xref: /linux/drivers/md/md.c (revision 424f0750edd5af866f80f5e65998e0610503cb5c)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57 
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61 
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69 
70 static void md_print_devices(void);
71 
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
75 
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77 
78 /*
79  * Default number of read corrections we'll attempt on an rdev
80  * before ejecting it from the array. We divide the read error
81  * count by 2 for every hour elapsed between read errors.
82  */
83 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 /*
85  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
86  * is 1000 KB/sec, so the extra system load does not show up that much.
87  * Increase it if you want to have more _guaranteed_ speed. Note that
88  * the RAID driver will use the maximum available bandwidth if the IO
89  * subsystem is idle. There is also an 'absolute maximum' reconstruction
90  * speed limit - in case reconstruction slows down your system despite
91  * idle IO detection.
92  *
93  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
94  * or /sys/block/mdX/md/sync_speed_{min,max}
95  */
96 
97 static int sysctl_speed_limit_min = 1000;
98 static int sysctl_speed_limit_max = 200000;
99 static inline int speed_min(struct mddev *mddev)
100 {
101 	return mddev->sync_speed_min ?
102 		mddev->sync_speed_min : sysctl_speed_limit_min;
103 }
104 
105 static inline int speed_max(struct mddev *mddev)
106 {
107 	return mddev->sync_speed_max ?
108 		mddev->sync_speed_max : sysctl_speed_limit_max;
109 }
110 
111 static struct ctl_table_header *raid_table_header;
112 
113 static ctl_table raid_table[] = {
114 	{
115 		.procname	= "speed_limit_min",
116 		.data		= &sysctl_speed_limit_min,
117 		.maxlen		= sizeof(int),
118 		.mode		= S_IRUGO|S_IWUSR,
119 		.proc_handler	= proc_dointvec,
120 	},
121 	{
122 		.procname	= "speed_limit_max",
123 		.data		= &sysctl_speed_limit_max,
124 		.maxlen		= sizeof(int),
125 		.mode		= S_IRUGO|S_IWUSR,
126 		.proc_handler	= proc_dointvec,
127 	},
128 	{ }
129 };
130 
131 static ctl_table raid_dir_table[] = {
132 	{
133 		.procname	= "raid",
134 		.maxlen		= 0,
135 		.mode		= S_IRUGO|S_IXUGO,
136 		.child		= raid_table,
137 	},
138 	{ }
139 };
140 
141 static ctl_table raid_root_table[] = {
142 	{
143 		.procname	= "dev",
144 		.maxlen		= 0,
145 		.mode		= 0555,
146 		.child		= raid_dir_table,
147 	},
148 	{  }
149 };
150 
151 static const struct block_device_operations md_fops;
152 
153 static int start_readonly;
154 
155 /* bio_clone_mddev
156  * like bio_clone, but with a local bio set
157  */
158 
159 static void mddev_bio_destructor(struct bio *bio)
160 {
161 	struct mddev *mddev, **mddevp;
162 
163 	mddevp = (void*)bio;
164 	mddev = mddevp[-1];
165 
166 	bio_free(bio, mddev->bio_set);
167 }
168 
169 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
170 			    struct mddev *mddev)
171 {
172 	struct bio *b;
173 	struct mddev **mddevp;
174 
175 	if (!mddev || !mddev->bio_set)
176 		return bio_alloc(gfp_mask, nr_iovecs);
177 
178 	b = bio_alloc_bioset(gfp_mask, nr_iovecs,
179 			     mddev->bio_set);
180 	if (!b)
181 		return NULL;
182 	mddevp = (void*)b;
183 	mddevp[-1] = mddev;
184 	b->bi_destructor = mddev_bio_destructor;
185 	return b;
186 }
187 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188 
189 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
190 			    struct mddev *mddev)
191 {
192 	struct bio *b;
193 	struct mddev **mddevp;
194 
195 	if (!mddev || !mddev->bio_set)
196 		return bio_clone(bio, gfp_mask);
197 
198 	b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
199 			     mddev->bio_set);
200 	if (!b)
201 		return NULL;
202 	mddevp = (void*)b;
203 	mddevp[-1] = mddev;
204 	b->bi_destructor = mddev_bio_destructor;
205 	__bio_clone(b, bio);
206 	if (bio_integrity(bio)) {
207 		int ret;
208 
209 		ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210 
211 		if (ret < 0) {
212 			bio_put(b);
213 			return NULL;
214 		}
215 	}
216 
217 	return b;
218 }
219 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220 
221 void md_trim_bio(struct bio *bio, int offset, int size)
222 {
223 	/* 'bio' is a cloned bio which we need to trim to match
224 	 * the given offset and size.
225 	 * This requires adjusting bi_sector, bi_size, and bi_io_vec
226 	 */
227 	int i;
228 	struct bio_vec *bvec;
229 	int sofar = 0;
230 
231 	size <<= 9;
232 	if (offset == 0 && size == bio->bi_size)
233 		return;
234 
235 	bio->bi_sector += offset;
236 	bio->bi_size = size;
237 	offset <<= 9;
238 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239 
240 	while (bio->bi_idx < bio->bi_vcnt &&
241 	       bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
242 		/* remove this whole bio_vec */
243 		offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
244 		bio->bi_idx++;
245 	}
246 	if (bio->bi_idx < bio->bi_vcnt) {
247 		bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
248 		bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249 	}
250 	/* avoid any complications with bi_idx being non-zero*/
251 	if (bio->bi_idx) {
252 		memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
253 			(bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
254 		bio->bi_vcnt -= bio->bi_idx;
255 		bio->bi_idx = 0;
256 	}
257 	/* Make sure vcnt and last bv are not too big */
258 	bio_for_each_segment(bvec, bio, i) {
259 		if (sofar + bvec->bv_len > size)
260 			bvec->bv_len = size - sofar;
261 		if (bvec->bv_len == 0) {
262 			bio->bi_vcnt = i;
263 			break;
264 		}
265 		sofar += bvec->bv_len;
266 	}
267 }
268 EXPORT_SYMBOL_GPL(md_trim_bio);
269 
270 /*
271  * We have a system wide 'event count' that is incremented
272  * on any 'interesting' event, and readers of /proc/mdstat
273  * can use 'poll' or 'select' to find out when the event
274  * count increases.
275  *
276  * Events are:
277  *  start array, stop array, error, add device, remove device,
278  *  start build, activate spare
279  */
280 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
281 static atomic_t md_event_count;
282 void md_new_event(struct mddev *mddev)
283 {
284 	atomic_inc(&md_event_count);
285 	wake_up(&md_event_waiters);
286 }
287 EXPORT_SYMBOL_GPL(md_new_event);
288 
289 /* Alternate version that can be called from interrupts
290  * when calling sysfs_notify isn't needed.
291  */
292 static void md_new_event_inintr(struct mddev *mddev)
293 {
294 	atomic_inc(&md_event_count);
295 	wake_up(&md_event_waiters);
296 }
297 
298 /*
299  * Enables to iterate over all existing md arrays
300  * all_mddevs_lock protects this list.
301  */
302 static LIST_HEAD(all_mddevs);
303 static DEFINE_SPINLOCK(all_mddevs_lock);
304 
305 
306 /*
307  * iterates through all used mddevs in the system.
308  * We take care to grab the all_mddevs_lock whenever navigating
309  * the list, and to always hold a refcount when unlocked.
310  * Any code which breaks out of this loop while own
311  * a reference to the current mddev and must mddev_put it.
312  */
313 #define for_each_mddev(_mddev,_tmp)					\
314 									\
315 	for (({ spin_lock(&all_mddevs_lock); 				\
316 		_tmp = all_mddevs.next;					\
317 		_mddev = NULL;});					\
318 	     ({ if (_tmp != &all_mddevs)				\
319 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
320 		spin_unlock(&all_mddevs_lock);				\
321 		if (_mddev) mddev_put(_mddev);				\
322 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
323 		_tmp != &all_mddevs;});					\
324 	     ({ spin_lock(&all_mddevs_lock);				\
325 		_tmp = _tmp->next;})					\
326 		)
327 
328 
329 /* Rather than calling directly into the personality make_request function,
330  * IO requests come here first so that we can check if the device is
331  * being suspended pending a reconfiguration.
332  * We hold a refcount over the call to ->make_request.  By the time that
333  * call has finished, the bio has been linked into some internal structure
334  * and so is visible to ->quiesce(), so we don't need the refcount any more.
335  */
336 static void md_make_request(struct request_queue *q, struct bio *bio)
337 {
338 	const int rw = bio_data_dir(bio);
339 	struct mddev *mddev = q->queuedata;
340 	int cpu;
341 	unsigned int sectors;
342 
343 	if (mddev == NULL || mddev->pers == NULL
344 	    || !mddev->ready) {
345 		bio_io_error(bio);
346 		return;
347 	}
348 	smp_rmb(); /* Ensure implications of  'active' are visible */
349 	rcu_read_lock();
350 	if (mddev->suspended) {
351 		DEFINE_WAIT(__wait);
352 		for (;;) {
353 			prepare_to_wait(&mddev->sb_wait, &__wait,
354 					TASK_UNINTERRUPTIBLE);
355 			if (!mddev->suspended)
356 				break;
357 			rcu_read_unlock();
358 			schedule();
359 			rcu_read_lock();
360 		}
361 		finish_wait(&mddev->sb_wait, &__wait);
362 	}
363 	atomic_inc(&mddev->active_io);
364 	rcu_read_unlock();
365 
366 	/*
367 	 * save the sectors now since our bio can
368 	 * go away inside make_request
369 	 */
370 	sectors = bio_sectors(bio);
371 	mddev->pers->make_request(mddev, bio);
372 
373 	cpu = part_stat_lock();
374 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
375 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
376 	part_stat_unlock();
377 
378 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
379 		wake_up(&mddev->sb_wait);
380 }
381 
382 /* mddev_suspend makes sure no new requests are submitted
383  * to the device, and that any requests that have been submitted
384  * are completely handled.
385  * Once ->stop is called and completes, the module will be completely
386  * unused.
387  */
388 void mddev_suspend(struct mddev *mddev)
389 {
390 	BUG_ON(mddev->suspended);
391 	mddev->suspended = 1;
392 	synchronize_rcu();
393 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
394 	mddev->pers->quiesce(mddev, 1);
395 }
396 EXPORT_SYMBOL_GPL(mddev_suspend);
397 
398 void mddev_resume(struct mddev *mddev)
399 {
400 	mddev->suspended = 0;
401 	wake_up(&mddev->sb_wait);
402 	mddev->pers->quiesce(mddev, 0);
403 
404 	md_wakeup_thread(mddev->thread);
405 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
406 }
407 EXPORT_SYMBOL_GPL(mddev_resume);
408 
409 int mddev_congested(struct mddev *mddev, int bits)
410 {
411 	return mddev->suspended;
412 }
413 EXPORT_SYMBOL(mddev_congested);
414 
415 /*
416  * Generic flush handling for md
417  */
418 
419 static void md_end_flush(struct bio *bio, int err)
420 {
421 	struct md_rdev *rdev = bio->bi_private;
422 	struct mddev *mddev = rdev->mddev;
423 
424 	rdev_dec_pending(rdev, mddev);
425 
426 	if (atomic_dec_and_test(&mddev->flush_pending)) {
427 		/* The pre-request flush has finished */
428 		queue_work(md_wq, &mddev->flush_work);
429 	}
430 	bio_put(bio);
431 }
432 
433 static void md_submit_flush_data(struct work_struct *ws);
434 
435 static void submit_flushes(struct work_struct *ws)
436 {
437 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
438 	struct md_rdev *rdev;
439 
440 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
441 	atomic_set(&mddev->flush_pending, 1);
442 	rcu_read_lock();
443 	list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
444 		if (rdev->raid_disk >= 0 &&
445 		    !test_bit(Faulty, &rdev->flags)) {
446 			/* Take two references, one is dropped
447 			 * when request finishes, one after
448 			 * we reclaim rcu_read_lock
449 			 */
450 			struct bio *bi;
451 			atomic_inc(&rdev->nr_pending);
452 			atomic_inc(&rdev->nr_pending);
453 			rcu_read_unlock();
454 			bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
455 			bi->bi_end_io = md_end_flush;
456 			bi->bi_private = rdev;
457 			bi->bi_bdev = rdev->bdev;
458 			atomic_inc(&mddev->flush_pending);
459 			submit_bio(WRITE_FLUSH, bi);
460 			rcu_read_lock();
461 			rdev_dec_pending(rdev, mddev);
462 		}
463 	rcu_read_unlock();
464 	if (atomic_dec_and_test(&mddev->flush_pending))
465 		queue_work(md_wq, &mddev->flush_work);
466 }
467 
468 static void md_submit_flush_data(struct work_struct *ws)
469 {
470 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
471 	struct bio *bio = mddev->flush_bio;
472 
473 	if (bio->bi_size == 0)
474 		/* an empty barrier - all done */
475 		bio_endio(bio, 0);
476 	else {
477 		bio->bi_rw &= ~REQ_FLUSH;
478 		mddev->pers->make_request(mddev, bio);
479 	}
480 
481 	mddev->flush_bio = NULL;
482 	wake_up(&mddev->sb_wait);
483 }
484 
485 void md_flush_request(struct mddev *mddev, struct bio *bio)
486 {
487 	spin_lock_irq(&mddev->write_lock);
488 	wait_event_lock_irq(mddev->sb_wait,
489 			    !mddev->flush_bio,
490 			    mddev->write_lock, /*nothing*/);
491 	mddev->flush_bio = bio;
492 	spin_unlock_irq(&mddev->write_lock);
493 
494 	INIT_WORK(&mddev->flush_work, submit_flushes);
495 	queue_work(md_wq, &mddev->flush_work);
496 }
497 EXPORT_SYMBOL(md_flush_request);
498 
499 /* Support for plugging.
500  * This mirrors the plugging support in request_queue, but does not
501  * require having a whole queue or request structures.
502  * We allocate an md_plug_cb for each md device and each thread it gets
503  * plugged on.  This links tot the private plug_handle structure in the
504  * personality data where we keep a count of the number of outstanding
505  * plugs so other code can see if a plug is active.
506  */
507 struct md_plug_cb {
508 	struct blk_plug_cb cb;
509 	struct mddev *mddev;
510 };
511 
512 static void plugger_unplug(struct blk_plug_cb *cb)
513 {
514 	struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
515 	if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
516 		md_wakeup_thread(mdcb->mddev->thread);
517 	kfree(mdcb);
518 }
519 
520 /* Check that an unplug wakeup will come shortly.
521  * If not, wakeup the md thread immediately
522  */
523 int mddev_check_plugged(struct mddev *mddev)
524 {
525 	struct blk_plug *plug = current->plug;
526 	struct md_plug_cb *mdcb;
527 
528 	if (!plug)
529 		return 0;
530 
531 	list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
532 		if (mdcb->cb.callback == plugger_unplug &&
533 		    mdcb->mddev == mddev) {
534 			/* Already on the list, move to top */
535 			if (mdcb != list_first_entry(&plug->cb_list,
536 						    struct md_plug_cb,
537 						    cb.list))
538 				list_move(&mdcb->cb.list, &plug->cb_list);
539 			return 1;
540 		}
541 	}
542 	/* Not currently on the callback list */
543 	mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
544 	if (!mdcb)
545 		return 0;
546 
547 	mdcb->mddev = mddev;
548 	mdcb->cb.callback = plugger_unplug;
549 	atomic_inc(&mddev->plug_cnt);
550 	list_add(&mdcb->cb.list, &plug->cb_list);
551 	return 1;
552 }
553 EXPORT_SYMBOL_GPL(mddev_check_plugged);
554 
555 static inline struct mddev *mddev_get(struct mddev *mddev)
556 {
557 	atomic_inc(&mddev->active);
558 	return mddev;
559 }
560 
561 static void mddev_delayed_delete(struct work_struct *ws);
562 
563 static void mddev_put(struct mddev *mddev)
564 {
565 	struct bio_set *bs = NULL;
566 
567 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
568 		return;
569 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
570 	    mddev->ctime == 0 && !mddev->hold_active) {
571 		/* Array is not configured at all, and not held active,
572 		 * so destroy it */
573 		list_del(&mddev->all_mddevs);
574 		bs = mddev->bio_set;
575 		mddev->bio_set = NULL;
576 		if (mddev->gendisk) {
577 			/* We did a probe so need to clean up.  Call
578 			 * queue_work inside the spinlock so that
579 			 * flush_workqueue() after mddev_find will
580 			 * succeed in waiting for the work to be done.
581 			 */
582 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
583 			queue_work(md_misc_wq, &mddev->del_work);
584 		} else
585 			kfree(mddev);
586 	}
587 	spin_unlock(&all_mddevs_lock);
588 	if (bs)
589 		bioset_free(bs);
590 }
591 
592 void mddev_init(struct mddev *mddev)
593 {
594 	mutex_init(&mddev->open_mutex);
595 	mutex_init(&mddev->reconfig_mutex);
596 	mutex_init(&mddev->bitmap_info.mutex);
597 	INIT_LIST_HEAD(&mddev->disks);
598 	INIT_LIST_HEAD(&mddev->all_mddevs);
599 	init_timer(&mddev->safemode_timer);
600 	atomic_set(&mddev->active, 1);
601 	atomic_set(&mddev->openers, 0);
602 	atomic_set(&mddev->active_io, 0);
603 	atomic_set(&mddev->plug_cnt, 0);
604 	spin_lock_init(&mddev->write_lock);
605 	atomic_set(&mddev->flush_pending, 0);
606 	init_waitqueue_head(&mddev->sb_wait);
607 	init_waitqueue_head(&mddev->recovery_wait);
608 	mddev->reshape_position = MaxSector;
609 	mddev->resync_min = 0;
610 	mddev->resync_max = MaxSector;
611 	mddev->level = LEVEL_NONE;
612 }
613 EXPORT_SYMBOL_GPL(mddev_init);
614 
615 static struct mddev * mddev_find(dev_t unit)
616 {
617 	struct mddev *mddev, *new = NULL;
618 
619 	if (unit && MAJOR(unit) != MD_MAJOR)
620 		unit &= ~((1<<MdpMinorShift)-1);
621 
622  retry:
623 	spin_lock(&all_mddevs_lock);
624 
625 	if (unit) {
626 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
627 			if (mddev->unit == unit) {
628 				mddev_get(mddev);
629 				spin_unlock(&all_mddevs_lock);
630 				kfree(new);
631 				return mddev;
632 			}
633 
634 		if (new) {
635 			list_add(&new->all_mddevs, &all_mddevs);
636 			spin_unlock(&all_mddevs_lock);
637 			new->hold_active = UNTIL_IOCTL;
638 			return new;
639 		}
640 	} else if (new) {
641 		/* find an unused unit number */
642 		static int next_minor = 512;
643 		int start = next_minor;
644 		int is_free = 0;
645 		int dev = 0;
646 		while (!is_free) {
647 			dev = MKDEV(MD_MAJOR, next_minor);
648 			next_minor++;
649 			if (next_minor > MINORMASK)
650 				next_minor = 0;
651 			if (next_minor == start) {
652 				/* Oh dear, all in use. */
653 				spin_unlock(&all_mddevs_lock);
654 				kfree(new);
655 				return NULL;
656 			}
657 
658 			is_free = 1;
659 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
660 				if (mddev->unit == dev) {
661 					is_free = 0;
662 					break;
663 				}
664 		}
665 		new->unit = dev;
666 		new->md_minor = MINOR(dev);
667 		new->hold_active = UNTIL_STOP;
668 		list_add(&new->all_mddevs, &all_mddevs);
669 		spin_unlock(&all_mddevs_lock);
670 		return new;
671 	}
672 	spin_unlock(&all_mddevs_lock);
673 
674 	new = kzalloc(sizeof(*new), GFP_KERNEL);
675 	if (!new)
676 		return NULL;
677 
678 	new->unit = unit;
679 	if (MAJOR(unit) == MD_MAJOR)
680 		new->md_minor = MINOR(unit);
681 	else
682 		new->md_minor = MINOR(unit) >> MdpMinorShift;
683 
684 	mddev_init(new);
685 
686 	goto retry;
687 }
688 
689 static inline int mddev_lock(struct mddev * mddev)
690 {
691 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
692 }
693 
694 static inline int mddev_is_locked(struct mddev *mddev)
695 {
696 	return mutex_is_locked(&mddev->reconfig_mutex);
697 }
698 
699 static inline int mddev_trylock(struct mddev * mddev)
700 {
701 	return mutex_trylock(&mddev->reconfig_mutex);
702 }
703 
704 static struct attribute_group md_redundancy_group;
705 
706 static void mddev_unlock(struct mddev * mddev)
707 {
708 	if (mddev->to_remove) {
709 		/* These cannot be removed under reconfig_mutex as
710 		 * an access to the files will try to take reconfig_mutex
711 		 * while holding the file unremovable, which leads to
712 		 * a deadlock.
713 		 * So hold set sysfs_active while the remove in happeing,
714 		 * and anything else which might set ->to_remove or my
715 		 * otherwise change the sysfs namespace will fail with
716 		 * -EBUSY if sysfs_active is still set.
717 		 * We set sysfs_active under reconfig_mutex and elsewhere
718 		 * test it under the same mutex to ensure its correct value
719 		 * is seen.
720 		 */
721 		struct attribute_group *to_remove = mddev->to_remove;
722 		mddev->to_remove = NULL;
723 		mddev->sysfs_active = 1;
724 		mutex_unlock(&mddev->reconfig_mutex);
725 
726 		if (mddev->kobj.sd) {
727 			if (to_remove != &md_redundancy_group)
728 				sysfs_remove_group(&mddev->kobj, to_remove);
729 			if (mddev->pers == NULL ||
730 			    mddev->pers->sync_request == NULL) {
731 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
732 				if (mddev->sysfs_action)
733 					sysfs_put(mddev->sysfs_action);
734 				mddev->sysfs_action = NULL;
735 			}
736 		}
737 		mddev->sysfs_active = 0;
738 	} else
739 		mutex_unlock(&mddev->reconfig_mutex);
740 
741 	/* As we've dropped the mutex we need a spinlock to
742 	 * make sure the thread doesn't disappear
743 	 */
744 	spin_lock(&pers_lock);
745 	md_wakeup_thread(mddev->thread);
746 	spin_unlock(&pers_lock);
747 }
748 
749 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
750 {
751 	struct md_rdev *rdev;
752 
753 	list_for_each_entry(rdev, &mddev->disks, same_set)
754 		if (rdev->desc_nr == nr)
755 			return rdev;
756 
757 	return NULL;
758 }
759 
760 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
761 {
762 	struct md_rdev *rdev;
763 
764 	list_for_each_entry(rdev, &mddev->disks, same_set)
765 		if (rdev->bdev->bd_dev == dev)
766 			return rdev;
767 
768 	return NULL;
769 }
770 
771 static struct md_personality *find_pers(int level, char *clevel)
772 {
773 	struct md_personality *pers;
774 	list_for_each_entry(pers, &pers_list, list) {
775 		if (level != LEVEL_NONE && pers->level == level)
776 			return pers;
777 		if (strcmp(pers->name, clevel)==0)
778 			return pers;
779 	}
780 	return NULL;
781 }
782 
783 /* return the offset of the super block in 512byte sectors */
784 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
785 {
786 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
787 	return MD_NEW_SIZE_SECTORS(num_sectors);
788 }
789 
790 static int alloc_disk_sb(struct md_rdev * rdev)
791 {
792 	if (rdev->sb_page)
793 		MD_BUG();
794 
795 	rdev->sb_page = alloc_page(GFP_KERNEL);
796 	if (!rdev->sb_page) {
797 		printk(KERN_ALERT "md: out of memory.\n");
798 		return -ENOMEM;
799 	}
800 
801 	return 0;
802 }
803 
804 static void free_disk_sb(struct md_rdev * rdev)
805 {
806 	if (rdev->sb_page) {
807 		put_page(rdev->sb_page);
808 		rdev->sb_loaded = 0;
809 		rdev->sb_page = NULL;
810 		rdev->sb_start = 0;
811 		rdev->sectors = 0;
812 	}
813 	if (rdev->bb_page) {
814 		put_page(rdev->bb_page);
815 		rdev->bb_page = NULL;
816 	}
817 }
818 
819 
820 static void super_written(struct bio *bio, int error)
821 {
822 	struct md_rdev *rdev = bio->bi_private;
823 	struct mddev *mddev = rdev->mddev;
824 
825 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
826 		printk("md: super_written gets error=%d, uptodate=%d\n",
827 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
828 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
829 		md_error(mddev, rdev);
830 	}
831 
832 	if (atomic_dec_and_test(&mddev->pending_writes))
833 		wake_up(&mddev->sb_wait);
834 	bio_put(bio);
835 }
836 
837 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
838 		   sector_t sector, int size, struct page *page)
839 {
840 	/* write first size bytes of page to sector of rdev
841 	 * Increment mddev->pending_writes before returning
842 	 * and decrement it on completion, waking up sb_wait
843 	 * if zero is reached.
844 	 * If an error occurred, call md_error
845 	 */
846 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
847 
848 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
849 	bio->bi_sector = sector;
850 	bio_add_page(bio, page, size, 0);
851 	bio->bi_private = rdev;
852 	bio->bi_end_io = super_written;
853 
854 	atomic_inc(&mddev->pending_writes);
855 	submit_bio(WRITE_FLUSH_FUA, bio);
856 }
857 
858 void md_super_wait(struct mddev *mddev)
859 {
860 	/* wait for all superblock writes that were scheduled to complete */
861 	DEFINE_WAIT(wq);
862 	for(;;) {
863 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
864 		if (atomic_read(&mddev->pending_writes)==0)
865 			break;
866 		schedule();
867 	}
868 	finish_wait(&mddev->sb_wait, &wq);
869 }
870 
871 static void bi_complete(struct bio *bio, int error)
872 {
873 	complete((struct completion*)bio->bi_private);
874 }
875 
876 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
877 		 struct page *page, int rw, bool metadata_op)
878 {
879 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
880 	struct completion event;
881 	int ret;
882 
883 	rw |= REQ_SYNC;
884 
885 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
886 		rdev->meta_bdev : rdev->bdev;
887 	if (metadata_op)
888 		bio->bi_sector = sector + rdev->sb_start;
889 	else
890 		bio->bi_sector = sector + rdev->data_offset;
891 	bio_add_page(bio, page, size, 0);
892 	init_completion(&event);
893 	bio->bi_private = &event;
894 	bio->bi_end_io = bi_complete;
895 	submit_bio(rw, bio);
896 	wait_for_completion(&event);
897 
898 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
899 	bio_put(bio);
900 	return ret;
901 }
902 EXPORT_SYMBOL_GPL(sync_page_io);
903 
904 static int read_disk_sb(struct md_rdev * rdev, int size)
905 {
906 	char b[BDEVNAME_SIZE];
907 	if (!rdev->sb_page) {
908 		MD_BUG();
909 		return -EINVAL;
910 	}
911 	if (rdev->sb_loaded)
912 		return 0;
913 
914 
915 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
916 		goto fail;
917 	rdev->sb_loaded = 1;
918 	return 0;
919 
920 fail:
921 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
922 		bdevname(rdev->bdev,b));
923 	return -EINVAL;
924 }
925 
926 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
927 {
928 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
929 		sb1->set_uuid1 == sb2->set_uuid1 &&
930 		sb1->set_uuid2 == sb2->set_uuid2 &&
931 		sb1->set_uuid3 == sb2->set_uuid3;
932 }
933 
934 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
935 {
936 	int ret;
937 	mdp_super_t *tmp1, *tmp2;
938 
939 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
940 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
941 
942 	if (!tmp1 || !tmp2) {
943 		ret = 0;
944 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
945 		goto abort;
946 	}
947 
948 	*tmp1 = *sb1;
949 	*tmp2 = *sb2;
950 
951 	/*
952 	 * nr_disks is not constant
953 	 */
954 	tmp1->nr_disks = 0;
955 	tmp2->nr_disks = 0;
956 
957 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
958 abort:
959 	kfree(tmp1);
960 	kfree(tmp2);
961 	return ret;
962 }
963 
964 
965 static u32 md_csum_fold(u32 csum)
966 {
967 	csum = (csum & 0xffff) + (csum >> 16);
968 	return (csum & 0xffff) + (csum >> 16);
969 }
970 
971 static unsigned int calc_sb_csum(mdp_super_t * sb)
972 {
973 	u64 newcsum = 0;
974 	u32 *sb32 = (u32*)sb;
975 	int i;
976 	unsigned int disk_csum, csum;
977 
978 	disk_csum = sb->sb_csum;
979 	sb->sb_csum = 0;
980 
981 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
982 		newcsum += sb32[i];
983 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
984 
985 
986 #ifdef CONFIG_ALPHA
987 	/* This used to use csum_partial, which was wrong for several
988 	 * reasons including that different results are returned on
989 	 * different architectures.  It isn't critical that we get exactly
990 	 * the same return value as before (we always csum_fold before
991 	 * testing, and that removes any differences).  However as we
992 	 * know that csum_partial always returned a 16bit value on
993 	 * alphas, do a fold to maximise conformity to previous behaviour.
994 	 */
995 	sb->sb_csum = md_csum_fold(disk_csum);
996 #else
997 	sb->sb_csum = disk_csum;
998 #endif
999 	return csum;
1000 }
1001 
1002 
1003 /*
1004  * Handle superblock details.
1005  * We want to be able to handle multiple superblock formats
1006  * so we have a common interface to them all, and an array of
1007  * different handlers.
1008  * We rely on user-space to write the initial superblock, and support
1009  * reading and updating of superblocks.
1010  * Interface methods are:
1011  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1012  *      loads and validates a superblock on dev.
1013  *      if refdev != NULL, compare superblocks on both devices
1014  *    Return:
1015  *      0 - dev has a superblock that is compatible with refdev
1016  *      1 - dev has a superblock that is compatible and newer than refdev
1017  *          so dev should be used as the refdev in future
1018  *     -EINVAL superblock incompatible or invalid
1019  *     -othererror e.g. -EIO
1020  *
1021  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1022  *      Verify that dev is acceptable into mddev.
1023  *       The first time, mddev->raid_disks will be 0, and data from
1024  *       dev should be merged in.  Subsequent calls check that dev
1025  *       is new enough.  Return 0 or -EINVAL
1026  *
1027  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1028  *     Update the superblock for rdev with data in mddev
1029  *     This does not write to disc.
1030  *
1031  */
1032 
1033 struct super_type  {
1034 	char		    *name;
1035 	struct module	    *owner;
1036 	int		    (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1037 					  int minor_version);
1038 	int		    (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1039 	void		    (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1040 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1041 						sector_t num_sectors);
1042 };
1043 
1044 /*
1045  * Check that the given mddev has no bitmap.
1046  *
1047  * This function is called from the run method of all personalities that do not
1048  * support bitmaps. It prints an error message and returns non-zero if mddev
1049  * has a bitmap. Otherwise, it returns 0.
1050  *
1051  */
1052 int md_check_no_bitmap(struct mddev *mddev)
1053 {
1054 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1055 		return 0;
1056 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1057 		mdname(mddev), mddev->pers->name);
1058 	return 1;
1059 }
1060 EXPORT_SYMBOL(md_check_no_bitmap);
1061 
1062 /*
1063  * load_super for 0.90.0
1064  */
1065 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1066 {
1067 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1068 	mdp_super_t *sb;
1069 	int ret;
1070 
1071 	/*
1072 	 * Calculate the position of the superblock (512byte sectors),
1073 	 * it's at the end of the disk.
1074 	 *
1075 	 * It also happens to be a multiple of 4Kb.
1076 	 */
1077 	rdev->sb_start = calc_dev_sboffset(rdev);
1078 
1079 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1080 	if (ret) return ret;
1081 
1082 	ret = -EINVAL;
1083 
1084 	bdevname(rdev->bdev, b);
1085 	sb = page_address(rdev->sb_page);
1086 
1087 	if (sb->md_magic != MD_SB_MAGIC) {
1088 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1089 		       b);
1090 		goto abort;
1091 	}
1092 
1093 	if (sb->major_version != 0 ||
1094 	    sb->minor_version < 90 ||
1095 	    sb->minor_version > 91) {
1096 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1097 			sb->major_version, sb->minor_version,
1098 			b);
1099 		goto abort;
1100 	}
1101 
1102 	if (sb->raid_disks <= 0)
1103 		goto abort;
1104 
1105 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1106 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1107 			b);
1108 		goto abort;
1109 	}
1110 
1111 	rdev->preferred_minor = sb->md_minor;
1112 	rdev->data_offset = 0;
1113 	rdev->sb_size = MD_SB_BYTES;
1114 	rdev->badblocks.shift = -1;
1115 
1116 	if (sb->level == LEVEL_MULTIPATH)
1117 		rdev->desc_nr = -1;
1118 	else
1119 		rdev->desc_nr = sb->this_disk.number;
1120 
1121 	if (!refdev) {
1122 		ret = 1;
1123 	} else {
1124 		__u64 ev1, ev2;
1125 		mdp_super_t *refsb = page_address(refdev->sb_page);
1126 		if (!uuid_equal(refsb, sb)) {
1127 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1128 				b, bdevname(refdev->bdev,b2));
1129 			goto abort;
1130 		}
1131 		if (!sb_equal(refsb, sb)) {
1132 			printk(KERN_WARNING "md: %s has same UUID"
1133 			       " but different superblock to %s\n",
1134 			       b, bdevname(refdev->bdev, b2));
1135 			goto abort;
1136 		}
1137 		ev1 = md_event(sb);
1138 		ev2 = md_event(refsb);
1139 		if (ev1 > ev2)
1140 			ret = 1;
1141 		else
1142 			ret = 0;
1143 	}
1144 	rdev->sectors = rdev->sb_start;
1145 	/* Limit to 4TB as metadata cannot record more than that */
1146 	if (rdev->sectors >= (2ULL << 32))
1147 		rdev->sectors = (2ULL << 32) - 2;
1148 
1149 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1150 		/* "this cannot possibly happen" ... */
1151 		ret = -EINVAL;
1152 
1153  abort:
1154 	return ret;
1155 }
1156 
1157 /*
1158  * validate_super for 0.90.0
1159  */
1160 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1161 {
1162 	mdp_disk_t *desc;
1163 	mdp_super_t *sb = page_address(rdev->sb_page);
1164 	__u64 ev1 = md_event(sb);
1165 
1166 	rdev->raid_disk = -1;
1167 	clear_bit(Faulty, &rdev->flags);
1168 	clear_bit(In_sync, &rdev->flags);
1169 	clear_bit(WriteMostly, &rdev->flags);
1170 
1171 	if (mddev->raid_disks == 0) {
1172 		mddev->major_version = 0;
1173 		mddev->minor_version = sb->minor_version;
1174 		mddev->patch_version = sb->patch_version;
1175 		mddev->external = 0;
1176 		mddev->chunk_sectors = sb->chunk_size >> 9;
1177 		mddev->ctime = sb->ctime;
1178 		mddev->utime = sb->utime;
1179 		mddev->level = sb->level;
1180 		mddev->clevel[0] = 0;
1181 		mddev->layout = sb->layout;
1182 		mddev->raid_disks = sb->raid_disks;
1183 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1184 		mddev->events = ev1;
1185 		mddev->bitmap_info.offset = 0;
1186 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1187 
1188 		if (mddev->minor_version >= 91) {
1189 			mddev->reshape_position = sb->reshape_position;
1190 			mddev->delta_disks = sb->delta_disks;
1191 			mddev->new_level = sb->new_level;
1192 			mddev->new_layout = sb->new_layout;
1193 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1194 		} else {
1195 			mddev->reshape_position = MaxSector;
1196 			mddev->delta_disks = 0;
1197 			mddev->new_level = mddev->level;
1198 			mddev->new_layout = mddev->layout;
1199 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1200 		}
1201 
1202 		if (sb->state & (1<<MD_SB_CLEAN))
1203 			mddev->recovery_cp = MaxSector;
1204 		else {
1205 			if (sb->events_hi == sb->cp_events_hi &&
1206 				sb->events_lo == sb->cp_events_lo) {
1207 				mddev->recovery_cp = sb->recovery_cp;
1208 			} else
1209 				mddev->recovery_cp = 0;
1210 		}
1211 
1212 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1213 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1214 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1215 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1216 
1217 		mddev->max_disks = MD_SB_DISKS;
1218 
1219 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1220 		    mddev->bitmap_info.file == NULL)
1221 			mddev->bitmap_info.offset =
1222 				mddev->bitmap_info.default_offset;
1223 
1224 	} else if (mddev->pers == NULL) {
1225 		/* Insist on good event counter while assembling, except
1226 		 * for spares (which don't need an event count) */
1227 		++ev1;
1228 		if (sb->disks[rdev->desc_nr].state & (
1229 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1230 			if (ev1 < mddev->events)
1231 				return -EINVAL;
1232 	} else if (mddev->bitmap) {
1233 		/* if adding to array with a bitmap, then we can accept an
1234 		 * older device ... but not too old.
1235 		 */
1236 		if (ev1 < mddev->bitmap->events_cleared)
1237 			return 0;
1238 	} else {
1239 		if (ev1 < mddev->events)
1240 			/* just a hot-add of a new device, leave raid_disk at -1 */
1241 			return 0;
1242 	}
1243 
1244 	if (mddev->level != LEVEL_MULTIPATH) {
1245 		desc = sb->disks + rdev->desc_nr;
1246 
1247 		if (desc->state & (1<<MD_DISK_FAULTY))
1248 			set_bit(Faulty, &rdev->flags);
1249 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1250 			    desc->raid_disk < mddev->raid_disks */) {
1251 			set_bit(In_sync, &rdev->flags);
1252 			rdev->raid_disk = desc->raid_disk;
1253 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1254 			/* active but not in sync implies recovery up to
1255 			 * reshape position.  We don't know exactly where
1256 			 * that is, so set to zero for now */
1257 			if (mddev->minor_version >= 91) {
1258 				rdev->recovery_offset = 0;
1259 				rdev->raid_disk = desc->raid_disk;
1260 			}
1261 		}
1262 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1263 			set_bit(WriteMostly, &rdev->flags);
1264 	} else /* MULTIPATH are always insync */
1265 		set_bit(In_sync, &rdev->flags);
1266 	return 0;
1267 }
1268 
1269 /*
1270  * sync_super for 0.90.0
1271  */
1272 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1273 {
1274 	mdp_super_t *sb;
1275 	struct md_rdev *rdev2;
1276 	int next_spare = mddev->raid_disks;
1277 
1278 
1279 	/* make rdev->sb match mddev data..
1280 	 *
1281 	 * 1/ zero out disks
1282 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1283 	 * 3/ any empty disks < next_spare become removed
1284 	 *
1285 	 * disks[0] gets initialised to REMOVED because
1286 	 * we cannot be sure from other fields if it has
1287 	 * been initialised or not.
1288 	 */
1289 	int i;
1290 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1291 
1292 	rdev->sb_size = MD_SB_BYTES;
1293 
1294 	sb = page_address(rdev->sb_page);
1295 
1296 	memset(sb, 0, sizeof(*sb));
1297 
1298 	sb->md_magic = MD_SB_MAGIC;
1299 	sb->major_version = mddev->major_version;
1300 	sb->patch_version = mddev->patch_version;
1301 	sb->gvalid_words  = 0; /* ignored */
1302 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1303 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1304 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1305 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1306 
1307 	sb->ctime = mddev->ctime;
1308 	sb->level = mddev->level;
1309 	sb->size = mddev->dev_sectors / 2;
1310 	sb->raid_disks = mddev->raid_disks;
1311 	sb->md_minor = mddev->md_minor;
1312 	sb->not_persistent = 0;
1313 	sb->utime = mddev->utime;
1314 	sb->state = 0;
1315 	sb->events_hi = (mddev->events>>32);
1316 	sb->events_lo = (u32)mddev->events;
1317 
1318 	if (mddev->reshape_position == MaxSector)
1319 		sb->minor_version = 90;
1320 	else {
1321 		sb->minor_version = 91;
1322 		sb->reshape_position = mddev->reshape_position;
1323 		sb->new_level = mddev->new_level;
1324 		sb->delta_disks = mddev->delta_disks;
1325 		sb->new_layout = mddev->new_layout;
1326 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1327 	}
1328 	mddev->minor_version = sb->minor_version;
1329 	if (mddev->in_sync)
1330 	{
1331 		sb->recovery_cp = mddev->recovery_cp;
1332 		sb->cp_events_hi = (mddev->events>>32);
1333 		sb->cp_events_lo = (u32)mddev->events;
1334 		if (mddev->recovery_cp == MaxSector)
1335 			sb->state = (1<< MD_SB_CLEAN);
1336 	} else
1337 		sb->recovery_cp = 0;
1338 
1339 	sb->layout = mddev->layout;
1340 	sb->chunk_size = mddev->chunk_sectors << 9;
1341 
1342 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1343 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1344 
1345 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1346 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1347 		mdp_disk_t *d;
1348 		int desc_nr;
1349 		int is_active = test_bit(In_sync, &rdev2->flags);
1350 
1351 		if (rdev2->raid_disk >= 0 &&
1352 		    sb->minor_version >= 91)
1353 			/* we have nowhere to store the recovery_offset,
1354 			 * but if it is not below the reshape_position,
1355 			 * we can piggy-back on that.
1356 			 */
1357 			is_active = 1;
1358 		if (rdev2->raid_disk < 0 ||
1359 		    test_bit(Faulty, &rdev2->flags))
1360 			is_active = 0;
1361 		if (is_active)
1362 			desc_nr = rdev2->raid_disk;
1363 		else
1364 			desc_nr = next_spare++;
1365 		rdev2->desc_nr = desc_nr;
1366 		d = &sb->disks[rdev2->desc_nr];
1367 		nr_disks++;
1368 		d->number = rdev2->desc_nr;
1369 		d->major = MAJOR(rdev2->bdev->bd_dev);
1370 		d->minor = MINOR(rdev2->bdev->bd_dev);
1371 		if (is_active)
1372 			d->raid_disk = rdev2->raid_disk;
1373 		else
1374 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1375 		if (test_bit(Faulty, &rdev2->flags))
1376 			d->state = (1<<MD_DISK_FAULTY);
1377 		else if (is_active) {
1378 			d->state = (1<<MD_DISK_ACTIVE);
1379 			if (test_bit(In_sync, &rdev2->flags))
1380 				d->state |= (1<<MD_DISK_SYNC);
1381 			active++;
1382 			working++;
1383 		} else {
1384 			d->state = 0;
1385 			spare++;
1386 			working++;
1387 		}
1388 		if (test_bit(WriteMostly, &rdev2->flags))
1389 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1390 	}
1391 	/* now set the "removed" and "faulty" bits on any missing devices */
1392 	for (i=0 ; i < mddev->raid_disks ; i++) {
1393 		mdp_disk_t *d = &sb->disks[i];
1394 		if (d->state == 0 && d->number == 0) {
1395 			d->number = i;
1396 			d->raid_disk = i;
1397 			d->state = (1<<MD_DISK_REMOVED);
1398 			d->state |= (1<<MD_DISK_FAULTY);
1399 			failed++;
1400 		}
1401 	}
1402 	sb->nr_disks = nr_disks;
1403 	sb->active_disks = active;
1404 	sb->working_disks = working;
1405 	sb->failed_disks = failed;
1406 	sb->spare_disks = spare;
1407 
1408 	sb->this_disk = sb->disks[rdev->desc_nr];
1409 	sb->sb_csum = calc_sb_csum(sb);
1410 }
1411 
1412 /*
1413  * rdev_size_change for 0.90.0
1414  */
1415 static unsigned long long
1416 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1417 {
1418 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1419 		return 0; /* component must fit device */
1420 	if (rdev->mddev->bitmap_info.offset)
1421 		return 0; /* can't move bitmap */
1422 	rdev->sb_start = calc_dev_sboffset(rdev);
1423 	if (!num_sectors || num_sectors > rdev->sb_start)
1424 		num_sectors = rdev->sb_start;
1425 	/* Limit to 4TB as metadata cannot record more than that.
1426 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1427 	 */
1428 	if (num_sectors >= (2ULL << 32))
1429 		num_sectors = (2ULL << 32) - 2;
1430 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1431 		       rdev->sb_page);
1432 	md_super_wait(rdev->mddev);
1433 	return num_sectors;
1434 }
1435 
1436 
1437 /*
1438  * version 1 superblock
1439  */
1440 
1441 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1442 {
1443 	__le32 disk_csum;
1444 	u32 csum;
1445 	unsigned long long newcsum;
1446 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1447 	__le32 *isuper = (__le32*)sb;
1448 	int i;
1449 
1450 	disk_csum = sb->sb_csum;
1451 	sb->sb_csum = 0;
1452 	newcsum = 0;
1453 	for (i=0; size>=4; size -= 4 )
1454 		newcsum += le32_to_cpu(*isuper++);
1455 
1456 	if (size == 2)
1457 		newcsum += le16_to_cpu(*(__le16*) isuper);
1458 
1459 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1460 	sb->sb_csum = disk_csum;
1461 	return cpu_to_le32(csum);
1462 }
1463 
1464 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1465 			    int acknowledged);
1466 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1467 {
1468 	struct mdp_superblock_1 *sb;
1469 	int ret;
1470 	sector_t sb_start;
1471 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1472 	int bmask;
1473 
1474 	/*
1475 	 * Calculate the position of the superblock in 512byte sectors.
1476 	 * It is always aligned to a 4K boundary and
1477 	 * depeding on minor_version, it can be:
1478 	 * 0: At least 8K, but less than 12K, from end of device
1479 	 * 1: At start of device
1480 	 * 2: 4K from start of device.
1481 	 */
1482 	switch(minor_version) {
1483 	case 0:
1484 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1485 		sb_start -= 8*2;
1486 		sb_start &= ~(sector_t)(4*2-1);
1487 		break;
1488 	case 1:
1489 		sb_start = 0;
1490 		break;
1491 	case 2:
1492 		sb_start = 8;
1493 		break;
1494 	default:
1495 		return -EINVAL;
1496 	}
1497 	rdev->sb_start = sb_start;
1498 
1499 	/* superblock is rarely larger than 1K, but it can be larger,
1500 	 * and it is safe to read 4k, so we do that
1501 	 */
1502 	ret = read_disk_sb(rdev, 4096);
1503 	if (ret) return ret;
1504 
1505 
1506 	sb = page_address(rdev->sb_page);
1507 
1508 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1509 	    sb->major_version != cpu_to_le32(1) ||
1510 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1511 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1512 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1513 		return -EINVAL;
1514 
1515 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1516 		printk("md: invalid superblock checksum on %s\n",
1517 			bdevname(rdev->bdev,b));
1518 		return -EINVAL;
1519 	}
1520 	if (le64_to_cpu(sb->data_size) < 10) {
1521 		printk("md: data_size too small on %s\n",
1522 		       bdevname(rdev->bdev,b));
1523 		return -EINVAL;
1524 	}
1525 
1526 	rdev->preferred_minor = 0xffff;
1527 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1528 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1529 
1530 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1531 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1532 	if (rdev->sb_size & bmask)
1533 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1534 
1535 	if (minor_version
1536 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1537 		return -EINVAL;
1538 
1539 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1540 		rdev->desc_nr = -1;
1541 	else
1542 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1543 
1544 	if (!rdev->bb_page) {
1545 		rdev->bb_page = alloc_page(GFP_KERNEL);
1546 		if (!rdev->bb_page)
1547 			return -ENOMEM;
1548 	}
1549 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1550 	    rdev->badblocks.count == 0) {
1551 		/* need to load the bad block list.
1552 		 * Currently we limit it to one page.
1553 		 */
1554 		s32 offset;
1555 		sector_t bb_sector;
1556 		u64 *bbp;
1557 		int i;
1558 		int sectors = le16_to_cpu(sb->bblog_size);
1559 		if (sectors > (PAGE_SIZE / 512))
1560 			return -EINVAL;
1561 		offset = le32_to_cpu(sb->bblog_offset);
1562 		if (offset == 0)
1563 			return -EINVAL;
1564 		bb_sector = (long long)offset;
1565 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1566 				  rdev->bb_page, READ, true))
1567 			return -EIO;
1568 		bbp = (u64 *)page_address(rdev->bb_page);
1569 		rdev->badblocks.shift = sb->bblog_shift;
1570 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1571 			u64 bb = le64_to_cpu(*bbp);
1572 			int count = bb & (0x3ff);
1573 			u64 sector = bb >> 10;
1574 			sector <<= sb->bblog_shift;
1575 			count <<= sb->bblog_shift;
1576 			if (bb + 1 == 0)
1577 				break;
1578 			if (md_set_badblocks(&rdev->badblocks,
1579 					     sector, count, 1) == 0)
1580 				return -EINVAL;
1581 		}
1582 	} else if (sb->bblog_offset == 0)
1583 		rdev->badblocks.shift = -1;
1584 
1585 	if (!refdev) {
1586 		ret = 1;
1587 	} else {
1588 		__u64 ev1, ev2;
1589 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1590 
1591 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1592 		    sb->level != refsb->level ||
1593 		    sb->layout != refsb->layout ||
1594 		    sb->chunksize != refsb->chunksize) {
1595 			printk(KERN_WARNING "md: %s has strangely different"
1596 				" superblock to %s\n",
1597 				bdevname(rdev->bdev,b),
1598 				bdevname(refdev->bdev,b2));
1599 			return -EINVAL;
1600 		}
1601 		ev1 = le64_to_cpu(sb->events);
1602 		ev2 = le64_to_cpu(refsb->events);
1603 
1604 		if (ev1 > ev2)
1605 			ret = 1;
1606 		else
1607 			ret = 0;
1608 	}
1609 	if (minor_version)
1610 		rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1611 			le64_to_cpu(sb->data_offset);
1612 	else
1613 		rdev->sectors = rdev->sb_start;
1614 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1615 		return -EINVAL;
1616 	rdev->sectors = le64_to_cpu(sb->data_size);
1617 	if (le64_to_cpu(sb->size) > rdev->sectors)
1618 		return -EINVAL;
1619 	return ret;
1620 }
1621 
1622 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1623 {
1624 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1625 	__u64 ev1 = le64_to_cpu(sb->events);
1626 
1627 	rdev->raid_disk = -1;
1628 	clear_bit(Faulty, &rdev->flags);
1629 	clear_bit(In_sync, &rdev->flags);
1630 	clear_bit(WriteMostly, &rdev->flags);
1631 
1632 	if (mddev->raid_disks == 0) {
1633 		mddev->major_version = 1;
1634 		mddev->patch_version = 0;
1635 		mddev->external = 0;
1636 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1637 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1638 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1639 		mddev->level = le32_to_cpu(sb->level);
1640 		mddev->clevel[0] = 0;
1641 		mddev->layout = le32_to_cpu(sb->layout);
1642 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1643 		mddev->dev_sectors = le64_to_cpu(sb->size);
1644 		mddev->events = ev1;
1645 		mddev->bitmap_info.offset = 0;
1646 		mddev->bitmap_info.default_offset = 1024 >> 9;
1647 
1648 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1649 		memcpy(mddev->uuid, sb->set_uuid, 16);
1650 
1651 		mddev->max_disks =  (4096-256)/2;
1652 
1653 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1654 		    mddev->bitmap_info.file == NULL )
1655 			mddev->bitmap_info.offset =
1656 				(__s32)le32_to_cpu(sb->bitmap_offset);
1657 
1658 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1659 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1660 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1661 			mddev->new_level = le32_to_cpu(sb->new_level);
1662 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1663 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1664 		} else {
1665 			mddev->reshape_position = MaxSector;
1666 			mddev->delta_disks = 0;
1667 			mddev->new_level = mddev->level;
1668 			mddev->new_layout = mddev->layout;
1669 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1670 		}
1671 
1672 	} else if (mddev->pers == NULL) {
1673 		/* Insist of good event counter while assembling, except for
1674 		 * spares (which don't need an event count) */
1675 		++ev1;
1676 		if (rdev->desc_nr >= 0 &&
1677 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1678 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1679 			if (ev1 < mddev->events)
1680 				return -EINVAL;
1681 	} else if (mddev->bitmap) {
1682 		/* If adding to array with a bitmap, then we can accept an
1683 		 * older device, but not too old.
1684 		 */
1685 		if (ev1 < mddev->bitmap->events_cleared)
1686 			return 0;
1687 	} else {
1688 		if (ev1 < mddev->events)
1689 			/* just a hot-add of a new device, leave raid_disk at -1 */
1690 			return 0;
1691 	}
1692 	if (mddev->level != LEVEL_MULTIPATH) {
1693 		int role;
1694 		if (rdev->desc_nr < 0 ||
1695 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1696 			role = 0xffff;
1697 			rdev->desc_nr = -1;
1698 		} else
1699 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1700 		switch(role) {
1701 		case 0xffff: /* spare */
1702 			break;
1703 		case 0xfffe: /* faulty */
1704 			set_bit(Faulty, &rdev->flags);
1705 			break;
1706 		default:
1707 			if ((le32_to_cpu(sb->feature_map) &
1708 			     MD_FEATURE_RECOVERY_OFFSET))
1709 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1710 			else
1711 				set_bit(In_sync, &rdev->flags);
1712 			rdev->raid_disk = role;
1713 			break;
1714 		}
1715 		if (sb->devflags & WriteMostly1)
1716 			set_bit(WriteMostly, &rdev->flags);
1717 	} else /* MULTIPATH are always insync */
1718 		set_bit(In_sync, &rdev->flags);
1719 
1720 	return 0;
1721 }
1722 
1723 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1724 {
1725 	struct mdp_superblock_1 *sb;
1726 	struct md_rdev *rdev2;
1727 	int max_dev, i;
1728 	/* make rdev->sb match mddev and rdev data. */
1729 
1730 	sb = page_address(rdev->sb_page);
1731 
1732 	sb->feature_map = 0;
1733 	sb->pad0 = 0;
1734 	sb->recovery_offset = cpu_to_le64(0);
1735 	memset(sb->pad1, 0, sizeof(sb->pad1));
1736 	memset(sb->pad3, 0, sizeof(sb->pad3));
1737 
1738 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1739 	sb->events = cpu_to_le64(mddev->events);
1740 	if (mddev->in_sync)
1741 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1742 	else
1743 		sb->resync_offset = cpu_to_le64(0);
1744 
1745 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1746 
1747 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1748 	sb->size = cpu_to_le64(mddev->dev_sectors);
1749 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1750 	sb->level = cpu_to_le32(mddev->level);
1751 	sb->layout = cpu_to_le32(mddev->layout);
1752 
1753 	if (test_bit(WriteMostly, &rdev->flags))
1754 		sb->devflags |= WriteMostly1;
1755 	else
1756 		sb->devflags &= ~WriteMostly1;
1757 
1758 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1759 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1760 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1761 	}
1762 
1763 	if (rdev->raid_disk >= 0 &&
1764 	    !test_bit(In_sync, &rdev->flags)) {
1765 		sb->feature_map |=
1766 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1767 		sb->recovery_offset =
1768 			cpu_to_le64(rdev->recovery_offset);
1769 	}
1770 
1771 	if (mddev->reshape_position != MaxSector) {
1772 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1773 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1774 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1775 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1776 		sb->new_level = cpu_to_le32(mddev->new_level);
1777 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1778 	}
1779 
1780 	if (rdev->badblocks.count == 0)
1781 		/* Nothing to do for bad blocks*/ ;
1782 	else if (sb->bblog_offset == 0)
1783 		/* Cannot record bad blocks on this device */
1784 		md_error(mddev, rdev);
1785 	else {
1786 		struct badblocks *bb = &rdev->badblocks;
1787 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1788 		u64 *p = bb->page;
1789 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1790 		if (bb->changed) {
1791 			unsigned seq;
1792 
1793 retry:
1794 			seq = read_seqbegin(&bb->lock);
1795 
1796 			memset(bbp, 0xff, PAGE_SIZE);
1797 
1798 			for (i = 0 ; i < bb->count ; i++) {
1799 				u64 internal_bb = *p++;
1800 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1801 						| BB_LEN(internal_bb));
1802 				*bbp++ = cpu_to_le64(store_bb);
1803 			}
1804 			if (read_seqretry(&bb->lock, seq))
1805 				goto retry;
1806 
1807 			bb->sector = (rdev->sb_start +
1808 				      (int)le32_to_cpu(sb->bblog_offset));
1809 			bb->size = le16_to_cpu(sb->bblog_size);
1810 			bb->changed = 0;
1811 		}
1812 	}
1813 
1814 	max_dev = 0;
1815 	list_for_each_entry(rdev2, &mddev->disks, same_set)
1816 		if (rdev2->desc_nr+1 > max_dev)
1817 			max_dev = rdev2->desc_nr+1;
1818 
1819 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1820 		int bmask;
1821 		sb->max_dev = cpu_to_le32(max_dev);
1822 		rdev->sb_size = max_dev * 2 + 256;
1823 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1824 		if (rdev->sb_size & bmask)
1825 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1826 	} else
1827 		max_dev = le32_to_cpu(sb->max_dev);
1828 
1829 	for (i=0; i<max_dev;i++)
1830 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1831 
1832 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1833 		i = rdev2->desc_nr;
1834 		if (test_bit(Faulty, &rdev2->flags))
1835 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1836 		else if (test_bit(In_sync, &rdev2->flags))
1837 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1838 		else if (rdev2->raid_disk >= 0)
1839 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1840 		else
1841 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1842 	}
1843 
1844 	sb->sb_csum = calc_sb_1_csum(sb);
1845 }
1846 
1847 static unsigned long long
1848 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1849 {
1850 	struct mdp_superblock_1 *sb;
1851 	sector_t max_sectors;
1852 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1853 		return 0; /* component must fit device */
1854 	if (rdev->sb_start < rdev->data_offset) {
1855 		/* minor versions 1 and 2; superblock before data */
1856 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1857 		max_sectors -= rdev->data_offset;
1858 		if (!num_sectors || num_sectors > max_sectors)
1859 			num_sectors = max_sectors;
1860 	} else if (rdev->mddev->bitmap_info.offset) {
1861 		/* minor version 0 with bitmap we can't move */
1862 		return 0;
1863 	} else {
1864 		/* minor version 0; superblock after data */
1865 		sector_t sb_start;
1866 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1867 		sb_start &= ~(sector_t)(4*2 - 1);
1868 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1869 		if (!num_sectors || num_sectors > max_sectors)
1870 			num_sectors = max_sectors;
1871 		rdev->sb_start = sb_start;
1872 	}
1873 	sb = page_address(rdev->sb_page);
1874 	sb->data_size = cpu_to_le64(num_sectors);
1875 	sb->super_offset = rdev->sb_start;
1876 	sb->sb_csum = calc_sb_1_csum(sb);
1877 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1878 		       rdev->sb_page);
1879 	md_super_wait(rdev->mddev);
1880 	return num_sectors;
1881 }
1882 
1883 static struct super_type super_types[] = {
1884 	[0] = {
1885 		.name	= "0.90.0",
1886 		.owner	= THIS_MODULE,
1887 		.load_super	    = super_90_load,
1888 		.validate_super	    = super_90_validate,
1889 		.sync_super	    = super_90_sync,
1890 		.rdev_size_change   = super_90_rdev_size_change,
1891 	},
1892 	[1] = {
1893 		.name	= "md-1",
1894 		.owner	= THIS_MODULE,
1895 		.load_super	    = super_1_load,
1896 		.validate_super	    = super_1_validate,
1897 		.sync_super	    = super_1_sync,
1898 		.rdev_size_change   = super_1_rdev_size_change,
1899 	},
1900 };
1901 
1902 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1903 {
1904 	if (mddev->sync_super) {
1905 		mddev->sync_super(mddev, rdev);
1906 		return;
1907 	}
1908 
1909 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1910 
1911 	super_types[mddev->major_version].sync_super(mddev, rdev);
1912 }
1913 
1914 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1915 {
1916 	struct md_rdev *rdev, *rdev2;
1917 
1918 	rcu_read_lock();
1919 	rdev_for_each_rcu(rdev, mddev1)
1920 		rdev_for_each_rcu(rdev2, mddev2)
1921 			if (rdev->bdev->bd_contains ==
1922 			    rdev2->bdev->bd_contains) {
1923 				rcu_read_unlock();
1924 				return 1;
1925 			}
1926 	rcu_read_unlock();
1927 	return 0;
1928 }
1929 
1930 static LIST_HEAD(pending_raid_disks);
1931 
1932 /*
1933  * Try to register data integrity profile for an mddev
1934  *
1935  * This is called when an array is started and after a disk has been kicked
1936  * from the array. It only succeeds if all working and active component devices
1937  * are integrity capable with matching profiles.
1938  */
1939 int md_integrity_register(struct mddev *mddev)
1940 {
1941 	struct md_rdev *rdev, *reference = NULL;
1942 
1943 	if (list_empty(&mddev->disks))
1944 		return 0; /* nothing to do */
1945 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1946 		return 0; /* shouldn't register, or already is */
1947 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1948 		/* skip spares and non-functional disks */
1949 		if (test_bit(Faulty, &rdev->flags))
1950 			continue;
1951 		if (rdev->raid_disk < 0)
1952 			continue;
1953 		if (!reference) {
1954 			/* Use the first rdev as the reference */
1955 			reference = rdev;
1956 			continue;
1957 		}
1958 		/* does this rdev's profile match the reference profile? */
1959 		if (blk_integrity_compare(reference->bdev->bd_disk,
1960 				rdev->bdev->bd_disk) < 0)
1961 			return -EINVAL;
1962 	}
1963 	if (!reference || !bdev_get_integrity(reference->bdev))
1964 		return 0;
1965 	/*
1966 	 * All component devices are integrity capable and have matching
1967 	 * profiles, register the common profile for the md device.
1968 	 */
1969 	if (blk_integrity_register(mddev->gendisk,
1970 			bdev_get_integrity(reference->bdev)) != 0) {
1971 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1972 			mdname(mddev));
1973 		return -EINVAL;
1974 	}
1975 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1976 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1977 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1978 		       mdname(mddev));
1979 		return -EINVAL;
1980 	}
1981 	return 0;
1982 }
1983 EXPORT_SYMBOL(md_integrity_register);
1984 
1985 /* Disable data integrity if non-capable/non-matching disk is being added */
1986 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1987 {
1988 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1989 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1990 
1991 	if (!bi_mddev) /* nothing to do */
1992 		return;
1993 	if (rdev->raid_disk < 0) /* skip spares */
1994 		return;
1995 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1996 					     rdev->bdev->bd_disk) >= 0)
1997 		return;
1998 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1999 	blk_integrity_unregister(mddev->gendisk);
2000 }
2001 EXPORT_SYMBOL(md_integrity_add_rdev);
2002 
2003 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2004 {
2005 	char b[BDEVNAME_SIZE];
2006 	struct kobject *ko;
2007 	char *s;
2008 	int err;
2009 
2010 	if (rdev->mddev) {
2011 		MD_BUG();
2012 		return -EINVAL;
2013 	}
2014 
2015 	/* prevent duplicates */
2016 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2017 		return -EEXIST;
2018 
2019 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2020 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2021 			rdev->sectors < mddev->dev_sectors)) {
2022 		if (mddev->pers) {
2023 			/* Cannot change size, so fail
2024 			 * If mddev->level <= 0, then we don't care
2025 			 * about aligning sizes (e.g. linear)
2026 			 */
2027 			if (mddev->level > 0)
2028 				return -ENOSPC;
2029 		} else
2030 			mddev->dev_sectors = rdev->sectors;
2031 	}
2032 
2033 	/* Verify rdev->desc_nr is unique.
2034 	 * If it is -1, assign a free number, else
2035 	 * check number is not in use
2036 	 */
2037 	if (rdev->desc_nr < 0) {
2038 		int choice = 0;
2039 		if (mddev->pers) choice = mddev->raid_disks;
2040 		while (find_rdev_nr(mddev, choice))
2041 			choice++;
2042 		rdev->desc_nr = choice;
2043 	} else {
2044 		if (find_rdev_nr(mddev, rdev->desc_nr))
2045 			return -EBUSY;
2046 	}
2047 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2048 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2049 		       mdname(mddev), mddev->max_disks);
2050 		return -EBUSY;
2051 	}
2052 	bdevname(rdev->bdev,b);
2053 	while ( (s=strchr(b, '/')) != NULL)
2054 		*s = '!';
2055 
2056 	rdev->mddev = mddev;
2057 	printk(KERN_INFO "md: bind<%s>\n", b);
2058 
2059 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2060 		goto fail;
2061 
2062 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2063 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2064 		/* failure here is OK */;
2065 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2066 
2067 	list_add_rcu(&rdev->same_set, &mddev->disks);
2068 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2069 
2070 	/* May as well allow recovery to be retried once */
2071 	mddev->recovery_disabled++;
2072 
2073 	return 0;
2074 
2075  fail:
2076 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2077 	       b, mdname(mddev));
2078 	return err;
2079 }
2080 
2081 static void md_delayed_delete(struct work_struct *ws)
2082 {
2083 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2084 	kobject_del(&rdev->kobj);
2085 	kobject_put(&rdev->kobj);
2086 }
2087 
2088 static void unbind_rdev_from_array(struct md_rdev * rdev)
2089 {
2090 	char b[BDEVNAME_SIZE];
2091 	if (!rdev->mddev) {
2092 		MD_BUG();
2093 		return;
2094 	}
2095 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2096 	list_del_rcu(&rdev->same_set);
2097 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2098 	rdev->mddev = NULL;
2099 	sysfs_remove_link(&rdev->kobj, "block");
2100 	sysfs_put(rdev->sysfs_state);
2101 	rdev->sysfs_state = NULL;
2102 	kfree(rdev->badblocks.page);
2103 	rdev->badblocks.count = 0;
2104 	rdev->badblocks.page = NULL;
2105 	/* We need to delay this, otherwise we can deadlock when
2106 	 * writing to 'remove' to "dev/state".  We also need
2107 	 * to delay it due to rcu usage.
2108 	 */
2109 	synchronize_rcu();
2110 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2111 	kobject_get(&rdev->kobj);
2112 	queue_work(md_misc_wq, &rdev->del_work);
2113 }
2114 
2115 /*
2116  * prevent the device from being mounted, repartitioned or
2117  * otherwise reused by a RAID array (or any other kernel
2118  * subsystem), by bd_claiming the device.
2119  */
2120 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2121 {
2122 	int err = 0;
2123 	struct block_device *bdev;
2124 	char b[BDEVNAME_SIZE];
2125 
2126 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2127 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2128 	if (IS_ERR(bdev)) {
2129 		printk(KERN_ERR "md: could not open %s.\n",
2130 			__bdevname(dev, b));
2131 		return PTR_ERR(bdev);
2132 	}
2133 	rdev->bdev = bdev;
2134 	return err;
2135 }
2136 
2137 static void unlock_rdev(struct md_rdev *rdev)
2138 {
2139 	struct block_device *bdev = rdev->bdev;
2140 	rdev->bdev = NULL;
2141 	if (!bdev)
2142 		MD_BUG();
2143 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2144 }
2145 
2146 void md_autodetect_dev(dev_t dev);
2147 
2148 static void export_rdev(struct md_rdev * rdev)
2149 {
2150 	char b[BDEVNAME_SIZE];
2151 	printk(KERN_INFO "md: export_rdev(%s)\n",
2152 		bdevname(rdev->bdev,b));
2153 	if (rdev->mddev)
2154 		MD_BUG();
2155 	free_disk_sb(rdev);
2156 #ifndef MODULE
2157 	if (test_bit(AutoDetected, &rdev->flags))
2158 		md_autodetect_dev(rdev->bdev->bd_dev);
2159 #endif
2160 	unlock_rdev(rdev);
2161 	kobject_put(&rdev->kobj);
2162 }
2163 
2164 static void kick_rdev_from_array(struct md_rdev * rdev)
2165 {
2166 	unbind_rdev_from_array(rdev);
2167 	export_rdev(rdev);
2168 }
2169 
2170 static void export_array(struct mddev *mddev)
2171 {
2172 	struct md_rdev *rdev, *tmp;
2173 
2174 	rdev_for_each(rdev, tmp, mddev) {
2175 		if (!rdev->mddev) {
2176 			MD_BUG();
2177 			continue;
2178 		}
2179 		kick_rdev_from_array(rdev);
2180 	}
2181 	if (!list_empty(&mddev->disks))
2182 		MD_BUG();
2183 	mddev->raid_disks = 0;
2184 	mddev->major_version = 0;
2185 }
2186 
2187 static void print_desc(mdp_disk_t *desc)
2188 {
2189 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2190 		desc->major,desc->minor,desc->raid_disk,desc->state);
2191 }
2192 
2193 static void print_sb_90(mdp_super_t *sb)
2194 {
2195 	int i;
2196 
2197 	printk(KERN_INFO
2198 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2199 		sb->major_version, sb->minor_version, sb->patch_version,
2200 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2201 		sb->ctime);
2202 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2203 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2204 		sb->md_minor, sb->layout, sb->chunk_size);
2205 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2206 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2207 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2208 		sb->failed_disks, sb->spare_disks,
2209 		sb->sb_csum, (unsigned long)sb->events_lo);
2210 
2211 	printk(KERN_INFO);
2212 	for (i = 0; i < MD_SB_DISKS; i++) {
2213 		mdp_disk_t *desc;
2214 
2215 		desc = sb->disks + i;
2216 		if (desc->number || desc->major || desc->minor ||
2217 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2218 			printk("     D %2d: ", i);
2219 			print_desc(desc);
2220 		}
2221 	}
2222 	printk(KERN_INFO "md:     THIS: ");
2223 	print_desc(&sb->this_disk);
2224 }
2225 
2226 static void print_sb_1(struct mdp_superblock_1 *sb)
2227 {
2228 	__u8 *uuid;
2229 
2230 	uuid = sb->set_uuid;
2231 	printk(KERN_INFO
2232 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2233 	       "md:    Name: \"%s\" CT:%llu\n",
2234 		le32_to_cpu(sb->major_version),
2235 		le32_to_cpu(sb->feature_map),
2236 		uuid,
2237 		sb->set_name,
2238 		(unsigned long long)le64_to_cpu(sb->ctime)
2239 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2240 
2241 	uuid = sb->device_uuid;
2242 	printk(KERN_INFO
2243 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2244 			" RO:%llu\n"
2245 	       "md:     Dev:%08x UUID: %pU\n"
2246 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2247 	       "md:         (MaxDev:%u) \n",
2248 		le32_to_cpu(sb->level),
2249 		(unsigned long long)le64_to_cpu(sb->size),
2250 		le32_to_cpu(sb->raid_disks),
2251 		le32_to_cpu(sb->layout),
2252 		le32_to_cpu(sb->chunksize),
2253 		(unsigned long long)le64_to_cpu(sb->data_offset),
2254 		(unsigned long long)le64_to_cpu(sb->data_size),
2255 		(unsigned long long)le64_to_cpu(sb->super_offset),
2256 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2257 		le32_to_cpu(sb->dev_number),
2258 		uuid,
2259 		sb->devflags,
2260 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2261 		(unsigned long long)le64_to_cpu(sb->events),
2262 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2263 		le32_to_cpu(sb->sb_csum),
2264 		le32_to_cpu(sb->max_dev)
2265 		);
2266 }
2267 
2268 static void print_rdev(struct md_rdev *rdev, int major_version)
2269 {
2270 	char b[BDEVNAME_SIZE];
2271 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2272 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2273 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2274 	        rdev->desc_nr);
2275 	if (rdev->sb_loaded) {
2276 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2277 		switch (major_version) {
2278 		case 0:
2279 			print_sb_90(page_address(rdev->sb_page));
2280 			break;
2281 		case 1:
2282 			print_sb_1(page_address(rdev->sb_page));
2283 			break;
2284 		}
2285 	} else
2286 		printk(KERN_INFO "md: no rdev superblock!\n");
2287 }
2288 
2289 static void md_print_devices(void)
2290 {
2291 	struct list_head *tmp;
2292 	struct md_rdev *rdev;
2293 	struct mddev *mddev;
2294 	char b[BDEVNAME_SIZE];
2295 
2296 	printk("\n");
2297 	printk("md:	**********************************\n");
2298 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2299 	printk("md:	**********************************\n");
2300 	for_each_mddev(mddev, tmp) {
2301 
2302 		if (mddev->bitmap)
2303 			bitmap_print_sb(mddev->bitmap);
2304 		else
2305 			printk("%s: ", mdname(mddev));
2306 		list_for_each_entry(rdev, &mddev->disks, same_set)
2307 			printk("<%s>", bdevname(rdev->bdev,b));
2308 		printk("\n");
2309 
2310 		list_for_each_entry(rdev, &mddev->disks, same_set)
2311 			print_rdev(rdev, mddev->major_version);
2312 	}
2313 	printk("md:	**********************************\n");
2314 	printk("\n");
2315 }
2316 
2317 
2318 static void sync_sbs(struct mddev * mddev, int nospares)
2319 {
2320 	/* Update each superblock (in-memory image), but
2321 	 * if we are allowed to, skip spares which already
2322 	 * have the right event counter, or have one earlier
2323 	 * (which would mean they aren't being marked as dirty
2324 	 * with the rest of the array)
2325 	 */
2326 	struct md_rdev *rdev;
2327 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2328 		if (rdev->sb_events == mddev->events ||
2329 		    (nospares &&
2330 		     rdev->raid_disk < 0 &&
2331 		     rdev->sb_events+1 == mddev->events)) {
2332 			/* Don't update this superblock */
2333 			rdev->sb_loaded = 2;
2334 		} else {
2335 			sync_super(mddev, rdev);
2336 			rdev->sb_loaded = 1;
2337 		}
2338 	}
2339 }
2340 
2341 static void md_update_sb(struct mddev * mddev, int force_change)
2342 {
2343 	struct md_rdev *rdev;
2344 	int sync_req;
2345 	int nospares = 0;
2346 	int any_badblocks_changed = 0;
2347 
2348 repeat:
2349 	/* First make sure individual recovery_offsets are correct */
2350 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2351 		if (rdev->raid_disk >= 0 &&
2352 		    mddev->delta_disks >= 0 &&
2353 		    !test_bit(In_sync, &rdev->flags) &&
2354 		    mddev->curr_resync_completed > rdev->recovery_offset)
2355 				rdev->recovery_offset = mddev->curr_resync_completed;
2356 
2357 	}
2358 	if (!mddev->persistent) {
2359 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2360 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2361 		if (!mddev->external) {
2362 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2363 			list_for_each_entry(rdev, &mddev->disks, same_set) {
2364 				if (rdev->badblocks.changed) {
2365 					md_ack_all_badblocks(&rdev->badblocks);
2366 					md_error(mddev, rdev);
2367 				}
2368 				clear_bit(Blocked, &rdev->flags);
2369 				clear_bit(BlockedBadBlocks, &rdev->flags);
2370 				wake_up(&rdev->blocked_wait);
2371 			}
2372 		}
2373 		wake_up(&mddev->sb_wait);
2374 		return;
2375 	}
2376 
2377 	spin_lock_irq(&mddev->write_lock);
2378 
2379 	mddev->utime = get_seconds();
2380 
2381 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2382 		force_change = 1;
2383 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2384 		/* just a clean<-> dirty transition, possibly leave spares alone,
2385 		 * though if events isn't the right even/odd, we will have to do
2386 		 * spares after all
2387 		 */
2388 		nospares = 1;
2389 	if (force_change)
2390 		nospares = 0;
2391 	if (mddev->degraded)
2392 		/* If the array is degraded, then skipping spares is both
2393 		 * dangerous and fairly pointless.
2394 		 * Dangerous because a device that was removed from the array
2395 		 * might have a event_count that still looks up-to-date,
2396 		 * so it can be re-added without a resync.
2397 		 * Pointless because if there are any spares to skip,
2398 		 * then a recovery will happen and soon that array won't
2399 		 * be degraded any more and the spare can go back to sleep then.
2400 		 */
2401 		nospares = 0;
2402 
2403 	sync_req = mddev->in_sync;
2404 
2405 	/* If this is just a dirty<->clean transition, and the array is clean
2406 	 * and 'events' is odd, we can roll back to the previous clean state */
2407 	if (nospares
2408 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2409 	    && mddev->can_decrease_events
2410 	    && mddev->events != 1) {
2411 		mddev->events--;
2412 		mddev->can_decrease_events = 0;
2413 	} else {
2414 		/* otherwise we have to go forward and ... */
2415 		mddev->events ++;
2416 		mddev->can_decrease_events = nospares;
2417 	}
2418 
2419 	if (!mddev->events) {
2420 		/*
2421 		 * oops, this 64-bit counter should never wrap.
2422 		 * Either we are in around ~1 trillion A.C., assuming
2423 		 * 1 reboot per second, or we have a bug:
2424 		 */
2425 		MD_BUG();
2426 		mddev->events --;
2427 	}
2428 
2429 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2430 		if (rdev->badblocks.changed)
2431 			any_badblocks_changed++;
2432 		if (test_bit(Faulty, &rdev->flags))
2433 			set_bit(FaultRecorded, &rdev->flags);
2434 	}
2435 
2436 	sync_sbs(mddev, nospares);
2437 	spin_unlock_irq(&mddev->write_lock);
2438 
2439 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2440 		 mdname(mddev), mddev->in_sync);
2441 
2442 	bitmap_update_sb(mddev->bitmap);
2443 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2444 		char b[BDEVNAME_SIZE];
2445 
2446 		if (rdev->sb_loaded != 1)
2447 			continue; /* no noise on spare devices */
2448 
2449 		if (!test_bit(Faulty, &rdev->flags) &&
2450 		    rdev->saved_raid_disk == -1) {
2451 			md_super_write(mddev,rdev,
2452 				       rdev->sb_start, rdev->sb_size,
2453 				       rdev->sb_page);
2454 			pr_debug("md: (write) %s's sb offset: %llu\n",
2455 				 bdevname(rdev->bdev, b),
2456 				 (unsigned long long)rdev->sb_start);
2457 			rdev->sb_events = mddev->events;
2458 			if (rdev->badblocks.size) {
2459 				md_super_write(mddev, rdev,
2460 					       rdev->badblocks.sector,
2461 					       rdev->badblocks.size << 9,
2462 					       rdev->bb_page);
2463 				rdev->badblocks.size = 0;
2464 			}
2465 
2466 		} else if (test_bit(Faulty, &rdev->flags))
2467 			pr_debug("md: %s (skipping faulty)\n",
2468 				 bdevname(rdev->bdev, b));
2469 		else
2470 			pr_debug("(skipping incremental s/r ");
2471 
2472 		if (mddev->level == LEVEL_MULTIPATH)
2473 			/* only need to write one superblock... */
2474 			break;
2475 	}
2476 	md_super_wait(mddev);
2477 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2478 
2479 	spin_lock_irq(&mddev->write_lock);
2480 	if (mddev->in_sync != sync_req ||
2481 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2482 		/* have to write it out again */
2483 		spin_unlock_irq(&mddev->write_lock);
2484 		goto repeat;
2485 	}
2486 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2487 	spin_unlock_irq(&mddev->write_lock);
2488 	wake_up(&mddev->sb_wait);
2489 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2490 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2491 
2492 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2493 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2494 			clear_bit(Blocked, &rdev->flags);
2495 
2496 		if (any_badblocks_changed)
2497 			md_ack_all_badblocks(&rdev->badblocks);
2498 		clear_bit(BlockedBadBlocks, &rdev->flags);
2499 		wake_up(&rdev->blocked_wait);
2500 	}
2501 }
2502 
2503 /* words written to sysfs files may, or may not, be \n terminated.
2504  * We want to accept with case. For this we use cmd_match.
2505  */
2506 static int cmd_match(const char *cmd, const char *str)
2507 {
2508 	/* See if cmd, written into a sysfs file, matches
2509 	 * str.  They must either be the same, or cmd can
2510 	 * have a trailing newline
2511 	 */
2512 	while (*cmd && *str && *cmd == *str) {
2513 		cmd++;
2514 		str++;
2515 	}
2516 	if (*cmd == '\n')
2517 		cmd++;
2518 	if (*str || *cmd)
2519 		return 0;
2520 	return 1;
2521 }
2522 
2523 struct rdev_sysfs_entry {
2524 	struct attribute attr;
2525 	ssize_t (*show)(struct md_rdev *, char *);
2526 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2527 };
2528 
2529 static ssize_t
2530 state_show(struct md_rdev *rdev, char *page)
2531 {
2532 	char *sep = "";
2533 	size_t len = 0;
2534 
2535 	if (test_bit(Faulty, &rdev->flags) ||
2536 	    rdev->badblocks.unacked_exist) {
2537 		len+= sprintf(page+len, "%sfaulty",sep);
2538 		sep = ",";
2539 	}
2540 	if (test_bit(In_sync, &rdev->flags)) {
2541 		len += sprintf(page+len, "%sin_sync",sep);
2542 		sep = ",";
2543 	}
2544 	if (test_bit(WriteMostly, &rdev->flags)) {
2545 		len += sprintf(page+len, "%swrite_mostly",sep);
2546 		sep = ",";
2547 	}
2548 	if (test_bit(Blocked, &rdev->flags) ||
2549 	    rdev->badblocks.unacked_exist) {
2550 		len += sprintf(page+len, "%sblocked", sep);
2551 		sep = ",";
2552 	}
2553 	if (!test_bit(Faulty, &rdev->flags) &&
2554 	    !test_bit(In_sync, &rdev->flags)) {
2555 		len += sprintf(page+len, "%sspare", sep);
2556 		sep = ",";
2557 	}
2558 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2559 		len += sprintf(page+len, "%swrite_error", sep);
2560 		sep = ",";
2561 	}
2562 	return len+sprintf(page+len, "\n");
2563 }
2564 
2565 static ssize_t
2566 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2567 {
2568 	/* can write
2569 	 *  faulty  - simulates an error
2570 	 *  remove  - disconnects the device
2571 	 *  writemostly - sets write_mostly
2572 	 *  -writemostly - clears write_mostly
2573 	 *  blocked - sets the Blocked flags
2574 	 *  -blocked - clears the Blocked and possibly simulates an error
2575 	 *  insync - sets Insync providing device isn't active
2576 	 *  write_error - sets WriteErrorSeen
2577 	 *  -write_error - clears WriteErrorSeen
2578 	 */
2579 	int err = -EINVAL;
2580 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2581 		md_error(rdev->mddev, rdev);
2582 		if (test_bit(Faulty, &rdev->flags))
2583 			err = 0;
2584 		else
2585 			err = -EBUSY;
2586 	} else if (cmd_match(buf, "remove")) {
2587 		if (rdev->raid_disk >= 0)
2588 			err = -EBUSY;
2589 		else {
2590 			struct mddev *mddev = rdev->mddev;
2591 			kick_rdev_from_array(rdev);
2592 			if (mddev->pers)
2593 				md_update_sb(mddev, 1);
2594 			md_new_event(mddev);
2595 			err = 0;
2596 		}
2597 	} else if (cmd_match(buf, "writemostly")) {
2598 		set_bit(WriteMostly, &rdev->flags);
2599 		err = 0;
2600 	} else if (cmd_match(buf, "-writemostly")) {
2601 		clear_bit(WriteMostly, &rdev->flags);
2602 		err = 0;
2603 	} else if (cmd_match(buf, "blocked")) {
2604 		set_bit(Blocked, &rdev->flags);
2605 		err = 0;
2606 	} else if (cmd_match(buf, "-blocked")) {
2607 		if (!test_bit(Faulty, &rdev->flags) &&
2608 		    rdev->badblocks.unacked_exist) {
2609 			/* metadata handler doesn't understand badblocks,
2610 			 * so we need to fail the device
2611 			 */
2612 			md_error(rdev->mddev, rdev);
2613 		}
2614 		clear_bit(Blocked, &rdev->flags);
2615 		clear_bit(BlockedBadBlocks, &rdev->flags);
2616 		wake_up(&rdev->blocked_wait);
2617 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2618 		md_wakeup_thread(rdev->mddev->thread);
2619 
2620 		err = 0;
2621 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2622 		set_bit(In_sync, &rdev->flags);
2623 		err = 0;
2624 	} else if (cmd_match(buf, "write_error")) {
2625 		set_bit(WriteErrorSeen, &rdev->flags);
2626 		err = 0;
2627 	} else if (cmd_match(buf, "-write_error")) {
2628 		clear_bit(WriteErrorSeen, &rdev->flags);
2629 		err = 0;
2630 	}
2631 	if (!err)
2632 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2633 	return err ? err : len;
2634 }
2635 static struct rdev_sysfs_entry rdev_state =
2636 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2637 
2638 static ssize_t
2639 errors_show(struct md_rdev *rdev, char *page)
2640 {
2641 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2642 }
2643 
2644 static ssize_t
2645 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2646 {
2647 	char *e;
2648 	unsigned long n = simple_strtoul(buf, &e, 10);
2649 	if (*buf && (*e == 0 || *e == '\n')) {
2650 		atomic_set(&rdev->corrected_errors, n);
2651 		return len;
2652 	}
2653 	return -EINVAL;
2654 }
2655 static struct rdev_sysfs_entry rdev_errors =
2656 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2657 
2658 static ssize_t
2659 slot_show(struct md_rdev *rdev, char *page)
2660 {
2661 	if (rdev->raid_disk < 0)
2662 		return sprintf(page, "none\n");
2663 	else
2664 		return sprintf(page, "%d\n", rdev->raid_disk);
2665 }
2666 
2667 static ssize_t
2668 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2669 {
2670 	char *e;
2671 	int err;
2672 	int slot = simple_strtoul(buf, &e, 10);
2673 	if (strncmp(buf, "none", 4)==0)
2674 		slot = -1;
2675 	else if (e==buf || (*e && *e!= '\n'))
2676 		return -EINVAL;
2677 	if (rdev->mddev->pers && slot == -1) {
2678 		/* Setting 'slot' on an active array requires also
2679 		 * updating the 'rd%d' link, and communicating
2680 		 * with the personality with ->hot_*_disk.
2681 		 * For now we only support removing
2682 		 * failed/spare devices.  This normally happens automatically,
2683 		 * but not when the metadata is externally managed.
2684 		 */
2685 		if (rdev->raid_disk == -1)
2686 			return -EEXIST;
2687 		/* personality does all needed checks */
2688 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2689 			return -EINVAL;
2690 		err = rdev->mddev->pers->
2691 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
2692 		if (err)
2693 			return err;
2694 		sysfs_unlink_rdev(rdev->mddev, rdev);
2695 		rdev->raid_disk = -1;
2696 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2697 		md_wakeup_thread(rdev->mddev->thread);
2698 	} else if (rdev->mddev->pers) {
2699 		struct md_rdev *rdev2;
2700 		/* Activating a spare .. or possibly reactivating
2701 		 * if we ever get bitmaps working here.
2702 		 */
2703 
2704 		if (rdev->raid_disk != -1)
2705 			return -EBUSY;
2706 
2707 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2708 			return -EBUSY;
2709 
2710 		if (rdev->mddev->pers->hot_add_disk == NULL)
2711 			return -EINVAL;
2712 
2713 		list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2714 			if (rdev2->raid_disk == slot)
2715 				return -EEXIST;
2716 
2717 		if (slot >= rdev->mddev->raid_disks &&
2718 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2719 			return -ENOSPC;
2720 
2721 		rdev->raid_disk = slot;
2722 		if (test_bit(In_sync, &rdev->flags))
2723 			rdev->saved_raid_disk = slot;
2724 		else
2725 			rdev->saved_raid_disk = -1;
2726 		clear_bit(In_sync, &rdev->flags);
2727 		err = rdev->mddev->pers->
2728 			hot_add_disk(rdev->mddev, rdev);
2729 		if (err) {
2730 			rdev->raid_disk = -1;
2731 			return err;
2732 		} else
2733 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2734 		if (sysfs_link_rdev(rdev->mddev, rdev))
2735 			/* failure here is OK */;
2736 		/* don't wakeup anyone, leave that to userspace. */
2737 	} else {
2738 		if (slot >= rdev->mddev->raid_disks &&
2739 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2740 			return -ENOSPC;
2741 		rdev->raid_disk = slot;
2742 		/* assume it is working */
2743 		clear_bit(Faulty, &rdev->flags);
2744 		clear_bit(WriteMostly, &rdev->flags);
2745 		set_bit(In_sync, &rdev->flags);
2746 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2747 	}
2748 	return len;
2749 }
2750 
2751 
2752 static struct rdev_sysfs_entry rdev_slot =
2753 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2754 
2755 static ssize_t
2756 offset_show(struct md_rdev *rdev, char *page)
2757 {
2758 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2759 }
2760 
2761 static ssize_t
2762 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2763 {
2764 	char *e;
2765 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2766 	if (e==buf || (*e && *e != '\n'))
2767 		return -EINVAL;
2768 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2769 		return -EBUSY;
2770 	if (rdev->sectors && rdev->mddev->external)
2771 		/* Must set offset before size, so overlap checks
2772 		 * can be sane */
2773 		return -EBUSY;
2774 	rdev->data_offset = offset;
2775 	return len;
2776 }
2777 
2778 static struct rdev_sysfs_entry rdev_offset =
2779 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2780 
2781 static ssize_t
2782 rdev_size_show(struct md_rdev *rdev, char *page)
2783 {
2784 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2785 }
2786 
2787 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2788 {
2789 	/* check if two start/length pairs overlap */
2790 	if (s1+l1 <= s2)
2791 		return 0;
2792 	if (s2+l2 <= s1)
2793 		return 0;
2794 	return 1;
2795 }
2796 
2797 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2798 {
2799 	unsigned long long blocks;
2800 	sector_t new;
2801 
2802 	if (strict_strtoull(buf, 10, &blocks) < 0)
2803 		return -EINVAL;
2804 
2805 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2806 		return -EINVAL; /* sector conversion overflow */
2807 
2808 	new = blocks * 2;
2809 	if (new != blocks * 2)
2810 		return -EINVAL; /* unsigned long long to sector_t overflow */
2811 
2812 	*sectors = new;
2813 	return 0;
2814 }
2815 
2816 static ssize_t
2817 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2818 {
2819 	struct mddev *my_mddev = rdev->mddev;
2820 	sector_t oldsectors = rdev->sectors;
2821 	sector_t sectors;
2822 
2823 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2824 		return -EINVAL;
2825 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2826 		if (my_mddev->persistent) {
2827 			sectors = super_types[my_mddev->major_version].
2828 				rdev_size_change(rdev, sectors);
2829 			if (!sectors)
2830 				return -EBUSY;
2831 		} else if (!sectors)
2832 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2833 				rdev->data_offset;
2834 	}
2835 	if (sectors < my_mddev->dev_sectors)
2836 		return -EINVAL; /* component must fit device */
2837 
2838 	rdev->sectors = sectors;
2839 	if (sectors > oldsectors && my_mddev->external) {
2840 		/* need to check that all other rdevs with the same ->bdev
2841 		 * do not overlap.  We need to unlock the mddev to avoid
2842 		 * a deadlock.  We have already changed rdev->sectors, and if
2843 		 * we have to change it back, we will have the lock again.
2844 		 */
2845 		struct mddev *mddev;
2846 		int overlap = 0;
2847 		struct list_head *tmp;
2848 
2849 		mddev_unlock(my_mddev);
2850 		for_each_mddev(mddev, tmp) {
2851 			struct md_rdev *rdev2;
2852 
2853 			mddev_lock(mddev);
2854 			list_for_each_entry(rdev2, &mddev->disks, same_set)
2855 				if (rdev->bdev == rdev2->bdev &&
2856 				    rdev != rdev2 &&
2857 				    overlaps(rdev->data_offset, rdev->sectors,
2858 					     rdev2->data_offset,
2859 					     rdev2->sectors)) {
2860 					overlap = 1;
2861 					break;
2862 				}
2863 			mddev_unlock(mddev);
2864 			if (overlap) {
2865 				mddev_put(mddev);
2866 				break;
2867 			}
2868 		}
2869 		mddev_lock(my_mddev);
2870 		if (overlap) {
2871 			/* Someone else could have slipped in a size
2872 			 * change here, but doing so is just silly.
2873 			 * We put oldsectors back because we *know* it is
2874 			 * safe, and trust userspace not to race with
2875 			 * itself
2876 			 */
2877 			rdev->sectors = oldsectors;
2878 			return -EBUSY;
2879 		}
2880 	}
2881 	return len;
2882 }
2883 
2884 static struct rdev_sysfs_entry rdev_size =
2885 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2886 
2887 
2888 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2889 {
2890 	unsigned long long recovery_start = rdev->recovery_offset;
2891 
2892 	if (test_bit(In_sync, &rdev->flags) ||
2893 	    recovery_start == MaxSector)
2894 		return sprintf(page, "none\n");
2895 
2896 	return sprintf(page, "%llu\n", recovery_start);
2897 }
2898 
2899 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2900 {
2901 	unsigned long long recovery_start;
2902 
2903 	if (cmd_match(buf, "none"))
2904 		recovery_start = MaxSector;
2905 	else if (strict_strtoull(buf, 10, &recovery_start))
2906 		return -EINVAL;
2907 
2908 	if (rdev->mddev->pers &&
2909 	    rdev->raid_disk >= 0)
2910 		return -EBUSY;
2911 
2912 	rdev->recovery_offset = recovery_start;
2913 	if (recovery_start == MaxSector)
2914 		set_bit(In_sync, &rdev->flags);
2915 	else
2916 		clear_bit(In_sync, &rdev->flags);
2917 	return len;
2918 }
2919 
2920 static struct rdev_sysfs_entry rdev_recovery_start =
2921 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2922 
2923 
2924 static ssize_t
2925 badblocks_show(struct badblocks *bb, char *page, int unack);
2926 static ssize_t
2927 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2928 
2929 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2930 {
2931 	return badblocks_show(&rdev->badblocks, page, 0);
2932 }
2933 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2934 {
2935 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2936 	/* Maybe that ack was all we needed */
2937 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2938 		wake_up(&rdev->blocked_wait);
2939 	return rv;
2940 }
2941 static struct rdev_sysfs_entry rdev_bad_blocks =
2942 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2943 
2944 
2945 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2946 {
2947 	return badblocks_show(&rdev->badblocks, page, 1);
2948 }
2949 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2950 {
2951 	return badblocks_store(&rdev->badblocks, page, len, 1);
2952 }
2953 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2954 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2955 
2956 static struct attribute *rdev_default_attrs[] = {
2957 	&rdev_state.attr,
2958 	&rdev_errors.attr,
2959 	&rdev_slot.attr,
2960 	&rdev_offset.attr,
2961 	&rdev_size.attr,
2962 	&rdev_recovery_start.attr,
2963 	&rdev_bad_blocks.attr,
2964 	&rdev_unack_bad_blocks.attr,
2965 	NULL,
2966 };
2967 static ssize_t
2968 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2969 {
2970 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2971 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2972 	struct mddev *mddev = rdev->mddev;
2973 	ssize_t rv;
2974 
2975 	if (!entry->show)
2976 		return -EIO;
2977 
2978 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2979 	if (!rv) {
2980 		if (rdev->mddev == NULL)
2981 			rv = -EBUSY;
2982 		else
2983 			rv = entry->show(rdev, page);
2984 		mddev_unlock(mddev);
2985 	}
2986 	return rv;
2987 }
2988 
2989 static ssize_t
2990 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2991 	      const char *page, size_t length)
2992 {
2993 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2994 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2995 	ssize_t rv;
2996 	struct mddev *mddev = rdev->mddev;
2997 
2998 	if (!entry->store)
2999 		return -EIO;
3000 	if (!capable(CAP_SYS_ADMIN))
3001 		return -EACCES;
3002 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3003 	if (!rv) {
3004 		if (rdev->mddev == NULL)
3005 			rv = -EBUSY;
3006 		else
3007 			rv = entry->store(rdev, page, length);
3008 		mddev_unlock(mddev);
3009 	}
3010 	return rv;
3011 }
3012 
3013 static void rdev_free(struct kobject *ko)
3014 {
3015 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3016 	kfree(rdev);
3017 }
3018 static const struct sysfs_ops rdev_sysfs_ops = {
3019 	.show		= rdev_attr_show,
3020 	.store		= rdev_attr_store,
3021 };
3022 static struct kobj_type rdev_ktype = {
3023 	.release	= rdev_free,
3024 	.sysfs_ops	= &rdev_sysfs_ops,
3025 	.default_attrs	= rdev_default_attrs,
3026 };
3027 
3028 int md_rdev_init(struct md_rdev *rdev)
3029 {
3030 	rdev->desc_nr = -1;
3031 	rdev->saved_raid_disk = -1;
3032 	rdev->raid_disk = -1;
3033 	rdev->flags = 0;
3034 	rdev->data_offset = 0;
3035 	rdev->sb_events = 0;
3036 	rdev->last_read_error.tv_sec  = 0;
3037 	rdev->last_read_error.tv_nsec = 0;
3038 	rdev->sb_loaded = 0;
3039 	rdev->bb_page = NULL;
3040 	atomic_set(&rdev->nr_pending, 0);
3041 	atomic_set(&rdev->read_errors, 0);
3042 	atomic_set(&rdev->corrected_errors, 0);
3043 
3044 	INIT_LIST_HEAD(&rdev->same_set);
3045 	init_waitqueue_head(&rdev->blocked_wait);
3046 
3047 	/* Add space to store bad block list.
3048 	 * This reserves the space even on arrays where it cannot
3049 	 * be used - I wonder if that matters
3050 	 */
3051 	rdev->badblocks.count = 0;
3052 	rdev->badblocks.shift = 0;
3053 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3054 	seqlock_init(&rdev->badblocks.lock);
3055 	if (rdev->badblocks.page == NULL)
3056 		return -ENOMEM;
3057 
3058 	return 0;
3059 }
3060 EXPORT_SYMBOL_GPL(md_rdev_init);
3061 /*
3062  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3063  *
3064  * mark the device faulty if:
3065  *
3066  *   - the device is nonexistent (zero size)
3067  *   - the device has no valid superblock
3068  *
3069  * a faulty rdev _never_ has rdev->sb set.
3070  */
3071 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3072 {
3073 	char b[BDEVNAME_SIZE];
3074 	int err;
3075 	struct md_rdev *rdev;
3076 	sector_t size;
3077 
3078 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3079 	if (!rdev) {
3080 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3081 		return ERR_PTR(-ENOMEM);
3082 	}
3083 
3084 	err = md_rdev_init(rdev);
3085 	if (err)
3086 		goto abort_free;
3087 	err = alloc_disk_sb(rdev);
3088 	if (err)
3089 		goto abort_free;
3090 
3091 	err = lock_rdev(rdev, newdev, super_format == -2);
3092 	if (err)
3093 		goto abort_free;
3094 
3095 	kobject_init(&rdev->kobj, &rdev_ktype);
3096 
3097 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3098 	if (!size) {
3099 		printk(KERN_WARNING
3100 			"md: %s has zero or unknown size, marking faulty!\n",
3101 			bdevname(rdev->bdev,b));
3102 		err = -EINVAL;
3103 		goto abort_free;
3104 	}
3105 
3106 	if (super_format >= 0) {
3107 		err = super_types[super_format].
3108 			load_super(rdev, NULL, super_minor);
3109 		if (err == -EINVAL) {
3110 			printk(KERN_WARNING
3111 				"md: %s does not have a valid v%d.%d "
3112 			       "superblock, not importing!\n",
3113 				bdevname(rdev->bdev,b),
3114 			       super_format, super_minor);
3115 			goto abort_free;
3116 		}
3117 		if (err < 0) {
3118 			printk(KERN_WARNING
3119 				"md: could not read %s's sb, not importing!\n",
3120 				bdevname(rdev->bdev,b));
3121 			goto abort_free;
3122 		}
3123 	}
3124 	if (super_format == -1)
3125 		/* hot-add for 0.90, or non-persistent: so no badblocks */
3126 		rdev->badblocks.shift = -1;
3127 
3128 	return rdev;
3129 
3130 abort_free:
3131 	if (rdev->bdev)
3132 		unlock_rdev(rdev);
3133 	free_disk_sb(rdev);
3134 	kfree(rdev->badblocks.page);
3135 	kfree(rdev);
3136 	return ERR_PTR(err);
3137 }
3138 
3139 /*
3140  * Check a full RAID array for plausibility
3141  */
3142 
3143 
3144 static void analyze_sbs(struct mddev * mddev)
3145 {
3146 	int i;
3147 	struct md_rdev *rdev, *freshest, *tmp;
3148 	char b[BDEVNAME_SIZE];
3149 
3150 	freshest = NULL;
3151 	rdev_for_each(rdev, tmp, mddev)
3152 		switch (super_types[mddev->major_version].
3153 			load_super(rdev, freshest, mddev->minor_version)) {
3154 		case 1:
3155 			freshest = rdev;
3156 			break;
3157 		case 0:
3158 			break;
3159 		default:
3160 			printk( KERN_ERR \
3161 				"md: fatal superblock inconsistency in %s"
3162 				" -- removing from array\n",
3163 				bdevname(rdev->bdev,b));
3164 			kick_rdev_from_array(rdev);
3165 		}
3166 
3167 
3168 	super_types[mddev->major_version].
3169 		validate_super(mddev, freshest);
3170 
3171 	i = 0;
3172 	rdev_for_each(rdev, tmp, mddev) {
3173 		if (mddev->max_disks &&
3174 		    (rdev->desc_nr >= mddev->max_disks ||
3175 		     i > mddev->max_disks)) {
3176 			printk(KERN_WARNING
3177 			       "md: %s: %s: only %d devices permitted\n",
3178 			       mdname(mddev), bdevname(rdev->bdev, b),
3179 			       mddev->max_disks);
3180 			kick_rdev_from_array(rdev);
3181 			continue;
3182 		}
3183 		if (rdev != freshest)
3184 			if (super_types[mddev->major_version].
3185 			    validate_super(mddev, rdev)) {
3186 				printk(KERN_WARNING "md: kicking non-fresh %s"
3187 					" from array!\n",
3188 					bdevname(rdev->bdev,b));
3189 				kick_rdev_from_array(rdev);
3190 				continue;
3191 			}
3192 		if (mddev->level == LEVEL_MULTIPATH) {
3193 			rdev->desc_nr = i++;
3194 			rdev->raid_disk = rdev->desc_nr;
3195 			set_bit(In_sync, &rdev->flags);
3196 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3197 			rdev->raid_disk = -1;
3198 			clear_bit(In_sync, &rdev->flags);
3199 		}
3200 	}
3201 }
3202 
3203 /* Read a fixed-point number.
3204  * Numbers in sysfs attributes should be in "standard" units where
3205  * possible, so time should be in seconds.
3206  * However we internally use a a much smaller unit such as
3207  * milliseconds or jiffies.
3208  * This function takes a decimal number with a possible fractional
3209  * component, and produces an integer which is the result of
3210  * multiplying that number by 10^'scale'.
3211  * all without any floating-point arithmetic.
3212  */
3213 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3214 {
3215 	unsigned long result = 0;
3216 	long decimals = -1;
3217 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3218 		if (*cp == '.')
3219 			decimals = 0;
3220 		else if (decimals < scale) {
3221 			unsigned int value;
3222 			value = *cp - '0';
3223 			result = result * 10 + value;
3224 			if (decimals >= 0)
3225 				decimals++;
3226 		}
3227 		cp++;
3228 	}
3229 	if (*cp == '\n')
3230 		cp++;
3231 	if (*cp)
3232 		return -EINVAL;
3233 	if (decimals < 0)
3234 		decimals = 0;
3235 	while (decimals < scale) {
3236 		result *= 10;
3237 		decimals ++;
3238 	}
3239 	*res = result;
3240 	return 0;
3241 }
3242 
3243 
3244 static void md_safemode_timeout(unsigned long data);
3245 
3246 static ssize_t
3247 safe_delay_show(struct mddev *mddev, char *page)
3248 {
3249 	int msec = (mddev->safemode_delay*1000)/HZ;
3250 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3251 }
3252 static ssize_t
3253 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3254 {
3255 	unsigned long msec;
3256 
3257 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3258 		return -EINVAL;
3259 	if (msec == 0)
3260 		mddev->safemode_delay = 0;
3261 	else {
3262 		unsigned long old_delay = mddev->safemode_delay;
3263 		mddev->safemode_delay = (msec*HZ)/1000;
3264 		if (mddev->safemode_delay == 0)
3265 			mddev->safemode_delay = 1;
3266 		if (mddev->safemode_delay < old_delay)
3267 			md_safemode_timeout((unsigned long)mddev);
3268 	}
3269 	return len;
3270 }
3271 static struct md_sysfs_entry md_safe_delay =
3272 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3273 
3274 static ssize_t
3275 level_show(struct mddev *mddev, char *page)
3276 {
3277 	struct md_personality *p = mddev->pers;
3278 	if (p)
3279 		return sprintf(page, "%s\n", p->name);
3280 	else if (mddev->clevel[0])
3281 		return sprintf(page, "%s\n", mddev->clevel);
3282 	else if (mddev->level != LEVEL_NONE)
3283 		return sprintf(page, "%d\n", mddev->level);
3284 	else
3285 		return 0;
3286 }
3287 
3288 static ssize_t
3289 level_store(struct mddev *mddev, const char *buf, size_t len)
3290 {
3291 	char clevel[16];
3292 	ssize_t rv = len;
3293 	struct md_personality *pers;
3294 	long level;
3295 	void *priv;
3296 	struct md_rdev *rdev;
3297 
3298 	if (mddev->pers == NULL) {
3299 		if (len == 0)
3300 			return 0;
3301 		if (len >= sizeof(mddev->clevel))
3302 			return -ENOSPC;
3303 		strncpy(mddev->clevel, buf, len);
3304 		if (mddev->clevel[len-1] == '\n')
3305 			len--;
3306 		mddev->clevel[len] = 0;
3307 		mddev->level = LEVEL_NONE;
3308 		return rv;
3309 	}
3310 
3311 	/* request to change the personality.  Need to ensure:
3312 	 *  - array is not engaged in resync/recovery/reshape
3313 	 *  - old personality can be suspended
3314 	 *  - new personality will access other array.
3315 	 */
3316 
3317 	if (mddev->sync_thread ||
3318 	    mddev->reshape_position != MaxSector ||
3319 	    mddev->sysfs_active)
3320 		return -EBUSY;
3321 
3322 	if (!mddev->pers->quiesce) {
3323 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3324 		       mdname(mddev), mddev->pers->name);
3325 		return -EINVAL;
3326 	}
3327 
3328 	/* Now find the new personality */
3329 	if (len == 0 || len >= sizeof(clevel))
3330 		return -EINVAL;
3331 	strncpy(clevel, buf, len);
3332 	if (clevel[len-1] == '\n')
3333 		len--;
3334 	clevel[len] = 0;
3335 	if (strict_strtol(clevel, 10, &level))
3336 		level = LEVEL_NONE;
3337 
3338 	if (request_module("md-%s", clevel) != 0)
3339 		request_module("md-level-%s", clevel);
3340 	spin_lock(&pers_lock);
3341 	pers = find_pers(level, clevel);
3342 	if (!pers || !try_module_get(pers->owner)) {
3343 		spin_unlock(&pers_lock);
3344 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3345 		return -EINVAL;
3346 	}
3347 	spin_unlock(&pers_lock);
3348 
3349 	if (pers == mddev->pers) {
3350 		/* Nothing to do! */
3351 		module_put(pers->owner);
3352 		return rv;
3353 	}
3354 	if (!pers->takeover) {
3355 		module_put(pers->owner);
3356 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3357 		       mdname(mddev), clevel);
3358 		return -EINVAL;
3359 	}
3360 
3361 	list_for_each_entry(rdev, &mddev->disks, same_set)
3362 		rdev->new_raid_disk = rdev->raid_disk;
3363 
3364 	/* ->takeover must set new_* and/or delta_disks
3365 	 * if it succeeds, and may set them when it fails.
3366 	 */
3367 	priv = pers->takeover(mddev);
3368 	if (IS_ERR(priv)) {
3369 		mddev->new_level = mddev->level;
3370 		mddev->new_layout = mddev->layout;
3371 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3372 		mddev->raid_disks -= mddev->delta_disks;
3373 		mddev->delta_disks = 0;
3374 		module_put(pers->owner);
3375 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3376 		       mdname(mddev), clevel);
3377 		return PTR_ERR(priv);
3378 	}
3379 
3380 	/* Looks like we have a winner */
3381 	mddev_suspend(mddev);
3382 	mddev->pers->stop(mddev);
3383 
3384 	if (mddev->pers->sync_request == NULL &&
3385 	    pers->sync_request != NULL) {
3386 		/* need to add the md_redundancy_group */
3387 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3388 			printk(KERN_WARNING
3389 			       "md: cannot register extra attributes for %s\n",
3390 			       mdname(mddev));
3391 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3392 	}
3393 	if (mddev->pers->sync_request != NULL &&
3394 	    pers->sync_request == NULL) {
3395 		/* need to remove the md_redundancy_group */
3396 		if (mddev->to_remove == NULL)
3397 			mddev->to_remove = &md_redundancy_group;
3398 	}
3399 
3400 	if (mddev->pers->sync_request == NULL &&
3401 	    mddev->external) {
3402 		/* We are converting from a no-redundancy array
3403 		 * to a redundancy array and metadata is managed
3404 		 * externally so we need to be sure that writes
3405 		 * won't block due to a need to transition
3406 		 *      clean->dirty
3407 		 * until external management is started.
3408 		 */
3409 		mddev->in_sync = 0;
3410 		mddev->safemode_delay = 0;
3411 		mddev->safemode = 0;
3412 	}
3413 
3414 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3415 		if (rdev->raid_disk < 0)
3416 			continue;
3417 		if (rdev->new_raid_disk >= mddev->raid_disks)
3418 			rdev->new_raid_disk = -1;
3419 		if (rdev->new_raid_disk == rdev->raid_disk)
3420 			continue;
3421 		sysfs_unlink_rdev(mddev, rdev);
3422 	}
3423 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3424 		if (rdev->raid_disk < 0)
3425 			continue;
3426 		if (rdev->new_raid_disk == rdev->raid_disk)
3427 			continue;
3428 		rdev->raid_disk = rdev->new_raid_disk;
3429 		if (rdev->raid_disk < 0)
3430 			clear_bit(In_sync, &rdev->flags);
3431 		else {
3432 			if (sysfs_link_rdev(mddev, rdev))
3433 				printk(KERN_WARNING "md: cannot register rd%d"
3434 				       " for %s after level change\n",
3435 				       rdev->raid_disk, mdname(mddev));
3436 		}
3437 	}
3438 
3439 	module_put(mddev->pers->owner);
3440 	mddev->pers = pers;
3441 	mddev->private = priv;
3442 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3443 	mddev->level = mddev->new_level;
3444 	mddev->layout = mddev->new_layout;
3445 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3446 	mddev->delta_disks = 0;
3447 	mddev->degraded = 0;
3448 	if (mddev->pers->sync_request == NULL) {
3449 		/* this is now an array without redundancy, so
3450 		 * it must always be in_sync
3451 		 */
3452 		mddev->in_sync = 1;
3453 		del_timer_sync(&mddev->safemode_timer);
3454 	}
3455 	pers->run(mddev);
3456 	mddev_resume(mddev);
3457 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3458 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3459 	md_wakeup_thread(mddev->thread);
3460 	sysfs_notify(&mddev->kobj, NULL, "level");
3461 	md_new_event(mddev);
3462 	return rv;
3463 }
3464 
3465 static struct md_sysfs_entry md_level =
3466 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3467 
3468 
3469 static ssize_t
3470 layout_show(struct mddev *mddev, char *page)
3471 {
3472 	/* just a number, not meaningful for all levels */
3473 	if (mddev->reshape_position != MaxSector &&
3474 	    mddev->layout != mddev->new_layout)
3475 		return sprintf(page, "%d (%d)\n",
3476 			       mddev->new_layout, mddev->layout);
3477 	return sprintf(page, "%d\n", mddev->layout);
3478 }
3479 
3480 static ssize_t
3481 layout_store(struct mddev *mddev, const char *buf, size_t len)
3482 {
3483 	char *e;
3484 	unsigned long n = simple_strtoul(buf, &e, 10);
3485 
3486 	if (!*buf || (*e && *e != '\n'))
3487 		return -EINVAL;
3488 
3489 	if (mddev->pers) {
3490 		int err;
3491 		if (mddev->pers->check_reshape == NULL)
3492 			return -EBUSY;
3493 		mddev->new_layout = n;
3494 		err = mddev->pers->check_reshape(mddev);
3495 		if (err) {
3496 			mddev->new_layout = mddev->layout;
3497 			return err;
3498 		}
3499 	} else {
3500 		mddev->new_layout = n;
3501 		if (mddev->reshape_position == MaxSector)
3502 			mddev->layout = n;
3503 	}
3504 	return len;
3505 }
3506 static struct md_sysfs_entry md_layout =
3507 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3508 
3509 
3510 static ssize_t
3511 raid_disks_show(struct mddev *mddev, char *page)
3512 {
3513 	if (mddev->raid_disks == 0)
3514 		return 0;
3515 	if (mddev->reshape_position != MaxSector &&
3516 	    mddev->delta_disks != 0)
3517 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3518 			       mddev->raid_disks - mddev->delta_disks);
3519 	return sprintf(page, "%d\n", mddev->raid_disks);
3520 }
3521 
3522 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3523 
3524 static ssize_t
3525 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3526 {
3527 	char *e;
3528 	int rv = 0;
3529 	unsigned long n = simple_strtoul(buf, &e, 10);
3530 
3531 	if (!*buf || (*e && *e != '\n'))
3532 		return -EINVAL;
3533 
3534 	if (mddev->pers)
3535 		rv = update_raid_disks(mddev, n);
3536 	else if (mddev->reshape_position != MaxSector) {
3537 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3538 		mddev->delta_disks = n - olddisks;
3539 		mddev->raid_disks = n;
3540 	} else
3541 		mddev->raid_disks = n;
3542 	return rv ? rv : len;
3543 }
3544 static struct md_sysfs_entry md_raid_disks =
3545 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3546 
3547 static ssize_t
3548 chunk_size_show(struct mddev *mddev, char *page)
3549 {
3550 	if (mddev->reshape_position != MaxSector &&
3551 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3552 		return sprintf(page, "%d (%d)\n",
3553 			       mddev->new_chunk_sectors << 9,
3554 			       mddev->chunk_sectors << 9);
3555 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3556 }
3557 
3558 static ssize_t
3559 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3560 {
3561 	char *e;
3562 	unsigned long n = simple_strtoul(buf, &e, 10);
3563 
3564 	if (!*buf || (*e && *e != '\n'))
3565 		return -EINVAL;
3566 
3567 	if (mddev->pers) {
3568 		int err;
3569 		if (mddev->pers->check_reshape == NULL)
3570 			return -EBUSY;
3571 		mddev->new_chunk_sectors = n >> 9;
3572 		err = mddev->pers->check_reshape(mddev);
3573 		if (err) {
3574 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3575 			return err;
3576 		}
3577 	} else {
3578 		mddev->new_chunk_sectors = n >> 9;
3579 		if (mddev->reshape_position == MaxSector)
3580 			mddev->chunk_sectors = n >> 9;
3581 	}
3582 	return len;
3583 }
3584 static struct md_sysfs_entry md_chunk_size =
3585 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3586 
3587 static ssize_t
3588 resync_start_show(struct mddev *mddev, char *page)
3589 {
3590 	if (mddev->recovery_cp == MaxSector)
3591 		return sprintf(page, "none\n");
3592 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3593 }
3594 
3595 static ssize_t
3596 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3597 {
3598 	char *e;
3599 	unsigned long long n = simple_strtoull(buf, &e, 10);
3600 
3601 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3602 		return -EBUSY;
3603 	if (cmd_match(buf, "none"))
3604 		n = MaxSector;
3605 	else if (!*buf || (*e && *e != '\n'))
3606 		return -EINVAL;
3607 
3608 	mddev->recovery_cp = n;
3609 	return len;
3610 }
3611 static struct md_sysfs_entry md_resync_start =
3612 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3613 
3614 /*
3615  * The array state can be:
3616  *
3617  * clear
3618  *     No devices, no size, no level
3619  *     Equivalent to STOP_ARRAY ioctl
3620  * inactive
3621  *     May have some settings, but array is not active
3622  *        all IO results in error
3623  *     When written, doesn't tear down array, but just stops it
3624  * suspended (not supported yet)
3625  *     All IO requests will block. The array can be reconfigured.
3626  *     Writing this, if accepted, will block until array is quiescent
3627  * readonly
3628  *     no resync can happen.  no superblocks get written.
3629  *     write requests fail
3630  * read-auto
3631  *     like readonly, but behaves like 'clean' on a write request.
3632  *
3633  * clean - no pending writes, but otherwise active.
3634  *     When written to inactive array, starts without resync
3635  *     If a write request arrives then
3636  *       if metadata is known, mark 'dirty' and switch to 'active'.
3637  *       if not known, block and switch to write-pending
3638  *     If written to an active array that has pending writes, then fails.
3639  * active
3640  *     fully active: IO and resync can be happening.
3641  *     When written to inactive array, starts with resync
3642  *
3643  * write-pending
3644  *     clean, but writes are blocked waiting for 'active' to be written.
3645  *
3646  * active-idle
3647  *     like active, but no writes have been seen for a while (100msec).
3648  *
3649  */
3650 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3651 		   write_pending, active_idle, bad_word};
3652 static char *array_states[] = {
3653 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3654 	"write-pending", "active-idle", NULL };
3655 
3656 static int match_word(const char *word, char **list)
3657 {
3658 	int n;
3659 	for (n=0; list[n]; n++)
3660 		if (cmd_match(word, list[n]))
3661 			break;
3662 	return n;
3663 }
3664 
3665 static ssize_t
3666 array_state_show(struct mddev *mddev, char *page)
3667 {
3668 	enum array_state st = inactive;
3669 
3670 	if (mddev->pers)
3671 		switch(mddev->ro) {
3672 		case 1:
3673 			st = readonly;
3674 			break;
3675 		case 2:
3676 			st = read_auto;
3677 			break;
3678 		case 0:
3679 			if (mddev->in_sync)
3680 				st = clean;
3681 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3682 				st = write_pending;
3683 			else if (mddev->safemode)
3684 				st = active_idle;
3685 			else
3686 				st = active;
3687 		}
3688 	else {
3689 		if (list_empty(&mddev->disks) &&
3690 		    mddev->raid_disks == 0 &&
3691 		    mddev->dev_sectors == 0)
3692 			st = clear;
3693 		else
3694 			st = inactive;
3695 	}
3696 	return sprintf(page, "%s\n", array_states[st]);
3697 }
3698 
3699 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3700 static int md_set_readonly(struct mddev * mddev, int is_open);
3701 static int do_md_run(struct mddev * mddev);
3702 static int restart_array(struct mddev *mddev);
3703 
3704 static ssize_t
3705 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3706 {
3707 	int err = -EINVAL;
3708 	enum array_state st = match_word(buf, array_states);
3709 	switch(st) {
3710 	case bad_word:
3711 		break;
3712 	case clear:
3713 		/* stopping an active array */
3714 		if (atomic_read(&mddev->openers) > 0)
3715 			return -EBUSY;
3716 		err = do_md_stop(mddev, 0, 0);
3717 		break;
3718 	case inactive:
3719 		/* stopping an active array */
3720 		if (mddev->pers) {
3721 			if (atomic_read(&mddev->openers) > 0)
3722 				return -EBUSY;
3723 			err = do_md_stop(mddev, 2, 0);
3724 		} else
3725 			err = 0; /* already inactive */
3726 		break;
3727 	case suspended:
3728 		break; /* not supported yet */
3729 	case readonly:
3730 		if (mddev->pers)
3731 			err = md_set_readonly(mddev, 0);
3732 		else {
3733 			mddev->ro = 1;
3734 			set_disk_ro(mddev->gendisk, 1);
3735 			err = do_md_run(mddev);
3736 		}
3737 		break;
3738 	case read_auto:
3739 		if (mddev->pers) {
3740 			if (mddev->ro == 0)
3741 				err = md_set_readonly(mddev, 0);
3742 			else if (mddev->ro == 1)
3743 				err = restart_array(mddev);
3744 			if (err == 0) {
3745 				mddev->ro = 2;
3746 				set_disk_ro(mddev->gendisk, 0);
3747 			}
3748 		} else {
3749 			mddev->ro = 2;
3750 			err = do_md_run(mddev);
3751 		}
3752 		break;
3753 	case clean:
3754 		if (mddev->pers) {
3755 			restart_array(mddev);
3756 			spin_lock_irq(&mddev->write_lock);
3757 			if (atomic_read(&mddev->writes_pending) == 0) {
3758 				if (mddev->in_sync == 0) {
3759 					mddev->in_sync = 1;
3760 					if (mddev->safemode == 1)
3761 						mddev->safemode = 0;
3762 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3763 				}
3764 				err = 0;
3765 			} else
3766 				err = -EBUSY;
3767 			spin_unlock_irq(&mddev->write_lock);
3768 		} else
3769 			err = -EINVAL;
3770 		break;
3771 	case active:
3772 		if (mddev->pers) {
3773 			restart_array(mddev);
3774 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3775 			wake_up(&mddev->sb_wait);
3776 			err = 0;
3777 		} else {
3778 			mddev->ro = 0;
3779 			set_disk_ro(mddev->gendisk, 0);
3780 			err = do_md_run(mddev);
3781 		}
3782 		break;
3783 	case write_pending:
3784 	case active_idle:
3785 		/* these cannot be set */
3786 		break;
3787 	}
3788 	if (err)
3789 		return err;
3790 	else {
3791 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3792 		return len;
3793 	}
3794 }
3795 static struct md_sysfs_entry md_array_state =
3796 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3797 
3798 static ssize_t
3799 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3800 	return sprintf(page, "%d\n",
3801 		       atomic_read(&mddev->max_corr_read_errors));
3802 }
3803 
3804 static ssize_t
3805 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3806 {
3807 	char *e;
3808 	unsigned long n = simple_strtoul(buf, &e, 10);
3809 
3810 	if (*buf && (*e == 0 || *e == '\n')) {
3811 		atomic_set(&mddev->max_corr_read_errors, n);
3812 		return len;
3813 	}
3814 	return -EINVAL;
3815 }
3816 
3817 static struct md_sysfs_entry max_corr_read_errors =
3818 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3819 	max_corrected_read_errors_store);
3820 
3821 static ssize_t
3822 null_show(struct mddev *mddev, char *page)
3823 {
3824 	return -EINVAL;
3825 }
3826 
3827 static ssize_t
3828 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3829 {
3830 	/* buf must be %d:%d\n? giving major and minor numbers */
3831 	/* The new device is added to the array.
3832 	 * If the array has a persistent superblock, we read the
3833 	 * superblock to initialise info and check validity.
3834 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3835 	 * which mainly checks size.
3836 	 */
3837 	char *e;
3838 	int major = simple_strtoul(buf, &e, 10);
3839 	int minor;
3840 	dev_t dev;
3841 	struct md_rdev *rdev;
3842 	int err;
3843 
3844 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3845 		return -EINVAL;
3846 	minor = simple_strtoul(e+1, &e, 10);
3847 	if (*e && *e != '\n')
3848 		return -EINVAL;
3849 	dev = MKDEV(major, minor);
3850 	if (major != MAJOR(dev) ||
3851 	    minor != MINOR(dev))
3852 		return -EOVERFLOW;
3853 
3854 
3855 	if (mddev->persistent) {
3856 		rdev = md_import_device(dev, mddev->major_version,
3857 					mddev->minor_version);
3858 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3859 			struct md_rdev *rdev0
3860 				= list_entry(mddev->disks.next,
3861 					     struct md_rdev, same_set);
3862 			err = super_types[mddev->major_version]
3863 				.load_super(rdev, rdev0, mddev->minor_version);
3864 			if (err < 0)
3865 				goto out;
3866 		}
3867 	} else if (mddev->external)
3868 		rdev = md_import_device(dev, -2, -1);
3869 	else
3870 		rdev = md_import_device(dev, -1, -1);
3871 
3872 	if (IS_ERR(rdev))
3873 		return PTR_ERR(rdev);
3874 	err = bind_rdev_to_array(rdev, mddev);
3875  out:
3876 	if (err)
3877 		export_rdev(rdev);
3878 	return err ? err : len;
3879 }
3880 
3881 static struct md_sysfs_entry md_new_device =
3882 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3883 
3884 static ssize_t
3885 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3886 {
3887 	char *end;
3888 	unsigned long chunk, end_chunk;
3889 
3890 	if (!mddev->bitmap)
3891 		goto out;
3892 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3893 	while (*buf) {
3894 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3895 		if (buf == end) break;
3896 		if (*end == '-') { /* range */
3897 			buf = end + 1;
3898 			end_chunk = simple_strtoul(buf, &end, 0);
3899 			if (buf == end) break;
3900 		}
3901 		if (*end && !isspace(*end)) break;
3902 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3903 		buf = skip_spaces(end);
3904 	}
3905 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3906 out:
3907 	return len;
3908 }
3909 
3910 static struct md_sysfs_entry md_bitmap =
3911 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3912 
3913 static ssize_t
3914 size_show(struct mddev *mddev, char *page)
3915 {
3916 	return sprintf(page, "%llu\n",
3917 		(unsigned long long)mddev->dev_sectors / 2);
3918 }
3919 
3920 static int update_size(struct mddev *mddev, sector_t num_sectors);
3921 
3922 static ssize_t
3923 size_store(struct mddev *mddev, const char *buf, size_t len)
3924 {
3925 	/* If array is inactive, we can reduce the component size, but
3926 	 * not increase it (except from 0).
3927 	 * If array is active, we can try an on-line resize
3928 	 */
3929 	sector_t sectors;
3930 	int err = strict_blocks_to_sectors(buf, &sectors);
3931 
3932 	if (err < 0)
3933 		return err;
3934 	if (mddev->pers) {
3935 		err = update_size(mddev, sectors);
3936 		md_update_sb(mddev, 1);
3937 	} else {
3938 		if (mddev->dev_sectors == 0 ||
3939 		    mddev->dev_sectors > sectors)
3940 			mddev->dev_sectors = sectors;
3941 		else
3942 			err = -ENOSPC;
3943 	}
3944 	return err ? err : len;
3945 }
3946 
3947 static struct md_sysfs_entry md_size =
3948 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3949 
3950 
3951 /* Metdata version.
3952  * This is one of
3953  *   'none' for arrays with no metadata (good luck...)
3954  *   'external' for arrays with externally managed metadata,
3955  * or N.M for internally known formats
3956  */
3957 static ssize_t
3958 metadata_show(struct mddev *mddev, char *page)
3959 {
3960 	if (mddev->persistent)
3961 		return sprintf(page, "%d.%d\n",
3962 			       mddev->major_version, mddev->minor_version);
3963 	else if (mddev->external)
3964 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3965 	else
3966 		return sprintf(page, "none\n");
3967 }
3968 
3969 static ssize_t
3970 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3971 {
3972 	int major, minor;
3973 	char *e;
3974 	/* Changing the details of 'external' metadata is
3975 	 * always permitted.  Otherwise there must be
3976 	 * no devices attached to the array.
3977 	 */
3978 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3979 		;
3980 	else if (!list_empty(&mddev->disks))
3981 		return -EBUSY;
3982 
3983 	if (cmd_match(buf, "none")) {
3984 		mddev->persistent = 0;
3985 		mddev->external = 0;
3986 		mddev->major_version = 0;
3987 		mddev->minor_version = 90;
3988 		return len;
3989 	}
3990 	if (strncmp(buf, "external:", 9) == 0) {
3991 		size_t namelen = len-9;
3992 		if (namelen >= sizeof(mddev->metadata_type))
3993 			namelen = sizeof(mddev->metadata_type)-1;
3994 		strncpy(mddev->metadata_type, buf+9, namelen);
3995 		mddev->metadata_type[namelen] = 0;
3996 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3997 			mddev->metadata_type[--namelen] = 0;
3998 		mddev->persistent = 0;
3999 		mddev->external = 1;
4000 		mddev->major_version = 0;
4001 		mddev->minor_version = 90;
4002 		return len;
4003 	}
4004 	major = simple_strtoul(buf, &e, 10);
4005 	if (e==buf || *e != '.')
4006 		return -EINVAL;
4007 	buf = e+1;
4008 	minor = simple_strtoul(buf, &e, 10);
4009 	if (e==buf || (*e && *e != '\n') )
4010 		return -EINVAL;
4011 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4012 		return -ENOENT;
4013 	mddev->major_version = major;
4014 	mddev->minor_version = minor;
4015 	mddev->persistent = 1;
4016 	mddev->external = 0;
4017 	return len;
4018 }
4019 
4020 static struct md_sysfs_entry md_metadata =
4021 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4022 
4023 static ssize_t
4024 action_show(struct mddev *mddev, char *page)
4025 {
4026 	char *type = "idle";
4027 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4028 		type = "frozen";
4029 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4030 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4031 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4032 			type = "reshape";
4033 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4034 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4035 				type = "resync";
4036 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4037 				type = "check";
4038 			else
4039 				type = "repair";
4040 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4041 			type = "recover";
4042 	}
4043 	return sprintf(page, "%s\n", type);
4044 }
4045 
4046 static void reap_sync_thread(struct mddev *mddev);
4047 
4048 static ssize_t
4049 action_store(struct mddev *mddev, const char *page, size_t len)
4050 {
4051 	if (!mddev->pers || !mddev->pers->sync_request)
4052 		return -EINVAL;
4053 
4054 	if (cmd_match(page, "frozen"))
4055 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4056 	else
4057 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4058 
4059 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4060 		if (mddev->sync_thread) {
4061 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4062 			reap_sync_thread(mddev);
4063 		}
4064 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4065 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4066 		return -EBUSY;
4067 	else if (cmd_match(page, "resync"))
4068 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4069 	else if (cmd_match(page, "recover")) {
4070 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4071 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4072 	} else if (cmd_match(page, "reshape")) {
4073 		int err;
4074 		if (mddev->pers->start_reshape == NULL)
4075 			return -EINVAL;
4076 		err = mddev->pers->start_reshape(mddev);
4077 		if (err)
4078 			return err;
4079 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4080 	} else {
4081 		if (cmd_match(page, "check"))
4082 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4083 		else if (!cmd_match(page, "repair"))
4084 			return -EINVAL;
4085 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4086 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4087 	}
4088 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4089 	md_wakeup_thread(mddev->thread);
4090 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4091 	return len;
4092 }
4093 
4094 static ssize_t
4095 mismatch_cnt_show(struct mddev *mddev, char *page)
4096 {
4097 	return sprintf(page, "%llu\n",
4098 		       (unsigned long long) mddev->resync_mismatches);
4099 }
4100 
4101 static struct md_sysfs_entry md_scan_mode =
4102 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4103 
4104 
4105 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4106 
4107 static ssize_t
4108 sync_min_show(struct mddev *mddev, char *page)
4109 {
4110 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4111 		       mddev->sync_speed_min ? "local": "system");
4112 }
4113 
4114 static ssize_t
4115 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4116 {
4117 	int min;
4118 	char *e;
4119 	if (strncmp(buf, "system", 6)==0) {
4120 		mddev->sync_speed_min = 0;
4121 		return len;
4122 	}
4123 	min = simple_strtoul(buf, &e, 10);
4124 	if (buf == e || (*e && *e != '\n') || min <= 0)
4125 		return -EINVAL;
4126 	mddev->sync_speed_min = min;
4127 	return len;
4128 }
4129 
4130 static struct md_sysfs_entry md_sync_min =
4131 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4132 
4133 static ssize_t
4134 sync_max_show(struct mddev *mddev, char *page)
4135 {
4136 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4137 		       mddev->sync_speed_max ? "local": "system");
4138 }
4139 
4140 static ssize_t
4141 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4142 {
4143 	int max;
4144 	char *e;
4145 	if (strncmp(buf, "system", 6)==0) {
4146 		mddev->sync_speed_max = 0;
4147 		return len;
4148 	}
4149 	max = simple_strtoul(buf, &e, 10);
4150 	if (buf == e || (*e && *e != '\n') || max <= 0)
4151 		return -EINVAL;
4152 	mddev->sync_speed_max = max;
4153 	return len;
4154 }
4155 
4156 static struct md_sysfs_entry md_sync_max =
4157 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4158 
4159 static ssize_t
4160 degraded_show(struct mddev *mddev, char *page)
4161 {
4162 	return sprintf(page, "%d\n", mddev->degraded);
4163 }
4164 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4165 
4166 static ssize_t
4167 sync_force_parallel_show(struct mddev *mddev, char *page)
4168 {
4169 	return sprintf(page, "%d\n", mddev->parallel_resync);
4170 }
4171 
4172 static ssize_t
4173 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4174 {
4175 	long n;
4176 
4177 	if (strict_strtol(buf, 10, &n))
4178 		return -EINVAL;
4179 
4180 	if (n != 0 && n != 1)
4181 		return -EINVAL;
4182 
4183 	mddev->parallel_resync = n;
4184 
4185 	if (mddev->sync_thread)
4186 		wake_up(&resync_wait);
4187 
4188 	return len;
4189 }
4190 
4191 /* force parallel resync, even with shared block devices */
4192 static struct md_sysfs_entry md_sync_force_parallel =
4193 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4194        sync_force_parallel_show, sync_force_parallel_store);
4195 
4196 static ssize_t
4197 sync_speed_show(struct mddev *mddev, char *page)
4198 {
4199 	unsigned long resync, dt, db;
4200 	if (mddev->curr_resync == 0)
4201 		return sprintf(page, "none\n");
4202 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4203 	dt = (jiffies - mddev->resync_mark) / HZ;
4204 	if (!dt) dt++;
4205 	db = resync - mddev->resync_mark_cnt;
4206 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4207 }
4208 
4209 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4210 
4211 static ssize_t
4212 sync_completed_show(struct mddev *mddev, char *page)
4213 {
4214 	unsigned long long max_sectors, resync;
4215 
4216 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4217 		return sprintf(page, "none\n");
4218 
4219 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4220 		max_sectors = mddev->resync_max_sectors;
4221 	else
4222 		max_sectors = mddev->dev_sectors;
4223 
4224 	resync = mddev->curr_resync_completed;
4225 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4226 }
4227 
4228 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4229 
4230 static ssize_t
4231 min_sync_show(struct mddev *mddev, char *page)
4232 {
4233 	return sprintf(page, "%llu\n",
4234 		       (unsigned long long)mddev->resync_min);
4235 }
4236 static ssize_t
4237 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4238 {
4239 	unsigned long long min;
4240 	if (strict_strtoull(buf, 10, &min))
4241 		return -EINVAL;
4242 	if (min > mddev->resync_max)
4243 		return -EINVAL;
4244 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4245 		return -EBUSY;
4246 
4247 	/* Must be a multiple of chunk_size */
4248 	if (mddev->chunk_sectors) {
4249 		sector_t temp = min;
4250 		if (sector_div(temp, mddev->chunk_sectors))
4251 			return -EINVAL;
4252 	}
4253 	mddev->resync_min = min;
4254 
4255 	return len;
4256 }
4257 
4258 static struct md_sysfs_entry md_min_sync =
4259 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4260 
4261 static ssize_t
4262 max_sync_show(struct mddev *mddev, char *page)
4263 {
4264 	if (mddev->resync_max == MaxSector)
4265 		return sprintf(page, "max\n");
4266 	else
4267 		return sprintf(page, "%llu\n",
4268 			       (unsigned long long)mddev->resync_max);
4269 }
4270 static ssize_t
4271 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4272 {
4273 	if (strncmp(buf, "max", 3) == 0)
4274 		mddev->resync_max = MaxSector;
4275 	else {
4276 		unsigned long long max;
4277 		if (strict_strtoull(buf, 10, &max))
4278 			return -EINVAL;
4279 		if (max < mddev->resync_min)
4280 			return -EINVAL;
4281 		if (max < mddev->resync_max &&
4282 		    mddev->ro == 0 &&
4283 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4284 			return -EBUSY;
4285 
4286 		/* Must be a multiple of chunk_size */
4287 		if (mddev->chunk_sectors) {
4288 			sector_t temp = max;
4289 			if (sector_div(temp, mddev->chunk_sectors))
4290 				return -EINVAL;
4291 		}
4292 		mddev->resync_max = max;
4293 	}
4294 	wake_up(&mddev->recovery_wait);
4295 	return len;
4296 }
4297 
4298 static struct md_sysfs_entry md_max_sync =
4299 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4300 
4301 static ssize_t
4302 suspend_lo_show(struct mddev *mddev, char *page)
4303 {
4304 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4305 }
4306 
4307 static ssize_t
4308 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4309 {
4310 	char *e;
4311 	unsigned long long new = simple_strtoull(buf, &e, 10);
4312 	unsigned long long old = mddev->suspend_lo;
4313 
4314 	if (mddev->pers == NULL ||
4315 	    mddev->pers->quiesce == NULL)
4316 		return -EINVAL;
4317 	if (buf == e || (*e && *e != '\n'))
4318 		return -EINVAL;
4319 
4320 	mddev->suspend_lo = new;
4321 	if (new >= old)
4322 		/* Shrinking suspended region */
4323 		mddev->pers->quiesce(mddev, 2);
4324 	else {
4325 		/* Expanding suspended region - need to wait */
4326 		mddev->pers->quiesce(mddev, 1);
4327 		mddev->pers->quiesce(mddev, 0);
4328 	}
4329 	return len;
4330 }
4331 static struct md_sysfs_entry md_suspend_lo =
4332 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4333 
4334 
4335 static ssize_t
4336 suspend_hi_show(struct mddev *mddev, char *page)
4337 {
4338 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4339 }
4340 
4341 static ssize_t
4342 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4343 {
4344 	char *e;
4345 	unsigned long long new = simple_strtoull(buf, &e, 10);
4346 	unsigned long long old = mddev->suspend_hi;
4347 
4348 	if (mddev->pers == NULL ||
4349 	    mddev->pers->quiesce == NULL)
4350 		return -EINVAL;
4351 	if (buf == e || (*e && *e != '\n'))
4352 		return -EINVAL;
4353 
4354 	mddev->suspend_hi = new;
4355 	if (new <= old)
4356 		/* Shrinking suspended region */
4357 		mddev->pers->quiesce(mddev, 2);
4358 	else {
4359 		/* Expanding suspended region - need to wait */
4360 		mddev->pers->quiesce(mddev, 1);
4361 		mddev->pers->quiesce(mddev, 0);
4362 	}
4363 	return len;
4364 }
4365 static struct md_sysfs_entry md_suspend_hi =
4366 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4367 
4368 static ssize_t
4369 reshape_position_show(struct mddev *mddev, char *page)
4370 {
4371 	if (mddev->reshape_position != MaxSector)
4372 		return sprintf(page, "%llu\n",
4373 			       (unsigned long long)mddev->reshape_position);
4374 	strcpy(page, "none\n");
4375 	return 5;
4376 }
4377 
4378 static ssize_t
4379 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4380 {
4381 	char *e;
4382 	unsigned long long new = simple_strtoull(buf, &e, 10);
4383 	if (mddev->pers)
4384 		return -EBUSY;
4385 	if (buf == e || (*e && *e != '\n'))
4386 		return -EINVAL;
4387 	mddev->reshape_position = new;
4388 	mddev->delta_disks = 0;
4389 	mddev->new_level = mddev->level;
4390 	mddev->new_layout = mddev->layout;
4391 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4392 	return len;
4393 }
4394 
4395 static struct md_sysfs_entry md_reshape_position =
4396 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4397        reshape_position_store);
4398 
4399 static ssize_t
4400 array_size_show(struct mddev *mddev, char *page)
4401 {
4402 	if (mddev->external_size)
4403 		return sprintf(page, "%llu\n",
4404 			       (unsigned long long)mddev->array_sectors/2);
4405 	else
4406 		return sprintf(page, "default\n");
4407 }
4408 
4409 static ssize_t
4410 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4411 {
4412 	sector_t sectors;
4413 
4414 	if (strncmp(buf, "default", 7) == 0) {
4415 		if (mddev->pers)
4416 			sectors = mddev->pers->size(mddev, 0, 0);
4417 		else
4418 			sectors = mddev->array_sectors;
4419 
4420 		mddev->external_size = 0;
4421 	} else {
4422 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4423 			return -EINVAL;
4424 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4425 			return -E2BIG;
4426 
4427 		mddev->external_size = 1;
4428 	}
4429 
4430 	mddev->array_sectors = sectors;
4431 	if (mddev->pers) {
4432 		set_capacity(mddev->gendisk, mddev->array_sectors);
4433 		revalidate_disk(mddev->gendisk);
4434 	}
4435 	return len;
4436 }
4437 
4438 static struct md_sysfs_entry md_array_size =
4439 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4440        array_size_store);
4441 
4442 static struct attribute *md_default_attrs[] = {
4443 	&md_level.attr,
4444 	&md_layout.attr,
4445 	&md_raid_disks.attr,
4446 	&md_chunk_size.attr,
4447 	&md_size.attr,
4448 	&md_resync_start.attr,
4449 	&md_metadata.attr,
4450 	&md_new_device.attr,
4451 	&md_safe_delay.attr,
4452 	&md_array_state.attr,
4453 	&md_reshape_position.attr,
4454 	&md_array_size.attr,
4455 	&max_corr_read_errors.attr,
4456 	NULL,
4457 };
4458 
4459 static struct attribute *md_redundancy_attrs[] = {
4460 	&md_scan_mode.attr,
4461 	&md_mismatches.attr,
4462 	&md_sync_min.attr,
4463 	&md_sync_max.attr,
4464 	&md_sync_speed.attr,
4465 	&md_sync_force_parallel.attr,
4466 	&md_sync_completed.attr,
4467 	&md_min_sync.attr,
4468 	&md_max_sync.attr,
4469 	&md_suspend_lo.attr,
4470 	&md_suspend_hi.attr,
4471 	&md_bitmap.attr,
4472 	&md_degraded.attr,
4473 	NULL,
4474 };
4475 static struct attribute_group md_redundancy_group = {
4476 	.name = NULL,
4477 	.attrs = md_redundancy_attrs,
4478 };
4479 
4480 
4481 static ssize_t
4482 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4483 {
4484 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4485 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4486 	ssize_t rv;
4487 
4488 	if (!entry->show)
4489 		return -EIO;
4490 	rv = mddev_lock(mddev);
4491 	if (!rv) {
4492 		rv = entry->show(mddev, page);
4493 		mddev_unlock(mddev);
4494 	}
4495 	return rv;
4496 }
4497 
4498 static ssize_t
4499 md_attr_store(struct kobject *kobj, struct attribute *attr,
4500 	      const char *page, size_t length)
4501 {
4502 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4503 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4504 	ssize_t rv;
4505 
4506 	if (!entry->store)
4507 		return -EIO;
4508 	if (!capable(CAP_SYS_ADMIN))
4509 		return -EACCES;
4510 	rv = mddev_lock(mddev);
4511 	if (mddev->hold_active == UNTIL_IOCTL)
4512 		mddev->hold_active = 0;
4513 	if (!rv) {
4514 		rv = entry->store(mddev, page, length);
4515 		mddev_unlock(mddev);
4516 	}
4517 	return rv;
4518 }
4519 
4520 static void md_free(struct kobject *ko)
4521 {
4522 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4523 
4524 	if (mddev->sysfs_state)
4525 		sysfs_put(mddev->sysfs_state);
4526 
4527 	if (mddev->gendisk) {
4528 		del_gendisk(mddev->gendisk);
4529 		put_disk(mddev->gendisk);
4530 	}
4531 	if (mddev->queue)
4532 		blk_cleanup_queue(mddev->queue);
4533 
4534 	kfree(mddev);
4535 }
4536 
4537 static const struct sysfs_ops md_sysfs_ops = {
4538 	.show	= md_attr_show,
4539 	.store	= md_attr_store,
4540 };
4541 static struct kobj_type md_ktype = {
4542 	.release	= md_free,
4543 	.sysfs_ops	= &md_sysfs_ops,
4544 	.default_attrs	= md_default_attrs,
4545 };
4546 
4547 int mdp_major = 0;
4548 
4549 static void mddev_delayed_delete(struct work_struct *ws)
4550 {
4551 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4552 
4553 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4554 	kobject_del(&mddev->kobj);
4555 	kobject_put(&mddev->kobj);
4556 }
4557 
4558 static int md_alloc(dev_t dev, char *name)
4559 {
4560 	static DEFINE_MUTEX(disks_mutex);
4561 	struct mddev *mddev = mddev_find(dev);
4562 	struct gendisk *disk;
4563 	int partitioned;
4564 	int shift;
4565 	int unit;
4566 	int error;
4567 
4568 	if (!mddev)
4569 		return -ENODEV;
4570 
4571 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4572 	shift = partitioned ? MdpMinorShift : 0;
4573 	unit = MINOR(mddev->unit) >> shift;
4574 
4575 	/* wait for any previous instance of this device to be
4576 	 * completely removed (mddev_delayed_delete).
4577 	 */
4578 	flush_workqueue(md_misc_wq);
4579 
4580 	mutex_lock(&disks_mutex);
4581 	error = -EEXIST;
4582 	if (mddev->gendisk)
4583 		goto abort;
4584 
4585 	if (name) {
4586 		/* Need to ensure that 'name' is not a duplicate.
4587 		 */
4588 		struct mddev *mddev2;
4589 		spin_lock(&all_mddevs_lock);
4590 
4591 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4592 			if (mddev2->gendisk &&
4593 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4594 				spin_unlock(&all_mddevs_lock);
4595 				goto abort;
4596 			}
4597 		spin_unlock(&all_mddevs_lock);
4598 	}
4599 
4600 	error = -ENOMEM;
4601 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4602 	if (!mddev->queue)
4603 		goto abort;
4604 	mddev->queue->queuedata = mddev;
4605 
4606 	blk_queue_make_request(mddev->queue, md_make_request);
4607 
4608 	disk = alloc_disk(1 << shift);
4609 	if (!disk) {
4610 		blk_cleanup_queue(mddev->queue);
4611 		mddev->queue = NULL;
4612 		goto abort;
4613 	}
4614 	disk->major = MAJOR(mddev->unit);
4615 	disk->first_minor = unit << shift;
4616 	if (name)
4617 		strcpy(disk->disk_name, name);
4618 	else if (partitioned)
4619 		sprintf(disk->disk_name, "md_d%d", unit);
4620 	else
4621 		sprintf(disk->disk_name, "md%d", unit);
4622 	disk->fops = &md_fops;
4623 	disk->private_data = mddev;
4624 	disk->queue = mddev->queue;
4625 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4626 	/* Allow extended partitions.  This makes the
4627 	 * 'mdp' device redundant, but we can't really
4628 	 * remove it now.
4629 	 */
4630 	disk->flags |= GENHD_FL_EXT_DEVT;
4631 	mddev->gendisk = disk;
4632 	/* As soon as we call add_disk(), another thread could get
4633 	 * through to md_open, so make sure it doesn't get too far
4634 	 */
4635 	mutex_lock(&mddev->open_mutex);
4636 	add_disk(disk);
4637 
4638 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4639 				     &disk_to_dev(disk)->kobj, "%s", "md");
4640 	if (error) {
4641 		/* This isn't possible, but as kobject_init_and_add is marked
4642 		 * __must_check, we must do something with the result
4643 		 */
4644 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4645 		       disk->disk_name);
4646 		error = 0;
4647 	}
4648 	if (mddev->kobj.sd &&
4649 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4650 		printk(KERN_DEBUG "pointless warning\n");
4651 	mutex_unlock(&mddev->open_mutex);
4652  abort:
4653 	mutex_unlock(&disks_mutex);
4654 	if (!error && mddev->kobj.sd) {
4655 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4656 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4657 	}
4658 	mddev_put(mddev);
4659 	return error;
4660 }
4661 
4662 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4663 {
4664 	md_alloc(dev, NULL);
4665 	return NULL;
4666 }
4667 
4668 static int add_named_array(const char *val, struct kernel_param *kp)
4669 {
4670 	/* val must be "md_*" where * is not all digits.
4671 	 * We allocate an array with a large free minor number, and
4672 	 * set the name to val.  val must not already be an active name.
4673 	 */
4674 	int len = strlen(val);
4675 	char buf[DISK_NAME_LEN];
4676 
4677 	while (len && val[len-1] == '\n')
4678 		len--;
4679 	if (len >= DISK_NAME_LEN)
4680 		return -E2BIG;
4681 	strlcpy(buf, val, len+1);
4682 	if (strncmp(buf, "md_", 3) != 0)
4683 		return -EINVAL;
4684 	return md_alloc(0, buf);
4685 }
4686 
4687 static void md_safemode_timeout(unsigned long data)
4688 {
4689 	struct mddev *mddev = (struct mddev *) data;
4690 
4691 	if (!atomic_read(&mddev->writes_pending)) {
4692 		mddev->safemode = 1;
4693 		if (mddev->external)
4694 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4695 	}
4696 	md_wakeup_thread(mddev->thread);
4697 }
4698 
4699 static int start_dirty_degraded;
4700 
4701 int md_run(struct mddev *mddev)
4702 {
4703 	int err;
4704 	struct md_rdev *rdev;
4705 	struct md_personality *pers;
4706 
4707 	if (list_empty(&mddev->disks))
4708 		/* cannot run an array with no devices.. */
4709 		return -EINVAL;
4710 
4711 	if (mddev->pers)
4712 		return -EBUSY;
4713 	/* Cannot run until previous stop completes properly */
4714 	if (mddev->sysfs_active)
4715 		return -EBUSY;
4716 
4717 	/*
4718 	 * Analyze all RAID superblock(s)
4719 	 */
4720 	if (!mddev->raid_disks) {
4721 		if (!mddev->persistent)
4722 			return -EINVAL;
4723 		analyze_sbs(mddev);
4724 	}
4725 
4726 	if (mddev->level != LEVEL_NONE)
4727 		request_module("md-level-%d", mddev->level);
4728 	else if (mddev->clevel[0])
4729 		request_module("md-%s", mddev->clevel);
4730 
4731 	/*
4732 	 * Drop all container device buffers, from now on
4733 	 * the only valid external interface is through the md
4734 	 * device.
4735 	 */
4736 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4737 		if (test_bit(Faulty, &rdev->flags))
4738 			continue;
4739 		sync_blockdev(rdev->bdev);
4740 		invalidate_bdev(rdev->bdev);
4741 
4742 		/* perform some consistency tests on the device.
4743 		 * We don't want the data to overlap the metadata,
4744 		 * Internal Bitmap issues have been handled elsewhere.
4745 		 */
4746 		if (rdev->meta_bdev) {
4747 			/* Nothing to check */;
4748 		} else if (rdev->data_offset < rdev->sb_start) {
4749 			if (mddev->dev_sectors &&
4750 			    rdev->data_offset + mddev->dev_sectors
4751 			    > rdev->sb_start) {
4752 				printk("md: %s: data overlaps metadata\n",
4753 				       mdname(mddev));
4754 				return -EINVAL;
4755 			}
4756 		} else {
4757 			if (rdev->sb_start + rdev->sb_size/512
4758 			    > rdev->data_offset) {
4759 				printk("md: %s: metadata overlaps data\n",
4760 				       mdname(mddev));
4761 				return -EINVAL;
4762 			}
4763 		}
4764 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4765 	}
4766 
4767 	if (mddev->bio_set == NULL)
4768 		mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4769 					       sizeof(struct mddev *));
4770 
4771 	spin_lock(&pers_lock);
4772 	pers = find_pers(mddev->level, mddev->clevel);
4773 	if (!pers || !try_module_get(pers->owner)) {
4774 		spin_unlock(&pers_lock);
4775 		if (mddev->level != LEVEL_NONE)
4776 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4777 			       mddev->level);
4778 		else
4779 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4780 			       mddev->clevel);
4781 		return -EINVAL;
4782 	}
4783 	mddev->pers = pers;
4784 	spin_unlock(&pers_lock);
4785 	if (mddev->level != pers->level) {
4786 		mddev->level = pers->level;
4787 		mddev->new_level = pers->level;
4788 	}
4789 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4790 
4791 	if (mddev->reshape_position != MaxSector &&
4792 	    pers->start_reshape == NULL) {
4793 		/* This personality cannot handle reshaping... */
4794 		mddev->pers = NULL;
4795 		module_put(pers->owner);
4796 		return -EINVAL;
4797 	}
4798 
4799 	if (pers->sync_request) {
4800 		/* Warn if this is a potentially silly
4801 		 * configuration.
4802 		 */
4803 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4804 		struct md_rdev *rdev2;
4805 		int warned = 0;
4806 
4807 		list_for_each_entry(rdev, &mddev->disks, same_set)
4808 			list_for_each_entry(rdev2, &mddev->disks, same_set) {
4809 				if (rdev < rdev2 &&
4810 				    rdev->bdev->bd_contains ==
4811 				    rdev2->bdev->bd_contains) {
4812 					printk(KERN_WARNING
4813 					       "%s: WARNING: %s appears to be"
4814 					       " on the same physical disk as"
4815 					       " %s.\n",
4816 					       mdname(mddev),
4817 					       bdevname(rdev->bdev,b),
4818 					       bdevname(rdev2->bdev,b2));
4819 					warned = 1;
4820 				}
4821 			}
4822 
4823 		if (warned)
4824 			printk(KERN_WARNING
4825 			       "True protection against single-disk"
4826 			       " failure might be compromised.\n");
4827 	}
4828 
4829 	mddev->recovery = 0;
4830 	/* may be over-ridden by personality */
4831 	mddev->resync_max_sectors = mddev->dev_sectors;
4832 
4833 	mddev->ok_start_degraded = start_dirty_degraded;
4834 
4835 	if (start_readonly && mddev->ro == 0)
4836 		mddev->ro = 2; /* read-only, but switch on first write */
4837 
4838 	err = mddev->pers->run(mddev);
4839 	if (err)
4840 		printk(KERN_ERR "md: pers->run() failed ...\n");
4841 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4842 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4843 			  " but 'external_size' not in effect?\n", __func__);
4844 		printk(KERN_ERR
4845 		       "md: invalid array_size %llu > default size %llu\n",
4846 		       (unsigned long long)mddev->array_sectors / 2,
4847 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4848 		err = -EINVAL;
4849 		mddev->pers->stop(mddev);
4850 	}
4851 	if (err == 0 && mddev->pers->sync_request) {
4852 		err = bitmap_create(mddev);
4853 		if (err) {
4854 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4855 			       mdname(mddev), err);
4856 			mddev->pers->stop(mddev);
4857 		}
4858 	}
4859 	if (err) {
4860 		module_put(mddev->pers->owner);
4861 		mddev->pers = NULL;
4862 		bitmap_destroy(mddev);
4863 		return err;
4864 	}
4865 	if (mddev->pers->sync_request) {
4866 		if (mddev->kobj.sd &&
4867 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4868 			printk(KERN_WARNING
4869 			       "md: cannot register extra attributes for %s\n",
4870 			       mdname(mddev));
4871 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4872 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4873 		mddev->ro = 0;
4874 
4875  	atomic_set(&mddev->writes_pending,0);
4876 	atomic_set(&mddev->max_corr_read_errors,
4877 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4878 	mddev->safemode = 0;
4879 	mddev->safemode_timer.function = md_safemode_timeout;
4880 	mddev->safemode_timer.data = (unsigned long) mddev;
4881 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4882 	mddev->in_sync = 1;
4883 	smp_wmb();
4884 	mddev->ready = 1;
4885 	list_for_each_entry(rdev, &mddev->disks, same_set)
4886 		if (rdev->raid_disk >= 0)
4887 			if (sysfs_link_rdev(mddev, rdev))
4888 				/* failure here is OK */;
4889 
4890 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4891 
4892 	if (mddev->flags)
4893 		md_update_sb(mddev, 0);
4894 
4895 	md_new_event(mddev);
4896 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4897 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4898 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4899 	return 0;
4900 }
4901 EXPORT_SYMBOL_GPL(md_run);
4902 
4903 static int do_md_run(struct mddev *mddev)
4904 {
4905 	int err;
4906 
4907 	err = md_run(mddev);
4908 	if (err)
4909 		goto out;
4910 	err = bitmap_load(mddev);
4911 	if (err) {
4912 		bitmap_destroy(mddev);
4913 		goto out;
4914 	}
4915 
4916 	md_wakeup_thread(mddev->thread);
4917 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4918 
4919 	set_capacity(mddev->gendisk, mddev->array_sectors);
4920 	revalidate_disk(mddev->gendisk);
4921 	mddev->changed = 1;
4922 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4923 out:
4924 	return err;
4925 }
4926 
4927 static int restart_array(struct mddev *mddev)
4928 {
4929 	struct gendisk *disk = mddev->gendisk;
4930 
4931 	/* Complain if it has no devices */
4932 	if (list_empty(&mddev->disks))
4933 		return -ENXIO;
4934 	if (!mddev->pers)
4935 		return -EINVAL;
4936 	if (!mddev->ro)
4937 		return -EBUSY;
4938 	mddev->safemode = 0;
4939 	mddev->ro = 0;
4940 	set_disk_ro(disk, 0);
4941 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4942 		mdname(mddev));
4943 	/* Kick recovery or resync if necessary */
4944 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4945 	md_wakeup_thread(mddev->thread);
4946 	md_wakeup_thread(mddev->sync_thread);
4947 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4948 	return 0;
4949 }
4950 
4951 /* similar to deny_write_access, but accounts for our holding a reference
4952  * to the file ourselves */
4953 static int deny_bitmap_write_access(struct file * file)
4954 {
4955 	struct inode *inode = file->f_mapping->host;
4956 
4957 	spin_lock(&inode->i_lock);
4958 	if (atomic_read(&inode->i_writecount) > 1) {
4959 		spin_unlock(&inode->i_lock);
4960 		return -ETXTBSY;
4961 	}
4962 	atomic_set(&inode->i_writecount, -1);
4963 	spin_unlock(&inode->i_lock);
4964 
4965 	return 0;
4966 }
4967 
4968 void restore_bitmap_write_access(struct file *file)
4969 {
4970 	struct inode *inode = file->f_mapping->host;
4971 
4972 	spin_lock(&inode->i_lock);
4973 	atomic_set(&inode->i_writecount, 1);
4974 	spin_unlock(&inode->i_lock);
4975 }
4976 
4977 static void md_clean(struct mddev *mddev)
4978 {
4979 	mddev->array_sectors = 0;
4980 	mddev->external_size = 0;
4981 	mddev->dev_sectors = 0;
4982 	mddev->raid_disks = 0;
4983 	mddev->recovery_cp = 0;
4984 	mddev->resync_min = 0;
4985 	mddev->resync_max = MaxSector;
4986 	mddev->reshape_position = MaxSector;
4987 	mddev->external = 0;
4988 	mddev->persistent = 0;
4989 	mddev->level = LEVEL_NONE;
4990 	mddev->clevel[0] = 0;
4991 	mddev->flags = 0;
4992 	mddev->ro = 0;
4993 	mddev->metadata_type[0] = 0;
4994 	mddev->chunk_sectors = 0;
4995 	mddev->ctime = mddev->utime = 0;
4996 	mddev->layout = 0;
4997 	mddev->max_disks = 0;
4998 	mddev->events = 0;
4999 	mddev->can_decrease_events = 0;
5000 	mddev->delta_disks = 0;
5001 	mddev->new_level = LEVEL_NONE;
5002 	mddev->new_layout = 0;
5003 	mddev->new_chunk_sectors = 0;
5004 	mddev->curr_resync = 0;
5005 	mddev->resync_mismatches = 0;
5006 	mddev->suspend_lo = mddev->suspend_hi = 0;
5007 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5008 	mddev->recovery = 0;
5009 	mddev->in_sync = 0;
5010 	mddev->changed = 0;
5011 	mddev->degraded = 0;
5012 	mddev->safemode = 0;
5013 	mddev->bitmap_info.offset = 0;
5014 	mddev->bitmap_info.default_offset = 0;
5015 	mddev->bitmap_info.chunksize = 0;
5016 	mddev->bitmap_info.daemon_sleep = 0;
5017 	mddev->bitmap_info.max_write_behind = 0;
5018 }
5019 
5020 static void __md_stop_writes(struct mddev *mddev)
5021 {
5022 	if (mddev->sync_thread) {
5023 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5024 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5025 		reap_sync_thread(mddev);
5026 	}
5027 
5028 	del_timer_sync(&mddev->safemode_timer);
5029 
5030 	bitmap_flush(mddev);
5031 	md_super_wait(mddev);
5032 
5033 	if (!mddev->in_sync || mddev->flags) {
5034 		/* mark array as shutdown cleanly */
5035 		mddev->in_sync = 1;
5036 		md_update_sb(mddev, 1);
5037 	}
5038 }
5039 
5040 void md_stop_writes(struct mddev *mddev)
5041 {
5042 	mddev_lock(mddev);
5043 	__md_stop_writes(mddev);
5044 	mddev_unlock(mddev);
5045 }
5046 EXPORT_SYMBOL_GPL(md_stop_writes);
5047 
5048 void md_stop(struct mddev *mddev)
5049 {
5050 	mddev->ready = 0;
5051 	mddev->pers->stop(mddev);
5052 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5053 		mddev->to_remove = &md_redundancy_group;
5054 	module_put(mddev->pers->owner);
5055 	mddev->pers = NULL;
5056 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5057 }
5058 EXPORT_SYMBOL_GPL(md_stop);
5059 
5060 static int md_set_readonly(struct mddev *mddev, int is_open)
5061 {
5062 	int err = 0;
5063 	mutex_lock(&mddev->open_mutex);
5064 	if (atomic_read(&mddev->openers) > is_open) {
5065 		printk("md: %s still in use.\n",mdname(mddev));
5066 		err = -EBUSY;
5067 		goto out;
5068 	}
5069 	if (mddev->pers) {
5070 		__md_stop_writes(mddev);
5071 
5072 		err  = -ENXIO;
5073 		if (mddev->ro==1)
5074 			goto out;
5075 		mddev->ro = 1;
5076 		set_disk_ro(mddev->gendisk, 1);
5077 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5078 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5079 		err = 0;
5080 	}
5081 out:
5082 	mutex_unlock(&mddev->open_mutex);
5083 	return err;
5084 }
5085 
5086 /* mode:
5087  *   0 - completely stop and dis-assemble array
5088  *   2 - stop but do not disassemble array
5089  */
5090 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5091 {
5092 	struct gendisk *disk = mddev->gendisk;
5093 	struct md_rdev *rdev;
5094 
5095 	mutex_lock(&mddev->open_mutex);
5096 	if (atomic_read(&mddev->openers) > is_open ||
5097 	    mddev->sysfs_active) {
5098 		printk("md: %s still in use.\n",mdname(mddev));
5099 		mutex_unlock(&mddev->open_mutex);
5100 		return -EBUSY;
5101 	}
5102 
5103 	if (mddev->pers) {
5104 		if (mddev->ro)
5105 			set_disk_ro(disk, 0);
5106 
5107 		__md_stop_writes(mddev);
5108 		md_stop(mddev);
5109 		mddev->queue->merge_bvec_fn = NULL;
5110 		mddev->queue->backing_dev_info.congested_fn = NULL;
5111 
5112 		/* tell userspace to handle 'inactive' */
5113 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5114 
5115 		list_for_each_entry(rdev, &mddev->disks, same_set)
5116 			if (rdev->raid_disk >= 0)
5117 				sysfs_unlink_rdev(mddev, rdev);
5118 
5119 		set_capacity(disk, 0);
5120 		mutex_unlock(&mddev->open_mutex);
5121 		mddev->changed = 1;
5122 		revalidate_disk(disk);
5123 
5124 		if (mddev->ro)
5125 			mddev->ro = 0;
5126 	} else
5127 		mutex_unlock(&mddev->open_mutex);
5128 	/*
5129 	 * Free resources if final stop
5130 	 */
5131 	if (mode == 0) {
5132 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5133 
5134 		bitmap_destroy(mddev);
5135 		if (mddev->bitmap_info.file) {
5136 			restore_bitmap_write_access(mddev->bitmap_info.file);
5137 			fput(mddev->bitmap_info.file);
5138 			mddev->bitmap_info.file = NULL;
5139 		}
5140 		mddev->bitmap_info.offset = 0;
5141 
5142 		export_array(mddev);
5143 
5144 		md_clean(mddev);
5145 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5146 		if (mddev->hold_active == UNTIL_STOP)
5147 			mddev->hold_active = 0;
5148 	}
5149 	blk_integrity_unregister(disk);
5150 	md_new_event(mddev);
5151 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5152 	return 0;
5153 }
5154 
5155 #ifndef MODULE
5156 static void autorun_array(struct mddev *mddev)
5157 {
5158 	struct md_rdev *rdev;
5159 	int err;
5160 
5161 	if (list_empty(&mddev->disks))
5162 		return;
5163 
5164 	printk(KERN_INFO "md: running: ");
5165 
5166 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5167 		char b[BDEVNAME_SIZE];
5168 		printk("<%s>", bdevname(rdev->bdev,b));
5169 	}
5170 	printk("\n");
5171 
5172 	err = do_md_run(mddev);
5173 	if (err) {
5174 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5175 		do_md_stop(mddev, 0, 0);
5176 	}
5177 }
5178 
5179 /*
5180  * lets try to run arrays based on all disks that have arrived
5181  * until now. (those are in pending_raid_disks)
5182  *
5183  * the method: pick the first pending disk, collect all disks with
5184  * the same UUID, remove all from the pending list and put them into
5185  * the 'same_array' list. Then order this list based on superblock
5186  * update time (freshest comes first), kick out 'old' disks and
5187  * compare superblocks. If everything's fine then run it.
5188  *
5189  * If "unit" is allocated, then bump its reference count
5190  */
5191 static void autorun_devices(int part)
5192 {
5193 	struct md_rdev *rdev0, *rdev, *tmp;
5194 	struct mddev *mddev;
5195 	char b[BDEVNAME_SIZE];
5196 
5197 	printk(KERN_INFO "md: autorun ...\n");
5198 	while (!list_empty(&pending_raid_disks)) {
5199 		int unit;
5200 		dev_t dev;
5201 		LIST_HEAD(candidates);
5202 		rdev0 = list_entry(pending_raid_disks.next,
5203 					 struct md_rdev, same_set);
5204 
5205 		printk(KERN_INFO "md: considering %s ...\n",
5206 			bdevname(rdev0->bdev,b));
5207 		INIT_LIST_HEAD(&candidates);
5208 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5209 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5210 				printk(KERN_INFO "md:  adding %s ...\n",
5211 					bdevname(rdev->bdev,b));
5212 				list_move(&rdev->same_set, &candidates);
5213 			}
5214 		/*
5215 		 * now we have a set of devices, with all of them having
5216 		 * mostly sane superblocks. It's time to allocate the
5217 		 * mddev.
5218 		 */
5219 		if (part) {
5220 			dev = MKDEV(mdp_major,
5221 				    rdev0->preferred_minor << MdpMinorShift);
5222 			unit = MINOR(dev) >> MdpMinorShift;
5223 		} else {
5224 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5225 			unit = MINOR(dev);
5226 		}
5227 		if (rdev0->preferred_minor != unit) {
5228 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5229 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5230 			break;
5231 		}
5232 
5233 		md_probe(dev, NULL, NULL);
5234 		mddev = mddev_find(dev);
5235 		if (!mddev || !mddev->gendisk) {
5236 			if (mddev)
5237 				mddev_put(mddev);
5238 			printk(KERN_ERR
5239 				"md: cannot allocate memory for md drive.\n");
5240 			break;
5241 		}
5242 		if (mddev_lock(mddev))
5243 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5244 			       mdname(mddev));
5245 		else if (mddev->raid_disks || mddev->major_version
5246 			 || !list_empty(&mddev->disks)) {
5247 			printk(KERN_WARNING
5248 				"md: %s already running, cannot run %s\n",
5249 				mdname(mddev), bdevname(rdev0->bdev,b));
5250 			mddev_unlock(mddev);
5251 		} else {
5252 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5253 			mddev->persistent = 1;
5254 			rdev_for_each_list(rdev, tmp, &candidates) {
5255 				list_del_init(&rdev->same_set);
5256 				if (bind_rdev_to_array(rdev, mddev))
5257 					export_rdev(rdev);
5258 			}
5259 			autorun_array(mddev);
5260 			mddev_unlock(mddev);
5261 		}
5262 		/* on success, candidates will be empty, on error
5263 		 * it won't...
5264 		 */
5265 		rdev_for_each_list(rdev, tmp, &candidates) {
5266 			list_del_init(&rdev->same_set);
5267 			export_rdev(rdev);
5268 		}
5269 		mddev_put(mddev);
5270 	}
5271 	printk(KERN_INFO "md: ... autorun DONE.\n");
5272 }
5273 #endif /* !MODULE */
5274 
5275 static int get_version(void __user * arg)
5276 {
5277 	mdu_version_t ver;
5278 
5279 	ver.major = MD_MAJOR_VERSION;
5280 	ver.minor = MD_MINOR_VERSION;
5281 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5282 
5283 	if (copy_to_user(arg, &ver, sizeof(ver)))
5284 		return -EFAULT;
5285 
5286 	return 0;
5287 }
5288 
5289 static int get_array_info(struct mddev * mddev, void __user * arg)
5290 {
5291 	mdu_array_info_t info;
5292 	int nr,working,insync,failed,spare;
5293 	struct md_rdev *rdev;
5294 
5295 	nr=working=insync=failed=spare=0;
5296 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5297 		nr++;
5298 		if (test_bit(Faulty, &rdev->flags))
5299 			failed++;
5300 		else {
5301 			working++;
5302 			if (test_bit(In_sync, &rdev->flags))
5303 				insync++;
5304 			else
5305 				spare++;
5306 		}
5307 	}
5308 
5309 	info.major_version = mddev->major_version;
5310 	info.minor_version = mddev->minor_version;
5311 	info.patch_version = MD_PATCHLEVEL_VERSION;
5312 	info.ctime         = mddev->ctime;
5313 	info.level         = mddev->level;
5314 	info.size          = mddev->dev_sectors / 2;
5315 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5316 		info.size = -1;
5317 	info.nr_disks      = nr;
5318 	info.raid_disks    = mddev->raid_disks;
5319 	info.md_minor      = mddev->md_minor;
5320 	info.not_persistent= !mddev->persistent;
5321 
5322 	info.utime         = mddev->utime;
5323 	info.state         = 0;
5324 	if (mddev->in_sync)
5325 		info.state = (1<<MD_SB_CLEAN);
5326 	if (mddev->bitmap && mddev->bitmap_info.offset)
5327 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5328 	info.active_disks  = insync;
5329 	info.working_disks = working;
5330 	info.failed_disks  = failed;
5331 	info.spare_disks   = spare;
5332 
5333 	info.layout        = mddev->layout;
5334 	info.chunk_size    = mddev->chunk_sectors << 9;
5335 
5336 	if (copy_to_user(arg, &info, sizeof(info)))
5337 		return -EFAULT;
5338 
5339 	return 0;
5340 }
5341 
5342 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5343 {
5344 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5345 	char *ptr, *buf = NULL;
5346 	int err = -ENOMEM;
5347 
5348 	if (md_allow_write(mddev))
5349 		file = kmalloc(sizeof(*file), GFP_NOIO);
5350 	else
5351 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5352 
5353 	if (!file)
5354 		goto out;
5355 
5356 	/* bitmap disabled, zero the first byte and copy out */
5357 	if (!mddev->bitmap || !mddev->bitmap->file) {
5358 		file->pathname[0] = '\0';
5359 		goto copy_out;
5360 	}
5361 
5362 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5363 	if (!buf)
5364 		goto out;
5365 
5366 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5367 	if (IS_ERR(ptr))
5368 		goto out;
5369 
5370 	strcpy(file->pathname, ptr);
5371 
5372 copy_out:
5373 	err = 0;
5374 	if (copy_to_user(arg, file, sizeof(*file)))
5375 		err = -EFAULT;
5376 out:
5377 	kfree(buf);
5378 	kfree(file);
5379 	return err;
5380 }
5381 
5382 static int get_disk_info(struct mddev * mddev, void __user * arg)
5383 {
5384 	mdu_disk_info_t info;
5385 	struct md_rdev *rdev;
5386 
5387 	if (copy_from_user(&info, arg, sizeof(info)))
5388 		return -EFAULT;
5389 
5390 	rdev = find_rdev_nr(mddev, info.number);
5391 	if (rdev) {
5392 		info.major = MAJOR(rdev->bdev->bd_dev);
5393 		info.minor = MINOR(rdev->bdev->bd_dev);
5394 		info.raid_disk = rdev->raid_disk;
5395 		info.state = 0;
5396 		if (test_bit(Faulty, &rdev->flags))
5397 			info.state |= (1<<MD_DISK_FAULTY);
5398 		else if (test_bit(In_sync, &rdev->flags)) {
5399 			info.state |= (1<<MD_DISK_ACTIVE);
5400 			info.state |= (1<<MD_DISK_SYNC);
5401 		}
5402 		if (test_bit(WriteMostly, &rdev->flags))
5403 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5404 	} else {
5405 		info.major = info.minor = 0;
5406 		info.raid_disk = -1;
5407 		info.state = (1<<MD_DISK_REMOVED);
5408 	}
5409 
5410 	if (copy_to_user(arg, &info, sizeof(info)))
5411 		return -EFAULT;
5412 
5413 	return 0;
5414 }
5415 
5416 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5417 {
5418 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5419 	struct md_rdev *rdev;
5420 	dev_t dev = MKDEV(info->major,info->minor);
5421 
5422 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5423 		return -EOVERFLOW;
5424 
5425 	if (!mddev->raid_disks) {
5426 		int err;
5427 		/* expecting a device which has a superblock */
5428 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5429 		if (IS_ERR(rdev)) {
5430 			printk(KERN_WARNING
5431 				"md: md_import_device returned %ld\n",
5432 				PTR_ERR(rdev));
5433 			return PTR_ERR(rdev);
5434 		}
5435 		if (!list_empty(&mddev->disks)) {
5436 			struct md_rdev *rdev0
5437 				= list_entry(mddev->disks.next,
5438 					     struct md_rdev, same_set);
5439 			err = super_types[mddev->major_version]
5440 				.load_super(rdev, rdev0, mddev->minor_version);
5441 			if (err < 0) {
5442 				printk(KERN_WARNING
5443 					"md: %s has different UUID to %s\n",
5444 					bdevname(rdev->bdev,b),
5445 					bdevname(rdev0->bdev,b2));
5446 				export_rdev(rdev);
5447 				return -EINVAL;
5448 			}
5449 		}
5450 		err = bind_rdev_to_array(rdev, mddev);
5451 		if (err)
5452 			export_rdev(rdev);
5453 		return err;
5454 	}
5455 
5456 	/*
5457 	 * add_new_disk can be used once the array is assembled
5458 	 * to add "hot spares".  They must already have a superblock
5459 	 * written
5460 	 */
5461 	if (mddev->pers) {
5462 		int err;
5463 		if (!mddev->pers->hot_add_disk) {
5464 			printk(KERN_WARNING
5465 				"%s: personality does not support diskops!\n",
5466 			       mdname(mddev));
5467 			return -EINVAL;
5468 		}
5469 		if (mddev->persistent)
5470 			rdev = md_import_device(dev, mddev->major_version,
5471 						mddev->minor_version);
5472 		else
5473 			rdev = md_import_device(dev, -1, -1);
5474 		if (IS_ERR(rdev)) {
5475 			printk(KERN_WARNING
5476 				"md: md_import_device returned %ld\n",
5477 				PTR_ERR(rdev));
5478 			return PTR_ERR(rdev);
5479 		}
5480 		/* set saved_raid_disk if appropriate */
5481 		if (!mddev->persistent) {
5482 			if (info->state & (1<<MD_DISK_SYNC)  &&
5483 			    info->raid_disk < mddev->raid_disks) {
5484 				rdev->raid_disk = info->raid_disk;
5485 				set_bit(In_sync, &rdev->flags);
5486 			} else
5487 				rdev->raid_disk = -1;
5488 		} else
5489 			super_types[mddev->major_version].
5490 				validate_super(mddev, rdev);
5491 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5492 		    (!test_bit(In_sync, &rdev->flags) ||
5493 		     rdev->raid_disk != info->raid_disk)) {
5494 			/* This was a hot-add request, but events doesn't
5495 			 * match, so reject it.
5496 			 */
5497 			export_rdev(rdev);
5498 			return -EINVAL;
5499 		}
5500 
5501 		if (test_bit(In_sync, &rdev->flags))
5502 			rdev->saved_raid_disk = rdev->raid_disk;
5503 		else
5504 			rdev->saved_raid_disk = -1;
5505 
5506 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5507 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5508 			set_bit(WriteMostly, &rdev->flags);
5509 		else
5510 			clear_bit(WriteMostly, &rdev->flags);
5511 
5512 		rdev->raid_disk = -1;
5513 		err = bind_rdev_to_array(rdev, mddev);
5514 		if (!err && !mddev->pers->hot_remove_disk) {
5515 			/* If there is hot_add_disk but no hot_remove_disk
5516 			 * then added disks for geometry changes,
5517 			 * and should be added immediately.
5518 			 */
5519 			super_types[mddev->major_version].
5520 				validate_super(mddev, rdev);
5521 			err = mddev->pers->hot_add_disk(mddev, rdev);
5522 			if (err)
5523 				unbind_rdev_from_array(rdev);
5524 		}
5525 		if (err)
5526 			export_rdev(rdev);
5527 		else
5528 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5529 
5530 		md_update_sb(mddev, 1);
5531 		if (mddev->degraded)
5532 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5533 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5534 		if (!err)
5535 			md_new_event(mddev);
5536 		md_wakeup_thread(mddev->thread);
5537 		return err;
5538 	}
5539 
5540 	/* otherwise, add_new_disk is only allowed
5541 	 * for major_version==0 superblocks
5542 	 */
5543 	if (mddev->major_version != 0) {
5544 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5545 		       mdname(mddev));
5546 		return -EINVAL;
5547 	}
5548 
5549 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5550 		int err;
5551 		rdev = md_import_device(dev, -1, 0);
5552 		if (IS_ERR(rdev)) {
5553 			printk(KERN_WARNING
5554 				"md: error, md_import_device() returned %ld\n",
5555 				PTR_ERR(rdev));
5556 			return PTR_ERR(rdev);
5557 		}
5558 		rdev->desc_nr = info->number;
5559 		if (info->raid_disk < mddev->raid_disks)
5560 			rdev->raid_disk = info->raid_disk;
5561 		else
5562 			rdev->raid_disk = -1;
5563 
5564 		if (rdev->raid_disk < mddev->raid_disks)
5565 			if (info->state & (1<<MD_DISK_SYNC))
5566 				set_bit(In_sync, &rdev->flags);
5567 
5568 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5569 			set_bit(WriteMostly, &rdev->flags);
5570 
5571 		if (!mddev->persistent) {
5572 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5573 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5574 		} else
5575 			rdev->sb_start = calc_dev_sboffset(rdev);
5576 		rdev->sectors = rdev->sb_start;
5577 
5578 		err = bind_rdev_to_array(rdev, mddev);
5579 		if (err) {
5580 			export_rdev(rdev);
5581 			return err;
5582 		}
5583 	}
5584 
5585 	return 0;
5586 }
5587 
5588 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5589 {
5590 	char b[BDEVNAME_SIZE];
5591 	struct md_rdev *rdev;
5592 
5593 	rdev = find_rdev(mddev, dev);
5594 	if (!rdev)
5595 		return -ENXIO;
5596 
5597 	if (rdev->raid_disk >= 0)
5598 		goto busy;
5599 
5600 	kick_rdev_from_array(rdev);
5601 	md_update_sb(mddev, 1);
5602 	md_new_event(mddev);
5603 
5604 	return 0;
5605 busy:
5606 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5607 		bdevname(rdev->bdev,b), mdname(mddev));
5608 	return -EBUSY;
5609 }
5610 
5611 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5612 {
5613 	char b[BDEVNAME_SIZE];
5614 	int err;
5615 	struct md_rdev *rdev;
5616 
5617 	if (!mddev->pers)
5618 		return -ENODEV;
5619 
5620 	if (mddev->major_version != 0) {
5621 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5622 			" version-0 superblocks.\n",
5623 			mdname(mddev));
5624 		return -EINVAL;
5625 	}
5626 	if (!mddev->pers->hot_add_disk) {
5627 		printk(KERN_WARNING
5628 			"%s: personality does not support diskops!\n",
5629 			mdname(mddev));
5630 		return -EINVAL;
5631 	}
5632 
5633 	rdev = md_import_device(dev, -1, 0);
5634 	if (IS_ERR(rdev)) {
5635 		printk(KERN_WARNING
5636 			"md: error, md_import_device() returned %ld\n",
5637 			PTR_ERR(rdev));
5638 		return -EINVAL;
5639 	}
5640 
5641 	if (mddev->persistent)
5642 		rdev->sb_start = calc_dev_sboffset(rdev);
5643 	else
5644 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5645 
5646 	rdev->sectors = rdev->sb_start;
5647 
5648 	if (test_bit(Faulty, &rdev->flags)) {
5649 		printk(KERN_WARNING
5650 			"md: can not hot-add faulty %s disk to %s!\n",
5651 			bdevname(rdev->bdev,b), mdname(mddev));
5652 		err = -EINVAL;
5653 		goto abort_export;
5654 	}
5655 	clear_bit(In_sync, &rdev->flags);
5656 	rdev->desc_nr = -1;
5657 	rdev->saved_raid_disk = -1;
5658 	err = bind_rdev_to_array(rdev, mddev);
5659 	if (err)
5660 		goto abort_export;
5661 
5662 	/*
5663 	 * The rest should better be atomic, we can have disk failures
5664 	 * noticed in interrupt contexts ...
5665 	 */
5666 
5667 	rdev->raid_disk = -1;
5668 
5669 	md_update_sb(mddev, 1);
5670 
5671 	/*
5672 	 * Kick recovery, maybe this spare has to be added to the
5673 	 * array immediately.
5674 	 */
5675 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5676 	md_wakeup_thread(mddev->thread);
5677 	md_new_event(mddev);
5678 	return 0;
5679 
5680 abort_export:
5681 	export_rdev(rdev);
5682 	return err;
5683 }
5684 
5685 static int set_bitmap_file(struct mddev *mddev, int fd)
5686 {
5687 	int err;
5688 
5689 	if (mddev->pers) {
5690 		if (!mddev->pers->quiesce)
5691 			return -EBUSY;
5692 		if (mddev->recovery || mddev->sync_thread)
5693 			return -EBUSY;
5694 		/* we should be able to change the bitmap.. */
5695 	}
5696 
5697 
5698 	if (fd >= 0) {
5699 		if (mddev->bitmap)
5700 			return -EEXIST; /* cannot add when bitmap is present */
5701 		mddev->bitmap_info.file = fget(fd);
5702 
5703 		if (mddev->bitmap_info.file == NULL) {
5704 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5705 			       mdname(mddev));
5706 			return -EBADF;
5707 		}
5708 
5709 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5710 		if (err) {
5711 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5712 			       mdname(mddev));
5713 			fput(mddev->bitmap_info.file);
5714 			mddev->bitmap_info.file = NULL;
5715 			return err;
5716 		}
5717 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5718 	} else if (mddev->bitmap == NULL)
5719 		return -ENOENT; /* cannot remove what isn't there */
5720 	err = 0;
5721 	if (mddev->pers) {
5722 		mddev->pers->quiesce(mddev, 1);
5723 		if (fd >= 0) {
5724 			err = bitmap_create(mddev);
5725 			if (!err)
5726 				err = bitmap_load(mddev);
5727 		}
5728 		if (fd < 0 || err) {
5729 			bitmap_destroy(mddev);
5730 			fd = -1; /* make sure to put the file */
5731 		}
5732 		mddev->pers->quiesce(mddev, 0);
5733 	}
5734 	if (fd < 0) {
5735 		if (mddev->bitmap_info.file) {
5736 			restore_bitmap_write_access(mddev->bitmap_info.file);
5737 			fput(mddev->bitmap_info.file);
5738 		}
5739 		mddev->bitmap_info.file = NULL;
5740 	}
5741 
5742 	return err;
5743 }
5744 
5745 /*
5746  * set_array_info is used two different ways
5747  * The original usage is when creating a new array.
5748  * In this usage, raid_disks is > 0 and it together with
5749  *  level, size, not_persistent,layout,chunksize determine the
5750  *  shape of the array.
5751  *  This will always create an array with a type-0.90.0 superblock.
5752  * The newer usage is when assembling an array.
5753  *  In this case raid_disks will be 0, and the major_version field is
5754  *  use to determine which style super-blocks are to be found on the devices.
5755  *  The minor and patch _version numbers are also kept incase the
5756  *  super_block handler wishes to interpret them.
5757  */
5758 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5759 {
5760 
5761 	if (info->raid_disks == 0) {
5762 		/* just setting version number for superblock loading */
5763 		if (info->major_version < 0 ||
5764 		    info->major_version >= ARRAY_SIZE(super_types) ||
5765 		    super_types[info->major_version].name == NULL) {
5766 			/* maybe try to auto-load a module? */
5767 			printk(KERN_INFO
5768 				"md: superblock version %d not known\n",
5769 				info->major_version);
5770 			return -EINVAL;
5771 		}
5772 		mddev->major_version = info->major_version;
5773 		mddev->minor_version = info->minor_version;
5774 		mddev->patch_version = info->patch_version;
5775 		mddev->persistent = !info->not_persistent;
5776 		/* ensure mddev_put doesn't delete this now that there
5777 		 * is some minimal configuration.
5778 		 */
5779 		mddev->ctime         = get_seconds();
5780 		return 0;
5781 	}
5782 	mddev->major_version = MD_MAJOR_VERSION;
5783 	mddev->minor_version = MD_MINOR_VERSION;
5784 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5785 	mddev->ctime         = get_seconds();
5786 
5787 	mddev->level         = info->level;
5788 	mddev->clevel[0]     = 0;
5789 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5790 	mddev->raid_disks    = info->raid_disks;
5791 	/* don't set md_minor, it is determined by which /dev/md* was
5792 	 * openned
5793 	 */
5794 	if (info->state & (1<<MD_SB_CLEAN))
5795 		mddev->recovery_cp = MaxSector;
5796 	else
5797 		mddev->recovery_cp = 0;
5798 	mddev->persistent    = ! info->not_persistent;
5799 	mddev->external	     = 0;
5800 
5801 	mddev->layout        = info->layout;
5802 	mddev->chunk_sectors = info->chunk_size >> 9;
5803 
5804 	mddev->max_disks     = MD_SB_DISKS;
5805 
5806 	if (mddev->persistent)
5807 		mddev->flags         = 0;
5808 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5809 
5810 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5811 	mddev->bitmap_info.offset = 0;
5812 
5813 	mddev->reshape_position = MaxSector;
5814 
5815 	/*
5816 	 * Generate a 128 bit UUID
5817 	 */
5818 	get_random_bytes(mddev->uuid, 16);
5819 
5820 	mddev->new_level = mddev->level;
5821 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5822 	mddev->new_layout = mddev->layout;
5823 	mddev->delta_disks = 0;
5824 
5825 	return 0;
5826 }
5827 
5828 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5829 {
5830 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5831 
5832 	if (mddev->external_size)
5833 		return;
5834 
5835 	mddev->array_sectors = array_sectors;
5836 }
5837 EXPORT_SYMBOL(md_set_array_sectors);
5838 
5839 static int update_size(struct mddev *mddev, sector_t num_sectors)
5840 {
5841 	struct md_rdev *rdev;
5842 	int rv;
5843 	int fit = (num_sectors == 0);
5844 
5845 	if (mddev->pers->resize == NULL)
5846 		return -EINVAL;
5847 	/* The "num_sectors" is the number of sectors of each device that
5848 	 * is used.  This can only make sense for arrays with redundancy.
5849 	 * linear and raid0 always use whatever space is available. We can only
5850 	 * consider changing this number if no resync or reconstruction is
5851 	 * happening, and if the new size is acceptable. It must fit before the
5852 	 * sb_start or, if that is <data_offset, it must fit before the size
5853 	 * of each device.  If num_sectors is zero, we find the largest size
5854 	 * that fits.
5855 	 */
5856 	if (mddev->sync_thread)
5857 		return -EBUSY;
5858 	if (mddev->bitmap)
5859 		/* Sorry, cannot grow a bitmap yet, just remove it,
5860 		 * grow, and re-add.
5861 		 */
5862 		return -EBUSY;
5863 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5864 		sector_t avail = rdev->sectors;
5865 
5866 		if (fit && (num_sectors == 0 || num_sectors > avail))
5867 			num_sectors = avail;
5868 		if (avail < num_sectors)
5869 			return -ENOSPC;
5870 	}
5871 	rv = mddev->pers->resize(mddev, num_sectors);
5872 	if (!rv)
5873 		revalidate_disk(mddev->gendisk);
5874 	return rv;
5875 }
5876 
5877 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5878 {
5879 	int rv;
5880 	/* change the number of raid disks */
5881 	if (mddev->pers->check_reshape == NULL)
5882 		return -EINVAL;
5883 	if (raid_disks <= 0 ||
5884 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
5885 		return -EINVAL;
5886 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5887 		return -EBUSY;
5888 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5889 
5890 	rv = mddev->pers->check_reshape(mddev);
5891 	if (rv < 0)
5892 		mddev->delta_disks = 0;
5893 	return rv;
5894 }
5895 
5896 
5897 /*
5898  * update_array_info is used to change the configuration of an
5899  * on-line array.
5900  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5901  * fields in the info are checked against the array.
5902  * Any differences that cannot be handled will cause an error.
5903  * Normally, only one change can be managed at a time.
5904  */
5905 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5906 {
5907 	int rv = 0;
5908 	int cnt = 0;
5909 	int state = 0;
5910 
5911 	/* calculate expected state,ignoring low bits */
5912 	if (mddev->bitmap && mddev->bitmap_info.offset)
5913 		state |= (1 << MD_SB_BITMAP_PRESENT);
5914 
5915 	if (mddev->major_version != info->major_version ||
5916 	    mddev->minor_version != info->minor_version ||
5917 /*	    mddev->patch_version != info->patch_version || */
5918 	    mddev->ctime         != info->ctime         ||
5919 	    mddev->level         != info->level         ||
5920 /*	    mddev->layout        != info->layout        || */
5921 	    !mddev->persistent	 != info->not_persistent||
5922 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
5923 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5924 	    ((state^info->state) & 0xfffffe00)
5925 		)
5926 		return -EINVAL;
5927 	/* Check there is only one change */
5928 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5929 		cnt++;
5930 	if (mddev->raid_disks != info->raid_disks)
5931 		cnt++;
5932 	if (mddev->layout != info->layout)
5933 		cnt++;
5934 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5935 		cnt++;
5936 	if (cnt == 0)
5937 		return 0;
5938 	if (cnt > 1)
5939 		return -EINVAL;
5940 
5941 	if (mddev->layout != info->layout) {
5942 		/* Change layout
5943 		 * we don't need to do anything at the md level, the
5944 		 * personality will take care of it all.
5945 		 */
5946 		if (mddev->pers->check_reshape == NULL)
5947 			return -EINVAL;
5948 		else {
5949 			mddev->new_layout = info->layout;
5950 			rv = mddev->pers->check_reshape(mddev);
5951 			if (rv)
5952 				mddev->new_layout = mddev->layout;
5953 			return rv;
5954 		}
5955 	}
5956 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5957 		rv = update_size(mddev, (sector_t)info->size * 2);
5958 
5959 	if (mddev->raid_disks    != info->raid_disks)
5960 		rv = update_raid_disks(mddev, info->raid_disks);
5961 
5962 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5963 		if (mddev->pers->quiesce == NULL)
5964 			return -EINVAL;
5965 		if (mddev->recovery || mddev->sync_thread)
5966 			return -EBUSY;
5967 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5968 			/* add the bitmap */
5969 			if (mddev->bitmap)
5970 				return -EEXIST;
5971 			if (mddev->bitmap_info.default_offset == 0)
5972 				return -EINVAL;
5973 			mddev->bitmap_info.offset =
5974 				mddev->bitmap_info.default_offset;
5975 			mddev->pers->quiesce(mddev, 1);
5976 			rv = bitmap_create(mddev);
5977 			if (!rv)
5978 				rv = bitmap_load(mddev);
5979 			if (rv)
5980 				bitmap_destroy(mddev);
5981 			mddev->pers->quiesce(mddev, 0);
5982 		} else {
5983 			/* remove the bitmap */
5984 			if (!mddev->bitmap)
5985 				return -ENOENT;
5986 			if (mddev->bitmap->file)
5987 				return -EINVAL;
5988 			mddev->pers->quiesce(mddev, 1);
5989 			bitmap_destroy(mddev);
5990 			mddev->pers->quiesce(mddev, 0);
5991 			mddev->bitmap_info.offset = 0;
5992 		}
5993 	}
5994 	md_update_sb(mddev, 1);
5995 	return rv;
5996 }
5997 
5998 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
5999 {
6000 	struct md_rdev *rdev;
6001 
6002 	if (mddev->pers == NULL)
6003 		return -ENODEV;
6004 
6005 	rdev = find_rdev(mddev, dev);
6006 	if (!rdev)
6007 		return -ENODEV;
6008 
6009 	md_error(mddev, rdev);
6010 	if (!test_bit(Faulty, &rdev->flags))
6011 		return -EBUSY;
6012 	return 0;
6013 }
6014 
6015 /*
6016  * We have a problem here : there is no easy way to give a CHS
6017  * virtual geometry. We currently pretend that we have a 2 heads
6018  * 4 sectors (with a BIG number of cylinders...). This drives
6019  * dosfs just mad... ;-)
6020  */
6021 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6022 {
6023 	struct mddev *mddev = bdev->bd_disk->private_data;
6024 
6025 	geo->heads = 2;
6026 	geo->sectors = 4;
6027 	geo->cylinders = mddev->array_sectors / 8;
6028 	return 0;
6029 }
6030 
6031 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6032 			unsigned int cmd, unsigned long arg)
6033 {
6034 	int err = 0;
6035 	void __user *argp = (void __user *)arg;
6036 	struct mddev *mddev = NULL;
6037 	int ro;
6038 
6039 	if (!capable(CAP_SYS_ADMIN))
6040 		return -EACCES;
6041 
6042 	/*
6043 	 * Commands dealing with the RAID driver but not any
6044 	 * particular array:
6045 	 */
6046 	switch (cmd)
6047 	{
6048 		case RAID_VERSION:
6049 			err = get_version(argp);
6050 			goto done;
6051 
6052 		case PRINT_RAID_DEBUG:
6053 			err = 0;
6054 			md_print_devices();
6055 			goto done;
6056 
6057 #ifndef MODULE
6058 		case RAID_AUTORUN:
6059 			err = 0;
6060 			autostart_arrays(arg);
6061 			goto done;
6062 #endif
6063 		default:;
6064 	}
6065 
6066 	/*
6067 	 * Commands creating/starting a new array:
6068 	 */
6069 
6070 	mddev = bdev->bd_disk->private_data;
6071 
6072 	if (!mddev) {
6073 		BUG();
6074 		goto abort;
6075 	}
6076 
6077 	err = mddev_lock(mddev);
6078 	if (err) {
6079 		printk(KERN_INFO
6080 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6081 			err, cmd);
6082 		goto abort;
6083 	}
6084 
6085 	switch (cmd)
6086 	{
6087 		case SET_ARRAY_INFO:
6088 			{
6089 				mdu_array_info_t info;
6090 				if (!arg)
6091 					memset(&info, 0, sizeof(info));
6092 				else if (copy_from_user(&info, argp, sizeof(info))) {
6093 					err = -EFAULT;
6094 					goto abort_unlock;
6095 				}
6096 				if (mddev->pers) {
6097 					err = update_array_info(mddev, &info);
6098 					if (err) {
6099 						printk(KERN_WARNING "md: couldn't update"
6100 						       " array info. %d\n", err);
6101 						goto abort_unlock;
6102 					}
6103 					goto done_unlock;
6104 				}
6105 				if (!list_empty(&mddev->disks)) {
6106 					printk(KERN_WARNING
6107 					       "md: array %s already has disks!\n",
6108 					       mdname(mddev));
6109 					err = -EBUSY;
6110 					goto abort_unlock;
6111 				}
6112 				if (mddev->raid_disks) {
6113 					printk(KERN_WARNING
6114 					       "md: array %s already initialised!\n",
6115 					       mdname(mddev));
6116 					err = -EBUSY;
6117 					goto abort_unlock;
6118 				}
6119 				err = set_array_info(mddev, &info);
6120 				if (err) {
6121 					printk(KERN_WARNING "md: couldn't set"
6122 					       " array info. %d\n", err);
6123 					goto abort_unlock;
6124 				}
6125 			}
6126 			goto done_unlock;
6127 
6128 		default:;
6129 	}
6130 
6131 	/*
6132 	 * Commands querying/configuring an existing array:
6133 	 */
6134 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6135 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6136 	if ((!mddev->raid_disks && !mddev->external)
6137 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6138 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6139 	    && cmd != GET_BITMAP_FILE) {
6140 		err = -ENODEV;
6141 		goto abort_unlock;
6142 	}
6143 
6144 	/*
6145 	 * Commands even a read-only array can execute:
6146 	 */
6147 	switch (cmd)
6148 	{
6149 		case GET_ARRAY_INFO:
6150 			err = get_array_info(mddev, argp);
6151 			goto done_unlock;
6152 
6153 		case GET_BITMAP_FILE:
6154 			err = get_bitmap_file(mddev, argp);
6155 			goto done_unlock;
6156 
6157 		case GET_DISK_INFO:
6158 			err = get_disk_info(mddev, argp);
6159 			goto done_unlock;
6160 
6161 		case RESTART_ARRAY_RW:
6162 			err = restart_array(mddev);
6163 			goto done_unlock;
6164 
6165 		case STOP_ARRAY:
6166 			err = do_md_stop(mddev, 0, 1);
6167 			goto done_unlock;
6168 
6169 		case STOP_ARRAY_RO:
6170 			err = md_set_readonly(mddev, 1);
6171 			goto done_unlock;
6172 
6173 		case BLKROSET:
6174 			if (get_user(ro, (int __user *)(arg))) {
6175 				err = -EFAULT;
6176 				goto done_unlock;
6177 			}
6178 			err = -EINVAL;
6179 
6180 			/* if the bdev is going readonly the value of mddev->ro
6181 			 * does not matter, no writes are coming
6182 			 */
6183 			if (ro)
6184 				goto done_unlock;
6185 
6186 			/* are we are already prepared for writes? */
6187 			if (mddev->ro != 1)
6188 				goto done_unlock;
6189 
6190 			/* transitioning to readauto need only happen for
6191 			 * arrays that call md_write_start
6192 			 */
6193 			if (mddev->pers) {
6194 				err = restart_array(mddev);
6195 				if (err == 0) {
6196 					mddev->ro = 2;
6197 					set_disk_ro(mddev->gendisk, 0);
6198 				}
6199 			}
6200 			goto done_unlock;
6201 	}
6202 
6203 	/*
6204 	 * The remaining ioctls are changing the state of the
6205 	 * superblock, so we do not allow them on read-only arrays.
6206 	 * However non-MD ioctls (e.g. get-size) will still come through
6207 	 * here and hit the 'default' below, so only disallow
6208 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6209 	 */
6210 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6211 		if (mddev->ro == 2) {
6212 			mddev->ro = 0;
6213 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6214 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6215 			md_wakeup_thread(mddev->thread);
6216 		} else {
6217 			err = -EROFS;
6218 			goto abort_unlock;
6219 		}
6220 	}
6221 
6222 	switch (cmd)
6223 	{
6224 		case ADD_NEW_DISK:
6225 		{
6226 			mdu_disk_info_t info;
6227 			if (copy_from_user(&info, argp, sizeof(info)))
6228 				err = -EFAULT;
6229 			else
6230 				err = add_new_disk(mddev, &info);
6231 			goto done_unlock;
6232 		}
6233 
6234 		case HOT_REMOVE_DISK:
6235 			err = hot_remove_disk(mddev, new_decode_dev(arg));
6236 			goto done_unlock;
6237 
6238 		case HOT_ADD_DISK:
6239 			err = hot_add_disk(mddev, new_decode_dev(arg));
6240 			goto done_unlock;
6241 
6242 		case SET_DISK_FAULTY:
6243 			err = set_disk_faulty(mddev, new_decode_dev(arg));
6244 			goto done_unlock;
6245 
6246 		case RUN_ARRAY:
6247 			err = do_md_run(mddev);
6248 			goto done_unlock;
6249 
6250 		case SET_BITMAP_FILE:
6251 			err = set_bitmap_file(mddev, (int)arg);
6252 			goto done_unlock;
6253 
6254 		default:
6255 			err = -EINVAL;
6256 			goto abort_unlock;
6257 	}
6258 
6259 done_unlock:
6260 abort_unlock:
6261 	if (mddev->hold_active == UNTIL_IOCTL &&
6262 	    err != -EINVAL)
6263 		mddev->hold_active = 0;
6264 	mddev_unlock(mddev);
6265 
6266 	return err;
6267 done:
6268 	if (err)
6269 		MD_BUG();
6270 abort:
6271 	return err;
6272 }
6273 #ifdef CONFIG_COMPAT
6274 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6275 		    unsigned int cmd, unsigned long arg)
6276 {
6277 	switch (cmd) {
6278 	case HOT_REMOVE_DISK:
6279 	case HOT_ADD_DISK:
6280 	case SET_DISK_FAULTY:
6281 	case SET_BITMAP_FILE:
6282 		/* These take in integer arg, do not convert */
6283 		break;
6284 	default:
6285 		arg = (unsigned long)compat_ptr(arg);
6286 		break;
6287 	}
6288 
6289 	return md_ioctl(bdev, mode, cmd, arg);
6290 }
6291 #endif /* CONFIG_COMPAT */
6292 
6293 static int md_open(struct block_device *bdev, fmode_t mode)
6294 {
6295 	/*
6296 	 * Succeed if we can lock the mddev, which confirms that
6297 	 * it isn't being stopped right now.
6298 	 */
6299 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6300 	int err;
6301 
6302 	if (mddev->gendisk != bdev->bd_disk) {
6303 		/* we are racing with mddev_put which is discarding this
6304 		 * bd_disk.
6305 		 */
6306 		mddev_put(mddev);
6307 		/* Wait until bdev->bd_disk is definitely gone */
6308 		flush_workqueue(md_misc_wq);
6309 		/* Then retry the open from the top */
6310 		return -ERESTARTSYS;
6311 	}
6312 	BUG_ON(mddev != bdev->bd_disk->private_data);
6313 
6314 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6315 		goto out;
6316 
6317 	err = 0;
6318 	atomic_inc(&mddev->openers);
6319 	mutex_unlock(&mddev->open_mutex);
6320 
6321 	check_disk_change(bdev);
6322  out:
6323 	return err;
6324 }
6325 
6326 static int md_release(struct gendisk *disk, fmode_t mode)
6327 {
6328  	struct mddev *mddev = disk->private_data;
6329 
6330 	BUG_ON(!mddev);
6331 	atomic_dec(&mddev->openers);
6332 	mddev_put(mddev);
6333 
6334 	return 0;
6335 }
6336 
6337 static int md_media_changed(struct gendisk *disk)
6338 {
6339 	struct mddev *mddev = disk->private_data;
6340 
6341 	return mddev->changed;
6342 }
6343 
6344 static int md_revalidate(struct gendisk *disk)
6345 {
6346 	struct mddev *mddev = disk->private_data;
6347 
6348 	mddev->changed = 0;
6349 	return 0;
6350 }
6351 static const struct block_device_operations md_fops =
6352 {
6353 	.owner		= THIS_MODULE,
6354 	.open		= md_open,
6355 	.release	= md_release,
6356 	.ioctl		= md_ioctl,
6357 #ifdef CONFIG_COMPAT
6358 	.compat_ioctl	= md_compat_ioctl,
6359 #endif
6360 	.getgeo		= md_getgeo,
6361 	.media_changed  = md_media_changed,
6362 	.revalidate_disk= md_revalidate,
6363 };
6364 
6365 static int md_thread(void * arg)
6366 {
6367 	struct md_thread *thread = arg;
6368 
6369 	/*
6370 	 * md_thread is a 'system-thread', it's priority should be very
6371 	 * high. We avoid resource deadlocks individually in each
6372 	 * raid personality. (RAID5 does preallocation) We also use RR and
6373 	 * the very same RT priority as kswapd, thus we will never get
6374 	 * into a priority inversion deadlock.
6375 	 *
6376 	 * we definitely have to have equal or higher priority than
6377 	 * bdflush, otherwise bdflush will deadlock if there are too
6378 	 * many dirty RAID5 blocks.
6379 	 */
6380 
6381 	allow_signal(SIGKILL);
6382 	while (!kthread_should_stop()) {
6383 
6384 		/* We need to wait INTERRUPTIBLE so that
6385 		 * we don't add to the load-average.
6386 		 * That means we need to be sure no signals are
6387 		 * pending
6388 		 */
6389 		if (signal_pending(current))
6390 			flush_signals(current);
6391 
6392 		wait_event_interruptible_timeout
6393 			(thread->wqueue,
6394 			 test_bit(THREAD_WAKEUP, &thread->flags)
6395 			 || kthread_should_stop(),
6396 			 thread->timeout);
6397 
6398 		clear_bit(THREAD_WAKEUP, &thread->flags);
6399 		if (!kthread_should_stop())
6400 			thread->run(thread->mddev);
6401 	}
6402 
6403 	return 0;
6404 }
6405 
6406 void md_wakeup_thread(struct md_thread *thread)
6407 {
6408 	if (thread) {
6409 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6410 		set_bit(THREAD_WAKEUP, &thread->flags);
6411 		wake_up(&thread->wqueue);
6412 	}
6413 }
6414 
6415 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6416 				 const char *name)
6417 {
6418 	struct md_thread *thread;
6419 
6420 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6421 	if (!thread)
6422 		return NULL;
6423 
6424 	init_waitqueue_head(&thread->wqueue);
6425 
6426 	thread->run = run;
6427 	thread->mddev = mddev;
6428 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6429 	thread->tsk = kthread_run(md_thread, thread,
6430 				  "%s_%s",
6431 				  mdname(thread->mddev),
6432 				  name ?: mddev->pers->name);
6433 	if (IS_ERR(thread->tsk)) {
6434 		kfree(thread);
6435 		return NULL;
6436 	}
6437 	return thread;
6438 }
6439 
6440 void md_unregister_thread(struct md_thread **threadp)
6441 {
6442 	struct md_thread *thread = *threadp;
6443 	if (!thread)
6444 		return;
6445 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6446 	/* Locking ensures that mddev_unlock does not wake_up a
6447 	 * non-existent thread
6448 	 */
6449 	spin_lock(&pers_lock);
6450 	*threadp = NULL;
6451 	spin_unlock(&pers_lock);
6452 
6453 	kthread_stop(thread->tsk);
6454 	kfree(thread);
6455 }
6456 
6457 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6458 {
6459 	if (!mddev) {
6460 		MD_BUG();
6461 		return;
6462 	}
6463 
6464 	if (!rdev || test_bit(Faulty, &rdev->flags))
6465 		return;
6466 
6467 	if (!mddev->pers || !mddev->pers->error_handler)
6468 		return;
6469 	mddev->pers->error_handler(mddev,rdev);
6470 	if (mddev->degraded)
6471 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6472 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6473 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6474 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6475 	md_wakeup_thread(mddev->thread);
6476 	if (mddev->event_work.func)
6477 		queue_work(md_misc_wq, &mddev->event_work);
6478 	md_new_event_inintr(mddev);
6479 }
6480 
6481 /* seq_file implementation /proc/mdstat */
6482 
6483 static void status_unused(struct seq_file *seq)
6484 {
6485 	int i = 0;
6486 	struct md_rdev *rdev;
6487 
6488 	seq_printf(seq, "unused devices: ");
6489 
6490 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6491 		char b[BDEVNAME_SIZE];
6492 		i++;
6493 		seq_printf(seq, "%s ",
6494 			      bdevname(rdev->bdev,b));
6495 	}
6496 	if (!i)
6497 		seq_printf(seq, "<none>");
6498 
6499 	seq_printf(seq, "\n");
6500 }
6501 
6502 
6503 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6504 {
6505 	sector_t max_sectors, resync, res;
6506 	unsigned long dt, db;
6507 	sector_t rt;
6508 	int scale;
6509 	unsigned int per_milli;
6510 
6511 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6512 
6513 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6514 		max_sectors = mddev->resync_max_sectors;
6515 	else
6516 		max_sectors = mddev->dev_sectors;
6517 
6518 	/*
6519 	 * Should not happen.
6520 	 */
6521 	if (!max_sectors) {
6522 		MD_BUG();
6523 		return;
6524 	}
6525 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6526 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6527 	 * u32, as those are the requirements for sector_div.
6528 	 * Thus 'scale' must be at least 10
6529 	 */
6530 	scale = 10;
6531 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6532 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6533 			scale++;
6534 	}
6535 	res = (resync>>scale)*1000;
6536 	sector_div(res, (u32)((max_sectors>>scale)+1));
6537 
6538 	per_milli = res;
6539 	{
6540 		int i, x = per_milli/50, y = 20-x;
6541 		seq_printf(seq, "[");
6542 		for (i = 0; i < x; i++)
6543 			seq_printf(seq, "=");
6544 		seq_printf(seq, ">");
6545 		for (i = 0; i < y; i++)
6546 			seq_printf(seq, ".");
6547 		seq_printf(seq, "] ");
6548 	}
6549 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6550 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6551 		    "reshape" :
6552 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6553 		     "check" :
6554 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6555 		      "resync" : "recovery"))),
6556 		   per_milli/10, per_milli % 10,
6557 		   (unsigned long long) resync/2,
6558 		   (unsigned long long) max_sectors/2);
6559 
6560 	/*
6561 	 * dt: time from mark until now
6562 	 * db: blocks written from mark until now
6563 	 * rt: remaining time
6564 	 *
6565 	 * rt is a sector_t, so could be 32bit or 64bit.
6566 	 * So we divide before multiply in case it is 32bit and close
6567 	 * to the limit.
6568 	 * We scale the divisor (db) by 32 to avoid losing precision
6569 	 * near the end of resync when the number of remaining sectors
6570 	 * is close to 'db'.
6571 	 * We then divide rt by 32 after multiplying by db to compensate.
6572 	 * The '+1' avoids division by zero if db is very small.
6573 	 */
6574 	dt = ((jiffies - mddev->resync_mark) / HZ);
6575 	if (!dt) dt++;
6576 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6577 		- mddev->resync_mark_cnt;
6578 
6579 	rt = max_sectors - resync;    /* number of remaining sectors */
6580 	sector_div(rt, db/32+1);
6581 	rt *= dt;
6582 	rt >>= 5;
6583 
6584 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6585 		   ((unsigned long)rt % 60)/6);
6586 
6587 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6588 }
6589 
6590 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6591 {
6592 	struct list_head *tmp;
6593 	loff_t l = *pos;
6594 	struct mddev *mddev;
6595 
6596 	if (l >= 0x10000)
6597 		return NULL;
6598 	if (!l--)
6599 		/* header */
6600 		return (void*)1;
6601 
6602 	spin_lock(&all_mddevs_lock);
6603 	list_for_each(tmp,&all_mddevs)
6604 		if (!l--) {
6605 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6606 			mddev_get(mddev);
6607 			spin_unlock(&all_mddevs_lock);
6608 			return mddev;
6609 		}
6610 	spin_unlock(&all_mddevs_lock);
6611 	if (!l--)
6612 		return (void*)2;/* tail */
6613 	return NULL;
6614 }
6615 
6616 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6617 {
6618 	struct list_head *tmp;
6619 	struct mddev *next_mddev, *mddev = v;
6620 
6621 	++*pos;
6622 	if (v == (void*)2)
6623 		return NULL;
6624 
6625 	spin_lock(&all_mddevs_lock);
6626 	if (v == (void*)1)
6627 		tmp = all_mddevs.next;
6628 	else
6629 		tmp = mddev->all_mddevs.next;
6630 	if (tmp != &all_mddevs)
6631 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6632 	else {
6633 		next_mddev = (void*)2;
6634 		*pos = 0x10000;
6635 	}
6636 	spin_unlock(&all_mddevs_lock);
6637 
6638 	if (v != (void*)1)
6639 		mddev_put(mddev);
6640 	return next_mddev;
6641 
6642 }
6643 
6644 static void md_seq_stop(struct seq_file *seq, void *v)
6645 {
6646 	struct mddev *mddev = v;
6647 
6648 	if (mddev && v != (void*)1 && v != (void*)2)
6649 		mddev_put(mddev);
6650 }
6651 
6652 static int md_seq_show(struct seq_file *seq, void *v)
6653 {
6654 	struct mddev *mddev = v;
6655 	sector_t sectors;
6656 	struct md_rdev *rdev;
6657 	struct bitmap *bitmap;
6658 
6659 	if (v == (void*)1) {
6660 		struct md_personality *pers;
6661 		seq_printf(seq, "Personalities : ");
6662 		spin_lock(&pers_lock);
6663 		list_for_each_entry(pers, &pers_list, list)
6664 			seq_printf(seq, "[%s] ", pers->name);
6665 
6666 		spin_unlock(&pers_lock);
6667 		seq_printf(seq, "\n");
6668 		seq->poll_event = atomic_read(&md_event_count);
6669 		return 0;
6670 	}
6671 	if (v == (void*)2) {
6672 		status_unused(seq);
6673 		return 0;
6674 	}
6675 
6676 	if (mddev_lock(mddev) < 0)
6677 		return -EINTR;
6678 
6679 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6680 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6681 						mddev->pers ? "" : "in");
6682 		if (mddev->pers) {
6683 			if (mddev->ro==1)
6684 				seq_printf(seq, " (read-only)");
6685 			if (mddev->ro==2)
6686 				seq_printf(seq, " (auto-read-only)");
6687 			seq_printf(seq, " %s", mddev->pers->name);
6688 		}
6689 
6690 		sectors = 0;
6691 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6692 			char b[BDEVNAME_SIZE];
6693 			seq_printf(seq, " %s[%d]",
6694 				bdevname(rdev->bdev,b), rdev->desc_nr);
6695 			if (test_bit(WriteMostly, &rdev->flags))
6696 				seq_printf(seq, "(W)");
6697 			if (test_bit(Faulty, &rdev->flags)) {
6698 				seq_printf(seq, "(F)");
6699 				continue;
6700 			} else if (rdev->raid_disk < 0)
6701 				seq_printf(seq, "(S)"); /* spare */
6702 			sectors += rdev->sectors;
6703 		}
6704 
6705 		if (!list_empty(&mddev->disks)) {
6706 			if (mddev->pers)
6707 				seq_printf(seq, "\n      %llu blocks",
6708 					   (unsigned long long)
6709 					   mddev->array_sectors / 2);
6710 			else
6711 				seq_printf(seq, "\n      %llu blocks",
6712 					   (unsigned long long)sectors / 2);
6713 		}
6714 		if (mddev->persistent) {
6715 			if (mddev->major_version != 0 ||
6716 			    mddev->minor_version != 90) {
6717 				seq_printf(seq," super %d.%d",
6718 					   mddev->major_version,
6719 					   mddev->minor_version);
6720 			}
6721 		} else if (mddev->external)
6722 			seq_printf(seq, " super external:%s",
6723 				   mddev->metadata_type);
6724 		else
6725 			seq_printf(seq, " super non-persistent");
6726 
6727 		if (mddev->pers) {
6728 			mddev->pers->status(seq, mddev);
6729 	 		seq_printf(seq, "\n      ");
6730 			if (mddev->pers->sync_request) {
6731 				if (mddev->curr_resync > 2) {
6732 					status_resync(seq, mddev);
6733 					seq_printf(seq, "\n      ");
6734 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6735 					seq_printf(seq, "\tresync=DELAYED\n      ");
6736 				else if (mddev->recovery_cp < MaxSector)
6737 					seq_printf(seq, "\tresync=PENDING\n      ");
6738 			}
6739 		} else
6740 			seq_printf(seq, "\n       ");
6741 
6742 		if ((bitmap = mddev->bitmap)) {
6743 			unsigned long chunk_kb;
6744 			unsigned long flags;
6745 			spin_lock_irqsave(&bitmap->lock, flags);
6746 			chunk_kb = mddev->bitmap_info.chunksize >> 10;
6747 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6748 				"%lu%s chunk",
6749 				bitmap->pages - bitmap->missing_pages,
6750 				bitmap->pages,
6751 				(bitmap->pages - bitmap->missing_pages)
6752 					<< (PAGE_SHIFT - 10),
6753 				chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6754 				chunk_kb ? "KB" : "B");
6755 			if (bitmap->file) {
6756 				seq_printf(seq, ", file: ");
6757 				seq_path(seq, &bitmap->file->f_path, " \t\n");
6758 			}
6759 
6760 			seq_printf(seq, "\n");
6761 			spin_unlock_irqrestore(&bitmap->lock, flags);
6762 		}
6763 
6764 		seq_printf(seq, "\n");
6765 	}
6766 	mddev_unlock(mddev);
6767 
6768 	return 0;
6769 }
6770 
6771 static const struct seq_operations md_seq_ops = {
6772 	.start  = md_seq_start,
6773 	.next   = md_seq_next,
6774 	.stop   = md_seq_stop,
6775 	.show   = md_seq_show,
6776 };
6777 
6778 static int md_seq_open(struct inode *inode, struct file *file)
6779 {
6780 	struct seq_file *seq;
6781 	int error;
6782 
6783 	error = seq_open(file, &md_seq_ops);
6784 	if (error)
6785 		return error;
6786 
6787 	seq = file->private_data;
6788 	seq->poll_event = atomic_read(&md_event_count);
6789 	return error;
6790 }
6791 
6792 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6793 {
6794 	struct seq_file *seq = filp->private_data;
6795 	int mask;
6796 
6797 	poll_wait(filp, &md_event_waiters, wait);
6798 
6799 	/* always allow read */
6800 	mask = POLLIN | POLLRDNORM;
6801 
6802 	if (seq->poll_event != atomic_read(&md_event_count))
6803 		mask |= POLLERR | POLLPRI;
6804 	return mask;
6805 }
6806 
6807 static const struct file_operations md_seq_fops = {
6808 	.owner		= THIS_MODULE,
6809 	.open           = md_seq_open,
6810 	.read           = seq_read,
6811 	.llseek         = seq_lseek,
6812 	.release	= seq_release_private,
6813 	.poll		= mdstat_poll,
6814 };
6815 
6816 int register_md_personality(struct md_personality *p)
6817 {
6818 	spin_lock(&pers_lock);
6819 	list_add_tail(&p->list, &pers_list);
6820 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6821 	spin_unlock(&pers_lock);
6822 	return 0;
6823 }
6824 
6825 int unregister_md_personality(struct md_personality *p)
6826 {
6827 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6828 	spin_lock(&pers_lock);
6829 	list_del_init(&p->list);
6830 	spin_unlock(&pers_lock);
6831 	return 0;
6832 }
6833 
6834 static int is_mddev_idle(struct mddev *mddev, int init)
6835 {
6836 	struct md_rdev * rdev;
6837 	int idle;
6838 	int curr_events;
6839 
6840 	idle = 1;
6841 	rcu_read_lock();
6842 	rdev_for_each_rcu(rdev, mddev) {
6843 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6844 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6845 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6846 			      atomic_read(&disk->sync_io);
6847 		/* sync IO will cause sync_io to increase before the disk_stats
6848 		 * as sync_io is counted when a request starts, and
6849 		 * disk_stats is counted when it completes.
6850 		 * So resync activity will cause curr_events to be smaller than
6851 		 * when there was no such activity.
6852 		 * non-sync IO will cause disk_stat to increase without
6853 		 * increasing sync_io so curr_events will (eventually)
6854 		 * be larger than it was before.  Once it becomes
6855 		 * substantially larger, the test below will cause
6856 		 * the array to appear non-idle, and resync will slow
6857 		 * down.
6858 		 * If there is a lot of outstanding resync activity when
6859 		 * we set last_event to curr_events, then all that activity
6860 		 * completing might cause the array to appear non-idle
6861 		 * and resync will be slowed down even though there might
6862 		 * not have been non-resync activity.  This will only
6863 		 * happen once though.  'last_events' will soon reflect
6864 		 * the state where there is little or no outstanding
6865 		 * resync requests, and further resync activity will
6866 		 * always make curr_events less than last_events.
6867 		 *
6868 		 */
6869 		if (init || curr_events - rdev->last_events > 64) {
6870 			rdev->last_events = curr_events;
6871 			idle = 0;
6872 		}
6873 	}
6874 	rcu_read_unlock();
6875 	return idle;
6876 }
6877 
6878 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6879 {
6880 	/* another "blocks" (512byte) blocks have been synced */
6881 	atomic_sub(blocks, &mddev->recovery_active);
6882 	wake_up(&mddev->recovery_wait);
6883 	if (!ok) {
6884 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6885 		md_wakeup_thread(mddev->thread);
6886 		// stop recovery, signal do_sync ....
6887 	}
6888 }
6889 
6890 
6891 /* md_write_start(mddev, bi)
6892  * If we need to update some array metadata (e.g. 'active' flag
6893  * in superblock) before writing, schedule a superblock update
6894  * and wait for it to complete.
6895  */
6896 void md_write_start(struct mddev *mddev, struct bio *bi)
6897 {
6898 	int did_change = 0;
6899 	if (bio_data_dir(bi) != WRITE)
6900 		return;
6901 
6902 	BUG_ON(mddev->ro == 1);
6903 	if (mddev->ro == 2) {
6904 		/* need to switch to read/write */
6905 		mddev->ro = 0;
6906 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6907 		md_wakeup_thread(mddev->thread);
6908 		md_wakeup_thread(mddev->sync_thread);
6909 		did_change = 1;
6910 	}
6911 	atomic_inc(&mddev->writes_pending);
6912 	if (mddev->safemode == 1)
6913 		mddev->safemode = 0;
6914 	if (mddev->in_sync) {
6915 		spin_lock_irq(&mddev->write_lock);
6916 		if (mddev->in_sync) {
6917 			mddev->in_sync = 0;
6918 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6919 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
6920 			md_wakeup_thread(mddev->thread);
6921 			did_change = 1;
6922 		}
6923 		spin_unlock_irq(&mddev->write_lock);
6924 	}
6925 	if (did_change)
6926 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6927 	wait_event(mddev->sb_wait,
6928 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6929 }
6930 
6931 void md_write_end(struct mddev *mddev)
6932 {
6933 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6934 		if (mddev->safemode == 2)
6935 			md_wakeup_thread(mddev->thread);
6936 		else if (mddev->safemode_delay)
6937 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6938 	}
6939 }
6940 
6941 /* md_allow_write(mddev)
6942  * Calling this ensures that the array is marked 'active' so that writes
6943  * may proceed without blocking.  It is important to call this before
6944  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6945  * Must be called with mddev_lock held.
6946  *
6947  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6948  * is dropped, so return -EAGAIN after notifying userspace.
6949  */
6950 int md_allow_write(struct mddev *mddev)
6951 {
6952 	if (!mddev->pers)
6953 		return 0;
6954 	if (mddev->ro)
6955 		return 0;
6956 	if (!mddev->pers->sync_request)
6957 		return 0;
6958 
6959 	spin_lock_irq(&mddev->write_lock);
6960 	if (mddev->in_sync) {
6961 		mddev->in_sync = 0;
6962 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6963 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
6964 		if (mddev->safemode_delay &&
6965 		    mddev->safemode == 0)
6966 			mddev->safemode = 1;
6967 		spin_unlock_irq(&mddev->write_lock);
6968 		md_update_sb(mddev, 0);
6969 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6970 	} else
6971 		spin_unlock_irq(&mddev->write_lock);
6972 
6973 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6974 		return -EAGAIN;
6975 	else
6976 		return 0;
6977 }
6978 EXPORT_SYMBOL_GPL(md_allow_write);
6979 
6980 #define SYNC_MARKS	10
6981 #define	SYNC_MARK_STEP	(3*HZ)
6982 void md_do_sync(struct mddev *mddev)
6983 {
6984 	struct mddev *mddev2;
6985 	unsigned int currspeed = 0,
6986 		 window;
6987 	sector_t max_sectors,j, io_sectors;
6988 	unsigned long mark[SYNC_MARKS];
6989 	sector_t mark_cnt[SYNC_MARKS];
6990 	int last_mark,m;
6991 	struct list_head *tmp;
6992 	sector_t last_check;
6993 	int skipped = 0;
6994 	struct md_rdev *rdev;
6995 	char *desc;
6996 
6997 	/* just incase thread restarts... */
6998 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6999 		return;
7000 	if (mddev->ro) /* never try to sync a read-only array */
7001 		return;
7002 
7003 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7004 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7005 			desc = "data-check";
7006 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7007 			desc = "requested-resync";
7008 		else
7009 			desc = "resync";
7010 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7011 		desc = "reshape";
7012 	else
7013 		desc = "recovery";
7014 
7015 	/* we overload curr_resync somewhat here.
7016 	 * 0 == not engaged in resync at all
7017 	 * 2 == checking that there is no conflict with another sync
7018 	 * 1 == like 2, but have yielded to allow conflicting resync to
7019 	 *		commense
7020 	 * other == active in resync - this many blocks
7021 	 *
7022 	 * Before starting a resync we must have set curr_resync to
7023 	 * 2, and then checked that every "conflicting" array has curr_resync
7024 	 * less than ours.  When we find one that is the same or higher
7025 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7026 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7027 	 * This will mean we have to start checking from the beginning again.
7028 	 *
7029 	 */
7030 
7031 	do {
7032 		mddev->curr_resync = 2;
7033 
7034 	try_again:
7035 		if (kthread_should_stop())
7036 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7037 
7038 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7039 			goto skip;
7040 		for_each_mddev(mddev2, tmp) {
7041 			if (mddev2 == mddev)
7042 				continue;
7043 			if (!mddev->parallel_resync
7044 			&&  mddev2->curr_resync
7045 			&&  match_mddev_units(mddev, mddev2)) {
7046 				DEFINE_WAIT(wq);
7047 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7048 					/* arbitrarily yield */
7049 					mddev->curr_resync = 1;
7050 					wake_up(&resync_wait);
7051 				}
7052 				if (mddev > mddev2 && mddev->curr_resync == 1)
7053 					/* no need to wait here, we can wait the next
7054 					 * time 'round when curr_resync == 2
7055 					 */
7056 					continue;
7057 				/* We need to wait 'interruptible' so as not to
7058 				 * contribute to the load average, and not to
7059 				 * be caught by 'softlockup'
7060 				 */
7061 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7062 				if (!kthread_should_stop() &&
7063 				    mddev2->curr_resync >= mddev->curr_resync) {
7064 					printk(KERN_INFO "md: delaying %s of %s"
7065 					       " until %s has finished (they"
7066 					       " share one or more physical units)\n",
7067 					       desc, mdname(mddev), mdname(mddev2));
7068 					mddev_put(mddev2);
7069 					if (signal_pending(current))
7070 						flush_signals(current);
7071 					schedule();
7072 					finish_wait(&resync_wait, &wq);
7073 					goto try_again;
7074 				}
7075 				finish_wait(&resync_wait, &wq);
7076 			}
7077 		}
7078 	} while (mddev->curr_resync < 2);
7079 
7080 	j = 0;
7081 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7082 		/* resync follows the size requested by the personality,
7083 		 * which defaults to physical size, but can be virtual size
7084 		 */
7085 		max_sectors = mddev->resync_max_sectors;
7086 		mddev->resync_mismatches = 0;
7087 		/* we don't use the checkpoint if there's a bitmap */
7088 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7089 			j = mddev->resync_min;
7090 		else if (!mddev->bitmap)
7091 			j = mddev->recovery_cp;
7092 
7093 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7094 		max_sectors = mddev->dev_sectors;
7095 	else {
7096 		/* recovery follows the physical size of devices */
7097 		max_sectors = mddev->dev_sectors;
7098 		j = MaxSector;
7099 		rcu_read_lock();
7100 		list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7101 			if (rdev->raid_disk >= 0 &&
7102 			    !test_bit(Faulty, &rdev->flags) &&
7103 			    !test_bit(In_sync, &rdev->flags) &&
7104 			    rdev->recovery_offset < j)
7105 				j = rdev->recovery_offset;
7106 		rcu_read_unlock();
7107 	}
7108 
7109 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7110 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7111 		" %d KB/sec/disk.\n", speed_min(mddev));
7112 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7113 	       "(but not more than %d KB/sec) for %s.\n",
7114 	       speed_max(mddev), desc);
7115 
7116 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7117 
7118 	io_sectors = 0;
7119 	for (m = 0; m < SYNC_MARKS; m++) {
7120 		mark[m] = jiffies;
7121 		mark_cnt[m] = io_sectors;
7122 	}
7123 	last_mark = 0;
7124 	mddev->resync_mark = mark[last_mark];
7125 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7126 
7127 	/*
7128 	 * Tune reconstruction:
7129 	 */
7130 	window = 32*(PAGE_SIZE/512);
7131 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7132 		window/2, (unsigned long long)max_sectors/2);
7133 
7134 	atomic_set(&mddev->recovery_active, 0);
7135 	last_check = 0;
7136 
7137 	if (j>2) {
7138 		printk(KERN_INFO
7139 		       "md: resuming %s of %s from checkpoint.\n",
7140 		       desc, mdname(mddev));
7141 		mddev->curr_resync = j;
7142 	}
7143 	mddev->curr_resync_completed = j;
7144 
7145 	while (j < max_sectors) {
7146 		sector_t sectors;
7147 
7148 		skipped = 0;
7149 
7150 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7151 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7152 		      (mddev->curr_resync - mddev->curr_resync_completed)
7153 		      > (max_sectors >> 4)) ||
7154 		     (j - mddev->curr_resync_completed)*2
7155 		     >= mddev->resync_max - mddev->curr_resync_completed
7156 			    )) {
7157 			/* time to update curr_resync_completed */
7158 			wait_event(mddev->recovery_wait,
7159 				   atomic_read(&mddev->recovery_active) == 0);
7160 			mddev->curr_resync_completed = j;
7161 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7162 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7163 		}
7164 
7165 		while (j >= mddev->resync_max && !kthread_should_stop()) {
7166 			/* As this condition is controlled by user-space,
7167 			 * we can block indefinitely, so use '_interruptible'
7168 			 * to avoid triggering warnings.
7169 			 */
7170 			flush_signals(current); /* just in case */
7171 			wait_event_interruptible(mddev->recovery_wait,
7172 						 mddev->resync_max > j
7173 						 || kthread_should_stop());
7174 		}
7175 
7176 		if (kthread_should_stop())
7177 			goto interrupted;
7178 
7179 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7180 						  currspeed < speed_min(mddev));
7181 		if (sectors == 0) {
7182 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7183 			goto out;
7184 		}
7185 
7186 		if (!skipped) { /* actual IO requested */
7187 			io_sectors += sectors;
7188 			atomic_add(sectors, &mddev->recovery_active);
7189 		}
7190 
7191 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7192 			break;
7193 
7194 		j += sectors;
7195 		if (j>1) mddev->curr_resync = j;
7196 		mddev->curr_mark_cnt = io_sectors;
7197 		if (last_check == 0)
7198 			/* this is the earliest that rebuild will be
7199 			 * visible in /proc/mdstat
7200 			 */
7201 			md_new_event(mddev);
7202 
7203 		if (last_check + window > io_sectors || j == max_sectors)
7204 			continue;
7205 
7206 		last_check = io_sectors;
7207 	repeat:
7208 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7209 			/* step marks */
7210 			int next = (last_mark+1) % SYNC_MARKS;
7211 
7212 			mddev->resync_mark = mark[next];
7213 			mddev->resync_mark_cnt = mark_cnt[next];
7214 			mark[next] = jiffies;
7215 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7216 			last_mark = next;
7217 		}
7218 
7219 
7220 		if (kthread_should_stop())
7221 			goto interrupted;
7222 
7223 
7224 		/*
7225 		 * this loop exits only if either when we are slower than
7226 		 * the 'hard' speed limit, or the system was IO-idle for
7227 		 * a jiffy.
7228 		 * the system might be non-idle CPU-wise, but we only care
7229 		 * about not overloading the IO subsystem. (things like an
7230 		 * e2fsck being done on the RAID array should execute fast)
7231 		 */
7232 		cond_resched();
7233 
7234 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7235 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7236 
7237 		if (currspeed > speed_min(mddev)) {
7238 			if ((currspeed > speed_max(mddev)) ||
7239 					!is_mddev_idle(mddev, 0)) {
7240 				msleep(500);
7241 				goto repeat;
7242 			}
7243 		}
7244 	}
7245 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7246 	/*
7247 	 * this also signals 'finished resyncing' to md_stop
7248 	 */
7249  out:
7250 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7251 
7252 	/* tell personality that we are finished */
7253 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7254 
7255 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7256 	    mddev->curr_resync > 2) {
7257 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7258 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7259 				if (mddev->curr_resync >= mddev->recovery_cp) {
7260 					printk(KERN_INFO
7261 					       "md: checkpointing %s of %s.\n",
7262 					       desc, mdname(mddev));
7263 					mddev->recovery_cp = mddev->curr_resync;
7264 				}
7265 			} else
7266 				mddev->recovery_cp = MaxSector;
7267 		} else {
7268 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7269 				mddev->curr_resync = MaxSector;
7270 			rcu_read_lock();
7271 			list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7272 				if (rdev->raid_disk >= 0 &&
7273 				    mddev->delta_disks >= 0 &&
7274 				    !test_bit(Faulty, &rdev->flags) &&
7275 				    !test_bit(In_sync, &rdev->flags) &&
7276 				    rdev->recovery_offset < mddev->curr_resync)
7277 					rdev->recovery_offset = mddev->curr_resync;
7278 			rcu_read_unlock();
7279 		}
7280 	}
7281 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7282 
7283  skip:
7284 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7285 		/* We completed so min/max setting can be forgotten if used. */
7286 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7287 			mddev->resync_min = 0;
7288 		mddev->resync_max = MaxSector;
7289 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7290 		mddev->resync_min = mddev->curr_resync_completed;
7291 	mddev->curr_resync = 0;
7292 	wake_up(&resync_wait);
7293 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7294 	md_wakeup_thread(mddev->thread);
7295 	return;
7296 
7297  interrupted:
7298 	/*
7299 	 * got a signal, exit.
7300 	 */
7301 	printk(KERN_INFO
7302 	       "md: md_do_sync() got signal ... exiting\n");
7303 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7304 	goto out;
7305 
7306 }
7307 EXPORT_SYMBOL_GPL(md_do_sync);
7308 
7309 static int remove_and_add_spares(struct mddev *mddev)
7310 {
7311 	struct md_rdev *rdev;
7312 	int spares = 0;
7313 
7314 	mddev->curr_resync_completed = 0;
7315 
7316 	list_for_each_entry(rdev, &mddev->disks, same_set)
7317 		if (rdev->raid_disk >= 0 &&
7318 		    !test_bit(Blocked, &rdev->flags) &&
7319 		    (test_bit(Faulty, &rdev->flags) ||
7320 		     ! test_bit(In_sync, &rdev->flags)) &&
7321 		    atomic_read(&rdev->nr_pending)==0) {
7322 			if (mddev->pers->hot_remove_disk(
7323 				    mddev, rdev->raid_disk)==0) {
7324 				sysfs_unlink_rdev(mddev, rdev);
7325 				rdev->raid_disk = -1;
7326 			}
7327 		}
7328 
7329 	if (mddev->degraded) {
7330 		list_for_each_entry(rdev, &mddev->disks, same_set) {
7331 			if (rdev->raid_disk >= 0 &&
7332 			    !test_bit(In_sync, &rdev->flags) &&
7333 			    !test_bit(Faulty, &rdev->flags))
7334 				spares++;
7335 			if (rdev->raid_disk < 0
7336 			    && !test_bit(Faulty, &rdev->flags)) {
7337 				rdev->recovery_offset = 0;
7338 				if (mddev->pers->
7339 				    hot_add_disk(mddev, rdev) == 0) {
7340 					if (sysfs_link_rdev(mddev, rdev))
7341 						/* failure here is OK */;
7342 					spares++;
7343 					md_new_event(mddev);
7344 					set_bit(MD_CHANGE_DEVS, &mddev->flags);
7345 				} else
7346 					break;
7347 			}
7348 		}
7349 	}
7350 	return spares;
7351 }
7352 
7353 static void reap_sync_thread(struct mddev *mddev)
7354 {
7355 	struct md_rdev *rdev;
7356 
7357 	/* resync has finished, collect result */
7358 	md_unregister_thread(&mddev->sync_thread);
7359 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7360 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7361 		/* success...*/
7362 		/* activate any spares */
7363 		if (mddev->pers->spare_active(mddev))
7364 			sysfs_notify(&mddev->kobj, NULL,
7365 				     "degraded");
7366 	}
7367 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7368 	    mddev->pers->finish_reshape)
7369 		mddev->pers->finish_reshape(mddev);
7370 
7371 	/* If array is no-longer degraded, then any saved_raid_disk
7372 	 * information must be scrapped.  Also if any device is now
7373 	 * In_sync we must scrape the saved_raid_disk for that device
7374 	 * do the superblock for an incrementally recovered device
7375 	 * written out.
7376 	 */
7377 	list_for_each_entry(rdev, &mddev->disks, same_set)
7378 		if (!mddev->degraded ||
7379 		    test_bit(In_sync, &rdev->flags))
7380 			rdev->saved_raid_disk = -1;
7381 
7382 	md_update_sb(mddev, 1);
7383 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7384 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7385 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7386 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7387 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7388 	/* flag recovery needed just to double check */
7389 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7390 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7391 	md_new_event(mddev);
7392 	if (mddev->event_work.func)
7393 		queue_work(md_misc_wq, &mddev->event_work);
7394 }
7395 
7396 /*
7397  * This routine is regularly called by all per-raid-array threads to
7398  * deal with generic issues like resync and super-block update.
7399  * Raid personalities that don't have a thread (linear/raid0) do not
7400  * need this as they never do any recovery or update the superblock.
7401  *
7402  * It does not do any resync itself, but rather "forks" off other threads
7403  * to do that as needed.
7404  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7405  * "->recovery" and create a thread at ->sync_thread.
7406  * When the thread finishes it sets MD_RECOVERY_DONE
7407  * and wakeups up this thread which will reap the thread and finish up.
7408  * This thread also removes any faulty devices (with nr_pending == 0).
7409  *
7410  * The overall approach is:
7411  *  1/ if the superblock needs updating, update it.
7412  *  2/ If a recovery thread is running, don't do anything else.
7413  *  3/ If recovery has finished, clean up, possibly marking spares active.
7414  *  4/ If there are any faulty devices, remove them.
7415  *  5/ If array is degraded, try to add spares devices
7416  *  6/ If array has spares or is not in-sync, start a resync thread.
7417  */
7418 void md_check_recovery(struct mddev *mddev)
7419 {
7420 	if (mddev->suspended)
7421 		return;
7422 
7423 	if (mddev->bitmap)
7424 		bitmap_daemon_work(mddev);
7425 
7426 	if (signal_pending(current)) {
7427 		if (mddev->pers->sync_request && !mddev->external) {
7428 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7429 			       mdname(mddev));
7430 			mddev->safemode = 2;
7431 		}
7432 		flush_signals(current);
7433 	}
7434 
7435 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7436 		return;
7437 	if ( ! (
7438 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7439 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7440 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7441 		(mddev->external == 0 && mddev->safemode == 1) ||
7442 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7443 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7444 		))
7445 		return;
7446 
7447 	if (mddev_trylock(mddev)) {
7448 		int spares = 0;
7449 
7450 		if (mddev->ro) {
7451 			/* Only thing we do on a ro array is remove
7452 			 * failed devices.
7453 			 */
7454 			struct md_rdev *rdev;
7455 			list_for_each_entry(rdev, &mddev->disks, same_set)
7456 				if (rdev->raid_disk >= 0 &&
7457 				    !test_bit(Blocked, &rdev->flags) &&
7458 				    test_bit(Faulty, &rdev->flags) &&
7459 				    atomic_read(&rdev->nr_pending)==0) {
7460 					if (mddev->pers->hot_remove_disk(
7461 						    mddev, rdev->raid_disk)==0) {
7462 						sysfs_unlink_rdev(mddev, rdev);
7463 						rdev->raid_disk = -1;
7464 					}
7465 				}
7466 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7467 			goto unlock;
7468 		}
7469 
7470 		if (!mddev->external) {
7471 			int did_change = 0;
7472 			spin_lock_irq(&mddev->write_lock);
7473 			if (mddev->safemode &&
7474 			    !atomic_read(&mddev->writes_pending) &&
7475 			    !mddev->in_sync &&
7476 			    mddev->recovery_cp == MaxSector) {
7477 				mddev->in_sync = 1;
7478 				did_change = 1;
7479 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7480 			}
7481 			if (mddev->safemode == 1)
7482 				mddev->safemode = 0;
7483 			spin_unlock_irq(&mddev->write_lock);
7484 			if (did_change)
7485 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7486 		}
7487 
7488 		if (mddev->flags)
7489 			md_update_sb(mddev, 0);
7490 
7491 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7492 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7493 			/* resync/recovery still happening */
7494 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7495 			goto unlock;
7496 		}
7497 		if (mddev->sync_thread) {
7498 			reap_sync_thread(mddev);
7499 			goto unlock;
7500 		}
7501 		/* Set RUNNING before clearing NEEDED to avoid
7502 		 * any transients in the value of "sync_action".
7503 		 */
7504 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7505 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7506 		/* Clear some bits that don't mean anything, but
7507 		 * might be left set
7508 		 */
7509 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7510 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7511 
7512 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7513 			goto unlock;
7514 		/* no recovery is running.
7515 		 * remove any failed drives, then
7516 		 * add spares if possible.
7517 		 * Spare are also removed and re-added, to allow
7518 		 * the personality to fail the re-add.
7519 		 */
7520 
7521 		if (mddev->reshape_position != MaxSector) {
7522 			if (mddev->pers->check_reshape == NULL ||
7523 			    mddev->pers->check_reshape(mddev) != 0)
7524 				/* Cannot proceed */
7525 				goto unlock;
7526 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7527 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7528 		} else if ((spares = remove_and_add_spares(mddev))) {
7529 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7530 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7531 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7532 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7533 		} else if (mddev->recovery_cp < MaxSector) {
7534 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7535 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7536 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7537 			/* nothing to be done ... */
7538 			goto unlock;
7539 
7540 		if (mddev->pers->sync_request) {
7541 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7542 				/* We are adding a device or devices to an array
7543 				 * which has the bitmap stored on all devices.
7544 				 * So make sure all bitmap pages get written
7545 				 */
7546 				bitmap_write_all(mddev->bitmap);
7547 			}
7548 			mddev->sync_thread = md_register_thread(md_do_sync,
7549 								mddev,
7550 								"resync");
7551 			if (!mddev->sync_thread) {
7552 				printk(KERN_ERR "%s: could not start resync"
7553 					" thread...\n",
7554 					mdname(mddev));
7555 				/* leave the spares where they are, it shouldn't hurt */
7556 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7557 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7558 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7559 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7560 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7561 			} else
7562 				md_wakeup_thread(mddev->sync_thread);
7563 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7564 			md_new_event(mddev);
7565 		}
7566 	unlock:
7567 		if (!mddev->sync_thread) {
7568 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7569 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7570 					       &mddev->recovery))
7571 				if (mddev->sysfs_action)
7572 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7573 		}
7574 		mddev_unlock(mddev);
7575 	}
7576 }
7577 
7578 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7579 {
7580 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7581 	wait_event_timeout(rdev->blocked_wait,
7582 			   !test_bit(Blocked, &rdev->flags) &&
7583 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7584 			   msecs_to_jiffies(5000));
7585 	rdev_dec_pending(rdev, mddev);
7586 }
7587 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7588 
7589 
7590 /* Bad block management.
7591  * We can record which blocks on each device are 'bad' and so just
7592  * fail those blocks, or that stripe, rather than the whole device.
7593  * Entries in the bad-block table are 64bits wide.  This comprises:
7594  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7595  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7596  *  A 'shift' can be set so that larger blocks are tracked and
7597  *  consequently larger devices can be covered.
7598  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7599  *
7600  * Locking of the bad-block table uses a seqlock so md_is_badblock
7601  * might need to retry if it is very unlucky.
7602  * We will sometimes want to check for bad blocks in a bi_end_io function,
7603  * so we use the write_seqlock_irq variant.
7604  *
7605  * When looking for a bad block we specify a range and want to
7606  * know if any block in the range is bad.  So we binary-search
7607  * to the last range that starts at-or-before the given endpoint,
7608  * (or "before the sector after the target range")
7609  * then see if it ends after the given start.
7610  * We return
7611  *  0 if there are no known bad blocks in the range
7612  *  1 if there are known bad block which are all acknowledged
7613  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7614  * plus the start/length of the first bad section we overlap.
7615  */
7616 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7617 		   sector_t *first_bad, int *bad_sectors)
7618 {
7619 	int hi;
7620 	int lo = 0;
7621 	u64 *p = bb->page;
7622 	int rv = 0;
7623 	sector_t target = s + sectors;
7624 	unsigned seq;
7625 
7626 	if (bb->shift > 0) {
7627 		/* round the start down, and the end up */
7628 		s >>= bb->shift;
7629 		target += (1<<bb->shift) - 1;
7630 		target >>= bb->shift;
7631 		sectors = target - s;
7632 	}
7633 	/* 'target' is now the first block after the bad range */
7634 
7635 retry:
7636 	seq = read_seqbegin(&bb->lock);
7637 
7638 	hi = bb->count;
7639 
7640 	/* Binary search between lo and hi for 'target'
7641 	 * i.e. for the last range that starts before 'target'
7642 	 */
7643 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7644 	 * are known not to be the last range before target.
7645 	 * VARIANT: hi-lo is the number of possible
7646 	 * ranges, and decreases until it reaches 1
7647 	 */
7648 	while (hi - lo > 1) {
7649 		int mid = (lo + hi) / 2;
7650 		sector_t a = BB_OFFSET(p[mid]);
7651 		if (a < target)
7652 			/* This could still be the one, earlier ranges
7653 			 * could not. */
7654 			lo = mid;
7655 		else
7656 			/* This and later ranges are definitely out. */
7657 			hi = mid;
7658 	}
7659 	/* 'lo' might be the last that started before target, but 'hi' isn't */
7660 	if (hi > lo) {
7661 		/* need to check all range that end after 's' to see if
7662 		 * any are unacknowledged.
7663 		 */
7664 		while (lo >= 0 &&
7665 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7666 			if (BB_OFFSET(p[lo]) < target) {
7667 				/* starts before the end, and finishes after
7668 				 * the start, so they must overlap
7669 				 */
7670 				if (rv != -1 && BB_ACK(p[lo]))
7671 					rv = 1;
7672 				else
7673 					rv = -1;
7674 				*first_bad = BB_OFFSET(p[lo]);
7675 				*bad_sectors = BB_LEN(p[lo]);
7676 			}
7677 			lo--;
7678 		}
7679 	}
7680 
7681 	if (read_seqretry(&bb->lock, seq))
7682 		goto retry;
7683 
7684 	return rv;
7685 }
7686 EXPORT_SYMBOL_GPL(md_is_badblock);
7687 
7688 /*
7689  * Add a range of bad blocks to the table.
7690  * This might extend the table, or might contract it
7691  * if two adjacent ranges can be merged.
7692  * We binary-search to find the 'insertion' point, then
7693  * decide how best to handle it.
7694  */
7695 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7696 			    int acknowledged)
7697 {
7698 	u64 *p;
7699 	int lo, hi;
7700 	int rv = 1;
7701 
7702 	if (bb->shift < 0)
7703 		/* badblocks are disabled */
7704 		return 0;
7705 
7706 	if (bb->shift) {
7707 		/* round the start down, and the end up */
7708 		sector_t next = s + sectors;
7709 		s >>= bb->shift;
7710 		next += (1<<bb->shift) - 1;
7711 		next >>= bb->shift;
7712 		sectors = next - s;
7713 	}
7714 
7715 	write_seqlock_irq(&bb->lock);
7716 
7717 	p = bb->page;
7718 	lo = 0;
7719 	hi = bb->count;
7720 	/* Find the last range that starts at-or-before 's' */
7721 	while (hi - lo > 1) {
7722 		int mid = (lo + hi) / 2;
7723 		sector_t a = BB_OFFSET(p[mid]);
7724 		if (a <= s)
7725 			lo = mid;
7726 		else
7727 			hi = mid;
7728 	}
7729 	if (hi > lo && BB_OFFSET(p[lo]) > s)
7730 		hi = lo;
7731 
7732 	if (hi > lo) {
7733 		/* we found a range that might merge with the start
7734 		 * of our new range
7735 		 */
7736 		sector_t a = BB_OFFSET(p[lo]);
7737 		sector_t e = a + BB_LEN(p[lo]);
7738 		int ack = BB_ACK(p[lo]);
7739 		if (e >= s) {
7740 			/* Yes, we can merge with a previous range */
7741 			if (s == a && s + sectors >= e)
7742 				/* new range covers old */
7743 				ack = acknowledged;
7744 			else
7745 				ack = ack && acknowledged;
7746 
7747 			if (e < s + sectors)
7748 				e = s + sectors;
7749 			if (e - a <= BB_MAX_LEN) {
7750 				p[lo] = BB_MAKE(a, e-a, ack);
7751 				s = e;
7752 			} else {
7753 				/* does not all fit in one range,
7754 				 * make p[lo] maximal
7755 				 */
7756 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
7757 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7758 				s = a + BB_MAX_LEN;
7759 			}
7760 			sectors = e - s;
7761 		}
7762 	}
7763 	if (sectors && hi < bb->count) {
7764 		/* 'hi' points to the first range that starts after 's'.
7765 		 * Maybe we can merge with the start of that range */
7766 		sector_t a = BB_OFFSET(p[hi]);
7767 		sector_t e = a + BB_LEN(p[hi]);
7768 		int ack = BB_ACK(p[hi]);
7769 		if (a <= s + sectors) {
7770 			/* merging is possible */
7771 			if (e <= s + sectors) {
7772 				/* full overlap */
7773 				e = s + sectors;
7774 				ack = acknowledged;
7775 			} else
7776 				ack = ack && acknowledged;
7777 
7778 			a = s;
7779 			if (e - a <= BB_MAX_LEN) {
7780 				p[hi] = BB_MAKE(a, e-a, ack);
7781 				s = e;
7782 			} else {
7783 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7784 				s = a + BB_MAX_LEN;
7785 			}
7786 			sectors = e - s;
7787 			lo = hi;
7788 			hi++;
7789 		}
7790 	}
7791 	if (sectors == 0 && hi < bb->count) {
7792 		/* we might be able to combine lo and hi */
7793 		/* Note: 's' is at the end of 'lo' */
7794 		sector_t a = BB_OFFSET(p[hi]);
7795 		int lolen = BB_LEN(p[lo]);
7796 		int hilen = BB_LEN(p[hi]);
7797 		int newlen = lolen + hilen - (s - a);
7798 		if (s >= a && newlen < BB_MAX_LEN) {
7799 			/* yes, we can combine them */
7800 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7801 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7802 			memmove(p + hi, p + hi + 1,
7803 				(bb->count - hi - 1) * 8);
7804 			bb->count--;
7805 		}
7806 	}
7807 	while (sectors) {
7808 		/* didn't merge (it all).
7809 		 * Need to add a range just before 'hi' */
7810 		if (bb->count >= MD_MAX_BADBLOCKS) {
7811 			/* No room for more */
7812 			rv = 0;
7813 			break;
7814 		} else {
7815 			int this_sectors = sectors;
7816 			memmove(p + hi + 1, p + hi,
7817 				(bb->count - hi) * 8);
7818 			bb->count++;
7819 
7820 			if (this_sectors > BB_MAX_LEN)
7821 				this_sectors = BB_MAX_LEN;
7822 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7823 			sectors -= this_sectors;
7824 			s += this_sectors;
7825 		}
7826 	}
7827 
7828 	bb->changed = 1;
7829 	if (!acknowledged)
7830 		bb->unacked_exist = 1;
7831 	write_sequnlock_irq(&bb->lock);
7832 
7833 	return rv;
7834 }
7835 
7836 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7837 		       int acknowledged)
7838 {
7839 	int rv = md_set_badblocks(&rdev->badblocks,
7840 				  s + rdev->data_offset, sectors, acknowledged);
7841 	if (rv) {
7842 		/* Make sure they get written out promptly */
7843 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7844 		md_wakeup_thread(rdev->mddev->thread);
7845 	}
7846 	return rv;
7847 }
7848 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7849 
7850 /*
7851  * Remove a range of bad blocks from the table.
7852  * This may involve extending the table if we spilt a region,
7853  * but it must not fail.  So if the table becomes full, we just
7854  * drop the remove request.
7855  */
7856 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7857 {
7858 	u64 *p;
7859 	int lo, hi;
7860 	sector_t target = s + sectors;
7861 	int rv = 0;
7862 
7863 	if (bb->shift > 0) {
7864 		/* When clearing we round the start up and the end down.
7865 		 * This should not matter as the shift should align with
7866 		 * the block size and no rounding should ever be needed.
7867 		 * However it is better the think a block is bad when it
7868 		 * isn't than to think a block is not bad when it is.
7869 		 */
7870 		s += (1<<bb->shift) - 1;
7871 		s >>= bb->shift;
7872 		target >>= bb->shift;
7873 		sectors = target - s;
7874 	}
7875 
7876 	write_seqlock_irq(&bb->lock);
7877 
7878 	p = bb->page;
7879 	lo = 0;
7880 	hi = bb->count;
7881 	/* Find the last range that starts before 'target' */
7882 	while (hi - lo > 1) {
7883 		int mid = (lo + hi) / 2;
7884 		sector_t a = BB_OFFSET(p[mid]);
7885 		if (a < target)
7886 			lo = mid;
7887 		else
7888 			hi = mid;
7889 	}
7890 	if (hi > lo) {
7891 		/* p[lo] is the last range that could overlap the
7892 		 * current range.  Earlier ranges could also overlap,
7893 		 * but only this one can overlap the end of the range.
7894 		 */
7895 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7896 			/* Partial overlap, leave the tail of this range */
7897 			int ack = BB_ACK(p[lo]);
7898 			sector_t a = BB_OFFSET(p[lo]);
7899 			sector_t end = a + BB_LEN(p[lo]);
7900 
7901 			if (a < s) {
7902 				/* we need to split this range */
7903 				if (bb->count >= MD_MAX_BADBLOCKS) {
7904 					rv = 0;
7905 					goto out;
7906 				}
7907 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7908 				bb->count++;
7909 				p[lo] = BB_MAKE(a, s-a, ack);
7910 				lo++;
7911 			}
7912 			p[lo] = BB_MAKE(target, end - target, ack);
7913 			/* there is no longer an overlap */
7914 			hi = lo;
7915 			lo--;
7916 		}
7917 		while (lo >= 0 &&
7918 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7919 			/* This range does overlap */
7920 			if (BB_OFFSET(p[lo]) < s) {
7921 				/* Keep the early parts of this range. */
7922 				int ack = BB_ACK(p[lo]);
7923 				sector_t start = BB_OFFSET(p[lo]);
7924 				p[lo] = BB_MAKE(start, s - start, ack);
7925 				/* now low doesn't overlap, so.. */
7926 				break;
7927 			}
7928 			lo--;
7929 		}
7930 		/* 'lo' is strictly before, 'hi' is strictly after,
7931 		 * anything between needs to be discarded
7932 		 */
7933 		if (hi - lo > 1) {
7934 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7935 			bb->count -= (hi - lo - 1);
7936 		}
7937 	}
7938 
7939 	bb->changed = 1;
7940 out:
7941 	write_sequnlock_irq(&bb->lock);
7942 	return rv;
7943 }
7944 
7945 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
7946 {
7947 	return md_clear_badblocks(&rdev->badblocks,
7948 				  s + rdev->data_offset,
7949 				  sectors);
7950 }
7951 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7952 
7953 /*
7954  * Acknowledge all bad blocks in a list.
7955  * This only succeeds if ->changed is clear.  It is used by
7956  * in-kernel metadata updates
7957  */
7958 void md_ack_all_badblocks(struct badblocks *bb)
7959 {
7960 	if (bb->page == NULL || bb->changed)
7961 		/* no point even trying */
7962 		return;
7963 	write_seqlock_irq(&bb->lock);
7964 
7965 	if (bb->changed == 0) {
7966 		u64 *p = bb->page;
7967 		int i;
7968 		for (i = 0; i < bb->count ; i++) {
7969 			if (!BB_ACK(p[i])) {
7970 				sector_t start = BB_OFFSET(p[i]);
7971 				int len = BB_LEN(p[i]);
7972 				p[i] = BB_MAKE(start, len, 1);
7973 			}
7974 		}
7975 		bb->unacked_exist = 0;
7976 	}
7977 	write_sequnlock_irq(&bb->lock);
7978 }
7979 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7980 
7981 /* sysfs access to bad-blocks list.
7982  * We present two files.
7983  * 'bad-blocks' lists sector numbers and lengths of ranges that
7984  *    are recorded as bad.  The list is truncated to fit within
7985  *    the one-page limit of sysfs.
7986  *    Writing "sector length" to this file adds an acknowledged
7987  *    bad block list.
7988  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
7989  *    been acknowledged.  Writing to this file adds bad blocks
7990  *    without acknowledging them.  This is largely for testing.
7991  */
7992 
7993 static ssize_t
7994 badblocks_show(struct badblocks *bb, char *page, int unack)
7995 {
7996 	size_t len;
7997 	int i;
7998 	u64 *p = bb->page;
7999 	unsigned seq;
8000 
8001 	if (bb->shift < 0)
8002 		return 0;
8003 
8004 retry:
8005 	seq = read_seqbegin(&bb->lock);
8006 
8007 	len = 0;
8008 	i = 0;
8009 
8010 	while (len < PAGE_SIZE && i < bb->count) {
8011 		sector_t s = BB_OFFSET(p[i]);
8012 		unsigned int length = BB_LEN(p[i]);
8013 		int ack = BB_ACK(p[i]);
8014 		i++;
8015 
8016 		if (unack && ack)
8017 			continue;
8018 
8019 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8020 				(unsigned long long)s << bb->shift,
8021 				length << bb->shift);
8022 	}
8023 	if (unack && len == 0)
8024 		bb->unacked_exist = 0;
8025 
8026 	if (read_seqretry(&bb->lock, seq))
8027 		goto retry;
8028 
8029 	return len;
8030 }
8031 
8032 #define DO_DEBUG 1
8033 
8034 static ssize_t
8035 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8036 {
8037 	unsigned long long sector;
8038 	int length;
8039 	char newline;
8040 #ifdef DO_DEBUG
8041 	/* Allow clearing via sysfs *only* for testing/debugging.
8042 	 * Normally only a successful write may clear a badblock
8043 	 */
8044 	int clear = 0;
8045 	if (page[0] == '-') {
8046 		clear = 1;
8047 		page++;
8048 	}
8049 #endif /* DO_DEBUG */
8050 
8051 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8052 	case 3:
8053 		if (newline != '\n')
8054 			return -EINVAL;
8055 	case 2:
8056 		if (length <= 0)
8057 			return -EINVAL;
8058 		break;
8059 	default:
8060 		return -EINVAL;
8061 	}
8062 
8063 #ifdef DO_DEBUG
8064 	if (clear) {
8065 		md_clear_badblocks(bb, sector, length);
8066 		return len;
8067 	}
8068 #endif /* DO_DEBUG */
8069 	if (md_set_badblocks(bb, sector, length, !unack))
8070 		return len;
8071 	else
8072 		return -ENOSPC;
8073 }
8074 
8075 static int md_notify_reboot(struct notifier_block *this,
8076 			    unsigned long code, void *x)
8077 {
8078 	struct list_head *tmp;
8079 	struct mddev *mddev;
8080 	int need_delay = 0;
8081 
8082 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8083 
8084 		printk(KERN_INFO "md: stopping all md devices.\n");
8085 
8086 		for_each_mddev(mddev, tmp) {
8087 			if (mddev_trylock(mddev)) {
8088 				/* Force a switch to readonly even array
8089 				 * appears to still be in use.  Hence
8090 				 * the '100'.
8091 				 */
8092 				md_set_readonly(mddev, 100);
8093 				mddev_unlock(mddev);
8094 			}
8095 			need_delay = 1;
8096 		}
8097 		/*
8098 		 * certain more exotic SCSI devices are known to be
8099 		 * volatile wrt too early system reboots. While the
8100 		 * right place to handle this issue is the given
8101 		 * driver, we do want to have a safe RAID driver ...
8102 		 */
8103 		if (need_delay)
8104 			mdelay(1000*1);
8105 	}
8106 	return NOTIFY_DONE;
8107 }
8108 
8109 static struct notifier_block md_notifier = {
8110 	.notifier_call	= md_notify_reboot,
8111 	.next		= NULL,
8112 	.priority	= INT_MAX, /* before any real devices */
8113 };
8114 
8115 static void md_geninit(void)
8116 {
8117 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8118 
8119 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8120 }
8121 
8122 static int __init md_init(void)
8123 {
8124 	int ret = -ENOMEM;
8125 
8126 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8127 	if (!md_wq)
8128 		goto err_wq;
8129 
8130 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8131 	if (!md_misc_wq)
8132 		goto err_misc_wq;
8133 
8134 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8135 		goto err_md;
8136 
8137 	if ((ret = register_blkdev(0, "mdp")) < 0)
8138 		goto err_mdp;
8139 	mdp_major = ret;
8140 
8141 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8142 			    md_probe, NULL, NULL);
8143 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8144 			    md_probe, NULL, NULL);
8145 
8146 	register_reboot_notifier(&md_notifier);
8147 	raid_table_header = register_sysctl_table(raid_root_table);
8148 
8149 	md_geninit();
8150 	return 0;
8151 
8152 err_mdp:
8153 	unregister_blkdev(MD_MAJOR, "md");
8154 err_md:
8155 	destroy_workqueue(md_misc_wq);
8156 err_misc_wq:
8157 	destroy_workqueue(md_wq);
8158 err_wq:
8159 	return ret;
8160 }
8161 
8162 #ifndef MODULE
8163 
8164 /*
8165  * Searches all registered partitions for autorun RAID arrays
8166  * at boot time.
8167  */
8168 
8169 static LIST_HEAD(all_detected_devices);
8170 struct detected_devices_node {
8171 	struct list_head list;
8172 	dev_t dev;
8173 };
8174 
8175 void md_autodetect_dev(dev_t dev)
8176 {
8177 	struct detected_devices_node *node_detected_dev;
8178 
8179 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8180 	if (node_detected_dev) {
8181 		node_detected_dev->dev = dev;
8182 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8183 	} else {
8184 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8185 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8186 	}
8187 }
8188 
8189 
8190 static void autostart_arrays(int part)
8191 {
8192 	struct md_rdev *rdev;
8193 	struct detected_devices_node *node_detected_dev;
8194 	dev_t dev;
8195 	int i_scanned, i_passed;
8196 
8197 	i_scanned = 0;
8198 	i_passed = 0;
8199 
8200 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8201 
8202 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8203 		i_scanned++;
8204 		node_detected_dev = list_entry(all_detected_devices.next,
8205 					struct detected_devices_node, list);
8206 		list_del(&node_detected_dev->list);
8207 		dev = node_detected_dev->dev;
8208 		kfree(node_detected_dev);
8209 		rdev = md_import_device(dev,0, 90);
8210 		if (IS_ERR(rdev))
8211 			continue;
8212 
8213 		if (test_bit(Faulty, &rdev->flags)) {
8214 			MD_BUG();
8215 			continue;
8216 		}
8217 		set_bit(AutoDetected, &rdev->flags);
8218 		list_add(&rdev->same_set, &pending_raid_disks);
8219 		i_passed++;
8220 	}
8221 
8222 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8223 						i_scanned, i_passed);
8224 
8225 	autorun_devices(part);
8226 }
8227 
8228 #endif /* !MODULE */
8229 
8230 static __exit void md_exit(void)
8231 {
8232 	struct mddev *mddev;
8233 	struct list_head *tmp;
8234 
8235 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8236 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8237 
8238 	unregister_blkdev(MD_MAJOR,"md");
8239 	unregister_blkdev(mdp_major, "mdp");
8240 	unregister_reboot_notifier(&md_notifier);
8241 	unregister_sysctl_table(raid_table_header);
8242 	remove_proc_entry("mdstat", NULL);
8243 	for_each_mddev(mddev, tmp) {
8244 		export_array(mddev);
8245 		mddev->hold_active = 0;
8246 	}
8247 	destroy_workqueue(md_misc_wq);
8248 	destroy_workqueue(md_wq);
8249 }
8250 
8251 subsys_initcall(md_init);
8252 module_exit(md_exit)
8253 
8254 static int get_ro(char *buffer, struct kernel_param *kp)
8255 {
8256 	return sprintf(buffer, "%d", start_readonly);
8257 }
8258 static int set_ro(const char *val, struct kernel_param *kp)
8259 {
8260 	char *e;
8261 	int num = simple_strtoul(val, &e, 10);
8262 	if (*val && (*e == '\0' || *e == '\n')) {
8263 		start_readonly = num;
8264 		return 0;
8265 	}
8266 	return -EINVAL;
8267 }
8268 
8269 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8270 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8271 
8272 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8273 
8274 EXPORT_SYMBOL(register_md_personality);
8275 EXPORT_SYMBOL(unregister_md_personality);
8276 EXPORT_SYMBOL(md_error);
8277 EXPORT_SYMBOL(md_done_sync);
8278 EXPORT_SYMBOL(md_write_start);
8279 EXPORT_SYMBOL(md_write_end);
8280 EXPORT_SYMBOL(md_register_thread);
8281 EXPORT_SYMBOL(md_unregister_thread);
8282 EXPORT_SYMBOL(md_wakeup_thread);
8283 EXPORT_SYMBOL(md_check_recovery);
8284 MODULE_LICENSE("GPL");
8285 MODULE_DESCRIPTION("MD RAID framework");
8286 MODULE_ALIAS("md");
8287 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8288