1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 /* pers_list is a list of registered personalities protected 62 * by pers_lock. 63 * pers_lock does extra service to protect accesses to 64 * mddev->thread when the mutex cannot be held. 65 */ 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static void md_print_devices(void); 70 71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 72 static struct workqueue_struct *md_wq; 73 static struct workqueue_struct *md_misc_wq; 74 75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 76 77 /* 78 * Default number of read corrections we'll attempt on an rdev 79 * before ejecting it from the array. We divide the read error 80 * count by 2 for every hour elapsed between read errors. 81 */ 82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 83 /* 84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 85 * is 1000 KB/sec, so the extra system load does not show up that much. 86 * Increase it if you want to have more _guaranteed_ speed. Note that 87 * the RAID driver will use the maximum available bandwidth if the IO 88 * subsystem is idle. There is also an 'absolute maximum' reconstruction 89 * speed limit - in case reconstruction slows down your system despite 90 * idle IO detection. 91 * 92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 93 * or /sys/block/mdX/md/sync_speed_{min,max} 94 */ 95 96 static int sysctl_speed_limit_min = 1000; 97 static int sysctl_speed_limit_max = 200000; 98 static inline int speed_min(struct mddev *mddev) 99 { 100 return mddev->sync_speed_min ? 101 mddev->sync_speed_min : sysctl_speed_limit_min; 102 } 103 104 static inline int speed_max(struct mddev *mddev) 105 { 106 return mddev->sync_speed_max ? 107 mddev->sync_speed_max : sysctl_speed_limit_max; 108 } 109 110 static struct ctl_table_header *raid_table_header; 111 112 static ctl_table raid_table[] = { 113 { 114 .procname = "speed_limit_min", 115 .data = &sysctl_speed_limit_min, 116 .maxlen = sizeof(int), 117 .mode = S_IRUGO|S_IWUSR, 118 .proc_handler = proc_dointvec, 119 }, 120 { 121 .procname = "speed_limit_max", 122 .data = &sysctl_speed_limit_max, 123 .maxlen = sizeof(int), 124 .mode = S_IRUGO|S_IWUSR, 125 .proc_handler = proc_dointvec, 126 }, 127 { } 128 }; 129 130 static ctl_table raid_dir_table[] = { 131 { 132 .procname = "raid", 133 .maxlen = 0, 134 .mode = S_IRUGO|S_IXUGO, 135 .child = raid_table, 136 }, 137 { } 138 }; 139 140 static ctl_table raid_root_table[] = { 141 { 142 .procname = "dev", 143 .maxlen = 0, 144 .mode = 0555, 145 .child = raid_dir_table, 146 }, 147 { } 148 }; 149 150 static const struct block_device_operations md_fops; 151 152 static int start_readonly; 153 154 /* bio_clone_mddev 155 * like bio_clone, but with a local bio set 156 */ 157 158 static void mddev_bio_destructor(struct bio *bio) 159 { 160 struct mddev *mddev, **mddevp; 161 162 mddevp = (void*)bio; 163 mddev = mddevp[-1]; 164 165 bio_free(bio, mddev->bio_set); 166 } 167 168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 169 struct mddev *mddev) 170 { 171 struct bio *b; 172 struct mddev **mddevp; 173 174 if (!mddev || !mddev->bio_set) 175 return bio_alloc(gfp_mask, nr_iovecs); 176 177 b = bio_alloc_bioset(gfp_mask, nr_iovecs, 178 mddev->bio_set); 179 if (!b) 180 return NULL; 181 mddevp = (void*)b; 182 mddevp[-1] = mddev; 183 b->bi_destructor = mddev_bio_destructor; 184 return b; 185 } 186 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 187 188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 189 struct mddev *mddev) 190 { 191 struct bio *b; 192 struct mddev **mddevp; 193 194 if (!mddev || !mddev->bio_set) 195 return bio_clone(bio, gfp_mask); 196 197 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, 198 mddev->bio_set); 199 if (!b) 200 return NULL; 201 mddevp = (void*)b; 202 mddevp[-1] = mddev; 203 b->bi_destructor = mddev_bio_destructor; 204 __bio_clone(b, bio); 205 if (bio_integrity(bio)) { 206 int ret; 207 208 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set); 209 210 if (ret < 0) { 211 bio_put(b); 212 return NULL; 213 } 214 } 215 216 return b; 217 } 218 EXPORT_SYMBOL_GPL(bio_clone_mddev); 219 220 void md_trim_bio(struct bio *bio, int offset, int size) 221 { 222 /* 'bio' is a cloned bio which we need to trim to match 223 * the given offset and size. 224 * This requires adjusting bi_sector, bi_size, and bi_io_vec 225 */ 226 int i; 227 struct bio_vec *bvec; 228 int sofar = 0; 229 230 size <<= 9; 231 if (offset == 0 && size == bio->bi_size) 232 return; 233 234 bio->bi_sector += offset; 235 bio->bi_size = size; 236 offset <<= 9; 237 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 238 239 while (bio->bi_idx < bio->bi_vcnt && 240 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) { 241 /* remove this whole bio_vec */ 242 offset -= bio->bi_io_vec[bio->bi_idx].bv_len; 243 bio->bi_idx++; 244 } 245 if (bio->bi_idx < bio->bi_vcnt) { 246 bio->bi_io_vec[bio->bi_idx].bv_offset += offset; 247 bio->bi_io_vec[bio->bi_idx].bv_len -= offset; 248 } 249 /* avoid any complications with bi_idx being non-zero*/ 250 if (bio->bi_idx) { 251 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx, 252 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec)); 253 bio->bi_vcnt -= bio->bi_idx; 254 bio->bi_idx = 0; 255 } 256 /* Make sure vcnt and last bv are not too big */ 257 bio_for_each_segment(bvec, bio, i) { 258 if (sofar + bvec->bv_len > size) 259 bvec->bv_len = size - sofar; 260 if (bvec->bv_len == 0) { 261 bio->bi_vcnt = i; 262 break; 263 } 264 sofar += bvec->bv_len; 265 } 266 } 267 EXPORT_SYMBOL_GPL(md_trim_bio); 268 269 /* 270 * We have a system wide 'event count' that is incremented 271 * on any 'interesting' event, and readers of /proc/mdstat 272 * can use 'poll' or 'select' to find out when the event 273 * count increases. 274 * 275 * Events are: 276 * start array, stop array, error, add device, remove device, 277 * start build, activate spare 278 */ 279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 280 static atomic_t md_event_count; 281 void md_new_event(struct mddev *mddev) 282 { 283 atomic_inc(&md_event_count); 284 wake_up(&md_event_waiters); 285 } 286 EXPORT_SYMBOL_GPL(md_new_event); 287 288 /* Alternate version that can be called from interrupts 289 * when calling sysfs_notify isn't needed. 290 */ 291 static void md_new_event_inintr(struct mddev *mddev) 292 { 293 atomic_inc(&md_event_count); 294 wake_up(&md_event_waiters); 295 } 296 297 /* 298 * Enables to iterate over all existing md arrays 299 * all_mddevs_lock protects this list. 300 */ 301 static LIST_HEAD(all_mddevs); 302 static DEFINE_SPINLOCK(all_mddevs_lock); 303 304 305 /* 306 * iterates through all used mddevs in the system. 307 * We take care to grab the all_mddevs_lock whenever navigating 308 * the list, and to always hold a refcount when unlocked. 309 * Any code which breaks out of this loop while own 310 * a reference to the current mddev and must mddev_put it. 311 */ 312 #define for_each_mddev(_mddev,_tmp) \ 313 \ 314 for (({ spin_lock(&all_mddevs_lock); \ 315 _tmp = all_mddevs.next; \ 316 _mddev = NULL;}); \ 317 ({ if (_tmp != &all_mddevs) \ 318 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 319 spin_unlock(&all_mddevs_lock); \ 320 if (_mddev) mddev_put(_mddev); \ 321 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 322 _tmp != &all_mddevs;}); \ 323 ({ spin_lock(&all_mddevs_lock); \ 324 _tmp = _tmp->next;}) \ 325 ) 326 327 328 /* Rather than calling directly into the personality make_request function, 329 * IO requests come here first so that we can check if the device is 330 * being suspended pending a reconfiguration. 331 * We hold a refcount over the call to ->make_request. By the time that 332 * call has finished, the bio has been linked into some internal structure 333 * and so is visible to ->quiesce(), so we don't need the refcount any more. 334 */ 335 static void md_make_request(struct request_queue *q, struct bio *bio) 336 { 337 const int rw = bio_data_dir(bio); 338 struct mddev *mddev = q->queuedata; 339 int cpu; 340 unsigned int sectors; 341 342 if (mddev == NULL || mddev->pers == NULL 343 || !mddev->ready) { 344 bio_io_error(bio); 345 return; 346 } 347 smp_rmb(); /* Ensure implications of 'active' are visible */ 348 rcu_read_lock(); 349 if (mddev->suspended) { 350 DEFINE_WAIT(__wait); 351 for (;;) { 352 prepare_to_wait(&mddev->sb_wait, &__wait, 353 TASK_UNINTERRUPTIBLE); 354 if (!mddev->suspended) 355 break; 356 rcu_read_unlock(); 357 schedule(); 358 rcu_read_lock(); 359 } 360 finish_wait(&mddev->sb_wait, &__wait); 361 } 362 atomic_inc(&mddev->active_io); 363 rcu_read_unlock(); 364 365 /* 366 * save the sectors now since our bio can 367 * go away inside make_request 368 */ 369 sectors = bio_sectors(bio); 370 mddev->pers->make_request(mddev, bio); 371 372 cpu = part_stat_lock(); 373 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 374 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 375 part_stat_unlock(); 376 377 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 378 wake_up(&mddev->sb_wait); 379 } 380 381 /* mddev_suspend makes sure no new requests are submitted 382 * to the device, and that any requests that have been submitted 383 * are completely handled. 384 * Once ->stop is called and completes, the module will be completely 385 * unused. 386 */ 387 void mddev_suspend(struct mddev *mddev) 388 { 389 BUG_ON(mddev->suspended); 390 mddev->suspended = 1; 391 synchronize_rcu(); 392 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 393 mddev->pers->quiesce(mddev, 1); 394 395 del_timer_sync(&mddev->safemode_timer); 396 } 397 EXPORT_SYMBOL_GPL(mddev_suspend); 398 399 void mddev_resume(struct mddev *mddev) 400 { 401 mddev->suspended = 0; 402 wake_up(&mddev->sb_wait); 403 mddev->pers->quiesce(mddev, 0); 404 405 md_wakeup_thread(mddev->thread); 406 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 407 } 408 EXPORT_SYMBOL_GPL(mddev_resume); 409 410 int mddev_congested(struct mddev *mddev, int bits) 411 { 412 return mddev->suspended; 413 } 414 EXPORT_SYMBOL(mddev_congested); 415 416 /* 417 * Generic flush handling for md 418 */ 419 420 static void md_end_flush(struct bio *bio, int err) 421 { 422 struct md_rdev *rdev = bio->bi_private; 423 struct mddev *mddev = rdev->mddev; 424 425 rdev_dec_pending(rdev, mddev); 426 427 if (atomic_dec_and_test(&mddev->flush_pending)) { 428 /* The pre-request flush has finished */ 429 queue_work(md_wq, &mddev->flush_work); 430 } 431 bio_put(bio); 432 } 433 434 static void md_submit_flush_data(struct work_struct *ws); 435 436 static void submit_flushes(struct work_struct *ws) 437 { 438 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 439 struct md_rdev *rdev; 440 441 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 442 atomic_set(&mddev->flush_pending, 1); 443 rcu_read_lock(); 444 rdev_for_each_rcu(rdev, mddev) 445 if (rdev->raid_disk >= 0 && 446 !test_bit(Faulty, &rdev->flags)) { 447 /* Take two references, one is dropped 448 * when request finishes, one after 449 * we reclaim rcu_read_lock 450 */ 451 struct bio *bi; 452 atomic_inc(&rdev->nr_pending); 453 atomic_inc(&rdev->nr_pending); 454 rcu_read_unlock(); 455 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 456 bi->bi_end_io = md_end_flush; 457 bi->bi_private = rdev; 458 bi->bi_bdev = rdev->bdev; 459 atomic_inc(&mddev->flush_pending); 460 submit_bio(WRITE_FLUSH, bi); 461 rcu_read_lock(); 462 rdev_dec_pending(rdev, mddev); 463 } 464 rcu_read_unlock(); 465 if (atomic_dec_and_test(&mddev->flush_pending)) 466 queue_work(md_wq, &mddev->flush_work); 467 } 468 469 static void md_submit_flush_data(struct work_struct *ws) 470 { 471 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 472 struct bio *bio = mddev->flush_bio; 473 474 if (bio->bi_size == 0) 475 /* an empty barrier - all done */ 476 bio_endio(bio, 0); 477 else { 478 bio->bi_rw &= ~REQ_FLUSH; 479 mddev->pers->make_request(mddev, bio); 480 } 481 482 mddev->flush_bio = NULL; 483 wake_up(&mddev->sb_wait); 484 } 485 486 void md_flush_request(struct mddev *mddev, struct bio *bio) 487 { 488 spin_lock_irq(&mddev->write_lock); 489 wait_event_lock_irq(mddev->sb_wait, 490 !mddev->flush_bio, 491 mddev->write_lock, /*nothing*/); 492 mddev->flush_bio = bio; 493 spin_unlock_irq(&mddev->write_lock); 494 495 INIT_WORK(&mddev->flush_work, submit_flushes); 496 queue_work(md_wq, &mddev->flush_work); 497 } 498 EXPORT_SYMBOL(md_flush_request); 499 500 /* Support for plugging. 501 * This mirrors the plugging support in request_queue, but does not 502 * require having a whole queue or request structures. 503 * We allocate an md_plug_cb for each md device and each thread it gets 504 * plugged on. This links tot the private plug_handle structure in the 505 * personality data where we keep a count of the number of outstanding 506 * plugs so other code can see if a plug is active. 507 */ 508 struct md_plug_cb { 509 struct blk_plug_cb cb; 510 struct mddev *mddev; 511 }; 512 513 static void plugger_unplug(struct blk_plug_cb *cb) 514 { 515 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb); 516 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt)) 517 md_wakeup_thread(mdcb->mddev->thread); 518 kfree(mdcb); 519 } 520 521 /* Check that an unplug wakeup will come shortly. 522 * If not, wakeup the md thread immediately 523 */ 524 int mddev_check_plugged(struct mddev *mddev) 525 { 526 struct blk_plug *plug = current->plug; 527 struct md_plug_cb *mdcb; 528 529 if (!plug) 530 return 0; 531 532 list_for_each_entry(mdcb, &plug->cb_list, cb.list) { 533 if (mdcb->cb.callback == plugger_unplug && 534 mdcb->mddev == mddev) { 535 /* Already on the list, move to top */ 536 if (mdcb != list_first_entry(&plug->cb_list, 537 struct md_plug_cb, 538 cb.list)) 539 list_move(&mdcb->cb.list, &plug->cb_list); 540 return 1; 541 } 542 } 543 /* Not currently on the callback list */ 544 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC); 545 if (!mdcb) 546 return 0; 547 548 mdcb->mddev = mddev; 549 mdcb->cb.callback = plugger_unplug; 550 atomic_inc(&mddev->plug_cnt); 551 list_add(&mdcb->cb.list, &plug->cb_list); 552 return 1; 553 } 554 EXPORT_SYMBOL_GPL(mddev_check_plugged); 555 556 static inline struct mddev *mddev_get(struct mddev *mddev) 557 { 558 atomic_inc(&mddev->active); 559 return mddev; 560 } 561 562 static void mddev_delayed_delete(struct work_struct *ws); 563 564 static void mddev_put(struct mddev *mddev) 565 { 566 struct bio_set *bs = NULL; 567 568 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 569 return; 570 if (!mddev->raid_disks && list_empty(&mddev->disks) && 571 mddev->ctime == 0 && !mddev->hold_active) { 572 /* Array is not configured at all, and not held active, 573 * so destroy it */ 574 list_del_init(&mddev->all_mddevs); 575 bs = mddev->bio_set; 576 mddev->bio_set = NULL; 577 if (mddev->gendisk) { 578 /* We did a probe so need to clean up. Call 579 * queue_work inside the spinlock so that 580 * flush_workqueue() after mddev_find will 581 * succeed in waiting for the work to be done. 582 */ 583 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 584 queue_work(md_misc_wq, &mddev->del_work); 585 } else 586 kfree(mddev); 587 } 588 spin_unlock(&all_mddevs_lock); 589 if (bs) 590 bioset_free(bs); 591 } 592 593 void mddev_init(struct mddev *mddev) 594 { 595 mutex_init(&mddev->open_mutex); 596 mutex_init(&mddev->reconfig_mutex); 597 mutex_init(&mddev->bitmap_info.mutex); 598 INIT_LIST_HEAD(&mddev->disks); 599 INIT_LIST_HEAD(&mddev->all_mddevs); 600 init_timer(&mddev->safemode_timer); 601 atomic_set(&mddev->active, 1); 602 atomic_set(&mddev->openers, 0); 603 atomic_set(&mddev->active_io, 0); 604 atomic_set(&mddev->plug_cnt, 0); 605 spin_lock_init(&mddev->write_lock); 606 atomic_set(&mddev->flush_pending, 0); 607 init_waitqueue_head(&mddev->sb_wait); 608 init_waitqueue_head(&mddev->recovery_wait); 609 mddev->reshape_position = MaxSector; 610 mddev->reshape_backwards = 0; 611 mddev->resync_min = 0; 612 mddev->resync_max = MaxSector; 613 mddev->level = LEVEL_NONE; 614 } 615 EXPORT_SYMBOL_GPL(mddev_init); 616 617 static struct mddev * mddev_find(dev_t unit) 618 { 619 struct mddev *mddev, *new = NULL; 620 621 if (unit && MAJOR(unit) != MD_MAJOR) 622 unit &= ~((1<<MdpMinorShift)-1); 623 624 retry: 625 spin_lock(&all_mddevs_lock); 626 627 if (unit) { 628 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 629 if (mddev->unit == unit) { 630 mddev_get(mddev); 631 spin_unlock(&all_mddevs_lock); 632 kfree(new); 633 return mddev; 634 } 635 636 if (new) { 637 list_add(&new->all_mddevs, &all_mddevs); 638 spin_unlock(&all_mddevs_lock); 639 new->hold_active = UNTIL_IOCTL; 640 return new; 641 } 642 } else if (new) { 643 /* find an unused unit number */ 644 static int next_minor = 512; 645 int start = next_minor; 646 int is_free = 0; 647 int dev = 0; 648 while (!is_free) { 649 dev = MKDEV(MD_MAJOR, next_minor); 650 next_minor++; 651 if (next_minor > MINORMASK) 652 next_minor = 0; 653 if (next_minor == start) { 654 /* Oh dear, all in use. */ 655 spin_unlock(&all_mddevs_lock); 656 kfree(new); 657 return NULL; 658 } 659 660 is_free = 1; 661 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 662 if (mddev->unit == dev) { 663 is_free = 0; 664 break; 665 } 666 } 667 new->unit = dev; 668 new->md_minor = MINOR(dev); 669 new->hold_active = UNTIL_STOP; 670 list_add(&new->all_mddevs, &all_mddevs); 671 spin_unlock(&all_mddevs_lock); 672 return new; 673 } 674 spin_unlock(&all_mddevs_lock); 675 676 new = kzalloc(sizeof(*new), GFP_KERNEL); 677 if (!new) 678 return NULL; 679 680 new->unit = unit; 681 if (MAJOR(unit) == MD_MAJOR) 682 new->md_minor = MINOR(unit); 683 else 684 new->md_minor = MINOR(unit) >> MdpMinorShift; 685 686 mddev_init(new); 687 688 goto retry; 689 } 690 691 static inline int mddev_lock(struct mddev * mddev) 692 { 693 return mutex_lock_interruptible(&mddev->reconfig_mutex); 694 } 695 696 static inline int mddev_is_locked(struct mddev *mddev) 697 { 698 return mutex_is_locked(&mddev->reconfig_mutex); 699 } 700 701 static inline int mddev_trylock(struct mddev * mddev) 702 { 703 return mutex_trylock(&mddev->reconfig_mutex); 704 } 705 706 static struct attribute_group md_redundancy_group; 707 708 static void mddev_unlock(struct mddev * mddev) 709 { 710 if (mddev->to_remove) { 711 /* These cannot be removed under reconfig_mutex as 712 * an access to the files will try to take reconfig_mutex 713 * while holding the file unremovable, which leads to 714 * a deadlock. 715 * So hold set sysfs_active while the remove in happeing, 716 * and anything else which might set ->to_remove or my 717 * otherwise change the sysfs namespace will fail with 718 * -EBUSY if sysfs_active is still set. 719 * We set sysfs_active under reconfig_mutex and elsewhere 720 * test it under the same mutex to ensure its correct value 721 * is seen. 722 */ 723 struct attribute_group *to_remove = mddev->to_remove; 724 mddev->to_remove = NULL; 725 mddev->sysfs_active = 1; 726 mutex_unlock(&mddev->reconfig_mutex); 727 728 if (mddev->kobj.sd) { 729 if (to_remove != &md_redundancy_group) 730 sysfs_remove_group(&mddev->kobj, to_remove); 731 if (mddev->pers == NULL || 732 mddev->pers->sync_request == NULL) { 733 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 734 if (mddev->sysfs_action) 735 sysfs_put(mddev->sysfs_action); 736 mddev->sysfs_action = NULL; 737 } 738 } 739 mddev->sysfs_active = 0; 740 } else 741 mutex_unlock(&mddev->reconfig_mutex); 742 743 /* As we've dropped the mutex we need a spinlock to 744 * make sure the thread doesn't disappear 745 */ 746 spin_lock(&pers_lock); 747 md_wakeup_thread(mddev->thread); 748 spin_unlock(&pers_lock); 749 } 750 751 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr) 752 { 753 struct md_rdev *rdev; 754 755 rdev_for_each(rdev, mddev) 756 if (rdev->desc_nr == nr) 757 return rdev; 758 759 return NULL; 760 } 761 762 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev) 763 { 764 struct md_rdev *rdev; 765 766 rdev_for_each(rdev, mddev) 767 if (rdev->bdev->bd_dev == dev) 768 return rdev; 769 770 return NULL; 771 } 772 773 static struct md_personality *find_pers(int level, char *clevel) 774 { 775 struct md_personality *pers; 776 list_for_each_entry(pers, &pers_list, list) { 777 if (level != LEVEL_NONE && pers->level == level) 778 return pers; 779 if (strcmp(pers->name, clevel)==0) 780 return pers; 781 } 782 return NULL; 783 } 784 785 /* return the offset of the super block in 512byte sectors */ 786 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 787 { 788 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 789 return MD_NEW_SIZE_SECTORS(num_sectors); 790 } 791 792 static int alloc_disk_sb(struct md_rdev * rdev) 793 { 794 if (rdev->sb_page) 795 MD_BUG(); 796 797 rdev->sb_page = alloc_page(GFP_KERNEL); 798 if (!rdev->sb_page) { 799 printk(KERN_ALERT "md: out of memory.\n"); 800 return -ENOMEM; 801 } 802 803 return 0; 804 } 805 806 static void free_disk_sb(struct md_rdev * rdev) 807 { 808 if (rdev->sb_page) { 809 put_page(rdev->sb_page); 810 rdev->sb_loaded = 0; 811 rdev->sb_page = NULL; 812 rdev->sb_start = 0; 813 rdev->sectors = 0; 814 } 815 if (rdev->bb_page) { 816 put_page(rdev->bb_page); 817 rdev->bb_page = NULL; 818 } 819 } 820 821 822 static void super_written(struct bio *bio, int error) 823 { 824 struct md_rdev *rdev = bio->bi_private; 825 struct mddev *mddev = rdev->mddev; 826 827 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 828 printk("md: super_written gets error=%d, uptodate=%d\n", 829 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 830 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 831 md_error(mddev, rdev); 832 } 833 834 if (atomic_dec_and_test(&mddev->pending_writes)) 835 wake_up(&mddev->sb_wait); 836 bio_put(bio); 837 } 838 839 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 840 sector_t sector, int size, struct page *page) 841 { 842 /* write first size bytes of page to sector of rdev 843 * Increment mddev->pending_writes before returning 844 * and decrement it on completion, waking up sb_wait 845 * if zero is reached. 846 * If an error occurred, call md_error 847 */ 848 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 849 850 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 851 bio->bi_sector = sector; 852 bio_add_page(bio, page, size, 0); 853 bio->bi_private = rdev; 854 bio->bi_end_io = super_written; 855 856 atomic_inc(&mddev->pending_writes); 857 submit_bio(WRITE_FLUSH_FUA, bio); 858 } 859 860 void md_super_wait(struct mddev *mddev) 861 { 862 /* wait for all superblock writes that were scheduled to complete */ 863 DEFINE_WAIT(wq); 864 for(;;) { 865 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 866 if (atomic_read(&mddev->pending_writes)==0) 867 break; 868 schedule(); 869 } 870 finish_wait(&mddev->sb_wait, &wq); 871 } 872 873 static void bi_complete(struct bio *bio, int error) 874 { 875 complete((struct completion*)bio->bi_private); 876 } 877 878 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 879 struct page *page, int rw, bool metadata_op) 880 { 881 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 882 struct completion event; 883 int ret; 884 885 rw |= REQ_SYNC; 886 887 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 888 rdev->meta_bdev : rdev->bdev; 889 if (metadata_op) 890 bio->bi_sector = sector + rdev->sb_start; 891 else if (rdev->mddev->reshape_position != MaxSector && 892 (rdev->mddev->reshape_backwards == 893 (sector >= rdev->mddev->reshape_position))) 894 bio->bi_sector = sector + rdev->new_data_offset; 895 else 896 bio->bi_sector = sector + rdev->data_offset; 897 bio_add_page(bio, page, size, 0); 898 init_completion(&event); 899 bio->bi_private = &event; 900 bio->bi_end_io = bi_complete; 901 submit_bio(rw, bio); 902 wait_for_completion(&event); 903 904 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 905 bio_put(bio); 906 return ret; 907 } 908 EXPORT_SYMBOL_GPL(sync_page_io); 909 910 static int read_disk_sb(struct md_rdev * rdev, int size) 911 { 912 char b[BDEVNAME_SIZE]; 913 if (!rdev->sb_page) { 914 MD_BUG(); 915 return -EINVAL; 916 } 917 if (rdev->sb_loaded) 918 return 0; 919 920 921 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 922 goto fail; 923 rdev->sb_loaded = 1; 924 return 0; 925 926 fail: 927 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 928 bdevname(rdev->bdev,b)); 929 return -EINVAL; 930 } 931 932 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 933 { 934 return sb1->set_uuid0 == sb2->set_uuid0 && 935 sb1->set_uuid1 == sb2->set_uuid1 && 936 sb1->set_uuid2 == sb2->set_uuid2 && 937 sb1->set_uuid3 == sb2->set_uuid3; 938 } 939 940 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 941 { 942 int ret; 943 mdp_super_t *tmp1, *tmp2; 944 945 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 946 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 947 948 if (!tmp1 || !tmp2) { 949 ret = 0; 950 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 951 goto abort; 952 } 953 954 *tmp1 = *sb1; 955 *tmp2 = *sb2; 956 957 /* 958 * nr_disks is not constant 959 */ 960 tmp1->nr_disks = 0; 961 tmp2->nr_disks = 0; 962 963 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 964 abort: 965 kfree(tmp1); 966 kfree(tmp2); 967 return ret; 968 } 969 970 971 static u32 md_csum_fold(u32 csum) 972 { 973 csum = (csum & 0xffff) + (csum >> 16); 974 return (csum & 0xffff) + (csum >> 16); 975 } 976 977 static unsigned int calc_sb_csum(mdp_super_t * sb) 978 { 979 u64 newcsum = 0; 980 u32 *sb32 = (u32*)sb; 981 int i; 982 unsigned int disk_csum, csum; 983 984 disk_csum = sb->sb_csum; 985 sb->sb_csum = 0; 986 987 for (i = 0; i < MD_SB_BYTES/4 ; i++) 988 newcsum += sb32[i]; 989 csum = (newcsum & 0xffffffff) + (newcsum>>32); 990 991 992 #ifdef CONFIG_ALPHA 993 /* This used to use csum_partial, which was wrong for several 994 * reasons including that different results are returned on 995 * different architectures. It isn't critical that we get exactly 996 * the same return value as before (we always csum_fold before 997 * testing, and that removes any differences). However as we 998 * know that csum_partial always returned a 16bit value on 999 * alphas, do a fold to maximise conformity to previous behaviour. 1000 */ 1001 sb->sb_csum = md_csum_fold(disk_csum); 1002 #else 1003 sb->sb_csum = disk_csum; 1004 #endif 1005 return csum; 1006 } 1007 1008 1009 /* 1010 * Handle superblock details. 1011 * We want to be able to handle multiple superblock formats 1012 * so we have a common interface to them all, and an array of 1013 * different handlers. 1014 * We rely on user-space to write the initial superblock, and support 1015 * reading and updating of superblocks. 1016 * Interface methods are: 1017 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1018 * loads and validates a superblock on dev. 1019 * if refdev != NULL, compare superblocks on both devices 1020 * Return: 1021 * 0 - dev has a superblock that is compatible with refdev 1022 * 1 - dev has a superblock that is compatible and newer than refdev 1023 * so dev should be used as the refdev in future 1024 * -EINVAL superblock incompatible or invalid 1025 * -othererror e.g. -EIO 1026 * 1027 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1028 * Verify that dev is acceptable into mddev. 1029 * The first time, mddev->raid_disks will be 0, and data from 1030 * dev should be merged in. Subsequent calls check that dev 1031 * is new enough. Return 0 or -EINVAL 1032 * 1033 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1034 * Update the superblock for rdev with data in mddev 1035 * This does not write to disc. 1036 * 1037 */ 1038 1039 struct super_type { 1040 char *name; 1041 struct module *owner; 1042 int (*load_super)(struct md_rdev *rdev, 1043 struct md_rdev *refdev, 1044 int minor_version); 1045 int (*validate_super)(struct mddev *mddev, 1046 struct md_rdev *rdev); 1047 void (*sync_super)(struct mddev *mddev, 1048 struct md_rdev *rdev); 1049 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1050 sector_t num_sectors); 1051 int (*allow_new_offset)(struct md_rdev *rdev, 1052 unsigned long long new_offset); 1053 }; 1054 1055 /* 1056 * Check that the given mddev has no bitmap. 1057 * 1058 * This function is called from the run method of all personalities that do not 1059 * support bitmaps. It prints an error message and returns non-zero if mddev 1060 * has a bitmap. Otherwise, it returns 0. 1061 * 1062 */ 1063 int md_check_no_bitmap(struct mddev *mddev) 1064 { 1065 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1066 return 0; 1067 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 1068 mdname(mddev), mddev->pers->name); 1069 return 1; 1070 } 1071 EXPORT_SYMBOL(md_check_no_bitmap); 1072 1073 /* 1074 * load_super for 0.90.0 1075 */ 1076 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1077 { 1078 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1079 mdp_super_t *sb; 1080 int ret; 1081 1082 /* 1083 * Calculate the position of the superblock (512byte sectors), 1084 * it's at the end of the disk. 1085 * 1086 * It also happens to be a multiple of 4Kb. 1087 */ 1088 rdev->sb_start = calc_dev_sboffset(rdev); 1089 1090 ret = read_disk_sb(rdev, MD_SB_BYTES); 1091 if (ret) return ret; 1092 1093 ret = -EINVAL; 1094 1095 bdevname(rdev->bdev, b); 1096 sb = page_address(rdev->sb_page); 1097 1098 if (sb->md_magic != MD_SB_MAGIC) { 1099 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 1100 b); 1101 goto abort; 1102 } 1103 1104 if (sb->major_version != 0 || 1105 sb->minor_version < 90 || 1106 sb->minor_version > 91) { 1107 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1108 sb->major_version, sb->minor_version, 1109 b); 1110 goto abort; 1111 } 1112 1113 if (sb->raid_disks <= 0) 1114 goto abort; 1115 1116 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1117 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1118 b); 1119 goto abort; 1120 } 1121 1122 rdev->preferred_minor = sb->md_minor; 1123 rdev->data_offset = 0; 1124 rdev->new_data_offset = 0; 1125 rdev->sb_size = MD_SB_BYTES; 1126 rdev->badblocks.shift = -1; 1127 1128 if (sb->level == LEVEL_MULTIPATH) 1129 rdev->desc_nr = -1; 1130 else 1131 rdev->desc_nr = sb->this_disk.number; 1132 1133 if (!refdev) { 1134 ret = 1; 1135 } else { 1136 __u64 ev1, ev2; 1137 mdp_super_t *refsb = page_address(refdev->sb_page); 1138 if (!uuid_equal(refsb, sb)) { 1139 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1140 b, bdevname(refdev->bdev,b2)); 1141 goto abort; 1142 } 1143 if (!sb_equal(refsb, sb)) { 1144 printk(KERN_WARNING "md: %s has same UUID" 1145 " but different superblock to %s\n", 1146 b, bdevname(refdev->bdev, b2)); 1147 goto abort; 1148 } 1149 ev1 = md_event(sb); 1150 ev2 = md_event(refsb); 1151 if (ev1 > ev2) 1152 ret = 1; 1153 else 1154 ret = 0; 1155 } 1156 rdev->sectors = rdev->sb_start; 1157 /* Limit to 4TB as metadata cannot record more than that */ 1158 if (rdev->sectors >= (2ULL << 32)) 1159 rdev->sectors = (2ULL << 32) - 2; 1160 1161 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1162 /* "this cannot possibly happen" ... */ 1163 ret = -EINVAL; 1164 1165 abort: 1166 return ret; 1167 } 1168 1169 /* 1170 * validate_super for 0.90.0 1171 */ 1172 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1173 { 1174 mdp_disk_t *desc; 1175 mdp_super_t *sb = page_address(rdev->sb_page); 1176 __u64 ev1 = md_event(sb); 1177 1178 rdev->raid_disk = -1; 1179 clear_bit(Faulty, &rdev->flags); 1180 clear_bit(In_sync, &rdev->flags); 1181 clear_bit(WriteMostly, &rdev->flags); 1182 1183 if (mddev->raid_disks == 0) { 1184 mddev->major_version = 0; 1185 mddev->minor_version = sb->minor_version; 1186 mddev->patch_version = sb->patch_version; 1187 mddev->external = 0; 1188 mddev->chunk_sectors = sb->chunk_size >> 9; 1189 mddev->ctime = sb->ctime; 1190 mddev->utime = sb->utime; 1191 mddev->level = sb->level; 1192 mddev->clevel[0] = 0; 1193 mddev->layout = sb->layout; 1194 mddev->raid_disks = sb->raid_disks; 1195 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1196 mddev->events = ev1; 1197 mddev->bitmap_info.offset = 0; 1198 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1199 mddev->reshape_backwards = 0; 1200 1201 if (mddev->minor_version >= 91) { 1202 mddev->reshape_position = sb->reshape_position; 1203 mddev->delta_disks = sb->delta_disks; 1204 mddev->new_level = sb->new_level; 1205 mddev->new_layout = sb->new_layout; 1206 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1207 if (mddev->delta_disks < 0) 1208 mddev->reshape_backwards = 1; 1209 } else { 1210 mddev->reshape_position = MaxSector; 1211 mddev->delta_disks = 0; 1212 mddev->new_level = mddev->level; 1213 mddev->new_layout = mddev->layout; 1214 mddev->new_chunk_sectors = mddev->chunk_sectors; 1215 } 1216 1217 if (sb->state & (1<<MD_SB_CLEAN)) 1218 mddev->recovery_cp = MaxSector; 1219 else { 1220 if (sb->events_hi == sb->cp_events_hi && 1221 sb->events_lo == sb->cp_events_lo) { 1222 mddev->recovery_cp = sb->recovery_cp; 1223 } else 1224 mddev->recovery_cp = 0; 1225 } 1226 1227 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1228 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1229 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1230 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1231 1232 mddev->max_disks = MD_SB_DISKS; 1233 1234 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1235 mddev->bitmap_info.file == NULL) 1236 mddev->bitmap_info.offset = 1237 mddev->bitmap_info.default_offset; 1238 1239 } else if (mddev->pers == NULL) { 1240 /* Insist on good event counter while assembling, except 1241 * for spares (which don't need an event count) */ 1242 ++ev1; 1243 if (sb->disks[rdev->desc_nr].state & ( 1244 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1245 if (ev1 < mddev->events) 1246 return -EINVAL; 1247 } else if (mddev->bitmap) { 1248 /* if adding to array with a bitmap, then we can accept an 1249 * older device ... but not too old. 1250 */ 1251 if (ev1 < mddev->bitmap->events_cleared) 1252 return 0; 1253 } else { 1254 if (ev1 < mddev->events) 1255 /* just a hot-add of a new device, leave raid_disk at -1 */ 1256 return 0; 1257 } 1258 1259 if (mddev->level != LEVEL_MULTIPATH) { 1260 desc = sb->disks + rdev->desc_nr; 1261 1262 if (desc->state & (1<<MD_DISK_FAULTY)) 1263 set_bit(Faulty, &rdev->flags); 1264 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1265 desc->raid_disk < mddev->raid_disks */) { 1266 set_bit(In_sync, &rdev->flags); 1267 rdev->raid_disk = desc->raid_disk; 1268 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1269 /* active but not in sync implies recovery up to 1270 * reshape position. We don't know exactly where 1271 * that is, so set to zero for now */ 1272 if (mddev->minor_version >= 91) { 1273 rdev->recovery_offset = 0; 1274 rdev->raid_disk = desc->raid_disk; 1275 } 1276 } 1277 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1278 set_bit(WriteMostly, &rdev->flags); 1279 } else /* MULTIPATH are always insync */ 1280 set_bit(In_sync, &rdev->flags); 1281 return 0; 1282 } 1283 1284 /* 1285 * sync_super for 0.90.0 1286 */ 1287 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1288 { 1289 mdp_super_t *sb; 1290 struct md_rdev *rdev2; 1291 int next_spare = mddev->raid_disks; 1292 1293 1294 /* make rdev->sb match mddev data.. 1295 * 1296 * 1/ zero out disks 1297 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1298 * 3/ any empty disks < next_spare become removed 1299 * 1300 * disks[0] gets initialised to REMOVED because 1301 * we cannot be sure from other fields if it has 1302 * been initialised or not. 1303 */ 1304 int i; 1305 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1306 1307 rdev->sb_size = MD_SB_BYTES; 1308 1309 sb = page_address(rdev->sb_page); 1310 1311 memset(sb, 0, sizeof(*sb)); 1312 1313 sb->md_magic = MD_SB_MAGIC; 1314 sb->major_version = mddev->major_version; 1315 sb->patch_version = mddev->patch_version; 1316 sb->gvalid_words = 0; /* ignored */ 1317 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1318 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1319 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1320 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1321 1322 sb->ctime = mddev->ctime; 1323 sb->level = mddev->level; 1324 sb->size = mddev->dev_sectors / 2; 1325 sb->raid_disks = mddev->raid_disks; 1326 sb->md_minor = mddev->md_minor; 1327 sb->not_persistent = 0; 1328 sb->utime = mddev->utime; 1329 sb->state = 0; 1330 sb->events_hi = (mddev->events>>32); 1331 sb->events_lo = (u32)mddev->events; 1332 1333 if (mddev->reshape_position == MaxSector) 1334 sb->minor_version = 90; 1335 else { 1336 sb->minor_version = 91; 1337 sb->reshape_position = mddev->reshape_position; 1338 sb->new_level = mddev->new_level; 1339 sb->delta_disks = mddev->delta_disks; 1340 sb->new_layout = mddev->new_layout; 1341 sb->new_chunk = mddev->new_chunk_sectors << 9; 1342 } 1343 mddev->minor_version = sb->minor_version; 1344 if (mddev->in_sync) 1345 { 1346 sb->recovery_cp = mddev->recovery_cp; 1347 sb->cp_events_hi = (mddev->events>>32); 1348 sb->cp_events_lo = (u32)mddev->events; 1349 if (mddev->recovery_cp == MaxSector) 1350 sb->state = (1<< MD_SB_CLEAN); 1351 } else 1352 sb->recovery_cp = 0; 1353 1354 sb->layout = mddev->layout; 1355 sb->chunk_size = mddev->chunk_sectors << 9; 1356 1357 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1358 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1359 1360 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1361 rdev_for_each(rdev2, mddev) { 1362 mdp_disk_t *d; 1363 int desc_nr; 1364 int is_active = test_bit(In_sync, &rdev2->flags); 1365 1366 if (rdev2->raid_disk >= 0 && 1367 sb->minor_version >= 91) 1368 /* we have nowhere to store the recovery_offset, 1369 * but if it is not below the reshape_position, 1370 * we can piggy-back on that. 1371 */ 1372 is_active = 1; 1373 if (rdev2->raid_disk < 0 || 1374 test_bit(Faulty, &rdev2->flags)) 1375 is_active = 0; 1376 if (is_active) 1377 desc_nr = rdev2->raid_disk; 1378 else 1379 desc_nr = next_spare++; 1380 rdev2->desc_nr = desc_nr; 1381 d = &sb->disks[rdev2->desc_nr]; 1382 nr_disks++; 1383 d->number = rdev2->desc_nr; 1384 d->major = MAJOR(rdev2->bdev->bd_dev); 1385 d->minor = MINOR(rdev2->bdev->bd_dev); 1386 if (is_active) 1387 d->raid_disk = rdev2->raid_disk; 1388 else 1389 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1390 if (test_bit(Faulty, &rdev2->flags)) 1391 d->state = (1<<MD_DISK_FAULTY); 1392 else if (is_active) { 1393 d->state = (1<<MD_DISK_ACTIVE); 1394 if (test_bit(In_sync, &rdev2->flags)) 1395 d->state |= (1<<MD_DISK_SYNC); 1396 active++; 1397 working++; 1398 } else { 1399 d->state = 0; 1400 spare++; 1401 working++; 1402 } 1403 if (test_bit(WriteMostly, &rdev2->flags)) 1404 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1405 } 1406 /* now set the "removed" and "faulty" bits on any missing devices */ 1407 for (i=0 ; i < mddev->raid_disks ; i++) { 1408 mdp_disk_t *d = &sb->disks[i]; 1409 if (d->state == 0 && d->number == 0) { 1410 d->number = i; 1411 d->raid_disk = i; 1412 d->state = (1<<MD_DISK_REMOVED); 1413 d->state |= (1<<MD_DISK_FAULTY); 1414 failed++; 1415 } 1416 } 1417 sb->nr_disks = nr_disks; 1418 sb->active_disks = active; 1419 sb->working_disks = working; 1420 sb->failed_disks = failed; 1421 sb->spare_disks = spare; 1422 1423 sb->this_disk = sb->disks[rdev->desc_nr]; 1424 sb->sb_csum = calc_sb_csum(sb); 1425 } 1426 1427 /* 1428 * rdev_size_change for 0.90.0 1429 */ 1430 static unsigned long long 1431 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1432 { 1433 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1434 return 0; /* component must fit device */ 1435 if (rdev->mddev->bitmap_info.offset) 1436 return 0; /* can't move bitmap */ 1437 rdev->sb_start = calc_dev_sboffset(rdev); 1438 if (!num_sectors || num_sectors > rdev->sb_start) 1439 num_sectors = rdev->sb_start; 1440 /* Limit to 4TB as metadata cannot record more than that. 1441 * 4TB == 2^32 KB, or 2*2^32 sectors. 1442 */ 1443 if (num_sectors >= (2ULL << 32)) 1444 num_sectors = (2ULL << 32) - 2; 1445 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1446 rdev->sb_page); 1447 md_super_wait(rdev->mddev); 1448 return num_sectors; 1449 } 1450 1451 static int 1452 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1453 { 1454 /* non-zero offset changes not possible with v0.90 */ 1455 return new_offset == 0; 1456 } 1457 1458 /* 1459 * version 1 superblock 1460 */ 1461 1462 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1463 { 1464 __le32 disk_csum; 1465 u32 csum; 1466 unsigned long long newcsum; 1467 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1468 __le32 *isuper = (__le32*)sb; 1469 int i; 1470 1471 disk_csum = sb->sb_csum; 1472 sb->sb_csum = 0; 1473 newcsum = 0; 1474 for (i=0; size>=4; size -= 4 ) 1475 newcsum += le32_to_cpu(*isuper++); 1476 1477 if (size == 2) 1478 newcsum += le16_to_cpu(*(__le16*) isuper); 1479 1480 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1481 sb->sb_csum = disk_csum; 1482 return cpu_to_le32(csum); 1483 } 1484 1485 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1486 int acknowledged); 1487 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1488 { 1489 struct mdp_superblock_1 *sb; 1490 int ret; 1491 sector_t sb_start; 1492 sector_t sectors; 1493 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1494 int bmask; 1495 1496 /* 1497 * Calculate the position of the superblock in 512byte sectors. 1498 * It is always aligned to a 4K boundary and 1499 * depeding on minor_version, it can be: 1500 * 0: At least 8K, but less than 12K, from end of device 1501 * 1: At start of device 1502 * 2: 4K from start of device. 1503 */ 1504 switch(minor_version) { 1505 case 0: 1506 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1507 sb_start -= 8*2; 1508 sb_start &= ~(sector_t)(4*2-1); 1509 break; 1510 case 1: 1511 sb_start = 0; 1512 break; 1513 case 2: 1514 sb_start = 8; 1515 break; 1516 default: 1517 return -EINVAL; 1518 } 1519 rdev->sb_start = sb_start; 1520 1521 /* superblock is rarely larger than 1K, but it can be larger, 1522 * and it is safe to read 4k, so we do that 1523 */ 1524 ret = read_disk_sb(rdev, 4096); 1525 if (ret) return ret; 1526 1527 1528 sb = page_address(rdev->sb_page); 1529 1530 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1531 sb->major_version != cpu_to_le32(1) || 1532 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1533 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1534 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1535 return -EINVAL; 1536 1537 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1538 printk("md: invalid superblock checksum on %s\n", 1539 bdevname(rdev->bdev,b)); 1540 return -EINVAL; 1541 } 1542 if (le64_to_cpu(sb->data_size) < 10) { 1543 printk("md: data_size too small on %s\n", 1544 bdevname(rdev->bdev,b)); 1545 return -EINVAL; 1546 } 1547 if (sb->pad0 || 1548 sb->pad3[0] || 1549 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1550 /* Some padding is non-zero, might be a new feature */ 1551 return -EINVAL; 1552 1553 rdev->preferred_minor = 0xffff; 1554 rdev->data_offset = le64_to_cpu(sb->data_offset); 1555 rdev->new_data_offset = rdev->data_offset; 1556 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1557 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1558 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1559 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1560 1561 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1562 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1563 if (rdev->sb_size & bmask) 1564 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1565 1566 if (minor_version 1567 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1568 return -EINVAL; 1569 if (minor_version 1570 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1571 return -EINVAL; 1572 1573 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1574 rdev->desc_nr = -1; 1575 else 1576 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1577 1578 if (!rdev->bb_page) { 1579 rdev->bb_page = alloc_page(GFP_KERNEL); 1580 if (!rdev->bb_page) 1581 return -ENOMEM; 1582 } 1583 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1584 rdev->badblocks.count == 0) { 1585 /* need to load the bad block list. 1586 * Currently we limit it to one page. 1587 */ 1588 s32 offset; 1589 sector_t bb_sector; 1590 u64 *bbp; 1591 int i; 1592 int sectors = le16_to_cpu(sb->bblog_size); 1593 if (sectors > (PAGE_SIZE / 512)) 1594 return -EINVAL; 1595 offset = le32_to_cpu(sb->bblog_offset); 1596 if (offset == 0) 1597 return -EINVAL; 1598 bb_sector = (long long)offset; 1599 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1600 rdev->bb_page, READ, true)) 1601 return -EIO; 1602 bbp = (u64 *)page_address(rdev->bb_page); 1603 rdev->badblocks.shift = sb->bblog_shift; 1604 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1605 u64 bb = le64_to_cpu(*bbp); 1606 int count = bb & (0x3ff); 1607 u64 sector = bb >> 10; 1608 sector <<= sb->bblog_shift; 1609 count <<= sb->bblog_shift; 1610 if (bb + 1 == 0) 1611 break; 1612 if (md_set_badblocks(&rdev->badblocks, 1613 sector, count, 1) == 0) 1614 return -EINVAL; 1615 } 1616 } else if (sb->bblog_offset == 0) 1617 rdev->badblocks.shift = -1; 1618 1619 if (!refdev) { 1620 ret = 1; 1621 } else { 1622 __u64 ev1, ev2; 1623 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1624 1625 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1626 sb->level != refsb->level || 1627 sb->layout != refsb->layout || 1628 sb->chunksize != refsb->chunksize) { 1629 printk(KERN_WARNING "md: %s has strangely different" 1630 " superblock to %s\n", 1631 bdevname(rdev->bdev,b), 1632 bdevname(refdev->bdev,b2)); 1633 return -EINVAL; 1634 } 1635 ev1 = le64_to_cpu(sb->events); 1636 ev2 = le64_to_cpu(refsb->events); 1637 1638 if (ev1 > ev2) 1639 ret = 1; 1640 else 1641 ret = 0; 1642 } 1643 if (minor_version) { 1644 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1645 sectors -= rdev->data_offset; 1646 } else 1647 sectors = rdev->sb_start; 1648 if (sectors < le64_to_cpu(sb->data_size)) 1649 return -EINVAL; 1650 rdev->sectors = le64_to_cpu(sb->data_size); 1651 return ret; 1652 } 1653 1654 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1655 { 1656 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1657 __u64 ev1 = le64_to_cpu(sb->events); 1658 1659 rdev->raid_disk = -1; 1660 clear_bit(Faulty, &rdev->flags); 1661 clear_bit(In_sync, &rdev->flags); 1662 clear_bit(WriteMostly, &rdev->flags); 1663 1664 if (mddev->raid_disks == 0) { 1665 mddev->major_version = 1; 1666 mddev->patch_version = 0; 1667 mddev->external = 0; 1668 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1669 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1670 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1671 mddev->level = le32_to_cpu(sb->level); 1672 mddev->clevel[0] = 0; 1673 mddev->layout = le32_to_cpu(sb->layout); 1674 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1675 mddev->dev_sectors = le64_to_cpu(sb->size); 1676 mddev->events = ev1; 1677 mddev->bitmap_info.offset = 0; 1678 mddev->bitmap_info.default_offset = 1024 >> 9; 1679 mddev->reshape_backwards = 0; 1680 1681 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1682 memcpy(mddev->uuid, sb->set_uuid, 16); 1683 1684 mddev->max_disks = (4096-256)/2; 1685 1686 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1687 mddev->bitmap_info.file == NULL ) 1688 mddev->bitmap_info.offset = 1689 (__s32)le32_to_cpu(sb->bitmap_offset); 1690 1691 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1692 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1693 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1694 mddev->new_level = le32_to_cpu(sb->new_level); 1695 mddev->new_layout = le32_to_cpu(sb->new_layout); 1696 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1697 if (mddev->delta_disks < 0 || 1698 (mddev->delta_disks == 0 && 1699 (le32_to_cpu(sb->feature_map) 1700 & MD_FEATURE_RESHAPE_BACKWARDS))) 1701 mddev->reshape_backwards = 1; 1702 } else { 1703 mddev->reshape_position = MaxSector; 1704 mddev->delta_disks = 0; 1705 mddev->new_level = mddev->level; 1706 mddev->new_layout = mddev->layout; 1707 mddev->new_chunk_sectors = mddev->chunk_sectors; 1708 } 1709 1710 } else if (mddev->pers == NULL) { 1711 /* Insist of good event counter while assembling, except for 1712 * spares (which don't need an event count) */ 1713 ++ev1; 1714 if (rdev->desc_nr >= 0 && 1715 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1716 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1717 if (ev1 < mddev->events) 1718 return -EINVAL; 1719 } else if (mddev->bitmap) { 1720 /* If adding to array with a bitmap, then we can accept an 1721 * older device, but not too old. 1722 */ 1723 if (ev1 < mddev->bitmap->events_cleared) 1724 return 0; 1725 } else { 1726 if (ev1 < mddev->events) 1727 /* just a hot-add of a new device, leave raid_disk at -1 */ 1728 return 0; 1729 } 1730 if (mddev->level != LEVEL_MULTIPATH) { 1731 int role; 1732 if (rdev->desc_nr < 0 || 1733 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1734 role = 0xffff; 1735 rdev->desc_nr = -1; 1736 } else 1737 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1738 switch(role) { 1739 case 0xffff: /* spare */ 1740 break; 1741 case 0xfffe: /* faulty */ 1742 set_bit(Faulty, &rdev->flags); 1743 break; 1744 default: 1745 if ((le32_to_cpu(sb->feature_map) & 1746 MD_FEATURE_RECOVERY_OFFSET)) 1747 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1748 else 1749 set_bit(In_sync, &rdev->flags); 1750 rdev->raid_disk = role; 1751 break; 1752 } 1753 if (sb->devflags & WriteMostly1) 1754 set_bit(WriteMostly, &rdev->flags); 1755 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1756 set_bit(Replacement, &rdev->flags); 1757 } else /* MULTIPATH are always insync */ 1758 set_bit(In_sync, &rdev->flags); 1759 1760 return 0; 1761 } 1762 1763 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1764 { 1765 struct mdp_superblock_1 *sb; 1766 struct md_rdev *rdev2; 1767 int max_dev, i; 1768 /* make rdev->sb match mddev and rdev data. */ 1769 1770 sb = page_address(rdev->sb_page); 1771 1772 sb->feature_map = 0; 1773 sb->pad0 = 0; 1774 sb->recovery_offset = cpu_to_le64(0); 1775 memset(sb->pad3, 0, sizeof(sb->pad3)); 1776 1777 sb->utime = cpu_to_le64((__u64)mddev->utime); 1778 sb->events = cpu_to_le64(mddev->events); 1779 if (mddev->in_sync) 1780 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1781 else 1782 sb->resync_offset = cpu_to_le64(0); 1783 1784 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1785 1786 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1787 sb->size = cpu_to_le64(mddev->dev_sectors); 1788 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1789 sb->level = cpu_to_le32(mddev->level); 1790 sb->layout = cpu_to_le32(mddev->layout); 1791 1792 if (test_bit(WriteMostly, &rdev->flags)) 1793 sb->devflags |= WriteMostly1; 1794 else 1795 sb->devflags &= ~WriteMostly1; 1796 sb->data_offset = cpu_to_le64(rdev->data_offset); 1797 sb->data_size = cpu_to_le64(rdev->sectors); 1798 1799 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1800 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1801 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1802 } 1803 1804 if (rdev->raid_disk >= 0 && 1805 !test_bit(In_sync, &rdev->flags)) { 1806 sb->feature_map |= 1807 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1808 sb->recovery_offset = 1809 cpu_to_le64(rdev->recovery_offset); 1810 } 1811 if (test_bit(Replacement, &rdev->flags)) 1812 sb->feature_map |= 1813 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1814 1815 if (mddev->reshape_position != MaxSector) { 1816 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1817 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1818 sb->new_layout = cpu_to_le32(mddev->new_layout); 1819 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1820 sb->new_level = cpu_to_le32(mddev->new_level); 1821 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1822 if (mddev->delta_disks == 0 && 1823 mddev->reshape_backwards) 1824 sb->feature_map 1825 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1826 if (rdev->new_data_offset != rdev->data_offset) { 1827 sb->feature_map 1828 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1829 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1830 - rdev->data_offset)); 1831 } 1832 } 1833 1834 if (rdev->badblocks.count == 0) 1835 /* Nothing to do for bad blocks*/ ; 1836 else if (sb->bblog_offset == 0) 1837 /* Cannot record bad blocks on this device */ 1838 md_error(mddev, rdev); 1839 else { 1840 struct badblocks *bb = &rdev->badblocks; 1841 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1842 u64 *p = bb->page; 1843 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1844 if (bb->changed) { 1845 unsigned seq; 1846 1847 retry: 1848 seq = read_seqbegin(&bb->lock); 1849 1850 memset(bbp, 0xff, PAGE_SIZE); 1851 1852 for (i = 0 ; i < bb->count ; i++) { 1853 u64 internal_bb = *p++; 1854 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1855 | BB_LEN(internal_bb)); 1856 *bbp++ = cpu_to_le64(store_bb); 1857 } 1858 bb->changed = 0; 1859 if (read_seqretry(&bb->lock, seq)) 1860 goto retry; 1861 1862 bb->sector = (rdev->sb_start + 1863 (int)le32_to_cpu(sb->bblog_offset)); 1864 bb->size = le16_to_cpu(sb->bblog_size); 1865 } 1866 } 1867 1868 max_dev = 0; 1869 rdev_for_each(rdev2, mddev) 1870 if (rdev2->desc_nr+1 > max_dev) 1871 max_dev = rdev2->desc_nr+1; 1872 1873 if (max_dev > le32_to_cpu(sb->max_dev)) { 1874 int bmask; 1875 sb->max_dev = cpu_to_le32(max_dev); 1876 rdev->sb_size = max_dev * 2 + 256; 1877 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1878 if (rdev->sb_size & bmask) 1879 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1880 } else 1881 max_dev = le32_to_cpu(sb->max_dev); 1882 1883 for (i=0; i<max_dev;i++) 1884 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1885 1886 rdev_for_each(rdev2, mddev) { 1887 i = rdev2->desc_nr; 1888 if (test_bit(Faulty, &rdev2->flags)) 1889 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1890 else if (test_bit(In_sync, &rdev2->flags)) 1891 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1892 else if (rdev2->raid_disk >= 0) 1893 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1894 else 1895 sb->dev_roles[i] = cpu_to_le16(0xffff); 1896 } 1897 1898 sb->sb_csum = calc_sb_1_csum(sb); 1899 } 1900 1901 static unsigned long long 1902 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1903 { 1904 struct mdp_superblock_1 *sb; 1905 sector_t max_sectors; 1906 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1907 return 0; /* component must fit device */ 1908 if (rdev->data_offset != rdev->new_data_offset) 1909 return 0; /* too confusing */ 1910 if (rdev->sb_start < rdev->data_offset) { 1911 /* minor versions 1 and 2; superblock before data */ 1912 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1913 max_sectors -= rdev->data_offset; 1914 if (!num_sectors || num_sectors > max_sectors) 1915 num_sectors = max_sectors; 1916 } else if (rdev->mddev->bitmap_info.offset) { 1917 /* minor version 0 with bitmap we can't move */ 1918 return 0; 1919 } else { 1920 /* minor version 0; superblock after data */ 1921 sector_t sb_start; 1922 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1923 sb_start &= ~(sector_t)(4*2 - 1); 1924 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1925 if (!num_sectors || num_sectors > max_sectors) 1926 num_sectors = max_sectors; 1927 rdev->sb_start = sb_start; 1928 } 1929 sb = page_address(rdev->sb_page); 1930 sb->data_size = cpu_to_le64(num_sectors); 1931 sb->super_offset = rdev->sb_start; 1932 sb->sb_csum = calc_sb_1_csum(sb); 1933 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1934 rdev->sb_page); 1935 md_super_wait(rdev->mddev); 1936 return num_sectors; 1937 1938 } 1939 1940 static int 1941 super_1_allow_new_offset(struct md_rdev *rdev, 1942 unsigned long long new_offset) 1943 { 1944 /* All necessary checks on new >= old have been done */ 1945 struct bitmap *bitmap; 1946 if (new_offset >= rdev->data_offset) 1947 return 1; 1948 1949 /* with 1.0 metadata, there is no metadata to tread on 1950 * so we can always move back */ 1951 if (rdev->mddev->minor_version == 0) 1952 return 1; 1953 1954 /* otherwise we must be sure not to step on 1955 * any metadata, so stay: 1956 * 36K beyond start of superblock 1957 * beyond end of badblocks 1958 * beyond write-intent bitmap 1959 */ 1960 if (rdev->sb_start + (32+4)*2 > new_offset) 1961 return 0; 1962 bitmap = rdev->mddev->bitmap; 1963 if (bitmap && !rdev->mddev->bitmap_info.file && 1964 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1965 bitmap->file_pages * (PAGE_SIZE>>9) > new_offset) 1966 return 0; 1967 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1968 return 0; 1969 1970 return 1; 1971 } 1972 1973 static struct super_type super_types[] = { 1974 [0] = { 1975 .name = "0.90.0", 1976 .owner = THIS_MODULE, 1977 .load_super = super_90_load, 1978 .validate_super = super_90_validate, 1979 .sync_super = super_90_sync, 1980 .rdev_size_change = super_90_rdev_size_change, 1981 .allow_new_offset = super_90_allow_new_offset, 1982 }, 1983 [1] = { 1984 .name = "md-1", 1985 .owner = THIS_MODULE, 1986 .load_super = super_1_load, 1987 .validate_super = super_1_validate, 1988 .sync_super = super_1_sync, 1989 .rdev_size_change = super_1_rdev_size_change, 1990 .allow_new_offset = super_1_allow_new_offset, 1991 }, 1992 }; 1993 1994 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1995 { 1996 if (mddev->sync_super) { 1997 mddev->sync_super(mddev, rdev); 1998 return; 1999 } 2000 2001 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2002 2003 super_types[mddev->major_version].sync_super(mddev, rdev); 2004 } 2005 2006 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2007 { 2008 struct md_rdev *rdev, *rdev2; 2009 2010 rcu_read_lock(); 2011 rdev_for_each_rcu(rdev, mddev1) 2012 rdev_for_each_rcu(rdev2, mddev2) 2013 if (rdev->bdev->bd_contains == 2014 rdev2->bdev->bd_contains) { 2015 rcu_read_unlock(); 2016 return 1; 2017 } 2018 rcu_read_unlock(); 2019 return 0; 2020 } 2021 2022 static LIST_HEAD(pending_raid_disks); 2023 2024 /* 2025 * Try to register data integrity profile for an mddev 2026 * 2027 * This is called when an array is started and after a disk has been kicked 2028 * from the array. It only succeeds if all working and active component devices 2029 * are integrity capable with matching profiles. 2030 */ 2031 int md_integrity_register(struct mddev *mddev) 2032 { 2033 struct md_rdev *rdev, *reference = NULL; 2034 2035 if (list_empty(&mddev->disks)) 2036 return 0; /* nothing to do */ 2037 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2038 return 0; /* shouldn't register, or already is */ 2039 rdev_for_each(rdev, mddev) { 2040 /* skip spares and non-functional disks */ 2041 if (test_bit(Faulty, &rdev->flags)) 2042 continue; 2043 if (rdev->raid_disk < 0) 2044 continue; 2045 if (!reference) { 2046 /* Use the first rdev as the reference */ 2047 reference = rdev; 2048 continue; 2049 } 2050 /* does this rdev's profile match the reference profile? */ 2051 if (blk_integrity_compare(reference->bdev->bd_disk, 2052 rdev->bdev->bd_disk) < 0) 2053 return -EINVAL; 2054 } 2055 if (!reference || !bdev_get_integrity(reference->bdev)) 2056 return 0; 2057 /* 2058 * All component devices are integrity capable and have matching 2059 * profiles, register the common profile for the md device. 2060 */ 2061 if (blk_integrity_register(mddev->gendisk, 2062 bdev_get_integrity(reference->bdev)) != 0) { 2063 printk(KERN_ERR "md: failed to register integrity for %s\n", 2064 mdname(mddev)); 2065 return -EINVAL; 2066 } 2067 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 2068 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2069 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 2070 mdname(mddev)); 2071 return -EINVAL; 2072 } 2073 return 0; 2074 } 2075 EXPORT_SYMBOL(md_integrity_register); 2076 2077 /* Disable data integrity if non-capable/non-matching disk is being added */ 2078 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2079 { 2080 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev); 2081 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk); 2082 2083 if (!bi_mddev) /* nothing to do */ 2084 return; 2085 if (rdev->raid_disk < 0) /* skip spares */ 2086 return; 2087 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2088 rdev->bdev->bd_disk) >= 0) 2089 return; 2090 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2091 blk_integrity_unregister(mddev->gendisk); 2092 } 2093 EXPORT_SYMBOL(md_integrity_add_rdev); 2094 2095 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev) 2096 { 2097 char b[BDEVNAME_SIZE]; 2098 struct kobject *ko; 2099 char *s; 2100 int err; 2101 2102 if (rdev->mddev) { 2103 MD_BUG(); 2104 return -EINVAL; 2105 } 2106 2107 /* prevent duplicates */ 2108 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2109 return -EEXIST; 2110 2111 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2112 if (rdev->sectors && (mddev->dev_sectors == 0 || 2113 rdev->sectors < mddev->dev_sectors)) { 2114 if (mddev->pers) { 2115 /* Cannot change size, so fail 2116 * If mddev->level <= 0, then we don't care 2117 * about aligning sizes (e.g. linear) 2118 */ 2119 if (mddev->level > 0) 2120 return -ENOSPC; 2121 } else 2122 mddev->dev_sectors = rdev->sectors; 2123 } 2124 2125 /* Verify rdev->desc_nr is unique. 2126 * If it is -1, assign a free number, else 2127 * check number is not in use 2128 */ 2129 if (rdev->desc_nr < 0) { 2130 int choice = 0; 2131 if (mddev->pers) choice = mddev->raid_disks; 2132 while (find_rdev_nr(mddev, choice)) 2133 choice++; 2134 rdev->desc_nr = choice; 2135 } else { 2136 if (find_rdev_nr(mddev, rdev->desc_nr)) 2137 return -EBUSY; 2138 } 2139 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2140 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2141 mdname(mddev), mddev->max_disks); 2142 return -EBUSY; 2143 } 2144 bdevname(rdev->bdev,b); 2145 while ( (s=strchr(b, '/')) != NULL) 2146 *s = '!'; 2147 2148 rdev->mddev = mddev; 2149 printk(KERN_INFO "md: bind<%s>\n", b); 2150 2151 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2152 goto fail; 2153 2154 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2155 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2156 /* failure here is OK */; 2157 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2158 2159 list_add_rcu(&rdev->same_set, &mddev->disks); 2160 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2161 2162 /* May as well allow recovery to be retried once */ 2163 mddev->recovery_disabled++; 2164 2165 return 0; 2166 2167 fail: 2168 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2169 b, mdname(mddev)); 2170 return err; 2171 } 2172 2173 static void md_delayed_delete(struct work_struct *ws) 2174 { 2175 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2176 kobject_del(&rdev->kobj); 2177 kobject_put(&rdev->kobj); 2178 } 2179 2180 static void unbind_rdev_from_array(struct md_rdev * rdev) 2181 { 2182 char b[BDEVNAME_SIZE]; 2183 if (!rdev->mddev) { 2184 MD_BUG(); 2185 return; 2186 } 2187 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2188 list_del_rcu(&rdev->same_set); 2189 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2190 rdev->mddev = NULL; 2191 sysfs_remove_link(&rdev->kobj, "block"); 2192 sysfs_put(rdev->sysfs_state); 2193 rdev->sysfs_state = NULL; 2194 kfree(rdev->badblocks.page); 2195 rdev->badblocks.count = 0; 2196 rdev->badblocks.page = NULL; 2197 /* We need to delay this, otherwise we can deadlock when 2198 * writing to 'remove' to "dev/state". We also need 2199 * to delay it due to rcu usage. 2200 */ 2201 synchronize_rcu(); 2202 INIT_WORK(&rdev->del_work, md_delayed_delete); 2203 kobject_get(&rdev->kobj); 2204 queue_work(md_misc_wq, &rdev->del_work); 2205 } 2206 2207 /* 2208 * prevent the device from being mounted, repartitioned or 2209 * otherwise reused by a RAID array (or any other kernel 2210 * subsystem), by bd_claiming the device. 2211 */ 2212 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2213 { 2214 int err = 0; 2215 struct block_device *bdev; 2216 char b[BDEVNAME_SIZE]; 2217 2218 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2219 shared ? (struct md_rdev *)lock_rdev : rdev); 2220 if (IS_ERR(bdev)) { 2221 printk(KERN_ERR "md: could not open %s.\n", 2222 __bdevname(dev, b)); 2223 return PTR_ERR(bdev); 2224 } 2225 rdev->bdev = bdev; 2226 return err; 2227 } 2228 2229 static void unlock_rdev(struct md_rdev *rdev) 2230 { 2231 struct block_device *bdev = rdev->bdev; 2232 rdev->bdev = NULL; 2233 if (!bdev) 2234 MD_BUG(); 2235 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2236 } 2237 2238 void md_autodetect_dev(dev_t dev); 2239 2240 static void export_rdev(struct md_rdev * rdev) 2241 { 2242 char b[BDEVNAME_SIZE]; 2243 printk(KERN_INFO "md: export_rdev(%s)\n", 2244 bdevname(rdev->bdev,b)); 2245 if (rdev->mddev) 2246 MD_BUG(); 2247 free_disk_sb(rdev); 2248 #ifndef MODULE 2249 if (test_bit(AutoDetected, &rdev->flags)) 2250 md_autodetect_dev(rdev->bdev->bd_dev); 2251 #endif 2252 unlock_rdev(rdev); 2253 kobject_put(&rdev->kobj); 2254 } 2255 2256 static void kick_rdev_from_array(struct md_rdev * rdev) 2257 { 2258 unbind_rdev_from_array(rdev); 2259 export_rdev(rdev); 2260 } 2261 2262 static void export_array(struct mddev *mddev) 2263 { 2264 struct md_rdev *rdev, *tmp; 2265 2266 rdev_for_each_safe(rdev, tmp, mddev) { 2267 if (!rdev->mddev) { 2268 MD_BUG(); 2269 continue; 2270 } 2271 kick_rdev_from_array(rdev); 2272 } 2273 if (!list_empty(&mddev->disks)) 2274 MD_BUG(); 2275 mddev->raid_disks = 0; 2276 mddev->major_version = 0; 2277 } 2278 2279 static void print_desc(mdp_disk_t *desc) 2280 { 2281 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2282 desc->major,desc->minor,desc->raid_disk,desc->state); 2283 } 2284 2285 static void print_sb_90(mdp_super_t *sb) 2286 { 2287 int i; 2288 2289 printk(KERN_INFO 2290 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2291 sb->major_version, sb->minor_version, sb->patch_version, 2292 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2293 sb->ctime); 2294 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2295 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2296 sb->md_minor, sb->layout, sb->chunk_size); 2297 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2298 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2299 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2300 sb->failed_disks, sb->spare_disks, 2301 sb->sb_csum, (unsigned long)sb->events_lo); 2302 2303 printk(KERN_INFO); 2304 for (i = 0; i < MD_SB_DISKS; i++) { 2305 mdp_disk_t *desc; 2306 2307 desc = sb->disks + i; 2308 if (desc->number || desc->major || desc->minor || 2309 desc->raid_disk || (desc->state && (desc->state != 4))) { 2310 printk(" D %2d: ", i); 2311 print_desc(desc); 2312 } 2313 } 2314 printk(KERN_INFO "md: THIS: "); 2315 print_desc(&sb->this_disk); 2316 } 2317 2318 static void print_sb_1(struct mdp_superblock_1 *sb) 2319 { 2320 __u8 *uuid; 2321 2322 uuid = sb->set_uuid; 2323 printk(KERN_INFO 2324 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2325 "md: Name: \"%s\" CT:%llu\n", 2326 le32_to_cpu(sb->major_version), 2327 le32_to_cpu(sb->feature_map), 2328 uuid, 2329 sb->set_name, 2330 (unsigned long long)le64_to_cpu(sb->ctime) 2331 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2332 2333 uuid = sb->device_uuid; 2334 printk(KERN_INFO 2335 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2336 " RO:%llu\n" 2337 "md: Dev:%08x UUID: %pU\n" 2338 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2339 "md: (MaxDev:%u) \n", 2340 le32_to_cpu(sb->level), 2341 (unsigned long long)le64_to_cpu(sb->size), 2342 le32_to_cpu(sb->raid_disks), 2343 le32_to_cpu(sb->layout), 2344 le32_to_cpu(sb->chunksize), 2345 (unsigned long long)le64_to_cpu(sb->data_offset), 2346 (unsigned long long)le64_to_cpu(sb->data_size), 2347 (unsigned long long)le64_to_cpu(sb->super_offset), 2348 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2349 le32_to_cpu(sb->dev_number), 2350 uuid, 2351 sb->devflags, 2352 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2353 (unsigned long long)le64_to_cpu(sb->events), 2354 (unsigned long long)le64_to_cpu(sb->resync_offset), 2355 le32_to_cpu(sb->sb_csum), 2356 le32_to_cpu(sb->max_dev) 2357 ); 2358 } 2359 2360 static void print_rdev(struct md_rdev *rdev, int major_version) 2361 { 2362 char b[BDEVNAME_SIZE]; 2363 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2364 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2365 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2366 rdev->desc_nr); 2367 if (rdev->sb_loaded) { 2368 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2369 switch (major_version) { 2370 case 0: 2371 print_sb_90(page_address(rdev->sb_page)); 2372 break; 2373 case 1: 2374 print_sb_1(page_address(rdev->sb_page)); 2375 break; 2376 } 2377 } else 2378 printk(KERN_INFO "md: no rdev superblock!\n"); 2379 } 2380 2381 static void md_print_devices(void) 2382 { 2383 struct list_head *tmp; 2384 struct md_rdev *rdev; 2385 struct mddev *mddev; 2386 char b[BDEVNAME_SIZE]; 2387 2388 printk("\n"); 2389 printk("md: **********************************\n"); 2390 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2391 printk("md: **********************************\n"); 2392 for_each_mddev(mddev, tmp) { 2393 2394 if (mddev->bitmap) 2395 bitmap_print_sb(mddev->bitmap); 2396 else 2397 printk("%s: ", mdname(mddev)); 2398 rdev_for_each(rdev, mddev) 2399 printk("<%s>", bdevname(rdev->bdev,b)); 2400 printk("\n"); 2401 2402 rdev_for_each(rdev, mddev) 2403 print_rdev(rdev, mddev->major_version); 2404 } 2405 printk("md: **********************************\n"); 2406 printk("\n"); 2407 } 2408 2409 2410 static void sync_sbs(struct mddev * mddev, int nospares) 2411 { 2412 /* Update each superblock (in-memory image), but 2413 * if we are allowed to, skip spares which already 2414 * have the right event counter, or have one earlier 2415 * (which would mean they aren't being marked as dirty 2416 * with the rest of the array) 2417 */ 2418 struct md_rdev *rdev; 2419 rdev_for_each(rdev, mddev) { 2420 if (rdev->sb_events == mddev->events || 2421 (nospares && 2422 rdev->raid_disk < 0 && 2423 rdev->sb_events+1 == mddev->events)) { 2424 /* Don't update this superblock */ 2425 rdev->sb_loaded = 2; 2426 } else { 2427 sync_super(mddev, rdev); 2428 rdev->sb_loaded = 1; 2429 } 2430 } 2431 } 2432 2433 static void md_update_sb(struct mddev * mddev, int force_change) 2434 { 2435 struct md_rdev *rdev; 2436 int sync_req; 2437 int nospares = 0; 2438 int any_badblocks_changed = 0; 2439 2440 repeat: 2441 /* First make sure individual recovery_offsets are correct */ 2442 rdev_for_each(rdev, mddev) { 2443 if (rdev->raid_disk >= 0 && 2444 mddev->delta_disks >= 0 && 2445 !test_bit(In_sync, &rdev->flags) && 2446 mddev->curr_resync_completed > rdev->recovery_offset) 2447 rdev->recovery_offset = mddev->curr_resync_completed; 2448 2449 } 2450 if (!mddev->persistent) { 2451 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2452 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2453 if (!mddev->external) { 2454 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2455 rdev_for_each(rdev, mddev) { 2456 if (rdev->badblocks.changed) { 2457 rdev->badblocks.changed = 0; 2458 md_ack_all_badblocks(&rdev->badblocks); 2459 md_error(mddev, rdev); 2460 } 2461 clear_bit(Blocked, &rdev->flags); 2462 clear_bit(BlockedBadBlocks, &rdev->flags); 2463 wake_up(&rdev->blocked_wait); 2464 } 2465 } 2466 wake_up(&mddev->sb_wait); 2467 return; 2468 } 2469 2470 spin_lock_irq(&mddev->write_lock); 2471 2472 mddev->utime = get_seconds(); 2473 2474 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2475 force_change = 1; 2476 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2477 /* just a clean<-> dirty transition, possibly leave spares alone, 2478 * though if events isn't the right even/odd, we will have to do 2479 * spares after all 2480 */ 2481 nospares = 1; 2482 if (force_change) 2483 nospares = 0; 2484 if (mddev->degraded) 2485 /* If the array is degraded, then skipping spares is both 2486 * dangerous and fairly pointless. 2487 * Dangerous because a device that was removed from the array 2488 * might have a event_count that still looks up-to-date, 2489 * so it can be re-added without a resync. 2490 * Pointless because if there are any spares to skip, 2491 * then a recovery will happen and soon that array won't 2492 * be degraded any more and the spare can go back to sleep then. 2493 */ 2494 nospares = 0; 2495 2496 sync_req = mddev->in_sync; 2497 2498 /* If this is just a dirty<->clean transition, and the array is clean 2499 * and 'events' is odd, we can roll back to the previous clean state */ 2500 if (nospares 2501 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2502 && mddev->can_decrease_events 2503 && mddev->events != 1) { 2504 mddev->events--; 2505 mddev->can_decrease_events = 0; 2506 } else { 2507 /* otherwise we have to go forward and ... */ 2508 mddev->events ++; 2509 mddev->can_decrease_events = nospares; 2510 } 2511 2512 if (!mddev->events) { 2513 /* 2514 * oops, this 64-bit counter should never wrap. 2515 * Either we are in around ~1 trillion A.C., assuming 2516 * 1 reboot per second, or we have a bug: 2517 */ 2518 MD_BUG(); 2519 mddev->events --; 2520 } 2521 2522 rdev_for_each(rdev, mddev) { 2523 if (rdev->badblocks.changed) 2524 any_badblocks_changed++; 2525 if (test_bit(Faulty, &rdev->flags)) 2526 set_bit(FaultRecorded, &rdev->flags); 2527 } 2528 2529 sync_sbs(mddev, nospares); 2530 spin_unlock_irq(&mddev->write_lock); 2531 2532 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2533 mdname(mddev), mddev->in_sync); 2534 2535 bitmap_update_sb(mddev->bitmap); 2536 rdev_for_each(rdev, mddev) { 2537 char b[BDEVNAME_SIZE]; 2538 2539 if (rdev->sb_loaded != 1) 2540 continue; /* no noise on spare devices */ 2541 2542 if (!test_bit(Faulty, &rdev->flags) && 2543 rdev->saved_raid_disk == -1) { 2544 md_super_write(mddev,rdev, 2545 rdev->sb_start, rdev->sb_size, 2546 rdev->sb_page); 2547 pr_debug("md: (write) %s's sb offset: %llu\n", 2548 bdevname(rdev->bdev, b), 2549 (unsigned long long)rdev->sb_start); 2550 rdev->sb_events = mddev->events; 2551 if (rdev->badblocks.size) { 2552 md_super_write(mddev, rdev, 2553 rdev->badblocks.sector, 2554 rdev->badblocks.size << 9, 2555 rdev->bb_page); 2556 rdev->badblocks.size = 0; 2557 } 2558 2559 } else if (test_bit(Faulty, &rdev->flags)) 2560 pr_debug("md: %s (skipping faulty)\n", 2561 bdevname(rdev->bdev, b)); 2562 else 2563 pr_debug("(skipping incremental s/r "); 2564 2565 if (mddev->level == LEVEL_MULTIPATH) 2566 /* only need to write one superblock... */ 2567 break; 2568 } 2569 md_super_wait(mddev); 2570 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2571 2572 spin_lock_irq(&mddev->write_lock); 2573 if (mddev->in_sync != sync_req || 2574 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2575 /* have to write it out again */ 2576 spin_unlock_irq(&mddev->write_lock); 2577 goto repeat; 2578 } 2579 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2580 spin_unlock_irq(&mddev->write_lock); 2581 wake_up(&mddev->sb_wait); 2582 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2583 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2584 2585 rdev_for_each(rdev, mddev) { 2586 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2587 clear_bit(Blocked, &rdev->flags); 2588 2589 if (any_badblocks_changed) 2590 md_ack_all_badblocks(&rdev->badblocks); 2591 clear_bit(BlockedBadBlocks, &rdev->flags); 2592 wake_up(&rdev->blocked_wait); 2593 } 2594 } 2595 2596 /* words written to sysfs files may, or may not, be \n terminated. 2597 * We want to accept with case. For this we use cmd_match. 2598 */ 2599 static int cmd_match(const char *cmd, const char *str) 2600 { 2601 /* See if cmd, written into a sysfs file, matches 2602 * str. They must either be the same, or cmd can 2603 * have a trailing newline 2604 */ 2605 while (*cmd && *str && *cmd == *str) { 2606 cmd++; 2607 str++; 2608 } 2609 if (*cmd == '\n') 2610 cmd++; 2611 if (*str || *cmd) 2612 return 0; 2613 return 1; 2614 } 2615 2616 struct rdev_sysfs_entry { 2617 struct attribute attr; 2618 ssize_t (*show)(struct md_rdev *, char *); 2619 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2620 }; 2621 2622 static ssize_t 2623 state_show(struct md_rdev *rdev, char *page) 2624 { 2625 char *sep = ""; 2626 size_t len = 0; 2627 2628 if (test_bit(Faulty, &rdev->flags) || 2629 rdev->badblocks.unacked_exist) { 2630 len+= sprintf(page+len, "%sfaulty",sep); 2631 sep = ","; 2632 } 2633 if (test_bit(In_sync, &rdev->flags)) { 2634 len += sprintf(page+len, "%sin_sync",sep); 2635 sep = ","; 2636 } 2637 if (test_bit(WriteMostly, &rdev->flags)) { 2638 len += sprintf(page+len, "%swrite_mostly",sep); 2639 sep = ","; 2640 } 2641 if (test_bit(Blocked, &rdev->flags) || 2642 (rdev->badblocks.unacked_exist 2643 && !test_bit(Faulty, &rdev->flags))) { 2644 len += sprintf(page+len, "%sblocked", sep); 2645 sep = ","; 2646 } 2647 if (!test_bit(Faulty, &rdev->flags) && 2648 !test_bit(In_sync, &rdev->flags)) { 2649 len += sprintf(page+len, "%sspare", sep); 2650 sep = ","; 2651 } 2652 if (test_bit(WriteErrorSeen, &rdev->flags)) { 2653 len += sprintf(page+len, "%swrite_error", sep); 2654 sep = ","; 2655 } 2656 if (test_bit(WantReplacement, &rdev->flags)) { 2657 len += sprintf(page+len, "%swant_replacement", sep); 2658 sep = ","; 2659 } 2660 if (test_bit(Replacement, &rdev->flags)) { 2661 len += sprintf(page+len, "%sreplacement", sep); 2662 sep = ","; 2663 } 2664 2665 return len+sprintf(page+len, "\n"); 2666 } 2667 2668 static ssize_t 2669 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2670 { 2671 /* can write 2672 * faulty - simulates an error 2673 * remove - disconnects the device 2674 * writemostly - sets write_mostly 2675 * -writemostly - clears write_mostly 2676 * blocked - sets the Blocked flags 2677 * -blocked - clears the Blocked and possibly simulates an error 2678 * insync - sets Insync providing device isn't active 2679 * write_error - sets WriteErrorSeen 2680 * -write_error - clears WriteErrorSeen 2681 */ 2682 int err = -EINVAL; 2683 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2684 md_error(rdev->mddev, rdev); 2685 if (test_bit(Faulty, &rdev->flags)) 2686 err = 0; 2687 else 2688 err = -EBUSY; 2689 } else if (cmd_match(buf, "remove")) { 2690 if (rdev->raid_disk >= 0) 2691 err = -EBUSY; 2692 else { 2693 struct mddev *mddev = rdev->mddev; 2694 kick_rdev_from_array(rdev); 2695 if (mddev->pers) 2696 md_update_sb(mddev, 1); 2697 md_new_event(mddev); 2698 err = 0; 2699 } 2700 } else if (cmd_match(buf, "writemostly")) { 2701 set_bit(WriteMostly, &rdev->flags); 2702 err = 0; 2703 } else if (cmd_match(buf, "-writemostly")) { 2704 clear_bit(WriteMostly, &rdev->flags); 2705 err = 0; 2706 } else if (cmd_match(buf, "blocked")) { 2707 set_bit(Blocked, &rdev->flags); 2708 err = 0; 2709 } else if (cmd_match(buf, "-blocked")) { 2710 if (!test_bit(Faulty, &rdev->flags) && 2711 rdev->badblocks.unacked_exist) { 2712 /* metadata handler doesn't understand badblocks, 2713 * so we need to fail the device 2714 */ 2715 md_error(rdev->mddev, rdev); 2716 } 2717 clear_bit(Blocked, &rdev->flags); 2718 clear_bit(BlockedBadBlocks, &rdev->flags); 2719 wake_up(&rdev->blocked_wait); 2720 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2721 md_wakeup_thread(rdev->mddev->thread); 2722 2723 err = 0; 2724 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2725 set_bit(In_sync, &rdev->flags); 2726 err = 0; 2727 } else if (cmd_match(buf, "write_error")) { 2728 set_bit(WriteErrorSeen, &rdev->flags); 2729 err = 0; 2730 } else if (cmd_match(buf, "-write_error")) { 2731 clear_bit(WriteErrorSeen, &rdev->flags); 2732 err = 0; 2733 } else if (cmd_match(buf, "want_replacement")) { 2734 /* Any non-spare device that is not a replacement can 2735 * become want_replacement at any time, but we then need to 2736 * check if recovery is needed. 2737 */ 2738 if (rdev->raid_disk >= 0 && 2739 !test_bit(Replacement, &rdev->flags)) 2740 set_bit(WantReplacement, &rdev->flags); 2741 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2742 md_wakeup_thread(rdev->mddev->thread); 2743 err = 0; 2744 } else if (cmd_match(buf, "-want_replacement")) { 2745 /* Clearing 'want_replacement' is always allowed. 2746 * Once replacements starts it is too late though. 2747 */ 2748 err = 0; 2749 clear_bit(WantReplacement, &rdev->flags); 2750 } else if (cmd_match(buf, "replacement")) { 2751 /* Can only set a device as a replacement when array has not 2752 * yet been started. Once running, replacement is automatic 2753 * from spares, or by assigning 'slot'. 2754 */ 2755 if (rdev->mddev->pers) 2756 err = -EBUSY; 2757 else { 2758 set_bit(Replacement, &rdev->flags); 2759 err = 0; 2760 } 2761 } else if (cmd_match(buf, "-replacement")) { 2762 /* Similarly, can only clear Replacement before start */ 2763 if (rdev->mddev->pers) 2764 err = -EBUSY; 2765 else { 2766 clear_bit(Replacement, &rdev->flags); 2767 err = 0; 2768 } 2769 } 2770 if (!err) 2771 sysfs_notify_dirent_safe(rdev->sysfs_state); 2772 return err ? err : len; 2773 } 2774 static struct rdev_sysfs_entry rdev_state = 2775 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2776 2777 static ssize_t 2778 errors_show(struct md_rdev *rdev, char *page) 2779 { 2780 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2781 } 2782 2783 static ssize_t 2784 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2785 { 2786 char *e; 2787 unsigned long n = simple_strtoul(buf, &e, 10); 2788 if (*buf && (*e == 0 || *e == '\n')) { 2789 atomic_set(&rdev->corrected_errors, n); 2790 return len; 2791 } 2792 return -EINVAL; 2793 } 2794 static struct rdev_sysfs_entry rdev_errors = 2795 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2796 2797 static ssize_t 2798 slot_show(struct md_rdev *rdev, char *page) 2799 { 2800 if (rdev->raid_disk < 0) 2801 return sprintf(page, "none\n"); 2802 else 2803 return sprintf(page, "%d\n", rdev->raid_disk); 2804 } 2805 2806 static ssize_t 2807 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2808 { 2809 char *e; 2810 int err; 2811 int slot = simple_strtoul(buf, &e, 10); 2812 if (strncmp(buf, "none", 4)==0) 2813 slot = -1; 2814 else if (e==buf || (*e && *e!= '\n')) 2815 return -EINVAL; 2816 if (rdev->mddev->pers && slot == -1) { 2817 /* Setting 'slot' on an active array requires also 2818 * updating the 'rd%d' link, and communicating 2819 * with the personality with ->hot_*_disk. 2820 * For now we only support removing 2821 * failed/spare devices. This normally happens automatically, 2822 * but not when the metadata is externally managed. 2823 */ 2824 if (rdev->raid_disk == -1) 2825 return -EEXIST; 2826 /* personality does all needed checks */ 2827 if (rdev->mddev->pers->hot_remove_disk == NULL) 2828 return -EINVAL; 2829 err = rdev->mddev->pers-> 2830 hot_remove_disk(rdev->mddev, rdev); 2831 if (err) 2832 return err; 2833 sysfs_unlink_rdev(rdev->mddev, rdev); 2834 rdev->raid_disk = -1; 2835 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2836 md_wakeup_thread(rdev->mddev->thread); 2837 } else if (rdev->mddev->pers) { 2838 /* Activating a spare .. or possibly reactivating 2839 * if we ever get bitmaps working here. 2840 */ 2841 2842 if (rdev->raid_disk != -1) 2843 return -EBUSY; 2844 2845 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2846 return -EBUSY; 2847 2848 if (rdev->mddev->pers->hot_add_disk == NULL) 2849 return -EINVAL; 2850 2851 if (slot >= rdev->mddev->raid_disks && 2852 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2853 return -ENOSPC; 2854 2855 rdev->raid_disk = slot; 2856 if (test_bit(In_sync, &rdev->flags)) 2857 rdev->saved_raid_disk = slot; 2858 else 2859 rdev->saved_raid_disk = -1; 2860 clear_bit(In_sync, &rdev->flags); 2861 err = rdev->mddev->pers-> 2862 hot_add_disk(rdev->mddev, rdev); 2863 if (err) { 2864 rdev->raid_disk = -1; 2865 return err; 2866 } else 2867 sysfs_notify_dirent_safe(rdev->sysfs_state); 2868 if (sysfs_link_rdev(rdev->mddev, rdev)) 2869 /* failure here is OK */; 2870 /* don't wakeup anyone, leave that to userspace. */ 2871 } else { 2872 if (slot >= rdev->mddev->raid_disks && 2873 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2874 return -ENOSPC; 2875 rdev->raid_disk = slot; 2876 /* assume it is working */ 2877 clear_bit(Faulty, &rdev->flags); 2878 clear_bit(WriteMostly, &rdev->flags); 2879 set_bit(In_sync, &rdev->flags); 2880 sysfs_notify_dirent_safe(rdev->sysfs_state); 2881 } 2882 return len; 2883 } 2884 2885 2886 static struct rdev_sysfs_entry rdev_slot = 2887 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2888 2889 static ssize_t 2890 offset_show(struct md_rdev *rdev, char *page) 2891 { 2892 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2893 } 2894 2895 static ssize_t 2896 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2897 { 2898 unsigned long long offset; 2899 if (strict_strtoull(buf, 10, &offset) < 0) 2900 return -EINVAL; 2901 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2902 return -EBUSY; 2903 if (rdev->sectors && rdev->mddev->external) 2904 /* Must set offset before size, so overlap checks 2905 * can be sane */ 2906 return -EBUSY; 2907 rdev->data_offset = offset; 2908 return len; 2909 } 2910 2911 static struct rdev_sysfs_entry rdev_offset = 2912 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2913 2914 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2915 { 2916 return sprintf(page, "%llu\n", 2917 (unsigned long long)rdev->new_data_offset); 2918 } 2919 2920 static ssize_t new_offset_store(struct md_rdev *rdev, 2921 const char *buf, size_t len) 2922 { 2923 unsigned long long new_offset; 2924 struct mddev *mddev = rdev->mddev; 2925 2926 if (strict_strtoull(buf, 10, &new_offset) < 0) 2927 return -EINVAL; 2928 2929 if (mddev->sync_thread) 2930 return -EBUSY; 2931 if (new_offset == rdev->data_offset) 2932 /* reset is always permitted */ 2933 ; 2934 else if (new_offset > rdev->data_offset) { 2935 /* must not push array size beyond rdev_sectors */ 2936 if (new_offset - rdev->data_offset 2937 + mddev->dev_sectors > rdev->sectors) 2938 return -E2BIG; 2939 } 2940 /* Metadata worries about other space details. */ 2941 2942 /* decreasing the offset is inconsistent with a backwards 2943 * reshape. 2944 */ 2945 if (new_offset < rdev->data_offset && 2946 mddev->reshape_backwards) 2947 return -EINVAL; 2948 /* Increasing offset is inconsistent with forwards 2949 * reshape. reshape_direction should be set to 2950 * 'backwards' first. 2951 */ 2952 if (new_offset > rdev->data_offset && 2953 !mddev->reshape_backwards) 2954 return -EINVAL; 2955 2956 if (mddev->pers && mddev->persistent && 2957 !super_types[mddev->major_version] 2958 .allow_new_offset(rdev, new_offset)) 2959 return -E2BIG; 2960 rdev->new_data_offset = new_offset; 2961 if (new_offset > rdev->data_offset) 2962 mddev->reshape_backwards = 1; 2963 else if (new_offset < rdev->data_offset) 2964 mddev->reshape_backwards = 0; 2965 2966 return len; 2967 } 2968 static struct rdev_sysfs_entry rdev_new_offset = 2969 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2970 2971 static ssize_t 2972 rdev_size_show(struct md_rdev *rdev, char *page) 2973 { 2974 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2975 } 2976 2977 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2978 { 2979 /* check if two start/length pairs overlap */ 2980 if (s1+l1 <= s2) 2981 return 0; 2982 if (s2+l2 <= s1) 2983 return 0; 2984 return 1; 2985 } 2986 2987 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2988 { 2989 unsigned long long blocks; 2990 sector_t new; 2991 2992 if (strict_strtoull(buf, 10, &blocks) < 0) 2993 return -EINVAL; 2994 2995 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2996 return -EINVAL; /* sector conversion overflow */ 2997 2998 new = blocks * 2; 2999 if (new != blocks * 2) 3000 return -EINVAL; /* unsigned long long to sector_t overflow */ 3001 3002 *sectors = new; 3003 return 0; 3004 } 3005 3006 static ssize_t 3007 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3008 { 3009 struct mddev *my_mddev = rdev->mddev; 3010 sector_t oldsectors = rdev->sectors; 3011 sector_t sectors; 3012 3013 if (strict_blocks_to_sectors(buf, §ors) < 0) 3014 return -EINVAL; 3015 if (rdev->data_offset != rdev->new_data_offset) 3016 return -EINVAL; /* too confusing */ 3017 if (my_mddev->pers && rdev->raid_disk >= 0) { 3018 if (my_mddev->persistent) { 3019 sectors = super_types[my_mddev->major_version]. 3020 rdev_size_change(rdev, sectors); 3021 if (!sectors) 3022 return -EBUSY; 3023 } else if (!sectors) 3024 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3025 rdev->data_offset; 3026 } 3027 if (sectors < my_mddev->dev_sectors) 3028 return -EINVAL; /* component must fit device */ 3029 3030 rdev->sectors = sectors; 3031 if (sectors > oldsectors && my_mddev->external) { 3032 /* need to check that all other rdevs with the same ->bdev 3033 * do not overlap. We need to unlock the mddev to avoid 3034 * a deadlock. We have already changed rdev->sectors, and if 3035 * we have to change it back, we will have the lock again. 3036 */ 3037 struct mddev *mddev; 3038 int overlap = 0; 3039 struct list_head *tmp; 3040 3041 mddev_unlock(my_mddev); 3042 for_each_mddev(mddev, tmp) { 3043 struct md_rdev *rdev2; 3044 3045 mddev_lock(mddev); 3046 rdev_for_each(rdev2, mddev) 3047 if (rdev->bdev == rdev2->bdev && 3048 rdev != rdev2 && 3049 overlaps(rdev->data_offset, rdev->sectors, 3050 rdev2->data_offset, 3051 rdev2->sectors)) { 3052 overlap = 1; 3053 break; 3054 } 3055 mddev_unlock(mddev); 3056 if (overlap) { 3057 mddev_put(mddev); 3058 break; 3059 } 3060 } 3061 mddev_lock(my_mddev); 3062 if (overlap) { 3063 /* Someone else could have slipped in a size 3064 * change here, but doing so is just silly. 3065 * We put oldsectors back because we *know* it is 3066 * safe, and trust userspace not to race with 3067 * itself 3068 */ 3069 rdev->sectors = oldsectors; 3070 return -EBUSY; 3071 } 3072 } 3073 return len; 3074 } 3075 3076 static struct rdev_sysfs_entry rdev_size = 3077 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3078 3079 3080 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3081 { 3082 unsigned long long recovery_start = rdev->recovery_offset; 3083 3084 if (test_bit(In_sync, &rdev->flags) || 3085 recovery_start == MaxSector) 3086 return sprintf(page, "none\n"); 3087 3088 return sprintf(page, "%llu\n", recovery_start); 3089 } 3090 3091 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3092 { 3093 unsigned long long recovery_start; 3094 3095 if (cmd_match(buf, "none")) 3096 recovery_start = MaxSector; 3097 else if (strict_strtoull(buf, 10, &recovery_start)) 3098 return -EINVAL; 3099 3100 if (rdev->mddev->pers && 3101 rdev->raid_disk >= 0) 3102 return -EBUSY; 3103 3104 rdev->recovery_offset = recovery_start; 3105 if (recovery_start == MaxSector) 3106 set_bit(In_sync, &rdev->flags); 3107 else 3108 clear_bit(In_sync, &rdev->flags); 3109 return len; 3110 } 3111 3112 static struct rdev_sysfs_entry rdev_recovery_start = 3113 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3114 3115 3116 static ssize_t 3117 badblocks_show(struct badblocks *bb, char *page, int unack); 3118 static ssize_t 3119 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 3120 3121 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3122 { 3123 return badblocks_show(&rdev->badblocks, page, 0); 3124 } 3125 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3126 { 3127 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3128 /* Maybe that ack was all we needed */ 3129 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3130 wake_up(&rdev->blocked_wait); 3131 return rv; 3132 } 3133 static struct rdev_sysfs_entry rdev_bad_blocks = 3134 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3135 3136 3137 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3138 { 3139 return badblocks_show(&rdev->badblocks, page, 1); 3140 } 3141 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3142 { 3143 return badblocks_store(&rdev->badblocks, page, len, 1); 3144 } 3145 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3146 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3147 3148 static struct attribute *rdev_default_attrs[] = { 3149 &rdev_state.attr, 3150 &rdev_errors.attr, 3151 &rdev_slot.attr, 3152 &rdev_offset.attr, 3153 &rdev_new_offset.attr, 3154 &rdev_size.attr, 3155 &rdev_recovery_start.attr, 3156 &rdev_bad_blocks.attr, 3157 &rdev_unack_bad_blocks.attr, 3158 NULL, 3159 }; 3160 static ssize_t 3161 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3162 { 3163 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3164 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3165 struct mddev *mddev = rdev->mddev; 3166 ssize_t rv; 3167 3168 if (!entry->show) 3169 return -EIO; 3170 3171 rv = mddev ? mddev_lock(mddev) : -EBUSY; 3172 if (!rv) { 3173 if (rdev->mddev == NULL) 3174 rv = -EBUSY; 3175 else 3176 rv = entry->show(rdev, page); 3177 mddev_unlock(mddev); 3178 } 3179 return rv; 3180 } 3181 3182 static ssize_t 3183 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3184 const char *page, size_t length) 3185 { 3186 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3187 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3188 ssize_t rv; 3189 struct mddev *mddev = rdev->mddev; 3190 3191 if (!entry->store) 3192 return -EIO; 3193 if (!capable(CAP_SYS_ADMIN)) 3194 return -EACCES; 3195 rv = mddev ? mddev_lock(mddev): -EBUSY; 3196 if (!rv) { 3197 if (rdev->mddev == NULL) 3198 rv = -EBUSY; 3199 else 3200 rv = entry->store(rdev, page, length); 3201 mddev_unlock(mddev); 3202 } 3203 return rv; 3204 } 3205 3206 static void rdev_free(struct kobject *ko) 3207 { 3208 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3209 kfree(rdev); 3210 } 3211 static const struct sysfs_ops rdev_sysfs_ops = { 3212 .show = rdev_attr_show, 3213 .store = rdev_attr_store, 3214 }; 3215 static struct kobj_type rdev_ktype = { 3216 .release = rdev_free, 3217 .sysfs_ops = &rdev_sysfs_ops, 3218 .default_attrs = rdev_default_attrs, 3219 }; 3220 3221 int md_rdev_init(struct md_rdev *rdev) 3222 { 3223 rdev->desc_nr = -1; 3224 rdev->saved_raid_disk = -1; 3225 rdev->raid_disk = -1; 3226 rdev->flags = 0; 3227 rdev->data_offset = 0; 3228 rdev->new_data_offset = 0; 3229 rdev->sb_events = 0; 3230 rdev->last_read_error.tv_sec = 0; 3231 rdev->last_read_error.tv_nsec = 0; 3232 rdev->sb_loaded = 0; 3233 rdev->bb_page = NULL; 3234 atomic_set(&rdev->nr_pending, 0); 3235 atomic_set(&rdev->read_errors, 0); 3236 atomic_set(&rdev->corrected_errors, 0); 3237 3238 INIT_LIST_HEAD(&rdev->same_set); 3239 init_waitqueue_head(&rdev->blocked_wait); 3240 3241 /* Add space to store bad block list. 3242 * This reserves the space even on arrays where it cannot 3243 * be used - I wonder if that matters 3244 */ 3245 rdev->badblocks.count = 0; 3246 rdev->badblocks.shift = 0; 3247 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3248 seqlock_init(&rdev->badblocks.lock); 3249 if (rdev->badblocks.page == NULL) 3250 return -ENOMEM; 3251 3252 return 0; 3253 } 3254 EXPORT_SYMBOL_GPL(md_rdev_init); 3255 /* 3256 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3257 * 3258 * mark the device faulty if: 3259 * 3260 * - the device is nonexistent (zero size) 3261 * - the device has no valid superblock 3262 * 3263 * a faulty rdev _never_ has rdev->sb set. 3264 */ 3265 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3266 { 3267 char b[BDEVNAME_SIZE]; 3268 int err; 3269 struct md_rdev *rdev; 3270 sector_t size; 3271 3272 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3273 if (!rdev) { 3274 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3275 return ERR_PTR(-ENOMEM); 3276 } 3277 3278 err = md_rdev_init(rdev); 3279 if (err) 3280 goto abort_free; 3281 err = alloc_disk_sb(rdev); 3282 if (err) 3283 goto abort_free; 3284 3285 err = lock_rdev(rdev, newdev, super_format == -2); 3286 if (err) 3287 goto abort_free; 3288 3289 kobject_init(&rdev->kobj, &rdev_ktype); 3290 3291 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3292 if (!size) { 3293 printk(KERN_WARNING 3294 "md: %s has zero or unknown size, marking faulty!\n", 3295 bdevname(rdev->bdev,b)); 3296 err = -EINVAL; 3297 goto abort_free; 3298 } 3299 3300 if (super_format >= 0) { 3301 err = super_types[super_format]. 3302 load_super(rdev, NULL, super_minor); 3303 if (err == -EINVAL) { 3304 printk(KERN_WARNING 3305 "md: %s does not have a valid v%d.%d " 3306 "superblock, not importing!\n", 3307 bdevname(rdev->bdev,b), 3308 super_format, super_minor); 3309 goto abort_free; 3310 } 3311 if (err < 0) { 3312 printk(KERN_WARNING 3313 "md: could not read %s's sb, not importing!\n", 3314 bdevname(rdev->bdev,b)); 3315 goto abort_free; 3316 } 3317 } 3318 if (super_format == -1) 3319 /* hot-add for 0.90, or non-persistent: so no badblocks */ 3320 rdev->badblocks.shift = -1; 3321 3322 return rdev; 3323 3324 abort_free: 3325 if (rdev->bdev) 3326 unlock_rdev(rdev); 3327 free_disk_sb(rdev); 3328 kfree(rdev->badblocks.page); 3329 kfree(rdev); 3330 return ERR_PTR(err); 3331 } 3332 3333 /* 3334 * Check a full RAID array for plausibility 3335 */ 3336 3337 3338 static void analyze_sbs(struct mddev * mddev) 3339 { 3340 int i; 3341 struct md_rdev *rdev, *freshest, *tmp; 3342 char b[BDEVNAME_SIZE]; 3343 3344 freshest = NULL; 3345 rdev_for_each_safe(rdev, tmp, mddev) 3346 switch (super_types[mddev->major_version]. 3347 load_super(rdev, freshest, mddev->minor_version)) { 3348 case 1: 3349 freshest = rdev; 3350 break; 3351 case 0: 3352 break; 3353 default: 3354 printk( KERN_ERR \ 3355 "md: fatal superblock inconsistency in %s" 3356 " -- removing from array\n", 3357 bdevname(rdev->bdev,b)); 3358 kick_rdev_from_array(rdev); 3359 } 3360 3361 3362 super_types[mddev->major_version]. 3363 validate_super(mddev, freshest); 3364 3365 i = 0; 3366 rdev_for_each_safe(rdev, tmp, mddev) { 3367 if (mddev->max_disks && 3368 (rdev->desc_nr >= mddev->max_disks || 3369 i > mddev->max_disks)) { 3370 printk(KERN_WARNING 3371 "md: %s: %s: only %d devices permitted\n", 3372 mdname(mddev), bdevname(rdev->bdev, b), 3373 mddev->max_disks); 3374 kick_rdev_from_array(rdev); 3375 continue; 3376 } 3377 if (rdev != freshest) 3378 if (super_types[mddev->major_version]. 3379 validate_super(mddev, rdev)) { 3380 printk(KERN_WARNING "md: kicking non-fresh %s" 3381 " from array!\n", 3382 bdevname(rdev->bdev,b)); 3383 kick_rdev_from_array(rdev); 3384 continue; 3385 } 3386 if (mddev->level == LEVEL_MULTIPATH) { 3387 rdev->desc_nr = i++; 3388 rdev->raid_disk = rdev->desc_nr; 3389 set_bit(In_sync, &rdev->flags); 3390 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3391 rdev->raid_disk = -1; 3392 clear_bit(In_sync, &rdev->flags); 3393 } 3394 } 3395 } 3396 3397 /* Read a fixed-point number. 3398 * Numbers in sysfs attributes should be in "standard" units where 3399 * possible, so time should be in seconds. 3400 * However we internally use a a much smaller unit such as 3401 * milliseconds or jiffies. 3402 * This function takes a decimal number with a possible fractional 3403 * component, and produces an integer which is the result of 3404 * multiplying that number by 10^'scale'. 3405 * all without any floating-point arithmetic. 3406 */ 3407 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3408 { 3409 unsigned long result = 0; 3410 long decimals = -1; 3411 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3412 if (*cp == '.') 3413 decimals = 0; 3414 else if (decimals < scale) { 3415 unsigned int value; 3416 value = *cp - '0'; 3417 result = result * 10 + value; 3418 if (decimals >= 0) 3419 decimals++; 3420 } 3421 cp++; 3422 } 3423 if (*cp == '\n') 3424 cp++; 3425 if (*cp) 3426 return -EINVAL; 3427 if (decimals < 0) 3428 decimals = 0; 3429 while (decimals < scale) { 3430 result *= 10; 3431 decimals ++; 3432 } 3433 *res = result; 3434 return 0; 3435 } 3436 3437 3438 static void md_safemode_timeout(unsigned long data); 3439 3440 static ssize_t 3441 safe_delay_show(struct mddev *mddev, char *page) 3442 { 3443 int msec = (mddev->safemode_delay*1000)/HZ; 3444 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3445 } 3446 static ssize_t 3447 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3448 { 3449 unsigned long msec; 3450 3451 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3452 return -EINVAL; 3453 if (msec == 0) 3454 mddev->safemode_delay = 0; 3455 else { 3456 unsigned long old_delay = mddev->safemode_delay; 3457 mddev->safemode_delay = (msec*HZ)/1000; 3458 if (mddev->safemode_delay == 0) 3459 mddev->safemode_delay = 1; 3460 if (mddev->safemode_delay < old_delay) 3461 md_safemode_timeout((unsigned long)mddev); 3462 } 3463 return len; 3464 } 3465 static struct md_sysfs_entry md_safe_delay = 3466 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3467 3468 static ssize_t 3469 level_show(struct mddev *mddev, char *page) 3470 { 3471 struct md_personality *p = mddev->pers; 3472 if (p) 3473 return sprintf(page, "%s\n", p->name); 3474 else if (mddev->clevel[0]) 3475 return sprintf(page, "%s\n", mddev->clevel); 3476 else if (mddev->level != LEVEL_NONE) 3477 return sprintf(page, "%d\n", mddev->level); 3478 else 3479 return 0; 3480 } 3481 3482 static ssize_t 3483 level_store(struct mddev *mddev, const char *buf, size_t len) 3484 { 3485 char clevel[16]; 3486 ssize_t rv = len; 3487 struct md_personality *pers; 3488 long level; 3489 void *priv; 3490 struct md_rdev *rdev; 3491 3492 if (mddev->pers == NULL) { 3493 if (len == 0) 3494 return 0; 3495 if (len >= sizeof(mddev->clevel)) 3496 return -ENOSPC; 3497 strncpy(mddev->clevel, buf, len); 3498 if (mddev->clevel[len-1] == '\n') 3499 len--; 3500 mddev->clevel[len] = 0; 3501 mddev->level = LEVEL_NONE; 3502 return rv; 3503 } 3504 3505 /* request to change the personality. Need to ensure: 3506 * - array is not engaged in resync/recovery/reshape 3507 * - old personality can be suspended 3508 * - new personality will access other array. 3509 */ 3510 3511 if (mddev->sync_thread || 3512 mddev->reshape_position != MaxSector || 3513 mddev->sysfs_active) 3514 return -EBUSY; 3515 3516 if (!mddev->pers->quiesce) { 3517 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3518 mdname(mddev), mddev->pers->name); 3519 return -EINVAL; 3520 } 3521 3522 /* Now find the new personality */ 3523 if (len == 0 || len >= sizeof(clevel)) 3524 return -EINVAL; 3525 strncpy(clevel, buf, len); 3526 if (clevel[len-1] == '\n') 3527 len--; 3528 clevel[len] = 0; 3529 if (strict_strtol(clevel, 10, &level)) 3530 level = LEVEL_NONE; 3531 3532 if (request_module("md-%s", clevel) != 0) 3533 request_module("md-level-%s", clevel); 3534 spin_lock(&pers_lock); 3535 pers = find_pers(level, clevel); 3536 if (!pers || !try_module_get(pers->owner)) { 3537 spin_unlock(&pers_lock); 3538 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3539 return -EINVAL; 3540 } 3541 spin_unlock(&pers_lock); 3542 3543 if (pers == mddev->pers) { 3544 /* Nothing to do! */ 3545 module_put(pers->owner); 3546 return rv; 3547 } 3548 if (!pers->takeover) { 3549 module_put(pers->owner); 3550 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3551 mdname(mddev), clevel); 3552 return -EINVAL; 3553 } 3554 3555 rdev_for_each(rdev, mddev) 3556 rdev->new_raid_disk = rdev->raid_disk; 3557 3558 /* ->takeover must set new_* and/or delta_disks 3559 * if it succeeds, and may set them when it fails. 3560 */ 3561 priv = pers->takeover(mddev); 3562 if (IS_ERR(priv)) { 3563 mddev->new_level = mddev->level; 3564 mddev->new_layout = mddev->layout; 3565 mddev->new_chunk_sectors = mddev->chunk_sectors; 3566 mddev->raid_disks -= mddev->delta_disks; 3567 mddev->delta_disks = 0; 3568 mddev->reshape_backwards = 0; 3569 module_put(pers->owner); 3570 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3571 mdname(mddev), clevel); 3572 return PTR_ERR(priv); 3573 } 3574 3575 /* Looks like we have a winner */ 3576 mddev_suspend(mddev); 3577 mddev->pers->stop(mddev); 3578 3579 if (mddev->pers->sync_request == NULL && 3580 pers->sync_request != NULL) { 3581 /* need to add the md_redundancy_group */ 3582 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3583 printk(KERN_WARNING 3584 "md: cannot register extra attributes for %s\n", 3585 mdname(mddev)); 3586 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3587 } 3588 if (mddev->pers->sync_request != NULL && 3589 pers->sync_request == NULL) { 3590 /* need to remove the md_redundancy_group */ 3591 if (mddev->to_remove == NULL) 3592 mddev->to_remove = &md_redundancy_group; 3593 } 3594 3595 if (mddev->pers->sync_request == NULL && 3596 mddev->external) { 3597 /* We are converting from a no-redundancy array 3598 * to a redundancy array and metadata is managed 3599 * externally so we need to be sure that writes 3600 * won't block due to a need to transition 3601 * clean->dirty 3602 * until external management is started. 3603 */ 3604 mddev->in_sync = 0; 3605 mddev->safemode_delay = 0; 3606 mddev->safemode = 0; 3607 } 3608 3609 rdev_for_each(rdev, mddev) { 3610 if (rdev->raid_disk < 0) 3611 continue; 3612 if (rdev->new_raid_disk >= mddev->raid_disks) 3613 rdev->new_raid_disk = -1; 3614 if (rdev->new_raid_disk == rdev->raid_disk) 3615 continue; 3616 sysfs_unlink_rdev(mddev, rdev); 3617 } 3618 rdev_for_each(rdev, mddev) { 3619 if (rdev->raid_disk < 0) 3620 continue; 3621 if (rdev->new_raid_disk == rdev->raid_disk) 3622 continue; 3623 rdev->raid_disk = rdev->new_raid_disk; 3624 if (rdev->raid_disk < 0) 3625 clear_bit(In_sync, &rdev->flags); 3626 else { 3627 if (sysfs_link_rdev(mddev, rdev)) 3628 printk(KERN_WARNING "md: cannot register rd%d" 3629 " for %s after level change\n", 3630 rdev->raid_disk, mdname(mddev)); 3631 } 3632 } 3633 3634 module_put(mddev->pers->owner); 3635 mddev->pers = pers; 3636 mddev->private = priv; 3637 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3638 mddev->level = mddev->new_level; 3639 mddev->layout = mddev->new_layout; 3640 mddev->chunk_sectors = mddev->new_chunk_sectors; 3641 mddev->delta_disks = 0; 3642 mddev->reshape_backwards = 0; 3643 mddev->degraded = 0; 3644 if (mddev->pers->sync_request == NULL) { 3645 /* this is now an array without redundancy, so 3646 * it must always be in_sync 3647 */ 3648 mddev->in_sync = 1; 3649 del_timer_sync(&mddev->safemode_timer); 3650 } 3651 pers->run(mddev); 3652 mddev_resume(mddev); 3653 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3654 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3655 md_wakeup_thread(mddev->thread); 3656 sysfs_notify(&mddev->kobj, NULL, "level"); 3657 md_new_event(mddev); 3658 return rv; 3659 } 3660 3661 static struct md_sysfs_entry md_level = 3662 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3663 3664 3665 static ssize_t 3666 layout_show(struct mddev *mddev, char *page) 3667 { 3668 /* just a number, not meaningful for all levels */ 3669 if (mddev->reshape_position != MaxSector && 3670 mddev->layout != mddev->new_layout) 3671 return sprintf(page, "%d (%d)\n", 3672 mddev->new_layout, mddev->layout); 3673 return sprintf(page, "%d\n", mddev->layout); 3674 } 3675 3676 static ssize_t 3677 layout_store(struct mddev *mddev, const char *buf, size_t len) 3678 { 3679 char *e; 3680 unsigned long n = simple_strtoul(buf, &e, 10); 3681 3682 if (!*buf || (*e && *e != '\n')) 3683 return -EINVAL; 3684 3685 if (mddev->pers) { 3686 int err; 3687 if (mddev->pers->check_reshape == NULL) 3688 return -EBUSY; 3689 mddev->new_layout = n; 3690 err = mddev->pers->check_reshape(mddev); 3691 if (err) { 3692 mddev->new_layout = mddev->layout; 3693 return err; 3694 } 3695 } else { 3696 mddev->new_layout = n; 3697 if (mddev->reshape_position == MaxSector) 3698 mddev->layout = n; 3699 } 3700 return len; 3701 } 3702 static struct md_sysfs_entry md_layout = 3703 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3704 3705 3706 static ssize_t 3707 raid_disks_show(struct mddev *mddev, char *page) 3708 { 3709 if (mddev->raid_disks == 0) 3710 return 0; 3711 if (mddev->reshape_position != MaxSector && 3712 mddev->delta_disks != 0) 3713 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3714 mddev->raid_disks - mddev->delta_disks); 3715 return sprintf(page, "%d\n", mddev->raid_disks); 3716 } 3717 3718 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3719 3720 static ssize_t 3721 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3722 { 3723 char *e; 3724 int rv = 0; 3725 unsigned long n = simple_strtoul(buf, &e, 10); 3726 3727 if (!*buf || (*e && *e != '\n')) 3728 return -EINVAL; 3729 3730 if (mddev->pers) 3731 rv = update_raid_disks(mddev, n); 3732 else if (mddev->reshape_position != MaxSector) { 3733 struct md_rdev *rdev; 3734 int olddisks = mddev->raid_disks - mddev->delta_disks; 3735 3736 rdev_for_each(rdev, mddev) { 3737 if (olddisks < n && 3738 rdev->data_offset < rdev->new_data_offset) 3739 return -EINVAL; 3740 if (olddisks > n && 3741 rdev->data_offset > rdev->new_data_offset) 3742 return -EINVAL; 3743 } 3744 mddev->delta_disks = n - olddisks; 3745 mddev->raid_disks = n; 3746 mddev->reshape_backwards = (mddev->delta_disks < 0); 3747 } else 3748 mddev->raid_disks = n; 3749 return rv ? rv : len; 3750 } 3751 static struct md_sysfs_entry md_raid_disks = 3752 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3753 3754 static ssize_t 3755 chunk_size_show(struct mddev *mddev, char *page) 3756 { 3757 if (mddev->reshape_position != MaxSector && 3758 mddev->chunk_sectors != mddev->new_chunk_sectors) 3759 return sprintf(page, "%d (%d)\n", 3760 mddev->new_chunk_sectors << 9, 3761 mddev->chunk_sectors << 9); 3762 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3763 } 3764 3765 static ssize_t 3766 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3767 { 3768 char *e; 3769 unsigned long n = simple_strtoul(buf, &e, 10); 3770 3771 if (!*buf || (*e && *e != '\n')) 3772 return -EINVAL; 3773 3774 if (mddev->pers) { 3775 int err; 3776 if (mddev->pers->check_reshape == NULL) 3777 return -EBUSY; 3778 mddev->new_chunk_sectors = n >> 9; 3779 err = mddev->pers->check_reshape(mddev); 3780 if (err) { 3781 mddev->new_chunk_sectors = mddev->chunk_sectors; 3782 return err; 3783 } 3784 } else { 3785 mddev->new_chunk_sectors = n >> 9; 3786 if (mddev->reshape_position == MaxSector) 3787 mddev->chunk_sectors = n >> 9; 3788 } 3789 return len; 3790 } 3791 static struct md_sysfs_entry md_chunk_size = 3792 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3793 3794 static ssize_t 3795 resync_start_show(struct mddev *mddev, char *page) 3796 { 3797 if (mddev->recovery_cp == MaxSector) 3798 return sprintf(page, "none\n"); 3799 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3800 } 3801 3802 static ssize_t 3803 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3804 { 3805 char *e; 3806 unsigned long long n = simple_strtoull(buf, &e, 10); 3807 3808 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3809 return -EBUSY; 3810 if (cmd_match(buf, "none")) 3811 n = MaxSector; 3812 else if (!*buf || (*e && *e != '\n')) 3813 return -EINVAL; 3814 3815 mddev->recovery_cp = n; 3816 return len; 3817 } 3818 static struct md_sysfs_entry md_resync_start = 3819 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3820 3821 /* 3822 * The array state can be: 3823 * 3824 * clear 3825 * No devices, no size, no level 3826 * Equivalent to STOP_ARRAY ioctl 3827 * inactive 3828 * May have some settings, but array is not active 3829 * all IO results in error 3830 * When written, doesn't tear down array, but just stops it 3831 * suspended (not supported yet) 3832 * All IO requests will block. The array can be reconfigured. 3833 * Writing this, if accepted, will block until array is quiescent 3834 * readonly 3835 * no resync can happen. no superblocks get written. 3836 * write requests fail 3837 * read-auto 3838 * like readonly, but behaves like 'clean' on a write request. 3839 * 3840 * clean - no pending writes, but otherwise active. 3841 * When written to inactive array, starts without resync 3842 * If a write request arrives then 3843 * if metadata is known, mark 'dirty' and switch to 'active'. 3844 * if not known, block and switch to write-pending 3845 * If written to an active array that has pending writes, then fails. 3846 * active 3847 * fully active: IO and resync can be happening. 3848 * When written to inactive array, starts with resync 3849 * 3850 * write-pending 3851 * clean, but writes are blocked waiting for 'active' to be written. 3852 * 3853 * active-idle 3854 * like active, but no writes have been seen for a while (100msec). 3855 * 3856 */ 3857 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3858 write_pending, active_idle, bad_word}; 3859 static char *array_states[] = { 3860 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3861 "write-pending", "active-idle", NULL }; 3862 3863 static int match_word(const char *word, char **list) 3864 { 3865 int n; 3866 for (n=0; list[n]; n++) 3867 if (cmd_match(word, list[n])) 3868 break; 3869 return n; 3870 } 3871 3872 static ssize_t 3873 array_state_show(struct mddev *mddev, char *page) 3874 { 3875 enum array_state st = inactive; 3876 3877 if (mddev->pers) 3878 switch(mddev->ro) { 3879 case 1: 3880 st = readonly; 3881 break; 3882 case 2: 3883 st = read_auto; 3884 break; 3885 case 0: 3886 if (mddev->in_sync) 3887 st = clean; 3888 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3889 st = write_pending; 3890 else if (mddev->safemode) 3891 st = active_idle; 3892 else 3893 st = active; 3894 } 3895 else { 3896 if (list_empty(&mddev->disks) && 3897 mddev->raid_disks == 0 && 3898 mddev->dev_sectors == 0) 3899 st = clear; 3900 else 3901 st = inactive; 3902 } 3903 return sprintf(page, "%s\n", array_states[st]); 3904 } 3905 3906 static int do_md_stop(struct mddev * mddev, int ro, int is_open); 3907 static int md_set_readonly(struct mddev * mddev, int is_open); 3908 static int do_md_run(struct mddev * mddev); 3909 static int restart_array(struct mddev *mddev); 3910 3911 static ssize_t 3912 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3913 { 3914 int err = -EINVAL; 3915 enum array_state st = match_word(buf, array_states); 3916 switch(st) { 3917 case bad_word: 3918 break; 3919 case clear: 3920 /* stopping an active array */ 3921 if (atomic_read(&mddev->openers) > 0) 3922 return -EBUSY; 3923 err = do_md_stop(mddev, 0, 0); 3924 break; 3925 case inactive: 3926 /* stopping an active array */ 3927 if (mddev->pers) { 3928 if (atomic_read(&mddev->openers) > 0) 3929 return -EBUSY; 3930 err = do_md_stop(mddev, 2, 0); 3931 } else 3932 err = 0; /* already inactive */ 3933 break; 3934 case suspended: 3935 break; /* not supported yet */ 3936 case readonly: 3937 if (mddev->pers) 3938 err = md_set_readonly(mddev, 0); 3939 else { 3940 mddev->ro = 1; 3941 set_disk_ro(mddev->gendisk, 1); 3942 err = do_md_run(mddev); 3943 } 3944 break; 3945 case read_auto: 3946 if (mddev->pers) { 3947 if (mddev->ro == 0) 3948 err = md_set_readonly(mddev, 0); 3949 else if (mddev->ro == 1) 3950 err = restart_array(mddev); 3951 if (err == 0) { 3952 mddev->ro = 2; 3953 set_disk_ro(mddev->gendisk, 0); 3954 } 3955 } else { 3956 mddev->ro = 2; 3957 err = do_md_run(mddev); 3958 } 3959 break; 3960 case clean: 3961 if (mddev->pers) { 3962 restart_array(mddev); 3963 spin_lock_irq(&mddev->write_lock); 3964 if (atomic_read(&mddev->writes_pending) == 0) { 3965 if (mddev->in_sync == 0) { 3966 mddev->in_sync = 1; 3967 if (mddev->safemode == 1) 3968 mddev->safemode = 0; 3969 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3970 } 3971 err = 0; 3972 } else 3973 err = -EBUSY; 3974 spin_unlock_irq(&mddev->write_lock); 3975 } else 3976 err = -EINVAL; 3977 break; 3978 case active: 3979 if (mddev->pers) { 3980 restart_array(mddev); 3981 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3982 wake_up(&mddev->sb_wait); 3983 err = 0; 3984 } else { 3985 mddev->ro = 0; 3986 set_disk_ro(mddev->gendisk, 0); 3987 err = do_md_run(mddev); 3988 } 3989 break; 3990 case write_pending: 3991 case active_idle: 3992 /* these cannot be set */ 3993 break; 3994 } 3995 if (err) 3996 return err; 3997 else { 3998 if (mddev->hold_active == UNTIL_IOCTL) 3999 mddev->hold_active = 0; 4000 sysfs_notify_dirent_safe(mddev->sysfs_state); 4001 return len; 4002 } 4003 } 4004 static struct md_sysfs_entry md_array_state = 4005 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4006 4007 static ssize_t 4008 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4009 return sprintf(page, "%d\n", 4010 atomic_read(&mddev->max_corr_read_errors)); 4011 } 4012 4013 static ssize_t 4014 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4015 { 4016 char *e; 4017 unsigned long n = simple_strtoul(buf, &e, 10); 4018 4019 if (*buf && (*e == 0 || *e == '\n')) { 4020 atomic_set(&mddev->max_corr_read_errors, n); 4021 return len; 4022 } 4023 return -EINVAL; 4024 } 4025 4026 static struct md_sysfs_entry max_corr_read_errors = 4027 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4028 max_corrected_read_errors_store); 4029 4030 static ssize_t 4031 null_show(struct mddev *mddev, char *page) 4032 { 4033 return -EINVAL; 4034 } 4035 4036 static ssize_t 4037 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4038 { 4039 /* buf must be %d:%d\n? giving major and minor numbers */ 4040 /* The new device is added to the array. 4041 * If the array has a persistent superblock, we read the 4042 * superblock to initialise info and check validity. 4043 * Otherwise, only checking done is that in bind_rdev_to_array, 4044 * which mainly checks size. 4045 */ 4046 char *e; 4047 int major = simple_strtoul(buf, &e, 10); 4048 int minor; 4049 dev_t dev; 4050 struct md_rdev *rdev; 4051 int err; 4052 4053 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4054 return -EINVAL; 4055 minor = simple_strtoul(e+1, &e, 10); 4056 if (*e && *e != '\n') 4057 return -EINVAL; 4058 dev = MKDEV(major, minor); 4059 if (major != MAJOR(dev) || 4060 minor != MINOR(dev)) 4061 return -EOVERFLOW; 4062 4063 4064 if (mddev->persistent) { 4065 rdev = md_import_device(dev, mddev->major_version, 4066 mddev->minor_version); 4067 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4068 struct md_rdev *rdev0 4069 = list_entry(mddev->disks.next, 4070 struct md_rdev, same_set); 4071 err = super_types[mddev->major_version] 4072 .load_super(rdev, rdev0, mddev->minor_version); 4073 if (err < 0) 4074 goto out; 4075 } 4076 } else if (mddev->external) 4077 rdev = md_import_device(dev, -2, -1); 4078 else 4079 rdev = md_import_device(dev, -1, -1); 4080 4081 if (IS_ERR(rdev)) 4082 return PTR_ERR(rdev); 4083 err = bind_rdev_to_array(rdev, mddev); 4084 out: 4085 if (err) 4086 export_rdev(rdev); 4087 return err ? err : len; 4088 } 4089 4090 static struct md_sysfs_entry md_new_device = 4091 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4092 4093 static ssize_t 4094 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4095 { 4096 char *end; 4097 unsigned long chunk, end_chunk; 4098 4099 if (!mddev->bitmap) 4100 goto out; 4101 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4102 while (*buf) { 4103 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4104 if (buf == end) break; 4105 if (*end == '-') { /* range */ 4106 buf = end + 1; 4107 end_chunk = simple_strtoul(buf, &end, 0); 4108 if (buf == end) break; 4109 } 4110 if (*end && !isspace(*end)) break; 4111 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4112 buf = skip_spaces(end); 4113 } 4114 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4115 out: 4116 return len; 4117 } 4118 4119 static struct md_sysfs_entry md_bitmap = 4120 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4121 4122 static ssize_t 4123 size_show(struct mddev *mddev, char *page) 4124 { 4125 return sprintf(page, "%llu\n", 4126 (unsigned long long)mddev->dev_sectors / 2); 4127 } 4128 4129 static int update_size(struct mddev *mddev, sector_t num_sectors); 4130 4131 static ssize_t 4132 size_store(struct mddev *mddev, const char *buf, size_t len) 4133 { 4134 /* If array is inactive, we can reduce the component size, but 4135 * not increase it (except from 0). 4136 * If array is active, we can try an on-line resize 4137 */ 4138 sector_t sectors; 4139 int err = strict_blocks_to_sectors(buf, §ors); 4140 4141 if (err < 0) 4142 return err; 4143 if (mddev->pers) { 4144 err = update_size(mddev, sectors); 4145 md_update_sb(mddev, 1); 4146 } else { 4147 if (mddev->dev_sectors == 0 || 4148 mddev->dev_sectors > sectors) 4149 mddev->dev_sectors = sectors; 4150 else 4151 err = -ENOSPC; 4152 } 4153 return err ? err : len; 4154 } 4155 4156 static struct md_sysfs_entry md_size = 4157 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4158 4159 4160 /* Metdata version. 4161 * This is one of 4162 * 'none' for arrays with no metadata (good luck...) 4163 * 'external' for arrays with externally managed metadata, 4164 * or N.M for internally known formats 4165 */ 4166 static ssize_t 4167 metadata_show(struct mddev *mddev, char *page) 4168 { 4169 if (mddev->persistent) 4170 return sprintf(page, "%d.%d\n", 4171 mddev->major_version, mddev->minor_version); 4172 else if (mddev->external) 4173 return sprintf(page, "external:%s\n", mddev->metadata_type); 4174 else 4175 return sprintf(page, "none\n"); 4176 } 4177 4178 static ssize_t 4179 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4180 { 4181 int major, minor; 4182 char *e; 4183 /* Changing the details of 'external' metadata is 4184 * always permitted. Otherwise there must be 4185 * no devices attached to the array. 4186 */ 4187 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4188 ; 4189 else if (!list_empty(&mddev->disks)) 4190 return -EBUSY; 4191 4192 if (cmd_match(buf, "none")) { 4193 mddev->persistent = 0; 4194 mddev->external = 0; 4195 mddev->major_version = 0; 4196 mddev->minor_version = 90; 4197 return len; 4198 } 4199 if (strncmp(buf, "external:", 9) == 0) { 4200 size_t namelen = len-9; 4201 if (namelen >= sizeof(mddev->metadata_type)) 4202 namelen = sizeof(mddev->metadata_type)-1; 4203 strncpy(mddev->metadata_type, buf+9, namelen); 4204 mddev->metadata_type[namelen] = 0; 4205 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4206 mddev->metadata_type[--namelen] = 0; 4207 mddev->persistent = 0; 4208 mddev->external = 1; 4209 mddev->major_version = 0; 4210 mddev->minor_version = 90; 4211 return len; 4212 } 4213 major = simple_strtoul(buf, &e, 10); 4214 if (e==buf || *e != '.') 4215 return -EINVAL; 4216 buf = e+1; 4217 minor = simple_strtoul(buf, &e, 10); 4218 if (e==buf || (*e && *e != '\n') ) 4219 return -EINVAL; 4220 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4221 return -ENOENT; 4222 mddev->major_version = major; 4223 mddev->minor_version = minor; 4224 mddev->persistent = 1; 4225 mddev->external = 0; 4226 return len; 4227 } 4228 4229 static struct md_sysfs_entry md_metadata = 4230 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4231 4232 static ssize_t 4233 action_show(struct mddev *mddev, char *page) 4234 { 4235 char *type = "idle"; 4236 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4237 type = "frozen"; 4238 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4239 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 4240 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4241 type = "reshape"; 4242 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4243 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 4244 type = "resync"; 4245 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 4246 type = "check"; 4247 else 4248 type = "repair"; 4249 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 4250 type = "recover"; 4251 } 4252 return sprintf(page, "%s\n", type); 4253 } 4254 4255 static void reap_sync_thread(struct mddev *mddev); 4256 4257 static ssize_t 4258 action_store(struct mddev *mddev, const char *page, size_t len) 4259 { 4260 if (!mddev->pers || !mddev->pers->sync_request) 4261 return -EINVAL; 4262 4263 if (cmd_match(page, "frozen")) 4264 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4265 else 4266 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4267 4268 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4269 if (mddev->sync_thread) { 4270 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4271 reap_sync_thread(mddev); 4272 } 4273 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4274 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4275 return -EBUSY; 4276 else if (cmd_match(page, "resync")) 4277 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4278 else if (cmd_match(page, "recover")) { 4279 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4280 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4281 } else if (cmd_match(page, "reshape")) { 4282 int err; 4283 if (mddev->pers->start_reshape == NULL) 4284 return -EINVAL; 4285 err = mddev->pers->start_reshape(mddev); 4286 if (err) 4287 return err; 4288 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4289 } else { 4290 if (cmd_match(page, "check")) 4291 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4292 else if (!cmd_match(page, "repair")) 4293 return -EINVAL; 4294 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4295 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4296 } 4297 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4298 md_wakeup_thread(mddev->thread); 4299 sysfs_notify_dirent_safe(mddev->sysfs_action); 4300 return len; 4301 } 4302 4303 static ssize_t 4304 mismatch_cnt_show(struct mddev *mddev, char *page) 4305 { 4306 return sprintf(page, "%llu\n", 4307 (unsigned long long) mddev->resync_mismatches); 4308 } 4309 4310 static struct md_sysfs_entry md_scan_mode = 4311 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4312 4313 4314 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4315 4316 static ssize_t 4317 sync_min_show(struct mddev *mddev, char *page) 4318 { 4319 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4320 mddev->sync_speed_min ? "local": "system"); 4321 } 4322 4323 static ssize_t 4324 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4325 { 4326 int min; 4327 char *e; 4328 if (strncmp(buf, "system", 6)==0) { 4329 mddev->sync_speed_min = 0; 4330 return len; 4331 } 4332 min = simple_strtoul(buf, &e, 10); 4333 if (buf == e || (*e && *e != '\n') || min <= 0) 4334 return -EINVAL; 4335 mddev->sync_speed_min = min; 4336 return len; 4337 } 4338 4339 static struct md_sysfs_entry md_sync_min = 4340 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4341 4342 static ssize_t 4343 sync_max_show(struct mddev *mddev, char *page) 4344 { 4345 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4346 mddev->sync_speed_max ? "local": "system"); 4347 } 4348 4349 static ssize_t 4350 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4351 { 4352 int max; 4353 char *e; 4354 if (strncmp(buf, "system", 6)==0) { 4355 mddev->sync_speed_max = 0; 4356 return len; 4357 } 4358 max = simple_strtoul(buf, &e, 10); 4359 if (buf == e || (*e && *e != '\n') || max <= 0) 4360 return -EINVAL; 4361 mddev->sync_speed_max = max; 4362 return len; 4363 } 4364 4365 static struct md_sysfs_entry md_sync_max = 4366 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4367 4368 static ssize_t 4369 degraded_show(struct mddev *mddev, char *page) 4370 { 4371 return sprintf(page, "%d\n", mddev->degraded); 4372 } 4373 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4374 4375 static ssize_t 4376 sync_force_parallel_show(struct mddev *mddev, char *page) 4377 { 4378 return sprintf(page, "%d\n", mddev->parallel_resync); 4379 } 4380 4381 static ssize_t 4382 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4383 { 4384 long n; 4385 4386 if (strict_strtol(buf, 10, &n)) 4387 return -EINVAL; 4388 4389 if (n != 0 && n != 1) 4390 return -EINVAL; 4391 4392 mddev->parallel_resync = n; 4393 4394 if (mddev->sync_thread) 4395 wake_up(&resync_wait); 4396 4397 return len; 4398 } 4399 4400 /* force parallel resync, even with shared block devices */ 4401 static struct md_sysfs_entry md_sync_force_parallel = 4402 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4403 sync_force_parallel_show, sync_force_parallel_store); 4404 4405 static ssize_t 4406 sync_speed_show(struct mddev *mddev, char *page) 4407 { 4408 unsigned long resync, dt, db; 4409 if (mddev->curr_resync == 0) 4410 return sprintf(page, "none\n"); 4411 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4412 dt = (jiffies - mddev->resync_mark) / HZ; 4413 if (!dt) dt++; 4414 db = resync - mddev->resync_mark_cnt; 4415 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4416 } 4417 4418 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4419 4420 static ssize_t 4421 sync_completed_show(struct mddev *mddev, char *page) 4422 { 4423 unsigned long long max_sectors, resync; 4424 4425 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4426 return sprintf(page, "none\n"); 4427 4428 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4429 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4430 max_sectors = mddev->resync_max_sectors; 4431 else 4432 max_sectors = mddev->dev_sectors; 4433 4434 resync = mddev->curr_resync_completed; 4435 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4436 } 4437 4438 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 4439 4440 static ssize_t 4441 min_sync_show(struct mddev *mddev, char *page) 4442 { 4443 return sprintf(page, "%llu\n", 4444 (unsigned long long)mddev->resync_min); 4445 } 4446 static ssize_t 4447 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4448 { 4449 unsigned long long min; 4450 if (strict_strtoull(buf, 10, &min)) 4451 return -EINVAL; 4452 if (min > mddev->resync_max) 4453 return -EINVAL; 4454 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4455 return -EBUSY; 4456 4457 /* Must be a multiple of chunk_size */ 4458 if (mddev->chunk_sectors) { 4459 sector_t temp = min; 4460 if (sector_div(temp, mddev->chunk_sectors)) 4461 return -EINVAL; 4462 } 4463 mddev->resync_min = min; 4464 4465 return len; 4466 } 4467 4468 static struct md_sysfs_entry md_min_sync = 4469 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4470 4471 static ssize_t 4472 max_sync_show(struct mddev *mddev, char *page) 4473 { 4474 if (mddev->resync_max == MaxSector) 4475 return sprintf(page, "max\n"); 4476 else 4477 return sprintf(page, "%llu\n", 4478 (unsigned long long)mddev->resync_max); 4479 } 4480 static ssize_t 4481 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4482 { 4483 if (strncmp(buf, "max", 3) == 0) 4484 mddev->resync_max = MaxSector; 4485 else { 4486 unsigned long long max; 4487 if (strict_strtoull(buf, 10, &max)) 4488 return -EINVAL; 4489 if (max < mddev->resync_min) 4490 return -EINVAL; 4491 if (max < mddev->resync_max && 4492 mddev->ro == 0 && 4493 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4494 return -EBUSY; 4495 4496 /* Must be a multiple of chunk_size */ 4497 if (mddev->chunk_sectors) { 4498 sector_t temp = max; 4499 if (sector_div(temp, mddev->chunk_sectors)) 4500 return -EINVAL; 4501 } 4502 mddev->resync_max = max; 4503 } 4504 wake_up(&mddev->recovery_wait); 4505 return len; 4506 } 4507 4508 static struct md_sysfs_entry md_max_sync = 4509 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4510 4511 static ssize_t 4512 suspend_lo_show(struct mddev *mddev, char *page) 4513 { 4514 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4515 } 4516 4517 static ssize_t 4518 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4519 { 4520 char *e; 4521 unsigned long long new = simple_strtoull(buf, &e, 10); 4522 unsigned long long old = mddev->suspend_lo; 4523 4524 if (mddev->pers == NULL || 4525 mddev->pers->quiesce == NULL) 4526 return -EINVAL; 4527 if (buf == e || (*e && *e != '\n')) 4528 return -EINVAL; 4529 4530 mddev->suspend_lo = new; 4531 if (new >= old) 4532 /* Shrinking suspended region */ 4533 mddev->pers->quiesce(mddev, 2); 4534 else { 4535 /* Expanding suspended region - need to wait */ 4536 mddev->pers->quiesce(mddev, 1); 4537 mddev->pers->quiesce(mddev, 0); 4538 } 4539 return len; 4540 } 4541 static struct md_sysfs_entry md_suspend_lo = 4542 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4543 4544 4545 static ssize_t 4546 suspend_hi_show(struct mddev *mddev, char *page) 4547 { 4548 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4549 } 4550 4551 static ssize_t 4552 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4553 { 4554 char *e; 4555 unsigned long long new = simple_strtoull(buf, &e, 10); 4556 unsigned long long old = mddev->suspend_hi; 4557 4558 if (mddev->pers == NULL || 4559 mddev->pers->quiesce == NULL) 4560 return -EINVAL; 4561 if (buf == e || (*e && *e != '\n')) 4562 return -EINVAL; 4563 4564 mddev->suspend_hi = new; 4565 if (new <= old) 4566 /* Shrinking suspended region */ 4567 mddev->pers->quiesce(mddev, 2); 4568 else { 4569 /* Expanding suspended region - need to wait */ 4570 mddev->pers->quiesce(mddev, 1); 4571 mddev->pers->quiesce(mddev, 0); 4572 } 4573 return len; 4574 } 4575 static struct md_sysfs_entry md_suspend_hi = 4576 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4577 4578 static ssize_t 4579 reshape_position_show(struct mddev *mddev, char *page) 4580 { 4581 if (mddev->reshape_position != MaxSector) 4582 return sprintf(page, "%llu\n", 4583 (unsigned long long)mddev->reshape_position); 4584 strcpy(page, "none\n"); 4585 return 5; 4586 } 4587 4588 static ssize_t 4589 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4590 { 4591 struct md_rdev *rdev; 4592 char *e; 4593 unsigned long long new = simple_strtoull(buf, &e, 10); 4594 if (mddev->pers) 4595 return -EBUSY; 4596 if (buf == e || (*e && *e != '\n')) 4597 return -EINVAL; 4598 mddev->reshape_position = new; 4599 mddev->delta_disks = 0; 4600 mddev->reshape_backwards = 0; 4601 mddev->new_level = mddev->level; 4602 mddev->new_layout = mddev->layout; 4603 mddev->new_chunk_sectors = mddev->chunk_sectors; 4604 rdev_for_each(rdev, mddev) 4605 rdev->new_data_offset = rdev->data_offset; 4606 return len; 4607 } 4608 4609 static struct md_sysfs_entry md_reshape_position = 4610 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4611 reshape_position_store); 4612 4613 static ssize_t 4614 reshape_direction_show(struct mddev *mddev, char *page) 4615 { 4616 return sprintf(page, "%s\n", 4617 mddev->reshape_backwards ? "backwards" : "forwards"); 4618 } 4619 4620 static ssize_t 4621 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4622 { 4623 int backwards = 0; 4624 if (cmd_match(buf, "forwards")) 4625 backwards = 0; 4626 else if (cmd_match(buf, "backwards")) 4627 backwards = 1; 4628 else 4629 return -EINVAL; 4630 if (mddev->reshape_backwards == backwards) 4631 return len; 4632 4633 /* check if we are allowed to change */ 4634 if (mddev->delta_disks) 4635 return -EBUSY; 4636 4637 if (mddev->persistent && 4638 mddev->major_version == 0) 4639 return -EINVAL; 4640 4641 mddev->reshape_backwards = backwards; 4642 return len; 4643 } 4644 4645 static struct md_sysfs_entry md_reshape_direction = 4646 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4647 reshape_direction_store); 4648 4649 static ssize_t 4650 array_size_show(struct mddev *mddev, char *page) 4651 { 4652 if (mddev->external_size) 4653 return sprintf(page, "%llu\n", 4654 (unsigned long long)mddev->array_sectors/2); 4655 else 4656 return sprintf(page, "default\n"); 4657 } 4658 4659 static ssize_t 4660 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4661 { 4662 sector_t sectors; 4663 4664 if (strncmp(buf, "default", 7) == 0) { 4665 if (mddev->pers) 4666 sectors = mddev->pers->size(mddev, 0, 0); 4667 else 4668 sectors = mddev->array_sectors; 4669 4670 mddev->external_size = 0; 4671 } else { 4672 if (strict_blocks_to_sectors(buf, §ors) < 0) 4673 return -EINVAL; 4674 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4675 return -E2BIG; 4676 4677 mddev->external_size = 1; 4678 } 4679 4680 mddev->array_sectors = sectors; 4681 if (mddev->pers) { 4682 set_capacity(mddev->gendisk, mddev->array_sectors); 4683 revalidate_disk(mddev->gendisk); 4684 } 4685 return len; 4686 } 4687 4688 static struct md_sysfs_entry md_array_size = 4689 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4690 array_size_store); 4691 4692 static struct attribute *md_default_attrs[] = { 4693 &md_level.attr, 4694 &md_layout.attr, 4695 &md_raid_disks.attr, 4696 &md_chunk_size.attr, 4697 &md_size.attr, 4698 &md_resync_start.attr, 4699 &md_metadata.attr, 4700 &md_new_device.attr, 4701 &md_safe_delay.attr, 4702 &md_array_state.attr, 4703 &md_reshape_position.attr, 4704 &md_reshape_direction.attr, 4705 &md_array_size.attr, 4706 &max_corr_read_errors.attr, 4707 NULL, 4708 }; 4709 4710 static struct attribute *md_redundancy_attrs[] = { 4711 &md_scan_mode.attr, 4712 &md_mismatches.attr, 4713 &md_sync_min.attr, 4714 &md_sync_max.attr, 4715 &md_sync_speed.attr, 4716 &md_sync_force_parallel.attr, 4717 &md_sync_completed.attr, 4718 &md_min_sync.attr, 4719 &md_max_sync.attr, 4720 &md_suspend_lo.attr, 4721 &md_suspend_hi.attr, 4722 &md_bitmap.attr, 4723 &md_degraded.attr, 4724 NULL, 4725 }; 4726 static struct attribute_group md_redundancy_group = { 4727 .name = NULL, 4728 .attrs = md_redundancy_attrs, 4729 }; 4730 4731 4732 static ssize_t 4733 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4734 { 4735 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4736 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4737 ssize_t rv; 4738 4739 if (!entry->show) 4740 return -EIO; 4741 spin_lock(&all_mddevs_lock); 4742 if (list_empty(&mddev->all_mddevs)) { 4743 spin_unlock(&all_mddevs_lock); 4744 return -EBUSY; 4745 } 4746 mddev_get(mddev); 4747 spin_unlock(&all_mddevs_lock); 4748 4749 rv = mddev_lock(mddev); 4750 if (!rv) { 4751 rv = entry->show(mddev, page); 4752 mddev_unlock(mddev); 4753 } 4754 mddev_put(mddev); 4755 return rv; 4756 } 4757 4758 static ssize_t 4759 md_attr_store(struct kobject *kobj, struct attribute *attr, 4760 const char *page, size_t length) 4761 { 4762 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4763 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4764 ssize_t rv; 4765 4766 if (!entry->store) 4767 return -EIO; 4768 if (!capable(CAP_SYS_ADMIN)) 4769 return -EACCES; 4770 spin_lock(&all_mddevs_lock); 4771 if (list_empty(&mddev->all_mddevs)) { 4772 spin_unlock(&all_mddevs_lock); 4773 return -EBUSY; 4774 } 4775 mddev_get(mddev); 4776 spin_unlock(&all_mddevs_lock); 4777 rv = mddev_lock(mddev); 4778 if (!rv) { 4779 rv = entry->store(mddev, page, length); 4780 mddev_unlock(mddev); 4781 } 4782 mddev_put(mddev); 4783 return rv; 4784 } 4785 4786 static void md_free(struct kobject *ko) 4787 { 4788 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4789 4790 if (mddev->sysfs_state) 4791 sysfs_put(mddev->sysfs_state); 4792 4793 if (mddev->gendisk) { 4794 del_gendisk(mddev->gendisk); 4795 put_disk(mddev->gendisk); 4796 } 4797 if (mddev->queue) 4798 blk_cleanup_queue(mddev->queue); 4799 4800 kfree(mddev); 4801 } 4802 4803 static const struct sysfs_ops md_sysfs_ops = { 4804 .show = md_attr_show, 4805 .store = md_attr_store, 4806 }; 4807 static struct kobj_type md_ktype = { 4808 .release = md_free, 4809 .sysfs_ops = &md_sysfs_ops, 4810 .default_attrs = md_default_attrs, 4811 }; 4812 4813 int mdp_major = 0; 4814 4815 static void mddev_delayed_delete(struct work_struct *ws) 4816 { 4817 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4818 4819 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4820 kobject_del(&mddev->kobj); 4821 kobject_put(&mddev->kobj); 4822 } 4823 4824 static int md_alloc(dev_t dev, char *name) 4825 { 4826 static DEFINE_MUTEX(disks_mutex); 4827 struct mddev *mddev = mddev_find(dev); 4828 struct gendisk *disk; 4829 int partitioned; 4830 int shift; 4831 int unit; 4832 int error; 4833 4834 if (!mddev) 4835 return -ENODEV; 4836 4837 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4838 shift = partitioned ? MdpMinorShift : 0; 4839 unit = MINOR(mddev->unit) >> shift; 4840 4841 /* wait for any previous instance of this device to be 4842 * completely removed (mddev_delayed_delete). 4843 */ 4844 flush_workqueue(md_misc_wq); 4845 4846 mutex_lock(&disks_mutex); 4847 error = -EEXIST; 4848 if (mddev->gendisk) 4849 goto abort; 4850 4851 if (name) { 4852 /* Need to ensure that 'name' is not a duplicate. 4853 */ 4854 struct mddev *mddev2; 4855 spin_lock(&all_mddevs_lock); 4856 4857 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4858 if (mddev2->gendisk && 4859 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4860 spin_unlock(&all_mddevs_lock); 4861 goto abort; 4862 } 4863 spin_unlock(&all_mddevs_lock); 4864 } 4865 4866 error = -ENOMEM; 4867 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4868 if (!mddev->queue) 4869 goto abort; 4870 mddev->queue->queuedata = mddev; 4871 4872 blk_queue_make_request(mddev->queue, md_make_request); 4873 blk_set_stacking_limits(&mddev->queue->limits); 4874 4875 disk = alloc_disk(1 << shift); 4876 if (!disk) { 4877 blk_cleanup_queue(mddev->queue); 4878 mddev->queue = NULL; 4879 goto abort; 4880 } 4881 disk->major = MAJOR(mddev->unit); 4882 disk->first_minor = unit << shift; 4883 if (name) 4884 strcpy(disk->disk_name, name); 4885 else if (partitioned) 4886 sprintf(disk->disk_name, "md_d%d", unit); 4887 else 4888 sprintf(disk->disk_name, "md%d", unit); 4889 disk->fops = &md_fops; 4890 disk->private_data = mddev; 4891 disk->queue = mddev->queue; 4892 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4893 /* Allow extended partitions. This makes the 4894 * 'mdp' device redundant, but we can't really 4895 * remove it now. 4896 */ 4897 disk->flags |= GENHD_FL_EXT_DEVT; 4898 mddev->gendisk = disk; 4899 /* As soon as we call add_disk(), another thread could get 4900 * through to md_open, so make sure it doesn't get too far 4901 */ 4902 mutex_lock(&mddev->open_mutex); 4903 add_disk(disk); 4904 4905 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4906 &disk_to_dev(disk)->kobj, "%s", "md"); 4907 if (error) { 4908 /* This isn't possible, but as kobject_init_and_add is marked 4909 * __must_check, we must do something with the result 4910 */ 4911 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4912 disk->disk_name); 4913 error = 0; 4914 } 4915 if (mddev->kobj.sd && 4916 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4917 printk(KERN_DEBUG "pointless warning\n"); 4918 mutex_unlock(&mddev->open_mutex); 4919 abort: 4920 mutex_unlock(&disks_mutex); 4921 if (!error && mddev->kobj.sd) { 4922 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4923 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4924 } 4925 mddev_put(mddev); 4926 return error; 4927 } 4928 4929 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4930 { 4931 md_alloc(dev, NULL); 4932 return NULL; 4933 } 4934 4935 static int add_named_array(const char *val, struct kernel_param *kp) 4936 { 4937 /* val must be "md_*" where * is not all digits. 4938 * We allocate an array with a large free minor number, and 4939 * set the name to val. val must not already be an active name. 4940 */ 4941 int len = strlen(val); 4942 char buf[DISK_NAME_LEN]; 4943 4944 while (len && val[len-1] == '\n') 4945 len--; 4946 if (len >= DISK_NAME_LEN) 4947 return -E2BIG; 4948 strlcpy(buf, val, len+1); 4949 if (strncmp(buf, "md_", 3) != 0) 4950 return -EINVAL; 4951 return md_alloc(0, buf); 4952 } 4953 4954 static void md_safemode_timeout(unsigned long data) 4955 { 4956 struct mddev *mddev = (struct mddev *) data; 4957 4958 if (!atomic_read(&mddev->writes_pending)) { 4959 mddev->safemode = 1; 4960 if (mddev->external) 4961 sysfs_notify_dirent_safe(mddev->sysfs_state); 4962 } 4963 md_wakeup_thread(mddev->thread); 4964 } 4965 4966 static int start_dirty_degraded; 4967 4968 int md_run(struct mddev *mddev) 4969 { 4970 int err; 4971 struct md_rdev *rdev; 4972 struct md_personality *pers; 4973 4974 if (list_empty(&mddev->disks)) 4975 /* cannot run an array with no devices.. */ 4976 return -EINVAL; 4977 4978 if (mddev->pers) 4979 return -EBUSY; 4980 /* Cannot run until previous stop completes properly */ 4981 if (mddev->sysfs_active) 4982 return -EBUSY; 4983 4984 /* 4985 * Analyze all RAID superblock(s) 4986 */ 4987 if (!mddev->raid_disks) { 4988 if (!mddev->persistent) 4989 return -EINVAL; 4990 analyze_sbs(mddev); 4991 } 4992 4993 if (mddev->level != LEVEL_NONE) 4994 request_module("md-level-%d", mddev->level); 4995 else if (mddev->clevel[0]) 4996 request_module("md-%s", mddev->clevel); 4997 4998 /* 4999 * Drop all container device buffers, from now on 5000 * the only valid external interface is through the md 5001 * device. 5002 */ 5003 rdev_for_each(rdev, mddev) { 5004 if (test_bit(Faulty, &rdev->flags)) 5005 continue; 5006 sync_blockdev(rdev->bdev); 5007 invalidate_bdev(rdev->bdev); 5008 5009 /* perform some consistency tests on the device. 5010 * We don't want the data to overlap the metadata, 5011 * Internal Bitmap issues have been handled elsewhere. 5012 */ 5013 if (rdev->meta_bdev) { 5014 /* Nothing to check */; 5015 } else if (rdev->data_offset < rdev->sb_start) { 5016 if (mddev->dev_sectors && 5017 rdev->data_offset + mddev->dev_sectors 5018 > rdev->sb_start) { 5019 printk("md: %s: data overlaps metadata\n", 5020 mdname(mddev)); 5021 return -EINVAL; 5022 } 5023 } else { 5024 if (rdev->sb_start + rdev->sb_size/512 5025 > rdev->data_offset) { 5026 printk("md: %s: metadata overlaps data\n", 5027 mdname(mddev)); 5028 return -EINVAL; 5029 } 5030 } 5031 sysfs_notify_dirent_safe(rdev->sysfs_state); 5032 } 5033 5034 if (mddev->bio_set == NULL) 5035 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 5036 sizeof(struct mddev *)); 5037 5038 spin_lock(&pers_lock); 5039 pers = find_pers(mddev->level, mddev->clevel); 5040 if (!pers || !try_module_get(pers->owner)) { 5041 spin_unlock(&pers_lock); 5042 if (mddev->level != LEVEL_NONE) 5043 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5044 mddev->level); 5045 else 5046 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5047 mddev->clevel); 5048 return -EINVAL; 5049 } 5050 mddev->pers = pers; 5051 spin_unlock(&pers_lock); 5052 if (mddev->level != pers->level) { 5053 mddev->level = pers->level; 5054 mddev->new_level = pers->level; 5055 } 5056 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5057 5058 if (mddev->reshape_position != MaxSector && 5059 pers->start_reshape == NULL) { 5060 /* This personality cannot handle reshaping... */ 5061 mddev->pers = NULL; 5062 module_put(pers->owner); 5063 return -EINVAL; 5064 } 5065 5066 if (pers->sync_request) { 5067 /* Warn if this is a potentially silly 5068 * configuration. 5069 */ 5070 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5071 struct md_rdev *rdev2; 5072 int warned = 0; 5073 5074 rdev_for_each(rdev, mddev) 5075 rdev_for_each(rdev2, mddev) { 5076 if (rdev < rdev2 && 5077 rdev->bdev->bd_contains == 5078 rdev2->bdev->bd_contains) { 5079 printk(KERN_WARNING 5080 "%s: WARNING: %s appears to be" 5081 " on the same physical disk as" 5082 " %s.\n", 5083 mdname(mddev), 5084 bdevname(rdev->bdev,b), 5085 bdevname(rdev2->bdev,b2)); 5086 warned = 1; 5087 } 5088 } 5089 5090 if (warned) 5091 printk(KERN_WARNING 5092 "True protection against single-disk" 5093 " failure might be compromised.\n"); 5094 } 5095 5096 mddev->recovery = 0; 5097 /* may be over-ridden by personality */ 5098 mddev->resync_max_sectors = mddev->dev_sectors; 5099 5100 mddev->ok_start_degraded = start_dirty_degraded; 5101 5102 if (start_readonly && mddev->ro == 0) 5103 mddev->ro = 2; /* read-only, but switch on first write */ 5104 5105 err = mddev->pers->run(mddev); 5106 if (err) 5107 printk(KERN_ERR "md: pers->run() failed ...\n"); 5108 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 5109 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5110 " but 'external_size' not in effect?\n", __func__); 5111 printk(KERN_ERR 5112 "md: invalid array_size %llu > default size %llu\n", 5113 (unsigned long long)mddev->array_sectors / 2, 5114 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 5115 err = -EINVAL; 5116 mddev->pers->stop(mddev); 5117 } 5118 if (err == 0 && mddev->pers->sync_request) { 5119 err = bitmap_create(mddev); 5120 if (err) { 5121 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5122 mdname(mddev), err); 5123 mddev->pers->stop(mddev); 5124 } 5125 } 5126 if (err) { 5127 module_put(mddev->pers->owner); 5128 mddev->pers = NULL; 5129 bitmap_destroy(mddev); 5130 return err; 5131 } 5132 if (mddev->pers->sync_request) { 5133 if (mddev->kobj.sd && 5134 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5135 printk(KERN_WARNING 5136 "md: cannot register extra attributes for %s\n", 5137 mdname(mddev)); 5138 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5139 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5140 mddev->ro = 0; 5141 5142 atomic_set(&mddev->writes_pending,0); 5143 atomic_set(&mddev->max_corr_read_errors, 5144 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5145 mddev->safemode = 0; 5146 mddev->safemode_timer.function = md_safemode_timeout; 5147 mddev->safemode_timer.data = (unsigned long) mddev; 5148 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5149 mddev->in_sync = 1; 5150 smp_wmb(); 5151 mddev->ready = 1; 5152 rdev_for_each(rdev, mddev) 5153 if (rdev->raid_disk >= 0) 5154 if (sysfs_link_rdev(mddev, rdev)) 5155 /* failure here is OK */; 5156 5157 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5158 5159 if (mddev->flags) 5160 md_update_sb(mddev, 0); 5161 5162 md_new_event(mddev); 5163 sysfs_notify_dirent_safe(mddev->sysfs_state); 5164 sysfs_notify_dirent_safe(mddev->sysfs_action); 5165 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5166 return 0; 5167 } 5168 EXPORT_SYMBOL_GPL(md_run); 5169 5170 static int do_md_run(struct mddev *mddev) 5171 { 5172 int err; 5173 5174 err = md_run(mddev); 5175 if (err) 5176 goto out; 5177 err = bitmap_load(mddev); 5178 if (err) { 5179 bitmap_destroy(mddev); 5180 goto out; 5181 } 5182 5183 md_wakeup_thread(mddev->thread); 5184 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5185 5186 set_capacity(mddev->gendisk, mddev->array_sectors); 5187 revalidate_disk(mddev->gendisk); 5188 mddev->changed = 1; 5189 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5190 out: 5191 return err; 5192 } 5193 5194 static int restart_array(struct mddev *mddev) 5195 { 5196 struct gendisk *disk = mddev->gendisk; 5197 5198 /* Complain if it has no devices */ 5199 if (list_empty(&mddev->disks)) 5200 return -ENXIO; 5201 if (!mddev->pers) 5202 return -EINVAL; 5203 if (!mddev->ro) 5204 return -EBUSY; 5205 mddev->safemode = 0; 5206 mddev->ro = 0; 5207 set_disk_ro(disk, 0); 5208 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5209 mdname(mddev)); 5210 /* Kick recovery or resync if necessary */ 5211 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5212 md_wakeup_thread(mddev->thread); 5213 md_wakeup_thread(mddev->sync_thread); 5214 sysfs_notify_dirent_safe(mddev->sysfs_state); 5215 return 0; 5216 } 5217 5218 /* similar to deny_write_access, but accounts for our holding a reference 5219 * to the file ourselves */ 5220 static int deny_bitmap_write_access(struct file * file) 5221 { 5222 struct inode *inode = file->f_mapping->host; 5223 5224 spin_lock(&inode->i_lock); 5225 if (atomic_read(&inode->i_writecount) > 1) { 5226 spin_unlock(&inode->i_lock); 5227 return -ETXTBSY; 5228 } 5229 atomic_set(&inode->i_writecount, -1); 5230 spin_unlock(&inode->i_lock); 5231 5232 return 0; 5233 } 5234 5235 void restore_bitmap_write_access(struct file *file) 5236 { 5237 struct inode *inode = file->f_mapping->host; 5238 5239 spin_lock(&inode->i_lock); 5240 atomic_set(&inode->i_writecount, 1); 5241 spin_unlock(&inode->i_lock); 5242 } 5243 5244 static void md_clean(struct mddev *mddev) 5245 { 5246 mddev->array_sectors = 0; 5247 mddev->external_size = 0; 5248 mddev->dev_sectors = 0; 5249 mddev->raid_disks = 0; 5250 mddev->recovery_cp = 0; 5251 mddev->resync_min = 0; 5252 mddev->resync_max = MaxSector; 5253 mddev->reshape_position = MaxSector; 5254 mddev->external = 0; 5255 mddev->persistent = 0; 5256 mddev->level = LEVEL_NONE; 5257 mddev->clevel[0] = 0; 5258 mddev->flags = 0; 5259 mddev->ro = 0; 5260 mddev->metadata_type[0] = 0; 5261 mddev->chunk_sectors = 0; 5262 mddev->ctime = mddev->utime = 0; 5263 mddev->layout = 0; 5264 mddev->max_disks = 0; 5265 mddev->events = 0; 5266 mddev->can_decrease_events = 0; 5267 mddev->delta_disks = 0; 5268 mddev->reshape_backwards = 0; 5269 mddev->new_level = LEVEL_NONE; 5270 mddev->new_layout = 0; 5271 mddev->new_chunk_sectors = 0; 5272 mddev->curr_resync = 0; 5273 mddev->resync_mismatches = 0; 5274 mddev->suspend_lo = mddev->suspend_hi = 0; 5275 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5276 mddev->recovery = 0; 5277 mddev->in_sync = 0; 5278 mddev->changed = 0; 5279 mddev->degraded = 0; 5280 mddev->safemode = 0; 5281 mddev->merge_check_needed = 0; 5282 mddev->bitmap_info.offset = 0; 5283 mddev->bitmap_info.default_offset = 0; 5284 mddev->bitmap_info.chunksize = 0; 5285 mddev->bitmap_info.daemon_sleep = 0; 5286 mddev->bitmap_info.max_write_behind = 0; 5287 } 5288 5289 static void __md_stop_writes(struct mddev *mddev) 5290 { 5291 if (mddev->sync_thread) { 5292 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5293 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5294 reap_sync_thread(mddev); 5295 } 5296 5297 del_timer_sync(&mddev->safemode_timer); 5298 5299 bitmap_flush(mddev); 5300 md_super_wait(mddev); 5301 5302 if (!mddev->in_sync || mddev->flags) { 5303 /* mark array as shutdown cleanly */ 5304 mddev->in_sync = 1; 5305 md_update_sb(mddev, 1); 5306 } 5307 } 5308 5309 void md_stop_writes(struct mddev *mddev) 5310 { 5311 mddev_lock(mddev); 5312 __md_stop_writes(mddev); 5313 mddev_unlock(mddev); 5314 } 5315 EXPORT_SYMBOL_GPL(md_stop_writes); 5316 5317 void md_stop(struct mddev *mddev) 5318 { 5319 mddev->ready = 0; 5320 mddev->pers->stop(mddev); 5321 if (mddev->pers->sync_request && mddev->to_remove == NULL) 5322 mddev->to_remove = &md_redundancy_group; 5323 module_put(mddev->pers->owner); 5324 mddev->pers = NULL; 5325 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5326 } 5327 EXPORT_SYMBOL_GPL(md_stop); 5328 5329 static int md_set_readonly(struct mddev *mddev, int is_open) 5330 { 5331 int err = 0; 5332 mutex_lock(&mddev->open_mutex); 5333 if (atomic_read(&mddev->openers) > is_open) { 5334 printk("md: %s still in use.\n",mdname(mddev)); 5335 err = -EBUSY; 5336 goto out; 5337 } 5338 if (mddev->pers) { 5339 __md_stop_writes(mddev); 5340 5341 err = -ENXIO; 5342 if (mddev->ro==1) 5343 goto out; 5344 mddev->ro = 1; 5345 set_disk_ro(mddev->gendisk, 1); 5346 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5347 sysfs_notify_dirent_safe(mddev->sysfs_state); 5348 err = 0; 5349 } 5350 out: 5351 mutex_unlock(&mddev->open_mutex); 5352 return err; 5353 } 5354 5355 /* mode: 5356 * 0 - completely stop and dis-assemble array 5357 * 2 - stop but do not disassemble array 5358 */ 5359 static int do_md_stop(struct mddev * mddev, int mode, int is_open) 5360 { 5361 struct gendisk *disk = mddev->gendisk; 5362 struct md_rdev *rdev; 5363 5364 mutex_lock(&mddev->open_mutex); 5365 if (atomic_read(&mddev->openers) > is_open || 5366 mddev->sysfs_active) { 5367 printk("md: %s still in use.\n",mdname(mddev)); 5368 mutex_unlock(&mddev->open_mutex); 5369 return -EBUSY; 5370 } 5371 5372 if (mddev->pers) { 5373 if (mddev->ro) 5374 set_disk_ro(disk, 0); 5375 5376 __md_stop_writes(mddev); 5377 md_stop(mddev); 5378 mddev->queue->merge_bvec_fn = NULL; 5379 mddev->queue->backing_dev_info.congested_fn = NULL; 5380 5381 /* tell userspace to handle 'inactive' */ 5382 sysfs_notify_dirent_safe(mddev->sysfs_state); 5383 5384 rdev_for_each(rdev, mddev) 5385 if (rdev->raid_disk >= 0) 5386 sysfs_unlink_rdev(mddev, rdev); 5387 5388 set_capacity(disk, 0); 5389 mutex_unlock(&mddev->open_mutex); 5390 mddev->changed = 1; 5391 revalidate_disk(disk); 5392 5393 if (mddev->ro) 5394 mddev->ro = 0; 5395 } else 5396 mutex_unlock(&mddev->open_mutex); 5397 /* 5398 * Free resources if final stop 5399 */ 5400 if (mode == 0) { 5401 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5402 5403 bitmap_destroy(mddev); 5404 if (mddev->bitmap_info.file) { 5405 restore_bitmap_write_access(mddev->bitmap_info.file); 5406 fput(mddev->bitmap_info.file); 5407 mddev->bitmap_info.file = NULL; 5408 } 5409 mddev->bitmap_info.offset = 0; 5410 5411 export_array(mddev); 5412 5413 md_clean(mddev); 5414 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5415 if (mddev->hold_active == UNTIL_STOP) 5416 mddev->hold_active = 0; 5417 } 5418 blk_integrity_unregister(disk); 5419 md_new_event(mddev); 5420 sysfs_notify_dirent_safe(mddev->sysfs_state); 5421 return 0; 5422 } 5423 5424 #ifndef MODULE 5425 static void autorun_array(struct mddev *mddev) 5426 { 5427 struct md_rdev *rdev; 5428 int err; 5429 5430 if (list_empty(&mddev->disks)) 5431 return; 5432 5433 printk(KERN_INFO "md: running: "); 5434 5435 rdev_for_each(rdev, mddev) { 5436 char b[BDEVNAME_SIZE]; 5437 printk("<%s>", bdevname(rdev->bdev,b)); 5438 } 5439 printk("\n"); 5440 5441 err = do_md_run(mddev); 5442 if (err) { 5443 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5444 do_md_stop(mddev, 0, 0); 5445 } 5446 } 5447 5448 /* 5449 * lets try to run arrays based on all disks that have arrived 5450 * until now. (those are in pending_raid_disks) 5451 * 5452 * the method: pick the first pending disk, collect all disks with 5453 * the same UUID, remove all from the pending list and put them into 5454 * the 'same_array' list. Then order this list based on superblock 5455 * update time (freshest comes first), kick out 'old' disks and 5456 * compare superblocks. If everything's fine then run it. 5457 * 5458 * If "unit" is allocated, then bump its reference count 5459 */ 5460 static void autorun_devices(int part) 5461 { 5462 struct md_rdev *rdev0, *rdev, *tmp; 5463 struct mddev *mddev; 5464 char b[BDEVNAME_SIZE]; 5465 5466 printk(KERN_INFO "md: autorun ...\n"); 5467 while (!list_empty(&pending_raid_disks)) { 5468 int unit; 5469 dev_t dev; 5470 LIST_HEAD(candidates); 5471 rdev0 = list_entry(pending_raid_disks.next, 5472 struct md_rdev, same_set); 5473 5474 printk(KERN_INFO "md: considering %s ...\n", 5475 bdevname(rdev0->bdev,b)); 5476 INIT_LIST_HEAD(&candidates); 5477 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5478 if (super_90_load(rdev, rdev0, 0) >= 0) { 5479 printk(KERN_INFO "md: adding %s ...\n", 5480 bdevname(rdev->bdev,b)); 5481 list_move(&rdev->same_set, &candidates); 5482 } 5483 /* 5484 * now we have a set of devices, with all of them having 5485 * mostly sane superblocks. It's time to allocate the 5486 * mddev. 5487 */ 5488 if (part) { 5489 dev = MKDEV(mdp_major, 5490 rdev0->preferred_minor << MdpMinorShift); 5491 unit = MINOR(dev) >> MdpMinorShift; 5492 } else { 5493 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5494 unit = MINOR(dev); 5495 } 5496 if (rdev0->preferred_minor != unit) { 5497 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5498 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5499 break; 5500 } 5501 5502 md_probe(dev, NULL, NULL); 5503 mddev = mddev_find(dev); 5504 if (!mddev || !mddev->gendisk) { 5505 if (mddev) 5506 mddev_put(mddev); 5507 printk(KERN_ERR 5508 "md: cannot allocate memory for md drive.\n"); 5509 break; 5510 } 5511 if (mddev_lock(mddev)) 5512 printk(KERN_WARNING "md: %s locked, cannot run\n", 5513 mdname(mddev)); 5514 else if (mddev->raid_disks || mddev->major_version 5515 || !list_empty(&mddev->disks)) { 5516 printk(KERN_WARNING 5517 "md: %s already running, cannot run %s\n", 5518 mdname(mddev), bdevname(rdev0->bdev,b)); 5519 mddev_unlock(mddev); 5520 } else { 5521 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5522 mddev->persistent = 1; 5523 rdev_for_each_list(rdev, tmp, &candidates) { 5524 list_del_init(&rdev->same_set); 5525 if (bind_rdev_to_array(rdev, mddev)) 5526 export_rdev(rdev); 5527 } 5528 autorun_array(mddev); 5529 mddev_unlock(mddev); 5530 } 5531 /* on success, candidates will be empty, on error 5532 * it won't... 5533 */ 5534 rdev_for_each_list(rdev, tmp, &candidates) { 5535 list_del_init(&rdev->same_set); 5536 export_rdev(rdev); 5537 } 5538 mddev_put(mddev); 5539 } 5540 printk(KERN_INFO "md: ... autorun DONE.\n"); 5541 } 5542 #endif /* !MODULE */ 5543 5544 static int get_version(void __user * arg) 5545 { 5546 mdu_version_t ver; 5547 5548 ver.major = MD_MAJOR_VERSION; 5549 ver.minor = MD_MINOR_VERSION; 5550 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5551 5552 if (copy_to_user(arg, &ver, sizeof(ver))) 5553 return -EFAULT; 5554 5555 return 0; 5556 } 5557 5558 static int get_array_info(struct mddev * mddev, void __user * arg) 5559 { 5560 mdu_array_info_t info; 5561 int nr,working,insync,failed,spare; 5562 struct md_rdev *rdev; 5563 5564 nr=working=insync=failed=spare=0; 5565 rdev_for_each(rdev, mddev) { 5566 nr++; 5567 if (test_bit(Faulty, &rdev->flags)) 5568 failed++; 5569 else { 5570 working++; 5571 if (test_bit(In_sync, &rdev->flags)) 5572 insync++; 5573 else 5574 spare++; 5575 } 5576 } 5577 5578 info.major_version = mddev->major_version; 5579 info.minor_version = mddev->minor_version; 5580 info.patch_version = MD_PATCHLEVEL_VERSION; 5581 info.ctime = mddev->ctime; 5582 info.level = mddev->level; 5583 info.size = mddev->dev_sectors / 2; 5584 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5585 info.size = -1; 5586 info.nr_disks = nr; 5587 info.raid_disks = mddev->raid_disks; 5588 info.md_minor = mddev->md_minor; 5589 info.not_persistent= !mddev->persistent; 5590 5591 info.utime = mddev->utime; 5592 info.state = 0; 5593 if (mddev->in_sync) 5594 info.state = (1<<MD_SB_CLEAN); 5595 if (mddev->bitmap && mddev->bitmap_info.offset) 5596 info.state = (1<<MD_SB_BITMAP_PRESENT); 5597 info.active_disks = insync; 5598 info.working_disks = working; 5599 info.failed_disks = failed; 5600 info.spare_disks = spare; 5601 5602 info.layout = mddev->layout; 5603 info.chunk_size = mddev->chunk_sectors << 9; 5604 5605 if (copy_to_user(arg, &info, sizeof(info))) 5606 return -EFAULT; 5607 5608 return 0; 5609 } 5610 5611 static int get_bitmap_file(struct mddev * mddev, void __user * arg) 5612 { 5613 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5614 char *ptr, *buf = NULL; 5615 int err = -ENOMEM; 5616 5617 if (md_allow_write(mddev)) 5618 file = kmalloc(sizeof(*file), GFP_NOIO); 5619 else 5620 file = kmalloc(sizeof(*file), GFP_KERNEL); 5621 5622 if (!file) 5623 goto out; 5624 5625 /* bitmap disabled, zero the first byte and copy out */ 5626 if (!mddev->bitmap || !mddev->bitmap->file) { 5627 file->pathname[0] = '\0'; 5628 goto copy_out; 5629 } 5630 5631 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5632 if (!buf) 5633 goto out; 5634 5635 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); 5636 if (IS_ERR(ptr)) 5637 goto out; 5638 5639 strcpy(file->pathname, ptr); 5640 5641 copy_out: 5642 err = 0; 5643 if (copy_to_user(arg, file, sizeof(*file))) 5644 err = -EFAULT; 5645 out: 5646 kfree(buf); 5647 kfree(file); 5648 return err; 5649 } 5650 5651 static int get_disk_info(struct mddev * mddev, void __user * arg) 5652 { 5653 mdu_disk_info_t info; 5654 struct md_rdev *rdev; 5655 5656 if (copy_from_user(&info, arg, sizeof(info))) 5657 return -EFAULT; 5658 5659 rdev = find_rdev_nr(mddev, info.number); 5660 if (rdev) { 5661 info.major = MAJOR(rdev->bdev->bd_dev); 5662 info.minor = MINOR(rdev->bdev->bd_dev); 5663 info.raid_disk = rdev->raid_disk; 5664 info.state = 0; 5665 if (test_bit(Faulty, &rdev->flags)) 5666 info.state |= (1<<MD_DISK_FAULTY); 5667 else if (test_bit(In_sync, &rdev->flags)) { 5668 info.state |= (1<<MD_DISK_ACTIVE); 5669 info.state |= (1<<MD_DISK_SYNC); 5670 } 5671 if (test_bit(WriteMostly, &rdev->flags)) 5672 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5673 } else { 5674 info.major = info.minor = 0; 5675 info.raid_disk = -1; 5676 info.state = (1<<MD_DISK_REMOVED); 5677 } 5678 5679 if (copy_to_user(arg, &info, sizeof(info))) 5680 return -EFAULT; 5681 5682 return 0; 5683 } 5684 5685 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) 5686 { 5687 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5688 struct md_rdev *rdev; 5689 dev_t dev = MKDEV(info->major,info->minor); 5690 5691 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5692 return -EOVERFLOW; 5693 5694 if (!mddev->raid_disks) { 5695 int err; 5696 /* expecting a device which has a superblock */ 5697 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5698 if (IS_ERR(rdev)) { 5699 printk(KERN_WARNING 5700 "md: md_import_device returned %ld\n", 5701 PTR_ERR(rdev)); 5702 return PTR_ERR(rdev); 5703 } 5704 if (!list_empty(&mddev->disks)) { 5705 struct md_rdev *rdev0 5706 = list_entry(mddev->disks.next, 5707 struct md_rdev, same_set); 5708 err = super_types[mddev->major_version] 5709 .load_super(rdev, rdev0, mddev->minor_version); 5710 if (err < 0) { 5711 printk(KERN_WARNING 5712 "md: %s has different UUID to %s\n", 5713 bdevname(rdev->bdev,b), 5714 bdevname(rdev0->bdev,b2)); 5715 export_rdev(rdev); 5716 return -EINVAL; 5717 } 5718 } 5719 err = bind_rdev_to_array(rdev, mddev); 5720 if (err) 5721 export_rdev(rdev); 5722 return err; 5723 } 5724 5725 /* 5726 * add_new_disk can be used once the array is assembled 5727 * to add "hot spares". They must already have a superblock 5728 * written 5729 */ 5730 if (mddev->pers) { 5731 int err; 5732 if (!mddev->pers->hot_add_disk) { 5733 printk(KERN_WARNING 5734 "%s: personality does not support diskops!\n", 5735 mdname(mddev)); 5736 return -EINVAL; 5737 } 5738 if (mddev->persistent) 5739 rdev = md_import_device(dev, mddev->major_version, 5740 mddev->minor_version); 5741 else 5742 rdev = md_import_device(dev, -1, -1); 5743 if (IS_ERR(rdev)) { 5744 printk(KERN_WARNING 5745 "md: md_import_device returned %ld\n", 5746 PTR_ERR(rdev)); 5747 return PTR_ERR(rdev); 5748 } 5749 /* set saved_raid_disk if appropriate */ 5750 if (!mddev->persistent) { 5751 if (info->state & (1<<MD_DISK_SYNC) && 5752 info->raid_disk < mddev->raid_disks) { 5753 rdev->raid_disk = info->raid_disk; 5754 set_bit(In_sync, &rdev->flags); 5755 } else 5756 rdev->raid_disk = -1; 5757 } else 5758 super_types[mddev->major_version]. 5759 validate_super(mddev, rdev); 5760 if ((info->state & (1<<MD_DISK_SYNC)) && 5761 (!test_bit(In_sync, &rdev->flags) || 5762 rdev->raid_disk != info->raid_disk)) { 5763 /* This was a hot-add request, but events doesn't 5764 * match, so reject it. 5765 */ 5766 export_rdev(rdev); 5767 return -EINVAL; 5768 } 5769 5770 if (test_bit(In_sync, &rdev->flags)) 5771 rdev->saved_raid_disk = rdev->raid_disk; 5772 else 5773 rdev->saved_raid_disk = -1; 5774 5775 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5776 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5777 set_bit(WriteMostly, &rdev->flags); 5778 else 5779 clear_bit(WriteMostly, &rdev->flags); 5780 5781 rdev->raid_disk = -1; 5782 err = bind_rdev_to_array(rdev, mddev); 5783 if (!err && !mddev->pers->hot_remove_disk) { 5784 /* If there is hot_add_disk but no hot_remove_disk 5785 * then added disks for geometry changes, 5786 * and should be added immediately. 5787 */ 5788 super_types[mddev->major_version]. 5789 validate_super(mddev, rdev); 5790 err = mddev->pers->hot_add_disk(mddev, rdev); 5791 if (err) 5792 unbind_rdev_from_array(rdev); 5793 } 5794 if (err) 5795 export_rdev(rdev); 5796 else 5797 sysfs_notify_dirent_safe(rdev->sysfs_state); 5798 5799 md_update_sb(mddev, 1); 5800 if (mddev->degraded) 5801 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5802 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5803 if (!err) 5804 md_new_event(mddev); 5805 md_wakeup_thread(mddev->thread); 5806 return err; 5807 } 5808 5809 /* otherwise, add_new_disk is only allowed 5810 * for major_version==0 superblocks 5811 */ 5812 if (mddev->major_version != 0) { 5813 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5814 mdname(mddev)); 5815 return -EINVAL; 5816 } 5817 5818 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5819 int err; 5820 rdev = md_import_device(dev, -1, 0); 5821 if (IS_ERR(rdev)) { 5822 printk(KERN_WARNING 5823 "md: error, md_import_device() returned %ld\n", 5824 PTR_ERR(rdev)); 5825 return PTR_ERR(rdev); 5826 } 5827 rdev->desc_nr = info->number; 5828 if (info->raid_disk < mddev->raid_disks) 5829 rdev->raid_disk = info->raid_disk; 5830 else 5831 rdev->raid_disk = -1; 5832 5833 if (rdev->raid_disk < mddev->raid_disks) 5834 if (info->state & (1<<MD_DISK_SYNC)) 5835 set_bit(In_sync, &rdev->flags); 5836 5837 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5838 set_bit(WriteMostly, &rdev->flags); 5839 5840 if (!mddev->persistent) { 5841 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5842 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5843 } else 5844 rdev->sb_start = calc_dev_sboffset(rdev); 5845 rdev->sectors = rdev->sb_start; 5846 5847 err = bind_rdev_to_array(rdev, mddev); 5848 if (err) { 5849 export_rdev(rdev); 5850 return err; 5851 } 5852 } 5853 5854 return 0; 5855 } 5856 5857 static int hot_remove_disk(struct mddev * mddev, dev_t dev) 5858 { 5859 char b[BDEVNAME_SIZE]; 5860 struct md_rdev *rdev; 5861 5862 rdev = find_rdev(mddev, dev); 5863 if (!rdev) 5864 return -ENXIO; 5865 5866 if (rdev->raid_disk >= 0) 5867 goto busy; 5868 5869 kick_rdev_from_array(rdev); 5870 md_update_sb(mddev, 1); 5871 md_new_event(mddev); 5872 5873 return 0; 5874 busy: 5875 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5876 bdevname(rdev->bdev,b), mdname(mddev)); 5877 return -EBUSY; 5878 } 5879 5880 static int hot_add_disk(struct mddev * mddev, dev_t dev) 5881 { 5882 char b[BDEVNAME_SIZE]; 5883 int err; 5884 struct md_rdev *rdev; 5885 5886 if (!mddev->pers) 5887 return -ENODEV; 5888 5889 if (mddev->major_version != 0) { 5890 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5891 " version-0 superblocks.\n", 5892 mdname(mddev)); 5893 return -EINVAL; 5894 } 5895 if (!mddev->pers->hot_add_disk) { 5896 printk(KERN_WARNING 5897 "%s: personality does not support diskops!\n", 5898 mdname(mddev)); 5899 return -EINVAL; 5900 } 5901 5902 rdev = md_import_device(dev, -1, 0); 5903 if (IS_ERR(rdev)) { 5904 printk(KERN_WARNING 5905 "md: error, md_import_device() returned %ld\n", 5906 PTR_ERR(rdev)); 5907 return -EINVAL; 5908 } 5909 5910 if (mddev->persistent) 5911 rdev->sb_start = calc_dev_sboffset(rdev); 5912 else 5913 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5914 5915 rdev->sectors = rdev->sb_start; 5916 5917 if (test_bit(Faulty, &rdev->flags)) { 5918 printk(KERN_WARNING 5919 "md: can not hot-add faulty %s disk to %s!\n", 5920 bdevname(rdev->bdev,b), mdname(mddev)); 5921 err = -EINVAL; 5922 goto abort_export; 5923 } 5924 clear_bit(In_sync, &rdev->flags); 5925 rdev->desc_nr = -1; 5926 rdev->saved_raid_disk = -1; 5927 err = bind_rdev_to_array(rdev, mddev); 5928 if (err) 5929 goto abort_export; 5930 5931 /* 5932 * The rest should better be atomic, we can have disk failures 5933 * noticed in interrupt contexts ... 5934 */ 5935 5936 rdev->raid_disk = -1; 5937 5938 md_update_sb(mddev, 1); 5939 5940 /* 5941 * Kick recovery, maybe this spare has to be added to the 5942 * array immediately. 5943 */ 5944 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5945 md_wakeup_thread(mddev->thread); 5946 md_new_event(mddev); 5947 return 0; 5948 5949 abort_export: 5950 export_rdev(rdev); 5951 return err; 5952 } 5953 5954 static int set_bitmap_file(struct mddev *mddev, int fd) 5955 { 5956 int err; 5957 5958 if (mddev->pers) { 5959 if (!mddev->pers->quiesce) 5960 return -EBUSY; 5961 if (mddev->recovery || mddev->sync_thread) 5962 return -EBUSY; 5963 /* we should be able to change the bitmap.. */ 5964 } 5965 5966 5967 if (fd >= 0) { 5968 if (mddev->bitmap) 5969 return -EEXIST; /* cannot add when bitmap is present */ 5970 mddev->bitmap_info.file = fget(fd); 5971 5972 if (mddev->bitmap_info.file == NULL) { 5973 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5974 mdname(mddev)); 5975 return -EBADF; 5976 } 5977 5978 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5979 if (err) { 5980 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5981 mdname(mddev)); 5982 fput(mddev->bitmap_info.file); 5983 mddev->bitmap_info.file = NULL; 5984 return err; 5985 } 5986 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5987 } else if (mddev->bitmap == NULL) 5988 return -ENOENT; /* cannot remove what isn't there */ 5989 err = 0; 5990 if (mddev->pers) { 5991 mddev->pers->quiesce(mddev, 1); 5992 if (fd >= 0) { 5993 err = bitmap_create(mddev); 5994 if (!err) 5995 err = bitmap_load(mddev); 5996 } 5997 if (fd < 0 || err) { 5998 bitmap_destroy(mddev); 5999 fd = -1; /* make sure to put the file */ 6000 } 6001 mddev->pers->quiesce(mddev, 0); 6002 } 6003 if (fd < 0) { 6004 if (mddev->bitmap_info.file) { 6005 restore_bitmap_write_access(mddev->bitmap_info.file); 6006 fput(mddev->bitmap_info.file); 6007 } 6008 mddev->bitmap_info.file = NULL; 6009 } 6010 6011 return err; 6012 } 6013 6014 /* 6015 * set_array_info is used two different ways 6016 * The original usage is when creating a new array. 6017 * In this usage, raid_disks is > 0 and it together with 6018 * level, size, not_persistent,layout,chunksize determine the 6019 * shape of the array. 6020 * This will always create an array with a type-0.90.0 superblock. 6021 * The newer usage is when assembling an array. 6022 * In this case raid_disks will be 0, and the major_version field is 6023 * use to determine which style super-blocks are to be found on the devices. 6024 * The minor and patch _version numbers are also kept incase the 6025 * super_block handler wishes to interpret them. 6026 */ 6027 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info) 6028 { 6029 6030 if (info->raid_disks == 0) { 6031 /* just setting version number for superblock loading */ 6032 if (info->major_version < 0 || 6033 info->major_version >= ARRAY_SIZE(super_types) || 6034 super_types[info->major_version].name == NULL) { 6035 /* maybe try to auto-load a module? */ 6036 printk(KERN_INFO 6037 "md: superblock version %d not known\n", 6038 info->major_version); 6039 return -EINVAL; 6040 } 6041 mddev->major_version = info->major_version; 6042 mddev->minor_version = info->minor_version; 6043 mddev->patch_version = info->patch_version; 6044 mddev->persistent = !info->not_persistent; 6045 /* ensure mddev_put doesn't delete this now that there 6046 * is some minimal configuration. 6047 */ 6048 mddev->ctime = get_seconds(); 6049 return 0; 6050 } 6051 mddev->major_version = MD_MAJOR_VERSION; 6052 mddev->minor_version = MD_MINOR_VERSION; 6053 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6054 mddev->ctime = get_seconds(); 6055 6056 mddev->level = info->level; 6057 mddev->clevel[0] = 0; 6058 mddev->dev_sectors = 2 * (sector_t)info->size; 6059 mddev->raid_disks = info->raid_disks; 6060 /* don't set md_minor, it is determined by which /dev/md* was 6061 * openned 6062 */ 6063 if (info->state & (1<<MD_SB_CLEAN)) 6064 mddev->recovery_cp = MaxSector; 6065 else 6066 mddev->recovery_cp = 0; 6067 mddev->persistent = ! info->not_persistent; 6068 mddev->external = 0; 6069 6070 mddev->layout = info->layout; 6071 mddev->chunk_sectors = info->chunk_size >> 9; 6072 6073 mddev->max_disks = MD_SB_DISKS; 6074 6075 if (mddev->persistent) 6076 mddev->flags = 0; 6077 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6078 6079 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6080 mddev->bitmap_info.offset = 0; 6081 6082 mddev->reshape_position = MaxSector; 6083 6084 /* 6085 * Generate a 128 bit UUID 6086 */ 6087 get_random_bytes(mddev->uuid, 16); 6088 6089 mddev->new_level = mddev->level; 6090 mddev->new_chunk_sectors = mddev->chunk_sectors; 6091 mddev->new_layout = mddev->layout; 6092 mddev->delta_disks = 0; 6093 mddev->reshape_backwards = 0; 6094 6095 return 0; 6096 } 6097 6098 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6099 { 6100 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6101 6102 if (mddev->external_size) 6103 return; 6104 6105 mddev->array_sectors = array_sectors; 6106 } 6107 EXPORT_SYMBOL(md_set_array_sectors); 6108 6109 static int update_size(struct mddev *mddev, sector_t num_sectors) 6110 { 6111 struct md_rdev *rdev; 6112 int rv; 6113 int fit = (num_sectors == 0); 6114 6115 if (mddev->pers->resize == NULL) 6116 return -EINVAL; 6117 /* The "num_sectors" is the number of sectors of each device that 6118 * is used. This can only make sense for arrays with redundancy. 6119 * linear and raid0 always use whatever space is available. We can only 6120 * consider changing this number if no resync or reconstruction is 6121 * happening, and if the new size is acceptable. It must fit before the 6122 * sb_start or, if that is <data_offset, it must fit before the size 6123 * of each device. If num_sectors is zero, we find the largest size 6124 * that fits. 6125 */ 6126 if (mddev->sync_thread) 6127 return -EBUSY; 6128 if (mddev->bitmap) 6129 /* Sorry, cannot grow a bitmap yet, just remove it, 6130 * grow, and re-add. 6131 */ 6132 return -EBUSY; 6133 rdev_for_each(rdev, mddev) { 6134 sector_t avail = rdev->sectors; 6135 6136 if (fit && (num_sectors == 0 || num_sectors > avail)) 6137 num_sectors = avail; 6138 if (avail < num_sectors) 6139 return -ENOSPC; 6140 } 6141 rv = mddev->pers->resize(mddev, num_sectors); 6142 if (!rv) 6143 revalidate_disk(mddev->gendisk); 6144 return rv; 6145 } 6146 6147 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6148 { 6149 int rv; 6150 struct md_rdev *rdev; 6151 /* change the number of raid disks */ 6152 if (mddev->pers->check_reshape == NULL) 6153 return -EINVAL; 6154 if (raid_disks <= 0 || 6155 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6156 return -EINVAL; 6157 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 6158 return -EBUSY; 6159 6160 rdev_for_each(rdev, mddev) { 6161 if (mddev->raid_disks < raid_disks && 6162 rdev->data_offset < rdev->new_data_offset) 6163 return -EINVAL; 6164 if (mddev->raid_disks > raid_disks && 6165 rdev->data_offset > rdev->new_data_offset) 6166 return -EINVAL; 6167 } 6168 6169 mddev->delta_disks = raid_disks - mddev->raid_disks; 6170 if (mddev->delta_disks < 0) 6171 mddev->reshape_backwards = 1; 6172 else if (mddev->delta_disks > 0) 6173 mddev->reshape_backwards = 0; 6174 6175 rv = mddev->pers->check_reshape(mddev); 6176 if (rv < 0) { 6177 mddev->delta_disks = 0; 6178 mddev->reshape_backwards = 0; 6179 } 6180 return rv; 6181 } 6182 6183 6184 /* 6185 * update_array_info is used to change the configuration of an 6186 * on-line array. 6187 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6188 * fields in the info are checked against the array. 6189 * Any differences that cannot be handled will cause an error. 6190 * Normally, only one change can be managed at a time. 6191 */ 6192 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6193 { 6194 int rv = 0; 6195 int cnt = 0; 6196 int state = 0; 6197 6198 /* calculate expected state,ignoring low bits */ 6199 if (mddev->bitmap && mddev->bitmap_info.offset) 6200 state |= (1 << MD_SB_BITMAP_PRESENT); 6201 6202 if (mddev->major_version != info->major_version || 6203 mddev->minor_version != info->minor_version || 6204 /* mddev->patch_version != info->patch_version || */ 6205 mddev->ctime != info->ctime || 6206 mddev->level != info->level || 6207 /* mddev->layout != info->layout || */ 6208 !mddev->persistent != info->not_persistent|| 6209 mddev->chunk_sectors != info->chunk_size >> 9 || 6210 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6211 ((state^info->state) & 0xfffffe00) 6212 ) 6213 return -EINVAL; 6214 /* Check there is only one change */ 6215 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6216 cnt++; 6217 if (mddev->raid_disks != info->raid_disks) 6218 cnt++; 6219 if (mddev->layout != info->layout) 6220 cnt++; 6221 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6222 cnt++; 6223 if (cnt == 0) 6224 return 0; 6225 if (cnt > 1) 6226 return -EINVAL; 6227 6228 if (mddev->layout != info->layout) { 6229 /* Change layout 6230 * we don't need to do anything at the md level, the 6231 * personality will take care of it all. 6232 */ 6233 if (mddev->pers->check_reshape == NULL) 6234 return -EINVAL; 6235 else { 6236 mddev->new_layout = info->layout; 6237 rv = mddev->pers->check_reshape(mddev); 6238 if (rv) 6239 mddev->new_layout = mddev->layout; 6240 return rv; 6241 } 6242 } 6243 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6244 rv = update_size(mddev, (sector_t)info->size * 2); 6245 6246 if (mddev->raid_disks != info->raid_disks) 6247 rv = update_raid_disks(mddev, info->raid_disks); 6248 6249 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6250 if (mddev->pers->quiesce == NULL) 6251 return -EINVAL; 6252 if (mddev->recovery || mddev->sync_thread) 6253 return -EBUSY; 6254 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6255 /* add the bitmap */ 6256 if (mddev->bitmap) 6257 return -EEXIST; 6258 if (mddev->bitmap_info.default_offset == 0) 6259 return -EINVAL; 6260 mddev->bitmap_info.offset = 6261 mddev->bitmap_info.default_offset; 6262 mddev->pers->quiesce(mddev, 1); 6263 rv = bitmap_create(mddev); 6264 if (!rv) 6265 rv = bitmap_load(mddev); 6266 if (rv) 6267 bitmap_destroy(mddev); 6268 mddev->pers->quiesce(mddev, 0); 6269 } else { 6270 /* remove the bitmap */ 6271 if (!mddev->bitmap) 6272 return -ENOENT; 6273 if (mddev->bitmap->file) 6274 return -EINVAL; 6275 mddev->pers->quiesce(mddev, 1); 6276 bitmap_destroy(mddev); 6277 mddev->pers->quiesce(mddev, 0); 6278 mddev->bitmap_info.offset = 0; 6279 } 6280 } 6281 md_update_sb(mddev, 1); 6282 return rv; 6283 } 6284 6285 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6286 { 6287 struct md_rdev *rdev; 6288 6289 if (mddev->pers == NULL) 6290 return -ENODEV; 6291 6292 rdev = find_rdev(mddev, dev); 6293 if (!rdev) 6294 return -ENODEV; 6295 6296 md_error(mddev, rdev); 6297 if (!test_bit(Faulty, &rdev->flags)) 6298 return -EBUSY; 6299 return 0; 6300 } 6301 6302 /* 6303 * We have a problem here : there is no easy way to give a CHS 6304 * virtual geometry. We currently pretend that we have a 2 heads 6305 * 4 sectors (with a BIG number of cylinders...). This drives 6306 * dosfs just mad... ;-) 6307 */ 6308 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6309 { 6310 struct mddev *mddev = bdev->bd_disk->private_data; 6311 6312 geo->heads = 2; 6313 geo->sectors = 4; 6314 geo->cylinders = mddev->array_sectors / 8; 6315 return 0; 6316 } 6317 6318 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6319 unsigned int cmd, unsigned long arg) 6320 { 6321 int err = 0; 6322 void __user *argp = (void __user *)arg; 6323 struct mddev *mddev = NULL; 6324 int ro; 6325 6326 switch (cmd) { 6327 case RAID_VERSION: 6328 case GET_ARRAY_INFO: 6329 case GET_DISK_INFO: 6330 break; 6331 default: 6332 if (!capable(CAP_SYS_ADMIN)) 6333 return -EACCES; 6334 } 6335 6336 /* 6337 * Commands dealing with the RAID driver but not any 6338 * particular array: 6339 */ 6340 switch (cmd) 6341 { 6342 case RAID_VERSION: 6343 err = get_version(argp); 6344 goto done; 6345 6346 case PRINT_RAID_DEBUG: 6347 err = 0; 6348 md_print_devices(); 6349 goto done; 6350 6351 #ifndef MODULE 6352 case RAID_AUTORUN: 6353 err = 0; 6354 autostart_arrays(arg); 6355 goto done; 6356 #endif 6357 default:; 6358 } 6359 6360 /* 6361 * Commands creating/starting a new array: 6362 */ 6363 6364 mddev = bdev->bd_disk->private_data; 6365 6366 if (!mddev) { 6367 BUG(); 6368 goto abort; 6369 } 6370 6371 err = mddev_lock(mddev); 6372 if (err) { 6373 printk(KERN_INFO 6374 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6375 err, cmd); 6376 goto abort; 6377 } 6378 6379 switch (cmd) 6380 { 6381 case SET_ARRAY_INFO: 6382 { 6383 mdu_array_info_t info; 6384 if (!arg) 6385 memset(&info, 0, sizeof(info)); 6386 else if (copy_from_user(&info, argp, sizeof(info))) { 6387 err = -EFAULT; 6388 goto abort_unlock; 6389 } 6390 if (mddev->pers) { 6391 err = update_array_info(mddev, &info); 6392 if (err) { 6393 printk(KERN_WARNING "md: couldn't update" 6394 " array info. %d\n", err); 6395 goto abort_unlock; 6396 } 6397 goto done_unlock; 6398 } 6399 if (!list_empty(&mddev->disks)) { 6400 printk(KERN_WARNING 6401 "md: array %s already has disks!\n", 6402 mdname(mddev)); 6403 err = -EBUSY; 6404 goto abort_unlock; 6405 } 6406 if (mddev->raid_disks) { 6407 printk(KERN_WARNING 6408 "md: array %s already initialised!\n", 6409 mdname(mddev)); 6410 err = -EBUSY; 6411 goto abort_unlock; 6412 } 6413 err = set_array_info(mddev, &info); 6414 if (err) { 6415 printk(KERN_WARNING "md: couldn't set" 6416 " array info. %d\n", err); 6417 goto abort_unlock; 6418 } 6419 } 6420 goto done_unlock; 6421 6422 default:; 6423 } 6424 6425 /* 6426 * Commands querying/configuring an existing array: 6427 */ 6428 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6429 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6430 if ((!mddev->raid_disks && !mddev->external) 6431 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6432 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6433 && cmd != GET_BITMAP_FILE) { 6434 err = -ENODEV; 6435 goto abort_unlock; 6436 } 6437 6438 /* 6439 * Commands even a read-only array can execute: 6440 */ 6441 switch (cmd) 6442 { 6443 case GET_ARRAY_INFO: 6444 err = get_array_info(mddev, argp); 6445 goto done_unlock; 6446 6447 case GET_BITMAP_FILE: 6448 err = get_bitmap_file(mddev, argp); 6449 goto done_unlock; 6450 6451 case GET_DISK_INFO: 6452 err = get_disk_info(mddev, argp); 6453 goto done_unlock; 6454 6455 case RESTART_ARRAY_RW: 6456 err = restart_array(mddev); 6457 goto done_unlock; 6458 6459 case STOP_ARRAY: 6460 err = do_md_stop(mddev, 0, 1); 6461 goto done_unlock; 6462 6463 case STOP_ARRAY_RO: 6464 err = md_set_readonly(mddev, 1); 6465 goto done_unlock; 6466 6467 case BLKROSET: 6468 if (get_user(ro, (int __user *)(arg))) { 6469 err = -EFAULT; 6470 goto done_unlock; 6471 } 6472 err = -EINVAL; 6473 6474 /* if the bdev is going readonly the value of mddev->ro 6475 * does not matter, no writes are coming 6476 */ 6477 if (ro) 6478 goto done_unlock; 6479 6480 /* are we are already prepared for writes? */ 6481 if (mddev->ro != 1) 6482 goto done_unlock; 6483 6484 /* transitioning to readauto need only happen for 6485 * arrays that call md_write_start 6486 */ 6487 if (mddev->pers) { 6488 err = restart_array(mddev); 6489 if (err == 0) { 6490 mddev->ro = 2; 6491 set_disk_ro(mddev->gendisk, 0); 6492 } 6493 } 6494 goto done_unlock; 6495 } 6496 6497 /* 6498 * The remaining ioctls are changing the state of the 6499 * superblock, so we do not allow them on read-only arrays. 6500 * However non-MD ioctls (e.g. get-size) will still come through 6501 * here and hit the 'default' below, so only disallow 6502 * 'md' ioctls, and switch to rw mode if started auto-readonly. 6503 */ 6504 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 6505 if (mddev->ro == 2) { 6506 mddev->ro = 0; 6507 sysfs_notify_dirent_safe(mddev->sysfs_state); 6508 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6509 md_wakeup_thread(mddev->thread); 6510 } else { 6511 err = -EROFS; 6512 goto abort_unlock; 6513 } 6514 } 6515 6516 switch (cmd) 6517 { 6518 case ADD_NEW_DISK: 6519 { 6520 mdu_disk_info_t info; 6521 if (copy_from_user(&info, argp, sizeof(info))) 6522 err = -EFAULT; 6523 else 6524 err = add_new_disk(mddev, &info); 6525 goto done_unlock; 6526 } 6527 6528 case HOT_REMOVE_DISK: 6529 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6530 goto done_unlock; 6531 6532 case HOT_ADD_DISK: 6533 err = hot_add_disk(mddev, new_decode_dev(arg)); 6534 goto done_unlock; 6535 6536 case SET_DISK_FAULTY: 6537 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6538 goto done_unlock; 6539 6540 case RUN_ARRAY: 6541 err = do_md_run(mddev); 6542 goto done_unlock; 6543 6544 case SET_BITMAP_FILE: 6545 err = set_bitmap_file(mddev, (int)arg); 6546 goto done_unlock; 6547 6548 default: 6549 err = -EINVAL; 6550 goto abort_unlock; 6551 } 6552 6553 done_unlock: 6554 abort_unlock: 6555 if (mddev->hold_active == UNTIL_IOCTL && 6556 err != -EINVAL) 6557 mddev->hold_active = 0; 6558 mddev_unlock(mddev); 6559 6560 return err; 6561 done: 6562 if (err) 6563 MD_BUG(); 6564 abort: 6565 return err; 6566 } 6567 #ifdef CONFIG_COMPAT 6568 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6569 unsigned int cmd, unsigned long arg) 6570 { 6571 switch (cmd) { 6572 case HOT_REMOVE_DISK: 6573 case HOT_ADD_DISK: 6574 case SET_DISK_FAULTY: 6575 case SET_BITMAP_FILE: 6576 /* These take in integer arg, do not convert */ 6577 break; 6578 default: 6579 arg = (unsigned long)compat_ptr(arg); 6580 break; 6581 } 6582 6583 return md_ioctl(bdev, mode, cmd, arg); 6584 } 6585 #endif /* CONFIG_COMPAT */ 6586 6587 static int md_open(struct block_device *bdev, fmode_t mode) 6588 { 6589 /* 6590 * Succeed if we can lock the mddev, which confirms that 6591 * it isn't being stopped right now. 6592 */ 6593 struct mddev *mddev = mddev_find(bdev->bd_dev); 6594 int err; 6595 6596 if (mddev->gendisk != bdev->bd_disk) { 6597 /* we are racing with mddev_put which is discarding this 6598 * bd_disk. 6599 */ 6600 mddev_put(mddev); 6601 /* Wait until bdev->bd_disk is definitely gone */ 6602 flush_workqueue(md_misc_wq); 6603 /* Then retry the open from the top */ 6604 return -ERESTARTSYS; 6605 } 6606 BUG_ON(mddev != bdev->bd_disk->private_data); 6607 6608 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6609 goto out; 6610 6611 err = 0; 6612 atomic_inc(&mddev->openers); 6613 mutex_unlock(&mddev->open_mutex); 6614 6615 check_disk_change(bdev); 6616 out: 6617 return err; 6618 } 6619 6620 static int md_release(struct gendisk *disk, fmode_t mode) 6621 { 6622 struct mddev *mddev = disk->private_data; 6623 6624 BUG_ON(!mddev); 6625 atomic_dec(&mddev->openers); 6626 mddev_put(mddev); 6627 6628 return 0; 6629 } 6630 6631 static int md_media_changed(struct gendisk *disk) 6632 { 6633 struct mddev *mddev = disk->private_data; 6634 6635 return mddev->changed; 6636 } 6637 6638 static int md_revalidate(struct gendisk *disk) 6639 { 6640 struct mddev *mddev = disk->private_data; 6641 6642 mddev->changed = 0; 6643 return 0; 6644 } 6645 static const struct block_device_operations md_fops = 6646 { 6647 .owner = THIS_MODULE, 6648 .open = md_open, 6649 .release = md_release, 6650 .ioctl = md_ioctl, 6651 #ifdef CONFIG_COMPAT 6652 .compat_ioctl = md_compat_ioctl, 6653 #endif 6654 .getgeo = md_getgeo, 6655 .media_changed = md_media_changed, 6656 .revalidate_disk= md_revalidate, 6657 }; 6658 6659 static int md_thread(void * arg) 6660 { 6661 struct md_thread *thread = arg; 6662 6663 /* 6664 * md_thread is a 'system-thread', it's priority should be very 6665 * high. We avoid resource deadlocks individually in each 6666 * raid personality. (RAID5 does preallocation) We also use RR and 6667 * the very same RT priority as kswapd, thus we will never get 6668 * into a priority inversion deadlock. 6669 * 6670 * we definitely have to have equal or higher priority than 6671 * bdflush, otherwise bdflush will deadlock if there are too 6672 * many dirty RAID5 blocks. 6673 */ 6674 6675 allow_signal(SIGKILL); 6676 while (!kthread_should_stop()) { 6677 6678 /* We need to wait INTERRUPTIBLE so that 6679 * we don't add to the load-average. 6680 * That means we need to be sure no signals are 6681 * pending 6682 */ 6683 if (signal_pending(current)) 6684 flush_signals(current); 6685 6686 wait_event_interruptible_timeout 6687 (thread->wqueue, 6688 test_bit(THREAD_WAKEUP, &thread->flags) 6689 || kthread_should_stop(), 6690 thread->timeout); 6691 6692 clear_bit(THREAD_WAKEUP, &thread->flags); 6693 if (!kthread_should_stop()) 6694 thread->run(thread->mddev); 6695 } 6696 6697 return 0; 6698 } 6699 6700 void md_wakeup_thread(struct md_thread *thread) 6701 { 6702 if (thread) { 6703 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6704 set_bit(THREAD_WAKEUP, &thread->flags); 6705 wake_up(&thread->wqueue); 6706 } 6707 } 6708 6709 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev, 6710 const char *name) 6711 { 6712 struct md_thread *thread; 6713 6714 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6715 if (!thread) 6716 return NULL; 6717 6718 init_waitqueue_head(&thread->wqueue); 6719 6720 thread->run = run; 6721 thread->mddev = mddev; 6722 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6723 thread->tsk = kthread_run(md_thread, thread, 6724 "%s_%s", 6725 mdname(thread->mddev), 6726 name ?: mddev->pers->name); 6727 if (IS_ERR(thread->tsk)) { 6728 kfree(thread); 6729 return NULL; 6730 } 6731 return thread; 6732 } 6733 6734 void md_unregister_thread(struct md_thread **threadp) 6735 { 6736 struct md_thread *thread = *threadp; 6737 if (!thread) 6738 return; 6739 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6740 /* Locking ensures that mddev_unlock does not wake_up a 6741 * non-existent thread 6742 */ 6743 spin_lock(&pers_lock); 6744 *threadp = NULL; 6745 spin_unlock(&pers_lock); 6746 6747 kthread_stop(thread->tsk); 6748 kfree(thread); 6749 } 6750 6751 void md_error(struct mddev *mddev, struct md_rdev *rdev) 6752 { 6753 if (!mddev) { 6754 MD_BUG(); 6755 return; 6756 } 6757 6758 if (!rdev || test_bit(Faulty, &rdev->flags)) 6759 return; 6760 6761 if (!mddev->pers || !mddev->pers->error_handler) 6762 return; 6763 mddev->pers->error_handler(mddev,rdev); 6764 if (mddev->degraded) 6765 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6766 sysfs_notify_dirent_safe(rdev->sysfs_state); 6767 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6768 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6769 md_wakeup_thread(mddev->thread); 6770 if (mddev->event_work.func) 6771 queue_work(md_misc_wq, &mddev->event_work); 6772 md_new_event_inintr(mddev); 6773 } 6774 6775 /* seq_file implementation /proc/mdstat */ 6776 6777 static void status_unused(struct seq_file *seq) 6778 { 6779 int i = 0; 6780 struct md_rdev *rdev; 6781 6782 seq_printf(seq, "unused devices: "); 6783 6784 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6785 char b[BDEVNAME_SIZE]; 6786 i++; 6787 seq_printf(seq, "%s ", 6788 bdevname(rdev->bdev,b)); 6789 } 6790 if (!i) 6791 seq_printf(seq, "<none>"); 6792 6793 seq_printf(seq, "\n"); 6794 } 6795 6796 6797 static void status_resync(struct seq_file *seq, struct mddev * mddev) 6798 { 6799 sector_t max_sectors, resync, res; 6800 unsigned long dt, db; 6801 sector_t rt; 6802 int scale; 6803 unsigned int per_milli; 6804 6805 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active); 6806 6807 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 6808 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6809 max_sectors = mddev->resync_max_sectors; 6810 else 6811 max_sectors = mddev->dev_sectors; 6812 6813 /* 6814 * Should not happen. 6815 */ 6816 if (!max_sectors) { 6817 MD_BUG(); 6818 return; 6819 } 6820 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6821 * in a sector_t, and (max_sectors>>scale) will fit in a 6822 * u32, as those are the requirements for sector_div. 6823 * Thus 'scale' must be at least 10 6824 */ 6825 scale = 10; 6826 if (sizeof(sector_t) > sizeof(unsigned long)) { 6827 while ( max_sectors/2 > (1ULL<<(scale+32))) 6828 scale++; 6829 } 6830 res = (resync>>scale)*1000; 6831 sector_div(res, (u32)((max_sectors>>scale)+1)); 6832 6833 per_milli = res; 6834 { 6835 int i, x = per_milli/50, y = 20-x; 6836 seq_printf(seq, "["); 6837 for (i = 0; i < x; i++) 6838 seq_printf(seq, "="); 6839 seq_printf(seq, ">"); 6840 for (i = 0; i < y; i++) 6841 seq_printf(seq, "."); 6842 seq_printf(seq, "] "); 6843 } 6844 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6845 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6846 "reshape" : 6847 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6848 "check" : 6849 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6850 "resync" : "recovery"))), 6851 per_milli/10, per_milli % 10, 6852 (unsigned long long) resync/2, 6853 (unsigned long long) max_sectors/2); 6854 6855 /* 6856 * dt: time from mark until now 6857 * db: blocks written from mark until now 6858 * rt: remaining time 6859 * 6860 * rt is a sector_t, so could be 32bit or 64bit. 6861 * So we divide before multiply in case it is 32bit and close 6862 * to the limit. 6863 * We scale the divisor (db) by 32 to avoid losing precision 6864 * near the end of resync when the number of remaining sectors 6865 * is close to 'db'. 6866 * We then divide rt by 32 after multiplying by db to compensate. 6867 * The '+1' avoids division by zero if db is very small. 6868 */ 6869 dt = ((jiffies - mddev->resync_mark) / HZ); 6870 if (!dt) dt++; 6871 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6872 - mddev->resync_mark_cnt; 6873 6874 rt = max_sectors - resync; /* number of remaining sectors */ 6875 sector_div(rt, db/32+1); 6876 rt *= dt; 6877 rt >>= 5; 6878 6879 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6880 ((unsigned long)rt % 60)/6); 6881 6882 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6883 } 6884 6885 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6886 { 6887 struct list_head *tmp; 6888 loff_t l = *pos; 6889 struct mddev *mddev; 6890 6891 if (l >= 0x10000) 6892 return NULL; 6893 if (!l--) 6894 /* header */ 6895 return (void*)1; 6896 6897 spin_lock(&all_mddevs_lock); 6898 list_for_each(tmp,&all_mddevs) 6899 if (!l--) { 6900 mddev = list_entry(tmp, struct mddev, all_mddevs); 6901 mddev_get(mddev); 6902 spin_unlock(&all_mddevs_lock); 6903 return mddev; 6904 } 6905 spin_unlock(&all_mddevs_lock); 6906 if (!l--) 6907 return (void*)2;/* tail */ 6908 return NULL; 6909 } 6910 6911 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6912 { 6913 struct list_head *tmp; 6914 struct mddev *next_mddev, *mddev = v; 6915 6916 ++*pos; 6917 if (v == (void*)2) 6918 return NULL; 6919 6920 spin_lock(&all_mddevs_lock); 6921 if (v == (void*)1) 6922 tmp = all_mddevs.next; 6923 else 6924 tmp = mddev->all_mddevs.next; 6925 if (tmp != &all_mddevs) 6926 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 6927 else { 6928 next_mddev = (void*)2; 6929 *pos = 0x10000; 6930 } 6931 spin_unlock(&all_mddevs_lock); 6932 6933 if (v != (void*)1) 6934 mddev_put(mddev); 6935 return next_mddev; 6936 6937 } 6938 6939 static void md_seq_stop(struct seq_file *seq, void *v) 6940 { 6941 struct mddev *mddev = v; 6942 6943 if (mddev && v != (void*)1 && v != (void*)2) 6944 mddev_put(mddev); 6945 } 6946 6947 static int md_seq_show(struct seq_file *seq, void *v) 6948 { 6949 struct mddev *mddev = v; 6950 sector_t sectors; 6951 struct md_rdev *rdev; 6952 6953 if (v == (void*)1) { 6954 struct md_personality *pers; 6955 seq_printf(seq, "Personalities : "); 6956 spin_lock(&pers_lock); 6957 list_for_each_entry(pers, &pers_list, list) 6958 seq_printf(seq, "[%s] ", pers->name); 6959 6960 spin_unlock(&pers_lock); 6961 seq_printf(seq, "\n"); 6962 seq->poll_event = atomic_read(&md_event_count); 6963 return 0; 6964 } 6965 if (v == (void*)2) { 6966 status_unused(seq); 6967 return 0; 6968 } 6969 6970 if (mddev_lock(mddev) < 0) 6971 return -EINTR; 6972 6973 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 6974 seq_printf(seq, "%s : %sactive", mdname(mddev), 6975 mddev->pers ? "" : "in"); 6976 if (mddev->pers) { 6977 if (mddev->ro==1) 6978 seq_printf(seq, " (read-only)"); 6979 if (mddev->ro==2) 6980 seq_printf(seq, " (auto-read-only)"); 6981 seq_printf(seq, " %s", mddev->pers->name); 6982 } 6983 6984 sectors = 0; 6985 rdev_for_each(rdev, mddev) { 6986 char b[BDEVNAME_SIZE]; 6987 seq_printf(seq, " %s[%d]", 6988 bdevname(rdev->bdev,b), rdev->desc_nr); 6989 if (test_bit(WriteMostly, &rdev->flags)) 6990 seq_printf(seq, "(W)"); 6991 if (test_bit(Faulty, &rdev->flags)) { 6992 seq_printf(seq, "(F)"); 6993 continue; 6994 } 6995 if (rdev->raid_disk < 0) 6996 seq_printf(seq, "(S)"); /* spare */ 6997 if (test_bit(Replacement, &rdev->flags)) 6998 seq_printf(seq, "(R)"); 6999 sectors += rdev->sectors; 7000 } 7001 7002 if (!list_empty(&mddev->disks)) { 7003 if (mddev->pers) 7004 seq_printf(seq, "\n %llu blocks", 7005 (unsigned long long) 7006 mddev->array_sectors / 2); 7007 else 7008 seq_printf(seq, "\n %llu blocks", 7009 (unsigned long long)sectors / 2); 7010 } 7011 if (mddev->persistent) { 7012 if (mddev->major_version != 0 || 7013 mddev->minor_version != 90) { 7014 seq_printf(seq," super %d.%d", 7015 mddev->major_version, 7016 mddev->minor_version); 7017 } 7018 } else if (mddev->external) 7019 seq_printf(seq, " super external:%s", 7020 mddev->metadata_type); 7021 else 7022 seq_printf(seq, " super non-persistent"); 7023 7024 if (mddev->pers) { 7025 mddev->pers->status(seq, mddev); 7026 seq_printf(seq, "\n "); 7027 if (mddev->pers->sync_request) { 7028 if (mddev->curr_resync > 2) { 7029 status_resync(seq, mddev); 7030 seq_printf(seq, "\n "); 7031 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 7032 seq_printf(seq, "\tresync=DELAYED\n "); 7033 else if (mddev->recovery_cp < MaxSector) 7034 seq_printf(seq, "\tresync=PENDING\n "); 7035 } 7036 } else 7037 seq_printf(seq, "\n "); 7038 7039 bitmap_status(seq, mddev->bitmap); 7040 7041 seq_printf(seq, "\n"); 7042 } 7043 mddev_unlock(mddev); 7044 7045 return 0; 7046 } 7047 7048 static const struct seq_operations md_seq_ops = { 7049 .start = md_seq_start, 7050 .next = md_seq_next, 7051 .stop = md_seq_stop, 7052 .show = md_seq_show, 7053 }; 7054 7055 static int md_seq_open(struct inode *inode, struct file *file) 7056 { 7057 struct seq_file *seq; 7058 int error; 7059 7060 error = seq_open(file, &md_seq_ops); 7061 if (error) 7062 return error; 7063 7064 seq = file->private_data; 7065 seq->poll_event = atomic_read(&md_event_count); 7066 return error; 7067 } 7068 7069 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7070 { 7071 struct seq_file *seq = filp->private_data; 7072 int mask; 7073 7074 poll_wait(filp, &md_event_waiters, wait); 7075 7076 /* always allow read */ 7077 mask = POLLIN | POLLRDNORM; 7078 7079 if (seq->poll_event != atomic_read(&md_event_count)) 7080 mask |= POLLERR | POLLPRI; 7081 return mask; 7082 } 7083 7084 static const struct file_operations md_seq_fops = { 7085 .owner = THIS_MODULE, 7086 .open = md_seq_open, 7087 .read = seq_read, 7088 .llseek = seq_lseek, 7089 .release = seq_release_private, 7090 .poll = mdstat_poll, 7091 }; 7092 7093 int register_md_personality(struct md_personality *p) 7094 { 7095 spin_lock(&pers_lock); 7096 list_add_tail(&p->list, &pers_list); 7097 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 7098 spin_unlock(&pers_lock); 7099 return 0; 7100 } 7101 7102 int unregister_md_personality(struct md_personality *p) 7103 { 7104 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7105 spin_lock(&pers_lock); 7106 list_del_init(&p->list); 7107 spin_unlock(&pers_lock); 7108 return 0; 7109 } 7110 7111 static int is_mddev_idle(struct mddev *mddev, int init) 7112 { 7113 struct md_rdev * rdev; 7114 int idle; 7115 int curr_events; 7116 7117 idle = 1; 7118 rcu_read_lock(); 7119 rdev_for_each_rcu(rdev, mddev) { 7120 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7121 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7122 (int)part_stat_read(&disk->part0, sectors[1]) - 7123 atomic_read(&disk->sync_io); 7124 /* sync IO will cause sync_io to increase before the disk_stats 7125 * as sync_io is counted when a request starts, and 7126 * disk_stats is counted when it completes. 7127 * So resync activity will cause curr_events to be smaller than 7128 * when there was no such activity. 7129 * non-sync IO will cause disk_stat to increase without 7130 * increasing sync_io so curr_events will (eventually) 7131 * be larger than it was before. Once it becomes 7132 * substantially larger, the test below will cause 7133 * the array to appear non-idle, and resync will slow 7134 * down. 7135 * If there is a lot of outstanding resync activity when 7136 * we set last_event to curr_events, then all that activity 7137 * completing might cause the array to appear non-idle 7138 * and resync will be slowed down even though there might 7139 * not have been non-resync activity. This will only 7140 * happen once though. 'last_events' will soon reflect 7141 * the state where there is little or no outstanding 7142 * resync requests, and further resync activity will 7143 * always make curr_events less than last_events. 7144 * 7145 */ 7146 if (init || curr_events - rdev->last_events > 64) { 7147 rdev->last_events = curr_events; 7148 idle = 0; 7149 } 7150 } 7151 rcu_read_unlock(); 7152 return idle; 7153 } 7154 7155 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7156 { 7157 /* another "blocks" (512byte) blocks have been synced */ 7158 atomic_sub(blocks, &mddev->recovery_active); 7159 wake_up(&mddev->recovery_wait); 7160 if (!ok) { 7161 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7162 md_wakeup_thread(mddev->thread); 7163 // stop recovery, signal do_sync .... 7164 } 7165 } 7166 7167 7168 /* md_write_start(mddev, bi) 7169 * If we need to update some array metadata (e.g. 'active' flag 7170 * in superblock) before writing, schedule a superblock update 7171 * and wait for it to complete. 7172 */ 7173 void md_write_start(struct mddev *mddev, struct bio *bi) 7174 { 7175 int did_change = 0; 7176 if (bio_data_dir(bi) != WRITE) 7177 return; 7178 7179 BUG_ON(mddev->ro == 1); 7180 if (mddev->ro == 2) { 7181 /* need to switch to read/write */ 7182 mddev->ro = 0; 7183 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7184 md_wakeup_thread(mddev->thread); 7185 md_wakeup_thread(mddev->sync_thread); 7186 did_change = 1; 7187 } 7188 atomic_inc(&mddev->writes_pending); 7189 if (mddev->safemode == 1) 7190 mddev->safemode = 0; 7191 if (mddev->in_sync) { 7192 spin_lock_irq(&mddev->write_lock); 7193 if (mddev->in_sync) { 7194 mddev->in_sync = 0; 7195 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7196 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7197 md_wakeup_thread(mddev->thread); 7198 did_change = 1; 7199 } 7200 spin_unlock_irq(&mddev->write_lock); 7201 } 7202 if (did_change) 7203 sysfs_notify_dirent_safe(mddev->sysfs_state); 7204 wait_event(mddev->sb_wait, 7205 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7206 } 7207 7208 void md_write_end(struct mddev *mddev) 7209 { 7210 if (atomic_dec_and_test(&mddev->writes_pending)) { 7211 if (mddev->safemode == 2) 7212 md_wakeup_thread(mddev->thread); 7213 else if (mddev->safemode_delay) 7214 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7215 } 7216 } 7217 7218 /* md_allow_write(mddev) 7219 * Calling this ensures that the array is marked 'active' so that writes 7220 * may proceed without blocking. It is important to call this before 7221 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7222 * Must be called with mddev_lock held. 7223 * 7224 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7225 * is dropped, so return -EAGAIN after notifying userspace. 7226 */ 7227 int md_allow_write(struct mddev *mddev) 7228 { 7229 if (!mddev->pers) 7230 return 0; 7231 if (mddev->ro) 7232 return 0; 7233 if (!mddev->pers->sync_request) 7234 return 0; 7235 7236 spin_lock_irq(&mddev->write_lock); 7237 if (mddev->in_sync) { 7238 mddev->in_sync = 0; 7239 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7240 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7241 if (mddev->safemode_delay && 7242 mddev->safemode == 0) 7243 mddev->safemode = 1; 7244 spin_unlock_irq(&mddev->write_lock); 7245 md_update_sb(mddev, 0); 7246 sysfs_notify_dirent_safe(mddev->sysfs_state); 7247 } else 7248 spin_unlock_irq(&mddev->write_lock); 7249 7250 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7251 return -EAGAIN; 7252 else 7253 return 0; 7254 } 7255 EXPORT_SYMBOL_GPL(md_allow_write); 7256 7257 #define SYNC_MARKS 10 7258 #define SYNC_MARK_STEP (3*HZ) 7259 void md_do_sync(struct mddev *mddev) 7260 { 7261 struct mddev *mddev2; 7262 unsigned int currspeed = 0, 7263 window; 7264 sector_t max_sectors,j, io_sectors; 7265 unsigned long mark[SYNC_MARKS]; 7266 sector_t mark_cnt[SYNC_MARKS]; 7267 int last_mark,m; 7268 struct list_head *tmp; 7269 sector_t last_check; 7270 int skipped = 0; 7271 struct md_rdev *rdev; 7272 char *desc; 7273 7274 /* just incase thread restarts... */ 7275 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7276 return; 7277 if (mddev->ro) /* never try to sync a read-only array */ 7278 return; 7279 7280 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7281 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 7282 desc = "data-check"; 7283 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7284 desc = "requested-resync"; 7285 else 7286 desc = "resync"; 7287 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7288 desc = "reshape"; 7289 else 7290 desc = "recovery"; 7291 7292 /* we overload curr_resync somewhat here. 7293 * 0 == not engaged in resync at all 7294 * 2 == checking that there is no conflict with another sync 7295 * 1 == like 2, but have yielded to allow conflicting resync to 7296 * commense 7297 * other == active in resync - this many blocks 7298 * 7299 * Before starting a resync we must have set curr_resync to 7300 * 2, and then checked that every "conflicting" array has curr_resync 7301 * less than ours. When we find one that is the same or higher 7302 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7303 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7304 * This will mean we have to start checking from the beginning again. 7305 * 7306 */ 7307 7308 do { 7309 mddev->curr_resync = 2; 7310 7311 try_again: 7312 if (kthread_should_stop()) 7313 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7314 7315 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7316 goto skip; 7317 for_each_mddev(mddev2, tmp) { 7318 if (mddev2 == mddev) 7319 continue; 7320 if (!mddev->parallel_resync 7321 && mddev2->curr_resync 7322 && match_mddev_units(mddev, mddev2)) { 7323 DEFINE_WAIT(wq); 7324 if (mddev < mddev2 && mddev->curr_resync == 2) { 7325 /* arbitrarily yield */ 7326 mddev->curr_resync = 1; 7327 wake_up(&resync_wait); 7328 } 7329 if (mddev > mddev2 && mddev->curr_resync == 1) 7330 /* no need to wait here, we can wait the next 7331 * time 'round when curr_resync == 2 7332 */ 7333 continue; 7334 /* We need to wait 'interruptible' so as not to 7335 * contribute to the load average, and not to 7336 * be caught by 'softlockup' 7337 */ 7338 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7339 if (!kthread_should_stop() && 7340 mddev2->curr_resync >= mddev->curr_resync) { 7341 printk(KERN_INFO "md: delaying %s of %s" 7342 " until %s has finished (they" 7343 " share one or more physical units)\n", 7344 desc, mdname(mddev), mdname(mddev2)); 7345 mddev_put(mddev2); 7346 if (signal_pending(current)) 7347 flush_signals(current); 7348 schedule(); 7349 finish_wait(&resync_wait, &wq); 7350 goto try_again; 7351 } 7352 finish_wait(&resync_wait, &wq); 7353 } 7354 } 7355 } while (mddev->curr_resync < 2); 7356 7357 j = 0; 7358 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7359 /* resync follows the size requested by the personality, 7360 * which defaults to physical size, but can be virtual size 7361 */ 7362 max_sectors = mddev->resync_max_sectors; 7363 mddev->resync_mismatches = 0; 7364 /* we don't use the checkpoint if there's a bitmap */ 7365 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7366 j = mddev->resync_min; 7367 else if (!mddev->bitmap) 7368 j = mddev->recovery_cp; 7369 7370 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7371 max_sectors = mddev->resync_max_sectors; 7372 else { 7373 /* recovery follows the physical size of devices */ 7374 max_sectors = mddev->dev_sectors; 7375 j = MaxSector; 7376 rcu_read_lock(); 7377 rdev_for_each_rcu(rdev, mddev) 7378 if (rdev->raid_disk >= 0 && 7379 !test_bit(Faulty, &rdev->flags) && 7380 !test_bit(In_sync, &rdev->flags) && 7381 rdev->recovery_offset < j) 7382 j = rdev->recovery_offset; 7383 rcu_read_unlock(); 7384 } 7385 7386 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7387 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7388 " %d KB/sec/disk.\n", speed_min(mddev)); 7389 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7390 "(but not more than %d KB/sec) for %s.\n", 7391 speed_max(mddev), desc); 7392 7393 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7394 7395 io_sectors = 0; 7396 for (m = 0; m < SYNC_MARKS; m++) { 7397 mark[m] = jiffies; 7398 mark_cnt[m] = io_sectors; 7399 } 7400 last_mark = 0; 7401 mddev->resync_mark = mark[last_mark]; 7402 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7403 7404 /* 7405 * Tune reconstruction: 7406 */ 7407 window = 32*(PAGE_SIZE/512); 7408 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7409 window/2, (unsigned long long)max_sectors/2); 7410 7411 atomic_set(&mddev->recovery_active, 0); 7412 last_check = 0; 7413 7414 if (j>2) { 7415 printk(KERN_INFO 7416 "md: resuming %s of %s from checkpoint.\n", 7417 desc, mdname(mddev)); 7418 mddev->curr_resync = j; 7419 } 7420 mddev->curr_resync_completed = j; 7421 7422 while (j < max_sectors) { 7423 sector_t sectors; 7424 7425 skipped = 0; 7426 7427 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7428 ((mddev->curr_resync > mddev->curr_resync_completed && 7429 (mddev->curr_resync - mddev->curr_resync_completed) 7430 > (max_sectors >> 4)) || 7431 (j - mddev->curr_resync_completed)*2 7432 >= mddev->resync_max - mddev->curr_resync_completed 7433 )) { 7434 /* time to update curr_resync_completed */ 7435 wait_event(mddev->recovery_wait, 7436 atomic_read(&mddev->recovery_active) == 0); 7437 mddev->curr_resync_completed = j; 7438 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7439 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7440 } 7441 7442 while (j >= mddev->resync_max && !kthread_should_stop()) { 7443 /* As this condition is controlled by user-space, 7444 * we can block indefinitely, so use '_interruptible' 7445 * to avoid triggering warnings. 7446 */ 7447 flush_signals(current); /* just in case */ 7448 wait_event_interruptible(mddev->recovery_wait, 7449 mddev->resync_max > j 7450 || kthread_should_stop()); 7451 } 7452 7453 if (kthread_should_stop()) 7454 goto interrupted; 7455 7456 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7457 currspeed < speed_min(mddev)); 7458 if (sectors == 0) { 7459 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7460 goto out; 7461 } 7462 7463 if (!skipped) { /* actual IO requested */ 7464 io_sectors += sectors; 7465 atomic_add(sectors, &mddev->recovery_active); 7466 } 7467 7468 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7469 break; 7470 7471 j += sectors; 7472 if (j>1) mddev->curr_resync = j; 7473 mddev->curr_mark_cnt = io_sectors; 7474 if (last_check == 0) 7475 /* this is the earliest that rebuild will be 7476 * visible in /proc/mdstat 7477 */ 7478 md_new_event(mddev); 7479 7480 if (last_check + window > io_sectors || j == max_sectors) 7481 continue; 7482 7483 last_check = io_sectors; 7484 repeat: 7485 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7486 /* step marks */ 7487 int next = (last_mark+1) % SYNC_MARKS; 7488 7489 mddev->resync_mark = mark[next]; 7490 mddev->resync_mark_cnt = mark_cnt[next]; 7491 mark[next] = jiffies; 7492 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7493 last_mark = next; 7494 } 7495 7496 7497 if (kthread_should_stop()) 7498 goto interrupted; 7499 7500 7501 /* 7502 * this loop exits only if either when we are slower than 7503 * the 'hard' speed limit, or the system was IO-idle for 7504 * a jiffy. 7505 * the system might be non-idle CPU-wise, but we only care 7506 * about not overloading the IO subsystem. (things like an 7507 * e2fsck being done on the RAID array should execute fast) 7508 */ 7509 cond_resched(); 7510 7511 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 7512 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7513 7514 if (currspeed > speed_min(mddev)) { 7515 if ((currspeed > speed_max(mddev)) || 7516 !is_mddev_idle(mddev, 0)) { 7517 msleep(500); 7518 goto repeat; 7519 } 7520 } 7521 } 7522 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 7523 /* 7524 * this also signals 'finished resyncing' to md_stop 7525 */ 7526 out: 7527 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7528 7529 /* tell personality that we are finished */ 7530 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7531 7532 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7533 mddev->curr_resync > 2) { 7534 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7535 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7536 if (mddev->curr_resync >= mddev->recovery_cp) { 7537 printk(KERN_INFO 7538 "md: checkpointing %s of %s.\n", 7539 desc, mdname(mddev)); 7540 mddev->recovery_cp = 7541 mddev->curr_resync_completed; 7542 } 7543 } else 7544 mddev->recovery_cp = MaxSector; 7545 } else { 7546 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7547 mddev->curr_resync = MaxSector; 7548 rcu_read_lock(); 7549 rdev_for_each_rcu(rdev, mddev) 7550 if (rdev->raid_disk >= 0 && 7551 mddev->delta_disks >= 0 && 7552 !test_bit(Faulty, &rdev->flags) && 7553 !test_bit(In_sync, &rdev->flags) && 7554 rdev->recovery_offset < mddev->curr_resync) 7555 rdev->recovery_offset = mddev->curr_resync; 7556 rcu_read_unlock(); 7557 } 7558 } 7559 skip: 7560 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7561 7562 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7563 /* We completed so min/max setting can be forgotten if used. */ 7564 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7565 mddev->resync_min = 0; 7566 mddev->resync_max = MaxSector; 7567 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7568 mddev->resync_min = mddev->curr_resync_completed; 7569 mddev->curr_resync = 0; 7570 wake_up(&resync_wait); 7571 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7572 md_wakeup_thread(mddev->thread); 7573 return; 7574 7575 interrupted: 7576 /* 7577 * got a signal, exit. 7578 */ 7579 printk(KERN_INFO 7580 "md: md_do_sync() got signal ... exiting\n"); 7581 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7582 goto out; 7583 7584 } 7585 EXPORT_SYMBOL_GPL(md_do_sync); 7586 7587 static int remove_and_add_spares(struct mddev *mddev) 7588 { 7589 struct md_rdev *rdev; 7590 int spares = 0; 7591 int removed = 0; 7592 7593 mddev->curr_resync_completed = 0; 7594 7595 rdev_for_each(rdev, mddev) 7596 if (rdev->raid_disk >= 0 && 7597 !test_bit(Blocked, &rdev->flags) && 7598 (test_bit(Faulty, &rdev->flags) || 7599 ! test_bit(In_sync, &rdev->flags)) && 7600 atomic_read(&rdev->nr_pending)==0) { 7601 if (mddev->pers->hot_remove_disk( 7602 mddev, rdev) == 0) { 7603 sysfs_unlink_rdev(mddev, rdev); 7604 rdev->raid_disk = -1; 7605 removed++; 7606 } 7607 } 7608 if (removed) 7609 sysfs_notify(&mddev->kobj, NULL, 7610 "degraded"); 7611 7612 7613 rdev_for_each(rdev, mddev) { 7614 if (rdev->raid_disk >= 0 && 7615 !test_bit(In_sync, &rdev->flags) && 7616 !test_bit(Faulty, &rdev->flags)) 7617 spares++; 7618 if (rdev->raid_disk < 0 7619 && !test_bit(Faulty, &rdev->flags)) { 7620 rdev->recovery_offset = 0; 7621 if (mddev->pers-> 7622 hot_add_disk(mddev, rdev) == 0) { 7623 if (sysfs_link_rdev(mddev, rdev)) 7624 /* failure here is OK */; 7625 spares++; 7626 md_new_event(mddev); 7627 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7628 } 7629 } 7630 } 7631 return spares; 7632 } 7633 7634 static void reap_sync_thread(struct mddev *mddev) 7635 { 7636 struct md_rdev *rdev; 7637 7638 /* resync has finished, collect result */ 7639 md_unregister_thread(&mddev->sync_thread); 7640 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7641 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7642 /* success...*/ 7643 /* activate any spares */ 7644 if (mddev->pers->spare_active(mddev)) 7645 sysfs_notify(&mddev->kobj, NULL, 7646 "degraded"); 7647 } 7648 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7649 mddev->pers->finish_reshape) 7650 mddev->pers->finish_reshape(mddev); 7651 7652 /* If array is no-longer degraded, then any saved_raid_disk 7653 * information must be scrapped. Also if any device is now 7654 * In_sync we must scrape the saved_raid_disk for that device 7655 * do the superblock for an incrementally recovered device 7656 * written out. 7657 */ 7658 rdev_for_each(rdev, mddev) 7659 if (!mddev->degraded || 7660 test_bit(In_sync, &rdev->flags)) 7661 rdev->saved_raid_disk = -1; 7662 7663 md_update_sb(mddev, 1); 7664 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7665 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7666 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7667 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7668 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7669 /* flag recovery needed just to double check */ 7670 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7671 sysfs_notify_dirent_safe(mddev->sysfs_action); 7672 md_new_event(mddev); 7673 if (mddev->event_work.func) 7674 queue_work(md_misc_wq, &mddev->event_work); 7675 } 7676 7677 /* 7678 * This routine is regularly called by all per-raid-array threads to 7679 * deal with generic issues like resync and super-block update. 7680 * Raid personalities that don't have a thread (linear/raid0) do not 7681 * need this as they never do any recovery or update the superblock. 7682 * 7683 * It does not do any resync itself, but rather "forks" off other threads 7684 * to do that as needed. 7685 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7686 * "->recovery" and create a thread at ->sync_thread. 7687 * When the thread finishes it sets MD_RECOVERY_DONE 7688 * and wakeups up this thread which will reap the thread and finish up. 7689 * This thread also removes any faulty devices (with nr_pending == 0). 7690 * 7691 * The overall approach is: 7692 * 1/ if the superblock needs updating, update it. 7693 * 2/ If a recovery thread is running, don't do anything else. 7694 * 3/ If recovery has finished, clean up, possibly marking spares active. 7695 * 4/ If there are any faulty devices, remove them. 7696 * 5/ If array is degraded, try to add spares devices 7697 * 6/ If array has spares or is not in-sync, start a resync thread. 7698 */ 7699 void md_check_recovery(struct mddev *mddev) 7700 { 7701 if (mddev->suspended) 7702 return; 7703 7704 if (mddev->bitmap) 7705 bitmap_daemon_work(mddev); 7706 7707 if (signal_pending(current)) { 7708 if (mddev->pers->sync_request && !mddev->external) { 7709 printk(KERN_INFO "md: %s in immediate safe mode\n", 7710 mdname(mddev)); 7711 mddev->safemode = 2; 7712 } 7713 flush_signals(current); 7714 } 7715 7716 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7717 return; 7718 if ( ! ( 7719 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) || 7720 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7721 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7722 (mddev->external == 0 && mddev->safemode == 1) || 7723 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7724 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7725 )) 7726 return; 7727 7728 if (mddev_trylock(mddev)) { 7729 int spares = 0; 7730 7731 if (mddev->ro) { 7732 /* Only thing we do on a ro array is remove 7733 * failed devices. 7734 */ 7735 struct md_rdev *rdev; 7736 rdev_for_each(rdev, mddev) 7737 if (rdev->raid_disk >= 0 && 7738 !test_bit(Blocked, &rdev->flags) && 7739 test_bit(Faulty, &rdev->flags) && 7740 atomic_read(&rdev->nr_pending)==0) { 7741 if (mddev->pers->hot_remove_disk( 7742 mddev, rdev) == 0) { 7743 sysfs_unlink_rdev(mddev, rdev); 7744 rdev->raid_disk = -1; 7745 } 7746 } 7747 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7748 goto unlock; 7749 } 7750 7751 if (!mddev->external) { 7752 int did_change = 0; 7753 spin_lock_irq(&mddev->write_lock); 7754 if (mddev->safemode && 7755 !atomic_read(&mddev->writes_pending) && 7756 !mddev->in_sync && 7757 mddev->recovery_cp == MaxSector) { 7758 mddev->in_sync = 1; 7759 did_change = 1; 7760 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7761 } 7762 if (mddev->safemode == 1) 7763 mddev->safemode = 0; 7764 spin_unlock_irq(&mddev->write_lock); 7765 if (did_change) 7766 sysfs_notify_dirent_safe(mddev->sysfs_state); 7767 } 7768 7769 if (mddev->flags) 7770 md_update_sb(mddev, 0); 7771 7772 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7773 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7774 /* resync/recovery still happening */ 7775 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7776 goto unlock; 7777 } 7778 if (mddev->sync_thread) { 7779 reap_sync_thread(mddev); 7780 goto unlock; 7781 } 7782 /* Set RUNNING before clearing NEEDED to avoid 7783 * any transients in the value of "sync_action". 7784 */ 7785 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7786 /* Clear some bits that don't mean anything, but 7787 * might be left set 7788 */ 7789 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7790 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7791 7792 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7793 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7794 goto unlock; 7795 /* no recovery is running. 7796 * remove any failed drives, then 7797 * add spares if possible. 7798 * Spare are also removed and re-added, to allow 7799 * the personality to fail the re-add. 7800 */ 7801 7802 if (mddev->reshape_position != MaxSector) { 7803 if (mddev->pers->check_reshape == NULL || 7804 mddev->pers->check_reshape(mddev) != 0) 7805 /* Cannot proceed */ 7806 goto unlock; 7807 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7808 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7809 } else if ((spares = remove_and_add_spares(mddev))) { 7810 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7811 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7812 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7813 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7814 } else if (mddev->recovery_cp < MaxSector) { 7815 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7816 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7817 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7818 /* nothing to be done ... */ 7819 goto unlock; 7820 7821 if (mddev->pers->sync_request) { 7822 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 7823 /* We are adding a device or devices to an array 7824 * which has the bitmap stored on all devices. 7825 * So make sure all bitmap pages get written 7826 */ 7827 bitmap_write_all(mddev->bitmap); 7828 } 7829 mddev->sync_thread = md_register_thread(md_do_sync, 7830 mddev, 7831 "resync"); 7832 if (!mddev->sync_thread) { 7833 printk(KERN_ERR "%s: could not start resync" 7834 " thread...\n", 7835 mdname(mddev)); 7836 /* leave the spares where they are, it shouldn't hurt */ 7837 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7838 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7839 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7840 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7841 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7842 } else 7843 md_wakeup_thread(mddev->sync_thread); 7844 sysfs_notify_dirent_safe(mddev->sysfs_action); 7845 md_new_event(mddev); 7846 } 7847 unlock: 7848 if (!mddev->sync_thread) { 7849 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7850 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7851 &mddev->recovery)) 7852 if (mddev->sysfs_action) 7853 sysfs_notify_dirent_safe(mddev->sysfs_action); 7854 } 7855 mddev_unlock(mddev); 7856 } 7857 } 7858 7859 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 7860 { 7861 sysfs_notify_dirent_safe(rdev->sysfs_state); 7862 wait_event_timeout(rdev->blocked_wait, 7863 !test_bit(Blocked, &rdev->flags) && 7864 !test_bit(BlockedBadBlocks, &rdev->flags), 7865 msecs_to_jiffies(5000)); 7866 rdev_dec_pending(rdev, mddev); 7867 } 7868 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7869 7870 void md_finish_reshape(struct mddev *mddev) 7871 { 7872 /* called be personality module when reshape completes. */ 7873 struct md_rdev *rdev; 7874 7875 rdev_for_each(rdev, mddev) { 7876 if (rdev->data_offset > rdev->new_data_offset) 7877 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 7878 else 7879 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 7880 rdev->data_offset = rdev->new_data_offset; 7881 } 7882 } 7883 EXPORT_SYMBOL(md_finish_reshape); 7884 7885 /* Bad block management. 7886 * We can record which blocks on each device are 'bad' and so just 7887 * fail those blocks, or that stripe, rather than the whole device. 7888 * Entries in the bad-block table are 64bits wide. This comprises: 7889 * Length of bad-range, in sectors: 0-511 for lengths 1-512 7890 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 7891 * A 'shift' can be set so that larger blocks are tracked and 7892 * consequently larger devices can be covered. 7893 * 'Acknowledged' flag - 1 bit. - the most significant bit. 7894 * 7895 * Locking of the bad-block table uses a seqlock so md_is_badblock 7896 * might need to retry if it is very unlucky. 7897 * We will sometimes want to check for bad blocks in a bi_end_io function, 7898 * so we use the write_seqlock_irq variant. 7899 * 7900 * When looking for a bad block we specify a range and want to 7901 * know if any block in the range is bad. So we binary-search 7902 * to the last range that starts at-or-before the given endpoint, 7903 * (or "before the sector after the target range") 7904 * then see if it ends after the given start. 7905 * We return 7906 * 0 if there are no known bad blocks in the range 7907 * 1 if there are known bad block which are all acknowledged 7908 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 7909 * plus the start/length of the first bad section we overlap. 7910 */ 7911 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 7912 sector_t *first_bad, int *bad_sectors) 7913 { 7914 int hi; 7915 int lo = 0; 7916 u64 *p = bb->page; 7917 int rv = 0; 7918 sector_t target = s + sectors; 7919 unsigned seq; 7920 7921 if (bb->shift > 0) { 7922 /* round the start down, and the end up */ 7923 s >>= bb->shift; 7924 target += (1<<bb->shift) - 1; 7925 target >>= bb->shift; 7926 sectors = target - s; 7927 } 7928 /* 'target' is now the first block after the bad range */ 7929 7930 retry: 7931 seq = read_seqbegin(&bb->lock); 7932 7933 hi = bb->count; 7934 7935 /* Binary search between lo and hi for 'target' 7936 * i.e. for the last range that starts before 'target' 7937 */ 7938 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 7939 * are known not to be the last range before target. 7940 * VARIANT: hi-lo is the number of possible 7941 * ranges, and decreases until it reaches 1 7942 */ 7943 while (hi - lo > 1) { 7944 int mid = (lo + hi) / 2; 7945 sector_t a = BB_OFFSET(p[mid]); 7946 if (a < target) 7947 /* This could still be the one, earlier ranges 7948 * could not. */ 7949 lo = mid; 7950 else 7951 /* This and later ranges are definitely out. */ 7952 hi = mid; 7953 } 7954 /* 'lo' might be the last that started before target, but 'hi' isn't */ 7955 if (hi > lo) { 7956 /* need to check all range that end after 's' to see if 7957 * any are unacknowledged. 7958 */ 7959 while (lo >= 0 && 7960 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 7961 if (BB_OFFSET(p[lo]) < target) { 7962 /* starts before the end, and finishes after 7963 * the start, so they must overlap 7964 */ 7965 if (rv != -1 && BB_ACK(p[lo])) 7966 rv = 1; 7967 else 7968 rv = -1; 7969 *first_bad = BB_OFFSET(p[lo]); 7970 *bad_sectors = BB_LEN(p[lo]); 7971 } 7972 lo--; 7973 } 7974 } 7975 7976 if (read_seqretry(&bb->lock, seq)) 7977 goto retry; 7978 7979 return rv; 7980 } 7981 EXPORT_SYMBOL_GPL(md_is_badblock); 7982 7983 /* 7984 * Add a range of bad blocks to the table. 7985 * This might extend the table, or might contract it 7986 * if two adjacent ranges can be merged. 7987 * We binary-search to find the 'insertion' point, then 7988 * decide how best to handle it. 7989 */ 7990 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 7991 int acknowledged) 7992 { 7993 u64 *p; 7994 int lo, hi; 7995 int rv = 1; 7996 7997 if (bb->shift < 0) 7998 /* badblocks are disabled */ 7999 return 0; 8000 8001 if (bb->shift) { 8002 /* round the start down, and the end up */ 8003 sector_t next = s + sectors; 8004 s >>= bb->shift; 8005 next += (1<<bb->shift) - 1; 8006 next >>= bb->shift; 8007 sectors = next - s; 8008 } 8009 8010 write_seqlock_irq(&bb->lock); 8011 8012 p = bb->page; 8013 lo = 0; 8014 hi = bb->count; 8015 /* Find the last range that starts at-or-before 's' */ 8016 while (hi - lo > 1) { 8017 int mid = (lo + hi) / 2; 8018 sector_t a = BB_OFFSET(p[mid]); 8019 if (a <= s) 8020 lo = mid; 8021 else 8022 hi = mid; 8023 } 8024 if (hi > lo && BB_OFFSET(p[lo]) > s) 8025 hi = lo; 8026 8027 if (hi > lo) { 8028 /* we found a range that might merge with the start 8029 * of our new range 8030 */ 8031 sector_t a = BB_OFFSET(p[lo]); 8032 sector_t e = a + BB_LEN(p[lo]); 8033 int ack = BB_ACK(p[lo]); 8034 if (e >= s) { 8035 /* Yes, we can merge with a previous range */ 8036 if (s == a && s + sectors >= e) 8037 /* new range covers old */ 8038 ack = acknowledged; 8039 else 8040 ack = ack && acknowledged; 8041 8042 if (e < s + sectors) 8043 e = s + sectors; 8044 if (e - a <= BB_MAX_LEN) { 8045 p[lo] = BB_MAKE(a, e-a, ack); 8046 s = e; 8047 } else { 8048 /* does not all fit in one range, 8049 * make p[lo] maximal 8050 */ 8051 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8052 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8053 s = a + BB_MAX_LEN; 8054 } 8055 sectors = e - s; 8056 } 8057 } 8058 if (sectors && hi < bb->count) { 8059 /* 'hi' points to the first range that starts after 's'. 8060 * Maybe we can merge with the start of that range */ 8061 sector_t a = BB_OFFSET(p[hi]); 8062 sector_t e = a + BB_LEN(p[hi]); 8063 int ack = BB_ACK(p[hi]); 8064 if (a <= s + sectors) { 8065 /* merging is possible */ 8066 if (e <= s + sectors) { 8067 /* full overlap */ 8068 e = s + sectors; 8069 ack = acknowledged; 8070 } else 8071 ack = ack && acknowledged; 8072 8073 a = s; 8074 if (e - a <= BB_MAX_LEN) { 8075 p[hi] = BB_MAKE(a, e-a, ack); 8076 s = e; 8077 } else { 8078 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8079 s = a + BB_MAX_LEN; 8080 } 8081 sectors = e - s; 8082 lo = hi; 8083 hi++; 8084 } 8085 } 8086 if (sectors == 0 && hi < bb->count) { 8087 /* we might be able to combine lo and hi */ 8088 /* Note: 's' is at the end of 'lo' */ 8089 sector_t a = BB_OFFSET(p[hi]); 8090 int lolen = BB_LEN(p[lo]); 8091 int hilen = BB_LEN(p[hi]); 8092 int newlen = lolen + hilen - (s - a); 8093 if (s >= a && newlen < BB_MAX_LEN) { 8094 /* yes, we can combine them */ 8095 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8096 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8097 memmove(p + hi, p + hi + 1, 8098 (bb->count - hi - 1) * 8); 8099 bb->count--; 8100 } 8101 } 8102 while (sectors) { 8103 /* didn't merge (it all). 8104 * Need to add a range just before 'hi' */ 8105 if (bb->count >= MD_MAX_BADBLOCKS) { 8106 /* No room for more */ 8107 rv = 0; 8108 break; 8109 } else { 8110 int this_sectors = sectors; 8111 memmove(p + hi + 1, p + hi, 8112 (bb->count - hi) * 8); 8113 bb->count++; 8114 8115 if (this_sectors > BB_MAX_LEN) 8116 this_sectors = BB_MAX_LEN; 8117 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8118 sectors -= this_sectors; 8119 s += this_sectors; 8120 } 8121 } 8122 8123 bb->changed = 1; 8124 if (!acknowledged) 8125 bb->unacked_exist = 1; 8126 write_sequnlock_irq(&bb->lock); 8127 8128 return rv; 8129 } 8130 8131 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8132 int is_new) 8133 { 8134 int rv; 8135 if (is_new) 8136 s += rdev->new_data_offset; 8137 else 8138 s += rdev->data_offset; 8139 rv = md_set_badblocks(&rdev->badblocks, 8140 s, sectors, 0); 8141 if (rv) { 8142 /* Make sure they get written out promptly */ 8143 sysfs_notify_dirent_safe(rdev->sysfs_state); 8144 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8145 md_wakeup_thread(rdev->mddev->thread); 8146 } 8147 return rv; 8148 } 8149 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8150 8151 /* 8152 * Remove a range of bad blocks from the table. 8153 * This may involve extending the table if we spilt a region, 8154 * but it must not fail. So if the table becomes full, we just 8155 * drop the remove request. 8156 */ 8157 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8158 { 8159 u64 *p; 8160 int lo, hi; 8161 sector_t target = s + sectors; 8162 int rv = 0; 8163 8164 if (bb->shift > 0) { 8165 /* When clearing we round the start up and the end down. 8166 * This should not matter as the shift should align with 8167 * the block size and no rounding should ever be needed. 8168 * However it is better the think a block is bad when it 8169 * isn't than to think a block is not bad when it is. 8170 */ 8171 s += (1<<bb->shift) - 1; 8172 s >>= bb->shift; 8173 target >>= bb->shift; 8174 sectors = target - s; 8175 } 8176 8177 write_seqlock_irq(&bb->lock); 8178 8179 p = bb->page; 8180 lo = 0; 8181 hi = bb->count; 8182 /* Find the last range that starts before 'target' */ 8183 while (hi - lo > 1) { 8184 int mid = (lo + hi) / 2; 8185 sector_t a = BB_OFFSET(p[mid]); 8186 if (a < target) 8187 lo = mid; 8188 else 8189 hi = mid; 8190 } 8191 if (hi > lo) { 8192 /* p[lo] is the last range that could overlap the 8193 * current range. Earlier ranges could also overlap, 8194 * but only this one can overlap the end of the range. 8195 */ 8196 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8197 /* Partial overlap, leave the tail of this range */ 8198 int ack = BB_ACK(p[lo]); 8199 sector_t a = BB_OFFSET(p[lo]); 8200 sector_t end = a + BB_LEN(p[lo]); 8201 8202 if (a < s) { 8203 /* we need to split this range */ 8204 if (bb->count >= MD_MAX_BADBLOCKS) { 8205 rv = 0; 8206 goto out; 8207 } 8208 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8209 bb->count++; 8210 p[lo] = BB_MAKE(a, s-a, ack); 8211 lo++; 8212 } 8213 p[lo] = BB_MAKE(target, end - target, ack); 8214 /* there is no longer an overlap */ 8215 hi = lo; 8216 lo--; 8217 } 8218 while (lo >= 0 && 8219 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8220 /* This range does overlap */ 8221 if (BB_OFFSET(p[lo]) < s) { 8222 /* Keep the early parts of this range. */ 8223 int ack = BB_ACK(p[lo]); 8224 sector_t start = BB_OFFSET(p[lo]); 8225 p[lo] = BB_MAKE(start, s - start, ack); 8226 /* now low doesn't overlap, so.. */ 8227 break; 8228 } 8229 lo--; 8230 } 8231 /* 'lo' is strictly before, 'hi' is strictly after, 8232 * anything between needs to be discarded 8233 */ 8234 if (hi - lo > 1) { 8235 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8236 bb->count -= (hi - lo - 1); 8237 } 8238 } 8239 8240 bb->changed = 1; 8241 out: 8242 write_sequnlock_irq(&bb->lock); 8243 return rv; 8244 } 8245 8246 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8247 int is_new) 8248 { 8249 if (is_new) 8250 s += rdev->new_data_offset; 8251 else 8252 s += rdev->data_offset; 8253 return md_clear_badblocks(&rdev->badblocks, 8254 s, sectors); 8255 } 8256 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8257 8258 /* 8259 * Acknowledge all bad blocks in a list. 8260 * This only succeeds if ->changed is clear. It is used by 8261 * in-kernel metadata updates 8262 */ 8263 void md_ack_all_badblocks(struct badblocks *bb) 8264 { 8265 if (bb->page == NULL || bb->changed) 8266 /* no point even trying */ 8267 return; 8268 write_seqlock_irq(&bb->lock); 8269 8270 if (bb->changed == 0 && bb->unacked_exist) { 8271 u64 *p = bb->page; 8272 int i; 8273 for (i = 0; i < bb->count ; i++) { 8274 if (!BB_ACK(p[i])) { 8275 sector_t start = BB_OFFSET(p[i]); 8276 int len = BB_LEN(p[i]); 8277 p[i] = BB_MAKE(start, len, 1); 8278 } 8279 } 8280 bb->unacked_exist = 0; 8281 } 8282 write_sequnlock_irq(&bb->lock); 8283 } 8284 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8285 8286 /* sysfs access to bad-blocks list. 8287 * We present two files. 8288 * 'bad-blocks' lists sector numbers and lengths of ranges that 8289 * are recorded as bad. The list is truncated to fit within 8290 * the one-page limit of sysfs. 8291 * Writing "sector length" to this file adds an acknowledged 8292 * bad block list. 8293 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8294 * been acknowledged. Writing to this file adds bad blocks 8295 * without acknowledging them. This is largely for testing. 8296 */ 8297 8298 static ssize_t 8299 badblocks_show(struct badblocks *bb, char *page, int unack) 8300 { 8301 size_t len; 8302 int i; 8303 u64 *p = bb->page; 8304 unsigned seq; 8305 8306 if (bb->shift < 0) 8307 return 0; 8308 8309 retry: 8310 seq = read_seqbegin(&bb->lock); 8311 8312 len = 0; 8313 i = 0; 8314 8315 while (len < PAGE_SIZE && i < bb->count) { 8316 sector_t s = BB_OFFSET(p[i]); 8317 unsigned int length = BB_LEN(p[i]); 8318 int ack = BB_ACK(p[i]); 8319 i++; 8320 8321 if (unack && ack) 8322 continue; 8323 8324 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8325 (unsigned long long)s << bb->shift, 8326 length << bb->shift); 8327 } 8328 if (unack && len == 0) 8329 bb->unacked_exist = 0; 8330 8331 if (read_seqretry(&bb->lock, seq)) 8332 goto retry; 8333 8334 return len; 8335 } 8336 8337 #define DO_DEBUG 1 8338 8339 static ssize_t 8340 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8341 { 8342 unsigned long long sector; 8343 int length; 8344 char newline; 8345 #ifdef DO_DEBUG 8346 /* Allow clearing via sysfs *only* for testing/debugging. 8347 * Normally only a successful write may clear a badblock 8348 */ 8349 int clear = 0; 8350 if (page[0] == '-') { 8351 clear = 1; 8352 page++; 8353 } 8354 #endif /* DO_DEBUG */ 8355 8356 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8357 case 3: 8358 if (newline != '\n') 8359 return -EINVAL; 8360 case 2: 8361 if (length <= 0) 8362 return -EINVAL; 8363 break; 8364 default: 8365 return -EINVAL; 8366 } 8367 8368 #ifdef DO_DEBUG 8369 if (clear) { 8370 md_clear_badblocks(bb, sector, length); 8371 return len; 8372 } 8373 #endif /* DO_DEBUG */ 8374 if (md_set_badblocks(bb, sector, length, !unack)) 8375 return len; 8376 else 8377 return -ENOSPC; 8378 } 8379 8380 static int md_notify_reboot(struct notifier_block *this, 8381 unsigned long code, void *x) 8382 { 8383 struct list_head *tmp; 8384 struct mddev *mddev; 8385 int need_delay = 0; 8386 8387 for_each_mddev(mddev, tmp) { 8388 if (mddev_trylock(mddev)) { 8389 if (mddev->pers) 8390 __md_stop_writes(mddev); 8391 mddev->safemode = 2; 8392 mddev_unlock(mddev); 8393 } 8394 need_delay = 1; 8395 } 8396 /* 8397 * certain more exotic SCSI devices are known to be 8398 * volatile wrt too early system reboots. While the 8399 * right place to handle this issue is the given 8400 * driver, we do want to have a safe RAID driver ... 8401 */ 8402 if (need_delay) 8403 mdelay(1000*1); 8404 8405 return NOTIFY_DONE; 8406 } 8407 8408 static struct notifier_block md_notifier = { 8409 .notifier_call = md_notify_reboot, 8410 .next = NULL, 8411 .priority = INT_MAX, /* before any real devices */ 8412 }; 8413 8414 static void md_geninit(void) 8415 { 8416 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8417 8418 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8419 } 8420 8421 static int __init md_init(void) 8422 { 8423 int ret = -ENOMEM; 8424 8425 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8426 if (!md_wq) 8427 goto err_wq; 8428 8429 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8430 if (!md_misc_wq) 8431 goto err_misc_wq; 8432 8433 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8434 goto err_md; 8435 8436 if ((ret = register_blkdev(0, "mdp")) < 0) 8437 goto err_mdp; 8438 mdp_major = ret; 8439 8440 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 8441 md_probe, NULL, NULL); 8442 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8443 md_probe, NULL, NULL); 8444 8445 register_reboot_notifier(&md_notifier); 8446 raid_table_header = register_sysctl_table(raid_root_table); 8447 8448 md_geninit(); 8449 return 0; 8450 8451 err_mdp: 8452 unregister_blkdev(MD_MAJOR, "md"); 8453 err_md: 8454 destroy_workqueue(md_misc_wq); 8455 err_misc_wq: 8456 destroy_workqueue(md_wq); 8457 err_wq: 8458 return ret; 8459 } 8460 8461 #ifndef MODULE 8462 8463 /* 8464 * Searches all registered partitions for autorun RAID arrays 8465 * at boot time. 8466 */ 8467 8468 static LIST_HEAD(all_detected_devices); 8469 struct detected_devices_node { 8470 struct list_head list; 8471 dev_t dev; 8472 }; 8473 8474 void md_autodetect_dev(dev_t dev) 8475 { 8476 struct detected_devices_node *node_detected_dev; 8477 8478 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8479 if (node_detected_dev) { 8480 node_detected_dev->dev = dev; 8481 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8482 } else { 8483 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8484 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8485 } 8486 } 8487 8488 8489 static void autostart_arrays(int part) 8490 { 8491 struct md_rdev *rdev; 8492 struct detected_devices_node *node_detected_dev; 8493 dev_t dev; 8494 int i_scanned, i_passed; 8495 8496 i_scanned = 0; 8497 i_passed = 0; 8498 8499 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8500 8501 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8502 i_scanned++; 8503 node_detected_dev = list_entry(all_detected_devices.next, 8504 struct detected_devices_node, list); 8505 list_del(&node_detected_dev->list); 8506 dev = node_detected_dev->dev; 8507 kfree(node_detected_dev); 8508 rdev = md_import_device(dev,0, 90); 8509 if (IS_ERR(rdev)) 8510 continue; 8511 8512 if (test_bit(Faulty, &rdev->flags)) { 8513 MD_BUG(); 8514 continue; 8515 } 8516 set_bit(AutoDetected, &rdev->flags); 8517 list_add(&rdev->same_set, &pending_raid_disks); 8518 i_passed++; 8519 } 8520 8521 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8522 i_scanned, i_passed); 8523 8524 autorun_devices(part); 8525 } 8526 8527 #endif /* !MODULE */ 8528 8529 static __exit void md_exit(void) 8530 { 8531 struct mddev *mddev; 8532 struct list_head *tmp; 8533 8534 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 8535 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8536 8537 unregister_blkdev(MD_MAJOR,"md"); 8538 unregister_blkdev(mdp_major, "mdp"); 8539 unregister_reboot_notifier(&md_notifier); 8540 unregister_sysctl_table(raid_table_header); 8541 remove_proc_entry("mdstat", NULL); 8542 for_each_mddev(mddev, tmp) { 8543 export_array(mddev); 8544 mddev->hold_active = 0; 8545 } 8546 destroy_workqueue(md_misc_wq); 8547 destroy_workqueue(md_wq); 8548 } 8549 8550 subsys_initcall(md_init); 8551 module_exit(md_exit) 8552 8553 static int get_ro(char *buffer, struct kernel_param *kp) 8554 { 8555 return sprintf(buffer, "%d", start_readonly); 8556 } 8557 static int set_ro(const char *val, struct kernel_param *kp) 8558 { 8559 char *e; 8560 int num = simple_strtoul(val, &e, 10); 8561 if (*val && (*e == '\0' || *e == '\n')) { 8562 start_readonly = num; 8563 return 0; 8564 } 8565 return -EINVAL; 8566 } 8567 8568 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8569 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8570 8571 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8572 8573 EXPORT_SYMBOL(register_md_personality); 8574 EXPORT_SYMBOL(unregister_md_personality); 8575 EXPORT_SYMBOL(md_error); 8576 EXPORT_SYMBOL(md_done_sync); 8577 EXPORT_SYMBOL(md_write_start); 8578 EXPORT_SYMBOL(md_write_end); 8579 EXPORT_SYMBOL(md_register_thread); 8580 EXPORT_SYMBOL(md_unregister_thread); 8581 EXPORT_SYMBOL(md_wakeup_thread); 8582 EXPORT_SYMBOL(md_check_recovery); 8583 MODULE_LICENSE("GPL"); 8584 MODULE_DESCRIPTION("MD RAID framework"); 8585 MODULE_ALIAS("md"); 8586 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8587