xref: /linux/drivers/md/md.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
47 
48 #include <linux/init.h>
49 
50 #include <linux/file.h>
51 
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
55 
56 #include <asm/unaligned.h>
57 
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
60 
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
63 
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66 
67 
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
71 
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
74 
75 static void md_print_devices(void);
76 
77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78 
79 /*
80  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81  * is 1000 KB/sec, so the extra system load does not show up that much.
82  * Increase it if you want to have more _guaranteed_ speed. Note that
83  * the RAID driver will use the maximum available bandwidth if the IO
84  * subsystem is idle. There is also an 'absolute maximum' reconstruction
85  * speed limit - in case reconstruction slows down your system despite
86  * idle IO detection.
87  *
88  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89  * or /sys/block/mdX/md/sync_speed_{min,max}
90  */
91 
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
95 {
96 	return mddev->sync_speed_min ?
97 		mddev->sync_speed_min : sysctl_speed_limit_min;
98 }
99 
100 static inline int speed_max(mddev_t *mddev)
101 {
102 	return mddev->sync_speed_max ?
103 		mddev->sync_speed_max : sysctl_speed_limit_max;
104 }
105 
106 static struct ctl_table_header *raid_table_header;
107 
108 static ctl_table raid_table[] = {
109 	{
110 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
111 		.procname	= "speed_limit_min",
112 		.data		= &sysctl_speed_limit_min,
113 		.maxlen		= sizeof(int),
114 		.mode		= S_IRUGO|S_IWUSR,
115 		.proc_handler	= &proc_dointvec,
116 	},
117 	{
118 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
119 		.procname	= "speed_limit_max",
120 		.data		= &sysctl_speed_limit_max,
121 		.maxlen		= sizeof(int),
122 		.mode		= S_IRUGO|S_IWUSR,
123 		.proc_handler	= &proc_dointvec,
124 	},
125 	{ .ctl_name = 0 }
126 };
127 
128 static ctl_table raid_dir_table[] = {
129 	{
130 		.ctl_name	= DEV_RAID,
131 		.procname	= "raid",
132 		.maxlen		= 0,
133 		.mode		= S_IRUGO|S_IXUGO,
134 		.child		= raid_table,
135 	},
136 	{ .ctl_name = 0 }
137 };
138 
139 static ctl_table raid_root_table[] = {
140 	{
141 		.ctl_name	= CTL_DEV,
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{ .ctl_name = 0 }
148 };
149 
150 static struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /*
155  * We have a system wide 'event count' that is incremented
156  * on any 'interesting' event, and readers of /proc/mdstat
157  * can use 'poll' or 'select' to find out when the event
158  * count increases.
159  *
160  * Events are:
161  *  start array, stop array, error, add device, remove device,
162  *  start build, activate spare
163  */
164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
165 static atomic_t md_event_count;
166 void md_new_event(mddev_t *mddev)
167 {
168 	atomic_inc(&md_event_count);
169 	wake_up(&md_event_waiters);
170 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
171 }
172 EXPORT_SYMBOL_GPL(md_new_event);
173 
174 /* Alternate version that can be called from interrupts
175  * when calling sysfs_notify isn't needed.
176  */
177 static void md_new_event_inintr(mddev_t *mddev)
178 {
179 	atomic_inc(&md_event_count);
180 	wake_up(&md_event_waiters);
181 }
182 
183 /*
184  * Enables to iterate over all existing md arrays
185  * all_mddevs_lock protects this list.
186  */
187 static LIST_HEAD(all_mddevs);
188 static DEFINE_SPINLOCK(all_mddevs_lock);
189 
190 
191 /*
192  * iterates through all used mddevs in the system.
193  * We take care to grab the all_mddevs_lock whenever navigating
194  * the list, and to always hold a refcount when unlocked.
195  * Any code which breaks out of this loop while own
196  * a reference to the current mddev and must mddev_put it.
197  */
198 #define ITERATE_MDDEV(mddev,tmp)					\
199 									\
200 	for (({ spin_lock(&all_mddevs_lock); 				\
201 		tmp = all_mddevs.next;					\
202 		mddev = NULL;});					\
203 	     ({ if (tmp != &all_mddevs)					\
204 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
205 		spin_unlock(&all_mddevs_lock);				\
206 		if (mddev) mddev_put(mddev);				\
207 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
208 		tmp != &all_mddevs;});					\
209 	     ({ spin_lock(&all_mddevs_lock);				\
210 		tmp = tmp->next;})					\
211 		)
212 
213 
214 static int md_fail_request (struct request_queue *q, struct bio *bio)
215 {
216 	bio_io_error(bio);
217 	return 0;
218 }
219 
220 static inline mddev_t *mddev_get(mddev_t *mddev)
221 {
222 	atomic_inc(&mddev->active);
223 	return mddev;
224 }
225 
226 static void mddev_put(mddev_t *mddev)
227 {
228 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
229 		return;
230 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
231 		list_del(&mddev->all_mddevs);
232 		spin_unlock(&all_mddevs_lock);
233 		blk_cleanup_queue(mddev->queue);
234 		kobject_unregister(&mddev->kobj);
235 	} else
236 		spin_unlock(&all_mddevs_lock);
237 }
238 
239 static mddev_t * mddev_find(dev_t unit)
240 {
241 	mddev_t *mddev, *new = NULL;
242 
243  retry:
244 	spin_lock(&all_mddevs_lock);
245 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
246 		if (mddev->unit == unit) {
247 			mddev_get(mddev);
248 			spin_unlock(&all_mddevs_lock);
249 			kfree(new);
250 			return mddev;
251 		}
252 
253 	if (new) {
254 		list_add(&new->all_mddevs, &all_mddevs);
255 		spin_unlock(&all_mddevs_lock);
256 		return new;
257 	}
258 	spin_unlock(&all_mddevs_lock);
259 
260 	new = kzalloc(sizeof(*new), GFP_KERNEL);
261 	if (!new)
262 		return NULL;
263 
264 	new->unit = unit;
265 	if (MAJOR(unit) == MD_MAJOR)
266 		new->md_minor = MINOR(unit);
267 	else
268 		new->md_minor = MINOR(unit) >> MdpMinorShift;
269 
270 	mutex_init(&new->reconfig_mutex);
271 	INIT_LIST_HEAD(&new->disks);
272 	INIT_LIST_HEAD(&new->all_mddevs);
273 	init_timer(&new->safemode_timer);
274 	atomic_set(&new->active, 1);
275 	spin_lock_init(&new->write_lock);
276 	init_waitqueue_head(&new->sb_wait);
277 	new->reshape_position = MaxSector;
278 
279 	new->queue = blk_alloc_queue(GFP_KERNEL);
280 	if (!new->queue) {
281 		kfree(new);
282 		return NULL;
283 	}
284 	set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
285 
286 	blk_queue_make_request(new->queue, md_fail_request);
287 
288 	goto retry;
289 }
290 
291 static inline int mddev_lock(mddev_t * mddev)
292 {
293 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
294 }
295 
296 static inline int mddev_trylock(mddev_t * mddev)
297 {
298 	return mutex_trylock(&mddev->reconfig_mutex);
299 }
300 
301 static inline void mddev_unlock(mddev_t * mddev)
302 {
303 	mutex_unlock(&mddev->reconfig_mutex);
304 
305 	md_wakeup_thread(mddev->thread);
306 }
307 
308 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
309 {
310 	mdk_rdev_t * rdev;
311 	struct list_head *tmp;
312 
313 	ITERATE_RDEV(mddev,rdev,tmp) {
314 		if (rdev->desc_nr == nr)
315 			return rdev;
316 	}
317 	return NULL;
318 }
319 
320 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
321 {
322 	struct list_head *tmp;
323 	mdk_rdev_t *rdev;
324 
325 	ITERATE_RDEV(mddev,rdev,tmp) {
326 		if (rdev->bdev->bd_dev == dev)
327 			return rdev;
328 	}
329 	return NULL;
330 }
331 
332 static struct mdk_personality *find_pers(int level, char *clevel)
333 {
334 	struct mdk_personality *pers;
335 	list_for_each_entry(pers, &pers_list, list) {
336 		if (level != LEVEL_NONE && pers->level == level)
337 			return pers;
338 		if (strcmp(pers->name, clevel)==0)
339 			return pers;
340 	}
341 	return NULL;
342 }
343 
344 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
345 {
346 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
347 	return MD_NEW_SIZE_BLOCKS(size);
348 }
349 
350 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
351 {
352 	sector_t size;
353 
354 	size = rdev->sb_offset;
355 
356 	if (chunk_size)
357 		size &= ~((sector_t)chunk_size/1024 - 1);
358 	return size;
359 }
360 
361 static int alloc_disk_sb(mdk_rdev_t * rdev)
362 {
363 	if (rdev->sb_page)
364 		MD_BUG();
365 
366 	rdev->sb_page = alloc_page(GFP_KERNEL);
367 	if (!rdev->sb_page) {
368 		printk(KERN_ALERT "md: out of memory.\n");
369 		return -EINVAL;
370 	}
371 
372 	return 0;
373 }
374 
375 static void free_disk_sb(mdk_rdev_t * rdev)
376 {
377 	if (rdev->sb_page) {
378 		put_page(rdev->sb_page);
379 		rdev->sb_loaded = 0;
380 		rdev->sb_page = NULL;
381 		rdev->sb_offset = 0;
382 		rdev->size = 0;
383 	}
384 }
385 
386 
387 static void super_written(struct bio *bio, int error)
388 {
389 	mdk_rdev_t *rdev = bio->bi_private;
390 	mddev_t *mddev = rdev->mddev;
391 
392 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
393 		printk("md: super_written gets error=%d, uptodate=%d\n",
394 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
395 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
396 		md_error(mddev, rdev);
397 	}
398 
399 	if (atomic_dec_and_test(&mddev->pending_writes))
400 		wake_up(&mddev->sb_wait);
401 	bio_put(bio);
402 }
403 
404 static void super_written_barrier(struct bio *bio, int error)
405 {
406 	struct bio *bio2 = bio->bi_private;
407 	mdk_rdev_t *rdev = bio2->bi_private;
408 	mddev_t *mddev = rdev->mddev;
409 
410 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
411 	    error == -EOPNOTSUPP) {
412 		unsigned long flags;
413 		/* barriers don't appear to be supported :-( */
414 		set_bit(BarriersNotsupp, &rdev->flags);
415 		mddev->barriers_work = 0;
416 		spin_lock_irqsave(&mddev->write_lock, flags);
417 		bio2->bi_next = mddev->biolist;
418 		mddev->biolist = bio2;
419 		spin_unlock_irqrestore(&mddev->write_lock, flags);
420 		wake_up(&mddev->sb_wait);
421 		bio_put(bio);
422 	} else {
423 		bio_put(bio2);
424 		bio->bi_private = rdev;
425 		super_written(bio, error);
426 	}
427 }
428 
429 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
430 		   sector_t sector, int size, struct page *page)
431 {
432 	/* write first size bytes of page to sector of rdev
433 	 * Increment mddev->pending_writes before returning
434 	 * and decrement it on completion, waking up sb_wait
435 	 * if zero is reached.
436 	 * If an error occurred, call md_error
437 	 *
438 	 * As we might need to resubmit the request if BIO_RW_BARRIER
439 	 * causes ENOTSUPP, we allocate a spare bio...
440 	 */
441 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
442 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
443 
444 	bio->bi_bdev = rdev->bdev;
445 	bio->bi_sector = sector;
446 	bio_add_page(bio, page, size, 0);
447 	bio->bi_private = rdev;
448 	bio->bi_end_io = super_written;
449 	bio->bi_rw = rw;
450 
451 	atomic_inc(&mddev->pending_writes);
452 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
453 		struct bio *rbio;
454 		rw |= (1<<BIO_RW_BARRIER);
455 		rbio = bio_clone(bio, GFP_NOIO);
456 		rbio->bi_private = bio;
457 		rbio->bi_end_io = super_written_barrier;
458 		submit_bio(rw, rbio);
459 	} else
460 		submit_bio(rw, bio);
461 }
462 
463 void md_super_wait(mddev_t *mddev)
464 {
465 	/* wait for all superblock writes that were scheduled to complete.
466 	 * if any had to be retried (due to BARRIER problems), retry them
467 	 */
468 	DEFINE_WAIT(wq);
469 	for(;;) {
470 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
471 		if (atomic_read(&mddev->pending_writes)==0)
472 			break;
473 		while (mddev->biolist) {
474 			struct bio *bio;
475 			spin_lock_irq(&mddev->write_lock);
476 			bio = mddev->biolist;
477 			mddev->biolist = bio->bi_next ;
478 			bio->bi_next = NULL;
479 			spin_unlock_irq(&mddev->write_lock);
480 			submit_bio(bio->bi_rw, bio);
481 		}
482 		schedule();
483 	}
484 	finish_wait(&mddev->sb_wait, &wq);
485 }
486 
487 static void bi_complete(struct bio *bio, int error)
488 {
489 	complete((struct completion*)bio->bi_private);
490 }
491 
492 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
493 		   struct page *page, int rw)
494 {
495 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
496 	struct completion event;
497 	int ret;
498 
499 	rw |= (1 << BIO_RW_SYNC);
500 
501 	bio->bi_bdev = bdev;
502 	bio->bi_sector = sector;
503 	bio_add_page(bio, page, size, 0);
504 	init_completion(&event);
505 	bio->bi_private = &event;
506 	bio->bi_end_io = bi_complete;
507 	submit_bio(rw, bio);
508 	wait_for_completion(&event);
509 
510 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
511 	bio_put(bio);
512 	return ret;
513 }
514 EXPORT_SYMBOL_GPL(sync_page_io);
515 
516 static int read_disk_sb(mdk_rdev_t * rdev, int size)
517 {
518 	char b[BDEVNAME_SIZE];
519 	if (!rdev->sb_page) {
520 		MD_BUG();
521 		return -EINVAL;
522 	}
523 	if (rdev->sb_loaded)
524 		return 0;
525 
526 
527 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
528 		goto fail;
529 	rdev->sb_loaded = 1;
530 	return 0;
531 
532 fail:
533 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
534 		bdevname(rdev->bdev,b));
535 	return -EINVAL;
536 }
537 
538 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
539 {
540 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
541 		(sb1->set_uuid1 == sb2->set_uuid1) &&
542 		(sb1->set_uuid2 == sb2->set_uuid2) &&
543 		(sb1->set_uuid3 == sb2->set_uuid3))
544 
545 		return 1;
546 
547 	return 0;
548 }
549 
550 
551 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
552 {
553 	int ret;
554 	mdp_super_t *tmp1, *tmp2;
555 
556 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
557 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
558 
559 	if (!tmp1 || !tmp2) {
560 		ret = 0;
561 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
562 		goto abort;
563 	}
564 
565 	*tmp1 = *sb1;
566 	*tmp2 = *sb2;
567 
568 	/*
569 	 * nr_disks is not constant
570 	 */
571 	tmp1->nr_disks = 0;
572 	tmp2->nr_disks = 0;
573 
574 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
575 		ret = 0;
576 	else
577 		ret = 1;
578 
579 abort:
580 	kfree(tmp1);
581 	kfree(tmp2);
582 	return ret;
583 }
584 
585 
586 static u32 md_csum_fold(u32 csum)
587 {
588 	csum = (csum & 0xffff) + (csum >> 16);
589 	return (csum & 0xffff) + (csum >> 16);
590 }
591 
592 static unsigned int calc_sb_csum(mdp_super_t * sb)
593 {
594 	u64 newcsum = 0;
595 	u32 *sb32 = (u32*)sb;
596 	int i;
597 	unsigned int disk_csum, csum;
598 
599 	disk_csum = sb->sb_csum;
600 	sb->sb_csum = 0;
601 
602 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
603 		newcsum += sb32[i];
604 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
605 
606 
607 #ifdef CONFIG_ALPHA
608 	/* This used to use csum_partial, which was wrong for several
609 	 * reasons including that different results are returned on
610 	 * different architectures.  It isn't critical that we get exactly
611 	 * the same return value as before (we always csum_fold before
612 	 * testing, and that removes any differences).  However as we
613 	 * know that csum_partial always returned a 16bit value on
614 	 * alphas, do a fold to maximise conformity to previous behaviour.
615 	 */
616 	sb->sb_csum = md_csum_fold(disk_csum);
617 #else
618 	sb->sb_csum = disk_csum;
619 #endif
620 	return csum;
621 }
622 
623 
624 /*
625  * Handle superblock details.
626  * We want to be able to handle multiple superblock formats
627  * so we have a common interface to them all, and an array of
628  * different handlers.
629  * We rely on user-space to write the initial superblock, and support
630  * reading and updating of superblocks.
631  * Interface methods are:
632  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
633  *      loads and validates a superblock on dev.
634  *      if refdev != NULL, compare superblocks on both devices
635  *    Return:
636  *      0 - dev has a superblock that is compatible with refdev
637  *      1 - dev has a superblock that is compatible and newer than refdev
638  *          so dev should be used as the refdev in future
639  *     -EINVAL superblock incompatible or invalid
640  *     -othererror e.g. -EIO
641  *
642  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
643  *      Verify that dev is acceptable into mddev.
644  *       The first time, mddev->raid_disks will be 0, and data from
645  *       dev should be merged in.  Subsequent calls check that dev
646  *       is new enough.  Return 0 or -EINVAL
647  *
648  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
649  *     Update the superblock for rdev with data in mddev
650  *     This does not write to disc.
651  *
652  */
653 
654 struct super_type  {
655 	char 		*name;
656 	struct module	*owner;
657 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
658 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
659 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
660 };
661 
662 /*
663  * load_super for 0.90.0
664  */
665 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
666 {
667 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
668 	mdp_super_t *sb;
669 	int ret;
670 	sector_t sb_offset;
671 
672 	/*
673 	 * Calculate the position of the superblock,
674 	 * it's at the end of the disk.
675 	 *
676 	 * It also happens to be a multiple of 4Kb.
677 	 */
678 	sb_offset = calc_dev_sboffset(rdev->bdev);
679 	rdev->sb_offset = sb_offset;
680 
681 	ret = read_disk_sb(rdev, MD_SB_BYTES);
682 	if (ret) return ret;
683 
684 	ret = -EINVAL;
685 
686 	bdevname(rdev->bdev, b);
687 	sb = (mdp_super_t*)page_address(rdev->sb_page);
688 
689 	if (sb->md_magic != MD_SB_MAGIC) {
690 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
691 		       b);
692 		goto abort;
693 	}
694 
695 	if (sb->major_version != 0 ||
696 	    sb->minor_version < 90 ||
697 	    sb->minor_version > 91) {
698 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
699 			sb->major_version, sb->minor_version,
700 			b);
701 		goto abort;
702 	}
703 
704 	if (sb->raid_disks <= 0)
705 		goto abort;
706 
707 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
708 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
709 			b);
710 		goto abort;
711 	}
712 
713 	rdev->preferred_minor = sb->md_minor;
714 	rdev->data_offset = 0;
715 	rdev->sb_size = MD_SB_BYTES;
716 
717 	if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
718 		if (sb->level != 1 && sb->level != 4
719 		    && sb->level != 5 && sb->level != 6
720 		    && sb->level != 10) {
721 			/* FIXME use a better test */
722 			printk(KERN_WARNING
723 			       "md: bitmaps not supported for this level.\n");
724 			goto abort;
725 		}
726 	}
727 
728 	if (sb->level == LEVEL_MULTIPATH)
729 		rdev->desc_nr = -1;
730 	else
731 		rdev->desc_nr = sb->this_disk.number;
732 
733 	if (refdev == 0)
734 		ret = 1;
735 	else {
736 		__u64 ev1, ev2;
737 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
738 		if (!uuid_equal(refsb, sb)) {
739 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
740 				b, bdevname(refdev->bdev,b2));
741 			goto abort;
742 		}
743 		if (!sb_equal(refsb, sb)) {
744 			printk(KERN_WARNING "md: %s has same UUID"
745 			       " but different superblock to %s\n",
746 			       b, bdevname(refdev->bdev, b2));
747 			goto abort;
748 		}
749 		ev1 = md_event(sb);
750 		ev2 = md_event(refsb);
751 		if (ev1 > ev2)
752 			ret = 1;
753 		else
754 			ret = 0;
755 	}
756 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
757 
758 	if (rdev->size < sb->size && sb->level > 1)
759 		/* "this cannot possibly happen" ... */
760 		ret = -EINVAL;
761 
762  abort:
763 	return ret;
764 }
765 
766 /*
767  * validate_super for 0.90.0
768  */
769 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
770 {
771 	mdp_disk_t *desc;
772 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
773 	__u64 ev1 = md_event(sb);
774 
775 	rdev->raid_disk = -1;
776 	rdev->flags = 0;
777 	if (mddev->raid_disks == 0) {
778 		mddev->major_version = 0;
779 		mddev->minor_version = sb->minor_version;
780 		mddev->patch_version = sb->patch_version;
781 		mddev->persistent = ! sb->not_persistent;
782 		mddev->chunk_size = sb->chunk_size;
783 		mddev->ctime = sb->ctime;
784 		mddev->utime = sb->utime;
785 		mddev->level = sb->level;
786 		mddev->clevel[0] = 0;
787 		mddev->layout = sb->layout;
788 		mddev->raid_disks = sb->raid_disks;
789 		mddev->size = sb->size;
790 		mddev->events = ev1;
791 		mddev->bitmap_offset = 0;
792 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
793 
794 		if (mddev->minor_version >= 91) {
795 			mddev->reshape_position = sb->reshape_position;
796 			mddev->delta_disks = sb->delta_disks;
797 			mddev->new_level = sb->new_level;
798 			mddev->new_layout = sb->new_layout;
799 			mddev->new_chunk = sb->new_chunk;
800 		} else {
801 			mddev->reshape_position = MaxSector;
802 			mddev->delta_disks = 0;
803 			mddev->new_level = mddev->level;
804 			mddev->new_layout = mddev->layout;
805 			mddev->new_chunk = mddev->chunk_size;
806 		}
807 
808 		if (sb->state & (1<<MD_SB_CLEAN))
809 			mddev->recovery_cp = MaxSector;
810 		else {
811 			if (sb->events_hi == sb->cp_events_hi &&
812 				sb->events_lo == sb->cp_events_lo) {
813 				mddev->recovery_cp = sb->recovery_cp;
814 			} else
815 				mddev->recovery_cp = 0;
816 		}
817 
818 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
819 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
820 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
821 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
822 
823 		mddev->max_disks = MD_SB_DISKS;
824 
825 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
826 		    mddev->bitmap_file == NULL)
827 			mddev->bitmap_offset = mddev->default_bitmap_offset;
828 
829 	} else if (mddev->pers == NULL) {
830 		/* Insist on good event counter while assembling */
831 		++ev1;
832 		if (ev1 < mddev->events)
833 			return -EINVAL;
834 	} else if (mddev->bitmap) {
835 		/* if adding to array with a bitmap, then we can accept an
836 		 * older device ... but not too old.
837 		 */
838 		if (ev1 < mddev->bitmap->events_cleared)
839 			return 0;
840 	} else {
841 		if (ev1 < mddev->events)
842 			/* just a hot-add of a new device, leave raid_disk at -1 */
843 			return 0;
844 	}
845 
846 	if (mddev->level != LEVEL_MULTIPATH) {
847 		desc = sb->disks + rdev->desc_nr;
848 
849 		if (desc->state & (1<<MD_DISK_FAULTY))
850 			set_bit(Faulty, &rdev->flags);
851 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
852 			    desc->raid_disk < mddev->raid_disks */) {
853 			set_bit(In_sync, &rdev->flags);
854 			rdev->raid_disk = desc->raid_disk;
855 		}
856 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
857 			set_bit(WriteMostly, &rdev->flags);
858 	} else /* MULTIPATH are always insync */
859 		set_bit(In_sync, &rdev->flags);
860 	return 0;
861 }
862 
863 /*
864  * sync_super for 0.90.0
865  */
866 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
867 {
868 	mdp_super_t *sb;
869 	struct list_head *tmp;
870 	mdk_rdev_t *rdev2;
871 	int next_spare = mddev->raid_disks;
872 
873 
874 	/* make rdev->sb match mddev data..
875 	 *
876 	 * 1/ zero out disks
877 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
878 	 * 3/ any empty disks < next_spare become removed
879 	 *
880 	 * disks[0] gets initialised to REMOVED because
881 	 * we cannot be sure from other fields if it has
882 	 * been initialised or not.
883 	 */
884 	int i;
885 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
886 
887 	rdev->sb_size = MD_SB_BYTES;
888 
889 	sb = (mdp_super_t*)page_address(rdev->sb_page);
890 
891 	memset(sb, 0, sizeof(*sb));
892 
893 	sb->md_magic = MD_SB_MAGIC;
894 	sb->major_version = mddev->major_version;
895 	sb->patch_version = mddev->patch_version;
896 	sb->gvalid_words  = 0; /* ignored */
897 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
898 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
899 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
900 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
901 
902 	sb->ctime = mddev->ctime;
903 	sb->level = mddev->level;
904 	sb->size  = mddev->size;
905 	sb->raid_disks = mddev->raid_disks;
906 	sb->md_minor = mddev->md_minor;
907 	sb->not_persistent = !mddev->persistent;
908 	sb->utime = mddev->utime;
909 	sb->state = 0;
910 	sb->events_hi = (mddev->events>>32);
911 	sb->events_lo = (u32)mddev->events;
912 
913 	if (mddev->reshape_position == MaxSector)
914 		sb->minor_version = 90;
915 	else {
916 		sb->minor_version = 91;
917 		sb->reshape_position = mddev->reshape_position;
918 		sb->new_level = mddev->new_level;
919 		sb->delta_disks = mddev->delta_disks;
920 		sb->new_layout = mddev->new_layout;
921 		sb->new_chunk = mddev->new_chunk;
922 	}
923 	mddev->minor_version = sb->minor_version;
924 	if (mddev->in_sync)
925 	{
926 		sb->recovery_cp = mddev->recovery_cp;
927 		sb->cp_events_hi = (mddev->events>>32);
928 		sb->cp_events_lo = (u32)mddev->events;
929 		if (mddev->recovery_cp == MaxSector)
930 			sb->state = (1<< MD_SB_CLEAN);
931 	} else
932 		sb->recovery_cp = 0;
933 
934 	sb->layout = mddev->layout;
935 	sb->chunk_size = mddev->chunk_size;
936 
937 	if (mddev->bitmap && mddev->bitmap_file == NULL)
938 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
939 
940 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
941 	ITERATE_RDEV(mddev,rdev2,tmp) {
942 		mdp_disk_t *d;
943 		int desc_nr;
944 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
945 		    && !test_bit(Faulty, &rdev2->flags))
946 			desc_nr = rdev2->raid_disk;
947 		else
948 			desc_nr = next_spare++;
949 		rdev2->desc_nr = desc_nr;
950 		d = &sb->disks[rdev2->desc_nr];
951 		nr_disks++;
952 		d->number = rdev2->desc_nr;
953 		d->major = MAJOR(rdev2->bdev->bd_dev);
954 		d->minor = MINOR(rdev2->bdev->bd_dev);
955 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
956 		    && !test_bit(Faulty, &rdev2->flags))
957 			d->raid_disk = rdev2->raid_disk;
958 		else
959 			d->raid_disk = rdev2->desc_nr; /* compatibility */
960 		if (test_bit(Faulty, &rdev2->flags))
961 			d->state = (1<<MD_DISK_FAULTY);
962 		else if (test_bit(In_sync, &rdev2->flags)) {
963 			d->state = (1<<MD_DISK_ACTIVE);
964 			d->state |= (1<<MD_DISK_SYNC);
965 			active++;
966 			working++;
967 		} else {
968 			d->state = 0;
969 			spare++;
970 			working++;
971 		}
972 		if (test_bit(WriteMostly, &rdev2->flags))
973 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
974 	}
975 	/* now set the "removed" and "faulty" bits on any missing devices */
976 	for (i=0 ; i < mddev->raid_disks ; i++) {
977 		mdp_disk_t *d = &sb->disks[i];
978 		if (d->state == 0 && d->number == 0) {
979 			d->number = i;
980 			d->raid_disk = i;
981 			d->state = (1<<MD_DISK_REMOVED);
982 			d->state |= (1<<MD_DISK_FAULTY);
983 			failed++;
984 		}
985 	}
986 	sb->nr_disks = nr_disks;
987 	sb->active_disks = active;
988 	sb->working_disks = working;
989 	sb->failed_disks = failed;
990 	sb->spare_disks = spare;
991 
992 	sb->this_disk = sb->disks[rdev->desc_nr];
993 	sb->sb_csum = calc_sb_csum(sb);
994 }
995 
996 /*
997  * version 1 superblock
998  */
999 
1000 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1001 {
1002 	__le32 disk_csum;
1003 	u32 csum;
1004 	unsigned long long newcsum;
1005 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1006 	__le32 *isuper = (__le32*)sb;
1007 	int i;
1008 
1009 	disk_csum = sb->sb_csum;
1010 	sb->sb_csum = 0;
1011 	newcsum = 0;
1012 	for (i=0; size>=4; size -= 4 )
1013 		newcsum += le32_to_cpu(*isuper++);
1014 
1015 	if (size == 2)
1016 		newcsum += le16_to_cpu(*(__le16*) isuper);
1017 
1018 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1019 	sb->sb_csum = disk_csum;
1020 	return cpu_to_le32(csum);
1021 }
1022 
1023 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1024 {
1025 	struct mdp_superblock_1 *sb;
1026 	int ret;
1027 	sector_t sb_offset;
1028 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1029 	int bmask;
1030 
1031 	/*
1032 	 * Calculate the position of the superblock.
1033 	 * It is always aligned to a 4K boundary and
1034 	 * depeding on minor_version, it can be:
1035 	 * 0: At least 8K, but less than 12K, from end of device
1036 	 * 1: At start of device
1037 	 * 2: 4K from start of device.
1038 	 */
1039 	switch(minor_version) {
1040 	case 0:
1041 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1042 		sb_offset -= 8*2;
1043 		sb_offset &= ~(sector_t)(4*2-1);
1044 		/* convert from sectors to K */
1045 		sb_offset /= 2;
1046 		break;
1047 	case 1:
1048 		sb_offset = 0;
1049 		break;
1050 	case 2:
1051 		sb_offset = 4;
1052 		break;
1053 	default:
1054 		return -EINVAL;
1055 	}
1056 	rdev->sb_offset = sb_offset;
1057 
1058 	/* superblock is rarely larger than 1K, but it can be larger,
1059 	 * and it is safe to read 4k, so we do that
1060 	 */
1061 	ret = read_disk_sb(rdev, 4096);
1062 	if (ret) return ret;
1063 
1064 
1065 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1066 
1067 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1068 	    sb->major_version != cpu_to_le32(1) ||
1069 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1070 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1071 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1072 		return -EINVAL;
1073 
1074 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1075 		printk("md: invalid superblock checksum on %s\n",
1076 			bdevname(rdev->bdev,b));
1077 		return -EINVAL;
1078 	}
1079 	if (le64_to_cpu(sb->data_size) < 10) {
1080 		printk("md: data_size too small on %s\n",
1081 		       bdevname(rdev->bdev,b));
1082 		return -EINVAL;
1083 	}
1084 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1085 		if (sb->level != cpu_to_le32(1) &&
1086 		    sb->level != cpu_to_le32(4) &&
1087 		    sb->level != cpu_to_le32(5) &&
1088 		    sb->level != cpu_to_le32(6) &&
1089 		    sb->level != cpu_to_le32(10)) {
1090 			printk(KERN_WARNING
1091 			       "md: bitmaps not supported for this level.\n");
1092 			return -EINVAL;
1093 		}
1094 	}
1095 
1096 	rdev->preferred_minor = 0xffff;
1097 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1098 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1099 
1100 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1101 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1102 	if (rdev->sb_size & bmask)
1103 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1104 
1105 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1106 		rdev->desc_nr = -1;
1107 	else
1108 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1109 
1110 	if (refdev == 0)
1111 		ret = 1;
1112 	else {
1113 		__u64 ev1, ev2;
1114 		struct mdp_superblock_1 *refsb =
1115 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1116 
1117 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1118 		    sb->level != refsb->level ||
1119 		    sb->layout != refsb->layout ||
1120 		    sb->chunksize != refsb->chunksize) {
1121 			printk(KERN_WARNING "md: %s has strangely different"
1122 				" superblock to %s\n",
1123 				bdevname(rdev->bdev,b),
1124 				bdevname(refdev->bdev,b2));
1125 			return -EINVAL;
1126 		}
1127 		ev1 = le64_to_cpu(sb->events);
1128 		ev2 = le64_to_cpu(refsb->events);
1129 
1130 		if (ev1 > ev2)
1131 			ret = 1;
1132 		else
1133 			ret = 0;
1134 	}
1135 	if (minor_version)
1136 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1137 	else
1138 		rdev->size = rdev->sb_offset;
1139 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1140 		return -EINVAL;
1141 	rdev->size = le64_to_cpu(sb->data_size)/2;
1142 	if (le32_to_cpu(sb->chunksize))
1143 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1144 
1145 	if (le64_to_cpu(sb->size) > rdev->size*2)
1146 		return -EINVAL;
1147 	return ret;
1148 }
1149 
1150 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1151 {
1152 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1153 	__u64 ev1 = le64_to_cpu(sb->events);
1154 
1155 	rdev->raid_disk = -1;
1156 	rdev->flags = 0;
1157 	if (mddev->raid_disks == 0) {
1158 		mddev->major_version = 1;
1159 		mddev->patch_version = 0;
1160 		mddev->persistent = 1;
1161 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1162 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1163 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1164 		mddev->level = le32_to_cpu(sb->level);
1165 		mddev->clevel[0] = 0;
1166 		mddev->layout = le32_to_cpu(sb->layout);
1167 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1168 		mddev->size = le64_to_cpu(sb->size)/2;
1169 		mddev->events = ev1;
1170 		mddev->bitmap_offset = 0;
1171 		mddev->default_bitmap_offset = 1024 >> 9;
1172 
1173 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1174 		memcpy(mddev->uuid, sb->set_uuid, 16);
1175 
1176 		mddev->max_disks =  (4096-256)/2;
1177 
1178 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1179 		    mddev->bitmap_file == NULL )
1180 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1181 
1182 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1183 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1184 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1185 			mddev->new_level = le32_to_cpu(sb->new_level);
1186 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1187 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1188 		} else {
1189 			mddev->reshape_position = MaxSector;
1190 			mddev->delta_disks = 0;
1191 			mddev->new_level = mddev->level;
1192 			mddev->new_layout = mddev->layout;
1193 			mddev->new_chunk = mddev->chunk_size;
1194 		}
1195 
1196 	} else if (mddev->pers == NULL) {
1197 		/* Insist of good event counter while assembling */
1198 		++ev1;
1199 		if (ev1 < mddev->events)
1200 			return -EINVAL;
1201 	} else if (mddev->bitmap) {
1202 		/* If adding to array with a bitmap, then we can accept an
1203 		 * older device, but not too old.
1204 		 */
1205 		if (ev1 < mddev->bitmap->events_cleared)
1206 			return 0;
1207 	} else {
1208 		if (ev1 < mddev->events)
1209 			/* just a hot-add of a new device, leave raid_disk at -1 */
1210 			return 0;
1211 	}
1212 	if (mddev->level != LEVEL_MULTIPATH) {
1213 		int role;
1214 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1215 		switch(role) {
1216 		case 0xffff: /* spare */
1217 			break;
1218 		case 0xfffe: /* faulty */
1219 			set_bit(Faulty, &rdev->flags);
1220 			break;
1221 		default:
1222 			if ((le32_to_cpu(sb->feature_map) &
1223 			     MD_FEATURE_RECOVERY_OFFSET))
1224 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1225 			else
1226 				set_bit(In_sync, &rdev->flags);
1227 			rdev->raid_disk = role;
1228 			break;
1229 		}
1230 		if (sb->devflags & WriteMostly1)
1231 			set_bit(WriteMostly, &rdev->flags);
1232 	} else /* MULTIPATH are always insync */
1233 		set_bit(In_sync, &rdev->flags);
1234 
1235 	return 0;
1236 }
1237 
1238 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1239 {
1240 	struct mdp_superblock_1 *sb;
1241 	struct list_head *tmp;
1242 	mdk_rdev_t *rdev2;
1243 	int max_dev, i;
1244 	/* make rdev->sb match mddev and rdev data. */
1245 
1246 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1247 
1248 	sb->feature_map = 0;
1249 	sb->pad0 = 0;
1250 	sb->recovery_offset = cpu_to_le64(0);
1251 	memset(sb->pad1, 0, sizeof(sb->pad1));
1252 	memset(sb->pad2, 0, sizeof(sb->pad2));
1253 	memset(sb->pad3, 0, sizeof(sb->pad3));
1254 
1255 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1256 	sb->events = cpu_to_le64(mddev->events);
1257 	if (mddev->in_sync)
1258 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1259 	else
1260 		sb->resync_offset = cpu_to_le64(0);
1261 
1262 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1263 
1264 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1265 	sb->size = cpu_to_le64(mddev->size<<1);
1266 
1267 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1268 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1269 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1270 	}
1271 
1272 	if (rdev->raid_disk >= 0 &&
1273 	    !test_bit(In_sync, &rdev->flags) &&
1274 	    rdev->recovery_offset > 0) {
1275 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1276 		sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1277 	}
1278 
1279 	if (mddev->reshape_position != MaxSector) {
1280 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1281 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1282 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1283 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1284 		sb->new_level = cpu_to_le32(mddev->new_level);
1285 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1286 	}
1287 
1288 	max_dev = 0;
1289 	ITERATE_RDEV(mddev,rdev2,tmp)
1290 		if (rdev2->desc_nr+1 > max_dev)
1291 			max_dev = rdev2->desc_nr+1;
1292 
1293 	if (max_dev > le32_to_cpu(sb->max_dev))
1294 		sb->max_dev = cpu_to_le32(max_dev);
1295 	for (i=0; i<max_dev;i++)
1296 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1297 
1298 	ITERATE_RDEV(mddev,rdev2,tmp) {
1299 		i = rdev2->desc_nr;
1300 		if (test_bit(Faulty, &rdev2->flags))
1301 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1302 		else if (test_bit(In_sync, &rdev2->flags))
1303 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1304 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1305 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1306 		else
1307 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1308 	}
1309 
1310 	sb->sb_csum = calc_sb_1_csum(sb);
1311 }
1312 
1313 
1314 static struct super_type super_types[] = {
1315 	[0] = {
1316 		.name	= "0.90.0",
1317 		.owner	= THIS_MODULE,
1318 		.load_super	= super_90_load,
1319 		.validate_super	= super_90_validate,
1320 		.sync_super	= super_90_sync,
1321 	},
1322 	[1] = {
1323 		.name	= "md-1",
1324 		.owner	= THIS_MODULE,
1325 		.load_super	= super_1_load,
1326 		.validate_super	= super_1_validate,
1327 		.sync_super	= super_1_sync,
1328 	},
1329 };
1330 
1331 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1332 {
1333 	struct list_head *tmp, *tmp2;
1334 	mdk_rdev_t *rdev, *rdev2;
1335 
1336 	ITERATE_RDEV(mddev1,rdev,tmp)
1337 		ITERATE_RDEV(mddev2, rdev2, tmp2)
1338 			if (rdev->bdev->bd_contains ==
1339 			    rdev2->bdev->bd_contains)
1340 				return 1;
1341 
1342 	return 0;
1343 }
1344 
1345 static LIST_HEAD(pending_raid_disks);
1346 
1347 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1348 {
1349 	char b[BDEVNAME_SIZE];
1350 	struct kobject *ko;
1351 	char *s;
1352 	int err;
1353 
1354 	if (rdev->mddev) {
1355 		MD_BUG();
1356 		return -EINVAL;
1357 	}
1358 	/* make sure rdev->size exceeds mddev->size */
1359 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1360 		if (mddev->pers) {
1361 			/* Cannot change size, so fail
1362 			 * If mddev->level <= 0, then we don't care
1363 			 * about aligning sizes (e.g. linear)
1364 			 */
1365 			if (mddev->level > 0)
1366 				return -ENOSPC;
1367 		} else
1368 			mddev->size = rdev->size;
1369 	}
1370 
1371 	/* Verify rdev->desc_nr is unique.
1372 	 * If it is -1, assign a free number, else
1373 	 * check number is not in use
1374 	 */
1375 	if (rdev->desc_nr < 0) {
1376 		int choice = 0;
1377 		if (mddev->pers) choice = mddev->raid_disks;
1378 		while (find_rdev_nr(mddev, choice))
1379 			choice++;
1380 		rdev->desc_nr = choice;
1381 	} else {
1382 		if (find_rdev_nr(mddev, rdev->desc_nr))
1383 			return -EBUSY;
1384 	}
1385 	bdevname(rdev->bdev,b);
1386 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1387 		return -ENOMEM;
1388 	while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1389 		*s = '!';
1390 
1391 	rdev->mddev = mddev;
1392 	printk(KERN_INFO "md: bind<%s>\n", b);
1393 
1394 	rdev->kobj.parent = &mddev->kobj;
1395 	if ((err = kobject_add(&rdev->kobj)))
1396 		goto fail;
1397 
1398 	if (rdev->bdev->bd_part)
1399 		ko = &rdev->bdev->bd_part->kobj;
1400 	else
1401 		ko = &rdev->bdev->bd_disk->kobj;
1402 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1403 		kobject_del(&rdev->kobj);
1404 		goto fail;
1405 	}
1406 	list_add(&rdev->same_set, &mddev->disks);
1407 	bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1408 	return 0;
1409 
1410  fail:
1411 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1412 	       b, mdname(mddev));
1413 	return err;
1414 }
1415 
1416 static void delayed_delete(struct work_struct *ws)
1417 {
1418 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1419 	kobject_del(&rdev->kobj);
1420 }
1421 
1422 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1423 {
1424 	char b[BDEVNAME_SIZE];
1425 	if (!rdev->mddev) {
1426 		MD_BUG();
1427 		return;
1428 	}
1429 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1430 	list_del_init(&rdev->same_set);
1431 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1432 	rdev->mddev = NULL;
1433 	sysfs_remove_link(&rdev->kobj, "block");
1434 
1435 	/* We need to delay this, otherwise we can deadlock when
1436 	 * writing to 'remove' to "dev/state"
1437 	 */
1438 	INIT_WORK(&rdev->del_work, delayed_delete);
1439 	schedule_work(&rdev->del_work);
1440 }
1441 
1442 /*
1443  * prevent the device from being mounted, repartitioned or
1444  * otherwise reused by a RAID array (or any other kernel
1445  * subsystem), by bd_claiming the device.
1446  */
1447 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1448 {
1449 	int err = 0;
1450 	struct block_device *bdev;
1451 	char b[BDEVNAME_SIZE];
1452 
1453 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1454 	if (IS_ERR(bdev)) {
1455 		printk(KERN_ERR "md: could not open %s.\n",
1456 			__bdevname(dev, b));
1457 		return PTR_ERR(bdev);
1458 	}
1459 	err = bd_claim(bdev, rdev);
1460 	if (err) {
1461 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1462 			bdevname(bdev, b));
1463 		blkdev_put(bdev);
1464 		return err;
1465 	}
1466 	rdev->bdev = bdev;
1467 	return err;
1468 }
1469 
1470 static void unlock_rdev(mdk_rdev_t *rdev)
1471 {
1472 	struct block_device *bdev = rdev->bdev;
1473 	rdev->bdev = NULL;
1474 	if (!bdev)
1475 		MD_BUG();
1476 	bd_release(bdev);
1477 	blkdev_put(bdev);
1478 }
1479 
1480 void md_autodetect_dev(dev_t dev);
1481 
1482 static void export_rdev(mdk_rdev_t * rdev)
1483 {
1484 	char b[BDEVNAME_SIZE];
1485 	printk(KERN_INFO "md: export_rdev(%s)\n",
1486 		bdevname(rdev->bdev,b));
1487 	if (rdev->mddev)
1488 		MD_BUG();
1489 	free_disk_sb(rdev);
1490 	list_del_init(&rdev->same_set);
1491 #ifndef MODULE
1492 	md_autodetect_dev(rdev->bdev->bd_dev);
1493 #endif
1494 	unlock_rdev(rdev);
1495 	kobject_put(&rdev->kobj);
1496 }
1497 
1498 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1499 {
1500 	unbind_rdev_from_array(rdev);
1501 	export_rdev(rdev);
1502 }
1503 
1504 static void export_array(mddev_t *mddev)
1505 {
1506 	struct list_head *tmp;
1507 	mdk_rdev_t *rdev;
1508 
1509 	ITERATE_RDEV(mddev,rdev,tmp) {
1510 		if (!rdev->mddev) {
1511 			MD_BUG();
1512 			continue;
1513 		}
1514 		kick_rdev_from_array(rdev);
1515 	}
1516 	if (!list_empty(&mddev->disks))
1517 		MD_BUG();
1518 	mddev->raid_disks = 0;
1519 	mddev->major_version = 0;
1520 }
1521 
1522 static void print_desc(mdp_disk_t *desc)
1523 {
1524 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1525 		desc->major,desc->minor,desc->raid_disk,desc->state);
1526 }
1527 
1528 static void print_sb(mdp_super_t *sb)
1529 {
1530 	int i;
1531 
1532 	printk(KERN_INFO
1533 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1534 		sb->major_version, sb->minor_version, sb->patch_version,
1535 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1536 		sb->ctime);
1537 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1538 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1539 		sb->md_minor, sb->layout, sb->chunk_size);
1540 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1541 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1542 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1543 		sb->failed_disks, sb->spare_disks,
1544 		sb->sb_csum, (unsigned long)sb->events_lo);
1545 
1546 	printk(KERN_INFO);
1547 	for (i = 0; i < MD_SB_DISKS; i++) {
1548 		mdp_disk_t *desc;
1549 
1550 		desc = sb->disks + i;
1551 		if (desc->number || desc->major || desc->minor ||
1552 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1553 			printk("     D %2d: ", i);
1554 			print_desc(desc);
1555 		}
1556 	}
1557 	printk(KERN_INFO "md:     THIS: ");
1558 	print_desc(&sb->this_disk);
1559 
1560 }
1561 
1562 static void print_rdev(mdk_rdev_t *rdev)
1563 {
1564 	char b[BDEVNAME_SIZE];
1565 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1566 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1567 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1568 	        rdev->desc_nr);
1569 	if (rdev->sb_loaded) {
1570 		printk(KERN_INFO "md: rdev superblock:\n");
1571 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1572 	} else
1573 		printk(KERN_INFO "md: no rdev superblock!\n");
1574 }
1575 
1576 static void md_print_devices(void)
1577 {
1578 	struct list_head *tmp, *tmp2;
1579 	mdk_rdev_t *rdev;
1580 	mddev_t *mddev;
1581 	char b[BDEVNAME_SIZE];
1582 
1583 	printk("\n");
1584 	printk("md:	**********************************\n");
1585 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1586 	printk("md:	**********************************\n");
1587 	ITERATE_MDDEV(mddev,tmp) {
1588 
1589 		if (mddev->bitmap)
1590 			bitmap_print_sb(mddev->bitmap);
1591 		else
1592 			printk("%s: ", mdname(mddev));
1593 		ITERATE_RDEV(mddev,rdev,tmp2)
1594 			printk("<%s>", bdevname(rdev->bdev,b));
1595 		printk("\n");
1596 
1597 		ITERATE_RDEV(mddev,rdev,tmp2)
1598 			print_rdev(rdev);
1599 	}
1600 	printk("md:	**********************************\n");
1601 	printk("\n");
1602 }
1603 
1604 
1605 static void sync_sbs(mddev_t * mddev, int nospares)
1606 {
1607 	/* Update each superblock (in-memory image), but
1608 	 * if we are allowed to, skip spares which already
1609 	 * have the right event counter, or have one earlier
1610 	 * (which would mean they aren't being marked as dirty
1611 	 * with the rest of the array)
1612 	 */
1613 	mdk_rdev_t *rdev;
1614 	struct list_head *tmp;
1615 
1616 	ITERATE_RDEV(mddev,rdev,tmp) {
1617 		if (rdev->sb_events == mddev->events ||
1618 		    (nospares &&
1619 		     rdev->raid_disk < 0 &&
1620 		     (rdev->sb_events&1)==0 &&
1621 		     rdev->sb_events+1 == mddev->events)) {
1622 			/* Don't update this superblock */
1623 			rdev->sb_loaded = 2;
1624 		} else {
1625 			super_types[mddev->major_version].
1626 				sync_super(mddev, rdev);
1627 			rdev->sb_loaded = 1;
1628 		}
1629 	}
1630 }
1631 
1632 static void md_update_sb(mddev_t * mddev, int force_change)
1633 {
1634 	struct list_head *tmp;
1635 	mdk_rdev_t *rdev;
1636 	int sync_req;
1637 	int nospares = 0;
1638 
1639 repeat:
1640 	spin_lock_irq(&mddev->write_lock);
1641 
1642 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1643 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1644 		force_change = 1;
1645 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1646 		/* just a clean<-> dirty transition, possibly leave spares alone,
1647 		 * though if events isn't the right even/odd, we will have to do
1648 		 * spares after all
1649 		 */
1650 		nospares = 1;
1651 	if (force_change)
1652 		nospares = 0;
1653 	if (mddev->degraded)
1654 		/* If the array is degraded, then skipping spares is both
1655 		 * dangerous and fairly pointless.
1656 		 * Dangerous because a device that was removed from the array
1657 		 * might have a event_count that still looks up-to-date,
1658 		 * so it can be re-added without a resync.
1659 		 * Pointless because if there are any spares to skip,
1660 		 * then a recovery will happen and soon that array won't
1661 		 * be degraded any more and the spare can go back to sleep then.
1662 		 */
1663 		nospares = 0;
1664 
1665 	sync_req = mddev->in_sync;
1666 	mddev->utime = get_seconds();
1667 
1668 	/* If this is just a dirty<->clean transition, and the array is clean
1669 	 * and 'events' is odd, we can roll back to the previous clean state */
1670 	if (nospares
1671 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1672 	    && (mddev->events & 1)
1673 	    && mddev->events != 1)
1674 		mddev->events--;
1675 	else {
1676 		/* otherwise we have to go forward and ... */
1677 		mddev->events ++;
1678 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1679 			/* .. if the array isn't clean, insist on an odd 'events' */
1680 			if ((mddev->events&1)==0) {
1681 				mddev->events++;
1682 				nospares = 0;
1683 			}
1684 		} else {
1685 			/* otherwise insist on an even 'events' (for clean states) */
1686 			if ((mddev->events&1)) {
1687 				mddev->events++;
1688 				nospares = 0;
1689 			}
1690 		}
1691 	}
1692 
1693 	if (!mddev->events) {
1694 		/*
1695 		 * oops, this 64-bit counter should never wrap.
1696 		 * Either we are in around ~1 trillion A.C., assuming
1697 		 * 1 reboot per second, or we have a bug:
1698 		 */
1699 		MD_BUG();
1700 		mddev->events --;
1701 	}
1702 	sync_sbs(mddev, nospares);
1703 
1704 	/*
1705 	 * do not write anything to disk if using
1706 	 * nonpersistent superblocks
1707 	 */
1708 	if (!mddev->persistent) {
1709 		clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1710 		spin_unlock_irq(&mddev->write_lock);
1711 		wake_up(&mddev->sb_wait);
1712 		return;
1713 	}
1714 	spin_unlock_irq(&mddev->write_lock);
1715 
1716 	dprintk(KERN_INFO
1717 		"md: updating %s RAID superblock on device (in sync %d)\n",
1718 		mdname(mddev),mddev->in_sync);
1719 
1720 	bitmap_update_sb(mddev->bitmap);
1721 	ITERATE_RDEV(mddev,rdev,tmp) {
1722 		char b[BDEVNAME_SIZE];
1723 		dprintk(KERN_INFO "md: ");
1724 		if (rdev->sb_loaded != 1)
1725 			continue; /* no noise on spare devices */
1726 		if (test_bit(Faulty, &rdev->flags))
1727 			dprintk("(skipping faulty ");
1728 
1729 		dprintk("%s ", bdevname(rdev->bdev,b));
1730 		if (!test_bit(Faulty, &rdev->flags)) {
1731 			md_super_write(mddev,rdev,
1732 				       rdev->sb_offset<<1, rdev->sb_size,
1733 				       rdev->sb_page);
1734 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1735 				bdevname(rdev->bdev,b),
1736 				(unsigned long long)rdev->sb_offset);
1737 			rdev->sb_events = mddev->events;
1738 
1739 		} else
1740 			dprintk(")\n");
1741 		if (mddev->level == LEVEL_MULTIPATH)
1742 			/* only need to write one superblock... */
1743 			break;
1744 	}
1745 	md_super_wait(mddev);
1746 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1747 
1748 	spin_lock_irq(&mddev->write_lock);
1749 	if (mddev->in_sync != sync_req ||
1750 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1751 		/* have to write it out again */
1752 		spin_unlock_irq(&mddev->write_lock);
1753 		goto repeat;
1754 	}
1755 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1756 	spin_unlock_irq(&mddev->write_lock);
1757 	wake_up(&mddev->sb_wait);
1758 
1759 }
1760 
1761 /* words written to sysfs files may, or my not, be \n terminated.
1762  * We want to accept with case. For this we use cmd_match.
1763  */
1764 static int cmd_match(const char *cmd, const char *str)
1765 {
1766 	/* See if cmd, written into a sysfs file, matches
1767 	 * str.  They must either be the same, or cmd can
1768 	 * have a trailing newline
1769 	 */
1770 	while (*cmd && *str && *cmd == *str) {
1771 		cmd++;
1772 		str++;
1773 	}
1774 	if (*cmd == '\n')
1775 		cmd++;
1776 	if (*str || *cmd)
1777 		return 0;
1778 	return 1;
1779 }
1780 
1781 struct rdev_sysfs_entry {
1782 	struct attribute attr;
1783 	ssize_t (*show)(mdk_rdev_t *, char *);
1784 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1785 };
1786 
1787 static ssize_t
1788 state_show(mdk_rdev_t *rdev, char *page)
1789 {
1790 	char *sep = "";
1791 	int len=0;
1792 
1793 	if (test_bit(Faulty, &rdev->flags)) {
1794 		len+= sprintf(page+len, "%sfaulty",sep);
1795 		sep = ",";
1796 	}
1797 	if (test_bit(In_sync, &rdev->flags)) {
1798 		len += sprintf(page+len, "%sin_sync",sep);
1799 		sep = ",";
1800 	}
1801 	if (test_bit(WriteMostly, &rdev->flags)) {
1802 		len += sprintf(page+len, "%swrite_mostly",sep);
1803 		sep = ",";
1804 	}
1805 	if (!test_bit(Faulty, &rdev->flags) &&
1806 	    !test_bit(In_sync, &rdev->flags)) {
1807 		len += sprintf(page+len, "%sspare", sep);
1808 		sep = ",";
1809 	}
1810 	return len+sprintf(page+len, "\n");
1811 }
1812 
1813 static ssize_t
1814 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1815 {
1816 	/* can write
1817 	 *  faulty  - simulates and error
1818 	 *  remove  - disconnects the device
1819 	 *  writemostly - sets write_mostly
1820 	 *  -writemostly - clears write_mostly
1821 	 */
1822 	int err = -EINVAL;
1823 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1824 		md_error(rdev->mddev, rdev);
1825 		err = 0;
1826 	} else if (cmd_match(buf, "remove")) {
1827 		if (rdev->raid_disk >= 0)
1828 			err = -EBUSY;
1829 		else {
1830 			mddev_t *mddev = rdev->mddev;
1831 			kick_rdev_from_array(rdev);
1832 			if (mddev->pers)
1833 				md_update_sb(mddev, 1);
1834 			md_new_event(mddev);
1835 			err = 0;
1836 		}
1837 	} else if (cmd_match(buf, "writemostly")) {
1838 		set_bit(WriteMostly, &rdev->flags);
1839 		err = 0;
1840 	} else if (cmd_match(buf, "-writemostly")) {
1841 		clear_bit(WriteMostly, &rdev->flags);
1842 		err = 0;
1843 	}
1844 	return err ? err : len;
1845 }
1846 static struct rdev_sysfs_entry rdev_state =
1847 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1848 
1849 static ssize_t
1850 super_show(mdk_rdev_t *rdev, char *page)
1851 {
1852 	if (rdev->sb_loaded && rdev->sb_size) {
1853 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1854 		return rdev->sb_size;
1855 	} else
1856 		return 0;
1857 }
1858 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1859 
1860 static ssize_t
1861 errors_show(mdk_rdev_t *rdev, char *page)
1862 {
1863 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1864 }
1865 
1866 static ssize_t
1867 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1868 {
1869 	char *e;
1870 	unsigned long n = simple_strtoul(buf, &e, 10);
1871 	if (*buf && (*e == 0 || *e == '\n')) {
1872 		atomic_set(&rdev->corrected_errors, n);
1873 		return len;
1874 	}
1875 	return -EINVAL;
1876 }
1877 static struct rdev_sysfs_entry rdev_errors =
1878 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1879 
1880 static ssize_t
1881 slot_show(mdk_rdev_t *rdev, char *page)
1882 {
1883 	if (rdev->raid_disk < 0)
1884 		return sprintf(page, "none\n");
1885 	else
1886 		return sprintf(page, "%d\n", rdev->raid_disk);
1887 }
1888 
1889 static ssize_t
1890 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1891 {
1892 	char *e;
1893 	int slot = simple_strtoul(buf, &e, 10);
1894 	if (strncmp(buf, "none", 4)==0)
1895 		slot = -1;
1896 	else if (e==buf || (*e && *e!= '\n'))
1897 		return -EINVAL;
1898 	if (rdev->mddev->pers)
1899 		/* Cannot set slot in active array (yet) */
1900 		return -EBUSY;
1901 	if (slot >= rdev->mddev->raid_disks)
1902 		return -ENOSPC;
1903 	rdev->raid_disk = slot;
1904 	/* assume it is working */
1905 	rdev->flags = 0;
1906 	set_bit(In_sync, &rdev->flags);
1907 	return len;
1908 }
1909 
1910 
1911 static struct rdev_sysfs_entry rdev_slot =
1912 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1913 
1914 static ssize_t
1915 offset_show(mdk_rdev_t *rdev, char *page)
1916 {
1917 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1918 }
1919 
1920 static ssize_t
1921 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1922 {
1923 	char *e;
1924 	unsigned long long offset = simple_strtoull(buf, &e, 10);
1925 	if (e==buf || (*e && *e != '\n'))
1926 		return -EINVAL;
1927 	if (rdev->mddev->pers)
1928 		return -EBUSY;
1929 	rdev->data_offset = offset;
1930 	return len;
1931 }
1932 
1933 static struct rdev_sysfs_entry rdev_offset =
1934 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1935 
1936 static ssize_t
1937 rdev_size_show(mdk_rdev_t *rdev, char *page)
1938 {
1939 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1940 }
1941 
1942 static ssize_t
1943 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1944 {
1945 	char *e;
1946 	unsigned long long size = simple_strtoull(buf, &e, 10);
1947 	if (e==buf || (*e && *e != '\n'))
1948 		return -EINVAL;
1949 	if (rdev->mddev->pers)
1950 		return -EBUSY;
1951 	rdev->size = size;
1952 	if (size < rdev->mddev->size || rdev->mddev->size == 0)
1953 		rdev->mddev->size = size;
1954 	return len;
1955 }
1956 
1957 static struct rdev_sysfs_entry rdev_size =
1958 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1959 
1960 static struct attribute *rdev_default_attrs[] = {
1961 	&rdev_state.attr,
1962 	&rdev_super.attr,
1963 	&rdev_errors.attr,
1964 	&rdev_slot.attr,
1965 	&rdev_offset.attr,
1966 	&rdev_size.attr,
1967 	NULL,
1968 };
1969 static ssize_t
1970 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1971 {
1972 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1973 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1974 
1975 	if (!entry->show)
1976 		return -EIO;
1977 	return entry->show(rdev, page);
1978 }
1979 
1980 static ssize_t
1981 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1982 	      const char *page, size_t length)
1983 {
1984 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1985 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1986 
1987 	if (!entry->store)
1988 		return -EIO;
1989 	if (!capable(CAP_SYS_ADMIN))
1990 		return -EACCES;
1991 	return entry->store(rdev, page, length);
1992 }
1993 
1994 static void rdev_free(struct kobject *ko)
1995 {
1996 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1997 	kfree(rdev);
1998 }
1999 static struct sysfs_ops rdev_sysfs_ops = {
2000 	.show		= rdev_attr_show,
2001 	.store		= rdev_attr_store,
2002 };
2003 static struct kobj_type rdev_ktype = {
2004 	.release	= rdev_free,
2005 	.sysfs_ops	= &rdev_sysfs_ops,
2006 	.default_attrs	= rdev_default_attrs,
2007 };
2008 
2009 /*
2010  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2011  *
2012  * mark the device faulty if:
2013  *
2014  *   - the device is nonexistent (zero size)
2015  *   - the device has no valid superblock
2016  *
2017  * a faulty rdev _never_ has rdev->sb set.
2018  */
2019 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2020 {
2021 	char b[BDEVNAME_SIZE];
2022 	int err;
2023 	mdk_rdev_t *rdev;
2024 	sector_t size;
2025 
2026 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2027 	if (!rdev) {
2028 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2029 		return ERR_PTR(-ENOMEM);
2030 	}
2031 
2032 	if ((err = alloc_disk_sb(rdev)))
2033 		goto abort_free;
2034 
2035 	err = lock_rdev(rdev, newdev);
2036 	if (err)
2037 		goto abort_free;
2038 
2039 	rdev->kobj.parent = NULL;
2040 	rdev->kobj.ktype = &rdev_ktype;
2041 	kobject_init(&rdev->kobj);
2042 
2043 	rdev->desc_nr = -1;
2044 	rdev->saved_raid_disk = -1;
2045 	rdev->raid_disk = -1;
2046 	rdev->flags = 0;
2047 	rdev->data_offset = 0;
2048 	rdev->sb_events = 0;
2049 	atomic_set(&rdev->nr_pending, 0);
2050 	atomic_set(&rdev->read_errors, 0);
2051 	atomic_set(&rdev->corrected_errors, 0);
2052 
2053 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2054 	if (!size) {
2055 		printk(KERN_WARNING
2056 			"md: %s has zero or unknown size, marking faulty!\n",
2057 			bdevname(rdev->bdev,b));
2058 		err = -EINVAL;
2059 		goto abort_free;
2060 	}
2061 
2062 	if (super_format >= 0) {
2063 		err = super_types[super_format].
2064 			load_super(rdev, NULL, super_minor);
2065 		if (err == -EINVAL) {
2066 			printk(KERN_WARNING
2067 				"md: %s does not have a valid v%d.%d "
2068 			       "superblock, not importing!\n",
2069 				bdevname(rdev->bdev,b),
2070 			       super_format, super_minor);
2071 			goto abort_free;
2072 		}
2073 		if (err < 0) {
2074 			printk(KERN_WARNING
2075 				"md: could not read %s's sb, not importing!\n",
2076 				bdevname(rdev->bdev,b));
2077 			goto abort_free;
2078 		}
2079 	}
2080 	INIT_LIST_HEAD(&rdev->same_set);
2081 
2082 	return rdev;
2083 
2084 abort_free:
2085 	if (rdev->sb_page) {
2086 		if (rdev->bdev)
2087 			unlock_rdev(rdev);
2088 		free_disk_sb(rdev);
2089 	}
2090 	kfree(rdev);
2091 	return ERR_PTR(err);
2092 }
2093 
2094 /*
2095  * Check a full RAID array for plausibility
2096  */
2097 
2098 
2099 static void analyze_sbs(mddev_t * mddev)
2100 {
2101 	int i;
2102 	struct list_head *tmp;
2103 	mdk_rdev_t *rdev, *freshest;
2104 	char b[BDEVNAME_SIZE];
2105 
2106 	freshest = NULL;
2107 	ITERATE_RDEV(mddev,rdev,tmp)
2108 		switch (super_types[mddev->major_version].
2109 			load_super(rdev, freshest, mddev->minor_version)) {
2110 		case 1:
2111 			freshest = rdev;
2112 			break;
2113 		case 0:
2114 			break;
2115 		default:
2116 			printk( KERN_ERR \
2117 				"md: fatal superblock inconsistency in %s"
2118 				" -- removing from array\n",
2119 				bdevname(rdev->bdev,b));
2120 			kick_rdev_from_array(rdev);
2121 		}
2122 
2123 
2124 	super_types[mddev->major_version].
2125 		validate_super(mddev, freshest);
2126 
2127 	i = 0;
2128 	ITERATE_RDEV(mddev,rdev,tmp) {
2129 		if (rdev != freshest)
2130 			if (super_types[mddev->major_version].
2131 			    validate_super(mddev, rdev)) {
2132 				printk(KERN_WARNING "md: kicking non-fresh %s"
2133 					" from array!\n",
2134 					bdevname(rdev->bdev,b));
2135 				kick_rdev_from_array(rdev);
2136 				continue;
2137 			}
2138 		if (mddev->level == LEVEL_MULTIPATH) {
2139 			rdev->desc_nr = i++;
2140 			rdev->raid_disk = rdev->desc_nr;
2141 			set_bit(In_sync, &rdev->flags);
2142 		} else if (rdev->raid_disk >= mddev->raid_disks) {
2143 			rdev->raid_disk = -1;
2144 			clear_bit(In_sync, &rdev->flags);
2145 		}
2146 	}
2147 
2148 
2149 
2150 	if (mddev->recovery_cp != MaxSector &&
2151 	    mddev->level >= 1)
2152 		printk(KERN_ERR "md: %s: raid array is not clean"
2153 		       " -- starting background reconstruction\n",
2154 		       mdname(mddev));
2155 
2156 }
2157 
2158 static ssize_t
2159 safe_delay_show(mddev_t *mddev, char *page)
2160 {
2161 	int msec = (mddev->safemode_delay*1000)/HZ;
2162 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2163 }
2164 static ssize_t
2165 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2166 {
2167 	int scale=1;
2168 	int dot=0;
2169 	int i;
2170 	unsigned long msec;
2171 	char buf[30];
2172 	char *e;
2173 	/* remove a period, and count digits after it */
2174 	if (len >= sizeof(buf))
2175 		return -EINVAL;
2176 	strlcpy(buf, cbuf, len);
2177 	buf[len] = 0;
2178 	for (i=0; i<len; i++) {
2179 		if (dot) {
2180 			if (isdigit(buf[i])) {
2181 				buf[i-1] = buf[i];
2182 				scale *= 10;
2183 			}
2184 			buf[i] = 0;
2185 		} else if (buf[i] == '.') {
2186 			dot=1;
2187 			buf[i] = 0;
2188 		}
2189 	}
2190 	msec = simple_strtoul(buf, &e, 10);
2191 	if (e == buf || (*e && *e != '\n'))
2192 		return -EINVAL;
2193 	msec = (msec * 1000) / scale;
2194 	if (msec == 0)
2195 		mddev->safemode_delay = 0;
2196 	else {
2197 		mddev->safemode_delay = (msec*HZ)/1000;
2198 		if (mddev->safemode_delay == 0)
2199 			mddev->safemode_delay = 1;
2200 	}
2201 	return len;
2202 }
2203 static struct md_sysfs_entry md_safe_delay =
2204 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2205 
2206 static ssize_t
2207 level_show(mddev_t *mddev, char *page)
2208 {
2209 	struct mdk_personality *p = mddev->pers;
2210 	if (p)
2211 		return sprintf(page, "%s\n", p->name);
2212 	else if (mddev->clevel[0])
2213 		return sprintf(page, "%s\n", mddev->clevel);
2214 	else if (mddev->level != LEVEL_NONE)
2215 		return sprintf(page, "%d\n", mddev->level);
2216 	else
2217 		return 0;
2218 }
2219 
2220 static ssize_t
2221 level_store(mddev_t *mddev, const char *buf, size_t len)
2222 {
2223 	int rv = len;
2224 	if (mddev->pers)
2225 		return -EBUSY;
2226 	if (len == 0)
2227 		return 0;
2228 	if (len >= sizeof(mddev->clevel))
2229 		return -ENOSPC;
2230 	strncpy(mddev->clevel, buf, len);
2231 	if (mddev->clevel[len-1] == '\n')
2232 		len--;
2233 	mddev->clevel[len] = 0;
2234 	mddev->level = LEVEL_NONE;
2235 	return rv;
2236 }
2237 
2238 static struct md_sysfs_entry md_level =
2239 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2240 
2241 
2242 static ssize_t
2243 layout_show(mddev_t *mddev, char *page)
2244 {
2245 	/* just a number, not meaningful for all levels */
2246 	if (mddev->reshape_position != MaxSector &&
2247 	    mddev->layout != mddev->new_layout)
2248 		return sprintf(page, "%d (%d)\n",
2249 			       mddev->new_layout, mddev->layout);
2250 	return sprintf(page, "%d\n", mddev->layout);
2251 }
2252 
2253 static ssize_t
2254 layout_store(mddev_t *mddev, const char *buf, size_t len)
2255 {
2256 	char *e;
2257 	unsigned long n = simple_strtoul(buf, &e, 10);
2258 
2259 	if (!*buf || (*e && *e != '\n'))
2260 		return -EINVAL;
2261 
2262 	if (mddev->pers)
2263 		return -EBUSY;
2264 	if (mddev->reshape_position != MaxSector)
2265 		mddev->new_layout = n;
2266 	else
2267 		mddev->layout = n;
2268 	return len;
2269 }
2270 static struct md_sysfs_entry md_layout =
2271 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2272 
2273 
2274 static ssize_t
2275 raid_disks_show(mddev_t *mddev, char *page)
2276 {
2277 	if (mddev->raid_disks == 0)
2278 		return 0;
2279 	if (mddev->reshape_position != MaxSector &&
2280 	    mddev->delta_disks != 0)
2281 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2282 			       mddev->raid_disks - mddev->delta_disks);
2283 	return sprintf(page, "%d\n", mddev->raid_disks);
2284 }
2285 
2286 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2287 
2288 static ssize_t
2289 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2290 {
2291 	char *e;
2292 	int rv = 0;
2293 	unsigned long n = simple_strtoul(buf, &e, 10);
2294 
2295 	if (!*buf || (*e && *e != '\n'))
2296 		return -EINVAL;
2297 
2298 	if (mddev->pers)
2299 		rv = update_raid_disks(mddev, n);
2300 	else if (mddev->reshape_position != MaxSector) {
2301 		int olddisks = mddev->raid_disks - mddev->delta_disks;
2302 		mddev->delta_disks = n - olddisks;
2303 		mddev->raid_disks = n;
2304 	} else
2305 		mddev->raid_disks = n;
2306 	return rv ? rv : len;
2307 }
2308 static struct md_sysfs_entry md_raid_disks =
2309 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2310 
2311 static ssize_t
2312 chunk_size_show(mddev_t *mddev, char *page)
2313 {
2314 	if (mddev->reshape_position != MaxSector &&
2315 	    mddev->chunk_size != mddev->new_chunk)
2316 		return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2317 			       mddev->chunk_size);
2318 	return sprintf(page, "%d\n", mddev->chunk_size);
2319 }
2320 
2321 static ssize_t
2322 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2323 {
2324 	/* can only set chunk_size if array is not yet active */
2325 	char *e;
2326 	unsigned long n = simple_strtoul(buf, &e, 10);
2327 
2328 	if (!*buf || (*e && *e != '\n'))
2329 		return -EINVAL;
2330 
2331 	if (mddev->pers)
2332 		return -EBUSY;
2333 	else if (mddev->reshape_position != MaxSector)
2334 		mddev->new_chunk = n;
2335 	else
2336 		mddev->chunk_size = n;
2337 	return len;
2338 }
2339 static struct md_sysfs_entry md_chunk_size =
2340 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2341 
2342 static ssize_t
2343 resync_start_show(mddev_t *mddev, char *page)
2344 {
2345 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2346 }
2347 
2348 static ssize_t
2349 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2350 {
2351 	/* can only set chunk_size if array is not yet active */
2352 	char *e;
2353 	unsigned long long n = simple_strtoull(buf, &e, 10);
2354 
2355 	if (mddev->pers)
2356 		return -EBUSY;
2357 	if (!*buf || (*e && *e != '\n'))
2358 		return -EINVAL;
2359 
2360 	mddev->recovery_cp = n;
2361 	return len;
2362 }
2363 static struct md_sysfs_entry md_resync_start =
2364 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2365 
2366 /*
2367  * The array state can be:
2368  *
2369  * clear
2370  *     No devices, no size, no level
2371  *     Equivalent to STOP_ARRAY ioctl
2372  * inactive
2373  *     May have some settings, but array is not active
2374  *        all IO results in error
2375  *     When written, doesn't tear down array, but just stops it
2376  * suspended (not supported yet)
2377  *     All IO requests will block. The array can be reconfigured.
2378  *     Writing this, if accepted, will block until array is quiessent
2379  * readonly
2380  *     no resync can happen.  no superblocks get written.
2381  *     write requests fail
2382  * read-auto
2383  *     like readonly, but behaves like 'clean' on a write request.
2384  *
2385  * clean - no pending writes, but otherwise active.
2386  *     When written to inactive array, starts without resync
2387  *     If a write request arrives then
2388  *       if metadata is known, mark 'dirty' and switch to 'active'.
2389  *       if not known, block and switch to write-pending
2390  *     If written to an active array that has pending writes, then fails.
2391  * active
2392  *     fully active: IO and resync can be happening.
2393  *     When written to inactive array, starts with resync
2394  *
2395  * write-pending
2396  *     clean, but writes are blocked waiting for 'active' to be written.
2397  *
2398  * active-idle
2399  *     like active, but no writes have been seen for a while (100msec).
2400  *
2401  */
2402 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2403 		   write_pending, active_idle, bad_word};
2404 static char *array_states[] = {
2405 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2406 	"write-pending", "active-idle", NULL };
2407 
2408 static int match_word(const char *word, char **list)
2409 {
2410 	int n;
2411 	for (n=0; list[n]; n++)
2412 		if (cmd_match(word, list[n]))
2413 			break;
2414 	return n;
2415 }
2416 
2417 static ssize_t
2418 array_state_show(mddev_t *mddev, char *page)
2419 {
2420 	enum array_state st = inactive;
2421 
2422 	if (mddev->pers)
2423 		switch(mddev->ro) {
2424 		case 1:
2425 			st = readonly;
2426 			break;
2427 		case 2:
2428 			st = read_auto;
2429 			break;
2430 		case 0:
2431 			if (mddev->in_sync)
2432 				st = clean;
2433 			else if (mddev->safemode)
2434 				st = active_idle;
2435 			else
2436 				st = active;
2437 		}
2438 	else {
2439 		if (list_empty(&mddev->disks) &&
2440 		    mddev->raid_disks == 0 &&
2441 		    mddev->size == 0)
2442 			st = clear;
2443 		else
2444 			st = inactive;
2445 	}
2446 	return sprintf(page, "%s\n", array_states[st]);
2447 }
2448 
2449 static int do_md_stop(mddev_t * mddev, int ro);
2450 static int do_md_run(mddev_t * mddev);
2451 static int restart_array(mddev_t *mddev);
2452 
2453 static ssize_t
2454 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2455 {
2456 	int err = -EINVAL;
2457 	enum array_state st = match_word(buf, array_states);
2458 	switch(st) {
2459 	case bad_word:
2460 		break;
2461 	case clear:
2462 		/* stopping an active array */
2463 		if (mddev->pers) {
2464 			if (atomic_read(&mddev->active) > 1)
2465 				return -EBUSY;
2466 			err = do_md_stop(mddev, 0);
2467 		}
2468 		break;
2469 	case inactive:
2470 		/* stopping an active array */
2471 		if (mddev->pers) {
2472 			if (atomic_read(&mddev->active) > 1)
2473 				return -EBUSY;
2474 			err = do_md_stop(mddev, 2);
2475 		}
2476 		break;
2477 	case suspended:
2478 		break; /* not supported yet */
2479 	case readonly:
2480 		if (mddev->pers)
2481 			err = do_md_stop(mddev, 1);
2482 		else {
2483 			mddev->ro = 1;
2484 			err = do_md_run(mddev);
2485 		}
2486 		break;
2487 	case read_auto:
2488 		/* stopping an active array */
2489 		if (mddev->pers) {
2490 			err = do_md_stop(mddev, 1);
2491 			if (err == 0)
2492 				mddev->ro = 2; /* FIXME mark devices writable */
2493 		} else {
2494 			mddev->ro = 2;
2495 			err = do_md_run(mddev);
2496 		}
2497 		break;
2498 	case clean:
2499 		if (mddev->pers) {
2500 			restart_array(mddev);
2501 			spin_lock_irq(&mddev->write_lock);
2502 			if (atomic_read(&mddev->writes_pending) == 0) {
2503 				mddev->in_sync = 1;
2504 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2505 			}
2506 			spin_unlock_irq(&mddev->write_lock);
2507 		} else {
2508 			mddev->ro = 0;
2509 			mddev->recovery_cp = MaxSector;
2510 			err = do_md_run(mddev);
2511 		}
2512 		break;
2513 	case active:
2514 		if (mddev->pers) {
2515 			restart_array(mddev);
2516 			clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2517 			wake_up(&mddev->sb_wait);
2518 			err = 0;
2519 		} else {
2520 			mddev->ro = 0;
2521 			err = do_md_run(mddev);
2522 		}
2523 		break;
2524 	case write_pending:
2525 	case active_idle:
2526 		/* these cannot be set */
2527 		break;
2528 	}
2529 	if (err)
2530 		return err;
2531 	else
2532 		return len;
2533 }
2534 static struct md_sysfs_entry md_array_state =
2535 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2536 
2537 static ssize_t
2538 null_show(mddev_t *mddev, char *page)
2539 {
2540 	return -EINVAL;
2541 }
2542 
2543 static ssize_t
2544 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2545 {
2546 	/* buf must be %d:%d\n? giving major and minor numbers */
2547 	/* The new device is added to the array.
2548 	 * If the array has a persistent superblock, we read the
2549 	 * superblock to initialise info and check validity.
2550 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2551 	 * which mainly checks size.
2552 	 */
2553 	char *e;
2554 	int major = simple_strtoul(buf, &e, 10);
2555 	int minor;
2556 	dev_t dev;
2557 	mdk_rdev_t *rdev;
2558 	int err;
2559 
2560 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2561 		return -EINVAL;
2562 	minor = simple_strtoul(e+1, &e, 10);
2563 	if (*e && *e != '\n')
2564 		return -EINVAL;
2565 	dev = MKDEV(major, minor);
2566 	if (major != MAJOR(dev) ||
2567 	    minor != MINOR(dev))
2568 		return -EOVERFLOW;
2569 
2570 
2571 	if (mddev->persistent) {
2572 		rdev = md_import_device(dev, mddev->major_version,
2573 					mddev->minor_version);
2574 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2575 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2576 						       mdk_rdev_t, same_set);
2577 			err = super_types[mddev->major_version]
2578 				.load_super(rdev, rdev0, mddev->minor_version);
2579 			if (err < 0)
2580 				goto out;
2581 		}
2582 	} else
2583 		rdev = md_import_device(dev, -1, -1);
2584 
2585 	if (IS_ERR(rdev))
2586 		return PTR_ERR(rdev);
2587 	err = bind_rdev_to_array(rdev, mddev);
2588  out:
2589 	if (err)
2590 		export_rdev(rdev);
2591 	return err ? err : len;
2592 }
2593 
2594 static struct md_sysfs_entry md_new_device =
2595 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2596 
2597 static ssize_t
2598 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2599 {
2600 	char *end;
2601 	unsigned long chunk, end_chunk;
2602 
2603 	if (!mddev->bitmap)
2604 		goto out;
2605 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2606 	while (*buf) {
2607 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
2608 		if (buf == end) break;
2609 		if (*end == '-') { /* range */
2610 			buf = end + 1;
2611 			end_chunk = simple_strtoul(buf, &end, 0);
2612 			if (buf == end) break;
2613 		}
2614 		if (*end && !isspace(*end)) break;
2615 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2616 		buf = end;
2617 		while (isspace(*buf)) buf++;
2618 	}
2619 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2620 out:
2621 	return len;
2622 }
2623 
2624 static struct md_sysfs_entry md_bitmap =
2625 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2626 
2627 static ssize_t
2628 size_show(mddev_t *mddev, char *page)
2629 {
2630 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2631 }
2632 
2633 static int update_size(mddev_t *mddev, unsigned long size);
2634 
2635 static ssize_t
2636 size_store(mddev_t *mddev, const char *buf, size_t len)
2637 {
2638 	/* If array is inactive, we can reduce the component size, but
2639 	 * not increase it (except from 0).
2640 	 * If array is active, we can try an on-line resize
2641 	 */
2642 	char *e;
2643 	int err = 0;
2644 	unsigned long long size = simple_strtoull(buf, &e, 10);
2645 	if (!*buf || *buf == '\n' ||
2646 	    (*e && *e != '\n'))
2647 		return -EINVAL;
2648 
2649 	if (mddev->pers) {
2650 		err = update_size(mddev, size);
2651 		md_update_sb(mddev, 1);
2652 	} else {
2653 		if (mddev->size == 0 ||
2654 		    mddev->size > size)
2655 			mddev->size = size;
2656 		else
2657 			err = -ENOSPC;
2658 	}
2659 	return err ? err : len;
2660 }
2661 
2662 static struct md_sysfs_entry md_size =
2663 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2664 
2665 
2666 /* Metdata version.
2667  * This is either 'none' for arrays with externally managed metadata,
2668  * or N.M for internally known formats
2669  */
2670 static ssize_t
2671 metadata_show(mddev_t *mddev, char *page)
2672 {
2673 	if (mddev->persistent)
2674 		return sprintf(page, "%d.%d\n",
2675 			       mddev->major_version, mddev->minor_version);
2676 	else
2677 		return sprintf(page, "none\n");
2678 }
2679 
2680 static ssize_t
2681 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2682 {
2683 	int major, minor;
2684 	char *e;
2685 	if (!list_empty(&mddev->disks))
2686 		return -EBUSY;
2687 
2688 	if (cmd_match(buf, "none")) {
2689 		mddev->persistent = 0;
2690 		mddev->major_version = 0;
2691 		mddev->minor_version = 90;
2692 		return len;
2693 	}
2694 	major = simple_strtoul(buf, &e, 10);
2695 	if (e==buf || *e != '.')
2696 		return -EINVAL;
2697 	buf = e+1;
2698 	minor = simple_strtoul(buf, &e, 10);
2699 	if (e==buf || (*e && *e != '\n') )
2700 		return -EINVAL;
2701 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2702 		return -ENOENT;
2703 	mddev->major_version = major;
2704 	mddev->minor_version = minor;
2705 	mddev->persistent = 1;
2706 	return len;
2707 }
2708 
2709 static struct md_sysfs_entry md_metadata =
2710 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2711 
2712 static ssize_t
2713 action_show(mddev_t *mddev, char *page)
2714 {
2715 	char *type = "idle";
2716 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2717 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2718 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2719 			type = "reshape";
2720 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2721 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2722 				type = "resync";
2723 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2724 				type = "check";
2725 			else
2726 				type = "repair";
2727 		} else
2728 			type = "recover";
2729 	}
2730 	return sprintf(page, "%s\n", type);
2731 }
2732 
2733 static ssize_t
2734 action_store(mddev_t *mddev, const char *page, size_t len)
2735 {
2736 	if (!mddev->pers || !mddev->pers->sync_request)
2737 		return -EINVAL;
2738 
2739 	if (cmd_match(page, "idle")) {
2740 		if (mddev->sync_thread) {
2741 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2742 			md_unregister_thread(mddev->sync_thread);
2743 			mddev->sync_thread = NULL;
2744 			mddev->recovery = 0;
2745 		}
2746 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2747 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2748 		return -EBUSY;
2749 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2750 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2751 	else if (cmd_match(page, "reshape")) {
2752 		int err;
2753 		if (mddev->pers->start_reshape == NULL)
2754 			return -EINVAL;
2755 		err = mddev->pers->start_reshape(mddev);
2756 		if (err)
2757 			return err;
2758 	} else {
2759 		if (cmd_match(page, "check"))
2760 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2761 		else if (!cmd_match(page, "repair"))
2762 			return -EINVAL;
2763 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2764 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2765 	}
2766 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2767 	md_wakeup_thread(mddev->thread);
2768 	return len;
2769 }
2770 
2771 static ssize_t
2772 mismatch_cnt_show(mddev_t *mddev, char *page)
2773 {
2774 	return sprintf(page, "%llu\n",
2775 		       (unsigned long long) mddev->resync_mismatches);
2776 }
2777 
2778 static struct md_sysfs_entry md_scan_mode =
2779 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2780 
2781 
2782 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2783 
2784 static ssize_t
2785 sync_min_show(mddev_t *mddev, char *page)
2786 {
2787 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
2788 		       mddev->sync_speed_min ? "local": "system");
2789 }
2790 
2791 static ssize_t
2792 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2793 {
2794 	int min;
2795 	char *e;
2796 	if (strncmp(buf, "system", 6)==0) {
2797 		mddev->sync_speed_min = 0;
2798 		return len;
2799 	}
2800 	min = simple_strtoul(buf, &e, 10);
2801 	if (buf == e || (*e && *e != '\n') || min <= 0)
2802 		return -EINVAL;
2803 	mddev->sync_speed_min = min;
2804 	return len;
2805 }
2806 
2807 static struct md_sysfs_entry md_sync_min =
2808 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2809 
2810 static ssize_t
2811 sync_max_show(mddev_t *mddev, char *page)
2812 {
2813 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
2814 		       mddev->sync_speed_max ? "local": "system");
2815 }
2816 
2817 static ssize_t
2818 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2819 {
2820 	int max;
2821 	char *e;
2822 	if (strncmp(buf, "system", 6)==0) {
2823 		mddev->sync_speed_max = 0;
2824 		return len;
2825 	}
2826 	max = simple_strtoul(buf, &e, 10);
2827 	if (buf == e || (*e && *e != '\n') || max <= 0)
2828 		return -EINVAL;
2829 	mddev->sync_speed_max = max;
2830 	return len;
2831 }
2832 
2833 static struct md_sysfs_entry md_sync_max =
2834 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2835 
2836 
2837 static ssize_t
2838 sync_speed_show(mddev_t *mddev, char *page)
2839 {
2840 	unsigned long resync, dt, db;
2841 	resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2842 	dt = ((jiffies - mddev->resync_mark) / HZ);
2843 	if (!dt) dt++;
2844 	db = resync - (mddev->resync_mark_cnt);
2845 	return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2846 }
2847 
2848 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2849 
2850 static ssize_t
2851 sync_completed_show(mddev_t *mddev, char *page)
2852 {
2853 	unsigned long max_blocks, resync;
2854 
2855 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2856 		max_blocks = mddev->resync_max_sectors;
2857 	else
2858 		max_blocks = mddev->size << 1;
2859 
2860 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2861 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2862 }
2863 
2864 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2865 
2866 static ssize_t
2867 suspend_lo_show(mddev_t *mddev, char *page)
2868 {
2869 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2870 }
2871 
2872 static ssize_t
2873 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2874 {
2875 	char *e;
2876 	unsigned long long new = simple_strtoull(buf, &e, 10);
2877 
2878 	if (mddev->pers->quiesce == NULL)
2879 		return -EINVAL;
2880 	if (buf == e || (*e && *e != '\n'))
2881 		return -EINVAL;
2882 	if (new >= mddev->suspend_hi ||
2883 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2884 		mddev->suspend_lo = new;
2885 		mddev->pers->quiesce(mddev, 2);
2886 		return len;
2887 	} else
2888 		return -EINVAL;
2889 }
2890 static struct md_sysfs_entry md_suspend_lo =
2891 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2892 
2893 
2894 static ssize_t
2895 suspend_hi_show(mddev_t *mddev, char *page)
2896 {
2897 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2898 }
2899 
2900 static ssize_t
2901 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2902 {
2903 	char *e;
2904 	unsigned long long new = simple_strtoull(buf, &e, 10);
2905 
2906 	if (mddev->pers->quiesce == NULL)
2907 		return -EINVAL;
2908 	if (buf == e || (*e && *e != '\n'))
2909 		return -EINVAL;
2910 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2911 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2912 		mddev->suspend_hi = new;
2913 		mddev->pers->quiesce(mddev, 1);
2914 		mddev->pers->quiesce(mddev, 0);
2915 		return len;
2916 	} else
2917 		return -EINVAL;
2918 }
2919 static struct md_sysfs_entry md_suspend_hi =
2920 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2921 
2922 static ssize_t
2923 reshape_position_show(mddev_t *mddev, char *page)
2924 {
2925 	if (mddev->reshape_position != MaxSector)
2926 		return sprintf(page, "%llu\n",
2927 			       (unsigned long long)mddev->reshape_position);
2928 	strcpy(page, "none\n");
2929 	return 5;
2930 }
2931 
2932 static ssize_t
2933 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
2934 {
2935 	char *e;
2936 	unsigned long long new = simple_strtoull(buf, &e, 10);
2937 	if (mddev->pers)
2938 		return -EBUSY;
2939 	if (buf == e || (*e && *e != '\n'))
2940 		return -EINVAL;
2941 	mddev->reshape_position = new;
2942 	mddev->delta_disks = 0;
2943 	mddev->new_level = mddev->level;
2944 	mddev->new_layout = mddev->layout;
2945 	mddev->new_chunk = mddev->chunk_size;
2946 	return len;
2947 }
2948 
2949 static struct md_sysfs_entry md_reshape_position =
2950 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
2951        reshape_position_store);
2952 
2953 
2954 static struct attribute *md_default_attrs[] = {
2955 	&md_level.attr,
2956 	&md_layout.attr,
2957 	&md_raid_disks.attr,
2958 	&md_chunk_size.attr,
2959 	&md_size.attr,
2960 	&md_resync_start.attr,
2961 	&md_metadata.attr,
2962 	&md_new_device.attr,
2963 	&md_safe_delay.attr,
2964 	&md_array_state.attr,
2965 	&md_reshape_position.attr,
2966 	NULL,
2967 };
2968 
2969 static struct attribute *md_redundancy_attrs[] = {
2970 	&md_scan_mode.attr,
2971 	&md_mismatches.attr,
2972 	&md_sync_min.attr,
2973 	&md_sync_max.attr,
2974 	&md_sync_speed.attr,
2975 	&md_sync_completed.attr,
2976 	&md_suspend_lo.attr,
2977 	&md_suspend_hi.attr,
2978 	&md_bitmap.attr,
2979 	NULL,
2980 };
2981 static struct attribute_group md_redundancy_group = {
2982 	.name = NULL,
2983 	.attrs = md_redundancy_attrs,
2984 };
2985 
2986 
2987 static ssize_t
2988 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2989 {
2990 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2991 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2992 	ssize_t rv;
2993 
2994 	if (!entry->show)
2995 		return -EIO;
2996 	rv = mddev_lock(mddev);
2997 	if (!rv) {
2998 		rv = entry->show(mddev, page);
2999 		mddev_unlock(mddev);
3000 	}
3001 	return rv;
3002 }
3003 
3004 static ssize_t
3005 md_attr_store(struct kobject *kobj, struct attribute *attr,
3006 	      const char *page, size_t length)
3007 {
3008 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3009 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3010 	ssize_t rv;
3011 
3012 	if (!entry->store)
3013 		return -EIO;
3014 	if (!capable(CAP_SYS_ADMIN))
3015 		return -EACCES;
3016 	rv = mddev_lock(mddev);
3017 	if (!rv) {
3018 		rv = entry->store(mddev, page, length);
3019 		mddev_unlock(mddev);
3020 	}
3021 	return rv;
3022 }
3023 
3024 static void md_free(struct kobject *ko)
3025 {
3026 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
3027 	kfree(mddev);
3028 }
3029 
3030 static struct sysfs_ops md_sysfs_ops = {
3031 	.show	= md_attr_show,
3032 	.store	= md_attr_store,
3033 };
3034 static struct kobj_type md_ktype = {
3035 	.release	= md_free,
3036 	.sysfs_ops	= &md_sysfs_ops,
3037 	.default_attrs	= md_default_attrs,
3038 };
3039 
3040 int mdp_major = 0;
3041 
3042 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3043 {
3044 	static DEFINE_MUTEX(disks_mutex);
3045 	mddev_t *mddev = mddev_find(dev);
3046 	struct gendisk *disk;
3047 	int partitioned = (MAJOR(dev) != MD_MAJOR);
3048 	int shift = partitioned ? MdpMinorShift : 0;
3049 	int unit = MINOR(dev) >> shift;
3050 
3051 	if (!mddev)
3052 		return NULL;
3053 
3054 	mutex_lock(&disks_mutex);
3055 	if (mddev->gendisk) {
3056 		mutex_unlock(&disks_mutex);
3057 		mddev_put(mddev);
3058 		return NULL;
3059 	}
3060 	disk = alloc_disk(1 << shift);
3061 	if (!disk) {
3062 		mutex_unlock(&disks_mutex);
3063 		mddev_put(mddev);
3064 		return NULL;
3065 	}
3066 	disk->major = MAJOR(dev);
3067 	disk->first_minor = unit << shift;
3068 	if (partitioned)
3069 		sprintf(disk->disk_name, "md_d%d", unit);
3070 	else
3071 		sprintf(disk->disk_name, "md%d", unit);
3072 	disk->fops = &md_fops;
3073 	disk->private_data = mddev;
3074 	disk->queue = mddev->queue;
3075 	add_disk(disk);
3076 	mddev->gendisk = disk;
3077 	mutex_unlock(&disks_mutex);
3078 	mddev->kobj.parent = &disk->kobj;
3079 	kobject_set_name(&mddev->kobj, "%s", "md");
3080 	mddev->kobj.ktype = &md_ktype;
3081 	if (kobject_register(&mddev->kobj))
3082 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3083 		       disk->disk_name);
3084 	return NULL;
3085 }
3086 
3087 static void md_safemode_timeout(unsigned long data)
3088 {
3089 	mddev_t *mddev = (mddev_t *) data;
3090 
3091 	mddev->safemode = 1;
3092 	md_wakeup_thread(mddev->thread);
3093 }
3094 
3095 static int start_dirty_degraded;
3096 
3097 static int do_md_run(mddev_t * mddev)
3098 {
3099 	int err;
3100 	int chunk_size;
3101 	struct list_head *tmp;
3102 	mdk_rdev_t *rdev;
3103 	struct gendisk *disk;
3104 	struct mdk_personality *pers;
3105 	char b[BDEVNAME_SIZE];
3106 
3107 	if (list_empty(&mddev->disks))
3108 		/* cannot run an array with no devices.. */
3109 		return -EINVAL;
3110 
3111 	if (mddev->pers)
3112 		return -EBUSY;
3113 
3114 	/*
3115 	 * Analyze all RAID superblock(s)
3116 	 */
3117 	if (!mddev->raid_disks)
3118 		analyze_sbs(mddev);
3119 
3120 	chunk_size = mddev->chunk_size;
3121 
3122 	if (chunk_size) {
3123 		if (chunk_size > MAX_CHUNK_SIZE) {
3124 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
3125 				chunk_size, MAX_CHUNK_SIZE);
3126 			return -EINVAL;
3127 		}
3128 		/*
3129 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3130 		 */
3131 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
3132 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3133 			return -EINVAL;
3134 		}
3135 		if (chunk_size < PAGE_SIZE) {
3136 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3137 				chunk_size, PAGE_SIZE);
3138 			return -EINVAL;
3139 		}
3140 
3141 		/* devices must have minimum size of one chunk */
3142 		ITERATE_RDEV(mddev,rdev,tmp) {
3143 			if (test_bit(Faulty, &rdev->flags))
3144 				continue;
3145 			if (rdev->size < chunk_size / 1024) {
3146 				printk(KERN_WARNING
3147 					"md: Dev %s smaller than chunk_size:"
3148 					" %lluk < %dk\n",
3149 					bdevname(rdev->bdev,b),
3150 					(unsigned long long)rdev->size,
3151 					chunk_size / 1024);
3152 				return -EINVAL;
3153 			}
3154 		}
3155 	}
3156 
3157 #ifdef CONFIG_KMOD
3158 	if (mddev->level != LEVEL_NONE)
3159 		request_module("md-level-%d", mddev->level);
3160 	else if (mddev->clevel[0])
3161 		request_module("md-%s", mddev->clevel);
3162 #endif
3163 
3164 	/*
3165 	 * Drop all container device buffers, from now on
3166 	 * the only valid external interface is through the md
3167 	 * device.
3168 	 */
3169 	ITERATE_RDEV(mddev,rdev,tmp) {
3170 		if (test_bit(Faulty, &rdev->flags))
3171 			continue;
3172 		sync_blockdev(rdev->bdev);
3173 		invalidate_bdev(rdev->bdev);
3174 
3175 		/* perform some consistency tests on the device.
3176 		 * We don't want the data to overlap the metadata,
3177 		 * Internal Bitmap issues has handled elsewhere.
3178 		 */
3179 		if (rdev->data_offset < rdev->sb_offset) {
3180 			if (mddev->size &&
3181 			    rdev->data_offset + mddev->size*2
3182 			    > rdev->sb_offset*2) {
3183 				printk("md: %s: data overlaps metadata\n",
3184 				       mdname(mddev));
3185 				return -EINVAL;
3186 			}
3187 		} else {
3188 			if (rdev->sb_offset*2 + rdev->sb_size/512
3189 			    > rdev->data_offset) {
3190 				printk("md: %s: metadata overlaps data\n",
3191 				       mdname(mddev));
3192 				return -EINVAL;
3193 			}
3194 		}
3195 	}
3196 
3197 	md_probe(mddev->unit, NULL, NULL);
3198 	disk = mddev->gendisk;
3199 	if (!disk)
3200 		return -ENOMEM;
3201 
3202 	spin_lock(&pers_lock);
3203 	pers = find_pers(mddev->level, mddev->clevel);
3204 	if (!pers || !try_module_get(pers->owner)) {
3205 		spin_unlock(&pers_lock);
3206 		if (mddev->level != LEVEL_NONE)
3207 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3208 			       mddev->level);
3209 		else
3210 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3211 			       mddev->clevel);
3212 		return -EINVAL;
3213 	}
3214 	mddev->pers = pers;
3215 	spin_unlock(&pers_lock);
3216 	mddev->level = pers->level;
3217 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3218 
3219 	if (mddev->reshape_position != MaxSector &&
3220 	    pers->start_reshape == NULL) {
3221 		/* This personality cannot handle reshaping... */
3222 		mddev->pers = NULL;
3223 		module_put(pers->owner);
3224 		return -EINVAL;
3225 	}
3226 
3227 	if (pers->sync_request) {
3228 		/* Warn if this is a potentially silly
3229 		 * configuration.
3230 		 */
3231 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3232 		mdk_rdev_t *rdev2;
3233 		struct list_head *tmp2;
3234 		int warned = 0;
3235 		ITERATE_RDEV(mddev, rdev, tmp) {
3236 			ITERATE_RDEV(mddev, rdev2, tmp2) {
3237 				if (rdev < rdev2 &&
3238 				    rdev->bdev->bd_contains ==
3239 				    rdev2->bdev->bd_contains) {
3240 					printk(KERN_WARNING
3241 					       "%s: WARNING: %s appears to be"
3242 					       " on the same physical disk as"
3243 					       " %s.\n",
3244 					       mdname(mddev),
3245 					       bdevname(rdev->bdev,b),
3246 					       bdevname(rdev2->bdev,b2));
3247 					warned = 1;
3248 				}
3249 			}
3250 		}
3251 		if (warned)
3252 			printk(KERN_WARNING
3253 			       "True protection against single-disk"
3254 			       " failure might be compromised.\n");
3255 	}
3256 
3257 	mddev->recovery = 0;
3258 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3259 	mddev->barriers_work = 1;
3260 	mddev->ok_start_degraded = start_dirty_degraded;
3261 
3262 	if (start_readonly)
3263 		mddev->ro = 2; /* read-only, but switch on first write */
3264 
3265 	err = mddev->pers->run(mddev);
3266 	if (!err && mddev->pers->sync_request) {
3267 		err = bitmap_create(mddev);
3268 		if (err) {
3269 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3270 			       mdname(mddev), err);
3271 			mddev->pers->stop(mddev);
3272 		}
3273 	}
3274 	if (err) {
3275 		printk(KERN_ERR "md: pers->run() failed ...\n");
3276 		module_put(mddev->pers->owner);
3277 		mddev->pers = NULL;
3278 		bitmap_destroy(mddev);
3279 		return err;
3280 	}
3281 	if (mddev->pers->sync_request) {
3282 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3283 			printk(KERN_WARNING
3284 			       "md: cannot register extra attributes for %s\n",
3285 			       mdname(mddev));
3286 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
3287 		mddev->ro = 0;
3288 
3289  	atomic_set(&mddev->writes_pending,0);
3290 	mddev->safemode = 0;
3291 	mddev->safemode_timer.function = md_safemode_timeout;
3292 	mddev->safemode_timer.data = (unsigned long) mddev;
3293 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3294 	mddev->in_sync = 1;
3295 
3296 	ITERATE_RDEV(mddev,rdev,tmp)
3297 		if (rdev->raid_disk >= 0) {
3298 			char nm[20];
3299 			sprintf(nm, "rd%d", rdev->raid_disk);
3300 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3301 				printk("md: cannot register %s for %s\n",
3302 				       nm, mdname(mddev));
3303 		}
3304 
3305 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3306 
3307 	if (mddev->flags)
3308 		md_update_sb(mddev, 0);
3309 
3310 	set_capacity(disk, mddev->array_size<<1);
3311 
3312 	/* If we call blk_queue_make_request here, it will
3313 	 * re-initialise max_sectors etc which may have been
3314 	 * refined inside -> run.  So just set the bits we need to set.
3315 	 * Most initialisation happended when we called
3316 	 * blk_queue_make_request(..., md_fail_request)
3317 	 * earlier.
3318 	 */
3319 	mddev->queue->queuedata = mddev;
3320 	mddev->queue->make_request_fn = mddev->pers->make_request;
3321 
3322 	/* If there is a partially-recovered drive we need to
3323 	 * start recovery here.  If we leave it to md_check_recovery,
3324 	 * it will remove the drives and not do the right thing
3325 	 */
3326 	if (mddev->degraded && !mddev->sync_thread) {
3327 		struct list_head *rtmp;
3328 		int spares = 0;
3329 		ITERATE_RDEV(mddev,rdev,rtmp)
3330 			if (rdev->raid_disk >= 0 &&
3331 			    !test_bit(In_sync, &rdev->flags) &&
3332 			    !test_bit(Faulty, &rdev->flags))
3333 				/* complete an interrupted recovery */
3334 				spares++;
3335 		if (spares && mddev->pers->sync_request) {
3336 			mddev->recovery = 0;
3337 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3338 			mddev->sync_thread = md_register_thread(md_do_sync,
3339 								mddev,
3340 								"%s_resync");
3341 			if (!mddev->sync_thread) {
3342 				printk(KERN_ERR "%s: could not start resync"
3343 				       " thread...\n",
3344 				       mdname(mddev));
3345 				/* leave the spares where they are, it shouldn't hurt */
3346 				mddev->recovery = 0;
3347 			}
3348 		}
3349 	}
3350 	md_wakeup_thread(mddev->thread);
3351 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3352 
3353 	mddev->changed = 1;
3354 	md_new_event(mddev);
3355 	kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
3356 	return 0;
3357 }
3358 
3359 static int restart_array(mddev_t *mddev)
3360 {
3361 	struct gendisk *disk = mddev->gendisk;
3362 	int err;
3363 
3364 	/*
3365 	 * Complain if it has no devices
3366 	 */
3367 	err = -ENXIO;
3368 	if (list_empty(&mddev->disks))
3369 		goto out;
3370 
3371 	if (mddev->pers) {
3372 		err = -EBUSY;
3373 		if (!mddev->ro)
3374 			goto out;
3375 
3376 		mddev->safemode = 0;
3377 		mddev->ro = 0;
3378 		set_disk_ro(disk, 0);
3379 
3380 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
3381 			mdname(mddev));
3382 		/*
3383 		 * Kick recovery or resync if necessary
3384 		 */
3385 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3386 		md_wakeup_thread(mddev->thread);
3387 		md_wakeup_thread(mddev->sync_thread);
3388 		err = 0;
3389 	} else
3390 		err = -EINVAL;
3391 
3392 out:
3393 	return err;
3394 }
3395 
3396 /* similar to deny_write_access, but accounts for our holding a reference
3397  * to the file ourselves */
3398 static int deny_bitmap_write_access(struct file * file)
3399 {
3400 	struct inode *inode = file->f_mapping->host;
3401 
3402 	spin_lock(&inode->i_lock);
3403 	if (atomic_read(&inode->i_writecount) > 1) {
3404 		spin_unlock(&inode->i_lock);
3405 		return -ETXTBSY;
3406 	}
3407 	atomic_set(&inode->i_writecount, -1);
3408 	spin_unlock(&inode->i_lock);
3409 
3410 	return 0;
3411 }
3412 
3413 static void restore_bitmap_write_access(struct file *file)
3414 {
3415 	struct inode *inode = file->f_mapping->host;
3416 
3417 	spin_lock(&inode->i_lock);
3418 	atomic_set(&inode->i_writecount, 1);
3419 	spin_unlock(&inode->i_lock);
3420 }
3421 
3422 /* mode:
3423  *   0 - completely stop and dis-assemble array
3424  *   1 - switch to readonly
3425  *   2 - stop but do not disassemble array
3426  */
3427 static int do_md_stop(mddev_t * mddev, int mode)
3428 {
3429 	int err = 0;
3430 	struct gendisk *disk = mddev->gendisk;
3431 
3432 	if (mddev->pers) {
3433 		if (atomic_read(&mddev->active)>2) {
3434 			printk("md: %s still in use.\n",mdname(mddev));
3435 			return -EBUSY;
3436 		}
3437 
3438 		if (mddev->sync_thread) {
3439 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3440 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3441 			md_unregister_thread(mddev->sync_thread);
3442 			mddev->sync_thread = NULL;
3443 		}
3444 
3445 		del_timer_sync(&mddev->safemode_timer);
3446 
3447 		invalidate_partition(disk, 0);
3448 
3449 		switch(mode) {
3450 		case 1: /* readonly */
3451 			err  = -ENXIO;
3452 			if (mddev->ro==1)
3453 				goto out;
3454 			mddev->ro = 1;
3455 			break;
3456 		case 0: /* disassemble */
3457 		case 2: /* stop */
3458 			bitmap_flush(mddev);
3459 			md_super_wait(mddev);
3460 			if (mddev->ro)
3461 				set_disk_ro(disk, 0);
3462 			blk_queue_make_request(mddev->queue, md_fail_request);
3463 			mddev->pers->stop(mddev);
3464 			mddev->queue->merge_bvec_fn = NULL;
3465 			mddev->queue->unplug_fn = NULL;
3466 			mddev->queue->issue_flush_fn = NULL;
3467 			mddev->queue->backing_dev_info.congested_fn = NULL;
3468 			if (mddev->pers->sync_request)
3469 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3470 
3471 			module_put(mddev->pers->owner);
3472 			mddev->pers = NULL;
3473 
3474 			set_capacity(disk, 0);
3475 			mddev->changed = 1;
3476 
3477 			if (mddev->ro)
3478 				mddev->ro = 0;
3479 		}
3480 		if (!mddev->in_sync || mddev->flags) {
3481 			/* mark array as shutdown cleanly */
3482 			mddev->in_sync = 1;
3483 			md_update_sb(mddev, 1);
3484 		}
3485 		if (mode == 1)
3486 			set_disk_ro(disk, 1);
3487 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3488 	}
3489 
3490 	/*
3491 	 * Free resources if final stop
3492 	 */
3493 	if (mode == 0) {
3494 		mdk_rdev_t *rdev;
3495 		struct list_head *tmp;
3496 
3497 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3498 
3499 		bitmap_destroy(mddev);
3500 		if (mddev->bitmap_file) {
3501 			restore_bitmap_write_access(mddev->bitmap_file);
3502 			fput(mddev->bitmap_file);
3503 			mddev->bitmap_file = NULL;
3504 		}
3505 		mddev->bitmap_offset = 0;
3506 
3507 		ITERATE_RDEV(mddev,rdev,tmp)
3508 			if (rdev->raid_disk >= 0) {
3509 				char nm[20];
3510 				sprintf(nm, "rd%d", rdev->raid_disk);
3511 				sysfs_remove_link(&mddev->kobj, nm);
3512 			}
3513 
3514 		/* make sure all delayed_delete calls have finished */
3515 		flush_scheduled_work();
3516 
3517 		export_array(mddev);
3518 
3519 		mddev->array_size = 0;
3520 		mddev->size = 0;
3521 		mddev->raid_disks = 0;
3522 		mddev->recovery_cp = 0;
3523 		mddev->reshape_position = MaxSector;
3524 
3525 	} else if (mddev->pers)
3526 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
3527 			mdname(mddev));
3528 	err = 0;
3529 	md_new_event(mddev);
3530 out:
3531 	return err;
3532 }
3533 
3534 #ifndef MODULE
3535 static void autorun_array(mddev_t *mddev)
3536 {
3537 	mdk_rdev_t *rdev;
3538 	struct list_head *tmp;
3539 	int err;
3540 
3541 	if (list_empty(&mddev->disks))
3542 		return;
3543 
3544 	printk(KERN_INFO "md: running: ");
3545 
3546 	ITERATE_RDEV(mddev,rdev,tmp) {
3547 		char b[BDEVNAME_SIZE];
3548 		printk("<%s>", bdevname(rdev->bdev,b));
3549 	}
3550 	printk("\n");
3551 
3552 	err = do_md_run (mddev);
3553 	if (err) {
3554 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3555 		do_md_stop (mddev, 0);
3556 	}
3557 }
3558 
3559 /*
3560  * lets try to run arrays based on all disks that have arrived
3561  * until now. (those are in pending_raid_disks)
3562  *
3563  * the method: pick the first pending disk, collect all disks with
3564  * the same UUID, remove all from the pending list and put them into
3565  * the 'same_array' list. Then order this list based on superblock
3566  * update time (freshest comes first), kick out 'old' disks and
3567  * compare superblocks. If everything's fine then run it.
3568  *
3569  * If "unit" is allocated, then bump its reference count
3570  */
3571 static void autorun_devices(int part)
3572 {
3573 	struct list_head *tmp;
3574 	mdk_rdev_t *rdev0, *rdev;
3575 	mddev_t *mddev;
3576 	char b[BDEVNAME_SIZE];
3577 
3578 	printk(KERN_INFO "md: autorun ...\n");
3579 	while (!list_empty(&pending_raid_disks)) {
3580 		int unit;
3581 		dev_t dev;
3582 		LIST_HEAD(candidates);
3583 		rdev0 = list_entry(pending_raid_disks.next,
3584 					 mdk_rdev_t, same_set);
3585 
3586 		printk(KERN_INFO "md: considering %s ...\n",
3587 			bdevname(rdev0->bdev,b));
3588 		INIT_LIST_HEAD(&candidates);
3589 		ITERATE_RDEV_PENDING(rdev,tmp)
3590 			if (super_90_load(rdev, rdev0, 0) >= 0) {
3591 				printk(KERN_INFO "md:  adding %s ...\n",
3592 					bdevname(rdev->bdev,b));
3593 				list_move(&rdev->same_set, &candidates);
3594 			}
3595 		/*
3596 		 * now we have a set of devices, with all of them having
3597 		 * mostly sane superblocks. It's time to allocate the
3598 		 * mddev.
3599 		 */
3600 		if (part) {
3601 			dev = MKDEV(mdp_major,
3602 				    rdev0->preferred_minor << MdpMinorShift);
3603 			unit = MINOR(dev) >> MdpMinorShift;
3604 		} else {
3605 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3606 			unit = MINOR(dev);
3607 		}
3608 		if (rdev0->preferred_minor != unit) {
3609 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3610 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3611 			break;
3612 		}
3613 
3614 		md_probe(dev, NULL, NULL);
3615 		mddev = mddev_find(dev);
3616 		if (!mddev) {
3617 			printk(KERN_ERR
3618 				"md: cannot allocate memory for md drive.\n");
3619 			break;
3620 		}
3621 		if (mddev_lock(mddev))
3622 			printk(KERN_WARNING "md: %s locked, cannot run\n",
3623 			       mdname(mddev));
3624 		else if (mddev->raid_disks || mddev->major_version
3625 			 || !list_empty(&mddev->disks)) {
3626 			printk(KERN_WARNING
3627 				"md: %s already running, cannot run %s\n",
3628 				mdname(mddev), bdevname(rdev0->bdev,b));
3629 			mddev_unlock(mddev);
3630 		} else {
3631 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
3632 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3633 				list_del_init(&rdev->same_set);
3634 				if (bind_rdev_to_array(rdev, mddev))
3635 					export_rdev(rdev);
3636 			}
3637 			autorun_array(mddev);
3638 			mddev_unlock(mddev);
3639 		}
3640 		/* on success, candidates will be empty, on error
3641 		 * it won't...
3642 		 */
3643 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3644 			export_rdev(rdev);
3645 		mddev_put(mddev);
3646 	}
3647 	printk(KERN_INFO "md: ... autorun DONE.\n");
3648 }
3649 #endif /* !MODULE */
3650 
3651 static int get_version(void __user * arg)
3652 {
3653 	mdu_version_t ver;
3654 
3655 	ver.major = MD_MAJOR_VERSION;
3656 	ver.minor = MD_MINOR_VERSION;
3657 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
3658 
3659 	if (copy_to_user(arg, &ver, sizeof(ver)))
3660 		return -EFAULT;
3661 
3662 	return 0;
3663 }
3664 
3665 static int get_array_info(mddev_t * mddev, void __user * arg)
3666 {
3667 	mdu_array_info_t info;
3668 	int nr,working,active,failed,spare;
3669 	mdk_rdev_t *rdev;
3670 	struct list_head *tmp;
3671 
3672 	nr=working=active=failed=spare=0;
3673 	ITERATE_RDEV(mddev,rdev,tmp) {
3674 		nr++;
3675 		if (test_bit(Faulty, &rdev->flags))
3676 			failed++;
3677 		else {
3678 			working++;
3679 			if (test_bit(In_sync, &rdev->flags))
3680 				active++;
3681 			else
3682 				spare++;
3683 		}
3684 	}
3685 
3686 	info.major_version = mddev->major_version;
3687 	info.minor_version = mddev->minor_version;
3688 	info.patch_version = MD_PATCHLEVEL_VERSION;
3689 	info.ctime         = mddev->ctime;
3690 	info.level         = mddev->level;
3691 	info.size          = mddev->size;
3692 	if (info.size != mddev->size) /* overflow */
3693 		info.size = -1;
3694 	info.nr_disks      = nr;
3695 	info.raid_disks    = mddev->raid_disks;
3696 	info.md_minor      = mddev->md_minor;
3697 	info.not_persistent= !mddev->persistent;
3698 
3699 	info.utime         = mddev->utime;
3700 	info.state         = 0;
3701 	if (mddev->in_sync)
3702 		info.state = (1<<MD_SB_CLEAN);
3703 	if (mddev->bitmap && mddev->bitmap_offset)
3704 		info.state = (1<<MD_SB_BITMAP_PRESENT);
3705 	info.active_disks  = active;
3706 	info.working_disks = working;
3707 	info.failed_disks  = failed;
3708 	info.spare_disks   = spare;
3709 
3710 	info.layout        = mddev->layout;
3711 	info.chunk_size    = mddev->chunk_size;
3712 
3713 	if (copy_to_user(arg, &info, sizeof(info)))
3714 		return -EFAULT;
3715 
3716 	return 0;
3717 }
3718 
3719 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3720 {
3721 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3722 	char *ptr, *buf = NULL;
3723 	int err = -ENOMEM;
3724 
3725 	md_allow_write(mddev);
3726 
3727 	file = kmalloc(sizeof(*file), GFP_KERNEL);
3728 	if (!file)
3729 		goto out;
3730 
3731 	/* bitmap disabled, zero the first byte and copy out */
3732 	if (!mddev->bitmap || !mddev->bitmap->file) {
3733 		file->pathname[0] = '\0';
3734 		goto copy_out;
3735 	}
3736 
3737 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3738 	if (!buf)
3739 		goto out;
3740 
3741 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3742 	if (!ptr)
3743 		goto out;
3744 
3745 	strcpy(file->pathname, ptr);
3746 
3747 copy_out:
3748 	err = 0;
3749 	if (copy_to_user(arg, file, sizeof(*file)))
3750 		err = -EFAULT;
3751 out:
3752 	kfree(buf);
3753 	kfree(file);
3754 	return err;
3755 }
3756 
3757 static int get_disk_info(mddev_t * mddev, void __user * arg)
3758 {
3759 	mdu_disk_info_t info;
3760 	unsigned int nr;
3761 	mdk_rdev_t *rdev;
3762 
3763 	if (copy_from_user(&info, arg, sizeof(info)))
3764 		return -EFAULT;
3765 
3766 	nr = info.number;
3767 
3768 	rdev = find_rdev_nr(mddev, nr);
3769 	if (rdev) {
3770 		info.major = MAJOR(rdev->bdev->bd_dev);
3771 		info.minor = MINOR(rdev->bdev->bd_dev);
3772 		info.raid_disk = rdev->raid_disk;
3773 		info.state = 0;
3774 		if (test_bit(Faulty, &rdev->flags))
3775 			info.state |= (1<<MD_DISK_FAULTY);
3776 		else if (test_bit(In_sync, &rdev->flags)) {
3777 			info.state |= (1<<MD_DISK_ACTIVE);
3778 			info.state |= (1<<MD_DISK_SYNC);
3779 		}
3780 		if (test_bit(WriteMostly, &rdev->flags))
3781 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
3782 	} else {
3783 		info.major = info.minor = 0;
3784 		info.raid_disk = -1;
3785 		info.state = (1<<MD_DISK_REMOVED);
3786 	}
3787 
3788 	if (copy_to_user(arg, &info, sizeof(info)))
3789 		return -EFAULT;
3790 
3791 	return 0;
3792 }
3793 
3794 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3795 {
3796 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3797 	mdk_rdev_t *rdev;
3798 	dev_t dev = MKDEV(info->major,info->minor);
3799 
3800 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3801 		return -EOVERFLOW;
3802 
3803 	if (!mddev->raid_disks) {
3804 		int err;
3805 		/* expecting a device which has a superblock */
3806 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3807 		if (IS_ERR(rdev)) {
3808 			printk(KERN_WARNING
3809 				"md: md_import_device returned %ld\n",
3810 				PTR_ERR(rdev));
3811 			return PTR_ERR(rdev);
3812 		}
3813 		if (!list_empty(&mddev->disks)) {
3814 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3815 							mdk_rdev_t, same_set);
3816 			int err = super_types[mddev->major_version]
3817 				.load_super(rdev, rdev0, mddev->minor_version);
3818 			if (err < 0) {
3819 				printk(KERN_WARNING
3820 					"md: %s has different UUID to %s\n",
3821 					bdevname(rdev->bdev,b),
3822 					bdevname(rdev0->bdev,b2));
3823 				export_rdev(rdev);
3824 				return -EINVAL;
3825 			}
3826 		}
3827 		err = bind_rdev_to_array(rdev, mddev);
3828 		if (err)
3829 			export_rdev(rdev);
3830 		return err;
3831 	}
3832 
3833 	/*
3834 	 * add_new_disk can be used once the array is assembled
3835 	 * to add "hot spares".  They must already have a superblock
3836 	 * written
3837 	 */
3838 	if (mddev->pers) {
3839 		int err;
3840 		if (!mddev->pers->hot_add_disk) {
3841 			printk(KERN_WARNING
3842 				"%s: personality does not support diskops!\n",
3843 			       mdname(mddev));
3844 			return -EINVAL;
3845 		}
3846 		if (mddev->persistent)
3847 			rdev = md_import_device(dev, mddev->major_version,
3848 						mddev->minor_version);
3849 		else
3850 			rdev = md_import_device(dev, -1, -1);
3851 		if (IS_ERR(rdev)) {
3852 			printk(KERN_WARNING
3853 				"md: md_import_device returned %ld\n",
3854 				PTR_ERR(rdev));
3855 			return PTR_ERR(rdev);
3856 		}
3857 		/* set save_raid_disk if appropriate */
3858 		if (!mddev->persistent) {
3859 			if (info->state & (1<<MD_DISK_SYNC)  &&
3860 			    info->raid_disk < mddev->raid_disks)
3861 				rdev->raid_disk = info->raid_disk;
3862 			else
3863 				rdev->raid_disk = -1;
3864 		} else
3865 			super_types[mddev->major_version].
3866 				validate_super(mddev, rdev);
3867 		rdev->saved_raid_disk = rdev->raid_disk;
3868 
3869 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
3870 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3871 			set_bit(WriteMostly, &rdev->flags);
3872 
3873 		rdev->raid_disk = -1;
3874 		err = bind_rdev_to_array(rdev, mddev);
3875 		if (!err && !mddev->pers->hot_remove_disk) {
3876 			/* If there is hot_add_disk but no hot_remove_disk
3877 			 * then added disks for geometry changes,
3878 			 * and should be added immediately.
3879 			 */
3880 			super_types[mddev->major_version].
3881 				validate_super(mddev, rdev);
3882 			err = mddev->pers->hot_add_disk(mddev, rdev);
3883 			if (err)
3884 				unbind_rdev_from_array(rdev);
3885 		}
3886 		if (err)
3887 			export_rdev(rdev);
3888 
3889 		md_update_sb(mddev, 1);
3890 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3891 		md_wakeup_thread(mddev->thread);
3892 		return err;
3893 	}
3894 
3895 	/* otherwise, add_new_disk is only allowed
3896 	 * for major_version==0 superblocks
3897 	 */
3898 	if (mddev->major_version != 0) {
3899 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3900 		       mdname(mddev));
3901 		return -EINVAL;
3902 	}
3903 
3904 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
3905 		int err;
3906 		rdev = md_import_device (dev, -1, 0);
3907 		if (IS_ERR(rdev)) {
3908 			printk(KERN_WARNING
3909 				"md: error, md_import_device() returned %ld\n",
3910 				PTR_ERR(rdev));
3911 			return PTR_ERR(rdev);
3912 		}
3913 		rdev->desc_nr = info->number;
3914 		if (info->raid_disk < mddev->raid_disks)
3915 			rdev->raid_disk = info->raid_disk;
3916 		else
3917 			rdev->raid_disk = -1;
3918 
3919 		rdev->flags = 0;
3920 
3921 		if (rdev->raid_disk < mddev->raid_disks)
3922 			if (info->state & (1<<MD_DISK_SYNC))
3923 				set_bit(In_sync, &rdev->flags);
3924 
3925 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3926 			set_bit(WriteMostly, &rdev->flags);
3927 
3928 		if (!mddev->persistent) {
3929 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
3930 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3931 		} else
3932 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3933 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3934 
3935 		err = bind_rdev_to_array(rdev, mddev);
3936 		if (err) {
3937 			export_rdev(rdev);
3938 			return err;
3939 		}
3940 	}
3941 
3942 	return 0;
3943 }
3944 
3945 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3946 {
3947 	char b[BDEVNAME_SIZE];
3948 	mdk_rdev_t *rdev;
3949 
3950 	if (!mddev->pers)
3951 		return -ENODEV;
3952 
3953 	rdev = find_rdev(mddev, dev);
3954 	if (!rdev)
3955 		return -ENXIO;
3956 
3957 	if (rdev->raid_disk >= 0)
3958 		goto busy;
3959 
3960 	kick_rdev_from_array(rdev);
3961 	md_update_sb(mddev, 1);
3962 	md_new_event(mddev);
3963 
3964 	return 0;
3965 busy:
3966 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3967 		bdevname(rdev->bdev,b), mdname(mddev));
3968 	return -EBUSY;
3969 }
3970 
3971 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3972 {
3973 	char b[BDEVNAME_SIZE];
3974 	int err;
3975 	unsigned int size;
3976 	mdk_rdev_t *rdev;
3977 
3978 	if (!mddev->pers)
3979 		return -ENODEV;
3980 
3981 	if (mddev->major_version != 0) {
3982 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3983 			" version-0 superblocks.\n",
3984 			mdname(mddev));
3985 		return -EINVAL;
3986 	}
3987 	if (!mddev->pers->hot_add_disk) {
3988 		printk(KERN_WARNING
3989 			"%s: personality does not support diskops!\n",
3990 			mdname(mddev));
3991 		return -EINVAL;
3992 	}
3993 
3994 	rdev = md_import_device (dev, -1, 0);
3995 	if (IS_ERR(rdev)) {
3996 		printk(KERN_WARNING
3997 			"md: error, md_import_device() returned %ld\n",
3998 			PTR_ERR(rdev));
3999 		return -EINVAL;
4000 	}
4001 
4002 	if (mddev->persistent)
4003 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4004 	else
4005 		rdev->sb_offset =
4006 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4007 
4008 	size = calc_dev_size(rdev, mddev->chunk_size);
4009 	rdev->size = size;
4010 
4011 	if (test_bit(Faulty, &rdev->flags)) {
4012 		printk(KERN_WARNING
4013 			"md: can not hot-add faulty %s disk to %s!\n",
4014 			bdevname(rdev->bdev,b), mdname(mddev));
4015 		err = -EINVAL;
4016 		goto abort_export;
4017 	}
4018 	clear_bit(In_sync, &rdev->flags);
4019 	rdev->desc_nr = -1;
4020 	rdev->saved_raid_disk = -1;
4021 	err = bind_rdev_to_array(rdev, mddev);
4022 	if (err)
4023 		goto abort_export;
4024 
4025 	/*
4026 	 * The rest should better be atomic, we can have disk failures
4027 	 * noticed in interrupt contexts ...
4028 	 */
4029 
4030 	if (rdev->desc_nr == mddev->max_disks) {
4031 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4032 			mdname(mddev));
4033 		err = -EBUSY;
4034 		goto abort_unbind_export;
4035 	}
4036 
4037 	rdev->raid_disk = -1;
4038 
4039 	md_update_sb(mddev, 1);
4040 
4041 	/*
4042 	 * Kick recovery, maybe this spare has to be added to the
4043 	 * array immediately.
4044 	 */
4045 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4046 	md_wakeup_thread(mddev->thread);
4047 	md_new_event(mddev);
4048 	return 0;
4049 
4050 abort_unbind_export:
4051 	unbind_rdev_from_array(rdev);
4052 
4053 abort_export:
4054 	export_rdev(rdev);
4055 	return err;
4056 }
4057 
4058 static int set_bitmap_file(mddev_t *mddev, int fd)
4059 {
4060 	int err;
4061 
4062 	if (mddev->pers) {
4063 		if (!mddev->pers->quiesce)
4064 			return -EBUSY;
4065 		if (mddev->recovery || mddev->sync_thread)
4066 			return -EBUSY;
4067 		/* we should be able to change the bitmap.. */
4068 	}
4069 
4070 
4071 	if (fd >= 0) {
4072 		if (mddev->bitmap)
4073 			return -EEXIST; /* cannot add when bitmap is present */
4074 		mddev->bitmap_file = fget(fd);
4075 
4076 		if (mddev->bitmap_file == NULL) {
4077 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4078 			       mdname(mddev));
4079 			return -EBADF;
4080 		}
4081 
4082 		err = deny_bitmap_write_access(mddev->bitmap_file);
4083 		if (err) {
4084 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4085 			       mdname(mddev));
4086 			fput(mddev->bitmap_file);
4087 			mddev->bitmap_file = NULL;
4088 			return err;
4089 		}
4090 		mddev->bitmap_offset = 0; /* file overrides offset */
4091 	} else if (mddev->bitmap == NULL)
4092 		return -ENOENT; /* cannot remove what isn't there */
4093 	err = 0;
4094 	if (mddev->pers) {
4095 		mddev->pers->quiesce(mddev, 1);
4096 		if (fd >= 0)
4097 			err = bitmap_create(mddev);
4098 		if (fd < 0 || err) {
4099 			bitmap_destroy(mddev);
4100 			fd = -1; /* make sure to put the file */
4101 		}
4102 		mddev->pers->quiesce(mddev, 0);
4103 	}
4104 	if (fd < 0) {
4105 		if (mddev->bitmap_file) {
4106 			restore_bitmap_write_access(mddev->bitmap_file);
4107 			fput(mddev->bitmap_file);
4108 		}
4109 		mddev->bitmap_file = NULL;
4110 	}
4111 
4112 	return err;
4113 }
4114 
4115 /*
4116  * set_array_info is used two different ways
4117  * The original usage is when creating a new array.
4118  * In this usage, raid_disks is > 0 and it together with
4119  *  level, size, not_persistent,layout,chunksize determine the
4120  *  shape of the array.
4121  *  This will always create an array with a type-0.90.0 superblock.
4122  * The newer usage is when assembling an array.
4123  *  In this case raid_disks will be 0, and the major_version field is
4124  *  use to determine which style super-blocks are to be found on the devices.
4125  *  The minor and patch _version numbers are also kept incase the
4126  *  super_block handler wishes to interpret them.
4127  */
4128 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4129 {
4130 
4131 	if (info->raid_disks == 0) {
4132 		/* just setting version number for superblock loading */
4133 		if (info->major_version < 0 ||
4134 		    info->major_version >= ARRAY_SIZE(super_types) ||
4135 		    super_types[info->major_version].name == NULL) {
4136 			/* maybe try to auto-load a module? */
4137 			printk(KERN_INFO
4138 				"md: superblock version %d not known\n",
4139 				info->major_version);
4140 			return -EINVAL;
4141 		}
4142 		mddev->major_version = info->major_version;
4143 		mddev->minor_version = info->minor_version;
4144 		mddev->patch_version = info->patch_version;
4145 		mddev->persistent = !info->not_persistent;
4146 		return 0;
4147 	}
4148 	mddev->major_version = MD_MAJOR_VERSION;
4149 	mddev->minor_version = MD_MINOR_VERSION;
4150 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
4151 	mddev->ctime         = get_seconds();
4152 
4153 	mddev->level         = info->level;
4154 	mddev->clevel[0]     = 0;
4155 	mddev->size          = info->size;
4156 	mddev->raid_disks    = info->raid_disks;
4157 	/* don't set md_minor, it is determined by which /dev/md* was
4158 	 * openned
4159 	 */
4160 	if (info->state & (1<<MD_SB_CLEAN))
4161 		mddev->recovery_cp = MaxSector;
4162 	else
4163 		mddev->recovery_cp = 0;
4164 	mddev->persistent    = ! info->not_persistent;
4165 
4166 	mddev->layout        = info->layout;
4167 	mddev->chunk_size    = info->chunk_size;
4168 
4169 	mddev->max_disks     = MD_SB_DISKS;
4170 
4171 	mddev->flags         = 0;
4172 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4173 
4174 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4175 	mddev->bitmap_offset = 0;
4176 
4177 	mddev->reshape_position = MaxSector;
4178 
4179 	/*
4180 	 * Generate a 128 bit UUID
4181 	 */
4182 	get_random_bytes(mddev->uuid, 16);
4183 
4184 	mddev->new_level = mddev->level;
4185 	mddev->new_chunk = mddev->chunk_size;
4186 	mddev->new_layout = mddev->layout;
4187 	mddev->delta_disks = 0;
4188 
4189 	return 0;
4190 }
4191 
4192 static int update_size(mddev_t *mddev, unsigned long size)
4193 {
4194 	mdk_rdev_t * rdev;
4195 	int rv;
4196 	struct list_head *tmp;
4197 	int fit = (size == 0);
4198 
4199 	if (mddev->pers->resize == NULL)
4200 		return -EINVAL;
4201 	/* The "size" is the amount of each device that is used.
4202 	 * This can only make sense for arrays with redundancy.
4203 	 * linear and raid0 always use whatever space is available
4204 	 * We can only consider changing the size if no resync
4205 	 * or reconstruction is happening, and if the new size
4206 	 * is acceptable. It must fit before the sb_offset or,
4207 	 * if that is <data_offset, it must fit before the
4208 	 * size of each device.
4209 	 * If size is zero, we find the largest size that fits.
4210 	 */
4211 	if (mddev->sync_thread)
4212 		return -EBUSY;
4213 	ITERATE_RDEV(mddev,rdev,tmp) {
4214 		sector_t avail;
4215 		avail = rdev->size * 2;
4216 
4217 		if (fit && (size == 0 || size > avail/2))
4218 			size = avail/2;
4219 		if (avail < ((sector_t)size << 1))
4220 			return -ENOSPC;
4221 	}
4222 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
4223 	if (!rv) {
4224 		struct block_device *bdev;
4225 
4226 		bdev = bdget_disk(mddev->gendisk, 0);
4227 		if (bdev) {
4228 			mutex_lock(&bdev->bd_inode->i_mutex);
4229 			i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4230 			mutex_unlock(&bdev->bd_inode->i_mutex);
4231 			bdput(bdev);
4232 		}
4233 	}
4234 	return rv;
4235 }
4236 
4237 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4238 {
4239 	int rv;
4240 	/* change the number of raid disks */
4241 	if (mddev->pers->check_reshape == NULL)
4242 		return -EINVAL;
4243 	if (raid_disks <= 0 ||
4244 	    raid_disks >= mddev->max_disks)
4245 		return -EINVAL;
4246 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4247 		return -EBUSY;
4248 	mddev->delta_disks = raid_disks - mddev->raid_disks;
4249 
4250 	rv = mddev->pers->check_reshape(mddev);
4251 	return rv;
4252 }
4253 
4254 
4255 /*
4256  * update_array_info is used to change the configuration of an
4257  * on-line array.
4258  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4259  * fields in the info are checked against the array.
4260  * Any differences that cannot be handled will cause an error.
4261  * Normally, only one change can be managed at a time.
4262  */
4263 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4264 {
4265 	int rv = 0;
4266 	int cnt = 0;
4267 	int state = 0;
4268 
4269 	/* calculate expected state,ignoring low bits */
4270 	if (mddev->bitmap && mddev->bitmap_offset)
4271 		state |= (1 << MD_SB_BITMAP_PRESENT);
4272 
4273 	if (mddev->major_version != info->major_version ||
4274 	    mddev->minor_version != info->minor_version ||
4275 /*	    mddev->patch_version != info->patch_version || */
4276 	    mddev->ctime         != info->ctime         ||
4277 	    mddev->level         != info->level         ||
4278 /*	    mddev->layout        != info->layout        || */
4279 	    !mddev->persistent	 != info->not_persistent||
4280 	    mddev->chunk_size    != info->chunk_size    ||
4281 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4282 	    ((state^info->state) & 0xfffffe00)
4283 		)
4284 		return -EINVAL;
4285 	/* Check there is only one change */
4286 	if (info->size >= 0 && mddev->size != info->size) cnt++;
4287 	if (mddev->raid_disks != info->raid_disks) cnt++;
4288 	if (mddev->layout != info->layout) cnt++;
4289 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4290 	if (cnt == 0) return 0;
4291 	if (cnt > 1) return -EINVAL;
4292 
4293 	if (mddev->layout != info->layout) {
4294 		/* Change layout
4295 		 * we don't need to do anything at the md level, the
4296 		 * personality will take care of it all.
4297 		 */
4298 		if (mddev->pers->reconfig == NULL)
4299 			return -EINVAL;
4300 		else
4301 			return mddev->pers->reconfig(mddev, info->layout, -1);
4302 	}
4303 	if (info->size >= 0 && mddev->size != info->size)
4304 		rv = update_size(mddev, info->size);
4305 
4306 	if (mddev->raid_disks    != info->raid_disks)
4307 		rv = update_raid_disks(mddev, info->raid_disks);
4308 
4309 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4310 		if (mddev->pers->quiesce == NULL)
4311 			return -EINVAL;
4312 		if (mddev->recovery || mddev->sync_thread)
4313 			return -EBUSY;
4314 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4315 			/* add the bitmap */
4316 			if (mddev->bitmap)
4317 				return -EEXIST;
4318 			if (mddev->default_bitmap_offset == 0)
4319 				return -EINVAL;
4320 			mddev->bitmap_offset = mddev->default_bitmap_offset;
4321 			mddev->pers->quiesce(mddev, 1);
4322 			rv = bitmap_create(mddev);
4323 			if (rv)
4324 				bitmap_destroy(mddev);
4325 			mddev->pers->quiesce(mddev, 0);
4326 		} else {
4327 			/* remove the bitmap */
4328 			if (!mddev->bitmap)
4329 				return -ENOENT;
4330 			if (mddev->bitmap->file)
4331 				return -EINVAL;
4332 			mddev->pers->quiesce(mddev, 1);
4333 			bitmap_destroy(mddev);
4334 			mddev->pers->quiesce(mddev, 0);
4335 			mddev->bitmap_offset = 0;
4336 		}
4337 	}
4338 	md_update_sb(mddev, 1);
4339 	return rv;
4340 }
4341 
4342 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4343 {
4344 	mdk_rdev_t *rdev;
4345 
4346 	if (mddev->pers == NULL)
4347 		return -ENODEV;
4348 
4349 	rdev = find_rdev(mddev, dev);
4350 	if (!rdev)
4351 		return -ENODEV;
4352 
4353 	md_error(mddev, rdev);
4354 	return 0;
4355 }
4356 
4357 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4358 {
4359 	mddev_t *mddev = bdev->bd_disk->private_data;
4360 
4361 	geo->heads = 2;
4362 	geo->sectors = 4;
4363 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
4364 	return 0;
4365 }
4366 
4367 static int md_ioctl(struct inode *inode, struct file *file,
4368 			unsigned int cmd, unsigned long arg)
4369 {
4370 	int err = 0;
4371 	void __user *argp = (void __user *)arg;
4372 	mddev_t *mddev = NULL;
4373 
4374 	if (!capable(CAP_SYS_ADMIN))
4375 		return -EACCES;
4376 
4377 	/*
4378 	 * Commands dealing with the RAID driver but not any
4379 	 * particular array:
4380 	 */
4381 	switch (cmd)
4382 	{
4383 		case RAID_VERSION:
4384 			err = get_version(argp);
4385 			goto done;
4386 
4387 		case PRINT_RAID_DEBUG:
4388 			err = 0;
4389 			md_print_devices();
4390 			goto done;
4391 
4392 #ifndef MODULE
4393 		case RAID_AUTORUN:
4394 			err = 0;
4395 			autostart_arrays(arg);
4396 			goto done;
4397 #endif
4398 		default:;
4399 	}
4400 
4401 	/*
4402 	 * Commands creating/starting a new array:
4403 	 */
4404 
4405 	mddev = inode->i_bdev->bd_disk->private_data;
4406 
4407 	if (!mddev) {
4408 		BUG();
4409 		goto abort;
4410 	}
4411 
4412 	err = mddev_lock(mddev);
4413 	if (err) {
4414 		printk(KERN_INFO
4415 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
4416 			err, cmd);
4417 		goto abort;
4418 	}
4419 
4420 	switch (cmd)
4421 	{
4422 		case SET_ARRAY_INFO:
4423 			{
4424 				mdu_array_info_t info;
4425 				if (!arg)
4426 					memset(&info, 0, sizeof(info));
4427 				else if (copy_from_user(&info, argp, sizeof(info))) {
4428 					err = -EFAULT;
4429 					goto abort_unlock;
4430 				}
4431 				if (mddev->pers) {
4432 					err = update_array_info(mddev, &info);
4433 					if (err) {
4434 						printk(KERN_WARNING "md: couldn't update"
4435 						       " array info. %d\n", err);
4436 						goto abort_unlock;
4437 					}
4438 					goto done_unlock;
4439 				}
4440 				if (!list_empty(&mddev->disks)) {
4441 					printk(KERN_WARNING
4442 					       "md: array %s already has disks!\n",
4443 					       mdname(mddev));
4444 					err = -EBUSY;
4445 					goto abort_unlock;
4446 				}
4447 				if (mddev->raid_disks) {
4448 					printk(KERN_WARNING
4449 					       "md: array %s already initialised!\n",
4450 					       mdname(mddev));
4451 					err = -EBUSY;
4452 					goto abort_unlock;
4453 				}
4454 				err = set_array_info(mddev, &info);
4455 				if (err) {
4456 					printk(KERN_WARNING "md: couldn't set"
4457 					       " array info. %d\n", err);
4458 					goto abort_unlock;
4459 				}
4460 			}
4461 			goto done_unlock;
4462 
4463 		default:;
4464 	}
4465 
4466 	/*
4467 	 * Commands querying/configuring an existing array:
4468 	 */
4469 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4470 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4471 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4472 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4473 	    		&& cmd != GET_BITMAP_FILE) {
4474 		err = -ENODEV;
4475 		goto abort_unlock;
4476 	}
4477 
4478 	/*
4479 	 * Commands even a read-only array can execute:
4480 	 */
4481 	switch (cmd)
4482 	{
4483 		case GET_ARRAY_INFO:
4484 			err = get_array_info(mddev, argp);
4485 			goto done_unlock;
4486 
4487 		case GET_BITMAP_FILE:
4488 			err = get_bitmap_file(mddev, argp);
4489 			goto done_unlock;
4490 
4491 		case GET_DISK_INFO:
4492 			err = get_disk_info(mddev, argp);
4493 			goto done_unlock;
4494 
4495 		case RESTART_ARRAY_RW:
4496 			err = restart_array(mddev);
4497 			goto done_unlock;
4498 
4499 		case STOP_ARRAY:
4500 			err = do_md_stop (mddev, 0);
4501 			goto done_unlock;
4502 
4503 		case STOP_ARRAY_RO:
4504 			err = do_md_stop (mddev, 1);
4505 			goto done_unlock;
4506 
4507 	/*
4508 	 * We have a problem here : there is no easy way to give a CHS
4509 	 * virtual geometry. We currently pretend that we have a 2 heads
4510 	 * 4 sectors (with a BIG number of cylinders...). This drives
4511 	 * dosfs just mad... ;-)
4512 	 */
4513 	}
4514 
4515 	/*
4516 	 * The remaining ioctls are changing the state of the
4517 	 * superblock, so we do not allow them on read-only arrays.
4518 	 * However non-MD ioctls (e.g. get-size) will still come through
4519 	 * here and hit the 'default' below, so only disallow
4520 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4521 	 */
4522 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
4523 	    mddev->ro && mddev->pers) {
4524 		if (mddev->ro == 2) {
4525 			mddev->ro = 0;
4526 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4527 		md_wakeup_thread(mddev->thread);
4528 
4529 		} else {
4530 			err = -EROFS;
4531 			goto abort_unlock;
4532 		}
4533 	}
4534 
4535 	switch (cmd)
4536 	{
4537 		case ADD_NEW_DISK:
4538 		{
4539 			mdu_disk_info_t info;
4540 			if (copy_from_user(&info, argp, sizeof(info)))
4541 				err = -EFAULT;
4542 			else
4543 				err = add_new_disk(mddev, &info);
4544 			goto done_unlock;
4545 		}
4546 
4547 		case HOT_REMOVE_DISK:
4548 			err = hot_remove_disk(mddev, new_decode_dev(arg));
4549 			goto done_unlock;
4550 
4551 		case HOT_ADD_DISK:
4552 			err = hot_add_disk(mddev, new_decode_dev(arg));
4553 			goto done_unlock;
4554 
4555 		case SET_DISK_FAULTY:
4556 			err = set_disk_faulty(mddev, new_decode_dev(arg));
4557 			goto done_unlock;
4558 
4559 		case RUN_ARRAY:
4560 			err = do_md_run (mddev);
4561 			goto done_unlock;
4562 
4563 		case SET_BITMAP_FILE:
4564 			err = set_bitmap_file(mddev, (int)arg);
4565 			goto done_unlock;
4566 
4567 		default:
4568 			err = -EINVAL;
4569 			goto abort_unlock;
4570 	}
4571 
4572 done_unlock:
4573 abort_unlock:
4574 	mddev_unlock(mddev);
4575 
4576 	return err;
4577 done:
4578 	if (err)
4579 		MD_BUG();
4580 abort:
4581 	return err;
4582 }
4583 
4584 static int md_open(struct inode *inode, struct file *file)
4585 {
4586 	/*
4587 	 * Succeed if we can lock the mddev, which confirms that
4588 	 * it isn't being stopped right now.
4589 	 */
4590 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4591 	int err;
4592 
4593 	if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4594 		goto out;
4595 
4596 	err = 0;
4597 	mddev_get(mddev);
4598 	mddev_unlock(mddev);
4599 
4600 	check_disk_change(inode->i_bdev);
4601  out:
4602 	return err;
4603 }
4604 
4605 static int md_release(struct inode *inode, struct file * file)
4606 {
4607  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4608 
4609 	BUG_ON(!mddev);
4610 	mddev_put(mddev);
4611 
4612 	return 0;
4613 }
4614 
4615 static int md_media_changed(struct gendisk *disk)
4616 {
4617 	mddev_t *mddev = disk->private_data;
4618 
4619 	return mddev->changed;
4620 }
4621 
4622 static int md_revalidate(struct gendisk *disk)
4623 {
4624 	mddev_t *mddev = disk->private_data;
4625 
4626 	mddev->changed = 0;
4627 	return 0;
4628 }
4629 static struct block_device_operations md_fops =
4630 {
4631 	.owner		= THIS_MODULE,
4632 	.open		= md_open,
4633 	.release	= md_release,
4634 	.ioctl		= md_ioctl,
4635 	.getgeo		= md_getgeo,
4636 	.media_changed	= md_media_changed,
4637 	.revalidate_disk= md_revalidate,
4638 };
4639 
4640 static int md_thread(void * arg)
4641 {
4642 	mdk_thread_t *thread = arg;
4643 
4644 	/*
4645 	 * md_thread is a 'system-thread', it's priority should be very
4646 	 * high. We avoid resource deadlocks individually in each
4647 	 * raid personality. (RAID5 does preallocation) We also use RR and
4648 	 * the very same RT priority as kswapd, thus we will never get
4649 	 * into a priority inversion deadlock.
4650 	 *
4651 	 * we definitely have to have equal or higher priority than
4652 	 * bdflush, otherwise bdflush will deadlock if there are too
4653 	 * many dirty RAID5 blocks.
4654 	 */
4655 
4656 	allow_signal(SIGKILL);
4657 	while (!kthread_should_stop()) {
4658 
4659 		/* We need to wait INTERRUPTIBLE so that
4660 		 * we don't add to the load-average.
4661 		 * That means we need to be sure no signals are
4662 		 * pending
4663 		 */
4664 		if (signal_pending(current))
4665 			flush_signals(current);
4666 
4667 		wait_event_interruptible_timeout
4668 			(thread->wqueue,
4669 			 test_bit(THREAD_WAKEUP, &thread->flags)
4670 			 || kthread_should_stop(),
4671 			 thread->timeout);
4672 
4673 		clear_bit(THREAD_WAKEUP, &thread->flags);
4674 
4675 		thread->run(thread->mddev);
4676 	}
4677 
4678 	return 0;
4679 }
4680 
4681 void md_wakeup_thread(mdk_thread_t *thread)
4682 {
4683 	if (thread) {
4684 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4685 		set_bit(THREAD_WAKEUP, &thread->flags);
4686 		wake_up(&thread->wqueue);
4687 	}
4688 }
4689 
4690 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4691 				 const char *name)
4692 {
4693 	mdk_thread_t *thread;
4694 
4695 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4696 	if (!thread)
4697 		return NULL;
4698 
4699 	init_waitqueue_head(&thread->wqueue);
4700 
4701 	thread->run = run;
4702 	thread->mddev = mddev;
4703 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
4704 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4705 	if (IS_ERR(thread->tsk)) {
4706 		kfree(thread);
4707 		return NULL;
4708 	}
4709 	return thread;
4710 }
4711 
4712 void md_unregister_thread(mdk_thread_t *thread)
4713 {
4714 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4715 
4716 	kthread_stop(thread->tsk);
4717 	kfree(thread);
4718 }
4719 
4720 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4721 {
4722 	if (!mddev) {
4723 		MD_BUG();
4724 		return;
4725 	}
4726 
4727 	if (!rdev || test_bit(Faulty, &rdev->flags))
4728 		return;
4729 /*
4730 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4731 		mdname(mddev),
4732 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4733 		__builtin_return_address(0),__builtin_return_address(1),
4734 		__builtin_return_address(2),__builtin_return_address(3));
4735 */
4736 	if (!mddev->pers)
4737 		return;
4738 	if (!mddev->pers->error_handler)
4739 		return;
4740 	mddev->pers->error_handler(mddev,rdev);
4741 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4742 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4743 	md_wakeup_thread(mddev->thread);
4744 	md_new_event_inintr(mddev);
4745 }
4746 
4747 /* seq_file implementation /proc/mdstat */
4748 
4749 static void status_unused(struct seq_file *seq)
4750 {
4751 	int i = 0;
4752 	mdk_rdev_t *rdev;
4753 	struct list_head *tmp;
4754 
4755 	seq_printf(seq, "unused devices: ");
4756 
4757 	ITERATE_RDEV_PENDING(rdev,tmp) {
4758 		char b[BDEVNAME_SIZE];
4759 		i++;
4760 		seq_printf(seq, "%s ",
4761 			      bdevname(rdev->bdev,b));
4762 	}
4763 	if (!i)
4764 		seq_printf(seq, "<none>");
4765 
4766 	seq_printf(seq, "\n");
4767 }
4768 
4769 
4770 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4771 {
4772 	sector_t max_blocks, resync, res;
4773 	unsigned long dt, db, rt;
4774 	int scale;
4775 	unsigned int per_milli;
4776 
4777 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4778 
4779 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4780 		max_blocks = mddev->resync_max_sectors >> 1;
4781 	else
4782 		max_blocks = mddev->size;
4783 
4784 	/*
4785 	 * Should not happen.
4786 	 */
4787 	if (!max_blocks) {
4788 		MD_BUG();
4789 		return;
4790 	}
4791 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
4792 	 * in a sector_t, and (max_blocks>>scale) will fit in a
4793 	 * u32, as those are the requirements for sector_div.
4794 	 * Thus 'scale' must be at least 10
4795 	 */
4796 	scale = 10;
4797 	if (sizeof(sector_t) > sizeof(unsigned long)) {
4798 		while ( max_blocks/2 > (1ULL<<(scale+32)))
4799 			scale++;
4800 	}
4801 	res = (resync>>scale)*1000;
4802 	sector_div(res, (u32)((max_blocks>>scale)+1));
4803 
4804 	per_milli = res;
4805 	{
4806 		int i, x = per_milli/50, y = 20-x;
4807 		seq_printf(seq, "[");
4808 		for (i = 0; i < x; i++)
4809 			seq_printf(seq, "=");
4810 		seq_printf(seq, ">");
4811 		for (i = 0; i < y; i++)
4812 			seq_printf(seq, ".");
4813 		seq_printf(seq, "] ");
4814 	}
4815 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4816 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4817 		    "reshape" :
4818 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
4819 		     "check" :
4820 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4821 		      "resync" : "recovery"))),
4822 		   per_milli/10, per_milli % 10,
4823 		   (unsigned long long) resync,
4824 		   (unsigned long long) max_blocks);
4825 
4826 	/*
4827 	 * We do not want to overflow, so the order of operands and
4828 	 * the * 100 / 100 trick are important. We do a +1 to be
4829 	 * safe against division by zero. We only estimate anyway.
4830 	 *
4831 	 * dt: time from mark until now
4832 	 * db: blocks written from mark until now
4833 	 * rt: remaining time
4834 	 */
4835 	dt = ((jiffies - mddev->resync_mark) / HZ);
4836 	if (!dt) dt++;
4837 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4838 		- mddev->resync_mark_cnt;
4839 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4840 
4841 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4842 
4843 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4844 }
4845 
4846 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4847 {
4848 	struct list_head *tmp;
4849 	loff_t l = *pos;
4850 	mddev_t *mddev;
4851 
4852 	if (l >= 0x10000)
4853 		return NULL;
4854 	if (!l--)
4855 		/* header */
4856 		return (void*)1;
4857 
4858 	spin_lock(&all_mddevs_lock);
4859 	list_for_each(tmp,&all_mddevs)
4860 		if (!l--) {
4861 			mddev = list_entry(tmp, mddev_t, all_mddevs);
4862 			mddev_get(mddev);
4863 			spin_unlock(&all_mddevs_lock);
4864 			return mddev;
4865 		}
4866 	spin_unlock(&all_mddevs_lock);
4867 	if (!l--)
4868 		return (void*)2;/* tail */
4869 	return NULL;
4870 }
4871 
4872 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4873 {
4874 	struct list_head *tmp;
4875 	mddev_t *next_mddev, *mddev = v;
4876 
4877 	++*pos;
4878 	if (v == (void*)2)
4879 		return NULL;
4880 
4881 	spin_lock(&all_mddevs_lock);
4882 	if (v == (void*)1)
4883 		tmp = all_mddevs.next;
4884 	else
4885 		tmp = mddev->all_mddevs.next;
4886 	if (tmp != &all_mddevs)
4887 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4888 	else {
4889 		next_mddev = (void*)2;
4890 		*pos = 0x10000;
4891 	}
4892 	spin_unlock(&all_mddevs_lock);
4893 
4894 	if (v != (void*)1)
4895 		mddev_put(mddev);
4896 	return next_mddev;
4897 
4898 }
4899 
4900 static void md_seq_stop(struct seq_file *seq, void *v)
4901 {
4902 	mddev_t *mddev = v;
4903 
4904 	if (mddev && v != (void*)1 && v != (void*)2)
4905 		mddev_put(mddev);
4906 }
4907 
4908 struct mdstat_info {
4909 	int event;
4910 };
4911 
4912 static int md_seq_show(struct seq_file *seq, void *v)
4913 {
4914 	mddev_t *mddev = v;
4915 	sector_t size;
4916 	struct list_head *tmp2;
4917 	mdk_rdev_t *rdev;
4918 	struct mdstat_info *mi = seq->private;
4919 	struct bitmap *bitmap;
4920 
4921 	if (v == (void*)1) {
4922 		struct mdk_personality *pers;
4923 		seq_printf(seq, "Personalities : ");
4924 		spin_lock(&pers_lock);
4925 		list_for_each_entry(pers, &pers_list, list)
4926 			seq_printf(seq, "[%s] ", pers->name);
4927 
4928 		spin_unlock(&pers_lock);
4929 		seq_printf(seq, "\n");
4930 		mi->event = atomic_read(&md_event_count);
4931 		return 0;
4932 	}
4933 	if (v == (void*)2) {
4934 		status_unused(seq);
4935 		return 0;
4936 	}
4937 
4938 	if (mddev_lock(mddev) < 0)
4939 		return -EINTR;
4940 
4941 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4942 		seq_printf(seq, "%s : %sactive", mdname(mddev),
4943 						mddev->pers ? "" : "in");
4944 		if (mddev->pers) {
4945 			if (mddev->ro==1)
4946 				seq_printf(seq, " (read-only)");
4947 			if (mddev->ro==2)
4948 				seq_printf(seq, "(auto-read-only)");
4949 			seq_printf(seq, " %s", mddev->pers->name);
4950 		}
4951 
4952 		size = 0;
4953 		ITERATE_RDEV(mddev,rdev,tmp2) {
4954 			char b[BDEVNAME_SIZE];
4955 			seq_printf(seq, " %s[%d]",
4956 				bdevname(rdev->bdev,b), rdev->desc_nr);
4957 			if (test_bit(WriteMostly, &rdev->flags))
4958 				seq_printf(seq, "(W)");
4959 			if (test_bit(Faulty, &rdev->flags)) {
4960 				seq_printf(seq, "(F)");
4961 				continue;
4962 			} else if (rdev->raid_disk < 0)
4963 				seq_printf(seq, "(S)"); /* spare */
4964 			size += rdev->size;
4965 		}
4966 
4967 		if (!list_empty(&mddev->disks)) {
4968 			if (mddev->pers)
4969 				seq_printf(seq, "\n      %llu blocks",
4970 					(unsigned long long)mddev->array_size);
4971 			else
4972 				seq_printf(seq, "\n      %llu blocks",
4973 					(unsigned long long)size);
4974 		}
4975 		if (mddev->persistent) {
4976 			if (mddev->major_version != 0 ||
4977 			    mddev->minor_version != 90) {
4978 				seq_printf(seq," super %d.%d",
4979 					   mddev->major_version,
4980 					   mddev->minor_version);
4981 			}
4982 		} else
4983 			seq_printf(seq, " super non-persistent");
4984 
4985 		if (mddev->pers) {
4986 			mddev->pers->status (seq, mddev);
4987 	 		seq_printf(seq, "\n      ");
4988 			if (mddev->pers->sync_request) {
4989 				if (mddev->curr_resync > 2) {
4990 					status_resync (seq, mddev);
4991 					seq_printf(seq, "\n      ");
4992 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4993 					seq_printf(seq, "\tresync=DELAYED\n      ");
4994 				else if (mddev->recovery_cp < MaxSector)
4995 					seq_printf(seq, "\tresync=PENDING\n      ");
4996 			}
4997 		} else
4998 			seq_printf(seq, "\n       ");
4999 
5000 		if ((bitmap = mddev->bitmap)) {
5001 			unsigned long chunk_kb;
5002 			unsigned long flags;
5003 			spin_lock_irqsave(&bitmap->lock, flags);
5004 			chunk_kb = bitmap->chunksize >> 10;
5005 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5006 				"%lu%s chunk",
5007 				bitmap->pages - bitmap->missing_pages,
5008 				bitmap->pages,
5009 				(bitmap->pages - bitmap->missing_pages)
5010 					<< (PAGE_SHIFT - 10),
5011 				chunk_kb ? chunk_kb : bitmap->chunksize,
5012 				chunk_kb ? "KB" : "B");
5013 			if (bitmap->file) {
5014 				seq_printf(seq, ", file: ");
5015 				seq_path(seq, bitmap->file->f_path.mnt,
5016 					 bitmap->file->f_path.dentry," \t\n");
5017 			}
5018 
5019 			seq_printf(seq, "\n");
5020 			spin_unlock_irqrestore(&bitmap->lock, flags);
5021 		}
5022 
5023 		seq_printf(seq, "\n");
5024 	}
5025 	mddev_unlock(mddev);
5026 
5027 	return 0;
5028 }
5029 
5030 static struct seq_operations md_seq_ops = {
5031 	.start  = md_seq_start,
5032 	.next   = md_seq_next,
5033 	.stop   = md_seq_stop,
5034 	.show   = md_seq_show,
5035 };
5036 
5037 static int md_seq_open(struct inode *inode, struct file *file)
5038 {
5039 	int error;
5040 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5041 	if (mi == NULL)
5042 		return -ENOMEM;
5043 
5044 	error = seq_open(file, &md_seq_ops);
5045 	if (error)
5046 		kfree(mi);
5047 	else {
5048 		struct seq_file *p = file->private_data;
5049 		p->private = mi;
5050 		mi->event = atomic_read(&md_event_count);
5051 	}
5052 	return error;
5053 }
5054 
5055 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5056 {
5057 	struct seq_file *m = filp->private_data;
5058 	struct mdstat_info *mi = m->private;
5059 	int mask;
5060 
5061 	poll_wait(filp, &md_event_waiters, wait);
5062 
5063 	/* always allow read */
5064 	mask = POLLIN | POLLRDNORM;
5065 
5066 	if (mi->event != atomic_read(&md_event_count))
5067 		mask |= POLLERR | POLLPRI;
5068 	return mask;
5069 }
5070 
5071 static const struct file_operations md_seq_fops = {
5072 	.owner		= THIS_MODULE,
5073 	.open           = md_seq_open,
5074 	.read           = seq_read,
5075 	.llseek         = seq_lseek,
5076 	.release	= seq_release_private,
5077 	.poll		= mdstat_poll,
5078 };
5079 
5080 int register_md_personality(struct mdk_personality *p)
5081 {
5082 	spin_lock(&pers_lock);
5083 	list_add_tail(&p->list, &pers_list);
5084 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5085 	spin_unlock(&pers_lock);
5086 	return 0;
5087 }
5088 
5089 int unregister_md_personality(struct mdk_personality *p)
5090 {
5091 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5092 	spin_lock(&pers_lock);
5093 	list_del_init(&p->list);
5094 	spin_unlock(&pers_lock);
5095 	return 0;
5096 }
5097 
5098 static int is_mddev_idle(mddev_t *mddev)
5099 {
5100 	mdk_rdev_t * rdev;
5101 	struct list_head *tmp;
5102 	int idle;
5103 	long curr_events;
5104 
5105 	idle = 1;
5106 	ITERATE_RDEV(mddev,rdev,tmp) {
5107 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5108 		curr_events = disk_stat_read(disk, sectors[0]) +
5109 				disk_stat_read(disk, sectors[1]) -
5110 				atomic_read(&disk->sync_io);
5111 		/* sync IO will cause sync_io to increase before the disk_stats
5112 		 * as sync_io is counted when a request starts, and
5113 		 * disk_stats is counted when it completes.
5114 		 * So resync activity will cause curr_events to be smaller than
5115 		 * when there was no such activity.
5116 		 * non-sync IO will cause disk_stat to increase without
5117 		 * increasing sync_io so curr_events will (eventually)
5118 		 * be larger than it was before.  Once it becomes
5119 		 * substantially larger, the test below will cause
5120 		 * the array to appear non-idle, and resync will slow
5121 		 * down.
5122 		 * If there is a lot of outstanding resync activity when
5123 		 * we set last_event to curr_events, then all that activity
5124 		 * completing might cause the array to appear non-idle
5125 		 * and resync will be slowed down even though there might
5126 		 * not have been non-resync activity.  This will only
5127 		 * happen once though.  'last_events' will soon reflect
5128 		 * the state where there is little or no outstanding
5129 		 * resync requests, and further resync activity will
5130 		 * always make curr_events less than last_events.
5131 		 *
5132 		 */
5133 		if (curr_events - rdev->last_events > 4096) {
5134 			rdev->last_events = curr_events;
5135 			idle = 0;
5136 		}
5137 	}
5138 	return idle;
5139 }
5140 
5141 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5142 {
5143 	/* another "blocks" (512byte) blocks have been synced */
5144 	atomic_sub(blocks, &mddev->recovery_active);
5145 	wake_up(&mddev->recovery_wait);
5146 	if (!ok) {
5147 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5148 		md_wakeup_thread(mddev->thread);
5149 		// stop recovery, signal do_sync ....
5150 	}
5151 }
5152 
5153 
5154 /* md_write_start(mddev, bi)
5155  * If we need to update some array metadata (e.g. 'active' flag
5156  * in superblock) before writing, schedule a superblock update
5157  * and wait for it to complete.
5158  */
5159 void md_write_start(mddev_t *mddev, struct bio *bi)
5160 {
5161 	if (bio_data_dir(bi) != WRITE)
5162 		return;
5163 
5164 	BUG_ON(mddev->ro == 1);
5165 	if (mddev->ro == 2) {
5166 		/* need to switch to read/write */
5167 		mddev->ro = 0;
5168 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5169 		md_wakeup_thread(mddev->thread);
5170 	}
5171 	atomic_inc(&mddev->writes_pending);
5172 	if (mddev->in_sync) {
5173 		spin_lock_irq(&mddev->write_lock);
5174 		if (mddev->in_sync) {
5175 			mddev->in_sync = 0;
5176 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5177 			md_wakeup_thread(mddev->thread);
5178 		}
5179 		spin_unlock_irq(&mddev->write_lock);
5180 	}
5181 	wait_event(mddev->sb_wait, mddev->flags==0);
5182 }
5183 
5184 void md_write_end(mddev_t *mddev)
5185 {
5186 	if (atomic_dec_and_test(&mddev->writes_pending)) {
5187 		if (mddev->safemode == 2)
5188 			md_wakeup_thread(mddev->thread);
5189 		else if (mddev->safemode_delay)
5190 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5191 	}
5192 }
5193 
5194 /* md_allow_write(mddev)
5195  * Calling this ensures that the array is marked 'active' so that writes
5196  * may proceed without blocking.  It is important to call this before
5197  * attempting a GFP_KERNEL allocation while holding the mddev lock.
5198  * Must be called with mddev_lock held.
5199  */
5200 void md_allow_write(mddev_t *mddev)
5201 {
5202 	if (!mddev->pers)
5203 		return;
5204 	if (mddev->ro)
5205 		return;
5206 
5207 	spin_lock_irq(&mddev->write_lock);
5208 	if (mddev->in_sync) {
5209 		mddev->in_sync = 0;
5210 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5211 		if (mddev->safemode_delay &&
5212 		    mddev->safemode == 0)
5213 			mddev->safemode = 1;
5214 		spin_unlock_irq(&mddev->write_lock);
5215 		md_update_sb(mddev, 0);
5216 	} else
5217 		spin_unlock_irq(&mddev->write_lock);
5218 }
5219 EXPORT_SYMBOL_GPL(md_allow_write);
5220 
5221 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5222 
5223 #define SYNC_MARKS	10
5224 #define	SYNC_MARK_STEP	(3*HZ)
5225 void md_do_sync(mddev_t *mddev)
5226 {
5227 	mddev_t *mddev2;
5228 	unsigned int currspeed = 0,
5229 		 window;
5230 	sector_t max_sectors,j, io_sectors;
5231 	unsigned long mark[SYNC_MARKS];
5232 	sector_t mark_cnt[SYNC_MARKS];
5233 	int last_mark,m;
5234 	struct list_head *tmp;
5235 	sector_t last_check;
5236 	int skipped = 0;
5237 	struct list_head *rtmp;
5238 	mdk_rdev_t *rdev;
5239 	char *desc;
5240 
5241 	/* just incase thread restarts... */
5242 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5243 		return;
5244 	if (mddev->ro) /* never try to sync a read-only array */
5245 		return;
5246 
5247 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5248 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5249 			desc = "data-check";
5250 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5251 			desc = "requested-resync";
5252 		else
5253 			desc = "resync";
5254 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5255 		desc = "reshape";
5256 	else
5257 		desc = "recovery";
5258 
5259 	/* we overload curr_resync somewhat here.
5260 	 * 0 == not engaged in resync at all
5261 	 * 2 == checking that there is no conflict with another sync
5262 	 * 1 == like 2, but have yielded to allow conflicting resync to
5263 	 *		commense
5264 	 * other == active in resync - this many blocks
5265 	 *
5266 	 * Before starting a resync we must have set curr_resync to
5267 	 * 2, and then checked that every "conflicting" array has curr_resync
5268 	 * less than ours.  When we find one that is the same or higher
5269 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
5270 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5271 	 * This will mean we have to start checking from the beginning again.
5272 	 *
5273 	 */
5274 
5275 	do {
5276 		mddev->curr_resync = 2;
5277 
5278 	try_again:
5279 		if (kthread_should_stop()) {
5280 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5281 			goto skip;
5282 		}
5283 		ITERATE_MDDEV(mddev2,tmp) {
5284 			if (mddev2 == mddev)
5285 				continue;
5286 			if (mddev2->curr_resync &&
5287 			    match_mddev_units(mddev,mddev2)) {
5288 				DEFINE_WAIT(wq);
5289 				if (mddev < mddev2 && mddev->curr_resync == 2) {
5290 					/* arbitrarily yield */
5291 					mddev->curr_resync = 1;
5292 					wake_up(&resync_wait);
5293 				}
5294 				if (mddev > mddev2 && mddev->curr_resync == 1)
5295 					/* no need to wait here, we can wait the next
5296 					 * time 'round when curr_resync == 2
5297 					 */
5298 					continue;
5299 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5300 				if (!kthread_should_stop() &&
5301 				    mddev2->curr_resync >= mddev->curr_resync) {
5302 					printk(KERN_INFO "md: delaying %s of %s"
5303 					       " until %s has finished (they"
5304 					       " share one or more physical units)\n",
5305 					       desc, mdname(mddev), mdname(mddev2));
5306 					mddev_put(mddev2);
5307 					schedule();
5308 					finish_wait(&resync_wait, &wq);
5309 					goto try_again;
5310 				}
5311 				finish_wait(&resync_wait, &wq);
5312 			}
5313 		}
5314 	} while (mddev->curr_resync < 2);
5315 
5316 	j = 0;
5317 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5318 		/* resync follows the size requested by the personality,
5319 		 * which defaults to physical size, but can be virtual size
5320 		 */
5321 		max_sectors = mddev->resync_max_sectors;
5322 		mddev->resync_mismatches = 0;
5323 		/* we don't use the checkpoint if there's a bitmap */
5324 		if (!mddev->bitmap &&
5325 		    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5326 			j = mddev->recovery_cp;
5327 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5328 		max_sectors = mddev->size << 1;
5329 	else {
5330 		/* recovery follows the physical size of devices */
5331 		max_sectors = mddev->size << 1;
5332 		j = MaxSector;
5333 		ITERATE_RDEV(mddev,rdev,rtmp)
5334 			if (rdev->raid_disk >= 0 &&
5335 			    !test_bit(Faulty, &rdev->flags) &&
5336 			    !test_bit(In_sync, &rdev->flags) &&
5337 			    rdev->recovery_offset < j)
5338 				j = rdev->recovery_offset;
5339 	}
5340 
5341 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5342 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
5343 		" %d KB/sec/disk.\n", speed_min(mddev));
5344 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5345 	       "(but not more than %d KB/sec) for %s.\n",
5346 	       speed_max(mddev), desc);
5347 
5348 	is_mddev_idle(mddev); /* this also initializes IO event counters */
5349 
5350 	io_sectors = 0;
5351 	for (m = 0; m < SYNC_MARKS; m++) {
5352 		mark[m] = jiffies;
5353 		mark_cnt[m] = io_sectors;
5354 	}
5355 	last_mark = 0;
5356 	mddev->resync_mark = mark[last_mark];
5357 	mddev->resync_mark_cnt = mark_cnt[last_mark];
5358 
5359 	/*
5360 	 * Tune reconstruction:
5361 	 */
5362 	window = 32*(PAGE_SIZE/512);
5363 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5364 		window/2,(unsigned long long) max_sectors/2);
5365 
5366 	atomic_set(&mddev->recovery_active, 0);
5367 	init_waitqueue_head(&mddev->recovery_wait);
5368 	last_check = 0;
5369 
5370 	if (j>2) {
5371 		printk(KERN_INFO
5372 		       "md: resuming %s of %s from checkpoint.\n",
5373 		       desc, mdname(mddev));
5374 		mddev->curr_resync = j;
5375 	}
5376 
5377 	while (j < max_sectors) {
5378 		sector_t sectors;
5379 
5380 		skipped = 0;
5381 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
5382 					    currspeed < speed_min(mddev));
5383 		if (sectors == 0) {
5384 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5385 			goto out;
5386 		}
5387 
5388 		if (!skipped) { /* actual IO requested */
5389 			io_sectors += sectors;
5390 			atomic_add(sectors, &mddev->recovery_active);
5391 		}
5392 
5393 		j += sectors;
5394 		if (j>1) mddev->curr_resync = j;
5395 		mddev->curr_mark_cnt = io_sectors;
5396 		if (last_check == 0)
5397 			/* this is the earliers that rebuilt will be
5398 			 * visible in /proc/mdstat
5399 			 */
5400 			md_new_event(mddev);
5401 
5402 		if (last_check + window > io_sectors || j == max_sectors)
5403 			continue;
5404 
5405 		last_check = io_sectors;
5406 
5407 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5408 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5409 			break;
5410 
5411 	repeat:
5412 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5413 			/* step marks */
5414 			int next = (last_mark+1) % SYNC_MARKS;
5415 
5416 			mddev->resync_mark = mark[next];
5417 			mddev->resync_mark_cnt = mark_cnt[next];
5418 			mark[next] = jiffies;
5419 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5420 			last_mark = next;
5421 		}
5422 
5423 
5424 		if (kthread_should_stop()) {
5425 			/*
5426 			 * got a signal, exit.
5427 			 */
5428 			printk(KERN_INFO
5429 				"md: md_do_sync() got signal ... exiting\n");
5430 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5431 			goto out;
5432 		}
5433 
5434 		/*
5435 		 * this loop exits only if either when we are slower than
5436 		 * the 'hard' speed limit, or the system was IO-idle for
5437 		 * a jiffy.
5438 		 * the system might be non-idle CPU-wise, but we only care
5439 		 * about not overloading the IO subsystem. (things like an
5440 		 * e2fsck being done on the RAID array should execute fast)
5441 		 */
5442 		mddev->queue->unplug_fn(mddev->queue);
5443 		cond_resched();
5444 
5445 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5446 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
5447 
5448 		if (currspeed > speed_min(mddev)) {
5449 			if ((currspeed > speed_max(mddev)) ||
5450 					!is_mddev_idle(mddev)) {
5451 				msleep(500);
5452 				goto repeat;
5453 			}
5454 		}
5455 	}
5456 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5457 	/*
5458 	 * this also signals 'finished resyncing' to md_stop
5459 	 */
5460  out:
5461 	mddev->queue->unplug_fn(mddev->queue);
5462 
5463 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5464 
5465 	/* tell personality that we are finished */
5466 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5467 
5468 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5469 	    !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5470 	    mddev->curr_resync > 2) {
5471 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5472 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5473 				if (mddev->curr_resync >= mddev->recovery_cp) {
5474 					printk(KERN_INFO
5475 					       "md: checkpointing %s of %s.\n",
5476 					       desc, mdname(mddev));
5477 					mddev->recovery_cp = mddev->curr_resync;
5478 				}
5479 			} else
5480 				mddev->recovery_cp = MaxSector;
5481 		} else {
5482 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5483 				mddev->curr_resync = MaxSector;
5484 			ITERATE_RDEV(mddev,rdev,rtmp)
5485 				if (rdev->raid_disk >= 0 &&
5486 				    !test_bit(Faulty, &rdev->flags) &&
5487 				    !test_bit(In_sync, &rdev->flags) &&
5488 				    rdev->recovery_offset < mddev->curr_resync)
5489 					rdev->recovery_offset = mddev->curr_resync;
5490 		}
5491 	}
5492 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5493 
5494  skip:
5495 	mddev->curr_resync = 0;
5496 	wake_up(&resync_wait);
5497 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5498 	md_wakeup_thread(mddev->thread);
5499 }
5500 EXPORT_SYMBOL_GPL(md_do_sync);
5501 
5502 
5503 static int remove_and_add_spares(mddev_t *mddev)
5504 {
5505 	mdk_rdev_t *rdev;
5506 	struct list_head *rtmp;
5507 	int spares = 0;
5508 
5509 	ITERATE_RDEV(mddev,rdev,rtmp)
5510 		if (rdev->raid_disk >= 0 &&
5511 		    (test_bit(Faulty, &rdev->flags) ||
5512 		     ! test_bit(In_sync, &rdev->flags)) &&
5513 		    atomic_read(&rdev->nr_pending)==0) {
5514 			if (mddev->pers->hot_remove_disk(
5515 				    mddev, rdev->raid_disk)==0) {
5516 				char nm[20];
5517 				sprintf(nm,"rd%d", rdev->raid_disk);
5518 				sysfs_remove_link(&mddev->kobj, nm);
5519 				rdev->raid_disk = -1;
5520 			}
5521 		}
5522 
5523 	if (mddev->degraded) {
5524 		ITERATE_RDEV(mddev,rdev,rtmp)
5525 			if (rdev->raid_disk < 0
5526 			    && !test_bit(Faulty, &rdev->flags)) {
5527 				rdev->recovery_offset = 0;
5528 				if (mddev->pers->hot_add_disk(mddev,rdev)) {
5529 					char nm[20];
5530 					sprintf(nm, "rd%d", rdev->raid_disk);
5531 					if (sysfs_create_link(&mddev->kobj,
5532 							      &rdev->kobj, nm))
5533 						printk(KERN_WARNING
5534 						       "md: cannot register "
5535 						       "%s for %s\n",
5536 						       nm, mdname(mddev));
5537 					spares++;
5538 					md_new_event(mddev);
5539 				} else
5540 					break;
5541 			}
5542 	}
5543 	return spares;
5544 }
5545 /*
5546  * This routine is regularly called by all per-raid-array threads to
5547  * deal with generic issues like resync and super-block update.
5548  * Raid personalities that don't have a thread (linear/raid0) do not
5549  * need this as they never do any recovery or update the superblock.
5550  *
5551  * It does not do any resync itself, but rather "forks" off other threads
5552  * to do that as needed.
5553  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5554  * "->recovery" and create a thread at ->sync_thread.
5555  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5556  * and wakeups up this thread which will reap the thread and finish up.
5557  * This thread also removes any faulty devices (with nr_pending == 0).
5558  *
5559  * The overall approach is:
5560  *  1/ if the superblock needs updating, update it.
5561  *  2/ If a recovery thread is running, don't do anything else.
5562  *  3/ If recovery has finished, clean up, possibly marking spares active.
5563  *  4/ If there are any faulty devices, remove them.
5564  *  5/ If array is degraded, try to add spares devices
5565  *  6/ If array has spares or is not in-sync, start a resync thread.
5566  */
5567 void md_check_recovery(mddev_t *mddev)
5568 {
5569 	mdk_rdev_t *rdev;
5570 	struct list_head *rtmp;
5571 
5572 
5573 	if (mddev->bitmap)
5574 		bitmap_daemon_work(mddev->bitmap);
5575 
5576 	if (mddev->ro)
5577 		return;
5578 
5579 	if (signal_pending(current)) {
5580 		if (mddev->pers->sync_request) {
5581 			printk(KERN_INFO "md: %s in immediate safe mode\n",
5582 			       mdname(mddev));
5583 			mddev->safemode = 2;
5584 		}
5585 		flush_signals(current);
5586 	}
5587 
5588 	if ( ! (
5589 		mddev->flags ||
5590 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5591 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5592 		(mddev->safemode == 1) ||
5593 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5594 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5595 		))
5596 		return;
5597 
5598 	if (mddev_trylock(mddev)) {
5599 		int spares = 0;
5600 
5601 		spin_lock_irq(&mddev->write_lock);
5602 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5603 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5604 			mddev->in_sync = 1;
5605 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5606 		}
5607 		if (mddev->safemode == 1)
5608 			mddev->safemode = 0;
5609 		spin_unlock_irq(&mddev->write_lock);
5610 
5611 		if (mddev->flags)
5612 			md_update_sb(mddev, 0);
5613 
5614 
5615 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5616 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5617 			/* resync/recovery still happening */
5618 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5619 			goto unlock;
5620 		}
5621 		if (mddev->sync_thread) {
5622 			/* resync has finished, collect result */
5623 			md_unregister_thread(mddev->sync_thread);
5624 			mddev->sync_thread = NULL;
5625 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5626 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5627 				/* success...*/
5628 				/* activate any spares */
5629 				mddev->pers->spare_active(mddev);
5630 			}
5631 			md_update_sb(mddev, 1);
5632 
5633 			/* if array is no-longer degraded, then any saved_raid_disk
5634 			 * information must be scrapped
5635 			 */
5636 			if (!mddev->degraded)
5637 				ITERATE_RDEV(mddev,rdev,rtmp)
5638 					rdev->saved_raid_disk = -1;
5639 
5640 			mddev->recovery = 0;
5641 			/* flag recovery needed just to double check */
5642 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5643 			md_new_event(mddev);
5644 			goto unlock;
5645 		}
5646 		/* Clear some bits that don't mean anything, but
5647 		 * might be left set
5648 		 */
5649 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5650 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5651 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5652 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5653 
5654 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5655 			goto unlock;
5656 		/* no recovery is running.
5657 		 * remove any failed drives, then
5658 		 * add spares if possible.
5659 		 * Spare are also removed and re-added, to allow
5660 		 * the personality to fail the re-add.
5661 		 */
5662 
5663 		if (mddev->reshape_position != MaxSector) {
5664 			if (mddev->pers->check_reshape(mddev) != 0)
5665 				/* Cannot proceed */
5666 				goto unlock;
5667 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5668 		} else if ((spares = remove_and_add_spares(mddev))) {
5669 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5670 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5671 		} else if (mddev->recovery_cp < MaxSector) {
5672 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5673 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5674 			/* nothing to be done ... */
5675 			goto unlock;
5676 
5677 		if (mddev->pers->sync_request) {
5678 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5679 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5680 				/* We are adding a device or devices to an array
5681 				 * which has the bitmap stored on all devices.
5682 				 * So make sure all bitmap pages get written
5683 				 */
5684 				bitmap_write_all(mddev->bitmap);
5685 			}
5686 			mddev->sync_thread = md_register_thread(md_do_sync,
5687 								mddev,
5688 								"%s_resync");
5689 			if (!mddev->sync_thread) {
5690 				printk(KERN_ERR "%s: could not start resync"
5691 					" thread...\n",
5692 					mdname(mddev));
5693 				/* leave the spares where they are, it shouldn't hurt */
5694 				mddev->recovery = 0;
5695 			} else
5696 				md_wakeup_thread(mddev->sync_thread);
5697 			md_new_event(mddev);
5698 		}
5699 	unlock:
5700 		mddev_unlock(mddev);
5701 	}
5702 }
5703 
5704 static int md_notify_reboot(struct notifier_block *this,
5705 			    unsigned long code, void *x)
5706 {
5707 	struct list_head *tmp;
5708 	mddev_t *mddev;
5709 
5710 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5711 
5712 		printk(KERN_INFO "md: stopping all md devices.\n");
5713 
5714 		ITERATE_MDDEV(mddev,tmp)
5715 			if (mddev_trylock(mddev)) {
5716 				do_md_stop (mddev, 1);
5717 				mddev_unlock(mddev);
5718 			}
5719 		/*
5720 		 * certain more exotic SCSI devices are known to be
5721 		 * volatile wrt too early system reboots. While the
5722 		 * right place to handle this issue is the given
5723 		 * driver, we do want to have a safe RAID driver ...
5724 		 */
5725 		mdelay(1000*1);
5726 	}
5727 	return NOTIFY_DONE;
5728 }
5729 
5730 static struct notifier_block md_notifier = {
5731 	.notifier_call	= md_notify_reboot,
5732 	.next		= NULL,
5733 	.priority	= INT_MAX, /* before any real devices */
5734 };
5735 
5736 static void md_geninit(void)
5737 {
5738 	struct proc_dir_entry *p;
5739 
5740 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5741 
5742 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
5743 	if (p)
5744 		p->proc_fops = &md_seq_fops;
5745 }
5746 
5747 static int __init md_init(void)
5748 {
5749 	if (register_blkdev(MAJOR_NR, "md"))
5750 		return -1;
5751 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5752 		unregister_blkdev(MAJOR_NR, "md");
5753 		return -1;
5754 	}
5755 	blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5756 			    md_probe, NULL, NULL);
5757 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5758 			    md_probe, NULL, NULL);
5759 
5760 	register_reboot_notifier(&md_notifier);
5761 	raid_table_header = register_sysctl_table(raid_root_table);
5762 
5763 	md_geninit();
5764 	return (0);
5765 }
5766 
5767 
5768 #ifndef MODULE
5769 
5770 /*
5771  * Searches all registered partitions for autorun RAID arrays
5772  * at boot time.
5773  */
5774 static dev_t detected_devices[128];
5775 static int dev_cnt;
5776 
5777 void md_autodetect_dev(dev_t dev)
5778 {
5779 	if (dev_cnt >= 0 && dev_cnt < 127)
5780 		detected_devices[dev_cnt++] = dev;
5781 }
5782 
5783 
5784 static void autostart_arrays(int part)
5785 {
5786 	mdk_rdev_t *rdev;
5787 	int i;
5788 
5789 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5790 
5791 	for (i = 0; i < dev_cnt; i++) {
5792 		dev_t dev = detected_devices[i];
5793 
5794 		rdev = md_import_device(dev,0, 90);
5795 		if (IS_ERR(rdev))
5796 			continue;
5797 
5798 		if (test_bit(Faulty, &rdev->flags)) {
5799 			MD_BUG();
5800 			continue;
5801 		}
5802 		list_add(&rdev->same_set, &pending_raid_disks);
5803 	}
5804 	dev_cnt = 0;
5805 
5806 	autorun_devices(part);
5807 }
5808 
5809 #endif /* !MODULE */
5810 
5811 static __exit void md_exit(void)
5812 {
5813 	mddev_t *mddev;
5814 	struct list_head *tmp;
5815 
5816 	blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
5817 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
5818 
5819 	unregister_blkdev(MAJOR_NR,"md");
5820 	unregister_blkdev(mdp_major, "mdp");
5821 	unregister_reboot_notifier(&md_notifier);
5822 	unregister_sysctl_table(raid_table_header);
5823 	remove_proc_entry("mdstat", NULL);
5824 	ITERATE_MDDEV(mddev,tmp) {
5825 		struct gendisk *disk = mddev->gendisk;
5826 		if (!disk)
5827 			continue;
5828 		export_array(mddev);
5829 		del_gendisk(disk);
5830 		put_disk(disk);
5831 		mddev->gendisk = NULL;
5832 		mddev_put(mddev);
5833 	}
5834 }
5835 
5836 subsys_initcall(md_init);
5837 module_exit(md_exit)
5838 
5839 static int get_ro(char *buffer, struct kernel_param *kp)
5840 {
5841 	return sprintf(buffer, "%d", start_readonly);
5842 }
5843 static int set_ro(const char *val, struct kernel_param *kp)
5844 {
5845 	char *e;
5846 	int num = simple_strtoul(val, &e, 10);
5847 	if (*val && (*e == '\0' || *e == '\n')) {
5848 		start_readonly = num;
5849 		return 0;
5850 	}
5851 	return -EINVAL;
5852 }
5853 
5854 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5855 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5856 
5857 
5858 EXPORT_SYMBOL(register_md_personality);
5859 EXPORT_SYMBOL(unregister_md_personality);
5860 EXPORT_SYMBOL(md_error);
5861 EXPORT_SYMBOL(md_done_sync);
5862 EXPORT_SYMBOL(md_write_start);
5863 EXPORT_SYMBOL(md_write_end);
5864 EXPORT_SYMBOL(md_register_thread);
5865 EXPORT_SYMBOL(md_unregister_thread);
5866 EXPORT_SYMBOL(md_wakeup_thread);
5867 EXPORT_SYMBOL(md_check_recovery);
5868 MODULE_LICENSE("GPL");
5869 MODULE_ALIAS("md");
5870 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
5871