xref: /linux/drivers/md/md.c (revision 2c684d892bb2ee31cc48f4a8b91e86a0f15e82f9)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57 
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61 
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69 
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74 
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78 
79 static int remove_and_add_spares(struct mddev *mddev,
80 				 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82 
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101 
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_min ?
107 		mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109 
110 static inline int speed_max(struct mddev *mddev)
111 {
112 	return mddev->sync_speed_max ?
113 		mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115 
116 static struct ctl_table_header *raid_table_header;
117 
118 static struct ctl_table raid_table[] = {
119 	{
120 		.procname	= "speed_limit_min",
121 		.data		= &sysctl_speed_limit_min,
122 		.maxlen		= sizeof(int),
123 		.mode		= S_IRUGO|S_IWUSR,
124 		.proc_handler	= proc_dointvec,
125 	},
126 	{
127 		.procname	= "speed_limit_max",
128 		.data		= &sysctl_speed_limit_max,
129 		.maxlen		= sizeof(int),
130 		.mode		= S_IRUGO|S_IWUSR,
131 		.proc_handler	= proc_dointvec,
132 	},
133 	{ }
134 };
135 
136 static struct ctl_table raid_dir_table[] = {
137 	{
138 		.procname	= "raid",
139 		.maxlen		= 0,
140 		.mode		= S_IRUGO|S_IXUGO,
141 		.child		= raid_table,
142 	},
143 	{ }
144 };
145 
146 static struct ctl_table raid_root_table[] = {
147 	{
148 		.procname	= "dev",
149 		.maxlen		= 0,
150 		.mode		= 0555,
151 		.child		= raid_dir_table,
152 	},
153 	{  }
154 };
155 
156 static const struct block_device_operations md_fops;
157 
158 static int start_readonly;
159 
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163 
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 			    struct mddev *mddev)
166 {
167 	struct bio *b;
168 
169 	if (!mddev || !mddev->bio_set)
170 		return bio_alloc(gfp_mask, nr_iovecs);
171 
172 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 	if (!b)
174 		return NULL;
175 	return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178 
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 			    struct mddev *mddev)
181 {
182 	if (!mddev || !mddev->bio_set)
183 		return bio_clone(bio, gfp_mask);
184 
185 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188 
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 	atomic_inc(&md_event_count);
204 	wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207 
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 	atomic_inc(&md_event_count);
214 	wake_up(&md_event_waiters);
215 }
216 
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223 
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)					\
232 									\
233 	for (({ spin_lock(&all_mddevs_lock);				\
234 		_tmp = all_mddevs.next;					\
235 		_mddev = NULL;});					\
236 	     ({ if (_tmp != &all_mddevs)				\
237 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 		spin_unlock(&all_mddevs_lock);				\
239 		if (_mddev) mddev_put(_mddev);				\
240 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
241 		_tmp != &all_mddevs;});					\
242 	     ({ spin_lock(&all_mddevs_lock);				\
243 		_tmp = _tmp->next;})					\
244 		)
245 
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 	const int rw = bio_data_dir(bio);
256 	struct mddev *mddev = q->queuedata;
257 	unsigned int sectors;
258 	int cpu;
259 
260 	blk_queue_split(q, &bio, q->bio_split);
261 
262 	if (mddev == NULL || mddev->pers == NULL
263 	    || !mddev->ready) {
264 		bio_io_error(bio);
265 		return BLK_QC_T_NONE;
266 	}
267 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268 		if (bio_sectors(bio) != 0)
269 			bio->bi_error = -EROFS;
270 		bio_endio(bio);
271 		return BLK_QC_T_NONE;
272 	}
273 	smp_rmb(); /* Ensure implications of  'active' are visible */
274 	rcu_read_lock();
275 	if (mddev->suspended) {
276 		DEFINE_WAIT(__wait);
277 		for (;;) {
278 			prepare_to_wait(&mddev->sb_wait, &__wait,
279 					TASK_UNINTERRUPTIBLE);
280 			if (!mddev->suspended)
281 				break;
282 			rcu_read_unlock();
283 			schedule();
284 			rcu_read_lock();
285 		}
286 		finish_wait(&mddev->sb_wait, &__wait);
287 	}
288 	atomic_inc(&mddev->active_io);
289 	rcu_read_unlock();
290 
291 	/*
292 	 * save the sectors now since our bio can
293 	 * go away inside make_request
294 	 */
295 	sectors = bio_sectors(bio);
296 	mddev->pers->make_request(mddev, bio);
297 
298 	cpu = part_stat_lock();
299 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
300 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
301 	part_stat_unlock();
302 
303 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
304 		wake_up(&mddev->sb_wait);
305 
306 	return BLK_QC_T_NONE;
307 }
308 
309 /* mddev_suspend makes sure no new requests are submitted
310  * to the device, and that any requests that have been submitted
311  * are completely handled.
312  * Once mddev_detach() is called and completes, the module will be
313  * completely unused.
314  */
315 void mddev_suspend(struct mddev *mddev)
316 {
317 	if (mddev->suspended++)
318 		return;
319 	synchronize_rcu();
320 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
321 	mddev->pers->quiesce(mddev, 1);
322 
323 	del_timer_sync(&mddev->safemode_timer);
324 }
325 EXPORT_SYMBOL_GPL(mddev_suspend);
326 
327 void mddev_resume(struct mddev *mddev)
328 {
329 	if (--mddev->suspended)
330 		return;
331 	wake_up(&mddev->sb_wait);
332 	mddev->pers->quiesce(mddev, 0);
333 
334 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
335 	md_wakeup_thread(mddev->thread);
336 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
337 }
338 EXPORT_SYMBOL_GPL(mddev_resume);
339 
340 int mddev_congested(struct mddev *mddev, int bits)
341 {
342 	struct md_personality *pers = mddev->pers;
343 	int ret = 0;
344 
345 	rcu_read_lock();
346 	if (mddev->suspended)
347 		ret = 1;
348 	else if (pers && pers->congested)
349 		ret = pers->congested(mddev, bits);
350 	rcu_read_unlock();
351 	return ret;
352 }
353 EXPORT_SYMBOL_GPL(mddev_congested);
354 static int md_congested(void *data, int bits)
355 {
356 	struct mddev *mddev = data;
357 	return mddev_congested(mddev, bits);
358 }
359 
360 /*
361  * Generic flush handling for md
362  */
363 
364 static void md_end_flush(struct bio *bio)
365 {
366 	struct md_rdev *rdev = bio->bi_private;
367 	struct mddev *mddev = rdev->mddev;
368 
369 	rdev_dec_pending(rdev, mddev);
370 
371 	if (atomic_dec_and_test(&mddev->flush_pending)) {
372 		/* The pre-request flush has finished */
373 		queue_work(md_wq, &mddev->flush_work);
374 	}
375 	bio_put(bio);
376 }
377 
378 static void md_submit_flush_data(struct work_struct *ws);
379 
380 static void submit_flushes(struct work_struct *ws)
381 {
382 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
383 	struct md_rdev *rdev;
384 
385 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
386 	atomic_set(&mddev->flush_pending, 1);
387 	rcu_read_lock();
388 	rdev_for_each_rcu(rdev, mddev)
389 		if (rdev->raid_disk >= 0 &&
390 		    !test_bit(Faulty, &rdev->flags)) {
391 			/* Take two references, one is dropped
392 			 * when request finishes, one after
393 			 * we reclaim rcu_read_lock
394 			 */
395 			struct bio *bi;
396 			atomic_inc(&rdev->nr_pending);
397 			atomic_inc(&rdev->nr_pending);
398 			rcu_read_unlock();
399 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
400 			bi->bi_end_io = md_end_flush;
401 			bi->bi_private = rdev;
402 			bi->bi_bdev = rdev->bdev;
403 			atomic_inc(&mddev->flush_pending);
404 			submit_bio(WRITE_FLUSH, bi);
405 			rcu_read_lock();
406 			rdev_dec_pending(rdev, mddev);
407 		}
408 	rcu_read_unlock();
409 	if (atomic_dec_and_test(&mddev->flush_pending))
410 		queue_work(md_wq, &mddev->flush_work);
411 }
412 
413 static void md_submit_flush_data(struct work_struct *ws)
414 {
415 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
416 	struct bio *bio = mddev->flush_bio;
417 
418 	if (bio->bi_iter.bi_size == 0)
419 		/* an empty barrier - all done */
420 		bio_endio(bio);
421 	else {
422 		bio->bi_rw &= ~REQ_FLUSH;
423 		mddev->pers->make_request(mddev, bio);
424 	}
425 
426 	mddev->flush_bio = NULL;
427 	wake_up(&mddev->sb_wait);
428 }
429 
430 void md_flush_request(struct mddev *mddev, struct bio *bio)
431 {
432 	spin_lock_irq(&mddev->lock);
433 	wait_event_lock_irq(mddev->sb_wait,
434 			    !mddev->flush_bio,
435 			    mddev->lock);
436 	mddev->flush_bio = bio;
437 	spin_unlock_irq(&mddev->lock);
438 
439 	INIT_WORK(&mddev->flush_work, submit_flushes);
440 	queue_work(md_wq, &mddev->flush_work);
441 }
442 EXPORT_SYMBOL(md_flush_request);
443 
444 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
445 {
446 	struct mddev *mddev = cb->data;
447 	md_wakeup_thread(mddev->thread);
448 	kfree(cb);
449 }
450 EXPORT_SYMBOL(md_unplug);
451 
452 static inline struct mddev *mddev_get(struct mddev *mddev)
453 {
454 	atomic_inc(&mddev->active);
455 	return mddev;
456 }
457 
458 static void mddev_delayed_delete(struct work_struct *ws);
459 
460 static void mddev_put(struct mddev *mddev)
461 {
462 	struct bio_set *bs = NULL;
463 
464 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
465 		return;
466 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
467 	    mddev->ctime == 0 && !mddev->hold_active) {
468 		/* Array is not configured at all, and not held active,
469 		 * so destroy it */
470 		list_del_init(&mddev->all_mddevs);
471 		bs = mddev->bio_set;
472 		mddev->bio_set = NULL;
473 		if (mddev->gendisk) {
474 			/* We did a probe so need to clean up.  Call
475 			 * queue_work inside the spinlock so that
476 			 * flush_workqueue() after mddev_find will
477 			 * succeed in waiting for the work to be done.
478 			 */
479 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
480 			queue_work(md_misc_wq, &mddev->del_work);
481 		} else
482 			kfree(mddev);
483 	}
484 	spin_unlock(&all_mddevs_lock);
485 	if (bs)
486 		bioset_free(bs);
487 }
488 
489 static void md_safemode_timeout(unsigned long data);
490 
491 void mddev_init(struct mddev *mddev)
492 {
493 	mutex_init(&mddev->open_mutex);
494 	mutex_init(&mddev->reconfig_mutex);
495 	mutex_init(&mddev->bitmap_info.mutex);
496 	INIT_LIST_HEAD(&mddev->disks);
497 	INIT_LIST_HEAD(&mddev->all_mddevs);
498 	setup_timer(&mddev->safemode_timer, md_safemode_timeout,
499 		    (unsigned long) mddev);
500 	atomic_set(&mddev->active, 1);
501 	atomic_set(&mddev->openers, 0);
502 	atomic_set(&mddev->active_io, 0);
503 	spin_lock_init(&mddev->lock);
504 	atomic_set(&mddev->flush_pending, 0);
505 	init_waitqueue_head(&mddev->sb_wait);
506 	init_waitqueue_head(&mddev->recovery_wait);
507 	mddev->reshape_position = MaxSector;
508 	mddev->reshape_backwards = 0;
509 	mddev->last_sync_action = "none";
510 	mddev->resync_min = 0;
511 	mddev->resync_max = MaxSector;
512 	mddev->level = LEVEL_NONE;
513 }
514 EXPORT_SYMBOL_GPL(mddev_init);
515 
516 static struct mddev *mddev_find(dev_t unit)
517 {
518 	struct mddev *mddev, *new = NULL;
519 
520 	if (unit && MAJOR(unit) != MD_MAJOR)
521 		unit &= ~((1<<MdpMinorShift)-1);
522 
523  retry:
524 	spin_lock(&all_mddevs_lock);
525 
526 	if (unit) {
527 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
528 			if (mddev->unit == unit) {
529 				mddev_get(mddev);
530 				spin_unlock(&all_mddevs_lock);
531 				kfree(new);
532 				return mddev;
533 			}
534 
535 		if (new) {
536 			list_add(&new->all_mddevs, &all_mddevs);
537 			spin_unlock(&all_mddevs_lock);
538 			new->hold_active = UNTIL_IOCTL;
539 			return new;
540 		}
541 	} else if (new) {
542 		/* find an unused unit number */
543 		static int next_minor = 512;
544 		int start = next_minor;
545 		int is_free = 0;
546 		int dev = 0;
547 		while (!is_free) {
548 			dev = MKDEV(MD_MAJOR, next_minor);
549 			next_minor++;
550 			if (next_minor > MINORMASK)
551 				next_minor = 0;
552 			if (next_minor == start) {
553 				/* Oh dear, all in use. */
554 				spin_unlock(&all_mddevs_lock);
555 				kfree(new);
556 				return NULL;
557 			}
558 
559 			is_free = 1;
560 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
561 				if (mddev->unit == dev) {
562 					is_free = 0;
563 					break;
564 				}
565 		}
566 		new->unit = dev;
567 		new->md_minor = MINOR(dev);
568 		new->hold_active = UNTIL_STOP;
569 		list_add(&new->all_mddevs, &all_mddevs);
570 		spin_unlock(&all_mddevs_lock);
571 		return new;
572 	}
573 	spin_unlock(&all_mddevs_lock);
574 
575 	new = kzalloc(sizeof(*new), GFP_KERNEL);
576 	if (!new)
577 		return NULL;
578 
579 	new->unit = unit;
580 	if (MAJOR(unit) == MD_MAJOR)
581 		new->md_minor = MINOR(unit);
582 	else
583 		new->md_minor = MINOR(unit) >> MdpMinorShift;
584 
585 	mddev_init(new);
586 
587 	goto retry;
588 }
589 
590 static struct attribute_group md_redundancy_group;
591 
592 void mddev_unlock(struct mddev *mddev)
593 {
594 	if (mddev->to_remove) {
595 		/* These cannot be removed under reconfig_mutex as
596 		 * an access to the files will try to take reconfig_mutex
597 		 * while holding the file unremovable, which leads to
598 		 * a deadlock.
599 		 * So hold set sysfs_active while the remove in happeing,
600 		 * and anything else which might set ->to_remove or my
601 		 * otherwise change the sysfs namespace will fail with
602 		 * -EBUSY if sysfs_active is still set.
603 		 * We set sysfs_active under reconfig_mutex and elsewhere
604 		 * test it under the same mutex to ensure its correct value
605 		 * is seen.
606 		 */
607 		struct attribute_group *to_remove = mddev->to_remove;
608 		mddev->to_remove = NULL;
609 		mddev->sysfs_active = 1;
610 		mutex_unlock(&mddev->reconfig_mutex);
611 
612 		if (mddev->kobj.sd) {
613 			if (to_remove != &md_redundancy_group)
614 				sysfs_remove_group(&mddev->kobj, to_remove);
615 			if (mddev->pers == NULL ||
616 			    mddev->pers->sync_request == NULL) {
617 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
618 				if (mddev->sysfs_action)
619 					sysfs_put(mddev->sysfs_action);
620 				mddev->sysfs_action = NULL;
621 			}
622 		}
623 		mddev->sysfs_active = 0;
624 	} else
625 		mutex_unlock(&mddev->reconfig_mutex);
626 
627 	/* As we've dropped the mutex we need a spinlock to
628 	 * make sure the thread doesn't disappear
629 	 */
630 	spin_lock(&pers_lock);
631 	md_wakeup_thread(mddev->thread);
632 	spin_unlock(&pers_lock);
633 }
634 EXPORT_SYMBOL_GPL(mddev_unlock);
635 
636 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
637 {
638 	struct md_rdev *rdev;
639 
640 	rdev_for_each_rcu(rdev, mddev)
641 		if (rdev->desc_nr == nr)
642 			return rdev;
643 
644 	return NULL;
645 }
646 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
647 
648 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
649 {
650 	struct md_rdev *rdev;
651 
652 	rdev_for_each(rdev, mddev)
653 		if (rdev->bdev->bd_dev == dev)
654 			return rdev;
655 
656 	return NULL;
657 }
658 
659 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
660 {
661 	struct md_rdev *rdev;
662 
663 	rdev_for_each_rcu(rdev, mddev)
664 		if (rdev->bdev->bd_dev == dev)
665 			return rdev;
666 
667 	return NULL;
668 }
669 
670 static struct md_personality *find_pers(int level, char *clevel)
671 {
672 	struct md_personality *pers;
673 	list_for_each_entry(pers, &pers_list, list) {
674 		if (level != LEVEL_NONE && pers->level == level)
675 			return pers;
676 		if (strcmp(pers->name, clevel)==0)
677 			return pers;
678 	}
679 	return NULL;
680 }
681 
682 /* return the offset of the super block in 512byte sectors */
683 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
684 {
685 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
686 	return MD_NEW_SIZE_SECTORS(num_sectors);
687 }
688 
689 static int alloc_disk_sb(struct md_rdev *rdev)
690 {
691 	rdev->sb_page = alloc_page(GFP_KERNEL);
692 	if (!rdev->sb_page) {
693 		printk(KERN_ALERT "md: out of memory.\n");
694 		return -ENOMEM;
695 	}
696 
697 	return 0;
698 }
699 
700 void md_rdev_clear(struct md_rdev *rdev)
701 {
702 	if (rdev->sb_page) {
703 		put_page(rdev->sb_page);
704 		rdev->sb_loaded = 0;
705 		rdev->sb_page = NULL;
706 		rdev->sb_start = 0;
707 		rdev->sectors = 0;
708 	}
709 	if (rdev->bb_page) {
710 		put_page(rdev->bb_page);
711 		rdev->bb_page = NULL;
712 	}
713 	kfree(rdev->badblocks.page);
714 	rdev->badblocks.page = NULL;
715 }
716 EXPORT_SYMBOL_GPL(md_rdev_clear);
717 
718 static void super_written(struct bio *bio)
719 {
720 	struct md_rdev *rdev = bio->bi_private;
721 	struct mddev *mddev = rdev->mddev;
722 
723 	if (bio->bi_error) {
724 		printk("md: super_written gets error=%d\n", bio->bi_error);
725 		md_error(mddev, rdev);
726 	}
727 
728 	if (atomic_dec_and_test(&mddev->pending_writes))
729 		wake_up(&mddev->sb_wait);
730 	bio_put(bio);
731 }
732 
733 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
734 		   sector_t sector, int size, struct page *page)
735 {
736 	/* write first size bytes of page to sector of rdev
737 	 * Increment mddev->pending_writes before returning
738 	 * and decrement it on completion, waking up sb_wait
739 	 * if zero is reached.
740 	 * If an error occurred, call md_error
741 	 */
742 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
743 
744 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
745 	bio->bi_iter.bi_sector = sector;
746 	bio_add_page(bio, page, size, 0);
747 	bio->bi_private = rdev;
748 	bio->bi_end_io = super_written;
749 
750 	atomic_inc(&mddev->pending_writes);
751 	submit_bio(WRITE_FLUSH_FUA, bio);
752 }
753 
754 void md_super_wait(struct mddev *mddev)
755 {
756 	/* wait for all superblock writes that were scheduled to complete */
757 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
758 }
759 
760 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
761 		 struct page *page, int rw, bool metadata_op)
762 {
763 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
764 	int ret;
765 
766 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
767 		rdev->meta_bdev : rdev->bdev;
768 	if (metadata_op)
769 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
770 	else if (rdev->mddev->reshape_position != MaxSector &&
771 		 (rdev->mddev->reshape_backwards ==
772 		  (sector >= rdev->mddev->reshape_position)))
773 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
774 	else
775 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
776 	bio_add_page(bio, page, size, 0);
777 	submit_bio_wait(rw, bio);
778 
779 	ret = !bio->bi_error;
780 	bio_put(bio);
781 	return ret;
782 }
783 EXPORT_SYMBOL_GPL(sync_page_io);
784 
785 static int read_disk_sb(struct md_rdev *rdev, int size)
786 {
787 	char b[BDEVNAME_SIZE];
788 
789 	if (rdev->sb_loaded)
790 		return 0;
791 
792 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
793 		goto fail;
794 	rdev->sb_loaded = 1;
795 	return 0;
796 
797 fail:
798 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
799 		bdevname(rdev->bdev,b));
800 	return -EINVAL;
801 }
802 
803 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
804 {
805 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
806 		sb1->set_uuid1 == sb2->set_uuid1 &&
807 		sb1->set_uuid2 == sb2->set_uuid2 &&
808 		sb1->set_uuid3 == sb2->set_uuid3;
809 }
810 
811 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
812 {
813 	int ret;
814 	mdp_super_t *tmp1, *tmp2;
815 
816 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
817 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
818 
819 	if (!tmp1 || !tmp2) {
820 		ret = 0;
821 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
822 		goto abort;
823 	}
824 
825 	*tmp1 = *sb1;
826 	*tmp2 = *sb2;
827 
828 	/*
829 	 * nr_disks is not constant
830 	 */
831 	tmp1->nr_disks = 0;
832 	tmp2->nr_disks = 0;
833 
834 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
835 abort:
836 	kfree(tmp1);
837 	kfree(tmp2);
838 	return ret;
839 }
840 
841 static u32 md_csum_fold(u32 csum)
842 {
843 	csum = (csum & 0xffff) + (csum >> 16);
844 	return (csum & 0xffff) + (csum >> 16);
845 }
846 
847 static unsigned int calc_sb_csum(mdp_super_t *sb)
848 {
849 	u64 newcsum = 0;
850 	u32 *sb32 = (u32*)sb;
851 	int i;
852 	unsigned int disk_csum, csum;
853 
854 	disk_csum = sb->sb_csum;
855 	sb->sb_csum = 0;
856 
857 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
858 		newcsum += sb32[i];
859 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
860 
861 #ifdef CONFIG_ALPHA
862 	/* This used to use csum_partial, which was wrong for several
863 	 * reasons including that different results are returned on
864 	 * different architectures.  It isn't critical that we get exactly
865 	 * the same return value as before (we always csum_fold before
866 	 * testing, and that removes any differences).  However as we
867 	 * know that csum_partial always returned a 16bit value on
868 	 * alphas, do a fold to maximise conformity to previous behaviour.
869 	 */
870 	sb->sb_csum = md_csum_fold(disk_csum);
871 #else
872 	sb->sb_csum = disk_csum;
873 #endif
874 	return csum;
875 }
876 
877 /*
878  * Handle superblock details.
879  * We want to be able to handle multiple superblock formats
880  * so we have a common interface to them all, and an array of
881  * different handlers.
882  * We rely on user-space to write the initial superblock, and support
883  * reading and updating of superblocks.
884  * Interface methods are:
885  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
886  *      loads and validates a superblock on dev.
887  *      if refdev != NULL, compare superblocks on both devices
888  *    Return:
889  *      0 - dev has a superblock that is compatible with refdev
890  *      1 - dev has a superblock that is compatible and newer than refdev
891  *          so dev should be used as the refdev in future
892  *     -EINVAL superblock incompatible or invalid
893  *     -othererror e.g. -EIO
894  *
895  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
896  *      Verify that dev is acceptable into mddev.
897  *       The first time, mddev->raid_disks will be 0, and data from
898  *       dev should be merged in.  Subsequent calls check that dev
899  *       is new enough.  Return 0 or -EINVAL
900  *
901  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
902  *     Update the superblock for rdev with data in mddev
903  *     This does not write to disc.
904  *
905  */
906 
907 struct super_type  {
908 	char		    *name;
909 	struct module	    *owner;
910 	int		    (*load_super)(struct md_rdev *rdev,
911 					  struct md_rdev *refdev,
912 					  int minor_version);
913 	int		    (*validate_super)(struct mddev *mddev,
914 					      struct md_rdev *rdev);
915 	void		    (*sync_super)(struct mddev *mddev,
916 					  struct md_rdev *rdev);
917 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
918 						sector_t num_sectors);
919 	int		    (*allow_new_offset)(struct md_rdev *rdev,
920 						unsigned long long new_offset);
921 };
922 
923 /*
924  * Check that the given mddev has no bitmap.
925  *
926  * This function is called from the run method of all personalities that do not
927  * support bitmaps. It prints an error message and returns non-zero if mddev
928  * has a bitmap. Otherwise, it returns 0.
929  *
930  */
931 int md_check_no_bitmap(struct mddev *mddev)
932 {
933 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
934 		return 0;
935 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
936 		mdname(mddev), mddev->pers->name);
937 	return 1;
938 }
939 EXPORT_SYMBOL(md_check_no_bitmap);
940 
941 /*
942  * load_super for 0.90.0
943  */
944 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
945 {
946 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
947 	mdp_super_t *sb;
948 	int ret;
949 
950 	/*
951 	 * Calculate the position of the superblock (512byte sectors),
952 	 * it's at the end of the disk.
953 	 *
954 	 * It also happens to be a multiple of 4Kb.
955 	 */
956 	rdev->sb_start = calc_dev_sboffset(rdev);
957 
958 	ret = read_disk_sb(rdev, MD_SB_BYTES);
959 	if (ret) return ret;
960 
961 	ret = -EINVAL;
962 
963 	bdevname(rdev->bdev, b);
964 	sb = page_address(rdev->sb_page);
965 
966 	if (sb->md_magic != MD_SB_MAGIC) {
967 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
968 		       b);
969 		goto abort;
970 	}
971 
972 	if (sb->major_version != 0 ||
973 	    sb->minor_version < 90 ||
974 	    sb->minor_version > 91) {
975 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
976 			sb->major_version, sb->minor_version,
977 			b);
978 		goto abort;
979 	}
980 
981 	if (sb->raid_disks <= 0)
982 		goto abort;
983 
984 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
985 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
986 			b);
987 		goto abort;
988 	}
989 
990 	rdev->preferred_minor = sb->md_minor;
991 	rdev->data_offset = 0;
992 	rdev->new_data_offset = 0;
993 	rdev->sb_size = MD_SB_BYTES;
994 	rdev->badblocks.shift = -1;
995 
996 	if (sb->level == LEVEL_MULTIPATH)
997 		rdev->desc_nr = -1;
998 	else
999 		rdev->desc_nr = sb->this_disk.number;
1000 
1001 	if (!refdev) {
1002 		ret = 1;
1003 	} else {
1004 		__u64 ev1, ev2;
1005 		mdp_super_t *refsb = page_address(refdev->sb_page);
1006 		if (!uuid_equal(refsb, sb)) {
1007 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1008 				b, bdevname(refdev->bdev,b2));
1009 			goto abort;
1010 		}
1011 		if (!sb_equal(refsb, sb)) {
1012 			printk(KERN_WARNING "md: %s has same UUID"
1013 			       " but different superblock to %s\n",
1014 			       b, bdevname(refdev->bdev, b2));
1015 			goto abort;
1016 		}
1017 		ev1 = md_event(sb);
1018 		ev2 = md_event(refsb);
1019 		if (ev1 > ev2)
1020 			ret = 1;
1021 		else
1022 			ret = 0;
1023 	}
1024 	rdev->sectors = rdev->sb_start;
1025 	/* Limit to 4TB as metadata cannot record more than that.
1026 	 * (not needed for Linear and RAID0 as metadata doesn't
1027 	 * record this size)
1028 	 */
1029 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1030 		rdev->sectors = (2ULL << 32) - 2;
1031 
1032 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1033 		/* "this cannot possibly happen" ... */
1034 		ret = -EINVAL;
1035 
1036  abort:
1037 	return ret;
1038 }
1039 
1040 /*
1041  * validate_super for 0.90.0
1042  */
1043 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1044 {
1045 	mdp_disk_t *desc;
1046 	mdp_super_t *sb = page_address(rdev->sb_page);
1047 	__u64 ev1 = md_event(sb);
1048 
1049 	rdev->raid_disk = -1;
1050 	clear_bit(Faulty, &rdev->flags);
1051 	clear_bit(In_sync, &rdev->flags);
1052 	clear_bit(Bitmap_sync, &rdev->flags);
1053 	clear_bit(WriteMostly, &rdev->flags);
1054 
1055 	if (mddev->raid_disks == 0) {
1056 		mddev->major_version = 0;
1057 		mddev->minor_version = sb->minor_version;
1058 		mddev->patch_version = sb->patch_version;
1059 		mddev->external = 0;
1060 		mddev->chunk_sectors = sb->chunk_size >> 9;
1061 		mddev->ctime = sb->ctime;
1062 		mddev->utime = sb->utime;
1063 		mddev->level = sb->level;
1064 		mddev->clevel[0] = 0;
1065 		mddev->layout = sb->layout;
1066 		mddev->raid_disks = sb->raid_disks;
1067 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1068 		mddev->events = ev1;
1069 		mddev->bitmap_info.offset = 0;
1070 		mddev->bitmap_info.space = 0;
1071 		/* bitmap can use 60 K after the 4K superblocks */
1072 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1073 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1074 		mddev->reshape_backwards = 0;
1075 
1076 		if (mddev->minor_version >= 91) {
1077 			mddev->reshape_position = sb->reshape_position;
1078 			mddev->delta_disks = sb->delta_disks;
1079 			mddev->new_level = sb->new_level;
1080 			mddev->new_layout = sb->new_layout;
1081 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1082 			if (mddev->delta_disks < 0)
1083 				mddev->reshape_backwards = 1;
1084 		} else {
1085 			mddev->reshape_position = MaxSector;
1086 			mddev->delta_disks = 0;
1087 			mddev->new_level = mddev->level;
1088 			mddev->new_layout = mddev->layout;
1089 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1090 		}
1091 
1092 		if (sb->state & (1<<MD_SB_CLEAN))
1093 			mddev->recovery_cp = MaxSector;
1094 		else {
1095 			if (sb->events_hi == sb->cp_events_hi &&
1096 				sb->events_lo == sb->cp_events_lo) {
1097 				mddev->recovery_cp = sb->recovery_cp;
1098 			} else
1099 				mddev->recovery_cp = 0;
1100 		}
1101 
1102 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1103 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1104 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1105 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1106 
1107 		mddev->max_disks = MD_SB_DISKS;
1108 
1109 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1110 		    mddev->bitmap_info.file == NULL) {
1111 			mddev->bitmap_info.offset =
1112 				mddev->bitmap_info.default_offset;
1113 			mddev->bitmap_info.space =
1114 				mddev->bitmap_info.default_space;
1115 		}
1116 
1117 	} else if (mddev->pers == NULL) {
1118 		/* Insist on good event counter while assembling, except
1119 		 * for spares (which don't need an event count) */
1120 		++ev1;
1121 		if (sb->disks[rdev->desc_nr].state & (
1122 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1123 			if (ev1 < mddev->events)
1124 				return -EINVAL;
1125 	} else if (mddev->bitmap) {
1126 		/* if adding to array with a bitmap, then we can accept an
1127 		 * older device ... but not too old.
1128 		 */
1129 		if (ev1 < mddev->bitmap->events_cleared)
1130 			return 0;
1131 		if (ev1 < mddev->events)
1132 			set_bit(Bitmap_sync, &rdev->flags);
1133 	} else {
1134 		if (ev1 < mddev->events)
1135 			/* just a hot-add of a new device, leave raid_disk at -1 */
1136 			return 0;
1137 	}
1138 
1139 	if (mddev->level != LEVEL_MULTIPATH) {
1140 		desc = sb->disks + rdev->desc_nr;
1141 
1142 		if (desc->state & (1<<MD_DISK_FAULTY))
1143 			set_bit(Faulty, &rdev->flags);
1144 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1145 			    desc->raid_disk < mddev->raid_disks */) {
1146 			set_bit(In_sync, &rdev->flags);
1147 			rdev->raid_disk = desc->raid_disk;
1148 			rdev->saved_raid_disk = desc->raid_disk;
1149 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1150 			/* active but not in sync implies recovery up to
1151 			 * reshape position.  We don't know exactly where
1152 			 * that is, so set to zero for now */
1153 			if (mddev->minor_version >= 91) {
1154 				rdev->recovery_offset = 0;
1155 				rdev->raid_disk = desc->raid_disk;
1156 			}
1157 		}
1158 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1159 			set_bit(WriteMostly, &rdev->flags);
1160 	} else /* MULTIPATH are always insync */
1161 		set_bit(In_sync, &rdev->flags);
1162 	return 0;
1163 }
1164 
1165 /*
1166  * sync_super for 0.90.0
1167  */
1168 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1169 {
1170 	mdp_super_t *sb;
1171 	struct md_rdev *rdev2;
1172 	int next_spare = mddev->raid_disks;
1173 
1174 	/* make rdev->sb match mddev data..
1175 	 *
1176 	 * 1/ zero out disks
1177 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1178 	 * 3/ any empty disks < next_spare become removed
1179 	 *
1180 	 * disks[0] gets initialised to REMOVED because
1181 	 * we cannot be sure from other fields if it has
1182 	 * been initialised or not.
1183 	 */
1184 	int i;
1185 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1186 
1187 	rdev->sb_size = MD_SB_BYTES;
1188 
1189 	sb = page_address(rdev->sb_page);
1190 
1191 	memset(sb, 0, sizeof(*sb));
1192 
1193 	sb->md_magic = MD_SB_MAGIC;
1194 	sb->major_version = mddev->major_version;
1195 	sb->patch_version = mddev->patch_version;
1196 	sb->gvalid_words  = 0; /* ignored */
1197 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1198 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1199 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1200 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1201 
1202 	sb->ctime = mddev->ctime;
1203 	sb->level = mddev->level;
1204 	sb->size = mddev->dev_sectors / 2;
1205 	sb->raid_disks = mddev->raid_disks;
1206 	sb->md_minor = mddev->md_minor;
1207 	sb->not_persistent = 0;
1208 	sb->utime = mddev->utime;
1209 	sb->state = 0;
1210 	sb->events_hi = (mddev->events>>32);
1211 	sb->events_lo = (u32)mddev->events;
1212 
1213 	if (mddev->reshape_position == MaxSector)
1214 		sb->minor_version = 90;
1215 	else {
1216 		sb->minor_version = 91;
1217 		sb->reshape_position = mddev->reshape_position;
1218 		sb->new_level = mddev->new_level;
1219 		sb->delta_disks = mddev->delta_disks;
1220 		sb->new_layout = mddev->new_layout;
1221 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1222 	}
1223 	mddev->minor_version = sb->minor_version;
1224 	if (mddev->in_sync)
1225 	{
1226 		sb->recovery_cp = mddev->recovery_cp;
1227 		sb->cp_events_hi = (mddev->events>>32);
1228 		sb->cp_events_lo = (u32)mddev->events;
1229 		if (mddev->recovery_cp == MaxSector)
1230 			sb->state = (1<< MD_SB_CLEAN);
1231 	} else
1232 		sb->recovery_cp = 0;
1233 
1234 	sb->layout = mddev->layout;
1235 	sb->chunk_size = mddev->chunk_sectors << 9;
1236 
1237 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1238 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1239 
1240 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1241 	rdev_for_each(rdev2, mddev) {
1242 		mdp_disk_t *d;
1243 		int desc_nr;
1244 		int is_active = test_bit(In_sync, &rdev2->flags);
1245 
1246 		if (rdev2->raid_disk >= 0 &&
1247 		    sb->minor_version >= 91)
1248 			/* we have nowhere to store the recovery_offset,
1249 			 * but if it is not below the reshape_position,
1250 			 * we can piggy-back on that.
1251 			 */
1252 			is_active = 1;
1253 		if (rdev2->raid_disk < 0 ||
1254 		    test_bit(Faulty, &rdev2->flags))
1255 			is_active = 0;
1256 		if (is_active)
1257 			desc_nr = rdev2->raid_disk;
1258 		else
1259 			desc_nr = next_spare++;
1260 		rdev2->desc_nr = desc_nr;
1261 		d = &sb->disks[rdev2->desc_nr];
1262 		nr_disks++;
1263 		d->number = rdev2->desc_nr;
1264 		d->major = MAJOR(rdev2->bdev->bd_dev);
1265 		d->minor = MINOR(rdev2->bdev->bd_dev);
1266 		if (is_active)
1267 			d->raid_disk = rdev2->raid_disk;
1268 		else
1269 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1270 		if (test_bit(Faulty, &rdev2->flags))
1271 			d->state = (1<<MD_DISK_FAULTY);
1272 		else if (is_active) {
1273 			d->state = (1<<MD_DISK_ACTIVE);
1274 			if (test_bit(In_sync, &rdev2->flags))
1275 				d->state |= (1<<MD_DISK_SYNC);
1276 			active++;
1277 			working++;
1278 		} else {
1279 			d->state = 0;
1280 			spare++;
1281 			working++;
1282 		}
1283 		if (test_bit(WriteMostly, &rdev2->flags))
1284 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1285 	}
1286 	/* now set the "removed" and "faulty" bits on any missing devices */
1287 	for (i=0 ; i < mddev->raid_disks ; i++) {
1288 		mdp_disk_t *d = &sb->disks[i];
1289 		if (d->state == 0 && d->number == 0) {
1290 			d->number = i;
1291 			d->raid_disk = i;
1292 			d->state = (1<<MD_DISK_REMOVED);
1293 			d->state |= (1<<MD_DISK_FAULTY);
1294 			failed++;
1295 		}
1296 	}
1297 	sb->nr_disks = nr_disks;
1298 	sb->active_disks = active;
1299 	sb->working_disks = working;
1300 	sb->failed_disks = failed;
1301 	sb->spare_disks = spare;
1302 
1303 	sb->this_disk = sb->disks[rdev->desc_nr];
1304 	sb->sb_csum = calc_sb_csum(sb);
1305 }
1306 
1307 /*
1308  * rdev_size_change for 0.90.0
1309  */
1310 static unsigned long long
1311 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1312 {
1313 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1314 		return 0; /* component must fit device */
1315 	if (rdev->mddev->bitmap_info.offset)
1316 		return 0; /* can't move bitmap */
1317 	rdev->sb_start = calc_dev_sboffset(rdev);
1318 	if (!num_sectors || num_sectors > rdev->sb_start)
1319 		num_sectors = rdev->sb_start;
1320 	/* Limit to 4TB as metadata cannot record more than that.
1321 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1322 	 */
1323 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1324 		num_sectors = (2ULL << 32) - 2;
1325 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1326 		       rdev->sb_page);
1327 	md_super_wait(rdev->mddev);
1328 	return num_sectors;
1329 }
1330 
1331 static int
1332 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1333 {
1334 	/* non-zero offset changes not possible with v0.90 */
1335 	return new_offset == 0;
1336 }
1337 
1338 /*
1339  * version 1 superblock
1340  */
1341 
1342 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1343 {
1344 	__le32 disk_csum;
1345 	u32 csum;
1346 	unsigned long long newcsum;
1347 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1348 	__le32 *isuper = (__le32*)sb;
1349 
1350 	disk_csum = sb->sb_csum;
1351 	sb->sb_csum = 0;
1352 	newcsum = 0;
1353 	for (; size >= 4; size -= 4)
1354 		newcsum += le32_to_cpu(*isuper++);
1355 
1356 	if (size == 2)
1357 		newcsum += le16_to_cpu(*(__le16*) isuper);
1358 
1359 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1360 	sb->sb_csum = disk_csum;
1361 	return cpu_to_le32(csum);
1362 }
1363 
1364 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1365 			    int acknowledged);
1366 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1367 {
1368 	struct mdp_superblock_1 *sb;
1369 	int ret;
1370 	sector_t sb_start;
1371 	sector_t sectors;
1372 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1373 	int bmask;
1374 
1375 	/*
1376 	 * Calculate the position of the superblock in 512byte sectors.
1377 	 * It is always aligned to a 4K boundary and
1378 	 * depeding on minor_version, it can be:
1379 	 * 0: At least 8K, but less than 12K, from end of device
1380 	 * 1: At start of device
1381 	 * 2: 4K from start of device.
1382 	 */
1383 	switch(minor_version) {
1384 	case 0:
1385 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1386 		sb_start -= 8*2;
1387 		sb_start &= ~(sector_t)(4*2-1);
1388 		break;
1389 	case 1:
1390 		sb_start = 0;
1391 		break;
1392 	case 2:
1393 		sb_start = 8;
1394 		break;
1395 	default:
1396 		return -EINVAL;
1397 	}
1398 	rdev->sb_start = sb_start;
1399 
1400 	/* superblock is rarely larger than 1K, but it can be larger,
1401 	 * and it is safe to read 4k, so we do that
1402 	 */
1403 	ret = read_disk_sb(rdev, 4096);
1404 	if (ret) return ret;
1405 
1406 	sb = page_address(rdev->sb_page);
1407 
1408 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1409 	    sb->major_version != cpu_to_le32(1) ||
1410 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1411 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1412 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1413 		return -EINVAL;
1414 
1415 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1416 		printk("md: invalid superblock checksum on %s\n",
1417 			bdevname(rdev->bdev,b));
1418 		return -EINVAL;
1419 	}
1420 	if (le64_to_cpu(sb->data_size) < 10) {
1421 		printk("md: data_size too small on %s\n",
1422 		       bdevname(rdev->bdev,b));
1423 		return -EINVAL;
1424 	}
1425 	if (sb->pad0 ||
1426 	    sb->pad3[0] ||
1427 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1428 		/* Some padding is non-zero, might be a new feature */
1429 		return -EINVAL;
1430 
1431 	rdev->preferred_minor = 0xffff;
1432 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1433 	rdev->new_data_offset = rdev->data_offset;
1434 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1435 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1436 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1437 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1438 
1439 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1440 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1441 	if (rdev->sb_size & bmask)
1442 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1443 
1444 	if (minor_version
1445 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1446 		return -EINVAL;
1447 	if (minor_version
1448 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1449 		return -EINVAL;
1450 
1451 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1452 		rdev->desc_nr = -1;
1453 	else
1454 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1455 
1456 	if (!rdev->bb_page) {
1457 		rdev->bb_page = alloc_page(GFP_KERNEL);
1458 		if (!rdev->bb_page)
1459 			return -ENOMEM;
1460 	}
1461 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1462 	    rdev->badblocks.count == 0) {
1463 		/* need to load the bad block list.
1464 		 * Currently we limit it to one page.
1465 		 */
1466 		s32 offset;
1467 		sector_t bb_sector;
1468 		u64 *bbp;
1469 		int i;
1470 		int sectors = le16_to_cpu(sb->bblog_size);
1471 		if (sectors > (PAGE_SIZE / 512))
1472 			return -EINVAL;
1473 		offset = le32_to_cpu(sb->bblog_offset);
1474 		if (offset == 0)
1475 			return -EINVAL;
1476 		bb_sector = (long long)offset;
1477 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1478 				  rdev->bb_page, READ, true))
1479 			return -EIO;
1480 		bbp = (u64 *)page_address(rdev->bb_page);
1481 		rdev->badblocks.shift = sb->bblog_shift;
1482 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1483 			u64 bb = le64_to_cpu(*bbp);
1484 			int count = bb & (0x3ff);
1485 			u64 sector = bb >> 10;
1486 			sector <<= sb->bblog_shift;
1487 			count <<= sb->bblog_shift;
1488 			if (bb + 1 == 0)
1489 				break;
1490 			if (md_set_badblocks(&rdev->badblocks,
1491 					     sector, count, 1) == 0)
1492 				return -EINVAL;
1493 		}
1494 	} else if (sb->bblog_offset != 0)
1495 		rdev->badblocks.shift = 0;
1496 
1497 	if (!refdev) {
1498 		ret = 1;
1499 	} else {
1500 		__u64 ev1, ev2;
1501 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1502 
1503 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1504 		    sb->level != refsb->level ||
1505 		    sb->layout != refsb->layout ||
1506 		    sb->chunksize != refsb->chunksize) {
1507 			printk(KERN_WARNING "md: %s has strangely different"
1508 				" superblock to %s\n",
1509 				bdevname(rdev->bdev,b),
1510 				bdevname(refdev->bdev,b2));
1511 			return -EINVAL;
1512 		}
1513 		ev1 = le64_to_cpu(sb->events);
1514 		ev2 = le64_to_cpu(refsb->events);
1515 
1516 		if (ev1 > ev2)
1517 			ret = 1;
1518 		else
1519 			ret = 0;
1520 	}
1521 	if (minor_version) {
1522 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1523 		sectors -= rdev->data_offset;
1524 	} else
1525 		sectors = rdev->sb_start;
1526 	if (sectors < le64_to_cpu(sb->data_size))
1527 		return -EINVAL;
1528 	rdev->sectors = le64_to_cpu(sb->data_size);
1529 	return ret;
1530 }
1531 
1532 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1533 {
1534 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1535 	__u64 ev1 = le64_to_cpu(sb->events);
1536 
1537 	rdev->raid_disk = -1;
1538 	clear_bit(Faulty, &rdev->flags);
1539 	clear_bit(In_sync, &rdev->flags);
1540 	clear_bit(Bitmap_sync, &rdev->flags);
1541 	clear_bit(WriteMostly, &rdev->flags);
1542 
1543 	if (mddev->raid_disks == 0) {
1544 		mddev->major_version = 1;
1545 		mddev->patch_version = 0;
1546 		mddev->external = 0;
1547 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1548 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1549 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1550 		mddev->level = le32_to_cpu(sb->level);
1551 		mddev->clevel[0] = 0;
1552 		mddev->layout = le32_to_cpu(sb->layout);
1553 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1554 		mddev->dev_sectors = le64_to_cpu(sb->size);
1555 		mddev->events = ev1;
1556 		mddev->bitmap_info.offset = 0;
1557 		mddev->bitmap_info.space = 0;
1558 		/* Default location for bitmap is 1K after superblock
1559 		 * using 3K - total of 4K
1560 		 */
1561 		mddev->bitmap_info.default_offset = 1024 >> 9;
1562 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1563 		mddev->reshape_backwards = 0;
1564 
1565 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1566 		memcpy(mddev->uuid, sb->set_uuid, 16);
1567 
1568 		mddev->max_disks =  (4096-256)/2;
1569 
1570 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1571 		    mddev->bitmap_info.file == NULL) {
1572 			mddev->bitmap_info.offset =
1573 				(__s32)le32_to_cpu(sb->bitmap_offset);
1574 			/* Metadata doesn't record how much space is available.
1575 			 * For 1.0, we assume we can use up to the superblock
1576 			 * if before, else to 4K beyond superblock.
1577 			 * For others, assume no change is possible.
1578 			 */
1579 			if (mddev->minor_version > 0)
1580 				mddev->bitmap_info.space = 0;
1581 			else if (mddev->bitmap_info.offset > 0)
1582 				mddev->bitmap_info.space =
1583 					8 - mddev->bitmap_info.offset;
1584 			else
1585 				mddev->bitmap_info.space =
1586 					-mddev->bitmap_info.offset;
1587 		}
1588 
1589 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1590 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1591 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1592 			mddev->new_level = le32_to_cpu(sb->new_level);
1593 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1594 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1595 			if (mddev->delta_disks < 0 ||
1596 			    (mddev->delta_disks == 0 &&
1597 			     (le32_to_cpu(sb->feature_map)
1598 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1599 				mddev->reshape_backwards = 1;
1600 		} else {
1601 			mddev->reshape_position = MaxSector;
1602 			mddev->delta_disks = 0;
1603 			mddev->new_level = mddev->level;
1604 			mddev->new_layout = mddev->layout;
1605 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1606 		}
1607 
1608 	} else if (mddev->pers == NULL) {
1609 		/* Insist of good event counter while assembling, except for
1610 		 * spares (which don't need an event count) */
1611 		++ev1;
1612 		if (rdev->desc_nr >= 0 &&
1613 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1614 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1615 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1616 			if (ev1 < mddev->events)
1617 				return -EINVAL;
1618 	} else if (mddev->bitmap) {
1619 		/* If adding to array with a bitmap, then we can accept an
1620 		 * older device, but not too old.
1621 		 */
1622 		if (ev1 < mddev->bitmap->events_cleared)
1623 			return 0;
1624 		if (ev1 < mddev->events)
1625 			set_bit(Bitmap_sync, &rdev->flags);
1626 	} else {
1627 		if (ev1 < mddev->events)
1628 			/* just a hot-add of a new device, leave raid_disk at -1 */
1629 			return 0;
1630 	}
1631 	if (mddev->level != LEVEL_MULTIPATH) {
1632 		int role;
1633 		if (rdev->desc_nr < 0 ||
1634 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1635 			role = MD_DISK_ROLE_SPARE;
1636 			rdev->desc_nr = -1;
1637 		} else
1638 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1639 		switch(role) {
1640 		case MD_DISK_ROLE_SPARE: /* spare */
1641 			break;
1642 		case MD_DISK_ROLE_FAULTY: /* faulty */
1643 			set_bit(Faulty, &rdev->flags);
1644 			break;
1645 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1646 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1647 				/* journal device without journal feature */
1648 				printk(KERN_WARNING
1649 				  "md: journal device provided without journal feature, ignoring the device\n");
1650 				return -EINVAL;
1651 			}
1652 			set_bit(Journal, &rdev->flags);
1653 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1654 			if (mddev->recovery_cp == MaxSector)
1655 				set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1656 			rdev->raid_disk = 0;
1657 			break;
1658 		default:
1659 			rdev->saved_raid_disk = role;
1660 			if ((le32_to_cpu(sb->feature_map) &
1661 			     MD_FEATURE_RECOVERY_OFFSET)) {
1662 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1663 				if (!(le32_to_cpu(sb->feature_map) &
1664 				      MD_FEATURE_RECOVERY_BITMAP))
1665 					rdev->saved_raid_disk = -1;
1666 			} else
1667 				set_bit(In_sync, &rdev->flags);
1668 			rdev->raid_disk = role;
1669 			break;
1670 		}
1671 		if (sb->devflags & WriteMostly1)
1672 			set_bit(WriteMostly, &rdev->flags);
1673 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1674 			set_bit(Replacement, &rdev->flags);
1675 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1676 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1677 	} else /* MULTIPATH are always insync */
1678 		set_bit(In_sync, &rdev->flags);
1679 
1680 	return 0;
1681 }
1682 
1683 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1684 {
1685 	struct mdp_superblock_1 *sb;
1686 	struct md_rdev *rdev2;
1687 	int max_dev, i;
1688 	/* make rdev->sb match mddev and rdev data. */
1689 
1690 	sb = page_address(rdev->sb_page);
1691 
1692 	sb->feature_map = 0;
1693 	sb->pad0 = 0;
1694 	sb->recovery_offset = cpu_to_le64(0);
1695 	memset(sb->pad3, 0, sizeof(sb->pad3));
1696 
1697 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1698 	sb->events = cpu_to_le64(mddev->events);
1699 	if (mddev->in_sync)
1700 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1701 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1702 		sb->resync_offset = cpu_to_le64(MaxSector);
1703 	else
1704 		sb->resync_offset = cpu_to_le64(0);
1705 
1706 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1707 
1708 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1709 	sb->size = cpu_to_le64(mddev->dev_sectors);
1710 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1711 	sb->level = cpu_to_le32(mddev->level);
1712 	sb->layout = cpu_to_le32(mddev->layout);
1713 
1714 	if (test_bit(WriteMostly, &rdev->flags))
1715 		sb->devflags |= WriteMostly1;
1716 	else
1717 		sb->devflags &= ~WriteMostly1;
1718 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1719 	sb->data_size = cpu_to_le64(rdev->sectors);
1720 
1721 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1722 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1723 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1724 	}
1725 
1726 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1727 	    !test_bit(In_sync, &rdev->flags)) {
1728 		sb->feature_map |=
1729 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1730 		sb->recovery_offset =
1731 			cpu_to_le64(rdev->recovery_offset);
1732 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1733 			sb->feature_map |=
1734 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1735 	}
1736 	/* Note: recovery_offset and journal_tail share space  */
1737 	if (test_bit(Journal, &rdev->flags))
1738 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1739 	if (test_bit(Replacement, &rdev->flags))
1740 		sb->feature_map |=
1741 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1742 
1743 	if (mddev->reshape_position != MaxSector) {
1744 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1745 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1746 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1747 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1748 		sb->new_level = cpu_to_le32(mddev->new_level);
1749 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1750 		if (mddev->delta_disks == 0 &&
1751 		    mddev->reshape_backwards)
1752 			sb->feature_map
1753 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1754 		if (rdev->new_data_offset != rdev->data_offset) {
1755 			sb->feature_map
1756 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1757 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1758 							     - rdev->data_offset));
1759 		}
1760 	}
1761 
1762 	if (mddev_is_clustered(mddev))
1763 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1764 
1765 	if (rdev->badblocks.count == 0)
1766 		/* Nothing to do for bad blocks*/ ;
1767 	else if (sb->bblog_offset == 0)
1768 		/* Cannot record bad blocks on this device */
1769 		md_error(mddev, rdev);
1770 	else {
1771 		struct badblocks *bb = &rdev->badblocks;
1772 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1773 		u64 *p = bb->page;
1774 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1775 		if (bb->changed) {
1776 			unsigned seq;
1777 
1778 retry:
1779 			seq = read_seqbegin(&bb->lock);
1780 
1781 			memset(bbp, 0xff, PAGE_SIZE);
1782 
1783 			for (i = 0 ; i < bb->count ; i++) {
1784 				u64 internal_bb = p[i];
1785 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1786 						| BB_LEN(internal_bb));
1787 				bbp[i] = cpu_to_le64(store_bb);
1788 			}
1789 			bb->changed = 0;
1790 			if (read_seqretry(&bb->lock, seq))
1791 				goto retry;
1792 
1793 			bb->sector = (rdev->sb_start +
1794 				      (int)le32_to_cpu(sb->bblog_offset));
1795 			bb->size = le16_to_cpu(sb->bblog_size);
1796 		}
1797 	}
1798 
1799 	max_dev = 0;
1800 	rdev_for_each(rdev2, mddev)
1801 		if (rdev2->desc_nr+1 > max_dev)
1802 			max_dev = rdev2->desc_nr+1;
1803 
1804 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1805 		int bmask;
1806 		sb->max_dev = cpu_to_le32(max_dev);
1807 		rdev->sb_size = max_dev * 2 + 256;
1808 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1809 		if (rdev->sb_size & bmask)
1810 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1811 	} else
1812 		max_dev = le32_to_cpu(sb->max_dev);
1813 
1814 	for (i=0; i<max_dev;i++)
1815 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1816 
1817 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1818 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1819 
1820 	rdev_for_each(rdev2, mddev) {
1821 		i = rdev2->desc_nr;
1822 		if (test_bit(Faulty, &rdev2->flags))
1823 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1824 		else if (test_bit(In_sync, &rdev2->flags))
1825 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1826 		else if (test_bit(Journal, &rdev2->flags))
1827 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1828 		else if (rdev2->raid_disk >= 0)
1829 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1830 		else
1831 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1832 	}
1833 
1834 	sb->sb_csum = calc_sb_1_csum(sb);
1835 }
1836 
1837 static unsigned long long
1838 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1839 {
1840 	struct mdp_superblock_1 *sb;
1841 	sector_t max_sectors;
1842 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1843 		return 0; /* component must fit device */
1844 	if (rdev->data_offset != rdev->new_data_offset)
1845 		return 0; /* too confusing */
1846 	if (rdev->sb_start < rdev->data_offset) {
1847 		/* minor versions 1 and 2; superblock before data */
1848 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1849 		max_sectors -= rdev->data_offset;
1850 		if (!num_sectors || num_sectors > max_sectors)
1851 			num_sectors = max_sectors;
1852 	} else if (rdev->mddev->bitmap_info.offset) {
1853 		/* minor version 0 with bitmap we can't move */
1854 		return 0;
1855 	} else {
1856 		/* minor version 0; superblock after data */
1857 		sector_t sb_start;
1858 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1859 		sb_start &= ~(sector_t)(4*2 - 1);
1860 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1861 		if (!num_sectors || num_sectors > max_sectors)
1862 			num_sectors = max_sectors;
1863 		rdev->sb_start = sb_start;
1864 	}
1865 	sb = page_address(rdev->sb_page);
1866 	sb->data_size = cpu_to_le64(num_sectors);
1867 	sb->super_offset = rdev->sb_start;
1868 	sb->sb_csum = calc_sb_1_csum(sb);
1869 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1870 		       rdev->sb_page);
1871 	md_super_wait(rdev->mddev);
1872 	return num_sectors;
1873 
1874 }
1875 
1876 static int
1877 super_1_allow_new_offset(struct md_rdev *rdev,
1878 			 unsigned long long new_offset)
1879 {
1880 	/* All necessary checks on new >= old have been done */
1881 	struct bitmap *bitmap;
1882 	if (new_offset >= rdev->data_offset)
1883 		return 1;
1884 
1885 	/* with 1.0 metadata, there is no metadata to tread on
1886 	 * so we can always move back */
1887 	if (rdev->mddev->minor_version == 0)
1888 		return 1;
1889 
1890 	/* otherwise we must be sure not to step on
1891 	 * any metadata, so stay:
1892 	 * 36K beyond start of superblock
1893 	 * beyond end of badblocks
1894 	 * beyond write-intent bitmap
1895 	 */
1896 	if (rdev->sb_start + (32+4)*2 > new_offset)
1897 		return 0;
1898 	bitmap = rdev->mddev->bitmap;
1899 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1900 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1901 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1902 		return 0;
1903 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1904 		return 0;
1905 
1906 	return 1;
1907 }
1908 
1909 static struct super_type super_types[] = {
1910 	[0] = {
1911 		.name	= "0.90.0",
1912 		.owner	= THIS_MODULE,
1913 		.load_super	    = super_90_load,
1914 		.validate_super	    = super_90_validate,
1915 		.sync_super	    = super_90_sync,
1916 		.rdev_size_change   = super_90_rdev_size_change,
1917 		.allow_new_offset   = super_90_allow_new_offset,
1918 	},
1919 	[1] = {
1920 		.name	= "md-1",
1921 		.owner	= THIS_MODULE,
1922 		.load_super	    = super_1_load,
1923 		.validate_super	    = super_1_validate,
1924 		.sync_super	    = super_1_sync,
1925 		.rdev_size_change   = super_1_rdev_size_change,
1926 		.allow_new_offset   = super_1_allow_new_offset,
1927 	},
1928 };
1929 
1930 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1931 {
1932 	if (mddev->sync_super) {
1933 		mddev->sync_super(mddev, rdev);
1934 		return;
1935 	}
1936 
1937 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1938 
1939 	super_types[mddev->major_version].sync_super(mddev, rdev);
1940 }
1941 
1942 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1943 {
1944 	struct md_rdev *rdev, *rdev2;
1945 
1946 	rcu_read_lock();
1947 	rdev_for_each_rcu(rdev, mddev1) {
1948 		if (test_bit(Faulty, &rdev->flags) ||
1949 		    test_bit(Journal, &rdev->flags) ||
1950 		    rdev->raid_disk == -1)
1951 			continue;
1952 		rdev_for_each_rcu(rdev2, mddev2) {
1953 			if (test_bit(Faulty, &rdev2->flags) ||
1954 			    test_bit(Journal, &rdev2->flags) ||
1955 			    rdev2->raid_disk == -1)
1956 				continue;
1957 			if (rdev->bdev->bd_contains ==
1958 			    rdev2->bdev->bd_contains) {
1959 				rcu_read_unlock();
1960 				return 1;
1961 			}
1962 		}
1963 	}
1964 	rcu_read_unlock();
1965 	return 0;
1966 }
1967 
1968 static LIST_HEAD(pending_raid_disks);
1969 
1970 /*
1971  * Try to register data integrity profile for an mddev
1972  *
1973  * This is called when an array is started and after a disk has been kicked
1974  * from the array. It only succeeds if all working and active component devices
1975  * are integrity capable with matching profiles.
1976  */
1977 int md_integrity_register(struct mddev *mddev)
1978 {
1979 	struct md_rdev *rdev, *reference = NULL;
1980 
1981 	if (list_empty(&mddev->disks))
1982 		return 0; /* nothing to do */
1983 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1984 		return 0; /* shouldn't register, or already is */
1985 	rdev_for_each(rdev, mddev) {
1986 		/* skip spares and non-functional disks */
1987 		if (test_bit(Faulty, &rdev->flags))
1988 			continue;
1989 		if (rdev->raid_disk < 0)
1990 			continue;
1991 		if (!reference) {
1992 			/* Use the first rdev as the reference */
1993 			reference = rdev;
1994 			continue;
1995 		}
1996 		/* does this rdev's profile match the reference profile? */
1997 		if (blk_integrity_compare(reference->bdev->bd_disk,
1998 				rdev->bdev->bd_disk) < 0)
1999 			return -EINVAL;
2000 	}
2001 	if (!reference || !bdev_get_integrity(reference->bdev))
2002 		return 0;
2003 	/*
2004 	 * All component devices are integrity capable and have matching
2005 	 * profiles, register the common profile for the md device.
2006 	 */
2007 	blk_integrity_register(mddev->gendisk,
2008 			       bdev_get_integrity(reference->bdev));
2009 
2010 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2011 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2012 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2013 		       mdname(mddev));
2014 		return -EINVAL;
2015 	}
2016 	return 0;
2017 }
2018 EXPORT_SYMBOL(md_integrity_register);
2019 
2020 /* Disable data integrity if non-capable/non-matching disk is being added */
2021 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2022 {
2023 	struct blk_integrity *bi_rdev;
2024 	struct blk_integrity *bi_mddev;
2025 
2026 	if (!mddev->gendisk)
2027 		return;
2028 
2029 	bi_rdev = bdev_get_integrity(rdev->bdev);
2030 	bi_mddev = blk_get_integrity(mddev->gendisk);
2031 
2032 	if (!bi_mddev) /* nothing to do */
2033 		return;
2034 	if (rdev->raid_disk < 0) /* skip spares */
2035 		return;
2036 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2037 					     rdev->bdev->bd_disk) >= 0)
2038 		return;
2039 	WARN_ON_ONCE(!mddev->suspended);
2040 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2041 	blk_integrity_unregister(mddev->gendisk);
2042 }
2043 EXPORT_SYMBOL(md_integrity_add_rdev);
2044 
2045 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2046 {
2047 	char b[BDEVNAME_SIZE];
2048 	struct kobject *ko;
2049 	int err;
2050 
2051 	/* prevent duplicates */
2052 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2053 		return -EEXIST;
2054 
2055 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2056 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2057 			rdev->sectors < mddev->dev_sectors)) {
2058 		if (mddev->pers) {
2059 			/* Cannot change size, so fail
2060 			 * If mddev->level <= 0, then we don't care
2061 			 * about aligning sizes (e.g. linear)
2062 			 */
2063 			if (mddev->level > 0)
2064 				return -ENOSPC;
2065 		} else
2066 			mddev->dev_sectors = rdev->sectors;
2067 	}
2068 
2069 	/* Verify rdev->desc_nr is unique.
2070 	 * If it is -1, assign a free number, else
2071 	 * check number is not in use
2072 	 */
2073 	rcu_read_lock();
2074 	if (rdev->desc_nr < 0) {
2075 		int choice = 0;
2076 		if (mddev->pers)
2077 			choice = mddev->raid_disks;
2078 		while (md_find_rdev_nr_rcu(mddev, choice))
2079 			choice++;
2080 		rdev->desc_nr = choice;
2081 	} else {
2082 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2083 			rcu_read_unlock();
2084 			return -EBUSY;
2085 		}
2086 	}
2087 	rcu_read_unlock();
2088 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2089 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2090 		       mdname(mddev), mddev->max_disks);
2091 		return -EBUSY;
2092 	}
2093 	bdevname(rdev->bdev,b);
2094 	strreplace(b, '/', '!');
2095 
2096 	rdev->mddev = mddev;
2097 	printk(KERN_INFO "md: bind<%s>\n", b);
2098 
2099 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2100 		goto fail;
2101 
2102 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2103 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2104 		/* failure here is OK */;
2105 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2106 
2107 	list_add_rcu(&rdev->same_set, &mddev->disks);
2108 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2109 
2110 	/* May as well allow recovery to be retried once */
2111 	mddev->recovery_disabled++;
2112 
2113 	return 0;
2114 
2115  fail:
2116 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2117 	       b, mdname(mddev));
2118 	return err;
2119 }
2120 
2121 static void md_delayed_delete(struct work_struct *ws)
2122 {
2123 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2124 	kobject_del(&rdev->kobj);
2125 	kobject_put(&rdev->kobj);
2126 }
2127 
2128 static void unbind_rdev_from_array(struct md_rdev *rdev)
2129 {
2130 	char b[BDEVNAME_SIZE];
2131 
2132 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2133 	list_del_rcu(&rdev->same_set);
2134 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2135 	rdev->mddev = NULL;
2136 	sysfs_remove_link(&rdev->kobj, "block");
2137 	sysfs_put(rdev->sysfs_state);
2138 	rdev->sysfs_state = NULL;
2139 	rdev->badblocks.count = 0;
2140 	/* We need to delay this, otherwise we can deadlock when
2141 	 * writing to 'remove' to "dev/state".  We also need
2142 	 * to delay it due to rcu usage.
2143 	 */
2144 	synchronize_rcu();
2145 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2146 	kobject_get(&rdev->kobj);
2147 	queue_work(md_misc_wq, &rdev->del_work);
2148 }
2149 
2150 /*
2151  * prevent the device from being mounted, repartitioned or
2152  * otherwise reused by a RAID array (or any other kernel
2153  * subsystem), by bd_claiming the device.
2154  */
2155 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2156 {
2157 	int err = 0;
2158 	struct block_device *bdev;
2159 	char b[BDEVNAME_SIZE];
2160 
2161 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2162 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2163 	if (IS_ERR(bdev)) {
2164 		printk(KERN_ERR "md: could not open %s.\n",
2165 			__bdevname(dev, b));
2166 		return PTR_ERR(bdev);
2167 	}
2168 	rdev->bdev = bdev;
2169 	return err;
2170 }
2171 
2172 static void unlock_rdev(struct md_rdev *rdev)
2173 {
2174 	struct block_device *bdev = rdev->bdev;
2175 	rdev->bdev = NULL;
2176 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2177 }
2178 
2179 void md_autodetect_dev(dev_t dev);
2180 
2181 static void export_rdev(struct md_rdev *rdev)
2182 {
2183 	char b[BDEVNAME_SIZE];
2184 
2185 	printk(KERN_INFO "md: export_rdev(%s)\n",
2186 		bdevname(rdev->bdev,b));
2187 	md_rdev_clear(rdev);
2188 #ifndef MODULE
2189 	if (test_bit(AutoDetected, &rdev->flags))
2190 		md_autodetect_dev(rdev->bdev->bd_dev);
2191 #endif
2192 	unlock_rdev(rdev);
2193 	kobject_put(&rdev->kobj);
2194 }
2195 
2196 void md_kick_rdev_from_array(struct md_rdev *rdev)
2197 {
2198 	unbind_rdev_from_array(rdev);
2199 	export_rdev(rdev);
2200 }
2201 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2202 
2203 static void export_array(struct mddev *mddev)
2204 {
2205 	struct md_rdev *rdev;
2206 
2207 	while (!list_empty(&mddev->disks)) {
2208 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2209 					same_set);
2210 		md_kick_rdev_from_array(rdev);
2211 	}
2212 	mddev->raid_disks = 0;
2213 	mddev->major_version = 0;
2214 }
2215 
2216 static void sync_sbs(struct mddev *mddev, int nospares)
2217 {
2218 	/* Update each superblock (in-memory image), but
2219 	 * if we are allowed to, skip spares which already
2220 	 * have the right event counter, or have one earlier
2221 	 * (which would mean they aren't being marked as dirty
2222 	 * with the rest of the array)
2223 	 */
2224 	struct md_rdev *rdev;
2225 	rdev_for_each(rdev, mddev) {
2226 		if (rdev->sb_events == mddev->events ||
2227 		    (nospares &&
2228 		     rdev->raid_disk < 0 &&
2229 		     rdev->sb_events+1 == mddev->events)) {
2230 			/* Don't update this superblock */
2231 			rdev->sb_loaded = 2;
2232 		} else {
2233 			sync_super(mddev, rdev);
2234 			rdev->sb_loaded = 1;
2235 		}
2236 	}
2237 }
2238 
2239 static bool does_sb_need_changing(struct mddev *mddev)
2240 {
2241 	struct md_rdev *rdev;
2242 	struct mdp_superblock_1 *sb;
2243 	int role;
2244 
2245 	/* Find a good rdev */
2246 	rdev_for_each(rdev, mddev)
2247 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2248 			break;
2249 
2250 	/* No good device found. */
2251 	if (!rdev)
2252 		return false;
2253 
2254 	sb = page_address(rdev->sb_page);
2255 	/* Check if a device has become faulty or a spare become active */
2256 	rdev_for_each(rdev, mddev) {
2257 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2258 		/* Device activated? */
2259 		if (role == 0xffff && rdev->raid_disk >=0 &&
2260 		    !test_bit(Faulty, &rdev->flags))
2261 			return true;
2262 		/* Device turned faulty? */
2263 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2264 			return true;
2265 	}
2266 
2267 	/* Check if any mddev parameters have changed */
2268 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2269 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2270 	    (mddev->layout != le64_to_cpu(sb->layout)) ||
2271 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2272 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2273 		return true;
2274 
2275 	return false;
2276 }
2277 
2278 void md_update_sb(struct mddev *mddev, int force_change)
2279 {
2280 	struct md_rdev *rdev;
2281 	int sync_req;
2282 	int nospares = 0;
2283 	int any_badblocks_changed = 0;
2284 	int ret = -1;
2285 
2286 	if (mddev->ro) {
2287 		if (force_change)
2288 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2289 		return;
2290 	}
2291 
2292 	if (mddev_is_clustered(mddev)) {
2293 		if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2294 			force_change = 1;
2295 		ret = md_cluster_ops->metadata_update_start(mddev);
2296 		/* Has someone else has updated the sb */
2297 		if (!does_sb_need_changing(mddev)) {
2298 			if (ret == 0)
2299 				md_cluster_ops->metadata_update_cancel(mddev);
2300 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2301 			return;
2302 		}
2303 	}
2304 repeat:
2305 	/* First make sure individual recovery_offsets are correct */
2306 	rdev_for_each(rdev, mddev) {
2307 		if (rdev->raid_disk >= 0 &&
2308 		    mddev->delta_disks >= 0 &&
2309 		    !test_bit(Journal, &rdev->flags) &&
2310 		    !test_bit(In_sync, &rdev->flags) &&
2311 		    mddev->curr_resync_completed > rdev->recovery_offset)
2312 				rdev->recovery_offset = mddev->curr_resync_completed;
2313 
2314 	}
2315 	if (!mddev->persistent) {
2316 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2317 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2318 		if (!mddev->external) {
2319 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2320 			rdev_for_each(rdev, mddev) {
2321 				if (rdev->badblocks.changed) {
2322 					rdev->badblocks.changed = 0;
2323 					md_ack_all_badblocks(&rdev->badblocks);
2324 					md_error(mddev, rdev);
2325 				}
2326 				clear_bit(Blocked, &rdev->flags);
2327 				clear_bit(BlockedBadBlocks, &rdev->flags);
2328 				wake_up(&rdev->blocked_wait);
2329 			}
2330 		}
2331 		wake_up(&mddev->sb_wait);
2332 		return;
2333 	}
2334 
2335 	spin_lock(&mddev->lock);
2336 
2337 	mddev->utime = get_seconds();
2338 
2339 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2340 		force_change = 1;
2341 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2342 		/* just a clean<-> dirty transition, possibly leave spares alone,
2343 		 * though if events isn't the right even/odd, we will have to do
2344 		 * spares after all
2345 		 */
2346 		nospares = 1;
2347 	if (force_change)
2348 		nospares = 0;
2349 	if (mddev->degraded)
2350 		/* If the array is degraded, then skipping spares is both
2351 		 * dangerous and fairly pointless.
2352 		 * Dangerous because a device that was removed from the array
2353 		 * might have a event_count that still looks up-to-date,
2354 		 * so it can be re-added without a resync.
2355 		 * Pointless because if there are any spares to skip,
2356 		 * then a recovery will happen and soon that array won't
2357 		 * be degraded any more and the spare can go back to sleep then.
2358 		 */
2359 		nospares = 0;
2360 
2361 	sync_req = mddev->in_sync;
2362 
2363 	/* If this is just a dirty<->clean transition, and the array is clean
2364 	 * and 'events' is odd, we can roll back to the previous clean state */
2365 	if (nospares
2366 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2367 	    && mddev->can_decrease_events
2368 	    && mddev->events != 1) {
2369 		mddev->events--;
2370 		mddev->can_decrease_events = 0;
2371 	} else {
2372 		/* otherwise we have to go forward and ... */
2373 		mddev->events ++;
2374 		mddev->can_decrease_events = nospares;
2375 	}
2376 
2377 	/*
2378 	 * This 64-bit counter should never wrap.
2379 	 * Either we are in around ~1 trillion A.C., assuming
2380 	 * 1 reboot per second, or we have a bug...
2381 	 */
2382 	WARN_ON(mddev->events == 0);
2383 
2384 	rdev_for_each(rdev, mddev) {
2385 		if (rdev->badblocks.changed)
2386 			any_badblocks_changed++;
2387 		if (test_bit(Faulty, &rdev->flags))
2388 			set_bit(FaultRecorded, &rdev->flags);
2389 	}
2390 
2391 	sync_sbs(mddev, nospares);
2392 	spin_unlock(&mddev->lock);
2393 
2394 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2395 		 mdname(mddev), mddev->in_sync);
2396 
2397 	bitmap_update_sb(mddev->bitmap);
2398 	rdev_for_each(rdev, mddev) {
2399 		char b[BDEVNAME_SIZE];
2400 
2401 		if (rdev->sb_loaded != 1)
2402 			continue; /* no noise on spare devices */
2403 
2404 		if (!test_bit(Faulty, &rdev->flags)) {
2405 			md_super_write(mddev,rdev,
2406 				       rdev->sb_start, rdev->sb_size,
2407 				       rdev->sb_page);
2408 			pr_debug("md: (write) %s's sb offset: %llu\n",
2409 				 bdevname(rdev->bdev, b),
2410 				 (unsigned long long)rdev->sb_start);
2411 			rdev->sb_events = mddev->events;
2412 			if (rdev->badblocks.size) {
2413 				md_super_write(mddev, rdev,
2414 					       rdev->badblocks.sector,
2415 					       rdev->badblocks.size << 9,
2416 					       rdev->bb_page);
2417 				rdev->badblocks.size = 0;
2418 			}
2419 
2420 		} else
2421 			pr_debug("md: %s (skipping faulty)\n",
2422 				 bdevname(rdev->bdev, b));
2423 
2424 		if (mddev->level == LEVEL_MULTIPATH)
2425 			/* only need to write one superblock... */
2426 			break;
2427 	}
2428 	md_super_wait(mddev);
2429 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2430 
2431 	spin_lock(&mddev->lock);
2432 	if (mddev->in_sync != sync_req ||
2433 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2434 		/* have to write it out again */
2435 		spin_unlock(&mddev->lock);
2436 		goto repeat;
2437 	}
2438 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2439 	spin_unlock(&mddev->lock);
2440 	wake_up(&mddev->sb_wait);
2441 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2442 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2443 
2444 	rdev_for_each(rdev, mddev) {
2445 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2446 			clear_bit(Blocked, &rdev->flags);
2447 
2448 		if (any_badblocks_changed)
2449 			md_ack_all_badblocks(&rdev->badblocks);
2450 		clear_bit(BlockedBadBlocks, &rdev->flags);
2451 		wake_up(&rdev->blocked_wait);
2452 	}
2453 
2454 	if (mddev_is_clustered(mddev) && ret == 0)
2455 		md_cluster_ops->metadata_update_finish(mddev);
2456 }
2457 EXPORT_SYMBOL(md_update_sb);
2458 
2459 static int add_bound_rdev(struct md_rdev *rdev)
2460 {
2461 	struct mddev *mddev = rdev->mddev;
2462 	int err = 0;
2463 
2464 	if (!mddev->pers->hot_remove_disk) {
2465 		/* If there is hot_add_disk but no hot_remove_disk
2466 		 * then added disks for geometry changes,
2467 		 * and should be added immediately.
2468 		 */
2469 		super_types[mddev->major_version].
2470 			validate_super(mddev, rdev);
2471 		err = mddev->pers->hot_add_disk(mddev, rdev);
2472 		if (err) {
2473 			unbind_rdev_from_array(rdev);
2474 			export_rdev(rdev);
2475 			return err;
2476 		}
2477 	}
2478 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2479 
2480 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2481 	if (mddev->degraded)
2482 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2483 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2484 	md_new_event(mddev);
2485 	md_wakeup_thread(mddev->thread);
2486 	return 0;
2487 }
2488 
2489 /* words written to sysfs files may, or may not, be \n terminated.
2490  * We want to accept with case. For this we use cmd_match.
2491  */
2492 static int cmd_match(const char *cmd, const char *str)
2493 {
2494 	/* See if cmd, written into a sysfs file, matches
2495 	 * str.  They must either be the same, or cmd can
2496 	 * have a trailing newline
2497 	 */
2498 	while (*cmd && *str && *cmd == *str) {
2499 		cmd++;
2500 		str++;
2501 	}
2502 	if (*cmd == '\n')
2503 		cmd++;
2504 	if (*str || *cmd)
2505 		return 0;
2506 	return 1;
2507 }
2508 
2509 struct rdev_sysfs_entry {
2510 	struct attribute attr;
2511 	ssize_t (*show)(struct md_rdev *, char *);
2512 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2513 };
2514 
2515 static ssize_t
2516 state_show(struct md_rdev *rdev, char *page)
2517 {
2518 	char *sep = "";
2519 	size_t len = 0;
2520 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2521 
2522 	if (test_bit(Faulty, &flags) ||
2523 	    rdev->badblocks.unacked_exist) {
2524 		len+= sprintf(page+len, "%sfaulty",sep);
2525 		sep = ",";
2526 	}
2527 	if (test_bit(In_sync, &flags)) {
2528 		len += sprintf(page+len, "%sin_sync",sep);
2529 		sep = ",";
2530 	}
2531 	if (test_bit(Journal, &flags)) {
2532 		len += sprintf(page+len, "%sjournal",sep);
2533 		sep = ",";
2534 	}
2535 	if (test_bit(WriteMostly, &flags)) {
2536 		len += sprintf(page+len, "%swrite_mostly",sep);
2537 		sep = ",";
2538 	}
2539 	if (test_bit(Blocked, &flags) ||
2540 	    (rdev->badblocks.unacked_exist
2541 	     && !test_bit(Faulty, &flags))) {
2542 		len += sprintf(page+len, "%sblocked", sep);
2543 		sep = ",";
2544 	}
2545 	if (!test_bit(Faulty, &flags) &&
2546 	    !test_bit(Journal, &flags) &&
2547 	    !test_bit(In_sync, &flags)) {
2548 		len += sprintf(page+len, "%sspare", sep);
2549 		sep = ",";
2550 	}
2551 	if (test_bit(WriteErrorSeen, &flags)) {
2552 		len += sprintf(page+len, "%swrite_error", sep);
2553 		sep = ",";
2554 	}
2555 	if (test_bit(WantReplacement, &flags)) {
2556 		len += sprintf(page+len, "%swant_replacement", sep);
2557 		sep = ",";
2558 	}
2559 	if (test_bit(Replacement, &flags)) {
2560 		len += sprintf(page+len, "%sreplacement", sep);
2561 		sep = ",";
2562 	}
2563 
2564 	return len+sprintf(page+len, "\n");
2565 }
2566 
2567 static ssize_t
2568 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2569 {
2570 	/* can write
2571 	 *  faulty  - simulates an error
2572 	 *  remove  - disconnects the device
2573 	 *  writemostly - sets write_mostly
2574 	 *  -writemostly - clears write_mostly
2575 	 *  blocked - sets the Blocked flags
2576 	 *  -blocked - clears the Blocked and possibly simulates an error
2577 	 *  insync - sets Insync providing device isn't active
2578 	 *  -insync - clear Insync for a device with a slot assigned,
2579 	 *            so that it gets rebuilt based on bitmap
2580 	 *  write_error - sets WriteErrorSeen
2581 	 *  -write_error - clears WriteErrorSeen
2582 	 */
2583 	int err = -EINVAL;
2584 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2585 		md_error(rdev->mddev, rdev);
2586 		if (test_bit(Faulty, &rdev->flags))
2587 			err = 0;
2588 		else
2589 			err = -EBUSY;
2590 	} else if (cmd_match(buf, "remove")) {
2591 		if (rdev->raid_disk >= 0)
2592 			err = -EBUSY;
2593 		else {
2594 			struct mddev *mddev = rdev->mddev;
2595 			err = 0;
2596 			if (mddev_is_clustered(mddev))
2597 				err = md_cluster_ops->remove_disk(mddev, rdev);
2598 
2599 			if (err == 0) {
2600 				md_kick_rdev_from_array(rdev);
2601 				if (mddev->pers)
2602 					md_update_sb(mddev, 1);
2603 				md_new_event(mddev);
2604 			}
2605 		}
2606 	} else if (cmd_match(buf, "writemostly")) {
2607 		set_bit(WriteMostly, &rdev->flags);
2608 		err = 0;
2609 	} else if (cmd_match(buf, "-writemostly")) {
2610 		clear_bit(WriteMostly, &rdev->flags);
2611 		err = 0;
2612 	} else if (cmd_match(buf, "blocked")) {
2613 		set_bit(Blocked, &rdev->flags);
2614 		err = 0;
2615 	} else if (cmd_match(buf, "-blocked")) {
2616 		if (!test_bit(Faulty, &rdev->flags) &&
2617 		    rdev->badblocks.unacked_exist) {
2618 			/* metadata handler doesn't understand badblocks,
2619 			 * so we need to fail the device
2620 			 */
2621 			md_error(rdev->mddev, rdev);
2622 		}
2623 		clear_bit(Blocked, &rdev->flags);
2624 		clear_bit(BlockedBadBlocks, &rdev->flags);
2625 		wake_up(&rdev->blocked_wait);
2626 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2627 		md_wakeup_thread(rdev->mddev->thread);
2628 
2629 		err = 0;
2630 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2631 		set_bit(In_sync, &rdev->flags);
2632 		err = 0;
2633 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2634 		   !test_bit(Journal, &rdev->flags)) {
2635 		if (rdev->mddev->pers == NULL) {
2636 			clear_bit(In_sync, &rdev->flags);
2637 			rdev->saved_raid_disk = rdev->raid_disk;
2638 			rdev->raid_disk = -1;
2639 			err = 0;
2640 		}
2641 	} else if (cmd_match(buf, "write_error")) {
2642 		set_bit(WriteErrorSeen, &rdev->flags);
2643 		err = 0;
2644 	} else if (cmd_match(buf, "-write_error")) {
2645 		clear_bit(WriteErrorSeen, &rdev->flags);
2646 		err = 0;
2647 	} else if (cmd_match(buf, "want_replacement")) {
2648 		/* Any non-spare device that is not a replacement can
2649 		 * become want_replacement at any time, but we then need to
2650 		 * check if recovery is needed.
2651 		 */
2652 		if (rdev->raid_disk >= 0 &&
2653 		    !test_bit(Journal, &rdev->flags) &&
2654 		    !test_bit(Replacement, &rdev->flags))
2655 			set_bit(WantReplacement, &rdev->flags);
2656 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2657 		md_wakeup_thread(rdev->mddev->thread);
2658 		err = 0;
2659 	} else if (cmd_match(buf, "-want_replacement")) {
2660 		/* Clearing 'want_replacement' is always allowed.
2661 		 * Once replacements starts it is too late though.
2662 		 */
2663 		err = 0;
2664 		clear_bit(WantReplacement, &rdev->flags);
2665 	} else if (cmd_match(buf, "replacement")) {
2666 		/* Can only set a device as a replacement when array has not
2667 		 * yet been started.  Once running, replacement is automatic
2668 		 * from spares, or by assigning 'slot'.
2669 		 */
2670 		if (rdev->mddev->pers)
2671 			err = -EBUSY;
2672 		else {
2673 			set_bit(Replacement, &rdev->flags);
2674 			err = 0;
2675 		}
2676 	} else if (cmd_match(buf, "-replacement")) {
2677 		/* Similarly, can only clear Replacement before start */
2678 		if (rdev->mddev->pers)
2679 			err = -EBUSY;
2680 		else {
2681 			clear_bit(Replacement, &rdev->flags);
2682 			err = 0;
2683 		}
2684 	} else if (cmd_match(buf, "re-add")) {
2685 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2686 			/* clear_bit is performed _after_ all the devices
2687 			 * have their local Faulty bit cleared. If any writes
2688 			 * happen in the meantime in the local node, they
2689 			 * will land in the local bitmap, which will be synced
2690 			 * by this node eventually
2691 			 */
2692 			if (!mddev_is_clustered(rdev->mddev) ||
2693 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2694 				clear_bit(Faulty, &rdev->flags);
2695 				err = add_bound_rdev(rdev);
2696 			}
2697 		} else
2698 			err = -EBUSY;
2699 	}
2700 	if (!err)
2701 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2702 	return err ? err : len;
2703 }
2704 static struct rdev_sysfs_entry rdev_state =
2705 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2706 
2707 static ssize_t
2708 errors_show(struct md_rdev *rdev, char *page)
2709 {
2710 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2711 }
2712 
2713 static ssize_t
2714 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2715 {
2716 	unsigned int n;
2717 	int rv;
2718 
2719 	rv = kstrtouint(buf, 10, &n);
2720 	if (rv < 0)
2721 		return rv;
2722 	atomic_set(&rdev->corrected_errors, n);
2723 	return len;
2724 }
2725 static struct rdev_sysfs_entry rdev_errors =
2726 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2727 
2728 static ssize_t
2729 slot_show(struct md_rdev *rdev, char *page)
2730 {
2731 	if (test_bit(Journal, &rdev->flags))
2732 		return sprintf(page, "journal\n");
2733 	else if (rdev->raid_disk < 0)
2734 		return sprintf(page, "none\n");
2735 	else
2736 		return sprintf(page, "%d\n", rdev->raid_disk);
2737 }
2738 
2739 static ssize_t
2740 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2741 {
2742 	int slot;
2743 	int err;
2744 
2745 	if (test_bit(Journal, &rdev->flags))
2746 		return -EBUSY;
2747 	if (strncmp(buf, "none", 4)==0)
2748 		slot = -1;
2749 	else {
2750 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
2751 		if (err < 0)
2752 			return err;
2753 	}
2754 	if (rdev->mddev->pers && slot == -1) {
2755 		/* Setting 'slot' on an active array requires also
2756 		 * updating the 'rd%d' link, and communicating
2757 		 * with the personality with ->hot_*_disk.
2758 		 * For now we only support removing
2759 		 * failed/spare devices.  This normally happens automatically,
2760 		 * but not when the metadata is externally managed.
2761 		 */
2762 		if (rdev->raid_disk == -1)
2763 			return -EEXIST;
2764 		/* personality does all needed checks */
2765 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2766 			return -EINVAL;
2767 		clear_bit(Blocked, &rdev->flags);
2768 		remove_and_add_spares(rdev->mddev, rdev);
2769 		if (rdev->raid_disk >= 0)
2770 			return -EBUSY;
2771 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2772 		md_wakeup_thread(rdev->mddev->thread);
2773 	} else if (rdev->mddev->pers) {
2774 		/* Activating a spare .. or possibly reactivating
2775 		 * if we ever get bitmaps working here.
2776 		 */
2777 		int err;
2778 
2779 		if (rdev->raid_disk != -1)
2780 			return -EBUSY;
2781 
2782 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2783 			return -EBUSY;
2784 
2785 		if (rdev->mddev->pers->hot_add_disk == NULL)
2786 			return -EINVAL;
2787 
2788 		if (slot >= rdev->mddev->raid_disks &&
2789 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2790 			return -ENOSPC;
2791 
2792 		rdev->raid_disk = slot;
2793 		if (test_bit(In_sync, &rdev->flags))
2794 			rdev->saved_raid_disk = slot;
2795 		else
2796 			rdev->saved_raid_disk = -1;
2797 		clear_bit(In_sync, &rdev->flags);
2798 		clear_bit(Bitmap_sync, &rdev->flags);
2799 		err = rdev->mddev->pers->
2800 			hot_add_disk(rdev->mddev, rdev);
2801 		if (err) {
2802 			rdev->raid_disk = -1;
2803 			return err;
2804 		} else
2805 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2806 		if (sysfs_link_rdev(rdev->mddev, rdev))
2807 			/* failure here is OK */;
2808 		/* don't wakeup anyone, leave that to userspace. */
2809 	} else {
2810 		if (slot >= rdev->mddev->raid_disks &&
2811 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2812 			return -ENOSPC;
2813 		rdev->raid_disk = slot;
2814 		/* assume it is working */
2815 		clear_bit(Faulty, &rdev->flags);
2816 		clear_bit(WriteMostly, &rdev->flags);
2817 		set_bit(In_sync, &rdev->flags);
2818 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2819 	}
2820 	return len;
2821 }
2822 
2823 static struct rdev_sysfs_entry rdev_slot =
2824 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2825 
2826 static ssize_t
2827 offset_show(struct md_rdev *rdev, char *page)
2828 {
2829 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2830 }
2831 
2832 static ssize_t
2833 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2834 {
2835 	unsigned long long offset;
2836 	if (kstrtoull(buf, 10, &offset) < 0)
2837 		return -EINVAL;
2838 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2839 		return -EBUSY;
2840 	if (rdev->sectors && rdev->mddev->external)
2841 		/* Must set offset before size, so overlap checks
2842 		 * can be sane */
2843 		return -EBUSY;
2844 	rdev->data_offset = offset;
2845 	rdev->new_data_offset = offset;
2846 	return len;
2847 }
2848 
2849 static struct rdev_sysfs_entry rdev_offset =
2850 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2851 
2852 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2853 {
2854 	return sprintf(page, "%llu\n",
2855 		       (unsigned long long)rdev->new_data_offset);
2856 }
2857 
2858 static ssize_t new_offset_store(struct md_rdev *rdev,
2859 				const char *buf, size_t len)
2860 {
2861 	unsigned long long new_offset;
2862 	struct mddev *mddev = rdev->mddev;
2863 
2864 	if (kstrtoull(buf, 10, &new_offset) < 0)
2865 		return -EINVAL;
2866 
2867 	if (mddev->sync_thread ||
2868 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2869 		return -EBUSY;
2870 	if (new_offset == rdev->data_offset)
2871 		/* reset is always permitted */
2872 		;
2873 	else if (new_offset > rdev->data_offset) {
2874 		/* must not push array size beyond rdev_sectors */
2875 		if (new_offset - rdev->data_offset
2876 		    + mddev->dev_sectors > rdev->sectors)
2877 				return -E2BIG;
2878 	}
2879 	/* Metadata worries about other space details. */
2880 
2881 	/* decreasing the offset is inconsistent with a backwards
2882 	 * reshape.
2883 	 */
2884 	if (new_offset < rdev->data_offset &&
2885 	    mddev->reshape_backwards)
2886 		return -EINVAL;
2887 	/* Increasing offset is inconsistent with forwards
2888 	 * reshape.  reshape_direction should be set to
2889 	 * 'backwards' first.
2890 	 */
2891 	if (new_offset > rdev->data_offset &&
2892 	    !mddev->reshape_backwards)
2893 		return -EINVAL;
2894 
2895 	if (mddev->pers && mddev->persistent &&
2896 	    !super_types[mddev->major_version]
2897 	    .allow_new_offset(rdev, new_offset))
2898 		return -E2BIG;
2899 	rdev->new_data_offset = new_offset;
2900 	if (new_offset > rdev->data_offset)
2901 		mddev->reshape_backwards = 1;
2902 	else if (new_offset < rdev->data_offset)
2903 		mddev->reshape_backwards = 0;
2904 
2905 	return len;
2906 }
2907 static struct rdev_sysfs_entry rdev_new_offset =
2908 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2909 
2910 static ssize_t
2911 rdev_size_show(struct md_rdev *rdev, char *page)
2912 {
2913 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2914 }
2915 
2916 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2917 {
2918 	/* check if two start/length pairs overlap */
2919 	if (s1+l1 <= s2)
2920 		return 0;
2921 	if (s2+l2 <= s1)
2922 		return 0;
2923 	return 1;
2924 }
2925 
2926 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2927 {
2928 	unsigned long long blocks;
2929 	sector_t new;
2930 
2931 	if (kstrtoull(buf, 10, &blocks) < 0)
2932 		return -EINVAL;
2933 
2934 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2935 		return -EINVAL; /* sector conversion overflow */
2936 
2937 	new = blocks * 2;
2938 	if (new != blocks * 2)
2939 		return -EINVAL; /* unsigned long long to sector_t overflow */
2940 
2941 	*sectors = new;
2942 	return 0;
2943 }
2944 
2945 static ssize_t
2946 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2947 {
2948 	struct mddev *my_mddev = rdev->mddev;
2949 	sector_t oldsectors = rdev->sectors;
2950 	sector_t sectors;
2951 
2952 	if (test_bit(Journal, &rdev->flags))
2953 		return -EBUSY;
2954 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2955 		return -EINVAL;
2956 	if (rdev->data_offset != rdev->new_data_offset)
2957 		return -EINVAL; /* too confusing */
2958 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2959 		if (my_mddev->persistent) {
2960 			sectors = super_types[my_mddev->major_version].
2961 				rdev_size_change(rdev, sectors);
2962 			if (!sectors)
2963 				return -EBUSY;
2964 		} else if (!sectors)
2965 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2966 				rdev->data_offset;
2967 		if (!my_mddev->pers->resize)
2968 			/* Cannot change size for RAID0 or Linear etc */
2969 			return -EINVAL;
2970 	}
2971 	if (sectors < my_mddev->dev_sectors)
2972 		return -EINVAL; /* component must fit device */
2973 
2974 	rdev->sectors = sectors;
2975 	if (sectors > oldsectors && my_mddev->external) {
2976 		/* Need to check that all other rdevs with the same
2977 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2978 		 * the rdev lists safely.
2979 		 * This check does not provide a hard guarantee, it
2980 		 * just helps avoid dangerous mistakes.
2981 		 */
2982 		struct mddev *mddev;
2983 		int overlap = 0;
2984 		struct list_head *tmp;
2985 
2986 		rcu_read_lock();
2987 		for_each_mddev(mddev, tmp) {
2988 			struct md_rdev *rdev2;
2989 
2990 			rdev_for_each(rdev2, mddev)
2991 				if (rdev->bdev == rdev2->bdev &&
2992 				    rdev != rdev2 &&
2993 				    overlaps(rdev->data_offset, rdev->sectors,
2994 					     rdev2->data_offset,
2995 					     rdev2->sectors)) {
2996 					overlap = 1;
2997 					break;
2998 				}
2999 			if (overlap) {
3000 				mddev_put(mddev);
3001 				break;
3002 			}
3003 		}
3004 		rcu_read_unlock();
3005 		if (overlap) {
3006 			/* Someone else could have slipped in a size
3007 			 * change here, but doing so is just silly.
3008 			 * We put oldsectors back because we *know* it is
3009 			 * safe, and trust userspace not to race with
3010 			 * itself
3011 			 */
3012 			rdev->sectors = oldsectors;
3013 			return -EBUSY;
3014 		}
3015 	}
3016 	return len;
3017 }
3018 
3019 static struct rdev_sysfs_entry rdev_size =
3020 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3021 
3022 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3023 {
3024 	unsigned long long recovery_start = rdev->recovery_offset;
3025 
3026 	if (test_bit(In_sync, &rdev->flags) ||
3027 	    recovery_start == MaxSector)
3028 		return sprintf(page, "none\n");
3029 
3030 	return sprintf(page, "%llu\n", recovery_start);
3031 }
3032 
3033 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3034 {
3035 	unsigned long long recovery_start;
3036 
3037 	if (cmd_match(buf, "none"))
3038 		recovery_start = MaxSector;
3039 	else if (kstrtoull(buf, 10, &recovery_start))
3040 		return -EINVAL;
3041 
3042 	if (rdev->mddev->pers &&
3043 	    rdev->raid_disk >= 0)
3044 		return -EBUSY;
3045 
3046 	rdev->recovery_offset = recovery_start;
3047 	if (recovery_start == MaxSector)
3048 		set_bit(In_sync, &rdev->flags);
3049 	else
3050 		clear_bit(In_sync, &rdev->flags);
3051 	return len;
3052 }
3053 
3054 static struct rdev_sysfs_entry rdev_recovery_start =
3055 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3056 
3057 static ssize_t
3058 badblocks_show(struct badblocks *bb, char *page, int unack);
3059 static ssize_t
3060 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3061 
3062 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3063 {
3064 	return badblocks_show(&rdev->badblocks, page, 0);
3065 }
3066 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3067 {
3068 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3069 	/* Maybe that ack was all we needed */
3070 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3071 		wake_up(&rdev->blocked_wait);
3072 	return rv;
3073 }
3074 static struct rdev_sysfs_entry rdev_bad_blocks =
3075 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3076 
3077 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3078 {
3079 	return badblocks_show(&rdev->badblocks, page, 1);
3080 }
3081 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3082 {
3083 	return badblocks_store(&rdev->badblocks, page, len, 1);
3084 }
3085 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3086 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3087 
3088 static struct attribute *rdev_default_attrs[] = {
3089 	&rdev_state.attr,
3090 	&rdev_errors.attr,
3091 	&rdev_slot.attr,
3092 	&rdev_offset.attr,
3093 	&rdev_new_offset.attr,
3094 	&rdev_size.attr,
3095 	&rdev_recovery_start.attr,
3096 	&rdev_bad_blocks.attr,
3097 	&rdev_unack_bad_blocks.attr,
3098 	NULL,
3099 };
3100 static ssize_t
3101 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3102 {
3103 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3104 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3105 
3106 	if (!entry->show)
3107 		return -EIO;
3108 	if (!rdev->mddev)
3109 		return -EBUSY;
3110 	return entry->show(rdev, page);
3111 }
3112 
3113 static ssize_t
3114 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3115 	      const char *page, size_t length)
3116 {
3117 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3118 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3119 	ssize_t rv;
3120 	struct mddev *mddev = rdev->mddev;
3121 
3122 	if (!entry->store)
3123 		return -EIO;
3124 	if (!capable(CAP_SYS_ADMIN))
3125 		return -EACCES;
3126 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3127 	if (!rv) {
3128 		if (rdev->mddev == NULL)
3129 			rv = -EBUSY;
3130 		else
3131 			rv = entry->store(rdev, page, length);
3132 		mddev_unlock(mddev);
3133 	}
3134 	return rv;
3135 }
3136 
3137 static void rdev_free(struct kobject *ko)
3138 {
3139 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3140 	kfree(rdev);
3141 }
3142 static const struct sysfs_ops rdev_sysfs_ops = {
3143 	.show		= rdev_attr_show,
3144 	.store		= rdev_attr_store,
3145 };
3146 static struct kobj_type rdev_ktype = {
3147 	.release	= rdev_free,
3148 	.sysfs_ops	= &rdev_sysfs_ops,
3149 	.default_attrs	= rdev_default_attrs,
3150 };
3151 
3152 int md_rdev_init(struct md_rdev *rdev)
3153 {
3154 	rdev->desc_nr = -1;
3155 	rdev->saved_raid_disk = -1;
3156 	rdev->raid_disk = -1;
3157 	rdev->flags = 0;
3158 	rdev->data_offset = 0;
3159 	rdev->new_data_offset = 0;
3160 	rdev->sb_events = 0;
3161 	rdev->last_read_error.tv_sec  = 0;
3162 	rdev->last_read_error.tv_nsec = 0;
3163 	rdev->sb_loaded = 0;
3164 	rdev->bb_page = NULL;
3165 	atomic_set(&rdev->nr_pending, 0);
3166 	atomic_set(&rdev->read_errors, 0);
3167 	atomic_set(&rdev->corrected_errors, 0);
3168 
3169 	INIT_LIST_HEAD(&rdev->same_set);
3170 	init_waitqueue_head(&rdev->blocked_wait);
3171 
3172 	/* Add space to store bad block list.
3173 	 * This reserves the space even on arrays where it cannot
3174 	 * be used - I wonder if that matters
3175 	 */
3176 	rdev->badblocks.count = 0;
3177 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3178 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3179 	seqlock_init(&rdev->badblocks.lock);
3180 	if (rdev->badblocks.page == NULL)
3181 		return -ENOMEM;
3182 
3183 	return 0;
3184 }
3185 EXPORT_SYMBOL_GPL(md_rdev_init);
3186 /*
3187  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3188  *
3189  * mark the device faulty if:
3190  *
3191  *   - the device is nonexistent (zero size)
3192  *   - the device has no valid superblock
3193  *
3194  * a faulty rdev _never_ has rdev->sb set.
3195  */
3196 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3197 {
3198 	char b[BDEVNAME_SIZE];
3199 	int err;
3200 	struct md_rdev *rdev;
3201 	sector_t size;
3202 
3203 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3204 	if (!rdev) {
3205 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3206 		return ERR_PTR(-ENOMEM);
3207 	}
3208 
3209 	err = md_rdev_init(rdev);
3210 	if (err)
3211 		goto abort_free;
3212 	err = alloc_disk_sb(rdev);
3213 	if (err)
3214 		goto abort_free;
3215 
3216 	err = lock_rdev(rdev, newdev, super_format == -2);
3217 	if (err)
3218 		goto abort_free;
3219 
3220 	kobject_init(&rdev->kobj, &rdev_ktype);
3221 
3222 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3223 	if (!size) {
3224 		printk(KERN_WARNING
3225 			"md: %s has zero or unknown size, marking faulty!\n",
3226 			bdevname(rdev->bdev,b));
3227 		err = -EINVAL;
3228 		goto abort_free;
3229 	}
3230 
3231 	if (super_format >= 0) {
3232 		err = super_types[super_format].
3233 			load_super(rdev, NULL, super_minor);
3234 		if (err == -EINVAL) {
3235 			printk(KERN_WARNING
3236 				"md: %s does not have a valid v%d.%d "
3237 			       "superblock, not importing!\n",
3238 				bdevname(rdev->bdev,b),
3239 			       super_format, super_minor);
3240 			goto abort_free;
3241 		}
3242 		if (err < 0) {
3243 			printk(KERN_WARNING
3244 				"md: could not read %s's sb, not importing!\n",
3245 				bdevname(rdev->bdev,b));
3246 			goto abort_free;
3247 		}
3248 	}
3249 
3250 	return rdev;
3251 
3252 abort_free:
3253 	if (rdev->bdev)
3254 		unlock_rdev(rdev);
3255 	md_rdev_clear(rdev);
3256 	kfree(rdev);
3257 	return ERR_PTR(err);
3258 }
3259 
3260 /*
3261  * Check a full RAID array for plausibility
3262  */
3263 
3264 static void analyze_sbs(struct mddev *mddev)
3265 {
3266 	int i;
3267 	struct md_rdev *rdev, *freshest, *tmp;
3268 	char b[BDEVNAME_SIZE];
3269 
3270 	freshest = NULL;
3271 	rdev_for_each_safe(rdev, tmp, mddev)
3272 		switch (super_types[mddev->major_version].
3273 			load_super(rdev, freshest, mddev->minor_version)) {
3274 		case 1:
3275 			freshest = rdev;
3276 			break;
3277 		case 0:
3278 			break;
3279 		default:
3280 			printk( KERN_ERR \
3281 				"md: fatal superblock inconsistency in %s"
3282 				" -- removing from array\n",
3283 				bdevname(rdev->bdev,b));
3284 			md_kick_rdev_from_array(rdev);
3285 		}
3286 
3287 	super_types[mddev->major_version].
3288 		validate_super(mddev, freshest);
3289 
3290 	i = 0;
3291 	rdev_for_each_safe(rdev, tmp, mddev) {
3292 		if (mddev->max_disks &&
3293 		    (rdev->desc_nr >= mddev->max_disks ||
3294 		     i > mddev->max_disks)) {
3295 			printk(KERN_WARNING
3296 			       "md: %s: %s: only %d devices permitted\n",
3297 			       mdname(mddev), bdevname(rdev->bdev, b),
3298 			       mddev->max_disks);
3299 			md_kick_rdev_from_array(rdev);
3300 			continue;
3301 		}
3302 		if (rdev != freshest) {
3303 			if (super_types[mddev->major_version].
3304 			    validate_super(mddev, rdev)) {
3305 				printk(KERN_WARNING "md: kicking non-fresh %s"
3306 					" from array!\n",
3307 					bdevname(rdev->bdev,b));
3308 				md_kick_rdev_from_array(rdev);
3309 				continue;
3310 			}
3311 		}
3312 		if (mddev->level == LEVEL_MULTIPATH) {
3313 			rdev->desc_nr = i++;
3314 			rdev->raid_disk = rdev->desc_nr;
3315 			set_bit(In_sync, &rdev->flags);
3316 		} else if (rdev->raid_disk >=
3317 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3318 			   !test_bit(Journal, &rdev->flags)) {
3319 			rdev->raid_disk = -1;
3320 			clear_bit(In_sync, &rdev->flags);
3321 		}
3322 	}
3323 }
3324 
3325 /* Read a fixed-point number.
3326  * Numbers in sysfs attributes should be in "standard" units where
3327  * possible, so time should be in seconds.
3328  * However we internally use a a much smaller unit such as
3329  * milliseconds or jiffies.
3330  * This function takes a decimal number with a possible fractional
3331  * component, and produces an integer which is the result of
3332  * multiplying that number by 10^'scale'.
3333  * all without any floating-point arithmetic.
3334  */
3335 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3336 {
3337 	unsigned long result = 0;
3338 	long decimals = -1;
3339 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3340 		if (*cp == '.')
3341 			decimals = 0;
3342 		else if (decimals < scale) {
3343 			unsigned int value;
3344 			value = *cp - '0';
3345 			result = result * 10 + value;
3346 			if (decimals >= 0)
3347 				decimals++;
3348 		}
3349 		cp++;
3350 	}
3351 	if (*cp == '\n')
3352 		cp++;
3353 	if (*cp)
3354 		return -EINVAL;
3355 	if (decimals < 0)
3356 		decimals = 0;
3357 	while (decimals < scale) {
3358 		result *= 10;
3359 		decimals ++;
3360 	}
3361 	*res = result;
3362 	return 0;
3363 }
3364 
3365 static ssize_t
3366 safe_delay_show(struct mddev *mddev, char *page)
3367 {
3368 	int msec = (mddev->safemode_delay*1000)/HZ;
3369 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3370 }
3371 static ssize_t
3372 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3373 {
3374 	unsigned long msec;
3375 
3376 	if (mddev_is_clustered(mddev)) {
3377 		pr_info("md: Safemode is disabled for clustered mode\n");
3378 		return -EINVAL;
3379 	}
3380 
3381 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3382 		return -EINVAL;
3383 	if (msec == 0)
3384 		mddev->safemode_delay = 0;
3385 	else {
3386 		unsigned long old_delay = mddev->safemode_delay;
3387 		unsigned long new_delay = (msec*HZ)/1000;
3388 
3389 		if (new_delay == 0)
3390 			new_delay = 1;
3391 		mddev->safemode_delay = new_delay;
3392 		if (new_delay < old_delay || old_delay == 0)
3393 			mod_timer(&mddev->safemode_timer, jiffies+1);
3394 	}
3395 	return len;
3396 }
3397 static struct md_sysfs_entry md_safe_delay =
3398 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3399 
3400 static ssize_t
3401 level_show(struct mddev *mddev, char *page)
3402 {
3403 	struct md_personality *p;
3404 	int ret;
3405 	spin_lock(&mddev->lock);
3406 	p = mddev->pers;
3407 	if (p)
3408 		ret = sprintf(page, "%s\n", p->name);
3409 	else if (mddev->clevel[0])
3410 		ret = sprintf(page, "%s\n", mddev->clevel);
3411 	else if (mddev->level != LEVEL_NONE)
3412 		ret = sprintf(page, "%d\n", mddev->level);
3413 	else
3414 		ret = 0;
3415 	spin_unlock(&mddev->lock);
3416 	return ret;
3417 }
3418 
3419 static ssize_t
3420 level_store(struct mddev *mddev, const char *buf, size_t len)
3421 {
3422 	char clevel[16];
3423 	ssize_t rv;
3424 	size_t slen = len;
3425 	struct md_personality *pers, *oldpers;
3426 	long level;
3427 	void *priv, *oldpriv;
3428 	struct md_rdev *rdev;
3429 
3430 	if (slen == 0 || slen >= sizeof(clevel))
3431 		return -EINVAL;
3432 
3433 	rv = mddev_lock(mddev);
3434 	if (rv)
3435 		return rv;
3436 
3437 	if (mddev->pers == NULL) {
3438 		strncpy(mddev->clevel, buf, slen);
3439 		if (mddev->clevel[slen-1] == '\n')
3440 			slen--;
3441 		mddev->clevel[slen] = 0;
3442 		mddev->level = LEVEL_NONE;
3443 		rv = len;
3444 		goto out_unlock;
3445 	}
3446 	rv = -EROFS;
3447 	if (mddev->ro)
3448 		goto out_unlock;
3449 
3450 	/* request to change the personality.  Need to ensure:
3451 	 *  - array is not engaged in resync/recovery/reshape
3452 	 *  - old personality can be suspended
3453 	 *  - new personality will access other array.
3454 	 */
3455 
3456 	rv = -EBUSY;
3457 	if (mddev->sync_thread ||
3458 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3459 	    mddev->reshape_position != MaxSector ||
3460 	    mddev->sysfs_active)
3461 		goto out_unlock;
3462 
3463 	rv = -EINVAL;
3464 	if (!mddev->pers->quiesce) {
3465 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3466 		       mdname(mddev), mddev->pers->name);
3467 		goto out_unlock;
3468 	}
3469 
3470 	/* Now find the new personality */
3471 	strncpy(clevel, buf, slen);
3472 	if (clevel[slen-1] == '\n')
3473 		slen--;
3474 	clevel[slen] = 0;
3475 	if (kstrtol(clevel, 10, &level))
3476 		level = LEVEL_NONE;
3477 
3478 	if (request_module("md-%s", clevel) != 0)
3479 		request_module("md-level-%s", clevel);
3480 	spin_lock(&pers_lock);
3481 	pers = find_pers(level, clevel);
3482 	if (!pers || !try_module_get(pers->owner)) {
3483 		spin_unlock(&pers_lock);
3484 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3485 		rv = -EINVAL;
3486 		goto out_unlock;
3487 	}
3488 	spin_unlock(&pers_lock);
3489 
3490 	if (pers == mddev->pers) {
3491 		/* Nothing to do! */
3492 		module_put(pers->owner);
3493 		rv = len;
3494 		goto out_unlock;
3495 	}
3496 	if (!pers->takeover) {
3497 		module_put(pers->owner);
3498 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3499 		       mdname(mddev), clevel);
3500 		rv = -EINVAL;
3501 		goto out_unlock;
3502 	}
3503 
3504 	rdev_for_each(rdev, mddev)
3505 		rdev->new_raid_disk = rdev->raid_disk;
3506 
3507 	/* ->takeover must set new_* and/or delta_disks
3508 	 * if it succeeds, and may set them when it fails.
3509 	 */
3510 	priv = pers->takeover(mddev);
3511 	if (IS_ERR(priv)) {
3512 		mddev->new_level = mddev->level;
3513 		mddev->new_layout = mddev->layout;
3514 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3515 		mddev->raid_disks -= mddev->delta_disks;
3516 		mddev->delta_disks = 0;
3517 		mddev->reshape_backwards = 0;
3518 		module_put(pers->owner);
3519 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3520 		       mdname(mddev), clevel);
3521 		rv = PTR_ERR(priv);
3522 		goto out_unlock;
3523 	}
3524 
3525 	/* Looks like we have a winner */
3526 	mddev_suspend(mddev);
3527 	mddev_detach(mddev);
3528 
3529 	spin_lock(&mddev->lock);
3530 	oldpers = mddev->pers;
3531 	oldpriv = mddev->private;
3532 	mddev->pers = pers;
3533 	mddev->private = priv;
3534 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3535 	mddev->level = mddev->new_level;
3536 	mddev->layout = mddev->new_layout;
3537 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3538 	mddev->delta_disks = 0;
3539 	mddev->reshape_backwards = 0;
3540 	mddev->degraded = 0;
3541 	spin_unlock(&mddev->lock);
3542 
3543 	if (oldpers->sync_request == NULL &&
3544 	    mddev->external) {
3545 		/* We are converting from a no-redundancy array
3546 		 * to a redundancy array and metadata is managed
3547 		 * externally so we need to be sure that writes
3548 		 * won't block due to a need to transition
3549 		 *      clean->dirty
3550 		 * until external management is started.
3551 		 */
3552 		mddev->in_sync = 0;
3553 		mddev->safemode_delay = 0;
3554 		mddev->safemode = 0;
3555 	}
3556 
3557 	oldpers->free(mddev, oldpriv);
3558 
3559 	if (oldpers->sync_request == NULL &&
3560 	    pers->sync_request != NULL) {
3561 		/* need to add the md_redundancy_group */
3562 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3563 			printk(KERN_WARNING
3564 			       "md: cannot register extra attributes for %s\n",
3565 			       mdname(mddev));
3566 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3567 	}
3568 	if (oldpers->sync_request != NULL &&
3569 	    pers->sync_request == NULL) {
3570 		/* need to remove the md_redundancy_group */
3571 		if (mddev->to_remove == NULL)
3572 			mddev->to_remove = &md_redundancy_group;
3573 	}
3574 
3575 	rdev_for_each(rdev, mddev) {
3576 		if (rdev->raid_disk < 0)
3577 			continue;
3578 		if (rdev->new_raid_disk >= mddev->raid_disks)
3579 			rdev->new_raid_disk = -1;
3580 		if (rdev->new_raid_disk == rdev->raid_disk)
3581 			continue;
3582 		sysfs_unlink_rdev(mddev, rdev);
3583 	}
3584 	rdev_for_each(rdev, mddev) {
3585 		if (rdev->raid_disk < 0)
3586 			continue;
3587 		if (rdev->new_raid_disk == rdev->raid_disk)
3588 			continue;
3589 		rdev->raid_disk = rdev->new_raid_disk;
3590 		if (rdev->raid_disk < 0)
3591 			clear_bit(In_sync, &rdev->flags);
3592 		else {
3593 			if (sysfs_link_rdev(mddev, rdev))
3594 				printk(KERN_WARNING "md: cannot register rd%d"
3595 				       " for %s after level change\n",
3596 				       rdev->raid_disk, mdname(mddev));
3597 		}
3598 	}
3599 
3600 	if (pers->sync_request == NULL) {
3601 		/* this is now an array without redundancy, so
3602 		 * it must always be in_sync
3603 		 */
3604 		mddev->in_sync = 1;
3605 		del_timer_sync(&mddev->safemode_timer);
3606 	}
3607 	blk_set_stacking_limits(&mddev->queue->limits);
3608 	pers->run(mddev);
3609 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3610 	mddev_resume(mddev);
3611 	if (!mddev->thread)
3612 		md_update_sb(mddev, 1);
3613 	sysfs_notify(&mddev->kobj, NULL, "level");
3614 	md_new_event(mddev);
3615 	rv = len;
3616 out_unlock:
3617 	mddev_unlock(mddev);
3618 	return rv;
3619 }
3620 
3621 static struct md_sysfs_entry md_level =
3622 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3623 
3624 static ssize_t
3625 layout_show(struct mddev *mddev, char *page)
3626 {
3627 	/* just a number, not meaningful for all levels */
3628 	if (mddev->reshape_position != MaxSector &&
3629 	    mddev->layout != mddev->new_layout)
3630 		return sprintf(page, "%d (%d)\n",
3631 			       mddev->new_layout, mddev->layout);
3632 	return sprintf(page, "%d\n", mddev->layout);
3633 }
3634 
3635 static ssize_t
3636 layout_store(struct mddev *mddev, const char *buf, size_t len)
3637 {
3638 	unsigned int n;
3639 	int err;
3640 
3641 	err = kstrtouint(buf, 10, &n);
3642 	if (err < 0)
3643 		return err;
3644 	err = mddev_lock(mddev);
3645 	if (err)
3646 		return err;
3647 
3648 	if (mddev->pers) {
3649 		if (mddev->pers->check_reshape == NULL)
3650 			err = -EBUSY;
3651 		else if (mddev->ro)
3652 			err = -EROFS;
3653 		else {
3654 			mddev->new_layout = n;
3655 			err = mddev->pers->check_reshape(mddev);
3656 			if (err)
3657 				mddev->new_layout = mddev->layout;
3658 		}
3659 	} else {
3660 		mddev->new_layout = n;
3661 		if (mddev->reshape_position == MaxSector)
3662 			mddev->layout = n;
3663 	}
3664 	mddev_unlock(mddev);
3665 	return err ?: len;
3666 }
3667 static struct md_sysfs_entry md_layout =
3668 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3669 
3670 static ssize_t
3671 raid_disks_show(struct mddev *mddev, char *page)
3672 {
3673 	if (mddev->raid_disks == 0)
3674 		return 0;
3675 	if (mddev->reshape_position != MaxSector &&
3676 	    mddev->delta_disks != 0)
3677 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3678 			       mddev->raid_disks - mddev->delta_disks);
3679 	return sprintf(page, "%d\n", mddev->raid_disks);
3680 }
3681 
3682 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3683 
3684 static ssize_t
3685 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3686 {
3687 	unsigned int n;
3688 	int err;
3689 
3690 	err = kstrtouint(buf, 10, &n);
3691 	if (err < 0)
3692 		return err;
3693 
3694 	err = mddev_lock(mddev);
3695 	if (err)
3696 		return err;
3697 	if (mddev->pers)
3698 		err = update_raid_disks(mddev, n);
3699 	else if (mddev->reshape_position != MaxSector) {
3700 		struct md_rdev *rdev;
3701 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3702 
3703 		err = -EINVAL;
3704 		rdev_for_each(rdev, mddev) {
3705 			if (olddisks < n &&
3706 			    rdev->data_offset < rdev->new_data_offset)
3707 				goto out_unlock;
3708 			if (olddisks > n &&
3709 			    rdev->data_offset > rdev->new_data_offset)
3710 				goto out_unlock;
3711 		}
3712 		err = 0;
3713 		mddev->delta_disks = n - olddisks;
3714 		mddev->raid_disks = n;
3715 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3716 	} else
3717 		mddev->raid_disks = n;
3718 out_unlock:
3719 	mddev_unlock(mddev);
3720 	return err ? err : len;
3721 }
3722 static struct md_sysfs_entry md_raid_disks =
3723 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3724 
3725 static ssize_t
3726 chunk_size_show(struct mddev *mddev, char *page)
3727 {
3728 	if (mddev->reshape_position != MaxSector &&
3729 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3730 		return sprintf(page, "%d (%d)\n",
3731 			       mddev->new_chunk_sectors << 9,
3732 			       mddev->chunk_sectors << 9);
3733 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3734 }
3735 
3736 static ssize_t
3737 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3738 {
3739 	unsigned long n;
3740 	int err;
3741 
3742 	err = kstrtoul(buf, 10, &n);
3743 	if (err < 0)
3744 		return err;
3745 
3746 	err = mddev_lock(mddev);
3747 	if (err)
3748 		return err;
3749 	if (mddev->pers) {
3750 		if (mddev->pers->check_reshape == NULL)
3751 			err = -EBUSY;
3752 		else if (mddev->ro)
3753 			err = -EROFS;
3754 		else {
3755 			mddev->new_chunk_sectors = n >> 9;
3756 			err = mddev->pers->check_reshape(mddev);
3757 			if (err)
3758 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3759 		}
3760 	} else {
3761 		mddev->new_chunk_sectors = n >> 9;
3762 		if (mddev->reshape_position == MaxSector)
3763 			mddev->chunk_sectors = n >> 9;
3764 	}
3765 	mddev_unlock(mddev);
3766 	return err ?: len;
3767 }
3768 static struct md_sysfs_entry md_chunk_size =
3769 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3770 
3771 static ssize_t
3772 resync_start_show(struct mddev *mddev, char *page)
3773 {
3774 	if (mddev->recovery_cp == MaxSector)
3775 		return sprintf(page, "none\n");
3776 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3777 }
3778 
3779 static ssize_t
3780 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3781 {
3782 	unsigned long long n;
3783 	int err;
3784 
3785 	if (cmd_match(buf, "none"))
3786 		n = MaxSector;
3787 	else {
3788 		err = kstrtoull(buf, 10, &n);
3789 		if (err < 0)
3790 			return err;
3791 		if (n != (sector_t)n)
3792 			return -EINVAL;
3793 	}
3794 
3795 	err = mddev_lock(mddev);
3796 	if (err)
3797 		return err;
3798 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3799 		err = -EBUSY;
3800 
3801 	if (!err) {
3802 		mddev->recovery_cp = n;
3803 		if (mddev->pers)
3804 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3805 	}
3806 	mddev_unlock(mddev);
3807 	return err ?: len;
3808 }
3809 static struct md_sysfs_entry md_resync_start =
3810 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3811 		resync_start_show, resync_start_store);
3812 
3813 /*
3814  * The array state can be:
3815  *
3816  * clear
3817  *     No devices, no size, no level
3818  *     Equivalent to STOP_ARRAY ioctl
3819  * inactive
3820  *     May have some settings, but array is not active
3821  *        all IO results in error
3822  *     When written, doesn't tear down array, but just stops it
3823  * suspended (not supported yet)
3824  *     All IO requests will block. The array can be reconfigured.
3825  *     Writing this, if accepted, will block until array is quiescent
3826  * readonly
3827  *     no resync can happen.  no superblocks get written.
3828  *     write requests fail
3829  * read-auto
3830  *     like readonly, but behaves like 'clean' on a write request.
3831  *
3832  * clean - no pending writes, but otherwise active.
3833  *     When written to inactive array, starts without resync
3834  *     If a write request arrives then
3835  *       if metadata is known, mark 'dirty' and switch to 'active'.
3836  *       if not known, block and switch to write-pending
3837  *     If written to an active array that has pending writes, then fails.
3838  * active
3839  *     fully active: IO and resync can be happening.
3840  *     When written to inactive array, starts with resync
3841  *
3842  * write-pending
3843  *     clean, but writes are blocked waiting for 'active' to be written.
3844  *
3845  * active-idle
3846  *     like active, but no writes have been seen for a while (100msec).
3847  *
3848  */
3849 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3850 		   write_pending, active_idle, bad_word};
3851 static char *array_states[] = {
3852 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3853 	"write-pending", "active-idle", NULL };
3854 
3855 static int match_word(const char *word, char **list)
3856 {
3857 	int n;
3858 	for (n=0; list[n]; n++)
3859 		if (cmd_match(word, list[n]))
3860 			break;
3861 	return n;
3862 }
3863 
3864 static ssize_t
3865 array_state_show(struct mddev *mddev, char *page)
3866 {
3867 	enum array_state st = inactive;
3868 
3869 	if (mddev->pers)
3870 		switch(mddev->ro) {
3871 		case 1:
3872 			st = readonly;
3873 			break;
3874 		case 2:
3875 			st = read_auto;
3876 			break;
3877 		case 0:
3878 			if (mddev->in_sync)
3879 				st = clean;
3880 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3881 				st = write_pending;
3882 			else if (mddev->safemode)
3883 				st = active_idle;
3884 			else
3885 				st = active;
3886 		}
3887 	else {
3888 		if (list_empty(&mddev->disks) &&
3889 		    mddev->raid_disks == 0 &&
3890 		    mddev->dev_sectors == 0)
3891 			st = clear;
3892 		else
3893 			st = inactive;
3894 	}
3895 	return sprintf(page, "%s\n", array_states[st]);
3896 }
3897 
3898 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3899 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3900 static int do_md_run(struct mddev *mddev);
3901 static int restart_array(struct mddev *mddev);
3902 
3903 static ssize_t
3904 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3905 {
3906 	int err;
3907 	enum array_state st = match_word(buf, array_states);
3908 
3909 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3910 		/* don't take reconfig_mutex when toggling between
3911 		 * clean and active
3912 		 */
3913 		spin_lock(&mddev->lock);
3914 		if (st == active) {
3915 			restart_array(mddev);
3916 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3917 			wake_up(&mddev->sb_wait);
3918 			err = 0;
3919 		} else /* st == clean */ {
3920 			restart_array(mddev);
3921 			if (atomic_read(&mddev->writes_pending) == 0) {
3922 				if (mddev->in_sync == 0) {
3923 					mddev->in_sync = 1;
3924 					if (mddev->safemode == 1)
3925 						mddev->safemode = 0;
3926 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3927 				}
3928 				err = 0;
3929 			} else
3930 				err = -EBUSY;
3931 		}
3932 		spin_unlock(&mddev->lock);
3933 		return err ?: len;
3934 	}
3935 	err = mddev_lock(mddev);
3936 	if (err)
3937 		return err;
3938 	err = -EINVAL;
3939 	switch(st) {
3940 	case bad_word:
3941 		break;
3942 	case clear:
3943 		/* stopping an active array */
3944 		err = do_md_stop(mddev, 0, NULL);
3945 		break;
3946 	case inactive:
3947 		/* stopping an active array */
3948 		if (mddev->pers)
3949 			err = do_md_stop(mddev, 2, NULL);
3950 		else
3951 			err = 0; /* already inactive */
3952 		break;
3953 	case suspended:
3954 		break; /* not supported yet */
3955 	case readonly:
3956 		if (mddev->pers)
3957 			err = md_set_readonly(mddev, NULL);
3958 		else {
3959 			mddev->ro = 1;
3960 			set_disk_ro(mddev->gendisk, 1);
3961 			err = do_md_run(mddev);
3962 		}
3963 		break;
3964 	case read_auto:
3965 		if (mddev->pers) {
3966 			if (mddev->ro == 0)
3967 				err = md_set_readonly(mddev, NULL);
3968 			else if (mddev->ro == 1)
3969 				err = restart_array(mddev);
3970 			if (err == 0) {
3971 				mddev->ro = 2;
3972 				set_disk_ro(mddev->gendisk, 0);
3973 			}
3974 		} else {
3975 			mddev->ro = 2;
3976 			err = do_md_run(mddev);
3977 		}
3978 		break;
3979 	case clean:
3980 		if (mddev->pers) {
3981 			err = restart_array(mddev);
3982 			if (err)
3983 				break;
3984 			spin_lock(&mddev->lock);
3985 			if (atomic_read(&mddev->writes_pending) == 0) {
3986 				if (mddev->in_sync == 0) {
3987 					mddev->in_sync = 1;
3988 					if (mddev->safemode == 1)
3989 						mddev->safemode = 0;
3990 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3991 				}
3992 				err = 0;
3993 			} else
3994 				err = -EBUSY;
3995 			spin_unlock(&mddev->lock);
3996 		} else
3997 			err = -EINVAL;
3998 		break;
3999 	case active:
4000 		if (mddev->pers) {
4001 			err = restart_array(mddev);
4002 			if (err)
4003 				break;
4004 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4005 			wake_up(&mddev->sb_wait);
4006 			err = 0;
4007 		} else {
4008 			mddev->ro = 0;
4009 			set_disk_ro(mddev->gendisk, 0);
4010 			err = do_md_run(mddev);
4011 		}
4012 		break;
4013 	case write_pending:
4014 	case active_idle:
4015 		/* these cannot be set */
4016 		break;
4017 	}
4018 
4019 	if (!err) {
4020 		if (mddev->hold_active == UNTIL_IOCTL)
4021 			mddev->hold_active = 0;
4022 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4023 	}
4024 	mddev_unlock(mddev);
4025 	return err ?: len;
4026 }
4027 static struct md_sysfs_entry md_array_state =
4028 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4029 
4030 static ssize_t
4031 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4032 	return sprintf(page, "%d\n",
4033 		       atomic_read(&mddev->max_corr_read_errors));
4034 }
4035 
4036 static ssize_t
4037 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4038 {
4039 	unsigned int n;
4040 	int rv;
4041 
4042 	rv = kstrtouint(buf, 10, &n);
4043 	if (rv < 0)
4044 		return rv;
4045 	atomic_set(&mddev->max_corr_read_errors, n);
4046 	return len;
4047 }
4048 
4049 static struct md_sysfs_entry max_corr_read_errors =
4050 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4051 	max_corrected_read_errors_store);
4052 
4053 static ssize_t
4054 null_show(struct mddev *mddev, char *page)
4055 {
4056 	return -EINVAL;
4057 }
4058 
4059 static ssize_t
4060 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4061 {
4062 	/* buf must be %d:%d\n? giving major and minor numbers */
4063 	/* The new device is added to the array.
4064 	 * If the array has a persistent superblock, we read the
4065 	 * superblock to initialise info and check validity.
4066 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4067 	 * which mainly checks size.
4068 	 */
4069 	char *e;
4070 	int major = simple_strtoul(buf, &e, 10);
4071 	int minor;
4072 	dev_t dev;
4073 	struct md_rdev *rdev;
4074 	int err;
4075 
4076 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4077 		return -EINVAL;
4078 	minor = simple_strtoul(e+1, &e, 10);
4079 	if (*e && *e != '\n')
4080 		return -EINVAL;
4081 	dev = MKDEV(major, minor);
4082 	if (major != MAJOR(dev) ||
4083 	    minor != MINOR(dev))
4084 		return -EOVERFLOW;
4085 
4086 	flush_workqueue(md_misc_wq);
4087 
4088 	err = mddev_lock(mddev);
4089 	if (err)
4090 		return err;
4091 	if (mddev->persistent) {
4092 		rdev = md_import_device(dev, mddev->major_version,
4093 					mddev->minor_version);
4094 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4095 			struct md_rdev *rdev0
4096 				= list_entry(mddev->disks.next,
4097 					     struct md_rdev, same_set);
4098 			err = super_types[mddev->major_version]
4099 				.load_super(rdev, rdev0, mddev->minor_version);
4100 			if (err < 0)
4101 				goto out;
4102 		}
4103 	} else if (mddev->external)
4104 		rdev = md_import_device(dev, -2, -1);
4105 	else
4106 		rdev = md_import_device(dev, -1, -1);
4107 
4108 	if (IS_ERR(rdev)) {
4109 		mddev_unlock(mddev);
4110 		return PTR_ERR(rdev);
4111 	}
4112 	err = bind_rdev_to_array(rdev, mddev);
4113  out:
4114 	if (err)
4115 		export_rdev(rdev);
4116 	mddev_unlock(mddev);
4117 	return err ? err : len;
4118 }
4119 
4120 static struct md_sysfs_entry md_new_device =
4121 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4122 
4123 static ssize_t
4124 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4125 {
4126 	char *end;
4127 	unsigned long chunk, end_chunk;
4128 	int err;
4129 
4130 	err = mddev_lock(mddev);
4131 	if (err)
4132 		return err;
4133 	if (!mddev->bitmap)
4134 		goto out;
4135 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4136 	while (*buf) {
4137 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4138 		if (buf == end) break;
4139 		if (*end == '-') { /* range */
4140 			buf = end + 1;
4141 			end_chunk = simple_strtoul(buf, &end, 0);
4142 			if (buf == end) break;
4143 		}
4144 		if (*end && !isspace(*end)) break;
4145 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4146 		buf = skip_spaces(end);
4147 	}
4148 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4149 out:
4150 	mddev_unlock(mddev);
4151 	return len;
4152 }
4153 
4154 static struct md_sysfs_entry md_bitmap =
4155 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4156 
4157 static ssize_t
4158 size_show(struct mddev *mddev, char *page)
4159 {
4160 	return sprintf(page, "%llu\n",
4161 		(unsigned long long)mddev->dev_sectors / 2);
4162 }
4163 
4164 static int update_size(struct mddev *mddev, sector_t num_sectors);
4165 
4166 static ssize_t
4167 size_store(struct mddev *mddev, const char *buf, size_t len)
4168 {
4169 	/* If array is inactive, we can reduce the component size, but
4170 	 * not increase it (except from 0).
4171 	 * If array is active, we can try an on-line resize
4172 	 */
4173 	sector_t sectors;
4174 	int err = strict_blocks_to_sectors(buf, &sectors);
4175 
4176 	if (err < 0)
4177 		return err;
4178 	err = mddev_lock(mddev);
4179 	if (err)
4180 		return err;
4181 	if (mddev->pers) {
4182 		err = update_size(mddev, sectors);
4183 		md_update_sb(mddev, 1);
4184 	} else {
4185 		if (mddev->dev_sectors == 0 ||
4186 		    mddev->dev_sectors > sectors)
4187 			mddev->dev_sectors = sectors;
4188 		else
4189 			err = -ENOSPC;
4190 	}
4191 	mddev_unlock(mddev);
4192 	return err ? err : len;
4193 }
4194 
4195 static struct md_sysfs_entry md_size =
4196 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4197 
4198 /* Metadata version.
4199  * This is one of
4200  *   'none' for arrays with no metadata (good luck...)
4201  *   'external' for arrays with externally managed metadata,
4202  * or N.M for internally known formats
4203  */
4204 static ssize_t
4205 metadata_show(struct mddev *mddev, char *page)
4206 {
4207 	if (mddev->persistent)
4208 		return sprintf(page, "%d.%d\n",
4209 			       mddev->major_version, mddev->minor_version);
4210 	else if (mddev->external)
4211 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4212 	else
4213 		return sprintf(page, "none\n");
4214 }
4215 
4216 static ssize_t
4217 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4218 {
4219 	int major, minor;
4220 	char *e;
4221 	int err;
4222 	/* Changing the details of 'external' metadata is
4223 	 * always permitted.  Otherwise there must be
4224 	 * no devices attached to the array.
4225 	 */
4226 
4227 	err = mddev_lock(mddev);
4228 	if (err)
4229 		return err;
4230 	err = -EBUSY;
4231 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4232 		;
4233 	else if (!list_empty(&mddev->disks))
4234 		goto out_unlock;
4235 
4236 	err = 0;
4237 	if (cmd_match(buf, "none")) {
4238 		mddev->persistent = 0;
4239 		mddev->external = 0;
4240 		mddev->major_version = 0;
4241 		mddev->minor_version = 90;
4242 		goto out_unlock;
4243 	}
4244 	if (strncmp(buf, "external:", 9) == 0) {
4245 		size_t namelen = len-9;
4246 		if (namelen >= sizeof(mddev->metadata_type))
4247 			namelen = sizeof(mddev->metadata_type)-1;
4248 		strncpy(mddev->metadata_type, buf+9, namelen);
4249 		mddev->metadata_type[namelen] = 0;
4250 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4251 			mddev->metadata_type[--namelen] = 0;
4252 		mddev->persistent = 0;
4253 		mddev->external = 1;
4254 		mddev->major_version = 0;
4255 		mddev->minor_version = 90;
4256 		goto out_unlock;
4257 	}
4258 	major = simple_strtoul(buf, &e, 10);
4259 	err = -EINVAL;
4260 	if (e==buf || *e != '.')
4261 		goto out_unlock;
4262 	buf = e+1;
4263 	minor = simple_strtoul(buf, &e, 10);
4264 	if (e==buf || (*e && *e != '\n') )
4265 		goto out_unlock;
4266 	err = -ENOENT;
4267 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4268 		goto out_unlock;
4269 	mddev->major_version = major;
4270 	mddev->minor_version = minor;
4271 	mddev->persistent = 1;
4272 	mddev->external = 0;
4273 	err = 0;
4274 out_unlock:
4275 	mddev_unlock(mddev);
4276 	return err ?: len;
4277 }
4278 
4279 static struct md_sysfs_entry md_metadata =
4280 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4281 
4282 static ssize_t
4283 action_show(struct mddev *mddev, char *page)
4284 {
4285 	char *type = "idle";
4286 	unsigned long recovery = mddev->recovery;
4287 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4288 		type = "frozen";
4289 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4290 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4291 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4292 			type = "reshape";
4293 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4294 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4295 				type = "resync";
4296 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4297 				type = "check";
4298 			else
4299 				type = "repair";
4300 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4301 			type = "recover";
4302 		else if (mddev->reshape_position != MaxSector)
4303 			type = "reshape";
4304 	}
4305 	return sprintf(page, "%s\n", type);
4306 }
4307 
4308 static ssize_t
4309 action_store(struct mddev *mddev, const char *page, size_t len)
4310 {
4311 	if (!mddev->pers || !mddev->pers->sync_request)
4312 		return -EINVAL;
4313 
4314 
4315 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4316 		if (cmd_match(page, "frozen"))
4317 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4318 		else
4319 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4320 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4321 		    mddev_lock(mddev) == 0) {
4322 			flush_workqueue(md_misc_wq);
4323 			if (mddev->sync_thread) {
4324 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4325 				md_reap_sync_thread(mddev);
4326 			}
4327 			mddev_unlock(mddev);
4328 		}
4329 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4330 		return -EBUSY;
4331 	else if (cmd_match(page, "resync"))
4332 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4333 	else if (cmd_match(page, "recover")) {
4334 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4335 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4336 	} else if (cmd_match(page, "reshape")) {
4337 		int err;
4338 		if (mddev->pers->start_reshape == NULL)
4339 			return -EINVAL;
4340 		err = mddev_lock(mddev);
4341 		if (!err) {
4342 			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4343 				err =  -EBUSY;
4344 			else {
4345 				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4346 				err = mddev->pers->start_reshape(mddev);
4347 			}
4348 			mddev_unlock(mddev);
4349 		}
4350 		if (err)
4351 			return err;
4352 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4353 	} else {
4354 		if (cmd_match(page, "check"))
4355 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4356 		else if (!cmd_match(page, "repair"))
4357 			return -EINVAL;
4358 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4359 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4360 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4361 	}
4362 	if (mddev->ro == 2) {
4363 		/* A write to sync_action is enough to justify
4364 		 * canceling read-auto mode
4365 		 */
4366 		mddev->ro = 0;
4367 		md_wakeup_thread(mddev->sync_thread);
4368 	}
4369 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4370 	md_wakeup_thread(mddev->thread);
4371 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4372 	return len;
4373 }
4374 
4375 static struct md_sysfs_entry md_scan_mode =
4376 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4377 
4378 static ssize_t
4379 last_sync_action_show(struct mddev *mddev, char *page)
4380 {
4381 	return sprintf(page, "%s\n", mddev->last_sync_action);
4382 }
4383 
4384 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4385 
4386 static ssize_t
4387 mismatch_cnt_show(struct mddev *mddev, char *page)
4388 {
4389 	return sprintf(page, "%llu\n",
4390 		       (unsigned long long)
4391 		       atomic64_read(&mddev->resync_mismatches));
4392 }
4393 
4394 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4395 
4396 static ssize_t
4397 sync_min_show(struct mddev *mddev, char *page)
4398 {
4399 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4400 		       mddev->sync_speed_min ? "local": "system");
4401 }
4402 
4403 static ssize_t
4404 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4405 {
4406 	unsigned int min;
4407 	int rv;
4408 
4409 	if (strncmp(buf, "system", 6)==0) {
4410 		min = 0;
4411 	} else {
4412 		rv = kstrtouint(buf, 10, &min);
4413 		if (rv < 0)
4414 			return rv;
4415 		if (min == 0)
4416 			return -EINVAL;
4417 	}
4418 	mddev->sync_speed_min = min;
4419 	return len;
4420 }
4421 
4422 static struct md_sysfs_entry md_sync_min =
4423 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4424 
4425 static ssize_t
4426 sync_max_show(struct mddev *mddev, char *page)
4427 {
4428 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4429 		       mddev->sync_speed_max ? "local": "system");
4430 }
4431 
4432 static ssize_t
4433 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4434 {
4435 	unsigned int max;
4436 	int rv;
4437 
4438 	if (strncmp(buf, "system", 6)==0) {
4439 		max = 0;
4440 	} else {
4441 		rv = kstrtouint(buf, 10, &max);
4442 		if (rv < 0)
4443 			return rv;
4444 		if (max == 0)
4445 			return -EINVAL;
4446 	}
4447 	mddev->sync_speed_max = max;
4448 	return len;
4449 }
4450 
4451 static struct md_sysfs_entry md_sync_max =
4452 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4453 
4454 static ssize_t
4455 degraded_show(struct mddev *mddev, char *page)
4456 {
4457 	return sprintf(page, "%d\n", mddev->degraded);
4458 }
4459 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4460 
4461 static ssize_t
4462 sync_force_parallel_show(struct mddev *mddev, char *page)
4463 {
4464 	return sprintf(page, "%d\n", mddev->parallel_resync);
4465 }
4466 
4467 static ssize_t
4468 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4469 {
4470 	long n;
4471 
4472 	if (kstrtol(buf, 10, &n))
4473 		return -EINVAL;
4474 
4475 	if (n != 0 && n != 1)
4476 		return -EINVAL;
4477 
4478 	mddev->parallel_resync = n;
4479 
4480 	if (mddev->sync_thread)
4481 		wake_up(&resync_wait);
4482 
4483 	return len;
4484 }
4485 
4486 /* force parallel resync, even with shared block devices */
4487 static struct md_sysfs_entry md_sync_force_parallel =
4488 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4489        sync_force_parallel_show, sync_force_parallel_store);
4490 
4491 static ssize_t
4492 sync_speed_show(struct mddev *mddev, char *page)
4493 {
4494 	unsigned long resync, dt, db;
4495 	if (mddev->curr_resync == 0)
4496 		return sprintf(page, "none\n");
4497 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4498 	dt = (jiffies - mddev->resync_mark) / HZ;
4499 	if (!dt) dt++;
4500 	db = resync - mddev->resync_mark_cnt;
4501 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4502 }
4503 
4504 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4505 
4506 static ssize_t
4507 sync_completed_show(struct mddev *mddev, char *page)
4508 {
4509 	unsigned long long max_sectors, resync;
4510 
4511 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4512 		return sprintf(page, "none\n");
4513 
4514 	if (mddev->curr_resync == 1 ||
4515 	    mddev->curr_resync == 2)
4516 		return sprintf(page, "delayed\n");
4517 
4518 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4519 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4520 		max_sectors = mddev->resync_max_sectors;
4521 	else
4522 		max_sectors = mddev->dev_sectors;
4523 
4524 	resync = mddev->curr_resync_completed;
4525 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4526 }
4527 
4528 static struct md_sysfs_entry md_sync_completed =
4529 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4530 
4531 static ssize_t
4532 min_sync_show(struct mddev *mddev, char *page)
4533 {
4534 	return sprintf(page, "%llu\n",
4535 		       (unsigned long long)mddev->resync_min);
4536 }
4537 static ssize_t
4538 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4539 {
4540 	unsigned long long min;
4541 	int err;
4542 
4543 	if (kstrtoull(buf, 10, &min))
4544 		return -EINVAL;
4545 
4546 	spin_lock(&mddev->lock);
4547 	err = -EINVAL;
4548 	if (min > mddev->resync_max)
4549 		goto out_unlock;
4550 
4551 	err = -EBUSY;
4552 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4553 		goto out_unlock;
4554 
4555 	/* Round down to multiple of 4K for safety */
4556 	mddev->resync_min = round_down(min, 8);
4557 	err = 0;
4558 
4559 out_unlock:
4560 	spin_unlock(&mddev->lock);
4561 	return err ?: len;
4562 }
4563 
4564 static struct md_sysfs_entry md_min_sync =
4565 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4566 
4567 static ssize_t
4568 max_sync_show(struct mddev *mddev, char *page)
4569 {
4570 	if (mddev->resync_max == MaxSector)
4571 		return sprintf(page, "max\n");
4572 	else
4573 		return sprintf(page, "%llu\n",
4574 			       (unsigned long long)mddev->resync_max);
4575 }
4576 static ssize_t
4577 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4578 {
4579 	int err;
4580 	spin_lock(&mddev->lock);
4581 	if (strncmp(buf, "max", 3) == 0)
4582 		mddev->resync_max = MaxSector;
4583 	else {
4584 		unsigned long long max;
4585 		int chunk;
4586 
4587 		err = -EINVAL;
4588 		if (kstrtoull(buf, 10, &max))
4589 			goto out_unlock;
4590 		if (max < mddev->resync_min)
4591 			goto out_unlock;
4592 
4593 		err = -EBUSY;
4594 		if (max < mddev->resync_max &&
4595 		    mddev->ro == 0 &&
4596 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4597 			goto out_unlock;
4598 
4599 		/* Must be a multiple of chunk_size */
4600 		chunk = mddev->chunk_sectors;
4601 		if (chunk) {
4602 			sector_t temp = max;
4603 
4604 			err = -EINVAL;
4605 			if (sector_div(temp, chunk))
4606 				goto out_unlock;
4607 		}
4608 		mddev->resync_max = max;
4609 	}
4610 	wake_up(&mddev->recovery_wait);
4611 	err = 0;
4612 out_unlock:
4613 	spin_unlock(&mddev->lock);
4614 	return err ?: len;
4615 }
4616 
4617 static struct md_sysfs_entry md_max_sync =
4618 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4619 
4620 static ssize_t
4621 suspend_lo_show(struct mddev *mddev, char *page)
4622 {
4623 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4624 }
4625 
4626 static ssize_t
4627 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4628 {
4629 	unsigned long long old, new;
4630 	int err;
4631 
4632 	err = kstrtoull(buf, 10, &new);
4633 	if (err < 0)
4634 		return err;
4635 	if (new != (sector_t)new)
4636 		return -EINVAL;
4637 
4638 	err = mddev_lock(mddev);
4639 	if (err)
4640 		return err;
4641 	err = -EINVAL;
4642 	if (mddev->pers == NULL ||
4643 	    mddev->pers->quiesce == NULL)
4644 		goto unlock;
4645 	old = mddev->suspend_lo;
4646 	mddev->suspend_lo = new;
4647 	if (new >= old)
4648 		/* Shrinking suspended region */
4649 		mddev->pers->quiesce(mddev, 2);
4650 	else {
4651 		/* Expanding suspended region - need to wait */
4652 		mddev->pers->quiesce(mddev, 1);
4653 		mddev->pers->quiesce(mddev, 0);
4654 	}
4655 	err = 0;
4656 unlock:
4657 	mddev_unlock(mddev);
4658 	return err ?: len;
4659 }
4660 static struct md_sysfs_entry md_suspend_lo =
4661 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4662 
4663 static ssize_t
4664 suspend_hi_show(struct mddev *mddev, char *page)
4665 {
4666 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4667 }
4668 
4669 static ssize_t
4670 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4671 {
4672 	unsigned long long old, new;
4673 	int err;
4674 
4675 	err = kstrtoull(buf, 10, &new);
4676 	if (err < 0)
4677 		return err;
4678 	if (new != (sector_t)new)
4679 		return -EINVAL;
4680 
4681 	err = mddev_lock(mddev);
4682 	if (err)
4683 		return err;
4684 	err = -EINVAL;
4685 	if (mddev->pers == NULL ||
4686 	    mddev->pers->quiesce == NULL)
4687 		goto unlock;
4688 	old = mddev->suspend_hi;
4689 	mddev->suspend_hi = new;
4690 	if (new <= old)
4691 		/* Shrinking suspended region */
4692 		mddev->pers->quiesce(mddev, 2);
4693 	else {
4694 		/* Expanding suspended region - need to wait */
4695 		mddev->pers->quiesce(mddev, 1);
4696 		mddev->pers->quiesce(mddev, 0);
4697 	}
4698 	err = 0;
4699 unlock:
4700 	mddev_unlock(mddev);
4701 	return err ?: len;
4702 }
4703 static struct md_sysfs_entry md_suspend_hi =
4704 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4705 
4706 static ssize_t
4707 reshape_position_show(struct mddev *mddev, char *page)
4708 {
4709 	if (mddev->reshape_position != MaxSector)
4710 		return sprintf(page, "%llu\n",
4711 			       (unsigned long long)mddev->reshape_position);
4712 	strcpy(page, "none\n");
4713 	return 5;
4714 }
4715 
4716 static ssize_t
4717 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4718 {
4719 	struct md_rdev *rdev;
4720 	unsigned long long new;
4721 	int err;
4722 
4723 	err = kstrtoull(buf, 10, &new);
4724 	if (err < 0)
4725 		return err;
4726 	if (new != (sector_t)new)
4727 		return -EINVAL;
4728 	err = mddev_lock(mddev);
4729 	if (err)
4730 		return err;
4731 	err = -EBUSY;
4732 	if (mddev->pers)
4733 		goto unlock;
4734 	mddev->reshape_position = new;
4735 	mddev->delta_disks = 0;
4736 	mddev->reshape_backwards = 0;
4737 	mddev->new_level = mddev->level;
4738 	mddev->new_layout = mddev->layout;
4739 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4740 	rdev_for_each(rdev, mddev)
4741 		rdev->new_data_offset = rdev->data_offset;
4742 	err = 0;
4743 unlock:
4744 	mddev_unlock(mddev);
4745 	return err ?: len;
4746 }
4747 
4748 static struct md_sysfs_entry md_reshape_position =
4749 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4750        reshape_position_store);
4751 
4752 static ssize_t
4753 reshape_direction_show(struct mddev *mddev, char *page)
4754 {
4755 	return sprintf(page, "%s\n",
4756 		       mddev->reshape_backwards ? "backwards" : "forwards");
4757 }
4758 
4759 static ssize_t
4760 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4761 {
4762 	int backwards = 0;
4763 	int err;
4764 
4765 	if (cmd_match(buf, "forwards"))
4766 		backwards = 0;
4767 	else if (cmd_match(buf, "backwards"))
4768 		backwards = 1;
4769 	else
4770 		return -EINVAL;
4771 	if (mddev->reshape_backwards == backwards)
4772 		return len;
4773 
4774 	err = mddev_lock(mddev);
4775 	if (err)
4776 		return err;
4777 	/* check if we are allowed to change */
4778 	if (mddev->delta_disks)
4779 		err = -EBUSY;
4780 	else if (mddev->persistent &&
4781 	    mddev->major_version == 0)
4782 		err =  -EINVAL;
4783 	else
4784 		mddev->reshape_backwards = backwards;
4785 	mddev_unlock(mddev);
4786 	return err ?: len;
4787 }
4788 
4789 static struct md_sysfs_entry md_reshape_direction =
4790 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4791        reshape_direction_store);
4792 
4793 static ssize_t
4794 array_size_show(struct mddev *mddev, char *page)
4795 {
4796 	if (mddev->external_size)
4797 		return sprintf(page, "%llu\n",
4798 			       (unsigned long long)mddev->array_sectors/2);
4799 	else
4800 		return sprintf(page, "default\n");
4801 }
4802 
4803 static ssize_t
4804 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4805 {
4806 	sector_t sectors;
4807 	int err;
4808 
4809 	err = mddev_lock(mddev);
4810 	if (err)
4811 		return err;
4812 
4813 	if (strncmp(buf, "default", 7) == 0) {
4814 		if (mddev->pers)
4815 			sectors = mddev->pers->size(mddev, 0, 0);
4816 		else
4817 			sectors = mddev->array_sectors;
4818 
4819 		mddev->external_size = 0;
4820 	} else {
4821 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4822 			err = -EINVAL;
4823 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4824 			err = -E2BIG;
4825 		else
4826 			mddev->external_size = 1;
4827 	}
4828 
4829 	if (!err) {
4830 		mddev->array_sectors = sectors;
4831 		if (mddev->pers) {
4832 			set_capacity(mddev->gendisk, mddev->array_sectors);
4833 			revalidate_disk(mddev->gendisk);
4834 		}
4835 	}
4836 	mddev_unlock(mddev);
4837 	return err ?: len;
4838 }
4839 
4840 static struct md_sysfs_entry md_array_size =
4841 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4842        array_size_store);
4843 
4844 static struct attribute *md_default_attrs[] = {
4845 	&md_level.attr,
4846 	&md_layout.attr,
4847 	&md_raid_disks.attr,
4848 	&md_chunk_size.attr,
4849 	&md_size.attr,
4850 	&md_resync_start.attr,
4851 	&md_metadata.attr,
4852 	&md_new_device.attr,
4853 	&md_safe_delay.attr,
4854 	&md_array_state.attr,
4855 	&md_reshape_position.attr,
4856 	&md_reshape_direction.attr,
4857 	&md_array_size.attr,
4858 	&max_corr_read_errors.attr,
4859 	NULL,
4860 };
4861 
4862 static struct attribute *md_redundancy_attrs[] = {
4863 	&md_scan_mode.attr,
4864 	&md_last_scan_mode.attr,
4865 	&md_mismatches.attr,
4866 	&md_sync_min.attr,
4867 	&md_sync_max.attr,
4868 	&md_sync_speed.attr,
4869 	&md_sync_force_parallel.attr,
4870 	&md_sync_completed.attr,
4871 	&md_min_sync.attr,
4872 	&md_max_sync.attr,
4873 	&md_suspend_lo.attr,
4874 	&md_suspend_hi.attr,
4875 	&md_bitmap.attr,
4876 	&md_degraded.attr,
4877 	NULL,
4878 };
4879 static struct attribute_group md_redundancy_group = {
4880 	.name = NULL,
4881 	.attrs = md_redundancy_attrs,
4882 };
4883 
4884 static ssize_t
4885 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4886 {
4887 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4888 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4889 	ssize_t rv;
4890 
4891 	if (!entry->show)
4892 		return -EIO;
4893 	spin_lock(&all_mddevs_lock);
4894 	if (list_empty(&mddev->all_mddevs)) {
4895 		spin_unlock(&all_mddevs_lock);
4896 		return -EBUSY;
4897 	}
4898 	mddev_get(mddev);
4899 	spin_unlock(&all_mddevs_lock);
4900 
4901 	rv = entry->show(mddev, page);
4902 	mddev_put(mddev);
4903 	return rv;
4904 }
4905 
4906 static ssize_t
4907 md_attr_store(struct kobject *kobj, struct attribute *attr,
4908 	      const char *page, size_t length)
4909 {
4910 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4911 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4912 	ssize_t rv;
4913 
4914 	if (!entry->store)
4915 		return -EIO;
4916 	if (!capable(CAP_SYS_ADMIN))
4917 		return -EACCES;
4918 	spin_lock(&all_mddevs_lock);
4919 	if (list_empty(&mddev->all_mddevs)) {
4920 		spin_unlock(&all_mddevs_lock);
4921 		return -EBUSY;
4922 	}
4923 	mddev_get(mddev);
4924 	spin_unlock(&all_mddevs_lock);
4925 	rv = entry->store(mddev, page, length);
4926 	mddev_put(mddev);
4927 	return rv;
4928 }
4929 
4930 static void md_free(struct kobject *ko)
4931 {
4932 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4933 
4934 	if (mddev->sysfs_state)
4935 		sysfs_put(mddev->sysfs_state);
4936 
4937 	if (mddev->queue)
4938 		blk_cleanup_queue(mddev->queue);
4939 	if (mddev->gendisk) {
4940 		del_gendisk(mddev->gendisk);
4941 		put_disk(mddev->gendisk);
4942 	}
4943 
4944 	kfree(mddev);
4945 }
4946 
4947 static const struct sysfs_ops md_sysfs_ops = {
4948 	.show	= md_attr_show,
4949 	.store	= md_attr_store,
4950 };
4951 static struct kobj_type md_ktype = {
4952 	.release	= md_free,
4953 	.sysfs_ops	= &md_sysfs_ops,
4954 	.default_attrs	= md_default_attrs,
4955 };
4956 
4957 int mdp_major = 0;
4958 
4959 static void mddev_delayed_delete(struct work_struct *ws)
4960 {
4961 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4962 
4963 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4964 	kobject_del(&mddev->kobj);
4965 	kobject_put(&mddev->kobj);
4966 }
4967 
4968 static int md_alloc(dev_t dev, char *name)
4969 {
4970 	static DEFINE_MUTEX(disks_mutex);
4971 	struct mddev *mddev = mddev_find(dev);
4972 	struct gendisk *disk;
4973 	int partitioned;
4974 	int shift;
4975 	int unit;
4976 	int error;
4977 
4978 	if (!mddev)
4979 		return -ENODEV;
4980 
4981 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4982 	shift = partitioned ? MdpMinorShift : 0;
4983 	unit = MINOR(mddev->unit) >> shift;
4984 
4985 	/* wait for any previous instance of this device to be
4986 	 * completely removed (mddev_delayed_delete).
4987 	 */
4988 	flush_workqueue(md_misc_wq);
4989 
4990 	mutex_lock(&disks_mutex);
4991 	error = -EEXIST;
4992 	if (mddev->gendisk)
4993 		goto abort;
4994 
4995 	if (name) {
4996 		/* Need to ensure that 'name' is not a duplicate.
4997 		 */
4998 		struct mddev *mddev2;
4999 		spin_lock(&all_mddevs_lock);
5000 
5001 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5002 			if (mddev2->gendisk &&
5003 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5004 				spin_unlock(&all_mddevs_lock);
5005 				goto abort;
5006 			}
5007 		spin_unlock(&all_mddevs_lock);
5008 	}
5009 
5010 	error = -ENOMEM;
5011 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
5012 	if (!mddev->queue)
5013 		goto abort;
5014 	mddev->queue->queuedata = mddev;
5015 
5016 	blk_queue_make_request(mddev->queue, md_make_request);
5017 	blk_set_stacking_limits(&mddev->queue->limits);
5018 
5019 	disk = alloc_disk(1 << shift);
5020 	if (!disk) {
5021 		blk_cleanup_queue(mddev->queue);
5022 		mddev->queue = NULL;
5023 		goto abort;
5024 	}
5025 	disk->major = MAJOR(mddev->unit);
5026 	disk->first_minor = unit << shift;
5027 	if (name)
5028 		strcpy(disk->disk_name, name);
5029 	else if (partitioned)
5030 		sprintf(disk->disk_name, "md_d%d", unit);
5031 	else
5032 		sprintf(disk->disk_name, "md%d", unit);
5033 	disk->fops = &md_fops;
5034 	disk->private_data = mddev;
5035 	disk->queue = mddev->queue;
5036 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5037 	/* Allow extended partitions.  This makes the
5038 	 * 'mdp' device redundant, but we can't really
5039 	 * remove it now.
5040 	 */
5041 	disk->flags |= GENHD_FL_EXT_DEVT;
5042 	mddev->gendisk = disk;
5043 	/* As soon as we call add_disk(), another thread could get
5044 	 * through to md_open, so make sure it doesn't get too far
5045 	 */
5046 	mutex_lock(&mddev->open_mutex);
5047 	add_disk(disk);
5048 
5049 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5050 				     &disk_to_dev(disk)->kobj, "%s", "md");
5051 	if (error) {
5052 		/* This isn't possible, but as kobject_init_and_add is marked
5053 		 * __must_check, we must do something with the result
5054 		 */
5055 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5056 		       disk->disk_name);
5057 		error = 0;
5058 	}
5059 	if (mddev->kobj.sd &&
5060 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5061 		printk(KERN_DEBUG "pointless warning\n");
5062 	mutex_unlock(&mddev->open_mutex);
5063  abort:
5064 	mutex_unlock(&disks_mutex);
5065 	if (!error && mddev->kobj.sd) {
5066 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5067 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5068 	}
5069 	mddev_put(mddev);
5070 	return error;
5071 }
5072 
5073 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5074 {
5075 	md_alloc(dev, NULL);
5076 	return NULL;
5077 }
5078 
5079 static int add_named_array(const char *val, struct kernel_param *kp)
5080 {
5081 	/* val must be "md_*" where * is not all digits.
5082 	 * We allocate an array with a large free minor number, and
5083 	 * set the name to val.  val must not already be an active name.
5084 	 */
5085 	int len = strlen(val);
5086 	char buf[DISK_NAME_LEN];
5087 
5088 	while (len && val[len-1] == '\n')
5089 		len--;
5090 	if (len >= DISK_NAME_LEN)
5091 		return -E2BIG;
5092 	strlcpy(buf, val, len+1);
5093 	if (strncmp(buf, "md_", 3) != 0)
5094 		return -EINVAL;
5095 	return md_alloc(0, buf);
5096 }
5097 
5098 static void md_safemode_timeout(unsigned long data)
5099 {
5100 	struct mddev *mddev = (struct mddev *) data;
5101 
5102 	if (!atomic_read(&mddev->writes_pending)) {
5103 		mddev->safemode = 1;
5104 		if (mddev->external)
5105 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5106 	}
5107 	md_wakeup_thread(mddev->thread);
5108 }
5109 
5110 static int start_dirty_degraded;
5111 
5112 int md_run(struct mddev *mddev)
5113 {
5114 	int err;
5115 	struct md_rdev *rdev;
5116 	struct md_personality *pers;
5117 
5118 	if (list_empty(&mddev->disks))
5119 		/* cannot run an array with no devices.. */
5120 		return -EINVAL;
5121 
5122 	if (mddev->pers)
5123 		return -EBUSY;
5124 	/* Cannot run until previous stop completes properly */
5125 	if (mddev->sysfs_active)
5126 		return -EBUSY;
5127 
5128 	/*
5129 	 * Analyze all RAID superblock(s)
5130 	 */
5131 	if (!mddev->raid_disks) {
5132 		if (!mddev->persistent)
5133 			return -EINVAL;
5134 		analyze_sbs(mddev);
5135 	}
5136 
5137 	if (mddev->level != LEVEL_NONE)
5138 		request_module("md-level-%d", mddev->level);
5139 	else if (mddev->clevel[0])
5140 		request_module("md-%s", mddev->clevel);
5141 
5142 	/*
5143 	 * Drop all container device buffers, from now on
5144 	 * the only valid external interface is through the md
5145 	 * device.
5146 	 */
5147 	rdev_for_each(rdev, mddev) {
5148 		if (test_bit(Faulty, &rdev->flags))
5149 			continue;
5150 		sync_blockdev(rdev->bdev);
5151 		invalidate_bdev(rdev->bdev);
5152 
5153 		/* perform some consistency tests on the device.
5154 		 * We don't want the data to overlap the metadata,
5155 		 * Internal Bitmap issues have been handled elsewhere.
5156 		 */
5157 		if (rdev->meta_bdev) {
5158 			/* Nothing to check */;
5159 		} else if (rdev->data_offset < rdev->sb_start) {
5160 			if (mddev->dev_sectors &&
5161 			    rdev->data_offset + mddev->dev_sectors
5162 			    > rdev->sb_start) {
5163 				printk("md: %s: data overlaps metadata\n",
5164 				       mdname(mddev));
5165 				return -EINVAL;
5166 			}
5167 		} else {
5168 			if (rdev->sb_start + rdev->sb_size/512
5169 			    > rdev->data_offset) {
5170 				printk("md: %s: metadata overlaps data\n",
5171 				       mdname(mddev));
5172 				return -EINVAL;
5173 			}
5174 		}
5175 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5176 	}
5177 
5178 	if (mddev->bio_set == NULL)
5179 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5180 
5181 	spin_lock(&pers_lock);
5182 	pers = find_pers(mddev->level, mddev->clevel);
5183 	if (!pers || !try_module_get(pers->owner)) {
5184 		spin_unlock(&pers_lock);
5185 		if (mddev->level != LEVEL_NONE)
5186 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5187 			       mddev->level);
5188 		else
5189 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5190 			       mddev->clevel);
5191 		return -EINVAL;
5192 	}
5193 	spin_unlock(&pers_lock);
5194 	if (mddev->level != pers->level) {
5195 		mddev->level = pers->level;
5196 		mddev->new_level = pers->level;
5197 	}
5198 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5199 
5200 	if (mddev->reshape_position != MaxSector &&
5201 	    pers->start_reshape == NULL) {
5202 		/* This personality cannot handle reshaping... */
5203 		module_put(pers->owner);
5204 		return -EINVAL;
5205 	}
5206 
5207 	if (pers->sync_request) {
5208 		/* Warn if this is a potentially silly
5209 		 * configuration.
5210 		 */
5211 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5212 		struct md_rdev *rdev2;
5213 		int warned = 0;
5214 
5215 		rdev_for_each(rdev, mddev)
5216 			rdev_for_each(rdev2, mddev) {
5217 				if (rdev < rdev2 &&
5218 				    rdev->bdev->bd_contains ==
5219 				    rdev2->bdev->bd_contains) {
5220 					printk(KERN_WARNING
5221 					       "%s: WARNING: %s appears to be"
5222 					       " on the same physical disk as"
5223 					       " %s.\n",
5224 					       mdname(mddev),
5225 					       bdevname(rdev->bdev,b),
5226 					       bdevname(rdev2->bdev,b2));
5227 					warned = 1;
5228 				}
5229 			}
5230 
5231 		if (warned)
5232 			printk(KERN_WARNING
5233 			       "True protection against single-disk"
5234 			       " failure might be compromised.\n");
5235 	}
5236 
5237 	mddev->recovery = 0;
5238 	/* may be over-ridden by personality */
5239 	mddev->resync_max_sectors = mddev->dev_sectors;
5240 
5241 	mddev->ok_start_degraded = start_dirty_degraded;
5242 
5243 	if (start_readonly && mddev->ro == 0)
5244 		mddev->ro = 2; /* read-only, but switch on first write */
5245 
5246 	err = pers->run(mddev);
5247 	if (err)
5248 		printk(KERN_ERR "md: pers->run() failed ...\n");
5249 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5250 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5251 			  " but 'external_size' not in effect?\n", __func__);
5252 		printk(KERN_ERR
5253 		       "md: invalid array_size %llu > default size %llu\n",
5254 		       (unsigned long long)mddev->array_sectors / 2,
5255 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5256 		err = -EINVAL;
5257 	}
5258 	if (err == 0 && pers->sync_request &&
5259 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5260 		struct bitmap *bitmap;
5261 
5262 		bitmap = bitmap_create(mddev, -1);
5263 		if (IS_ERR(bitmap)) {
5264 			err = PTR_ERR(bitmap);
5265 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5266 			       mdname(mddev), err);
5267 		} else
5268 			mddev->bitmap = bitmap;
5269 
5270 	}
5271 	if (err) {
5272 		mddev_detach(mddev);
5273 		if (mddev->private)
5274 			pers->free(mddev, mddev->private);
5275 		mddev->private = NULL;
5276 		module_put(pers->owner);
5277 		bitmap_destroy(mddev);
5278 		return err;
5279 	}
5280 	if (mddev->queue) {
5281 		mddev->queue->backing_dev_info.congested_data = mddev;
5282 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5283 	}
5284 	if (pers->sync_request) {
5285 		if (mddev->kobj.sd &&
5286 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5287 			printk(KERN_WARNING
5288 			       "md: cannot register extra attributes for %s\n",
5289 			       mdname(mddev));
5290 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5291 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5292 		mddev->ro = 0;
5293 
5294 	atomic_set(&mddev->writes_pending,0);
5295 	atomic_set(&mddev->max_corr_read_errors,
5296 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5297 	mddev->safemode = 0;
5298 	if (mddev_is_clustered(mddev))
5299 		mddev->safemode_delay = 0;
5300 	else
5301 		mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5302 	mddev->in_sync = 1;
5303 	smp_wmb();
5304 	spin_lock(&mddev->lock);
5305 	mddev->pers = pers;
5306 	mddev->ready = 1;
5307 	spin_unlock(&mddev->lock);
5308 	rdev_for_each(rdev, mddev)
5309 		if (rdev->raid_disk >= 0)
5310 			if (sysfs_link_rdev(mddev, rdev))
5311 				/* failure here is OK */;
5312 
5313 	if (mddev->degraded && !mddev->ro)
5314 		/* This ensures that recovering status is reported immediately
5315 		 * via sysfs - until a lack of spares is confirmed.
5316 		 */
5317 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5318 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5319 
5320 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5321 		md_update_sb(mddev, 0);
5322 
5323 	md_new_event(mddev);
5324 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5325 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5326 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5327 	return 0;
5328 }
5329 EXPORT_SYMBOL_GPL(md_run);
5330 
5331 static int do_md_run(struct mddev *mddev)
5332 {
5333 	int err;
5334 
5335 	err = md_run(mddev);
5336 	if (err)
5337 		goto out;
5338 	err = bitmap_load(mddev);
5339 	if (err) {
5340 		bitmap_destroy(mddev);
5341 		goto out;
5342 	}
5343 
5344 	if (mddev_is_clustered(mddev))
5345 		md_allow_write(mddev);
5346 
5347 	md_wakeup_thread(mddev->thread);
5348 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5349 
5350 	set_capacity(mddev->gendisk, mddev->array_sectors);
5351 	revalidate_disk(mddev->gendisk);
5352 	mddev->changed = 1;
5353 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5354 out:
5355 	return err;
5356 }
5357 
5358 static int restart_array(struct mddev *mddev)
5359 {
5360 	struct gendisk *disk = mddev->gendisk;
5361 
5362 	/* Complain if it has no devices */
5363 	if (list_empty(&mddev->disks))
5364 		return -ENXIO;
5365 	if (!mddev->pers)
5366 		return -EINVAL;
5367 	if (!mddev->ro)
5368 		return -EBUSY;
5369 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5370 		struct md_rdev *rdev;
5371 		bool has_journal = false;
5372 
5373 		rcu_read_lock();
5374 		rdev_for_each_rcu(rdev, mddev) {
5375 			if (test_bit(Journal, &rdev->flags) &&
5376 			    !test_bit(Faulty, &rdev->flags)) {
5377 				has_journal = true;
5378 				break;
5379 			}
5380 		}
5381 		rcu_read_unlock();
5382 
5383 		/* Don't restart rw with journal missing/faulty */
5384 		if (!has_journal)
5385 			return -EINVAL;
5386 	}
5387 
5388 	mddev->safemode = 0;
5389 	mddev->ro = 0;
5390 	set_disk_ro(disk, 0);
5391 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5392 		mdname(mddev));
5393 	/* Kick recovery or resync if necessary */
5394 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5395 	md_wakeup_thread(mddev->thread);
5396 	md_wakeup_thread(mddev->sync_thread);
5397 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5398 	return 0;
5399 }
5400 
5401 static void md_clean(struct mddev *mddev)
5402 {
5403 	mddev->array_sectors = 0;
5404 	mddev->external_size = 0;
5405 	mddev->dev_sectors = 0;
5406 	mddev->raid_disks = 0;
5407 	mddev->recovery_cp = 0;
5408 	mddev->resync_min = 0;
5409 	mddev->resync_max = MaxSector;
5410 	mddev->reshape_position = MaxSector;
5411 	mddev->external = 0;
5412 	mddev->persistent = 0;
5413 	mddev->level = LEVEL_NONE;
5414 	mddev->clevel[0] = 0;
5415 	mddev->flags = 0;
5416 	mddev->ro = 0;
5417 	mddev->metadata_type[0] = 0;
5418 	mddev->chunk_sectors = 0;
5419 	mddev->ctime = mddev->utime = 0;
5420 	mddev->layout = 0;
5421 	mddev->max_disks = 0;
5422 	mddev->events = 0;
5423 	mddev->can_decrease_events = 0;
5424 	mddev->delta_disks = 0;
5425 	mddev->reshape_backwards = 0;
5426 	mddev->new_level = LEVEL_NONE;
5427 	mddev->new_layout = 0;
5428 	mddev->new_chunk_sectors = 0;
5429 	mddev->curr_resync = 0;
5430 	atomic64_set(&mddev->resync_mismatches, 0);
5431 	mddev->suspend_lo = mddev->suspend_hi = 0;
5432 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5433 	mddev->recovery = 0;
5434 	mddev->in_sync = 0;
5435 	mddev->changed = 0;
5436 	mddev->degraded = 0;
5437 	mddev->safemode = 0;
5438 	mddev->private = NULL;
5439 	mddev->bitmap_info.offset = 0;
5440 	mddev->bitmap_info.default_offset = 0;
5441 	mddev->bitmap_info.default_space = 0;
5442 	mddev->bitmap_info.chunksize = 0;
5443 	mddev->bitmap_info.daemon_sleep = 0;
5444 	mddev->bitmap_info.max_write_behind = 0;
5445 }
5446 
5447 static void __md_stop_writes(struct mddev *mddev)
5448 {
5449 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5450 	flush_workqueue(md_misc_wq);
5451 	if (mddev->sync_thread) {
5452 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5453 		md_reap_sync_thread(mddev);
5454 	}
5455 
5456 	del_timer_sync(&mddev->safemode_timer);
5457 
5458 	bitmap_flush(mddev);
5459 	md_super_wait(mddev);
5460 
5461 	if (mddev->ro == 0 &&
5462 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5463 	     (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5464 		/* mark array as shutdown cleanly */
5465 		if (!mddev_is_clustered(mddev))
5466 			mddev->in_sync = 1;
5467 		md_update_sb(mddev, 1);
5468 	}
5469 }
5470 
5471 void md_stop_writes(struct mddev *mddev)
5472 {
5473 	mddev_lock_nointr(mddev);
5474 	__md_stop_writes(mddev);
5475 	mddev_unlock(mddev);
5476 }
5477 EXPORT_SYMBOL_GPL(md_stop_writes);
5478 
5479 static void mddev_detach(struct mddev *mddev)
5480 {
5481 	struct bitmap *bitmap = mddev->bitmap;
5482 	/* wait for behind writes to complete */
5483 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5484 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5485 		       mdname(mddev));
5486 		/* need to kick something here to make sure I/O goes? */
5487 		wait_event(bitmap->behind_wait,
5488 			   atomic_read(&bitmap->behind_writes) == 0);
5489 	}
5490 	if (mddev->pers && mddev->pers->quiesce) {
5491 		mddev->pers->quiesce(mddev, 1);
5492 		mddev->pers->quiesce(mddev, 0);
5493 	}
5494 	md_unregister_thread(&mddev->thread);
5495 	if (mddev->queue)
5496 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5497 }
5498 
5499 static void __md_stop(struct mddev *mddev)
5500 {
5501 	struct md_personality *pers = mddev->pers;
5502 	mddev_detach(mddev);
5503 	/* Ensure ->event_work is done */
5504 	flush_workqueue(md_misc_wq);
5505 	spin_lock(&mddev->lock);
5506 	mddev->ready = 0;
5507 	mddev->pers = NULL;
5508 	spin_unlock(&mddev->lock);
5509 	pers->free(mddev, mddev->private);
5510 	mddev->private = NULL;
5511 	if (pers->sync_request && mddev->to_remove == NULL)
5512 		mddev->to_remove = &md_redundancy_group;
5513 	module_put(pers->owner);
5514 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5515 }
5516 
5517 void md_stop(struct mddev *mddev)
5518 {
5519 	/* stop the array and free an attached data structures.
5520 	 * This is called from dm-raid
5521 	 */
5522 	__md_stop(mddev);
5523 	bitmap_destroy(mddev);
5524 	if (mddev->bio_set)
5525 		bioset_free(mddev->bio_set);
5526 }
5527 
5528 EXPORT_SYMBOL_GPL(md_stop);
5529 
5530 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5531 {
5532 	int err = 0;
5533 	int did_freeze = 0;
5534 
5535 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5536 		did_freeze = 1;
5537 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5538 		md_wakeup_thread(mddev->thread);
5539 	}
5540 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5541 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5542 	if (mddev->sync_thread)
5543 		/* Thread might be blocked waiting for metadata update
5544 		 * which will now never happen */
5545 		wake_up_process(mddev->sync_thread->tsk);
5546 
5547 	if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5548 		return -EBUSY;
5549 	mddev_unlock(mddev);
5550 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5551 					  &mddev->recovery));
5552 	wait_event(mddev->sb_wait,
5553 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5554 	mddev_lock_nointr(mddev);
5555 
5556 	mutex_lock(&mddev->open_mutex);
5557 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5558 	    mddev->sync_thread ||
5559 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5560 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5561 		printk("md: %s still in use.\n",mdname(mddev));
5562 		if (did_freeze) {
5563 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5564 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5565 			md_wakeup_thread(mddev->thread);
5566 		}
5567 		err = -EBUSY;
5568 		goto out;
5569 	}
5570 	if (mddev->pers) {
5571 		__md_stop_writes(mddev);
5572 
5573 		err  = -ENXIO;
5574 		if (mddev->ro==1)
5575 			goto out;
5576 		mddev->ro = 1;
5577 		set_disk_ro(mddev->gendisk, 1);
5578 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5579 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5580 		md_wakeup_thread(mddev->thread);
5581 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5582 		err = 0;
5583 	}
5584 out:
5585 	mutex_unlock(&mddev->open_mutex);
5586 	return err;
5587 }
5588 
5589 /* mode:
5590  *   0 - completely stop and dis-assemble array
5591  *   2 - stop but do not disassemble array
5592  */
5593 static int do_md_stop(struct mddev *mddev, int mode,
5594 		      struct block_device *bdev)
5595 {
5596 	struct gendisk *disk = mddev->gendisk;
5597 	struct md_rdev *rdev;
5598 	int did_freeze = 0;
5599 
5600 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5601 		did_freeze = 1;
5602 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5603 		md_wakeup_thread(mddev->thread);
5604 	}
5605 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5606 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5607 	if (mddev->sync_thread)
5608 		/* Thread might be blocked waiting for metadata update
5609 		 * which will now never happen */
5610 		wake_up_process(mddev->sync_thread->tsk);
5611 
5612 	mddev_unlock(mddev);
5613 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5614 				 !test_bit(MD_RECOVERY_RUNNING,
5615 					   &mddev->recovery)));
5616 	mddev_lock_nointr(mddev);
5617 
5618 	mutex_lock(&mddev->open_mutex);
5619 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5620 	    mddev->sysfs_active ||
5621 	    mddev->sync_thread ||
5622 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5623 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5624 		printk("md: %s still in use.\n",mdname(mddev));
5625 		mutex_unlock(&mddev->open_mutex);
5626 		if (did_freeze) {
5627 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5628 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5629 			md_wakeup_thread(mddev->thread);
5630 		}
5631 		return -EBUSY;
5632 	}
5633 	if (mddev->pers) {
5634 		if (mddev->ro)
5635 			set_disk_ro(disk, 0);
5636 
5637 		__md_stop_writes(mddev);
5638 		__md_stop(mddev);
5639 		mddev->queue->backing_dev_info.congested_fn = NULL;
5640 
5641 		/* tell userspace to handle 'inactive' */
5642 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5643 
5644 		rdev_for_each(rdev, mddev)
5645 			if (rdev->raid_disk >= 0)
5646 				sysfs_unlink_rdev(mddev, rdev);
5647 
5648 		set_capacity(disk, 0);
5649 		mutex_unlock(&mddev->open_mutex);
5650 		mddev->changed = 1;
5651 		revalidate_disk(disk);
5652 
5653 		if (mddev->ro)
5654 			mddev->ro = 0;
5655 	} else
5656 		mutex_unlock(&mddev->open_mutex);
5657 	/*
5658 	 * Free resources if final stop
5659 	 */
5660 	if (mode == 0) {
5661 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5662 
5663 		bitmap_destroy(mddev);
5664 		if (mddev->bitmap_info.file) {
5665 			struct file *f = mddev->bitmap_info.file;
5666 			spin_lock(&mddev->lock);
5667 			mddev->bitmap_info.file = NULL;
5668 			spin_unlock(&mddev->lock);
5669 			fput(f);
5670 		}
5671 		mddev->bitmap_info.offset = 0;
5672 
5673 		export_array(mddev);
5674 
5675 		md_clean(mddev);
5676 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5677 		if (mddev->hold_active == UNTIL_STOP)
5678 			mddev->hold_active = 0;
5679 	}
5680 	md_new_event(mddev);
5681 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5682 	return 0;
5683 }
5684 
5685 #ifndef MODULE
5686 static void autorun_array(struct mddev *mddev)
5687 {
5688 	struct md_rdev *rdev;
5689 	int err;
5690 
5691 	if (list_empty(&mddev->disks))
5692 		return;
5693 
5694 	printk(KERN_INFO "md: running: ");
5695 
5696 	rdev_for_each(rdev, mddev) {
5697 		char b[BDEVNAME_SIZE];
5698 		printk("<%s>", bdevname(rdev->bdev,b));
5699 	}
5700 	printk("\n");
5701 
5702 	err = do_md_run(mddev);
5703 	if (err) {
5704 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5705 		do_md_stop(mddev, 0, NULL);
5706 	}
5707 }
5708 
5709 /*
5710  * lets try to run arrays based on all disks that have arrived
5711  * until now. (those are in pending_raid_disks)
5712  *
5713  * the method: pick the first pending disk, collect all disks with
5714  * the same UUID, remove all from the pending list and put them into
5715  * the 'same_array' list. Then order this list based on superblock
5716  * update time (freshest comes first), kick out 'old' disks and
5717  * compare superblocks. If everything's fine then run it.
5718  *
5719  * If "unit" is allocated, then bump its reference count
5720  */
5721 static void autorun_devices(int part)
5722 {
5723 	struct md_rdev *rdev0, *rdev, *tmp;
5724 	struct mddev *mddev;
5725 	char b[BDEVNAME_SIZE];
5726 
5727 	printk(KERN_INFO "md: autorun ...\n");
5728 	while (!list_empty(&pending_raid_disks)) {
5729 		int unit;
5730 		dev_t dev;
5731 		LIST_HEAD(candidates);
5732 		rdev0 = list_entry(pending_raid_disks.next,
5733 					 struct md_rdev, same_set);
5734 
5735 		printk(KERN_INFO "md: considering %s ...\n",
5736 			bdevname(rdev0->bdev,b));
5737 		INIT_LIST_HEAD(&candidates);
5738 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5739 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5740 				printk(KERN_INFO "md:  adding %s ...\n",
5741 					bdevname(rdev->bdev,b));
5742 				list_move(&rdev->same_set, &candidates);
5743 			}
5744 		/*
5745 		 * now we have a set of devices, with all of them having
5746 		 * mostly sane superblocks. It's time to allocate the
5747 		 * mddev.
5748 		 */
5749 		if (part) {
5750 			dev = MKDEV(mdp_major,
5751 				    rdev0->preferred_minor << MdpMinorShift);
5752 			unit = MINOR(dev) >> MdpMinorShift;
5753 		} else {
5754 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5755 			unit = MINOR(dev);
5756 		}
5757 		if (rdev0->preferred_minor != unit) {
5758 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5759 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5760 			break;
5761 		}
5762 
5763 		md_probe(dev, NULL, NULL);
5764 		mddev = mddev_find(dev);
5765 		if (!mddev || !mddev->gendisk) {
5766 			if (mddev)
5767 				mddev_put(mddev);
5768 			printk(KERN_ERR
5769 				"md: cannot allocate memory for md drive.\n");
5770 			break;
5771 		}
5772 		if (mddev_lock(mddev))
5773 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5774 			       mdname(mddev));
5775 		else if (mddev->raid_disks || mddev->major_version
5776 			 || !list_empty(&mddev->disks)) {
5777 			printk(KERN_WARNING
5778 				"md: %s already running, cannot run %s\n",
5779 				mdname(mddev), bdevname(rdev0->bdev,b));
5780 			mddev_unlock(mddev);
5781 		} else {
5782 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5783 			mddev->persistent = 1;
5784 			rdev_for_each_list(rdev, tmp, &candidates) {
5785 				list_del_init(&rdev->same_set);
5786 				if (bind_rdev_to_array(rdev, mddev))
5787 					export_rdev(rdev);
5788 			}
5789 			autorun_array(mddev);
5790 			mddev_unlock(mddev);
5791 		}
5792 		/* on success, candidates will be empty, on error
5793 		 * it won't...
5794 		 */
5795 		rdev_for_each_list(rdev, tmp, &candidates) {
5796 			list_del_init(&rdev->same_set);
5797 			export_rdev(rdev);
5798 		}
5799 		mddev_put(mddev);
5800 	}
5801 	printk(KERN_INFO "md: ... autorun DONE.\n");
5802 }
5803 #endif /* !MODULE */
5804 
5805 static int get_version(void __user *arg)
5806 {
5807 	mdu_version_t ver;
5808 
5809 	ver.major = MD_MAJOR_VERSION;
5810 	ver.minor = MD_MINOR_VERSION;
5811 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5812 
5813 	if (copy_to_user(arg, &ver, sizeof(ver)))
5814 		return -EFAULT;
5815 
5816 	return 0;
5817 }
5818 
5819 static int get_array_info(struct mddev *mddev, void __user *arg)
5820 {
5821 	mdu_array_info_t info;
5822 	int nr,working,insync,failed,spare;
5823 	struct md_rdev *rdev;
5824 
5825 	nr = working = insync = failed = spare = 0;
5826 	rcu_read_lock();
5827 	rdev_for_each_rcu(rdev, mddev) {
5828 		nr++;
5829 		if (test_bit(Faulty, &rdev->flags))
5830 			failed++;
5831 		else {
5832 			working++;
5833 			if (test_bit(In_sync, &rdev->flags))
5834 				insync++;
5835 			else
5836 				spare++;
5837 		}
5838 	}
5839 	rcu_read_unlock();
5840 
5841 	info.major_version = mddev->major_version;
5842 	info.minor_version = mddev->minor_version;
5843 	info.patch_version = MD_PATCHLEVEL_VERSION;
5844 	info.ctime         = mddev->ctime;
5845 	info.level         = mddev->level;
5846 	info.size          = mddev->dev_sectors / 2;
5847 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5848 		info.size = -1;
5849 	info.nr_disks      = nr;
5850 	info.raid_disks    = mddev->raid_disks;
5851 	info.md_minor      = mddev->md_minor;
5852 	info.not_persistent= !mddev->persistent;
5853 
5854 	info.utime         = mddev->utime;
5855 	info.state         = 0;
5856 	if (mddev->in_sync)
5857 		info.state = (1<<MD_SB_CLEAN);
5858 	if (mddev->bitmap && mddev->bitmap_info.offset)
5859 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5860 	if (mddev_is_clustered(mddev))
5861 		info.state |= (1<<MD_SB_CLUSTERED);
5862 	info.active_disks  = insync;
5863 	info.working_disks = working;
5864 	info.failed_disks  = failed;
5865 	info.spare_disks   = spare;
5866 
5867 	info.layout        = mddev->layout;
5868 	info.chunk_size    = mddev->chunk_sectors << 9;
5869 
5870 	if (copy_to_user(arg, &info, sizeof(info)))
5871 		return -EFAULT;
5872 
5873 	return 0;
5874 }
5875 
5876 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5877 {
5878 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5879 	char *ptr;
5880 	int err;
5881 
5882 	file = kzalloc(sizeof(*file), GFP_NOIO);
5883 	if (!file)
5884 		return -ENOMEM;
5885 
5886 	err = 0;
5887 	spin_lock(&mddev->lock);
5888 	/* bitmap enabled */
5889 	if (mddev->bitmap_info.file) {
5890 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
5891 				sizeof(file->pathname));
5892 		if (IS_ERR(ptr))
5893 			err = PTR_ERR(ptr);
5894 		else
5895 			memmove(file->pathname, ptr,
5896 				sizeof(file->pathname)-(ptr-file->pathname));
5897 	}
5898 	spin_unlock(&mddev->lock);
5899 
5900 	if (err == 0 &&
5901 	    copy_to_user(arg, file, sizeof(*file)))
5902 		err = -EFAULT;
5903 
5904 	kfree(file);
5905 	return err;
5906 }
5907 
5908 static int get_disk_info(struct mddev *mddev, void __user * arg)
5909 {
5910 	mdu_disk_info_t info;
5911 	struct md_rdev *rdev;
5912 
5913 	if (copy_from_user(&info, arg, sizeof(info)))
5914 		return -EFAULT;
5915 
5916 	rcu_read_lock();
5917 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5918 	if (rdev) {
5919 		info.major = MAJOR(rdev->bdev->bd_dev);
5920 		info.minor = MINOR(rdev->bdev->bd_dev);
5921 		info.raid_disk = rdev->raid_disk;
5922 		info.state = 0;
5923 		if (test_bit(Faulty, &rdev->flags))
5924 			info.state |= (1<<MD_DISK_FAULTY);
5925 		else if (test_bit(In_sync, &rdev->flags)) {
5926 			info.state |= (1<<MD_DISK_ACTIVE);
5927 			info.state |= (1<<MD_DISK_SYNC);
5928 		}
5929 		if (test_bit(Journal, &rdev->flags))
5930 			info.state |= (1<<MD_DISK_JOURNAL);
5931 		if (test_bit(WriteMostly, &rdev->flags))
5932 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5933 	} else {
5934 		info.major = info.minor = 0;
5935 		info.raid_disk = -1;
5936 		info.state = (1<<MD_DISK_REMOVED);
5937 	}
5938 	rcu_read_unlock();
5939 
5940 	if (copy_to_user(arg, &info, sizeof(info)))
5941 		return -EFAULT;
5942 
5943 	return 0;
5944 }
5945 
5946 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5947 {
5948 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5949 	struct md_rdev *rdev;
5950 	dev_t dev = MKDEV(info->major,info->minor);
5951 
5952 	if (mddev_is_clustered(mddev) &&
5953 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5954 		pr_err("%s: Cannot add to clustered mddev.\n",
5955 			       mdname(mddev));
5956 		return -EINVAL;
5957 	}
5958 
5959 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5960 		return -EOVERFLOW;
5961 
5962 	if (!mddev->raid_disks) {
5963 		int err;
5964 		/* expecting a device which has a superblock */
5965 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5966 		if (IS_ERR(rdev)) {
5967 			printk(KERN_WARNING
5968 				"md: md_import_device returned %ld\n",
5969 				PTR_ERR(rdev));
5970 			return PTR_ERR(rdev);
5971 		}
5972 		if (!list_empty(&mddev->disks)) {
5973 			struct md_rdev *rdev0
5974 				= list_entry(mddev->disks.next,
5975 					     struct md_rdev, same_set);
5976 			err = super_types[mddev->major_version]
5977 				.load_super(rdev, rdev0, mddev->minor_version);
5978 			if (err < 0) {
5979 				printk(KERN_WARNING
5980 					"md: %s has different UUID to %s\n",
5981 					bdevname(rdev->bdev,b),
5982 					bdevname(rdev0->bdev,b2));
5983 				export_rdev(rdev);
5984 				return -EINVAL;
5985 			}
5986 		}
5987 		err = bind_rdev_to_array(rdev, mddev);
5988 		if (err)
5989 			export_rdev(rdev);
5990 		return err;
5991 	}
5992 
5993 	/*
5994 	 * add_new_disk can be used once the array is assembled
5995 	 * to add "hot spares".  They must already have a superblock
5996 	 * written
5997 	 */
5998 	if (mddev->pers) {
5999 		int err;
6000 		if (!mddev->pers->hot_add_disk) {
6001 			printk(KERN_WARNING
6002 				"%s: personality does not support diskops!\n",
6003 			       mdname(mddev));
6004 			return -EINVAL;
6005 		}
6006 		if (mddev->persistent)
6007 			rdev = md_import_device(dev, mddev->major_version,
6008 						mddev->minor_version);
6009 		else
6010 			rdev = md_import_device(dev, -1, -1);
6011 		if (IS_ERR(rdev)) {
6012 			printk(KERN_WARNING
6013 				"md: md_import_device returned %ld\n",
6014 				PTR_ERR(rdev));
6015 			return PTR_ERR(rdev);
6016 		}
6017 		/* set saved_raid_disk if appropriate */
6018 		if (!mddev->persistent) {
6019 			if (info->state & (1<<MD_DISK_SYNC)  &&
6020 			    info->raid_disk < mddev->raid_disks) {
6021 				rdev->raid_disk = info->raid_disk;
6022 				set_bit(In_sync, &rdev->flags);
6023 				clear_bit(Bitmap_sync, &rdev->flags);
6024 			} else
6025 				rdev->raid_disk = -1;
6026 			rdev->saved_raid_disk = rdev->raid_disk;
6027 		} else
6028 			super_types[mddev->major_version].
6029 				validate_super(mddev, rdev);
6030 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6031 		     rdev->raid_disk != info->raid_disk) {
6032 			/* This was a hot-add request, but events doesn't
6033 			 * match, so reject it.
6034 			 */
6035 			export_rdev(rdev);
6036 			return -EINVAL;
6037 		}
6038 
6039 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6040 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6041 			set_bit(WriteMostly, &rdev->flags);
6042 		else
6043 			clear_bit(WriteMostly, &rdev->flags);
6044 
6045 		if (info->state & (1<<MD_DISK_JOURNAL))
6046 			set_bit(Journal, &rdev->flags);
6047 		/*
6048 		 * check whether the device shows up in other nodes
6049 		 */
6050 		if (mddev_is_clustered(mddev)) {
6051 			if (info->state & (1 << MD_DISK_CANDIDATE))
6052 				set_bit(Candidate, &rdev->flags);
6053 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6054 				/* --add initiated by this node */
6055 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6056 				if (err) {
6057 					export_rdev(rdev);
6058 					return err;
6059 				}
6060 			}
6061 		}
6062 
6063 		rdev->raid_disk = -1;
6064 		err = bind_rdev_to_array(rdev, mddev);
6065 
6066 		if (err)
6067 			export_rdev(rdev);
6068 
6069 		if (mddev_is_clustered(mddev)) {
6070 			if (info->state & (1 << MD_DISK_CANDIDATE))
6071 				md_cluster_ops->new_disk_ack(mddev, (err == 0));
6072 			else {
6073 				if (err)
6074 					md_cluster_ops->add_new_disk_cancel(mddev);
6075 				else
6076 					err = add_bound_rdev(rdev);
6077 			}
6078 
6079 		} else if (!err)
6080 			err = add_bound_rdev(rdev);
6081 
6082 		return err;
6083 	}
6084 
6085 	/* otherwise, add_new_disk is only allowed
6086 	 * for major_version==0 superblocks
6087 	 */
6088 	if (mddev->major_version != 0) {
6089 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6090 		       mdname(mddev));
6091 		return -EINVAL;
6092 	}
6093 
6094 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6095 		int err;
6096 		rdev = md_import_device(dev, -1, 0);
6097 		if (IS_ERR(rdev)) {
6098 			printk(KERN_WARNING
6099 				"md: error, md_import_device() returned %ld\n",
6100 				PTR_ERR(rdev));
6101 			return PTR_ERR(rdev);
6102 		}
6103 		rdev->desc_nr = info->number;
6104 		if (info->raid_disk < mddev->raid_disks)
6105 			rdev->raid_disk = info->raid_disk;
6106 		else
6107 			rdev->raid_disk = -1;
6108 
6109 		if (rdev->raid_disk < mddev->raid_disks)
6110 			if (info->state & (1<<MD_DISK_SYNC))
6111 				set_bit(In_sync, &rdev->flags);
6112 
6113 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6114 			set_bit(WriteMostly, &rdev->flags);
6115 
6116 		if (!mddev->persistent) {
6117 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
6118 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6119 		} else
6120 			rdev->sb_start = calc_dev_sboffset(rdev);
6121 		rdev->sectors = rdev->sb_start;
6122 
6123 		err = bind_rdev_to_array(rdev, mddev);
6124 		if (err) {
6125 			export_rdev(rdev);
6126 			return err;
6127 		}
6128 	}
6129 
6130 	return 0;
6131 }
6132 
6133 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6134 {
6135 	char b[BDEVNAME_SIZE];
6136 	struct md_rdev *rdev;
6137 	int ret = -1;
6138 
6139 	rdev = find_rdev(mddev, dev);
6140 	if (!rdev)
6141 		return -ENXIO;
6142 
6143 	if (mddev_is_clustered(mddev))
6144 		ret = md_cluster_ops->metadata_update_start(mddev);
6145 
6146 	if (rdev->raid_disk < 0)
6147 		goto kick_rdev;
6148 
6149 	clear_bit(Blocked, &rdev->flags);
6150 	remove_and_add_spares(mddev, rdev);
6151 
6152 	if (rdev->raid_disk >= 0)
6153 		goto busy;
6154 
6155 kick_rdev:
6156 	if (mddev_is_clustered(mddev) && ret == 0)
6157 		md_cluster_ops->remove_disk(mddev, rdev);
6158 
6159 	md_kick_rdev_from_array(rdev);
6160 	md_update_sb(mddev, 1);
6161 	md_new_event(mddev);
6162 
6163 	return 0;
6164 busy:
6165 	if (mddev_is_clustered(mddev) && ret == 0)
6166 		md_cluster_ops->metadata_update_cancel(mddev);
6167 
6168 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6169 		bdevname(rdev->bdev,b), mdname(mddev));
6170 	return -EBUSY;
6171 }
6172 
6173 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6174 {
6175 	char b[BDEVNAME_SIZE];
6176 	int err;
6177 	struct md_rdev *rdev;
6178 
6179 	if (!mddev->pers)
6180 		return -ENODEV;
6181 
6182 	if (mddev->major_version != 0) {
6183 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6184 			" version-0 superblocks.\n",
6185 			mdname(mddev));
6186 		return -EINVAL;
6187 	}
6188 	if (!mddev->pers->hot_add_disk) {
6189 		printk(KERN_WARNING
6190 			"%s: personality does not support diskops!\n",
6191 			mdname(mddev));
6192 		return -EINVAL;
6193 	}
6194 
6195 	rdev = md_import_device(dev, -1, 0);
6196 	if (IS_ERR(rdev)) {
6197 		printk(KERN_WARNING
6198 			"md: error, md_import_device() returned %ld\n",
6199 			PTR_ERR(rdev));
6200 		return -EINVAL;
6201 	}
6202 
6203 	if (mddev->persistent)
6204 		rdev->sb_start = calc_dev_sboffset(rdev);
6205 	else
6206 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6207 
6208 	rdev->sectors = rdev->sb_start;
6209 
6210 	if (test_bit(Faulty, &rdev->flags)) {
6211 		printk(KERN_WARNING
6212 			"md: can not hot-add faulty %s disk to %s!\n",
6213 			bdevname(rdev->bdev,b), mdname(mddev));
6214 		err = -EINVAL;
6215 		goto abort_export;
6216 	}
6217 
6218 	clear_bit(In_sync, &rdev->flags);
6219 	rdev->desc_nr = -1;
6220 	rdev->saved_raid_disk = -1;
6221 	err = bind_rdev_to_array(rdev, mddev);
6222 	if (err)
6223 		goto abort_export;
6224 
6225 	/*
6226 	 * The rest should better be atomic, we can have disk failures
6227 	 * noticed in interrupt contexts ...
6228 	 */
6229 
6230 	rdev->raid_disk = -1;
6231 
6232 	md_update_sb(mddev, 1);
6233 	/*
6234 	 * Kick recovery, maybe this spare has to be added to the
6235 	 * array immediately.
6236 	 */
6237 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6238 	md_wakeup_thread(mddev->thread);
6239 	md_new_event(mddev);
6240 	return 0;
6241 
6242 abort_export:
6243 	export_rdev(rdev);
6244 	return err;
6245 }
6246 
6247 static int set_bitmap_file(struct mddev *mddev, int fd)
6248 {
6249 	int err = 0;
6250 
6251 	if (mddev->pers) {
6252 		if (!mddev->pers->quiesce || !mddev->thread)
6253 			return -EBUSY;
6254 		if (mddev->recovery || mddev->sync_thread)
6255 			return -EBUSY;
6256 		/* we should be able to change the bitmap.. */
6257 	}
6258 
6259 	if (fd >= 0) {
6260 		struct inode *inode;
6261 		struct file *f;
6262 
6263 		if (mddev->bitmap || mddev->bitmap_info.file)
6264 			return -EEXIST; /* cannot add when bitmap is present */
6265 		f = fget(fd);
6266 
6267 		if (f == NULL) {
6268 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6269 			       mdname(mddev));
6270 			return -EBADF;
6271 		}
6272 
6273 		inode = f->f_mapping->host;
6274 		if (!S_ISREG(inode->i_mode)) {
6275 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6276 			       mdname(mddev));
6277 			err = -EBADF;
6278 		} else if (!(f->f_mode & FMODE_WRITE)) {
6279 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6280 			       mdname(mddev));
6281 			err = -EBADF;
6282 		} else if (atomic_read(&inode->i_writecount) != 1) {
6283 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6284 			       mdname(mddev));
6285 			err = -EBUSY;
6286 		}
6287 		if (err) {
6288 			fput(f);
6289 			return err;
6290 		}
6291 		mddev->bitmap_info.file = f;
6292 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6293 	} else if (mddev->bitmap == NULL)
6294 		return -ENOENT; /* cannot remove what isn't there */
6295 	err = 0;
6296 	if (mddev->pers) {
6297 		mddev->pers->quiesce(mddev, 1);
6298 		if (fd >= 0) {
6299 			struct bitmap *bitmap;
6300 
6301 			bitmap = bitmap_create(mddev, -1);
6302 			if (!IS_ERR(bitmap)) {
6303 				mddev->bitmap = bitmap;
6304 				err = bitmap_load(mddev);
6305 			} else
6306 				err = PTR_ERR(bitmap);
6307 		}
6308 		if (fd < 0 || err) {
6309 			bitmap_destroy(mddev);
6310 			fd = -1; /* make sure to put the file */
6311 		}
6312 		mddev->pers->quiesce(mddev, 0);
6313 	}
6314 	if (fd < 0) {
6315 		struct file *f = mddev->bitmap_info.file;
6316 		if (f) {
6317 			spin_lock(&mddev->lock);
6318 			mddev->bitmap_info.file = NULL;
6319 			spin_unlock(&mddev->lock);
6320 			fput(f);
6321 		}
6322 	}
6323 
6324 	return err;
6325 }
6326 
6327 /*
6328  * set_array_info is used two different ways
6329  * The original usage is when creating a new array.
6330  * In this usage, raid_disks is > 0 and it together with
6331  *  level, size, not_persistent,layout,chunksize determine the
6332  *  shape of the array.
6333  *  This will always create an array with a type-0.90.0 superblock.
6334  * The newer usage is when assembling an array.
6335  *  In this case raid_disks will be 0, and the major_version field is
6336  *  use to determine which style super-blocks are to be found on the devices.
6337  *  The minor and patch _version numbers are also kept incase the
6338  *  super_block handler wishes to interpret them.
6339  */
6340 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6341 {
6342 
6343 	if (info->raid_disks == 0) {
6344 		/* just setting version number for superblock loading */
6345 		if (info->major_version < 0 ||
6346 		    info->major_version >= ARRAY_SIZE(super_types) ||
6347 		    super_types[info->major_version].name == NULL) {
6348 			/* maybe try to auto-load a module? */
6349 			printk(KERN_INFO
6350 				"md: superblock version %d not known\n",
6351 				info->major_version);
6352 			return -EINVAL;
6353 		}
6354 		mddev->major_version = info->major_version;
6355 		mddev->minor_version = info->minor_version;
6356 		mddev->patch_version = info->patch_version;
6357 		mddev->persistent = !info->not_persistent;
6358 		/* ensure mddev_put doesn't delete this now that there
6359 		 * is some minimal configuration.
6360 		 */
6361 		mddev->ctime         = get_seconds();
6362 		return 0;
6363 	}
6364 	mddev->major_version = MD_MAJOR_VERSION;
6365 	mddev->minor_version = MD_MINOR_VERSION;
6366 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6367 	mddev->ctime         = get_seconds();
6368 
6369 	mddev->level         = info->level;
6370 	mddev->clevel[0]     = 0;
6371 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6372 	mddev->raid_disks    = info->raid_disks;
6373 	/* don't set md_minor, it is determined by which /dev/md* was
6374 	 * openned
6375 	 */
6376 	if (info->state & (1<<MD_SB_CLEAN))
6377 		mddev->recovery_cp = MaxSector;
6378 	else
6379 		mddev->recovery_cp = 0;
6380 	mddev->persistent    = ! info->not_persistent;
6381 	mddev->external	     = 0;
6382 
6383 	mddev->layout        = info->layout;
6384 	mddev->chunk_sectors = info->chunk_size >> 9;
6385 
6386 	mddev->max_disks     = MD_SB_DISKS;
6387 
6388 	if (mddev->persistent)
6389 		mddev->flags         = 0;
6390 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6391 
6392 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6393 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6394 	mddev->bitmap_info.offset = 0;
6395 
6396 	mddev->reshape_position = MaxSector;
6397 
6398 	/*
6399 	 * Generate a 128 bit UUID
6400 	 */
6401 	get_random_bytes(mddev->uuid, 16);
6402 
6403 	mddev->new_level = mddev->level;
6404 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6405 	mddev->new_layout = mddev->layout;
6406 	mddev->delta_disks = 0;
6407 	mddev->reshape_backwards = 0;
6408 
6409 	return 0;
6410 }
6411 
6412 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6413 {
6414 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6415 
6416 	if (mddev->external_size)
6417 		return;
6418 
6419 	mddev->array_sectors = array_sectors;
6420 }
6421 EXPORT_SYMBOL(md_set_array_sectors);
6422 
6423 static int update_size(struct mddev *mddev, sector_t num_sectors)
6424 {
6425 	struct md_rdev *rdev;
6426 	int rv;
6427 	int fit = (num_sectors == 0);
6428 
6429 	if (mddev->pers->resize == NULL)
6430 		return -EINVAL;
6431 	/* The "num_sectors" is the number of sectors of each device that
6432 	 * is used.  This can only make sense for arrays with redundancy.
6433 	 * linear and raid0 always use whatever space is available. We can only
6434 	 * consider changing this number if no resync or reconstruction is
6435 	 * happening, and if the new size is acceptable. It must fit before the
6436 	 * sb_start or, if that is <data_offset, it must fit before the size
6437 	 * of each device.  If num_sectors is zero, we find the largest size
6438 	 * that fits.
6439 	 */
6440 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6441 	    mddev->sync_thread)
6442 		return -EBUSY;
6443 	if (mddev->ro)
6444 		return -EROFS;
6445 
6446 	rdev_for_each(rdev, mddev) {
6447 		sector_t avail = rdev->sectors;
6448 
6449 		if (fit && (num_sectors == 0 || num_sectors > avail))
6450 			num_sectors = avail;
6451 		if (avail < num_sectors)
6452 			return -ENOSPC;
6453 	}
6454 	rv = mddev->pers->resize(mddev, num_sectors);
6455 	if (!rv)
6456 		revalidate_disk(mddev->gendisk);
6457 	return rv;
6458 }
6459 
6460 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6461 {
6462 	int rv;
6463 	struct md_rdev *rdev;
6464 	/* change the number of raid disks */
6465 	if (mddev->pers->check_reshape == NULL)
6466 		return -EINVAL;
6467 	if (mddev->ro)
6468 		return -EROFS;
6469 	if (raid_disks <= 0 ||
6470 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6471 		return -EINVAL;
6472 	if (mddev->sync_thread ||
6473 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6474 	    mddev->reshape_position != MaxSector)
6475 		return -EBUSY;
6476 
6477 	rdev_for_each(rdev, mddev) {
6478 		if (mddev->raid_disks < raid_disks &&
6479 		    rdev->data_offset < rdev->new_data_offset)
6480 			return -EINVAL;
6481 		if (mddev->raid_disks > raid_disks &&
6482 		    rdev->data_offset > rdev->new_data_offset)
6483 			return -EINVAL;
6484 	}
6485 
6486 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6487 	if (mddev->delta_disks < 0)
6488 		mddev->reshape_backwards = 1;
6489 	else if (mddev->delta_disks > 0)
6490 		mddev->reshape_backwards = 0;
6491 
6492 	rv = mddev->pers->check_reshape(mddev);
6493 	if (rv < 0) {
6494 		mddev->delta_disks = 0;
6495 		mddev->reshape_backwards = 0;
6496 	}
6497 	return rv;
6498 }
6499 
6500 /*
6501  * update_array_info is used to change the configuration of an
6502  * on-line array.
6503  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6504  * fields in the info are checked against the array.
6505  * Any differences that cannot be handled will cause an error.
6506  * Normally, only one change can be managed at a time.
6507  */
6508 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6509 {
6510 	int rv = 0;
6511 	int cnt = 0;
6512 	int state = 0;
6513 
6514 	/* calculate expected state,ignoring low bits */
6515 	if (mddev->bitmap && mddev->bitmap_info.offset)
6516 		state |= (1 << MD_SB_BITMAP_PRESENT);
6517 
6518 	if (mddev->major_version != info->major_version ||
6519 	    mddev->minor_version != info->minor_version ||
6520 /*	    mddev->patch_version != info->patch_version || */
6521 	    mddev->ctime         != info->ctime         ||
6522 	    mddev->level         != info->level         ||
6523 /*	    mddev->layout        != info->layout        || */
6524 	    mddev->persistent	 != !info->not_persistent ||
6525 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6526 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6527 	    ((state^info->state) & 0xfffffe00)
6528 		)
6529 		return -EINVAL;
6530 	/* Check there is only one change */
6531 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6532 		cnt++;
6533 	if (mddev->raid_disks != info->raid_disks)
6534 		cnt++;
6535 	if (mddev->layout != info->layout)
6536 		cnt++;
6537 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6538 		cnt++;
6539 	if (cnt == 0)
6540 		return 0;
6541 	if (cnt > 1)
6542 		return -EINVAL;
6543 
6544 	if (mddev->layout != info->layout) {
6545 		/* Change layout
6546 		 * we don't need to do anything at the md level, the
6547 		 * personality will take care of it all.
6548 		 */
6549 		if (mddev->pers->check_reshape == NULL)
6550 			return -EINVAL;
6551 		else {
6552 			mddev->new_layout = info->layout;
6553 			rv = mddev->pers->check_reshape(mddev);
6554 			if (rv)
6555 				mddev->new_layout = mddev->layout;
6556 			return rv;
6557 		}
6558 	}
6559 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6560 		rv = update_size(mddev, (sector_t)info->size * 2);
6561 
6562 	if (mddev->raid_disks    != info->raid_disks)
6563 		rv = update_raid_disks(mddev, info->raid_disks);
6564 
6565 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6566 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6567 			rv = -EINVAL;
6568 			goto err;
6569 		}
6570 		if (mddev->recovery || mddev->sync_thread) {
6571 			rv = -EBUSY;
6572 			goto err;
6573 		}
6574 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6575 			struct bitmap *bitmap;
6576 			/* add the bitmap */
6577 			if (mddev->bitmap) {
6578 				rv = -EEXIST;
6579 				goto err;
6580 			}
6581 			if (mddev->bitmap_info.default_offset == 0) {
6582 				rv = -EINVAL;
6583 				goto err;
6584 			}
6585 			mddev->bitmap_info.offset =
6586 				mddev->bitmap_info.default_offset;
6587 			mddev->bitmap_info.space =
6588 				mddev->bitmap_info.default_space;
6589 			mddev->pers->quiesce(mddev, 1);
6590 			bitmap = bitmap_create(mddev, -1);
6591 			if (!IS_ERR(bitmap)) {
6592 				mddev->bitmap = bitmap;
6593 				rv = bitmap_load(mddev);
6594 			} else
6595 				rv = PTR_ERR(bitmap);
6596 			if (rv)
6597 				bitmap_destroy(mddev);
6598 			mddev->pers->quiesce(mddev, 0);
6599 		} else {
6600 			/* remove the bitmap */
6601 			if (!mddev->bitmap) {
6602 				rv = -ENOENT;
6603 				goto err;
6604 			}
6605 			if (mddev->bitmap->storage.file) {
6606 				rv = -EINVAL;
6607 				goto err;
6608 			}
6609 			mddev->pers->quiesce(mddev, 1);
6610 			bitmap_destroy(mddev);
6611 			mddev->pers->quiesce(mddev, 0);
6612 			mddev->bitmap_info.offset = 0;
6613 		}
6614 	}
6615 	md_update_sb(mddev, 1);
6616 	return rv;
6617 err:
6618 	return rv;
6619 }
6620 
6621 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6622 {
6623 	struct md_rdev *rdev;
6624 	int err = 0;
6625 
6626 	if (mddev->pers == NULL)
6627 		return -ENODEV;
6628 
6629 	rcu_read_lock();
6630 	rdev = find_rdev_rcu(mddev, dev);
6631 	if (!rdev)
6632 		err =  -ENODEV;
6633 	else {
6634 		md_error(mddev, rdev);
6635 		if (!test_bit(Faulty, &rdev->flags))
6636 			err = -EBUSY;
6637 	}
6638 	rcu_read_unlock();
6639 	return err;
6640 }
6641 
6642 /*
6643  * We have a problem here : there is no easy way to give a CHS
6644  * virtual geometry. We currently pretend that we have a 2 heads
6645  * 4 sectors (with a BIG number of cylinders...). This drives
6646  * dosfs just mad... ;-)
6647  */
6648 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6649 {
6650 	struct mddev *mddev = bdev->bd_disk->private_data;
6651 
6652 	geo->heads = 2;
6653 	geo->sectors = 4;
6654 	geo->cylinders = mddev->array_sectors / 8;
6655 	return 0;
6656 }
6657 
6658 static inline bool md_ioctl_valid(unsigned int cmd)
6659 {
6660 	switch (cmd) {
6661 	case ADD_NEW_DISK:
6662 	case BLKROSET:
6663 	case GET_ARRAY_INFO:
6664 	case GET_BITMAP_FILE:
6665 	case GET_DISK_INFO:
6666 	case HOT_ADD_DISK:
6667 	case HOT_REMOVE_DISK:
6668 	case RAID_AUTORUN:
6669 	case RAID_VERSION:
6670 	case RESTART_ARRAY_RW:
6671 	case RUN_ARRAY:
6672 	case SET_ARRAY_INFO:
6673 	case SET_BITMAP_FILE:
6674 	case SET_DISK_FAULTY:
6675 	case STOP_ARRAY:
6676 	case STOP_ARRAY_RO:
6677 	case CLUSTERED_DISK_NACK:
6678 		return true;
6679 	default:
6680 		return false;
6681 	}
6682 }
6683 
6684 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6685 			unsigned int cmd, unsigned long arg)
6686 {
6687 	int err = 0;
6688 	void __user *argp = (void __user *)arg;
6689 	struct mddev *mddev = NULL;
6690 	int ro;
6691 
6692 	if (!md_ioctl_valid(cmd))
6693 		return -ENOTTY;
6694 
6695 	switch (cmd) {
6696 	case RAID_VERSION:
6697 	case GET_ARRAY_INFO:
6698 	case GET_DISK_INFO:
6699 		break;
6700 	default:
6701 		if (!capable(CAP_SYS_ADMIN))
6702 			return -EACCES;
6703 	}
6704 
6705 	/*
6706 	 * Commands dealing with the RAID driver but not any
6707 	 * particular array:
6708 	 */
6709 	switch (cmd) {
6710 	case RAID_VERSION:
6711 		err = get_version(argp);
6712 		goto out;
6713 
6714 #ifndef MODULE
6715 	case RAID_AUTORUN:
6716 		err = 0;
6717 		autostart_arrays(arg);
6718 		goto out;
6719 #endif
6720 	default:;
6721 	}
6722 
6723 	/*
6724 	 * Commands creating/starting a new array:
6725 	 */
6726 
6727 	mddev = bdev->bd_disk->private_data;
6728 
6729 	if (!mddev) {
6730 		BUG();
6731 		goto out;
6732 	}
6733 
6734 	/* Some actions do not requires the mutex */
6735 	switch (cmd) {
6736 	case GET_ARRAY_INFO:
6737 		if (!mddev->raid_disks && !mddev->external)
6738 			err = -ENODEV;
6739 		else
6740 			err = get_array_info(mddev, argp);
6741 		goto out;
6742 
6743 	case GET_DISK_INFO:
6744 		if (!mddev->raid_disks && !mddev->external)
6745 			err = -ENODEV;
6746 		else
6747 			err = get_disk_info(mddev, argp);
6748 		goto out;
6749 
6750 	case SET_DISK_FAULTY:
6751 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6752 		goto out;
6753 
6754 	case GET_BITMAP_FILE:
6755 		err = get_bitmap_file(mddev, argp);
6756 		goto out;
6757 
6758 	}
6759 
6760 	if (cmd == ADD_NEW_DISK)
6761 		/* need to ensure md_delayed_delete() has completed */
6762 		flush_workqueue(md_misc_wq);
6763 
6764 	if (cmd == HOT_REMOVE_DISK)
6765 		/* need to ensure recovery thread has run */
6766 		wait_event_interruptible_timeout(mddev->sb_wait,
6767 						 !test_bit(MD_RECOVERY_NEEDED,
6768 							   &mddev->flags),
6769 						 msecs_to_jiffies(5000));
6770 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6771 		/* Need to flush page cache, and ensure no-one else opens
6772 		 * and writes
6773 		 */
6774 		mutex_lock(&mddev->open_mutex);
6775 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6776 			mutex_unlock(&mddev->open_mutex);
6777 			err = -EBUSY;
6778 			goto out;
6779 		}
6780 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6781 		mutex_unlock(&mddev->open_mutex);
6782 		sync_blockdev(bdev);
6783 	}
6784 	err = mddev_lock(mddev);
6785 	if (err) {
6786 		printk(KERN_INFO
6787 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6788 			err, cmd);
6789 		goto out;
6790 	}
6791 
6792 	if (cmd == SET_ARRAY_INFO) {
6793 		mdu_array_info_t info;
6794 		if (!arg)
6795 			memset(&info, 0, sizeof(info));
6796 		else if (copy_from_user(&info, argp, sizeof(info))) {
6797 			err = -EFAULT;
6798 			goto unlock;
6799 		}
6800 		if (mddev->pers) {
6801 			err = update_array_info(mddev, &info);
6802 			if (err) {
6803 				printk(KERN_WARNING "md: couldn't update"
6804 				       " array info. %d\n", err);
6805 				goto unlock;
6806 			}
6807 			goto unlock;
6808 		}
6809 		if (!list_empty(&mddev->disks)) {
6810 			printk(KERN_WARNING
6811 			       "md: array %s already has disks!\n",
6812 			       mdname(mddev));
6813 			err = -EBUSY;
6814 			goto unlock;
6815 		}
6816 		if (mddev->raid_disks) {
6817 			printk(KERN_WARNING
6818 			       "md: array %s already initialised!\n",
6819 			       mdname(mddev));
6820 			err = -EBUSY;
6821 			goto unlock;
6822 		}
6823 		err = set_array_info(mddev, &info);
6824 		if (err) {
6825 			printk(KERN_WARNING "md: couldn't set"
6826 			       " array info. %d\n", err);
6827 			goto unlock;
6828 		}
6829 		goto unlock;
6830 	}
6831 
6832 	/*
6833 	 * Commands querying/configuring an existing array:
6834 	 */
6835 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6836 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6837 	if ((!mddev->raid_disks && !mddev->external)
6838 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6839 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6840 	    && cmd != GET_BITMAP_FILE) {
6841 		err = -ENODEV;
6842 		goto unlock;
6843 	}
6844 
6845 	/*
6846 	 * Commands even a read-only array can execute:
6847 	 */
6848 	switch (cmd) {
6849 	case RESTART_ARRAY_RW:
6850 		err = restart_array(mddev);
6851 		goto unlock;
6852 
6853 	case STOP_ARRAY:
6854 		err = do_md_stop(mddev, 0, bdev);
6855 		goto unlock;
6856 
6857 	case STOP_ARRAY_RO:
6858 		err = md_set_readonly(mddev, bdev);
6859 		goto unlock;
6860 
6861 	case HOT_REMOVE_DISK:
6862 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6863 		goto unlock;
6864 
6865 	case ADD_NEW_DISK:
6866 		/* We can support ADD_NEW_DISK on read-only arrays
6867 		 * on if we are re-adding a preexisting device.
6868 		 * So require mddev->pers and MD_DISK_SYNC.
6869 		 */
6870 		if (mddev->pers) {
6871 			mdu_disk_info_t info;
6872 			if (copy_from_user(&info, argp, sizeof(info)))
6873 				err = -EFAULT;
6874 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6875 				/* Need to clear read-only for this */
6876 				break;
6877 			else
6878 				err = add_new_disk(mddev, &info);
6879 			goto unlock;
6880 		}
6881 		break;
6882 
6883 	case BLKROSET:
6884 		if (get_user(ro, (int __user *)(arg))) {
6885 			err = -EFAULT;
6886 			goto unlock;
6887 		}
6888 		err = -EINVAL;
6889 
6890 		/* if the bdev is going readonly the value of mddev->ro
6891 		 * does not matter, no writes are coming
6892 		 */
6893 		if (ro)
6894 			goto unlock;
6895 
6896 		/* are we are already prepared for writes? */
6897 		if (mddev->ro != 1)
6898 			goto unlock;
6899 
6900 		/* transitioning to readauto need only happen for
6901 		 * arrays that call md_write_start
6902 		 */
6903 		if (mddev->pers) {
6904 			err = restart_array(mddev);
6905 			if (err == 0) {
6906 				mddev->ro = 2;
6907 				set_disk_ro(mddev->gendisk, 0);
6908 			}
6909 		}
6910 		goto unlock;
6911 	}
6912 
6913 	/*
6914 	 * The remaining ioctls are changing the state of the
6915 	 * superblock, so we do not allow them on read-only arrays.
6916 	 */
6917 	if (mddev->ro && mddev->pers) {
6918 		if (mddev->ro == 2) {
6919 			mddev->ro = 0;
6920 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6921 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6922 			/* mddev_unlock will wake thread */
6923 			/* If a device failed while we were read-only, we
6924 			 * need to make sure the metadata is updated now.
6925 			 */
6926 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6927 				mddev_unlock(mddev);
6928 				wait_event(mddev->sb_wait,
6929 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6930 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6931 				mddev_lock_nointr(mddev);
6932 			}
6933 		} else {
6934 			err = -EROFS;
6935 			goto unlock;
6936 		}
6937 	}
6938 
6939 	switch (cmd) {
6940 	case ADD_NEW_DISK:
6941 	{
6942 		mdu_disk_info_t info;
6943 		if (copy_from_user(&info, argp, sizeof(info)))
6944 			err = -EFAULT;
6945 		else
6946 			err = add_new_disk(mddev, &info);
6947 		goto unlock;
6948 	}
6949 
6950 	case CLUSTERED_DISK_NACK:
6951 		if (mddev_is_clustered(mddev))
6952 			md_cluster_ops->new_disk_ack(mddev, false);
6953 		else
6954 			err = -EINVAL;
6955 		goto unlock;
6956 
6957 	case HOT_ADD_DISK:
6958 		err = hot_add_disk(mddev, new_decode_dev(arg));
6959 		goto unlock;
6960 
6961 	case RUN_ARRAY:
6962 		err = do_md_run(mddev);
6963 		goto unlock;
6964 
6965 	case SET_BITMAP_FILE:
6966 		err = set_bitmap_file(mddev, (int)arg);
6967 		goto unlock;
6968 
6969 	default:
6970 		err = -EINVAL;
6971 		goto unlock;
6972 	}
6973 
6974 unlock:
6975 	if (mddev->hold_active == UNTIL_IOCTL &&
6976 	    err != -EINVAL)
6977 		mddev->hold_active = 0;
6978 	mddev_unlock(mddev);
6979 out:
6980 	return err;
6981 }
6982 #ifdef CONFIG_COMPAT
6983 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6984 		    unsigned int cmd, unsigned long arg)
6985 {
6986 	switch (cmd) {
6987 	case HOT_REMOVE_DISK:
6988 	case HOT_ADD_DISK:
6989 	case SET_DISK_FAULTY:
6990 	case SET_BITMAP_FILE:
6991 		/* These take in integer arg, do not convert */
6992 		break;
6993 	default:
6994 		arg = (unsigned long)compat_ptr(arg);
6995 		break;
6996 	}
6997 
6998 	return md_ioctl(bdev, mode, cmd, arg);
6999 }
7000 #endif /* CONFIG_COMPAT */
7001 
7002 static int md_open(struct block_device *bdev, fmode_t mode)
7003 {
7004 	/*
7005 	 * Succeed if we can lock the mddev, which confirms that
7006 	 * it isn't being stopped right now.
7007 	 */
7008 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7009 	int err;
7010 
7011 	if (!mddev)
7012 		return -ENODEV;
7013 
7014 	if (mddev->gendisk != bdev->bd_disk) {
7015 		/* we are racing with mddev_put which is discarding this
7016 		 * bd_disk.
7017 		 */
7018 		mddev_put(mddev);
7019 		/* Wait until bdev->bd_disk is definitely gone */
7020 		flush_workqueue(md_misc_wq);
7021 		/* Then retry the open from the top */
7022 		return -ERESTARTSYS;
7023 	}
7024 	BUG_ON(mddev != bdev->bd_disk->private_data);
7025 
7026 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7027 		goto out;
7028 
7029 	err = 0;
7030 	atomic_inc(&mddev->openers);
7031 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
7032 	mutex_unlock(&mddev->open_mutex);
7033 
7034 	check_disk_change(bdev);
7035  out:
7036 	return err;
7037 }
7038 
7039 static void md_release(struct gendisk *disk, fmode_t mode)
7040 {
7041 	struct mddev *mddev = disk->private_data;
7042 
7043 	BUG_ON(!mddev);
7044 	atomic_dec(&mddev->openers);
7045 	mddev_put(mddev);
7046 }
7047 
7048 static int md_media_changed(struct gendisk *disk)
7049 {
7050 	struct mddev *mddev = disk->private_data;
7051 
7052 	return mddev->changed;
7053 }
7054 
7055 static int md_revalidate(struct gendisk *disk)
7056 {
7057 	struct mddev *mddev = disk->private_data;
7058 
7059 	mddev->changed = 0;
7060 	return 0;
7061 }
7062 static const struct block_device_operations md_fops =
7063 {
7064 	.owner		= THIS_MODULE,
7065 	.open		= md_open,
7066 	.release	= md_release,
7067 	.ioctl		= md_ioctl,
7068 #ifdef CONFIG_COMPAT
7069 	.compat_ioctl	= md_compat_ioctl,
7070 #endif
7071 	.getgeo		= md_getgeo,
7072 	.media_changed  = md_media_changed,
7073 	.revalidate_disk= md_revalidate,
7074 };
7075 
7076 static int md_thread(void *arg)
7077 {
7078 	struct md_thread *thread = arg;
7079 
7080 	/*
7081 	 * md_thread is a 'system-thread', it's priority should be very
7082 	 * high. We avoid resource deadlocks individually in each
7083 	 * raid personality. (RAID5 does preallocation) We also use RR and
7084 	 * the very same RT priority as kswapd, thus we will never get
7085 	 * into a priority inversion deadlock.
7086 	 *
7087 	 * we definitely have to have equal or higher priority than
7088 	 * bdflush, otherwise bdflush will deadlock if there are too
7089 	 * many dirty RAID5 blocks.
7090 	 */
7091 
7092 	allow_signal(SIGKILL);
7093 	while (!kthread_should_stop()) {
7094 
7095 		/* We need to wait INTERRUPTIBLE so that
7096 		 * we don't add to the load-average.
7097 		 * That means we need to be sure no signals are
7098 		 * pending
7099 		 */
7100 		if (signal_pending(current))
7101 			flush_signals(current);
7102 
7103 		wait_event_interruptible_timeout
7104 			(thread->wqueue,
7105 			 test_bit(THREAD_WAKEUP, &thread->flags)
7106 			 || kthread_should_stop(),
7107 			 thread->timeout);
7108 
7109 		clear_bit(THREAD_WAKEUP, &thread->flags);
7110 		if (!kthread_should_stop())
7111 			thread->run(thread);
7112 	}
7113 
7114 	return 0;
7115 }
7116 
7117 void md_wakeup_thread(struct md_thread *thread)
7118 {
7119 	if (thread) {
7120 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7121 		set_bit(THREAD_WAKEUP, &thread->flags);
7122 		wake_up(&thread->wqueue);
7123 	}
7124 }
7125 EXPORT_SYMBOL(md_wakeup_thread);
7126 
7127 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7128 		struct mddev *mddev, const char *name)
7129 {
7130 	struct md_thread *thread;
7131 
7132 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7133 	if (!thread)
7134 		return NULL;
7135 
7136 	init_waitqueue_head(&thread->wqueue);
7137 
7138 	thread->run = run;
7139 	thread->mddev = mddev;
7140 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7141 	thread->tsk = kthread_run(md_thread, thread,
7142 				  "%s_%s",
7143 				  mdname(thread->mddev),
7144 				  name);
7145 	if (IS_ERR(thread->tsk)) {
7146 		kfree(thread);
7147 		return NULL;
7148 	}
7149 	return thread;
7150 }
7151 EXPORT_SYMBOL(md_register_thread);
7152 
7153 void md_unregister_thread(struct md_thread **threadp)
7154 {
7155 	struct md_thread *thread = *threadp;
7156 	if (!thread)
7157 		return;
7158 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7159 	/* Locking ensures that mddev_unlock does not wake_up a
7160 	 * non-existent thread
7161 	 */
7162 	spin_lock(&pers_lock);
7163 	*threadp = NULL;
7164 	spin_unlock(&pers_lock);
7165 
7166 	kthread_stop(thread->tsk);
7167 	kfree(thread);
7168 }
7169 EXPORT_SYMBOL(md_unregister_thread);
7170 
7171 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7172 {
7173 	if (!rdev || test_bit(Faulty, &rdev->flags))
7174 		return;
7175 
7176 	if (!mddev->pers || !mddev->pers->error_handler)
7177 		return;
7178 	mddev->pers->error_handler(mddev,rdev);
7179 	if (mddev->degraded)
7180 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7181 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7182 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7183 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7184 	md_wakeup_thread(mddev->thread);
7185 	if (mddev->event_work.func)
7186 		queue_work(md_misc_wq, &mddev->event_work);
7187 	md_new_event_inintr(mddev);
7188 }
7189 EXPORT_SYMBOL(md_error);
7190 
7191 /* seq_file implementation /proc/mdstat */
7192 
7193 static void status_unused(struct seq_file *seq)
7194 {
7195 	int i = 0;
7196 	struct md_rdev *rdev;
7197 
7198 	seq_printf(seq, "unused devices: ");
7199 
7200 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7201 		char b[BDEVNAME_SIZE];
7202 		i++;
7203 		seq_printf(seq, "%s ",
7204 			      bdevname(rdev->bdev,b));
7205 	}
7206 	if (!i)
7207 		seq_printf(seq, "<none>");
7208 
7209 	seq_printf(seq, "\n");
7210 }
7211 
7212 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7213 {
7214 	sector_t max_sectors, resync, res;
7215 	unsigned long dt, db;
7216 	sector_t rt;
7217 	int scale;
7218 	unsigned int per_milli;
7219 
7220 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7221 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7222 		max_sectors = mddev->resync_max_sectors;
7223 	else
7224 		max_sectors = mddev->dev_sectors;
7225 
7226 	resync = mddev->curr_resync;
7227 	if (resync <= 3) {
7228 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7229 			/* Still cleaning up */
7230 			resync = max_sectors;
7231 	} else
7232 		resync -= atomic_read(&mddev->recovery_active);
7233 
7234 	if (resync == 0) {
7235 		if (mddev->recovery_cp < MaxSector) {
7236 			seq_printf(seq, "\tresync=PENDING");
7237 			return 1;
7238 		}
7239 		return 0;
7240 	}
7241 	if (resync < 3) {
7242 		seq_printf(seq, "\tresync=DELAYED");
7243 		return 1;
7244 	}
7245 
7246 	WARN_ON(max_sectors == 0);
7247 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7248 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7249 	 * u32, as those are the requirements for sector_div.
7250 	 * Thus 'scale' must be at least 10
7251 	 */
7252 	scale = 10;
7253 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7254 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7255 			scale++;
7256 	}
7257 	res = (resync>>scale)*1000;
7258 	sector_div(res, (u32)((max_sectors>>scale)+1));
7259 
7260 	per_milli = res;
7261 	{
7262 		int i, x = per_milli/50, y = 20-x;
7263 		seq_printf(seq, "[");
7264 		for (i = 0; i < x; i++)
7265 			seq_printf(seq, "=");
7266 		seq_printf(seq, ">");
7267 		for (i = 0; i < y; i++)
7268 			seq_printf(seq, ".");
7269 		seq_printf(seq, "] ");
7270 	}
7271 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7272 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7273 		    "reshape" :
7274 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7275 		     "check" :
7276 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7277 		      "resync" : "recovery"))),
7278 		   per_milli/10, per_milli % 10,
7279 		   (unsigned long long) resync/2,
7280 		   (unsigned long long) max_sectors/2);
7281 
7282 	/*
7283 	 * dt: time from mark until now
7284 	 * db: blocks written from mark until now
7285 	 * rt: remaining time
7286 	 *
7287 	 * rt is a sector_t, so could be 32bit or 64bit.
7288 	 * So we divide before multiply in case it is 32bit and close
7289 	 * to the limit.
7290 	 * We scale the divisor (db) by 32 to avoid losing precision
7291 	 * near the end of resync when the number of remaining sectors
7292 	 * is close to 'db'.
7293 	 * We then divide rt by 32 after multiplying by db to compensate.
7294 	 * The '+1' avoids division by zero if db is very small.
7295 	 */
7296 	dt = ((jiffies - mddev->resync_mark) / HZ);
7297 	if (!dt) dt++;
7298 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7299 		- mddev->resync_mark_cnt;
7300 
7301 	rt = max_sectors - resync;    /* number of remaining sectors */
7302 	sector_div(rt, db/32+1);
7303 	rt *= dt;
7304 	rt >>= 5;
7305 
7306 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7307 		   ((unsigned long)rt % 60)/6);
7308 
7309 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7310 	return 1;
7311 }
7312 
7313 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7314 {
7315 	struct list_head *tmp;
7316 	loff_t l = *pos;
7317 	struct mddev *mddev;
7318 
7319 	if (l >= 0x10000)
7320 		return NULL;
7321 	if (!l--)
7322 		/* header */
7323 		return (void*)1;
7324 
7325 	spin_lock(&all_mddevs_lock);
7326 	list_for_each(tmp,&all_mddevs)
7327 		if (!l--) {
7328 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7329 			mddev_get(mddev);
7330 			spin_unlock(&all_mddevs_lock);
7331 			return mddev;
7332 		}
7333 	spin_unlock(&all_mddevs_lock);
7334 	if (!l--)
7335 		return (void*)2;/* tail */
7336 	return NULL;
7337 }
7338 
7339 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7340 {
7341 	struct list_head *tmp;
7342 	struct mddev *next_mddev, *mddev = v;
7343 
7344 	++*pos;
7345 	if (v == (void*)2)
7346 		return NULL;
7347 
7348 	spin_lock(&all_mddevs_lock);
7349 	if (v == (void*)1)
7350 		tmp = all_mddevs.next;
7351 	else
7352 		tmp = mddev->all_mddevs.next;
7353 	if (tmp != &all_mddevs)
7354 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7355 	else {
7356 		next_mddev = (void*)2;
7357 		*pos = 0x10000;
7358 	}
7359 	spin_unlock(&all_mddevs_lock);
7360 
7361 	if (v != (void*)1)
7362 		mddev_put(mddev);
7363 	return next_mddev;
7364 
7365 }
7366 
7367 static void md_seq_stop(struct seq_file *seq, void *v)
7368 {
7369 	struct mddev *mddev = v;
7370 
7371 	if (mddev && v != (void*)1 && v != (void*)2)
7372 		mddev_put(mddev);
7373 }
7374 
7375 static int md_seq_show(struct seq_file *seq, void *v)
7376 {
7377 	struct mddev *mddev = v;
7378 	sector_t sectors;
7379 	struct md_rdev *rdev;
7380 
7381 	if (v == (void*)1) {
7382 		struct md_personality *pers;
7383 		seq_printf(seq, "Personalities : ");
7384 		spin_lock(&pers_lock);
7385 		list_for_each_entry(pers, &pers_list, list)
7386 			seq_printf(seq, "[%s] ", pers->name);
7387 
7388 		spin_unlock(&pers_lock);
7389 		seq_printf(seq, "\n");
7390 		seq->poll_event = atomic_read(&md_event_count);
7391 		return 0;
7392 	}
7393 	if (v == (void*)2) {
7394 		status_unused(seq);
7395 		return 0;
7396 	}
7397 
7398 	spin_lock(&mddev->lock);
7399 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7400 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7401 						mddev->pers ? "" : "in");
7402 		if (mddev->pers) {
7403 			if (mddev->ro==1)
7404 				seq_printf(seq, " (read-only)");
7405 			if (mddev->ro==2)
7406 				seq_printf(seq, " (auto-read-only)");
7407 			seq_printf(seq, " %s", mddev->pers->name);
7408 		}
7409 
7410 		sectors = 0;
7411 		rcu_read_lock();
7412 		rdev_for_each_rcu(rdev, mddev) {
7413 			char b[BDEVNAME_SIZE];
7414 			seq_printf(seq, " %s[%d]",
7415 				bdevname(rdev->bdev,b), rdev->desc_nr);
7416 			if (test_bit(WriteMostly, &rdev->flags))
7417 				seq_printf(seq, "(W)");
7418 			if (test_bit(Journal, &rdev->flags))
7419 				seq_printf(seq, "(J)");
7420 			if (test_bit(Faulty, &rdev->flags)) {
7421 				seq_printf(seq, "(F)");
7422 				continue;
7423 			}
7424 			if (rdev->raid_disk < 0)
7425 				seq_printf(seq, "(S)"); /* spare */
7426 			if (test_bit(Replacement, &rdev->flags))
7427 				seq_printf(seq, "(R)");
7428 			sectors += rdev->sectors;
7429 		}
7430 		rcu_read_unlock();
7431 
7432 		if (!list_empty(&mddev->disks)) {
7433 			if (mddev->pers)
7434 				seq_printf(seq, "\n      %llu blocks",
7435 					   (unsigned long long)
7436 					   mddev->array_sectors / 2);
7437 			else
7438 				seq_printf(seq, "\n      %llu blocks",
7439 					   (unsigned long long)sectors / 2);
7440 		}
7441 		if (mddev->persistent) {
7442 			if (mddev->major_version != 0 ||
7443 			    mddev->minor_version != 90) {
7444 				seq_printf(seq," super %d.%d",
7445 					   mddev->major_version,
7446 					   mddev->minor_version);
7447 			}
7448 		} else if (mddev->external)
7449 			seq_printf(seq, " super external:%s",
7450 				   mddev->metadata_type);
7451 		else
7452 			seq_printf(seq, " super non-persistent");
7453 
7454 		if (mddev->pers) {
7455 			mddev->pers->status(seq, mddev);
7456 			seq_printf(seq, "\n      ");
7457 			if (mddev->pers->sync_request) {
7458 				if (status_resync(seq, mddev))
7459 					seq_printf(seq, "\n      ");
7460 			}
7461 		} else
7462 			seq_printf(seq, "\n       ");
7463 
7464 		bitmap_status(seq, mddev->bitmap);
7465 
7466 		seq_printf(seq, "\n");
7467 	}
7468 	spin_unlock(&mddev->lock);
7469 
7470 	return 0;
7471 }
7472 
7473 static const struct seq_operations md_seq_ops = {
7474 	.start  = md_seq_start,
7475 	.next   = md_seq_next,
7476 	.stop   = md_seq_stop,
7477 	.show   = md_seq_show,
7478 };
7479 
7480 static int md_seq_open(struct inode *inode, struct file *file)
7481 {
7482 	struct seq_file *seq;
7483 	int error;
7484 
7485 	error = seq_open(file, &md_seq_ops);
7486 	if (error)
7487 		return error;
7488 
7489 	seq = file->private_data;
7490 	seq->poll_event = atomic_read(&md_event_count);
7491 	return error;
7492 }
7493 
7494 static int md_unloading;
7495 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7496 {
7497 	struct seq_file *seq = filp->private_data;
7498 	int mask;
7499 
7500 	if (md_unloading)
7501 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7502 	poll_wait(filp, &md_event_waiters, wait);
7503 
7504 	/* always allow read */
7505 	mask = POLLIN | POLLRDNORM;
7506 
7507 	if (seq->poll_event != atomic_read(&md_event_count))
7508 		mask |= POLLERR | POLLPRI;
7509 	return mask;
7510 }
7511 
7512 static const struct file_operations md_seq_fops = {
7513 	.owner		= THIS_MODULE,
7514 	.open           = md_seq_open,
7515 	.read           = seq_read,
7516 	.llseek         = seq_lseek,
7517 	.release	= seq_release_private,
7518 	.poll		= mdstat_poll,
7519 };
7520 
7521 int register_md_personality(struct md_personality *p)
7522 {
7523 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7524 						p->name, p->level);
7525 	spin_lock(&pers_lock);
7526 	list_add_tail(&p->list, &pers_list);
7527 	spin_unlock(&pers_lock);
7528 	return 0;
7529 }
7530 EXPORT_SYMBOL(register_md_personality);
7531 
7532 int unregister_md_personality(struct md_personality *p)
7533 {
7534 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7535 	spin_lock(&pers_lock);
7536 	list_del_init(&p->list);
7537 	spin_unlock(&pers_lock);
7538 	return 0;
7539 }
7540 EXPORT_SYMBOL(unregister_md_personality);
7541 
7542 int register_md_cluster_operations(struct md_cluster_operations *ops,
7543 				   struct module *module)
7544 {
7545 	int ret = 0;
7546 	spin_lock(&pers_lock);
7547 	if (md_cluster_ops != NULL)
7548 		ret = -EALREADY;
7549 	else {
7550 		md_cluster_ops = ops;
7551 		md_cluster_mod = module;
7552 	}
7553 	spin_unlock(&pers_lock);
7554 	return ret;
7555 }
7556 EXPORT_SYMBOL(register_md_cluster_operations);
7557 
7558 int unregister_md_cluster_operations(void)
7559 {
7560 	spin_lock(&pers_lock);
7561 	md_cluster_ops = NULL;
7562 	spin_unlock(&pers_lock);
7563 	return 0;
7564 }
7565 EXPORT_SYMBOL(unregister_md_cluster_operations);
7566 
7567 int md_setup_cluster(struct mddev *mddev, int nodes)
7568 {
7569 	int err;
7570 
7571 	err = request_module("md-cluster");
7572 	if (err) {
7573 		pr_err("md-cluster module not found.\n");
7574 		return -ENOENT;
7575 	}
7576 
7577 	spin_lock(&pers_lock);
7578 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7579 		spin_unlock(&pers_lock);
7580 		return -ENOENT;
7581 	}
7582 	spin_unlock(&pers_lock);
7583 
7584 	return md_cluster_ops->join(mddev, nodes);
7585 }
7586 
7587 void md_cluster_stop(struct mddev *mddev)
7588 {
7589 	if (!md_cluster_ops)
7590 		return;
7591 	md_cluster_ops->leave(mddev);
7592 	module_put(md_cluster_mod);
7593 }
7594 
7595 static int is_mddev_idle(struct mddev *mddev, int init)
7596 {
7597 	struct md_rdev *rdev;
7598 	int idle;
7599 	int curr_events;
7600 
7601 	idle = 1;
7602 	rcu_read_lock();
7603 	rdev_for_each_rcu(rdev, mddev) {
7604 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7605 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7606 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7607 			      atomic_read(&disk->sync_io);
7608 		/* sync IO will cause sync_io to increase before the disk_stats
7609 		 * as sync_io is counted when a request starts, and
7610 		 * disk_stats is counted when it completes.
7611 		 * So resync activity will cause curr_events to be smaller than
7612 		 * when there was no such activity.
7613 		 * non-sync IO will cause disk_stat to increase without
7614 		 * increasing sync_io so curr_events will (eventually)
7615 		 * be larger than it was before.  Once it becomes
7616 		 * substantially larger, the test below will cause
7617 		 * the array to appear non-idle, and resync will slow
7618 		 * down.
7619 		 * If there is a lot of outstanding resync activity when
7620 		 * we set last_event to curr_events, then all that activity
7621 		 * completing might cause the array to appear non-idle
7622 		 * and resync will be slowed down even though there might
7623 		 * not have been non-resync activity.  This will only
7624 		 * happen once though.  'last_events' will soon reflect
7625 		 * the state where there is little or no outstanding
7626 		 * resync requests, and further resync activity will
7627 		 * always make curr_events less than last_events.
7628 		 *
7629 		 */
7630 		if (init || curr_events - rdev->last_events > 64) {
7631 			rdev->last_events = curr_events;
7632 			idle = 0;
7633 		}
7634 	}
7635 	rcu_read_unlock();
7636 	return idle;
7637 }
7638 
7639 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7640 {
7641 	/* another "blocks" (512byte) blocks have been synced */
7642 	atomic_sub(blocks, &mddev->recovery_active);
7643 	wake_up(&mddev->recovery_wait);
7644 	if (!ok) {
7645 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7646 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7647 		md_wakeup_thread(mddev->thread);
7648 		// stop recovery, signal do_sync ....
7649 	}
7650 }
7651 EXPORT_SYMBOL(md_done_sync);
7652 
7653 /* md_write_start(mddev, bi)
7654  * If we need to update some array metadata (e.g. 'active' flag
7655  * in superblock) before writing, schedule a superblock update
7656  * and wait for it to complete.
7657  */
7658 void md_write_start(struct mddev *mddev, struct bio *bi)
7659 {
7660 	int did_change = 0;
7661 	if (bio_data_dir(bi) != WRITE)
7662 		return;
7663 
7664 	BUG_ON(mddev->ro == 1);
7665 	if (mddev->ro == 2) {
7666 		/* need to switch to read/write */
7667 		mddev->ro = 0;
7668 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7669 		md_wakeup_thread(mddev->thread);
7670 		md_wakeup_thread(mddev->sync_thread);
7671 		did_change = 1;
7672 	}
7673 	atomic_inc(&mddev->writes_pending);
7674 	if (mddev->safemode == 1)
7675 		mddev->safemode = 0;
7676 	if (mddev->in_sync) {
7677 		spin_lock(&mddev->lock);
7678 		if (mddev->in_sync) {
7679 			mddev->in_sync = 0;
7680 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7681 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7682 			md_wakeup_thread(mddev->thread);
7683 			did_change = 1;
7684 		}
7685 		spin_unlock(&mddev->lock);
7686 	}
7687 	if (did_change)
7688 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7689 	wait_event(mddev->sb_wait,
7690 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7691 }
7692 EXPORT_SYMBOL(md_write_start);
7693 
7694 void md_write_end(struct mddev *mddev)
7695 {
7696 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7697 		if (mddev->safemode == 2)
7698 			md_wakeup_thread(mddev->thread);
7699 		else if (mddev->safemode_delay)
7700 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7701 	}
7702 }
7703 EXPORT_SYMBOL(md_write_end);
7704 
7705 /* md_allow_write(mddev)
7706  * Calling this ensures that the array is marked 'active' so that writes
7707  * may proceed without blocking.  It is important to call this before
7708  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7709  * Must be called with mddev_lock held.
7710  *
7711  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7712  * is dropped, so return -EAGAIN after notifying userspace.
7713  */
7714 int md_allow_write(struct mddev *mddev)
7715 {
7716 	if (!mddev->pers)
7717 		return 0;
7718 	if (mddev->ro)
7719 		return 0;
7720 	if (!mddev->pers->sync_request)
7721 		return 0;
7722 
7723 	spin_lock(&mddev->lock);
7724 	if (mddev->in_sync) {
7725 		mddev->in_sync = 0;
7726 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7727 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7728 		if (mddev->safemode_delay &&
7729 		    mddev->safemode == 0)
7730 			mddev->safemode = 1;
7731 		spin_unlock(&mddev->lock);
7732 		md_update_sb(mddev, 0);
7733 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7734 	} else
7735 		spin_unlock(&mddev->lock);
7736 
7737 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7738 		return -EAGAIN;
7739 	else
7740 		return 0;
7741 }
7742 EXPORT_SYMBOL_GPL(md_allow_write);
7743 
7744 #define SYNC_MARKS	10
7745 #define	SYNC_MARK_STEP	(3*HZ)
7746 #define UPDATE_FREQUENCY (5*60*HZ)
7747 void md_do_sync(struct md_thread *thread)
7748 {
7749 	struct mddev *mddev = thread->mddev;
7750 	struct mddev *mddev2;
7751 	unsigned int currspeed = 0,
7752 		 window;
7753 	sector_t max_sectors,j, io_sectors, recovery_done;
7754 	unsigned long mark[SYNC_MARKS];
7755 	unsigned long update_time;
7756 	sector_t mark_cnt[SYNC_MARKS];
7757 	int last_mark,m;
7758 	struct list_head *tmp;
7759 	sector_t last_check;
7760 	int skipped = 0;
7761 	struct md_rdev *rdev;
7762 	char *desc, *action = NULL;
7763 	struct blk_plug plug;
7764 	bool cluster_resync_finished = false;
7765 
7766 	/* just incase thread restarts... */
7767 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7768 		return;
7769 	if (mddev->ro) {/* never try to sync a read-only array */
7770 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7771 		return;
7772 	}
7773 
7774 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7775 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7776 			desc = "data-check";
7777 			action = "check";
7778 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7779 			desc = "requested-resync";
7780 			action = "repair";
7781 		} else
7782 			desc = "resync";
7783 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7784 		desc = "reshape";
7785 	else
7786 		desc = "recovery";
7787 
7788 	mddev->last_sync_action = action ?: desc;
7789 
7790 	/* we overload curr_resync somewhat here.
7791 	 * 0 == not engaged in resync at all
7792 	 * 2 == checking that there is no conflict with another sync
7793 	 * 1 == like 2, but have yielded to allow conflicting resync to
7794 	 *		commense
7795 	 * other == active in resync - this many blocks
7796 	 *
7797 	 * Before starting a resync we must have set curr_resync to
7798 	 * 2, and then checked that every "conflicting" array has curr_resync
7799 	 * less than ours.  When we find one that is the same or higher
7800 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7801 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7802 	 * This will mean we have to start checking from the beginning again.
7803 	 *
7804 	 */
7805 
7806 	do {
7807 		mddev->curr_resync = 2;
7808 
7809 	try_again:
7810 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7811 			goto skip;
7812 		for_each_mddev(mddev2, tmp) {
7813 			if (mddev2 == mddev)
7814 				continue;
7815 			if (!mddev->parallel_resync
7816 			&&  mddev2->curr_resync
7817 			&&  match_mddev_units(mddev, mddev2)) {
7818 				DEFINE_WAIT(wq);
7819 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7820 					/* arbitrarily yield */
7821 					mddev->curr_resync = 1;
7822 					wake_up(&resync_wait);
7823 				}
7824 				if (mddev > mddev2 && mddev->curr_resync == 1)
7825 					/* no need to wait here, we can wait the next
7826 					 * time 'round when curr_resync == 2
7827 					 */
7828 					continue;
7829 				/* We need to wait 'interruptible' so as not to
7830 				 * contribute to the load average, and not to
7831 				 * be caught by 'softlockup'
7832 				 */
7833 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7834 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7835 				    mddev2->curr_resync >= mddev->curr_resync) {
7836 					printk(KERN_INFO "md: delaying %s of %s"
7837 					       " until %s has finished (they"
7838 					       " share one or more physical units)\n",
7839 					       desc, mdname(mddev), mdname(mddev2));
7840 					mddev_put(mddev2);
7841 					if (signal_pending(current))
7842 						flush_signals(current);
7843 					schedule();
7844 					finish_wait(&resync_wait, &wq);
7845 					goto try_again;
7846 				}
7847 				finish_wait(&resync_wait, &wq);
7848 			}
7849 		}
7850 	} while (mddev->curr_resync < 2);
7851 
7852 	j = 0;
7853 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7854 		/* resync follows the size requested by the personality,
7855 		 * which defaults to physical size, but can be virtual size
7856 		 */
7857 		max_sectors = mddev->resync_max_sectors;
7858 		atomic64_set(&mddev->resync_mismatches, 0);
7859 		/* we don't use the checkpoint if there's a bitmap */
7860 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7861 			j = mddev->resync_min;
7862 		else if (!mddev->bitmap)
7863 			j = mddev->recovery_cp;
7864 
7865 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7866 		max_sectors = mddev->resync_max_sectors;
7867 	else {
7868 		/* recovery follows the physical size of devices */
7869 		max_sectors = mddev->dev_sectors;
7870 		j = MaxSector;
7871 		rcu_read_lock();
7872 		rdev_for_each_rcu(rdev, mddev)
7873 			if (rdev->raid_disk >= 0 &&
7874 			    !test_bit(Journal, &rdev->flags) &&
7875 			    !test_bit(Faulty, &rdev->flags) &&
7876 			    !test_bit(In_sync, &rdev->flags) &&
7877 			    rdev->recovery_offset < j)
7878 				j = rdev->recovery_offset;
7879 		rcu_read_unlock();
7880 
7881 		/* If there is a bitmap, we need to make sure all
7882 		 * writes that started before we added a spare
7883 		 * complete before we start doing a recovery.
7884 		 * Otherwise the write might complete and (via
7885 		 * bitmap_endwrite) set a bit in the bitmap after the
7886 		 * recovery has checked that bit and skipped that
7887 		 * region.
7888 		 */
7889 		if (mddev->bitmap) {
7890 			mddev->pers->quiesce(mddev, 1);
7891 			mddev->pers->quiesce(mddev, 0);
7892 		}
7893 	}
7894 
7895 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7896 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7897 		" %d KB/sec/disk.\n", speed_min(mddev));
7898 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7899 	       "(but not more than %d KB/sec) for %s.\n",
7900 	       speed_max(mddev), desc);
7901 
7902 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7903 
7904 	io_sectors = 0;
7905 	for (m = 0; m < SYNC_MARKS; m++) {
7906 		mark[m] = jiffies;
7907 		mark_cnt[m] = io_sectors;
7908 	}
7909 	last_mark = 0;
7910 	mddev->resync_mark = mark[last_mark];
7911 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7912 
7913 	/*
7914 	 * Tune reconstruction:
7915 	 */
7916 	window = 32*(PAGE_SIZE/512);
7917 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7918 		window/2, (unsigned long long)max_sectors/2);
7919 
7920 	atomic_set(&mddev->recovery_active, 0);
7921 	last_check = 0;
7922 
7923 	if (j>2) {
7924 		printk(KERN_INFO
7925 		       "md: resuming %s of %s from checkpoint.\n",
7926 		       desc, mdname(mddev));
7927 		mddev->curr_resync = j;
7928 	} else
7929 		mddev->curr_resync = 3; /* no longer delayed */
7930 	mddev->curr_resync_completed = j;
7931 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7932 	md_new_event(mddev);
7933 	update_time = jiffies;
7934 
7935 	blk_start_plug(&plug);
7936 	while (j < max_sectors) {
7937 		sector_t sectors;
7938 
7939 		skipped = 0;
7940 
7941 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7942 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7943 		      (mddev->curr_resync - mddev->curr_resync_completed)
7944 		      > (max_sectors >> 4)) ||
7945 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7946 		     (j - mddev->curr_resync_completed)*2
7947 		     >= mddev->resync_max - mddev->curr_resync_completed ||
7948 		     mddev->curr_resync_completed > mddev->resync_max
7949 			    )) {
7950 			/* time to update curr_resync_completed */
7951 			wait_event(mddev->recovery_wait,
7952 				   atomic_read(&mddev->recovery_active) == 0);
7953 			mddev->curr_resync_completed = j;
7954 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7955 			    j > mddev->recovery_cp)
7956 				mddev->recovery_cp = j;
7957 			update_time = jiffies;
7958 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7959 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7960 		}
7961 
7962 		while (j >= mddev->resync_max &&
7963 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7964 			/* As this condition is controlled by user-space,
7965 			 * we can block indefinitely, so use '_interruptible'
7966 			 * to avoid triggering warnings.
7967 			 */
7968 			flush_signals(current); /* just in case */
7969 			wait_event_interruptible(mddev->recovery_wait,
7970 						 mddev->resync_max > j
7971 						 || test_bit(MD_RECOVERY_INTR,
7972 							     &mddev->recovery));
7973 		}
7974 
7975 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7976 			break;
7977 
7978 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
7979 		if (sectors == 0) {
7980 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7981 			break;
7982 		}
7983 
7984 		if (!skipped) { /* actual IO requested */
7985 			io_sectors += sectors;
7986 			atomic_add(sectors, &mddev->recovery_active);
7987 		}
7988 
7989 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7990 			break;
7991 
7992 		j += sectors;
7993 		if (j > max_sectors)
7994 			/* when skipping, extra large numbers can be returned. */
7995 			j = max_sectors;
7996 		if (j > 2)
7997 			mddev->curr_resync = j;
7998 		mddev->curr_mark_cnt = io_sectors;
7999 		if (last_check == 0)
8000 			/* this is the earliest that rebuild will be
8001 			 * visible in /proc/mdstat
8002 			 */
8003 			md_new_event(mddev);
8004 
8005 		if (last_check + window > io_sectors || j == max_sectors)
8006 			continue;
8007 
8008 		last_check = io_sectors;
8009 	repeat:
8010 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8011 			/* step marks */
8012 			int next = (last_mark+1) % SYNC_MARKS;
8013 
8014 			mddev->resync_mark = mark[next];
8015 			mddev->resync_mark_cnt = mark_cnt[next];
8016 			mark[next] = jiffies;
8017 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8018 			last_mark = next;
8019 		}
8020 
8021 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8022 			break;
8023 
8024 		/*
8025 		 * this loop exits only if either when we are slower than
8026 		 * the 'hard' speed limit, or the system was IO-idle for
8027 		 * a jiffy.
8028 		 * the system might be non-idle CPU-wise, but we only care
8029 		 * about not overloading the IO subsystem. (things like an
8030 		 * e2fsck being done on the RAID array should execute fast)
8031 		 */
8032 		cond_resched();
8033 
8034 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8035 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8036 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8037 
8038 		if (currspeed > speed_min(mddev)) {
8039 			if (currspeed > speed_max(mddev)) {
8040 				msleep(500);
8041 				goto repeat;
8042 			}
8043 			if (!is_mddev_idle(mddev, 0)) {
8044 				/*
8045 				 * Give other IO more of a chance.
8046 				 * The faster the devices, the less we wait.
8047 				 */
8048 				wait_event(mddev->recovery_wait,
8049 					   !atomic_read(&mddev->recovery_active));
8050 			}
8051 		}
8052 	}
8053 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8054 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8055 	       ? "interrupted" : "done");
8056 	/*
8057 	 * this also signals 'finished resyncing' to md_stop
8058 	 */
8059 	blk_finish_plug(&plug);
8060 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8061 
8062 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8063 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8064 	    mddev->curr_resync > 2) {
8065 		mddev->curr_resync_completed = mddev->curr_resync;
8066 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8067 	}
8068 	/* tell personality and other nodes that we are finished */
8069 	if (mddev_is_clustered(mddev)) {
8070 		md_cluster_ops->resync_finish(mddev);
8071 		cluster_resync_finished = true;
8072 	}
8073 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
8074 
8075 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8076 	    mddev->curr_resync > 2) {
8077 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8078 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8079 				if (mddev->curr_resync >= mddev->recovery_cp) {
8080 					printk(KERN_INFO
8081 					       "md: checkpointing %s of %s.\n",
8082 					       desc, mdname(mddev));
8083 					if (test_bit(MD_RECOVERY_ERROR,
8084 						&mddev->recovery))
8085 						mddev->recovery_cp =
8086 							mddev->curr_resync_completed;
8087 					else
8088 						mddev->recovery_cp =
8089 							mddev->curr_resync;
8090 				}
8091 			} else
8092 				mddev->recovery_cp = MaxSector;
8093 		} else {
8094 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8095 				mddev->curr_resync = MaxSector;
8096 			rcu_read_lock();
8097 			rdev_for_each_rcu(rdev, mddev)
8098 				if (rdev->raid_disk >= 0 &&
8099 				    mddev->delta_disks >= 0 &&
8100 				    !test_bit(Journal, &rdev->flags) &&
8101 				    !test_bit(Faulty, &rdev->flags) &&
8102 				    !test_bit(In_sync, &rdev->flags) &&
8103 				    rdev->recovery_offset < mddev->curr_resync)
8104 					rdev->recovery_offset = mddev->curr_resync;
8105 			rcu_read_unlock();
8106 		}
8107 	}
8108  skip:
8109 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
8110 
8111 	if (mddev_is_clustered(mddev) &&
8112 	    test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8113 	    !cluster_resync_finished)
8114 		md_cluster_ops->resync_finish(mddev);
8115 
8116 	spin_lock(&mddev->lock);
8117 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8118 		/* We completed so min/max setting can be forgotten if used. */
8119 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8120 			mddev->resync_min = 0;
8121 		mddev->resync_max = MaxSector;
8122 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8123 		mddev->resync_min = mddev->curr_resync_completed;
8124 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8125 	mddev->curr_resync = 0;
8126 	spin_unlock(&mddev->lock);
8127 
8128 	wake_up(&resync_wait);
8129 	md_wakeup_thread(mddev->thread);
8130 	return;
8131 }
8132 EXPORT_SYMBOL_GPL(md_do_sync);
8133 
8134 static int remove_and_add_spares(struct mddev *mddev,
8135 				 struct md_rdev *this)
8136 {
8137 	struct md_rdev *rdev;
8138 	int spares = 0;
8139 	int removed = 0;
8140 
8141 	rdev_for_each(rdev, mddev)
8142 		if ((this == NULL || rdev == this) &&
8143 		    rdev->raid_disk >= 0 &&
8144 		    !test_bit(Blocked, &rdev->flags) &&
8145 		    (test_bit(Faulty, &rdev->flags) ||
8146 		     (!test_bit(In_sync, &rdev->flags) &&
8147 		      !test_bit(Journal, &rdev->flags))) &&
8148 		    atomic_read(&rdev->nr_pending)==0) {
8149 			if (mddev->pers->hot_remove_disk(
8150 				    mddev, rdev) == 0) {
8151 				sysfs_unlink_rdev(mddev, rdev);
8152 				rdev->raid_disk = -1;
8153 				removed++;
8154 			}
8155 		}
8156 	if (removed && mddev->kobj.sd)
8157 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8158 
8159 	if (this && removed)
8160 		goto no_add;
8161 
8162 	rdev_for_each(rdev, mddev) {
8163 		if (this && this != rdev)
8164 			continue;
8165 		if (test_bit(Candidate, &rdev->flags))
8166 			continue;
8167 		if (rdev->raid_disk >= 0 &&
8168 		    !test_bit(In_sync, &rdev->flags) &&
8169 		    !test_bit(Journal, &rdev->flags) &&
8170 		    !test_bit(Faulty, &rdev->flags))
8171 			spares++;
8172 		if (rdev->raid_disk >= 0)
8173 			continue;
8174 		if (test_bit(Faulty, &rdev->flags))
8175 			continue;
8176 		if (test_bit(Journal, &rdev->flags))
8177 			continue;
8178 		if (mddev->ro &&
8179 		    ! (rdev->saved_raid_disk >= 0 &&
8180 		       !test_bit(Bitmap_sync, &rdev->flags)))
8181 			continue;
8182 
8183 		rdev->recovery_offset = 0;
8184 		if (mddev->pers->
8185 		    hot_add_disk(mddev, rdev) == 0) {
8186 			if (sysfs_link_rdev(mddev, rdev))
8187 				/* failure here is OK */;
8188 			spares++;
8189 			md_new_event(mddev);
8190 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8191 		}
8192 	}
8193 no_add:
8194 	if (removed)
8195 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8196 	return spares;
8197 }
8198 
8199 static void md_start_sync(struct work_struct *ws)
8200 {
8201 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8202 	int ret = 0;
8203 
8204 	if (mddev_is_clustered(mddev)) {
8205 		ret = md_cluster_ops->resync_start(mddev);
8206 		if (ret) {
8207 			mddev->sync_thread = NULL;
8208 			goto out;
8209 		}
8210 	}
8211 
8212 	mddev->sync_thread = md_register_thread(md_do_sync,
8213 						mddev,
8214 						"resync");
8215 out:
8216 	if (!mddev->sync_thread) {
8217 		if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8218 			printk(KERN_ERR "%s: could not start resync"
8219 			       " thread...\n",
8220 			       mdname(mddev));
8221 		/* leave the spares where they are, it shouldn't hurt */
8222 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8223 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8224 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8225 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8226 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8227 		wake_up(&resync_wait);
8228 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8229 				       &mddev->recovery))
8230 			if (mddev->sysfs_action)
8231 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8232 	} else
8233 		md_wakeup_thread(mddev->sync_thread);
8234 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8235 	md_new_event(mddev);
8236 }
8237 
8238 /*
8239  * This routine is regularly called by all per-raid-array threads to
8240  * deal with generic issues like resync and super-block update.
8241  * Raid personalities that don't have a thread (linear/raid0) do not
8242  * need this as they never do any recovery or update the superblock.
8243  *
8244  * It does not do any resync itself, but rather "forks" off other threads
8245  * to do that as needed.
8246  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8247  * "->recovery" and create a thread at ->sync_thread.
8248  * When the thread finishes it sets MD_RECOVERY_DONE
8249  * and wakeups up this thread which will reap the thread and finish up.
8250  * This thread also removes any faulty devices (with nr_pending == 0).
8251  *
8252  * The overall approach is:
8253  *  1/ if the superblock needs updating, update it.
8254  *  2/ If a recovery thread is running, don't do anything else.
8255  *  3/ If recovery has finished, clean up, possibly marking spares active.
8256  *  4/ If there are any faulty devices, remove them.
8257  *  5/ If array is degraded, try to add spares devices
8258  *  6/ If array has spares or is not in-sync, start a resync thread.
8259  */
8260 void md_check_recovery(struct mddev *mddev)
8261 {
8262 	if (mddev->suspended)
8263 		return;
8264 
8265 	if (mddev->bitmap)
8266 		bitmap_daemon_work(mddev);
8267 
8268 	if (signal_pending(current)) {
8269 		if (mddev->pers->sync_request && !mddev->external) {
8270 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8271 			       mdname(mddev));
8272 			mddev->safemode = 2;
8273 		}
8274 		flush_signals(current);
8275 	}
8276 
8277 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8278 		return;
8279 	if ( ! (
8280 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8281 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8282 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8283 		(mddev->external == 0 && mddev->safemode == 1) ||
8284 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8285 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8286 		))
8287 		return;
8288 
8289 	if (mddev_trylock(mddev)) {
8290 		int spares = 0;
8291 
8292 		if (mddev->ro) {
8293 			struct md_rdev *rdev;
8294 			if (!mddev->external && mddev->in_sync)
8295 				/* 'Blocked' flag not needed as failed devices
8296 				 * will be recorded if array switched to read/write.
8297 				 * Leaving it set will prevent the device
8298 				 * from being removed.
8299 				 */
8300 				rdev_for_each(rdev, mddev)
8301 					clear_bit(Blocked, &rdev->flags);
8302 			/* On a read-only array we can:
8303 			 * - remove failed devices
8304 			 * - add already-in_sync devices if the array itself
8305 			 *   is in-sync.
8306 			 * As we only add devices that are already in-sync,
8307 			 * we can activate the spares immediately.
8308 			 */
8309 			remove_and_add_spares(mddev, NULL);
8310 			/* There is no thread, but we need to call
8311 			 * ->spare_active and clear saved_raid_disk
8312 			 */
8313 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8314 			md_reap_sync_thread(mddev);
8315 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8316 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8317 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8318 			goto unlock;
8319 		}
8320 
8321 		if (!mddev->external) {
8322 			int did_change = 0;
8323 			spin_lock(&mddev->lock);
8324 			if (mddev->safemode &&
8325 			    !atomic_read(&mddev->writes_pending) &&
8326 			    !mddev->in_sync &&
8327 			    mddev->recovery_cp == MaxSector) {
8328 				mddev->in_sync = 1;
8329 				did_change = 1;
8330 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8331 			}
8332 			if (mddev->safemode == 1)
8333 				mddev->safemode = 0;
8334 			spin_unlock(&mddev->lock);
8335 			if (did_change)
8336 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8337 		}
8338 
8339 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
8340 			md_update_sb(mddev, 0);
8341 
8342 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8343 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8344 			/* resync/recovery still happening */
8345 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8346 			goto unlock;
8347 		}
8348 		if (mddev->sync_thread) {
8349 			md_reap_sync_thread(mddev);
8350 			goto unlock;
8351 		}
8352 		/* Set RUNNING before clearing NEEDED to avoid
8353 		 * any transients in the value of "sync_action".
8354 		 */
8355 		mddev->curr_resync_completed = 0;
8356 		spin_lock(&mddev->lock);
8357 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8358 		spin_unlock(&mddev->lock);
8359 		/* Clear some bits that don't mean anything, but
8360 		 * might be left set
8361 		 */
8362 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8363 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8364 
8365 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8366 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8367 			goto not_running;
8368 		/* no recovery is running.
8369 		 * remove any failed drives, then
8370 		 * add spares if possible.
8371 		 * Spares are also removed and re-added, to allow
8372 		 * the personality to fail the re-add.
8373 		 */
8374 
8375 		if (mddev->reshape_position != MaxSector) {
8376 			if (mddev->pers->check_reshape == NULL ||
8377 			    mddev->pers->check_reshape(mddev) != 0)
8378 				/* Cannot proceed */
8379 				goto not_running;
8380 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8381 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8382 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8383 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8384 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8385 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8386 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8387 		} else if (mddev->recovery_cp < MaxSector) {
8388 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8389 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8390 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8391 			/* nothing to be done ... */
8392 			goto not_running;
8393 
8394 		if (mddev->pers->sync_request) {
8395 			if (spares) {
8396 				/* We are adding a device or devices to an array
8397 				 * which has the bitmap stored on all devices.
8398 				 * So make sure all bitmap pages get written
8399 				 */
8400 				bitmap_write_all(mddev->bitmap);
8401 			}
8402 			INIT_WORK(&mddev->del_work, md_start_sync);
8403 			queue_work(md_misc_wq, &mddev->del_work);
8404 			goto unlock;
8405 		}
8406 	not_running:
8407 		if (!mddev->sync_thread) {
8408 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8409 			wake_up(&resync_wait);
8410 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8411 					       &mddev->recovery))
8412 				if (mddev->sysfs_action)
8413 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8414 		}
8415 	unlock:
8416 		wake_up(&mddev->sb_wait);
8417 		mddev_unlock(mddev);
8418 	}
8419 }
8420 EXPORT_SYMBOL(md_check_recovery);
8421 
8422 void md_reap_sync_thread(struct mddev *mddev)
8423 {
8424 	struct md_rdev *rdev;
8425 
8426 	/* resync has finished, collect result */
8427 	md_unregister_thread(&mddev->sync_thread);
8428 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8429 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8430 		/* success...*/
8431 		/* activate any spares */
8432 		if (mddev->pers->spare_active(mddev)) {
8433 			sysfs_notify(&mddev->kobj, NULL,
8434 				     "degraded");
8435 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8436 		}
8437 	}
8438 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8439 	    mddev->pers->finish_reshape)
8440 		mddev->pers->finish_reshape(mddev);
8441 
8442 	/* If array is no-longer degraded, then any saved_raid_disk
8443 	 * information must be scrapped.
8444 	 */
8445 	if (!mddev->degraded)
8446 		rdev_for_each(rdev, mddev)
8447 			rdev->saved_raid_disk = -1;
8448 
8449 	md_update_sb(mddev, 1);
8450 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8451 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8452 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8453 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8454 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8455 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8456 	wake_up(&resync_wait);
8457 	/* flag recovery needed just to double check */
8458 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8459 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8460 	md_new_event(mddev);
8461 	if (mddev->event_work.func)
8462 		queue_work(md_misc_wq, &mddev->event_work);
8463 }
8464 EXPORT_SYMBOL(md_reap_sync_thread);
8465 
8466 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8467 {
8468 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8469 	wait_event_timeout(rdev->blocked_wait,
8470 			   !test_bit(Blocked, &rdev->flags) &&
8471 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8472 			   msecs_to_jiffies(5000));
8473 	rdev_dec_pending(rdev, mddev);
8474 }
8475 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8476 
8477 void md_finish_reshape(struct mddev *mddev)
8478 {
8479 	/* called be personality module when reshape completes. */
8480 	struct md_rdev *rdev;
8481 
8482 	rdev_for_each(rdev, mddev) {
8483 		if (rdev->data_offset > rdev->new_data_offset)
8484 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8485 		else
8486 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8487 		rdev->data_offset = rdev->new_data_offset;
8488 	}
8489 }
8490 EXPORT_SYMBOL(md_finish_reshape);
8491 
8492 /* Bad block management.
8493  * We can record which blocks on each device are 'bad' and so just
8494  * fail those blocks, or that stripe, rather than the whole device.
8495  * Entries in the bad-block table are 64bits wide.  This comprises:
8496  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8497  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8498  *  A 'shift' can be set so that larger blocks are tracked and
8499  *  consequently larger devices can be covered.
8500  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8501  *
8502  * Locking of the bad-block table uses a seqlock so md_is_badblock
8503  * might need to retry if it is very unlucky.
8504  * We will sometimes want to check for bad blocks in a bi_end_io function,
8505  * so we use the write_seqlock_irq variant.
8506  *
8507  * When looking for a bad block we specify a range and want to
8508  * know if any block in the range is bad.  So we binary-search
8509  * to the last range that starts at-or-before the given endpoint,
8510  * (or "before the sector after the target range")
8511  * then see if it ends after the given start.
8512  * We return
8513  *  0 if there are no known bad blocks in the range
8514  *  1 if there are known bad block which are all acknowledged
8515  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8516  * plus the start/length of the first bad section we overlap.
8517  */
8518 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8519 		   sector_t *first_bad, int *bad_sectors)
8520 {
8521 	int hi;
8522 	int lo;
8523 	u64 *p = bb->page;
8524 	int rv;
8525 	sector_t target = s + sectors;
8526 	unsigned seq;
8527 
8528 	if (bb->shift > 0) {
8529 		/* round the start down, and the end up */
8530 		s >>= bb->shift;
8531 		target += (1<<bb->shift) - 1;
8532 		target >>= bb->shift;
8533 		sectors = target - s;
8534 	}
8535 	/* 'target' is now the first block after the bad range */
8536 
8537 retry:
8538 	seq = read_seqbegin(&bb->lock);
8539 	lo = 0;
8540 	rv = 0;
8541 	hi = bb->count;
8542 
8543 	/* Binary search between lo and hi for 'target'
8544 	 * i.e. for the last range that starts before 'target'
8545 	 */
8546 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8547 	 * are known not to be the last range before target.
8548 	 * VARIANT: hi-lo is the number of possible
8549 	 * ranges, and decreases until it reaches 1
8550 	 */
8551 	while (hi - lo > 1) {
8552 		int mid = (lo + hi) / 2;
8553 		sector_t a = BB_OFFSET(p[mid]);
8554 		if (a < target)
8555 			/* This could still be the one, earlier ranges
8556 			 * could not. */
8557 			lo = mid;
8558 		else
8559 			/* This and later ranges are definitely out. */
8560 			hi = mid;
8561 	}
8562 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8563 	if (hi > lo) {
8564 		/* need to check all range that end after 's' to see if
8565 		 * any are unacknowledged.
8566 		 */
8567 		while (lo >= 0 &&
8568 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8569 			if (BB_OFFSET(p[lo]) < target) {
8570 				/* starts before the end, and finishes after
8571 				 * the start, so they must overlap
8572 				 */
8573 				if (rv != -1 && BB_ACK(p[lo]))
8574 					rv = 1;
8575 				else
8576 					rv = -1;
8577 				*first_bad = BB_OFFSET(p[lo]);
8578 				*bad_sectors = BB_LEN(p[lo]);
8579 			}
8580 			lo--;
8581 		}
8582 	}
8583 
8584 	if (read_seqretry(&bb->lock, seq))
8585 		goto retry;
8586 
8587 	return rv;
8588 }
8589 EXPORT_SYMBOL_GPL(md_is_badblock);
8590 
8591 /*
8592  * Add a range of bad blocks to the table.
8593  * This might extend the table, or might contract it
8594  * if two adjacent ranges can be merged.
8595  * We binary-search to find the 'insertion' point, then
8596  * decide how best to handle it.
8597  */
8598 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8599 			    int acknowledged)
8600 {
8601 	u64 *p;
8602 	int lo, hi;
8603 	int rv = 1;
8604 	unsigned long flags;
8605 
8606 	if (bb->shift < 0)
8607 		/* badblocks are disabled */
8608 		return 0;
8609 
8610 	if (bb->shift) {
8611 		/* round the start down, and the end up */
8612 		sector_t next = s + sectors;
8613 		s >>= bb->shift;
8614 		next += (1<<bb->shift) - 1;
8615 		next >>= bb->shift;
8616 		sectors = next - s;
8617 	}
8618 
8619 	write_seqlock_irqsave(&bb->lock, flags);
8620 
8621 	p = bb->page;
8622 	lo = 0;
8623 	hi = bb->count;
8624 	/* Find the last range that starts at-or-before 's' */
8625 	while (hi - lo > 1) {
8626 		int mid = (lo + hi) / 2;
8627 		sector_t a = BB_OFFSET(p[mid]);
8628 		if (a <= s)
8629 			lo = mid;
8630 		else
8631 			hi = mid;
8632 	}
8633 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8634 		hi = lo;
8635 
8636 	if (hi > lo) {
8637 		/* we found a range that might merge with the start
8638 		 * of our new range
8639 		 */
8640 		sector_t a = BB_OFFSET(p[lo]);
8641 		sector_t e = a + BB_LEN(p[lo]);
8642 		int ack = BB_ACK(p[lo]);
8643 		if (e >= s) {
8644 			/* Yes, we can merge with a previous range */
8645 			if (s == a && s + sectors >= e)
8646 				/* new range covers old */
8647 				ack = acknowledged;
8648 			else
8649 				ack = ack && acknowledged;
8650 
8651 			if (e < s + sectors)
8652 				e = s + sectors;
8653 			if (e - a <= BB_MAX_LEN) {
8654 				p[lo] = BB_MAKE(a, e-a, ack);
8655 				s = e;
8656 			} else {
8657 				/* does not all fit in one range,
8658 				 * make p[lo] maximal
8659 				 */
8660 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8661 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8662 				s = a + BB_MAX_LEN;
8663 			}
8664 			sectors = e - s;
8665 		}
8666 	}
8667 	if (sectors && hi < bb->count) {
8668 		/* 'hi' points to the first range that starts after 's'.
8669 		 * Maybe we can merge with the start of that range */
8670 		sector_t a = BB_OFFSET(p[hi]);
8671 		sector_t e = a + BB_LEN(p[hi]);
8672 		int ack = BB_ACK(p[hi]);
8673 		if (a <= s + sectors) {
8674 			/* merging is possible */
8675 			if (e <= s + sectors) {
8676 				/* full overlap */
8677 				e = s + sectors;
8678 				ack = acknowledged;
8679 			} else
8680 				ack = ack && acknowledged;
8681 
8682 			a = s;
8683 			if (e - a <= BB_MAX_LEN) {
8684 				p[hi] = BB_MAKE(a, e-a, ack);
8685 				s = e;
8686 			} else {
8687 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8688 				s = a + BB_MAX_LEN;
8689 			}
8690 			sectors = e - s;
8691 			lo = hi;
8692 			hi++;
8693 		}
8694 	}
8695 	if (sectors == 0 && hi < bb->count) {
8696 		/* we might be able to combine lo and hi */
8697 		/* Note: 's' is at the end of 'lo' */
8698 		sector_t a = BB_OFFSET(p[hi]);
8699 		int lolen = BB_LEN(p[lo]);
8700 		int hilen = BB_LEN(p[hi]);
8701 		int newlen = lolen + hilen - (s - a);
8702 		if (s >= a && newlen < BB_MAX_LEN) {
8703 			/* yes, we can combine them */
8704 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8705 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8706 			memmove(p + hi, p + hi + 1,
8707 				(bb->count - hi - 1) * 8);
8708 			bb->count--;
8709 		}
8710 	}
8711 	while (sectors) {
8712 		/* didn't merge (it all).
8713 		 * Need to add a range just before 'hi' */
8714 		if (bb->count >= MD_MAX_BADBLOCKS) {
8715 			/* No room for more */
8716 			rv = 0;
8717 			break;
8718 		} else {
8719 			int this_sectors = sectors;
8720 			memmove(p + hi + 1, p + hi,
8721 				(bb->count - hi) * 8);
8722 			bb->count++;
8723 
8724 			if (this_sectors > BB_MAX_LEN)
8725 				this_sectors = BB_MAX_LEN;
8726 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8727 			sectors -= this_sectors;
8728 			s += this_sectors;
8729 		}
8730 	}
8731 
8732 	bb->changed = 1;
8733 	if (!acknowledged)
8734 		bb->unacked_exist = 1;
8735 	write_sequnlock_irqrestore(&bb->lock, flags);
8736 
8737 	return rv;
8738 }
8739 
8740 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8741 		       int is_new)
8742 {
8743 	int rv;
8744 	if (is_new)
8745 		s += rdev->new_data_offset;
8746 	else
8747 		s += rdev->data_offset;
8748 	rv = md_set_badblocks(&rdev->badblocks,
8749 			      s, sectors, 0);
8750 	if (rv) {
8751 		/* Make sure they get written out promptly */
8752 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8753 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8754 		set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8755 		md_wakeup_thread(rdev->mddev->thread);
8756 	}
8757 	return rv;
8758 }
8759 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8760 
8761 /*
8762  * Remove a range of bad blocks from the table.
8763  * This may involve extending the table if we spilt a region,
8764  * but it must not fail.  So if the table becomes full, we just
8765  * drop the remove request.
8766  */
8767 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8768 {
8769 	u64 *p;
8770 	int lo, hi;
8771 	sector_t target = s + sectors;
8772 	int rv = 0;
8773 
8774 	if (bb->shift > 0) {
8775 		/* When clearing we round the start up and the end down.
8776 		 * This should not matter as the shift should align with
8777 		 * the block size and no rounding should ever be needed.
8778 		 * However it is better the think a block is bad when it
8779 		 * isn't than to think a block is not bad when it is.
8780 		 */
8781 		s += (1<<bb->shift) - 1;
8782 		s >>= bb->shift;
8783 		target >>= bb->shift;
8784 		sectors = target - s;
8785 	}
8786 
8787 	write_seqlock_irq(&bb->lock);
8788 
8789 	p = bb->page;
8790 	lo = 0;
8791 	hi = bb->count;
8792 	/* Find the last range that starts before 'target' */
8793 	while (hi - lo > 1) {
8794 		int mid = (lo + hi) / 2;
8795 		sector_t a = BB_OFFSET(p[mid]);
8796 		if (a < target)
8797 			lo = mid;
8798 		else
8799 			hi = mid;
8800 	}
8801 	if (hi > lo) {
8802 		/* p[lo] is the last range that could overlap the
8803 		 * current range.  Earlier ranges could also overlap,
8804 		 * but only this one can overlap the end of the range.
8805 		 */
8806 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8807 			/* Partial overlap, leave the tail of this range */
8808 			int ack = BB_ACK(p[lo]);
8809 			sector_t a = BB_OFFSET(p[lo]);
8810 			sector_t end = a + BB_LEN(p[lo]);
8811 
8812 			if (a < s) {
8813 				/* we need to split this range */
8814 				if (bb->count >= MD_MAX_BADBLOCKS) {
8815 					rv = -ENOSPC;
8816 					goto out;
8817 				}
8818 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8819 				bb->count++;
8820 				p[lo] = BB_MAKE(a, s-a, ack);
8821 				lo++;
8822 			}
8823 			p[lo] = BB_MAKE(target, end - target, ack);
8824 			/* there is no longer an overlap */
8825 			hi = lo;
8826 			lo--;
8827 		}
8828 		while (lo >= 0 &&
8829 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8830 			/* This range does overlap */
8831 			if (BB_OFFSET(p[lo]) < s) {
8832 				/* Keep the early parts of this range. */
8833 				int ack = BB_ACK(p[lo]);
8834 				sector_t start = BB_OFFSET(p[lo]);
8835 				p[lo] = BB_MAKE(start, s - start, ack);
8836 				/* now low doesn't overlap, so.. */
8837 				break;
8838 			}
8839 			lo--;
8840 		}
8841 		/* 'lo' is strictly before, 'hi' is strictly after,
8842 		 * anything between needs to be discarded
8843 		 */
8844 		if (hi - lo > 1) {
8845 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8846 			bb->count -= (hi - lo - 1);
8847 		}
8848 	}
8849 
8850 	bb->changed = 1;
8851 out:
8852 	write_sequnlock_irq(&bb->lock);
8853 	return rv;
8854 }
8855 
8856 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8857 			 int is_new)
8858 {
8859 	if (is_new)
8860 		s += rdev->new_data_offset;
8861 	else
8862 		s += rdev->data_offset;
8863 	return md_clear_badblocks(&rdev->badblocks,
8864 				  s, sectors);
8865 }
8866 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8867 
8868 /*
8869  * Acknowledge all bad blocks in a list.
8870  * This only succeeds if ->changed is clear.  It is used by
8871  * in-kernel metadata updates
8872  */
8873 void md_ack_all_badblocks(struct badblocks *bb)
8874 {
8875 	if (bb->page == NULL || bb->changed)
8876 		/* no point even trying */
8877 		return;
8878 	write_seqlock_irq(&bb->lock);
8879 
8880 	if (bb->changed == 0 && bb->unacked_exist) {
8881 		u64 *p = bb->page;
8882 		int i;
8883 		for (i = 0; i < bb->count ; i++) {
8884 			if (!BB_ACK(p[i])) {
8885 				sector_t start = BB_OFFSET(p[i]);
8886 				int len = BB_LEN(p[i]);
8887 				p[i] = BB_MAKE(start, len, 1);
8888 			}
8889 		}
8890 		bb->unacked_exist = 0;
8891 	}
8892 	write_sequnlock_irq(&bb->lock);
8893 }
8894 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8895 
8896 /* sysfs access to bad-blocks list.
8897  * We present two files.
8898  * 'bad-blocks' lists sector numbers and lengths of ranges that
8899  *    are recorded as bad.  The list is truncated to fit within
8900  *    the one-page limit of sysfs.
8901  *    Writing "sector length" to this file adds an acknowledged
8902  *    bad block list.
8903  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8904  *    been acknowledged.  Writing to this file adds bad blocks
8905  *    without acknowledging them.  This is largely for testing.
8906  */
8907 
8908 static ssize_t
8909 badblocks_show(struct badblocks *bb, char *page, int unack)
8910 {
8911 	size_t len;
8912 	int i;
8913 	u64 *p = bb->page;
8914 	unsigned seq;
8915 
8916 	if (bb->shift < 0)
8917 		return 0;
8918 
8919 retry:
8920 	seq = read_seqbegin(&bb->lock);
8921 
8922 	len = 0;
8923 	i = 0;
8924 
8925 	while (len < PAGE_SIZE && i < bb->count) {
8926 		sector_t s = BB_OFFSET(p[i]);
8927 		unsigned int length = BB_LEN(p[i]);
8928 		int ack = BB_ACK(p[i]);
8929 		i++;
8930 
8931 		if (unack && ack)
8932 			continue;
8933 
8934 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8935 				(unsigned long long)s << bb->shift,
8936 				length << bb->shift);
8937 	}
8938 	if (unack && len == 0)
8939 		bb->unacked_exist = 0;
8940 
8941 	if (read_seqretry(&bb->lock, seq))
8942 		goto retry;
8943 
8944 	return len;
8945 }
8946 
8947 #define DO_DEBUG 1
8948 
8949 static ssize_t
8950 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8951 {
8952 	unsigned long long sector;
8953 	int length;
8954 	char newline;
8955 #ifdef DO_DEBUG
8956 	/* Allow clearing via sysfs *only* for testing/debugging.
8957 	 * Normally only a successful write may clear a badblock
8958 	 */
8959 	int clear = 0;
8960 	if (page[0] == '-') {
8961 		clear = 1;
8962 		page++;
8963 	}
8964 #endif /* DO_DEBUG */
8965 
8966 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8967 	case 3:
8968 		if (newline != '\n')
8969 			return -EINVAL;
8970 	case 2:
8971 		if (length <= 0)
8972 			return -EINVAL;
8973 		break;
8974 	default:
8975 		return -EINVAL;
8976 	}
8977 
8978 #ifdef DO_DEBUG
8979 	if (clear) {
8980 		md_clear_badblocks(bb, sector, length);
8981 		return len;
8982 	}
8983 #endif /* DO_DEBUG */
8984 	if (md_set_badblocks(bb, sector, length, !unack))
8985 		return len;
8986 	else
8987 		return -ENOSPC;
8988 }
8989 
8990 static int md_notify_reboot(struct notifier_block *this,
8991 			    unsigned long code, void *x)
8992 {
8993 	struct list_head *tmp;
8994 	struct mddev *mddev;
8995 	int need_delay = 0;
8996 
8997 	for_each_mddev(mddev, tmp) {
8998 		if (mddev_trylock(mddev)) {
8999 			if (mddev->pers)
9000 				__md_stop_writes(mddev);
9001 			if (mddev->persistent)
9002 				mddev->safemode = 2;
9003 			mddev_unlock(mddev);
9004 		}
9005 		need_delay = 1;
9006 	}
9007 	/*
9008 	 * certain more exotic SCSI devices are known to be
9009 	 * volatile wrt too early system reboots. While the
9010 	 * right place to handle this issue is the given
9011 	 * driver, we do want to have a safe RAID driver ...
9012 	 */
9013 	if (need_delay)
9014 		mdelay(1000*1);
9015 
9016 	return NOTIFY_DONE;
9017 }
9018 
9019 static struct notifier_block md_notifier = {
9020 	.notifier_call	= md_notify_reboot,
9021 	.next		= NULL,
9022 	.priority	= INT_MAX, /* before any real devices */
9023 };
9024 
9025 static void md_geninit(void)
9026 {
9027 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9028 
9029 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9030 }
9031 
9032 static int __init md_init(void)
9033 {
9034 	int ret = -ENOMEM;
9035 
9036 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9037 	if (!md_wq)
9038 		goto err_wq;
9039 
9040 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9041 	if (!md_misc_wq)
9042 		goto err_misc_wq;
9043 
9044 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9045 		goto err_md;
9046 
9047 	if ((ret = register_blkdev(0, "mdp")) < 0)
9048 		goto err_mdp;
9049 	mdp_major = ret;
9050 
9051 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9052 			    md_probe, NULL, NULL);
9053 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9054 			    md_probe, NULL, NULL);
9055 
9056 	register_reboot_notifier(&md_notifier);
9057 	raid_table_header = register_sysctl_table(raid_root_table);
9058 
9059 	md_geninit();
9060 	return 0;
9061 
9062 err_mdp:
9063 	unregister_blkdev(MD_MAJOR, "md");
9064 err_md:
9065 	destroy_workqueue(md_misc_wq);
9066 err_misc_wq:
9067 	destroy_workqueue(md_wq);
9068 err_wq:
9069 	return ret;
9070 }
9071 
9072 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9073 {
9074 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9075 	struct md_rdev *rdev2;
9076 	int role, ret;
9077 	char b[BDEVNAME_SIZE];
9078 
9079 	/* Check for change of roles in the active devices */
9080 	rdev_for_each(rdev2, mddev) {
9081 		if (test_bit(Faulty, &rdev2->flags))
9082 			continue;
9083 
9084 		/* Check if the roles changed */
9085 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9086 
9087 		if (test_bit(Candidate, &rdev2->flags)) {
9088 			if (role == 0xfffe) {
9089 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9090 				md_kick_rdev_from_array(rdev2);
9091 				continue;
9092 			}
9093 			else
9094 				clear_bit(Candidate, &rdev2->flags);
9095 		}
9096 
9097 		if (role != rdev2->raid_disk) {
9098 			/* got activated */
9099 			if (rdev2->raid_disk == -1 && role != 0xffff) {
9100 				rdev2->saved_raid_disk = role;
9101 				ret = remove_and_add_spares(mddev, rdev2);
9102 				pr_info("Activated spare: %s\n",
9103 						bdevname(rdev2->bdev,b));
9104 				continue;
9105 			}
9106 			/* device faulty
9107 			 * We just want to do the minimum to mark the disk
9108 			 * as faulty. The recovery is performed by the
9109 			 * one who initiated the error.
9110 			 */
9111 			if ((role == 0xfffe) || (role == 0xfffd)) {
9112 				md_error(mddev, rdev2);
9113 				clear_bit(Blocked, &rdev2->flags);
9114 			}
9115 		}
9116 	}
9117 
9118 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9119 		update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9120 
9121 	/* Finally set the event to be up to date */
9122 	mddev->events = le64_to_cpu(sb->events);
9123 }
9124 
9125 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9126 {
9127 	int err;
9128 	struct page *swapout = rdev->sb_page;
9129 	struct mdp_superblock_1 *sb;
9130 
9131 	/* Store the sb page of the rdev in the swapout temporary
9132 	 * variable in case we err in the future
9133 	 */
9134 	rdev->sb_page = NULL;
9135 	alloc_disk_sb(rdev);
9136 	ClearPageUptodate(rdev->sb_page);
9137 	rdev->sb_loaded = 0;
9138 	err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
9139 
9140 	if (err < 0) {
9141 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9142 				__func__, __LINE__, rdev->desc_nr, err);
9143 		put_page(rdev->sb_page);
9144 		rdev->sb_page = swapout;
9145 		rdev->sb_loaded = 1;
9146 		return err;
9147 	}
9148 
9149 	sb = page_address(rdev->sb_page);
9150 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9151 	 * is not set
9152 	 */
9153 
9154 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9155 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9156 
9157 	/* The other node finished recovery, call spare_active to set
9158 	 * device In_sync and mddev->degraded
9159 	 */
9160 	if (rdev->recovery_offset == MaxSector &&
9161 	    !test_bit(In_sync, &rdev->flags) &&
9162 	    mddev->pers->spare_active(mddev))
9163 		sysfs_notify(&mddev->kobj, NULL, "degraded");
9164 
9165 	put_page(swapout);
9166 	return 0;
9167 }
9168 
9169 void md_reload_sb(struct mddev *mddev, int nr)
9170 {
9171 	struct md_rdev *rdev;
9172 	int err;
9173 
9174 	/* Find the rdev */
9175 	rdev_for_each_rcu(rdev, mddev) {
9176 		if (rdev->desc_nr == nr)
9177 			break;
9178 	}
9179 
9180 	if (!rdev || rdev->desc_nr != nr) {
9181 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9182 		return;
9183 	}
9184 
9185 	err = read_rdev(mddev, rdev);
9186 	if (err < 0)
9187 		return;
9188 
9189 	check_sb_changes(mddev, rdev);
9190 
9191 	/* Read all rdev's to update recovery_offset */
9192 	rdev_for_each_rcu(rdev, mddev)
9193 		read_rdev(mddev, rdev);
9194 }
9195 EXPORT_SYMBOL(md_reload_sb);
9196 
9197 #ifndef MODULE
9198 
9199 /*
9200  * Searches all registered partitions for autorun RAID arrays
9201  * at boot time.
9202  */
9203 
9204 static LIST_HEAD(all_detected_devices);
9205 struct detected_devices_node {
9206 	struct list_head list;
9207 	dev_t dev;
9208 };
9209 
9210 void md_autodetect_dev(dev_t dev)
9211 {
9212 	struct detected_devices_node *node_detected_dev;
9213 
9214 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9215 	if (node_detected_dev) {
9216 		node_detected_dev->dev = dev;
9217 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
9218 	} else {
9219 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
9220 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
9221 	}
9222 }
9223 
9224 static void autostart_arrays(int part)
9225 {
9226 	struct md_rdev *rdev;
9227 	struct detected_devices_node *node_detected_dev;
9228 	dev_t dev;
9229 	int i_scanned, i_passed;
9230 
9231 	i_scanned = 0;
9232 	i_passed = 0;
9233 
9234 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9235 
9236 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9237 		i_scanned++;
9238 		node_detected_dev = list_entry(all_detected_devices.next,
9239 					struct detected_devices_node, list);
9240 		list_del(&node_detected_dev->list);
9241 		dev = node_detected_dev->dev;
9242 		kfree(node_detected_dev);
9243 		rdev = md_import_device(dev,0, 90);
9244 		if (IS_ERR(rdev))
9245 			continue;
9246 
9247 		if (test_bit(Faulty, &rdev->flags))
9248 			continue;
9249 
9250 		set_bit(AutoDetected, &rdev->flags);
9251 		list_add(&rdev->same_set, &pending_raid_disks);
9252 		i_passed++;
9253 	}
9254 
9255 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9256 						i_scanned, i_passed);
9257 
9258 	autorun_devices(part);
9259 }
9260 
9261 #endif /* !MODULE */
9262 
9263 static __exit void md_exit(void)
9264 {
9265 	struct mddev *mddev;
9266 	struct list_head *tmp;
9267 	int delay = 1;
9268 
9269 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9270 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9271 
9272 	unregister_blkdev(MD_MAJOR,"md");
9273 	unregister_blkdev(mdp_major, "mdp");
9274 	unregister_reboot_notifier(&md_notifier);
9275 	unregister_sysctl_table(raid_table_header);
9276 
9277 	/* We cannot unload the modules while some process is
9278 	 * waiting for us in select() or poll() - wake them up
9279 	 */
9280 	md_unloading = 1;
9281 	while (waitqueue_active(&md_event_waiters)) {
9282 		/* not safe to leave yet */
9283 		wake_up(&md_event_waiters);
9284 		msleep(delay);
9285 		delay += delay;
9286 	}
9287 	remove_proc_entry("mdstat", NULL);
9288 
9289 	for_each_mddev(mddev, tmp) {
9290 		export_array(mddev);
9291 		mddev->hold_active = 0;
9292 	}
9293 	destroy_workqueue(md_misc_wq);
9294 	destroy_workqueue(md_wq);
9295 }
9296 
9297 subsys_initcall(md_init);
9298 module_exit(md_exit)
9299 
9300 static int get_ro(char *buffer, struct kernel_param *kp)
9301 {
9302 	return sprintf(buffer, "%d", start_readonly);
9303 }
9304 static int set_ro(const char *val, struct kernel_param *kp)
9305 {
9306 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9307 }
9308 
9309 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9310 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9311 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9312 
9313 MODULE_LICENSE("GPL");
9314 MODULE_DESCRIPTION("MD RAID framework");
9315 MODULE_ALIAS("md");
9316 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9317