_reap_sync_thread(mddev);
4198 		}
4199 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4200 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4201 		return -EBUSY;
4202 	else if (cmd_match(page, "resync"))
4203 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4204 	else if (cmd_match(page, "recover")) {
4205 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4206 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4207 	} else if (cmd_match(page, "reshape")) {
4208 		int err;
4209 		if (mddev->pers->start_reshape == NULL)
4210 			return -EINVAL;
4211 		err = mddev->pers->start_reshape(mddev);
4212 		if (err)
4213 			return err;
4214 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4215 	} else {
4216 		if (cmd_match(page, "check"))
4217 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4218 		else if (!cmd_match(page, "repair"))
4219 			return -EINVAL;
4220 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4221 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4222 	}
4223 	if (mddev->ro == 2) {
4224 		/* A write to sync_action is enough to justify
4225 		 * canceling read-auto mode
4226 		 */
4227 		mddev->ro = 0;
4228 		md_wakeup_thread(mddev->sync_thread);
4229 	}
4230 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4231 	md_wakeup_thread(mddev->thread);
4232 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4233 	return len;
4234 }
4235 
4236 static struct md_sysfs_entry md_scan_mode =
4237 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4238 
4239 static ssize_t
4240 last_sync_action_show(struct mddev *mddev, char *page)
4241 {
4242 	return sprintf(page, "%s\n", mddev->last_sync_action);
4243 }
4244 
4245 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4246 
4247 static ssize_t
4248 mismatch_cnt_show(struct mddev *mddev, char *page)
4249 {
4250 	return sprintf(page, "%llu\n",
4251 		       (unsigned long long)
4252 		       atomic64_read(&mddev->resync_mismatches));
4253 }
4254 
4255 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4256 
4257 static ssize_t
4258 sync_min_show(struct mddev *mddev, char *page)
4259 {
4260 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4261 		       mddev->sync_speed_min ? "local": "system");
4262 }
4263 
4264 static ssize_t
4265 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4266 {
4267 	int min;
4268 	char *e;
4269 	if (strncmp(buf, "system", 6)==0) {
4270 		mddev->sync_speed_min = 0;
4271 		return len;
4272 	}
4273 	min = simple_strtoul(buf, &e, 10);
4274 	if (buf == e || (*e && *e != '\n') || min <= 0)
4275 		return -EINVAL;
4276 	mddev->sync_speed_min = min;
4277 	return len;
4278 }
4279 
4280 static struct md_sysfs_entry md_sync_min =
4281 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4282 
4283 static ssize_t
4284 sync_max_show(struct mddev *mddev, char *page)
4285 {
4286 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4287 		       mddev->sync_speed_max ? "local": "system");
4288 }
4289 
4290 static ssize_t
4291 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4292 {
4293 	int max;
4294 	char *e;
4295 	if (strncmp(buf, "system", 6)==0) {
4296 		mddev->sync_speed_max = 0;
4297 		return len;
4298 	}
4299 	max = simple_strtoul(buf, &e, 10);
4300 	if (buf == e || (*e && *e != '\n') || max <= 0)
4301 		return -EINVAL;
4302 	mddev->sync_speed_max = max;
4303 	return len;
4304 }
4305 
4306 static struct md_sysfs_entry md_sync_max =
4307 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4308 
4309 static ssize_t
4310 degraded_show(struct mddev *mddev, char *page)
4311 {
4312 	return sprintf(page, "%d\n", mddev->degraded);
4313 }
4314 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4315 
4316 static ssize_t
4317 sync_force_parallel_show(struct mddev *mddev, char *page)
4318 {
4319 	return sprintf(page, "%d\n", mddev->parallel_resync);
4320 }
4321 
4322 static ssize_t
4323 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4324 {
4325 	long n;
4326 
4327 	if (kstrtol(buf, 10, &n))
4328 		return -EINVAL;
4329 
4330 	if (n != 0 && n != 1)
4331 		return -EINVAL;
4332 
4333 	mddev->parallel_resync = n;
4334 
4335 	if (mddev->sync_thread)
4336 		wake_up(&resync_wait);
4337 
4338 	return len;
4339 }
4340 
4341 /* force parallel resync, even with shared block devices */
4342 static struct md_sysfs_entry md_sync_force_parallel =
4343 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4344        sync_force_parallel_show, sync_force_parallel_store);
4345 
4346 static ssize_t
4347 sync_speed_show(struct mddev *mddev, char *page)
4348 {
4349 	unsigned long resync, dt, db;
4350 	if (mddev->curr_resync == 0)
4351 		return sprintf(page, "none\n");
4352 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4353 	dt = (jiffies - mddev->resync_mark) / HZ;
4354 	if (!dt) dt++;
4355 	db = resync - mddev->resync_mark_cnt;
4356 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4357 }
4358 
4359 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4360 
4361 static ssize_t
4362 sync_completed_show(struct mddev *mddev, char *page)
4363 {
4364 	unsigned long long max_sectors, resync;
4365 
4366 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4367 		return sprintf(page, "none\n");
4368 
4369 	if (mddev->curr_resync == 1 ||
4370 	    mddev->curr_resync == 2)
4371 		return sprintf(page, "delayed\n");
4372 
4373 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4374 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4375 		max_sectors = mddev->resync_max_sectors;
4376 	else
4377 		max_sectors = mddev->dev_sectors;
4378 
4379 	resync = mddev->curr_resync_completed;
4380 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4381 }
4382 
4383 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4384 
4385 static ssize_t
4386 min_sync_show(struct mddev *mddev, char *page)
4387 {
4388 	return sprintf(page, "%llu\n",
4389 		       (unsigned long long)mddev->resync_min);
4390 }
4391 static ssize_t
4392 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4393 {
4394 	unsigned long long min;
4395 	if (kstrtoull(buf, 10, &min))
4396 		return -EINVAL;
4397 	if (min > mddev->resync_max)
4398 		return -EINVAL;
4399 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4400 		return -EBUSY;
4401 
4402 	/* Must be a multiple of chunk_size */
4403 	if (mddev->chunk_sectors) {
4404 		sector_t temp = min;
4405 		if (sector_div(temp, mddev->chunk_sectors))
4406 			return -EINVAL;
4407 	}
4408 	mddev->resync_min = min;
4409 
4410 	return len;
4411 }
4412 
4413 static struct md_sysfs_entry md_min_sync =
4414 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4415 
4416 static ssize_t
4417 max_sync_show(struct mddev *mddev, char *page)
4418 {
4419 	if (mddev->resync_max == MaxSector)
4420 		return sprintf(page, "max\n");
4421 	else
4422 		return sprintf(page, "%llu\n",
4423 			       (unsigned long long)mddev->resync_max);
4424 }
4425 static ssize_t
4426 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4427 {
4428 	if (strncmp(buf, "max", 3) == 0)
4429 		mddev->resync_max = MaxSector;
4430 	else {
4431 		unsigned long long max;
4432 		if (kstrtoull(buf, 10, &max))
4433 			return -EINVAL;
4434 		if (max < mddev->resync_min)
4435 			return -EINVAL;
4436 		if (max < mddev->resync_max &&
4437 		    mddev->ro == 0 &&
4438 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4439 			return -EBUSY;
4440 
4441 		/* Must be a multiple of chunk_size */
4442 		if (mddev->chunk_sectors) {
4443 			sector_t temp = max;
4444 			if (sector_div(temp, mddev->chunk_sectors))
4445 				return -EINVAL;
4446 		}
4447 		mddev->resync_max = max;
4448 	}
4449 	wake_up(&mddev->recovery_wait);
4450 	return len;
4451 }
4452 
4453 static struct md_sysfs_entry md_max_sync =
4454 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4455 
4456 static ssize_t
4457 suspend_lo_show(struct mddev *mddev, char *page)
4458 {
4459 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4460 }
4461 
4462 static ssize_t
4463 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4464 {
4465 	char *e;
4466 	unsigned long long new = simple_strtoull(buf, &e, 10);
4467 	unsigned long long old = mddev->suspend_lo;
4468 
4469 	if (mddev->pers == NULL ||
4470 	    mddev->pers->quiesce == NULL)
4471 		return -EINVAL;
4472 	if (buf == e || (*e && *e != '\n'))
4473 		return -EINVAL;
4474 
4475 	mddev->suspend_lo = new;
4476 	if (new >= old)
4477 		/* Shrinking suspended region */
4478 		mddev->pers->quiesce(mddev, 2);
4479 	else {
4480 		/* Expanding suspended region - need to wait */
4481 		mddev->pers->quiesce(mddev, 1);
4482 		mddev->pers->quiesce(mddev, 0);
4483 	}
4484 	return len;
4485 }
4486 static struct md_sysfs_entry md_suspend_lo =
4487 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4488 
4489 
4490 static ssize_t
4491 suspend_hi_show(struct mddev *mddev, char *page)
4492 {
4493 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4494 }
4495 
4496 static ssize_t
4497 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4498 {
4499 	char *e;
4500 	unsigned long long new = simple_strtoull(buf, &e, 10);
4501 	unsigned long long old = mddev->suspend_hi;
4502 
4503 	if (mddev->pers == NULL ||
4504 	    mddev->pers->quiesce == NULL)
4505 		return -EINVAL;
4506 	if (buf == e || (*e && *e != '\n'))
4507 		return -EINVAL;
4508 
4509 	mddev->suspend_hi = new;
4510 	if (new <= old)
4511 		/* Shrinking suspended region */
4512 		mddev->pers->quiesce(mddev, 2);
4513 	else {
4514 		/* Expanding suspended region - need to wait */
4515 		mddev->pers->quiesce(mddev, 1);
4516 		mddev->pers->quiesce(mddev, 0);
4517 	}
4518 	return len;
4519 }
4520 static struct md_sysfs_entry md_suspend_hi =
4521 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4522 
4523 static ssize_t
4524 reshape_position_show(struct mddev *mddev, char *page)
4525 {
4526 	if (mddev->reshape_position != MaxSector)
4527 		return sprintf(page, "%llu\n",
4528 			       (unsigned long long)mddev->reshape_position);
4529 	strcpy(page, "none\n");
4530 	return 5;
4531 }
4532 
4533 static ssize_t
4534 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4535 {
4536 	struct md_rdev *rdev;
4537 	char *e;
4538 	unsigned long long new = simple_strtoull(buf, &e, 10);
4539 	if (mddev->pers)
4540 		return -EBUSY;
4541 	if (buf == e || (*e && *e != '\n'))
4542 		return -EINVAL;
4543 	mddev->reshape_position = new;
4544 	mddev->delta_disks = 0;
4545 	mddev->reshape_backwards = 0;
4546 	mddev->new_level = mddev->level;
4547 	mddev->new_layout = mddev->layout;
4548 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4549 	rdev_for_each(rdev, mddev)
4550 		rdev->new_data_offset = rdev->data_offset;
4551 	return len;
4552 }
4553 
4554 static struct md_sysfs_entry md_reshape_position =
4555 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4556        reshape_position_store);
4557 
4558 static ssize_t
4559 reshape_direction_show(struct mddev *mddev, char *page)
4560 {
4561 	return sprintf(page, "%s\n",
4562 		       mddev->reshape_backwards ? "backwards" : "forwards");
4563 }
4564 
4565 static ssize_t
4566 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4567 {
4568 	int backwards = 0;
4569 	if (cmd_match(buf, "forwards"))
4570 		backwards = 0;
4571 	else if (cmd_match(buf, "backwards"))
4572 		backwards = 1;
4573 	else
4574 		return -EINVAL;
4575 	if (mddev->reshape_backwards == backwards)
4576 		return len;
4577 
4578 	/* check if we are allowed to change */
4579 	if (mddev->delta_disks)
4580 		return -EBUSY;
4581 
4582 	if (mddev->persistent &&
4583 	    mddev->major_version == 0)
4584 		return -EINVAL;
4585 
4586 	mddev->reshape_backwards = backwards;
4587 	return len;
4588 }
4589 
4590 static struct md_sysfs_entry md_reshape_direction =
4591 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4592        reshape_direction_store);
4593 
4594 static ssize_t
4595 array_size_show(struct mddev *mddev, char *page)
4596 {
4597 	if (mddev->external_size)
4598 		return sprintf(page, "%llu\n",
4599 			       (unsigned long long)mddev->array_sectors/2);
4600 	else
4601 		return sprintf(page, "default\n");
4602 }
4603 
4604 static ssize_t
4605 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4606 {
4607 	sector_t sectors;
4608 
4609 	if (strncmp(buf, "default", 7) == 0) {
4610 		if (mddev->pers)
4611 			sectors = mddev->pers->size(mddev, 0, 0);
4612 		else
4613 			sectors = mddev->array_sectors;
4614 
4615 		mddev->external_size = 0;
4616 	} else {
4617 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4618 			return -EINVAL;
4619 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4620 			return -E2BIG;
4621 
4622 		mddev->external_size = 1;
4623 	}
4624 
4625 	mddev->array_sectors = sectors;
4626 	if (mddev->pers) {
4627 		set_capacity(mddev->gendisk, mddev->array_sectors);
4628 		revalidate_disk(mddev->gendisk);
4629 	}
4630 	return len;
4631 }
4632 
4633 static struct md_sysfs_entry md_array_size =
4634 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4635        array_size_store);
4636 
4637 static struct attribute *md_default_attrs[] = {
4638 	&md_level.attr,
4639 	&md_layout.attr,
4640 	&md_raid_disks.attr,
4641 	&md_chunk_size.attr,
4642 	&md_size.attr,
4643 	&md_resync_start.attr,
4644 	&md_metadata.attr,
4645 	&md_new_device.attr,
4646 	&md_safe_delay.attr,
4647 	&md_array_state.attr,
4648 	&md_reshape_position.attr,
4649 	&md_reshape_direction.attr,
4650 	&md_array_size.attr,
4651 	&max_corr_read_errors.attr,
4652 	NULL,
4653 };
4654 
4655 static struct attribute *md_redundancy_attrs[] = {
4656 	&md_scan_mode.attr,
4657 	&md_last_scan_mode.attr,
4658 	&md_mismatches.attr,
4659 	&md_sync_min.attr,
4660 	&md_sync_max.attr,
4661 	&md_sync_speed.attr,
4662 	&md_sync_force_parallel.attr,
4663 	&md_sync_completed.attr,
4664 	&md_min_sync.attr,
4665 	&md_max_sync.attr,
4666 	&md_suspend_lo.attr,
4667 	&md_suspend_hi.attr,
4668 	&md_bitmap.attr,
4669 	&md_degraded.attr,
4670 	NULL,
4671 };
4672 static struct attribute_group md_redundancy_group = {
4673 	.name = NULL,
4674 	.attrs = md_redundancy_attrs,
4675 };
4676 
4677 
4678 static ssize_t
4679 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4680 {
4681 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4682 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4683 	ssize_t rv;
4684 
4685 	if (!entry->show)
4686 		return -EIO;
4687 	spin_lock(&all_mddevs_lock);
4688 	if (list_empty(&mddev->all_mddevs)) {
4689 		spin_unlock(&all_mddevs_lock);
4690 		return -EBUSY;
4691 	}
4692 	mddev_get(mddev);
4693 	spin_unlock(&all_mddevs_lock);
4694 
4695 	rv = mddev_lock(mddev);
4696 	if (!rv) {
4697 		rv = entry->show(mddev, page);
4698 		mddev_unlock(mddev);
4699 	}
4700 	mddev_put(mddev);
4701 	return rv;
4702 }
4703 
4704 static ssize_t
4705 md_attr_store(struct kobject *kobj, struct attribute *attr,
4706 	      const char *page, size_t length)
4707 {
4708 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4709 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4710 	ssize_t rv;
4711 
4712 	if (!entry->store)
4713 		return -EIO;
4714 	if (!capable(CAP_SYS_ADMIN))
4715 		return -EACCES;
4716 	spin_lock(&all_mddevs_lock);
4717 	if (list_empty(&mddev->all_mddevs)) {
4718 		spin_unlock(&all_mddevs_lock);
4719 		return -EBUSY;
4720 	}
4721 	mddev_get(mddev);
4722 	spin_unlock(&all_mddevs_lock);
4723 	if (entry->store == new_dev_store)
4724 		flush_workqueue(md_misc_wq);
4725 	rv = mddev_lock(mddev);
4726 	if (!rv) {
4727 		rv = entry->store(mddev, page, length);
4728 		mddev_unlock(mddev);
4729 	}
4730 	mddev_put(mddev);
4731 	return rv;
4732 }
4733 
4734 static void md_free(struct kobject *ko)
4735 {
4736 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4737 
4738 	if (mddev->sysfs_state)
4739 		sysfs_put(mddev->sysfs_state);
4740 
4741 	if (mddev->gendisk) {
4742 		del_gendisk(mddev->gendisk);
4743 		put_disk(mddev->gendisk);
4744 	}
4745 	if (mddev->queue)
4746 		blk_cleanup_queue(mddev->queue);
4747 
4748 	kfree(mddev);
4749 }
4750 
4751 static const struct sysfs_ops md_sysfs_ops = {
4752 	.show	= md_attr_show,
4753 	.store	= md_attr_store,
4754 };
4755 static struct kobj_type md_ktype = {
4756 	.release	= md_free,
4757 	.sysfs_ops	= &md_sysfs_ops,
4758 	.default_attrs	= md_default_attrs,
4759 };
4760 
4761 int mdp_major = 0;
4762 
4763 static void mddev_delayed_delete(struct work_struct *ws)
4764 {
4765 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4766 
4767 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4768 	kobject_del(&mddev->kobj);
4769 	kobject_put(&mddev->kobj);
4770 }
4771 
4772 static int md_alloc(dev_t dev, char *name)
4773 {
4774 	static DEFINE_MUTEX(disks_mutex);
4775 	struct mddev *mddev = mddev_find(dev);
4776 	struct gendisk *disk;
4777 	int partitioned;
4778 	int shift;
4779 	int unit;
4780 	int error;
4781 
4782 	if (!mddev)
4783 		return -ENODEV;
4784 
4785 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4786 	shift = partitioned ? MdpMinorShift : 0;
4787 	unit = MINOR(mddev->unit) >> shift;
4788 
4789 	/* wait for any previous instance of this device to be
4790 	 * completely removed (mddev_delayed_delete).
4791 	 */
4792 	flush_workqueue(md_misc_wq);
4793 
4794 	mutex_lock(&disks_mutex);
4795 	error = -EEXIST;
4796 	if (mddev->gendisk)
4797 		goto abort;
4798 
4799 	if (name) {
4800 		/* Need to ensure that 'name' is not a duplicate.
4801 		 */
4802 		struct mddev *mddev2;
4803 		spin_lock(&all_mddevs_lock);
4804 
4805 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4806 			if (mddev2->gendisk &&
4807 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4808 				spin_unlock(&all_mddevs_lock);
4809 				goto abort;
4810 			}
4811 		spin_unlock(&all_mddevs_lock);
4812 	}
4813 
4814 	error = -ENOMEM;
4815 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4816 	if (!mddev->queue)
4817 		goto abort;
4818 	mddev->queue->queuedata = mddev;
4819 
4820 	blk_queue_make_request(mddev->queue, md_make_request);
4821 	blk_set_stacking_limits(&mddev->queue->limits);
4822 
4823 	disk = alloc_disk(1 << shift);
4824 	if (!disk) {
4825 		blk_cleanup_queue(mddev->queue);
4826 		mddev->queue = NULL;
4827 		goto abort;
4828 	}
4829 	disk->major = MAJOR(mddev->unit);
4830 	disk->first_minor = unit << shift;
4831 	if (name)
4832 		strcpy(disk->disk_name, name);
4833 	else if (partitioned)
4834 		sprintf(disk->disk_name, "md_d%d", unit);
4835 	else
4836 		sprintf(disk->disk_name, "md%d", unit);
4837 	disk->fops = &md_fops;
4838 	disk->private_data = mddev;
4839 	disk->queue = mddev->queue;
4840 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4841 	/* Allow extended partitions.  This makes the
4842 	 * 'mdp' device redundant, but we can't really
4843 	 * remove it now.
4844 	 */
4845 	disk->flags |= GENHD_FL_EXT_DEVT;
4846 	mddev->gendisk = disk;
4847 	/* As soon as we call add_disk(), another thread could get
4848 	 * through to md_open, so make sure it doesn't get too far
4849 	 */
4850 	mutex_lock(&mddev->open_mutex);
4851 	add_disk(disk);
4852 
4853 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4854 				     &disk_to_dev(disk)->kobj, "%s", "md");
4855 	if (error) {
4856 		/* This isn't possible, but as kobject_init_and_add is marked
4857 		 * __must_check, we must do something with the result
4858 		 */
4859 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4860 		       disk->disk_name);
4861 		error = 0;
4862 	}
4863 	if (mddev->kobj.sd &&
4864 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4865 		printk(KERN_DEBUG "pointless warning\n");
4866 	mutex_unlock(&mddev->open_mutex);
4867  abort:
4868 	mutex_unlock(&disks_mutex);
4869 	if (!error && mddev->kobj.sd) {
4870 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4871 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4872 	}
4873 	mddev_put(mddev);
4874 	return error;
4875 }
4876 
4877 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4878 {
4879 	md_alloc(dev, NULL);
4880 	return NULL;
4881 }
4882 
4883 static int add_named_array(const char *val, struct kernel_param *kp)
4884 {
4885 	/* val must be "md_*" where * is not all digits.
4886 	 * We allocate an array with a large free minor number, and
4887 	 * set the name to val.  val must not already be an active name.
4888 	 */
4889 	int len = strlen(val);
4890 	char buf[DISK_NAME_LEN];
4891 
4892 	while (len && val[len-1] == '\n')
4893 		len--;
4894 	if (len >= DISK_NAME_LEN)
4895 		return -E2BIG;
4896 	strlcpy(buf, val, len+1);
4897 	if (strncmp(buf, "md_", 3) != 0)
4898 		return -EINVAL;
4899 	return md_alloc(0, buf);
4900 }
4901 
4902 static void md_safemode_timeout(unsigned long data)
4903 {
4904 	struct mddev *mddev = (struct mddev *) data;
4905 
4906 	if (!atomic_read(&mddev->writes_pending)) {
4907 		mddev->safemode = 1;
4908 		if (mddev->external)
4909 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4910 	}
4911 	md_wakeup_thread(mddev->thread);
4912 }
4913 
4914 static int start_dirty_degraded;
4915 
4916 int md_run(struct mddev *mddev)
4917 {
4918 	int err;
4919 	struct md_rdev *rdev;
4920 	struct md_personality *pers;
4921 
4922 	if (list_empty(&mddev->disks))
4923 		/* cannot run an array with no devices.. */
4924 		return -EINVAL;
4925 
4926 	if (mddev->pers)
4927 		return -EBUSY;
4928 	/* Cannot run until previous stop completes properly */
4929 	if (mddev->sysfs_active)
4930 		return -EBUSY;
4931 
4932 	/*
4933 	 * Analyze all RAID superblock(s)
4934 	 */
4935 	if (!mddev->raid_disks) {
4936 		if (!mddev->persistent)
4937 			return -EINVAL;
4938 		analyze_sbs(mddev);
4939 	}
4940 
4941 	if (mddev->level != LEVEL_NONE)
4942 		request_module("md-level-%d", mddev->level);
4943 	else if (mddev->clevel[0])
4944 		request_module("md-%s", mddev->clevel);
4945 
4946 	/*
4947 	 * Drop all container device buffers, from now on
4948 	 * the only valid external interface is through the md
4949 	 * device.
4950 	 */
4951 	rdev_for_each(rdev, mddev) {
4952 		if (test_bit(Faulty, &rdev->flags))
4953 			continue;
4954 		sync_blockdev(rdev->bdev);
4955 		invalidate_bdev(rdev->bdev);
4956 
4957 		/* perform some consistency tests on the device.
4958 		 * We don't want the data to overlap the metadata,
4959 		 * Internal Bitmap issues have been handled elsewhere.
4960 		 */
4961 		if (rdev->meta_bdev) {
4962 			/* Nothing to check */;
4963 		} else if (rdev->data_offset < rdev->sb_start) {
4964 			if (mddev->dev_sectors &&
4965 			    rdev->data_offset + mddev->dev_sectors
4966 			    > rdev->sb_start) {
4967 				printk("md: %s: data overlaps metadata\n",
4968 				       mdname(mddev));
4969 				return -EINVAL;
4970 			}
4971 		} else {
4972 			if (rdev->sb_start + rdev->sb_size/512
4973 			    > rdev->data_offset) {
4974 				printk("md: %s: metadata overlaps data\n",
4975 				       mdname(mddev));
4976 				return -EINVAL;
4977 			}
4978 		}
4979 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4980 	}
4981 
4982 	if (mddev->bio_set == NULL)
4983 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4984 
4985 	spin_lock(&pers_lock);
4986 	pers = find_pers(mddev->level, mddev->clevel);
4987 	if (!pers || !try_module_get(pers->owner)) {
4988 		spin_unlock(&pers_lock);
4989 		if (mddev->level != LEVEL_NONE)
4990 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4991 			       mddev->level);
4992 		else
4993 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4994 			       mddev->clevel);
4995 		return -EINVAL;
4996 	}
4997 	mddev->pers = pers;
4998 	spin_unlock(&pers_lock);
4999 	if (mddev->level != pers->level) {
5000 		mddev->level = pers->level;
5001 		mddev->new_level = pers->level;
5002 	}
5003 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5004 
5005 	if (mddev->reshape_position != MaxSector &&
5006 	    pers->start_reshape == NULL) {
5007 		/* This personality cannot handle reshaping... */
5008 		mddev->pers = NULL;
5009 		module_put(pers->owner);
5010 		return -EINVAL;
5011 	}
5012 
5013 	if (pers->sync_request) {
5014 		/* Warn if this is a potentially silly
5015 		 * configuration.
5016 		 */
5017 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5018 		struct md_rdev *rdev2;
5019 		int warned = 0;
5020 
5021 		rdev_for_each(rdev, mddev)
5022 			rdev_for_each(rdev2, mddev) {
5023 				if (rdev < rdev2 &&
5024 				    rdev->bdev->bd_contains ==
5025 				    rdev2->bdev->bd_contains) {
5026 					printk(KERN_WARNING
5027 					       "%s: WARNING: %s appears to be"
5028 					       " on the same physical disk as"
5029 					       " %s.\n",
5030 					       mdname(mddev),
5031 					       bdevname(rdev->bdev,b),
5032 					       bdevname(rdev2->bdev,b2));
5033 					warned = 1;
5034 				}
5035 			}
5036 
5037 		if (warned)
5038 			printk(KERN_WARNING
5039 			       "True protection against single-disk"
5040 			       " failure might be compromised.\n");
5041 	}
5042 
5043 	mddev->recovery = 0;
5044 	/* may be over-ridden by personality */
5045 	mddev->resync_max_sectors = mddev->dev_sectors;
5046 
5047 	mddev->ok_start_degraded = start_dirty_degraded;
5048 
5049 	if (start_readonly && mddev->ro == 0)
5050 		mddev->ro = 2; /* read-only, but switch on first write */
5051 
5052 	err = mddev->pers->run(mddev);
5053 	if (err)
5054 		printk(KERN_ERR "md: pers->run() failed ...\n");
5055 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5056 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5057 			  " but 'external_size' not in effect?\n", __func__);
5058 		printk(KERN_ERR
5059 		       "md: invalid array_size %llu > default size %llu\n",
5060 		       (unsigned long long)mddev->array_sectors / 2,
5061 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5062 		err = -EINVAL;
5063 		mddev->pers->stop(mddev);
5064 	}
5065 	if (err == 0 && mddev->pers->sync_request &&
5066 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5067 		err = bitmap_create(mddev);
5068 		if (err) {
5069 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5070 			       mdname(mddev), err);
5071 			mddev->pers->stop(mddev);
5072 		}
5073 	}
5074 	if (err) {
5075 		module_put(mddev->pers->owner);
5076 		mddev->pers = NULL;
5077 		bitmap_destroy(mddev);
5078 		return err;
5079 	}
5080 	if (mddev->pers->sync_request) {
5081 		if (mddev->kobj.sd &&
5082 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5083 			printk(KERN_WARNING
5084 			       "md: cannot register extra attributes for %s\n",
5085 			       mdname(mddev));
5086 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5087 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5088 		mddev->ro = 0;
5089 
5090  	atomic_set(&mddev->writes_pending,0);
5091 	atomic_set(&mddev->max_corr_read_errors,
5092 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5093 	mddev->safemode = 0;
5094 	mddev->safemode_timer.function = md_safemode_timeout;
5095 	mddev->safemode_timer.data = (unsigned long) mddev;
5096 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5097 	mddev->in_sync = 1;
5098 	smp_wmb();
5099 	mddev->ready = 1;
5100 	rdev_for_each(rdev, mddev)
5101 		if (rdev->raid_disk >= 0)
5102 			if (sysfs_link_rdev(mddev, rdev))
5103 				/* failure here is OK */;
5104 
5105 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5106 
5107 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5108 		md_update_sb(mddev, 0);
5109 
5110 	md_new_event(mddev);
5111 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5112 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5113 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5114 	return 0;
5115 }
5116 EXPORT_SYMBOL_GPL(md_run);
5117 
5118 static int do_md_run(struct mddev *mddev)
5119 {
5120 	int err;
5121 
5122 	err = md_run(mddev);
5123 	if (err)
5124 		goto out;
5125 	err = bitmap_load(mddev);
5126 	if (err) {
5127 		bitmap_destroy(mddev);
5128 		goto out;
5129 	}
5130 
5131 	md_wakeup_thread(mddev->thread);
5132 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5133 
5134 	set_capacity(mddev->gendisk, mddev->array_sectors);
5135 	revalidate_disk(mddev->gendisk);
5136 	mddev->changed = 1;
5137 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5138 out:
5139 	return err;
5140 }
5141 
5142 static int restart_array(struct mddev *mddev)
5143 {
5144 	struct gendisk *disk = mddev->gendisk;
5145 
5146 	/* Complain if it has no devices */
5147 	if (list_empty(&mddev->disks))
5148 		return -ENXIO;
5149 	if (!mddev->pers)
5150 		return -EINVAL;
5151 	if (!mddev->ro)
5152 		return -EBUSY;
5153 	mddev->safemode = 0;
5154 	mddev->ro = 0;
5155 	set_disk_ro(disk, 0);
5156 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5157 		mdname(mddev));
5158 	/* Kick recovery or resync if necessary */
5159 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5160 	md_wakeup_thread(mddev->thread);
5161 	md_wakeup_thread(mddev->sync_thread);
5162 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5163 	return 0;
5164 }
5165 
5166 /* similar to deny_write_access, but accounts for our holding a reference
5167  * to the file ourselves */
5168 static int deny_bitmap_write_access(struct file * file)
5169 {
5170 	struct inode *inode = file->f_mapping->host;
5171 
5172 	spin_lock(&inode->i_lock);
5173 	if (atomic_read(&inode->i_writecount) > 1) {
5174 		spin_unlock(&inode->i_lock);
5175 		return -ETXTBSY;
5176 	}
5177 	atomic_set(&inode->i_writecount, -1);
5178 	spin_unlock(&inode->i_lock);
5179 
5180 	return 0;
5181 }
5182 
5183 void restore_bitmap_write_access(struct file *file)
5184 {
5185 	struct inode *inode = file->f_mapping->host;
5186 
5187 	spin_lock(&inode->i_lock);
5188 	atomic_set(&inode->i_writecount, 1);
5189 	spin_unlock(&inode->i_lock);
5190 }
5191 
5192 static void md_clean(struct mddev *mddev)
5193 {
5194 	mddev->array_sectors = 0;
5195 	mddev->external_size = 0;
5196 	mddev->dev_sectors = 0;
5197 	mddev->raid_disks = 0;
5198 	mddev->recovery_cp = 0;
5199 	mddev->resync_min = 0;
5200 	mddev->resync_max = MaxSector;
5201 	mddev->reshape_position = MaxSector;
5202 	mddev->external = 0;
5203 	mddev->persistent = 0;
5204 	mddev->level = LEVEL_NONE;
5205 	mddev->clevel[0] = 0;
5206 	mddev->flags = 0;
5207 	mddev->ro = 0;
5208 	mddev->metadata_type[0] = 0;
5209 	mddev->chunk_sectors = 0;
5210 	mddev->ctime = mddev->utime = 0;
5211 	mddev->layout = 0;
5212 	mddev->max_disks = 0;
5213 	mddev->events = 0;
5214 	mddev->can_decrease_events = 0;
5215 	mddev->delta_disks = 0;
5216 	mddev->reshape_backwards = 0;
5217 	mddev->new_level = LEVEL_NONE;
5218 	mddev->new_layout = 0;
5219 	mddev->new_chunk_sectors = 0;
5220 	mddev->curr_resync = 0;
5221 	atomic64_set(&mddev->resync_mismatches, 0);
5222 	mddev->suspend_lo = mddev->suspend_hi = 0;
5223 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5224 	mddev->recovery = 0;
5225 	mddev->in_sync = 0;
5226 	mddev->changed = 0;
5227 	mddev->degraded = 0;
5228 	mddev->safemode = 0;
5229 	mddev->merge_check_needed = 0;
5230 	mddev->bitmap_info.offset = 0;
5231 	mddev->bitmap_info.default_offset = 0;
5232 	mddev->bitmap_info.default_space = 0;
5233 	mddev->bitmap_info.chunksize = 0;
5234 	mddev->bitmap_info.daemon_sleep = 0;
5235 	mddev->bitmap_info.max_write_behind = 0;
5236 }
5237 
5238 static void __md_stop_writes(struct mddev *mddev)
5239 {
5240 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5241 	if (mddev->sync_thread) {
5242 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5243 		md_reap_sync_thread(mddev);
5244 	}
5245 
5246 	del_timer_sync(&mddev->safemode_timer);
5247 
5248 	bitmap_flush(mddev);
5249 	md_super_wait(mddev);
5250 
5251 	if (mddev->ro == 0 &&
5252 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5253 		/* mark array as shutdown cleanly */
5254 		mddev->in_sync = 1;
5255 		md_update_sb(mddev, 1);
5256 	}
5257 }
5258 
5259 void md_stop_writes(struct mddev *mddev)
5260 {
5261 	mddev_lock(mddev);
5262 	__md_stop_writes(mddev);
5263 	mddev_unlock(mddev);
5264 }
5265 EXPORT_SYMBOL_GPL(md_stop_writes);
5266 
5267 static void __md_stop(struct mddev *mddev)
5268 {
5269 	mddev->ready = 0;
5270 	mddev->pers->stop(mddev);
5271 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5272 		mddev->to_remove = &md_redundancy_group;
5273 	module_put(mddev->pers->owner);
5274 	mddev->pers = NULL;
5275 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5276 }
5277 
5278 void md_stop(struct mddev *mddev)
5279 {
5280 	/* stop the array and free an attached data structures.
5281 	 * This is called from dm-raid
5282 	 */
5283 	__md_stop(mddev);
5284 	bitmap_destroy(mddev);
5285 	if (mddev->bio_set)
5286 		bioset_free(mddev->bio_set);
5287 }
5288 
5289 EXPORT_SYMBOL_GPL(md_stop);
5290 
5291 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5292 {
5293 	int err = 0;
5294 	mutex_lock(&mddev->open_mutex);
5295 	if (atomic_read(&mddev->openers) > !!bdev) {
5296 		printk("md: %s still in use.\n",mdname(mddev));
5297 		err = -EBUSY;
5298 		goto out;
5299 	}
5300 	if (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags)) {
5301 		/* Someone opened the device since we flushed it
5302 		 * so page cache could be dirty and it is too late
5303 		 * to flush.  So abort
5304 		 */
5305 		mutex_unlock(&mddev->open_mutex);
5306 		return -EBUSY;
5307 	}
5308 	if (mddev->pers) {
5309 		__md_stop_writes(mddev);
5310 
5311 		err  = -ENXIO;
5312 		if (mddev->ro==1)
5313 			goto out;
5314 		mddev->ro = 1;
5315 		set_disk_ro(mddev->gendisk, 1);
5316 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5317 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5318 		err = 0;
5319 	}
5320 out:
5321 	mutex_unlock(&mddev->open_mutex);
5322 	return err;
5323 }
5324 
5325 /* mode:
5326  *   0 - completely stop and dis-assemble array
5327  *   2 - stop but do not disassemble array
5328  */
5329 static int do_md_stop(struct mddev * mddev, int mode,
5330 		      struct block_device *bdev)
5331 {
5332 	struct gendisk *disk = mddev->gendisk;
5333 	struct md_rdev *rdev;
5334 
5335 	mutex_lock(&mddev->open_mutex);
5336 	if (atomic_read(&mddev->openers) > !!bdev ||
5337 	    mddev->sysfs_active) {
5338 		printk("md: %s still in use.\n",mdname(mddev));
5339 		mutex_unlock(&mddev->open_mutex);
5340 		return -EBUSY;
5341 	}
5342 	if (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags)) {
5343 		/* Someone opened the device since we flushed it
5344 		 * so page cache could be dirty and it is too late
5345 		 * to flush.  So abort
5346 		 */
5347 		mutex_unlock(&mddev->open_mutex);
5348 		return -EBUSY;
5349 	}
5350 	if (mddev->pers) {
5351 		if (mddev->ro)
5352 			set_disk_ro(disk, 0);
5353 
5354 		__md_stop_writes(mddev);
5355 		__md_stop(mddev);
5356 		mddev->queue->merge_bvec_fn = NULL;
5357 		mddev->queue->backing_dev_info.congested_fn = NULL;
5358 
5359 		/* tell userspace to handle 'inactive' */
5360 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5361 
5362 		rdev_for_each(rdev, mddev)
5363 			if (rdev->raid_disk >= 0)
5364 				sysfs_unlink_rdev(mddev, rdev);
5365 
5366 		set_capacity(disk, 0);
5367 		mutex_unlock(&mddev->open_mutex);
5368 		mddev->changed = 1;
5369 		revalidate_disk(disk);
5370 
5371 		if (mddev->ro)
5372 			mddev->ro = 0;
5373 	} else
5374 		mutex_unlock(&mddev->open_mutex);
5375 	/*
5376 	 * Free resources if final stop
5377 	 */
5378 	if (mode == 0) {
5379 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5380 
5381 		bitmap_destroy(mddev);
5382 		if (mddev->bitmap_info.file) {
5383 			restore_bitmap_write_access(mddev->bitmap_info.file);
5384 			fput(mddev->bitmap_info.file);
5385 			mddev->bitmap_info.file = NULL;
5386 		}
5387 		mddev->bitmap_info.offset = 0;
5388 
5389 		export_array(mddev);
5390 
5391 		md_clean(mddev);
5392 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5393 		if (mddev->hold_active == UNTIL_STOP)
5394 			mddev->hold_active = 0;
5395 	}
5396 	blk_integrity_unregister(disk);
5397 	md_new_event(mddev);
5398 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5399 	return 0;
5400 }
5401 
5402 #ifndef MODULE
5403 static void autorun_array(struct mddev *mddev)
5404 {
5405 	struct md_rdev *rdev;
5406 	int err;
5407 
5408 	if (list_empty(&mddev->disks))
5409 		return;
5410 
5411 	printk(KERN_INFO "md: running: ");
5412 
5413 	rdev_for_each(rdev, mddev) {
5414 		char b[BDEVNAME_SIZE];
5415 		printk("<%s>", bdevname(rdev->bdev,b));
5416 	}
5417 	printk("\n");
5418 
5419 	err = do_md_run(mddev);
5420 	if (err) {
5421 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5422 		do_md_stop(mddev, 0, NULL);
5423 	}
5424 }
5425 
5426 /*
5427  * lets try to run arrays based on all disks that have arrived
5428  * until now. (those are in pending_raid_disks)
5429  *
5430  * the method: pick the first pending disk, collect all disks with
5431  * the same UUID, remove all from the pending list and put them into
5432  * the 'same_array' list. Then order this list based on superblock
5433  * update time (freshest comes first), kick out 'old' disks and
5434  * compare superblocks. If everything's fine then run it.
5435  *
5436  * If "unit" is allocated, then bump its reference count
5437  */
5438 static void autorun_devices(int part)
5439 {
5440 	struct md_rdev *rdev0, *rdev, *tmp;
5441 	struct mddev *mddev;
5442 	char b[BDEVNAME_SIZE];
5443 
5444 	printk(KERN_INFO "md: autorun ...\n");
5445 	while (!list_empty(&pending_raid_disks)) {
5446 		int unit;
5447 		dev_t dev;
5448 		LIST_HEAD(candidates);
5449 		rdev0 = list_entry(pending_raid_disks.next,
5450 					 struct md_rdev, same_set);
5451 
5452 		printk(KERN_INFO "md: considering %s ...\n",
5453 			bdevname(rdev0->bdev,b));
5454 		INIT_LIST_HEAD(&candidates);
5455 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5456 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5457 				printk(KERN_INFO "md:  adding %s ...\n",
5458 					bdevname(rdev->bdev,b));
5459 				list_move(&rdev->same_set, &candidates);
5460 			}
5461 		/*
5462 		 * now we have a set of devices, with all of them having
5463 		 * mostly sane superblocks. It's time to allocate the
5464 		 * mddev.
5465 		 */
5466 		if (part) {
5467 			dev = MKDEV(mdp_major,
5468 				    rdev0->preferred_minor << MdpMinorShift);
5469 			unit = MINOR(dev) >> MdpMinorShift;
5470 		} else {
5471 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5472 			unit = MINOR(dev);
5473 		}
5474 		if (rdev0->preferred_minor != unit) {
5475 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5476 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5477 			break;
5478 		}
5479 
5480 		md_probe(dev, NULL, NULL);
5481 		mddev = mddev_find(dev);
5482 		if (!mddev || !mddev->gendisk) {
5483 			if (mddev)
5484 				mddev_put(mddev);
5485 			printk(KERN_ERR
5486 				"md: cannot allocate memory for md drive.\n");
5487 			break;
5488 		}
5489 		if (mddev_lock(mddev))
5490 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5491 			       mdname(mddev));
5492 		else if (mddev->raid_disks || mddev->major_version
5493 			 || !list_empty(&mddev->disks)) {
5494 			printk(KERN_WARNING
5495 				"md: %s already running, cannot run %s\n",
5496 				mdname(mddev), bdevname(rdev0->bdev,b));
5497 			mddev_unlock(mddev);
5498 		} else {
5499 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5500 			mddev->persistent = 1;
5501 			rdev_for_each_list(rdev, tmp, &candidates) {
5502 				list_del_init(&rdev->same_set);
5503 				if (bind_rdev_to_array(rdev, mddev))
5504 					export_rdev(rdev);
5505 			}
5506 			autorun_array(mddev);
5507 			mddev_unlock(mddev);
5508 		}
5509 		/* on success, candidates will be empty, on error
5510 		 * it won't...
5511 		 */
5512 		rdev_for_each_list(rdev, tmp, &candidates) {
5513 			list_del_init(&rdev->same_set);
5514 			export_rdev(rdev);
5515 		}
5516 		mddev_put(mddev);
5517 	}
5518 	printk(KERN_INFO "md: ... autorun DONE.\n");
5519 }
5520 #endif /* !MODULE */
5521 
5522 static int get_version(void __user * arg)
5523 {
5524 	mdu_version_t ver;
5525 
5526 	ver.major = MD_MAJOR_VERSION;
5527 	ver.minor = MD_MINOR_VERSION;
5528 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5529 
5530 	if (copy_to_user(arg, &ver, sizeof(ver)))
5531 		return -EFAULT;
5532 
5533 	return 0;
5534 }
5535 
5536 static int get_array_info(struct mddev * mddev, void __user * arg)
5537 {
5538 	mdu_array_info_t info;
5539 	int nr,working,insync,failed,spare;
5540 	struct md_rdev *rdev;
5541 
5542 	nr = working = insync = failed = spare = 0;
5543 	rcu_read_lock();
5544 	rdev_for_each_rcu(rdev, mddev) {
5545 		nr++;
5546 		if (test_bit(Faulty, &rdev->flags))
5547 			failed++;
5548 		else {
5549 			working++;
5550 			if (test_bit(In_sync, &rdev->flags))
5551 				insync++;
5552 			else
5553 				spare++;
5554 		}
5555 	}
5556 	rcu_read_unlock();
5557 
5558 	info.major_version = mddev->major_version;
5559 	info.minor_version = mddev->minor_version;
5560 	info.patch_version = MD_PATCHLEVEL_VERSION;
5561 	info.ctime         = mddev->ctime;
5562 	info.level         = mddev->level;
5563 	info.size          = mddev->dev_sectors / 2;
5564 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5565 		info.size = -1;
5566 	info.nr_disks      = nr;
5567 	info.raid_disks    = mddev->raid_disks;
5568 	info.md_minor      = mddev->md_minor;
5569 	info.not_persistent= !mddev->persistent;
5570 
5571 	info.utime         = mddev->utime;
5572 	info.state         = 0;
5573 	if (mddev->in_sync)
5574 		info.state = (1<<MD_SB_CLEAN);
5575 	if (mddev->bitmap && mddev->bitmap_info.offset)
5576 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5577 	info.active_disks  = insync;
5578 	info.working_disks = working;
5579 	info.failed_disks  = failed;
5580 	info.spare_disks   = spare;
5581 
5582 	info.layout        = mddev->layout;
5583 	info.chunk_size    = mddev->chunk_sectors << 9;
5584 
5585 	if (copy_to_user(arg, &info, sizeof(info)))
5586 		return -EFAULT;
5587 
5588 	return 0;
5589 }
5590 
5591 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5592 {
5593 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5594 	char *ptr, *buf = NULL;
5595 	int err = -ENOMEM;
5596 
5597 	file = kmalloc(sizeof(*file), GFP_NOIO);
5598 
5599 	if (!file)
5600 		goto out;
5601 
5602 	/* bitmap disabled, zero the first byte and copy out */
5603 	if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5604 		file->pathname[0] = '\0';
5605 		goto copy_out;
5606 	}
5607 
5608 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5609 	if (!buf)
5610 		goto out;
5611 
5612 	ptr = d_path(&mddev->bitmap->storage.file->f_path,
5613 		     buf, sizeof(file->pathname));
5614 	if (IS_ERR(ptr))
5615 		goto out;
5616 
5617 	strcpy(file->pathname, ptr);
5618 
5619 copy_out:
5620 	err = 0;
5621 	if (copy_to_user(arg, file, sizeof(*file)))
5622 		err = -EFAULT;
5623 out:
5624 	kfree(buf);
5625 	kfree(file);
5626 	return err;
5627 }
5628 
5629 static int get_disk_info(struct mddev * mddev, void __user * arg)
5630 {
5631 	mdu_disk_info_t info;
5632 	struct md_rdev *rdev;
5633 
5634 	if (copy_from_user(&info, arg, sizeof(info)))
5635 		return -EFAULT;
5636 
5637 	rcu_read_lock();
5638 	rdev = find_rdev_nr_rcu(mddev, info.number);
5639 	if (rdev) {
5640 		info.major = MAJOR(rdev->bdev->bd_dev);
5641 		info.minor = MINOR(rdev->bdev->bd_dev);
5642 		info.raid_disk = rdev->raid_disk;
5643 		info.state = 0;
5644 		if (test_bit(Faulty, &rdev->flags))
5645 			info.state |= (1<<MD_DISK_FAULTY);
5646 		else if (test_bit(In_sync, &rdev->flags)) {
5647 			info.state |= (1<<MD_DISK_ACTIVE);
5648 			info.state |= (1<<MD_DISK_SYNC);
5649 		}
5650 		if (test_bit(WriteMostly, &rdev->flags))
5651 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5652 	} else {
5653 		info.major = info.minor = 0;
5654 		info.raid_disk = -1;
5655 		info.state = (1<<MD_DISK_REMOVED);
5656 	}
5657 	rcu_read_unlock();
5658 
5659 	if (copy_to_user(arg, &info, sizeof(info)))
5660 		return -EFAULT;
5661 
5662 	return 0;
5663 }
5664 
5665 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5666 {
5667 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5668 	struct md_rdev *rdev;
5669 	dev_t dev = MKDEV(info->major,info->minor);
5670 
5671 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5672 		return -EOVERFLOW;
5673 
5674 	if (!mddev->raid_disks) {
5675 		int err;
5676 		/* expecting a device which has a superblock */
5677 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5678 		if (IS_ERR(rdev)) {
5679 			printk(KERN_WARNING
5680 				"md: md_import_device returned %ld\n",
5681 				PTR_ERR(rdev));
5682 			return PTR_ERR(rdev);
5683 		}
5684 		if (!list_empty(&mddev->disks)) {
5685 			struct md_rdev *rdev0
5686 				= list_entry(mddev->disks.next,
5687 					     struct md_rdev, same_set);
5688 			err = super_types[mddev->major_version]
5689 				.load_super(rdev, rdev0, mddev->minor_version);
5690 			if (err < 0) {
5691 				printk(KERN_WARNING
5692 					"md: %s has different UUID to %s\n",
5693 					bdevname(rdev->bdev,b),
5694 					bdevname(rdev0->bdev,b2));
5695 				export_rdev(rdev);
5696 				return -EINVAL;
5697 			}
5698 		}
5699 		err = bind_rdev_to_array(rdev, mddev);
5700 		if (err)
5701 			export_rdev(rdev);
5702 		return err;
5703 	}
5704 
5705 	/*
5706 	 * add_new_disk can be used once the array is assembled
5707 	 * to add "hot spares".  They must already have a superblock
5708 	 * written
5709 	 */
5710 	if (mddev->pers) {
5711 		int err;
5712 		if (!mddev->pers->hot_add_disk) {
5713 			printk(KERN_WARNING
5714 				"%s: personality does not support diskops!\n",
5715 			       mdname(mddev));
5716 			return -EINVAL;
5717 		}
5718 		if (mddev->persistent)
5719 			rdev = md_import_device(dev, mddev->major_version,
5720 						mddev->minor_version);
5721 		else
5722 			rdev = md_import_device(dev, -1, -1);
5723 		if (IS_ERR(rdev)) {
5724 			printk(KERN_WARNING
5725 				"md: md_import_device returned %ld\n",
5726 				PTR_ERR(rdev));
5727 			return PTR_ERR(rdev);
5728 		}
5729 		/* set saved_raid_disk if appropriate */
5730 		if (!mddev->persistent) {
5731 			if (info->state & (1<<MD_DISK_SYNC)  &&
5732 			    info->raid_disk < mddev->raid_disks) {
5733 				rdev->raid_disk = info->raid_disk;
5734 				set_bit(In_sync, &rdev->flags);
5735 			} else
5736 				rdev->raid_disk = -1;
5737 		} else
5738 			super_types[mddev->major_version].
5739 				validate_super(mddev, rdev);
5740 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5741 		     rdev->raid_disk != info->raid_disk) {
5742 			/* This was a hot-add request, but events doesn't
5743 			 * match, so reject it.
5744 			 */
5745 			export_rdev(rdev);
5746 			return -EINVAL;
5747 		}
5748 
5749 		if (test_bit(In_sync, &rdev->flags))
5750 			rdev->saved_raid_disk = rdev->raid_disk;
5751 		else
5752 			rdev->saved_raid_disk = -1;
5753 
5754 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5755 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5756 			set_bit(WriteMostly, &rdev->flags);
5757 		else
5758 			clear_bit(WriteMostly, &rdev->flags);
5759 
5760 		rdev->raid_disk = -1;
5761 		err = bind_rdev_to_array(rdev, mddev);
5762 		if (!err && !mddev->pers->hot_remove_disk) {
5763 			/* If there is hot_add_disk but no hot_remove_disk
5764 			 * then added disks for geometry changes,
5765 			 * and should be added immediately.
5766 			 */
5767 			super_types[mddev->major_version].
5768 				validate_super(mddev, rdev);
5769 			err = mddev->pers->hot_add_disk(mddev, rdev);
5770 			if (err)
5771 				unbind_rdev_from_array(rdev);
5772 		}
5773 		if (err)
5774 			export_rdev(rdev);
5775 		else
5776 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5777 
5778 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5779 		if (mddev->degraded)
5780 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5781 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5782 		if (!err)
5783 			md_new_event(mddev);
5784 		md_wakeup_thread(mddev->thread);
5785 		return err;
5786 	}
5787 
5788 	/* otherwise, add_new_disk is only allowed
5789 	 * for major_version==0 superblocks
5790 	 */
5791 	if (mddev->major_version != 0) {
5792 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5793 		       mdname(mddev));
5794 		return -EINVAL;
5795 	}
5796 
5797 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5798 		int err;
5799 		rdev = md_import_device(dev, -1, 0);
5800 		if (IS_ERR(rdev)) {
5801 			printk(KERN_WARNING
5802 				"md: error, md_import_device() returned %ld\n",
5803 				PTR_ERR(rdev));
5804 			return PTR_ERR(rdev);
5805 		}
5806 		rdev->desc_nr = info->number;
5807 		if (info->raid_disk < mddev->raid_disks)
5808 			rdev->raid_disk = info->raid_disk;
5809 		else
5810 			rdev->raid_disk = -1;
5811 
5812 		if (rdev->raid_disk < mddev->raid_disks)
5813 			if (info->state & (1<<MD_DISK_SYNC))
5814 				set_bit(In_sync, &rdev->flags);
5815 
5816 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5817 			set_bit(WriteMostly, &rdev->flags);
5818 
5819 		if (!mddev->persistent) {
5820 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5821 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5822 		} else
5823 			rdev->sb_start = calc_dev_sboffset(rdev);
5824 		rdev->sectors = rdev->sb_start;
5825 
5826 		err = bind_rdev_to_array(rdev, mddev);
5827 		if (err) {
5828 			export_rdev(rdev);
5829 			return err;
5830 		}
5831 	}
5832 
5833 	return 0;
5834 }
5835 
5836 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5837 {
5838 	char b[BDEVNAME_SIZE];
5839 	struct md_rdev *rdev;
5840 
5841 	rdev = find_rdev(mddev, dev);
5842 	if (!rdev)
5843 		return -ENXIO;
5844 
5845 	clear_bit(Blocked, &rdev->flags);
5846 	remove_and_add_spares(mddev, rdev);
5847 
5848 	if (rdev->raid_disk >= 0)
5849 		goto busy;
5850 
5851 	kick_rdev_from_array(rdev);
5852 	md_update_sb(mddev, 1);
5853 	md_new_event(mddev);
5854 
5855 	return 0;
5856 busy:
5857 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5858 		bdevname(rdev->bdev,b), mdname(mddev));
5859 	return -EBUSY;
5860 }
5861 
5862 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5863 {
5864 	char b[BDEVNAME_SIZE];
5865 	int err;
5866 	struct md_rdev *rdev;
5867 
5868 	if (!mddev->pers)
5869 		return -ENODEV;
5870 
5871 	if (mddev->major_version != 0) {
5872 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5873 			" version-0 superblocks.\n",
5874 			mdname(mddev));
5875 		return -EINVAL;
5876 	}
5877 	if (!mddev->pers->hot_add_disk) {
5878 		printk(KERN_WARNING
5879 			"%s: personality does not support diskops!\n",
5880 			mdname(mddev));
5881 		return -EINVAL;
5882 	}
5883 
5884 	rdev = md_import_device(dev, -1, 0);
5885 	if (IS_ERR(rdev)) {
5886 		printk(KERN_WARNING
5887 			"md: error, md_import_device() returned %ld\n",
5888 			PTR_ERR(rdev));
5889 		return -EINVAL;
5890 	}
5891 
5892 	if (mddev->persistent)
5893 		rdev->sb_start = calc_dev_sboffset(rdev);
5894 	else
5895 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5896 
5897 	rdev->sectors = rdev->sb_start;
5898 
5899 	if (test_bit(Faulty, &rdev->flags)) {
5900 		printk(KERN_WARNING
5901 			"md: can not hot-add faulty %s disk to %s!\n",
5902 			bdevname(rdev->bdev,b), mdname(mddev));
5903 		err = -EINVAL;
5904 		goto abort_export;
5905 	}
5906 	clear_bit(In_sync, &rdev->flags);
5907 	rdev->desc_nr = -1;
5908 	rdev->saved_raid_disk = -1;
5909 	err = bind_rdev_to_array(rdev, mddev);
5910 	if (err)
5911 		goto abort_export;
5912 
5913 	/*
5914 	 * The rest should better be atomic, we can have disk failures
5915 	 * noticed in interrupt contexts ...
5916 	 */
5917 
5918 	rdev->raid_disk = -1;
5919 
5920 	md_update_sb(mddev, 1);
5921 
5922 	/*
5923 	 * Kick recovery, maybe this spare has to be added to the
5924 	 * array immediately.
5925 	 */
5926 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5927 	md_wakeup_thread(mddev->thread);
5928 	md_new_event(mddev);
5929 	return 0;
5930 
5931 abort_export:
5932 	export_rdev(rdev);
5933 	return err;
5934 }
5935 
5936 static int set_bitmap_file(struct mddev *mddev, int fd)
5937 {
5938 	int err;
5939 
5940 	if (mddev->pers) {
5941 		if (!mddev->pers->quiesce)
5942 			return -EBUSY;
5943 		if (mddev->recovery || mddev->sync_thread)
5944 			return -EBUSY;
5945 		/* we should be able to change the bitmap.. */
5946 	}
5947 
5948 
5949 	if (fd >= 0) {
5950 		if (mddev->bitmap)
5951 			return -EEXIST; /* cannot add when bitmap is present */
5952 		mddev->bitmap_info.file = fget(fd);
5953 
5954 		if (mddev->bitmap_info.file == NULL) {
5955 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5956 			       mdname(mddev));
5957 			return -EBADF;
5958 		}
5959 
5960 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5961 		if (err) {
5962 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5963 			       mdname(mddev));
5964 			fput(mddev->bitmap_info.file);
5965 			mddev->bitmap_info.file = NULL;
5966 			return err;
5967 		}
5968 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5969 	} else if (mddev->bitmap == NULL)
5970 		return -ENOENT; /* cannot remove what isn't there */
5971 	err = 0;
5972 	if (mddev->pers) {
5973 		mddev->pers->quiesce(mddev, 1);
5974 		if (fd >= 0) {
5975 			err = bitmap_create(mddev);
5976 			if (!err)
5977 				err = bitmap_load(mddev);
5978 		}
5979 		if (fd < 0 || err) {
5980 			bitmap_destroy(mddev);
5981 			fd = -1; /* make sure to put the file */
5982 		}
5983 		mddev->pers->quiesce(mddev, 0);
5984 	}
5985 	if (fd < 0) {
5986 		if (mddev->bitmap_info.file) {
5987 			restore_bitmap_write_access(mddev->bitmap_info.file);
5988 			fput(mddev->bitmap_info.file);
5989 		}
5990 		mddev->bitmap_info.file = NULL;
5991 	}
5992 
5993 	return err;
5994 }
5995 
5996 /*
5997  * set_array_info is used two different ways
5998  * The original usage is when creating a new array.
5999  * In this usage, raid_disks is > 0 and it together with
6000  *  level, size, not_persistent,layout,chunksize determine the
6001  *  shape of the array.
6002  *  This will always create an array with a type-0.90.0 superblock.
6003  * The newer usage is when assembling an array.
6004  *  In this case raid_disks will be 0, and the major_version field is
6005  *  use to determine which style super-blocks are to be found on the devices.
6006  *  The minor and patch _version numbers are also kept incase the
6007  *  super_block handler wishes to interpret them.
6008  */
6009 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6010 {
6011 
6012 	if (info->raid_disks == 0) {
6013 		/* just setting version number for superblock loading */
6014 		if (info->major_version < 0 ||
6015 		    info->major_version >= ARRAY_SIZE(super_types) ||
6016 		    super_types[info->major_version].name == NULL) {
6017 			/* maybe try to auto-load a module? */
6018 			printk(KERN_INFO
6019 				"md: superblock version %d not known\n",
6020 				info->major_version);
6021 			return -EINVAL;
6022 		}
6023 		mddev->major_version = info->major_version;
6024 		mddev->minor_version = info->minor_version;
6025 		mddev->patch_version = info->patch_version;
6026 		mddev->persistent = !info->not_persistent;
6027 		/* ensure mddev_put doesn't delete this now that there
6028 		 * is some minimal configuration.
6029 		 */
6030 		mddev->ctime         = get_seconds();
6031 		return 0;
6032 	}
6033 	mddev->major_version = MD_MAJOR_VERSION;
6034 	mddev->minor_version = MD_MINOR_VERSION;
6035 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6036 	mddev->ctime         = get_seconds();
6037 
6038 	mddev->level         = info->level;
6039 	mddev->clevel[0]     = 0;
6040 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6041 	mddev->raid_disks    = info->raid_disks;
6042 	/* don't set md_minor, it is determined by which /dev/md* was
6043 	 * openned
6044 	 */
6045 	if (info->state & (1<<MD_SB_CLEAN))
6046 		mddev->recovery_cp = MaxSector;
6047 	else
6048 		mddev->recovery_cp = 0;
6049 	mddev->persistent    = ! info->not_persistent;
6050 	mddev->external	     = 0;
6051 
6052 	mddev->layout        = info->layout;
6053 	mddev->chunk_sectors = info->chunk_size >> 9;
6054 
6055 	mddev->max_disks     = MD_SB_DISKS;
6056 
6057 	if (mddev->persistent)
6058 		mddev->flags         = 0;
6059 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6060 
6061 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6062 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6063 	mddev->bitmap_info.offset = 0;
6064 
6065 	mddev->reshape_position = MaxSector;
6066 
6067 	/*
6068 	 * Generate a 128 bit UUID
6069 	 */
6070 	get_random_bytes(mddev->uuid, 16);
6071 
6072 	mddev->new_level = mddev->level;
6073 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6074 	mddev->new_layout = mddev->layout;
6075 	mddev->delta_disks = 0;
6076 	mddev->reshape_backwards = 0;
6077 
6078 	return 0;
6079 }
6080 
6081 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6082 {
6083 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6084 
6085 	if (mddev->external_size)
6086 		return;
6087 
6088 	mddev->array_sectors = array_sectors;
6089 }
6090 EXPORT_SYMBOL(md_set_array_sectors);
6091 
6092 static int update_size(struct mddev *mddev, sector_t num_sectors)
6093 {
6094 	struct md_rdev *rdev;
6095 	int rv;
6096 	int fit = (num_sectors == 0);
6097 
6098 	if (mddev->pers->resize == NULL)
6099 		return -EINVAL;
6100 	/* The "num_sectors" is the number of sectors of each device that
6101 	 * is used.  This can only make sense for arrays with redundancy.
6102 	 * linear and raid0 always use whatever space is available. We can only
6103 	 * consider changing this number if no resync or reconstruction is
6104 	 * happening, and if the new size is acceptable. It must fit before the
6105 	 * sb_start or, if that is <data_offset, it must fit before the size
6106 	 * of each device.  If num_sectors is zero, we find the largest size
6107 	 * that fits.
6108 	 */
6109 	if (mddev->sync_thread)
6110 		return -EBUSY;
6111 
6112 	rdev_for_each(rdev, mddev) {
6113 		sector_t avail = rdev->sectors;
6114 
6115 		if (fit && (num_sectors == 0 || num_sectors > avail))
6116 			num_sectors = avail;
6117 		if (avail < num_sectors)
6118 			return -ENOSPC;
6119 	}
6120 	rv = mddev->pers->resize(mddev, num_sectors);
6121 	if (!rv)
6122 		revalidate_disk(mddev->gendisk);
6123 	return rv;
6124 }
6125 
6126 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6127 {
6128 	int rv;
6129 	struct md_rdev *rdev;
6130 	/* change the number of raid disks */
6131 	if (mddev->pers->check_reshape == NULL)
6132 		return -EINVAL;
6133 	if (raid_disks <= 0 ||
6134 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6135 		return -EINVAL;
6136 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6137 		return -EBUSY;
6138 
6139 	rdev_for_each(rdev, mddev) {
6140 		if (mddev->raid_disks < raid_disks &&
6141 		    rdev->data_offset < rdev->new_data_offset)
6142 			return -EINVAL;
6143 		if (mddev->raid_disks > raid_disks &&
6144 		    rdev->data_offset > rdev->new_data_offset)
6145 			return -EINVAL;
6146 	}
6147 
6148 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6149 	if (mddev->delta_disks < 0)
6150 		mddev->reshape_backwards = 1;
6151 	else if (mddev->delta_disks > 0)
6152 		mddev->reshape_backwards = 0;
6153 
6154 	rv = mddev->pers->check_reshape(mddev);
6155 	if (rv < 0) {
6156 		mddev->delta_disks = 0;
6157 		mddev->reshape_backwards = 0;
6158 	}
6159 	return rv;
6160 }
6161 
6162 
6163 /*
6164  * update_array_info is used to change the configuration of an
6165  * on-line array.
6166  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6167  * fields in the info are checked against the array.
6168  * Any differences that cannot be handled will cause an error.
6169  * Normally, only one change can be managed at a time.
6170  */
6171 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6172 {
6173 	int rv = 0;
6174 	int cnt = 0;
6175 	int state = 0;
6176 
6177 	/* calculate expected state,ignoring low bits */
6178 	if (mddev->bitmap && mddev->bitmap_info.offset)
6179 		state |= (1 << MD_SB_BITMAP_PRESENT);
6180 
6181 	if (mddev->major_version != info->major_version ||
6182 	    mddev->minor_version != info->minor_version ||
6183 /*	    mddev->patch_version != info->patch_version || */
6184 	    mddev->ctime         != info->ctime         ||
6185 	    mddev->level         != info->level         ||
6186 /*	    mddev->layout        != info->layout        || */
6187 	    !mddev->persistent	 != info->not_persistent||
6188 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6189 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6190 	    ((state^info->state) & 0xfffffe00)
6191 		)
6192 		return -EINVAL;
6193 	/* Check there is only one change */
6194 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6195 		cnt++;
6196 	if (mddev->raid_disks != info->raid_disks)
6197 		cnt++;
6198 	if (mddev->layout != info->layout)
6199 		cnt++;
6200 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6201 		cnt++;
6202 	if (cnt == 0)
6203 		return 0;
6204 	if (cnt > 1)
6205 		return -EINVAL;
6206 
6207 	if (mddev->layout != info->layout) {
6208 		/* Change layout
6209 		 * we don't need to do anything at the md level, the
6210 		 * personality will take care of it all.
6211 		 */
6212 		if (mddev->pers->check_reshape == NULL)
6213 			return -EINVAL;
6214 		else {
6215 			mddev->new_layout = info->layout;
6216 			rv = mddev->pers->check_reshape(mddev);
6217 			if (rv)
6218 				mddev->new_layout = mddev->layout;
6219 			return rv;
6220 		}
6221 	}
6222 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6223 		rv = update_size(mddev, (sector_t)info->size * 2);
6224 
6225 	if (mddev->raid_disks    != info->raid_disks)
6226 		rv = update_raid_disks(mddev, info->raid_disks);
6227 
6228 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6229 		if (mddev->pers->quiesce == NULL)
6230 			return -EINVAL;
6231 		if (mddev->recovery || mddev->sync_thread)
6232 			return -EBUSY;
6233 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6234 			/* add the bitmap */
6235 			if (mddev->bitmap)
6236 				return -EEXIST;
6237 			if (mddev->bitmap_info.default_offset == 0)
6238 				return -EINVAL;
6239 			mddev->bitmap_info.offset =
6240 				mddev->bitmap_info.default_offset;
6241 			mddev->bitmap_info.space =
6242 				mddev->bitmap_info.default_space;
6243 			mddev->pers->quiesce(mddev, 1);
6244 			rv = bitmap_create(mddev);
6245 			if (!rv)
6246 				rv = bitmap_load(mddev);
6247 			if (rv)
6248 				bitmap_destroy(mddev);
6249 			mddev->pers->quiesce(mddev, 0);
6250 		} else {
6251 			/* remove the bitmap */
6252 			if (!mddev->bitmap)
6253 				return -ENOENT;
6254 			if (mddev->bitmap->storage.file)
6255 				return -EINVAL;
6256 			mddev->pers->quiesce(mddev, 1);
6257 			bitmap_destroy(mddev);
6258 			mddev->pers->quiesce(mddev, 0);
6259 			mddev->bitmap_info.offset = 0;
6260 		}
6261 	}
6262 	md_update_sb(mddev, 1);
6263 	return rv;
6264 }
6265 
6266 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6267 {
6268 	struct md_rdev *rdev;
6269 	int err = 0;
6270 
6271 	if (mddev->pers == NULL)
6272 		return -ENODEV;
6273 
6274 	rcu_read_lock();
6275 	rdev = find_rdev_rcu(mddev, dev);
6276 	if (!rdev)
6277 		err =  -ENODEV;
6278 	else {
6279 		md_error(mddev, rdev);
6280 		if (!test_bit(Faulty, &rdev->flags))
6281 			err = -EBUSY;
6282 	}
6283 	rcu_read_unlock();
6284 	return err;
6285 }
6286 
6287 /*
6288  * We have a problem here : there is no easy way to give a CHS
6289  * virtual geometry. We currently pretend that we have a 2 heads
6290  * 4 sectors (with a BIG number of cylinders...). This drives
6291  * dosfs just mad... ;-)
6292  */
6293 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6294 {
6295 	struct mddev *mddev = bdev->bd_disk->private_data;
6296 
6297 	geo->heads = 2;
6298 	geo->sectors = 4;
6299 	geo->cylinders = mddev->array_sectors / 8;
6300 	return 0;
6301 }
6302 
6303 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6304 			unsigned int cmd, unsigned long arg)
6305 {
6306 	int err = 0;
6307 	void __user *argp = (void __user *)arg;
6308 	struct mddev *mddev = NULL;
6309 	int ro;
6310 
6311 	switch (cmd) {
6312 	case RAID_VERSION:
6313 	case GET_ARRAY_INFO:
6314 	case GET_DISK_INFO:
6315 		break;
6316 	default:
6317 		if (!capable(CAP_SYS_ADMIN))
6318 			return -EACCES;
6319 	}
6320 
6321 	/*
6322 	 * Commands dealing with the RAID driver but not any
6323 	 * particular array:
6324 	 */
6325 	switch (cmd) {
6326 	case RAID_VERSION:
6327 		err = get_version(argp);
6328 		goto done;
6329 
6330 	case PRINT_RAID_DEBUG:
6331 		err = 0;
6332 		md_print_devices();
6333 		goto done;
6334 
6335 #ifndef MODULE
6336 	case RAID_AUTORUN:
6337 		err = 0;
6338 		autostart_arrays(arg);
6339 		goto done;
6340 #endif
6341 	default:;
6342 	}
6343 
6344 	/*
6345 	 * Commands creating/starting a new array:
6346 	 */
6347 
6348 	mddev = bdev->bd_disk->private_data;
6349 
6350 	if (!mddev) {
6351 		BUG();
6352 		goto abort;
6353 	}
6354 
6355 	/* Some actions do not requires the mutex */
6356 	switch (cmd) {
6357 	case GET_ARRAY_INFO:
6358 		if (!mddev->raid_disks && !mddev->external)
6359 			err = -ENODEV;
6360 		else
6361 			err = get_array_info(mddev, argp);
6362 		goto abort;
6363 
6364 	case GET_DISK_INFO:
6365 		if (!mddev->raid_disks && !mddev->external)
6366 			err = -ENODEV;
6367 		else
6368 			err = get_disk_info(mddev, argp);
6369 		goto abort;
6370 
6371 	case SET_DISK_FAULTY:
6372 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6373 		goto abort;
6374 	}
6375 
6376 	if (cmd == ADD_NEW_DISK)
6377 		/* need to ensure md_delayed_delete() has completed */
6378 		flush_workqueue(md_misc_wq);
6379 
6380 	if (cmd == HOT_REMOVE_DISK)
6381 		/* need to ensure recovery thread has run */
6382 		wait_event_interruptible_timeout(mddev->sb_wait,
6383 						 !test_bit(MD_RECOVERY_NEEDED,
6384 							   &mddev->flags),
6385 						 msecs_to_jiffies(5000));
6386 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6387 		/* Need to flush page cache, and ensure no-one else opens
6388 		 * and writes
6389 		 */
6390 		mutex_lock(&mddev->open_mutex);
6391 		if (atomic_read(&mddev->openers) > 1) {
6392 			mutex_unlock(&mddev->open_mutex);
6393 			err = -EBUSY;
6394 			goto abort;
6395 		}
6396 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6397 		mutex_unlock(&mddev->open_mutex);
6398 		sync_blockdev(bdev);
6399 	}
6400 	err = mddev_lock(mddev);
6401 	if (err) {
6402 		printk(KERN_INFO
6403 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6404 			err, cmd);
6405 		goto abort;
6406 	}
6407 
6408 	if (cmd == SET_ARRAY_INFO) {
6409 		mdu_array_info_t info;
6410 		if (!arg)
6411 			memset(&info, 0, sizeof(info));
6412 		else if (copy_from_user(&info, argp, sizeof(info))) {
6413 			err = -EFAULT;
6414 			goto abort_unlock;
6415 		}
6416 		if (mddev->pers) {
6417 			err = update_array_info(mddev, &info);
6418 			if (err) {
6419 				printk(KERN_WARNING "md: couldn't update"
6420 				       " array info. %d\n", err);
6421 				goto abort_unlock;
6422 			}
6423 			goto done_unlock;
6424 		}
6425 		if (!list_empty(&mddev->disks)) {
6426 			printk(KERN_WARNING
6427 			       "md: array %s already has disks!\n",
6428 			       mdname(mddev));
6429 			err = -EBUSY;
6430 			goto abort_unlock;
6431 		}
6432 		if (mddev->raid_disks) {
6433 			printk(KERN_WARNING
6434 			       "md: array %s already initialised!\n",
6435 			       mdname(mddev));
6436 			err = -EBUSY;
6437 			goto abort_unlock;
6438 		}
6439 		err = set_array_info(mddev, &info);
6440 		if (err) {
6441 			printk(KERN_WARNING "md: couldn't set"
6442 			       " array info. %d\n", err);
6443 			goto abort_unlock;
6444 		}
6445 		goto done_unlock;
6446 	}
6447 
6448 	/*
6449 	 * Commands querying/configuring an existing array:
6450 	 */
6451 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6452 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6453 	if ((!mddev->raid_disks && !mddev->external)
6454 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6455 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6456 	    && cmd != GET_BITMAP_FILE) {
6457 		err = -ENODEV;
6458 		goto abort_unlock;
6459 	}
6460 
6461 	/*
6462 	 * Commands even a read-only array can execute:
6463 	 */
6464 	switch (cmd) {
6465 	case GET_BITMAP_FILE:
6466 		err = get_bitmap_file(mddev, argp);
6467 		goto done_unlock;
6468 
6469 	case RESTART_ARRAY_RW:
6470 		err = restart_array(mddev);
6471 		goto done_unlock;
6472 
6473 	case STOP_ARRAY:
6474 		err = do_md_stop(mddev, 0, bdev);
6475 		goto done_unlock;
6476 
6477 	case STOP_ARRAY_RO:
6478 		err = md_set_readonly(mddev, bdev);
6479 		goto done_unlock;
6480 
6481 	case HOT_REMOVE_DISK:
6482 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6483 		goto done_unlock;
6484 
6485 	case ADD_NEW_DISK:
6486 		/* We can support ADD_NEW_DISK on read-only arrays
6487 		 * on if we are re-adding a preexisting device.
6488 		 * So require mddev->pers and MD_DISK_SYNC.
6489 		 */
6490 		if (mddev->pers) {
6491 			mdu_disk_info_t info;
6492 			if (copy_from_user(&info, argp, sizeof(info)))
6493 				err = -EFAULT;
6494 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6495 				/* Need to clear read-only for this */
6496 				break;
6497 			else
6498 				err = add_new_disk(mddev, &info);
6499 			goto done_unlock;
6500 		}
6501 		break;
6502 
6503 	case BLKROSET:
6504 		if (get_user(ro, (int __user *)(arg))) {
6505 			err = -EFAULT;
6506 			goto done_unlock;
6507 		}
6508 		err = -EINVAL;
6509 
6510 		/* if the bdev is going readonly the value of mddev->ro
6511 		 * does not matter, no writes are coming
6512 		 */
6513 		if (ro)
6514 			goto done_unlock;
6515 
6516 		/* are we are already prepared for writes? */
6517 		if (mddev->ro != 1)
6518 			goto done_unlock;
6519 
6520 		/* transitioning to readauto need only happen for
6521 		 * arrays that call md_write_start
6522 		 */
6523 		if (mddev->pers) {
6524 			err = restart_array(mddev);
6525 			if (err == 0) {
6526 				mddev->ro = 2;
6527 				set_disk_ro(mddev->gendisk, 0);
6528 			}
6529 		}
6530 		goto done_unlock;
6531 	}
6532 
6533 	/*
6534 	 * The remaining ioctls are changing the state of the
6535 	 * superblock, so we do not allow them on read-only arrays.
6536 	 * However non-MD ioctls (e.g. get-size) will still come through
6537 	 * here and hit the 'default' below, so only disallow
6538 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6539 	 */
6540 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6541 		if (mddev->ro == 2) {
6542 			mddev->ro = 0;
6543 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6544 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6545 			/* mddev_unlock will wake thread */
6546 			/* If a device failed while we were read-only, we
6547 			 * need to make sure the metadata is updated now.
6548 			 */
6549 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6550 				mddev_unlock(mddev);
6551 				wait_event(mddev->sb_wait,
6552 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6553 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6554 				mddev_lock(mddev);
6555 			}
6556 		} else {
6557 			err = -EROFS;
6558 			goto abort_unlock;
6559 		}
6560 	}
6561 
6562 	switch (cmd) {
6563 	case ADD_NEW_DISK:
6564 	{
6565 		mdu_disk_info_t info;
6566 		if (copy_from_user(&info, argp, sizeof(info)))
6567 			err = -EFAULT;
6568 		else
6569 			err = add_new_disk(mddev, &info);
6570 		goto done_unlock;
6571 	}
6572 
6573 	case HOT_ADD_DISK:
6574 		err = hot_add_disk(mddev, new_decode_dev(arg));
6575 		goto done_unlock;
6576 
6577 	case RUN_ARRAY:
6578 		err = do_md_run(mddev);
6579 		goto done_unlock;
6580 
6581 	case SET_BITMAP_FILE:
6582 		err = set_bitmap_file(mddev, (int)arg);
6583 		goto done_unlock;
6584 
6585 	default:
6586 		err = -EINVAL;
6587 		goto abort_unlock;
6588 	}
6589 
6590 done_unlock:
6591 abort_unlock:
6592 	if (mddev->hold_active == UNTIL_IOCTL &&
6593 	    err != -EINVAL)
6594 		mddev->hold_active = 0;
6595 	mddev_unlock(mddev);
6596 
6597 	return err;
6598 done:
6599 	if (err)
6600 		MD_BUG();
6601 abort:
6602 	return err;
6603 }
6604 #ifdef CONFIG_COMPAT
6605 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6606 		    unsigned int cmd, unsigned long arg)
6607 {
6608 	switch (cmd) {
6609 	case HOT_REMOVE_DISK:
6610 	case HOT_ADD_DISK:
6611 	case SET_DISK_FAULTY:
6612 	case SET_BITMAP_FILE:
6613 		/* These take in integer arg, do not convert */
6614 		break;
6615 	default:
6616 		arg = (unsigned long)compat_ptr(arg);
6617 		break;
6618 	}
6619 
6620 	return md_ioctl(bdev, mode, cmd, arg);
6621 }
6622 #endif /* CONFIG_COMPAT */
6623 
6624 static int md_open(struct block_device *bdev, fmode_t mode)
6625 {
6626 	/*
6627 	 * Succeed if we can lock the mddev, which confirms that
6628 	 * it isn't being stopped right now.
6629 	 */
6630 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6631 	int err;
6632 
6633 	if (!mddev)
6634 		return -ENODEV;
6635 
6636 	if (mddev->gendisk != bdev->bd_disk) {
6637 		/* we are racing with mddev_put which is discarding this
6638 		 * bd_disk.
6639 		 */
6640 		mddev_put(mddev);
6641 		/* Wait until bdev->bd_disk is definitely gone */
6642 		flush_workqueue(md_misc_wq);
6643 		/* Then retry the open from the top */
6644 		return -ERESTARTSYS;
6645 	}
6646 	BUG_ON(mddev != bdev->bd_disk->private_data);
6647 
6648 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6649 		goto out;
6650 
6651 	err = 0;
6652 	atomic_inc(&mddev->openers);
6653 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6654 	mutex_unlock(&mddev->open_mutex);
6655 
6656 	check_disk_change(bdev);
6657  out:
6658 	return err;
6659 }
6660 
6661 static void md_release(struct gendisk *disk, fmode_t mode)
6662 {
6663  	struct mddev *mddev = disk->private_data;
6664 
6665 	BUG_ON(!mddev);
6666 	atomic_dec(&mddev->openers);
6667 	mddev_put(mddev);
6668 }
6669 
6670 static int md_media_changed(struct gendisk *disk)
6671 {
6672 	struct mddev *mddev = disk->private_data;
6673 
6674 	return mddev->changed;
6675 }
6676 
6677 static int md_revalidate(struct gendisk *disk)
6678 {
6679 	struct mddev *mddev = disk->private_data;
6680 
6681 	mddev->changed = 0;
6682 	return 0;
6683 }
6684 static const struct block_device_operations md_fops =
6685 {
6686 	.owner		= THIS_MODULE,
6687 	.open		= md_open,
6688 	.release	= md_release,
6689 	.ioctl		= md_ioctl,
6690 #ifdef CONFIG_COMPAT
6691 	.compat_ioctl	= md_compat_ioctl,
6692 #endif
6693 	.getgeo		= md_getgeo,
6694 	.media_changed  = md_media_changed,
6695 	.revalidate_disk= md_revalidate,
6696 };
6697 
6698 static int md_thread(void * arg)
6699 {
6700 	struct md_thread *thread = arg;
6701 
6702 	/*
6703 	 * md_thread is a 'system-thread', it's priority should be very
6704 	 * high. We avoid resource deadlocks individually in each
6705 	 * raid personality. (RAID5 does preallocation) We also use RR and
6706 	 * the very same RT priority as kswapd, thus we will never get
6707 	 * into a priority inversion deadlock.
6708 	 *
6709 	 * we definitely have to have equal or higher priority than
6710 	 * bdflush, otherwise bdflush will deadlock if there are too
6711 	 * many dirty RAID5 blocks.
6712 	 */
6713 
6714 	allow_signal(SIGKILL);
6715 	while (!kthread_should_stop()) {
6716 
6717 		/* We need to wait INTERRUPTIBLE so that
6718 		 * we don't add to the load-average.
6719 		 * That means we need to be sure no signals are
6720 		 * pending
6721 		 */
6722 		if (signal_pending(current))
6723 			flush_signals(current);
6724 
6725 		wait_event_interruptible_timeout
6726 			(thread->wqueue,
6727 			 test_bit(THREAD_WAKEUP, &thread->flags)
6728 			 || kthread_should_stop(),
6729 			 thread->timeout);
6730 
6731 		clear_bit(THREAD_WAKEUP, &thread->flags);
6732 		if (!kthread_should_stop())
6733 			thread->run(thread);
6734 	}
6735 
6736 	return 0;
6737 }
6738 
6739 void md_wakeup_thread(struct md_thread *thread)
6740 {
6741 	if (thread) {
6742 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6743 		set_bit(THREAD_WAKEUP, &thread->flags);
6744 		wake_up(&thread->wqueue);
6745 	}
6746 }
6747 
6748 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6749 		struct mddev *mddev, const char *name)
6750 {
6751 	struct md_thread *thread;
6752 
6753 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6754 	if (!thread)
6755 		return NULL;
6756 
6757 	init_waitqueue_head(&thread->wqueue);
6758 
6759 	thread->run = run;
6760 	thread->mddev = mddev;
6761 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6762 	thread->tsk = kthread_run(md_thread, thread,
6763 				  "%s_%s",
6764 				  mdname(thread->mddev),
6765 				  name);
6766 	if (IS_ERR(thread->tsk)) {
6767 		kfree(thread);
6768 		return NULL;
6769 	}
6770 	return thread;
6771 }
6772 
6773 void md_unregister_thread(struct md_thread **threadp)
6774 {
6775 	struct md_thread *thread = *threadp;
6776 	if (!thread)
6777 		return;
6778 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6779 	/* Locking ensures that mddev_unlock does not wake_up a
6780 	 * non-existent thread
6781 	 */
6782 	spin_lock(&pers_lock);
6783 	*threadp = NULL;
6784 	spin_unlock(&pers_lock);
6785 
6786 	kthread_stop(thread->tsk);
6787 	kfree(thread);
6788 }
6789 
6790 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6791 {
6792 	if (!mddev) {
6793 		MD_BUG();
6794 		return;
6795 	}
6796 
6797 	if (!rdev || test_bit(Faulty, &rdev->flags))
6798 		return;
6799 
6800 	if (!mddev->pers || !mddev->pers->error_handler)
6801 		return;
6802 	mddev->pers->error_handler(mddev,rdev);
6803 	if (mddev->degraded)
6804 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6805 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6806 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6807 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6808 	md_wakeup_thread(mddev->thread);
6809 	if (mddev->event_work.func)
6810 		queue_work(md_misc_wq, &mddev->event_work);
6811 	md_new_event_inintr(mddev);
6812 }
6813 
6814 /* seq_file implementation /proc/mdstat */
6815 
6816 static void status_unused(struct seq_file *seq)
6817 {
6818 	int i = 0;
6819 	struct md_rdev *rdev;
6820 
6821 	seq_printf(seq, "unused devices: ");
6822 
6823 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6824 		char b[BDEVNAME_SIZE];
6825 		i++;
6826 		seq_printf(seq, "%s ",
6827 			      bdevname(rdev->bdev,b));
6828 	}
6829 	if (!i)
6830 		seq_printf(seq, "<none>");
6831 
6832 	seq_printf(seq, "\n");
6833 }
6834 
6835 
6836 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6837 {
6838 	sector_t max_sectors, resync, res;
6839 	unsigned long dt, db;
6840 	sector_t rt;
6841 	int scale;
6842 	unsigned int per_milli;
6843 
6844 	if (mddev->curr_resync <= 3)
6845 		resync = 0;
6846 	else
6847 		resync = mddev->curr_resync
6848 			- atomic_read(&mddev->recovery_active);
6849 
6850 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6851 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6852 		max_sectors = mddev->resync_max_sectors;
6853 	else
6854 		max_sectors = mddev->dev_sectors;
6855 
6856 	/*
6857 	 * Should not happen.
6858 	 */
6859 	if (!max_sectors) {
6860 		MD_BUG();
6861 		return;
6862 	}
6863 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6864 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6865 	 * u32, as those are the requirements for sector_div.
6866 	 * Thus 'scale' must be at least 10
6867 	 */
6868 	scale = 10;
6869 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6870 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6871 			scale++;
6872 	}
6873 	res = (resync>>scale)*1000;
6874 	sector_div(res, (u32)((max_sectors>>scale)+1));
6875 
6876 	per_milli = res;
6877 	{
6878 		int i, x = per_milli/50, y = 20-x;
6879 		seq_printf(seq, "[");
6880 		for (i = 0; i < x; i++)
6881 			seq_printf(seq, "=");
6882 		seq_printf(seq, ">");
6883 		for (i = 0; i < y; i++)
6884 			seq_printf(seq, ".");
6885 		seq_printf(seq, "] ");
6886 	}
6887 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6888 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6889 		    "reshape" :
6890 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6891 		     "check" :
6892 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6893 		      "resync" : "recovery"))),
6894 		   per_milli/10, per_milli % 10,
6895 		   (unsigned long long) resync/2,
6896 		   (unsigned long long) max_sectors/2);
6897 
6898 	/*
6899 	 * dt: time from mark until now
6900 	 * db: blocks written from mark until now
6901 	 * rt: remaining time
6902 	 *
6903 	 * rt is a sector_t, so could be 32bit or 64bit.
6904 	 * So we divide before multiply in case it is 32bit and close
6905 	 * to the limit.
6906 	 * We scale the divisor (db) by 32 to avoid losing precision
6907 	 * near the end of resync when the number of remaining sectors
6908 	 * is close to 'db'.
6909 	 * We then divide rt by 32 after multiplying by db to compensate.
6910 	 * The '+1' avoids division by zero if db is very small.
6911 	 */
6912 	dt = ((jiffies - mddev->resync_mark) / HZ);
6913 	if (!dt) dt++;
6914 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6915 		- mddev->resync_mark_cnt;
6916 
6917 	rt = max_sectors - resync;    /* number of remaining sectors */
6918 	sector_div(rt, db/32+1);
6919 	rt *= dt;
6920 	rt >>= 5;
6921 
6922 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6923 		   ((unsigned long)rt % 60)/6);
6924 
6925 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6926 }
6927 
6928 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6929 {
6930 	struct list_head *tmp;
6931 	loff_t l = *pos;
6932 	struct mddev *mddev;
6933 
6934 	if (l >= 0x10000)
6935 		return NULL;
6936 	if (!l--)
6937 		/* header */
6938 		return (void*)1;
6939 
6940 	spin_lock(&all_mddevs_lock);
6941 	list_for_each(tmp,&all_mddevs)
6942 		if (!l--) {
6943 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6944 			mddev_get(mddev);
6945 			spin_unlock(&all_mddevs_lock);
6946 			return mddev;
6947 		}
6948 	spin_unlock(&all_mddevs_lock);
6949 	if (!l--)
6950 		return (void*)2;/* tail */
6951 	return NULL;
6952 }
6953 
6954 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6955 {
6956 	struct list_head *tmp;
6957 	struct mddev *next_mddev, *mddev = v;
6958 
6959 	++*pos;
6960 	if (v == (void*)2)
6961 		return NULL;
6962 
6963 	spin_lock(&all_mddevs_lock);
6964 	if (v == (void*)1)
6965 		tmp = all_mddevs.next;
6966 	else
6967 		tmp = mddev->all_mddevs.next;
6968 	if (tmp != &all_mddevs)
6969 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6970 	else {
6971 		next_mddev = (void*)2;
6972 		*pos = 0x10000;
6973 	}
6974 	spin_unlock(&all_mddevs_lock);
6975 
6976 	if (v != (void*)1)
6977 		mddev_put(mddev);
6978 	return next_mddev;
6979 
6980 }
6981 
6982 static void md_seq_stop(struct seq_file *seq, void *v)
6983 {
6984 	struct mddev *mddev = v;
6985 
6986 	if (mddev && v != (void*)1 && v != (void*)2)
6987 		mddev_put(mddev);
6988 }
6989 
6990 static int md_seq_show(struct seq_file *seq, void *v)
6991 {
6992 	struct mddev *mddev = v;
6993 	sector_t sectors;
6994 	struct md_rdev *rdev;
6995 
6996 	if (v == (void*)1) {
6997 		struct md_personality *pers;
6998 		seq_printf(seq, "Personalities : ");
6999 		spin_lock(&pers_lock);
7000 		list_for_each_entry(pers, &pers_list, list)
7001 			seq_printf(seq, "[%s] ", pers->name);
7002 
7003 		spin_unlock(&pers_lock);
7004 		seq_printf(seq, "\n");
7005 		seq->poll_event = atomic_read(&md_event_count);
7006 		return 0;
7007 	}
7008 	if (v == (void*)2) {
7009 		status_unused(seq);
7010 		return 0;
7011 	}
7012 
7013 	if (mddev_lock(mddev) < 0)
7014 		return -EINTR;
7015 
7016 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7017 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7018 						mddev->pers ? "" : "in");
7019 		if (mddev->pers) {
7020 			if (mddev->ro==1)
7021 				seq_printf(seq, " (read-only)");
7022 			if (mddev->ro==2)
7023 				seq_printf(seq, " (auto-read-only)");
7024 			seq_printf(seq, " %s", mddev->pers->name);
7025 		}
7026 
7027 		sectors = 0;
7028 		rdev_for_each(rdev, mddev) {
7029 			char b[BDEVNAME_SIZE];
7030 			seq_printf(seq, " %s[%d]",
7031 				bdevname(rdev->bdev,b), rdev->desc_nr);
7032 			if (test_bit(WriteMostly, &rdev->flags))
7033 				seq_printf(seq, "(W)");
7034 			if (test_bit(Faulty, &rdev->flags)) {
7035 				seq_printf(seq, "(F)");
7036 				continue;
7037 			}
7038 			if (rdev->raid_disk < 0)
7039 				seq_printf(seq, "(S)"); /* spare */
7040 			if (test_bit(Replacement, &rdev->flags))
7041 				seq_printf(seq, "(R)");
7042 			sectors += rdev->sectors;
7043 		}
7044 
7045 		if (!list_empty(&mddev->disks)) {
7046 			if (mddev->pers)
7047 				seq_printf(seq, "\n      %llu blocks",
7048 					   (unsigned long long)
7049 					   mddev->array_sectors / 2);
7050 			else
7051 				seq_printf(seq, "\n      %llu blocks",
7052 					   (unsigned long long)sectors / 2);
7053 		}
7054 		if (mddev->persistent) {
7055 			if (mddev->major_version != 0 ||
7056 			    mddev->minor_version != 90) {
7057 				seq_printf(seq," super %d.%d",
7058 					   mddev->major_version,
7059 					   mddev->minor_version);
7060 			}
7061 		} else if (mddev->external)
7062 			seq_printf(seq, " super external:%s",
7063 				   mddev->metadata_type);
7064 		else
7065 			seq_printf(seq, " super non-persistent");
7066 
7067 		if (mddev->pers) {
7068 			mddev->pers->status(seq, mddev);
7069 	 		seq_printf(seq, "\n      ");
7070 			if (mddev->pers->sync_request) {
7071 				if (mddev->curr_resync > 2) {
7072 					status_resync(seq, mddev);
7073 					seq_printf(seq, "\n      ");
7074 				} else if (mddev->curr_resync >= 1)
7075 					seq_printf(seq, "\tresync=DELAYED\n      ");
7076 				else if (mddev->recovery_cp < MaxSector)
7077 					seq_printf(seq, "\tresync=PENDING\n      ");
7078 			}
7079 		} else
7080 			seq_printf(seq, "\n       ");
7081 
7082 		bitmap_status(seq, mddev->bitmap);
7083 
7084 		seq_printf(seq, "\n");
7085 	}
7086 	mddev_unlock(mddev);
7087 
7088 	return 0;
7089 }
7090 
7091 static const struct seq_operations md_seq_ops = {
7092 	.start  = md_seq_start,
7093 	.next   = md_seq_next,
7094 	.stop   = md_seq_stop,
7095 	.show   = md_seq_show,
7096 };
7097 
7098 static int md_seq_open(struct inode *inode, struct file *file)
7099 {
7100 	struct seq_file *seq;
7101 	int error;
7102 
7103 	error = seq_open(file, &md_seq_ops);
7104 	if (error)
7105 		return error;
7106 
7107 	seq = file->private_data;
7108 	seq->poll_event = atomic_read(&md_event_count);
7109 	return error;
7110 }
7111 
7112 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7113 {
7114 	struct seq_file *seq = filp->private_data;
7115 	int mask;
7116 
7117 	poll_wait(filp, &md_event_waiters, wait);
7118 
7119 	/* always allow read */
7120 	mask = POLLIN | POLLRDNORM;
7121 
7122 	if (seq->poll_event != atomic_read(&md_event_count))
7123 		mask |= POLLERR | POLLPRI;
7124 	return mask;
7125 }
7126 
7127 static const struct file_operations md_seq_fops = {
7128 	.owner		= THIS_MODULE,
7129 	.open           = md_seq_open,
7130 	.read           = seq_read,
7131 	.llseek         = seq_lseek,
7132 	.release	= seq_release_private,
7133 	.poll		= mdstat_poll,
7134 };
7135 
7136 int register_md_personality(struct md_personality *p)
7137 {
7138 	spin_lock(&pers_lock);
7139 	list_add_tail(&p->list, &pers_list);
7140 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7141 	spin_unlock(&pers_lock);
7142 	return 0;
7143 }
7144 
7145 int unregister_md_personality(struct md_personality *p)
7146 {
7147 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7148 	spin_lock(&pers_lock);
7149 	list_del_init(&p->list);
7150 	spin_unlock(&pers_lock);
7151 	return 0;
7152 }
7153 
7154 static int is_mddev_idle(struct mddev *mddev, int init)
7155 {
7156 	struct md_rdev * rdev;
7157 	int idle;
7158 	int curr_events;
7159 
7160 	idle = 1;
7161 	rcu_read_lock();
7162 	rdev_for_each_rcu(rdev, mddev) {
7163 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7164 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7165 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7166 			      atomic_read(&disk->sync_io);
7167 		/* sync IO will cause sync_io to increase before the disk_stats
7168 		 * as sync_io is counted when a request starts, and
7169 		 * disk_stats is counted when it completes.
7170 		 * So resync activity will cause curr_events to be smaller than
7171 		 * when there was no such activity.
7172 		 * non-sync IO will cause disk_stat to increase without
7173 		 * increasing sync_io so curr_events will (eventually)
7174 		 * be larger than it was before.  Once it becomes
7175 		 * substantially larger, the test below will cause
7176 		 * the array to appear non-idle, and resync will slow
7177 		 * down.
7178 		 * If there is a lot of outstanding resync activity when
7179 		 * we set last_event to curr_events, then all that activity
7180 		 * completing might cause the array to appear non-idle
7181 		 * and resync will be slowed down even though there might
7182 		 * not have been non-resync activity.  This will only
7183 		 * happen once though.  'last_events' will soon reflect
7184 		 * the state where there is little or no outstanding
7185 		 * resync requests, and further resync activity will
7186 		 * always make curr_events less than last_events.
7187 		 *
7188 		 */
7189 		if (init || curr_events - rdev->last_events > 64) {
7190 			rdev->last_events = curr_events;
7191 			idle = 0;
7192 		}
7193 	}
7194 	rcu_read_unlock();
7195 	return idle;
7196 }
7197 
7198 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7199 {
7200 	/* another "blocks" (512byte) blocks have been synced */
7201 	atomic_sub(blocks, &mddev->recovery_active);
7202 	wake_up(&mddev->recovery_wait);
7203 	if (!ok) {
7204 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7205 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7206 		md_wakeup_thread(mddev->thread);
7207 		// stop recovery, signal do_sync ....
7208 	}
7209 }
7210 
7211 
7212 /* md_write_start(mddev, bi)
7213  * If we need to update some array metadata (e.g. 'active' flag
7214  * in superblock) before writing, schedule a superblock update
7215  * and wait for it to complete.
7216  */
7217 void md_write_start(struct mddev *mddev, struct bio *bi)
7218 {
7219 	int did_change = 0;
7220 	if (bio_data_dir(bi) != WRITE)
7221 		return;
7222 
7223 	BUG_ON(mddev->ro == 1);
7224 	if (mddev->ro == 2) {
7225 		/* need to switch to read/write */
7226 		mddev->ro = 0;
7227 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7228 		md_wakeup_thread(mddev->thread);
7229 		md_wakeup_thread(mddev->sync_thread);
7230 		did_change = 1;
7231 	}
7232 	atomic_inc(&mddev->writes_pending);
7233 	if (mddev->safemode == 1)
7234 		mddev->safemode = 0;
7235 	if (mddev->in_sync) {
7236 		spin_lock_irq(&mddev->write_lock);
7237 		if (mddev->in_sync) {
7238 			mddev->in_sync = 0;
7239 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7240 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7241 			md_wakeup_thread(mddev->thread);
7242 			did_change = 1;
7243 		}
7244 		spin_unlock_irq(&mddev->write_lock);
7245 	}
7246 	if (did_change)
7247 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7248 	wait_event(mddev->sb_wait,
7249 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7250 }
7251 
7252 void md_write_end(struct mddev *mddev)
7253 {
7254 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7255 		if (mddev->safemode == 2)
7256 			md_wakeup_thread(mddev->thread);
7257 		else if (mddev->safemode_delay)
7258 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7259 	}
7260 }
7261 
7262 /* md_allow_write(mddev)
7263  * Calling this ensures that the array is marked 'active' so that writes
7264  * may proceed without blocking.  It is important to call this before
7265  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7266  * Must be called with mddev_lock held.
7267  *
7268  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7269  * is dropped, so return -EAGAIN after notifying userspace.
7270  */
7271 int md_allow_write(struct mddev *mddev)
7272 {
7273 	if (!mddev->pers)
7274 		return 0;
7275 	if (mddev->ro)
7276 		return 0;
7277 	if (!mddev->pers->sync_request)
7278 		return 0;
7279 
7280 	spin_lock_irq(&mddev->write_lock);
7281 	if (mddev->in_sync) {
7282 		mddev->in_sync = 0;
7283 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7284 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7285 		if (mddev->safemode_delay &&
7286 		    mddev->safemode == 0)
7287 			mddev->safemode = 1;
7288 		spin_unlock_irq(&mddev->write_lock);
7289 		md_update_sb(mddev, 0);
7290 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7291 	} else
7292 		spin_unlock_irq(&mddev->write_lock);
7293 
7294 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7295 		return -EAGAIN;
7296 	else
7297 		return 0;
7298 }
7299 EXPORT_SYMBOL_GPL(md_allow_write);
7300 
7301 #define SYNC_MARKS	10
7302 #define	SYNC_MARK_STEP	(3*HZ)
7303 #define UPDATE_FREQUENCY (5*60*HZ)
7304 void md_do_sync(struct md_thread *thread)
7305 {
7306 	struct mddev *mddev = thread->mddev;
7307 	struct mddev *mddev2;
7308 	unsigned int currspeed = 0,
7309 		 window;
7310 	sector_t max_sectors,j, io_sectors;
7311 	unsigned long mark[SYNC_MARKS];
7312 	unsigned long update_time;
7313 	sector_t mark_cnt[SYNC_MARKS];
7314 	int last_mark,m;
7315 	struct list_head *tmp;
7316 	sector_t last_check;
7317 	int skipped = 0;
7318 	struct md_rdev *rdev;
7319 	char *desc, *action = NULL;
7320 	struct blk_plug plug;
7321 
7322 	/* just incase thread restarts... */
7323 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7324 		return;
7325 	if (mddev->ro) /* never try to sync a read-only array */
7326 		return;
7327 
7328 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7329 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7330 			desc = "data-check";
7331 			action = "check";
7332 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7333 			desc = "requested-resync";
7334 			action = "repair";
7335 		} else
7336 			desc = "resync";
7337 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7338 		desc = "reshape";
7339 	else
7340 		desc = "recovery";
7341 
7342 	mddev->last_sync_action = action ?: desc;
7343 
7344 	/* we overload curr_resync somewhat here.
7345 	 * 0 == not engaged in resync at all
7346 	 * 2 == checking that there is no conflict with another sync
7347 	 * 1 == like 2, but have yielded to allow conflicting resync to
7348 	 *		commense
7349 	 * other == active in resync - this many blocks
7350 	 *
7351 	 * Before starting a resync we must have set curr_resync to
7352 	 * 2, and then checked that every "conflicting" array has curr_resync
7353 	 * less than ours.  When we find one that is the same or higher
7354 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7355 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7356 	 * This will mean we have to start checking from the beginning again.
7357 	 *
7358 	 */
7359 
7360 	do {
7361 		mddev->curr_resync = 2;
7362 
7363 	try_again:
7364 		if (kthread_should_stop())
7365 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7366 
7367 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7368 			goto skip;
7369 		for_each_mddev(mddev2, tmp) {
7370 			if (mddev2 == mddev)
7371 				continue;
7372 			if (!mddev->parallel_resync
7373 			&&  mddev2->curr_resync
7374 			&&  match_mddev_units(mddev, mddev2)) {
7375 				DEFINE_WAIT(wq);
7376 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7377 					/* arbitrarily yield */
7378 					mddev->curr_resync = 1;
7379 					wake_up(&resync_wait);
7380 				}
7381 				if (mddev > mddev2 && mddev->curr_resync == 1)
7382 					/* no need to wait here, we can wait the next
7383 					 * time 'round when curr_resync == 2
7384 					 */
7385 					continue;
7386 				/* We need to wait 'interruptible' so as not to
7387 				 * contribute to the load average, and not to
7388 				 * be caught by 'softlockup'
7389 				 */
7390 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7391 				if (!kthread_should_stop() &&
7392 				    mddev2->curr_resync >= mddev->curr_resync) {
7393 					printk(KERN_INFO "md: delaying %s of %s"
7394 					       " until %s has finished (they"
7395 					       " share one or more physical units)\n",
7396 					       desc, mdname(mddev), mdname(mddev2));
7397 					mddev_put(mddev2);
7398 					if (signal_pending(current))
7399 						flush_signals(current);
7400 					schedule();
7401 					finish_wait(&resync_wait, &wq);
7402 					goto try_again;
7403 				}
7404 				finish_wait(&resync_wait, &wq);
7405 			}
7406 		}
7407 	} while (mddev->curr_resync < 2);
7408 
7409 	j = 0;
7410 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7411 		/* resync follows the size requested by the personality,
7412 		 * which defaults to physical size, but can be virtual size
7413 		 */
7414 		max_sectors = mddev->resync_max_sectors;
7415 		atomic64_set(&mddev->resync_mismatches, 0);
7416 		/* we don't use the checkpoint if there's a bitmap */
7417 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7418 			j = mddev->resync_min;
7419 		else if (!mddev->bitmap)
7420 			j = mddev->recovery_cp;
7421 
7422 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7423 		max_sectors = mddev->resync_max_sectors;
7424 	else {
7425 		/* recovery follows the physical size of devices */
7426 		max_sectors = mddev->dev_sectors;
7427 		j = MaxSector;
7428 		rcu_read_lock();
7429 		rdev_for_each_rcu(rdev, mddev)
7430 			if (rdev->raid_disk >= 0 &&
7431 			    !test_bit(Faulty, &rdev->flags) &&
7432 			    !test_bit(In_sync, &rdev->flags) &&
7433 			    rdev->recovery_offset < j)
7434 				j = rdev->recovery_offset;
7435 		rcu_read_unlock();
7436 	}
7437 
7438 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7439 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7440 		" %d KB/sec/disk.\n", speed_min(mddev));
7441 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7442 	       "(but not more than %d KB/sec) for %s.\n",
7443 	       speed_max(mddev), desc);
7444 
7445 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7446 
7447 	io_sectors = 0;
7448 	for (m = 0; m < SYNC_MARKS; m++) {
7449 		mark[m] = jiffies;
7450 		mark_cnt[m] = io_sectors;
7451 	}
7452 	last_mark = 0;
7453 	mddev->resync_mark = mark[last_mark];
7454 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7455 
7456 	/*
7457 	 * Tune reconstruction:
7458 	 */
7459 	window = 32*(PAGE_SIZE/512);
7460 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7461 		window/2, (unsigned long long)max_sectors/2);
7462 
7463 	atomic_set(&mddev->recovery_active, 0);
7464 	last_check = 0;
7465 
7466 	if (j>2) {
7467 		printk(KERN_INFO
7468 		       "md: resuming %s of %s from checkpoint.\n",
7469 		       desc, mdname(mddev));
7470 		mddev->curr_resync = j;
7471 	} else
7472 		mddev->curr_resync = 3; /* no longer delayed */
7473 	mddev->curr_resync_completed = j;
7474 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7475 	md_new_event(mddev);
7476 	update_time = jiffies;
7477 
7478 	blk_start_plug(&plug);
7479 	while (j < max_sectors) {
7480 		sector_t sectors;
7481 
7482 		skipped = 0;
7483 
7484 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7485 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7486 		      (mddev->curr_resync - mddev->curr_resync_completed)
7487 		      > (max_sectors >> 4)) ||
7488 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7489 		     (j - mddev->curr_resync_completed)*2
7490 		     >= mddev->resync_max - mddev->curr_resync_completed
7491 			    )) {
7492 			/* time to update curr_resync_completed */
7493 			wait_event(mddev->recovery_wait,
7494 				   atomic_read(&mddev->recovery_active) == 0);
7495 			mddev->curr_resync_completed = j;
7496 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7497 			    j > mddev->recovery_cp)
7498 				mddev->recovery_cp = j;
7499 			update_time = jiffies;
7500 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7501 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7502 		}
7503 
7504 		while (j >= mddev->resync_max && !kthread_should_stop()) {
7505 			/* As this condition is controlled by user-space,
7506 			 * we can block indefinitely, so use '_interruptible'
7507 			 * to avoid triggering warnings.
7508 			 */
7509 			flush_signals(current); /* just in case */
7510 			wait_event_interruptible(mddev->recovery_wait,
7511 						 mddev->resync_max > j
7512 						 || kthread_should_stop());
7513 		}
7514 
7515 		if (kthread_should_stop())
7516 			goto interrupted;
7517 
7518 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7519 						  currspeed < speed_min(mddev));
7520 		if (sectors == 0) {
7521 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7522 			goto out;
7523 		}
7524 
7525 		if (!skipped) { /* actual IO requested */
7526 			io_sectors += sectors;
7527 			atomic_add(sectors, &mddev->recovery_active);
7528 		}
7529 
7530 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7531 			break;
7532 
7533 		j += sectors;
7534 		if (j > 2)
7535 			mddev->curr_resync = j;
7536 		mddev->curr_mark_cnt = io_sectors;
7537 		if (last_check == 0)
7538 			/* this is the earliest that rebuild will be
7539 			 * visible in /proc/mdstat
7540 			 */
7541 			md_new_event(mddev);
7542 
7543 		if (last_check + window > io_sectors || j == max_sectors)
7544 			continue;
7545 
7546 		last_check = io_sectors;
7547 	repeat:
7548 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7549 			/* step marks */
7550 			int next = (last_mark+1) % SYNC_MARKS;
7551 
7552 			mddev->resync_mark = mark[next];
7553 			mddev->resync_mark_cnt = mark_cnt[next];
7554 			mark[next] = jiffies;
7555 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7556 			last_mark = next;
7557 		}
7558 
7559 
7560 		if (kthread_should_stop())
7561 			goto interrupted;
7562 
7563 
7564 		/*
7565 		 * this loop exits only if either when we are slower than
7566 		 * the 'hard' speed limit, or the system was IO-idle for
7567 		 * a jiffy.
7568 		 * the system might be non-idle CPU-wise, but we only care
7569 		 * about not overloading the IO subsystem. (things like an
7570 		 * e2fsck being done on the RAID array should execute fast)
7571 		 */
7572 		cond_resched();
7573 
7574 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7575 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7576 
7577 		if (currspeed > speed_min(mddev)) {
7578 			if ((currspeed > speed_max(mddev)) ||
7579 					!is_mddev_idle(mddev, 0)) {
7580 				msleep(500);
7581 				goto repeat;
7582 			}
7583 		}
7584 	}
7585 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7586 	/*
7587 	 * this also signals 'finished resyncing' to md_stop
7588 	 */
7589  out:
7590 	blk_finish_plug(&plug);
7591 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7592 
7593 	/* tell personality that we are finished */
7594 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7595 
7596 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7597 	    mddev->curr_resync > 2) {
7598 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7599 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7600 				if (mddev->curr_resync >= mddev->recovery_cp) {
7601 					printk(KERN_INFO
7602 					       "md: checkpointing %s of %s.\n",
7603 					       desc, mdname(mddev));
7604 					if (test_bit(MD_RECOVERY_ERROR,
7605 						&mddev->recovery))
7606 						mddev->recovery_cp =
7607 							mddev->curr_resync_completed;
7608 					else
7609 						mddev->recovery_cp =
7610 							mddev->curr_resync;
7611 				}
7612 			} else
7613 				mddev->recovery_cp = MaxSector;
7614 		} else {
7615 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7616 				mddev->curr_resync = MaxSector;
7617 			rcu_read_lock();
7618 			rdev_for_each_rcu(rdev, mddev)
7619 				if (rdev->raid_disk >= 0 &&
7620 				    mddev->delta_disks >= 0 &&
7621 				    !test_bit(Faulty, &rdev->flags) &&
7622 				    !test_bit(In_sync, &rdev->flags) &&
7623 				    rdev->recovery_offset < mddev->curr_resync)
7624 					rdev->recovery_offset = mddev->curr_resync;
7625 			rcu_read_unlock();
7626 		}
7627 	}
7628  skip:
7629 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7630 
7631 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7632 		/* We completed so min/max setting can be forgotten if used. */
7633 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7634 			mddev->resync_min = 0;
7635 		mddev->resync_max = MaxSector;
7636 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7637 		mddev->resync_min = mddev->curr_resync_completed;
7638 	mddev->curr_resync = 0;
7639 	wake_up(&resync_wait);
7640 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7641 	md_wakeup_thread(mddev->thread);
7642 	return;
7643 
7644  interrupted:
7645 	/*
7646 	 * got a signal, exit.
7647 	 */
7648 	printk(KERN_INFO
7649 	       "md: md_do_sync() got signal ... exiting\n");
7650 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7651 	goto out;
7652 
7653 }
7654 EXPORT_SYMBOL_GPL(md_do_sync);
7655 
7656 static int remove_and_add_spares(struct mddev *mddev,
7657 				 struct md_rdev *this)
7658 {
7659 	struct md_rdev *rdev;
7660 	int spares = 0;
7661 	int removed = 0;
7662 
7663 	rdev_for_each(rdev, mddev)
7664 		if ((this == NULL || rdev == this) &&
7665 		    rdev->raid_disk >= 0 &&
7666 		    !test_bit(Blocked, &rdev->flags) &&
7667 		    (test_bit(Faulty, &rdev->flags) ||
7668 		     ! test_bit(In_sync, &rdev->flags)) &&
7669 		    atomic_read(&rdev->nr_pending)==0) {
7670 			if (mddev->pers->hot_remove_disk(
7671 				    mddev, rdev) == 0) {
7672 				sysfs_unlink_rdev(mddev, rdev);
7673 				rdev->raid_disk = -1;
7674 				removed++;
7675 			}
7676 		}
7677 	if (removed && mddev->kobj.sd)
7678 		sysfs_notify(&mddev->kobj, NULL, "degraded");
7679 
7680 	if (this)
7681 		goto no_add;
7682 
7683 	rdev_for_each(rdev, mddev) {
7684 		if (rdev->raid_disk >= 0 &&
7685 		    !test_bit(In_sync, &rdev->flags) &&
7686 		    !test_bit(Faulty, &rdev->flags))
7687 			spares++;
7688 		if (rdev->raid_disk >= 0)
7689 			continue;
7690 		if (test_bit(Faulty, &rdev->flags))
7691 			continue;
7692 		if (mddev->ro &&
7693 		    rdev->saved_raid_disk < 0)
7694 			continue;
7695 
7696 		rdev->recovery_offset = 0;
7697 		if (mddev->pers->
7698 		    hot_add_disk(mddev, rdev) == 0) {
7699 			if (sysfs_link_rdev(mddev, rdev))
7700 				/* failure here is OK */;
7701 			spares++;
7702 			md_new_event(mddev);
7703 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7704 		}
7705 	}
7706 no_add:
7707 	if (removed)
7708 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7709 	return spares;
7710 }
7711 
7712 /*
7713  * This routine is regularly called by all per-raid-array threads to
7714  * deal with generic issues like resync and super-block update.
7715  * Raid personalities that don't have a thread (linear/raid0) do not
7716  * need this as they never do any recovery or update the superblock.
7717  *
7718  * It does not do any resync itself, but rather "forks" off other threads
7719  * to do that as needed.
7720  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7721  * "->recovery" and create a thread at ->sync_thread.
7722  * When the thread finishes it sets MD_RECOVERY_DONE
7723  * and wakeups up this thread which will reap the thread and finish up.
7724  * This thread also removes any faulty devices (with nr_pending == 0).
7725  *
7726  * The overall approach is:
7727  *  1/ if the superblock needs updating, update it.
7728  *  2/ If a recovery thread is running, don't do anything else.
7729  *  3/ If recovery has finished, clean up, possibly marking spares active.
7730  *  4/ If there are any faulty devices, remove them.
7731  *  5/ If array is degraded, try to add spares devices
7732  *  6/ If array has spares or is not in-sync, start a resync thread.
7733  */
7734 void md_check_recovery(struct mddev *mddev)
7735 {
7736 	if (mddev->suspended)
7737 		return;
7738 
7739 	if (mddev->bitmap)
7740 		bitmap_daemon_work(mddev);
7741 
7742 	if (signal_pending(current)) {
7743 		if (mddev->pers->sync_request && !mddev->external) {
7744 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7745 			       mdname(mddev));
7746 			mddev->safemode = 2;
7747 		}
7748 		flush_signals(current);
7749 	}
7750 
7751 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7752 		return;
7753 	if ( ! (
7754 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7755 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7756 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7757 		(mddev->external == 0 && mddev->safemode == 1) ||
7758 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7759 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7760 		))
7761 		return;
7762 
7763 	if (mddev_trylock(mddev)) {
7764 		int spares = 0;
7765 
7766 		if (mddev->ro) {
7767 			/* On a read-only array we can:
7768 			 * - remove failed devices
7769 			 * - add already-in_sync devices if the array itself
7770 			 *   is in-sync.
7771 			 * As we only add devices that are already in-sync,
7772 			 * we can activate the spares immediately.
7773 			 */
7774 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7775 			remove_and_add_spares(mddev, NULL);
7776 			mddev->pers->spare_active(mddev);
7777 			goto unlock;
7778 		}
7779 
7780 		if (!mddev->external) {
7781 			int did_change = 0;
7782 			spin_lock_irq(&mddev->write_lock);
7783 			if (mddev->safemode &&
7784 			    !atomic_read(&mddev->writes_pending) &&
7785 			    !mddev->in_sync &&
7786 			    mddev->recovery_cp == MaxSector) {
7787 				mddev->in_sync = 1;
7788 				did_change = 1;
7789 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7790 			}
7791 			if (mddev->safemode == 1)
7792 				mddev->safemode = 0;
7793 			spin_unlock_irq(&mddev->write_lock);
7794 			if (did_change)
7795 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7796 		}
7797 
7798 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
7799 			md_update_sb(mddev, 0);
7800 
7801 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7802 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7803 			/* resync/recovery still happening */
7804 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7805 			goto unlock;
7806 		}
7807 		if (mddev->sync_thread) {
7808 			md_reap_sync_thread(mddev);
7809 			goto unlock;
7810 		}
7811 		/* Set RUNNING before clearing NEEDED to avoid
7812 		 * any transients in the value of "sync_action".
7813 		 */
7814 		mddev->curr_resync_completed = 0;
7815 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7816 		/* Clear some bits that don't mean anything, but
7817 		 * might be left set
7818 		 */
7819 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7820 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7821 
7822 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7823 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7824 			goto unlock;
7825 		/* no recovery is running.
7826 		 * remove any failed drives, then
7827 		 * add spares if possible.
7828 		 * Spares are also removed and re-added, to allow
7829 		 * the personality to fail the re-add.
7830 		 */
7831 
7832 		if (mddev->reshape_position != MaxSector) {
7833 			if (mddev->pers->check_reshape == NULL ||
7834 			    mddev->pers->check_reshape(mddev) != 0)
7835 				/* Cannot proceed */
7836 				goto unlock;
7837 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7838 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7839 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
7840 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7841 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7842 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7843 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7844 		} else if (mddev->recovery_cp < MaxSector) {
7845 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7846 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7847 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7848 			/* nothing to be done ... */
7849 			goto unlock;
7850 
7851 		if (mddev->pers->sync_request) {
7852 			if (spares) {
7853 				/* We are adding a device or devices to an array
7854 				 * which has the bitmap stored on all devices.
7855 				 * So make sure all bitmap pages get written
7856 				 */
7857 				bitmap_write_all(mddev->bitmap);
7858 			}
7859 			mddev->sync_thread = md_register_thread(md_do_sync,
7860 								mddev,
7861 								"resync");
7862 			if (!mddev->sync_thread) {
7863 				printk(KERN_ERR "%s: could not start resync"
7864 					" thread...\n",
7865 					mdname(mddev));
7866 				/* leave the spares where they are, it shouldn't hurt */
7867 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7868 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7869 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7870 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7871 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7872 			} else
7873 				md_wakeup_thread(mddev->sync_thread);
7874 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7875 			md_new_event(mddev);
7876 		}
7877 	unlock:
7878 		wake_up(&mddev->sb_wait);
7879 
7880 		if (!mddev->sync_thread) {
7881 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7882 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7883 					       &mddev->recovery))
7884 				if (mddev->sysfs_action)
7885 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7886 		}
7887 		mddev_unlock(mddev);
7888 	}
7889 }
7890 
7891 void md_reap_sync_thread(struct mddev *mddev)
7892 {
7893 	struct md_rdev *rdev;
7894 
7895 	/* resync has finished, collect result */
7896 	md_unregister_thread(&mddev->sync_thread);
7897 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7898 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7899 		/* success...*/
7900 		/* activate any spares */
7901 		if (mddev->pers->spare_active(mddev)) {
7902 			sysfs_notify(&mddev->kobj, NULL,
7903 				     "degraded");
7904 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7905 		}
7906 	}
7907 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7908 	    mddev->pers->finish_reshape)
7909 		mddev->pers->finish_reshape(mddev);
7910 
7911 	/* If array is no-longer degraded, then any saved_raid_disk
7912 	 * information must be scrapped.  Also if any device is now
7913 	 * In_sync we must scrape the saved_raid_disk for that device
7914 	 * do the superblock for an incrementally recovered device
7915 	 * written out.
7916 	 */
7917 	rdev_for_each(rdev, mddev)
7918 		if (!mddev->degraded ||
7919 		    test_bit(In_sync, &rdev->flags))
7920 			rdev->saved_raid_disk = -1;
7921 
7922 	md_update_sb(mddev, 1);
7923 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7924 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7925 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7926 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7927 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7928 	/* flag recovery needed just to double check */
7929 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7930 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7931 	md_new_event(mddev);
7932 	if (mddev->event_work.func)
7933 		queue_work(md_misc_wq, &mddev->event_work);
7934 }
7935 
7936 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7937 {
7938 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7939 	wait_event_timeout(rdev->blocked_wait,
7940 			   !test_bit(Blocked, &rdev->flags) &&
7941 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7942 			   msecs_to_jiffies(5000));
7943 	rdev_dec_pending(rdev, mddev);
7944 }
7945 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7946 
7947 void md_finish_reshape(struct mddev *mddev)
7948 {
7949 	/* called be personality module when reshape completes. */
7950 	struct md_rdev *rdev;
7951 
7952 	rdev_for_each(rdev, mddev) {
7953 		if (rdev->data_offset > rdev->new_data_offset)
7954 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7955 		else
7956 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7957 		rdev->data_offset = rdev->new_data_offset;
7958 	}
7959 }
7960 EXPORT_SYMBOL(md_finish_reshape);
7961 
7962 /* Bad block management.
7963  * We can record which blocks on each device are 'bad' and so just
7964  * fail those blocks, or that stripe, rather than the whole device.
7965  * Entries in the bad-block table are 64bits wide.  This comprises:
7966  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7967  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7968  *  A 'shift' can be set so that larger blocks are tracked and
7969  *  consequently larger devices can be covered.
7970  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7971  *
7972  * Locking of the bad-block table uses a seqlock so md_is_badblock
7973  * might need to retry if it is very unlucky.
7974  * We will sometimes want to check for bad blocks in a bi_end_io function,
7975  * so we use the write_seqlock_irq variant.
7976  *
7977  * When looking for a bad block we specify a range and want to
7978  * know if any block in the range is bad.  So we binary-search
7979  * to the last range that starts at-or-before the given endpoint,
7980  * (or "before the sector after the target range")
7981  * then see if it ends after the given start.
7982  * We return
7983  *  0 if there are no known bad blocks in the range
7984  *  1 if there are known bad block which are all acknowledged
7985  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7986  * plus the start/length of the first bad section we overlap.
7987  */
7988 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7989 		   sector_t *first_bad, int *bad_sectors)
7990 {
7991 	int hi;
7992 	int lo;
7993 	u64 *p = bb->page;
7994 	int rv;
7995 	sector_t target = s + sectors;
7996 	unsigned seq;
7997 
7998 	if (bb->shift > 0) {
7999 		/* round the start down, and the end up */
8000 		s >>= bb->shift;
8001 		target += (1<<bb->shift) - 1;
8002 		target >>= bb->shift;
8003 		sectors = target - s;
8004 	}
8005 	/* 'target' is now the first block after the bad range */
8006 
8007 retry:
8008 	seq = read_seqbegin(&bb->lock);
8009 	lo = 0;
8010 	rv = 0;
8011 	hi = bb->count;
8012 
8013 	/* Binary search between lo and hi for 'target'
8014 	 * i.e. for the last range that starts before 'target'
8015 	 */
8016 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8017 	 * are known not to be the last range before target.
8018 	 * VARIANT: hi-lo is the number of possible
8019 	 * ranges, and decreases until it reaches 1
8020 	 */
8021 	while (hi - lo > 1) {
8022 		int mid = (lo + hi) / 2;
8023 		sector_t a = BB_OFFSET(p[mid]);
8024 		if (a < target)
8025 			/* This could still be the one, earlier ranges
8026 			 * could not. */
8027 			lo = mid;
8028 		else
8029 			/* This and later ranges are definitely out. */
8030 			hi = mid;
8031 	}
8032 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8033 	if (hi > lo) {
8034 		/* need to check all range that end after 's' to see if
8035 		 * any are unacknowledged.
8036 		 */
8037 		while (lo >= 0 &&
8038 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8039 			if (BB_OFFSET(p[lo]) < target) {
8040 				/* starts before the end, and finishes after
8041 				 * the start, so they must overlap
8042 				 */
8043 				if (rv != -1 && BB_ACK(p[lo]))
8044 					rv = 1;
8045 				else
8046 					rv = -1;
8047 				*first_bad = BB_OFFSET(p[lo]);
8048 				*bad_sectors = BB_LEN(p[lo]);
8049 			}
8050 			lo--;
8051 		}
8052 	}
8053 
8054 	if (read_seqretry(&bb->lock, seq))
8055 		goto retry;
8056 
8057 	return rv;
8058 }
8059 EXPORT_SYMBOL_GPL(md_is_badblock);
8060 
8061 /*
8062  * Add a range of bad blocks to the table.
8063  * This might extend the table, or might contract it
8064  * if two adjacent ranges can be merged.
8065  * We binary-search to find the 'insertion' point, then
8066  * decide how best to handle it.
8067  */
8068 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8069 			    int acknowledged)
8070 {
8071 	u64 *p;
8072 	int lo, hi;
8073 	int rv = 1;
8074 	unsigned long flags;
8075 
8076 	if (bb->shift < 0)
8077 		/* badblocks are disabled */
8078 		return 0;
8079 
8080 	if (bb->shift) {
8081 		/* round the start down, and the end up */
8082 		sector_t next = s + sectors;
8083 		s >>= bb->shift;
8084 		next += (1<<bb->shift) - 1;
8085 		next >>= bb->shift;
8086 		sectors = next - s;
8087 	}
8088 
8089 	write_seqlock_irqsave(&bb->lock, flags);
8090 
8091 	p = bb->page;
8092 	lo = 0;
8093 	hi = bb->count;
8094 	/* Find the last range that starts at-or-before 's' */
8095 	while (hi - lo > 1) {
8096 		int mid = (lo + hi) / 2;
8097 		sector_t a = BB_OFFSET(p[mid]);
8098 		if (a <= s)
8099 			lo = mid;
8100 		else
8101 			hi = mid;
8102 	}
8103 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8104 		hi = lo;
8105 
8106 	if (hi > lo) {
8107 		/* we found a range that might merge with the start
8108 		 * of our new range
8109 		 */
8110 		sector_t a = BB_OFFSET(p[lo]);
8111 		sector_t e = a + BB_LEN(p[lo]);
8112 		int ack = BB_ACK(p[lo]);
8113 		if (e >= s) {
8114 			/* Yes, we can merge with a previous range */
8115 			if (s == a && s + sectors >= e)
8116 				/* new range covers old */
8117 				ack = acknowledged;
8118 			else
8119 				ack = ack && acknowledged;
8120 
8121 			if (e < s + sectors)
8122 				e = s + sectors;
8123 			if (e - a <= BB_MAX_LEN) {
8124 				p[lo] = BB_MAKE(a, e-a, ack);
8125 				s = e;
8126 			} else {
8127 				/* does not all fit in one range,
8128 				 * make p[lo] maximal
8129 				 */
8130 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8131 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8132 				s = a + BB_MAX_LEN;
8133 			}
8134 			sectors = e - s;
8135 		}
8136 	}
8137 	if (sectors && hi < bb->count) {
8138 		/* 'hi' points to the first range that starts after 's'.
8139 		 * Maybe we can merge with the start of that range */
8140 		sector_t a = BB_OFFSET(p[hi]);
8141 		sector_t e = a + BB_LEN(p[hi]);
8142 		int ack = BB_ACK(p[hi]);
8143 		if (a <= s + sectors) {
8144 			/* merging is possible */
8145 			if (e <= s + sectors) {
8146 				/* full overlap */
8147 				e = s + sectors;
8148 				ack = acknowledged;
8149 			} else
8150 				ack = ack && acknowledged;
8151 
8152 			a = s;
8153 			if (e - a <= BB_MAX_LEN) {
8154 				p[hi] = BB_MAKE(a, e-a, ack);
8155 				s = e;
8156 			} else {
8157 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8158 				s = a + BB_MAX_LEN;
8159 			}
8160 			sectors = e - s;
8161 			lo = hi;
8162 			hi++;
8163 		}
8164 	}
8165 	if (sectors == 0 && hi < bb->count) {
8166 		/* we might be able to combine lo and hi */
8167 		/* Note: 's' is at the end of 'lo' */
8168 		sector_t a = BB_OFFSET(p[hi]);
8169 		int lolen = BB_LEN(p[lo]);
8170 		int hilen = BB_LEN(p[hi]);
8171 		int newlen = lolen + hilen - (s - a);
8172 		if (s >= a && newlen < BB_MAX_LEN) {
8173 			/* yes, we can combine them */
8174 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8175 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8176 			memmove(p + hi, p + hi + 1,
8177 				(bb->count - hi - 1) * 8);
8178 			bb->count--;
8179 		}
8180 	}
8181 	while (sectors) {
8182 		/* didn't merge (it all).
8183 		 * Need to add a range just before 'hi' */
8184 		if (bb->count >= MD_MAX_BADBLOCKS) {
8185 			/* No room for more */
8186 			rv = 0;
8187 			break;
8188 		} else {
8189 			int this_sectors = sectors;
8190 			memmove(p + hi + 1, p + hi,
8191 				(bb->count - hi) * 8);
8192 			bb->count++;
8193 
8194 			if (this_sectors > BB_MAX_LEN)
8195 				this_sectors = BB_MAX_LEN;
8196 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8197 			sectors -= this_sectors;
8198 			s += this_sectors;
8199 		}
8200 	}
8201 
8202 	bb->changed = 1;
8203 	if (!acknowledged)
8204 		bb->unacked_exist = 1;
8205 	write_sequnlock_irqrestore(&bb->lock, flags);
8206 
8207 	return rv;
8208 }
8209 
8210 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8211 		       int is_new)
8212 {
8213 	int rv;
8214 	if (is_new)
8215 		s += rdev->new_data_offset;
8216 	else
8217 		s += rdev->data_offset;
8218 	rv = md_set_badblocks(&rdev->badblocks,
8219 			      s, sectors, 0);
8220 	if (rv) {
8221 		/* Make sure they get written out promptly */
8222 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8223 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8224 		md_wakeup_thread(rdev->mddev->thread);
8225 	}
8226 	return rv;
8227 }
8228 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8229 
8230 /*
8231  * Remove a range of bad blocks from the table.
8232  * This may involve extending the table if we spilt a region,
8233  * but it must not fail.  So if the table becomes full, we just
8234  * drop the remove request.
8235  */
8236 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8237 {
8238 	u64 *p;
8239 	int lo, hi;
8240 	sector_t target = s + sectors;
8241 	int rv = 0;
8242 
8243 	if (bb->shift > 0) {
8244 		/* When clearing we round the start up and the end down.
8245 		 * This should not matter as the shift should align with
8246 		 * the block size and no rounding should ever be needed.
8247 		 * However it is better the think a block is bad when it
8248 		 * isn't than to think a block is not bad when it is.
8249 		 */
8250 		s += (1<<bb->shift) - 1;
8251 		s >>= bb->shift;
8252 		target >>= bb->shift;
8253 		sectors = target - s;
8254 	}
8255 
8256 	write_seqlock_irq(&bb->lock);
8257 
8258 	p = bb->page;
8259 	lo = 0;
8260 	hi = bb->count;
8261 	/* Find the last range that starts before 'target' */
8262 	while (hi - lo > 1) {
8263 		int mid = (lo + hi) / 2;
8264 		sector_t a = BB_OFFSET(p[mid]);
8265 		if (a < target)
8266 			lo = mid;
8267 		else
8268 			hi = mid;
8269 	}
8270 	if (hi > lo) {
8271 		/* p[lo] is the last range that could overlap the
8272 		 * current range.  Earlier ranges could also overlap,
8273 		 * but only this one can overlap the end of the range.
8274 		 */
8275 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8276 			/* Partial overlap, leave the tail of this range */
8277 			int ack = BB_ACK(p[lo]);
8278 			sector_t a = BB_OFFSET(p[lo]);
8279 			sector_t end = a + BB_LEN(p[lo]);
8280 
8281 			if (a < s) {
8282 				/* we need to split this range */
8283 				if (bb->count >= MD_MAX_BADBLOCKS) {
8284 					rv = 0;
8285 					goto out;
8286 				}
8287 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8288 				bb->count++;
8289 				p[lo] = BB_MAKE(a, s-a, ack);
8290 				lo++;
8291 			}
8292 			p[lo] = BB_MAKE(target, end - target, ack);
8293 			/* there is no longer an overlap */
8294 			hi = lo;
8295 			lo--;
8296 		}
8297 		while (lo >= 0 &&
8298 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8299 			/* This range does overlap */
8300 			if (BB_OFFSET(p[lo]) < s) {
8301 				/* Keep the early parts of this range. */
8302 				int ack = BB_ACK(p[lo]);
8303 				sector_t start = BB_OFFSET(p[lo]);
8304 				p[lo] = BB_MAKE(start, s - start, ack);
8305 				/* now low doesn't overlap, so.. */
8306 				break;
8307 			}
8308 			lo--;
8309 		}
8310 		/* 'lo' is strictly before, 'hi' is strictly after,
8311 		 * anything between needs to be discarded
8312 		 */
8313 		if (hi - lo > 1) {
8314 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8315 			bb->count -= (hi - lo - 1);
8316 		}
8317 	}
8318 
8319 	bb->changed = 1;
8320 out:
8321 	write_sequnlock_irq(&bb->lock);
8322 	return rv;
8323 }
8324 
8325 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8326 			 int is_new)
8327 {
8328 	if (is_new)
8329 		s += rdev->new_data_offset;
8330 	else
8331 		s += rdev->data_offset;
8332 	return md_clear_badblocks(&rdev->badblocks,
8333 				  s, sectors);
8334 }
8335 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8336 
8337 /*
8338  * Acknowledge all bad blocks in a list.
8339  * This only succeeds if ->changed is clear.  It is used by
8340  * in-kernel metadata updates
8341  */
8342 void md_ack_all_badblocks(struct badblocks *bb)
8343 {
8344 	if (bb->page == NULL || bb->changed)
8345 		/* no point even trying */
8346 		return;
8347 	write_seqlock_irq(&bb->lock);
8348 
8349 	if (bb->changed == 0 && bb->unacked_exist) {
8350 		u64 *p = bb->page;
8351 		int i;
8352 		for (i = 0; i < bb->count ; i++) {
8353 			if (!BB_ACK(p[i])) {
8354 				sector_t start = BB_OFFSET(p[i]);
8355 				int len = BB_LEN(p[i]);
8356 				p[i] = BB_MAKE(start, len, 1);
8357 			}
8358 		}
8359 		bb->unacked_exist = 0;
8360 	}
8361 	write_sequnlock_irq(&bb->lock);
8362 }
8363 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8364 
8365 /* sysfs access to bad-blocks list.
8366  * We present two files.
8367  * 'bad-blocks' lists sector numbers and lengths of ranges that
8368  *    are recorded as bad.  The list is truncated to fit within
8369  *    the one-page limit of sysfs.
8370  *    Writing "sector length" to this file adds an acknowledged
8371  *    bad block list.
8372  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8373  *    been acknowledged.  Writing to this file adds bad blocks
8374  *    without acknowledging them.  This is largely for testing.
8375  */
8376 
8377 static ssize_t
8378 badblocks_show(struct badblocks *bb, char *page, int unack)
8379 {
8380 	size_t len;
8381 	int i;
8382 	u64 *p = bb->page;
8383 	unsigned seq;
8384 
8385 	if (bb->shift < 0)
8386 		return 0;
8387 
8388 retry:
8389 	seq = read_seqbegin(&bb->lock);
8390 
8391 	len = 0;
8392 	i = 0;
8393 
8394 	while (len < PAGE_SIZE && i < bb->count) {
8395 		sector_t s = BB_OFFSET(p[i]);
8396 		unsigned int length = BB_LEN(p[i]);
8397 		int ack = BB_ACK(p[i]);
8398 		i++;
8399 
8400 		if (unack && ack)
8401 			continue;
8402 
8403 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8404 				(unsigned long long)s << bb->shift,
8405 				length << bb->shift);
8406 	}
8407 	if (unack && len == 0)
8408 		bb->unacked_exist = 0;
8409 
8410 	if (read_seqretry(&bb->lock, seq))
8411 		goto retry;
8412 
8413 	return len;
8414 }
8415 
8416 #define DO_DEBUG 1
8417 
8418 static ssize_t
8419 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8420 {
8421 	unsigned long long sector;
8422 	int length;
8423 	char newline;
8424 #ifdef DO_DEBUG
8425 	/* Allow clearing via sysfs *only* for testing/debugging.
8426 	 * Normally only a successful write may clear a badblock
8427 	 */
8428 	int clear = 0;
8429 	if (page[0] == '-') {
8430 		clear = 1;
8431 		page++;
8432 	}
8433 #endif /* DO_DEBUG */
8434 
8435 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8436 	case 3:
8437 		if (newline != '\n')
8438 			return -EINVAL;
8439 	case 2:
8440 		if (length <= 0)
8441 			return -EINVAL;
8442 		break;
8443 	default:
8444 		return -EINVAL;
8445 	}
8446 
8447 #ifdef DO_DEBUG
8448 	if (clear) {
8449 		md_clear_badblocks(bb, sector, length);
8450 		return len;
8451 	}
8452 #endif /* DO_DEBUG */
8453 	if (md_set_badblocks(bb, sector, length, !unack))
8454 		return len;
8455 	else
8456 		return -ENOSPC;
8457 }
8458 
8459 static int md_notify_reboot(struct notifier_block *this,
8460 			    unsigned long code, void *x)
8461 {
8462 	struct list_head *tmp;
8463 	struct mddev *mddev;
8464 	int need_delay = 0;
8465 
8466 	for_each_mddev(mddev, tmp) {
8467 		if (mddev_trylock(mddev)) {
8468 			if (mddev->pers)
8469 				__md_stop_writes(mddev);
8470 			mddev->safemode = 2;
8471 			mddev_unlock(mddev);
8472 		}
8473 		need_delay = 1;
8474 	}
8475 	/*
8476 	 * certain more exotic SCSI devices are known to be
8477 	 * volatile wrt too early system reboots. While the
8478 	 * right place to handle this issue is the given
8479 	 * driver, we do want to have a safe RAID driver ...
8480 	 */
8481 	if (need_delay)
8482 		mdelay(1000*1);
8483 
8484 	return NOTIFY_DONE;
8485 }
8486 
8487 static struct notifier_block md_notifier = {
8488 	.notifier_call	= md_notify_reboot,
8489 	.next		= NULL,
8490 	.priority	= INT_MAX, /* before any real devices */
8491 };
8492 
8493 static void md_geninit(void)
8494 {
8495 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8496 
8497 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8498 }
8499 
8500 static int __init md_init(void)
8501 {
8502 	int ret = -ENOMEM;
8503 
8504 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8505 	if (!md_wq)
8506 		goto err_wq;
8507 
8508 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8509 	if (!md_misc_wq)
8510 		goto err_misc_wq;
8511 
8512 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8513 		goto err_md;
8514 
8515 	if ((ret = register_blkdev(0, "mdp")) < 0)
8516 		goto err_mdp;
8517 	mdp_major = ret;
8518 
8519 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8520 			    md_probe, NULL, NULL);
8521 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8522 			    md_probe, NULL, NULL);
8523 
8524 	register_reboot_notifier(&md_notifier);
8525 	raid_table_header = register_sysctl_table(raid_root_table);
8526 
8527 	md_geninit();
8528 	return 0;
8529 
8530 err_mdp:
8531 	unregister_blkdev(MD_MAJOR, "md");
8532 err_md:
8533 	destroy_workqueue(md_misc_wq);
8534 err_misc_wq:
8535 	destroy_workqueue(md_wq);
8536 err_wq:
8537 	return ret;
8538 }
8539 
8540 #ifndef MODULE
8541 
8542 /*
8543  * Searches all registered partitions for autorun RAID arrays
8544  * at boot time.
8545  */
8546 
8547 static LIST_HEAD(all_detected_devices);
8548 struct detected_devices_node {
8549 	struct list_head list;
8550 	dev_t dev;
8551 };
8552 
8553 void md_autodetect_dev(dev_t dev)
8554 {
8555 	struct detected_devices_node *node_detected_dev;
8556 
8557 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8558 	if (node_detected_dev) {
8559 		node_detected_dev->dev = dev;
8560 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8561 	} else {
8562 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8563 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8564 	}
8565 }
8566 
8567 
8568 static void autostart_arrays(int part)
8569 {
8570 	struct md_rdev *rdev;
8571 	struct detected_devices_node *node_detected_dev;
8572 	dev_t dev;
8573 	int i_scanned, i_passed;
8574 
8575 	i_scanned = 0;
8576 	i_passed = 0;
8577 
8578 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8579 
8580 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8581 		i_scanned++;
8582 		node_detected_dev = list_entry(all_detected_devices.next,
8583 					struct detected_devices_node, list);
8584 		list_del(&node_detected_dev->list);
8585 		dev = node_detected_dev->dev;
8586 		kfree(node_detected_dev);
8587 		rdev = md_import_device(dev,0, 90);
8588 		if (IS_ERR(rdev))
8589 			continue;
8590 
8591 		if (test_bit(Faulty, &rdev->flags)) {
8592 			MD_BUG();
8593 			continue;
8594 		}
8595 		set_bit(AutoDetected, &rdev->flags);
8596 		list_add(&rdev->same_set, &pending_raid_disks);
8597 		i_passed++;
8598 	}
8599 
8600 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8601 						i_scanned, i_passed);
8602 
8603 	autorun_devices(part);
8604 }
8605 
8606 #endif /* !MODULE */
8607 
8608 static __exit void md_exit(void)
8609 {
8610 	struct mddev *mddev;
8611 	struct list_head *tmp;
8612 
8613 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8614 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8615 
8616 	unregister_blkdev(MD_MAJOR,"md");
8617 	unregister_blkdev(mdp_major, "mdp");
8618 	unregister_reboot_notifier(&md_notifier);
8619 	unregister_sysctl_table(raid_table_header);
8620 	remove_proc_entry("mdstat", NULL);
8621 	for_each_mddev(mddev, tmp) {
8622 		export_array(mddev);
8623 		mddev->hold_active = 0;
8624 	}
8625 	destroy_workqueue(md_misc_wq);
8626 	destroy_workqueue(md_wq);
8627 }
8628 
8629 subsys_initcall(md_init);
8630 module_exit(md_exit)
8631 
8632 static int get_ro(char *buffer, struct kernel_param *kp)
8633 {
8634 	return sprintf(buffer, "%d", start_readonly);
8635 }
8636 static int set_ro(const char *val, struct kernel_param *kp)
8637 {
8638 	char *e;
8639 	int num = simple_strtoul(val, &e, 10);
8640 	if (*val && (*e == '\0' || *e == '\n')) {
8641 		start_readonly = num;
8642 		return 0;
8643 	}
8644 	return -EINVAL;
8645 }
8646 
8647 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8648 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8649 
8650 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8651 
8652 EXPORT_SYMBOL(register_md_personality);
8653 EXPORT_SYMBOL(unregister_md_personality);
8654 EXPORT_SYMBOL(md_error);
8655 EXPORT_SYMBOL(md_done_sync);
8656 EXPORT_SYMBOL(md_write_start);
8657 EXPORT_SYMBOL(md_write_end);
8658 EXPORT_SYMBOL(md_register_thread);
8659 EXPORT_SYMBOL(md_unregister_thread);
8660 EXPORT_SYMBOL(md_wakeup_thread);
8661 EXPORT_SYMBOL(md_check_recovery);
8662 EXPORT_SYMBOL(md_reap_sync_thread);
8663 MODULE_LICENSE("GPL");
8664 MODULE_DESCRIPTION("MD RAID framework");
8665 MODULE_ALIAS("md");
8666 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8667