xref: /linux/drivers/md/md.c (revision 479e64c21038326f4fe429b4ffb7ea6d3175c2dc)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74 
75 static int remove_and_add_spares(struct mddev *mddev,
76 				 struct md_rdev *this);
77 
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79 
80 /*
81  * Default number of read corrections we'll attempt on an rdev
82  * before ejecting it from the array. We divide the read error
83  * count by 2 for every hour elapsed between read errors.
84  */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88  * is 1000 KB/sec, so the extra system load does not show up that much.
89  * Increase it if you want to have more _guaranteed_ speed. Note that
90  * the RAID driver will use the maximum available bandwidth if the IO
91  * subsystem is idle. There is also an 'absolute maximum' reconstruction
92  * speed limit - in case reconstruction slows down your system despite
93  * idle IO detection.
94  *
95  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96  * or /sys/block/mdX/md/sync_speed_{min,max}
97  */
98 
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103 	return mddev->sync_speed_min ?
104 		mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106 
107 static inline int speed_max(struct mddev *mddev)
108 {
109 	return mddev->sync_speed_max ?
110 		mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112 
113 static struct ctl_table_header *raid_table_header;
114 
115 static struct ctl_table raid_table[] = {
116 	{
117 		.procname	= "speed_limit_min",
118 		.data		= &sysctl_speed_limit_min,
119 		.maxlen		= sizeof(int),
120 		.mode		= S_IRUGO|S_IWUSR,
121 		.proc_handler	= proc_dointvec,
122 	},
123 	{
124 		.procname	= "speed_limit_max",
125 		.data		= &sysctl_speed_limit_max,
126 		.maxlen		= sizeof(int),
127 		.mode		= S_IRUGO|S_IWUSR,
128 		.proc_handler	= proc_dointvec,
129 	},
130 	{ }
131 };
132 
133 static struct ctl_table raid_dir_table[] = {
134 	{
135 		.procname	= "raid",
136 		.maxlen		= 0,
137 		.mode		= S_IRUGO|S_IXUGO,
138 		.child		= raid_table,
139 	},
140 	{ }
141 };
142 
143 static struct ctl_table raid_root_table[] = {
144 	{
145 		.procname	= "dev",
146 		.maxlen		= 0,
147 		.mode		= 0555,
148 		.child		= raid_dir_table,
149 	},
150 	{  }
151 };
152 
153 static const struct block_device_operations md_fops;
154 
155 static int start_readonly;
156 
157 /* bio_clone_mddev
158  * like bio_clone, but with a local bio set
159  */
160 
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 			    struct mddev *mddev)
163 {
164 	struct bio *b;
165 
166 	if (!mddev || !mddev->bio_set)
167 		return bio_alloc(gfp_mask, nr_iovecs);
168 
169 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 	if (!b)
171 		return NULL;
172 	return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175 
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 			    struct mddev *mddev)
178 {
179 	if (!mddev || !mddev->bio_set)
180 		return bio_clone(bio, gfp_mask);
181 
182 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185 
186 /*
187  * We have a system wide 'event count' that is incremented
188  * on any 'interesting' event, and readers of /proc/mdstat
189  * can use 'poll' or 'select' to find out when the event
190  * count increases.
191  *
192  * Events are:
193  *  start array, stop array, error, add device, remove device,
194  *  start build, activate spare
195  */
196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
197 static atomic_t md_event_count;
198 void md_new_event(struct mddev *mddev)
199 {
200 	atomic_inc(&md_event_count);
201 	wake_up(&md_event_waiters);
202 }
203 EXPORT_SYMBOL_GPL(md_new_event);
204 
205 /* Alternate version that can be called from interrupts
206  * when calling sysfs_notify isn't needed.
207  */
208 static void md_new_event_inintr(struct mddev *mddev)
209 {
210 	atomic_inc(&md_event_count);
211 	wake_up(&md_event_waiters);
212 }
213 
214 /*
215  * Enables to iterate over all existing md arrays
216  * all_mddevs_lock protects this list.
217  */
218 static LIST_HEAD(all_mddevs);
219 static DEFINE_SPINLOCK(all_mddevs_lock);
220 
221 
222 /*
223  * iterates through all used mddevs in the system.
224  * We take care to grab the all_mddevs_lock whenever navigating
225  * the list, and to always hold a refcount when unlocked.
226  * Any code which breaks out of this loop while own
227  * a reference to the current mddev and must mddev_put it.
228  */
229 #define for_each_mddev(_mddev,_tmp)					\
230 									\
231 	for (({ spin_lock(&all_mddevs_lock); 				\
232 		_tmp = all_mddevs.next;					\
233 		_mddev = NULL;});					\
234 	     ({ if (_tmp != &all_mddevs)				\
235 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
236 		spin_unlock(&all_mddevs_lock);				\
237 		if (_mddev) mddev_put(_mddev);				\
238 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
239 		_tmp != &all_mddevs;});					\
240 	     ({ spin_lock(&all_mddevs_lock);				\
241 		_tmp = _tmp->next;})					\
242 		)
243 
244 
245 /* Rather than calling directly into the personality make_request function,
246  * IO requests come here first so that we can check if the device is
247  * being suspended pending a reconfiguration.
248  * We hold a refcount over the call to ->make_request.  By the time that
249  * call has finished, the bio has been linked into some internal structure
250  * and so is visible to ->quiesce(), so we don't need the refcount any more.
251  */
252 static void md_make_request(struct request_queue *q, struct bio *bio)
253 {
254 	const int rw = bio_data_dir(bio);
255 	struct mddev *mddev = q->queuedata;
256 	int cpu;
257 	unsigned int sectors;
258 
259 	if (mddev == NULL || mddev->pers == NULL
260 	    || !mddev->ready) {
261 		bio_io_error(bio);
262 		return;
263 	}
264 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
265 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
266 		return;
267 	}
268 	smp_rmb(); /* Ensure implications of  'active' are visible */
269 	rcu_read_lock();
270 	if (mddev->suspended) {
271 		DEFINE_WAIT(__wait);
272 		for (;;) {
273 			prepare_to_wait(&mddev->sb_wait, &__wait,
274 					TASK_UNINTERRUPTIBLE);
275 			if (!mddev->suspended)
276 				break;
277 			rcu_read_unlock();
278 			schedule();
279 			rcu_read_lock();
280 		}
281 		finish_wait(&mddev->sb_wait, &__wait);
282 	}
283 	atomic_inc(&mddev->active_io);
284 	rcu_read_unlock();
285 
286 	/*
287 	 * save the sectors now since our bio can
288 	 * go away inside make_request
289 	 */
290 	sectors = bio_sectors(bio);
291 	mddev->pers->make_request(mddev, bio);
292 
293 	cpu = part_stat_lock();
294 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
295 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
296 	part_stat_unlock();
297 
298 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
299 		wake_up(&mddev->sb_wait);
300 }
301 
302 /* mddev_suspend makes sure no new requests are submitted
303  * to the device, and that any requests that have been submitted
304  * are completely handled.
305  * Once ->stop is called and completes, the module will be completely
306  * unused.
307  */
308 void mddev_suspend(struct mddev *mddev)
309 {
310 	BUG_ON(mddev->suspended);
311 	mddev->suspended = 1;
312 	synchronize_rcu();
313 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
314 	mddev->pers->quiesce(mddev, 1);
315 
316 	del_timer_sync(&mddev->safemode_timer);
317 }
318 EXPORT_SYMBOL_GPL(mddev_suspend);
319 
320 void mddev_resume(struct mddev *mddev)
321 {
322 	mddev->suspended = 0;
323 	wake_up(&mddev->sb_wait);
324 	mddev->pers->quiesce(mddev, 0);
325 
326 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
327 	md_wakeup_thread(mddev->thread);
328 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
329 }
330 EXPORT_SYMBOL_GPL(mddev_resume);
331 
332 int mddev_congested(struct mddev *mddev, int bits)
333 {
334 	return mddev->suspended;
335 }
336 EXPORT_SYMBOL(mddev_congested);
337 
338 /*
339  * Generic flush handling for md
340  */
341 
342 static void md_end_flush(struct bio *bio, int err)
343 {
344 	struct md_rdev *rdev = bio->bi_private;
345 	struct mddev *mddev = rdev->mddev;
346 
347 	rdev_dec_pending(rdev, mddev);
348 
349 	if (atomic_dec_and_test(&mddev->flush_pending)) {
350 		/* The pre-request flush has finished */
351 		queue_work(md_wq, &mddev->flush_work);
352 	}
353 	bio_put(bio);
354 }
355 
356 static void md_submit_flush_data(struct work_struct *ws);
357 
358 static void submit_flushes(struct work_struct *ws)
359 {
360 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
361 	struct md_rdev *rdev;
362 
363 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
364 	atomic_set(&mddev->flush_pending, 1);
365 	rcu_read_lock();
366 	rdev_for_each_rcu(rdev, mddev)
367 		if (rdev->raid_disk >= 0 &&
368 		    !test_bit(Faulty, &rdev->flags)) {
369 			/* Take two references, one is dropped
370 			 * when request finishes, one after
371 			 * we reclaim rcu_read_lock
372 			 */
373 			struct bio *bi;
374 			atomic_inc(&rdev->nr_pending);
375 			atomic_inc(&rdev->nr_pending);
376 			rcu_read_unlock();
377 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
378 			bi->bi_end_io = md_end_flush;
379 			bi->bi_private = rdev;
380 			bi->bi_bdev = rdev->bdev;
381 			atomic_inc(&mddev->flush_pending);
382 			submit_bio(WRITE_FLUSH, bi);
383 			rcu_read_lock();
384 			rdev_dec_pending(rdev, mddev);
385 		}
386 	rcu_read_unlock();
387 	if (atomic_dec_and_test(&mddev->flush_pending))
388 		queue_work(md_wq, &mddev->flush_work);
389 }
390 
391 static void md_submit_flush_data(struct work_struct *ws)
392 {
393 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
394 	struct bio *bio = mddev->flush_bio;
395 
396 	if (bio->bi_size == 0)
397 		/* an empty barrier - all done */
398 		bio_endio(bio, 0);
399 	else {
400 		bio->bi_rw &= ~REQ_FLUSH;
401 		mddev->pers->make_request(mddev, bio);
402 	}
403 
404 	mddev->flush_bio = NULL;
405 	wake_up(&mddev->sb_wait);
406 }
407 
408 void md_flush_request(struct mddev *mddev, struct bio *bio)
409 {
410 	spin_lock_irq(&mddev->write_lock);
411 	wait_event_lock_irq(mddev->sb_wait,
412 			    !mddev->flush_bio,
413 			    mddev->write_lock);
414 	mddev->flush_bio = bio;
415 	spin_unlock_irq(&mddev->write_lock);
416 
417 	INIT_WORK(&mddev->flush_work, submit_flushes);
418 	queue_work(md_wq, &mddev->flush_work);
419 }
420 EXPORT_SYMBOL(md_flush_request);
421 
422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
423 {
424 	struct mddev *mddev = cb->data;
425 	md_wakeup_thread(mddev->thread);
426 	kfree(cb);
427 }
428 EXPORT_SYMBOL(md_unplug);
429 
430 static inline struct mddev *mddev_get(struct mddev *mddev)
431 {
432 	atomic_inc(&mddev->active);
433 	return mddev;
434 }
435 
436 static void mddev_delayed_delete(struct work_struct *ws);
437 
438 static void mddev_put(struct mddev *mddev)
439 {
440 	struct bio_set *bs = NULL;
441 
442 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
443 		return;
444 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
445 	    mddev->ctime == 0 && !mddev->hold_active) {
446 		/* Array is not configured at all, and not held active,
447 		 * so destroy it */
448 		list_del_init(&mddev->all_mddevs);
449 		bs = mddev->bio_set;
450 		mddev->bio_set = NULL;
451 		if (mddev->gendisk) {
452 			/* We did a probe so need to clean up.  Call
453 			 * queue_work inside the spinlock so that
454 			 * flush_workqueue() after mddev_find will
455 			 * succeed in waiting for the work to be done.
456 			 */
457 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
458 			queue_work(md_misc_wq, &mddev->del_work);
459 		} else
460 			kfree(mddev);
461 	}
462 	spin_unlock(&all_mddevs_lock);
463 	if (bs)
464 		bioset_free(bs);
465 }
466 
467 void mddev_init(struct mddev *mddev)
468 {
469 	mutex_init(&mddev->open_mutex);
470 	mutex_init(&mddev->reconfig_mutex);
471 	mutex_init(&mddev->bitmap_info.mutex);
472 	INIT_LIST_HEAD(&mddev->disks);
473 	INIT_LIST_HEAD(&mddev->all_mddevs);
474 	init_timer(&mddev->safemode_timer);
475 	atomic_set(&mddev->active, 1);
476 	atomic_set(&mddev->openers, 0);
477 	atomic_set(&mddev->active_io, 0);
478 	spin_lock_init(&mddev->write_lock);
479 	atomic_set(&mddev->flush_pending, 0);
480 	init_waitqueue_head(&mddev->sb_wait);
481 	init_waitqueue_head(&mddev->recovery_wait);
482 	mddev->reshape_position = MaxSector;
483 	mddev->reshape_backwards = 0;
484 	mddev->last_sync_action = "none";
485 	mddev->resync_min = 0;
486 	mddev->resync_max = MaxSector;
487 	mddev->level = LEVEL_NONE;
488 }
489 EXPORT_SYMBOL_GPL(mddev_init);
490 
491 static struct mddev * mddev_find(dev_t unit)
492 {
493 	struct mddev *mddev, *new = NULL;
494 
495 	if (unit && MAJOR(unit) != MD_MAJOR)
496 		unit &= ~((1<<MdpMinorShift)-1);
497 
498  retry:
499 	spin_lock(&all_mddevs_lock);
500 
501 	if (unit) {
502 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
503 			if (mddev->unit == unit) {
504 				mddev_get(mddev);
505 				spin_unlock(&all_mddevs_lock);
506 				kfree(new);
507 				return mddev;
508 			}
509 
510 		if (new) {
511 			list_add(&new->all_mddevs, &all_mddevs);
512 			spin_unlock(&all_mddevs_lock);
513 			new->hold_active = UNTIL_IOCTL;
514 			return new;
515 		}
516 	} else if (new) {
517 		/* find an unused unit number */
518 		static int next_minor = 512;
519 		int start = next_minor;
520 		int is_free = 0;
521 		int dev = 0;
522 		while (!is_free) {
523 			dev = MKDEV(MD_MAJOR, next_minor);
524 			next_minor++;
525 			if (next_minor > MINORMASK)
526 				next_minor = 0;
527 			if (next_minor == start) {
528 				/* Oh dear, all in use. */
529 				spin_unlock(&all_mddevs_lock);
530 				kfree(new);
531 				return NULL;
532 			}
533 
534 			is_free = 1;
535 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
536 				if (mddev->unit == dev) {
537 					is_free = 0;
538 					break;
539 				}
540 		}
541 		new->unit = dev;
542 		new->md_minor = MINOR(dev);
543 		new->hold_active = UNTIL_STOP;
544 		list_add(&new->all_mddevs, &all_mddevs);
545 		spin_unlock(&all_mddevs_lock);
546 		return new;
547 	}
548 	spin_unlock(&all_mddevs_lock);
549 
550 	new = kzalloc(sizeof(*new), GFP_KERNEL);
551 	if (!new)
552 		return NULL;
553 
554 	new->unit = unit;
555 	if (MAJOR(unit) == MD_MAJOR)
556 		new->md_minor = MINOR(unit);
557 	else
558 		new->md_minor = MINOR(unit) >> MdpMinorShift;
559 
560 	mddev_init(new);
561 
562 	goto retry;
563 }
564 
565 static inline int __must_check mddev_lock(struct mddev * mddev)
566 {
567 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
568 }
569 
570 /* Sometimes we need to take the lock in a situation where
571  * failure due to interrupts is not acceptable.
572  */
573 static inline void mddev_lock_nointr(struct mddev * mddev)
574 {
575 	mutex_lock(&mddev->reconfig_mutex);
576 }
577 
578 static inline int mddev_is_locked(struct mddev *mddev)
579 {
580 	return mutex_is_locked(&mddev->reconfig_mutex);
581 }
582 
583 static inline int mddev_trylock(struct mddev * mddev)
584 {
585 	return mutex_trylock(&mddev->reconfig_mutex);
586 }
587 
588 static struct attribute_group md_redundancy_group;
589 
590 static void mddev_unlock(struct mddev * mddev)
591 {
592 	if (mddev->to_remove) {
593 		/* These cannot be removed under reconfig_mutex as
594 		 * an access to the files will try to take reconfig_mutex
595 		 * while holding the file unremovable, which leads to
596 		 * a deadlock.
597 		 * So hold set sysfs_active while the remove in happeing,
598 		 * and anything else which might set ->to_remove or my
599 		 * otherwise change the sysfs namespace will fail with
600 		 * -EBUSY if sysfs_active is still set.
601 		 * We set sysfs_active under reconfig_mutex and elsewhere
602 		 * test it under the same mutex to ensure its correct value
603 		 * is seen.
604 		 */
605 		struct attribute_group *to_remove = mddev->to_remove;
606 		mddev->to_remove = NULL;
607 		mddev->sysfs_active = 1;
608 		mutex_unlock(&mddev->reconfig_mutex);
609 
610 		if (mddev->kobj.sd) {
611 			if (to_remove != &md_redundancy_group)
612 				sysfs_remove_group(&mddev->kobj, to_remove);
613 			if (mddev->pers == NULL ||
614 			    mddev->pers->sync_request == NULL) {
615 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
616 				if (mddev->sysfs_action)
617 					sysfs_put(mddev->sysfs_action);
618 				mddev->sysfs_action = NULL;
619 			}
620 		}
621 		mddev->sysfs_active = 0;
622 	} else
623 		mutex_unlock(&mddev->reconfig_mutex);
624 
625 	/* As we've dropped the mutex we need a spinlock to
626 	 * make sure the thread doesn't disappear
627 	 */
628 	spin_lock(&pers_lock);
629 	md_wakeup_thread(mddev->thread);
630 	spin_unlock(&pers_lock);
631 }
632 
633 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
634 {
635 	struct md_rdev *rdev;
636 
637 	rdev_for_each(rdev, mddev)
638 		if (rdev->desc_nr == nr)
639 			return rdev;
640 
641 	return NULL;
642 }
643 
644 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
645 {
646 	struct md_rdev *rdev;
647 
648 	rdev_for_each_rcu(rdev, mddev)
649 		if (rdev->desc_nr == nr)
650 			return rdev;
651 
652 	return NULL;
653 }
654 
655 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
656 {
657 	struct md_rdev *rdev;
658 
659 	rdev_for_each(rdev, mddev)
660 		if (rdev->bdev->bd_dev == dev)
661 			return rdev;
662 
663 	return NULL;
664 }
665 
666 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
667 {
668 	struct md_rdev *rdev;
669 
670 	rdev_for_each_rcu(rdev, mddev)
671 		if (rdev->bdev->bd_dev == dev)
672 			return rdev;
673 
674 	return NULL;
675 }
676 
677 static struct md_personality *find_pers(int level, char *clevel)
678 {
679 	struct md_personality *pers;
680 	list_for_each_entry(pers, &pers_list, list) {
681 		if (level != LEVEL_NONE && pers->level == level)
682 			return pers;
683 		if (strcmp(pers->name, clevel)==0)
684 			return pers;
685 	}
686 	return NULL;
687 }
688 
689 /* return the offset of the super block in 512byte sectors */
690 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
691 {
692 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
693 	return MD_NEW_SIZE_SECTORS(num_sectors);
694 }
695 
696 static int alloc_disk_sb(struct md_rdev * rdev)
697 {
698 	if (rdev->sb_page)
699 		MD_BUG();
700 
701 	rdev->sb_page = alloc_page(GFP_KERNEL);
702 	if (!rdev->sb_page) {
703 		printk(KERN_ALERT "md: out of memory.\n");
704 		return -ENOMEM;
705 	}
706 
707 	return 0;
708 }
709 
710 void md_rdev_clear(struct md_rdev *rdev)
711 {
712 	if (rdev->sb_page) {
713 		put_page(rdev->sb_page);
714 		rdev->sb_loaded = 0;
715 		rdev->sb_page = NULL;
716 		rdev->sb_start = 0;
717 		rdev->sectors = 0;
718 	}
719 	if (rdev->bb_page) {
720 		put_page(rdev->bb_page);
721 		rdev->bb_page = NULL;
722 	}
723 	kfree(rdev->badblocks.page);
724 	rdev->badblocks.page = NULL;
725 }
726 EXPORT_SYMBOL_GPL(md_rdev_clear);
727 
728 static void super_written(struct bio *bio, int error)
729 {
730 	struct md_rdev *rdev = bio->bi_private;
731 	struct mddev *mddev = rdev->mddev;
732 
733 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
734 		printk("md: super_written gets error=%d, uptodate=%d\n",
735 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
736 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
737 		md_error(mddev, rdev);
738 	}
739 
740 	if (atomic_dec_and_test(&mddev->pending_writes))
741 		wake_up(&mddev->sb_wait);
742 	bio_put(bio);
743 }
744 
745 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
746 		   sector_t sector, int size, struct page *page)
747 {
748 	/* write first size bytes of page to sector of rdev
749 	 * Increment mddev->pending_writes before returning
750 	 * and decrement it on completion, waking up sb_wait
751 	 * if zero is reached.
752 	 * If an error occurred, call md_error
753 	 */
754 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
755 
756 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
757 	bio->bi_sector = sector;
758 	bio_add_page(bio, page, size, 0);
759 	bio->bi_private = rdev;
760 	bio->bi_end_io = super_written;
761 
762 	atomic_inc(&mddev->pending_writes);
763 	submit_bio(WRITE_FLUSH_FUA, bio);
764 }
765 
766 void md_super_wait(struct mddev *mddev)
767 {
768 	/* wait for all superblock writes that were scheduled to complete */
769 	DEFINE_WAIT(wq);
770 	for(;;) {
771 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
772 		if (atomic_read(&mddev->pending_writes)==0)
773 			break;
774 		schedule();
775 	}
776 	finish_wait(&mddev->sb_wait, &wq);
777 }
778 
779 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
780 		 struct page *page, int rw, bool metadata_op)
781 {
782 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
783 	int ret;
784 
785 	rw |= REQ_SYNC;
786 
787 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
788 		rdev->meta_bdev : rdev->bdev;
789 	if (metadata_op)
790 		bio->bi_sector = sector + rdev->sb_start;
791 	else if (rdev->mddev->reshape_position != MaxSector &&
792 		 (rdev->mddev->reshape_backwards ==
793 		  (sector >= rdev->mddev->reshape_position)))
794 		bio->bi_sector = sector + rdev->new_data_offset;
795 	else
796 		bio->bi_sector = sector + rdev->data_offset;
797 	bio_add_page(bio, page, size, 0);
798 	submit_bio_wait(rw, bio);
799 
800 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
801 	bio_put(bio);
802 	return ret;
803 }
804 EXPORT_SYMBOL_GPL(sync_page_io);
805 
806 static int read_disk_sb(struct md_rdev * rdev, int size)
807 {
808 	char b[BDEVNAME_SIZE];
809 	if (!rdev->sb_page) {
810 		MD_BUG();
811 		return -EINVAL;
812 	}
813 	if (rdev->sb_loaded)
814 		return 0;
815 
816 
817 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
818 		goto fail;
819 	rdev->sb_loaded = 1;
820 	return 0;
821 
822 fail:
823 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
824 		bdevname(rdev->bdev,b));
825 	return -EINVAL;
826 }
827 
828 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
829 {
830 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
831 		sb1->set_uuid1 == sb2->set_uuid1 &&
832 		sb1->set_uuid2 == sb2->set_uuid2 &&
833 		sb1->set_uuid3 == sb2->set_uuid3;
834 }
835 
836 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
837 {
838 	int ret;
839 	mdp_super_t *tmp1, *tmp2;
840 
841 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
842 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
843 
844 	if (!tmp1 || !tmp2) {
845 		ret = 0;
846 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
847 		goto abort;
848 	}
849 
850 	*tmp1 = *sb1;
851 	*tmp2 = *sb2;
852 
853 	/*
854 	 * nr_disks is not constant
855 	 */
856 	tmp1->nr_disks = 0;
857 	tmp2->nr_disks = 0;
858 
859 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
860 abort:
861 	kfree(tmp1);
862 	kfree(tmp2);
863 	return ret;
864 }
865 
866 
867 static u32 md_csum_fold(u32 csum)
868 {
869 	csum = (csum & 0xffff) + (csum >> 16);
870 	return (csum & 0xffff) + (csum >> 16);
871 }
872 
873 static unsigned int calc_sb_csum(mdp_super_t * sb)
874 {
875 	u64 newcsum = 0;
876 	u32 *sb32 = (u32*)sb;
877 	int i;
878 	unsigned int disk_csum, csum;
879 
880 	disk_csum = sb->sb_csum;
881 	sb->sb_csum = 0;
882 
883 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
884 		newcsum += sb32[i];
885 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
886 
887 
888 #ifdef CONFIG_ALPHA
889 	/* This used to use csum_partial, which was wrong for several
890 	 * reasons including that different results are returned on
891 	 * different architectures.  It isn't critical that we get exactly
892 	 * the same return value as before (we always csum_fold before
893 	 * testing, and that removes any differences).  However as we
894 	 * know that csum_partial always returned a 16bit value on
895 	 * alphas, do a fold to maximise conformity to previous behaviour.
896 	 */
897 	sb->sb_csum = md_csum_fold(disk_csum);
898 #else
899 	sb->sb_csum = disk_csum;
900 #endif
901 	return csum;
902 }
903 
904 
905 /*
906  * Handle superblock details.
907  * We want to be able to handle multiple superblock formats
908  * so we have a common interface to them all, and an array of
909  * different handlers.
910  * We rely on user-space to write the initial superblock, and support
911  * reading and updating of superblocks.
912  * Interface methods are:
913  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
914  *      loads and validates a superblock on dev.
915  *      if refdev != NULL, compare superblocks on both devices
916  *    Return:
917  *      0 - dev has a superblock that is compatible with refdev
918  *      1 - dev has a superblock that is compatible and newer than refdev
919  *          so dev should be used as the refdev in future
920  *     -EINVAL superblock incompatible or invalid
921  *     -othererror e.g. -EIO
922  *
923  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
924  *      Verify that dev is acceptable into mddev.
925  *       The first time, mddev->raid_disks will be 0, and data from
926  *       dev should be merged in.  Subsequent calls check that dev
927  *       is new enough.  Return 0 or -EINVAL
928  *
929  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
930  *     Update the superblock for rdev with data in mddev
931  *     This does not write to disc.
932  *
933  */
934 
935 struct super_type  {
936 	char		    *name;
937 	struct module	    *owner;
938 	int		    (*load_super)(struct md_rdev *rdev,
939 					  struct md_rdev *refdev,
940 					  int minor_version);
941 	int		    (*validate_super)(struct mddev *mddev,
942 					      struct md_rdev *rdev);
943 	void		    (*sync_super)(struct mddev *mddev,
944 					  struct md_rdev *rdev);
945 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
946 						sector_t num_sectors);
947 	int		    (*allow_new_offset)(struct md_rdev *rdev,
948 						unsigned long long new_offset);
949 };
950 
951 /*
952  * Check that the given mddev has no bitmap.
953  *
954  * This function is called from the run method of all personalities that do not
955  * support bitmaps. It prints an error message and returns non-zero if mddev
956  * has a bitmap. Otherwise, it returns 0.
957  *
958  */
959 int md_check_no_bitmap(struct mddev *mddev)
960 {
961 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
962 		return 0;
963 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
964 		mdname(mddev), mddev->pers->name);
965 	return 1;
966 }
967 EXPORT_SYMBOL(md_check_no_bitmap);
968 
969 /*
970  * load_super for 0.90.0
971  */
972 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
973 {
974 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
975 	mdp_super_t *sb;
976 	int ret;
977 
978 	/*
979 	 * Calculate the position of the superblock (512byte sectors),
980 	 * it's at the end of the disk.
981 	 *
982 	 * It also happens to be a multiple of 4Kb.
983 	 */
984 	rdev->sb_start = calc_dev_sboffset(rdev);
985 
986 	ret = read_disk_sb(rdev, MD_SB_BYTES);
987 	if (ret) return ret;
988 
989 	ret = -EINVAL;
990 
991 	bdevname(rdev->bdev, b);
992 	sb = page_address(rdev->sb_page);
993 
994 	if (sb->md_magic != MD_SB_MAGIC) {
995 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
996 		       b);
997 		goto abort;
998 	}
999 
1000 	if (sb->major_version != 0 ||
1001 	    sb->minor_version < 90 ||
1002 	    sb->minor_version > 91) {
1003 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1004 			sb->major_version, sb->minor_version,
1005 			b);
1006 		goto abort;
1007 	}
1008 
1009 	if (sb->raid_disks <= 0)
1010 		goto abort;
1011 
1012 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1013 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1014 			b);
1015 		goto abort;
1016 	}
1017 
1018 	rdev->preferred_minor = sb->md_minor;
1019 	rdev->data_offset = 0;
1020 	rdev->new_data_offset = 0;
1021 	rdev->sb_size = MD_SB_BYTES;
1022 	rdev->badblocks.shift = -1;
1023 
1024 	if (sb->level == LEVEL_MULTIPATH)
1025 		rdev->desc_nr = -1;
1026 	else
1027 		rdev->desc_nr = sb->this_disk.number;
1028 
1029 	if (!refdev) {
1030 		ret = 1;
1031 	} else {
1032 		__u64 ev1, ev2;
1033 		mdp_super_t *refsb = page_address(refdev->sb_page);
1034 		if (!uuid_equal(refsb, sb)) {
1035 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1036 				b, bdevname(refdev->bdev,b2));
1037 			goto abort;
1038 		}
1039 		if (!sb_equal(refsb, sb)) {
1040 			printk(KERN_WARNING "md: %s has same UUID"
1041 			       " but different superblock to %s\n",
1042 			       b, bdevname(refdev->bdev, b2));
1043 			goto abort;
1044 		}
1045 		ev1 = md_event(sb);
1046 		ev2 = md_event(refsb);
1047 		if (ev1 > ev2)
1048 			ret = 1;
1049 		else
1050 			ret = 0;
1051 	}
1052 	rdev->sectors = rdev->sb_start;
1053 	/* Limit to 4TB as metadata cannot record more than that.
1054 	 * (not needed for Linear and RAID0 as metadata doesn't
1055 	 * record this size)
1056 	 */
1057 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1058 		rdev->sectors = (2ULL << 32) - 2;
1059 
1060 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1061 		/* "this cannot possibly happen" ... */
1062 		ret = -EINVAL;
1063 
1064  abort:
1065 	return ret;
1066 }
1067 
1068 /*
1069  * validate_super for 0.90.0
1070  */
1071 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1072 {
1073 	mdp_disk_t *desc;
1074 	mdp_super_t *sb = page_address(rdev->sb_page);
1075 	__u64 ev1 = md_event(sb);
1076 
1077 	rdev->raid_disk = -1;
1078 	clear_bit(Faulty, &rdev->flags);
1079 	clear_bit(In_sync, &rdev->flags);
1080 	clear_bit(Bitmap_sync, &rdev->flags);
1081 	clear_bit(WriteMostly, &rdev->flags);
1082 
1083 	if (mddev->raid_disks == 0) {
1084 		mddev->major_version = 0;
1085 		mddev->minor_version = sb->minor_version;
1086 		mddev->patch_version = sb->patch_version;
1087 		mddev->external = 0;
1088 		mddev->chunk_sectors = sb->chunk_size >> 9;
1089 		mddev->ctime = sb->ctime;
1090 		mddev->utime = sb->utime;
1091 		mddev->level = sb->level;
1092 		mddev->clevel[0] = 0;
1093 		mddev->layout = sb->layout;
1094 		mddev->raid_disks = sb->raid_disks;
1095 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1096 		mddev->events = ev1;
1097 		mddev->bitmap_info.offset = 0;
1098 		mddev->bitmap_info.space = 0;
1099 		/* bitmap can use 60 K after the 4K superblocks */
1100 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1101 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1102 		mddev->reshape_backwards = 0;
1103 
1104 		if (mddev->minor_version >= 91) {
1105 			mddev->reshape_position = sb->reshape_position;
1106 			mddev->delta_disks = sb->delta_disks;
1107 			mddev->new_level = sb->new_level;
1108 			mddev->new_layout = sb->new_layout;
1109 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1110 			if (mddev->delta_disks < 0)
1111 				mddev->reshape_backwards = 1;
1112 		} else {
1113 			mddev->reshape_position = MaxSector;
1114 			mddev->delta_disks = 0;
1115 			mddev->new_level = mddev->level;
1116 			mddev->new_layout = mddev->layout;
1117 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1118 		}
1119 
1120 		if (sb->state & (1<<MD_SB_CLEAN))
1121 			mddev->recovery_cp = MaxSector;
1122 		else {
1123 			if (sb->events_hi == sb->cp_events_hi &&
1124 				sb->events_lo == sb->cp_events_lo) {
1125 				mddev->recovery_cp = sb->recovery_cp;
1126 			} else
1127 				mddev->recovery_cp = 0;
1128 		}
1129 
1130 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1131 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1132 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1133 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1134 
1135 		mddev->max_disks = MD_SB_DISKS;
1136 
1137 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1138 		    mddev->bitmap_info.file == NULL) {
1139 			mddev->bitmap_info.offset =
1140 				mddev->bitmap_info.default_offset;
1141 			mddev->bitmap_info.space =
1142 				mddev->bitmap_info.default_space;
1143 		}
1144 
1145 	} else if (mddev->pers == NULL) {
1146 		/* Insist on good event counter while assembling, except
1147 		 * for spares (which don't need an event count) */
1148 		++ev1;
1149 		if (sb->disks[rdev->desc_nr].state & (
1150 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1151 			if (ev1 < mddev->events)
1152 				return -EINVAL;
1153 	} else if (mddev->bitmap) {
1154 		/* if adding to array with a bitmap, then we can accept an
1155 		 * older device ... but not too old.
1156 		 */
1157 		if (ev1 < mddev->bitmap->events_cleared)
1158 			return 0;
1159 		if (ev1 < mddev->events)
1160 			set_bit(Bitmap_sync, &rdev->flags);
1161 	} else {
1162 		if (ev1 < mddev->events)
1163 			/* just a hot-add of a new device, leave raid_disk at -1 */
1164 			return 0;
1165 	}
1166 
1167 	if (mddev->level != LEVEL_MULTIPATH) {
1168 		desc = sb->disks + rdev->desc_nr;
1169 
1170 		if (desc->state & (1<<MD_DISK_FAULTY))
1171 			set_bit(Faulty, &rdev->flags);
1172 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1173 			    desc->raid_disk < mddev->raid_disks */) {
1174 			set_bit(In_sync, &rdev->flags);
1175 			rdev->raid_disk = desc->raid_disk;
1176 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1177 			/* active but not in sync implies recovery up to
1178 			 * reshape position.  We don't know exactly where
1179 			 * that is, so set to zero for now */
1180 			if (mddev->minor_version >= 91) {
1181 				rdev->recovery_offset = 0;
1182 				rdev->raid_disk = desc->raid_disk;
1183 			}
1184 		}
1185 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1186 			set_bit(WriteMostly, &rdev->flags);
1187 	} else /* MULTIPATH are always insync */
1188 		set_bit(In_sync, &rdev->flags);
1189 	return 0;
1190 }
1191 
1192 /*
1193  * sync_super for 0.90.0
1194  */
1195 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1196 {
1197 	mdp_super_t *sb;
1198 	struct md_rdev *rdev2;
1199 	int next_spare = mddev->raid_disks;
1200 
1201 
1202 	/* make rdev->sb match mddev data..
1203 	 *
1204 	 * 1/ zero out disks
1205 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1206 	 * 3/ any empty disks < next_spare become removed
1207 	 *
1208 	 * disks[0] gets initialised to REMOVED because
1209 	 * we cannot be sure from other fields if it has
1210 	 * been initialised or not.
1211 	 */
1212 	int i;
1213 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1214 
1215 	rdev->sb_size = MD_SB_BYTES;
1216 
1217 	sb = page_address(rdev->sb_page);
1218 
1219 	memset(sb, 0, sizeof(*sb));
1220 
1221 	sb->md_magic = MD_SB_MAGIC;
1222 	sb->major_version = mddev->major_version;
1223 	sb->patch_version = mddev->patch_version;
1224 	sb->gvalid_words  = 0; /* ignored */
1225 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1226 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1227 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1228 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1229 
1230 	sb->ctime = mddev->ctime;
1231 	sb->level = mddev->level;
1232 	sb->size = mddev->dev_sectors / 2;
1233 	sb->raid_disks = mddev->raid_disks;
1234 	sb->md_minor = mddev->md_minor;
1235 	sb->not_persistent = 0;
1236 	sb->utime = mddev->utime;
1237 	sb->state = 0;
1238 	sb->events_hi = (mddev->events>>32);
1239 	sb->events_lo = (u32)mddev->events;
1240 
1241 	if (mddev->reshape_position == MaxSector)
1242 		sb->minor_version = 90;
1243 	else {
1244 		sb->minor_version = 91;
1245 		sb->reshape_position = mddev->reshape_position;
1246 		sb->new_level = mddev->new_level;
1247 		sb->delta_disks = mddev->delta_disks;
1248 		sb->new_layout = mddev->new_layout;
1249 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1250 	}
1251 	mddev->minor_version = sb->minor_version;
1252 	if (mddev->in_sync)
1253 	{
1254 		sb->recovery_cp = mddev->recovery_cp;
1255 		sb->cp_events_hi = (mddev->events>>32);
1256 		sb->cp_events_lo = (u32)mddev->events;
1257 		if (mddev->recovery_cp == MaxSector)
1258 			sb->state = (1<< MD_SB_CLEAN);
1259 	} else
1260 		sb->recovery_cp = 0;
1261 
1262 	sb->layout = mddev->layout;
1263 	sb->chunk_size = mddev->chunk_sectors << 9;
1264 
1265 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1266 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1267 
1268 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1269 	rdev_for_each(rdev2, mddev) {
1270 		mdp_disk_t *d;
1271 		int desc_nr;
1272 		int is_active = test_bit(In_sync, &rdev2->flags);
1273 
1274 		if (rdev2->raid_disk >= 0 &&
1275 		    sb->minor_version >= 91)
1276 			/* we have nowhere to store the recovery_offset,
1277 			 * but if it is not below the reshape_position,
1278 			 * we can piggy-back on that.
1279 			 */
1280 			is_active = 1;
1281 		if (rdev2->raid_disk < 0 ||
1282 		    test_bit(Faulty, &rdev2->flags))
1283 			is_active = 0;
1284 		if (is_active)
1285 			desc_nr = rdev2->raid_disk;
1286 		else
1287 			desc_nr = next_spare++;
1288 		rdev2->desc_nr = desc_nr;
1289 		d = &sb->disks[rdev2->desc_nr];
1290 		nr_disks++;
1291 		d->number = rdev2->desc_nr;
1292 		d->major = MAJOR(rdev2->bdev->bd_dev);
1293 		d->minor = MINOR(rdev2->bdev->bd_dev);
1294 		if (is_active)
1295 			d->raid_disk = rdev2->raid_disk;
1296 		else
1297 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1298 		if (test_bit(Faulty, &rdev2->flags))
1299 			d->state = (1<<MD_DISK_FAULTY);
1300 		else if (is_active) {
1301 			d->state = (1<<MD_DISK_ACTIVE);
1302 			if (test_bit(In_sync, &rdev2->flags))
1303 				d->state |= (1<<MD_DISK_SYNC);
1304 			active++;
1305 			working++;
1306 		} else {
1307 			d->state = 0;
1308 			spare++;
1309 			working++;
1310 		}
1311 		if (test_bit(WriteMostly, &rdev2->flags))
1312 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1313 	}
1314 	/* now set the "removed" and "faulty" bits on any missing devices */
1315 	for (i=0 ; i < mddev->raid_disks ; i++) {
1316 		mdp_disk_t *d = &sb->disks[i];
1317 		if (d->state == 0 && d->number == 0) {
1318 			d->number = i;
1319 			d->raid_disk = i;
1320 			d->state = (1<<MD_DISK_REMOVED);
1321 			d->state |= (1<<MD_DISK_FAULTY);
1322 			failed++;
1323 		}
1324 	}
1325 	sb->nr_disks = nr_disks;
1326 	sb->active_disks = active;
1327 	sb->working_disks = working;
1328 	sb->failed_disks = failed;
1329 	sb->spare_disks = spare;
1330 
1331 	sb->this_disk = sb->disks[rdev->desc_nr];
1332 	sb->sb_csum = calc_sb_csum(sb);
1333 }
1334 
1335 /*
1336  * rdev_size_change for 0.90.0
1337  */
1338 static unsigned long long
1339 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1340 {
1341 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1342 		return 0; /* component must fit device */
1343 	if (rdev->mddev->bitmap_info.offset)
1344 		return 0; /* can't move bitmap */
1345 	rdev->sb_start = calc_dev_sboffset(rdev);
1346 	if (!num_sectors || num_sectors > rdev->sb_start)
1347 		num_sectors = rdev->sb_start;
1348 	/* Limit to 4TB as metadata cannot record more than that.
1349 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1350 	 */
1351 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1352 		num_sectors = (2ULL << 32) - 2;
1353 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1354 		       rdev->sb_page);
1355 	md_super_wait(rdev->mddev);
1356 	return num_sectors;
1357 }
1358 
1359 static int
1360 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1361 {
1362 	/* non-zero offset changes not possible with v0.90 */
1363 	return new_offset == 0;
1364 }
1365 
1366 /*
1367  * version 1 superblock
1368  */
1369 
1370 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1371 {
1372 	__le32 disk_csum;
1373 	u32 csum;
1374 	unsigned long long newcsum;
1375 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1376 	__le32 *isuper = (__le32*)sb;
1377 
1378 	disk_csum = sb->sb_csum;
1379 	sb->sb_csum = 0;
1380 	newcsum = 0;
1381 	for (; size >= 4; size -= 4)
1382 		newcsum += le32_to_cpu(*isuper++);
1383 
1384 	if (size == 2)
1385 		newcsum += le16_to_cpu(*(__le16*) isuper);
1386 
1387 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1388 	sb->sb_csum = disk_csum;
1389 	return cpu_to_le32(csum);
1390 }
1391 
1392 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1393 			    int acknowledged);
1394 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1395 {
1396 	struct mdp_superblock_1 *sb;
1397 	int ret;
1398 	sector_t sb_start;
1399 	sector_t sectors;
1400 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1401 	int bmask;
1402 
1403 	/*
1404 	 * Calculate the position of the superblock in 512byte sectors.
1405 	 * It is always aligned to a 4K boundary and
1406 	 * depeding on minor_version, it can be:
1407 	 * 0: At least 8K, but less than 12K, from end of device
1408 	 * 1: At start of device
1409 	 * 2: 4K from start of device.
1410 	 */
1411 	switch(minor_version) {
1412 	case 0:
1413 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1414 		sb_start -= 8*2;
1415 		sb_start &= ~(sector_t)(4*2-1);
1416 		break;
1417 	case 1:
1418 		sb_start = 0;
1419 		break;
1420 	case 2:
1421 		sb_start = 8;
1422 		break;
1423 	default:
1424 		return -EINVAL;
1425 	}
1426 	rdev->sb_start = sb_start;
1427 
1428 	/* superblock is rarely larger than 1K, but it can be larger,
1429 	 * and it is safe to read 4k, so we do that
1430 	 */
1431 	ret = read_disk_sb(rdev, 4096);
1432 	if (ret) return ret;
1433 
1434 
1435 	sb = page_address(rdev->sb_page);
1436 
1437 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1438 	    sb->major_version != cpu_to_le32(1) ||
1439 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1440 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1441 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1442 		return -EINVAL;
1443 
1444 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1445 		printk("md: invalid superblock checksum on %s\n",
1446 			bdevname(rdev->bdev,b));
1447 		return -EINVAL;
1448 	}
1449 	if (le64_to_cpu(sb->data_size) < 10) {
1450 		printk("md: data_size too small on %s\n",
1451 		       bdevname(rdev->bdev,b));
1452 		return -EINVAL;
1453 	}
1454 	if (sb->pad0 ||
1455 	    sb->pad3[0] ||
1456 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1457 		/* Some padding is non-zero, might be a new feature */
1458 		return -EINVAL;
1459 
1460 	rdev->preferred_minor = 0xffff;
1461 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1462 	rdev->new_data_offset = rdev->data_offset;
1463 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1464 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1465 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1466 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1467 
1468 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1469 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1470 	if (rdev->sb_size & bmask)
1471 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1472 
1473 	if (minor_version
1474 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1475 		return -EINVAL;
1476 	if (minor_version
1477 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1478 		return -EINVAL;
1479 
1480 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1481 		rdev->desc_nr = -1;
1482 	else
1483 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1484 
1485 	if (!rdev->bb_page) {
1486 		rdev->bb_page = alloc_page(GFP_KERNEL);
1487 		if (!rdev->bb_page)
1488 			return -ENOMEM;
1489 	}
1490 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1491 	    rdev->badblocks.count == 0) {
1492 		/* need to load the bad block list.
1493 		 * Currently we limit it to one page.
1494 		 */
1495 		s32 offset;
1496 		sector_t bb_sector;
1497 		u64 *bbp;
1498 		int i;
1499 		int sectors = le16_to_cpu(sb->bblog_size);
1500 		if (sectors > (PAGE_SIZE / 512))
1501 			return -EINVAL;
1502 		offset = le32_to_cpu(sb->bblog_offset);
1503 		if (offset == 0)
1504 			return -EINVAL;
1505 		bb_sector = (long long)offset;
1506 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1507 				  rdev->bb_page, READ, true))
1508 			return -EIO;
1509 		bbp = (u64 *)page_address(rdev->bb_page);
1510 		rdev->badblocks.shift = sb->bblog_shift;
1511 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1512 			u64 bb = le64_to_cpu(*bbp);
1513 			int count = bb & (0x3ff);
1514 			u64 sector = bb >> 10;
1515 			sector <<= sb->bblog_shift;
1516 			count <<= sb->bblog_shift;
1517 			if (bb + 1 == 0)
1518 				break;
1519 			if (md_set_badblocks(&rdev->badblocks,
1520 					     sector, count, 1) == 0)
1521 				return -EINVAL;
1522 		}
1523 	} else if (sb->bblog_offset != 0)
1524 		rdev->badblocks.shift = 0;
1525 
1526 	if (!refdev) {
1527 		ret = 1;
1528 	} else {
1529 		__u64 ev1, ev2;
1530 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1531 
1532 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1533 		    sb->level != refsb->level ||
1534 		    sb->layout != refsb->layout ||
1535 		    sb->chunksize != refsb->chunksize) {
1536 			printk(KERN_WARNING "md: %s has strangely different"
1537 				" superblock to %s\n",
1538 				bdevname(rdev->bdev,b),
1539 				bdevname(refdev->bdev,b2));
1540 			return -EINVAL;
1541 		}
1542 		ev1 = le64_to_cpu(sb->events);
1543 		ev2 = le64_to_cpu(refsb->events);
1544 
1545 		if (ev1 > ev2)
1546 			ret = 1;
1547 		else
1548 			ret = 0;
1549 	}
1550 	if (minor_version) {
1551 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1552 		sectors -= rdev->data_offset;
1553 	} else
1554 		sectors = rdev->sb_start;
1555 	if (sectors < le64_to_cpu(sb->data_size))
1556 		return -EINVAL;
1557 	rdev->sectors = le64_to_cpu(sb->data_size);
1558 	return ret;
1559 }
1560 
1561 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1562 {
1563 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1564 	__u64 ev1 = le64_to_cpu(sb->events);
1565 
1566 	rdev->raid_disk = -1;
1567 	clear_bit(Faulty, &rdev->flags);
1568 	clear_bit(In_sync, &rdev->flags);
1569 	clear_bit(Bitmap_sync, &rdev->flags);
1570 	clear_bit(WriteMostly, &rdev->flags);
1571 
1572 	if (mddev->raid_disks == 0) {
1573 		mddev->major_version = 1;
1574 		mddev->patch_version = 0;
1575 		mddev->external = 0;
1576 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1577 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1578 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1579 		mddev->level = le32_to_cpu(sb->level);
1580 		mddev->clevel[0] = 0;
1581 		mddev->layout = le32_to_cpu(sb->layout);
1582 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1583 		mddev->dev_sectors = le64_to_cpu(sb->size);
1584 		mddev->events = ev1;
1585 		mddev->bitmap_info.offset = 0;
1586 		mddev->bitmap_info.space = 0;
1587 		/* Default location for bitmap is 1K after superblock
1588 		 * using 3K - total of 4K
1589 		 */
1590 		mddev->bitmap_info.default_offset = 1024 >> 9;
1591 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1592 		mddev->reshape_backwards = 0;
1593 
1594 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1595 		memcpy(mddev->uuid, sb->set_uuid, 16);
1596 
1597 		mddev->max_disks =  (4096-256)/2;
1598 
1599 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1600 		    mddev->bitmap_info.file == NULL) {
1601 			mddev->bitmap_info.offset =
1602 				(__s32)le32_to_cpu(sb->bitmap_offset);
1603 			/* Metadata doesn't record how much space is available.
1604 			 * For 1.0, we assume we can use up to the superblock
1605 			 * if before, else to 4K beyond superblock.
1606 			 * For others, assume no change is possible.
1607 			 */
1608 			if (mddev->minor_version > 0)
1609 				mddev->bitmap_info.space = 0;
1610 			else if (mddev->bitmap_info.offset > 0)
1611 				mddev->bitmap_info.space =
1612 					8 - mddev->bitmap_info.offset;
1613 			else
1614 				mddev->bitmap_info.space =
1615 					-mddev->bitmap_info.offset;
1616 		}
1617 
1618 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1619 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1620 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1621 			mddev->new_level = le32_to_cpu(sb->new_level);
1622 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1623 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1624 			if (mddev->delta_disks < 0 ||
1625 			    (mddev->delta_disks == 0 &&
1626 			     (le32_to_cpu(sb->feature_map)
1627 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1628 				mddev->reshape_backwards = 1;
1629 		} else {
1630 			mddev->reshape_position = MaxSector;
1631 			mddev->delta_disks = 0;
1632 			mddev->new_level = mddev->level;
1633 			mddev->new_layout = mddev->layout;
1634 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1635 		}
1636 
1637 	} else if (mddev->pers == NULL) {
1638 		/* Insist of good event counter while assembling, except for
1639 		 * spares (which don't need an event count) */
1640 		++ev1;
1641 		if (rdev->desc_nr >= 0 &&
1642 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1643 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1644 			if (ev1 < mddev->events)
1645 				return -EINVAL;
1646 	} else if (mddev->bitmap) {
1647 		/* If adding to array with a bitmap, then we can accept an
1648 		 * older device, but not too old.
1649 		 */
1650 		if (ev1 < mddev->bitmap->events_cleared)
1651 			return 0;
1652 		if (ev1 < mddev->events)
1653 			set_bit(Bitmap_sync, &rdev->flags);
1654 	} else {
1655 		if (ev1 < mddev->events)
1656 			/* just a hot-add of a new device, leave raid_disk at -1 */
1657 			return 0;
1658 	}
1659 	if (mddev->level != LEVEL_MULTIPATH) {
1660 		int role;
1661 		if (rdev->desc_nr < 0 ||
1662 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1663 			role = 0xffff;
1664 			rdev->desc_nr = -1;
1665 		} else
1666 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1667 		switch(role) {
1668 		case 0xffff: /* spare */
1669 			break;
1670 		case 0xfffe: /* faulty */
1671 			set_bit(Faulty, &rdev->flags);
1672 			break;
1673 		default:
1674 			if ((le32_to_cpu(sb->feature_map) &
1675 			     MD_FEATURE_RECOVERY_OFFSET))
1676 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1677 			else
1678 				set_bit(In_sync, &rdev->flags);
1679 			rdev->raid_disk = role;
1680 			break;
1681 		}
1682 		if (sb->devflags & WriteMostly1)
1683 			set_bit(WriteMostly, &rdev->flags);
1684 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1685 			set_bit(Replacement, &rdev->flags);
1686 	} else /* MULTIPATH are always insync */
1687 		set_bit(In_sync, &rdev->flags);
1688 
1689 	return 0;
1690 }
1691 
1692 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1693 {
1694 	struct mdp_superblock_1 *sb;
1695 	struct md_rdev *rdev2;
1696 	int max_dev, i;
1697 	/* make rdev->sb match mddev and rdev data. */
1698 
1699 	sb = page_address(rdev->sb_page);
1700 
1701 	sb->feature_map = 0;
1702 	sb->pad0 = 0;
1703 	sb->recovery_offset = cpu_to_le64(0);
1704 	memset(sb->pad3, 0, sizeof(sb->pad3));
1705 
1706 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1707 	sb->events = cpu_to_le64(mddev->events);
1708 	if (mddev->in_sync)
1709 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1710 	else
1711 		sb->resync_offset = cpu_to_le64(0);
1712 
1713 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1714 
1715 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1716 	sb->size = cpu_to_le64(mddev->dev_sectors);
1717 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1718 	sb->level = cpu_to_le32(mddev->level);
1719 	sb->layout = cpu_to_le32(mddev->layout);
1720 
1721 	if (test_bit(WriteMostly, &rdev->flags))
1722 		sb->devflags |= WriteMostly1;
1723 	else
1724 		sb->devflags &= ~WriteMostly1;
1725 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1726 	sb->data_size = cpu_to_le64(rdev->sectors);
1727 
1728 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1729 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1730 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1731 	}
1732 
1733 	if (rdev->raid_disk >= 0 &&
1734 	    !test_bit(In_sync, &rdev->flags)) {
1735 		sb->feature_map |=
1736 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1737 		sb->recovery_offset =
1738 			cpu_to_le64(rdev->recovery_offset);
1739 	}
1740 	if (test_bit(Replacement, &rdev->flags))
1741 		sb->feature_map |=
1742 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1743 
1744 	if (mddev->reshape_position != MaxSector) {
1745 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1746 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1747 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1748 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1749 		sb->new_level = cpu_to_le32(mddev->new_level);
1750 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1751 		if (mddev->delta_disks == 0 &&
1752 		    mddev->reshape_backwards)
1753 			sb->feature_map
1754 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1755 		if (rdev->new_data_offset != rdev->data_offset) {
1756 			sb->feature_map
1757 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1758 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1759 							     - rdev->data_offset));
1760 		}
1761 	}
1762 
1763 	if (rdev->badblocks.count == 0)
1764 		/* Nothing to do for bad blocks*/ ;
1765 	else if (sb->bblog_offset == 0)
1766 		/* Cannot record bad blocks on this device */
1767 		md_error(mddev, rdev);
1768 	else {
1769 		struct badblocks *bb = &rdev->badblocks;
1770 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1771 		u64 *p = bb->page;
1772 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1773 		if (bb->changed) {
1774 			unsigned seq;
1775 
1776 retry:
1777 			seq = read_seqbegin(&bb->lock);
1778 
1779 			memset(bbp, 0xff, PAGE_SIZE);
1780 
1781 			for (i = 0 ; i < bb->count ; i++) {
1782 				u64 internal_bb = p[i];
1783 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1784 						| BB_LEN(internal_bb));
1785 				bbp[i] = cpu_to_le64(store_bb);
1786 			}
1787 			bb->changed = 0;
1788 			if (read_seqretry(&bb->lock, seq))
1789 				goto retry;
1790 
1791 			bb->sector = (rdev->sb_start +
1792 				      (int)le32_to_cpu(sb->bblog_offset));
1793 			bb->size = le16_to_cpu(sb->bblog_size);
1794 		}
1795 	}
1796 
1797 	max_dev = 0;
1798 	rdev_for_each(rdev2, mddev)
1799 		if (rdev2->desc_nr+1 > max_dev)
1800 			max_dev = rdev2->desc_nr+1;
1801 
1802 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1803 		int bmask;
1804 		sb->max_dev = cpu_to_le32(max_dev);
1805 		rdev->sb_size = max_dev * 2 + 256;
1806 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1807 		if (rdev->sb_size & bmask)
1808 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1809 	} else
1810 		max_dev = le32_to_cpu(sb->max_dev);
1811 
1812 	for (i=0; i<max_dev;i++)
1813 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1814 
1815 	rdev_for_each(rdev2, mddev) {
1816 		i = rdev2->desc_nr;
1817 		if (test_bit(Faulty, &rdev2->flags))
1818 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1819 		else if (test_bit(In_sync, &rdev2->flags))
1820 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1821 		else if (rdev2->raid_disk >= 0)
1822 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1823 		else
1824 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1825 	}
1826 
1827 	sb->sb_csum = calc_sb_1_csum(sb);
1828 }
1829 
1830 static unsigned long long
1831 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1832 {
1833 	struct mdp_superblock_1 *sb;
1834 	sector_t max_sectors;
1835 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1836 		return 0; /* component must fit device */
1837 	if (rdev->data_offset != rdev->new_data_offset)
1838 		return 0; /* too confusing */
1839 	if (rdev->sb_start < rdev->data_offset) {
1840 		/* minor versions 1 and 2; superblock before data */
1841 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1842 		max_sectors -= rdev->data_offset;
1843 		if (!num_sectors || num_sectors > max_sectors)
1844 			num_sectors = max_sectors;
1845 	} else if (rdev->mddev->bitmap_info.offset) {
1846 		/* minor version 0 with bitmap we can't move */
1847 		return 0;
1848 	} else {
1849 		/* minor version 0; superblock after data */
1850 		sector_t sb_start;
1851 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1852 		sb_start &= ~(sector_t)(4*2 - 1);
1853 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1854 		if (!num_sectors || num_sectors > max_sectors)
1855 			num_sectors = max_sectors;
1856 		rdev->sb_start = sb_start;
1857 	}
1858 	sb = page_address(rdev->sb_page);
1859 	sb->data_size = cpu_to_le64(num_sectors);
1860 	sb->super_offset = rdev->sb_start;
1861 	sb->sb_csum = calc_sb_1_csum(sb);
1862 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1863 		       rdev->sb_page);
1864 	md_super_wait(rdev->mddev);
1865 	return num_sectors;
1866 
1867 }
1868 
1869 static int
1870 super_1_allow_new_offset(struct md_rdev *rdev,
1871 			 unsigned long long new_offset)
1872 {
1873 	/* All necessary checks on new >= old have been done */
1874 	struct bitmap *bitmap;
1875 	if (new_offset >= rdev->data_offset)
1876 		return 1;
1877 
1878 	/* with 1.0 metadata, there is no metadata to tread on
1879 	 * so we can always move back */
1880 	if (rdev->mddev->minor_version == 0)
1881 		return 1;
1882 
1883 	/* otherwise we must be sure not to step on
1884 	 * any metadata, so stay:
1885 	 * 36K beyond start of superblock
1886 	 * beyond end of badblocks
1887 	 * beyond write-intent bitmap
1888 	 */
1889 	if (rdev->sb_start + (32+4)*2 > new_offset)
1890 		return 0;
1891 	bitmap = rdev->mddev->bitmap;
1892 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1893 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1894 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1895 		return 0;
1896 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1897 		return 0;
1898 
1899 	return 1;
1900 }
1901 
1902 static struct super_type super_types[] = {
1903 	[0] = {
1904 		.name	= "0.90.0",
1905 		.owner	= THIS_MODULE,
1906 		.load_super	    = super_90_load,
1907 		.validate_super	    = super_90_validate,
1908 		.sync_super	    = super_90_sync,
1909 		.rdev_size_change   = super_90_rdev_size_change,
1910 		.allow_new_offset   = super_90_allow_new_offset,
1911 	},
1912 	[1] = {
1913 		.name	= "md-1",
1914 		.owner	= THIS_MODULE,
1915 		.load_super	    = super_1_load,
1916 		.validate_super	    = super_1_validate,
1917 		.sync_super	    = super_1_sync,
1918 		.rdev_size_change   = super_1_rdev_size_change,
1919 		.allow_new_offset   = super_1_allow_new_offset,
1920 	},
1921 };
1922 
1923 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1924 {
1925 	if (mddev->sync_super) {
1926 		mddev->sync_super(mddev, rdev);
1927 		return;
1928 	}
1929 
1930 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1931 
1932 	super_types[mddev->major_version].sync_super(mddev, rdev);
1933 }
1934 
1935 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1936 {
1937 	struct md_rdev *rdev, *rdev2;
1938 
1939 	rcu_read_lock();
1940 	rdev_for_each_rcu(rdev, mddev1)
1941 		rdev_for_each_rcu(rdev2, mddev2)
1942 			if (rdev->bdev->bd_contains ==
1943 			    rdev2->bdev->bd_contains) {
1944 				rcu_read_unlock();
1945 				return 1;
1946 			}
1947 	rcu_read_unlock();
1948 	return 0;
1949 }
1950 
1951 static LIST_HEAD(pending_raid_disks);
1952 
1953 /*
1954  * Try to register data integrity profile for an mddev
1955  *
1956  * This is called when an array is started and after a disk has been kicked
1957  * from the array. It only succeeds if all working and active component devices
1958  * are integrity capable with matching profiles.
1959  */
1960 int md_integrity_register(struct mddev *mddev)
1961 {
1962 	struct md_rdev *rdev, *reference = NULL;
1963 
1964 	if (list_empty(&mddev->disks))
1965 		return 0; /* nothing to do */
1966 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1967 		return 0; /* shouldn't register, or already is */
1968 	rdev_for_each(rdev, mddev) {
1969 		/* skip spares and non-functional disks */
1970 		if (test_bit(Faulty, &rdev->flags))
1971 			continue;
1972 		if (rdev->raid_disk < 0)
1973 			continue;
1974 		if (!reference) {
1975 			/* Use the first rdev as the reference */
1976 			reference = rdev;
1977 			continue;
1978 		}
1979 		/* does this rdev's profile match the reference profile? */
1980 		if (blk_integrity_compare(reference->bdev->bd_disk,
1981 				rdev->bdev->bd_disk) < 0)
1982 			return -EINVAL;
1983 	}
1984 	if (!reference || !bdev_get_integrity(reference->bdev))
1985 		return 0;
1986 	/*
1987 	 * All component devices are integrity capable and have matching
1988 	 * profiles, register the common profile for the md device.
1989 	 */
1990 	if (blk_integrity_register(mddev->gendisk,
1991 			bdev_get_integrity(reference->bdev)) != 0) {
1992 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1993 			mdname(mddev));
1994 		return -EINVAL;
1995 	}
1996 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1997 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1998 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1999 		       mdname(mddev));
2000 		return -EINVAL;
2001 	}
2002 	return 0;
2003 }
2004 EXPORT_SYMBOL(md_integrity_register);
2005 
2006 /* Disable data integrity if non-capable/non-matching disk is being added */
2007 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2008 {
2009 	struct blk_integrity *bi_rdev;
2010 	struct blk_integrity *bi_mddev;
2011 
2012 	if (!mddev->gendisk)
2013 		return;
2014 
2015 	bi_rdev = bdev_get_integrity(rdev->bdev);
2016 	bi_mddev = blk_get_integrity(mddev->gendisk);
2017 
2018 	if (!bi_mddev) /* nothing to do */
2019 		return;
2020 	if (rdev->raid_disk < 0) /* skip spares */
2021 		return;
2022 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2023 					     rdev->bdev->bd_disk) >= 0)
2024 		return;
2025 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2026 	blk_integrity_unregister(mddev->gendisk);
2027 }
2028 EXPORT_SYMBOL(md_integrity_add_rdev);
2029 
2030 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2031 {
2032 	char b[BDEVNAME_SIZE];
2033 	struct kobject *ko;
2034 	char *s;
2035 	int err;
2036 
2037 	if (rdev->mddev) {
2038 		MD_BUG();
2039 		return -EINVAL;
2040 	}
2041 
2042 	/* prevent duplicates */
2043 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2044 		return -EEXIST;
2045 
2046 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2047 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2048 			rdev->sectors < mddev->dev_sectors)) {
2049 		if (mddev->pers) {
2050 			/* Cannot change size, so fail
2051 			 * If mddev->level <= 0, then we don't care
2052 			 * about aligning sizes (e.g. linear)
2053 			 */
2054 			if (mddev->level > 0)
2055 				return -ENOSPC;
2056 		} else
2057 			mddev->dev_sectors = rdev->sectors;
2058 	}
2059 
2060 	/* Verify rdev->desc_nr is unique.
2061 	 * If it is -1, assign a free number, else
2062 	 * check number is not in use
2063 	 */
2064 	if (rdev->desc_nr < 0) {
2065 		int choice = 0;
2066 		if (mddev->pers) choice = mddev->raid_disks;
2067 		while (find_rdev_nr(mddev, choice))
2068 			choice++;
2069 		rdev->desc_nr = choice;
2070 	} else {
2071 		if (find_rdev_nr(mddev, rdev->desc_nr))
2072 			return -EBUSY;
2073 	}
2074 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2075 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2076 		       mdname(mddev), mddev->max_disks);
2077 		return -EBUSY;
2078 	}
2079 	bdevname(rdev->bdev,b);
2080 	while ( (s=strchr(b, '/')) != NULL)
2081 		*s = '!';
2082 
2083 	rdev->mddev = mddev;
2084 	printk(KERN_INFO "md: bind<%s>\n", b);
2085 
2086 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2087 		goto fail;
2088 
2089 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2090 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2091 		/* failure here is OK */;
2092 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2093 
2094 	list_add_rcu(&rdev->same_set, &mddev->disks);
2095 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2096 
2097 	/* May as well allow recovery to be retried once */
2098 	mddev->recovery_disabled++;
2099 
2100 	return 0;
2101 
2102  fail:
2103 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2104 	       b, mdname(mddev));
2105 	return err;
2106 }
2107 
2108 static void md_delayed_delete(struct work_struct *ws)
2109 {
2110 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2111 	kobject_del(&rdev->kobj);
2112 	kobject_put(&rdev->kobj);
2113 }
2114 
2115 static void unbind_rdev_from_array(struct md_rdev * rdev)
2116 {
2117 	char b[BDEVNAME_SIZE];
2118 	if (!rdev->mddev) {
2119 		MD_BUG();
2120 		return;
2121 	}
2122 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2123 	list_del_rcu(&rdev->same_set);
2124 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2125 	rdev->mddev = NULL;
2126 	sysfs_remove_link(&rdev->kobj, "block");
2127 	sysfs_put(rdev->sysfs_state);
2128 	rdev->sysfs_state = NULL;
2129 	rdev->badblocks.count = 0;
2130 	/* We need to delay this, otherwise we can deadlock when
2131 	 * writing to 'remove' to "dev/state".  We also need
2132 	 * to delay it due to rcu usage.
2133 	 */
2134 	synchronize_rcu();
2135 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2136 	kobject_get(&rdev->kobj);
2137 	queue_work(md_misc_wq, &rdev->del_work);
2138 }
2139 
2140 /*
2141  * prevent the device from being mounted, repartitioned or
2142  * otherwise reused by a RAID array (or any other kernel
2143  * subsystem), by bd_claiming the device.
2144  */
2145 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2146 {
2147 	int err = 0;
2148 	struct block_device *bdev;
2149 	char b[BDEVNAME_SIZE];
2150 
2151 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2152 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2153 	if (IS_ERR(bdev)) {
2154 		printk(KERN_ERR "md: could not open %s.\n",
2155 			__bdevname(dev, b));
2156 		return PTR_ERR(bdev);
2157 	}
2158 	rdev->bdev = bdev;
2159 	return err;
2160 }
2161 
2162 static void unlock_rdev(struct md_rdev *rdev)
2163 {
2164 	struct block_device *bdev = rdev->bdev;
2165 	rdev->bdev = NULL;
2166 	if (!bdev)
2167 		MD_BUG();
2168 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2169 }
2170 
2171 void md_autodetect_dev(dev_t dev);
2172 
2173 static void export_rdev(struct md_rdev * rdev)
2174 {
2175 	char b[BDEVNAME_SIZE];
2176 	printk(KERN_INFO "md: export_rdev(%s)\n",
2177 		bdevname(rdev->bdev,b));
2178 	if (rdev->mddev)
2179 		MD_BUG();
2180 	md_rdev_clear(rdev);
2181 #ifndef MODULE
2182 	if (test_bit(AutoDetected, &rdev->flags))
2183 		md_autodetect_dev(rdev->bdev->bd_dev);
2184 #endif
2185 	unlock_rdev(rdev);
2186 	kobject_put(&rdev->kobj);
2187 }
2188 
2189 static void kick_rdev_from_array(struct md_rdev * rdev)
2190 {
2191 	unbind_rdev_from_array(rdev);
2192 	export_rdev(rdev);
2193 }
2194 
2195 static void export_array(struct mddev *mddev)
2196 {
2197 	struct md_rdev *rdev, *tmp;
2198 
2199 	rdev_for_each_safe(rdev, tmp, mddev) {
2200 		if (!rdev->mddev) {
2201 			MD_BUG();
2202 			continue;
2203 		}
2204 		kick_rdev_from_array(rdev);
2205 	}
2206 	if (!list_empty(&mddev->disks))
2207 		MD_BUG();
2208 	mddev->raid_disks = 0;
2209 	mddev->major_version = 0;
2210 }
2211 
2212 static void print_desc(mdp_disk_t *desc)
2213 {
2214 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2215 		desc->major,desc->minor,desc->raid_disk,desc->state);
2216 }
2217 
2218 static void print_sb_90(mdp_super_t *sb)
2219 {
2220 	int i;
2221 
2222 	printk(KERN_INFO
2223 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2224 		sb->major_version, sb->minor_version, sb->patch_version,
2225 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2226 		sb->ctime);
2227 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2228 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2229 		sb->md_minor, sb->layout, sb->chunk_size);
2230 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2231 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2232 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2233 		sb->failed_disks, sb->spare_disks,
2234 		sb->sb_csum, (unsigned long)sb->events_lo);
2235 
2236 	printk(KERN_INFO);
2237 	for (i = 0; i < MD_SB_DISKS; i++) {
2238 		mdp_disk_t *desc;
2239 
2240 		desc = sb->disks + i;
2241 		if (desc->number || desc->major || desc->minor ||
2242 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2243 			printk("     D %2d: ", i);
2244 			print_desc(desc);
2245 		}
2246 	}
2247 	printk(KERN_INFO "md:     THIS: ");
2248 	print_desc(&sb->this_disk);
2249 }
2250 
2251 static void print_sb_1(struct mdp_superblock_1 *sb)
2252 {
2253 	__u8 *uuid;
2254 
2255 	uuid = sb->set_uuid;
2256 	printk(KERN_INFO
2257 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2258 	       "md:    Name: \"%s\" CT:%llu\n",
2259 		le32_to_cpu(sb->major_version),
2260 		le32_to_cpu(sb->feature_map),
2261 		uuid,
2262 		sb->set_name,
2263 		(unsigned long long)le64_to_cpu(sb->ctime)
2264 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2265 
2266 	uuid = sb->device_uuid;
2267 	printk(KERN_INFO
2268 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2269 			" RO:%llu\n"
2270 	       "md:     Dev:%08x UUID: %pU\n"
2271 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2272 	       "md:         (MaxDev:%u) \n",
2273 		le32_to_cpu(sb->level),
2274 		(unsigned long long)le64_to_cpu(sb->size),
2275 		le32_to_cpu(sb->raid_disks),
2276 		le32_to_cpu(sb->layout),
2277 		le32_to_cpu(sb->chunksize),
2278 		(unsigned long long)le64_to_cpu(sb->data_offset),
2279 		(unsigned long long)le64_to_cpu(sb->data_size),
2280 		(unsigned long long)le64_to_cpu(sb->super_offset),
2281 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2282 		le32_to_cpu(sb->dev_number),
2283 		uuid,
2284 		sb->devflags,
2285 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2286 		(unsigned long long)le64_to_cpu(sb->events),
2287 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2288 		le32_to_cpu(sb->sb_csum),
2289 		le32_to_cpu(sb->max_dev)
2290 		);
2291 }
2292 
2293 static void print_rdev(struct md_rdev *rdev, int major_version)
2294 {
2295 	char b[BDEVNAME_SIZE];
2296 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2297 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2298 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2299 	        rdev->desc_nr);
2300 	if (rdev->sb_loaded) {
2301 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2302 		switch (major_version) {
2303 		case 0:
2304 			print_sb_90(page_address(rdev->sb_page));
2305 			break;
2306 		case 1:
2307 			print_sb_1(page_address(rdev->sb_page));
2308 			break;
2309 		}
2310 	} else
2311 		printk(KERN_INFO "md: no rdev superblock!\n");
2312 }
2313 
2314 static void md_print_devices(void)
2315 {
2316 	struct list_head *tmp;
2317 	struct md_rdev *rdev;
2318 	struct mddev *mddev;
2319 	char b[BDEVNAME_SIZE];
2320 
2321 	printk("\n");
2322 	printk("md:	**********************************\n");
2323 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2324 	printk("md:	**********************************\n");
2325 	for_each_mddev(mddev, tmp) {
2326 
2327 		if (mddev->bitmap)
2328 			bitmap_print_sb(mddev->bitmap);
2329 		else
2330 			printk("%s: ", mdname(mddev));
2331 		rdev_for_each(rdev, mddev)
2332 			printk("<%s>", bdevname(rdev->bdev,b));
2333 		printk("\n");
2334 
2335 		rdev_for_each(rdev, mddev)
2336 			print_rdev(rdev, mddev->major_version);
2337 	}
2338 	printk("md:	**********************************\n");
2339 	printk("\n");
2340 }
2341 
2342 
2343 static void sync_sbs(struct mddev * mddev, int nospares)
2344 {
2345 	/* Update each superblock (in-memory image), but
2346 	 * if we are allowed to, skip spares which already
2347 	 * have the right event counter, or have one earlier
2348 	 * (which would mean they aren't being marked as dirty
2349 	 * with the rest of the array)
2350 	 */
2351 	struct md_rdev *rdev;
2352 	rdev_for_each(rdev, mddev) {
2353 		if (rdev->sb_events == mddev->events ||
2354 		    (nospares &&
2355 		     rdev->raid_disk < 0 &&
2356 		     rdev->sb_events+1 == mddev->events)) {
2357 			/* Don't update this superblock */
2358 			rdev->sb_loaded = 2;
2359 		} else {
2360 			sync_super(mddev, rdev);
2361 			rdev->sb_loaded = 1;
2362 		}
2363 	}
2364 }
2365 
2366 static void md_update_sb(struct mddev * mddev, int force_change)
2367 {
2368 	struct md_rdev *rdev;
2369 	int sync_req;
2370 	int nospares = 0;
2371 	int any_badblocks_changed = 0;
2372 
2373 	if (mddev->ro) {
2374 		if (force_change)
2375 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2376 		return;
2377 	}
2378 repeat:
2379 	/* First make sure individual recovery_offsets are correct */
2380 	rdev_for_each(rdev, mddev) {
2381 		if (rdev->raid_disk >= 0 &&
2382 		    mddev->delta_disks >= 0 &&
2383 		    !test_bit(In_sync, &rdev->flags) &&
2384 		    mddev->curr_resync_completed > rdev->recovery_offset)
2385 				rdev->recovery_offset = mddev->curr_resync_completed;
2386 
2387 	}
2388 	if (!mddev->persistent) {
2389 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2390 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2391 		if (!mddev->external) {
2392 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2393 			rdev_for_each(rdev, mddev) {
2394 				if (rdev->badblocks.changed) {
2395 					rdev->badblocks.changed = 0;
2396 					md_ack_all_badblocks(&rdev->badblocks);
2397 					md_error(mddev, rdev);
2398 				}
2399 				clear_bit(Blocked, &rdev->flags);
2400 				clear_bit(BlockedBadBlocks, &rdev->flags);
2401 				wake_up(&rdev->blocked_wait);
2402 			}
2403 		}
2404 		wake_up(&mddev->sb_wait);
2405 		return;
2406 	}
2407 
2408 	spin_lock_irq(&mddev->write_lock);
2409 
2410 	mddev->utime = get_seconds();
2411 
2412 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2413 		force_change = 1;
2414 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2415 		/* just a clean<-> dirty transition, possibly leave spares alone,
2416 		 * though if events isn't the right even/odd, we will have to do
2417 		 * spares after all
2418 		 */
2419 		nospares = 1;
2420 	if (force_change)
2421 		nospares = 0;
2422 	if (mddev->degraded)
2423 		/* If the array is degraded, then skipping spares is both
2424 		 * dangerous and fairly pointless.
2425 		 * Dangerous because a device that was removed from the array
2426 		 * might have a event_count that still looks up-to-date,
2427 		 * so it can be re-added without a resync.
2428 		 * Pointless because if there are any spares to skip,
2429 		 * then a recovery will happen and soon that array won't
2430 		 * be degraded any more and the spare can go back to sleep then.
2431 		 */
2432 		nospares = 0;
2433 
2434 	sync_req = mddev->in_sync;
2435 
2436 	/* If this is just a dirty<->clean transition, and the array is clean
2437 	 * and 'events' is odd, we can roll back to the previous clean state */
2438 	if (nospares
2439 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2440 	    && mddev->can_decrease_events
2441 	    && mddev->events != 1) {
2442 		mddev->events--;
2443 		mddev->can_decrease_events = 0;
2444 	} else {
2445 		/* otherwise we have to go forward and ... */
2446 		mddev->events ++;
2447 		mddev->can_decrease_events = nospares;
2448 	}
2449 
2450 	if (!mddev->events) {
2451 		/*
2452 		 * oops, this 64-bit counter should never wrap.
2453 		 * Either we are in around ~1 trillion A.C., assuming
2454 		 * 1 reboot per second, or we have a bug:
2455 		 */
2456 		MD_BUG();
2457 		mddev->events --;
2458 	}
2459 
2460 	rdev_for_each(rdev, mddev) {
2461 		if (rdev->badblocks.changed)
2462 			any_badblocks_changed++;
2463 		if (test_bit(Faulty, &rdev->flags))
2464 			set_bit(FaultRecorded, &rdev->flags);
2465 	}
2466 
2467 	sync_sbs(mddev, nospares);
2468 	spin_unlock_irq(&mddev->write_lock);
2469 
2470 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2471 		 mdname(mddev), mddev->in_sync);
2472 
2473 	bitmap_update_sb(mddev->bitmap);
2474 	rdev_for_each(rdev, mddev) {
2475 		char b[BDEVNAME_SIZE];
2476 
2477 		if (rdev->sb_loaded != 1)
2478 			continue; /* no noise on spare devices */
2479 
2480 		if (!test_bit(Faulty, &rdev->flags) &&
2481 		    rdev->saved_raid_disk == -1) {
2482 			md_super_write(mddev,rdev,
2483 				       rdev->sb_start, rdev->sb_size,
2484 				       rdev->sb_page);
2485 			pr_debug("md: (write) %s's sb offset: %llu\n",
2486 				 bdevname(rdev->bdev, b),
2487 				 (unsigned long long)rdev->sb_start);
2488 			rdev->sb_events = mddev->events;
2489 			if (rdev->badblocks.size) {
2490 				md_super_write(mddev, rdev,
2491 					       rdev->badblocks.sector,
2492 					       rdev->badblocks.size << 9,
2493 					       rdev->bb_page);
2494 				rdev->badblocks.size = 0;
2495 			}
2496 
2497 		} else if (test_bit(Faulty, &rdev->flags))
2498 			pr_debug("md: %s (skipping faulty)\n",
2499 				 bdevname(rdev->bdev, b));
2500 		else
2501 			pr_debug("(skipping incremental s/r ");
2502 
2503 		if (mddev->level == LEVEL_MULTIPATH)
2504 			/* only need to write one superblock... */
2505 			break;
2506 	}
2507 	md_super_wait(mddev);
2508 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2509 
2510 	spin_lock_irq(&mddev->write_lock);
2511 	if (mddev->in_sync != sync_req ||
2512 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2513 		/* have to write it out again */
2514 		spin_unlock_irq(&mddev->write_lock);
2515 		goto repeat;
2516 	}
2517 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2518 	spin_unlock_irq(&mddev->write_lock);
2519 	wake_up(&mddev->sb_wait);
2520 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2521 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2522 
2523 	rdev_for_each(rdev, mddev) {
2524 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2525 			clear_bit(Blocked, &rdev->flags);
2526 
2527 		if (any_badblocks_changed)
2528 			md_ack_all_badblocks(&rdev->badblocks);
2529 		clear_bit(BlockedBadBlocks, &rdev->flags);
2530 		wake_up(&rdev->blocked_wait);
2531 	}
2532 }
2533 
2534 /* words written to sysfs files may, or may not, be \n terminated.
2535  * We want to accept with case. For this we use cmd_match.
2536  */
2537 static int cmd_match(const char *cmd, const char *str)
2538 {
2539 	/* See if cmd, written into a sysfs file, matches
2540 	 * str.  They must either be the same, or cmd can
2541 	 * have a trailing newline
2542 	 */
2543 	while (*cmd && *str && *cmd == *str) {
2544 		cmd++;
2545 		str++;
2546 	}
2547 	if (*cmd == '\n')
2548 		cmd++;
2549 	if (*str || *cmd)
2550 		return 0;
2551 	return 1;
2552 }
2553 
2554 struct rdev_sysfs_entry {
2555 	struct attribute attr;
2556 	ssize_t (*show)(struct md_rdev *, char *);
2557 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2558 };
2559 
2560 static ssize_t
2561 state_show(struct md_rdev *rdev, char *page)
2562 {
2563 	char *sep = "";
2564 	size_t len = 0;
2565 
2566 	if (test_bit(Faulty, &rdev->flags) ||
2567 	    rdev->badblocks.unacked_exist) {
2568 		len+= sprintf(page+len, "%sfaulty",sep);
2569 		sep = ",";
2570 	}
2571 	if (test_bit(In_sync, &rdev->flags)) {
2572 		len += sprintf(page+len, "%sin_sync",sep);
2573 		sep = ",";
2574 	}
2575 	if (test_bit(WriteMostly, &rdev->flags)) {
2576 		len += sprintf(page+len, "%swrite_mostly",sep);
2577 		sep = ",";
2578 	}
2579 	if (test_bit(Blocked, &rdev->flags) ||
2580 	    (rdev->badblocks.unacked_exist
2581 	     && !test_bit(Faulty, &rdev->flags))) {
2582 		len += sprintf(page+len, "%sblocked", sep);
2583 		sep = ",";
2584 	}
2585 	if (!test_bit(Faulty, &rdev->flags) &&
2586 	    !test_bit(In_sync, &rdev->flags)) {
2587 		len += sprintf(page+len, "%sspare", sep);
2588 		sep = ",";
2589 	}
2590 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2591 		len += sprintf(page+len, "%swrite_error", sep);
2592 		sep = ",";
2593 	}
2594 	if (test_bit(WantReplacement, &rdev->flags)) {
2595 		len += sprintf(page+len, "%swant_replacement", sep);
2596 		sep = ",";
2597 	}
2598 	if (test_bit(Replacement, &rdev->flags)) {
2599 		len += sprintf(page+len, "%sreplacement", sep);
2600 		sep = ",";
2601 	}
2602 
2603 	return len+sprintf(page+len, "\n");
2604 }
2605 
2606 static ssize_t
2607 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2608 {
2609 	/* can write
2610 	 *  faulty  - simulates an error
2611 	 *  remove  - disconnects the device
2612 	 *  writemostly - sets write_mostly
2613 	 *  -writemostly - clears write_mostly
2614 	 *  blocked - sets the Blocked flags
2615 	 *  -blocked - clears the Blocked and possibly simulates an error
2616 	 *  insync - sets Insync providing device isn't active
2617 	 *  write_error - sets WriteErrorSeen
2618 	 *  -write_error - clears WriteErrorSeen
2619 	 */
2620 	int err = -EINVAL;
2621 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2622 		md_error(rdev->mddev, rdev);
2623 		if (test_bit(Faulty, &rdev->flags))
2624 			err = 0;
2625 		else
2626 			err = -EBUSY;
2627 	} else if (cmd_match(buf, "remove")) {
2628 		if (rdev->raid_disk >= 0)
2629 			err = -EBUSY;
2630 		else {
2631 			struct mddev *mddev = rdev->mddev;
2632 			kick_rdev_from_array(rdev);
2633 			if (mddev->pers)
2634 				md_update_sb(mddev, 1);
2635 			md_new_event(mddev);
2636 			err = 0;
2637 		}
2638 	} else if (cmd_match(buf, "writemostly")) {
2639 		set_bit(WriteMostly, &rdev->flags);
2640 		err = 0;
2641 	} else if (cmd_match(buf, "-writemostly")) {
2642 		clear_bit(WriteMostly, &rdev->flags);
2643 		err = 0;
2644 	} else if (cmd_match(buf, "blocked")) {
2645 		set_bit(Blocked, &rdev->flags);
2646 		err = 0;
2647 	} else if (cmd_match(buf, "-blocked")) {
2648 		if (!test_bit(Faulty, &rdev->flags) &&
2649 		    rdev->badblocks.unacked_exist) {
2650 			/* metadata handler doesn't understand badblocks,
2651 			 * so we need to fail the device
2652 			 */
2653 			md_error(rdev->mddev, rdev);
2654 		}
2655 		clear_bit(Blocked, &rdev->flags);
2656 		clear_bit(BlockedBadBlocks, &rdev->flags);
2657 		wake_up(&rdev->blocked_wait);
2658 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2659 		md_wakeup_thread(rdev->mddev->thread);
2660 
2661 		err = 0;
2662 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2663 		set_bit(In_sync, &rdev->flags);
2664 		err = 0;
2665 	} else if (cmd_match(buf, "write_error")) {
2666 		set_bit(WriteErrorSeen, &rdev->flags);
2667 		err = 0;
2668 	} else if (cmd_match(buf, "-write_error")) {
2669 		clear_bit(WriteErrorSeen, &rdev->flags);
2670 		err = 0;
2671 	} else if (cmd_match(buf, "want_replacement")) {
2672 		/* Any non-spare device that is not a replacement can
2673 		 * become want_replacement at any time, but we then need to
2674 		 * check if recovery is needed.
2675 		 */
2676 		if (rdev->raid_disk >= 0 &&
2677 		    !test_bit(Replacement, &rdev->flags))
2678 			set_bit(WantReplacement, &rdev->flags);
2679 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2680 		md_wakeup_thread(rdev->mddev->thread);
2681 		err = 0;
2682 	} else if (cmd_match(buf, "-want_replacement")) {
2683 		/* Clearing 'want_replacement' is always allowed.
2684 		 * Once replacements starts it is too late though.
2685 		 */
2686 		err = 0;
2687 		clear_bit(WantReplacement, &rdev->flags);
2688 	} else if (cmd_match(buf, "replacement")) {
2689 		/* Can only set a device as a replacement when array has not
2690 		 * yet been started.  Once running, replacement is automatic
2691 		 * from spares, or by assigning 'slot'.
2692 		 */
2693 		if (rdev->mddev->pers)
2694 			err = -EBUSY;
2695 		else {
2696 			set_bit(Replacement, &rdev->flags);
2697 			err = 0;
2698 		}
2699 	} else if (cmd_match(buf, "-replacement")) {
2700 		/* Similarly, can only clear Replacement before start */
2701 		if (rdev->mddev->pers)
2702 			err = -EBUSY;
2703 		else {
2704 			clear_bit(Replacement, &rdev->flags);
2705 			err = 0;
2706 		}
2707 	}
2708 	if (!err)
2709 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2710 	return err ? err : len;
2711 }
2712 static struct rdev_sysfs_entry rdev_state =
2713 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2714 
2715 static ssize_t
2716 errors_show(struct md_rdev *rdev, char *page)
2717 {
2718 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2719 }
2720 
2721 static ssize_t
2722 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2723 {
2724 	char *e;
2725 	unsigned long n = simple_strtoul(buf, &e, 10);
2726 	if (*buf && (*e == 0 || *e == '\n')) {
2727 		atomic_set(&rdev->corrected_errors, n);
2728 		return len;
2729 	}
2730 	return -EINVAL;
2731 }
2732 static struct rdev_sysfs_entry rdev_errors =
2733 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2734 
2735 static ssize_t
2736 slot_show(struct md_rdev *rdev, char *page)
2737 {
2738 	if (rdev->raid_disk < 0)
2739 		return sprintf(page, "none\n");
2740 	else
2741 		return sprintf(page, "%d\n", rdev->raid_disk);
2742 }
2743 
2744 static ssize_t
2745 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2746 {
2747 	char *e;
2748 	int err;
2749 	int slot = simple_strtoul(buf, &e, 10);
2750 	if (strncmp(buf, "none", 4)==0)
2751 		slot = -1;
2752 	else if (e==buf || (*e && *e!= '\n'))
2753 		return -EINVAL;
2754 	if (rdev->mddev->pers && slot == -1) {
2755 		/* Setting 'slot' on an active array requires also
2756 		 * updating the 'rd%d' link, and communicating
2757 		 * with the personality with ->hot_*_disk.
2758 		 * For now we only support removing
2759 		 * failed/spare devices.  This normally happens automatically,
2760 		 * but not when the metadata is externally managed.
2761 		 */
2762 		if (rdev->raid_disk == -1)
2763 			return -EEXIST;
2764 		/* personality does all needed checks */
2765 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2766 			return -EINVAL;
2767 		clear_bit(Blocked, &rdev->flags);
2768 		remove_and_add_spares(rdev->mddev, rdev);
2769 		if (rdev->raid_disk >= 0)
2770 			return -EBUSY;
2771 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2772 		md_wakeup_thread(rdev->mddev->thread);
2773 	} else if (rdev->mddev->pers) {
2774 		/* Activating a spare .. or possibly reactivating
2775 		 * if we ever get bitmaps working here.
2776 		 */
2777 
2778 		if (rdev->raid_disk != -1)
2779 			return -EBUSY;
2780 
2781 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2782 			return -EBUSY;
2783 
2784 		if (rdev->mddev->pers->hot_add_disk == NULL)
2785 			return -EINVAL;
2786 
2787 		if (slot >= rdev->mddev->raid_disks &&
2788 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2789 			return -ENOSPC;
2790 
2791 		rdev->raid_disk = slot;
2792 		if (test_bit(In_sync, &rdev->flags))
2793 			rdev->saved_raid_disk = slot;
2794 		else
2795 			rdev->saved_raid_disk = -1;
2796 		clear_bit(In_sync, &rdev->flags);
2797 		clear_bit(Bitmap_sync, &rdev->flags);
2798 		err = rdev->mddev->pers->
2799 			hot_add_disk(rdev->mddev, rdev);
2800 		if (err) {
2801 			rdev->raid_disk = -1;
2802 			return err;
2803 		} else
2804 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2805 		if (sysfs_link_rdev(rdev->mddev, rdev))
2806 			/* failure here is OK */;
2807 		/* don't wakeup anyone, leave that to userspace. */
2808 	} else {
2809 		if (slot >= rdev->mddev->raid_disks &&
2810 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2811 			return -ENOSPC;
2812 		rdev->raid_disk = slot;
2813 		/* assume it is working */
2814 		clear_bit(Faulty, &rdev->flags);
2815 		clear_bit(WriteMostly, &rdev->flags);
2816 		set_bit(In_sync, &rdev->flags);
2817 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2818 	}
2819 	return len;
2820 }
2821 
2822 
2823 static struct rdev_sysfs_entry rdev_slot =
2824 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2825 
2826 static ssize_t
2827 offset_show(struct md_rdev *rdev, char *page)
2828 {
2829 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2830 }
2831 
2832 static ssize_t
2833 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2834 {
2835 	unsigned long long offset;
2836 	if (kstrtoull(buf, 10, &offset) < 0)
2837 		return -EINVAL;
2838 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2839 		return -EBUSY;
2840 	if (rdev->sectors && rdev->mddev->external)
2841 		/* Must set offset before size, so overlap checks
2842 		 * can be sane */
2843 		return -EBUSY;
2844 	rdev->data_offset = offset;
2845 	rdev->new_data_offset = offset;
2846 	return len;
2847 }
2848 
2849 static struct rdev_sysfs_entry rdev_offset =
2850 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2851 
2852 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2853 {
2854 	return sprintf(page, "%llu\n",
2855 		       (unsigned long long)rdev->new_data_offset);
2856 }
2857 
2858 static ssize_t new_offset_store(struct md_rdev *rdev,
2859 				const char *buf, size_t len)
2860 {
2861 	unsigned long long new_offset;
2862 	struct mddev *mddev = rdev->mddev;
2863 
2864 	if (kstrtoull(buf, 10, &new_offset) < 0)
2865 		return -EINVAL;
2866 
2867 	if (mddev->sync_thread)
2868 		return -EBUSY;
2869 	if (new_offset == rdev->data_offset)
2870 		/* reset is always permitted */
2871 		;
2872 	else if (new_offset > rdev->data_offset) {
2873 		/* must not push array size beyond rdev_sectors */
2874 		if (new_offset - rdev->data_offset
2875 		    + mddev->dev_sectors > rdev->sectors)
2876 				return -E2BIG;
2877 	}
2878 	/* Metadata worries about other space details. */
2879 
2880 	/* decreasing the offset is inconsistent with a backwards
2881 	 * reshape.
2882 	 */
2883 	if (new_offset < rdev->data_offset &&
2884 	    mddev->reshape_backwards)
2885 		return -EINVAL;
2886 	/* Increasing offset is inconsistent with forwards
2887 	 * reshape.  reshape_direction should be set to
2888 	 * 'backwards' first.
2889 	 */
2890 	if (new_offset > rdev->data_offset &&
2891 	    !mddev->reshape_backwards)
2892 		return -EINVAL;
2893 
2894 	if (mddev->pers && mddev->persistent &&
2895 	    !super_types[mddev->major_version]
2896 	    .allow_new_offset(rdev, new_offset))
2897 		return -E2BIG;
2898 	rdev->new_data_offset = new_offset;
2899 	if (new_offset > rdev->data_offset)
2900 		mddev->reshape_backwards = 1;
2901 	else if (new_offset < rdev->data_offset)
2902 		mddev->reshape_backwards = 0;
2903 
2904 	return len;
2905 }
2906 static struct rdev_sysfs_entry rdev_new_offset =
2907 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2908 
2909 static ssize_t
2910 rdev_size_show(struct md_rdev *rdev, char *page)
2911 {
2912 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2913 }
2914 
2915 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2916 {
2917 	/* check if two start/length pairs overlap */
2918 	if (s1+l1 <= s2)
2919 		return 0;
2920 	if (s2+l2 <= s1)
2921 		return 0;
2922 	return 1;
2923 }
2924 
2925 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2926 {
2927 	unsigned long long blocks;
2928 	sector_t new;
2929 
2930 	if (kstrtoull(buf, 10, &blocks) < 0)
2931 		return -EINVAL;
2932 
2933 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2934 		return -EINVAL; /* sector conversion overflow */
2935 
2936 	new = blocks * 2;
2937 	if (new != blocks * 2)
2938 		return -EINVAL; /* unsigned long long to sector_t overflow */
2939 
2940 	*sectors = new;
2941 	return 0;
2942 }
2943 
2944 static ssize_t
2945 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2946 {
2947 	struct mddev *my_mddev = rdev->mddev;
2948 	sector_t oldsectors = rdev->sectors;
2949 	sector_t sectors;
2950 
2951 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2952 		return -EINVAL;
2953 	if (rdev->data_offset != rdev->new_data_offset)
2954 		return -EINVAL; /* too confusing */
2955 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2956 		if (my_mddev->persistent) {
2957 			sectors = super_types[my_mddev->major_version].
2958 				rdev_size_change(rdev, sectors);
2959 			if (!sectors)
2960 				return -EBUSY;
2961 		} else if (!sectors)
2962 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2963 				rdev->data_offset;
2964 		if (!my_mddev->pers->resize)
2965 			/* Cannot change size for RAID0 or Linear etc */
2966 			return -EINVAL;
2967 	}
2968 	if (sectors < my_mddev->dev_sectors)
2969 		return -EINVAL; /* component must fit device */
2970 
2971 	rdev->sectors = sectors;
2972 	if (sectors > oldsectors && my_mddev->external) {
2973 		/* need to check that all other rdevs with the same ->bdev
2974 		 * do not overlap.  We need to unlock the mddev to avoid
2975 		 * a deadlock.  We have already changed rdev->sectors, and if
2976 		 * we have to change it back, we will have the lock again.
2977 		 */
2978 		struct mddev *mddev;
2979 		int overlap = 0;
2980 		struct list_head *tmp;
2981 
2982 		mddev_unlock(my_mddev);
2983 		for_each_mddev(mddev, tmp) {
2984 			struct md_rdev *rdev2;
2985 
2986 			mddev_lock_nointr(mddev);
2987 			rdev_for_each(rdev2, mddev)
2988 				if (rdev->bdev == rdev2->bdev &&
2989 				    rdev != rdev2 &&
2990 				    overlaps(rdev->data_offset, rdev->sectors,
2991 					     rdev2->data_offset,
2992 					     rdev2->sectors)) {
2993 					overlap = 1;
2994 					break;
2995 				}
2996 			mddev_unlock(mddev);
2997 			if (overlap) {
2998 				mddev_put(mddev);
2999 				break;
3000 			}
3001 		}
3002 		mddev_lock_nointr(my_mddev);
3003 		if (overlap) {
3004 			/* Someone else could have slipped in a size
3005 			 * change here, but doing so is just silly.
3006 			 * We put oldsectors back because we *know* it is
3007 			 * safe, and trust userspace not to race with
3008 			 * itself
3009 			 */
3010 			rdev->sectors = oldsectors;
3011 			return -EBUSY;
3012 		}
3013 	}
3014 	return len;
3015 }
3016 
3017 static struct rdev_sysfs_entry rdev_size =
3018 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3019 
3020 
3021 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3022 {
3023 	unsigned long long recovery_start = rdev->recovery_offset;
3024 
3025 	if (test_bit(In_sync, &rdev->flags) ||
3026 	    recovery_start == MaxSector)
3027 		return sprintf(page, "none\n");
3028 
3029 	return sprintf(page, "%llu\n", recovery_start);
3030 }
3031 
3032 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3033 {
3034 	unsigned long long recovery_start;
3035 
3036 	if (cmd_match(buf, "none"))
3037 		recovery_start = MaxSector;
3038 	else if (kstrtoull(buf, 10, &recovery_start))
3039 		return -EINVAL;
3040 
3041 	if (rdev->mddev->pers &&
3042 	    rdev->raid_disk >= 0)
3043 		return -EBUSY;
3044 
3045 	rdev->recovery_offset = recovery_start;
3046 	if (recovery_start == MaxSector)
3047 		set_bit(In_sync, &rdev->flags);
3048 	else
3049 		clear_bit(In_sync, &rdev->flags);
3050 	return len;
3051 }
3052 
3053 static struct rdev_sysfs_entry rdev_recovery_start =
3054 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3055 
3056 
3057 static ssize_t
3058 badblocks_show(struct badblocks *bb, char *page, int unack);
3059 static ssize_t
3060 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3061 
3062 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3063 {
3064 	return badblocks_show(&rdev->badblocks, page, 0);
3065 }
3066 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3067 {
3068 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3069 	/* Maybe that ack was all we needed */
3070 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3071 		wake_up(&rdev->blocked_wait);
3072 	return rv;
3073 }
3074 static struct rdev_sysfs_entry rdev_bad_blocks =
3075 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3076 
3077 
3078 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3079 {
3080 	return badblocks_show(&rdev->badblocks, page, 1);
3081 }
3082 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3083 {
3084 	return badblocks_store(&rdev->badblocks, page, len, 1);
3085 }
3086 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3087 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3088 
3089 static struct attribute *rdev_default_attrs[] = {
3090 	&rdev_state.attr,
3091 	&rdev_errors.attr,
3092 	&rdev_slot.attr,
3093 	&rdev_offset.attr,
3094 	&rdev_new_offset.attr,
3095 	&rdev_size.attr,
3096 	&rdev_recovery_start.attr,
3097 	&rdev_bad_blocks.attr,
3098 	&rdev_unack_bad_blocks.attr,
3099 	NULL,
3100 };
3101 static ssize_t
3102 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3103 {
3104 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3105 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3106 	struct mddev *mddev = rdev->mddev;
3107 	ssize_t rv;
3108 
3109 	if (!entry->show)
3110 		return -EIO;
3111 
3112 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
3113 	if (!rv) {
3114 		if (rdev->mddev == NULL)
3115 			rv = -EBUSY;
3116 		else
3117 			rv = entry->show(rdev, page);
3118 		mddev_unlock(mddev);
3119 	}
3120 	return rv;
3121 }
3122 
3123 static ssize_t
3124 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3125 	      const char *page, size_t length)
3126 {
3127 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3128 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3129 	ssize_t rv;
3130 	struct mddev *mddev = rdev->mddev;
3131 
3132 	if (!entry->store)
3133 		return -EIO;
3134 	if (!capable(CAP_SYS_ADMIN))
3135 		return -EACCES;
3136 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3137 	if (!rv) {
3138 		if (rdev->mddev == NULL)
3139 			rv = -EBUSY;
3140 		else
3141 			rv = entry->store(rdev, page, length);
3142 		mddev_unlock(mddev);
3143 	}
3144 	return rv;
3145 }
3146 
3147 static void rdev_free(struct kobject *ko)
3148 {
3149 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3150 	kfree(rdev);
3151 }
3152 static const struct sysfs_ops rdev_sysfs_ops = {
3153 	.show		= rdev_attr_show,
3154 	.store		= rdev_attr_store,
3155 };
3156 static struct kobj_type rdev_ktype = {
3157 	.release	= rdev_free,
3158 	.sysfs_ops	= &rdev_sysfs_ops,
3159 	.default_attrs	= rdev_default_attrs,
3160 };
3161 
3162 int md_rdev_init(struct md_rdev *rdev)
3163 {
3164 	rdev->desc_nr = -1;
3165 	rdev->saved_raid_disk = -1;
3166 	rdev->raid_disk = -1;
3167 	rdev->flags = 0;
3168 	rdev->data_offset = 0;
3169 	rdev->new_data_offset = 0;
3170 	rdev->sb_events = 0;
3171 	rdev->last_read_error.tv_sec  = 0;
3172 	rdev->last_read_error.tv_nsec = 0;
3173 	rdev->sb_loaded = 0;
3174 	rdev->bb_page = NULL;
3175 	atomic_set(&rdev->nr_pending, 0);
3176 	atomic_set(&rdev->read_errors, 0);
3177 	atomic_set(&rdev->corrected_errors, 0);
3178 
3179 	INIT_LIST_HEAD(&rdev->same_set);
3180 	init_waitqueue_head(&rdev->blocked_wait);
3181 
3182 	/* Add space to store bad block list.
3183 	 * This reserves the space even on arrays where it cannot
3184 	 * be used - I wonder if that matters
3185 	 */
3186 	rdev->badblocks.count = 0;
3187 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3188 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3189 	seqlock_init(&rdev->badblocks.lock);
3190 	if (rdev->badblocks.page == NULL)
3191 		return -ENOMEM;
3192 
3193 	return 0;
3194 }
3195 EXPORT_SYMBOL_GPL(md_rdev_init);
3196 /*
3197  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3198  *
3199  * mark the device faulty if:
3200  *
3201  *   - the device is nonexistent (zero size)
3202  *   - the device has no valid superblock
3203  *
3204  * a faulty rdev _never_ has rdev->sb set.
3205  */
3206 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3207 {
3208 	char b[BDEVNAME_SIZE];
3209 	int err;
3210 	struct md_rdev *rdev;
3211 	sector_t size;
3212 
3213 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3214 	if (!rdev) {
3215 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3216 		return ERR_PTR(-ENOMEM);
3217 	}
3218 
3219 	err = md_rdev_init(rdev);
3220 	if (err)
3221 		goto abort_free;
3222 	err = alloc_disk_sb(rdev);
3223 	if (err)
3224 		goto abort_free;
3225 
3226 	err = lock_rdev(rdev, newdev, super_format == -2);
3227 	if (err)
3228 		goto abort_free;
3229 
3230 	kobject_init(&rdev->kobj, &rdev_ktype);
3231 
3232 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3233 	if (!size) {
3234 		printk(KERN_WARNING
3235 			"md: %s has zero or unknown size, marking faulty!\n",
3236 			bdevname(rdev->bdev,b));
3237 		err = -EINVAL;
3238 		goto abort_free;
3239 	}
3240 
3241 	if (super_format >= 0) {
3242 		err = super_types[super_format].
3243 			load_super(rdev, NULL, super_minor);
3244 		if (err == -EINVAL) {
3245 			printk(KERN_WARNING
3246 				"md: %s does not have a valid v%d.%d "
3247 			       "superblock, not importing!\n",
3248 				bdevname(rdev->bdev,b),
3249 			       super_format, super_minor);
3250 			goto abort_free;
3251 		}
3252 		if (err < 0) {
3253 			printk(KERN_WARNING
3254 				"md: could not read %s's sb, not importing!\n",
3255 				bdevname(rdev->bdev,b));
3256 			goto abort_free;
3257 		}
3258 	}
3259 
3260 	return rdev;
3261 
3262 abort_free:
3263 	if (rdev->bdev)
3264 		unlock_rdev(rdev);
3265 	md_rdev_clear(rdev);
3266 	kfree(rdev);
3267 	return ERR_PTR(err);
3268 }
3269 
3270 /*
3271  * Check a full RAID array for plausibility
3272  */
3273 
3274 
3275 static void analyze_sbs(struct mddev * mddev)
3276 {
3277 	int i;
3278 	struct md_rdev *rdev, *freshest, *tmp;
3279 	char b[BDEVNAME_SIZE];
3280 
3281 	freshest = NULL;
3282 	rdev_for_each_safe(rdev, tmp, mddev)
3283 		switch (super_types[mddev->major_version].
3284 			load_super(rdev, freshest, mddev->minor_version)) {
3285 		case 1:
3286 			freshest = rdev;
3287 			break;
3288 		case 0:
3289 			break;
3290 		default:
3291 			printk( KERN_ERR \
3292 				"md: fatal superblock inconsistency in %s"
3293 				" -- removing from array\n",
3294 				bdevname(rdev->bdev,b));
3295 			kick_rdev_from_array(rdev);
3296 		}
3297 
3298 
3299 	super_types[mddev->major_version].
3300 		validate_super(mddev, freshest);
3301 
3302 	i = 0;
3303 	rdev_for_each_safe(rdev, tmp, mddev) {
3304 		if (mddev->max_disks &&
3305 		    (rdev->desc_nr >= mddev->max_disks ||
3306 		     i > mddev->max_disks)) {
3307 			printk(KERN_WARNING
3308 			       "md: %s: %s: only %d devices permitted\n",
3309 			       mdname(mddev), bdevname(rdev->bdev, b),
3310 			       mddev->max_disks);
3311 			kick_rdev_from_array(rdev);
3312 			continue;
3313 		}
3314 		if (rdev != freshest)
3315 			if (super_types[mddev->major_version].
3316 			    validate_super(mddev, rdev)) {
3317 				printk(KERN_WARNING "md: kicking non-fresh %s"
3318 					" from array!\n",
3319 					bdevname(rdev->bdev,b));
3320 				kick_rdev_from_array(rdev);
3321 				continue;
3322 			}
3323 		if (mddev->level == LEVEL_MULTIPATH) {
3324 			rdev->desc_nr = i++;
3325 			rdev->raid_disk = rdev->desc_nr;
3326 			set_bit(In_sync, &rdev->flags);
3327 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3328 			rdev->raid_disk = -1;
3329 			clear_bit(In_sync, &rdev->flags);
3330 		}
3331 	}
3332 }
3333 
3334 /* Read a fixed-point number.
3335  * Numbers in sysfs attributes should be in "standard" units where
3336  * possible, so time should be in seconds.
3337  * However we internally use a a much smaller unit such as
3338  * milliseconds or jiffies.
3339  * This function takes a decimal number with a possible fractional
3340  * component, and produces an integer which is the result of
3341  * multiplying that number by 10^'scale'.
3342  * all without any floating-point arithmetic.
3343  */
3344 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3345 {
3346 	unsigned long result = 0;
3347 	long decimals = -1;
3348 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3349 		if (*cp == '.')
3350 			decimals = 0;
3351 		else if (decimals < scale) {
3352 			unsigned int value;
3353 			value = *cp - '0';
3354 			result = result * 10 + value;
3355 			if (decimals >= 0)
3356 				decimals++;
3357 		}
3358 		cp++;
3359 	}
3360 	if (*cp == '\n')
3361 		cp++;
3362 	if (*cp)
3363 		return -EINVAL;
3364 	if (decimals < 0)
3365 		decimals = 0;
3366 	while (decimals < scale) {
3367 		result *= 10;
3368 		decimals ++;
3369 	}
3370 	*res = result;
3371 	return 0;
3372 }
3373 
3374 
3375 static void md_safemode_timeout(unsigned long data);
3376 
3377 static ssize_t
3378 safe_delay_show(struct mddev *mddev, char *page)
3379 {
3380 	int msec = (mddev->safemode_delay*1000)/HZ;
3381 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3382 }
3383 static ssize_t
3384 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3385 {
3386 	unsigned long msec;
3387 
3388 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3389 		return -EINVAL;
3390 	if (msec == 0)
3391 		mddev->safemode_delay = 0;
3392 	else {
3393 		unsigned long old_delay = mddev->safemode_delay;
3394 		mddev->safemode_delay = (msec*HZ)/1000;
3395 		if (mddev->safemode_delay == 0)
3396 			mddev->safemode_delay = 1;
3397 		if (mddev->safemode_delay < old_delay || old_delay == 0)
3398 			md_safemode_timeout((unsigned long)mddev);
3399 	}
3400 	return len;
3401 }
3402 static struct md_sysfs_entry md_safe_delay =
3403 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3404 
3405 static ssize_t
3406 level_show(struct mddev *mddev, char *page)
3407 {
3408 	struct md_personality *p = mddev->pers;
3409 	if (p)
3410 		return sprintf(page, "%s\n", p->name);
3411 	else if (mddev->clevel[0])
3412 		return sprintf(page, "%s\n", mddev->clevel);
3413 	else if (mddev->level != LEVEL_NONE)
3414 		return sprintf(page, "%d\n", mddev->level);
3415 	else
3416 		return 0;
3417 }
3418 
3419 static ssize_t
3420 level_store(struct mddev *mddev, const char *buf, size_t len)
3421 {
3422 	char clevel[16];
3423 	ssize_t rv = len;
3424 	struct md_personality *pers;
3425 	long level;
3426 	void *priv;
3427 	struct md_rdev *rdev;
3428 
3429 	if (mddev->pers == NULL) {
3430 		if (len == 0)
3431 			return 0;
3432 		if (len >= sizeof(mddev->clevel))
3433 			return -ENOSPC;
3434 		strncpy(mddev->clevel, buf, len);
3435 		if (mddev->clevel[len-1] == '\n')
3436 			len--;
3437 		mddev->clevel[len] = 0;
3438 		mddev->level = LEVEL_NONE;
3439 		return rv;
3440 	}
3441 
3442 	/* request to change the personality.  Need to ensure:
3443 	 *  - array is not engaged in resync/recovery/reshape
3444 	 *  - old personality can be suspended
3445 	 *  - new personality will access other array.
3446 	 */
3447 
3448 	if (mddev->sync_thread ||
3449 	    mddev->reshape_position != MaxSector ||
3450 	    mddev->sysfs_active)
3451 		return -EBUSY;
3452 
3453 	if (!mddev->pers->quiesce) {
3454 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3455 		       mdname(mddev), mddev->pers->name);
3456 		return -EINVAL;
3457 	}
3458 
3459 	/* Now find the new personality */
3460 	if (len == 0 || len >= sizeof(clevel))
3461 		return -EINVAL;
3462 	strncpy(clevel, buf, len);
3463 	if (clevel[len-1] == '\n')
3464 		len--;
3465 	clevel[len] = 0;
3466 	if (kstrtol(clevel, 10, &level))
3467 		level = LEVEL_NONE;
3468 
3469 	if (request_module("md-%s", clevel) != 0)
3470 		request_module("md-level-%s", clevel);
3471 	spin_lock(&pers_lock);
3472 	pers = find_pers(level, clevel);
3473 	if (!pers || !try_module_get(pers->owner)) {
3474 		spin_unlock(&pers_lock);
3475 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3476 		return -EINVAL;
3477 	}
3478 	spin_unlock(&pers_lock);
3479 
3480 	if (pers == mddev->pers) {
3481 		/* Nothing to do! */
3482 		module_put(pers->owner);
3483 		return rv;
3484 	}
3485 	if (!pers->takeover) {
3486 		module_put(pers->owner);
3487 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3488 		       mdname(mddev), clevel);
3489 		return -EINVAL;
3490 	}
3491 
3492 	rdev_for_each(rdev, mddev)
3493 		rdev->new_raid_disk = rdev->raid_disk;
3494 
3495 	/* ->takeover must set new_* and/or delta_disks
3496 	 * if it succeeds, and may set them when it fails.
3497 	 */
3498 	priv = pers->takeover(mddev);
3499 	if (IS_ERR(priv)) {
3500 		mddev->new_level = mddev->level;
3501 		mddev->new_layout = mddev->layout;
3502 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3503 		mddev->raid_disks -= mddev->delta_disks;
3504 		mddev->delta_disks = 0;
3505 		mddev->reshape_backwards = 0;
3506 		module_put(pers->owner);
3507 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3508 		       mdname(mddev), clevel);
3509 		return PTR_ERR(priv);
3510 	}
3511 
3512 	/* Looks like we have a winner */
3513 	mddev_suspend(mddev);
3514 	mddev->pers->stop(mddev);
3515 
3516 	if (mddev->pers->sync_request == NULL &&
3517 	    pers->sync_request != NULL) {
3518 		/* need to add the md_redundancy_group */
3519 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3520 			printk(KERN_WARNING
3521 			       "md: cannot register extra attributes for %s\n",
3522 			       mdname(mddev));
3523 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3524 	}
3525 	if (mddev->pers->sync_request != NULL &&
3526 	    pers->sync_request == NULL) {
3527 		/* need to remove the md_redundancy_group */
3528 		if (mddev->to_remove == NULL)
3529 			mddev->to_remove = &md_redundancy_group;
3530 	}
3531 
3532 	if (mddev->pers->sync_request == NULL &&
3533 	    mddev->external) {
3534 		/* We are converting from a no-redundancy array
3535 		 * to a redundancy array and metadata is managed
3536 		 * externally so we need to be sure that writes
3537 		 * won't block due to a need to transition
3538 		 *      clean->dirty
3539 		 * until external management is started.
3540 		 */
3541 		mddev->in_sync = 0;
3542 		mddev->safemode_delay = 0;
3543 		mddev->safemode = 0;
3544 	}
3545 
3546 	rdev_for_each(rdev, mddev) {
3547 		if (rdev->raid_disk < 0)
3548 			continue;
3549 		if (rdev->new_raid_disk >= mddev->raid_disks)
3550 			rdev->new_raid_disk = -1;
3551 		if (rdev->new_raid_disk == rdev->raid_disk)
3552 			continue;
3553 		sysfs_unlink_rdev(mddev, rdev);
3554 	}
3555 	rdev_for_each(rdev, mddev) {
3556 		if (rdev->raid_disk < 0)
3557 			continue;
3558 		if (rdev->new_raid_disk == rdev->raid_disk)
3559 			continue;
3560 		rdev->raid_disk = rdev->new_raid_disk;
3561 		if (rdev->raid_disk < 0)
3562 			clear_bit(In_sync, &rdev->flags);
3563 		else {
3564 			if (sysfs_link_rdev(mddev, rdev))
3565 				printk(KERN_WARNING "md: cannot register rd%d"
3566 				       " for %s after level change\n",
3567 				       rdev->raid_disk, mdname(mddev));
3568 		}
3569 	}
3570 
3571 	module_put(mddev->pers->owner);
3572 	mddev->pers = pers;
3573 	mddev->private = priv;
3574 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3575 	mddev->level = mddev->new_level;
3576 	mddev->layout = mddev->new_layout;
3577 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3578 	mddev->delta_disks = 0;
3579 	mddev->reshape_backwards = 0;
3580 	mddev->degraded = 0;
3581 	if (mddev->pers->sync_request == NULL) {
3582 		/* this is now an array without redundancy, so
3583 		 * it must always be in_sync
3584 		 */
3585 		mddev->in_sync = 1;
3586 		del_timer_sync(&mddev->safemode_timer);
3587 	}
3588 	blk_set_stacking_limits(&mddev->queue->limits);
3589 	pers->run(mddev);
3590 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3591 	mddev_resume(mddev);
3592 	sysfs_notify(&mddev->kobj, NULL, "level");
3593 	md_new_event(mddev);
3594 	return rv;
3595 }
3596 
3597 static struct md_sysfs_entry md_level =
3598 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3599 
3600 
3601 static ssize_t
3602 layout_show(struct mddev *mddev, char *page)
3603 {
3604 	/* just a number, not meaningful for all levels */
3605 	if (mddev->reshape_position != MaxSector &&
3606 	    mddev->layout != mddev->new_layout)
3607 		return sprintf(page, "%d (%d)\n",
3608 			       mddev->new_layout, mddev->layout);
3609 	return sprintf(page, "%d\n", mddev->layout);
3610 }
3611 
3612 static ssize_t
3613 layout_store(struct mddev *mddev, const char *buf, size_t len)
3614 {
3615 	char *e;
3616 	unsigned long n = simple_strtoul(buf, &e, 10);
3617 
3618 	if (!*buf || (*e && *e != '\n'))
3619 		return -EINVAL;
3620 
3621 	if (mddev->pers) {
3622 		int err;
3623 		if (mddev->pers->check_reshape == NULL)
3624 			return -EBUSY;
3625 		mddev->new_layout = n;
3626 		err = mddev->pers->check_reshape(mddev);
3627 		if (err) {
3628 			mddev->new_layout = mddev->layout;
3629 			return err;
3630 		}
3631 	} else {
3632 		mddev->new_layout = n;
3633 		if (mddev->reshape_position == MaxSector)
3634 			mddev->layout = n;
3635 	}
3636 	return len;
3637 }
3638 static struct md_sysfs_entry md_layout =
3639 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3640 
3641 
3642 static ssize_t
3643 raid_disks_show(struct mddev *mddev, char *page)
3644 {
3645 	if (mddev->raid_disks == 0)
3646 		return 0;
3647 	if (mddev->reshape_position != MaxSector &&
3648 	    mddev->delta_disks != 0)
3649 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3650 			       mddev->raid_disks - mddev->delta_disks);
3651 	return sprintf(page, "%d\n", mddev->raid_disks);
3652 }
3653 
3654 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3655 
3656 static ssize_t
3657 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3658 {
3659 	char *e;
3660 	int rv = 0;
3661 	unsigned long n = simple_strtoul(buf, &e, 10);
3662 
3663 	if (!*buf || (*e && *e != '\n'))
3664 		return -EINVAL;
3665 
3666 	if (mddev->pers)
3667 		rv = update_raid_disks(mddev, n);
3668 	else if (mddev->reshape_position != MaxSector) {
3669 		struct md_rdev *rdev;
3670 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3671 
3672 		rdev_for_each(rdev, mddev) {
3673 			if (olddisks < n &&
3674 			    rdev->data_offset < rdev->new_data_offset)
3675 				return -EINVAL;
3676 			if (olddisks > n &&
3677 			    rdev->data_offset > rdev->new_data_offset)
3678 				return -EINVAL;
3679 		}
3680 		mddev->delta_disks = n - olddisks;
3681 		mddev->raid_disks = n;
3682 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3683 	} else
3684 		mddev->raid_disks = n;
3685 	return rv ? rv : len;
3686 }
3687 static struct md_sysfs_entry md_raid_disks =
3688 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3689 
3690 static ssize_t
3691 chunk_size_show(struct mddev *mddev, char *page)
3692 {
3693 	if (mddev->reshape_position != MaxSector &&
3694 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3695 		return sprintf(page, "%d (%d)\n",
3696 			       mddev->new_chunk_sectors << 9,
3697 			       mddev->chunk_sectors << 9);
3698 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3699 }
3700 
3701 static ssize_t
3702 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3703 {
3704 	char *e;
3705 	unsigned long n = simple_strtoul(buf, &e, 10);
3706 
3707 	if (!*buf || (*e && *e != '\n'))
3708 		return -EINVAL;
3709 
3710 	if (mddev->pers) {
3711 		int err;
3712 		if (mddev->pers->check_reshape == NULL)
3713 			return -EBUSY;
3714 		mddev->new_chunk_sectors = n >> 9;
3715 		err = mddev->pers->check_reshape(mddev);
3716 		if (err) {
3717 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3718 			return err;
3719 		}
3720 	} else {
3721 		mddev->new_chunk_sectors = n >> 9;
3722 		if (mddev->reshape_position == MaxSector)
3723 			mddev->chunk_sectors = n >> 9;
3724 	}
3725 	return len;
3726 }
3727 static struct md_sysfs_entry md_chunk_size =
3728 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3729 
3730 static ssize_t
3731 resync_start_show(struct mddev *mddev, char *page)
3732 {
3733 	if (mddev->recovery_cp == MaxSector)
3734 		return sprintf(page, "none\n");
3735 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3736 }
3737 
3738 static ssize_t
3739 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3740 {
3741 	char *e;
3742 	unsigned long long n = simple_strtoull(buf, &e, 10);
3743 
3744 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3745 		return -EBUSY;
3746 	if (cmd_match(buf, "none"))
3747 		n = MaxSector;
3748 	else if (!*buf || (*e && *e != '\n'))
3749 		return -EINVAL;
3750 
3751 	mddev->recovery_cp = n;
3752 	if (mddev->pers)
3753 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3754 	return len;
3755 }
3756 static struct md_sysfs_entry md_resync_start =
3757 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3758 
3759 /*
3760  * The array state can be:
3761  *
3762  * clear
3763  *     No devices, no size, no level
3764  *     Equivalent to STOP_ARRAY ioctl
3765  * inactive
3766  *     May have some settings, but array is not active
3767  *        all IO results in error
3768  *     When written, doesn't tear down array, but just stops it
3769  * suspended (not supported yet)
3770  *     All IO requests will block. The array can be reconfigured.
3771  *     Writing this, if accepted, will block until array is quiescent
3772  * readonly
3773  *     no resync can happen.  no superblocks get written.
3774  *     write requests fail
3775  * read-auto
3776  *     like readonly, but behaves like 'clean' on a write request.
3777  *
3778  * clean - no pending writes, but otherwise active.
3779  *     When written to inactive array, starts without resync
3780  *     If a write request arrives then
3781  *       if metadata is known, mark 'dirty' and switch to 'active'.
3782  *       if not known, block and switch to write-pending
3783  *     If written to an active array that has pending writes, then fails.
3784  * active
3785  *     fully active: IO and resync can be happening.
3786  *     When written to inactive array, starts with resync
3787  *
3788  * write-pending
3789  *     clean, but writes are blocked waiting for 'active' to be written.
3790  *
3791  * active-idle
3792  *     like active, but no writes have been seen for a while (100msec).
3793  *
3794  */
3795 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3796 		   write_pending, active_idle, bad_word};
3797 static char *array_states[] = {
3798 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3799 	"write-pending", "active-idle", NULL };
3800 
3801 static int match_word(const char *word, char **list)
3802 {
3803 	int n;
3804 	for (n=0; list[n]; n++)
3805 		if (cmd_match(word, list[n]))
3806 			break;
3807 	return n;
3808 }
3809 
3810 static ssize_t
3811 array_state_show(struct mddev *mddev, char *page)
3812 {
3813 	enum array_state st = inactive;
3814 
3815 	if (mddev->pers)
3816 		switch(mddev->ro) {
3817 		case 1:
3818 			st = readonly;
3819 			break;
3820 		case 2:
3821 			st = read_auto;
3822 			break;
3823 		case 0:
3824 			if (mddev->in_sync)
3825 				st = clean;
3826 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3827 				st = write_pending;
3828 			else if (mddev->safemode)
3829 				st = active_idle;
3830 			else
3831 				st = active;
3832 		}
3833 	else {
3834 		if (list_empty(&mddev->disks) &&
3835 		    mddev->raid_disks == 0 &&
3836 		    mddev->dev_sectors == 0)
3837 			st = clear;
3838 		else
3839 			st = inactive;
3840 	}
3841 	return sprintf(page, "%s\n", array_states[st]);
3842 }
3843 
3844 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3845 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3846 static int do_md_run(struct mddev * mddev);
3847 static int restart_array(struct mddev *mddev);
3848 
3849 static ssize_t
3850 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3851 {
3852 	int err = -EINVAL;
3853 	enum array_state st = match_word(buf, array_states);
3854 	switch(st) {
3855 	case bad_word:
3856 		break;
3857 	case clear:
3858 		/* stopping an active array */
3859 		err = do_md_stop(mddev, 0, NULL);
3860 		break;
3861 	case inactive:
3862 		/* stopping an active array */
3863 		if (mddev->pers)
3864 			err = do_md_stop(mddev, 2, NULL);
3865 		else
3866 			err = 0; /* already inactive */
3867 		break;
3868 	case suspended:
3869 		break; /* not supported yet */
3870 	case readonly:
3871 		if (mddev->pers)
3872 			err = md_set_readonly(mddev, NULL);
3873 		else {
3874 			mddev->ro = 1;
3875 			set_disk_ro(mddev->gendisk, 1);
3876 			err = do_md_run(mddev);
3877 		}
3878 		break;
3879 	case read_auto:
3880 		if (mddev->pers) {
3881 			if (mddev->ro == 0)
3882 				err = md_set_readonly(mddev, NULL);
3883 			else if (mddev->ro == 1)
3884 				err = restart_array(mddev);
3885 			if (err == 0) {
3886 				mddev->ro = 2;
3887 				set_disk_ro(mddev->gendisk, 0);
3888 			}
3889 		} else {
3890 			mddev->ro = 2;
3891 			err = do_md_run(mddev);
3892 		}
3893 		break;
3894 	case clean:
3895 		if (mddev->pers) {
3896 			restart_array(mddev);
3897 			spin_lock_irq(&mddev->write_lock);
3898 			if (atomic_read(&mddev->writes_pending) == 0) {
3899 				if (mddev->in_sync == 0) {
3900 					mddev->in_sync = 1;
3901 					if (mddev->safemode == 1)
3902 						mddev->safemode = 0;
3903 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3904 				}
3905 				err = 0;
3906 			} else
3907 				err = -EBUSY;
3908 			spin_unlock_irq(&mddev->write_lock);
3909 		} else
3910 			err = -EINVAL;
3911 		break;
3912 	case active:
3913 		if (mddev->pers) {
3914 			restart_array(mddev);
3915 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3916 			wake_up(&mddev->sb_wait);
3917 			err = 0;
3918 		} else {
3919 			mddev->ro = 0;
3920 			set_disk_ro(mddev->gendisk, 0);
3921 			err = do_md_run(mddev);
3922 		}
3923 		break;
3924 	case write_pending:
3925 	case active_idle:
3926 		/* these cannot be set */
3927 		break;
3928 	}
3929 	if (err)
3930 		return err;
3931 	else {
3932 		if (mddev->hold_active == UNTIL_IOCTL)
3933 			mddev->hold_active = 0;
3934 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3935 		return len;
3936 	}
3937 }
3938 static struct md_sysfs_entry md_array_state =
3939 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3940 
3941 static ssize_t
3942 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3943 	return sprintf(page, "%d\n",
3944 		       atomic_read(&mddev->max_corr_read_errors));
3945 }
3946 
3947 static ssize_t
3948 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3949 {
3950 	char *e;
3951 	unsigned long n = simple_strtoul(buf, &e, 10);
3952 
3953 	if (*buf && (*e == 0 || *e == '\n')) {
3954 		atomic_set(&mddev->max_corr_read_errors, n);
3955 		return len;
3956 	}
3957 	return -EINVAL;
3958 }
3959 
3960 static struct md_sysfs_entry max_corr_read_errors =
3961 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3962 	max_corrected_read_errors_store);
3963 
3964 static ssize_t
3965 null_show(struct mddev *mddev, char *page)
3966 {
3967 	return -EINVAL;
3968 }
3969 
3970 static ssize_t
3971 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3972 {
3973 	/* buf must be %d:%d\n? giving major and minor numbers */
3974 	/* The new device is added to the array.
3975 	 * If the array has a persistent superblock, we read the
3976 	 * superblock to initialise info and check validity.
3977 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3978 	 * which mainly checks size.
3979 	 */
3980 	char *e;
3981 	int major = simple_strtoul(buf, &e, 10);
3982 	int minor;
3983 	dev_t dev;
3984 	struct md_rdev *rdev;
3985 	int err;
3986 
3987 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3988 		return -EINVAL;
3989 	minor = simple_strtoul(e+1, &e, 10);
3990 	if (*e && *e != '\n')
3991 		return -EINVAL;
3992 	dev = MKDEV(major, minor);
3993 	if (major != MAJOR(dev) ||
3994 	    minor != MINOR(dev))
3995 		return -EOVERFLOW;
3996 
3997 
3998 	if (mddev->persistent) {
3999 		rdev = md_import_device(dev, mddev->major_version,
4000 					mddev->minor_version);
4001 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4002 			struct md_rdev *rdev0
4003 				= list_entry(mddev->disks.next,
4004 					     struct md_rdev, same_set);
4005 			err = super_types[mddev->major_version]
4006 				.load_super(rdev, rdev0, mddev->minor_version);
4007 			if (err < 0)
4008 				goto out;
4009 		}
4010 	} else if (mddev->external)
4011 		rdev = md_import_device(dev, -2, -1);
4012 	else
4013 		rdev = md_import_device(dev, -1, -1);
4014 
4015 	if (IS_ERR(rdev))
4016 		return PTR_ERR(rdev);
4017 	err = bind_rdev_to_array(rdev, mddev);
4018  out:
4019 	if (err)
4020 		export_rdev(rdev);
4021 	return err ? err : len;
4022 }
4023 
4024 static struct md_sysfs_entry md_new_device =
4025 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4026 
4027 static ssize_t
4028 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4029 {
4030 	char *end;
4031 	unsigned long chunk, end_chunk;
4032 
4033 	if (!mddev->bitmap)
4034 		goto out;
4035 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4036 	while (*buf) {
4037 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4038 		if (buf == end) break;
4039 		if (*end == '-') { /* range */
4040 			buf = end + 1;
4041 			end_chunk = simple_strtoul(buf, &end, 0);
4042 			if (buf == end) break;
4043 		}
4044 		if (*end && !isspace(*end)) break;
4045 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4046 		buf = skip_spaces(end);
4047 	}
4048 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4049 out:
4050 	return len;
4051 }
4052 
4053 static struct md_sysfs_entry md_bitmap =
4054 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4055 
4056 static ssize_t
4057 size_show(struct mddev *mddev, char *page)
4058 {
4059 	return sprintf(page, "%llu\n",
4060 		(unsigned long long)mddev->dev_sectors / 2);
4061 }
4062 
4063 static int update_size(struct mddev *mddev, sector_t num_sectors);
4064 
4065 static ssize_t
4066 size_store(struct mddev *mddev, const char *buf, size_t len)
4067 {
4068 	/* If array is inactive, we can reduce the component size, but
4069 	 * not increase it (except from 0).
4070 	 * If array is active, we can try an on-line resize
4071 	 */
4072 	sector_t sectors;
4073 	int err = strict_blocks_to_sectors(buf, &sectors);
4074 
4075 	if (err < 0)
4076 		return err;
4077 	if (mddev->pers) {
4078 		err = update_size(mddev, sectors);
4079 		md_update_sb(mddev, 1);
4080 	} else {
4081 		if (mddev->dev_sectors == 0 ||
4082 		    mddev->dev_sectors > sectors)
4083 			mddev->dev_sectors = sectors;
4084 		else
4085 			err = -ENOSPC;
4086 	}
4087 	return err ? err : len;
4088 }
4089 
4090 static struct md_sysfs_entry md_size =
4091 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4092 
4093 
4094 /* Metadata version.
4095  * This is one of
4096  *   'none' for arrays with no metadata (good luck...)
4097  *   'external' for arrays with externally managed metadata,
4098  * or N.M for internally known formats
4099  */
4100 static ssize_t
4101 metadata_show(struct mddev *mddev, char *page)
4102 {
4103 	if (mddev->persistent)
4104 		return sprintf(page, "%d.%d\n",
4105 			       mddev->major_version, mddev->minor_version);
4106 	else if (mddev->external)
4107 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4108 	else
4109 		return sprintf(page, "none\n");
4110 }
4111 
4112 static ssize_t
4113 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4114 {
4115 	int major, minor;
4116 	char *e;
4117 	/* Changing the details of 'external' metadata is
4118 	 * always permitted.  Otherwise there must be
4119 	 * no devices attached to the array.
4120 	 */
4121 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4122 		;
4123 	else if (!list_empty(&mddev->disks))
4124 		return -EBUSY;
4125 
4126 	if (cmd_match(buf, "none")) {
4127 		mddev->persistent = 0;
4128 		mddev->external = 0;
4129 		mddev->major_version = 0;
4130 		mddev->minor_version = 90;
4131 		return len;
4132 	}
4133 	if (strncmp(buf, "external:", 9) == 0) {
4134 		size_t namelen = len-9;
4135 		if (namelen >= sizeof(mddev->metadata_type))
4136 			namelen = sizeof(mddev->metadata_type)-1;
4137 		strncpy(mddev->metadata_type, buf+9, namelen);
4138 		mddev->metadata_type[namelen] = 0;
4139 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4140 			mddev->metadata_type[--namelen] = 0;
4141 		mddev->persistent = 0;
4142 		mddev->external = 1;
4143 		mddev->major_version = 0;
4144 		mddev->minor_version = 90;
4145 		return len;
4146 	}
4147 	major = simple_strtoul(buf, &e, 10);
4148 	if (e==buf || *e != '.')
4149 		return -EINVAL;
4150 	buf = e+1;
4151 	minor = simple_strtoul(buf, &e, 10);
4152 	if (e==buf || (*e && *e != '\n') )
4153 		return -EINVAL;
4154 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4155 		return -ENOENT;
4156 	mddev->major_version = major;
4157 	mddev->minor_version = minor;
4158 	mddev->persistent = 1;
4159 	mddev->external = 0;
4160 	return len;
4161 }
4162 
4163 static struct md_sysfs_entry md_metadata =
4164 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4165 
4166 static ssize_t
4167 action_show(struct mddev *mddev, char *page)
4168 {
4169 	char *type = "idle";
4170 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4171 		type = "frozen";
4172 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4173 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4174 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4175 			type = "reshape";
4176 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4177 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4178 				type = "resync";
4179 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4180 				type = "check";
4181 			else
4182 				type = "repair";
4183 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4184 			type = "recover";
4185 	}
4186 	return sprintf(page, "%s\n", type);
4187 }
4188 
4189 static ssize_t
4190 action_store(struct mddev *mddev, const char *page, size_t len)
4191 {
4192 	if (!mddev->pers || !mddev->pers->sync_request)
4193 		return -EINVAL;
4194 
4195 	if (cmd_match(page, "frozen"))
4196 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4197 	else
4198 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4199 
4200 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4201 		if (mddev->sync_thread) {
4202 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4203 			md_reap_sync_thread(mddev);
4204 		}
4205 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4206 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4207 		return -EBUSY;
4208 	else if (cmd_match(page, "resync"))
4209 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4210 	else if (cmd_match(page, "recover")) {
4211 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4212 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4213 	} else if (cmd_match(page, "reshape")) {
4214 		int err;
4215 		if (mddev->pers->start_reshape == NULL)
4216 			return -EINVAL;
4217 		err = mddev->pers->start_reshape(mddev);
4218 		if (err)
4219 			return err;
4220 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4221 	} else {
4222 		if (cmd_match(page, "check"))
4223 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4224 		else if (!cmd_match(page, "repair"))
4225 			return -EINVAL;
4226 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4227 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4228 	}
4229 	if (mddev->ro == 2) {
4230 		/* A write to sync_action is enough to justify
4231 		 * canceling read-auto mode
4232 		 */
4233 		mddev->ro = 0;
4234 		md_wakeup_thread(mddev->sync_thread);
4235 	}
4236 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4237 	md_wakeup_thread(mddev->thread);
4238 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4239 	return len;
4240 }
4241 
4242 static struct md_sysfs_entry md_scan_mode =
4243 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4244 
4245 static ssize_t
4246 last_sync_action_show(struct mddev *mddev, char *page)
4247 {
4248 	return sprintf(page, "%s\n", mddev->last_sync_action);
4249 }
4250 
4251 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4252 
4253 static ssize_t
4254 mismatch_cnt_show(struct mddev *mddev, char *page)
4255 {
4256 	return sprintf(page, "%llu\n",
4257 		       (unsigned long long)
4258 		       atomic64_read(&mddev->resync_mismatches));
4259 }
4260 
4261 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4262 
4263 static ssize_t
4264 sync_min_show(struct mddev *mddev, char *page)
4265 {
4266 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4267 		       mddev->sync_speed_min ? "local": "system");
4268 }
4269 
4270 static ssize_t
4271 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4272 {
4273 	int min;
4274 	char *e;
4275 	if (strncmp(buf, "system", 6)==0) {
4276 		mddev->sync_speed_min = 0;
4277 		return len;
4278 	}
4279 	min = simple_strtoul(buf, &e, 10);
4280 	if (buf == e || (*e && *e != '\n') || min <= 0)
4281 		return -EINVAL;
4282 	mddev->sync_speed_min = min;
4283 	return len;
4284 }
4285 
4286 static struct md_sysfs_entry md_sync_min =
4287 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4288 
4289 static ssize_t
4290 sync_max_show(struct mddev *mddev, char *page)
4291 {
4292 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4293 		       mddev->sync_speed_max ? "local": "system");
4294 }
4295 
4296 static ssize_t
4297 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4298 {
4299 	int max;
4300 	char *e;
4301 	if (strncmp(buf, "system", 6)==0) {
4302 		mddev->sync_speed_max = 0;
4303 		return len;
4304 	}
4305 	max = simple_strtoul(buf, &e, 10);
4306 	if (buf == e || (*e && *e != '\n') || max <= 0)
4307 		return -EINVAL;
4308 	mddev->sync_speed_max = max;
4309 	return len;
4310 }
4311 
4312 static struct md_sysfs_entry md_sync_max =
4313 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4314 
4315 static ssize_t
4316 degraded_show(struct mddev *mddev, char *page)
4317 {
4318 	return sprintf(page, "%d\n", mddev->degraded);
4319 }
4320 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4321 
4322 static ssize_t
4323 sync_force_parallel_show(struct mddev *mddev, char *page)
4324 {
4325 	return sprintf(page, "%d\n", mddev->parallel_resync);
4326 }
4327 
4328 static ssize_t
4329 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4330 {
4331 	long n;
4332 
4333 	if (kstrtol(buf, 10, &n))
4334 		return -EINVAL;
4335 
4336 	if (n != 0 && n != 1)
4337 		return -EINVAL;
4338 
4339 	mddev->parallel_resync = n;
4340 
4341 	if (mddev->sync_thread)
4342 		wake_up(&resync_wait);
4343 
4344 	return len;
4345 }
4346 
4347 /* force parallel resync, even with shared block devices */
4348 static struct md_sysfs_entry md_sync_force_parallel =
4349 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4350        sync_force_parallel_show, sync_force_parallel_store);
4351 
4352 static ssize_t
4353 sync_speed_show(struct mddev *mddev, char *page)
4354 {
4355 	unsigned long resync, dt, db;
4356 	if (mddev->curr_resync == 0)
4357 		return sprintf(page, "none\n");
4358 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4359 	dt = (jiffies - mddev->resync_mark) / HZ;
4360 	if (!dt) dt++;
4361 	db = resync - mddev->resync_mark_cnt;
4362 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4363 }
4364 
4365 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4366 
4367 static ssize_t
4368 sync_completed_show(struct mddev *mddev, char *page)
4369 {
4370 	unsigned long long max_sectors, resync;
4371 
4372 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4373 		return sprintf(page, "none\n");
4374 
4375 	if (mddev->curr_resync == 1 ||
4376 	    mddev->curr_resync == 2)
4377 		return sprintf(page, "delayed\n");
4378 
4379 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4380 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4381 		max_sectors = mddev->resync_max_sectors;
4382 	else
4383 		max_sectors = mddev->dev_sectors;
4384 
4385 	resync = mddev->curr_resync_completed;
4386 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4387 }
4388 
4389 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4390 
4391 static ssize_t
4392 min_sync_show(struct mddev *mddev, char *page)
4393 {
4394 	return sprintf(page, "%llu\n",
4395 		       (unsigned long long)mddev->resync_min);
4396 }
4397 static ssize_t
4398 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4399 {
4400 	unsigned long long min;
4401 	if (kstrtoull(buf, 10, &min))
4402 		return -EINVAL;
4403 	if (min > mddev->resync_max)
4404 		return -EINVAL;
4405 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4406 		return -EBUSY;
4407 
4408 	/* Must be a multiple of chunk_size */
4409 	if (mddev->chunk_sectors) {
4410 		sector_t temp = min;
4411 		if (sector_div(temp, mddev->chunk_sectors))
4412 			return -EINVAL;
4413 	}
4414 	mddev->resync_min = min;
4415 
4416 	return len;
4417 }
4418 
4419 static struct md_sysfs_entry md_min_sync =
4420 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4421 
4422 static ssize_t
4423 max_sync_show(struct mddev *mddev, char *page)
4424 {
4425 	if (mddev->resync_max == MaxSector)
4426 		return sprintf(page, "max\n");
4427 	else
4428 		return sprintf(page, "%llu\n",
4429 			       (unsigned long long)mddev->resync_max);
4430 }
4431 static ssize_t
4432 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4433 {
4434 	if (strncmp(buf, "max", 3) == 0)
4435 		mddev->resync_max = MaxSector;
4436 	else {
4437 		unsigned long long max;
4438 		if (kstrtoull(buf, 10, &max))
4439 			return -EINVAL;
4440 		if (max < mddev->resync_min)
4441 			return -EINVAL;
4442 		if (max < mddev->resync_max &&
4443 		    mddev->ro == 0 &&
4444 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4445 			return -EBUSY;
4446 
4447 		/* Must be a multiple of chunk_size */
4448 		if (mddev->chunk_sectors) {
4449 			sector_t temp = max;
4450 			if (sector_div(temp, mddev->chunk_sectors))
4451 				return -EINVAL;
4452 		}
4453 		mddev->resync_max = max;
4454 	}
4455 	wake_up(&mddev->recovery_wait);
4456 	return len;
4457 }
4458 
4459 static struct md_sysfs_entry md_max_sync =
4460 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4461 
4462 static ssize_t
4463 suspend_lo_show(struct mddev *mddev, char *page)
4464 {
4465 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4466 }
4467 
4468 static ssize_t
4469 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4470 {
4471 	char *e;
4472 	unsigned long long new = simple_strtoull(buf, &e, 10);
4473 	unsigned long long old = mddev->suspend_lo;
4474 
4475 	if (mddev->pers == NULL ||
4476 	    mddev->pers->quiesce == NULL)
4477 		return -EINVAL;
4478 	if (buf == e || (*e && *e != '\n'))
4479 		return -EINVAL;
4480 
4481 	mddev->suspend_lo = new;
4482 	if (new >= old)
4483 		/* Shrinking suspended region */
4484 		mddev->pers->quiesce(mddev, 2);
4485 	else {
4486 		/* Expanding suspended region - need to wait */
4487 		mddev->pers->quiesce(mddev, 1);
4488 		mddev->pers->quiesce(mddev, 0);
4489 	}
4490 	return len;
4491 }
4492 static struct md_sysfs_entry md_suspend_lo =
4493 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4494 
4495 
4496 static ssize_t
4497 suspend_hi_show(struct mddev *mddev, char *page)
4498 {
4499 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4500 }
4501 
4502 static ssize_t
4503 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4504 {
4505 	char *e;
4506 	unsigned long long new = simple_strtoull(buf, &e, 10);
4507 	unsigned long long old = mddev->suspend_hi;
4508 
4509 	if (mddev->pers == NULL ||
4510 	    mddev->pers->quiesce == NULL)
4511 		return -EINVAL;
4512 	if (buf == e || (*e && *e != '\n'))
4513 		return -EINVAL;
4514 
4515 	mddev->suspend_hi = new;
4516 	if (new <= old)
4517 		/* Shrinking suspended region */
4518 		mddev->pers->quiesce(mddev, 2);
4519 	else {
4520 		/* Expanding suspended region - need to wait */
4521 		mddev->pers->quiesce(mddev, 1);
4522 		mddev->pers->quiesce(mddev, 0);
4523 	}
4524 	return len;
4525 }
4526 static struct md_sysfs_entry md_suspend_hi =
4527 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4528 
4529 static ssize_t
4530 reshape_position_show(struct mddev *mddev, char *page)
4531 {
4532 	if (mddev->reshape_position != MaxSector)
4533 		return sprintf(page, "%llu\n",
4534 			       (unsigned long long)mddev->reshape_position);
4535 	strcpy(page, "none\n");
4536 	return 5;
4537 }
4538 
4539 static ssize_t
4540 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4541 {
4542 	struct md_rdev *rdev;
4543 	char *e;
4544 	unsigned long long new = simple_strtoull(buf, &e, 10);
4545 	if (mddev->pers)
4546 		return -EBUSY;
4547 	if (buf == e || (*e && *e != '\n'))
4548 		return -EINVAL;
4549 	mddev->reshape_position = new;
4550 	mddev->delta_disks = 0;
4551 	mddev->reshape_backwards = 0;
4552 	mddev->new_level = mddev->level;
4553 	mddev->new_layout = mddev->layout;
4554 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4555 	rdev_for_each(rdev, mddev)
4556 		rdev->new_data_offset = rdev->data_offset;
4557 	return len;
4558 }
4559 
4560 static struct md_sysfs_entry md_reshape_position =
4561 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4562        reshape_position_store);
4563 
4564 static ssize_t
4565 reshape_direction_show(struct mddev *mddev, char *page)
4566 {
4567 	return sprintf(page, "%s\n",
4568 		       mddev->reshape_backwards ? "backwards" : "forwards");
4569 }
4570 
4571 static ssize_t
4572 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4573 {
4574 	int backwards = 0;
4575 	if (cmd_match(buf, "forwards"))
4576 		backwards = 0;
4577 	else if (cmd_match(buf, "backwards"))
4578 		backwards = 1;
4579 	else
4580 		return -EINVAL;
4581 	if (mddev->reshape_backwards == backwards)
4582 		return len;
4583 
4584 	/* check if we are allowed to change */
4585 	if (mddev->delta_disks)
4586 		return -EBUSY;
4587 
4588 	if (mddev->persistent &&
4589 	    mddev->major_version == 0)
4590 		return -EINVAL;
4591 
4592 	mddev->reshape_backwards = backwards;
4593 	return len;
4594 }
4595 
4596 static struct md_sysfs_entry md_reshape_direction =
4597 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4598        reshape_direction_store);
4599 
4600 static ssize_t
4601 array_size_show(struct mddev *mddev, char *page)
4602 {
4603 	if (mddev->external_size)
4604 		return sprintf(page, "%llu\n",
4605 			       (unsigned long long)mddev->array_sectors/2);
4606 	else
4607 		return sprintf(page, "default\n");
4608 }
4609 
4610 static ssize_t
4611 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4612 {
4613 	sector_t sectors;
4614 
4615 	if (strncmp(buf, "default", 7) == 0) {
4616 		if (mddev->pers)
4617 			sectors = mddev->pers->size(mddev, 0, 0);
4618 		else
4619 			sectors = mddev->array_sectors;
4620 
4621 		mddev->external_size = 0;
4622 	} else {
4623 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4624 			return -EINVAL;
4625 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4626 			return -E2BIG;
4627 
4628 		mddev->external_size = 1;
4629 	}
4630 
4631 	mddev->array_sectors = sectors;
4632 	if (mddev->pers) {
4633 		set_capacity(mddev->gendisk, mddev->array_sectors);
4634 		revalidate_disk(mddev->gendisk);
4635 	}
4636 	return len;
4637 }
4638 
4639 static struct md_sysfs_entry md_array_size =
4640 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4641        array_size_store);
4642 
4643 static struct attribute *md_default_attrs[] = {
4644 	&md_level.attr,
4645 	&md_layout.attr,
4646 	&md_raid_disks.attr,
4647 	&md_chunk_size.attr,
4648 	&md_size.attr,
4649 	&md_resync_start.attr,
4650 	&md_metadata.attr,
4651 	&md_new_device.attr,
4652 	&md_safe_delay.attr,
4653 	&md_array_state.attr,
4654 	&md_reshape_position.attr,
4655 	&md_reshape_direction.attr,
4656 	&md_array_size.attr,
4657 	&max_corr_read_errors.attr,
4658 	NULL,
4659 };
4660 
4661 static struct attribute *md_redundancy_attrs[] = {
4662 	&md_scan_mode.attr,
4663 	&md_last_scan_mode.attr,
4664 	&md_mismatches.attr,
4665 	&md_sync_min.attr,
4666 	&md_sync_max.attr,
4667 	&md_sync_speed.attr,
4668 	&md_sync_force_parallel.attr,
4669 	&md_sync_completed.attr,
4670 	&md_min_sync.attr,
4671 	&md_max_sync.attr,
4672 	&md_suspend_lo.attr,
4673 	&md_suspend_hi.attr,
4674 	&md_bitmap.attr,
4675 	&md_degraded.attr,
4676 	NULL,
4677 };
4678 static struct attribute_group md_redundancy_group = {
4679 	.name = NULL,
4680 	.attrs = md_redundancy_attrs,
4681 };
4682 
4683 
4684 static ssize_t
4685 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4686 {
4687 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4688 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4689 	ssize_t rv;
4690 
4691 	if (!entry->show)
4692 		return -EIO;
4693 	spin_lock(&all_mddevs_lock);
4694 	if (list_empty(&mddev->all_mddevs)) {
4695 		spin_unlock(&all_mddevs_lock);
4696 		return -EBUSY;
4697 	}
4698 	mddev_get(mddev);
4699 	spin_unlock(&all_mddevs_lock);
4700 
4701 	rv = mddev_lock(mddev);
4702 	if (!rv) {
4703 		rv = entry->show(mddev, page);
4704 		mddev_unlock(mddev);
4705 	}
4706 	mddev_put(mddev);
4707 	return rv;
4708 }
4709 
4710 static ssize_t
4711 md_attr_store(struct kobject *kobj, struct attribute *attr,
4712 	      const char *page, size_t length)
4713 {
4714 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4715 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4716 	ssize_t rv;
4717 
4718 	if (!entry->store)
4719 		return -EIO;
4720 	if (!capable(CAP_SYS_ADMIN))
4721 		return -EACCES;
4722 	spin_lock(&all_mddevs_lock);
4723 	if (list_empty(&mddev->all_mddevs)) {
4724 		spin_unlock(&all_mddevs_lock);
4725 		return -EBUSY;
4726 	}
4727 	mddev_get(mddev);
4728 	spin_unlock(&all_mddevs_lock);
4729 	if (entry->store == new_dev_store)
4730 		flush_workqueue(md_misc_wq);
4731 	rv = mddev_lock(mddev);
4732 	if (!rv) {
4733 		rv = entry->store(mddev, page, length);
4734 		mddev_unlock(mddev);
4735 	}
4736 	mddev_put(mddev);
4737 	return rv;
4738 }
4739 
4740 static void md_free(struct kobject *ko)
4741 {
4742 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4743 
4744 	if (mddev->sysfs_state)
4745 		sysfs_put(mddev->sysfs_state);
4746 
4747 	if (mddev->gendisk) {
4748 		del_gendisk(mddev->gendisk);
4749 		put_disk(mddev->gendisk);
4750 	}
4751 	if (mddev->queue)
4752 		blk_cleanup_queue(mddev->queue);
4753 
4754 	kfree(mddev);
4755 }
4756 
4757 static const struct sysfs_ops md_sysfs_ops = {
4758 	.show	= md_attr_show,
4759 	.store	= md_attr_store,
4760 };
4761 static struct kobj_type md_ktype = {
4762 	.release	= md_free,
4763 	.sysfs_ops	= &md_sysfs_ops,
4764 	.default_attrs	= md_default_attrs,
4765 };
4766 
4767 int mdp_major = 0;
4768 
4769 static void mddev_delayed_delete(struct work_struct *ws)
4770 {
4771 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4772 
4773 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4774 	kobject_del(&mddev->kobj);
4775 	kobject_put(&mddev->kobj);
4776 }
4777 
4778 static int md_alloc(dev_t dev, char *name)
4779 {
4780 	static DEFINE_MUTEX(disks_mutex);
4781 	struct mddev *mddev = mddev_find(dev);
4782 	struct gendisk *disk;
4783 	int partitioned;
4784 	int shift;
4785 	int unit;
4786 	int error;
4787 
4788 	if (!mddev)
4789 		return -ENODEV;
4790 
4791 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4792 	shift = partitioned ? MdpMinorShift : 0;
4793 	unit = MINOR(mddev->unit) >> shift;
4794 
4795 	/* wait for any previous instance of this device to be
4796 	 * completely removed (mddev_delayed_delete).
4797 	 */
4798 	flush_workqueue(md_misc_wq);
4799 
4800 	mutex_lock(&disks_mutex);
4801 	error = -EEXIST;
4802 	if (mddev->gendisk)
4803 		goto abort;
4804 
4805 	if (name) {
4806 		/* Need to ensure that 'name' is not a duplicate.
4807 		 */
4808 		struct mddev *mddev2;
4809 		spin_lock(&all_mddevs_lock);
4810 
4811 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4812 			if (mddev2->gendisk &&
4813 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4814 				spin_unlock(&all_mddevs_lock);
4815 				goto abort;
4816 			}
4817 		spin_unlock(&all_mddevs_lock);
4818 	}
4819 
4820 	error = -ENOMEM;
4821 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4822 	if (!mddev->queue)
4823 		goto abort;
4824 	mddev->queue->queuedata = mddev;
4825 
4826 	blk_queue_make_request(mddev->queue, md_make_request);
4827 	blk_set_stacking_limits(&mddev->queue->limits);
4828 
4829 	disk = alloc_disk(1 << shift);
4830 	if (!disk) {
4831 		blk_cleanup_queue(mddev->queue);
4832 		mddev->queue = NULL;
4833 		goto abort;
4834 	}
4835 	disk->major = MAJOR(mddev->unit);
4836 	disk->first_minor = unit << shift;
4837 	if (name)
4838 		strcpy(disk->disk_name, name);
4839 	else if (partitioned)
4840 		sprintf(disk->disk_name, "md_d%d", unit);
4841 	else
4842 		sprintf(disk->disk_name, "md%d", unit);
4843 	disk->fops = &md_fops;
4844 	disk->private_data = mddev;
4845 	disk->queue = mddev->queue;
4846 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4847 	/* Allow extended partitions.  This makes the
4848 	 * 'mdp' device redundant, but we can't really
4849 	 * remove it now.
4850 	 */
4851 	disk->flags |= GENHD_FL_EXT_DEVT;
4852 	mddev->gendisk = disk;
4853 	/* As soon as we call add_disk(), another thread could get
4854 	 * through to md_open, so make sure it doesn't get too far
4855 	 */
4856 	mutex_lock(&mddev->open_mutex);
4857 	add_disk(disk);
4858 
4859 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4860 				     &disk_to_dev(disk)->kobj, "%s", "md");
4861 	if (error) {
4862 		/* This isn't possible, but as kobject_init_and_add is marked
4863 		 * __must_check, we must do something with the result
4864 		 */
4865 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4866 		       disk->disk_name);
4867 		error = 0;
4868 	}
4869 	if (mddev->kobj.sd &&
4870 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4871 		printk(KERN_DEBUG "pointless warning\n");
4872 	mutex_unlock(&mddev->open_mutex);
4873  abort:
4874 	mutex_unlock(&disks_mutex);
4875 	if (!error && mddev->kobj.sd) {
4876 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4877 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4878 	}
4879 	mddev_put(mddev);
4880 	return error;
4881 }
4882 
4883 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4884 {
4885 	md_alloc(dev, NULL);
4886 	return NULL;
4887 }
4888 
4889 static int add_named_array(const char *val, struct kernel_param *kp)
4890 {
4891 	/* val must be "md_*" where * is not all digits.
4892 	 * We allocate an array with a large free minor number, and
4893 	 * set the name to val.  val must not already be an active name.
4894 	 */
4895 	int len = strlen(val);
4896 	char buf[DISK_NAME_LEN];
4897 
4898 	while (len && val[len-1] == '\n')
4899 		len--;
4900 	if (len >= DISK_NAME_LEN)
4901 		return -E2BIG;
4902 	strlcpy(buf, val, len+1);
4903 	if (strncmp(buf, "md_", 3) != 0)
4904 		return -EINVAL;
4905 	return md_alloc(0, buf);
4906 }
4907 
4908 static void md_safemode_timeout(unsigned long data)
4909 {
4910 	struct mddev *mddev = (struct mddev *) data;
4911 
4912 	if (!atomic_read(&mddev->writes_pending)) {
4913 		mddev->safemode = 1;
4914 		if (mddev->external)
4915 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4916 	}
4917 	md_wakeup_thread(mddev->thread);
4918 }
4919 
4920 static int start_dirty_degraded;
4921 
4922 int md_run(struct mddev *mddev)
4923 {
4924 	int err;
4925 	struct md_rdev *rdev;
4926 	struct md_personality *pers;
4927 
4928 	if (list_empty(&mddev->disks))
4929 		/* cannot run an array with no devices.. */
4930 		return -EINVAL;
4931 
4932 	if (mddev->pers)
4933 		return -EBUSY;
4934 	/* Cannot run until previous stop completes properly */
4935 	if (mddev->sysfs_active)
4936 		return -EBUSY;
4937 
4938 	/*
4939 	 * Analyze all RAID superblock(s)
4940 	 */
4941 	if (!mddev->raid_disks) {
4942 		if (!mddev->persistent)
4943 			return -EINVAL;
4944 		analyze_sbs(mddev);
4945 	}
4946 
4947 	if (mddev->level != LEVEL_NONE)
4948 		request_module("md-level-%d", mddev->level);
4949 	else if (mddev->clevel[0])
4950 		request_module("md-%s", mddev->clevel);
4951 
4952 	/*
4953 	 * Drop all container device buffers, from now on
4954 	 * the only valid external interface is through the md
4955 	 * device.
4956 	 */
4957 	rdev_for_each(rdev, mddev) {
4958 		if (test_bit(Faulty, &rdev->flags))
4959 			continue;
4960 		sync_blockdev(rdev->bdev);
4961 		invalidate_bdev(rdev->bdev);
4962 
4963 		/* perform some consistency tests on the device.
4964 		 * We don't want the data to overlap the metadata,
4965 		 * Internal Bitmap issues have been handled elsewhere.
4966 		 */
4967 		if (rdev->meta_bdev) {
4968 			/* Nothing to check */;
4969 		} else if (rdev->data_offset < rdev->sb_start) {
4970 			if (mddev->dev_sectors &&
4971 			    rdev->data_offset + mddev->dev_sectors
4972 			    > rdev->sb_start) {
4973 				printk("md: %s: data overlaps metadata\n",
4974 				       mdname(mddev));
4975 				return -EINVAL;
4976 			}
4977 		} else {
4978 			if (rdev->sb_start + rdev->sb_size/512
4979 			    > rdev->data_offset) {
4980 				printk("md: %s: metadata overlaps data\n",
4981 				       mdname(mddev));
4982 				return -EINVAL;
4983 			}
4984 		}
4985 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4986 	}
4987 
4988 	if (mddev->bio_set == NULL)
4989 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4990 
4991 	spin_lock(&pers_lock);
4992 	pers = find_pers(mddev->level, mddev->clevel);
4993 	if (!pers || !try_module_get(pers->owner)) {
4994 		spin_unlock(&pers_lock);
4995 		if (mddev->level != LEVEL_NONE)
4996 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4997 			       mddev->level);
4998 		else
4999 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5000 			       mddev->clevel);
5001 		return -EINVAL;
5002 	}
5003 	mddev->pers = pers;
5004 	spin_unlock(&pers_lock);
5005 	if (mddev->level != pers->level) {
5006 		mddev->level = pers->level;
5007 		mddev->new_level = pers->level;
5008 	}
5009 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5010 
5011 	if (mddev->reshape_position != MaxSector &&
5012 	    pers->start_reshape == NULL) {
5013 		/* This personality cannot handle reshaping... */
5014 		mddev->pers = NULL;
5015 		module_put(pers->owner);
5016 		return -EINVAL;
5017 	}
5018 
5019 	if (pers->sync_request) {
5020 		/* Warn if this is a potentially silly
5021 		 * configuration.
5022 		 */
5023 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5024 		struct md_rdev *rdev2;
5025 		int warned = 0;
5026 
5027 		rdev_for_each(rdev, mddev)
5028 			rdev_for_each(rdev2, mddev) {
5029 				if (rdev < rdev2 &&
5030 				    rdev->bdev->bd_contains ==
5031 				    rdev2->bdev->bd_contains) {
5032 					printk(KERN_WARNING
5033 					       "%s: WARNING: %s appears to be"
5034 					       " on the same physical disk as"
5035 					       " %s.\n",
5036 					       mdname(mddev),
5037 					       bdevname(rdev->bdev,b),
5038 					       bdevname(rdev2->bdev,b2));
5039 					warned = 1;
5040 				}
5041 			}
5042 
5043 		if (warned)
5044 			printk(KERN_WARNING
5045 			       "True protection against single-disk"
5046 			       " failure might be compromised.\n");
5047 	}
5048 
5049 	mddev->recovery = 0;
5050 	/* may be over-ridden by personality */
5051 	mddev->resync_max_sectors = mddev->dev_sectors;
5052 
5053 	mddev->ok_start_degraded = start_dirty_degraded;
5054 
5055 	if (start_readonly && mddev->ro == 0)
5056 		mddev->ro = 2; /* read-only, but switch on first write */
5057 
5058 	err = mddev->pers->run(mddev);
5059 	if (err)
5060 		printk(KERN_ERR "md: pers->run() failed ...\n");
5061 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5062 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5063 			  " but 'external_size' not in effect?\n", __func__);
5064 		printk(KERN_ERR
5065 		       "md: invalid array_size %llu > default size %llu\n",
5066 		       (unsigned long long)mddev->array_sectors / 2,
5067 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5068 		err = -EINVAL;
5069 		mddev->pers->stop(mddev);
5070 	}
5071 	if (err == 0 && mddev->pers->sync_request &&
5072 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5073 		err = bitmap_create(mddev);
5074 		if (err) {
5075 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5076 			       mdname(mddev), err);
5077 			mddev->pers->stop(mddev);
5078 		}
5079 	}
5080 	if (err) {
5081 		module_put(mddev->pers->owner);
5082 		mddev->pers = NULL;
5083 		bitmap_destroy(mddev);
5084 		return err;
5085 	}
5086 	if (mddev->pers->sync_request) {
5087 		if (mddev->kobj.sd &&
5088 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5089 			printk(KERN_WARNING
5090 			       "md: cannot register extra attributes for %s\n",
5091 			       mdname(mddev));
5092 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5093 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5094 		mddev->ro = 0;
5095 
5096  	atomic_set(&mddev->writes_pending,0);
5097 	atomic_set(&mddev->max_corr_read_errors,
5098 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5099 	mddev->safemode = 0;
5100 	mddev->safemode_timer.function = md_safemode_timeout;
5101 	mddev->safemode_timer.data = (unsigned long) mddev;
5102 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5103 	mddev->in_sync = 1;
5104 	smp_wmb();
5105 	mddev->ready = 1;
5106 	rdev_for_each(rdev, mddev)
5107 		if (rdev->raid_disk >= 0)
5108 			if (sysfs_link_rdev(mddev, rdev))
5109 				/* failure here is OK */;
5110 
5111 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5112 
5113 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5114 		md_update_sb(mddev, 0);
5115 
5116 	md_new_event(mddev);
5117 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5118 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5119 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5120 	return 0;
5121 }
5122 EXPORT_SYMBOL_GPL(md_run);
5123 
5124 static int do_md_run(struct mddev *mddev)
5125 {
5126 	int err;
5127 
5128 	err = md_run(mddev);
5129 	if (err)
5130 		goto out;
5131 	err = bitmap_load(mddev);
5132 	if (err) {
5133 		bitmap_destroy(mddev);
5134 		goto out;
5135 	}
5136 
5137 	md_wakeup_thread(mddev->thread);
5138 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5139 
5140 	set_capacity(mddev->gendisk, mddev->array_sectors);
5141 	revalidate_disk(mddev->gendisk);
5142 	mddev->changed = 1;
5143 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5144 out:
5145 	return err;
5146 }
5147 
5148 static int restart_array(struct mddev *mddev)
5149 {
5150 	struct gendisk *disk = mddev->gendisk;
5151 
5152 	/* Complain if it has no devices */
5153 	if (list_empty(&mddev->disks))
5154 		return -ENXIO;
5155 	if (!mddev->pers)
5156 		return -EINVAL;
5157 	if (!mddev->ro)
5158 		return -EBUSY;
5159 	mddev->safemode = 0;
5160 	mddev->ro = 0;
5161 	set_disk_ro(disk, 0);
5162 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5163 		mdname(mddev));
5164 	/* Kick recovery or resync if necessary */
5165 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5166 	md_wakeup_thread(mddev->thread);
5167 	md_wakeup_thread(mddev->sync_thread);
5168 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5169 	return 0;
5170 }
5171 
5172 /* similar to deny_write_access, but accounts for our holding a reference
5173  * to the file ourselves */
5174 static int deny_bitmap_write_access(struct file * file)
5175 {
5176 	struct inode *inode = file->f_mapping->host;
5177 
5178 	spin_lock(&inode->i_lock);
5179 	if (atomic_read(&inode->i_writecount) > 1) {
5180 		spin_unlock(&inode->i_lock);
5181 		return -ETXTBSY;
5182 	}
5183 	atomic_set(&inode->i_writecount, -1);
5184 	spin_unlock(&inode->i_lock);
5185 
5186 	return 0;
5187 }
5188 
5189 void restore_bitmap_write_access(struct file *file)
5190 {
5191 	struct inode *inode = file->f_mapping->host;
5192 
5193 	spin_lock(&inode->i_lock);
5194 	atomic_set(&inode->i_writecount, 1);
5195 	spin_unlock(&inode->i_lock);
5196 }
5197 
5198 static void md_clean(struct mddev *mddev)
5199 {
5200 	mddev->array_sectors = 0;
5201 	mddev->external_size = 0;
5202 	mddev->dev_sectors = 0;
5203 	mddev->raid_disks = 0;
5204 	mddev->recovery_cp = 0;
5205 	mddev->resync_min = 0;
5206 	mddev->resync_max = MaxSector;
5207 	mddev->reshape_position = MaxSector;
5208 	mddev->external = 0;
5209 	mddev->persistent = 0;
5210 	mddev->level = LEVEL_NONE;
5211 	mddev->clevel[0] = 0;
5212 	mddev->flags = 0;
5213 	mddev->ro = 0;
5214 	mddev->metadata_type[0] = 0;
5215 	mddev->chunk_sectors = 0;
5216 	mddev->ctime = mddev->utime = 0;
5217 	mddev->layout = 0;
5218 	mddev->max_disks = 0;
5219 	mddev->events = 0;
5220 	mddev->can_decrease_events = 0;
5221 	mddev->delta_disks = 0;
5222 	mddev->reshape_backwards = 0;
5223 	mddev->new_level = LEVEL_NONE;
5224 	mddev->new_layout = 0;
5225 	mddev->new_chunk_sectors = 0;
5226 	mddev->curr_resync = 0;
5227 	atomic64_set(&mddev->resync_mismatches, 0);
5228 	mddev->suspend_lo = mddev->suspend_hi = 0;
5229 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5230 	mddev->recovery = 0;
5231 	mddev->in_sync = 0;
5232 	mddev->changed = 0;
5233 	mddev->degraded = 0;
5234 	mddev->safemode = 0;
5235 	mddev->merge_check_needed = 0;
5236 	mddev->bitmap_info.offset = 0;
5237 	mddev->bitmap_info.default_offset = 0;
5238 	mddev->bitmap_info.default_space = 0;
5239 	mddev->bitmap_info.chunksize = 0;
5240 	mddev->bitmap_info.daemon_sleep = 0;
5241 	mddev->bitmap_info.max_write_behind = 0;
5242 }
5243 
5244 static void __md_stop_writes(struct mddev *mddev)
5245 {
5246 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5247 	if (mddev->sync_thread) {
5248 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5249 		md_reap_sync_thread(mddev);
5250 	}
5251 
5252 	del_timer_sync(&mddev->safemode_timer);
5253 
5254 	bitmap_flush(mddev);
5255 	md_super_wait(mddev);
5256 
5257 	if (mddev->ro == 0 &&
5258 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5259 		/* mark array as shutdown cleanly */
5260 		mddev->in_sync = 1;
5261 		md_update_sb(mddev, 1);
5262 	}
5263 }
5264 
5265 void md_stop_writes(struct mddev *mddev)
5266 {
5267 	mddev_lock_nointr(mddev);
5268 	__md_stop_writes(mddev);
5269 	mddev_unlock(mddev);
5270 }
5271 EXPORT_SYMBOL_GPL(md_stop_writes);
5272 
5273 static void __md_stop(struct mddev *mddev)
5274 {
5275 	mddev->ready = 0;
5276 	mddev->pers->stop(mddev);
5277 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5278 		mddev->to_remove = &md_redundancy_group;
5279 	module_put(mddev->pers->owner);
5280 	mddev->pers = NULL;
5281 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5282 }
5283 
5284 void md_stop(struct mddev *mddev)
5285 {
5286 	/* stop the array and free an attached data structures.
5287 	 * This is called from dm-raid
5288 	 */
5289 	__md_stop(mddev);
5290 	bitmap_destroy(mddev);
5291 	if (mddev->bio_set)
5292 		bioset_free(mddev->bio_set);
5293 }
5294 
5295 EXPORT_SYMBOL_GPL(md_stop);
5296 
5297 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5298 {
5299 	int err = 0;
5300 	int did_freeze = 0;
5301 
5302 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5303 		did_freeze = 1;
5304 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5305 		md_wakeup_thread(mddev->thread);
5306 	}
5307 	if (mddev->sync_thread) {
5308 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5309 		/* Thread might be blocked waiting for metadata update
5310 		 * which will now never happen */
5311 		wake_up_process(mddev->sync_thread->tsk);
5312 	}
5313 	mddev_unlock(mddev);
5314 	wait_event(resync_wait, mddev->sync_thread == NULL);
5315 	mddev_lock_nointr(mddev);
5316 
5317 	mutex_lock(&mddev->open_mutex);
5318 	if (atomic_read(&mddev->openers) > !!bdev ||
5319 	    mddev->sync_thread ||
5320 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5321 		printk("md: %s still in use.\n",mdname(mddev));
5322 		if (did_freeze) {
5323 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5324 			md_wakeup_thread(mddev->thread);
5325 		}
5326 		err = -EBUSY;
5327 		goto out;
5328 	}
5329 	if (mddev->pers) {
5330 		__md_stop_writes(mddev);
5331 
5332 		err  = -ENXIO;
5333 		if (mddev->ro==1)
5334 			goto out;
5335 		mddev->ro = 1;
5336 		set_disk_ro(mddev->gendisk, 1);
5337 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5338 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5339 		err = 0;
5340 	}
5341 out:
5342 	mutex_unlock(&mddev->open_mutex);
5343 	return err;
5344 }
5345 
5346 /* mode:
5347  *   0 - completely stop and dis-assemble array
5348  *   2 - stop but do not disassemble array
5349  */
5350 static int do_md_stop(struct mddev * mddev, int mode,
5351 		      struct block_device *bdev)
5352 {
5353 	struct gendisk *disk = mddev->gendisk;
5354 	struct md_rdev *rdev;
5355 	int did_freeze = 0;
5356 
5357 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5358 		did_freeze = 1;
5359 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5360 		md_wakeup_thread(mddev->thread);
5361 	}
5362 	if (mddev->sync_thread) {
5363 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5364 		/* Thread might be blocked waiting for metadata update
5365 		 * which will now never happen */
5366 		wake_up_process(mddev->sync_thread->tsk);
5367 	}
5368 	mddev_unlock(mddev);
5369 	wait_event(resync_wait, mddev->sync_thread == NULL);
5370 	mddev_lock_nointr(mddev);
5371 
5372 	mutex_lock(&mddev->open_mutex);
5373 	if (atomic_read(&mddev->openers) > !!bdev ||
5374 	    mddev->sysfs_active ||
5375 	    mddev->sync_thread ||
5376 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5377 		printk("md: %s still in use.\n",mdname(mddev));
5378 		mutex_unlock(&mddev->open_mutex);
5379 		if (did_freeze) {
5380 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5381 			md_wakeup_thread(mddev->thread);
5382 		}
5383 		return -EBUSY;
5384 	}
5385 	if (mddev->pers) {
5386 		if (mddev->ro)
5387 			set_disk_ro(disk, 0);
5388 
5389 		__md_stop_writes(mddev);
5390 		__md_stop(mddev);
5391 		mddev->queue->merge_bvec_fn = NULL;
5392 		mddev->queue->backing_dev_info.congested_fn = NULL;
5393 
5394 		/* tell userspace to handle 'inactive' */
5395 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5396 
5397 		rdev_for_each(rdev, mddev)
5398 			if (rdev->raid_disk >= 0)
5399 				sysfs_unlink_rdev(mddev, rdev);
5400 
5401 		set_capacity(disk, 0);
5402 		mutex_unlock(&mddev->open_mutex);
5403 		mddev->changed = 1;
5404 		revalidate_disk(disk);
5405 
5406 		if (mddev->ro)
5407 			mddev->ro = 0;
5408 	} else
5409 		mutex_unlock(&mddev->open_mutex);
5410 	/*
5411 	 * Free resources if final stop
5412 	 */
5413 	if (mode == 0) {
5414 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5415 
5416 		bitmap_destroy(mddev);
5417 		if (mddev->bitmap_info.file) {
5418 			restore_bitmap_write_access(mddev->bitmap_info.file);
5419 			fput(mddev->bitmap_info.file);
5420 			mddev->bitmap_info.file = NULL;
5421 		}
5422 		mddev->bitmap_info.offset = 0;
5423 
5424 		export_array(mddev);
5425 
5426 		md_clean(mddev);
5427 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5428 		if (mddev->hold_active == UNTIL_STOP)
5429 			mddev->hold_active = 0;
5430 	}
5431 	blk_integrity_unregister(disk);
5432 	md_new_event(mddev);
5433 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5434 	return 0;
5435 }
5436 
5437 #ifndef MODULE
5438 static void autorun_array(struct mddev *mddev)
5439 {
5440 	struct md_rdev *rdev;
5441 	int err;
5442 
5443 	if (list_empty(&mddev->disks))
5444 		return;
5445 
5446 	printk(KERN_INFO "md: running: ");
5447 
5448 	rdev_for_each(rdev, mddev) {
5449 		char b[BDEVNAME_SIZE];
5450 		printk("<%s>", bdevname(rdev->bdev,b));
5451 	}
5452 	printk("\n");
5453 
5454 	err = do_md_run(mddev);
5455 	if (err) {
5456 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5457 		do_md_stop(mddev, 0, NULL);
5458 	}
5459 }
5460 
5461 /*
5462  * lets try to run arrays based on all disks that have arrived
5463  * until now. (those are in pending_raid_disks)
5464  *
5465  * the method: pick the first pending disk, collect all disks with
5466  * the same UUID, remove all from the pending list and put them into
5467  * the 'same_array' list. Then order this list based on superblock
5468  * update time (freshest comes first), kick out 'old' disks and
5469  * compare superblocks. If everything's fine then run it.
5470  *
5471  * If "unit" is allocated, then bump its reference count
5472  */
5473 static void autorun_devices(int part)
5474 {
5475 	struct md_rdev *rdev0, *rdev, *tmp;
5476 	struct mddev *mddev;
5477 	char b[BDEVNAME_SIZE];
5478 
5479 	printk(KERN_INFO "md: autorun ...\n");
5480 	while (!list_empty(&pending_raid_disks)) {
5481 		int unit;
5482 		dev_t dev;
5483 		LIST_HEAD(candidates);
5484 		rdev0 = list_entry(pending_raid_disks.next,
5485 					 struct md_rdev, same_set);
5486 
5487 		printk(KERN_INFO "md: considering %s ...\n",
5488 			bdevname(rdev0->bdev,b));
5489 		INIT_LIST_HEAD(&candidates);
5490 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5491 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5492 				printk(KERN_INFO "md:  adding %s ...\n",
5493 					bdevname(rdev->bdev,b));
5494 				list_move(&rdev->same_set, &candidates);
5495 			}
5496 		/*
5497 		 * now we have a set of devices, with all of them having
5498 		 * mostly sane superblocks. It's time to allocate the
5499 		 * mddev.
5500 		 */
5501 		if (part) {
5502 			dev = MKDEV(mdp_major,
5503 				    rdev0->preferred_minor << MdpMinorShift);
5504 			unit = MINOR(dev) >> MdpMinorShift;
5505 		} else {
5506 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5507 			unit = MINOR(dev);
5508 		}
5509 		if (rdev0->preferred_minor != unit) {
5510 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5511 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5512 			break;
5513 		}
5514 
5515 		md_probe(dev, NULL, NULL);
5516 		mddev = mddev_find(dev);
5517 		if (!mddev || !mddev->gendisk) {
5518 			if (mddev)
5519 				mddev_put(mddev);
5520 			printk(KERN_ERR
5521 				"md: cannot allocate memory for md drive.\n");
5522 			break;
5523 		}
5524 		if (mddev_lock(mddev))
5525 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5526 			       mdname(mddev));
5527 		else if (mddev->raid_disks || mddev->major_version
5528 			 || !list_empty(&mddev->disks)) {
5529 			printk(KERN_WARNING
5530 				"md: %s already running, cannot run %s\n",
5531 				mdname(mddev), bdevname(rdev0->bdev,b));
5532 			mddev_unlock(mddev);
5533 		} else {
5534 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5535 			mddev->persistent = 1;
5536 			rdev_for_each_list(rdev, tmp, &candidates) {
5537 				list_del_init(&rdev->same_set);
5538 				if (bind_rdev_to_array(rdev, mddev))
5539 					export_rdev(rdev);
5540 			}
5541 			autorun_array(mddev);
5542 			mddev_unlock(mddev);
5543 		}
5544 		/* on success, candidates will be empty, on error
5545 		 * it won't...
5546 		 */
5547 		rdev_for_each_list(rdev, tmp, &candidates) {
5548 			list_del_init(&rdev->same_set);
5549 			export_rdev(rdev);
5550 		}
5551 		mddev_put(mddev);
5552 	}
5553 	printk(KERN_INFO "md: ... autorun DONE.\n");
5554 }
5555 #endif /* !MODULE */
5556 
5557 static int get_version(void __user * arg)
5558 {
5559 	mdu_version_t ver;
5560 
5561 	ver.major = MD_MAJOR_VERSION;
5562 	ver.minor = MD_MINOR_VERSION;
5563 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5564 
5565 	if (copy_to_user(arg, &ver, sizeof(ver)))
5566 		return -EFAULT;
5567 
5568 	return 0;
5569 }
5570 
5571 static int get_array_info(struct mddev * mddev, void __user * arg)
5572 {
5573 	mdu_array_info_t info;
5574 	int nr,working,insync,failed,spare;
5575 	struct md_rdev *rdev;
5576 
5577 	nr = working = insync = failed = spare = 0;
5578 	rcu_read_lock();
5579 	rdev_for_each_rcu(rdev, mddev) {
5580 		nr++;
5581 		if (test_bit(Faulty, &rdev->flags))
5582 			failed++;
5583 		else {
5584 			working++;
5585 			if (test_bit(In_sync, &rdev->flags))
5586 				insync++;
5587 			else
5588 				spare++;
5589 		}
5590 	}
5591 	rcu_read_unlock();
5592 
5593 	info.major_version = mddev->major_version;
5594 	info.minor_version = mddev->minor_version;
5595 	info.patch_version = MD_PATCHLEVEL_VERSION;
5596 	info.ctime         = mddev->ctime;
5597 	info.level         = mddev->level;
5598 	info.size          = mddev->dev_sectors / 2;
5599 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5600 		info.size = -1;
5601 	info.nr_disks      = nr;
5602 	info.raid_disks    = mddev->raid_disks;
5603 	info.md_minor      = mddev->md_minor;
5604 	info.not_persistent= !mddev->persistent;
5605 
5606 	info.utime         = mddev->utime;
5607 	info.state         = 0;
5608 	if (mddev->in_sync)
5609 		info.state = (1<<MD_SB_CLEAN);
5610 	if (mddev->bitmap && mddev->bitmap_info.offset)
5611 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5612 	info.active_disks  = insync;
5613 	info.working_disks = working;
5614 	info.failed_disks  = failed;
5615 	info.spare_disks   = spare;
5616 
5617 	info.layout        = mddev->layout;
5618 	info.chunk_size    = mddev->chunk_sectors << 9;
5619 
5620 	if (copy_to_user(arg, &info, sizeof(info)))
5621 		return -EFAULT;
5622 
5623 	return 0;
5624 }
5625 
5626 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5627 {
5628 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5629 	char *ptr, *buf = NULL;
5630 	int err = -ENOMEM;
5631 
5632 	file = kmalloc(sizeof(*file), GFP_NOIO);
5633 
5634 	if (!file)
5635 		goto out;
5636 
5637 	/* bitmap disabled, zero the first byte and copy out */
5638 	if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5639 		file->pathname[0] = '\0';
5640 		goto copy_out;
5641 	}
5642 
5643 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5644 	if (!buf)
5645 		goto out;
5646 
5647 	ptr = d_path(&mddev->bitmap->storage.file->f_path,
5648 		     buf, sizeof(file->pathname));
5649 	if (IS_ERR(ptr))
5650 		goto out;
5651 
5652 	strcpy(file->pathname, ptr);
5653 
5654 copy_out:
5655 	err = 0;
5656 	if (copy_to_user(arg, file, sizeof(*file)))
5657 		err = -EFAULT;
5658 out:
5659 	kfree(buf);
5660 	kfree(file);
5661 	return err;
5662 }
5663 
5664 static int get_disk_info(struct mddev * mddev, void __user * arg)
5665 {
5666 	mdu_disk_info_t info;
5667 	struct md_rdev *rdev;
5668 
5669 	if (copy_from_user(&info, arg, sizeof(info)))
5670 		return -EFAULT;
5671 
5672 	rcu_read_lock();
5673 	rdev = find_rdev_nr_rcu(mddev, info.number);
5674 	if (rdev) {
5675 		info.major = MAJOR(rdev->bdev->bd_dev);
5676 		info.minor = MINOR(rdev->bdev->bd_dev);
5677 		info.raid_disk = rdev->raid_disk;
5678 		info.state = 0;
5679 		if (test_bit(Faulty, &rdev->flags))
5680 			info.state |= (1<<MD_DISK_FAULTY);
5681 		else if (test_bit(In_sync, &rdev->flags)) {
5682 			info.state |= (1<<MD_DISK_ACTIVE);
5683 			info.state |= (1<<MD_DISK_SYNC);
5684 		}
5685 		if (test_bit(WriteMostly, &rdev->flags))
5686 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5687 	} else {
5688 		info.major = info.minor = 0;
5689 		info.raid_disk = -1;
5690 		info.state = (1<<MD_DISK_REMOVED);
5691 	}
5692 	rcu_read_unlock();
5693 
5694 	if (copy_to_user(arg, &info, sizeof(info)))
5695 		return -EFAULT;
5696 
5697 	return 0;
5698 }
5699 
5700 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5701 {
5702 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5703 	struct md_rdev *rdev;
5704 	dev_t dev = MKDEV(info->major,info->minor);
5705 
5706 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5707 		return -EOVERFLOW;
5708 
5709 	if (!mddev->raid_disks) {
5710 		int err;
5711 		/* expecting a device which has a superblock */
5712 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5713 		if (IS_ERR(rdev)) {
5714 			printk(KERN_WARNING
5715 				"md: md_import_device returned %ld\n",
5716 				PTR_ERR(rdev));
5717 			return PTR_ERR(rdev);
5718 		}
5719 		if (!list_empty(&mddev->disks)) {
5720 			struct md_rdev *rdev0
5721 				= list_entry(mddev->disks.next,
5722 					     struct md_rdev, same_set);
5723 			err = super_types[mddev->major_version]
5724 				.load_super(rdev, rdev0, mddev->minor_version);
5725 			if (err < 0) {
5726 				printk(KERN_WARNING
5727 					"md: %s has different UUID to %s\n",
5728 					bdevname(rdev->bdev,b),
5729 					bdevname(rdev0->bdev,b2));
5730 				export_rdev(rdev);
5731 				return -EINVAL;
5732 			}
5733 		}
5734 		err = bind_rdev_to_array(rdev, mddev);
5735 		if (err)
5736 			export_rdev(rdev);
5737 		return err;
5738 	}
5739 
5740 	/*
5741 	 * add_new_disk can be used once the array is assembled
5742 	 * to add "hot spares".  They must already have a superblock
5743 	 * written
5744 	 */
5745 	if (mddev->pers) {
5746 		int err;
5747 		if (!mddev->pers->hot_add_disk) {
5748 			printk(KERN_WARNING
5749 				"%s: personality does not support diskops!\n",
5750 			       mdname(mddev));
5751 			return -EINVAL;
5752 		}
5753 		if (mddev->persistent)
5754 			rdev = md_import_device(dev, mddev->major_version,
5755 						mddev->minor_version);
5756 		else
5757 			rdev = md_import_device(dev, -1, -1);
5758 		if (IS_ERR(rdev)) {
5759 			printk(KERN_WARNING
5760 				"md: md_import_device returned %ld\n",
5761 				PTR_ERR(rdev));
5762 			return PTR_ERR(rdev);
5763 		}
5764 		/* set saved_raid_disk if appropriate */
5765 		if (!mddev->persistent) {
5766 			if (info->state & (1<<MD_DISK_SYNC)  &&
5767 			    info->raid_disk < mddev->raid_disks) {
5768 				rdev->raid_disk = info->raid_disk;
5769 				set_bit(In_sync, &rdev->flags);
5770 				clear_bit(Bitmap_sync, &rdev->flags);
5771 			} else
5772 				rdev->raid_disk = -1;
5773 		} else
5774 			super_types[mddev->major_version].
5775 				validate_super(mddev, rdev);
5776 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5777 		     rdev->raid_disk != info->raid_disk) {
5778 			/* This was a hot-add request, but events doesn't
5779 			 * match, so reject it.
5780 			 */
5781 			export_rdev(rdev);
5782 			return -EINVAL;
5783 		}
5784 
5785 		if (test_bit(In_sync, &rdev->flags))
5786 			rdev->saved_raid_disk = rdev->raid_disk;
5787 		else
5788 			rdev->saved_raid_disk = -1;
5789 
5790 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5791 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5792 			set_bit(WriteMostly, &rdev->flags);
5793 		else
5794 			clear_bit(WriteMostly, &rdev->flags);
5795 
5796 		rdev->raid_disk = -1;
5797 		err = bind_rdev_to_array(rdev, mddev);
5798 		if (!err && !mddev->pers->hot_remove_disk) {
5799 			/* If there is hot_add_disk but no hot_remove_disk
5800 			 * then added disks for geometry changes,
5801 			 * and should be added immediately.
5802 			 */
5803 			super_types[mddev->major_version].
5804 				validate_super(mddev, rdev);
5805 			err = mddev->pers->hot_add_disk(mddev, rdev);
5806 			if (err)
5807 				unbind_rdev_from_array(rdev);
5808 		}
5809 		if (err)
5810 			export_rdev(rdev);
5811 		else
5812 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5813 
5814 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5815 		if (mddev->degraded)
5816 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5817 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5818 		if (!err)
5819 			md_new_event(mddev);
5820 		md_wakeup_thread(mddev->thread);
5821 		return err;
5822 	}
5823 
5824 	/* otherwise, add_new_disk is only allowed
5825 	 * for major_version==0 superblocks
5826 	 */
5827 	if (mddev->major_version != 0) {
5828 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5829 		       mdname(mddev));
5830 		return -EINVAL;
5831 	}
5832 
5833 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5834 		int err;
5835 		rdev = md_import_device(dev, -1, 0);
5836 		if (IS_ERR(rdev)) {
5837 			printk(KERN_WARNING
5838 				"md: error, md_import_device() returned %ld\n",
5839 				PTR_ERR(rdev));
5840 			return PTR_ERR(rdev);
5841 		}
5842 		rdev->desc_nr = info->number;
5843 		if (info->raid_disk < mddev->raid_disks)
5844 			rdev->raid_disk = info->raid_disk;
5845 		else
5846 			rdev->raid_disk = -1;
5847 
5848 		if (rdev->raid_disk < mddev->raid_disks)
5849 			if (info->state & (1<<MD_DISK_SYNC))
5850 				set_bit(In_sync, &rdev->flags);
5851 
5852 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5853 			set_bit(WriteMostly, &rdev->flags);
5854 
5855 		if (!mddev->persistent) {
5856 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5857 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5858 		} else
5859 			rdev->sb_start = calc_dev_sboffset(rdev);
5860 		rdev->sectors = rdev->sb_start;
5861 
5862 		err = bind_rdev_to_array(rdev, mddev);
5863 		if (err) {
5864 			export_rdev(rdev);
5865 			return err;
5866 		}
5867 	}
5868 
5869 	return 0;
5870 }
5871 
5872 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5873 {
5874 	char b[BDEVNAME_SIZE];
5875 	struct md_rdev *rdev;
5876 
5877 	rdev = find_rdev(mddev, dev);
5878 	if (!rdev)
5879 		return -ENXIO;
5880 
5881 	clear_bit(Blocked, &rdev->flags);
5882 	remove_and_add_spares(mddev, rdev);
5883 
5884 	if (rdev->raid_disk >= 0)
5885 		goto busy;
5886 
5887 	kick_rdev_from_array(rdev);
5888 	md_update_sb(mddev, 1);
5889 	md_new_event(mddev);
5890 
5891 	return 0;
5892 busy:
5893 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5894 		bdevname(rdev->bdev,b), mdname(mddev));
5895 	return -EBUSY;
5896 }
5897 
5898 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5899 {
5900 	char b[BDEVNAME_SIZE];
5901 	int err;
5902 	struct md_rdev *rdev;
5903 
5904 	if (!mddev->pers)
5905 		return -ENODEV;
5906 
5907 	if (mddev->major_version != 0) {
5908 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5909 			" version-0 superblocks.\n",
5910 			mdname(mddev));
5911 		return -EINVAL;
5912 	}
5913 	if (!mddev->pers->hot_add_disk) {
5914 		printk(KERN_WARNING
5915 			"%s: personality does not support diskops!\n",
5916 			mdname(mddev));
5917 		return -EINVAL;
5918 	}
5919 
5920 	rdev = md_import_device(dev, -1, 0);
5921 	if (IS_ERR(rdev)) {
5922 		printk(KERN_WARNING
5923 			"md: error, md_import_device() returned %ld\n",
5924 			PTR_ERR(rdev));
5925 		return -EINVAL;
5926 	}
5927 
5928 	if (mddev->persistent)
5929 		rdev->sb_start = calc_dev_sboffset(rdev);
5930 	else
5931 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5932 
5933 	rdev->sectors = rdev->sb_start;
5934 
5935 	if (test_bit(Faulty, &rdev->flags)) {
5936 		printk(KERN_WARNING
5937 			"md: can not hot-add faulty %s disk to %s!\n",
5938 			bdevname(rdev->bdev,b), mdname(mddev));
5939 		err = -EINVAL;
5940 		goto abort_export;
5941 	}
5942 	clear_bit(In_sync, &rdev->flags);
5943 	rdev->desc_nr = -1;
5944 	rdev->saved_raid_disk = -1;
5945 	err = bind_rdev_to_array(rdev, mddev);
5946 	if (err)
5947 		goto abort_export;
5948 
5949 	/*
5950 	 * The rest should better be atomic, we can have disk failures
5951 	 * noticed in interrupt contexts ...
5952 	 */
5953 
5954 	rdev->raid_disk = -1;
5955 
5956 	md_update_sb(mddev, 1);
5957 
5958 	/*
5959 	 * Kick recovery, maybe this spare has to be added to the
5960 	 * array immediately.
5961 	 */
5962 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5963 	md_wakeup_thread(mddev->thread);
5964 	md_new_event(mddev);
5965 	return 0;
5966 
5967 abort_export:
5968 	export_rdev(rdev);
5969 	return err;
5970 }
5971 
5972 static int set_bitmap_file(struct mddev *mddev, int fd)
5973 {
5974 	int err;
5975 
5976 	if (mddev->pers) {
5977 		if (!mddev->pers->quiesce)
5978 			return -EBUSY;
5979 		if (mddev->recovery || mddev->sync_thread)
5980 			return -EBUSY;
5981 		/* we should be able to change the bitmap.. */
5982 	}
5983 
5984 
5985 	if (fd >= 0) {
5986 		if (mddev->bitmap)
5987 			return -EEXIST; /* cannot add when bitmap is present */
5988 		mddev->bitmap_info.file = fget(fd);
5989 
5990 		if (mddev->bitmap_info.file == NULL) {
5991 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5992 			       mdname(mddev));
5993 			return -EBADF;
5994 		}
5995 
5996 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5997 		if (err) {
5998 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5999 			       mdname(mddev));
6000 			fput(mddev->bitmap_info.file);
6001 			mddev->bitmap_info.file = NULL;
6002 			return err;
6003 		}
6004 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6005 	} else if (mddev->bitmap == NULL)
6006 		return -ENOENT; /* cannot remove what isn't there */
6007 	err = 0;
6008 	if (mddev->pers) {
6009 		mddev->pers->quiesce(mddev, 1);
6010 		if (fd >= 0) {
6011 			err = bitmap_create(mddev);
6012 			if (!err)
6013 				err = bitmap_load(mddev);
6014 		}
6015 		if (fd < 0 || err) {
6016 			bitmap_destroy(mddev);
6017 			fd = -1; /* make sure to put the file */
6018 		}
6019 		mddev->pers->quiesce(mddev, 0);
6020 	}
6021 	if (fd < 0) {
6022 		if (mddev->bitmap_info.file) {
6023 			restore_bitmap_write_access(mddev->bitmap_info.file);
6024 			fput(mddev->bitmap_info.file);
6025 		}
6026 		mddev->bitmap_info.file = NULL;
6027 	}
6028 
6029 	return err;
6030 }
6031 
6032 /*
6033  * set_array_info is used two different ways
6034  * The original usage is when creating a new array.
6035  * In this usage, raid_disks is > 0 and it together with
6036  *  level, size, not_persistent,layout,chunksize determine the
6037  *  shape of the array.
6038  *  This will always create an array with a type-0.90.0 superblock.
6039  * The newer usage is when assembling an array.
6040  *  In this case raid_disks will be 0, and the major_version field is
6041  *  use to determine which style super-blocks are to be found on the devices.
6042  *  The minor and patch _version numbers are also kept incase the
6043  *  super_block handler wishes to interpret them.
6044  */
6045 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6046 {
6047 
6048 	if (info->raid_disks == 0) {
6049 		/* just setting version number for superblock loading */
6050 		if (info->major_version < 0 ||
6051 		    info->major_version >= ARRAY_SIZE(super_types) ||
6052 		    super_types[info->major_version].name == NULL) {
6053 			/* maybe try to auto-load a module? */
6054 			printk(KERN_INFO
6055 				"md: superblock version %d not known\n",
6056 				info->major_version);
6057 			return -EINVAL;
6058 		}
6059 		mddev->major_version = info->major_version;
6060 		mddev->minor_version = info->minor_version;
6061 		mddev->patch_version = info->patch_version;
6062 		mddev->persistent = !info->not_persistent;
6063 		/* ensure mddev_put doesn't delete this now that there
6064 		 * is some minimal configuration.
6065 		 */
6066 		mddev->ctime         = get_seconds();
6067 		return 0;
6068 	}
6069 	mddev->major_version = MD_MAJOR_VERSION;
6070 	mddev->minor_version = MD_MINOR_VERSION;
6071 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6072 	mddev->ctime         = get_seconds();
6073 
6074 	mddev->level         = info->level;
6075 	mddev->clevel[0]     = 0;
6076 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6077 	mddev->raid_disks    = info->raid_disks;
6078 	/* don't set md_minor, it is determined by which /dev/md* was
6079 	 * openned
6080 	 */
6081 	if (info->state & (1<<MD_SB_CLEAN))
6082 		mddev->recovery_cp = MaxSector;
6083 	else
6084 		mddev->recovery_cp = 0;
6085 	mddev->persistent    = ! info->not_persistent;
6086 	mddev->external	     = 0;
6087 
6088 	mddev->layout        = info->layout;
6089 	mddev->chunk_sectors = info->chunk_size >> 9;
6090 
6091 	mddev->max_disks     = MD_SB_DISKS;
6092 
6093 	if (mddev->persistent)
6094 		mddev->flags         = 0;
6095 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6096 
6097 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6098 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6099 	mddev->bitmap_info.offset = 0;
6100 
6101 	mddev->reshape_position = MaxSector;
6102 
6103 	/*
6104 	 * Generate a 128 bit UUID
6105 	 */
6106 	get_random_bytes(mddev->uuid, 16);
6107 
6108 	mddev->new_level = mddev->level;
6109 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6110 	mddev->new_layout = mddev->layout;
6111 	mddev->delta_disks = 0;
6112 	mddev->reshape_backwards = 0;
6113 
6114 	return 0;
6115 }
6116 
6117 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6118 {
6119 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6120 
6121 	if (mddev->external_size)
6122 		return;
6123 
6124 	mddev->array_sectors = array_sectors;
6125 }
6126 EXPORT_SYMBOL(md_set_array_sectors);
6127 
6128 static int update_size(struct mddev *mddev, sector_t num_sectors)
6129 {
6130 	struct md_rdev *rdev;
6131 	int rv;
6132 	int fit = (num_sectors == 0);
6133 
6134 	if (mddev->pers->resize == NULL)
6135 		return -EINVAL;
6136 	/* The "num_sectors" is the number of sectors of each device that
6137 	 * is used.  This can only make sense for arrays with redundancy.
6138 	 * linear and raid0 always use whatever space is available. We can only
6139 	 * consider changing this number if no resync or reconstruction is
6140 	 * happening, and if the new size is acceptable. It must fit before the
6141 	 * sb_start or, if that is <data_offset, it must fit before the size
6142 	 * of each device.  If num_sectors is zero, we find the largest size
6143 	 * that fits.
6144 	 */
6145 	if (mddev->sync_thread)
6146 		return -EBUSY;
6147 
6148 	rdev_for_each(rdev, mddev) {
6149 		sector_t avail = rdev->sectors;
6150 
6151 		if (fit && (num_sectors == 0 || num_sectors > avail))
6152 			num_sectors = avail;
6153 		if (avail < num_sectors)
6154 			return -ENOSPC;
6155 	}
6156 	rv = mddev->pers->resize(mddev, num_sectors);
6157 	if (!rv)
6158 		revalidate_disk(mddev->gendisk);
6159 	return rv;
6160 }
6161 
6162 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6163 {
6164 	int rv;
6165 	struct md_rdev *rdev;
6166 	/* change the number of raid disks */
6167 	if (mddev->pers->check_reshape == NULL)
6168 		return -EINVAL;
6169 	if (raid_disks <= 0 ||
6170 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6171 		return -EINVAL;
6172 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6173 		return -EBUSY;
6174 
6175 	rdev_for_each(rdev, mddev) {
6176 		if (mddev->raid_disks < raid_disks &&
6177 		    rdev->data_offset < rdev->new_data_offset)
6178 			return -EINVAL;
6179 		if (mddev->raid_disks > raid_disks &&
6180 		    rdev->data_offset > rdev->new_data_offset)
6181 			return -EINVAL;
6182 	}
6183 
6184 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6185 	if (mddev->delta_disks < 0)
6186 		mddev->reshape_backwards = 1;
6187 	else if (mddev->delta_disks > 0)
6188 		mddev->reshape_backwards = 0;
6189 
6190 	rv = mddev->pers->check_reshape(mddev);
6191 	if (rv < 0) {
6192 		mddev->delta_disks = 0;
6193 		mddev->reshape_backwards = 0;
6194 	}
6195 	return rv;
6196 }
6197 
6198 
6199 /*
6200  * update_array_info is used to change the configuration of an
6201  * on-line array.
6202  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6203  * fields in the info are checked against the array.
6204  * Any differences that cannot be handled will cause an error.
6205  * Normally, only one change can be managed at a time.
6206  */
6207 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6208 {
6209 	int rv = 0;
6210 	int cnt = 0;
6211 	int state = 0;
6212 
6213 	/* calculate expected state,ignoring low bits */
6214 	if (mddev->bitmap && mddev->bitmap_info.offset)
6215 		state |= (1 << MD_SB_BITMAP_PRESENT);
6216 
6217 	if (mddev->major_version != info->major_version ||
6218 	    mddev->minor_version != info->minor_version ||
6219 /*	    mddev->patch_version != info->patch_version || */
6220 	    mddev->ctime         != info->ctime         ||
6221 	    mddev->level         != info->level         ||
6222 /*	    mddev->layout        != info->layout        || */
6223 	    !mddev->persistent	 != info->not_persistent||
6224 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6225 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6226 	    ((state^info->state) & 0xfffffe00)
6227 		)
6228 		return -EINVAL;
6229 	/* Check there is only one change */
6230 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6231 		cnt++;
6232 	if (mddev->raid_disks != info->raid_disks)
6233 		cnt++;
6234 	if (mddev->layout != info->layout)
6235 		cnt++;
6236 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6237 		cnt++;
6238 	if (cnt == 0)
6239 		return 0;
6240 	if (cnt > 1)
6241 		return -EINVAL;
6242 
6243 	if (mddev->layout != info->layout) {
6244 		/* Change layout
6245 		 * we don't need to do anything at the md level, the
6246 		 * personality will take care of it all.
6247 		 */
6248 		if (mddev->pers->check_reshape == NULL)
6249 			return -EINVAL;
6250 		else {
6251 			mddev->new_layout = info->layout;
6252 			rv = mddev->pers->check_reshape(mddev);
6253 			if (rv)
6254 				mddev->new_layout = mddev->layout;
6255 			return rv;
6256 		}
6257 	}
6258 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6259 		rv = update_size(mddev, (sector_t)info->size * 2);
6260 
6261 	if (mddev->raid_disks    != info->raid_disks)
6262 		rv = update_raid_disks(mddev, info->raid_disks);
6263 
6264 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6265 		if (mddev->pers->quiesce == NULL)
6266 			return -EINVAL;
6267 		if (mddev->recovery || mddev->sync_thread)
6268 			return -EBUSY;
6269 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6270 			/* add the bitmap */
6271 			if (mddev->bitmap)
6272 				return -EEXIST;
6273 			if (mddev->bitmap_info.default_offset == 0)
6274 				return -EINVAL;
6275 			mddev->bitmap_info.offset =
6276 				mddev->bitmap_info.default_offset;
6277 			mddev->bitmap_info.space =
6278 				mddev->bitmap_info.default_space;
6279 			mddev->pers->quiesce(mddev, 1);
6280 			rv = bitmap_create(mddev);
6281 			if (!rv)
6282 				rv = bitmap_load(mddev);
6283 			if (rv)
6284 				bitmap_destroy(mddev);
6285 			mddev->pers->quiesce(mddev, 0);
6286 		} else {
6287 			/* remove the bitmap */
6288 			if (!mddev->bitmap)
6289 				return -ENOENT;
6290 			if (mddev->bitmap->storage.file)
6291 				return -EINVAL;
6292 			mddev->pers->quiesce(mddev, 1);
6293 			bitmap_destroy(mddev);
6294 			mddev->pers->quiesce(mddev, 0);
6295 			mddev->bitmap_info.offset = 0;
6296 		}
6297 	}
6298 	md_update_sb(mddev, 1);
6299 	return rv;
6300 }
6301 
6302 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6303 {
6304 	struct md_rdev *rdev;
6305 	int err = 0;
6306 
6307 	if (mddev->pers == NULL)
6308 		return -ENODEV;
6309 
6310 	rcu_read_lock();
6311 	rdev = find_rdev_rcu(mddev, dev);
6312 	if (!rdev)
6313 		err =  -ENODEV;
6314 	else {
6315 		md_error(mddev, rdev);
6316 		if (!test_bit(Faulty, &rdev->flags))
6317 			err = -EBUSY;
6318 	}
6319 	rcu_read_unlock();
6320 	return err;
6321 }
6322 
6323 /*
6324  * We have a problem here : there is no easy way to give a CHS
6325  * virtual geometry. We currently pretend that we have a 2 heads
6326  * 4 sectors (with a BIG number of cylinders...). This drives
6327  * dosfs just mad... ;-)
6328  */
6329 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6330 {
6331 	struct mddev *mddev = bdev->bd_disk->private_data;
6332 
6333 	geo->heads = 2;
6334 	geo->sectors = 4;
6335 	geo->cylinders = mddev->array_sectors / 8;
6336 	return 0;
6337 }
6338 
6339 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6340 			unsigned int cmd, unsigned long arg)
6341 {
6342 	int err = 0;
6343 	void __user *argp = (void __user *)arg;
6344 	struct mddev *mddev = NULL;
6345 	int ro;
6346 
6347 	switch (cmd) {
6348 	case RAID_VERSION:
6349 	case GET_ARRAY_INFO:
6350 	case GET_DISK_INFO:
6351 		break;
6352 	default:
6353 		if (!capable(CAP_SYS_ADMIN))
6354 			return -EACCES;
6355 	}
6356 
6357 	/*
6358 	 * Commands dealing with the RAID driver but not any
6359 	 * particular array:
6360 	 */
6361 	switch (cmd) {
6362 	case RAID_VERSION:
6363 		err = get_version(argp);
6364 		goto done;
6365 
6366 	case PRINT_RAID_DEBUG:
6367 		err = 0;
6368 		md_print_devices();
6369 		goto done;
6370 
6371 #ifndef MODULE
6372 	case RAID_AUTORUN:
6373 		err = 0;
6374 		autostart_arrays(arg);
6375 		goto done;
6376 #endif
6377 	default:;
6378 	}
6379 
6380 	/*
6381 	 * Commands creating/starting a new array:
6382 	 */
6383 
6384 	mddev = bdev->bd_disk->private_data;
6385 
6386 	if (!mddev) {
6387 		BUG();
6388 		goto abort;
6389 	}
6390 
6391 	/* Some actions do not requires the mutex */
6392 	switch (cmd) {
6393 	case GET_ARRAY_INFO:
6394 		if (!mddev->raid_disks && !mddev->external)
6395 			err = -ENODEV;
6396 		else
6397 			err = get_array_info(mddev, argp);
6398 		goto abort;
6399 
6400 	case GET_DISK_INFO:
6401 		if (!mddev->raid_disks && !mddev->external)
6402 			err = -ENODEV;
6403 		else
6404 			err = get_disk_info(mddev, argp);
6405 		goto abort;
6406 
6407 	case SET_DISK_FAULTY:
6408 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6409 		goto abort;
6410 	}
6411 
6412 	if (cmd == ADD_NEW_DISK)
6413 		/* need to ensure md_delayed_delete() has completed */
6414 		flush_workqueue(md_misc_wq);
6415 
6416 	if (cmd == HOT_REMOVE_DISK)
6417 		/* need to ensure recovery thread has run */
6418 		wait_event_interruptible_timeout(mddev->sb_wait,
6419 						 !test_bit(MD_RECOVERY_NEEDED,
6420 							   &mddev->flags),
6421 						 msecs_to_jiffies(5000));
6422 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6423 		/* Need to flush page cache, and ensure no-one else opens
6424 		 * and writes
6425 		 */
6426 		mutex_lock(&mddev->open_mutex);
6427 		if (atomic_read(&mddev->openers) > 1) {
6428 			mutex_unlock(&mddev->open_mutex);
6429 			err = -EBUSY;
6430 			goto abort;
6431 		}
6432 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6433 		mutex_unlock(&mddev->open_mutex);
6434 		sync_blockdev(bdev);
6435 	}
6436 	err = mddev_lock(mddev);
6437 	if (err) {
6438 		printk(KERN_INFO
6439 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6440 			err, cmd);
6441 		goto abort;
6442 	}
6443 
6444 	if (cmd == SET_ARRAY_INFO) {
6445 		mdu_array_info_t info;
6446 		if (!arg)
6447 			memset(&info, 0, sizeof(info));
6448 		else if (copy_from_user(&info, argp, sizeof(info))) {
6449 			err = -EFAULT;
6450 			goto abort_unlock;
6451 		}
6452 		if (mddev->pers) {
6453 			err = update_array_info(mddev, &info);
6454 			if (err) {
6455 				printk(KERN_WARNING "md: couldn't update"
6456 				       " array info. %d\n", err);
6457 				goto abort_unlock;
6458 			}
6459 			goto done_unlock;
6460 		}
6461 		if (!list_empty(&mddev->disks)) {
6462 			printk(KERN_WARNING
6463 			       "md: array %s already has disks!\n",
6464 			       mdname(mddev));
6465 			err = -EBUSY;
6466 			goto abort_unlock;
6467 		}
6468 		if (mddev->raid_disks) {
6469 			printk(KERN_WARNING
6470 			       "md: array %s already initialised!\n",
6471 			       mdname(mddev));
6472 			err = -EBUSY;
6473 			goto abort_unlock;
6474 		}
6475 		err = set_array_info(mddev, &info);
6476 		if (err) {
6477 			printk(KERN_WARNING "md: couldn't set"
6478 			       " array info. %d\n", err);
6479 			goto abort_unlock;
6480 		}
6481 		goto done_unlock;
6482 	}
6483 
6484 	/*
6485 	 * Commands querying/configuring an existing array:
6486 	 */
6487 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6488 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6489 	if ((!mddev->raid_disks && !mddev->external)
6490 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6491 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6492 	    && cmd != GET_BITMAP_FILE) {
6493 		err = -ENODEV;
6494 		goto abort_unlock;
6495 	}
6496 
6497 	/*
6498 	 * Commands even a read-only array can execute:
6499 	 */
6500 	switch (cmd) {
6501 	case GET_BITMAP_FILE:
6502 		err = get_bitmap_file(mddev, argp);
6503 		goto done_unlock;
6504 
6505 	case RESTART_ARRAY_RW:
6506 		err = restart_array(mddev);
6507 		goto done_unlock;
6508 
6509 	case STOP_ARRAY:
6510 		err = do_md_stop(mddev, 0, bdev);
6511 		goto done_unlock;
6512 
6513 	case STOP_ARRAY_RO:
6514 		err = md_set_readonly(mddev, bdev);
6515 		goto done_unlock;
6516 
6517 	case HOT_REMOVE_DISK:
6518 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6519 		goto done_unlock;
6520 
6521 	case ADD_NEW_DISK:
6522 		/* We can support ADD_NEW_DISK on read-only arrays
6523 		 * on if we are re-adding a preexisting device.
6524 		 * So require mddev->pers and MD_DISK_SYNC.
6525 		 */
6526 		if (mddev->pers) {
6527 			mdu_disk_info_t info;
6528 			if (copy_from_user(&info, argp, sizeof(info)))
6529 				err = -EFAULT;
6530 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6531 				/* Need to clear read-only for this */
6532 				break;
6533 			else
6534 				err = add_new_disk(mddev, &info);
6535 			goto done_unlock;
6536 		}
6537 		break;
6538 
6539 	case BLKROSET:
6540 		if (get_user(ro, (int __user *)(arg))) {
6541 			err = -EFAULT;
6542 			goto done_unlock;
6543 		}
6544 		err = -EINVAL;
6545 
6546 		/* if the bdev is going readonly the value of mddev->ro
6547 		 * does not matter, no writes are coming
6548 		 */
6549 		if (ro)
6550 			goto done_unlock;
6551 
6552 		/* are we are already prepared for writes? */
6553 		if (mddev->ro != 1)
6554 			goto done_unlock;
6555 
6556 		/* transitioning to readauto need only happen for
6557 		 * arrays that call md_write_start
6558 		 */
6559 		if (mddev->pers) {
6560 			err = restart_array(mddev);
6561 			if (err == 0) {
6562 				mddev->ro = 2;
6563 				set_disk_ro(mddev->gendisk, 0);
6564 			}
6565 		}
6566 		goto done_unlock;
6567 	}
6568 
6569 	/*
6570 	 * The remaining ioctls are changing the state of the
6571 	 * superblock, so we do not allow them on read-only arrays.
6572 	 * However non-MD ioctls (e.g. get-size) will still come through
6573 	 * here and hit the 'default' below, so only disallow
6574 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6575 	 */
6576 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6577 		if (mddev->ro == 2) {
6578 			mddev->ro = 0;
6579 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6580 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6581 			/* mddev_unlock will wake thread */
6582 			/* If a device failed while we were read-only, we
6583 			 * need to make sure the metadata is updated now.
6584 			 */
6585 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6586 				mddev_unlock(mddev);
6587 				wait_event(mddev->sb_wait,
6588 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6589 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6590 				mddev_lock_nointr(mddev);
6591 			}
6592 		} else {
6593 			err = -EROFS;
6594 			goto abort_unlock;
6595 		}
6596 	}
6597 
6598 	switch (cmd) {
6599 	case ADD_NEW_DISK:
6600 	{
6601 		mdu_disk_info_t info;
6602 		if (copy_from_user(&info, argp, sizeof(info)))
6603 			err = -EFAULT;
6604 		else
6605 			err = add_new_disk(mddev, &info);
6606 		goto done_unlock;
6607 	}
6608 
6609 	case HOT_ADD_DISK:
6610 		err = hot_add_disk(mddev, new_decode_dev(arg));
6611 		goto done_unlock;
6612 
6613 	case RUN_ARRAY:
6614 		err = do_md_run(mddev);
6615 		goto done_unlock;
6616 
6617 	case SET_BITMAP_FILE:
6618 		err = set_bitmap_file(mddev, (int)arg);
6619 		goto done_unlock;
6620 
6621 	default:
6622 		err = -EINVAL;
6623 		goto abort_unlock;
6624 	}
6625 
6626 done_unlock:
6627 abort_unlock:
6628 	if (mddev->hold_active == UNTIL_IOCTL &&
6629 	    err != -EINVAL)
6630 		mddev->hold_active = 0;
6631 	mddev_unlock(mddev);
6632 
6633 	return err;
6634 done:
6635 	if (err)
6636 		MD_BUG();
6637 abort:
6638 	return err;
6639 }
6640 #ifdef CONFIG_COMPAT
6641 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6642 		    unsigned int cmd, unsigned long arg)
6643 {
6644 	switch (cmd) {
6645 	case HOT_REMOVE_DISK:
6646 	case HOT_ADD_DISK:
6647 	case SET_DISK_FAULTY:
6648 	case SET_BITMAP_FILE:
6649 		/* These take in integer arg, do not convert */
6650 		break;
6651 	default:
6652 		arg = (unsigned long)compat_ptr(arg);
6653 		break;
6654 	}
6655 
6656 	return md_ioctl(bdev, mode, cmd, arg);
6657 }
6658 #endif /* CONFIG_COMPAT */
6659 
6660 static int md_open(struct block_device *bdev, fmode_t mode)
6661 {
6662 	/*
6663 	 * Succeed if we can lock the mddev, which confirms that
6664 	 * it isn't being stopped right now.
6665 	 */
6666 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6667 	int err;
6668 
6669 	if (!mddev)
6670 		return -ENODEV;
6671 
6672 	if (mddev->gendisk != bdev->bd_disk) {
6673 		/* we are racing with mddev_put which is discarding this
6674 		 * bd_disk.
6675 		 */
6676 		mddev_put(mddev);
6677 		/* Wait until bdev->bd_disk is definitely gone */
6678 		flush_workqueue(md_misc_wq);
6679 		/* Then retry the open from the top */
6680 		return -ERESTARTSYS;
6681 	}
6682 	BUG_ON(mddev != bdev->bd_disk->private_data);
6683 
6684 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6685 		goto out;
6686 
6687 	err = 0;
6688 	atomic_inc(&mddev->openers);
6689 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6690 	mutex_unlock(&mddev->open_mutex);
6691 
6692 	check_disk_change(bdev);
6693  out:
6694 	return err;
6695 }
6696 
6697 static void md_release(struct gendisk *disk, fmode_t mode)
6698 {
6699  	struct mddev *mddev = disk->private_data;
6700 
6701 	BUG_ON(!mddev);
6702 	atomic_dec(&mddev->openers);
6703 	mddev_put(mddev);
6704 }
6705 
6706 static int md_media_changed(struct gendisk *disk)
6707 {
6708 	struct mddev *mddev = disk->private_data;
6709 
6710 	return mddev->changed;
6711 }
6712 
6713 static int md_revalidate(struct gendisk *disk)
6714 {
6715 	struct mddev *mddev = disk->private_data;
6716 
6717 	mddev->changed = 0;
6718 	return 0;
6719 }
6720 static const struct block_device_operations md_fops =
6721 {
6722 	.owner		= THIS_MODULE,
6723 	.open		= md_open,
6724 	.release	= md_release,
6725 	.ioctl		= md_ioctl,
6726 #ifdef CONFIG_COMPAT
6727 	.compat_ioctl	= md_compat_ioctl,
6728 #endif
6729 	.getgeo		= md_getgeo,
6730 	.media_changed  = md_media_changed,
6731 	.revalidate_disk= md_revalidate,
6732 };
6733 
6734 static int md_thread(void * arg)
6735 {
6736 	struct md_thread *thread = arg;
6737 
6738 	/*
6739 	 * md_thread is a 'system-thread', it's priority should be very
6740 	 * high. We avoid resource deadlocks individually in each
6741 	 * raid personality. (RAID5 does preallocation) We also use RR and
6742 	 * the very same RT priority as kswapd, thus we will never get
6743 	 * into a priority inversion deadlock.
6744 	 *
6745 	 * we definitely have to have equal or higher priority than
6746 	 * bdflush, otherwise bdflush will deadlock if there are too
6747 	 * many dirty RAID5 blocks.
6748 	 */
6749 
6750 	allow_signal(SIGKILL);
6751 	while (!kthread_should_stop()) {
6752 
6753 		/* We need to wait INTERRUPTIBLE so that
6754 		 * we don't add to the load-average.
6755 		 * That means we need to be sure no signals are
6756 		 * pending
6757 		 */
6758 		if (signal_pending(current))
6759 			flush_signals(current);
6760 
6761 		wait_event_interruptible_timeout
6762 			(thread->wqueue,
6763 			 test_bit(THREAD_WAKEUP, &thread->flags)
6764 			 || kthread_should_stop(),
6765 			 thread->timeout);
6766 
6767 		clear_bit(THREAD_WAKEUP, &thread->flags);
6768 		if (!kthread_should_stop())
6769 			thread->run(thread);
6770 	}
6771 
6772 	return 0;
6773 }
6774 
6775 void md_wakeup_thread(struct md_thread *thread)
6776 {
6777 	if (thread) {
6778 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6779 		set_bit(THREAD_WAKEUP, &thread->flags);
6780 		wake_up(&thread->wqueue);
6781 	}
6782 }
6783 
6784 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6785 		struct mddev *mddev, const char *name)
6786 {
6787 	struct md_thread *thread;
6788 
6789 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6790 	if (!thread)
6791 		return NULL;
6792 
6793 	init_waitqueue_head(&thread->wqueue);
6794 
6795 	thread->run = run;
6796 	thread->mddev = mddev;
6797 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6798 	thread->tsk = kthread_run(md_thread, thread,
6799 				  "%s_%s",
6800 				  mdname(thread->mddev),
6801 				  name);
6802 	if (IS_ERR(thread->tsk)) {
6803 		kfree(thread);
6804 		return NULL;
6805 	}
6806 	return thread;
6807 }
6808 
6809 void md_unregister_thread(struct md_thread **threadp)
6810 {
6811 	struct md_thread *thread = *threadp;
6812 	if (!thread)
6813 		return;
6814 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6815 	/* Locking ensures that mddev_unlock does not wake_up a
6816 	 * non-existent thread
6817 	 */
6818 	spin_lock(&pers_lock);
6819 	*threadp = NULL;
6820 	spin_unlock(&pers_lock);
6821 
6822 	kthread_stop(thread->tsk);
6823 	kfree(thread);
6824 }
6825 
6826 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6827 {
6828 	if (!mddev) {
6829 		MD_BUG();
6830 		return;
6831 	}
6832 
6833 	if (!rdev || test_bit(Faulty, &rdev->flags))
6834 		return;
6835 
6836 	if (!mddev->pers || !mddev->pers->error_handler)
6837 		return;
6838 	mddev->pers->error_handler(mddev,rdev);
6839 	if (mddev->degraded)
6840 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6841 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6842 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6843 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6844 	md_wakeup_thread(mddev->thread);
6845 	if (mddev->event_work.func)
6846 		queue_work(md_misc_wq, &mddev->event_work);
6847 	md_new_event_inintr(mddev);
6848 }
6849 
6850 /* seq_file implementation /proc/mdstat */
6851 
6852 static void status_unused(struct seq_file *seq)
6853 {
6854 	int i = 0;
6855 	struct md_rdev *rdev;
6856 
6857 	seq_printf(seq, "unused devices: ");
6858 
6859 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6860 		char b[BDEVNAME_SIZE];
6861 		i++;
6862 		seq_printf(seq, "%s ",
6863 			      bdevname(rdev->bdev,b));
6864 	}
6865 	if (!i)
6866 		seq_printf(seq, "<none>");
6867 
6868 	seq_printf(seq, "\n");
6869 }
6870 
6871 
6872 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6873 {
6874 	sector_t max_sectors, resync, res;
6875 	unsigned long dt, db;
6876 	sector_t rt;
6877 	int scale;
6878 	unsigned int per_milli;
6879 
6880 	if (mddev->curr_resync <= 3)
6881 		resync = 0;
6882 	else
6883 		resync = mddev->curr_resync
6884 			- atomic_read(&mddev->recovery_active);
6885 
6886 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6887 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6888 		max_sectors = mddev->resync_max_sectors;
6889 	else
6890 		max_sectors = mddev->dev_sectors;
6891 
6892 	/*
6893 	 * Should not happen.
6894 	 */
6895 	if (!max_sectors) {
6896 		MD_BUG();
6897 		return;
6898 	}
6899 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6900 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6901 	 * u32, as those are the requirements for sector_div.
6902 	 * Thus 'scale' must be at least 10
6903 	 */
6904 	scale = 10;
6905 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6906 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6907 			scale++;
6908 	}
6909 	res = (resync>>scale)*1000;
6910 	sector_div(res, (u32)((max_sectors>>scale)+1));
6911 
6912 	per_milli = res;
6913 	{
6914 		int i, x = per_milli/50, y = 20-x;
6915 		seq_printf(seq, "[");
6916 		for (i = 0; i < x; i++)
6917 			seq_printf(seq, "=");
6918 		seq_printf(seq, ">");
6919 		for (i = 0; i < y; i++)
6920 			seq_printf(seq, ".");
6921 		seq_printf(seq, "] ");
6922 	}
6923 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6924 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6925 		    "reshape" :
6926 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6927 		     "check" :
6928 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6929 		      "resync" : "recovery"))),
6930 		   per_milli/10, per_milli % 10,
6931 		   (unsigned long long) resync/2,
6932 		   (unsigned long long) max_sectors/2);
6933 
6934 	/*
6935 	 * dt: time from mark until now
6936 	 * db: blocks written from mark until now
6937 	 * rt: remaining time
6938 	 *
6939 	 * rt is a sector_t, so could be 32bit or 64bit.
6940 	 * So we divide before multiply in case it is 32bit and close
6941 	 * to the limit.
6942 	 * We scale the divisor (db) by 32 to avoid losing precision
6943 	 * near the end of resync when the number of remaining sectors
6944 	 * is close to 'db'.
6945 	 * We then divide rt by 32 after multiplying by db to compensate.
6946 	 * The '+1' avoids division by zero if db is very small.
6947 	 */
6948 	dt = ((jiffies - mddev->resync_mark) / HZ);
6949 	if (!dt) dt++;
6950 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6951 		- mddev->resync_mark_cnt;
6952 
6953 	rt = max_sectors - resync;    /* number of remaining sectors */
6954 	sector_div(rt, db/32+1);
6955 	rt *= dt;
6956 	rt >>= 5;
6957 
6958 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6959 		   ((unsigned long)rt % 60)/6);
6960 
6961 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6962 }
6963 
6964 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6965 {
6966 	struct list_head *tmp;
6967 	loff_t l = *pos;
6968 	struct mddev *mddev;
6969 
6970 	if (l >= 0x10000)
6971 		return NULL;
6972 	if (!l--)
6973 		/* header */
6974 		return (void*)1;
6975 
6976 	spin_lock(&all_mddevs_lock);
6977 	list_for_each(tmp,&all_mddevs)
6978 		if (!l--) {
6979 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6980 			mddev_get(mddev);
6981 			spin_unlock(&all_mddevs_lock);
6982 			return mddev;
6983 		}
6984 	spin_unlock(&all_mddevs_lock);
6985 	if (!l--)
6986 		return (void*)2;/* tail */
6987 	return NULL;
6988 }
6989 
6990 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6991 {
6992 	struct list_head *tmp;
6993 	struct mddev *next_mddev, *mddev = v;
6994 
6995 	++*pos;
6996 	if (v == (void*)2)
6997 		return NULL;
6998 
6999 	spin_lock(&all_mddevs_lock);
7000 	if (v == (void*)1)
7001 		tmp = all_mddevs.next;
7002 	else
7003 		tmp = mddev->all_mddevs.next;
7004 	if (tmp != &all_mddevs)
7005 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7006 	else {
7007 		next_mddev = (void*)2;
7008 		*pos = 0x10000;
7009 	}
7010 	spin_unlock(&all_mddevs_lock);
7011 
7012 	if (v != (void*)1)
7013 		mddev_put(mddev);
7014 	return next_mddev;
7015 
7016 }
7017 
7018 static void md_seq_stop(struct seq_file *seq, void *v)
7019 {
7020 	struct mddev *mddev = v;
7021 
7022 	if (mddev && v != (void*)1 && v != (void*)2)
7023 		mddev_put(mddev);
7024 }
7025 
7026 static int md_seq_show(struct seq_file *seq, void *v)
7027 {
7028 	struct mddev *mddev = v;
7029 	sector_t sectors;
7030 	struct md_rdev *rdev;
7031 
7032 	if (v == (void*)1) {
7033 		struct md_personality *pers;
7034 		seq_printf(seq, "Personalities : ");
7035 		spin_lock(&pers_lock);
7036 		list_for_each_entry(pers, &pers_list, list)
7037 			seq_printf(seq, "[%s] ", pers->name);
7038 
7039 		spin_unlock(&pers_lock);
7040 		seq_printf(seq, "\n");
7041 		seq->poll_event = atomic_read(&md_event_count);
7042 		return 0;
7043 	}
7044 	if (v == (void*)2) {
7045 		status_unused(seq);
7046 		return 0;
7047 	}
7048 
7049 	if (mddev_lock(mddev) < 0)
7050 		return -EINTR;
7051 
7052 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7053 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7054 						mddev->pers ? "" : "in");
7055 		if (mddev->pers) {
7056 			if (mddev->ro==1)
7057 				seq_printf(seq, " (read-only)");
7058 			if (mddev->ro==2)
7059 				seq_printf(seq, " (auto-read-only)");
7060 			seq_printf(seq, " %s", mddev->pers->name);
7061 		}
7062 
7063 		sectors = 0;
7064 		rdev_for_each(rdev, mddev) {
7065 			char b[BDEVNAME_SIZE];
7066 			seq_printf(seq, " %s[%d]",
7067 				bdevname(rdev->bdev,b), rdev->desc_nr);
7068 			if (test_bit(WriteMostly, &rdev->flags))
7069 				seq_printf(seq, "(W)");
7070 			if (test_bit(Faulty, &rdev->flags)) {
7071 				seq_printf(seq, "(F)");
7072 				continue;
7073 			}
7074 			if (rdev->raid_disk < 0)
7075 				seq_printf(seq, "(S)"); /* spare */
7076 			if (test_bit(Replacement, &rdev->flags))
7077 				seq_printf(seq, "(R)");
7078 			sectors += rdev->sectors;
7079 		}
7080 
7081 		if (!list_empty(&mddev->disks)) {
7082 			if (mddev->pers)
7083 				seq_printf(seq, "\n      %llu blocks",
7084 					   (unsigned long long)
7085 					   mddev->array_sectors / 2);
7086 			else
7087 				seq_printf(seq, "\n      %llu blocks",
7088 					   (unsigned long long)sectors / 2);
7089 		}
7090 		if (mddev->persistent) {
7091 			if (mddev->major_version != 0 ||
7092 			    mddev->minor_version != 90) {
7093 				seq_printf(seq," super %d.%d",
7094 					   mddev->major_version,
7095 					   mddev->minor_version);
7096 			}
7097 		} else if (mddev->external)
7098 			seq_printf(seq, " super external:%s",
7099 				   mddev->metadata_type);
7100 		else
7101 			seq_printf(seq, " super non-persistent");
7102 
7103 		if (mddev->pers) {
7104 			mddev->pers->status(seq, mddev);
7105 	 		seq_printf(seq, "\n      ");
7106 			if (mddev->pers->sync_request) {
7107 				if (mddev->curr_resync > 2) {
7108 					status_resync(seq, mddev);
7109 					seq_printf(seq, "\n      ");
7110 				} else if (mddev->curr_resync >= 1)
7111 					seq_printf(seq, "\tresync=DELAYED\n      ");
7112 				else if (mddev->recovery_cp < MaxSector)
7113 					seq_printf(seq, "\tresync=PENDING\n      ");
7114 			}
7115 		} else
7116 			seq_printf(seq, "\n       ");
7117 
7118 		bitmap_status(seq, mddev->bitmap);
7119 
7120 		seq_printf(seq, "\n");
7121 	}
7122 	mddev_unlock(mddev);
7123 
7124 	return 0;
7125 }
7126 
7127 static const struct seq_operations md_seq_ops = {
7128 	.start  = md_seq_start,
7129 	.next   = md_seq_next,
7130 	.stop   = md_seq_stop,
7131 	.show   = md_seq_show,
7132 };
7133 
7134 static int md_seq_open(struct inode *inode, struct file *file)
7135 {
7136 	struct seq_file *seq;
7137 	int error;
7138 
7139 	error = seq_open(file, &md_seq_ops);
7140 	if (error)
7141 		return error;
7142 
7143 	seq = file->private_data;
7144 	seq->poll_event = atomic_read(&md_event_count);
7145 	return error;
7146 }
7147 
7148 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7149 {
7150 	struct seq_file *seq = filp->private_data;
7151 	int mask;
7152 
7153 	poll_wait(filp, &md_event_waiters, wait);
7154 
7155 	/* always allow read */
7156 	mask = POLLIN | POLLRDNORM;
7157 
7158 	if (seq->poll_event != atomic_read(&md_event_count))
7159 		mask |= POLLERR | POLLPRI;
7160 	return mask;
7161 }
7162 
7163 static const struct file_operations md_seq_fops = {
7164 	.owner		= THIS_MODULE,
7165 	.open           = md_seq_open,
7166 	.read           = seq_read,
7167 	.llseek         = seq_lseek,
7168 	.release	= seq_release_private,
7169 	.poll		= mdstat_poll,
7170 };
7171 
7172 int register_md_personality(struct md_personality *p)
7173 {
7174 	spin_lock(&pers_lock);
7175 	list_add_tail(&p->list, &pers_list);
7176 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7177 	spin_unlock(&pers_lock);
7178 	return 0;
7179 }
7180 
7181 int unregister_md_personality(struct md_personality *p)
7182 {
7183 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7184 	spin_lock(&pers_lock);
7185 	list_del_init(&p->list);
7186 	spin_unlock(&pers_lock);
7187 	return 0;
7188 }
7189 
7190 static int is_mddev_idle(struct mddev *mddev, int init)
7191 {
7192 	struct md_rdev * rdev;
7193 	int idle;
7194 	int curr_events;
7195 
7196 	idle = 1;
7197 	rcu_read_lock();
7198 	rdev_for_each_rcu(rdev, mddev) {
7199 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7200 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7201 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7202 			      atomic_read(&disk->sync_io);
7203 		/* sync IO will cause sync_io to increase before the disk_stats
7204 		 * as sync_io is counted when a request starts, and
7205 		 * disk_stats is counted when it completes.
7206 		 * So resync activity will cause curr_events to be smaller than
7207 		 * when there was no such activity.
7208 		 * non-sync IO will cause disk_stat to increase without
7209 		 * increasing sync_io so curr_events will (eventually)
7210 		 * be larger than it was before.  Once it becomes
7211 		 * substantially larger, the test below will cause
7212 		 * the array to appear non-idle, and resync will slow
7213 		 * down.
7214 		 * If there is a lot of outstanding resync activity when
7215 		 * we set last_event to curr_events, then all that activity
7216 		 * completing might cause the array to appear non-idle
7217 		 * and resync will be slowed down even though there might
7218 		 * not have been non-resync activity.  This will only
7219 		 * happen once though.  'last_events' will soon reflect
7220 		 * the state where there is little or no outstanding
7221 		 * resync requests, and further resync activity will
7222 		 * always make curr_events less than last_events.
7223 		 *
7224 		 */
7225 		if (init || curr_events - rdev->last_events > 64) {
7226 			rdev->last_events = curr_events;
7227 			idle = 0;
7228 		}
7229 	}
7230 	rcu_read_unlock();
7231 	return idle;
7232 }
7233 
7234 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7235 {
7236 	/* another "blocks" (512byte) blocks have been synced */
7237 	atomic_sub(blocks, &mddev->recovery_active);
7238 	wake_up(&mddev->recovery_wait);
7239 	if (!ok) {
7240 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7241 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7242 		md_wakeup_thread(mddev->thread);
7243 		// stop recovery, signal do_sync ....
7244 	}
7245 }
7246 
7247 
7248 /* md_write_start(mddev, bi)
7249  * If we need to update some array metadata (e.g. 'active' flag
7250  * in superblock) before writing, schedule a superblock update
7251  * and wait for it to complete.
7252  */
7253 void md_write_start(struct mddev *mddev, struct bio *bi)
7254 {
7255 	int did_change = 0;
7256 	if (bio_data_dir(bi) != WRITE)
7257 		return;
7258 
7259 	BUG_ON(mddev->ro == 1);
7260 	if (mddev->ro == 2) {
7261 		/* need to switch to read/write */
7262 		mddev->ro = 0;
7263 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7264 		md_wakeup_thread(mddev->thread);
7265 		md_wakeup_thread(mddev->sync_thread);
7266 		did_change = 1;
7267 	}
7268 	atomic_inc(&mddev->writes_pending);
7269 	if (mddev->safemode == 1)
7270 		mddev->safemode = 0;
7271 	if (mddev->in_sync) {
7272 		spin_lock_irq(&mddev->write_lock);
7273 		if (mddev->in_sync) {
7274 			mddev->in_sync = 0;
7275 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7276 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7277 			md_wakeup_thread(mddev->thread);
7278 			did_change = 1;
7279 		}
7280 		spin_unlock_irq(&mddev->write_lock);
7281 	}
7282 	if (did_change)
7283 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7284 	wait_event(mddev->sb_wait,
7285 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7286 }
7287 
7288 void md_write_end(struct mddev *mddev)
7289 {
7290 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7291 		if (mddev->safemode == 2)
7292 			md_wakeup_thread(mddev->thread);
7293 		else if (mddev->safemode_delay)
7294 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7295 	}
7296 }
7297 
7298 /* md_allow_write(mddev)
7299  * Calling this ensures that the array is marked 'active' so that writes
7300  * may proceed without blocking.  It is important to call this before
7301  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7302  * Must be called with mddev_lock held.
7303  *
7304  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7305  * is dropped, so return -EAGAIN after notifying userspace.
7306  */
7307 int md_allow_write(struct mddev *mddev)
7308 {
7309 	if (!mddev->pers)
7310 		return 0;
7311 	if (mddev->ro)
7312 		return 0;
7313 	if (!mddev->pers->sync_request)
7314 		return 0;
7315 
7316 	spin_lock_irq(&mddev->write_lock);
7317 	if (mddev->in_sync) {
7318 		mddev->in_sync = 0;
7319 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7320 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7321 		if (mddev->safemode_delay &&
7322 		    mddev->safemode == 0)
7323 			mddev->safemode = 1;
7324 		spin_unlock_irq(&mddev->write_lock);
7325 		md_update_sb(mddev, 0);
7326 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7327 	} else
7328 		spin_unlock_irq(&mddev->write_lock);
7329 
7330 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7331 		return -EAGAIN;
7332 	else
7333 		return 0;
7334 }
7335 EXPORT_SYMBOL_GPL(md_allow_write);
7336 
7337 #define SYNC_MARKS	10
7338 #define	SYNC_MARK_STEP	(3*HZ)
7339 #define UPDATE_FREQUENCY (5*60*HZ)
7340 void md_do_sync(struct md_thread *thread)
7341 {
7342 	struct mddev *mddev = thread->mddev;
7343 	struct mddev *mddev2;
7344 	unsigned int currspeed = 0,
7345 		 window;
7346 	sector_t max_sectors,j, io_sectors;
7347 	unsigned long mark[SYNC_MARKS];
7348 	unsigned long update_time;
7349 	sector_t mark_cnt[SYNC_MARKS];
7350 	int last_mark,m;
7351 	struct list_head *tmp;
7352 	sector_t last_check;
7353 	int skipped = 0;
7354 	struct md_rdev *rdev;
7355 	char *desc, *action = NULL;
7356 	struct blk_plug plug;
7357 
7358 	/* just incase thread restarts... */
7359 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7360 		return;
7361 	if (mddev->ro) /* never try to sync a read-only array */
7362 		return;
7363 
7364 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7365 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7366 			desc = "data-check";
7367 			action = "check";
7368 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7369 			desc = "requested-resync";
7370 			action = "repair";
7371 		} else
7372 			desc = "resync";
7373 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7374 		desc = "reshape";
7375 	else
7376 		desc = "recovery";
7377 
7378 	mddev->last_sync_action = action ?: desc;
7379 
7380 	/* we overload curr_resync somewhat here.
7381 	 * 0 == not engaged in resync at all
7382 	 * 2 == checking that there is no conflict with another sync
7383 	 * 1 == like 2, but have yielded to allow conflicting resync to
7384 	 *		commense
7385 	 * other == active in resync - this many blocks
7386 	 *
7387 	 * Before starting a resync we must have set curr_resync to
7388 	 * 2, and then checked that every "conflicting" array has curr_resync
7389 	 * less than ours.  When we find one that is the same or higher
7390 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7391 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7392 	 * This will mean we have to start checking from the beginning again.
7393 	 *
7394 	 */
7395 
7396 	do {
7397 		mddev->curr_resync = 2;
7398 
7399 	try_again:
7400 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7401 			goto skip;
7402 		for_each_mddev(mddev2, tmp) {
7403 			if (mddev2 == mddev)
7404 				continue;
7405 			if (!mddev->parallel_resync
7406 			&&  mddev2->curr_resync
7407 			&&  match_mddev_units(mddev, mddev2)) {
7408 				DEFINE_WAIT(wq);
7409 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7410 					/* arbitrarily yield */
7411 					mddev->curr_resync = 1;
7412 					wake_up(&resync_wait);
7413 				}
7414 				if (mddev > mddev2 && mddev->curr_resync == 1)
7415 					/* no need to wait here, we can wait the next
7416 					 * time 'round when curr_resync == 2
7417 					 */
7418 					continue;
7419 				/* We need to wait 'interruptible' so as not to
7420 				 * contribute to the load average, and not to
7421 				 * be caught by 'softlockup'
7422 				 */
7423 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7424 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7425 				    mddev2->curr_resync >= mddev->curr_resync) {
7426 					printk(KERN_INFO "md: delaying %s of %s"
7427 					       " until %s has finished (they"
7428 					       " share one or more physical units)\n",
7429 					       desc, mdname(mddev), mdname(mddev2));
7430 					mddev_put(mddev2);
7431 					if (signal_pending(current))
7432 						flush_signals(current);
7433 					schedule();
7434 					finish_wait(&resync_wait, &wq);
7435 					goto try_again;
7436 				}
7437 				finish_wait(&resync_wait, &wq);
7438 			}
7439 		}
7440 	} while (mddev->curr_resync < 2);
7441 
7442 	j = 0;
7443 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7444 		/* resync follows the size requested by the personality,
7445 		 * which defaults to physical size, but can be virtual size
7446 		 */
7447 		max_sectors = mddev->resync_max_sectors;
7448 		atomic64_set(&mddev->resync_mismatches, 0);
7449 		/* we don't use the checkpoint if there's a bitmap */
7450 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7451 			j = mddev->resync_min;
7452 		else if (!mddev->bitmap)
7453 			j = mddev->recovery_cp;
7454 
7455 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7456 		max_sectors = mddev->resync_max_sectors;
7457 	else {
7458 		/* recovery follows the physical size of devices */
7459 		max_sectors = mddev->dev_sectors;
7460 		j = MaxSector;
7461 		rcu_read_lock();
7462 		rdev_for_each_rcu(rdev, mddev)
7463 			if (rdev->raid_disk >= 0 &&
7464 			    !test_bit(Faulty, &rdev->flags) &&
7465 			    !test_bit(In_sync, &rdev->flags) &&
7466 			    rdev->recovery_offset < j)
7467 				j = rdev->recovery_offset;
7468 		rcu_read_unlock();
7469 	}
7470 
7471 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7472 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7473 		" %d KB/sec/disk.\n", speed_min(mddev));
7474 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7475 	       "(but not more than %d KB/sec) for %s.\n",
7476 	       speed_max(mddev), desc);
7477 
7478 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7479 
7480 	io_sectors = 0;
7481 	for (m = 0; m < SYNC_MARKS; m++) {
7482 		mark[m] = jiffies;
7483 		mark_cnt[m] = io_sectors;
7484 	}
7485 	last_mark = 0;
7486 	mddev->resync_mark = mark[last_mark];
7487 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7488 
7489 	/*
7490 	 * Tune reconstruction:
7491 	 */
7492 	window = 32*(PAGE_SIZE/512);
7493 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7494 		window/2, (unsigned long long)max_sectors/2);
7495 
7496 	atomic_set(&mddev->recovery_active, 0);
7497 	last_check = 0;
7498 
7499 	if (j>2) {
7500 		printk(KERN_INFO
7501 		       "md: resuming %s of %s from checkpoint.\n",
7502 		       desc, mdname(mddev));
7503 		mddev->curr_resync = j;
7504 	} else
7505 		mddev->curr_resync = 3; /* no longer delayed */
7506 	mddev->curr_resync_completed = j;
7507 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7508 	md_new_event(mddev);
7509 	update_time = jiffies;
7510 
7511 	blk_start_plug(&plug);
7512 	while (j < max_sectors) {
7513 		sector_t sectors;
7514 
7515 		skipped = 0;
7516 
7517 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7518 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7519 		      (mddev->curr_resync - mddev->curr_resync_completed)
7520 		      > (max_sectors >> 4)) ||
7521 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7522 		     (j - mddev->curr_resync_completed)*2
7523 		     >= mddev->resync_max - mddev->curr_resync_completed
7524 			    )) {
7525 			/* time to update curr_resync_completed */
7526 			wait_event(mddev->recovery_wait,
7527 				   atomic_read(&mddev->recovery_active) == 0);
7528 			mddev->curr_resync_completed = j;
7529 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7530 			    j > mddev->recovery_cp)
7531 				mddev->recovery_cp = j;
7532 			update_time = jiffies;
7533 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7534 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7535 		}
7536 
7537 		while (j >= mddev->resync_max &&
7538 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7539 			/* As this condition is controlled by user-space,
7540 			 * we can block indefinitely, so use '_interruptible'
7541 			 * to avoid triggering warnings.
7542 			 */
7543 			flush_signals(current); /* just in case */
7544 			wait_event_interruptible(mddev->recovery_wait,
7545 						 mddev->resync_max > j
7546 						 || test_bit(MD_RECOVERY_INTR,
7547 							     &mddev->recovery));
7548 		}
7549 
7550 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7551 			break;
7552 
7553 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7554 						  currspeed < speed_min(mddev));
7555 		if (sectors == 0) {
7556 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7557 			break;
7558 		}
7559 
7560 		if (!skipped) { /* actual IO requested */
7561 			io_sectors += sectors;
7562 			atomic_add(sectors, &mddev->recovery_active);
7563 		}
7564 
7565 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7566 			break;
7567 
7568 		j += sectors;
7569 		if (j > 2)
7570 			mddev->curr_resync = j;
7571 		mddev->curr_mark_cnt = io_sectors;
7572 		if (last_check == 0)
7573 			/* this is the earliest that rebuild will be
7574 			 * visible in /proc/mdstat
7575 			 */
7576 			md_new_event(mddev);
7577 
7578 		if (last_check + window > io_sectors || j == max_sectors)
7579 			continue;
7580 
7581 		last_check = io_sectors;
7582 	repeat:
7583 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7584 			/* step marks */
7585 			int next = (last_mark+1) % SYNC_MARKS;
7586 
7587 			mddev->resync_mark = mark[next];
7588 			mddev->resync_mark_cnt = mark_cnt[next];
7589 			mark[next] = jiffies;
7590 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7591 			last_mark = next;
7592 		}
7593 
7594 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7595 			break;
7596 
7597 		/*
7598 		 * this loop exits only if either when we are slower than
7599 		 * the 'hard' speed limit, or the system was IO-idle for
7600 		 * a jiffy.
7601 		 * the system might be non-idle CPU-wise, but we only care
7602 		 * about not overloading the IO subsystem. (things like an
7603 		 * e2fsck being done on the RAID array should execute fast)
7604 		 */
7605 		cond_resched();
7606 
7607 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7608 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7609 
7610 		if (currspeed > speed_min(mddev)) {
7611 			if ((currspeed > speed_max(mddev)) ||
7612 					!is_mddev_idle(mddev, 0)) {
7613 				msleep(500);
7614 				goto repeat;
7615 			}
7616 		}
7617 	}
7618 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7619 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7620 	       ? "interrupted" : "done");
7621 	/*
7622 	 * this also signals 'finished resyncing' to md_stop
7623 	 */
7624 	blk_finish_plug(&plug);
7625 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7626 
7627 	/* tell personality that we are finished */
7628 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7629 
7630 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7631 	    mddev->curr_resync > 2) {
7632 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7633 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7634 				if (mddev->curr_resync >= mddev->recovery_cp) {
7635 					printk(KERN_INFO
7636 					       "md: checkpointing %s of %s.\n",
7637 					       desc, mdname(mddev));
7638 					if (test_bit(MD_RECOVERY_ERROR,
7639 						&mddev->recovery))
7640 						mddev->recovery_cp =
7641 							mddev->curr_resync_completed;
7642 					else
7643 						mddev->recovery_cp =
7644 							mddev->curr_resync;
7645 				}
7646 			} else
7647 				mddev->recovery_cp = MaxSector;
7648 		} else {
7649 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7650 				mddev->curr_resync = MaxSector;
7651 			rcu_read_lock();
7652 			rdev_for_each_rcu(rdev, mddev)
7653 				if (rdev->raid_disk >= 0 &&
7654 				    mddev->delta_disks >= 0 &&
7655 				    !test_bit(Faulty, &rdev->flags) &&
7656 				    !test_bit(In_sync, &rdev->flags) &&
7657 				    rdev->recovery_offset < mddev->curr_resync)
7658 					rdev->recovery_offset = mddev->curr_resync;
7659 			rcu_read_unlock();
7660 		}
7661 	}
7662  skip:
7663 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7664 
7665 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7666 		/* We completed so min/max setting can be forgotten if used. */
7667 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7668 			mddev->resync_min = 0;
7669 		mddev->resync_max = MaxSector;
7670 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7671 		mddev->resync_min = mddev->curr_resync_completed;
7672 	mddev->curr_resync = 0;
7673 	wake_up(&resync_wait);
7674 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7675 	md_wakeup_thread(mddev->thread);
7676 	return;
7677 }
7678 EXPORT_SYMBOL_GPL(md_do_sync);
7679 
7680 static int remove_and_add_spares(struct mddev *mddev,
7681 				 struct md_rdev *this)
7682 {
7683 	struct md_rdev *rdev;
7684 	int spares = 0;
7685 	int removed = 0;
7686 
7687 	rdev_for_each(rdev, mddev)
7688 		if ((this == NULL || rdev == this) &&
7689 		    rdev->raid_disk >= 0 &&
7690 		    !test_bit(Blocked, &rdev->flags) &&
7691 		    (test_bit(Faulty, &rdev->flags) ||
7692 		     ! test_bit(In_sync, &rdev->flags)) &&
7693 		    atomic_read(&rdev->nr_pending)==0) {
7694 			if (mddev->pers->hot_remove_disk(
7695 				    mddev, rdev) == 0) {
7696 				sysfs_unlink_rdev(mddev, rdev);
7697 				rdev->raid_disk = -1;
7698 				removed++;
7699 			}
7700 		}
7701 	if (removed && mddev->kobj.sd)
7702 		sysfs_notify(&mddev->kobj, NULL, "degraded");
7703 
7704 	if (this)
7705 		goto no_add;
7706 
7707 	rdev_for_each(rdev, mddev) {
7708 		if (rdev->raid_disk >= 0 &&
7709 		    !test_bit(In_sync, &rdev->flags) &&
7710 		    !test_bit(Faulty, &rdev->flags))
7711 			spares++;
7712 		if (rdev->raid_disk >= 0)
7713 			continue;
7714 		if (test_bit(Faulty, &rdev->flags))
7715 			continue;
7716 		if (mddev->ro &&
7717 		    ! (rdev->saved_raid_disk >= 0 &&
7718 		       !test_bit(Bitmap_sync, &rdev->flags)))
7719 			continue;
7720 
7721 		rdev->recovery_offset = 0;
7722 		if (mddev->pers->
7723 		    hot_add_disk(mddev, rdev) == 0) {
7724 			if (sysfs_link_rdev(mddev, rdev))
7725 				/* failure here is OK */;
7726 			spares++;
7727 			md_new_event(mddev);
7728 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7729 		}
7730 	}
7731 no_add:
7732 	if (removed)
7733 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7734 	return spares;
7735 }
7736 
7737 /*
7738  * This routine is regularly called by all per-raid-array threads to
7739  * deal with generic issues like resync and super-block update.
7740  * Raid personalities that don't have a thread (linear/raid0) do not
7741  * need this as they never do any recovery or update the superblock.
7742  *
7743  * It does not do any resync itself, but rather "forks" off other threads
7744  * to do that as needed.
7745  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7746  * "->recovery" and create a thread at ->sync_thread.
7747  * When the thread finishes it sets MD_RECOVERY_DONE
7748  * and wakeups up this thread which will reap the thread and finish up.
7749  * This thread also removes any faulty devices (with nr_pending == 0).
7750  *
7751  * The overall approach is:
7752  *  1/ if the superblock needs updating, update it.
7753  *  2/ If a recovery thread is running, don't do anything else.
7754  *  3/ If recovery has finished, clean up, possibly marking spares active.
7755  *  4/ If there are any faulty devices, remove them.
7756  *  5/ If array is degraded, try to add spares devices
7757  *  6/ If array has spares or is not in-sync, start a resync thread.
7758  */
7759 void md_check_recovery(struct mddev *mddev)
7760 {
7761 	if (mddev->suspended)
7762 		return;
7763 
7764 	if (mddev->bitmap)
7765 		bitmap_daemon_work(mddev);
7766 
7767 	if (signal_pending(current)) {
7768 		if (mddev->pers->sync_request && !mddev->external) {
7769 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7770 			       mdname(mddev));
7771 			mddev->safemode = 2;
7772 		}
7773 		flush_signals(current);
7774 	}
7775 
7776 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7777 		return;
7778 	if ( ! (
7779 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7780 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7781 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7782 		(mddev->external == 0 && mddev->safemode == 1) ||
7783 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7784 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7785 		))
7786 		return;
7787 
7788 	if (mddev_trylock(mddev)) {
7789 		int spares = 0;
7790 
7791 		if (mddev->ro) {
7792 			/* On a read-only array we can:
7793 			 * - remove failed devices
7794 			 * - add already-in_sync devices if the array itself
7795 			 *   is in-sync.
7796 			 * As we only add devices that are already in-sync,
7797 			 * we can activate the spares immediately.
7798 			 */
7799 			remove_and_add_spares(mddev, NULL);
7800 			/* There is no thread, but we need to call
7801 			 * ->spare_active and clear saved_raid_disk
7802 			 */
7803 			md_reap_sync_thread(mddev);
7804 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7805 			goto unlock;
7806 		}
7807 
7808 		if (!mddev->external) {
7809 			int did_change = 0;
7810 			spin_lock_irq(&mddev->write_lock);
7811 			if (mddev->safemode &&
7812 			    !atomic_read(&mddev->writes_pending) &&
7813 			    !mddev->in_sync &&
7814 			    mddev->recovery_cp == MaxSector) {
7815 				mddev->in_sync = 1;
7816 				did_change = 1;
7817 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7818 			}
7819 			if (mddev->safemode == 1)
7820 				mddev->safemode = 0;
7821 			spin_unlock_irq(&mddev->write_lock);
7822 			if (did_change)
7823 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7824 		}
7825 
7826 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
7827 			md_update_sb(mddev, 0);
7828 
7829 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7830 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7831 			/* resync/recovery still happening */
7832 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7833 			goto unlock;
7834 		}
7835 		if (mddev->sync_thread) {
7836 			md_reap_sync_thread(mddev);
7837 			goto unlock;
7838 		}
7839 		/* Set RUNNING before clearing NEEDED to avoid
7840 		 * any transients in the value of "sync_action".
7841 		 */
7842 		mddev->curr_resync_completed = 0;
7843 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7844 		/* Clear some bits that don't mean anything, but
7845 		 * might be left set
7846 		 */
7847 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7848 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7849 
7850 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7851 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7852 			goto unlock;
7853 		/* no recovery is running.
7854 		 * remove any failed drives, then
7855 		 * add spares if possible.
7856 		 * Spares are also removed and re-added, to allow
7857 		 * the personality to fail the re-add.
7858 		 */
7859 
7860 		if (mddev->reshape_position != MaxSector) {
7861 			if (mddev->pers->check_reshape == NULL ||
7862 			    mddev->pers->check_reshape(mddev) != 0)
7863 				/* Cannot proceed */
7864 				goto unlock;
7865 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7866 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7867 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
7868 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7869 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7870 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7871 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7872 		} else if (mddev->recovery_cp < MaxSector) {
7873 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7874 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7875 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7876 			/* nothing to be done ... */
7877 			goto unlock;
7878 
7879 		if (mddev->pers->sync_request) {
7880 			if (spares) {
7881 				/* We are adding a device or devices to an array
7882 				 * which has the bitmap stored on all devices.
7883 				 * So make sure all bitmap pages get written
7884 				 */
7885 				bitmap_write_all(mddev->bitmap);
7886 			}
7887 			mddev->sync_thread = md_register_thread(md_do_sync,
7888 								mddev,
7889 								"resync");
7890 			if (!mddev->sync_thread) {
7891 				printk(KERN_ERR "%s: could not start resync"
7892 					" thread...\n",
7893 					mdname(mddev));
7894 				/* leave the spares where they are, it shouldn't hurt */
7895 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7896 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7897 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7898 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7899 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7900 			} else
7901 				md_wakeup_thread(mddev->sync_thread);
7902 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7903 			md_new_event(mddev);
7904 		}
7905 	unlock:
7906 		wake_up(&mddev->sb_wait);
7907 
7908 		if (!mddev->sync_thread) {
7909 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7910 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7911 					       &mddev->recovery))
7912 				if (mddev->sysfs_action)
7913 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7914 		}
7915 		mddev_unlock(mddev);
7916 	}
7917 }
7918 
7919 void md_reap_sync_thread(struct mddev *mddev)
7920 {
7921 	struct md_rdev *rdev;
7922 
7923 	/* resync has finished, collect result */
7924 	md_unregister_thread(&mddev->sync_thread);
7925 	wake_up(&resync_wait);
7926 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7927 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7928 		/* success...*/
7929 		/* activate any spares */
7930 		if (mddev->pers->spare_active(mddev)) {
7931 			sysfs_notify(&mddev->kobj, NULL,
7932 				     "degraded");
7933 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7934 		}
7935 	}
7936 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7937 	    mddev->pers->finish_reshape)
7938 		mddev->pers->finish_reshape(mddev);
7939 
7940 	/* If array is no-longer degraded, then any saved_raid_disk
7941 	 * information must be scrapped.  Also if any device is now
7942 	 * In_sync we must scrape the saved_raid_disk for that device
7943 	 * do the superblock for an incrementally recovered device
7944 	 * written out.
7945 	 */
7946 	rdev_for_each(rdev, mddev)
7947 		if (!mddev->degraded ||
7948 		    test_bit(In_sync, &rdev->flags))
7949 			rdev->saved_raid_disk = -1;
7950 
7951 	md_update_sb(mddev, 1);
7952 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7953 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7954 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7955 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7956 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7957 	/* flag recovery needed just to double check */
7958 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7959 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7960 	md_new_event(mddev);
7961 	if (mddev->event_work.func)
7962 		queue_work(md_misc_wq, &mddev->event_work);
7963 }
7964 
7965 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7966 {
7967 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7968 	wait_event_timeout(rdev->blocked_wait,
7969 			   !test_bit(Blocked, &rdev->flags) &&
7970 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7971 			   msecs_to_jiffies(5000));
7972 	rdev_dec_pending(rdev, mddev);
7973 }
7974 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7975 
7976 void md_finish_reshape(struct mddev *mddev)
7977 {
7978 	/* called be personality module when reshape completes. */
7979 	struct md_rdev *rdev;
7980 
7981 	rdev_for_each(rdev, mddev) {
7982 		if (rdev->data_offset > rdev->new_data_offset)
7983 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7984 		else
7985 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7986 		rdev->data_offset = rdev->new_data_offset;
7987 	}
7988 }
7989 EXPORT_SYMBOL(md_finish_reshape);
7990 
7991 /* Bad block management.
7992  * We can record which blocks on each device are 'bad' and so just
7993  * fail those blocks, or that stripe, rather than the whole device.
7994  * Entries in the bad-block table are 64bits wide.  This comprises:
7995  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7996  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7997  *  A 'shift' can be set so that larger blocks are tracked and
7998  *  consequently larger devices can be covered.
7999  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8000  *
8001  * Locking of the bad-block table uses a seqlock so md_is_badblock
8002  * might need to retry if it is very unlucky.
8003  * We will sometimes want to check for bad blocks in a bi_end_io function,
8004  * so we use the write_seqlock_irq variant.
8005  *
8006  * When looking for a bad block we specify a range and want to
8007  * know if any block in the range is bad.  So we binary-search
8008  * to the last range that starts at-or-before the given endpoint,
8009  * (or "before the sector after the target range")
8010  * then see if it ends after the given start.
8011  * We return
8012  *  0 if there are no known bad blocks in the range
8013  *  1 if there are known bad block which are all acknowledged
8014  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8015  * plus the start/length of the first bad section we overlap.
8016  */
8017 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8018 		   sector_t *first_bad, int *bad_sectors)
8019 {
8020 	int hi;
8021 	int lo;
8022 	u64 *p = bb->page;
8023 	int rv;
8024 	sector_t target = s + sectors;
8025 	unsigned seq;
8026 
8027 	if (bb->shift > 0) {
8028 		/* round the start down, and the end up */
8029 		s >>= bb->shift;
8030 		target += (1<<bb->shift) - 1;
8031 		target >>= bb->shift;
8032 		sectors = target - s;
8033 	}
8034 	/* 'target' is now the first block after the bad range */
8035 
8036 retry:
8037 	seq = read_seqbegin(&bb->lock);
8038 	lo = 0;
8039 	rv = 0;
8040 	hi = bb->count;
8041 
8042 	/* Binary search between lo and hi for 'target'
8043 	 * i.e. for the last range that starts before 'target'
8044 	 */
8045 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8046 	 * are known not to be the last range before target.
8047 	 * VARIANT: hi-lo is the number of possible
8048 	 * ranges, and decreases until it reaches 1
8049 	 */
8050 	while (hi - lo > 1) {
8051 		int mid = (lo + hi) / 2;
8052 		sector_t a = BB_OFFSET(p[mid]);
8053 		if (a < target)
8054 			/* This could still be the one, earlier ranges
8055 			 * could not. */
8056 			lo = mid;
8057 		else
8058 			/* This and later ranges are definitely out. */
8059 			hi = mid;
8060 	}
8061 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8062 	if (hi > lo) {
8063 		/* need to check all range that end after 's' to see if
8064 		 * any are unacknowledged.
8065 		 */
8066 		while (lo >= 0 &&
8067 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8068 			if (BB_OFFSET(p[lo]) < target) {
8069 				/* starts before the end, and finishes after
8070 				 * the start, so they must overlap
8071 				 */
8072 				if (rv != -1 && BB_ACK(p[lo]))
8073 					rv = 1;
8074 				else
8075 					rv = -1;
8076 				*first_bad = BB_OFFSET(p[lo]);
8077 				*bad_sectors = BB_LEN(p[lo]);
8078 			}
8079 			lo--;
8080 		}
8081 	}
8082 
8083 	if (read_seqretry(&bb->lock, seq))
8084 		goto retry;
8085 
8086 	return rv;
8087 }
8088 EXPORT_SYMBOL_GPL(md_is_badblock);
8089 
8090 /*
8091  * Add a range of bad blocks to the table.
8092  * This might extend the table, or might contract it
8093  * if two adjacent ranges can be merged.
8094  * We binary-search to find the 'insertion' point, then
8095  * decide how best to handle it.
8096  */
8097 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8098 			    int acknowledged)
8099 {
8100 	u64 *p;
8101 	int lo, hi;
8102 	int rv = 1;
8103 	unsigned long flags;
8104 
8105 	if (bb->shift < 0)
8106 		/* badblocks are disabled */
8107 		return 0;
8108 
8109 	if (bb->shift) {
8110 		/* round the start down, and the end up */
8111 		sector_t next = s + sectors;
8112 		s >>= bb->shift;
8113 		next += (1<<bb->shift) - 1;
8114 		next >>= bb->shift;
8115 		sectors = next - s;
8116 	}
8117 
8118 	write_seqlock_irqsave(&bb->lock, flags);
8119 
8120 	p = bb->page;
8121 	lo = 0;
8122 	hi = bb->count;
8123 	/* Find the last range that starts at-or-before 's' */
8124 	while (hi - lo > 1) {
8125 		int mid = (lo + hi) / 2;
8126 		sector_t a = BB_OFFSET(p[mid]);
8127 		if (a <= s)
8128 			lo = mid;
8129 		else
8130 			hi = mid;
8131 	}
8132 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8133 		hi = lo;
8134 
8135 	if (hi > lo) {
8136 		/* we found a range that might merge with the start
8137 		 * of our new range
8138 		 */
8139 		sector_t a = BB_OFFSET(p[lo]);
8140 		sector_t e = a + BB_LEN(p[lo]);
8141 		int ack = BB_ACK(p[lo]);
8142 		if (e >= s) {
8143 			/* Yes, we can merge with a previous range */
8144 			if (s == a && s + sectors >= e)
8145 				/* new range covers old */
8146 				ack = acknowledged;
8147 			else
8148 				ack = ack && acknowledged;
8149 
8150 			if (e < s + sectors)
8151 				e = s + sectors;
8152 			if (e - a <= BB_MAX_LEN) {
8153 				p[lo] = BB_MAKE(a, e-a, ack);
8154 				s = e;
8155 			} else {
8156 				/* does not all fit in one range,
8157 				 * make p[lo] maximal
8158 				 */
8159 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8160 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8161 				s = a + BB_MAX_LEN;
8162 			}
8163 			sectors = e - s;
8164 		}
8165 	}
8166 	if (sectors && hi < bb->count) {
8167 		/* 'hi' points to the first range that starts after 's'.
8168 		 * Maybe we can merge with the start of that range */
8169 		sector_t a = BB_OFFSET(p[hi]);
8170 		sector_t e = a + BB_LEN(p[hi]);
8171 		int ack = BB_ACK(p[hi]);
8172 		if (a <= s + sectors) {
8173 			/* merging is possible */
8174 			if (e <= s + sectors) {
8175 				/* full overlap */
8176 				e = s + sectors;
8177 				ack = acknowledged;
8178 			} else
8179 				ack = ack && acknowledged;
8180 
8181 			a = s;
8182 			if (e - a <= BB_MAX_LEN) {
8183 				p[hi] = BB_MAKE(a, e-a, ack);
8184 				s = e;
8185 			} else {
8186 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8187 				s = a + BB_MAX_LEN;
8188 			}
8189 			sectors = e - s;
8190 			lo = hi;
8191 			hi++;
8192 		}
8193 	}
8194 	if (sectors == 0 && hi < bb->count) {
8195 		/* we might be able to combine lo and hi */
8196 		/* Note: 's' is at the end of 'lo' */
8197 		sector_t a = BB_OFFSET(p[hi]);
8198 		int lolen = BB_LEN(p[lo]);
8199 		int hilen = BB_LEN(p[hi]);
8200 		int newlen = lolen + hilen - (s - a);
8201 		if (s >= a && newlen < BB_MAX_LEN) {
8202 			/* yes, we can combine them */
8203 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8204 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8205 			memmove(p + hi, p + hi + 1,
8206 				(bb->count - hi - 1) * 8);
8207 			bb->count--;
8208 		}
8209 	}
8210 	while (sectors) {
8211 		/* didn't merge (it all).
8212 		 * Need to add a range just before 'hi' */
8213 		if (bb->count >= MD_MAX_BADBLOCKS) {
8214 			/* No room for more */
8215 			rv = 0;
8216 			break;
8217 		} else {
8218 			int this_sectors = sectors;
8219 			memmove(p + hi + 1, p + hi,
8220 				(bb->count - hi) * 8);
8221 			bb->count++;
8222 
8223 			if (this_sectors > BB_MAX_LEN)
8224 				this_sectors = BB_MAX_LEN;
8225 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8226 			sectors -= this_sectors;
8227 			s += this_sectors;
8228 		}
8229 	}
8230 
8231 	bb->changed = 1;
8232 	if (!acknowledged)
8233 		bb->unacked_exist = 1;
8234 	write_sequnlock_irqrestore(&bb->lock, flags);
8235 
8236 	return rv;
8237 }
8238 
8239 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8240 		       int is_new)
8241 {
8242 	int rv;
8243 	if (is_new)
8244 		s += rdev->new_data_offset;
8245 	else
8246 		s += rdev->data_offset;
8247 	rv = md_set_badblocks(&rdev->badblocks,
8248 			      s, sectors, 0);
8249 	if (rv) {
8250 		/* Make sure they get written out promptly */
8251 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8252 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8253 		md_wakeup_thread(rdev->mddev->thread);
8254 	}
8255 	return rv;
8256 }
8257 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8258 
8259 /*
8260  * Remove a range of bad blocks from the table.
8261  * This may involve extending the table if we spilt a region,
8262  * but it must not fail.  So if the table becomes full, we just
8263  * drop the remove request.
8264  */
8265 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8266 {
8267 	u64 *p;
8268 	int lo, hi;
8269 	sector_t target = s + sectors;
8270 	int rv = 0;
8271 
8272 	if (bb->shift > 0) {
8273 		/* When clearing we round the start up and the end down.
8274 		 * This should not matter as the shift should align with
8275 		 * the block size and no rounding should ever be needed.
8276 		 * However it is better the think a block is bad when it
8277 		 * isn't than to think a block is not bad when it is.
8278 		 */
8279 		s += (1<<bb->shift) - 1;
8280 		s >>= bb->shift;
8281 		target >>= bb->shift;
8282 		sectors = target - s;
8283 	}
8284 
8285 	write_seqlock_irq(&bb->lock);
8286 
8287 	p = bb->page;
8288 	lo = 0;
8289 	hi = bb->count;
8290 	/* Find the last range that starts before 'target' */
8291 	while (hi - lo > 1) {
8292 		int mid = (lo + hi) / 2;
8293 		sector_t a = BB_OFFSET(p[mid]);
8294 		if (a < target)
8295 			lo = mid;
8296 		else
8297 			hi = mid;
8298 	}
8299 	if (hi > lo) {
8300 		/* p[lo] is the last range that could overlap the
8301 		 * current range.  Earlier ranges could also overlap,
8302 		 * but only this one can overlap the end of the range.
8303 		 */
8304 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8305 			/* Partial overlap, leave the tail of this range */
8306 			int ack = BB_ACK(p[lo]);
8307 			sector_t a = BB_OFFSET(p[lo]);
8308 			sector_t end = a + BB_LEN(p[lo]);
8309 
8310 			if (a < s) {
8311 				/* we need to split this range */
8312 				if (bb->count >= MD_MAX_BADBLOCKS) {
8313 					rv = 0;
8314 					goto out;
8315 				}
8316 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8317 				bb->count++;
8318 				p[lo] = BB_MAKE(a, s-a, ack);
8319 				lo++;
8320 			}
8321 			p[lo] = BB_MAKE(target, end - target, ack);
8322 			/* there is no longer an overlap */
8323 			hi = lo;
8324 			lo--;
8325 		}
8326 		while (lo >= 0 &&
8327 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8328 			/* This range does overlap */
8329 			if (BB_OFFSET(p[lo]) < s) {
8330 				/* Keep the early parts of this range. */
8331 				int ack = BB_ACK(p[lo]);
8332 				sector_t start = BB_OFFSET(p[lo]);
8333 				p[lo] = BB_MAKE(start, s - start, ack);
8334 				/* now low doesn't overlap, so.. */
8335 				break;
8336 			}
8337 			lo--;
8338 		}
8339 		/* 'lo' is strictly before, 'hi' is strictly after,
8340 		 * anything between needs to be discarded
8341 		 */
8342 		if (hi - lo > 1) {
8343 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8344 			bb->count -= (hi - lo - 1);
8345 		}
8346 	}
8347 
8348 	bb->changed = 1;
8349 out:
8350 	write_sequnlock_irq(&bb->lock);
8351 	return rv;
8352 }
8353 
8354 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8355 			 int is_new)
8356 {
8357 	if (is_new)
8358 		s += rdev->new_data_offset;
8359 	else
8360 		s += rdev->data_offset;
8361 	return md_clear_badblocks(&rdev->badblocks,
8362 				  s, sectors);
8363 }
8364 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8365 
8366 /*
8367  * Acknowledge all bad blocks in a list.
8368  * This only succeeds if ->changed is clear.  It is used by
8369  * in-kernel metadata updates
8370  */
8371 void md_ack_all_badblocks(struct badblocks *bb)
8372 {
8373 	if (bb->page == NULL || bb->changed)
8374 		/* no point even trying */
8375 		return;
8376 	write_seqlock_irq(&bb->lock);
8377 
8378 	if (bb->changed == 0 && bb->unacked_exist) {
8379 		u64 *p = bb->page;
8380 		int i;
8381 		for (i = 0; i < bb->count ; i++) {
8382 			if (!BB_ACK(p[i])) {
8383 				sector_t start = BB_OFFSET(p[i]);
8384 				int len = BB_LEN(p[i]);
8385 				p[i] = BB_MAKE(start, len, 1);
8386 			}
8387 		}
8388 		bb->unacked_exist = 0;
8389 	}
8390 	write_sequnlock_irq(&bb->lock);
8391 }
8392 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8393 
8394 /* sysfs access to bad-blocks list.
8395  * We present two files.
8396  * 'bad-blocks' lists sector numbers and lengths of ranges that
8397  *    are recorded as bad.  The list is truncated to fit within
8398  *    the one-page limit of sysfs.
8399  *    Writing "sector length" to this file adds an acknowledged
8400  *    bad block list.
8401  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8402  *    been acknowledged.  Writing to this file adds bad blocks
8403  *    without acknowledging them.  This is largely for testing.
8404  */
8405 
8406 static ssize_t
8407 badblocks_show(struct badblocks *bb, char *page, int unack)
8408 {
8409 	size_t len;
8410 	int i;
8411 	u64 *p = bb->page;
8412 	unsigned seq;
8413 
8414 	if (bb->shift < 0)
8415 		return 0;
8416 
8417 retry:
8418 	seq = read_seqbegin(&bb->lock);
8419 
8420 	len = 0;
8421 	i = 0;
8422 
8423 	while (len < PAGE_SIZE && i < bb->count) {
8424 		sector_t s = BB_OFFSET(p[i]);
8425 		unsigned int length = BB_LEN(p[i]);
8426 		int ack = BB_ACK(p[i]);
8427 		i++;
8428 
8429 		if (unack && ack)
8430 			continue;
8431 
8432 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8433 				(unsigned long long)s << bb->shift,
8434 				length << bb->shift);
8435 	}
8436 	if (unack && len == 0)
8437 		bb->unacked_exist = 0;
8438 
8439 	if (read_seqretry(&bb->lock, seq))
8440 		goto retry;
8441 
8442 	return len;
8443 }
8444 
8445 #define DO_DEBUG 1
8446 
8447 static ssize_t
8448 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8449 {
8450 	unsigned long long sector;
8451 	int length;
8452 	char newline;
8453 #ifdef DO_DEBUG
8454 	/* Allow clearing via sysfs *only* for testing/debugging.
8455 	 * Normally only a successful write may clear a badblock
8456 	 */
8457 	int clear = 0;
8458 	if (page[0] == '-') {
8459 		clear = 1;
8460 		page++;
8461 	}
8462 #endif /* DO_DEBUG */
8463 
8464 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8465 	case 3:
8466 		if (newline != '\n')
8467 			return -EINVAL;
8468 	case 2:
8469 		if (length <= 0)
8470 			return -EINVAL;
8471 		break;
8472 	default:
8473 		return -EINVAL;
8474 	}
8475 
8476 #ifdef DO_DEBUG
8477 	if (clear) {
8478 		md_clear_badblocks(bb, sector, length);
8479 		return len;
8480 	}
8481 #endif /* DO_DEBUG */
8482 	if (md_set_badblocks(bb, sector, length, !unack))
8483 		return len;
8484 	else
8485 		return -ENOSPC;
8486 }
8487 
8488 static int md_notify_reboot(struct notifier_block *this,
8489 			    unsigned long code, void *x)
8490 {
8491 	struct list_head *tmp;
8492 	struct mddev *mddev;
8493 	int need_delay = 0;
8494 
8495 	for_each_mddev(mddev, tmp) {
8496 		if (mddev_trylock(mddev)) {
8497 			if (mddev->pers)
8498 				__md_stop_writes(mddev);
8499 			mddev->safemode = 2;
8500 			mddev_unlock(mddev);
8501 		}
8502 		need_delay = 1;
8503 	}
8504 	/*
8505 	 * certain more exotic SCSI devices are known to be
8506 	 * volatile wrt too early system reboots. While the
8507 	 * right place to handle this issue is the given
8508 	 * driver, we do want to have a safe RAID driver ...
8509 	 */
8510 	if (need_delay)
8511 		mdelay(1000*1);
8512 
8513 	return NOTIFY_DONE;
8514 }
8515 
8516 static struct notifier_block md_notifier = {
8517 	.notifier_call	= md_notify_reboot,
8518 	.next		= NULL,
8519 	.priority	= INT_MAX, /* before any real devices */
8520 };
8521 
8522 static void md_geninit(void)
8523 {
8524 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8525 
8526 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8527 }
8528 
8529 static int __init md_init(void)
8530 {
8531 	int ret = -ENOMEM;
8532 
8533 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8534 	if (!md_wq)
8535 		goto err_wq;
8536 
8537 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8538 	if (!md_misc_wq)
8539 		goto err_misc_wq;
8540 
8541 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8542 		goto err_md;
8543 
8544 	if ((ret = register_blkdev(0, "mdp")) < 0)
8545 		goto err_mdp;
8546 	mdp_major = ret;
8547 
8548 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8549 			    md_probe, NULL, NULL);
8550 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8551 			    md_probe, NULL, NULL);
8552 
8553 	register_reboot_notifier(&md_notifier);
8554 	raid_table_header = register_sysctl_table(raid_root_table);
8555 
8556 	md_geninit();
8557 	return 0;
8558 
8559 err_mdp:
8560 	unregister_blkdev(MD_MAJOR, "md");
8561 err_md:
8562 	destroy_workqueue(md_misc_wq);
8563 err_misc_wq:
8564 	destroy_workqueue(md_wq);
8565 err_wq:
8566 	return ret;
8567 }
8568 
8569 #ifndef MODULE
8570 
8571 /*
8572  * Searches all registered partitions for autorun RAID arrays
8573  * at boot time.
8574  */
8575 
8576 static LIST_HEAD(all_detected_devices);
8577 struct detected_devices_node {
8578 	struct list_head list;
8579 	dev_t dev;
8580 };
8581 
8582 void md_autodetect_dev(dev_t dev)
8583 {
8584 	struct detected_devices_node *node_detected_dev;
8585 
8586 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8587 	if (node_detected_dev) {
8588 		node_detected_dev->dev = dev;
8589 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8590 	} else {
8591 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8592 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8593 	}
8594 }
8595 
8596 
8597 static void autostart_arrays(int part)
8598 {
8599 	struct md_rdev *rdev;
8600 	struct detected_devices_node *node_detected_dev;
8601 	dev_t dev;
8602 	int i_scanned, i_passed;
8603 
8604 	i_scanned = 0;
8605 	i_passed = 0;
8606 
8607 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8608 
8609 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8610 		i_scanned++;
8611 		node_detected_dev = list_entry(all_detected_devices.next,
8612 					struct detected_devices_node, list);
8613 		list_del(&node_detected_dev->list);
8614 		dev = node_detected_dev->dev;
8615 		kfree(node_detected_dev);
8616 		rdev = md_import_device(dev,0, 90);
8617 		if (IS_ERR(rdev))
8618 			continue;
8619 
8620 		if (test_bit(Faulty, &rdev->flags)) {
8621 			MD_BUG();
8622 			continue;
8623 		}
8624 		set_bit(AutoDetected, &rdev->flags);
8625 		list_add(&rdev->same_set, &pending_raid_disks);
8626 		i_passed++;
8627 	}
8628 
8629 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8630 						i_scanned, i_passed);
8631 
8632 	autorun_devices(part);
8633 }
8634 
8635 #endif /* !MODULE */
8636 
8637 static __exit void md_exit(void)
8638 {
8639 	struct mddev *mddev;
8640 	struct list_head *tmp;
8641 
8642 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8643 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8644 
8645 	unregister_blkdev(MD_MAJOR,"md");
8646 	unregister_blkdev(mdp_major, "mdp");
8647 	unregister_reboot_notifier(&md_notifier);
8648 	unregister_sysctl_table(raid_table_header);
8649 	remove_proc_entry("mdstat", NULL);
8650 	for_each_mddev(mddev, tmp) {
8651 		export_array(mddev);
8652 		mddev->hold_active = 0;
8653 	}
8654 	destroy_workqueue(md_misc_wq);
8655 	destroy_workqueue(md_wq);
8656 }
8657 
8658 subsys_initcall(md_init);
8659 module_exit(md_exit)
8660 
8661 static int get_ro(char *buffer, struct kernel_param *kp)
8662 {
8663 	return sprintf(buffer, "%d", start_readonly);
8664 }
8665 static int set_ro(const char *val, struct kernel_param *kp)
8666 {
8667 	char *e;
8668 	int num = simple_strtoul(val, &e, 10);
8669 	if (*val && (*e == '\0' || *e == '\n')) {
8670 		start_readonly = num;
8671 		return 0;
8672 	}
8673 	return -EINVAL;
8674 }
8675 
8676 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8677 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8678 
8679 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8680 
8681 EXPORT_SYMBOL(register_md_personality);
8682 EXPORT_SYMBOL(unregister_md_personality);
8683 EXPORT_SYMBOL(md_error);
8684 EXPORT_SYMBOL(md_done_sync);
8685 EXPORT_SYMBOL(md_write_start);
8686 EXPORT_SYMBOL(md_write_end);
8687 EXPORT_SYMBOL(md_register_thread);
8688 EXPORT_SYMBOL(md_unregister_thread);
8689 EXPORT_SYMBOL(md_wakeup_thread);
8690 EXPORT_SYMBOL(md_check_recovery);
8691 EXPORT_SYMBOL(md_reap_sync_thread);
8692 MODULE_LICENSE("GPL");
8693 MODULE_DESCRIPTION("MD RAID framework");
8694 MODULE_ALIAS("md");
8695 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8696