1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/mutex.h> 40 #include <linux/buffer_head.h> /* for invalidate_bdev */ 41 #include <linux/poll.h> 42 #include <linux/ctype.h> 43 #include <linux/string.h> 44 #include <linux/hdreg.h> 45 #include <linux/proc_fs.h> 46 #include <linux/random.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #define DEBUG 0 58 #define dprintk(x...) ((void)(DEBUG && printk(x))) 59 60 #ifndef MODULE 61 static void autostart_arrays(int part); 62 #endif 63 64 static LIST_HEAD(pers_list); 65 static DEFINE_SPINLOCK(pers_lock); 66 67 static void md_print_devices(void); 68 69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 70 static struct workqueue_struct *md_wq; 71 static struct workqueue_struct *md_misc_wq; 72 73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 74 75 /* 76 * Default number of read corrections we'll attempt on an rdev 77 * before ejecting it from the array. We divide the read error 78 * count by 2 for every hour elapsed between read errors. 79 */ 80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 81 /* 82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 83 * is 1000 KB/sec, so the extra system load does not show up that much. 84 * Increase it if you want to have more _guaranteed_ speed. Note that 85 * the RAID driver will use the maximum available bandwidth if the IO 86 * subsystem is idle. There is also an 'absolute maximum' reconstruction 87 * speed limit - in case reconstruction slows down your system despite 88 * idle IO detection. 89 * 90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 91 * or /sys/block/mdX/md/sync_speed_{min,max} 92 */ 93 94 static int sysctl_speed_limit_min = 1000; 95 static int sysctl_speed_limit_max = 200000; 96 static inline int speed_min(mddev_t *mddev) 97 { 98 return mddev->sync_speed_min ? 99 mddev->sync_speed_min : sysctl_speed_limit_min; 100 } 101 102 static inline int speed_max(mddev_t *mddev) 103 { 104 return mddev->sync_speed_max ? 105 mddev->sync_speed_max : sysctl_speed_limit_max; 106 } 107 108 static struct ctl_table_header *raid_table_header; 109 110 static ctl_table raid_table[] = { 111 { 112 .procname = "speed_limit_min", 113 .data = &sysctl_speed_limit_min, 114 .maxlen = sizeof(int), 115 .mode = S_IRUGO|S_IWUSR, 116 .proc_handler = proc_dointvec, 117 }, 118 { 119 .procname = "speed_limit_max", 120 .data = &sysctl_speed_limit_max, 121 .maxlen = sizeof(int), 122 .mode = S_IRUGO|S_IWUSR, 123 .proc_handler = proc_dointvec, 124 }, 125 { } 126 }; 127 128 static ctl_table raid_dir_table[] = { 129 { 130 .procname = "raid", 131 .maxlen = 0, 132 .mode = S_IRUGO|S_IXUGO, 133 .child = raid_table, 134 }, 135 { } 136 }; 137 138 static ctl_table raid_root_table[] = { 139 { 140 .procname = "dev", 141 .maxlen = 0, 142 .mode = 0555, 143 .child = raid_dir_table, 144 }, 145 { } 146 }; 147 148 static const struct block_device_operations md_fops; 149 150 static int start_readonly; 151 152 /* bio_clone_mddev 153 * like bio_clone, but with a local bio set 154 */ 155 156 static void mddev_bio_destructor(struct bio *bio) 157 { 158 mddev_t *mddev, **mddevp; 159 160 mddevp = (void*)bio; 161 mddev = mddevp[-1]; 162 163 bio_free(bio, mddev->bio_set); 164 } 165 166 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 167 mddev_t *mddev) 168 { 169 struct bio *b; 170 mddev_t **mddevp; 171 172 if (!mddev || !mddev->bio_set) 173 return bio_alloc(gfp_mask, nr_iovecs); 174 175 b = bio_alloc_bioset(gfp_mask, nr_iovecs, 176 mddev->bio_set); 177 if (!b) 178 return NULL; 179 mddevp = (void*)b; 180 mddevp[-1] = mddev; 181 b->bi_destructor = mddev_bio_destructor; 182 return b; 183 } 184 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 185 186 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 187 mddev_t *mddev) 188 { 189 struct bio *b; 190 mddev_t **mddevp; 191 192 if (!mddev || !mddev->bio_set) 193 return bio_clone(bio, gfp_mask); 194 195 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, 196 mddev->bio_set); 197 if (!b) 198 return NULL; 199 mddevp = (void*)b; 200 mddevp[-1] = mddev; 201 b->bi_destructor = mddev_bio_destructor; 202 __bio_clone(b, bio); 203 if (bio_integrity(bio)) { 204 int ret; 205 206 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set); 207 208 if (ret < 0) { 209 bio_put(b); 210 return NULL; 211 } 212 } 213 214 return b; 215 } 216 EXPORT_SYMBOL_GPL(bio_clone_mddev); 217 218 /* 219 * We have a system wide 'event count' that is incremented 220 * on any 'interesting' event, and readers of /proc/mdstat 221 * can use 'poll' or 'select' to find out when the event 222 * count increases. 223 * 224 * Events are: 225 * start array, stop array, error, add device, remove device, 226 * start build, activate spare 227 */ 228 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 229 static atomic_t md_event_count; 230 void md_new_event(mddev_t *mddev) 231 { 232 atomic_inc(&md_event_count); 233 wake_up(&md_event_waiters); 234 } 235 EXPORT_SYMBOL_GPL(md_new_event); 236 237 /* Alternate version that can be called from interrupts 238 * when calling sysfs_notify isn't needed. 239 */ 240 static void md_new_event_inintr(mddev_t *mddev) 241 { 242 atomic_inc(&md_event_count); 243 wake_up(&md_event_waiters); 244 } 245 246 /* 247 * Enables to iterate over all existing md arrays 248 * all_mddevs_lock protects this list. 249 */ 250 static LIST_HEAD(all_mddevs); 251 static DEFINE_SPINLOCK(all_mddevs_lock); 252 253 254 /* 255 * iterates through all used mddevs in the system. 256 * We take care to grab the all_mddevs_lock whenever navigating 257 * the list, and to always hold a refcount when unlocked. 258 * Any code which breaks out of this loop while own 259 * a reference to the current mddev and must mddev_put it. 260 */ 261 #define for_each_mddev(mddev,tmp) \ 262 \ 263 for (({ spin_lock(&all_mddevs_lock); \ 264 tmp = all_mddevs.next; \ 265 mddev = NULL;}); \ 266 ({ if (tmp != &all_mddevs) \ 267 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 268 spin_unlock(&all_mddevs_lock); \ 269 if (mddev) mddev_put(mddev); \ 270 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 271 tmp != &all_mddevs;}); \ 272 ({ spin_lock(&all_mddevs_lock); \ 273 tmp = tmp->next;}) \ 274 ) 275 276 277 /* Rather than calling directly into the personality make_request function, 278 * IO requests come here first so that we can check if the device is 279 * being suspended pending a reconfiguration. 280 * We hold a refcount over the call to ->make_request. By the time that 281 * call has finished, the bio has been linked into some internal structure 282 * and so is visible to ->quiesce(), so we don't need the refcount any more. 283 */ 284 static int md_make_request(struct request_queue *q, struct bio *bio) 285 { 286 const int rw = bio_data_dir(bio); 287 mddev_t *mddev = q->queuedata; 288 int rv; 289 int cpu; 290 291 if (mddev == NULL || mddev->pers == NULL 292 || !mddev->ready) { 293 bio_io_error(bio); 294 return 0; 295 } 296 smp_rmb(); /* Ensure implications of 'active' are visible */ 297 rcu_read_lock(); 298 if (mddev->suspended) { 299 DEFINE_WAIT(__wait); 300 for (;;) { 301 prepare_to_wait(&mddev->sb_wait, &__wait, 302 TASK_UNINTERRUPTIBLE); 303 if (!mddev->suspended) 304 break; 305 rcu_read_unlock(); 306 schedule(); 307 rcu_read_lock(); 308 } 309 finish_wait(&mddev->sb_wait, &__wait); 310 } 311 atomic_inc(&mddev->active_io); 312 rcu_read_unlock(); 313 314 rv = mddev->pers->make_request(mddev, bio); 315 316 cpu = part_stat_lock(); 317 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 318 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], 319 bio_sectors(bio)); 320 part_stat_unlock(); 321 322 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 323 wake_up(&mddev->sb_wait); 324 325 return rv; 326 } 327 328 /* mddev_suspend makes sure no new requests are submitted 329 * to the device, and that any requests that have been submitted 330 * are completely handled. 331 * Once ->stop is called and completes, the module will be completely 332 * unused. 333 */ 334 void mddev_suspend(mddev_t *mddev) 335 { 336 BUG_ON(mddev->suspended); 337 mddev->suspended = 1; 338 synchronize_rcu(); 339 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 340 mddev->pers->quiesce(mddev, 1); 341 } 342 EXPORT_SYMBOL_GPL(mddev_suspend); 343 344 void mddev_resume(mddev_t *mddev) 345 { 346 mddev->suspended = 0; 347 wake_up(&mddev->sb_wait); 348 mddev->pers->quiesce(mddev, 0); 349 } 350 EXPORT_SYMBOL_GPL(mddev_resume); 351 352 int mddev_congested(mddev_t *mddev, int bits) 353 { 354 return mddev->suspended; 355 } 356 EXPORT_SYMBOL(mddev_congested); 357 358 /* 359 * Generic flush handling for md 360 */ 361 362 static void md_end_flush(struct bio *bio, int err) 363 { 364 mdk_rdev_t *rdev = bio->bi_private; 365 mddev_t *mddev = rdev->mddev; 366 367 rdev_dec_pending(rdev, mddev); 368 369 if (atomic_dec_and_test(&mddev->flush_pending)) { 370 /* The pre-request flush has finished */ 371 queue_work(md_wq, &mddev->flush_work); 372 } 373 bio_put(bio); 374 } 375 376 static void md_submit_flush_data(struct work_struct *ws); 377 378 static void submit_flushes(struct work_struct *ws) 379 { 380 mddev_t *mddev = container_of(ws, mddev_t, flush_work); 381 mdk_rdev_t *rdev; 382 383 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 384 atomic_set(&mddev->flush_pending, 1); 385 rcu_read_lock(); 386 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 387 if (rdev->raid_disk >= 0 && 388 !test_bit(Faulty, &rdev->flags)) { 389 /* Take two references, one is dropped 390 * when request finishes, one after 391 * we reclaim rcu_read_lock 392 */ 393 struct bio *bi; 394 atomic_inc(&rdev->nr_pending); 395 atomic_inc(&rdev->nr_pending); 396 rcu_read_unlock(); 397 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev); 398 bi->bi_end_io = md_end_flush; 399 bi->bi_private = rdev; 400 bi->bi_bdev = rdev->bdev; 401 atomic_inc(&mddev->flush_pending); 402 submit_bio(WRITE_FLUSH, bi); 403 rcu_read_lock(); 404 rdev_dec_pending(rdev, mddev); 405 } 406 rcu_read_unlock(); 407 if (atomic_dec_and_test(&mddev->flush_pending)) 408 queue_work(md_wq, &mddev->flush_work); 409 } 410 411 static void md_submit_flush_data(struct work_struct *ws) 412 { 413 mddev_t *mddev = container_of(ws, mddev_t, flush_work); 414 struct bio *bio = mddev->flush_bio; 415 416 if (bio->bi_size == 0) 417 /* an empty barrier - all done */ 418 bio_endio(bio, 0); 419 else { 420 bio->bi_rw &= ~REQ_FLUSH; 421 if (mddev->pers->make_request(mddev, bio)) 422 generic_make_request(bio); 423 } 424 425 mddev->flush_bio = NULL; 426 wake_up(&mddev->sb_wait); 427 } 428 429 void md_flush_request(mddev_t *mddev, struct bio *bio) 430 { 431 spin_lock_irq(&mddev->write_lock); 432 wait_event_lock_irq(mddev->sb_wait, 433 !mddev->flush_bio, 434 mddev->write_lock, /*nothing*/); 435 mddev->flush_bio = bio; 436 spin_unlock_irq(&mddev->write_lock); 437 438 INIT_WORK(&mddev->flush_work, submit_flushes); 439 queue_work(md_wq, &mddev->flush_work); 440 } 441 EXPORT_SYMBOL(md_flush_request); 442 443 /* Support for plugging. 444 * This mirrors the plugging support in request_queue, but does not 445 * require having a whole queue 446 */ 447 static void plugger_work(struct work_struct *work) 448 { 449 struct plug_handle *plug = 450 container_of(work, struct plug_handle, unplug_work); 451 plug->unplug_fn(plug); 452 } 453 static void plugger_timeout(unsigned long data) 454 { 455 struct plug_handle *plug = (void *)data; 456 kblockd_schedule_work(NULL, &plug->unplug_work); 457 } 458 void plugger_init(struct plug_handle *plug, 459 void (*unplug_fn)(struct plug_handle *)) 460 { 461 plug->unplug_flag = 0; 462 plug->unplug_fn = unplug_fn; 463 init_timer(&plug->unplug_timer); 464 plug->unplug_timer.function = plugger_timeout; 465 plug->unplug_timer.data = (unsigned long)plug; 466 INIT_WORK(&plug->unplug_work, plugger_work); 467 } 468 EXPORT_SYMBOL_GPL(plugger_init); 469 470 void plugger_set_plug(struct plug_handle *plug) 471 { 472 if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag)) 473 mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1); 474 } 475 EXPORT_SYMBOL_GPL(plugger_set_plug); 476 477 int plugger_remove_plug(struct plug_handle *plug) 478 { 479 if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) { 480 del_timer(&plug->unplug_timer); 481 return 1; 482 } else 483 return 0; 484 } 485 EXPORT_SYMBOL_GPL(plugger_remove_plug); 486 487 488 static inline mddev_t *mddev_get(mddev_t *mddev) 489 { 490 atomic_inc(&mddev->active); 491 return mddev; 492 } 493 494 static void mddev_delayed_delete(struct work_struct *ws); 495 496 static void mddev_put(mddev_t *mddev) 497 { 498 struct bio_set *bs = NULL; 499 500 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 501 return; 502 if (!mddev->raid_disks && list_empty(&mddev->disks) && 503 mddev->ctime == 0 && !mddev->hold_active) { 504 /* Array is not configured at all, and not held active, 505 * so destroy it */ 506 list_del(&mddev->all_mddevs); 507 bs = mddev->bio_set; 508 mddev->bio_set = NULL; 509 if (mddev->gendisk) { 510 /* We did a probe so need to clean up. Call 511 * queue_work inside the spinlock so that 512 * flush_workqueue() after mddev_find will 513 * succeed in waiting for the work to be done. 514 */ 515 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 516 queue_work(md_misc_wq, &mddev->del_work); 517 } else 518 kfree(mddev); 519 } 520 spin_unlock(&all_mddevs_lock); 521 if (bs) 522 bioset_free(bs); 523 } 524 525 void mddev_init(mddev_t *mddev) 526 { 527 mutex_init(&mddev->open_mutex); 528 mutex_init(&mddev->reconfig_mutex); 529 mutex_init(&mddev->bitmap_info.mutex); 530 INIT_LIST_HEAD(&mddev->disks); 531 INIT_LIST_HEAD(&mddev->all_mddevs); 532 init_timer(&mddev->safemode_timer); 533 atomic_set(&mddev->active, 1); 534 atomic_set(&mddev->openers, 0); 535 atomic_set(&mddev->active_io, 0); 536 spin_lock_init(&mddev->write_lock); 537 atomic_set(&mddev->flush_pending, 0); 538 init_waitqueue_head(&mddev->sb_wait); 539 init_waitqueue_head(&mddev->recovery_wait); 540 mddev->reshape_position = MaxSector; 541 mddev->resync_min = 0; 542 mddev->resync_max = MaxSector; 543 mddev->level = LEVEL_NONE; 544 } 545 EXPORT_SYMBOL_GPL(mddev_init); 546 547 static mddev_t * mddev_find(dev_t unit) 548 { 549 mddev_t *mddev, *new = NULL; 550 551 retry: 552 spin_lock(&all_mddevs_lock); 553 554 if (unit) { 555 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 556 if (mddev->unit == unit) { 557 mddev_get(mddev); 558 spin_unlock(&all_mddevs_lock); 559 kfree(new); 560 return mddev; 561 } 562 563 if (new) { 564 list_add(&new->all_mddevs, &all_mddevs); 565 spin_unlock(&all_mddevs_lock); 566 new->hold_active = UNTIL_IOCTL; 567 return new; 568 } 569 } else if (new) { 570 /* find an unused unit number */ 571 static int next_minor = 512; 572 int start = next_minor; 573 int is_free = 0; 574 int dev = 0; 575 while (!is_free) { 576 dev = MKDEV(MD_MAJOR, next_minor); 577 next_minor++; 578 if (next_minor > MINORMASK) 579 next_minor = 0; 580 if (next_minor == start) { 581 /* Oh dear, all in use. */ 582 spin_unlock(&all_mddevs_lock); 583 kfree(new); 584 return NULL; 585 } 586 587 is_free = 1; 588 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 589 if (mddev->unit == dev) { 590 is_free = 0; 591 break; 592 } 593 } 594 new->unit = dev; 595 new->md_minor = MINOR(dev); 596 new->hold_active = UNTIL_STOP; 597 list_add(&new->all_mddevs, &all_mddevs); 598 spin_unlock(&all_mddevs_lock); 599 return new; 600 } 601 spin_unlock(&all_mddevs_lock); 602 603 new = kzalloc(sizeof(*new), GFP_KERNEL); 604 if (!new) 605 return NULL; 606 607 new->unit = unit; 608 if (MAJOR(unit) == MD_MAJOR) 609 new->md_minor = MINOR(unit); 610 else 611 new->md_minor = MINOR(unit) >> MdpMinorShift; 612 613 mddev_init(new); 614 615 goto retry; 616 } 617 618 static inline int mddev_lock(mddev_t * mddev) 619 { 620 return mutex_lock_interruptible(&mddev->reconfig_mutex); 621 } 622 623 static inline int mddev_is_locked(mddev_t *mddev) 624 { 625 return mutex_is_locked(&mddev->reconfig_mutex); 626 } 627 628 static inline int mddev_trylock(mddev_t * mddev) 629 { 630 return mutex_trylock(&mddev->reconfig_mutex); 631 } 632 633 static struct attribute_group md_redundancy_group; 634 635 static void mddev_unlock(mddev_t * mddev) 636 { 637 if (mddev->to_remove) { 638 /* These cannot be removed under reconfig_mutex as 639 * an access to the files will try to take reconfig_mutex 640 * while holding the file unremovable, which leads to 641 * a deadlock. 642 * So hold set sysfs_active while the remove in happeing, 643 * and anything else which might set ->to_remove or my 644 * otherwise change the sysfs namespace will fail with 645 * -EBUSY if sysfs_active is still set. 646 * We set sysfs_active under reconfig_mutex and elsewhere 647 * test it under the same mutex to ensure its correct value 648 * is seen. 649 */ 650 struct attribute_group *to_remove = mddev->to_remove; 651 mddev->to_remove = NULL; 652 mddev->sysfs_active = 1; 653 mutex_unlock(&mddev->reconfig_mutex); 654 655 if (mddev->kobj.sd) { 656 if (to_remove != &md_redundancy_group) 657 sysfs_remove_group(&mddev->kobj, to_remove); 658 if (mddev->pers == NULL || 659 mddev->pers->sync_request == NULL) { 660 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 661 if (mddev->sysfs_action) 662 sysfs_put(mddev->sysfs_action); 663 mddev->sysfs_action = NULL; 664 } 665 } 666 mddev->sysfs_active = 0; 667 } else 668 mutex_unlock(&mddev->reconfig_mutex); 669 670 md_wakeup_thread(mddev->thread); 671 } 672 673 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 674 { 675 mdk_rdev_t *rdev; 676 677 list_for_each_entry(rdev, &mddev->disks, same_set) 678 if (rdev->desc_nr == nr) 679 return rdev; 680 681 return NULL; 682 } 683 684 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 685 { 686 mdk_rdev_t *rdev; 687 688 list_for_each_entry(rdev, &mddev->disks, same_set) 689 if (rdev->bdev->bd_dev == dev) 690 return rdev; 691 692 return NULL; 693 } 694 695 static struct mdk_personality *find_pers(int level, char *clevel) 696 { 697 struct mdk_personality *pers; 698 list_for_each_entry(pers, &pers_list, list) { 699 if (level != LEVEL_NONE && pers->level == level) 700 return pers; 701 if (strcmp(pers->name, clevel)==0) 702 return pers; 703 } 704 return NULL; 705 } 706 707 /* return the offset of the super block in 512byte sectors */ 708 static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev) 709 { 710 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 711 return MD_NEW_SIZE_SECTORS(num_sectors); 712 } 713 714 static int alloc_disk_sb(mdk_rdev_t * rdev) 715 { 716 if (rdev->sb_page) 717 MD_BUG(); 718 719 rdev->sb_page = alloc_page(GFP_KERNEL); 720 if (!rdev->sb_page) { 721 printk(KERN_ALERT "md: out of memory.\n"); 722 return -ENOMEM; 723 } 724 725 return 0; 726 } 727 728 static void free_disk_sb(mdk_rdev_t * rdev) 729 { 730 if (rdev->sb_page) { 731 put_page(rdev->sb_page); 732 rdev->sb_loaded = 0; 733 rdev->sb_page = NULL; 734 rdev->sb_start = 0; 735 rdev->sectors = 0; 736 } 737 } 738 739 740 static void super_written(struct bio *bio, int error) 741 { 742 mdk_rdev_t *rdev = bio->bi_private; 743 mddev_t *mddev = rdev->mddev; 744 745 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 746 printk("md: super_written gets error=%d, uptodate=%d\n", 747 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 748 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 749 md_error(mddev, rdev); 750 } 751 752 if (atomic_dec_and_test(&mddev->pending_writes)) 753 wake_up(&mddev->sb_wait); 754 bio_put(bio); 755 } 756 757 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 758 sector_t sector, int size, struct page *page) 759 { 760 /* write first size bytes of page to sector of rdev 761 * Increment mddev->pending_writes before returning 762 * and decrement it on completion, waking up sb_wait 763 * if zero is reached. 764 * If an error occurred, call md_error 765 */ 766 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 767 768 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 769 bio->bi_sector = sector; 770 bio_add_page(bio, page, size, 0); 771 bio->bi_private = rdev; 772 bio->bi_end_io = super_written; 773 774 atomic_inc(&mddev->pending_writes); 775 submit_bio(REQ_WRITE | REQ_SYNC | REQ_UNPLUG | REQ_FLUSH | REQ_FUA, 776 bio); 777 } 778 779 void md_super_wait(mddev_t *mddev) 780 { 781 /* wait for all superblock writes that were scheduled to complete */ 782 DEFINE_WAIT(wq); 783 for(;;) { 784 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 785 if (atomic_read(&mddev->pending_writes)==0) 786 break; 787 schedule(); 788 } 789 finish_wait(&mddev->sb_wait, &wq); 790 } 791 792 static void bi_complete(struct bio *bio, int error) 793 { 794 complete((struct completion*)bio->bi_private); 795 } 796 797 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size, 798 struct page *page, int rw, bool metadata_op) 799 { 800 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 801 struct completion event; 802 int ret; 803 804 rw |= REQ_SYNC | REQ_UNPLUG; 805 806 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 807 rdev->meta_bdev : rdev->bdev; 808 if (metadata_op) 809 bio->bi_sector = sector + rdev->sb_start; 810 else 811 bio->bi_sector = sector + rdev->data_offset; 812 bio_add_page(bio, page, size, 0); 813 init_completion(&event); 814 bio->bi_private = &event; 815 bio->bi_end_io = bi_complete; 816 submit_bio(rw, bio); 817 wait_for_completion(&event); 818 819 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 820 bio_put(bio); 821 return ret; 822 } 823 EXPORT_SYMBOL_GPL(sync_page_io); 824 825 static int read_disk_sb(mdk_rdev_t * rdev, int size) 826 { 827 char b[BDEVNAME_SIZE]; 828 if (!rdev->sb_page) { 829 MD_BUG(); 830 return -EINVAL; 831 } 832 if (rdev->sb_loaded) 833 return 0; 834 835 836 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 837 goto fail; 838 rdev->sb_loaded = 1; 839 return 0; 840 841 fail: 842 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 843 bdevname(rdev->bdev,b)); 844 return -EINVAL; 845 } 846 847 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 848 { 849 return sb1->set_uuid0 == sb2->set_uuid0 && 850 sb1->set_uuid1 == sb2->set_uuid1 && 851 sb1->set_uuid2 == sb2->set_uuid2 && 852 sb1->set_uuid3 == sb2->set_uuid3; 853 } 854 855 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 856 { 857 int ret; 858 mdp_super_t *tmp1, *tmp2; 859 860 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 861 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 862 863 if (!tmp1 || !tmp2) { 864 ret = 0; 865 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 866 goto abort; 867 } 868 869 *tmp1 = *sb1; 870 *tmp2 = *sb2; 871 872 /* 873 * nr_disks is not constant 874 */ 875 tmp1->nr_disks = 0; 876 tmp2->nr_disks = 0; 877 878 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 879 abort: 880 kfree(tmp1); 881 kfree(tmp2); 882 return ret; 883 } 884 885 886 static u32 md_csum_fold(u32 csum) 887 { 888 csum = (csum & 0xffff) + (csum >> 16); 889 return (csum & 0xffff) + (csum >> 16); 890 } 891 892 static unsigned int calc_sb_csum(mdp_super_t * sb) 893 { 894 u64 newcsum = 0; 895 u32 *sb32 = (u32*)sb; 896 int i; 897 unsigned int disk_csum, csum; 898 899 disk_csum = sb->sb_csum; 900 sb->sb_csum = 0; 901 902 for (i = 0; i < MD_SB_BYTES/4 ; i++) 903 newcsum += sb32[i]; 904 csum = (newcsum & 0xffffffff) + (newcsum>>32); 905 906 907 #ifdef CONFIG_ALPHA 908 /* This used to use csum_partial, which was wrong for several 909 * reasons including that different results are returned on 910 * different architectures. It isn't critical that we get exactly 911 * the same return value as before (we always csum_fold before 912 * testing, and that removes any differences). However as we 913 * know that csum_partial always returned a 16bit value on 914 * alphas, do a fold to maximise conformity to previous behaviour. 915 */ 916 sb->sb_csum = md_csum_fold(disk_csum); 917 #else 918 sb->sb_csum = disk_csum; 919 #endif 920 return csum; 921 } 922 923 924 /* 925 * Handle superblock details. 926 * We want to be able to handle multiple superblock formats 927 * so we have a common interface to them all, and an array of 928 * different handlers. 929 * We rely on user-space to write the initial superblock, and support 930 * reading and updating of superblocks. 931 * Interface methods are: 932 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 933 * loads and validates a superblock on dev. 934 * if refdev != NULL, compare superblocks on both devices 935 * Return: 936 * 0 - dev has a superblock that is compatible with refdev 937 * 1 - dev has a superblock that is compatible and newer than refdev 938 * so dev should be used as the refdev in future 939 * -EINVAL superblock incompatible or invalid 940 * -othererror e.g. -EIO 941 * 942 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 943 * Verify that dev is acceptable into mddev. 944 * The first time, mddev->raid_disks will be 0, and data from 945 * dev should be merged in. Subsequent calls check that dev 946 * is new enough. Return 0 or -EINVAL 947 * 948 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 949 * Update the superblock for rdev with data in mddev 950 * This does not write to disc. 951 * 952 */ 953 954 struct super_type { 955 char *name; 956 struct module *owner; 957 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, 958 int minor_version); 959 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 960 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 961 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev, 962 sector_t num_sectors); 963 }; 964 965 /* 966 * Check that the given mddev has no bitmap. 967 * 968 * This function is called from the run method of all personalities that do not 969 * support bitmaps. It prints an error message and returns non-zero if mddev 970 * has a bitmap. Otherwise, it returns 0. 971 * 972 */ 973 int md_check_no_bitmap(mddev_t *mddev) 974 { 975 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 976 return 0; 977 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 978 mdname(mddev), mddev->pers->name); 979 return 1; 980 } 981 EXPORT_SYMBOL(md_check_no_bitmap); 982 983 /* 984 * load_super for 0.90.0 985 */ 986 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 987 { 988 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 989 mdp_super_t *sb; 990 int ret; 991 992 /* 993 * Calculate the position of the superblock (512byte sectors), 994 * it's at the end of the disk. 995 * 996 * It also happens to be a multiple of 4Kb. 997 */ 998 rdev->sb_start = calc_dev_sboffset(rdev); 999 1000 ret = read_disk_sb(rdev, MD_SB_BYTES); 1001 if (ret) return ret; 1002 1003 ret = -EINVAL; 1004 1005 bdevname(rdev->bdev, b); 1006 sb = (mdp_super_t*)page_address(rdev->sb_page); 1007 1008 if (sb->md_magic != MD_SB_MAGIC) { 1009 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 1010 b); 1011 goto abort; 1012 } 1013 1014 if (sb->major_version != 0 || 1015 sb->minor_version < 90 || 1016 sb->minor_version > 91) { 1017 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1018 sb->major_version, sb->minor_version, 1019 b); 1020 goto abort; 1021 } 1022 1023 if (sb->raid_disks <= 0) 1024 goto abort; 1025 1026 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1027 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1028 b); 1029 goto abort; 1030 } 1031 1032 rdev->preferred_minor = sb->md_minor; 1033 rdev->data_offset = 0; 1034 rdev->sb_size = MD_SB_BYTES; 1035 1036 if (sb->level == LEVEL_MULTIPATH) 1037 rdev->desc_nr = -1; 1038 else 1039 rdev->desc_nr = sb->this_disk.number; 1040 1041 if (!refdev) { 1042 ret = 1; 1043 } else { 1044 __u64 ev1, ev2; 1045 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 1046 if (!uuid_equal(refsb, sb)) { 1047 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1048 b, bdevname(refdev->bdev,b2)); 1049 goto abort; 1050 } 1051 if (!sb_equal(refsb, sb)) { 1052 printk(KERN_WARNING "md: %s has same UUID" 1053 " but different superblock to %s\n", 1054 b, bdevname(refdev->bdev, b2)); 1055 goto abort; 1056 } 1057 ev1 = md_event(sb); 1058 ev2 = md_event(refsb); 1059 if (ev1 > ev2) 1060 ret = 1; 1061 else 1062 ret = 0; 1063 } 1064 rdev->sectors = rdev->sb_start; 1065 1066 if (rdev->sectors < sb->size * 2 && sb->level > 1) 1067 /* "this cannot possibly happen" ... */ 1068 ret = -EINVAL; 1069 1070 abort: 1071 return ret; 1072 } 1073 1074 /* 1075 * validate_super for 0.90.0 1076 */ 1077 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1078 { 1079 mdp_disk_t *desc; 1080 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 1081 __u64 ev1 = md_event(sb); 1082 1083 rdev->raid_disk = -1; 1084 clear_bit(Faulty, &rdev->flags); 1085 clear_bit(In_sync, &rdev->flags); 1086 clear_bit(WriteMostly, &rdev->flags); 1087 1088 if (mddev->raid_disks == 0) { 1089 mddev->major_version = 0; 1090 mddev->minor_version = sb->minor_version; 1091 mddev->patch_version = sb->patch_version; 1092 mddev->external = 0; 1093 mddev->chunk_sectors = sb->chunk_size >> 9; 1094 mddev->ctime = sb->ctime; 1095 mddev->utime = sb->utime; 1096 mddev->level = sb->level; 1097 mddev->clevel[0] = 0; 1098 mddev->layout = sb->layout; 1099 mddev->raid_disks = sb->raid_disks; 1100 mddev->dev_sectors = sb->size * 2; 1101 mddev->events = ev1; 1102 mddev->bitmap_info.offset = 0; 1103 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1104 1105 if (mddev->minor_version >= 91) { 1106 mddev->reshape_position = sb->reshape_position; 1107 mddev->delta_disks = sb->delta_disks; 1108 mddev->new_level = sb->new_level; 1109 mddev->new_layout = sb->new_layout; 1110 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1111 } else { 1112 mddev->reshape_position = MaxSector; 1113 mddev->delta_disks = 0; 1114 mddev->new_level = mddev->level; 1115 mddev->new_layout = mddev->layout; 1116 mddev->new_chunk_sectors = mddev->chunk_sectors; 1117 } 1118 1119 if (sb->state & (1<<MD_SB_CLEAN)) 1120 mddev->recovery_cp = MaxSector; 1121 else { 1122 if (sb->events_hi == sb->cp_events_hi && 1123 sb->events_lo == sb->cp_events_lo) { 1124 mddev->recovery_cp = sb->recovery_cp; 1125 } else 1126 mddev->recovery_cp = 0; 1127 } 1128 1129 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1130 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1131 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1132 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1133 1134 mddev->max_disks = MD_SB_DISKS; 1135 1136 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1137 mddev->bitmap_info.file == NULL) 1138 mddev->bitmap_info.offset = 1139 mddev->bitmap_info.default_offset; 1140 1141 } else if (mddev->pers == NULL) { 1142 /* Insist on good event counter while assembling, except 1143 * for spares (which don't need an event count) */ 1144 ++ev1; 1145 if (sb->disks[rdev->desc_nr].state & ( 1146 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1147 if (ev1 < mddev->events) 1148 return -EINVAL; 1149 } else if (mddev->bitmap) { 1150 /* if adding to array with a bitmap, then we can accept an 1151 * older device ... but not too old. 1152 */ 1153 if (ev1 < mddev->bitmap->events_cleared) 1154 return 0; 1155 } else { 1156 if (ev1 < mddev->events) 1157 /* just a hot-add of a new device, leave raid_disk at -1 */ 1158 return 0; 1159 } 1160 1161 if (mddev->level != LEVEL_MULTIPATH) { 1162 desc = sb->disks + rdev->desc_nr; 1163 1164 if (desc->state & (1<<MD_DISK_FAULTY)) 1165 set_bit(Faulty, &rdev->flags); 1166 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1167 desc->raid_disk < mddev->raid_disks */) { 1168 set_bit(In_sync, &rdev->flags); 1169 rdev->raid_disk = desc->raid_disk; 1170 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1171 /* active but not in sync implies recovery up to 1172 * reshape position. We don't know exactly where 1173 * that is, so set to zero for now */ 1174 if (mddev->minor_version >= 91) { 1175 rdev->recovery_offset = 0; 1176 rdev->raid_disk = desc->raid_disk; 1177 } 1178 } 1179 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1180 set_bit(WriteMostly, &rdev->flags); 1181 } else /* MULTIPATH are always insync */ 1182 set_bit(In_sync, &rdev->flags); 1183 return 0; 1184 } 1185 1186 /* 1187 * sync_super for 0.90.0 1188 */ 1189 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1190 { 1191 mdp_super_t *sb; 1192 mdk_rdev_t *rdev2; 1193 int next_spare = mddev->raid_disks; 1194 1195 1196 /* make rdev->sb match mddev data.. 1197 * 1198 * 1/ zero out disks 1199 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1200 * 3/ any empty disks < next_spare become removed 1201 * 1202 * disks[0] gets initialised to REMOVED because 1203 * we cannot be sure from other fields if it has 1204 * been initialised or not. 1205 */ 1206 int i; 1207 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1208 1209 rdev->sb_size = MD_SB_BYTES; 1210 1211 sb = (mdp_super_t*)page_address(rdev->sb_page); 1212 1213 memset(sb, 0, sizeof(*sb)); 1214 1215 sb->md_magic = MD_SB_MAGIC; 1216 sb->major_version = mddev->major_version; 1217 sb->patch_version = mddev->patch_version; 1218 sb->gvalid_words = 0; /* ignored */ 1219 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1220 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1221 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1222 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1223 1224 sb->ctime = mddev->ctime; 1225 sb->level = mddev->level; 1226 sb->size = mddev->dev_sectors / 2; 1227 sb->raid_disks = mddev->raid_disks; 1228 sb->md_minor = mddev->md_minor; 1229 sb->not_persistent = 0; 1230 sb->utime = mddev->utime; 1231 sb->state = 0; 1232 sb->events_hi = (mddev->events>>32); 1233 sb->events_lo = (u32)mddev->events; 1234 1235 if (mddev->reshape_position == MaxSector) 1236 sb->minor_version = 90; 1237 else { 1238 sb->minor_version = 91; 1239 sb->reshape_position = mddev->reshape_position; 1240 sb->new_level = mddev->new_level; 1241 sb->delta_disks = mddev->delta_disks; 1242 sb->new_layout = mddev->new_layout; 1243 sb->new_chunk = mddev->new_chunk_sectors << 9; 1244 } 1245 mddev->minor_version = sb->minor_version; 1246 if (mddev->in_sync) 1247 { 1248 sb->recovery_cp = mddev->recovery_cp; 1249 sb->cp_events_hi = (mddev->events>>32); 1250 sb->cp_events_lo = (u32)mddev->events; 1251 if (mddev->recovery_cp == MaxSector) 1252 sb->state = (1<< MD_SB_CLEAN); 1253 } else 1254 sb->recovery_cp = 0; 1255 1256 sb->layout = mddev->layout; 1257 sb->chunk_size = mddev->chunk_sectors << 9; 1258 1259 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1260 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1261 1262 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1263 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1264 mdp_disk_t *d; 1265 int desc_nr; 1266 int is_active = test_bit(In_sync, &rdev2->flags); 1267 1268 if (rdev2->raid_disk >= 0 && 1269 sb->minor_version >= 91) 1270 /* we have nowhere to store the recovery_offset, 1271 * but if it is not below the reshape_position, 1272 * we can piggy-back on that. 1273 */ 1274 is_active = 1; 1275 if (rdev2->raid_disk < 0 || 1276 test_bit(Faulty, &rdev2->flags)) 1277 is_active = 0; 1278 if (is_active) 1279 desc_nr = rdev2->raid_disk; 1280 else 1281 desc_nr = next_spare++; 1282 rdev2->desc_nr = desc_nr; 1283 d = &sb->disks[rdev2->desc_nr]; 1284 nr_disks++; 1285 d->number = rdev2->desc_nr; 1286 d->major = MAJOR(rdev2->bdev->bd_dev); 1287 d->minor = MINOR(rdev2->bdev->bd_dev); 1288 if (is_active) 1289 d->raid_disk = rdev2->raid_disk; 1290 else 1291 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1292 if (test_bit(Faulty, &rdev2->flags)) 1293 d->state = (1<<MD_DISK_FAULTY); 1294 else if (is_active) { 1295 d->state = (1<<MD_DISK_ACTIVE); 1296 if (test_bit(In_sync, &rdev2->flags)) 1297 d->state |= (1<<MD_DISK_SYNC); 1298 active++; 1299 working++; 1300 } else { 1301 d->state = 0; 1302 spare++; 1303 working++; 1304 } 1305 if (test_bit(WriteMostly, &rdev2->flags)) 1306 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1307 } 1308 /* now set the "removed" and "faulty" bits on any missing devices */ 1309 for (i=0 ; i < mddev->raid_disks ; i++) { 1310 mdp_disk_t *d = &sb->disks[i]; 1311 if (d->state == 0 && d->number == 0) { 1312 d->number = i; 1313 d->raid_disk = i; 1314 d->state = (1<<MD_DISK_REMOVED); 1315 d->state |= (1<<MD_DISK_FAULTY); 1316 failed++; 1317 } 1318 } 1319 sb->nr_disks = nr_disks; 1320 sb->active_disks = active; 1321 sb->working_disks = working; 1322 sb->failed_disks = failed; 1323 sb->spare_disks = spare; 1324 1325 sb->this_disk = sb->disks[rdev->desc_nr]; 1326 sb->sb_csum = calc_sb_csum(sb); 1327 } 1328 1329 /* 1330 * rdev_size_change for 0.90.0 1331 */ 1332 static unsigned long long 1333 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1334 { 1335 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1336 return 0; /* component must fit device */ 1337 if (rdev->mddev->bitmap_info.offset) 1338 return 0; /* can't move bitmap */ 1339 rdev->sb_start = calc_dev_sboffset(rdev); 1340 if (!num_sectors || num_sectors > rdev->sb_start) 1341 num_sectors = rdev->sb_start; 1342 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1343 rdev->sb_page); 1344 md_super_wait(rdev->mddev); 1345 return num_sectors; 1346 } 1347 1348 1349 /* 1350 * version 1 superblock 1351 */ 1352 1353 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1354 { 1355 __le32 disk_csum; 1356 u32 csum; 1357 unsigned long long newcsum; 1358 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1359 __le32 *isuper = (__le32*)sb; 1360 int i; 1361 1362 disk_csum = sb->sb_csum; 1363 sb->sb_csum = 0; 1364 newcsum = 0; 1365 for (i=0; size>=4; size -= 4 ) 1366 newcsum += le32_to_cpu(*isuper++); 1367 1368 if (size == 2) 1369 newcsum += le16_to_cpu(*(__le16*) isuper); 1370 1371 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1372 sb->sb_csum = disk_csum; 1373 return cpu_to_le32(csum); 1374 } 1375 1376 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1377 { 1378 struct mdp_superblock_1 *sb; 1379 int ret; 1380 sector_t sb_start; 1381 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1382 int bmask; 1383 1384 /* 1385 * Calculate the position of the superblock in 512byte sectors. 1386 * It is always aligned to a 4K boundary and 1387 * depeding on minor_version, it can be: 1388 * 0: At least 8K, but less than 12K, from end of device 1389 * 1: At start of device 1390 * 2: 4K from start of device. 1391 */ 1392 switch(minor_version) { 1393 case 0: 1394 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1395 sb_start -= 8*2; 1396 sb_start &= ~(sector_t)(4*2-1); 1397 break; 1398 case 1: 1399 sb_start = 0; 1400 break; 1401 case 2: 1402 sb_start = 8; 1403 break; 1404 default: 1405 return -EINVAL; 1406 } 1407 rdev->sb_start = sb_start; 1408 1409 /* superblock is rarely larger than 1K, but it can be larger, 1410 * and it is safe to read 4k, so we do that 1411 */ 1412 ret = read_disk_sb(rdev, 4096); 1413 if (ret) return ret; 1414 1415 1416 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1417 1418 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1419 sb->major_version != cpu_to_le32(1) || 1420 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1421 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1422 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1423 return -EINVAL; 1424 1425 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1426 printk("md: invalid superblock checksum on %s\n", 1427 bdevname(rdev->bdev,b)); 1428 return -EINVAL; 1429 } 1430 if (le64_to_cpu(sb->data_size) < 10) { 1431 printk("md: data_size too small on %s\n", 1432 bdevname(rdev->bdev,b)); 1433 return -EINVAL; 1434 } 1435 1436 rdev->preferred_minor = 0xffff; 1437 rdev->data_offset = le64_to_cpu(sb->data_offset); 1438 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1439 1440 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1441 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1442 if (rdev->sb_size & bmask) 1443 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1444 1445 if (minor_version 1446 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1447 return -EINVAL; 1448 1449 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1450 rdev->desc_nr = -1; 1451 else 1452 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1453 1454 if (!refdev) { 1455 ret = 1; 1456 } else { 1457 __u64 ev1, ev2; 1458 struct mdp_superblock_1 *refsb = 1459 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1460 1461 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1462 sb->level != refsb->level || 1463 sb->layout != refsb->layout || 1464 sb->chunksize != refsb->chunksize) { 1465 printk(KERN_WARNING "md: %s has strangely different" 1466 " superblock to %s\n", 1467 bdevname(rdev->bdev,b), 1468 bdevname(refdev->bdev,b2)); 1469 return -EINVAL; 1470 } 1471 ev1 = le64_to_cpu(sb->events); 1472 ev2 = le64_to_cpu(refsb->events); 1473 1474 if (ev1 > ev2) 1475 ret = 1; 1476 else 1477 ret = 0; 1478 } 1479 if (minor_version) 1480 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 1481 le64_to_cpu(sb->data_offset); 1482 else 1483 rdev->sectors = rdev->sb_start; 1484 if (rdev->sectors < le64_to_cpu(sb->data_size)) 1485 return -EINVAL; 1486 rdev->sectors = le64_to_cpu(sb->data_size); 1487 if (le64_to_cpu(sb->size) > rdev->sectors) 1488 return -EINVAL; 1489 return ret; 1490 } 1491 1492 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1493 { 1494 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1495 __u64 ev1 = le64_to_cpu(sb->events); 1496 1497 rdev->raid_disk = -1; 1498 clear_bit(Faulty, &rdev->flags); 1499 clear_bit(In_sync, &rdev->flags); 1500 clear_bit(WriteMostly, &rdev->flags); 1501 1502 if (mddev->raid_disks == 0) { 1503 mddev->major_version = 1; 1504 mddev->patch_version = 0; 1505 mddev->external = 0; 1506 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1507 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1508 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1509 mddev->level = le32_to_cpu(sb->level); 1510 mddev->clevel[0] = 0; 1511 mddev->layout = le32_to_cpu(sb->layout); 1512 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1513 mddev->dev_sectors = le64_to_cpu(sb->size); 1514 mddev->events = ev1; 1515 mddev->bitmap_info.offset = 0; 1516 mddev->bitmap_info.default_offset = 1024 >> 9; 1517 1518 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1519 memcpy(mddev->uuid, sb->set_uuid, 16); 1520 1521 mddev->max_disks = (4096-256)/2; 1522 1523 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1524 mddev->bitmap_info.file == NULL ) 1525 mddev->bitmap_info.offset = 1526 (__s32)le32_to_cpu(sb->bitmap_offset); 1527 1528 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1529 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1530 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1531 mddev->new_level = le32_to_cpu(sb->new_level); 1532 mddev->new_layout = le32_to_cpu(sb->new_layout); 1533 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1534 } else { 1535 mddev->reshape_position = MaxSector; 1536 mddev->delta_disks = 0; 1537 mddev->new_level = mddev->level; 1538 mddev->new_layout = mddev->layout; 1539 mddev->new_chunk_sectors = mddev->chunk_sectors; 1540 } 1541 1542 } else if (mddev->pers == NULL) { 1543 /* Insist of good event counter while assembling, except for 1544 * spares (which don't need an event count) */ 1545 ++ev1; 1546 if (rdev->desc_nr >= 0 && 1547 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1548 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1549 if (ev1 < mddev->events) 1550 return -EINVAL; 1551 } else if (mddev->bitmap) { 1552 /* If adding to array with a bitmap, then we can accept an 1553 * older device, but not too old. 1554 */ 1555 if (ev1 < mddev->bitmap->events_cleared) 1556 return 0; 1557 } else { 1558 if (ev1 < mddev->events) 1559 /* just a hot-add of a new device, leave raid_disk at -1 */ 1560 return 0; 1561 } 1562 if (mddev->level != LEVEL_MULTIPATH) { 1563 int role; 1564 if (rdev->desc_nr < 0 || 1565 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1566 role = 0xffff; 1567 rdev->desc_nr = -1; 1568 } else 1569 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1570 switch(role) { 1571 case 0xffff: /* spare */ 1572 break; 1573 case 0xfffe: /* faulty */ 1574 set_bit(Faulty, &rdev->flags); 1575 break; 1576 default: 1577 if ((le32_to_cpu(sb->feature_map) & 1578 MD_FEATURE_RECOVERY_OFFSET)) 1579 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1580 else 1581 set_bit(In_sync, &rdev->flags); 1582 rdev->raid_disk = role; 1583 break; 1584 } 1585 if (sb->devflags & WriteMostly1) 1586 set_bit(WriteMostly, &rdev->flags); 1587 } else /* MULTIPATH are always insync */ 1588 set_bit(In_sync, &rdev->flags); 1589 1590 return 0; 1591 } 1592 1593 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1594 { 1595 struct mdp_superblock_1 *sb; 1596 mdk_rdev_t *rdev2; 1597 int max_dev, i; 1598 /* make rdev->sb match mddev and rdev data. */ 1599 1600 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1601 1602 sb->feature_map = 0; 1603 sb->pad0 = 0; 1604 sb->recovery_offset = cpu_to_le64(0); 1605 memset(sb->pad1, 0, sizeof(sb->pad1)); 1606 memset(sb->pad2, 0, sizeof(sb->pad2)); 1607 memset(sb->pad3, 0, sizeof(sb->pad3)); 1608 1609 sb->utime = cpu_to_le64((__u64)mddev->utime); 1610 sb->events = cpu_to_le64(mddev->events); 1611 if (mddev->in_sync) 1612 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1613 else 1614 sb->resync_offset = cpu_to_le64(0); 1615 1616 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1617 1618 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1619 sb->size = cpu_to_le64(mddev->dev_sectors); 1620 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1621 sb->level = cpu_to_le32(mddev->level); 1622 sb->layout = cpu_to_le32(mddev->layout); 1623 1624 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1625 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1626 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1627 } 1628 1629 if (rdev->raid_disk >= 0 && 1630 !test_bit(In_sync, &rdev->flags)) { 1631 sb->feature_map |= 1632 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1633 sb->recovery_offset = 1634 cpu_to_le64(rdev->recovery_offset); 1635 } 1636 1637 if (mddev->reshape_position != MaxSector) { 1638 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1639 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1640 sb->new_layout = cpu_to_le32(mddev->new_layout); 1641 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1642 sb->new_level = cpu_to_le32(mddev->new_level); 1643 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1644 } 1645 1646 max_dev = 0; 1647 list_for_each_entry(rdev2, &mddev->disks, same_set) 1648 if (rdev2->desc_nr+1 > max_dev) 1649 max_dev = rdev2->desc_nr+1; 1650 1651 if (max_dev > le32_to_cpu(sb->max_dev)) { 1652 int bmask; 1653 sb->max_dev = cpu_to_le32(max_dev); 1654 rdev->sb_size = max_dev * 2 + 256; 1655 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1656 if (rdev->sb_size & bmask) 1657 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1658 } else 1659 max_dev = le32_to_cpu(sb->max_dev); 1660 1661 for (i=0; i<max_dev;i++) 1662 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1663 1664 list_for_each_entry(rdev2, &mddev->disks, same_set) { 1665 i = rdev2->desc_nr; 1666 if (test_bit(Faulty, &rdev2->flags)) 1667 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1668 else if (test_bit(In_sync, &rdev2->flags)) 1669 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1670 else if (rdev2->raid_disk >= 0) 1671 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1672 else 1673 sb->dev_roles[i] = cpu_to_le16(0xffff); 1674 } 1675 1676 sb->sb_csum = calc_sb_1_csum(sb); 1677 } 1678 1679 static unsigned long long 1680 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1681 { 1682 struct mdp_superblock_1 *sb; 1683 sector_t max_sectors; 1684 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1685 return 0; /* component must fit device */ 1686 if (rdev->sb_start < rdev->data_offset) { 1687 /* minor versions 1 and 2; superblock before data */ 1688 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1689 max_sectors -= rdev->data_offset; 1690 if (!num_sectors || num_sectors > max_sectors) 1691 num_sectors = max_sectors; 1692 } else if (rdev->mddev->bitmap_info.offset) { 1693 /* minor version 0 with bitmap we can't move */ 1694 return 0; 1695 } else { 1696 /* minor version 0; superblock after data */ 1697 sector_t sb_start; 1698 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1699 sb_start &= ~(sector_t)(4*2 - 1); 1700 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1701 if (!num_sectors || num_sectors > max_sectors) 1702 num_sectors = max_sectors; 1703 rdev->sb_start = sb_start; 1704 } 1705 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page); 1706 sb->data_size = cpu_to_le64(num_sectors); 1707 sb->super_offset = rdev->sb_start; 1708 sb->sb_csum = calc_sb_1_csum(sb); 1709 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1710 rdev->sb_page); 1711 md_super_wait(rdev->mddev); 1712 return num_sectors; 1713 } 1714 1715 static struct super_type super_types[] = { 1716 [0] = { 1717 .name = "0.90.0", 1718 .owner = THIS_MODULE, 1719 .load_super = super_90_load, 1720 .validate_super = super_90_validate, 1721 .sync_super = super_90_sync, 1722 .rdev_size_change = super_90_rdev_size_change, 1723 }, 1724 [1] = { 1725 .name = "md-1", 1726 .owner = THIS_MODULE, 1727 .load_super = super_1_load, 1728 .validate_super = super_1_validate, 1729 .sync_super = super_1_sync, 1730 .rdev_size_change = super_1_rdev_size_change, 1731 }, 1732 }; 1733 1734 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1735 { 1736 mdk_rdev_t *rdev, *rdev2; 1737 1738 rcu_read_lock(); 1739 rdev_for_each_rcu(rdev, mddev1) 1740 rdev_for_each_rcu(rdev2, mddev2) 1741 if (rdev->bdev->bd_contains == 1742 rdev2->bdev->bd_contains) { 1743 rcu_read_unlock(); 1744 return 1; 1745 } 1746 rcu_read_unlock(); 1747 return 0; 1748 } 1749 1750 static LIST_HEAD(pending_raid_disks); 1751 1752 /* 1753 * Try to register data integrity profile for an mddev 1754 * 1755 * This is called when an array is started and after a disk has been kicked 1756 * from the array. It only succeeds if all working and active component devices 1757 * are integrity capable with matching profiles. 1758 */ 1759 int md_integrity_register(mddev_t *mddev) 1760 { 1761 mdk_rdev_t *rdev, *reference = NULL; 1762 1763 if (list_empty(&mddev->disks)) 1764 return 0; /* nothing to do */ 1765 if (blk_get_integrity(mddev->gendisk)) 1766 return 0; /* already registered */ 1767 list_for_each_entry(rdev, &mddev->disks, same_set) { 1768 /* skip spares and non-functional disks */ 1769 if (test_bit(Faulty, &rdev->flags)) 1770 continue; 1771 if (rdev->raid_disk < 0) 1772 continue; 1773 /* 1774 * If at least one rdev is not integrity capable, we can not 1775 * enable data integrity for the md device. 1776 */ 1777 if (!bdev_get_integrity(rdev->bdev)) 1778 return -EINVAL; 1779 if (!reference) { 1780 /* Use the first rdev as the reference */ 1781 reference = rdev; 1782 continue; 1783 } 1784 /* does this rdev's profile match the reference profile? */ 1785 if (blk_integrity_compare(reference->bdev->bd_disk, 1786 rdev->bdev->bd_disk) < 0) 1787 return -EINVAL; 1788 } 1789 /* 1790 * All component devices are integrity capable and have matching 1791 * profiles, register the common profile for the md device. 1792 */ 1793 if (blk_integrity_register(mddev->gendisk, 1794 bdev_get_integrity(reference->bdev)) != 0) { 1795 printk(KERN_ERR "md: failed to register integrity for %s\n", 1796 mdname(mddev)); 1797 return -EINVAL; 1798 } 1799 printk(KERN_NOTICE "md: data integrity on %s enabled\n", 1800 mdname(mddev)); 1801 return 0; 1802 } 1803 EXPORT_SYMBOL(md_integrity_register); 1804 1805 /* Disable data integrity if non-capable/non-matching disk is being added */ 1806 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 1807 { 1808 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); 1809 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk); 1810 1811 if (!bi_mddev) /* nothing to do */ 1812 return; 1813 if (rdev->raid_disk < 0) /* skip spares */ 1814 return; 1815 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 1816 rdev->bdev->bd_disk) >= 0) 1817 return; 1818 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 1819 blk_integrity_unregister(mddev->gendisk); 1820 } 1821 EXPORT_SYMBOL(md_integrity_add_rdev); 1822 1823 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1824 { 1825 char b[BDEVNAME_SIZE]; 1826 struct kobject *ko; 1827 char *s; 1828 int err; 1829 1830 if (rdev->mddev) { 1831 MD_BUG(); 1832 return -EINVAL; 1833 } 1834 1835 /* prevent duplicates */ 1836 if (find_rdev(mddev, rdev->bdev->bd_dev)) 1837 return -EEXIST; 1838 1839 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 1840 if (rdev->sectors && (mddev->dev_sectors == 0 || 1841 rdev->sectors < mddev->dev_sectors)) { 1842 if (mddev->pers) { 1843 /* Cannot change size, so fail 1844 * If mddev->level <= 0, then we don't care 1845 * about aligning sizes (e.g. linear) 1846 */ 1847 if (mddev->level > 0) 1848 return -ENOSPC; 1849 } else 1850 mddev->dev_sectors = rdev->sectors; 1851 } 1852 1853 /* Verify rdev->desc_nr is unique. 1854 * If it is -1, assign a free number, else 1855 * check number is not in use 1856 */ 1857 if (rdev->desc_nr < 0) { 1858 int choice = 0; 1859 if (mddev->pers) choice = mddev->raid_disks; 1860 while (find_rdev_nr(mddev, choice)) 1861 choice++; 1862 rdev->desc_nr = choice; 1863 } else { 1864 if (find_rdev_nr(mddev, rdev->desc_nr)) 1865 return -EBUSY; 1866 } 1867 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 1868 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 1869 mdname(mddev), mddev->max_disks); 1870 return -EBUSY; 1871 } 1872 bdevname(rdev->bdev,b); 1873 while ( (s=strchr(b, '/')) != NULL) 1874 *s = '!'; 1875 1876 rdev->mddev = mddev; 1877 printk(KERN_INFO "md: bind<%s>\n", b); 1878 1879 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 1880 goto fail; 1881 1882 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 1883 if (sysfs_create_link(&rdev->kobj, ko, "block")) 1884 /* failure here is OK */; 1885 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 1886 1887 list_add_rcu(&rdev->same_set, &mddev->disks); 1888 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 1889 1890 /* May as well allow recovery to be retried once */ 1891 mddev->recovery_disabled = 0; 1892 1893 return 0; 1894 1895 fail: 1896 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1897 b, mdname(mddev)); 1898 return err; 1899 } 1900 1901 static void md_delayed_delete(struct work_struct *ws) 1902 { 1903 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1904 kobject_del(&rdev->kobj); 1905 kobject_put(&rdev->kobj); 1906 } 1907 1908 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1909 { 1910 char b[BDEVNAME_SIZE]; 1911 if (!rdev->mddev) { 1912 MD_BUG(); 1913 return; 1914 } 1915 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 1916 list_del_rcu(&rdev->same_set); 1917 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1918 rdev->mddev = NULL; 1919 sysfs_remove_link(&rdev->kobj, "block"); 1920 sysfs_put(rdev->sysfs_state); 1921 rdev->sysfs_state = NULL; 1922 /* We need to delay this, otherwise we can deadlock when 1923 * writing to 'remove' to "dev/state". We also need 1924 * to delay it due to rcu usage. 1925 */ 1926 synchronize_rcu(); 1927 INIT_WORK(&rdev->del_work, md_delayed_delete); 1928 kobject_get(&rdev->kobj); 1929 queue_work(md_misc_wq, &rdev->del_work); 1930 } 1931 1932 /* 1933 * prevent the device from being mounted, repartitioned or 1934 * otherwise reused by a RAID array (or any other kernel 1935 * subsystem), by bd_claiming the device. 1936 */ 1937 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) 1938 { 1939 int err = 0; 1940 struct block_device *bdev; 1941 char b[BDEVNAME_SIZE]; 1942 1943 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 1944 shared ? (mdk_rdev_t *)lock_rdev : rdev); 1945 if (IS_ERR(bdev)) { 1946 printk(KERN_ERR "md: could not open %s.\n", 1947 __bdevname(dev, b)); 1948 return PTR_ERR(bdev); 1949 } 1950 if (!shared) 1951 set_bit(AllReserved, &rdev->flags); 1952 rdev->bdev = bdev; 1953 return err; 1954 } 1955 1956 static void unlock_rdev(mdk_rdev_t *rdev) 1957 { 1958 struct block_device *bdev = rdev->bdev; 1959 rdev->bdev = NULL; 1960 if (!bdev) 1961 MD_BUG(); 1962 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1963 } 1964 1965 void md_autodetect_dev(dev_t dev); 1966 1967 static void export_rdev(mdk_rdev_t * rdev) 1968 { 1969 char b[BDEVNAME_SIZE]; 1970 printk(KERN_INFO "md: export_rdev(%s)\n", 1971 bdevname(rdev->bdev,b)); 1972 if (rdev->mddev) 1973 MD_BUG(); 1974 free_disk_sb(rdev); 1975 #ifndef MODULE 1976 if (test_bit(AutoDetected, &rdev->flags)) 1977 md_autodetect_dev(rdev->bdev->bd_dev); 1978 #endif 1979 unlock_rdev(rdev); 1980 kobject_put(&rdev->kobj); 1981 } 1982 1983 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1984 { 1985 unbind_rdev_from_array(rdev); 1986 export_rdev(rdev); 1987 } 1988 1989 static void export_array(mddev_t *mddev) 1990 { 1991 mdk_rdev_t *rdev, *tmp; 1992 1993 rdev_for_each(rdev, tmp, mddev) { 1994 if (!rdev->mddev) { 1995 MD_BUG(); 1996 continue; 1997 } 1998 kick_rdev_from_array(rdev); 1999 } 2000 if (!list_empty(&mddev->disks)) 2001 MD_BUG(); 2002 mddev->raid_disks = 0; 2003 mddev->major_version = 0; 2004 } 2005 2006 static void print_desc(mdp_disk_t *desc) 2007 { 2008 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2009 desc->major,desc->minor,desc->raid_disk,desc->state); 2010 } 2011 2012 static void print_sb_90(mdp_super_t *sb) 2013 { 2014 int i; 2015 2016 printk(KERN_INFO 2017 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2018 sb->major_version, sb->minor_version, sb->patch_version, 2019 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2020 sb->ctime); 2021 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2022 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2023 sb->md_minor, sb->layout, sb->chunk_size); 2024 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2025 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2026 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2027 sb->failed_disks, sb->spare_disks, 2028 sb->sb_csum, (unsigned long)sb->events_lo); 2029 2030 printk(KERN_INFO); 2031 for (i = 0; i < MD_SB_DISKS; i++) { 2032 mdp_disk_t *desc; 2033 2034 desc = sb->disks + i; 2035 if (desc->number || desc->major || desc->minor || 2036 desc->raid_disk || (desc->state && (desc->state != 4))) { 2037 printk(" D %2d: ", i); 2038 print_desc(desc); 2039 } 2040 } 2041 printk(KERN_INFO "md: THIS: "); 2042 print_desc(&sb->this_disk); 2043 } 2044 2045 static void print_sb_1(struct mdp_superblock_1 *sb) 2046 { 2047 __u8 *uuid; 2048 2049 uuid = sb->set_uuid; 2050 printk(KERN_INFO 2051 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2052 "md: Name: \"%s\" CT:%llu\n", 2053 le32_to_cpu(sb->major_version), 2054 le32_to_cpu(sb->feature_map), 2055 uuid, 2056 sb->set_name, 2057 (unsigned long long)le64_to_cpu(sb->ctime) 2058 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2059 2060 uuid = sb->device_uuid; 2061 printk(KERN_INFO 2062 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2063 " RO:%llu\n" 2064 "md: Dev:%08x UUID: %pU\n" 2065 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2066 "md: (MaxDev:%u) \n", 2067 le32_to_cpu(sb->level), 2068 (unsigned long long)le64_to_cpu(sb->size), 2069 le32_to_cpu(sb->raid_disks), 2070 le32_to_cpu(sb->layout), 2071 le32_to_cpu(sb->chunksize), 2072 (unsigned long long)le64_to_cpu(sb->data_offset), 2073 (unsigned long long)le64_to_cpu(sb->data_size), 2074 (unsigned long long)le64_to_cpu(sb->super_offset), 2075 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2076 le32_to_cpu(sb->dev_number), 2077 uuid, 2078 sb->devflags, 2079 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2080 (unsigned long long)le64_to_cpu(sb->events), 2081 (unsigned long long)le64_to_cpu(sb->resync_offset), 2082 le32_to_cpu(sb->sb_csum), 2083 le32_to_cpu(sb->max_dev) 2084 ); 2085 } 2086 2087 static void print_rdev(mdk_rdev_t *rdev, int major_version) 2088 { 2089 char b[BDEVNAME_SIZE]; 2090 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2091 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2092 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2093 rdev->desc_nr); 2094 if (rdev->sb_loaded) { 2095 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2096 switch (major_version) { 2097 case 0: 2098 print_sb_90((mdp_super_t*)page_address(rdev->sb_page)); 2099 break; 2100 case 1: 2101 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page)); 2102 break; 2103 } 2104 } else 2105 printk(KERN_INFO "md: no rdev superblock!\n"); 2106 } 2107 2108 static void md_print_devices(void) 2109 { 2110 struct list_head *tmp; 2111 mdk_rdev_t *rdev; 2112 mddev_t *mddev; 2113 char b[BDEVNAME_SIZE]; 2114 2115 printk("\n"); 2116 printk("md: **********************************\n"); 2117 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2118 printk("md: **********************************\n"); 2119 for_each_mddev(mddev, tmp) { 2120 2121 if (mddev->bitmap) 2122 bitmap_print_sb(mddev->bitmap); 2123 else 2124 printk("%s: ", mdname(mddev)); 2125 list_for_each_entry(rdev, &mddev->disks, same_set) 2126 printk("<%s>", bdevname(rdev->bdev,b)); 2127 printk("\n"); 2128 2129 list_for_each_entry(rdev, &mddev->disks, same_set) 2130 print_rdev(rdev, mddev->major_version); 2131 } 2132 printk("md: **********************************\n"); 2133 printk("\n"); 2134 } 2135 2136 2137 static void sync_sbs(mddev_t * mddev, int nospares) 2138 { 2139 /* Update each superblock (in-memory image), but 2140 * if we are allowed to, skip spares which already 2141 * have the right event counter, or have one earlier 2142 * (which would mean they aren't being marked as dirty 2143 * with the rest of the array) 2144 */ 2145 mdk_rdev_t *rdev; 2146 list_for_each_entry(rdev, &mddev->disks, same_set) { 2147 if (rdev->sb_events == mddev->events || 2148 (nospares && 2149 rdev->raid_disk < 0 && 2150 rdev->sb_events+1 == mddev->events)) { 2151 /* Don't update this superblock */ 2152 rdev->sb_loaded = 2; 2153 } else { 2154 super_types[mddev->major_version]. 2155 sync_super(mddev, rdev); 2156 rdev->sb_loaded = 1; 2157 } 2158 } 2159 } 2160 2161 static void md_update_sb(mddev_t * mddev, int force_change) 2162 { 2163 mdk_rdev_t *rdev; 2164 int sync_req; 2165 int nospares = 0; 2166 2167 repeat: 2168 /* First make sure individual recovery_offsets are correct */ 2169 list_for_each_entry(rdev, &mddev->disks, same_set) { 2170 if (rdev->raid_disk >= 0 && 2171 mddev->delta_disks >= 0 && 2172 !test_bit(In_sync, &rdev->flags) && 2173 mddev->curr_resync_completed > rdev->recovery_offset) 2174 rdev->recovery_offset = mddev->curr_resync_completed; 2175 2176 } 2177 if (!mddev->persistent) { 2178 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2179 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2180 if (!mddev->external) 2181 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2182 wake_up(&mddev->sb_wait); 2183 return; 2184 } 2185 2186 spin_lock_irq(&mddev->write_lock); 2187 2188 mddev->utime = get_seconds(); 2189 2190 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2191 force_change = 1; 2192 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2193 /* just a clean<-> dirty transition, possibly leave spares alone, 2194 * though if events isn't the right even/odd, we will have to do 2195 * spares after all 2196 */ 2197 nospares = 1; 2198 if (force_change) 2199 nospares = 0; 2200 if (mddev->degraded) 2201 /* If the array is degraded, then skipping spares is both 2202 * dangerous and fairly pointless. 2203 * Dangerous because a device that was removed from the array 2204 * might have a event_count that still looks up-to-date, 2205 * so it can be re-added without a resync. 2206 * Pointless because if there are any spares to skip, 2207 * then a recovery will happen and soon that array won't 2208 * be degraded any more and the spare can go back to sleep then. 2209 */ 2210 nospares = 0; 2211 2212 sync_req = mddev->in_sync; 2213 2214 /* If this is just a dirty<->clean transition, and the array is clean 2215 * and 'events' is odd, we can roll back to the previous clean state */ 2216 if (nospares 2217 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2218 && mddev->can_decrease_events 2219 && mddev->events != 1) { 2220 mddev->events--; 2221 mddev->can_decrease_events = 0; 2222 } else { 2223 /* otherwise we have to go forward and ... */ 2224 mddev->events ++; 2225 mddev->can_decrease_events = nospares; 2226 } 2227 2228 if (!mddev->events) { 2229 /* 2230 * oops, this 64-bit counter should never wrap. 2231 * Either we are in around ~1 trillion A.C., assuming 2232 * 1 reboot per second, or we have a bug: 2233 */ 2234 MD_BUG(); 2235 mddev->events --; 2236 } 2237 sync_sbs(mddev, nospares); 2238 spin_unlock_irq(&mddev->write_lock); 2239 2240 dprintk(KERN_INFO 2241 "md: updating %s RAID superblock on device (in sync %d)\n", 2242 mdname(mddev),mddev->in_sync); 2243 2244 bitmap_update_sb(mddev->bitmap); 2245 list_for_each_entry(rdev, &mddev->disks, same_set) { 2246 char b[BDEVNAME_SIZE]; 2247 dprintk(KERN_INFO "md: "); 2248 if (rdev->sb_loaded != 1) 2249 continue; /* no noise on spare devices */ 2250 if (test_bit(Faulty, &rdev->flags)) 2251 dprintk("(skipping faulty "); 2252 2253 dprintk("%s ", bdevname(rdev->bdev,b)); 2254 if (!test_bit(Faulty, &rdev->flags)) { 2255 md_super_write(mddev,rdev, 2256 rdev->sb_start, rdev->sb_size, 2257 rdev->sb_page); 2258 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 2259 bdevname(rdev->bdev,b), 2260 (unsigned long long)rdev->sb_start); 2261 rdev->sb_events = mddev->events; 2262 2263 } else 2264 dprintk(")\n"); 2265 if (mddev->level == LEVEL_MULTIPATH) 2266 /* only need to write one superblock... */ 2267 break; 2268 } 2269 md_super_wait(mddev); 2270 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2271 2272 spin_lock_irq(&mddev->write_lock); 2273 if (mddev->in_sync != sync_req || 2274 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2275 /* have to write it out again */ 2276 spin_unlock_irq(&mddev->write_lock); 2277 goto repeat; 2278 } 2279 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2280 spin_unlock_irq(&mddev->write_lock); 2281 wake_up(&mddev->sb_wait); 2282 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2283 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2284 2285 } 2286 2287 /* words written to sysfs files may, or may not, be \n terminated. 2288 * We want to accept with case. For this we use cmd_match. 2289 */ 2290 static int cmd_match(const char *cmd, const char *str) 2291 { 2292 /* See if cmd, written into a sysfs file, matches 2293 * str. They must either be the same, or cmd can 2294 * have a trailing newline 2295 */ 2296 while (*cmd && *str && *cmd == *str) { 2297 cmd++; 2298 str++; 2299 } 2300 if (*cmd == '\n') 2301 cmd++; 2302 if (*str || *cmd) 2303 return 0; 2304 return 1; 2305 } 2306 2307 struct rdev_sysfs_entry { 2308 struct attribute attr; 2309 ssize_t (*show)(mdk_rdev_t *, char *); 2310 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 2311 }; 2312 2313 static ssize_t 2314 state_show(mdk_rdev_t *rdev, char *page) 2315 { 2316 char *sep = ""; 2317 size_t len = 0; 2318 2319 if (test_bit(Faulty, &rdev->flags)) { 2320 len+= sprintf(page+len, "%sfaulty",sep); 2321 sep = ","; 2322 } 2323 if (test_bit(In_sync, &rdev->flags)) { 2324 len += sprintf(page+len, "%sin_sync",sep); 2325 sep = ","; 2326 } 2327 if (test_bit(WriteMostly, &rdev->flags)) { 2328 len += sprintf(page+len, "%swrite_mostly",sep); 2329 sep = ","; 2330 } 2331 if (test_bit(Blocked, &rdev->flags)) { 2332 len += sprintf(page+len, "%sblocked", sep); 2333 sep = ","; 2334 } 2335 if (!test_bit(Faulty, &rdev->flags) && 2336 !test_bit(In_sync, &rdev->flags)) { 2337 len += sprintf(page+len, "%sspare", sep); 2338 sep = ","; 2339 } 2340 return len+sprintf(page+len, "\n"); 2341 } 2342 2343 static ssize_t 2344 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2345 { 2346 /* can write 2347 * faulty - simulates and error 2348 * remove - disconnects the device 2349 * writemostly - sets write_mostly 2350 * -writemostly - clears write_mostly 2351 * blocked - sets the Blocked flag 2352 * -blocked - clears the Blocked flag 2353 * insync - sets Insync providing device isn't active 2354 */ 2355 int err = -EINVAL; 2356 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2357 md_error(rdev->mddev, rdev); 2358 err = 0; 2359 } else if (cmd_match(buf, "remove")) { 2360 if (rdev->raid_disk >= 0) 2361 err = -EBUSY; 2362 else { 2363 mddev_t *mddev = rdev->mddev; 2364 kick_rdev_from_array(rdev); 2365 if (mddev->pers) 2366 md_update_sb(mddev, 1); 2367 md_new_event(mddev); 2368 err = 0; 2369 } 2370 } else if (cmd_match(buf, "writemostly")) { 2371 set_bit(WriteMostly, &rdev->flags); 2372 err = 0; 2373 } else if (cmd_match(buf, "-writemostly")) { 2374 clear_bit(WriteMostly, &rdev->flags); 2375 err = 0; 2376 } else if (cmd_match(buf, "blocked")) { 2377 set_bit(Blocked, &rdev->flags); 2378 err = 0; 2379 } else if (cmd_match(buf, "-blocked")) { 2380 clear_bit(Blocked, &rdev->flags); 2381 wake_up(&rdev->blocked_wait); 2382 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2383 md_wakeup_thread(rdev->mddev->thread); 2384 2385 err = 0; 2386 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2387 set_bit(In_sync, &rdev->flags); 2388 err = 0; 2389 } 2390 if (!err) 2391 sysfs_notify_dirent_safe(rdev->sysfs_state); 2392 return err ? err : len; 2393 } 2394 static struct rdev_sysfs_entry rdev_state = 2395 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2396 2397 static ssize_t 2398 errors_show(mdk_rdev_t *rdev, char *page) 2399 { 2400 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2401 } 2402 2403 static ssize_t 2404 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2405 { 2406 char *e; 2407 unsigned long n = simple_strtoul(buf, &e, 10); 2408 if (*buf && (*e == 0 || *e == '\n')) { 2409 atomic_set(&rdev->corrected_errors, n); 2410 return len; 2411 } 2412 return -EINVAL; 2413 } 2414 static struct rdev_sysfs_entry rdev_errors = 2415 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2416 2417 static ssize_t 2418 slot_show(mdk_rdev_t *rdev, char *page) 2419 { 2420 if (rdev->raid_disk < 0) 2421 return sprintf(page, "none\n"); 2422 else 2423 return sprintf(page, "%d\n", rdev->raid_disk); 2424 } 2425 2426 static ssize_t 2427 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2428 { 2429 char *e; 2430 int err; 2431 char nm[20]; 2432 int slot = simple_strtoul(buf, &e, 10); 2433 if (strncmp(buf, "none", 4)==0) 2434 slot = -1; 2435 else if (e==buf || (*e && *e!= '\n')) 2436 return -EINVAL; 2437 if (rdev->mddev->pers && slot == -1) { 2438 /* Setting 'slot' on an active array requires also 2439 * updating the 'rd%d' link, and communicating 2440 * with the personality with ->hot_*_disk. 2441 * For now we only support removing 2442 * failed/spare devices. This normally happens automatically, 2443 * but not when the metadata is externally managed. 2444 */ 2445 if (rdev->raid_disk == -1) 2446 return -EEXIST; 2447 /* personality does all needed checks */ 2448 if (rdev->mddev->pers->hot_add_disk == NULL) 2449 return -EINVAL; 2450 err = rdev->mddev->pers-> 2451 hot_remove_disk(rdev->mddev, rdev->raid_disk); 2452 if (err) 2453 return err; 2454 sprintf(nm, "rd%d", rdev->raid_disk); 2455 sysfs_remove_link(&rdev->mddev->kobj, nm); 2456 rdev->raid_disk = -1; 2457 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2458 md_wakeup_thread(rdev->mddev->thread); 2459 } else if (rdev->mddev->pers) { 2460 mdk_rdev_t *rdev2; 2461 /* Activating a spare .. or possibly reactivating 2462 * if we ever get bitmaps working here. 2463 */ 2464 2465 if (rdev->raid_disk != -1) 2466 return -EBUSY; 2467 2468 if (rdev->mddev->pers->hot_add_disk == NULL) 2469 return -EINVAL; 2470 2471 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set) 2472 if (rdev2->raid_disk == slot) 2473 return -EEXIST; 2474 2475 if (slot >= rdev->mddev->raid_disks && 2476 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2477 return -ENOSPC; 2478 2479 rdev->raid_disk = slot; 2480 if (test_bit(In_sync, &rdev->flags)) 2481 rdev->saved_raid_disk = slot; 2482 else 2483 rdev->saved_raid_disk = -1; 2484 err = rdev->mddev->pers-> 2485 hot_add_disk(rdev->mddev, rdev); 2486 if (err) { 2487 rdev->raid_disk = -1; 2488 return err; 2489 } else 2490 sysfs_notify_dirent_safe(rdev->sysfs_state); 2491 sprintf(nm, "rd%d", rdev->raid_disk); 2492 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm)) 2493 /* failure here is OK */; 2494 /* don't wakeup anyone, leave that to userspace. */ 2495 } else { 2496 if (slot >= rdev->mddev->raid_disks && 2497 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2498 return -ENOSPC; 2499 rdev->raid_disk = slot; 2500 /* assume it is working */ 2501 clear_bit(Faulty, &rdev->flags); 2502 clear_bit(WriteMostly, &rdev->flags); 2503 set_bit(In_sync, &rdev->flags); 2504 sysfs_notify_dirent_safe(rdev->sysfs_state); 2505 } 2506 return len; 2507 } 2508 2509 2510 static struct rdev_sysfs_entry rdev_slot = 2511 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2512 2513 static ssize_t 2514 offset_show(mdk_rdev_t *rdev, char *page) 2515 { 2516 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2517 } 2518 2519 static ssize_t 2520 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2521 { 2522 char *e; 2523 unsigned long long offset = simple_strtoull(buf, &e, 10); 2524 if (e==buf || (*e && *e != '\n')) 2525 return -EINVAL; 2526 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2527 return -EBUSY; 2528 if (rdev->sectors && rdev->mddev->external) 2529 /* Must set offset before size, so overlap checks 2530 * can be sane */ 2531 return -EBUSY; 2532 rdev->data_offset = offset; 2533 return len; 2534 } 2535 2536 static struct rdev_sysfs_entry rdev_offset = 2537 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2538 2539 static ssize_t 2540 rdev_size_show(mdk_rdev_t *rdev, char *page) 2541 { 2542 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2543 } 2544 2545 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2546 { 2547 /* check if two start/length pairs overlap */ 2548 if (s1+l1 <= s2) 2549 return 0; 2550 if (s2+l2 <= s1) 2551 return 0; 2552 return 1; 2553 } 2554 2555 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2556 { 2557 unsigned long long blocks; 2558 sector_t new; 2559 2560 if (strict_strtoull(buf, 10, &blocks) < 0) 2561 return -EINVAL; 2562 2563 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2564 return -EINVAL; /* sector conversion overflow */ 2565 2566 new = blocks * 2; 2567 if (new != blocks * 2) 2568 return -EINVAL; /* unsigned long long to sector_t overflow */ 2569 2570 *sectors = new; 2571 return 0; 2572 } 2573 2574 static ssize_t 2575 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2576 { 2577 mddev_t *my_mddev = rdev->mddev; 2578 sector_t oldsectors = rdev->sectors; 2579 sector_t sectors; 2580 2581 if (strict_blocks_to_sectors(buf, §ors) < 0) 2582 return -EINVAL; 2583 if (my_mddev->pers && rdev->raid_disk >= 0) { 2584 if (my_mddev->persistent) { 2585 sectors = super_types[my_mddev->major_version]. 2586 rdev_size_change(rdev, sectors); 2587 if (!sectors) 2588 return -EBUSY; 2589 } else if (!sectors) 2590 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2591 rdev->data_offset; 2592 } 2593 if (sectors < my_mddev->dev_sectors) 2594 return -EINVAL; /* component must fit device */ 2595 2596 rdev->sectors = sectors; 2597 if (sectors > oldsectors && my_mddev->external) { 2598 /* need to check that all other rdevs with the same ->bdev 2599 * do not overlap. We need to unlock the mddev to avoid 2600 * a deadlock. We have already changed rdev->sectors, and if 2601 * we have to change it back, we will have the lock again. 2602 */ 2603 mddev_t *mddev; 2604 int overlap = 0; 2605 struct list_head *tmp; 2606 2607 mddev_unlock(my_mddev); 2608 for_each_mddev(mddev, tmp) { 2609 mdk_rdev_t *rdev2; 2610 2611 mddev_lock(mddev); 2612 list_for_each_entry(rdev2, &mddev->disks, same_set) 2613 if (test_bit(AllReserved, &rdev2->flags) || 2614 (rdev->bdev == rdev2->bdev && 2615 rdev != rdev2 && 2616 overlaps(rdev->data_offset, rdev->sectors, 2617 rdev2->data_offset, 2618 rdev2->sectors))) { 2619 overlap = 1; 2620 break; 2621 } 2622 mddev_unlock(mddev); 2623 if (overlap) { 2624 mddev_put(mddev); 2625 break; 2626 } 2627 } 2628 mddev_lock(my_mddev); 2629 if (overlap) { 2630 /* Someone else could have slipped in a size 2631 * change here, but doing so is just silly. 2632 * We put oldsectors back because we *know* it is 2633 * safe, and trust userspace not to race with 2634 * itself 2635 */ 2636 rdev->sectors = oldsectors; 2637 return -EBUSY; 2638 } 2639 } 2640 return len; 2641 } 2642 2643 static struct rdev_sysfs_entry rdev_size = 2644 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2645 2646 2647 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page) 2648 { 2649 unsigned long long recovery_start = rdev->recovery_offset; 2650 2651 if (test_bit(In_sync, &rdev->flags) || 2652 recovery_start == MaxSector) 2653 return sprintf(page, "none\n"); 2654 2655 return sprintf(page, "%llu\n", recovery_start); 2656 } 2657 2658 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2659 { 2660 unsigned long long recovery_start; 2661 2662 if (cmd_match(buf, "none")) 2663 recovery_start = MaxSector; 2664 else if (strict_strtoull(buf, 10, &recovery_start)) 2665 return -EINVAL; 2666 2667 if (rdev->mddev->pers && 2668 rdev->raid_disk >= 0) 2669 return -EBUSY; 2670 2671 rdev->recovery_offset = recovery_start; 2672 if (recovery_start == MaxSector) 2673 set_bit(In_sync, &rdev->flags); 2674 else 2675 clear_bit(In_sync, &rdev->flags); 2676 return len; 2677 } 2678 2679 static struct rdev_sysfs_entry rdev_recovery_start = 2680 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 2681 2682 static struct attribute *rdev_default_attrs[] = { 2683 &rdev_state.attr, 2684 &rdev_errors.attr, 2685 &rdev_slot.attr, 2686 &rdev_offset.attr, 2687 &rdev_size.attr, 2688 &rdev_recovery_start.attr, 2689 NULL, 2690 }; 2691 static ssize_t 2692 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2693 { 2694 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2695 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2696 mddev_t *mddev = rdev->mddev; 2697 ssize_t rv; 2698 2699 if (!entry->show) 2700 return -EIO; 2701 2702 rv = mddev ? mddev_lock(mddev) : -EBUSY; 2703 if (!rv) { 2704 if (rdev->mddev == NULL) 2705 rv = -EBUSY; 2706 else 2707 rv = entry->show(rdev, page); 2708 mddev_unlock(mddev); 2709 } 2710 return rv; 2711 } 2712 2713 static ssize_t 2714 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2715 const char *page, size_t length) 2716 { 2717 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2718 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2719 ssize_t rv; 2720 mddev_t *mddev = rdev->mddev; 2721 2722 if (!entry->store) 2723 return -EIO; 2724 if (!capable(CAP_SYS_ADMIN)) 2725 return -EACCES; 2726 rv = mddev ? mddev_lock(mddev): -EBUSY; 2727 if (!rv) { 2728 if (rdev->mddev == NULL) 2729 rv = -EBUSY; 2730 else 2731 rv = entry->store(rdev, page, length); 2732 mddev_unlock(mddev); 2733 } 2734 return rv; 2735 } 2736 2737 static void rdev_free(struct kobject *ko) 2738 { 2739 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 2740 kfree(rdev); 2741 } 2742 static const struct sysfs_ops rdev_sysfs_ops = { 2743 .show = rdev_attr_show, 2744 .store = rdev_attr_store, 2745 }; 2746 static struct kobj_type rdev_ktype = { 2747 .release = rdev_free, 2748 .sysfs_ops = &rdev_sysfs_ops, 2749 .default_attrs = rdev_default_attrs, 2750 }; 2751 2752 void md_rdev_init(mdk_rdev_t *rdev) 2753 { 2754 rdev->desc_nr = -1; 2755 rdev->saved_raid_disk = -1; 2756 rdev->raid_disk = -1; 2757 rdev->flags = 0; 2758 rdev->data_offset = 0; 2759 rdev->sb_events = 0; 2760 rdev->last_read_error.tv_sec = 0; 2761 rdev->last_read_error.tv_nsec = 0; 2762 atomic_set(&rdev->nr_pending, 0); 2763 atomic_set(&rdev->read_errors, 0); 2764 atomic_set(&rdev->corrected_errors, 0); 2765 2766 INIT_LIST_HEAD(&rdev->same_set); 2767 init_waitqueue_head(&rdev->blocked_wait); 2768 } 2769 EXPORT_SYMBOL_GPL(md_rdev_init); 2770 /* 2771 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2772 * 2773 * mark the device faulty if: 2774 * 2775 * - the device is nonexistent (zero size) 2776 * - the device has no valid superblock 2777 * 2778 * a faulty rdev _never_ has rdev->sb set. 2779 */ 2780 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2781 { 2782 char b[BDEVNAME_SIZE]; 2783 int err; 2784 mdk_rdev_t *rdev; 2785 sector_t size; 2786 2787 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2788 if (!rdev) { 2789 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2790 return ERR_PTR(-ENOMEM); 2791 } 2792 2793 md_rdev_init(rdev); 2794 if ((err = alloc_disk_sb(rdev))) 2795 goto abort_free; 2796 2797 err = lock_rdev(rdev, newdev, super_format == -2); 2798 if (err) 2799 goto abort_free; 2800 2801 kobject_init(&rdev->kobj, &rdev_ktype); 2802 2803 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 2804 if (!size) { 2805 printk(KERN_WARNING 2806 "md: %s has zero or unknown size, marking faulty!\n", 2807 bdevname(rdev->bdev,b)); 2808 err = -EINVAL; 2809 goto abort_free; 2810 } 2811 2812 if (super_format >= 0) { 2813 err = super_types[super_format]. 2814 load_super(rdev, NULL, super_minor); 2815 if (err == -EINVAL) { 2816 printk(KERN_WARNING 2817 "md: %s does not have a valid v%d.%d " 2818 "superblock, not importing!\n", 2819 bdevname(rdev->bdev,b), 2820 super_format, super_minor); 2821 goto abort_free; 2822 } 2823 if (err < 0) { 2824 printk(KERN_WARNING 2825 "md: could not read %s's sb, not importing!\n", 2826 bdevname(rdev->bdev,b)); 2827 goto abort_free; 2828 } 2829 } 2830 2831 return rdev; 2832 2833 abort_free: 2834 if (rdev->sb_page) { 2835 if (rdev->bdev) 2836 unlock_rdev(rdev); 2837 free_disk_sb(rdev); 2838 } 2839 kfree(rdev); 2840 return ERR_PTR(err); 2841 } 2842 2843 /* 2844 * Check a full RAID array for plausibility 2845 */ 2846 2847 2848 static void analyze_sbs(mddev_t * mddev) 2849 { 2850 int i; 2851 mdk_rdev_t *rdev, *freshest, *tmp; 2852 char b[BDEVNAME_SIZE]; 2853 2854 freshest = NULL; 2855 rdev_for_each(rdev, tmp, mddev) 2856 switch (super_types[mddev->major_version]. 2857 load_super(rdev, freshest, mddev->minor_version)) { 2858 case 1: 2859 freshest = rdev; 2860 break; 2861 case 0: 2862 break; 2863 default: 2864 printk( KERN_ERR \ 2865 "md: fatal superblock inconsistency in %s" 2866 " -- removing from array\n", 2867 bdevname(rdev->bdev,b)); 2868 kick_rdev_from_array(rdev); 2869 } 2870 2871 2872 super_types[mddev->major_version]. 2873 validate_super(mddev, freshest); 2874 2875 i = 0; 2876 rdev_for_each(rdev, tmp, mddev) { 2877 if (mddev->max_disks && 2878 (rdev->desc_nr >= mddev->max_disks || 2879 i > mddev->max_disks)) { 2880 printk(KERN_WARNING 2881 "md: %s: %s: only %d devices permitted\n", 2882 mdname(mddev), bdevname(rdev->bdev, b), 2883 mddev->max_disks); 2884 kick_rdev_from_array(rdev); 2885 continue; 2886 } 2887 if (rdev != freshest) 2888 if (super_types[mddev->major_version]. 2889 validate_super(mddev, rdev)) { 2890 printk(KERN_WARNING "md: kicking non-fresh %s" 2891 " from array!\n", 2892 bdevname(rdev->bdev,b)); 2893 kick_rdev_from_array(rdev); 2894 continue; 2895 } 2896 if (mddev->level == LEVEL_MULTIPATH) { 2897 rdev->desc_nr = i++; 2898 rdev->raid_disk = rdev->desc_nr; 2899 set_bit(In_sync, &rdev->flags); 2900 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 2901 rdev->raid_disk = -1; 2902 clear_bit(In_sync, &rdev->flags); 2903 } 2904 } 2905 } 2906 2907 /* Read a fixed-point number. 2908 * Numbers in sysfs attributes should be in "standard" units where 2909 * possible, so time should be in seconds. 2910 * However we internally use a a much smaller unit such as 2911 * milliseconds or jiffies. 2912 * This function takes a decimal number with a possible fractional 2913 * component, and produces an integer which is the result of 2914 * multiplying that number by 10^'scale'. 2915 * all without any floating-point arithmetic. 2916 */ 2917 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 2918 { 2919 unsigned long result = 0; 2920 long decimals = -1; 2921 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 2922 if (*cp == '.') 2923 decimals = 0; 2924 else if (decimals < scale) { 2925 unsigned int value; 2926 value = *cp - '0'; 2927 result = result * 10 + value; 2928 if (decimals >= 0) 2929 decimals++; 2930 } 2931 cp++; 2932 } 2933 if (*cp == '\n') 2934 cp++; 2935 if (*cp) 2936 return -EINVAL; 2937 if (decimals < 0) 2938 decimals = 0; 2939 while (decimals < scale) { 2940 result *= 10; 2941 decimals ++; 2942 } 2943 *res = result; 2944 return 0; 2945 } 2946 2947 2948 static void md_safemode_timeout(unsigned long data); 2949 2950 static ssize_t 2951 safe_delay_show(mddev_t *mddev, char *page) 2952 { 2953 int msec = (mddev->safemode_delay*1000)/HZ; 2954 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2955 } 2956 static ssize_t 2957 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2958 { 2959 unsigned long msec; 2960 2961 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 2962 return -EINVAL; 2963 if (msec == 0) 2964 mddev->safemode_delay = 0; 2965 else { 2966 unsigned long old_delay = mddev->safemode_delay; 2967 mddev->safemode_delay = (msec*HZ)/1000; 2968 if (mddev->safemode_delay == 0) 2969 mddev->safemode_delay = 1; 2970 if (mddev->safemode_delay < old_delay) 2971 md_safemode_timeout((unsigned long)mddev); 2972 } 2973 return len; 2974 } 2975 static struct md_sysfs_entry md_safe_delay = 2976 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2977 2978 static ssize_t 2979 level_show(mddev_t *mddev, char *page) 2980 { 2981 struct mdk_personality *p = mddev->pers; 2982 if (p) 2983 return sprintf(page, "%s\n", p->name); 2984 else if (mddev->clevel[0]) 2985 return sprintf(page, "%s\n", mddev->clevel); 2986 else if (mddev->level != LEVEL_NONE) 2987 return sprintf(page, "%d\n", mddev->level); 2988 else 2989 return 0; 2990 } 2991 2992 static ssize_t 2993 level_store(mddev_t *mddev, const char *buf, size_t len) 2994 { 2995 char clevel[16]; 2996 ssize_t rv = len; 2997 struct mdk_personality *pers; 2998 long level; 2999 void *priv; 3000 mdk_rdev_t *rdev; 3001 3002 if (mddev->pers == NULL) { 3003 if (len == 0) 3004 return 0; 3005 if (len >= sizeof(mddev->clevel)) 3006 return -ENOSPC; 3007 strncpy(mddev->clevel, buf, len); 3008 if (mddev->clevel[len-1] == '\n') 3009 len--; 3010 mddev->clevel[len] = 0; 3011 mddev->level = LEVEL_NONE; 3012 return rv; 3013 } 3014 3015 /* request to change the personality. Need to ensure: 3016 * - array is not engaged in resync/recovery/reshape 3017 * - old personality can be suspended 3018 * - new personality will access other array. 3019 */ 3020 3021 if (mddev->sync_thread || 3022 mddev->reshape_position != MaxSector || 3023 mddev->sysfs_active) 3024 return -EBUSY; 3025 3026 if (!mddev->pers->quiesce) { 3027 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3028 mdname(mddev), mddev->pers->name); 3029 return -EINVAL; 3030 } 3031 3032 /* Now find the new personality */ 3033 if (len == 0 || len >= sizeof(clevel)) 3034 return -EINVAL; 3035 strncpy(clevel, buf, len); 3036 if (clevel[len-1] == '\n') 3037 len--; 3038 clevel[len] = 0; 3039 if (strict_strtol(clevel, 10, &level)) 3040 level = LEVEL_NONE; 3041 3042 if (request_module("md-%s", clevel) != 0) 3043 request_module("md-level-%s", clevel); 3044 spin_lock(&pers_lock); 3045 pers = find_pers(level, clevel); 3046 if (!pers || !try_module_get(pers->owner)) { 3047 spin_unlock(&pers_lock); 3048 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3049 return -EINVAL; 3050 } 3051 spin_unlock(&pers_lock); 3052 3053 if (pers == mddev->pers) { 3054 /* Nothing to do! */ 3055 module_put(pers->owner); 3056 return rv; 3057 } 3058 if (!pers->takeover) { 3059 module_put(pers->owner); 3060 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3061 mdname(mddev), clevel); 3062 return -EINVAL; 3063 } 3064 3065 list_for_each_entry(rdev, &mddev->disks, same_set) 3066 rdev->new_raid_disk = rdev->raid_disk; 3067 3068 /* ->takeover must set new_* and/or delta_disks 3069 * if it succeeds, and may set them when it fails. 3070 */ 3071 priv = pers->takeover(mddev); 3072 if (IS_ERR(priv)) { 3073 mddev->new_level = mddev->level; 3074 mddev->new_layout = mddev->layout; 3075 mddev->new_chunk_sectors = mddev->chunk_sectors; 3076 mddev->raid_disks -= mddev->delta_disks; 3077 mddev->delta_disks = 0; 3078 module_put(pers->owner); 3079 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3080 mdname(mddev), clevel); 3081 return PTR_ERR(priv); 3082 } 3083 3084 /* Looks like we have a winner */ 3085 mddev_suspend(mddev); 3086 mddev->pers->stop(mddev); 3087 3088 if (mddev->pers->sync_request == NULL && 3089 pers->sync_request != NULL) { 3090 /* need to add the md_redundancy_group */ 3091 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3092 printk(KERN_WARNING 3093 "md: cannot register extra attributes for %s\n", 3094 mdname(mddev)); 3095 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3096 } 3097 if (mddev->pers->sync_request != NULL && 3098 pers->sync_request == NULL) { 3099 /* need to remove the md_redundancy_group */ 3100 if (mddev->to_remove == NULL) 3101 mddev->to_remove = &md_redundancy_group; 3102 } 3103 3104 if (mddev->pers->sync_request == NULL && 3105 mddev->external) { 3106 /* We are converting from a no-redundancy array 3107 * to a redundancy array and metadata is managed 3108 * externally so we need to be sure that writes 3109 * won't block due to a need to transition 3110 * clean->dirty 3111 * until external management is started. 3112 */ 3113 mddev->in_sync = 0; 3114 mddev->safemode_delay = 0; 3115 mddev->safemode = 0; 3116 } 3117 3118 list_for_each_entry(rdev, &mddev->disks, same_set) { 3119 char nm[20]; 3120 if (rdev->raid_disk < 0) 3121 continue; 3122 if (rdev->new_raid_disk >= mddev->raid_disks) 3123 rdev->new_raid_disk = -1; 3124 if (rdev->new_raid_disk == rdev->raid_disk) 3125 continue; 3126 sprintf(nm, "rd%d", rdev->raid_disk); 3127 sysfs_remove_link(&mddev->kobj, nm); 3128 } 3129 list_for_each_entry(rdev, &mddev->disks, same_set) { 3130 if (rdev->raid_disk < 0) 3131 continue; 3132 if (rdev->new_raid_disk == rdev->raid_disk) 3133 continue; 3134 rdev->raid_disk = rdev->new_raid_disk; 3135 if (rdev->raid_disk < 0) 3136 clear_bit(In_sync, &rdev->flags); 3137 else { 3138 char nm[20]; 3139 sprintf(nm, "rd%d", rdev->raid_disk); 3140 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 3141 printk("md: cannot register %s for %s after level change\n", 3142 nm, mdname(mddev)); 3143 } 3144 } 3145 3146 module_put(mddev->pers->owner); 3147 mddev->pers = pers; 3148 mddev->private = priv; 3149 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3150 mddev->level = mddev->new_level; 3151 mddev->layout = mddev->new_layout; 3152 mddev->chunk_sectors = mddev->new_chunk_sectors; 3153 mddev->delta_disks = 0; 3154 if (mddev->pers->sync_request == NULL) { 3155 /* this is now an array without redundancy, so 3156 * it must always be in_sync 3157 */ 3158 mddev->in_sync = 1; 3159 del_timer_sync(&mddev->safemode_timer); 3160 } 3161 pers->run(mddev); 3162 mddev_resume(mddev); 3163 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3164 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3165 md_wakeup_thread(mddev->thread); 3166 sysfs_notify(&mddev->kobj, NULL, "level"); 3167 md_new_event(mddev); 3168 return rv; 3169 } 3170 3171 static struct md_sysfs_entry md_level = 3172 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3173 3174 3175 static ssize_t 3176 layout_show(mddev_t *mddev, char *page) 3177 { 3178 /* just a number, not meaningful for all levels */ 3179 if (mddev->reshape_position != MaxSector && 3180 mddev->layout != mddev->new_layout) 3181 return sprintf(page, "%d (%d)\n", 3182 mddev->new_layout, mddev->layout); 3183 return sprintf(page, "%d\n", mddev->layout); 3184 } 3185 3186 static ssize_t 3187 layout_store(mddev_t *mddev, const char *buf, size_t len) 3188 { 3189 char *e; 3190 unsigned long n = simple_strtoul(buf, &e, 10); 3191 3192 if (!*buf || (*e && *e != '\n')) 3193 return -EINVAL; 3194 3195 if (mddev->pers) { 3196 int err; 3197 if (mddev->pers->check_reshape == NULL) 3198 return -EBUSY; 3199 mddev->new_layout = n; 3200 err = mddev->pers->check_reshape(mddev); 3201 if (err) { 3202 mddev->new_layout = mddev->layout; 3203 return err; 3204 } 3205 } else { 3206 mddev->new_layout = n; 3207 if (mddev->reshape_position == MaxSector) 3208 mddev->layout = n; 3209 } 3210 return len; 3211 } 3212 static struct md_sysfs_entry md_layout = 3213 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3214 3215 3216 static ssize_t 3217 raid_disks_show(mddev_t *mddev, char *page) 3218 { 3219 if (mddev->raid_disks == 0) 3220 return 0; 3221 if (mddev->reshape_position != MaxSector && 3222 mddev->delta_disks != 0) 3223 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3224 mddev->raid_disks - mddev->delta_disks); 3225 return sprintf(page, "%d\n", mddev->raid_disks); 3226 } 3227 3228 static int update_raid_disks(mddev_t *mddev, int raid_disks); 3229 3230 static ssize_t 3231 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 3232 { 3233 char *e; 3234 int rv = 0; 3235 unsigned long n = simple_strtoul(buf, &e, 10); 3236 3237 if (!*buf || (*e && *e != '\n')) 3238 return -EINVAL; 3239 3240 if (mddev->pers) 3241 rv = update_raid_disks(mddev, n); 3242 else if (mddev->reshape_position != MaxSector) { 3243 int olddisks = mddev->raid_disks - mddev->delta_disks; 3244 mddev->delta_disks = n - olddisks; 3245 mddev->raid_disks = n; 3246 } else 3247 mddev->raid_disks = n; 3248 return rv ? rv : len; 3249 } 3250 static struct md_sysfs_entry md_raid_disks = 3251 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3252 3253 static ssize_t 3254 chunk_size_show(mddev_t *mddev, char *page) 3255 { 3256 if (mddev->reshape_position != MaxSector && 3257 mddev->chunk_sectors != mddev->new_chunk_sectors) 3258 return sprintf(page, "%d (%d)\n", 3259 mddev->new_chunk_sectors << 9, 3260 mddev->chunk_sectors << 9); 3261 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3262 } 3263 3264 static ssize_t 3265 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 3266 { 3267 char *e; 3268 unsigned long n = simple_strtoul(buf, &e, 10); 3269 3270 if (!*buf || (*e && *e != '\n')) 3271 return -EINVAL; 3272 3273 if (mddev->pers) { 3274 int err; 3275 if (mddev->pers->check_reshape == NULL) 3276 return -EBUSY; 3277 mddev->new_chunk_sectors = n >> 9; 3278 err = mddev->pers->check_reshape(mddev); 3279 if (err) { 3280 mddev->new_chunk_sectors = mddev->chunk_sectors; 3281 return err; 3282 } 3283 } else { 3284 mddev->new_chunk_sectors = n >> 9; 3285 if (mddev->reshape_position == MaxSector) 3286 mddev->chunk_sectors = n >> 9; 3287 } 3288 return len; 3289 } 3290 static struct md_sysfs_entry md_chunk_size = 3291 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3292 3293 static ssize_t 3294 resync_start_show(mddev_t *mddev, char *page) 3295 { 3296 if (mddev->recovery_cp == MaxSector) 3297 return sprintf(page, "none\n"); 3298 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3299 } 3300 3301 static ssize_t 3302 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 3303 { 3304 char *e; 3305 unsigned long long n = simple_strtoull(buf, &e, 10); 3306 3307 if (mddev->pers) 3308 return -EBUSY; 3309 if (cmd_match(buf, "none")) 3310 n = MaxSector; 3311 else if (!*buf || (*e && *e != '\n')) 3312 return -EINVAL; 3313 3314 mddev->recovery_cp = n; 3315 return len; 3316 } 3317 static struct md_sysfs_entry md_resync_start = 3318 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3319 3320 /* 3321 * The array state can be: 3322 * 3323 * clear 3324 * No devices, no size, no level 3325 * Equivalent to STOP_ARRAY ioctl 3326 * inactive 3327 * May have some settings, but array is not active 3328 * all IO results in error 3329 * When written, doesn't tear down array, but just stops it 3330 * suspended (not supported yet) 3331 * All IO requests will block. The array can be reconfigured. 3332 * Writing this, if accepted, will block until array is quiescent 3333 * readonly 3334 * no resync can happen. no superblocks get written. 3335 * write requests fail 3336 * read-auto 3337 * like readonly, but behaves like 'clean' on a write request. 3338 * 3339 * clean - no pending writes, but otherwise active. 3340 * When written to inactive array, starts without resync 3341 * If a write request arrives then 3342 * if metadata is known, mark 'dirty' and switch to 'active'. 3343 * if not known, block and switch to write-pending 3344 * If written to an active array that has pending writes, then fails. 3345 * active 3346 * fully active: IO and resync can be happening. 3347 * When written to inactive array, starts with resync 3348 * 3349 * write-pending 3350 * clean, but writes are blocked waiting for 'active' to be written. 3351 * 3352 * active-idle 3353 * like active, but no writes have been seen for a while (100msec). 3354 * 3355 */ 3356 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3357 write_pending, active_idle, bad_word}; 3358 static char *array_states[] = { 3359 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3360 "write-pending", "active-idle", NULL }; 3361 3362 static int match_word(const char *word, char **list) 3363 { 3364 int n; 3365 for (n=0; list[n]; n++) 3366 if (cmd_match(word, list[n])) 3367 break; 3368 return n; 3369 } 3370 3371 static ssize_t 3372 array_state_show(mddev_t *mddev, char *page) 3373 { 3374 enum array_state st = inactive; 3375 3376 if (mddev->pers) 3377 switch(mddev->ro) { 3378 case 1: 3379 st = readonly; 3380 break; 3381 case 2: 3382 st = read_auto; 3383 break; 3384 case 0: 3385 if (mddev->in_sync) 3386 st = clean; 3387 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3388 st = write_pending; 3389 else if (mddev->safemode) 3390 st = active_idle; 3391 else 3392 st = active; 3393 } 3394 else { 3395 if (list_empty(&mddev->disks) && 3396 mddev->raid_disks == 0 && 3397 mddev->dev_sectors == 0) 3398 st = clear; 3399 else 3400 st = inactive; 3401 } 3402 return sprintf(page, "%s\n", array_states[st]); 3403 } 3404 3405 static int do_md_stop(mddev_t * mddev, int ro, int is_open); 3406 static int md_set_readonly(mddev_t * mddev, int is_open); 3407 static int do_md_run(mddev_t * mddev); 3408 static int restart_array(mddev_t *mddev); 3409 3410 static ssize_t 3411 array_state_store(mddev_t *mddev, const char *buf, size_t len) 3412 { 3413 int err = -EINVAL; 3414 enum array_state st = match_word(buf, array_states); 3415 switch(st) { 3416 case bad_word: 3417 break; 3418 case clear: 3419 /* stopping an active array */ 3420 if (atomic_read(&mddev->openers) > 0) 3421 return -EBUSY; 3422 err = do_md_stop(mddev, 0, 0); 3423 break; 3424 case inactive: 3425 /* stopping an active array */ 3426 if (mddev->pers) { 3427 if (atomic_read(&mddev->openers) > 0) 3428 return -EBUSY; 3429 err = do_md_stop(mddev, 2, 0); 3430 } else 3431 err = 0; /* already inactive */ 3432 break; 3433 case suspended: 3434 break; /* not supported yet */ 3435 case readonly: 3436 if (mddev->pers) 3437 err = md_set_readonly(mddev, 0); 3438 else { 3439 mddev->ro = 1; 3440 set_disk_ro(mddev->gendisk, 1); 3441 err = do_md_run(mddev); 3442 } 3443 break; 3444 case read_auto: 3445 if (mddev->pers) { 3446 if (mddev->ro == 0) 3447 err = md_set_readonly(mddev, 0); 3448 else if (mddev->ro == 1) 3449 err = restart_array(mddev); 3450 if (err == 0) { 3451 mddev->ro = 2; 3452 set_disk_ro(mddev->gendisk, 0); 3453 } 3454 } else { 3455 mddev->ro = 2; 3456 err = do_md_run(mddev); 3457 } 3458 break; 3459 case clean: 3460 if (mddev->pers) { 3461 restart_array(mddev); 3462 spin_lock_irq(&mddev->write_lock); 3463 if (atomic_read(&mddev->writes_pending) == 0) { 3464 if (mddev->in_sync == 0) { 3465 mddev->in_sync = 1; 3466 if (mddev->safemode == 1) 3467 mddev->safemode = 0; 3468 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3469 } 3470 err = 0; 3471 } else 3472 err = -EBUSY; 3473 spin_unlock_irq(&mddev->write_lock); 3474 } else 3475 err = -EINVAL; 3476 break; 3477 case active: 3478 if (mddev->pers) { 3479 restart_array(mddev); 3480 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3481 wake_up(&mddev->sb_wait); 3482 err = 0; 3483 } else { 3484 mddev->ro = 0; 3485 set_disk_ro(mddev->gendisk, 0); 3486 err = do_md_run(mddev); 3487 } 3488 break; 3489 case write_pending: 3490 case active_idle: 3491 /* these cannot be set */ 3492 break; 3493 } 3494 if (err) 3495 return err; 3496 else { 3497 sysfs_notify_dirent_safe(mddev->sysfs_state); 3498 return len; 3499 } 3500 } 3501 static struct md_sysfs_entry md_array_state = 3502 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3503 3504 static ssize_t 3505 max_corrected_read_errors_show(mddev_t *mddev, char *page) { 3506 return sprintf(page, "%d\n", 3507 atomic_read(&mddev->max_corr_read_errors)); 3508 } 3509 3510 static ssize_t 3511 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len) 3512 { 3513 char *e; 3514 unsigned long n = simple_strtoul(buf, &e, 10); 3515 3516 if (*buf && (*e == 0 || *e == '\n')) { 3517 atomic_set(&mddev->max_corr_read_errors, n); 3518 return len; 3519 } 3520 return -EINVAL; 3521 } 3522 3523 static struct md_sysfs_entry max_corr_read_errors = 3524 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3525 max_corrected_read_errors_store); 3526 3527 static ssize_t 3528 null_show(mddev_t *mddev, char *page) 3529 { 3530 return -EINVAL; 3531 } 3532 3533 static ssize_t 3534 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 3535 { 3536 /* buf must be %d:%d\n? giving major and minor numbers */ 3537 /* The new device is added to the array. 3538 * If the array has a persistent superblock, we read the 3539 * superblock to initialise info and check validity. 3540 * Otherwise, only checking done is that in bind_rdev_to_array, 3541 * which mainly checks size. 3542 */ 3543 char *e; 3544 int major = simple_strtoul(buf, &e, 10); 3545 int minor; 3546 dev_t dev; 3547 mdk_rdev_t *rdev; 3548 int err; 3549 3550 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 3551 return -EINVAL; 3552 minor = simple_strtoul(e+1, &e, 10); 3553 if (*e && *e != '\n') 3554 return -EINVAL; 3555 dev = MKDEV(major, minor); 3556 if (major != MAJOR(dev) || 3557 minor != MINOR(dev)) 3558 return -EOVERFLOW; 3559 3560 3561 if (mddev->persistent) { 3562 rdev = md_import_device(dev, mddev->major_version, 3563 mddev->minor_version); 3564 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 3565 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3566 mdk_rdev_t, same_set); 3567 err = super_types[mddev->major_version] 3568 .load_super(rdev, rdev0, mddev->minor_version); 3569 if (err < 0) 3570 goto out; 3571 } 3572 } else if (mddev->external) 3573 rdev = md_import_device(dev, -2, -1); 3574 else 3575 rdev = md_import_device(dev, -1, -1); 3576 3577 if (IS_ERR(rdev)) 3578 return PTR_ERR(rdev); 3579 err = bind_rdev_to_array(rdev, mddev); 3580 out: 3581 if (err) 3582 export_rdev(rdev); 3583 return err ? err : len; 3584 } 3585 3586 static struct md_sysfs_entry md_new_device = 3587 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 3588 3589 static ssize_t 3590 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 3591 { 3592 char *end; 3593 unsigned long chunk, end_chunk; 3594 3595 if (!mddev->bitmap) 3596 goto out; 3597 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 3598 while (*buf) { 3599 chunk = end_chunk = simple_strtoul(buf, &end, 0); 3600 if (buf == end) break; 3601 if (*end == '-') { /* range */ 3602 buf = end + 1; 3603 end_chunk = simple_strtoul(buf, &end, 0); 3604 if (buf == end) break; 3605 } 3606 if (*end && !isspace(*end)) break; 3607 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 3608 buf = skip_spaces(end); 3609 } 3610 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 3611 out: 3612 return len; 3613 } 3614 3615 static struct md_sysfs_entry md_bitmap = 3616 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 3617 3618 static ssize_t 3619 size_show(mddev_t *mddev, char *page) 3620 { 3621 return sprintf(page, "%llu\n", 3622 (unsigned long long)mddev->dev_sectors / 2); 3623 } 3624 3625 static int update_size(mddev_t *mddev, sector_t num_sectors); 3626 3627 static ssize_t 3628 size_store(mddev_t *mddev, const char *buf, size_t len) 3629 { 3630 /* If array is inactive, we can reduce the component size, but 3631 * not increase it (except from 0). 3632 * If array is active, we can try an on-line resize 3633 */ 3634 sector_t sectors; 3635 int err = strict_blocks_to_sectors(buf, §ors); 3636 3637 if (err < 0) 3638 return err; 3639 if (mddev->pers) { 3640 err = update_size(mddev, sectors); 3641 md_update_sb(mddev, 1); 3642 } else { 3643 if (mddev->dev_sectors == 0 || 3644 mddev->dev_sectors > sectors) 3645 mddev->dev_sectors = sectors; 3646 else 3647 err = -ENOSPC; 3648 } 3649 return err ? err : len; 3650 } 3651 3652 static struct md_sysfs_entry md_size = 3653 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 3654 3655 3656 /* Metdata version. 3657 * This is one of 3658 * 'none' for arrays with no metadata (good luck...) 3659 * 'external' for arrays with externally managed metadata, 3660 * or N.M for internally known formats 3661 */ 3662 static ssize_t 3663 metadata_show(mddev_t *mddev, char *page) 3664 { 3665 if (mddev->persistent) 3666 return sprintf(page, "%d.%d\n", 3667 mddev->major_version, mddev->minor_version); 3668 else if (mddev->external) 3669 return sprintf(page, "external:%s\n", mddev->metadata_type); 3670 else 3671 return sprintf(page, "none\n"); 3672 } 3673 3674 static ssize_t 3675 metadata_store(mddev_t *mddev, const char *buf, size_t len) 3676 { 3677 int major, minor; 3678 char *e; 3679 /* Changing the details of 'external' metadata is 3680 * always permitted. Otherwise there must be 3681 * no devices attached to the array. 3682 */ 3683 if (mddev->external && strncmp(buf, "external:", 9) == 0) 3684 ; 3685 else if (!list_empty(&mddev->disks)) 3686 return -EBUSY; 3687 3688 if (cmd_match(buf, "none")) { 3689 mddev->persistent = 0; 3690 mddev->external = 0; 3691 mddev->major_version = 0; 3692 mddev->minor_version = 90; 3693 return len; 3694 } 3695 if (strncmp(buf, "external:", 9) == 0) { 3696 size_t namelen = len-9; 3697 if (namelen >= sizeof(mddev->metadata_type)) 3698 namelen = sizeof(mddev->metadata_type)-1; 3699 strncpy(mddev->metadata_type, buf+9, namelen); 3700 mddev->metadata_type[namelen] = 0; 3701 if (namelen && mddev->metadata_type[namelen-1] == '\n') 3702 mddev->metadata_type[--namelen] = 0; 3703 mddev->persistent = 0; 3704 mddev->external = 1; 3705 mddev->major_version = 0; 3706 mddev->minor_version = 90; 3707 return len; 3708 } 3709 major = simple_strtoul(buf, &e, 10); 3710 if (e==buf || *e != '.') 3711 return -EINVAL; 3712 buf = e+1; 3713 minor = simple_strtoul(buf, &e, 10); 3714 if (e==buf || (*e && *e != '\n') ) 3715 return -EINVAL; 3716 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 3717 return -ENOENT; 3718 mddev->major_version = major; 3719 mddev->minor_version = minor; 3720 mddev->persistent = 1; 3721 mddev->external = 0; 3722 return len; 3723 } 3724 3725 static struct md_sysfs_entry md_metadata = 3726 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 3727 3728 static ssize_t 3729 action_show(mddev_t *mddev, char *page) 3730 { 3731 char *type = "idle"; 3732 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3733 type = "frozen"; 3734 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3735 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 3736 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 3737 type = "reshape"; 3738 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 3739 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 3740 type = "resync"; 3741 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 3742 type = "check"; 3743 else 3744 type = "repair"; 3745 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 3746 type = "recover"; 3747 } 3748 return sprintf(page, "%s\n", type); 3749 } 3750 3751 static void reap_sync_thread(mddev_t *mddev); 3752 3753 static ssize_t 3754 action_store(mddev_t *mddev, const char *page, size_t len) 3755 { 3756 if (!mddev->pers || !mddev->pers->sync_request) 3757 return -EINVAL; 3758 3759 if (cmd_match(page, "frozen")) 3760 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3761 else 3762 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3763 3764 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 3765 if (mddev->sync_thread) { 3766 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3767 reap_sync_thread(mddev); 3768 } 3769 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3770 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 3771 return -EBUSY; 3772 else if (cmd_match(page, "resync")) 3773 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3774 else if (cmd_match(page, "recover")) { 3775 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3776 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3777 } else if (cmd_match(page, "reshape")) { 3778 int err; 3779 if (mddev->pers->start_reshape == NULL) 3780 return -EINVAL; 3781 err = mddev->pers->start_reshape(mddev); 3782 if (err) 3783 return err; 3784 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3785 } else { 3786 if (cmd_match(page, "check")) 3787 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3788 else if (!cmd_match(page, "repair")) 3789 return -EINVAL; 3790 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3791 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3792 } 3793 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3794 md_wakeup_thread(mddev->thread); 3795 sysfs_notify_dirent_safe(mddev->sysfs_action); 3796 return len; 3797 } 3798 3799 static ssize_t 3800 mismatch_cnt_show(mddev_t *mddev, char *page) 3801 { 3802 return sprintf(page, "%llu\n", 3803 (unsigned long long) mddev->resync_mismatches); 3804 } 3805 3806 static struct md_sysfs_entry md_scan_mode = 3807 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 3808 3809 3810 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 3811 3812 static ssize_t 3813 sync_min_show(mddev_t *mddev, char *page) 3814 { 3815 return sprintf(page, "%d (%s)\n", speed_min(mddev), 3816 mddev->sync_speed_min ? "local": "system"); 3817 } 3818 3819 static ssize_t 3820 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 3821 { 3822 int min; 3823 char *e; 3824 if (strncmp(buf, "system", 6)==0) { 3825 mddev->sync_speed_min = 0; 3826 return len; 3827 } 3828 min = simple_strtoul(buf, &e, 10); 3829 if (buf == e || (*e && *e != '\n') || min <= 0) 3830 return -EINVAL; 3831 mddev->sync_speed_min = min; 3832 return len; 3833 } 3834 3835 static struct md_sysfs_entry md_sync_min = 3836 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 3837 3838 static ssize_t 3839 sync_max_show(mddev_t *mddev, char *page) 3840 { 3841 return sprintf(page, "%d (%s)\n", speed_max(mddev), 3842 mddev->sync_speed_max ? "local": "system"); 3843 } 3844 3845 static ssize_t 3846 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 3847 { 3848 int max; 3849 char *e; 3850 if (strncmp(buf, "system", 6)==0) { 3851 mddev->sync_speed_max = 0; 3852 return len; 3853 } 3854 max = simple_strtoul(buf, &e, 10); 3855 if (buf == e || (*e && *e != '\n') || max <= 0) 3856 return -EINVAL; 3857 mddev->sync_speed_max = max; 3858 return len; 3859 } 3860 3861 static struct md_sysfs_entry md_sync_max = 3862 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 3863 3864 static ssize_t 3865 degraded_show(mddev_t *mddev, char *page) 3866 { 3867 return sprintf(page, "%d\n", mddev->degraded); 3868 } 3869 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 3870 3871 static ssize_t 3872 sync_force_parallel_show(mddev_t *mddev, char *page) 3873 { 3874 return sprintf(page, "%d\n", mddev->parallel_resync); 3875 } 3876 3877 static ssize_t 3878 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len) 3879 { 3880 long n; 3881 3882 if (strict_strtol(buf, 10, &n)) 3883 return -EINVAL; 3884 3885 if (n != 0 && n != 1) 3886 return -EINVAL; 3887 3888 mddev->parallel_resync = n; 3889 3890 if (mddev->sync_thread) 3891 wake_up(&resync_wait); 3892 3893 return len; 3894 } 3895 3896 /* force parallel resync, even with shared block devices */ 3897 static struct md_sysfs_entry md_sync_force_parallel = 3898 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 3899 sync_force_parallel_show, sync_force_parallel_store); 3900 3901 static ssize_t 3902 sync_speed_show(mddev_t *mddev, char *page) 3903 { 3904 unsigned long resync, dt, db; 3905 if (mddev->curr_resync == 0) 3906 return sprintf(page, "none\n"); 3907 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 3908 dt = (jiffies - mddev->resync_mark) / HZ; 3909 if (!dt) dt++; 3910 db = resync - mddev->resync_mark_cnt; 3911 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 3912 } 3913 3914 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 3915 3916 static ssize_t 3917 sync_completed_show(mddev_t *mddev, char *page) 3918 { 3919 unsigned long long max_sectors, resync; 3920 3921 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3922 return sprintf(page, "none\n"); 3923 3924 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3925 max_sectors = mddev->resync_max_sectors; 3926 else 3927 max_sectors = mddev->dev_sectors; 3928 3929 resync = mddev->curr_resync_completed; 3930 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 3931 } 3932 3933 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 3934 3935 static ssize_t 3936 min_sync_show(mddev_t *mddev, char *page) 3937 { 3938 return sprintf(page, "%llu\n", 3939 (unsigned long long)mddev->resync_min); 3940 } 3941 static ssize_t 3942 min_sync_store(mddev_t *mddev, const char *buf, size_t len) 3943 { 3944 unsigned long long min; 3945 if (strict_strtoull(buf, 10, &min)) 3946 return -EINVAL; 3947 if (min > mddev->resync_max) 3948 return -EINVAL; 3949 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3950 return -EBUSY; 3951 3952 /* Must be a multiple of chunk_size */ 3953 if (mddev->chunk_sectors) { 3954 sector_t temp = min; 3955 if (sector_div(temp, mddev->chunk_sectors)) 3956 return -EINVAL; 3957 } 3958 mddev->resync_min = min; 3959 3960 return len; 3961 } 3962 3963 static struct md_sysfs_entry md_min_sync = 3964 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 3965 3966 static ssize_t 3967 max_sync_show(mddev_t *mddev, char *page) 3968 { 3969 if (mddev->resync_max == MaxSector) 3970 return sprintf(page, "max\n"); 3971 else 3972 return sprintf(page, "%llu\n", 3973 (unsigned long long)mddev->resync_max); 3974 } 3975 static ssize_t 3976 max_sync_store(mddev_t *mddev, const char *buf, size_t len) 3977 { 3978 if (strncmp(buf, "max", 3) == 0) 3979 mddev->resync_max = MaxSector; 3980 else { 3981 unsigned long long max; 3982 if (strict_strtoull(buf, 10, &max)) 3983 return -EINVAL; 3984 if (max < mddev->resync_min) 3985 return -EINVAL; 3986 if (max < mddev->resync_max && 3987 mddev->ro == 0 && 3988 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3989 return -EBUSY; 3990 3991 /* Must be a multiple of chunk_size */ 3992 if (mddev->chunk_sectors) { 3993 sector_t temp = max; 3994 if (sector_div(temp, mddev->chunk_sectors)) 3995 return -EINVAL; 3996 } 3997 mddev->resync_max = max; 3998 } 3999 wake_up(&mddev->recovery_wait); 4000 return len; 4001 } 4002 4003 static struct md_sysfs_entry md_max_sync = 4004 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4005 4006 static ssize_t 4007 suspend_lo_show(mddev_t *mddev, char *page) 4008 { 4009 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4010 } 4011 4012 static ssize_t 4013 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 4014 { 4015 char *e; 4016 unsigned long long new = simple_strtoull(buf, &e, 10); 4017 unsigned long long old = mddev->suspend_lo; 4018 4019 if (mddev->pers == NULL || 4020 mddev->pers->quiesce == NULL) 4021 return -EINVAL; 4022 if (buf == e || (*e && *e != '\n')) 4023 return -EINVAL; 4024 4025 mddev->suspend_lo = new; 4026 if (new >= old) 4027 /* Shrinking suspended region */ 4028 mddev->pers->quiesce(mddev, 2); 4029 else { 4030 /* Expanding suspended region - need to wait */ 4031 mddev->pers->quiesce(mddev, 1); 4032 mddev->pers->quiesce(mddev, 0); 4033 } 4034 return len; 4035 } 4036 static struct md_sysfs_entry md_suspend_lo = 4037 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4038 4039 4040 static ssize_t 4041 suspend_hi_show(mddev_t *mddev, char *page) 4042 { 4043 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4044 } 4045 4046 static ssize_t 4047 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 4048 { 4049 char *e; 4050 unsigned long long new = simple_strtoull(buf, &e, 10); 4051 unsigned long long old = mddev->suspend_hi; 4052 4053 if (mddev->pers == NULL || 4054 mddev->pers->quiesce == NULL) 4055 return -EINVAL; 4056 if (buf == e || (*e && *e != '\n')) 4057 return -EINVAL; 4058 4059 mddev->suspend_hi = new; 4060 if (new <= old) 4061 /* Shrinking suspended region */ 4062 mddev->pers->quiesce(mddev, 2); 4063 else { 4064 /* Expanding suspended region - need to wait */ 4065 mddev->pers->quiesce(mddev, 1); 4066 mddev->pers->quiesce(mddev, 0); 4067 } 4068 return len; 4069 } 4070 static struct md_sysfs_entry md_suspend_hi = 4071 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4072 4073 static ssize_t 4074 reshape_position_show(mddev_t *mddev, char *page) 4075 { 4076 if (mddev->reshape_position != MaxSector) 4077 return sprintf(page, "%llu\n", 4078 (unsigned long long)mddev->reshape_position); 4079 strcpy(page, "none\n"); 4080 return 5; 4081 } 4082 4083 static ssize_t 4084 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 4085 { 4086 char *e; 4087 unsigned long long new = simple_strtoull(buf, &e, 10); 4088 if (mddev->pers) 4089 return -EBUSY; 4090 if (buf == e || (*e && *e != '\n')) 4091 return -EINVAL; 4092 mddev->reshape_position = new; 4093 mddev->delta_disks = 0; 4094 mddev->new_level = mddev->level; 4095 mddev->new_layout = mddev->layout; 4096 mddev->new_chunk_sectors = mddev->chunk_sectors; 4097 return len; 4098 } 4099 4100 static struct md_sysfs_entry md_reshape_position = 4101 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4102 reshape_position_store); 4103 4104 static ssize_t 4105 array_size_show(mddev_t *mddev, char *page) 4106 { 4107 if (mddev->external_size) 4108 return sprintf(page, "%llu\n", 4109 (unsigned long long)mddev->array_sectors/2); 4110 else 4111 return sprintf(page, "default\n"); 4112 } 4113 4114 static ssize_t 4115 array_size_store(mddev_t *mddev, const char *buf, size_t len) 4116 { 4117 sector_t sectors; 4118 4119 if (strncmp(buf, "default", 7) == 0) { 4120 if (mddev->pers) 4121 sectors = mddev->pers->size(mddev, 0, 0); 4122 else 4123 sectors = mddev->array_sectors; 4124 4125 mddev->external_size = 0; 4126 } else { 4127 if (strict_blocks_to_sectors(buf, §ors) < 0) 4128 return -EINVAL; 4129 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4130 return -E2BIG; 4131 4132 mddev->external_size = 1; 4133 } 4134 4135 mddev->array_sectors = sectors; 4136 set_capacity(mddev->gendisk, mddev->array_sectors); 4137 if (mddev->pers) 4138 revalidate_disk(mddev->gendisk); 4139 4140 return len; 4141 } 4142 4143 static struct md_sysfs_entry md_array_size = 4144 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4145 array_size_store); 4146 4147 static struct attribute *md_default_attrs[] = { 4148 &md_level.attr, 4149 &md_layout.attr, 4150 &md_raid_disks.attr, 4151 &md_chunk_size.attr, 4152 &md_size.attr, 4153 &md_resync_start.attr, 4154 &md_metadata.attr, 4155 &md_new_device.attr, 4156 &md_safe_delay.attr, 4157 &md_array_state.attr, 4158 &md_reshape_position.attr, 4159 &md_array_size.attr, 4160 &max_corr_read_errors.attr, 4161 NULL, 4162 }; 4163 4164 static struct attribute *md_redundancy_attrs[] = { 4165 &md_scan_mode.attr, 4166 &md_mismatches.attr, 4167 &md_sync_min.attr, 4168 &md_sync_max.attr, 4169 &md_sync_speed.attr, 4170 &md_sync_force_parallel.attr, 4171 &md_sync_completed.attr, 4172 &md_min_sync.attr, 4173 &md_max_sync.attr, 4174 &md_suspend_lo.attr, 4175 &md_suspend_hi.attr, 4176 &md_bitmap.attr, 4177 &md_degraded.attr, 4178 NULL, 4179 }; 4180 static struct attribute_group md_redundancy_group = { 4181 .name = NULL, 4182 .attrs = md_redundancy_attrs, 4183 }; 4184 4185 4186 static ssize_t 4187 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4188 { 4189 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4190 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4191 ssize_t rv; 4192 4193 if (!entry->show) 4194 return -EIO; 4195 rv = mddev_lock(mddev); 4196 if (!rv) { 4197 rv = entry->show(mddev, page); 4198 mddev_unlock(mddev); 4199 } 4200 return rv; 4201 } 4202 4203 static ssize_t 4204 md_attr_store(struct kobject *kobj, struct attribute *attr, 4205 const char *page, size_t length) 4206 { 4207 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4208 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 4209 ssize_t rv; 4210 4211 if (!entry->store) 4212 return -EIO; 4213 if (!capable(CAP_SYS_ADMIN)) 4214 return -EACCES; 4215 rv = mddev_lock(mddev); 4216 if (mddev->hold_active == UNTIL_IOCTL) 4217 mddev->hold_active = 0; 4218 if (!rv) { 4219 rv = entry->store(mddev, page, length); 4220 mddev_unlock(mddev); 4221 } 4222 return rv; 4223 } 4224 4225 static void md_free(struct kobject *ko) 4226 { 4227 mddev_t *mddev = container_of(ko, mddev_t, kobj); 4228 4229 if (mddev->sysfs_state) 4230 sysfs_put(mddev->sysfs_state); 4231 4232 if (mddev->gendisk) { 4233 del_gendisk(mddev->gendisk); 4234 put_disk(mddev->gendisk); 4235 } 4236 if (mddev->queue) 4237 blk_cleanup_queue(mddev->queue); 4238 4239 kfree(mddev); 4240 } 4241 4242 static const struct sysfs_ops md_sysfs_ops = { 4243 .show = md_attr_show, 4244 .store = md_attr_store, 4245 }; 4246 static struct kobj_type md_ktype = { 4247 .release = md_free, 4248 .sysfs_ops = &md_sysfs_ops, 4249 .default_attrs = md_default_attrs, 4250 }; 4251 4252 int mdp_major = 0; 4253 4254 static void mddev_delayed_delete(struct work_struct *ws) 4255 { 4256 mddev_t *mddev = container_of(ws, mddev_t, del_work); 4257 4258 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4259 kobject_del(&mddev->kobj); 4260 kobject_put(&mddev->kobj); 4261 } 4262 4263 static int md_alloc(dev_t dev, char *name) 4264 { 4265 static DEFINE_MUTEX(disks_mutex); 4266 mddev_t *mddev = mddev_find(dev); 4267 struct gendisk *disk; 4268 int partitioned; 4269 int shift; 4270 int unit; 4271 int error; 4272 4273 if (!mddev) 4274 return -ENODEV; 4275 4276 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4277 shift = partitioned ? MdpMinorShift : 0; 4278 unit = MINOR(mddev->unit) >> shift; 4279 4280 /* wait for any previous instance of this device to be 4281 * completely removed (mddev_delayed_delete). 4282 */ 4283 flush_workqueue(md_misc_wq); 4284 4285 mutex_lock(&disks_mutex); 4286 error = -EEXIST; 4287 if (mddev->gendisk) 4288 goto abort; 4289 4290 if (name) { 4291 /* Need to ensure that 'name' is not a duplicate. 4292 */ 4293 mddev_t *mddev2; 4294 spin_lock(&all_mddevs_lock); 4295 4296 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4297 if (mddev2->gendisk && 4298 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4299 spin_unlock(&all_mddevs_lock); 4300 goto abort; 4301 } 4302 spin_unlock(&all_mddevs_lock); 4303 } 4304 4305 error = -ENOMEM; 4306 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4307 if (!mddev->queue) 4308 goto abort; 4309 mddev->queue->queuedata = mddev; 4310 4311 blk_queue_make_request(mddev->queue, md_make_request); 4312 4313 disk = alloc_disk(1 << shift); 4314 if (!disk) { 4315 blk_cleanup_queue(mddev->queue); 4316 mddev->queue = NULL; 4317 goto abort; 4318 } 4319 disk->major = MAJOR(mddev->unit); 4320 disk->first_minor = unit << shift; 4321 if (name) 4322 strcpy(disk->disk_name, name); 4323 else if (partitioned) 4324 sprintf(disk->disk_name, "md_d%d", unit); 4325 else 4326 sprintf(disk->disk_name, "md%d", unit); 4327 disk->fops = &md_fops; 4328 disk->private_data = mddev; 4329 disk->queue = mddev->queue; 4330 /* Allow extended partitions. This makes the 4331 * 'mdp' device redundant, but we can't really 4332 * remove it now. 4333 */ 4334 disk->flags |= GENHD_FL_EXT_DEVT; 4335 add_disk(disk); 4336 mddev->gendisk = disk; 4337 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4338 &disk_to_dev(disk)->kobj, "%s", "md"); 4339 if (error) { 4340 /* This isn't possible, but as kobject_init_and_add is marked 4341 * __must_check, we must do something with the result 4342 */ 4343 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4344 disk->disk_name); 4345 error = 0; 4346 } 4347 if (mddev->kobj.sd && 4348 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4349 printk(KERN_DEBUG "pointless warning\n"); 4350 4351 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4352 abort: 4353 mutex_unlock(&disks_mutex); 4354 if (!error && mddev->kobj.sd) { 4355 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4356 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4357 } 4358 mddev_put(mddev); 4359 return error; 4360 } 4361 4362 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4363 { 4364 md_alloc(dev, NULL); 4365 return NULL; 4366 } 4367 4368 static int add_named_array(const char *val, struct kernel_param *kp) 4369 { 4370 /* val must be "md_*" where * is not all digits. 4371 * We allocate an array with a large free minor number, and 4372 * set the name to val. val must not already be an active name. 4373 */ 4374 int len = strlen(val); 4375 char buf[DISK_NAME_LEN]; 4376 4377 while (len && val[len-1] == '\n') 4378 len--; 4379 if (len >= DISK_NAME_LEN) 4380 return -E2BIG; 4381 strlcpy(buf, val, len+1); 4382 if (strncmp(buf, "md_", 3) != 0) 4383 return -EINVAL; 4384 return md_alloc(0, buf); 4385 } 4386 4387 static void md_safemode_timeout(unsigned long data) 4388 { 4389 mddev_t *mddev = (mddev_t *) data; 4390 4391 if (!atomic_read(&mddev->writes_pending)) { 4392 mddev->safemode = 1; 4393 if (mddev->external) 4394 sysfs_notify_dirent_safe(mddev->sysfs_state); 4395 } 4396 md_wakeup_thread(mddev->thread); 4397 } 4398 4399 static int start_dirty_degraded; 4400 4401 int md_run(mddev_t *mddev) 4402 { 4403 int err; 4404 mdk_rdev_t *rdev; 4405 struct mdk_personality *pers; 4406 4407 if (list_empty(&mddev->disks)) 4408 /* cannot run an array with no devices.. */ 4409 return -EINVAL; 4410 4411 if (mddev->pers) 4412 return -EBUSY; 4413 /* Cannot run until previous stop completes properly */ 4414 if (mddev->sysfs_active) 4415 return -EBUSY; 4416 4417 /* 4418 * Analyze all RAID superblock(s) 4419 */ 4420 if (!mddev->raid_disks) { 4421 if (!mddev->persistent) 4422 return -EINVAL; 4423 analyze_sbs(mddev); 4424 } 4425 4426 if (mddev->level != LEVEL_NONE) 4427 request_module("md-level-%d", mddev->level); 4428 else if (mddev->clevel[0]) 4429 request_module("md-%s", mddev->clevel); 4430 4431 /* 4432 * Drop all container device buffers, from now on 4433 * the only valid external interface is through the md 4434 * device. 4435 */ 4436 list_for_each_entry(rdev, &mddev->disks, same_set) { 4437 if (test_bit(Faulty, &rdev->flags)) 4438 continue; 4439 sync_blockdev(rdev->bdev); 4440 invalidate_bdev(rdev->bdev); 4441 4442 /* perform some consistency tests on the device. 4443 * We don't want the data to overlap the metadata, 4444 * Internal Bitmap issues have been handled elsewhere. 4445 */ 4446 if (rdev->meta_bdev) { 4447 /* Nothing to check */; 4448 } else if (rdev->data_offset < rdev->sb_start) { 4449 if (mddev->dev_sectors && 4450 rdev->data_offset + mddev->dev_sectors 4451 > rdev->sb_start) { 4452 printk("md: %s: data overlaps metadata\n", 4453 mdname(mddev)); 4454 return -EINVAL; 4455 } 4456 } else { 4457 if (rdev->sb_start + rdev->sb_size/512 4458 > rdev->data_offset) { 4459 printk("md: %s: metadata overlaps data\n", 4460 mdname(mddev)); 4461 return -EINVAL; 4462 } 4463 } 4464 sysfs_notify_dirent_safe(rdev->sysfs_state); 4465 } 4466 4467 if (mddev->bio_set == NULL) 4468 mddev->bio_set = bioset_create(BIO_POOL_SIZE, sizeof(mddev)); 4469 4470 spin_lock(&pers_lock); 4471 pers = find_pers(mddev->level, mddev->clevel); 4472 if (!pers || !try_module_get(pers->owner)) { 4473 spin_unlock(&pers_lock); 4474 if (mddev->level != LEVEL_NONE) 4475 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 4476 mddev->level); 4477 else 4478 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 4479 mddev->clevel); 4480 return -EINVAL; 4481 } 4482 mddev->pers = pers; 4483 spin_unlock(&pers_lock); 4484 if (mddev->level != pers->level) { 4485 mddev->level = pers->level; 4486 mddev->new_level = pers->level; 4487 } 4488 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4489 4490 if (mddev->reshape_position != MaxSector && 4491 pers->start_reshape == NULL) { 4492 /* This personality cannot handle reshaping... */ 4493 mddev->pers = NULL; 4494 module_put(pers->owner); 4495 return -EINVAL; 4496 } 4497 4498 if (pers->sync_request) { 4499 /* Warn if this is a potentially silly 4500 * configuration. 4501 */ 4502 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4503 mdk_rdev_t *rdev2; 4504 int warned = 0; 4505 4506 list_for_each_entry(rdev, &mddev->disks, same_set) 4507 list_for_each_entry(rdev2, &mddev->disks, same_set) { 4508 if (rdev < rdev2 && 4509 rdev->bdev->bd_contains == 4510 rdev2->bdev->bd_contains) { 4511 printk(KERN_WARNING 4512 "%s: WARNING: %s appears to be" 4513 " on the same physical disk as" 4514 " %s.\n", 4515 mdname(mddev), 4516 bdevname(rdev->bdev,b), 4517 bdevname(rdev2->bdev,b2)); 4518 warned = 1; 4519 } 4520 } 4521 4522 if (warned) 4523 printk(KERN_WARNING 4524 "True protection against single-disk" 4525 " failure might be compromised.\n"); 4526 } 4527 4528 mddev->recovery = 0; 4529 /* may be over-ridden by personality */ 4530 mddev->resync_max_sectors = mddev->dev_sectors; 4531 4532 mddev->ok_start_degraded = start_dirty_degraded; 4533 4534 if (start_readonly && mddev->ro == 0) 4535 mddev->ro = 2; /* read-only, but switch on first write */ 4536 4537 err = mddev->pers->run(mddev); 4538 if (err) 4539 printk(KERN_ERR "md: pers->run() failed ...\n"); 4540 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 4541 WARN_ONCE(!mddev->external_size, "%s: default size too small," 4542 " but 'external_size' not in effect?\n", __func__); 4543 printk(KERN_ERR 4544 "md: invalid array_size %llu > default size %llu\n", 4545 (unsigned long long)mddev->array_sectors / 2, 4546 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 4547 err = -EINVAL; 4548 mddev->pers->stop(mddev); 4549 } 4550 if (err == 0 && mddev->pers->sync_request) { 4551 err = bitmap_create(mddev); 4552 if (err) { 4553 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 4554 mdname(mddev), err); 4555 mddev->pers->stop(mddev); 4556 } 4557 } 4558 if (err) { 4559 module_put(mddev->pers->owner); 4560 mddev->pers = NULL; 4561 bitmap_destroy(mddev); 4562 return err; 4563 } 4564 if (mddev->pers->sync_request) { 4565 if (mddev->kobj.sd && 4566 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4567 printk(KERN_WARNING 4568 "md: cannot register extra attributes for %s\n", 4569 mdname(mddev)); 4570 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 4571 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 4572 mddev->ro = 0; 4573 4574 atomic_set(&mddev->writes_pending,0); 4575 atomic_set(&mddev->max_corr_read_errors, 4576 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 4577 mddev->safemode = 0; 4578 mddev->safemode_timer.function = md_safemode_timeout; 4579 mddev->safemode_timer.data = (unsigned long) mddev; 4580 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 4581 mddev->in_sync = 1; 4582 smp_wmb(); 4583 mddev->ready = 1; 4584 list_for_each_entry(rdev, &mddev->disks, same_set) 4585 if (rdev->raid_disk >= 0) { 4586 char nm[20]; 4587 sprintf(nm, "rd%d", rdev->raid_disk); 4588 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 4589 /* failure here is OK */; 4590 } 4591 4592 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4593 4594 if (mddev->flags) 4595 md_update_sb(mddev, 0); 4596 4597 md_wakeup_thread(mddev->thread); 4598 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 4599 4600 md_new_event(mddev); 4601 sysfs_notify_dirent_safe(mddev->sysfs_state); 4602 sysfs_notify_dirent_safe(mddev->sysfs_action); 4603 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4604 return 0; 4605 } 4606 EXPORT_SYMBOL_GPL(md_run); 4607 4608 static int do_md_run(mddev_t *mddev) 4609 { 4610 int err; 4611 4612 err = md_run(mddev); 4613 if (err) 4614 goto out; 4615 err = bitmap_load(mddev); 4616 if (err) { 4617 bitmap_destroy(mddev); 4618 goto out; 4619 } 4620 set_capacity(mddev->gendisk, mddev->array_sectors); 4621 revalidate_disk(mddev->gendisk); 4622 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4623 out: 4624 return err; 4625 } 4626 4627 static int restart_array(mddev_t *mddev) 4628 { 4629 struct gendisk *disk = mddev->gendisk; 4630 4631 /* Complain if it has no devices */ 4632 if (list_empty(&mddev->disks)) 4633 return -ENXIO; 4634 if (!mddev->pers) 4635 return -EINVAL; 4636 if (!mddev->ro) 4637 return -EBUSY; 4638 mddev->safemode = 0; 4639 mddev->ro = 0; 4640 set_disk_ro(disk, 0); 4641 printk(KERN_INFO "md: %s switched to read-write mode.\n", 4642 mdname(mddev)); 4643 /* Kick recovery or resync if necessary */ 4644 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4645 md_wakeup_thread(mddev->thread); 4646 md_wakeup_thread(mddev->sync_thread); 4647 sysfs_notify_dirent_safe(mddev->sysfs_state); 4648 return 0; 4649 } 4650 4651 /* similar to deny_write_access, but accounts for our holding a reference 4652 * to the file ourselves */ 4653 static int deny_bitmap_write_access(struct file * file) 4654 { 4655 struct inode *inode = file->f_mapping->host; 4656 4657 spin_lock(&inode->i_lock); 4658 if (atomic_read(&inode->i_writecount) > 1) { 4659 spin_unlock(&inode->i_lock); 4660 return -ETXTBSY; 4661 } 4662 atomic_set(&inode->i_writecount, -1); 4663 spin_unlock(&inode->i_lock); 4664 4665 return 0; 4666 } 4667 4668 void restore_bitmap_write_access(struct file *file) 4669 { 4670 struct inode *inode = file->f_mapping->host; 4671 4672 spin_lock(&inode->i_lock); 4673 atomic_set(&inode->i_writecount, 1); 4674 spin_unlock(&inode->i_lock); 4675 } 4676 4677 static void md_clean(mddev_t *mddev) 4678 { 4679 mddev->array_sectors = 0; 4680 mddev->external_size = 0; 4681 mddev->dev_sectors = 0; 4682 mddev->raid_disks = 0; 4683 mddev->recovery_cp = 0; 4684 mddev->resync_min = 0; 4685 mddev->resync_max = MaxSector; 4686 mddev->reshape_position = MaxSector; 4687 mddev->external = 0; 4688 mddev->persistent = 0; 4689 mddev->level = LEVEL_NONE; 4690 mddev->clevel[0] = 0; 4691 mddev->flags = 0; 4692 mddev->ro = 0; 4693 mddev->metadata_type[0] = 0; 4694 mddev->chunk_sectors = 0; 4695 mddev->ctime = mddev->utime = 0; 4696 mddev->layout = 0; 4697 mddev->max_disks = 0; 4698 mddev->events = 0; 4699 mddev->can_decrease_events = 0; 4700 mddev->delta_disks = 0; 4701 mddev->new_level = LEVEL_NONE; 4702 mddev->new_layout = 0; 4703 mddev->new_chunk_sectors = 0; 4704 mddev->curr_resync = 0; 4705 mddev->resync_mismatches = 0; 4706 mddev->suspend_lo = mddev->suspend_hi = 0; 4707 mddev->sync_speed_min = mddev->sync_speed_max = 0; 4708 mddev->recovery = 0; 4709 mddev->in_sync = 0; 4710 mddev->degraded = 0; 4711 mddev->safemode = 0; 4712 mddev->bitmap_info.offset = 0; 4713 mddev->bitmap_info.default_offset = 0; 4714 mddev->bitmap_info.chunksize = 0; 4715 mddev->bitmap_info.daemon_sleep = 0; 4716 mddev->bitmap_info.max_write_behind = 0; 4717 mddev->plug = NULL; 4718 } 4719 4720 static void __md_stop_writes(mddev_t *mddev) 4721 { 4722 if (mddev->sync_thread) { 4723 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4724 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4725 reap_sync_thread(mddev); 4726 } 4727 4728 del_timer_sync(&mddev->safemode_timer); 4729 4730 bitmap_flush(mddev); 4731 md_super_wait(mddev); 4732 4733 if (!mddev->in_sync || mddev->flags) { 4734 /* mark array as shutdown cleanly */ 4735 mddev->in_sync = 1; 4736 md_update_sb(mddev, 1); 4737 } 4738 } 4739 4740 void md_stop_writes(mddev_t *mddev) 4741 { 4742 mddev_lock(mddev); 4743 __md_stop_writes(mddev); 4744 mddev_unlock(mddev); 4745 } 4746 EXPORT_SYMBOL_GPL(md_stop_writes); 4747 4748 void md_stop(mddev_t *mddev) 4749 { 4750 mddev->ready = 0; 4751 mddev->pers->stop(mddev); 4752 if (mddev->pers->sync_request && mddev->to_remove == NULL) 4753 mddev->to_remove = &md_redundancy_group; 4754 module_put(mddev->pers->owner); 4755 mddev->pers = NULL; 4756 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4757 } 4758 EXPORT_SYMBOL_GPL(md_stop); 4759 4760 static int md_set_readonly(mddev_t *mddev, int is_open) 4761 { 4762 int err = 0; 4763 mutex_lock(&mddev->open_mutex); 4764 if (atomic_read(&mddev->openers) > is_open) { 4765 printk("md: %s still in use.\n",mdname(mddev)); 4766 err = -EBUSY; 4767 goto out; 4768 } 4769 if (mddev->pers) { 4770 __md_stop_writes(mddev); 4771 4772 err = -ENXIO; 4773 if (mddev->ro==1) 4774 goto out; 4775 mddev->ro = 1; 4776 set_disk_ro(mddev->gendisk, 1); 4777 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4778 sysfs_notify_dirent_safe(mddev->sysfs_state); 4779 err = 0; 4780 } 4781 out: 4782 mutex_unlock(&mddev->open_mutex); 4783 return err; 4784 } 4785 4786 /* mode: 4787 * 0 - completely stop and dis-assemble array 4788 * 2 - stop but do not disassemble array 4789 */ 4790 static int do_md_stop(mddev_t * mddev, int mode, int is_open) 4791 { 4792 struct gendisk *disk = mddev->gendisk; 4793 mdk_rdev_t *rdev; 4794 4795 mutex_lock(&mddev->open_mutex); 4796 if (atomic_read(&mddev->openers) > is_open || 4797 mddev->sysfs_active) { 4798 printk("md: %s still in use.\n",mdname(mddev)); 4799 mutex_unlock(&mddev->open_mutex); 4800 return -EBUSY; 4801 } 4802 4803 if (mddev->pers) { 4804 if (mddev->ro) 4805 set_disk_ro(disk, 0); 4806 4807 __md_stop_writes(mddev); 4808 md_stop(mddev); 4809 mddev->queue->merge_bvec_fn = NULL; 4810 mddev->queue->unplug_fn = NULL; 4811 mddev->queue->backing_dev_info.congested_fn = NULL; 4812 4813 /* tell userspace to handle 'inactive' */ 4814 sysfs_notify_dirent_safe(mddev->sysfs_state); 4815 4816 list_for_each_entry(rdev, &mddev->disks, same_set) 4817 if (rdev->raid_disk >= 0) { 4818 char nm[20]; 4819 sprintf(nm, "rd%d", rdev->raid_disk); 4820 sysfs_remove_link(&mddev->kobj, nm); 4821 } 4822 4823 set_capacity(disk, 0); 4824 mutex_unlock(&mddev->open_mutex); 4825 revalidate_disk(disk); 4826 4827 if (mddev->ro) 4828 mddev->ro = 0; 4829 } else 4830 mutex_unlock(&mddev->open_mutex); 4831 /* 4832 * Free resources if final stop 4833 */ 4834 if (mode == 0) { 4835 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 4836 4837 bitmap_destroy(mddev); 4838 if (mddev->bitmap_info.file) { 4839 restore_bitmap_write_access(mddev->bitmap_info.file); 4840 fput(mddev->bitmap_info.file); 4841 mddev->bitmap_info.file = NULL; 4842 } 4843 mddev->bitmap_info.offset = 0; 4844 4845 export_array(mddev); 4846 4847 md_clean(mddev); 4848 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 4849 if (mddev->hold_active == UNTIL_STOP) 4850 mddev->hold_active = 0; 4851 } 4852 blk_integrity_unregister(disk); 4853 md_new_event(mddev); 4854 sysfs_notify_dirent_safe(mddev->sysfs_state); 4855 return 0; 4856 } 4857 4858 #ifndef MODULE 4859 static void autorun_array(mddev_t *mddev) 4860 { 4861 mdk_rdev_t *rdev; 4862 int err; 4863 4864 if (list_empty(&mddev->disks)) 4865 return; 4866 4867 printk(KERN_INFO "md: running: "); 4868 4869 list_for_each_entry(rdev, &mddev->disks, same_set) { 4870 char b[BDEVNAME_SIZE]; 4871 printk("<%s>", bdevname(rdev->bdev,b)); 4872 } 4873 printk("\n"); 4874 4875 err = do_md_run(mddev); 4876 if (err) { 4877 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 4878 do_md_stop(mddev, 0, 0); 4879 } 4880 } 4881 4882 /* 4883 * lets try to run arrays based on all disks that have arrived 4884 * until now. (those are in pending_raid_disks) 4885 * 4886 * the method: pick the first pending disk, collect all disks with 4887 * the same UUID, remove all from the pending list and put them into 4888 * the 'same_array' list. Then order this list based on superblock 4889 * update time (freshest comes first), kick out 'old' disks and 4890 * compare superblocks. If everything's fine then run it. 4891 * 4892 * If "unit" is allocated, then bump its reference count 4893 */ 4894 static void autorun_devices(int part) 4895 { 4896 mdk_rdev_t *rdev0, *rdev, *tmp; 4897 mddev_t *mddev; 4898 char b[BDEVNAME_SIZE]; 4899 4900 printk(KERN_INFO "md: autorun ...\n"); 4901 while (!list_empty(&pending_raid_disks)) { 4902 int unit; 4903 dev_t dev; 4904 LIST_HEAD(candidates); 4905 rdev0 = list_entry(pending_raid_disks.next, 4906 mdk_rdev_t, same_set); 4907 4908 printk(KERN_INFO "md: considering %s ...\n", 4909 bdevname(rdev0->bdev,b)); 4910 INIT_LIST_HEAD(&candidates); 4911 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 4912 if (super_90_load(rdev, rdev0, 0) >= 0) { 4913 printk(KERN_INFO "md: adding %s ...\n", 4914 bdevname(rdev->bdev,b)); 4915 list_move(&rdev->same_set, &candidates); 4916 } 4917 /* 4918 * now we have a set of devices, with all of them having 4919 * mostly sane superblocks. It's time to allocate the 4920 * mddev. 4921 */ 4922 if (part) { 4923 dev = MKDEV(mdp_major, 4924 rdev0->preferred_minor << MdpMinorShift); 4925 unit = MINOR(dev) >> MdpMinorShift; 4926 } else { 4927 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 4928 unit = MINOR(dev); 4929 } 4930 if (rdev0->preferred_minor != unit) { 4931 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 4932 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 4933 break; 4934 } 4935 4936 md_probe(dev, NULL, NULL); 4937 mddev = mddev_find(dev); 4938 if (!mddev || !mddev->gendisk) { 4939 if (mddev) 4940 mddev_put(mddev); 4941 printk(KERN_ERR 4942 "md: cannot allocate memory for md drive.\n"); 4943 break; 4944 } 4945 if (mddev_lock(mddev)) 4946 printk(KERN_WARNING "md: %s locked, cannot run\n", 4947 mdname(mddev)); 4948 else if (mddev->raid_disks || mddev->major_version 4949 || !list_empty(&mddev->disks)) { 4950 printk(KERN_WARNING 4951 "md: %s already running, cannot run %s\n", 4952 mdname(mddev), bdevname(rdev0->bdev,b)); 4953 mddev_unlock(mddev); 4954 } else { 4955 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 4956 mddev->persistent = 1; 4957 rdev_for_each_list(rdev, tmp, &candidates) { 4958 list_del_init(&rdev->same_set); 4959 if (bind_rdev_to_array(rdev, mddev)) 4960 export_rdev(rdev); 4961 } 4962 autorun_array(mddev); 4963 mddev_unlock(mddev); 4964 } 4965 /* on success, candidates will be empty, on error 4966 * it won't... 4967 */ 4968 rdev_for_each_list(rdev, tmp, &candidates) { 4969 list_del_init(&rdev->same_set); 4970 export_rdev(rdev); 4971 } 4972 mddev_put(mddev); 4973 } 4974 printk(KERN_INFO "md: ... autorun DONE.\n"); 4975 } 4976 #endif /* !MODULE */ 4977 4978 static int get_version(void __user * arg) 4979 { 4980 mdu_version_t ver; 4981 4982 ver.major = MD_MAJOR_VERSION; 4983 ver.minor = MD_MINOR_VERSION; 4984 ver.patchlevel = MD_PATCHLEVEL_VERSION; 4985 4986 if (copy_to_user(arg, &ver, sizeof(ver))) 4987 return -EFAULT; 4988 4989 return 0; 4990 } 4991 4992 static int get_array_info(mddev_t * mddev, void __user * arg) 4993 { 4994 mdu_array_info_t info; 4995 int nr,working,insync,failed,spare; 4996 mdk_rdev_t *rdev; 4997 4998 nr=working=insync=failed=spare=0; 4999 list_for_each_entry(rdev, &mddev->disks, same_set) { 5000 nr++; 5001 if (test_bit(Faulty, &rdev->flags)) 5002 failed++; 5003 else { 5004 working++; 5005 if (test_bit(In_sync, &rdev->flags)) 5006 insync++; 5007 else 5008 spare++; 5009 } 5010 } 5011 5012 info.major_version = mddev->major_version; 5013 info.minor_version = mddev->minor_version; 5014 info.patch_version = MD_PATCHLEVEL_VERSION; 5015 info.ctime = mddev->ctime; 5016 info.level = mddev->level; 5017 info.size = mddev->dev_sectors / 2; 5018 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5019 info.size = -1; 5020 info.nr_disks = nr; 5021 info.raid_disks = mddev->raid_disks; 5022 info.md_minor = mddev->md_minor; 5023 info.not_persistent= !mddev->persistent; 5024 5025 info.utime = mddev->utime; 5026 info.state = 0; 5027 if (mddev->in_sync) 5028 info.state = (1<<MD_SB_CLEAN); 5029 if (mddev->bitmap && mddev->bitmap_info.offset) 5030 info.state = (1<<MD_SB_BITMAP_PRESENT); 5031 info.active_disks = insync; 5032 info.working_disks = working; 5033 info.failed_disks = failed; 5034 info.spare_disks = spare; 5035 5036 info.layout = mddev->layout; 5037 info.chunk_size = mddev->chunk_sectors << 9; 5038 5039 if (copy_to_user(arg, &info, sizeof(info))) 5040 return -EFAULT; 5041 5042 return 0; 5043 } 5044 5045 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 5046 { 5047 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5048 char *ptr, *buf = NULL; 5049 int err = -ENOMEM; 5050 5051 if (md_allow_write(mddev)) 5052 file = kmalloc(sizeof(*file), GFP_NOIO); 5053 else 5054 file = kmalloc(sizeof(*file), GFP_KERNEL); 5055 5056 if (!file) 5057 goto out; 5058 5059 /* bitmap disabled, zero the first byte and copy out */ 5060 if (!mddev->bitmap || !mddev->bitmap->file) { 5061 file->pathname[0] = '\0'; 5062 goto copy_out; 5063 } 5064 5065 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5066 if (!buf) 5067 goto out; 5068 5069 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); 5070 if (IS_ERR(ptr)) 5071 goto out; 5072 5073 strcpy(file->pathname, ptr); 5074 5075 copy_out: 5076 err = 0; 5077 if (copy_to_user(arg, file, sizeof(*file))) 5078 err = -EFAULT; 5079 out: 5080 kfree(buf); 5081 kfree(file); 5082 return err; 5083 } 5084 5085 static int get_disk_info(mddev_t * mddev, void __user * arg) 5086 { 5087 mdu_disk_info_t info; 5088 mdk_rdev_t *rdev; 5089 5090 if (copy_from_user(&info, arg, sizeof(info))) 5091 return -EFAULT; 5092 5093 rdev = find_rdev_nr(mddev, info.number); 5094 if (rdev) { 5095 info.major = MAJOR(rdev->bdev->bd_dev); 5096 info.minor = MINOR(rdev->bdev->bd_dev); 5097 info.raid_disk = rdev->raid_disk; 5098 info.state = 0; 5099 if (test_bit(Faulty, &rdev->flags)) 5100 info.state |= (1<<MD_DISK_FAULTY); 5101 else if (test_bit(In_sync, &rdev->flags)) { 5102 info.state |= (1<<MD_DISK_ACTIVE); 5103 info.state |= (1<<MD_DISK_SYNC); 5104 } 5105 if (test_bit(WriteMostly, &rdev->flags)) 5106 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5107 } else { 5108 info.major = info.minor = 0; 5109 info.raid_disk = -1; 5110 info.state = (1<<MD_DISK_REMOVED); 5111 } 5112 5113 if (copy_to_user(arg, &info, sizeof(info))) 5114 return -EFAULT; 5115 5116 return 0; 5117 } 5118 5119 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 5120 { 5121 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5122 mdk_rdev_t *rdev; 5123 dev_t dev = MKDEV(info->major,info->minor); 5124 5125 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5126 return -EOVERFLOW; 5127 5128 if (!mddev->raid_disks) { 5129 int err; 5130 /* expecting a device which has a superblock */ 5131 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5132 if (IS_ERR(rdev)) { 5133 printk(KERN_WARNING 5134 "md: md_import_device returned %ld\n", 5135 PTR_ERR(rdev)); 5136 return PTR_ERR(rdev); 5137 } 5138 if (!list_empty(&mddev->disks)) { 5139 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 5140 mdk_rdev_t, same_set); 5141 err = super_types[mddev->major_version] 5142 .load_super(rdev, rdev0, mddev->minor_version); 5143 if (err < 0) { 5144 printk(KERN_WARNING 5145 "md: %s has different UUID to %s\n", 5146 bdevname(rdev->bdev,b), 5147 bdevname(rdev0->bdev,b2)); 5148 export_rdev(rdev); 5149 return -EINVAL; 5150 } 5151 } 5152 err = bind_rdev_to_array(rdev, mddev); 5153 if (err) 5154 export_rdev(rdev); 5155 return err; 5156 } 5157 5158 /* 5159 * add_new_disk can be used once the array is assembled 5160 * to add "hot spares". They must already have a superblock 5161 * written 5162 */ 5163 if (mddev->pers) { 5164 int err; 5165 if (!mddev->pers->hot_add_disk) { 5166 printk(KERN_WARNING 5167 "%s: personality does not support diskops!\n", 5168 mdname(mddev)); 5169 return -EINVAL; 5170 } 5171 if (mddev->persistent) 5172 rdev = md_import_device(dev, mddev->major_version, 5173 mddev->minor_version); 5174 else 5175 rdev = md_import_device(dev, -1, -1); 5176 if (IS_ERR(rdev)) { 5177 printk(KERN_WARNING 5178 "md: md_import_device returned %ld\n", 5179 PTR_ERR(rdev)); 5180 return PTR_ERR(rdev); 5181 } 5182 /* set saved_raid_disk if appropriate */ 5183 if (!mddev->persistent) { 5184 if (info->state & (1<<MD_DISK_SYNC) && 5185 info->raid_disk < mddev->raid_disks) { 5186 rdev->raid_disk = info->raid_disk; 5187 set_bit(In_sync, &rdev->flags); 5188 } else 5189 rdev->raid_disk = -1; 5190 } else 5191 super_types[mddev->major_version]. 5192 validate_super(mddev, rdev); 5193 if (test_bit(In_sync, &rdev->flags)) 5194 rdev->saved_raid_disk = rdev->raid_disk; 5195 else 5196 rdev->saved_raid_disk = -1; 5197 5198 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5199 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5200 set_bit(WriteMostly, &rdev->flags); 5201 else 5202 clear_bit(WriteMostly, &rdev->flags); 5203 5204 rdev->raid_disk = -1; 5205 err = bind_rdev_to_array(rdev, mddev); 5206 if (!err && !mddev->pers->hot_remove_disk) { 5207 /* If there is hot_add_disk but no hot_remove_disk 5208 * then added disks for geometry changes, 5209 * and should be added immediately. 5210 */ 5211 super_types[mddev->major_version]. 5212 validate_super(mddev, rdev); 5213 err = mddev->pers->hot_add_disk(mddev, rdev); 5214 if (err) 5215 unbind_rdev_from_array(rdev); 5216 } 5217 if (err) 5218 export_rdev(rdev); 5219 else 5220 sysfs_notify_dirent_safe(rdev->sysfs_state); 5221 5222 md_update_sb(mddev, 1); 5223 if (mddev->degraded) 5224 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5225 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5226 md_wakeup_thread(mddev->thread); 5227 return err; 5228 } 5229 5230 /* otherwise, add_new_disk is only allowed 5231 * for major_version==0 superblocks 5232 */ 5233 if (mddev->major_version != 0) { 5234 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5235 mdname(mddev)); 5236 return -EINVAL; 5237 } 5238 5239 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5240 int err; 5241 rdev = md_import_device(dev, -1, 0); 5242 if (IS_ERR(rdev)) { 5243 printk(KERN_WARNING 5244 "md: error, md_import_device() returned %ld\n", 5245 PTR_ERR(rdev)); 5246 return PTR_ERR(rdev); 5247 } 5248 rdev->desc_nr = info->number; 5249 if (info->raid_disk < mddev->raid_disks) 5250 rdev->raid_disk = info->raid_disk; 5251 else 5252 rdev->raid_disk = -1; 5253 5254 if (rdev->raid_disk < mddev->raid_disks) 5255 if (info->state & (1<<MD_DISK_SYNC)) 5256 set_bit(In_sync, &rdev->flags); 5257 5258 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5259 set_bit(WriteMostly, &rdev->flags); 5260 5261 if (!mddev->persistent) { 5262 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5263 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5264 } else 5265 rdev->sb_start = calc_dev_sboffset(rdev); 5266 rdev->sectors = rdev->sb_start; 5267 5268 err = bind_rdev_to_array(rdev, mddev); 5269 if (err) { 5270 export_rdev(rdev); 5271 return err; 5272 } 5273 } 5274 5275 return 0; 5276 } 5277 5278 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 5279 { 5280 char b[BDEVNAME_SIZE]; 5281 mdk_rdev_t *rdev; 5282 5283 rdev = find_rdev(mddev, dev); 5284 if (!rdev) 5285 return -ENXIO; 5286 5287 if (rdev->raid_disk >= 0) 5288 goto busy; 5289 5290 kick_rdev_from_array(rdev); 5291 md_update_sb(mddev, 1); 5292 md_new_event(mddev); 5293 5294 return 0; 5295 busy: 5296 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5297 bdevname(rdev->bdev,b), mdname(mddev)); 5298 return -EBUSY; 5299 } 5300 5301 static int hot_add_disk(mddev_t * mddev, dev_t dev) 5302 { 5303 char b[BDEVNAME_SIZE]; 5304 int err; 5305 mdk_rdev_t *rdev; 5306 5307 if (!mddev->pers) 5308 return -ENODEV; 5309 5310 if (mddev->major_version != 0) { 5311 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5312 " version-0 superblocks.\n", 5313 mdname(mddev)); 5314 return -EINVAL; 5315 } 5316 if (!mddev->pers->hot_add_disk) { 5317 printk(KERN_WARNING 5318 "%s: personality does not support diskops!\n", 5319 mdname(mddev)); 5320 return -EINVAL; 5321 } 5322 5323 rdev = md_import_device(dev, -1, 0); 5324 if (IS_ERR(rdev)) { 5325 printk(KERN_WARNING 5326 "md: error, md_import_device() returned %ld\n", 5327 PTR_ERR(rdev)); 5328 return -EINVAL; 5329 } 5330 5331 if (mddev->persistent) 5332 rdev->sb_start = calc_dev_sboffset(rdev); 5333 else 5334 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5335 5336 rdev->sectors = rdev->sb_start; 5337 5338 if (test_bit(Faulty, &rdev->flags)) { 5339 printk(KERN_WARNING 5340 "md: can not hot-add faulty %s disk to %s!\n", 5341 bdevname(rdev->bdev,b), mdname(mddev)); 5342 err = -EINVAL; 5343 goto abort_export; 5344 } 5345 clear_bit(In_sync, &rdev->flags); 5346 rdev->desc_nr = -1; 5347 rdev->saved_raid_disk = -1; 5348 err = bind_rdev_to_array(rdev, mddev); 5349 if (err) 5350 goto abort_export; 5351 5352 /* 5353 * The rest should better be atomic, we can have disk failures 5354 * noticed in interrupt contexts ... 5355 */ 5356 5357 rdev->raid_disk = -1; 5358 5359 md_update_sb(mddev, 1); 5360 5361 /* 5362 * Kick recovery, maybe this spare has to be added to the 5363 * array immediately. 5364 */ 5365 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5366 md_wakeup_thread(mddev->thread); 5367 md_new_event(mddev); 5368 return 0; 5369 5370 abort_export: 5371 export_rdev(rdev); 5372 return err; 5373 } 5374 5375 static int set_bitmap_file(mddev_t *mddev, int fd) 5376 { 5377 int err; 5378 5379 if (mddev->pers) { 5380 if (!mddev->pers->quiesce) 5381 return -EBUSY; 5382 if (mddev->recovery || mddev->sync_thread) 5383 return -EBUSY; 5384 /* we should be able to change the bitmap.. */ 5385 } 5386 5387 5388 if (fd >= 0) { 5389 if (mddev->bitmap) 5390 return -EEXIST; /* cannot add when bitmap is present */ 5391 mddev->bitmap_info.file = fget(fd); 5392 5393 if (mddev->bitmap_info.file == NULL) { 5394 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5395 mdname(mddev)); 5396 return -EBADF; 5397 } 5398 5399 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5400 if (err) { 5401 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5402 mdname(mddev)); 5403 fput(mddev->bitmap_info.file); 5404 mddev->bitmap_info.file = NULL; 5405 return err; 5406 } 5407 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5408 } else if (mddev->bitmap == NULL) 5409 return -ENOENT; /* cannot remove what isn't there */ 5410 err = 0; 5411 if (mddev->pers) { 5412 mddev->pers->quiesce(mddev, 1); 5413 if (fd >= 0) { 5414 err = bitmap_create(mddev); 5415 if (!err) 5416 err = bitmap_load(mddev); 5417 } 5418 if (fd < 0 || err) { 5419 bitmap_destroy(mddev); 5420 fd = -1; /* make sure to put the file */ 5421 } 5422 mddev->pers->quiesce(mddev, 0); 5423 } 5424 if (fd < 0) { 5425 if (mddev->bitmap_info.file) { 5426 restore_bitmap_write_access(mddev->bitmap_info.file); 5427 fput(mddev->bitmap_info.file); 5428 } 5429 mddev->bitmap_info.file = NULL; 5430 } 5431 5432 return err; 5433 } 5434 5435 /* 5436 * set_array_info is used two different ways 5437 * The original usage is when creating a new array. 5438 * In this usage, raid_disks is > 0 and it together with 5439 * level, size, not_persistent,layout,chunksize determine the 5440 * shape of the array. 5441 * This will always create an array with a type-0.90.0 superblock. 5442 * The newer usage is when assembling an array. 5443 * In this case raid_disks will be 0, and the major_version field is 5444 * use to determine which style super-blocks are to be found on the devices. 5445 * The minor and patch _version numbers are also kept incase the 5446 * super_block handler wishes to interpret them. 5447 */ 5448 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 5449 { 5450 5451 if (info->raid_disks == 0) { 5452 /* just setting version number for superblock loading */ 5453 if (info->major_version < 0 || 5454 info->major_version >= ARRAY_SIZE(super_types) || 5455 super_types[info->major_version].name == NULL) { 5456 /* maybe try to auto-load a module? */ 5457 printk(KERN_INFO 5458 "md: superblock version %d not known\n", 5459 info->major_version); 5460 return -EINVAL; 5461 } 5462 mddev->major_version = info->major_version; 5463 mddev->minor_version = info->minor_version; 5464 mddev->patch_version = info->patch_version; 5465 mddev->persistent = !info->not_persistent; 5466 /* ensure mddev_put doesn't delete this now that there 5467 * is some minimal configuration. 5468 */ 5469 mddev->ctime = get_seconds(); 5470 return 0; 5471 } 5472 mddev->major_version = MD_MAJOR_VERSION; 5473 mddev->minor_version = MD_MINOR_VERSION; 5474 mddev->patch_version = MD_PATCHLEVEL_VERSION; 5475 mddev->ctime = get_seconds(); 5476 5477 mddev->level = info->level; 5478 mddev->clevel[0] = 0; 5479 mddev->dev_sectors = 2 * (sector_t)info->size; 5480 mddev->raid_disks = info->raid_disks; 5481 /* don't set md_minor, it is determined by which /dev/md* was 5482 * openned 5483 */ 5484 if (info->state & (1<<MD_SB_CLEAN)) 5485 mddev->recovery_cp = MaxSector; 5486 else 5487 mddev->recovery_cp = 0; 5488 mddev->persistent = ! info->not_persistent; 5489 mddev->external = 0; 5490 5491 mddev->layout = info->layout; 5492 mddev->chunk_sectors = info->chunk_size >> 9; 5493 5494 mddev->max_disks = MD_SB_DISKS; 5495 5496 if (mddev->persistent) 5497 mddev->flags = 0; 5498 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5499 5500 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 5501 mddev->bitmap_info.offset = 0; 5502 5503 mddev->reshape_position = MaxSector; 5504 5505 /* 5506 * Generate a 128 bit UUID 5507 */ 5508 get_random_bytes(mddev->uuid, 16); 5509 5510 mddev->new_level = mddev->level; 5511 mddev->new_chunk_sectors = mddev->chunk_sectors; 5512 mddev->new_layout = mddev->layout; 5513 mddev->delta_disks = 0; 5514 5515 return 0; 5516 } 5517 5518 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors) 5519 { 5520 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 5521 5522 if (mddev->external_size) 5523 return; 5524 5525 mddev->array_sectors = array_sectors; 5526 } 5527 EXPORT_SYMBOL(md_set_array_sectors); 5528 5529 static int update_size(mddev_t *mddev, sector_t num_sectors) 5530 { 5531 mdk_rdev_t *rdev; 5532 int rv; 5533 int fit = (num_sectors == 0); 5534 5535 if (mddev->pers->resize == NULL) 5536 return -EINVAL; 5537 /* The "num_sectors" is the number of sectors of each device that 5538 * is used. This can only make sense for arrays with redundancy. 5539 * linear and raid0 always use whatever space is available. We can only 5540 * consider changing this number if no resync or reconstruction is 5541 * happening, and if the new size is acceptable. It must fit before the 5542 * sb_start or, if that is <data_offset, it must fit before the size 5543 * of each device. If num_sectors is zero, we find the largest size 5544 * that fits. 5545 */ 5546 if (mddev->sync_thread) 5547 return -EBUSY; 5548 if (mddev->bitmap) 5549 /* Sorry, cannot grow a bitmap yet, just remove it, 5550 * grow, and re-add. 5551 */ 5552 return -EBUSY; 5553 list_for_each_entry(rdev, &mddev->disks, same_set) { 5554 sector_t avail = rdev->sectors; 5555 5556 if (fit && (num_sectors == 0 || num_sectors > avail)) 5557 num_sectors = avail; 5558 if (avail < num_sectors) 5559 return -ENOSPC; 5560 } 5561 rv = mddev->pers->resize(mddev, num_sectors); 5562 if (!rv) 5563 revalidate_disk(mddev->gendisk); 5564 return rv; 5565 } 5566 5567 static int update_raid_disks(mddev_t *mddev, int raid_disks) 5568 { 5569 int rv; 5570 /* change the number of raid disks */ 5571 if (mddev->pers->check_reshape == NULL) 5572 return -EINVAL; 5573 if (raid_disks <= 0 || 5574 (mddev->max_disks && raid_disks >= mddev->max_disks)) 5575 return -EINVAL; 5576 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 5577 return -EBUSY; 5578 mddev->delta_disks = raid_disks - mddev->raid_disks; 5579 5580 rv = mddev->pers->check_reshape(mddev); 5581 return rv; 5582 } 5583 5584 5585 /* 5586 * update_array_info is used to change the configuration of an 5587 * on-line array. 5588 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 5589 * fields in the info are checked against the array. 5590 * Any differences that cannot be handled will cause an error. 5591 * Normally, only one change can be managed at a time. 5592 */ 5593 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 5594 { 5595 int rv = 0; 5596 int cnt = 0; 5597 int state = 0; 5598 5599 /* calculate expected state,ignoring low bits */ 5600 if (mddev->bitmap && mddev->bitmap_info.offset) 5601 state |= (1 << MD_SB_BITMAP_PRESENT); 5602 5603 if (mddev->major_version != info->major_version || 5604 mddev->minor_version != info->minor_version || 5605 /* mddev->patch_version != info->patch_version || */ 5606 mddev->ctime != info->ctime || 5607 mddev->level != info->level || 5608 /* mddev->layout != info->layout || */ 5609 !mddev->persistent != info->not_persistent|| 5610 mddev->chunk_sectors != info->chunk_size >> 9 || 5611 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 5612 ((state^info->state) & 0xfffffe00) 5613 ) 5614 return -EINVAL; 5615 /* Check there is only one change */ 5616 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5617 cnt++; 5618 if (mddev->raid_disks != info->raid_disks) 5619 cnt++; 5620 if (mddev->layout != info->layout) 5621 cnt++; 5622 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 5623 cnt++; 5624 if (cnt == 0) 5625 return 0; 5626 if (cnt > 1) 5627 return -EINVAL; 5628 5629 if (mddev->layout != info->layout) { 5630 /* Change layout 5631 * we don't need to do anything at the md level, the 5632 * personality will take care of it all. 5633 */ 5634 if (mddev->pers->check_reshape == NULL) 5635 return -EINVAL; 5636 else { 5637 mddev->new_layout = info->layout; 5638 rv = mddev->pers->check_reshape(mddev); 5639 if (rv) 5640 mddev->new_layout = mddev->layout; 5641 return rv; 5642 } 5643 } 5644 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 5645 rv = update_size(mddev, (sector_t)info->size * 2); 5646 5647 if (mddev->raid_disks != info->raid_disks) 5648 rv = update_raid_disks(mddev, info->raid_disks); 5649 5650 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 5651 if (mddev->pers->quiesce == NULL) 5652 return -EINVAL; 5653 if (mddev->recovery || mddev->sync_thread) 5654 return -EBUSY; 5655 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 5656 /* add the bitmap */ 5657 if (mddev->bitmap) 5658 return -EEXIST; 5659 if (mddev->bitmap_info.default_offset == 0) 5660 return -EINVAL; 5661 mddev->bitmap_info.offset = 5662 mddev->bitmap_info.default_offset; 5663 mddev->pers->quiesce(mddev, 1); 5664 rv = bitmap_create(mddev); 5665 if (!rv) 5666 rv = bitmap_load(mddev); 5667 if (rv) 5668 bitmap_destroy(mddev); 5669 mddev->pers->quiesce(mddev, 0); 5670 } else { 5671 /* remove the bitmap */ 5672 if (!mddev->bitmap) 5673 return -ENOENT; 5674 if (mddev->bitmap->file) 5675 return -EINVAL; 5676 mddev->pers->quiesce(mddev, 1); 5677 bitmap_destroy(mddev); 5678 mddev->pers->quiesce(mddev, 0); 5679 mddev->bitmap_info.offset = 0; 5680 } 5681 } 5682 md_update_sb(mddev, 1); 5683 return rv; 5684 } 5685 5686 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 5687 { 5688 mdk_rdev_t *rdev; 5689 5690 if (mddev->pers == NULL) 5691 return -ENODEV; 5692 5693 rdev = find_rdev(mddev, dev); 5694 if (!rdev) 5695 return -ENODEV; 5696 5697 md_error(mddev, rdev); 5698 return 0; 5699 } 5700 5701 /* 5702 * We have a problem here : there is no easy way to give a CHS 5703 * virtual geometry. We currently pretend that we have a 2 heads 5704 * 4 sectors (with a BIG number of cylinders...). This drives 5705 * dosfs just mad... ;-) 5706 */ 5707 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 5708 { 5709 mddev_t *mddev = bdev->bd_disk->private_data; 5710 5711 geo->heads = 2; 5712 geo->sectors = 4; 5713 geo->cylinders = mddev->array_sectors / 8; 5714 return 0; 5715 } 5716 5717 static int md_ioctl(struct block_device *bdev, fmode_t mode, 5718 unsigned int cmd, unsigned long arg) 5719 { 5720 int err = 0; 5721 void __user *argp = (void __user *)arg; 5722 mddev_t *mddev = NULL; 5723 int ro; 5724 5725 if (!capable(CAP_SYS_ADMIN)) 5726 return -EACCES; 5727 5728 /* 5729 * Commands dealing with the RAID driver but not any 5730 * particular array: 5731 */ 5732 switch (cmd) 5733 { 5734 case RAID_VERSION: 5735 err = get_version(argp); 5736 goto done; 5737 5738 case PRINT_RAID_DEBUG: 5739 err = 0; 5740 md_print_devices(); 5741 goto done; 5742 5743 #ifndef MODULE 5744 case RAID_AUTORUN: 5745 err = 0; 5746 autostart_arrays(arg); 5747 goto done; 5748 #endif 5749 default:; 5750 } 5751 5752 /* 5753 * Commands creating/starting a new array: 5754 */ 5755 5756 mddev = bdev->bd_disk->private_data; 5757 5758 if (!mddev) { 5759 BUG(); 5760 goto abort; 5761 } 5762 5763 err = mddev_lock(mddev); 5764 if (err) { 5765 printk(KERN_INFO 5766 "md: ioctl lock interrupted, reason %d, cmd %d\n", 5767 err, cmd); 5768 goto abort; 5769 } 5770 5771 switch (cmd) 5772 { 5773 case SET_ARRAY_INFO: 5774 { 5775 mdu_array_info_t info; 5776 if (!arg) 5777 memset(&info, 0, sizeof(info)); 5778 else if (copy_from_user(&info, argp, sizeof(info))) { 5779 err = -EFAULT; 5780 goto abort_unlock; 5781 } 5782 if (mddev->pers) { 5783 err = update_array_info(mddev, &info); 5784 if (err) { 5785 printk(KERN_WARNING "md: couldn't update" 5786 " array info. %d\n", err); 5787 goto abort_unlock; 5788 } 5789 goto done_unlock; 5790 } 5791 if (!list_empty(&mddev->disks)) { 5792 printk(KERN_WARNING 5793 "md: array %s already has disks!\n", 5794 mdname(mddev)); 5795 err = -EBUSY; 5796 goto abort_unlock; 5797 } 5798 if (mddev->raid_disks) { 5799 printk(KERN_WARNING 5800 "md: array %s already initialised!\n", 5801 mdname(mddev)); 5802 err = -EBUSY; 5803 goto abort_unlock; 5804 } 5805 err = set_array_info(mddev, &info); 5806 if (err) { 5807 printk(KERN_WARNING "md: couldn't set" 5808 " array info. %d\n", err); 5809 goto abort_unlock; 5810 } 5811 } 5812 goto done_unlock; 5813 5814 default:; 5815 } 5816 5817 /* 5818 * Commands querying/configuring an existing array: 5819 */ 5820 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 5821 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 5822 if ((!mddev->raid_disks && !mddev->external) 5823 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 5824 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 5825 && cmd != GET_BITMAP_FILE) { 5826 err = -ENODEV; 5827 goto abort_unlock; 5828 } 5829 5830 /* 5831 * Commands even a read-only array can execute: 5832 */ 5833 switch (cmd) 5834 { 5835 case GET_ARRAY_INFO: 5836 err = get_array_info(mddev, argp); 5837 goto done_unlock; 5838 5839 case GET_BITMAP_FILE: 5840 err = get_bitmap_file(mddev, argp); 5841 goto done_unlock; 5842 5843 case GET_DISK_INFO: 5844 err = get_disk_info(mddev, argp); 5845 goto done_unlock; 5846 5847 case RESTART_ARRAY_RW: 5848 err = restart_array(mddev); 5849 goto done_unlock; 5850 5851 case STOP_ARRAY: 5852 err = do_md_stop(mddev, 0, 1); 5853 goto done_unlock; 5854 5855 case STOP_ARRAY_RO: 5856 err = md_set_readonly(mddev, 1); 5857 goto done_unlock; 5858 5859 case BLKROSET: 5860 if (get_user(ro, (int __user *)(arg))) { 5861 err = -EFAULT; 5862 goto done_unlock; 5863 } 5864 err = -EINVAL; 5865 5866 /* if the bdev is going readonly the value of mddev->ro 5867 * does not matter, no writes are coming 5868 */ 5869 if (ro) 5870 goto done_unlock; 5871 5872 /* are we are already prepared for writes? */ 5873 if (mddev->ro != 1) 5874 goto done_unlock; 5875 5876 /* transitioning to readauto need only happen for 5877 * arrays that call md_write_start 5878 */ 5879 if (mddev->pers) { 5880 err = restart_array(mddev); 5881 if (err == 0) { 5882 mddev->ro = 2; 5883 set_disk_ro(mddev->gendisk, 0); 5884 } 5885 } 5886 goto done_unlock; 5887 } 5888 5889 /* 5890 * The remaining ioctls are changing the state of the 5891 * superblock, so we do not allow them on read-only arrays. 5892 * However non-MD ioctls (e.g. get-size) will still come through 5893 * here and hit the 'default' below, so only disallow 5894 * 'md' ioctls, and switch to rw mode if started auto-readonly. 5895 */ 5896 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 5897 if (mddev->ro == 2) { 5898 mddev->ro = 0; 5899 sysfs_notify_dirent_safe(mddev->sysfs_state); 5900 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5901 md_wakeup_thread(mddev->thread); 5902 } else { 5903 err = -EROFS; 5904 goto abort_unlock; 5905 } 5906 } 5907 5908 switch (cmd) 5909 { 5910 case ADD_NEW_DISK: 5911 { 5912 mdu_disk_info_t info; 5913 if (copy_from_user(&info, argp, sizeof(info))) 5914 err = -EFAULT; 5915 else 5916 err = add_new_disk(mddev, &info); 5917 goto done_unlock; 5918 } 5919 5920 case HOT_REMOVE_DISK: 5921 err = hot_remove_disk(mddev, new_decode_dev(arg)); 5922 goto done_unlock; 5923 5924 case HOT_ADD_DISK: 5925 err = hot_add_disk(mddev, new_decode_dev(arg)); 5926 goto done_unlock; 5927 5928 case SET_DISK_FAULTY: 5929 err = set_disk_faulty(mddev, new_decode_dev(arg)); 5930 goto done_unlock; 5931 5932 case RUN_ARRAY: 5933 err = do_md_run(mddev); 5934 goto done_unlock; 5935 5936 case SET_BITMAP_FILE: 5937 err = set_bitmap_file(mddev, (int)arg); 5938 goto done_unlock; 5939 5940 default: 5941 err = -EINVAL; 5942 goto abort_unlock; 5943 } 5944 5945 done_unlock: 5946 abort_unlock: 5947 if (mddev->hold_active == UNTIL_IOCTL && 5948 err != -EINVAL) 5949 mddev->hold_active = 0; 5950 mddev_unlock(mddev); 5951 5952 return err; 5953 done: 5954 if (err) 5955 MD_BUG(); 5956 abort: 5957 return err; 5958 } 5959 #ifdef CONFIG_COMPAT 5960 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 5961 unsigned int cmd, unsigned long arg) 5962 { 5963 switch (cmd) { 5964 case HOT_REMOVE_DISK: 5965 case HOT_ADD_DISK: 5966 case SET_DISK_FAULTY: 5967 case SET_BITMAP_FILE: 5968 /* These take in integer arg, do not convert */ 5969 break; 5970 default: 5971 arg = (unsigned long)compat_ptr(arg); 5972 break; 5973 } 5974 5975 return md_ioctl(bdev, mode, cmd, arg); 5976 } 5977 #endif /* CONFIG_COMPAT */ 5978 5979 static int md_open(struct block_device *bdev, fmode_t mode) 5980 { 5981 /* 5982 * Succeed if we can lock the mddev, which confirms that 5983 * it isn't being stopped right now. 5984 */ 5985 mddev_t *mddev = mddev_find(bdev->bd_dev); 5986 int err; 5987 5988 if (mddev->gendisk != bdev->bd_disk) { 5989 /* we are racing with mddev_put which is discarding this 5990 * bd_disk. 5991 */ 5992 mddev_put(mddev); 5993 /* Wait until bdev->bd_disk is definitely gone */ 5994 flush_workqueue(md_misc_wq); 5995 /* Then retry the open from the top */ 5996 return -ERESTARTSYS; 5997 } 5998 BUG_ON(mddev != bdev->bd_disk->private_data); 5999 6000 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6001 goto out; 6002 6003 err = 0; 6004 atomic_inc(&mddev->openers); 6005 mutex_unlock(&mddev->open_mutex); 6006 6007 check_disk_size_change(mddev->gendisk, bdev); 6008 out: 6009 return err; 6010 } 6011 6012 static int md_release(struct gendisk *disk, fmode_t mode) 6013 { 6014 mddev_t *mddev = disk->private_data; 6015 6016 BUG_ON(!mddev); 6017 atomic_dec(&mddev->openers); 6018 mddev_put(mddev); 6019 6020 return 0; 6021 } 6022 static const struct block_device_operations md_fops = 6023 { 6024 .owner = THIS_MODULE, 6025 .open = md_open, 6026 .release = md_release, 6027 .ioctl = md_ioctl, 6028 #ifdef CONFIG_COMPAT 6029 .compat_ioctl = md_compat_ioctl, 6030 #endif 6031 .getgeo = md_getgeo, 6032 }; 6033 6034 static int md_thread(void * arg) 6035 { 6036 mdk_thread_t *thread = arg; 6037 6038 /* 6039 * md_thread is a 'system-thread', it's priority should be very 6040 * high. We avoid resource deadlocks individually in each 6041 * raid personality. (RAID5 does preallocation) We also use RR and 6042 * the very same RT priority as kswapd, thus we will never get 6043 * into a priority inversion deadlock. 6044 * 6045 * we definitely have to have equal or higher priority than 6046 * bdflush, otherwise bdflush will deadlock if there are too 6047 * many dirty RAID5 blocks. 6048 */ 6049 6050 allow_signal(SIGKILL); 6051 while (!kthread_should_stop()) { 6052 6053 /* We need to wait INTERRUPTIBLE so that 6054 * we don't add to the load-average. 6055 * That means we need to be sure no signals are 6056 * pending 6057 */ 6058 if (signal_pending(current)) 6059 flush_signals(current); 6060 6061 wait_event_interruptible_timeout 6062 (thread->wqueue, 6063 test_bit(THREAD_WAKEUP, &thread->flags) 6064 || kthread_should_stop(), 6065 thread->timeout); 6066 6067 clear_bit(THREAD_WAKEUP, &thread->flags); 6068 if (!kthread_should_stop()) 6069 thread->run(thread->mddev); 6070 } 6071 6072 return 0; 6073 } 6074 6075 void md_wakeup_thread(mdk_thread_t *thread) 6076 { 6077 if (thread) { 6078 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 6079 set_bit(THREAD_WAKEUP, &thread->flags); 6080 wake_up(&thread->wqueue); 6081 } 6082 } 6083 6084 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 6085 const char *name) 6086 { 6087 mdk_thread_t *thread; 6088 6089 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 6090 if (!thread) 6091 return NULL; 6092 6093 init_waitqueue_head(&thread->wqueue); 6094 6095 thread->run = run; 6096 thread->mddev = mddev; 6097 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6098 thread->tsk = kthread_run(md_thread, thread, 6099 "%s_%s", 6100 mdname(thread->mddev), 6101 name ?: mddev->pers->name); 6102 if (IS_ERR(thread->tsk)) { 6103 kfree(thread); 6104 return NULL; 6105 } 6106 return thread; 6107 } 6108 6109 void md_unregister_thread(mdk_thread_t *thread) 6110 { 6111 if (!thread) 6112 return; 6113 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6114 6115 kthread_stop(thread->tsk); 6116 kfree(thread); 6117 } 6118 6119 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 6120 { 6121 if (!mddev) { 6122 MD_BUG(); 6123 return; 6124 } 6125 6126 if (!rdev || test_bit(Faulty, &rdev->flags)) 6127 return; 6128 6129 if (mddev->external) 6130 set_bit(Blocked, &rdev->flags); 6131 /* 6132 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 6133 mdname(mddev), 6134 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 6135 __builtin_return_address(0),__builtin_return_address(1), 6136 __builtin_return_address(2),__builtin_return_address(3)); 6137 */ 6138 if (!mddev->pers) 6139 return; 6140 if (!mddev->pers->error_handler) 6141 return; 6142 mddev->pers->error_handler(mddev,rdev); 6143 if (mddev->degraded) 6144 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6145 sysfs_notify_dirent_safe(rdev->sysfs_state); 6146 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6147 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6148 md_wakeup_thread(mddev->thread); 6149 if (mddev->event_work.func) 6150 queue_work(md_misc_wq, &mddev->event_work); 6151 md_new_event_inintr(mddev); 6152 } 6153 6154 /* seq_file implementation /proc/mdstat */ 6155 6156 static void status_unused(struct seq_file *seq) 6157 { 6158 int i = 0; 6159 mdk_rdev_t *rdev; 6160 6161 seq_printf(seq, "unused devices: "); 6162 6163 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6164 char b[BDEVNAME_SIZE]; 6165 i++; 6166 seq_printf(seq, "%s ", 6167 bdevname(rdev->bdev,b)); 6168 } 6169 if (!i) 6170 seq_printf(seq, "<none>"); 6171 6172 seq_printf(seq, "\n"); 6173 } 6174 6175 6176 static void status_resync(struct seq_file *seq, mddev_t * mddev) 6177 { 6178 sector_t max_sectors, resync, res; 6179 unsigned long dt, db; 6180 sector_t rt; 6181 int scale; 6182 unsigned int per_milli; 6183 6184 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); 6185 6186 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 6187 max_sectors = mddev->resync_max_sectors; 6188 else 6189 max_sectors = mddev->dev_sectors; 6190 6191 /* 6192 * Should not happen. 6193 */ 6194 if (!max_sectors) { 6195 MD_BUG(); 6196 return; 6197 } 6198 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6199 * in a sector_t, and (max_sectors>>scale) will fit in a 6200 * u32, as those are the requirements for sector_div. 6201 * Thus 'scale' must be at least 10 6202 */ 6203 scale = 10; 6204 if (sizeof(sector_t) > sizeof(unsigned long)) { 6205 while ( max_sectors/2 > (1ULL<<(scale+32))) 6206 scale++; 6207 } 6208 res = (resync>>scale)*1000; 6209 sector_div(res, (u32)((max_sectors>>scale)+1)); 6210 6211 per_milli = res; 6212 { 6213 int i, x = per_milli/50, y = 20-x; 6214 seq_printf(seq, "["); 6215 for (i = 0; i < x; i++) 6216 seq_printf(seq, "="); 6217 seq_printf(seq, ">"); 6218 for (i = 0; i < y; i++) 6219 seq_printf(seq, "."); 6220 seq_printf(seq, "] "); 6221 } 6222 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6223 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6224 "reshape" : 6225 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6226 "check" : 6227 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6228 "resync" : "recovery"))), 6229 per_milli/10, per_milli % 10, 6230 (unsigned long long) resync/2, 6231 (unsigned long long) max_sectors/2); 6232 6233 /* 6234 * dt: time from mark until now 6235 * db: blocks written from mark until now 6236 * rt: remaining time 6237 * 6238 * rt is a sector_t, so could be 32bit or 64bit. 6239 * So we divide before multiply in case it is 32bit and close 6240 * to the limit. 6241 * We scale the divisor (db) by 32 to avoid loosing precision 6242 * near the end of resync when the number of remaining sectors 6243 * is close to 'db'. 6244 * We then divide rt by 32 after multiplying by db to compensate. 6245 * The '+1' avoids division by zero if db is very small. 6246 */ 6247 dt = ((jiffies - mddev->resync_mark) / HZ); 6248 if (!dt) dt++; 6249 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6250 - mddev->resync_mark_cnt; 6251 6252 rt = max_sectors - resync; /* number of remaining sectors */ 6253 sector_div(rt, db/32+1); 6254 rt *= dt; 6255 rt >>= 5; 6256 6257 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6258 ((unsigned long)rt % 60)/6); 6259 6260 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6261 } 6262 6263 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6264 { 6265 struct list_head *tmp; 6266 loff_t l = *pos; 6267 mddev_t *mddev; 6268 6269 if (l >= 0x10000) 6270 return NULL; 6271 if (!l--) 6272 /* header */ 6273 return (void*)1; 6274 6275 spin_lock(&all_mddevs_lock); 6276 list_for_each(tmp,&all_mddevs) 6277 if (!l--) { 6278 mddev = list_entry(tmp, mddev_t, all_mddevs); 6279 mddev_get(mddev); 6280 spin_unlock(&all_mddevs_lock); 6281 return mddev; 6282 } 6283 spin_unlock(&all_mddevs_lock); 6284 if (!l--) 6285 return (void*)2;/* tail */ 6286 return NULL; 6287 } 6288 6289 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6290 { 6291 struct list_head *tmp; 6292 mddev_t *next_mddev, *mddev = v; 6293 6294 ++*pos; 6295 if (v == (void*)2) 6296 return NULL; 6297 6298 spin_lock(&all_mddevs_lock); 6299 if (v == (void*)1) 6300 tmp = all_mddevs.next; 6301 else 6302 tmp = mddev->all_mddevs.next; 6303 if (tmp != &all_mddevs) 6304 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 6305 else { 6306 next_mddev = (void*)2; 6307 *pos = 0x10000; 6308 } 6309 spin_unlock(&all_mddevs_lock); 6310 6311 if (v != (void*)1) 6312 mddev_put(mddev); 6313 return next_mddev; 6314 6315 } 6316 6317 static void md_seq_stop(struct seq_file *seq, void *v) 6318 { 6319 mddev_t *mddev = v; 6320 6321 if (mddev && v != (void*)1 && v != (void*)2) 6322 mddev_put(mddev); 6323 } 6324 6325 struct mdstat_info { 6326 int event; 6327 }; 6328 6329 static int md_seq_show(struct seq_file *seq, void *v) 6330 { 6331 mddev_t *mddev = v; 6332 sector_t sectors; 6333 mdk_rdev_t *rdev; 6334 struct mdstat_info *mi = seq->private; 6335 struct bitmap *bitmap; 6336 6337 if (v == (void*)1) { 6338 struct mdk_personality *pers; 6339 seq_printf(seq, "Personalities : "); 6340 spin_lock(&pers_lock); 6341 list_for_each_entry(pers, &pers_list, list) 6342 seq_printf(seq, "[%s] ", pers->name); 6343 6344 spin_unlock(&pers_lock); 6345 seq_printf(seq, "\n"); 6346 mi->event = atomic_read(&md_event_count); 6347 return 0; 6348 } 6349 if (v == (void*)2) { 6350 status_unused(seq); 6351 return 0; 6352 } 6353 6354 if (mddev_lock(mddev) < 0) 6355 return -EINTR; 6356 6357 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 6358 seq_printf(seq, "%s : %sactive", mdname(mddev), 6359 mddev->pers ? "" : "in"); 6360 if (mddev->pers) { 6361 if (mddev->ro==1) 6362 seq_printf(seq, " (read-only)"); 6363 if (mddev->ro==2) 6364 seq_printf(seq, " (auto-read-only)"); 6365 seq_printf(seq, " %s", mddev->pers->name); 6366 } 6367 6368 sectors = 0; 6369 list_for_each_entry(rdev, &mddev->disks, same_set) { 6370 char b[BDEVNAME_SIZE]; 6371 seq_printf(seq, " %s[%d]", 6372 bdevname(rdev->bdev,b), rdev->desc_nr); 6373 if (test_bit(WriteMostly, &rdev->flags)) 6374 seq_printf(seq, "(W)"); 6375 if (test_bit(Faulty, &rdev->flags)) { 6376 seq_printf(seq, "(F)"); 6377 continue; 6378 } else if (rdev->raid_disk < 0) 6379 seq_printf(seq, "(S)"); /* spare */ 6380 sectors += rdev->sectors; 6381 } 6382 6383 if (!list_empty(&mddev->disks)) { 6384 if (mddev->pers) 6385 seq_printf(seq, "\n %llu blocks", 6386 (unsigned long long) 6387 mddev->array_sectors / 2); 6388 else 6389 seq_printf(seq, "\n %llu blocks", 6390 (unsigned long long)sectors / 2); 6391 } 6392 if (mddev->persistent) { 6393 if (mddev->major_version != 0 || 6394 mddev->minor_version != 90) { 6395 seq_printf(seq," super %d.%d", 6396 mddev->major_version, 6397 mddev->minor_version); 6398 } 6399 } else if (mddev->external) 6400 seq_printf(seq, " super external:%s", 6401 mddev->metadata_type); 6402 else 6403 seq_printf(seq, " super non-persistent"); 6404 6405 if (mddev->pers) { 6406 mddev->pers->status(seq, mddev); 6407 seq_printf(seq, "\n "); 6408 if (mddev->pers->sync_request) { 6409 if (mddev->curr_resync > 2) { 6410 status_resync(seq, mddev); 6411 seq_printf(seq, "\n "); 6412 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 6413 seq_printf(seq, "\tresync=DELAYED\n "); 6414 else if (mddev->recovery_cp < MaxSector) 6415 seq_printf(seq, "\tresync=PENDING\n "); 6416 } 6417 } else 6418 seq_printf(seq, "\n "); 6419 6420 if ((bitmap = mddev->bitmap)) { 6421 unsigned long chunk_kb; 6422 unsigned long flags; 6423 spin_lock_irqsave(&bitmap->lock, flags); 6424 chunk_kb = mddev->bitmap_info.chunksize >> 10; 6425 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 6426 "%lu%s chunk", 6427 bitmap->pages - bitmap->missing_pages, 6428 bitmap->pages, 6429 (bitmap->pages - bitmap->missing_pages) 6430 << (PAGE_SHIFT - 10), 6431 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize, 6432 chunk_kb ? "KB" : "B"); 6433 if (bitmap->file) { 6434 seq_printf(seq, ", file: "); 6435 seq_path(seq, &bitmap->file->f_path, " \t\n"); 6436 } 6437 6438 seq_printf(seq, "\n"); 6439 spin_unlock_irqrestore(&bitmap->lock, flags); 6440 } 6441 6442 seq_printf(seq, "\n"); 6443 } 6444 mddev_unlock(mddev); 6445 6446 return 0; 6447 } 6448 6449 static const struct seq_operations md_seq_ops = { 6450 .start = md_seq_start, 6451 .next = md_seq_next, 6452 .stop = md_seq_stop, 6453 .show = md_seq_show, 6454 }; 6455 6456 static int md_seq_open(struct inode *inode, struct file *file) 6457 { 6458 int error; 6459 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 6460 if (mi == NULL) 6461 return -ENOMEM; 6462 6463 error = seq_open(file, &md_seq_ops); 6464 if (error) 6465 kfree(mi); 6466 else { 6467 struct seq_file *p = file->private_data; 6468 p->private = mi; 6469 mi->event = atomic_read(&md_event_count); 6470 } 6471 return error; 6472 } 6473 6474 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 6475 { 6476 struct seq_file *m = filp->private_data; 6477 struct mdstat_info *mi = m->private; 6478 int mask; 6479 6480 poll_wait(filp, &md_event_waiters, wait); 6481 6482 /* always allow read */ 6483 mask = POLLIN | POLLRDNORM; 6484 6485 if (mi->event != atomic_read(&md_event_count)) 6486 mask |= POLLERR | POLLPRI; 6487 return mask; 6488 } 6489 6490 static const struct file_operations md_seq_fops = { 6491 .owner = THIS_MODULE, 6492 .open = md_seq_open, 6493 .read = seq_read, 6494 .llseek = seq_lseek, 6495 .release = seq_release_private, 6496 .poll = mdstat_poll, 6497 }; 6498 6499 int register_md_personality(struct mdk_personality *p) 6500 { 6501 spin_lock(&pers_lock); 6502 list_add_tail(&p->list, &pers_list); 6503 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 6504 spin_unlock(&pers_lock); 6505 return 0; 6506 } 6507 6508 int unregister_md_personality(struct mdk_personality *p) 6509 { 6510 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 6511 spin_lock(&pers_lock); 6512 list_del_init(&p->list); 6513 spin_unlock(&pers_lock); 6514 return 0; 6515 } 6516 6517 static int is_mddev_idle(mddev_t *mddev, int init) 6518 { 6519 mdk_rdev_t * rdev; 6520 int idle; 6521 int curr_events; 6522 6523 idle = 1; 6524 rcu_read_lock(); 6525 rdev_for_each_rcu(rdev, mddev) { 6526 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 6527 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 6528 (int)part_stat_read(&disk->part0, sectors[1]) - 6529 atomic_read(&disk->sync_io); 6530 /* sync IO will cause sync_io to increase before the disk_stats 6531 * as sync_io is counted when a request starts, and 6532 * disk_stats is counted when it completes. 6533 * So resync activity will cause curr_events to be smaller than 6534 * when there was no such activity. 6535 * non-sync IO will cause disk_stat to increase without 6536 * increasing sync_io so curr_events will (eventually) 6537 * be larger than it was before. Once it becomes 6538 * substantially larger, the test below will cause 6539 * the array to appear non-idle, and resync will slow 6540 * down. 6541 * If there is a lot of outstanding resync activity when 6542 * we set last_event to curr_events, then all that activity 6543 * completing might cause the array to appear non-idle 6544 * and resync will be slowed down even though there might 6545 * not have been non-resync activity. This will only 6546 * happen once though. 'last_events' will soon reflect 6547 * the state where there is little or no outstanding 6548 * resync requests, and further resync activity will 6549 * always make curr_events less than last_events. 6550 * 6551 */ 6552 if (init || curr_events - rdev->last_events > 64) { 6553 rdev->last_events = curr_events; 6554 idle = 0; 6555 } 6556 } 6557 rcu_read_unlock(); 6558 return idle; 6559 } 6560 6561 void md_done_sync(mddev_t *mddev, int blocks, int ok) 6562 { 6563 /* another "blocks" (512byte) blocks have been synced */ 6564 atomic_sub(blocks, &mddev->recovery_active); 6565 wake_up(&mddev->recovery_wait); 6566 if (!ok) { 6567 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6568 md_wakeup_thread(mddev->thread); 6569 // stop recovery, signal do_sync .... 6570 } 6571 } 6572 6573 6574 /* md_write_start(mddev, bi) 6575 * If we need to update some array metadata (e.g. 'active' flag 6576 * in superblock) before writing, schedule a superblock update 6577 * and wait for it to complete. 6578 */ 6579 void md_write_start(mddev_t *mddev, struct bio *bi) 6580 { 6581 int did_change = 0; 6582 if (bio_data_dir(bi) != WRITE) 6583 return; 6584 6585 BUG_ON(mddev->ro == 1); 6586 if (mddev->ro == 2) { 6587 /* need to switch to read/write */ 6588 mddev->ro = 0; 6589 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6590 md_wakeup_thread(mddev->thread); 6591 md_wakeup_thread(mddev->sync_thread); 6592 did_change = 1; 6593 } 6594 atomic_inc(&mddev->writes_pending); 6595 if (mddev->safemode == 1) 6596 mddev->safemode = 0; 6597 if (mddev->in_sync) { 6598 spin_lock_irq(&mddev->write_lock); 6599 if (mddev->in_sync) { 6600 mddev->in_sync = 0; 6601 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6602 set_bit(MD_CHANGE_PENDING, &mddev->flags); 6603 md_wakeup_thread(mddev->thread); 6604 did_change = 1; 6605 } 6606 spin_unlock_irq(&mddev->write_lock); 6607 } 6608 if (did_change) 6609 sysfs_notify_dirent_safe(mddev->sysfs_state); 6610 wait_event(mddev->sb_wait, 6611 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6612 } 6613 6614 void md_write_end(mddev_t *mddev) 6615 { 6616 if (atomic_dec_and_test(&mddev->writes_pending)) { 6617 if (mddev->safemode == 2) 6618 md_wakeup_thread(mddev->thread); 6619 else if (mddev->safemode_delay) 6620 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 6621 } 6622 } 6623 6624 /* md_allow_write(mddev) 6625 * Calling this ensures that the array is marked 'active' so that writes 6626 * may proceed without blocking. It is important to call this before 6627 * attempting a GFP_KERNEL allocation while holding the mddev lock. 6628 * Must be called with mddev_lock held. 6629 * 6630 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 6631 * is dropped, so return -EAGAIN after notifying userspace. 6632 */ 6633 int md_allow_write(mddev_t *mddev) 6634 { 6635 if (!mddev->pers) 6636 return 0; 6637 if (mddev->ro) 6638 return 0; 6639 if (!mddev->pers->sync_request) 6640 return 0; 6641 6642 spin_lock_irq(&mddev->write_lock); 6643 if (mddev->in_sync) { 6644 mddev->in_sync = 0; 6645 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6646 set_bit(MD_CHANGE_PENDING, &mddev->flags); 6647 if (mddev->safemode_delay && 6648 mddev->safemode == 0) 6649 mddev->safemode = 1; 6650 spin_unlock_irq(&mddev->write_lock); 6651 md_update_sb(mddev, 0); 6652 sysfs_notify_dirent_safe(mddev->sysfs_state); 6653 } else 6654 spin_unlock_irq(&mddev->write_lock); 6655 6656 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 6657 return -EAGAIN; 6658 else 6659 return 0; 6660 } 6661 EXPORT_SYMBOL_GPL(md_allow_write); 6662 6663 void md_unplug(mddev_t *mddev) 6664 { 6665 if (mddev->queue) 6666 blk_unplug(mddev->queue); 6667 if (mddev->plug) 6668 mddev->plug->unplug_fn(mddev->plug); 6669 } 6670 6671 #define SYNC_MARKS 10 6672 #define SYNC_MARK_STEP (3*HZ) 6673 void md_do_sync(mddev_t *mddev) 6674 { 6675 mddev_t *mddev2; 6676 unsigned int currspeed = 0, 6677 window; 6678 sector_t max_sectors,j, io_sectors; 6679 unsigned long mark[SYNC_MARKS]; 6680 sector_t mark_cnt[SYNC_MARKS]; 6681 int last_mark,m; 6682 struct list_head *tmp; 6683 sector_t last_check; 6684 int skipped = 0; 6685 mdk_rdev_t *rdev; 6686 char *desc; 6687 6688 /* just incase thread restarts... */ 6689 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 6690 return; 6691 if (mddev->ro) /* never try to sync a read-only array */ 6692 return; 6693 6694 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6695 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 6696 desc = "data-check"; 6697 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6698 desc = "requested-resync"; 6699 else 6700 desc = "resync"; 6701 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6702 desc = "reshape"; 6703 else 6704 desc = "recovery"; 6705 6706 /* we overload curr_resync somewhat here. 6707 * 0 == not engaged in resync at all 6708 * 2 == checking that there is no conflict with another sync 6709 * 1 == like 2, but have yielded to allow conflicting resync to 6710 * commense 6711 * other == active in resync - this many blocks 6712 * 6713 * Before starting a resync we must have set curr_resync to 6714 * 2, and then checked that every "conflicting" array has curr_resync 6715 * less than ours. When we find one that is the same or higher 6716 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 6717 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 6718 * This will mean we have to start checking from the beginning again. 6719 * 6720 */ 6721 6722 do { 6723 mddev->curr_resync = 2; 6724 6725 try_again: 6726 if (kthread_should_stop()) 6727 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6728 6729 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6730 goto skip; 6731 for_each_mddev(mddev2, tmp) { 6732 if (mddev2 == mddev) 6733 continue; 6734 if (!mddev->parallel_resync 6735 && mddev2->curr_resync 6736 && match_mddev_units(mddev, mddev2)) { 6737 DEFINE_WAIT(wq); 6738 if (mddev < mddev2 && mddev->curr_resync == 2) { 6739 /* arbitrarily yield */ 6740 mddev->curr_resync = 1; 6741 wake_up(&resync_wait); 6742 } 6743 if (mddev > mddev2 && mddev->curr_resync == 1) 6744 /* no need to wait here, we can wait the next 6745 * time 'round when curr_resync == 2 6746 */ 6747 continue; 6748 /* We need to wait 'interruptible' so as not to 6749 * contribute to the load average, and not to 6750 * be caught by 'softlockup' 6751 */ 6752 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 6753 if (!kthread_should_stop() && 6754 mddev2->curr_resync >= mddev->curr_resync) { 6755 printk(KERN_INFO "md: delaying %s of %s" 6756 " until %s has finished (they" 6757 " share one or more physical units)\n", 6758 desc, mdname(mddev), mdname(mddev2)); 6759 mddev_put(mddev2); 6760 if (signal_pending(current)) 6761 flush_signals(current); 6762 schedule(); 6763 finish_wait(&resync_wait, &wq); 6764 goto try_again; 6765 } 6766 finish_wait(&resync_wait, &wq); 6767 } 6768 } 6769 } while (mddev->curr_resync < 2); 6770 6771 j = 0; 6772 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6773 /* resync follows the size requested by the personality, 6774 * which defaults to physical size, but can be virtual size 6775 */ 6776 max_sectors = mddev->resync_max_sectors; 6777 mddev->resync_mismatches = 0; 6778 /* we don't use the checkpoint if there's a bitmap */ 6779 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6780 j = mddev->resync_min; 6781 else if (!mddev->bitmap) 6782 j = mddev->recovery_cp; 6783 6784 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6785 max_sectors = mddev->dev_sectors; 6786 else { 6787 /* recovery follows the physical size of devices */ 6788 max_sectors = mddev->dev_sectors; 6789 j = MaxSector; 6790 rcu_read_lock(); 6791 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 6792 if (rdev->raid_disk >= 0 && 6793 !test_bit(Faulty, &rdev->flags) && 6794 !test_bit(In_sync, &rdev->flags) && 6795 rdev->recovery_offset < j) 6796 j = rdev->recovery_offset; 6797 rcu_read_unlock(); 6798 } 6799 6800 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 6801 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 6802 " %d KB/sec/disk.\n", speed_min(mddev)); 6803 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 6804 "(but not more than %d KB/sec) for %s.\n", 6805 speed_max(mddev), desc); 6806 6807 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 6808 6809 io_sectors = 0; 6810 for (m = 0; m < SYNC_MARKS; m++) { 6811 mark[m] = jiffies; 6812 mark_cnt[m] = io_sectors; 6813 } 6814 last_mark = 0; 6815 mddev->resync_mark = mark[last_mark]; 6816 mddev->resync_mark_cnt = mark_cnt[last_mark]; 6817 6818 /* 6819 * Tune reconstruction: 6820 */ 6821 window = 32*(PAGE_SIZE/512); 6822 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 6823 window/2,(unsigned long long) max_sectors/2); 6824 6825 atomic_set(&mddev->recovery_active, 0); 6826 last_check = 0; 6827 6828 if (j>2) { 6829 printk(KERN_INFO 6830 "md: resuming %s of %s from checkpoint.\n", 6831 desc, mdname(mddev)); 6832 mddev->curr_resync = j; 6833 } 6834 mddev->curr_resync_completed = j; 6835 6836 while (j < max_sectors) { 6837 sector_t sectors; 6838 6839 skipped = 0; 6840 6841 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 6842 ((mddev->curr_resync > mddev->curr_resync_completed && 6843 (mddev->curr_resync - mddev->curr_resync_completed) 6844 > (max_sectors >> 4)) || 6845 (j - mddev->curr_resync_completed)*2 6846 >= mddev->resync_max - mddev->curr_resync_completed 6847 )) { 6848 /* time to update curr_resync_completed */ 6849 md_unplug(mddev); 6850 wait_event(mddev->recovery_wait, 6851 atomic_read(&mddev->recovery_active) == 0); 6852 mddev->curr_resync_completed = j; 6853 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6854 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6855 } 6856 6857 while (j >= mddev->resync_max && !kthread_should_stop()) { 6858 /* As this condition is controlled by user-space, 6859 * we can block indefinitely, so use '_interruptible' 6860 * to avoid triggering warnings. 6861 */ 6862 flush_signals(current); /* just in case */ 6863 wait_event_interruptible(mddev->recovery_wait, 6864 mddev->resync_max > j 6865 || kthread_should_stop()); 6866 } 6867 6868 if (kthread_should_stop()) 6869 goto interrupted; 6870 6871 sectors = mddev->pers->sync_request(mddev, j, &skipped, 6872 currspeed < speed_min(mddev)); 6873 if (sectors == 0) { 6874 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6875 goto out; 6876 } 6877 6878 if (!skipped) { /* actual IO requested */ 6879 io_sectors += sectors; 6880 atomic_add(sectors, &mddev->recovery_active); 6881 } 6882 6883 j += sectors; 6884 if (j>1) mddev->curr_resync = j; 6885 mddev->curr_mark_cnt = io_sectors; 6886 if (last_check == 0) 6887 /* this is the earliers that rebuilt will be 6888 * visible in /proc/mdstat 6889 */ 6890 md_new_event(mddev); 6891 6892 if (last_check + window > io_sectors || j == max_sectors) 6893 continue; 6894 6895 last_check = io_sectors; 6896 6897 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6898 break; 6899 6900 repeat: 6901 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 6902 /* step marks */ 6903 int next = (last_mark+1) % SYNC_MARKS; 6904 6905 mddev->resync_mark = mark[next]; 6906 mddev->resync_mark_cnt = mark_cnt[next]; 6907 mark[next] = jiffies; 6908 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 6909 last_mark = next; 6910 } 6911 6912 6913 if (kthread_should_stop()) 6914 goto interrupted; 6915 6916 6917 /* 6918 * this loop exits only if either when we are slower than 6919 * the 'hard' speed limit, or the system was IO-idle for 6920 * a jiffy. 6921 * the system might be non-idle CPU-wise, but we only care 6922 * about not overloading the IO subsystem. (things like an 6923 * e2fsck being done on the RAID array should execute fast) 6924 */ 6925 md_unplug(mddev); 6926 cond_resched(); 6927 6928 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 6929 /((jiffies-mddev->resync_mark)/HZ +1) +1; 6930 6931 if (currspeed > speed_min(mddev)) { 6932 if ((currspeed > speed_max(mddev)) || 6933 !is_mddev_idle(mddev, 0)) { 6934 msleep(500); 6935 goto repeat; 6936 } 6937 } 6938 } 6939 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 6940 /* 6941 * this also signals 'finished resyncing' to md_stop 6942 */ 6943 out: 6944 md_unplug(mddev); 6945 6946 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 6947 6948 /* tell personality that we are finished */ 6949 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 6950 6951 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 6952 mddev->curr_resync > 2) { 6953 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 6954 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6955 if (mddev->curr_resync >= mddev->recovery_cp) { 6956 printk(KERN_INFO 6957 "md: checkpointing %s of %s.\n", 6958 desc, mdname(mddev)); 6959 mddev->recovery_cp = mddev->curr_resync; 6960 } 6961 } else 6962 mddev->recovery_cp = MaxSector; 6963 } else { 6964 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6965 mddev->curr_resync = MaxSector; 6966 rcu_read_lock(); 6967 list_for_each_entry_rcu(rdev, &mddev->disks, same_set) 6968 if (rdev->raid_disk >= 0 && 6969 mddev->delta_disks >= 0 && 6970 !test_bit(Faulty, &rdev->flags) && 6971 !test_bit(In_sync, &rdev->flags) && 6972 rdev->recovery_offset < mddev->curr_resync) 6973 rdev->recovery_offset = mddev->curr_resync; 6974 rcu_read_unlock(); 6975 } 6976 } 6977 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6978 6979 skip: 6980 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6981 /* We completed so min/max setting can be forgotten if used. */ 6982 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6983 mddev->resync_min = 0; 6984 mddev->resync_max = MaxSector; 6985 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 6986 mddev->resync_min = mddev->curr_resync_completed; 6987 mddev->curr_resync = 0; 6988 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 6989 mddev->curr_resync_completed = 0; 6990 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 6991 wake_up(&resync_wait); 6992 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 6993 md_wakeup_thread(mddev->thread); 6994 return; 6995 6996 interrupted: 6997 /* 6998 * got a signal, exit. 6999 */ 7000 printk(KERN_INFO 7001 "md: md_do_sync() got signal ... exiting\n"); 7002 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7003 goto out; 7004 7005 } 7006 EXPORT_SYMBOL_GPL(md_do_sync); 7007 7008 7009 static int remove_and_add_spares(mddev_t *mddev) 7010 { 7011 mdk_rdev_t *rdev; 7012 int spares = 0; 7013 7014 mddev->curr_resync_completed = 0; 7015 7016 list_for_each_entry(rdev, &mddev->disks, same_set) 7017 if (rdev->raid_disk >= 0 && 7018 !test_bit(Blocked, &rdev->flags) && 7019 (test_bit(Faulty, &rdev->flags) || 7020 ! test_bit(In_sync, &rdev->flags)) && 7021 atomic_read(&rdev->nr_pending)==0) { 7022 if (mddev->pers->hot_remove_disk( 7023 mddev, rdev->raid_disk)==0) { 7024 char nm[20]; 7025 sprintf(nm,"rd%d", rdev->raid_disk); 7026 sysfs_remove_link(&mddev->kobj, nm); 7027 rdev->raid_disk = -1; 7028 } 7029 } 7030 7031 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) { 7032 list_for_each_entry(rdev, &mddev->disks, same_set) { 7033 if (rdev->raid_disk >= 0 && 7034 !test_bit(In_sync, &rdev->flags) && 7035 !test_bit(Blocked, &rdev->flags)) 7036 spares++; 7037 if (rdev->raid_disk < 0 7038 && !test_bit(Faulty, &rdev->flags)) { 7039 rdev->recovery_offset = 0; 7040 if (mddev->pers-> 7041 hot_add_disk(mddev, rdev) == 0) { 7042 char nm[20]; 7043 sprintf(nm, "rd%d", rdev->raid_disk); 7044 if (sysfs_create_link(&mddev->kobj, 7045 &rdev->kobj, nm)) 7046 /* failure here is OK */; 7047 spares++; 7048 md_new_event(mddev); 7049 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7050 } else 7051 break; 7052 } 7053 } 7054 } 7055 return spares; 7056 } 7057 7058 static void reap_sync_thread(mddev_t *mddev) 7059 { 7060 mdk_rdev_t *rdev; 7061 7062 /* resync has finished, collect result */ 7063 md_unregister_thread(mddev->sync_thread); 7064 mddev->sync_thread = NULL; 7065 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7066 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7067 /* success...*/ 7068 /* activate any spares */ 7069 if (mddev->pers->spare_active(mddev)) 7070 sysfs_notify(&mddev->kobj, NULL, 7071 "degraded"); 7072 } 7073 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7074 mddev->pers->finish_reshape) 7075 mddev->pers->finish_reshape(mddev); 7076 md_update_sb(mddev, 1); 7077 7078 /* if array is no-longer degraded, then any saved_raid_disk 7079 * information must be scrapped 7080 */ 7081 if (!mddev->degraded) 7082 list_for_each_entry(rdev, &mddev->disks, same_set) 7083 rdev->saved_raid_disk = -1; 7084 7085 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7086 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7087 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7088 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7089 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7090 /* flag recovery needed just to double check */ 7091 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7092 sysfs_notify_dirent_safe(mddev->sysfs_action); 7093 md_new_event(mddev); 7094 } 7095 7096 /* 7097 * This routine is regularly called by all per-raid-array threads to 7098 * deal with generic issues like resync and super-block update. 7099 * Raid personalities that don't have a thread (linear/raid0) do not 7100 * need this as they never do any recovery or update the superblock. 7101 * 7102 * It does not do any resync itself, but rather "forks" off other threads 7103 * to do that as needed. 7104 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7105 * "->recovery" and create a thread at ->sync_thread. 7106 * When the thread finishes it sets MD_RECOVERY_DONE 7107 * and wakeups up this thread which will reap the thread and finish up. 7108 * This thread also removes any faulty devices (with nr_pending == 0). 7109 * 7110 * The overall approach is: 7111 * 1/ if the superblock needs updating, update it. 7112 * 2/ If a recovery thread is running, don't do anything else. 7113 * 3/ If recovery has finished, clean up, possibly marking spares active. 7114 * 4/ If there are any faulty devices, remove them. 7115 * 5/ If array is degraded, try to add spares devices 7116 * 6/ If array has spares or is not in-sync, start a resync thread. 7117 */ 7118 void md_check_recovery(mddev_t *mddev) 7119 { 7120 if (mddev->bitmap) 7121 bitmap_daemon_work(mddev); 7122 7123 if (mddev->ro) 7124 return; 7125 7126 if (signal_pending(current)) { 7127 if (mddev->pers->sync_request && !mddev->external) { 7128 printk(KERN_INFO "md: %s in immediate safe mode\n", 7129 mdname(mddev)); 7130 mddev->safemode = 2; 7131 } 7132 flush_signals(current); 7133 } 7134 7135 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7136 return; 7137 if ( ! ( 7138 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) || 7139 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7140 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7141 (mddev->external == 0 && mddev->safemode == 1) || 7142 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7143 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7144 )) 7145 return; 7146 7147 if (mddev_trylock(mddev)) { 7148 int spares = 0; 7149 7150 if (mddev->ro) { 7151 /* Only thing we do on a ro array is remove 7152 * failed devices. 7153 */ 7154 remove_and_add_spares(mddev); 7155 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7156 goto unlock; 7157 } 7158 7159 if (!mddev->external) { 7160 int did_change = 0; 7161 spin_lock_irq(&mddev->write_lock); 7162 if (mddev->safemode && 7163 !atomic_read(&mddev->writes_pending) && 7164 !mddev->in_sync && 7165 mddev->recovery_cp == MaxSector) { 7166 mddev->in_sync = 1; 7167 did_change = 1; 7168 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7169 } 7170 if (mddev->safemode == 1) 7171 mddev->safemode = 0; 7172 spin_unlock_irq(&mddev->write_lock); 7173 if (did_change) 7174 sysfs_notify_dirent_safe(mddev->sysfs_state); 7175 } 7176 7177 if (mddev->flags) 7178 md_update_sb(mddev, 0); 7179 7180 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7181 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7182 /* resync/recovery still happening */ 7183 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7184 goto unlock; 7185 } 7186 if (mddev->sync_thread) { 7187 reap_sync_thread(mddev); 7188 goto unlock; 7189 } 7190 /* Set RUNNING before clearing NEEDED to avoid 7191 * any transients in the value of "sync_action". 7192 */ 7193 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7194 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7195 /* Clear some bits that don't mean anything, but 7196 * might be left set 7197 */ 7198 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7199 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7200 7201 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7202 goto unlock; 7203 /* no recovery is running. 7204 * remove any failed drives, then 7205 * add spares if possible. 7206 * Spare are also removed and re-added, to allow 7207 * the personality to fail the re-add. 7208 */ 7209 7210 if (mddev->reshape_position != MaxSector) { 7211 if (mddev->pers->check_reshape == NULL || 7212 mddev->pers->check_reshape(mddev) != 0) 7213 /* Cannot proceed */ 7214 goto unlock; 7215 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7216 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7217 } else if ((spares = remove_and_add_spares(mddev))) { 7218 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7219 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7220 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7221 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7222 } else if (mddev->recovery_cp < MaxSector) { 7223 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7224 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7225 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7226 /* nothing to be done ... */ 7227 goto unlock; 7228 7229 if (mddev->pers->sync_request) { 7230 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 7231 /* We are adding a device or devices to an array 7232 * which has the bitmap stored on all devices. 7233 * So make sure all bitmap pages get written 7234 */ 7235 bitmap_write_all(mddev->bitmap); 7236 } 7237 mddev->sync_thread = md_register_thread(md_do_sync, 7238 mddev, 7239 "resync"); 7240 if (!mddev->sync_thread) { 7241 printk(KERN_ERR "%s: could not start resync" 7242 " thread...\n", 7243 mdname(mddev)); 7244 /* leave the spares where they are, it shouldn't hurt */ 7245 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7246 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7247 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7248 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7249 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7250 } else 7251 md_wakeup_thread(mddev->sync_thread); 7252 sysfs_notify_dirent_safe(mddev->sysfs_action); 7253 md_new_event(mddev); 7254 } 7255 unlock: 7256 if (!mddev->sync_thread) { 7257 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7258 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7259 &mddev->recovery)) 7260 if (mddev->sysfs_action) 7261 sysfs_notify_dirent_safe(mddev->sysfs_action); 7262 } 7263 mddev_unlock(mddev); 7264 } 7265 } 7266 7267 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 7268 { 7269 sysfs_notify_dirent_safe(rdev->sysfs_state); 7270 wait_event_timeout(rdev->blocked_wait, 7271 !test_bit(Blocked, &rdev->flags), 7272 msecs_to_jiffies(5000)); 7273 rdev_dec_pending(rdev, mddev); 7274 } 7275 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7276 7277 static int md_notify_reboot(struct notifier_block *this, 7278 unsigned long code, void *x) 7279 { 7280 struct list_head *tmp; 7281 mddev_t *mddev; 7282 7283 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 7284 7285 printk(KERN_INFO "md: stopping all md devices.\n"); 7286 7287 for_each_mddev(mddev, tmp) 7288 if (mddev_trylock(mddev)) { 7289 /* Force a switch to readonly even array 7290 * appears to still be in use. Hence 7291 * the '100'. 7292 */ 7293 md_set_readonly(mddev, 100); 7294 mddev_unlock(mddev); 7295 } 7296 /* 7297 * certain more exotic SCSI devices are known to be 7298 * volatile wrt too early system reboots. While the 7299 * right place to handle this issue is the given 7300 * driver, we do want to have a safe RAID driver ... 7301 */ 7302 mdelay(1000*1); 7303 } 7304 return NOTIFY_DONE; 7305 } 7306 7307 static struct notifier_block md_notifier = { 7308 .notifier_call = md_notify_reboot, 7309 .next = NULL, 7310 .priority = INT_MAX, /* before any real devices */ 7311 }; 7312 7313 static void md_geninit(void) 7314 { 7315 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 7316 7317 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 7318 } 7319 7320 static int __init md_init(void) 7321 { 7322 int ret = -ENOMEM; 7323 7324 md_wq = alloc_workqueue("md", WQ_RESCUER, 0); 7325 if (!md_wq) 7326 goto err_wq; 7327 7328 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 7329 if (!md_misc_wq) 7330 goto err_misc_wq; 7331 7332 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 7333 goto err_md; 7334 7335 if ((ret = register_blkdev(0, "mdp")) < 0) 7336 goto err_mdp; 7337 mdp_major = ret; 7338 7339 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 7340 md_probe, NULL, NULL); 7341 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 7342 md_probe, NULL, NULL); 7343 7344 register_reboot_notifier(&md_notifier); 7345 raid_table_header = register_sysctl_table(raid_root_table); 7346 7347 md_geninit(); 7348 return 0; 7349 7350 err_mdp: 7351 unregister_blkdev(MD_MAJOR, "md"); 7352 err_md: 7353 destroy_workqueue(md_misc_wq); 7354 err_misc_wq: 7355 destroy_workqueue(md_wq); 7356 err_wq: 7357 return ret; 7358 } 7359 7360 #ifndef MODULE 7361 7362 /* 7363 * Searches all registered partitions for autorun RAID arrays 7364 * at boot time. 7365 */ 7366 7367 static LIST_HEAD(all_detected_devices); 7368 struct detected_devices_node { 7369 struct list_head list; 7370 dev_t dev; 7371 }; 7372 7373 void md_autodetect_dev(dev_t dev) 7374 { 7375 struct detected_devices_node *node_detected_dev; 7376 7377 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 7378 if (node_detected_dev) { 7379 node_detected_dev->dev = dev; 7380 list_add_tail(&node_detected_dev->list, &all_detected_devices); 7381 } else { 7382 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 7383 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 7384 } 7385 } 7386 7387 7388 static void autostart_arrays(int part) 7389 { 7390 mdk_rdev_t *rdev; 7391 struct detected_devices_node *node_detected_dev; 7392 dev_t dev; 7393 int i_scanned, i_passed; 7394 7395 i_scanned = 0; 7396 i_passed = 0; 7397 7398 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 7399 7400 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 7401 i_scanned++; 7402 node_detected_dev = list_entry(all_detected_devices.next, 7403 struct detected_devices_node, list); 7404 list_del(&node_detected_dev->list); 7405 dev = node_detected_dev->dev; 7406 kfree(node_detected_dev); 7407 rdev = md_import_device(dev,0, 90); 7408 if (IS_ERR(rdev)) 7409 continue; 7410 7411 if (test_bit(Faulty, &rdev->flags)) { 7412 MD_BUG(); 7413 continue; 7414 } 7415 set_bit(AutoDetected, &rdev->flags); 7416 list_add(&rdev->same_set, &pending_raid_disks); 7417 i_passed++; 7418 } 7419 7420 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 7421 i_scanned, i_passed); 7422 7423 autorun_devices(part); 7424 } 7425 7426 #endif /* !MODULE */ 7427 7428 static __exit void md_exit(void) 7429 { 7430 mddev_t *mddev; 7431 struct list_head *tmp; 7432 7433 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 7434 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 7435 7436 unregister_blkdev(MD_MAJOR,"md"); 7437 unregister_blkdev(mdp_major, "mdp"); 7438 unregister_reboot_notifier(&md_notifier); 7439 unregister_sysctl_table(raid_table_header); 7440 remove_proc_entry("mdstat", NULL); 7441 for_each_mddev(mddev, tmp) { 7442 export_array(mddev); 7443 mddev->hold_active = 0; 7444 } 7445 destroy_workqueue(md_misc_wq); 7446 destroy_workqueue(md_wq); 7447 } 7448 7449 subsys_initcall(md_init); 7450 module_exit(md_exit) 7451 7452 static int get_ro(char *buffer, struct kernel_param *kp) 7453 { 7454 return sprintf(buffer, "%d", start_readonly); 7455 } 7456 static int set_ro(const char *val, struct kernel_param *kp) 7457 { 7458 char *e; 7459 int num = simple_strtoul(val, &e, 10); 7460 if (*val && (*e == '\0' || *e == '\n')) { 7461 start_readonly = num; 7462 return 0; 7463 } 7464 return -EINVAL; 7465 } 7466 7467 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 7468 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 7469 7470 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 7471 7472 EXPORT_SYMBOL(register_md_personality); 7473 EXPORT_SYMBOL(unregister_md_personality); 7474 EXPORT_SYMBOL(md_error); 7475 EXPORT_SYMBOL(md_done_sync); 7476 EXPORT_SYMBOL(md_write_start); 7477 EXPORT_SYMBOL(md_write_end); 7478 EXPORT_SYMBOL(md_register_thread); 7479 EXPORT_SYMBOL(md_unregister_thread); 7480 EXPORT_SYMBOL(md_wakeup_thread); 7481 EXPORT_SYMBOL(md_check_recovery); 7482 MODULE_LICENSE("GPL"); 7483 MODULE_DESCRIPTION("MD RAID framework"); 7484 MODULE_ALIAS("md"); 7485 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 7486