xref: /linux/drivers/md/md.c (revision 2dbf708448c836754d25fe6108c5bfe1f5697c95)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74 
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76 
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95 
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 	return mddev->sync_speed_min ?
101 		mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103 
104 static inline int speed_max(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_max ?
107 		mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109 
110 static struct ctl_table_header *raid_table_header;
111 
112 static ctl_table raid_table[] = {
113 	{
114 		.procname	= "speed_limit_min",
115 		.data		= &sysctl_speed_limit_min,
116 		.maxlen		= sizeof(int),
117 		.mode		= S_IRUGO|S_IWUSR,
118 		.proc_handler	= proc_dointvec,
119 	},
120 	{
121 		.procname	= "speed_limit_max",
122 		.data		= &sysctl_speed_limit_max,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{ }
128 };
129 
130 static ctl_table raid_dir_table[] = {
131 	{
132 		.procname	= "raid",
133 		.maxlen		= 0,
134 		.mode		= S_IRUGO|S_IXUGO,
135 		.child		= raid_table,
136 	},
137 	{ }
138 };
139 
140 static ctl_table raid_root_table[] = {
141 	{
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{  }
148 };
149 
150 static const struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157 
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160 	struct mddev *mddev, **mddevp;
161 
162 	mddevp = (void*)bio;
163 	mddev = mddevp[-1];
164 
165 	bio_free(bio, mddev->bio_set);
166 }
167 
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 			    struct mddev *mddev)
170 {
171 	struct bio *b;
172 	struct mddev **mddevp;
173 
174 	if (!mddev || !mddev->bio_set)
175 		return bio_alloc(gfp_mask, nr_iovecs);
176 
177 	b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 			     mddev->bio_set);
179 	if (!b)
180 		return NULL;
181 	mddevp = (void*)b;
182 	mddevp[-1] = mddev;
183 	b->bi_destructor = mddev_bio_destructor;
184 	return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187 
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 			    struct mddev *mddev)
190 {
191 	struct bio *b;
192 	struct mddev **mddevp;
193 
194 	if (!mddev || !mddev->bio_set)
195 		return bio_clone(bio, gfp_mask);
196 
197 	b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 			     mddev->bio_set);
199 	if (!b)
200 		return NULL;
201 	mddevp = (void*)b;
202 	mddevp[-1] = mddev;
203 	b->bi_destructor = mddev_bio_destructor;
204 	__bio_clone(b, bio);
205 	if (bio_integrity(bio)) {
206 		int ret;
207 
208 		ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209 
210 		if (ret < 0) {
211 			bio_put(b);
212 			return NULL;
213 		}
214 	}
215 
216 	return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219 
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222 	/* 'bio' is a cloned bio which we need to trim to match
223 	 * the given offset and size.
224 	 * This requires adjusting bi_sector, bi_size, and bi_io_vec
225 	 */
226 	int i;
227 	struct bio_vec *bvec;
228 	int sofar = 0;
229 
230 	size <<= 9;
231 	if (offset == 0 && size == bio->bi_size)
232 		return;
233 
234 	bio->bi_sector += offset;
235 	bio->bi_size = size;
236 	offset <<= 9;
237 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238 
239 	while (bio->bi_idx < bio->bi_vcnt &&
240 	       bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 		/* remove this whole bio_vec */
242 		offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 		bio->bi_idx++;
244 	}
245 	if (bio->bi_idx < bio->bi_vcnt) {
246 		bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 		bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248 	}
249 	/* avoid any complications with bi_idx being non-zero*/
250 	if (bio->bi_idx) {
251 		memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 			(bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 		bio->bi_vcnt -= bio->bi_idx;
254 		bio->bi_idx = 0;
255 	}
256 	/* Make sure vcnt and last bv are not too big */
257 	bio_for_each_segment(bvec, bio, i) {
258 		if (sofar + bvec->bv_len > size)
259 			bvec->bv_len = size - sofar;
260 		if (bvec->bv_len == 0) {
261 			bio->bi_vcnt = i;
262 			break;
263 		}
264 		sofar += bvec->bv_len;
265 	}
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268 
269 /*
270  * We have a system wide 'event count' that is incremented
271  * on any 'interesting' event, and readers of /proc/mdstat
272  * can use 'poll' or 'select' to find out when the event
273  * count increases.
274  *
275  * Events are:
276  *  start array, stop array, error, add device, remove device,
277  *  start build, activate spare
278  */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283 	atomic_inc(&md_event_count);
284 	wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287 
288 /* Alternate version that can be called from interrupts
289  * when calling sysfs_notify isn't needed.
290  */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293 	atomic_inc(&md_event_count);
294 	wake_up(&md_event_waiters);
295 }
296 
297 /*
298  * Enables to iterate over all existing md arrays
299  * all_mddevs_lock protects this list.
300  */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303 
304 
305 /*
306  * iterates through all used mddevs in the system.
307  * We take care to grab the all_mddevs_lock whenever navigating
308  * the list, and to always hold a refcount when unlocked.
309  * Any code which breaks out of this loop while own
310  * a reference to the current mddev and must mddev_put it.
311  */
312 #define for_each_mddev(_mddev,_tmp)					\
313 									\
314 	for (({ spin_lock(&all_mddevs_lock); 				\
315 		_tmp = all_mddevs.next;					\
316 		_mddev = NULL;});					\
317 	     ({ if (_tmp != &all_mddevs)				\
318 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 		spin_unlock(&all_mddevs_lock);				\
320 		if (_mddev) mddev_put(_mddev);				\
321 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
322 		_tmp != &all_mddevs;});					\
323 	     ({ spin_lock(&all_mddevs_lock);				\
324 		_tmp = _tmp->next;})					\
325 		)
326 
327 
328 /* Rather than calling directly into the personality make_request function,
329  * IO requests come here first so that we can check if the device is
330  * being suspended pending a reconfiguration.
331  * We hold a refcount over the call to ->make_request.  By the time that
332  * call has finished, the bio has been linked into some internal structure
333  * and so is visible to ->quiesce(), so we don't need the refcount any more.
334  */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337 	const int rw = bio_data_dir(bio);
338 	struct mddev *mddev = q->queuedata;
339 	int cpu;
340 	unsigned int sectors;
341 
342 	if (mddev == NULL || mddev->pers == NULL
343 	    || !mddev->ready) {
344 		bio_io_error(bio);
345 		return;
346 	}
347 	smp_rmb(); /* Ensure implications of  'active' are visible */
348 	rcu_read_lock();
349 	if (mddev->suspended) {
350 		DEFINE_WAIT(__wait);
351 		for (;;) {
352 			prepare_to_wait(&mddev->sb_wait, &__wait,
353 					TASK_UNINTERRUPTIBLE);
354 			if (!mddev->suspended)
355 				break;
356 			rcu_read_unlock();
357 			schedule();
358 			rcu_read_lock();
359 		}
360 		finish_wait(&mddev->sb_wait, &__wait);
361 	}
362 	atomic_inc(&mddev->active_io);
363 	rcu_read_unlock();
364 
365 	/*
366 	 * save the sectors now since our bio can
367 	 * go away inside make_request
368 	 */
369 	sectors = bio_sectors(bio);
370 	mddev->pers->make_request(mddev, bio);
371 
372 	cpu = part_stat_lock();
373 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375 	part_stat_unlock();
376 
377 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378 		wake_up(&mddev->sb_wait);
379 }
380 
381 /* mddev_suspend makes sure no new requests are submitted
382  * to the device, and that any requests that have been submitted
383  * are completely handled.
384  * Once ->stop is called and completes, the module will be completely
385  * unused.
386  */
387 void mddev_suspend(struct mddev *mddev)
388 {
389 	BUG_ON(mddev->suspended);
390 	mddev->suspended = 1;
391 	synchronize_rcu();
392 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393 	mddev->pers->quiesce(mddev, 1);
394 
395 	del_timer_sync(&mddev->safemode_timer);
396 }
397 EXPORT_SYMBOL_GPL(mddev_suspend);
398 
399 void mddev_resume(struct mddev *mddev)
400 {
401 	mddev->suspended = 0;
402 	wake_up(&mddev->sb_wait);
403 	mddev->pers->quiesce(mddev, 0);
404 
405 	md_wakeup_thread(mddev->thread);
406 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
407 }
408 EXPORT_SYMBOL_GPL(mddev_resume);
409 
410 int mddev_congested(struct mddev *mddev, int bits)
411 {
412 	return mddev->suspended;
413 }
414 EXPORT_SYMBOL(mddev_congested);
415 
416 /*
417  * Generic flush handling for md
418  */
419 
420 static void md_end_flush(struct bio *bio, int err)
421 {
422 	struct md_rdev *rdev = bio->bi_private;
423 	struct mddev *mddev = rdev->mddev;
424 
425 	rdev_dec_pending(rdev, mddev);
426 
427 	if (atomic_dec_and_test(&mddev->flush_pending)) {
428 		/* The pre-request flush has finished */
429 		queue_work(md_wq, &mddev->flush_work);
430 	}
431 	bio_put(bio);
432 }
433 
434 static void md_submit_flush_data(struct work_struct *ws);
435 
436 static void submit_flushes(struct work_struct *ws)
437 {
438 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
439 	struct md_rdev *rdev;
440 
441 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
442 	atomic_set(&mddev->flush_pending, 1);
443 	rcu_read_lock();
444 	rdev_for_each_rcu(rdev, mddev)
445 		if (rdev->raid_disk >= 0 &&
446 		    !test_bit(Faulty, &rdev->flags)) {
447 			/* Take two references, one is dropped
448 			 * when request finishes, one after
449 			 * we reclaim rcu_read_lock
450 			 */
451 			struct bio *bi;
452 			atomic_inc(&rdev->nr_pending);
453 			atomic_inc(&rdev->nr_pending);
454 			rcu_read_unlock();
455 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
456 			bi->bi_end_io = md_end_flush;
457 			bi->bi_private = rdev;
458 			bi->bi_bdev = rdev->bdev;
459 			atomic_inc(&mddev->flush_pending);
460 			submit_bio(WRITE_FLUSH, bi);
461 			rcu_read_lock();
462 			rdev_dec_pending(rdev, mddev);
463 		}
464 	rcu_read_unlock();
465 	if (atomic_dec_and_test(&mddev->flush_pending))
466 		queue_work(md_wq, &mddev->flush_work);
467 }
468 
469 static void md_submit_flush_data(struct work_struct *ws)
470 {
471 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
472 	struct bio *bio = mddev->flush_bio;
473 
474 	if (bio->bi_size == 0)
475 		/* an empty barrier - all done */
476 		bio_endio(bio, 0);
477 	else {
478 		bio->bi_rw &= ~REQ_FLUSH;
479 		mddev->pers->make_request(mddev, bio);
480 	}
481 
482 	mddev->flush_bio = NULL;
483 	wake_up(&mddev->sb_wait);
484 }
485 
486 void md_flush_request(struct mddev *mddev, struct bio *bio)
487 {
488 	spin_lock_irq(&mddev->write_lock);
489 	wait_event_lock_irq(mddev->sb_wait,
490 			    !mddev->flush_bio,
491 			    mddev->write_lock, /*nothing*/);
492 	mddev->flush_bio = bio;
493 	spin_unlock_irq(&mddev->write_lock);
494 
495 	INIT_WORK(&mddev->flush_work, submit_flushes);
496 	queue_work(md_wq, &mddev->flush_work);
497 }
498 EXPORT_SYMBOL(md_flush_request);
499 
500 /* Support for plugging.
501  * This mirrors the plugging support in request_queue, but does not
502  * require having a whole queue or request structures.
503  * We allocate an md_plug_cb for each md device and each thread it gets
504  * plugged on.  This links tot the private plug_handle structure in the
505  * personality data where we keep a count of the number of outstanding
506  * plugs so other code can see if a plug is active.
507  */
508 struct md_plug_cb {
509 	struct blk_plug_cb cb;
510 	struct mddev *mddev;
511 };
512 
513 static void plugger_unplug(struct blk_plug_cb *cb)
514 {
515 	struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
516 	if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
517 		md_wakeup_thread(mdcb->mddev->thread);
518 	kfree(mdcb);
519 }
520 
521 /* Check that an unplug wakeup will come shortly.
522  * If not, wakeup the md thread immediately
523  */
524 int mddev_check_plugged(struct mddev *mddev)
525 {
526 	struct blk_plug *plug = current->plug;
527 	struct md_plug_cb *mdcb;
528 
529 	if (!plug)
530 		return 0;
531 
532 	list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
533 		if (mdcb->cb.callback == plugger_unplug &&
534 		    mdcb->mddev == mddev) {
535 			/* Already on the list, move to top */
536 			if (mdcb != list_first_entry(&plug->cb_list,
537 						    struct md_plug_cb,
538 						    cb.list))
539 				list_move(&mdcb->cb.list, &plug->cb_list);
540 			return 1;
541 		}
542 	}
543 	/* Not currently on the callback list */
544 	mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
545 	if (!mdcb)
546 		return 0;
547 
548 	mdcb->mddev = mddev;
549 	mdcb->cb.callback = plugger_unplug;
550 	atomic_inc(&mddev->plug_cnt);
551 	list_add(&mdcb->cb.list, &plug->cb_list);
552 	return 1;
553 }
554 EXPORT_SYMBOL_GPL(mddev_check_plugged);
555 
556 static inline struct mddev *mddev_get(struct mddev *mddev)
557 {
558 	atomic_inc(&mddev->active);
559 	return mddev;
560 }
561 
562 static void mddev_delayed_delete(struct work_struct *ws);
563 
564 static void mddev_put(struct mddev *mddev)
565 {
566 	struct bio_set *bs = NULL;
567 
568 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
569 		return;
570 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
571 	    mddev->ctime == 0 && !mddev->hold_active) {
572 		/* Array is not configured at all, and not held active,
573 		 * so destroy it */
574 		list_del_init(&mddev->all_mddevs);
575 		bs = mddev->bio_set;
576 		mddev->bio_set = NULL;
577 		if (mddev->gendisk) {
578 			/* We did a probe so need to clean up.  Call
579 			 * queue_work inside the spinlock so that
580 			 * flush_workqueue() after mddev_find will
581 			 * succeed in waiting for the work to be done.
582 			 */
583 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
584 			queue_work(md_misc_wq, &mddev->del_work);
585 		} else
586 			kfree(mddev);
587 	}
588 	spin_unlock(&all_mddevs_lock);
589 	if (bs)
590 		bioset_free(bs);
591 }
592 
593 void mddev_init(struct mddev *mddev)
594 {
595 	mutex_init(&mddev->open_mutex);
596 	mutex_init(&mddev->reconfig_mutex);
597 	mutex_init(&mddev->bitmap_info.mutex);
598 	INIT_LIST_HEAD(&mddev->disks);
599 	INIT_LIST_HEAD(&mddev->all_mddevs);
600 	init_timer(&mddev->safemode_timer);
601 	atomic_set(&mddev->active, 1);
602 	atomic_set(&mddev->openers, 0);
603 	atomic_set(&mddev->active_io, 0);
604 	atomic_set(&mddev->plug_cnt, 0);
605 	spin_lock_init(&mddev->write_lock);
606 	atomic_set(&mddev->flush_pending, 0);
607 	init_waitqueue_head(&mddev->sb_wait);
608 	init_waitqueue_head(&mddev->recovery_wait);
609 	mddev->reshape_position = MaxSector;
610 	mddev->reshape_backwards = 0;
611 	mddev->resync_min = 0;
612 	mddev->resync_max = MaxSector;
613 	mddev->level = LEVEL_NONE;
614 }
615 EXPORT_SYMBOL_GPL(mddev_init);
616 
617 static struct mddev * mddev_find(dev_t unit)
618 {
619 	struct mddev *mddev, *new = NULL;
620 
621 	if (unit && MAJOR(unit) != MD_MAJOR)
622 		unit &= ~((1<<MdpMinorShift)-1);
623 
624  retry:
625 	spin_lock(&all_mddevs_lock);
626 
627 	if (unit) {
628 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
629 			if (mddev->unit == unit) {
630 				mddev_get(mddev);
631 				spin_unlock(&all_mddevs_lock);
632 				kfree(new);
633 				return mddev;
634 			}
635 
636 		if (new) {
637 			list_add(&new->all_mddevs, &all_mddevs);
638 			spin_unlock(&all_mddevs_lock);
639 			new->hold_active = UNTIL_IOCTL;
640 			return new;
641 		}
642 	} else if (new) {
643 		/* find an unused unit number */
644 		static int next_minor = 512;
645 		int start = next_minor;
646 		int is_free = 0;
647 		int dev = 0;
648 		while (!is_free) {
649 			dev = MKDEV(MD_MAJOR, next_minor);
650 			next_minor++;
651 			if (next_minor > MINORMASK)
652 				next_minor = 0;
653 			if (next_minor == start) {
654 				/* Oh dear, all in use. */
655 				spin_unlock(&all_mddevs_lock);
656 				kfree(new);
657 				return NULL;
658 			}
659 
660 			is_free = 1;
661 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
662 				if (mddev->unit == dev) {
663 					is_free = 0;
664 					break;
665 				}
666 		}
667 		new->unit = dev;
668 		new->md_minor = MINOR(dev);
669 		new->hold_active = UNTIL_STOP;
670 		list_add(&new->all_mddevs, &all_mddevs);
671 		spin_unlock(&all_mddevs_lock);
672 		return new;
673 	}
674 	spin_unlock(&all_mddevs_lock);
675 
676 	new = kzalloc(sizeof(*new), GFP_KERNEL);
677 	if (!new)
678 		return NULL;
679 
680 	new->unit = unit;
681 	if (MAJOR(unit) == MD_MAJOR)
682 		new->md_minor = MINOR(unit);
683 	else
684 		new->md_minor = MINOR(unit) >> MdpMinorShift;
685 
686 	mddev_init(new);
687 
688 	goto retry;
689 }
690 
691 static inline int mddev_lock(struct mddev * mddev)
692 {
693 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
694 }
695 
696 static inline int mddev_is_locked(struct mddev *mddev)
697 {
698 	return mutex_is_locked(&mddev->reconfig_mutex);
699 }
700 
701 static inline int mddev_trylock(struct mddev * mddev)
702 {
703 	return mutex_trylock(&mddev->reconfig_mutex);
704 }
705 
706 static struct attribute_group md_redundancy_group;
707 
708 static void mddev_unlock(struct mddev * mddev)
709 {
710 	if (mddev->to_remove) {
711 		/* These cannot be removed under reconfig_mutex as
712 		 * an access to the files will try to take reconfig_mutex
713 		 * while holding the file unremovable, which leads to
714 		 * a deadlock.
715 		 * So hold set sysfs_active while the remove in happeing,
716 		 * and anything else which might set ->to_remove or my
717 		 * otherwise change the sysfs namespace will fail with
718 		 * -EBUSY if sysfs_active is still set.
719 		 * We set sysfs_active under reconfig_mutex and elsewhere
720 		 * test it under the same mutex to ensure its correct value
721 		 * is seen.
722 		 */
723 		struct attribute_group *to_remove = mddev->to_remove;
724 		mddev->to_remove = NULL;
725 		mddev->sysfs_active = 1;
726 		mutex_unlock(&mddev->reconfig_mutex);
727 
728 		if (mddev->kobj.sd) {
729 			if (to_remove != &md_redundancy_group)
730 				sysfs_remove_group(&mddev->kobj, to_remove);
731 			if (mddev->pers == NULL ||
732 			    mddev->pers->sync_request == NULL) {
733 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
734 				if (mddev->sysfs_action)
735 					sysfs_put(mddev->sysfs_action);
736 				mddev->sysfs_action = NULL;
737 			}
738 		}
739 		mddev->sysfs_active = 0;
740 	} else
741 		mutex_unlock(&mddev->reconfig_mutex);
742 
743 	/* As we've dropped the mutex we need a spinlock to
744 	 * make sure the thread doesn't disappear
745 	 */
746 	spin_lock(&pers_lock);
747 	md_wakeup_thread(mddev->thread);
748 	spin_unlock(&pers_lock);
749 }
750 
751 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
752 {
753 	struct md_rdev *rdev;
754 
755 	rdev_for_each(rdev, mddev)
756 		if (rdev->desc_nr == nr)
757 			return rdev;
758 
759 	return NULL;
760 }
761 
762 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
763 {
764 	struct md_rdev *rdev;
765 
766 	rdev_for_each(rdev, mddev)
767 		if (rdev->bdev->bd_dev == dev)
768 			return rdev;
769 
770 	return NULL;
771 }
772 
773 static struct md_personality *find_pers(int level, char *clevel)
774 {
775 	struct md_personality *pers;
776 	list_for_each_entry(pers, &pers_list, list) {
777 		if (level != LEVEL_NONE && pers->level == level)
778 			return pers;
779 		if (strcmp(pers->name, clevel)==0)
780 			return pers;
781 	}
782 	return NULL;
783 }
784 
785 /* return the offset of the super block in 512byte sectors */
786 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
787 {
788 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
789 	return MD_NEW_SIZE_SECTORS(num_sectors);
790 }
791 
792 static int alloc_disk_sb(struct md_rdev * rdev)
793 {
794 	if (rdev->sb_page)
795 		MD_BUG();
796 
797 	rdev->sb_page = alloc_page(GFP_KERNEL);
798 	if (!rdev->sb_page) {
799 		printk(KERN_ALERT "md: out of memory.\n");
800 		return -ENOMEM;
801 	}
802 
803 	return 0;
804 }
805 
806 static void free_disk_sb(struct md_rdev * rdev)
807 {
808 	if (rdev->sb_page) {
809 		put_page(rdev->sb_page);
810 		rdev->sb_loaded = 0;
811 		rdev->sb_page = NULL;
812 		rdev->sb_start = 0;
813 		rdev->sectors = 0;
814 	}
815 	if (rdev->bb_page) {
816 		put_page(rdev->bb_page);
817 		rdev->bb_page = NULL;
818 	}
819 }
820 
821 
822 static void super_written(struct bio *bio, int error)
823 {
824 	struct md_rdev *rdev = bio->bi_private;
825 	struct mddev *mddev = rdev->mddev;
826 
827 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
828 		printk("md: super_written gets error=%d, uptodate=%d\n",
829 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
830 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
831 		md_error(mddev, rdev);
832 	}
833 
834 	if (atomic_dec_and_test(&mddev->pending_writes))
835 		wake_up(&mddev->sb_wait);
836 	bio_put(bio);
837 }
838 
839 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
840 		   sector_t sector, int size, struct page *page)
841 {
842 	/* write first size bytes of page to sector of rdev
843 	 * Increment mddev->pending_writes before returning
844 	 * and decrement it on completion, waking up sb_wait
845 	 * if zero is reached.
846 	 * If an error occurred, call md_error
847 	 */
848 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
849 
850 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
851 	bio->bi_sector = sector;
852 	bio_add_page(bio, page, size, 0);
853 	bio->bi_private = rdev;
854 	bio->bi_end_io = super_written;
855 
856 	atomic_inc(&mddev->pending_writes);
857 	submit_bio(WRITE_FLUSH_FUA, bio);
858 }
859 
860 void md_super_wait(struct mddev *mddev)
861 {
862 	/* wait for all superblock writes that were scheduled to complete */
863 	DEFINE_WAIT(wq);
864 	for(;;) {
865 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
866 		if (atomic_read(&mddev->pending_writes)==0)
867 			break;
868 		schedule();
869 	}
870 	finish_wait(&mddev->sb_wait, &wq);
871 }
872 
873 static void bi_complete(struct bio *bio, int error)
874 {
875 	complete((struct completion*)bio->bi_private);
876 }
877 
878 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
879 		 struct page *page, int rw, bool metadata_op)
880 {
881 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
882 	struct completion event;
883 	int ret;
884 
885 	rw |= REQ_SYNC;
886 
887 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
888 		rdev->meta_bdev : rdev->bdev;
889 	if (metadata_op)
890 		bio->bi_sector = sector + rdev->sb_start;
891 	else if (rdev->mddev->reshape_position != MaxSector &&
892 		 (rdev->mddev->reshape_backwards ==
893 		  (sector >= rdev->mddev->reshape_position)))
894 		bio->bi_sector = sector + rdev->new_data_offset;
895 	else
896 		bio->bi_sector = sector + rdev->data_offset;
897 	bio_add_page(bio, page, size, 0);
898 	init_completion(&event);
899 	bio->bi_private = &event;
900 	bio->bi_end_io = bi_complete;
901 	submit_bio(rw, bio);
902 	wait_for_completion(&event);
903 
904 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
905 	bio_put(bio);
906 	return ret;
907 }
908 EXPORT_SYMBOL_GPL(sync_page_io);
909 
910 static int read_disk_sb(struct md_rdev * rdev, int size)
911 {
912 	char b[BDEVNAME_SIZE];
913 	if (!rdev->sb_page) {
914 		MD_BUG();
915 		return -EINVAL;
916 	}
917 	if (rdev->sb_loaded)
918 		return 0;
919 
920 
921 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
922 		goto fail;
923 	rdev->sb_loaded = 1;
924 	return 0;
925 
926 fail:
927 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
928 		bdevname(rdev->bdev,b));
929 	return -EINVAL;
930 }
931 
932 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
933 {
934 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
935 		sb1->set_uuid1 == sb2->set_uuid1 &&
936 		sb1->set_uuid2 == sb2->set_uuid2 &&
937 		sb1->set_uuid3 == sb2->set_uuid3;
938 }
939 
940 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
941 {
942 	int ret;
943 	mdp_super_t *tmp1, *tmp2;
944 
945 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
946 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
947 
948 	if (!tmp1 || !tmp2) {
949 		ret = 0;
950 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
951 		goto abort;
952 	}
953 
954 	*tmp1 = *sb1;
955 	*tmp2 = *sb2;
956 
957 	/*
958 	 * nr_disks is not constant
959 	 */
960 	tmp1->nr_disks = 0;
961 	tmp2->nr_disks = 0;
962 
963 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
964 abort:
965 	kfree(tmp1);
966 	kfree(tmp2);
967 	return ret;
968 }
969 
970 
971 static u32 md_csum_fold(u32 csum)
972 {
973 	csum = (csum & 0xffff) + (csum >> 16);
974 	return (csum & 0xffff) + (csum >> 16);
975 }
976 
977 static unsigned int calc_sb_csum(mdp_super_t * sb)
978 {
979 	u64 newcsum = 0;
980 	u32 *sb32 = (u32*)sb;
981 	int i;
982 	unsigned int disk_csum, csum;
983 
984 	disk_csum = sb->sb_csum;
985 	sb->sb_csum = 0;
986 
987 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
988 		newcsum += sb32[i];
989 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
990 
991 
992 #ifdef CONFIG_ALPHA
993 	/* This used to use csum_partial, which was wrong for several
994 	 * reasons including that different results are returned on
995 	 * different architectures.  It isn't critical that we get exactly
996 	 * the same return value as before (we always csum_fold before
997 	 * testing, and that removes any differences).  However as we
998 	 * know that csum_partial always returned a 16bit value on
999 	 * alphas, do a fold to maximise conformity to previous behaviour.
1000 	 */
1001 	sb->sb_csum = md_csum_fold(disk_csum);
1002 #else
1003 	sb->sb_csum = disk_csum;
1004 #endif
1005 	return csum;
1006 }
1007 
1008 
1009 /*
1010  * Handle superblock details.
1011  * We want to be able to handle multiple superblock formats
1012  * so we have a common interface to them all, and an array of
1013  * different handlers.
1014  * We rely on user-space to write the initial superblock, and support
1015  * reading and updating of superblocks.
1016  * Interface methods are:
1017  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1018  *      loads and validates a superblock on dev.
1019  *      if refdev != NULL, compare superblocks on both devices
1020  *    Return:
1021  *      0 - dev has a superblock that is compatible with refdev
1022  *      1 - dev has a superblock that is compatible and newer than refdev
1023  *          so dev should be used as the refdev in future
1024  *     -EINVAL superblock incompatible or invalid
1025  *     -othererror e.g. -EIO
1026  *
1027  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1028  *      Verify that dev is acceptable into mddev.
1029  *       The first time, mddev->raid_disks will be 0, and data from
1030  *       dev should be merged in.  Subsequent calls check that dev
1031  *       is new enough.  Return 0 or -EINVAL
1032  *
1033  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1034  *     Update the superblock for rdev with data in mddev
1035  *     This does not write to disc.
1036  *
1037  */
1038 
1039 struct super_type  {
1040 	char		    *name;
1041 	struct module	    *owner;
1042 	int		    (*load_super)(struct md_rdev *rdev,
1043 					  struct md_rdev *refdev,
1044 					  int minor_version);
1045 	int		    (*validate_super)(struct mddev *mddev,
1046 					      struct md_rdev *rdev);
1047 	void		    (*sync_super)(struct mddev *mddev,
1048 					  struct md_rdev *rdev);
1049 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1050 						sector_t num_sectors);
1051 	int		    (*allow_new_offset)(struct md_rdev *rdev,
1052 						unsigned long long new_offset);
1053 };
1054 
1055 /*
1056  * Check that the given mddev has no bitmap.
1057  *
1058  * This function is called from the run method of all personalities that do not
1059  * support bitmaps. It prints an error message and returns non-zero if mddev
1060  * has a bitmap. Otherwise, it returns 0.
1061  *
1062  */
1063 int md_check_no_bitmap(struct mddev *mddev)
1064 {
1065 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1066 		return 0;
1067 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1068 		mdname(mddev), mddev->pers->name);
1069 	return 1;
1070 }
1071 EXPORT_SYMBOL(md_check_no_bitmap);
1072 
1073 /*
1074  * load_super for 0.90.0
1075  */
1076 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1077 {
1078 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1079 	mdp_super_t *sb;
1080 	int ret;
1081 
1082 	/*
1083 	 * Calculate the position of the superblock (512byte sectors),
1084 	 * it's at the end of the disk.
1085 	 *
1086 	 * It also happens to be a multiple of 4Kb.
1087 	 */
1088 	rdev->sb_start = calc_dev_sboffset(rdev);
1089 
1090 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1091 	if (ret) return ret;
1092 
1093 	ret = -EINVAL;
1094 
1095 	bdevname(rdev->bdev, b);
1096 	sb = page_address(rdev->sb_page);
1097 
1098 	if (sb->md_magic != MD_SB_MAGIC) {
1099 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1100 		       b);
1101 		goto abort;
1102 	}
1103 
1104 	if (sb->major_version != 0 ||
1105 	    sb->minor_version < 90 ||
1106 	    sb->minor_version > 91) {
1107 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1108 			sb->major_version, sb->minor_version,
1109 			b);
1110 		goto abort;
1111 	}
1112 
1113 	if (sb->raid_disks <= 0)
1114 		goto abort;
1115 
1116 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1117 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1118 			b);
1119 		goto abort;
1120 	}
1121 
1122 	rdev->preferred_minor = sb->md_minor;
1123 	rdev->data_offset = 0;
1124 	rdev->new_data_offset = 0;
1125 	rdev->sb_size = MD_SB_BYTES;
1126 	rdev->badblocks.shift = -1;
1127 
1128 	if (sb->level == LEVEL_MULTIPATH)
1129 		rdev->desc_nr = -1;
1130 	else
1131 		rdev->desc_nr = sb->this_disk.number;
1132 
1133 	if (!refdev) {
1134 		ret = 1;
1135 	} else {
1136 		__u64 ev1, ev2;
1137 		mdp_super_t *refsb = page_address(refdev->sb_page);
1138 		if (!uuid_equal(refsb, sb)) {
1139 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1140 				b, bdevname(refdev->bdev,b2));
1141 			goto abort;
1142 		}
1143 		if (!sb_equal(refsb, sb)) {
1144 			printk(KERN_WARNING "md: %s has same UUID"
1145 			       " but different superblock to %s\n",
1146 			       b, bdevname(refdev->bdev, b2));
1147 			goto abort;
1148 		}
1149 		ev1 = md_event(sb);
1150 		ev2 = md_event(refsb);
1151 		if (ev1 > ev2)
1152 			ret = 1;
1153 		else
1154 			ret = 0;
1155 	}
1156 	rdev->sectors = rdev->sb_start;
1157 	/* Limit to 4TB as metadata cannot record more than that */
1158 	if (rdev->sectors >= (2ULL << 32))
1159 		rdev->sectors = (2ULL << 32) - 2;
1160 
1161 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1162 		/* "this cannot possibly happen" ... */
1163 		ret = -EINVAL;
1164 
1165  abort:
1166 	return ret;
1167 }
1168 
1169 /*
1170  * validate_super for 0.90.0
1171  */
1172 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1173 {
1174 	mdp_disk_t *desc;
1175 	mdp_super_t *sb = page_address(rdev->sb_page);
1176 	__u64 ev1 = md_event(sb);
1177 
1178 	rdev->raid_disk = -1;
1179 	clear_bit(Faulty, &rdev->flags);
1180 	clear_bit(In_sync, &rdev->flags);
1181 	clear_bit(WriteMostly, &rdev->flags);
1182 
1183 	if (mddev->raid_disks == 0) {
1184 		mddev->major_version = 0;
1185 		mddev->minor_version = sb->minor_version;
1186 		mddev->patch_version = sb->patch_version;
1187 		mddev->external = 0;
1188 		mddev->chunk_sectors = sb->chunk_size >> 9;
1189 		mddev->ctime = sb->ctime;
1190 		mddev->utime = sb->utime;
1191 		mddev->level = sb->level;
1192 		mddev->clevel[0] = 0;
1193 		mddev->layout = sb->layout;
1194 		mddev->raid_disks = sb->raid_disks;
1195 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1196 		mddev->events = ev1;
1197 		mddev->bitmap_info.offset = 0;
1198 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1199 		mddev->reshape_backwards = 0;
1200 
1201 		if (mddev->minor_version >= 91) {
1202 			mddev->reshape_position = sb->reshape_position;
1203 			mddev->delta_disks = sb->delta_disks;
1204 			mddev->new_level = sb->new_level;
1205 			mddev->new_layout = sb->new_layout;
1206 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1207 			if (mddev->delta_disks < 0)
1208 				mddev->reshape_backwards = 1;
1209 		} else {
1210 			mddev->reshape_position = MaxSector;
1211 			mddev->delta_disks = 0;
1212 			mddev->new_level = mddev->level;
1213 			mddev->new_layout = mddev->layout;
1214 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1215 		}
1216 
1217 		if (sb->state & (1<<MD_SB_CLEAN))
1218 			mddev->recovery_cp = MaxSector;
1219 		else {
1220 			if (sb->events_hi == sb->cp_events_hi &&
1221 				sb->events_lo == sb->cp_events_lo) {
1222 				mddev->recovery_cp = sb->recovery_cp;
1223 			} else
1224 				mddev->recovery_cp = 0;
1225 		}
1226 
1227 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1228 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1229 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1230 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1231 
1232 		mddev->max_disks = MD_SB_DISKS;
1233 
1234 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1235 		    mddev->bitmap_info.file == NULL)
1236 			mddev->bitmap_info.offset =
1237 				mddev->bitmap_info.default_offset;
1238 
1239 	} else if (mddev->pers == NULL) {
1240 		/* Insist on good event counter while assembling, except
1241 		 * for spares (which don't need an event count) */
1242 		++ev1;
1243 		if (sb->disks[rdev->desc_nr].state & (
1244 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1245 			if (ev1 < mddev->events)
1246 				return -EINVAL;
1247 	} else if (mddev->bitmap) {
1248 		/* if adding to array with a bitmap, then we can accept an
1249 		 * older device ... but not too old.
1250 		 */
1251 		if (ev1 < mddev->bitmap->events_cleared)
1252 			return 0;
1253 	} else {
1254 		if (ev1 < mddev->events)
1255 			/* just a hot-add of a new device, leave raid_disk at -1 */
1256 			return 0;
1257 	}
1258 
1259 	if (mddev->level != LEVEL_MULTIPATH) {
1260 		desc = sb->disks + rdev->desc_nr;
1261 
1262 		if (desc->state & (1<<MD_DISK_FAULTY))
1263 			set_bit(Faulty, &rdev->flags);
1264 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1265 			    desc->raid_disk < mddev->raid_disks */) {
1266 			set_bit(In_sync, &rdev->flags);
1267 			rdev->raid_disk = desc->raid_disk;
1268 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1269 			/* active but not in sync implies recovery up to
1270 			 * reshape position.  We don't know exactly where
1271 			 * that is, so set to zero for now */
1272 			if (mddev->minor_version >= 91) {
1273 				rdev->recovery_offset = 0;
1274 				rdev->raid_disk = desc->raid_disk;
1275 			}
1276 		}
1277 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1278 			set_bit(WriteMostly, &rdev->flags);
1279 	} else /* MULTIPATH are always insync */
1280 		set_bit(In_sync, &rdev->flags);
1281 	return 0;
1282 }
1283 
1284 /*
1285  * sync_super for 0.90.0
1286  */
1287 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1288 {
1289 	mdp_super_t *sb;
1290 	struct md_rdev *rdev2;
1291 	int next_spare = mddev->raid_disks;
1292 
1293 
1294 	/* make rdev->sb match mddev data..
1295 	 *
1296 	 * 1/ zero out disks
1297 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1298 	 * 3/ any empty disks < next_spare become removed
1299 	 *
1300 	 * disks[0] gets initialised to REMOVED because
1301 	 * we cannot be sure from other fields if it has
1302 	 * been initialised or not.
1303 	 */
1304 	int i;
1305 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1306 
1307 	rdev->sb_size = MD_SB_BYTES;
1308 
1309 	sb = page_address(rdev->sb_page);
1310 
1311 	memset(sb, 0, sizeof(*sb));
1312 
1313 	sb->md_magic = MD_SB_MAGIC;
1314 	sb->major_version = mddev->major_version;
1315 	sb->patch_version = mddev->patch_version;
1316 	sb->gvalid_words  = 0; /* ignored */
1317 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1318 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1319 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1320 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1321 
1322 	sb->ctime = mddev->ctime;
1323 	sb->level = mddev->level;
1324 	sb->size = mddev->dev_sectors / 2;
1325 	sb->raid_disks = mddev->raid_disks;
1326 	sb->md_minor = mddev->md_minor;
1327 	sb->not_persistent = 0;
1328 	sb->utime = mddev->utime;
1329 	sb->state = 0;
1330 	sb->events_hi = (mddev->events>>32);
1331 	sb->events_lo = (u32)mddev->events;
1332 
1333 	if (mddev->reshape_position == MaxSector)
1334 		sb->minor_version = 90;
1335 	else {
1336 		sb->minor_version = 91;
1337 		sb->reshape_position = mddev->reshape_position;
1338 		sb->new_level = mddev->new_level;
1339 		sb->delta_disks = mddev->delta_disks;
1340 		sb->new_layout = mddev->new_layout;
1341 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1342 	}
1343 	mddev->minor_version = sb->minor_version;
1344 	if (mddev->in_sync)
1345 	{
1346 		sb->recovery_cp = mddev->recovery_cp;
1347 		sb->cp_events_hi = (mddev->events>>32);
1348 		sb->cp_events_lo = (u32)mddev->events;
1349 		if (mddev->recovery_cp == MaxSector)
1350 			sb->state = (1<< MD_SB_CLEAN);
1351 	} else
1352 		sb->recovery_cp = 0;
1353 
1354 	sb->layout = mddev->layout;
1355 	sb->chunk_size = mddev->chunk_sectors << 9;
1356 
1357 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1358 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1359 
1360 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1361 	rdev_for_each(rdev2, mddev) {
1362 		mdp_disk_t *d;
1363 		int desc_nr;
1364 		int is_active = test_bit(In_sync, &rdev2->flags);
1365 
1366 		if (rdev2->raid_disk >= 0 &&
1367 		    sb->minor_version >= 91)
1368 			/* we have nowhere to store the recovery_offset,
1369 			 * but if it is not below the reshape_position,
1370 			 * we can piggy-back on that.
1371 			 */
1372 			is_active = 1;
1373 		if (rdev2->raid_disk < 0 ||
1374 		    test_bit(Faulty, &rdev2->flags))
1375 			is_active = 0;
1376 		if (is_active)
1377 			desc_nr = rdev2->raid_disk;
1378 		else
1379 			desc_nr = next_spare++;
1380 		rdev2->desc_nr = desc_nr;
1381 		d = &sb->disks[rdev2->desc_nr];
1382 		nr_disks++;
1383 		d->number = rdev2->desc_nr;
1384 		d->major = MAJOR(rdev2->bdev->bd_dev);
1385 		d->minor = MINOR(rdev2->bdev->bd_dev);
1386 		if (is_active)
1387 			d->raid_disk = rdev2->raid_disk;
1388 		else
1389 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1390 		if (test_bit(Faulty, &rdev2->flags))
1391 			d->state = (1<<MD_DISK_FAULTY);
1392 		else if (is_active) {
1393 			d->state = (1<<MD_DISK_ACTIVE);
1394 			if (test_bit(In_sync, &rdev2->flags))
1395 				d->state |= (1<<MD_DISK_SYNC);
1396 			active++;
1397 			working++;
1398 		} else {
1399 			d->state = 0;
1400 			spare++;
1401 			working++;
1402 		}
1403 		if (test_bit(WriteMostly, &rdev2->flags))
1404 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1405 	}
1406 	/* now set the "removed" and "faulty" bits on any missing devices */
1407 	for (i=0 ; i < mddev->raid_disks ; i++) {
1408 		mdp_disk_t *d = &sb->disks[i];
1409 		if (d->state == 0 && d->number == 0) {
1410 			d->number = i;
1411 			d->raid_disk = i;
1412 			d->state = (1<<MD_DISK_REMOVED);
1413 			d->state |= (1<<MD_DISK_FAULTY);
1414 			failed++;
1415 		}
1416 	}
1417 	sb->nr_disks = nr_disks;
1418 	sb->active_disks = active;
1419 	sb->working_disks = working;
1420 	sb->failed_disks = failed;
1421 	sb->spare_disks = spare;
1422 
1423 	sb->this_disk = sb->disks[rdev->desc_nr];
1424 	sb->sb_csum = calc_sb_csum(sb);
1425 }
1426 
1427 /*
1428  * rdev_size_change for 0.90.0
1429  */
1430 static unsigned long long
1431 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1432 {
1433 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1434 		return 0; /* component must fit device */
1435 	if (rdev->mddev->bitmap_info.offset)
1436 		return 0; /* can't move bitmap */
1437 	rdev->sb_start = calc_dev_sboffset(rdev);
1438 	if (!num_sectors || num_sectors > rdev->sb_start)
1439 		num_sectors = rdev->sb_start;
1440 	/* Limit to 4TB as metadata cannot record more than that.
1441 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1442 	 */
1443 	if (num_sectors >= (2ULL << 32))
1444 		num_sectors = (2ULL << 32) - 2;
1445 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1446 		       rdev->sb_page);
1447 	md_super_wait(rdev->mddev);
1448 	return num_sectors;
1449 }
1450 
1451 static int
1452 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1453 {
1454 	/* non-zero offset changes not possible with v0.90 */
1455 	return new_offset == 0;
1456 }
1457 
1458 /*
1459  * version 1 superblock
1460  */
1461 
1462 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1463 {
1464 	__le32 disk_csum;
1465 	u32 csum;
1466 	unsigned long long newcsum;
1467 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1468 	__le32 *isuper = (__le32*)sb;
1469 	int i;
1470 
1471 	disk_csum = sb->sb_csum;
1472 	sb->sb_csum = 0;
1473 	newcsum = 0;
1474 	for (i=0; size>=4; size -= 4 )
1475 		newcsum += le32_to_cpu(*isuper++);
1476 
1477 	if (size == 2)
1478 		newcsum += le16_to_cpu(*(__le16*) isuper);
1479 
1480 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1481 	sb->sb_csum = disk_csum;
1482 	return cpu_to_le32(csum);
1483 }
1484 
1485 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1486 			    int acknowledged);
1487 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1488 {
1489 	struct mdp_superblock_1 *sb;
1490 	int ret;
1491 	sector_t sb_start;
1492 	sector_t sectors;
1493 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1494 	int bmask;
1495 
1496 	/*
1497 	 * Calculate the position of the superblock in 512byte sectors.
1498 	 * It is always aligned to a 4K boundary and
1499 	 * depeding on minor_version, it can be:
1500 	 * 0: At least 8K, but less than 12K, from end of device
1501 	 * 1: At start of device
1502 	 * 2: 4K from start of device.
1503 	 */
1504 	switch(minor_version) {
1505 	case 0:
1506 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1507 		sb_start -= 8*2;
1508 		sb_start &= ~(sector_t)(4*2-1);
1509 		break;
1510 	case 1:
1511 		sb_start = 0;
1512 		break;
1513 	case 2:
1514 		sb_start = 8;
1515 		break;
1516 	default:
1517 		return -EINVAL;
1518 	}
1519 	rdev->sb_start = sb_start;
1520 
1521 	/* superblock is rarely larger than 1K, but it can be larger,
1522 	 * and it is safe to read 4k, so we do that
1523 	 */
1524 	ret = read_disk_sb(rdev, 4096);
1525 	if (ret) return ret;
1526 
1527 
1528 	sb = page_address(rdev->sb_page);
1529 
1530 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1531 	    sb->major_version != cpu_to_le32(1) ||
1532 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1533 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1534 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1535 		return -EINVAL;
1536 
1537 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1538 		printk("md: invalid superblock checksum on %s\n",
1539 			bdevname(rdev->bdev,b));
1540 		return -EINVAL;
1541 	}
1542 	if (le64_to_cpu(sb->data_size) < 10) {
1543 		printk("md: data_size too small on %s\n",
1544 		       bdevname(rdev->bdev,b));
1545 		return -EINVAL;
1546 	}
1547 	if (sb->pad0 ||
1548 	    sb->pad3[0] ||
1549 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1550 		/* Some padding is non-zero, might be a new feature */
1551 		return -EINVAL;
1552 
1553 	rdev->preferred_minor = 0xffff;
1554 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1555 	rdev->new_data_offset = rdev->data_offset;
1556 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1557 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1558 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1559 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1560 
1561 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1562 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1563 	if (rdev->sb_size & bmask)
1564 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1565 
1566 	if (minor_version
1567 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1568 		return -EINVAL;
1569 	if (minor_version
1570 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1571 		return -EINVAL;
1572 
1573 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1574 		rdev->desc_nr = -1;
1575 	else
1576 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1577 
1578 	if (!rdev->bb_page) {
1579 		rdev->bb_page = alloc_page(GFP_KERNEL);
1580 		if (!rdev->bb_page)
1581 			return -ENOMEM;
1582 	}
1583 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1584 	    rdev->badblocks.count == 0) {
1585 		/* need to load the bad block list.
1586 		 * Currently we limit it to one page.
1587 		 */
1588 		s32 offset;
1589 		sector_t bb_sector;
1590 		u64 *bbp;
1591 		int i;
1592 		int sectors = le16_to_cpu(sb->bblog_size);
1593 		if (sectors > (PAGE_SIZE / 512))
1594 			return -EINVAL;
1595 		offset = le32_to_cpu(sb->bblog_offset);
1596 		if (offset == 0)
1597 			return -EINVAL;
1598 		bb_sector = (long long)offset;
1599 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1600 				  rdev->bb_page, READ, true))
1601 			return -EIO;
1602 		bbp = (u64 *)page_address(rdev->bb_page);
1603 		rdev->badblocks.shift = sb->bblog_shift;
1604 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1605 			u64 bb = le64_to_cpu(*bbp);
1606 			int count = bb & (0x3ff);
1607 			u64 sector = bb >> 10;
1608 			sector <<= sb->bblog_shift;
1609 			count <<= sb->bblog_shift;
1610 			if (bb + 1 == 0)
1611 				break;
1612 			if (md_set_badblocks(&rdev->badblocks,
1613 					     sector, count, 1) == 0)
1614 				return -EINVAL;
1615 		}
1616 	} else if (sb->bblog_offset == 0)
1617 		rdev->badblocks.shift = -1;
1618 
1619 	if (!refdev) {
1620 		ret = 1;
1621 	} else {
1622 		__u64 ev1, ev2;
1623 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1624 
1625 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1626 		    sb->level != refsb->level ||
1627 		    sb->layout != refsb->layout ||
1628 		    sb->chunksize != refsb->chunksize) {
1629 			printk(KERN_WARNING "md: %s has strangely different"
1630 				" superblock to %s\n",
1631 				bdevname(rdev->bdev,b),
1632 				bdevname(refdev->bdev,b2));
1633 			return -EINVAL;
1634 		}
1635 		ev1 = le64_to_cpu(sb->events);
1636 		ev2 = le64_to_cpu(refsb->events);
1637 
1638 		if (ev1 > ev2)
1639 			ret = 1;
1640 		else
1641 			ret = 0;
1642 	}
1643 	if (minor_version) {
1644 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1645 		sectors -= rdev->data_offset;
1646 	} else
1647 		sectors = rdev->sb_start;
1648 	if (sectors < le64_to_cpu(sb->data_size))
1649 		return -EINVAL;
1650 	rdev->sectors = le64_to_cpu(sb->data_size);
1651 	return ret;
1652 }
1653 
1654 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1655 {
1656 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1657 	__u64 ev1 = le64_to_cpu(sb->events);
1658 
1659 	rdev->raid_disk = -1;
1660 	clear_bit(Faulty, &rdev->flags);
1661 	clear_bit(In_sync, &rdev->flags);
1662 	clear_bit(WriteMostly, &rdev->flags);
1663 
1664 	if (mddev->raid_disks == 0) {
1665 		mddev->major_version = 1;
1666 		mddev->patch_version = 0;
1667 		mddev->external = 0;
1668 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1669 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1670 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1671 		mddev->level = le32_to_cpu(sb->level);
1672 		mddev->clevel[0] = 0;
1673 		mddev->layout = le32_to_cpu(sb->layout);
1674 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1675 		mddev->dev_sectors = le64_to_cpu(sb->size);
1676 		mddev->events = ev1;
1677 		mddev->bitmap_info.offset = 0;
1678 		mddev->bitmap_info.default_offset = 1024 >> 9;
1679 		mddev->reshape_backwards = 0;
1680 
1681 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1682 		memcpy(mddev->uuid, sb->set_uuid, 16);
1683 
1684 		mddev->max_disks =  (4096-256)/2;
1685 
1686 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1687 		    mddev->bitmap_info.file == NULL )
1688 			mddev->bitmap_info.offset =
1689 				(__s32)le32_to_cpu(sb->bitmap_offset);
1690 
1691 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1692 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1693 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1694 			mddev->new_level = le32_to_cpu(sb->new_level);
1695 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1696 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1697 			if (mddev->delta_disks < 0 ||
1698 			    (mddev->delta_disks == 0 &&
1699 			     (le32_to_cpu(sb->feature_map)
1700 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1701 				mddev->reshape_backwards = 1;
1702 		} else {
1703 			mddev->reshape_position = MaxSector;
1704 			mddev->delta_disks = 0;
1705 			mddev->new_level = mddev->level;
1706 			mddev->new_layout = mddev->layout;
1707 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1708 		}
1709 
1710 	} else if (mddev->pers == NULL) {
1711 		/* Insist of good event counter while assembling, except for
1712 		 * spares (which don't need an event count) */
1713 		++ev1;
1714 		if (rdev->desc_nr >= 0 &&
1715 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1716 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1717 			if (ev1 < mddev->events)
1718 				return -EINVAL;
1719 	} else if (mddev->bitmap) {
1720 		/* If adding to array with a bitmap, then we can accept an
1721 		 * older device, but not too old.
1722 		 */
1723 		if (ev1 < mddev->bitmap->events_cleared)
1724 			return 0;
1725 	} else {
1726 		if (ev1 < mddev->events)
1727 			/* just a hot-add of a new device, leave raid_disk at -1 */
1728 			return 0;
1729 	}
1730 	if (mddev->level != LEVEL_MULTIPATH) {
1731 		int role;
1732 		if (rdev->desc_nr < 0 ||
1733 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1734 			role = 0xffff;
1735 			rdev->desc_nr = -1;
1736 		} else
1737 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1738 		switch(role) {
1739 		case 0xffff: /* spare */
1740 			break;
1741 		case 0xfffe: /* faulty */
1742 			set_bit(Faulty, &rdev->flags);
1743 			break;
1744 		default:
1745 			if ((le32_to_cpu(sb->feature_map) &
1746 			     MD_FEATURE_RECOVERY_OFFSET))
1747 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1748 			else
1749 				set_bit(In_sync, &rdev->flags);
1750 			rdev->raid_disk = role;
1751 			break;
1752 		}
1753 		if (sb->devflags & WriteMostly1)
1754 			set_bit(WriteMostly, &rdev->flags);
1755 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1756 			set_bit(Replacement, &rdev->flags);
1757 	} else /* MULTIPATH are always insync */
1758 		set_bit(In_sync, &rdev->flags);
1759 
1760 	return 0;
1761 }
1762 
1763 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1764 {
1765 	struct mdp_superblock_1 *sb;
1766 	struct md_rdev *rdev2;
1767 	int max_dev, i;
1768 	/* make rdev->sb match mddev and rdev data. */
1769 
1770 	sb = page_address(rdev->sb_page);
1771 
1772 	sb->feature_map = 0;
1773 	sb->pad0 = 0;
1774 	sb->recovery_offset = cpu_to_le64(0);
1775 	memset(sb->pad3, 0, sizeof(sb->pad3));
1776 
1777 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1778 	sb->events = cpu_to_le64(mddev->events);
1779 	if (mddev->in_sync)
1780 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1781 	else
1782 		sb->resync_offset = cpu_to_le64(0);
1783 
1784 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1785 
1786 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1787 	sb->size = cpu_to_le64(mddev->dev_sectors);
1788 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1789 	sb->level = cpu_to_le32(mddev->level);
1790 	sb->layout = cpu_to_le32(mddev->layout);
1791 
1792 	if (test_bit(WriteMostly, &rdev->flags))
1793 		sb->devflags |= WriteMostly1;
1794 	else
1795 		sb->devflags &= ~WriteMostly1;
1796 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1797 	sb->data_size = cpu_to_le64(rdev->sectors);
1798 
1799 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1800 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1801 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1802 	}
1803 
1804 	if (rdev->raid_disk >= 0 &&
1805 	    !test_bit(In_sync, &rdev->flags)) {
1806 		sb->feature_map |=
1807 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1808 		sb->recovery_offset =
1809 			cpu_to_le64(rdev->recovery_offset);
1810 	}
1811 	if (test_bit(Replacement, &rdev->flags))
1812 		sb->feature_map |=
1813 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1814 
1815 	if (mddev->reshape_position != MaxSector) {
1816 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1817 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1818 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1819 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1820 		sb->new_level = cpu_to_le32(mddev->new_level);
1821 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1822 		if (mddev->delta_disks == 0 &&
1823 		    mddev->reshape_backwards)
1824 			sb->feature_map
1825 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1826 		if (rdev->new_data_offset != rdev->data_offset) {
1827 			sb->feature_map
1828 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1829 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1830 							     - rdev->data_offset));
1831 		}
1832 	}
1833 
1834 	if (rdev->badblocks.count == 0)
1835 		/* Nothing to do for bad blocks*/ ;
1836 	else if (sb->bblog_offset == 0)
1837 		/* Cannot record bad blocks on this device */
1838 		md_error(mddev, rdev);
1839 	else {
1840 		struct badblocks *bb = &rdev->badblocks;
1841 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1842 		u64 *p = bb->page;
1843 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1844 		if (bb->changed) {
1845 			unsigned seq;
1846 
1847 retry:
1848 			seq = read_seqbegin(&bb->lock);
1849 
1850 			memset(bbp, 0xff, PAGE_SIZE);
1851 
1852 			for (i = 0 ; i < bb->count ; i++) {
1853 				u64 internal_bb = *p++;
1854 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1855 						| BB_LEN(internal_bb));
1856 				*bbp++ = cpu_to_le64(store_bb);
1857 			}
1858 			bb->changed = 0;
1859 			if (read_seqretry(&bb->lock, seq))
1860 				goto retry;
1861 
1862 			bb->sector = (rdev->sb_start +
1863 				      (int)le32_to_cpu(sb->bblog_offset));
1864 			bb->size = le16_to_cpu(sb->bblog_size);
1865 		}
1866 	}
1867 
1868 	max_dev = 0;
1869 	rdev_for_each(rdev2, mddev)
1870 		if (rdev2->desc_nr+1 > max_dev)
1871 			max_dev = rdev2->desc_nr+1;
1872 
1873 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1874 		int bmask;
1875 		sb->max_dev = cpu_to_le32(max_dev);
1876 		rdev->sb_size = max_dev * 2 + 256;
1877 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1878 		if (rdev->sb_size & bmask)
1879 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1880 	} else
1881 		max_dev = le32_to_cpu(sb->max_dev);
1882 
1883 	for (i=0; i<max_dev;i++)
1884 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1885 
1886 	rdev_for_each(rdev2, mddev) {
1887 		i = rdev2->desc_nr;
1888 		if (test_bit(Faulty, &rdev2->flags))
1889 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1890 		else if (test_bit(In_sync, &rdev2->flags))
1891 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1892 		else if (rdev2->raid_disk >= 0)
1893 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1894 		else
1895 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1896 	}
1897 
1898 	sb->sb_csum = calc_sb_1_csum(sb);
1899 }
1900 
1901 static unsigned long long
1902 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1903 {
1904 	struct mdp_superblock_1 *sb;
1905 	sector_t max_sectors;
1906 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1907 		return 0; /* component must fit device */
1908 	if (rdev->data_offset != rdev->new_data_offset)
1909 		return 0; /* too confusing */
1910 	if (rdev->sb_start < rdev->data_offset) {
1911 		/* minor versions 1 and 2; superblock before data */
1912 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1913 		max_sectors -= rdev->data_offset;
1914 		if (!num_sectors || num_sectors > max_sectors)
1915 			num_sectors = max_sectors;
1916 	} else if (rdev->mddev->bitmap_info.offset) {
1917 		/* minor version 0 with bitmap we can't move */
1918 		return 0;
1919 	} else {
1920 		/* minor version 0; superblock after data */
1921 		sector_t sb_start;
1922 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1923 		sb_start &= ~(sector_t)(4*2 - 1);
1924 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1925 		if (!num_sectors || num_sectors > max_sectors)
1926 			num_sectors = max_sectors;
1927 		rdev->sb_start = sb_start;
1928 	}
1929 	sb = page_address(rdev->sb_page);
1930 	sb->data_size = cpu_to_le64(num_sectors);
1931 	sb->super_offset = rdev->sb_start;
1932 	sb->sb_csum = calc_sb_1_csum(sb);
1933 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1934 		       rdev->sb_page);
1935 	md_super_wait(rdev->mddev);
1936 	return num_sectors;
1937 
1938 }
1939 
1940 static int
1941 super_1_allow_new_offset(struct md_rdev *rdev,
1942 			 unsigned long long new_offset)
1943 {
1944 	/* All necessary checks on new >= old have been done */
1945 	struct bitmap *bitmap;
1946 	if (new_offset >= rdev->data_offset)
1947 		return 1;
1948 
1949 	/* with 1.0 metadata, there is no metadata to tread on
1950 	 * so we can always move back */
1951 	if (rdev->mddev->minor_version == 0)
1952 		return 1;
1953 
1954 	/* otherwise we must be sure not to step on
1955 	 * any metadata, so stay:
1956 	 * 36K beyond start of superblock
1957 	 * beyond end of badblocks
1958 	 * beyond write-intent bitmap
1959 	 */
1960 	if (rdev->sb_start + (32+4)*2 > new_offset)
1961 		return 0;
1962 	bitmap = rdev->mddev->bitmap;
1963 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1964 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1965 	    bitmap->file_pages * (PAGE_SIZE>>9) > new_offset)
1966 		return 0;
1967 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1968 		return 0;
1969 
1970 	return 1;
1971 }
1972 
1973 static struct super_type super_types[] = {
1974 	[0] = {
1975 		.name	= "0.90.0",
1976 		.owner	= THIS_MODULE,
1977 		.load_super	    = super_90_load,
1978 		.validate_super	    = super_90_validate,
1979 		.sync_super	    = super_90_sync,
1980 		.rdev_size_change   = super_90_rdev_size_change,
1981 		.allow_new_offset   = super_90_allow_new_offset,
1982 	},
1983 	[1] = {
1984 		.name	= "md-1",
1985 		.owner	= THIS_MODULE,
1986 		.load_super	    = super_1_load,
1987 		.validate_super	    = super_1_validate,
1988 		.sync_super	    = super_1_sync,
1989 		.rdev_size_change   = super_1_rdev_size_change,
1990 		.allow_new_offset   = super_1_allow_new_offset,
1991 	},
1992 };
1993 
1994 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1995 {
1996 	if (mddev->sync_super) {
1997 		mddev->sync_super(mddev, rdev);
1998 		return;
1999 	}
2000 
2001 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2002 
2003 	super_types[mddev->major_version].sync_super(mddev, rdev);
2004 }
2005 
2006 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2007 {
2008 	struct md_rdev *rdev, *rdev2;
2009 
2010 	rcu_read_lock();
2011 	rdev_for_each_rcu(rdev, mddev1)
2012 		rdev_for_each_rcu(rdev2, mddev2)
2013 			if (rdev->bdev->bd_contains ==
2014 			    rdev2->bdev->bd_contains) {
2015 				rcu_read_unlock();
2016 				return 1;
2017 			}
2018 	rcu_read_unlock();
2019 	return 0;
2020 }
2021 
2022 static LIST_HEAD(pending_raid_disks);
2023 
2024 /*
2025  * Try to register data integrity profile for an mddev
2026  *
2027  * This is called when an array is started and after a disk has been kicked
2028  * from the array. It only succeeds if all working and active component devices
2029  * are integrity capable with matching profiles.
2030  */
2031 int md_integrity_register(struct mddev *mddev)
2032 {
2033 	struct md_rdev *rdev, *reference = NULL;
2034 
2035 	if (list_empty(&mddev->disks))
2036 		return 0; /* nothing to do */
2037 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2038 		return 0; /* shouldn't register, or already is */
2039 	rdev_for_each(rdev, mddev) {
2040 		/* skip spares and non-functional disks */
2041 		if (test_bit(Faulty, &rdev->flags))
2042 			continue;
2043 		if (rdev->raid_disk < 0)
2044 			continue;
2045 		if (!reference) {
2046 			/* Use the first rdev as the reference */
2047 			reference = rdev;
2048 			continue;
2049 		}
2050 		/* does this rdev's profile match the reference profile? */
2051 		if (blk_integrity_compare(reference->bdev->bd_disk,
2052 				rdev->bdev->bd_disk) < 0)
2053 			return -EINVAL;
2054 	}
2055 	if (!reference || !bdev_get_integrity(reference->bdev))
2056 		return 0;
2057 	/*
2058 	 * All component devices are integrity capable and have matching
2059 	 * profiles, register the common profile for the md device.
2060 	 */
2061 	if (blk_integrity_register(mddev->gendisk,
2062 			bdev_get_integrity(reference->bdev)) != 0) {
2063 		printk(KERN_ERR "md: failed to register integrity for %s\n",
2064 			mdname(mddev));
2065 		return -EINVAL;
2066 	}
2067 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2068 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2069 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2070 		       mdname(mddev));
2071 		return -EINVAL;
2072 	}
2073 	return 0;
2074 }
2075 EXPORT_SYMBOL(md_integrity_register);
2076 
2077 /* Disable data integrity if non-capable/non-matching disk is being added */
2078 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2079 {
2080 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
2081 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
2082 
2083 	if (!bi_mddev) /* nothing to do */
2084 		return;
2085 	if (rdev->raid_disk < 0) /* skip spares */
2086 		return;
2087 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2088 					     rdev->bdev->bd_disk) >= 0)
2089 		return;
2090 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2091 	blk_integrity_unregister(mddev->gendisk);
2092 }
2093 EXPORT_SYMBOL(md_integrity_add_rdev);
2094 
2095 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2096 {
2097 	char b[BDEVNAME_SIZE];
2098 	struct kobject *ko;
2099 	char *s;
2100 	int err;
2101 
2102 	if (rdev->mddev) {
2103 		MD_BUG();
2104 		return -EINVAL;
2105 	}
2106 
2107 	/* prevent duplicates */
2108 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2109 		return -EEXIST;
2110 
2111 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2112 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2113 			rdev->sectors < mddev->dev_sectors)) {
2114 		if (mddev->pers) {
2115 			/* Cannot change size, so fail
2116 			 * If mddev->level <= 0, then we don't care
2117 			 * about aligning sizes (e.g. linear)
2118 			 */
2119 			if (mddev->level > 0)
2120 				return -ENOSPC;
2121 		} else
2122 			mddev->dev_sectors = rdev->sectors;
2123 	}
2124 
2125 	/* Verify rdev->desc_nr is unique.
2126 	 * If it is -1, assign a free number, else
2127 	 * check number is not in use
2128 	 */
2129 	if (rdev->desc_nr < 0) {
2130 		int choice = 0;
2131 		if (mddev->pers) choice = mddev->raid_disks;
2132 		while (find_rdev_nr(mddev, choice))
2133 			choice++;
2134 		rdev->desc_nr = choice;
2135 	} else {
2136 		if (find_rdev_nr(mddev, rdev->desc_nr))
2137 			return -EBUSY;
2138 	}
2139 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2140 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2141 		       mdname(mddev), mddev->max_disks);
2142 		return -EBUSY;
2143 	}
2144 	bdevname(rdev->bdev,b);
2145 	while ( (s=strchr(b, '/')) != NULL)
2146 		*s = '!';
2147 
2148 	rdev->mddev = mddev;
2149 	printk(KERN_INFO "md: bind<%s>\n", b);
2150 
2151 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2152 		goto fail;
2153 
2154 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2155 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2156 		/* failure here is OK */;
2157 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2158 
2159 	list_add_rcu(&rdev->same_set, &mddev->disks);
2160 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2161 
2162 	/* May as well allow recovery to be retried once */
2163 	mddev->recovery_disabled++;
2164 
2165 	return 0;
2166 
2167  fail:
2168 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2169 	       b, mdname(mddev));
2170 	return err;
2171 }
2172 
2173 static void md_delayed_delete(struct work_struct *ws)
2174 {
2175 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2176 	kobject_del(&rdev->kobj);
2177 	kobject_put(&rdev->kobj);
2178 }
2179 
2180 static void unbind_rdev_from_array(struct md_rdev * rdev)
2181 {
2182 	char b[BDEVNAME_SIZE];
2183 	if (!rdev->mddev) {
2184 		MD_BUG();
2185 		return;
2186 	}
2187 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2188 	list_del_rcu(&rdev->same_set);
2189 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2190 	rdev->mddev = NULL;
2191 	sysfs_remove_link(&rdev->kobj, "block");
2192 	sysfs_put(rdev->sysfs_state);
2193 	rdev->sysfs_state = NULL;
2194 	kfree(rdev->badblocks.page);
2195 	rdev->badblocks.count = 0;
2196 	rdev->badblocks.page = NULL;
2197 	/* We need to delay this, otherwise we can deadlock when
2198 	 * writing to 'remove' to "dev/state".  We also need
2199 	 * to delay it due to rcu usage.
2200 	 */
2201 	synchronize_rcu();
2202 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2203 	kobject_get(&rdev->kobj);
2204 	queue_work(md_misc_wq, &rdev->del_work);
2205 }
2206 
2207 /*
2208  * prevent the device from being mounted, repartitioned or
2209  * otherwise reused by a RAID array (or any other kernel
2210  * subsystem), by bd_claiming the device.
2211  */
2212 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2213 {
2214 	int err = 0;
2215 	struct block_device *bdev;
2216 	char b[BDEVNAME_SIZE];
2217 
2218 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2219 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2220 	if (IS_ERR(bdev)) {
2221 		printk(KERN_ERR "md: could not open %s.\n",
2222 			__bdevname(dev, b));
2223 		return PTR_ERR(bdev);
2224 	}
2225 	rdev->bdev = bdev;
2226 	return err;
2227 }
2228 
2229 static void unlock_rdev(struct md_rdev *rdev)
2230 {
2231 	struct block_device *bdev = rdev->bdev;
2232 	rdev->bdev = NULL;
2233 	if (!bdev)
2234 		MD_BUG();
2235 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2236 }
2237 
2238 void md_autodetect_dev(dev_t dev);
2239 
2240 static void export_rdev(struct md_rdev * rdev)
2241 {
2242 	char b[BDEVNAME_SIZE];
2243 	printk(KERN_INFO "md: export_rdev(%s)\n",
2244 		bdevname(rdev->bdev,b));
2245 	if (rdev->mddev)
2246 		MD_BUG();
2247 	free_disk_sb(rdev);
2248 #ifndef MODULE
2249 	if (test_bit(AutoDetected, &rdev->flags))
2250 		md_autodetect_dev(rdev->bdev->bd_dev);
2251 #endif
2252 	unlock_rdev(rdev);
2253 	kobject_put(&rdev->kobj);
2254 }
2255 
2256 static void kick_rdev_from_array(struct md_rdev * rdev)
2257 {
2258 	unbind_rdev_from_array(rdev);
2259 	export_rdev(rdev);
2260 }
2261 
2262 static void export_array(struct mddev *mddev)
2263 {
2264 	struct md_rdev *rdev, *tmp;
2265 
2266 	rdev_for_each_safe(rdev, tmp, mddev) {
2267 		if (!rdev->mddev) {
2268 			MD_BUG();
2269 			continue;
2270 		}
2271 		kick_rdev_from_array(rdev);
2272 	}
2273 	if (!list_empty(&mddev->disks))
2274 		MD_BUG();
2275 	mddev->raid_disks = 0;
2276 	mddev->major_version = 0;
2277 }
2278 
2279 static void print_desc(mdp_disk_t *desc)
2280 {
2281 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2282 		desc->major,desc->minor,desc->raid_disk,desc->state);
2283 }
2284 
2285 static void print_sb_90(mdp_super_t *sb)
2286 {
2287 	int i;
2288 
2289 	printk(KERN_INFO
2290 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2291 		sb->major_version, sb->minor_version, sb->patch_version,
2292 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2293 		sb->ctime);
2294 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2295 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2296 		sb->md_minor, sb->layout, sb->chunk_size);
2297 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2298 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2299 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2300 		sb->failed_disks, sb->spare_disks,
2301 		sb->sb_csum, (unsigned long)sb->events_lo);
2302 
2303 	printk(KERN_INFO);
2304 	for (i = 0; i < MD_SB_DISKS; i++) {
2305 		mdp_disk_t *desc;
2306 
2307 		desc = sb->disks + i;
2308 		if (desc->number || desc->major || desc->minor ||
2309 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2310 			printk("     D %2d: ", i);
2311 			print_desc(desc);
2312 		}
2313 	}
2314 	printk(KERN_INFO "md:     THIS: ");
2315 	print_desc(&sb->this_disk);
2316 }
2317 
2318 static void print_sb_1(struct mdp_superblock_1 *sb)
2319 {
2320 	__u8 *uuid;
2321 
2322 	uuid = sb->set_uuid;
2323 	printk(KERN_INFO
2324 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2325 	       "md:    Name: \"%s\" CT:%llu\n",
2326 		le32_to_cpu(sb->major_version),
2327 		le32_to_cpu(sb->feature_map),
2328 		uuid,
2329 		sb->set_name,
2330 		(unsigned long long)le64_to_cpu(sb->ctime)
2331 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2332 
2333 	uuid = sb->device_uuid;
2334 	printk(KERN_INFO
2335 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2336 			" RO:%llu\n"
2337 	       "md:     Dev:%08x UUID: %pU\n"
2338 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2339 	       "md:         (MaxDev:%u) \n",
2340 		le32_to_cpu(sb->level),
2341 		(unsigned long long)le64_to_cpu(sb->size),
2342 		le32_to_cpu(sb->raid_disks),
2343 		le32_to_cpu(sb->layout),
2344 		le32_to_cpu(sb->chunksize),
2345 		(unsigned long long)le64_to_cpu(sb->data_offset),
2346 		(unsigned long long)le64_to_cpu(sb->data_size),
2347 		(unsigned long long)le64_to_cpu(sb->super_offset),
2348 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2349 		le32_to_cpu(sb->dev_number),
2350 		uuid,
2351 		sb->devflags,
2352 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2353 		(unsigned long long)le64_to_cpu(sb->events),
2354 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2355 		le32_to_cpu(sb->sb_csum),
2356 		le32_to_cpu(sb->max_dev)
2357 		);
2358 }
2359 
2360 static void print_rdev(struct md_rdev *rdev, int major_version)
2361 {
2362 	char b[BDEVNAME_SIZE];
2363 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2364 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2365 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2366 	        rdev->desc_nr);
2367 	if (rdev->sb_loaded) {
2368 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2369 		switch (major_version) {
2370 		case 0:
2371 			print_sb_90(page_address(rdev->sb_page));
2372 			break;
2373 		case 1:
2374 			print_sb_1(page_address(rdev->sb_page));
2375 			break;
2376 		}
2377 	} else
2378 		printk(KERN_INFO "md: no rdev superblock!\n");
2379 }
2380 
2381 static void md_print_devices(void)
2382 {
2383 	struct list_head *tmp;
2384 	struct md_rdev *rdev;
2385 	struct mddev *mddev;
2386 	char b[BDEVNAME_SIZE];
2387 
2388 	printk("\n");
2389 	printk("md:	**********************************\n");
2390 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2391 	printk("md:	**********************************\n");
2392 	for_each_mddev(mddev, tmp) {
2393 
2394 		if (mddev->bitmap)
2395 			bitmap_print_sb(mddev->bitmap);
2396 		else
2397 			printk("%s: ", mdname(mddev));
2398 		rdev_for_each(rdev, mddev)
2399 			printk("<%s>", bdevname(rdev->bdev,b));
2400 		printk("\n");
2401 
2402 		rdev_for_each(rdev, mddev)
2403 			print_rdev(rdev, mddev->major_version);
2404 	}
2405 	printk("md:	**********************************\n");
2406 	printk("\n");
2407 }
2408 
2409 
2410 static void sync_sbs(struct mddev * mddev, int nospares)
2411 {
2412 	/* Update each superblock (in-memory image), but
2413 	 * if we are allowed to, skip spares which already
2414 	 * have the right event counter, or have one earlier
2415 	 * (which would mean they aren't being marked as dirty
2416 	 * with the rest of the array)
2417 	 */
2418 	struct md_rdev *rdev;
2419 	rdev_for_each(rdev, mddev) {
2420 		if (rdev->sb_events == mddev->events ||
2421 		    (nospares &&
2422 		     rdev->raid_disk < 0 &&
2423 		     rdev->sb_events+1 == mddev->events)) {
2424 			/* Don't update this superblock */
2425 			rdev->sb_loaded = 2;
2426 		} else {
2427 			sync_super(mddev, rdev);
2428 			rdev->sb_loaded = 1;
2429 		}
2430 	}
2431 }
2432 
2433 static void md_update_sb(struct mddev * mddev, int force_change)
2434 {
2435 	struct md_rdev *rdev;
2436 	int sync_req;
2437 	int nospares = 0;
2438 	int any_badblocks_changed = 0;
2439 
2440 repeat:
2441 	/* First make sure individual recovery_offsets are correct */
2442 	rdev_for_each(rdev, mddev) {
2443 		if (rdev->raid_disk >= 0 &&
2444 		    mddev->delta_disks >= 0 &&
2445 		    !test_bit(In_sync, &rdev->flags) &&
2446 		    mddev->curr_resync_completed > rdev->recovery_offset)
2447 				rdev->recovery_offset = mddev->curr_resync_completed;
2448 
2449 	}
2450 	if (!mddev->persistent) {
2451 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2452 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2453 		if (!mddev->external) {
2454 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2455 			rdev_for_each(rdev, mddev) {
2456 				if (rdev->badblocks.changed) {
2457 					rdev->badblocks.changed = 0;
2458 					md_ack_all_badblocks(&rdev->badblocks);
2459 					md_error(mddev, rdev);
2460 				}
2461 				clear_bit(Blocked, &rdev->flags);
2462 				clear_bit(BlockedBadBlocks, &rdev->flags);
2463 				wake_up(&rdev->blocked_wait);
2464 			}
2465 		}
2466 		wake_up(&mddev->sb_wait);
2467 		return;
2468 	}
2469 
2470 	spin_lock_irq(&mddev->write_lock);
2471 
2472 	mddev->utime = get_seconds();
2473 
2474 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2475 		force_change = 1;
2476 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2477 		/* just a clean<-> dirty transition, possibly leave spares alone,
2478 		 * though if events isn't the right even/odd, we will have to do
2479 		 * spares after all
2480 		 */
2481 		nospares = 1;
2482 	if (force_change)
2483 		nospares = 0;
2484 	if (mddev->degraded)
2485 		/* If the array is degraded, then skipping spares is both
2486 		 * dangerous and fairly pointless.
2487 		 * Dangerous because a device that was removed from the array
2488 		 * might have a event_count that still looks up-to-date,
2489 		 * so it can be re-added without a resync.
2490 		 * Pointless because if there are any spares to skip,
2491 		 * then a recovery will happen and soon that array won't
2492 		 * be degraded any more and the spare can go back to sleep then.
2493 		 */
2494 		nospares = 0;
2495 
2496 	sync_req = mddev->in_sync;
2497 
2498 	/* If this is just a dirty<->clean transition, and the array is clean
2499 	 * and 'events' is odd, we can roll back to the previous clean state */
2500 	if (nospares
2501 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2502 	    && mddev->can_decrease_events
2503 	    && mddev->events != 1) {
2504 		mddev->events--;
2505 		mddev->can_decrease_events = 0;
2506 	} else {
2507 		/* otherwise we have to go forward and ... */
2508 		mddev->events ++;
2509 		mddev->can_decrease_events = nospares;
2510 	}
2511 
2512 	if (!mddev->events) {
2513 		/*
2514 		 * oops, this 64-bit counter should never wrap.
2515 		 * Either we are in around ~1 trillion A.C., assuming
2516 		 * 1 reboot per second, or we have a bug:
2517 		 */
2518 		MD_BUG();
2519 		mddev->events --;
2520 	}
2521 
2522 	rdev_for_each(rdev, mddev) {
2523 		if (rdev->badblocks.changed)
2524 			any_badblocks_changed++;
2525 		if (test_bit(Faulty, &rdev->flags))
2526 			set_bit(FaultRecorded, &rdev->flags);
2527 	}
2528 
2529 	sync_sbs(mddev, nospares);
2530 	spin_unlock_irq(&mddev->write_lock);
2531 
2532 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2533 		 mdname(mddev), mddev->in_sync);
2534 
2535 	bitmap_update_sb(mddev->bitmap);
2536 	rdev_for_each(rdev, mddev) {
2537 		char b[BDEVNAME_SIZE];
2538 
2539 		if (rdev->sb_loaded != 1)
2540 			continue; /* no noise on spare devices */
2541 
2542 		if (!test_bit(Faulty, &rdev->flags) &&
2543 		    rdev->saved_raid_disk == -1) {
2544 			md_super_write(mddev,rdev,
2545 				       rdev->sb_start, rdev->sb_size,
2546 				       rdev->sb_page);
2547 			pr_debug("md: (write) %s's sb offset: %llu\n",
2548 				 bdevname(rdev->bdev, b),
2549 				 (unsigned long long)rdev->sb_start);
2550 			rdev->sb_events = mddev->events;
2551 			if (rdev->badblocks.size) {
2552 				md_super_write(mddev, rdev,
2553 					       rdev->badblocks.sector,
2554 					       rdev->badblocks.size << 9,
2555 					       rdev->bb_page);
2556 				rdev->badblocks.size = 0;
2557 			}
2558 
2559 		} else if (test_bit(Faulty, &rdev->flags))
2560 			pr_debug("md: %s (skipping faulty)\n",
2561 				 bdevname(rdev->bdev, b));
2562 		else
2563 			pr_debug("(skipping incremental s/r ");
2564 
2565 		if (mddev->level == LEVEL_MULTIPATH)
2566 			/* only need to write one superblock... */
2567 			break;
2568 	}
2569 	md_super_wait(mddev);
2570 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2571 
2572 	spin_lock_irq(&mddev->write_lock);
2573 	if (mddev->in_sync != sync_req ||
2574 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2575 		/* have to write it out again */
2576 		spin_unlock_irq(&mddev->write_lock);
2577 		goto repeat;
2578 	}
2579 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2580 	spin_unlock_irq(&mddev->write_lock);
2581 	wake_up(&mddev->sb_wait);
2582 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2583 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2584 
2585 	rdev_for_each(rdev, mddev) {
2586 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2587 			clear_bit(Blocked, &rdev->flags);
2588 
2589 		if (any_badblocks_changed)
2590 			md_ack_all_badblocks(&rdev->badblocks);
2591 		clear_bit(BlockedBadBlocks, &rdev->flags);
2592 		wake_up(&rdev->blocked_wait);
2593 	}
2594 }
2595 
2596 /* words written to sysfs files may, or may not, be \n terminated.
2597  * We want to accept with case. For this we use cmd_match.
2598  */
2599 static int cmd_match(const char *cmd, const char *str)
2600 {
2601 	/* See if cmd, written into a sysfs file, matches
2602 	 * str.  They must either be the same, or cmd can
2603 	 * have a trailing newline
2604 	 */
2605 	while (*cmd && *str && *cmd == *str) {
2606 		cmd++;
2607 		str++;
2608 	}
2609 	if (*cmd == '\n')
2610 		cmd++;
2611 	if (*str || *cmd)
2612 		return 0;
2613 	return 1;
2614 }
2615 
2616 struct rdev_sysfs_entry {
2617 	struct attribute attr;
2618 	ssize_t (*show)(struct md_rdev *, char *);
2619 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2620 };
2621 
2622 static ssize_t
2623 state_show(struct md_rdev *rdev, char *page)
2624 {
2625 	char *sep = "";
2626 	size_t len = 0;
2627 
2628 	if (test_bit(Faulty, &rdev->flags) ||
2629 	    rdev->badblocks.unacked_exist) {
2630 		len+= sprintf(page+len, "%sfaulty",sep);
2631 		sep = ",";
2632 	}
2633 	if (test_bit(In_sync, &rdev->flags)) {
2634 		len += sprintf(page+len, "%sin_sync",sep);
2635 		sep = ",";
2636 	}
2637 	if (test_bit(WriteMostly, &rdev->flags)) {
2638 		len += sprintf(page+len, "%swrite_mostly",sep);
2639 		sep = ",";
2640 	}
2641 	if (test_bit(Blocked, &rdev->flags) ||
2642 	    (rdev->badblocks.unacked_exist
2643 	     && !test_bit(Faulty, &rdev->flags))) {
2644 		len += sprintf(page+len, "%sblocked", sep);
2645 		sep = ",";
2646 	}
2647 	if (!test_bit(Faulty, &rdev->flags) &&
2648 	    !test_bit(In_sync, &rdev->flags)) {
2649 		len += sprintf(page+len, "%sspare", sep);
2650 		sep = ",";
2651 	}
2652 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2653 		len += sprintf(page+len, "%swrite_error", sep);
2654 		sep = ",";
2655 	}
2656 	if (test_bit(WantReplacement, &rdev->flags)) {
2657 		len += sprintf(page+len, "%swant_replacement", sep);
2658 		sep = ",";
2659 	}
2660 	if (test_bit(Replacement, &rdev->flags)) {
2661 		len += sprintf(page+len, "%sreplacement", sep);
2662 		sep = ",";
2663 	}
2664 
2665 	return len+sprintf(page+len, "\n");
2666 }
2667 
2668 static ssize_t
2669 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2670 {
2671 	/* can write
2672 	 *  faulty  - simulates an error
2673 	 *  remove  - disconnects the device
2674 	 *  writemostly - sets write_mostly
2675 	 *  -writemostly - clears write_mostly
2676 	 *  blocked - sets the Blocked flags
2677 	 *  -blocked - clears the Blocked and possibly simulates an error
2678 	 *  insync - sets Insync providing device isn't active
2679 	 *  write_error - sets WriteErrorSeen
2680 	 *  -write_error - clears WriteErrorSeen
2681 	 */
2682 	int err = -EINVAL;
2683 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2684 		md_error(rdev->mddev, rdev);
2685 		if (test_bit(Faulty, &rdev->flags))
2686 			err = 0;
2687 		else
2688 			err = -EBUSY;
2689 	} else if (cmd_match(buf, "remove")) {
2690 		if (rdev->raid_disk >= 0)
2691 			err = -EBUSY;
2692 		else {
2693 			struct mddev *mddev = rdev->mddev;
2694 			kick_rdev_from_array(rdev);
2695 			if (mddev->pers)
2696 				md_update_sb(mddev, 1);
2697 			md_new_event(mddev);
2698 			err = 0;
2699 		}
2700 	} else if (cmd_match(buf, "writemostly")) {
2701 		set_bit(WriteMostly, &rdev->flags);
2702 		err = 0;
2703 	} else if (cmd_match(buf, "-writemostly")) {
2704 		clear_bit(WriteMostly, &rdev->flags);
2705 		err = 0;
2706 	} else if (cmd_match(buf, "blocked")) {
2707 		set_bit(Blocked, &rdev->flags);
2708 		err = 0;
2709 	} else if (cmd_match(buf, "-blocked")) {
2710 		if (!test_bit(Faulty, &rdev->flags) &&
2711 		    rdev->badblocks.unacked_exist) {
2712 			/* metadata handler doesn't understand badblocks,
2713 			 * so we need to fail the device
2714 			 */
2715 			md_error(rdev->mddev, rdev);
2716 		}
2717 		clear_bit(Blocked, &rdev->flags);
2718 		clear_bit(BlockedBadBlocks, &rdev->flags);
2719 		wake_up(&rdev->blocked_wait);
2720 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2721 		md_wakeup_thread(rdev->mddev->thread);
2722 
2723 		err = 0;
2724 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2725 		set_bit(In_sync, &rdev->flags);
2726 		err = 0;
2727 	} else if (cmd_match(buf, "write_error")) {
2728 		set_bit(WriteErrorSeen, &rdev->flags);
2729 		err = 0;
2730 	} else if (cmd_match(buf, "-write_error")) {
2731 		clear_bit(WriteErrorSeen, &rdev->flags);
2732 		err = 0;
2733 	} else if (cmd_match(buf, "want_replacement")) {
2734 		/* Any non-spare device that is not a replacement can
2735 		 * become want_replacement at any time, but we then need to
2736 		 * check if recovery is needed.
2737 		 */
2738 		if (rdev->raid_disk >= 0 &&
2739 		    !test_bit(Replacement, &rdev->flags))
2740 			set_bit(WantReplacement, &rdev->flags);
2741 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2742 		md_wakeup_thread(rdev->mddev->thread);
2743 		err = 0;
2744 	} else if (cmd_match(buf, "-want_replacement")) {
2745 		/* Clearing 'want_replacement' is always allowed.
2746 		 * Once replacements starts it is too late though.
2747 		 */
2748 		err = 0;
2749 		clear_bit(WantReplacement, &rdev->flags);
2750 	} else if (cmd_match(buf, "replacement")) {
2751 		/* Can only set a device as a replacement when array has not
2752 		 * yet been started.  Once running, replacement is automatic
2753 		 * from spares, or by assigning 'slot'.
2754 		 */
2755 		if (rdev->mddev->pers)
2756 			err = -EBUSY;
2757 		else {
2758 			set_bit(Replacement, &rdev->flags);
2759 			err = 0;
2760 		}
2761 	} else if (cmd_match(buf, "-replacement")) {
2762 		/* Similarly, can only clear Replacement before start */
2763 		if (rdev->mddev->pers)
2764 			err = -EBUSY;
2765 		else {
2766 			clear_bit(Replacement, &rdev->flags);
2767 			err = 0;
2768 		}
2769 	}
2770 	if (!err)
2771 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2772 	return err ? err : len;
2773 }
2774 static struct rdev_sysfs_entry rdev_state =
2775 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2776 
2777 static ssize_t
2778 errors_show(struct md_rdev *rdev, char *page)
2779 {
2780 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2781 }
2782 
2783 static ssize_t
2784 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2785 {
2786 	char *e;
2787 	unsigned long n = simple_strtoul(buf, &e, 10);
2788 	if (*buf && (*e == 0 || *e == '\n')) {
2789 		atomic_set(&rdev->corrected_errors, n);
2790 		return len;
2791 	}
2792 	return -EINVAL;
2793 }
2794 static struct rdev_sysfs_entry rdev_errors =
2795 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2796 
2797 static ssize_t
2798 slot_show(struct md_rdev *rdev, char *page)
2799 {
2800 	if (rdev->raid_disk < 0)
2801 		return sprintf(page, "none\n");
2802 	else
2803 		return sprintf(page, "%d\n", rdev->raid_disk);
2804 }
2805 
2806 static ssize_t
2807 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2808 {
2809 	char *e;
2810 	int err;
2811 	int slot = simple_strtoul(buf, &e, 10);
2812 	if (strncmp(buf, "none", 4)==0)
2813 		slot = -1;
2814 	else if (e==buf || (*e && *e!= '\n'))
2815 		return -EINVAL;
2816 	if (rdev->mddev->pers && slot == -1) {
2817 		/* Setting 'slot' on an active array requires also
2818 		 * updating the 'rd%d' link, and communicating
2819 		 * with the personality with ->hot_*_disk.
2820 		 * For now we only support removing
2821 		 * failed/spare devices.  This normally happens automatically,
2822 		 * but not when the metadata is externally managed.
2823 		 */
2824 		if (rdev->raid_disk == -1)
2825 			return -EEXIST;
2826 		/* personality does all needed checks */
2827 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2828 			return -EINVAL;
2829 		err = rdev->mddev->pers->
2830 			hot_remove_disk(rdev->mddev, rdev);
2831 		if (err)
2832 			return err;
2833 		sysfs_unlink_rdev(rdev->mddev, rdev);
2834 		rdev->raid_disk = -1;
2835 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2836 		md_wakeup_thread(rdev->mddev->thread);
2837 	} else if (rdev->mddev->pers) {
2838 		/* Activating a spare .. or possibly reactivating
2839 		 * if we ever get bitmaps working here.
2840 		 */
2841 
2842 		if (rdev->raid_disk != -1)
2843 			return -EBUSY;
2844 
2845 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2846 			return -EBUSY;
2847 
2848 		if (rdev->mddev->pers->hot_add_disk == NULL)
2849 			return -EINVAL;
2850 
2851 		if (slot >= rdev->mddev->raid_disks &&
2852 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2853 			return -ENOSPC;
2854 
2855 		rdev->raid_disk = slot;
2856 		if (test_bit(In_sync, &rdev->flags))
2857 			rdev->saved_raid_disk = slot;
2858 		else
2859 			rdev->saved_raid_disk = -1;
2860 		clear_bit(In_sync, &rdev->flags);
2861 		err = rdev->mddev->pers->
2862 			hot_add_disk(rdev->mddev, rdev);
2863 		if (err) {
2864 			rdev->raid_disk = -1;
2865 			return err;
2866 		} else
2867 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2868 		if (sysfs_link_rdev(rdev->mddev, rdev))
2869 			/* failure here is OK */;
2870 		/* don't wakeup anyone, leave that to userspace. */
2871 	} else {
2872 		if (slot >= rdev->mddev->raid_disks &&
2873 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2874 			return -ENOSPC;
2875 		rdev->raid_disk = slot;
2876 		/* assume it is working */
2877 		clear_bit(Faulty, &rdev->flags);
2878 		clear_bit(WriteMostly, &rdev->flags);
2879 		set_bit(In_sync, &rdev->flags);
2880 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2881 	}
2882 	return len;
2883 }
2884 
2885 
2886 static struct rdev_sysfs_entry rdev_slot =
2887 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2888 
2889 static ssize_t
2890 offset_show(struct md_rdev *rdev, char *page)
2891 {
2892 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2893 }
2894 
2895 static ssize_t
2896 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2897 {
2898 	unsigned long long offset;
2899 	if (strict_strtoull(buf, 10, &offset) < 0)
2900 		return -EINVAL;
2901 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2902 		return -EBUSY;
2903 	if (rdev->sectors && rdev->mddev->external)
2904 		/* Must set offset before size, so overlap checks
2905 		 * can be sane */
2906 		return -EBUSY;
2907 	rdev->data_offset = offset;
2908 	return len;
2909 }
2910 
2911 static struct rdev_sysfs_entry rdev_offset =
2912 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2913 
2914 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2915 {
2916 	return sprintf(page, "%llu\n",
2917 		       (unsigned long long)rdev->new_data_offset);
2918 }
2919 
2920 static ssize_t new_offset_store(struct md_rdev *rdev,
2921 				const char *buf, size_t len)
2922 {
2923 	unsigned long long new_offset;
2924 	struct mddev *mddev = rdev->mddev;
2925 
2926 	if (strict_strtoull(buf, 10, &new_offset) < 0)
2927 		return -EINVAL;
2928 
2929 	if (mddev->sync_thread)
2930 		return -EBUSY;
2931 	if (new_offset == rdev->data_offset)
2932 		/* reset is always permitted */
2933 		;
2934 	else if (new_offset > rdev->data_offset) {
2935 		/* must not push array size beyond rdev_sectors */
2936 		if (new_offset - rdev->data_offset
2937 		    + mddev->dev_sectors > rdev->sectors)
2938 				return -E2BIG;
2939 	}
2940 	/* Metadata worries about other space details. */
2941 
2942 	/* decreasing the offset is inconsistent with a backwards
2943 	 * reshape.
2944 	 */
2945 	if (new_offset < rdev->data_offset &&
2946 	    mddev->reshape_backwards)
2947 		return -EINVAL;
2948 	/* Increasing offset is inconsistent with forwards
2949 	 * reshape.  reshape_direction should be set to
2950 	 * 'backwards' first.
2951 	 */
2952 	if (new_offset > rdev->data_offset &&
2953 	    !mddev->reshape_backwards)
2954 		return -EINVAL;
2955 
2956 	if (mddev->pers && mddev->persistent &&
2957 	    !super_types[mddev->major_version]
2958 	    .allow_new_offset(rdev, new_offset))
2959 		return -E2BIG;
2960 	rdev->new_data_offset = new_offset;
2961 	if (new_offset > rdev->data_offset)
2962 		mddev->reshape_backwards = 1;
2963 	else if (new_offset < rdev->data_offset)
2964 		mddev->reshape_backwards = 0;
2965 
2966 	return len;
2967 }
2968 static struct rdev_sysfs_entry rdev_new_offset =
2969 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2970 
2971 static ssize_t
2972 rdev_size_show(struct md_rdev *rdev, char *page)
2973 {
2974 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2975 }
2976 
2977 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2978 {
2979 	/* check if two start/length pairs overlap */
2980 	if (s1+l1 <= s2)
2981 		return 0;
2982 	if (s2+l2 <= s1)
2983 		return 0;
2984 	return 1;
2985 }
2986 
2987 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2988 {
2989 	unsigned long long blocks;
2990 	sector_t new;
2991 
2992 	if (strict_strtoull(buf, 10, &blocks) < 0)
2993 		return -EINVAL;
2994 
2995 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2996 		return -EINVAL; /* sector conversion overflow */
2997 
2998 	new = blocks * 2;
2999 	if (new != blocks * 2)
3000 		return -EINVAL; /* unsigned long long to sector_t overflow */
3001 
3002 	*sectors = new;
3003 	return 0;
3004 }
3005 
3006 static ssize_t
3007 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3008 {
3009 	struct mddev *my_mddev = rdev->mddev;
3010 	sector_t oldsectors = rdev->sectors;
3011 	sector_t sectors;
3012 
3013 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
3014 		return -EINVAL;
3015 	if (rdev->data_offset != rdev->new_data_offset)
3016 		return -EINVAL; /* too confusing */
3017 	if (my_mddev->pers && rdev->raid_disk >= 0) {
3018 		if (my_mddev->persistent) {
3019 			sectors = super_types[my_mddev->major_version].
3020 				rdev_size_change(rdev, sectors);
3021 			if (!sectors)
3022 				return -EBUSY;
3023 		} else if (!sectors)
3024 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3025 				rdev->data_offset;
3026 	}
3027 	if (sectors < my_mddev->dev_sectors)
3028 		return -EINVAL; /* component must fit device */
3029 
3030 	rdev->sectors = sectors;
3031 	if (sectors > oldsectors && my_mddev->external) {
3032 		/* need to check that all other rdevs with the same ->bdev
3033 		 * do not overlap.  We need to unlock the mddev to avoid
3034 		 * a deadlock.  We have already changed rdev->sectors, and if
3035 		 * we have to change it back, we will have the lock again.
3036 		 */
3037 		struct mddev *mddev;
3038 		int overlap = 0;
3039 		struct list_head *tmp;
3040 
3041 		mddev_unlock(my_mddev);
3042 		for_each_mddev(mddev, tmp) {
3043 			struct md_rdev *rdev2;
3044 
3045 			mddev_lock(mddev);
3046 			rdev_for_each(rdev2, mddev)
3047 				if (rdev->bdev == rdev2->bdev &&
3048 				    rdev != rdev2 &&
3049 				    overlaps(rdev->data_offset, rdev->sectors,
3050 					     rdev2->data_offset,
3051 					     rdev2->sectors)) {
3052 					overlap = 1;
3053 					break;
3054 				}
3055 			mddev_unlock(mddev);
3056 			if (overlap) {
3057 				mddev_put(mddev);
3058 				break;
3059 			}
3060 		}
3061 		mddev_lock(my_mddev);
3062 		if (overlap) {
3063 			/* Someone else could have slipped in a size
3064 			 * change here, but doing so is just silly.
3065 			 * We put oldsectors back because we *know* it is
3066 			 * safe, and trust userspace not to race with
3067 			 * itself
3068 			 */
3069 			rdev->sectors = oldsectors;
3070 			return -EBUSY;
3071 		}
3072 	}
3073 	return len;
3074 }
3075 
3076 static struct rdev_sysfs_entry rdev_size =
3077 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3078 
3079 
3080 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3081 {
3082 	unsigned long long recovery_start = rdev->recovery_offset;
3083 
3084 	if (test_bit(In_sync, &rdev->flags) ||
3085 	    recovery_start == MaxSector)
3086 		return sprintf(page, "none\n");
3087 
3088 	return sprintf(page, "%llu\n", recovery_start);
3089 }
3090 
3091 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3092 {
3093 	unsigned long long recovery_start;
3094 
3095 	if (cmd_match(buf, "none"))
3096 		recovery_start = MaxSector;
3097 	else if (strict_strtoull(buf, 10, &recovery_start))
3098 		return -EINVAL;
3099 
3100 	if (rdev->mddev->pers &&
3101 	    rdev->raid_disk >= 0)
3102 		return -EBUSY;
3103 
3104 	rdev->recovery_offset = recovery_start;
3105 	if (recovery_start == MaxSector)
3106 		set_bit(In_sync, &rdev->flags);
3107 	else
3108 		clear_bit(In_sync, &rdev->flags);
3109 	return len;
3110 }
3111 
3112 static struct rdev_sysfs_entry rdev_recovery_start =
3113 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3114 
3115 
3116 static ssize_t
3117 badblocks_show(struct badblocks *bb, char *page, int unack);
3118 static ssize_t
3119 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3120 
3121 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3122 {
3123 	return badblocks_show(&rdev->badblocks, page, 0);
3124 }
3125 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3126 {
3127 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3128 	/* Maybe that ack was all we needed */
3129 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3130 		wake_up(&rdev->blocked_wait);
3131 	return rv;
3132 }
3133 static struct rdev_sysfs_entry rdev_bad_blocks =
3134 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3135 
3136 
3137 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3138 {
3139 	return badblocks_show(&rdev->badblocks, page, 1);
3140 }
3141 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3142 {
3143 	return badblocks_store(&rdev->badblocks, page, len, 1);
3144 }
3145 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3146 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3147 
3148 static struct attribute *rdev_default_attrs[] = {
3149 	&rdev_state.attr,
3150 	&rdev_errors.attr,
3151 	&rdev_slot.attr,
3152 	&rdev_offset.attr,
3153 	&rdev_new_offset.attr,
3154 	&rdev_size.attr,
3155 	&rdev_recovery_start.attr,
3156 	&rdev_bad_blocks.attr,
3157 	&rdev_unack_bad_blocks.attr,
3158 	NULL,
3159 };
3160 static ssize_t
3161 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3162 {
3163 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3164 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3165 	struct mddev *mddev = rdev->mddev;
3166 	ssize_t rv;
3167 
3168 	if (!entry->show)
3169 		return -EIO;
3170 
3171 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
3172 	if (!rv) {
3173 		if (rdev->mddev == NULL)
3174 			rv = -EBUSY;
3175 		else
3176 			rv = entry->show(rdev, page);
3177 		mddev_unlock(mddev);
3178 	}
3179 	return rv;
3180 }
3181 
3182 static ssize_t
3183 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3184 	      const char *page, size_t length)
3185 {
3186 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3187 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3188 	ssize_t rv;
3189 	struct mddev *mddev = rdev->mddev;
3190 
3191 	if (!entry->store)
3192 		return -EIO;
3193 	if (!capable(CAP_SYS_ADMIN))
3194 		return -EACCES;
3195 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3196 	if (!rv) {
3197 		if (rdev->mddev == NULL)
3198 			rv = -EBUSY;
3199 		else
3200 			rv = entry->store(rdev, page, length);
3201 		mddev_unlock(mddev);
3202 	}
3203 	return rv;
3204 }
3205 
3206 static void rdev_free(struct kobject *ko)
3207 {
3208 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3209 	kfree(rdev);
3210 }
3211 static const struct sysfs_ops rdev_sysfs_ops = {
3212 	.show		= rdev_attr_show,
3213 	.store		= rdev_attr_store,
3214 };
3215 static struct kobj_type rdev_ktype = {
3216 	.release	= rdev_free,
3217 	.sysfs_ops	= &rdev_sysfs_ops,
3218 	.default_attrs	= rdev_default_attrs,
3219 };
3220 
3221 int md_rdev_init(struct md_rdev *rdev)
3222 {
3223 	rdev->desc_nr = -1;
3224 	rdev->saved_raid_disk = -1;
3225 	rdev->raid_disk = -1;
3226 	rdev->flags = 0;
3227 	rdev->data_offset = 0;
3228 	rdev->new_data_offset = 0;
3229 	rdev->sb_events = 0;
3230 	rdev->last_read_error.tv_sec  = 0;
3231 	rdev->last_read_error.tv_nsec = 0;
3232 	rdev->sb_loaded = 0;
3233 	rdev->bb_page = NULL;
3234 	atomic_set(&rdev->nr_pending, 0);
3235 	atomic_set(&rdev->read_errors, 0);
3236 	atomic_set(&rdev->corrected_errors, 0);
3237 
3238 	INIT_LIST_HEAD(&rdev->same_set);
3239 	init_waitqueue_head(&rdev->blocked_wait);
3240 
3241 	/* Add space to store bad block list.
3242 	 * This reserves the space even on arrays where it cannot
3243 	 * be used - I wonder if that matters
3244 	 */
3245 	rdev->badblocks.count = 0;
3246 	rdev->badblocks.shift = 0;
3247 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3248 	seqlock_init(&rdev->badblocks.lock);
3249 	if (rdev->badblocks.page == NULL)
3250 		return -ENOMEM;
3251 
3252 	return 0;
3253 }
3254 EXPORT_SYMBOL_GPL(md_rdev_init);
3255 /*
3256  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3257  *
3258  * mark the device faulty if:
3259  *
3260  *   - the device is nonexistent (zero size)
3261  *   - the device has no valid superblock
3262  *
3263  * a faulty rdev _never_ has rdev->sb set.
3264  */
3265 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3266 {
3267 	char b[BDEVNAME_SIZE];
3268 	int err;
3269 	struct md_rdev *rdev;
3270 	sector_t size;
3271 
3272 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3273 	if (!rdev) {
3274 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3275 		return ERR_PTR(-ENOMEM);
3276 	}
3277 
3278 	err = md_rdev_init(rdev);
3279 	if (err)
3280 		goto abort_free;
3281 	err = alloc_disk_sb(rdev);
3282 	if (err)
3283 		goto abort_free;
3284 
3285 	err = lock_rdev(rdev, newdev, super_format == -2);
3286 	if (err)
3287 		goto abort_free;
3288 
3289 	kobject_init(&rdev->kobj, &rdev_ktype);
3290 
3291 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3292 	if (!size) {
3293 		printk(KERN_WARNING
3294 			"md: %s has zero or unknown size, marking faulty!\n",
3295 			bdevname(rdev->bdev,b));
3296 		err = -EINVAL;
3297 		goto abort_free;
3298 	}
3299 
3300 	if (super_format >= 0) {
3301 		err = super_types[super_format].
3302 			load_super(rdev, NULL, super_minor);
3303 		if (err == -EINVAL) {
3304 			printk(KERN_WARNING
3305 				"md: %s does not have a valid v%d.%d "
3306 			       "superblock, not importing!\n",
3307 				bdevname(rdev->bdev,b),
3308 			       super_format, super_minor);
3309 			goto abort_free;
3310 		}
3311 		if (err < 0) {
3312 			printk(KERN_WARNING
3313 				"md: could not read %s's sb, not importing!\n",
3314 				bdevname(rdev->bdev,b));
3315 			goto abort_free;
3316 		}
3317 	}
3318 	if (super_format == -1)
3319 		/* hot-add for 0.90, or non-persistent: so no badblocks */
3320 		rdev->badblocks.shift = -1;
3321 
3322 	return rdev;
3323 
3324 abort_free:
3325 	if (rdev->bdev)
3326 		unlock_rdev(rdev);
3327 	free_disk_sb(rdev);
3328 	kfree(rdev->badblocks.page);
3329 	kfree(rdev);
3330 	return ERR_PTR(err);
3331 }
3332 
3333 /*
3334  * Check a full RAID array for plausibility
3335  */
3336 
3337 
3338 static void analyze_sbs(struct mddev * mddev)
3339 {
3340 	int i;
3341 	struct md_rdev *rdev, *freshest, *tmp;
3342 	char b[BDEVNAME_SIZE];
3343 
3344 	freshest = NULL;
3345 	rdev_for_each_safe(rdev, tmp, mddev)
3346 		switch (super_types[mddev->major_version].
3347 			load_super(rdev, freshest, mddev->minor_version)) {
3348 		case 1:
3349 			freshest = rdev;
3350 			break;
3351 		case 0:
3352 			break;
3353 		default:
3354 			printk( KERN_ERR \
3355 				"md: fatal superblock inconsistency in %s"
3356 				" -- removing from array\n",
3357 				bdevname(rdev->bdev,b));
3358 			kick_rdev_from_array(rdev);
3359 		}
3360 
3361 
3362 	super_types[mddev->major_version].
3363 		validate_super(mddev, freshest);
3364 
3365 	i = 0;
3366 	rdev_for_each_safe(rdev, tmp, mddev) {
3367 		if (mddev->max_disks &&
3368 		    (rdev->desc_nr >= mddev->max_disks ||
3369 		     i > mddev->max_disks)) {
3370 			printk(KERN_WARNING
3371 			       "md: %s: %s: only %d devices permitted\n",
3372 			       mdname(mddev), bdevname(rdev->bdev, b),
3373 			       mddev->max_disks);
3374 			kick_rdev_from_array(rdev);
3375 			continue;
3376 		}
3377 		if (rdev != freshest)
3378 			if (super_types[mddev->major_version].
3379 			    validate_super(mddev, rdev)) {
3380 				printk(KERN_WARNING "md: kicking non-fresh %s"
3381 					" from array!\n",
3382 					bdevname(rdev->bdev,b));
3383 				kick_rdev_from_array(rdev);
3384 				continue;
3385 			}
3386 		if (mddev->level == LEVEL_MULTIPATH) {
3387 			rdev->desc_nr = i++;
3388 			rdev->raid_disk = rdev->desc_nr;
3389 			set_bit(In_sync, &rdev->flags);
3390 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3391 			rdev->raid_disk = -1;
3392 			clear_bit(In_sync, &rdev->flags);
3393 		}
3394 	}
3395 }
3396 
3397 /* Read a fixed-point number.
3398  * Numbers in sysfs attributes should be in "standard" units where
3399  * possible, so time should be in seconds.
3400  * However we internally use a a much smaller unit such as
3401  * milliseconds or jiffies.
3402  * This function takes a decimal number with a possible fractional
3403  * component, and produces an integer which is the result of
3404  * multiplying that number by 10^'scale'.
3405  * all without any floating-point arithmetic.
3406  */
3407 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3408 {
3409 	unsigned long result = 0;
3410 	long decimals = -1;
3411 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3412 		if (*cp == '.')
3413 			decimals = 0;
3414 		else if (decimals < scale) {
3415 			unsigned int value;
3416 			value = *cp - '0';
3417 			result = result * 10 + value;
3418 			if (decimals >= 0)
3419 				decimals++;
3420 		}
3421 		cp++;
3422 	}
3423 	if (*cp == '\n')
3424 		cp++;
3425 	if (*cp)
3426 		return -EINVAL;
3427 	if (decimals < 0)
3428 		decimals = 0;
3429 	while (decimals < scale) {
3430 		result *= 10;
3431 		decimals ++;
3432 	}
3433 	*res = result;
3434 	return 0;
3435 }
3436 
3437 
3438 static void md_safemode_timeout(unsigned long data);
3439 
3440 static ssize_t
3441 safe_delay_show(struct mddev *mddev, char *page)
3442 {
3443 	int msec = (mddev->safemode_delay*1000)/HZ;
3444 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3445 }
3446 static ssize_t
3447 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3448 {
3449 	unsigned long msec;
3450 
3451 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3452 		return -EINVAL;
3453 	if (msec == 0)
3454 		mddev->safemode_delay = 0;
3455 	else {
3456 		unsigned long old_delay = mddev->safemode_delay;
3457 		mddev->safemode_delay = (msec*HZ)/1000;
3458 		if (mddev->safemode_delay == 0)
3459 			mddev->safemode_delay = 1;
3460 		if (mddev->safemode_delay < old_delay)
3461 			md_safemode_timeout((unsigned long)mddev);
3462 	}
3463 	return len;
3464 }
3465 static struct md_sysfs_entry md_safe_delay =
3466 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3467 
3468 static ssize_t
3469 level_show(struct mddev *mddev, char *page)
3470 {
3471 	struct md_personality *p = mddev->pers;
3472 	if (p)
3473 		return sprintf(page, "%s\n", p->name);
3474 	else if (mddev->clevel[0])
3475 		return sprintf(page, "%s\n", mddev->clevel);
3476 	else if (mddev->level != LEVEL_NONE)
3477 		return sprintf(page, "%d\n", mddev->level);
3478 	else
3479 		return 0;
3480 }
3481 
3482 static ssize_t
3483 level_store(struct mddev *mddev, const char *buf, size_t len)
3484 {
3485 	char clevel[16];
3486 	ssize_t rv = len;
3487 	struct md_personality *pers;
3488 	long level;
3489 	void *priv;
3490 	struct md_rdev *rdev;
3491 
3492 	if (mddev->pers == NULL) {
3493 		if (len == 0)
3494 			return 0;
3495 		if (len >= sizeof(mddev->clevel))
3496 			return -ENOSPC;
3497 		strncpy(mddev->clevel, buf, len);
3498 		if (mddev->clevel[len-1] == '\n')
3499 			len--;
3500 		mddev->clevel[len] = 0;
3501 		mddev->level = LEVEL_NONE;
3502 		return rv;
3503 	}
3504 
3505 	/* request to change the personality.  Need to ensure:
3506 	 *  - array is not engaged in resync/recovery/reshape
3507 	 *  - old personality can be suspended
3508 	 *  - new personality will access other array.
3509 	 */
3510 
3511 	if (mddev->sync_thread ||
3512 	    mddev->reshape_position != MaxSector ||
3513 	    mddev->sysfs_active)
3514 		return -EBUSY;
3515 
3516 	if (!mddev->pers->quiesce) {
3517 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3518 		       mdname(mddev), mddev->pers->name);
3519 		return -EINVAL;
3520 	}
3521 
3522 	/* Now find the new personality */
3523 	if (len == 0 || len >= sizeof(clevel))
3524 		return -EINVAL;
3525 	strncpy(clevel, buf, len);
3526 	if (clevel[len-1] == '\n')
3527 		len--;
3528 	clevel[len] = 0;
3529 	if (strict_strtol(clevel, 10, &level))
3530 		level = LEVEL_NONE;
3531 
3532 	if (request_module("md-%s", clevel) != 0)
3533 		request_module("md-level-%s", clevel);
3534 	spin_lock(&pers_lock);
3535 	pers = find_pers(level, clevel);
3536 	if (!pers || !try_module_get(pers->owner)) {
3537 		spin_unlock(&pers_lock);
3538 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3539 		return -EINVAL;
3540 	}
3541 	spin_unlock(&pers_lock);
3542 
3543 	if (pers == mddev->pers) {
3544 		/* Nothing to do! */
3545 		module_put(pers->owner);
3546 		return rv;
3547 	}
3548 	if (!pers->takeover) {
3549 		module_put(pers->owner);
3550 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3551 		       mdname(mddev), clevel);
3552 		return -EINVAL;
3553 	}
3554 
3555 	rdev_for_each(rdev, mddev)
3556 		rdev->new_raid_disk = rdev->raid_disk;
3557 
3558 	/* ->takeover must set new_* and/or delta_disks
3559 	 * if it succeeds, and may set them when it fails.
3560 	 */
3561 	priv = pers->takeover(mddev);
3562 	if (IS_ERR(priv)) {
3563 		mddev->new_level = mddev->level;
3564 		mddev->new_layout = mddev->layout;
3565 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3566 		mddev->raid_disks -= mddev->delta_disks;
3567 		mddev->delta_disks = 0;
3568 		mddev->reshape_backwards = 0;
3569 		module_put(pers->owner);
3570 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3571 		       mdname(mddev), clevel);
3572 		return PTR_ERR(priv);
3573 	}
3574 
3575 	/* Looks like we have a winner */
3576 	mddev_suspend(mddev);
3577 	mddev->pers->stop(mddev);
3578 
3579 	if (mddev->pers->sync_request == NULL &&
3580 	    pers->sync_request != NULL) {
3581 		/* need to add the md_redundancy_group */
3582 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3583 			printk(KERN_WARNING
3584 			       "md: cannot register extra attributes for %s\n",
3585 			       mdname(mddev));
3586 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3587 	}
3588 	if (mddev->pers->sync_request != NULL &&
3589 	    pers->sync_request == NULL) {
3590 		/* need to remove the md_redundancy_group */
3591 		if (mddev->to_remove == NULL)
3592 			mddev->to_remove = &md_redundancy_group;
3593 	}
3594 
3595 	if (mddev->pers->sync_request == NULL &&
3596 	    mddev->external) {
3597 		/* We are converting from a no-redundancy array
3598 		 * to a redundancy array and metadata is managed
3599 		 * externally so we need to be sure that writes
3600 		 * won't block due to a need to transition
3601 		 *      clean->dirty
3602 		 * until external management is started.
3603 		 */
3604 		mddev->in_sync = 0;
3605 		mddev->safemode_delay = 0;
3606 		mddev->safemode = 0;
3607 	}
3608 
3609 	rdev_for_each(rdev, mddev) {
3610 		if (rdev->raid_disk < 0)
3611 			continue;
3612 		if (rdev->new_raid_disk >= mddev->raid_disks)
3613 			rdev->new_raid_disk = -1;
3614 		if (rdev->new_raid_disk == rdev->raid_disk)
3615 			continue;
3616 		sysfs_unlink_rdev(mddev, rdev);
3617 	}
3618 	rdev_for_each(rdev, mddev) {
3619 		if (rdev->raid_disk < 0)
3620 			continue;
3621 		if (rdev->new_raid_disk == rdev->raid_disk)
3622 			continue;
3623 		rdev->raid_disk = rdev->new_raid_disk;
3624 		if (rdev->raid_disk < 0)
3625 			clear_bit(In_sync, &rdev->flags);
3626 		else {
3627 			if (sysfs_link_rdev(mddev, rdev))
3628 				printk(KERN_WARNING "md: cannot register rd%d"
3629 				       " for %s after level change\n",
3630 				       rdev->raid_disk, mdname(mddev));
3631 		}
3632 	}
3633 
3634 	module_put(mddev->pers->owner);
3635 	mddev->pers = pers;
3636 	mddev->private = priv;
3637 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3638 	mddev->level = mddev->new_level;
3639 	mddev->layout = mddev->new_layout;
3640 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3641 	mddev->delta_disks = 0;
3642 	mddev->reshape_backwards = 0;
3643 	mddev->degraded = 0;
3644 	if (mddev->pers->sync_request == NULL) {
3645 		/* this is now an array without redundancy, so
3646 		 * it must always be in_sync
3647 		 */
3648 		mddev->in_sync = 1;
3649 		del_timer_sync(&mddev->safemode_timer);
3650 	}
3651 	pers->run(mddev);
3652 	mddev_resume(mddev);
3653 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3654 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3655 	md_wakeup_thread(mddev->thread);
3656 	sysfs_notify(&mddev->kobj, NULL, "level");
3657 	md_new_event(mddev);
3658 	return rv;
3659 }
3660 
3661 static struct md_sysfs_entry md_level =
3662 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3663 
3664 
3665 static ssize_t
3666 layout_show(struct mddev *mddev, char *page)
3667 {
3668 	/* just a number, not meaningful for all levels */
3669 	if (mddev->reshape_position != MaxSector &&
3670 	    mddev->layout != mddev->new_layout)
3671 		return sprintf(page, "%d (%d)\n",
3672 			       mddev->new_layout, mddev->layout);
3673 	return sprintf(page, "%d\n", mddev->layout);
3674 }
3675 
3676 static ssize_t
3677 layout_store(struct mddev *mddev, const char *buf, size_t len)
3678 {
3679 	char *e;
3680 	unsigned long n = simple_strtoul(buf, &e, 10);
3681 
3682 	if (!*buf || (*e && *e != '\n'))
3683 		return -EINVAL;
3684 
3685 	if (mddev->pers) {
3686 		int err;
3687 		if (mddev->pers->check_reshape == NULL)
3688 			return -EBUSY;
3689 		mddev->new_layout = n;
3690 		err = mddev->pers->check_reshape(mddev);
3691 		if (err) {
3692 			mddev->new_layout = mddev->layout;
3693 			return err;
3694 		}
3695 	} else {
3696 		mddev->new_layout = n;
3697 		if (mddev->reshape_position == MaxSector)
3698 			mddev->layout = n;
3699 	}
3700 	return len;
3701 }
3702 static struct md_sysfs_entry md_layout =
3703 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3704 
3705 
3706 static ssize_t
3707 raid_disks_show(struct mddev *mddev, char *page)
3708 {
3709 	if (mddev->raid_disks == 0)
3710 		return 0;
3711 	if (mddev->reshape_position != MaxSector &&
3712 	    mddev->delta_disks != 0)
3713 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3714 			       mddev->raid_disks - mddev->delta_disks);
3715 	return sprintf(page, "%d\n", mddev->raid_disks);
3716 }
3717 
3718 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3719 
3720 static ssize_t
3721 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3722 {
3723 	char *e;
3724 	int rv = 0;
3725 	unsigned long n = simple_strtoul(buf, &e, 10);
3726 
3727 	if (!*buf || (*e && *e != '\n'))
3728 		return -EINVAL;
3729 
3730 	if (mddev->pers)
3731 		rv = update_raid_disks(mddev, n);
3732 	else if (mddev->reshape_position != MaxSector) {
3733 		struct md_rdev *rdev;
3734 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3735 
3736 		rdev_for_each(rdev, mddev) {
3737 			if (olddisks < n &&
3738 			    rdev->data_offset < rdev->new_data_offset)
3739 				return -EINVAL;
3740 			if (olddisks > n &&
3741 			    rdev->data_offset > rdev->new_data_offset)
3742 				return -EINVAL;
3743 		}
3744 		mddev->delta_disks = n - olddisks;
3745 		mddev->raid_disks = n;
3746 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3747 	} else
3748 		mddev->raid_disks = n;
3749 	return rv ? rv : len;
3750 }
3751 static struct md_sysfs_entry md_raid_disks =
3752 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3753 
3754 static ssize_t
3755 chunk_size_show(struct mddev *mddev, char *page)
3756 {
3757 	if (mddev->reshape_position != MaxSector &&
3758 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3759 		return sprintf(page, "%d (%d)\n",
3760 			       mddev->new_chunk_sectors << 9,
3761 			       mddev->chunk_sectors << 9);
3762 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3763 }
3764 
3765 static ssize_t
3766 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3767 {
3768 	char *e;
3769 	unsigned long n = simple_strtoul(buf, &e, 10);
3770 
3771 	if (!*buf || (*e && *e != '\n'))
3772 		return -EINVAL;
3773 
3774 	if (mddev->pers) {
3775 		int err;
3776 		if (mddev->pers->check_reshape == NULL)
3777 			return -EBUSY;
3778 		mddev->new_chunk_sectors = n >> 9;
3779 		err = mddev->pers->check_reshape(mddev);
3780 		if (err) {
3781 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3782 			return err;
3783 		}
3784 	} else {
3785 		mddev->new_chunk_sectors = n >> 9;
3786 		if (mddev->reshape_position == MaxSector)
3787 			mddev->chunk_sectors = n >> 9;
3788 	}
3789 	return len;
3790 }
3791 static struct md_sysfs_entry md_chunk_size =
3792 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3793 
3794 static ssize_t
3795 resync_start_show(struct mddev *mddev, char *page)
3796 {
3797 	if (mddev->recovery_cp == MaxSector)
3798 		return sprintf(page, "none\n");
3799 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3800 }
3801 
3802 static ssize_t
3803 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3804 {
3805 	char *e;
3806 	unsigned long long n = simple_strtoull(buf, &e, 10);
3807 
3808 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3809 		return -EBUSY;
3810 	if (cmd_match(buf, "none"))
3811 		n = MaxSector;
3812 	else if (!*buf || (*e && *e != '\n'))
3813 		return -EINVAL;
3814 
3815 	mddev->recovery_cp = n;
3816 	return len;
3817 }
3818 static struct md_sysfs_entry md_resync_start =
3819 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3820 
3821 /*
3822  * The array state can be:
3823  *
3824  * clear
3825  *     No devices, no size, no level
3826  *     Equivalent to STOP_ARRAY ioctl
3827  * inactive
3828  *     May have some settings, but array is not active
3829  *        all IO results in error
3830  *     When written, doesn't tear down array, but just stops it
3831  * suspended (not supported yet)
3832  *     All IO requests will block. The array can be reconfigured.
3833  *     Writing this, if accepted, will block until array is quiescent
3834  * readonly
3835  *     no resync can happen.  no superblocks get written.
3836  *     write requests fail
3837  * read-auto
3838  *     like readonly, but behaves like 'clean' on a write request.
3839  *
3840  * clean - no pending writes, but otherwise active.
3841  *     When written to inactive array, starts without resync
3842  *     If a write request arrives then
3843  *       if metadata is known, mark 'dirty' and switch to 'active'.
3844  *       if not known, block and switch to write-pending
3845  *     If written to an active array that has pending writes, then fails.
3846  * active
3847  *     fully active: IO and resync can be happening.
3848  *     When written to inactive array, starts with resync
3849  *
3850  * write-pending
3851  *     clean, but writes are blocked waiting for 'active' to be written.
3852  *
3853  * active-idle
3854  *     like active, but no writes have been seen for a while (100msec).
3855  *
3856  */
3857 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3858 		   write_pending, active_idle, bad_word};
3859 static char *array_states[] = {
3860 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3861 	"write-pending", "active-idle", NULL };
3862 
3863 static int match_word(const char *word, char **list)
3864 {
3865 	int n;
3866 	for (n=0; list[n]; n++)
3867 		if (cmd_match(word, list[n]))
3868 			break;
3869 	return n;
3870 }
3871 
3872 static ssize_t
3873 array_state_show(struct mddev *mddev, char *page)
3874 {
3875 	enum array_state st = inactive;
3876 
3877 	if (mddev->pers)
3878 		switch(mddev->ro) {
3879 		case 1:
3880 			st = readonly;
3881 			break;
3882 		case 2:
3883 			st = read_auto;
3884 			break;
3885 		case 0:
3886 			if (mddev->in_sync)
3887 				st = clean;
3888 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3889 				st = write_pending;
3890 			else if (mddev->safemode)
3891 				st = active_idle;
3892 			else
3893 				st = active;
3894 		}
3895 	else {
3896 		if (list_empty(&mddev->disks) &&
3897 		    mddev->raid_disks == 0 &&
3898 		    mddev->dev_sectors == 0)
3899 			st = clear;
3900 		else
3901 			st = inactive;
3902 	}
3903 	return sprintf(page, "%s\n", array_states[st]);
3904 }
3905 
3906 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3907 static int md_set_readonly(struct mddev * mddev, int is_open);
3908 static int do_md_run(struct mddev * mddev);
3909 static int restart_array(struct mddev *mddev);
3910 
3911 static ssize_t
3912 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3913 {
3914 	int err = -EINVAL;
3915 	enum array_state st = match_word(buf, array_states);
3916 	switch(st) {
3917 	case bad_word:
3918 		break;
3919 	case clear:
3920 		/* stopping an active array */
3921 		if (atomic_read(&mddev->openers) > 0)
3922 			return -EBUSY;
3923 		err = do_md_stop(mddev, 0, 0);
3924 		break;
3925 	case inactive:
3926 		/* stopping an active array */
3927 		if (mddev->pers) {
3928 			if (atomic_read(&mddev->openers) > 0)
3929 				return -EBUSY;
3930 			err = do_md_stop(mddev, 2, 0);
3931 		} else
3932 			err = 0; /* already inactive */
3933 		break;
3934 	case suspended:
3935 		break; /* not supported yet */
3936 	case readonly:
3937 		if (mddev->pers)
3938 			err = md_set_readonly(mddev, 0);
3939 		else {
3940 			mddev->ro = 1;
3941 			set_disk_ro(mddev->gendisk, 1);
3942 			err = do_md_run(mddev);
3943 		}
3944 		break;
3945 	case read_auto:
3946 		if (mddev->pers) {
3947 			if (mddev->ro == 0)
3948 				err = md_set_readonly(mddev, 0);
3949 			else if (mddev->ro == 1)
3950 				err = restart_array(mddev);
3951 			if (err == 0) {
3952 				mddev->ro = 2;
3953 				set_disk_ro(mddev->gendisk, 0);
3954 			}
3955 		} else {
3956 			mddev->ro = 2;
3957 			err = do_md_run(mddev);
3958 		}
3959 		break;
3960 	case clean:
3961 		if (mddev->pers) {
3962 			restart_array(mddev);
3963 			spin_lock_irq(&mddev->write_lock);
3964 			if (atomic_read(&mddev->writes_pending) == 0) {
3965 				if (mddev->in_sync == 0) {
3966 					mddev->in_sync = 1;
3967 					if (mddev->safemode == 1)
3968 						mddev->safemode = 0;
3969 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3970 				}
3971 				err = 0;
3972 			} else
3973 				err = -EBUSY;
3974 			spin_unlock_irq(&mddev->write_lock);
3975 		} else
3976 			err = -EINVAL;
3977 		break;
3978 	case active:
3979 		if (mddev->pers) {
3980 			restart_array(mddev);
3981 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3982 			wake_up(&mddev->sb_wait);
3983 			err = 0;
3984 		} else {
3985 			mddev->ro = 0;
3986 			set_disk_ro(mddev->gendisk, 0);
3987 			err = do_md_run(mddev);
3988 		}
3989 		break;
3990 	case write_pending:
3991 	case active_idle:
3992 		/* these cannot be set */
3993 		break;
3994 	}
3995 	if (err)
3996 		return err;
3997 	else {
3998 		if (mddev->hold_active == UNTIL_IOCTL)
3999 			mddev->hold_active = 0;
4000 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4001 		return len;
4002 	}
4003 }
4004 static struct md_sysfs_entry md_array_state =
4005 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4006 
4007 static ssize_t
4008 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4009 	return sprintf(page, "%d\n",
4010 		       atomic_read(&mddev->max_corr_read_errors));
4011 }
4012 
4013 static ssize_t
4014 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4015 {
4016 	char *e;
4017 	unsigned long n = simple_strtoul(buf, &e, 10);
4018 
4019 	if (*buf && (*e == 0 || *e == '\n')) {
4020 		atomic_set(&mddev->max_corr_read_errors, n);
4021 		return len;
4022 	}
4023 	return -EINVAL;
4024 }
4025 
4026 static struct md_sysfs_entry max_corr_read_errors =
4027 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4028 	max_corrected_read_errors_store);
4029 
4030 static ssize_t
4031 null_show(struct mddev *mddev, char *page)
4032 {
4033 	return -EINVAL;
4034 }
4035 
4036 static ssize_t
4037 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4038 {
4039 	/* buf must be %d:%d\n? giving major and minor numbers */
4040 	/* The new device is added to the array.
4041 	 * If the array has a persistent superblock, we read the
4042 	 * superblock to initialise info and check validity.
4043 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4044 	 * which mainly checks size.
4045 	 */
4046 	char *e;
4047 	int major = simple_strtoul(buf, &e, 10);
4048 	int minor;
4049 	dev_t dev;
4050 	struct md_rdev *rdev;
4051 	int err;
4052 
4053 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4054 		return -EINVAL;
4055 	minor = simple_strtoul(e+1, &e, 10);
4056 	if (*e && *e != '\n')
4057 		return -EINVAL;
4058 	dev = MKDEV(major, minor);
4059 	if (major != MAJOR(dev) ||
4060 	    minor != MINOR(dev))
4061 		return -EOVERFLOW;
4062 
4063 
4064 	if (mddev->persistent) {
4065 		rdev = md_import_device(dev, mddev->major_version,
4066 					mddev->minor_version);
4067 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4068 			struct md_rdev *rdev0
4069 				= list_entry(mddev->disks.next,
4070 					     struct md_rdev, same_set);
4071 			err = super_types[mddev->major_version]
4072 				.load_super(rdev, rdev0, mddev->minor_version);
4073 			if (err < 0)
4074 				goto out;
4075 		}
4076 	} else if (mddev->external)
4077 		rdev = md_import_device(dev, -2, -1);
4078 	else
4079 		rdev = md_import_device(dev, -1, -1);
4080 
4081 	if (IS_ERR(rdev))
4082 		return PTR_ERR(rdev);
4083 	err = bind_rdev_to_array(rdev, mddev);
4084  out:
4085 	if (err)
4086 		export_rdev(rdev);
4087 	return err ? err : len;
4088 }
4089 
4090 static struct md_sysfs_entry md_new_device =
4091 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4092 
4093 static ssize_t
4094 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4095 {
4096 	char *end;
4097 	unsigned long chunk, end_chunk;
4098 
4099 	if (!mddev->bitmap)
4100 		goto out;
4101 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4102 	while (*buf) {
4103 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4104 		if (buf == end) break;
4105 		if (*end == '-') { /* range */
4106 			buf = end + 1;
4107 			end_chunk = simple_strtoul(buf, &end, 0);
4108 			if (buf == end) break;
4109 		}
4110 		if (*end && !isspace(*end)) break;
4111 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4112 		buf = skip_spaces(end);
4113 	}
4114 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4115 out:
4116 	return len;
4117 }
4118 
4119 static struct md_sysfs_entry md_bitmap =
4120 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4121 
4122 static ssize_t
4123 size_show(struct mddev *mddev, char *page)
4124 {
4125 	return sprintf(page, "%llu\n",
4126 		(unsigned long long)mddev->dev_sectors / 2);
4127 }
4128 
4129 static int update_size(struct mddev *mddev, sector_t num_sectors);
4130 
4131 static ssize_t
4132 size_store(struct mddev *mddev, const char *buf, size_t len)
4133 {
4134 	/* If array is inactive, we can reduce the component size, but
4135 	 * not increase it (except from 0).
4136 	 * If array is active, we can try an on-line resize
4137 	 */
4138 	sector_t sectors;
4139 	int err = strict_blocks_to_sectors(buf, &sectors);
4140 
4141 	if (err < 0)
4142 		return err;
4143 	if (mddev->pers) {
4144 		err = update_size(mddev, sectors);
4145 		md_update_sb(mddev, 1);
4146 	} else {
4147 		if (mddev->dev_sectors == 0 ||
4148 		    mddev->dev_sectors > sectors)
4149 			mddev->dev_sectors = sectors;
4150 		else
4151 			err = -ENOSPC;
4152 	}
4153 	return err ? err : len;
4154 }
4155 
4156 static struct md_sysfs_entry md_size =
4157 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4158 
4159 
4160 /* Metdata version.
4161  * This is one of
4162  *   'none' for arrays with no metadata (good luck...)
4163  *   'external' for arrays with externally managed metadata,
4164  * or N.M for internally known formats
4165  */
4166 static ssize_t
4167 metadata_show(struct mddev *mddev, char *page)
4168 {
4169 	if (mddev->persistent)
4170 		return sprintf(page, "%d.%d\n",
4171 			       mddev->major_version, mddev->minor_version);
4172 	else if (mddev->external)
4173 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4174 	else
4175 		return sprintf(page, "none\n");
4176 }
4177 
4178 static ssize_t
4179 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4180 {
4181 	int major, minor;
4182 	char *e;
4183 	/* Changing the details of 'external' metadata is
4184 	 * always permitted.  Otherwise there must be
4185 	 * no devices attached to the array.
4186 	 */
4187 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4188 		;
4189 	else if (!list_empty(&mddev->disks))
4190 		return -EBUSY;
4191 
4192 	if (cmd_match(buf, "none")) {
4193 		mddev->persistent = 0;
4194 		mddev->external = 0;
4195 		mddev->major_version = 0;
4196 		mddev->minor_version = 90;
4197 		return len;
4198 	}
4199 	if (strncmp(buf, "external:", 9) == 0) {
4200 		size_t namelen = len-9;
4201 		if (namelen >= sizeof(mddev->metadata_type))
4202 			namelen = sizeof(mddev->metadata_type)-1;
4203 		strncpy(mddev->metadata_type, buf+9, namelen);
4204 		mddev->metadata_type[namelen] = 0;
4205 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4206 			mddev->metadata_type[--namelen] = 0;
4207 		mddev->persistent = 0;
4208 		mddev->external = 1;
4209 		mddev->major_version = 0;
4210 		mddev->minor_version = 90;
4211 		return len;
4212 	}
4213 	major = simple_strtoul(buf, &e, 10);
4214 	if (e==buf || *e != '.')
4215 		return -EINVAL;
4216 	buf = e+1;
4217 	minor = simple_strtoul(buf, &e, 10);
4218 	if (e==buf || (*e && *e != '\n') )
4219 		return -EINVAL;
4220 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4221 		return -ENOENT;
4222 	mddev->major_version = major;
4223 	mddev->minor_version = minor;
4224 	mddev->persistent = 1;
4225 	mddev->external = 0;
4226 	return len;
4227 }
4228 
4229 static struct md_sysfs_entry md_metadata =
4230 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4231 
4232 static ssize_t
4233 action_show(struct mddev *mddev, char *page)
4234 {
4235 	char *type = "idle";
4236 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4237 		type = "frozen";
4238 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4239 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4240 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4241 			type = "reshape";
4242 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4243 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4244 				type = "resync";
4245 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4246 				type = "check";
4247 			else
4248 				type = "repair";
4249 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4250 			type = "recover";
4251 	}
4252 	return sprintf(page, "%s\n", type);
4253 }
4254 
4255 static void reap_sync_thread(struct mddev *mddev);
4256 
4257 static ssize_t
4258 action_store(struct mddev *mddev, const char *page, size_t len)
4259 {
4260 	if (!mddev->pers || !mddev->pers->sync_request)
4261 		return -EINVAL;
4262 
4263 	if (cmd_match(page, "frozen"))
4264 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4265 	else
4266 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4267 
4268 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4269 		if (mddev->sync_thread) {
4270 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4271 			reap_sync_thread(mddev);
4272 		}
4273 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4274 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4275 		return -EBUSY;
4276 	else if (cmd_match(page, "resync"))
4277 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4278 	else if (cmd_match(page, "recover")) {
4279 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4280 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4281 	} else if (cmd_match(page, "reshape")) {
4282 		int err;
4283 		if (mddev->pers->start_reshape == NULL)
4284 			return -EINVAL;
4285 		err = mddev->pers->start_reshape(mddev);
4286 		if (err)
4287 			return err;
4288 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4289 	} else {
4290 		if (cmd_match(page, "check"))
4291 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4292 		else if (!cmd_match(page, "repair"))
4293 			return -EINVAL;
4294 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4295 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4296 	}
4297 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4298 	md_wakeup_thread(mddev->thread);
4299 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4300 	return len;
4301 }
4302 
4303 static ssize_t
4304 mismatch_cnt_show(struct mddev *mddev, char *page)
4305 {
4306 	return sprintf(page, "%llu\n",
4307 		       (unsigned long long) mddev->resync_mismatches);
4308 }
4309 
4310 static struct md_sysfs_entry md_scan_mode =
4311 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4312 
4313 
4314 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4315 
4316 static ssize_t
4317 sync_min_show(struct mddev *mddev, char *page)
4318 {
4319 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4320 		       mddev->sync_speed_min ? "local": "system");
4321 }
4322 
4323 static ssize_t
4324 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4325 {
4326 	int min;
4327 	char *e;
4328 	if (strncmp(buf, "system", 6)==0) {
4329 		mddev->sync_speed_min = 0;
4330 		return len;
4331 	}
4332 	min = simple_strtoul(buf, &e, 10);
4333 	if (buf == e || (*e && *e != '\n') || min <= 0)
4334 		return -EINVAL;
4335 	mddev->sync_speed_min = min;
4336 	return len;
4337 }
4338 
4339 static struct md_sysfs_entry md_sync_min =
4340 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4341 
4342 static ssize_t
4343 sync_max_show(struct mddev *mddev, char *page)
4344 {
4345 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4346 		       mddev->sync_speed_max ? "local": "system");
4347 }
4348 
4349 static ssize_t
4350 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4351 {
4352 	int max;
4353 	char *e;
4354 	if (strncmp(buf, "system", 6)==0) {
4355 		mddev->sync_speed_max = 0;
4356 		return len;
4357 	}
4358 	max = simple_strtoul(buf, &e, 10);
4359 	if (buf == e || (*e && *e != '\n') || max <= 0)
4360 		return -EINVAL;
4361 	mddev->sync_speed_max = max;
4362 	return len;
4363 }
4364 
4365 static struct md_sysfs_entry md_sync_max =
4366 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4367 
4368 static ssize_t
4369 degraded_show(struct mddev *mddev, char *page)
4370 {
4371 	return sprintf(page, "%d\n", mddev->degraded);
4372 }
4373 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4374 
4375 static ssize_t
4376 sync_force_parallel_show(struct mddev *mddev, char *page)
4377 {
4378 	return sprintf(page, "%d\n", mddev->parallel_resync);
4379 }
4380 
4381 static ssize_t
4382 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4383 {
4384 	long n;
4385 
4386 	if (strict_strtol(buf, 10, &n))
4387 		return -EINVAL;
4388 
4389 	if (n != 0 && n != 1)
4390 		return -EINVAL;
4391 
4392 	mddev->parallel_resync = n;
4393 
4394 	if (mddev->sync_thread)
4395 		wake_up(&resync_wait);
4396 
4397 	return len;
4398 }
4399 
4400 /* force parallel resync, even with shared block devices */
4401 static struct md_sysfs_entry md_sync_force_parallel =
4402 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4403        sync_force_parallel_show, sync_force_parallel_store);
4404 
4405 static ssize_t
4406 sync_speed_show(struct mddev *mddev, char *page)
4407 {
4408 	unsigned long resync, dt, db;
4409 	if (mddev->curr_resync == 0)
4410 		return sprintf(page, "none\n");
4411 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4412 	dt = (jiffies - mddev->resync_mark) / HZ;
4413 	if (!dt) dt++;
4414 	db = resync - mddev->resync_mark_cnt;
4415 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4416 }
4417 
4418 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4419 
4420 static ssize_t
4421 sync_completed_show(struct mddev *mddev, char *page)
4422 {
4423 	unsigned long long max_sectors, resync;
4424 
4425 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4426 		return sprintf(page, "none\n");
4427 
4428 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4429 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4430 		max_sectors = mddev->resync_max_sectors;
4431 	else
4432 		max_sectors = mddev->dev_sectors;
4433 
4434 	resync = mddev->curr_resync_completed;
4435 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4436 }
4437 
4438 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4439 
4440 static ssize_t
4441 min_sync_show(struct mddev *mddev, char *page)
4442 {
4443 	return sprintf(page, "%llu\n",
4444 		       (unsigned long long)mddev->resync_min);
4445 }
4446 static ssize_t
4447 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4448 {
4449 	unsigned long long min;
4450 	if (strict_strtoull(buf, 10, &min))
4451 		return -EINVAL;
4452 	if (min > mddev->resync_max)
4453 		return -EINVAL;
4454 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4455 		return -EBUSY;
4456 
4457 	/* Must be a multiple of chunk_size */
4458 	if (mddev->chunk_sectors) {
4459 		sector_t temp = min;
4460 		if (sector_div(temp, mddev->chunk_sectors))
4461 			return -EINVAL;
4462 	}
4463 	mddev->resync_min = min;
4464 
4465 	return len;
4466 }
4467 
4468 static struct md_sysfs_entry md_min_sync =
4469 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4470 
4471 static ssize_t
4472 max_sync_show(struct mddev *mddev, char *page)
4473 {
4474 	if (mddev->resync_max == MaxSector)
4475 		return sprintf(page, "max\n");
4476 	else
4477 		return sprintf(page, "%llu\n",
4478 			       (unsigned long long)mddev->resync_max);
4479 }
4480 static ssize_t
4481 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4482 {
4483 	if (strncmp(buf, "max", 3) == 0)
4484 		mddev->resync_max = MaxSector;
4485 	else {
4486 		unsigned long long max;
4487 		if (strict_strtoull(buf, 10, &max))
4488 			return -EINVAL;
4489 		if (max < mddev->resync_min)
4490 			return -EINVAL;
4491 		if (max < mddev->resync_max &&
4492 		    mddev->ro == 0 &&
4493 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4494 			return -EBUSY;
4495 
4496 		/* Must be a multiple of chunk_size */
4497 		if (mddev->chunk_sectors) {
4498 			sector_t temp = max;
4499 			if (sector_div(temp, mddev->chunk_sectors))
4500 				return -EINVAL;
4501 		}
4502 		mddev->resync_max = max;
4503 	}
4504 	wake_up(&mddev->recovery_wait);
4505 	return len;
4506 }
4507 
4508 static struct md_sysfs_entry md_max_sync =
4509 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4510 
4511 static ssize_t
4512 suspend_lo_show(struct mddev *mddev, char *page)
4513 {
4514 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4515 }
4516 
4517 static ssize_t
4518 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4519 {
4520 	char *e;
4521 	unsigned long long new = simple_strtoull(buf, &e, 10);
4522 	unsigned long long old = mddev->suspend_lo;
4523 
4524 	if (mddev->pers == NULL ||
4525 	    mddev->pers->quiesce == NULL)
4526 		return -EINVAL;
4527 	if (buf == e || (*e && *e != '\n'))
4528 		return -EINVAL;
4529 
4530 	mddev->suspend_lo = new;
4531 	if (new >= old)
4532 		/* Shrinking suspended region */
4533 		mddev->pers->quiesce(mddev, 2);
4534 	else {
4535 		/* Expanding suspended region - need to wait */
4536 		mddev->pers->quiesce(mddev, 1);
4537 		mddev->pers->quiesce(mddev, 0);
4538 	}
4539 	return len;
4540 }
4541 static struct md_sysfs_entry md_suspend_lo =
4542 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4543 
4544 
4545 static ssize_t
4546 suspend_hi_show(struct mddev *mddev, char *page)
4547 {
4548 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4549 }
4550 
4551 static ssize_t
4552 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4553 {
4554 	char *e;
4555 	unsigned long long new = simple_strtoull(buf, &e, 10);
4556 	unsigned long long old = mddev->suspend_hi;
4557 
4558 	if (mddev->pers == NULL ||
4559 	    mddev->pers->quiesce == NULL)
4560 		return -EINVAL;
4561 	if (buf == e || (*e && *e != '\n'))
4562 		return -EINVAL;
4563 
4564 	mddev->suspend_hi = new;
4565 	if (new <= old)
4566 		/* Shrinking suspended region */
4567 		mddev->pers->quiesce(mddev, 2);
4568 	else {
4569 		/* Expanding suspended region - need to wait */
4570 		mddev->pers->quiesce(mddev, 1);
4571 		mddev->pers->quiesce(mddev, 0);
4572 	}
4573 	return len;
4574 }
4575 static struct md_sysfs_entry md_suspend_hi =
4576 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4577 
4578 static ssize_t
4579 reshape_position_show(struct mddev *mddev, char *page)
4580 {
4581 	if (mddev->reshape_position != MaxSector)
4582 		return sprintf(page, "%llu\n",
4583 			       (unsigned long long)mddev->reshape_position);
4584 	strcpy(page, "none\n");
4585 	return 5;
4586 }
4587 
4588 static ssize_t
4589 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4590 {
4591 	struct md_rdev *rdev;
4592 	char *e;
4593 	unsigned long long new = simple_strtoull(buf, &e, 10);
4594 	if (mddev->pers)
4595 		return -EBUSY;
4596 	if (buf == e || (*e && *e != '\n'))
4597 		return -EINVAL;
4598 	mddev->reshape_position = new;
4599 	mddev->delta_disks = 0;
4600 	mddev->reshape_backwards = 0;
4601 	mddev->new_level = mddev->level;
4602 	mddev->new_layout = mddev->layout;
4603 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4604 	rdev_for_each(rdev, mddev)
4605 		rdev->new_data_offset = rdev->data_offset;
4606 	return len;
4607 }
4608 
4609 static struct md_sysfs_entry md_reshape_position =
4610 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4611        reshape_position_store);
4612 
4613 static ssize_t
4614 reshape_direction_show(struct mddev *mddev, char *page)
4615 {
4616 	return sprintf(page, "%s\n",
4617 		       mddev->reshape_backwards ? "backwards" : "forwards");
4618 }
4619 
4620 static ssize_t
4621 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4622 {
4623 	int backwards = 0;
4624 	if (cmd_match(buf, "forwards"))
4625 		backwards = 0;
4626 	else if (cmd_match(buf, "backwards"))
4627 		backwards = 1;
4628 	else
4629 		return -EINVAL;
4630 	if (mddev->reshape_backwards == backwards)
4631 		return len;
4632 
4633 	/* check if we are allowed to change */
4634 	if (mddev->delta_disks)
4635 		return -EBUSY;
4636 
4637 	if (mddev->persistent &&
4638 	    mddev->major_version == 0)
4639 		return -EINVAL;
4640 
4641 	mddev->reshape_backwards = backwards;
4642 	return len;
4643 }
4644 
4645 static struct md_sysfs_entry md_reshape_direction =
4646 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4647        reshape_direction_store);
4648 
4649 static ssize_t
4650 array_size_show(struct mddev *mddev, char *page)
4651 {
4652 	if (mddev->external_size)
4653 		return sprintf(page, "%llu\n",
4654 			       (unsigned long long)mddev->array_sectors/2);
4655 	else
4656 		return sprintf(page, "default\n");
4657 }
4658 
4659 static ssize_t
4660 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4661 {
4662 	sector_t sectors;
4663 
4664 	if (strncmp(buf, "default", 7) == 0) {
4665 		if (mddev->pers)
4666 			sectors = mddev->pers->size(mddev, 0, 0);
4667 		else
4668 			sectors = mddev->array_sectors;
4669 
4670 		mddev->external_size = 0;
4671 	} else {
4672 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4673 			return -EINVAL;
4674 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4675 			return -E2BIG;
4676 
4677 		mddev->external_size = 1;
4678 	}
4679 
4680 	mddev->array_sectors = sectors;
4681 	if (mddev->pers) {
4682 		set_capacity(mddev->gendisk, mddev->array_sectors);
4683 		revalidate_disk(mddev->gendisk);
4684 	}
4685 	return len;
4686 }
4687 
4688 static struct md_sysfs_entry md_array_size =
4689 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4690        array_size_store);
4691 
4692 static struct attribute *md_default_attrs[] = {
4693 	&md_level.attr,
4694 	&md_layout.attr,
4695 	&md_raid_disks.attr,
4696 	&md_chunk_size.attr,
4697 	&md_size.attr,
4698 	&md_resync_start.attr,
4699 	&md_metadata.attr,
4700 	&md_new_device.attr,
4701 	&md_safe_delay.attr,
4702 	&md_array_state.attr,
4703 	&md_reshape_position.attr,
4704 	&md_reshape_direction.attr,
4705 	&md_array_size.attr,
4706 	&max_corr_read_errors.attr,
4707 	NULL,
4708 };
4709 
4710 static struct attribute *md_redundancy_attrs[] = {
4711 	&md_scan_mode.attr,
4712 	&md_mismatches.attr,
4713 	&md_sync_min.attr,
4714 	&md_sync_max.attr,
4715 	&md_sync_speed.attr,
4716 	&md_sync_force_parallel.attr,
4717 	&md_sync_completed.attr,
4718 	&md_min_sync.attr,
4719 	&md_max_sync.attr,
4720 	&md_suspend_lo.attr,
4721 	&md_suspend_hi.attr,
4722 	&md_bitmap.attr,
4723 	&md_degraded.attr,
4724 	NULL,
4725 };
4726 static struct attribute_group md_redundancy_group = {
4727 	.name = NULL,
4728 	.attrs = md_redundancy_attrs,
4729 };
4730 
4731 
4732 static ssize_t
4733 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4734 {
4735 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4736 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4737 	ssize_t rv;
4738 
4739 	if (!entry->show)
4740 		return -EIO;
4741 	spin_lock(&all_mddevs_lock);
4742 	if (list_empty(&mddev->all_mddevs)) {
4743 		spin_unlock(&all_mddevs_lock);
4744 		return -EBUSY;
4745 	}
4746 	mddev_get(mddev);
4747 	spin_unlock(&all_mddevs_lock);
4748 
4749 	rv = mddev_lock(mddev);
4750 	if (!rv) {
4751 		rv = entry->show(mddev, page);
4752 		mddev_unlock(mddev);
4753 	}
4754 	mddev_put(mddev);
4755 	return rv;
4756 }
4757 
4758 static ssize_t
4759 md_attr_store(struct kobject *kobj, struct attribute *attr,
4760 	      const char *page, size_t length)
4761 {
4762 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4763 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4764 	ssize_t rv;
4765 
4766 	if (!entry->store)
4767 		return -EIO;
4768 	if (!capable(CAP_SYS_ADMIN))
4769 		return -EACCES;
4770 	spin_lock(&all_mddevs_lock);
4771 	if (list_empty(&mddev->all_mddevs)) {
4772 		spin_unlock(&all_mddevs_lock);
4773 		return -EBUSY;
4774 	}
4775 	mddev_get(mddev);
4776 	spin_unlock(&all_mddevs_lock);
4777 	rv = mddev_lock(mddev);
4778 	if (!rv) {
4779 		rv = entry->store(mddev, page, length);
4780 		mddev_unlock(mddev);
4781 	}
4782 	mddev_put(mddev);
4783 	return rv;
4784 }
4785 
4786 static void md_free(struct kobject *ko)
4787 {
4788 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4789 
4790 	if (mddev->sysfs_state)
4791 		sysfs_put(mddev->sysfs_state);
4792 
4793 	if (mddev->gendisk) {
4794 		del_gendisk(mddev->gendisk);
4795 		put_disk(mddev->gendisk);
4796 	}
4797 	if (mddev->queue)
4798 		blk_cleanup_queue(mddev->queue);
4799 
4800 	kfree(mddev);
4801 }
4802 
4803 static const struct sysfs_ops md_sysfs_ops = {
4804 	.show	= md_attr_show,
4805 	.store	= md_attr_store,
4806 };
4807 static struct kobj_type md_ktype = {
4808 	.release	= md_free,
4809 	.sysfs_ops	= &md_sysfs_ops,
4810 	.default_attrs	= md_default_attrs,
4811 };
4812 
4813 int mdp_major = 0;
4814 
4815 static void mddev_delayed_delete(struct work_struct *ws)
4816 {
4817 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4818 
4819 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4820 	kobject_del(&mddev->kobj);
4821 	kobject_put(&mddev->kobj);
4822 }
4823 
4824 static int md_alloc(dev_t dev, char *name)
4825 {
4826 	static DEFINE_MUTEX(disks_mutex);
4827 	struct mddev *mddev = mddev_find(dev);
4828 	struct gendisk *disk;
4829 	int partitioned;
4830 	int shift;
4831 	int unit;
4832 	int error;
4833 
4834 	if (!mddev)
4835 		return -ENODEV;
4836 
4837 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4838 	shift = partitioned ? MdpMinorShift : 0;
4839 	unit = MINOR(mddev->unit) >> shift;
4840 
4841 	/* wait for any previous instance of this device to be
4842 	 * completely removed (mddev_delayed_delete).
4843 	 */
4844 	flush_workqueue(md_misc_wq);
4845 
4846 	mutex_lock(&disks_mutex);
4847 	error = -EEXIST;
4848 	if (mddev->gendisk)
4849 		goto abort;
4850 
4851 	if (name) {
4852 		/* Need to ensure that 'name' is not a duplicate.
4853 		 */
4854 		struct mddev *mddev2;
4855 		spin_lock(&all_mddevs_lock);
4856 
4857 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4858 			if (mddev2->gendisk &&
4859 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4860 				spin_unlock(&all_mddevs_lock);
4861 				goto abort;
4862 			}
4863 		spin_unlock(&all_mddevs_lock);
4864 	}
4865 
4866 	error = -ENOMEM;
4867 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4868 	if (!mddev->queue)
4869 		goto abort;
4870 	mddev->queue->queuedata = mddev;
4871 
4872 	blk_queue_make_request(mddev->queue, md_make_request);
4873 	blk_set_stacking_limits(&mddev->queue->limits);
4874 
4875 	disk = alloc_disk(1 << shift);
4876 	if (!disk) {
4877 		blk_cleanup_queue(mddev->queue);
4878 		mddev->queue = NULL;
4879 		goto abort;
4880 	}
4881 	disk->major = MAJOR(mddev->unit);
4882 	disk->first_minor = unit << shift;
4883 	if (name)
4884 		strcpy(disk->disk_name, name);
4885 	else if (partitioned)
4886 		sprintf(disk->disk_name, "md_d%d", unit);
4887 	else
4888 		sprintf(disk->disk_name, "md%d", unit);
4889 	disk->fops = &md_fops;
4890 	disk->private_data = mddev;
4891 	disk->queue = mddev->queue;
4892 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4893 	/* Allow extended partitions.  This makes the
4894 	 * 'mdp' device redundant, but we can't really
4895 	 * remove it now.
4896 	 */
4897 	disk->flags |= GENHD_FL_EXT_DEVT;
4898 	mddev->gendisk = disk;
4899 	/* As soon as we call add_disk(), another thread could get
4900 	 * through to md_open, so make sure it doesn't get too far
4901 	 */
4902 	mutex_lock(&mddev->open_mutex);
4903 	add_disk(disk);
4904 
4905 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4906 				     &disk_to_dev(disk)->kobj, "%s", "md");
4907 	if (error) {
4908 		/* This isn't possible, but as kobject_init_and_add is marked
4909 		 * __must_check, we must do something with the result
4910 		 */
4911 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4912 		       disk->disk_name);
4913 		error = 0;
4914 	}
4915 	if (mddev->kobj.sd &&
4916 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4917 		printk(KERN_DEBUG "pointless warning\n");
4918 	mutex_unlock(&mddev->open_mutex);
4919  abort:
4920 	mutex_unlock(&disks_mutex);
4921 	if (!error && mddev->kobj.sd) {
4922 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4923 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4924 	}
4925 	mddev_put(mddev);
4926 	return error;
4927 }
4928 
4929 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4930 {
4931 	md_alloc(dev, NULL);
4932 	return NULL;
4933 }
4934 
4935 static int add_named_array(const char *val, struct kernel_param *kp)
4936 {
4937 	/* val must be "md_*" where * is not all digits.
4938 	 * We allocate an array with a large free minor number, and
4939 	 * set the name to val.  val must not already be an active name.
4940 	 */
4941 	int len = strlen(val);
4942 	char buf[DISK_NAME_LEN];
4943 
4944 	while (len && val[len-1] == '\n')
4945 		len--;
4946 	if (len >= DISK_NAME_LEN)
4947 		return -E2BIG;
4948 	strlcpy(buf, val, len+1);
4949 	if (strncmp(buf, "md_", 3) != 0)
4950 		return -EINVAL;
4951 	return md_alloc(0, buf);
4952 }
4953 
4954 static void md_safemode_timeout(unsigned long data)
4955 {
4956 	struct mddev *mddev = (struct mddev *) data;
4957 
4958 	if (!atomic_read(&mddev->writes_pending)) {
4959 		mddev->safemode = 1;
4960 		if (mddev->external)
4961 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4962 	}
4963 	md_wakeup_thread(mddev->thread);
4964 }
4965 
4966 static int start_dirty_degraded;
4967 
4968 int md_run(struct mddev *mddev)
4969 {
4970 	int err;
4971 	struct md_rdev *rdev;
4972 	struct md_personality *pers;
4973 
4974 	if (list_empty(&mddev->disks))
4975 		/* cannot run an array with no devices.. */
4976 		return -EINVAL;
4977 
4978 	if (mddev->pers)
4979 		return -EBUSY;
4980 	/* Cannot run until previous stop completes properly */
4981 	if (mddev->sysfs_active)
4982 		return -EBUSY;
4983 
4984 	/*
4985 	 * Analyze all RAID superblock(s)
4986 	 */
4987 	if (!mddev->raid_disks) {
4988 		if (!mddev->persistent)
4989 			return -EINVAL;
4990 		analyze_sbs(mddev);
4991 	}
4992 
4993 	if (mddev->level != LEVEL_NONE)
4994 		request_module("md-level-%d", mddev->level);
4995 	else if (mddev->clevel[0])
4996 		request_module("md-%s", mddev->clevel);
4997 
4998 	/*
4999 	 * Drop all container device buffers, from now on
5000 	 * the only valid external interface is through the md
5001 	 * device.
5002 	 */
5003 	rdev_for_each(rdev, mddev) {
5004 		if (test_bit(Faulty, &rdev->flags))
5005 			continue;
5006 		sync_blockdev(rdev->bdev);
5007 		invalidate_bdev(rdev->bdev);
5008 
5009 		/* perform some consistency tests on the device.
5010 		 * We don't want the data to overlap the metadata,
5011 		 * Internal Bitmap issues have been handled elsewhere.
5012 		 */
5013 		if (rdev->meta_bdev) {
5014 			/* Nothing to check */;
5015 		} else if (rdev->data_offset < rdev->sb_start) {
5016 			if (mddev->dev_sectors &&
5017 			    rdev->data_offset + mddev->dev_sectors
5018 			    > rdev->sb_start) {
5019 				printk("md: %s: data overlaps metadata\n",
5020 				       mdname(mddev));
5021 				return -EINVAL;
5022 			}
5023 		} else {
5024 			if (rdev->sb_start + rdev->sb_size/512
5025 			    > rdev->data_offset) {
5026 				printk("md: %s: metadata overlaps data\n",
5027 				       mdname(mddev));
5028 				return -EINVAL;
5029 			}
5030 		}
5031 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5032 	}
5033 
5034 	if (mddev->bio_set == NULL)
5035 		mddev->bio_set = bioset_create(BIO_POOL_SIZE,
5036 					       sizeof(struct mddev *));
5037 
5038 	spin_lock(&pers_lock);
5039 	pers = find_pers(mddev->level, mddev->clevel);
5040 	if (!pers || !try_module_get(pers->owner)) {
5041 		spin_unlock(&pers_lock);
5042 		if (mddev->level != LEVEL_NONE)
5043 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5044 			       mddev->level);
5045 		else
5046 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5047 			       mddev->clevel);
5048 		return -EINVAL;
5049 	}
5050 	mddev->pers = pers;
5051 	spin_unlock(&pers_lock);
5052 	if (mddev->level != pers->level) {
5053 		mddev->level = pers->level;
5054 		mddev->new_level = pers->level;
5055 	}
5056 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5057 
5058 	if (mddev->reshape_position != MaxSector &&
5059 	    pers->start_reshape == NULL) {
5060 		/* This personality cannot handle reshaping... */
5061 		mddev->pers = NULL;
5062 		module_put(pers->owner);
5063 		return -EINVAL;
5064 	}
5065 
5066 	if (pers->sync_request) {
5067 		/* Warn if this is a potentially silly
5068 		 * configuration.
5069 		 */
5070 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5071 		struct md_rdev *rdev2;
5072 		int warned = 0;
5073 
5074 		rdev_for_each(rdev, mddev)
5075 			rdev_for_each(rdev2, mddev) {
5076 				if (rdev < rdev2 &&
5077 				    rdev->bdev->bd_contains ==
5078 				    rdev2->bdev->bd_contains) {
5079 					printk(KERN_WARNING
5080 					       "%s: WARNING: %s appears to be"
5081 					       " on the same physical disk as"
5082 					       " %s.\n",
5083 					       mdname(mddev),
5084 					       bdevname(rdev->bdev,b),
5085 					       bdevname(rdev2->bdev,b2));
5086 					warned = 1;
5087 				}
5088 			}
5089 
5090 		if (warned)
5091 			printk(KERN_WARNING
5092 			       "True protection against single-disk"
5093 			       " failure might be compromised.\n");
5094 	}
5095 
5096 	mddev->recovery = 0;
5097 	/* may be over-ridden by personality */
5098 	mddev->resync_max_sectors = mddev->dev_sectors;
5099 
5100 	mddev->ok_start_degraded = start_dirty_degraded;
5101 
5102 	if (start_readonly && mddev->ro == 0)
5103 		mddev->ro = 2; /* read-only, but switch on first write */
5104 
5105 	err = mddev->pers->run(mddev);
5106 	if (err)
5107 		printk(KERN_ERR "md: pers->run() failed ...\n");
5108 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5109 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5110 			  " but 'external_size' not in effect?\n", __func__);
5111 		printk(KERN_ERR
5112 		       "md: invalid array_size %llu > default size %llu\n",
5113 		       (unsigned long long)mddev->array_sectors / 2,
5114 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5115 		err = -EINVAL;
5116 		mddev->pers->stop(mddev);
5117 	}
5118 	if (err == 0 && mddev->pers->sync_request) {
5119 		err = bitmap_create(mddev);
5120 		if (err) {
5121 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5122 			       mdname(mddev), err);
5123 			mddev->pers->stop(mddev);
5124 		}
5125 	}
5126 	if (err) {
5127 		module_put(mddev->pers->owner);
5128 		mddev->pers = NULL;
5129 		bitmap_destroy(mddev);
5130 		return err;
5131 	}
5132 	if (mddev->pers->sync_request) {
5133 		if (mddev->kobj.sd &&
5134 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5135 			printk(KERN_WARNING
5136 			       "md: cannot register extra attributes for %s\n",
5137 			       mdname(mddev));
5138 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5139 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5140 		mddev->ro = 0;
5141 
5142  	atomic_set(&mddev->writes_pending,0);
5143 	atomic_set(&mddev->max_corr_read_errors,
5144 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5145 	mddev->safemode = 0;
5146 	mddev->safemode_timer.function = md_safemode_timeout;
5147 	mddev->safemode_timer.data = (unsigned long) mddev;
5148 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5149 	mddev->in_sync = 1;
5150 	smp_wmb();
5151 	mddev->ready = 1;
5152 	rdev_for_each(rdev, mddev)
5153 		if (rdev->raid_disk >= 0)
5154 			if (sysfs_link_rdev(mddev, rdev))
5155 				/* failure here is OK */;
5156 
5157 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5158 
5159 	if (mddev->flags)
5160 		md_update_sb(mddev, 0);
5161 
5162 	md_new_event(mddev);
5163 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5164 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5165 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5166 	return 0;
5167 }
5168 EXPORT_SYMBOL_GPL(md_run);
5169 
5170 static int do_md_run(struct mddev *mddev)
5171 {
5172 	int err;
5173 
5174 	err = md_run(mddev);
5175 	if (err)
5176 		goto out;
5177 	err = bitmap_load(mddev);
5178 	if (err) {
5179 		bitmap_destroy(mddev);
5180 		goto out;
5181 	}
5182 
5183 	md_wakeup_thread(mddev->thread);
5184 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5185 
5186 	set_capacity(mddev->gendisk, mddev->array_sectors);
5187 	revalidate_disk(mddev->gendisk);
5188 	mddev->changed = 1;
5189 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5190 out:
5191 	return err;
5192 }
5193 
5194 static int restart_array(struct mddev *mddev)
5195 {
5196 	struct gendisk *disk = mddev->gendisk;
5197 
5198 	/* Complain if it has no devices */
5199 	if (list_empty(&mddev->disks))
5200 		return -ENXIO;
5201 	if (!mddev->pers)
5202 		return -EINVAL;
5203 	if (!mddev->ro)
5204 		return -EBUSY;
5205 	mddev->safemode = 0;
5206 	mddev->ro = 0;
5207 	set_disk_ro(disk, 0);
5208 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5209 		mdname(mddev));
5210 	/* Kick recovery or resync if necessary */
5211 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5212 	md_wakeup_thread(mddev->thread);
5213 	md_wakeup_thread(mddev->sync_thread);
5214 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5215 	return 0;
5216 }
5217 
5218 /* similar to deny_write_access, but accounts for our holding a reference
5219  * to the file ourselves */
5220 static int deny_bitmap_write_access(struct file * file)
5221 {
5222 	struct inode *inode = file->f_mapping->host;
5223 
5224 	spin_lock(&inode->i_lock);
5225 	if (atomic_read(&inode->i_writecount) > 1) {
5226 		spin_unlock(&inode->i_lock);
5227 		return -ETXTBSY;
5228 	}
5229 	atomic_set(&inode->i_writecount, -1);
5230 	spin_unlock(&inode->i_lock);
5231 
5232 	return 0;
5233 }
5234 
5235 void restore_bitmap_write_access(struct file *file)
5236 {
5237 	struct inode *inode = file->f_mapping->host;
5238 
5239 	spin_lock(&inode->i_lock);
5240 	atomic_set(&inode->i_writecount, 1);
5241 	spin_unlock(&inode->i_lock);
5242 }
5243 
5244 static void md_clean(struct mddev *mddev)
5245 {
5246 	mddev->array_sectors = 0;
5247 	mddev->external_size = 0;
5248 	mddev->dev_sectors = 0;
5249 	mddev->raid_disks = 0;
5250 	mddev->recovery_cp = 0;
5251 	mddev->resync_min = 0;
5252 	mddev->resync_max = MaxSector;
5253 	mddev->reshape_position = MaxSector;
5254 	mddev->external = 0;
5255 	mddev->persistent = 0;
5256 	mddev->level = LEVEL_NONE;
5257 	mddev->clevel[0] = 0;
5258 	mddev->flags = 0;
5259 	mddev->ro = 0;
5260 	mddev->metadata_type[0] = 0;
5261 	mddev->chunk_sectors = 0;
5262 	mddev->ctime = mddev->utime = 0;
5263 	mddev->layout = 0;
5264 	mddev->max_disks = 0;
5265 	mddev->events = 0;
5266 	mddev->can_decrease_events = 0;
5267 	mddev->delta_disks = 0;
5268 	mddev->reshape_backwards = 0;
5269 	mddev->new_level = LEVEL_NONE;
5270 	mddev->new_layout = 0;
5271 	mddev->new_chunk_sectors = 0;
5272 	mddev->curr_resync = 0;
5273 	mddev->resync_mismatches = 0;
5274 	mddev->suspend_lo = mddev->suspend_hi = 0;
5275 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5276 	mddev->recovery = 0;
5277 	mddev->in_sync = 0;
5278 	mddev->changed = 0;
5279 	mddev->degraded = 0;
5280 	mddev->safemode = 0;
5281 	mddev->merge_check_needed = 0;
5282 	mddev->bitmap_info.offset = 0;
5283 	mddev->bitmap_info.default_offset = 0;
5284 	mddev->bitmap_info.chunksize = 0;
5285 	mddev->bitmap_info.daemon_sleep = 0;
5286 	mddev->bitmap_info.max_write_behind = 0;
5287 }
5288 
5289 static void __md_stop_writes(struct mddev *mddev)
5290 {
5291 	if (mddev->sync_thread) {
5292 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5293 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5294 		reap_sync_thread(mddev);
5295 	}
5296 
5297 	del_timer_sync(&mddev->safemode_timer);
5298 
5299 	bitmap_flush(mddev);
5300 	md_super_wait(mddev);
5301 
5302 	if (!mddev->in_sync || mddev->flags) {
5303 		/* mark array as shutdown cleanly */
5304 		mddev->in_sync = 1;
5305 		md_update_sb(mddev, 1);
5306 	}
5307 }
5308 
5309 void md_stop_writes(struct mddev *mddev)
5310 {
5311 	mddev_lock(mddev);
5312 	__md_stop_writes(mddev);
5313 	mddev_unlock(mddev);
5314 }
5315 EXPORT_SYMBOL_GPL(md_stop_writes);
5316 
5317 void md_stop(struct mddev *mddev)
5318 {
5319 	mddev->ready = 0;
5320 	mddev->pers->stop(mddev);
5321 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5322 		mddev->to_remove = &md_redundancy_group;
5323 	module_put(mddev->pers->owner);
5324 	mddev->pers = NULL;
5325 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5326 }
5327 EXPORT_SYMBOL_GPL(md_stop);
5328 
5329 static int md_set_readonly(struct mddev *mddev, int is_open)
5330 {
5331 	int err = 0;
5332 	mutex_lock(&mddev->open_mutex);
5333 	if (atomic_read(&mddev->openers) > is_open) {
5334 		printk("md: %s still in use.\n",mdname(mddev));
5335 		err = -EBUSY;
5336 		goto out;
5337 	}
5338 	if (mddev->pers) {
5339 		__md_stop_writes(mddev);
5340 
5341 		err  = -ENXIO;
5342 		if (mddev->ro==1)
5343 			goto out;
5344 		mddev->ro = 1;
5345 		set_disk_ro(mddev->gendisk, 1);
5346 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5347 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5348 		err = 0;
5349 	}
5350 out:
5351 	mutex_unlock(&mddev->open_mutex);
5352 	return err;
5353 }
5354 
5355 /* mode:
5356  *   0 - completely stop and dis-assemble array
5357  *   2 - stop but do not disassemble array
5358  */
5359 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5360 {
5361 	struct gendisk *disk = mddev->gendisk;
5362 	struct md_rdev *rdev;
5363 
5364 	mutex_lock(&mddev->open_mutex);
5365 	if (atomic_read(&mddev->openers) > is_open ||
5366 	    mddev->sysfs_active) {
5367 		printk("md: %s still in use.\n",mdname(mddev));
5368 		mutex_unlock(&mddev->open_mutex);
5369 		return -EBUSY;
5370 	}
5371 
5372 	if (mddev->pers) {
5373 		if (mddev->ro)
5374 			set_disk_ro(disk, 0);
5375 
5376 		__md_stop_writes(mddev);
5377 		md_stop(mddev);
5378 		mddev->queue->merge_bvec_fn = NULL;
5379 		mddev->queue->backing_dev_info.congested_fn = NULL;
5380 
5381 		/* tell userspace to handle 'inactive' */
5382 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5383 
5384 		rdev_for_each(rdev, mddev)
5385 			if (rdev->raid_disk >= 0)
5386 				sysfs_unlink_rdev(mddev, rdev);
5387 
5388 		set_capacity(disk, 0);
5389 		mutex_unlock(&mddev->open_mutex);
5390 		mddev->changed = 1;
5391 		revalidate_disk(disk);
5392 
5393 		if (mddev->ro)
5394 			mddev->ro = 0;
5395 	} else
5396 		mutex_unlock(&mddev->open_mutex);
5397 	/*
5398 	 * Free resources if final stop
5399 	 */
5400 	if (mode == 0) {
5401 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5402 
5403 		bitmap_destroy(mddev);
5404 		if (mddev->bitmap_info.file) {
5405 			restore_bitmap_write_access(mddev->bitmap_info.file);
5406 			fput(mddev->bitmap_info.file);
5407 			mddev->bitmap_info.file = NULL;
5408 		}
5409 		mddev->bitmap_info.offset = 0;
5410 
5411 		export_array(mddev);
5412 
5413 		md_clean(mddev);
5414 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5415 		if (mddev->hold_active == UNTIL_STOP)
5416 			mddev->hold_active = 0;
5417 	}
5418 	blk_integrity_unregister(disk);
5419 	md_new_event(mddev);
5420 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5421 	return 0;
5422 }
5423 
5424 #ifndef MODULE
5425 static void autorun_array(struct mddev *mddev)
5426 {
5427 	struct md_rdev *rdev;
5428 	int err;
5429 
5430 	if (list_empty(&mddev->disks))
5431 		return;
5432 
5433 	printk(KERN_INFO "md: running: ");
5434 
5435 	rdev_for_each(rdev, mddev) {
5436 		char b[BDEVNAME_SIZE];
5437 		printk("<%s>", bdevname(rdev->bdev,b));
5438 	}
5439 	printk("\n");
5440 
5441 	err = do_md_run(mddev);
5442 	if (err) {
5443 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5444 		do_md_stop(mddev, 0, 0);
5445 	}
5446 }
5447 
5448 /*
5449  * lets try to run arrays based on all disks that have arrived
5450  * until now. (those are in pending_raid_disks)
5451  *
5452  * the method: pick the first pending disk, collect all disks with
5453  * the same UUID, remove all from the pending list and put them into
5454  * the 'same_array' list. Then order this list based on superblock
5455  * update time (freshest comes first), kick out 'old' disks and
5456  * compare superblocks. If everything's fine then run it.
5457  *
5458  * If "unit" is allocated, then bump its reference count
5459  */
5460 static void autorun_devices(int part)
5461 {
5462 	struct md_rdev *rdev0, *rdev, *tmp;
5463 	struct mddev *mddev;
5464 	char b[BDEVNAME_SIZE];
5465 
5466 	printk(KERN_INFO "md: autorun ...\n");
5467 	while (!list_empty(&pending_raid_disks)) {
5468 		int unit;
5469 		dev_t dev;
5470 		LIST_HEAD(candidates);
5471 		rdev0 = list_entry(pending_raid_disks.next,
5472 					 struct md_rdev, same_set);
5473 
5474 		printk(KERN_INFO "md: considering %s ...\n",
5475 			bdevname(rdev0->bdev,b));
5476 		INIT_LIST_HEAD(&candidates);
5477 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5478 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5479 				printk(KERN_INFO "md:  adding %s ...\n",
5480 					bdevname(rdev->bdev,b));
5481 				list_move(&rdev->same_set, &candidates);
5482 			}
5483 		/*
5484 		 * now we have a set of devices, with all of them having
5485 		 * mostly sane superblocks. It's time to allocate the
5486 		 * mddev.
5487 		 */
5488 		if (part) {
5489 			dev = MKDEV(mdp_major,
5490 				    rdev0->preferred_minor << MdpMinorShift);
5491 			unit = MINOR(dev) >> MdpMinorShift;
5492 		} else {
5493 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5494 			unit = MINOR(dev);
5495 		}
5496 		if (rdev0->preferred_minor != unit) {
5497 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5498 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5499 			break;
5500 		}
5501 
5502 		md_probe(dev, NULL, NULL);
5503 		mddev = mddev_find(dev);
5504 		if (!mddev || !mddev->gendisk) {
5505 			if (mddev)
5506 				mddev_put(mddev);
5507 			printk(KERN_ERR
5508 				"md: cannot allocate memory for md drive.\n");
5509 			break;
5510 		}
5511 		if (mddev_lock(mddev))
5512 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5513 			       mdname(mddev));
5514 		else if (mddev->raid_disks || mddev->major_version
5515 			 || !list_empty(&mddev->disks)) {
5516 			printk(KERN_WARNING
5517 				"md: %s already running, cannot run %s\n",
5518 				mdname(mddev), bdevname(rdev0->bdev,b));
5519 			mddev_unlock(mddev);
5520 		} else {
5521 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5522 			mddev->persistent = 1;
5523 			rdev_for_each_list(rdev, tmp, &candidates) {
5524 				list_del_init(&rdev->same_set);
5525 				if (bind_rdev_to_array(rdev, mddev))
5526 					export_rdev(rdev);
5527 			}
5528 			autorun_array(mddev);
5529 			mddev_unlock(mddev);
5530 		}
5531 		/* on success, candidates will be empty, on error
5532 		 * it won't...
5533 		 */
5534 		rdev_for_each_list(rdev, tmp, &candidates) {
5535 			list_del_init(&rdev->same_set);
5536 			export_rdev(rdev);
5537 		}
5538 		mddev_put(mddev);
5539 	}
5540 	printk(KERN_INFO "md: ... autorun DONE.\n");
5541 }
5542 #endif /* !MODULE */
5543 
5544 static int get_version(void __user * arg)
5545 {
5546 	mdu_version_t ver;
5547 
5548 	ver.major = MD_MAJOR_VERSION;
5549 	ver.minor = MD_MINOR_VERSION;
5550 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5551 
5552 	if (copy_to_user(arg, &ver, sizeof(ver)))
5553 		return -EFAULT;
5554 
5555 	return 0;
5556 }
5557 
5558 static int get_array_info(struct mddev * mddev, void __user * arg)
5559 {
5560 	mdu_array_info_t info;
5561 	int nr,working,insync,failed,spare;
5562 	struct md_rdev *rdev;
5563 
5564 	nr=working=insync=failed=spare=0;
5565 	rdev_for_each(rdev, mddev) {
5566 		nr++;
5567 		if (test_bit(Faulty, &rdev->flags))
5568 			failed++;
5569 		else {
5570 			working++;
5571 			if (test_bit(In_sync, &rdev->flags))
5572 				insync++;
5573 			else
5574 				spare++;
5575 		}
5576 	}
5577 
5578 	info.major_version = mddev->major_version;
5579 	info.minor_version = mddev->minor_version;
5580 	info.patch_version = MD_PATCHLEVEL_VERSION;
5581 	info.ctime         = mddev->ctime;
5582 	info.level         = mddev->level;
5583 	info.size          = mddev->dev_sectors / 2;
5584 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5585 		info.size = -1;
5586 	info.nr_disks      = nr;
5587 	info.raid_disks    = mddev->raid_disks;
5588 	info.md_minor      = mddev->md_minor;
5589 	info.not_persistent= !mddev->persistent;
5590 
5591 	info.utime         = mddev->utime;
5592 	info.state         = 0;
5593 	if (mddev->in_sync)
5594 		info.state = (1<<MD_SB_CLEAN);
5595 	if (mddev->bitmap && mddev->bitmap_info.offset)
5596 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5597 	info.active_disks  = insync;
5598 	info.working_disks = working;
5599 	info.failed_disks  = failed;
5600 	info.spare_disks   = spare;
5601 
5602 	info.layout        = mddev->layout;
5603 	info.chunk_size    = mddev->chunk_sectors << 9;
5604 
5605 	if (copy_to_user(arg, &info, sizeof(info)))
5606 		return -EFAULT;
5607 
5608 	return 0;
5609 }
5610 
5611 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5612 {
5613 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5614 	char *ptr, *buf = NULL;
5615 	int err = -ENOMEM;
5616 
5617 	if (md_allow_write(mddev))
5618 		file = kmalloc(sizeof(*file), GFP_NOIO);
5619 	else
5620 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5621 
5622 	if (!file)
5623 		goto out;
5624 
5625 	/* bitmap disabled, zero the first byte and copy out */
5626 	if (!mddev->bitmap || !mddev->bitmap->file) {
5627 		file->pathname[0] = '\0';
5628 		goto copy_out;
5629 	}
5630 
5631 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5632 	if (!buf)
5633 		goto out;
5634 
5635 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5636 	if (IS_ERR(ptr))
5637 		goto out;
5638 
5639 	strcpy(file->pathname, ptr);
5640 
5641 copy_out:
5642 	err = 0;
5643 	if (copy_to_user(arg, file, sizeof(*file)))
5644 		err = -EFAULT;
5645 out:
5646 	kfree(buf);
5647 	kfree(file);
5648 	return err;
5649 }
5650 
5651 static int get_disk_info(struct mddev * mddev, void __user * arg)
5652 {
5653 	mdu_disk_info_t info;
5654 	struct md_rdev *rdev;
5655 
5656 	if (copy_from_user(&info, arg, sizeof(info)))
5657 		return -EFAULT;
5658 
5659 	rdev = find_rdev_nr(mddev, info.number);
5660 	if (rdev) {
5661 		info.major = MAJOR(rdev->bdev->bd_dev);
5662 		info.minor = MINOR(rdev->bdev->bd_dev);
5663 		info.raid_disk = rdev->raid_disk;
5664 		info.state = 0;
5665 		if (test_bit(Faulty, &rdev->flags))
5666 			info.state |= (1<<MD_DISK_FAULTY);
5667 		else if (test_bit(In_sync, &rdev->flags)) {
5668 			info.state |= (1<<MD_DISK_ACTIVE);
5669 			info.state |= (1<<MD_DISK_SYNC);
5670 		}
5671 		if (test_bit(WriteMostly, &rdev->flags))
5672 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5673 	} else {
5674 		info.major = info.minor = 0;
5675 		info.raid_disk = -1;
5676 		info.state = (1<<MD_DISK_REMOVED);
5677 	}
5678 
5679 	if (copy_to_user(arg, &info, sizeof(info)))
5680 		return -EFAULT;
5681 
5682 	return 0;
5683 }
5684 
5685 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5686 {
5687 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5688 	struct md_rdev *rdev;
5689 	dev_t dev = MKDEV(info->major,info->minor);
5690 
5691 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5692 		return -EOVERFLOW;
5693 
5694 	if (!mddev->raid_disks) {
5695 		int err;
5696 		/* expecting a device which has a superblock */
5697 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5698 		if (IS_ERR(rdev)) {
5699 			printk(KERN_WARNING
5700 				"md: md_import_device returned %ld\n",
5701 				PTR_ERR(rdev));
5702 			return PTR_ERR(rdev);
5703 		}
5704 		if (!list_empty(&mddev->disks)) {
5705 			struct md_rdev *rdev0
5706 				= list_entry(mddev->disks.next,
5707 					     struct md_rdev, same_set);
5708 			err = super_types[mddev->major_version]
5709 				.load_super(rdev, rdev0, mddev->minor_version);
5710 			if (err < 0) {
5711 				printk(KERN_WARNING
5712 					"md: %s has different UUID to %s\n",
5713 					bdevname(rdev->bdev,b),
5714 					bdevname(rdev0->bdev,b2));
5715 				export_rdev(rdev);
5716 				return -EINVAL;
5717 			}
5718 		}
5719 		err = bind_rdev_to_array(rdev, mddev);
5720 		if (err)
5721 			export_rdev(rdev);
5722 		return err;
5723 	}
5724 
5725 	/*
5726 	 * add_new_disk can be used once the array is assembled
5727 	 * to add "hot spares".  They must already have a superblock
5728 	 * written
5729 	 */
5730 	if (mddev->pers) {
5731 		int err;
5732 		if (!mddev->pers->hot_add_disk) {
5733 			printk(KERN_WARNING
5734 				"%s: personality does not support diskops!\n",
5735 			       mdname(mddev));
5736 			return -EINVAL;
5737 		}
5738 		if (mddev->persistent)
5739 			rdev = md_import_device(dev, mddev->major_version,
5740 						mddev->minor_version);
5741 		else
5742 			rdev = md_import_device(dev, -1, -1);
5743 		if (IS_ERR(rdev)) {
5744 			printk(KERN_WARNING
5745 				"md: md_import_device returned %ld\n",
5746 				PTR_ERR(rdev));
5747 			return PTR_ERR(rdev);
5748 		}
5749 		/* set saved_raid_disk if appropriate */
5750 		if (!mddev->persistent) {
5751 			if (info->state & (1<<MD_DISK_SYNC)  &&
5752 			    info->raid_disk < mddev->raid_disks) {
5753 				rdev->raid_disk = info->raid_disk;
5754 				set_bit(In_sync, &rdev->flags);
5755 			} else
5756 				rdev->raid_disk = -1;
5757 		} else
5758 			super_types[mddev->major_version].
5759 				validate_super(mddev, rdev);
5760 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5761 		    (!test_bit(In_sync, &rdev->flags) ||
5762 		     rdev->raid_disk != info->raid_disk)) {
5763 			/* This was a hot-add request, but events doesn't
5764 			 * match, so reject it.
5765 			 */
5766 			export_rdev(rdev);
5767 			return -EINVAL;
5768 		}
5769 
5770 		if (test_bit(In_sync, &rdev->flags))
5771 			rdev->saved_raid_disk = rdev->raid_disk;
5772 		else
5773 			rdev->saved_raid_disk = -1;
5774 
5775 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5776 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5777 			set_bit(WriteMostly, &rdev->flags);
5778 		else
5779 			clear_bit(WriteMostly, &rdev->flags);
5780 
5781 		rdev->raid_disk = -1;
5782 		err = bind_rdev_to_array(rdev, mddev);
5783 		if (!err && !mddev->pers->hot_remove_disk) {
5784 			/* If there is hot_add_disk but no hot_remove_disk
5785 			 * then added disks for geometry changes,
5786 			 * and should be added immediately.
5787 			 */
5788 			super_types[mddev->major_version].
5789 				validate_super(mddev, rdev);
5790 			err = mddev->pers->hot_add_disk(mddev, rdev);
5791 			if (err)
5792 				unbind_rdev_from_array(rdev);
5793 		}
5794 		if (err)
5795 			export_rdev(rdev);
5796 		else
5797 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5798 
5799 		md_update_sb(mddev, 1);
5800 		if (mddev->degraded)
5801 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5802 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5803 		if (!err)
5804 			md_new_event(mddev);
5805 		md_wakeup_thread(mddev->thread);
5806 		return err;
5807 	}
5808 
5809 	/* otherwise, add_new_disk is only allowed
5810 	 * for major_version==0 superblocks
5811 	 */
5812 	if (mddev->major_version != 0) {
5813 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5814 		       mdname(mddev));
5815 		return -EINVAL;
5816 	}
5817 
5818 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5819 		int err;
5820 		rdev = md_import_device(dev, -1, 0);
5821 		if (IS_ERR(rdev)) {
5822 			printk(KERN_WARNING
5823 				"md: error, md_import_device() returned %ld\n",
5824 				PTR_ERR(rdev));
5825 			return PTR_ERR(rdev);
5826 		}
5827 		rdev->desc_nr = info->number;
5828 		if (info->raid_disk < mddev->raid_disks)
5829 			rdev->raid_disk = info->raid_disk;
5830 		else
5831 			rdev->raid_disk = -1;
5832 
5833 		if (rdev->raid_disk < mddev->raid_disks)
5834 			if (info->state & (1<<MD_DISK_SYNC))
5835 				set_bit(In_sync, &rdev->flags);
5836 
5837 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5838 			set_bit(WriteMostly, &rdev->flags);
5839 
5840 		if (!mddev->persistent) {
5841 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5842 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5843 		} else
5844 			rdev->sb_start = calc_dev_sboffset(rdev);
5845 		rdev->sectors = rdev->sb_start;
5846 
5847 		err = bind_rdev_to_array(rdev, mddev);
5848 		if (err) {
5849 			export_rdev(rdev);
5850 			return err;
5851 		}
5852 	}
5853 
5854 	return 0;
5855 }
5856 
5857 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5858 {
5859 	char b[BDEVNAME_SIZE];
5860 	struct md_rdev *rdev;
5861 
5862 	rdev = find_rdev(mddev, dev);
5863 	if (!rdev)
5864 		return -ENXIO;
5865 
5866 	if (rdev->raid_disk >= 0)
5867 		goto busy;
5868 
5869 	kick_rdev_from_array(rdev);
5870 	md_update_sb(mddev, 1);
5871 	md_new_event(mddev);
5872 
5873 	return 0;
5874 busy:
5875 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5876 		bdevname(rdev->bdev,b), mdname(mddev));
5877 	return -EBUSY;
5878 }
5879 
5880 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5881 {
5882 	char b[BDEVNAME_SIZE];
5883 	int err;
5884 	struct md_rdev *rdev;
5885 
5886 	if (!mddev->pers)
5887 		return -ENODEV;
5888 
5889 	if (mddev->major_version != 0) {
5890 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5891 			" version-0 superblocks.\n",
5892 			mdname(mddev));
5893 		return -EINVAL;
5894 	}
5895 	if (!mddev->pers->hot_add_disk) {
5896 		printk(KERN_WARNING
5897 			"%s: personality does not support diskops!\n",
5898 			mdname(mddev));
5899 		return -EINVAL;
5900 	}
5901 
5902 	rdev = md_import_device(dev, -1, 0);
5903 	if (IS_ERR(rdev)) {
5904 		printk(KERN_WARNING
5905 			"md: error, md_import_device() returned %ld\n",
5906 			PTR_ERR(rdev));
5907 		return -EINVAL;
5908 	}
5909 
5910 	if (mddev->persistent)
5911 		rdev->sb_start = calc_dev_sboffset(rdev);
5912 	else
5913 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5914 
5915 	rdev->sectors = rdev->sb_start;
5916 
5917 	if (test_bit(Faulty, &rdev->flags)) {
5918 		printk(KERN_WARNING
5919 			"md: can not hot-add faulty %s disk to %s!\n",
5920 			bdevname(rdev->bdev,b), mdname(mddev));
5921 		err = -EINVAL;
5922 		goto abort_export;
5923 	}
5924 	clear_bit(In_sync, &rdev->flags);
5925 	rdev->desc_nr = -1;
5926 	rdev->saved_raid_disk = -1;
5927 	err = bind_rdev_to_array(rdev, mddev);
5928 	if (err)
5929 		goto abort_export;
5930 
5931 	/*
5932 	 * The rest should better be atomic, we can have disk failures
5933 	 * noticed in interrupt contexts ...
5934 	 */
5935 
5936 	rdev->raid_disk = -1;
5937 
5938 	md_update_sb(mddev, 1);
5939 
5940 	/*
5941 	 * Kick recovery, maybe this spare has to be added to the
5942 	 * array immediately.
5943 	 */
5944 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5945 	md_wakeup_thread(mddev->thread);
5946 	md_new_event(mddev);
5947 	return 0;
5948 
5949 abort_export:
5950 	export_rdev(rdev);
5951 	return err;
5952 }
5953 
5954 static int set_bitmap_file(struct mddev *mddev, int fd)
5955 {
5956 	int err;
5957 
5958 	if (mddev->pers) {
5959 		if (!mddev->pers->quiesce)
5960 			return -EBUSY;
5961 		if (mddev->recovery || mddev->sync_thread)
5962 			return -EBUSY;
5963 		/* we should be able to change the bitmap.. */
5964 	}
5965 
5966 
5967 	if (fd >= 0) {
5968 		if (mddev->bitmap)
5969 			return -EEXIST; /* cannot add when bitmap is present */
5970 		mddev->bitmap_info.file = fget(fd);
5971 
5972 		if (mddev->bitmap_info.file == NULL) {
5973 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5974 			       mdname(mddev));
5975 			return -EBADF;
5976 		}
5977 
5978 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5979 		if (err) {
5980 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5981 			       mdname(mddev));
5982 			fput(mddev->bitmap_info.file);
5983 			mddev->bitmap_info.file = NULL;
5984 			return err;
5985 		}
5986 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5987 	} else if (mddev->bitmap == NULL)
5988 		return -ENOENT; /* cannot remove what isn't there */
5989 	err = 0;
5990 	if (mddev->pers) {
5991 		mddev->pers->quiesce(mddev, 1);
5992 		if (fd >= 0) {
5993 			err = bitmap_create(mddev);
5994 			if (!err)
5995 				err = bitmap_load(mddev);
5996 		}
5997 		if (fd < 0 || err) {
5998 			bitmap_destroy(mddev);
5999 			fd = -1; /* make sure to put the file */
6000 		}
6001 		mddev->pers->quiesce(mddev, 0);
6002 	}
6003 	if (fd < 0) {
6004 		if (mddev->bitmap_info.file) {
6005 			restore_bitmap_write_access(mddev->bitmap_info.file);
6006 			fput(mddev->bitmap_info.file);
6007 		}
6008 		mddev->bitmap_info.file = NULL;
6009 	}
6010 
6011 	return err;
6012 }
6013 
6014 /*
6015  * set_array_info is used two different ways
6016  * The original usage is when creating a new array.
6017  * In this usage, raid_disks is > 0 and it together with
6018  *  level, size, not_persistent,layout,chunksize determine the
6019  *  shape of the array.
6020  *  This will always create an array with a type-0.90.0 superblock.
6021  * The newer usage is when assembling an array.
6022  *  In this case raid_disks will be 0, and the major_version field is
6023  *  use to determine which style super-blocks are to be found on the devices.
6024  *  The minor and patch _version numbers are also kept incase the
6025  *  super_block handler wishes to interpret them.
6026  */
6027 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6028 {
6029 
6030 	if (info->raid_disks == 0) {
6031 		/* just setting version number for superblock loading */
6032 		if (info->major_version < 0 ||
6033 		    info->major_version >= ARRAY_SIZE(super_types) ||
6034 		    super_types[info->major_version].name == NULL) {
6035 			/* maybe try to auto-load a module? */
6036 			printk(KERN_INFO
6037 				"md: superblock version %d not known\n",
6038 				info->major_version);
6039 			return -EINVAL;
6040 		}
6041 		mddev->major_version = info->major_version;
6042 		mddev->minor_version = info->minor_version;
6043 		mddev->patch_version = info->patch_version;
6044 		mddev->persistent = !info->not_persistent;
6045 		/* ensure mddev_put doesn't delete this now that there
6046 		 * is some minimal configuration.
6047 		 */
6048 		mddev->ctime         = get_seconds();
6049 		return 0;
6050 	}
6051 	mddev->major_version = MD_MAJOR_VERSION;
6052 	mddev->minor_version = MD_MINOR_VERSION;
6053 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6054 	mddev->ctime         = get_seconds();
6055 
6056 	mddev->level         = info->level;
6057 	mddev->clevel[0]     = 0;
6058 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6059 	mddev->raid_disks    = info->raid_disks;
6060 	/* don't set md_minor, it is determined by which /dev/md* was
6061 	 * openned
6062 	 */
6063 	if (info->state & (1<<MD_SB_CLEAN))
6064 		mddev->recovery_cp = MaxSector;
6065 	else
6066 		mddev->recovery_cp = 0;
6067 	mddev->persistent    = ! info->not_persistent;
6068 	mddev->external	     = 0;
6069 
6070 	mddev->layout        = info->layout;
6071 	mddev->chunk_sectors = info->chunk_size >> 9;
6072 
6073 	mddev->max_disks     = MD_SB_DISKS;
6074 
6075 	if (mddev->persistent)
6076 		mddev->flags         = 0;
6077 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6078 
6079 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6080 	mddev->bitmap_info.offset = 0;
6081 
6082 	mddev->reshape_position = MaxSector;
6083 
6084 	/*
6085 	 * Generate a 128 bit UUID
6086 	 */
6087 	get_random_bytes(mddev->uuid, 16);
6088 
6089 	mddev->new_level = mddev->level;
6090 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6091 	mddev->new_layout = mddev->layout;
6092 	mddev->delta_disks = 0;
6093 	mddev->reshape_backwards = 0;
6094 
6095 	return 0;
6096 }
6097 
6098 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6099 {
6100 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6101 
6102 	if (mddev->external_size)
6103 		return;
6104 
6105 	mddev->array_sectors = array_sectors;
6106 }
6107 EXPORT_SYMBOL(md_set_array_sectors);
6108 
6109 static int update_size(struct mddev *mddev, sector_t num_sectors)
6110 {
6111 	struct md_rdev *rdev;
6112 	int rv;
6113 	int fit = (num_sectors == 0);
6114 
6115 	if (mddev->pers->resize == NULL)
6116 		return -EINVAL;
6117 	/* The "num_sectors" is the number of sectors of each device that
6118 	 * is used.  This can only make sense for arrays with redundancy.
6119 	 * linear and raid0 always use whatever space is available. We can only
6120 	 * consider changing this number if no resync or reconstruction is
6121 	 * happening, and if the new size is acceptable. It must fit before the
6122 	 * sb_start or, if that is <data_offset, it must fit before the size
6123 	 * of each device.  If num_sectors is zero, we find the largest size
6124 	 * that fits.
6125 	 */
6126 	if (mddev->sync_thread)
6127 		return -EBUSY;
6128 	if (mddev->bitmap)
6129 		/* Sorry, cannot grow a bitmap yet, just remove it,
6130 		 * grow, and re-add.
6131 		 */
6132 		return -EBUSY;
6133 	rdev_for_each(rdev, mddev) {
6134 		sector_t avail = rdev->sectors;
6135 
6136 		if (fit && (num_sectors == 0 || num_sectors > avail))
6137 			num_sectors = avail;
6138 		if (avail < num_sectors)
6139 			return -ENOSPC;
6140 	}
6141 	rv = mddev->pers->resize(mddev, num_sectors);
6142 	if (!rv)
6143 		revalidate_disk(mddev->gendisk);
6144 	return rv;
6145 }
6146 
6147 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6148 {
6149 	int rv;
6150 	struct md_rdev *rdev;
6151 	/* change the number of raid disks */
6152 	if (mddev->pers->check_reshape == NULL)
6153 		return -EINVAL;
6154 	if (raid_disks <= 0 ||
6155 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6156 		return -EINVAL;
6157 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6158 		return -EBUSY;
6159 
6160 	rdev_for_each(rdev, mddev) {
6161 		if (mddev->raid_disks < raid_disks &&
6162 		    rdev->data_offset < rdev->new_data_offset)
6163 			return -EINVAL;
6164 		if (mddev->raid_disks > raid_disks &&
6165 		    rdev->data_offset > rdev->new_data_offset)
6166 			return -EINVAL;
6167 	}
6168 
6169 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6170 	if (mddev->delta_disks < 0)
6171 		mddev->reshape_backwards = 1;
6172 	else if (mddev->delta_disks > 0)
6173 		mddev->reshape_backwards = 0;
6174 
6175 	rv = mddev->pers->check_reshape(mddev);
6176 	if (rv < 0) {
6177 		mddev->delta_disks = 0;
6178 		mddev->reshape_backwards = 0;
6179 	}
6180 	return rv;
6181 }
6182 
6183 
6184 /*
6185  * update_array_info is used to change the configuration of an
6186  * on-line array.
6187  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6188  * fields in the info are checked against the array.
6189  * Any differences that cannot be handled will cause an error.
6190  * Normally, only one change can be managed at a time.
6191  */
6192 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6193 {
6194 	int rv = 0;
6195 	int cnt = 0;
6196 	int state = 0;
6197 
6198 	/* calculate expected state,ignoring low bits */
6199 	if (mddev->bitmap && mddev->bitmap_info.offset)
6200 		state |= (1 << MD_SB_BITMAP_PRESENT);
6201 
6202 	if (mddev->major_version != info->major_version ||
6203 	    mddev->minor_version != info->minor_version ||
6204 /*	    mddev->patch_version != info->patch_version || */
6205 	    mddev->ctime         != info->ctime         ||
6206 	    mddev->level         != info->level         ||
6207 /*	    mddev->layout        != info->layout        || */
6208 	    !mddev->persistent	 != info->not_persistent||
6209 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6210 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6211 	    ((state^info->state) & 0xfffffe00)
6212 		)
6213 		return -EINVAL;
6214 	/* Check there is only one change */
6215 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6216 		cnt++;
6217 	if (mddev->raid_disks != info->raid_disks)
6218 		cnt++;
6219 	if (mddev->layout != info->layout)
6220 		cnt++;
6221 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6222 		cnt++;
6223 	if (cnt == 0)
6224 		return 0;
6225 	if (cnt > 1)
6226 		return -EINVAL;
6227 
6228 	if (mddev->layout != info->layout) {
6229 		/* Change layout
6230 		 * we don't need to do anything at the md level, the
6231 		 * personality will take care of it all.
6232 		 */
6233 		if (mddev->pers->check_reshape == NULL)
6234 			return -EINVAL;
6235 		else {
6236 			mddev->new_layout = info->layout;
6237 			rv = mddev->pers->check_reshape(mddev);
6238 			if (rv)
6239 				mddev->new_layout = mddev->layout;
6240 			return rv;
6241 		}
6242 	}
6243 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6244 		rv = update_size(mddev, (sector_t)info->size * 2);
6245 
6246 	if (mddev->raid_disks    != info->raid_disks)
6247 		rv = update_raid_disks(mddev, info->raid_disks);
6248 
6249 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6250 		if (mddev->pers->quiesce == NULL)
6251 			return -EINVAL;
6252 		if (mddev->recovery || mddev->sync_thread)
6253 			return -EBUSY;
6254 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6255 			/* add the bitmap */
6256 			if (mddev->bitmap)
6257 				return -EEXIST;
6258 			if (mddev->bitmap_info.default_offset == 0)
6259 				return -EINVAL;
6260 			mddev->bitmap_info.offset =
6261 				mddev->bitmap_info.default_offset;
6262 			mddev->pers->quiesce(mddev, 1);
6263 			rv = bitmap_create(mddev);
6264 			if (!rv)
6265 				rv = bitmap_load(mddev);
6266 			if (rv)
6267 				bitmap_destroy(mddev);
6268 			mddev->pers->quiesce(mddev, 0);
6269 		} else {
6270 			/* remove the bitmap */
6271 			if (!mddev->bitmap)
6272 				return -ENOENT;
6273 			if (mddev->bitmap->file)
6274 				return -EINVAL;
6275 			mddev->pers->quiesce(mddev, 1);
6276 			bitmap_destroy(mddev);
6277 			mddev->pers->quiesce(mddev, 0);
6278 			mddev->bitmap_info.offset = 0;
6279 		}
6280 	}
6281 	md_update_sb(mddev, 1);
6282 	return rv;
6283 }
6284 
6285 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6286 {
6287 	struct md_rdev *rdev;
6288 
6289 	if (mddev->pers == NULL)
6290 		return -ENODEV;
6291 
6292 	rdev = find_rdev(mddev, dev);
6293 	if (!rdev)
6294 		return -ENODEV;
6295 
6296 	md_error(mddev, rdev);
6297 	if (!test_bit(Faulty, &rdev->flags))
6298 		return -EBUSY;
6299 	return 0;
6300 }
6301 
6302 /*
6303  * We have a problem here : there is no easy way to give a CHS
6304  * virtual geometry. We currently pretend that we have a 2 heads
6305  * 4 sectors (with a BIG number of cylinders...). This drives
6306  * dosfs just mad... ;-)
6307  */
6308 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6309 {
6310 	struct mddev *mddev = bdev->bd_disk->private_data;
6311 
6312 	geo->heads = 2;
6313 	geo->sectors = 4;
6314 	geo->cylinders = mddev->array_sectors / 8;
6315 	return 0;
6316 }
6317 
6318 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6319 			unsigned int cmd, unsigned long arg)
6320 {
6321 	int err = 0;
6322 	void __user *argp = (void __user *)arg;
6323 	struct mddev *mddev = NULL;
6324 	int ro;
6325 
6326 	switch (cmd) {
6327 	case RAID_VERSION:
6328 	case GET_ARRAY_INFO:
6329 	case GET_DISK_INFO:
6330 		break;
6331 	default:
6332 		if (!capable(CAP_SYS_ADMIN))
6333 			return -EACCES;
6334 	}
6335 
6336 	/*
6337 	 * Commands dealing with the RAID driver but not any
6338 	 * particular array:
6339 	 */
6340 	switch (cmd)
6341 	{
6342 		case RAID_VERSION:
6343 			err = get_version(argp);
6344 			goto done;
6345 
6346 		case PRINT_RAID_DEBUG:
6347 			err = 0;
6348 			md_print_devices();
6349 			goto done;
6350 
6351 #ifndef MODULE
6352 		case RAID_AUTORUN:
6353 			err = 0;
6354 			autostart_arrays(arg);
6355 			goto done;
6356 #endif
6357 		default:;
6358 	}
6359 
6360 	/*
6361 	 * Commands creating/starting a new array:
6362 	 */
6363 
6364 	mddev = bdev->bd_disk->private_data;
6365 
6366 	if (!mddev) {
6367 		BUG();
6368 		goto abort;
6369 	}
6370 
6371 	err = mddev_lock(mddev);
6372 	if (err) {
6373 		printk(KERN_INFO
6374 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6375 			err, cmd);
6376 		goto abort;
6377 	}
6378 
6379 	switch (cmd)
6380 	{
6381 		case SET_ARRAY_INFO:
6382 			{
6383 				mdu_array_info_t info;
6384 				if (!arg)
6385 					memset(&info, 0, sizeof(info));
6386 				else if (copy_from_user(&info, argp, sizeof(info))) {
6387 					err = -EFAULT;
6388 					goto abort_unlock;
6389 				}
6390 				if (mddev->pers) {
6391 					err = update_array_info(mddev, &info);
6392 					if (err) {
6393 						printk(KERN_WARNING "md: couldn't update"
6394 						       " array info. %d\n", err);
6395 						goto abort_unlock;
6396 					}
6397 					goto done_unlock;
6398 				}
6399 				if (!list_empty(&mddev->disks)) {
6400 					printk(KERN_WARNING
6401 					       "md: array %s already has disks!\n",
6402 					       mdname(mddev));
6403 					err = -EBUSY;
6404 					goto abort_unlock;
6405 				}
6406 				if (mddev->raid_disks) {
6407 					printk(KERN_WARNING
6408 					       "md: array %s already initialised!\n",
6409 					       mdname(mddev));
6410 					err = -EBUSY;
6411 					goto abort_unlock;
6412 				}
6413 				err = set_array_info(mddev, &info);
6414 				if (err) {
6415 					printk(KERN_WARNING "md: couldn't set"
6416 					       " array info. %d\n", err);
6417 					goto abort_unlock;
6418 				}
6419 			}
6420 			goto done_unlock;
6421 
6422 		default:;
6423 	}
6424 
6425 	/*
6426 	 * Commands querying/configuring an existing array:
6427 	 */
6428 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6429 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6430 	if ((!mddev->raid_disks && !mddev->external)
6431 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6432 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6433 	    && cmd != GET_BITMAP_FILE) {
6434 		err = -ENODEV;
6435 		goto abort_unlock;
6436 	}
6437 
6438 	/*
6439 	 * Commands even a read-only array can execute:
6440 	 */
6441 	switch (cmd)
6442 	{
6443 		case GET_ARRAY_INFO:
6444 			err = get_array_info(mddev, argp);
6445 			goto done_unlock;
6446 
6447 		case GET_BITMAP_FILE:
6448 			err = get_bitmap_file(mddev, argp);
6449 			goto done_unlock;
6450 
6451 		case GET_DISK_INFO:
6452 			err = get_disk_info(mddev, argp);
6453 			goto done_unlock;
6454 
6455 		case RESTART_ARRAY_RW:
6456 			err = restart_array(mddev);
6457 			goto done_unlock;
6458 
6459 		case STOP_ARRAY:
6460 			err = do_md_stop(mddev, 0, 1);
6461 			goto done_unlock;
6462 
6463 		case STOP_ARRAY_RO:
6464 			err = md_set_readonly(mddev, 1);
6465 			goto done_unlock;
6466 
6467 		case BLKROSET:
6468 			if (get_user(ro, (int __user *)(arg))) {
6469 				err = -EFAULT;
6470 				goto done_unlock;
6471 			}
6472 			err = -EINVAL;
6473 
6474 			/* if the bdev is going readonly the value of mddev->ro
6475 			 * does not matter, no writes are coming
6476 			 */
6477 			if (ro)
6478 				goto done_unlock;
6479 
6480 			/* are we are already prepared for writes? */
6481 			if (mddev->ro != 1)
6482 				goto done_unlock;
6483 
6484 			/* transitioning to readauto need only happen for
6485 			 * arrays that call md_write_start
6486 			 */
6487 			if (mddev->pers) {
6488 				err = restart_array(mddev);
6489 				if (err == 0) {
6490 					mddev->ro = 2;
6491 					set_disk_ro(mddev->gendisk, 0);
6492 				}
6493 			}
6494 			goto done_unlock;
6495 	}
6496 
6497 	/*
6498 	 * The remaining ioctls are changing the state of the
6499 	 * superblock, so we do not allow them on read-only arrays.
6500 	 * However non-MD ioctls (e.g. get-size) will still come through
6501 	 * here and hit the 'default' below, so only disallow
6502 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6503 	 */
6504 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6505 		if (mddev->ro == 2) {
6506 			mddev->ro = 0;
6507 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6508 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6509 			md_wakeup_thread(mddev->thread);
6510 		} else {
6511 			err = -EROFS;
6512 			goto abort_unlock;
6513 		}
6514 	}
6515 
6516 	switch (cmd)
6517 	{
6518 		case ADD_NEW_DISK:
6519 		{
6520 			mdu_disk_info_t info;
6521 			if (copy_from_user(&info, argp, sizeof(info)))
6522 				err = -EFAULT;
6523 			else
6524 				err = add_new_disk(mddev, &info);
6525 			goto done_unlock;
6526 		}
6527 
6528 		case HOT_REMOVE_DISK:
6529 			err = hot_remove_disk(mddev, new_decode_dev(arg));
6530 			goto done_unlock;
6531 
6532 		case HOT_ADD_DISK:
6533 			err = hot_add_disk(mddev, new_decode_dev(arg));
6534 			goto done_unlock;
6535 
6536 		case SET_DISK_FAULTY:
6537 			err = set_disk_faulty(mddev, new_decode_dev(arg));
6538 			goto done_unlock;
6539 
6540 		case RUN_ARRAY:
6541 			err = do_md_run(mddev);
6542 			goto done_unlock;
6543 
6544 		case SET_BITMAP_FILE:
6545 			err = set_bitmap_file(mddev, (int)arg);
6546 			goto done_unlock;
6547 
6548 		default:
6549 			err = -EINVAL;
6550 			goto abort_unlock;
6551 	}
6552 
6553 done_unlock:
6554 abort_unlock:
6555 	if (mddev->hold_active == UNTIL_IOCTL &&
6556 	    err != -EINVAL)
6557 		mddev->hold_active = 0;
6558 	mddev_unlock(mddev);
6559 
6560 	return err;
6561 done:
6562 	if (err)
6563 		MD_BUG();
6564 abort:
6565 	return err;
6566 }
6567 #ifdef CONFIG_COMPAT
6568 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6569 		    unsigned int cmd, unsigned long arg)
6570 {
6571 	switch (cmd) {
6572 	case HOT_REMOVE_DISK:
6573 	case HOT_ADD_DISK:
6574 	case SET_DISK_FAULTY:
6575 	case SET_BITMAP_FILE:
6576 		/* These take in integer arg, do not convert */
6577 		break;
6578 	default:
6579 		arg = (unsigned long)compat_ptr(arg);
6580 		break;
6581 	}
6582 
6583 	return md_ioctl(bdev, mode, cmd, arg);
6584 }
6585 #endif /* CONFIG_COMPAT */
6586 
6587 static int md_open(struct block_device *bdev, fmode_t mode)
6588 {
6589 	/*
6590 	 * Succeed if we can lock the mddev, which confirms that
6591 	 * it isn't being stopped right now.
6592 	 */
6593 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6594 	int err;
6595 
6596 	if (mddev->gendisk != bdev->bd_disk) {
6597 		/* we are racing with mddev_put which is discarding this
6598 		 * bd_disk.
6599 		 */
6600 		mddev_put(mddev);
6601 		/* Wait until bdev->bd_disk is definitely gone */
6602 		flush_workqueue(md_misc_wq);
6603 		/* Then retry the open from the top */
6604 		return -ERESTARTSYS;
6605 	}
6606 	BUG_ON(mddev != bdev->bd_disk->private_data);
6607 
6608 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6609 		goto out;
6610 
6611 	err = 0;
6612 	atomic_inc(&mddev->openers);
6613 	mutex_unlock(&mddev->open_mutex);
6614 
6615 	check_disk_change(bdev);
6616  out:
6617 	return err;
6618 }
6619 
6620 static int md_release(struct gendisk *disk, fmode_t mode)
6621 {
6622  	struct mddev *mddev = disk->private_data;
6623 
6624 	BUG_ON(!mddev);
6625 	atomic_dec(&mddev->openers);
6626 	mddev_put(mddev);
6627 
6628 	return 0;
6629 }
6630 
6631 static int md_media_changed(struct gendisk *disk)
6632 {
6633 	struct mddev *mddev = disk->private_data;
6634 
6635 	return mddev->changed;
6636 }
6637 
6638 static int md_revalidate(struct gendisk *disk)
6639 {
6640 	struct mddev *mddev = disk->private_data;
6641 
6642 	mddev->changed = 0;
6643 	return 0;
6644 }
6645 static const struct block_device_operations md_fops =
6646 {
6647 	.owner		= THIS_MODULE,
6648 	.open		= md_open,
6649 	.release	= md_release,
6650 	.ioctl		= md_ioctl,
6651 #ifdef CONFIG_COMPAT
6652 	.compat_ioctl	= md_compat_ioctl,
6653 #endif
6654 	.getgeo		= md_getgeo,
6655 	.media_changed  = md_media_changed,
6656 	.revalidate_disk= md_revalidate,
6657 };
6658 
6659 static int md_thread(void * arg)
6660 {
6661 	struct md_thread *thread = arg;
6662 
6663 	/*
6664 	 * md_thread is a 'system-thread', it's priority should be very
6665 	 * high. We avoid resource deadlocks individually in each
6666 	 * raid personality. (RAID5 does preallocation) We also use RR and
6667 	 * the very same RT priority as kswapd, thus we will never get
6668 	 * into a priority inversion deadlock.
6669 	 *
6670 	 * we definitely have to have equal or higher priority than
6671 	 * bdflush, otherwise bdflush will deadlock if there are too
6672 	 * many dirty RAID5 blocks.
6673 	 */
6674 
6675 	allow_signal(SIGKILL);
6676 	while (!kthread_should_stop()) {
6677 
6678 		/* We need to wait INTERRUPTIBLE so that
6679 		 * we don't add to the load-average.
6680 		 * That means we need to be sure no signals are
6681 		 * pending
6682 		 */
6683 		if (signal_pending(current))
6684 			flush_signals(current);
6685 
6686 		wait_event_interruptible_timeout
6687 			(thread->wqueue,
6688 			 test_bit(THREAD_WAKEUP, &thread->flags)
6689 			 || kthread_should_stop(),
6690 			 thread->timeout);
6691 
6692 		clear_bit(THREAD_WAKEUP, &thread->flags);
6693 		if (!kthread_should_stop())
6694 			thread->run(thread->mddev);
6695 	}
6696 
6697 	return 0;
6698 }
6699 
6700 void md_wakeup_thread(struct md_thread *thread)
6701 {
6702 	if (thread) {
6703 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6704 		set_bit(THREAD_WAKEUP, &thread->flags);
6705 		wake_up(&thread->wqueue);
6706 	}
6707 }
6708 
6709 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6710 				 const char *name)
6711 {
6712 	struct md_thread *thread;
6713 
6714 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6715 	if (!thread)
6716 		return NULL;
6717 
6718 	init_waitqueue_head(&thread->wqueue);
6719 
6720 	thread->run = run;
6721 	thread->mddev = mddev;
6722 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6723 	thread->tsk = kthread_run(md_thread, thread,
6724 				  "%s_%s",
6725 				  mdname(thread->mddev),
6726 				  name ?: mddev->pers->name);
6727 	if (IS_ERR(thread->tsk)) {
6728 		kfree(thread);
6729 		return NULL;
6730 	}
6731 	return thread;
6732 }
6733 
6734 void md_unregister_thread(struct md_thread **threadp)
6735 {
6736 	struct md_thread *thread = *threadp;
6737 	if (!thread)
6738 		return;
6739 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6740 	/* Locking ensures that mddev_unlock does not wake_up a
6741 	 * non-existent thread
6742 	 */
6743 	spin_lock(&pers_lock);
6744 	*threadp = NULL;
6745 	spin_unlock(&pers_lock);
6746 
6747 	kthread_stop(thread->tsk);
6748 	kfree(thread);
6749 }
6750 
6751 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6752 {
6753 	if (!mddev) {
6754 		MD_BUG();
6755 		return;
6756 	}
6757 
6758 	if (!rdev || test_bit(Faulty, &rdev->flags))
6759 		return;
6760 
6761 	if (!mddev->pers || !mddev->pers->error_handler)
6762 		return;
6763 	mddev->pers->error_handler(mddev,rdev);
6764 	if (mddev->degraded)
6765 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6766 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6767 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6768 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6769 	md_wakeup_thread(mddev->thread);
6770 	if (mddev->event_work.func)
6771 		queue_work(md_misc_wq, &mddev->event_work);
6772 	md_new_event_inintr(mddev);
6773 }
6774 
6775 /* seq_file implementation /proc/mdstat */
6776 
6777 static void status_unused(struct seq_file *seq)
6778 {
6779 	int i = 0;
6780 	struct md_rdev *rdev;
6781 
6782 	seq_printf(seq, "unused devices: ");
6783 
6784 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6785 		char b[BDEVNAME_SIZE];
6786 		i++;
6787 		seq_printf(seq, "%s ",
6788 			      bdevname(rdev->bdev,b));
6789 	}
6790 	if (!i)
6791 		seq_printf(seq, "<none>");
6792 
6793 	seq_printf(seq, "\n");
6794 }
6795 
6796 
6797 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6798 {
6799 	sector_t max_sectors, resync, res;
6800 	unsigned long dt, db;
6801 	sector_t rt;
6802 	int scale;
6803 	unsigned int per_milli;
6804 
6805 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6806 
6807 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6808 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6809 		max_sectors = mddev->resync_max_sectors;
6810 	else
6811 		max_sectors = mddev->dev_sectors;
6812 
6813 	/*
6814 	 * Should not happen.
6815 	 */
6816 	if (!max_sectors) {
6817 		MD_BUG();
6818 		return;
6819 	}
6820 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6821 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6822 	 * u32, as those are the requirements for sector_div.
6823 	 * Thus 'scale' must be at least 10
6824 	 */
6825 	scale = 10;
6826 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6827 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6828 			scale++;
6829 	}
6830 	res = (resync>>scale)*1000;
6831 	sector_div(res, (u32)((max_sectors>>scale)+1));
6832 
6833 	per_milli = res;
6834 	{
6835 		int i, x = per_milli/50, y = 20-x;
6836 		seq_printf(seq, "[");
6837 		for (i = 0; i < x; i++)
6838 			seq_printf(seq, "=");
6839 		seq_printf(seq, ">");
6840 		for (i = 0; i < y; i++)
6841 			seq_printf(seq, ".");
6842 		seq_printf(seq, "] ");
6843 	}
6844 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6845 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6846 		    "reshape" :
6847 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6848 		     "check" :
6849 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6850 		      "resync" : "recovery"))),
6851 		   per_milli/10, per_milli % 10,
6852 		   (unsigned long long) resync/2,
6853 		   (unsigned long long) max_sectors/2);
6854 
6855 	/*
6856 	 * dt: time from mark until now
6857 	 * db: blocks written from mark until now
6858 	 * rt: remaining time
6859 	 *
6860 	 * rt is a sector_t, so could be 32bit or 64bit.
6861 	 * So we divide before multiply in case it is 32bit and close
6862 	 * to the limit.
6863 	 * We scale the divisor (db) by 32 to avoid losing precision
6864 	 * near the end of resync when the number of remaining sectors
6865 	 * is close to 'db'.
6866 	 * We then divide rt by 32 after multiplying by db to compensate.
6867 	 * The '+1' avoids division by zero if db is very small.
6868 	 */
6869 	dt = ((jiffies - mddev->resync_mark) / HZ);
6870 	if (!dt) dt++;
6871 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6872 		- mddev->resync_mark_cnt;
6873 
6874 	rt = max_sectors - resync;    /* number of remaining sectors */
6875 	sector_div(rt, db/32+1);
6876 	rt *= dt;
6877 	rt >>= 5;
6878 
6879 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6880 		   ((unsigned long)rt % 60)/6);
6881 
6882 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6883 }
6884 
6885 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6886 {
6887 	struct list_head *tmp;
6888 	loff_t l = *pos;
6889 	struct mddev *mddev;
6890 
6891 	if (l >= 0x10000)
6892 		return NULL;
6893 	if (!l--)
6894 		/* header */
6895 		return (void*)1;
6896 
6897 	spin_lock(&all_mddevs_lock);
6898 	list_for_each(tmp,&all_mddevs)
6899 		if (!l--) {
6900 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6901 			mddev_get(mddev);
6902 			spin_unlock(&all_mddevs_lock);
6903 			return mddev;
6904 		}
6905 	spin_unlock(&all_mddevs_lock);
6906 	if (!l--)
6907 		return (void*)2;/* tail */
6908 	return NULL;
6909 }
6910 
6911 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6912 {
6913 	struct list_head *tmp;
6914 	struct mddev *next_mddev, *mddev = v;
6915 
6916 	++*pos;
6917 	if (v == (void*)2)
6918 		return NULL;
6919 
6920 	spin_lock(&all_mddevs_lock);
6921 	if (v == (void*)1)
6922 		tmp = all_mddevs.next;
6923 	else
6924 		tmp = mddev->all_mddevs.next;
6925 	if (tmp != &all_mddevs)
6926 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6927 	else {
6928 		next_mddev = (void*)2;
6929 		*pos = 0x10000;
6930 	}
6931 	spin_unlock(&all_mddevs_lock);
6932 
6933 	if (v != (void*)1)
6934 		mddev_put(mddev);
6935 	return next_mddev;
6936 
6937 }
6938 
6939 static void md_seq_stop(struct seq_file *seq, void *v)
6940 {
6941 	struct mddev *mddev = v;
6942 
6943 	if (mddev && v != (void*)1 && v != (void*)2)
6944 		mddev_put(mddev);
6945 }
6946 
6947 static int md_seq_show(struct seq_file *seq, void *v)
6948 {
6949 	struct mddev *mddev = v;
6950 	sector_t sectors;
6951 	struct md_rdev *rdev;
6952 
6953 	if (v == (void*)1) {
6954 		struct md_personality *pers;
6955 		seq_printf(seq, "Personalities : ");
6956 		spin_lock(&pers_lock);
6957 		list_for_each_entry(pers, &pers_list, list)
6958 			seq_printf(seq, "[%s] ", pers->name);
6959 
6960 		spin_unlock(&pers_lock);
6961 		seq_printf(seq, "\n");
6962 		seq->poll_event = atomic_read(&md_event_count);
6963 		return 0;
6964 	}
6965 	if (v == (void*)2) {
6966 		status_unused(seq);
6967 		return 0;
6968 	}
6969 
6970 	if (mddev_lock(mddev) < 0)
6971 		return -EINTR;
6972 
6973 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6974 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6975 						mddev->pers ? "" : "in");
6976 		if (mddev->pers) {
6977 			if (mddev->ro==1)
6978 				seq_printf(seq, " (read-only)");
6979 			if (mddev->ro==2)
6980 				seq_printf(seq, " (auto-read-only)");
6981 			seq_printf(seq, " %s", mddev->pers->name);
6982 		}
6983 
6984 		sectors = 0;
6985 		rdev_for_each(rdev, mddev) {
6986 			char b[BDEVNAME_SIZE];
6987 			seq_printf(seq, " %s[%d]",
6988 				bdevname(rdev->bdev,b), rdev->desc_nr);
6989 			if (test_bit(WriteMostly, &rdev->flags))
6990 				seq_printf(seq, "(W)");
6991 			if (test_bit(Faulty, &rdev->flags)) {
6992 				seq_printf(seq, "(F)");
6993 				continue;
6994 			}
6995 			if (rdev->raid_disk < 0)
6996 				seq_printf(seq, "(S)"); /* spare */
6997 			if (test_bit(Replacement, &rdev->flags))
6998 				seq_printf(seq, "(R)");
6999 			sectors += rdev->sectors;
7000 		}
7001 
7002 		if (!list_empty(&mddev->disks)) {
7003 			if (mddev->pers)
7004 				seq_printf(seq, "\n      %llu blocks",
7005 					   (unsigned long long)
7006 					   mddev->array_sectors / 2);
7007 			else
7008 				seq_printf(seq, "\n      %llu blocks",
7009 					   (unsigned long long)sectors / 2);
7010 		}
7011 		if (mddev->persistent) {
7012 			if (mddev->major_version != 0 ||
7013 			    mddev->minor_version != 90) {
7014 				seq_printf(seq," super %d.%d",
7015 					   mddev->major_version,
7016 					   mddev->minor_version);
7017 			}
7018 		} else if (mddev->external)
7019 			seq_printf(seq, " super external:%s",
7020 				   mddev->metadata_type);
7021 		else
7022 			seq_printf(seq, " super non-persistent");
7023 
7024 		if (mddev->pers) {
7025 			mddev->pers->status(seq, mddev);
7026 	 		seq_printf(seq, "\n      ");
7027 			if (mddev->pers->sync_request) {
7028 				if (mddev->curr_resync > 2) {
7029 					status_resync(seq, mddev);
7030 					seq_printf(seq, "\n      ");
7031 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
7032 					seq_printf(seq, "\tresync=DELAYED\n      ");
7033 				else if (mddev->recovery_cp < MaxSector)
7034 					seq_printf(seq, "\tresync=PENDING\n      ");
7035 			}
7036 		} else
7037 			seq_printf(seq, "\n       ");
7038 
7039 		bitmap_status(seq, mddev->bitmap);
7040 
7041 		seq_printf(seq, "\n");
7042 	}
7043 	mddev_unlock(mddev);
7044 
7045 	return 0;
7046 }
7047 
7048 static const struct seq_operations md_seq_ops = {
7049 	.start  = md_seq_start,
7050 	.next   = md_seq_next,
7051 	.stop   = md_seq_stop,
7052 	.show   = md_seq_show,
7053 };
7054 
7055 static int md_seq_open(struct inode *inode, struct file *file)
7056 {
7057 	struct seq_file *seq;
7058 	int error;
7059 
7060 	error = seq_open(file, &md_seq_ops);
7061 	if (error)
7062 		return error;
7063 
7064 	seq = file->private_data;
7065 	seq->poll_event = atomic_read(&md_event_count);
7066 	return error;
7067 }
7068 
7069 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7070 {
7071 	struct seq_file *seq = filp->private_data;
7072 	int mask;
7073 
7074 	poll_wait(filp, &md_event_waiters, wait);
7075 
7076 	/* always allow read */
7077 	mask = POLLIN | POLLRDNORM;
7078 
7079 	if (seq->poll_event != atomic_read(&md_event_count))
7080 		mask |= POLLERR | POLLPRI;
7081 	return mask;
7082 }
7083 
7084 static const struct file_operations md_seq_fops = {
7085 	.owner		= THIS_MODULE,
7086 	.open           = md_seq_open,
7087 	.read           = seq_read,
7088 	.llseek         = seq_lseek,
7089 	.release	= seq_release_private,
7090 	.poll		= mdstat_poll,
7091 };
7092 
7093 int register_md_personality(struct md_personality *p)
7094 {
7095 	spin_lock(&pers_lock);
7096 	list_add_tail(&p->list, &pers_list);
7097 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7098 	spin_unlock(&pers_lock);
7099 	return 0;
7100 }
7101 
7102 int unregister_md_personality(struct md_personality *p)
7103 {
7104 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7105 	spin_lock(&pers_lock);
7106 	list_del_init(&p->list);
7107 	spin_unlock(&pers_lock);
7108 	return 0;
7109 }
7110 
7111 static int is_mddev_idle(struct mddev *mddev, int init)
7112 {
7113 	struct md_rdev * rdev;
7114 	int idle;
7115 	int curr_events;
7116 
7117 	idle = 1;
7118 	rcu_read_lock();
7119 	rdev_for_each_rcu(rdev, mddev) {
7120 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7121 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7122 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7123 			      atomic_read(&disk->sync_io);
7124 		/* sync IO will cause sync_io to increase before the disk_stats
7125 		 * as sync_io is counted when a request starts, and
7126 		 * disk_stats is counted when it completes.
7127 		 * So resync activity will cause curr_events to be smaller than
7128 		 * when there was no such activity.
7129 		 * non-sync IO will cause disk_stat to increase without
7130 		 * increasing sync_io so curr_events will (eventually)
7131 		 * be larger than it was before.  Once it becomes
7132 		 * substantially larger, the test below will cause
7133 		 * the array to appear non-idle, and resync will slow
7134 		 * down.
7135 		 * If there is a lot of outstanding resync activity when
7136 		 * we set last_event to curr_events, then all that activity
7137 		 * completing might cause the array to appear non-idle
7138 		 * and resync will be slowed down even though there might
7139 		 * not have been non-resync activity.  This will only
7140 		 * happen once though.  'last_events' will soon reflect
7141 		 * the state where there is little or no outstanding
7142 		 * resync requests, and further resync activity will
7143 		 * always make curr_events less than last_events.
7144 		 *
7145 		 */
7146 		if (init || curr_events - rdev->last_events > 64) {
7147 			rdev->last_events = curr_events;
7148 			idle = 0;
7149 		}
7150 	}
7151 	rcu_read_unlock();
7152 	return idle;
7153 }
7154 
7155 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7156 {
7157 	/* another "blocks" (512byte) blocks have been synced */
7158 	atomic_sub(blocks, &mddev->recovery_active);
7159 	wake_up(&mddev->recovery_wait);
7160 	if (!ok) {
7161 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7162 		md_wakeup_thread(mddev->thread);
7163 		// stop recovery, signal do_sync ....
7164 	}
7165 }
7166 
7167 
7168 /* md_write_start(mddev, bi)
7169  * If we need to update some array metadata (e.g. 'active' flag
7170  * in superblock) before writing, schedule a superblock update
7171  * and wait for it to complete.
7172  */
7173 void md_write_start(struct mddev *mddev, struct bio *bi)
7174 {
7175 	int did_change = 0;
7176 	if (bio_data_dir(bi) != WRITE)
7177 		return;
7178 
7179 	BUG_ON(mddev->ro == 1);
7180 	if (mddev->ro == 2) {
7181 		/* need to switch to read/write */
7182 		mddev->ro = 0;
7183 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7184 		md_wakeup_thread(mddev->thread);
7185 		md_wakeup_thread(mddev->sync_thread);
7186 		did_change = 1;
7187 	}
7188 	atomic_inc(&mddev->writes_pending);
7189 	if (mddev->safemode == 1)
7190 		mddev->safemode = 0;
7191 	if (mddev->in_sync) {
7192 		spin_lock_irq(&mddev->write_lock);
7193 		if (mddev->in_sync) {
7194 			mddev->in_sync = 0;
7195 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7196 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7197 			md_wakeup_thread(mddev->thread);
7198 			did_change = 1;
7199 		}
7200 		spin_unlock_irq(&mddev->write_lock);
7201 	}
7202 	if (did_change)
7203 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7204 	wait_event(mddev->sb_wait,
7205 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7206 }
7207 
7208 void md_write_end(struct mddev *mddev)
7209 {
7210 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7211 		if (mddev->safemode == 2)
7212 			md_wakeup_thread(mddev->thread);
7213 		else if (mddev->safemode_delay)
7214 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7215 	}
7216 }
7217 
7218 /* md_allow_write(mddev)
7219  * Calling this ensures that the array is marked 'active' so that writes
7220  * may proceed without blocking.  It is important to call this before
7221  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7222  * Must be called with mddev_lock held.
7223  *
7224  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7225  * is dropped, so return -EAGAIN after notifying userspace.
7226  */
7227 int md_allow_write(struct mddev *mddev)
7228 {
7229 	if (!mddev->pers)
7230 		return 0;
7231 	if (mddev->ro)
7232 		return 0;
7233 	if (!mddev->pers->sync_request)
7234 		return 0;
7235 
7236 	spin_lock_irq(&mddev->write_lock);
7237 	if (mddev->in_sync) {
7238 		mddev->in_sync = 0;
7239 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7240 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7241 		if (mddev->safemode_delay &&
7242 		    mddev->safemode == 0)
7243 			mddev->safemode = 1;
7244 		spin_unlock_irq(&mddev->write_lock);
7245 		md_update_sb(mddev, 0);
7246 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7247 	} else
7248 		spin_unlock_irq(&mddev->write_lock);
7249 
7250 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7251 		return -EAGAIN;
7252 	else
7253 		return 0;
7254 }
7255 EXPORT_SYMBOL_GPL(md_allow_write);
7256 
7257 #define SYNC_MARKS	10
7258 #define	SYNC_MARK_STEP	(3*HZ)
7259 void md_do_sync(struct mddev *mddev)
7260 {
7261 	struct mddev *mddev2;
7262 	unsigned int currspeed = 0,
7263 		 window;
7264 	sector_t max_sectors,j, io_sectors;
7265 	unsigned long mark[SYNC_MARKS];
7266 	sector_t mark_cnt[SYNC_MARKS];
7267 	int last_mark,m;
7268 	struct list_head *tmp;
7269 	sector_t last_check;
7270 	int skipped = 0;
7271 	struct md_rdev *rdev;
7272 	char *desc;
7273 
7274 	/* just incase thread restarts... */
7275 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7276 		return;
7277 	if (mddev->ro) /* never try to sync a read-only array */
7278 		return;
7279 
7280 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7281 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7282 			desc = "data-check";
7283 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7284 			desc = "requested-resync";
7285 		else
7286 			desc = "resync";
7287 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7288 		desc = "reshape";
7289 	else
7290 		desc = "recovery";
7291 
7292 	/* we overload curr_resync somewhat here.
7293 	 * 0 == not engaged in resync at all
7294 	 * 2 == checking that there is no conflict with another sync
7295 	 * 1 == like 2, but have yielded to allow conflicting resync to
7296 	 *		commense
7297 	 * other == active in resync - this many blocks
7298 	 *
7299 	 * Before starting a resync we must have set curr_resync to
7300 	 * 2, and then checked that every "conflicting" array has curr_resync
7301 	 * less than ours.  When we find one that is the same or higher
7302 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7303 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7304 	 * This will mean we have to start checking from the beginning again.
7305 	 *
7306 	 */
7307 
7308 	do {
7309 		mddev->curr_resync = 2;
7310 
7311 	try_again:
7312 		if (kthread_should_stop())
7313 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7314 
7315 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7316 			goto skip;
7317 		for_each_mddev(mddev2, tmp) {
7318 			if (mddev2 == mddev)
7319 				continue;
7320 			if (!mddev->parallel_resync
7321 			&&  mddev2->curr_resync
7322 			&&  match_mddev_units(mddev, mddev2)) {
7323 				DEFINE_WAIT(wq);
7324 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7325 					/* arbitrarily yield */
7326 					mddev->curr_resync = 1;
7327 					wake_up(&resync_wait);
7328 				}
7329 				if (mddev > mddev2 && mddev->curr_resync == 1)
7330 					/* no need to wait here, we can wait the next
7331 					 * time 'round when curr_resync == 2
7332 					 */
7333 					continue;
7334 				/* We need to wait 'interruptible' so as not to
7335 				 * contribute to the load average, and not to
7336 				 * be caught by 'softlockup'
7337 				 */
7338 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7339 				if (!kthread_should_stop() &&
7340 				    mddev2->curr_resync >= mddev->curr_resync) {
7341 					printk(KERN_INFO "md: delaying %s of %s"
7342 					       " until %s has finished (they"
7343 					       " share one or more physical units)\n",
7344 					       desc, mdname(mddev), mdname(mddev2));
7345 					mddev_put(mddev2);
7346 					if (signal_pending(current))
7347 						flush_signals(current);
7348 					schedule();
7349 					finish_wait(&resync_wait, &wq);
7350 					goto try_again;
7351 				}
7352 				finish_wait(&resync_wait, &wq);
7353 			}
7354 		}
7355 	} while (mddev->curr_resync < 2);
7356 
7357 	j = 0;
7358 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7359 		/* resync follows the size requested by the personality,
7360 		 * which defaults to physical size, but can be virtual size
7361 		 */
7362 		max_sectors = mddev->resync_max_sectors;
7363 		mddev->resync_mismatches = 0;
7364 		/* we don't use the checkpoint if there's a bitmap */
7365 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7366 			j = mddev->resync_min;
7367 		else if (!mddev->bitmap)
7368 			j = mddev->recovery_cp;
7369 
7370 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7371 		max_sectors = mddev->resync_max_sectors;
7372 	else {
7373 		/* recovery follows the physical size of devices */
7374 		max_sectors = mddev->dev_sectors;
7375 		j = MaxSector;
7376 		rcu_read_lock();
7377 		rdev_for_each_rcu(rdev, mddev)
7378 			if (rdev->raid_disk >= 0 &&
7379 			    !test_bit(Faulty, &rdev->flags) &&
7380 			    !test_bit(In_sync, &rdev->flags) &&
7381 			    rdev->recovery_offset < j)
7382 				j = rdev->recovery_offset;
7383 		rcu_read_unlock();
7384 	}
7385 
7386 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7387 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7388 		" %d KB/sec/disk.\n", speed_min(mddev));
7389 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7390 	       "(but not more than %d KB/sec) for %s.\n",
7391 	       speed_max(mddev), desc);
7392 
7393 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7394 
7395 	io_sectors = 0;
7396 	for (m = 0; m < SYNC_MARKS; m++) {
7397 		mark[m] = jiffies;
7398 		mark_cnt[m] = io_sectors;
7399 	}
7400 	last_mark = 0;
7401 	mddev->resync_mark = mark[last_mark];
7402 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7403 
7404 	/*
7405 	 * Tune reconstruction:
7406 	 */
7407 	window = 32*(PAGE_SIZE/512);
7408 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7409 		window/2, (unsigned long long)max_sectors/2);
7410 
7411 	atomic_set(&mddev->recovery_active, 0);
7412 	last_check = 0;
7413 
7414 	if (j>2) {
7415 		printk(KERN_INFO
7416 		       "md: resuming %s of %s from checkpoint.\n",
7417 		       desc, mdname(mddev));
7418 		mddev->curr_resync = j;
7419 	}
7420 	mddev->curr_resync_completed = j;
7421 
7422 	while (j < max_sectors) {
7423 		sector_t sectors;
7424 
7425 		skipped = 0;
7426 
7427 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7428 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7429 		      (mddev->curr_resync - mddev->curr_resync_completed)
7430 		      > (max_sectors >> 4)) ||
7431 		     (j - mddev->curr_resync_completed)*2
7432 		     >= mddev->resync_max - mddev->curr_resync_completed
7433 			    )) {
7434 			/* time to update curr_resync_completed */
7435 			wait_event(mddev->recovery_wait,
7436 				   atomic_read(&mddev->recovery_active) == 0);
7437 			mddev->curr_resync_completed = j;
7438 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7439 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7440 		}
7441 
7442 		while (j >= mddev->resync_max && !kthread_should_stop()) {
7443 			/* As this condition is controlled by user-space,
7444 			 * we can block indefinitely, so use '_interruptible'
7445 			 * to avoid triggering warnings.
7446 			 */
7447 			flush_signals(current); /* just in case */
7448 			wait_event_interruptible(mddev->recovery_wait,
7449 						 mddev->resync_max > j
7450 						 || kthread_should_stop());
7451 		}
7452 
7453 		if (kthread_should_stop())
7454 			goto interrupted;
7455 
7456 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7457 						  currspeed < speed_min(mddev));
7458 		if (sectors == 0) {
7459 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7460 			goto out;
7461 		}
7462 
7463 		if (!skipped) { /* actual IO requested */
7464 			io_sectors += sectors;
7465 			atomic_add(sectors, &mddev->recovery_active);
7466 		}
7467 
7468 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7469 			break;
7470 
7471 		j += sectors;
7472 		if (j>1) mddev->curr_resync = j;
7473 		mddev->curr_mark_cnt = io_sectors;
7474 		if (last_check == 0)
7475 			/* this is the earliest that rebuild will be
7476 			 * visible in /proc/mdstat
7477 			 */
7478 			md_new_event(mddev);
7479 
7480 		if (last_check + window > io_sectors || j == max_sectors)
7481 			continue;
7482 
7483 		last_check = io_sectors;
7484 	repeat:
7485 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7486 			/* step marks */
7487 			int next = (last_mark+1) % SYNC_MARKS;
7488 
7489 			mddev->resync_mark = mark[next];
7490 			mddev->resync_mark_cnt = mark_cnt[next];
7491 			mark[next] = jiffies;
7492 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7493 			last_mark = next;
7494 		}
7495 
7496 
7497 		if (kthread_should_stop())
7498 			goto interrupted;
7499 
7500 
7501 		/*
7502 		 * this loop exits only if either when we are slower than
7503 		 * the 'hard' speed limit, or the system was IO-idle for
7504 		 * a jiffy.
7505 		 * the system might be non-idle CPU-wise, but we only care
7506 		 * about not overloading the IO subsystem. (things like an
7507 		 * e2fsck being done on the RAID array should execute fast)
7508 		 */
7509 		cond_resched();
7510 
7511 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7512 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7513 
7514 		if (currspeed > speed_min(mddev)) {
7515 			if ((currspeed > speed_max(mddev)) ||
7516 					!is_mddev_idle(mddev, 0)) {
7517 				msleep(500);
7518 				goto repeat;
7519 			}
7520 		}
7521 	}
7522 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7523 	/*
7524 	 * this also signals 'finished resyncing' to md_stop
7525 	 */
7526  out:
7527 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7528 
7529 	/* tell personality that we are finished */
7530 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7531 
7532 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7533 	    mddev->curr_resync > 2) {
7534 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7535 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7536 				if (mddev->curr_resync >= mddev->recovery_cp) {
7537 					printk(KERN_INFO
7538 					       "md: checkpointing %s of %s.\n",
7539 					       desc, mdname(mddev));
7540 					mddev->recovery_cp =
7541 						mddev->curr_resync_completed;
7542 				}
7543 			} else
7544 				mddev->recovery_cp = MaxSector;
7545 		} else {
7546 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7547 				mddev->curr_resync = MaxSector;
7548 			rcu_read_lock();
7549 			rdev_for_each_rcu(rdev, mddev)
7550 				if (rdev->raid_disk >= 0 &&
7551 				    mddev->delta_disks >= 0 &&
7552 				    !test_bit(Faulty, &rdev->flags) &&
7553 				    !test_bit(In_sync, &rdev->flags) &&
7554 				    rdev->recovery_offset < mddev->curr_resync)
7555 					rdev->recovery_offset = mddev->curr_resync;
7556 			rcu_read_unlock();
7557 		}
7558 	}
7559  skip:
7560 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7561 
7562 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7563 		/* We completed so min/max setting can be forgotten if used. */
7564 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7565 			mddev->resync_min = 0;
7566 		mddev->resync_max = MaxSector;
7567 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7568 		mddev->resync_min = mddev->curr_resync_completed;
7569 	mddev->curr_resync = 0;
7570 	wake_up(&resync_wait);
7571 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7572 	md_wakeup_thread(mddev->thread);
7573 	return;
7574 
7575  interrupted:
7576 	/*
7577 	 * got a signal, exit.
7578 	 */
7579 	printk(KERN_INFO
7580 	       "md: md_do_sync() got signal ... exiting\n");
7581 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7582 	goto out;
7583 
7584 }
7585 EXPORT_SYMBOL_GPL(md_do_sync);
7586 
7587 static int remove_and_add_spares(struct mddev *mddev)
7588 {
7589 	struct md_rdev *rdev;
7590 	int spares = 0;
7591 	int removed = 0;
7592 
7593 	mddev->curr_resync_completed = 0;
7594 
7595 	rdev_for_each(rdev, mddev)
7596 		if (rdev->raid_disk >= 0 &&
7597 		    !test_bit(Blocked, &rdev->flags) &&
7598 		    (test_bit(Faulty, &rdev->flags) ||
7599 		     ! test_bit(In_sync, &rdev->flags)) &&
7600 		    atomic_read(&rdev->nr_pending)==0) {
7601 			if (mddev->pers->hot_remove_disk(
7602 				    mddev, rdev) == 0) {
7603 				sysfs_unlink_rdev(mddev, rdev);
7604 				rdev->raid_disk = -1;
7605 				removed++;
7606 			}
7607 		}
7608 	if (removed)
7609 		sysfs_notify(&mddev->kobj, NULL,
7610 			     "degraded");
7611 
7612 
7613 	rdev_for_each(rdev, mddev) {
7614 		if (rdev->raid_disk >= 0 &&
7615 		    !test_bit(In_sync, &rdev->flags) &&
7616 		    !test_bit(Faulty, &rdev->flags))
7617 			spares++;
7618 		if (rdev->raid_disk < 0
7619 		    && !test_bit(Faulty, &rdev->flags)) {
7620 			rdev->recovery_offset = 0;
7621 			if (mddev->pers->
7622 			    hot_add_disk(mddev, rdev) == 0) {
7623 				if (sysfs_link_rdev(mddev, rdev))
7624 					/* failure here is OK */;
7625 				spares++;
7626 				md_new_event(mddev);
7627 				set_bit(MD_CHANGE_DEVS, &mddev->flags);
7628 			}
7629 		}
7630 	}
7631 	return spares;
7632 }
7633 
7634 static void reap_sync_thread(struct mddev *mddev)
7635 {
7636 	struct md_rdev *rdev;
7637 
7638 	/* resync has finished, collect result */
7639 	md_unregister_thread(&mddev->sync_thread);
7640 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7641 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7642 		/* success...*/
7643 		/* activate any spares */
7644 		if (mddev->pers->spare_active(mddev))
7645 			sysfs_notify(&mddev->kobj, NULL,
7646 				     "degraded");
7647 	}
7648 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7649 	    mddev->pers->finish_reshape)
7650 		mddev->pers->finish_reshape(mddev);
7651 
7652 	/* If array is no-longer degraded, then any saved_raid_disk
7653 	 * information must be scrapped.  Also if any device is now
7654 	 * In_sync we must scrape the saved_raid_disk for that device
7655 	 * do the superblock for an incrementally recovered device
7656 	 * written out.
7657 	 */
7658 	rdev_for_each(rdev, mddev)
7659 		if (!mddev->degraded ||
7660 		    test_bit(In_sync, &rdev->flags))
7661 			rdev->saved_raid_disk = -1;
7662 
7663 	md_update_sb(mddev, 1);
7664 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7665 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7666 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7667 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7668 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7669 	/* flag recovery needed just to double check */
7670 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7671 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7672 	md_new_event(mddev);
7673 	if (mddev->event_work.func)
7674 		queue_work(md_misc_wq, &mddev->event_work);
7675 }
7676 
7677 /*
7678  * This routine is regularly called by all per-raid-array threads to
7679  * deal with generic issues like resync and super-block update.
7680  * Raid personalities that don't have a thread (linear/raid0) do not
7681  * need this as they never do any recovery or update the superblock.
7682  *
7683  * It does not do any resync itself, but rather "forks" off other threads
7684  * to do that as needed.
7685  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7686  * "->recovery" and create a thread at ->sync_thread.
7687  * When the thread finishes it sets MD_RECOVERY_DONE
7688  * and wakeups up this thread which will reap the thread and finish up.
7689  * This thread also removes any faulty devices (with nr_pending == 0).
7690  *
7691  * The overall approach is:
7692  *  1/ if the superblock needs updating, update it.
7693  *  2/ If a recovery thread is running, don't do anything else.
7694  *  3/ If recovery has finished, clean up, possibly marking spares active.
7695  *  4/ If there are any faulty devices, remove them.
7696  *  5/ If array is degraded, try to add spares devices
7697  *  6/ If array has spares or is not in-sync, start a resync thread.
7698  */
7699 void md_check_recovery(struct mddev *mddev)
7700 {
7701 	if (mddev->suspended)
7702 		return;
7703 
7704 	if (mddev->bitmap)
7705 		bitmap_daemon_work(mddev);
7706 
7707 	if (signal_pending(current)) {
7708 		if (mddev->pers->sync_request && !mddev->external) {
7709 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7710 			       mdname(mddev));
7711 			mddev->safemode = 2;
7712 		}
7713 		flush_signals(current);
7714 	}
7715 
7716 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7717 		return;
7718 	if ( ! (
7719 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7720 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7721 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7722 		(mddev->external == 0 && mddev->safemode == 1) ||
7723 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7724 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7725 		))
7726 		return;
7727 
7728 	if (mddev_trylock(mddev)) {
7729 		int spares = 0;
7730 
7731 		if (mddev->ro) {
7732 			/* Only thing we do on a ro array is remove
7733 			 * failed devices.
7734 			 */
7735 			struct md_rdev *rdev;
7736 			rdev_for_each(rdev, mddev)
7737 				if (rdev->raid_disk >= 0 &&
7738 				    !test_bit(Blocked, &rdev->flags) &&
7739 				    test_bit(Faulty, &rdev->flags) &&
7740 				    atomic_read(&rdev->nr_pending)==0) {
7741 					if (mddev->pers->hot_remove_disk(
7742 						    mddev, rdev) == 0) {
7743 						sysfs_unlink_rdev(mddev, rdev);
7744 						rdev->raid_disk = -1;
7745 					}
7746 				}
7747 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7748 			goto unlock;
7749 		}
7750 
7751 		if (!mddev->external) {
7752 			int did_change = 0;
7753 			spin_lock_irq(&mddev->write_lock);
7754 			if (mddev->safemode &&
7755 			    !atomic_read(&mddev->writes_pending) &&
7756 			    !mddev->in_sync &&
7757 			    mddev->recovery_cp == MaxSector) {
7758 				mddev->in_sync = 1;
7759 				did_change = 1;
7760 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7761 			}
7762 			if (mddev->safemode == 1)
7763 				mddev->safemode = 0;
7764 			spin_unlock_irq(&mddev->write_lock);
7765 			if (did_change)
7766 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7767 		}
7768 
7769 		if (mddev->flags)
7770 			md_update_sb(mddev, 0);
7771 
7772 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7773 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7774 			/* resync/recovery still happening */
7775 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7776 			goto unlock;
7777 		}
7778 		if (mddev->sync_thread) {
7779 			reap_sync_thread(mddev);
7780 			goto unlock;
7781 		}
7782 		/* Set RUNNING before clearing NEEDED to avoid
7783 		 * any transients in the value of "sync_action".
7784 		 */
7785 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7786 		/* Clear some bits that don't mean anything, but
7787 		 * might be left set
7788 		 */
7789 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7790 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7791 
7792 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7793 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7794 			goto unlock;
7795 		/* no recovery is running.
7796 		 * remove any failed drives, then
7797 		 * add spares if possible.
7798 		 * Spare are also removed and re-added, to allow
7799 		 * the personality to fail the re-add.
7800 		 */
7801 
7802 		if (mddev->reshape_position != MaxSector) {
7803 			if (mddev->pers->check_reshape == NULL ||
7804 			    mddev->pers->check_reshape(mddev) != 0)
7805 				/* Cannot proceed */
7806 				goto unlock;
7807 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7808 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7809 		} else if ((spares = remove_and_add_spares(mddev))) {
7810 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7811 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7812 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7813 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7814 		} else if (mddev->recovery_cp < MaxSector) {
7815 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7816 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7817 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7818 			/* nothing to be done ... */
7819 			goto unlock;
7820 
7821 		if (mddev->pers->sync_request) {
7822 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7823 				/* We are adding a device or devices to an array
7824 				 * which has the bitmap stored on all devices.
7825 				 * So make sure all bitmap pages get written
7826 				 */
7827 				bitmap_write_all(mddev->bitmap);
7828 			}
7829 			mddev->sync_thread = md_register_thread(md_do_sync,
7830 								mddev,
7831 								"resync");
7832 			if (!mddev->sync_thread) {
7833 				printk(KERN_ERR "%s: could not start resync"
7834 					" thread...\n",
7835 					mdname(mddev));
7836 				/* leave the spares where they are, it shouldn't hurt */
7837 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7838 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7839 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7840 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7841 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7842 			} else
7843 				md_wakeup_thread(mddev->sync_thread);
7844 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7845 			md_new_event(mddev);
7846 		}
7847 	unlock:
7848 		if (!mddev->sync_thread) {
7849 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7850 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7851 					       &mddev->recovery))
7852 				if (mddev->sysfs_action)
7853 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7854 		}
7855 		mddev_unlock(mddev);
7856 	}
7857 }
7858 
7859 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7860 {
7861 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7862 	wait_event_timeout(rdev->blocked_wait,
7863 			   !test_bit(Blocked, &rdev->flags) &&
7864 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7865 			   msecs_to_jiffies(5000));
7866 	rdev_dec_pending(rdev, mddev);
7867 }
7868 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7869 
7870 void md_finish_reshape(struct mddev *mddev)
7871 {
7872 	/* called be personality module when reshape completes. */
7873 	struct md_rdev *rdev;
7874 
7875 	rdev_for_each(rdev, mddev) {
7876 		if (rdev->data_offset > rdev->new_data_offset)
7877 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7878 		else
7879 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7880 		rdev->data_offset = rdev->new_data_offset;
7881 	}
7882 }
7883 EXPORT_SYMBOL(md_finish_reshape);
7884 
7885 /* Bad block management.
7886  * We can record which blocks on each device are 'bad' and so just
7887  * fail those blocks, or that stripe, rather than the whole device.
7888  * Entries in the bad-block table are 64bits wide.  This comprises:
7889  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7890  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7891  *  A 'shift' can be set so that larger blocks are tracked and
7892  *  consequently larger devices can be covered.
7893  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7894  *
7895  * Locking of the bad-block table uses a seqlock so md_is_badblock
7896  * might need to retry if it is very unlucky.
7897  * We will sometimes want to check for bad blocks in a bi_end_io function,
7898  * so we use the write_seqlock_irq variant.
7899  *
7900  * When looking for a bad block we specify a range and want to
7901  * know if any block in the range is bad.  So we binary-search
7902  * to the last range that starts at-or-before the given endpoint,
7903  * (or "before the sector after the target range")
7904  * then see if it ends after the given start.
7905  * We return
7906  *  0 if there are no known bad blocks in the range
7907  *  1 if there are known bad block which are all acknowledged
7908  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7909  * plus the start/length of the first bad section we overlap.
7910  */
7911 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7912 		   sector_t *first_bad, int *bad_sectors)
7913 {
7914 	int hi;
7915 	int lo = 0;
7916 	u64 *p = bb->page;
7917 	int rv = 0;
7918 	sector_t target = s + sectors;
7919 	unsigned seq;
7920 
7921 	if (bb->shift > 0) {
7922 		/* round the start down, and the end up */
7923 		s >>= bb->shift;
7924 		target += (1<<bb->shift) - 1;
7925 		target >>= bb->shift;
7926 		sectors = target - s;
7927 	}
7928 	/* 'target' is now the first block after the bad range */
7929 
7930 retry:
7931 	seq = read_seqbegin(&bb->lock);
7932 
7933 	hi = bb->count;
7934 
7935 	/* Binary search between lo and hi for 'target'
7936 	 * i.e. for the last range that starts before 'target'
7937 	 */
7938 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7939 	 * are known not to be the last range before target.
7940 	 * VARIANT: hi-lo is the number of possible
7941 	 * ranges, and decreases until it reaches 1
7942 	 */
7943 	while (hi - lo > 1) {
7944 		int mid = (lo + hi) / 2;
7945 		sector_t a = BB_OFFSET(p[mid]);
7946 		if (a < target)
7947 			/* This could still be the one, earlier ranges
7948 			 * could not. */
7949 			lo = mid;
7950 		else
7951 			/* This and later ranges are definitely out. */
7952 			hi = mid;
7953 	}
7954 	/* 'lo' might be the last that started before target, but 'hi' isn't */
7955 	if (hi > lo) {
7956 		/* need to check all range that end after 's' to see if
7957 		 * any are unacknowledged.
7958 		 */
7959 		while (lo >= 0 &&
7960 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7961 			if (BB_OFFSET(p[lo]) < target) {
7962 				/* starts before the end, and finishes after
7963 				 * the start, so they must overlap
7964 				 */
7965 				if (rv != -1 && BB_ACK(p[lo]))
7966 					rv = 1;
7967 				else
7968 					rv = -1;
7969 				*first_bad = BB_OFFSET(p[lo]);
7970 				*bad_sectors = BB_LEN(p[lo]);
7971 			}
7972 			lo--;
7973 		}
7974 	}
7975 
7976 	if (read_seqretry(&bb->lock, seq))
7977 		goto retry;
7978 
7979 	return rv;
7980 }
7981 EXPORT_SYMBOL_GPL(md_is_badblock);
7982 
7983 /*
7984  * Add a range of bad blocks to the table.
7985  * This might extend the table, or might contract it
7986  * if two adjacent ranges can be merged.
7987  * We binary-search to find the 'insertion' point, then
7988  * decide how best to handle it.
7989  */
7990 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7991 			    int acknowledged)
7992 {
7993 	u64 *p;
7994 	int lo, hi;
7995 	int rv = 1;
7996 
7997 	if (bb->shift < 0)
7998 		/* badblocks are disabled */
7999 		return 0;
8000 
8001 	if (bb->shift) {
8002 		/* round the start down, and the end up */
8003 		sector_t next = s + sectors;
8004 		s >>= bb->shift;
8005 		next += (1<<bb->shift) - 1;
8006 		next >>= bb->shift;
8007 		sectors = next - s;
8008 	}
8009 
8010 	write_seqlock_irq(&bb->lock);
8011 
8012 	p = bb->page;
8013 	lo = 0;
8014 	hi = bb->count;
8015 	/* Find the last range that starts at-or-before 's' */
8016 	while (hi - lo > 1) {
8017 		int mid = (lo + hi) / 2;
8018 		sector_t a = BB_OFFSET(p[mid]);
8019 		if (a <= s)
8020 			lo = mid;
8021 		else
8022 			hi = mid;
8023 	}
8024 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8025 		hi = lo;
8026 
8027 	if (hi > lo) {
8028 		/* we found a range that might merge with the start
8029 		 * of our new range
8030 		 */
8031 		sector_t a = BB_OFFSET(p[lo]);
8032 		sector_t e = a + BB_LEN(p[lo]);
8033 		int ack = BB_ACK(p[lo]);
8034 		if (e >= s) {
8035 			/* Yes, we can merge with a previous range */
8036 			if (s == a && s + sectors >= e)
8037 				/* new range covers old */
8038 				ack = acknowledged;
8039 			else
8040 				ack = ack && acknowledged;
8041 
8042 			if (e < s + sectors)
8043 				e = s + sectors;
8044 			if (e - a <= BB_MAX_LEN) {
8045 				p[lo] = BB_MAKE(a, e-a, ack);
8046 				s = e;
8047 			} else {
8048 				/* does not all fit in one range,
8049 				 * make p[lo] maximal
8050 				 */
8051 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8052 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8053 				s = a + BB_MAX_LEN;
8054 			}
8055 			sectors = e - s;
8056 		}
8057 	}
8058 	if (sectors && hi < bb->count) {
8059 		/* 'hi' points to the first range that starts after 's'.
8060 		 * Maybe we can merge with the start of that range */
8061 		sector_t a = BB_OFFSET(p[hi]);
8062 		sector_t e = a + BB_LEN(p[hi]);
8063 		int ack = BB_ACK(p[hi]);
8064 		if (a <= s + sectors) {
8065 			/* merging is possible */
8066 			if (e <= s + sectors) {
8067 				/* full overlap */
8068 				e = s + sectors;
8069 				ack = acknowledged;
8070 			} else
8071 				ack = ack && acknowledged;
8072 
8073 			a = s;
8074 			if (e - a <= BB_MAX_LEN) {
8075 				p[hi] = BB_MAKE(a, e-a, ack);
8076 				s = e;
8077 			} else {
8078 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8079 				s = a + BB_MAX_LEN;
8080 			}
8081 			sectors = e - s;
8082 			lo = hi;
8083 			hi++;
8084 		}
8085 	}
8086 	if (sectors == 0 && hi < bb->count) {
8087 		/* we might be able to combine lo and hi */
8088 		/* Note: 's' is at the end of 'lo' */
8089 		sector_t a = BB_OFFSET(p[hi]);
8090 		int lolen = BB_LEN(p[lo]);
8091 		int hilen = BB_LEN(p[hi]);
8092 		int newlen = lolen + hilen - (s - a);
8093 		if (s >= a && newlen < BB_MAX_LEN) {
8094 			/* yes, we can combine them */
8095 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8096 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8097 			memmove(p + hi, p + hi + 1,
8098 				(bb->count - hi - 1) * 8);
8099 			bb->count--;
8100 		}
8101 	}
8102 	while (sectors) {
8103 		/* didn't merge (it all).
8104 		 * Need to add a range just before 'hi' */
8105 		if (bb->count >= MD_MAX_BADBLOCKS) {
8106 			/* No room for more */
8107 			rv = 0;
8108 			break;
8109 		} else {
8110 			int this_sectors = sectors;
8111 			memmove(p + hi + 1, p + hi,
8112 				(bb->count - hi) * 8);
8113 			bb->count++;
8114 
8115 			if (this_sectors > BB_MAX_LEN)
8116 				this_sectors = BB_MAX_LEN;
8117 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8118 			sectors -= this_sectors;
8119 			s += this_sectors;
8120 		}
8121 	}
8122 
8123 	bb->changed = 1;
8124 	if (!acknowledged)
8125 		bb->unacked_exist = 1;
8126 	write_sequnlock_irq(&bb->lock);
8127 
8128 	return rv;
8129 }
8130 
8131 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8132 		       int is_new)
8133 {
8134 	int rv;
8135 	if (is_new)
8136 		s += rdev->new_data_offset;
8137 	else
8138 		s += rdev->data_offset;
8139 	rv = md_set_badblocks(&rdev->badblocks,
8140 			      s, sectors, 0);
8141 	if (rv) {
8142 		/* Make sure they get written out promptly */
8143 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8144 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8145 		md_wakeup_thread(rdev->mddev->thread);
8146 	}
8147 	return rv;
8148 }
8149 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8150 
8151 /*
8152  * Remove a range of bad blocks from the table.
8153  * This may involve extending the table if we spilt a region,
8154  * but it must not fail.  So if the table becomes full, we just
8155  * drop the remove request.
8156  */
8157 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8158 {
8159 	u64 *p;
8160 	int lo, hi;
8161 	sector_t target = s + sectors;
8162 	int rv = 0;
8163 
8164 	if (bb->shift > 0) {
8165 		/* When clearing we round the start up and the end down.
8166 		 * This should not matter as the shift should align with
8167 		 * the block size and no rounding should ever be needed.
8168 		 * However it is better the think a block is bad when it
8169 		 * isn't than to think a block is not bad when it is.
8170 		 */
8171 		s += (1<<bb->shift) - 1;
8172 		s >>= bb->shift;
8173 		target >>= bb->shift;
8174 		sectors = target - s;
8175 	}
8176 
8177 	write_seqlock_irq(&bb->lock);
8178 
8179 	p = bb->page;
8180 	lo = 0;
8181 	hi = bb->count;
8182 	/* Find the last range that starts before 'target' */
8183 	while (hi - lo > 1) {
8184 		int mid = (lo + hi) / 2;
8185 		sector_t a = BB_OFFSET(p[mid]);
8186 		if (a < target)
8187 			lo = mid;
8188 		else
8189 			hi = mid;
8190 	}
8191 	if (hi > lo) {
8192 		/* p[lo] is the last range that could overlap the
8193 		 * current range.  Earlier ranges could also overlap,
8194 		 * but only this one can overlap the end of the range.
8195 		 */
8196 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8197 			/* Partial overlap, leave the tail of this range */
8198 			int ack = BB_ACK(p[lo]);
8199 			sector_t a = BB_OFFSET(p[lo]);
8200 			sector_t end = a + BB_LEN(p[lo]);
8201 
8202 			if (a < s) {
8203 				/* we need to split this range */
8204 				if (bb->count >= MD_MAX_BADBLOCKS) {
8205 					rv = 0;
8206 					goto out;
8207 				}
8208 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8209 				bb->count++;
8210 				p[lo] = BB_MAKE(a, s-a, ack);
8211 				lo++;
8212 			}
8213 			p[lo] = BB_MAKE(target, end - target, ack);
8214 			/* there is no longer an overlap */
8215 			hi = lo;
8216 			lo--;
8217 		}
8218 		while (lo >= 0 &&
8219 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8220 			/* This range does overlap */
8221 			if (BB_OFFSET(p[lo]) < s) {
8222 				/* Keep the early parts of this range. */
8223 				int ack = BB_ACK(p[lo]);
8224 				sector_t start = BB_OFFSET(p[lo]);
8225 				p[lo] = BB_MAKE(start, s - start, ack);
8226 				/* now low doesn't overlap, so.. */
8227 				break;
8228 			}
8229 			lo--;
8230 		}
8231 		/* 'lo' is strictly before, 'hi' is strictly after,
8232 		 * anything between needs to be discarded
8233 		 */
8234 		if (hi - lo > 1) {
8235 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8236 			bb->count -= (hi - lo - 1);
8237 		}
8238 	}
8239 
8240 	bb->changed = 1;
8241 out:
8242 	write_sequnlock_irq(&bb->lock);
8243 	return rv;
8244 }
8245 
8246 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8247 			 int is_new)
8248 {
8249 	if (is_new)
8250 		s += rdev->new_data_offset;
8251 	else
8252 		s += rdev->data_offset;
8253 	return md_clear_badblocks(&rdev->badblocks,
8254 				  s, sectors);
8255 }
8256 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8257 
8258 /*
8259  * Acknowledge all bad blocks in a list.
8260  * This only succeeds if ->changed is clear.  It is used by
8261  * in-kernel metadata updates
8262  */
8263 void md_ack_all_badblocks(struct badblocks *bb)
8264 {
8265 	if (bb->page == NULL || bb->changed)
8266 		/* no point even trying */
8267 		return;
8268 	write_seqlock_irq(&bb->lock);
8269 
8270 	if (bb->changed == 0 && bb->unacked_exist) {
8271 		u64 *p = bb->page;
8272 		int i;
8273 		for (i = 0; i < bb->count ; i++) {
8274 			if (!BB_ACK(p[i])) {
8275 				sector_t start = BB_OFFSET(p[i]);
8276 				int len = BB_LEN(p[i]);
8277 				p[i] = BB_MAKE(start, len, 1);
8278 			}
8279 		}
8280 		bb->unacked_exist = 0;
8281 	}
8282 	write_sequnlock_irq(&bb->lock);
8283 }
8284 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8285 
8286 /* sysfs access to bad-blocks list.
8287  * We present two files.
8288  * 'bad-blocks' lists sector numbers and lengths of ranges that
8289  *    are recorded as bad.  The list is truncated to fit within
8290  *    the one-page limit of sysfs.
8291  *    Writing "sector length" to this file adds an acknowledged
8292  *    bad block list.
8293  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8294  *    been acknowledged.  Writing to this file adds bad blocks
8295  *    without acknowledging them.  This is largely for testing.
8296  */
8297 
8298 static ssize_t
8299 badblocks_show(struct badblocks *bb, char *page, int unack)
8300 {
8301 	size_t len;
8302 	int i;
8303 	u64 *p = bb->page;
8304 	unsigned seq;
8305 
8306 	if (bb->shift < 0)
8307 		return 0;
8308 
8309 retry:
8310 	seq = read_seqbegin(&bb->lock);
8311 
8312 	len = 0;
8313 	i = 0;
8314 
8315 	while (len < PAGE_SIZE && i < bb->count) {
8316 		sector_t s = BB_OFFSET(p[i]);
8317 		unsigned int length = BB_LEN(p[i]);
8318 		int ack = BB_ACK(p[i]);
8319 		i++;
8320 
8321 		if (unack && ack)
8322 			continue;
8323 
8324 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8325 				(unsigned long long)s << bb->shift,
8326 				length << bb->shift);
8327 	}
8328 	if (unack && len == 0)
8329 		bb->unacked_exist = 0;
8330 
8331 	if (read_seqretry(&bb->lock, seq))
8332 		goto retry;
8333 
8334 	return len;
8335 }
8336 
8337 #define DO_DEBUG 1
8338 
8339 static ssize_t
8340 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8341 {
8342 	unsigned long long sector;
8343 	int length;
8344 	char newline;
8345 #ifdef DO_DEBUG
8346 	/* Allow clearing via sysfs *only* for testing/debugging.
8347 	 * Normally only a successful write may clear a badblock
8348 	 */
8349 	int clear = 0;
8350 	if (page[0] == '-') {
8351 		clear = 1;
8352 		page++;
8353 	}
8354 #endif /* DO_DEBUG */
8355 
8356 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8357 	case 3:
8358 		if (newline != '\n')
8359 			return -EINVAL;
8360 	case 2:
8361 		if (length <= 0)
8362 			return -EINVAL;
8363 		break;
8364 	default:
8365 		return -EINVAL;
8366 	}
8367 
8368 #ifdef DO_DEBUG
8369 	if (clear) {
8370 		md_clear_badblocks(bb, sector, length);
8371 		return len;
8372 	}
8373 #endif /* DO_DEBUG */
8374 	if (md_set_badblocks(bb, sector, length, !unack))
8375 		return len;
8376 	else
8377 		return -ENOSPC;
8378 }
8379 
8380 static int md_notify_reboot(struct notifier_block *this,
8381 			    unsigned long code, void *x)
8382 {
8383 	struct list_head *tmp;
8384 	struct mddev *mddev;
8385 	int need_delay = 0;
8386 
8387 	for_each_mddev(mddev, tmp) {
8388 		if (mddev_trylock(mddev)) {
8389 			if (mddev->pers)
8390 				__md_stop_writes(mddev);
8391 			mddev->safemode = 2;
8392 			mddev_unlock(mddev);
8393 		}
8394 		need_delay = 1;
8395 	}
8396 	/*
8397 	 * certain more exotic SCSI devices are known to be
8398 	 * volatile wrt too early system reboots. While the
8399 	 * right place to handle this issue is the given
8400 	 * driver, we do want to have a safe RAID driver ...
8401 	 */
8402 	if (need_delay)
8403 		mdelay(1000*1);
8404 
8405 	return NOTIFY_DONE;
8406 }
8407 
8408 static struct notifier_block md_notifier = {
8409 	.notifier_call	= md_notify_reboot,
8410 	.next		= NULL,
8411 	.priority	= INT_MAX, /* before any real devices */
8412 };
8413 
8414 static void md_geninit(void)
8415 {
8416 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8417 
8418 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8419 }
8420 
8421 static int __init md_init(void)
8422 {
8423 	int ret = -ENOMEM;
8424 
8425 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8426 	if (!md_wq)
8427 		goto err_wq;
8428 
8429 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8430 	if (!md_misc_wq)
8431 		goto err_misc_wq;
8432 
8433 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8434 		goto err_md;
8435 
8436 	if ((ret = register_blkdev(0, "mdp")) < 0)
8437 		goto err_mdp;
8438 	mdp_major = ret;
8439 
8440 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8441 			    md_probe, NULL, NULL);
8442 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8443 			    md_probe, NULL, NULL);
8444 
8445 	register_reboot_notifier(&md_notifier);
8446 	raid_table_header = register_sysctl_table(raid_root_table);
8447 
8448 	md_geninit();
8449 	return 0;
8450 
8451 err_mdp:
8452 	unregister_blkdev(MD_MAJOR, "md");
8453 err_md:
8454 	destroy_workqueue(md_misc_wq);
8455 err_misc_wq:
8456 	destroy_workqueue(md_wq);
8457 err_wq:
8458 	return ret;
8459 }
8460 
8461 #ifndef MODULE
8462 
8463 /*
8464  * Searches all registered partitions for autorun RAID arrays
8465  * at boot time.
8466  */
8467 
8468 static LIST_HEAD(all_detected_devices);
8469 struct detected_devices_node {
8470 	struct list_head list;
8471 	dev_t dev;
8472 };
8473 
8474 void md_autodetect_dev(dev_t dev)
8475 {
8476 	struct detected_devices_node *node_detected_dev;
8477 
8478 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8479 	if (node_detected_dev) {
8480 		node_detected_dev->dev = dev;
8481 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8482 	} else {
8483 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8484 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8485 	}
8486 }
8487 
8488 
8489 static void autostart_arrays(int part)
8490 {
8491 	struct md_rdev *rdev;
8492 	struct detected_devices_node *node_detected_dev;
8493 	dev_t dev;
8494 	int i_scanned, i_passed;
8495 
8496 	i_scanned = 0;
8497 	i_passed = 0;
8498 
8499 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8500 
8501 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8502 		i_scanned++;
8503 		node_detected_dev = list_entry(all_detected_devices.next,
8504 					struct detected_devices_node, list);
8505 		list_del(&node_detected_dev->list);
8506 		dev = node_detected_dev->dev;
8507 		kfree(node_detected_dev);
8508 		rdev = md_import_device(dev,0, 90);
8509 		if (IS_ERR(rdev))
8510 			continue;
8511 
8512 		if (test_bit(Faulty, &rdev->flags)) {
8513 			MD_BUG();
8514 			continue;
8515 		}
8516 		set_bit(AutoDetected, &rdev->flags);
8517 		list_add(&rdev->same_set, &pending_raid_disks);
8518 		i_passed++;
8519 	}
8520 
8521 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8522 						i_scanned, i_passed);
8523 
8524 	autorun_devices(part);
8525 }
8526 
8527 #endif /* !MODULE */
8528 
8529 static __exit void md_exit(void)
8530 {
8531 	struct mddev *mddev;
8532 	struct list_head *tmp;
8533 
8534 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8535 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8536 
8537 	unregister_blkdev(MD_MAJOR,"md");
8538 	unregister_blkdev(mdp_major, "mdp");
8539 	unregister_reboot_notifier(&md_notifier);
8540 	unregister_sysctl_table(raid_table_header);
8541 	remove_proc_entry("mdstat", NULL);
8542 	for_each_mddev(mddev, tmp) {
8543 		export_array(mddev);
8544 		mddev->hold_active = 0;
8545 	}
8546 	destroy_workqueue(md_misc_wq);
8547 	destroy_workqueue(md_wq);
8548 }
8549 
8550 subsys_initcall(md_init);
8551 module_exit(md_exit)
8552 
8553 static int get_ro(char *buffer, struct kernel_param *kp)
8554 {
8555 	return sprintf(buffer, "%d", start_readonly);
8556 }
8557 static int set_ro(const char *val, struct kernel_param *kp)
8558 {
8559 	char *e;
8560 	int num = simple_strtoul(val, &e, 10);
8561 	if (*val && (*e == '\0' || *e == '\n')) {
8562 		start_readonly = num;
8563 		return 0;
8564 	}
8565 	return -EINVAL;
8566 }
8567 
8568 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8569 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8570 
8571 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8572 
8573 EXPORT_SYMBOL(register_md_personality);
8574 EXPORT_SYMBOL(unregister_md_personality);
8575 EXPORT_SYMBOL(md_error);
8576 EXPORT_SYMBOL(md_done_sync);
8577 EXPORT_SYMBOL(md_write_start);
8578 EXPORT_SYMBOL(md_write_end);
8579 EXPORT_SYMBOL(md_register_thread);
8580 EXPORT_SYMBOL(md_unregister_thread);
8581 EXPORT_SYMBOL(md_wakeup_thread);
8582 EXPORT_SYMBOL(md_check_recovery);
8583 MODULE_LICENSE("GPL");
8584 MODULE_DESCRIPTION("MD RAID framework");
8585 MODULE_ALIAS("md");
8586 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8587