1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/kernel.h> 37 #include <linux/kthread.h> 38 #include <linux/linkage.h> 39 #include <linux/raid/md.h> 40 #include <linux/raid/bitmap.h> 41 #include <linux/sysctl.h> 42 #include <linux/buffer_head.h> /* for invalidate_bdev */ 43 #include <linux/poll.h> 44 #include <linux/mutex.h> 45 #include <linux/ctype.h> 46 #include <linux/freezer.h> 47 48 #include <linux/init.h> 49 50 #include <linux/file.h> 51 52 #ifdef CONFIG_KMOD 53 #include <linux/kmod.h> 54 #endif 55 56 #include <asm/unaligned.h> 57 58 #define MAJOR_NR MD_MAJOR 59 #define MD_DRIVER 60 61 /* 63 partitions with the alternate major number (mdp) */ 62 #define MdpMinorShift 6 63 64 #define DEBUG 0 65 #define dprintk(x...) ((void)(DEBUG && printk(x))) 66 67 68 #ifndef MODULE 69 static void autostart_arrays (int part); 70 #endif 71 72 static LIST_HEAD(pers_list); 73 static DEFINE_SPINLOCK(pers_lock); 74 75 static void md_print_devices(void); 76 77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 78 79 /* 80 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 81 * is 1000 KB/sec, so the extra system load does not show up that much. 82 * Increase it if you want to have more _guaranteed_ speed. Note that 83 * the RAID driver will use the maximum available bandwidth if the IO 84 * subsystem is idle. There is also an 'absolute maximum' reconstruction 85 * speed limit - in case reconstruction slows down your system despite 86 * idle IO detection. 87 * 88 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 89 * or /sys/block/mdX/md/sync_speed_{min,max} 90 */ 91 92 static int sysctl_speed_limit_min = 1000; 93 static int sysctl_speed_limit_max = 200000; 94 static inline int speed_min(mddev_t *mddev) 95 { 96 return mddev->sync_speed_min ? 97 mddev->sync_speed_min : sysctl_speed_limit_min; 98 } 99 100 static inline int speed_max(mddev_t *mddev) 101 { 102 return mddev->sync_speed_max ? 103 mddev->sync_speed_max : sysctl_speed_limit_max; 104 } 105 106 static struct ctl_table_header *raid_table_header; 107 108 static ctl_table raid_table[] = { 109 { 110 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN, 111 .procname = "speed_limit_min", 112 .data = &sysctl_speed_limit_min, 113 .maxlen = sizeof(int), 114 .mode = S_IRUGO|S_IWUSR, 115 .proc_handler = &proc_dointvec, 116 }, 117 { 118 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX, 119 .procname = "speed_limit_max", 120 .data = &sysctl_speed_limit_max, 121 .maxlen = sizeof(int), 122 .mode = S_IRUGO|S_IWUSR, 123 .proc_handler = &proc_dointvec, 124 }, 125 { .ctl_name = 0 } 126 }; 127 128 static ctl_table raid_dir_table[] = { 129 { 130 .ctl_name = DEV_RAID, 131 .procname = "raid", 132 .maxlen = 0, 133 .mode = S_IRUGO|S_IXUGO, 134 .child = raid_table, 135 }, 136 { .ctl_name = 0 } 137 }; 138 139 static ctl_table raid_root_table[] = { 140 { 141 .ctl_name = CTL_DEV, 142 .procname = "dev", 143 .maxlen = 0, 144 .mode = 0555, 145 .child = raid_dir_table, 146 }, 147 { .ctl_name = 0 } 148 }; 149 150 static struct block_device_operations md_fops; 151 152 static int start_readonly; 153 154 /* 155 * We have a system wide 'event count' that is incremented 156 * on any 'interesting' event, and readers of /proc/mdstat 157 * can use 'poll' or 'select' to find out when the event 158 * count increases. 159 * 160 * Events are: 161 * start array, stop array, error, add device, remove device, 162 * start build, activate spare 163 */ 164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 165 static atomic_t md_event_count; 166 void md_new_event(mddev_t *mddev) 167 { 168 atomic_inc(&md_event_count); 169 wake_up(&md_event_waiters); 170 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 171 } 172 EXPORT_SYMBOL_GPL(md_new_event); 173 174 /* Alternate version that can be called from interrupts 175 * when calling sysfs_notify isn't needed. 176 */ 177 static void md_new_event_inintr(mddev_t *mddev) 178 { 179 atomic_inc(&md_event_count); 180 wake_up(&md_event_waiters); 181 } 182 183 /* 184 * Enables to iterate over all existing md arrays 185 * all_mddevs_lock protects this list. 186 */ 187 static LIST_HEAD(all_mddevs); 188 static DEFINE_SPINLOCK(all_mddevs_lock); 189 190 191 /* 192 * iterates through all used mddevs in the system. 193 * We take care to grab the all_mddevs_lock whenever navigating 194 * the list, and to always hold a refcount when unlocked. 195 * Any code which breaks out of this loop while own 196 * a reference to the current mddev and must mddev_put it. 197 */ 198 #define ITERATE_MDDEV(mddev,tmp) \ 199 \ 200 for (({ spin_lock(&all_mddevs_lock); \ 201 tmp = all_mddevs.next; \ 202 mddev = NULL;}); \ 203 ({ if (tmp != &all_mddevs) \ 204 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 205 spin_unlock(&all_mddevs_lock); \ 206 if (mddev) mddev_put(mddev); \ 207 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 208 tmp != &all_mddevs;}); \ 209 ({ spin_lock(&all_mddevs_lock); \ 210 tmp = tmp->next;}) \ 211 ) 212 213 214 static int md_fail_request (struct request_queue *q, struct bio *bio) 215 { 216 bio_io_error(bio); 217 return 0; 218 } 219 220 static inline mddev_t *mddev_get(mddev_t *mddev) 221 { 222 atomic_inc(&mddev->active); 223 return mddev; 224 } 225 226 static void mddev_put(mddev_t *mddev) 227 { 228 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 229 return; 230 if (!mddev->raid_disks && list_empty(&mddev->disks)) { 231 list_del(&mddev->all_mddevs); 232 spin_unlock(&all_mddevs_lock); 233 blk_cleanup_queue(mddev->queue); 234 kobject_unregister(&mddev->kobj); 235 } else 236 spin_unlock(&all_mddevs_lock); 237 } 238 239 static mddev_t * mddev_find(dev_t unit) 240 { 241 mddev_t *mddev, *new = NULL; 242 243 retry: 244 spin_lock(&all_mddevs_lock); 245 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 246 if (mddev->unit == unit) { 247 mddev_get(mddev); 248 spin_unlock(&all_mddevs_lock); 249 kfree(new); 250 return mddev; 251 } 252 253 if (new) { 254 list_add(&new->all_mddevs, &all_mddevs); 255 spin_unlock(&all_mddevs_lock); 256 return new; 257 } 258 spin_unlock(&all_mddevs_lock); 259 260 new = kzalloc(sizeof(*new), GFP_KERNEL); 261 if (!new) 262 return NULL; 263 264 new->unit = unit; 265 if (MAJOR(unit) == MD_MAJOR) 266 new->md_minor = MINOR(unit); 267 else 268 new->md_minor = MINOR(unit) >> MdpMinorShift; 269 270 mutex_init(&new->reconfig_mutex); 271 INIT_LIST_HEAD(&new->disks); 272 INIT_LIST_HEAD(&new->all_mddevs); 273 init_timer(&new->safemode_timer); 274 atomic_set(&new->active, 1); 275 spin_lock_init(&new->write_lock); 276 init_waitqueue_head(&new->sb_wait); 277 new->reshape_position = MaxSector; 278 279 new->queue = blk_alloc_queue(GFP_KERNEL); 280 if (!new->queue) { 281 kfree(new); 282 return NULL; 283 } 284 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags); 285 286 blk_queue_make_request(new->queue, md_fail_request); 287 288 goto retry; 289 } 290 291 static inline int mddev_lock(mddev_t * mddev) 292 { 293 return mutex_lock_interruptible(&mddev->reconfig_mutex); 294 } 295 296 static inline int mddev_trylock(mddev_t * mddev) 297 { 298 return mutex_trylock(&mddev->reconfig_mutex); 299 } 300 301 static inline void mddev_unlock(mddev_t * mddev) 302 { 303 mutex_unlock(&mddev->reconfig_mutex); 304 305 md_wakeup_thread(mddev->thread); 306 } 307 308 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 309 { 310 mdk_rdev_t * rdev; 311 struct list_head *tmp; 312 313 ITERATE_RDEV(mddev,rdev,tmp) { 314 if (rdev->desc_nr == nr) 315 return rdev; 316 } 317 return NULL; 318 } 319 320 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 321 { 322 struct list_head *tmp; 323 mdk_rdev_t *rdev; 324 325 ITERATE_RDEV(mddev,rdev,tmp) { 326 if (rdev->bdev->bd_dev == dev) 327 return rdev; 328 } 329 return NULL; 330 } 331 332 static struct mdk_personality *find_pers(int level, char *clevel) 333 { 334 struct mdk_personality *pers; 335 list_for_each_entry(pers, &pers_list, list) { 336 if (level != LEVEL_NONE && pers->level == level) 337 return pers; 338 if (strcmp(pers->name, clevel)==0) 339 return pers; 340 } 341 return NULL; 342 } 343 344 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 345 { 346 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 347 return MD_NEW_SIZE_BLOCKS(size); 348 } 349 350 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size) 351 { 352 sector_t size; 353 354 size = rdev->sb_offset; 355 356 if (chunk_size) 357 size &= ~((sector_t)chunk_size/1024 - 1); 358 return size; 359 } 360 361 static int alloc_disk_sb(mdk_rdev_t * rdev) 362 { 363 if (rdev->sb_page) 364 MD_BUG(); 365 366 rdev->sb_page = alloc_page(GFP_KERNEL); 367 if (!rdev->sb_page) { 368 printk(KERN_ALERT "md: out of memory.\n"); 369 return -EINVAL; 370 } 371 372 return 0; 373 } 374 375 static void free_disk_sb(mdk_rdev_t * rdev) 376 { 377 if (rdev->sb_page) { 378 put_page(rdev->sb_page); 379 rdev->sb_loaded = 0; 380 rdev->sb_page = NULL; 381 rdev->sb_offset = 0; 382 rdev->size = 0; 383 } 384 } 385 386 387 static void super_written(struct bio *bio, int error) 388 { 389 mdk_rdev_t *rdev = bio->bi_private; 390 mddev_t *mddev = rdev->mddev; 391 392 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 393 printk("md: super_written gets error=%d, uptodate=%d\n", 394 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 395 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 396 md_error(mddev, rdev); 397 } 398 399 if (atomic_dec_and_test(&mddev->pending_writes)) 400 wake_up(&mddev->sb_wait); 401 bio_put(bio); 402 } 403 404 static void super_written_barrier(struct bio *bio, int error) 405 { 406 struct bio *bio2 = bio->bi_private; 407 mdk_rdev_t *rdev = bio2->bi_private; 408 mddev_t *mddev = rdev->mddev; 409 410 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 411 error == -EOPNOTSUPP) { 412 unsigned long flags; 413 /* barriers don't appear to be supported :-( */ 414 set_bit(BarriersNotsupp, &rdev->flags); 415 mddev->barriers_work = 0; 416 spin_lock_irqsave(&mddev->write_lock, flags); 417 bio2->bi_next = mddev->biolist; 418 mddev->biolist = bio2; 419 spin_unlock_irqrestore(&mddev->write_lock, flags); 420 wake_up(&mddev->sb_wait); 421 bio_put(bio); 422 } else { 423 bio_put(bio2); 424 bio->bi_private = rdev; 425 super_written(bio, error); 426 } 427 } 428 429 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 430 sector_t sector, int size, struct page *page) 431 { 432 /* write first size bytes of page to sector of rdev 433 * Increment mddev->pending_writes before returning 434 * and decrement it on completion, waking up sb_wait 435 * if zero is reached. 436 * If an error occurred, call md_error 437 * 438 * As we might need to resubmit the request if BIO_RW_BARRIER 439 * causes ENOTSUPP, we allocate a spare bio... 440 */ 441 struct bio *bio = bio_alloc(GFP_NOIO, 1); 442 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC); 443 444 bio->bi_bdev = rdev->bdev; 445 bio->bi_sector = sector; 446 bio_add_page(bio, page, size, 0); 447 bio->bi_private = rdev; 448 bio->bi_end_io = super_written; 449 bio->bi_rw = rw; 450 451 atomic_inc(&mddev->pending_writes); 452 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 453 struct bio *rbio; 454 rw |= (1<<BIO_RW_BARRIER); 455 rbio = bio_clone(bio, GFP_NOIO); 456 rbio->bi_private = bio; 457 rbio->bi_end_io = super_written_barrier; 458 submit_bio(rw, rbio); 459 } else 460 submit_bio(rw, bio); 461 } 462 463 void md_super_wait(mddev_t *mddev) 464 { 465 /* wait for all superblock writes that were scheduled to complete. 466 * if any had to be retried (due to BARRIER problems), retry them 467 */ 468 DEFINE_WAIT(wq); 469 for(;;) { 470 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 471 if (atomic_read(&mddev->pending_writes)==0) 472 break; 473 while (mddev->biolist) { 474 struct bio *bio; 475 spin_lock_irq(&mddev->write_lock); 476 bio = mddev->biolist; 477 mddev->biolist = bio->bi_next ; 478 bio->bi_next = NULL; 479 spin_unlock_irq(&mddev->write_lock); 480 submit_bio(bio->bi_rw, bio); 481 } 482 schedule(); 483 } 484 finish_wait(&mddev->sb_wait, &wq); 485 } 486 487 static void bi_complete(struct bio *bio, int error) 488 { 489 complete((struct completion*)bio->bi_private); 490 } 491 492 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 493 struct page *page, int rw) 494 { 495 struct bio *bio = bio_alloc(GFP_NOIO, 1); 496 struct completion event; 497 int ret; 498 499 rw |= (1 << BIO_RW_SYNC); 500 501 bio->bi_bdev = bdev; 502 bio->bi_sector = sector; 503 bio_add_page(bio, page, size, 0); 504 init_completion(&event); 505 bio->bi_private = &event; 506 bio->bi_end_io = bi_complete; 507 submit_bio(rw, bio); 508 wait_for_completion(&event); 509 510 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 511 bio_put(bio); 512 return ret; 513 } 514 EXPORT_SYMBOL_GPL(sync_page_io); 515 516 static int read_disk_sb(mdk_rdev_t * rdev, int size) 517 { 518 char b[BDEVNAME_SIZE]; 519 if (!rdev->sb_page) { 520 MD_BUG(); 521 return -EINVAL; 522 } 523 if (rdev->sb_loaded) 524 return 0; 525 526 527 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ)) 528 goto fail; 529 rdev->sb_loaded = 1; 530 return 0; 531 532 fail: 533 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 534 bdevname(rdev->bdev,b)); 535 return -EINVAL; 536 } 537 538 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 539 { 540 if ( (sb1->set_uuid0 == sb2->set_uuid0) && 541 (sb1->set_uuid1 == sb2->set_uuid1) && 542 (sb1->set_uuid2 == sb2->set_uuid2) && 543 (sb1->set_uuid3 == sb2->set_uuid3)) 544 545 return 1; 546 547 return 0; 548 } 549 550 551 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 552 { 553 int ret; 554 mdp_super_t *tmp1, *tmp2; 555 556 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 557 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 558 559 if (!tmp1 || !tmp2) { 560 ret = 0; 561 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n"); 562 goto abort; 563 } 564 565 *tmp1 = *sb1; 566 *tmp2 = *sb2; 567 568 /* 569 * nr_disks is not constant 570 */ 571 tmp1->nr_disks = 0; 572 tmp2->nr_disks = 0; 573 574 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4)) 575 ret = 0; 576 else 577 ret = 1; 578 579 abort: 580 kfree(tmp1); 581 kfree(tmp2); 582 return ret; 583 } 584 585 586 static u32 md_csum_fold(u32 csum) 587 { 588 csum = (csum & 0xffff) + (csum >> 16); 589 return (csum & 0xffff) + (csum >> 16); 590 } 591 592 static unsigned int calc_sb_csum(mdp_super_t * sb) 593 { 594 u64 newcsum = 0; 595 u32 *sb32 = (u32*)sb; 596 int i; 597 unsigned int disk_csum, csum; 598 599 disk_csum = sb->sb_csum; 600 sb->sb_csum = 0; 601 602 for (i = 0; i < MD_SB_BYTES/4 ; i++) 603 newcsum += sb32[i]; 604 csum = (newcsum & 0xffffffff) + (newcsum>>32); 605 606 607 #ifdef CONFIG_ALPHA 608 /* This used to use csum_partial, which was wrong for several 609 * reasons including that different results are returned on 610 * different architectures. It isn't critical that we get exactly 611 * the same return value as before (we always csum_fold before 612 * testing, and that removes any differences). However as we 613 * know that csum_partial always returned a 16bit value on 614 * alphas, do a fold to maximise conformity to previous behaviour. 615 */ 616 sb->sb_csum = md_csum_fold(disk_csum); 617 #else 618 sb->sb_csum = disk_csum; 619 #endif 620 return csum; 621 } 622 623 624 /* 625 * Handle superblock details. 626 * We want to be able to handle multiple superblock formats 627 * so we have a common interface to them all, and an array of 628 * different handlers. 629 * We rely on user-space to write the initial superblock, and support 630 * reading and updating of superblocks. 631 * Interface methods are: 632 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 633 * loads and validates a superblock on dev. 634 * if refdev != NULL, compare superblocks on both devices 635 * Return: 636 * 0 - dev has a superblock that is compatible with refdev 637 * 1 - dev has a superblock that is compatible and newer than refdev 638 * so dev should be used as the refdev in future 639 * -EINVAL superblock incompatible or invalid 640 * -othererror e.g. -EIO 641 * 642 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 643 * Verify that dev is acceptable into mddev. 644 * The first time, mddev->raid_disks will be 0, and data from 645 * dev should be merged in. Subsequent calls check that dev 646 * is new enough. Return 0 or -EINVAL 647 * 648 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 649 * Update the superblock for rdev with data in mddev 650 * This does not write to disc. 651 * 652 */ 653 654 struct super_type { 655 char *name; 656 struct module *owner; 657 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version); 658 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 659 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 660 }; 661 662 /* 663 * load_super for 0.90.0 664 */ 665 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 666 { 667 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 668 mdp_super_t *sb; 669 int ret; 670 sector_t sb_offset; 671 672 /* 673 * Calculate the position of the superblock, 674 * it's at the end of the disk. 675 * 676 * It also happens to be a multiple of 4Kb. 677 */ 678 sb_offset = calc_dev_sboffset(rdev->bdev); 679 rdev->sb_offset = sb_offset; 680 681 ret = read_disk_sb(rdev, MD_SB_BYTES); 682 if (ret) return ret; 683 684 ret = -EINVAL; 685 686 bdevname(rdev->bdev, b); 687 sb = (mdp_super_t*)page_address(rdev->sb_page); 688 689 if (sb->md_magic != MD_SB_MAGIC) { 690 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 691 b); 692 goto abort; 693 } 694 695 if (sb->major_version != 0 || 696 sb->minor_version < 90 || 697 sb->minor_version > 91) { 698 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 699 sb->major_version, sb->minor_version, 700 b); 701 goto abort; 702 } 703 704 if (sb->raid_disks <= 0) 705 goto abort; 706 707 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 708 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 709 b); 710 goto abort; 711 } 712 713 rdev->preferred_minor = sb->md_minor; 714 rdev->data_offset = 0; 715 rdev->sb_size = MD_SB_BYTES; 716 717 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) { 718 if (sb->level != 1 && sb->level != 4 719 && sb->level != 5 && sb->level != 6 720 && sb->level != 10) { 721 /* FIXME use a better test */ 722 printk(KERN_WARNING 723 "md: bitmaps not supported for this level.\n"); 724 goto abort; 725 } 726 } 727 728 if (sb->level == LEVEL_MULTIPATH) 729 rdev->desc_nr = -1; 730 else 731 rdev->desc_nr = sb->this_disk.number; 732 733 if (refdev == 0) 734 ret = 1; 735 else { 736 __u64 ev1, ev2; 737 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 738 if (!uuid_equal(refsb, sb)) { 739 printk(KERN_WARNING "md: %s has different UUID to %s\n", 740 b, bdevname(refdev->bdev,b2)); 741 goto abort; 742 } 743 if (!sb_equal(refsb, sb)) { 744 printk(KERN_WARNING "md: %s has same UUID" 745 " but different superblock to %s\n", 746 b, bdevname(refdev->bdev, b2)); 747 goto abort; 748 } 749 ev1 = md_event(sb); 750 ev2 = md_event(refsb); 751 if (ev1 > ev2) 752 ret = 1; 753 else 754 ret = 0; 755 } 756 rdev->size = calc_dev_size(rdev, sb->chunk_size); 757 758 if (rdev->size < sb->size && sb->level > 1) 759 /* "this cannot possibly happen" ... */ 760 ret = -EINVAL; 761 762 abort: 763 return ret; 764 } 765 766 /* 767 * validate_super for 0.90.0 768 */ 769 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 770 { 771 mdp_disk_t *desc; 772 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 773 __u64 ev1 = md_event(sb); 774 775 rdev->raid_disk = -1; 776 rdev->flags = 0; 777 if (mddev->raid_disks == 0) { 778 mddev->major_version = 0; 779 mddev->minor_version = sb->minor_version; 780 mddev->patch_version = sb->patch_version; 781 mddev->persistent = ! sb->not_persistent; 782 mddev->chunk_size = sb->chunk_size; 783 mddev->ctime = sb->ctime; 784 mddev->utime = sb->utime; 785 mddev->level = sb->level; 786 mddev->clevel[0] = 0; 787 mddev->layout = sb->layout; 788 mddev->raid_disks = sb->raid_disks; 789 mddev->size = sb->size; 790 mddev->events = ev1; 791 mddev->bitmap_offset = 0; 792 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 793 794 if (mddev->minor_version >= 91) { 795 mddev->reshape_position = sb->reshape_position; 796 mddev->delta_disks = sb->delta_disks; 797 mddev->new_level = sb->new_level; 798 mddev->new_layout = sb->new_layout; 799 mddev->new_chunk = sb->new_chunk; 800 } else { 801 mddev->reshape_position = MaxSector; 802 mddev->delta_disks = 0; 803 mddev->new_level = mddev->level; 804 mddev->new_layout = mddev->layout; 805 mddev->new_chunk = mddev->chunk_size; 806 } 807 808 if (sb->state & (1<<MD_SB_CLEAN)) 809 mddev->recovery_cp = MaxSector; 810 else { 811 if (sb->events_hi == sb->cp_events_hi && 812 sb->events_lo == sb->cp_events_lo) { 813 mddev->recovery_cp = sb->recovery_cp; 814 } else 815 mddev->recovery_cp = 0; 816 } 817 818 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 819 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 820 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 821 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 822 823 mddev->max_disks = MD_SB_DISKS; 824 825 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 826 mddev->bitmap_file == NULL) 827 mddev->bitmap_offset = mddev->default_bitmap_offset; 828 829 } else if (mddev->pers == NULL) { 830 /* Insist on good event counter while assembling */ 831 ++ev1; 832 if (ev1 < mddev->events) 833 return -EINVAL; 834 } else if (mddev->bitmap) { 835 /* if adding to array with a bitmap, then we can accept an 836 * older device ... but not too old. 837 */ 838 if (ev1 < mddev->bitmap->events_cleared) 839 return 0; 840 } else { 841 if (ev1 < mddev->events) 842 /* just a hot-add of a new device, leave raid_disk at -1 */ 843 return 0; 844 } 845 846 if (mddev->level != LEVEL_MULTIPATH) { 847 desc = sb->disks + rdev->desc_nr; 848 849 if (desc->state & (1<<MD_DISK_FAULTY)) 850 set_bit(Faulty, &rdev->flags); 851 else if (desc->state & (1<<MD_DISK_SYNC) /* && 852 desc->raid_disk < mddev->raid_disks */) { 853 set_bit(In_sync, &rdev->flags); 854 rdev->raid_disk = desc->raid_disk; 855 } 856 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 857 set_bit(WriteMostly, &rdev->flags); 858 } else /* MULTIPATH are always insync */ 859 set_bit(In_sync, &rdev->flags); 860 return 0; 861 } 862 863 /* 864 * sync_super for 0.90.0 865 */ 866 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 867 { 868 mdp_super_t *sb; 869 struct list_head *tmp; 870 mdk_rdev_t *rdev2; 871 int next_spare = mddev->raid_disks; 872 873 874 /* make rdev->sb match mddev data.. 875 * 876 * 1/ zero out disks 877 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 878 * 3/ any empty disks < next_spare become removed 879 * 880 * disks[0] gets initialised to REMOVED because 881 * we cannot be sure from other fields if it has 882 * been initialised or not. 883 */ 884 int i; 885 int active=0, working=0,failed=0,spare=0,nr_disks=0; 886 887 rdev->sb_size = MD_SB_BYTES; 888 889 sb = (mdp_super_t*)page_address(rdev->sb_page); 890 891 memset(sb, 0, sizeof(*sb)); 892 893 sb->md_magic = MD_SB_MAGIC; 894 sb->major_version = mddev->major_version; 895 sb->patch_version = mddev->patch_version; 896 sb->gvalid_words = 0; /* ignored */ 897 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 898 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 899 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 900 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 901 902 sb->ctime = mddev->ctime; 903 sb->level = mddev->level; 904 sb->size = mddev->size; 905 sb->raid_disks = mddev->raid_disks; 906 sb->md_minor = mddev->md_minor; 907 sb->not_persistent = !mddev->persistent; 908 sb->utime = mddev->utime; 909 sb->state = 0; 910 sb->events_hi = (mddev->events>>32); 911 sb->events_lo = (u32)mddev->events; 912 913 if (mddev->reshape_position == MaxSector) 914 sb->minor_version = 90; 915 else { 916 sb->minor_version = 91; 917 sb->reshape_position = mddev->reshape_position; 918 sb->new_level = mddev->new_level; 919 sb->delta_disks = mddev->delta_disks; 920 sb->new_layout = mddev->new_layout; 921 sb->new_chunk = mddev->new_chunk; 922 } 923 mddev->minor_version = sb->minor_version; 924 if (mddev->in_sync) 925 { 926 sb->recovery_cp = mddev->recovery_cp; 927 sb->cp_events_hi = (mddev->events>>32); 928 sb->cp_events_lo = (u32)mddev->events; 929 if (mddev->recovery_cp == MaxSector) 930 sb->state = (1<< MD_SB_CLEAN); 931 } else 932 sb->recovery_cp = 0; 933 934 sb->layout = mddev->layout; 935 sb->chunk_size = mddev->chunk_size; 936 937 if (mddev->bitmap && mddev->bitmap_file == NULL) 938 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 939 940 sb->disks[0].state = (1<<MD_DISK_REMOVED); 941 ITERATE_RDEV(mddev,rdev2,tmp) { 942 mdp_disk_t *d; 943 int desc_nr; 944 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 945 && !test_bit(Faulty, &rdev2->flags)) 946 desc_nr = rdev2->raid_disk; 947 else 948 desc_nr = next_spare++; 949 rdev2->desc_nr = desc_nr; 950 d = &sb->disks[rdev2->desc_nr]; 951 nr_disks++; 952 d->number = rdev2->desc_nr; 953 d->major = MAJOR(rdev2->bdev->bd_dev); 954 d->minor = MINOR(rdev2->bdev->bd_dev); 955 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 956 && !test_bit(Faulty, &rdev2->flags)) 957 d->raid_disk = rdev2->raid_disk; 958 else 959 d->raid_disk = rdev2->desc_nr; /* compatibility */ 960 if (test_bit(Faulty, &rdev2->flags)) 961 d->state = (1<<MD_DISK_FAULTY); 962 else if (test_bit(In_sync, &rdev2->flags)) { 963 d->state = (1<<MD_DISK_ACTIVE); 964 d->state |= (1<<MD_DISK_SYNC); 965 active++; 966 working++; 967 } else { 968 d->state = 0; 969 spare++; 970 working++; 971 } 972 if (test_bit(WriteMostly, &rdev2->flags)) 973 d->state |= (1<<MD_DISK_WRITEMOSTLY); 974 } 975 /* now set the "removed" and "faulty" bits on any missing devices */ 976 for (i=0 ; i < mddev->raid_disks ; i++) { 977 mdp_disk_t *d = &sb->disks[i]; 978 if (d->state == 0 && d->number == 0) { 979 d->number = i; 980 d->raid_disk = i; 981 d->state = (1<<MD_DISK_REMOVED); 982 d->state |= (1<<MD_DISK_FAULTY); 983 failed++; 984 } 985 } 986 sb->nr_disks = nr_disks; 987 sb->active_disks = active; 988 sb->working_disks = working; 989 sb->failed_disks = failed; 990 sb->spare_disks = spare; 991 992 sb->this_disk = sb->disks[rdev->desc_nr]; 993 sb->sb_csum = calc_sb_csum(sb); 994 } 995 996 /* 997 * version 1 superblock 998 */ 999 1000 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1001 { 1002 __le32 disk_csum; 1003 u32 csum; 1004 unsigned long long newcsum; 1005 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1006 __le32 *isuper = (__le32*)sb; 1007 int i; 1008 1009 disk_csum = sb->sb_csum; 1010 sb->sb_csum = 0; 1011 newcsum = 0; 1012 for (i=0; size>=4; size -= 4 ) 1013 newcsum += le32_to_cpu(*isuper++); 1014 1015 if (size == 2) 1016 newcsum += le16_to_cpu(*(__le16*) isuper); 1017 1018 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1019 sb->sb_csum = disk_csum; 1020 return cpu_to_le32(csum); 1021 } 1022 1023 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1024 { 1025 struct mdp_superblock_1 *sb; 1026 int ret; 1027 sector_t sb_offset; 1028 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1029 int bmask; 1030 1031 /* 1032 * Calculate the position of the superblock. 1033 * It is always aligned to a 4K boundary and 1034 * depeding on minor_version, it can be: 1035 * 0: At least 8K, but less than 12K, from end of device 1036 * 1: At start of device 1037 * 2: 4K from start of device. 1038 */ 1039 switch(minor_version) { 1040 case 0: 1041 sb_offset = rdev->bdev->bd_inode->i_size >> 9; 1042 sb_offset -= 8*2; 1043 sb_offset &= ~(sector_t)(4*2-1); 1044 /* convert from sectors to K */ 1045 sb_offset /= 2; 1046 break; 1047 case 1: 1048 sb_offset = 0; 1049 break; 1050 case 2: 1051 sb_offset = 4; 1052 break; 1053 default: 1054 return -EINVAL; 1055 } 1056 rdev->sb_offset = sb_offset; 1057 1058 /* superblock is rarely larger than 1K, but it can be larger, 1059 * and it is safe to read 4k, so we do that 1060 */ 1061 ret = read_disk_sb(rdev, 4096); 1062 if (ret) return ret; 1063 1064 1065 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1066 1067 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1068 sb->major_version != cpu_to_le32(1) || 1069 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1070 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) || 1071 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1072 return -EINVAL; 1073 1074 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1075 printk("md: invalid superblock checksum on %s\n", 1076 bdevname(rdev->bdev,b)); 1077 return -EINVAL; 1078 } 1079 if (le64_to_cpu(sb->data_size) < 10) { 1080 printk("md: data_size too small on %s\n", 1081 bdevname(rdev->bdev,b)); 1082 return -EINVAL; 1083 } 1084 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) { 1085 if (sb->level != cpu_to_le32(1) && 1086 sb->level != cpu_to_le32(4) && 1087 sb->level != cpu_to_le32(5) && 1088 sb->level != cpu_to_le32(6) && 1089 sb->level != cpu_to_le32(10)) { 1090 printk(KERN_WARNING 1091 "md: bitmaps not supported for this level.\n"); 1092 return -EINVAL; 1093 } 1094 } 1095 1096 rdev->preferred_minor = 0xffff; 1097 rdev->data_offset = le64_to_cpu(sb->data_offset); 1098 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1099 1100 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1101 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1; 1102 if (rdev->sb_size & bmask) 1103 rdev-> sb_size = (rdev->sb_size | bmask)+1; 1104 1105 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1106 rdev->desc_nr = -1; 1107 else 1108 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1109 1110 if (refdev == 0) 1111 ret = 1; 1112 else { 1113 __u64 ev1, ev2; 1114 struct mdp_superblock_1 *refsb = 1115 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1116 1117 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1118 sb->level != refsb->level || 1119 sb->layout != refsb->layout || 1120 sb->chunksize != refsb->chunksize) { 1121 printk(KERN_WARNING "md: %s has strangely different" 1122 " superblock to %s\n", 1123 bdevname(rdev->bdev,b), 1124 bdevname(refdev->bdev,b2)); 1125 return -EINVAL; 1126 } 1127 ev1 = le64_to_cpu(sb->events); 1128 ev2 = le64_to_cpu(refsb->events); 1129 1130 if (ev1 > ev2) 1131 ret = 1; 1132 else 1133 ret = 0; 1134 } 1135 if (minor_version) 1136 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2; 1137 else 1138 rdev->size = rdev->sb_offset; 1139 if (rdev->size < le64_to_cpu(sb->data_size)/2) 1140 return -EINVAL; 1141 rdev->size = le64_to_cpu(sb->data_size)/2; 1142 if (le32_to_cpu(sb->chunksize)) 1143 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1); 1144 1145 if (le64_to_cpu(sb->size) > rdev->size*2) 1146 return -EINVAL; 1147 return ret; 1148 } 1149 1150 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1151 { 1152 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1153 __u64 ev1 = le64_to_cpu(sb->events); 1154 1155 rdev->raid_disk = -1; 1156 rdev->flags = 0; 1157 if (mddev->raid_disks == 0) { 1158 mddev->major_version = 1; 1159 mddev->patch_version = 0; 1160 mddev->persistent = 1; 1161 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9; 1162 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1163 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1164 mddev->level = le32_to_cpu(sb->level); 1165 mddev->clevel[0] = 0; 1166 mddev->layout = le32_to_cpu(sb->layout); 1167 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1168 mddev->size = le64_to_cpu(sb->size)/2; 1169 mddev->events = ev1; 1170 mddev->bitmap_offset = 0; 1171 mddev->default_bitmap_offset = 1024 >> 9; 1172 1173 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1174 memcpy(mddev->uuid, sb->set_uuid, 16); 1175 1176 mddev->max_disks = (4096-256)/2; 1177 1178 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1179 mddev->bitmap_file == NULL ) 1180 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset); 1181 1182 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1183 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1184 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1185 mddev->new_level = le32_to_cpu(sb->new_level); 1186 mddev->new_layout = le32_to_cpu(sb->new_layout); 1187 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9; 1188 } else { 1189 mddev->reshape_position = MaxSector; 1190 mddev->delta_disks = 0; 1191 mddev->new_level = mddev->level; 1192 mddev->new_layout = mddev->layout; 1193 mddev->new_chunk = mddev->chunk_size; 1194 } 1195 1196 } else if (mddev->pers == NULL) { 1197 /* Insist of good event counter while assembling */ 1198 ++ev1; 1199 if (ev1 < mddev->events) 1200 return -EINVAL; 1201 } else if (mddev->bitmap) { 1202 /* If adding to array with a bitmap, then we can accept an 1203 * older device, but not too old. 1204 */ 1205 if (ev1 < mddev->bitmap->events_cleared) 1206 return 0; 1207 } else { 1208 if (ev1 < mddev->events) 1209 /* just a hot-add of a new device, leave raid_disk at -1 */ 1210 return 0; 1211 } 1212 if (mddev->level != LEVEL_MULTIPATH) { 1213 int role; 1214 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1215 switch(role) { 1216 case 0xffff: /* spare */ 1217 break; 1218 case 0xfffe: /* faulty */ 1219 set_bit(Faulty, &rdev->flags); 1220 break; 1221 default: 1222 if ((le32_to_cpu(sb->feature_map) & 1223 MD_FEATURE_RECOVERY_OFFSET)) 1224 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1225 else 1226 set_bit(In_sync, &rdev->flags); 1227 rdev->raid_disk = role; 1228 break; 1229 } 1230 if (sb->devflags & WriteMostly1) 1231 set_bit(WriteMostly, &rdev->flags); 1232 } else /* MULTIPATH are always insync */ 1233 set_bit(In_sync, &rdev->flags); 1234 1235 return 0; 1236 } 1237 1238 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1239 { 1240 struct mdp_superblock_1 *sb; 1241 struct list_head *tmp; 1242 mdk_rdev_t *rdev2; 1243 int max_dev, i; 1244 /* make rdev->sb match mddev and rdev data. */ 1245 1246 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1247 1248 sb->feature_map = 0; 1249 sb->pad0 = 0; 1250 sb->recovery_offset = cpu_to_le64(0); 1251 memset(sb->pad1, 0, sizeof(sb->pad1)); 1252 memset(sb->pad2, 0, sizeof(sb->pad2)); 1253 memset(sb->pad3, 0, sizeof(sb->pad3)); 1254 1255 sb->utime = cpu_to_le64((__u64)mddev->utime); 1256 sb->events = cpu_to_le64(mddev->events); 1257 if (mddev->in_sync) 1258 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1259 else 1260 sb->resync_offset = cpu_to_le64(0); 1261 1262 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1263 1264 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1265 sb->size = cpu_to_le64(mddev->size<<1); 1266 1267 if (mddev->bitmap && mddev->bitmap_file == NULL) { 1268 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset); 1269 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1270 } 1271 1272 if (rdev->raid_disk >= 0 && 1273 !test_bit(In_sync, &rdev->flags) && 1274 rdev->recovery_offset > 0) { 1275 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1276 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset); 1277 } 1278 1279 if (mddev->reshape_position != MaxSector) { 1280 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1281 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1282 sb->new_layout = cpu_to_le32(mddev->new_layout); 1283 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1284 sb->new_level = cpu_to_le32(mddev->new_level); 1285 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9); 1286 } 1287 1288 max_dev = 0; 1289 ITERATE_RDEV(mddev,rdev2,tmp) 1290 if (rdev2->desc_nr+1 > max_dev) 1291 max_dev = rdev2->desc_nr+1; 1292 1293 if (max_dev > le32_to_cpu(sb->max_dev)) 1294 sb->max_dev = cpu_to_le32(max_dev); 1295 for (i=0; i<max_dev;i++) 1296 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1297 1298 ITERATE_RDEV(mddev,rdev2,tmp) { 1299 i = rdev2->desc_nr; 1300 if (test_bit(Faulty, &rdev2->flags)) 1301 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1302 else if (test_bit(In_sync, &rdev2->flags)) 1303 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1304 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0) 1305 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1306 else 1307 sb->dev_roles[i] = cpu_to_le16(0xffff); 1308 } 1309 1310 sb->sb_csum = calc_sb_1_csum(sb); 1311 } 1312 1313 1314 static struct super_type super_types[] = { 1315 [0] = { 1316 .name = "0.90.0", 1317 .owner = THIS_MODULE, 1318 .load_super = super_90_load, 1319 .validate_super = super_90_validate, 1320 .sync_super = super_90_sync, 1321 }, 1322 [1] = { 1323 .name = "md-1", 1324 .owner = THIS_MODULE, 1325 .load_super = super_1_load, 1326 .validate_super = super_1_validate, 1327 .sync_super = super_1_sync, 1328 }, 1329 }; 1330 1331 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1332 { 1333 struct list_head *tmp, *tmp2; 1334 mdk_rdev_t *rdev, *rdev2; 1335 1336 ITERATE_RDEV(mddev1,rdev,tmp) 1337 ITERATE_RDEV(mddev2, rdev2, tmp2) 1338 if (rdev->bdev->bd_contains == 1339 rdev2->bdev->bd_contains) 1340 return 1; 1341 1342 return 0; 1343 } 1344 1345 static LIST_HEAD(pending_raid_disks); 1346 1347 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1348 { 1349 char b[BDEVNAME_SIZE]; 1350 struct kobject *ko; 1351 char *s; 1352 int err; 1353 1354 if (rdev->mddev) { 1355 MD_BUG(); 1356 return -EINVAL; 1357 } 1358 /* make sure rdev->size exceeds mddev->size */ 1359 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) { 1360 if (mddev->pers) { 1361 /* Cannot change size, so fail 1362 * If mddev->level <= 0, then we don't care 1363 * about aligning sizes (e.g. linear) 1364 */ 1365 if (mddev->level > 0) 1366 return -ENOSPC; 1367 } else 1368 mddev->size = rdev->size; 1369 } 1370 1371 /* Verify rdev->desc_nr is unique. 1372 * If it is -1, assign a free number, else 1373 * check number is not in use 1374 */ 1375 if (rdev->desc_nr < 0) { 1376 int choice = 0; 1377 if (mddev->pers) choice = mddev->raid_disks; 1378 while (find_rdev_nr(mddev, choice)) 1379 choice++; 1380 rdev->desc_nr = choice; 1381 } else { 1382 if (find_rdev_nr(mddev, rdev->desc_nr)) 1383 return -EBUSY; 1384 } 1385 bdevname(rdev->bdev,b); 1386 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0) 1387 return -ENOMEM; 1388 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL) 1389 *s = '!'; 1390 1391 rdev->mddev = mddev; 1392 printk(KERN_INFO "md: bind<%s>\n", b); 1393 1394 rdev->kobj.parent = &mddev->kobj; 1395 if ((err = kobject_add(&rdev->kobj))) 1396 goto fail; 1397 1398 if (rdev->bdev->bd_part) 1399 ko = &rdev->bdev->bd_part->kobj; 1400 else 1401 ko = &rdev->bdev->bd_disk->kobj; 1402 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) { 1403 kobject_del(&rdev->kobj); 1404 goto fail; 1405 } 1406 list_add(&rdev->same_set, &mddev->disks); 1407 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk); 1408 return 0; 1409 1410 fail: 1411 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1412 b, mdname(mddev)); 1413 return err; 1414 } 1415 1416 static void delayed_delete(struct work_struct *ws) 1417 { 1418 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1419 kobject_del(&rdev->kobj); 1420 } 1421 1422 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1423 { 1424 char b[BDEVNAME_SIZE]; 1425 if (!rdev->mddev) { 1426 MD_BUG(); 1427 return; 1428 } 1429 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1430 list_del_init(&rdev->same_set); 1431 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1432 rdev->mddev = NULL; 1433 sysfs_remove_link(&rdev->kobj, "block"); 1434 1435 /* We need to delay this, otherwise we can deadlock when 1436 * writing to 'remove' to "dev/state" 1437 */ 1438 INIT_WORK(&rdev->del_work, delayed_delete); 1439 schedule_work(&rdev->del_work); 1440 } 1441 1442 /* 1443 * prevent the device from being mounted, repartitioned or 1444 * otherwise reused by a RAID array (or any other kernel 1445 * subsystem), by bd_claiming the device. 1446 */ 1447 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev) 1448 { 1449 int err = 0; 1450 struct block_device *bdev; 1451 char b[BDEVNAME_SIZE]; 1452 1453 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1454 if (IS_ERR(bdev)) { 1455 printk(KERN_ERR "md: could not open %s.\n", 1456 __bdevname(dev, b)); 1457 return PTR_ERR(bdev); 1458 } 1459 err = bd_claim(bdev, rdev); 1460 if (err) { 1461 printk(KERN_ERR "md: could not bd_claim %s.\n", 1462 bdevname(bdev, b)); 1463 blkdev_put(bdev); 1464 return err; 1465 } 1466 rdev->bdev = bdev; 1467 return err; 1468 } 1469 1470 static void unlock_rdev(mdk_rdev_t *rdev) 1471 { 1472 struct block_device *bdev = rdev->bdev; 1473 rdev->bdev = NULL; 1474 if (!bdev) 1475 MD_BUG(); 1476 bd_release(bdev); 1477 blkdev_put(bdev); 1478 } 1479 1480 void md_autodetect_dev(dev_t dev); 1481 1482 static void export_rdev(mdk_rdev_t * rdev) 1483 { 1484 char b[BDEVNAME_SIZE]; 1485 printk(KERN_INFO "md: export_rdev(%s)\n", 1486 bdevname(rdev->bdev,b)); 1487 if (rdev->mddev) 1488 MD_BUG(); 1489 free_disk_sb(rdev); 1490 list_del_init(&rdev->same_set); 1491 #ifndef MODULE 1492 md_autodetect_dev(rdev->bdev->bd_dev); 1493 #endif 1494 unlock_rdev(rdev); 1495 kobject_put(&rdev->kobj); 1496 } 1497 1498 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1499 { 1500 unbind_rdev_from_array(rdev); 1501 export_rdev(rdev); 1502 } 1503 1504 static void export_array(mddev_t *mddev) 1505 { 1506 struct list_head *tmp; 1507 mdk_rdev_t *rdev; 1508 1509 ITERATE_RDEV(mddev,rdev,tmp) { 1510 if (!rdev->mddev) { 1511 MD_BUG(); 1512 continue; 1513 } 1514 kick_rdev_from_array(rdev); 1515 } 1516 if (!list_empty(&mddev->disks)) 1517 MD_BUG(); 1518 mddev->raid_disks = 0; 1519 mddev->major_version = 0; 1520 } 1521 1522 static void print_desc(mdp_disk_t *desc) 1523 { 1524 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 1525 desc->major,desc->minor,desc->raid_disk,desc->state); 1526 } 1527 1528 static void print_sb(mdp_super_t *sb) 1529 { 1530 int i; 1531 1532 printk(KERN_INFO 1533 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 1534 sb->major_version, sb->minor_version, sb->patch_version, 1535 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 1536 sb->ctime); 1537 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 1538 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 1539 sb->md_minor, sb->layout, sb->chunk_size); 1540 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 1541 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 1542 sb->utime, sb->state, sb->active_disks, sb->working_disks, 1543 sb->failed_disks, sb->spare_disks, 1544 sb->sb_csum, (unsigned long)sb->events_lo); 1545 1546 printk(KERN_INFO); 1547 for (i = 0; i < MD_SB_DISKS; i++) { 1548 mdp_disk_t *desc; 1549 1550 desc = sb->disks + i; 1551 if (desc->number || desc->major || desc->minor || 1552 desc->raid_disk || (desc->state && (desc->state != 4))) { 1553 printk(" D %2d: ", i); 1554 print_desc(desc); 1555 } 1556 } 1557 printk(KERN_INFO "md: THIS: "); 1558 print_desc(&sb->this_disk); 1559 1560 } 1561 1562 static void print_rdev(mdk_rdev_t *rdev) 1563 { 1564 char b[BDEVNAME_SIZE]; 1565 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n", 1566 bdevname(rdev->bdev,b), (unsigned long long)rdev->size, 1567 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 1568 rdev->desc_nr); 1569 if (rdev->sb_loaded) { 1570 printk(KERN_INFO "md: rdev superblock:\n"); 1571 print_sb((mdp_super_t*)page_address(rdev->sb_page)); 1572 } else 1573 printk(KERN_INFO "md: no rdev superblock!\n"); 1574 } 1575 1576 static void md_print_devices(void) 1577 { 1578 struct list_head *tmp, *tmp2; 1579 mdk_rdev_t *rdev; 1580 mddev_t *mddev; 1581 char b[BDEVNAME_SIZE]; 1582 1583 printk("\n"); 1584 printk("md: **********************************\n"); 1585 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 1586 printk("md: **********************************\n"); 1587 ITERATE_MDDEV(mddev,tmp) { 1588 1589 if (mddev->bitmap) 1590 bitmap_print_sb(mddev->bitmap); 1591 else 1592 printk("%s: ", mdname(mddev)); 1593 ITERATE_RDEV(mddev,rdev,tmp2) 1594 printk("<%s>", bdevname(rdev->bdev,b)); 1595 printk("\n"); 1596 1597 ITERATE_RDEV(mddev,rdev,tmp2) 1598 print_rdev(rdev); 1599 } 1600 printk("md: **********************************\n"); 1601 printk("\n"); 1602 } 1603 1604 1605 static void sync_sbs(mddev_t * mddev, int nospares) 1606 { 1607 /* Update each superblock (in-memory image), but 1608 * if we are allowed to, skip spares which already 1609 * have the right event counter, or have one earlier 1610 * (which would mean they aren't being marked as dirty 1611 * with the rest of the array) 1612 */ 1613 mdk_rdev_t *rdev; 1614 struct list_head *tmp; 1615 1616 ITERATE_RDEV(mddev,rdev,tmp) { 1617 if (rdev->sb_events == mddev->events || 1618 (nospares && 1619 rdev->raid_disk < 0 && 1620 (rdev->sb_events&1)==0 && 1621 rdev->sb_events+1 == mddev->events)) { 1622 /* Don't update this superblock */ 1623 rdev->sb_loaded = 2; 1624 } else { 1625 super_types[mddev->major_version]. 1626 sync_super(mddev, rdev); 1627 rdev->sb_loaded = 1; 1628 } 1629 } 1630 } 1631 1632 static void md_update_sb(mddev_t * mddev, int force_change) 1633 { 1634 struct list_head *tmp; 1635 mdk_rdev_t *rdev; 1636 int sync_req; 1637 int nospares = 0; 1638 1639 repeat: 1640 spin_lock_irq(&mddev->write_lock); 1641 1642 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1643 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 1644 force_change = 1; 1645 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 1646 /* just a clean<-> dirty transition, possibly leave spares alone, 1647 * though if events isn't the right even/odd, we will have to do 1648 * spares after all 1649 */ 1650 nospares = 1; 1651 if (force_change) 1652 nospares = 0; 1653 if (mddev->degraded) 1654 /* If the array is degraded, then skipping spares is both 1655 * dangerous and fairly pointless. 1656 * Dangerous because a device that was removed from the array 1657 * might have a event_count that still looks up-to-date, 1658 * so it can be re-added without a resync. 1659 * Pointless because if there are any spares to skip, 1660 * then a recovery will happen and soon that array won't 1661 * be degraded any more and the spare can go back to sleep then. 1662 */ 1663 nospares = 0; 1664 1665 sync_req = mddev->in_sync; 1666 mddev->utime = get_seconds(); 1667 1668 /* If this is just a dirty<->clean transition, and the array is clean 1669 * and 'events' is odd, we can roll back to the previous clean state */ 1670 if (nospares 1671 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 1672 && (mddev->events & 1) 1673 && mddev->events != 1) 1674 mddev->events--; 1675 else { 1676 /* otherwise we have to go forward and ... */ 1677 mddev->events ++; 1678 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */ 1679 /* .. if the array isn't clean, insist on an odd 'events' */ 1680 if ((mddev->events&1)==0) { 1681 mddev->events++; 1682 nospares = 0; 1683 } 1684 } else { 1685 /* otherwise insist on an even 'events' (for clean states) */ 1686 if ((mddev->events&1)) { 1687 mddev->events++; 1688 nospares = 0; 1689 } 1690 } 1691 } 1692 1693 if (!mddev->events) { 1694 /* 1695 * oops, this 64-bit counter should never wrap. 1696 * Either we are in around ~1 trillion A.C., assuming 1697 * 1 reboot per second, or we have a bug: 1698 */ 1699 MD_BUG(); 1700 mddev->events --; 1701 } 1702 sync_sbs(mddev, nospares); 1703 1704 /* 1705 * do not write anything to disk if using 1706 * nonpersistent superblocks 1707 */ 1708 if (!mddev->persistent) { 1709 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1710 spin_unlock_irq(&mddev->write_lock); 1711 wake_up(&mddev->sb_wait); 1712 return; 1713 } 1714 spin_unlock_irq(&mddev->write_lock); 1715 1716 dprintk(KERN_INFO 1717 "md: updating %s RAID superblock on device (in sync %d)\n", 1718 mdname(mddev),mddev->in_sync); 1719 1720 bitmap_update_sb(mddev->bitmap); 1721 ITERATE_RDEV(mddev,rdev,tmp) { 1722 char b[BDEVNAME_SIZE]; 1723 dprintk(KERN_INFO "md: "); 1724 if (rdev->sb_loaded != 1) 1725 continue; /* no noise on spare devices */ 1726 if (test_bit(Faulty, &rdev->flags)) 1727 dprintk("(skipping faulty "); 1728 1729 dprintk("%s ", bdevname(rdev->bdev,b)); 1730 if (!test_bit(Faulty, &rdev->flags)) { 1731 md_super_write(mddev,rdev, 1732 rdev->sb_offset<<1, rdev->sb_size, 1733 rdev->sb_page); 1734 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 1735 bdevname(rdev->bdev,b), 1736 (unsigned long long)rdev->sb_offset); 1737 rdev->sb_events = mddev->events; 1738 1739 } else 1740 dprintk(")\n"); 1741 if (mddev->level == LEVEL_MULTIPATH) 1742 /* only need to write one superblock... */ 1743 break; 1744 } 1745 md_super_wait(mddev); 1746 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 1747 1748 spin_lock_irq(&mddev->write_lock); 1749 if (mddev->in_sync != sync_req || 1750 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 1751 /* have to write it out again */ 1752 spin_unlock_irq(&mddev->write_lock); 1753 goto repeat; 1754 } 1755 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1756 spin_unlock_irq(&mddev->write_lock); 1757 wake_up(&mddev->sb_wait); 1758 1759 } 1760 1761 /* words written to sysfs files may, or my not, be \n terminated. 1762 * We want to accept with case. For this we use cmd_match. 1763 */ 1764 static int cmd_match(const char *cmd, const char *str) 1765 { 1766 /* See if cmd, written into a sysfs file, matches 1767 * str. They must either be the same, or cmd can 1768 * have a trailing newline 1769 */ 1770 while (*cmd && *str && *cmd == *str) { 1771 cmd++; 1772 str++; 1773 } 1774 if (*cmd == '\n') 1775 cmd++; 1776 if (*str || *cmd) 1777 return 0; 1778 return 1; 1779 } 1780 1781 struct rdev_sysfs_entry { 1782 struct attribute attr; 1783 ssize_t (*show)(mdk_rdev_t *, char *); 1784 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 1785 }; 1786 1787 static ssize_t 1788 state_show(mdk_rdev_t *rdev, char *page) 1789 { 1790 char *sep = ""; 1791 int len=0; 1792 1793 if (test_bit(Faulty, &rdev->flags)) { 1794 len+= sprintf(page+len, "%sfaulty",sep); 1795 sep = ","; 1796 } 1797 if (test_bit(In_sync, &rdev->flags)) { 1798 len += sprintf(page+len, "%sin_sync",sep); 1799 sep = ","; 1800 } 1801 if (test_bit(WriteMostly, &rdev->flags)) { 1802 len += sprintf(page+len, "%swrite_mostly",sep); 1803 sep = ","; 1804 } 1805 if (!test_bit(Faulty, &rdev->flags) && 1806 !test_bit(In_sync, &rdev->flags)) { 1807 len += sprintf(page+len, "%sspare", sep); 1808 sep = ","; 1809 } 1810 return len+sprintf(page+len, "\n"); 1811 } 1812 1813 static ssize_t 1814 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1815 { 1816 /* can write 1817 * faulty - simulates and error 1818 * remove - disconnects the device 1819 * writemostly - sets write_mostly 1820 * -writemostly - clears write_mostly 1821 */ 1822 int err = -EINVAL; 1823 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 1824 md_error(rdev->mddev, rdev); 1825 err = 0; 1826 } else if (cmd_match(buf, "remove")) { 1827 if (rdev->raid_disk >= 0) 1828 err = -EBUSY; 1829 else { 1830 mddev_t *mddev = rdev->mddev; 1831 kick_rdev_from_array(rdev); 1832 if (mddev->pers) 1833 md_update_sb(mddev, 1); 1834 md_new_event(mddev); 1835 err = 0; 1836 } 1837 } else if (cmd_match(buf, "writemostly")) { 1838 set_bit(WriteMostly, &rdev->flags); 1839 err = 0; 1840 } else if (cmd_match(buf, "-writemostly")) { 1841 clear_bit(WriteMostly, &rdev->flags); 1842 err = 0; 1843 } 1844 return err ? err : len; 1845 } 1846 static struct rdev_sysfs_entry rdev_state = 1847 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 1848 1849 static ssize_t 1850 super_show(mdk_rdev_t *rdev, char *page) 1851 { 1852 if (rdev->sb_loaded && rdev->sb_size) { 1853 memcpy(page, page_address(rdev->sb_page), rdev->sb_size); 1854 return rdev->sb_size; 1855 } else 1856 return 0; 1857 } 1858 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super); 1859 1860 static ssize_t 1861 errors_show(mdk_rdev_t *rdev, char *page) 1862 { 1863 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 1864 } 1865 1866 static ssize_t 1867 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1868 { 1869 char *e; 1870 unsigned long n = simple_strtoul(buf, &e, 10); 1871 if (*buf && (*e == 0 || *e == '\n')) { 1872 atomic_set(&rdev->corrected_errors, n); 1873 return len; 1874 } 1875 return -EINVAL; 1876 } 1877 static struct rdev_sysfs_entry rdev_errors = 1878 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 1879 1880 static ssize_t 1881 slot_show(mdk_rdev_t *rdev, char *page) 1882 { 1883 if (rdev->raid_disk < 0) 1884 return sprintf(page, "none\n"); 1885 else 1886 return sprintf(page, "%d\n", rdev->raid_disk); 1887 } 1888 1889 static ssize_t 1890 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1891 { 1892 char *e; 1893 int slot = simple_strtoul(buf, &e, 10); 1894 if (strncmp(buf, "none", 4)==0) 1895 slot = -1; 1896 else if (e==buf || (*e && *e!= '\n')) 1897 return -EINVAL; 1898 if (rdev->mddev->pers) 1899 /* Cannot set slot in active array (yet) */ 1900 return -EBUSY; 1901 if (slot >= rdev->mddev->raid_disks) 1902 return -ENOSPC; 1903 rdev->raid_disk = slot; 1904 /* assume it is working */ 1905 rdev->flags = 0; 1906 set_bit(In_sync, &rdev->flags); 1907 return len; 1908 } 1909 1910 1911 static struct rdev_sysfs_entry rdev_slot = 1912 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 1913 1914 static ssize_t 1915 offset_show(mdk_rdev_t *rdev, char *page) 1916 { 1917 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 1918 } 1919 1920 static ssize_t 1921 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1922 { 1923 char *e; 1924 unsigned long long offset = simple_strtoull(buf, &e, 10); 1925 if (e==buf || (*e && *e != '\n')) 1926 return -EINVAL; 1927 if (rdev->mddev->pers) 1928 return -EBUSY; 1929 rdev->data_offset = offset; 1930 return len; 1931 } 1932 1933 static struct rdev_sysfs_entry rdev_offset = 1934 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 1935 1936 static ssize_t 1937 rdev_size_show(mdk_rdev_t *rdev, char *page) 1938 { 1939 return sprintf(page, "%llu\n", (unsigned long long)rdev->size); 1940 } 1941 1942 static ssize_t 1943 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1944 { 1945 char *e; 1946 unsigned long long size = simple_strtoull(buf, &e, 10); 1947 if (e==buf || (*e && *e != '\n')) 1948 return -EINVAL; 1949 if (rdev->mddev->pers) 1950 return -EBUSY; 1951 rdev->size = size; 1952 if (size < rdev->mddev->size || rdev->mddev->size == 0) 1953 rdev->mddev->size = size; 1954 return len; 1955 } 1956 1957 static struct rdev_sysfs_entry rdev_size = 1958 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 1959 1960 static struct attribute *rdev_default_attrs[] = { 1961 &rdev_state.attr, 1962 &rdev_super.attr, 1963 &rdev_errors.attr, 1964 &rdev_slot.attr, 1965 &rdev_offset.attr, 1966 &rdev_size.attr, 1967 NULL, 1968 }; 1969 static ssize_t 1970 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 1971 { 1972 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 1973 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 1974 1975 if (!entry->show) 1976 return -EIO; 1977 return entry->show(rdev, page); 1978 } 1979 1980 static ssize_t 1981 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 1982 const char *page, size_t length) 1983 { 1984 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 1985 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 1986 1987 if (!entry->store) 1988 return -EIO; 1989 if (!capable(CAP_SYS_ADMIN)) 1990 return -EACCES; 1991 return entry->store(rdev, page, length); 1992 } 1993 1994 static void rdev_free(struct kobject *ko) 1995 { 1996 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 1997 kfree(rdev); 1998 } 1999 static struct sysfs_ops rdev_sysfs_ops = { 2000 .show = rdev_attr_show, 2001 .store = rdev_attr_store, 2002 }; 2003 static struct kobj_type rdev_ktype = { 2004 .release = rdev_free, 2005 .sysfs_ops = &rdev_sysfs_ops, 2006 .default_attrs = rdev_default_attrs, 2007 }; 2008 2009 /* 2010 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2011 * 2012 * mark the device faulty if: 2013 * 2014 * - the device is nonexistent (zero size) 2015 * - the device has no valid superblock 2016 * 2017 * a faulty rdev _never_ has rdev->sb set. 2018 */ 2019 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2020 { 2021 char b[BDEVNAME_SIZE]; 2022 int err; 2023 mdk_rdev_t *rdev; 2024 sector_t size; 2025 2026 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2027 if (!rdev) { 2028 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2029 return ERR_PTR(-ENOMEM); 2030 } 2031 2032 if ((err = alloc_disk_sb(rdev))) 2033 goto abort_free; 2034 2035 err = lock_rdev(rdev, newdev); 2036 if (err) 2037 goto abort_free; 2038 2039 rdev->kobj.parent = NULL; 2040 rdev->kobj.ktype = &rdev_ktype; 2041 kobject_init(&rdev->kobj); 2042 2043 rdev->desc_nr = -1; 2044 rdev->saved_raid_disk = -1; 2045 rdev->raid_disk = -1; 2046 rdev->flags = 0; 2047 rdev->data_offset = 0; 2048 rdev->sb_events = 0; 2049 atomic_set(&rdev->nr_pending, 0); 2050 atomic_set(&rdev->read_errors, 0); 2051 atomic_set(&rdev->corrected_errors, 0); 2052 2053 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2054 if (!size) { 2055 printk(KERN_WARNING 2056 "md: %s has zero or unknown size, marking faulty!\n", 2057 bdevname(rdev->bdev,b)); 2058 err = -EINVAL; 2059 goto abort_free; 2060 } 2061 2062 if (super_format >= 0) { 2063 err = super_types[super_format]. 2064 load_super(rdev, NULL, super_minor); 2065 if (err == -EINVAL) { 2066 printk(KERN_WARNING 2067 "md: %s does not have a valid v%d.%d " 2068 "superblock, not importing!\n", 2069 bdevname(rdev->bdev,b), 2070 super_format, super_minor); 2071 goto abort_free; 2072 } 2073 if (err < 0) { 2074 printk(KERN_WARNING 2075 "md: could not read %s's sb, not importing!\n", 2076 bdevname(rdev->bdev,b)); 2077 goto abort_free; 2078 } 2079 } 2080 INIT_LIST_HEAD(&rdev->same_set); 2081 2082 return rdev; 2083 2084 abort_free: 2085 if (rdev->sb_page) { 2086 if (rdev->bdev) 2087 unlock_rdev(rdev); 2088 free_disk_sb(rdev); 2089 } 2090 kfree(rdev); 2091 return ERR_PTR(err); 2092 } 2093 2094 /* 2095 * Check a full RAID array for plausibility 2096 */ 2097 2098 2099 static void analyze_sbs(mddev_t * mddev) 2100 { 2101 int i; 2102 struct list_head *tmp; 2103 mdk_rdev_t *rdev, *freshest; 2104 char b[BDEVNAME_SIZE]; 2105 2106 freshest = NULL; 2107 ITERATE_RDEV(mddev,rdev,tmp) 2108 switch (super_types[mddev->major_version]. 2109 load_super(rdev, freshest, mddev->minor_version)) { 2110 case 1: 2111 freshest = rdev; 2112 break; 2113 case 0: 2114 break; 2115 default: 2116 printk( KERN_ERR \ 2117 "md: fatal superblock inconsistency in %s" 2118 " -- removing from array\n", 2119 bdevname(rdev->bdev,b)); 2120 kick_rdev_from_array(rdev); 2121 } 2122 2123 2124 super_types[mddev->major_version]. 2125 validate_super(mddev, freshest); 2126 2127 i = 0; 2128 ITERATE_RDEV(mddev,rdev,tmp) { 2129 if (rdev != freshest) 2130 if (super_types[mddev->major_version]. 2131 validate_super(mddev, rdev)) { 2132 printk(KERN_WARNING "md: kicking non-fresh %s" 2133 " from array!\n", 2134 bdevname(rdev->bdev,b)); 2135 kick_rdev_from_array(rdev); 2136 continue; 2137 } 2138 if (mddev->level == LEVEL_MULTIPATH) { 2139 rdev->desc_nr = i++; 2140 rdev->raid_disk = rdev->desc_nr; 2141 set_bit(In_sync, &rdev->flags); 2142 } else if (rdev->raid_disk >= mddev->raid_disks) { 2143 rdev->raid_disk = -1; 2144 clear_bit(In_sync, &rdev->flags); 2145 } 2146 } 2147 2148 2149 2150 if (mddev->recovery_cp != MaxSector && 2151 mddev->level >= 1) 2152 printk(KERN_ERR "md: %s: raid array is not clean" 2153 " -- starting background reconstruction\n", 2154 mdname(mddev)); 2155 2156 } 2157 2158 static ssize_t 2159 safe_delay_show(mddev_t *mddev, char *page) 2160 { 2161 int msec = (mddev->safemode_delay*1000)/HZ; 2162 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2163 } 2164 static ssize_t 2165 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2166 { 2167 int scale=1; 2168 int dot=0; 2169 int i; 2170 unsigned long msec; 2171 char buf[30]; 2172 char *e; 2173 /* remove a period, and count digits after it */ 2174 if (len >= sizeof(buf)) 2175 return -EINVAL; 2176 strlcpy(buf, cbuf, len); 2177 buf[len] = 0; 2178 for (i=0; i<len; i++) { 2179 if (dot) { 2180 if (isdigit(buf[i])) { 2181 buf[i-1] = buf[i]; 2182 scale *= 10; 2183 } 2184 buf[i] = 0; 2185 } else if (buf[i] == '.') { 2186 dot=1; 2187 buf[i] = 0; 2188 } 2189 } 2190 msec = simple_strtoul(buf, &e, 10); 2191 if (e == buf || (*e && *e != '\n')) 2192 return -EINVAL; 2193 msec = (msec * 1000) / scale; 2194 if (msec == 0) 2195 mddev->safemode_delay = 0; 2196 else { 2197 mddev->safemode_delay = (msec*HZ)/1000; 2198 if (mddev->safemode_delay == 0) 2199 mddev->safemode_delay = 1; 2200 } 2201 return len; 2202 } 2203 static struct md_sysfs_entry md_safe_delay = 2204 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2205 2206 static ssize_t 2207 level_show(mddev_t *mddev, char *page) 2208 { 2209 struct mdk_personality *p = mddev->pers; 2210 if (p) 2211 return sprintf(page, "%s\n", p->name); 2212 else if (mddev->clevel[0]) 2213 return sprintf(page, "%s\n", mddev->clevel); 2214 else if (mddev->level != LEVEL_NONE) 2215 return sprintf(page, "%d\n", mddev->level); 2216 else 2217 return 0; 2218 } 2219 2220 static ssize_t 2221 level_store(mddev_t *mddev, const char *buf, size_t len) 2222 { 2223 int rv = len; 2224 if (mddev->pers) 2225 return -EBUSY; 2226 if (len == 0) 2227 return 0; 2228 if (len >= sizeof(mddev->clevel)) 2229 return -ENOSPC; 2230 strncpy(mddev->clevel, buf, len); 2231 if (mddev->clevel[len-1] == '\n') 2232 len--; 2233 mddev->clevel[len] = 0; 2234 mddev->level = LEVEL_NONE; 2235 return rv; 2236 } 2237 2238 static struct md_sysfs_entry md_level = 2239 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 2240 2241 2242 static ssize_t 2243 layout_show(mddev_t *mddev, char *page) 2244 { 2245 /* just a number, not meaningful for all levels */ 2246 if (mddev->reshape_position != MaxSector && 2247 mddev->layout != mddev->new_layout) 2248 return sprintf(page, "%d (%d)\n", 2249 mddev->new_layout, mddev->layout); 2250 return sprintf(page, "%d\n", mddev->layout); 2251 } 2252 2253 static ssize_t 2254 layout_store(mddev_t *mddev, const char *buf, size_t len) 2255 { 2256 char *e; 2257 unsigned long n = simple_strtoul(buf, &e, 10); 2258 2259 if (!*buf || (*e && *e != '\n')) 2260 return -EINVAL; 2261 2262 if (mddev->pers) 2263 return -EBUSY; 2264 if (mddev->reshape_position != MaxSector) 2265 mddev->new_layout = n; 2266 else 2267 mddev->layout = n; 2268 return len; 2269 } 2270 static struct md_sysfs_entry md_layout = 2271 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 2272 2273 2274 static ssize_t 2275 raid_disks_show(mddev_t *mddev, char *page) 2276 { 2277 if (mddev->raid_disks == 0) 2278 return 0; 2279 if (mddev->reshape_position != MaxSector && 2280 mddev->delta_disks != 0) 2281 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 2282 mddev->raid_disks - mddev->delta_disks); 2283 return sprintf(page, "%d\n", mddev->raid_disks); 2284 } 2285 2286 static int update_raid_disks(mddev_t *mddev, int raid_disks); 2287 2288 static ssize_t 2289 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 2290 { 2291 char *e; 2292 int rv = 0; 2293 unsigned long n = simple_strtoul(buf, &e, 10); 2294 2295 if (!*buf || (*e && *e != '\n')) 2296 return -EINVAL; 2297 2298 if (mddev->pers) 2299 rv = update_raid_disks(mddev, n); 2300 else if (mddev->reshape_position != MaxSector) { 2301 int olddisks = mddev->raid_disks - mddev->delta_disks; 2302 mddev->delta_disks = n - olddisks; 2303 mddev->raid_disks = n; 2304 } else 2305 mddev->raid_disks = n; 2306 return rv ? rv : len; 2307 } 2308 static struct md_sysfs_entry md_raid_disks = 2309 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 2310 2311 static ssize_t 2312 chunk_size_show(mddev_t *mddev, char *page) 2313 { 2314 if (mddev->reshape_position != MaxSector && 2315 mddev->chunk_size != mddev->new_chunk) 2316 return sprintf(page, "%d (%d)\n", mddev->new_chunk, 2317 mddev->chunk_size); 2318 return sprintf(page, "%d\n", mddev->chunk_size); 2319 } 2320 2321 static ssize_t 2322 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 2323 { 2324 /* can only set chunk_size if array is not yet active */ 2325 char *e; 2326 unsigned long n = simple_strtoul(buf, &e, 10); 2327 2328 if (!*buf || (*e && *e != '\n')) 2329 return -EINVAL; 2330 2331 if (mddev->pers) 2332 return -EBUSY; 2333 else if (mddev->reshape_position != MaxSector) 2334 mddev->new_chunk = n; 2335 else 2336 mddev->chunk_size = n; 2337 return len; 2338 } 2339 static struct md_sysfs_entry md_chunk_size = 2340 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 2341 2342 static ssize_t 2343 resync_start_show(mddev_t *mddev, char *page) 2344 { 2345 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 2346 } 2347 2348 static ssize_t 2349 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 2350 { 2351 /* can only set chunk_size if array is not yet active */ 2352 char *e; 2353 unsigned long long n = simple_strtoull(buf, &e, 10); 2354 2355 if (mddev->pers) 2356 return -EBUSY; 2357 if (!*buf || (*e && *e != '\n')) 2358 return -EINVAL; 2359 2360 mddev->recovery_cp = n; 2361 return len; 2362 } 2363 static struct md_sysfs_entry md_resync_start = 2364 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 2365 2366 /* 2367 * The array state can be: 2368 * 2369 * clear 2370 * No devices, no size, no level 2371 * Equivalent to STOP_ARRAY ioctl 2372 * inactive 2373 * May have some settings, but array is not active 2374 * all IO results in error 2375 * When written, doesn't tear down array, but just stops it 2376 * suspended (not supported yet) 2377 * All IO requests will block. The array can be reconfigured. 2378 * Writing this, if accepted, will block until array is quiessent 2379 * readonly 2380 * no resync can happen. no superblocks get written. 2381 * write requests fail 2382 * read-auto 2383 * like readonly, but behaves like 'clean' on a write request. 2384 * 2385 * clean - no pending writes, but otherwise active. 2386 * When written to inactive array, starts without resync 2387 * If a write request arrives then 2388 * if metadata is known, mark 'dirty' and switch to 'active'. 2389 * if not known, block and switch to write-pending 2390 * If written to an active array that has pending writes, then fails. 2391 * active 2392 * fully active: IO and resync can be happening. 2393 * When written to inactive array, starts with resync 2394 * 2395 * write-pending 2396 * clean, but writes are blocked waiting for 'active' to be written. 2397 * 2398 * active-idle 2399 * like active, but no writes have been seen for a while (100msec). 2400 * 2401 */ 2402 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 2403 write_pending, active_idle, bad_word}; 2404 static char *array_states[] = { 2405 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 2406 "write-pending", "active-idle", NULL }; 2407 2408 static int match_word(const char *word, char **list) 2409 { 2410 int n; 2411 for (n=0; list[n]; n++) 2412 if (cmd_match(word, list[n])) 2413 break; 2414 return n; 2415 } 2416 2417 static ssize_t 2418 array_state_show(mddev_t *mddev, char *page) 2419 { 2420 enum array_state st = inactive; 2421 2422 if (mddev->pers) 2423 switch(mddev->ro) { 2424 case 1: 2425 st = readonly; 2426 break; 2427 case 2: 2428 st = read_auto; 2429 break; 2430 case 0: 2431 if (mddev->in_sync) 2432 st = clean; 2433 else if (mddev->safemode) 2434 st = active_idle; 2435 else 2436 st = active; 2437 } 2438 else { 2439 if (list_empty(&mddev->disks) && 2440 mddev->raid_disks == 0 && 2441 mddev->size == 0) 2442 st = clear; 2443 else 2444 st = inactive; 2445 } 2446 return sprintf(page, "%s\n", array_states[st]); 2447 } 2448 2449 static int do_md_stop(mddev_t * mddev, int ro); 2450 static int do_md_run(mddev_t * mddev); 2451 static int restart_array(mddev_t *mddev); 2452 2453 static ssize_t 2454 array_state_store(mddev_t *mddev, const char *buf, size_t len) 2455 { 2456 int err = -EINVAL; 2457 enum array_state st = match_word(buf, array_states); 2458 switch(st) { 2459 case bad_word: 2460 break; 2461 case clear: 2462 /* stopping an active array */ 2463 if (mddev->pers) { 2464 if (atomic_read(&mddev->active) > 1) 2465 return -EBUSY; 2466 err = do_md_stop(mddev, 0); 2467 } 2468 break; 2469 case inactive: 2470 /* stopping an active array */ 2471 if (mddev->pers) { 2472 if (atomic_read(&mddev->active) > 1) 2473 return -EBUSY; 2474 err = do_md_stop(mddev, 2); 2475 } 2476 break; 2477 case suspended: 2478 break; /* not supported yet */ 2479 case readonly: 2480 if (mddev->pers) 2481 err = do_md_stop(mddev, 1); 2482 else { 2483 mddev->ro = 1; 2484 err = do_md_run(mddev); 2485 } 2486 break; 2487 case read_auto: 2488 /* stopping an active array */ 2489 if (mddev->pers) { 2490 err = do_md_stop(mddev, 1); 2491 if (err == 0) 2492 mddev->ro = 2; /* FIXME mark devices writable */ 2493 } else { 2494 mddev->ro = 2; 2495 err = do_md_run(mddev); 2496 } 2497 break; 2498 case clean: 2499 if (mddev->pers) { 2500 restart_array(mddev); 2501 spin_lock_irq(&mddev->write_lock); 2502 if (atomic_read(&mddev->writes_pending) == 0) { 2503 mddev->in_sync = 1; 2504 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 2505 } 2506 spin_unlock_irq(&mddev->write_lock); 2507 } else { 2508 mddev->ro = 0; 2509 mddev->recovery_cp = MaxSector; 2510 err = do_md_run(mddev); 2511 } 2512 break; 2513 case active: 2514 if (mddev->pers) { 2515 restart_array(mddev); 2516 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2517 wake_up(&mddev->sb_wait); 2518 err = 0; 2519 } else { 2520 mddev->ro = 0; 2521 err = do_md_run(mddev); 2522 } 2523 break; 2524 case write_pending: 2525 case active_idle: 2526 /* these cannot be set */ 2527 break; 2528 } 2529 if (err) 2530 return err; 2531 else 2532 return len; 2533 } 2534 static struct md_sysfs_entry md_array_state = 2535 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 2536 2537 static ssize_t 2538 null_show(mddev_t *mddev, char *page) 2539 { 2540 return -EINVAL; 2541 } 2542 2543 static ssize_t 2544 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 2545 { 2546 /* buf must be %d:%d\n? giving major and minor numbers */ 2547 /* The new device is added to the array. 2548 * If the array has a persistent superblock, we read the 2549 * superblock to initialise info and check validity. 2550 * Otherwise, only checking done is that in bind_rdev_to_array, 2551 * which mainly checks size. 2552 */ 2553 char *e; 2554 int major = simple_strtoul(buf, &e, 10); 2555 int minor; 2556 dev_t dev; 2557 mdk_rdev_t *rdev; 2558 int err; 2559 2560 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 2561 return -EINVAL; 2562 minor = simple_strtoul(e+1, &e, 10); 2563 if (*e && *e != '\n') 2564 return -EINVAL; 2565 dev = MKDEV(major, minor); 2566 if (major != MAJOR(dev) || 2567 minor != MINOR(dev)) 2568 return -EOVERFLOW; 2569 2570 2571 if (mddev->persistent) { 2572 rdev = md_import_device(dev, mddev->major_version, 2573 mddev->minor_version); 2574 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 2575 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 2576 mdk_rdev_t, same_set); 2577 err = super_types[mddev->major_version] 2578 .load_super(rdev, rdev0, mddev->minor_version); 2579 if (err < 0) 2580 goto out; 2581 } 2582 } else 2583 rdev = md_import_device(dev, -1, -1); 2584 2585 if (IS_ERR(rdev)) 2586 return PTR_ERR(rdev); 2587 err = bind_rdev_to_array(rdev, mddev); 2588 out: 2589 if (err) 2590 export_rdev(rdev); 2591 return err ? err : len; 2592 } 2593 2594 static struct md_sysfs_entry md_new_device = 2595 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 2596 2597 static ssize_t 2598 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 2599 { 2600 char *end; 2601 unsigned long chunk, end_chunk; 2602 2603 if (!mddev->bitmap) 2604 goto out; 2605 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 2606 while (*buf) { 2607 chunk = end_chunk = simple_strtoul(buf, &end, 0); 2608 if (buf == end) break; 2609 if (*end == '-') { /* range */ 2610 buf = end + 1; 2611 end_chunk = simple_strtoul(buf, &end, 0); 2612 if (buf == end) break; 2613 } 2614 if (*end && !isspace(*end)) break; 2615 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 2616 buf = end; 2617 while (isspace(*buf)) buf++; 2618 } 2619 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 2620 out: 2621 return len; 2622 } 2623 2624 static struct md_sysfs_entry md_bitmap = 2625 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 2626 2627 static ssize_t 2628 size_show(mddev_t *mddev, char *page) 2629 { 2630 return sprintf(page, "%llu\n", (unsigned long long)mddev->size); 2631 } 2632 2633 static int update_size(mddev_t *mddev, unsigned long size); 2634 2635 static ssize_t 2636 size_store(mddev_t *mddev, const char *buf, size_t len) 2637 { 2638 /* If array is inactive, we can reduce the component size, but 2639 * not increase it (except from 0). 2640 * If array is active, we can try an on-line resize 2641 */ 2642 char *e; 2643 int err = 0; 2644 unsigned long long size = simple_strtoull(buf, &e, 10); 2645 if (!*buf || *buf == '\n' || 2646 (*e && *e != '\n')) 2647 return -EINVAL; 2648 2649 if (mddev->pers) { 2650 err = update_size(mddev, size); 2651 md_update_sb(mddev, 1); 2652 } else { 2653 if (mddev->size == 0 || 2654 mddev->size > size) 2655 mddev->size = size; 2656 else 2657 err = -ENOSPC; 2658 } 2659 return err ? err : len; 2660 } 2661 2662 static struct md_sysfs_entry md_size = 2663 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 2664 2665 2666 /* Metdata version. 2667 * This is either 'none' for arrays with externally managed metadata, 2668 * or N.M for internally known formats 2669 */ 2670 static ssize_t 2671 metadata_show(mddev_t *mddev, char *page) 2672 { 2673 if (mddev->persistent) 2674 return sprintf(page, "%d.%d\n", 2675 mddev->major_version, mddev->minor_version); 2676 else 2677 return sprintf(page, "none\n"); 2678 } 2679 2680 static ssize_t 2681 metadata_store(mddev_t *mddev, const char *buf, size_t len) 2682 { 2683 int major, minor; 2684 char *e; 2685 if (!list_empty(&mddev->disks)) 2686 return -EBUSY; 2687 2688 if (cmd_match(buf, "none")) { 2689 mddev->persistent = 0; 2690 mddev->major_version = 0; 2691 mddev->minor_version = 90; 2692 return len; 2693 } 2694 major = simple_strtoul(buf, &e, 10); 2695 if (e==buf || *e != '.') 2696 return -EINVAL; 2697 buf = e+1; 2698 minor = simple_strtoul(buf, &e, 10); 2699 if (e==buf || (*e && *e != '\n') ) 2700 return -EINVAL; 2701 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 2702 return -ENOENT; 2703 mddev->major_version = major; 2704 mddev->minor_version = minor; 2705 mddev->persistent = 1; 2706 return len; 2707 } 2708 2709 static struct md_sysfs_entry md_metadata = 2710 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 2711 2712 static ssize_t 2713 action_show(mddev_t *mddev, char *page) 2714 { 2715 char *type = "idle"; 2716 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 2717 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) { 2718 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2719 type = "reshape"; 2720 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2721 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2722 type = "resync"; 2723 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2724 type = "check"; 2725 else 2726 type = "repair"; 2727 } else 2728 type = "recover"; 2729 } 2730 return sprintf(page, "%s\n", type); 2731 } 2732 2733 static ssize_t 2734 action_store(mddev_t *mddev, const char *page, size_t len) 2735 { 2736 if (!mddev->pers || !mddev->pers->sync_request) 2737 return -EINVAL; 2738 2739 if (cmd_match(page, "idle")) { 2740 if (mddev->sync_thread) { 2741 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2742 md_unregister_thread(mddev->sync_thread); 2743 mddev->sync_thread = NULL; 2744 mddev->recovery = 0; 2745 } 2746 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 2747 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 2748 return -EBUSY; 2749 else if (cmd_match(page, "resync") || cmd_match(page, "recover")) 2750 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2751 else if (cmd_match(page, "reshape")) { 2752 int err; 2753 if (mddev->pers->start_reshape == NULL) 2754 return -EINVAL; 2755 err = mddev->pers->start_reshape(mddev); 2756 if (err) 2757 return err; 2758 } else { 2759 if (cmd_match(page, "check")) 2760 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 2761 else if (!cmd_match(page, "repair")) 2762 return -EINVAL; 2763 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 2764 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 2765 } 2766 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2767 md_wakeup_thread(mddev->thread); 2768 return len; 2769 } 2770 2771 static ssize_t 2772 mismatch_cnt_show(mddev_t *mddev, char *page) 2773 { 2774 return sprintf(page, "%llu\n", 2775 (unsigned long long) mddev->resync_mismatches); 2776 } 2777 2778 static struct md_sysfs_entry md_scan_mode = 2779 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 2780 2781 2782 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 2783 2784 static ssize_t 2785 sync_min_show(mddev_t *mddev, char *page) 2786 { 2787 return sprintf(page, "%d (%s)\n", speed_min(mddev), 2788 mddev->sync_speed_min ? "local": "system"); 2789 } 2790 2791 static ssize_t 2792 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 2793 { 2794 int min; 2795 char *e; 2796 if (strncmp(buf, "system", 6)==0) { 2797 mddev->sync_speed_min = 0; 2798 return len; 2799 } 2800 min = simple_strtoul(buf, &e, 10); 2801 if (buf == e || (*e && *e != '\n') || min <= 0) 2802 return -EINVAL; 2803 mddev->sync_speed_min = min; 2804 return len; 2805 } 2806 2807 static struct md_sysfs_entry md_sync_min = 2808 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 2809 2810 static ssize_t 2811 sync_max_show(mddev_t *mddev, char *page) 2812 { 2813 return sprintf(page, "%d (%s)\n", speed_max(mddev), 2814 mddev->sync_speed_max ? "local": "system"); 2815 } 2816 2817 static ssize_t 2818 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 2819 { 2820 int max; 2821 char *e; 2822 if (strncmp(buf, "system", 6)==0) { 2823 mddev->sync_speed_max = 0; 2824 return len; 2825 } 2826 max = simple_strtoul(buf, &e, 10); 2827 if (buf == e || (*e && *e != '\n') || max <= 0) 2828 return -EINVAL; 2829 mddev->sync_speed_max = max; 2830 return len; 2831 } 2832 2833 static struct md_sysfs_entry md_sync_max = 2834 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 2835 2836 2837 static ssize_t 2838 sync_speed_show(mddev_t *mddev, char *page) 2839 { 2840 unsigned long resync, dt, db; 2841 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)); 2842 dt = ((jiffies - mddev->resync_mark) / HZ); 2843 if (!dt) dt++; 2844 db = resync - (mddev->resync_mark_cnt); 2845 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */ 2846 } 2847 2848 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 2849 2850 static ssize_t 2851 sync_completed_show(mddev_t *mddev, char *page) 2852 { 2853 unsigned long max_blocks, resync; 2854 2855 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2856 max_blocks = mddev->resync_max_sectors; 2857 else 2858 max_blocks = mddev->size << 1; 2859 2860 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active)); 2861 return sprintf(page, "%lu / %lu\n", resync, max_blocks); 2862 } 2863 2864 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 2865 2866 static ssize_t 2867 suspend_lo_show(mddev_t *mddev, char *page) 2868 { 2869 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 2870 } 2871 2872 static ssize_t 2873 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 2874 { 2875 char *e; 2876 unsigned long long new = simple_strtoull(buf, &e, 10); 2877 2878 if (mddev->pers->quiesce == NULL) 2879 return -EINVAL; 2880 if (buf == e || (*e && *e != '\n')) 2881 return -EINVAL; 2882 if (new >= mddev->suspend_hi || 2883 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 2884 mddev->suspend_lo = new; 2885 mddev->pers->quiesce(mddev, 2); 2886 return len; 2887 } else 2888 return -EINVAL; 2889 } 2890 static struct md_sysfs_entry md_suspend_lo = 2891 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 2892 2893 2894 static ssize_t 2895 suspend_hi_show(mddev_t *mddev, char *page) 2896 { 2897 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 2898 } 2899 2900 static ssize_t 2901 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 2902 { 2903 char *e; 2904 unsigned long long new = simple_strtoull(buf, &e, 10); 2905 2906 if (mddev->pers->quiesce == NULL) 2907 return -EINVAL; 2908 if (buf == e || (*e && *e != '\n')) 2909 return -EINVAL; 2910 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 2911 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 2912 mddev->suspend_hi = new; 2913 mddev->pers->quiesce(mddev, 1); 2914 mddev->pers->quiesce(mddev, 0); 2915 return len; 2916 } else 2917 return -EINVAL; 2918 } 2919 static struct md_sysfs_entry md_suspend_hi = 2920 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 2921 2922 static ssize_t 2923 reshape_position_show(mddev_t *mddev, char *page) 2924 { 2925 if (mddev->reshape_position != MaxSector) 2926 return sprintf(page, "%llu\n", 2927 (unsigned long long)mddev->reshape_position); 2928 strcpy(page, "none\n"); 2929 return 5; 2930 } 2931 2932 static ssize_t 2933 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 2934 { 2935 char *e; 2936 unsigned long long new = simple_strtoull(buf, &e, 10); 2937 if (mddev->pers) 2938 return -EBUSY; 2939 if (buf == e || (*e && *e != '\n')) 2940 return -EINVAL; 2941 mddev->reshape_position = new; 2942 mddev->delta_disks = 0; 2943 mddev->new_level = mddev->level; 2944 mddev->new_layout = mddev->layout; 2945 mddev->new_chunk = mddev->chunk_size; 2946 return len; 2947 } 2948 2949 static struct md_sysfs_entry md_reshape_position = 2950 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 2951 reshape_position_store); 2952 2953 2954 static struct attribute *md_default_attrs[] = { 2955 &md_level.attr, 2956 &md_layout.attr, 2957 &md_raid_disks.attr, 2958 &md_chunk_size.attr, 2959 &md_size.attr, 2960 &md_resync_start.attr, 2961 &md_metadata.attr, 2962 &md_new_device.attr, 2963 &md_safe_delay.attr, 2964 &md_array_state.attr, 2965 &md_reshape_position.attr, 2966 NULL, 2967 }; 2968 2969 static struct attribute *md_redundancy_attrs[] = { 2970 &md_scan_mode.attr, 2971 &md_mismatches.attr, 2972 &md_sync_min.attr, 2973 &md_sync_max.attr, 2974 &md_sync_speed.attr, 2975 &md_sync_completed.attr, 2976 &md_suspend_lo.attr, 2977 &md_suspend_hi.attr, 2978 &md_bitmap.attr, 2979 NULL, 2980 }; 2981 static struct attribute_group md_redundancy_group = { 2982 .name = NULL, 2983 .attrs = md_redundancy_attrs, 2984 }; 2985 2986 2987 static ssize_t 2988 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2989 { 2990 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 2991 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 2992 ssize_t rv; 2993 2994 if (!entry->show) 2995 return -EIO; 2996 rv = mddev_lock(mddev); 2997 if (!rv) { 2998 rv = entry->show(mddev, page); 2999 mddev_unlock(mddev); 3000 } 3001 return rv; 3002 } 3003 3004 static ssize_t 3005 md_attr_store(struct kobject *kobj, struct attribute *attr, 3006 const char *page, size_t length) 3007 { 3008 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 3009 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 3010 ssize_t rv; 3011 3012 if (!entry->store) 3013 return -EIO; 3014 if (!capable(CAP_SYS_ADMIN)) 3015 return -EACCES; 3016 rv = mddev_lock(mddev); 3017 if (!rv) { 3018 rv = entry->store(mddev, page, length); 3019 mddev_unlock(mddev); 3020 } 3021 return rv; 3022 } 3023 3024 static void md_free(struct kobject *ko) 3025 { 3026 mddev_t *mddev = container_of(ko, mddev_t, kobj); 3027 kfree(mddev); 3028 } 3029 3030 static struct sysfs_ops md_sysfs_ops = { 3031 .show = md_attr_show, 3032 .store = md_attr_store, 3033 }; 3034 static struct kobj_type md_ktype = { 3035 .release = md_free, 3036 .sysfs_ops = &md_sysfs_ops, 3037 .default_attrs = md_default_attrs, 3038 }; 3039 3040 int mdp_major = 0; 3041 3042 static struct kobject *md_probe(dev_t dev, int *part, void *data) 3043 { 3044 static DEFINE_MUTEX(disks_mutex); 3045 mddev_t *mddev = mddev_find(dev); 3046 struct gendisk *disk; 3047 int partitioned = (MAJOR(dev) != MD_MAJOR); 3048 int shift = partitioned ? MdpMinorShift : 0; 3049 int unit = MINOR(dev) >> shift; 3050 3051 if (!mddev) 3052 return NULL; 3053 3054 mutex_lock(&disks_mutex); 3055 if (mddev->gendisk) { 3056 mutex_unlock(&disks_mutex); 3057 mddev_put(mddev); 3058 return NULL; 3059 } 3060 disk = alloc_disk(1 << shift); 3061 if (!disk) { 3062 mutex_unlock(&disks_mutex); 3063 mddev_put(mddev); 3064 return NULL; 3065 } 3066 disk->major = MAJOR(dev); 3067 disk->first_minor = unit << shift; 3068 if (partitioned) 3069 sprintf(disk->disk_name, "md_d%d", unit); 3070 else 3071 sprintf(disk->disk_name, "md%d", unit); 3072 disk->fops = &md_fops; 3073 disk->private_data = mddev; 3074 disk->queue = mddev->queue; 3075 add_disk(disk); 3076 mddev->gendisk = disk; 3077 mutex_unlock(&disks_mutex); 3078 mddev->kobj.parent = &disk->kobj; 3079 kobject_set_name(&mddev->kobj, "%s", "md"); 3080 mddev->kobj.ktype = &md_ktype; 3081 if (kobject_register(&mddev->kobj)) 3082 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 3083 disk->disk_name); 3084 return NULL; 3085 } 3086 3087 static void md_safemode_timeout(unsigned long data) 3088 { 3089 mddev_t *mddev = (mddev_t *) data; 3090 3091 mddev->safemode = 1; 3092 md_wakeup_thread(mddev->thread); 3093 } 3094 3095 static int start_dirty_degraded; 3096 3097 static int do_md_run(mddev_t * mddev) 3098 { 3099 int err; 3100 int chunk_size; 3101 struct list_head *tmp; 3102 mdk_rdev_t *rdev; 3103 struct gendisk *disk; 3104 struct mdk_personality *pers; 3105 char b[BDEVNAME_SIZE]; 3106 3107 if (list_empty(&mddev->disks)) 3108 /* cannot run an array with no devices.. */ 3109 return -EINVAL; 3110 3111 if (mddev->pers) 3112 return -EBUSY; 3113 3114 /* 3115 * Analyze all RAID superblock(s) 3116 */ 3117 if (!mddev->raid_disks) 3118 analyze_sbs(mddev); 3119 3120 chunk_size = mddev->chunk_size; 3121 3122 if (chunk_size) { 3123 if (chunk_size > MAX_CHUNK_SIZE) { 3124 printk(KERN_ERR "too big chunk_size: %d > %d\n", 3125 chunk_size, MAX_CHUNK_SIZE); 3126 return -EINVAL; 3127 } 3128 /* 3129 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE 3130 */ 3131 if ( (1 << ffz(~chunk_size)) != chunk_size) { 3132 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size); 3133 return -EINVAL; 3134 } 3135 if (chunk_size < PAGE_SIZE) { 3136 printk(KERN_ERR "too small chunk_size: %d < %ld\n", 3137 chunk_size, PAGE_SIZE); 3138 return -EINVAL; 3139 } 3140 3141 /* devices must have minimum size of one chunk */ 3142 ITERATE_RDEV(mddev,rdev,tmp) { 3143 if (test_bit(Faulty, &rdev->flags)) 3144 continue; 3145 if (rdev->size < chunk_size / 1024) { 3146 printk(KERN_WARNING 3147 "md: Dev %s smaller than chunk_size:" 3148 " %lluk < %dk\n", 3149 bdevname(rdev->bdev,b), 3150 (unsigned long long)rdev->size, 3151 chunk_size / 1024); 3152 return -EINVAL; 3153 } 3154 } 3155 } 3156 3157 #ifdef CONFIG_KMOD 3158 if (mddev->level != LEVEL_NONE) 3159 request_module("md-level-%d", mddev->level); 3160 else if (mddev->clevel[0]) 3161 request_module("md-%s", mddev->clevel); 3162 #endif 3163 3164 /* 3165 * Drop all container device buffers, from now on 3166 * the only valid external interface is through the md 3167 * device. 3168 */ 3169 ITERATE_RDEV(mddev,rdev,tmp) { 3170 if (test_bit(Faulty, &rdev->flags)) 3171 continue; 3172 sync_blockdev(rdev->bdev); 3173 invalidate_bdev(rdev->bdev); 3174 3175 /* perform some consistency tests on the device. 3176 * We don't want the data to overlap the metadata, 3177 * Internal Bitmap issues has handled elsewhere. 3178 */ 3179 if (rdev->data_offset < rdev->sb_offset) { 3180 if (mddev->size && 3181 rdev->data_offset + mddev->size*2 3182 > rdev->sb_offset*2) { 3183 printk("md: %s: data overlaps metadata\n", 3184 mdname(mddev)); 3185 return -EINVAL; 3186 } 3187 } else { 3188 if (rdev->sb_offset*2 + rdev->sb_size/512 3189 > rdev->data_offset) { 3190 printk("md: %s: metadata overlaps data\n", 3191 mdname(mddev)); 3192 return -EINVAL; 3193 } 3194 } 3195 } 3196 3197 md_probe(mddev->unit, NULL, NULL); 3198 disk = mddev->gendisk; 3199 if (!disk) 3200 return -ENOMEM; 3201 3202 spin_lock(&pers_lock); 3203 pers = find_pers(mddev->level, mddev->clevel); 3204 if (!pers || !try_module_get(pers->owner)) { 3205 spin_unlock(&pers_lock); 3206 if (mddev->level != LEVEL_NONE) 3207 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 3208 mddev->level); 3209 else 3210 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 3211 mddev->clevel); 3212 return -EINVAL; 3213 } 3214 mddev->pers = pers; 3215 spin_unlock(&pers_lock); 3216 mddev->level = pers->level; 3217 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3218 3219 if (mddev->reshape_position != MaxSector && 3220 pers->start_reshape == NULL) { 3221 /* This personality cannot handle reshaping... */ 3222 mddev->pers = NULL; 3223 module_put(pers->owner); 3224 return -EINVAL; 3225 } 3226 3227 if (pers->sync_request) { 3228 /* Warn if this is a potentially silly 3229 * configuration. 3230 */ 3231 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 3232 mdk_rdev_t *rdev2; 3233 struct list_head *tmp2; 3234 int warned = 0; 3235 ITERATE_RDEV(mddev, rdev, tmp) { 3236 ITERATE_RDEV(mddev, rdev2, tmp2) { 3237 if (rdev < rdev2 && 3238 rdev->bdev->bd_contains == 3239 rdev2->bdev->bd_contains) { 3240 printk(KERN_WARNING 3241 "%s: WARNING: %s appears to be" 3242 " on the same physical disk as" 3243 " %s.\n", 3244 mdname(mddev), 3245 bdevname(rdev->bdev,b), 3246 bdevname(rdev2->bdev,b2)); 3247 warned = 1; 3248 } 3249 } 3250 } 3251 if (warned) 3252 printk(KERN_WARNING 3253 "True protection against single-disk" 3254 " failure might be compromised.\n"); 3255 } 3256 3257 mddev->recovery = 0; 3258 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */ 3259 mddev->barriers_work = 1; 3260 mddev->ok_start_degraded = start_dirty_degraded; 3261 3262 if (start_readonly) 3263 mddev->ro = 2; /* read-only, but switch on first write */ 3264 3265 err = mddev->pers->run(mddev); 3266 if (!err && mddev->pers->sync_request) { 3267 err = bitmap_create(mddev); 3268 if (err) { 3269 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 3270 mdname(mddev), err); 3271 mddev->pers->stop(mddev); 3272 } 3273 } 3274 if (err) { 3275 printk(KERN_ERR "md: pers->run() failed ...\n"); 3276 module_put(mddev->pers->owner); 3277 mddev->pers = NULL; 3278 bitmap_destroy(mddev); 3279 return err; 3280 } 3281 if (mddev->pers->sync_request) { 3282 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3283 printk(KERN_WARNING 3284 "md: cannot register extra attributes for %s\n", 3285 mdname(mddev)); 3286 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 3287 mddev->ro = 0; 3288 3289 atomic_set(&mddev->writes_pending,0); 3290 mddev->safemode = 0; 3291 mddev->safemode_timer.function = md_safemode_timeout; 3292 mddev->safemode_timer.data = (unsigned long) mddev; 3293 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 3294 mddev->in_sync = 1; 3295 3296 ITERATE_RDEV(mddev,rdev,tmp) 3297 if (rdev->raid_disk >= 0) { 3298 char nm[20]; 3299 sprintf(nm, "rd%d", rdev->raid_disk); 3300 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 3301 printk("md: cannot register %s for %s\n", 3302 nm, mdname(mddev)); 3303 } 3304 3305 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3306 3307 if (mddev->flags) 3308 md_update_sb(mddev, 0); 3309 3310 set_capacity(disk, mddev->array_size<<1); 3311 3312 /* If we call blk_queue_make_request here, it will 3313 * re-initialise max_sectors etc which may have been 3314 * refined inside -> run. So just set the bits we need to set. 3315 * Most initialisation happended when we called 3316 * blk_queue_make_request(..., md_fail_request) 3317 * earlier. 3318 */ 3319 mddev->queue->queuedata = mddev; 3320 mddev->queue->make_request_fn = mddev->pers->make_request; 3321 3322 /* If there is a partially-recovered drive we need to 3323 * start recovery here. If we leave it to md_check_recovery, 3324 * it will remove the drives and not do the right thing 3325 */ 3326 if (mddev->degraded && !mddev->sync_thread) { 3327 struct list_head *rtmp; 3328 int spares = 0; 3329 ITERATE_RDEV(mddev,rdev,rtmp) 3330 if (rdev->raid_disk >= 0 && 3331 !test_bit(In_sync, &rdev->flags) && 3332 !test_bit(Faulty, &rdev->flags)) 3333 /* complete an interrupted recovery */ 3334 spares++; 3335 if (spares && mddev->pers->sync_request) { 3336 mddev->recovery = 0; 3337 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3338 mddev->sync_thread = md_register_thread(md_do_sync, 3339 mddev, 3340 "%s_resync"); 3341 if (!mddev->sync_thread) { 3342 printk(KERN_ERR "%s: could not start resync" 3343 " thread...\n", 3344 mdname(mddev)); 3345 /* leave the spares where they are, it shouldn't hurt */ 3346 mddev->recovery = 0; 3347 } 3348 } 3349 } 3350 md_wakeup_thread(mddev->thread); 3351 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 3352 3353 mddev->changed = 1; 3354 md_new_event(mddev); 3355 kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE); 3356 return 0; 3357 } 3358 3359 static int restart_array(mddev_t *mddev) 3360 { 3361 struct gendisk *disk = mddev->gendisk; 3362 int err; 3363 3364 /* 3365 * Complain if it has no devices 3366 */ 3367 err = -ENXIO; 3368 if (list_empty(&mddev->disks)) 3369 goto out; 3370 3371 if (mddev->pers) { 3372 err = -EBUSY; 3373 if (!mddev->ro) 3374 goto out; 3375 3376 mddev->safemode = 0; 3377 mddev->ro = 0; 3378 set_disk_ro(disk, 0); 3379 3380 printk(KERN_INFO "md: %s switched to read-write mode.\n", 3381 mdname(mddev)); 3382 /* 3383 * Kick recovery or resync if necessary 3384 */ 3385 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3386 md_wakeup_thread(mddev->thread); 3387 md_wakeup_thread(mddev->sync_thread); 3388 err = 0; 3389 } else 3390 err = -EINVAL; 3391 3392 out: 3393 return err; 3394 } 3395 3396 /* similar to deny_write_access, but accounts for our holding a reference 3397 * to the file ourselves */ 3398 static int deny_bitmap_write_access(struct file * file) 3399 { 3400 struct inode *inode = file->f_mapping->host; 3401 3402 spin_lock(&inode->i_lock); 3403 if (atomic_read(&inode->i_writecount) > 1) { 3404 spin_unlock(&inode->i_lock); 3405 return -ETXTBSY; 3406 } 3407 atomic_set(&inode->i_writecount, -1); 3408 spin_unlock(&inode->i_lock); 3409 3410 return 0; 3411 } 3412 3413 static void restore_bitmap_write_access(struct file *file) 3414 { 3415 struct inode *inode = file->f_mapping->host; 3416 3417 spin_lock(&inode->i_lock); 3418 atomic_set(&inode->i_writecount, 1); 3419 spin_unlock(&inode->i_lock); 3420 } 3421 3422 /* mode: 3423 * 0 - completely stop and dis-assemble array 3424 * 1 - switch to readonly 3425 * 2 - stop but do not disassemble array 3426 */ 3427 static int do_md_stop(mddev_t * mddev, int mode) 3428 { 3429 int err = 0; 3430 struct gendisk *disk = mddev->gendisk; 3431 3432 if (mddev->pers) { 3433 if (atomic_read(&mddev->active)>2) { 3434 printk("md: %s still in use.\n",mdname(mddev)); 3435 return -EBUSY; 3436 } 3437 3438 if (mddev->sync_thread) { 3439 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3440 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3441 md_unregister_thread(mddev->sync_thread); 3442 mddev->sync_thread = NULL; 3443 } 3444 3445 del_timer_sync(&mddev->safemode_timer); 3446 3447 invalidate_partition(disk, 0); 3448 3449 switch(mode) { 3450 case 1: /* readonly */ 3451 err = -ENXIO; 3452 if (mddev->ro==1) 3453 goto out; 3454 mddev->ro = 1; 3455 break; 3456 case 0: /* disassemble */ 3457 case 2: /* stop */ 3458 bitmap_flush(mddev); 3459 md_super_wait(mddev); 3460 if (mddev->ro) 3461 set_disk_ro(disk, 0); 3462 blk_queue_make_request(mddev->queue, md_fail_request); 3463 mddev->pers->stop(mddev); 3464 mddev->queue->merge_bvec_fn = NULL; 3465 mddev->queue->unplug_fn = NULL; 3466 mddev->queue->issue_flush_fn = NULL; 3467 mddev->queue->backing_dev_info.congested_fn = NULL; 3468 if (mddev->pers->sync_request) 3469 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 3470 3471 module_put(mddev->pers->owner); 3472 mddev->pers = NULL; 3473 3474 set_capacity(disk, 0); 3475 mddev->changed = 1; 3476 3477 if (mddev->ro) 3478 mddev->ro = 0; 3479 } 3480 if (!mddev->in_sync || mddev->flags) { 3481 /* mark array as shutdown cleanly */ 3482 mddev->in_sync = 1; 3483 md_update_sb(mddev, 1); 3484 } 3485 if (mode == 1) 3486 set_disk_ro(disk, 1); 3487 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3488 } 3489 3490 /* 3491 * Free resources if final stop 3492 */ 3493 if (mode == 0) { 3494 mdk_rdev_t *rdev; 3495 struct list_head *tmp; 3496 3497 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 3498 3499 bitmap_destroy(mddev); 3500 if (mddev->bitmap_file) { 3501 restore_bitmap_write_access(mddev->bitmap_file); 3502 fput(mddev->bitmap_file); 3503 mddev->bitmap_file = NULL; 3504 } 3505 mddev->bitmap_offset = 0; 3506 3507 ITERATE_RDEV(mddev,rdev,tmp) 3508 if (rdev->raid_disk >= 0) { 3509 char nm[20]; 3510 sprintf(nm, "rd%d", rdev->raid_disk); 3511 sysfs_remove_link(&mddev->kobj, nm); 3512 } 3513 3514 /* make sure all delayed_delete calls have finished */ 3515 flush_scheduled_work(); 3516 3517 export_array(mddev); 3518 3519 mddev->array_size = 0; 3520 mddev->size = 0; 3521 mddev->raid_disks = 0; 3522 mddev->recovery_cp = 0; 3523 mddev->reshape_position = MaxSector; 3524 3525 } else if (mddev->pers) 3526 printk(KERN_INFO "md: %s switched to read-only mode.\n", 3527 mdname(mddev)); 3528 err = 0; 3529 md_new_event(mddev); 3530 out: 3531 return err; 3532 } 3533 3534 #ifndef MODULE 3535 static void autorun_array(mddev_t *mddev) 3536 { 3537 mdk_rdev_t *rdev; 3538 struct list_head *tmp; 3539 int err; 3540 3541 if (list_empty(&mddev->disks)) 3542 return; 3543 3544 printk(KERN_INFO "md: running: "); 3545 3546 ITERATE_RDEV(mddev,rdev,tmp) { 3547 char b[BDEVNAME_SIZE]; 3548 printk("<%s>", bdevname(rdev->bdev,b)); 3549 } 3550 printk("\n"); 3551 3552 err = do_md_run (mddev); 3553 if (err) { 3554 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 3555 do_md_stop (mddev, 0); 3556 } 3557 } 3558 3559 /* 3560 * lets try to run arrays based on all disks that have arrived 3561 * until now. (those are in pending_raid_disks) 3562 * 3563 * the method: pick the first pending disk, collect all disks with 3564 * the same UUID, remove all from the pending list and put them into 3565 * the 'same_array' list. Then order this list based on superblock 3566 * update time (freshest comes first), kick out 'old' disks and 3567 * compare superblocks. If everything's fine then run it. 3568 * 3569 * If "unit" is allocated, then bump its reference count 3570 */ 3571 static void autorun_devices(int part) 3572 { 3573 struct list_head *tmp; 3574 mdk_rdev_t *rdev0, *rdev; 3575 mddev_t *mddev; 3576 char b[BDEVNAME_SIZE]; 3577 3578 printk(KERN_INFO "md: autorun ...\n"); 3579 while (!list_empty(&pending_raid_disks)) { 3580 int unit; 3581 dev_t dev; 3582 LIST_HEAD(candidates); 3583 rdev0 = list_entry(pending_raid_disks.next, 3584 mdk_rdev_t, same_set); 3585 3586 printk(KERN_INFO "md: considering %s ...\n", 3587 bdevname(rdev0->bdev,b)); 3588 INIT_LIST_HEAD(&candidates); 3589 ITERATE_RDEV_PENDING(rdev,tmp) 3590 if (super_90_load(rdev, rdev0, 0) >= 0) { 3591 printk(KERN_INFO "md: adding %s ...\n", 3592 bdevname(rdev->bdev,b)); 3593 list_move(&rdev->same_set, &candidates); 3594 } 3595 /* 3596 * now we have a set of devices, with all of them having 3597 * mostly sane superblocks. It's time to allocate the 3598 * mddev. 3599 */ 3600 if (part) { 3601 dev = MKDEV(mdp_major, 3602 rdev0->preferred_minor << MdpMinorShift); 3603 unit = MINOR(dev) >> MdpMinorShift; 3604 } else { 3605 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 3606 unit = MINOR(dev); 3607 } 3608 if (rdev0->preferred_minor != unit) { 3609 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 3610 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 3611 break; 3612 } 3613 3614 md_probe(dev, NULL, NULL); 3615 mddev = mddev_find(dev); 3616 if (!mddev) { 3617 printk(KERN_ERR 3618 "md: cannot allocate memory for md drive.\n"); 3619 break; 3620 } 3621 if (mddev_lock(mddev)) 3622 printk(KERN_WARNING "md: %s locked, cannot run\n", 3623 mdname(mddev)); 3624 else if (mddev->raid_disks || mddev->major_version 3625 || !list_empty(&mddev->disks)) { 3626 printk(KERN_WARNING 3627 "md: %s already running, cannot run %s\n", 3628 mdname(mddev), bdevname(rdev0->bdev,b)); 3629 mddev_unlock(mddev); 3630 } else { 3631 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 3632 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) { 3633 list_del_init(&rdev->same_set); 3634 if (bind_rdev_to_array(rdev, mddev)) 3635 export_rdev(rdev); 3636 } 3637 autorun_array(mddev); 3638 mddev_unlock(mddev); 3639 } 3640 /* on success, candidates will be empty, on error 3641 * it won't... 3642 */ 3643 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) 3644 export_rdev(rdev); 3645 mddev_put(mddev); 3646 } 3647 printk(KERN_INFO "md: ... autorun DONE.\n"); 3648 } 3649 #endif /* !MODULE */ 3650 3651 static int get_version(void __user * arg) 3652 { 3653 mdu_version_t ver; 3654 3655 ver.major = MD_MAJOR_VERSION; 3656 ver.minor = MD_MINOR_VERSION; 3657 ver.patchlevel = MD_PATCHLEVEL_VERSION; 3658 3659 if (copy_to_user(arg, &ver, sizeof(ver))) 3660 return -EFAULT; 3661 3662 return 0; 3663 } 3664 3665 static int get_array_info(mddev_t * mddev, void __user * arg) 3666 { 3667 mdu_array_info_t info; 3668 int nr,working,active,failed,spare; 3669 mdk_rdev_t *rdev; 3670 struct list_head *tmp; 3671 3672 nr=working=active=failed=spare=0; 3673 ITERATE_RDEV(mddev,rdev,tmp) { 3674 nr++; 3675 if (test_bit(Faulty, &rdev->flags)) 3676 failed++; 3677 else { 3678 working++; 3679 if (test_bit(In_sync, &rdev->flags)) 3680 active++; 3681 else 3682 spare++; 3683 } 3684 } 3685 3686 info.major_version = mddev->major_version; 3687 info.minor_version = mddev->minor_version; 3688 info.patch_version = MD_PATCHLEVEL_VERSION; 3689 info.ctime = mddev->ctime; 3690 info.level = mddev->level; 3691 info.size = mddev->size; 3692 if (info.size != mddev->size) /* overflow */ 3693 info.size = -1; 3694 info.nr_disks = nr; 3695 info.raid_disks = mddev->raid_disks; 3696 info.md_minor = mddev->md_minor; 3697 info.not_persistent= !mddev->persistent; 3698 3699 info.utime = mddev->utime; 3700 info.state = 0; 3701 if (mddev->in_sync) 3702 info.state = (1<<MD_SB_CLEAN); 3703 if (mddev->bitmap && mddev->bitmap_offset) 3704 info.state = (1<<MD_SB_BITMAP_PRESENT); 3705 info.active_disks = active; 3706 info.working_disks = working; 3707 info.failed_disks = failed; 3708 info.spare_disks = spare; 3709 3710 info.layout = mddev->layout; 3711 info.chunk_size = mddev->chunk_size; 3712 3713 if (copy_to_user(arg, &info, sizeof(info))) 3714 return -EFAULT; 3715 3716 return 0; 3717 } 3718 3719 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 3720 { 3721 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 3722 char *ptr, *buf = NULL; 3723 int err = -ENOMEM; 3724 3725 md_allow_write(mddev); 3726 3727 file = kmalloc(sizeof(*file), GFP_KERNEL); 3728 if (!file) 3729 goto out; 3730 3731 /* bitmap disabled, zero the first byte and copy out */ 3732 if (!mddev->bitmap || !mddev->bitmap->file) { 3733 file->pathname[0] = '\0'; 3734 goto copy_out; 3735 } 3736 3737 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 3738 if (!buf) 3739 goto out; 3740 3741 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname)); 3742 if (!ptr) 3743 goto out; 3744 3745 strcpy(file->pathname, ptr); 3746 3747 copy_out: 3748 err = 0; 3749 if (copy_to_user(arg, file, sizeof(*file))) 3750 err = -EFAULT; 3751 out: 3752 kfree(buf); 3753 kfree(file); 3754 return err; 3755 } 3756 3757 static int get_disk_info(mddev_t * mddev, void __user * arg) 3758 { 3759 mdu_disk_info_t info; 3760 unsigned int nr; 3761 mdk_rdev_t *rdev; 3762 3763 if (copy_from_user(&info, arg, sizeof(info))) 3764 return -EFAULT; 3765 3766 nr = info.number; 3767 3768 rdev = find_rdev_nr(mddev, nr); 3769 if (rdev) { 3770 info.major = MAJOR(rdev->bdev->bd_dev); 3771 info.minor = MINOR(rdev->bdev->bd_dev); 3772 info.raid_disk = rdev->raid_disk; 3773 info.state = 0; 3774 if (test_bit(Faulty, &rdev->flags)) 3775 info.state |= (1<<MD_DISK_FAULTY); 3776 else if (test_bit(In_sync, &rdev->flags)) { 3777 info.state |= (1<<MD_DISK_ACTIVE); 3778 info.state |= (1<<MD_DISK_SYNC); 3779 } 3780 if (test_bit(WriteMostly, &rdev->flags)) 3781 info.state |= (1<<MD_DISK_WRITEMOSTLY); 3782 } else { 3783 info.major = info.minor = 0; 3784 info.raid_disk = -1; 3785 info.state = (1<<MD_DISK_REMOVED); 3786 } 3787 3788 if (copy_to_user(arg, &info, sizeof(info))) 3789 return -EFAULT; 3790 3791 return 0; 3792 } 3793 3794 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 3795 { 3796 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 3797 mdk_rdev_t *rdev; 3798 dev_t dev = MKDEV(info->major,info->minor); 3799 3800 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 3801 return -EOVERFLOW; 3802 3803 if (!mddev->raid_disks) { 3804 int err; 3805 /* expecting a device which has a superblock */ 3806 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 3807 if (IS_ERR(rdev)) { 3808 printk(KERN_WARNING 3809 "md: md_import_device returned %ld\n", 3810 PTR_ERR(rdev)); 3811 return PTR_ERR(rdev); 3812 } 3813 if (!list_empty(&mddev->disks)) { 3814 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3815 mdk_rdev_t, same_set); 3816 int err = super_types[mddev->major_version] 3817 .load_super(rdev, rdev0, mddev->minor_version); 3818 if (err < 0) { 3819 printk(KERN_WARNING 3820 "md: %s has different UUID to %s\n", 3821 bdevname(rdev->bdev,b), 3822 bdevname(rdev0->bdev,b2)); 3823 export_rdev(rdev); 3824 return -EINVAL; 3825 } 3826 } 3827 err = bind_rdev_to_array(rdev, mddev); 3828 if (err) 3829 export_rdev(rdev); 3830 return err; 3831 } 3832 3833 /* 3834 * add_new_disk can be used once the array is assembled 3835 * to add "hot spares". They must already have a superblock 3836 * written 3837 */ 3838 if (mddev->pers) { 3839 int err; 3840 if (!mddev->pers->hot_add_disk) { 3841 printk(KERN_WARNING 3842 "%s: personality does not support diskops!\n", 3843 mdname(mddev)); 3844 return -EINVAL; 3845 } 3846 if (mddev->persistent) 3847 rdev = md_import_device(dev, mddev->major_version, 3848 mddev->minor_version); 3849 else 3850 rdev = md_import_device(dev, -1, -1); 3851 if (IS_ERR(rdev)) { 3852 printk(KERN_WARNING 3853 "md: md_import_device returned %ld\n", 3854 PTR_ERR(rdev)); 3855 return PTR_ERR(rdev); 3856 } 3857 /* set save_raid_disk if appropriate */ 3858 if (!mddev->persistent) { 3859 if (info->state & (1<<MD_DISK_SYNC) && 3860 info->raid_disk < mddev->raid_disks) 3861 rdev->raid_disk = info->raid_disk; 3862 else 3863 rdev->raid_disk = -1; 3864 } else 3865 super_types[mddev->major_version]. 3866 validate_super(mddev, rdev); 3867 rdev->saved_raid_disk = rdev->raid_disk; 3868 3869 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 3870 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 3871 set_bit(WriteMostly, &rdev->flags); 3872 3873 rdev->raid_disk = -1; 3874 err = bind_rdev_to_array(rdev, mddev); 3875 if (!err && !mddev->pers->hot_remove_disk) { 3876 /* If there is hot_add_disk but no hot_remove_disk 3877 * then added disks for geometry changes, 3878 * and should be added immediately. 3879 */ 3880 super_types[mddev->major_version]. 3881 validate_super(mddev, rdev); 3882 err = mddev->pers->hot_add_disk(mddev, rdev); 3883 if (err) 3884 unbind_rdev_from_array(rdev); 3885 } 3886 if (err) 3887 export_rdev(rdev); 3888 3889 md_update_sb(mddev, 1); 3890 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3891 md_wakeup_thread(mddev->thread); 3892 return err; 3893 } 3894 3895 /* otherwise, add_new_disk is only allowed 3896 * for major_version==0 superblocks 3897 */ 3898 if (mddev->major_version != 0) { 3899 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 3900 mdname(mddev)); 3901 return -EINVAL; 3902 } 3903 3904 if (!(info->state & (1<<MD_DISK_FAULTY))) { 3905 int err; 3906 rdev = md_import_device (dev, -1, 0); 3907 if (IS_ERR(rdev)) { 3908 printk(KERN_WARNING 3909 "md: error, md_import_device() returned %ld\n", 3910 PTR_ERR(rdev)); 3911 return PTR_ERR(rdev); 3912 } 3913 rdev->desc_nr = info->number; 3914 if (info->raid_disk < mddev->raid_disks) 3915 rdev->raid_disk = info->raid_disk; 3916 else 3917 rdev->raid_disk = -1; 3918 3919 rdev->flags = 0; 3920 3921 if (rdev->raid_disk < mddev->raid_disks) 3922 if (info->state & (1<<MD_DISK_SYNC)) 3923 set_bit(In_sync, &rdev->flags); 3924 3925 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 3926 set_bit(WriteMostly, &rdev->flags); 3927 3928 if (!mddev->persistent) { 3929 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 3930 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 3931 } else 3932 rdev->sb_offset = calc_dev_sboffset(rdev->bdev); 3933 rdev->size = calc_dev_size(rdev, mddev->chunk_size); 3934 3935 err = bind_rdev_to_array(rdev, mddev); 3936 if (err) { 3937 export_rdev(rdev); 3938 return err; 3939 } 3940 } 3941 3942 return 0; 3943 } 3944 3945 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 3946 { 3947 char b[BDEVNAME_SIZE]; 3948 mdk_rdev_t *rdev; 3949 3950 if (!mddev->pers) 3951 return -ENODEV; 3952 3953 rdev = find_rdev(mddev, dev); 3954 if (!rdev) 3955 return -ENXIO; 3956 3957 if (rdev->raid_disk >= 0) 3958 goto busy; 3959 3960 kick_rdev_from_array(rdev); 3961 md_update_sb(mddev, 1); 3962 md_new_event(mddev); 3963 3964 return 0; 3965 busy: 3966 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n", 3967 bdevname(rdev->bdev,b), mdname(mddev)); 3968 return -EBUSY; 3969 } 3970 3971 static int hot_add_disk(mddev_t * mddev, dev_t dev) 3972 { 3973 char b[BDEVNAME_SIZE]; 3974 int err; 3975 unsigned int size; 3976 mdk_rdev_t *rdev; 3977 3978 if (!mddev->pers) 3979 return -ENODEV; 3980 3981 if (mddev->major_version != 0) { 3982 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 3983 " version-0 superblocks.\n", 3984 mdname(mddev)); 3985 return -EINVAL; 3986 } 3987 if (!mddev->pers->hot_add_disk) { 3988 printk(KERN_WARNING 3989 "%s: personality does not support diskops!\n", 3990 mdname(mddev)); 3991 return -EINVAL; 3992 } 3993 3994 rdev = md_import_device (dev, -1, 0); 3995 if (IS_ERR(rdev)) { 3996 printk(KERN_WARNING 3997 "md: error, md_import_device() returned %ld\n", 3998 PTR_ERR(rdev)); 3999 return -EINVAL; 4000 } 4001 4002 if (mddev->persistent) 4003 rdev->sb_offset = calc_dev_sboffset(rdev->bdev); 4004 else 4005 rdev->sb_offset = 4006 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 4007 4008 size = calc_dev_size(rdev, mddev->chunk_size); 4009 rdev->size = size; 4010 4011 if (test_bit(Faulty, &rdev->flags)) { 4012 printk(KERN_WARNING 4013 "md: can not hot-add faulty %s disk to %s!\n", 4014 bdevname(rdev->bdev,b), mdname(mddev)); 4015 err = -EINVAL; 4016 goto abort_export; 4017 } 4018 clear_bit(In_sync, &rdev->flags); 4019 rdev->desc_nr = -1; 4020 rdev->saved_raid_disk = -1; 4021 err = bind_rdev_to_array(rdev, mddev); 4022 if (err) 4023 goto abort_export; 4024 4025 /* 4026 * The rest should better be atomic, we can have disk failures 4027 * noticed in interrupt contexts ... 4028 */ 4029 4030 if (rdev->desc_nr == mddev->max_disks) { 4031 printk(KERN_WARNING "%s: can not hot-add to full array!\n", 4032 mdname(mddev)); 4033 err = -EBUSY; 4034 goto abort_unbind_export; 4035 } 4036 4037 rdev->raid_disk = -1; 4038 4039 md_update_sb(mddev, 1); 4040 4041 /* 4042 * Kick recovery, maybe this spare has to be added to the 4043 * array immediately. 4044 */ 4045 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4046 md_wakeup_thread(mddev->thread); 4047 md_new_event(mddev); 4048 return 0; 4049 4050 abort_unbind_export: 4051 unbind_rdev_from_array(rdev); 4052 4053 abort_export: 4054 export_rdev(rdev); 4055 return err; 4056 } 4057 4058 static int set_bitmap_file(mddev_t *mddev, int fd) 4059 { 4060 int err; 4061 4062 if (mddev->pers) { 4063 if (!mddev->pers->quiesce) 4064 return -EBUSY; 4065 if (mddev->recovery || mddev->sync_thread) 4066 return -EBUSY; 4067 /* we should be able to change the bitmap.. */ 4068 } 4069 4070 4071 if (fd >= 0) { 4072 if (mddev->bitmap) 4073 return -EEXIST; /* cannot add when bitmap is present */ 4074 mddev->bitmap_file = fget(fd); 4075 4076 if (mddev->bitmap_file == NULL) { 4077 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 4078 mdname(mddev)); 4079 return -EBADF; 4080 } 4081 4082 err = deny_bitmap_write_access(mddev->bitmap_file); 4083 if (err) { 4084 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 4085 mdname(mddev)); 4086 fput(mddev->bitmap_file); 4087 mddev->bitmap_file = NULL; 4088 return err; 4089 } 4090 mddev->bitmap_offset = 0; /* file overrides offset */ 4091 } else if (mddev->bitmap == NULL) 4092 return -ENOENT; /* cannot remove what isn't there */ 4093 err = 0; 4094 if (mddev->pers) { 4095 mddev->pers->quiesce(mddev, 1); 4096 if (fd >= 0) 4097 err = bitmap_create(mddev); 4098 if (fd < 0 || err) { 4099 bitmap_destroy(mddev); 4100 fd = -1; /* make sure to put the file */ 4101 } 4102 mddev->pers->quiesce(mddev, 0); 4103 } 4104 if (fd < 0) { 4105 if (mddev->bitmap_file) { 4106 restore_bitmap_write_access(mddev->bitmap_file); 4107 fput(mddev->bitmap_file); 4108 } 4109 mddev->bitmap_file = NULL; 4110 } 4111 4112 return err; 4113 } 4114 4115 /* 4116 * set_array_info is used two different ways 4117 * The original usage is when creating a new array. 4118 * In this usage, raid_disks is > 0 and it together with 4119 * level, size, not_persistent,layout,chunksize determine the 4120 * shape of the array. 4121 * This will always create an array with a type-0.90.0 superblock. 4122 * The newer usage is when assembling an array. 4123 * In this case raid_disks will be 0, and the major_version field is 4124 * use to determine which style super-blocks are to be found on the devices. 4125 * The minor and patch _version numbers are also kept incase the 4126 * super_block handler wishes to interpret them. 4127 */ 4128 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 4129 { 4130 4131 if (info->raid_disks == 0) { 4132 /* just setting version number for superblock loading */ 4133 if (info->major_version < 0 || 4134 info->major_version >= ARRAY_SIZE(super_types) || 4135 super_types[info->major_version].name == NULL) { 4136 /* maybe try to auto-load a module? */ 4137 printk(KERN_INFO 4138 "md: superblock version %d not known\n", 4139 info->major_version); 4140 return -EINVAL; 4141 } 4142 mddev->major_version = info->major_version; 4143 mddev->minor_version = info->minor_version; 4144 mddev->patch_version = info->patch_version; 4145 mddev->persistent = !info->not_persistent; 4146 return 0; 4147 } 4148 mddev->major_version = MD_MAJOR_VERSION; 4149 mddev->minor_version = MD_MINOR_VERSION; 4150 mddev->patch_version = MD_PATCHLEVEL_VERSION; 4151 mddev->ctime = get_seconds(); 4152 4153 mddev->level = info->level; 4154 mddev->clevel[0] = 0; 4155 mddev->size = info->size; 4156 mddev->raid_disks = info->raid_disks; 4157 /* don't set md_minor, it is determined by which /dev/md* was 4158 * openned 4159 */ 4160 if (info->state & (1<<MD_SB_CLEAN)) 4161 mddev->recovery_cp = MaxSector; 4162 else 4163 mddev->recovery_cp = 0; 4164 mddev->persistent = ! info->not_persistent; 4165 4166 mddev->layout = info->layout; 4167 mddev->chunk_size = info->chunk_size; 4168 4169 mddev->max_disks = MD_SB_DISKS; 4170 4171 mddev->flags = 0; 4172 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4173 4174 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 4175 mddev->bitmap_offset = 0; 4176 4177 mddev->reshape_position = MaxSector; 4178 4179 /* 4180 * Generate a 128 bit UUID 4181 */ 4182 get_random_bytes(mddev->uuid, 16); 4183 4184 mddev->new_level = mddev->level; 4185 mddev->new_chunk = mddev->chunk_size; 4186 mddev->new_layout = mddev->layout; 4187 mddev->delta_disks = 0; 4188 4189 return 0; 4190 } 4191 4192 static int update_size(mddev_t *mddev, unsigned long size) 4193 { 4194 mdk_rdev_t * rdev; 4195 int rv; 4196 struct list_head *tmp; 4197 int fit = (size == 0); 4198 4199 if (mddev->pers->resize == NULL) 4200 return -EINVAL; 4201 /* The "size" is the amount of each device that is used. 4202 * This can only make sense for arrays with redundancy. 4203 * linear and raid0 always use whatever space is available 4204 * We can only consider changing the size if no resync 4205 * or reconstruction is happening, and if the new size 4206 * is acceptable. It must fit before the sb_offset or, 4207 * if that is <data_offset, it must fit before the 4208 * size of each device. 4209 * If size is zero, we find the largest size that fits. 4210 */ 4211 if (mddev->sync_thread) 4212 return -EBUSY; 4213 ITERATE_RDEV(mddev,rdev,tmp) { 4214 sector_t avail; 4215 avail = rdev->size * 2; 4216 4217 if (fit && (size == 0 || size > avail/2)) 4218 size = avail/2; 4219 if (avail < ((sector_t)size << 1)) 4220 return -ENOSPC; 4221 } 4222 rv = mddev->pers->resize(mddev, (sector_t)size *2); 4223 if (!rv) { 4224 struct block_device *bdev; 4225 4226 bdev = bdget_disk(mddev->gendisk, 0); 4227 if (bdev) { 4228 mutex_lock(&bdev->bd_inode->i_mutex); 4229 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10); 4230 mutex_unlock(&bdev->bd_inode->i_mutex); 4231 bdput(bdev); 4232 } 4233 } 4234 return rv; 4235 } 4236 4237 static int update_raid_disks(mddev_t *mddev, int raid_disks) 4238 { 4239 int rv; 4240 /* change the number of raid disks */ 4241 if (mddev->pers->check_reshape == NULL) 4242 return -EINVAL; 4243 if (raid_disks <= 0 || 4244 raid_disks >= mddev->max_disks) 4245 return -EINVAL; 4246 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 4247 return -EBUSY; 4248 mddev->delta_disks = raid_disks - mddev->raid_disks; 4249 4250 rv = mddev->pers->check_reshape(mddev); 4251 return rv; 4252 } 4253 4254 4255 /* 4256 * update_array_info is used to change the configuration of an 4257 * on-line array. 4258 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 4259 * fields in the info are checked against the array. 4260 * Any differences that cannot be handled will cause an error. 4261 * Normally, only one change can be managed at a time. 4262 */ 4263 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 4264 { 4265 int rv = 0; 4266 int cnt = 0; 4267 int state = 0; 4268 4269 /* calculate expected state,ignoring low bits */ 4270 if (mddev->bitmap && mddev->bitmap_offset) 4271 state |= (1 << MD_SB_BITMAP_PRESENT); 4272 4273 if (mddev->major_version != info->major_version || 4274 mddev->minor_version != info->minor_version || 4275 /* mddev->patch_version != info->patch_version || */ 4276 mddev->ctime != info->ctime || 4277 mddev->level != info->level || 4278 /* mddev->layout != info->layout || */ 4279 !mddev->persistent != info->not_persistent|| 4280 mddev->chunk_size != info->chunk_size || 4281 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 4282 ((state^info->state) & 0xfffffe00) 4283 ) 4284 return -EINVAL; 4285 /* Check there is only one change */ 4286 if (info->size >= 0 && mddev->size != info->size) cnt++; 4287 if (mddev->raid_disks != info->raid_disks) cnt++; 4288 if (mddev->layout != info->layout) cnt++; 4289 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++; 4290 if (cnt == 0) return 0; 4291 if (cnt > 1) return -EINVAL; 4292 4293 if (mddev->layout != info->layout) { 4294 /* Change layout 4295 * we don't need to do anything at the md level, the 4296 * personality will take care of it all. 4297 */ 4298 if (mddev->pers->reconfig == NULL) 4299 return -EINVAL; 4300 else 4301 return mddev->pers->reconfig(mddev, info->layout, -1); 4302 } 4303 if (info->size >= 0 && mddev->size != info->size) 4304 rv = update_size(mddev, info->size); 4305 4306 if (mddev->raid_disks != info->raid_disks) 4307 rv = update_raid_disks(mddev, info->raid_disks); 4308 4309 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 4310 if (mddev->pers->quiesce == NULL) 4311 return -EINVAL; 4312 if (mddev->recovery || mddev->sync_thread) 4313 return -EBUSY; 4314 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 4315 /* add the bitmap */ 4316 if (mddev->bitmap) 4317 return -EEXIST; 4318 if (mddev->default_bitmap_offset == 0) 4319 return -EINVAL; 4320 mddev->bitmap_offset = mddev->default_bitmap_offset; 4321 mddev->pers->quiesce(mddev, 1); 4322 rv = bitmap_create(mddev); 4323 if (rv) 4324 bitmap_destroy(mddev); 4325 mddev->pers->quiesce(mddev, 0); 4326 } else { 4327 /* remove the bitmap */ 4328 if (!mddev->bitmap) 4329 return -ENOENT; 4330 if (mddev->bitmap->file) 4331 return -EINVAL; 4332 mddev->pers->quiesce(mddev, 1); 4333 bitmap_destroy(mddev); 4334 mddev->pers->quiesce(mddev, 0); 4335 mddev->bitmap_offset = 0; 4336 } 4337 } 4338 md_update_sb(mddev, 1); 4339 return rv; 4340 } 4341 4342 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 4343 { 4344 mdk_rdev_t *rdev; 4345 4346 if (mddev->pers == NULL) 4347 return -ENODEV; 4348 4349 rdev = find_rdev(mddev, dev); 4350 if (!rdev) 4351 return -ENODEV; 4352 4353 md_error(mddev, rdev); 4354 return 0; 4355 } 4356 4357 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 4358 { 4359 mddev_t *mddev = bdev->bd_disk->private_data; 4360 4361 geo->heads = 2; 4362 geo->sectors = 4; 4363 geo->cylinders = get_capacity(mddev->gendisk) / 8; 4364 return 0; 4365 } 4366 4367 static int md_ioctl(struct inode *inode, struct file *file, 4368 unsigned int cmd, unsigned long arg) 4369 { 4370 int err = 0; 4371 void __user *argp = (void __user *)arg; 4372 mddev_t *mddev = NULL; 4373 4374 if (!capable(CAP_SYS_ADMIN)) 4375 return -EACCES; 4376 4377 /* 4378 * Commands dealing with the RAID driver but not any 4379 * particular array: 4380 */ 4381 switch (cmd) 4382 { 4383 case RAID_VERSION: 4384 err = get_version(argp); 4385 goto done; 4386 4387 case PRINT_RAID_DEBUG: 4388 err = 0; 4389 md_print_devices(); 4390 goto done; 4391 4392 #ifndef MODULE 4393 case RAID_AUTORUN: 4394 err = 0; 4395 autostart_arrays(arg); 4396 goto done; 4397 #endif 4398 default:; 4399 } 4400 4401 /* 4402 * Commands creating/starting a new array: 4403 */ 4404 4405 mddev = inode->i_bdev->bd_disk->private_data; 4406 4407 if (!mddev) { 4408 BUG(); 4409 goto abort; 4410 } 4411 4412 err = mddev_lock(mddev); 4413 if (err) { 4414 printk(KERN_INFO 4415 "md: ioctl lock interrupted, reason %d, cmd %d\n", 4416 err, cmd); 4417 goto abort; 4418 } 4419 4420 switch (cmd) 4421 { 4422 case SET_ARRAY_INFO: 4423 { 4424 mdu_array_info_t info; 4425 if (!arg) 4426 memset(&info, 0, sizeof(info)); 4427 else if (copy_from_user(&info, argp, sizeof(info))) { 4428 err = -EFAULT; 4429 goto abort_unlock; 4430 } 4431 if (mddev->pers) { 4432 err = update_array_info(mddev, &info); 4433 if (err) { 4434 printk(KERN_WARNING "md: couldn't update" 4435 " array info. %d\n", err); 4436 goto abort_unlock; 4437 } 4438 goto done_unlock; 4439 } 4440 if (!list_empty(&mddev->disks)) { 4441 printk(KERN_WARNING 4442 "md: array %s already has disks!\n", 4443 mdname(mddev)); 4444 err = -EBUSY; 4445 goto abort_unlock; 4446 } 4447 if (mddev->raid_disks) { 4448 printk(KERN_WARNING 4449 "md: array %s already initialised!\n", 4450 mdname(mddev)); 4451 err = -EBUSY; 4452 goto abort_unlock; 4453 } 4454 err = set_array_info(mddev, &info); 4455 if (err) { 4456 printk(KERN_WARNING "md: couldn't set" 4457 " array info. %d\n", err); 4458 goto abort_unlock; 4459 } 4460 } 4461 goto done_unlock; 4462 4463 default:; 4464 } 4465 4466 /* 4467 * Commands querying/configuring an existing array: 4468 */ 4469 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 4470 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 4471 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 4472 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 4473 && cmd != GET_BITMAP_FILE) { 4474 err = -ENODEV; 4475 goto abort_unlock; 4476 } 4477 4478 /* 4479 * Commands even a read-only array can execute: 4480 */ 4481 switch (cmd) 4482 { 4483 case GET_ARRAY_INFO: 4484 err = get_array_info(mddev, argp); 4485 goto done_unlock; 4486 4487 case GET_BITMAP_FILE: 4488 err = get_bitmap_file(mddev, argp); 4489 goto done_unlock; 4490 4491 case GET_DISK_INFO: 4492 err = get_disk_info(mddev, argp); 4493 goto done_unlock; 4494 4495 case RESTART_ARRAY_RW: 4496 err = restart_array(mddev); 4497 goto done_unlock; 4498 4499 case STOP_ARRAY: 4500 err = do_md_stop (mddev, 0); 4501 goto done_unlock; 4502 4503 case STOP_ARRAY_RO: 4504 err = do_md_stop (mddev, 1); 4505 goto done_unlock; 4506 4507 /* 4508 * We have a problem here : there is no easy way to give a CHS 4509 * virtual geometry. We currently pretend that we have a 2 heads 4510 * 4 sectors (with a BIG number of cylinders...). This drives 4511 * dosfs just mad... ;-) 4512 */ 4513 } 4514 4515 /* 4516 * The remaining ioctls are changing the state of the 4517 * superblock, so we do not allow them on read-only arrays. 4518 * However non-MD ioctls (e.g. get-size) will still come through 4519 * here and hit the 'default' below, so only disallow 4520 * 'md' ioctls, and switch to rw mode if started auto-readonly. 4521 */ 4522 if (_IOC_TYPE(cmd) == MD_MAJOR && 4523 mddev->ro && mddev->pers) { 4524 if (mddev->ro == 2) { 4525 mddev->ro = 0; 4526 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4527 md_wakeup_thread(mddev->thread); 4528 4529 } else { 4530 err = -EROFS; 4531 goto abort_unlock; 4532 } 4533 } 4534 4535 switch (cmd) 4536 { 4537 case ADD_NEW_DISK: 4538 { 4539 mdu_disk_info_t info; 4540 if (copy_from_user(&info, argp, sizeof(info))) 4541 err = -EFAULT; 4542 else 4543 err = add_new_disk(mddev, &info); 4544 goto done_unlock; 4545 } 4546 4547 case HOT_REMOVE_DISK: 4548 err = hot_remove_disk(mddev, new_decode_dev(arg)); 4549 goto done_unlock; 4550 4551 case HOT_ADD_DISK: 4552 err = hot_add_disk(mddev, new_decode_dev(arg)); 4553 goto done_unlock; 4554 4555 case SET_DISK_FAULTY: 4556 err = set_disk_faulty(mddev, new_decode_dev(arg)); 4557 goto done_unlock; 4558 4559 case RUN_ARRAY: 4560 err = do_md_run (mddev); 4561 goto done_unlock; 4562 4563 case SET_BITMAP_FILE: 4564 err = set_bitmap_file(mddev, (int)arg); 4565 goto done_unlock; 4566 4567 default: 4568 err = -EINVAL; 4569 goto abort_unlock; 4570 } 4571 4572 done_unlock: 4573 abort_unlock: 4574 mddev_unlock(mddev); 4575 4576 return err; 4577 done: 4578 if (err) 4579 MD_BUG(); 4580 abort: 4581 return err; 4582 } 4583 4584 static int md_open(struct inode *inode, struct file *file) 4585 { 4586 /* 4587 * Succeed if we can lock the mddev, which confirms that 4588 * it isn't being stopped right now. 4589 */ 4590 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 4591 int err; 4592 4593 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1))) 4594 goto out; 4595 4596 err = 0; 4597 mddev_get(mddev); 4598 mddev_unlock(mddev); 4599 4600 check_disk_change(inode->i_bdev); 4601 out: 4602 return err; 4603 } 4604 4605 static int md_release(struct inode *inode, struct file * file) 4606 { 4607 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 4608 4609 BUG_ON(!mddev); 4610 mddev_put(mddev); 4611 4612 return 0; 4613 } 4614 4615 static int md_media_changed(struct gendisk *disk) 4616 { 4617 mddev_t *mddev = disk->private_data; 4618 4619 return mddev->changed; 4620 } 4621 4622 static int md_revalidate(struct gendisk *disk) 4623 { 4624 mddev_t *mddev = disk->private_data; 4625 4626 mddev->changed = 0; 4627 return 0; 4628 } 4629 static struct block_device_operations md_fops = 4630 { 4631 .owner = THIS_MODULE, 4632 .open = md_open, 4633 .release = md_release, 4634 .ioctl = md_ioctl, 4635 .getgeo = md_getgeo, 4636 .media_changed = md_media_changed, 4637 .revalidate_disk= md_revalidate, 4638 }; 4639 4640 static int md_thread(void * arg) 4641 { 4642 mdk_thread_t *thread = arg; 4643 4644 /* 4645 * md_thread is a 'system-thread', it's priority should be very 4646 * high. We avoid resource deadlocks individually in each 4647 * raid personality. (RAID5 does preallocation) We also use RR and 4648 * the very same RT priority as kswapd, thus we will never get 4649 * into a priority inversion deadlock. 4650 * 4651 * we definitely have to have equal or higher priority than 4652 * bdflush, otherwise bdflush will deadlock if there are too 4653 * many dirty RAID5 blocks. 4654 */ 4655 4656 allow_signal(SIGKILL); 4657 while (!kthread_should_stop()) { 4658 4659 /* We need to wait INTERRUPTIBLE so that 4660 * we don't add to the load-average. 4661 * That means we need to be sure no signals are 4662 * pending 4663 */ 4664 if (signal_pending(current)) 4665 flush_signals(current); 4666 4667 wait_event_interruptible_timeout 4668 (thread->wqueue, 4669 test_bit(THREAD_WAKEUP, &thread->flags) 4670 || kthread_should_stop(), 4671 thread->timeout); 4672 4673 clear_bit(THREAD_WAKEUP, &thread->flags); 4674 4675 thread->run(thread->mddev); 4676 } 4677 4678 return 0; 4679 } 4680 4681 void md_wakeup_thread(mdk_thread_t *thread) 4682 { 4683 if (thread) { 4684 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 4685 set_bit(THREAD_WAKEUP, &thread->flags); 4686 wake_up(&thread->wqueue); 4687 } 4688 } 4689 4690 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 4691 const char *name) 4692 { 4693 mdk_thread_t *thread; 4694 4695 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 4696 if (!thread) 4697 return NULL; 4698 4699 init_waitqueue_head(&thread->wqueue); 4700 4701 thread->run = run; 4702 thread->mddev = mddev; 4703 thread->timeout = MAX_SCHEDULE_TIMEOUT; 4704 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev)); 4705 if (IS_ERR(thread->tsk)) { 4706 kfree(thread); 4707 return NULL; 4708 } 4709 return thread; 4710 } 4711 4712 void md_unregister_thread(mdk_thread_t *thread) 4713 { 4714 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid); 4715 4716 kthread_stop(thread->tsk); 4717 kfree(thread); 4718 } 4719 4720 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 4721 { 4722 if (!mddev) { 4723 MD_BUG(); 4724 return; 4725 } 4726 4727 if (!rdev || test_bit(Faulty, &rdev->flags)) 4728 return; 4729 /* 4730 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 4731 mdname(mddev), 4732 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 4733 __builtin_return_address(0),__builtin_return_address(1), 4734 __builtin_return_address(2),__builtin_return_address(3)); 4735 */ 4736 if (!mddev->pers) 4737 return; 4738 if (!mddev->pers->error_handler) 4739 return; 4740 mddev->pers->error_handler(mddev,rdev); 4741 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4742 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4743 md_wakeup_thread(mddev->thread); 4744 md_new_event_inintr(mddev); 4745 } 4746 4747 /* seq_file implementation /proc/mdstat */ 4748 4749 static void status_unused(struct seq_file *seq) 4750 { 4751 int i = 0; 4752 mdk_rdev_t *rdev; 4753 struct list_head *tmp; 4754 4755 seq_printf(seq, "unused devices: "); 4756 4757 ITERATE_RDEV_PENDING(rdev,tmp) { 4758 char b[BDEVNAME_SIZE]; 4759 i++; 4760 seq_printf(seq, "%s ", 4761 bdevname(rdev->bdev,b)); 4762 } 4763 if (!i) 4764 seq_printf(seq, "<none>"); 4765 4766 seq_printf(seq, "\n"); 4767 } 4768 4769 4770 static void status_resync(struct seq_file *seq, mddev_t * mddev) 4771 { 4772 sector_t max_blocks, resync, res; 4773 unsigned long dt, db, rt; 4774 int scale; 4775 unsigned int per_milli; 4776 4777 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2; 4778 4779 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 4780 max_blocks = mddev->resync_max_sectors >> 1; 4781 else 4782 max_blocks = mddev->size; 4783 4784 /* 4785 * Should not happen. 4786 */ 4787 if (!max_blocks) { 4788 MD_BUG(); 4789 return; 4790 } 4791 /* Pick 'scale' such that (resync>>scale)*1000 will fit 4792 * in a sector_t, and (max_blocks>>scale) will fit in a 4793 * u32, as those are the requirements for sector_div. 4794 * Thus 'scale' must be at least 10 4795 */ 4796 scale = 10; 4797 if (sizeof(sector_t) > sizeof(unsigned long)) { 4798 while ( max_blocks/2 > (1ULL<<(scale+32))) 4799 scale++; 4800 } 4801 res = (resync>>scale)*1000; 4802 sector_div(res, (u32)((max_blocks>>scale)+1)); 4803 4804 per_milli = res; 4805 { 4806 int i, x = per_milli/50, y = 20-x; 4807 seq_printf(seq, "["); 4808 for (i = 0; i < x; i++) 4809 seq_printf(seq, "="); 4810 seq_printf(seq, ">"); 4811 for (i = 0; i < y; i++) 4812 seq_printf(seq, "."); 4813 seq_printf(seq, "] "); 4814 } 4815 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 4816 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 4817 "reshape" : 4818 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 4819 "check" : 4820 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 4821 "resync" : "recovery"))), 4822 per_milli/10, per_milli % 10, 4823 (unsigned long long) resync, 4824 (unsigned long long) max_blocks); 4825 4826 /* 4827 * We do not want to overflow, so the order of operands and 4828 * the * 100 / 100 trick are important. We do a +1 to be 4829 * safe against division by zero. We only estimate anyway. 4830 * 4831 * dt: time from mark until now 4832 * db: blocks written from mark until now 4833 * rt: remaining time 4834 */ 4835 dt = ((jiffies - mddev->resync_mark) / HZ); 4836 if (!dt) dt++; 4837 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 4838 - mddev->resync_mark_cnt; 4839 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100; 4840 4841 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6); 4842 4843 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 4844 } 4845 4846 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 4847 { 4848 struct list_head *tmp; 4849 loff_t l = *pos; 4850 mddev_t *mddev; 4851 4852 if (l >= 0x10000) 4853 return NULL; 4854 if (!l--) 4855 /* header */ 4856 return (void*)1; 4857 4858 spin_lock(&all_mddevs_lock); 4859 list_for_each(tmp,&all_mddevs) 4860 if (!l--) { 4861 mddev = list_entry(tmp, mddev_t, all_mddevs); 4862 mddev_get(mddev); 4863 spin_unlock(&all_mddevs_lock); 4864 return mddev; 4865 } 4866 spin_unlock(&all_mddevs_lock); 4867 if (!l--) 4868 return (void*)2;/* tail */ 4869 return NULL; 4870 } 4871 4872 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4873 { 4874 struct list_head *tmp; 4875 mddev_t *next_mddev, *mddev = v; 4876 4877 ++*pos; 4878 if (v == (void*)2) 4879 return NULL; 4880 4881 spin_lock(&all_mddevs_lock); 4882 if (v == (void*)1) 4883 tmp = all_mddevs.next; 4884 else 4885 tmp = mddev->all_mddevs.next; 4886 if (tmp != &all_mddevs) 4887 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 4888 else { 4889 next_mddev = (void*)2; 4890 *pos = 0x10000; 4891 } 4892 spin_unlock(&all_mddevs_lock); 4893 4894 if (v != (void*)1) 4895 mddev_put(mddev); 4896 return next_mddev; 4897 4898 } 4899 4900 static void md_seq_stop(struct seq_file *seq, void *v) 4901 { 4902 mddev_t *mddev = v; 4903 4904 if (mddev && v != (void*)1 && v != (void*)2) 4905 mddev_put(mddev); 4906 } 4907 4908 struct mdstat_info { 4909 int event; 4910 }; 4911 4912 static int md_seq_show(struct seq_file *seq, void *v) 4913 { 4914 mddev_t *mddev = v; 4915 sector_t size; 4916 struct list_head *tmp2; 4917 mdk_rdev_t *rdev; 4918 struct mdstat_info *mi = seq->private; 4919 struct bitmap *bitmap; 4920 4921 if (v == (void*)1) { 4922 struct mdk_personality *pers; 4923 seq_printf(seq, "Personalities : "); 4924 spin_lock(&pers_lock); 4925 list_for_each_entry(pers, &pers_list, list) 4926 seq_printf(seq, "[%s] ", pers->name); 4927 4928 spin_unlock(&pers_lock); 4929 seq_printf(seq, "\n"); 4930 mi->event = atomic_read(&md_event_count); 4931 return 0; 4932 } 4933 if (v == (void*)2) { 4934 status_unused(seq); 4935 return 0; 4936 } 4937 4938 if (mddev_lock(mddev) < 0) 4939 return -EINTR; 4940 4941 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 4942 seq_printf(seq, "%s : %sactive", mdname(mddev), 4943 mddev->pers ? "" : "in"); 4944 if (mddev->pers) { 4945 if (mddev->ro==1) 4946 seq_printf(seq, " (read-only)"); 4947 if (mddev->ro==2) 4948 seq_printf(seq, "(auto-read-only)"); 4949 seq_printf(seq, " %s", mddev->pers->name); 4950 } 4951 4952 size = 0; 4953 ITERATE_RDEV(mddev,rdev,tmp2) { 4954 char b[BDEVNAME_SIZE]; 4955 seq_printf(seq, " %s[%d]", 4956 bdevname(rdev->bdev,b), rdev->desc_nr); 4957 if (test_bit(WriteMostly, &rdev->flags)) 4958 seq_printf(seq, "(W)"); 4959 if (test_bit(Faulty, &rdev->flags)) { 4960 seq_printf(seq, "(F)"); 4961 continue; 4962 } else if (rdev->raid_disk < 0) 4963 seq_printf(seq, "(S)"); /* spare */ 4964 size += rdev->size; 4965 } 4966 4967 if (!list_empty(&mddev->disks)) { 4968 if (mddev->pers) 4969 seq_printf(seq, "\n %llu blocks", 4970 (unsigned long long)mddev->array_size); 4971 else 4972 seq_printf(seq, "\n %llu blocks", 4973 (unsigned long long)size); 4974 } 4975 if (mddev->persistent) { 4976 if (mddev->major_version != 0 || 4977 mddev->minor_version != 90) { 4978 seq_printf(seq," super %d.%d", 4979 mddev->major_version, 4980 mddev->minor_version); 4981 } 4982 } else 4983 seq_printf(seq, " super non-persistent"); 4984 4985 if (mddev->pers) { 4986 mddev->pers->status (seq, mddev); 4987 seq_printf(seq, "\n "); 4988 if (mddev->pers->sync_request) { 4989 if (mddev->curr_resync > 2) { 4990 status_resync (seq, mddev); 4991 seq_printf(seq, "\n "); 4992 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 4993 seq_printf(seq, "\tresync=DELAYED\n "); 4994 else if (mddev->recovery_cp < MaxSector) 4995 seq_printf(seq, "\tresync=PENDING\n "); 4996 } 4997 } else 4998 seq_printf(seq, "\n "); 4999 5000 if ((bitmap = mddev->bitmap)) { 5001 unsigned long chunk_kb; 5002 unsigned long flags; 5003 spin_lock_irqsave(&bitmap->lock, flags); 5004 chunk_kb = bitmap->chunksize >> 10; 5005 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 5006 "%lu%s chunk", 5007 bitmap->pages - bitmap->missing_pages, 5008 bitmap->pages, 5009 (bitmap->pages - bitmap->missing_pages) 5010 << (PAGE_SHIFT - 10), 5011 chunk_kb ? chunk_kb : bitmap->chunksize, 5012 chunk_kb ? "KB" : "B"); 5013 if (bitmap->file) { 5014 seq_printf(seq, ", file: "); 5015 seq_path(seq, bitmap->file->f_path.mnt, 5016 bitmap->file->f_path.dentry," \t\n"); 5017 } 5018 5019 seq_printf(seq, "\n"); 5020 spin_unlock_irqrestore(&bitmap->lock, flags); 5021 } 5022 5023 seq_printf(seq, "\n"); 5024 } 5025 mddev_unlock(mddev); 5026 5027 return 0; 5028 } 5029 5030 static struct seq_operations md_seq_ops = { 5031 .start = md_seq_start, 5032 .next = md_seq_next, 5033 .stop = md_seq_stop, 5034 .show = md_seq_show, 5035 }; 5036 5037 static int md_seq_open(struct inode *inode, struct file *file) 5038 { 5039 int error; 5040 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 5041 if (mi == NULL) 5042 return -ENOMEM; 5043 5044 error = seq_open(file, &md_seq_ops); 5045 if (error) 5046 kfree(mi); 5047 else { 5048 struct seq_file *p = file->private_data; 5049 p->private = mi; 5050 mi->event = atomic_read(&md_event_count); 5051 } 5052 return error; 5053 } 5054 5055 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 5056 { 5057 struct seq_file *m = filp->private_data; 5058 struct mdstat_info *mi = m->private; 5059 int mask; 5060 5061 poll_wait(filp, &md_event_waiters, wait); 5062 5063 /* always allow read */ 5064 mask = POLLIN | POLLRDNORM; 5065 5066 if (mi->event != atomic_read(&md_event_count)) 5067 mask |= POLLERR | POLLPRI; 5068 return mask; 5069 } 5070 5071 static const struct file_operations md_seq_fops = { 5072 .owner = THIS_MODULE, 5073 .open = md_seq_open, 5074 .read = seq_read, 5075 .llseek = seq_lseek, 5076 .release = seq_release_private, 5077 .poll = mdstat_poll, 5078 }; 5079 5080 int register_md_personality(struct mdk_personality *p) 5081 { 5082 spin_lock(&pers_lock); 5083 list_add_tail(&p->list, &pers_list); 5084 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 5085 spin_unlock(&pers_lock); 5086 return 0; 5087 } 5088 5089 int unregister_md_personality(struct mdk_personality *p) 5090 { 5091 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 5092 spin_lock(&pers_lock); 5093 list_del_init(&p->list); 5094 spin_unlock(&pers_lock); 5095 return 0; 5096 } 5097 5098 static int is_mddev_idle(mddev_t *mddev) 5099 { 5100 mdk_rdev_t * rdev; 5101 struct list_head *tmp; 5102 int idle; 5103 long curr_events; 5104 5105 idle = 1; 5106 ITERATE_RDEV(mddev,rdev,tmp) { 5107 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 5108 curr_events = disk_stat_read(disk, sectors[0]) + 5109 disk_stat_read(disk, sectors[1]) - 5110 atomic_read(&disk->sync_io); 5111 /* sync IO will cause sync_io to increase before the disk_stats 5112 * as sync_io is counted when a request starts, and 5113 * disk_stats is counted when it completes. 5114 * So resync activity will cause curr_events to be smaller than 5115 * when there was no such activity. 5116 * non-sync IO will cause disk_stat to increase without 5117 * increasing sync_io so curr_events will (eventually) 5118 * be larger than it was before. Once it becomes 5119 * substantially larger, the test below will cause 5120 * the array to appear non-idle, and resync will slow 5121 * down. 5122 * If there is a lot of outstanding resync activity when 5123 * we set last_event to curr_events, then all that activity 5124 * completing might cause the array to appear non-idle 5125 * and resync will be slowed down even though there might 5126 * not have been non-resync activity. This will only 5127 * happen once though. 'last_events' will soon reflect 5128 * the state where there is little or no outstanding 5129 * resync requests, and further resync activity will 5130 * always make curr_events less than last_events. 5131 * 5132 */ 5133 if (curr_events - rdev->last_events > 4096) { 5134 rdev->last_events = curr_events; 5135 idle = 0; 5136 } 5137 } 5138 return idle; 5139 } 5140 5141 void md_done_sync(mddev_t *mddev, int blocks, int ok) 5142 { 5143 /* another "blocks" (512byte) blocks have been synced */ 5144 atomic_sub(blocks, &mddev->recovery_active); 5145 wake_up(&mddev->recovery_wait); 5146 if (!ok) { 5147 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 5148 md_wakeup_thread(mddev->thread); 5149 // stop recovery, signal do_sync .... 5150 } 5151 } 5152 5153 5154 /* md_write_start(mddev, bi) 5155 * If we need to update some array metadata (e.g. 'active' flag 5156 * in superblock) before writing, schedule a superblock update 5157 * and wait for it to complete. 5158 */ 5159 void md_write_start(mddev_t *mddev, struct bio *bi) 5160 { 5161 if (bio_data_dir(bi) != WRITE) 5162 return; 5163 5164 BUG_ON(mddev->ro == 1); 5165 if (mddev->ro == 2) { 5166 /* need to switch to read/write */ 5167 mddev->ro = 0; 5168 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5169 md_wakeup_thread(mddev->thread); 5170 } 5171 atomic_inc(&mddev->writes_pending); 5172 if (mddev->in_sync) { 5173 spin_lock_irq(&mddev->write_lock); 5174 if (mddev->in_sync) { 5175 mddev->in_sync = 0; 5176 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5177 md_wakeup_thread(mddev->thread); 5178 } 5179 spin_unlock_irq(&mddev->write_lock); 5180 } 5181 wait_event(mddev->sb_wait, mddev->flags==0); 5182 } 5183 5184 void md_write_end(mddev_t *mddev) 5185 { 5186 if (atomic_dec_and_test(&mddev->writes_pending)) { 5187 if (mddev->safemode == 2) 5188 md_wakeup_thread(mddev->thread); 5189 else if (mddev->safemode_delay) 5190 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 5191 } 5192 } 5193 5194 /* md_allow_write(mddev) 5195 * Calling this ensures that the array is marked 'active' so that writes 5196 * may proceed without blocking. It is important to call this before 5197 * attempting a GFP_KERNEL allocation while holding the mddev lock. 5198 * Must be called with mddev_lock held. 5199 */ 5200 void md_allow_write(mddev_t *mddev) 5201 { 5202 if (!mddev->pers) 5203 return; 5204 if (mddev->ro) 5205 return; 5206 5207 spin_lock_irq(&mddev->write_lock); 5208 if (mddev->in_sync) { 5209 mddev->in_sync = 0; 5210 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5211 if (mddev->safemode_delay && 5212 mddev->safemode == 0) 5213 mddev->safemode = 1; 5214 spin_unlock_irq(&mddev->write_lock); 5215 md_update_sb(mddev, 0); 5216 } else 5217 spin_unlock_irq(&mddev->write_lock); 5218 } 5219 EXPORT_SYMBOL_GPL(md_allow_write); 5220 5221 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 5222 5223 #define SYNC_MARKS 10 5224 #define SYNC_MARK_STEP (3*HZ) 5225 void md_do_sync(mddev_t *mddev) 5226 { 5227 mddev_t *mddev2; 5228 unsigned int currspeed = 0, 5229 window; 5230 sector_t max_sectors,j, io_sectors; 5231 unsigned long mark[SYNC_MARKS]; 5232 sector_t mark_cnt[SYNC_MARKS]; 5233 int last_mark,m; 5234 struct list_head *tmp; 5235 sector_t last_check; 5236 int skipped = 0; 5237 struct list_head *rtmp; 5238 mdk_rdev_t *rdev; 5239 char *desc; 5240 5241 /* just incase thread restarts... */ 5242 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 5243 return; 5244 if (mddev->ro) /* never try to sync a read-only array */ 5245 return; 5246 5247 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5248 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 5249 desc = "data-check"; 5250 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5251 desc = "requested-resync"; 5252 else 5253 desc = "resync"; 5254 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5255 desc = "reshape"; 5256 else 5257 desc = "recovery"; 5258 5259 /* we overload curr_resync somewhat here. 5260 * 0 == not engaged in resync at all 5261 * 2 == checking that there is no conflict with another sync 5262 * 1 == like 2, but have yielded to allow conflicting resync to 5263 * commense 5264 * other == active in resync - this many blocks 5265 * 5266 * Before starting a resync we must have set curr_resync to 5267 * 2, and then checked that every "conflicting" array has curr_resync 5268 * less than ours. When we find one that is the same or higher 5269 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 5270 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 5271 * This will mean we have to start checking from the beginning again. 5272 * 5273 */ 5274 5275 do { 5276 mddev->curr_resync = 2; 5277 5278 try_again: 5279 if (kthread_should_stop()) { 5280 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5281 goto skip; 5282 } 5283 ITERATE_MDDEV(mddev2,tmp) { 5284 if (mddev2 == mddev) 5285 continue; 5286 if (mddev2->curr_resync && 5287 match_mddev_units(mddev,mddev2)) { 5288 DEFINE_WAIT(wq); 5289 if (mddev < mddev2 && mddev->curr_resync == 2) { 5290 /* arbitrarily yield */ 5291 mddev->curr_resync = 1; 5292 wake_up(&resync_wait); 5293 } 5294 if (mddev > mddev2 && mddev->curr_resync == 1) 5295 /* no need to wait here, we can wait the next 5296 * time 'round when curr_resync == 2 5297 */ 5298 continue; 5299 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE); 5300 if (!kthread_should_stop() && 5301 mddev2->curr_resync >= mddev->curr_resync) { 5302 printk(KERN_INFO "md: delaying %s of %s" 5303 " until %s has finished (they" 5304 " share one or more physical units)\n", 5305 desc, mdname(mddev), mdname(mddev2)); 5306 mddev_put(mddev2); 5307 schedule(); 5308 finish_wait(&resync_wait, &wq); 5309 goto try_again; 5310 } 5311 finish_wait(&resync_wait, &wq); 5312 } 5313 } 5314 } while (mddev->curr_resync < 2); 5315 5316 j = 0; 5317 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5318 /* resync follows the size requested by the personality, 5319 * which defaults to physical size, but can be virtual size 5320 */ 5321 max_sectors = mddev->resync_max_sectors; 5322 mddev->resync_mismatches = 0; 5323 /* we don't use the checkpoint if there's a bitmap */ 5324 if (!mddev->bitmap && 5325 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5326 j = mddev->recovery_cp; 5327 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5328 max_sectors = mddev->size << 1; 5329 else { 5330 /* recovery follows the physical size of devices */ 5331 max_sectors = mddev->size << 1; 5332 j = MaxSector; 5333 ITERATE_RDEV(mddev,rdev,rtmp) 5334 if (rdev->raid_disk >= 0 && 5335 !test_bit(Faulty, &rdev->flags) && 5336 !test_bit(In_sync, &rdev->flags) && 5337 rdev->recovery_offset < j) 5338 j = rdev->recovery_offset; 5339 } 5340 5341 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 5342 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 5343 " %d KB/sec/disk.\n", speed_min(mddev)); 5344 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 5345 "(but not more than %d KB/sec) for %s.\n", 5346 speed_max(mddev), desc); 5347 5348 is_mddev_idle(mddev); /* this also initializes IO event counters */ 5349 5350 io_sectors = 0; 5351 for (m = 0; m < SYNC_MARKS; m++) { 5352 mark[m] = jiffies; 5353 mark_cnt[m] = io_sectors; 5354 } 5355 last_mark = 0; 5356 mddev->resync_mark = mark[last_mark]; 5357 mddev->resync_mark_cnt = mark_cnt[last_mark]; 5358 5359 /* 5360 * Tune reconstruction: 5361 */ 5362 window = 32*(PAGE_SIZE/512); 5363 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 5364 window/2,(unsigned long long) max_sectors/2); 5365 5366 atomic_set(&mddev->recovery_active, 0); 5367 init_waitqueue_head(&mddev->recovery_wait); 5368 last_check = 0; 5369 5370 if (j>2) { 5371 printk(KERN_INFO 5372 "md: resuming %s of %s from checkpoint.\n", 5373 desc, mdname(mddev)); 5374 mddev->curr_resync = j; 5375 } 5376 5377 while (j < max_sectors) { 5378 sector_t sectors; 5379 5380 skipped = 0; 5381 sectors = mddev->pers->sync_request(mddev, j, &skipped, 5382 currspeed < speed_min(mddev)); 5383 if (sectors == 0) { 5384 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 5385 goto out; 5386 } 5387 5388 if (!skipped) { /* actual IO requested */ 5389 io_sectors += sectors; 5390 atomic_add(sectors, &mddev->recovery_active); 5391 } 5392 5393 j += sectors; 5394 if (j>1) mddev->curr_resync = j; 5395 mddev->curr_mark_cnt = io_sectors; 5396 if (last_check == 0) 5397 /* this is the earliers that rebuilt will be 5398 * visible in /proc/mdstat 5399 */ 5400 md_new_event(mddev); 5401 5402 if (last_check + window > io_sectors || j == max_sectors) 5403 continue; 5404 5405 last_check = io_sectors; 5406 5407 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) || 5408 test_bit(MD_RECOVERY_ERR, &mddev->recovery)) 5409 break; 5410 5411 repeat: 5412 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 5413 /* step marks */ 5414 int next = (last_mark+1) % SYNC_MARKS; 5415 5416 mddev->resync_mark = mark[next]; 5417 mddev->resync_mark_cnt = mark_cnt[next]; 5418 mark[next] = jiffies; 5419 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 5420 last_mark = next; 5421 } 5422 5423 5424 if (kthread_should_stop()) { 5425 /* 5426 * got a signal, exit. 5427 */ 5428 printk(KERN_INFO 5429 "md: md_do_sync() got signal ... exiting\n"); 5430 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5431 goto out; 5432 } 5433 5434 /* 5435 * this loop exits only if either when we are slower than 5436 * the 'hard' speed limit, or the system was IO-idle for 5437 * a jiffy. 5438 * the system might be non-idle CPU-wise, but we only care 5439 * about not overloading the IO subsystem. (things like an 5440 * e2fsck being done on the RAID array should execute fast) 5441 */ 5442 mddev->queue->unplug_fn(mddev->queue); 5443 cond_resched(); 5444 5445 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 5446 /((jiffies-mddev->resync_mark)/HZ +1) +1; 5447 5448 if (currspeed > speed_min(mddev)) { 5449 if ((currspeed > speed_max(mddev)) || 5450 !is_mddev_idle(mddev)) { 5451 msleep(500); 5452 goto repeat; 5453 } 5454 } 5455 } 5456 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 5457 /* 5458 * this also signals 'finished resyncing' to md_stop 5459 */ 5460 out: 5461 mddev->queue->unplug_fn(mddev->queue); 5462 5463 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 5464 5465 /* tell personality that we are finished */ 5466 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 5467 5468 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && 5469 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 5470 mddev->curr_resync > 2) { 5471 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5472 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5473 if (mddev->curr_resync >= mddev->recovery_cp) { 5474 printk(KERN_INFO 5475 "md: checkpointing %s of %s.\n", 5476 desc, mdname(mddev)); 5477 mddev->recovery_cp = mddev->curr_resync; 5478 } 5479 } else 5480 mddev->recovery_cp = MaxSector; 5481 } else { 5482 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5483 mddev->curr_resync = MaxSector; 5484 ITERATE_RDEV(mddev,rdev,rtmp) 5485 if (rdev->raid_disk >= 0 && 5486 !test_bit(Faulty, &rdev->flags) && 5487 !test_bit(In_sync, &rdev->flags) && 5488 rdev->recovery_offset < mddev->curr_resync) 5489 rdev->recovery_offset = mddev->curr_resync; 5490 } 5491 } 5492 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5493 5494 skip: 5495 mddev->curr_resync = 0; 5496 wake_up(&resync_wait); 5497 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 5498 md_wakeup_thread(mddev->thread); 5499 } 5500 EXPORT_SYMBOL_GPL(md_do_sync); 5501 5502 5503 static int remove_and_add_spares(mddev_t *mddev) 5504 { 5505 mdk_rdev_t *rdev; 5506 struct list_head *rtmp; 5507 int spares = 0; 5508 5509 ITERATE_RDEV(mddev,rdev,rtmp) 5510 if (rdev->raid_disk >= 0 && 5511 (test_bit(Faulty, &rdev->flags) || 5512 ! test_bit(In_sync, &rdev->flags)) && 5513 atomic_read(&rdev->nr_pending)==0) { 5514 if (mddev->pers->hot_remove_disk( 5515 mddev, rdev->raid_disk)==0) { 5516 char nm[20]; 5517 sprintf(nm,"rd%d", rdev->raid_disk); 5518 sysfs_remove_link(&mddev->kobj, nm); 5519 rdev->raid_disk = -1; 5520 } 5521 } 5522 5523 if (mddev->degraded) { 5524 ITERATE_RDEV(mddev,rdev,rtmp) 5525 if (rdev->raid_disk < 0 5526 && !test_bit(Faulty, &rdev->flags)) { 5527 rdev->recovery_offset = 0; 5528 if (mddev->pers->hot_add_disk(mddev,rdev)) { 5529 char nm[20]; 5530 sprintf(nm, "rd%d", rdev->raid_disk); 5531 if (sysfs_create_link(&mddev->kobj, 5532 &rdev->kobj, nm)) 5533 printk(KERN_WARNING 5534 "md: cannot register " 5535 "%s for %s\n", 5536 nm, mdname(mddev)); 5537 spares++; 5538 md_new_event(mddev); 5539 } else 5540 break; 5541 } 5542 } 5543 return spares; 5544 } 5545 /* 5546 * This routine is regularly called by all per-raid-array threads to 5547 * deal with generic issues like resync and super-block update. 5548 * Raid personalities that don't have a thread (linear/raid0) do not 5549 * need this as they never do any recovery or update the superblock. 5550 * 5551 * It does not do any resync itself, but rather "forks" off other threads 5552 * to do that as needed. 5553 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 5554 * "->recovery" and create a thread at ->sync_thread. 5555 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR) 5556 * and wakeups up this thread which will reap the thread and finish up. 5557 * This thread also removes any faulty devices (with nr_pending == 0). 5558 * 5559 * The overall approach is: 5560 * 1/ if the superblock needs updating, update it. 5561 * 2/ If a recovery thread is running, don't do anything else. 5562 * 3/ If recovery has finished, clean up, possibly marking spares active. 5563 * 4/ If there are any faulty devices, remove them. 5564 * 5/ If array is degraded, try to add spares devices 5565 * 6/ If array has spares or is not in-sync, start a resync thread. 5566 */ 5567 void md_check_recovery(mddev_t *mddev) 5568 { 5569 mdk_rdev_t *rdev; 5570 struct list_head *rtmp; 5571 5572 5573 if (mddev->bitmap) 5574 bitmap_daemon_work(mddev->bitmap); 5575 5576 if (mddev->ro) 5577 return; 5578 5579 if (signal_pending(current)) { 5580 if (mddev->pers->sync_request) { 5581 printk(KERN_INFO "md: %s in immediate safe mode\n", 5582 mdname(mddev)); 5583 mddev->safemode = 2; 5584 } 5585 flush_signals(current); 5586 } 5587 5588 if ( ! ( 5589 mddev->flags || 5590 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 5591 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 5592 (mddev->safemode == 1) || 5593 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 5594 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 5595 )) 5596 return; 5597 5598 if (mddev_trylock(mddev)) { 5599 int spares = 0; 5600 5601 spin_lock_irq(&mddev->write_lock); 5602 if (mddev->safemode && !atomic_read(&mddev->writes_pending) && 5603 !mddev->in_sync && mddev->recovery_cp == MaxSector) { 5604 mddev->in_sync = 1; 5605 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5606 } 5607 if (mddev->safemode == 1) 5608 mddev->safemode = 0; 5609 spin_unlock_irq(&mddev->write_lock); 5610 5611 if (mddev->flags) 5612 md_update_sb(mddev, 0); 5613 5614 5615 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 5616 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 5617 /* resync/recovery still happening */ 5618 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5619 goto unlock; 5620 } 5621 if (mddev->sync_thread) { 5622 /* resync has finished, collect result */ 5623 md_unregister_thread(mddev->sync_thread); 5624 mddev->sync_thread = NULL; 5625 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && 5626 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5627 /* success...*/ 5628 /* activate any spares */ 5629 mddev->pers->spare_active(mddev); 5630 } 5631 md_update_sb(mddev, 1); 5632 5633 /* if array is no-longer degraded, then any saved_raid_disk 5634 * information must be scrapped 5635 */ 5636 if (!mddev->degraded) 5637 ITERATE_RDEV(mddev,rdev,rtmp) 5638 rdev->saved_raid_disk = -1; 5639 5640 mddev->recovery = 0; 5641 /* flag recovery needed just to double check */ 5642 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5643 md_new_event(mddev); 5644 goto unlock; 5645 } 5646 /* Clear some bits that don't mean anything, but 5647 * might be left set 5648 */ 5649 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5650 clear_bit(MD_RECOVERY_ERR, &mddev->recovery); 5651 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 5652 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 5653 5654 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 5655 goto unlock; 5656 /* no recovery is running. 5657 * remove any failed drives, then 5658 * add spares if possible. 5659 * Spare are also removed and re-added, to allow 5660 * the personality to fail the re-add. 5661 */ 5662 5663 if (mddev->reshape_position != MaxSector) { 5664 if (mddev->pers->check_reshape(mddev) != 0) 5665 /* Cannot proceed */ 5666 goto unlock; 5667 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5668 } else if ((spares = remove_and_add_spares(mddev))) { 5669 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5670 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5671 } else if (mddev->recovery_cp < MaxSector) { 5672 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5673 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 5674 /* nothing to be done ... */ 5675 goto unlock; 5676 5677 if (mddev->pers->sync_request) { 5678 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5679 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 5680 /* We are adding a device or devices to an array 5681 * which has the bitmap stored on all devices. 5682 * So make sure all bitmap pages get written 5683 */ 5684 bitmap_write_all(mddev->bitmap); 5685 } 5686 mddev->sync_thread = md_register_thread(md_do_sync, 5687 mddev, 5688 "%s_resync"); 5689 if (!mddev->sync_thread) { 5690 printk(KERN_ERR "%s: could not start resync" 5691 " thread...\n", 5692 mdname(mddev)); 5693 /* leave the spares where they are, it shouldn't hurt */ 5694 mddev->recovery = 0; 5695 } else 5696 md_wakeup_thread(mddev->sync_thread); 5697 md_new_event(mddev); 5698 } 5699 unlock: 5700 mddev_unlock(mddev); 5701 } 5702 } 5703 5704 static int md_notify_reboot(struct notifier_block *this, 5705 unsigned long code, void *x) 5706 { 5707 struct list_head *tmp; 5708 mddev_t *mddev; 5709 5710 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 5711 5712 printk(KERN_INFO "md: stopping all md devices.\n"); 5713 5714 ITERATE_MDDEV(mddev,tmp) 5715 if (mddev_trylock(mddev)) { 5716 do_md_stop (mddev, 1); 5717 mddev_unlock(mddev); 5718 } 5719 /* 5720 * certain more exotic SCSI devices are known to be 5721 * volatile wrt too early system reboots. While the 5722 * right place to handle this issue is the given 5723 * driver, we do want to have a safe RAID driver ... 5724 */ 5725 mdelay(1000*1); 5726 } 5727 return NOTIFY_DONE; 5728 } 5729 5730 static struct notifier_block md_notifier = { 5731 .notifier_call = md_notify_reboot, 5732 .next = NULL, 5733 .priority = INT_MAX, /* before any real devices */ 5734 }; 5735 5736 static void md_geninit(void) 5737 { 5738 struct proc_dir_entry *p; 5739 5740 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 5741 5742 p = create_proc_entry("mdstat", S_IRUGO, NULL); 5743 if (p) 5744 p->proc_fops = &md_seq_fops; 5745 } 5746 5747 static int __init md_init(void) 5748 { 5749 if (register_blkdev(MAJOR_NR, "md")) 5750 return -1; 5751 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 5752 unregister_blkdev(MAJOR_NR, "md"); 5753 return -1; 5754 } 5755 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE, 5756 md_probe, NULL, NULL); 5757 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 5758 md_probe, NULL, NULL); 5759 5760 register_reboot_notifier(&md_notifier); 5761 raid_table_header = register_sysctl_table(raid_root_table); 5762 5763 md_geninit(); 5764 return (0); 5765 } 5766 5767 5768 #ifndef MODULE 5769 5770 /* 5771 * Searches all registered partitions for autorun RAID arrays 5772 * at boot time. 5773 */ 5774 static dev_t detected_devices[128]; 5775 static int dev_cnt; 5776 5777 void md_autodetect_dev(dev_t dev) 5778 { 5779 if (dev_cnt >= 0 && dev_cnt < 127) 5780 detected_devices[dev_cnt++] = dev; 5781 } 5782 5783 5784 static void autostart_arrays(int part) 5785 { 5786 mdk_rdev_t *rdev; 5787 int i; 5788 5789 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 5790 5791 for (i = 0; i < dev_cnt; i++) { 5792 dev_t dev = detected_devices[i]; 5793 5794 rdev = md_import_device(dev,0, 90); 5795 if (IS_ERR(rdev)) 5796 continue; 5797 5798 if (test_bit(Faulty, &rdev->flags)) { 5799 MD_BUG(); 5800 continue; 5801 } 5802 list_add(&rdev->same_set, &pending_raid_disks); 5803 } 5804 dev_cnt = 0; 5805 5806 autorun_devices(part); 5807 } 5808 5809 #endif /* !MODULE */ 5810 5811 static __exit void md_exit(void) 5812 { 5813 mddev_t *mddev; 5814 struct list_head *tmp; 5815 5816 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS); 5817 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 5818 5819 unregister_blkdev(MAJOR_NR,"md"); 5820 unregister_blkdev(mdp_major, "mdp"); 5821 unregister_reboot_notifier(&md_notifier); 5822 unregister_sysctl_table(raid_table_header); 5823 remove_proc_entry("mdstat", NULL); 5824 ITERATE_MDDEV(mddev,tmp) { 5825 struct gendisk *disk = mddev->gendisk; 5826 if (!disk) 5827 continue; 5828 export_array(mddev); 5829 del_gendisk(disk); 5830 put_disk(disk); 5831 mddev->gendisk = NULL; 5832 mddev_put(mddev); 5833 } 5834 } 5835 5836 subsys_initcall(md_init); 5837 module_exit(md_exit) 5838 5839 static int get_ro(char *buffer, struct kernel_param *kp) 5840 { 5841 return sprintf(buffer, "%d", start_readonly); 5842 } 5843 static int set_ro(const char *val, struct kernel_param *kp) 5844 { 5845 char *e; 5846 int num = simple_strtoul(val, &e, 10); 5847 if (*val && (*e == '\0' || *e == '\n')) { 5848 start_readonly = num; 5849 return 0; 5850 } 5851 return -EINVAL; 5852 } 5853 5854 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 5855 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 5856 5857 5858 EXPORT_SYMBOL(register_md_personality); 5859 EXPORT_SYMBOL(unregister_md_personality); 5860 EXPORT_SYMBOL(md_error); 5861 EXPORT_SYMBOL(md_done_sync); 5862 EXPORT_SYMBOL(md_write_start); 5863 EXPORT_SYMBOL(md_write_end); 5864 EXPORT_SYMBOL(md_register_thread); 5865 EXPORT_SYMBOL(md_unregister_thread); 5866 EXPORT_SYMBOL(md_wakeup_thread); 5867 EXPORT_SYMBOL(md_check_recovery); 5868 MODULE_LICENSE("GPL"); 5869 MODULE_ALIAS("md"); 5870 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 5871